forked from alphanumericslab/ecg-image-kit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathecg_gridest_margdist.m
383 lines (337 loc) · 16.5 KB
/
ecg_gridest_margdist.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
function [grid_size_hor, grid_size_ver, peak_gaps_hor, peak_gaps_ver, peak_amps_hor, peak_amps_ver] = ecg_gridest_margdist(img, varargin)
% ecg_gridest_margdist Estimates grid size in ECG images.
%
% This function analyzes an ECG image to estimate the grid size in both
% horizontal and vertical directions using the average marginal pixel
% densities of regular or random patches of the ECG. Potential horizontal
% and vertical grid sizes are returned for further evaluation
%
% Note: This function only detects regular grids. The returned values should
% be evaluated based on the image DPI and ECG image style to map the grid
% resolutions to physical time and amplitude units.
%
% Syntax:
% [grid_size_hor, grid_size_ver, grid_spacing_hor_all_seg, grid_spacing_ver_all_seg] = ecg_gridest_margdist(img)
% [grid_size_hor, grid_size_ver, grid_spacing_hor_all_seg, grid_spacing_ver_all_seg] = ecg_gridest_margdist(img, params)
%
% Inputs:
% img - A 2D matrix representing the ECG image in grayscale or RGB formats.
% params - (optional) A struct containing various parameters to control
% the image processing and grid detection algorithm. Default
% values are used if this argument is not provided or is partially
% provided. See function implementation for details.
%
% Outputs:
% grid_size_hor - Estimated grid size in the horizontal direction (in pixels).
% grid_size_ver - Estimated grid size in the vertical direction (in pixels).
% grid_spacing_hor_all_seg - Grid spacing for all segments in the
% horizontal direction (in pixels).
% grid_spacing_ver_all_seg - Grid spacing for all segments in the
% vertical direction (in pixels).
%
% Example:
% % Load an ECG image
% img = imread('path/to/ecg_image.jpg');
%
% % Estimate grid size with default parameters
% [gh, gv, gsh, gsv] = ecg_gridest_margdist(img);
%
% % Estimate grid size with custom parameters
% params = struct('blur_sigma_in_inch', 0.8, 'remove_shadows', false);
% [gh, gv, gsh, gsv] = ecg_gridest_margdist(img, params);
%
% Notes:
% - The function requires Image Processing Toolbox for some operations.
% - Edge detection is optional and can be controlled via the 'apply_edge_detection'
% parameter in the params struct.
% - The function uses histogram-based analysis for grid detection which
% can be sensitive to image quality and resolution.
%
% Reference:
% Reza Sameni, 2023, ECG-Image-Kit: A toolkit for ECG image analysis.
% Available at: https://github.com/alphanumericslab/ecg-image-kit
%
% Revision History:
% 2023: First release
%
%% parse algorithm parameters
if nargin > 1
params = varargin{1};
else
params = [];
end
if ~isfield(params, 'blur_sigma_in_inch') || isempty(params.blur_sigma_in_inch)
params.blur_sigma_in_inch = 1.0; % bluring filter sigma in inches
end
if ~isfield(params, 'paper_size_in_inch') || isempty(params.paper_size_in_inch)
params.paper_size_in_inch = [11, 8.5]; % default paper size in inch (letter size)
end
if ~isfield(params, 'remove_shadows') || isempty(params.remove_shadows)
params.remove_shadows = true; % remove shadows due to photography/scanning by default
end
if ~isfield(params, 'apply_edge_detection') || isempty(params.apply_edge_detection)
params.apply_edge_detection = false; % detect grid on edge detection outputs
end
if ~isfield(params, 'cluster_peaks') || isempty(params.cluster_peaks)
params.cluster_peaks = true; % cluster the marginal histogram peaks or not
end
if params.cluster_peaks
if ~isfield(params, 'max_clusters') || isempty(params.max_clusters)
params.max_clusters = 3; % number of clusters
end
if ~isfield(params, 'cluster_selection_method') || isempty(params.cluster_selection_method)
