diff --git a/CHANGELOG.rst b/CHANGELOG.rst index f4b38798..b73f7e62 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -1,6 +1,23 @@ Change Log ========== +v22.11.17 +-------- + +Main changes: + +- Refactor :code:`Distortions()` to a list or simple-format dict of :code:`Defect` objects as input. + Same for :code:`Distortions.from_structures()` +- Update defect naming to :code:`{Defect.name}_s{Defect.defect_site_index}` for vacancies/substitutions and + :code:`{Defect.name}_m{Defect.multiplicity}` for interstitials. Append "a", "b", "c" etc in cases of inequivalent + defects +- Make :code:`ShakeNBreak` compatible with most recent :code:`pymatgen` and :code:`pymatgen-analysis-defects` packages. +- Update legend format in plots and site index/multiplicity labelling, make default format png. +- Update default charge state setting to match :code:`pymatgen-analysis-defects` oxi state + padding approach. +- A lot of additional warning and error catches. +- Miscellaneous warnings and docs updates. + + v22.11.7 -------- diff --git a/README.md b/README.md index bbe029c1..b005d4d3 100644 --- a/README.md +++ b/README.md @@ -35,6 +35,8 @@ If using `VASP`, in order for `ShakeNBreak` to automatically generate the pseudo ``` Within your `VASP` pseudopotential top directory, you should have a folder named `POT_GGA_PAW_PBE` which contains the `POTCAR.X(.gz)` files (in this case for PBE `POTCAR`s). More details given [here](https://pymatgen.org/installation.html#potcar-setup). +The font Montserrat ([Open Font License](https://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=OFL)) will be installed with the package, and will be used by default for plotting. + ### Developer installation For development work, ShakeNBreak can also be installed from a copy of the source directory: @@ -77,12 +79,19 @@ More information about each function and its inputs/outputs are available from t We recommend at least looking through the [tutorials](https://shakenbreak.readthedocs.io/en/latest/Tutorials.html) when first starting to use `ShakeNBreak`, to familiarise yourself with the full functionality and workflow. ## Code Compatibility -`ShakeNBreak` is built to natively function using `pymatgen` `Defect` objects ([docs available here](https://materialsproject.github.io/pymatgen-analysis-defects/)) and be compatible with the most recent version of `pymatgen`. If you are receiving `pymatgen`-related errors when using `ShakeNBreak`, you may need to update `pymatgen` and/or `ShakeNBreak`, which can be done with: +`ShakeNBreak` is built to natively function using `pymatgen` `Defect` objects ([docs available here](https://materialsproject.github.io/pymatgen-analysis-defects/)) and be compatible with the most recent version of `pymatgen`. +If you are receiving `pymatgen`-related errors when using `ShakeNBreak`, you may need to update `pymatgen` and/or `ShakeNBreak`, which can be done with: ```bash pip install --upgrade pymatgen shakenbreak ``` -`ShakeNBreak` can take `pymatgen` `Defect` objects as input (to then generate the trial distorted structures), **_but also_** can take in `pymatgen` `Structure` objects, `doped` defect dictionaries or structure files (e.g. `POSCAR`s for `VASP`) as inputs. As such, it should be compatible with any defect code (such as `doped`, `DASP`, `PyLada`, `PyCDT`, `Spinney`, `DefAP`, `PyDEF`, `pydefect`...) that generates these files. +`ShakeNBreak` can take `pymatgen` `Defect` objects as input (to then generate the trial distorted structures), +**_but also_** can take in `pymatgen` `Structure` objects, `doped` defect dictionaries or structure files +(e.g. `POSCAR`s for `VASP`) as inputs. As such, it should be compatible with any defect code +(such as [`doped`](https://github.com/SMTG-UCL/doped), [`pydefect`](https://github.com/kumagai-group/pydefect), +[`PyCDT`](https://github.com/mbkumar/pycdt), [`PyLada`](https://github.com/pylada/pylada-defects), +[`DASP`](http://hzwtech.com/files/software/DASP/htmlEnglish/index.html), [`Spinney`](https://gitlab.com/Marrigoni/spinney/-/tree/master), +[`DefAP`](https://github.com/DefAP/defap), [`PyDEF`](https://github.com/PyDEF2/PyDEF-2.0)...) that generates these files. Please let us know if you have any issues with compatibility, or if you would like to see any additional features added to `ShakeNBreak` to make it more compatible with your code. ## Contributing diff --git a/docs/Analysis.rst b/docs/Analysis.rst index 0a3127a8..7ceabdc3 100644 --- a/docs/Analysis.rst +++ b/docs/Analysis.rst @@ -18,7 +18,7 @@ Alternatively, we can run from a different directory and specify the defect to p .. code:: bash - $ snb-parse --defect vac_1_Cd_0 --path defects_folder --code FHI-aims + $ snb-parse --defect v_Cd_s0_0 --path defects_folder --code FHI-aims Where ``defects_folder`` is the path to the top level directory containing the defect folder, and is only required if different from the current directory. @@ -32,7 +32,7 @@ in a given/current directory using the ``-a``/``--all`` flag: This generates a ``yaml`` file for each defect, mapping each distortion to the final energy of the relaxed structures (in eV). These files are saved to the -corresponding defect directory (e.g. ``defects_folder/vac_1_Cd_0/vac_1_Cd_0.yaml``). +corresponding defect directory (e.g. ``defects_folder/v_Cd_s0_0/v_Cd_s0_0.yaml``). .. code:: yaml @@ -61,7 +61,7 @@ was used (if not :code:`VASP`) and which reference structure to use (default = ` .. code:: bash - $ snb-analyse --defect vac_1_Cd_0 --code FHI-aims --path defects_folder --ref_struct -0.4 --verbose + $ snb-analyse --defect v_Cd_s0_0 --code FHI-aims --path defects_folder --ref_struct -0.4 --verbose Again if we want to analyse the results for **all** defects present in a given/current directory, we can use the ``-a``/``--all`` flag: @@ -90,7 +90,7 @@ the defect directory: which will generate a figure like the one below: -.. image:: ./vac_1_Cd_0.svg +.. image:: ./v_Cd_s0_0.svg :width: 400px .. @@ -103,7 +103,7 @@ structures, using the ``-cb``/``--colorbar`` flag: $ snb-plot -cb -.. image:: ./vac_1_Cd_0_colorbar.svg +.. image:: ./v_Cd_s0_0_colorbar.svg :width: 450px .. @@ -114,7 +114,7 @@ was used (if not :code:`VASP`) and other options (what ``metric`` to use for col .. code:: bash - $ snb-plot --defect vac_1_Cd_0 --code FHI-aims --path defects_folder --colorbar -0.4 --metric disp --units meV --verbose + $ snb-plot --defect v_Cd_s0_0 --code FHI-aims --path defects_folder --colorbar -0.4 --metric disp --units meV --verbose Again if we want to plot the results for **all** defects present in a given/current directory, we can use the ``-a``/``--all`` flag: @@ -143,7 +143,7 @@ For example, if we have the following directory structure .. code:: bash ./ - |--- vac_1_Cd_0/ <-- Neutral Cd vacancy + |--- v_Cd_s0_0/ <-- Neutral Cd vacancy | |--- Unperturbed | | | |--- Bond_Distortion_-30.0% <-- Favourable distortion @@ -151,7 +151,7 @@ For example, if we have the following directory structure | |--- Bond_Distortion_30.0% | | ... | - |--- vac_1_Cd_-1/ <-- Negatively charged Cd vacancy + |--- v_Cd_s0_-1/ <-- Negatively charged Cd vacancy |--- Unperturbed | ... |--- Bond_Distortion_50% <-- Favourable distortion @@ -171,7 +171,7 @@ for the code specified with the flag ``--code`` (default = :code:`VASP`). .. code:: bash ./ - |--- vac_1_Cd_0/ + |--- v_Cd_s0_0/ | |--- Unperturbed | | | |--- Bond_Distortion_-30.0% <-- Favourable distortion @@ -180,7 +180,7 @@ for the code specified with the flag ``--code`` (default = :code:`VASP`). | | ... | |--- Bond_Distortion_50.0%_from_-1 <-- Distortion from the -1 charge state | - |--- vac_1_Cd_-1/ + |--- v_Cd_s0_-1/ |--- Unperturbed | ... |--- Bond_Distortion_50% <-- Favourable distortion @@ -214,7 +214,7 @@ This command will generate a ``Groundstate`` directory within each defect folder .. code:: bash ./ - |--- vac_1_Cd_0/ + |--- v_Cd_s0_0/ | |--- Unperturbed | | | |--- Bond_Distortion_-30.0% @@ -224,7 +224,7 @@ This command will generate a ``Groundstate`` directory within each defect folder | |--- Groundstate | |--- POSCAR <-- Ground state structure | - |--- vac_1_Cd_-1/ + |--- v_Cd_s0_-1/ |--- Unperturbed | ... |--- Bond_Distortion_50% diff --git a/docs/Code_Compatibility.rst b/docs/Code_Compatibility.rst index e9bb6b38..d8756919 100644 --- a/docs/Code_Compatibility.rst +++ b/docs/Code_Compatibility.rst @@ -1,12 +1,23 @@ Code Compatibility ======================== -:code:`ShakeNBreak` is built to natively function using :code:`pymatgen` :code:`Defect` objects (`docs available here `_) and be compatible with the most recent version of :code:`pymatgen`. If you are receiving :code:`pymatgen`-related errors when using :code:`ShakeNBreak`, you may need to update :code:`pymatgen` and/or :code:`ShakeNBreak`, which can be done with: +:code:`ShakeNBreak` is built to natively function using :code:`pymatgen` :code:`Defect` objects +(`docs available here `_) and be compatible with the +most recent version of :code:`pymatgen`. If you are receiving :code:`pymatgen`-related errors when using +:code:`ShakeNBreak`, you may need to update :code:`pymatgen` and/or :code:`ShakeNBreak`, which can be done with: .. code:: bash pip install --upgrade pymatgen shakenbreak -:code:`ShakeNBreak` can take :code:`pymatgen` :code:`Defect` objects as input (to then generate the trial distorted structures), **but also** can take in :code:`pymatgen` :code:`Structure` objects, :code:`doped` defect dictionaries or structure files (e.g. :code:`POSCAR`\s for :code:`VASP`) as inputs. As such, it should be compatible with any defect code (such as :code:`doped`, :code:`DASP`, :code:`PyLada`, :code:`PyCDT`, :code:`Spinney`, :code:`DefAP`, :code:`PyDEF`, :code:`pydefect`...) that generates these files. -Please let us know if you have any issues with compatibility, or if you would like to see any additional features added to :code:`ShakeNBreak` to make it more compatible with your code. +:code:`ShakeNBreak` can take :code:`pymatgen` :code:`Defect` objects as input (to then generate the trial distorted +structures), **but also** can take in :code:`pymatgen` :code:`Structure` objects, :code:`doped` defect dictionaries or +structure files (e.g. :code:`POSCAR`\s for :code:`VASP`) as inputs. As such, it should be compatible with any defect code +(such as `doped `_, `pydefect `_, +`PyCDT `_, `PyLada `_, +`DASP `_, `Spinney `_, +`DefAP `_, `PyDEF `_...) that generates these files. + +Please let us know if you have any issues with compatibility, or if you would like to see any additional features added +to :code:`ShakeNBreak` to make it more compatible with your code. diff --git a/docs/Installation.rst b/docs/Installation.rst index 714137d5..cd6628b3 100644 --- a/docs/Installation.rst +++ b/docs/Installation.rst @@ -19,6 +19,12 @@ Within your ``VASP`` pseudopotential top directory, you should have a folder nam which contains the ``POTCAR.X(.gz)`` files (in this case for PBE ``POTCARs``). More details given `here `_. +.. NOTE:: + The font `Montserrat ` + (`Open Font License `_) + will be installed with the package, and will be used by default for plotting. If you prefer to use a different + font, you can change the font in the ``matplotlib`` style sheet (in ``shakenbreak/shakenbreak.mplstyle``). + Developer's installation (*optional*) ----------------------------------------- diff --git a/docs/ShakeNBreak_Example_Workflow.ipynb b/docs/ShakeNBreak_Example_Workflow.ipynb index 68a48691..c7d8a2f1 100644 --- a/docs/ShakeNBreak_Example_Workflow.ipynb +++ b/docs/ShakeNBreak_Example_Workflow.ipynb @@ -70,10 +70,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Pymatgen version: 2022.10.22\n", + "Pymatgen version: 2022.11.7\n", "Pymatgen-analysis-defects version: 2022.10.28\n", "Ase version: 3.22.1\n", - "ShakeNBreak version: 22.10.14\n" + "ShakeNBreak version: 22.11.7\n" ] } ], @@ -139,8 +139,8 @@ }, { "cell_type": "code", - "execution_count": 4, - "id": "9e943689-3bad-41d6-b52b-f4b26453715e", + "execution_count": 2, + "id": "c6388277-3097-4b45-9abd-e84217f489b0", "metadata": { "pycharm": { "name": "#%%\n" @@ -157,28 +157,23 @@ "v_Cd = Vacancy(\n", " structure=bulk_supercell,\n", " site=bulk_supercell[0], # First Cd site\n", - " user_charges=[0], # Defect charge states\n", - ")\n", - "\n", - "# Store defects in a dictionary\n", - "V_Cd_dict = {\n", - " \"vacancies\": [v_Cd,]\n", - "}" + " user_charges=[-2, -1, 0], # Defect charge states\n", + ")" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "dcf155cb", + "execution_count": 3, + "id": "708c60df-0f16-4c5b-98ac-a1004f3d7439", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[0]" + "[-2, -1, 0]" ] }, - "execution_count": 5, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -190,8 +185,8 @@ }, { "cell_type": "code", - "execution_count": 6, - "id": "2867d06a", + "execution_count": 4, + "id": "8def7b30-92d9-4b59-8554-489b6f262381", "metadata": {}, "outputs": [ { @@ -210,8 +205,8 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "4e21b8c3", + "execution_count": 5, + "id": "82ebb90d-fc12-4201-8318-de122b9dea5e", "metadata": {}, "outputs": [ { @@ -230,15 +225,25 @@ }, { "cell_type": "markdown", - "id": "c035d70a", + "id": "e2c5b765-29b7-4e53-b365-98ea17dfce41", "metadata": {}, + "source": [ + "**Alternatively,** if you have already generated your defect structure files with a different defects code, these can be directly fed to `ShakeNBreak` with the `Distortions.from_structures()` method as shown below." + ] + }, + { + "cell_type": "markdown", + "id": "12761153-e1a1-495b-93b4-354d2846ca92", + "metadata": { + "tags": [] + }, "source": [ "### *Optional*: Generate defects with `doped`/`PyCDT` (instead of `Pymatgen`)" ] }, { "cell_type": "markdown", - "id": "653906e1", + "id": "f99dbe67-bf82-4c06-9cb6-886b2db763da", "metadata": {}, "source": [ "If you prefer to use `Doped`/`PyCDT` to generate defects, you should do it in a different `Python` environment to the `ShakeNBreak` one, as currently (18/10/22) they require different `pymatgen` versions. \n", @@ -249,7 +254,7 @@ }, { "cell_type": "raw", - "id": "c5190f31", + "id": "3dfdd778-1989-457f-b462-3bdf0db3b385", "metadata": {}, "source": [ "# To generate the CdTe vacancies with doped, we can use the lines below.\n", @@ -283,8 +288,8 @@ }, { "cell_type": "code", - "execution_count": 8, - "id": "729796ff", + "execution_count": 6, + "id": "7ca7752a-af2f-4e21-ae5b-7eeba9dadd7e", "metadata": {}, "outputs": [], "source": [ @@ -299,8 +304,8 @@ }, { "cell_type": "code", - "execution_count": 9, - "id": "89272bdf", + "execution_count": 7, + "id": "4247b8b4-b604-41f6-ba28-2dda804377a1", "metadata": {}, "outputs": [ { @@ -321,135 +326,6 @@ "print(\"Keys of bulk entry:\", doped_V_Cd_dict[\"bulk\"].keys())" ] }, - { - "cell_type": "markdown", - "id": "68bf9b71", - "metadata": {}, - "source": [ - "Additionally, defects can also be generated from a dictionary of structures using `Distortions.from_structures()`." - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "d0a57292", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mDistortions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_structures\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mstructures_dict\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moxidation_states\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdict_number_electrons_user\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdistortion_increment\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfloat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mbond_distortions\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mlocal_rattle\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mstdev\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfloat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.25\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdistorted_elements\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Initialise Distortion() class using a dictionary of bulk and defect\n", - "structures (instead of pymatgen-analysis-defects Defect() objects).\n", - "\n", - "Args:\n", - " structures_dict (:obj:`dict`):\n", - " Dictionary of defect and bulk structures\n", - " (eg.:\n", - " {\n", - " \"vacancies\": [Structure, Structure, ...],\n", - " \"substitutions\": [Structure, ...],\n", - " \"interstitials\": [Structure, ...],\n", - " \"bulk\": Structure,\n", - " })\n", - " Alternatively, the defect index or the defect fractional\n", - " coordinates can provided for each defect like this:\n", - " {\n", - " \"vacancies\": [\n", - " {\"structure\": Structure, \"defect_coords\": [0.5, 0.5, 0.5]},\n", - " ...\n", - " ],\n", - " \"interstitials\": [\n", - " {\"structure\": Structure, \"defect_index\": -1},\n", - " ...\n", - " ],\n", - " \"bulk\": Structure,\n", - " }\n", - " oxidation_states (:obj:`dict`):\n", - " Dictionary of oxidation states for species in your material,\n", - " used to determine the number of defect neighbours to distort\n", - " (e.g {\"Cd\": +2, \"Te\": -2}). If none is provided, the oxidation\n", - " states will be guessed based on the bulk composition and most\n", - " common oxidation states of any extrinsic species.\n", - " dict_number_electrons_user (:obj:`dict`):\n", - " Optional argument to set the number of extra/missing charge\n", - " (negative of electron count change) for the input defects\n", - " in their neutral state, as a dictionary with format\n", - " {'defect_name': charge_change} where charge_change is the\n", - " negative of the number of extra/missing electrons.\n", - " (Default: None)\n", - " distortion_increment (:obj:`float`):\n", - " Bond distortion increment. Distortion factors will range from\n", - " 0 to +/-0.6, in increments of `distortion_increment`.\n", - " Recommended values: 0.1-0.3\n", - " (Default: 0.1)\n", - " bond_distortions (:obj:`list`):\n", - " List of bond distortions to apply to nearest neighbours,\n", - " instead of the default set (e.g. [-0.5, 0.5]).\n", - " (Default: None)\n", - " local_rattle (:obj:`bool`):\n", - " Whether to apply random displacements that tail off as we move\n", - " away from the defect site. Not recommended as typically worsens\n", - " performance. If False (default), all supercell sites are rattled\n", - " with the same amplitude (full rattle).\n", - " (Default: False)\n", - " stdev (:obj:`float`):\n", - " Standard deviation (in Angstroms) of the Gaussian distribution\n", - " from which random atomic displacement distances are drawn during\n", - " rattling. Recommended values: 0.25, or 0.15 for strongly-bound\n", - " /ionic materials.\n", - " (Default: 0.25)\n", - " distorted_elements (:obj:`dict`):\n", - " Optional argument to specify the neighbouring elements to\n", - " distort for each defect, in the form of a dictionary with\n", - " format {'defect_name': ['element1', 'element2', ...]}\n", - " (e.g {'vac_1_Cd': ['Te']}). If None, the closest neighbours to\n", - " the defect are chosen.\n", - " (Default: None)\n", - " **kwargs:\n", - " Additional keyword arguments to pass to `hiphive`'s\n", - " `mc_rattle` function. These include:\n", - " - d_min (:obj:`float`):\n", - " Minimum interatomic distance (in Angstroms). Monte Carlo rattle\n", - " moves that put atoms at distances less than this will be heavily\n", - " penalised.\n", - " (Default: 2.25)\n", - " - max_disp (:obj:`float`):\n", - " Maximum atomic displacement (in Angstroms) during Monte Carlo\n", - " rattling. Rarely occurs and is used primarily as a safety net.\n", - " (Default: 2.0)\n", - " - max_attempts (:obj:`int`):\n", - " Limit for how many attempted rattle moves are allowed a single atom.\n", - " - active_atoms (:obj:`list`):\n", - " List of the atomic indices which should undergo Monte\n", - " Carlo rattling. By default, all atoms are rattled.\n", - " (Default: None)\n", - " - seed (:obj:`int`):\n", - " Seed for setting up NumPy random state from which random\n", - " numbers are generated.\n", - "\u001b[0;31mFile:\u001b[0m ~/Python_Modules/shakenbreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m method\n" - ] - } - ], - "source": [ - "from shakenbreak.input import Distortions\n", - "Distortions.from_structures?" - ] - }, { "cell_type": "markdown", "id": "8c639b14-b7d4-415b-8c55-9e2a1a188923", @@ -509,8 +385,8 @@ }, { "cell_type": "code", - "execution_count": 11, - "id": "3ff9be61-6cf8-48c0-bd35-6e8775b70158", + "execution_count": 6, + "id": "b1149e22-0eb6-4ccf-8712-410b1f826a5c", "metadata": { "pycharm": { "name": "#%%\n" @@ -524,8 +400,8 @@ }, { "cell_type": "code", - "execution_count": 14, - "id": "40013965-8d9f-4617-bc76-3ad8cd409e00", + "execution_count": 7, + "id": "5ab3eb32-60d0-43fb-8cd4-8390d6fa184d", "metadata": { "pycharm": { "name": "#%%\n" @@ -547,48 +423,159 @@ "# If not specified, the code will guess these, otherwise you can specify as such:\n", "# oxidation_states = {\"Cd\": +2, \"Te\": -2} # specify atom oxidation states\n", "\n", - "# Create an instance of Distortion class with the defect dictionary and the distortion parameters\n", + "# Create an instance of Distortion class with the defects and distortion parameters\n", "# If distortion parameters are not specified, the default values are used\n", - "Dist = Distortions(\n", - " defects_dict=dict(V_Cd_dict),\n", - " #oxidation_states=oxidation_states, # explicitly specify oxidation states\n", - ")" + "Dist = Distortions(defects=v_Cd)" ] }, { - "cell_type": "code", - "execution_count": 13, - "id": "3be9bc57", + "cell_type": "markdown", + "id": "b20b4b3a-24d3-4489-b475-5ba44e2f077d", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Oxidation states were not explicitly set, thus have been guessed as {'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set oxidation_states\n" - ] - } - ], "source": [ - "# Alternatively, if you used Doped/PyCDT for defect generation, you can use the `from_dict` method:\n", + "The `Distortions()` class is flexible to the user input, so can take single `pymatgen` `Defect` objects, a list of `Defect`s, or a dictionary of `Defect`s (in which case the dictionary keys are used as the defect names) as inputs.\n", "\n", - "Dist = Distortions.from_dict(\n", - " doped_defects_dict=doped_V_Cd_dict,\n", - ")" + "The defect dictionary output by `ChargedDefectStructures` in `doped`/`PyCDT` can also be used to initialise `Distortions`, with the code: \n", + "```python\n", + "Dist = Distortions(defects=doped_V_Cd_dict)\n", + "```\n", + "\n", + "These possibilities as well as the optional distortion parameters are detailed in the `Distortions` class docstring:" ] }, { - "cell_type": "markdown", - "id": "9857099f", + "cell_type": "code", + "execution_count": 8, + "id": "89089e1c-e3aa-4457-9943-76ea59481db6", "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001B[0;31mInit signature:\u001B[0m\n", + "\u001B[0mDistortions\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mdefects\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mlist\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mdict\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0moxidation_states\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mpadding\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mint\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;36m1\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mdict_number_electrons_user\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mdistortion_increment\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mfloat\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;36m0.1\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mbond_distortions\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mlist\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mlocal_rattle\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mbool\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mFalse\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mdistorted_elements\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0;34m**\u001B[0m\u001B[0mmc_rattle_kwargs\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", + "\u001B[0;31mDocstring:\u001B[0m \n", + "Class to apply rattle and bond distortion to all defects in `defects`\n", + "(each defect as a pymatgen.analysis.defects.core.Defect() object).\n", + "\u001B[0;31mInit docstring:\u001B[0m\n", + "Args:\n", + " defects (:obj:`dict_or_list_or_Defect`):\n", + " List or dictionary of pymatgen.analysis.defects.core.Defect() objects.\n", + " E.g.: [Vacancy(), Interstitial(), Substitution(), ...], or single Defect().\n", + " In this case, generated defect folders will be named in the format:\n", + " \"{Defect.name}_m{Defect.multiplicity}\" for interstitials and\n", + " \"{Defect.name}_s{Defect.defect_site_index}\" for vacancies and substitutions.\n", + " The labels \"a\", \"b\", \"c\"... will be appended for defects with multiple\n", + " inequivalent sites.\n", + "\n", + " Alternatively, if specific defect folder names are desired, `defects` can\n", + " be input as a dictionary in the format {\"defect name\": Defect()}.\n", + " E.g.: {\"vac_name\": Vacancy(), \"vac_2_name\": Vacancy(), ...,\n", + " \"int_name\": Interstitial(), \"sub_name\": Substitution(), ...}.\n", + "\n", + " Defect charge states (from which bond distortions are determined) are\n", + " taken from the `Defect.user_charges` property. If this is not set,\n", + " charge states are set to the range: 0 – {Defect oxidation state}\n", + " with a `padding` (default = 1) on either side of this range.\n", + "\n", + " Alternatively, a defects dict generated by `ChargedDefectStructures`\n", + " from `doped`/`PyCDT` can also be used as input, and the defect names\n", + " and charge states generated by these codes will be used\n", + " E.g.: {\"bulk\": {..}, \"vacancies\": [{...}, {...},], ...}\n", + " oxidation_states (:obj:`dict`):\n", + " Dictionary of oxidation states for species in your material,\n", + " used to determine the number of defect neighbours to distort\n", + " (e.g {\"Cd\": +2, \"Te\": -2}). If none is provided, the oxidation\n", + " states will be guessed based on the bulk composition and most\n", + " common oxidation states of any extrinsic species.\n", + " padding (:obj:`int`):\n", + " If `Defect.user_charges` is not set, charge states are set to\n", + " the range: 0 – {Defect oxidation state}, with a `padding`\n", + " (default = 1) on either side of this range.\n", + " dict_number_electrons_user (:obj:`dict`):\n", + " Optional argument to set the number of extra/missing charge\n", + " (negative of electron count change) for the input defects\n", + " in their neutral state, as a dictionary with format\n", + " {'defect_name': charge_change} where charge_change is the\n", + " negative of the number of extra/missing electrons.\n", + " (Default: None)\n", + " distortion_increment (:obj:`float`):\n", + " Bond distortion increment. Distortion factors will range from\n", + " 0 to +/-0.6, in increments of `distortion_increment`.\n", + " Recommended values: 0.1-0.3\n", + " (Default: 0.1)\n", + " bond_distortions (:obj:`list`):\n", + " List of bond distortions to apply to nearest neighbours,\n", + " instead of the default set (e.g. [-0.5, 0.5]).\n", + " (Default: None)\n", + " local_rattle (:obj:`bool`):\n", + " Whether to apply random displacements that tail off as we move\n", + " away from the defect site. Not recommended as typically worsens\n", + " performance. If False (default), all supercell sites are rattled\n", + " with the same amplitude (full rattle).\n", + " (Default: False)\n", + " distorted_elements (:obj:`dict`):\n", + " Optional argument to specify the neighbouring elements to\n", + " distort for each defect, in the form of a dictionary with\n", + " format {'defect_name': ['element1', 'element2', ...]}\n", + " (e.g {'vac_1_Cd': ['Te']}). If None, the closest neighbours to\n", + " the defect are chosen.\n", + " (Default: None)\n", + " **mc_rattle_kwargs:\n", + " Additional keyword arguments to pass to `hiphive`'s\n", + " `mc_rattle` function. These include:\n", + " - stdev (:obj:`float`):\n", + " Standard deviation (in Angstroms) of the Gaussian distribution\n", + " from which random atomic displacement distances are drawn during\n", + " rattling. Default is set to 10% of the nearest neighbour distance\n", + " in the bulk supercell.\n", + " - d_min (:obj:`float`):\n", + " Minimum interatomic distance (in Angstroms) in the rattled\n", + " structure. Monte Carlo rattle moves that put atoms at distances\n", + " less than this will be heavily penalised. Default is to set this\n", + " to 80% of the nearest neighbour distance in the bulk supercell.\n", + " - max_disp (:obj:`float`):\n", + " Maximum atomic displacement (in Angstroms) during Monte Carlo\n", + " rattling. Rarely occurs and is used primarily as a safety net.\n", + " (Default: 2.0)\n", + " - max_attempts (:obj:`int`):\n", + " Limit for how many attempted rattle moves are allowed a single atom.\n", + " - active_atoms (:obj:`list`):\n", + " List of the atomic indices which should undergo Monte\n", + " Carlo rattling. By default, all atoms are rattled.\n", + " (Default: None)\n", + " - seed (:obj:`int`):\n", + " Seed from which rattle random displacements are generated. Default\n", + " is to set seed = int(distortion_factor*100) (i.e. +40% distortion ->\n", + " distortion_factor = 1.4 -> seed = 140, Rattled ->\n", + " distortion_factor = 1 (no bond distortion) -> seed = 100)\n", + "\u001B[0;31mFile:\u001B[0m ~/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/input.py\n", + "\u001B[0;31mType:\u001B[0m type\n", + "\u001B[0;31mSubclasses:\u001B[0m \n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "We can check the distortion parameters using some of the class properties:" + "Distortions?" ] }, { "cell_type": "code", - "execution_count": 15, - "id": "78543a71", + "execution_count": 9, + "id": "a7e5038b-eec0-48ab-9107-a2fe5ff0d9a1", "metadata": { "pycharm": { "name": "#%%\n" @@ -612,179 +599,74 @@ }, { "cell_type": "markdown", - "id": "2c5605eb", + "id": "57164286-6e2e-48e8-90dd-1c5f39784716", "metadata": {}, "source": [ - "```{tip}\n", - "You can restrict the ions that are distorted to a certain element using the keyword `distorted_elements`. \n", - "We can check it using the class attribute:\n", - "```" + "As mentioned above, we can also initialise `Distortions` directly from our pre-generated defect structures, using the `Distortions.from_structures()` method like this:" ] }, { "cell_type": "code", - "execution_count": 16, - "id": "52f9e11b", - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, + "execution_count": 10, + "id": "2e3ae070-d915-45ca-a2e6-428ac1759979", + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "User defined elements to distort: None\n" + "Defect charge states will be set to the range: 0 – {Defect oxidation state}, with a `padding = 1` on either side of this range.\n", + "Oxidation states were not explicitly set, thus have been guessed as {'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set oxidation_states\n" ] } ], "source": [ - "print(\"User defined elements to distort:\", Dist.distorted_elements)" + "from pymatgen.core.structure import Structure\n", + "V_Cd_struc = Structure.from_file(\"../tests/data/vasp/CdTe/CdTe_V_Cd_POSCAR\")\n", + "bulk_struc = Structure.from_file(\"../tests/data/vasp/CdTe/CdTe_Bulk_Supercell_POSCAR\")\n", + "Dist = Distortions.from_structures(defects = V_Cd_struc, bulk = bulk_struc)" ] }, { "cell_type": "markdown", - "id": "5c50bb0b", + "id": "2c5605eb", "metadata": {}, "source": [ - "If `None`, it means no restrictions, so nearest neighbours are distorted (recommended default, \n", - "unless you have reason to suspect otherwise; see [Tips](https://shakenbreak.readthedocs.io/en/latest/Tips.html) )" - ] - }, - { - "cell_type": "markdown", - "id": "2da28e9e-6116-4e0c-9aea-f11ab6e20d01", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "To see the optional parameters that can be tuned in the distortion class, look at the docstrings: " + "```{tip}\n", + "You can restrict the ions that are distorted to a certain element using the keyword `distorted_elements`. \n", + "We can check it using the class attribute:\n", + "```" ] }, { "cell_type": "code", - "execution_count": 17, - "id": "7da2f948-a4a7-4003-8c1b-5a31e190dd8a", + "execution_count": 16, + "id": "52f9e11b", "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - }, "pycharm": { "name": "#%%\n" - }, - "tags": [] + } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[0;31mInit signature:\u001b[0m\n", - "\u001b[0minput\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDistortions\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdefects_dict\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moxidation_states\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdict_number_electrons_user\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdistortion_increment\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfloat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mbond_distortions\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mlocal_rattle\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mstdev\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfloat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.25\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdistorted_elements\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m \n", - "Class to apply rattle and bond distortion to all defects in `defects_dict`\n", - "(each defect as a pymatgen.analysis.defects.core.Defect() object).\n", - "\u001b[0;31mInit docstring:\u001b[0m\n", - "Args:\n", - " defects_dict (:obj:`dict`):\n", - " Dictionary of pymatgen.analysis.defects.core.Defect() objects.\n", - " E.g.: {\n", - " \"vacancies\": [Vacancy(), ...],\n", - " \"interstitials\": [Interstitial(), ...],\n", - " \"substitutions\": [Substitution(), ...],\n", - " }\n", - " In this case, folders will be name with the Defect.name() property.\n", - " Alternatively, if specific defect/folder names are desired, these can be\n", - " given as keys:\n", - " {\n", - " \"vacancies\": {\"vac_name\": Vacancy(), \"vac_2_name\": Vacancy()},\n", - " \"interstitials\": {\"int_name\": Interstitial(), ...},\n", - " \"substitutions\": {\"sub_name\": Substitution(), ...},\n", - " }\n", - " oxidation_states (:obj:`dict`):\n", - " Dictionary of oxidation states for species in your material,\n", - " used to determine the number of defect neighbours to distort\n", - " (e.g {\"Cd\": +2, \"Te\": -2}). If none is provided, the oxidation\n", - " states will be guessed based on the bulk composition and most\n", - " common oxidation states of any extrinsic species.\n", - " dict_number_electrons_user (:obj:`dict`):\n", - " Optional argument to set the number of extra/missing charge\n", - " (negative of electron count change) for the input defects\n", - " in their neutral state, as a dictionary with format\n", - " {'defect_name': charge_change} where charge_change is the\n", - " negative of the number of extra/missing electrons.\n", - " (Default: None)\n", - " distortion_increment (:obj:`float`):\n", - " Bond distortion increment. Distortion factors will range from\n", - " 0 to +/-0.6, in increments of `distortion_increment`.\n", - " Recommended values: 0.1-0.3\n", - " (Default: 0.1)\n", - " bond_distortions (:obj:`list`):\n", - " List of bond distortions to apply to nearest neighbours,\n", - " instead of the default set (e.g. [-0.5, 0.5]).\n", - " (Default: None)\n", - " local_rattle (:obj:`bool`):\n", - " Whether to apply random displacements that tail off as we move\n", - " away from the defect site. Not recommended as typically worsens\n", - " performance. If False (default), all supercell sites are rattled\n", - " with the same amplitude (full rattle).\n", - " (Default: False)\n", - " stdev (:obj:`float`):\n", - " Standard deviation (in Angstroms) of the Gaussian distribution\n", - " from which random atomic displacement distances are drawn during\n", - " rattling. Recommended values: 0.25, or 0.15 for strongly-bound\n", - " /ionic materials.\n", - " (Default: 0.25)\n", - " distorted_elements (:obj:`dict`):\n", - " Optional argument to specify the neighbouring elements to\n", - " distort for each defect, in the form of a dictionary with\n", - " format {'defect_name': ['element1', 'element2', ...]}\n", - " (e.g {'vac_1_Cd': ['Te']}). If None, the closest neighbours to\n", - " the defect are chosen.\n", - " (Default: None)\n", - " **kwargs:\n", - " Additional keyword arguments to pass to `hiphive`'s\n", - " `mc_rattle` function. These include:\n", - " - d_min (:obj:`float`):\n", - " Minimum interatomic distance (in Angstroms). Monte Carlo rattle\n", - " moves that put atoms at distances less than this will be heavily\n", - " penalised.\n", - " (Default: 2.25)\n", - " - max_disp (:obj:`float`):\n", - " Maximum atomic displacement (in Angstroms) during Monte Carlo\n", - " rattling. Rarely occurs and is used primarily as a safety net.\n", - " (Default: 2.0)\n", - " - max_attempts (:obj:`int`):\n", - " Limit for how many attempted rattle moves are allowed a single atom.\n", - " - active_atoms (:obj:`list`):\n", - " List of the atomic indices which should undergo Monte\n", - " Carlo rattling. By default, all atoms are rattled.\n", - " (Default: None)\n", - " - seed (:obj:`int`):\n", - " Seed for setting up NumPy random state from which random\n", - " numbers are generated.\n", - "\u001b[0;31mFile:\u001b[0m ~/Python_Modules/shakenbreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m type\n", - "\u001b[0;31mSubclasses:\u001b[0m \n" + "User defined elements to distort: None\n" ] } ], "source": [ - "input.Distortions?" + "print(\"User defined elements to distort:\", Dist.distorted_elements)" + ] + }, + { + "cell_type": "markdown", + "id": "5c50bb0b", + "metadata": {}, + "source": [ + "If `None`, it means no restrictions, so nearest neighbours are distorted (recommended default, \n", + "unless you have reason to suspect otherwise; see [Tips](https://shakenbreak.readthedocs.io/en/latest/Tips.html) )" ] }, { @@ -801,7 +683,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 12, "id": "87a095a8", "metadata": { "pycharm": { @@ -815,11 +697,19 @@ "text": [ "Applying ShakeNBreak... Will apply the following bond distortions: ['-0.6', '-0.5', '-0.4', '-0.3', '-0.2', '-0.1', '0.0', '0.1', '0.2', '0.3', '0.4', '0.5', '0.6']. Then, will rattle with a std dev of 0.28 Å \n", "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", + "\u001B[1m\n", + "Defect: v_Cd_s0\u001B[0m\n", + "\u001B[1mNumber of missing electrons in neutral state: 2\u001B[0m\n", "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" + "Defect v_Cd_s0 in charge state: -3. Number of distorted neighbours: 1\n", + "\n", + "Defect v_Cd_s0 in charge state: -2. Number of distorted neighbours: 0\n", + "\n", + "Defect v_Cd_s0 in charge state: -1. Number of distorted neighbours: 1\n", + "\n", + "Defect v_Cd_s0 in charge state: 0. Number of distorted neighbours: 2\n", + "\n", + "Defect v_Cd_s0 in charge state: +1. Number of distorted neighbours: 3\n" ] } ], @@ -837,7 +727,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 14, "id": "f07375f6", "metadata": { "pycharm": { @@ -854,7 +744,7 @@ } ], "source": [ - "print(\"Keys for each defect entry:\", defects_dict[\"v_Cd\"].keys())" + "print(\"Keys for each defect entry:\", defects_dict[\"v_Cd_s0\"].keys())" ] }, { @@ -863,12 +753,12 @@ "metadata": {}, "source": [ "As well as the distorted structures for each charge state of all defects.\n", - "We can access the distorted structures of v_Cd_0 like this:" + "We can access the distorted structures of v_Cd_s0_0 like this:" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 15, "id": "e1903b20", "metadata": { "collapsed": true, @@ -975,69 +865,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (0.6543, 0.6543, 12.4324) [0.0500, 0.0500, 0.9500]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (0.6543, 12.4324, 0.6543) [0.0500, 0.9500, 0.0500]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_-50.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1047,69 +937,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (0.8179, 0.8179, 12.2688) [0.0625, 0.0625, 0.9375]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (0.8179, 12.2688, 0.8179) [0.0625, 0.9375, 0.0625]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_-40.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1119,69 +1009,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (0.9815, 0.9815, 12.1052) [0.0750, 0.0750, 0.9250]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (0.9815, 12.1052, 0.9815) [0.0750, 0.9250, 0.0750]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_-30.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1191,69 +1081,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.1451, 1.1451, 11.9417) [0.0875, 0.0875, 0.9125]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.1451, 11.9417, 1.1451) [0.0875, 0.9125, 0.0875]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_-20.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1263,69 +1153,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.3087, 1.3087, 11.7781) [0.1000, 0.1000, 0.9000]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.3087, 11.7781, 1.3087) [0.1000, 0.9000, 0.1000]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_-10.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1335,69 +1225,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.4723, 1.4723, 11.6145) [0.1125, 0.1125, 0.8875]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.4723, 11.6145, 1.4723) [0.1125, 0.8875, 0.1125]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_0.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1407,69 +1297,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.6359, 1.6359, 11.4509) [0.1250, 0.1250, 0.8750]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.6359, 11.4509, 1.6359) [0.1250, 0.8750, 0.1250]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_10.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1479,69 +1369,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.7995, 1.7995, 11.2873) [0.1375, 0.1375, 0.8625]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.7995, 11.2873, 1.7995) [0.1375, 0.8625, 0.1375]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_20.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1551,69 +1441,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.9630, 1.9630, 11.1237) [0.1500, 0.1500, 0.8500]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.9630, 11.1237, 1.9630) [0.1500, 0.8500, 0.1500]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_30.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1623,69 +1513,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (2.1266, 2.1266, 10.9601) [0.1625, 0.1625, 0.8375]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (2.1266, 10.9601, 2.1266) [0.1625, 0.8375, 0.1625]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_40.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1695,69 +1585,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (2.2902, 2.2902, 10.7966) [0.1750, 0.1750, 0.8250]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (2.2902, 10.7966, 2.2902) [0.1750, 0.8250, 0.1750]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_50.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1767,69 +1657,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (2.4538, 2.4538, 10.6330) [0.1875, 0.1875, 0.8125]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (2.4538, 10.6330, 2.4538) [0.1875, 0.8125, 0.1875]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_60.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1839,79 +1729,79 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.2053, 0.2205, 6.5613) [0.0157, 0.0168, 0.5014]\n", - " PeriodicSite: Cd2+ (0.3553, 6.4875, 0.1312) [0.0272, 0.4957, 0.0100]\n", - " PeriodicSite: Cd2+ (-0.0190, 6.5182, 6.2570) [-0.0014, 0.4981, 0.4781]\n", - " PeriodicSite: Cd2+ (6.1797, 0.2624, -0.2391) [0.4722, 0.0201, -0.0183]\n", - " PeriodicSite: Cd2+ (6.3937, -0.0705, 6.3048) [0.4886, -0.0054, 0.4818]\n", - " PeriodicSite: Cd2+ (6.6170, 6.7872, -0.3530) [0.5056, 0.5186, -0.0270]\n", - " PeriodicSite: Cd2+ (6.2839, 6.8800, 6.8680) [0.4802, 0.5257, 0.5248]\n", - " PeriodicSite: Cd2+ (-0.4558, 3.5713, 3.1244) [-0.0348, 0.2729, 0.2387]\n", - " PeriodicSite: Cd2+ (-0.1384, 3.4883, 9.4875) [-0.0106, 0.2666, 0.7250]\n", - " PeriodicSite: Cd2+ (-0.0991, 9.2566, 3.3244) [-0.0076, 0.7073, 0.2540]\n", - " PeriodicSite: Cd2+ (-0.0666, 9.6259, 10.0500) [-0.0051, 0.7355, 0.7680]\n", - " PeriodicSite: Cd2+ (6.5510, 3.6912, 3.0563) [0.5006, 0.2821, 0.2335]\n", - " PeriodicSite: Cd2+ (6.7587, 3.3272, 9.5832) [0.5165, 0.2542, 0.7323]\n", - " PeriodicSite: Cd2+ (6.6361, 9.8497, 3.7883) [0.5071, 0.7526, 0.2895]\n", - " PeriodicSite: Cd2+ (6.6083, 10.0528, 9.9354) [0.5050, 0.7682, 0.7592]\n", - " PeriodicSite: Cd2+ (3.0289, -0.1828, 3.5477) [0.2314, -0.0140, 0.2711]\n", - " PeriodicSite: Cd2+ (3.1099, 0.0703, 9.6602) [0.2376, 0.0054, 0.7382]\n", - " PeriodicSite: Cd2+ (3.5575, 6.4425, 3.2086) [0.2718, 0.4923, 0.2452]\n", - " PeriodicSite: Cd2+ (3.4326, 6.7705, 9.5013) [0.2623, 0.5174, 0.7260]\n", - " PeriodicSite: Cd2+ (9.7117, -0.4834, 3.4040) [0.7421, -0.0369, 0.2601]\n", - " PeriodicSite: Cd2+ (10.0022, 0.1080, 9.6517) [0.7643, 0.0083, 0.7375]\n", - " PeriodicSite: Cd2+ (10.1714, 6.6242, 3.1655) [0.7772, 0.5062, 0.2419]\n", - " PeriodicSite: Cd2+ (9.3085, 6.4018, 9.7534) [0.7113, 0.4892, 0.7453]\n", - " PeriodicSite: Cd2+ (3.3995, 3.4742, -0.1808) [0.2598, 0.2655, -0.0138]\n", - " PeriodicSite: Cd2+ (3.7388, 3.4910, 6.3136) [0.2857, 0.2668, 0.4824]\n", - " PeriodicSite: Cd2+ (3.3415, 9.5849, -0.3544) [0.2553, 0.7324, -0.0271]\n", - " PeriodicSite: Cd2+ (3.7662, 9.4368, 6.4918) [0.2878, 0.7211, 0.4961]\n", - " PeriodicSite: Cd2+ (10.1502, 3.5292, -0.1238) [0.7756, 0.2697, -0.0095]\n", - " PeriodicSite: Cd2+ (10.0436, 3.1852, 6.9917) [0.7675, 0.2434, 0.5343]\n", - " PeriodicSite: Cd2+ (10.0242, 9.9364, 0.1105) [0.7660, 0.7593, 0.0084]\n", - " PeriodicSite: Cd2+ (9.7511, 9.8455, 6.4614) [0.7451, 0.7523, 0.4937]\n", - " PeriodicSite: Te2- (1.5541, 1.9734, 4.9234) [0.1188, 0.1508, 0.3762]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (2.6174, 2.6174, 10.4694) [0.2000, 0.2000, 0.8000]\n", - " PeriodicSite: Te2- (1.7175, 8.2820, 5.4998) [0.1312, 0.6329, 0.4203]\n", - " PeriodicSite: Te2- (1.4773, 8.0915, 11.0885) [0.1129, 0.6183, 0.8473]\n", - " PeriodicSite: Te2- (8.2653, 1.6044, 4.8425) [0.6316, 0.1226, 0.3700]\n", - " PeriodicSite: Te2- (8.2235, 1.4452, 11.0741) [0.6284, 0.1104, 0.8462]\n", - " PeriodicSite: Te2- (8.1547, 8.4171, 4.9777) [0.6231, 0.6432, 0.3804]\n", - " PeriodicSite: Te2- (8.0257, 8.4326, 11.6793) [0.6133, 0.6444, 0.8925]\n", - " PeriodicSite: Te2- (1.4910, 4.8183, 1.9866) [0.1139, 0.3682, 0.1518]\n", - " PeriodicSite: Te2- (1.6639, 4.7990, 7.8885) [0.1271, 0.3667, 0.6028]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (2.6174, 10.4694, 2.6174) [0.2000, 0.8000, 0.2000]\n", - " PeriodicSite: Te2- (1.6669, 11.6722, 8.4278) [0.1274, 0.8919, 0.6440]\n", - " PeriodicSite: Te2- (8.0377, 4.8619, 1.4752) [0.6142, 0.3715, 0.1127]\n", - " PeriodicSite: Te2- (8.0790, 5.0655, 7.4358) [0.6173, 0.3871, 0.5682]\n", - " PeriodicSite: Te2- (7.9597, 11.5680, 1.4783) [0.6082, 0.8839, 0.1130]\n", - " PeriodicSite: Te2- (8.8232, 11.9197, 7.9344) [0.6742, 0.9108, 0.6063]\n", - " PeriodicSite: Te2- (4.7196, 1.6713, 2.1132) [0.3606, 0.1277, 0.1615]\n", - " PeriodicSite: Te2- (4.9108, 1.4912, 7.7656) [0.3753, 0.1139, 0.5934]\n", - " PeriodicSite: Te2- (5.3145, 7.9556, 1.4580) [0.4061, 0.6079, 0.1114]\n", - " PeriodicSite: Te2- (4.9771, 8.4099, 8.3701) [0.3803, 0.6426, 0.6396]\n", - " PeriodicSite: Te2- (11.7093, 1.8306, 1.2709) [0.8947, 0.1399, 0.0971]\n", - " PeriodicSite: Te2- (11.8438, 1.6705, 7.7841) [0.9050, 0.1276, 0.5948]\n", - " PeriodicSite: Te2- (11.7240, 8.1713, 1.3777) [0.8959, 0.6244, 0.1053]\n", - " PeriodicSite: Te2- (11.7746, 8.1927, 8.2275) [0.8997, 0.6260, 0.6287]\n", - " PeriodicSite: Te2- (5.1086, 4.9076, 4.8338) [0.3904, 0.3750, 0.3694]\n", - " PeriodicSite: Te2- (5.0266, 4.9282, 11.3881) [0.3841, 0.3766, 0.8702]\n", - " PeriodicSite: Te2- (4.9662, 11.5871, 4.8092) [0.3795, 0.8854, 0.3675]\n", - " PeriodicSite: Te2- (5.1264, 11.1806, 11.4959) [0.3917, 0.8543, 0.8784]\n", - " PeriodicSite: Te2- (11.5396, 4.9907, 5.2762) [0.8818, 0.3814, 0.4032]\n", - " PeriodicSite: Te2- (11.5086, 5.1651, 11.4601) [0.8794, 0.3947, 0.8757]\n", - " PeriodicSite: Te2- (11.5595, 11.8954, 4.7469) [0.8833, 0.9090, 0.3627]\n", - " PeriodicSite: Te2- (11.0723, 11.6486, 11.3780) [0.8461, 0.8901, 0.8694]}}" + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067]}}" ] }, - "execution_count": 21, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "print(\"\\nUndistorted and distorted structures:\")\n", - "defects_dict[\"v_Cd\"][\"charges\"][0][\"structures\"]" + "defects_dict[\"v_Cd_s0\"][\"charges\"][0][\"structures\"]" ] }, { @@ -1948,7 +1838,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 16, "id": "972dac91", "metadata": { "pycharm": { @@ -1965,11 +1855,19 @@ "text": [ "Applying ShakeNBreak... Will apply the following bond distortions: ['-0.6', '-0.5', '-0.4', '-0.3', '-0.2', '-0.1', '0.0', '0.1', '0.2', '0.3', '0.4', '0.5', '0.6']. Then, will rattle with a std dev of 0.28 Å \n", "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", + "\u001B[1m\n", + "Defect: v_Cd_s0\u001B[0m\n", + "\u001B[1mNumber of missing electrons in neutral state: 2\u001B[0m\n", + "\n", + "Defect v_Cd_s0 in charge state: -3. Number of distorted neighbours: 1\n", + "\n", + "Defect v_Cd_s0 in charge state: -2. Number of distorted neighbours: 0\n", + "\n", + "Defect v_Cd_s0 in charge state: -1. Number of distorted neighbours: 1\n", "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" + "Defect v_Cd_s0 in charge state: 0. Number of distorted neighbours: 2\n", + "\n", + "Defect v_Cd_s0 in charge state: +1. Number of distorted neighbours: 3\n" ] } ], @@ -1996,7 +1894,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 17, "id": "50d39076-a262-4eac-84df-27ef74def826", "metadata": { "pycharm": { @@ -2041,7 +1939,7 @@ } ], "source": [ - "!cat ./v_Cd_0/Bond_Distortion_-10.0%/INCAR" + "!cat ./v_Cd_s0_0/Bond_Distortion_-10.0%/INCAR" ] }, { @@ -2116,11 +2014,11 @@ "source": [ "#### a) For `VASP` users:\n", "\n", - "Then parse the energies obtained by running the `snb-parse` command from the top-level folder containing your defect folders (e.g. `v_Cd_0` etc. (with subfolders: `v_Cd_0/Bond_Distortion_10.0%` etc.)). This will parse the energies and store them in a `v_Cd_0.yaml` etc file in the defect folders, to allow easy plotting and analysis.