- 时间:2019-09-15
- 题目链接:https://leetcode-cn.com/problems/water-and-jug-problem/
- tag:
Math
给你一个装满水的 8 升满壶和两个分别是 5 升、3 升的空壶,请想个优雅的办法,使得其中一个水壶恰好装 4 升水,每一步的操作只能是倒空或倒满。
1.数学分析解答
上面的问题是一个特例,我们可以抽象为leetcode-365-水壶问题。
有两个容量分别为 x升 和 y升 的水壶(壶1,壶2)以及无限多的水。请判断能否通过使用这两个水壶,从而可以得到恰好 z升 的水?
解题核心思路(x < y,即壶1容量小于壶2,x == y的情况后面讨论):
- 将壶2倒满,往壶1倒入至满。
- 若壶1满,记录当前壶2中新水量。壶1倒出,将壶2中剩余的继续往壶1中倒入;(当壶1满,继续此操作,并记录当前壶2中新水量nw, 若此新水量已被记录,则)。
- 若出现壶1不满时(即此时壶2必空),重复操作1。
开辟一个新数组nws记录所有新水量,对任意nws[i],可构造的水量为nws[i],nws[i]+x,nws[i]+y。
(其实不需要新数组,因为数学上可以证明新水量的值循环周期呈现,故可以使用一个临时变量cur,当cur==x为终止条件)
个别特殊情况考虑:
- x == z || y == z; true
- x == 0 || x+y < z; false
- x+y == z || z == 0; true
class Solution {
public:
bool canMeasureWater(int x, int y, int z) {
if(x > y) return canMeasureWater(y, x, z);
if(x == z || y == z) return true;
if(x == 0 || x+y < z) return false;
if(x+y == z || z == 0) return true;
int cur = y - x;
while(cur != x){
if(cur == z) return true;
if(cur > x){
if(cur + x == z) return true;
cur = cur - x;
}
else{
if(cur + y == z || cur + x == z) return true;
cur = y - x + cur;
}
}
return false;
}
};
2.BFS
不仅可以计算是否能获取 z 升水,而且可以获得最少多少操作可获取 z 升水。(缺点,无法通过,因为需要太大的空间,需要申请一个三维数组记录状态)
核心思想就是状态转移问题:
壶0(x+y),壶1(x),壶2(y),壶0是本是无限大水池,同理于定义为大小为x+y的壶。用bfs的思想,使用一个队列记录所有新的状态。
对于任意状态(c,a,b),状态转移就是:
- 若c不为0,将壶0倒水入壶1或壶2;若a不为0,将壶1倒水入壶0或壶2;若b不为0,将壶2倒水入壶0或壶1;
- 记录每个新状态,并入队,若此状态访问过则不入队。
特殊情况考虑同1。
class Solution {
public:
struct state{
int nums[3];
state(int xy, int x, int y){
nums[0] = xy;
nums[1] = x;
nums[2] = y;
}
};
state pour_water(state cur, int src, int det, int size[]){
state ans = cur;
int need_w = size[det] - cur.nums[det];
if(need_w <= cur.nums[src]){
ans.nums[det] += need_w;
ans.nums[src] -= need_w;
}
else{
ans.nums[det] += ans.nums[src];
ans.nums[src] = 0;
}
return ans;
}
bool canMeasureWater(int x, int y, int z) {
if(x > y) return canMeasureWater(y, x, z); //
if(x == z || y == z) return true;
if(x == 0 || x+y < z) return false;
if(x+y == z || z == 0) return true;
int visited[x+y+1][x+1][y+1];
int water_size[3] = {x+y, x, y};
memset(visited, 0, sizeof(visited));
state cur(x+y, 0, 0);
queue<state> q;
q.push(cur);
int step = 0;
while(!q.empty()){
int size = q.size();
while(size){
state temp(0, 0, 0);
cur = q.front();
if(cur.nums[1] + cur.nums[2] == z) return true;
visited[cur.nums[0]][cur.nums[1]][cur.nums[2]] = 1;
q.pop();
if(cur.nums[0] != 0){
temp = pour_water(cur, 0, 1, water_size);
if(visited[temp.nums[0]][temp.nums[1]][temp.nums[2]] != 1)
q.push(temp);
temp = pour_water(cur, 0, 2, water_size);
if(visited[temp.nums[0]][temp.nums[1]][temp.nums[2]] != 1)
q.push(temp);
}
if(cur.nums[1] != 0){
temp = pour_water(cur, 1, 2, water_size);
if(visited[temp.nums[0]][temp.nums[1]][temp.nums[2]] != 1)
q.push(temp);
temp = pour_water(cur, 1, 0, water_size);
if(visited[temp.nums[0]][temp.nums[1]][temp.nums[2]] != 1)
q.push(temp);
}
if(cur.nums[2] != 0){
temp = pour_water(cur, 2, 1, water_size);
if(visited[temp.nums[0]][temp.nums[1]][temp.nums[2]] != 1)
q.push(temp);
temp = pour_water(cur, 2, 0, water_size);
if(visited[temp.nums[0]][temp.nums[1]][temp.nums[2]] != 1)
q.push(temp);
}
size--;
}
step++;
}
return false;
}
};
暂缺