-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathinference_benchmark.py
302 lines (254 loc) · 14.3 KB
/
inference_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import cv2
import toml
import argparse
import numpy as np
import json
import torch
from torch.nn import functional as F
import torchvision
import utils
from utils import CONFIG
import networks
from tqdm import tqdm
from fvcore.nn import FlopCountAnalysis
import sys
sys.path.insert(0, './segment-anything')
sys.path.insert(0, './GroundingDINO')
from segment_anything.utils.transforms import ResizeLongestSide
from groundingdino.util.inference import Model
transform = ResizeLongestSide(1024)
def single_ms_inference(model, image_dict, args):
with torch.no_grad():
feas, pred, post_mask = model.forward_inference(image_dict)
if args.sam:
post_mask = post_mask[0].cpu().numpy() * 255
return post_mask.transpose(1, 2, 0).astype('uint8')
alpha_pred_os1, alpha_pred_os4, alpha_pred_os8 = pred['alpha_os1'], pred['alpha_os4'], pred['alpha_os8']
alpha_pred_os8 = alpha_pred_os8[..., : image_dict['pad_shape'][0], : image_dict['pad_shape'][1]]
alpha_pred_os4 = alpha_pred_os4[..., : image_dict['pad_shape'][0], : image_dict['pad_shape'][1]]
alpha_pred_os1 = alpha_pred_os1[..., : image_dict['pad_shape'][0], : image_dict['pad_shape'][1]]
alpha_pred_os8 = F.interpolate(alpha_pred_os8, image_dict['ori_shape'], mode="bilinear", align_corners=False)
alpha_pred_os4 = F.interpolate(alpha_pred_os4, image_dict['ori_shape'], mode="bilinear", align_corners=False)
alpha_pred_os1 = F.interpolate(alpha_pred_os1, image_dict['ori_shape'], mode="bilinear", align_corners=False)
if args.maskguide:
if args.twoside:
weight_os8 = utils.get_unknown_tensor_from_mask(post_mask, rand_width=args.os8_width, train_mode=False)
else:
weight_os8 = utils.get_unknown_tensor_from_mask_oneside(post_mask, rand_width=args.os8_width, train_mode=False)
post_mask[weight_os8>0] = alpha_pred_os8[weight_os8>0]
alpha_pred = post_mask.clone().detach()
else:
if args.postprocess:
weight_os8 = utils.get_unknown_box_from_mask(post_mask)
alpha_pred_os8[weight_os8>0] = post_mask[weight_os8>0]
alpha_pred = alpha_pred_os8.clone().detach()
if args.twoside:
weight_os4 = utils.get_unknown_tensor_from_pred(alpha_pred, rand_width=args.os4_width, train_mode=False)
else:
weight_os4 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=args.os4_width, train_mode=False)
alpha_pred[weight_os4>0] = alpha_pred_os4[weight_os4>0]
if args.twoside:
weight_os1 = utils.get_unknown_tensor_from_pred(alpha_pred, rand_width=args.os1_width, train_mode=False)
else:
weight_os1 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=args.os1_width, train_mode=False)
alpha_pred[weight_os1>0] = alpha_pred_os1[weight_os1>0]
alpha_pred = alpha_pred[0].cpu().numpy() * 255
return alpha_pred.transpose(1, 2, 0).astype('uint8')
def generator_tensor_dict(image_path, alpha_path, args):
# read images
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_size = image.shape[:2]
alpha_single = cv2.imread(alpha_path, 0)
alpha_single[alpha_single>127] = 255
alpha_single[alpha_single<=127] = 0
fg_set = np.where(alpha_single != 0)
x_min = np.min(fg_set[1])
x_max = np.max(fg_set[1])
y_min = np.min(fg_set[0])
y_max = np.max(fg_set[0])
bbox = np.array([x_min, y_min, x_max, y_max])
image = transform.apply_image(image)
image = torch.as_tensor(image).cuda()
image = image.permute(2, 0, 1).contiguous()
bbox = transform.apply_boxes(bbox, original_size)
input_point = np.array([[(bbox[0][0] + bbox[0][2])/2, (bbox[0][1] + bbox[0][3])/2]])
input_label = np.array([1])
input_point = torch.as_tensor(input_point, dtype=torch.float).cuda()
input_label = torch.as_tensor(input_label, dtype=torch.float).cuda()
bbox = torch.as_tensor(bbox, dtype=torch.float).cuda()
pixel_mean = torch.tensor([123.675, 116.28, 103.53]).view(3,1,1).cuda()
pixel_std = torch.tensor([58.395, 57.12, 57.375]).view(3,1,1).cuda()
image = (image - pixel_mean) / pixel_std
h, w = image.shape[-2:]
pad_size = image.shape[-2:]
padh = 1024 - h
padw = 1024 - w
image = F.pad(image, (0, padw, 0, padh))
if args.prompt == 'box':
sample = {'image': image[None, ...], 'bbox': bbox[None, ...], 'ori_shape': original_size, 'pad_shape': pad_size}
elif args.prompt == 'point':