params.cluster_selection_method = 'GAP_MIN_VAR'; % method for selecting clusters: 'GAP_MIN_VAR', 'MAX_AMP_PEAKS'
end
end
if ~isfield(params, 'avg_quartile') || isempty(params.avg_quartile)
params.avg_quartile = 50.0; % the middle quartile used for averaging the estimated grid gaps
end
if params.avg_quartile > 100.0
error('avg_quartile parameter must be between 0 and 100.0');
end
if params.apply_edge_detection
if ~isfield(params, 'post_edge_det_gauss_filt_std') || isempty(params.post_edge_det_gauss_filt_std)
params.post_edge_det_gauss_filt_std = 0.01; % post edge detection line smoothing
end
if ~isfield(params, 'post_edge_det_sat') || isempty(params.post_edge_det_sat)
params.post_edge_det_sat = true; % saturate densities or not
end
if params.post_edge_det_sat
if ~isfield(params, 'sat_level_upper_prctile') || isempty(params.sat_level_upper_prctile)
params.sat_level_upper_prctile = 99.0; % upper saturation threshold after bluring
end
if ~isfield(params, 'sat_level_lower_prctile') || isempty(params.sat_level_lower_prctile)
params.sat_level_lower_prctile = 1.0; % lower saturation threshold after bluring
end
end
end
if ~isfield(params, 'sat_pre_grid_det') || isempty(params.sat_pre_grid_det)
params.sat_pre_grid_det = true; % saturate densities or not (before spectral estimation)
end
if params.sat_pre_grid_det
if ~isfield(params, 'sat_level_pre_grid_det') || isempty(params.sat_level_pre_grid_det)
params.sat_level_pre_grid_det = 0.7; % saturation k-sigma before grid detection
end
end
if ~isfield(params, 'num_seg_hor') || isempty(params.num_seg_hor)
params.num_seg_hor = 4;
end
if ~isfield(params, 'num_seg_ver') || isempty(params.num_seg_ver)
params.num_seg_ver = 4;
end
if ~isfield(params, 'hist_grid_det_method') || isempty(params.hist_grid_det_method)
params.hist_grid_det_method = 'RANDOM_TILING'; %'REGULAR_TILING', 'RANDOM_TILING';
if ~isfield(params, 'total_segments') || isempty(params.total_segments)
params.total_segments = 100;
end
end
if ~isfield(params, 'min_grid_resolution') || isempty(params.min_grid_resolution)
params.min_grid_resolution = 1; % in pixels
end
if ~isfield(params, 'min_grid_peak_prom_prctile') || isempty(params.min_grid_peak_prom_prctile)
params.min_grid_peak_prom_prctile = 2;
end
if ~isfield(params, 'detailed_plots') || isempty(params.detailed_plots)
params.detailed_plots = 0; % 0 no plots, 1 some plots, 2 all plots (for diagnosis mode only)
end
width = size(img, 2);
height = size(img, 1);
%% convert image to gray scale if in RGB
if ndims(img) == 3
img_gray = double(rgb2gray(img));
img_gray = img_gray / max(img_gray(:));
else
img_gray = double(img);
img_gray = imcomplement(img_gray / max(img_gray(:)));
end
%% shaddow removal and intensity normalization
switch params.remove_shadows
case true
blurrring_sigma = mean([width * params.blur_sigma_in_inch / params.paper_size_in_inch(1), height * params.blur_sigma_in_inch / params.paper_size_in_inch(2)]);
img_gray_blurred = imgaussfilt(img_gray, blurrring_sigma, 'Padding', 'symmetric');
img_gray_normalized = img_gray ./ img_gray_blurred;
img_gray_normalized = (img_gray_normalized - min(img_gray_normalized(:)))/(max(img_gray_normalized(:)) - min(img_gray_normalized(:)));
case false
img_gray_blurred = img_gray;
img_gray_normalized = img_gray;
end
%% edge detection
if params.apply_edge_detection
% Canny edge detection
edges = edge(img_gray_normalized, 'Canny');
% make the edges sharper
% edges = bwmorph(edges, 'thin', Inf);
edges = bwmorph(edges, 'skel', Inf);
% smooth the lines
blurrring_sigma = mean([width * params.post_edge_det_gauss_filt_std / params.paper_size_in_inch(1), height * params.post_edge_det_gauss_filt_std / params.paper_size_in_inch(2)]);
edges_blurred = imgaussfilt(double(edges), blurrring_sigma);
% edges_blurred = edges_blurred / max(edges_blurred(:));
% edges_blurred = double(edges) / max(double(edges(:)));
edges_blurred_sat = edges_blurred;
% saturate extreme pixels
if params.post_edge_det_sat
% upper saturation level
