Skip to content

Latest commit

 

History

History
26 lines (20 loc) · 3.44 KB

File metadata and controls

26 lines (20 loc) · 3.44 KB

DiNAT - Semantic Segmentation

Make sure to set up your environment according to the semantic segmentation README.

Training and evaluation on ADE20K

Training and evaluation is identical to NAT.

Checkpoints

DiNAT

Backbone Network # of Params FLOPs mIoU mIoU (multi-scale) Pre-training Checkpoint Config file
DiNAT-Mini UPerNet 50M 900G 45.8 47.2 ImageNet-1K Download config.py
DiNAT-Tiny UPerNet 58M 934G 47.8 48.8 ImageNet-1K Download config.py
DiNAT-Small UPerNet 82M 1010G 48.9 49.9 ImageNet-1K Download config.py
DiNAT-Base UPerNet 123M 1137G 49.6 50.4 ImageNet-1K Download config.py
DiNAT-Large UPerNet 238M 2335G 54.0 54.9 ImageNet-22K Download config.py

DiNATs

Backbone Network # of Params FLOPs mIoU mIoU (multi-scale) Pre-training Checkpoint Config file
DiNATs-Tiny UPerNet 60M 941G 46.0 47.4 ImageNet-1K Download config.py
DiNATs-Small UPerNet 81M 1030G 48.6 49.9 ImageNet-1K Download config.py
DiNATs-Base UPerNet 121M 1173G 49.4 50.2 ImageNet-1K Download config.py
DiNATs-Large UPerNet 234M 2466G 53.4 54.6 ImageNet-22K Download config.py