sample = {'image': image[None, ...], 'point': input_point[None, ...], 'label': input_label[None, ...], 'ori_shape': original_size, 'pad_shape': pad_size}
return sample
def generator_tensor_dict_from_text(image_path, text, dino_model, args):
# read images
image = cv2.imread(image_path)
detections, phrases = dino_model.predict_with_caption(
image=image,
caption=text,
box_threshold=0.25,
text_threshold=0.5
)
if len(detections.xyxy) > 1:
nms_idx = torchvision.ops.nms(
torch.from_numpy(detections.xyxy),
torch.from_numpy(detections.confidence),
0.8,
).numpy().tolist()
detections.xyxy = detections.xyxy[nms_idx]
detections.confidence = detections.confidence[nms_idx]
bbox = detections.xyxy[np.argmax(detections.confidence)]
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_size = image.shape[:2]
image = transform.apply_image(image)
image = torch.as_tensor(image).cuda()
image = image.permute(2, 0, 1).contiguous()
bbox = transform.apply_boxes(bbox, original_size)
bbox = torch.as_tensor(bbox, dtype=torch.float).cuda()
pixel_mean = torch.tensor([123.675, 116.28, 103.53]).view(3,1,1).cuda()
pixel_std = torch.tensor([58.395, 57.12, 57.375]).view(3,1,1).cuda()
image = (image - pixel_mean) / pixel_std
h, w = image.shape[-2:]
pad_size = image.shape[-2:]
padh = 1024 - h
padw = 1024 - w
image = F.pad(image, (0, padw, 0, padh))
sample = {'image': image[None, ...], 'bbox': bbox[None, ...], 'ori_shape': original_size, 'pad_shape': pad_size}
return sample
if __name__ == '__main__':
print('Torch Version: ', torch.__version__)
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='config/MAM-ViTB-8gpu.toml')
parser.add_argument('--benchmark', type=str, default='him2k', choices=['him2k', 'him2k_comp', 'rwp636', 'ppm100', 'am2k', 'pm10k', 'rw100'])
parser.add_argument('--checkpoint', type=str, default='checkpoints/mam_sam_vitb.pth',
help="path of checkpoint")
parser.add_argument('--image-ext', type=str, default='.jpg', help="input image ext")
parser.add_argument('--mask-ext', type=str, default='.png', help="input mask ext")
parser.add_argument('--output', type=str, default='outputs/', help="output dir")
parser.add_argument('--os8_width', type=int, default=10, help="guidance threshold")
parser.add_argument('--os4_width', type=int, default=20, help="guidance threshold")
parser.add_argument('--os1_width', type=int, default=10, help="guidance threshold")
parser.add_argument('--twoside', action='store_true', default=False, help='post process with twoside of the guidance')
parser.add_argument('--sam', action='store_true', default=False, help='return mask')
parser.add_argument('--maskguide', action='store_true', default=False, help='mask guidance')
parser.add_argument('--postprocess', action='store_true', default=False, help='postprocess to remove bg')
parser.add_argument('--prompt', type=str, default='box', choices=['box', 'point', 'text'])
# Parse configuration
args = parser.parse_args()
with open(args.config) as f:
utils.load_config(toml.load(f))
# Check if toml config file is loaded
if CONFIG.is_default:
raise ValueError("No .toml config loaded.")
args.output = os.path.join(args.output)
utils.make_dir(args.output)
# build model
model = networks.get_generator_m2m(seg=CONFIG.model.arch.seg, m2m=CONFIG.model.arch.m2m)
model.cuda()
# load checkpoint
checkpoint = torch.load(args.checkpoint)
model.m2m.load_state_dict(utils.remove_prefix_state_dict(checkpoint['state_dict']), strict=True)
# inference
model = model.eval()
n_parameters = sum(p.numel() for p in model.m2m.parameters() if p.requires_grad)
print('number of params:', n_parameters)
if args.prompt == 'text':
GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
GROUNDING_DINO_CHECKPOINT_PATH = "checkpoints/groundingdino_swint_ogc.pth"
grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH)
if args.benchmark == 'him2k':
image_dir = CONFIG.benchmark.him2k_img
alpha_dir = CONFIG.benchmark.him2k_alpha
for i, image_name in enumerate(tqdm(os.listdir(image_dir))):
image_path = os.path.join(image_dir, image_name)
alpha_path = os.path.join(alpha_dir, os.path.splitext(image_name)[0])
output_path = os.path.join(args.output, os.path.splitext(image_name)[0])
utils.make_dir(output_path)
for alpha_single_dir in sorted(os.listdir(alpha_path)):