sat_level = prctile(edges_blurred(:), params.sat_level_upper_prctile);
I_sat = edges_blurred > sat_level;
edges_blurred_sat(I_sat) = sat_level;
% lower saturation level
sat_level = prctile(edges_blurred(:), params.sat_level_lower_prctile);
I_sat = edges_blurred < sat_level;
edges_blurred_sat(I_sat) = sat_level;
end
edges_blurred_sat = edges_blurred_sat / max(edges_blurred_sat(:));
img_gray_normalized = imcomplement((edges_blurred_sat - min(edges_blurred_sat(:)))/(max(edges_blurred_sat(:)) - min(edges_blurred_sat(:))));
end
%% image density saturation
if params.sat_pre_grid_det
img_sat = tanh_sat(1.0 - img_gray_normalized(:)', params.sat_level_pre_grid_det, 'ksigma')';%imbinarize(img_gray_normalized, 'adaptive','ForegroundPolarity','dark','Sensitivity',0.4);
img_gray_normalized = reshape(img_sat, size(img_gray_normalized));
end
%% segmentation
seg_width = floor(width / params.num_seg_hor);
seg_height = floor(height / params.num_seg_ver);
switch params.hist_grid_det_method
case 'REGULAR_TILING' % regular tiling across the entire image
segments_stacked = zeros(seg_height, seg_width, params.num_seg_hor * params.num_seg_ver);
k = 1;
for i = 1 : params.num_seg_ver
for j = 1 : params.num_seg_hor
segments_stacked(:, :, k) = img_gray_normalized((i -1)*seg_height + 1 : i*seg_height, (j -1)*seg_width + 1 : j*seg_width);
k = k + 1;
end
end
case 'RANDOM_TILING' % random segments across the entire image
segments_stacked = zeros(seg_height, seg_width, params.total_segments);
for k = 1 : params.total_segments
start_hor = randi(width - seg_width);
start_ver = randi(height - seg_height);
segments_stacked(:, :, k) = img_gray_normalized(start_ver : start_ver + seg_height-1, start_hor : start_hor + seg_width-1);
end
end
%% horizontal/vertical histogram estimation per patch
% grid_spacing_hor_all_seg = zeros(1, size(segments_stacked, 3));
% grid_spacing_ver_all_seg = zeros(1, size(segments_stacked, 3));
peak_amps_hor = [];
peak_gaps_hor = [];
peak_amps_ver = [];
peak_gaps_ver = [];
for k = 1 : size(segments_stacked, 3)
hist_hor = 1.0 - mean(segments_stacked(:, :, k), 2); % marginal intensity (black and white flipped)
min_grid_peak_prominence = prctile(hist_hor, params.min_grid_peak_prom_prctile) - min(hist_hor);
[pk_amps_hor, I_pk_hor] = findpeaks(hist_hor, 'MinPeakDistance', params.min_grid_resolution, 'MinPeakProminence', min_grid_peak_prominence);
if length(pk_amps_hor) > 1
peak_amps_hor = cat(1, peak_amps_hor, pk_amps_hor(2:end));
peak_gaps_hor = cat(1, peak_gaps_hor, diff(I_pk_hor));
end
hist_ver = 1.0 - mean(segments_stacked(:, :, k), 1)'; % marginal intensity (black and white flipped)
min_grid_peak_prominence = prctile(hist_ver, params.min_grid_peak_prom_prctile) - min(hist_ver);
[pk_amps_ver, I_pk_ver] = findpeaks(hist_ver, 'MinPeakDistance', params.min_grid_resolution, 'MinPeakProminence', min_grid_peak_prominence);
if length(pk_amps_ver) > 1
peak_amps_ver = cat(1, peak_amps_ver, pk_amps_ver(2:end));
peak_gaps_ver = cat(1, peak_gaps_ver, diff(I_pk_ver));
end
end
%% calculate horizontal/vertical grid sizes based on the marginal distributions with max intensity
if params.cluster_peaks == false % direct method
peak_gaps_prctiles = prctile(peak_gaps_hor, [50.0 - params.avg_quartile/2, 50.0 + params.avg_quartile/2]);
grid_size_hor = mean(peak_gaps_hor(peak_gaps_hor >= peak_gaps_prctiles(1) & peak_gaps_hor <= peak_gaps_prctiles(2)), 'omitnan');
peak_gaps_prctiles = prctile(peak_gaps_ver, [50.0 - params.avg_quartile/2, 50.0 + params.avg_quartile/2]);
grid_size_ver = mean(peak_gaps_ver(peak_gaps_ver >= peak_gaps_prctiles(1) & peak_gaps_ver <= peak_gaps_prctiles(2)), 'omitnan');
else % indirect method (cluster the local peaks)
eval_kmeans = @(X,K)(kmeans(X, K)); % use kmeans clustering
klist = 1 : params.max_clusters; % the maximum number of clusters
eva = evalclusters([peak_amps_hor(:), peak_gaps_hor(:)], eval_kmeans, 'CalinskiHarabasz', 'klist', klist); % use peak amps and gaps as features