\n", + "Then parse the energies obtained by running the `snb-parse` command from the top-level folder containing your defect folders (e.g. `v_Cd_s0_0` etc. (with subfolders: `v_Cd_s0_0/Bond_Distortion_10.0%` etc.)). This will parse the energies and store them in a `v_Cd_s0_0.yaml` etc file in the defect folders, to allow easy plotting and analysis.\n", "\n", "It is also recommended to parse the final structures (`CONTCAR`s files if using `VASP`) obtained with each distortion relaxation for further structural analysis, which is done automatically when downloaded to your local folders as below. \n", "\n", - "Copying these data to your local PC can be done quickly from your local folder top-level folder (containing `v_Cd_0` etc) with the following code:\n", + "Copying these data to your local PC can be done quickly from your local folder top-level folder (containing `v_Cd_s0_0` etc) with the following code:\n", "\n", "```bash\n", "for defect in ./*{_,_-}[0-9]/; do cd $defect; \n", @@ -2142,7 +2040,7 @@ }, "source": [ "#### b) If using `CP2K`, `Quantum Espresso`, `CASTEP` or `FHI-aims`:\n", - "Then parse the energies obtained by running the `snb-parse` command from the top-level folder containing your defect folders (e.g. `v_Cd_0` etc. (with subfolders: `v_Cd_0/Bond_Distortion_10.0%` etc.)) and setting the `--code` option (e.g. `snb-parse --code cp2k`). This will parse the energies and store them in a `v_Cd_0.yaml` etc file in the defect folders, to allow easy plotting and analysis. \n", + "Then parse the energies obtained by running the `snb-parse` command from the top-level folder containing your defect folders (e.g. `v_Cd_s0_0` etc. (with subfolders: `v_Cd_s0_0/Bond_Distortion_10.0%` etc.)) and setting the `--code` option (e.g. `snb-parse --code cp2k`). This will parse the energies and store them in a `v_Cd_s0_0.yaml` etc file in the defect folders, to allow easy plotting and analysis. \n", "\n", "It is also recommended to parse the final structures obtained with each relaxation for further structural analysis. Depending on the code the structure information is read from:\n", "* `CP2K`: restart file\n", @@ -2166,7 +2064,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 18, "id": "1ddbe86f-a21d-4bc0-b95d-0a8373258f53", "metadata": { "pycharm": { @@ -2175,8 +2073,8 @@ }, "outputs": [], "source": [ - "!cp -r ../tests/data/example_results/v_Cd* .\n", - "!cp ../tests/data/vasp/CdTe/distortion_metadata.json .\n", + "!rm -r ./v_Cd_s0*\n", + "!cp -r ../tests/data/example_results/v_Cd_s0* .\n", "# may need to change path if you've moved the example notebook elsewhere" ] }, @@ -2195,7 +2093,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 19, "id": "7398d15b-498a-448a-a3d4-f555d1641ec9", "metadata": { "pycharm": { @@ -2209,7 +2107,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 20, "id": "cadb8e69-f8e5-47c1-ae38-60d47c42b17b", "metadata": { "pycharm": { @@ -2223,19 +2121,18 @@ "output_type": "stream", "text": [ "\n", - "v_Cd\n", - "v_Cd_-1: Energy difference between minimum, found with 0.2 bond distortion, and unperturbed: -0.90 eV.\n", - "Energy lowering distortion found for v_Cd with charge -1. Adding to low_energy_defects dictionary.\n", - "No energy lowering distortion with energy difference greater than min_e_diff = 0.05 eV found for v_Cd with charge -2.\n", - "v_Cd_0: Energy difference between minimum, found with -0.6 bond distortion, and unperturbed: -0.76 eV.\n", + "v_Cd_s0\n", + "Parsing v_Cd_s0_-2...\n", + "No energy lowering distortion with energy difference greater than min_e_diff = 0.05 eV found for v_Cd_s0 with charge -2.\n", + "Parsing v_Cd_s0_0...\n", + "v_Cd_s0_0: Energy difference between minimum, found with -0.6 bond distortion, and unperturbed: -0.76 eV.\n", + "Energy lowering distortion found for v_Cd_s0 with charge 0. Adding to low_energy_defects dictionary.\n", + "Parsing v_Cd_s0_-1...\n", + "v_Cd_s0_-1: Energy difference between minimum, found with 0.2 bond distortion, and unperturbed: -0.90 eV.\n", "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "New (according to structure matching) low-energy distorted structure found for v_Cd_0, adding to low_energy_defects['v_Cd'] list.\n", + "New (according to structure matching) low-energy distorted structure found for v_Cd_s0_-1, adding to low_energy_defects['v_Cd_s0'] list.\n", "\n", - "Comparing and pruning defect structures across charge states...\n", - "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "Comparing structures to specified ref_structure (Cd31 Te32)...\n" + "Comparing and pruning defect structures across charge states...\n" ] } ], @@ -2258,7 +2155,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 22, "id": "7c1b4b76-3015-43a1-acc6-e3974d92ba83", "metadata": { "pycharm": { @@ -2270,81 +2167,40 @@ "name": "stdout", "output_type": "stream", "text": [ - "Plot saved to v_Cd_-1/v_Cd_-1.svg\n", - "Plot saved to v_Cd_0/v_Cd_0.svg\n" + "Energy lowering distortion found for v_Cd_s0 with charge 0. Generating distortion plot...\n", + "Plot saved to v_Cd_s0_0/v_Cd_s0_0.png\n", + "Energy lowering distortion found for v_Cd_s0 with charge -1. Generating distortion plot...\n", + "Plot saved to v_Cd_s0_-1/v_Cd_s0_-1.png\n" ] }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "plotting.py:1854: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.\n" - ] - } - ], - "source": [ - "figs = plotting.plot_all_defects(defect_charges_dict)" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "id": "7c1b4b76-3015-43a1-acc6-e3974d92ba83", - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ { "data": { - "image/svg+xml": "\n \n \n \n \n 2022-10-19T11:42:09.854889\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADRcAAAzlCAYAAAC0REvBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdeZjd890//tcsyWSZpElksySWLJgZSlQiEQbBTW0Jaqe2KGr/qqAuFVWK2mls4ZZbW3UXtdXSiu9EgsYSESGR2JuKkE0n22Qy5/dHv3f7cyPnzJlzziyfx+O6erWdeb3e7+dJ+9eMZ95FqVQqFQAAAAAAAAAAAAAAAEDiFDd3AAAAAAAAAAAAAAAAAKB5KBcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEKVNncAAAAAAAAAAPJr7dq18dJLL8VLL70Ur7/+enzwwQfxySefRG1tbaxatSrKy8ujW7du0adPn9h+++1jhx12iFGjRsUWW2zR3NEBAAAAAMizolQqlWruEAAAAAAAAADk3ssvvxy33357PPbYY7F06dJG7++0005x7LHHxoknnhgdOnTIQ0IAAAAAAJqbchEAAAAAAABAGzNlypS48MIL46WXXsrJeRtttFH89Kc/jVNOOSVKS0tzciYAAAAAAC2DchEAAAAAAABAG/HFF1/Ej3/843jwwQfzcv6OO+4Y999/fwwePDgv5wMAAAAAUHjKRQAAAAAAAABtwPPPPx9HHnlkfPbZZ3m9p1OnTnHXXXfFUUcdldd7AAAAAAAojOLmDgAAAAAAAABA09x1112x9957571YFBGxcuXKOOaYY+L666/P+10AAAAAAOSfchEAAAAAAABAK3b77bfHKaecEvX19QW7M5VKxf/5P/8nLrvssoLdCQAAAABAfhSlUqlUc4cAAAAAAAAAoPEmTZoUxx9/fDTnr33vvPPOGDt2bLPdDwAAAABA0ygXAQAAAAAAALRCDz30UBx++OGxbt26jHf69esXhx9+eIwYMSK++93vRo8ePaJz586xZMmS+OCDD+KFF16I3//+9/Haa69lfGZpaWk88cQT8R//8R/ZfAwAAAAAAJqZchEAAAAAAABAKzN37twYMmRIrFy5MqP5wYMHxzXXXBMHHHBAFBcXp52fOnVqnHXWWTFjxoyMzu/Vq1e8+eab0bdv34zmAQAAAABoOdL/1BgAAAAAAACAFqOuri6OPPLIjItFF1xwQcyaNSsOOuigjIpFEREjR46MV155JS655JKM5j///PM4/vjjw99tCQAAAADQ+igXAQAAAAAAALQiF110UUYvCpWUlMSkSZPi6quvjvbt2zf6npKSkvj5z38e99xzTxQVFaWdf+aZZ+L2229v9D0AAAAAADSvopS/OgoAAAAAAACgVXj55ZdjxIgRGb0QdNddd8XJJ5+ck3tvuummOOecc9LO9ejRI+bNmxc9evTIyb0AAAAAAOSfl4sAAAAAAAAAWokLL7wwo2LRueeem7NiUUTE2WefndF5S5YsiUsvvTRn9wIAAAAAkH9eLgIAAAAAAABoBZ566qn4/ve/n3auqqoqXn311SgrK8vp/StWrIghQ4bEu+++u965kpKSeOedd2LQoEE5vR8AAAAAgPzwchEAAAAAAABAC5dKpeLiiy/OaPbOO+/MebEoIqJz584xYcKEtHPr1q2La665Juf3AwAAAACQH8pFAAAAAAAAAC3cs88+G2+88UbauYMPPjiGDx+etxx77LFHjBkzJu3cpEmTYsGCBXnLAQAAAABA7igXAQAAAAAAALRw9957b0Zzl19+eZ6TRFx11VVRXLz+XzXX1dXFzTffnPcsAAAAAAA0XVEqlUo1dwgAAAAAAAAAvtny5cujb9++sXr16vXO7bXXXvHss88WJNPBBx8cjzzyyHpn+vbtG5988kmUlpYWJBMAAAAAANnxchEAAAAAAABAC/bAAw+kLRZFRJx99tkFSPNPF1xwQdqZhQsXxjPPPFOANAAAAAAANIVyEQAAAAAAAEAL9sADD6Sd6dOnT+yzzz4FSPNPO+20U1RUVKSdu++++wqQBgAAAACAplAuAgAAAAAAAGihVq1aFS+++GLaucMPPzxKSkoKkOjfTjjhhLQzf/rTn6Kurq4AaQAAAAAAyJZyEQAAAAAAAEALNXXq1IzKOYceemgB0nzVYYcdlnZmxYoVUVNTU4A0AAAAAABkS7kIAAAAAAAAoIV67rnn0s5069YtRowYUYA0X9W/f//Ydttt08796U9/KkAaAAAAAACypVwEAAAAAAAA0EJNnjw57cxee+0VJSUlBUjzdfvvv3/amT//+c8FSAIAAAAAQLaUiwAAAAAAAABaoPr6+pg5c2bauV122aUAab5ZdXV12pl33nknvvzyywKkAQAAAAAgG8pFAAAAAAAAAC3Q3Llzo66uLu3cTjvtVIA032z48OFpX01qaGiIV199tUCJAAAAAABoLOUiAAAAAAAAgBZo1qxZaWfKyspiu+22y3+Yb9GlS5eoqqpKO/fKK68UIA0AAAAAANlQLgIAAAAAAABogTIpF2255ZbRrl27AqT5dttss03amZkzZxYgCQAAAAAA2VAuAgAAAAAAAGiBZs+enXamoqKiAEnWr7KyMu3MvHnzCpAEAAAAAIBsKBcBAAAAAAAAtECffPJJ2pmtt966AEnWT7kIAAAAAKB1Uy4CAAAAAAAAaIE+/fTTtDP9+/cvQJL123TTTdPOLF++PD7//PMCpAEAAAAAoLGUiwAAAAAAAABamHXr1sWiRYvSzvXr168AaXKT4eOPP85zEgAAAAAAsqFcBAAAAAAAAAkyefLkKCoqyvpf5557bnN/hBZh0aJF0bNnz6z/HDfeeONYtmzZes9ft25d2hwbb7xxDj9Vdrp37x7l5eVp57xcBAAAAADQMikXAQAAAAAAQIJUVlY2aX/u3Lk5StK6nXXWWbF48eKs9++4447o1q3bt35/4cKFGZ3To0ePrDPkUs+ePdPOKBcBAAAAALRMykUAAAAAAACQIH369MmoCPJtlIsiHn/88fj973+f9f6xxx4b+++//3pnamtrMzqre/fuWefIpUxyKBcBAAAAALRMykUAAAAAAACQME15vejDDz+MNWvW5DBN6/Lll1/GaaedlvX+hhtuGDfddFPaudWrV6ed6dSpU7Rr1y7rLLmUSblo6dKlBUgCAAAAAEBjKRcBAAAAAABAwjSlXNTQ0BDz5s3LYZrW5YILLogFCxZkvX/HHXdkVMTJpFzUsWPHrHPkWnl5edqZJJfSAAAAAABaMuUiAAAAAAAASJiqqqom7c+dOzdHSVqXmpqauPPOO7PeP+aYY+KAAw7IaDaTclFLebUoIrMsykUAAAAAAC2TchEAAAAAAAAkTFNeLopIZrlo9erVMXbs2EilUlnt9+3bN26++eaM5zMp4rSkclH79u3TztTV1RUgCQAAAAAAjaVcBAAAAAAAAAnT1JeL5syZk6Mkrcdll10W8+bNy3r/9ttvj+7du2c8n0mJKduiUz5kUnRSLgIAAAAAaJmUiwAAAAAAACBhevToEX379s16P2kvF82YMSOuu+66rPePPvroOOiggxq1k8lLQKtWrco2Us6tXbs27UxpaWkBkgAAAAAA0FjKRQAAAAAAAJBAlZWVWe8mqVxUX18fJ510UtTX12e137dv37j55psbvZfJS0AtqVyUyatEHTp0KEASAAAAAAAaS7kIAAAAAAAAEqiqqirr3eXLl8fChQtzmKbl+tWvfhUzZszIen/ChAnRo0ePRu+VlZWlnVm9enU2kfJizZo1aWeUiwAAAAAAWiblIgAAAAAAAEigprxcFJGM14vefffdGD9+fNb7Rx55ZIwePTqr3a5du6adaWhoaDEFIy8XAQAAAAC0XspFAAAAAAAAkEBNebkoou2Xi1KpVIwdOzbr8k6fPn3illtuyfr+TF87WrVqVdZ35NKyZcvSzigXAQAAAAC0TMpFAAAAAAAAkEBeLlq/O+64I6ZMmZL1/oQJE2KDDTbIej/T3aVLl2Z9Ry598cUXaWe6d+9egCQAAAAAADSWchEAAAAAAAAkUNeuXaNfv35Z78+ZMyeHaVqWv/3tbzFu3Lis94844ogYM2ZMkzJssMEGUVRUlHbuk08+adI9ubJ48eK0M3379i1AEgAAAAAAGku5CAAAAAAAABKqKa8XteWXi0477bT48ssvs9rt3bt33HrrrU3O0K5du4zKOB9//HGT72qq+vr6WL58edo55SIAAAAAgJZJuQgAAAAAAAASqinlog8//DDq6upymKZleOCBB+KJJ57Iev/Xv/51bLDBBjnJ0r9//7QzLeHlokwLTspFAAAAAAAtk3IRAAAAAAAAJFRVVVXWu+vWrYt58+blME3zW7x4cZx11llZ7x9++OFxyCGH5CzPpptumnamJbxc9N5772U0p1wEAAAAANAyKRcBAAAAAABAQjXl5aKIiLlz5+YoSctwzjnnxOeff57Vbu/evePWW2/NaZ7BgwennWkJ5aL3338/7cxGG20UHTp0KEAaAAAAAAAaS7kIAAAAAAAAEqqioiKKioqy3m9L5aKnn3467r///qz3b7vttujZs2cOE2X2stQ777yT0zuzMX/+/LQzFRUVBUgCAAAAAEA2lIsAAAAAAAAgoTp37hybbbZZ1vttpVxUW1sbP/rRj7Le/8EPfhCHHnpoDhP90zbbbJN25sMPP4zly5fn/O7GeOONN9LONPWVLAAAAAAA8ke5CAAAAAAAABIsk9dxvs2cOXNymKT5XHTRRfHxxx9ntdurV6+47bbbcpzonwYPHhwdOnRIOzdz5sy83J+p119/Pe2Ml4sAAAAAAFou5SIAAAAAAABIsKa8KNMWXi568cUX49e//nXW+7fddlv06tUrh4n+rbS0NHbccce0c1OnTs3L/Zn48MMPY8mSJWnnmlJiAwAAAAAgv5SLAAAAAAAAIMGaUi5atmxZLFq0KIdpCmvNmjVx8sknR0NDQ1b7hx56aPzgBz/IcaqvGjlyZNqZF154Ia8Z1uell15KO1NWVhZDhgwpQBoAAAAAALKhXAQAAAAAAAAJ1tQXZVrz60VXXHFFvPPOO1nt9uzZs0kvHmVql112STszderUqKury3uWb/L000+nnRk6dGh06NChAGkAAAAAAMiGchEAAAAAAAAk2FZbbRUlJSVZ78+ZMyeHaQpn1qxZcfXVV2e9f+utt0avXr1ymOib7brrrlFWVrbemdra2qipqcl7lv8tlUrFM888k3Zu1113LUAaAAAAAACypVwEAAAAAAAACdahQ4cYMGBA1vut8eWidevWxUknnRRr167Nav+QQw6Jww8/PMepvlnnzp1j9913Tzv3xBNPFCDNV7366qvx2WefpZ2rrq4uQBoAAAAAALKlXAQAAAAAAAAJV1lZmfVuaywX3XjjjfHKK69ktduzZ8/49a9/neNE63fAAQeknfnv//7vaGhoKECaf7vnnnvSzpSXl8fOO+9cgDQAAAAAAGRLuQgAAAAAAAASrqqqKuvdOXPm5DBJ/r3//vtx6aWXZr1/yy23RO/evXOYKL3Ro0dHcfH6f7X76aefxnPPPVegRBG1tbXxm9/8Ju3cQQcdFJ06dSpAIgAAAAAAsqVcBAAAAAAAAAnXlJeLPvjgg6irq8thmvwaO3ZsrFy5MqvdMWPGxBFHHJHjROlttNFGsccee6Sdy+QloVz5zW9+E//4xz/Szh199NEFSAMAAAAAQFMoFwEAAAAAAEDCNeXlonXr1sV7772XwzT5M3HixJg8eXJWuxtssEFMmDAhx4kyd+yxx6ad+cMf/hAfffRR3rOsXr06fvGLX6Sd69WrV+y11155zwMAAAAAQNMoFwEAAAAAAEDCDR48ONq1a5f1/ty5c3OYJj8+/fTTOP/887Pev+WWW6JPnz45TNQ4hxxySHTt2nW9M/X19XHdddflPcuNN94Yn3zySdq5Y489NkpLS/OeBwAAAACAplEuAgAAAAAAgIRr165dDBo0KOv9OXPm5DBNfpxxxhmxbNmyrHZHjx4dRx55ZG4DNVLnzp3jxBNPTDt3++23x9tvv523HAsXLoxf/vKXaec6duwYP/nJT/KWAwAAAACA3FEuAgAAAAAAAKKqqirr3Zb+ctFDDz0UDz/8cFa7PXr0iNtvvz3HibJz1llnRXHx+n/Fu3bt2jj99NOjoaEh5/enUqn44Q9/GMuXL087e+qpp0bfvn1zngEAAAAAgNxTLgIAAAAAAACisrIy692WXC5atmxZnHHGGVnv33LLLdGnT58cJsre5ptvHmPGjEk7V1NTE5dddlnO7//Vr34Vzz77bNq5jh07xrhx43J+PwAAAAAA+aFcBAAAAAAAALTZl4vOO++8WLhwYVa7Bx10UBx11FE5TtQ0V1xxRZSWlmY09+CDD+bs3j//+c/x05/+NKPZCy64oMUUsgAAAAAASK8olUqlmjsEAAAAAAAA0Lzmzp0bW221Vdb7ixYtil69euUwUdM999xzseeee2a126NHj5g9e3b07ds3x6ma7rTTTovbb7897VxJSUncd999cfTRRzfpvueffz4OPPDAqK2tTTs7ZMiQePnll6Ndu3ZNuhMAAAAAgMLxchEAAAAAAAAQAwcOjLKysqz3W9rrRStXroxTTjkl6/2bbrqpRRaLIiLGjx8fPXr0SDu3bt26OO644+LCCy+Murq6rO664447Yt99982oWFRWVhb33XefYhEAAAAAQCujXAQAAAAAAABESUlJk14uamnloksuuSTef//9rHYPOOCAOOaYY3KcKHd69+4d9957b0azDQ0NcfXVV8fQoUPj8ccfj1QqldHejBkzYq+99opTTz011qxZk9HOFVdcEVVVVRnNAgAAAADQchSlMv3pMQAAAAAAANCmHX300fHb3/42q93zzz8/rr322hwnys706dNj+PDh0dDQ0Ojd7t27x+zZs2PDDTfMQ7LcOuuss+KWW25p1M6WW24Zo0ePjj322CMGDx4cPXv2jA4dOsSyZcti3rx58dJLL8XDDz8c06ZNa9S5J5xwQtxzzz2N2gEAAAAAoGVQLgIAAAAAAAAiIuKqq66Kiy++OKvdAw44IB577LEcJ2q8tWvXxg477BCzZs3Kan/SpElx7LHH5jhVftTV1cVBBx0UTz/9dLPm2G+//eKPf/xjlJaWNmsOAAAAAACyU9zcAQAAAAAAAICWobKyMuvduXPn5jBJ9q666qqsi0X7779/qykWRUS0b98+Hn744dh9992bLcPQoUPjwQcfVCwCAAAAAGjFvFwEAAAAAAAARETE+++/HwMGDMhqt7S0NFauXBnt2rXLcarMvf3227H99ttHXV1do3e7desWs2fPjo022igPyfKrtrY2DjvssHjqqacKeu9uu+0Wf/zjH+M73/lOQe8FAAAAACC3vFwEAAAAAAAARETE5ptvHp06dcpqt76+Pt57770cJ8pcQ0NDnHzyyVkViyIibrrpplZZLIqIKC8vjyeeeCIuueSSKCoqKsidJ510Ujz99NOKRQAAAAAAbYByEQAAAAAAABAREUVFRVFRUZH1/ty5c3OYpnFuvfXWeOmll7La3X///eO4447LcaLCKi4ujp///Ofx5JNPxhZbbJG3e3r16hUPPPBA3H333VFWVpa3ewAAAAAAKBzlIgAAAAAAAOBfKisrs95trnLRRx99FD/96U+z2u3WrVvccccdOU7UfPbdd994++2345e//GV06dIlZ+d26tQpzj333Hj33Xfj8MMPz9m5AAAAAAA0P+UiAAAAAAAA4F+aUi6aM2dODpNk7kc/+lHU1tZmtXvDDTfERhttlONEzausrCzGjRsXCxYsiLvvvjt23nnnrM+qrKyMK6+8Mj7++OO4/vrro1u3brkLCgAAAABAi1CUSqVSzR0CAAAAAAAAaBmeeuqp+P73v5/V7ogRI2LatGk5TrR+kyZNih/+8IdZ7X7/+9+PJ598MseJWqYFCxbESy+9FNOnT4/XXnstFi5cGMuWLYulS5fG2rVro1OnTtGtW7fYdNNNY/DgwTFs2LCorq6OwYMHN3d0AAAAAADyTLkIAAAAAAAA+JePP/44Nt1006x2N9hgg/jiiy9ynOjbLVq0KLbeeutYsmRJo3e7desWb731Vmy88cZ5SAYAAAAAAK1HcXMHAAAAAAAAAFqO/v37R9euXbPaXbx4cSxevDjHib7dmWeemVWxKCLi+uuvVywCAAAAAIBQLgIAAAAAAAD+l4qKiqx358yZk8Mk3+6xxx6LBx98MKvdfffdN0444YQcJwIAAAAAgNZJuQgAAAAAAAD4iqqqqqx3586dm8Mk3+zLL7+M008/Pavd73znO3HnnXfmOBEAAAAAALReykUAAAAAAADAV1RWVma9W4hy0U9+8pNYsGBBVrvXX399bLLJJjlOBAAAAAAArZdyEQAAAAAAAPAVTSkXzZkzJ4dJvq6mpibuuuuurHb32WefOPHEE3OcCAAAAAAAWjflIgAAAAAAAOArqqqqst7N58tFq1evjrFjx0YqlWr0bteuXePOO+/MQyoAAAAAAGjdlIsAAAAAAACAr9hwww2jR48eWe2+//77UV9fn+NE//Szn/0s5s2bl9XuddddF/369ctxIgAAAAAAaP2UiwAAAAAAAICvqayszGpv7dq18f777+c4TcTrr78e1113XVa7e++9d5x88sk5TgQAAAAAAG2DchEAAAAAAADwNdmWiyIi5syZk8MkEfX19XHyySfHunXrGr3btWvXuPvuu3OaBwAAAAAA2hLlIgAAAAAAAOBrqqqqst6dO3duDpNEXHvttTFjxoysdn/1q19Fv379cpoHAAAAAADaEuUiAAAAAAAA4Gua8nJRLstF7777blx++eVZ7e61114xduzYnGUBAAAAAIC2SLkIAAAAAAAA+JqW8HJRKpWKsWPHxurVqxu926VLl7j77rtzkgMAAAAAANoy5SIAAAAAAADga3r27Bm9e/fOanfOnDk5yXD77bfHlClTstr91a9+Ff37989JDgAAAAAAaMuKUqlUqrlDAAAAAAAAAC3PHnvsEc8//3xWu4sXL44ePXpkffff/va3qKysjC+//LLRu3vuuWf8+c9/zvpuAAAAAABIEi8XAQAAAAAAAN+oqqoq6925c+c26e7TTjstq2JRly5d4u67727S3QAAAAAAkCTKRQAAAAAAAMA3qqyszHp3zpw5We/+7ne/iyeeeCKr3WuuuSY23XTTrO8GAAAAAICkUS4CAAAAAAAAvlFzvFy0ePHiOPvss7PaHTVqVPzoRz/KahcAAAAAAJJKuQgAAAAAAAD4Rk15uSjbctE555wTn3/+eaP3ysvLY+LEiVFUVJTVvQAAAAAAkFTKRQAAAAAAAMA36tatW2y88cZZ7WZTLnrqqafi/vvvz+q+a665JjbddNOsdqEQFi1aFMuXL2/uGAAAAAAAX6NcBAAAAAAAAHyrbF8veu+996K+vj7j+dra2jj11FOzumv33XfPehfy6aOPPoobb7wxqqurY8MNN4xddtmluSMBAAAAAHxNaXMHAAAAAAAAAFquysrKePbZZxu9V1dXFx988EEMGjQoo/mLLrooPv7440bfU15eHvfcc08UFRU1ehfy4Z133omHH344Hn744Xj99de/8r2BAwc2UyoAAAAAgG+nXAQAAAAAAAB8q6qqqqx3586dm1G56MUXX4xf//rXWd1x9dVXx2abbZbVbhItX7483nrrrXjrrbfinXfeiQULFsSCBQti4cKFUVtbG6tWrYrVq1dHaWlpdOnS5V//6t27d2y11Vax9dZbx1ZbbRXf/e53o0ePHs39cVqUK6+8MiZNmhRz58791pnq6uoCJgIAAAAAyExRKpVKNXcIAAAAAAAAoGX661//GjvttFNWu9dee22cf/75651Zs2ZNbLfddjFnzpxGn7/77rvHc88959Wi9fjiiy/iL3/5S9TU1ERNTU288847OTm3uLg4dthhh9hnn31in332iWHDhkVJSUlOzm6Nli1bFhtssEE0NDSsd27GjBmx3XbbFSYUAAAAAECGvFwEAAAAAAAAfKvKysooKiqKbP7OwvW94PI/rrjiiqyKRZ07d46JEycqFn2DRYsWxR/+8Id46KGHoqamJtatW5fzOxoaGuKVV16JV155JX7+85/HJptsEmPHjo2xY8fGhhtumPP7WroXXnghbbGoW7duse222xYoEQAAAABA5oqbOwAAAAAAAADQcpWXl0f//v2z2k1XLnrzzTfj6quvzursq6++OjbffPOsdtuiVCoVkydPjsMPPzw22WST+PGPfxyTJ0/OS7Hom/ztb3+Ln/3sZ9G/f//4wQ9+EDNnzizIvS3FlClT0s7ssssuUVzsV/QAAAAAQMvjJ5cAAAAAAADAelVVVWW1t75y0bp16+Kkk06KtWvXNvrc3XbbLU4//fSsMrU169ati9/+9rexzTbbxKhRo+LBBx/M6s80V+rr6+MPf/hDDBkyJI4//vhYvHhxs2UppJqamrQzu+22W/6DAAAAAABkQbkIAAAAAAAAWK/Kysqs9hYtWhRLly79xu/deOON8eqrrzb6zM6dO8fEiROjqKgoq0xtRSqViv/6r/+KrbbaKo4++uiYPXt2c0f6ioaGhrjvvvuioqIi/vSnPzV3nLyqra2NGTNmpJ2rrq4uQBoAAAAAgMZTLgIAAAAAAADWK9tyUcQ3v1703nvvxaWXXprVeVdddVVsscUWWedpC6ZNmxbDhg2L4447LubPn9/ccdZr0aJFccABB8Qvf/nL5o6SN9OmTYv6+vr1znTt2jW22267wgQCAAAAAGgk5SIAAAAAAABgvaqqqrLe/aZy0SmnnBIrV65s9Fm77rprnHHGGVlnae2WLFkSP/zhD2PkyJHxyiuvNHecjDU0NMRFF10UF1xwQXNHyYuampq0MyNHjoySkpICpAEAAAAAaDzlIgAAAAAAAGC9tt566yguzu5Xi/+7XDRx4sSYPHlyo8/p1KlT3HPPPVFUVJRVjtbuoYceioqKipg0aVJzR8natdde2yZfMJoyZUramerq6gIkAQAAAADITmlzBwAAAAAAAABato4dO8YWW2wR8+fPb/TunDlz/vWfP/300zj//POzynDVVVfFgAEDstptzVasWBGnn356TkpFZWVlMXTo0KioqIitttoqtt5669h4442jS5cu0bVr1+jSpUs0NDTE6tWrY8WKFbFw4cL49NNPY/78+TFr1qx44403YsaMGbFu3bqsM1x88cWxzTbbxH777dfkz9MSrFq1KqNXpJSLAAAAAICWrCiVSqWaOwQAAAAAAADQso0ePToeffTRRu9VVFTE7NmzIyLi4IMPjkceeaTRZ+yyyy5RU1OTuFeL3nrrrTjssMPinXfeyfqMAQMGxIEHHhh77713VFdXR8eOHZuUafny5VFTUxP3339/PPbYY7FmzZpGn9GnT5+YNWtW9OrVq0lZWoLJkyfHqFGj1jtTXl4eS5cujdJSf/cnAAAAANAyFTd3AAAAAAAAAKDlq6qqympv/vz5sW7dunjooYeyKhZ16tQp7rnnnsQVix555JEYNmxYVsWi9u3bx2GHHRZ/+ctfYt68eXH99dfHPvvs0+RiUUTEd77znTjwwAPjwQcfjL///e8xbty46NChQ6PO+Oyzz2LcuHFNztISTJkyJe3MiBEjFIsAAAAAgBZNuQgAAAAAAABIq7KyMqu9urq6eP311+OMM87Iav/KK6+MgQMHZrXbWl1zzTVxyCGHxMqVKxu11759+zjjjDPi448/jt///vcxatSovJayevToEb/85S9j7ty5sffeezdq97777ouZM2fmKVnh1NTUpJ3Zbbfd8h8EAAAAAKAJlIsAAAAAAACAtLItF0VEHH300bFw4cJG740cOTLOPPPMrO9tbVKpVJxxxhkxbty4SKVSGe8VFRXF0UcfHXPmzIlbbrkl+vTpk8eUX9e/f/94+umn4xe/+EWUlJRktNPQ0BBXXXVVnpPlV11dXfz1r39NO1ddXV2ANAAAAAAA2StKNean0gAAAAAAAEAi1dXVRefOnaO+vr4g93Xs2DHefPPNxLxa1NDQEKecckpMnDixUXv9+/ePe+65J0aNGpWnZI3z8MMPx5FHHhl1dXVpZzt16hS1tbV5fV0pn6ZOnRq77LLLemc6deoUy5Yti3bt2hUoFQAAAABA43m5CAAAAAAAAEirffv2BS36/OIXv0hMsSiVSsUJJ5zQ6GLRCSecELNmzWoxxaKIiIMPPjgef/zx6NChQ9rZHXfcsdUWiyIiampq0s4MHz5csQgAAAAAaPGUiwAAAAAAAICMVFVVFeSenXfeOc4+++yC3NUSnHvuuTFp0qSM58vKyuK+++6Le+65J7p27ZrHZNnZe++94/bbb087t8ceexQgTf5MmTIl7Ux1dXUBkgAAAAAANI1yEQAAAAAAAJCRysrKvN/RsWPHuPfee6O4OBm/yrzqqqvipptuyni+V69e8dxzz8Vxxx2Xx1RN98Mf/jBtQWz33XcvUJrcq6+vjxdffDHtnHIRAAAAANAaJOMn8gAAAAAAAECTFeLloiuuuCIGDRqU93tagv/+7/+Oiy++OOP5QYMGxfTp02PnnXfOY6rcufrqq2OzzTb7xu916tQphg0bVthAOfTaa69FbW3temc6dOjQqj8jAAAAAJAcykUAAAAAAABARvL9ctGIESPinHPOyesdLcXs2bPjhBNOyHh+4MCB8fzzz39rWaclKisri6uuuuobv7fzzjtH+/btC5wod6ZMmZJ2ZtiwYVFWVlaANAAAAAAATaNcBAAAAAAAAGRk0KBBeSuEdOjQIe65554oLm77v8Jcvnx5jB49OlasWJHR/IABA+L555+PjTfeOM/Jcu+II46Ibbfd9mtf32OPPZohTe7U1NSkndltt93yHwQAAAAAIAfa/k/mAQAAAAAAgJwoLS2NLbfcMi9nX3HFFXk7u6X58Y9/HPPnz89odqONNornn38+Ntlkkzynyp/jjz/+a1/bfffdCx8kRxoaGmLatGlp56qrqwuQBgAAAACg6ZSLAAAAAAAAgIxVVlbm/Mzhw4fHueeem/NzW6IHH3wwfvOb32Q027Fjx3jssceiX79+eU6VX0cddVSUlpb+67936dIldthhh2ZM1DQzZ86MZcuWrXemffv2sdNOOxUmEAAAAABAEykXAQAAAAAAABmrqqrK6XkdOnSIe++9N4qL2/6vLhcuXBinnXZaRrNFRUVx3333teoSzv/o06fPV4o2u+6661fKRq1NTU1N2pmhQ4dGx44dC5AGAAAAAKDpWu9PbAEAAAAAAICCy/XLRZdffnlsueWWOT2zpTrvvPNiyZIlGc1ecskl8YMf/CDPiQpn6NChMXXq1IiI2H333Qt+/4cffhhTpkyJmTNnxptvvhkff/xxLF++PJYtWxYNDQ3RpUuX6NevX1RUVMSIESNiv/32i8033/wbz5oyZUra+6qrq3P9EQAAAAAA8qYolUqlmjsEAAAAAAAA0DrMnz8/Bg0alJOzdtppp5g6dWqUlJTk5LyWbPLkyTFq1KiMZtvin8vvf//7OOKIIyIi4vXXX4/tt98+73e+9957cd9998Wjjz4ab775ZqP3d9555zj77LPj0EMPjaKiooiISKVS0bt37/jiiy/Wu/vss8/GXnvtlVVuAAAAAIBCUy4CAAAAAAAAMtbQ0BDl5eWxatWqJp3ToUOHmDFjRmy11VY5StZy1dfXxzbbbBNz5sxJO9u5c+d44403YuDAgQVIVjgrV66Mt99+OyIihgwZEsXFxXm76//+3/8bN9xwQzzxxBPR0NDQ5PO++93vxoQJE2L48OExe/bsqKqqWu98aWlpLFu2LDp37tzkuwEAAAAACqG0uQMAAAAAAAAArUdxcXFsvfXW8frrrzfpnPHjxyeiWBQRMXHixIyKRRER1113XZsrFkVEdOrUKb73ve/l9Y7Zs2fHeeedF88++2xOz505c2aMHDkyLrjggthwww3Tzn/ve99TLAIAAAAAWhUvFwEAAAAAAACNctxxx8V//dd/Zb0/bNiwmDZtWpSUlOQwVcu0atWqGDhwYPz9739POzt06NB4+eWXo6ioqADJ2o4VK1bEhRdeGBMmTIh169bl9a527drF2rVr1ztz4YUXxlVXXZXXHAAAAAAAueTlIgAAAAAAAKBRKisrs94tKyuLe++9NxHFooiI2267LaNiUUTEDTfcoFjUSNOnT49jjjkm5s2bV5D70hWLIiKqq6sLkAQAAAAAIHeKmzsAAAAAAAAA0LpUVVVlvTt+/PjYeuutc5im5Vq7dm3ceOONGc0edthhMWLEiPwGamOuvfba2HnnnQtWLMpESUlJ7Lzzzs0dAwAAAACgUbxcBAAAAAAAADRKti8XDR06NM4///wcp2m5fve738WCBQvSzhUXF8eVV15ZgERtw9q1a+OUU06J//zP/2zuKF8zZMiQ6NKlS3PHAAAAAABoFOUiAAAAAAAAoFE23XTTKC8vj9ra2ox3ysrK4t57742SkpI8JmtZrr/++ozmxowZEwMGDMhzmrZh6dKlMWbMmKipqWnU3qBBg+Lggw+OYcOGxbbbbhs9e/aMTp06xbJly+K9996LadOmxaRJk+LNN99sUr7q6uom7QMAAAAANIeiVCqVau4QAAAAAAAAQOsybNiwmD59esbzV155ZVx00UV5TNSyvPLKKzF06NCMZqdNmxYjRozIc6LWb8mSJbHnnnvGjBkzMpovLi6OMWPGxE9+8pMYNmxYRjuPP/54nHnmmfHRRx9llfHxxx+P/fffP6tdAAAAAIDmUtzcAQAAAAAAAIDWp6qqKuPZHXfcMS644II8pml57r333ozmhg0bpliUgcWLF8eoUaMyLhaNGDEiXnvttfjDH/6QcbEoIuKAAw6I1157Lav/TYqLi2PkyJGN3gMAAAAAaG7KRQAAAAAAAECjVVZWZjTXvn37uPfee6OkpCTPiVqONWvWxAMPPJDR7PHHH5/fMG3A8uXLY9SoUfHGG2+knW3fvn3ccMMNMXXq1Nhuu+2yum+DDTaIZ555JrbddttG7X33u9+Nbt26ZXUnAAAAAEBzUi4CAAAAAAAAGi3TctHPfvazjGfbismTJ8fSpUvTzpWUlMTBBx9cgEStV319fRx66KExc+bMtLP9+vWLl156Kc4555woKipq0r3l5eXx6KOPRufOnTPe2W233Zp0JwAAAABAc1EuAgAAAAAAABqtqqoq7cwOO+wQF1xwQQHStCyPP/54RnPV1dXRu3fvPKdp3U499dT4y1/+knZu++23j5dffjmGDBmSs7s322yzGD9+fMbz1dXVObsbAAAAAKCQlIsAAAAAAACARtt4442jW7du3/r99u3bx3/+539GaWlp4UK1EE888URGc4ccckiek7Ru119/fUycODHt3E477RQ1NTWx0UYb5TzDmWeemdG5RUVFscsuu+T8fgAAAACAQlAuAgAAAAAAALJSWVn5rd+79NJLM3rdqK1555134pNPPslo1ks33+7VV1+NCy+8MO3csGHD4plnnokuXbrkJUf79u3jlFNOSTu3zTbbRI8ePfKSAQAAAAAg35SLAAAAAAAAgKx8W7lohx12iHHjxhU4Tcswbdq0jOa6d+8eFRUVeU7TOtXW1sZRRx0Va9euXe/cwIED48knn4yuXbvmNU8mZTFFMQAAAACgNVMuAgAAAAAAALLyTS8TtW/fPu69994oLS1thkTNb+rUqRnNDR8+PIqKivKcpnU677zzYt68eeud6d69ezz55JOxwQYb5D3PlClT0s4oFwEAAAAArZlyEQAAAAAAAJCVb3q56JJLLoltttmmGdK0DH/9618zmhs6dGiek7RO06dPj7vvvjvt3MSJE2Pw4MF5z7Nw4cK0RaeIiF133TXvWQAAAAAA8iWZf10YAAAAAAAA0GR77LFHpFKp5o7RYtTV1cX8+fMzmh0wYECe07Q+qVQqzjzzzLT/nzrxxBNjzJgxBcmUyatFFRUV0atXrwKkAQAAAADIDy8XAQAAAAAAAOTAvHnzor6+PqNZ5aKvmzRpUkyfPn29M7169YobbrihQIkyKxfttttu+Q8CAAAAAJBHykUAAAAAAAAAOTBnzpyMZ7fYYos8Jml9Ghoa4sorr0w7d/nll0fXrl0LkOifMikXVVdXFyAJAAAAAED+KBcBAAAAAAAA5MDHH3+c0Vy7du2iT58+eU7TujzyyCPx7rvvrndm4MCBMXbs2AIliliyZEm89dZbaed23XXXAqQBAAAAAMgf5SIAAAAAAACAHFi4cGFGc507d85zktbnmmuuSTtz9tlnR0lJSQHS/NMLL7wQqVRqvTNbbrll9O3bt0CJAAAAAADyQ7kIAAAAAAAAIAc+/fTTjObKy8vznKR1mTVrVkyfPn29M127do3jjz++MIH+nylTpqSdqa6uLkASAAAAAID8Ui4CAAAAAAAAyIGlS5dmNOfloq/67W9/m3bmwAMPLHgpS7kIAAAAAEgK5SIAAAAAAACAHFi1alVGc+3bt89zktYjlUrFAw88kHbu0EMPLUCaf6utrY0ZM2aknVMuAgAAAADaAuUiAAAAAAAAgBxYvXp1TueSYObMmfHhhx+ud6a0tDT22muvwgT6f6ZNmxbr1q1b78zAgQNj4403LlAiAAAAAID8US4CAAAAAAAAyIG6urqM5lauXJnnJK1HTU1N2pntttsuOnXqVIA0/zZlypS0M14tAgAAAADaCuUiAAAAAAAAgBwoKyvLaO7zzz+PVCqV5zStQyblop122qkASb5KuQgAAAAASBLlIgAAAAAAAIAc6NixY0ZzdXV1sXDhwjynaR2mTp2admbLLbcsQJJ/W716dbzyyitp55SLAAAAAIC2QrkIAAAAAAAAIAc6d+6c8ezcuXPzmKR1WLx4cXz++edp5zbffPMCpPm3v/71r7FmzZr1zmy22WbRv3//AiUCAAAAAMgv5SIAAAAAAACAHNhwww0zns3kZZy2bv78+RnNbbLJJnlO8lU1NTVpZ7xaBAAAAAC0JcpFAAAAAAAAADmw2WabZTw7bdq0/AVpJebNm5fRXGNehMqFKVOmpJ1RLgIAAAAA2hLlIgAAAAAAAIAcaEy56M9//nOsWrUqf2Fagb///e8ZzRWyXLR27dp4+eWX084pFwEAAAAAbYlyEQAAAAAAAEAObLfddhnPrly5Mp588sn8hSmQDz/8MP70pz9ltVtbW5vRXENDQ1bnZ+O1116LFStWrHemX79+scUWWxQoEQAAAABA/ikXAQAAAAAAAOTA4MGDo0ePHhnP33rrrXlMk39TpkyJHXfcMY444oiYP39+o/czLRctW7as0Wdn67e//W3aGa8WAQAAAABtjXIRAAAAAAAAQI4MHz4849mampqYPn16HtPkz1133RV77rlnfPHFF/GPf/wjDj/88FizZk2jzli5cmVGc4UqF73wwgtx2223pZ1TLgIAAAAA2hrlIgAAAAAAAIAcOfDAAxs1f9555+UpSX6sXr06Tj/99DjllFNi7dq1//r666+/Hueff36jzioqKspo7v3332/UudlYsWJFnHDCCdHQ0JB2VrkIAAAAAGhrlIsAAAAAAAAAcmT06NFRUlKS8fy0adPijjvuyGOi3Jk1a1Z873vfiwkTJnzj92+99dZ45JFHMj6vY8eOGc299NJLGZ+ZjVQqFccdd1y89957aWc33HDDGDRoUF7zAAAAAAAUmnIRAAAAAAAAQI707t079tprr0btnHvuufHWW2/lKVHTpVKpuPnmm2PHHXeM2bNnr3f2pJNOio8++iijc3v27JnR3NSpUzOay9Zll10WDz/8cEazI0aMyGsWAAAAAIDmoFwEAAAAAAAAkENnn312o+ZXrVoV3//+9+OTTz7JU6LszZw5M0aOHBlnn312rFmzJu380qVL47nnnsvo7E022SSjuVmzZsWrr76a0Wxj3XHHHfHzn/8843nlIgAAAACgLVIuAgAAAAAAAMih//iP/4iKiopG7XzyySex5557xgcffJCnVI3z5ZdfxjnnnBM77LBDvPjiixntlJSUxJ133hknnnhiRvNbbbVVxnluvPHGjGczdccdd8Rpp50WqVQq4x3lIgAAAACgLSpKNeYnpQAAAAAAAACk9cQTT8QBBxzQ6L3evXvHQw89FCNHjsxDqvRWrFgREyZMiGuvvTYWLVqU8V5ZWVn87ne/izFjxmS8s2rVqujatWvU19ennS0uLo5nn302Ro0alfH53yaVSsX48ePj8ssvb1SxqH379vGPf/wj2rdv3+QMAAAAAAAtiZeLAAAAAAAAAHJs//33j3322afRe4sWLYrq6uoYN25crFq1Kg/JvtmXX34ZV199dWy22Wbxk5/8pFHFoq5du8YzzzzTqGJRRETHjh1j+PDhGc02NDTEMcccEwsWLGjUHf/b8uXLY8yYMTF+/PhGFYsiIrbddlvFIgAAAACgTVIuAgAAAAAAAMiD2267Lbp27drovYaGhrjmmmtiwIABMWHChFi9enUe0v3T1KlT44QTTogNN9wwLrzwwvjiiy8atV9RUREvv/xyVFdXZ3V/Y153WrhwYQwfPjzefPPNrO764x//GBUVFfHoo49mtb/DDjtktQcAAAAA0NIVpRr71zEBAAAAAAAAkJEHH3wwDj/88Cad0b179zj66KPj0EMPjZ133jlKS0uzPmvVqlUxZcqUeOaZZ+KJJ56IefPmZX3WUUcdFXfeeWd07tw56zM+/fTT6NevX6xbty7jnfLy8hg3blycc845UV5ennb+hRdeiCuvvDKefvrprHNGRNx5550xduzYJp0BAAAAANASKRcBAAAAAAAA5NH5558f1113XU7O6tq1a4wYMSK233772GabbaJfv36xySabRLdu3aJDhw7Rvn37WLFiRXz55Zfx5ZdfxsKFC+Ptt9+O2bNnx+zZs2P69OlNfgmpffv2ccMNN8Tpp5+ek8907LHHxv3339/ovZ49e8ZBBx0U++yzT1RVVUXv3r2jvLw8Pv/88/jwww/jL3/5Szz22GPx+uuv5yTn9OnTY8cdd8zJWQAAAAAALYlyEQAAAAAAAEAepVKpOOGEE+K+++5r7ihNNmTIkLj77rtj++23z9mZ7733XlRWVsaaNWtydmauFRUVRW1tbXTq1Km5owAAAAAA5FxxcwcAAAAAAAAAaMuKiopi4sSJceyxxzZ3lKx17tw5rrvuupg+fXpOi0UREQMGDIif/exnOT0z1zbffHPFIgAAAACgzVIuAgAAAAAAAMizkpKSmDRpUlx66aXNHaXR9t9//3j77bfjvPPOi5KSkrzcMW7cuNhvv/3ycvb6nHrqqbHvvvumnauoqChAGgAAAACA5qFcBAAAAAAAAFAg48ePj0cffTT69OnT3FHS2n333aOmpiYef/zx6N+/f17vKi4ujgceeCBGjhyZ13v+x4ABA+Kpp56KCRMmxNtvv512fuDAgQVIBQAAAADQPJSLAAAAAAAAAArowAMPjNmzZ8fRRx8dRUVFzR3na/6nVDR58uTYddddC3ZveXl5PP3003HwwQfn7Y5u3brFFVdcEbNnz4599tknFi1aFB999FHavQEDBuQtEwAAAABAc1MuAgAAAAAAACiwDTbYIO6///547bXXYt99923uONG9e/c4/fTT49VXXy14qej/r3PnzvHQQw/FhAkTolu3bjk7d6ONNorLL788Pvzww/jpT38aZWVlERHxyiuvrHdvwIABcd5558VBBx2UsywAAAAAAC1NUSqVSjV3CAAAAAAAAIAke+utt+Kuu+6K+++/P5YsWVKQO8vKymK33XaL448/PkaPHh0dOnQoyL2Z+uKLL+Lmm2+OO++8Mz777LNG73fv3j322WefOOKII2K//faLkpKSr81cdtllMX78+K98bfvtt4/Ro0fH6NGjY9ttt806PwAAAABAa6FcBAAAAAAAANBCrFmzJmpqauKpp56Kp59+OubMmZOzs4uLi2O77baLPffcM0aNGhW77LJLdOzYMWfn58u6detiypQpMXny5Hj11Vfj/fffj4ULF8bKlSsjIqJTp07RvXv36N+/f2yxxRYxZMiQGDp0aHzve9+L0tLS9Z598cUXx7XXXhu77LLLvwpF/fv3L8THAgAAAABoMZSLAAAAAAAAAFqoZcuWxRtvvBEzZ86MefPmxYIFC+Jvf/tbfPbZZ7Fy5cpYvXp1rF69OoqLi6NLly7RpUuXKC8vjy5dukS/fv1iq622ii233PJf/15eXt7cH6nFqa2t9ecCAAAAACSachEAAAAAAAAAAAAAAAAkVHFzBwAAAAAAAAAAAAAAAACah3IRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAkVGlzBwAAsldfXx/z5s37ytd69OgRxcX6wwAAAAAAAAAAAACQqYaGhliyZMlXvjZo0KAoLW371Zu2/wkBoA2bN29eVFRUNHcMAAAAAAAAAAAAAGhz3n777dh6662bO0beedYAAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASqrS5AwAA2evRo8fXvvb2229Hz549myENAAAAAAAAAAAAALROX3zxRVRUVHzla9/0z+q2RcpFANCKFRd//RHCnj17Rq9evZohDQAAAAAAAAAAAAC0Hd/0z+q2Rcn4lAAAAAAAAAAAAAAAAMDXKBcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQD/H3v3HmV3Wd+L/7P3XPdkksyAXCSxchEJKEEuIoioqHjBapc9UmutrfasLk+PVVv1aOvx17rac2y19d56tMtTq0Lr9XhFROwCDQgIBEQNwQhEJYEQYHaSyey57v37g2sI2c93Zr77/nqtVsnsZ3+fz2x5sp8987y/HwAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAgCao1WpRq9VaXQYAAAAAAOxDuAgAAAAAAACgCa765c/j6l9taXUZAAAAAACwj/5WFwAAAAAAAADQ7Spzs3HBDRuiEBFPO+LIKA0MtrokAAAAAACICJ2LAAAAAAAAABruKz+5OsqVvTFR2Rv/7yfXtLocAAAAAAB4iHARAAAAAAAAQAP9unxPfOeWGx/688W33BC/Lt/TuoIAAAAAAOARhIsAAAAAAAAAGqRWq8Wnr7s8qrXaQ1+rPvC12iO+BgAAAAAArSJcBAAAAAAAANAgV2zdHJvv3rbf1zffvS2u3HpLCyoCAAAAAIB9CRcBAAAAAAAANMDe2Zm48IYNB3z8whs2xNTsTBMrAgAAAACA/QkXAQAAAAAAADTAl2+6KnZPVw74+K7pqfjSTVc3sSIAAAAAANifcBEAAAAAAABAzrZO7IzvbrkpOe67W34cv5zY2YSKAAAAAADgsQkXAQAAAAAAAOSoWqvFp6+9LGq1WnJs7YGx1QxjAQAAAACgEYSLAAAAAAAAAHL0g9s2xZZ77sw8/uf33Bkbbr+5gRUBAAAAAMCBCRcBAAAAAAAA5GRyZjr+48YrF/28/7jhipicnW5ARQAAAAAAUJ9wEQAAAAAAAEBOvnjTD2PPTGXRz9s9U4kv/fiqBlQEAAAAAAD1CRcBAAAAAAAA5OC2e3fEf275yZKf/70tN8Vt9+3IsSIAAAAAAEgTLgIAAAAAAABYpmq1Gv967WVRW8Y1ahHx6Wsvi2ptOVcBAAAAAIDFES4CAAAAAAAAWKbLbvtZLl2Hbr13R1x+689yqAgAAAAAALIRLgIAAAAAAABYht3TlfjCjT/M7Xqfv/HK2D1dye16AAAAAABQj3ARAAAAAAAAwDJ84cdXxuTsdG7Xm5ydji/8OL+wEgAAAAAA1CNcBAAAAAAAALBEW+65My679We5X/fyW38av7jnrtyvCwAAAAAAjyZcBAAAAAAAALAE1Wo1Pn3tZQ25di0i/vXay6JarTbk+gAAAAAA8CDhIgAAAAAAAIAl+N4vfhJbJ3Y27PpbJ+6O//zFTxp2fQAAAAAAiBAuAgAAAAAAAFi0XZW98cUf/7Dh83zhx1fFrumphs8DAAAAAEDvEi4CAAAAAAAAWKT/uPHKmJqbbfg8U3Mz8R83XtHweQAAAAAA6F3CRQAAAAAAAACLsPnubfGD229u2nw/uO3muGXn9qbNBwAAAABAbxEuAgAAAAAAAMhooVqNT193WdPn/fS1l8VCtdr0eQEAAAAA6H7CRQAAAAAAAAAZfffnP45fl+9t+ry/Kt8T3/35j5s+LwAAAAAA3a+/1QUAtNrc3Fxs2LAhrrzyyti0aVNs3rw5du7cGXv27Im9e/dGqVSKVatWxUEHHRTHHXdcnHDCCfGMZzwjnve850WpVGp1+R1l586dcckll8QNN9wQmzZtiltvvTV27doVe/bsibm5uVi5cmWsWrUqjjjiiDjhhBPiKU95Sjzvec+Lk046qdWlAwAAAABATFT2xpdvurpl83/5J1fHGU98coyXVrSsBgAAAAAAuk+hVqvVWl0EQCtcccUV8c///M/x7W9/O3bv3r3o55dKpXjBC14Qf/InfxIvfvGLo1AoNKDKzlepVOJzn/tc/Ou//mtce+21Ua1WF32NtWvXxvnnnx9vetOb4qijjmpAlZ1r586dceihh+7ztbvvvjsOOeSQFlUEAAAAANC9/unK78QPf3lLS2s468jj4o3PfHFLawAAAAAA6Ea9fC632OoCAJrtBz/4QTz96U+Ps88+Oz7/+c8vKVgUcX9o5pvf/Gacd955cfzxx8fXvva1fAvtcHNzc/G+970vnvCEJ8Qb3vCGuOaaa5YULIqIuOOOO+JDH/pQPOlJT4rzzz8/tm7dmm+xAAAAAACQsGnHHS0PFkVEXLn1lrh5xx2tLgMAAAAAgC4iXAT0jHK5HH/4h38Yz3nOc+K6667L9dq33HJLvOIVr4iXvexlsX379lyv3YmuvPLKOOmkk+Iv/uIv4t57783tutVqNb785S/HU57ylHj/+98fmu8BAAAAANAM89WF+PR1l7W6jId8+rrLY7660OoyAAAAAADoEsJFQE/YtGlTnH766fHZz362ofN861vfilNPPTV++MMfNnSedvbxj388zjnnnLj55psbNsfU1FS8853vjN/6rd9acucpAAAAAADI6uLNN8a2Xfe1uoyH3LHr3vjOLTe2ugwAAAAAALqEcBHQ9a644oo444wzYsuWLU2Z76677opzzjknvvrVrzZlvnby1re+Nd74xjfG3NxcU+b75je/GWeeeWbs3LmzKfMBAAAAANB77p3aE//vp9e0uoz9fOUn18S9U3taXQYAAAAAAF1AuAjoatddd1289KUvjT17mvvLtdnZ2fjd3/3duOSSS5o6byu9613vig996ENNn3fTpk3xwhe+MMrlctPnBgAAAACg+12wcUPMzDfnplqLMTM/Fxdu3NDqMgAAAAAA6AL9rS4AoFHuuOOOeMlLXhK7d+/O/Jzh4eF49rOfHaeddlqsWbMmVq1aFZOTk3HnnXfGxo0b4/LLL4/JyclM15qdnY3f/u3fjmuuuSae+tSnLvXb6Aif/OQn4+/+7u8W9Zy1a9fGs5/97Fi/fn087nGPi4GBgSiXy7Fly5a45ppr4rrrrotarZbpWjfeeGO84hWviO9973vR19e3lG8BAAAAAAD285M7fxnX/GpLq8s4oKt/tSXOuetXceLhv9HqUgAAAAAA6GDCRUBXmp+fj1e/+tVxzz33ZBp/6KGHxrvf/e74gz/4g1i9evUBx01NTcUXv/jFeM973hO//OUvk9edmpqK888/P6677rpYsWJF5vo7yY033hh/9md/lnn8s5/97Pirv/qreN7znheFQuGA426//fb46Ec/Gh//+MdjdnY2ed3LL7883vOe98Tf/u3fZq4FAAAAAAAOZG5hPv7tustbXUbSv113efz9S34vBvr86hcAAAAAgKUptroAgEZ473vfG1dccUWmsa961atiy5Yt8aY3valusCgiYmRkJF73utfFLbfcEm984xszXX/z5s3x53/+55nGdprZ2dn43d/93Zienk6OLZVK8elPfzq+//3vx/Of//y6waKIiKOOOio+9KEPxU033ZS589Ni/ncHAAAAAIB6vr35hrhzT7nVZSTduXsiLt58Q6vLAAAAAACggwkXAV3n9ttvj7/7u7/LNPYv//Iv4/Of/3ysWrVqUXMMDQ3FP/3TP8XHPvaxTOM/9alPxbXXXruoOTrBBz/4wbjllluS41atWhWXX355vO51r1v0HMcdd1xcffXV8ZznPCc5tlqtxp/+6Z/GwsLCoucBAAAAAIAH7dy7O7760x+1uozMvvrTH8U9e3e3ugwAAAAAADqUcBHQdd761rdm6qTzhje8Id773vcua64//dM/jf/1v/5XclytVos//dM/jVqttqz52sn27dszfe8DAwPxrW99K04//fQlz7VixYr41re+FU972tOSY3/84x/HJz/5ySXPBQAAAAAAn7v+BzG7MN/qMjKbWZiPz13/g1aXAQAAAABAhxIuArrKjTfeGF/72teS404++eT4yEc+ksuc73rXu+JFL3pRctyPfvSjuOiii3KZsx28//3vj7179ybH/e///b/j7LPPXvZ8o6Oj8YUvfCFGR0czzTk7O7vsOQEAAAAA6D03bLs9rrvj1laXsWjX3nFr3Lh9a6vLAAAAAACgAwkXAV3l/e9/f3JMsViMT33qUzE0NJTLnIVCIf7lX/4lSqVScmyW+jrBxMREfOpTn0qOO/nkk+Ntb3tbbvM++clPjr/6q79Kjtu+fXtccMEFuc0LAAAAAEBvmF2Yj89e//1Wl7Fkn7nu8o7quAQAAAAAQHsQLgK6xq9//ev40pe+lBz32te+Nk455ZRc5/6N3/iNeOtb35oct2HDhrj22mtznbsVPvGJT2TqWvTBD34wisV832re8pa3xFFHHZUc94EPfCDXeQEAAAAA6H7f2nR97Jjc1eoylmzH5K741qbrW10GAAAAAAAdpr/VBQDk5cILL4z5+fp34ysUCvHOd76zIfO/5S1viQ984AMxPT1dd9xnPvOZePrTn96QGprlM5/5THLMM57xjHjuc5+b+9yDg4Px53/+5/HmN7+57rhNmzbFddddF6eddlruNQAAAABAN6tWq7F990Tcdt/dcceue2Pv7HTMLSzEfHUh+ot9MdDXFysGh2Pt6oPj6IMPjSNWjud+kyFohR2Tu+Lrmzr/BmFf33RtPOuodXHo6OpWlwK58d4EAAAAAI0lXAR0jQsvvDA55oUvfGEcf/zxDZn/kEMOide85jXxf//v/6077otf/GJ8+MMfjv7+zvwr+Prrr49bbrklOe7P/uzPGlbDH/3RH8W73/3u2L17d91xF154oXARAAAA9BCHTmFparVa3Hz3trj+jlvj1vt2xC/v2xkzC/Vv5PRIQ/0D8cTxx8UxBx0Wp649Jo4/dE0UCoUGVgyN8dnrvh9zCwutLmPZ5hYW4rPXfz/e/pyXt7oUWDLvTdAYPjNBfqwnyIe1BPmwliA/1hO9rFCr1WqtLgJguX7605/GiSeemBz3uc99Ln7/93+/YXVcfvnlcc455yTHXXzxxfHiF7+4YXU00tvf/vb4wAc+UHfMypUrY8eOHVEqlRpWx+te97pkB6XDDz88tm/f3tW/LNq5c2cceuih+3zt7rvvjkMOOaRFFQEAAEDzOHQKy7N3diY23H5zfG/LTbF990Ru1z1i1Xi84Nj1cfZRx8eKwaHcrguNdP0dt8UHfvDNVpeRq7c9+2Vx6tqjW10GLIr3JsiXz0yQH+sJ8mEtQT6sJciP9cSj9fK5XOEioCv84z/+Y/yP//E/6o4ZHh6Ou+++O1auXNmwOqrVajzhCU+I7du31x335je/OT7ykY80rI5GeupTnxo/+9nP6o55zWteExdccEFD6/jOd74TL3nJS5LjNm7cGCeffHJDa2mlXt7EAAAA0LscOoXl2bGnHN/YdH38cOvmRf2SdLGG+vrjmUeui5efcGoctnKsYfPAcs3Mz8X/uOhzcc/ePa0uJVeHrFgV//DS18Zgf3+rS4Ek702QL5+ZID/WE+TDWoJ8WEuQH+uJA+nlc7nCRUBXeNGLXhTf/e536455wQteEJdeemnDa3n9618f//Zv/1Z3zPHHHx+bNm1qeC15u/POO+OII45IjrvgggviNa95TUNrmZ6ejvHx8Zienq477n3ve1+84x3vaGgtrdTLmxgAAAB6j0OnsDwL1WpctHljfOWmq2OuutC0eQeKffHK9WfES9edEsVisWnzQlZf/PFV8bWf/ajVZTTEK556epy//sxWlwEH5L0J8uUzE+THeoJ8WEuQD2sJ8mM9kdLL53KFi4CONzs7G+Pj4zE1NVV33N///d/HO9/5zobXc+GFF8bv//7vJ8fdcccdsWbNmobXk6cLLrggXvva1ybH3XnnnXH44Yc3vJ5zzz03vve979Ud06xQWav08iYGYDmq1Wps3z0Rt913d9yx697YOzsdcwsLMV9diP5iXwz09cWKweFYu/rgOPrgQ+OIleMOGQAAtJBDp7B823bdF5+4+rtx6707WlbDkw4+PN5wxrmxZvVBLasBHu3O3RPxzm9fGPNNfH9ppv5iX7zvvNfE41eNt7oU2I/3JsiPz0yQH+sJ8mEtQT6sJciP9URWvXwuV7gI6HjXXnttnH766clxV1xxRZx11lkNr+dXv/pVPPGJT0yO+8pXvhK//du/3fB68vTGN74xPv7xj9cd86QnPSm2bNnSlHr+5m/+Jv76r/+67phVq1ZFuVyOQqHQlJqarZc3MQCLUavV4ua7t8X1d9wat963I355385F3X1kqH8gnjj+uDjmoMPi1LXHxPGHruna9xYAgHbj0CksT7VWi4tu3hhfvumqpv7C9EDu/0XqmfHS40+Jos9VtFitVou/v+xr8ZO7ftXqUhpq/eOfGO987m/5WQZtw3sT5MtnJsiP9QT5sJYgH9YS5Md6YjF6+VyucBHQ8f7lX/4l3vCGN9QdUywWY/fu3bFixYqm1HTIIYfEPffcU3fMu9/97vjbv/3bptSTl2c+85lx1VVX1R3zO7/zO/GFL3yhKfVcdNFF8Zu/+ZvJcb/4xS/imGOOaUJFzdfLmxiALPbOzsSG22+O7225KbbvnsjtukesGo8XHLs+zj7q+FgxOJTbdQEAeJhDp7B889WF+OTVl8aVW29pdSn7OevI4+INZ5wb/cW+VpdCD/vRr7bEh6/4dqvLaIo/O/ulcfoTntTqMsB7E+TIZybIj/UE+bCWIB/WEuTHemIpevlcbn+rCwBYro0bNybHPPnJT25asCgi4tRTT41LLrmk7pgbbrihSdXko1qtxo9//OPkuFNOOaUJ1dzv1FNPzTTuhhtu6NpwEQCPbceecnxj0/Xxw62bF9WhKKvtuyfis9d/P75w45XxzCPXxctPODUOWzmW+zwAAL2qHQ+dzlUX4j9uvCJ+Vd7p0CkdYXZhPj56xbdj47bbW13KY7py6y1RmZuNNz/rvBjs8+sqmm96fi4+u/EHrS6jaT53/fdj/eOfGMP9A60uhR7mvQny4zMT5Md6gnxYS5APawnyYz3B4hVbXQDAcv3kJz9Jjlm3bl0TKnnYcccdlxxz0003NaGS/Nx6660xNTWVHNfM1/rwww+P1atXJ8d12msNwNItVKvxjU3XxTsuuiAuu/WnDQkWPdLMwnxcdutP4x0XXRDf3HRdVKvVhs4HANALZhfm48MbLmqrX/Y80pVbb4kPb7goZhu814TlmK8utPXh7Qdt3HZ7fOyKi2O+De4YSe/56k+vifumJltdRtPcOzUZX/vpj1pdBj3MexPkx2cmyI/1BPmwliAf1hLkx3qCpREuAjrebbfdlhxz7LHHNqGShz3pSU9Kjtm2bVvMzs42oZp8ZHmdI5r/WmfpSJS1dgA627Zd98V7Lv1ifP7GK5veyvj+O4tcGe+59Euxbdd9TZ0bAKCbOHQKy1et1eKTV1/a9uvoQddvuy0+efWlUa3VWl0KPWTbrvvi2zff0Ooymu6izRv93IKW8N4E+fGZCfJjPUE+rCXIh7UE+bGeYOmEi4COVqlU4q677kqOyxJAyVOWcFG1Wo1f/vKXTagmH7ffnm2jdfTRRze4kn1lea2z1g5AZ6rWavHNTdfHuy7+97j13h0treUX994V77r43+Obm653+AAAYJEcOoV8XHTzxra9G+OBXLn1lvj25o2tLoMeUavV4t+uuywWar3XfXihWo1/u+7yqHnvosm8N0E+fGaC/FhPkA9rCfJhLUF+rCdYHuEioKNlDeccccQRDa5kX49//OMzjeuk0MvWrVuTYw466KAYHh5ufDGPkOW17qTXGYDFma8uxP+56pL4jxuvaHq3ogO5v4vRFfF/rrrE3UUAABbBoVNYvm277osv33RVq8tYki/9+CodVWiKq3758/jZjjtaXUbL/GzHr+PqX21pdRn0EO9NkB+fmSA/1hPkw1qCfFhLkB/rCZZHuAjoaNu2bcs07vDDD29wJUub7447OucXmFle62a/zlnnvOuuu2JhweFugG4zuzAfH95wUdv+UODKrbfEhzdcFLML860uBQCg7Tl0Csu3UK3GJ67+btvceGGx5qoL99+hsdp73WRonsrcbFxww4ZWl9FyF2z8QVTmZltdBj3AexPkx2cmyI/1BPmwliAf1hLkx3qC5RMuAjravffem2ncYYcd1uBK9nXooYdGsZj+K/a++zpnM5DltW726xyRLVxUq9ViYmKiCdUA0Czz1YX46BXfbvs2xhu33R4fu+JiHYwAAOpw6BTy8e3NG+PWe3e0uoxl+cW9d8VF7tBIA33lJ1dHubK31WW03ERlb/y/n1zT6jLoAd6bIB8+M0F+rCfIh7UE+bCWID/WE+RDuAjoaFnDRWNjY40t5FGKxWKsXLkyOS5r/e0gS63Nfp0XM2cnvdYA1Fet1eKTV1/a9sGiB12/7bb7fwBQq7W6FACAtuTQKSzfjj3l+PJNV7e6jFx8+aarY8eecqvLoAv9unxPfOeWG1tdRtu4+JYb4tfle1pdBl3MexPkx2cmyI/1BPmwliAf1hLkx3qCfAgXAR0ta+ef0dHRBleyvyzhok7qXJSl1izfc96yztlJrzUA9V1088a4custrS5jUa7cekt82w8AAAD249Ap5OMbm67v2DsyPtpcdSG+sen6VpdBl6nVavHp6y53449HqD7wmtS8JjSI9ybIh89MkB/rCfJhLUE+rCXIj/UE+REuAjra7t27k2NWrFgRxWLz/7pbtWpVcsyuXbuaUEk+srzWrQgXZXmdIzrrtQbgwLbtui++fNNVrS5jSb7046ti2y5hVwCAR3LoFJZv7+xM/HDr5laXkasfbt0cU7MzrS6DLnLl1lti893bWl1G29l897aOu4ELncF7E+THZybIj/UE+bCWIB/WEuTHeoL8CBcBHW12djY5plQqNaGS/Q0PDyfHZKm/XbTra53ldY7orNcagMe2UK3GJ67+bsf+QGCuuhCfvPrSqFarrS4FAKAtOHQK+dhw+80xszDf6jJyNbMwHxtuv7nVZdAl9s7OxIU3bGh1GW3rwhs2eO8id96bIB8+M0F+rCfIh7UE+bCWID/WE+Srv9UFACxHlsBIX19fEyrZX39/+q/YTgq8tOtrneV1juis13q5nvWsZ2V+XWicn/3sZ60uAbrOtzdvjFvv3dHqMpblF/feFRdt3hgvO+G0VpcCANBy3Xzo9EXHPa3VpdAjarVaXLrlplaX0RCXbrkpXvjkk6JQKLS6FDrcl2+6OnZNT7W6jLa1a3oqvnTT1fGHpz2n1aXQJbw3QX58ZoL8WE+QD2sJ8mEtQX6sJ8iXzkVAR8sSGGlVyCLLvHNzc02oJB/t+lpnnbOTXmsA9rdjTzm+fNPVrS4jF1++6erYsafc6jIAAFqq2w+d1mq1VpdBj7j57m1x5+6JVpfRENt3T8Tmu7e1ugwAFsl7E+TDZybIj/UE+bCWIB/WEuTHeoL8aWsAdLT5+XTiWLgoH+36WgsX7e+KK66IQw45pNVlAOTqG5uuj7nqQqvLyMVcdSG+sen6+ONnPL/VpQAAtEwvHDo9/rC1rS6FHnD9Hbe2uoSGuu6O26wllu389WfE1b/6ue5FBzA2PBLnrz+j1WXQRbw3QT58ZoL8WE+QD2sJ8mEtQX6sJ8ifzkVAR8sSLFlYaM1B5Czztir4tBTt+lpnnbOTXmsA9rV3diZ+uHVzq8vI1Q+3bo6p2ZlWlwEA0DK9cOgUmuHW+3a0uoSGuq3Lvz+aY2RwKF5z8tmtLqNt/d7JZ8fI4FCry6CLeG+CfPjMBPmxniAf1hLkw1qC/FhPkD/hIqCjDQ4OJsdk6bjTCFk65WSpv12062udtSNRJ73WAOxrw+03x8xCa97PG2VmYT423H5zq8sAAGgZh05h+arVavzyvp2tLqOhtk7sjGq12uoy6AJnHXlcrDt0TavLaDvHH7omzjryuFaXQRfx3gT58ZkJ8mM9QT6sJciHtQT5sZ4gf8JFQEcbGBhIjmlVuCjLvJ0UeGnX1zrrnJ30WgPwsFqtFpduuanVZTTEpVtuilqt1uoyAACazqFTyMf23RNddyOGR5uZn4vteyZaXQZdoFAoxOtPe24UC4VWl9I2ioVCvP60c6LgNSFH3psgHz4zQX6sJ8iHtQT5sJYgP9YTNEZ/qwsAWI6hoaHkmOnp6SZUsrR5Oynw0q6vddY5O+m1BuBhN9+9Le7c3Z2/rN++eyI2370tjj9sbatLAQBoql45dLrh9s3xuNGV93+hFlGLWtQiIh4ImNce+sfaA//8cPC8FrV4ZA794T8/cI0HrlN74Dr7XrMWjxz54HX2veZjz/nA/z08S0PrfmCyunXXHjHfEuquPXj1/euOR82ZGtvauh/+50fWfV9lMnrB+y77eowODWcau7SIxBKftYSnNau+pdXWvIDJUsIsS6ruMZ60engkJip7l3K1rrN6eCQ+de1/PvaDS7gXylJun9Ksm67UllRdxNLKW/yTlvbaLeFJS30dFjF2cqY1v5Nrto9ecXGMl1Y89PfZg3/dFAqP/Nu0EIXCA3+/Fh76yv3/WNj3792Hn/fAfz70lMJDf6c/NKLw8DX2veZjzf3oaz58jUc88oix7VL3I+fIWPcD11l63Q//82PX/fAzmlH3zsndPfGZ6cY7fxmHrxxrdSl0ubv2lK0nyIG1BPmwliA/vbKetu+ZiLWrD251KfQQ4SKgo61cuTI5Zu/evVGr1Zp+9709e/Ykx6xataoJleRj5cqVcffdd9cdk+V7zlvWOTvptQbgYdffcWurS2io6+64TbgIAOg5t91X/+cL3eKT11za6hKgK9w7tSfunWr+zx2h201U9gpawRLdseveuGPXva0uAzreP37/G60uAbqG9QT5sJYgH9YS5Of2++4WLqKpiq0uAGA5DjrooOSYWq3WktDL7t27k2Oy1N8ustSa5XvOW9Y5O+m1BuBht963o9UlNNRtXf79AQA8FgcxAQAAAAAAoL47yn6nRnMJFwEd7eCDsyVyd+3a1eBK9lWtVmNycjI5Lmv97SBLrc1+nRczZye91gDcr1qtxi/v29nqMhpq68TOqFarrS4DAKCp9s5Ot7oEAAAAAAAAaGuTszOtLoEeI1wEdLSsgZEdO5rbFWDnzp2xsLCQHNdJgZcstTb7dY6IuOuuu5JjCoVCjI+PN6EaAPK0ffdEzCzMt7qMhpqZn4vteyZaXQYAQFPNZfiZCQAAAAAAAPSyuS4/N0X7ES4COtqaNWsyjcsSQMlT1vmy1t8OstTa7Nc565yHHXZY9Pf3N6EaAPJ02313t7qEpri9R75PAIAHzVeFiwAAAAAAAKAev1Oj2YSLgI525JFHZhq3ffv2xhbyKHfeeWemcUcddVSDK8lPltf6vvvui5mZ5rZhzPJad9LrDMDD7th1b6tLaIo7yr3xfQIAPKi/2NfqEgAAAAAAAKCt+Z0azSZcBHS0UqkUhx12WHLcrbfe2oRqHvaLX/wiOaZQKMQTn/jEJlSTjywBnVqtFrfddlsTqnlYltdauAigM+2dnW51CU0xOdvcYC4AQKsN9PlFCAAAAAAAANQz0Nff6hLoMf6NAzre0UcfHTt27Kg7ZsuWLU2q5n5ZAi9r1qyJoaGhJlSTj6OPPjrTuC1btsTxxx/f4GoeluW1zlo7AO1lbqE3WvvOLcy3ugQAgKZaMTjc6hK6WiEiolB46J8LUYj7/6/wiMfv/3PhoScV9hn70LgoROERz93neQ99qfDQnA9e7+E593/u/UMfUcsDf65fy8Nz7vt97POnB2p9uO6Hatlvjn3r3v+1enjgPt//o66z7/eR7bXar5aHnvfo7+MxXqtH/e921+Su2Hz3tuh2Jx9xVDxh7ODkuFrUFn/xJTxlqU9rVn1Lmae2xNdhKQUu6bVbUn3ZnlSr1eKHv/x5TPbADU6eetjaWLM6vZYeVkgPefQzFv+UJcyytGctpbb7Z2rON7WUeZb0LTX4dfh1+Z64YfvWpU3SQdYdckQcvnIsavHA37u1h//WqT3wl1Ytao/4++v+v53v//ODj+879sEvPvKa+16n9hhzPPzPjx770H/WHvj6Q4NqjzHH/rU8cs5Hfx8PXiMecZ1aPPr7eHjs/nPs/1rt8/0+4hoPfx+1x5gj/VodsJZH/+/20J/3f60AAACgVUYHO+eMMd1BuAjoeCeeeGJcddVVdcds3ry5SdVkn+/EE09sQiX5OeaYY6JUKkWlUqk7bvPmzfHyl7+8KTXdddddsWvXruS4TnutAbjffLU3wkW98n0CADxo7aIONneu15323DjjN4594E+PCJ5kDMzsG1I50HP3D7rQO+4o3xvv+PYFrS6j4V598lk98/cGrXHSEUfGP3z/G60uo+H+4LTnWks03B3le3siXPRHpz/Peuox+wSjHjPo9HAoKmLfQFOmINajQmFX//Ln8Znrv9/ob6vlfmf9mXHKmqNaXQZd7vptt8WXbrq61WU0nPVEo1lLkA9rCfLTK+tpbYYbb0GehIuAjnfyyScnx9xyyy0xNTUVIyMjTagoYuPGjckxp5xyShMqyU9fX1+sX78+rrnmmrrjsnzveck6V6e91gDcr7/Y1+oSmqJXvk8AgAcdfdChrS6hKU44bG2sGm7Oz6LoTUesGo+hvv6Y6eJuqEP9A3HEyvFWl0GXO+nxT4y+QiEWlt7Cqe1ZSzSL9ya61b7dJBsf6n/KYU9o+Bzt4LQnHCOoR8MVC8WeOHRqPdFo1hLkw1qC/PTKejqqR36nRvsotroAgOXKEhypVqtx4403Nr6YiPj1r38dO3fuTI7LEopqN1le62aGi66//vrkmJUrV8YxxxzThGoAyNtAX2+Ebgb63PMBAOgtDx467WYOndIMxWIxnnjQIa0uo6GOHD8kikW/yqKxisViHHXwYa0uo6GsJZrFexPkw2cmyI/1BPmwliAf1hLkx3qCxvBTL6DjnXTSSVEqlZLjNmzY0IRqIn7wgx9kGveMZzyjwZXk78wzz0yO2bJlS+zYsaMJ1WR7rU8//fSH7iYGQGdZMTjc6hKaYnRwqNUlAAA0lUOnkJ9jDuruQMTRXf790T6OPfjwVpfQUNYSzeS9CZbPZybIj/UE+bCWIB/WEuTHeoLG8G8c0PGGhobiWc96VnLcf/7nfzahmmzzrFu3LtauXduEavL1/Oc/P9O4ZrzWMzMzceWVVybHnXvuuQ2vBYDG6JU22WvHeuP7BAB4JIdOIR+nru3ujt2nrT261SXQI6wlyI/1BPnwmQnyYz1BPqwlyIe1BPmxniB/wkVAV3jBC16QHLNhw4aYnJxsaB3VajUuueSS5LhODbwcccQRcfzxxyfHXXzxxQ2v5fLLL49KpZIc16mvNQARRx90aKtLaIqjeuT7BAB4JIdOIR/HH7omHr9qvNVlNMQRq8Zj3aFrWl0GPcJagvxYT5APn5kgP9YT5MNagnxYS5Af6wnyJ1wEdIUXv/jFyTHT09Px9a9/vaF1bNiwIbZv354cl6XedpWl9q9//esxPT3d0Do+//nPJ8ccdthhcfLJJze0DgAa54hV4zHU19/qMhpqqH8gjljZnYctAADqcegU8lEoFOLcY9e3uoyGOPfY9VEoFFpdBj3CWoL8WE+QD5+ZID/WE+TDWoJ8WEuQH+sJ8idcBHSF9evXxwknnJAcd8EFFzS0js997nPJMQcffHBHd9N59atfnRyzZ8+ehga59u7dG1/96leT4171qlf5JQ9ABysWi/HEgw5pdRkNdeT4IVEs+lgGAPQeh04hP2cfdXzX3ZhhqK8/zj4q3UEd8mQtQX6sJ1g+n5kgP9YT5MNagnxYS5Af6wny5xQb0DVe85rXJMdccsklsXnz5obMv3PnzrjwwguT437nd34nBgYGGlJDMzz96U+PY489Njnuwx/+cMNq+PSnPx27du1Kjsvy7wQA7e2Ygw5rdQkNdXSXf38AAPU4dAr5WDE4FM88cl2ry8jVM49cFyODQ60ugx5jLUF+rCfIh89MkB/rCfJhLUE+rCXIj/UE+RIuArrG7//+70dfX1/dMbVaLf7+7/++IfN/5CMfienp6eS4P/zDP2zI/M2U5Xu4+uqr4/LLL8997tnZ2fjgBz+YHLdu3bo4/fTTc58fgOY6de0xrS6hoU5be3SrSwAAaBmHTiE/Lz/h1Bgo1v/ZaKcYKPbFy084tdVl0KOsJciP9QTL5zMT5Md6gnxYS5APawnyYz1BvoSLgK7xG7/xG/HKV74yOe5zn/tcbNy4Mde5f/WrX2UKvJx11lnxjGc8I9e5W+G//bf/FiMjI8lxb3vb26JareY690c+8pG4/fbbM80NQOc7/tA18fhV460uoyGOWDUe6w5d0+oyAABayqFTyMdhK8filevPaHUZuXjl+jPisJVjrS6DHmUtQX6sJ8iHz0yQH+sJ8mEtQT6sJciP9QT5ES4Cuso73vGO5JhqtRp//Md/HLOzs7nMWavV4g1veENUKpXk2Cz1LcbrXve6KBQKyf/Pu4PQwQcfHP/1v/7X5LiNGzdmCl1ltWXLlvibv/mb5LjHP/7x8drXvja3eQFonUKhEOceu77VZTTEuceuj0Kh0OoyAABayqFTyM95606JYw4+rNVlLMuTDj48XrrulFaXQY+zliA/1hMsn89MkB/rCfJhLUE+rCXIj/UE+REuArrKKaecEi9/+cuT4zZu3Bhvectbcpnz7/7u7+I73/lOctxpp50WL3vZy3KZsx284x3vyNS96F3veldcccUVy55v79698apXvSomJyeTY//yL/8yhoa0hQToFmcfdXwM9fW3uoxcDfX1x9lHHd/qMgAA2oJDp5CPvmIx/tsZL+zYOzQOFPviDWecG8WiX13RWtYS5Md6gnz4zAT5sZ4gH9YS5MNagvxYT5APPwUDus4HP/jBTMGST3ziE/E//+f/XNZcH//4xzNdo1AoxMc+9rGu6k6wdu3aeNe73pUcNzc3F7/5m78Z11133ZLnmpqaipe97GVxww03JMeeeOKJ8d//+39f8lwAtJ8Vg0PxzCPXtbqMXD3zyHUxMigICwAQ4dAp5GnN6oPilevPbHUZS3L+SWfGmtUHtboMiAhrCfJkPcHy+cwE+bGeIB/WEuTDWoL8WE+QD/8GAl3nmGOOiXe+852Zxr73ve+NV7/61bFnz55FzTEzMxNvfvOb441vfGOm8a9//evjjDO6o+3iI7397W+PY489Njlu165d8ZznPCc+85nPLHqOW265Jc4444y47LLLkmMLhUL80z/9U/T1deYGEYADe/kJp3bsDwAebaDYFy8/4dRWlwEA0FYcOoX8vPT4U+KsI49rdRmLctaRx8V57shIm7GWID/WEyyfz0yQH+sJ8mEtQT6sJciP9QTLJ1wEdKX/7//7/+LMM7NtEj7/+c/HscceG//8z/8cu3fvrju2UqnEZz/72Vi3bl187GMfy3T9Jz/5yfGRj3wk09hOMzQ0FJ///OczdYqampqK173udXHOOefEZZddFrVare74rVu3xlvf+tZYv359/OQnP8lUz1/8xV/Es5/97ExjAegsh60ci1eu746g7ivXnxGHrRxrdRkAAG3HoVPIR7FQiDeccW6csuaoVpeSyalrjr7/joxd1PWd7mAtQX6sJ8iHz0yQH+sJ8mEtQT6sJciP9QTLU6ilTncDdKhf//rXcfLJJ8e9996b+TmlUime85znxKmnnhpr166NlStXxuTkZNx1111x/fXXx+WXX76oLkelUimuuuqqOOmkk5byLSS97nWvy9QN6LLLLovnPve5DakhIuLjH/945i5OD3rCE54Qz3nOc2L9+vVx8MEHx8DAQJTL5fjFL34R11xzTfzoRz9KBpAe6eyzz47LLrus57oW7dy5Mw499NB9vnb33XfHIYcc0qKKABpnoVqN91z6xbj13h2tLmXJnnTw4fGec8/XxhgA4ADmqwvx4Q0XxcZtt7e6lKRT1xwdbzn7vOjvkg6bdJ/Zhfn46BXfbuv1dOqao+NNz3pJDPb1t7oUOCBrCfJjPcHy+cwE+bGeIB/WEuTDWoL8WE8sVy+fyxUuArraj370o3jBC16wqEBQXgYGBuJrX/tanHfeeQ2bo13CRRER73znO+P9739/Q+c4kBNPPDEuv/zyOOig3msL2cubGKA3bdt1X7zr4n+PuepCq0tZtIFiX7z3Jb+njTEAQIJDp5Cf+epCfPLqS+PKrbe0upT9nHXkcfGGM871S1M6wnx1If7PVd+Nq37581aXsh9riU7jvQmWz2cmyI/1BPmwliAf1hLkx3piOXr5XK7bZQNd7fTTT49vfetbMTo62tR5BwYG4j/+4z8aGixqN+973/vizW9+c9PnXbduXVx66aU9GSwC6EVrVh8Ur1x/ZqvLWJLzTzpTsAgAIIPBvv74s7NfGmcdeVyrS3lMZx15XLzl7PP8soeO0F/siz8580Xx6qc9Kwba5KD0QLEvfu/kZ8WfnPkih7fpGP3FvnjjM18czzvmqa0u5SF9haK1REfy3gTL5zMT5Md6gnxYS5APawnyYz3B0uhcBPSEn/70p/Fbv/VbcdtttzV8rkMPPTS+8pWvxLOe9ayGz9VOnYse9NGPfjTe9ra3xfz8fMPnOu+88+Lf//3fY/Xq1Q2fq131ckIa6F3VWi3+z1WXtOXdTQ/krCOPiz8580VRLBRaXQoAQMeo1mpx0c0b48s3XdUWnSsHin1x/klnxnnrTrGvoyNt23VffOLq78at9+5oWQ1POvjweMMZ57rxAh3tHy7/etywfWtLaxgdHI6/Pvd8a4mO570JlsdnJsiP9QT5sJYgH9YS5Md6Yil6+VyucBHQMyYmJuJNb3pTXHjhhQ2b4yUveUn8y7/8S6xdu7ZhczxSO4aLIiI2bNgQf/zHfxy33NKYQ9+lUine/e53x1/8xV9EsdjbTfh6eRMD9Lb56kJ8eMNFbd2++EGnrjk63nL2ee56CgCwRA6dQn4WqtX49uaN8eWbrm7qL1IHin3xyvVnxkvXndzzP8+j801U9sbbvvmZmJ6fa8n8A8W++NDL/jAOWrGyJfND3rw3wfL5zAT5sZ4gH9YS5MNagvxYTyxGL5/LFS4Ces7ll18eb3/72+P666/P7ZpPfvKT473vfW/8l//yX3K7ZhbtGi6KiJidnY0PfOAD8Y//+I9x33335XLNYrEYr3jFK+If/uEf4qijjsrlmp2ulzcxALML8/HRK77d1gGjU9ccHW961ku0MQYAWCaHTiFfO/aU4xubro8fbt0cMwuN60A+1NcfzzxyXbz8hFPjsJVjDZsHmu3izTfE5zb+oCVzv/aUZ8dL1p3ckrmhkbw3wfL4zAT5sZ4gH9YS5MNagvxYT2TVy+dyhYuAnvX9738//vmf/zkuvvjimJycXPTzh4eH4/nPf378yZ/8SZx33nlRaEGLwnYOFz1oamoqPvOZz8SnP/3puO6662IpbztHHHFEnH/++fGmN70pjjnmmAZU2bl6eRMDEHF/B6NPXn1pXLm1Md3yluOsI4+LN5xxro5FAAA5cugU8jU1OxMbbr85Lt1yU2zfPZHbdY9YNR7nHrs+zj7q+BgZHMrtutAuFqrVeNd3/j1+Xb63qfP+xtjj4n+/+NXR5xACXcx7EyyPz0yQH+sJ8mEtQT6sJciP9URKL5/LFS4Cet7s7Gz84Ac/iCuvvDI2bdoUmzdvjnvuuSf27NkTU1NTMTw8HCtXroyDDjoojjvuuDjhhBPiGc94Rjz/+c+PkZGRVpffUXbs2BGXXHJJ3HDDDbFp06a47bbbYteuXbFnz56Yn5+P0dHRWLlyZaxZsyaOP/74eMpTnhLPe97z4uST3YXxQHp5EwPwoGqtFhfdvDG+fNNVTb2zyIEMFPvi/JPOjPPWnRLFFoSPAQB6gUOnkK9arRab794W191xW9x2347Yet/di/ql6lD/QBw5fkgcfdBhcdrao2PdoWtacjMmaKbNd2+Lv/nel5s651+fe34cd8gRTZ0TWsV7EyyPz0yQH+sJ8mEtQT6sJciP9cSB9PK5XOEiAOhgvbyJAXi0bbvui09c/d249d4dLavhSQcfHm8449xYs/qgltUAANBLHjx0etHmjbFx2+2Lfr5Dp/DYqtVqbN8zEbffd3fcUb43JmdnYm5hPuarC9Ff7IuBvv4YHRyKtWMHx1EHHRpHrByPok4q9KBPXPXd+MHtNzdlrmcffXz8tzNe2JS5oB15b4KlEdSD/FhPkA9rCfJhLUF+rCcerZfP5QoXAUAH6+VNDMBjWahW49ubN8aXb7q6qV2MBop98cr1Z8ZL153s0AIAQAt89+c/jn+77vIDPl4sFOKZTzzOoVMAcrWrsjfe9q3PxtTcbEPnGRkYig+87A9i9fBIQ+cBoPsJ6kF+rCfIh7UE+bCWID/WE718Lre/1QUAAADkpa9YjJedcFqc/oQnxTc2XR8/3Lp5UXcTWayhvv545pHr4uUnnBqHrRxr2DwAANQ3Udlb9/FDVqyK//7MFzWpGgB6xerSividk55ZN+Cah1eddKZgEQC5KBaLsXb1wbF29cGtLgU6nvUE+bCWIB/WEuTHeqKXCRcBAABd57CVY/HHz3h+vObkZ8WG22+OS7fcFNt3T+R2/SNWjce5x66Ps486PkYGh3K7LgAAS1NOhIvGR0abVAkAveYFTzoxLr/1Z7F1YmdDrn/k+KHx/Ced2JBrAwAAAADAg4SLAACArjUyOBQvOu5p8cInnxSb794WX/3Zj+Knd/160dcpFgpx7OMeH0cfdFictvboWHfomigUCg2oGACApUh1LhobXtGkSgDoNcViMV7/9HPir7/7xdyvXYiIP3r6OVEsFnO/NgAAAAAAPJJwEQAA0PUKhUIcf9jauPnubUsKFx1z8GHx1+ee34DKAADIw0Rlsu7j4yXhIgAa59jHPT7OOeYpcdmtP8v1us895qnxpMcdnus1AQAAAADgsbjNFQAA0DNSd7Q/kHJlKudKAADIU2q/Nj4iXARAY73qpLNidHA4t+uNDg7Hq056Zm7XAwAAAACAeoSLAACAnlGeXmq4aG/UarWcqwEAIA9zC/OxZ6ZSd8zYsHARAI21argUr3pafmGg333aWbFquJTb9QAAAAAAoB7hIgAAoGdMTC0tXDRXXYi9czM5VwMAQB7K0+kukzoXAdAM5xz9lDj6oMOWfZ1jDj4snnvMU3KoCAAAAAAAshEuAgAAeka5srRwUUREeYnBJAAAGivLHm+8NNqESgDodcViMf7o6edEYRnXKETE659+ThQLy7kKAAAAAAAsjnARAADQE6q1WpSnlx4QmqhM5lgNAAB5mcgQLhorjTShEgCIOPrgw+L5x5645Oe/4Nj1uXQ/AgAAAACAxRAuAgAAesKe6amo1mpLfn6WQ6sAADTfRKLD5FD/QJT6B5tUDQBE/M76Z8bKodKin7dqqBTnn3RmAyoCAAAAAID6hIsAAICesNxwUFm4CACgLaW6U46XVkShUGhSNQAQMTo0HK9+2lmLft6rT35WjA4ON6AiAAAAAACoT7gIAADoCcsNF+lcBADQniYqk3UfHyutaFIlAPCwZx99Qhz7uMdnHv/kxz0+zj7q+AZWBAAAAAAAByZcBAAA9ITldh4SLgIAaE8TU+nORQDQbMVCIV7/9HMydc8rPDC2qNMeAAAAAAAtIlwEAAD0hOWGg5YbTgIAoDFS+zThIgBa5cjxQ+KFx65PjnvhsSfFE8cPaUJFAAAAAADw2ISLAACAnjBRmVzm84WLAADa0cR0Klw02qRKAGB/r1x/ZqweHjng46uHR+L89Wc0sSIAAAAAANifcBEAANATlhsOmqjsjVqtllM1AADkYW5hPiZnpuuOGSsd+EA3ADTaisGh+L2Tn3XAx19z8tkxMjjUxIoAAAAAAGB/wkUAAEBPKCfCRQeP1L+j/Xx1ISZn6x9cBQCgucqVqeQYnYsAaLVnHbku1h26Zr+vH3/omjjryONaUBEAAAAAAOxLuAgAAOgJqc5FRx10WPIaqYASAADNlaU75XhpRRMqAYADKxQK8frTnhvFQuGhrxULhXj9aedE4RFfAwAAAACAVhEuAgAAul61Wo3ydP272h990KHJ62Q5vAoAQPOUK5PJMWPCRQC0gSeMPS5efNzTHvrzS447OdaOHdy6ggAAAAAA4BGEiwAAgK63e6YStVqt7pgnjh+SvFuwcBEAQHtJ7c+G+weiNDDYpGoAoL7/cuIZMV5aEeOlFfHbJz6j1eUAAAAAAMBD+ltdAAAAQKNlCQUdPDIaq4dKdTscTWS4Mz4AAM2T2ueN61oEQBspDQzGa04+OwqFgvArAAAAAABtRbgIAADoellCQWOl0RgrjdYNF5UrB34MAIDmKyfCRWPCRQC0mTOf+ORWlwAAAAAAAPsptroAAACARkvd0b6vWIyVQ8PJO9vrXAQA0F50LgKg0xQKhSgUCq0uAwAAAAAA9iFcBAAAdL3UHe3HSyuiUCjE+EgiXDRV/zoAADRXep832qRKAAAAAAAAADqXcBEAAND1Une0Hxtesc9/H0jq8CoAAM2V3OfpXAQAAAAAAACQJFwEAAB0vVTHoQc7FiU7F03vjVqtlltdAAAs3ezCfEzOTtcdMy5cBAAAAAAAAJAkXAQAAHS91B3tx0ujD/x3/cOnC9Vq7Jmpf4AVAIDmyNJVUrgIAAAAAAAAIE24CAAA6Hrl6foHT8dKIxHxcMio7rUqk7nUBADA8mQJF40JFwEAAAAAAAAkCRcBAABdbaFajV3TU3XHPBgqynL4NNUFCQCA5siyL9O5CAAAAAAAACBNuAgAAOhqu6enolar1R3z4KHT1UOlKBQKdccKFwEAtIfUvqzUPxjDA4NNqgYAAAAAAACgcwkXAQAAXW1iOvsd7YvFYowNj9QdWxYuAgBoC6l92diIrkUAAAAAAAAAWQgXAQAAXW1iKh0GGis9fPB0vFT/EKrORQAA7SG1LxsfFi4CAAAAAAAAyEK4CAAA6GqpO9r3F/tidHD4oT+PJcJFOhcBALSHicpk3cdT+zoAAAAAAAAA7idcBAAAdLXUodPx0oooFAr7/Ln+9YSLAADaQbkyVffx8RHhIgAAAAAAAIAshIsAAICuNpE6dPqoMNF4aTRxvfphJQAAmiPZuWhYuAgAAAAAAAAgC+EiAACgq5VTh04fFS569J/3v95UVGu1ZdcFAMDSzc7Px97ZmbpjUh0pAQAAAAAAALifcBEAANDVJip76z6+f+ei+odQF2rVmJypLLsuAACWrjxdf48XETE+Ur8jJQAAAAAAAAD3Ey4CAAC6Wt7hoizXBACgsbLsx8aGR5pQCQAAAAAAAEDnEy4CAAC61kK1Grunp+qOGRMuAgDoOFn2Y1n2dQAAAAAAAAAIFwEAAF1s1/RU1BJjHn3odOXwSBQLhbrPmahMLrMyAACWY2Kq/n6sNDAYwwODTaoGAAAAAAAAoLMJFwEAAF0rSwhovDS6z5+LhUKMDde/y325Ur8bEgAAjVWert+5SNciAAAAAAAAgOyEiwAAgK6VJQQ0NrL/wdOxxGFUnYsAAFprYqp+uCi1nwMAAAAAAADgYcJFAABA10qFgAaKfbFiYGi/r48/RuBo3+vWP8wKAEBjpfZjOhcBAAAAAAAAZCdcBAAAdK3UodOx0oooFAr7f304ES5K3CkfAIDGKk+nwkWjTaoEAAAAAAAAoPMJFwEAAF0reUf7A3QoSt3pPnWYFQCAxkqFvcdKI02qBAAAAAAAAKDzCRcBAABdq5wKFx3gjvYHCh098rrVWm3JdQEAsHSz8/MxNTdTd4zORQAAAAAAAADZCRcBAABdK9W5aGz4QJ2L6h9GrdZqsWd6asl1AQCwdBMZukimOlECAAAAAAAA8DDhIgAAoGtNVCbrPn6gDkVjGQ6jpoJLAAA0xsRU/T1eRLb9HAAAAAAAAAD3Ey4CAAC60nx1IXZPV+qOOdAd7bPc6V64CACgNcoZ9mHCRQAAAAAAAADZCRcBAABdadf0VHLMgQ6drhwqRV+h/selLIdaAQDIXyrkPTIwGMP9A02qBgAAAAAAAKDzCRcBAABdaWIqHf45UIeiYqEQY6WR+tcXLgIAaIlUyFvXIgAAAAAAAIDFES4CAAC6Upbwz3hp9ICPpQ6lTlQmF10TAADLl9rnHShADgAAAAAAAMBjEy4CAAC6Unm6/qHTwb7+GBkYPODj9YJHERHlytSS6gIAYHlSIe/UPg4AAAAAAACAfQkXAQAAXWliqn64aKy0IgqFwgEfT93xXuciAIDWSIW8Ux0oAQAAAAAAANiXcBEAANCVysk72tc/dJo6lDpRqR9eAgCgMdKdi4SLAAAAAAAAABZDuAgAAOhKqfBP6tBp6vFd01NRrVYXXRcAAEs3Mz8XU3OzdccIFwEAAAAAAAAsjnARAADQlcoNDhdVa7XYPVNZdF0AACxdao8Xke5ACQAAAAAAAMC+hIsAAICulOpclDp0muWO96k5AADIV5b9l85FAAAAAAAAAIsjXAQAAHSd+YWFZFeh8dJo3cez3PF+ojK5qLoAAFieLOEinYsAAAAAAAAAFke4CAAA6Drl6eXf0X50qBR9xfofmcqVqUXVBQDA8pQT4aKRgaEY6h9oUjUAAAAAAAAA3UG4CAAA6DpZQj+pO9oXC4UYH64/RuciAIDmSnUuSgXIAQAAAAAAANifcBEAANB1soR+shw8TQWQUodbAQDIV2qfl9q/AQAAAAAAALA/4SIAAKDrpEI/Q339URoYTF4nFUCamBIuAgBoprLORQAAAAAAAAC5Ey4CAAC6TurQ6VhpRRQKheR1Une+L08LFwEANFMqRC5cBAAAAAAAALB4wkUAAEDXyevQ6fhIonNRYh4AAPKV2n+lwuEAAAAAAAAA7E+4CAAA6DrpQ6ejma4znhi3a3oqFqrVzHUBALB00/NzUZmbrTtmfCTbPg8AAAAAAACAhwkXAQAAXWeiMln38aydi8aG64+r1Wqxe3oqc10AACxdOUPXyLHhkSZUAgAAAAAAANBdhIsAAICuU67UD/yMj2QLF2UZNzGdPuQKAMDypbpTRuhcBAAAAAAAALAUwkUAAEBXmVuYjz0zlbpjUh2JHpSlw9HElHARAEAzTEzV704ZETGecZ8HAAAAAAAAwMOEiwAAgK5Snq7ftSgie+ei0cHh6C/21Z8vwx30AQBYvnKiY+SKwaEY7O9vUjUAAAAAAAAA3UO4CAAA6CpZOgmNl0YzXatQKMRYaaT+fJX0HfQBAFi+iUSoeyxD10kAAAAAAAAA9idcBAAAdJXUHe0jIhkYeqRUEGmiku6UBADA8qVC5OPCRQAAAAAAAABLIlwEAAB0ldSh06H+gSj1D2a+XuqQalnnIgCApkiFyLN2pwQAAAAAAABgX8JFAABAV5lIhH3GSyuiUChkvt5YIlw0UUl3SgIAYPlS+67FdKcEAAAAAAAA4GHCRQAAQFdJ39G+flhosePLwkUAAE1RTnSo1LkIAAAAAAAAYGmEiwAAgK4ykTh0mupE9GipcNGu6alYqFYXdU0AABZnem42KvOzdccsNkQOAAAAAAAAwP2EiwAAgK6S6iSUd+eiWtwfMAIAoHEmMnSLXGyIHAAAAAAAAID7CRcBAABdJXXwdLw0uqjrZTmkOlGZXNQ1AQBYnFSAPELnIgAAAAAAAIClEi4CAAC6xtzCfEzOTtcds/jORekwUrmicxEAQCPpXAQAAAAAAADQOMJFAABA18gS8lnsodMVg0MxUOyrO0bnIgCAxkqFi1YMDsVgX3+TqgEAAAAAAADoLsJFAABA18gS8lls56JCoZAMJGW5kz4AAEtXTuy3snSbBAAAAAAAAOCxCRcBAABdI0vIZ7GdiyLSgSThIgCAxkqFyBcbIAcAAAAAAADgYcJFAABA10jd0X64fyBKA4OLvm4qkJSaFwCA5SlXpuo+LlwEAAAAAAAAsHTCRQAAQNdIdRBa6qHT8dLosuYFAGB5Up2LltKdEgAAAAAAAID7CRcBAABdIx0uqh8SOuDzRuofVk0ddgUAYHkaFSIHAAAAAAAAQLgIAADoIo26o/3YcP3n7Z6uxHx1YUnXBgCgvsrcbEzPz9UdI1wEAAAAAAAAsHTCRQAAQNcoV6bqPr7UQ6epzkUREbum688NAMDSlBNdiyKWHiIHAAAAAAAAQLgIAADoIo3qXJQllDQxlT70CgDA4k1kCBeNl0abUAkAAAAAAABAdxIuAgAAusLs/HzsnZ2pO2bJnYsyHFbNcugVAIDFy9a5aKQJlQAAAAAAAAB0J+EiAACgK5SnM9zRfmRpd7QfGRiMgb6++vMnuiYBALA0qRD36OBwDPT1N6kaAAAAAAAAgO4jXAQAAHSFLJ2DxoaXdkf7QqGQ7F40UZla0rUBAKhvIhHiXmp3SgAAAAAAAADuJ1wEAAB0hSzhouUcPE09V+ciAIDGKCf2eWPCRQAAAAAAAADLIlwEAAB0hYmp+uGe0sBgDA8MLvn6qUOrWcJNAAAsXmqfpXMRAAAAAAAAwPIIFwEAAF2hPN3YO9qnOxcJFwEANEIqXKRzEQAAAAAAAMDyCBcBAABdYWKqsXe0Tz1f5yIAgMZIdy4abVIlAAAAAAAAAN1JuAgAAOgK6UOnyw0X1T+0unumEvMLC8uaAwCAfVXmZmNmfq7umPERnYsAAAAAAAAAlkO4CAAA6ArlBt/Rfqw0kq5hWvciAIA8ZekOOTYsXAQAAAAAAACwHMJFAABAV0gdPM0SDqonSzipXJla1hwAAOxrojKZHKNzEQAAAAAAAMDyCBcBAAAdb2Z+LqbmZuqOWW7novFS+tBqlsOvAABkl+pOGRExNry8EDkAAAAAAABArxMuAgAAOl6WQ6dZwkH1lAYGY6ivv+6YVPckAAAWJ7W/Gh0ajoHEHg0AAAAAAACA+oSLAACAjpcl1LPccFGhUIixxDWEiwAA8jUxVX9/tdw9HgAAAAAAAADCRQAAQBfI0rkoFQzKInV4NUsdAABkV55OhYtGm1QJAAAAAAAAQPcSLgIAADpeqmPQyMBgDPUPLHuescThVZ2LAADyldpfjZVGmlQJAAAAAAAAQPcSLgIAADpe6tBpXne0T3UumqhM5jIPAAD3m5iqv7/SuQgAAAAAAABg+YSLAACAjldu0h3tx5LhIp2LAADyUqvVojw9VXdMKvwNAAAAAAAAQJpwEQAA0PFSHYOa1blocmY65hbmc5kLAKDXVeZnY2Z+ru6YVPgbAAAAAAAAgDThIgAAoOOlOgbldUf78ZH0dVJ31wcAIJuJqXRXSJ2LAAAAAAAAAJZPuAgAAOh4qXBRXne0z9IBKcshWAAA0sqJPV6EcBEAAAAAAABAHoSLAACAjjY9PxeVudm6Y/I6dDpWGkmOKVcmc5kLAKDXpQLkERFjw8JFAAAAAAAAAMslXAQAAHS0LHe0z6tzUal/MIb6B+qOmahM5TIXAECvS4WLVg6Vor+vr0nVAAAAAAAAAHQv4SIAAKCjZbmj/fjIaC5zFQqFZBekCZ2LAABykeoImVd3SgAAAAAAAIBeJ1wEAAB0tCydi8aH8zt4muqClKUeAADSUh0hhYsAAAAAAAAA8iFcBAAAdLRUp6CRgaEY7O/Pbb505yLhIgCAPKQ6F6VC3wAAAAAAAABkI1wEAAB0tFSYZ3wk30OnqXCRzkUAAPlI7vOEiwAAAAAAAAByIVwEAAB0tImp5h46HS+N1n1c5yIAgOWr1WrJ0LZwEQAAAAAAAEA+hIsAAICOVp6uf+h0bDjfQ6djpZG6j0/OTsfswnyucwIA9JrK3GzMJPZUY8JFAAAAAAAAALkQLgIAADpaqlPQ+EhzOxdFROyqTOU6JwBAr8nSDTLLvgwAAAAAAACANOEiAACgo5WnEuGinA+djme4Q/5EZTLXOQEAek05U7hI5yIAAAAAAACAPAgXAQAAHWt6bjYq87N1x+R96HQsU7gofRgWAIADy7KfWj080oRKAAAAAAAAALqfcBEAANCxshw6zRIGWozSwGAM9w/UHSNcBACwPKlOkKuGStHf19ekagAAAAAAAAC6m3ARAADQscoZQjx5dy7Kcs0sdQEAcGCpsHYj9ngAAAAAAAAAvUq4CAAA6Fit6FwUETFeGq37uM5FAADLkwprN2KPBwAAAAAAANCrhIsAAICOlQrxjA4Ox2Bff+7zpg6zTlQmc58TAKCX6FwEAAAAAAAA0DzCRQAAQMdq1R3tU4dZdS4CAFie1H5qLNFJEgAAAAAAAIDshIsAAICOleoQ1Kg72qdCS6nQEwAAB1ar1ZL7qfERnYsAAAAAAAAA8iJcBAAAdKzUHe0bFS5KXXfv7EzMzs83ZG4AgG43NTcbswv191Jjw8JFAAAAAAAAAHkRLgIAADpW6o72qQ5DSzU+MpocMzGtexEAwFKkulNGNC5EDgAAAAAAANCLhIsAAICO1arORWPDI8kxE1PpQ7EAAOwvFSCPiBgfES4CAAAAAAAAyItwEQAA0JEqc7MxPT9Xd0yjwkVZrluenmrI3AAA3S4VIC9ExOoMYW8AAAAAAAAAshEuAgAAOlLq0GlExFhptCFzDw8MRmlgsO4YnYsAAJYmtc9bOVyK/mJfk6oBAAAAAAAA6H7CRQAAQEcqZwgXNapzUZZrZ6kPAID9pfZR4w0KkAMAAAAAAAD0KuEiAACgI01U0p2BxkojDZt/LBEuytJZCQCA/aX2UWPDjdvjAQAAAAAAAPQi4SIAAKAjpQ6djg4Nx0Bff8PmT3UuEi4CAFiaVIh8fETnIgAAAAAAAIA8CRcBAAAdqZwI76TCP8s1Xqp/qDVVHwAAj21iqrX7PAAAAAAAAIBeI1wEAAB0pFRnoLHhxh46HSuN1H08dcd9AAD2V6vVojyd2OcJFwEAAAAAAADkSrgIAADoSKlw0fhIazsXTc3Nxsz8XENrAADoNnvnZmJuYaHuGJ2LAAAAAAAAAPIlXAQAAHSkian6nYFS4Z/lynKotZwIQAEAsK/yVHr/JFwEAAAAAAAAkC/hIgAAoOPUarUoT0/VHdPoQ6dZrp/qrgQAwL4mprOEixobIgcAAAAAAADoNcJFAABAx6nMz8bM/FzdMWMNDhdlub5wEQDA4kwkOhcVImL18EhzigEAAAAAAADoEcJFAABAx0kdOo1ofOeiof6BGBkYrDumLFwEALAo5cpk3cdXDY9EX9GPtQEAAAAAAADy5LewAABAx8kS2ml0uOj+OUbrPq5zEQDA4kxUpuo+3ow9HgAAAAAAAECvES4CAAA6TpbQzthw4w+ejiUOt04k7rwPAMC+Uvun1P4LAAAAAAAAgMUTLgIAADpOKly0cqgU/X19Da8jded8nYsAABYn1aFS5yIAAAAAAACA/AkXAQAAHaecuKN9sw6dpuZJHY4FAGBfqXC2cBEAAAAAAABA/oSLAACAjjNRmar7eLMOnY7pXAQAkJtarZYMZ6f2XwAAAAAAAAAsnnARAADQcVKdi5p16HR8ZLTu45W52Ziem21KLQAAnW7v7EzMVRfqjhkv1d9/AQAAAAAAALB4wkUAAEDHSXUEalrnouGR5BjdiwAAsplIBMgjmrfPAwAAAAAAAOglwkUAAEBHqdVqbRMuSnUuiogoT081oRIAgM5XzhDKblaHSgAAAAAAAIBeIlwEAAB0lMrcbMwuzNcdM1ZKh37yMD6cPtw6MZW+Az8AAOmOj4WIWJ2hcyQAAAAAAAAAiyNcBAAAdJTUodOI5nUuGuzvjxWDQ3XHZKkXAID0vmn18Ej0Ff1IGwAAAAAAACBvfhMLAAB0lIlKuhNQs8JFERFjibnKwkUAAJmk9k3N6k4JAAAAAAAA0GuEiwAAgI6SpRPQ6tJIEyq5XyrIpHMRAEA2qX3TeBP3eAAAAAAAAAC9RLgIAADoKKk72q8aKkV/sa9J1USMJ+6gr3MRAEA2qXCRzkUAAAAAAAAAjSFcBAAAdJT0He3rdxLK21jiDvoTlckmVQIA0NlSoexm7/MAAAAAAAAAeoVwEQAA0FHSd7Rv7qHTdOeiqSZVAgDQuWq1WtuFyAEAAAAAAAB6hXARAADQUZJ3tB+pH/bJW+qQa2V+Nipzs02qBgCgM03OTsd8daHumGaHyAEAAAAAAAB6hXARAADQUZKdi4ab3bkoPV8qEAUA0Ouy7JfGR4SLAAAAAAAAABpBuAgAAOgYtVotJiqTdcc0+9BpljvopwJRAAC9Lst+abzJIXIAAAAAAACAXiFcBAAAdIy9czMxt7BQd0yWTkJ5yhIu0rkIAKC+VLioUCjEquGRJlUDAAAAAAAA0FuEiwAAgI6RJaTT7HDRYF9/jA4O1x2jcxEAQH2p7pSrh0eir+jH2QAAAAAAAACN4LexAABAx8gS0snSSShvqUBT6rAsAECvK1em6j4+Ntz8PR4AAAAAAABArxAuAgAAOsbEVP1wUSHuv6t9s6UCTToXAQDUlwpjN7s7JQAAAAAAAEAvES4CAAA6Rjlx6HTV8Ej0F/uaVM3DUoddy8JFAAB1pULk4yPCRQAAAAAAAACNIlwEAAB0jInKVN3HUx2EGkXnIgCA5SlPJ8JFOhcBAAAAAAAANIxwEQAA0DEmEp2LWnXodLw0WvfxicreqNVqTaoGAKCz1Gq1ZBi7VSFyAAAAAAAAgF4gXAQAAHSMcuLQaevCRSN1H5+Zn4vK/GyTqgEA6Cx7ZqZjoVqtO0bnIgAAAAAAAIDGES4CAAA6RuqO9q06dDqW6FwUEVGuTDWhEgCAzlOerr/Hi0h3igQAAAAAAABg6YSLAACAjlCr1ZKdi8Za1bloJD3vRGWyCZUAAHSeial0uKhV+zwAAAAAAACAXiBcBAAAdIS9szMxV12oO6ZVd7QfGx5JjslyaBYAoBelQtiFQiFWD5WaVA0AAAAAAABA7xEuAgAAOkKWzj/jLbqj/UBff4wODdcdM5HougQA0KvK04nulMMjUSz6UTYAAAAAAABAo/iNLAAA0BHKGcI5rQoXZZk7S/0AAL0o1eFxrIV7PAAAAAAAAIBeIFwEAAB0hFTnn0JErBoeaU4xj2G8NFr3cZ2LAAAeWyqE3coAOQAAAAAAAEAvEC4CAAA6Qiqcs3p4JPqKrfuIM1aqH2wqVyabVAkAQGdJ7fOEiwAAAAAAAAAaS7gIAADoCKlDp2OJzkGNpnMRAMDSpDoXjQkXAQAAAAAAADSUcBEAANARUodOxxOdgxotdUf9cmVv1Gq1JlUDANAZqrVaTEyn9nmtDZEDAAAAAAAAdDvhIgAAoCO0f+ei+uGimYX5qMzNNqkaAIDOMDlTiYVqte6Y1D4LAAAAAAAAgOURLgIAADrCRGWy7uOtPnQ6lmH+VEAKAKDXpLpTRrR+nwcAAAAAAADQ7YSLAACAtler1aJcmao7ZnyktYdOsxx6zXJ4FgCgl2QJX2cJcQMAAAAAAACwdMJFAABA25ucnY756kLdMWPDLe5clGF+nYsAAPaV2h8VC4VYNVRqUjUAAAAAAAAAvUm4CAAAaHtZQjmt7lzU39eXPPg6UZlsUjUAAJ0h1dlxbHhFFIt+jA0AAAAAAADQSH4rCwAAtL2JqQzhotJoEyqpb6xUP+CkcxEAwL5S+6Ox0kiTKgEAAAAAAADoXcJFAABA2ytP1z90WigUYnWia1AzjCfCRak78wMA9JpUuKgdAuQAAAAAAAAA3U64CAAAaHsTlcm6j68eHolisfUfb1LhIp2LAAD2lQpfpzpDAgAAAAAAALB8rT99BwAAkDAxlbqjfXscOh1L3FlfuAgAYF+pEHm77PMAAAAAAAAAuplwEQAA0PZSd7Rvl0On46WRuo9PVCajVqs1qRoAgPZWrdWiXJmqO6Zd9nkAAAAAAAAA3Uy4CAAAaHupjj9jbXLoNNW5aG5hIabmZptUDQBAe5ucqcRCrVp3TLvs8wAAAAAAAAC6mXARAADQ9jqnc1G6jonKZBMqAQBof6kAeUT77PMAAAAAAAAAuplwEQAA0NZqtVpMTKfCRfU7BjXL+EiWcFH6EC0AQC8QLgIAAAAAAABoD8JFAABAW9szMx0L1WrdMe1y6HT18EgUEmMmpoSLAAAi0h0di4VCrBweaVI1AAAAAAAAAL1LuAgAAGhr5cSh04iIsTYJF/UX+2LlcKnumHKiCxMAQK8oV6bqPj5WWhHFQiq6DQAAAAAAAMByCRcBAABtbaKSDuO0S+eiiIjx0mjdx3UuAgC4X6pz0dhw++zxAAAAAAAAALqZcBEAANDWUuGiYqEQq4bqdwtqprHhkbqPpw7RAgD0itQ+b3xEuAgAAAAAAACgGYSLAACAtlZOHDodG14RxWL7fLQZH6nfuag8rXMRAEBEep/XTt0pAQAAAAAAALpZ+5zAAwAAeAypO9qPlep3Cmq21CHYiSnhIgCAiAz7vGHhIgAAAAAAAIBmEC4CAADaWurQ6XipfqegZkuFi8qVvVGr1ZpUDQBAe6rWarGrMlV3zPiIcBEAAAAAAABAMwgXAQAAbW2iMln38bFEmKfZUvXMVRdi7+xMk6oBAGhPe2YqsVCr1h3TbiFyAAAAAAAAgG4lXAQAALS1crJzUXuFi7LUk/qeAAC6Xao7ZUT7hcgBAAAAAAAAupVwEQAA0LaqtVqUK1N1x7RfuCh9h/1UNyYAgG43MZXeD7XbPg8AAAAAAACgWwkXAQAAbWvPTCUWatW6Y9rtjvarh0eikBiT5U79AADdrDxdfz/UVyjGyqFSk6oBAAAAAAAA6G3CRQAAQNsqZwjhjI+kOwU1U1+xGKuGR+qOES4CAHrdxFT9/dDq0kgUC6nINgAAAAAAAAB5EC4CAADaVpYQzngiyNMK44luSllCUwAA3Sy1z0vtpwAAAAAAAADIj3ARAADQtiYqk3UfLxYKsbIDw0U6FwEAvS4Vth4vtVd3SgAAAAAAAIBuJlwEAAC0rYmp+odOx0orolgoNKma7MYSh2GFiwCAXqdzEQAAAAAAAED7EC4CAADaVnm6Mw+djpfqd1NKdWQCAOh2qc5FY226zwMAAAAAAADoRsJFAABA20rd0b5dD52OJzoXlStTUavVmlQNAEB7qVarHRsiBwAAAAAAAOhGwkUAAEDbmpjqzEOnqdDTfHUhJmenm1QNAEB72TNTiWoiaN2u+zwAAAAAAACAbiRcBAAAtK1yonNRqkNQq4yPpA/DproyAQB0qyz7oHbtUAkAAAAAAADQjYSLAACAtlSt1aI8Xf/g6VhppEnVLM74cIZwUaIrEwBAt8oSLtK5CAAAAAAAAKB5hIsAAIC2tGd6Kqq1Wt0x7dq5aNXwSBQKhbpjUsEpAIBulepO2VcsxuhQqUnVAAAAAAAAACBcBAAAtKVOvqN9X7EYq4frd1WaqEw2qRoAgPaS2ueNDY9EMRHUBgAAAAAAACA/wkUAAEBb6uRwUUTE2HD92iamdC4CAHpTKmTdrt0pAQAAAAAAALqVcBEAANCWyolwUV+hGKNDpSZVs3ip4FPq+wMA6FblylTdx9s5QA4AAAAAAADQjYSLAACAtpTqXDRWGoliodCkahZvfCTRuUi4CADoUanORWPCRQAAAAAAAABNJVwEAAC0pdSh0/HSaJMqWRqdiwAAHlsqZK1zEQAAAAAAAEBzCRcBAABtqVyZqvt4ux86Td1xf2J6b9RqtSZVAwDQHqrVapSn6+/zdC4CAAAAAAAAaC7hIgAAoC2lOhe1+6HTVPhpoVqNPTPTTaoGAKA97J6pJAPW7R4iBwAAAAAAAOg2wkUAAEBbmqjsrft4ux86HS+NJseUEwEqAIBuk9rjRbT/Pg8AAAAAAACg2wgXAQAAbadarUZ5eqrumE7vXBSR7XAtAEA3SXWnjIgYyxDSBgAAAAAAACA/wkUAAEDb2T1TiVqtVndMu9/RftVQKQqFQt0xwkUAQK8pV+oHyPuKxVg5NNykagAAAAAAAACIEC4CAADaUJbQTbuHi4rFYowNj9QdUxYuAgB6TKpz0fjwimRAGwAAAAAAAIB8CRcBAABtJ3XoNCJirDTahEqWJxWA0rkIAOg1qf3PWJsHyAEAAAAAAAC6kXARAADQdsqVqbqP9xWLsXJouEnVLN14IgAlXAQA9JpU58bxEeEiAAAAAAAAgGYTLgIAANpOqnPR+PCKKBQKTapm6cZKI3Ufz9KhCQCgmyQ7Fw0LFwEAAAAAAAA0m3ARAADQdpKHTkudceg01bkoded+AIBuk9rn6VwEAAAAAAAA0HzCRQAAQNuZmOqOQ6fjiRBUuTIV1VqtSdUAALRWtVqNXdNTdcekwtkAAAAAAAAA5E+4CAAAaDvl6US4qEMOnaY6LC3UqrFnptKkagAAWmvXTCVqiWD12HBnhMgBAAAAAAAAuolwEQAA0HYmKvXDRWOlkSZVsjypzkUR6e8VAKBbTFQmk2M6pUMlAAAAAAAAQDcRLgIAANrKQrUau6an6o7plM5FWcJFZeEiAKBHTEyl9z1Z9k8AAAAAAAAA5Eu4CAAAaCu7p6eiVqvVHdMph05XDo9EsVCoOybLHfwBALpBebp+uKi/2Bejg8NNqgYAAAAAAACABwkXAQAAbWUiceg0ImKsQ8JFxUIhWWuWO/gDAHSD1L5nrDQShUQwGwAAAAAAAID8CRcBAABtJUvYplM6F0VEjA0nwkUV4SIAoDek9j3jpdEmVQIAAAAAAADAIwkXAQAAbaWcOHTaX+yL0cHhJlWzfOMj9cNF5QydmgAAukFqn9dJAXIAAAAAAACAbiJcBAAAtJX0He1XRKFQaFI1y5c6JJulUxMAQDdI7fPGhIsAAAAAAAAAWkK4CAAAaCvdduh0bDjRuSjx/QIAdItyZbLu4zoXAQAAAAAAALSGcBEAANBWuu3Q6fhIIlw0vTeqtVqTqgEAaI2FajV2zVTqjum0fR4AAAAAAABAtxAuAgAA2kqqc1GnHTodL43Wfbxaq8We6akmVQMA0Bq7p6eilghUd1qHSgAAAAAAAIBuIVwEAAC0lXLXhYvS9aYCVQAAnS7LfqfT9nkAAAAAAAAA3UK4CAAAaBsL1WrsSnTx6bQ72mepV7gIAOh22cJF9Ts+AgAAAAAAANAYwkUAAEDb2DU9FbXEmE67o/3KoVL0Fep/9Ep1awIA6HSp/c5AsS9WDA41qRoAAAAAAAAAHkm4CAAAaBsTlcnkmE67o32xUIix0kjdMToXAQDdLrXPGyutiEKh0KRqAAAAAAAAAHgk4SIAAKBtlCtTyTFjHda5KCIdiMoSqgIA6GSpMHWndacEAAAAAAAA6CbCRQAAQNtIhWwGin2xYnCoSdXkJxWI0rkIAOh25cR+pxMD5AAAAAAAAADdQrgIAABoG6mQzVhpRRQKhSZVk5/UnfhTh20BADqdzkUAAAAAAAAA7Uu4CAAAaBupkM34SGceOk0dltW5CADodsJFAAAAAAAAAO1LuAgAAGgbyc5Fw5156HQs1bloeiqq1WqTqgEAaK6FajV2T0/VHTNWGm1SNQAAAAAAAAA8mnARAADQNtJ3tO/MQ6epO/HXarXYNVNpUjUAAM21a3oqaokx46WRptQCAAAAAAAAwP6EiwAAgLYxUZms+/j4SGd2LkqFiyIiyolgFQBAp0rt8SI6N0QOAAAAAAAA0A2EiwAAgLYwX12IPdP1u/dkCem0o7EMh2WzHLoFAOhE5cpUcsxYh4bIAQAAAAAAALqBcBEAANAWdk1PRS0xZqxDw0Urh4ajr1j/49eEzkUAQJdKhagHin2xYmCoSdUAAAAAAAAA8GjCRQAAQFuYmEqHazq1c1GhUIjx4fq1Z/n+AQA6USpEPVZaEYVCoUnVAAAAAAAAAPBowkUAAEBbyNK5Z7w02oRKGiPVdak8LVwEAHSncmKfNz7SmQFyAAAAAAAAgG4hXAQAALSFVLhmoK8vRgYGm1RN/lKHZnUuAgC6VbJzUaLDIwAAAAAAAACNJVwEAAC0hVS4Zrw0GoVCoUnV5C91aDZL5yYAgE6U2ud0cndKAAAAAAAAgG4gXAQAALSFcmWy7uPjpc6+o32qc1GqcxMAQKeaSO3zEvskAAAAAAAAABpLuAgAAGgL6Tvad/ah09Qd+XdNT8VCtdqkagAAmmO+uhB7pit1x6Q6PAIAAAAAAADQWMJFAABAWygnwkVjHR8uql9/rVaL3dNTTaoGAKA5dk1PRS0xRuciAAAAAAAAgNYSLgIAANpCt3cuyhKOSr0GAACdZmIqvb/p9H0eAAAAAAAAQKcTLgIAAFpufmEhds9U6o4ZL402qZrGyHJoVrgIAOg25eks4aLO3ucBAAAAAAAAdDrhIgAAoOV2TU8lx3T6He1HB4ejv9hXd0xZuAgA6DKp8PRAX1+MDAw2qRoAAAAAAAAAHotwEQAA0HJZOvaMdXi4qFAoJANSE5XJJlUDANAcE1P193njpdEoFApNqgYAAAAAAACAxyJcBAAAtFyWUE2ndy6KSAeksoSsAAA6SXk6FS7q/D0eAAAAAAAAQKcTLgIAgP+fvTuPmrQs78R/1btWVb/dXQVBAVHRAAoRjIobI9ER1GNcMDGoIUePqBgdJ5txhgQ0GnPiEpfojBPHoOhocBlyhtFxcAGMGo6I65EoGkBBhREOtlXd/VJV71q/P/xB2Pq5n3676qnl+XzO6T/0uei63qo+1t1yfe+LkUuFahZn56I2v1BQN8OTGp5tCxcBAFOm1ckOkU/6dkoAAAAAAACAaSBcBAAAjFwqVNOobYtKpVJQN8OTChfZXAQATJvUOc/mIgAAAAAAAIDREy4CAABGLhWqmZahU+EiAKBsWr1ynPMAAAAAAAAAJplwEQAAMHKpUE2jtlRQJ8PVSAzP7ul1YmNzs6BuAACGa31zI/b0upk1qfMRAAAAAAAAAMMnXAQAAIxc2+aiiIjoR8TuXqeYZgAAhmx3N32umZZzHgAAAAAAAMAkEy4CAABGLr25aDqGTps5NjC1ussFdAIAMHypM15EvvMRAAAAAAAAAMMlXAQAAIzU2sZ67F3pZtZMy432jXr658gzhAsAMAnynGumJUQOAAAAAAAAMMmEiwAAgJFq9zrJmmaOUM4k2Da/GPMzs5k1wkUAwLRoJzYyLszORX1+oaBuAAAAAAAAANgX4SIAAGCk2jnCNM3aUgGdDF+lUknezp/n/QAAmASp0HSzti0qlUpB3QAAAAAAAACwL8JFAADASOXZ1NOo1QvopBipLUw2FwEA0yIVmm4mQtcAAAAAAAAAFEO4CAAAGKlWJ3vodHFuPmpzCwV1M3yNaiJc1FkuqBMAgOFKhaZTGx0BAAAAAAAAKIZwEQAAMFKtbnaYplnbFpVKpaBuhq9ZW8p83u51CuoEAGC4UuEim4sAAAAAAAAAxoNwEQAAMFLtXrlutG/WE5uLEmErAIBJ0U5uLsoOXQMAAAAAAABQDOEiAABgpFqdct1on/p59vS6sb65UVA3AADDsb6xEXtWupk103bOAwAAAAAAAJhUwkUAAMBIpW60n7ah0zybmHZ3OwV0AgAwPKntlBHTd84DAAAAAAAAmFTCRQAAwEi1kuGipYI6KUaeIdrUewIAMO7aOcLSeULXAAAAAAAAAAyfcBEAADAyaxvrsbzay6xp1OoFdVOMPGEp4SIAYNK1usvJGpuLAAAAAAAAAMaDcBEAADAyeW60n7bNRfX5hViYncusaecYxgUAGGepsPTi7FzU5hcK6gYAAAAAAACALMJFAADAyJTxRvtKpRKNxM9kcxEAMOnaifNMo7YtKpVKQd0AAAAAAAAAkEW4CAAAGJnU0GlEJIM4kygVmMrzvgAAjLNUWHraAuQAAAAAAAAAk0y4CAAAGJnU0Gl1bj5q8wsFdVOc1DCtzUUAwKRLnWcataWCOgEAAAAAAAAgRbgIAAAYmbLeaC9cBABMu1Z3OfP5tJ7zAAAAAAAAACaRcBEAADAy6XDRdN5o3xAuAgCmXLvbyXzerAsXAQAAAAAAAIwL4SIAAGBk2okQTaNWL6iTYqVCU3tXurG+sVFQNwAAg7W2sR57V7qZNY2qcBEAAAAAAADAuBAuAgAARqasm4uaic1FERHtnu1FAMBkaveytxZF2FwEAAAAAAAAME6EiwAAgJFpdZcznzdyhHAmUZ6fKxW8AgAYV6ntlBHTGyIHAAAAAAAAmETCRQAAwEisrq/HbasrmTV5NvxMojw/l3ARADCp8pxjGrV6AZ0AAAAAAAAAkIdwEQAAMBLtXp4b7aczXFSbX4jF2bnMmjw3/gMAjKNWJ/scszg3H7W5hYK6AQAAAAAAACBFuAgAABiJfDfaT2e4qFKpJH82m4sAgEmVCpE3a9uiUqkU1A0AAAAAAAAAKcJFAADASOQJz0zr5qKI9M/W6i4X1AkAwGClzjHTGiAHAAAAAAAAmFTCRQAAwEi0E+Gi2vxCVOcXCuqmeI3aUubzVsfmIgBgMqXOMdMcIAcAAAAAAACYRMJFAADASJT9RvvUUG27J1wEAEym1DlGuAgAAAAAAABgvAgXAQAAI1H2G+2b9eyfr5XY7AQAMK5S55hpD5EDAAAAAAAATBrhIgAAYCRSQ6fTHi5qVLN/vuWVXqxtrBfUDQDAYKxtrMfySi+zZtrPeQAAAAAAAACTRrgIAAAYiXYvFS5aKqiT0UhtLoqIaPc6BXQCADA47W76/DLt5zwAAAAAAACASSNcBAAAjESrkx0uatTqBXUyGnmGalPvEQDAuEltp4yIaNhcBAAAAAAAADBWhIsAAIDCrayvRWdtJbNm2m+0b+YYqm13lwvoBABgcPKcX/KcgwAAAAAAAAAojnARAABQuHaOG+2nfei0Nr8Qi3PzmTV5bv4HABgnqfNLdW4+avMLBXUDAAAAAAAAQB7CRQAAQOHyhGYaUx4uikgHqISLAIBJkzq/THuAHAAAAAAAAGASCRcBAACFy7O5SLgo3/sEADBOUueXMpzxAAAAAAAAACaNcBEAAFC41I329fmFqM7NF9TN6NhcBABMG5uLAAAAAAAAACaPcBEAAFC41I32zdpSQZ2MVurmfuEiAGDSOOcBAAAAAAAATB7hIgAAoHCp0EyjVi+ok9FKDdemhnMBAMZN+pxncxEAAAAAAADAuBEuAgAACtfqLmc+L8uN9s3EcO3yai9WN9YL6gYA4MCsbqzH8movsyZ1/gEAAAAAAACgeMJFAABA4VI32pdl6DTPz2l7EQAwKXZ3O8maspzzAAAAAAAAACaJcBEAAFC4VGCmUZKh0zw/ZyqIBQAwLlLbKSPKc84DAAAAAAAAmCTCRQAAQKF662vRWVvNrCnLjfZ5hmttLgIAJkWeULRwEQAAAAAAAMD4ES4CAAAKlScsU5ah09r8QtTmFjJrbC4CACZF6txSm1uI2nz22QcAAAAAAACA4gkXAQAAhcoTlmnWlwroZDw0avXM563uckGdAAAcmFSIPHXuAQAAAAAAAGA0hIsAAIBC5dlc1KyWY3NRRESzlh2kanVsLgIAJkMqRJ469wAAAAAAAAAwGsJFAABAoVKbeOrzi7EwN1dQN6PXqGUHqdo94SIAYDKkznmpcw8AAAAAAAAAoyFcBAAAFCp5o329XEOnqZ839X4BAIyLdreT+bxs5zwAAAAAAACASSFcBAAAFKqdCheV7Eb7RjURLuoIFwEAkyG5uShx7gEAAAAAAABgNISLAACAQqU28ZRt6DQVpuqsrcTq+npB3QAAbM3q+nrctrqSWVO2EDkAAAAAAADApBAuAgAACpUKFzXr5Ro6bdaXkjWtnu1FAMB4a+c4r+Q59wAAAAAAAABQPOEiAACgUO1OIlxUK9fQaZ4b/Fud5QI6AQDYulSAPCKiUa0X0AkAAAAAAAAA+0u4CAAAKExvbTW666uZNXnCNtOkkePnbecY1gUAGKU84aKynfMAAAAAAAAAJoVwEQAAUJhcN9qXbOi0OjcftfmFzJo87xsAwCilwtC1+YWoJs48AAAAAAAAAIyGcBEAAFCYPBt4ynijfepntrkIABh3re5y5vOyBcgBAAAAAAAAJolwEQAAUBibi+5dKlxkcxEAMO5anezzShkD5AAAAAAAAACTQrgIAAAoTCoks21hMRZm5wrqZnykAlWpTQAAAKOWOucJFwEAAAAAAACML+EiAACgMO3k0OlSQZ2Ml9TP3e52CuoEAGBr2r3sc14Zt1MCAAAAAAAATArhIgAAoDCpDTxlvdE+9XPbXAQAjLtWx+YiAAAAAAAAgEklXAQAABQmtYGnrEOnqZ+7s7YavfW1groBANg/q+vr0Vlbyawp64ZKAAAAAAAAgEkgXAQAABQmtYGnUdJwUZ6fu93N3gYAADAqrV76nFLWEDkAAAAAAADAJBAuAgAACtNKBGTKOnSa5+cWLgIAxlWrkx0gjyhviBwAAAAAAABgEggXAQAAheiurUZvfS2zpqzhojzDtqlgFgDAqOQJQQsXAQAAAAAAAIwv4SIAAKAQ+YZOlwroZPwszs1HfX4xs6bVTW8EAAAYhVQIuj6/ENW5+YK6AQAAAAAAAGB/CRcBAACFyLN5p6ybiyLSP7vNRQDAuEqFyG0tAgAAAAAAABhvwkUAAEAh8mzeadTqBXQynlJDt3k2PwEAjEIqBF3mADkAAAAAAADAJBAuAgAACpEaOl1arMb87FxB3Ywfm4sAgEmVDhctFdQJAAAAAAAAAFshXAQAABQitXmnWS33jfbCRQDApEqd81IbGgEAAAAAAAAYLeEiAACgEKlwTNmHTlM/f2poFwBgVFrd5cznqRA1AAAAAAAAAKMlXAQAABQiFS5q1ss9dNqsL2U+766tRm9ttaBuAADyWVlfi07ijCJcBAAAAAAAADDehIsAAIBCpDbvNGvZ4Zppl2foNhXQAgAoWp7timXfUAkAAAAAAAAw7oSLAACAoev3+8lgTKNa7qHTPEO3eYZ3AQCKlCf8bHMRAAAAAAAAwHgTLgIAAIauu74aK+trmTXNermHTps5wlU2FwEA4ybP+cTmIgAAAAAAAIDxJlwEAAAMXavjRvuUhbm52LawmFkjXAQAjJvUZsX6/GIszs0X1A0AAAAAAAAAWyFcBAAADF27J1yUR7O2lPk8NbwLAFC0VPjZGQ8AAAAAAABg/AkXAQAAQ5dnc1GjavC0UatnPm91lwvqBAAgn9T5pCFcBAAAAAAAADD2hIsAAIChS91ov32xFnOzswV1M77Sm4s6BXUCAJBParOizUUAAAAAAAAA40+4CAAAGLp24kZ7Q6e/lHofbC4CAMZNKkTunAcAAAAAAAAw/oSLAACAoWslNu40DJ1GRJ5wUfbwLgBA0VLnE+c8AAAAAAAAgPEnXAQAAAydzUX5pIZve+tr0V1bLagbAIBsec4mzfpSQd0AAAAAAAAAsFXCRQAAwNClbrQXLvqlPO9D2/YiAGBM5DmXNKr1AjoBAAAAAAAA4EAIFwEAAEPV7/eTg6fCRb/UrKVv9k8FtQAAipLnXGJzEQAAAAAAAMD4Ey4CAACGqru2Gisb65k1DeGiiIho1NI3+7e6ywV0AgCQ1uqkzyXNqnMeAAAAAAAAwLgTLgIAAIYq1432OTb2lMH87FwsLVQza2wuAgDGRbuXfS6pzy/GwtxcQd0AAAAAAAAAsFXCRQAAwFDl2bTTtLnoDqn3oi1cBACMiVTouVl3xgMAAAAAAACYBMJFAADAULW7nWTNzlq9gE4mQyMRLrK5CAAYF61OIlwkQA4AAAAAAAAwEYSLAACAoUptLtqxWIu5mdmCuhl/qSFc4SIAYFy0e6lw0VJBnQAAAAAAAABwIISLAACAoUqFYdxof1epzUVt4SIAYEykznkN2ykBAAAAAAAAJoJwEQAAMFTpoVPhojtL3fDf6t4W/X6/oG4AAPat3bG5CAAAAAAAAGAaCBcBAABDldq0Y3PRXTXr2e/HyvpadNdXC+oGAODe9dZWk2cS5zwAAAAAAACAySBcBAAADFV6c5Eb7e+sUU0P4bYSWwIAAIYtdcaLsKESAAAAAAAAYFIIFwEAAEPT7/ej1V3OrElt6imbPO9HuydcBACMVmo7ZYTNRQAAAAAAAACTQrgIAAAYms7aaqxtbGTWGDq9q0a1nqyxuQgAGDWbiwAAAAAAAACmh3ARAAAwNKmtRRERjaqh0zubn52L7Yu1zJo8w7wAAMOUOo9sW1iMhdm5groBAAAAAAAA4EAIFwEAAEOTJwTTrAsX3V2jlr29qJ0jtAUAMEztxDmvWVsqqBMAAAAAAAAADpRwEQAAMDStTvbQaSUidlazgzRllBrGbXU7BXUCAHDvUiHyZk2AHAAAAAAAAGBSCBcBAABD0+5lD53uqNZjbma2oG4mR2oY1+YiAGDUUpuLGsJFAAAAAAAAABNDuAgAABia1OYiQ6f3LhUuSm0KAAAYtlYi7GxzEQAAAAAAAMDkEC4CAACGxtDp1qRCV63ubdHv9wvqBgDgnlJhZ+c8AAAAAAAAgMkhXAQAAAxN29DplqTel9WN9eiurRbUDQDAXXXXVqO3vpZZ45wHAAAAAAAAMDmEiwAAgKFJ3Wif2tBTVs3aUrIm9d4CAAxLKkAe4ZwHAAAAAAAAMEmEiwAAgKHo9/s2F21Rnvel1V0uoBMAgHvKE3LOE5YGAAAAAAAAYDwIFwEAAENx2+pKrG1uZNYYOr13O6v1ZI3NRQDAqOTbXJQ+zwAAAAAAAAAwHoSLAACAocgzdGpz0b2bm52NHYu1zJo87y8AwDCkQs5LC9WYn50rqBsAAAAAAAAADpRwEQAAMBSt7nKypiFctE+p4JXNRQDAqKTOeQLkAAAAAAAAAJNFuAgAABiKVPilEhE7q/VimplAqeCVcBEAMCqpDYoC5AAAAAAAAACTRbgIAAAYilT4ZWe1HrMz/kqyL6kb/1NDvQAAw5I659lcBAAAAAAAADBZTPIBAABDkb7RfqmgTiZT6v2xuQgAGJXUOcTmIgAAAAAAAIDJIlwEAAAMRfpG+3pBnUymZj17KLfVXY5+v19QNwAA/yYVIm8KkQMAAAAAAABMFOEiAABgKNI32hs6zdKoZoeL1jY24ra1lYK6AQD4pe7aavTW1zJrhMgBAAAAAAAAJotwEQAAMBSt7nLm82YtOzxTdnnen9TWAACAQUsFyCOEyAEAAAAAAAAmjXARAAAwcP1+P9rdTmaNcFG2Zj39/uQZ7gUAGKRUgDwi3zkGAAAAAAAAgPEhXAQAAAzc8mov1jc3MmsawkWZdlbrUUnUtDrCRQBAsfJsTmxU6wV0AgAAAAAAAMCgCBcBAAADl2ejjhvts83NzMb2ai2zpp1jcwAAwCClznlLi9WYn50rqBsAAAAAAAAABkG4CAAAGLg8N9o3a0sFdDLZUu9Rq9spqBMAgF9KbU5s2k4JAAAAAAAAMHGEiwAAgIFL3WhfqVRi52L2Vh7Sw7ktm4sAgIK1e6lwkQA5AAAAAAAAwKQRLgIAAAYuFXrZWa3HzIy/jqSkwkV5NkQBAAxSKkTeqNUL6gQAAAAAAACAQTHNBwAADFyrk7rRPjs0wy81kpuLhIsAgGK1OtkhcpuLAAAAAAAAACaPcBEAADBw7Z5w0SDk2VzU7/cL6gYAKLt+vx/tXiezxjkPAAAAAAAAYPIIFwEAAAOX2lyU2sjDL6Vu/l/b3IjbVlcK6gYAKLvu+mqsrK9l1jjnAQAAAAAAAEwe4SIAAGDg2l2biwYhz/vU6i4X0AkAQDpAHuGcBwAAAAAAADCJhIsAAICB6vf70eqlwkXZG3n4pTw3/7cSQS4AgEFpJ854EcJFAAAAAAAAAJNIuAgAABiovSu92NjczKxp1OoFdTPZdlbrUUnUpLZEAQAMSp7NRY2qcBEAAAAAAADApBEuAgAABqrdXU7W2FyUz+zMTOysZgexbC4CAIqSOndsX6zF3OxsQd0AAAAAAAAAMCjCRQAAwEDlCbs0a260z6uReK+EiwCAoqRC5M54AAAAAAAAAJNJuAgAABioVNhlplKJHYu1grqZfKkh3VaOTVEAAIPQ6nYyn6dC0QAAAAAAAACMJ+EiAABgoNqJcNHOaj1mZvxVJK9GbSnzeTsx5AsAMCg2FwEAAAAAAABMJxN9AADAQKU2Fxk63T82FwEA48I5DwAAAAAAAGA6CRcBAAADlR46zd7Ew12lhnTb3U70+/2CugEAyqrf7yc3VAoXAQAAAAAAAEwm4SIAAGCgUkOnDUOn+yX1fq1vbsTyaq+gbgCAsuqurcbKxnpmjXMeAAAAAAAAwGQSLgIAAAaq1V3OfO5G+/3TrKffr9S2KACAA5XnvGFDJQAAAAAAAMBkEi4CAAAGZrPfj3a3k1kjXLR/8gzptjrCRQDAcKW2U0Y45wEAAAAAAABMKuEiAABgYPaudGOjv5lZ0zB0ul92LtaiUqlk1qS2RQEAHKg8m4t2VusFdAIAAAAAAADAoAkXAQAAA+NG+8GbmZlJDuq2ezYXAQDDlQoz71isxdzsbEHdAAAAAAAAADBIwkUAAMDA5LnRXrho/6Xes1ZHuAgAGK5UiNwZDwAAAAAAAGByCRcBAAADk7rRfqZSie2JLTzcU2pYN8/GKACAA5EKkTeEiwAAAAAAAAAmlnARAAAwMO1uJ/N5o7YtZiqVgrqZHqlh3TwbowAADkTqvGFzEQAAAAAAAMDkEi4CAAAGJrW5qFE1dLoVNhcBAKOW3ly0VFAnAAAAAAAAAAyacBEAADAwyRvt68JFW9FMDOu2erfFZr9fUDcAQNn0+/1kmLlZqxfUDQAAAAAAAACDJlwEAAAMTKuTGjoVLtqK1Pu2sbkZyyvdgroBAMqms7YaqxvrmTU2FwEAAAAAAABMLuEiAABgYNq9VLjI0OlWNHKEslJbowAAtqrVXU7WCJEDAAAAAAAATC7hIgAAYCA2+/1oJwIujVq9oG6mS55h3dR7DwCwVXnOGc26cBEAAAAAAADApBIuAgAABmJvrxOb/X5mjc1FW7NjsRYzlUpmjc1FAMCwpM4ZlYjYWRUiBwAAAAAAAJhUwkUAAMBA5Am35NnAwz3NzMwkB3aFiwCAYUmdM7ZXazE3M1tQNwAAAAAAAAAMmnARAAAwEHnCLQ3hoi1LBbNa3eWCOgEAyqadOOfZTgkAAAAAAAAw2YSLAACAgUgNnc5WZmL7Yq2gbqZPami33e0U1AkAUDapEHkjsWERAAAAAAAAgPEmXAQAAAxEcui0Vo+ZSqWgbqZPauuTzUUAwLCkzhnNus1FAAAAAAAAAJNMuAgAABiIVLgotXmHbM1kuCj7/QcA2KrUhsTUOQUAAAAAAACA8SZcBAAADEQ7ubnI0OmBSA3t7u52YrPfL6gbAKAs+v1+cnORcx4AAAAAAADAZBMuAgAABiI1dOpG+wOTGtrd6G/G3pVuQd0AAGVx29pKrG1sZNY45wEAAAAAAABMNuEiAABgIFqJzUWGTg9Ms76UrEl9BgAA+6vdSZ8vnPMAAAAAAAAAJptwEQAAcMA2Nzdjd6+TWZPavEO2ZrWerGl1srdHAQDsr1YvHS5yzgMAAAAAAACYbMJFAADAAduz0o3Nfj+zxo32B2Z7tR4zlUpmTTvH8C8AwP5oJTYXVSJiZ44QNAAAAAAAAADjS7gIAAA4YK1uOtQiXHRgZiqV5FaA1PAvAMD+anezNyPuqNZjbma2oG4AAAAAAAAAGAbhIgAA4IC1EkOnERGN2lIBnUy3VEArT8gLAGB/tLqdzOcC5AAAAAAAAACTT7gIAAA4YO3E0OnszExsX6wW1M30Sm0uagsXAQADlgqRp84nAAAAAAAAAIw/4SIAAOCApYZOm9VtUalUCupmetlcBAAULRVetrkIAAAAAAAAYPIJFwEAAAcsFWpxo/1gNGtLmc9tLgIABi11zhMuAgAAAAAAAJh8wkUAAMABS95oXzd0Ogip4d1277bY3NwsqBsAYNr1+/3kOU+IHAAAAAAAAGDyCRcBAAAHLLm5qGrodBBSw7ub/X7sWekW1A0AMO1uW12Jtc2NzJrUZkUAAAAAAAAAxp9wEQAAcMBS4SKbiwYjtbkoIr1FCgAgrzznijznEwAAAAAAAADGm3ARAABwQDY3N2N3r5NZ40b7wcgzvJsKegEA5NXqLidrUpsVAQAAAAAAABh/wkUAAMAB2b3SjX6/n1njRvvBWFqsxexM9l/jhIsAgEFJnSsqEbGzWi+mGQAAAAAAAACGRrgIAAA4IG60L85MpRKNxABvns8DACCPVLhoZ7WeDD4DAAAAAAAAMP78m18AAOCAtDrpTTk2Fw1Os7aU+bxtcxEAMCCpc4UAOQAAAAAAAMB0EC4CAAAOSGrodG5mNpYWqgV1M/1SQa3UhgEAgLxS5woBcgAAAAAAAIDpIFwEAAAckNTQaaNWj0qlUlA30y+1IUC4CAAYlPQ5L3ujIgAAAAAAAACTQbgIAAA4IOkb7Q2dDlJqQ0BqkxQAQF6pc4XNRQAAAAAAAADTQbgIAAA4IO3ucuZzQ6eDldpc1O51YnNzs6BuAIBp1e/3c4TInfMAAAAAAAAApoFwEQAAcEBa3U7mc0Ong5XaBNXv92P3SregbgCAabW82ov1zY3MmlToGQAAAAAAAIDJIFwEAAAckNTmIkOng9Ws1ZM1rcRnAgCQ0k5sLYqIaNad8wAAAAAAAACmgXARAACwZRubm7G7Z3NRkRqJzUUR+YaBAQCytPKEi6rOeQAAAAAAAADTQLgIAADYst29TvQTNcJFg7V9sRqzM9l/lcszDAwAkCV1nqhUKrGjmt6oCAAAAAAAAMD4Ey4CAAC2LM+GnGaOTTvkV6lUkoGtVke4CAA4MKlz3s5qPRl4BgAAAAAAAGAy+Le/AADAluXZkNOwuWjgGtVEuMjmIgDgAKXOE6nzCAAAAAAAAACTQ7gIAADYslZ3OfP5/MxsbFtYLKib8mjWs4d582yUAgDIkjrnpTYpAgAAAAAAADA5hIsAAIAtS95oX9sWlUqloG7Ko1lbynxucxEAcKDa3U7m81TYGQAAAAAAAIDJIVwEAABsWWpDjhvthyP1vrYTmwYAAFJSm4saVec8AAAAAAAAgGkhXAQAAGxZns1FDF7qfd3d68TG5mZB3QAA06bf7yfPeTYXAQAAAAAAAEwP4SIAAGDLkkOntaWCOimX1OaifkTs6XWKaQYAmDp7V3rJoLINlQAAAAAAAADTQ7gIAADYsrYb7UcizzBvKvgFALAv7V76HCFEDgAAAAAAADA9hIsAAIAtWd/cSG7HaVSFi4YhzzCvcBEAsFWtTvoc0bC5CAAAAAAAAGBqCBcBAABbsrvXiX6ixuai4di2sBjzM7OZNa3uckHdAADTJnWOqFQqsXOxVlA3AAAAAAAAAAybcBEAALAleW60b7rRfigqlUpyW0Db5iIAYIvavexzRKNaj5kZ/9cyAAAAAAAAwLTwb4ABAIAtSQ2dRkQ0a0sFdFJOqeBWS7gIANiiVIg8FXIGAAAAAAAAYLIIFwEAAFuSCq/Mz85GfX6hoG7KJzXUK1wEAGxVagOi7ZQAAAAAAAAA00W4CAAA2JLUjfbN2lJUKpWCuimf1FBvaigYAGBfUiFl4SIAAAAAAACA6SJcBAAAbEm7u5z53NDpcKXeX5uLAICtSoWUUxsUAQAAAAAAAJgswkUAAMCWpMIrhk6Hq1Fbyny+p9eJ9c2NgroBAKZFv9+PVi+9oRIAAAAAAACA6SFcBAAAbEnqRnubi4arWatnPu9HxO5ep5hmAICpsXelFxubm5k1znkAAAAAAAAA00W4CAAA2JLU5iJDp8OVZ2NAKgAGAHB37e5yssaGSgAAAAAAAIDpIlwEAADst/XNjdiz0s2syRN+Yesa9fRQbyoABgBwd3nOD0LkAAAAAAAAANNFuAgAANhvu7udZE2jVi+gk/LaNr8Y87OzmTXCRQDA/kqdH2YqldixWCuoGwAAAAAAAACKIFwEAADst3w32ttcNEyVSiUa1eytAa2OcBEAsH/aiXNeo7otZmb838oAAAAAAAAA08S/BQYAAPZbq7ucrGnWsoMvHLhmPfs9bveEiwCA/ZMKkdtOCQAAAAAAADB9hIsAAID9lrrRfnF2LmrzCwV1U16p7VCtTjoEBgBwZ6lwke2UAAAAAAAAANNHuAgAANhv6Rvtt0WlUimom/JKbYdKhcAAAO4udX5o2E4JAAAAAAAAMHWEiwAAgP2WvtHe0GkRUsO9qc8JAODuWt3szYfOeQAAAAAAAADTR7gIAADYb+nNRUsFdVJuqeHePSvdWN/cKKgbAGDSbfb70e52MmuEiwAAAAAAAACmj3ARAACw39o2F42FPO/z7sSAMADA7ZZXurHR38ysSW1OBAAAAAAAAGDyCBcBAAD7Lb25yNBpEZo5NkSlPisAgNvlOTcIkQMAAAAAAABMH+EiAABgv6xtrMfelW5mjaHTYuQJcbW6ywV0AgBMA+EiAAAAAAAAgHISLgIAAPZLu9dJ1jTrhk6LUJ9fiIXZucyats1FAEBOqXPDTKUS26v1groBAAAAAAAAoCjCRQAAwH7JE1ZpVIWLilCpVJLbA/JsIAAAiEifGxrVbTFTqRTUDQAAAAAAAABFES4CAAD2S56wis1FxWkIFwEAA9LqLmc+T507AAAAAAAAAJhMwkUAAMB+aXWywyqLc/NRm1soqBtsLgIABiV1bhAgBwAAAAAAAJhOwkUAAMB+afcSQ6e1bVGpVArqhlS4qC1cBADklDo3NKrCRQAAAAAAAADTSLgIAADYL63ucubzRiLswmA1akuZz20uAgDySm4ucs4DAAAAAAAAmErCRQAAwH5pdQydjpPU+713pRvrGxsFdQMATKrNfj92dzuZNc26cx4AAAAAAADANBIuAgAA9kvbjfZjJc/73e7ZXgQAZNu70o2N/mZmTTOxMREAAAAAAACAySRcBAAA7JdWIqhi6LRYjRzholYiEAYAkOe8kOfcAQAAAAAAAMDkES4CAAByW9tYj+WVXmZNo1YvqBsiIpp14SIA4MC1OsvJGhsqAQAAAAAAAKaTcBEAAJBbu9tJ1thcVKza3EIszs5l1rQ6wkUAQLZ2YjvlbGUmti/WCuoGAAAAAAAAgCIJFwEAALm1um60HzeVSiUaifc8NSwMAJAKI++s1WOmUimoGwAAAAAAAACKJFwEAADk1u6mQyqpoAuD16xnb4vKEwoDAMqtlTjnCZADAAAAAAAATC/hIgAAILfU0Gl1bj5q8wsFdcPtUsO+qU0EAACpTYfNWnaYGQAAAAAAAIDJJVwEAADk5kb78dSoZr/veTZOAQDllgojN2r1gjoBAAAAAAAAoGjCRQAAQG6pkIob7UejWU9sLkpsIgAAcM4DAAAAAAAAKC/hIgAAILfU5iI32o9GamPU8kov1jbWC+oGAJg0m5ub0U6EkW2oBAAAAAAAAJhewkUAAEBuqXCRG+1HI8/73u52CugEAJhEe1e6sdnvZ9Y0hIsAAAAAAAAAppZwEQAAkFuru5z53NDpaOR531OfHQBQXqkAeYTNRQAAAAAAAADTbG7UDQCM2k9/+tP43Oc+F1dddVVcffXVcf3118fevXtjz5490e/3Y/v27bF9+/Z4wAMeEMcdd1wcf/zx8ZSnPCWOPvroUbc+9nbt2hVf+9rX4rvf/W58//vfjx/96Efxs5/9LG699dbodruxuroai4uLUavVotlsxuGHHx73v//942EPe1g8/OEPj5NOOikajcaofwwA/n+rG+tx2+pKZo2h09HI8763cwwNAwDlJFwEAAAAAAAAUG7CRUAptdvteP/73x8f+chH4qqrrsqs3bVrV+zatStuuOGG+PKXv3zHf3/00UfHGWecEa985Svjvve977Bbngi33HJLXHbZZfGFL3whvvjFL8YPf/jD5D/T7Xaj2+3GL37xi3vUz87OxoknnhjPfvaz44UvfGHc//73H1brAOSQJ5xi6HQ0avMLUZ2bj9762j5r8gwNAwDllDrnzc7MxNJiraBuAAAAAAAAACjazKgbACjS8vJynH322XHEEUfEf/pP/ykZLMpy7bXXxl/+5V/GAx7wgHj5y18eP//5zwfY6eS49tpr481vfnM8/vGPj8MPPzx+7/d+Lz7wgQ/kChalbGxsxJVXXhnnnntuHHnkkfGsZz0rvvrVrw6gawC2Ik84pSFcNDKp9164CADYl9Q5oVGtx0ylUlA3AAAAAAAAABRNuAgojU996lNx7LHHxt/8zd/EbbcNbrh2dXU1zjvvvHjIQx4SH/zgBwf2+46zW265Jd7xjnfEiSeeGMccc0ycc8458dWvfjU2NzeH9pqbm5vx6U9/Oh7/+MfHc57znPjJT34ytNcC4N7lCafYXDQ6qfdeuAgA2JdWdznzebO2VFAnAAAAAAAAAIyCcBEw9TY3N+O1r31tPOc5z4kbb7xxaK/zi1/8Il7ykpfEy1/+8lhdXR3a64zS9773vXjOc54TRxxxRLzmNa+Jb37zmyPp45Of/GQce+yxcf7554/k9QHKqp0Ip9TmFqI6v1BQN9xdKlyU+vwAgPJqdzuZzwXIAQAAAAAAAKabcBEw1TY2NuIFL3hB/PVf/3X0+/1CXvO8886Lpz71qdHpZA/mTKJ//ud/jk9+8pOxvr4+6lai0+nES1/60jjrrLPGoh+AMkjdaN+oGzodpdRGAZuLAIB9SZ7zhIsAAAAAAAAApppwETC1Njc348UvfnFceOGFhb/2l770pfit3/qtWFlZKfy1y+b9739/nH766VO7LQpgnLQ62eEUN9qPVmroNzU0DACUVyqE7JwHAAAAAAAAMN3mRt0AwLCce+658Q//8A/79c8cffTR8e/+3b+Lhz3sYXHQQQdFpVKJVqsV3//+9+OKK66I7373u7l/r89//vNx1llnxYc//OH9bZ399L//9/+OM888My644IJRtwIw1do9Q6fjLPX+37a6Eqsb67Ew66+BAMC/2dzcjN297O3LNhcBAAAAAAAATDdTZcBU+sxnPhNvfetbc9efdtppcc4558RjHvOYzLrvfve78ba3vS3+4R/+ITY3N5O/70c+8pF44hOfGC996Utz9zJt7nvf+8ZjH/vYePSjHx3HHntsHHnkkXHEEUfEtm3bolarxe7du+PnP/953HzzzXHFFVfEF7/4xfjyl78cnU72YNPdffSjH42HPexh8ed//udD+kkASN1ob+h0tPKEu9rd2+I+SzsL6AYAmBR7Vrqx2e9n1giRAwAAAAAAAEw34SJg6uzatSte9KIXRT8xGBMRcdBBB8VHPvKR+M3f/M1cv/fDHvaw+B//43/EK1/5ynje854XP/3pT5P/zB/8wR/EE5/4xDjqqKNyvcY0OPHEE+N3fud34mlPe1r8+q//embtQQcdFAcddFAcc8wx8Ru/8Rtx9tlnxy9+8Yv4b//tv8V//a//NW699dbcr/v6178+nvGMZ8QJJ5xwgD8BAPem1bG5aJzlCXe1hIsAgLtJBcgjnPMAAAAAAAAApt3MqBsAGLRzzz03fv7znyfrjjjiiPja176WO1h0Z4973OPiG9/4Rhx33HHJ2m63G3/yJ3+y368xaQ499NB43eteF9dcc018/etfj7PPPjsZLNqXgw46KF73utfFddddF89//vNz/3Nra2vxyle+ckuvCUC21fX16KytZNY0a0sFdcO9yTP0m2d4GAAol1Z3OVnTcM4DAAAAAAAAmGrCRcBU+fa3vx3nnXdesm7nzp1x6aWXxq/+6q9u+bXuc5/7xGWXXRZHHHFEsvbTn/50XHzxxVt+rXF24oknxsc//vH4yU9+Em984xvj6KOPHtjvvWPHjvj4xz8e73nPe6JSqeT6Z77yla/EZz7zmYH1AMAvtXputB931fmFqM0tZNa0hYsAgLtpdzuZz2dnZmL7YrWgbgAAAAAAAAAYBeEiYKr85V/+ZWxubibrzjvvvHjIQx5ywK936KGHxkc/+tGYnZ1N1r7+9a8/4NcbJyeffHJ87nOfi69//evx/Oc/P+bn54f2Wq961avi7W9/e+76d7/73UPrBaCsWp08N9oLF41ao579GeTZTAAAlEvqfNCsbst94QcAAAAAAAAAk0m4CJga//qv/xqf+tSnknWnnXZanH766QN73ZNPPjl+//d/P1n3jW98I77whS8M7HVH5eEPf3hcfPHF8eUvfzme+tSnFva6r371q+PlL395rtpLL700fvaznw25I4ByybPxRrho9FLbo1odm4sAgLtqJc55zngAAAAAAAAA00+4CJga73znO6Pf72fWzM3N7dcGnLze+MY3xo4dO5J173jHOwb+2kV67nOfG9/61rfi6U9/+khe/81vfnM0m81k3cbGRnz2s58toCOA8kgNndbnF6I6N7wtduTTqKY2FwkXAQB3lQqRNxObEQEAAAAAAACYfMJFwFRYWVmJT3ziE8m65z73uXHUUUcN/PUPPvjgeNnLXpas+9znPhe33HLLwF+/KIccckjMzIzuq+Oggw6Kc889N1ftF7/4xeE2A1AyqaFTN9qPh9Twb7snXAQA3FVyc1EivAwAAAAAAADA5BMuAqbCpz/96di9e3ey7o//+I+H1sMf/uEfJoM3Gxsb8fGPf3xoPZTBGWecEZVKJVn3ne98p4BuAMojNXTaFC4aC6nPodURLgIA7ip5zrO5CAAAAAAAAGDqCRcBU+FjH/tYsuaoo46Kxz3ucUPr4YEPfGCcfPLJybo8vbJvhx12WDzykY9M1v3whz8soBuA8mh1lzOfN2tLBXVCltTn0FlbiZX1tYK6AQDG3ebmZuzudTJrnPMAAAAAAAAApp9wETDxNjY24tJLL03WPf/5zx96Ly94wQuSNV//+tdj165dQ+9lmj32sY9N1iwvL8fycvYgPAD5tbupoVM32o+DRo7PoZ3YTgAAlMfulW70+/3MmkbVOQ8AAAAAAABg2gkXARPva1/7WuzevTtZ9/SnP33oveR5jc3NzbjsssuG3ss0u+9975ur7rbbDE8DDEpqc1GeUAvDlyfk1RIuAgD+f6kzXkREs+6cBwAAAAAAADDthIuAiZcnqLN9+/Zc224O1AMf+MA46qijknWXXHLJ0HuZZnnDRevr60PuBKAceutr0VlbzayxuWg82FwEAOyPPOcC5zwAAAAAAACA6SdcBEy8K664Ilnz2Mc+Nubm5groJuLkk09O1lx55ZUFdDK91tbWctVt22YACmAQ8gyd2lw0Hqpz81GbX8issbkIALhd6lwwNzMbSwvVgroBAAAAAAAAYFSEi4CJ9+1vfztZ88hHPrKATn7pUY96VLLm+9//fqysrBTQzXS69dZbkzVzc3Oxffv2AroBmH65brSvLxXQCXmktgsIFwEAt2t1ss8FjVo9KpVKQd0AAAAAAAAAMCrCRcBEu+WWW+JnP/tZsm7cwkXr6+vxL//yLwV0M53yvHcPetCDYnZ2toBuAKZfnjBKs2pz0bhIhYvyhMUAgHJInfOaNQFyAAAAAAAAgDIQLgIm2lVXXZWr7qEPfeiQO/k3D3nIQ3LV5e2du+r3+/HVr341WXfssccW0A1AObS6y5nP6/OLsTA3V1A3pKSGgFOfJwBQHqnQcaNWL6gTAAAAAAAAAEZJuAiYaD/60Y9y1R111FFD7uTfNJvNOOigg5J1eXvnrr761a/m2lZ18sknF9ANQDkkb7Sv21o0ThqJzUV5NlEBAOVgcxEAAAAAAAAAEcJFwIS7/vrrkzWHHnpobNtW7NBznjBTnt65pw996EO56k455ZThNgJQIskb7avCReOkmQgXpT5PAKA82omNhqlzBQAAAAAAAADTQbgImGg33HBDsubwww8ffiN3c9hhhyVrhIv2389//vP4yEc+kqx7yEMeEo94xCMK6AigHNI32hs6HSepz6Ozthq99bWCugEAxtXG5mbsXulm1jjnAQAAAAAAAJSDcBEw0W666aZkzaGHHlpAJ/v/mjfeeGMBnUyXv/qrv4puN3vwKSLixS9+8fCbASiRZLiobuh0nDRyDAHbXgQA7Ol1ot/vZ9bkOVcAAAAAAAAAMPmEi4CJtmvXrmTNfe973wI6uas84aJf/OIXBXQyPX7wgx/Ee9/73mTdjh074hWveEUBHQGURyqI0qwtFdQJeeTZMJAKjAEA0y/PecDmIgAAAAAAAIByEC4CJlqecFGj0Rh+I1t4zdtuuy1WVlaG38wU2NjYiJe85CWxtraWrP2DP/iDkXzmANOqt7Ya3bXVzBo32o8Xm4sAgDzyhYuEyAEAAAAAAADKQLgImGitVitZs3379gI62dpr2l6Uz9vf/va44oorknWHH354/Nmf/VkBHQGUhxvtJ8/i3HzU5xcza1rd5YK6AQDGVSpsPD8zG9sWss8UAAAAAAAAAEwH4SJgYnW73VybbEYRLtqxY0euut27dw+5k8n3la98JV73utflqv2bv/mbWFpyqzLAIOXZcCNcNH6a9ezPJE9oDACYbqmwcaO2LSqVSkHdAAAAAAAAADBKwkXAxFpdXc1VV6vVhtzJPVWr1Vx1eX+Gsrr11lvj+c9/fq4Q2TOf+cz4vd/7vQK6AiiXPCGUhnDR2GlUE+GijnARAJRdq9vJfC5ADgAAAAAAAFAec6NuAGCr8gZzZmdnh9zJPc3N5fufV+GifVtbW4vTTz89brzxxmTtwQcfHOedd14BXU2GJzzhCbn/DDI83/ve90bdAgxEKly0bWExFmb9b864SQ0Dt3vCRQBQdu0cm4sAAAAAAAAAKAebi4CJlTeYM4qQRd7XzLORp6xe8YpXxJe+9KVctR/4wAfi0EMPHXJHAOXUToSLmrWlgjphfzTric1FOTZSAQDTLXUesLkIAAAAAAAAoDxcMQ5MrPX19Vx1wkWT561vfWucf/75uWpf85rXxGmnnTbkjibL5ZdfHocccsio2wCmRCtxo72h0/GUCn21O8JFAFB2wkUAAAAAAAAA3M7mImBi5Q3wbGxsDLmTrb/mKIJP4+6CCy6IP//zP89Ve/LJJ8eb3/zmIXcEUG7tbifzecPQ6VhKfS7d9dXoreXbAgkATJ+Nzc3Y03POAwAAAAAAAOCXhIuAibWwsJCrLu+Go0HKu5Eo789QFhdffHGceeaZ0e/3k7UPfehD46KLLhLQAhgym4smU57PJbWtAACYXrt7nUj9zds5DwAAAAAAAKA8hIuAiTU/P5+rbhThoryvKVz0by6//PL4nd/5nVzBrAc84AFxySWXxMEHH1xAZwDllgqgGDodT3k+l7ZwEQCUVipAHhHRrC0V0AkAAAAAAAAA40C4CJhYi4uLuep6vd6QO9n6awoX/dI3v/nNeMYznhHdbjdZe5/73CcuueSSOOKIIwroDKDcumur0VvPDn0KF42nhs1FAECGdreTrGnUnfMAAAAAAAAAymJu1A0Ak+X666+PK6+8cqivsW3btnjWs56VrKvVajE3N5fcErR3795BtZZb3tfcsWPHkDsZf9/73vfiaU97WuzZsydZ22g04vOf/3wcc8wxBXQGQJ7NNnlCLBRvYXYuti0sxm2rK/usES4CgPJKbS6an5mNbfP5LnUBAAAAAAAAYPIJFwH75Utf+lKceeaZQ32NBz7wgbnCRRERzWYzbr311syaPKGVQcv7mgcddNCQOxlv1157bZx66qmxa9euZO22bdvi4osvjoc//OEFdAZARL7wSbO2VEAnbEWztpQZLsoTHgMAplPqnNeobYtKpVJQNwAAAAAAAACM2syoGwA4EAcffHCyZvfu3QV0sv+vWa/Xo1qtFtDNeLr++uvjyU9+ctx8883J2mq1Gp/61Kfi8Y9/fAGdAXC71I32ERGNWr2ATtiKZmKrVJ7PFwCYTqmQcbNuOyUAAAAAAABAmQgXARMtT7jolltuKaCTu8oTmMnT+7S68cYb45RTTokbb7wxWTs/Px8XXnhhPPnJTy6gMwDurN3tZD5fWqzG/KxlqOOqkQwX2VwEAGWV3FxUFS4CAAAAAAAAKBPhImCi3e9+90vW5An6DFqe18zT+zS6+eab48lPfnJcf/31ydrZ2dm44IIL4pnPfGYBnQFwd6nNNk1Dp2MttbkotbEAAJheqXBRs7ZUUCcAAAAAAAAAjAPhImCiHXnkkcma//f//t/wG7mbn/3sZ8maBz3oQQV0Ml5uvfXWOOWUU+Laa69N1lYqlTj//PPj9NNPL6AzAO5N8kb7RHiF0UqFi2wuAoDySoWMm3XnPAAAAAAAAIAyES4CJlqegM7NN98cnU6ngG7+zXXXXZesKVu4aNeuXXHqqafG1Vdfnav+7/7u7+JFL3rRkLsCIEvyRntDp2MtFS7qra9Fd221oG4AgHGxvrkRe3rZ/z9Jw4ZKAAAAAAAAgFIRLgIm2oMf/OBkTb/fzxX2GZR2ux27du1K1uXpfVq02+146lOfGldddVWu+ne84x3xile8YshdAZCSutHe0Ol4y7NZyvYiACif3b1O9BM1QuQAAAAAAAAA5SJcBOyXF7/4xdHv94f664Ybbsjdz/HHH5+r7gc/+MEWf+L9l/e18vY+6fbs2RNPe9rT4lvf+lau+je+8Y3x6le/eshdAZDS7/fTm4tqSwV1w1bk+XxSATIAYPrk+f5PbUAEAAAAAAAAYLoIFwET7bDDDov73ve+ybq8wZZByPNac3NzccIJJxTQzWgtLy/H05/+9Pja176Wq/7P/uzP4nWve92QuwIgj+76aqysr2XWuNF+vDVq9WRNq7tcQCcAwDjJs7kwzwZEAAAAAAAAAKaHcBEw8R75yEcma4oMF33zm99M1jz0oQ+NarVaQDej0+l04hnPeEZ85StfyVX/h3/4h/HmN795yF0BkFe720nWuNF+vM3PzsXSYvZ5I89wMQAwXVLf//Ozs7FtfrGgbgAAAAAAAAAYB8JFwMR7/OMfn6z56le/Guvr6wV0E/HlL385WfPYxz62gE5Gp9frxbOf/exc70VExFlnnRXvfve7h9wVAPsjz0YbN9qPv2Y1+zNqdYSLAKBsUt//zdpSVCqVgroBAAAAAAAAYBwIFwET75RTTknW7N27N772ta8NvZef/OQncd111yXrnvKUpwy9l1FZXV2N3/qt34rLLrssV/0LX/jC+O///b8PuSsA9lee0EmjWi+gEw5EKgDW7gkXAUDZpL7/bacEAAAAAAAAKB/hImDiPeYxj4kdO3Yk6z7zmc8MvZc8r1GpVHIFoibR2tpanH766fHZz342V/3pp58eH/zgB2NmxtcRwLhpdbOHTrcv1mJ+dq6gbtiqZj2xuSjxOQMA06fVyd5QaTslAAAAAAAAQPmY5gYm3tzcXK6wzic+8Ymh9/Lxj388WXPiiSfGr/zKrwy9l6JtbGzEGWecEZ/61Kdy1T/rWc+KCy64IGZnZ4fcGQBb0U6ETtxoPxmataXM56nhYgBg+jjnAQAAAAAAAHB3wkXAVPjd3/3dZM21114bV1555dB6+MlPfhJf/vKXk3V5ep00m5ub8aIXvSj+8R//MVf90572tLjwwgtjfn5+yJ0BsFWpjTZutJ8MjWr259Tu3hb9fr+gbgCAcdDqCRcBAAAAAAAAcFfCRcBUeNaznhU7duxI1r3rXe8aWg//5b/8l9jc3MysmZmZiRe84AVD62EU+v1+vOxlL4uPfvSjueqf9KQnxUUXXRSLi4tD7gyAA9HuZm+0MXQ6GZr17M9pZWM9uuurBXUDAIza+uZG7Ol1M2uEyAEAAAAAAADKR7gImArVajWe97znJev+8R//Ma677rqBv/6uXbvivPPOS9Y99alPjcMOO2zgrz9Kr3rVq+KDH/xgrtqTTjop/s//+T9Rq9WG3BUAByq1uUi4aDLk+ZxanezPGgCYHru7nWSNcx4AAAAAAABA+QgXAVPj1a9+dVQqlcya9fX1eM1rXjPw1/6Lv/iL2LNnT7LuT//0Twf+2qP06le/Ot773vfmqj3xxBPjM5/5TCwtLQ25KwAOVL/fj3YiXORG+8mQZzg49VkDANMjFSCPiGjW/L0dAAAAAAAAoGyEi4Cpceyxx8Yzn/nMZN0nP/nJuPDCCwf2updffnm8733vS9Y98pGPjFNPPXVgrxsRccMNN0SlUkn+etKTnjTQ142IOPfcc+Nv//Zvc9U+/OEPj89//vOxY8eOgfcBwOB111ZjZWM9s8aN9pOhUc2xuUi4CABKI8/3vhA5AAAAAAAAQPkIFwFT5fWvf33MzKT/p+2ss86Ka6655oBf7+abb44zzjgjNjY2krVveMMbDvj1xsVf//Vfx5ve9KZctccdd1xccskl0Ww2h9wVAIPiRvvpMTc7G9sXa5k1wkUAUB7t7nLm84XZuajPLxTUDQAAAAAAAADjQrgImCqPetSj4iUveUmybvfu3XHKKafEj370oy2/1q233hqnnnpq/PSnP03WPv3pT49nPetZW36tcfKud70rXvva1+aqPfroo+Oyyy6LQw45ZMhdATBI7VzhIjfaT4rUZ5UaMgYApker28l83qxti0qlUlA3AAAAAAAAAIwL4SJg6rzpTW+Kgw8+OFl34403xmMe85j4zGc+s9+vceWVV8aJJ54Y3/ve95K11Wo13v3ud+/3a4yjv//7v48/+ZM/yVV75JFHxhe+8IU49NBDh9wVAIOWZ5PNzmq9gE4YhEYiXGRzEQCURypUnDo3AAAAAAAAADCdhIuAqXPIIYfEhz70oVw37e7atSt+8zd/M377t387vvGNbyTrr7766jjzzDPjpJNOip/85Ce5+nn3u98dRx99dK7acfemN70pd+0NN9wQ97///aNSqYzs1xve8IbhvRkAU6yVGDrdsViLudnZgrrhQKU2FwkXAUB5pL73bacEAAAAAAAAKKe5UTcAMAzPfOYz4zWveU287W1vy1V/0UUXxUUXXRTHHHNMPOEJT4hf+7Vfi4MOOigqlUq0Wq34wQ9+EFdccUVcddVV+9XHGWecES9/+cu38iMAwMgYOp0uqc+rLVwEAKXhnAcAAAAAAADAvREuAqbWW97ylrjxxhvjYx/7WO5/5pprrolrrrlmIK9/yimnxPnnnz+Q3wsAipQKmzQMnU6UPJuL+v1+rq2PAMBkc84DAAAAAAAA4N7MjLoBgGGZmZmJD3/4w/Hbv/3bhb/2E57whPjkJz8Zi4uLhb82ABwoN9pPl9SQ8OrGenTWVgvqBgAYlfWNjdiz0s2sadaWCuoGAAAAAAAAgHEiXARMtbm5ubjwwgvj7LPPLuw1zzzzzLj00ktj2zaD1wBMplS4qGHodKLkGRJObTEAACZfu5f+vhciBwAAAAAAACgn4SJg6s3MzMRb3vKWuOiii+Lwww8f2us0m80477zz4vzzz7exCICJ1e/3o9Vdzqxp1g2dTpI8Q8KpzxwAmHztbidZk9p4CAAAAAAAAMB0Ei4CSuM5z3lO/OAHP4jXvOY1A90qtLCwEC996UvjX//1X+NlL3vZwH5fABiFztpqrG1sZNY0qoZOJ8nOWj1Zk9pWBQBMvjxhYpuLAAAAAAAAAMpJuAgole3bt8fb3va2+OlPfxpvectb4td+7de2/Hv96q/+arz2ta+NG264Id7//vfHIYccMsBOAWA0DJ1On7mZ2dixWMusES4CgOmX+r5fnJ2L2vxCQd0AAAAAAAAAME7mRt0AwCg0m804++yz4+yzz44f//jH8fnPfz6+853vxNVXXx033HBD7NmzJ/bu3Rv9fj+2b98e27dvj/vf//5x3HHHxfHHHx+nnnpqPPShDx31jxFHHnlk9Pv9wl7vhhtuKOy1ABiNPCGTZl24aNI0a9tiz0p3n8/bwkUAMPVS3/eN2raoVCoFdQMAAAAAAADAOBEuAkrvgQ98YJx11lmjbgMAxkJq6LQSETur9WKaYWAatW3x4/bP9/nc5iIAmH6p73vbKQEAAAAAAADKa2bUDQAAAOMjNXS6vVqLuZnZgrphUJr1pcznre5yQZ0AAKOSOuc1atnnBQAAAAAAAACml3ARAABwh1YndaO9odNJ1KhmbyJIfe4AwORLbai0uQgAAAAAAACgvISLAACAO6Q22Bg6nUzNevbn1u7dFv1+v6BuAIBRSG8ucs4DAAAAAAAAKCvhIgAA4A7tnhvtp1Hqc1vb2Ijb1lYK6gYAKNraxnrsXelm1jjnAQAAAAAAAJSXcBEAAHCHVseN9tMoz7BwO/HZAwCTq93rJGtSmw4BAAAAAAAAmF7CRQAAQERE9Pv9aHdtLppGeUJhre5yAZ0AAKOQOuNFRDSqznkAAAAAAAAAZSVcBAAARETEbasrsba5kVnTrC0V1A2DtLNaj0qiptVNbzQAACZTK0e4yOYiAAAAAAAAgPISLgIAACIi5432tXoBnTBoczOzsaOa/dm1bS4CgKnV6mSf8xbn5qM2t1BQNwAAAAAAAACMG+EiAAAgIiJaOcIlNhdNrkYtextBno0GAMBkaveyv+ebtW1RqaT2HAIAAAAAAAAwrYSLAACAiEiHSyoRsTOx/Ybx1RQuAoDSSoXIUyFkAAAAAAAAAKabcBEAABAREe1EuGRntR6zM/4KMalS4aLU5w8ATK5WJ725CAAAAAAAAIDyMhkIAABERHpzjRvtJ5vNRQBQXu2ecBEAAAAAAAAA+yZcBAAAREQ6XGLodLKlwmGt7m3R7/cL6gYAKJIQOQAAAAAAAABZhIsAAICIyDN0ulRQJwxDM/H5rW9uxG2rKwV1AwAUZW1jPZZXepk1QuQAAAAAAAAA5SZcBAAARERE2+aiqZbn82t1lwvoBAAoUrvXSdakQsgAAAAAAAAATDfhIgAAIPr9fnJzkXDRZMsXLsr+MwAATJ5WJ/393nDOAwAAAAAAACg14SIAACCWV3uxvrmRWWPodLLtqNajkqgRLgKA6dPOsZlQiBwAAAAAAACg3ISLAACAXKGSZt3Q6SSbnZmJndV6Zk1buAgApk7qnFedm4/a/EJB3QAAAAAAAAAwjoSLAACAXKGSZlW4aNI1akuZz20uAoDpk/p+t50SAAAAAAAAAOEiAAAgOXRaqVRiR2LrDeOvmRgebnWXC+oEAChKKkSeOh8AAAAAAAAAMP2EiwAAgGSoZGe1HrMz/vow6VKbCVodm4sAYNqkQuTCRQAAAAAAAACYDgQAAKLd7WQ+N3Q6HVKfY7snXAQA0ya9uWipoE4AAAAAAAAAGFfCRQAAQHJzUaMqXDQNmvXE5qLubdHv9wvqBgAoQmpzUWqzIQAAAAAAAADTT7gIAACIVidxo30ilMJkSG0u2tjcjL0rvYK6AQCGbXVjPZZXs7/bbagEAAAAAAAAQLgIAACIduJGe0On0yHPZoJ2YosVADA5dnc7yRrnPAAAAAAAAACEiwAAoOT6/X60eqlw0VJB3TBMeT7HVo4hZABgMrRyhIbzhI8BAAAAAAAAmG7CRQAAUHJ7V3qxsbmZWdOo1QvqhmHauViLSqWSWZNnCBkAmAytxHbKCOEiAAAAAAAAAISLAACg9No5wiQ2F02HmZmZ2FnNDoq1cwwhAwCTIfW9XptbiNr8QkHdAAAAAAAAADCuhIsAAKDk8txo33Sj/dRIfZZ5/jwAAJMh9b1uOyUAAAAAAAAAEcJFAABQeqmh00qlEjsWawV1w7ClwkU2FwHA9Eid82ynBAAAAAAAACBCuAgAAEovFSZpVOsxM+OvDtPC5iIAKI9WdznzecN2SgAAAAAAAABCuAgAAEovfaO9odNpkhoiTg0hAwCTo93tZD53zgMAAAAAAAAgQrgIAABKL7W5qFlbKqgTipD6PNu9Tmz2+wV1AwAMk81FAAAAAAAAAOQhXAQAACWX2lzUqNUL6oQipDYUbGxuxvJKt6BuAIBhWV1fj9tWVzJrbC4CAAAAAAAAIEK4CAAASi91o73NRdMlzxBxKnAGAIy/di/9fd6sO+cBAAAAAAAAIFwEAAClttnvR7vbyaxxo/10aQgXAUAp5Pk+b1RtqAQAAAAAAABAuAgAAEpteaUbG/3NzJo8YRQmx47FWsxUKpk1beEiAJh4ecJFQuQAAAAAAAAARAgXAQBAqRk6LZ+ZmZloVLM/U5uLAGDypcLCtfmFqM4vFNQNAAAAAAAAAONMuAgAAEpMuKicUtuoWt3lgjoBAIYl9X1uOyUAAAAAAAAAtxMuAgCAEksNnc5UKrG9Wi+oG4qSCozZXAQAk6/Vyf4+FyAHAAAAAAAA4HbCRQAAUGLtbifzeaO6LWYqlYK6oSipTQVt4SIAmHjtnnARAAAAAAAAAPkIFwEAQImlNhelQihMJpuLAGD6pb7PnfMAAAAAAAAAuJ1wEQAAlFhq6LRZN3Q6jVKfa7t7W2z2+wV1AwAMQ6tjcxEAAAAAAAAA+QgXAQBAibVT4SJDp1OpUc3+XDf7/djb6xTUDQAwaKvr69FZW8msadaWCuoGAAAAAAAAgHEnXAQAACWW2lyUCqEwmZr19DBxS7gIACZWq5d9xouIaAiRAwAAAAAAAPD/Ey4CAICS2uz305uL6oZOp1GejVStznIBnQAAw5Dne9yGSgAAAAAAAABuJ1wEAAAltbfXic1+P7OmWUtvuGHybF+sxWwl+6+DqeAZADC+8nyP21wEAAAAAAAAwO2EiwAAoKRavU6yxo3202mmUomdtXpmTUu4CAAmVup7vD6/ENW5+YK6AQAAAAAAAGDcCRcBAEBJtTrLyRo32k+vVHBMuAgAJldqc5EzHgAAAAAAAAB3JlwEAAAllRo6na3MxPbFWkHdULRmbSnzeerPBwAwvlIhYdspAQAAAAAAALgz4SIAACip1NBpo1aPmUqloG4oWqNWz3ze6qY3WwEA4ykdLsoOGQMAAAAAAABQLsJFAABQUulwkRvtp1l6c1GnoE4AgEFLbSB0zgMAAAAAAADgzoSLAACgpFJDp260n27NxFBxu3dbbG5uFtQNADBIqQ2EqXMAAAAAAAAAAOUiXAQAACVl6LTcUp/vZr8fe1a6BXUDAAzKyvpadNZWM2uc8wAAAAAAAAC4M+EiAAAoqXa3k/nc0Ol0a+T4fFuJ7VYAyq3OWAABAABJREFUwPhJbaeMyHcOAAAAAAAAAKA8hIsAAKCENjc3o93LHjw1dDrd8oTH8gwnAwDjJU84WIgcAAAAAAAAgDsTLgIAgBLas9KNzX4/s8bQ6XRbWqzF7Ez2XwltLgKAyWNzEQAAAAAAAAD7S7gIAABKyI32zFQq0axmf8at7nJB3QAAg5I659XnF2Jxbr6gbgAAAAAAAACYBMJFAABQQvlutF8qoBNGKbW1wOYiAJg8qe/vpjMeAAAAAAAAAHcjXAQAACWUGjqdnZmJ7YvVgrphVFLbqfKE0ACA8ZLaPJgKFwMAAAAAAABQPsJFAABQQqmh02Z1W1QqlYK6YVRsLgKA6ZMKB6fCxQAAAAAAAACUj3ARAACUUCo04kb7cmjWhYsAYNqkvr+FiwAAAAAAAAC4O+EiAAAooeSN9onQCdOhUc3+nHf3OrG5uVlQNwDAIAiRAwAAAAAAALC/hIsAAKCEkkOnidAJ06FZW8p83u/3Y/dKt6BuAIAD1Vtfi+7aamZNs579/Q8AAAAAAABA+QgXAQBACaXCRTYXlUOez7nVXS6gEwBgEFLbKSMiGtV6AZ0AAAAAAAAAMEmEiwAAoGQ2Nzdjd6+TWZPaaMN0yLOhqtVJDykDAOMhFSCPsLkIAAAAAAAAgHsSLgIAgJLZvdKNfr+fWZMndMLk275YjdmZ7L8W5tmAAACMhzzf203nPAAAAAAAAADuRrgIAABKptVdTtY064ZOy6BSqUSzlv1Z59mAAACMh9Q5rz6/GAtzcwV1AwAAAAAAAMCkEC4CAICSaXVy3GifCJwwPZq1pcznwkUAMDlS39sC5AAAAAAAAADcG+EiAAAomXYve+h0bmY2lhaqBXXDqDVq9czn7RybrgCA8dBOhYsEyAEAAAAAAAC4F8JFAABQMqnNRY1aPSqVSkHdMGo2FwHA9Eh9bzeqwkUAAAAAAAAA3JNwEQAAlExq6DQVNmG6pDYYpDYgAADjI3nOqwsXAQAAAAAAAHBPwkUAAFAy7e5y5vNU2ITpkvq8d/c6sbG5WVA3AMCBaCc2VAqRAwAAAAAAAHBvhIsAAKBkWt1O5nPhonJpJD7vfvwyYAQAjLfe2mp011cza1Lf+wAAAAAAAACUk3ARAACUTGpzkaHTcskTJmt3s7cgAACj18rxfS1EDgAAAAAAAMC9ES4CAIAS2djcTG6hMXRaLs3aUrImz7AyADBaecLAznkAAAAAAAAA3BvhIgAAKJE9vU70EzWGTstl28JizM/MZta0EtuuAIDRyxMGtqESAAAAAAAAgHsjXAQAACVi6JS7q1Qqyc/c5iIAGH+p7+ttC4uxMDtXUDcAAAAAAAAATBLhIgAAKJE8IZFmbamAThgnqW1VbeEiABh7qe9rZzwAAAAAAAAA9kW4CAAASqTVXc58Pj8zG9sWFgvqhnFhcxEATL7U93UqTAwAAAAAAABAeQkXAQBAiaRutG/UtkWlUimoG8ZFapOBcBEAjL885zwAAAAAAAAAuDfCRQAAUCJutOfeNGv1zOepjVcAwOilvq+d8wAAAAAAAADYF+EiAAAokVS4yI325dRIbC7a2+vG+uZGQd0AAFvR7nYynwsXAQAAAAAAALAvwkUAAFAi6c1F2SETplOznj1s3I+I3b3sgWUAYHS6a6vRXV/NrBEiBwAAAAAAAGBfhIsAAKBE2qlwUSJkwnTKs8mg1cn+swMAjE7qjBdhcxEAAAAAAAAA+yZcBAAAJbG+uRF7EttnGlVDp2WUZ5NBausVADA6eb6nbagEAAAAAAAAYF+EiwAAoCR29zrRT9TYXFRO2+YXY352NrOm3RMuAoBxlWdz0c5avYBOAAAAAAAAAJhEwkUAAFASeYZOmzk22DB9KpVKcptBqyNcBADjKrW5aGmhGguzcwV1AwAAAAAAAMCkES4CAICSSA2dRkQ0hItKq5HYZtDuLhfUCQCwv1qJ72kBcgAAAAAAAACyCBcBAEBJpMJF87OzsW1+saBuGDfJzUU5wmkAwGikNlQKkAMAAAAAAACQRbgIAABKotXJHjpt1paiUqkU1A3jJrXRIDW0DACMTioEbHMRAAAAAAAAAFmEiwAAoCTaPUOn7Fvq87e5CADGV+p72uYiAAAAAAAAALIIFwEAQEm0OsuZzw2dllvq89+z0o31jY2CugEA9kdqw2CztlRQJwAAAAAAAABMIuEiAAAoifTQqXBRmeX5/Hf3OgV0AgDsj+7aavTW1zJrmrV6Qd0AAAAAAAAAMImEiwAAoCRawkVkyLPRIPVnCAAoXp7v54bNRQAAAAAAAABkEC4CAIASWN/ciD0r3cyaPOESpleecFmru1xAJwDA/khtp4yIaNaFyAEAAAAAAADYN+EiAAAogd3dTrKmUasX0Anjqja/EAuzc5k1NhcBwPjJE/5tVJ3zAAAAAAAAANg34SIAACiBPKEQm4vKrVKpJLcX5dmMAAAUK3XOW1qsxnwiQAwAAAAAAABAuQkXAQBACeQLF2UHS5h+qT8DNhcBwPhpdbK/n53xAAAAAAAAAEgRLgIAgBJod5czny/MzkVtfqGgbhhXjcT2KuEiABg/7V7293OjKlwEAAAAAAAAQDbhIgAAKIFUKKRZ2xaVSqWgbhhXzVo983krEVIDAIqXPOfVhYsAAAAAAAAAyCZcBAAAJZAnXASpzUXtbqegTgCAvFqd7PBvM/H9DgAAAAAAAABzo26AfHq9Xtx0003x85//PHbv3h3tdjv27t0bq6ursbq6GmtrazE7OxsLCwsxPz8f9Xo9du7cGY1GI5rNZhx22GFx8MEHj/rHAABgRNqJcFEqVEI5pEJme1e6sbaxHvOz/ioJAOOg3+9Hu5cd/hUiBwAAAAAAACDFRNgYWV5eju985ztx9dVXx7XXXhvXXntt/PCHP4ybbrop2u32Af/+CwsLcdhhh8WRRx4ZRx11VBx99NFxzDHHxMMf/vA48sgjD/j3BwBgfKU3F9UL6oRx1qynh4/bvU4csm1HAd0AACnd9dVYWV/LrGkIFwEAAAAAAACQIFw0Imtra/Gtb30rvvKVr8QVV1wR3/rWt+KGG26Ifr9/l7q7/+cDsbKyEjfccEP8+Mc/ji996Ut3ebZjx4444YQT4tGPfnScdNJJcdJJJ8Whhx46sNcGAGC0UuEim4uIiGhU08PHrc5twkUAMCZanewzXoTNRQAAAAAAAACkCRcV6Bvf+EZceumlcckll8QVV1wRKysrdzzLChFVKpWB9nFvr7V79+64/PLL4/LLL4+//du/jYiIBz3oQXHKKafEqaeeGqecckocdNBBA+0DAIBirG9sxN6VbmaNoVMi8m4uSg8xAwDFyPO97JwHAAAAAAAAQIpw0RB1Op343Oc+F5/61Kfi//7f/xu7du2649ndAz6pANEgNhjd/hr7eq27v8aPfvSjuP766+P9739/VCqVeMxjHhOnnXZaPPvZz45jjz32gPsBAKAYuYZOc4RKmH61uYVYnJuPlfW1fdbk2ZAAABQjz/dyns2EAAAAAAAAAJSbcNGAra6uxqc//en46Ec/GhdffPEd24nyhokGESLal9R2pHvr6fZ/pt/vx5VXXhlXXnllnHPOOXH00UfHGWecES94wQvimGOOGVrPAAAcuFbX0Cn5VCqVaFTrccvy7n3WtLrLBXYEAGRJnfO2L9Zibna2oG4AAAAAAAAAmFQzo25gWnzlK1+Jl770pXGf+9wnTj/99Ljoooui1+tFv9+Pfr9/R3jnziGe25/d+deo7KuXO/d852fXXHNN/OVf/mUce+yx8ahHPSre8573RKvVGln/AADsW55wkc1F3K5ZX8p83s7x5wkAKEbqe7lZc8YDAAAAAAAAIE246AC0Wq14+9vfHscdd1ycfPLJ8aEPfSj27Nlzr4GiiHsGeMZdVtDozmGjb3/72/FHf/RHcfjhh8fv/u7vxhe+8IURdw4AwJ21OtlDp4tz81GbWyioG8Zdagg5T1gNAChG6nu5IVwEAAAAAAAAQA7CRVtw1VVXxVlnnRVHHHFEnH322fGDH/wgV6BokmVtNbr9+crKSvzP//k/4ylPeUo87GEPi/e9733R6XRG2TYAABHR7iWGTqv1O851kAoX2VwEAOOj3V3OfG5zEQAAAAAAAAB5CBfth89+9rPx5Cc/OR7xiEfE+eefH91ud6oDRVnu/DPe2zajq6++Ov7Df/gPcb/73S/OOeecuOWWW0bdMgBAabVSQ6f1pYI6YRKkNhzYXAQA4yP1vSxcBAAAAAAAAEAewkUJ/X4/PvrRj8av//qvxzOe8Yz40pe+dI9Qze11wwgU3Tm4M6hfg5a1zWj37t3x1re+NR70oAfF7//+78d111038NcHACBbq2PolPxSfx6WV3uxtrFeUDcAwL70+/3kRsFUaBgAAAAAAAAAIoSL9qnf78cFF1wQxx57bLzwhS+Mq666KjNUdCDyBIHuHF46kF+p1zuQ8FHWNqNerxfvf//747jjjoszzzwzfvjDHx7QewYAQH7tnnAR+TVr6U1W7W6ngE4AgCzdtdVYSQR+nfMAAAAAAAAAyGNu1A2Mo0984hPxhje8Ia655pq7BIfuHCjaqn2Fd/b1e9Zqtbjf/e53x6/t27dHrVa7119ra2vR6XSi2+3e49ctt9wSN954Y9x0002xa9euzN7urcf9/Zn3tclofX09PvzhD8cFF1wQL3zhC+MNb3hD3P/+99+v3xsAgP3TcqM9+yHPEHKruxyHLO0ooBsAYF9SZ7yIfKFhAAAAAAAAABAuupMvfOELcfbZZ8e3vvWtu4RjbreVUFGeoM6OHTvi+OOPjxNOOCFOOOGEeOADHxj3u9/94ogjjohms7nfr5mysrISN910U9x0001x4403xve///246qqr4qqrroof//jH9+jv3rYo5ZUVMvrQhz4UH/vYx+JVr3pVnHPOOUP5WQEAym5tYz2WV3qZNW60587yhM3yDDMDAMPVzhUucs4DAAAAAAAAIE24KCK+973vxZ/+6Z/GJZdcEhG/DL9sNUyTChMddNBB8cQnPjEe+chH3iVMVKTFxcV48IMfHA9+8IPv8Wzv3r3xL//yL3eEjS6//PL43ve+d68hodvleX/2FTLq9Xrxzne+Mz7wgQ/EueeeG3/0R38Uc3P+WAIADEq720nWuNGeO6vNL0R1bj5662v7rMkzzAwADFeesO/Oar2ATgAAAAAAAACYdKVOcbRarXjd614Xf//3fx8bGxv32FaUN1SUFbZpNBrxG7/xG/GkJz0p/v2///dxwgkn3GsAaVxs3749TjrppDjppJPu+O927doVX/ziF+OLX/xi/NM//VNcffXVdzzb361G+woZtdvt+M//+T/H+973vnjnO98Zz3zmMwf5YwEAlFaeoVM32nN3zdq2+Nne9j6f21wEAKPX6i5nPt+xWIu52dmCugEAAAAAAABgkpUyXNTv9+O9731v/MVf/EW0Wq2BhIru/Hs89rGPjdNOOy2e+tSnxiMe8YixDhPlcfDBB8dzn/vceO5znxsREbfeemv80z/9U3z605+Oiy++OH7xi19ExP4FjfYVMrruuuvitNNOi6c85Snxnve8J4466qhh/VgAAKXQTgydRkQ0hIu4m2ZtSbgIAMZcapOgADkAAAAAAAAAeZUuXPTNb34zXvGKV8S3vvWtLYWK7i08MzMzE0960pPi+c9/fjz72c+OQw89dAidj49DDjkknve858Xznve82NzcjH/+53+O//W//ldceOGFcfPNN0dE/qDRvkJGn//85+P444+Ps88+O84555xYWFgY8k8FADCdUiGQ6tx81OadtbirRq2e+Ty1KQEAGL7UOU+AHAAAAAAAAIC8ZkbdQJH+43/8j/G4xz3ujmDR3QMtWe5e2+/349GPfnS8613vihtvvDEuu+yyePnLXz71waK7m5mZiSc+8Ynx7ne/O2666aa49NJL46UvfWls3779jvcp4p5ho7u7e21ExMrKSvzVX/1VHH/88fH1r399+D8MAMAUSg2dutGee9OsLWU+b3c7BXUCAOyLcx4AAAAAAAAAg1KqcNHf/d3fxebm5h3Booi7hlru7vZATKVSuaPuV37lV+KP//iP46r/j707D5OzKvMG/FQvSVVnq5Y9AVwRZRVEQNyAURFRxF2RLVGRgCKKu5/jiKMzrqMyOohKgiwK6riBjoKKDiLIImSQZZRVFlmkO0mnq/f6/nA6JKG7TqW76q3qrvu+rlwz0+9J9VOZ6ut9E87v/FatiquuuipOPvnklgsUTSaXy8XBBx8cX/va1+Kvf/1rnH322XHQQQdFxMQNRRMZ/3Pe8M/9z3/+c/z0pz/N5D0AAMw2vU60ZwpSnwvNRQDQeOnnvMphYQAAAAAAAAAY11LhonEbhoUmu75p+OiAAw6I8847L+655574/Oc/H7vttluWI884+Xw+jj766PjFL34Rt956a5xyyimxaNGizQoZAQAwfU60ZypSn4t1Q4MxNDKS0TQAwKbK5XIVz3ldGU0DAAAAAAAAwEzXkuGiakNFnZ2dsXTp0rj++uvj8ssvjze+8Y3R2dmZ5aizwlOe8pT4/Oc/H/fdd1+ceeaZ8fSnP/0xDUUAANRHetOpE+15rGpCZz0DlT9bAED99A8PxdBo5aCv5iIAAAAAAAAAqtWS4aJNbRoqWrRoUXzgAx+IO++8M77xjW/EHnvs0eAJZ4d8Ph9vectb4sYbb4wf//jH8fznP1/ICACgznoT4aKi5iImUM3nIvXZAgDqp6fUl1yjoRIAAAAAAACAarV0uGjTUNGWW24Zn/zkJ+Puu++OT37yk7Httts2eMLZ67DDDovLLrssrrjiijj00EOFjAAA6mBodCT6hgYqrrHplIlU1VwkXAQADVNNyNdzHgAAAAAAAADVaslw0aahoq222io+97nPxZ133hkf+MAHYv78+Q2esHXsv//+cfHFF8c111wTr3jFKzYKGQEAMD02nTJV+c45UeiYU3FNT3+6MQEAqI9qQr6LCl0ZTAIAAAAAAADAbNCS4aKIv4eKFi1aFP/8z/8ct99+e7zrXe+KQqHQ6LFa1t577x3f//7348orr4yDDz44yuVyRISQEQDANFSz6bQoXMQkil2VPxvVhNcAgPpIPectzBeio609o2kAAAAAAAAAmOlaLlxULpdjzpw58b73vS9uv/32+NCHPhRdXU7xbBb77rtvXHrppXHppZfG3nvvvT5kBADA5tNcxHSkPhvVhNcAgPpIPed1FzSzAwAAAAAAAFC9lgoX5XK5OPLII+PWW2+Nf/3Xf41isdjokZjEwQcfHFdffXWcffbZsWTJkkaPAwAwI6XCH4WOOZHvnJPRNMw0wkUA0LxS9+Fi3mFKAAAAAAAAAFSvo9EDZOnKK6+MZz3rWY0eg81w9NFHx2tf+9q47bbbGj0KAMCM01Pqq3i92KW1iMkVE+GiapqxAID6SD3ndXdpLgIAAAAAAACgei3VXCRYNDPl8/nYddddGz0GAMCM09NfOfyRaqahtWkuAoDm1Vvqr3jdcx4AAAAAAAAAm6OlwkUAANBKegcqhz+KeZtOmVx3oXLjQf/wYAyODGc0DQAwrlwupxsqhYsAAAAAAAAA2AzCRQAAMEulmmW6u2w6ZXLVNB70ai8CgMytGx6M4dHRims0FwEAAAAAAACwOYSLAABglurpT4SLbDqlgmoaD1IBNgCg9qoJ93rOAwAAAAAAAGBzCBcBAMAsNDQyEv3DgxXXdBfmZzQNM1E14SLNRQCQvWrCvdXcxwEAAAAAAABgnHARAADMQj0DNp0yPfmOzujqnFNxjeYiAMheqp0yFxGL8l3ZDAMAAAAAAADArCBcBAAAs1BPf19yTbdwEQmpdivhIgDIXm8iRL4w3xUdbe0ZTQMAAAAAAADAbCBcBAAAs1BvFaEPzUWkFAuVWw96SukQGwBQW6nmIs94AAAAAAAAAGwu4SIAAJiFUo0yXZ1zIt/RmdE0zFSp5qJqQmwAQG2lwr3aKQEAAAAAAADYXMJFAAAwC6VCH060pxqpzcmpEBsAUHup5zzhIgAAAAAAAAA2V0uHiy655JJGjwAAAHWRCn3YdEo1UiE04SIAyJ7nPAAAAAAAAABqraXDRYccckg84QlPiH/6p3+KO++8s9HjAABAzfSU+ipe7y7Mz2gSZrLU5uTS8FAMjAxnNA0AUC6XNVQCAAAAAAAAUHMtHS6KiPjLX/4SH//4x+MpT3lKHHzwwXHeeefFwMBAo8cCAIBp6S31V7xu0ynVqOZzktrgDADUzrqhwRgeG624RogcAAAAAAAAgM3V8uGiiL+f+Dk2Nha//vWv45hjjoltt902TjjhhLjqqqsaPRoAAExJurlIuIi07q705uQe4SIAyEw1oV7PeQAAAAAAAABsLuGiiMjlcpHL5aJcLke5XI41a9bE1772tTjggANi1113jc997nPx4IMPNnpMAACoyuDIcPQPD1VcY9Mp1ejOpz8nPf2Vg2wAQO2kAuQRGioBAAAAAAAA2HzCRfH35qKIR0NGGwaNbr755njf+94XO+ywQxxxxBHxwx/+MEZHRxs8MQAATK6aE+1tOqUaczo6oqtzbsU1mosAIDup+24uIhblu7IZBgAAAAAAAIBZQ7jo/4yHiTYNGo1fGx4ejh//+Mfxqle9Krbffvt43/veFzfddFMjRwYAgAlVE/bQXES1ursqf1Z6B4SLACArqRD5onxXtLf5J18AAAAAAAAANo//0jyBDYNGE7UZPfDAA/G5z30udt9999h///3ja1/7WqxZs6bRYwMAQERUFy7SXES1UkG0nn7hIgDISuo5zzMeAAAAAAAAAFMhXJQwUZvRhkGjq6++Ok444YTYbrvt4phjjolf/epXDZ4YAIBW11Pqq3i9q3NuzO3ozGgaZrpiPtFcVEWYDQCojVS4SDslAAAAAAAAAFMhXFSlDduMIuIxIaNSqRTnnXdevPCFL4wnPelJ8fGPfzzuvvvuBk8NAEAr6i31V7ze3WXTKdVLfV5SYTYAoHZSod5iYX5GkwAAAAAAAAAwmwgXTcGGQaOJ2ozuvPPO+Kd/+qd40pOeFC960Yvi29/+dgwODjZ6bAAAWkQq7JFqooENdSc2KafCbABA7aSbi7oymgQAAAAAAACA2US4aJomajMaDxqNjY3FL3/5y3jTm94U2223XZx00klxzTXXNHhiAABmu/SmU+Eiqpf6vJRGhqI0PJTRNADQusrlchXPeZqLAAAAAAAAANh8wkWxcShoqjZsM9rwNce/1tvbG2eccUbst99+sccee8QXvvCFePjhh2v1FgAAYL3kptMu4SKqV6wijNab+MwBANPXNzQQI2OjFddUc98GAAAAAAAAgE21dLjofe97X2y33XYThoKmo1KbUblcjhtvvDFOPfXU2H777ePVr351XHTRRTE2Njbt9wMAABHpoEcxb9Mp1aum6Uq4CADqr5r7rYZKAAAAAAAAAKaipcNF//qv/xp33313XHzxxfHqV7865syZsz4AVM82o/FrQ0ND8YMf/CBe8YpXxA477BAf/OAH49Zbb63JewMAoDUNDA9FaXio4prurvkZTcNsUE0DQqotCwCYvmrut8JFAAAAAAAAAExFS4eLIiLa2tri0EMPje985ztx3333xZe+9KXYe++9J20fmqoNg0YTtRndf//98elPfzp22WWXeM5znhNnnXVW9PX11eptAgDQImw6pdbmtHfE/Dn5imuEiwCg/lL321wuFwvzXRlNAwAAAAAAAMBs0vLhog11d3fH29/+9rjmmmti1apVccopp8RWW201afvQVE0WXBr/+pVXXhlvfetbY7vttoulS5fGb37zm2m/NwAAWkPvQH9yjXARmyvVXtRTcjACANRbbyJctCjfFe1t/rkXAAAAAAAAgM3nvzZPYrfddovPf/7zce+998YPfvCDeMUrXhHt7e0Ttg9N1YZtRhHxmJDRunXr4pvf/GYcdNBBsdNOO8UnP/nJuPfee2v1FgEAmIV6+tMhj1RQBDaVCqSlNjsDANOXai4q5j3jAQAAAAAAADA1wkUJ7e3tcfjhh8f3v//9uPfee+Ozn/1s7L777pO2D03VhkGjidqMbrvttvjIRz4ST3jCE+IlL3lJfOc734nh4eFavU0AAGaJ1KbTeXPmxpz2joymYbZIhYtSnzsAYPpSTYHaKQEAAAAAAACYKuGizbDVVlvFu9/97rjhhhvimmuuiRNPPDG6u7snDBpNx2TBpXK5HKOjo3HJJZfEG97whthuu+3i5JNPjj/84Q/Tfm8AAMwOqQaZ7sL8jCZhNkm1XQkXAUD99Zb6K17v7hIuAgAAAAAAAGBqhIumaO+9945///d/j/vuuy8uuOCCOPTQQ6Otra1ubUYbvub41x555JH48pe/HPvss0/stddecfrpp8cjjzxSk/cHAMDMlAp5ONGeqdBcBACNl2ouKuY95wEAAAAAAAAwNcJF0zRnzpx47WtfGxdffHH85S9/iX/5l3+JnXfeedL2oamq1GZULpfjhhtuiFNOOSWWLFkSr3/96+OnP/3p+vUAALSOVHNRqoEGJpIKFw2ODEdpeCijaQCg9ZTLZc1FAAAAAAAAANSNcFENbbvttvH+978/brrpprjiiivirW99ayxcuHDCYNBUTdZmNH5tcHAwvvvd78bLXvay2HHHHeP//b//F3/+85+n/+YAAJgRUifaay5iKoqF+ck12osAoH76hgZiZGy04hrPeQAAAAAAAABMlXBRney///7x1a9+Ne6///4455xz4oUvfOH6pqGI2rYZlcvlCduM7r333vVNSs9//vPj7LPPjv7+yiecAgAws6UCHjadMhXVfG5SwTYAYOqqCfFqqAQAAAAAAABgqoSL6iyfz8eb3vSm+PnPfx533HFHfOxjH4snPelJE7YP1SJotOnrjX/9t7/9bSxbtiy23XbbeMtb3hK//e1va/L+AABoHqXhoRgYGa64xqZTpqJY6Equ6enXXAQA9VLNfba7iqZBAAAAAAAAAJiIcFGGdthhh/jIRz4Sf/rTn+LXv/51HHvssdHV1TVhMGiqNmwz2vD1xr/W19cXK1asiOc///mx8847x6c+9am4//77a/L+AABorN4qTrTXXMRUdLZ3xPy5+YpregeEiwCgXlINgblcLhbNLWQ0DQAAAAAAAACzjXBRgzzvec+LFStWxF//+tc466yz4vnPf35ERF3ajMrl8oRtRn/605/iQx/6UOy4445x2GGHxX/+53/GyMhITd4fAADZ66kqXOREe6YmFUzTXAQA9ZMK8S7Kd0Vbm3/qBQAAAAAAAGBq/BfnBps3b14cd9xxcdlll8Wf//zn+H//7//FDjvsUNM2o4iY8PXGg0ajo6PxX//1X/Ha1742Fi9eHO9617ti1apV035vAABkq5rmomKhK4NJmI2K+US4qIrPHwAwNakQr3ZKAAAAAAAAAKZDuKiJPPGJT4zTTjst7rjjjrjkkkviyCOPjHw+P2H70FRt2GYUEY9pM3r44YfjS1/6Uuy1116xzz77xFe+8pXo7e2t0TsEAKCeUuGO+XPy0dnekdE0zDbdXZU3LfeW+jKaBABaTypELlwEAAAAAAAAwHQIFzWhXC4X//AP/xDnnntu/PWvf40zzjgj9t9//0nbh6aqUptRuVyO6667Lt7xjnfE4sWL48gjj4yf//znNXl/AADUR08i3GHTKdPRXZhf8brmIgCon9R91nMeAAAAAAAAANMhXNTkFixYEMcff3xcccUVccstt8T73ve+2G677SYMBk3VZG1G49cGBgbiggsuiEMPPTQe//jHx0c/+tG4/fbbp//mAACoqdSm06JNp0xDatNyb2nd+r9TAAC1lWou8pwHAAAAAAAAwHQIF80gT33qU+Nf//Vf4+67746f/OQn8ZrXvCbmzJmzPhhUyzajTV9v/Gt/+ctf4p//+Z9jp512ioMOOijOPffcKJVKNXyXAABMVWrTaXeXTadMXWrT8uDoSJSGhzKaBgBaR7lcjp6BVHNR5YZBAAAAAAAAAKhEuGgGamtri5e85CVx4YUXxn333Renn356PPOZz5ywfagWQaNNX2/867/5zW/i2GOPje222y7e9ra3xZVXXlmT9wcAwNQkm4vywkVMXaq5KCL9GQQANt/awYEYHRuruKaa+zQAAAAAAAAATEa4aIbr7u6Ok046Ka6++upYtWpVnHLKKbHVVltNGAyaqg3bjDZ8vfGvrVmzJr7+9a/Hc57znNhll13is5/9bDzwwAM1eX8AAFSnXC4ngx1OtGc6qtm0nGrPAgA2X2+pL7km1TAIAAAAAAAAAJUIF80iu+22W3z+85+Pe++9N37wgx/EK17xiujo6FgfAqplm9Gmrzf+tVtuuSXe//73xw477BCHH354/PCHP4zR0dEavksAACZSGhmKwZHhimu6u2w6Zeqqab7SXAQAtVfN/VVzEQAAAAAAAADTIVw0C7W3t8fhhx8e3//+9+Pee++Nz33uc7HHHntM2D5Ui6DRpq9XLpdjZGQkLr744njVq14VS5Ysqcn7AgBgcr2l/uSaasIhMJmO9vZYMLdQcU1PFc0KAMDmSYWL2nK5WJi4RwMAAAAAAABAJcJFs9yWW24Z73rXu+L666+Pa6+9Nk466aTo7u6eMBg0VRu2GW36euVyOR566KHpvxEAACqqJtShuYjpSrUi9GouAoCaS91fF+W7oq3NP/MCAAAAAAAAMHX+q3ML2WuvveL000+P+++/Py688MJ46UtfGm1tbXVrMwIAIDs9/elQRzHflcEkzGapcFGqWQEA2Hyp+2vq/gwAAAAAAAAAKcJFLaizszNe85rXxEUXXRR/+ctf4l/+5V9i5513nrB9aKpBIwEjAIBs9Q5U3nS6YG4hOts7MpqG2Uq4CACylw4Xzc9oEgAAAAAAAABmK+GiFrftttvG+9///rjpppvid7/7Xbz1rW+NhQsXThg0AgCgeaWai4oFrUVMX1G4CAAy15u4v3rOAwAAAAAAAGC6hItYb7/99ouvfvWrcf/998e5554bL3zhCyOXy60PGgkYAQA0Lyfak4VUc1FvaZ0WUwCosZ5SX8XrnvMAAAAAAAAAmC7hIh4jn8/HkUceGT//+c/jzjvvjNNOOy2e/OQnCxgBADSx3uSm08qhEKhGMbF5eWh0JPqHhzKaBgBmv7FyOXpL/RXXeM4DAAAAAAAAYLqEi6ho++23jw996EPxb//2bwJGAABNLN1cZNMp01fN5yjVrgAAVK9vsBSj5bGKa4qe8wAAAAAAAACYpo5GD0Dzuvnmm2PlypVx7rnnxl//+tf1Xy+Xyw2cCgCATZXL5ehNhItsOqUWqgsXrYvtF22RwTQAMPulAuQRQuQAAAAAAAAATJ9wERtZvXp1fOtb34oVK1bENddcExHCRAAAza40PBSDoyMV19h0Si0sKnQl16SCbgBA9YSLAAAAAAAAAMiCcBFRLpfj5z//eaxcuTJ++MMfxuDg4EaBolwut9FaAACaS3WbTudnMAmzXUdbeyzMF2LNQGnSNdV8HgGA6qRCu225XCzIp8O/AAAAAAAAAFCJcFEL+9Of/hQrVqyIc845J+67776ICKEiAIAZqJqmmGIVjTNQje78vMrhon7hIgColVRot5ifF20b/BseAAAAAAAAAEyFcFGLWbt2bXz729+OlStXxpVXXhkRAkUAADNdNU0xxfy8DCahFRQL8+Ku3ocnvd5T6stwGgCY3VL31WLBMx4AAAAAAAAA0ydc1CJ+8YtfxIoVK+IHP/hBlEp/P2V8PDyU2+R00+mGijZ9PQAA6iu16XTh3EJ0tLdnNA2zXXfX/IrXewc0FwFArfSW+ite7+4SLgIAAAAAAABg+oSLZrHbb789Vq5cGd/85jfjL3/5S0TUr6VosoDSM57xjFi2bNm0XhsAgMp6E81F3U60p4ZSn6eefuEiAKiVZHORdkoAAAAAAAAAakC4aJZZt25dXHjhhbFixYr47W9/GxH1CxRN9nqPe9zj4sgjj4xly5bFM57xjGl/DwAAKutJhIuKwkXUUOrz1FtaF+VyWaMpANRA6jlPiBwAAAAAAACAWhAumiUuu+yyWLlyZXzve9+L/v7+iHg07DNZq9BUTfR6bW1t8eIXvziWLl0aRxxxRMyZM2da3wMAgOrZdEqWUp+n4bHRWDc8GPPn5DOaCABmp7FyOVaX+iuu6e7ynAcAAAAAAADA9AkXzWB33XVXrFy5Mr75zW/GnXfeGRHZtxQ9+clPjuOOOy6OO+64WLJkybS/BwAAmy/dXDQ/o0loBdWE1Xr71wkXAcA0rR0sxWh5rOKaYl64CAAAAAAAAIDpEy6aYUqlUnznO9+JlStXxm9+85sol8uZB4q6urri1a9+dSxbtixe8IIXTPt7AAAwdeVyOXpTzUVOtKeGuqsIq/WU+mL74hYZTAMAs1cqQB4R0d0lRA4AAAAAAADA9AkXzRCXX355rFixIr773e9GX19fRDwa9tkwALTh16dqstfbf//9Y9myZfH6178+FixYMK3vAQBAbfQPD8XQ6EjFNU60p5YW5bsiFxGV/tZRzWZoAKCynv6+5JpqGgUBAAAAAAAAIEW4qIndc889cfbZZ8fZZ58dt912W0RE5i1F22yzTRx99NGxbNmyeNrTnjbt7wEAQG31lGw6JVvtbW2xMN8Vqwf6J12TatMCANJ6ByrfT9tzbbFgbiGjaQAAAAAAAACYzYSLmszAwED853/+Z6xYsSJ+9atfRblcnjRQFFGflqKOjo447LDDYunSpXHYYYdFe3v7tL4HAAD1U01DTHeXcBG11V2YVzFcpLkIAKavp7/y/XRRoSvaNvm3PQAAAAAAAACYCuGiJvG73/0uVq5cGRdeeGGsWbMmIh4NDmURKIqI2GWXXWLp0qVx9NFHx9Zbbz2t7wEAQDZSDTG5iFiU78pmGFpGd2Fe3Nnz0KTXhYsAYPpS91PtlAAAAAAAAADUinBRA913333xzW9+M84+++z43//934iISVuKphsomuz1Fi5cGK9//etj2bJlsd9++037ewAAkK3UptMF+UJ0tGmipLaKic3MwkUAMH29A6lw0fyMJgEAAAAAAABgthMuytjQ0FB8//vfj5UrV8all14aY2NjkwaKIurTUpTL5eLAAw+MZcuWxatf/eooFArT+h4AADROT79Np2Qv1ZSQatQCANJSz3nFgnZKAAAAAAAAAGpDuCgjV199daxYsSIuuOCC6O3tjYhHg0O1DhRt+prjr7fDDjvEscceG0uXLo0nPvGJ0/4eAAA0XvpE+8ohEJiKVGitp7Ru/cEGAMDUpMK6QuQAAAAAAAAA1IpwUR098MADcc4558TKlSvj5ptvjoiYtKWoXoGiuXPnxhFHHBFLly6NF73oRTb3AQDMMj2lvorXi8JF1EHqczUyNhp9QwOxYK6WVACYirFyWYgcAAAAAAAAgMwIF9XY8PBw/OhHP4oVK1bEz3/+8xgdHZ00UBQx/VDRZK+31157xbJly+JNb3pTFIvFaX0PAACaV0+/Tadkr5rPVU9pnXARAEzR2oH+GEv8u6EQOQAAAAAAAAC1IlxUI9ddd12sXLkyvvWtb8UjjzwSEdm3FG2xxRZx5JFHxrJly2LPPfec9vcAAKC5lcvl6C0JF5G9aj5XvaV1sWNxywymAYDZpyfxjBfhOQ8AAAAAAACA2hEumoaHHnoozj333Fi5cmXceOONEZFdoGj8Ndva2uKQQw6JZcuWxSte8Yro7Oyc9vcBAGBmWDc8GMNjoxXXdBfmZzQNrWRhvityuVzFv+dUsykaAJiYcBEAAAAAAAAAWRIu2kyjo6Px4x//OFauXBk//elPY2RkZNJAUUT9Woqe/OQnx9KlS+PYY4+NJUuWTPt7AAAw8/T2pzedFgtdGUxCq2lva4tFcwvRO9A/6ZqeUl+GEwHA7JJqp2zPtcX8uYWMpgEAAAAAAABgthMuqtKqVatixYoVcf7558fDDz8cEdm1FI2/3rx58+I1r3lNLF26NJ7//OdP+3sAADCzVRPe0FxEvRQL8yuHi6oIvwEAE0s1FxULXdG2ySFHAAAAAAAAADBVwkUVPPLII3HeeefFihUr4oYbboiI7AJFG77ms5/97Fi2bFm8/vWvj/nzbQ4FAODvUptOcxGxKK+5iProLsyLO3smv947IFwEAFOVCpELkAMAAAAAAABQS8JFmxgbG4uf/OQnsWLFirj44otjeHh40kBRRP1airbddts4+uijY9myZbHzzjtP+3sAADD79CbCRQvzXdHe1pbRNLSa7q55Fa9rLgKAqestTd4OGPH3kC8AAAAAAAAA1Ipw0f/54x//GCtXroxzzz03HnzwwYjIvqWos7MzDjvssFi2bFkceuih0d7ePu3vAwDA7JVqLrLplHoq5it/vlLhNwBgcqnmoqLnPAAAAAAAAABqqKXDRb29vXH++efHypUr49prr42I7ANFERG77rprLF26NI4++ujYaqutpv19AABoDcJFNFKyuWhgXZTL5cf8PQgASPOcBwAAAAAAAECWWjpctO2228bw8PCkgaKI2oeKxl9v0aJF8YY3vCGWLl0a++6777S/BwAArSfVDFMszM9oElpRalPz6NhYrB0ciIX5QkYTAcDsMDY2FqsH+iuu0VwEAAAAAAAAQC21dLhoaGhoffAni5aiXC4XBx10UCxbtixe/epXRz6fn/b3AQCgdaVPtO/KaBJaUXcV4bXeUp9wEQBspjWDpRhL/Puk5iIAAAAAAAAAaqmlw0XjcrlcTQJF4681bvw1d9xxxzj22GNj6dKl8YQnPKEm3wcAgNZWLperCBdpLqJ+qmlM6Cmtix27t8pgGgCYPVLPeBHCRQAAAAAAAADUlnBRTL+paKJAUT6fjyOOOCKWLVsW//AP//CYJiMAAJiOvqGBGBkbrbimmvAHTNWiuYXkQQ3VbI4GADbWW8X9syhEDgAAAAAAAEANCRdN0aZhofENdXvvvXcsW7YsjjzyyCgWiw2YDACAVlDNptPuLuEi6qetrS2K+a6KAaJqPqcAwMZS4dz2trZYMDef0TQAAAAAAAAAtALhos00UUvRlltuGW9605ti6dKlscceezRqNAAAWkg1jTDdeeEi6qu7MK/iZ1FzEQBsvp5SX8Xr3fl5WtIBAAAAAAAAqCnhoipM1FLU3t4eL37xi2PZsmVx+OGHR2dnZ4OmAwCgFaVCG7lcLhbmuzKahlZVLFQOsAkXAcDmS90/U/dfAAAAAAAAANhcwkUVTNRStNNOO8Vxxx0Xxx57bCxevLhRowEA0OJSJ9ovyndFe1tbRtPQqroTm5t7hYsAYLOl7p+p+y8AAAAAAAAAbC7hok1MFCiaN29evPa1r41ly5bFc5/73EaNBgAA6/WW+iteL+ZtOqX+ugvzK15PheAAgMfSXAQAAAAAAABA1oSLYuNAUcSjoaIDDjggli1bFq9//etj3jz/0R4AgOaRCm040Z4spJuL+mOsXI62Tf7OBQBMLhUu6u7ynAcAAAAAAABAbQkX/Z/xQNF2220XxxxzTCxdujSe+tSnNngqAACYWE+/Tac0Xqo5YbQ8FmsHS7Eo35XRRAAws42NjcXqgcoNlanmQAAAAAAAAADYXC0fLiqXy9HZ2Rkve9nLYtmyZXHooYdGW1tbo8cCAICKegcS4SLNRWSgms9Zb2mdcBEAVGn1YGn9IUiTKeY95wEAAAAAAABQWy0dLtptt91i6dKlcfTRR8eWW27Z6HEAAKAq5XI5ekqVw0WpRhmohWrCRT2ldfH47q0ymAYAZr6eUl9yjYZKAAAAAAAAAGqtpcNFq1atavQIAACw2dYODsTo2FjFNZqLyMKCfFe05XIxVqFhoZpN0gDA3/UmAuQRnvMAAAAAAAAAqL22Rg8AAABsnt5qTrQvzM9gElpdWy4XxXzlDc49/elN0gDA36XaKTva2mP+nHxG0wAAAAAAAADQKoSLAABghukp9SfXONGerBQTn7XeAeEiAKhWKpRbLHRFLpfLaBoAAAAAAAAAWoVwEQAAzDA9ieaiXC4XC+cWMpqGVtfdlWguSjQwAACPSoVytVMCAAAAAAAAUA/CRQAAMMP0JsIaxXxXtLV51CcbxXwiXJRoYAAAHlVNcxEAAAAAAAAA1JodhwAAMMOkmmC6C5XDHlBLqc9bqoEBAHhU+jlPcxEAAAAAAAAAtSdcBAAAM0yqucimU7LU3ZUIF5XWxVi5nNE0ADCzpUK5QuQAAAAAAAAA1ENHowdg6kZHR+P++++P++67L9auXRulUilKpVIMDAxEeYLNe8ccc0wDpgQAoNZSJ9oXC10ZTQLpMNtYuRxrB/pjkc3QAFDR6NhYrB7or7im6H4KAAAAAAAAQB0IF80Qt9xyS1x11VVx/fXXx/XXXx+33nprPPjggxOGiCYjXAQAMDv0lPoqXtdcRJaq2eTcU1onXAQACWsG+pP/1qe5CAAAAAAAAIB6EC5qUqOjo3HRRRfFRRddFD//+c/jnnvu2ej65oSKIiJyuVwtxwMAoEHGyuXoTZxob9MpWarm89ZTWhdPqP8oADCjpdopIzznAQAAAAAAAFAfwkVN5n//93/jq1/9apx77rnx8MMPR8TEQaLNCQttbhCpkk9/+tNx0UUXJddtvfXW8d3vfrdm3xcAgL/rGyzF6NhYxTXVNMlArSyYW4j2XFuMlif/XPZWsVkaAFpdNeEiz3kAAAAAAAAA1INwUZO45ZZb4rTTTovvfOc7MTY2tlEgqFKQKBUcqnVj0SGHHBIf/OAHK64pl8uRy+Xi17/+dbzgBS+o6fcHAGh1TrSn2bTlclEsdMXf+vsmXVPN5xYAWl0qjNvR1h7z5+QzmgYAAAAAAACAVtLW6AFa3dq1a2P58uWx++67xwUXXBCjo6PrwznjvyL+HtiZ6FfW9txzz3jZy162/ntXmunrX/965vMBAMx2wkU0o1SLQk9p8uARAPB3qftld2FezQ8SAgAAAAAAAIAI4aKG+vGPfxy77LJLnHnmmY8JFUVEQ0NElXzgAx9Y/79vGILa8Fe5XI7vfe97sXbt2gZOCgAw+6ROtG/L5WJBviujaeDvugvzK17vLfVnNAkAzFw9ifulADkAAAAAAAAA9SJc1ADlcjk+8IEPxBFHHBH33nvvpKGiZvXsZz87nvnMZ07aXjRucHAwvv/97zdqTACAWSnVXFTMz4s2J9qTsdRmZ81FAJDWm7hfppoCAQAAAAAAAGCqhIsytnbt2jj00EPjM5/5zIwLFW3oxBNPrGrdBRdcUOdJAABaSyqkYdMpjZAOF1UOxQEA6ful5iIAAAAAAAAA6kW4KENr1qyJQw45JC655JL1waKIqYeKxoNJuQacTH/kkUfGokWL1s+xqVwuF+VyOS699NJYs2ZN1uMBAMxayU2nXTadkr1UqK13oD/GxsYymgYAZqZe4SIAAAAAAAAAGkS4KCNr166NQw45JK688sqIeDR8U22oaMMgUaMCRRuaO3duvOpVr5pw/g2/NjIyEj/72c+yHA0AYFaz6ZRmlPrclcvlWDNYymgaAJh5RsfGYvVAf8U1GioBAAAAAAAAqBfhoowcddRRcdVVV23UVpSyaZBoPIw0/qujoyOKxWJst91269dn6aijjqpq3U9+8pM6TwIA0DpSzUXFvE2nZK+aUFvqswsArWz1QH+k/rVQiBwAAAAAAACAeulo9ACt4J/+6Z/ixz/+cdXBog1DQuNrd9hhhzjkkENin332ib322ise//jHx9Zbb71+XVtb9jmxAw88MLbZZpt48MEH1zcxbWj8a5qLAABqY6xcjtWlyifad3fZdEr2qmlS6Cn1xRNj6+Q6AGhFqXbKiIjuwvwMJgEAAAAAAACgFQkX1dkVV1wRH//4xzc7WFQul2PRokVxzDHHxJvf/ObYY4896j7r5srlcvGSl7wkzj777Me0JpXL5fVfe+CBB+JPf/pT7LTTTo0YEwBg1lg7WIrR8ljFNTad0gjz5xaiva0tRscm/3xqLgKAyVVzn6wmzAsAAAAAAAAAU5F93U0LGR4ejuOPP359oKhSsCiXy61v+pk7d258+MMfjjvuuCO++MUvNmWwaNxLX/rSqtZdfvnldZ4EAGD2s+mUZtWWy0V3vvJnr5pGBgBoVT2lvorXO9vaY96cuRlNAwAAAAAAAECrES6qo89//vNx0003rQ8NTWbDtqJnP/vZccMNN8THP/7xKBaLGU06dS960YvWz79pe9GGhIsAAKavp7/yptOIiG7hIhokFWzTXAQAk0vdJ4uFeRX/7Q0AAAAAAAAApkO4qE76+/vjs5/9bPI/+o8Hj8rlcpxwwgnx61//OnbaaaeMppy+YrEYu+yyS8U15XI5rrvuuowmAgCYvVLNL+25tlgwt5DRNLCxVLCtp1+4CAAmk3rOEyAHAAAAAAAAoJ6Ei+rkq1/9avztb3+LiJi0tWg8WJTL5eLDH/5wfOUrX4mOjo4sx6yJZz/72RXfY0TEzTffHCMjI1mOBQAw66RPtO+KNifa0yCaiwBg6qppLgIAAAAAAACAehEuqpPTTz+9YmvRhsGi5cuXx8c//vEMp6utfffdd8Kvbxg4Gh4ejptvvjmrkQAAZiWbTmlm3V2VP3+9A8JFADCZ1HNed2F+RpMAAAAAAAAA0IqEi+rgyiuvjDvvvDMiJm4t2jBY9JznPCe++MUvZjxhbe2yyy5Vrbv11lvrPAkAwOzWa9MpTSz1+Vs90B+jY2MZTQMAM0vyOS8R4gUAAAAAAACA6RAuqoPzzz9/0msbthnNnTs3zjrrrGhvb89irLrZeeedq1p3xx131HkSAIDZrafUV/F6t+YiGqiYr/z5K5fLsWagP6NpAGDmGBkbTd4jU/dZAAAAAAAAAJgO4aI6+OlPf7pRiGhT461FJ598cjzlKU/JcLL62GKLLeJxj3tcRETF9y1cBAAwPb2lyptOhYtopGoaFXoGKrcyAEArWj3QH4/tPt+Y5iIAAAAAAAAA6km4qMYeeOCBuO222yLi7yGiDW0YvCkUCvGe97wn09nqacmSJY95v5u69957M5oGAGD2GRsbi95EMKMoXEQDVRNu6+kXLgKATfWW0vdHIXIAAAAAAAAA6km4qMYuv/zyitfHW4te/vKXx5ZbbpnRVPW3zTbbJNc89NBDGUwCADA7rRksxVgizG3TKY00f04+OtraK66pZvM0ALSaniruj0LkAAAAAAAAANSTcFGNrVq1qqp1r3/96+s8Sba23XbbSa/lcrkol8vx8MMPZzgRAMDs4kR7ml0ul4tioavimp5SX0bTAMDMkQoXdba3x7zOuRlNAwAAAAAAAEArEi6qsdtvv33Cr+dyuY3+9wMPPDCjibIxf/785Jre3t76DwIAMEs50Z6ZoLtQ+e8FPaX+jCYBgJkjFSLvLszf6N8WAQAAAAAAAKDWhItqbLJw0YZ22mmnKBaL9R8mQ/l8PrlmcHAwg0kAAGanVLiova0t5s8tZDQNTCzVntWruQgAHiP1nJdqBgQAAAAAAACA6RIuqrH7779/0pNEy+Vy5HK5eMpTnpLxVPUnXAQAUF89iVBGd35etDnRngZLhYuqaeACgFbT0594zks0AwIAAAAAAADAdAkX1di6denNcttvv30GkzSfkZGRRo8AADBj9SZPtK8c6oAspD6HwkUA8Fip57xUeBcAAAAAAAAApku4qMaqCRfNnz/7ThstlUrJNXPnzs1gEgCA2SkVyrDplGaQ+hyuGeiP0bGxjKYBgJmhZ0CIHAAAAAAAAIDGEi6qsYGBgeSaOXPmZDBJtvr7+5Nrurq6MpgEAGB2SoWLbDqlGaTCReWIWD2Q/rsDALSKkbHRWDNQ+dAeIXIAAAAAAAAA6k24qMYKhUJyTTUtPzPNgw8+mFxTzZ8NAAATSzYXddl0SuNVE3LrKfVlMAkAzAyrS+nQrXARAAAAAAAAAPUmXFRj1bTzrFtXeWPoTHTPPfdMeq1cLkdExIIFC7IaBwBgVhkbG0u2vXQX5mc0DUyums9hKigHAK2kmvui5zwAAAAAAAAA6k24qMbmzUufJHrfffdlMEm27rjjjsjlcpNez+VysWTJkgwnAgCYPVYPltYHtidTzDvRnsabN2dudLa1V1zTK1wEAOtVEy6qphkQAAAAAAAAAKZDuKjGuru7K278LJfLcffdd2c4Uf3dc8898cgjj0REVHzvO+64Y1YjAQDMKj2lvuSa7i6bTmm8XC6X3ACtuQgAHtWbeM6b094RXZ1zMpoGAAAAAAAAgFYlXFRjT3ziEye9Nt7s87//+78xPDyc1Uh1d91111W1TrgIAGBqqml66XaiPU0i9VkULgKAR/WU+ite7y7Mq9gWDgAAAAAAAAC1IFxUY0960pMm/PqGjT5DQ0Nxww03ZDVS3f3iF7+oat1OO+1U50kAAGanVBijo6095s/JZzQNVJZsLupPN3EBQKtINRel7qsAAAAAAAAAUAvCRTU2WbhoU5dcckmdJ8nOT37yk6pOUN1nn30ymAYAYPbp6a8cLioWupxoT9PoLsyveL13oHJDAwC0klSIXDslAAAAAAAAAFkQLqqxZz7zmVWt+9GPflTnSbJx3XXXxW233RYRG7czRcRGG1yLxaLmIgCAKUpvOq0c5oAsdXclmosSDQ0A0Ep6hYsAAAAAAAAAaALCRTW21157RaFQiIh4zOnx5XI5crlclMvl+P3vfx8333xzI0asqTPPPLPi9fH3rLUIAGDqbDplJinmK38e1wyUYmRsNKNpAKC5pULkRc95AAAAAAAAAGRAuKjGOjo6Yt99931Mi89EvvzlL2cwUf089NBDcd555z0mRDWRF7/4xRlMBAAwO9l0ykySai6KiFg90J/BJADQ3EZGR2PNYKniGg2VAAAAAAAAAGRBuKgOUkGa8faib3zjG3HXXXdlNFXtffKTn4x16/6+0TUVpnrlK1+ZxUgAALNSb6mv4nXNRTSTaj6PPf2VA3MA0Ap6B9L3Q895AAAAAAAAAGRBuKgOXv/61096bcMQztDQUJx66qlZjFRzf/zjH+M//uM/Jm0tGg9QRUTssssu8aQnPSnL8QAAZo3RsbFky4tNpzSTahoWUm1cANAKekvpJj8NlQAAAAAAAABkQbioDp70pCfFPvvsE+VyecLwzfjXy+VyfP/734/zzjuvAVNO3ejoaBx77LExNDQUEZVbi3K5XLzpTW/KajQAgFlnzUB/VO6IFC6iuXR1zonO9vaKa1JtXADQCnqquB96zgMAAAAAAAAgC8JFdXLssccm14wHjJYvXx433HBDBlPVxtvf/va47rrrNmon2tCGgaq5c+fGW9/61izHAwCYVappeHGiPc0kl8sl24t6qmhqAIDZLvWcN7e9IwqdczKaBgAAAAAAAIBWJlxUJ29+85tjq622ioiYtL1o/FpfX18cdthhcdttt2U641R8+tOfjq9+9asTvqcNjbczveENb4gtttgio+kAAGafasJFqSAHZC3VsqC5CAAiehPPecXCvOS/wQEAAAAAAABALQgX1Uk+n4+TTz55wmafcRsGjO6777547nOfG6tWrcpqxM122mmnxQc/+MH1mxpSrUVtbW1x6qmnZjYfAMBslNp02tnWHvPmzM1oGqhOKlxUTWgOAGa71P0wdT8FAAAAAAAAgFoRLqqjd7zjHbH11ltHxMTtRREbB4weeOCBOOCAA+Kcc87JbMZq9PX1xVFHHRUf+9jH1s+bCk3lcrk49thjY9ddd81qTACAWakn0fDiRHuaUVG4CACSUvfDonZKAAAAAAAAADIiXFRHCxcujM9+9rMVgzgRGweM+vv747jjjotXvOIVcffdd2cxZkUXX3xxPOMZz4hvfetb60NDk72fDTe1zps3Lz7xiU9kNSYAwKzlRHtmotTnMtXIBQCtIHU/9JwHAAAAAAAAQFaEi+rsqKOOigMPPHB9MGcyGwaMyuVyXHTRRbHzzjvHSSedFHfccUdW4653ySWXxAtf+MI4/PDD4/bbb08Gi8aNrzvttNNim222yWhaAIDZK32ivU2nNJ/uRNPCmsFSjIyOZjQNADQnz3kAAAAAAAAANAvhogysWLEitthii4iIzQoYDQ4OxhlnnBE77bRTvPCFL4yzzjor7r///rrNed1118VHP/rR2HnnneMlL3lJ/OpXv1ofFkoFi8av53K5eOELXxinnHJK3eYEAGgl6RPtK4c4oBGqaVroHdBeBEDrGhkdjbWDpYprNBcBAAAAAAAAkJWORg/QCh7/+MfHeeedFy996UuTDUAbBozG/+9yuRy/+tWv4le/+lVERDz96U+PffbZJ/bee+948pOfHDvuuGNVc9xxxx1RKpWiv78/HnjggbjnnnvijjvuiOuuuy6uu+666Onp2WiGTeeYzIaBqS233DLOPvvsquYBACAtdaJ9d6Ero0mgetU0LfSU1sWW8xZmMA0ANJ9qQrbdXcJFAAAAAAAAAGRDuCgjL37xi+MTn/hEfPCDH6zYXjRuw8ag8f973E033RQ333xznHPOOY/5PRO9zvj/fMpTnlLx+43bcL5KoaIN15bL5SgUCvG9730vtt1224q/BwCA6oyMjcaagf6Ka4qai2hCVTUXJYJzADCbpQLkERHFvHARAAAAAAAAANloa/QAreT9739/fOhDH3pMcGgy461FEbF+/aaNRhuuSdn092z4a7LXr2TDte3t7XHeeefFc5/73KpmAQAgbfVAf6Se9JxoTzMqdM6Jue2Vz7KoZlM1AMxW1dwHPecBAAAAAAAAkBXhooz98z//c7z3ve/dKDSUUikIVE1IadxEv2+ywFI1rzX+e9ra2uKMM86II444oqo5AACoTjXNLtU0xEDWcrlcFBOfTeEiAFpZT3/l++Dcjs4odMzJaBoAAAAAAAAAWp1wUQN86lOfis997nPR1vb3P/5qw0HjJmoemurv29zX2HDecrkcc+fOjQsvvDDe/OY3b9Z7AAAgrZrwRSrAAY2SCr71lPoymgQAmk/vQOXnvGK+a7P/zRAAAAAAAAAApkq4qEHe9a53xUUXXRSLFi3aqI2o2W0YLNpiiy3iZz/7WbzqVa9q8FQAALNTKlzU2d4e8zrnZjQNbJ5iYX7F672l/owmAYDmkwrZdndVvo8CAAAAAAAAQC0JFzXQIYccEtdee20cfPDB65uDmjVktOFc5XI5Dj744Fi1alU8//nPb/BkAACzV28iXNRdmN+Uz44QobkIACrp6U8952mnBAAAAAAAACA7wkUN9sQnPjEuvfTSOOOMM2LBggVNFzLaNFRUKBTiM5/5TFxyySWx3XbbNXg6AIDZLdVcVCx0ZTQJbL5iMlxU+fMNALNZ74BwEQAAAAAAAADNQ7ioSRx//PFx++23x6mnnhr5fP4xIaOsg0abhooiIo499tj405/+FKeeempTBJ8AAGa7nv7KzS7dhfkZTQKbL7Upum9wIIZHRzKaBgCaSzpELlwEAAAAAAAAQHaEi5rI4x73uPjMZz6zPmS0xRZbRLlcnjBoVOtwz0SvXS6Xo7OzM4466qi47rrrYsWKFdqKAAAy1JvYdOpEe5pZd1f689k70J/BJADQXIZHR6JvcKDiGs95AAAAAAAAAGRJuKgJbbPNNvGZz3wm7r333vj2t78dhxxySHR2dm4UNIp4bCBoOr8iYv3rl8vl2HnnneO0006Lu+++O775zW/Gnnvu2ag/DgCAltUzIFzEzFVNs1ZPf+XPOADMRtWEazVUAgAAAAAAAJCljkYPwOQ6Ozvjda97Xbzuda+LdevWxS9+8Yv46U9/Gv/93/8dt956a4yOjj7m91TTaLRhQGncwoULY5999okXvehFccQRR8TOO+9ck/cAAMDUjIyNxpqBUsU1ReEimlix0JVc01vqy2ASAGgu1YRrPecBAAAAAAAAkCXhohli3rx5cfjhh8fhhx8eEREDAwNxww03xA033BB33HFH3HPPPXHPPffE/fffH319fVEqlWJgYCAGBwejs7Mzurq6olAoxPz582PJkiWx4447xo477hhPecpTYp999omnPe1pVQWTAADIxupSNSfa23RK8yp0zIm5HZ0xODI86ZqeKj7nADDbVBOu9ZwHAAAAAAAAQJaEi2aofD4f++23X+y3336NHgUAgDroKaVPtO8uzM9gEpiaXC4X3YV58de1vZOu6dFcBEALSoVr8x2dUeick9E0AAAAAAAAABDR1ugBAACAx6ouXOREe5pb6jPaW8XnHABmm1S4tugZDwAAAAAAAICMCRcBAEAT6k1sOp3T3uFEe5peanN0NSE6AJhtUuFaAXIAAAAAAAAAsiZcBAAATSgVuuguzItcLpfRNDA1mosA4LGqec4DAAAAAAAAgCwJFwEAQBOy6ZTZoLswv+J1zUUAtKJUuDbV/AcAAAAAAAAAtSZcBAAATcimU2aDVAiub2gghkZHMpoGAJpDOkReOZwLAAAAAAAAALUmXAQAAE1IcxGzQTUhuFSQDgBmk6HRkegbGqi4xnMeAAAAAAAAAFkTLgIAgCaUChcVnWjPDFDN5mjhIgBayepSf3KNcBEAAAAAAAAAWRMuAgCAJjMyOhprB0sV19h0ykxQTXNRKkgHALNJT6kvuaaa+ycAAAAAAAAA1JJwEQAANJnegXTYQriImaDQOSfyHZ0V1wgXAdBKqrnvCRcBAAAAAAAAkDXhIgAAaDI2nTKbpIJw1TQ4AMBs0Zt4zit0zIlC55yMpgEAAAAAAACAvxMuAgCAJlNNuKi7S7iImaG7ML/i9d5Sf0aTAEDjpZ7zioWujCYBAAAAAAAAgEcJFwEAQJNJnWg/t6MzCh1OtGdmSLVsaS4CoJWkwkWpUC4AAAAAAAAA1INwEQAANJnkifb5rsjlchlNA9PTnQwXpZu6AGC2SIXIU6FcAAAAAAAAAKgH4SIAAGgyqSaX7i4n2jNzpDZJpzZZA8Bskm4uEi4CAAAAAAAAIHvCRQAA0GR6+m06ZfZIfV7XDQ3G0MhIRtMAQGOlQuSaiwAAAAAAAABoBOEiAABoMr0DlcNFxbxNp8wc1TRt9SQ+8wAwGwyNjsS6ocGKa4TIAQAAAAAAAGiElgoX7b///nHllVc2egw2Q39/f/zjP/5jfPazn230KAAAmekpJZqLumw6ZeYo5ruSa3r6K7c4AMBs0Jt4xosQLgIAAAAAAACgMVoqXPT73/8+nvOc58Qb3/jGuOuuuxo9DglnnXVW7LTTTvGJT3wi+vv7Gz0OAEAmhkdHom9woOIam06ZSar5vPYOeN4HYPZLBcgjIoqe8wAAAAAAAABogJYKF4278MIL42lPe1qccsop8dBDDzV6HDbxgx/8IHbfffd461vfGvfff3+jxwEAyFQ1IYvuwvwMJoHayHfOiULnnIprNBcB0AqqCRcJkQMAAAAAAADQCC0ZLiqXyzE4OBinn356PPnJT45//Md/jNWrVzd6rJZ36aWXxv777x+vfvWr449//GOUy+VGjwQAkLmefifaM/ukNkr3VrHZGgBmutT9rtAxJ/KJQC4AAAAAAAAA1ENLhotyuVzkcrkol8vR19cXn/jEJ+IJT3hC/OM//mP09PQ0eryW81//9V/xnOc8Jw455JC4+uqr14eKcrlcgycDAMhebynd4OJEe2aaVCCumiYHAJjpehLPecUuz3gAAAAAAAAANEZLhos2DK+Mh4xWr169PmT0wQ9+MO6///4GTzm7lcvl+N73vhf77rtvHHbYYXHllVdGuVyOcrm8/v8vAACtKBWyyHd0RsGJ9swwqUCccBEArSDVUClADgAAAAAAAECjtGS4KCLWB1kiNg4ZrV27Nj796U/HE5/4xHjzm98cf/zjHxs86exSKpXiy1/+cjz1qU+N173udXHttdc+JlS04f9vAABaTSpkYdMpM1F3YX7F673CRQC0gN4Bz3kAAAAAAAAANKeWDReNmyxkNDQ0FCtXrow99tgjDjnkkPjRj34k8DINt912W5x66qmx/fbbx8knnxy33XabUBEAwARSIYuiTafMQOnmor6MJgGAxkmFyD3nAQAAAAAAANAoHY0eoBHGgywb2jRgtOHXLr300rj00ktjhx12iBNOOCGOOeaYWLx4cbZDz0AjIyPx4x//OM4888y45JJLHhPkGidQBADwKM1FzEapzdL9w0MxODIcczs6M5oIALLX0+85DwAAAAAAAIDm1FLNRVtsscWE4ZYNTdZkVC6X4+67744Pf/jD8fjHPz5e+tKXxve+970YGhrKbP6Z4oYbboh3vetdsXjx4njNa14TP//5z2NsbGyjlqKIqNhUtGn4aMstt8xkdgCARkuHi+ZnNAnUTjWbpVOtXQAwkw2NjET/8GDFNZ7zAAAAAAAAAGiUlgoX3XrrrXHcccet/783DLpsajz4smEgZjxoNDo6Gj/72c/ida97XWy99dZx3HHHxX/913/F6OhoRu+k+dx6663xsY99LHbZZZfYe++940tf+lI8/PDDj/kzjKgcKoqIjdbtuOOO8YMf/CBOPPHETN4HAECjpQIWqQYYaEbVhItSwToAmMl6BtL3Oc95AAAAAAAAADRKS4WLHve4x8VZZ50Vl112WTztaU97TEPRZCq1Ga1ZsybOOeecOOyww2LrrbeOo48+Or773e9GX19fJu+pka666qr40Ic+FLvttlvssssucdppp8Utt9wyYSgrorpQ0fifbXt7e7znPe+Jm266KQ4//PCs3hIAQEMNjY5E39BAxTXVhDSg2VSzWVq4CIDZrKc//W+FnvMAAAAAAAAAaJSORg/QCM973vNi1apVcfrpp8dpp50Wvb29GwVbJjNZGGn86z09PXH++efH+eefH52dnbHffvvFQQcdFAceeGAccMABMWfOnPq+sTq7+eab41e/+lX86le/il//+tfxt7/9LSJioz+zTUNalf48N/0942tf/OIXxxe+8IV42tOeVqvRAQBmhFRrUYRNp8xMczs6o6tzTvQPD026pqc0+w9oAKB19Q70J9doLgIAAAAAAACgUVoyXBQR0d7eHqecckocffTR8aEPfSi+8Y1vxNjY2GOCLhPZNEwzUdBoaGgoLr/88rj88svj4x//eMydO3ejsNFee+0VCxYsqNO7m77R0dG4+eab4/LLL4/LLrssLrvssnjooYfWX9/0z2eiP4OUTX/PTjvtFJ/73OfiZS972TSnBwCYmaoJF9l0ykzVXZgf/cOPTHq9t5TedA0AM1WquajQOSfyHZ0ZTQMAAAAAAAAAG2vZcNG4LbbYIr761a/GO97xjnj/+98fP/3pTzcKDKWCMtUEjSIiBgYG4je/+U385je/iY997GMREbHjjjvGHnvsEXvssUfsvvvusccee8RTn/rUaGtrq+VbTPrrX/8aq1at2ujXLbfcEsPDwxO+l4ipNRRN9HvL5XJstdVW8ZGPfCROOOGE6Oho+Y8kANDCejQXMYsVC/Pi3jWTh4s0FwEwm6VC5J7xAAAAAAAAAGgkSY7/s9tuu8XFF18cl112Wbzvfe+La665ZrNCRpuu2TRoNNFr3HXXXXH33XfHRRddtP5rc+bMiSVLlsSSJUti++23X/+/j/9asGBBFAqFyOfzUSgU1v8aNzQ0FKVSaaNf/f398eCDD8Y999wT9957b9x7773r//d77rkn1qxZU3HO8fdT6f1WY9NQ0bx58+Ld7353vPe974358+dv1msBAMxGqXBRoWNO5DvnZDQN1FZq03Q14ToAmKlS9znhIgAAAAAAAAAaSbhoEwceeGD8/ve/jx/+8IfxsY99LK6//vrNDhlNtG6isNFE6wYHB+P222+PO+64Y7Pm7uzsjNHR0RgbG6v691R6L7UIE030WuVyObq6uuKkk06K9773vbHllltO6TUBAGajVHNLscumU2Yu4SIAWlnqPlcULgIAAAAAAACggdoaPUCzesUrXhHXXXddfO9734tnPOMZUS6Xo1wurw8JTRS+qWT892/4KyI2er0Nf020vtKvoaGhGB0d3azfU+n7TzTz5tr0tebNmxfvec974o477ohPfepTgkUAAJvoLfVXvO5Ee2ay1KbpXuEiAGax1H2uu6DVGwAAAAAAAIDGES5KeOUrXxnXXntt/PSnP40DDzxwwmDOVE0W+Nnwtev9a7I5ptNStGlAasstt4yPf/zjcffdd8enP/3p2Gqrrab8ZwYAMJslm4vywkXMXN1dlTdNl4aHYmB4KKNpACBbqec8IXIAAAAAAAAAGkm4qEqHHHJI/PKXv4zf//738cY3vjE6OjombP+Zrs1tLNo0CDSd3zsdE4WVdttttzjjjDPirrvuig9/+MNRLBZr8r0AAGarntSJ9l02nTJzFfNdyTWpnwEAmIkGR4ajPxGgFS4CAAAAAAAAoJGEizbTPvvsE+edd17cfffd8dGPfjS22267mrYZTVUtg0LVmqgBqb29PV75ylfGL3/5y1i1alUcf/zxkc/nM50LAGCm6ulPhItsOmUGSzUXRUT0DvRnMAkAZKu3ivBs0XMeAAAAAAAAAA0kXDRF22yzTXz0ox+Nu+++O374wx/G4YcfHu3t7etDPhsGbxoRNqqXiQJF5XI5nvrUp8anPvWp+Mtf/hLf+9734sADD2zsoAAAM8zQyEj0Dw9WXFPM23TKzNVdxee3p78vg0kAIFvVNPMJkQMAAAAAAADQSB2NHmCma2tri5e//OXx8pe/PB588MH41re+FRdccEFceeWV69dsGjDKumFoOiYKRo3Pv80228TrXve6eOMb3xj7779/1qMBAMwqPQNVbDqtovkFmtWcjo6YN2durBuaPERXzeZrAJhpNBcBAAAAAAAA0OyEi2po6623jne+853xzne+M+6666747ne/Gz/84Q/jiiuuiLGxsYh4bNAoornCRpXCRBERO+ywQxx++OHxqle9Kl7wghdEW5vyKwCAWqimscWJ9sx0xcK8iuGiajZfA8BMkwrPdnXOibkdnRlNAwAAAAAAAACPJVxUJ49//OPj1FNPjVNPPTX+9re/xcUXXxw/+9nP4pe//GU88MAD69dNFDYaV8/Q0WTfc9PvO2fOnNh///3jRS96URx22GHxjGc8o24zAQC0st6B/uQaJ9oz03UX5sW9qx+Z9LrmIgBmo9T9rbugnRIAAAAAAACAxhIuysAWW2wRxxxzTBxzzDEREXHjjTfGZZddFldccUX87ne/i7vuuusxv6dS6KiWNg0wzZs3L571rGfFAQccEM973vPiec97XnR1ddV9DgCAVpdqLip0zom8E+2Z4VKbpzUXATAbpe5vAuQAAAAAAAAANJpwUQPstttusdtuu8Xb3/72iIj461//Gn/4wx/ihhtuiBtuuCFuuumm+POf/xylUin5WhMFkKppPMrlcrHDDjvE0572tNh9991jzz33jD333DN23XXXaGtr2/w3BQDAtKQ2nXbbdMoskPoc95Qqh+wAYCZK3d885wEAAAAAAADQaMJFTWDbbbeNQw89NA499NCNvn7vvffG7bffHvfcc0/ce++9cf/998dDDz0Uq1evjt7e3ujr64vBwcEYHh6OkZGRaGtri87OzpgzZ04UCoVYtGhRFIvFeNzjHhfbbrttLF68OJYsWRKPf/zj48lPfnLMnTu3Qe8YAIBN9QgX0QJSzQypnwMAmIk85wEAAAAAAADQ7ISLmtiSJUtiyZIljR4DAIAMpDedzs9oEqif1ObpgZHhKA0PRaFzTkYTAUD9pZ7zUuFbAAAAAAAAAKi3tkYPAAAARPTadEoLqKaZIfWzAAAzyXhwthLNRQAAAAAAAAA0mnARAAA0gZ5SX8XrNp0yG1QTkku1OwDATFJNaFaIHAAAAAAAAIBGEy4CAIAGGxwZjn4n2tMCqgsXVQ7aAcBMUk1otrtrfgaTAAAAAAAAAMDkhIsAAKDBnGhPq5jT3hHz5+Qrrukt9Wc0DQDUXzXPed15z3kAAAAAAAAANJZwEQAANFhVJ9oLFzFLpD7LmosAmE1S97Wuzrkxp6Mjo2kAAAAAAAAAYGLCRQAA0GDVhIs0FzFbpD7L1fw8AMBMkbqvdXd5xgMAAAAAAACg8YSLAACgwXoTm067OufG3I7OjKaB+ko3FwkXATB7pJ7ztFMCAAAAAAAA0AyEiwAAoMGSJ9rbdMoskmouSm3CBoCZJPWcV8x7zgMAAAAAAACg8YSLAACgwXpKfRWvp8IYMJN0F+ZXvN5TWhflcjmjaQCgvpIh8i7PeQAAAAAAAAA0nnARAAA0mOYiWkl3oavi9cGR4SiNDGU0DQDUV6qRLxW6BQAAAAAAAIAsCBcBAECDJTedOtGeWaRYxSbq3lJ/BpMAQH0NDA9FabhyYFZDJQAAAAAAAADNQLgIAAAaLNVcVMzbdMrsUU1YrqfUl8EkAFBfqWe8CA2VAAAAAAAAADQH4SIAAGigak607+5KN73ATFHMdyXX9PSnN2MDQLNLtVNGCBcBAAAAAAAA0ByEiwAAoIGcaE+r6WzviPlz8xXXVPNzAQDNrpr7WdFzHgAAAAAAAABNQLgIAAAaqHegP7nGplNmm1RgrpqmBwBodqlw0bw5c2NOe0dG0wAAAAAAAADA5ISLAACggXr6+5JruvPCRcwu3YX5Fa9rLgJgNkiFZVP3QwAAAAAAAADIinARAAA0UFUn2nc40Z7ZJd1clA7dAUCzSz3npe6HAAAAAAAAAJAV4SIAAGig3gEn2tN6ionN1JqLAJgNUs1FqfshAAAAAAAAAGRFuAgAABqopz+16bQro0kgO+nmonVRLpczmgYA6qMn0cSnuQgAAAAAAACAZiFcBAAADZQ60V5zEbNRajP14OhIlIaHMpoGAOqjt9Rf8bpwEQAAAAAAAADNQrgIAAAayIn2tKJiFZ/rnkTwDgCaWWl4KEojlYOy1dwPAQAAAAAAACALwkUAANBATrSnFVXzuU4F7wCgmaXaKSM85wEAAAAAAADQPISLAACgQZxoT6sq5tOf61TwDgCaWXXhovkZTAIAAAAAAAAAacJFAADQIE60p1V1tLfHwrmFims0FwEwk/VU8Zy3qNCVwSQAAAAAAAAAkCZcBAAADVLNplMn2jNbpVq5qvn5AIBmlbqPzZ+TjzntHRlNAwAAAAAAAACVCRcBAECDVNNc5ER7ZqtUK5dwEQAzWaqBTzslAAAAAAAAAM1EuAgAABrEifa0stSm6mrCdwDQrFL3sVSDHwAAAAAAAABkSbgIAAAaxIn2tLJiYX7F65qLAJjJUvcxz3kAAAAAAAAANBPhIgAAaBAn2tPKugtdFa/3lPqiXC5nNA0A1FYqXOQ5DwAAAAAAAIBmIlwEAAAN4kR7WlmquWh4dDT6h4cymgYAaisVIu9O3AcBAAAAAAAAIEvCRQAA0CBOtKeVVROe6yn1ZTAJANRWaXgoBkaGK65JNfgBAAAAAAAAQJaEiwAAoEHSzUVOtGf26u6qJlxU+WcEAJpRNfevVIMfAAAAAAAAAGRJuAgAABqgNDwUg6kT7asIX8BMtSjfFbnEmp5+4SIAZp7eKsJFnvMAAAAAAAAAaCbCRQAA0ABVnWift+mU2aujrT0W5AsV1/QOCBcBMPP0lPqSa4r5rgwmAQAAAAAAAIDqCBcBAEADVLPp1In2zHbdhfkVr2suAmAmSoXI58/NR2d7R0bTAAAAAAAAAECacBEAADRANaEJJ9oz23UXKgfoqgnhAUCz6U2Ei1L3PwAAAAAAAADImnARAAA0QO+AE+2hmNhcndqcDQDNKNVcVMwLFwEAAAAAAADQXISLAACgAVLNRU60pxWkm4uEiwCYeVL3r+4uz3kAAAAAAAAANBfhIgAAaIDkptPC/IwmgcZJhYt6S+uiXC5nNA0A1EZPf1/F657zAAAAAAAAAGg2wkUAANAAvQOai6CY+JwPj43GuqHBjKYBgOkrl8vRO9BfcU0x7zkPAAAAAAAAgOYiXAQAAA2QOtE+FbqA2aCaEF1PqfLPCgA0k9LIUAyODFdc093lOQ8AAAAAAACA5iJcBAAAGSuXy9Fb0lwE3YX5yTWpnxUAaCY9/en7luc8AAAAAAAAAJqNcBEAAGSsNDwUg6MjFdfYdEorWJTvilxiTY9wEQAzSO+AcBEAAAAAAAAAM49wEQAAZKyasEQ1jS4w07W3tcXCfFfFNcJFAMwk1TQXFfPCRQAAAAAAAAA0F+EiAADIWG8VYYlioXLgAmaLVHuDcBEAM0nqvrVgbiE62tszmgYAAAAAAAAAqiNcBAAAGasmLOFEe1pFKlxUTRgPAJpF6r6Vuu8BAAAAAAAAQCMIFwEAQMZ6Sn0Vry90oj0tpFiYX/G65iIAZpLUfasoXAQAAAAAAABAExIuAgCAjDnRHh7VXeiqeD0VxgOAZtKbuG95zgMAAAAAAACgGQkXAQBAxpxoD4/qTjQX9Zb6o1wuZzQNAExP6jlPuAgAAAAAAACAZiRcBAAAGbPpFB6VCtONjI1G39BARtMAwNSVy+VkQ6UQOQAAAAAAAADNSLgIAAAylt50WrnJBWaT7q70JutUIA8AmkFpeCgGR0cqrhEiBwAAAAAAAKAZCRcBAECGyuVyFc1FXRlNA43Xna8iXNQvXARA86smDNstRA4AAAAAAABAExIuAgCADPUPD8VQ4kR7zUW0koX5rsjlchXX9A4IFwHQ/FLtlBERRSFyAAAAAAAAAJqQcFEdrFy5Mj7/+c/HI4880uhRAABoMj2lvuSa7kK6yQVmi/a2tliUr7zRupqfGwBotGqai4pVNPYBAAAAAAAAQNaEi+rgrrvuive+972xZMmSOOqoo+I3v/lNo0cCAKBJVHOifXeXTae0llSgrqdfcxEAzS8Vhl04txAd7e0ZTQMAAAAAAAAA1RMuqpNyuRyDg4PxrW99Kw466KDYZZdd4gtf+II2IwCAFpc60T4XkWxxgdkm1eJQTSgPABotdb8qaqcEAAAAAAAAoEkJF9VRLpeLcrkc5XI5brnlljj11FNj++23j2OOOSYuv/zyRo8HAEADpMJFC/KF6Ghzoj2tJdXWlfq5AYBmkLpfpZr6AAAAAAAAAKBRhIvqLJfLrf9VLpdjYGAgzjvvvHjBC14Qu+66a3zpS1+K3t7eRo8JAEBGevpTm07nZzQJNI/UZmvNRQDMBMJFAAAAAAAAAMxUwkV1Nt5cFBEbhYzK5XLcfPPN8a53vSuWLFkSxx13XFxxxRUNnhYAgHrrHbDpFDaVCtX1DKyLsf/7exUANKtUGLYoRA4AAAAAAABAkxIuyshEIaPxr5dKpTjnnHPiec97Xuy+++7x7//+77F69epGjgsAQJ30lPoqXi8KF9GCioWuitdHx8aib7CU0TQAsPnK5XIVzUWV73cAAAAAAAAA0CjCRRkbDxmVy+X1IaMN24z++Mc/xjvf+c5YvHhxLFu2LH73u981emQAAGqop19zEWwq1VwUkW6DAIBG6h8eiqHRkYprNBcBAAAAAAAA0KyEixoo1WZ09tlnx3Of+9zYY4894itf+UqsWbOmkeMCADBN5XI5egeEi2BT1XzuU20QANBI1YRgPecBAAAAAAAA0KyEi5pAqs3oxhtvjHe84x2xePHiePOb3xxXXXVVo0cGAGAK1g0PxvDoaMU1RZtOaUEL5xbWH7YwGeEiAJpZT6kvuUa4CAAAAAAAAIBmJVzUZCq1GfX398fKlSvjgAMOiGc84xlxxhlnxNq1axs5LgAAm6G334n2MJG2trYo5rsqrhEuAqCZVXOfWlSofK8DAAAAAAAAgEYRLqqzDZuINkeqzWjVqlVx0kknxeLFi+Otb31rXH311XV6BwAA1Ep1J9rPz2ASaD6pYF2vcBEATSx1n1qYL0RHW3tG0wAAAAAAAADA5hEuqoN3vvOd8W//9m+xyy67TNpEtDkqtRmtW7cuzjrrrNh///1j7733jjPPPDP6+tKbVgEAyF5Pqb/i9VxELEq0t8BslQrWaS4CoJml7lPdee2UAAAAAAAAADQv4aI6KBaL8c53vjP+53/+Jy6//PI46qijIp/PPyYgVOs2o+uvvz6WL18eixcvjre97W1x7bXX1uPtAQAwRb2J5qKF+a5ob/OITmsqFioH66pp/gKARkmFi4qJhj4AAAAAAAAAaCQ7F+vsgAMOiG9+85tx7733xhe+8IVM2oz6+vri61//euy7776xzz77xNe+9rVYt84p3wAAjZY80d6mU1qY5iIAZrJUCLa7q/J9DgAAAAAAAAAaSbgoI8ViMU4++eT1bUZHH310Jm1G1113XZxwwgmxePHiWL58efzhD3+ox9sDAKAKwkUwudTnf3WpP8b+7+9PANBsekv9Fa8X857zAAAAAAAAAGhewkUNcMABB8TZZ58d9913X3zhC1+IXXfdte5tRmvXro0zzzwz9tlnn3jWs54V3/jGN6K/v/KmBwAAaqs3ES4qJppbYDYrJsJFo+WxWDtYymgaAKheuVyuorlIuAgAAAAAAACA5iVc1ECLFi2Kk08+OVatWhW//e1vM2szuvbaa+P444+PxYsXx0knnRTXX399Hd4dAACbSjcXdWU0CTSfapq7Uj9DANAI64YHY3h0tOIaDZUAAAAAAAAANDPhoibx7Gc/e32b0Re/+MVM2ozWrFkTZ5xxRjzzmc+M/fbbL1asWBGlkpPAAQDq4e8n2qfCRZqLaF3VbLpOtX8BQCNUc38SLgIAAAAAAACgmQkXNZlFixbFO97xjvVtRsccc8z6NqNNm4g2R6rN6Oqrr463vOUtsXjx4vXfHwCA2lk3NBgjY5VPtC/adEoLW5DvirbE33N6Sn0ZTQMA1aumWc9zHgAAAAAAAADNTLioiT372c+OlStXrm8z2n333eveZrR69er4yle+Envttdf6NqWBgYHavSkAgBZVTSjCifa0srZcLrnxuqdfcxEAzSd1f8pFxKJ8VzbDAAAAAAAAAMAUCBfNAONtRjfccENcccUVmbUZ/f73v49ly5bF4sWL4+STT44bb7yxTu8QAGD2q+ZEe+EiWl0xnwgXVfFzBABZ6x2ofH9amO+Kjrb2jKYBAAAAAAAAgM0nXDTD7L///rFy5cq4//7740tf+lJd24zGv9bb2xtf/vKXY88994znPOc5cc4558Tg4GBN3xcAwGyXCkXkcrlY6ER7Wlx3V+VwUWrzNgA0Qqq5KNXMBwAAAAAAAACNJlw0Qy1cuDDe/va3r28zOvbYYzNpM7ryyivjuOOOi+222y5OOeWUuOmmm+r0DgEAZpfeRLhoUb4r2ts8ntPaUu1dqc3bANAIPaW+ite1UwIAAAAAAADQ7OxenAX233//WLFiReZtRqeffnrsvvvu8bznPS/OPfdcbUYAABWkmouKeZtOobswv+L1VEgPABoh1awnXAQAAAAAAABAsxMumkUmajMqFAp1bzMa/16LFy+Od7/73XHLLbfU6R0CAMxcTrSHtGKhq+L13oF1MTY2ltE0AFCdVLNe0XMeAAAAAAAAAE1OuGiWGm8zuu++++JLX/pS7LHHHnVvM+rp6YkvfvGLseuuu8YLXvCCOP/882NoaKim7wsAYKZKbTrt7rLpFFLNRWPlcqwdLGU0DQCklcvlZLOeEDkAAAAAAAAAzU64aJYbbzO6/vrr43e/+10cd9xxmbQZXX755XH00UfH4sWL4z3veU/ceuutdXqHAAAzQ++ATaeQUs3PQU9iAzcAZGnd0GAMj41WXJMKzwIAAAAAAABAowkXtZD99tsvzjrrrLjvvvvi9NNPz6TN6JFHHol/+7d/i1122SUOPPDA+Pa3vx3Dw8M1fV8AAM2uXC4nAxFF4SKo6udAuAiAZpJqLYqIKBa6MpgEAAAAAAAAAKZOuKgFLVy4ME466aTM24z++7//O970pjfFkiVL4n3ve1/86U9/qtM7BABoLmsHB2J0bKziGs1FELFgbiHac5X/mipcBEAz6Sn1JddoLgIAAAAAAACg2QkXtbhN24z23HPPurcZPfzww/G5z30unva0p8XBBx8c3/nOd2JkZKSm7wsAoJn0DqTDEDadQkRbLpdsd6imIQIAspIKveYiYlFecxEAAAAAAAAAzU24iIh4tM3oD3/4Q1x55ZUTthlNRarN6Ne//nW84Q1viO233z4+8pGPxF//+tcavzMAgMbr6U+HIYqaiyAi0kG7ahoiACArqdDronxXtLf5J1gAAAAAAAAAmpv/ss1j7LvvvnHWWWfF/fffH//+7/8ee+yxx7QCRuMqtRk9+OCD8clPfjKe8IQnxHHHHRd//OMfa/FWAACaQioMkcvlYtHcQkbTQHNLBe1SDREAkKXUfUmAHAAAAAAAAICZQLiISS1YsCBOPPHE+O1vfxvLli2rScAoonKb0dDQUJxzzjmx5557xmte85pYtWpVDd4JAEBjpU60L+a7os2J9hAREd3CRQDMIKn7Uuq+BgAAAAAAAADNwA5GJvWHP/whli9fHosXL44VK1asDwDV0mRtRmNjY/H9738/9t577zjuuOPinnvuqen3BQDIkk2nUL3Uz0MqrAcAWUqGyAvzM5oEAAAAAAAAAKZOuIiNrFu3Lr72ta/Fs571rNhnn33izDPPjLVr124UAqqHSiGjc845J57+9KfHZz/72RgbG6vbDAAA9ZLedCpcBONSPw+9A/3+XgBA00iHyLsymgQAAAAAAAAApk64iIiIuO666+KEE06IxYsXxwknnBDXXnvt+sDPeNgnC5OFjNatWxfvf//7Y//994/bbrstk1kAAGpFcxFUL/XzUC6XY/VgKaNpAGBy5XK5iuc8zUUAAAAAAAAAND/hoha2bt26OPPMM+NZz3pWPOtZz4qvfe1r61uKImKjUNHmthaN/95Nf1VrspDRNddcE3vttVdcdNFFmzUPAEAj9ZT6Kl636RQeVU3YLtUGBgBZWDc0GCNjoxXXaKgEAAAAAAAAYCYQLmpB1157bbztbW+LxYsXx/LlyydsKRoP82wY8qnGpoGkTV+jFiGjvr6+eOUrXxlnnXXWZrxrAIDGGCuXo3egv+IazUXwqGIVYbtUYA8AslDN/chzHgAAAAAAAAAzgXBRixhvKdpnn31i3333ja9//esVW4qmEijaMJD0uMc9Lt7znvfErbfeGj/60Y/i5S9/ebS1tT3m+1UbNNo0ZDQ6Ohpve9vb4uKLL96cPwYAgMz1DZZidGys4hon2sOjFszNR3tb5b+q9mguAqAJVHM/Ei4CAAAAAAAAYCboaPQA1Nc111wTZ555Znz729+OdevWbRQa2jDYszlhokq/f//9948TTzwxXvva18bcuXMjImKnnXaKl73sZXH//ffHWWedFStWrIjbb799/WtsGGpK2bBdaXR0NN7ylrfETTfdFN3d3Zs9PwBAFmw6hc2Ty+WiOz8vHu5fO+mann7hIgAaL/Wcl8vlYmG+K6NpAAAAAAAAAGDqNBfNQn19ffHVr341nvnMZ8Z+++0X3/jGN6Kvr6/mLUXjv7+rqyuOP/74+MMf/hBXXHFFHHXUUeuDRRvabrvt4sMf/nD8+c9/jksuuSRe+9rXRkdHx4RzVbLhvA8++GCcfPLJVc8PAJC1XuEi2GypNq/eAeEiABov9Zy3aG4h2cYHAAAAAAAAAM3Af92eRa655pp461vfGosXL44TTzwx/vCHP6wPD20YChr/2lRCRRGPBpKe/vSnx+mnnx733XdfnHHGGbHnnntW/Xr/8A//EBdccEHcdddd8ZGPfCQe97jHbVbIaPw9lcvlOP/88+PWW2+t+nsDAGQpdaJ9Wy4XC5xoDxvp7qocLtJcBEAzSD3nFQvzM5oEAAAAAAAAAKZHuGiG6+vrizPOOGN9S9FZZ51V15aizs7OeMMb3hC//vWv48Ybb4yTTjopFixYMOX5t9122/jYxz4Wd999d3z2s5+NrbbaaqPZq3XGGWdMeQYAgHpKbjrNz4u2zXjugVbQndiMnfq5AoAs9JT6Kl7XTgkAAAAAAADATCFcNENdffXV8Za3vCW22267OOmkk+reUrTjjjvGJz7xifjLX/4S559/fjzvec+r6fspFArx7ne/O/785z/He9/73mhvb18/S2rWcrkcZ599dgwNDdV0JgCAWkhtOi3adAqPUSxUbvPqTfxcAUAWekv9Fa+nmvgAAAAAAAAAoFkIF80ga9eujf/4j/+IvffeO/bff/9YsWJFrFu3riYtRRP9/lwuFy996Uvjxz/+cdx+++3xwQ9+MLbaaqvavqlNzJ8/Pz71qU/F7373u3j84x+/fo6JbPj+Vq9eHb///e/rOhsAwFTYdAqbL9VctHqwFKNjYxlNAwATS4bI857zAAAAAAAAAJgZOho9AGm///3v48wzz4wLLrgg+vv7NwrVbBi82dww0WS/f6uttoply5bF2972tnjCE54w9cGn4ZnPfGZceeWV8fznPz/+9Kc/rW8oquTKK6+M5z73uRlNCABQHZtOYfN1Jxq9yuVyrBnoj+6uyiEkAKiXcrksRA4AAAAAAADArCFc1KTWrl0b55xzTnzta1+LVatWRUTUPVT0nOc8J0488cR4zWteE52dnVMdvWa23nrrOP/88+PZz352jIyMJANGV111VYbTAQBUp6e0ruL1VIgCWlGxip+LntI64SIAGqZvaCBGxkYrrvGcBwAAAAAAAMBMIVzUZK666qo488wz48ILL8ykpWjBggVx1FFHxfLly2O33XabxuT1sffee8fSpUvjzDPP3Gj+TZXL5bj99tsznAwAIG2sXI7VTrSHzVbNZuxUcA8A6qma+1A1YVkAAAAAAAAAaAbCRU1gvKXozDPPjP/5n/+JiPq3FO2xxx6xfPnyOOqoo2LevObe6HDiiSfGmWeeOen18Uaj3t7e7IYCAKjC2sFSjJbHKq7pLmhegU3Nn5OPjrb2io0QvcJFADRQT3/6PuQ5DwAAAAAAAICZQrioga688sr1LUWlUqlugaLx15g7d2685jWvieXLl8cBBxww9cEztscee8TWW28dDz300Pog0USEiwCAZuNEe5iaXC4X3YV58dC6NZOu6Sn1ZTgRAGysd6Dyc14ul4tFcwsZTQMAAAAAAAAA0yNclLE1a9asbym68cYbI6L+LUVPfOIT421ve1u8+c1vji222GKqozfUs571rLj44osfE5ra0Jo1k288BABohJ7+dPihW7gIJlRMhos0FwHQOKmQ66J8V7S1tWU0DQAAAAAAAABMj3BRRn73u9/FmWeeGd/5zndq3lI00Wu0tbXFy172sli+fHkccsghFUM5M8HixYsn/Hq5XF7/3sbGxrIcCQAgKXWifXuuLRY40R4mlAreCRcB0Eg9/ZXvQwLkAAAAAAAAAMwkwkV1tHr16vUtRX/84x8jov4tRdtss028+c1vjuOPPz523HHHqY7edIrFYqNHAADYbKlNp4sKXdE2w0PgUC+pTdm9wkUANFDqPiRcBAAAAAAAAMBMIlxUBzfffHN86lOfiu9+97uZtBRFRLzgBS+I5cuXx6te9aro6Jh9/2+dM2dOo0cAANhsqWYVm05hcpqLAGhmqftQ0XMeAAAAAAAAADPI7EuhNIELL7wwvvnNb270tXq0FC1cuDCOOeaYWL58eTz96U+f4rQAANRL+kT7+RlNAjNPalP2moH+GB0bi/a2towmAoBHaS4CAAAAAAAAYDYRLqqjerUU7bXXXrF8+fI48sgjo6ura3pDAgBQN5qLYOpSPx/liFg90B+P6xLSAyBb5XI5egaEyAEAAAAAAACYPYSL6my6LUXjr5HP5+N1r3tdLF++PPbbb79ajQcAQB2lTrRPNbNAK6tmU3ZPqU+4CIDMrR0ciNGxsYprhMgBAAAAAAAAmEmEi5rIRC1FT3nKU+Jtb3tbLFu2LLq7uxs1WlPZNHwFANCMxsbGojd5or1NpzCZYlf65yPVDgYA9dBb6kuuESIHAAAAAAAAYCYRLmoCm4aK2tvb4+Uvf3ksX748XvSiFzVwsuYzlSYoAIBGWDNYirHEs4twEUxuXufc6Gxrj+Gx0UnXCBcB0AjV3H885wEAAAAAAAAwkwgXNchELUXbbbddvOUtb4njjz8+lixZ0qjRmtLBBx8cHR0+rgDAzNFr0ylMSy6Xi2JhXjy0bs2ka6r5OQOAWkuFi9pyuVg4t5DRNAAAAAAAAAAwfdIaGZsoVHTwwQfH8uXL44gjjoj29vZGjdbUDjrooDjooIMaPQYAQNWqOdG+KFwEFXV3VQ4XaS4CoBFS4dZF+a5oa2vLaBoAAAAAAAAAmD7hogxMFCgqFotx7LHHxgknnBA777xzo0YDAKBOUqGH9ra2mO9Ee6iouzC/4vWe/r6MJgGAR6We87RTAgAAAAAAADDTCBfV2XiwaDxU9MxnPjNOPPHEeMMb3hCFgs2kAACzVepE++78vGjbIIQOPFYxX3lzdurnDADqIfmclwjHAgAAAAAAAECzES6qs3K5HIVCId7whjfE8uXLY5999mn0SAAAZKCnVLlRpehEe0jq7qr8c9IzIFwEQPZSzUXFQldGkwAAAAAAAABAbQgX1dFOO+0Uy5cvj2OPPTaKxWKjxwEAIEOpTafdwkWQlPo5WTNQipGx0ehoa89oIgBIh8g1FwEAAAAAAAAw0wgX1cF+++0Xl156aRx88MGNHgUAgAZJn2gvXAQp1fycrC71xxbzFmQwDQBEjJXL0Vvqr7hGiBwAAAAAAACAmUa4qA5e8pKXNHoEAAAarDfVXNRl0ymkVLM5u6e0TrgIgMz0DZZitDxWcY0QOQAAAAAAAAAzTVujBwAAgNlmbGwsegcqn2hfzNt0CindhfnJNamWMACopWruO5qLAAAAAAAAAJhphIsAAKDGVg+WolwuV1xTTWgCWl1X55yY0165cLe31JfRNAAgXAQAAAAAAADA7CRcBAAANdZTRdihu8umU0jJ5XJRTGzQ1lwEQJZ6E/edtlwuFuS7MpoGAAAAAAAAAGpDuAgAAGostek0won2UK3Uz4pwEQBZSt13ivl50ZbLZTQNAAAAAAAAANSGcBEAANRYatNpR1t7zJ+Tz2gamNlS4aJqwnwAUCuphspU4x4A8P/Zu/Mwuco6ffjf6iXd1ekk3YAsIgLKoiiiyKg4KriiKIrMKIKOIIgb7vATFR3FBQdxd1xQB3eFccEFV3DBcUM0CrIIAgGMYFDsytbV+3n/8O3YgXQ9J+mqU11Vn8915Zqhz5M+d2c4p06Y5z5fAAAAAABgMVIuAgCAOhsZTbzRvjwQJW+0h1xMLgJgMalUR2seHx5QLgIAAAAAAACg9SgXAQBAnVXGapcdhsuDBSWB1peaAKFcBECRkpOL+pWLAAAAAAAAAGg9ykUAAFBneSYXAfmkynjrx6sxNT1dUBoAOl2q1JqauAcAAAAAAAAAi5FyEQAA1Fl606nJRZBXnk3aqWlhAFAPM1kWa6ujNdcMDygXAQAAAAAAANB6lIsAAKDOKtUNNY97oz3kN5TjekkV+gCgHtaPV2M6m6m5Zqjfcx4AAAAAAAAArUe5CAAA6mh6ZibWjldrrlEugvzyXC/KRQAUIc/nzfCACZUAAAAAAAAAtB7lIgAAqKN1Y6ORZVnNNXkmsQD/UO5dEn3dPTXXVJSLACjAyGjt6ZQRSuQAAAAAAAAAtCblIgAAqKNcb7S36RRyK5VKyUKeyUUAFKEyVvvzprvUFcv6ygWlAQAAAAAAAID6qf36Z7bJ3/72t7j66qubHaMwpVIp+vr6oq+vL/r7+6O/vz+23377GBwcbHY0AIDC5SsXeU6CrTE8MBhrNqyd9/hINT1JAgAWamS09nPeivJAdJVKBaUBAAAAAAAAgPpRLmqAH/zgB3Hsscc2O0bTlcvl2GmnnWLnnXeOffbZJ/bbb7+43/3uFwcccEDsuuuuzY4HANAQlUS5qLerO5Yu6SsoDbSHof7E5KLEZm8AqIdUidx0SgAAAAAAAABalXJRg2RZ1uwITTc6OhqrVq2Km266KX75y19udmyPPfaIQw89NB796EfHEUccEStWrGhSSgCA+kpNUBkqL42SN9rDVklt1q6MKRcB0Hipz5sh5SIAAAAAAAAAWpRyUQPZNPoPWypazZaOPvWpT8WSJUviiU98Yhx77LHx9Kc/PXp6/GsJALQub7SH+hseSEwuSlx3AFAPqUl5nvMAAAAAAAAAaFVdzQ7Q7rIs69hfs0ql0hZ/za4bHx+Pb3zjG/GsZz0r7n3ve8cHP/jBqFarTfy/GgDAtqskSg7eaA9bb6i/9nWzYXwsJqenCkoDQKdKPecNlwcLSgIAAAAAAAAA9aVcRMOkikdbKhr96U9/ile+8pWx5557xmc/+9km/wQAAFvP5CKov9TkooiISnW0gCQAdKqZLIvKmOc8AAAAAAAAANqTchFNkSoa3X777XH88cfHYx7zmLjxxhubnBYAID/lIqi/PJMgUtceACzE+rHRmJkzqXtLTKgEAAAAAAAAoFUpF9F08xWNsiyLH//4x3HQQQfFd7/73SanBABIm56ZiXVjtaenDOUoSQCby1PKq1Q3FJAEgE6Vp8SqRA4AAAAAAABAq1IuYlG5c8koIqJSqcQRRxwR733ve5sZDQAgae3YaNR+n33E8IBNp7C1yr1Loq+nt+Yak4sAaCTlIgAAAAAAAADamXIRi9JsyWh2itH09HSceuqp8b73va/Z0QAA5jWSY3LKcL9Np7AtUhu2lYsAaKRK4nOmu9QVg33lgtIAAAAAAAAAQH31NDtAu5udvlPL7KSeen7PrVHk+bf2XHMLRlmWxSmnnBLLli2LE088cZszwJ396U9/iu9973txxRVXxNVXXx2rVq2K9evXx7p16yLLsli2bFksW7Ys7nnPe8Z+++0X+++/fzz+8Y+Pvffeu9nRAVhk8pQbhkwugm0yXF4af1lfmfd4atM3ACxE6jlvqDwQXXX+b3YAAAAAAAAAUBTlogba2iJNLXcu9NTre88Wd7bm+27rue98rq0539yC0Utf+tI48MAD40EPetA25YCIiEqlEp/4xCfis5/9bFxxxRU1195xxx1xxx13xE033RQ/+clPNn197733jmOPPTZe/OIXx0477dToyB3lxhtvjM985jO51++xxx5x/PHHNy4QQE6pTae93d2xtLevoDTQXkwuAqCZUp8zw+XBgpIAAAAAAAAAQP0pFzXA0UcfHUcffXTNNRs2bIjXvOY1cc4552z62p2LNvOVfgYGBuKggw6K/fbbL/bdd9+4973vHTvuuGPc7W53i6Ghoejr64u+vr4olUoxNjYW4+PjsXbt2vjrX/8at99+e9xwww1x3XXXxVVXXRW//vWvY+PGjclzzn49y7Lo6uqKF77whfHOd74zli7dfIPf2NhYjI2NxYYNG+K2226L2267La699tr4/e9/HytXroyrr756s+859/vWMrdgND4+Hs961rPiN7/5TQwO2rjB1tmwYUO89a1vjQ996EOb/bu/Lf74xz/GGWecEe94xzviuOOOizPPPDN22GGHOiXtXFmWxQknnBCXXHJJ7t9zyCGHKBcBi0JqcspwebDuUyihUwwpFwHQRKnnvNTnFAAAAAAAAAAsZspFTfD9738/XvjCF8Ytt9wSEflKRQ984APj6U9/ehx++OHxwAc+MLq7u3Oda2BgIAYGBmJ4eDj22GOPuxyfnp6Oyy+/PL797W/H1772tVi5cuWmDHOLP7M5ZqcHffSjH41vf/vb8bGPfSwe//jHb/p+/f390d/fH0NDQ3GPe9zjLuf7y1/+Et///vfjc5/7XPzwhz+MmZmZzaYS1TJbMIqIuP766+OMM86Is88+O9efA0REfOMb34iTTz45Vq9eXdfvOzExER//+MfjK1/5SrzrXe+K5z3veXX9/p3mnHPO2apiEcBikio3DJUHCkoC7Sc1EWKkuqGgJAB0otTnTGrCHgAAAAAAAAAsZl3NDtBpzjzzzDj88MPj5ptv3qy0M2tuoWfp0qVx8sknx5VXXhkrV66MN77xjfHgBz84d7Eoj+7u7jjwwAPjDW94Q/z617+Oq6++Ol760pfG4ODgZoWiWbOZsyyLm2++OZ70pCfFO9/5ztzn23nnneO5z31ufP/7349Vq1bFi170oujt7d1sMlHKbBHpgx/8YNxwww1b/0PTcWZmZuINb3hDHHnkkXUvFs3197//PU444YR4wQteEBMTEw07TztbvXp1nHbaac2OAbDNRkZTm05NXYRtldq0vXFiPCampwpKA0CnSZXIlYsAAAAAAAAAaGXKRQWZmpqKE044Id74xjduNq1ntkwzd3pPT09PvOxlL4sbbrghPvjBD8Z+++1XWM773Oc+8YEPfCBuvPHGeMUrXhG9vb2b8s2am31mZiZe97rXxfOf//yYnp7eqnPttttu8eEPfziuueaaeOxjH7vFMtOdzS1jTU5Oxumnn75V56TzTE9Px7Oe9ax4+9vfnpyOVS8f//jH4wlPeEKMjo4Wcr528uIXvzjWrVvX7BgA26xi0yk0TJ7rJ3UNAsC2mJmZibVjtf+OP+Q5DwAAAAAAAIAWplxUkGc/+9nx6U9/etOEnoh/TgGa+88HHHBAXHbZZfH+978/7na3uzUt7/bbbx/vfe9747LLLosHPvCBW8wd8c8pQp/85Cfjuc997jada88994yLLroo3vWud21Wtqpl9rxf/epXGzqJhtY2MzMTxx9/fHzpS18q/NyXXHJJPP3pT4/x8fHCz92qvvCFL8SFF17Y7BgACzIyVrvYYNMpbLs8109qqgQAbIt149WYSbywRIkcAAAAAAAAgFamXFSAU089dVO5YW5B587/fNxxx8WvfvWreMADHtCcoFuw//77x6WXXhonnHDCZgWjiLhLwei8886L17zmNdt8rle/+tXx1a9+dYvTkuaaO31meno6PvKRj2zzOWlvp59+enzuc5/bqt+z9957x/HHHx/vete74txzz41PfvKT8Z73vCdOOumkuP/9779V3+v73/9+nHTSSVv1ezrV3/72t3jFK17R7BgACzI1Mx3rxqo119h0CtsuT7nI5CIAGiFPedVzHgAAAAAAAACtrKfZAdrdueeeG+95z3vuUiqK+Gcpp1QqxRve8IZ4y1ve0qyYNfX09MQnPvGJ2G233eKMM87YlDvirgWjd7/73XG/+90vjjvuuG0611Of+tT4zGc+E8cee+ymP5tsnjfDzh4799xz4+1vf/u2/XC0re985ztx1lln5V7/tKc9LV7/+tfHQx7ykJrrrrzyyjj77LPjc5/7XMzMzCS/72c/+9k45JBD4sQTT8ydpRO9/OUvj7/97W/NjgGwIGuro8k1Np3Ctiv3Lolyz5KoTk3Mu8bkIgAaIU95dag8WEASAAAAAAAAAGgMk4sa6M9//nO8+tWvThaLXvGKVyzaYtFcb3rTm+JVr3rVXSYYzZr9mV75ylfGrbfeus3neeYznxmvfe1r5y0VRWz+Z3n77bfHL37xi20+H+3njjvuiOc+97k1/x2atd1228W3vvWt+NrXvpYsFkVE3P/+949Pf/rT8bOf/Sx22223XHle9rKXxfXXX59rbSe68MIL44tf/OK8x7u6fFQBrSHfG+1tOoWFGBqoXdAbqW4oKAkAnST1nNfd1RXL+voLSgMAAAAAAAAA9WfHdgO96EUvinXr1kXE/MWiRz3qUfHud7+7WRG32rve9a445JBD7lIwmvvzrVu3Ll70ohct6DxnnHFGHHjggRERWywy3dk3v/nNBZ2P9nL66afnmoJzj3vcI371q1/F4YcfvtXneNjDHha//vWvY7/99kuurVar8apXvWqrz9EJ1q9fHy9+8YvnPb7LLrvEU5/61AITAWy7POWiIZOLYEGG+xPlolGTiwCov1R5dbh/aa7/fgUAAAAAAAAAi5VyUYNccskl8a1vfWtTkWjW3I0GAwMD8bnPfa6lNh+USqX43Oc+F0uXLt30z7NmC0dZlsW3vvWt+MlPfrLN5+nu7o73vve9uSbPZFkW3/3ud7f5XLSX3/72t/Hxj388uW7FihVx8cUXx73vfe9tPteOO+4YP/jBD+Ie97hHcu2FF14Y3/72t7f5XO3qNa95TaxevXre4x/4wAdixYoVBSYC2HaVxKbTJd09MdC7pKA00J5SBb3KmHIRAPVXSZTIFcgBAAAAAAAAaHXKRQ3yzne+c95jsyWcV7/61bHrrrsWmKo+dt111zjllFOSxZ9afwZ5PPKRj4wnPOEJd5mSNNfs16+88soYHx9f0PloD2eccUbMzMwk13384x+Pfffdd8Hn23nnneMLX/hCdHd3J9e+6U1vWvD52slPfvKTOOecc+Y9fsQRR8S///u/F5gIYGFSk4uGy95oDws1PJCYXJRjghgAbK08z3kAAAAAAAAA0MqUixrgqquuiu985zvJqUWnnnpqM+LVxSmnnJKcXvSd73wnrrrqqgWd5+STT5732Nw/2+np6bj88ssXdC5a37XXXhvf+MY3kuue9rSnxTOe8Yy6nfeRj3xkvPCFL0yu+/Wvfx0//OEP63beVjY2NhbPf/7z5y0pDg4Oxoc+9KGCUwEsTOqN9jadwsKlrqORUeUiAOovVS4yuQgAAAAAAACAVqdc1ABf/OIX5z02W7555jOfGcuWLSswVX0tW7Ysjj766OT0oi984QsLOs+Tn/zk2GmnnSIikm/6X7ly5YLORet7z3vek/x3sqenJ971rnfV/dxvectbYvny5cl17373u+t+7lb0pje9Kf74xz/Oe/xtb3tb7LbbbgUmAlg4m06h8Yb6a19Ho5PjMTE1VVAaADpFskSemKwHAAAAAAAAAIudclEDfOMb30gWYY466qiC0jTOv/3bv9U8nmVZfPOb31zQObq6uuLwww9PFkYiIm644YYFnYvWNj4+Hueff35y3b/927/FXnvtVffzb7/99vH85z8/ue573/terFmzpu7nbyUrV66sWbL6l3/5l3jZy15WYCKA+kiVi0wugoUbHhhMrhkZM70IgPqZmZmJythozTWp8isAAAAAAAAALHbKRXV20003xZVXXhkRsVkhZm7ZqKenJw499NCio9Xdox71qOjt7Y2IzX++2elMERFXXXVV3HzzzQs6zxOf+MRc61avXr2g89DaLrzwwli7dm1y3Stf+cqGZXj5y18eXV21b6vT09Nx3nnnNSzDYjc1NRUnnHBCTE9Pb/F4T09PfPzjH0/+OQIsRunJRelSBFBbnpLeyOiGApIA0CnWjleTL70Z9pwHAAAAAAAAQIuze7vOLr300nmPzW5E2GuvvWLp0tZ/o+nSpUtj7733Tq77xS9+saDz/Mu//EuudX/6058WdB5a2xe/+MXkmr322ise9rCHNSzD7rvvHo985COT6/JkbVdnnXVWXH755fMef9WrXhUHHHBAgYkA6mNqejrWj1drrjG5CBZuKMd1VEkU/QBga4xU06XV4QHPeQAAAAAAAAC0NuWiOrvqqqtqHi+VSrHvvvsWlKbx9tlnn+TbW6+++uoFnWOPPfaIoaGhiNh8QtKsUqkUWZbFmjVrFnQeWtf09HRcfPHFyXVHH310w7M861nPSq657LLL4o477mh4lsXm2muvjbe+9a3zHt9zzz3jzW9+c3GBAOqoMpYuMygXwcL19/RGuXdJzTWpKWIAsDXylFaH+j3nAQAAAAAAANDalIvqLFUuiojYaaedCkhSjJ133jm5Js+fScq97nWvZIlp40abCDvVr371q1i7dm1y3ZOe9KSGZ8lzjpmZmfjBD37Q8CyLSZZl8fznPz/Gx8fnXfORj3wkBgYGCkwFUD95ygx5Jq4AaaminslFANRT6jmvu6srlvX1F5QGAAAAAAAAABpDuajObrzxxuSaZcuWFZCkGIODgzWPZ1kWN9xww4LPc4973CO5plqtLvg8tKY8RZ1ly5bFQx/60IZn2X333WOvvfZKrrvooosanmUx+dCHPhQ//elP5z1+7LHHxmGHHVZgIoD6ylNmGB5QLoJ6SJWLTC4CoJ5GRmt/rgyXl25x0jYAAAAAAAAAtBLlojpbu3ZtckNBT09PQWkar9bPMvvnsG7dugWfJ8+EJOWizvWLX/wiueahD31oYdfeIx/5yOSaSy+9tIAki8Mtt9wSr3vd6+Y9vt1228X73ve+4gIBNECqzNDX3RPlniUFpYH2lpoCNlLdUFASADpBZSxVLqr94h0AAAAAAAAAaAXKRXW2fv36uqxpFRs2pDfu1ePnLZfLyTXT09MLPg+t6be//W1yzYEHHlhAkn948IMfnFxzzTXXxPj4eAFpmu+FL3xhzXvF2WefHXe7290KTARQf6ly0ZA32kPdpDZxm1wEQD2lJhcNlQcKSgIAAAAAAAAAjaNcVGd5ijQjIyMFJCnG3//+9+SaepSL+vv7k2vyFJBoP2vWrInbbrstuW6xlYumpqbi97//fQFpmuszn/lMfPe73533+KGHHhonnHBCgYkAGiM1KWV4wBvtoV6GE5OLKspFANRRqrRqchEAAAAAAAAA7UC5qM5Sb6TPsiyuu+66gtI03h//+Mfkmnq8pT/P9xgY8KbYTnTFFVfkWnef+9ynwUn+ad999821Lm/2VnX77bfHq171qnmP9/X1xTnnnFNgIoDGqVRHax5PlSGA/FLX0+jkRIxNTRaUBoB2VxlLlYs85wEAAAAAAADQ+pSL6mzZsmXzHpstyFx77bWRZVlRkRpmZmYm/vCHPySLP4ODC3+D69jYWHKNclFnuvHGG3Ot22uvvRqc5J+Gh4dju+22S67Lm71VvfSlL6053ez000+PffbZp8BEAI2Tmlw01G/TKdTLUI5N3KYXAVAP0zMzsXasdok8z+cSAAAAAAAAACx2ykV1Nl+5aG6ZaMOGDfGrX/2qqEgN8+tf/zrWr18fEVGzLFWrcJXX6Oj8Gzlmz61c1JlWrVqVXLPzzjvH0qXFbvbJU2bKk71Vff3rX48vfelL8x7fb7/94rTTTiswEUBjjSSKDMMDNp1CveSZEKFcBEA9rBsbTb4gyOQiAAAAAAAAANqBclGd3f3ud881lehb3/pWAWkaK/UzZFkWpVIp7n73uy/4XLfffntyjXJRZ7rpppuSa+rx7+DW2mWXXZJr2rVctHbt2njJS14y7/FSqRQf+9jHYsmSJQWmAmicyemp2DBee8qiTadQP3kmRKQKfwCQx8hY+vPEcx4AAAAAAAAA7UC5qM723XffmsdLpVJkWRaf/OQnY2ZmpqBU9TczMxPnnntulEql5NrUn0ket912W83jpVIpdtxxxwWfh9bz5z//Oblm5513LiDJ1p9z9erVBSQp3qmnnhq33nrrvMdf8IIXxL/+678WmAigsSpj809YnJWnDAHk09fTGwO9fTXXjFQ3FJQGgHY2MpouF3nOAwAAAAAAAKAdKBfV2X3uc595j82daHTrrbfGeeedV0SkhjjvvPM2lTpSk5rue9/7Lvh8q1atShaZ9thjjwWfh9Zzxx13JNfstNNOBSTZXJ5y0d///vcCkhTrRz/6UXziE5+Y9/guu+wSZ511VoGJABovz6bT4fJgAUmgc6SmRJhcBEA9VBKfJz1d3TG4pL+gNAAAAAAAAADQOMpFdXbwwQcn18xOLzr99NNjYmKigFT1NTExEaeffnquqUUREQ972MMWdL6RkZG4/fbbI6J2kUm5qDPlKRcNDQ01Psg2nHPjxo0xPj7e+DAFGR0djZNOOqnmmg984AOxYsWKghIBFKOSY0JKqggBbJ3UlIjUZnAAyCM1CW+4vDT3fx8DAAAAAAAAgMVMuajOHvawh8WyZcsiIra4uWBuOeaWW26JU089tbBs9XLaaafFzTffHBFbLvvM/bkHBwdzFa5qufLKK3OtUy7qTCMjI8k1s9dkkfKes52mF73xjW+MG264Yd7jT3nKU+Lf//3fC0wEUIyR6mjN4/09vVHuXVJQGugMJhcBUITUc16q7AoAAAAAAAAArUK5qM66u7vjsY99bM0JO1mWbZpe9KEPfSi+9KUvFZhwYb7yla/E+9///k355zP7Mz7mMY+J7u7uBZ3zF7/4Ra51ykWdp1qtxuTkZHJdM8pFy5cvz7Vu7dq1DU5SjMsuuyze//73z3t8cHAwPvzhDxeYCKA4qTfa23QK9Tc8oFwEQOOlJlSaTgkAAAAAAABAu1AuaoDnPve5udbNFnT+4z/+I77//e83ONXCXXTRRfHsZz97ixOZ5nPcccct+Lw/+9nPcq3ba6+9FnwuWsvExESudeVyucFJ7qq/vz/Xurw/w2I2OTkZJ554YkxPT8+75q1vfWvstttuBaYCKE4lUWKw6RTqb6i/9nVVGVUuAmDhUmVVz3kAAAAAAAAAtAvlogY44ogj4u53v3tExLxFnNmpP6VSKSYmJuJpT3tafO5znyss49b6whe+EE972tM2FSHmm1o09+fdZZdd4qlPfeqCzjs5ORk//vGPt/jnOPdre+21VwwNDS3oXLSevMWchU7P2hY9PT251rVDuejMM8+M3//+9/MeP+igg+LlL395gYkAimXTKRRveGCw5vHq1ESMTbb+cxYAzaVEDgAAAAAAAECnyLf7na3S3d0dJ598cpx++uk1p/zMLRiNj4/HcccdF7/61a/irLPOasqklS0ZGxuL1772tfHBD34wsizbNG2pltl1L3vZy6Kra2H9tZ/85Cexfv36ec87e66DDz54QeehNeUt5uQt+tRT3nNOTk42OEljXX311XHmmWfOe7ynpyc+/vGPL/hewNZ5xCMe0ZR/79ncVVdd1ewIFCS96bR2CQLYenk2c49UN8YuvUsKSANAO5qemYm1Y6M11wwpFwEAAAAAAADQJuz2bpBXvepVseuuu0bE/NOL5potz3zoQx+KBzzgAfHNb36z0RGTvvWtb8UBBxywWbGolrnH7373u8crXvGKBWe44IILcq1TLupMU1NTudYpFzXGzMxMnHjiiTVLXq985SvjgQ98YHGhAJogNbnIplOovzzXVar4BwC1rB0bjdqv1zG5CAAAAAAAAID2YaxBg/T398fb3va2eN7znpcs5cwWd2YLRjfccEMceeSRcfDBB8f/+3//L4444ojCpn5kWRbf/OY34+yzz46f//znm01Xmj2e+v2lUine+ta3Rn9//4KyTE1Nxfnnn5+rnKVc1JnyFnimp6cbnGTbz9nK02U+8IEPxC9/+ct5j++5555xxhlnFJiIWT/96U/jbne7W7NjQEeYmJ6KDRNjNdfYdAr1N9yfb3IRAGyrPCVVEyoBAAAAAAAAaBcmFzXQcccdF4cffniuqT9Zlt2lZPTzn/88jjrqqNhjjz3iNa95TfzsZz9rWNZf/OIX8drXvjb23HPPePrTn76pWDQ3T61i0eyaUqkUhx9+eBx//PELznThhRfGHXfcERF3LTXN/fNcvnx57L///gs+H61nyZIludblnXBUT3knEuX9GRabVatWxRve8Iaaaz7ykY/EwMBAQYkAmiPfplPlIqi3JT09sXRJX801ykUALESezxETKgEAAAAAAABoF607MqNFfOpTn4oHPOABsWbNmk0FnFq2VOhZvXp1vPvd7453v/vdsWLFinjYwx4WBx98cNzvfveLffbZJ+51r3vl3sA/NjYWN954Y1x77bVx1VVXxS9+8Yv45S9/GZVKZdP5Z+WdVjS36LPTTjvFJz/5yVxZUj784Q/XPD63zJRnuhHtp7e3N9e6ZpSL8p6zVctFL3jBC2Ljxvk3Wh1zzDFx2GGHFZgIoDnylItsOoXGGC4PxsaJ8XmP57k+AWA+I9UNNY/3dnUni64AAAAAAAAA0CqUixpshx12iC9/+cvx+Mc/PsbGxnIXjCI2L+3Mfq1SqcT3vve9+N73vrfZ7xkYGIi73e1uMTQ0FH19fbFkyZIolUoxPj4e4+PjsXbt2vjrX/+6xTLAlgpFd/76fOYWkAYGBuKrX/1q7LDDDsnfl3LVVVfFxRdfnOvP69///d8XfD5aU19fvk08Y2NjDU6y7edsxXLRueeeGxdffPG8x7fbbrt43/veV1wggCbyRntonqHyQKxee8e8x1ObwgGgllRJdai81MtuAAAAAAAAAGgbykUFePjDHx7nnXdeHHXUUTEzM5OrMBOxeckoVfrZuHHjpuLQnTc2bM3koTzr7/z7siyLnp6eOP/88+NhD3tYrt+bcvbZZ8+bb66BgYF40pOeVJdzks+qVavi0ksvbeg5li5dGkcccURyXblcjp6enuSUoPXr19crWm55z7l8+fIGJ6mvv/zlL3HKKafUXHP22WfHjjvuWFAigOZKlYvKPUui3Nt6RVJoBcPlwZrH85T/AGA+qc+RYQVyAAAAAAAAANqIclFBjjjiiPj85z8fz33uc2NycjJ3wSjirpOFapVtsizb4vdNvUk1b5Y7f78sy2LJkiXxmc98Jp785Cdv1feYzw033BCf//znc+V64hOfGP39/XU5L/lccskl8bznPa+h59h9991zlYsiIoaHh+Ovf/1rzTXr1q2rR6ytkvec2223XYOT1NfJJ58clUpl3uOHHHJIw//9AFhMkm+0H7DpFBoltak7dX0CQC2pcpHplAAAAAAAAAC0E+WiAj3zmc+MHXfcMZ7+9KfHunXrtqpgNGu+9bNln3qXiGqdK8uyWLFiRVxwwQVx6KGHLvj7zrr88svj+OOPz7X2P/7jP+p2XlrT9ttvnywXrV27tqA0W3fOgYGBlirHffnLX46vfvWr8x7v6+uLj33sY8n7EEA7Sb7Rvt+mU2iUVLnI5CIAFiI9uaj2BD0AAAAAAAAAaCXKRQU79NBD4+c//3kcffTRceWVV25W1FmIepSG8pib9/73v3+cf/75cd/73reu5zjqqKPiqKOOquv3pH1tv/32yTVr1qwpIMnm/vKXvyTX5Mm+WIyMjMTLXvaymmtOP/302GeffQpKBLA4jFQ31DzujfbQOKnra2xqMqqTE1HuXVJQIgDaSWoC3nB5oKAkAAAAAAAAANB4Xc0O0Inue9/7xmWXXRYveclLNpWCSqXSop72MZsvy7LIsixOPvnkuOyyy+peLIKtteuuuybX5Cn61Fuec+bJvli8+tWvrvkz7bfffnHaaacVmAhgcUi+0X5AuQgaJTW5KCK9MRwAtmRqZjrWjY3WXDNkchEAAAAAAAAAbUS5qEn6+vriv//7v+OSSy6JBzzgAYu2ZDQ3T5Zl8cAHPjAuueSS+OAHPxh9fX1NTgcRe+yxR3LNrbfe2vggd3Lbbbcl1+y5554FJFm466+/Pj71qU/Ne7xUKsU555wTS5aYCgB0nvQb7ZWLoFGGc2zqThUAAWBL1o6NRmpGuBI5AAAAAAAAAO2kp9kBOt0jH/nIWLlyZXziE5+Id7zjHXHTTTdFRGxWMJotHhVlS+fefffd4/TTT48TTzxxUZWfIE9B5y9/+UuMjo7GwMBAAYn+4frrr0+uaZVy0YYNG2oef+ADHxirV6+O8847ryHnX7VqVXLN7bffnuv8O+64YzzmMY+pRyyAmJiaio0T4zXXDPXbdAqNMlROP9uNVGs/xwDAluSZfKdEDgAAAAAAAEA7US5aBEqlUpx00klxwgknxP/+7//Ge97znvjNb36z6didyzz1LhttqSw0e44DDzwwTjnllHjmM58Z3d3ddT0v1MO97nWv5Josy+L666+PBzzgAQUkiqhUKnHHHXck1+XJ3gp++9vfxjHHHNPUDNdcc02uDIcccohyEVA3I2M5Np0OpCerANumt7snBpf0x4aJsXnXmFwEwLbI8/kxpFwEAAAAAAAAQBvpanYA/qm7uzuOOeaYuOyyy+KKK66I1772tbHHHntElmWbfkX8s3BUr18Rsdk5dt9993jta18bV1xxRfz617+OY445RrGITY4//vjN/n1pxK/ZCV557L///rnW/eEPf9jGn3jr5T1X3uwALE4jo+mJKN5oD42VusbyTJ4AgDtLlYt6u7tjaW9fQWkAAAAAAAAAoPFMLlqk7n//+8eZZ54ZZ555Zlx33XXxwx/+MH70ox/FpZdeGrfcckvN37u1k47ucY97xMMe9rB49KMfHY95zGNi3333XXB+KMouu+wSO+20U6xZs6bmupUrV8Yzn/nMQjKtXLkyuaanp6ewSUoANEZlbDS5xhvtobGGykvjT2vnnxhpchEA2yJVTh0uD25xEjgAAAAAAAAAtCrlohawzz77xD777BMvetGLIiJi/fr1ceWVV8Y111wTq1evjttuuy1uu+22uOOOO6Jarcb4+HiMjY1FRERfX1/09/dHuVyO4eHhuPvd7x677LJL3OMe94j73ve+cf/73z+WL1/ezB8PFuzAAw+M73znOzXX5Cn81MtvfvOb5Jr73Oc+0d/fX0AaABolNbmo3Lsk+nt6C0oDnWl4oHaBT7kIgG2R+vwYKg8UlAQAAAAAAAAAiqFc1IKWLVsWBx98cBx88MHNjgKLwsEHH5wsF/3yl7+Mqamp6Olp/G3vJz/5SXLNQx/60IbnAKCx0m+0N7UIGm2oP1EuSpQAAWBLUp8fw+XBgpIAAAAAAAAAQDG6mh0AYKEe+9jHJtesX78+fvWrXzU8yy233BLXX399ct3jH//4hmcBoLFSb7RXLoLGS23uroyNRpZlBaUBoF1UxkZrHvecBwAAAAAAAEC7US4CWt5DHvKQWL58eXJdarpRPeQ5R6lUylWIAmBxS5WLhmw6hYYbHqh9nY1PTUZ1aqKgNAC0i5Fq7clFnvMAAAAAAAAAaDfKRUDL6+npyVXWOf/88xue5bzzzkuuOeigg2KHHXZoeJZ6eeADHxhZljXt13HHHZfMeMghh+T6Xj/+8Y8b/wcGdIxKcnJR7YkqwMIN9ac3d4+M1r5WAWCuqZnpWDdWrbnG5CIAAAAAAAAA2k1PswO0m1tvvTUuvvjiXGvve9/7xr/8y780OBF0hmOOOSYuuOCCmmv++Mc/xqWXXhoPfehDG5LhlltuiZ/85CfJdcccc0xDzg9AsVJvtLfpFBovNbko4h9FwF1XbFdAGgDawdrqaHKN5zwAAAAAAAAA2o1yUZ19+ctfjle96lW51pqgAfVzxBFHxPLly2PdunU1173vfe+LL37xiw3J8IEPfCBmZmZqrunq6opnPetZDTk/AMUZn5qM0cmJmmtsOoXGG+ofSK4ZSUwZA4C58nxuDHnOAwAAAAAAAKDNdDU7QLv53e9+F1mWJX8dfPDB8chHPrLZcaFt9Pf3xzOf+czkui9/+ctx/fXX1/38d9xxR3z84x9PrnvCE54Qu+yyS93PD0CxKjadwqLQ290Ty/rKNdcoFwGwNfJ8bgyXBwtIAgAAAAAAAADFUS6qs+uuuy4iIkql0hZ/zR47+uijmxkT2tKrX/3qTdfZfKampuLUU0+t+7n/8z//Mzk1KSLilFNOqfu5AShevk2nykVQhKFy7elFleqGgpIA0A5SnxtLuntioHdJQWkAAAAAAAAAoBjKRXV2yy23bCo33Hla0VxPfepTmxEP2tp973vfeMpTnpJc9/Wvfz2+9KUv1e28P/3pT+Occ85JrjvwwAPjcY97XN3OGxFx0003zVtmnPvr0EMPret5ATpdnnKRyUVQjNT0CJOLANgaI9XRmseHy0uTLzYBAAAAAAAAgFajXFRnf/vb37b49bmbDnbYYYfYfffdi4oEHeVNb3pTdHWlb20nnXTSpkljC/GXv/wljj322Jienk6uffOb37zg8wGwOFQSZYWB3iXR19NbUBrobKkpYanrFQDmSk0uUiAHAAAAAAAAoB0pF9XZ5OTkvMeyLItSqRT3u9/9CkwEneXBD35wnHDCCcl1a9eujcc+9rFx4403bvO5/vrXv8bjHve4+NOf/pRc+6QnPSmOOOKIbT4XAItLahJKapIKUD+pcpHJRQBsjfRznnIRAAAAAAAAAO1HuajOli5NbzDYY489Gh8EOtiZZ54Z22+/fXLd6tWr4yEPeUh85zvf2epzXHrppXHQQQfFVVddlVzb398f73//+7f6HAAsXiPeaA+LRup6G6lujCzLCkoDQKtLTbxTLgIAAAAAAACgHSkX1dngYPot9cuWLSsgCXSuu93tbvGpT30qSqVScu0dd9wRhx9+eBx11FHx61//Orn+6quvjuc973nx8Ic/PG655ZZced7//vfH3nvvnWstAK3BplNYPFLX28T0VFQnJwpKA0CrS00uUiIHAAAAAAAAoB31NDtAu8lTLsqzBliYpzzlKXHqqafG2WefnWv9BRdcEBdccEHss88+8YhHPCLud7/7xXbbbRelUilGRkbiD3/4Q/ziF7+IK664YqtyHHvssfGCF7xgW34EABax1KZT5SIoznA5/ferkerGGFjSV0AaAFrZ1PR0rBuv1lyT53MHAAAAAAAAAFqNclGd7bDDDnHdddfVnJgyMeGt2VCE//qv/4rVq1fHF7/4xdy/57rrrovrrruuLud/7GMfG+eee25dvhcAi4s32sPikafMN1LdELuu2K6ANAC0srVjo8k1SuQAAAAAAAAAtKOuZgdoN/vss09yzcaNtTejAvXR1dUVn/nMZ+Koo44q/NyPeMQj4utf/3r09XlDPkC7GZuajOpk7bL48IA32kNRVvQPJNekCoEAEJHv80KJHAAAAAAAAIB2pFxUZ3nKRWvWrCkgCRAR0dPTE1/60pfitNNOK+ycz3ve8+Liiy+OpUttOAJoR5Ucm0690R6K09PdHcv7yjXX5LluAWCkuiG5xnMeAAAAAAAAAO1IuajO9t1335rHsyyLG264oaA0QMQ/Jhj913/9V1xwwQVx97vfvWHnGR4ejo9//ONx7rnnmlgE0Ma80R4Wn9RGb5OLAMgj9XnR190T5d4lBaUBAAAAAAAAgOIoF9XZwx/+8HmPlUqliIj44x//GFNTU0VFAv5/Rx55ZPzhD3+IU089ta5ThZYsWRInnnhiXHvttfH85z+/bt8XgMVpZDTHG+37lYugSKlCn3IRAHmkJt0NlZdu+u97AAAAAAAAANBOepodoN3stNNOccABB8Tll18epVIpsiyLiH9MLJrdfDA2NhaXXXZZHHzwwc2MCh1p2bJlcfbZZ8frX//6+NjHPhaf/exn46qrrtqm73Xve987jjnmmHjJS14Su+yyS52TMuvII4+MPfbYo+aa1HGAekqVFJYu6YslPR6zoUjpyUXpUiAApJ7zUp83AAAAAAAAANCq7HpsgCc84Qlx+eWX11zz3e9+V7kImmh4eDhOO+20OO200+Lmm2+O73//+3H55ZfH1VdfHTfddFOsW7cu1q9fH1mWxbJly2LZsmWx2267xX777Rf7779/PO5xj4v73Oc+zf4xYo899thUYmxXRx55ZBx55JHNjgGwSWUstel0sKAkwKyhxHVXqY4WlASAVpYqF6U+bwAAAAAAAACgVSkXNcAznvGMOPvss7d4bHaa0Re+8IU444wzCk4GbMnuu+8eJ510UrNjANAiRkZTm04HCkoCzBoeSE8umjtNFgC2pJKcXOQ5DwAAAAAAAID21NXsAO3ooIMOioc85CF32bw2d7rIjTfeGN/73veaEQ8AgAVIbzr1Rnso2lB/7XLR5PR0bJwcLygNAK3K5CIAAAAAAAAAOpVyUYOcfPLJNY9nWWZyEQBACxoZS5WLapccgPrLc91VElPHAOhsU9PTsX68WnON5zwAAAAAAAAA2pVyUYM861nPir333jsi4i7Ti2b/+dJLL41zzz23KfkAANg2qYLCkE2nULjhgfR1lyoGAtDZKjk+J/J83gAAAAAAAABAK1IuapDe3t747//+78iybIvHS6VSZFkWp5xySqxatargdAAAbIvq5ERUpyZqrvFGeyjeiv6BKCXWjJhcBEANI9X058RQv+c8AAAAAAAAANqTclEDPf7xj49nPOMZm00riohNhaNSqRRr166NJz/5yVGpVJqUEgCAvCo5Np0qF0Hxerq6Y1l/ueaaSnVDQWkAaEV5ykUmFwEAAAAAAADQrpSLGuxjH/tY7L333hERWywYRUT84Q9/iMc+9rFx++23F54PAID88pWLBgtIAtxZ6trLs2kcgM6Ves7r6+mNcs+SgtIAAAAAAAAAQLGUixpsxYoV8c1vfjNWrFgREXctGM3+829/+9t4+MMfHr/97W+bkhMAgLQ85YQV5YECkgB3lpoaplwEQC2pz4mh/oHN/rseAAAAAAAAALQT5aIC7LPPPvG1r30tli1bFhFbLhiVSqW48cYb4+CDD453vOMdMTk52ay4AADMI7XpdHBJfyzp7ikoDTBXqlyUZ/IYAJ1rpLqh5vHhAdMpAQAAAAAAAGhfykUFedSjHhWXXHJJ7LzzzhERmwpFEf8oGM1+bWJiIt7whjfEfe5zn/j85z8fU1NTTcsMAMDmkptOE+UGoHGGTC4CYAFGRmt/TnjOAwAAAAAAAKCdKRcV6IADDoif/exn8aAHPWhToWjW3IJRlmWxatWqeO5znxt77LFHvOlNb4orr7yyGZEBAJgjNfkkVW4AGie16XukuvEufw8DgFmVscRzXr/nPAAAAAAAAADal3JRwfbYY4+49NJL481vfnP09PTMO8FotmR06623xtve9rY44IADYq+99ooTTzwxPvnJT8ZvfvOb2LjRm7cBAIqUmnzijfbQPMPlwZrHp2amY+PEeEFpAGg1yee8Ac95AAAAAAAAALSvnmYHaFcnnHBCcs3+++8fK1eu3FQuirhrwWju12688cZYtWpVfOpTn9q0fscdd4yddtopdtppp1i2bFn09fXFkiVLNvuezVYqleJ//ud/mh0DAGDBUptOTS6C5slT7hupbojBvv4C0gDQSianp2LD+FjNNUrkAAAAAAAAALQz5aIG+dSnPpW74DNbHtrS1+aWjLa0ds2aNbFmzZpFVSaaK8sy5SIAoG1UkpOLak9OARonT7lvpLoxdhvaoYA0ALSSythoco0SOQAAAAAAAADtTLmowbZUHNrW33/notHcNQs9DwAAtVUnJ2JsarLmmuHyQEFpgDtb0T8QpYio9TejVEEQgM40Mpr+fFAiBwAAAAAAAKCdKRc1WGqi0NaUgra0dr7C0WKh9AQAtIuRHKWEIZtOoWm6u7piRf9AzekTea5jADpPpbohuWbY5CIAAAAAAAAA2phyUYM1ulyzmMs7i7n0BACwtUbybDodsOkUmmmoPKhcBMBWG6nO/9kREdHf0xvl3iUFpQEAAAAAAACA4nU1OwAAALSCSp7JRf0DBSQB5jNcrn0N5ikJAtB5Up8PQ6YWAQAAAAAAANDmlIsAACCH1MSTwb7+6O02GBSaaag8WPN4JTGZAoDOlCqRDysXAQAAAAAAANDmlIsAACCHkVGbTmGxS12HJhcBsCWpErnnPAAAAAAAAADanXIRAADkkN50WntiCtB46XLRxsiyrKA0ALSK1OSiIeUiAAAAAAAAANpcT7MDtLtSqdTsCAAA1EFlzBvtYbFLbf6enpmJ9eNjsby/XFAiAFqBEjkAAAAAAAAAnU65qIG8ERsAoH2MjG6oedwb7aH5hgfS12FlbKNyEQCbTE5PxYaJsZprlMgBAAAAAAAAaHfKRQ1y3HHHNTsCAAB1kmVZVJJvtLfpFJotz2SJkdGNcc+hHQpIA0ArqFRHk2uUyAEAAAAAAABod8pFDfLJT36y2REAAKiT6tREjE9P1VyjXATNt6KvHKVSqeYU2ZFq7SlkAHSWPJ8LnvMAAAAAAAAAaHddzQ4AAACL3cho7alFEd5oD4tBV1dXrOgfqLkmNYUMgM4ykuNzwXMeAAAAAAAAAO1OuQgAABLylBG80R4Wh9S1mGcTOQCdI/Wc19/TG+XeJQWlAQAAAAAAAIDmUC4CAICEXG+071cugsUgVS4yuQiAuVLPeQrkAAAAAAAAAHQC5SIAAEhIbTpd3leOnu7ugtIAtQyZXATAVkiXiwYLSgIAAAAAAAAAzaNcBAAACZXqhprHU2UGoDipCRMjiesZgM6SmmjnOQ8AAAAAAACATqBcBAAACek32tt0CotFasJEZWw0ZrKsoDQALHae8wAAAAAAAABAuQgAAJJsOoXWkboep2dmYsN4taA0ACx2qYl2JhcBAAAAAAAA0AmUiwAAIKGSKBcNJSalAMXJswk8VRgEoDNMTE/FxonxmmuUyAEAAAAAAADoBMpFAABQQ5ZlOSYXDRSUBkjJswk8VRgEoDPk+TxQLgIAAAAAAACgEygXAQBADaOTEzExPVVzjclFsHgs7ytHV6lUc43JRQBE5Ps8yDMRDwAAAAAAAABanXIRAADU4I320Fq6urpiqL/2NalcBECE5zwAAAAAAAAAmKVcBAAANYxUNyTX2HQKi8tQeaDm8TzXNQDtL1U2Lfcsif7eJQWlAQAAAAAAAIDmUS4CAIAa8kw4WZEoMgDFGi4P1jxeqY4WlASAxSxVNh0aUCAHAAAAAAAAoDMoFwEAQA2pctHy/nL0dHUXlAbIYygxTczkIgAiIkZGaz/nmU4JAAAAAAAAQKdQLgIAgBoqiXJRakIKULzUZvA8E8kAaH+VsdqfB0P9ykUAAAAAAAAAdAblIgAAqCFVQhjqHygoCZBXqly0tjoaM1lWUBoAFqvUc97wgHIRAAAAAAAAAJ2hp9kB2HbT09Nx2223xa233hrr16+ParUa1Wo1xsbGItvCRrnnPve5TUgJANDaRqobah4fHjC5CBaboUS5aDqbifXj1VihHAjQ0UZGUxMqlYsAAAAAAAAA6AzKRS3iD3/4Q1x66aXxu9/9Ln73u9/FtddeG7fffvsWS0TzUS4CANh6Np1C68lT+hupblQuAuhgE1NTMTo5XnPNcFmJHAAAAAAAAIDOoFy0SE1PT8eFF14YF154YXz/+9+P1atXb3Z8a0pFERGlUqme8QAAOkKWZVEZUy6CVjOcozQ0Mroh9hi+WwFpAFiMRhLPeBHpSXgAAAAAAAAA0C6UixaZ6667Ls4555z43Oc+F3/7298iYstFoq0pC21tEamWd77znXHhhRcm1+24447x5S9/uW7nBQBoho2T4zE5PV1zjU2nsPgs6x+IrlIpZmr8XahSTW8qB6B9jYxuSK5RIgcAAAAAAACgUygXLRJ/+MMf4i1veUt86UtfipmZmc0KQbWKRKniUL0nFh122GHxute9ruaaLMuiVCrFJZdcEoccckhdzw8AUKTKaLp8YNMpLD5dpVIMlZfG32tsHB9RLgLoaJWx0eQaJXIAAAAAAAAAOkVXswN0uvXr18eLX/zi2H///eP888+P6enpTeWc2V8R/yjsbOlX0Q444IB4ylOesunctTJ94hOfKDwfAEA9jYzlKRcNFpAE2Fqp4p9yEUBnS00uKvcuif6e3oLSAAAAAAAAAEBzKRc10Te/+c3Yb7/94mMf+9hdSkUR0dQSUS2vfe1rN/3vc0tQc39lWRZf+cpXYv369U1MCgCwMCOJyUWliFjRP1BMGGCrpKZNVJSLADpa6nPAdEoAAAAAAAAAOolyURNkWRavfe1r48gjj4w///nP85aKFquDDz44HvzgB887vWjW+Ph4XHDBBc2KCQCwYJVq7TfaL+8fiO4uj9SwGKUnF9W+vgFob6kJdspFAAAAAAAAAHQSOyELtn79+njSk54UZ599dsuViuZ6yUtekmvd+eef3+AkAACNY9MptK7h8mDN45XqaEFJAFiMUs95qQl4AAAAAAAAANBOlIsKtG7dujjssMPioosu2lQsitj2UtFsMWn2+xTp2GOPjRUrVmzKcWelUimyLIuLL7441q1bV3Q8AIC6UC6C1pW6PitjG2NmZqagNAAsNpXkc17tkioAAAAAAAAAtBPlooKsX78+DjvssPjlL38ZEf8s3+QtFc0tEjWrUDRXX19fHHXUUVvMP/drU1NT8b3vfa/IaAAAdZPadOqN9rB4pa7PmSyLdePVgtIAsNiMVDfUPK5EDgAAAAAAAEAnUS4qyHOe85y49NJLN5tWlHLnItFsGWn2V09PTwwNDcUuu+yyaX2RnvOc5+Ra9+1vf7vBSQAAGsPkImhdea7PVIEQgPY0PjUZo5MTNdcokQMAAAAAAADQSXqaHaATvPnNb45vfvObuYtFc0tCs2t32223OOyww+Kggw6KBz3oQbH77rvHjjvuuGldV1fxPbFDDz00dtppp7j99ts3TWKaa/ZrJhcBAK0oy7Ic5aLBgtIAWytPuWikujH2aHwUABaZPOVSJXIAAAAAAAAAOolyUYP9/Oc/j7e+9a1bXSzKsixWrFgRz33uc+PEE0+MBzzgAQ3PurVKpVI88YlPjE9/+tN3mZqUZdmmr61Zsyb++Mc/xt57792MmAAA22TjxHhMzUzXXOON9rB4DfaVo7urK6ZnZuZdkyoQAtCe8tz/lYsAAAAAAAAA6CTFj7vpIJOTk/GCF7xgU6GoVrGoVCptmvTT19cXp59+eqxatSre//73L8pi0azDDz8817qf/vSnDU4CAFBfI9UNyTU2ncLi1VUqxVD/QM01ea5zANpPnslFSuQAAAAAAAAAdBLlogZ6z3veE1dfffWm0tB85k4rOvjgg+Pyyy+Pt771rTE0NFRQ0m33+Mc/flP+O08vmku5CABoNd5oD61vuDxY83iezeUAtJ/Uc95A75Lo6+ktKA0AAAAAAAAANJ9yUYOMjo7Gu971rpqFm4jYVDzKsixe9KIXxSWXXBJ77713QSkXbmhoKPbbb7+aa7Isi5UrVxaUCACgPlKlg1KpFMsTU1GA5koVAPOUCAFoP6n7f6qcCgAAAAAAAADtRrmoQc4555y44447IiLmnVo0WywqlUpx+umnx4c//OHo6ekpMmZdHHzwwTV/xoiIa665JqampoqMBQCwIKlNpyv6ytHd5XEaFrMh5SIAtiBVIk99fgAAAAAAAABAu7EbskE++MEP1pxaNLdY9OIXvzje+ta3Fpiuvh7ykIds8etzC0eTk5NxzTXXFBUJAGDBUqWDIW+0h0XP5CIAtmSkuqHm8dTnBwAAAAAAAAC0G+WiBvjlL38ZN910U0RseWrR3GLRv/7rv8b73//+ghPW13777Zdr3bXXXtvgJAAA9WPTKbS+1OSJtWOjMTMzU1AaABaLVLnUcx4AAAAAAAAAnUa5qAG+8IUvzHts7jSjvr6+OPfcc6O7u7uIWA2z77775lq3atWqBicBAKifSnW05vHhAZtOYbEbTkwYy7Is1o5XC0oDwGJRSU6o9JwHAAAAAAAAQGdRLmqA73znO5uViO5sdmrRy1/+8thrr70KTNYY22+/fWy33XYRETV/buUiAKCVpCYXDfXbdAqL3XB5ILkmda0D0F7GpiZjdHKi5hqTiwAAAAAAAADoNMpFdbZmzZq44YYbIuIfJaK55hZvyuVynHrqqYVma6Rdd931Lj/vnf35z38uKA0AwMJkWRYjiTfam1wEi99QYnJRRMTIaO1rHYD2kppaFGFyEQAAAAAAAACdR7mozn7605/WPD47teiII46IHXbYoaBUjbfTTjsl1/z1r38tIAkAwMKtHx+L6ZmZmmu80R4Wv2V9/dHdVfuvvZUx5SKATpIqkEdEDA+ky6kAAAAAAAAA0E6Ui+rsiiuuyLXu6KOPbnCSYu28887zHiuVSpFlWfztb38rMBEAwLbLUzYYzjERBWiuUqmULAKaXATQWfJMLhruVyIHAAAAAAAAoLMoF9XZjTfeuMWvl0qlzf73Qw89tKBExRgcTG+urVQqjQ8CAFAHecoGQyYXQUsYSmwQzzPBAoD2MVLdUPP4QG9fLOnpKSgNAAAAAAAAACwOykV1Nl+5aK699947hoaGGh+mQP39/ck14+PjBSQBAFi41KbTUqkUK/rKBaUBFmJ4oHa5qJK43gFoL6lSaepzAwAAAAAAAADakXJRnd12222bTSmaK8uyKJVKsddeexWcqvGUiwCAdlIZq73pdKh/ILq6PEpDKxgu156yOlIdLSgJAItBJVUuMp0SAAAAAAAAgA5kR2SdbdxYe4NCRMQ97nGPApIsPlNTU82OAACQy8hoolxk0ym0jNQmcZOLADpLanLRUL/nPAAAAAAAAAA6j3JRneUpFw0O1n5zdiuqVqvJNX19fQUkAQBYOG+0h/aRKgOuHRuN6ZmZgtIA0GypctHwgOc8AAAAAAAAADqPclGdjY2NJdcsWbKkgCTFGh0dTa4ZGBgoIAkAwMIlN50qF0HLSF2vWUSsG0v/fQaA9pAukbffS4EAAAAAAAAAIEW5qM7K5XJyTZ4pP63m9ttvT67J82cDALAY2HQK7SNPGTBVKASgPYxNTkR1cqLmmtTEOwAAAAAAAABoR8pFdZZnOs/Gje23cW316tXzHsuyLCIili1bVlQcAIBtNpNlMTJW+3nNplNoHXnKgMpFAJ0hz/3ehEoAAAAAAAAAOpFyUZ0tXZregHDrrbcWkKRYq1atilKpNO/xUqkUu+66a4GJAAC2zYbxakzPzNRcY9MptI6lS/qit6u75pqR6oaC0gDQTJWx0eQaz3kAAAAAAAAAdCLlojobHh7eNKlnS7Isi1tuuaXARI23evXq+Pvf/x4RUfNnv+c971lUJACAbeaN9tBeSqVSctpYxeQigI4wMpouk5pQCQAAAAAAAEAnUi6qsz333HPeY7OTfa677rqYnJwsKlLDrVy5Mtc65SIAoBXkKRkoF0FrSV2zeUqFALS+1P1+6ZK+WNLdU1AaAAAAAAAAAFg8lIvq7F73utcWvz53os/ExERcfvnlRUVquB/84Ae51u29994NTgIAsHCpTaddpVIs6x8oKA1QD6kpFMpFAJ0hVSIfLg8WlAQAAAAAAAAAFhflojqbr1x0ZxdddFGDkxTn29/+9qapTLUcdNBBBaQBAFiYVMlgqH9pdOV49gEWD5OLAIjI8ZxXViAHAAAAAAAAoDMpF9XZgx/84FzrvvGNbzQ4STFWrlwZN9xwQ0RsPp0pIjYrHA0NDZlcBAC0hNQb7VMTUIDFJ1UuSl33ALQHk4sAAAAAAAAAYMuUi+rsQQ96UJTL5YiIu0zzybIsSqVSZFkWv/rVr+Kaa65pRsS6+tjHPlbz+OzPbGoRANAqUm+0T5UUgMVnKLFZfN3YaEzNTBeUBoBmGaluqHnccx4AAAAAAAAAnUq5qM56enriIQ95yF2m+GzJhz70oQISNc5f//rX+PznP3+XEtWWPOEJTyggEQDAwqU2nZpcBK1nuDxQ83gWEWvHRosJA0DTVKq17/We8wAAAAAAAADoVMpFDZAq0sxOL/qf//mfuPnmmwtKVX9nnnlmbNz4jzf7p8pUT3/604uIBACwYCYXQfsZTkwuiogYGa197QPQ2qqTE1Gdmqi5xnMeAAAAAAAAAJ1KuagBjj766HmPzS3hTExMxCmnnFJEpLq76qqr4iMf+ci8U4tmC1QREfvtt1/c6173KjIeAMA2mcmyWJt4o/3wgE2n0GqGcly3lTHlIoB2VkkUyCOUiwAAAAAAAADoXMpFDXCve90rDjrooMiybIvlm9mvZ1kWF1xwQXz+859vQsptNz09Hccdd1xMTPzjba+1phaVSqV49rOfXVQ0AIAFWT9ejelspuaaoX6bTqHVLO3ti97u7pprUlPLAGht+cpF6Ul3AAAAAAAAANCOlIsa5LjjjkuumS0YvfjFL47LL7+8gFT18dKXvjRWrly52XSiueYWqvr6+uKkk04qMh4AwDbLUy4YHrDpFFpNqVRKFgNHRpWLANpZnue8FeWBApIAAAAAAAAAwOKjXNQgJ554YtztbneLiJh3etHssQ0bNsSTn/zkuOGGGwrNuC3e+c53xjnnnLPFn2mu2elMz3rWs2L77bcvKB0AwMKMjG5Irhkum1wErWh4oPa1W6mmr38AWleqXDS4pD+WdPcUlAYAAAAAAAAAFhflogbp7++Pl7/85Vuc7DNrbsHo1ltvjUc84hFxxRVXFBVxq73lLW+J173udZuKRampRV1dXXHKKacUlg8AYKEqY7U3nXaXumJZX7mgNEA9DZdrTx3LM9ECgNZVSdznFcgBAAAAAAAA6GTKRQ30spe9LHbccceI2PL0oojNC0Zr1qyJhz/84fHZz362sIx5bNiwIZ7znOfEGWecsSlvqjRVKpXiuOOOi/vd735FxQQAWLCR0dqbTleUB6IrMcERWJxSm8ZTm84BaG0jiQl1Q8pFAAAAAAAAAHQw5aIGWr58ebzrXe+qWcSJ2LxgNDo6Gscff3w87WlPi1tuuaWImDV961vfigc+8IHxxS9+cVNpaL6fZ26BaunSpfH2t7+9qJgAAHWRmlzijfbQulKbxk0uAmhvnvMAAAAAAAAAYH7KRQ32nOc8Jw499NBNxZz5zC0YZVkWF154Yey7775x8sknx6pVq4qKu8lFF10Uj3vc4+KpT31q3Hjjjcli0azZdW95y1tip512KigtAEB9VMZSm04HC0oC1Ftq0/i68WpMTU8XlAaAoqXKRSYXAQAAAAAAANDJlIsK8MlPfjK23377iIitKhiNj4/HRz/60dh7773jcY97XJx77rlx2223NSznypUr401velPsu+++8cQnPjF+9KMfbSoLpYpFs8dLpVI87nGPi1e+8pUNywkA0Cgjo6lNpwMFJQHqLc9EirVjowUkAaAZKiYXAQAAAAAAAMC8epodoBPsvvvu8fnPfz4OP/zw5ASguQWj2X/Osix+9KMfxY9+9KOIiLjvfe8bBx10UBx44IFx73vfO+55z3vmyrFq1aqoVqsxOjoaa9asidWrV8eqVati5cqVsXLlyhgZGdksw51zzGduYWqHHXaIT3/607nyAAAsNulNpyYXQavKc/2OVDfG9kuXFZAGgCJVJydibGqy5hrlIgAAAAAAAAA6mXJRQZ7whCfE29/+9njd615Xc3rRrLkTg2b/edbVV18d11xzTXz2s5+9y+/Z0veZ/Z977bVXzfPNmpuvVqlo7tosy6JcLsdXvvKV2HnnnWv+HgCAxWhmZiYqY95oD+1qKMf1O1LdUEASAIo2kiiQR0QMKZEDAAAAAAAA0MG6mh2gk5x22mnx+te//i7FofnMTi2KiE3r7zzRaO6alDv/nrm/5vv+tcxd293dHZ///OfjEY94RK4sAACLzfrxaswknn+Ui6B1DfQuiSXdtd+vkZpeBkBrynN/95wHAAAAAAAAQCdTLirY2972tvh//+//bVYaSqlVBMpTUpq1pd83X2Epz/ea/T1dXV3x0Y9+NI488shcOQAAFqN8b7S36RRaValUSm4cz3MfAKD15JlMN1QeKCAJAAAAAAAAACxOykVNcNZZZ8W73/3u6Or6xx9/3nLQrC1NHtrW37e132Nu3izLoq+vL/73f/83TjzxxK36GQAAFps8pQJvtIfWplwE0JlS9/fBvv7oTUy3AwAAAAAAAIB2plzUJK961aviwgsvjBUrVmw2jWixm1ss2n777eN73/teHHXUUU1OBQCwcKlNp91dXTHYVy4oDdAIqeljykUA7amSuL8rkAMAAAAAAADQ6ZSLmuiwww6L3/zmN/GYxzxm0+SgxVoympsry7J4zGMeE1dccUU86lGPanIyAID6SG467V8aXYvwOQ3IL7V5PHUfAKA1pcqjQ/3KRQAAAAAAAAB0NuWiJttzzz3j4osvjo9+9KOxbNmyRVcyunOpqFwux9lnnx0XXXRR7LLLLk1OBwBQPyPVDTWPpyaeAIvfUHmw5nGTiwDaU+r+PjzgOQ8AAAAAAACAzqZctEi84AUviBtvvDFOOeWU6O/vv0vJqOii0Z1LRRERxx13XPzxj3+MU045ZVEUnwAA6im56VS5CFpe6jpeP16NyempgtIAUJTkhMpE+RQAAAAAAAAA2p1y0SKy3Xbbxdlnn72pZLT99ttHlmVbLBrVu9yzpe+dZVn09vbGc57znFi5cmV88pOfNK0IAGhbqU2nJhdB68tTEqyMjRaQBICiZFmWLJEP9XvOAwAAAAAAAKCzKRctQjvttFOcffbZ8ec//znOO++8OOyww6K3t3ezolHEXQtBC/kVEZu+f5Zlse+++8Zb3vKWuOWWW+Izn/lMHHDAAc364wAAKITJRdD+8pQEU0VDAFpLdWoixqcma64ZHvCcBwAAAAAAAEBn62l2AObX29sbz3zmM+OZz3xmbNy4MX7wgx/Ed77znfi///u/uPbaa2N6evouvyfPRKO5BaVZy5cvj4MOOige//jHx5FHHhn77rtvXX4GAIBWMDMzk5xWYnIRtL48m8dTRUMAWkulmp5Ip0QOAAAAAAAAQKdTLmoRS5cujac+9anx1Kc+NSIixsbG4vLLL4/LL788Vq1aFatXr47Vq1fHbbfdFhs2bIhqtRpjY2MxPj4evb29MTAwEOVyOQYHB2PXXXeNe97znnHPe94z9tprrzjooIPiPve5T65iEgBAO1o7Xt1iAXuu4fJgQWmARin3LIm+7p4Yn56ad83IqHIRQDsZqW5IrlEiBwAAAAAAAKDTKRe1qP7+/njoQx8aD33oQ5sdBQCg5VVyTCrJM/EEWNxKpVIMlZfGmg1r512TZxM6AK0jT2l0qH+ggCQAAAAAAAAAsHh1NTsAAAA0W6432vcrF0E7GB6oPYWsMmZyEUA7GUmUyJf1laO32/uXAAAAAAAAAOhsykUAAHS81KbT7q6uWNbXX1AaoJGGy7WLgnkmXADQOlITKofKphYBAAAAAAAAgHIRAAAdL1UmGC4vjVKpVFAaoJFSU8hSm9ABaC2pEvlwufZEOwAAAAAAAADoBMpFAAB0vMqYTafQKYYHEpOLlIsA2kqluqHm8dREOwAAAAAAAADoBMpFAAB0vNTkoqHyQEFJgEZLbSLfMDEWk9NTBaUBoNHSk4uUiwAAAAAAAABAuQgAgI6X3nRqchG0izzXc6U6WkASABoty7KoJJ7zhpSLAAAAAAAAAEC5CAAAKmPeaA+dIs8m8pHqhgKSANBo1cmJGE9Mo/OcBwAAAAAAAADKRQAAdLjpmZlYO1Z7Sok32kP7yLOJPDXlAoDWkJpOGWFCJQAAAAAAAABEKBcBANDh1o2NRpZlNdd4oz20j3Lvkujv6a25Js9mdAAWvzxl0aHyQAFJAAAAAAAAAGBxUy4CAKCj5XujvXIRtJPUNa1cBNAe8tzPh/o95wEAAAAAAACAchEAAB0tX7losIAkQFGGlIsAOkLqfr68rxw93d0FpQEAAAAAAACAxUu5CACAjlZJbDrt7eqOpUv6CkoDFCE1uSh1XwCgNVSqG2oeT5VNAQAAAAAAAKBTKBcBANDRRnJsOi2VSgWlAYqQmkZmchFAe0jdz1NlUwAAAAAAAADoFMpFAAB0NJtOofOkJlWkSocAtAbPeQAAAAAAAACQj3IRAAAdrZLYdJoqIQCtJ7WZfOPEeExMTRWUBoBG8ZwHAAAAAAAAAPkoFwEA0NG80R46T57rujJW+94AwOKWZZnnPAAAAAAAAADIqafZAUibmJiIm2++OdasWRO333573HHHHTE2Nhbj4+MxPj4e09PTzY6Y9J//+Z/NjgAAsEU2nULnyTOpYqS6MXYcXFFAGgAaYXRyIiama0+hGyoPFpQGAAAAAAAAABY35aJFZnR0NH7xi1/ET3/60/j1r38d11xzTdx8880xMzPT7GgLolwEACxG0zMzsW5stOYam06h/eQpDaaKhwAsbpUc93ElcgAAAAAAAAD4B+WiRaBSqcRXv/rV+NKXvhQ//OEPY2rqn29VzbKsicnqo1QqNTsCAMAWrR0bjdTT1nB5oJAsQHH6e5dEuWdJVKcm5l0zMrqhwEQA1NtINX0fVy4CAAAAAAAAgH9QLmqi6667Lt73vvfFZz7zmahWqxFx1zJRqxdz2qEcBQC0r3ybTk0ugnY0NLA0quvmLxdVxkwuAmhleSbQrVAiBwAAAAAAAICIUC5qijvuuCPe+MY3xic+8YmYnp7erIAzX5moFUs6rV6MAgDaX55Np0MD3mgP7Wi4vDRuWzcy7/GRUeUigFZWSTznLe8vR09Xd0FpAAAAAAAAAGBxUy4q2Fe/+tU46aSTolKpbCoM3bmE04pFIgCAVpTadNrb3R1Le/sKSgMUaai/dnEwT/kQgMUrdR8fTnwOAAAAAAAAAEAn6Wp2gE6RZVmcfPLJ8YxnPCNGRkYiy7IolUqbikVZlm36BQBAMVKbTof6l5rGCG1qODGVLFU+BGBxSz7nlZWLAAAAAAAAAGCWyUUFmJiYiGOOOSa+9rWvbSoVzVImAgBonuQb7RPlA6B1DSc2lZtcBNDaUiXR4YHBgpIAAAAAAAAAwOJnclGDZVkWRx99dFxwwQWbFYtMKQIAaL6R0Q01jw+XbTqFdpW6vkcnx2N8arKgNADUW54JlQAAAAAAAADAP5hc1GCvf/3r4+tf//pmpaKFmDv1CACAhamMjdY8nppsArSuoRzXd6W6MXZaNtT4MADUVZZlMVJNlMhNqAQAAAAAAACATZSLGuhHP/pRnHXWWdtcLKpVJDL1CABg4VKbTvOUD4DWlKc8OKJcBNCSNk6Ox+T0dM01SuQAAAAAAAAA8E/KRQ0yNjYWL3zhCzf989aUgeaWiu78+3p7e2OHHXaI7bffPsrlcvT19UV3d/fCAwMAdJipmelYN1atucamU2hfeScXAdB68ty/h/o95wEAAAAAAADALOWiBvnYxz4W119/fZRKpdzFojtPOFq6dGk89rGPjYMPPjgOOuig2GeffWK33XZrWGYAgE6ytjqaXKNcBO2rv6c3BnqXxOjkxLxrRpSLAFpSnvv38IDnPAAAAAAAAACYpVzUAJOTk3H22WdvNoGoljuXig477LB40YteFE984hOjr6+vYTkBADpZnk2neSabAK1rqLxUuQigDY2M1r5/lyJiRf9AMWEAAAAAAAAAoAUoFzXA17/+9fjzn/+ca2rR3GLRIx7xiHjPe94TBx10UBExAQA6Wq432pcHC0gCNMtweWncum5k3uMV5SKAllQZq33/Xt4/ED1d3QWlAQAAAAAAAIDFr6vZAdrR+eefn1xTKpU2lY9KpVKcddZZcckllygWAQAUpFLdUPP4ku6eGOhdUlAaoBlSBcKRxH0CgMUpNbnIdEoAAAAAAAAA2JzJRXU2MTER3/72tzdNJNqSudOKenp64otf/GL827/9W1ERAQCIiJHqaM3jw+WlNZ/pgNY3nNhcnmfCGQCLT6ocmrr/AwAAAAAAAECnMbmozn7zm99EtVqNiH+Uh+YzO7Hov//7vxWLAACaIDW5yBvtof2lrnPlIoDWVBmrff9WLgIAAAAAAACAzSkX1dnPfvazmsdLpdKmYtHTnva0eMELXlBQMgAA5kqVBmw6hfaXus6rkxMxNjVZUBoA6mVktPZznhI5AAAAAAAAAGxOuajOrr766nmPlUqlTf97T09PvOc97ykiEgAAW6BcBOTZXF4xvQigpWRZlrx3e84DAAAAAAAAgM0pF9XZqlWrah6fnVr0jGc8I/bYY49iQgEAcBepTadD5cGCkgDNkmdzeaqICMDisnFyPCZnpmuuGfacBwAAAAAAAACbUS6qs1tuuWWzCUXzefazn11AGgAAtmRqejrWjVdrrvFGe2h/eSYXjYxuKCAJAPVSGU2XQofKAwUkAQAAAAAAAIDWoVxUZ+vXr9/i1+cWjnp6euLRj350UZEAALiTylh606lyEbS/vp7eGOjtq7kmz/0CgMVjpJouhZpcBAAAAAAAAACbUy6qs40b5994lmVZRETsv//+0d/fX1QkAADuZKSa5432ykXQCYYHal/ree4XACweqft2KSJW9JtcBAAAAAAAAABzKRfV2cTERM3jpVIp7n3vexeUBgCALankKAuYXASdYag/US4aVS4CaCWp57zl/QPR3eU/iQIAAAAAAADAXP4/6XU2ODiYXLPzzjsXkAQAgPmk3mjf190T5d4lBaUBmilVJMxTRgRg8Ug95ymQAwAAAAAAAMBdKRfV2fLly5Nrli61iQEAoJlSm06HykujVCoVlAZopuGBxOSiMeUigFaiXAQAAAAAAAAAW0+5qM7ylIump6cLSAIAwHxSk0iGB9LTKIH2MFyufb1XRpWLAFpJ6jlvKHHfBwAAAAAAAIBOpFxUZ3vuuWdkWVZzzejoaEFpAADYkuTkon5vtIdOMZSYYFGdmoixyYmC0gCwUOnJRQMFJQEAAAAAAACA1qFcVGf3v//9k2v+9re/FZAEAID5jFQ31Dw+nCgbAO0jz/We2qgOwOKQZVmOcpHJRQAAAAAAAABwZ8pFdZYqF2VZFjfeeGNBaQAA2JLkptMB5SLoFHnKRRXlIoCWsHFiPKZmpmuuSU2sAwAAAAAAAIBOpFxUZw9/+MPnPVYqlSIi4rrrrisqDgAAdzI5PRUbxsdqrjG5CDpHnk3mJhcBtIbUdMoIz3kAAAAAAAAAsCXKRXW2xx57xP777x9Zlm0qE0X8Y2LRrHXr1sXvf//7ZsQDAOh4lbHR5BpvtIfOsaS7J5Yu6au5RrkIoDXkuV8rFwEAAAAAAADAXSkXNcDTnva05JqLL764gCQAANzZyGieTaeDBSQBFovUNV9RLgJoCan7dalUiuX9AwWlAQAAAAAAAIDWoVzUAMcee+ymqUVzpxfNyrIszj///KJjAQAQEZXqhuQab7SHzpK65kdy3DcAaL7U5KIVfeXo7vKfQwEAAAAAAADgzvx/0xvgPve5TzzlKU+JLMs2+3qWZZvKRpdddln87ne/a0I6AIDONlIdrXm8v6c3yr1LCkoDLAbpcpHJRQCtIHW/HjKdEgAAAAAAAAC2SLmoQV7zmtck17zjHe8oIAkAAHOlJpAMmVoEHSd13SsXAbSG1HOe6ZQAAAAAAAAAsGXKRQ3yr//6r3HkkUduNq0o4p/Ti7Isiy9/+cvxf//3f01MCQDQeSqJkoBNp9B5Utd96r4BwOJQSUyoVCIHAAAAAAAAgC1TLmqgD33oQ7F8+fKIiM0KRrOyLIsXvvCFMTpae+MDAAD1k5pAolwEnSd13Y9NTUZ1cqKgNABsK5OLAAAAAAAAAGDbKBc10C677BJnn312ZFm22dfnTjO69tpr4/jjj29COgCAzpSaQOKN9tB58lz3qWIiAM2VZVlyctHwgOc8AAAAAAAAANgS5aIGO+mkk+Kkk07arFAU8c+CUZZl8ZWvfCVe+tKXNjElAEDnSE8uGiwoCbBY5LnuU9MwAGiuDRNjMTUzXXONyUUAAAAAAAAAsGXKRQX48Ic/HI9+9KNrFow+8pGPxAknnBCTk5NNTAoA0N4mpqdiw8RYzTU2nULnGSoPJNekpp4B0Fx5JsyZUAkAAAAAAAAAW6ZcVIDu7u644IIL4uEPf3jNgtGnP/3pOOSQQ2LVqlVNTAsA0L7WVkeTa5SLoPP0dvfEYF9/zTV5Nq0D0Dwjo+n7tAmVAAAAAAAAALBlykUFWb58eVx00UXxhCc8YVOhaLZkNLdg9Mtf/jL233//OOuss2JsrPZb9QEA2Doj1Q3JNd5oD51puL/2tZ9n0zoAzVMZq32fLpVKsaKvXFAaAAAAAAAAAGgtykUFKpfL8c1vfjOe97znRZZlmx2bO9FodHQ0Xv/618eee+4ZZ511VqxZs6YZcQEA2k6eySPKRdCZUte+yUUAi1uqRL6ifyC6uvynUAAAAAAAAADYEv8f9YL19vbG//zP/8RnP/vZWLp06RYnGM1OMVqzZk28/vWvj9122y0OO+yweO973xu/+93vYmpqqsk/BQBAa0qVA8o9S6Lcu6SgNMBiMjxQu1yUmogBQHOlJswNK5ADAAAAAAAAwLx6mh2gXb3lLW9JrnnKU54S55133qZyUcTmBaPZf56amoqLL744Lr744oj4R0Fpn332iXve855x97vfPZYvXx7lcjl6e3sb88PUwX/+5382OwIAQFQS5aKhRLkAaF/D5cGax0dGa0/EAKC5UiVQ5SIAAAAAAAAAmJ9yUYO8+c1v3qw0VEuWZVv85zuXjGZNTEzElVdeGVdddVWd0jaechEAsBikJhcN99t0Cp1qKHH9V6obN70MAoDFJzW5aEi5CAAAAAAAAADmpVzUYHcuDm3L751bMpp7bCHfu0g23wEAi8VItfbkEZtOoXMNJyaXjU9PRXVqIgZ6+wpKBMDWSE2oNLkIAAAAAAAAAOanXNRgqWJNnoLQnddsqWy0WLVKAQoA6AyV6mjN46lyAdC+8mw6HxndGAMrlIsAFpssy2JkLFUuGiwoDQAAAAAAAAC0HuWiBmtEuaZVCjutUoACADpHcnJRv3IRdKo85aJKdWPsumK7AtIAsDXWj4/F9MxMzTVD5YGC0gAAAAAAAABA6+lqdgAAACjCxNRUbJwYr7kmT7kAaE95yoUj1dpTMQBojkqiQB5hchEAAAAAAAAA1KJcBABARxgZS5cChgdsOoVO1dPdHcv6yjXXKBcBLE557s9K5AAAAAAAAAAwP+UiAAA6QsWmUyAhdQ/IMxkDgOKlykWlUimWJwqkAAAAAAAAANDJlIsAAOgIed5oP6RcBB0tVS4yuQhgcUqVyIf6B6Kry38GBQAAAAAAAID59DQ7QLsrlUrNjgAAQESMjNaeOFLuXRL9Pb0FpQEWo1TBULkIYHFK3Z9NpwQAAAAAAACA2pSLGizLsmZHAAAg0m+0t+kUSN0HUvcRAJoj/Zw3WFASAAAAAAAAAGhNykUN8qhHPcrUIgCARcQb7YGU1H1gpLoxsizzdz2ARSb1nDdUHigoCQAAAAAAAAC0JuWiBvnxj3/c7AgAAMyR3nSqXASdLnUfmJieitHJiVi6pK+gRADkMVLdUPO4yUUAAAAAAAAAUFtXswMAAEARKsnJRTadQqfLcx9IbWAHoFgzWRaVsdGaa0yoBAAAAAAAAIDalIsAAOgIqclFNp0Cee4DqaIiAMXaMF6N6ZmZmmtMqAQAAAAAAACA2pSLAABoe+NTkzE6OV5zjU2nwIryQHJNqqgIQLHy3JeVyAEAAAAAAACgNuUiAADaXp5JIzadAj1d3bG8r1xzjXIRwOKiXAQAAAAAAAAAC6dcBABA27PpFMgrdS8YGVUuAlhMUiXyrlIplvWnJ9MBAAAAAAAAQCdTLgIAoO3lmVw0pFwERPpeUBlTLgJYTFIl8qH+pdFVKhWUBgAAAAAAAABak3IRAABtL7XpdKB3SfT19BaUBljMhgcGax4fqW4oKAkAeaTuywrkAAAAAAAAAJCmXAQAQNtLlYuGy7XLBEDnGOqvvQl9ZNTkIoDFpFIdrXl8WLkIAAAAAAAAAJKUiwAAaHveaA/kNTxQ+35QqW6MLMsKSgNAiuc8AAAAAAAAAFg45SIAANpeJTm5yKZT4B9S94PJmenYODleUBoAUtITKj3nAQAAAAAAAECKchEAAG3PplMgrzz3g8po7XsKAMWYybJYWx2tuSY1kQ4AAAAAAAAAUC4CAKADpMpFQ8pFwP8vz/1gpLqhgCQApKwfr8Z0NlNzzVC/5zwAAAAAAAAASFEuAgCgrY1NTUZ1cqLmmuGBwYLSAIvdiv6BKCXWjCSmZABQjFSBPMJzHgAAAAAAAADkoVwEAEBbq+TYdDrUP1BAEqAV9HR1x/LEPaFichHAopDnOW/YhEoAAAAAAAAASFIuAgCgrXmjPbC1UhvR89xXAGi8kUTZs7vUFcv6ygWlAQAAAAAAAIDWpVwEAEBbGxlNTxgZ7vdGe+CfhpSLAFrCyGjt+/GK8kB0lUoFpQEAAAAAAACA1qVcBABAW6uM1d50unRJXyzp6SkoDdAKUpOLKspFAItC6jkvdT8HAAAAAAAAAP5BuQgAgLaWmjCSmlACdJ7UZnSTiwAWB895AAAAAAAAAFAfXtHOgmy33XbJNaVSKe64444C0gAA3NXIqDfaA1sntRl9pLoxsiyLUqlUUCIAtsRzHgAAAAAAAADUR0eXi+51r3sl15RKpbjhhhsKSNOaKpVKlEqlyLJs3jU23AEAzVRJvNF+uDxYUBKgVaTuC1Mz07FhYiyW9ZULSgTAlnjOAwAAAAAAAID66Ohy0U033aQYUyfz/TnV+rMFACjCyJg32gNbJ899oVLdqFwE0EQzWRaVxHPeUHmgoDQAAAAAAAAA0No6ulw0azEVY7q7u5NrSqVSTE1NFZAGAKD1VUZTm06Vi4DN5SkXjVQ3xm5DOxSQBoAtWT82GjOJ/3ZnchEAAAAAAAAA5KNctMi06qSfLeU29QkAaLaxyYmoTk3UXGNyEXBny/sHohQRtf52NlKtXVwEoLHy3Ic95wEAAAAAAABAPl3NDrAYZFl2l1/NVCqV5v0FAEB+Np0C26K7qytW9A/UXDNS3VBQGgC2xHMeAAAAAAAAANSPctEitdgKTwAAraiSY9PpkE2nwBYMlQdrHq9URwtKAsCWpJ7zuktdMdhXLigNAAAAAAAAALQ25SIAANpWnjfaKxcBW5KadmFyEUBzpZ7zhsoD0WUKOAAAAAAAAADkolwEAEDbSm06HVzSH0u6ewpKA7SSVPFwZDRdXgSgcVLPecOJCXQAAAAAAAAAwD8pFwEA0LYqyU2nphYBW5a6P6TuLwA0Vuo+bDolAAAAAAAAAOSnXAQAQNsaqW6oedymU2A+wwOJyUVjGyPLsoLSAHBnqec8JXIAAAAAAAAAyE+5CACAtjVichGwjVL3h+mZmVg/PlZQGgDurFIdrXnccx4AAAAAAAAA5KdcBABA20qVi0wuAuaT5/5QSUzNAKAxZmZmojLmOQ8AAAAAAAAA6kW5CACAtlVJTi4aLCgJ0Gry3B9GElMzAGiMdePVmMmymmtMLgIAAAAAAACA/JSLAABoS9XJiRibmqy5Zrg8UFAaoNWs6CtHqVSquWbE5CKApkhNp4xQLgIAAAAAAACAraFcBABAW8qz6XTI5CJgHl1dXTHUX7uAmJqOBkBj5Ln/DikXAQAAAAAAAEBuykUAALSlPJtOhwdsOgXml9qYnqfECED9pe6/3V1dMdhXLigNAAAAAAAAALQ+5SIAANrSSHVDck1qKgnQ2YYT5SKTiwCaI/WcN9y/NLpKpYLSAAAAAAAAAEDrUy4CAKAtpd5oP9jXH73dPQWlAVpRqlxkchFAc6TKnanJcwAAAAAAAADA5pSLAABoSyOjtTedpkoDAKnN6XkmpAFQf6lyp+c8AAAAAAAAANg6ykUAALSlylhq0+lgQUmAVpW6T1SqozGTZQWlAWBWqlxkchEAAAAAAAAAbB3lIgAA2lJ60+lAQUmAVpWafDGdzcSG8WpBaQCYVUlNLhpQLgIAAAAAAACAraFcBABAWxoZ3VDzuMlFQEqqXBSRLjICUF8zMzNRGRutuWaoX7kIAAAAAAAAALaGchEAAG0ny7L0G+1zlAaAzjakXASw6Kwdr0aWZTXXKJEDAAAAAAAAwNZRLgIAoO1UpyZifHqq5hrlIiBleV85ukqlmmtGqrWnpAFQX6kCeUTE8IDnPAAAAAAAAADYGspFAAC0nZHR9KbTPBNJgM7W1dUVQ/217xWV6mhBaQCIyFfqTN27AQAAAAAAAIDNKRcBANB2cr3RXrkIyCFVRDS5CKBYI4nnvO6urljW119QGgAAAAAAAABoD8pFAAC0ndSm0whvtAfySRUR89xvAKif1ITK4fLSKJVKBaUBAAAAAAAAgPagXAQAQNtJbfZf1leOnu7ugtIArSw5uSixyR2A+qqM1b7vKpADAAAAAAAAwNZTLgIAoO1UqhtqHk9NIgGYlbpfpDa5A1BfyclFA57zAAAAAAAAAGBrKRcBANB2UpOLlIuAvFKb1CvVjTGTZQWlASD9nDdYUBIAAAAAAAAAaB/KRQAAtJ2KchFQJ0P9te8XM1kW68dGC0oDQGpinOc8AAAAAAAAANh6ykUAALSd1Bvth2w6BXIaHkhPwBhRLgIoxPTMTKxN3HM95wEAAAAAAADA1lMuAgCgrWRZliwXeaM9kFee+8XI6IYCkgCwbmw0siyrucZzHgAAAAAAAABsPeUiAADayujkRExMT9VcM1ROTyIBiIhY1leO7lLtvzpXEoVGAOpjZCx9v1UuAgAAAAAAAICtp1wEAEBbybPJ36ZTIK+uUilWlAdqrklNSwOgPkZG0/fbIc95AAAAAAAAALDVlIsAAGgrI9UNyTXKRcDWSN0zlIsAipEqkfd0dcfgkv6C0gAAAAAAAABA+1AuAgCgreTZ5J+aQgIw13B5sObxPBPTAFi41HPecHlplEqlgtIAAAAAAAAAQPtQLgIAoK2kNvkv7y9HT1d3QWmAdpCeXJSemAbAwqXKRUOmUwIAAAAAAADANlEuAgCgrSTfaN9v0ymwdVKb1fNMTANg4SqJMmeqDAoAAAAAAAAAbJlyEQAAbcUb7YF6S21WXzs2GjMzMwWlAehcyRK55zwAAAAAAAAA2CbKRQAAtJWR1BvtBwYLSgK0i9Rm9Zksi3Xj1YLSAHSuihI5AAAAAAAAADSEchEAAG2lUh2tedwb7YGtlWezemqaBgALMz0zE2vHPOcBAAAAAAAAQCMoFwEA0DayLEtOLvJGe2Br5dmsnrr3ALAwa8dGI0usUS4CAAAAAAAAgG2jXAQAQNvYODkek9PTNdfYdApsrcG+cnR31f7rc2pqGgALU8kxIW64PFhAEgAAAAAAAABoP8pFAAC0jcponk2nykXA1ukqlWK4v/a9w+QigMYayVEuMqESAAAAAAAAALZNT7MDtIITTjih2RHuYjFmAgBotpExb7QHGmOovDT+Nrp+3uN5Nr0DsO1SJc7eru5YuqSvoDQAAAAAAAAA0F6Ui+aRZdmm//npT3+6Keee7+vNyFTLfHkBAIo2kphcVIqIFf0DxYQB2kpq6lnq/gPAwlQSJc6h8tIolUoFpQEAAAAAAACA9qJclMNiLM8sxkwAAM1WSbzRfnn/QHR3dRWUBmgnQ4lyUSXH5DQAtl1qQlyqBAoAAAAAAAAAzE+5KIci33qatzS0WN7EquQEACwmI9XRmsdtOgW21fBAYnJRYtM7AAuTus+mSqAAAAAAAAAAwPyUi3JYjAWaxZgJAKDZRhKTi2w6BbbVUH/t+8fasdGYmZmJLtPRABqikpxcNFhQEgAAAAAAAABoP3Y9AQDQNtKbTpWLgG2T2rSeZVmsHa8WlAag86QmFw2XBwpKAgAAAAAAAADtR7kIAIC2kd50qlwEbJvhgfT9IzU9DYBtMzUzHevGRmuuGTK5CAAAAAAAAAC2mXIRAABtIcuyHJOLbDoFtk2ecuLIaO17EADbZu3YaGSJNXlKoAAAAAAA/H/s3X+0bHdZH/5nzplzzszcc++dSYAQSoOBJMTIDyVIEiSEFqIFE7EqiJRWAgSKXWXZNkJbWLVWdGHBFnXZCgGxgALFBQuIBmwQobBIaABJw49AIpHwIynczNx7z52Z83O+f+SLEMjdn33Omdmz98zrtRZrafZzz35udH343OR57wcAAO6bcBEAADPhxMZ6bO5sZ9a0bS4C9mh1uRH1hcXMmlTAEYC9yXO+dhrueQAAAAAAAACwV8JFAADMhO5gLVmTZ/MIwH2p1WrRbrYya7rCRQATked8bdtcBAAAAAAAAAB7Vp92A2VQq9Wm3QIAAPuUZ+hUuAjYj05zNb514vhJnwsXAUxG6nxdWlyMA0srBXUDAAAAAAAAALNHuCgiRqPRtFsAAGCfeomh01qtFoca2VtHALKkAoq9HBvUANi91D2v3Tjg40EAAAAAAAAAsA9zHS564hOfaPAAAGBGpL5of3ilGYsLCwV1A8yidiJcZHMRwGSkztdOy3ZKAAAAAAAAANiPuQ4X/dVf/dW0WwAAYExSQ6ft5mpBnQCzKr25SLgIYBK6/ezNcB33PAAAAAAAAADYF59uBwBgJqSG+lOhAICU1DlydNiP7Z2dgroBmB+9YT/zuXseAAAAAAAAAOyPcBEAADMhvbnI0CmwP6lzZBT3BIwAGK/uIHtzkXseAAAAAAAAAOyPcBEAADMhNXTqi/bAfuU5R1JnEQC7s7WzHceGg8wa9zwAAAAAAAAA2B/hIgAAKm80GkVvkL0tpNMydArsT6e5mqxJnUUA7E6ejXDCRQAAAAAAAACwP8JFAABU3trGMLZ2tjNrDJ0C+3VgeSWWFhYza2wuAhivbv9EsqbtngcAAAAAAAAA+yJcBABA5XUHhk6ByavVasmzJM95BEB+ec7VPJvlAAAAAAAAAICTEy4CAKDy8nzR3tApMA6pLWjCRQDj1UtshFterEdrabmgbgAAAAAAAABgNgkXAQBQed3E0GmtVovDK82CugFmWWpzUU+4CGCsuoN+5vN280DUarWCugEAAAAAAACA2SRcBABA5fWG2cP87UYrFhZcfYH9S21Bs7kIYLxSm4tSG+UAAAAAAAAAgDQTlgAAVF63nwgXGToFxqTTbGU+T21SA2B3UqFN4SIAAAAAAAAA2D/hIgAAKq9n6BQoSDuxuejYcBBbO9sFdQMw+1L3PCFyAAAAAAAAANg/4SIAACrPF+2BonRa6fPk6LBfQCcA88E9DwAAAAAAAAAmT7gIAIDK80V7oCh5hti7/ewzCYB8tra349j6ILOmk9goBwAAAAAAAACkCRcBAFBpO6NRdIepL9obOgXGI09YMbVlA4B88myCs7kIAAAAAAAAAPZPuAgAgEpbWx/E9s5OZo2hU2BcDiytxNLiYmZNLxF4BCCfPGFNGyoBAAAAAAAAYP+EiwAAqLRejqFT4SJgXGq1WnIbWrcvXAQwDt3BWrLGPQ8AAAAAAAAA9k+4CACASvNFe6BoqUH2Xo5heADSUiHylcV6NJeWC+oGAAAAAAAAAGaXcBEAAJWWChct1GpxaKVZUDfAPEgFFvOEHgFIS52n7eaBqNVqBXUDAAAAAAAAALNLuAgAgEpLDp02DsTCgmsvMD7pzUXCRQDjkLrnpc5jAAAAAAAAACAfU5YAAFRaaog/tWEEYLdSw+w2FwGMR/qet1pQJwAAAAAAAAAw24SLAACoNF+0B4qWCi0eWx/E1vZ2Qd0AzK70Pa9VUCcAAAAAAAAAMNuEiwAAqLTuYC3zuc1FwLjlCS32hrYXAexXKlxkcxEAAAAAAAAAjIdwEQAAldazuQgoWCfHMHtv0C+gE4DZtbW9HcfXB5k17nkAAAAAAAAAMB7CRQAAVNbOaJQc4Dd0CoxbnnMltVUNgGx5NsC55wEAAAAAAADAeAgXAQBQWcfXB7E92smsaRs6BcasubQcy4v1zJpuYqsaANnynKPueQAAAAAAAAAwHsJFAABUVp6h005rtYBOgHlSq9WS2zKEiwD2J989T7gIAAAAAAAAAMZBuAgAgMrq5Rk69UV7YAJSZ0ue8wmAk0udoyv1pWjWlwvqBgAAAAAAAABmm3ARAACV1R2sZT5frC3EwZVmQd0A86TdzN6KZnMRwP6kztF2oxW1Wq2gbgAAAAAAAABgtgkXAQBQWd1+9tDp4WYrFgydAhPQabYyn6fCjwBkS52jnVZ2yBMAAAAAAAAAyE+4CACAykp90b7TPFBQJ8C8sbkIYLJ6g37mc/c8AAAAAAAAABgf4SIAACqrN0yFi3zRHpiM1FD72vowNre3CuoGYPakNhe1G8JFAAAAAAAAADAuwkUAAFRWt58dLmo3WwV1AsybTis91N4bZm/dAODkkhsqc5zDAAAAAAAAAEA+wkUAAFRWLzV0anMRMCF5NmakApAA3LfN7a1YWx9m1qQ2yAEAAAAAAAAA+QkXAQBQSTujUfSGqXCRoVNgMvJtLhIuAtiLPJvf2u55AAAAAAAAADA2wkUAAFTS8WE/dkajzBpDp8CkNOvLsVJfyqyxuQhgb/KcnzZUAgAAAAAAAMD4CBcBAFBJ3UGeoVPhImAyarVa8ozpDtYK6gZgtvRynJ/ueQAAAAAAAAAwPsJFAABUknARMG2p7Wi9HOcUAN+vO+hnPl+pL0VzabmgbgAAAAAAAABg9gkXAQBQSamh/cWFhVhdaRbUDTCP0puLhIsA9iK1+U2AHAAAAAAAAADGS7gIAIBKSg3ttxutWKjVCuoGmEep4XabiwD2JnV+ChcBAAAAAAAAwHgJFwEAUEnpL9qvFtQJMK/aNhcBTETq/BQuAgAAAAAAAIDxEi4CAKCSDJ0C05Y6Z9Y2hrGxvVVQNwCzI7W5KBXuBAAAAAAAAAB2R7gIAIBKMnQKTFueDWlHB/0COgGYLekQuQ2VAAAAAAAAADBOwkUAAFSSzUXAtOU5Z7qDtQI6AZgdm9tbsbYxzKxxzwMAAAAAAACA8RIuAgCgcnZ2dqI3zN4GYnMRMGl5zplUEBKAe+vl2PjmngcAAAAAAAAA4yVcBABA5RxbH8RoNMqs6TRXC+oGmFfNpeVo1Jcya4SLAHYnz8Y3m4sAAAAAAAAAYLyEiwAAqJw8w/qdZquAToB5lxpw7wkXAexKnnPT5iIAAAAAAAAAGC/hIgAAKifPF+3bNhcBBUhtSbO5CGB3Uudmo74UzaXlgroBAAAAAAAAgPkgXAQAQOWkhk4XFxbi4EqjoG6AedZObEnLE4YE4DtS97zUxjgAAAAAAAAAYPeEiwAAqJxejqHTWq1WUDfAPLO5CGC80uEi2ykBAAAAAAAAYNyEiwAAqJzU0Gm74Yv2QDHaiQ0aqTAkAPeWOjdTG+MAAAAAAAAAgN0TLgIAoHK6/cQX7VvCRUAxOolw0YmN9djY2iqoG4Dqs7kIAAAAAAAAAIonXAQAQOUYOgXKIhUuiojoDm0vAsirO1jLfJ7aGAcAAAAAAAAA7J5wEQAAldNLDOrnGfYHGIc8Q+69RCASgHtsbG/FiY31zBr3PAAAAAAAAAAYP+EiAAAqZXtnJ44O+5k1vmgPFCXX5iLhIoBc8oQxhYsAAAAAAAAAYPyEiwAAqJRjw36MRqPMGkOnQFEaS8vRXFrOrOn21wrqBqDa8oQxhcgBAAAAAAAAYPyEiwAAqJQ8Q6fCRUCRUoPueTZxAGBzEQAAAAAAAABMi3ARAACV4ov2QNmkBt3znFsApM/LZn05GoltcQAAAAAAAADA7gkXAQBQKakv2tcXFmN1uVFQNwDCRQDj0h2sZT5vtwTIAQAAAAAAAGAShIsAAKiU1NBpp3kgarVaQd0ApLelpUKRANyjN+hnPk+FOQEAAAAAAACAvREuAgCgUrqGToGSSW8uyg5FAnCP5OaihnseAAAAAAAAAEyCcBEAAJXSSw2dChcBBes0VzOf9zc3Yn1rs6BuAKqrm9j01mm55wEAAAAAAADAJAgXAQBQKcmhU+EioGB5zp1e4uwCIKLbd88DAAAAAAAAgGkQLgIAoFKEi4CyybMxLXV2Acy7ja2t6G+uZ9a0G+55AAAAAAAAADAJwkUAAFTG9s5OHBv2M2vazdWCugG4h3ARwP51h+lzstNyzwMAAAAAAACASRAuAgCgMo4O+zFK1HSarUJ6Afi2Rn0pWkvLmTU94SKATN3+WrLGhkoAAAAAAAAAmAzhIgAAKqM7yDN06ov2QPFSZ4/NRQDZeontlBH5NsUBAAAAAAAAALsnXAQAQGXkGc5vtwydAsVrJ7am5QlHAsyz1Oai5tJyNOpLBXUDAAAAAAAAAPNFuAgAgMroJcJFS4uLcWBppaBuAL7D5iKA/Und8zq2FgEAAAAAAADAxAgXAQBQGanh/HbjQNRqtYK6AfiO1NB7amgeYN6l7nnCRQAAAAAAAAAwOcJFAABURnLotGXoFJiOdmLo3eYigGzJELlwEQAAAAAAAABMjHARAACVkdr80WmuFtQJwL2lNmoMNjdiuLVZUDcA1eOeBwAAAAAAAADTI1wEAEBlJL9o3/BFe2A68mzUSA3OA8yz5IZKm4sAAAAAAAAAYGKEiwAAqIzuYC3zeadl6BSYjk4rvVEjNTgPMK/Wtzajv7meWZMnxAkAAAAAAAAA7I1wEQAAlbC1sx3HhoPMGl+0B6alk2NzWrefHZAEmFd5Nru55wEAAAAAAADA5AgXAQBQCUeH/WSNoVNgWpbr9WgtrWTW2FwEcN/ynI/ueQAAAAAAAAAwOcJFAABUQrefHjptGzoFpqjTyj6DekPhIoD7kmdzkXseAAAAAAAAAEyOcBEAAJWQ74v2qwV0AnDfUls18oQkAeZR6p7XWlqOlfpSQd0AAAAAAAAAwPwRLgIAoBJ6g7XM58uL9WgtLRfUDcD3azcSm4tyhCQB5lEqXCRADgAAAAAAAACTJVwEAEAldAf9zOed5oGo1WoFdQPw/TqtxOaiREgSYF6lwpftZqugTgAAAAAAAABgPgkXAQBQCanNRe1m9lA/wKSlNmv0EiFJgHmVCl/aXAQAAAAAAAAAkyVcBABAJXQTX7TvCBcBU5Y6hwZbGzHY3CioG4DqcM8DAAAAAAAAgOkSLgIAoBJ6hk6BksuzQS11lgHMo9TZaEMlAAAAAAAAAEyWcBEAAJWQ+qK9oVNg2vKEHFNnGcC8GW5tRj+x1U2IHAAAAAAAAAAmS7gIAIDS29rejmPrg8yaTnO1oG4A7pvNRQC7l+dcFCIHAAAAAAAAgMkSLgIAoPR6w/TQqS/aA9O2vFiP1eVGZo3NRQD3lidc1GkJkQMAAAAAAADAJAkXAQBQer1BP1nji/ZAGaTOou5graBOAKohT+iy03DPAwAAAAAAAIBJEi4CAKD08gzj21wElEHqLLK5CODeUve81tJKLNfrBXUDAAAAAAAAAPNJuAgAgNJLDeOvLNajubRcUDcAJ5cKF/WEiwDuJXXP67QEyAEAAAAAAABg0oSLAAAovdTQabt5IGq1WkHdAJxc2+YigF1JhS7bDeEiAAAAAAAAAJg04SIAAEovNXTaaa0W1AlAttTmou7gRIxGo4K6ASi/5OaixLkKAAAAAAAAAOyfcBEAAKWX3Fzki/ZASaSG4Ne3NmOwtVFQNwDllwwXtdzzAAAAAAAAAGDShIsAACi97mAt87kv2gNl0W6mN6n1Bv0COgGohtSGSiFyAAAAAAAAAJg84SIAAEovNYjvi/ZAWeQ5j1KBSYB5MdzciMFm9ja3Tisd2gQAAAAAAAAA9ke4CACAUtvc3orj64PMGl+0B8qi3Wgla7r97C0dAPOim9haFGFDJQAAAAAAAAAUQbgIAIBS6w2ztxZF2FwElMfSYj1WVxqZNb2hcBFARM57nnARAAAAAAAAAEyccBEAAKWWZ8NHp7laQCcA+aQG4W0uArhHt7+WrGkLFwEAAAAAAADAxAkXAQBQank2fPiiPVAmqcBjdyBcBBCRPg8PLK/E8mK9oG4AAAAAAAAAYH4JFwEAUGqpDR8r9aVoLi0X1A1AWrvZynzeG6Q3dQDMg1SI3HZKAAAAAAAAACiGcBEAAKXWTQzh21oElI3NRQD5pELkqbAmAAAAAAAAADAewkUAAJRaLzGEL1wElE3qXOoNTsRoNCqoG4DySpqf75MAAQAASURBVN/zbC4CAAAAAAAAgCIIFwEAUGqpDR/CRUDZtBPn0vr2Vgw2NwrqBqC8ukP3PAAAAAAAAAAoA+EiAABKLfVF+9QQP0DR8gzDp4KTAPOg13fPAwAAAAAAAIAyEC4CAKDU0puLVgvqBCCfPOGiVHASYNYNNjdisJW9xc3mIgAAAAAAAAAohnARAACltbm9FWsbw8waQ6dA2bQbNhcBpOQJWbrnAQAAAAAAAEAxhIsAACit3qCfrGkbOgVKpr64GAdXmpk13cFaQd0AlFOecJF7HgAAAAAAAAAUQ7gIAIDSyjN874v2QBmlziabi4B5l+ccFC4CAAAAAAAAgGIIFwEAUFqGToGqSoWL8mzsAJhlqXve6nIjlhfrBXUDAAAAAAAAAPNNuAgAgNJKDd8368vRXFouqBuA/GwuAsiWuufZTgkAAAAAAAAAxREuAgCgtFLD9+1mq6BOAHYntVVNuAiYd93BWuZz2ykBAAAAAAAAoDjCRQAAlFZq+L7TXC2oE4DdSW8uWovRaFRQNwDlk77nCRcBAAAAAAAAQFGEiwAAKC1ftAeqqp0IP25ub0d/c6OgbgDKp5fcUOmeBwAAAAAAAABFES4CAKC0eoN+5vNOy9ApUE55Nm6kApQAs8zmIgAAAAAAAAAoD+EiAABKK7m5qGHoFCinfOGi7MF6gFk12NyI4dZmZo1wEQAAAAAAAAAUR7gIAIBS2tjaihMb65k1hk6BsjrcbCVresJFwJzKc/61m6sFdAIAAAAAAAAARAgXAQBQUr1heui00zJ0CpRTfWExDjWamTU2FwHzKs/5J0QOAAAAAAAAAMURLgIAoJTyDJ22G+nNIADT0kls3ej2hYuA+dQdrCVr2jk2wAEAAAAAAAAA4yFcBABAKfmiPVB1qQBknuF6gFmUuuetrjRiabFeUDcAAAAAAAAAgHARAACl1O1nD903l5ajsbRcUDcAu9dpZW8u6g1tLgLmUy8RLuo0BMgBAAAAAAAAoEjCRQAAlFJq6N7WIqDsUudUty9cBMyn1OaitnseAAAAAAAAABRKuAgAgFJKDd0bOgXKLnVO9QYnYjQaFdQNQHmkwkWdlnseAAAAAAAAABRJuAgAgFJKDp0KFwEllzqnNne248TGekHdAJRHL3nPWy2oEwAAAAAAAAAgQrgIAICSMnQKVF2eEGTqrAOYNaPRKBkibzeEyAEAAAAAAACgSMJFAACUks1FQNXlCUF2B2sFdAJQHoOtjVjf2sys6bTc8wAAAAAAAACgSMJFAACUzvrWZvQ31zNr2sJFQMkdbrSilqhJBSkBZk1v0E/WCJEDAAAAAAAAQLGEiwAAKJ1ejmF7Q6dA2S0uLMShRiuzRrgImDd5NrYJkQMAAAAAAABAsYSLAAAonTzD9sJFQBWkzqo8YUqAWdLtp8+9diKYCQAAAAAAAACMl3ARAAClk2fY3hftgSpIhYtsLgLmTW+Yfe4dXGnG0mK9oG4AAAAAAAAAgAjhIgAASig1bN9aWo6V+lJB3QDsXSoIKVwEzJvU5qJ209YiAAAAAAAAACiacBEAAKWTGrbvNFcL6gRgf9Kbi9YK6gSgHNzzAAAAAAAAAKB8hIsAACidXmLoNLUJBKAsUkPyvUE/RqNRQd0ATF8vEapMhTIBAAAAAAAAgPETLgIAoHRSmzwMnQJVkQpDbu1sx9rGsKBuAKYvtblIiBwAAAAAAAAAiidcBABA6aSGToWLgKrIc16lzjyAWTEajZIbKt3zAAAAAAAAAKB4wkUAAJSOL9oDsyLPkHxq0B5gVgw2N2J9eyuzRrgIAAAAAAAAAIonXAQAQKkMtzZjsLmRWdNprRbUDcD+HGq0olarZdbYXATMizznXafpngcAAAAAAAAARRMuAgCgVPJs8Gg3WgV0ArB/iwsLcThxZnUHawV1AzBdue55Tfc8AAAAAAAAACiacBEAAKWS64v2NhcBFdJuHMh83u3bXATMhzz3vNSZCQAAAAAAAACMn3ARAAClkueL9h1Dp0CFdJrZZ1ZvKFwEzIdUuOjQSjPqi4sFdQMAAAAAAAAAfJtwEQAApdIdrGU+by2txHK9XlA3APvXadlcBBAR0Uvc89qJMCYAAAAAAAAAMBnCRQAAlErqi/apIX2Asmkntq3l2dgGMAuS9zzhIgAAAAAAAACYCuEiAABKJbXBw9ApUDXJzUXDEzEajQrqBmB6UmFK9zwAAAAAAAAAmA7hIgAASqU3TA2drhbUCcB4pIblt3d24vj6sKBuAKYntbmoLVwEAAAAAAAAAFMhXAQAQKmkh05bBXUCMB55QpG9wVoBnQBMz2g0St7zbC4CAAAAAAAAgOkQLgIAoFR6fZuLgNmSZxNHauAeoOr6mxuxsb2VWdN2zwMAAAAAAACAqRAuAgCgNIabGzHY2sis8UV7oGoOrzSjVqtl1ggXAbOul+Occ88DAAAAAAAAgOkQLgIAoDTyDNcbOgWqZmFhIdqNVmZNnqF7gCrrDtaSNe55AAAAAAAAADAdwkUAAJRGnuH6tqFToIJSA/M2FwGzLs85d7iZHcQEAAAAAAAAACZDuAgAgNLIM3QqXARUUersEi4CZl0qRH6o0Yz6wmJB3QAAAAAAAAAA3024CACA0kgN168uN2J5sV5QNwDjk95ctFZQJwDTkbrndRoC5AAAAAAAAAAwLcJFAACURuqL9rYWAVXVaa5mPk+dfwBVlwoXuecBAAAAAAAAwPQIFwEAUBqpzR2pzR8AZZU6v3qDfuyMRgV1A1C8VIiy08oOYQIAAAAAAAAAkyNcBABAaaS+aC9cBFRVaiPH9mgnjq8PCuoGoHjJzUUN9zwAAAAAAAAAmBbhIgAASiP1RfvUcD5AWeUJR6bOQICqGo1G6Q2VLfc8AAAAAAAAAJgW4SIAAErD5iJgVuU5v1JnIEBV9Tc3YnN7O7PGPQ8AAAAAAAAApke4CACAUhhsbsRwazOzxtApUFUHG61YqNUya1JbPQCqKs/51m645wEAAAAAAADAtAgXAQBQCnk2drSbqwV0AjB+C7VacnC+27e5CJhNee55nZZwEQAAAAAAAABMi3ARAACl0DN0Csy4dmL7Wm8oXATMplR4shYRhxutYpoBAAAAAAAAAL6PcBEAAKXQHawla9qGToEKSwUk82z2AKiiVHjyYKMZ9YXFgroBAAAAAAAAAL6XcBEAAKWQGqpfXWnE0mK9oG4Axq/dSISLEps9AKoqdb51mqsFdQIAAAAAAAAA3BfhIgAASqGXCBd1mtlD+QBllzrHUucgQFWlNlS65wEAAAAAAADAdAkXAQBQCqnNRamNHwBl12klwkXDE7EzGhXUDUBxesPEPU+4CAAAAAAAAACmSrgIAIBSSIWLUkP5AGXXaa5mPt8ZjeL4sF9QNwDF6fZtqAQAAAAAAACAMhMuAgCgFLr9tcznqaF8gLLLs5kjFbQEqJrRaBS9VIhcuAgAAAAAAAAApkq4CACAqRuNRtFLbOswdApUXZ5zTLgImDUnNtdjc2c7s0aIHAAAAAAAAACmS7gIAICpG2xtxPrWZmZNno0fAGV2cKUZi7XsP4antnsAVE2vnz7X2s1WAZ0AAAAAAAAAACcjXAQAwNR1cwyd2lwEVN1CrZYcoLe5CJg13cFassbmIgAAAAAAAACYLuEiAACmLs+mDuEiYBaktrDlGcIHqJLuoJ/5vBYRhxs2FwEAAAAAAADANAkXAQAwdXk2dbQbwkVA9aW2c9hcBMyaXiI0eajRisUF/4gSAAAAAAAAAKbJv7kHAGDqUsP0B1eaUV9cLKgbgMlJbWHLs8kNoEpS9zzbKQEAAAAAAABg+oSLAACYutQX7Q2dArMidZ7ZXATMGuEiAAAAAAAAACg/4SIAAKauO+hnPjd0CsyKdmpz0bAfOzs7BXUDMHmpjWypcxEAAAAAAAAAmDzhIgAApi61ucjQKTArUmHJ0WgUR9cHBXUDMHk2FwEAAAAAAABA+QkXAQAwdYZOgXmR5zxLbfkAqIrRaJTjnrdaUDcAAAAAAAAAwMkIFwEAMFX5hk6Fi4DZ0M4xRN9NbHMDqIoTG+uxtbOdWWNDJQAAAAAAAABMn3ARAABTNdjciI3trcyaPMP4AFVwcKURiwvZfxRPBS4BqiJPWFKIHAAAAAAAAACmT7gIAICpyjNEb+gUmBW1Wi06jewzrSdcBMwI9zwAAAAAAAAAqAbhIgAApsoX7YF5006caTYXAbMiFZas1WpxqNEqqBsAAAAAAAAA4GSEiwAAmKo8Q/SHm4ZOgdmRCkx2+8JFwGxI3fMOrzRjccE/ngQAAAAAAACAafNv7wEAmKrUF+0PNZpRX1gsqBuAybO5CJgXqfOs3VwtqBMAAAAAAAAAIItwEQAAU5UaOu00sofwAaqm08o+13pD4SJgNqRC5KlNbgAAAAAAAABAMYSLAACYqvQX7Q2dArOlk9jUcXTYj+2dnYK6AZgc9zwAAAAAAAAAqAbhIgAApir5RftW9hA+QNW0ExvZRqNRHBv2C+oGYHK6g7XM5zYXAQAAAAAAAEA5CBcBADBVyS/aJ4bwAaqm00qfa6mzEaDsRqNR9AbZQck85yEAAAAAAAAAMHnCRQAATM1oNEp/0d7QKTBj8mzqEC4Cqm5tYxhbO9uZNULkAAAAAAAAAFAOwkUAAEzNic312NzOHjrNM4QPUCWry42oLyxm1vSEi4CKyxOSFCIHAAAAAAAAgHIQLgIAYGryDM8LFwGzplarRbvZyqxJbXUDKLtuP889b7WATgAAAAAAAACAFOEiAACmJs8X7dvCRcAMSg3U5zkfAcqsN8w+x2q1WhxeaRbUDQAAAAAAAACQRbgIAICpSX3RvhYRhxvZ2z0Aqii1lS3PZjeAMkttYDvcaMXCgn80CQAAAAAAAABl4N/gAwAwNb3E0OmhRivqC4sFdQNQnFS4yOYioOpSIfLUOQgAAAAAAAAAFEe4CACAqekO+pnPDZ0Cs6otXATMuN5QuAgAAAAAAAAAqkK4CACAqekmNhelhu8Bqio1VH9s2I/tnZ2CugEYv9TmIvc8AAAAAAAAACgP4SIAAKaml9jM4Yv2wKxKnW+jiDg6zN7uBlBm7nkAAAAAAAAAUB3CRQAATE3X0CkwpzrN1WRNarsbQFmNRqPoDlP3vPQ5CAAAAAAAAAAUQ7gIAICpGI1GyS/at4WLgBmV53xLBTAByur4+jC2d3Yya9rNVkHdAAAAAAAAAAApwkUAAEzFiY312NzZzqzxRXtgVh1YXomlhcXMmlQAE6Csejk2r7nnAQAAAAAAAEB5CBcBADAV3VxDpzYXAbOpVqsltxfZXARUVXfQT9a45wEAAAAAAABAeQgXAQAwFXk2chg6BWZZpyVcBMymVIi8VqvFoZVmQd0AAAAAAAAAACnCRQAATEVqaL4WEYcarWKaAZiCdiMRLuqnN7wBlFEqRN5utGJhwT+WBAAAAAAAAICy8G/xAQCYilS46HCjFYuGToEZ1mmuZj7vDfsFdQIwXql7nu2UAAAAAAAAAFAupjUBAJiK1NBpOzF0D1B1nVZic9HA5iKgmpKbi4SLAAAAAAAAAKBUhIsAAJiK1NCpL9oDs67dyD7njg0HsbWzXVA3AONjcxEAAAAAAAAAVItwEQAAU5HeXGToFJhtqc1FERFHB/0COgEYr9TmtY4NlQAAAAAAAABQKsJFAABMRXroVLgImG15zrlUEBOgbHZGo+gNs4OR7nkAAAAAAAAAUC7CRQAAFG40GkUvsY0jz0YPgCrLs7lDuAiomrX1QWzv7GTW2FAJAAAAAAAAAOUiXAQAQOHWNoaxtbOdWdNuGDoFZltraTmWFhcza3qJLW8AZZMnFGlzEQAAAAAAAACUi3ARAACFyzV0anMRMONqtVpye5HNRUDV9ISLAAAAAAAAAKByhIsAAChct59n6DR74B5gFqQG7PMM6QOUSSoUuVCrxcFGq6BuAAAAAAAAAIA8hIsAAChcb5g9dFqr1eLwSrOgbgCmJxUusrkIqJrUudVuHIiFWq2gbgAAAAAAAACAPISLAAAoXHewlvn8cKMVCwuuqsDsawsXATMmtXEtde4BAAAAAAAAAMUzsQkAQOG6/eyh09QmD4BZYXMRMGtS55Z7HgAAAAAAAACUj3ARAACFS33R3tApMC86zdXM58fXB7G1vV1QNwD7l9pQaXMRAAAAAAAAAJSPcBEAAIXzRXuAe+Q573pD24uA6nDPAwAAAAAAAIDqES4CAKBwqc1FvmgPzIs8511qUB+gLHZGozg66GfWCBcBAAAAAAAAQPkIFwEAUKjRaBTdxBaOTnO1oG4ApivX5iLhIqAijq8PYnu0k1kjRA4AAAAAAAAA5SNcBABAoY6vD2N7J3vo1BftgXnRXFqOlcV6Zo3NRUBV5DmvOi0hcgAAAAAAAAAoG+EiAAAK1RusJWt80R6YF7VaLXnmCRcBVZFn05oQOQAAAAAAAACUj3ARAACFyvVFe0OnwBxJnXndHKFMgDJInVeLtYU4uNIsqBsAAAAAAAAAIC/hIgAACpUKFy3UanHI0CkwR9rN1cznvUG/oE4A9qfbz77nHW62YqFWK6gbAAAAAAAAACAv4SIAAArVS4SL2o0DsbDgmgrMD5uLgFnRG2bf82ynBAAAAAAAAIByMrUJAEChUpuL2s1WQZ0AlEM7GS7KPjcByiJ9zxMuAgAAAAAAAIAyEi4CAKBQqaHTTnO1oE4AyiG1yWNtfRib21sFdQOwd92+zUUAAAAAAAAAUEXCRQAAFKo7WMt87ov2wLzptNLnXm/YL6ATgP3pDYXIAQAAAAAAAKCKhIsAAChUL7m5SLgImC95hu1T20AApm1nNEre89rNVkHdAAAAAAAAAAC7IVwEAEBh7hk6zd6+IVwEzJs8w/a9xNY3gGk7PuzHzmiUWWNzEQAAAAAAAACUk3ARAACFOb4+iO3RTmZNW7gImDPN+nKs1Jcya7qJbSAA05bnnBIiBwAAAAAAAIByEi4CAKAwvTxDpy1ftAfmS61WSw7cCxcBZZfnnBIiBwAAAAAAAIByEi4CAKAwvmgPcN9SZ1+ecCbANKXOqcXaQhxcaRbUDQAAAAAAAACwG8JFAAAUpjtYy3xu6BSYV6ltHjYXAWWXOqfazVYs1GoFdQMAAAAAAAAA7IZwEQAAhen2s4dODxs6BeZUanORcBFQdqlzqtNcLagTAAAAAAAAAGC3hIsAAChMb5gaOs0ergeYVamh+55wEVByqXMqtaENAAAAAAAAAJie+rQbAJi2O+64Iz7wgQ/ETTfdFJ/73Ofiy1/+chw/fjyOHTsWo9EoDh48GAcPHowzzjgjzjvvvHjkIx8Zl156aZx99tnTbn0m3HnnnfGhD30obr755rjlllviS1/6UnS73Th+/Hisra1FvV7/u/8bdDqdOOuss+Kcc86Jc845J37kR34kzjvvvKjZcgKVkfqivaFTYF6lwpVrG8PY2N6K5UV/jAfKqTtYy3wuRA4AAAAAAAAA5WUqCZhLvV4v3vCGN8Rb3vKWuOmmmzJrjxw5EkeOHInbb789PvKRj/zdXz/77LPj2c9+drz4xS+O0047bdItz5Rbb7013vjGN8Y111wTN998c2bt1tZWDIfD+OY3vxkREZ/85Cfv9fyUU06JJzzhCfHEJz4xLrvssnj4wx8+sb6B/ev2bS4CuC95wpW9wYl4wOrhAroB2L3eoJ/53D0PAAAAAAAAAMprYdoNABRpbW0tXvayl8WDH/zg+JVf+ZVksCjLl770pfi1X/u1OOOMM+KFL3xhfOtb3xpjp7PpAx/4QDz5yU+Oc845J171qlclg0V53H333fHe9743rrrqqjj33HPjvPPOi1e84hVxyy23jKFjYNx6ic1FneZqQZ0AlEueofvUGQowLTs7O9Eb2lAJAAAAAAAAAFUlXATMjfe+973xgz/4g/Gf//N/jhMnxjeYubGxEVdffXU8/OEPjze96U1j+7mz5K//+q/j0ksvjX/0j/5R/OVf/mWMRqOJvevzn/98/MZv/Eb83u/93sTeAezNzmiUHDr1RXtgXuUZuu8KFwEldWx9EDuJP+e55wEAAAAAAABAeQkXATNvZ2cnXvGKV8RP//RPx1e/+tWJvefuu++O5z3vefHCF74wNjY2JvaeKtne3o5f//Vfjx/90R+N6667btrtAFN2fNhPDp36oj0wr5pLy9GsL2fWCBcBZZVns5pwEQAAAAAAAACUV33aDQBM0vb2dvzCL/xCvPOd7yzsnVdffXV88YtfjD//8z+PVqtV2HvL5s4774xnPOMZ8dGPfnTarQAlkWco3tApMM/azVYMjp88pN4drBXYDUB+ee55QuQAAAAAAAAAUF42FwEza2dnJ5773OcWGiz6tg9/+MPxj//xP4719fXC310Gt956azz+8Y8XLALuRbgIIFunuZr5vDfoF9QJwO6k7nmLCwuxutIsqBsAAAAAAAAAYLdsLgJm1stf/vJ461vfuqtfc/bZZ8eP/diPxSMe8Yg45ZRTolarRbfbjc9//vPx8Y9/PG6++ebcP+sv/uIv4sorr4w3v/nNu2290m666aa49NJL4//9v/837VaAkukZOgXIlNrqYXMRUFap86nTOBALtVpB3QAAAAAAAAAAuyVcBMyka6+9Nn7rt34rd/3Tn/70+Pf//t/H4x73uMy6m2++OV796lfHW9/61tjZ2Un+3Le85S1xySWXxPOf//zcvVTZV77ylXjqU5+662DR/e53v3jSk54UF198cZx77rnx0Ic+NE455ZQ4cOCeAdterxe9Xi+63W584QtfiM985jPxmc98Jj796U9Hr9ebwO8EmITUF+3bjZahU2Cupba35dkABzANqRB5KjwJAAAAAAAAAEyXcBEwc44cORL/7J/9sxiNRsnaU045Jd7ylrfE0572tFw/+xGPeET8j//xP+LFL35xPPOZz4w77rgj+Wv+5b/8l3HJJZfEWWedlesdVdXr9eJpT3tafP3rX8/9a37qp34qXvjCF8ZP/MRPRL1+8v9KOu200+K0006LiIgLL7zw7/761tZWfOxjH4v3ve998Wd/9mfxhS98Ye+/AWDikl+0b64W1AlAOSU3F/WFi4BySoUfU+FJAAAAAAAAAGC6FqbdAMC4vfzlL49vfetbyboHP/jB8YlPfCJ3sOi7XXjhhXHjjTfGeeedl6wdDAbxr/7Vv9r1O6rm+c9/fnz2s5/NVXvRRRfFjTfeGO95z3viJ3/yJzODRVnq9Xpccskl8ZrXvCY+//nPx4033hjPe97zotVq7ennAZPVG/Qznxs6BeZd6hzsb67HxtZWQd0A5JfcUOmeBwAAAAAAAAClJlwEzJRPf/rTcfXVVyfrDh8+HNddd1087GEP2/O7HvCAB8QHP/jBePCDH5ysveaaa+LP//zP9/yusnvDG94Q73rXu5J1CwsL8cpXvjL+9//+33H++eePvY/zzz8/3vjGN8bXvva1eO5znzv2nw/sT2pzkaFTYN51WukNbt2h7UVA+fRsLgIAAAAAAACAShMuAmbKr/3ar8XOzk6y7uqrr46HP/zh+37fAx/4wPiTP/mTWFxcTNb+6q/+6r7fV0Zf/vKX45d/+ZeTdSsrK/GOd7wjXv7yl+f6+7Uf7XY7HvvYx070HcDupb5ob+gUmHftRnr7YrefHdQEKNrOzk70htkbKoXIAQAAAAAAAKDchIuAmXHLLbfEe9/73mTd05/+9HjGM54xtvdefPHF8aIXvShZd+ONN8Zf/uVfju29ZXHVVVfFiRPZgYGFhYV461vfGj/3cz9XUFdA2Rg6BUjLE7JMbQcBKNrR9UGMRqPMmk4zvZkNAAAAAAAAAJge4SJgZvyX//JfkgNN9Xo9XvOa14z93f/pP/2nOHToULLut3/7t8f+7mn68Ic/HO9617uSda985SsFi2DOHTN0CpDUWFqO5tJyZk1qCxxA0fKEHjstIXIAAAAAAAAAKDPhImAmrK+vxzve8Y5k3c/+7M/GWWedNfb3n3rqqfGCF7wgWfeBD3wg7rrrrrG/f1pe+tKXJmsuvvjieNnLXlZAN0CZ5RmG7zRbBXQCUG6p7UU2FwFl0x2sJWvaDeEiAAAAAAAAACgz4SJgJlxzzTVx9OjRZN0v//IvT6yHl7zkJbGwkH2sbm9vx9vf/vaJ9VCkj3zkI/GJT3wis2ZxcTH+4A/+IPn3BZh9uYZObS4CiHYiXGRzEVA2qXNpcWEhDq40CuoGAAAAAAAAANgL097ATHjb296WrDnrrLPiwgsvnFgPD3nIQ+Liiy9O1uXptQp++7d/O1nzi7/4i3HeeecV0A1QdoZOAfJJbS7KE9YEKFJqo1qneSBqtVpB3QAAAAAAAAAAeyFcBFTe9vZ2XHfddcm6n//5n594L8961rOSNf/n//yfOHLkyMR7maS//du/jfe9733Jul/5lV8poBugCgydAuTTSWxx6w36BXUCkE8qRN5uZIcmAQAAAAAAAIDpEy4CKu8Tn/hEHD16NFn31Kc+deK95HnHzs5OfPCDH5x4L5P09re/PUajUWbNP/yH/zDOPffcgjoCys7QKUA+NhcBVdPtJ0LkLfc8AAAAAAAAACg74SKg8vIEdQ4ePBgXXHDBxHt5yEMeEmeddVay7n/9r/818V4m6e1vf3uy5tnPfnYBnQBVYegUIJ92IlzU39yI4dZmQd0ApKVC5KmNbAAAAAAAAADA9AkXAZX38Y9/PFlzwQUXRL1eL6CbiIsvvjhZc8MNNxTQyWTcdttt8dd//deZNQsLC3HZZZcV0xBQCb2hoVOAPFKbiyIieolBfoAipe557WaroE4AAAAAAAAAgL0SLgIq79Of/nSy5jGPeUwBndzj/PPPT9Z8/vOfj/X19QK6Gb/rrrsuWfPDP/zDcdpppxXQDVAVqS/aGzoFuIdwEVAl2zs7cXTYz6wRIgcAAAAAAACA8hMuAirtrrvuim984xvJurKFi7a2tuL//t//W0A34/ehD30oWXPRRRcV0AlQFYZOAfJr5wgXpQKbAEU5NuzHaDTKrMkTmgQAAAAAAAAApku4CKi0m266KVfdueeeO+FOvuPhD394rrq8vZfNhz/84WTNBRdcUEAnQFUYOgXIb6W+FK2l5cya7mCtoG4AsnWH6bBjntAkAAAAAAAAADBd9Wk3ALAff/M3f5Or7qyzzppwJ9/R6XTilFNOibvvvjuzLm/vZXLHHXfEnXfemaw777zzkjVHjhyJa6+9Nq6//vq4+eab48tf/nIcPXo01tbWYnl5OVqtVpx66qlx5plnxsMe9rB43OMeFxdddFGcc8454/itAAXKM3QqXATwHZ3mavQ3T36X7A2yt8EBFKXbd88DAAAAAAAAgFkgXARU2pe//OVkzQMf+MA4cKDYYaazzjorPvGJT2TW5Om9bD772c/mqjv77LPv86/v7OzENddcE7/7u78bf/VXfxXb29v3WTcYDGIwGMSRI0fii1/8YkRE/Lf/9t/+7mc/4xnPiBe84AVx5pln7uF3ARQtz9CpL9oDfEe7eSC+duzk4SKbi4Cy6A2y73n1hcVYXW4U1A0AAAAAAAAAsFcL024AYD9uv/32ZM2DHvSgyTfyPU4//fRkzayGi0499dQ4dOjQ9/316667Lh7xiEfE05/+9PjgBz940mBRype+9KX4zd/8zTj77LPj53/+5+NLX/rSnn4OUBxDpwC7k9ry0U2cqwBFSZ1HneaBqNVqBXUDAAAAAAAAAOyVcBFQaV/72teSNQ984AML6GT37/zqV79aQCfj9fnPfz5Z84AHPOBe//uJEyfiOc95Tlx66aW5fn1e29vb8T//5/+MRzziEfGKV7wiNjc3x/azgfFKbdgwdApwb8JFQFWkziPbKQEAAAAAAACgGoSLgEo7cuRIsua0004roJN7yxMuuvvuuwvoZLzuuOOOZM3973//v/ufb7vttrjgggvij//4jyfW08bGRvzGb/xGPPGJT8zVH1C87qCf+Tw1RA8wb1LD+KmNcABF6eUIkQMAAAAAAAAA5SdcBFRannBRu92efCN7eOeJEydifX198s2M0Z133pms+fbv/bbbbotLLrkkPvvZz064q3tcf/31ceGFF451OxIwHqmhU1+0B7i3Tms18/lgcyOGmxsFdQNwckLkAAAAAAAAADAbhIuASut2u8magwcPFtDJ3t5Zte1F3/jGN5I1y8vLcdddd8U/+Af/IL72ta8V0NV3fP3rX48nPvGJAkZQMt3Ehg1DpwD31m60kjWpsxWgCELkAAAAAAAAADAb6tNuAGCvBoNBbG5uJuumES46dOhQrrqjR4/G6aefPuFuxmM0GuXaFLW4uBjPetaz4o477kjWHjp0KC6++OJ45CMfGQ95yENidXU1tra2otfrxa233ho33HBDfPrTn47t7e3cfX7rW9+Kyy+/PG644YY49dRTc/86YHJ6wkUAu5LaXBRxz9l6+qFOAd0A3LftnZ04OrS5CAAAAAAAAABmgXARUFkbGxu56prN5oQ7+X6NRiNXXd7fQxkMh8PY2dlJ1r3nPe+J4XCYWXPhhRfGS1/60rjssstiaWkps/bOO++MN7/5zfGa17wmvvnNb+bq9bbbbovnPOc5ce211+aqByYnz9CpL9oD3FunkT4XbS4Cpu3osB+jRI1wEQAAAAAAAABUg3ARUFl5gzmLi4sT7uT71ev5jteqhYv2W9dut+P3fu/34jnPeU7u9z7wgQ+Ml770pfHiF784rrrqqnj961+f69e9//3vj6uvvjquvPLK3O+aFU94whNy//8gk/PZz3522i2UgqFTgN1brtfjwPJKnNhYP2mNcBEwbantlBFC5AAAAAAAAABQFQvTbgBgr/IGc6YRssj7zs3NzQl3Mj7r6ycfbs3jzDPPjOuvv35XwaLvdvDgwXjd614Xb3jDG3IHxv7tv/23cfTo0T29DxiP7mAtWdNprhbQCUC1pAby8wz1A0xSnpCjex4AAAAAAAAAVIO1BkBlbW1t5aoTLhqP/WxZOv300+ODH/xgnHnmmfvu4/nPf34sLi7GFVdckay9++6749WvfnW88pWv3Pd7q+SjH/1o3P/+9592GxAREb1BP1nTbvmiPcD36jQPxNeO3n3S53nCmwCTlDqHlhYW48DySkHdAAAAAAAAAAD7YXMRUFl5Azzb29sT7mTv75xG8Gmv8m4Lui9vetObxhIs+rbnPve58Yu/+Iu5an//938/BoPB2N4N7E6uodMlQ6cA3yu17SNPeBNgklIb1NrNA1Gr1QrqBgAAAAAAAADYD+EioLKWl5dz1eXdcDROeTcS5f09lMFee33BC14QP/ETPzHmbiJe+9rXxoMe9KBkXa/Xi7e//e1jfz+QT9fQKcCedJrZW91sLgKmLXXPS51jAAAAAAAAAEB5CBcBlbW0tJSrbhrhorzvnPVw0YEDB+LVr371BLqJaLfb8apXvSpX7Z/8yZ9MpAcgLTl02jJ0CnBf2slwUfb5CjBpeULkAAAAAAAAAEA1CBcBlbWyspKrbjgcTriTvb+zSuGivH+/v9uzn/3saLfb42/m//fMZz4z7ne/+yXrPvKRj8Tamq/7wzT0kl+0Xy2oE4BqSW38GG5txmBzo6BuAL6fex4AAAAAAAAAzI76tBsAquXLX/5y3HDDDRN9x4EDB+Lyyy9P1jWbzajX68ktQcePHx9Xa7nlfeehQ4cm3Mn4NBqNWFpais3Nzdy/5p//838+wY7uCTw997nPjde85jWZdRsbG/HhD384fvInf3Ki/QDfL/lF+4Yv2gPcl1S4KOKewf7mUnXC6sBsSW6obLYK6gQAAAAAAAAA2C/hImBXPvzhD8cVV1wx0Xc85CEPyRUuiojodDrxzW9+M7Pm2LFj42hrV/K+85RTTplwJ+N16qmnxp133pmr9swzz4zHPOYxE+4o4ud+7ueS4aKIiBtvvFG4CKagO8jeGtZpCRcB3Jc8Gz+6gxNx+qFOAd0A3Nv2zk4cG/Yza9o2FwEAAAAAAABAZSxMuwGA/Tj11FOTNUePHi2gk92/s9VqRaPRKKCb8cnz9/vbLrjgggl28h0//MM/HMvL6S/2f+pTnyqgG+C7be1sx/HhILMmz2YOgHl0OMfGj1SAE2BSjg77MUrUCJEDAAAAAAAAQHUIFwGVlifsctdddxXQyb3l2e6zm6BOWZQxXLSyshKPfvSjk3W33XZbAd0A3y3P0GlbuAjgPi0v1mN1OTuI3htkbw0BmJQ84cZOwz0PAAAAAAAAAKpCuAiotL/39/5esiZP0Gfc8rwzT+9ls5ueH/WoR02wk3vLEy766le/WkAnwHfr9k8ka2wuAji51BlpcxEwLd1B+p7XtrkIAAAAAAAAACpDuAiotB/4gR9I1nz961+ffCPf4xvf+Eay5swzzyygk/F66EMfmrv2lFNOmWAnu3/X0aNHY319vYBugG/LM3Taaa4W0AlANaW2u+U5ZwEmoZc4f5YWF+PA0kpB3QAAAAAAAAAA+yVcBFRanoDOnXfeGf1+v4BuvuPWW29N1sx6uKjdbk+ukT2+q+j/P4B51xtmD50uL9ajtbRcUDcA1ZPeXCRcBExH6vxpNw5ErVYrqBsAAAAAAAAAYL+Ei4BKyxN2GY1GucI+49Lr9eLIkSPJut0EdcriYQ97WO5a4SKg208MnTYNnQJkSW0uSm0OAZiUVLio08o+vwAAAAAAAACAchEuAnbluc99boxGo4n+5/bbb8/dzyMf+chcdV/4whf2+Dvevbzvytt7mTzqUY/KXVtkYEA4AcqpN1jLfJ7ayAEw7zrN1czn3cGJGI1GBXUD8B3dfuqel31+AQAAAAAAAADlIlwEVNrpp58ep512WrLuU5/6VAHd5H9XvV7fVVCnLDqdTu6NS71eb7LNfJdut5urrtVqTbgT4Lslv2gvXASQqdPMvrusb23GYGujoG4AvqM3zN4K22645wEAAAAAAABAlQgXAZX3mMc8JllTZLjok5/8ZLLm3HPPjUajUUA343f++efnqssb+BmHvEGmAwcMuEGResJFAPvSzrH5o9vPPmsBJqGb2lDZcs8DAAAAAAAAgCoRLgIq76KLLkrWXH/99bG1tVVANxEf+chHkjUXXHBBAZ1MxuMf//hcdXffffeEO9ndu0499dRYXl4uoBvg21Kbi9rCRQCZ8gzn94bCRUCxtna249hwkFkjRA4AAAAAAAAA1SJcBFTek5/85GTN8ePH4xOf+MTEe/nKV74St956a7Lu0ksvnXgvk/LjP/7juepuuummCXfyHZ/5zGeSNWeccUYBnQDftrW9HcfWU0On6Y0cAPOs3Wgla2wuAop2dNhP1ggXAQAAAAAAAEC1CBcBlfe4xz0uDh06lKy79tprJ95LnnfUarVcgaiyOu+88+LBD35wsu6GG24ooJuI9fX1XOGihz/84QV0A3yboVOA/VtarMfqSiOzJrUlDmDc8oQabagEAAAAAAAAgGoRLgIqr16v5wrrvOMd75h4L29/+9uTNY997GPjfve738R7maSnPe1pyZrrr7++gE4iPv3pT8fGxkay7kd/9EcL6Ab4tjzD7oZOAdJSQczeYK2gTgDukeeeZ0MlAAAAAAAAAFSLcBEwE37hF34hWfOlL31pott0vvKVr8RHPvKRZF2eXsvun/yTf5Ksuf322+NTn/rUxHv50z/901x1F1100YQ7Ab5bN8ewu81FAGmpAf3uIL0pDmCcesPscNHyYj1aS8sFdQMAAAAAAAAAjINwETATLr/88jh06FCy7rWvfe3Eevjd3/3d2NnZyaxZWFiIZz3rWRProSgXX3xxnHnmmcm6//7f//tE+xgOh/FHf/RHybr73e9+8bjHPW6ivQD3lvqi/cpiPZqGTgGSbC4Cyqbbz77ntZsHolarFdQNAAAAAAAAADAOwkXATGg0GvHMZz4zWfenf/qnceutt479/UeOHImrr746WffjP/7jcfrpp4/9/UWr1WpxxRVXJOve9ra3RbfbnVgf73jHO+LIkSPJussvvzwWFxcn1gfw/XqJcJGhU4B82olwUSrMCTBuqVCj7ZQAAAAAAAAAUD3CRcDM+Nf/+l8nB9W3trbiqquuGvu7/8N/+A9x7NixZN2/+Tf/ZuzvnpZ/8S/+RRw4kD00duLEiYn9nrvdbvy7f/fvctU+//nPn0gPwMmlht0NnQLkkzovu4MTMRqNCuoGwD0PAAAAAAAAAGaRcBEwM37wB38wLrvssmTde97znnjnO985tvd+9KMfjde97nXJusc85jHxlKc8ZWzvjYi4/fbbo1arJf/zpCc9aazvjYg45ZRT4kUvelGy7k1velNce+21Y3//S17ykvjGN76RrPuRH/mR+LEf+7Gxvx/Ilho6bTdXC+oEoNpSQ/ob21sx2NwoqBuAfBsqAQAAAAAAAIBqES4CZsqv/uqvxsJC+mi78sor44tf/OK+33fnnXfGs5/97Nje3k7W/sf/+B/3/b6yeelLXxqHDx9O1l1xxRXxN3/zN2N77xvf+MZ461vfmqt2Fv++QxV0B2uZz33RHiCfTo4wZirQCTBONhcBAAAAAAAAwOwRLgJmyvnnnx/Pe97zknVHjx6NJz/5yfsKvHzzm9+MpzzlKXHHHXcka5/61KfG5Zdfvud3ldVpp50Wv/7rv56su+uuu+LJT35y3HLLLft+5xve8IZcG5MiIi655JL4qZ/6qX2/E9i93qCf+bzTMnQKkEe72UrWpAKdAOOytb0dx9YHmTV5QpEAAAAAAAAAQLkIFwEz5zd/8zfj1FNPTdZ99atfjcc97nFx7bXX7vodN9xwQzz2sY+Nz372s8naRqMRv/M7v7Prd1TFL/3SL8VjH/vYZN3tt98eF154Ye6NQ9/r+PHj8aIXvSiuvPLKXJuiWq1WvP71r9/Tu4D92dzeiuOJodN2Q7gIII8852Uq0AkwLkeH6fMmTygSAAAAAAAAACgX4SJg5tz//vePP/qjP4parZasPXLkSDztaU+Ln/mZn4kbb7wxWf+5z30urrjiinj84x8fX/nKV3L18zu/8ztx9tln56qtosXFxXjHO94R7XY7Wdvr9eKf/tN/GhdddFG8613vis3NzeSvueuuu+K3fuu34mEPe9iuwkKvfe1r45xzzsldD4xPL8fQqc1FAPnUFxfj0Eozs8bmIqAo3cGJZI3NRQAAAAAAAABQPfVpNwAwCZdddllcddVV8epXvzpX/bvf/e5497vfHeecc0484QlPiB/6oR+KU045JWq1WnS73fjCF74QH//4x+Omm