alpha_single_path = os.path.join(alpha_path, alpha_single_dir)
image_dict = generator_tensor_dict(image_path, alpha_single_path, args)
alpha_pred = single_ms_inference(model, image_dict, args)
cv2.imwrite(os.path.join(output_path, alpha_single_dir), alpha_pred)
elif args.benchmark == 'him2k_comp':
image_dir = CONFIG.benchmark.him2k_comp_img
alpha_dir = CONFIG.benchmark.him2k_comp_alpha
for i, image_name in enumerate(tqdm(os.listdir(image_dir))):
image_path = os.path.join(image_dir, image_name)
alpha_path = os.path.join(alpha_dir, os.path.splitext(image_name)[0])
output_path = os.path.join(args.output, os.path.splitext(image_name)[0])
utils.make_dir(output_path)
for alpha_single_dir in sorted(os.listdir(alpha_path)):
alpha_single_path = os.path.join(alpha_path, alpha_single_dir)
image_dict = generator_tensor_dict(image_path, alpha_single_path, args)
alpha_pred = single_ms_inference(model, image_dict, args)
cv2.imwrite(os.path.join(output_path, alpha_single_dir), alpha_pred)
elif args.benchmark == 'rwp636':
image_dir = CONFIG.benchmark.rwp636_img
alpha_dir = CONFIG.benchmark.rwp636_alpha
for i, image_name in enumerate(tqdm(os.listdir(image_dir))):
image_path = os.path.join(image_dir, image_name)
alpha_path = os.path.join(alpha_dir, os.path.splitext(image_name)[0]+'.png')
image_dict = generator_tensor_dict(image_path, alpha_path, args)
alpha_pred = single_ms_inference(model, image_dict, args)
cv2.imwrite(os.path.join(args.output, os.path.splitext(image_name)[0]+'.png'), alpha_pred)
elif args.benchmark == 'ppm100':
image_dir = CONFIG.benchmark.ppm100_img
alpha_dir = CONFIG.benchmark.ppm100_alpha
for i, image_name in enumerate(tqdm(os.listdir(image_dir))):
image_path = os.path.join(image_dir, image_name)
alpha_path = os.path.join(alpha_dir, image_name)
image_dict = generator_tensor_dict(image_path, alpha_path, args)
alpha_pred = single_ms_inference(model, image_dict, args)
cv2.imwrite(os.path.join(args.output, os.path.splitext(image_name)[0]+'.png'), alpha_pred)
elif args.benchmark == 'am2k':
image_dir = CONFIG.benchmark.am2k_img
alpha_dir = CONFIG.benchmark.am2k_alpha
for i, image_name in enumerate(tqdm(os.listdir(image_dir))):
image_path = os.path.join(image_dir, image_name)
alpha_path = os.path.join(alpha_dir, os.path.splitext(image_name)[0]+'.png')
image_dict = generator_tensor_dict(image_path, alpha_path, args)
alpha_pred = single_ms_inference(model, image_dict, args)
cv2.imwrite(os.path.join(args.output, os.path.splitext(image_name)[0]+'.png'), alpha_pred)
elif args.benchmark == 'pm10k':
image_dir = CONFIG.benchmark.pm10k_img
alpha_dir = CONFIG.benchmark.pm10k_alpha
for i, image_name in enumerate(tqdm(os.listdir(image_dir))):
image_path = os.path.join(image_dir, image_name)
alpha_path = os.path.join(alpha_dir, os.path.splitext(image_name)[0]+'.png')
image_dict = generator_tensor_dict(image_path, alpha_path, args)
alpha_pred = single_ms_inference(model, image_dict, args)
cv2.imwrite(os.path.join(args.output, os.path.splitext(image_name)[0]+'.png'), alpha_pred)
elif args.benchmark == 'rw100':
image_dir = CONFIG.benchmark.rw100_img
text_dir = CONFIG.benchmark.rw100_text
index_dir = CONFIG.benchmark.rw100_index
alpha_dir = CONFIG.benchmark.rw100_alpha
if args.prompt == 'text':
index_data = json.load(open(index_dir, 'r'))
text_data = json.load(open(text_dir, 'r'))
for i, image_name in enumerate(tqdm(os.listdir(image_dir))):
if args.prompt == 'text':
image_path = os.path.join(image_dir, image_name)
text_label = text_data[os.path.splitext(image_name)[0]]
index_label = index_data[text_label['image_name']]
text = text_label['expressions'][index_label]
image_dict = generator_tensor_dict_from_text(image_path, text, grounding_dino_model, args)
alpha_pred = single_ms_inference(model, image_dict, args)
cv2.imwrite(os.path.join(args.output, os.path.splitext(image_name)[0]+'.png'), alpha_pred)
else:
image_path = os.path.join(image_dir, image_name)
alpha_path = os.path.join(alpha_dir, os.path.splitext(image_name)[0]+'.png')
image_dict = generator_tensor_dict(image_path, alpha_path, args)
alpha_pred = single_ms_inference(model, image_dict, args)
cv2.imwrite(os.path.join(args.output, os.path.splitext(image_name)[0]+'.png'), alpha_pred)