IDX_hor = kmeans(peak_amps_hor(:), eva.OptimalK);
switch params.cluster_selection_method % method for selecting clusters: 'GAP_MIN_VAR', 'MAX_AMP_PEAKS'
case 'GAP_MIN_VAR' % select the cluster with local peaks that are most regular in their gaps (have the smallest inter-peak gap variance)
peak_gaps_per_cluster = zeros(1, eva.OptimalK);
for cc = 1 : eva.OptimalK
peak_gaps_per_cluster(cc) = std(peak_gaps_hor(IDX_hor == cc));
end
[~, selected_cluster_hor] = min(peak_gaps_per_cluster);
case 'MAX_AMP_PEAKS' % select the cluster that has the highest marginal density
peak_amps_per_cluster = zeros(1, eva.OptimalK);
for cc = 1 : eva.OptimalK
peak_amps_per_cluster(cc) = median(peak_amps_hor(IDX_hor == cc));
end
[~, selected_cluster_hor] = max(peak_amps_per_cluster);
otherwise
error('undefined cluster selection method')
end
% calculate the average of the middle of the distribution
% (trimmed-mean) for robustness
peak_gaps_selected_cluster = peak_gaps_hor(IDX_hor == selected_cluster_hor);
peak_gaps_prctiles = prctile(peak_gaps_selected_cluster,[50.0 - params.avg_quartile/2, 50.0 + params.avg_quartile/2]);
grid_size_hor = mean(peak_gaps_selected_cluster(peak_gaps_selected_cluster >= peak_gaps_prctiles(1) & peak_gaps_selected_cluster <= peak_gaps_prctiles(2)), 'omitnan');
% repat the above steps for the vertical marginal densities
eva = evalclusters([peak_amps_ver(:), peak_gaps_ver(:)], eval_kmeans, 'CalinskiHarabasz', 'klist', klist);
IDX_ver = kmeans(peak_amps_ver(:), eva.OptimalK);
switch params.cluster_selection_method % method for selecting clusters: 'GAP_MIN_VAR', 'MAX_AMP_PEAKS'
case 'GAP_MIN_VAR'
peak_gaps_per_cluster = zeros(1, eva.OptimalK);
for cc = 1 : eva.OptimalK
peak_gaps_per_cluster(cc) = std(peak_gaps_ver(IDX_ver == cc));
end
[~, selected_cluster_ver] = min(peak_gaps_per_cluster);
case 'MAX_AMP_PEAKS'
peak_amps_per_cluster = zeros(1, eva.OptimalK);
for cc = 1 : eva.OptimalK
peak_amps_per_cluster(cc) = median(peak_amps_ver(IDX_ver == cc));
end
[~, selected_cluster_ver] = max(peak_amps_per_cluster);
otherwise
error('undefined cluster selection method')
end
peak_gaps_selected_cluster = peak_gaps_ver(IDX_ver == selected_cluster_ver);
peak_gaps_prctiles = prctile(peak_gaps_selected_cluster,[50.0 - params.avg_quartile/2, 50.0 + params.avg_quartile/2]);
grid_size_ver = mean(peak_gaps_selected_cluster(peak_gaps_selected_cluster >= peak_gaps_prctiles(1) & peak_gaps_selected_cluster <= peak_gaps_prctiles(2)), 'omitnan');
end
%{
% plots used during development
if params.detailed_plots > 1
figure
hold on
nn = 1 : length(hist_hor);
plot(nn, hist_hor)
plot(nn(I_peaks_hor), peak_amps_hor, 'ro')
if params.cluster_peaks == true
plot(nn(I_peaks_hor(IDX_hor == selected_cluster_hor)), peak_amps_hor(IDX_hor == selected_cluster_hor), 'gx', 'markersize', 12)
end
grid
figure
hold on
nn = 1 : length(hist_ver);
plot(nn, hist_ver)
plot(nn(I_peaks_ver), peak_amps_ver, 'ro')
if params.cluster_peaks == true
plot(nn(I_peaks_ver(IDX_ver == selected_cluster_ver)), peak_amps_ver(IDX_ver == selected_cluster_ver), 'gx', 'markersize', 12)
end
grid
end
grid_size_hor = median(grid_spacing_hor_all_seg, 'omitnan');
grid_size_ver = median(grid_spacing_ver_all_seg, 'omitnan');
%}
%% Plot results
if params.detailed_plots > 0
figure
subplot(2,2,1)
imshow(img)
title('img', 'interpreter', 'none')
subplot(2,2,2)
imshow(img_gray)
title('img_gray', 'interpreter', 'none')
subplot(2,2,3)
imshow(img_gray_blurred)
title('img_gray_blurred', 'interpreter', 'none')
subplot(2,2,4)
imshow(img_gray_normalized)
title('img_gray_normalized', 'interpreter', 'none')
sgtitle('Preprocessing stages (shaddow removal and intensity normalization)');
figure
subplot(121)
histogram(peak_gaps_hor)
title('Histogram of horizontal grid spacing estimate of all segments')
subplot(122)
histogram(peak_gaps_ver)
title('Histogram of vertical grid spacing estimate of all segments')
end