27aVR/Pfvaz44UvfOFefguV8tCHPjTe/OY3x9Of/vQYjUbJ+uuvvz5+9md/Ng4fPhwXX3xxPOpRj4ozzjgjVldXY3t7O7rdbtx2221xww03xCc/+clcm4q+20te8pK48sor9/rbAfapZ+gUYKw6zQNxLGMjXJ5hf4BxyBNm7DSFyAEAAAAAAACgaoSLgJn1qle9Kr761a/G2972tty/5otf/GJ88YtfHMv7n/zkJ8cf/uEfjuVnVcHll18er3/96+OFL3xhroBRRMTRo0fjmmuuiWuuuWZsfTzrWc+K//pf/+vYfh6we3mG3NvNVgGdAMyGdvNA/G3vWyd9LlwEFCUVIl9ZrEdzabmgbgAAAAAAAACAcVmYdgMAk7KwsBBvfvOb42d+5mcKf/cTnvCEeM973hMrKyuFv3uaXvCCF8TrXve6WFiYzn+9vOhFL4o//uM/ntr7gXt0+4mh0/pSNOuGTgHySm0BybMxDmAcUmHGdvNA1Gq1groBAAAAAAAAAMbF9DUw0+r1erzzne+Ml73sZYW984orrojrrrsuDhzIHgKdVVdeeWW8//3vj1NPPbWwd66srMTv//7vxx/8wR8IFkEJdAdrmc87hk4BdqXdXM18bnMRUJTUeZMKQwIAAAAAAAAA5WQCG5h5CwsL8apXvSre/e53x4Me9KCJvafT6cTVV18df/iHfzh3G4u+16WXXhqf+tSn4mlPe9rE33XRRRfFDTfcEL/0S7808XcB+fSGhk4BxqnTbGU+7w7WYjQaFdQNMM9Sm9JSYUgAAAAAAAAAoJyEi4C58dM//dPxhS98Ia666qqxbhVaXl6O5z//+XHLLbfEC17wgrH93Ko744wz4s/+7M/ife97XzzykY8c+88/77zz4i1veUt87GMfi0c/+tFj//nA3nX7qaFT4SKA3UgN629ub8eJzfWCugHmWXpzUXYYEgAAAAAAAAAoJ+EiYK4cPHgwXv3qV8cdd9wRr3rVq+KHfuiH9vyzHvawh8UrXvGKuP322+MNb3hD3P/+9x9jp7Pjsssui5tuuik+9KEPxTOf+cw4dOjQnn/W4cOH4znPeU68//3vj5tvvjme85znRK1WG2O3wDikvmhvcxHA7uQ5N1NnL8A4pMJFNhcBAAAAAAAAQDXVp90AwDR0Op142cteFi972cvib//2b+Mv/uIv4jOf+Ux87nOfi9tvvz2OHTsWx48fj9FoFAcPHoyDBw/G3//7fz/OO++8eOQjHxlPecpT4txzz532byN+4Ad+IEaj0bTbyOVJT3pSPOlJT4qtra342Mc+Fh/72Mfic5/7XNxyyy1x5513xvHjx+PEiRNRq9XiwIEDcfjw4TjjjDPizDPPjEc/+tFx0UUXxfnnnx/Ly8vT/q0ACekv2hs6BdiNTisdLuoOTsSDD59aQDfAvNra3o7j64PMGiFyAAAAAAAAAKgm4SJg7j3kIQ+JK6+8ctptzI16vR6XXHJJXHLJJdNuBZiAze2tWNsYZtYYOgXYncONVtQiIitS3u3bXARMVm+YPmfc8wAAAAAAAACgmham3QAAALOjN+gna9qGTgF2pb6wGAcbzcya3mCtoG6AeZXaThnhngcAAAAAAAAAVSVcBADA2HRzDLf7oj3A7nWaq5nPuznCnQD7kSdc1Gm55wEAAAAAAABAFQkXAQAwNj1ftAeYiFQwM0+4E2A/Uve8lcV6NOvLBXUDAAAAAAAAAIyTcBEAAGOT+qJ9o74UzSVDpwC7lQpm5gl3AuxH6p7Xbh6IWq1WUDcAAAAAAAAAwDgJFwEAMDapodPU5g0A7lt6c5FwETBZqQ1pndZqQZ0AAAAAAAAAAOMmXAQAwNikw0WGTgH2IhUu6g1OxGg0KqgbYB71Bv3M50LkAAAAAAAAAFBdwkUAAIxNLxEuahs6BdiTVDhzc2c7TmysF9QNMI9Sm4vaDfc8AAAAAAAAAKgq4SIAAMYmvbnI0CnAXrSbrWRNavAfYD+S97yWex4AAAAAAAAAVJVwEQAAY5P8or1wEcCepDYXRaS3xwHs1eb2VqytDzNrhMgBAAAAAAAAoLqEiwAAGIuNra04sbGeWWPoFGBvDjdaUUvUpLaKAOxVb9hP1giRAwAAAAAAAEB1CRcBADAWvWF6qL3TSm/eAOD7LS4sxOFGK7NGuAiYlG4/xz0vx4Y1AAAAAAAAAKCchIsAABiLPEPt7cRgPAAnl9oKIlwETEquELnNRQAAAAAAAABQWcJFAACMRZ6hdkOnAHuXOkN7wkXAhKQ2F63Ul6K5tFxQNwAAAAAAAADAuAkXAQAwFqmh9ubScjQMnQLsWbu5mvnc5iJgUrqDtcznAuQAAAAAAAAAUG3CRQAAjEVq6LRt6BRgXzrNVubz1DkMsFepELlwEQAAAAAAAABUm3ARAABj0e0bOgWYpE5ic1Fv0I/RaFRQN8A8SW1GEyIHAAAAAAAAgGoTLgIAYCxSQ6fCRQD7kxre39rZjrWNYUHdAPPE5iIAAAAAAAAAmG3CRQAAjEVvmBo6zd64AUC2Tis9vJ8KegLsRTpE7p4HAAAAAAAAAFUmXAQAwFh0+9lDp+1mq6BOAGZTp5EjXJQ4iwF2a3N7K7kVzT0PAAAAAAAAAKpNuAgAgH1b39qM/uZ6Zo0v2gPsz6FGK2q1WmZNd7BWUDfAvOgN+ska9zwAAAAAAAAAqDbhIgAA9q03SG/K6DTTGzcAOLnFhYU43MjeDtIb2lwEjFee0KJ7HgAAAAAAAABUm3ARAAD71hUuAihE6izt9oWLgPHKEyJvu+cBAAAAAAAAQKUJFwEAsG+GTgGK0W5kn6V5zmOA3UiFyBv1pWguLRfUDQAAAAAAAAAwCcJFAADsW2rotLW0HCv1pYK6AZhdnVZic5FwETBmqXPFdkoAAAAAAAAAqD7hIgAA9i21KaPTXC2oE4DZlhrit7kIGDf3PAAAAAAAAACYfcJFAADsW+qL9u1mq6BOAGZbaoi/OzwRO6NRQd0A88A9DwAAAAAAAABmn3ARAAD71h2sZT73RXuA8UgN8W/v7MTa+qCgboB5kAoXuecBAAAAAAAAQPUJFwEAsG/podMDBXUCMNvyDPH3EmcywG6kQuRt9zwAAAAAAAAAqDzhIgAA9i01yG7oFGA88oQ1U4FPgLw2trfixMZ6Zo0QOQAAAAAAAABUn3ARAAD7MtzajP7mRmaNoVOA8Ti00oyFWi2zRrgIGJc8m9Dc8wAAAAAAAACg+oSLAADYlzxDpzYXAYzHwsJCHG60MmuEi4BxyXOeuOcBAAAAAAAAQPUJFwEAsC95hk47rdUCOgGYD6ktIXlCnwB52FwEAAAAAAAAAPNBuAgAgH3JNXTaMHQKMC6dZnZg0+YiYFxS50mzvhyNpeWCugEAAAAAAAAAJkW4CACAfekO1jKft5ZWYrleL6gbgNnXbrYyn6fOZYC8UudJuyVADgAAAAAAAACzQLgIAIB9SX3RvmPoFGCsbC4CitIb9DOfd5rueQAAAAAAAAAwC4SLAADYl14qXGToFGCsUufq0UE/dkajgroBZllyc1HDPQ8AAAAAAAAAZoFwEQAA+5LakGHoFGC82olw0fZoJ46vDwrqBphlNlQCAAAAAAAAwHwQLgIAYF8MnQIUK89GuNTZDJCHDZUAAAAAAAAAMB+EiwAA2JdePzV0ulpQJwDzIVe4qL9WQCfALNvY2ooTG+uZNTZUAgAAAAAAAMBsEC4CAGDPhpsbMdjayKzxRXuA8TrYaMVCrZZZ0xvaXATsTzfHOdJpCZEDAAAAAAAAwCwQLgIAYM+6g/TQaVu4CGCsFmq15NnaTWyVA0jJswFNiBwAAAAAAAAAZoNwEQAAe9bLES4ydAowfu1GIlyU43wGyNIb9pM1QuQAAAAAAAAAMBuEiwAA2DObiwCmo9PKPlvzhD8BsqQ2FzWXlqNRXyqoGwAAAAAAAABgkoSLAADYs1S4aHW5EcuL9YK6AZgfqa1wNhcB+5UKKdpOCQAAAAAAAACzQ7gIAIA9Sw2d2loEMBmd5mrmc5uLgP1KhRTd8wAAAAAAAABgdggXAQCwZ93BWuZzX7QHmIx2s5X5vDc8ETs7OwV1A8yiVLjIPQ8AAAAAAAAAZodwEQAAe9Yb9DOfGzoFmIzU5qKd0SiOrQ8K6gaYRakNaKlzCAAAAAAAAACoDuEiAAD2LLW5qC1cBDARecKbqWAAQBabiwAAAAAAAABgfggXAQCwZ4ZOAaYjz/maOqMBTmZ9azP6m+uZNULkAAAAAAAAADA7hIsAANiTweZGDLc2M2uEiwAmY3WlGYu17D/SCxcBe5Vn85l7HgAAAAAAAADMDuEiAAD2JM/Qabu5WkAnAPNnoVaLdrOVWZPnnAa4L3nCicJFAAAAAAAAADA7hIsAANgTQ6cA09VJBDi7g7WCOgFmTb4QuXseAAAAAAAAAMwK4SIAAPYkz9B6aqsGAHuXGuzPEwIFuC+p86O1tBwr9aWCugEAAAAAAAAAJk24CACAPUkNna6uNGJpsV5QNwDzJ7UdTrgI2KvU+ZHanAYAAAAAAAAAVItwEQAAe9JLDp1mD70DsD+pczZ1TgOcTOr8sJ0SAAAAAAAAAGaLcBEAAHuS+qJ9uyFcBDBJ7VS4aNiPnZ2dgroBZkl3sJb53OYiAAAAAAAAAJgtwkUAAOxJKlzUaQkXAUxSanPRaDSKo+uDgroBZknynmdDJQAAAAAAAADMFOEiAAD2pJccOvVFe4BJyjPcn9o+AnBfUve81OY0AAAAAAAAAKBahIsAANi10WiU/KJ9u2HoFGCS2jlCnKmAAMD3Gm5tRn9zI7PG5iIAAAAAAAAAmC3CRQAA7NpgayPWtzYzazotQ6cAk3RwpRGLC9l/rE8FQQG+V55Qos1FAAAAAAAAADBbhIsAANi1bj89dOqL9gCTVavVopPYEpfnvAb4bnnCRZ1WenMaAAAAAAAAAFAdwkUAAOxabyhcBFAGqe0hNhcBu5Xn3EgFGwEAAAAAAACAahEuAgBg1/JswmgbOgWYuE4r+6zNs4EE4Lt1B2uZz1tLK7FcrxfUDQAAAAAAAABQBOEiAAB2LfVF+4MrzagvLhbUDcD86jRXM5/bXATsVm/Qz3yeCjUCAAAAAAAAANUjXAQAwK71El+07zQNnQIUod1sZT5PndcA3yu1uch2SgAAAAAAAACYPcJFAADsWjf1RXvhIoBCpDYXHR32Y3tnp6BugFmQ2njmngcAAAAAAAAAs0e4CACAXUttwmgbOgUoRGrIfxQRx4bZgVCA79ZLhYta7nkAAAAAAAAAMGuEiwAA2DVftAcohzznberMBvhuqTOj3XDPAwAAAAAAAIBZI1wEAMCujEaj9BfthYsACpFnU5xwEZDXcHMjBpsbmTWd1mpB3QAAAAAAAAAARREuAgBgVwabG7G+vZVZk2fYHYD9W11uRH1hMbMmFQgF+LY8YUQhcgAAAAAAAACYPcJFAADsSr6hU1+0ByhCrVZLDvp3B2sFdQNUXW/YT9YIkQMAAAAAAADA7BEuAgBgV/IMqfuiPUBxUoP+eUKhABER3X6Oe17DPQ8AAAAAAAAAZo1wEQAAu9IbpL9of7jZKqATACLSgU7hIiCv1HlxYHklluv1groBAAAAAAAAAIoiXAQAwK6kNhcdWmlGfWGxoG4ASIWLesJFQE69YfZ50WmuFtQJAAAAAAAAAFAk4SIAAHYl9UX71JA7AONlcxEwLt1+9nnRtp0SAAAAAAAAAGaScBEAALuSGlJvCxcBFCp17h4b9mNrZ7ugboAqS206s7kIAAAAAAAAAGaTcBEAALuSHDptGToFKFJqc9EoIo4O+8U0A1Rad2hDJQAAAAAAAADMI+EiAAB2Jbm5qGHoFKBIeTaJpIKhABERvb4NlQAAAAAAAAAwj4SLAADIbTQaRXewllnTaRk6BShSO8e5mwqGAgw3N2KwtZFZY3MRAAAAAAAAAMwm4SIAAHLrb27E5vZ2Zo2hU4BiHVhaiaWFxcwa4SIgJc854Z4HAAAAAAAAALNJuAgAgNxSW4siItoNQ6cARarVatFODPx3+8JFQLZejnBR6qwBAAAAAAAAAKpJuAgAgNxyfdG+ZegUoGips7c3FC4CsuW55wkXAQAAAAAAAMBsEi4CACC31OaLWkQcbrSKaQaAv9NprmY+7/bTm+eA+ZYKF60uN2J5sV5QNwAAAAAAAABAkYSLAADILbX54lCjFfWFxYK6AeDb2o3E5qIcG0mA+ZY6J2wtAgAAAAAAAIDZJVwEAEBuqc1Fhk4BpqPTyj5/UxtJALqD7A1nHfc8AAAAAAAAAJhZwkUAAORm6BSgnFLn77H1QWztbBfUDVBFqRCiex4AAAAAAAAAzC7hIgAAcusZOgUopTzn79FBv4BOgKpK3fNsqAQAAAAAAACA2SVcBABAbr5oD1BOeYb+U2c4MN/c8wAAAAAAAABgfgkXAQCQy2g08kV7gJLqNFeTNcJFwMkMNjdiuLWZWSNcBAAAAAAAAACzS7gIAIBcTmysx+bOdmZNnuF2AMavtbQcy4v1zJreYK2gboCqSQXIIyLa7nkAAAAAAAAAMLOEiwAAyCXP0Kkv2gNMR61WS57BNhcBJ5PnfHDPAwAAAAAAAIDZJVwEAEAu3RwbLwydAkxPW7gI2KM897x2s1VAJwAAAAAAAADANAgXAQCQS2oovRYRhxqGTgGmJRXwzLOBDphPvUE/8/nqSiOWFusFdQMAAAAAAAAAFE24CACAXFLhosONViwuuF4CTEsqXGRzEXAyqc1FnYbtlAAAAAAAAAAwy0x/AgCQS2rjRbu5WlAnANyXtnARsEep8yF1vgAAAAAAAAAA1SZcBABALqmh006zVVAnANyXTiLkeXx9EFvb2wV1A1RJ8p7XEi4CAAAAAAAAgFkmXAQAQC7pL9rbXAQwTZ0cm0V6Q9uLgO+X3FDZEC4CAAAAAAAAgFkmXAQAQC7dwVrm8zxD7QBMTjvHOZwKigLzZzQa5dhQKUQOAAAAAAAAALNMuAgAgKTRaBS9QT+zptMSLgKYpjwhT+Ei4HsNtjZifWszs8Y9DwAAAAAAAABmm3ARAABJaxvD2NrZzqxpNwydAkxTc2k5VhbrmTXdvnARcG+pAHmEex4AAAAAAAAAzDrhIgAAkvJsuvBFe4DpqtVq0U5sL+oNhYuAe+sO1pI17nkAAAAAAAAAMNuEiwAASOrlCRc1VwvoBIAsnVb2WZwnRADMlzwbzdqNVgGdAAAAAAAAAADTIlwEAEBSanNRrVaLwyvNgroB4GTajeztInlCBMB8SW00O7jSjKXFekHdAAAAAAAAAADTIFwEAEBSatPF4UYrFhZcLQGmrdPMDhfl2UQHzJdU6LDdtLUIAAAAAAAAAGadCVAAAJJSQ6epYXYAitFpJTYXJTaUAPMntaGy01wtqBMAAAAAAAAAYFqEiwAASOolhtGFiwDKIXUer60PY3N7q6BugCpwzwMAAAAAAAAAhIsAAEhKbS5qGzoFKIU853Fv0C+gE6Aquv21zOfueQAAAAAAAAAw+4SLAABI6g180R6gCjrN1WRNN3GmA/NjNBq55wEAAAAAAAAAwkUAAGQbjUbRHaaGTtPD7ABMXp4QQG+QvaUEmB+DzY1Y397KrBEuAgAAAAAAAIDZJ1wEAECm4+vD2N7ZyawxdApQDs2l5WjUlzJrbC4Cvi3PedB2zwMAAAAAAACAmSdcBABApjwbLgydApRH6kwWLgK+rZfjPBAiBwAAAAAAAIDZJ1wEAECmPEPohk4ByiN1JucJEwDzIdfmooZ7HgAAAAAAAADMOuEiAAAypYZOF2q1OLTSLKgbAFJS4SKbi4BvS50HB1eaUV9cLKgbAAAAAAAAAGBahIsAAMiU2nDRbhyIhQXXSoCyaAsXATn1BmuZz22nBAAAAAAAAID5YAoUAIBMqSH0drNVUCcA5NFprmY+7ybCBMD8SN3zhIsAAAAAAAAAYD4IFwEAkCk9dJo9xA5AsVJhgBMb67GxvVVQN0CZpTZUChcBAAAAAAAAwHwQLgIAIFNq6LRt6BSgVPKEAVJnOzAf0hsq3fMAAAAAAAAAYB4IFwEAkKk7WMt87ov2AOWSJwyQChQAs280GuXYUOmeBwAAAAAAAADzQLgIAICT2hmNojfoZ9YYOgUoF+EiII/B5kZsbG9l1rSbqwV1AwAAAAAAAABMk3ARAAAndXx9ENujncyaPEPsABSnubQczfpyZk1PuAjmXp6QoRA5AAAAAAAAAMwH4SIAAE4qz/B5p+WL9gBl025lBwK6g7WCOgHKKs85IFwEAAAAAAAAAPNBuAgAgJPK9UX7RquATgDYjU4jES7q21wE8y7PPe9w0z0PAAAAAAAAAOaBcBEAACeV+qL9Qq0WB4WLAEqnndg2kidUAMy21IbKQyvNqC8sFtQNAAAAAAAAADBNwkUAAJxUb9DPfN5uHoiFWq2gbgDIq9PKDhf1hsJFMO9SIcNOIqQIAAAAAAAAAP8fe/cd5lSZ/n/8k2QmM5kCM1Slg3QUFCxDEwRFUbHrCqKoi3V17atrxbauBQu7rnUVdBFcZUEFLIiCSBMQRZfeOzNCpidTkvz+2J9+LZBzMpNz0t6v6+Ifc58892CSc8g8n3MjeRAuAgAAwCEZTS5i0ykAxCejz2dvJeEiINUZhYuMJqABAAAAAAAAAAAAAIDkQbgIAAAAh8SmUwBITHmZ4T+fK2uqVFVbY1M3AOJRMZOLAAAAAAAAAAAAAADA/0e4CAAAAIdkNNmCTacAEJ/ys3IMa4yCBQCSm3GI3PhzBAAAAAAAAAAAAAAAJAfCRQAAADikYr9RuIhNpwAQj8yEP42CBQCSVygUktdXHrYmP4sQOQAAAAAAAAAAAAAAqYJwEQAAAA4qGAoZTrXI82TZ1A0AIBJ5JsJFTC4CUldlTbVqAoGwNUyoBAAAAAAAAAAAAAAgdRAuAgAAwEGV+SsVDIXC1jC5CADiU2Zaujzp7rA1TC4CUpfR1CJJysskXAQAAAAAAAAAAAAAQKogXAQAAICDMrPpnDvaA0D8MvqMZnIRkLpMXedlcZ0HAAAAAAAAAAAAAECqIFwEAACAgyJcBACJzegzmslFQOoyChc6JDXMzLKnGQAAAAAAAAAAAAAAEHOEiwAAAHBQRptOXQ6ncjI8NnUDAIhUnmG4qNymTgDEG6NwYW6mR2lOl03dAAAAAAAAAAAAAACAWCNcBAAAgIMy2nSa58mS0+GwqRsAQKTyPTlhH2dyEZC6vJXh3/9Gnx8AAAAAAAAAAAAAACC5EC4CAADAQRlNtGDTKQDEt3yDyUVGE+oAJC/j67zwnx8AAAAAAAAAAAAAACC5EC4CAADAQRX7KsM+zqZTAIhvRp/TlTXV8tfW2NQNgHhS7DeaUMl1HgAAAAAAAAAAAAAAqYRwEQAAAA7K6I72bDoFgPhm5nOa6UVAavJWhn/vEyIHAAAAAAAAAAAAACC1EC4CAADAQXkNNpyz6RQA4puZz2mjz3oAyScUChkGC7nOAwAAAAAAAAAAAAAgtRAuAgAAwG8Eg0GV+CvD1jC5CADiG5OLABxMRU2VaoKBsDVc5wEAAAAAAAAAAAAAkFoIFwEAAOA3Sqt8CoZCYWu4oz0AxLeMtHRlpWeErfH6ym3qBkC8KK40DhVynQcAAAAAAAAAAAAAQGohXAQAAIDf8JqYZMGmUwCIf0af1WY+7wEkFzOhwnxPjg2dAAAAAAAAAAAAAACAeEG4CAAAAL9hZtNpHptOASDu5RmFi0xMMAGQXLy+yrCPOyQ1zMyypxkAAAAAAAAAAAAAABAXCBcBAADgN4oNNp26nE7lZmTa1A0AoK6MJhcV+wkXAamm2CBE3iAzSy4nXxkCAAAAAAAAAAAAAJBK2CkAAACA3zCaXJSfmS2Hw2FTNwCAusrPMphc5CNcBKQao/e9USgRAAAAAAAAAAAAAAAkH8JFAAAA+A2jTad5bDoFgISQl2kwuaiScBGQaggXAQAAAAAAAAAAAACAXyNcBAAAgN/wGmw2N5qEAQCID/lZOWEf99VWy19TbVM3AOJBMSFyAAAAAAAAAAAAAADwK4SLAAAA8BvFfqM72offrA4AiA9mJpAYTTEBkFyYXAQAAAAAAAAAAAAAAH6NcBEAAAB+w2jTaZ4ny6ZOAAD1YSYkYDTFBEDyCIVChu95QuQAAAAAAAAAAAAAAKQewkUAAAD4hWAwqBJ/ZdgaNp0CQGLIY3IRgJ+pqK5STTAQtsbM5wYAAAAAAAAAAAAAAEguhIsAAADwCyVVPoVCobA1ZiZhAABiz+1KU7Y7I2wN4SIgdXh95YY1XOcBAAAAAAAAAAAAAJB6CBcBAADgF8xsOuWO9gCQOIymzRUTLgJShpkwIeEiAAAAAAAAAAAAAABSD+EiAAAA/IK3kk2nAJBM8jxZYR83EyoFkByMwoQOSQ0yw39mAAAAAAAAAAAAAACA5EO4CAAAAL9gtOk0zelSjjvTpm4AAPVlNLnIzCQTAMnB6P3eMDNLLidfFwIAAAAAAAAAAAAAkGrYLQAAAIBfMNp0mu/JlsPhsKkbAEB9GU2bMwqVAkgeRtd5eQZhRAAAAAAAAAAAAAAAkJwIFwEAAOAXjDedht+kDgCIL0bhIiYXAanDKExo9HkBAAAAAAAAAAAAAACSE+EiAAAA/EKxrzzs42w6BYDEYhQK9dfWyFdTbVM3AGKJEDkAAAAAAAAAAAAAADgYwkUAAAD4BaNNp4SLACCxmPncZnoRkBq8hMgBAAAAAAAAAAAAAMBBEC4CAADALxQTLgKApJLvyTGsMfrsB5D4QqGQin2VYWvys7jOAwAAAAAAAAAAAAAgFREuAgAAwE8CwaBK/OE3neYRLgKAhJLnyTKsMZpmAiDxlVf7VRsMhK3Jy+Q6DwAAAAAAAAAAAACAVES4CAAAAD8p8VcqZFDD5CIASCzprjTluDPD1niZXAQkPTPvcyYXAQAAAAAAAAAAAACQmggXAQAA4CfFZjadenJs6AQAEE1GwVBvJeEiINlxnQcAAAAAAAAAAAAAAA6FcBEAAAB+YuaO9nlMLgKAhGP02V3sJ1wEJDuj6zyHw6GGGR6bugEAAAAAAAAAAAAAAPGEcBEAAAB+4vWVh3083elStjvDpm4AANGSn2UwuchEuBRAYjO6zmuYmSWnk68KAQAAAAAAAAAAAABIRewYAAAAwE+MNpfnebLlcDhs6gYAEC15mQbhosrwoQMAic9bGf46L5/plAAAAAAAAAAAAAAApCzCRQAAAPhJsUG4yGjyBQAgPuV7csI+XuyrUCgUsqkbALFQ7DcIkRuEEAEAAAAAAAAAAAAAQPIiXAQAAICfGE4uYtMpACQko3BoVaBWvtpqm7oBEAuGk4sIkQMAAAAAAAAAAAAAkLIIFwEAAOAnRuEio8kXAID4lO8xDg0YBQ8AJDbDCZUmPicAAAAAAAAAAAAAAEByIlwEAACAn3h95WEf5472AJCY8kyEBoyCBwASVygUktdPiBwAAAAAAAAAAAAAABwc4SIAAABIkmqDAZX5fWFruKM9ACSmvMwswxqj6XUAEldZlV+BYDBsTZ7H+HMCAAAAAAAAAAAAAAAkJ8JFAAAAkCSV+CsVMqgxM/kCABB/0l1pys3whK0hXAQkr2KD6ZQSk4sAAAAAAAAAAAAAAEhlhIsAAAAgSfJWGm8qZ3IRACQuo6kkZsIHABKT11dpWMN1HgAAAAAAAAAAAAAAqYtwEQAAACRJxX4z4SLuaA8AicroM5zJRUDy8hqEBx0OhxoYTDcDAAAAAAAAAAAAAADJi3ARAAAAJBlvKk93uZSV7rapGwBAtBlNJSkmXAQkLaP3d15mlpxOviYEAAAAAAAAAAAAACBVsWsAAAAAkiRvZfhNp/meHDkcDpu6AQBEm1G4iMlFQPIyen8bfT4AAAAAAAAAAAAAAIDkRrgIAAAAkqRiX3nYx9l0CgCJLc9EuCgUCtnUDQA7GU4u4joPAAAAAAAAAAAAAICURrgIAAAAkrijPQAkO6PP8epArSprqm3qBoCduM4DAAAAAAAAAAAAAADhEC4CAACAJO5oDwDJLt+TY1hjdC4AkJi8hhMqjT8fAAAAAAAAAAAAAABA8iJcBAAAAEnc0R4Akp2Zz3GjAAKAxBMMhVTsrwxbQ4gcAAAAAAAAAAAAAIDURrgIAAAAqg0EVFrlC1vDHe0BILE1zMwyrDEKmgJIPOVVPgWCwbA1hMgBAAAAAAAAAAAAAEhthIsAAACgEoO72UtsOgWARJfmcqlBhidsDeEiIPmYeV9znQcAAAAAAAAAAAAAQGojXAQAAABTm07z2HQKAAnPKEBQTLgISDpm3tdc5wEAAAAAAAAAAAAAkNoIFwEAAEBeX7lhDXe0B4DEZxQgYHIRkHyM3tdOh8NwqhkAAAAAAAAAAAAAAEhuhIsAAABgeEf7DFeaPOlum7oBAFjFKChqJmwKILEYhYvyMrPldPIVIQAAAAAAAAAAAAAAqYydAwAAADDedOrJlsPhsKkbAIBV8jw5YR/3VjK5CEg2RiFyo4lmAAAAAAAAAAAAAAAg+REuAgAAgGG4yGjSBQAgMeRnhf88L/ZXKBQK2dQNADtwnQcAAAAAAAAAAAAAAIwQLgIAAICJyUXhJ10AABKDUYigJhBQRU2VTd0AsIPXVx72cSYXAQAAAAAAAAAAAAAAwkUAAABQMXe0B4CUkJdp/HleXBn+nAAgsXCdBwAAAAAAAAAAAAAAjBAuAgAAgInJRWw6BYBkkJ9l/Hnu9RMuApJFMBRSsa8ybA3hIgAAAAAAAAAAAAAAQLgIAAAgxdUEalVW5Qtbw6ZTAEgODTOz5DCo8TK5CEgaZVU+BULBsDWEyAEAAAAAAAAAAAAAAOEiAACAFFfsD383e8ncpAsAQPxLc7qUm+kJW1PsK7epGwBWM5pOKUn5WTk2dAIAAAAAAAAAAAAAAOIZ4SIAAIAUV2xm06mHTacAkCyMPtPNhBEAJAZT13mZWTZ0AgAAAAAAAAAAAAAA4hnhIgAAgBRnZhN5nodNpwCQLPI94afRES4CkofXYBKZ0+FQLuEiAAAAAAAAAAAAAABSHuEiAACAFOetDL+JPCMtXZ40t03dAACsZhQuMjPpBEBiMLrOy/Nky+lw2NQNAAAAAAAAAAAAAACIV4SLAAAAUlyxP/ym03xPthxsOgWApJHH5CIgZRhd5+Vlhv88AAAAAAAAAAAAAAAAqYFwEQAAQIrz+srDPm60CR0AkFiMJhd5fRUKhUI2dQPASkZhwfwsrvMAAAAAAAAAAAAAAADhIgAAgJTnrTSeXAQASB75npywj9cGA6qorrKpGwBW4joPAAAAAAAAAAAAAACYkRbrBgAAABBbxUZ3tGfTKQAkFTOf615fuXIyMm3oBoCViv1G13nhw4YAAAAAEE4oFFIgEFAoFFIwGIx1OwAAAAAAADDJ6XTK4XDI5XLJ4XDEuh3ECcJFAAAAKc7LplMASCl5psJFFWqd18SGbgBYJRgKGYbI8zxZNnUDAAAAINFVVVXJ5/OpurpaVVVVqq6uVk1NjUKhUKxbAwAAAAAAQB05HA6lp6fL7XYrIyNDbrdbHo9HGRkZsW4NMUC4CAAAIIXVBGpVXuUPW8OmUwBILg0zs+SQFG7rj9cgkAAg/pX5KxU02ORHiBwAAABAONXV1SotLVVpaamqqqpi3Q4AAAAAAACiLBQKqbq6WtXV1SovL//pv2dkZKhBgwZq0KCB3G53DDuEnQgXAQAApLBiX6VhDZtOASC5uJxONczMUrH/0OcAo2knAOKfN8x7/Ef5JiaZAQAAAEg9FRUVKioqks/ni3UrAAAAAAAAiIGqqioVFRWpqKhIHo9HTZs2VXY2v19OdoSLAAAAUpjXV25Yw6ZTAEg+eZ6csOEiJhcBic9baXydl8d1HgAAAICfCQQC2rdvn0pKSmLdCgAAAAAAAOKEz+fT9u3b1bBhQzVv3lwulyvWLcEihIsAAABSmJnJFGw6BYDkk+/J0lbvoR83Ez4FEN+MrvNcDqdyMzw2dQMAAAAgnoVCIZWWlmrfvn0KBAKxbgcAAAAAAABxqKSkROXl5WrevLkaNGggh8MR65YQZYSLAAAAUpjRZIrMtHR50t02dQMAsEueJyfs495KJhcBic7oOi/PkyUnX/YCAAAAKS8UCqmoqEj79++PdSsAAAAAAACIc4FAQLt371ZVVZWaNm1KwCjJOGPdAAAAAGLHaNNpPlOLACApGX2+F/sJFwGJzjhcxHUeAAAAAGn//v0EiwAAAAAAABARvlNKToSLAAAAUlixYbgo/GQLAEBiys8KHyrw+ioUCoVs6gaAFbjOAwAAAGDkwIEDKioqinUbAAAAAAAASEBFRUU6cOBArNtAFKXFugEAAADEjvEd7bNs6gQAYKe8zPDhokAwqLIqvxpkemzqCEC0eX3lYR9nQiUAAACQ2kpLS7Vv376Ij3M6ncrMzJTb7VZGRobS09OVlpYmh8Mhh8NhQacAAAAAAACIplAopFAopNraWtXU1KiqqkrV1dXy+/0KBoMRPde+ffuUlpamBg0aWNQt7ES4CAAAIIUZhYu4oz0AJCejyUWSVOwrJ1wEJLBiX2XYx/MIFwEAAAApKxgMRhQscjgcys3NVYMGDZSdnS2n02lhdwAAAAAAAIiFYDCoiooKlZaWqqysTKFQyNRx+/btU05ODt8ZJQHCRQAAACnM6I72bDoFgORkJjzq9VWqTb4NzQCIumAwqGK/UYic6zwAAAAgVf3www+qra01VZuTk6PmzZvL7XZb3BUAAAAAAABiyel0Kjc3V7m5uaqurtbevXtVURH+986SVFtbqx9++EHNmjWzoUtYiXgYAABAiqoO1KqiuipsDZtOASA5NczwyOFwhK0xCqACiF+lVT4FDe4ixXUeAAAAkJqqq6t14MABwzqHw6EWLVqoVatWBIsAAAAAAABSjNvtVuvWrdWiRQvD/SWSdODAAVVXV9vQGaxEuAgAACBFFfuM7yrAplMASE5Op1MNM7PC1pg5TwCIT1znAQAAADiUoqIihQxuRiBJLVq0UMOGDU1tHgEAAAAAAEDycTgcatiwoVq0aGFYGwqFVFRUZENXsBLhIgAAgBTlNbHpNI9NpwCQtIyCBWbOEwDiE9d5AAAAAA4mEAiotLTUsO6www5TgwYNbOgIAAAAAAAA8a5BgwY67LDDDOvKysoUCARs6AhWIVwEAACQosxsOuWO9gCQvIw+45lcBCQuo+s8l9OpnAyPTd0AAAAAiBfl5eWGNZmZmcrLy7O+GQAAAAAAACSMvLw8ZWZmhq0JhUKmvn9C/CJcBAAAkKKMNo170t3KTHfb1A0AwG5GU0uYXAQkLqPrvPzMbDkdDpu6AQAAABAvysrKDGuaN28uB/9eAAAAAAAAwM84HA41b97csM7M90+IX4SLAAAAUpTXF/4uAUabzgEAic1ocpHReQJA/OI6DwAAAMCvBYNBwzvHZmVlKSsry6aOAAAAAAAAkEjMfHdUXl6uYDBoU0eINsJFAAAAKcpbaXBHezadAkBSy/fkhH282F+pYChkUzcAoslo8hjXeQAAAEDqqaioUMjg3/m5ubk2dQMAAAAAAIBEZPT9USgUUmVlpU3dINoIFwEAAKSoYj+bTgEglRl9zgeCQZVX+WzqBkA0GYWLmFwEAAAApJ7q6mrDGsJFAAAAAAAACCcnJ/yNbCWpqqrKhk5gBcJFAAAAKYpNpwCQ2sx8zhudKwDEp2ImFwEAAAD4FaNwUUZGhtLT023qBgAAAAAAAInI7XYrIyMjbI2Zm9wgPhEuAgAASFHeSjadAkAqM/M5T7gISDzBYFDF/vBj5gmRAwAAAKnHaFOH2+22qRMAAAAAAAAkMqPvkWpqamzqBNFGuAgAACAFVdfWqrIm/PjRfI/xCFMAQOJqkOGR0+EIW2M0/QRA/Cmp8ikUCoWt4ToPAAAASD1GmzoIFwEAAAAAAMAMo++RmFyUuAgXAQAApCCv33izOJOLACC5OZ1O5WWG/6xnchGQeMyEAvM9WTZ0AgAAACBehEIhw3BRenq6Td0AAAAAAAAgkRl9j1RTU2N4Q0zEJ8JFAAAAKchbWW5Yk0e4CACSXp5BwMDrMz5fAIgvZt63eUwuAgAAAFJKIBAwrGFyEQAAAAAAAMww8z2Sme+jEH8IFwEAAKQgM3e0J1wEAMkv3yBgwOQiIPEYvW9dTqdyMzJt6gYAAABAPAgGg4Y1TidbBwAAAAAAAGDMzPdITC5KTHxDCAAAkIKMNp1mpbuVmRZ+fCkAIPEZBUnNhFEBxBej922+J1sOh8OmbgAAAADEAzObOfh3AgAAAAAAAMww8z2SmZvdIP4QLgIAAEhBxptOw0+yAAAkh3yDcBGTi4DEY/S+zctkOiUAAACA3yJcBAAAAAAAADP4Hil5ES4CAABIQYabTj1ZNnUCAIglo3BRsa9CQUZVAwnFW2kQIs8iXAQAAAAAAAAAAAAAAH6JcBEAAEAK8vrKwz7O5CIASA15BuGiYCikMn+lTd0AiIZiPxMqAQAAAAAAAAAAAABAZAgXAQAApKBiX/iN4kaTLAAAySE/yzhk4CVcBCQUJlQCAAAAAAAAAAAAAIBIES4CAABIQUaTi4wmWQAAkoOZMKm3Mvw5A0D8CASDKjEIBDK5CAAAAAAAAAAAAAAA/BrhIgAAgBTjr61RZU112BomFwFAasjN8MjlCP/VQLHBFBQA8aPUX6lQKBS2hus8AAAAAAAAAAAAAADwa4SLAAAAUoyZTeJMLgKA1OB0ONTQkxW2xku4CEgYXj/XeQAAAAAAAAAAAAAAIHKEiwAAAFKMmXBRflaODZ0AAOKB0RQTwkVA4vBWmrjOI1wEAAAAAAAAAAAAAAB+hXARAABAijGzSTw/k02nAJAqjKaYmAmlAogPRu/XNKdLOe5Mm7oBAAAAAAAAAAAAAACJgnARAABAivH6ysM+npWeIXdamk3dAABizXhyUfjzBoD4YRQiz/NkyeFw2NQNAAAAAAAAAAAAAABIFISLAAAAUozRptP8LKYWAUAqyffkhH282FdpUycA6svwOs/g/Q4AAAAAAAAAAAAAAFIT4SIAAIAUU2y46ZRwEQCkEqPP/WJ/hYLBoE3dAKiPYoNJY1znAQAAAAAAAAAAAACAgyFcBAAAkGKM7mifl8mmUwBIJXkGYYNgKKTSKp9N3QCoD6/BpDHCRQAAAAAAAAAAAAAA4GAIFwEAAKQYo3BRfhabTgEglZgJGxidOwDEB6PJRUZhQgAAAAAAAAAAAAAAkJoIFwEAAKSYYqNwkSfHpk4AAPHATLjI6NwBIPYCwaBK/EwuAgAAAAAAAAAAAAAAkSNcBAAAkEL8NdXy1VSHreGO9gCQWnIyPHI5w389wOQiIP6V+isVMqghXAQAAAAAAAAAAAAAAA6GcBEAAEAKMbM5nE2nAJBanA6H8jKzwtZ4feU2dQOgrsxc5xEiBwAAAAAAAAAAAAAAB0O4CAAAIIUUEy4CABxEvicn7ONMLgLin7kQefj3OgAAAAAAAAAAAAAASE2EiwAAAFIId7QHAByMUbDUTDgVQGwZvU/TnS5luzNs6gYAAAAAAAAAAAAAACQSwkUAAAApxChclO3OkNuVZlM3AIB4YRQsZXIREP+8vvKwj+d5suVwOGzqBgAAAAAAAAAAAAAAJBLCRQAAACnE6I72+Z4cmzoBAMQTo8lFhIuA+Gf0PjV6nwMAAAAAAAAAAAAAgNRFuAgAACCFGN3Rnk2nAJCajCYXlfgrFQwGbeoGQF0YhYuM3ucAAAAAAAAAAAAAACB1ES4CAABIIcW+yrCPEy4CgNRkNLkuFAqppMpnUzcA6sJ4QiXXeQAAAAAAAPFg4sSJcjgchn8mTpwY61YBJDAznzODBw+OdZsAAACII4SLAAAAUojR5CLuaA8AqSk/y/jz3+gcAiC2jCYXES4CAAAAAAAAAAAAAACHkhbrBgAAAGAfNp0CAA4mL9NEuKiyQmpkQzMAIhYIBlXqDz+hMs9gQhkAAAAAAAAAAAAQa6WlpVq5cqVWr16tNWvWaPPmzdq9e7f27t2riooKVVb+73dimZmZ8ng8ys/PV4sWLdSyZUt16dJFvXr10jHHHKPWrVvH+CcBgMRDuAgAACBF+Gqq5a+tCVtDuAgAUlNuRqZcTqcCweAha4r94QOqAGKnxF+pkEGNmQllAAAAAAAAAAAAgJ327Nmjzz77TJ9//rkWLVqkdevWKRjm99Y/Ki8vV3l5uYqKirR+/frfPN6xY0edfPLJOvfcc3XyySfL6XRa0T4AJBXCRQAAACmi2GBqkcQd7QEgVTkcDuV7svVDRdkha7yVhIuAeOX1lRvW5JuYUAYAAAAAAHAoEydO1BVXXGHJc7vdbmVmZiojI+OnPzk5OWrWrNkv/vx4N/quXbuqQYMGlvQCAAAAa4VCIS1dulQffPCBPvjgA3333XeWrLNx40Zt3LhRL774olq0aKErrrhCN910k5o2bWrJevHk8ssv16RJk2LdRlz4/PPPNXjw4Fi3ASQMwkUAAAApwmsiXMTkIgBIXXmZBuEiE+cRALFh5v2Zx+QiAAAAAAAQp6qrq1VdXR3RMYcffri6deumY445RgMGDNCAAQPUpEkTizoEAABAfX311VeaOnWq/v3vf2vXrl22rr179249+uijeuaZZ3TNNdfogQceUMOGDW3tAQASAeEiAACAFGHmjvZ5niwbOgEAxKP8rGxp/6EfLzZxHgEQG0YTKtNdLmWnZ9jUDQAAAAAAgPX27NmjPXv26LPPPtP48eMlSd26ddPgwYN13nnn6aSTTpLL5Ypxl7BTcXGxnn32WcO6o48+Wuecc47l/SA5TZw4UVu3bjWsGzdunOW9AEAi2L17t9544w29/vrrWr9+fazbUWVlpZ555hm99dZbevbZZ3XxxRfHuiUAiCuEiwAAAFJEsa8y7OM5GZlKd3F5CACpKt+TE/Zxr8F5BEDsGE0uysvMlsPhsKkbAAAAAACA2FizZo3WrFmjF154QU2bNtV5552nUaNG6cQTT4x1a7BBcXGxHnzwQcO6MWPGEC5CnU2cOFHz5883rCNcBADShx9+qBEjRigQCMS6ld/Yt2+fRo4cqU8++UTPP/+8PB5PrFsCgLjgjHUDAAAAsIfR5KL8zGybOgEAxKN8T/jzAJOLgPhlFC7Kz+I6DwAAAAAApJaioiK99NJLGjRokHr37q233npLtbW1sW4LAAAgZZSUlMRlsOjnXn/9dQ0YMEBFRUWxbgUA4gLhIgAAgBRheEd7g03lAIDkZnQeKPFXKhAM2tQNgEgUG4WLDCaTAQAAAAAAJLOVK1fqkksuUYcOHfTKK68oyPecAAAA+P++/vprnXjiidq1a1esWwGAmCNcBAAAkCK4oz0AIByjyUUh/S9gBCD+GIbImVAJAAAAAACgHTt26Oqrr1ZBQYG++uqrWLcDAACAOLF27VqdfvrpKisri3UrABBTabFuAAAAAPbgjvYAgHCMwkXS/84ljbI4XwDxxusrD/s4IXIAAAAAAID/s2zZMhUUFOiGG27QU089JbfbHeuWAAAA8DPZ2dnq3bu3jjvuOPXo0UPt2rVT27Zt1bBhQ+Xk5MjpdGr//v3av3+/CgsLtWTJEs2fP1+LFi1SeXn435sdyqpVqzRq1Ch98MEHUf5pACBxEC4CAABIAaFQiDvaAwDCMhMyNTqXALBfbTCgUr8vbI2Z8CAAAAAAAEC03HzzzRo6dGhExwSDQfn9flVVVcnv96u8vFx79uzR3r17tWfPHm3YsEHbt29XKBSKSo+hUEh/+9vf9NVXX+ndd99Vq1atovK8Zlx++eW6/PLLbVsPQGqK1uclANilT58+Ov3003XqqaeqoKBALpcrbP3hhx+uww8/XJI0ZMgQ3X333fL7/Zo4caLGjx+vjRs3RtzDzJkz9fLLL+vqq6+u088AAImOcBEAAEAK8NVWq6q2JmwNd7QHgNSW7c5QutOlmmDgkDVG01EA2K/EX2lYk0e4CAAAAAAA2KhXr14688wzo/685eXl+v777/X111/rs88+0+eff64DBw7U6zmXLl2q3r176z//+Y8GDBgQpU4BAABgRqdOnTR69GiNHDlSnTp1qvfzZWZm6tprr9XVV1+t119/XTfddJMqKiK7gebtt9+us846S4cddli9+4mViRMnauLEibatd/nll2vSpEmmards2aJ27dpZ2xCAOnPGugEAAABYr9hnvOmUO9oDQGpzOByGAQQmFwHxx1tp/L7kOg8AAAAAACSDnJwcFRQU6Prrr9e7776roqIiLVmyRH/4wx/UuHHjOj9vUVGRhg8froULF0axWwAAAByMy+XS2WefrY8//ljr1q3T/fffH5Vg0c85nU79/ve/1/Lly9WzZ8+Iji0rK9Ojjz4a1X4AIFEQLgIAAEgBZiZNsOkUAGB0LigmXATEHTOhv3xPjg2dAAAAAAAA2MvpdOqEE07Q3//+d+3evVuTJ09W165d6/Rc5eXlGj58uJYsWRLlLgEAACBJGRkZuvrqq7V+/XrNmDFDw4YNk8PhsHTNrl27atGiRTrxxBMjOu7ll1/Wvn37LOoKAOJXWqwbAAAAgPXM3NE+L5NwEQCkOiYXAYmn2B/+fZnucikr3W1TNwAAAACA+ggGg9pd6tXmA4XaWbJfFdV+1QQCqg0GlOZ0Kd3lUrY7U60aNlaHxs3UIjdfTif3lAUkye12a9SoUbr44ov19ttv64477tCuXbsieo6ysjKdfvrp+vrrr9WuXTtrGgUAAEgxbrdb11xzje666y61aNHC9vWzs7M1c+ZMFRQUaPXq1aaOqa6u1r/+9S/ddtttFncHAPGFcBEAAEAKMNoMnpvhUZrLZVM3AIB4ZTS5iHAREH+MQuT5nhzL7/oGAAAAAKibUCikNYW7tGLnJm06sE/bDhSpKlBr+viMtHS1zW+iIxo1V59WR6hbs5b8GxApz+l0auTIkRo+fLhuueUWTZw4MaLjvV6vLrroIn355Zdyu7lhCwAAQF05nU5dcsklevjhh9W+ffuY9pKbm6t33nlHxxxzjKqrq00d8+abbxIuApByCBcBAACkgGKDzeBGm8kBAKnBOFxUblMnAMwqNnhfcp0HAAAAAPGnorpKC7as0acbVml3qbfOz1NVW6P1RXu0vmiPPlz3jVo0yNfJnXpqYPtuynZnRLFjIPHk5eXp9ddf18knn6wrr7zS9CZSSVq2bJluv/12TZgwwcIOAQAAktsFF1ygiy66KNZt/KR79+665ZZb9Pjjj5uq//bbb1VYWKhmzZpZ3BkAxA/mYwMAAKQAo0kTeWw6BQBIyvPkhH28zO9TbTBgUzcAzDC6ziNcBAAAAADxY19ZsV5ZOlc3TH9Vb6yYX69g0cHsLvXqjRXzdcP0V/XK0rnaV1Yc1ecHEtEll1yiOXPmKC8vL6Lj/va3v2nBggXWNAUAAJACnM7426J+xx13yOPxmK6fN2+edc0AQByKv09uAAAARB13tAcAmJGfFf58EJJU4q+0pxkAphhNqCREDgAAAACxFwgG9f7q5frTrH/p803fqypQa+l6VYFafb7pe/1p1r/0werlCgaDlq4HxLsTTzxR77//vjIyIpvodfPNNysUClnUFQAAAOzWuHFjnX322abrv/vuOwu7AYD4Q7gIAAAgBXBHewCAGfmZxucDb2X4cwoAe3GdBwAAAADxbVfJAY2b829N/WahamyeCF0TDGjKNws1bs472lVywNa1gXgzcOBAvfnmm3I4HKaP+frrrzVx4kTrmgIAAIDtzjjjDNO1GzZssLATAIg/abFuAAAAANYKhUKGd7Rn0ykAQJLyDCYXSVKxn3AREC9qgwGVVvnC1uR7cmzqBgAAAADwc8FQSLPWfK13Vy22PVT0axv379XdH76lC3r21RndessZQbgCSCYXXnihPv/8c73wwgumj7n//vt16aWXKi0tdbdYVVdXq6ioSEVFRSorK1NVVZVqamqUkZGhrKysn/5kZ2erWbNmcrlcsW45pVRWVmrHjh0qKytTRUWFfD6fMjIylJ2drZycHLVu3Vq5ubmxbtNW5eXlmjdvnr799lutW7dO69evV2FhocrLy1VeXq7q6mplZWUpNzdXzZo1U8uWLfWPf/xDbdq0iXXr+JlQKKQ9e/aoqKhIFRUVqqioUCgUUnZ2trKzs9W4cWO1bNlSTmdq3V9/9erVmjdvnr777jt9//332rVrl0pLS1VWViZJysrKUsOGDdW2bVt16NBBxx57rPr3769evXpFFLCNF6FQSAcOHFBhYaG8Xq+qqqpUVVUll8v10/nH4/EoKytLjRs3VnY2e19grG/fvqZrd+7caWEniEcVFRXauXPnL66t3G73T9cObdq0SblrK6SW1P2XLwAAQIrw1VSrKlAbtiaPcBEAQFJ2eobSXS7VBA694cVoSgoA+5T4Kg1r8jxZNnQCAAAAAPi52mBALy2Zo4Vb18W6lZ/8b4rRl9peXKRrCk5RmpPN/0hNTz75pD7++GNt3rzZVP3OnTv1n//8RxdddFHUepg4caKuuOIKw7rXX39dl19+edTWNcPr9WrBggVatGiRVq5cqXXr1mn79u0KhUKmjk9LS1PLli3Vrl07tWvXTu3bt1efPn1UUFCgJk2a1Lu/efPm6aSTTqrXc0yaNEmTJk2qdy8/GjRokObNmxe15wunpKREX3zxhb788kstXrxYGzZs0N69ew2Pa9KkiTp16qSCggINGDBAgwYNUuPGjW3oOLxx48bpwQcfNKz7/PPPNXjw4LA15eXlmjRpkt59910tXLhQNTU1YevLyspUVlam3bt365tvvtGBAwd+Che1a9dO27ZtM/1zHEy0QxxbtmxRu3btot6Dna9fI6tWrdKCBQv05Zdf6ttvv9WWLVvk9/vDHuN2u9W2bVv17NlTAwYM0MCBA9W7d++4CNFE8+9/x44dev755zVt2jRt3LgxbG11dbWKi4u1bds2ffHFFz9N4GvTpo0uuugiXX/99Wrfvr2ZH8F2gUBAy5Yt06JFi7R06VKtXbtW69evN3wd/FyTJk3Utm3bn85DPXr0UEFBgbp27RoXrwvEh3bt2ik9Pd3wXCHpp+AektOePXu0YMECLVy4UF999ZU2b96swsJCw+OaNGmiLl26qF+/fhowYICGDBminBxu+IjkQLgIAAAgyZnZBM4d7QEA0v9+0ZGXma2iitJD1ngrCRcB8YLrPAAAAACIP9WBWk34cra+3rUl1q0c1MKt6+SrqdYfB5wut4stI0g92dnZeuaZZ3T22WebPuZvf/tbVMNF8cbn82nKlCmaMmWK5s2bp9ra8DctDKe2tlbbtm3Ttm3bNH/+/F88dsQRR6igoEAnnXSSzj33XDVq1Ki+raeE2tpaTZ8+XW+99ZY+/PBDVVVVRfwcP/zwg3744QctXrxYzzzzjNLS0nTyySdr1KhRuvDCC5WZmWlB5/bYv3+/HnnkEb322msqLT307zYQnzZu3KhJkyZpypQp2rRpU8THV1dXa8OGDdqwYYOmTZsmSWrdurUuvvhijRkzRj169Ih2y7baunWrxo0bp7feestUCCKc7du366mnntKzzz6r0aNH67HHHtNhhx0WpU7rZ9GiRfrnP/+p999/Xz/88EO9nuvHz7sVK1b84r/n5eXp+OOPV//+/XXOOeeoZ8+e9VoHic3lcikvL09FRUWGtRUV/G482RQWFmrq1Kl6++23tXjxYtMh+p/78bNm4cKFevLJJ+XxeHTmmWfqsssu0xlnnEGYEQkttWZCAgAApKBiU5tOmVwEAPif/Kzw54RiX7lNnQAw4jXxfuQ6DwAAAADsUxsMxHWw6Edf79qiv335oWqDh55eDSSzs846S8cee6zp+h+naCSb8vJyPfTQQ2rZsqV+//vf69NPP61XsMjIpk2bNHnyZI0dO1bNmzfXaaedptdff10lJSWWrZnIqqqq9OKLL6pTp0666KKLNGPGjDoFiw6mtrZWH330kS677DJ16NBBTz/9tCorjaekx5NQKKRXXnlFnTt31rPPPkuwKMF8//33GjVqlLp27apHHnmkTsGiQ9mxY4eefPJJHXXUUTrnnHO0fPnyqD23XYLBoJ599lkdeeSRmjRpUr2DRT9XW1uriRMnqnv37po8eXLUnrcuZs2apd69e6t///567bXX6h0sCqe4uFiffPKJHnjgAfXq1Utdu3bV/fffr9WrV1u2JuKb2+2Oah3i36ZNm3TttdeqTZs2uummm7Ro0aI6BYsOxufz6Z133tGIESPUs2dPTZ06NSrPC8QC4SIAAIAkZ+aO9g09WTZ0AgBIBEZTTsycVwDYwyhE7nalyZPOLz0AAAAAwA7BUEgvLZkT98GiH63YtVkvLZmjYJQ2UwGJZty4cRHVv/3229Y0EiMzZsxQp06d9MADD8jr9dq+fm1trT7++GNdeeWVeuWVV2xfP97NmzdPRx11lK677jpt3brV0rX27Nmj2267TV27dtXMmTMtXStaKioqdN555+nqq6/WgQMHYt0OIlBeXq6bbrpJvXr10pQpUxQIWBd0DoVCeu+993Tcccfp97//fUw+6+qiuLhYw4YN0y233GLpxBSv16vRo0frrrvuitrmerO2b9+uYcOG6cwzz9TKlSttXftH69at08MPP2zZZEKHw2H6j9Wf8zg4s+Hm3NxcizuB1crKynTLLbeoS5cueumll6IW1j6U77//XiNHjtTgwYO1Zs0aS9cCrEC4CAAAIMkZ3dG+QYZHaU6XTd0AAOKd0ZQTMxPxANjDKOyX78mWw+GwqRsAAAAASG2z1nythVvXxbqNiCzcuk6z134d6zaAmBg+fLjatGljuv6DDz6wsBv71NbW6rrrrtO5556rvXv3xrod/Ep1dbWuv/56nXTSSdqwYYOta+/YsUMjRozQJZdcEtdTjHbv3q0BAwZoxowZsW4FEVq8eLG6d++uCRMmKBgM2rr2a6+9pq5du+qTTz6xdd1Ibdq0SQUFBZo7d65taz7++OO6+eabbVtv9uzZOuqoozRnzhzb1gR+rby8XOXl4fdS/ahp06YWdwMrzZo1S127dtWzzz5raaD1YObPn69jjjlGr776qq3rAvVFuAgAACDJmdl0CgDAj/IMzgtMLgLiB9d5AAAAABAfdpUc0LurFse6jTp559vF2lXC1AekHqfTqTFjxpiu//777xN+skBVVZVGjBihF198Mdat4CD27dunIUOG6IUXXohpH2+99Zb69eunbdu2xbSPg/lxoss333wT61YQoddee02DBw/Wjh07YtZDYWGhTj/9dI0fPz5mPYSzbds2DRo0SOvW2R9WnzBhgp544gnL13nttdd01llnqbS01PK1gHAiOY906tTJukZgmWAwqPvvv18jRozQ7t27Y9ZHVVWVrrrqKl133XW2B2uBuiJcBAAAkOSMJkwYbSIHAKQWozBCaZVPtTbf1QfAwXGdBwAAAACxFwgG9eKST1QTTMzvS2qCAb20ZA4bnZCSLr300ojqZ82aZVEn1guFQrrkkkv00UcfxboVHMSuXbvUv39/LVy4MNatSJK+/fZbFRQUaP369bFu5SdVVVU666yz9N///jfWrSBCf/3rX/X73/9e1dXVsW5FgUBAt99+u2699dZYt/ILhYWFOuWUU7Rr166Y9XDPPfdo8WLrwvLTp0/XVVddZfvkEOBgInmtd+3a1cJOYIWqqiqde+65evjhhxUKhWLdjiTpxRdf1GWXXcZnIBJCWqwbAAAAgLW4oz0AIBJmzgsl/ko1zs61oRsA4XCdBwAAAACxN3vt19q0f1+s26iXjfv3atbarzWi+7GxbgWwVadOndS+fXtt2bLFVP2iRYv0hz/8weKurDF+/HhNmzYt1m3gIPbu3ashQ4Zo06ZNsW7lF/bu3auTTjpJ8+fPV8eOHWPdju655x4tWLDAVG3btm3Vv39/derUSW3atFFubq7cbrfKy8tVUlKi9evXa9WqVVq4cGFcBF6S2dNPP60///nPsW7jN5555hmlp6fr8ccfj3UrCgQCOv/887VhwwbD2uzsbJ1wwgk6+uij1b59ezVq1EjZ2dmqqalRcXGxtmzZomXLlmnhwoWqrKyMqI/a2lpdccUV+u6775Senl7XH+egtmzZojFjxhBmR9yYPn266doBAwZY2Amize/369xzz43LQP3kyZPlcrk0adKkWLcChEW4CAAAIMkZbTrN8+TY1AkAIBHkmzgveH0VhIuAOMB1HgAAAADE1r6yYr27akms24iKd1ct0fGtO6p5bl6sWwFsdfLJJ+uVV14xVfv1119b3I01tmzZonvuuSfi41wul4477jgNGjRInTp1UseOHdW6dWtlZ2crOztbWVlZqq2tVVVVlUpLS7Vv3z7t2bNHGzZs0Pr16/X111/r22+/ld/vj9rPMnjw4EPegX7r1q1q37694XOMGTNGEydOjFpP9VFVVaURI0bUaUKQw+FQ3759ddppp+nYY49V165d1bhxY2VnZ8vn88nr9Wr9+vVauXKlPvroI82fP1+1tbURrbF7926dfvrpWrZsmRo2bBhxj9GycOFCPfPMM2FrDjvsMF1zzTUaPXq06TBUaWmp3nvvvd8ETLZu3XrIYwYPHqz58+cbPne8TEqIpWnTpum2226r07FNmzbVaaedpqFDh6p79+5q166dcnNz5XK5VFZWpp07d2r16tWaN2+eZs2apZ07d0a8xhNPPKG2bdvq+uuvr1OP0XLffffpyy+/POTjTqdT559/vi6//HKdcsoppoI/FRUVeuedd/SXv/zFVGjpR+vWrdPzzz+vm2++2fQxZlxzzTUqKyuL+Lg2bdrolFNOUY8ePdSxY0cdccQRatiw4U/nIJfLJb/fL5/Pp8LCQhUWFmrz5s3asGGDvvvuOy1btkyFhYVR/VmQ+LZs2aIlS8z9G65Zs2bq0aOHxR0hWoLBoC644II6B4t69uypk046Sb1791bnzp3VunVrNWzYUB6PRzU1NSovL9f27du1du1aLVy4UDNnztT27dsjWuONN97QUUcdpdtvv71OPQJ2IFwEAACQxEKhkLy+8rA1+Vnc0R4A8H/yTEw6MTq3ALBebSCgsipf2BomFwEAAACAtd5fvUI1wUCs24iKmmBA769eoatOGBrrVgBbDR061HS4aP369SovL1dOTmLd0OX++++PaDpLp06ddMcdd+iCCy5Qfn5+2Fq32y23263c3Fy1bNnyN4/X1NRo6dKlmjNnjmbNmqUVK1ZE3H8yu+GGG7R8+fKIjklLS9PVV1+tm2++WZ06dTpoTU5OjnJyctS6dWsNHTpUt99+u3bu3Km///3veu655yIKfG3YsEGXXXaZZsyYIYfDEVGv0fLQQw8dcuKJx+PRAw88oD/+8Y/yeDwRPW+DBg106aWXavTo0aqpqYlGq/j/1q5dqyuuuCLi47p166b77rtP559/vtxu90FrGjVqpEaNGqlnz566+OKLFQwGNXPmTD3yyCNatmxZROvdcsst6t27twoKCiLuNRr++9//6osvvjjk48OHD9dzzz13yPf6oWRnZ+vyyy/XJZdcooceekiPPvqo6cDb448/ruuvv/6Qf/+Rmjt3rubMmWO6PisrS2PHjtW1116rbt26Gdb/GHht0qSJunfvrsGDB//i8c2bN2vOnDn65JNP9OGHH8rnC/97FSS/Z5991vT74bzzzrO4G0TTn/70J82aNSuiY34MJ1955ZVq06bNIetcLpcyMzPVpEkT9e7dW6NGjdLf//53zZs3T48//rg+/vhj02veddddPwX4gXjkjHUDAAAAsE5lTbVqAuF/scmmUwDAz2Wlu+V2hb8XidG0FADWK/Ybvw+5zgMAAAAA61RUV2nR1rWxbiOqFm1dq8rqqli3Adjq6KOPNl0bDAa1cuVK65qxQGFhod5++21Ttenp6ZowYYLWrl2rq666yjBYZPY5BwwYoAcffFDLly/X5s2b9cgjj6ht27b1fu5EN23aNL366qsRHXPcccdp1apVev755yMOG7Rq1Up//etftWbNGg0ZMiSiY99//309//zzER0TTYcKx3Xr1k3ffPON7rzzzoiDRT/ncDiiFqSAFAgENHLkyIgm1aSnp+uJJ57QqlWrNHLkyIj+fzidTp111llaunSpXnrpJWVlZZk+trq6WhdffLEqKmLze68ffvjhoCGHjIwMvfrqq5o9e3bE7/WfS09P18MPP6x//etfcjrNbRXeu3evpk6dWuc1f23ChAmma8844wxt3bpVzz33nKlgkRkdOnTQNddco2nTpqmoqEhTpkzR0KFDYxaWRGzt27dPr732mun6Sy65xMJuEE1vvfWWxo8fb7re4/Hoscce06ZNmzRu3LiwwaJDcTgcOumkk/TRRx9p1qxZBw3aH0wgENDYsWMJOyJuES4CAABIYmYmS+RlsukUAPB/HA6HYSChmHAREHNmQn5mJpEBAAAAAOpmwZY1qgrUxrqNqKoK1GrBljWxbgOwVadOnSIKJaxfv97CbqJv6tSppiayeDweff7557rxxhtNb0Cvi/bt2+uee+7R5s2b9f7776tfv36WrRXPysrKdNNNN0V0zO9//3t9+eWX9d5w365dO33yySe67bbbIjrunnvu0e7du+u1djT17dtXixYtUufOnWPdCn7lueee0zfffGO6vkmTJlqwYIHuuOMOpaWFv/ldOA6HQ1dffbWWLl2q1q1bmz5u27ZteuCBB+q8brTl5uZq7ty5+v3vfx+15xw1apSeeuop0/WRhC/C2b9/v2bPnm2q9qabbtIHH3ygpk2bRmXtg8nOztbFF1+sTz/9VOvXr9e1116rzMxMy9ZD/Ln33ntVXm68j0qSevbsqf79+1vcEaJhz549uuGGG0zX9+7dW6tWrdJdd90VUSA1nNNPP10rV67UwIEDTdVv3LhRDz74YFTWBqKNcBEAAEASM7PpND+LTacAgF8yChcxuQiIPTMhP67zAAAAAMAaoVBIczasinUblpizYdVB76APJCun06nu3bubrt+5c6eF3UTfJ598Yqruueees3UDrdPp1IgRI7Rw4UJdc801tq0bL8aNG6ddu3aZrr/xxhv16quvRm26jsvl0lNPPaX77rvP9DGlpaURB5Ks0q1bN82aNUt5eXmxbgW/smfPnoiCOs2aNdP8+fN1wgknRK2HI488UvPnz49oCsVzzz2n//73v1Hroa7cbrdmz55tyefxzTffrJNOOslU7YIFC1RYWFjvNT///HPV1hqH8U888USNHz/e1mlCHTt21AsvvKDPP//ctjURW8uXL48oOHf33Xcz4SpBXHfddfJ6vaZqzz77bH355Zfq2LFj1Pto2rSpPv74Y5188smm6idMmKA9e/ZEvQ+gvggXAQAAJDGjTacOSQ0zo3MXBgBA8jCadkK4CIg9o/dhhitNnrTobDYAAAAAAPzSmsJd2lNqbvNSotld6tXaQvMb3oFk0L59e9O1O3bssLCT6FuyZIlhTbdu3XTVVVfZ0M3B5ebmxmztWNi3b59eeOEF0/XnnHOOnnvuOUt6eeihh3TppZearn/77be1Zk1sJ9x5PB69++67ys/Pj2kfOLgnn3zS9FSQjIwMzZgxI6KAp1nt27fXBx98oOxsczfgqq2t1cMPPxz1PiL1/PPPa8CAAZY8t8Ph0NNPP20qLBEMBjVr1qx6r2nmHCT973XjcrnqvV5dpNo5KFVVVVVpzJgxCgaDpup79OihCy+80OKuEA2ffvqp3nvvPVO1Z5xxht55552IppZGyuPxaNq0aerRo4dhrc/n02OPPWZZL0BdES4CAABIYkabThtkZinNGZsvaQAA8ct4cpG5XwwBsI7RdV6eJ5s7qgEAAACARVbs3BTrFiy1fOfmWLcA2Orwww83XZtIk4sOHDig/fv3G9aNGTPGhm7wo/Hjx8vn85mqbdu2rd544w1Lv+d75ZVXTIc7QqGQHn30Uct6MeOhhx6yJIyC+vvhhx/00ksvma5/8skn1bdvX8v66dmzZ0RBvnfeeUfr1q2zrB8jw4cP19ixYy1d4+ijj9bQoUNN1S5YsKDe661fv96wpmvXrjr++OPrvRYQzr333qvVq1ebrp8wYYKcTrbXJ4J7773XVF23bt00ZcoUpaenW9yR1KBBA02dOlUZGRmGta+99prKysos7wmIBJ9+AAAAScxbabzpFACAX8vz5IR9vNhXaVMnAA7FKOSXnxX+fQwAAAAAqLtNB/bFugVLbU7ynw/4tUjCRbt377awk+jatcvcFLJjjjnG4k7wI7/fr1deecV0/T//+U/Lp2pkZGTo9ddfN72JeurUqdq3LzbniSOOOEJ//OMfY7I2jL366quqrDT3+6MTTzxRN9xwg8UdSZdeeqnOPPNMU7XBYFB/+9vfLO7o4NLS0jRhwgRb1rryyitN1S1cuLDea5k5D3EOgtVmzZql8ePHm66/8MILNWTIEAs7QrR8+OGHWrp0qWGdy+XSv/71L1snlR155JG6/fbbDesqKio0ZcoUGzoCzCNcBAAAkMQMN50SLgIAHITR+aGsyqeaQK1N3QA4GKOQX14m13kAAAAAYIVgMKhtB4pi3YaltnqLFAwGY90GYJvDDjvMdG1FRfgb+8WT8nJzE+hbtWplcSf40fvvv6/i4mJTtSNGjDA9YaS+jj/+eI0ePdpUbSAQ0OTJky3u6OBuv/12ud3umKwNY2+88YapOofDoaefftrSiVw/N378eKWlpZmqnTp1qqqrqy3u6LcuueQSdezY0Za1Tj/9dFOTOzZu3Kiqqqp6rWXmPMQ5CFbaunWrLr30UoVCIVP1TZo0iVnIEJEzO53u+uuvV+/evS3u5rf+9Kc/KS8vz7Bu0qRJ1jcDRMDcVRMAAAASUrE//C84CBcBAA7GzPmh2F+pptkNbOgGwMEQIgcAAACQjKoDtSosK4l1G2HtLStWVZLfdKWqtkYrd21R89y8WLdySM1yG8rtYssLosPj8Ziu9fl8FnYSGzU1NbFuIWW8+eabpmsffvhhCzv5rYceekiTJ09WIBAwrJ00aZJuvfVWG7r6Pw0aNNBll11m65owb8WKFVqzZo2p2rPPPlt9+vSxuKP/07lzZ11++eV69dVXDWv379+vWbNm6dxzz7Whs/9z3XXX2bZWw4YN1bNnT61YsSJsXTAY1Pr163XUUUdZ2k+ynoPMhllgncrKSp1//vnyer2mj3nxxRfVvHlzC7tCtOzatUuzZ882rPN4PLr77rtt6Oi3GjRooDFjxui5554LW7dkyRIdOHBAjRo1sqkzIDy+aQEAAEhi3srw4aI8Np0CAA7CzPnBW1lBuAiIIa/PIESexXUeAAAAgMRTWFaiP83+V6zbgKTxC2bGuoWwnjh9tFrlNY51G0gSmZmZpmv9fr+FnURX48bm3iObN29Wr169LO4Gfr9fn376qanagQMH2v7/pG3btjrrrLM0ffp0w9pVq1Zp+/btatOmjQ2d/c+IESOUlZVl23qIzPvvv2+69sYbb7Swk0OvaSZcJEkffPCBreGiTp066YQTTrBtPUk67rjjDMNFkrRp06Z6hYvMnIc2b95c5+cHDiUUCmn06NH6+uuvTR8zZswYnX/++RZ2hWgyG4i+6KKLIppSGm2jR482DBcFg0F98sknuvjii23qCgjPGesGAAAAYI1QKKRio02nhIsAAAdhJpRgNB0PgHVqArUqrwq/kSUvk+s8AAAAAAAAMyIJFyXS5KImTZqYqjMTJkH9LViwwHQ47aqrrrK4m4O75pprTNeaDUpFyznnnGPreoiM2dfDEUccoSFDhljczW/17NlTBQUFpmrtfm0PHz7c1vWk/01zMmPfvn31WsfMeWjOnDkqLy+v1zrAr911110RXd8ceeSR+sc//mFhR4i2mTPN3Qzj8ssvt7YRA3369DE1DeuLL76woRvAHMJFAAAASaqiuko1wfB3acj35NjUDQAgkXjS3MpwhR92bDQdD4B1iv2VhjVMLgIAAAAAADDH7Xabrq2urrawk+jKz89XTo7x7wKnTp2qb7/91oaOUpvZwEJ6erpGjBhhcTcHN2TIEOXn55uqnTNnjsXd/NKgQYNsXQ/mlZWV6auvvjJVa+dEoF8zO5Fkx44dWrduncXd/J9YvLbbt29vqq6+4aLWrVsb1vh8Pj300EP1Wgf4uZdffllPPPGE6frc3Fy9++67TMdLICUlJVq8eLFhXX5+vgYOHGhDR4fmcDhMTadbuXKlDd0A5hAuAgAASFJGU4skJhcBAA7O4XAoz+Ac4fVxFzEgVsyE+wiRAwAAAAAAmFNVVWW6NpIpR7HmcDhMbaisqanRBRdcoG3bttnQVepatmyZqbr+/fsrLy/P2mYOIT093fQUleXLl1vczf/p2LGjmjZtatt6iMzKlStVW1trqvbMM8+0uJtDO/vss03X2vn6Pvroo21b60dmJ9uVlJTUax2zwamnn35ab775Zr3WAqT/TWO8/vrrTdc7nU5NnDhRXbp0sbArRNv8+fNNnXcGDRokl8tlQ0fh9erVy7Bm1apVCgaDNnQDGCNcBAAAkKTMbPo22jgOAEhd+VnhgwnFfiYXAbFi5v1HiBwAAAAAAMAcv99vujaRwkWSNHToUFN1GzduVN++fTV9+nSLO0pd3333nam6WN9h3+z6mzdvVkWFPb8n6N69uy3roG5WrVplqs7tdpua3mCVTp06qXnz5qZqzf5M9ZWenm56ilA0mQ0wRhK+PZiTTjpJDofDsC4QCGjMmDG6/fbbVVZWVq81kbrmzp2rkSNHKhAImD5mwoQJOu+88yzsClYwGwA97rjjLO7EnDZt2hjWVFZWateuXTZ0AxgjXAQAAJCkvAaTixySGmYy1hcAcHBGwQQzk1MAWMPo/ZeRli5PutumbgAAAAAAABJbJOEij8djYSfRd/bZZ5u+Y/uePXt03nnn6fjjj9fkyZPl8/ks7i517NmzRz/88IOp2r59+1rcTXTWDwaD+v777y3u5n+YKBHfzAbnjj766JgHNM2+vu0KF7Vo0cJU+CbaMjIyTNXVN1zUtGlTnXjiiaZqQ6GQxo8fr/bt2+u+++5jmh4ismTJEp1zzjkRvWYfeugh/eEPf7CwK1hl5cqVpuriJZzcrFkzU3U7d+60uBPAHMJFAAAASarYIFzUMDNLLieXgwCAg8vLDB8uMjrPALCO0YRKphYBAAAAAACYF8n0lUQLF3Xs2FEXX3xxRMcsW7ZMo0ePVvPmzTV69Gi9++67KikpsajD1LBp0ybTtbHeCNu1a1fTgbRIfq76aNGihS3roG7Mvg5i/dqWpB49epiqs+u13ahRI1vW+bX09HRTdbW1tfVe6957742ofv/+/XrkkUfUvn17DRgwQM8884zWr19f7z6QvL755hsNHz5c5eXhf3f2c7feeqvuu+8+C7uClcwGQNu1a2dtIyaZ/fcD4SLEC3aTAgAAJCmjyUV5nhybOgEAJKL8LIPJRYSLgJgp9od//xEuAgAAAAAAMG/v3r2ma3Nzcy3sxBr33Xef0tLSIj6urKxMkydP1oUXXqgmTZqob9++uvvuuzV79mx5vV4LOk1eu3fvNlXn8XjUpk0bi7sJLyMjQ+3btzdVa/bnqq/mzZvbsg7qxuzrIB4mUHXr1s1U3Z49eyzu5H/iPbAaCoXq/Rwnn3yyBgwYUKe1Fy5cqFtvvVVdunRRu3btdOWVV+r111/Xhg0b6t0XksOaNWs0bNgwFRcXmz5m7NixGj9+vHVNwVKBQEC7du0yVXvMMcfI4XDE/M+wYcNM9XvgwIH6/NUAURP5vxwBAACQEIw2fed7smzqBACQiIzCCeXVftUEapXu4qsFwG7eSqMQOeEiAAAAAImpWW5DPXH66Fi3EdaKnZv19qpFsW7Dcr/r1U99WnaIdRuH1Cy3YaxbQBKJZBN5y5YtLezEGl26dNEzzzyjG2+8sc7PUVtbqyVLlmjJkiWSJIfDoc6dO6ugoEB9+/bVgAED1L17dzkcjmi1nVTMhi9atGgRF3+HrVq10saNGw3r7AoXJWKoL5WYfR20atXK4k6i10N5eblKS0vVoEEDS/sxO0Eo0b355ps67rjj9MMPP9T5ObZt26bXX39dr7/+uiSpcePGOuGEE9S3b1/169dPBQUFyspiD0wq2bhxo4YOHaqioiLTx4waNUovvfSShV3Banv27FEgEIh1G5bw+XyxbgGQRLgIAAAgaTG5CABQH/kmzhPFvko1zbH2FysAfqvYMEROuAgAAABAYnK70tQqr3Gs2zCUCuGiPq06qFXD+P9/AURDJOGieNgcXxc33HCDvv32W7366qtReb5QKKR169Zp3bp1mjRpkiQpPz9fgwcP1qmnnqrhw4fHfAJPPDG78blZs2YWd2KO2T4i2dBdHxkZGbasg8jV1NSopKTEVG08vL4j6aGoqMjycFGqaNeund555x0NGzZMNTU1UXnO/fv3a/bs2Zo9e7YkKS0tTX369NGpp56qU089VQUFBXI6nVFZC/Fn27ZtGjp0aETXcOecc44mTZrE6yLBmZ1alIgIFyFe8CkJAACQpNh0CgCoDzOTT7y+chs6AfBrxhMqCZEDAAAAgFVaNMhXRpJPcs5IS1eL3PxYtwHYZtOmTaZrEzVcJEkvvviirr76asue3+v1avr06br22mvVtm1bnXDCCRo/frwKCwstWzNRmN0s2qhRI4s7MadxY3PhUrs2wabKdJdEFMlrIB5e32Zf2xKbvKNt8ODBeu+995STY83vL2pra7V06VI99NBD6t+/v1q1aqUbbrhBX331lSXrIXZ27dqlIUOGaPv27aaPOfXUU/X2228rLS25/x2XCoqLi2PdgmWqq6tj3QIgiXARAABAUgqFQiY2nRIuAgAcmpnzhNG5BkD01QRqVV7tD1uT58myqRsAAAAASD1Op1NtGzWNdRuWapfflDt6I2XU1tZq7dq1pusTOVzkcrn00ksvadKkSWrYsKHl63311Ve6/fbb1apVK1100UVavny55WvGK78//Pd5P8rMzLS4E3PM9mH250LyiuQ1EA+v70h64PUdfcOHD9fXX3+t448/3vK19uzZo+eff14nnHCCevbsqddffz1qU5MQO3v37tWQIUO0efNm08eceOKJmj59utxut4WdwS7JHPwMhUKxbgGQRLgIAAAgKZVX+1UbDIStMTORAgCQujzpbmWmhb8boNGUPADRV+yrNKxhchEAAAAAWOuIRs1j3YKlOiT5zwf83Lp16yK6S3i3bt0s7MYel112mdavX6+rrrrKlokwNTU1euedd3TcccfpzDPP1Jo1ayxfM95UVVWZqouXjc8ZGRmm6ghfwOxrW4qP17fZ17bE69sqnTp10uLFi/XKK6+oZcuWtqz53Xff6corr1SnTp00efJkNvAnqKKiIg0dOlTr1683fcwJJ5ygmTNnyuPxWNgZ7MRnM2A9wkUAAABJyMwkifwswkUAgPCMphcxuQiwn9dXbljDhEoAAAAAsFafVkfEugVLHduqQ6xbAGyzcuVK07VpaWnq2bOnhd3Yp1mzZnr55Ze1YcMG3XbbbWrcuLEt686aNUu9evXSgw8+qNraWlvWjAdmp8EFg0GLOzHHbB9MuUMkr4F4eH1H0gOvb+s4nU6NHTtWmzdv1iuvvKLevXvbsu62bds0evRoDR06VFu3brVlTUTH/v37NXToUK1evdr0MUcffbQ++ugj5ebmWtgZ7MYEMsB6XAEBAAAkITOTJLijPQDAiNGUO8JFgP3MXOcxoRIAAAAArNWtWUsd3iA/1m1YokWDfHVtZs9d5IF4MHfuXNO1PXr0UGZmpoXd2K9t27Z66qmntGvXLk2fPl2jRo1So0aNLF2zpqZG48aN06mnniqv12vpWvHC7OsmkikwVjLbR7K9HxC5SF4D8fD6jqQHXt/Wc7vdGjt2rFasWKFvvvlGf/7zn9W9e3fL1/3888/Vp08fff7555avhfrzer065ZRT9N1335k+pnv37pozZ47y8vKsawwxwWczYD3CRQAAAEnIaLO3w+FQwwzG/gIAwjOeXGQ8QQVAdBld52WmpcuT7rapGwAAAABITQ6HQ6d0So7pJb92SqeecjgcsW4DsE0k4aI+ffpY2ElsZWRk6JxzztHkyZNVWFioxYsX6/HHH9fZZ5+tJk2aWLLmZ599ppNPPlklJSWWPH88MbsR1ufzWdyJOZWVlabq2OCLSF4D8fD6Nvvalnh9261Xr176y1/+ov/+97/atm2bJk6cqKuuukrdu3e35Nr0wIEDGj58uD799NOoPzeip6SkRMOGDYto0mSnTp00d+5cy65fEFsej/m9bhs2bFAoFEqYP+PGjbPuLw6IQFqsGwAAAED0GW32bpiZxRhvAIAhoyl3xT7zv4QBEB1G4SKjUCAAAAAAIDoGtu+mt79ZqKpAbaxbiZoMV5oGtu8W6zYA26xevVo7duwwXd+vXz8Lu4kfLpdLBQUFKigo+Om/rV27Vl9++aUWLlyohQsXasOGDVFZ6+uvv9aoUaM0c+bMpA42Zmeb+86uqKjI4k7MMdtHTk743yEg+Xk8HjmdTgWDQcPaeHh9R9IDr+/YadOmjcaMGaMxY8ZI+l8Q6OfnoOXLl0dlElZVVZXOP/98LV++XJ06dar38yG6ysrKdNppp2n58uWmj2nXrp3mzp2rww47zMLOEEtmr6kkye/3W9gJkLzYUQoAAJCEjDZ7s+kUAGBGHpOLgLhTbBgu4heeAAAAAGCHbHeG+rXrGus2oqpfu67KcmfEug3ANm+88YbpWofDoTPOOMPCbuJb165dNXbsWL3++utav3699u3bp7ffflvXXnut2rZtW6/nnj17tl588cUodRqfzG5yLiwstLgTc8z2weZtOJ1ONW3a1FRtPLy+I+mB13f8aNSokc466yw9/vjj+vLLL1VaWqovvvhCDz74oPr16yeXy1Xn5y4tLdVll12mUCgUxY5RX+Xl5Ro+fLiWLFli+phWrVrps88+U+vWrS3sDLHWvHlz07Xl5exlAOqCcBEAAEASMtrsTbgIAGCG0fmiorpK1bXJc3deIBEYTS7K82TZ1AkAAAAA4KzufZTurPtmxniS7nTprO59Yt0GYJtAIKA333zTdP2xxx7LRvOfadasmS666CK98MIL2rp1q1atWqUHHnhAHTp0qNPz3XvvvUm9AbRFixam6vbs2aPq6mqLuzG2efNmU3Vmfy4kN7Ovg61bt1rbiAlmX9uNGzeW2+22uBvUldvt1sCBA3X//fdr4cKFKiws1GuvvaZhw4bJ6Yx8S/SSJUs0depUCzpFXVRWVurMM8/UwoULTR/TvHlzzZ07V+3bt7ewM8SDNm3amK7dvXu3hZ0AyYtwEQAAQBLyVhptOiVcBAAwZiaM6vWHP+cAiC6jcBGTiwAAAADAPs1z83RBz4JYtxEVF/QsUPPcvFi3Adjmgw8+iGjD4YgRIyzsJvEdddRRGjdunDZu3KiPP/5YJ510UkTHHzhwQK+99ppF3cVeq1atTNUFAgFt3LjR4m7CKykp0d69e03VtmzZ0uJukAjMvr7XrVtncSfG1q5da6qO13ZiadSoka644gp9/PHH2rx5s2655RZlZmZG9BxPPvmkRd0hEn6/X2eddZbmz59v+pgmTZpo7ty56ty5s4WdIV7k5OSoUaNGpmq3b99ucTdAciJcBAAAkISKDTedEi4CABgzE0Y1OucAiC6j9xwhcgAAAACw1+lde+uIxs1j3Ua9dGx8mM7o2jvWbQC2CYVCevDBB03XOxwOXXzxxRZ2lDwcDoeGDRumzz77TP/+97+Vk2P+Rjj/+te/LOwstjp37iyHw2GqdtWqVRZ3E731u3XrZmEnSBRdu3Y1VRfr13YkPfDaTlxt27bV008/rdWrV+uEE04wfdzKlSu1evVqCzuDkaqqKp1zzjmaO3eu6WPy8/M1Z84c9ejRw8LOEG/MfkZ///33FncCJCfCRQAAAEkmFAoZTpHgjvYAADNMTS4iXATYpjpQq/Jqf9gaQuQAAAAAYC+X06lrC4Yp3emKdSt1ku506ZqCU+R0sn0EqeM///mPvvnmG9P1w4YNU6dOnaxrKEldeOGFmj17tjwej6n6ZcuWqaioyOKuYiMnJ0ft27c3Vbtw4UKLu4nO+h6Ph/cFJP1vcpkZ69at0w8//GBxN4dWW1urpUuXmqrt2bOnxd3Aau3bt9enn36qggLzU0Znz55tYUcIp7q6Wueff74+/vhj08c0aNBAH330kY4++mjrGkNcOu6440zVff311xZ3AiQnvh0CAABIMmVVfgWCwbA1eZ4sm7oBACSyzHS3PGnusDXeynKbugFgZlIY4SIAAAAAsF/Lho10Qc++sW6jTi7s1VctGzaKdRuAbcrKynTrrbdGdMyNN95oUTfJb+DAgbrvvvtM15vd+H8w8R6S7NWrl6m6efPmWdtIlNbv3r27XK7EDNbWR7y/zmLB7GtbkubPn29hJ+EtX75cFRXmbphHuCg55OTkaPLkycrMzDRVv2TJEos7wsHU1tbqd7/7nWbNmmX6mOzsbM2ePVvHH3+8hZ0hXpn9/75q1Srt37/f4m6A5MPVLgAAQJIp9hlv8mZyEQDArLys8EGFYoNpeQCix8yksDzCRQAAAAAQE2d0663+7brEuo2I9G/XRad37R3rNgBb3Xrrrdq+fbvp+o4dO2r48OEWdpT8br31VjVs2NBU7fr16+u8Tnp6uqm62traOq9RH/379zdV9/3332vz5s0Wd3NwJSUl+uyzz0zVDhgwwOJu4lO8v85ioUePHqbf4++9957F3Rza9OnTTdU5nU7169fP4m5glw4dOujyyy83VVufcxDqJhAIaNSoUZoxY4bpYzwejz744APT51Ukn0GDBsnhcBjWBQKBiEJrAP6HcBEAAECSMbPplDvaAwDMMjpneCsJFwF2YXIRAAAAAMQvp8OhawpOUe+W7WPdiil9WnbQNQWnyGliUxaQLKZMmaJXX301omMee+wxJpXUU0ZGhk477TRTtbt27arzOm6321Sdz+er8xr1ccopp5iufeeddyzs5NCmT5+umpoaU7WR/DzJJN5fZ7Hgcrk0ZMgQU7UzZ86U3++3uKPfCoVCpt9XvXv3VqNGTHVMJmeffbapuvqcgxC5YDCoMWPGRHTOy8jI0IwZM3TSSSdZ2BniXYsWLXTccceZqn3jjTcs7gZIPvzrFwAAIMkYhYucDocaZHhs6gYAkOjyMg3CRSbCDgCiw+j95klzKzPd3C+3AQAAAADRl+Z06Y8DTo/7gFGflh1044DhSnO6Yt0KYJt58+aZnlzwoxNPPFEXXHCBNQ2lmCOPPNJUXXl5eZ3XyM3NNVXn9XrrvEZ9HHXUUWrevLmp2pdfflnBYNDijn7rhRdeMFWXnp6uQYMGWdxNfIr311msmA2beb1eTZ061eJufuujjz7Sli1bTNWmanAumdlxDkJkQqGQxo4dq8mTJ5s+Jj09Xe+++66GDRtmYWdIFOeee66pus8++0zr1q2zuBsguRAuAgAASDJGd7RvmJnFHdYAAKblZ4UPF5mZpAIgOry+8L/YyjN4vwIAAAAArOd2penmgWeof7susW7loPq366KbBp4utyst1q0Atpk3b57OOeccVVdXmz7G6XTqmWeesbCr1NK0aVNTdaFQqM5ruN1uNWjQwLBu9+7ddV6jPhwOh+mw2ubNmzVjxgxrG/qVBQsW6KuvvjJVO3z4cOXk5FjcUXwy+1qO1essVs4991y5XOZCy88++2y93ut1MX78eNO1F154oYWdIBbsOAchMtddd51ef/110/VpaWmaOnWqzjzzTAu7QiK55JJLTJ13QqGQ7rvvPhs6ApIHu0oBAACSjNEd7fM9bDoFAJhndN5gchFgn2JfZdjH8w0mjQEAAAAA7JHmdOm6vqdq5NEDlB4n04HSnS6NOmaArut7KhOLkFLefPNNnXrqqSopKYnouLvvvlu9e/e2qKvUU1xcbKrO7FSYQzEzGWjr1q2qra2t1zp1demll5quve+++xQIBCzs5pf+/Oc/m64dM2aMhZ3EN7PTpzZu3GhxJ/HlsMMOMz3x59tvv7V1etGnn36quXPnmqo96qijdMwxx1jcEexm1zkI5tx000166aWXTNe7XC69+eabOu+88yzsCommdevWOuecc0zVvvPOO/riiy+sbQhIIoSLAAAAkozRBIl8T2reRQoAUDdG543KmipV1dbY1A2Q2gwnFxEiBwAAAIC44XQ4NKJ7H/1l+Cgd0djcRmSrdGx8mP4yfJTO7NZHTocjpr0AdikuLtbll1+uyy67LKKJRZI0ePBgjRs3zprGUtTWrVtN1ZkNbhzKEUccYVhTVVWl//73v/Vap65OOOEEdevWzVTt6tWr9dxzz1nc0f9MmjRJCxcuNFXbpEmTlJ4cYeY1JkkrVqywuJP4c8UVV5iuvfPOO1VaWmphN//j9/t14403mq6P5GdA4rDrHPRzDofD9B+z/SWDO++8UxMmTDBd73A49Nprr+niiy+2sCskqptvvtl07ZgxYyK+2QCQqggXAQAAJBmjCRJsOgUARMLMecMo2AogOgwnVGZxnQcAAAAA8aZlw0Yad8pFGnl0f9unGKU7XRp59ACNO+VCtWzYyNa1gVgJBoOaPHmyevTooUmTJkV8/GGHHaYpU6bI5WLCV7QEAgF98MEHpmrNBm8OpXPnzqbqPv7443qtUx9/+tOfTNfee++9Wrt2rYXdSNu3b49oc+4tt9wit9ttXUNxzuxr7JNPPrG4k/hz/vnnmw5f7dixQzfddJPFHUn33HOP6fdQo0aNNHbsWIs7QixMnz7dVF19z0EI74EHHtATTzxhut7hcOill17SZZddZmFXSGQDBgzQ6aefbqp269atuuiii1RTw01TASOEiwAAAJKM0R3t8wkXAQAiYOa8YRR4ABAdxhMquc4DAAAAgHjkcjo1ovuxeuKM0TrpiCOV4UqzdL0MV5pOOuJIPXHGaI3o3kdOJ1tDkPyqq6t/ChWNHj1au3fvjvg5mjRpok8++USHHXaYBR3a75FHHtHMmTNj3YamTZumXbt2GdY5HA4df/zx9VrruOOOM1X36quvKhAI1Gutuho9erTatWtnqtbn8+nss89WcXGxJb1UVFRE9Px5eXm64YYbLOklURx55JHyeDyGdatXr9YXX3xhQ0fxw+Vy6a677jJdP3HiRD3//POW9TN58mQ9/fTTputvuukm5ebmWtZPqpk/f74effTRmE8KKS0tNR02LigosLib1PXXv/5VDz30UETH/O1vf9NVV11lUUdIFk899ZTS0sz9+/qTTz7RyJEjVVVVZXFX5pSXl+uJJ57QqlWrYt0K8At8gwQAAJBEgqGQin2VYWvYdAoAiASTi4D4UF1bq4rq8F9252VynQcAAAAA8ax5bp6uOmGonj93rMb0GaQWDfKj+vwtGuRrTJ9Bev7csbrqhKFqnpsX1ecH4k0wGNTSpUt1ww036PDDD9fo0aPrPOWlUaNG+vTTT3XUUUdFucvYWb58uUaMGKFjjjlGkydPVnV1te097NixQ9dff72p2j59+qh58+b1Wm/AgAGm6jZs2KC77767XmvVVVpamh555BHT9evXr9fw4cOjHjCqrKzU2WefrW+++cb0MX/+85/VoEGDqPaRaNLT002H4K699lrt37/f4o7iy5gxYyKa/nLTTTdp8uTJUe/j/fff15VXXmm6/rDDDotogheMeb1e3XvvvWrbtq3uuece7dy5MyZ9XHXVVdq7d6+pWrMTUBCZ5557Tn/+858jOubpp5/WH/7wB4s6QjLp1q2bbr31VtP106ZN07Bhw1RYWGhhV+EVFRXpkUceUfv27XXnnXeqtLQ0Zr0AB0O4CAAAIImUV/kUCAXD1pjZJA4AwI8y09KVle4OW8PkIsB6Xr/x+yw/K8eGTgAAAAAA9ZXlztCpXY7Wk2dcqvuGnq/hXY5Rl6YtIp5olJGWri5NW2h4l2N039Dz9eQZl+rULkcry51hUedAbJWXl2vp0qV64YUXdMEFF6hp06YqKCjQ888/rwMHDtT5eVu3bq25c+eqV69eUew2fnzzzTcaPXq02rRpo/vuu0+bNm2yZd21a9fq5JNPNh2uuPzyy+u9Zrt27dSjRw9TtU888YTOOeccrVy5st7rRuqSSy7RkCFDTNcvWbJEgwYN0saNG6Oy/s6dOzV06FDNnTvX9DFHHXVURJt3k9mZZ55pqm7NmjXq06eP3nrrrZiE+2IhPT1dL7zwgun6QCCgyy67TE888YRCoVBUevjxHBHJ3/mzzz6b8sE5q5SUlOgvf/mL2rdvrwsvvFBz5sxRMBh+T0s0VFdX66qrrtK///1vU/XHHnus6fMHzHv55ZcjDu499thjuuWWW6xpCEnp4YcfVu/evU3Xf/HFFzryyCP1zjvvWNjVby1evFhXXHGFWrdurfvuu08//PCDresDZlk7axsAAAC2MrO5m8lFAIBI5XmyVVlz6F/CEC4CrGdmQhjXeQAAAACQWBwOh7o1b6VuzVtJ+t8Ult1lXm05UKidxftVXl2lmkCtaoMBpTldSnelKcedoVZ5jdW+UTO1yM2X08k9ZRF/vv32W82cOTOiY0KhkPx+v6qqquT3+1VWVqa9e/dq79692rNnjzZs2KBt27ZFbfP5j4YOHaopU6aoadOmUX3eeLRv3z498sgjeuSRR9S3b1+NHDlSZ511ltq2bRvVdfx+v15++WXde++9KisrM3VMo0aNdNlll0Vl/d/97ne6//77TdW+9957eu+999ShQwf1799fXbp0UYsWLdSwYUOlp6fL4XAYPkfjxo3Vt2/fiPt84YUX1Lt3b1VUmPt+fdWqVerTp48ee+wxXXPNNXK5XBGvGQqF9Oabb+q2226LaENrWlqaXn75ZaWlsdVQki688ELdeeedpgIS27Zt0yWXXKJrr71WAwcOVM+ePdWmTRs1btxYmZmZps/jQ4cOlcfjqW/rthg0aJDGjh2rV1991VR9MBjUnXfeqblz5+pvf/ubOnfuXKd1t2/frltuuUX/+c9/IjruzDPP1O9+97s6rQnzamtr9e677+rdd99VixYtNHLkSJ177rnq27dv1K9nv/jiC91+++1atmyZ6WMIs1jjL3/5S8TH/PnPf4540pHVPv/8cw0ePDjWbeAQ3G63pkyZouOPP14lJSWmjikqKtJFF12kfv366YEHHtApp5xi6rovEqFQSCtXrtR7772nyZMn2xbwB+qLK34AAIAkQrgIAGCFfE+2dpd6D/m411duYzdAajJznceESgAAAABIbE6nU60aNlarho1j3QpQL88++6yeffbZWLcRVlpamu688049+OCDdQppJLrFixdr8eLF+uMf/6ijjjpKQ4cO1YABA9SvXz8dfvjhET9fKBTSihUrNHPmTL3yyivavXt3RMc//PDDys3NjXjdg7n66qv1l7/8RX6/3/Qxmzdv1ubNm+u03qBBgzRv3ryIj+vcubNeeeUVjRo1yvQxpaWl+sMf/qAJEyboxhtv1KhRo5Sfn294XHl5ud59910999xz+uabbyLu9YknnlBBQUHExyWrtm3b6qyzztKMGTNMH1NWVqbZs2dr9uzZdVpzy5YtateuXZ2OjYUJEyZo+fLlEb3ePvnkEx155JEaOXKkrrvuOp1wwgmmNnqvWrVKL7zwgiZNmiSfzxdRn+3bt9ekSZMiOgb1t3v3bo0fP17jx49X48aNNWzYMA0cOFD9+/dXjx496nRe3rt3r2bNmqXJkyfr888/j+jY448/XiNHjox4TQDxo3PnzpoxY4ZOO+00VVVVmT5u0aJFOvXUU9WxY0eNGjVKZ555po499tg6BY0CgYDWrl2rRYsWadGiRfr444+1Z8+eiJ8HiDXCRQAAAEnEaHO30+FQbmaWTd0AAJJFvicn7ONmJqoAqB9vZfjrPE+6W5lp6TZ1AwAAAAAAkLgGDx6sv//97+rRo0esW4kL3333nb777rufAmGNGzdWjx491KlTJ7Vo0UItWrRQbm6uPB6P0tLSVFFRoYqKCpWWlmrTpk1au3atvv/+exUWFtZp/cGDB+uaa66J2s/TvHlz3XDDDXrqqaei9pxWGTlypJYtW6ZnnnkmouPWrVunG264QTfddJOOP/549enTR126dFHjxo2VlZUlv9+v4uJirV+/XitXrtTChQtVXV1d5x6Z6PFb48aN0wcffKBAIBDrVuKSx+PRtGnTdPzxx2v//v2mj6upqdEbb7yhN954Q82bN9egQYPUo0cPtW3bVjk5OXI6nSovL9euXbu0evVqzZ8/X9u3b69Tj9nZ2Zo2bZoaNWpUp+MRHfv379eUKVM0ZcoUSVJGRoa6dOmibt26qVWrVmrRooWaNGmizMxMZWZmqrq6WuXl5aqoqNCuXbu0du3an/7UZbphVlaW/vnPf0Z9YgkA+w0ePFj/+te/dPHFF0d8ft64caMeeughPfTQQ8rNzdUxxxyjHj16qFWrVjr88MOVnZ2tzMxMBQIB+f1++Xw+FRYWat++fdq5c6fWrVun9evXRxRsAuIV4SIAAIAkUuyrDPt4nidbTr4UAQBEyGjqnZmJKgDqp9gf/n3GdEoAAAAAAIDwOnbsqIceeojpBAb279+vL774Ql988YXla7Vp00ZTp06N+vSocePGafr06dq0aVNUn9cK48eP14EDB+o0PSUQCPw0hcoKZ555JlNdDqFXr16644479Ne//jXWrcStDh066JNPPtHQoUNVXFwc8fH79u3Tv//97+g3pv+Fn95//30dc8wxljw/6q6qqkqrVq3SqlWrLF/L4XDolVde0ZFHHmn5WgDsccEFF2jGjBn63e9+p8rK8HvoDqWsrMy2a2EgHjlj3QAAAACix2hyUV4mm04BAJHLI1wExJy3Mvz7zOh9CgAAAAAAkKr69u2radOmad26dQSL4kjLli312WefqXnz5lF/7uzsbM2cOVONGzeO+nNHm8Ph0GuvvabRo0fHupVfOOOMM/Tuu+8qPZ1p6YfyyCOP6Kyzzop1G3Gtd+/e+uijj5Sfnx/rVn6SlZWlGTNmaMiQIbFuBTH2/PPPa9SoUbFuA0CUnXnmmZo7d64l15hAKiBcBAAAkESMNnfnZ7HpFAAQOaOJKL6aavlra2zqBkhNhtd5hIsAAAAAAAB+0qJFC914441aunSpFi1apPPOO09OJ9uk4kXv3r21ePFiHXHEEZat0bVrVy1ZskTdu3e3bI1ocTqdevPNN/Xwww/L4XDEuh3ddttteu+995SRkRHrVuKay+XStGnTdN1118W6lbh2wgkn6KuvvlK3bt1i3Yratm2rRYsWadiwYbFuBTGUlZWlf//737x3gSRWUFCgVatW6fTTT491K0DC4V/NAAAAScTojvZsOgUA1IWZiSjFTC8CLGX0Hsv35NjUCQAAAAAAQPxxOBw66qij9Mc//lHz58/Xjh07NGHCBB1//PGxbg0/43Q6deONN+rLL79U69atLV+vY8eOWrlypR599NG4mpxyKPfee69mzZqlli1bxmT9Jk2aaOrUqXrqqafkcrli0kOiSUtL0z/+8Q/NnTtXvXv3jnU7catjx45asmSJxowZE7MezjvvPC1fvly9evWKWQ+IvT59+mjp0qW68MILY90KAIs1a9ZMs2bN0ssvv6ymTZvGup3fcDqdOu2009SuXbtYtwL8AuEiAACAJFLsZ9MpACD68rOMzx9GU1UA1I/ReyzPk2VTJwAAAAAAALHXokULDRkyRHfccYfef/997d+/X6tWrdJzzz2nE088kSlFku644w5de+21toR4zOjXr58WLFigCRMmyOPx2Lau2+3W3XffrR07duiVV17RsGHD5Ha7bVs/UsOHD9fq1av1hz/8QWlpabas6XQ6NWbMGK1du1a/+93vbFkz2QwZMkQrVqzQvHnzdNVVV6l58+axbinuNGjQQBMnTtScOXPUuXNn29Zt06aNpk+frmnTpqlJkya2rZvq+vXrp0cffVR9+/aNi3Ny06ZN9cwzz2jJkiU68sgjY90OABtdddVV2rhxo+68805lZ8f+ptydO3fWAw88oM2bN+vDDz9Uq1atYt0S8Av2/AsEAAAAlguGQoZ3tGfTKQCgLvIzjb9k81aW29AJkJqqamtUWVMVtoYQOQAAAAAASFTp6enKyMj4xZ/c3Fw1a9ZMzZo1U/PmzdWsWTO1atVKXbp0UdeuXZWbmxvrtuNe//791b9/f0nSqlWrNHPmTM2aNUtfffWVamtrbenhxzuy//GPf9Spp55qy5qHkp2drbFjx2rs2LHy+XxatmyZVqxYofXr12vTpk3at2+fioqKVF5erqqqKtXU1CgUCsWk1wYNGujvf/+7br/9dj3++OOaOHGi/H5/1NdJS0vTyJEjdffdd6tr165Rf/5UNGjQIA0aNEgvvfSS1q1bpyVLlmjNmjXasGGDdu3apaKiInm9Xvn9flVXVysYDMa6ZdudfPLJWr16td5++2099thj+v777y1Zp2PHjrrzzjs1ZswYpaenW7IGDq1Zs2a6++67dffdd+uHH37Q7NmzNWvWLM2ZM0der9e2Pjp16qRrr71WV199tXJy+D0KkKoaNGigv/71r7rrrrv02muv6R//+Ic2bdpky9oOh0O9evXSGWecofPOO49Jh4h7jlCs/hUEAADqraioSM2aNfvFfyssLIzLUZ6wXomvQtdNfzVszZ8Gn62jW7SzpyEAQFIZ+86LYcMNo3sP1Old+SIMsMK+smLd8sGksDX3n3yBujZraVNHAAAAABJJVVWVNm/eHLamQ4cOysjIsKkjAEAsVVZWatmyZVq8eLGWLFmiJUuWaN++fVF7fo/Ho379+umss87SueeeGzeTkxJZcXGxpk2bpilTpmjBggWqrq6u83OlpaWpoKBAF198sS666CL2FiDmvvrqK02ePFnTp0/Xjh076vVczZs31znnnKNRo0Zp4MCBcjgcUeoS0RIKhbR27VotXrz4pz9r1qyJWtDO4XCoa9euOv3003XuueeqX79+vA4AG8yYMUPffPONqdqbb75ZeXl5lvZjxvLlyzVjxgx98MEH+v7776P2OZSWlqZu3bqpf//+GjhwoE466SQdfvjhUXnueJLs3zWl8r5cwkUAACSwVL6IwW9t9Rbp7g/fClvz2PBRapvP6wMAELk7Zr2pXSUHDvn4Gd1665JjBtrYEZA61hbu0kOfvhu25pkRY9Q8N8+ehgAAAAAklGTf8AEAqL/du3drw4YN2rRpkzZu3KhNmzZpx44dKi0tVXl5ucrLy1VWVqba2lq53W5lZGQoLy9PzZo10+GHH66OHTuqS5cuOvroo3XMMccwJcRCfr9fX331lRYvXqz169dr8+bN2r59u8rKylRRUSG/36+MjAxlZ2crJydHrVq1UocOHdSpUycVFBSob9++ys7OjvWPARzU1q1b9eWXX+rbb7/Vpk2btGXLFhUWFqqiokKVlZUKhULKyspSdna2GjdurPbt26tDhw7q1auX+vfvr86dO8f6R0AdlJeX/zRF7sdz0ObNm+X1en86/5SXl6uysvKnaYfZ2dlq2rSpmjdvrrZt26pLly7q0aOHCgoK1KhRo1j/SAASTFlZmVasWKEVK1Zo48aN2r59u7Zv364DBw6osrJSPp9P1dXVSk9Pl9vtVk5Ojpo0aaKmTZuqZcuWat++vY444gj16NFDRx55pDIzM2P9I1ku2b9rSuV9uWmxbgAAAADR4a0sN6zJ8/BFMQCgbvIys8OGi7yVFTZ2A6SWYp/x+4vrPAAAAAAAANRVixYt1KJFCw0aNCjWrcBAZmamTjzxRJ144omxbgWIunbt2qldu3YaPXp0rFuBjXJyctS7d2/17t071q0ASFG5ubkaPHiwBg8eHOtWgJhzxroBAAAARIfRplOXw6ncDI9N3QAAkk2+QXDBTPgBQN14Dd5fWeluZaRxN1gAAAAAAAAAAAAAAFA3hIsAAACShNGm0zxPlpwOh03dAACSTX5W+HCR10+4CLCKUXgv35NjUycAAAAAAAAAAAAAACAZES4CAABIEkbhIjadAgDqw+g8UlxJuAiwipkQOQAAAAAAAAAAAAAAQF0RLgIAAEgSRne0z/OEnzgBAEA4RucRX221fDXVNnUDpBavrzzs44TIAQAAAAAAAAAAAABAfRAuAgAASBLGm04JFwEA6s7MecQo6Aqgbop9lWEf5zoPAAAAAAAAAAAAAADUB+EiAACAJOE12NDNplMAQH0QLgJixyhEzoRKAAAAAAAAAAAAAABQH4SLAAAAkkAwGFSJP/wd7dl0CgCoDzPnEaOgK4DI+WtrVFlTHbaGEDkAAAAAAAAAAAAAAKgPwkUAAABJoLTKp2AoFLaGTacAgPpwu9KU7c4IW0O4CIg+MxPBCJEDAAAAAAAAAAAAAID6IFwEAACQBMxs5iZcBACor3xPTtjHvb5ymzoBUoeZcBHXeQAAAAAAAAAAAAAAoD4IFwEAACQBc3e0D78hHAAAI0YBBjPnIwCRMRMiZ3IRAAAAAAAAAAAAAACoD8JFAAAAScBo06nL6VRuRqZN3QAAkpVRuMhMCAJAZIwmgmWlZygjLd2mbgAAAAAAAAAAAAAAQDIiXAQAAJAEjDad5mdmy+Fw2NQNACBZGU1HIVwERF+xrzLs40ahPwAAAAAAAAAAAAAAACOEiwAAAJKA0WZuo83gAACYweQiwH5GIXKu8wAAAAAAAAAAAAAAQH0RLgIAAEgCxQabufOz2HQKAKg/o3BRVW2NfDXVNnUDpAaj0B6TiwAAAAAAAAAAAAAAQH0RLgIAAEgChpOLMtl0CgCovzxPjmEN04uA6CJEDgAAAAAAAAAAAAAArEa4CAAAIAkY3tGeTacAgCgwMyHF6yu3oRMgdRAiBwAAAAAAAAAAAAAAViNcBAAAkOCCwaBK/JVha/JNTJoAAMBInifLsMZoygoA8/y1NfLVVIetyc/iOg8AAAAAAAAAAAAAANQP4SIAAIAEV1LlUygUCltjZtIEAABG0l1pysnIDFtjNGUFgHlmwnpc5wEAAAAAAAAAAAAAgPoiXAQAAJDgvL5yw5o8Np0CAKIkPzP8OcVbSbgIiBYzYT2u8wAAAAAAAAAAAAAAQH0RLgIAAEhwZjZxc0d7AEC0GAUZmFwERI+30jhEbhT4AwAAAAAAAAAAAAAAMEK4CAAAIMEV+8Nv4k5zupTjzrSpGwBAssvPCh9kMDovATDPKKyX7c6QOy3Npm4AAAAAAAAAAAAAAECyIlwEAACQ4IwmF+V5suRwOGzqBgCQ7PI9OWEfNzNpBYA5RmE9o0liAAAAAAAAAAAAAAAAZhAuAgAASHBGd7Q32gQOAEAk8jINJhf5KhQKhWzqBkhuRiHyfMJFAAAAAAAAAAAAAAAgCggXAQAAJLhiX/gJEWw6BQBEU35W+PNKVaBWvppqm7oBklsxIXIAAAAAAAAAAAAAAGADwkUAAAAJzuurDPs44SIAQDSZOa8YTdUDYI7XH/69lOfJsqkTAAAAAAAAAAAAAACQzAgXAQAAJDijyUV5hIsAAFFkJlxkNG0FgDnFlUwuAgAAAAAAAAAAAAAA1iNcBAAAkMACwaBK/EwuAgDYJy+TyUWAHfw11fLVVoet4ToPAAAAAAAAAAAAAABEA+EiAACABFbir1TIoIZNpwCAaEpzuZSb4Qlb4zWYqgfAmJmQHtd5AAAAAAAAAAAAAAAgGggXAQAAJLBiU5tOc2zoBACQSowCDWbOTwDCM/M+yiNcBAAAAAAAAAAAAAAAooBwEQAAQAIzc0d7Np0CAKLNKFxk5vwEIDyu8wAAAAAAAAAAAAAAgF0IFwEAACQwr6887OPpTpey3Rk2dQMASBVGgQbCRUD9Gb2PctyZcrvSbOoGAAAAAAAAAAAAAAAkM8JFAAAACazYYNNpnidbDofDpm4AAKmCyUWA9cxc5wEAAAAAAAAAAAAAAEQD4SIAAIAEZrR522jzNwAAdWF0fin2VSgUCtnUDZCcjCZUcp0HAAAAAAAAAAAAAACihXARAABAAjMKF3FHewCAFfI8OWEfrw7UqrKm2qZugOREiBwAAAAAAAAAAAAAANiFcBEAAEACM950Gn7zNwAAdWEm1GA0dQVAeMWEyAEAAAAAAAAAAAAAgE3SYt0AAAAA6s5o02l+FptOAQDRZy5cVKFWDRvb0A2Q+ILBoHaXerX5QKF2luxXRbVf+8pLwh7D5CIAAAAAAAAAAAAAABAthIsAAAASxK83nZZV+VTirwx7TF4mm04BANHX0JNlWDNt1RIt2bZe2e5MtWrYWB0aN1OL3Hw5nQxRBkKhkNYU7tKKnZu06cA+bTtQpKpAbUTPMWfDKhWWl6hPqyPUrVlLORwOi7oFAAAAAAAAAAAAAADJjnARAABAnIrGptOZa5Zrm7eQTacAgKj4+bnJ5XAqEAoesnb9D3u0/oc9v/hvGWnpapvfREc0as65CSmporpKC7as0acbVml3qbdez7W71KvdpV59uO4btWiQr5M79dTA9t2U7c6IUrcAAAAAAAAAAAAAACBVOEKhUCjWTQAAgLopKipSs2bNfvHfCgsL1bRp0xh1hGiI5qbTn2PTKQCgrjg3AfWzr6xY769eoUVb10YcFo9EhitN/dp11Vnd+6h5bp5l6wAAAABILFVVVdq8eXPYmg4dOigjg3+bAwAAAAAAILxk/64plfflEi4CACCBpfJFTDJi0ykAIN5wbgLqJxAMatbarzVt1RLVBAO2rZvudOmCngU6o2tvOZ1O29YFAAAAEJ+SfcMHAAAAAAAA7JPs3zWl8r7ctFg3AAAAkOrs3nRaFajV55u+15db1rDpFABwUJybgPrbVXJALy75RJv277N97ZpgQFO+WahlOzbpmoJT1LJhI9t7AAAAAAAAAAAAAAAAiYNwEQAAQAyx6RQAEG84NwH1EwyFNGvN13r3/7F33/FRlukax6+ZdEIChBI6oRMCofcu2AAFFKXYQMEVFEXFg+u6K+quq6KuIoqNIiC4gisiKIggvffeCRAIBEhI7zPnD9e6kHknmZl3kvl9Px/P2Q33PPc1w+R9s/G559m7yaOnFV3L8SsX9Nx38zQ4tpP6RbeW1WIxNQ8AAAAAAAAAAAAAAPBOfAwwAACACWx2u745uEPPfTfPlM3bv/XzptNvDu6QzW43NQsAwDzcm4Diy7cVaNqm5Zq/e73pg0U/+2lob72mbVqufC/JBAAAAAAAAAAAAAAAvAsnFwEAAHhYvq1AH25eoQ1xR8yO8oufN52euXpJf+p4o/ytfmZHAgB4EPcmoPhyC/I1Zf232nnulNlRrmlD3BFl5eXq8a59FejHrwQBAAAAAAAAAAAAAMCvOLkIAADAg3IL8vX2uqVetXn7tzbEHdHb65YqtyDf7CgAAA/h3gQUX76twKsHi36289wpvbv+O04wAgAAAAAAAAAAAAAAv8NwEQAAgIew6RQA4G24NwHFZ7Pb9eHmFV7/ffSzHedO6sPNK2Sz282OAgAAAAAAAAAAAAAAvATDRQAAAB7AplMAgLfh3gS4xtJDO7325K/r2RB3RN8e3ml2DAAAAAAAAAAAAAAA4CUYLgIAAPAANp0CALwN9yag+M6lJGnh3k1mxyiSBXs26VxKktkxAAAAAAAAAAAAAACAF2C4CAAAwM3YdAoA8Dbcm4DiK7DZ9MHm75VnKzA7SpHk2Qp+Og3MZjM7CgAAAAAAAAAAAAAAMBnDRQAAAG7EplMAgLfh3gS4xreHd+rElYtmxyiW41cuaCmngQEAAAAAAAAAAAAA4PMYLgIAAHAjNp0CALwN9yag+C6mXdXCvZvNjuESC/du1sW0q2bHAAAAAAAAAAAAAAAAJmK4CAAAwE3YdAoA8DbcmwDXWHxwR4k9/euP8mwFWnxwh9kxAAAAAAAAAAAAAACAiRguAgAAcBM2nQIAvA33JqD4MnJztDHusNkxXGpj3GFl5uaYHQMAAAAAAAAAAAAAAJiE4SIAAAA3YNMpAMDbcG8CXGPdqUPKKcg3O4ZL5RTka92pQ2bHAAAAAAAAAAAAAAAAJmG4CAAAwA3YdAoA8Dbcm4Dis9vtWnFsr9kx3GLFsb2y2+1mxwAAAAAAAAAAAAAAACZguAgAAMDF2HQKAPA23JsA1ziUeE4Jqclmx3CL86nJOpx4zuwYAAAAAAAAAAAAAADABAwXAQAAuBibTgEA3oZ7E+AaO+JPmB3BrbbHnzQ7AgAAAAAAAAAAAAAAMAHDRQAAAC7GplMAgLfh3gS4xomki2ZHcKuTpfz5AQAAAEBJZLfbObUZAAAAAAAAbsdwEQAAgIux6RQA4G24NwHFZ7PZdDrpktkx3Cou+ZJsNpvZMQAAAAAAv7Hp9FFtPnPM7BgAAAAAAAAo5fzNDgAAAFCa+NKmU6uVOXUAKAm4NwGucT41WTkF+WbHcKuc/DydT0tWzXIVzY4CAAAAAJCUlZerubvWySKpZfUohQQEmh0JAAAAAAAApRTDRQAAAC7EplMAgLfxlXvTO+u/VZnAIEmSXXbJrv/+5//+f7v9l3r7f7/605fsf6i71tf+97G/afGHr/127d/96R/WcZTr94/9tcVvv/ZrTvsfnrArnrfs9us8x0Ke97Uea/B5X/s5Ov+8r7neHxa0/+HPf/3aH16X3zzhArtvnOhzKimRn/MAAAAAwEt8uW+zrmZlSJL+s2+L7mndzeREAAAAAAAAKK0YLgIAAHChk0mJZkfwCDadAkDJ4Sv3pm3xJ8yOAJQK8VevmB0BAAAAACDp7NXLWnZk9y///bsju9S9XrRqla9kXigAAAAAAACUWlazAwAAAJQm8Sm+sRmTTacAUHL4yr0JgGuk5+aYHQEAAAAAfJ7dbtfM7atl+83Jv7b/fu23pwEDAAAAAAAArsJwEQAAgAtl5GabHcEj2HQKACWHr9ybALhGXkG+2REAAAAAwOetjzusw4nn/ufrhxPPaUPcERMSAQAAAAAAoLRjuAgAAMCF8goKzI7gEWw6BYCSw1fuTQBcI9/GNQMAAAAAzJSRm6PPdq277p9/tmudMvkAMAAAAAAAALgYw0UAAAAu5CubMX3leQJAacA1G4Az/K1+ZkcAAAAAAJ+2cO8mpWZnXffPU7IztWDvZg8mAgAAAAAAgC9guAgAAMCFfGUzpq88TwAoDbhmA3BGgJ+/2REAAAAAwGfFJV/S98f2Oqz7/tgenU6+5IFEAAAAAAAA8BUMFwEAALhQgJ9vbOBm0ykAlBy+cm8C4BplA4PMjgAAAAAAPslmt2vmth9lt9sd1tr/W2szUAsAAAAAAAAYwa5QAAAAFwoNDDY7gkew6RQASg5fuTdVCg1T9fAISZLlN1+3WCx/+JpF//2SLPrlP/zyny2/lv36579Z67fr/PQ1XedrhTz2N/1//dpv+1t++6XrfO03XYvy2D+sY/lDrmuv/d8//d3af/xaIY+95ut8vdf0j69fEf4+ftP/t3/XP+e81t/HtbP/9H+PXj6vVcf3q7SrWb6i2REAAAAAwCetPXlQxy4nGK4/ejlB604dUo96Td2YCgAAAAAAAL6C4SIAAAAXqlnONzZjsukUAEoOX7k33RXbSd3qRpsdA6VYvYgqPjFcVDeiitkRAAAAAMDnpOdka/7uDU4/bv6u9WpTs57K+siHywAAAAAAAMB9rGYHAAAAKE3q+chmTDadAkDJwb0JcI3q4RUU5Fe6P6cnyD9A1cMqmB0DAAAAAHzOF3s3Ki0ny+nHpeZkacGeTW5IBAAAAAAAAF/DcBEAAIALsekUAOBtuDcBrmG1WlUnorLZMdwqqkJlWa38uhAAAAAAPOnklYtaeWxfkR//w7G9Opl00YWJAAAAAAAA4IvYLQAAAOBCbDoFAHgb7k2A69SPiDQ7glvVK+XPDwAAAAC8jc1m04xtP8pejDXskmZu+1E2e3FWAQAAAAAAgK9j5w0AAICLsekUAOBtuDcBrtGmZn2zI7hV25r1zI4AAAAAAD7lx5MHXHLq0IkrF7X6xAEXJAIAAAAAAICvYrgIAADAxdh0CgDwNtybANeIrlJD1cIrmB3DLaqHV1CTKjXMjgEAAAAAPiM1O0v/3r3RZet9vnuDUrOzXLYeAAAAvMfq1atlsVgc/jNp0iSzowK/M2nSJEPv3dWrV5sdFQAghosAAABcjk2nAABvw70JcA2LxaIbG8aaHcMtbmwYK4vFYnYMAAAAAPAZ/96zQem52S5bLz03W//e47phJQAAAAAAAPgWhosAAABcjE2nAABvw70JcJ1udaMV5OdvdgyXCvLzV7e60WbHAAAAAACfcexygn48ccDl664+sV/HL19w+boAAAAAAAAo/RguAgAAcAM2nQIAvA33JsA1QgOD1DmqidkxXKpzVBOVCQwyOwYAAAAA+ASbzaaZ2350y9p2STO2/SibzeaW9QEAAAAAAFB6MVwEAADgBmw6BQB4G+5NgOvc3rSNAqx+ZsdwiQCrn25v2sbsGAAAAADgM344vk9xyZfctn5ccqJWHt/ntvXhm0aMGCGLxWLon7i4OLPjXldUVJSh5xAVFWV2VAAAAAAAPI7hIgAAADdh0ykAwNtwbwJcIzKsvAbHdjQ7hksMju2oyLDyZscAAAAAAJ+QkpWhL/ZsdHuff+/ZpJTsTLf3AQAAAAAAQOnhb3YAAACA0urnTafzd28wO0qxsekUAEoH7k2A6/Rt0lpbzx7XiSsXzY5SZA0qVlW/Jq3NjgEAAAAAPmP+7g3KzMt1e5/MvBzN371ej3S8ye29AADwZZMmTXJYExUVpREjRrg9CwAAAFBcDBcBAAC4EZtOAQDehnsT4Bp+Vqse6XiTnvtunvJsBWbHcVqA1U9/6nijrFYONgcAAAAATziceE5rTx3yWL+1Jw+pV/1maly5usd6AgDga1588UWHNT169GC4CAAAACUCuwcAAADc6OdNpwFWP7OjFAmbTgGg9OHeBLhOjXIRGhzbyewYRXJXi06qUS7C7BgAAAAA4BMKbDbN3P6jx/vO3PajCmw2j/cFAAAAAABAycNOHAAAADdj0ykAwNtwbwJcp190a3WJamx2DKd0iWqsvpz+BQAAAAAe8/3RPTp79YrH+565elnfH93j8b4AAAAAAAAoeRguAgAA8AA2nQIAvA33JsA1rBaL/tTxRrWuUdfsKIa0qVHvp9O/LBazowAAAACAT0jOytDCvZtN679w32YlZ2WY1h8AAAAAAAAlA8NFAAAAHsCmUwCAt+HeBLiOv9VPj3ft6/XfT21q1NO4rrfK3+pndhQAAAAA8Bmf7VynrPxc0/pn5eVq3q51pvUHAAAAAABAycBwEQAAgIew6RQA4G24NwGuE+jnr/Hd+nntiWBdohrriW59Fejnb3YUAAAAAPAZBy/Ga+PpI2bH0Ia4Izp0Md7sGAAAAAAAAPBiDBcBAAB4EJtOAQDehnsT4Dr+Vj+N6XSzhrXsqgAvGYYLsPppeKuuGtPpZgb0AAAAAMCD8m0Fmrn9R7Nj/GLm9tXKtxWYHQMAAAAAAABeiuEiAAAAD2PTKQDA23BvAlzHarHotqZt9Mqtw1W/YqSpWRpUrKpXbh2u/tFtZLVYTM0CAAAAAL7mu8O7dS4lyewYv4hPuaJlR3abHQMAAAAAAABeio/9BQAAMMHPm05b16irDzZ/rxNXLpqWpUHFqvpTxxtVo1yEaRkAAObj3gS4Vo1yEZp049369vBOLdy7WXke/HToAKufBsd2Ur8mrWS18tlCAAAAAOBpVzLT9J/9W8yO8T++3LdFneo0UsUyYWZHAQAAAAAAgJdhuAgAAMBEbDoFAHgb7k2A6/hZrbqtaVu1r9VAiw/u0Ma4w8opyHdbvyA/f3WOaqLbm7ZRZFh5t/UBAAAAABRu7s51ysnPMzvG/8jJz9NnO9fp8a59zY4CAAAAAAAAL8NwEQAAgMnYdAoA8DbcmwDXigwrr9EdeuueVl217tQhrTi2V+dTk122fvXwCrqxYay61Y1WmcAgl60LAAAAAHDevoTT2nLmmNkxrmvzmWPqdeGMmletbXYUAAAAAAAAeBGGiwAAALwEm04BAN6GexPgWmUCg3Rz45a6qVELHU48p+3xJ3Uy6aLikhKdGuAL8g9QVIXKqhcRqbY166lJlRqyWCxuTA4AAAAAMCKvIF+ztq82O4ZDs7av1qu3DleAH1tGAAAAAAAA8BN+UwQAAOBl2HQKAPA23JsA17JYLIqOrKnoyJqSJJvNpvNpyTqVlKj4q1eUnpujvIJ85dsK5G/1U4Cfv8oGBqlm+YqqG1FF1cMqyGq1mvwsAAAAAAB/9O3hXUpIu2p2DIcSUpP13eFduj2mndlRAAAAAAAA4CUYLgIAAPBSbDoFAHgb7k2Ae1itVtUsV1E1y1U0OwoAAAAAoIguZaTqq/1bzY5h2Ff7t6pzVGNVCg03OwoAAAAAAAC8AMNFAAAAJQSbTgEA3oZ7EwAAAAAAwE/m7FirXCdOeDZbTkG+5uxYqye79zc7CgAAAAAAALwAw0UAAAAAAAAAAAAAAABFtOvcKW2PP2F2DKdtiz+h3efj1LJ6lNlRADjp1KlTWrlypfbt26d9+/bpzJkzSk1NVWpqqmw2m8qUKaOwsDDVrl1bdevWVevWrdWlSxe1adNG/v6lb7tYSkqKfvjhB+3Zs0cHDhzQ0aNHdfXqVaWmpiojI0MhISEKCwtTlSpVFB0drZiYGPXq1UsdO3aUn5+f2fFdLjs7W2fPnlVqaqoyMzOVkZEhf39/hYaGqmzZsqpZs6YqVKhgdkyPSUhI0I8//vjLe+PYsWNKTk5Wenq60tPTZbfbFRoaqvDwcFWtWlWNGzfW7NmzzY6NEurUqVNavXq1Dh8+rCNHjujEiRO6evXqL+83Pz8/lSlTRuXLl1fVqlXVpUsXTZ482bS8ly5d0ooVK7Rv3z4dOHBAx48fV0pKitLS0pSZmanQ0FCFhYWpWrVqv1w/e/furTZt2shisZiW210yMjIUHx+vtLQ0ZWRkKCsrS4GBgb+7r4aFhZkd0yVsNpu2b9+uVatW6cCBAzp06JASEhJ++bv/+TmXK1dODRo0UExMjGJjY9WnTx9VrlzZ7PgAADcpff9rEQAAAAAAAAAAAAAAwANyC/I1e8cas2MU2afbV6tpv3sV6Mf2EcAdoqKidPr06UJr6tSpo7i4OIdrXblyRdOmTdOCBQu0d+/eQmtTUlKUkpKi+Ph4bdy4UZ999pkkqXLlyho8eLAeeeQRxcbGGn4e3igvL0/z5s3T3LlztWbNGuXl5V239udN/QkJCdqzZ88vXy9fvrwGDx6sRx99VC1btvRAate7cuWKNmzYoA0bNmjz5s06fvy4EhISZLfbC31cuXLl1KhRI3Xq1EldunRRnz59FBER4aHU19azZ0+tWeP4nurouUnS2bNn9dFHH2nx4sUOv18k6erVq7p69arOnDmjI0eO/PL1uLg41a1b1+HjC7NmzRqXDmEYvWagcK68Ph8+fFgffvihli5dqmPHjhVam5+fr5ycHCUnJ+vUqVPKzMx0JrZLZGRkaMaMGfr888+1efNm2Wy269b+PLh67tw5bd++/ZevV65cWUOHDtXYsWPVpEkTT8R2uYSEBK1bt04bNmzQ1q1bdfLkSSUmJjp8XKVKldS4cWN17txZXbt21Q033KCyZct6ILFrHDx4UO+//77+/e9/6/Lly9etS0tLU1pams6fP69Dhw7pm2++kSRZrVZ16tRJQ4cO1ciRIxUaGuqp6AAAD7CaHQAAAAAAAAAAAAAAAKAkWnJwhy6mp5gdo8gupqdoycEdZscAUIjLly/riSeeUO3atfXXv/7V0KDE9Vy6dEnTpk1Ty5YtNXDgQB0/ftyFSR2Li4uTxWJx+M+IESOuu0ZBQYHeeecd1atXTyNGjNAPP/xQ6GBRYa5evapPPvlErVq1Up8+fX43eOTNUlJSNH36dN14442KjIzUgAED9Prrr2vt2rU6f/68oeGblJQUbdu2TVOmTNGQIUNUtWpV9evXT/Pnz1d+fr4HnoV77N+/X4MHD1bdunX197//vVjfL6XF6tWrDX3fTZo0yZR8s2bNMpRv1qxZpuQrzPr163XTTTepadOmevvttx0OFpktKytLkyZNUu3atfX4449r48aNhQ4WFebSpUt69913FR0drdtvv11Hjx51cVr3SExM1JQpU9SlSxfVqFFDQ4YM0ZQpU7R582ZDg0XST/flDRs2aPLkyRowYICqVKmiu+++W0uWLDF0/TXL4cOH1b9/f8XExOi9994rdLCoMDabTRs2bNC4ceNUp04dvfjii8rKynJxWgCAWRguAgAAAAAAAAAAAAAAcNLF9BR9fXCb2TGK7euD25RYggekgNLss88+U3R0tKZMmeLS0y3sdru+/vprxcbG6q233nLZuu62f/9+dejQQePHj1d8fLxL1165cqVat26tcePGKTs726Vru8qFCxc0ceJE1a5dW6NGjdIPP/yggoICl6ydl5enb7/9VsOHD1fDhg01bdq0EjVklJ6ergkTJqhVq1b68ssvXfa6ANdy6dIljRw5Ut27d9eKFSu8eqDkZ2vXrlVsbKxefPFFJSUluXTtb775Rs2aNdOf//znIg97utuJEyf0yCOPqHbt2nriiSe0ceNGl/29ZWVlacGCBbrtttsUGxurzz//3CXrukpeXp4mTpyo5s2ba+nSpS5d+8qVK5o0aZJiY2O1du1al64NADAHw0UAAAAAAAAAAAAAAABOmr19jfJKweblvIICzd6xxuwYAH4jJydH99xzj+69994inyxgRFZWlp5++mndd999ys3NdVsfV/j888/Vpk0b7djhvtPWbDabpk6dqg4dOujIkSNu6+Os3Nxc/f3vf1e9evX0+uuvKzU11a394uLiNHbsWLVp00abN292ay9XOH78uNq1a6c333yzRA1EoWTatm2bWrZsqVmzZpWIoSJJev3119WzZ0+3nlaXl5enV199Vd26dVNcXJzb+jgrLS1NTz75pBo3bqwPP/xQOTk5bu23f/9+DRs2TD179tShQ4fc2suIuLg4denSRa+//rpbr4/Hjx9Xz5499dprr7mtBwDAMxguAgAAAAAAAAAAAAAAcMKO+JPadf6U2TFcZue5U9oRf9LsGAD004kYvXr10rx58zzWc+7cuRo6dKjXnvby1ltvafjw4R4bgNq7d686d+6srVu3eqRfYbZs2aLY2Fj99a9/VVZWlkd77927V126dNHLL7/stUMU69atU4cOHXT48GGzo8AHLFy4UD169ND58+fNjmKI3W7X448/rokTJ3rse3jLli3q1KmT9u3b55F+hVm6dKmaNGmit99+2+P3tzVr1qhVq1b65JNPPNr3t/bu3auOHTtq2zbPnLRqt9v17LPPaty4cbLZbB7pCQBwPYaLAAAAAAAAAAAAAAAADMrJz9OnO1abHcPlZu9Yo1xOfABMlZycrN69e2vTpk0e7/3VV19p3LhxHu/ryEcffaSnn37a48MtSUlJ6t27t9auXevRvr81bdo0de/e3dRTlGw2m/72t79p4MCBHh9ucmTnzp3q16+fkpKSzI4CH/Ddd99p2LBhXvd9UJiJEyfq3Xff9XjfCxcuqEePHtq+fbvHe0u/Xrduu+02UwfBcnJyNHr0aI0ZM8bjwzbbtm1Tjx49dPHiRY/2laSpU6dq4sSJHu8LAHANhosAAAAAAAAAAAAAAAAM+vrAdl3OSDM7hstdykjV1wc988nmAP5XRkaG+vXrZ+ppD9OmTdOCBQtM6/9HK1eu1KOPPmpa//T0dA0YMECHDh3yaF+73a6xY8dq7NixHjutyZHFixerf//+yszMNDuKJOnUqVPq27ev0tJK3/0Y3mfbtm266667lF+ChrA/+eQTTZ482bT+ycnJ6tevn06d8uxJnzk5ORo0aJBXnbj2wQcf6P777/fY6UknT55Uv379dPXqVY/0u5Y33njD1FObAABF5292AAAAAAAAAAAAAAAAgJIgITVZSw7tMDuG23xzcIe6RjVRtfAKZkcBfM6oUaMMnVgUFBSktm3bqnXr1qpXr54qV66s0NBQFRQUKDU1VadPn9bOnTu1bt26Im0sHjNmjPr06aMKFcy9DiQmJmrIkCGGNvOHhoaqR48eio2NVYMGDRQeHq6AgAClpqYqISFBBw8e1Nq1axUXF+d0jqtXr6pv377aunWrKleuXIRn4hybzaZRo0Zp5syZbu/lrFWrVun222/XsmXL5O9v3rbDgoICDRs2zNCJHFarVc2bN1f79u1Vv359VatWTaGhobJarUpLS9OVK1d08OBB7dy5Uzt37vRAepQ06enpGjJkiDIyMhzW+vv7q3Xr1mrTpo3q16+vyMhIhYaGymazKS0tTYmJiTp48KC2bt3q1qHF/fv3Gx7MjIiIUK9evRQTE6OoqCiFhYX98v1x9uxZHTx4UKtXr1ZCQoLTORITE3Xrrbdq69atCg8Pd/rxzsrOztagQYO0bNkyt/dy1meffSY/Pz99+umnbu2TkpKivn376tKlS0V6fFRUlLp3767o6GhVr15dYWFhys/PV2pqqk6ePKn9+/dr9erVSk1NdbjW2LFj1aFDhyLlAACYh+EiAAAAAAAAAAAAAAAAB+x2u2ZtX618m2c+ddwM+bYCfbpjjSb2HCCLxWJ2HMBnfPTRR/r8888Lrbn55pv10EMPqX///goJCXG4Zm5urpYsWaJXXnlFO3YYH4q8cuWKXnzxRb399tuGH+MOjz32mK5cuVJoTbdu3fTEE0+of//+CgoKcrjm3r17NW3aNH366afKysoynCUuLk6jR4/WokWLDD+mqB599NEiDxY1bNhQffr0UevWrRUdHa2aNWsqIiJCISEhstlsSk9PV3x8vI4ePapNmzbp22+/1eHDh53qsXLlSo0fP15Tp04tUkZXeP3117Vly5ZCa1q2bKmHH35Yd999typWrGho3fj4eM2ZM+d3r39UVFShp58YuVf26NFDq1evNpQB3ufpp592ePpOt27dNHr0aA0aNEhly5Y1tO6xY8c0ffp0bdy40RUxf1FQUKCRI0cWeuqZxWLRwIED9dhjj6lnz56yWq0O1926daumTZumzz77THl5eYbzHDlyRGPHjtXcuXMNP6YobDabBg8eXOTBotjYWPXq1UutW7dWo0aNVKtWLZUrV04hISHKy8tTenq6zpw5o8OHD2vDhg1asmSJzpw541SP2bNnq3nz5powYUKRMhoxduxYHTlyxKnHlClTRiNHjtQjjzyiZs2aOazPz8/X999/r/fee0/ffvvtdevy8vL04IMP6pZbbnEqDwDAXBa7t5z9BwAAnHbp0iVVqVLld19LTEz0yCcmAQAAAAAAAAAA75eTk6OTJ08WWlOvXj1Dm7J93dYzx/T2+utvoCtNxnfrp/a1GpgdA15ixIgRhj9p/9SpU4qKinJvoCKKiorS6dOnHdbVqVOnSCfcFLVn2bJlVVBQcN1hlw4dOmjq1Klq27ZtkTLY7XZNnTpVEyZMKHSz+W8FBQXp7NmzLv/3znFxcapbt67Dulq1auns2bOF/vm7776rAQMGFCnH6dOnNW7cOH3zzTdOPe7jjz/WqFGjitTTiKlTp2rcuHFOPaZcuXIaNWqURo0apSZNmjjdc8eOHZo8ebK++OKLQodo/mjOnDm69957ne5XmJ49e2rNmjUO6wIDA6/7Xq5Zs6befvtt3XHHHUUeks3JyTH8c1FJGC5avXq1evXq5bDuhRde0KRJk9wf6A9mzZqlkSNHOqybOXOmRowY4bK+Rq7PAQEBhQ7SNG3aVFOnTjX0+l6P0feb0b/H6tWr6/z589f981atWumDDz5Q+/btncr5s5+HhVatWuXU4+bNm6dhw4YVqacREyZM0JtvvunUY6pWrao//elPevDBB1W7dm2nHmu327V69Wq99tprWr58ueHH+fn5aeXKlerRo4dT/YyYP3++hg8f7tRj7rzzTr399tuqWbNmkXquXbtWY8aM0cGDB69b4+g9+bMff/xRPXv2LFIOAJ5X2n/X5Mv7ch2PHAMAAAAAAAAAAAAAAPiw7Pw8zd651uwYHjNnxxpl5xv/VHoARZeenn7NwSKr1aqXX35ZGzduLPJgkfTT8MO4ceO0bNkyQyceST9tFpw2bVqRexZXYYNFvXv31s6dO4s8WCT9NEC2ePFivfHGG4ZO7PjZM888o8uXLxe5b2HWrl2rJ5980nC9n5+fJkyYoFOnTumNN94o0mCRJLVp00aff/65Nm7cqKZNmxp+3BNPPKGLFy8WqWdxXW+waNCgQdq/f7/uvPPOYp2+V1I3wcL1ChssGjt2rHbu3FmswSLJ9e+3woY4Ro8erU2bNhV5sEiSGjdurBUrVuiFF15w6nHjx49XampqkfsWZt68eU4NFoWEhOif//ynTpw4oUmTJjk9WCT9dG/t1auXli1bpqVLl6pGjRqGHldQUKBRo0Y5dXqeEampqRo/frzhen9/f02bNk0LFy4s8mCRJHXv3l3btm0rdKjJyGARAMB7MFwEAAAAAAAAAAAAAABQiK/2b1FSZrrZMTzmSma6Fu3fanYMwGcFBAToiy++0PPPP+/U8EthevXqpblz5xqunzlzpkv6ulL//v317bffqlKlSi5Z7+mnn9asWbMMv8ZXr151ekO9EZmZmRo5cqTy8/MN1detW1dbtmzR5MmTVaFCBZdk6Nixo7Zu3ao777zTUH1SUpKeeOIJl/R2hbFjx2rhwoUqV66c2VHgA1599VW99957JWoQ7f/+7//00UcfuSSz1WrVpEmTNHXqVMODfImJifr73/9e7N5/lJCQoMcee8xwfevWrbV37149++yzKlOmjEsy9O3bV7t27VK3bt0M1R8/flwvvviiS3r/7OWXX1ZiYqKh2p9/xnjkkUdc0rtMmTKaO3euxo4d65L1AADmYrgIAAAAAAAAAAAAAADgOs6lJOnbQ7vMjuFxSw/v1LmUJLNjAD7HYrFo7ty5hoc8nHHHHXdoxIgRhmrj4uK0fft2l2coqvbt22vhwoUKDAx06br33XefJk+ebLj+ww8/1PHjx12a4bnnntPJkycN1Xbq1Enbtm1TmzZtXJpBkkJDQ/Xvf/9b9913n6H6L774Qrt373Z5DmcNGzZMU6dOddkgHlCYZ599VhMnTjQ7hlPuv/9+vfbaay5f99FHH9Vf/vIXw/XvvPOOEhISXJphzJgxSk5ONlQ7YMAArV+/Xg0aNHBpBkmqXLmyli9frj59+hiqnzJlistei/Pnz2vKlCmG6z/44AMNGjTIJb1/ZrFYNHXqVA0ePNil6wIAPI+fqAEAAAAAAAAAAAAAAK7Bbrdr1vYfVWC3mR3F4wpsNs3avlp2u93sKIBPee6553T33Xe7bf1XXnnF8GkN33zzjdtyOKNChQr68ssv3XZKyFNPPWV4Q3RBQYH+9a9/uaz3kSNHNHXqVEO1bdu21bJly1SxYkWX9f8jPz8/TZ8+XTfccIPDWrvdrr/97W9uy2JEdHS0PvnkE8OnpwDF0atXL/3jH/8wO4ZTYmNj9eGHH7pt/Zdeekk333yzodrc3FynhmAc+eGHH/T1118bqu3Xr58WLFigkJAQl/X/o5CQEH355ZeKiYlxWJuVlaV//vOfLuk7ZcoU5ebmGqp9+OGH9eCDD7qk7x9ZLBZ9+umnatKkiVvWBwB4BsNFAAAAAAAAAAAAAAAA17Dp9FEduBhvdgzTHLh4VpvPHDM7BuAzYmNjNWnSJLf2qFatmoYPH26odt26dW7NYtQbb7yhmjVrurXHe++9p4iICEO1s2bNUlKSa052+9vf/qaCggKHdZGRkVq0aJHCw8Nd0rcwAQEB+uyzzwwNMS1ZskQnTpxwe6ZrsVgsmjVrluFhOaA4QkJCNGvWrBJ1Qpafn59mzJih4OBgt/WwWCz66KOPFBYWZqj+ww8/VEZGhkt6P//884bqoqOjNX/+fAUEBLikb2HCw8P1+eefGxqGnTFjhtLS0orVLyMjw/DwWK1atfTGG28Uq58jZcqU0fTp00vU9wkA4Pe4ggMAAAAAAAAAAAAAAPxBVl6u5u7yjo31Zpq7c62y8ox9GjqA4nnnnXfk7+/v9j5GTy3YsmWLocEXd2rXrp3bTln4rSpVqhge7MrMzNS8efOK3fPgwYNasGCBodqPPvpINWrUKHZPo6pWrapXX33VYZ3dbtf06dM9kOh/3XPPPWrfvr0pveF7nn76adWuXdvsGE4ZOXKk2rRp4/Y+tWvX1jPPPGOoNjk5WYsWLSp2z++++05btmxxWOfn56e5c+caHn5yhWbNmmnChAkO6zIyMjR//vxi9frqq6909epVQ7X//Oc/PfI6dO7c2fAQMwDA+zBcBAAAAAAAAAAAAAAA8Adf7tusq1mu+WT1kiw5K0P/2ed48yaA4unRo4d69uzpkV4dO3ZUZGSkw7rMzEydPHnSA4mu78UXX/RYr4cfftjwCUmff/55sft98MEHstvtDutuu+023X777cXu56yRI0eqYcOGDutmz55t6Hm4ksVi0XPPPefRnvBdZcqU0ZNPPml2DKcEBATor3/9q8f6jR8/3tBpZ5KKPVAjSdOmTTNUN3bsWLVu3brY/Zz1f//3fypfvrzDuk8//bRYfYy+lk2bNtWwYcOK1csZL774ovz8/DzWDwDgOgwXAQAAAAAAAAAAAAAA/MbZq5e17Mhus2N4je+O7NLZq5fNjgGUamPGjPFYL4vFoq5duxqqPXz4sJvTXF/jxo116623eqxfUFCQHnnkEUO1GzduVHx8fJF7ZWdna+7cuYZqX3rppSL3KQ4/Pz+NHTvWYd25c+e0Z88eDyT6Ve/evRUdHe3RnvBdw4cPV0REhNkxnDJo0CCPnrQUFhamkSNHGqr9/vvvDZ+2cy3nzp3Tt99+67AuJCTEtCHE8PBwPfDAAw7rNm/erKSkpCL1uHr1qlasWGGo9rHHHpPV6rnt4vXq1dNtt93msX4AANdhuAgAAAAAAAAAAAAAAOC/7Ha7Zm5fLZuHT2HwZrb/viaePpkC8BVly5bVwIEDPdqzXbt2hupOnDjh5iTXN3r0aI/3fPDBBw2dtmC32w1v6r6WxYsXKzk52WFdjx491LJlyyL3Ka7hw4fLYrE4rFu2bJkH0vxqyJAhHu0H31YS328PP/ywx3savWbn5eVpzZo1Re7z2WefqaCgwGHd3XffrapVqxa5T3Hde++9DmtsNpu+//77Iq2/evVq5eXlOawLCQkxlMXVzHgPAgCKj+EiAAAAAAAAAAAAAACA/9oQd0SHE8+ZHcPrHE48pw1xR8yOAZRKN9xwg4KCgjzas1GjRobqLl686OYk1zd48GCP96xWrZo6d+5sqPbHH38scp8lS5YYqhsxYkSRe7hClSpVDA2irV271gNpfmKxWDRgwACP9YNvK1eunHr27Gl2DKdERESYkrlRo0Zq1qyZoVpfuH62adNGkZGRDuuKev00+hreeOONCgsLK1KP4ujTp4/KlSvn8b4AgOJhuAgAAAAAAAAAAAAAAEBSRm6OPtu1zuwYXuuzXeuUmZtjdgyg1OnRo4fHe9atW9dQnVnDRc2aNVOdOnVM6W10cKWoJ2/Y7XYtX77cYZ3ValW/fv2K1MOVOnbs6LBm165dHkjyk+joaFWuXNlj/eDbunTpIn9/f7NjOOXWW281dAKbO9x+++2G6oo6UJOSkqJNmzY5rKtQoYK6detWpB6uYrFY1KFDB4d1Rb1+rltn7H+z3HbbbUVav7gCAgJ06623mtIbAFB0DBcBAAAAAAAAAAAAAABIWrh3s1KyM82O4bVSsjO1YO9ms2MApU7Lli093rNSpUqG6lJSUtyc5NrMPCmke/fuhurOnDmj5ORkp9fft2+fEhMTHdbFxsZ6xRBNixYtHNZcuHBBFy5c8EAaGT5ZCnCFkvh+M3OopmvXrobqDh48qIKCAqfXX7NmjfLz8x3W9ejRw7QBq98ycv3cu3evbDabU+vm5+fr4MGDhmrNfD+YPeAFAHAew0UAAAAAAAAAAAAAAAAAYJLGjRt7vGf58uUN1eXkmHNaWadOnUzpK/007BUcHGyo9sCBA06vv337dkN17dq1c3ptd6hdu7ahumPHjrk5yU+aNm3qkT6AVDLfb2ZeP42cdCb9dG8pyjWjNF4/MzMzde7cOafWPXbsmKH7c0REhCk/Y/zMzPciAKBoGC4CAAAAAAAAAAAAAACQdFdsR5ULLmN2DK9VPriM7oo1tmkUgDF+fn6qWrWqx/sGBQUZqjNruMjIaQ/uEhAQYHigoCjDRbt27TJU5y1DDVWqVDFUFx8f7+YkPzFzozx8T0l7v/n5+Sk6Otq0/hUqVFCNGjUM1R46dMjp9bl+/sToaxcTE+PUuq4WHR0tq5Vt6gBQknDVBgAAAAAAAAAAAAAAkFQmMEj3tOpmdgyvNbxVN5UJNDaQAMCY8PBw+fn5ebxvQECAobr8/Hw3J/lfVqtVDRo08Hjf32rYsKGhujNnzji99t69ew3VRUVFOb22O4SEhBiq89RwUfXq1T3SB5BK3vstKirK8PXdXRo1amSoztnTeiSunz8z+toZ/btwl+DgYMOn3wEAvIO/2QEAAAAAAAAAAAAAAAC8RZeoxlp1Yr8OJzq/4bE0i65SQ12iStan9wMlgdGNx2ax2+0e71m9enXDJyu5S/369Q3VJSQkOL326dOnDdUNGjTI6bXNlJSU5JE+kZGRHukDBAYGqnz58mbHcIo3DNUYzeDs9bOgoMDwUE2rVq2cWttszl4/jb523vJ+iIuLMzsGAMAgTi4CAAAAAAAAAAAAAAD4L4vFopFte8pqsZgdxWtYLRaNbNtLFl4TwOXMPmHCG1WpUsXsCIYzOLs53m636/z580WJ5PWysrI80icsLMwjfYCS+F6rXLmy2REMZ3D2+pmQkKCCgoKiRPJ6zl4/L1y4YKjOG94P3nBPBwAYx3ARAAAAAAAAAAAAAADAb9QqX0m3NG5pdgyvcWvjVqpZvqLZMQD4iJK0GTo5OdmpdRMTE5WXl1eUSF7PU8NFZp9qBd9REt9rlSpVMjuC4Wt4WlqaU+saPbWoJHL2+pmammqoriS9HwAA3oHhIgAAAAAAAAAAAAAAgD+4s3lHVQgJNTuG6SqEhOqO5h3MjgHAh5QtW9bsCAoNNXb9z87Odmrdq1evFiFNyZCbm+uRPpz2BU8pie+1kJAQsyMYzpCTk+PUulw/f2X0tStJ7wcAgHdguAgAAAAAAAAAAAAAAOAPQgICdU+rbmbHMN29rbsrJCDQ7BgAfEhgoPnXHKMnljg7XOSp033MYLfbzY4A+DxvOG2J66fznL1+Gn3tStL7AQDgHRguAgAAAAAAAAAAAAAAuIZOdRopJrKm2TFM06xqLXWs3dDsGDCZxWIxXJuXl+fGJMVj9FQAZ54v3MMbTgsxmsHZ97yzm+kBwBnecA+zWo1tS7bZbE6ty/XzV0Zfu5L0fgAAeAeu2gAAAAAAAAAAAAAAANdgsVg0om0v+fngpjg/q1UPtOnpFZsSYS5nTpExOsBjBqPZ+IR983nDkJrRDM6esuQNzw1A6eUN9+GcnBxDdc7eb7l+/sroa1eS3g8AAO/ge7/9AgAAAAAAAAAAAAAAMKhGuQj1bdLK7Bge169Ja9UoF2F2DHiB4OBgw7XesIn1eoxmc+b5wj284X3krs3xvL8AuJM3DHIYzeDs9ZDr56+MvhYl6f0AAPAO/mYHAAAAAAAAAAAAAAAA8GaDmnXQxrgjupKZbnYUj6hYpqwGNmtvdgx4CWc28169etV9QYohPz9faWlphmpDQkLcnAaOpKebf601msHZze7OvL9WrFihPn36OLU+AN+WlJRkdgRduXLFUF2ZMmWcWteZ6+exY8fUoEEDp9YvSUJDQw3VlaT3AwDAO3ByEQAAAAAAAAAAAAAAQCGC/QN0X+vuZsfwmPva9FCwf4DZMeAlypYta7jWWzeQOrO51pnnC/e4dOmS2REMZ4iIcO6EN6MbwiUpOzvbqbUBoCRdPyMjI51al+vnr6pUqWKozhveD4mJiWZHAAA4geEiAAAAAAAAAAAAAAAAB9rVaqDYanXMjuF2LarVUbua9c2OAS9StWpVw7XesIn1WpzJ5czzhXtcvHjR7AiGN0M7+35xZjO9N5zgBLhbbm6u2RFKlXPnzpkdwXCGatWqObUu189fGX3tStL7AQDgHRguAgAAAAAAAAAAAAAAcMBiseiBNj3kb/UzO4rb+Fv9dH+bHrJYLGZHgRepXr264dpTp065MUnROZPLmecL9zh//rzpp04cP37cUJ2zm+PLlCmjihUrGqo9f/68U2sDJVFWVpbZEUqV48ePy263m5rh6NGjhuqcvX7Wrl3bcG1pv34afe2M/l24i81m04kTJ0zNAABwDsNFAAAAAAAAAAAAAAAABlQLr6D+0W3MjuE2tzVto2rhFcyOAS9To0YNw7UnT550Y5Kic2ZjqzPPF+5ht9tN34x87NgxQ3XObHb/WZ06xk7BO3PmjNNrA3/k7+9vqC4/P9/NSa7typUrpvQtrTIzM029duTm5hr+WaBhw4ZOrV22bFlFREQYqi3t10+jr93hw4fdnKRwcXFxpg8LAwCcw3ARAAAAAAAAAAAAAACAQQNi2qpyaLjZMVyucmi4BjRtZ3YMeKGGDRsaPs3q0KFDbk5TNM5srm3UqJEbk8Co3bt3m9Y7Ly/P8Hs5JibG6fWjo6MN1e3fv9/ptYE/CgoKMlSXm5vr5iTXdu7cOVP6lmZbtmwxrffOnTsNDapZLBaun8UQExNj6GezuLg4JSYmeiDRtW3evNm03gCAomG4CAAAAAAAAAAAAAAAwKAg/wDd36aH2TFc7v42PRRo8HQD+JbQ0FDVq1fPUO3hw4eVnp7u5kTO27Ztm+HaFi1auDEJjNq0aZNpvXft2mX4pIVmzZo5vX67dsYGOXft2uX02sAfGR0uunr1qnuDXMeRI0dM6VuabdiwwbTeGzduNFRXt25dlSlTxun1jV4/d+7c6fTaJUloaKjq1q1rqLYkvB8AAN6D4SIAAAAAAAAAAAAAAAAntKlZT62qG9vQVxK0rlFXbWoaGx6Bb4qNjTVUZ7PZnBrk8YSsrCzt3bvXUG2lSpVUrVo1NyeCEatXrzat99q1aw3V1a5dW+XLl3d6/fbt2xuqS0pKMvUEJzhm9FQ3M5UrV85Q3aVLl9yc5H/Z7XbD12cYt2zZMtN6f/vtt4bqOnfuXKT1jV4/9+7dqytXrhSpR0nRqVMnQ3Xfffedm5Ncn9H3AwDAezBcBAAAAAAAAAAAAAAA4KT72/ZQgJ+f2TGKLcDPr1SexATX6tixo+Ha5cuXuzGJ81atWqW8vDxDtR06dHBzGhh14MABxcXFmdJ78eLFhup69uxZpPXbtGmjsLAwl2aBOQICAhzW5OfneyDJ9VWpUsVQnRnfbzt37lRaWprH+5Z2R48e1aFDhzzeNzk52fBwZq9evYrUo0ePHoaG+goKCrR06dIi9SgpjL6G33zzjWw2m5vT/K+9e/fq1KlTHu8LACgehosAAAAAAAAAAAAAAACcFFm2nAY0bWd2jGIb0LSdqpQ1dqoBfNeNN95ouHbJkiVuTOI8Z/I48zzhfgsXLvR4z4SEBG3cuNFQbVGHiwIDA3Xrrbcaqp07d67sdnuR+sD9AgMDHdZkZWV5IMn1hYSEKDw83GHd8ePHPT6AYOYJO6XdzJkzPd5z7ty5hod5izpcVL16dbVrZ+zn79mzZxepR0lxww03GKq7cOGCKd9r06dP93hPAEDxMVwEAAAAAAAAAAAAAABQBP2btlFkCR7MiSxbTv2btjE7BkqAli1bGj794sCBA9q9e7d7AxmUk5OjL774wnD9zTff7MY0cNYnn3zi8Z4zZsxQQUGBwzqLxVKsYbRBgwYZqjt27Ji+//77IveBexk5gSo5OdkDSQpXv359hzXp6ekeP+1mzpw5Hu1mC4DIAAEAAElEQVTnS2bOnOnRwTa73a4PPvjAUG3Lli1Vt27dIvcyev1ctWqVjhw5UuQ+3q5u3bpq0aKFodr333/fzWl+Lz09vdQPdwFAacVwEQAAAAAAAAAAAAAAQBEE+vnrgbY9zY5RZCPa9lSgn7/ZMVACWCwW3X777YbrjW4wdreFCxcqKSnJUG3Dhg3VpEkTNyeCM44cOaLvvvvOY/1ycnIMv3c7d+6smjVrFrnX7bffrvLlyxuqfeGFF4rcB+5VuXJlhzUJCQkeSFI4o9e2NWvWuDnJr1auXFmqBz/MdvnyZb333nse67dgwQIdPHjQUO3QoUOL1euee+6Rn5+fwzq73a6//vWvxerl7Yy+lkuXLtX27dvdnOZXb7/9tq5eveqxfgAA12G4CAAAAAAAAAAAAAAAoIhaVo9S25qOTwTwNu1q1leL6lFmx0AJMmLECMO1s2bN0tmzZ90XxoCCggL94x//MFw/cuRIN6ZBUXlysOajjz5SfHy8odribo4vU6aMHnroIUO1W7Zs4YQXLxUZGemwJjs72/D7yl2aN29uqO6bb75xc5JfTZo0yWO9fNWrr76qy5cvu71PTk6O4SEePz8/DRs2rFj9atWqpYEDBxqqXbBggdauXVusft5s+PDhslqNbQN/5pln3JzmJxcuXNAbb7zhkV4AANdjuAgAAAAAAAAAAAAAAKAY7mvTvUSdABTk56/72nQ3OwZKmC5duqhhw4aGanNycvTcc8+5OVHhPvnkEx06dMhQrZ+fnx544AE3J0JRbNu2TTNmzHB7n8TERMPDDmXKlCn25nhJeuyxx+Tvb+zeMW7cOJ0+fbrYPeFa9esbGy7esWOHm5MUrmvXrobqVqxYoXPnzrk5jfTZZ59p/fr1bu/j665cuaInnnjC7X1efPFFHT161FDtoEGDVLt27WL3HD9+vOHaBx54QCkpKcXu6Y1q166tQYMGGapdvXq1Pv74YzcnksaOHVtqX28A8AUMFwEAAAAAAAAAAAAAABRD5dBwDWrW3uwYhg1q1l6VQsPNjoES6MknnzRcO3fuXH311VduTHN9J06c0IQJEwzXDxkyRNWrV3djIhTHhAkT3H7yy6OPPqqkpCRDtQ888IAqVqxY7J5RUVF6+OGHDdWmpKRowIABbNj2Mo0aNTJUt3z5cjcnKVz79u0VHBzssK6goEBvvfWWW7OcPXvWqcEQFM+8efM0ffp0t62/fPlyvf7664brnbk3F6Zr167q27evodq4uDjdfffdysvLc0lvb+PMa/rkk09qz549bssyZcoU0372AwC4BsNFAAAAAAAAAAAAAAAAxdS3SStVCytvdgyHqoVXUN8mrc2OgRLqoYceUp06dQzXjxw5Urt373ZfoGtITk7WwIEDlZ6ebqjez89PL7zwgptToTiSk5N15513Kicnxy3rv/XWW1q4cKGhWj8/P6eG7Bx58cUXVa5cOUO1e/bsUf/+/XX16lWX9S+O3NxcffTRR1q5cqXZUUzTrl07Q3Wff/65qYNhQUFBuvHGGw3Vvv/++zp+/LhbcqSnp2vgwIG6fPmyW9bHtY0dO1Y//PCDy9fdvXu3hg4dqoKCAkP1t9xyizp06OCy/m+88Ybh09++//57DRs2zG33EWelp6fr9ddf1969e4u9VseOHXXLLbcYqs3IyNCAAQN05syZYvf9o8WLF+vpp592+boAAM9iuAgAAAAAAAAAAAAAAKCYAvz8NaJtT7NjODSibU/5+/mZHQMlVGBgoFODOCkpKbr55pu1bds2N6b61cWLF3XzzTdr//79hh/zwAMPGD59BObZunWr7r77buXm5rp03blz5+qZZ54xXD9q1Cg1bNjQZf0rVaqkf/7zn4br169fr65du+rEiRMuy+CstLQ0vfvuu2rYsKH+9Kc/KSEhwbQsZmvXrp2CgoIc1iUnJ2vMmDGy2WweSHVtd911l6G67Oxs3XvvvS4fwkhNTdUtt9yinTt3unRdOJabm6vbbrtNixcvdtmamzZtUu/evQ0PO/r7+7v8VKzo6Gg99dRThuu//PJL3XTTTUpMTHRpDmdcunRJf//731W3bl1NnDhRqampLln3zTffNDxodfr0aXXv3l2HDx92SW9Jmj9/vgYPHqz8/HyXrQkAMAfDRQAAAAAAAAAAAAAAAC7QvFoddajtuk3nrtaxdkM1r1rb7Bgo4UaMGKFevXoZrk9MTFT37t31wQcfyG63uy3X6tWr1bZtW6cGmSIjIzV58mS3ZYJrLV68WP369dOVK1dcst6//vUvPfDAA4YHPsLDw/XSSy+5pPdvjRkzRrfddpvh+gMHDqhFixaaNm2aR4dV9u7dqyeeeEI1a9bU448/7paTL0qaoKAg9enTx1Dt/Pnz1aNHD61bt87Nqa7tjjvuUPny5Q3VbtmyRcOHD3fZMN/hw4fVsWNHbdiwwSXr4foCAgKu+fXs7GwNHDhQzz77rLKzs4u8fkFBgf71r3+pR48eSkpKMvy4cePGKTo6ush9r+fll19W69bGT+Rcu3atmjVrpgULFrg8S2E2bdqkkSNHqlatWvrrX//q8tO7mjZtqscee8xw/enTp9WuXTvNnj27WH0zMjL0+OOPa/jw4crLy7tmzfXekwAA78RwEQAAAAAAAAAAAAAAgIvc27qbgvy9bxNdkH+A7m3d3ewYKAUsFoumT5+u0NBQw4/Jzs7WmDFj1LlzZ61cudKleQ4fPqx7771XvXr1Unx8vFOPnTZtmiIiIlyaB8VXq1at6/7ZDz/8oNatW+ubb74p8vpnzpzRwIED9dRTTzk1nPPaa6+pSpUqRe5bmBkzZhT6vP8oIyNDY8eOVWxsrBYuXOi20yIOHTqk1157TS1atFCLFi00ZcoUl520UVoMGTLEcO369evVvXt31axZU0OHDtWLL76oTz75RAsXLtQ333yjJUuWOPxn1apVRcoZGhqqhx9+2HD9f/7zH/Xp00enT58uUj9JyszM1Msvv6xWrVrp0KFD16xx1/eUrxo9erQqVap0zT+z2+167bXXFB0drVmzZjl1OlVBQYH+85//qHXr1nrqqaeuO0hyLTExMXrllVcM1zsjMDBQ8+fPV7ly5Qw/5tKlS7r77rvVpUsXff/9924ZfLbb7dq5c6deeOEFNWjQQJ07d3b6NXfWK6+8oqZNmxquT09P1wMPPKCuXbs6/TpkZGTogw8+UKNGjfTuu+9et65SpUpOXXcAAOYzdg4eAAAAAAAAAAAAAAAAHKpYJkx3NOug+bvXmx3ld+5s3kERZcqaHQOlRN26dfXpp5/qrrvucmoz6ubNm9WnTx81b95cw4cP16BBg9S4cWOn+ycmJmrJkiX64osvirwx+KmnntKgQYOcfhzc74YbblBGRoYWLlx4zT8/c+aMbr/9dnXv3l3jx49Xv379FBgY6HDd/fv3a9q0aZo5c6aysrKcytS/f3898sgjTj3GGZUqVdKyZcvUtWtXJScnG37cgQMHdNddd6l69eq655571L9/f3Xu3Fn+/s5vC7Tb7Tpx4oQ2btyojRs3asWKFTp58qTT6/iau+++W//3f/+nCxcuGH7MuXPn9O9//7tI/erUqaO4uLgiPfapp57StGnTlJaWZqh+3bp1iomJ0aOPPqoxY8YoKirK0OMOHTqkzz77TB9++GGhJ7Q0btxY48aNc+rEFRSucuXKeuedd3TPPfdctyYuLk4jR47UhAkT1LdvX/Xu3VvNmjVTnTp1FB4eLovFovT0dJ09e1YHDhzQ6tWrtXTpUp07d87pPMHBwZo3b56Cg4OL87QK1ahRIy1atEi33HKLU8M7Gzdu1M0336wGDRpo+PDh6t+/v9q2bSuLxeJ0hoKCAh0+fPiX6+fy5cuVkJDg9DrFERISonnz5qljx45OnU61YcMG3XzzzapXr5769++vbt26qWnTpqpevbrKli2rgoICpaam6uTJk9q3b59++OEHLVu2TCkpKQ7Xfuedd3T06NHiPC0AgIcxXAQAAAAAAAAAAAAAAOBCtzZpqbWnDupcSpLZUSRJNctV1C2NW5odA6XMnXfeqX/+85969tlnnX7svn379Oc//1l//vOfValSJbVp00aNGjVSrVq1FBkZqZCQEAUFBSkvL0/Z2dlKTk7WmTNndOrUKe3cubPYAw8DBgzQ5MmTi7UG3Gvq1KlatWqVkpKufx1du3at1q5dq7Jly6pnz56KjY1V/fr1FR4eLn9/f6WnpyshIUEHDx7UmjVrdOrUqSJlqV27tqZPn17Up2JY06ZN9c033+jmm29WRkaGU489f/68Jk+erMmTJyskJEQtWrRQs2bNVKtWLdWoUUOhoaEKCQmR3W5Xdna2srOzdenSJV28eFHnz5/XkSNHdPjwYWVmZrrp2ZVeQUFBev7550vEgExkZKSef/55TZw40fBjMjIy9Prrr2vy5Mlq2bKlunTpokaNGqlKlSoKCQlRTk6O0tLSdObMGR05ckQbN27UmTNnHK4bHBysL774Qjt37izOU8I1DB8+XEuXLtW8efMKrbty5YrmzJmjOXPmuCWHxWLR3LlzFRsb65b1f6tnz56aO3euhg4dqoKCAqcee/z4cb300kt66aWXFBYWplatWikmJkY1a9ZUtWrVFBoaquDgYBUUFCg7O1tZWVlKTEzUxYsXFR8fryNHjujo0aNuPZXIqBYtWmjOnDm6++67nR68PnnypKZMmaIpU6a4JMvw4cM1fPhwTZo0ySXrAQA8g+EiAAAAAAAAAAAAAAAAF/K3+mlk2176+8ovzY4iSRrZtqf8rX5mx0ApNHHiRGVkZOjll18u8hqXL1/W8uXLtXz5chcmu75+/fpp/vz5slqtHumHoomMjNT8+fPVr18/5efnF1qbnp6uJUuWaMmSJS7PER4erm+//VZVqlRx+drX0qVLF61atUr9+vUr9MSXwmRlZWnz5s3avHmzi9PhesaMGaN58+Zp48aNZkdx6KmnntJXX33l9PvDbrdr165d2rVrV7EzWK1WzZkzR7GxsQwXucmMGTMUFxdn6nvyrbfe0p133umxfoMHD9aiRYs0ZMiQIg9KpqWl/TK4WlINHjxYb775pp566inTMnTq1MkjQ7kAANfjfyUDAAAAAAAAAAAAAAC4WNPImupcp7HZMdQlqrGiI2uaHQOl2EsvvaQpU6bIYrGYHcWh++67T4sWLVJISIjZUWDATTfd5LITFIoiNDRUixYtUkxMjEf7tm/fXhs2bFCDBg082hdFZ7Va9Z///Ef16tUzO4pD/v7+mj9/vipWrGhahg8++ECDBw82rb8vCAoK0qJFi9S8eXOP97ZYLHr33Xc1fvx4j/fu37+/Vq5cqcjISI/39iZPPvmk3nnnHVN+NmvWrJm+/vprBQcHe7w3AKD4GC4CAAAAAAAAAAAAAABwg3tad1OIf6Bp/UMCAnVPq26m9YfvGDdunFasWKEaNWqYHeWagoODNXXqVM2ePVv+/v5mx4ETxowZo9dff93jG6TLly+vFStWqFevXh7t+7NGjRpp165dGjFihCn94bzIyEht2rRJXbt2NTuKQ1FRUVq2bJnCwsI82tff318ff/yxRo8e7dG+vqpy5cpat26devTo4bGeoaGhmjdvnh577DGP9fyjjh07au/everbt69pGbzB448/rs8++0xlypTxWM8ePXpo/fr1qly5ssd6AgBci+EiAAAAAAAAAAAAAAAAN6gQEqrBsR1N6z+4eUeVDwk1rT98S+/evbV3717de++9XnWKUadOnbR9+3Y9+uijZkdBET3zzDOaPXu2AgICPNKvWbNm2rhxozp16uSRftdTtmxZzZw5U//5z38UFRVlapbr6dKli1q0aGF2DK9RpUoVrVmzRtOmTfPaYcuftW3bVj/88IOqVq3qkX7ly5fXsmXLNGrUKI/0w0/KlSun5cuX68knn5TV6t7twi1atND27ds1dOhQt/YxokqVKlq6dKk++ugjrxx0sVqtuuWWW9x+bR82bJi2b9/u9hOsrFarnnzySS1fvlzlypVzay8AgHsxXAQAAAAAAAAAAAAAAOAmNzVqoVrlK3q8b+3ylXRTIzZ8w7MiIiI0Z84cbdu2zbQTX37WoEEDLViwQBs3blRMTIypWVB89957r7Zu3aqWLVu6rYfVatWYMWO0detWRUdHu62PswYNGqTDhw/r1VdfVUREhNlxVLNmTT399NM6cOCA1q9f7/ZN6yWN1WrVI488olOnTmn+/PkaOHCgR08OcUb79u09cr3u16+f9u3bp969e7u1D64tKChIb731ltavX++Wa2iFChX0r3/9S9u2bVOTJk1cvn5xjB49WsePH9fEiRMVGmr+wH2jRo30wgsv6OTJk/ruu+9Us2ZNt/eMjo7W9u3b9eabb6p8+fIuX79ly5basGGD3nrrLQUFBbl8fQCAZ3HOLwCfd/bsWS1fvlx79+7VwYMHderUKaWlpSk1NVV2u11hYWEKCwtT7dq11bRpUzVv3lw33nijGjZsaHb0EiUxMVEbNmz45XWOj49XQkKCkpOTlZ2drdzcXAUEBCg4OFjlypVT1apVVaNGDUVHR6t58+bq0qWLatWqZfbTAAAAAAAAAAAAAJziZ7VqZNteeumHhR7tO7JdL/m5+RPqgetp06aNVq1apZ07d2ratGmaP3++MjIy3N7XarXq5ptv1tixY9W3b1+3n9IAz2rZsqW2bdumd955R2+++aYSEhJctnavXr301ltvuXV4qTiCgoI0ceJEPf7445o7d66mTp2qvXv3eqx/48aN1bdvXw0aNEhdu3b1qtPJvFVAQICGDh2qoUOHKi8vTzt37tS2bdt09OhRHT9+XAkJCbp8+bJSUlKUm5urvLw82Ww2j+esWbOmVq1apZkzZ2rSpEk6c+aMy9aOiYnR3/72N919990uWxNF16lTJ+3atUvLli3T5MmTtXr16mK95+rWratHHnlEo0ePVoUKFVyY1LXCw8P16quv6tlnn9WMGTP0/vvv68SJEx7pbbFY1KJFC/Xr10933HGHWrdu7ZG+fxQYGKinnnpKI0aM0EcffaQPPvhAp0+fLvJ6VqtVvXr10oQJE3TLLbe4MCkAwGwWu91uNzsEAHja1atX9cknn2jOnDlF/mVLw4YNNXz4cI0ZM0aRkZEuTlg6HD16VPPmzdOXX36p/fv3F3u9Bg0aaODAgRo+fLhatWrlgoQl36VLl1SlSpXffS0xMdErj/QFAAAAAAAAAACel5OTo5MnTxZaU69ePT5l2gM+2PS91p465JFe3etF65GON3mkF2BERkaGVqxYoSVLlmj58uWKj4932drh4eHq1auX+vfvr379+qlatWouWxuuFRcXp7p16zqse+CBBzRr1qxCa3JycjR37lzNnTtX69evV35+vtN5ypUrpzvuuEOPPfaYaRu+i+PgwYNatGiRFi9erB07dhTpNbgWq9WqBg0aqHPnzurevbt69uxp6O8NJV9eXp7mz5+v2bNna/Xq1SooKHB6jZCQEN14440aPXq0+vXr53AQbdasWRo5cqTDdWfOnKkRI0Y4nQfXl5iYqKVLl+r777/X3r17dezYMeXl5V23vnz58oqJiVGvXr106623qmPHjiV2iHf79u1atGiRvvnmG+3fv99lg33+/v6Kjo5Wly5d1K1bN/Xq1csrfy6x2WzauHGjli1bplWrVunAgQNKTU29bn1AQIAaNmyo2NhY3XzzzerXrx970wAfV9p/1+TL+3IZLgLgU9LT0/Xyyy/rvffec9mnIgUGBuqBBx7QK6+8okqVKrlkzZJu7dq1+uc//6lly5a5rUfnzp317LPP6rbbbnNbj5LAl3+IAQAAAAAAAAAAjpX2DR8lSUpWhp5eMluZeblu7VMmIEhv3na/ygWXcWsfoDguXryoHTt2aM+ePTp16pTi4+N19uxZJSUlKSsrS9nZ2crOzlZAQIBCQkIUHBys8PBw1ahRQ7Vq1VLt2rXVvHlztW7dWg0aNOAUlRLClcNFv3X16lX98MMP2r17tw4cOKCjR4/q6tWrSktLU2ZmpoKDgxUWFqYqVaqoSZMmiomJUc+ePdW5c2f5+/sX4xl5j+zsbO3atUvbtm3TsWPHdObMGZ0+fVpXrlxRZmamMjMzlZOTI39/fwUFBalMmTKqWLGiKleurOrVq6tu3bqqV6+emjZtqhYtWig0NNTspwSTXbp0SevWrdOmTZt0+PBhnTx5UomJicrIyFBOTo7KlCmj8PBwVahQQY0bN1bz5s3Vtm1b9e7dWyEhIWbHRxHk5eXp9OnTSklJUVpamrKzsxUSEqKwsDBVq1bNK4dkXCEtLU07duzQjh07dPz4cZ05c0ZnzpxRUlKSMjMzlZWVpdzcXAUEBCgwMFBly5ZVpUqVVLlyZdWoUUN169ZV/fr1FRMTo2bNmik4ONjsp1Qk58+f14ULF365d5YpU0ZhYWEqV66cateurYCAALMjAvAipf13Tb68L5fhIgA+Y/HixXr00Udd+glIvxUREaE33njD0KdplFZnz57Vk08+qS+//NJjPXv37q2pU6eqSZMmHuvpTXz5hxgAAAAAAAAAAOBYad/wUdJ8f3SPZm1f7dYeI9v21I2NWri1BwAUhbuGiwAAAAB4Tmn/XZMv78stmWcSAoATbDabnn/+eQ0cONBtg0WSlJSUpAcffFAPP/ywcnPd+2lj3mjRokVq0aKFRweLJGnlypVq06aNZsyY4dG+AAAAAAAAAAAAgLP6NGiuqAru24wSVaGKejdo7rb1AQAAAAAAUDoxXASgVCsoKNDQoUP1j3/8Q546qO3jjz/WTTfdpMzMTI/08wZvvfWW7rjjDiUnJ5vSPzMzUw899JAmTpxoSn8AAAAAAAAAAADACKvVqpHterllbYukB9v1ktXKVhAAAAAAAAA4h98oASi1bDabRowYoQULFni895o1azRo0CDl5OR4vLenTZ48WU8//bTHhrcK8/rrr+upp54yOwYAAAAAAAAAAABwXQ0rVVOv+jEuX7dn/WZqUKmqy9cFAAAAAABA6edvdgAAcJe//OUvmjt3rlOPadiwobp06aJmzZopIiJCFotFycnJOnTokDZt2qT9+/cbXuv777/X6NGjNXv2bGejlxj/+c9/inRakJ+fn2JjY9WpUydVr15dFSpUUHh4uNLS0pScnKwLFy5o8+bN2r17t/Ly8pxa+1//+pcaNGigsWPHOp0LAAAAAAAAAAAA8IQhLbpo29kTSs/Ndsl6ZQODNaRFZ5esBQAAAAAAAN/DcBGAUum7777Ta6+9Zrh+wIABeu6559S+fftC6/bv36/Jkydr7ty5stlsDtedM2eOevTooYceeshwlpIiISFBo0ePdurEombNmmn8+PEaMmSIypYt67A+KytLCxcu1Ntvv62dO3ca7vP000/rhhtuUJMmTQw/BgAAAAAAAAAAAPCU8OAQDWnZWdO3rnLJekNbdlF4cIhL1gIAAAAAAIDvsZodAABc7cqVK7r//vsNDb1ERERo6dKlWrRokcPBIumn4ZhPP/1UGzZsUK1atQzlGTdunI4fP26otiR55plnlJSUZKg2NDRU06dP1759+/TQQw8ZGiySpJCQEN13333asWOHPv/8c5UrV87Q47Kzs/Xoo48aqgUAAAAAAAAAAADM0KtejOpFRBZ7nfoVI9WzfowLEgEAAAAAAMBXMVwEoNT5y1/+osuXLzusq1mzprZu3aq+ffs63aNjx47avn27mjZt6rA2KytLTz75pNM9vNnBgwc1f/58Q7W1atXS9u3b9eCDDxar55AhQ7Rnzx7DpxGtWrVKP/74Y7F6AgAAAAAAAAAAAO5itVr1YLteshRjDYukke16yWopzioAAAAAAADwdQwXAShVdu3apY8//thhXbly5fTDDz+ofv36Re5VpUoVrVy5UjVr1nRYu2TJEn377bdF7uVtPvjgA9lsNod14eHhWrp0qeGBIEfq1Kmj7777TpGRxj7B7f3333dJXwAAAAAAAAAAAMAd6lWMVO+GzYv8+D4NY11y+hEAAAAAAAB8G8NFAEqVF1980dDQy8cff6zGjRsXu1/VqlU1b948+fn5Oax94YUXit3PG9hsNsOnFr377rtq3rzo/zLkWqKiojRnzhxDtd98841SU1Nd2h8AAAAAAAAAAABwpbtjOyssKMTpx4UHheiuFp3ckAgAAAAAAAC+huEiAKXGkSNHtHjxYod1AwYM0F133eWyvt26ddOf/vQnh3Xbt2/XqlWrXNbXLHv27NHly5cd1sXExOjee+91S4Ybb7xRvXv3dliXk5OjdevWuSUDAAAAAAAAAAAA4Aplg4I1rGUXpx83rFVXlQ0MdkMiAAAAAAAA+BqGiwCUGm+99ZbsdnuhNf7+/nrjjTdc3vull15SeHi4w7o333zT5b09bfPmzYbqnnjiCVmt7rvNTJgwwVDdxo0b3ZYBAAAAAAAAAAAAcIXu9ZqqYaVqhusbVaqmbnWj3ZgIAAAAAAAAvoThIgClQk5Ojv797387rLvzzjvVoEEDl/evWLGiRo0a5bBu+fLlunjxosv7e9KRI0cM1d1yyy1uzdGjRw8FBzv+JLajR4+6NQcAAAAAAAAAAABQXFaLRSPb9ZLFYnFYa/lvrdVALQAAAAAAAGAEw0UASoUlS5YoJSXFYd348ePdluHxxx93eFJPQUGBPv/8c7dl8IT4+HiHNfXq1VOtWrXcmiMkJESdOnVyWHfmzBm35gAAAAAAAAAAAABcIapCZd3UMNZh3U0NW6hOhcoeSAQAAAAAAABfwXARgFJh/vz5DmsaNGigjh07ui1DnTp11K1bN4d1RrJ6s/T0dIc1NWvW9EASqUaNGg5r0tLSPJAEAAAAAAAAAAAAKL7BsZ1ULrjMdf+8XHAZ3RXrvn/nCQAAAAAAAN/EcBGAEq+goEA//PCDw7ohQ4a4PcvQoUMd1mzbtk1XrlxxexZ3sdlsDmsqVarkgSRS5cqOP5EtLy/PA0kAAAAAAAAAAACA4gsNDNLwVl2v++f3tOqmMoFBHkwEAAAAAAAAX8BwEYASb+vWrUpJSXFYd+utt7o9i5EeNptNK1eudHsWd6lQoYLDmsDAQA8kkYKCHP+Lk4iICA8kAQAAAAAAAAAAAFyja1QTNalS43++Hl2lhrpENTYhEQAAAAAAAEo7hosAlHhGBnXCwsLUoUMHt2epU6eOGjRo4LBuxYoVbs/iLhUrVnRYc/nyZQ8kkS5duuSwhuEiAAAAAAAAAAAAlCQWi0Uj2/aU1WL55WtWi0Uj2/aS5TdfAwAAAAAAAFyF4SIAJd6mTZsc1nTo0EH+/v4eSCN169bNYc2WLVs8kMQ96tev77DGyNCPKyQmJjqsqV27tgeSAOaJiYlRTEyM2TEAAADgYvycBwAAUDrxcx4Ao2qVr6RbGrf85b/f2riVapZ3/CGAAADz7N+/X/v37zc7BgAAAFyMn/PgKxguAlDi7dq1y2FN69atPZDkJ23atHFYc+jQIeXk5Hggjet17drVYc2hQ4eUkZHh1hx2u13btm1zWNelSxe35gAAAAAAAAAAAADc4c7mHVUhJFQVQkJ1R/MOZscBAAAAAABAKcZwEYAS7eLFi0pISHBY523DRfn5+dq3b58H0rhe69atFRoaWmhNbm6ufvzxR7fm2Lt3ry5cuOCwzshJUgAAAAAAAAAAAIC3CQkI1D2tuune1t0VEhBodhwAAAAAAACUYgwXASjR9u7da6iuSZMmbk7yq8aNGxuqM5rd2wQEBGjYsGEO62bPnu3WHJ9++qnDmvbt26tu3bpuzQEAAAAAAAAAAAC4S6c6jdSxdkOzYwCAS0RFRclutzv8Z9asWWZHBQAAAACfw3ARgBLt5MmThuoaNGjg5iS/qlChgiIiIhzWGc3ujR5//HGHNQsXLtTu3bvd0v/s2bN6//33HdY98cQTbukPAAAAAAAAAAAAeILFYpHFYjE7BgAAAAAAAEo5hosAlGinTp1yWFO1alWFhoZ6IM2vjAwzGcnurZo3b6477rij0Bq73a6HH35YWVlZLu2dn5+v0aNHKycnp9C6Bg0a6K677nJpbwAAAAAAAAAAAAAAAAAAAAAobRguAlCixcXFOaypXr26+4P8QbVq1RzWlOThIkl6//33VbFixUJrtm3bpnvuuUcFBQUu6Wm32zVmzBgtX7680Dqr1aoZM2YoICDAJX0BAAAAAAAAAAAAAAAAAAAAoLRiuAhAiXbu3DmHNVWrVvVAEud7xsfHeyCJ+0RGRmr69Ony8/MrtO6rr77SDTfcUOznm5iYqH79+umTTz5xWPv000+rW7duxeoHAAAAAAAAAAAAAAAAAAAAAL6A4SIAJdqVK1cc1kRGRnogye8ZGS5KSkryQBL3GjBggKZPny6LxVJo3dq1a9WiRQv94x//0OXLl53qcfXqVU2ePFnNmzfXd99957D+vvvu02uvveZUDwAAAAAAAAAAAAAAAAAAAADwVf5mBwCA4jAyXFS+fHn3BylCz4yMDOXk5CgoKMj9gdzogQcekNVq1SOPPKLMzMzr1iUlJen555/XP/7xD910003q0qWLOnbsqBo1aqhChQoKCwtTenq6kpOTlZCQoC1btmjDhg1atmyZMjIyDGW5//77NWPGDIfDTgAAAAAAAAAAAAAAAAAAAACAnzBcBKBES05OdlgTFhbmgSRF65mUlKRq1aq5OY373XfffWrXrp2GDRum3bt3F1qblZWlr7/+Wl9//bXL+oeGhmrKlCl68MEHXbYmAAAAAAAAAAAAAAAAAAAAAPgCq9kBAKCosrKylJeX57DOjOGi8PBwQ3UpKSluTuI5TZo00bZt2zR9+nTVq1fPIz39/Px07733as+ePQwWAQAAAAAAAAAAAAAAAAAAAEARMFwEoMTKzc01VBcSEuLmJP8rODjYUJ3R51BS+Pv768EHH9SRI0e0cOFCDR061PCglTNq1KihcePG6eDBg5ozZ47q16/v8h4AAAAAAAAAAAAAAAAAAAAA4Av8zQ4AAEVldDDHz8/PzUn+l7+/sctraRsu+pm/v79uvvlm2e122Ww2LViwQHa73SVr9+vXT6+88opiY2Ndsl5p1LVrV8PvQbjPgQMHzI4AAAAAAAAAAAAAAAAAAAAAOMTJRQBKLKODOWYMWRjtmZeX5+Yknrd//37dc889qlSpku666y598cUXLhsskqSlS5eqRYsWqlu3rv785z/rwoULLlsbAAAAAAAAAAAAAAAAAAAAAHwNxxoAKLHy8/MN1TFc5BknT57U008/ra+//tqlw0TXExcXp1dffVVvv/22Ro4cqeeff17Vq1d3e9+SYP369apcubLZMQAAAAAAAAAAAAAAAAAAAACUAJxcBKDEMjrAU1BQ4OYkRe9pxuCTO8yePVstW7bUokWLPDJY9FvZ2dmaNm2amjVrpi+++MKjvQEAAAAAAAAAAAAAAAAAAACgpCsdu9oB+KTAwEBDdUZPOHIloycSGX0O3spms2n06NGaMWOGU4/z8/NTq1at1L59e1WpUkUREREqX7680tPTlZSUpKSkJO3evVubN29WZmamoTWTk5M1ZMgQLVu2TB999FGpGdwCAAAAAAAAAAAAAAAAAAAAAHdi5zWAEisgIMBQnRnDRUZ7luThIrvdrlGjRmnmzJmGH9OjRw89+eST6t27t8qWLeuwPi8vT9u2bdN7772nL774wtDrOnPmTGVkZGjevHny8/MznA0AAAAAAAAAAAAAAAAAAAAAfJHV7AAAUFRBQUGG6rKzs92cpOg9S/Jw0VNPPWV4sKhFixbasmWLVq9erQEDBhgaLJJ+GiDr3LmzPvvsM504cUKDBw829LgvvvhC999/v6FaAAAAAAAAAAAAAAAAAAAAAPBlnFwEwCmnTp3Sli1b3NojNDRUt912m8O6kJAQ+fv7OzzNJi0tzVXRDDPaMzw83M1J3GPFihV6++23DdU+/PDDeueddxQcHFysnrVr19aCBQs0depUTZgwQTk5OYXWz5s3T7169dKoUaOK1RcAAAAAAAAAAAAAAAAAAAAASjOGiwA4Zc2aNRo5cqRbe9SpU8fQcJEkVahQQZcuXSq0JjU11RWxnGK0Z0REhJuTuF5KSooefPBBQ7UTJkzQ5MmTXdr/scceU40aNXTnnXfKbrcXWvvUU0+pT58+ioqKcmkGAAAAAAAAAAAAAAAAAAAAACgtrGYHAIDiqFixosOalJQUDyRxvmeZMmWKfZqPGd59913Fx8c7rBswYIBee+01t2QYNGiQobXT0tL07LPPuiUDAAAAAAAAAAAAAAAAAAAAAJQGDBcBKNGMDBddvHjRA0l+78KFCw5rjGT3Nnl5eXr//fcd1oWFhWn69OmyWt13m3nmmWfUoUMHh3Vffvmlzp4967YcAAAAAAAAAAAAAAAAAAAAAFCSMVwEoESrUaOGwxojgz6uZqSnkezeZuHChUpISHBYN378eI8MT/397393WJOfn6+pU6e6PQsAAAAAAAAAAEBJZbfbzY4AAAAAAACAEoDfI5VeDBcBKNGioqIc1pw/f979Qf7AyABO3bp1PZDEtZYtW+awxt/fX08++aQH0kh9+vRRq1atHNYtXrzYA2kAAAAAAAAAAAC8j8VicVjDphAAAAAAAAAYYeT3SFYrYyolEX9rAEo0IwM6Fy5cUGZmpgfS/Or48eMOa0ricNG6desc1nTo0EEVKlTwQJqf3HLLLQ5rDh8+rEuXLnkgDQAAAAAAAAAAgHcxspnDZrN5IAkAAAAAAABKOiO/RzLyYTfwPgwXASjR6tWr57DGbrcbGvZxlatXr+rKlSsO64xk9yYXLlzQqVOnHNbddNNNHkjjfL/169e7OQkAAAAAAAAAAID38fPzc1iTm5vrgSQAAAAAAAAo6Yz8HsnI76PgfRguAuCUESNGyG63u/WfuLg4w3maN29uqO7w4cNFfMbOM9rLaHZvER8fb6iuWbNmbk5StH6nT592cxIAAAAAAAAAAADvY7FYFBAQUGhNXl6eh9IAAAAAAACgJHP0e6SAgABOLiqhGC4CUKJVq1ZNkZGRDut27tzpgTTGe/n7+ys2NtYDaVzHyGlMklSpUiU3J/m9iIgIWa2Ob2dG8wMAAAAAAAAAAJQ2joaLOLkIAAAAAAAARjj6PVJgYKCHksDVGC4CUOK1bt3aYY0nh4t27NjhsKZJkyYKDg72QBrXSUpKMlTn6eEiq9WqiIgIh3UMFwEAAAAAAAAAAF/laFMHw0UAAAAAAAAwwtHvkRx9yA28F8NFAEq8Tp06OazZvHmz8vPzPZBGWrt2rcOaDh06eCCJa9ntdkN1ZhxlaKSnp/7+AQAAAAAAAAAAvI2j4aKcnBzl5eV5KA0AAAAAAABKotzcXOXk5BRaw8lFJRfDRQBKvN69ezusSUtL09atW92e5cyZMzp+/LjDuhtvvNHtWVytTJkyhuouX77s5iS/Z7PZDJ1KZDQ/AAAAAAAAAABAaWNkU0daWpoHkgAAAAAAAKCkSk9Pd1gTFBTkgSRwB4aLAJR47du3V3h4uMO67777zu1ZjPSwWCyGBqK8Tbly5QzVXbp0yc1Jfi8pKUk2m81hnZH3CAAAAAAAAAAAQGkUGhoqi8VSaA3DRQAAAAAAACiMo98fWSwWDgMowRguAlDi+fv7GxrW+fe//+32LJ9//rnDmrZt26pSpUpuz+JqtWvXNlR34MABNyf5vX379hmqM5ofAAAAAAAAAACgtLFarSpbtmyhNZmZmcrMzPRQIgAAAAAAAJQkRn53VLZsWVmtjKiUVPzNASgVhg0b5rDm2LFj2rJli9synDlzRmvXrnVYZySrN6pdu7b8/f0d1n3//fceSPOr5cuXG6qrW7eum5MAAAAAAAAAAAB4r7CwMIc1Fy9elN1u90AaAAAAAAAAlBR2u10XL150WGfk90/wXgwXASgVbrvtNoWHhzuse/vtt92WYcqUKbLZbIXWWK1WDR061G0Z3CkgIEDNmzd3WLd582ZdvXrV/YH+a9myZQ5rLBaLWrdu7YE0AAAAAAAAAAAA3snRyUWSlJ2d7dF/zwMAAAAAAADvd/XqVWVnZxdaY7FYDP3+Cd6L4SIApUJwcLDuvvtuh3ULFy7U8ePHXd7/ypUr+vjjjx3W3XTTTapWrZrL+3tKp06dHNbk5+frX//6lwfSSN9995327NnjsK5JkyaqUKGCBxIBAAAAAAAAAAB4Jz8/P0Mf1nfhwgWlpqZ6IBEAAAAAAAC8XWpqqi5cuOCwLiwsTH5+fh5IBHdhuAhAqfHUU0/JYrEUWpOfn68JEya4vPff/vY3Q/+S5emnn3Z5b0/q16+fobq3335bSUlJbs1it9v1/PPPG6q99dZb3ZoFAAAAAAAAAACgJKhcubLDf58mSefPn1dKSorsdrsHUgEAAAAAAMDb2O12paSk6Ny5cw5rLRaLKleu7IFUcCeGiwCUGtHR0erfv7/Duq+//loLFixwWd/169frww8/dFjXunVr9enTx2V9JSkuLk4Wi8XhPz179nRJvxtvvNHQCUCpqal66KGHZLPZXNL3Wl5++WXt3LnTUK2RU60AAAAAAAAAAABKu8DAQEVERDiss9vtOn/+vOLj45Wbm+uBZAAAAAAAAPAWubm5Onv2rM6fP2+oPiIiQoGBgW5OBXdjuAhAqfLCCy/IanV8aRs9erSOHj1a7H4XLlzQ8OHDVVBQ4LB20qRJxe5ntoCAAI0aNcpQ7aJFizRx4kS35Pj8888Nv56tWrVShw4d3JIDAAAAAAAAAACgpKlUqZL8/f0N1aanp+vkyZOKj49XWlqaWz9YDgAAAAAAAOax2WxKS0tTfHy8Tp48qYyMDEOP8/f3V6VKldycDp5g7DeGAFBCtGnTRg8++KA++eSTQutSUlLUu3dvrVmzRvXq1StSr0uXLqlPnz46e/asw9pbb71Vt912W5H6eJvx48drypQpysnJcVj7xhtvKD09XW+//baCgoJc0v+tt97Ss88+K7vdbqj+2WefdUlfAAAAAAAAAACA0sBqtSoyMlLnzp0zVG+325WWlqa0tDRZrVYFBwcrMDDwl3/8/PxktVplsVjcnBwAAO/28z4GI/spAAAAUHKUtp/z7Ha7bDabCgoKlJub+8s/2dnZRfpgmcjISEMHQ8D7MVwEoNR55ZVX9NVXX+nKlSuF1sXHx6t9+/aaM2eObr31Vqd6bNmyRXfffbfOnDnjsDY4OFjvvPOOU+t7s+rVq2vixIl66aWXDNV/8MEH2rx5sz766CO1a9euyH1PnTql8ePHa/HixYYf07VrV911111F7gkAAAAAAAAAAFAahYeHKz8/XxcvXnTqcTabTZmZmcrMzHRTMgAASq68vDxJ0smTJ01OAgAAAFfi57zri4yMVHh4uNkx4CKMiAEodSpXrqxZs2YZ+nS0K1euqG/fvrrjjju0fft2h/UHDx7UyJEj1blzZ0ODRZL0zjvvqGHDhoZqS4o///nPio6ONly/e/dutW/fXr169dLixYsNH5WYl5endevWaejQoWrYsKFTg0XBwcH64IMP+JQ8AAAAAAAAAACAa4iIiFDlypXNjgEAAAAAAIASqHLlyoqIiDA7BlyIk4sAlEr9+/fXhAkTNHnyZEP1X331lb766is1atRIXbt2VUxMjCIiImSxWJScnKzDhw9r06ZN2rt3r1M5hg8frocffrgoT8GrBQcH66uvvlL79u2Vmppq+HGrV6/W6tWr5e/vr1atWqlDhw6//HBRvnx5paenKykpSVeuXNHu3bu1efPmIn/y3YcffqiYmJgiPRYAAAAAAAAAAMAXVKxYUTabTVeuXDE7CgAAAAAAAEqIihUrqmLFimbHgIsxXASg1Hr11VcVHx+v+fPnG37M0aNHdfToUZf07927t2bMmOGStbxR48aNtWjRIvXv39/pAaD8/Hxt27ZN27Ztc0u2l19+Wffff79b1gYAAAAAAAAAACgtLBaLKleurKCgIF28eFEFBQVmRwIAAAAAAICX8vPzU2RkpMLDw2WxWMyOAxezmh0AANzFarVq9uzZuuOOOzzeu2vXrvr6668VFBTk8d6e1KtXL3377beqUKGC2VEk/fR3PnnyZD3//PNmRwEAAAAAAAAAACgRLBaLypUrp/r166tcuXJmxwEAoMQ6efKkTp48aXYMAAAAuBg/5/3kt78/YrCodGK4CECp5u/vrwULFmjixIke6zly5Ej98MMPCg0N9VhPM/Xo0UM7duxQ69atTc1RqVIlffvtt5owYYKpOQAAAAAAAAAAAEoiPz8/Va9eXbVr11ZISIjZcQAAAAAAAOAFQkJCVLt2bVWvXl1+fn5mx4EbMVwEoNSzWq169dVX9dVXX6l69epu61OhQgV9/PHHmjFjRqk/seiP6tatqy1btmjy5MkqW7asR3tbLBaNHDlShw4d0s033+zR3gAAAAAAAAAAAKVNaGiooqKi1KBBA1WpUsXn/r0XAAAAAACArwsKClKVKlXUoEEDRUVF+cyBC76O4SIAPmPgwIE6fPiwJkyY4NKbXGBgoB566CEdOXJEo0aNctm6JY2/v78mTJigU6dO6S9/+YsiIiLc2i8gIED33HOP9u3bpxkzZqhSpUpu7QcAAAAAAAAAAOBLAgICVLFiRdWrV0/16tVTtWrVVLFiRYWFhSkoKEgWi8XsiAAAAAAAACgGi8WioKAghYWFqWLFiqpWrdovvwuqWLGiAgICzI4ID/I3OwAAeFJYWJgmT56s5557Th999JHmzJmjAwcOFGmt+vXra9iwYRo7dqyqVavm4qQlV6VKlfT3v/9df/vb37R06VJ98cUXWrlypS5dulTstUNCQtSlSxcNGjRIQ4YMUcWKFV2QGAAAAAAAAAAAAIUJCgr6nxOM7Ha7CgoKZLfbZbPZTEoGAID3GDNmjCRp+fLlJicBAACAK5XGn/OsVqssFov8/Pz4ABn8guEiAD6pQoUKmjhxoiZOnKjTp0/r+++/1549e3Tw4EHFxcUpNTVVaWlpstvtCgsLU1hYmGrVqqWmTZuqefPm6tOnj5o0aWL201BUVJTsdrvZMa4pMDBQgwYN0qBBg2S327Vv3z7t3LlT+/fv17Fjx5SQkKCEhASlpaUpOztbubm58vf3V3BwsEJDQxUZGalq1aqpbt26iomJUWxsrNq3b/8//+IKAAAAAAAAAAAAnmexWOTvz5YDAAB+9vOHrrKvAQAAoHTh5zz4Cn7TB8Dn1alTR6NHjzY7RqlmsVgUGxur2NhYs6MAAAAAAAAAAAAAAAAAAAAAAH7DanYAAAAAAAAAAAAAAAAAAAAAAAAAAOZguAgAAAAAAAAAAAAAAAAAAAAAAADwUQwXAQAAAAAAAAAAAAAAAAAAAAAAAD6K4SIAAAAAAAAAAAAAAAAAAAAAAADARzFcBAAAAAAAAAAAAAAAAAAAAAAAAPgohosAAAAAQFJMTIxiYmLMjgGUeHwvAQC8DfcmwDX4XgIAeBvuTYBr8L0EAPA23JsA1+B7CQDgLIaLAAAAAAAAAAAAAAAAAAAAAAAAAB/FcBEAAAAAAAAAAAAAAAAAAAAAAADgoxguAgAAAAAAAAAAAAAAAAAAAAAAAHwUw0UAAAAAAAAAAAAAAAAAAAAAAACAj2K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRDBcBAAAAAAAAAAAAAAAAAAAAAAAAPorhIgAAAAAAAAAAAAAAAAAAAAAAAMBHMVwEAAAAAAAAAAAAAAAAAAAAAAAA+CiGiwAAAAAAAAAAAAAAAAAAAAAAAAAfxXARAAAAAAAAAAAAAAAAAAAAAAAA4KMYLgIAAAAAAAAAAAAAAAAAAAAAAAB8FMNFAAAAAAAAAAAAAAAAAAAAAAAAgI9iuAgAAAAAAAAAAAAAAAAAAAAAAADwUQwXAQAAAAAAAAAAAAAAAAAAAAAAAD6K4SIAAAAAAAAAAAAAAAAAAAAAAADARzFcBAAAAAAAAAAAAAAAAAAAAAAAAPgohosAAAAAAAAAAAAAAAAAAAAAAAAAH8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCjGC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTDRQAAAAAAAAAAAAAAAAAAAAAAAICPYrgIAAAAAAAAAAAAAAAAAAAAAAAA8FEMFwEAAAAAAAAAAAAAAAAAAAAAAAA+iuEiAAAAAAAAAAAAAAAAAAAAAAAAwEcxXAQAAAAAAAAAAAAAAAAAAAAAAAD4KIaLAAAAAAAAAAAAAAAAAAAAAAAAAB/FcBEAAAAAAAAAAAAAAAAAAAAAAADgoxguAgAAAAAAAAAAAAAAAAAAAAAAAHwUw0UAAAAAAAAAAAAAAAAAAAAAAACAj2K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRDBcBAAAAAAAAAAAAAAAAAAAAAAAAPorhIgAAAAAAAAAAAAAAAAAAAAAAAMBHMVwEAAAAAAAAAAAAAAAAAAAAAAAA+CiGiwAAAAAAAAAAAAAAAAAAAAAAAAAfxXARAAAAAAAAAAAAAAAAAAAAAAAA4KMYLgIAAAAAAAAAAAAAAAAAAAAAAAB8FMNFAAAAAAAAAAAAAAAAAAAAAAAAgI9iuAgAAAAAAAAAAAAAAAAAAAAAAADwUQwXAQAAAAAAAAAAAAAAAAAAAAAAAD7K3+wAAACg6Gw22/987fLlyyYkgVny8/MlSZcuXTI5CVDy8f0EuAbfS4Br8L0EuA7fT4Br8L0EuAbfS4Dr8P0EuAbfS4Dr8P0EuAbfS4Br8L0EuA7fT77lWntwr7VXtzSy2O12u9khAABA0Rw6dEhNmzY1OwYAAAAAAAAAAAAAAAAAAABQ6hw8eFDR0dFmx3A7q9kBAAAAAAAAAAAAAAAAAAAAAAAAAJiD4SIAAAAAAAAAAAAAAAAAAAAAAADARzFcBAAAAAAAAAAAAAAAAAAAAAAAAPgoi91ut5sdAgAAFE1+fr6OHTv2u69FRETIamV+GAAAAAAAAAAAAAAAAAAAADDKZrMpKSnpd19r2LCh/P39TUrkOQwXAQAAAAAAAAAAAAAAAAAAAAAAAD6KYw0AAAAAAAAAAAAAAAAAAAAAAAAAH8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCjGC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTDRQAAAAAAAAAAAAAAAAAAAAAAAICPYrgIAAAAAAAAAAAAAAAAAAAAAAAA8FEMFwEAAAAAAAAAAAAAAAAAAAAAAAA+iuEiAAAAAAAAAAAAAAAAAAAAAAAAwEcxXAQAAAAAAAAAAAAAAAAAAAAAAAD4KIaLAAAAAAAAAAAAAAAAAAAAAAAAAB/FcBEAAAAAAAAAAAAAAAAAAAAAAADgoxguAgAAAAAAAAAAAAAAAAAAAAAAAHwUw0UAAAAAAAAAAAAAAAAAAAAAAACAj2K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRDBcBAAAAAAAAAAAAAAAAAAAAAAAAPorhIgAAAAAAAAAAAAAAAAAAAADA/7N33+FR1Gsbx+8UEkIIJXQEpIYO0nsTRBQQBATEBipNFAuKiliOKBawoKCoCCIWBBuCAgoGkC69Bwi9BEJJ78m+f5zXdiTZ2bAzu5v5fq4r13UO+8z87l2TzbOTeWYAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADYV6OkAAAAAvubkyZNavny5du3apX379uno0aNKTExUQkKCHA6HwsLCFBYWpipVqqhevXpq2LChbrjhBtWqVcvT0QuEmJgYRUZGas+ePYqKitKhQ4d0+fJlJSYmKikpSYGBgX/+NyhZsqRq1qypiIgIRUREqEmTJqpXr578/Pw8/TQAAIAXos8zR0pKinbv3q3o6GgdO3bsz6+YmBglJSUpOTlZSUlJSktLU1BQkIKDg1W8eHGVL19eFStWVO3atVW/fn21atVKERERnn46AADAYpmZmfrtt9+0bt067du3TwcOHFBsbKwSExOVnJyskJAQFStWTOHh4apdu7bq1aunVq1a6frrr1dISIin4/uU2NhYLV++XNu3b9e+ffsUHR2t+Ph4JSYmKjMzU2FhYSpWrJgqVqyoevXqqX79+rr++uvVuHFjT0cHAAA+il7PHMePH//z+OYfx+JOnDihuLi4P4/FJScny+FwqHDhwgoJCVGZMmVUvnx5Va1aVfXr11ejRo3Upk0bhYaGevrpAAAAH0Sf5zlZWVnavHmzNm3apKioKEVFRenkyZNKSkpSYmKi0tPTVbRo0T//9n3NNdf8eW5d3bp11apVKxUvXtzTTwMe4udwOByeDgEAAODt4uLiNGvWLM2bN0+7du3K1z5q1aqlIUOGaPTo0SpXrpybExZshw8f1scff6wlS5Zoz549V7Wv8PBwtW/fXh07dlSvXr1Uu3ZtN6UEAAC+iD7PvdLT07Vp0yb9/vvv2r59u7Zt26aoqCjl5OS4Zf/ly5dXjx49NGjQIHXr1k2BgVw7CQCAgmrt2rWaMWOGfvrpJyUkJLi8fUhIiLp166bRo0erR48eXGwmF6mpqZo3b55mz56t33//PV99W6VKlXTbbbfpoYceUrVq1UxICQAAChp6Pfc5fvy41q1bp23btmn79u3avn27Ll++7JZ9BwYGqkWLFurfv78GDhyoypUru2W/AACg4KLP84yMjAx9//33+uKLLxQZGZmv1/4P/v7+atSokdq3b69u3bqpe/fuDHzZCMNFAAAAeUhKStKkSZM0Y8YMJScnu2WfQUFBuueeezR58mSVLl3aLfssqJYvX67XX39dkZGRMqttrVu3rvr166e77rqLQSMAAGyEPs89MjIytGnTJq1atUqRkZHasGGD0tLSLFm7UqVKevDBBzV69GgVK1bMkjUBAID51qxZo3HjxmnLli1u22ft2rX16quvqm/fvm7bp6/LzMzUm2++qSlTpujixYtu2ae/v7/69eunKVOmqGrVqm7ZJwAAKFjo9a7eyZMn/zwWt2rVKh09etSSdf39/XXLLbfo8ccfV7t27SxZEwAA+A76PM+4dOmSpk6dqlmzZik2NtaUNYoUKaIePXqoX79+Gjx4sAICAkxZB96B4SIAAIBc/PDDDxozZoxOnTplyv7Dw8M1depUDRs2zJT9+7IdO3boiSee0IoVKyxbc8yYMZo+fbpl6wEAAM+hz3OfZ599Vi+99JJHM5QtW1aTJk3S8OHDuXoZAAA+LC4uTg8//LA+/fRT09bo1auXPvjgA1WsWNG0NXzBunXrNHz4cO3fv9+U/RcpUkTPP/+8nnjiCfozAAAgiV7PXbKzs73iTt59+/bVG2+8oerVq3s6CgAA8DD6PM9IT0/XO++8o8mTJysuLs6ydWNjY21zkU278vd0AAAAAG+Tk5OjiRMnqm/fvqadcCr998oB9957r0aMGKGMjAzT1vEl2dnZmjRpklq0aGHpYBEAALAH+jz384brFp0/f14jR47UDTfcoNOnT3s6DgAAyId9+/apZcuWpp6EIElLlixRs2bNtH79elPX8WbvvfeeunTpYtpgkSSlpKToySefVJ8+fZSQkGDaOgAAwDfQ67mPNxyLk6Tvv/9ejRo10qxZszwdBQAAeBB9nmf88bqPHz/e0sEi2APDRQAAAH+TnZ2twYMH6+WXX7bs4OxHH32k7t27KyUlxZL1vFVMTIw6d+6s5557TllZWZ6OAwAAChj6vIJv5cqVatasmbZu3erpKAAAwAVr165V69atdejQIUvWi4mJUZcuXfTdd99Zsp43eeyxxzRmzBhlZmZast7ixYvVpk0bxcbGWrIeAADwPvR6BVdycrKGDx+u0aNHKzs729NxAACAxejzPGPWrFlq3ry5du3a5ekoKKAYLgIAAPh/OTk5Gjp0qBYuXGj52qtXr9att96q9PR0y9f2BocPH1bbtm21du1aT0cBAAAFEH2efZw7d06dOnXiymUAAPiILVu2qGfPnkpMTLR03YyMDA0ePFjLly+3dF1PmjBhgt566y3L1923b5+6d+/OVVQBALAhej17mDlzpgYPHqycnBxPRwEAABahz/OM5557TsOHD1dqaqqno6AA83N4y/1SAQAAPOzpp5/Wq6++6tI2tWrVUrt27dSgQQOFh4fLz89Ply9f1v79+7Vhwwbt2bPHpf3dddddpt8q1tvs2rVLN9xwg86fP+/RHGPGjNH06dM9mgEAAJiDPs88EydO1Msvv+zpGP9SsmRJrV+/XnXq1PF0FAAAkItTp06pSZMmunDhguFtChcurI4dO6p58+a65pprVKxYMSUlJens2bPatm2bVq1apaSkJMP7K1KkiDZt2qQGDRrk5yn4jA8++ECjRo1yaZtKlSqpY8eOatSokUqXLq1ChQopLi5Ohw4d0qZNm7RlyxaX7gjauXNnrVixQgEBAa7GBwAAPohezxxZWVkqVKiQp2Nc0ahRo/T+++97OgYAADAZfZ5njB49WjNnzvR0DMXGxqp06dKejgETMVwEAAAgaenSperZs6fhP4j36dNHEyZMUMuWLfOs27Nnj6ZMmaLPPvvM8NWaZs2apfvuu89Qra87ceKE2rRpozNnzri0XenSpdW5c2d16NBBderUUfXq1RUeHq7Q0FBJUlxcnOLi4nT58mUdOHBAO3fu1M6dO7V9+/Zcr5LKcBEAAAUTfZ65jAwX+fn5KSIiQrVr1/7zq1atWgoPD1exYsVUrFgxhYWFKSUlRQkJCUpISNDRo0e1fft27dixQytWrMjXle4bNWqkzZs3Kzg4OJ/PDgAAmCUrK0tdunQxfBfrsmXLauLEibr77rtVvHjxXOtSUlK0YMECvfDCCzp+/LihfdepU0dbtmz587hSQbNjxw61adNGaWlphuo7duyo5557Ttdff738/PxyrTt69Kjeeecdvffee8rIyDC074kTJ2rSpEmGagEAgO+i1zOP0eGiEiVKqH79+v84Hle5cmWFhYX9eTwuMDBQ8fHxSkhI0MWLF7V7925t375dGzdu1JYtW/KV78svv9TgwYPztS0AAPB+9HmekZ+LPfr5+alZs2bq1KmTmjdvrho1aqhy5coqWrSoQkJClJSU9Of5dWfPnv3z3LqdO3dq//79uf5tneGigo/hIgAAYHsXL15UnTp1DF1RITw8XPPmzdPNN9/s0hobN27UwIEDdfLkSae1ISEh2rVrl2rWrOnSGr4mLi5O7du31969ew1vc8stt2jEiBG68cYbFRgY6PKaWVlZWrdunRYvXqwff/xRBw4c+PMxhosAACh46PPMd6WD2YUKFVLz5s3VoUMHdejQQe3atVPJkiXzvUZ6eroWLVqkmTNnKjIy0qVtn3/+eb3wwgv5XhsAAJjjxRdf1PPPP2+odtCgQfrwww9VrFgxw/tPT0/XuHHjNGPGDEP1w4cP14cffmh4/74iIyNDjRo1UlRUlNPakJAQvffeexo6dKhLa0RFRWnAgAGG7uzp7++v1atXq3379i6tAQAAfAu9nnlyGy6qWLHin8fiOnTooAYNGsjf3z/f6xw8eFBz587VjBkzFB8fb3i7kiVLKjo6+qqOBQIAAO9Fn2e9jz76SCNGjDBcX758eT300EO66667VLly5XytefbsWS1ZskSLFy/WypUrlZKS8udjDBcVfAwXAQAA2xs1apQ++OADp3WVKlXSqlWrVKNGjXytc/78eXXp0kX79u1zWturVy8tXrw4X+v4iv79++vbb781VNumTRu9++67atasmVszbN26Ve+9957mz5+vYcOGMVwEAEABQ59nvj+Gi0qWLKmbb75Zffr00U033aSiRYuast5XX32lRx99VGfPnjVUHxoaqsOHD6t8+fKm5AEAAK47evSo6tWrZ+hOOk8//bQmT56c77WmT5+uhx56yGmdn5+fNm3apBYtWuR7LW/06quv6umnn3ZaV6xYMf3yyy9O796Zm+TkZPXs2VOrV692Wtu4cWNt3bpVAQEB+VoLAAB4N3o9c/19uKhZs2bq06eP+vbtq4YNG5qy3rlz5/Too4/qyy+/NLzNuHHjNHXqVFPyAAAAz6HPs97WrVvVpk0bZWZmOq0tXLiwnn/+eT388MMKCQlxW4akpCTNmzdP77//vnbv3s1wkQ0wXAQAAGxt+/btat68uXJycvKsK168uDZt2qTatWtf1XoxMTFq0aKFTp065bT2xx9/dPnK+b5i1qxZGj58uNM6f39/vfjii3rqqadMPeEgLi5Ohw8fVvPmzU1bAwAAWIs+zxqRkZHKyclRp06d8nVnyfyIiYnR9ddfr/379xuqf/HFF/Xss8+anAoAABh166236vvvv3daN3LkSM2cOfOq13v55Zc1ceJEp3UtW7bUxo0b5efnd9VreoMzZ84oIiJCycnJedYVKlRIK1euVIcOHa5qvaSkJHXo0EE7duxwWjtjxgw98MADV7UeAADwTvR65srJydH777+vPn36qFKlSpatO23aND3yyCOGaosVK6YzZ84oNDTU3FAAAMBS9HnWSklJUdOmTQ3dkbxBgwZasGCB6tata2qmdevWqWnTpm4dXoL3YbgIAADYWt++fbVo0SKndQsWLNBtt93mljV/++03denSRdnZ2XnWNW/eXL///rtb1vQmR48eVcOGDZ2e2BAcHKzPPvtMAwYMsCgZAAAoSOjzCrbz58+rXbt2Onz4sNPa6tWrKzo62oJUAADAmR07dqhJkyZO65o0aaINGzYoODj4qtd0OBy66aabtHz5cqe1ixcvVq9eva56TW/wyCOPaNq0aU7rXn/9dT3xxBNuWfPgwYNq1qyZkpKS8qyrWLGijh49qqCgILesCwAAvAO9XsH21ltv6bHHHjNU++mnn+quu+4yOREAALAKfZ71xowZo/fee89p3fXXX6/vvvtOxYoVsyAV7MDf0wEAAAA8JSoqSj/88IPTuj59+rjthFNJ6tChg0aOHOm0bsuWLfr111/dtq63ePzxx50OFvn7+zNYBAAA8o0+r+ArW7asPvzwQ0O1R44c0aFDh0xOBAAAjHj99ded1vj7+2vWrFluOQlBkvz8/PThhx8auqKmkXy+4PLly5o1a5bTuiZNmmjcuHFuWzciIkLPPfec07ozZ87os88+c9u6AADAO9DrFWyPPvqoOnXqZKh22bJlJqcBAABWos+z1s6dOw3d/al169ZavHgxg0VwK4aLAACAbb355ptydhPHwMBATZ061e1rv/jii4Ya+zfeeMPta3vS6tWr9e233zqte+mllxgsAgAA+UafZw9dunQxPBz222+/mZwGAAA4c/LkSS1cuNBp3V133aWmTZu6de0qVaoYusr6b7/9ViDuMDlz5kynF/eR/ts3+/u798/FDz/8sKpVq+a0jn4YAICChV7PHmbMmGGojmNxAAAUHPR51nv00UeVk5OTZ03FihW1ePFiFSlSxKJUsAuGiwAAgC2lp6frq6++clrXv39/1axZ0+3rlypVSvfff7/TuuXLl+vcuXNuX99Txo8f77SmQ4cOevLJJy1IAwAACiL6PHu56667DNUdOHDA5CQAAMCZzz//XFlZWXnW+Pn5mXZc6OGHH1bhwoWd1s2dO9eU9a1k5Dm0atVKnTt3dvvaQUFBevTRR53W7du3T1u2bHH7+gAAwDPo9eyhfv36hk4aPnXqlKFhdwAA4P3o86y1dOlSRUZG5lnj5+enOXPmqHTp0halgp0wXAQAAGxpyZIlio+Pd1r3yCOPmJZh7NixTq8Mmp2drfnz55uWwUpr1qzR5s2b86wJCAjQzJkz3X7FVAAAYB/0efZyww03GLoi1/Hjxy1IAwAA8vL55587renevbvq1q1ryvplypTRHXfc4bRuwYIFTk+Y8GZbt25VVFSU0zoz++F7773X0N08jXxPAAAA30CvZx99+/Z1WuNwOHTixAnzwwAAANPR51lrypQpTmsGDRqk7t27W5AGdsRZmwAAwJa+/PJLpzU1a9ZU69atTctw7bXXqkOHDk7rjGT1BW+88YbTmnvuuUf16tWzIA0AACio6PPspXDhwqpVq5bTusTERAvSAACA3OzZs0d79uxxWnfnnXeamsPI/mNjY7VixQpTc5jJSI8ZFhamPn36mJYhNDRUt956q9O6+fPny+FwmJYDAABYg17PXho2bGiojuNxAAD4Pvo8a23fvt3pXYsKFSqkl19+2aJEsCOGiwAAgO1kZ2cb+jAxaNAg07MMHjzYac3vv/+uixcvmp7FTMePH9fixYud1j3xxBMWpAEAAAUVfZ49lS9f3mlNdna2BUkAAEBuli1b5rSmcOHCpg68SFLHjh1VsWJFp3VLly41NYeZjLzWt9xyi0JCQkzNYaQfjomJ0Y4dO0zNAQAAzEevZy9GjsVJHI8DAKAgoM+z1vTp053W9O/fX9WrV7cgDeyK4SIAAGA7mzdvVnx8vNO6m266yfQsRtbIycnRypUrTc9iJiNXIb3++utVp04dixIBAICCiD7PnsLDw91SAwAAzPPLL784rWnfvr3CwsJMzeHv76/u3bs7rTOS1xudPXtWe/fudVpnRT/cuXNnFS5c2Gmdr77WAADgL/R69mL0OBvH4wAA8H30edbJyMjQt99+67TugQcesCAN7IzhIgAAYDtGTuAMCwtTq1atTM9y7bXXqmbNmk7rfPnDj/Tf4SJnhgwZYkESAABQkNHn2dOlS5ec1pQqVcqCJAAA4EoyMjK0du1ap3XdunWzII2xdfbv36/Tp09bkMa9jA6ud+3a1eQk/71qbfv27Z3W0Q8DAODb6PXsx8ixOInjcQAA+Dr6PGstXbpUcXFxedZUrlxZHTp0sCYQbIvhIgAAYDsbNmxwWtOqVSsFBgZakEaGmv5NmzZZkMQc0dHR2rFjR541/v7+6tWrlzWBAABAgUWfZ0/nzp1zWlO7dm0LkgAAgCvZuXOnUlJSnNYZGURxB6N/gPfFPs1IP1yzZk2VL1/egjTGXuvNmzc7veM5AADwXvR69mPkWFypUqUYLgIAwMfR51nr66+/dlrTu3dvC5LA7hguAgAAtrN9+3anNU2bNrUgyX81a9bMac3+/fuVnp5uQRr3W7FihdOa6667TuXKlbMgDQAAKMjo8+wnNTVVBw8edFrHVbwAAPAcIz2av7+/rrvuOvPDSKpSpYpKly7ttM5Ibm/ji/1wQkKCjhw5YkEaAABgBno9+3F2UUnpvycZ+/n5mR8GAACYhj7PWkbuSN6jRw8LksDuGC4CAAC2cu7cOZ09e9Zpnbf9kT0rK0u7d++2II37RUZGOq1p06aNBUkAAEBBRp9nTz///LPTq6aFh4erUaNGFiUCAAD/a9u2bU5rIiIiFBoaakGa/zLSp/naiQg5OTnauXOn0zpv64cl33utAQDAX+j17Of77793WtOlSxfzgwAAAFPR51nnwIEDhv7O3bp1awvSwO4YLgIAALaya9cuQ3V16tQxOclfateubajOaHZvs3r1aqc1rVq1siAJAAAoyOjz7Gn27NlOa4YPHy5/fw6DAgDgKUYGqa3s0SRjfZqv9WjR0dFOh64la1/r8uXLq3jx4k7rfO21BgAAf6HXs5dt27Y5vXNRkSJFdNddd1kTCAAAmIY+zzqrVq1yWlO9enWVKVPG/DCwvUBPBwAAALDSkSNHDNXVrFnT5CR/KVmypMLDw3Xp0qU864xm9yYnT55UTEyM07p69eo5rbl48aKWLl2qjRs3as+ePTp69Kji4+OVlJSkoKAgFSlSRKVKlVK1atVUo0YNtWzZUm3atFFERIQ7ngoAAPBy9Hn2s3TpUv3www951gQGBurBBx+0KBEAALgSI71OrVq1LEjyFyM94enTp5WRkaGgoCALEl09oz2l1a91jRo1nF7pln4YAADfRa9nHw6HQ2PGjHFad/fddys8PNyCRAAAwEz0edb5/fffndYYObfO4XDo999/188//6xdu3Zp3759io2NVUJCgrKyslSkSBEVLVpUlSpVUrVq1dSgQQO1adNGrVu3tvQOVPBuDBcBAABbOXr0qNOa8uXLW94w16xZU5s3b86zxkh2b7N3715Ddbl92MzJydGSJUv0zjvvaNWqVcrOzr5iXWpqqlJTU3Xx4kUdPHhQkvTee+/9ue/bbrtN999/v6pVq5aPZwEAAHwBfZ69HDlyRCNGjHBa9/jjj6tSpUoWJAIAAFeSmppq6MIzNWrUsCDNX4yciJCTk6Pjx49bfpJEfhntKatXr25ykn+qWbOm0+Ei+mEAAHwTvZ69PPvss9q4cWOeNeHh4XruuecsSgQAAMxCn2ctI+fX5fV8Tp8+rRkzZmjOnDl5/ndLSEhQQkKCzpw5o82bN+urr76SJBUuXFg33nijhgwZov79+ysgIMD1J4ECw9/TAQAAAKx07NgxpzUVK1Y0P8j/qFChgtMaX/wju5EPP6VKlVKxYsX+9e8rVqxQgwYN1KdPH61cuTLXwSJnDh06pMmTJ6tWrVoaNGiQDh06lK/9AAAA70afZx9RUVHq3LmzTp06lWddw4YN9Z///MeiVAAA4EqOHz9uqM7qPs1Ijyb5Vp9mpB8ODw9X4cKFzQ/zN/TDAAAUXPR69pCTk6OnnnpKL7/8stPaGTNmGH79AQCA96LPs9a+ffuc1lzpgkHx8fF6+OGHVa1aNb3yyiuGBsKuJC0tTYsWLdKgQYNUs2ZNzZw5M9/n6cH3MVwEAABs5fTp005rypcvb0ES19d0dvKkN9q/f7/TmrJly/7j/ycnJ+vOO+/UDTfcYGh7o7Kzs7VgwQI1aNBAEydOVGZmptv2DQAAPI8+r+BLT0/XpEmTdN111+nkyZN51laoUEHffPONgoKCLEoHAACuxEiPJlnfpxldz5f6NF/uh2NiYjhhAQAAH0SvV/Bt27ZNbdq00Wuvvea0dty4cRo8eLAFqQAAgNno86xz6tQpJSYmOq373/Prli9frtq1a+udd95x6zlwx44d0+jRo9W8eXNt2bLFbfuF72C4CAAA2MrFixed1pQrV86CJP9k5MPPpUuXLEjiXs5O+pSkMmXK/Pm/o6Oj1apVK33++eemZcrIyNDLL7+sjh07GsoHAAB8A31ewbVz50498cQTqlatmp577jmlpaXlWV++fHlFRkaqVq1aFiUEAAC5MdKjSdb3aWXLlpW/v/M/k/pSn+bL/bDD4dDly5ctSAMAANyJXq9gSkxM1Lx589S9e3e1aNFCmzdvdrrNI488oqlTp1qQDgAAWIE+zzpGz137+/l1r7zyim6++WadO3fOrFjasWOH2rVrpxkzZpi2BrxToKcDAAAAWMnIh58SJUqYHyQfayYnJys9PV3BwcHmB3ITI7db/eO5R0dHq1OnToavfnG1Nm7cqNatW2vFihWqW7euJWsCAADz0Od5t127dmnfvn151mRkZCghIUEJCQk6d+6cdu7cqZ07dyouLs7wOtdff73mzp2rSpUqXWViAADgDkZPRLC6T/P391dYWJji4+PzrDOa3xv4cj8s/Td/6dKlzQ0DAADcil7Pe+Xk5GjBggV51jgcDiUlJSkhIUHx8fE6ePCgduzYoUOHDiknJ8fQOqGhoXr77bd1//33uyM2AADwEvR51jFybp3012v99NNP69VXXzUx0V8yMjL04IMPKjo6Wm+++aYla8LzGC4CAAC2YuQKmGFhYRYkyd+aly5dUoUKFUxO4z5nz551WhMUFKRz586pS5culg0W/eHMmTPq2LGj1qxZw4ARAAA+jj7Pu33xxRd67bXXTNt/6dKlNXHiRI0dO1Z+fn6mrQMAAFxj9CqhRYsWNTnJvxk5EcGXrnJqJKu398MAAMC30Ot5r4yMDN1+++2mrnHjjTfq3Xff5e7hAAAUQPR51jFybp303/PrJk+ebNlg0d+99dZbysjI0PTp0y1fG9ZjuAgAANhGamqqMjMzndZ54o/sxYoVM1QXHx/vMyedOhwOQ1eCCAgI0ODBgw3d5rVYsWLq0KGDGjZsqGuvvVZFixZVVlaW4uLidPjwYW3atEnbt29Xdna24ZwXLlxQ7969tWnTJpUqVcrwdgAAwHvQ59lX1apV9eCDD2rUqFEKDQ31dBwAAPA/EhISnNaEhobK39/fgjT/ZKRPc3aigjcx8lp7ez8MAAB8C72e/RQqVEg9e/bUhAkT1KJFC0/HAQAAJqHPs05sbKyhutWrV+vZZ581VFuvXj21a9dOtWrVUqlSpRQcHKyUlBSdOnVKe/fu1Zo1awyv+4cZM2aoZs2aeuSRR1zaDr6H4SIAAGAbGRkZhupCQkJMTvJvhQsXNlRn9Dl4g7S0NOXk5DitW7RokdLS0vKsad26tcaPH69evXqpUKFCedbGxMTo008/1dSpUw1/EIqOjtadd96ppUuXGqoHAADehT7Pfvr166cJEyaoWbNmno4CAADyYKTH8USPJhnr03ypR/PW15p+GACAgstb+w+p4PV6nla2bFlNmjRJgwYNUvHixT0dBwAAmIw+zzopKSmG6saNG5fneXhFixbVmDFjNGLECFWvXj3PfeXk5CgyMlJvvfWWfvzxR8NZx40bpxYtWqhdu3aGt4HvsX5kEAAAwEOMfnAICAgwOcm/BQYam/n2pQ8/zgaGjNSVKFFC8+bN04YNG3Trrbc6HSySpPLly2v8+PGKjo7WiBEjDOddtmyZPvroI8P1AADAe9Dn2c+3336rgQMH6qGHHtKGDRs8HQcAAOTCSI/jiR5NMtan+VKP5q2vNf0wAAAFl7f2H1LB6/U87fz58xo7dqwGDRqkGTNmGLqbAQAA8F30edZxx/l1vXr10sGDB/Xqq686HSySJH9/f3Xt2lVLlizRL7/8osqVKxvKkJOTo2HDhhkeiIJvYrgIAADYhtEPDkb/4O1ORtfMzMw0OYn7pKenX9X21apV08aNG3XnnXfma/uwsDB98MEHmjVrluEPtE899ZRP3RoXAAD8F32ePR05ckTTp09X27Zt1bFjR5eurAUAAKxhpE/zRI9mdF1f6tG89bWmHwYAoODy1v7D6Lr0H65JT0/X8uXL9eCDD6pKlSqaMGGCzp075+lYAADABPR51rna8+smTJigH374QRUqVMjX9t26ddOWLVvUsmVLQ/WHDh3SG2+8ka+14BsYLgIAALaRlZVlqI4/srvH1VwFokKFClq5cqVq16591Tnuu+8+zZo1y1DtpUuXNGXKlKteEwAAWIs+D7/99pt69eqlm2++WTExMZ6OAwAA/p+RPo0TEdzDW19r+mEAAAoub+0/jK5L/5F/8fHxeuWVVxQREaF58+Z5Og4AAHAz+jzrXM35dU8++aRefvll+fn5XVWGsmXL6ueff1bjxo0N1U+dOlUXL168qjXhvRguAgAAtmH0Q012drbJSfK/pqc+mOXH1dz+ds6cOapWrZrbsgwdOlT33HOPodoZM2YoNTXVbWsDAADz0efhD0uXLlXDhg31008/eToKAACQsR7HEz2a0XV9qUfz1teafhgAgILLW/sPo+vSf1y9hIQE3X333Ro4cKCSk5M9HQcAALgJfZ518nt+Xbt27TR58mS35ShevLjmz5+vwoULO61NSEjQhx9+6La14V0YLgIAALYRFBRkqM7ole/dyegVE4w+B2+Q36z333+/brzxRjenkd5++21VrFjRaV1cXJzmz5/v9vUBAIB56PO836uvviqHw5HrV05OjuLj43X8+HHt2rVLy5cv18svv6xbb73VUA/3dxcuXFDfvn31/fffm/NkAACAYUZ6HE/0aJKxPs2XejRvfa3phwEAKLi8tf+QCl6v56rChQvneSzO4XAoPT1d586dU1RUlDZt2qQ5c+ZozJgxat26tcsn5C5cuFA9e/ZUSkqKSc8IAABYiT7POvnJGhISojlz5sjf371jIHXq1NGLL75oqPajjz5STk6OW9eHd2C4CAAA2EahQoUM1Xniw4/RNQv6h5/Q0FBNmTLFhDRSiRIl9Oqrrxqq/eKLL0zJAAAAzEGf5/v8/PxUrFgxValSRQ0bNlT37t01YcIEffvttzp58qSWLVumAQMGGP5vnZmZqYEDB2rJkiUmJwcAAHkx8rvbUyciGFnXl3o0b32t6YcBACi4vLX/MLqu3fuPoKAglS1bVhEREWrZsqWGDh2q6dOna8OGDTp58qQmT56sGjVqGN7f6tWr1atXL6WlpZmYGgAAWIE+zzr5yfrYY4+pVq1aJqQxvu+jR49qw4YNpmSAZzFcBAAAbCM4ONhQnScOeBpd05c+/Bh9vf9uyJAhKlGihPvD/L+BAweqdOnSTuvWrFmjpKQk03IAAAD3os8r2Pz9/XXjjTdq4cKF2rNnjzp27Ghou8zMTN155506deqUyQkBAEBujPRpnjr50Mi6vtSjeetrTT8MAEDB5a39h9F16T9yV758eT399NM6ePCg3nrrLYWGhhraLjIyUs8884zJ6QAAgNno86zj6vl1AQEBGjlypElpXNv/jz/+aFoOeI5r9zAFAABw0dGjR7Vp0yZT1wgNDVXv3r2d1oWEhCgwMNDpFQwSExPdFc0wo2sWK1bM5CTuU7hwYRUqVMjQ7Wj/MGrUKBMT/fcD2dChQzV16tQ86zIyMrR69Wr17NnT1DwAAPgy+jxjCmKf50kRERFatWqV3nvvPT3yyCNO/5vHx8dr2LBh+vnnn+Xn52dRSgAA8IewsDCnNcnJyXI4HJb/rjbSp/lSjxYWFqbz58/nWUM/DAAA3Iler+Dz9/fXI488or59++r222/Xxo0bnW7z9ttvq0+fPoYvEAQAALwPfZ51jLzWf3fzzTercuXKJqX5r6FDh2rixIlOB7l++eUXTZ482dQssB7DRQAAwFSrV6/WsGHDTF3j2muvNXTSqSSVLFlSsbGxedYkJCS4I5ZLjK4ZHh5uchL3KlWqlGJiYgzVVqtWTU2bNjU5kTRgwACnw0WStGXLFoaLAADIA32eMQW1z/MkPz8/jRkzRtdee61uvfVWpwNGK1as0FdffaXBgwdblBAAAPzBSI/jcDiUmJho+R/9jfRpvtSjhYeHKzo6Os8a+mEAAOBO9Hr2UbVqVa1cuVK9e/fWr7/+mmdtTk6ORo4cqX379nGxHwAAfBR9nnVKly7tUv2AAQNMSvKXUqVKqXPnzlq2bFmedbt27VJGRoZP3SkKzvl7OgAAAICVSpUq5bQmPj7egiSur1mkSBEVLlzYgjTuY+T1/kOrVq1MTPKX6667ztCHmm3btlmQBgAAuAt9nv306tVL06ZNM1T71ltvmZwGAABcidFjQ1b3aTk5OUpKSnJa58qxLU/z5X5Y8q3XGgAA/Be9nr0UKVJE3377rWrVquW09sCBA1q6dKkFqQAAgBno86zjalarzq9r2bKl05qMjAzt3bvXgjSwEsNFAADAVow05OfOnbMgyT8ZubuPL33w+YM3DhcFBwercePGTuucXekVAAB4F/o8e3rggQd0ww03OK3bvHmz1q9fb0EiAADwd0b7HKv7tNjYWGVnZzut86U+zZf7YT8/P5UsWdKCNAAAwJ3o9eynePHimjNnjqHat99+29wwAADANPR51nEla4kSJRQREWFimr8YPY+P8+sKHoaLAACArVxzzTVOa4z8wdvdjKxpJLu3cSVzo0aNTEzyT0aGi06dOmVBEgAA4C70efb12muvGar7+uuvTU4CAAD+l9E+x+o+zeh6vtSn+XI/XK5cOQUGBlqQBgAAuBO9nj21a9dOffr0cVq3cuVKxcXFmR8IAAC4HX2edVzJ2rBhQ/n5+ZmY5i9Gzq2TOL+uIGK4CAAA2ErVqlWd1pw5c8b8IP/j7NmzTmuqVatmQRL3ql69uuHa8PBwE5O4vlZ8fLzS09MtSAMAANyBPs++mjRpYujqWb/99psFaQAAwN8Z6dEk6/s0Iz2a5Ft9mpHX+tKlS5Yf76IfBgCg4KLXs69Ro0Y5rcnJydG6dessSAMAANyNPs86VatWlb+/sXEObzu3TvLMndJhLoaLAACArRj58BATE6OUlBQL0vzl8OHDTmt86YPPH1wZLipRooR5QfK5ltXfBwAAIP/o8+zNyNVSt2/frqSkJAvSAACAP4SEhKhcuXJO66Kjoy1I8xcjPZqfn5+uvfZaC9K4h5Ge0uFw6MiRIxak+Qv9MAAABRe9nn117dpVoaGhTuu42A8AAL6JPs86QUFBhu9eZOW5dSEhIQoODnZax7l1BQ/DRQAAwFaMDLs4HA5DH0bcJS4uThcvXnRa58qgjreoUaOG4VqGiwAAwNWgz7O3tm3bOq3Jzs7W0aNHLUgDAAD+zkivc+jQIQuS/MVIT3jNNdcY+gO6tzDaU3rja00/DACA76LXs6dChQqpRYsWTuus/m8PAADchz7POkbPr7Py3DpJKl68uNMazq0reBguAgAApho6dKgcDoepX8eOHTOcp2HDhobqDhw4kM9n7DqjaxnN7k0aNWpkuNbPz8/EJJ5bCwCAgoo+z31r+WKf521q1qxpqM7IsBcAAHAvI72OlT2a0fV8rUerUaOGQkJCnNZZ+VrHxMQoPj7eaZ2vvdYAAOAv9Hr2ZeR4HMfiAADwXfR51mncuLGhOqvPd+P8OntiuAgAANhKhQoVDN22ddu2bRakMb5WYGCgS4M63qJkyZKGrzwaFxdnbpi/uXz5sqG6IkWKmJwEAAC4C32evYWHhxuqu3TpkslJAADA/2rSpInTmqioKEuvcmmkT2vatKkFSdwnICDAUF/pbf2w5HuvNQAA+Au9nn0ZOR7HsTgAAHwXfZ51mjVrZqjOynPrjK7HuXUFD8NFAADAdox8iLDyj+xbt251WlOnTh0VLlzYgjTuZ/QDkNGBH3cw+mErNDTU3CAAAMCt6PPsq1ChQobqUlNTTU4CAAD+l5EeLScnRzt27DA/jKSTJ08qNjbWaZ2REyi8jS/2w2FhYapRo4YFaQAAgBno9ezLyPE4jsUBAOC76POs443n1qWmpio9Pd1pHefWFTwMFwEAANtp06aN05qNGzcqKyvLgjTSmjVrnNa0atXKgiTmaNu2raE6K69cZWStUqVKKSgoyII0AADAXejz7Cs5OdlQHQe4AQCwXuPGjRUSEuK07rfffrMgjbEeTfLNPs1IP3zo0CGdO3fOgjTGXuuWLVvKz8/PgjQAAMAM9Hr2ZeR4HMfiAADwXfR51qlTp45KlizptM7bzq2TpIoVK5qcBFZjuAgAANhO165dndYkJiZq8+bNpmc5ceKEDh8+7LTuhhtuMD2LWbp3726obteuXSYn+cvOnTud1lSpUsWCJAAAwJ3o8+zr1KlThuqKFi1qchIAAPC/goOD1b59e6d1K1eutCCNsXXq1KmjSpUqWZDGvYz0w5I1r3V6errWrVvntI5+GAAA30avZ19GjsdxLA4AAN9Fn2cdf39/devWzWnd7t275XA4LEhk7Nw6ifPrCiKGiwAAgO20bNlSxYoVc1q3dOlS07MYWcPPz8/wiQHeqF69eoY+uG3atMmCNP89scHIB6DatWtbkAYAALgTfZ597du3z1AdB7gBAPAMI38c/+2335SUlGRqjpycHC1fvtxpna8OvFSsWFF169Z1WmdFP7xq1SqlpqY6rfPV1xoAAPyFXs+ejByP41gcAAC+jT7POkYu3h0XF6eDBw9akMb4eXycX1fwMFwEAABsJzAw0NBJnF999ZXpWebPn++0pnnz5ipdurTpWcx08803O63ZuHGjBUmk7du3KyMjw2ldixYtLEgDAADciT7PvlavXu20JiAgQFWrVjU/DAAA+JcePXo4rUlLS9OiRYtMzfHbb7/pzJkzTuuM5PVWRrIvWrRIaWlppuYw0g+XK1dOTZo0MTUHAAAwH72e/cTGxmr//v1O62rUqGFBGgAAYBb6POvcdNNN8vPzc1pn1fl1RoaLihcvroiICAvSwEoMFwEAAFu6/fbbndYcOnTI1LvpnDhxQmvWrHFaZySrt7vjjjuc1hw7dkzbtm0zPcvXX39tqK5NmzYmJwEAAGagz7OfrKwsffPNN07r6tatq6CgIAsSAQCA/9WoUSPVq1fPad1nn31mao558+Y5rSlVqpRPX+XUSI+ZmJho6kkfycnJ+u6775zWDRo0yNBJEwAAwLvR69nPV199JYfD4bTuuuuuMz8MAAAwDX2eda655hp17tzZaZ3R896uxoULF7Rq1Sqnda1ateLYXgHEcBEAALCl3r17q1ixYk7r3n77bdMyvPPOO8rJycmzxt/fX4MHDzYtg1U6dOigatWqOa17//33Tc2RlpamTz75xGld6dKl1bJlS1OzAAAAc9Dn2c9XX32lmJgYp3WdOnWyIA0AAMiNkYvPLF++XAcOHDBl/djYWH3++edO6wYOHKhChQqZksEKLVq0UK1atZzWmdkPz5kzR/Hx8U7rjHxPAAAA30CvZx/Z2dmaMWOG0zo/Pz917NjRgkQAAMBM9HnWufvuu53W/PTTTzpx4oSpOebMmaP09HSndT179jQ1BzyD4SIAAGBLhQsX1sCBA53Wff311zp8+LDb17948aI++ugjp3Xdu3dXhQoV3L6+1fz8/DRs2DCndV9++aUuX75sWo6vvvpKFy9edFrXu3dvBQQEmJYDAACYhz7PXpKSkjRx4kRDtTfeeKPJaQAAQF7uvPNOp8dbHA6HXn31VVPWnzZtmtLS0pzW3XPPPaasbyUjz2Hjxo2GrkDqqoyMDL355ptO6+rUqcPFfQAAKEDo9ezj/fffN3TycJMmTVSmTBkLEgEAADPR51lnwIABTi+imZOTo5kzZ5qWITs7Wx988IGh2j59+piWA57DcBEAALCtxx57zOmtObOysvT444+7fe3nnntOCQkJTuvGjRvn9rU9ZcyYMQoNDc2zJjk52bTnfPnyZT399NOGau+77z5TMgAAAGvQ59nH6NGjdezYMad1ZcqUUY8ePcwPBAAAclWlShUNGDDAad28efO0bds2t6594sQJQwMv7dq1U6tWrdy6tieMGjVKRYoUcVo3btw4p3fcdNW0adN09OhRQ2sDAICCg17PHnbt2qUnn3zSUK2RK+8DAADvR59nnaJFi+qBBx5wWvfWW28pKirKlAxTpkxRdHS007pu3brp2muvNSUDPIvhIgAAYFt169ZVr169nNYtWrRICxcudNu6a9euNTTh37RpU3Xr1s1t60rSsWPH5Ofn5/Src+fObl1XksLDwzVy5EindXPmzNHSpUvdvv7YsWN19uxZp3VNmjRRu3bt3L4+AACwDn2e+X3e4sWLde7cObfsKz8cDofGjRunzz77zFD90KFDVahQIZNTAQAAZ8aPH++0JicnR8OHD1dGRoZb1nQ4HBo5cqRSU1Od1hrJ54qhQ4ca6tHcfQehUqVKGbp4zrZt2wydoGHUoUOH9OKLLzqtq1Chgu666y63rQsAALwDvZ55vd7Fixf13XffXX3oq3DgwAH16NFDKSkpTmuLFCmiO+64w4JUAADACvR51hzTk6RHH31UISEhedakpaVp2LBhbr9o0L59+/TCCy8Yqn3ooYfcuja8B8NFAADA1p5//nn5+ztviYYPH66DBw9e9XoxMTEaMmSIsrOzndYabdZ9yfjx41W8eHGndcOGDdORI0fctu7HH39s+MTTgvi6AwBgR/R55vrmm29Uo0YNTZgwQTExMZauffnyZQ0cONDwibBFixbVE088YXIqAABgRNOmTXXLLbc4rdu2bZsefvhht6z5yiuvaNmyZU7rmjdvrt69e7tlTW8wfvx4Q3cvmjBhgtauXXvV6yUnJ2vQoEFKSkpyWvv0008rODj4qtcEAADehV7PPImJierXr5/atm2rH3/8UQ6Hw9L1Fy9erDZt2hi6kKMkPfjggypdurTJqQAAgFXo86xTtmxZQ6/hhg0b9NRTT7lt3bi4OA0ePFjp6elOa5s1a1agXnP8E8NFAADA1po1a6Z7773XaV18fLy6du16VQMvsbGx6tatm06ePOm09qabbiqQTXi5cuU0adIkp3Xnzp1T165d3XIL11mzZhm6Y5IkderUydCHYQAA4P3o88yXnJysV155Rddee63uvvtu/frrr26/QtbfZWdna86cOWrQoIG+/vprw9s9+eSTKlOmjGm5AACAa958801DgyUzZ87UM888c1Vrvffee4b24efnp3fffVd+fn5XtZ43qVSpkiZMmOC0LjMzU7169dKWLVvyvVZKSop69+6t7du3O61t2LChHnjggXyvBQAAvBu9nrk2bNigXr16qW7dunrrrbdMv+hPdHS0br/9dt1yyy2Ki4sztE2ZMmX05JNPmpoLAABYjz7POhMnTlSVKlWc1k2ZMkXPPPPMVQ+enz9/Xt27d9fu3bsN1U+dOrXAveb4C8NFAADA9iZPnqxSpUo5rTt16pRatmyppUuXurzGpk2b1Lx5c+3du9dpbeHChTVt2jSX1/AVDzzwgJo3b+607tixY2rdurXhOw79r8TERI0cOVLDhw83dAeBIkWK6MMPP8zXWgAAwDvR51kjIyND8+bNU9euXVWlShWNGjVKixYtMnzCgTOHDh3S5MmTVbNmTd177706c+aM4W2bNWvm1qt2AQCAq1ejRg3DJxtOnjxZt99+uxITE11aIz09XWPHjtWYMWMM1Q8bNkytW7d2aQ1f8Pjjj6tWrVpO6+Lj49WpUyfNnTvX5TWioqLUunVrRUZGOq318/PT9OnTFRAQ4PI6AADAN9DrWSMqKkqPPfaYKlWqpK5du+qNN97Q7t273XLhn9TUVC1ZskT9+/dXnTp1NH/+fJe2/+CDDxQeHn7VOQAAgHehz7NOaGio3n33XUO1kydP1i233GL4DpP/a8WKFWrevLl+//13Q/X333+/OnfunK+14BsYLgIAALZXpkwZffLJJ4Ym6i9evKibb75Z/fr1M3Q1z3379mnYsGFq27atTpw4YSjPtGnTDP3R31cFBAToq6++UokSJZzWxsXF6a677lKbNm307bffKjMz0+k2586d02uvvaYaNWq4NCz09ttvKyIiwnA9AADwfvR51jt9+rQ++OAD9e3bV+Hh4apbt67uuusuvfzyy1q4cKE2bNigI0eOKC4uTmlpacrJyVFWVpZSUlJ09uxZ7d69Wz/++KPefvtt3XPPPapZs6YiIiL0zDPP6NixYy5lKVWqlL788ksFBgaa82QBAEC+Pfvss2rTpo2h2vnz56tWrVqaMWOGEhIS8qxNTU3Vp59+qjp16hj+A3xERESBHACXpODgYM2fP9/QVWVTUlI0dOhQdenSRZGRkU6veHrs2DE99thjatSokeGrmj711FPq2LGjoVoAAOC76PWsk52drV9//VWPP/64GjVqpJIlS+qGG27QY489ppkzZ+rnn3/Wrl27FBMTo6SkJGVmZsrhcCg9PV1xcXGKjo7W+vXrNW/ePE2YMEHXX3+9Spcurd69e+vbb79VVlaWS3nGjh2rW2+91aRnCwAAPI0+zzq33HKLHnroIUO1S5YsUa1atfTUU0/pyJEjTusdDod+/fVX9erVSzfccINOnjxpaJ2IiAi9/fbbhmrhu/wcV3svLAAAgAJi/PjxmjJlikvbREREqH379qpfv77Cw8Pl5+eny5cv68CBA9qwYYN27drl0v6GDBmizz//3KVtXHHs2DFVq1bNaV2nTp20atUq03JI0uLFi9WnTx+Xbs1avHhxdejQQY0aNVKVKlVUtGhRZWdn6/Lly4qOjtamTZu0detWQ3cq+ruxY8cW6A+cAADYHX3eX9zV5w0dOjRfV7a3SkhIiFasWKG2bdt6OgoAAMjFyZMn1aRJE128eNHwNiEhIerUqZOaNWumSpUqKSwsTElJSYqJidHWrVu1atUql66IGhISog0bNqhx48b5eQpOGe2ZIiMjTb3i53vvvWf4iq9/qFy5sjp16qRGjRqpVKlSKlSokOLi4nT48GFt2rRJmzdvdum4XocOHRQZGcldiwAAsAl6vb+4o9czeuzPk/r166eFCxfK359rnQMAUJDR5/3F7GN6mZmZ6ty5s9avX294Gz8/P9WvX19t27ZVRESESpUqpaCgIKWkpOj06dPau3ev1qxZo3PnzrmUpXTp0lq/fn2Bv5AmJC7bCQAA8P9effVVnTp1Sl9++aXhbQ4ePKiDBw+6Zf2uXbtq9uzZbtmXL+jdu7c+/PBDjRgxwvCJCPHx8VqyZImWLFnithyDBw/WW2+95bb9AQAA70OfZy/h4eFasmSJ4SunAQAAz6hcubJ++ukndevWzfDJA6mpqVq2bJmWLVt21esXKlRIX3/9tWknIXiTBx54QMePH9frr79ueJuTJ0/qs88+c8v6DRs21Pfff89gEQAANkKvZy933323Pv74YwaLAACwAfo86xQqVEiLFy/W9ddfr507dxraxuFwaM+ePdqzZ4/bchQvXlyLFy9msMgm6OgBAAD+n7+/vz799FP169fP8rXbt2+vRYsWKTg42PK1Pen+++/XBx984LEDzSNHjtTnn3/OgW4AAAo4+jz7aNy4sdavX89gEQAAPqJly5ZasmSJihYtaum6hQoV0pdffqmbb77Z0nU96bXXXtPYsWMtX7dOnTr65ZdfFB4ebvnaAADAs+j1Cr7AwEC99NJL+uSTTxQYyDXOAQCwC/o864SHh2vlypW67rrrPLJ+2bJlFRkZqdatW3tkfViPsygBAAD+JjAwUAsXLtSTTz5p2ZrDhg3TihUrFBoaatma3mT48OFatmyZSpUqZdmawcHBmjFjhmbOnMlgEQAANkGfV7AFBgZq3Lhx2rRpk2rXru3pOAAAwAUdO3bUhg0bVL16dUvWK1u2rH799Vf179/fkvW8ybRp0zRt2jTLTvy8+eabtXHjRpUrV86S9QAAgPeh1yu46tatq7Vr1+qZZ56Rn5+fp+MAAACL0edZp1SpUlq7dq1uv/12S9dt27attmzZoiZNmli6LjyLMykBAAD+h7+/v1599VV99913qlixomnrlCxZUh999JFmz55t+yvZ33DDDdq2bZslV5Zo06aNNm3apAceeMD0tQAAgHehz3Ofjh07qlq1ap6OIT8/P91yyy3avXu3pk6dWmBfbwAACroGDRpoy5YtuuOOO0xd56abbtLWrVvVvn17U9fxZmPHjtWvv/5q6kB2SEiIXn75ZS1evFjFixc3bR0AAOAb6PWuXvHixdWjRw8FBQV5OorKlSun6dOna9euXWrVqpWn4wAAAA+iz7NOaGiovvjiC33wwQem3yG8SJEimjRpklavXq3KlSubuha8D8NFAAAAuejbt68OHDigxx9/3K1Xmw8KCtJ9992nqKgo3X///W7br6+rUqWKfvzxRy1evFgNGzZ0+/7r1aunefPmad26dWrcuLHb9w8AAHwHfd7Vu/fee3XkyBHt2LFDL7zwgq677jpL1y9evLhGjRqlvXv3atGiRapTp46l6wMAAPcrWbKkPvvsM0VGRqpZs2Zu3XdERIS+/vpr/fTTT6pUqZJb9+2LOnTooF27dmny5MluPRnB399f/fv31969ezVhwgTuGA4AAP5Er3d1SpYsqaVLl+rChQuaP3++Bg8ebPkQd/PmzTVnzhwdP35cY8aMsexumAAAwLvR51lrxIgROnjwoMaMGaOQkBC37js4OFj33XefDhw4oIkTJ9Lv2ZSfw+FweDoEAACAt7t8+bI+/PBDzZs3T3v37s3XPmrUqKHbb79dDzzwgCpUqODmhMYcO3bM0BXmO3XqpFWrVpkfKA+rVq3S+++/r2XLlikhISFf+yhevLh69+6tO++8U927d5efn5+bUwIAAF9Hn+c+Z8+e1dq1a7Vu3TqtW7dOO3bsUFZWltv2X6tWLXXq1El9+vRR9+7dveJKrQAAwDyrV6/WjBkztHTpUiUlJbm8feHChdW1a1eNHj1aN998s0eOCw0dOlRz5851WhcZGanOnTubH+gKUlJSNHfuXM2ZM0dbtmxRfv50XLFiRd1222166KGHVKNGDRNSAgCAgoZe7+plZmZq69atfx6LW79+vc6dO+e2/YeGhqpNmzbq3r27+vfvr+rVq7tt3wAAoOCiz7POxYsXNWvWLH3++efavXt3vvfTtGlT3XbbbRo2bJjKlSvnxoTwRQwXAQAAuOj48eP6+eeftXPnTu3bt0/Hjh1TQkKCEhMT5XA4FBYWprCwMFWuXFn16tVTw4YN1a1bN66mnk9ZWVl/HhTft2+foqKiFBMTo8TERCUnJ8vPz0+hoaEqXry4qlSpomrVqqlx48Zq06aNmjVrxkmnAADAMPo890pJSdGePXt0+PDhP7+OHDmiy5cvKykpSUlJSUpMTFR2draCg4MVHBysokWLqmzZsipXrpwqV66s2rVrq06dOmrWrBkHswEAsKmMjAytWbPmz2NDBw4c0IULF5SYmKiUlBQVLlxYYWFhCg8PV+3atVWvXj21atVKXbt2VZEiRTwd36ecO3dOy5cv1/bt27Vv3z4dOXJE8fHxSkxMVFZWlooWLaqwsDBdc801qlu3rurXr6/rr79eTZo08XR0AADgo+j13Ovo0aOKior6x/G4M2fOKDEx8c/jcSkpKQoMDFRQUJAKFy6sUqVKqVy5cipfvrxq1KihOnXqqH79+mrcuDFXqwcAAPlGn2et06dP65dfftHOnTu1f//+fxzXS09PV0hIiEJDQ1W2bFlVq1ZNERERatWqldq2batrrrnG0/HhRRguAgAAAAAAAAAAAAAAAAAAAAAAAGzK39MBAAAAAAAAAAAAAAAAAAAAAAAAAHgGw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATQV6OgAAAAAAAAAAAAAAAAAAAAAAADDu3LlzWrJkidatW6c9e/bo+PHjSkhIUHZ2tkqUKKEKFSqoSZMmat++vfr166fw8HBPRwbgxfwcDofD0yEAAAAAAAAAAAAAAAAAAAAAAEDeVq1apalTp2rp0qXKyckxtE2hQoU0YMAAvfDCC4qIiDA5IQBfxHARAAAAAAAAAAAAAAAAAAAAAABe7OTJk3rggQe0ZMmSfO8jICBAjz/+uCZNmqRChQq5MR0AX8dwEQAAAAAAAAAAAAAAAAAAAAAAXuqHH37Q3Xffrfj4eLfsr1mzZlq8eLEqVKjglv0B8H3+ng4AAAAAAAAAAAAAAAAAAAAAAAD+bebMmbr11lvdNlgkSVu3blXbtm11+PBht+0TgG/jzkUAAAAAAAAAAAAAAAAAAAAAAHiZTz/9VEOHDpVZp/xXq1ZNGzduVNmyZU3ZPwDfwZ2LAAAAAAAAAAAAAAAAAAAAAADwIosWLdK9996b52BRSEiI7r77bn399dc6duyYkpOTlZKSokOHDmnu3Lnq0qVLnmscPXpUvXv3VkZGhrvjA/Ax3LkIAAAAAAAAAAAAAAAAAAAAAAAvcfz4cTVu3Fjx8fG51tx+++168803Vb58+Tz3tXLlSt1///06duxYrjXjxo3T1KlT8xsXQAHAcBEAAAAAAAAAAAAAAAAAAAAAAF4gOztbnTt31tq1a6/4uJ+fn6ZNm6aHHnrI8D5jY2PVs2dP/f7777nuMzIyUp06dcpXZgC+z9/TAQAAAAAAAAAAAAAAAAAAAAAAgDR9+vRcB4sk6a233nJpsEiSypQpo6VLl6pOnTpXfNzhcOjBBx9Udna2S/sFUHBw5yIAAAAAAAAAAAAAAAAAAAAAADwsKSlJ1atXV2xs7BUfv/322/XFF1/ke/979uxRixYtlJaWdsXHZ8yYoQceeCDf+wfgu7hzEQAAAAAAAAAAAAAAAAAAAAAAHvbmm2/mOlhUqlQpzZgx46r236BBA73wwgu5Pv7KK68oIyPjqtYA4JsYLgIAAAAAAAAAAAAAAAAAAAAAwIPS09P19ttv5/r4xIkTVbJkyate59FHH1WNGjWu+NipU6f02WefXfUaAHwPw0UAAAAAAAAAAAAAAAAAAAAAAHjQDz/8oMuXL1/xseLFi2vEiBFuWScoKEgTJkzI9fF33nnHLesA8C0MFwEAAAAA8rRq1Sr5+fkZ/gI8ge9TAPgn3hcBAADgbebOnWuoN50xY4ano17R8ePHtWDBAj377LO67bbb1K5dO1WvXl3h4eEKDQ1VQECA4f77k08+8fTTAQAAAAB4obw+L95xxx0qUqSI29a68847VbFixSs+tnPnTu3cudNta3mbnj17Ov3sHhoaqmPHjnk6KmCpQE8HAAAAAAAAAAAAAAAABdelS5f0+OOPO62rW7euRo4caUEiY7Zt26ZPP/1US5YsUXR0tKfjAAAAAAAKsPj4eC1fvjzXx91116I/BAUFaejQoZo8efIVH//000/1xhtvuHVNbzFlyhQtX75c2dnZudakpKTooYce0uLFiy1MBngWw0UAAAAAAAAAAAAAAMA048eP14ULF5zWTZ06VYGBnj+NYenSpXrhhRe0efNmT0cBCpSYmBjt2bNHUVFRioqK0okTJ3T27FnFxMQoMTFRaWlpSk9PV1BQkEJCQlS4cGGFh4erYsWKuuaaa1S1alU1atRIjRo1UvXq1bkTLwAAAAqUVatW5Trs0rRpUzVu3Njta+Y1XPTDDz8U2OGievXqafjw4Zo5c2aedUuWLNH333+vvn37WhMM8DDPH5UDAAAAAAAAAAAAAAAF0rp16zR79myndd26ddPNN99sQaLcnT59WiNGjNBPP/3k0RxAQZCZmanff/9dq1ev1qZNm7RlyxadPn3a0LZpaWlKS0uTJJ09e1Z79+79V014eLi6dOmibt26qWfPnqpcubJb8wMAAABWW7lyZa6P9ejRw5Q1a9Wqpbp162r//v3/euzw4cM6dOiQatWqZcranvaf//xHn3/+uRITE/OsGzt2rLp3764iRYpYlAzwHIaLAAAAfFDnzp21evVqj61fqFAhBQcHKzg4WEWLFlWZMmVUtmxZlS9fXhEREYqIiFC9evUUERHBVeMA2IpV789BQUF/vg///atYsWIqW7bsv76qVq2qOnXqKDw83PRsAAAAyJ2nP8+72z333KNPPvnE0zEAAF4sJydHY8eOlcPhcFr7yiuvWJAod2vXrlXfvn118eJFj+YAfNnBgwf1008/aenSpVq3bp2Sk5NNW+vSpUv65ptv9M0338jPz0+dO3fWPffco0GDBqlw4cKmretrPvnkEw0bNszTMXxKp06dtGrVKk/HAAAANpRXD9KlSxfT1u3Zs+cVh4sk6Zdffimww0Vly5bVo48+qhdffDHPupMnT+rVV191WgcUBAwXAQAAwGWZmZnKzMxUUlKSLl68qOPHj1+xrmTJkmrdurW6dOmiPn36KCIiwuKkAFAwZWRkKCMjw+kVdP5XmTJlVKdOHdWpU0f16tVTu3bt1KRJEwUGcngAAAAAAAC438cff6xt27Y5revfv7+aN29uQaIr+/nnn3XLLbcoPT3dYxkAX+RwOLR582YtXLhQixYt0uHDhz2WIzIyUpGRkXryySf12GOPafTo0QoLC/NIHgAAAMBVaWlp2rdv3xUfCwoKUrt27Uxbu2PHjpo6deoVH9u0aZMeeOAB09b2tHHjxmnGjBlOLzQydepU3Xfffbr22mstSgZ4hr+nAwAAAKDgunz5spYuXarx48erdu3aql+/vqZMmcKVHwHAQ2JjY/Xbb7/po48+0qOPPqqWLVuqRIkS6tatm1544QVFRkYqKyvL0zEBAAAAAEABEB8fr4kTJzqtCwgI0KRJkyxIdGW7d+/WgAEDGCwCXLBjxw49/vjjqlq1qlq3bq033njDY4NF/+vcuXN68sknVaNGDc2dO9fTcQAAAABD9u/fr+zs7Cs+1qJFC4WEhJi2dl6DS5s3bzZtXW9QrFgxPfnkk07rUlNT9cQTT1iQCPAshosAAABgmX379mn8+PGqVKmSRo4cqdOnT3s6EgDYXnJyslauXKn//Oc/uv7661WhQgWNGDFCv/zyC4NGyLdPPvlEfn5+hr6qVq3q6bjAv/A9DACA7+H3N+B9Xn75ZZ0/f95p3ZAhQ1S3bl0LEv1bZmam7rzzTpfvDg3YUXx8vKZOnapGjRqpSZMmeuONN3TixAlPx8pVbGyshg4dqk6dOunYsWOejgMAAADkaffu3bk+Vr9+fVPXDg8PV+XKla/4WFRUlNLS0kxd39MefPBBlStXzmndwoULtX79egsSAZ7DcBEAAAAsl5aWpg8//FC1atXSs88+q4yMDE9HAgD8vwsXLuijjz5S9+7dVaFCBT388MM6evSop2MBAAAAAAAfcvLkSb377rtO6/z9/fXMM89YkOjK3njjDe3atctj6wO+5Pfff9cTTzyR50mP3mjNmjVq2rSpFi9e7OkoAAAAQK6ioqJyfaxGjRqmr9+gQYMr/rvD4VB0dLTp63tSSEiIxo0bZ6h2/PjxJqcBPCvQ0wEAAABgX6mpqXrppZf0/fffa968ebruuus8HQkA8DcXLlzQO++8oxkzZujWW2/V448/rlatWnk6FgAAAAAA8HLPPvusoSsbDxw4ULVr17Yg0b8lJiZqypQp+d6+RIkSatq0qSpWrKjixYurWLFi8vc3dn3Xxo0b53tdAK67fPmy+vTpo9dee01PPPGEp+MAAAAA/3LmzJlcH6tZs6bp6+e1xqFDh0y/e5KnjR49Wq+99pouXryYZ926deu0aNEi9enTx6JkgLUYLgIAAIDH7dmzR23bttVnn32mfv36eToOAOB/ZGdn6+uvv9bXX3+tLl26aNq0aWrYsKGnYwEAAAAAAC+0e/duzZs3z2mdn5+fJk6caEGiK5s9e7YuXbrk0jYlS5bUvffeq/vuu09169Y1KRkAMzgcDo0fP14JCQmaNGmSp+MAAAAA/5DXcJEVdy6qUqVKro8dP37c9PU9rWjRonr44Yf13HPPOa19+umn1atXLwUEBFiQDLCWscvmAAAAACZLTU3VgAEDNHPmTE9HAQDkITIyUk2bNtUjjzyi+Ph4T8cBAAAAAABe5rnnnlNOTo7TuptuusmjVz6eO3euS/UdO3bUvn37NHXqVAaLAB/20ksv6ZVXXvF0DAAAAOAfzp49m+tjlSpVMn39vNaIjY01fX1vMGbMGIWGhjqt279/v7788ksLEgHWY7gIAAAAXsPhcGjMmDGaP3++p6MAAPKQlZWladOmKSIiQt99952n4wAAAAAAAC+xfft2ff/994Zqn3jiCXPD5CE6Olrbt283XF+/fn39/PPPKl++vImpAHsoXLiwWrdurYceekjvvvuuFi9erD179ujMmTOKj49XVlaW0tLSdOnSJe3du1dLly7VK6+8or59+yosLMwtGZ555hl9/fXXbtkXAAAA/uu9996Tn5+f4a833njD05GvWlZWlpo2bWr4OQcFBWnnzp1X3Nfly5dzXado0aJmPYU/lSxZMtfHLly4YPr63iA8PFzDhg0zVDtp0iRlZ2ebnAiwXqCnAwAAAMB8jRo1Uu/evd2yr6ysLKWnpyspKUmxsbE6ffq0Dh8+rLi4OLfsPycnR/fcc4/q1Kmj6667zi37BABvdbXvz2lpaUpLS1N6errS0tKUkJCgs2fP6uzZszp37pwyMzPdmPbfzp8/r379+mn8+PGaPHkyt/0GAAAAAMDmXnjhBUN1zZo1U+fOnU3NkpcVK1a4VD979mwFBweblAYo2AIDA9WqVSv16NFDN954o5o0aaLAwLxPVwoICFBwcLBKliypevXqqUePHpKkzMxMLVu2TO+9956WLVuW70wOh0NDhw5Vs2bNVK1atXzvBwAAAH9x9c60Bw4cMCmJdV5//XWXLlwxceJENW7c+IqPpaamXvHf/+iNzZbXcNGlS5dMX99bPProo3r//fedDg4dPHhQn3/+ue6++26LkgHWYLgIAADABpo0aaKXXnrJ1DVOnDihjRs3atmyZVq8ePFVXbUiIyNDQ4YM0datWxUSEuLGlADgXcx8f3Y4HDp37pz27Nnz59fWrVu1c+dOORwOt671+uuva/PmzZo/f77KlSvn1n0b1blzZ7c/LwDwZbwvAgXDPffco08++cTTMQAAMGTHjh364YcfDNU+8sgj5oZxYvXq1YZrmzRpopYtW5qYBih4/P391aFDBw0ZMkQDBgxQeHi4W/ZbqFAh9e7dW71799bmzZs1btw4rV27Nl/7Sk5O1r333qtff/1Vfn5+bsnnjYYOHaqhQ4d6NIOrr++cOXM8nhkAALiuQYMGLtVHRUWZlMQaBw4c0Isvvmi4vmnTppowYUKuj6elpV3x34sUKeJytvzIa5309HRLMniD6tWrq3fv3obuyvzSSy/pzjvvlL+/v/nBAIvw3QwAAAC3qFKligYOHKjZs2fr9OnT+vLLL12+Ksnf7d+/X2+99ZYbEwKAvfj5+al8+fLq1q2bHnnkEc2aNUvbt29XbGysFixYoJEjR7p1EGjVqlVq27atTp065bZ9AgAAAAAA3/Haa68ZqitTpoxuu+02k9PkbdeuXYZrBw0aZGISoGCpWLGiXnjhBZ04cUKrVq3SiBEj3DZY9L9atmypNWvW6O2331ahQoXytY9Vq1bp008/dXMyAAAAeypVqpTKly9vuN6X71yUk5Oj++67z/DQTVBQkObOnZvnHTxzGy4KDQ3NV0ZXBQUF5fqYnYaLJOmBBx4wVHfo0CF99913JqcBrMVwEQAAANwuKChIgwcP1q5duzRt2rR8333otdde08WLF92cDgDsrVSpUrrttts0c+ZMnTp1SosXL9aAAQPyPFho1JEjR9SlSxedOXPGDUkBAAAAAICvOHr0qBYuXGiodvjw4QoODjY5Ue6ysrJ08OBBw/VNmzY1MQ1QMLRt21YLFizQ8ePH9fzzz+uaa66xZF0/Pz89/PDDWrlypUqWLJmvffznP/9RZmamm5MBAADYkyt3L4qNjdWlS5dMTGOed999V+vXrzdc//zzzzt9bRwOxxX/Pb+D9K7Ka52MjAxLMniLbt26KSIiwlDt66+/bnIawFoMFwEAAMA0/v7+Gjt2rNasWaOyZcu6vH1CQoJmzZplQjIAgCQFBgaqV69eWrhwoaKjozV69OirHjI6fPiwunTporNnz7opJQAAAAAA8HZTp05Vdna20zp/f3+NHDnSgkS5O3PmjEuDBI0aNTIxDeDbunXrpsjISK1bt0633XZbnldiN1OHDh20YsUKlShRwuVtjx49qnnz5rk/FAAAgA25MlwkSVFRUSYlMc/Ro0f1zDPPGK5v0aKFnnzySad1uQ33pKamGl7rauT1OdkdFyr1JX5+fho1apSh2s2bN2vVqlXmBgIsxHARAAAATNe8eXMtW7ZMRYsWdXnb2bNnm5AIAPC/KlWqpPfee0/R0dEaPHjwVe3r4MGDuvXWW7niJwAAAAAANhAXF6e5c+caqu3WrZuqVKlicqK8xcTEGK4NCAhQuXLlTEwD+Kbrr79eGzdu1C+//KLOnTt7Oo6k/95lbMGCBQoICHB5Wy50BwAA4B7169d3qf7AgQMmJTHPiBEjlJycbKg2ODhYn3zyiaEeNbcBHquGi/K6O5En7z7sKXfeeafhu0a9/fbb5oYBLMRwEQAAACzRpEmTfH2YOnjwoHbv3u3+QACAK6pUqZK+/PJLfffddypfvny+97Np0yaNHz/ejckAAAAAAIA3mj17tuETq4YNG2ZyGucuXLhguDY/F8wCCrLGjRtr6dKlWrlypVq1auXpOP9yww036Omnn3Z5uw0bNujgwYMmJAIAALAXV+9c5GvDRR9//LFWrFhhuP4///mP6tWrZ6g2t8+fVg0Xpaen5/pY4cKFLcngTcqUKaPevXsbql28eLGOHTtmbiDAIgwXAQAAwDL33XefWrZs6fJ2v/76qwlpAAB56du3r/bs2aOOHTvmex9vv/22vv/+e/eFAgAAAAAAXiUnJ0czZswwVFuiRAndeuutJidyLiUlxXAtw0XAX9q0aaNt27apR48eno6Sp4kTJ6pGjRoub/fDDz+YkAYAAMBe6tevLz8/P8P1UVFRJqZxrzNnzmjcuHGG61u1aqXHH3/ccH14ePgV/z0nJyfPwR93iYuLy/WxIkWKmL6+N7rvvvsM1blybATwdgwXAQAAwFJPPfWUy9usXbvWhCQAAGdKlSqln3/+WXfccUe+9zFs2DDFxsa6MRUAAAAAAPAWy5cv15EjRwzVDhgwQMHBwSYncs6Vk7ICAwNNTAL4ltDQUPn7e/9pRsHBwZo4caLL261atcr9YQAAAGwmLCxMVapUMVzvS3cuGj16tOLj4w3VFi5cWHPnzlVAQIDh/ZcuXTrXx2JiYgzvJ7/yustvmTJlTF/fG3Xv3t3wc589e7bS0tJMTgSYz/s/9QMAAKBA6dmzp4oXL+7SNr50pRIAKGiCg4P12Wefafjw4fnaPi4uLl9/zAcAAAAAAN5v1qxZhmtvv/12E5MYl5WV5ekIAEw2ZMgQlSxZ0qVtfvvtNzkcDpMSAQAA2EeDBg0M10ZHRyszM9PENO4xf/58l+50+dJLL6l27dourVGxYsVcHzt58qRL+8qPixcv5vpY+fLlTV/fGwUGBmrAgAGGai9duqTvvvvO5ESA+RguAgAAgKWCgoLUsWNHl7Y5fPiwSWkAAEa9//776tmzZ762nTVrlnbu3OnmRAAAAAAAwJNiY2O1ePFiQ7Xly5dX586dzQ1kEMMDQMEXFBSkfv36ubRNQkKCzpw5Y1IiAAAA+6hfv77h2qysLMN3w/WUCxcuaOzYsYbr27Ztq0cffdTlda699tpcHztx4oTL+3PV8ePHc32sXLlypq/vrQYPHmy49uOPPzYxCWANhosAAABguebNm7tUn5qaqtTUVJPSAACMCAgI0FdffaVGjRq5vG1OTk6+DqACAAAAAADvNW/ePMNXmO7fv7/8/Tk9AYB1unbt6vI2hw4dMiEJAACAvbhy5yJJOnDggElJ3OPhhx9WbGysodqQkBB98skn+fr8W61atVwfs+LORdHR0bk+VqlSJdPX91YdOnTI865Sf/frr7/q6NGjJicCzBXo6QAAAACwn+rVq7u8TVJSkkJCQkxI4z6ZmZnatm2bNm/erOjoaB09elTHjh1TXFyckpOTlZycrMzMTIWGhv75dc0116hatWqqXr26GjRooHbt2qls2bKefipe4+zZs1q7dq327NmjPXv26NChQ4qPj1diYqISExMVGBioIkWKKCwsTJUqVVK1atVUu3ZttW3bVq1atVJoaKinn4LbZWRkaO3atdq8ebP279+v/fv36/z580pISFBiYqIKFSqksLAwhYWFqWTJkqpdu7bq1aun+vXrq0OHDgoPD/f0U4APCw0N1bx589SiRQtlZGS4tG1kZKTWrFnj8t3r7CAnJ0d79+7Vrl27FBUVpUOHDuns2bM6f/68Ll68qLS0NKWnpyszM1PBwcEqUqTIP77+eA+sWrWqrr32WlWtWvXPr6CgIE8/PdujP3C/mJgYrV+/XlFRUTp48KAOHjyoCxcuKCkpSUlJSUpOTlahQoVUunRpValSRREREbruuuvUv39/W//xoyDg58m96LVRUGRmZurAgQPau3evjhw5oiNHjujkyZOKjY3VhQsXlJCQoIyMDKWnpyswMFAhISEqXLiwwsLCVLFiRVWqVEmVK1dWgwYN1LRpU9WuXVsBAQGefloec+jQIW3evFmHDx/WsWPHdPz4cZ0+fVrJyclKSUlRSkqKMjMzFRQUpODgYBUvXlylS5dWuXLl/ny/rVevnq677jpVqFDB00/Htvid6X70oFc2b948w7V9+vQxMQnywnuCe/F+4DtatGjh8jZWXBEeyEtaWpp+//13bd++XUePHtWRI0d07NgxxcfH//menZGRoZCQEBUpUkRFixbVNddco+rVq6t69epq0qSJ2rVrx9+CfADHZZzj5yF3HAsxF/3e1XN1uCgqKsqkJFdvyZIl+uKLLwzXT548WbVq1crXWnm9bvv378/XPl2R13BRvXr1TF/fW/n5+al379764IMPnNY6HA598cUXeuaZZyxIBpiD4SIAAABYrmTJki5v4+pJ7FY5c+aMFixYoB9++EGbNm1SSkqK020SEhKUkJAgSTp8+LBWr179j8dr166trl27avDgwWrfvr38/PxMye6tTpw4oc8++0w//PCDNm/eLIfDkWttVlaW0tLSdOnSJR0/flzr1q3787HAwEB169ZNgwYN0oABA1S0aFEr4psiOztbixcv1ieffKKVK1cqKSkp19qsrCylpqbq/PnzkqQtW7b8+VhAQIDatm2r3r1768477+REL+RLo0aN9Nxzz2nixIkub/vuu+8yXPT/Tp8+rUWLFmnJkiVav3694uPjDW33x938Ll686LQ2KChITZo0UevWrf/8qlq16lUmhxH0B+73+++/a+HChfr555+1c+dOp/XZ2dk6deqUTp06pfXr10uSihcvrqFDh5qcFO7Gz5N70WujIDh+/LjWrl2rdevWacOGDdq3b5/hYwYZGRnKyMhQfHy8zp07p8OHD/+rpkiRIurUqZNuvvlm9ezZM88rhhYEZ86c0XfffaelS5dq48aNhvpM6b8neaWlpSk+Pj7Xk3ArVqyojh07qlOnTurRowe9qMn4nel+9KB5i4qK0o4dOwzVFi9eXJ07dzY1D/6J9wT34v3AN1177bUKCAhQdna24W0SExNNTARc2a5du7RgwQKtXLlS27ZtM/T55o8T3M+fP68jR47ot99++/MxPz8/1a1bV71799aQIUPUqFEjM+PDBRyXcY6fhyvjWIj56Pfcq27dui71Yd5656KEhASNGjXKcH2HDh308MMP53u9vIaLNm/enO/9GpGRkaF9+/Zd8bHSpUurTJkypq7v7fr27WtouEiSvvzyS4aL4NscAAAA8DmdOnVySDL8dc8993g68j+sWLHCpfySHAkJCZ6O/aecnBzH999/7+jSpYvD39/f5efiylelSpUczz77rOPChQueftr/cM8997j9+2/Xrl2Ou+66yxEYGOj21zE8PNzxwgsvOC5fvmzq6+JuaWlpjilTpjgqV67s9tckODjYcd999zn279/vNEdkZKRL+7YzX39/NiorK8sRERHh8vddYGCg4+TJk6Zk8oXv06ysLMd3333n6Natm8PPz8/U3x+5fV1zzTWOBx980LF69WpHdnZ2vp+LK78HPP1lFfoD9/cH6enpjk8//dTRsmVLt7xuc+bMyVdWT3/lly+8L+bG7j9P9NoFm136RXdKS0tz/Pjjj44HH3wwXz3o1X517tzZsWDBAkdGRoanXwq3SU1NdXz44YeONm3aWNqXNmzY0PH88887Dh8+nK/cdvj97Sq7/850OHyrBy1oXnjhBcOvw6BBg0zPc/ToUY//7Hv6+8Hu7wm8H+BKSpYs6dJ/p1dffdXTkQskfl7+7fLly45XXnnFUbduXdN//9SvX9/x8ccfF6jPNGbiuIz1+Hn4N46FXBn9nm9x5Xu3TZs2no57RcOHDzf8HIoUKZLvY15/l9vr5u/v74iPj3fDs7qyrVu35vrcOnXqZNq6viI9Pd0RFhZm+Pth586dno4M5Ju/AAAAAIulpaW5VB8QEKCwsDCT0rhm4cKFaty4sfr27avIyEjl5OSYut6pU6c0adIkXXvttXr88cd14cIFU9fzhLi4OI0YMUKNGzfWvHnzlJWV5fY1Ll26pBdeeEF16tTRwoUL3b5/M3zzzTeqW7eunnjiCZ08edLt+09PT9fHH3+s+vXra9y4cYauXgr8ISAgQM8//7zL22VlZen99983IZH3++6779SgQQPdeuutWrFiRZ5XJDTT6dOnNX36dHXq1EmVKlXSQw89pOPHj3skS0FCf+B+v/zyixo2bKi7777b9Kuxwbvw8+Re9NrwVenp6fr22281ZMgQlSlTRj179tT06dN18OBBy7OsWrVKAwcOVK1atfTZZ595rI9zh4sXL+r5559XlSpVNGLECG3YsMHS57N792795z//Uc2aNdWhQwfNnz9fmZmZlq1f0PA70/3oQV3jyu/9G264wcQkkHhPcDfeDwqO0NBQl+rN+MwE/F1MTIzGjx+vKlWq6Omnn9b+/ftNX3Pv3r267777VKNGDX344Yc+/ZnG13BcJm/8PPwTx0KsRb9nvvr16xuujYqKMjFJ/kRGRmrWrFmG61999VXVqFHjqtdt167dFf89JydHW7Zsuer95yavn4MWLVqYtq6vCAoKUqdOnQzXL1iwwMQ0gLkYLgIAAIDl4uLiXKovXry4OUFccOTIEd1www0aOHCgdu/ebfn6ycnJeuONN1S3bl3NmzfP8vXNsmjRItWrV08fffSRJQclz507p4EDB+ruu+9Wenq66evlR2JiooYMGaIBAwbo6NGjpq+Xk5OjN998U40aNfrzlu2AEYMHD1a9evVc3m7u3LkmpPFep0+fVo8ePdSvXz8dOHDA03H+4ezZs5o+fbo2bNjg6Sg+i/7A/eLi4jRo0CB1797dI380hefw8+R+9NrwRVFRURo1apQqVKig/v3768svv1RiYqKnY0mSjh8/rrvuukvNmzf3yPvU1cjOztb06dNVq1Ytvfjii4qNjfV0JK1du1a33367Syea4L/4nel+9KCui46O1t69ew3Xd+nSxcQ09sZ7gnvxflDwJCUluVTv6jASYFR2drbefvttRUREaMqUKR75nHPy5EmNHDlS7du3d+n3OPKH4zK54+fhnzgWYi36Pes0aNDAcO2lS5e84njVH1JSUjR8+HDD79+dO3fWgw8+6Ja1O3bsmOtjK1eudMsaV7Js2bJcH3NlqKYgc+XYxqJFi0xMApiL4SIAAABYztWBiQoVKpiUxJiZM2eqQYMGWrFihUdzSNKFCxd0991366abbtLFixc9HeeqvPjii7r11lt19uxZy9eeN2+eunTposuXL1u+dl727Nmjpk2b6ssvv7R87ejoaF1//fVcQQWG+fv7a9y4cS5vd/r0aW3bts2ERN5nxYoVatiwoZYvX+7pKDAB/YH7HTx4UK1ateJ3kQ3x8+R+9NrwVQsXLtQHH3zg1d8/27ZtU8uWLTV9+nRPRzFk+/btuu666/TQQw955et6/vx5T0fwKfzOdD960Pxx5SSZKlWqqHr16iamsS/eE9yL94OCJycnRwkJCS5tExYWZlIa2NmuXbvUokULPfroo14xMLB+/Xo1bdpUH3zwgaejFFgcl8kdPw//xrEQ69DvWcuV4SJJXnWRxokTJyo6OtpQbdGiRTV79mz5+fm5Ze0ePXrkuq9vvvnGLWv8r8zMTP36669XfMzf31/t27c3ZV1f48pw0Z49eyy5mDBgBoaLAAAAYDlXb9XbvHlzk5LkLTMzU6NGjdLo0aOVmprqkQy5WbZsmVq2bKk9e/Z4OorLMjIydPvtt+v555/36C3UN2zYoJtvvlnJyckey/B3GzduVMeOHXX48GGPZUhPT9fgwYM1bdo0j2WAbxk4cGC+rua5ePFiE9J4l7lz5+qmm27y6j8GIX/oD8yxZs0atWrViisF2gw/T+5Hrw1YIy0tTQ899JBGjx6tnJwcT8fJ1Xvvvac2bdr43HsZ/o3fmeagB80/Vz7Xd+7c2bwgNsV7gvvxflAwHTlyxOVezdMXu0PBM2/ePLVu3Vrbt2/3dJR/yMjI0KhRozRixAhlZGR4Ok6BwXGZvPHz4Nt85VhIbuj3rOfqcFFUVJRJSVyzceNGl86XeP3111WtWjW3rV++fPlcz5GKiooy5S5iP/zwQ64Dn82bN1eJEiXcvqYvaty4sUqWLGm4/ocffjAxDWAehosAAABgqaysLP32228ubdOyZUuT0uQuJSVFN954o1dftevIkSNq06ZNrlcQ8UbZ2dkaMmSI5s+f7+kokv57YGjgwIEePcAvSatWrVK3bt28YgjB4XDokUce0bx58zwdBT6gaNGiGjBggMvbFfThom+++Ub33nuvsrKyPB0FbkZ/YI6dO3eqd+/eiouL83QUWIifJ/ej1wasN3PmTN1+++3Kzs72dJR/yMzM1B133KExY8YoPT3d03FwlfidaQ560PxLTk7WunXrDNczXORevCe4H+8HBVd+7p5eq1YtE5LAjnJycjR27FjdfffdXjcI+ncfffSRBgwYwECFG3BcJnf8PBQs3nosJC/0e54RERGhoKAgw/XecOeijIwM3XfffYYH6Lp27apRo0a5PUf//v1zfezrr792+3p5fb4cPHiw29fzVf7+/urYsaPh+uXLl5uYBjAPw0UAAACw1LJly3Tp0iWXtrF6uCg1NVW9e/dWZGSkpevmR1JSknr37q01a9Z4OoohI0aMMO1Wzfn1008/aerUqR5bf8+ePerbt6/XXT3s/vvvd3kQEPZ05513urzNtm3bFBMTY0Iaz9u5c6fuuOMOn7xqG/JGf2COY8eO6aabblJCQoKno8BC/DyZg14b8IwFCxbo0Ucf9XSMP6WmpuqWW27RF1984ekocAN+Z5qDHvTqrF69WpmZmYbru3TpYmIae+E9wf14PyjY1q5d61J9oUKF3HrVedhXdna2hg4dqnfffdfTUQxZvHixbrvtNgYqrhLHZa6Mn4eCyduOheSFfs9zAgMDVbt2bcP13jBc9NJLL2nfvn2GasPCwvTxxx/Lz8/P7TnuuOMO+ftf+fT+2bNnu/UCl3v27NGKFSuu+Ji/vz/DRf/DlWMca9as4fcJfFKgpwMAAADAXl5//XWX6qtXr65mzZqZlObfsrOz1a9fP7ddVbFKlSqqW7euKleurLCwMAUFBSkxMVGXL19WVFSUDhw4oJSUlKtaIyUlRT179tTKlSs9cpcnoyZNmqTZs2e7tE2RIkUUERGh6tWrq2zZsgoNDVWhQoWUnJys2NhYHTlyRLt27VJaWtpVZXvmmWfUs2dP1fu/9u4zuoqq/fv4L70QOgkQ6cVQIogC0luQpiBFRYqCglgQRRFULIgNVFBEUVEREJSuKErvRXoTkCq99xIIqed54WO5/5Jk5pyZU3K+n7VY676da8++CGdmdvaZa+9KlVw6j1knT57UXXfdpUuXLrl8rrx586pixYoqX7688ubNq6ioKCUlJeny5cs6cOCAdu7cqVOnThk+X0pKitq3b6/t27e7nBtytnr16ik8PNzUdehwOLRu3Tq1adPGxszcLzk5WV26dLFkdfjQ0FCVLl1aJUqUUHR0tPLnz6/w8HCFhoYqPT1dycnJSkpK0rlz53T69GmdOHFCBw8eZLckmzA+sEdaWpruvfdenThxwlS78PBwlS9fXmXLllXhwoWVK1cuhYaGKjExUVeuXNHBgwe1Y8cOnT171qbM4QquJ3sw1gb+VLBgQRUvXlyFCxdWkSJFlCtXLoWHhyssLEwpKSlKTk7W2bNnderUKf3xxx86fPiwJf1+/PHHio+PV69evSw5n7OuXr2qFi1amH6RNisREREqXbq0ypQpoyJFiigyMlKRkZFKS0tTUlKSLl26pGPHjunYsWPav38/41EL8cy0B2NQ1y1atMhwbMmSJVWqVCn7kvEj3BOsx/0gZ3M4HJo5c6apNtWrV1dwMK9RwTXp6el68MEHNWnSJEvOFxERobi4OBUvXlxFixZVZGSkIiIidP36dV25ckWHDh3S3r17dfDgQZf6+emnn/TEE09ozJgxluTtb5iXuTGuB/fw97mQrDDe87zKlStr27ZthmJ3795tczZZ++233zR06FDD8cOGDVPJkiVtyaVYsWJKSEjQggUL/nPs6NGj+u677/TQQw9Z0teAAQMy3eWuWbNmKlq0qCX95BRmiouuXr2q1atXq2HDhjZmBFiP34oBAADgNpMmTTK9E0qPHj1sWekjMy+++KLmzp3rdPuAgAAlJCSoS5cuat68eba/aKelpWnVqlWaNWuWxo0bp3PnzjnVb2Jiojp06KCNGzcqJibGqXPYadmyZRo8eLCh2EqVKumBBx5Q8+bNVa1aNYWEhGQZn5KSolWrVmnSpEmaOHGikpKSTOeXmpqq5557zqV/e7MyMjLUqVMnlyZwY2Nj1aNHD919992qUaNGttfKrl27NHv2bI0ZM8bQijtnz55V79699dRTTzmdI3K+8PBw1a9f/4aTm1nZuHFjjisu+vjjj7Vjxw6n2oaHh+vOO+9Uy5YtVb9+fVWoUMH0ywypqak6cOCAtm7dqg0bNmjt2rVavXo1KyJZgPGBPd5++21t3LjRUGyZMmXUuXNntWjRQjVq1FBoaGi2bQ4cOKCffvpJU6ZM0erVq11NFxbherIeY234q9KlS6t27dqqXbu2qlatqooVK6pQoUKmznHlyhWtXbtWS5cu1ffff6+dO3c6nU/fvn3VpEkTlStXzulzuCIjI0OdO3d2ubAoMDBQDRo0UNu2bVWvXj3deuutCgoKMtQ2JSVFO3fu1Lp167RixQotXbpUR44ccSkff8Yz0x6MQV23dOlSw7G33XabfYn4Ge4J1uN+kLOtWbPG9DikUaNG9iQDv/Lcc8+5VEgRGBiohg0bqnXr1kpISFClSpUMzROfOHFCixcv1qRJkzRv3jyniv6//vpr3X777XryySedSd1vMS+TOa4H6zEXYg7jPc+Lj483HHvgwAGlpKQY+tlbLT09XY888ojhXXqbNWtme2Fdnz59Mv3+feDAgWrfvr2ioqJc6mP27NmaM2dOpsdffvlll86fE1WuXFlhYWGGFxtdsmQJxUXwPQ4AAAD4nIYNGzokGf7TrVs3T6fs2LlzpyN//vym8g4ODnYcP37cbTlOnz7dVH7/90+HDh0cu3btcrr/pKQkx6hRoxwFCxZ0OofGjRs70tLSLPyp3Fi3bt0M59SqVStHbGxstnEJCQmOxYsXu5TXiRMnHD169HD65zd//nyLfkLZGzp0qNN5xsbGOsaNG+dITU11uv/58+c7qlSpYqi/3r17m8rPn/ni/dkK7733nunP8V133WVpDkuWLPHo5/TKlSuOAgUKmP45FCxY0PHuu+86zp8/b3lODofDcfXqVcfs2bMdTzzxhCMmJuaGOUyaNMnyfseOHWv4Z1CyZEnL+7cS4wPjzIwPbrvtNkdISEi2cTVr1nT88ssvLue2dOlSx5o1awzH54TPsKfvizfC9WQMY+2czV/Hi0a9+eabmf4sgoKCHHfeeafjo48+cuzbt8+W/tevX+944IEHHEFBQU59zhs1auTIyMiwJbfs9O3b16V7bP78+R2vvfaa5fMwmzZtcgwaNMhRrly5G/abN29ey/rKCc/vv/DMNC4njUF9QWJioiM4ONjwz/y1117zdMo35Gv3C+4JxnA/wL898MADpj+nS5Ys8XTaOZbZf4uxY8d6OmWnfPnll07fJ6OiohwvvPCC48CBAy7nsX//fkfPnj0dgYGBpvMICQlxrF+/3vUfhg9jXsYaXA/GMRdiHOM93zNz5kxTn6ft27d7JE8z727kzZvXcfjwYdtzSk9Pz3Q+TZKjV69eLp3/5MmTmX53/NezCzdWrVo1w5+XZs2aeTpdwDT/fusLAADAR/nay0jbt293FCtWzPREVP/+/d2W48mTJx358uVzasKsaNGijgULFliWy7lz5xz333+/U7lIcgwZMsSyXDJjZuLOyM9v+vTpluY3c+ZMR2RkpOlcmjdvbmkemfntt98MTWbe6M8jjzziuHLliiV5pKWlOYYMGZLtZHFAQICpHP2Zr92frbJ06VKnrn0refoleme+KOvYsaNtRUU3kpaW5liwYIHjvvvu+597EMVFmWN8YI6V44M8efI4vvjiC9tzzkxO+Ax7+r74f3E9GcdYO2fz1/GiUTd6oaZq1aqODz/80HHy5Em35bF161ZHvXr1nLrupk6d6rY8//Ldd985fZ8IDg529O/f33H58mXb81y+fLnjwQcf/J+xKMVF/8Uz05ycNAb1BWbHmFaPQ6ziS/cL7gnGcT/AXw4fPmyqEFKSo1ixYo709HRPp55jmb0GfbG4aO3atY7Q0FCn7jk9e/Z0nDp1ypacKlWqZDqfqlWrurS4na9jXsZ1XA/mMBdiHOM937Nv3z5T/y4zZsxwe467d+92hIeHG85xzJgxbsvtm2++yTKX0aNHO3Xea9euORo1apTpeQMDAx1r1661+G+Tc5i5F+XNm5ffM+BzAgUAAADYxOFw6Ouvv1bt2rV19OhRU23Lli1reAt5Kzz77LO6ePGi6XZ16tTR5s2b1bRpU8tyKVCggKZMmaIPPvhAAQEBptu/8cYbOnDggGX52Kl+/fravHmzOnToYOl577nnHs2fP18RERGm2s2fP9+lrd+N6tu3r+Ettf8SGBio0aNHa8yYMS5vb/2XoKAgvfjii1q4cKHy5s2baZzD4bCkP+Rct9xyi+k2J06c0OnTp23IxjPGjx9vKv6FF17Q5MmTlT9/fpsy+q+goCA1bdpUU6dO1ZEjR/Tyyy8rX758buvfFzE+8Iybb75ZGzdu1KOPPurpVGAhrif389exNnKGwMBAtW3bVkuWLNGWLVvUt29fFS5c2G39V6lSRcuWLdPrr79u+j7x5ptvuvV3qBMnTuipp55yqm1cXJzWr1+v9957T7lz57Y4s/+qX7++vvnmGx04cEADBgxQrly5bO/TF/HM9AzGoMasWbPGVHyVKlVsysR/cE9wP+4Hvu/VV19VWlqaqTadOnVSYCCvUME5ycnJ6t69u1JSUky1i46O1pw5c/Tll18qJibG8rxq1qyptWvXql27dqbabd26Ve+//77l+fgbf52X4XpwHnMh7sN4z33KlCmjyMhIw/G7du2yMZv/cjgc6tmzp65fv24ovmXLlnrkkUdszuofXbt21a233prp8SeeeEKff/65qXMmJSWpTZs2Wrp0aaYxzz//vGrWrGnqvP7EzFzHpUuX9Pvvv9uYDWA9fjMGAACA5dLS0vTDDz+oRo0a6tGjh65cuWKqfUhIiMaMGWN6UtRZCxcu1KRJk0y3a9SokebPn2/bpN6zzz6rMWPGmP5CKykpSb1797YlJyu1bt1aCxcutO3nV7duXY0dO9ZUG4fDoW+//daWfP4yc+ZMLV682FSboKAgffPNN+rVq5ctOTVq1EgLFiygyABOK1CggGJjY023O3TokA3ZuN/ly5e1evVqw/Ft27bV0KFDbcwoe4ULF9Zbb72lQ4cOqX79+h7NxVsxPvCMqlWravXq1SpXrpynU4GFuJ7cz1/H2vB9gYGB6tChg3777Tf98MMPatSokUdzGTRokMaNG6egoCDD7bZt26Yff/zRxsz+V8+ePXX+/HnT7Vq2bKm1a9dm+YKCXW666Sa9++672r9/v5555hm39+/NeGZ6BmNQ4zZt2mQ4NjIyUmXLlrUxm5yPe4L7cT/wfRs3btQ333xjqk1wcLCeeOIJmzKCPxg8eLDpoo0KFSpo7dq1atGihU1Z/SkqKkrTp09X165dTbV75513dPbsWZuyyvn8eV6G68E85kLci/GeewUEBKhixYqG43fv3m1jNv/16aefasWKFYZi8+XLpy+//NLmjP5XQECARo8erZCQkBsez8jI0BNPPKGuXbvqzJkz2Z5vxYoVqlatmhYuXJhpTOXKlfXGG284nbM/MLuQipm5FMAbUFwEAAAASxw/flzff/+9Hn/8cRUvXlzt27fXxo0bTZ8nODhYU6dOVcOGDW3I8sYGDhxous0tt9yiWbNm2b7K7sMPP6z33nvPdLs5c+Zo5cqVNmRkjYSEBE2fPl2hoaG29tOxY0d17tzZVJvp06fblM2fE/cvvvii6XbvvvuuunTpYkNG/6hRo4ZmzJih4OBgW/tBzuXM7kVmd7XzVqtWrVJ6erqh2NDQUH3yySc2Z2Rcnjx5dNNNN3k6Da/E+MD9SpUqpblz56pAgQKeTgUW43pyL38dayNn6Nevn6ZPn67KlSt7OpW/PfTQQxoxYoSpNu560eDnn3/W7NmzTbdr27atfvrppyx3sHWHmJgYt+5a7Qt4ZrofY1Bztm7daji2cuXK7ALiIu4J7sX9wPdlZGSoT58+pndO6Ny5s0qXLm1TVsjpdu7caXpXk7i4OC1btsxtn7vAwECNHz9erVq1MtwmMTFRw4YNszGrnMuf52W4HpzDXIj7MN7zjPj4eMOx7ty56NChQ6be3RgxYoRHvlOtWbOm3nzzzSxjvv32W5UsWVKPPfaYfvzxRx09elTJycm6ePGiduzYoa+++koJCQlq2LBhlgVcBQoU0PTp0xUWFmb1XyNHMVtcZGYuBfAGvDUGAADgBzZv3qxXXnnFknOlp6crJSVFiYmJOnPmjI4dO6Z9+/Y5tUru/xUWFqaJEyeqbdu2ridq0Lx587R+/XpTbfLnz6+ffvpJUVFRNmX1v/r166ctW7Zo4sSJptq9+eabmjdvnk1ZOa906dKaOnWq7ZPqfxk6dKi+//57w1tZ7969W7t371ZcXJzlufz000+mV9vp2LGj+vXrZ3kuN9KkSRO99957eu6559zSH3KWEiVKmG5z5MgRGzJxvx07dhiObd++PcU8PoDxgfuFhIRo2rRpKlKkiKdTgcW4ntzLn8faOdX48eM1fvx4T6fxt3vuuUczZ8607fze+sX1U089pV9//dXw7hHz5s3TqVOnbFulWvrz5VlnXjpPSEjQlClTWFjCC/HMdD/GoOZcu3ZN+/btMxzvzCIk+Af3BPfifpAzDB8+3NTu4pIUFBSkl156yaaM4A9ee+01paWlGY6Pjo7WggULFBMTY2NW/xUYGKjvvvtOt99+u/744w9DbUaNGqUBAwbwEr4J/j4vw/XgHOZC3IPxnueYKS5y585Fjz32mBITEw3Ftm7dWt26dbM5o8wNGDBAO3fuzHKeOCkpSV988YW++OILp/qIiIjQrFmzVKFCBWfT9BsxMTEqXLiwTp06ZSh+y5Yt9iYEWIxvDgAAAPzAb7/9pt9++83TaWSpRo0aGjdunCpVquTWft955x3TbUaMGKFSpUpZn0wWRo0apaVLl5ra5WP+/PnasGGDqlevbmNm5gQEBGj8+PFu/SKiePHi6tatm0aPHm24zfLly22ZWDe7qlVMTIw+/fRTy/PISt++ffX999977Qqi8F5FixY13San7Fxk5uWqFi1a2JgJrML4wP1ee+01r8sJ1uB6ch9/H2sDdhs5cqTmzJmjixcvZhubnp6uKVOm6Omnn7Ytn2+//Vbbtm0z1aZ48eKaPHmy2150gzk8M92PMag5u3btUkZGhuH4kiVL2phNzsc9wb24H/i+33//Xa+++qrpdr179+YFSjhty5YtmjFjhuH4wMBATZo0ScWLF7cxq8zlzZtXY8aMUePGjQ3t8JWYmKgJEybomWeecUN2vs/f52W4HnImb5sLcQXjPc8xU1x06dIlnTx50vYisHHjxhle8KBAgQKm7rN2CAgI0JgxY3T9+nVNmTLF8vOHh4dr6tSpqlOnjuXnzqlKlixpuLjo999/tzkbwFrsQw4AAACPuummmzRs2DCtXr3a7YVFu3fv1vLly021adasmR566CGbMspcnjx5nCoycXZVErv07NlT9evXd3u/jz/+uKl4OwprfvvtN9PnHT58uNtXhAsICNCXX37JKtYwzZ+Li86cOWM4tnLlyjZmAiswPnC/UqVKqX///p5OAzbgenIvfx5rA+5QqFAhUy8RLViwwMZs/vx90YyAgAB99913KlSokE0ZwRU8M92PMah5e/fuNRXPrr3O457gXtwPfF9SUpI6deqk5ORkU+1iYmI0ePBgm7KCP3j77bcNFSX85YknnlBCQoKNGWWvYcOG6ty5s+H4sWPH2phNzuLv8zJcDzmTt82FOIvxnmeZKS6S/lzYwk4nT57Uc889Zzh+5MiRTn0PbrWgoCBNmjRJgwYNUkBAgGXnLVy4sBYsWKC7777bsnP6AzNzHidPnjS8SxbgDSguAgAAgNuFhISoSZMmmjZtmg4ePKh+/fopKCjI7Xl88803puIDAgL03nvv2ZRN9lq3bq0GDRqYajN16lRdv37dpozMCQsL06BBgzzS96233qqyZcsajt+wYYPlORjdMv4v8fHxpia0rVShQgWPbusN3xQbG2u6zeXLl23IxP3MTAbmy5fPvkRgCcYH7jd48GCFhYV5Og3YgOvJffx9rA24y+OPP67AQGNfrS1btkxpaWm25LFmzRpt3brVVJsePXqoXr16tuQD1/HMdD/GoOaZLS4qVqyYTZnkfNwT3Iv7ge978skn9dtvv5lu9/777zNXB6edPn1aP/74o+H4QoUK6e2337YxI+MGDRpk+HvZrVu3avPmzTZn5Pv8fV6G6yFn85a5EFcw3vOsYsWKKW/evIbj7S4u6t27ty5cuGAotm3bturSpYut+ZgREBCg119/XfPnz7dk9817771XW7duZc7QCWbnPMzOqQCeRHERAAAA3CIoKEhdu3bVkiVLdOnSJS1atEj33nuvx3ZHcTgcmjhxoqk29957r6pWrWpTRsa89dZbpuIvXbpkajLXTg899JBHVyy96667DMfu27fP8onPyZMnm4p/5ZVXDE/U2uHVV1/1SNEffFeePHlMt0lKSrIhE/czc7+4cuWKjZnAVYwP3K9o0aJ64IEHPJ0GbMD15F7+PtYG3KVIkSJq2LChodgrV65o06ZNtuTx+eefm4qPiorS0KFDbckFruOZ6X6MQZ2zf/9+U/HsXOQc7gnuxf3A940ZM0bjxo0z3a5NmzYe2e0LOce4ceOUmppqOL5fv36mXqy2U/ny5dWqVSvD8T///LON2eQM/j4vw/WQs3nLXIizGO95h8qVKxuO3b17t215TJ8+Xd9//72h2IIFC5qeg3OXpk2batu2bRo1apRuueUWU20DAwN11113afny5Zo2bZoKFy5sU5Y5m9nn/h9//GFTJoD1KC4CAACAW6Snp2vixInq3Lmznn76aS1YsEDp6ekey2fz5s06fPiwqTZ9+vSxKRvj6tevr2rVqplqM3PmTHuSMalnz54e7b927dqGY1NSUky/MJGVjRs36uDBg4bjCxcurPbt21vWvzNKliypli1bejQH+Jbw8HDTbbxlhVpXRUREGI41++yBezE+cL9HHnlEoaGhnk4DNuB6ci9/HmsD7ta4cWPDsWZ3FzIiJSXF8EsQf3n88cdVsGBBy3OBNXhmuh9jUOccPXrUVDzFRc7hnuBe3A982+rVq9W7d2/T7QoVKqQvvvjChozgT77++mvDsVFRUU59Vu3Uo0cPw7Hz5s2zMZOcwd/nZbgecj5Pz4W4gvGed4iPjzcca9fORefPn9dTTz1lOP6TTz7x6sKb4ODgv3fw3Lhxo4YOHar27dsrLi5O0dHRCg0NVWhoqAoWLKhq1aqpa9euGj16tI4dO6aff/5Z9evX9/RfwaeZ3bno2LFjNmUCWI/iIgAAALjViRMn9NVXX6lZs2YqXbq0hgwZoosXL7o9jwULFpiKr1Spktf8cv3EE0+Yil+8eLEcDodN2RhTrlw51axZ06M5VK9e3VT8gQMHLOt74cKFpuK7d++ukJAQy/p3Vq9evTydAnyIM8VFOWXnIjMvav7yyy82ZgJXMT5wv/vvv9/TKcAmXE/u4+9jbcDdatSoYTh2+/btlve/bNkyU7thBgcH67nnnrM8D1iHZ6b7MQZ1jpkXYSIjI5U/f34bs8m5uCe4F/cD33Xw4EG1bdtWycnJptt+8cUXXv2iKLzf3r17Te2qcN999yl37tw2ZmTenXfeqbCwMEOxa9eu1eXLl23OyHf5+7wM14N/8PRciCsY73kHbygu6tu3r06dOmUo9t577/WpHa9uu+02vfDCC5oxY4Z27dql06dPKzk5WcnJyTp79qw2bdqkCRMmqFevXipSpIin080RzC6oQnERfAnFRQAAAPCYI0eOaODAgX8XGTnzJZCzzBZ7eNOkU4cOHRQcHGw4/vTp0/rtt99szCh7LVq08Gj/klS6dGlTBTtGJ5aMWLJkial4T+9a9JdmzZopKirK02nAR/hzcVGJEiUMx06bNk2nT5+2MRu4gvGBe5UuXVpVqlTxaA6wD9eT+/j7WBtwt7JlyxqOteOFmp9//tlUfLNmzVS0aFHL84B1eGa6F2NQ5504ccJwbGxsrI2Z5GzcE9yH+4Hvunz5slq3bu3UHFvfvn3Vrl07G7KCP5k9e7ap+M6dO9uUifMiIyMNF6empaVp48aNNmfku/x9XobrwT94ei7EWYz3vIeZ4qLDhw/r+vXrlvY/d+5cTZgwwVBsdHS0Pv30U0v7R85DcRFyMoqLAAAA4HEXL17UwIEDdeutt+rXX3+1vb/09HStWrXKVBtv+rKpQIECplejXLp0qT3JGGRmq3S7BAUFmSoAsOrl/7S0NK1cudJwfNGiRU2t/mSnsLAwr/hSBL4hNDTUdJuUlBQbMnG/ypUrG469ePGinnzySY+vzIv/Ynzgfg0bNvRo/7AP15N7+fNYG/CEmJgYw7GHDh2yvP958+aZiu/atavlOcA6PDPdjzGoc9LT03XhwgXD8d62Gr2v4J7gXtwPfFNaWpo6duzo1IvLderU0XvvvWdDVvA3c+bMMRybK1cuNWjQwMZsnGdmt5stW7bYl4iP8/d5Ga4H/+DpuRBnMd7zHma+S83IyNCePXss6/vKlSt67LHHDMePGjVK0dHRlvWPnMnsvMfZs2dtygSwHsVFAAAA8Bq7du1Sw4YNNXz4cFv72b17t6ndMmJiYrxuRRuzBR9bt261KRNjqlWr5tH+/2Jm4vPcuXOW9Llnzx5dvXrVcHzjxo0VEBBgSd9WSEhI8HQK8BHO7D7nzG5H3qhWrVqm4mfMmKGHH35Y6enpNmUEZzA+cL969ep5tH/Yh+vJvfx5rA14Qq5cuQzHnjx50tK+L1++bOrlisDAQLVs2dLSHGAtnpnuxxjUOZcuXTIVHxERYVMmORv3BPfifuB7HA6Hevbsqblz55puGx0dralTp5ra2QO4EYfDYWqhxAYNGji1MJc7mJlP8MdiCqP8eV6G68F/eHIuxBWM97xHTEyMqYKdXbt2Wdb3Cy+8oMOHDxuKvf/++3XfffdZ1jdyLrPzHmbnVQBPorgIAADAD3Tr1k0Oh8OyPxkZGUpKStLFixe1f/9+rV69WlOmTNHrr7+utm3bqlChQk7nmpaWpueff169evVSRkaGhT+Ff2zbts1UfJ06dWzJwxVmc/rtt99syiR7UVFRKl26tMf6/7eCBQsajrVqq22zKyjWrl3bkn6t4m35wHs5c83klOKiUqVKqVKlSqbajB8/XrVr19aaNWtsygpmMT5wP297CQ7W4XpyH38fa/sDq3+fd/XPzJkzPf0j8bjg4GDDsVevXtWVK1cs63vz5s2mdsC8/fbblS9fPsv6h/V4ZrofY1DnXLx40VR8Tvl93924J7gX9wPf079/f40fP950u8jISM2aNUs33XSTDVnB3+zdu9fUGN/MbijuVrJkScOxu3fvtjET3+Xv8zJcD/7Dk3MhrmC8513i4+MNx1p1nS1fvlyff/65odiYmBiNGjXKkn6R85ktLjI7rwJ4kvGnPgAAAPD/BQQEKDw8XOHh4cqbN69Kly79n10b1q9fr6lTp2rs2LFOrX705Zdf6vr16xo/frzlu7iY/ZLW7I4U7lCjRg2FhIQoNTXVUPyOHTuUnp6uoKAgmzP7r+LFi7u9z8yY+QXfmV1YbsRscVGNGjUs6dcq8fHxioiIMLVqKvyTM19G5aSVjDt16qRXX33VVJv169erdu3aSkhIUJ8+fdSqVStWT/UgxgfuV6FCBY/0C/txPbmPv4+1gX87ceKEduzYoX379mnv3r06cuSIzp49q7Nnz+rcuXO6fv26kpOTlZKSYvjatsKZM2eUO3duS861ceNGU/ENGza0pF/Yh2em+zEGdU5iYqKp+Jz0+747cU9wL+4HvuWdd97R8OHDTbcLCQnRjBkzdMcdd9iQFfzRpk2bTMXfdtttNmXiOjMFd8eOHbMxE9/l7/MyXA+e5w9zIa5gvOdd4uPjtWTJEkOxVuxclJSUpJ49expeqOfzzz93aSFl+JfQ0FAFBgYaXjTbW4ouASMoLgIAAIAtatSooRo1auiNN97Q6NGjNXjwYNMrMUyYMEFFixbVu+++a2lu+/btMxVvdjcKdwgLC1OZMmUMr9hy/fp1HTt2TCVKlLA5s/+KjY11e5+ZCQsLMxxr1cT6nj17TMV72yRnUFCQypcv7/GVheH9nLlmctLLRr169dJbb73l1M9h0aJFWrRokQoVKqT27durXbt2atSoESs9uxnjA/eKiYnxii8XYQ+uJ/fx97E2/NuBAwf0888/a/ny5Vq7dq2OHDni6ZRuyMqFGsy+WMEKvd6PZ6Z7MQZ1ntlnd076fd+duCe4D/cD3zJq1Ci9/PLLptsFBgZqwoQJatGihQ1ZwV9t3brVVHzZsmVtysR1efLkMRx78uRJZWRkKDAw0MaMfI+/z8twPbj/evDHuRBnMd7zPu7euei1117T3r17DcV27txZ7dq1c7lP+JeIiAhdvXrVUGxKSorN2QDWYcQPAAAAW0VERKhv377avXu3mjVrZrr9e++9p++//97SnI4fP24q3tuKPf4SFxdnKt7s39sqZiZj7WZmBcz09HRL+jTzc4+JiVHevHkt6ddKN998s6dTgA84f/686TY56WWjmJgY9e3b16VznD17Vl988YVatmypggULqmXLlho2bJjWr1+vtLQ0axJFphgfuFfhwoU90i/cg+vJffx9rA3/c/LkSQ0ZMkTx8fEqU6aMnn76aU2fPt1rX6aRnNvhMzNm/55mXtqAZ/DMdC/GoM4zu8p5Tvp93524J7gP9wPf8c0336hPnz5OtR09erQ6duxocUbwdwcOHDAV74mCaqPMPK/T0tJ0+vRpG7PxTf4+L8P14B7+PhfiLMZ73sedxUUbNmzQhx9+aCi2SJEi+vjjj13qD/7JzLOD4iL4EnYuAgAAgFvExMRozpw56t27tz7//HNTbXv27KnatWuraNGiluRi5svKgIAAlSpVypJ+rWZ2dSdPvbjh7y8TnDhxwnCst37WSpcu7ekU4APMfNb/ki9fPusT8aBXXnlF06dP1x9//OHyua5du6a5c+dq7ty5kqTIyEjVrFlTderUUe3atVWrVi0VKlTI5X7wD8YH7sUXezkb15P7+PtYG/5j165dGjx4sKZPn+5zRdeeLC4qX768ZX3DHjwz3YsxqPPM3nvZidc53BPch/uBb5gxY4YeeeQRORwO020/+OAD9ezZ04as4O+OHj1qKj4nzYFfuXJFRYoU8XQaXsXf52W4Huy9HpgLcQ3jPe9TuXJlw7GJiYk6evSoihUrZrqf1NRUPfLII4YLKUePHq0CBQqY7gcwMw4wu2gL4EnsXAQAAAC3CQwM1KeffqrOnTubanfhwgX169fPsjzMvACfL18+hYSEWNa3lWJiYkzFO/PivxW89efnLmZ+7mb/Td0lOjra0ynABzhzj3FmQtibRUVFacqUKYqMjLT83NeuXdPSpUv1zjvvqHXr1oqOjlaFChXUs2dPjR8/3vSXePgvxgfulTt3bo/0C/fgenIfb/3ZAVY5d+6cevToofj4eE2ePNnnXqaRzL+QnxUzY76oqChFRUVZ1jfswTPTvRiDOi8w0NxrBb54v/YG3BPch/uB95s9e7Y6derk1O4agwcP1rPPPmtDVoD5YoqcJCkpydMpeB1vfRa7C9eDPZgLsQbjPe+TN29eU98NO7t70TvvvKNt27YZin3wwQfVpk0bp/oBzBQMmdlhEPA0iosAAADgVgEBAfriiy8UFxdnqt2kSZO0bt06l/tPS0vTtWvXDMd7a7GHZH61nYsXL9qTCDKVlpamq1evGo731s+bt+YF7+LMiyDFixe3IRPPuv322zV9+nSFhYXZ3tfu3bs1ZswYde/eXcWLF1d8fLyef/55rVmzxqkVXf0Z4wP3c8c1As/gegJglR9//FGVK1fW119/7dRLpd7CqnGZw+HQpUuXDMdbtfsz7MMz0/0YgzrP7IuzZj7b+BP3BPfifuDdFi9erA4dOji1unf//v312muv2ZAV8CdPFUl7A4qL8H9xPViPuRDrMN7zTvHx8YZjd+3aZfr827dv1zvvvGMoNjY2ViNHjjTdB/AXM7/Dh4aG2pgJYC2KiwAAAOB2uXLl0kcffWS6ndFJgKyYnejLmzevy33axWxu3rD9uL8x+3nz1hWU8uTJ4+kU4AMOHjxouk1O27noLy1bttSCBQtUsGBBt/a7Y8cODR8+XLVr11bJkiX10ksvad++fW7NwVcxPnA/JtFzLq4nAFYYNGiQ2rZtq1OnTnk6Fa+Rk+6v+FNO+jf1lWcmY1Dnmf3Z8fKxedwT3Iv7gfdauXKl2rRp49Tn4oknntB7771nQ1bAn1JTU5WSkuLpNDyGeQ/8G9eD9dcDcyHWYrznnewsLkpPT1ePHj0M35u+/PJL5cuXz1QfwL+Z+T3e33c7hG+huAgAAAAe0bx5c9WuXdtUm59++kmHDx92qV+zE33evKKN2dyY9He/nPJ589a84F2Mbi//bzm1uEiS6tevr61btyohIcEj/R85ckRDhw7VzTffrObNm2vJkiUeycNX5JT7teQ744OAgACP9Av7cT0BcIXD4dDDDz+sN954w9OpeB2zL52Hh4fblAmswjPT/RiDOi8iIsJUPMVF5nFPcC/uB95p3bp1atWqla5evWq6bbdu3TRq1CgbsgL+4e/PN2/YiQTeg+vBuuuBuRB7MN7zTmaKi3bv3m3q3CNGjNC6desMxT788MNq1aqVqfMD/5aenm5qp9XIyEgbswGsRXERAAAAPKZPnz6m4h0Oh8aPH+9Sn8nJyabi+ZIWrsgpnzdvzQve49SpUzpz5ozpdqVKlbI+GS9y0003aeHChfruu+9UokQJj+TgcDg0f/58NWnSRA0bNtT69es9koe3yyn3a4nxATyP6wmAK5577jmNGzfO02l4JYqLch6emfAlZnei8feXTZ3BPQH+bvPmzWrevLmuXLliuu3999+vMWPG8BIxbMf9CvgH14N1mAuBP6lcubLhWDM7F+3bt0+vvvqqodhixYrpww8/NHxu4EZy0u7DwP8V7OkEAAAA4L/uvvtuhYaGmtoy/ccffzQ8KQD4Gm9d9c1b84L3cGbXolKlSil//vw2ZON9OnXqpA4dOmj8+PH64IMPTE2GW2n58uW644479Pjjj+v9999Xrly5PJIHAADAjXz11VcaMWKEJefKnz+/qlatqjJlyqhs2bIqWrSoChcurJiYGOXOnVtRUVGKiopSSEiIgoODFRISYuplVE+8uMrLsgA8KV++fKbiKS4CYMa2bdt055136uLFi6bbtm7dWhMnTlRQUJD1iQH/h9lCUCAn43qwBnMh8DeVKlVSYGCgMjIyso09evSorl69mu33mQ6HQz179jT8e+hXX31FoQdcZnbew+y8CuBJFBcBAADAY3Lnzq3atWtr2bJlhtts3rxZZ8+eVaFChZzq0+zKvWYKn9zN7KQtqxa7n9lVOr3188YXBMjO2rVrTbe5/fbbbcjEe4WGhurRRx/Vo48+qiVLlmj8+PGaOXOmLl265NY8HA6HPvvsMy1atEg//fST4uLi3Nq/t2J8AFiH6wmAM/744w89++yzTrfPly+f7r77bt15551q0KBBjtwhMyIiwlQ8q0h7P56Z8CUREREKDw83fG+5du2azRnlPNwT4K927dqlpk2b6ty5c6bbNmvWTNOmTVNISIgNmQH/xWcN+AfXg+uYC4E/ioyMVOnSpfXHH39kG+twOLRnzx5Vq1Yty7jRo0cbfueoZ8+eat68uaFYICtmi4v8ZdFV5AyBnk4AAAAA/q169eqm4jMyMrRu3Tqn+zP7RaU3F1XwJa33yymfN2/NC95jwYIFptv4W3HRvzVu3Fjjxo3T6dOnNWfOHD399NOqUKGCW3PYs2ePatWq5dIzNSfJKfdrifEBPI/rCYAznn76aSUmJppuV6VKFU2aNEknT57UhAkT9NBDD9n+Mo2ndnY1e4+huMj78cyErylSpIjh2NOnT9uYSc7EPQH+aN++fWrSpIlT94yGDRtq5syZphf4AlwRGRnp6RQAr8H14DrmQuCv4uPjDcfu2rUry+NHjx7VgAEDDJ2rRIkS+uCDDwz3jZwhLS1NCxYs0NNPP63Nmzdbdt5Tp06Zii9atKhlfQN2Y+ciAAAAeFTlypVNt9myZYtatWrlVH9mv6i8fPmyU/24g9ndLsyucgzXmf2Ze+vnzVvzgne4evWqVq9ebbrdbbfdZkM2viU0NFQtWrRQixYtJElnz57VqlWrtGLFCq1YsUKbNm1SWlqabf1fvHhRLVq00KpVq1SxYkXb+vEFjA8A63A9ATDr119/1ezZs021yZUrl4YNG6bHHntMAQEBNmV2Y54q2jF7f3X3Dpkwj2cmfE1sbKwOHjxoKPbcuXO6fv06RSMmcE+Avzlw4IAaN26sEydOmG5bu3Zt/fzzz3x24HbOfOZSU1MVHMzrech5uB5cw1wI/Fl8fLx+/PFHQ7HZFRc99thjunLliqFzjRkzRrlz5zYU64tOnTqltWvXatu2bfr999915MgRHTt2TBcuXFBSUpJSU1MVGRmpPHnyKE+ePCpbtqwqVqyoSpUqqVGjRjlq97OkpCTNnz9f33//vWbNmqULFy5Ikpo0aZLtTlhGHT161FR8bGysJf0C7sBoDQAAAB5VrFgx02327dvndH/BwcHKlSuXrl69aije7GoT7mR2Nb+8efPalAkyExwcrKioKMOrTp05c8bmjJzjrXnBOyxdulQpKSmm2gQFBalmzZo2ZeS7ChUqpHvuuUf33HOPpH8Kt1auXKlff/1Va9eutfzloQsXLqhDhw5av369cuXKZem5fQnjA8A6XE8AzHr33XdNxUdHR2vOnDke2wkzKSnJI/0GBgYqf/78f38Znh1nXtSFe/HMhK+56aabTMUfO3ZMZcuWtSmbnId7AvzJ4cOH1aRJE9Mv5El/Llg0Z84cRUVF2ZAZkLWQkBCFhoaamg+/fv06n1fkSFwPrmEuBP7MzALEu3fvzvTYxIkTDRfpPfbYY2ratKnhfn1BRkaGVqxYoRkzZmjBggXZFmJJ0pUrV3TlyhUdO3ZMO3fu1M8///z3sbi4OLVq1Uo9evRwapFob9G9e3dNnz79P79bBwQEqEGDBpb1c+zYMVPxZudUAE8K9HQCAAAA8G/R0dGm2zjzhdO/mdlu9sKFC7buGuEKs1/SshKGZ5j5vJn9N3UXiouQlYkTJ5puU7duXeXPn9+GbHKWXLlyqWnTpnr99dc1f/58nT9/XmvXrtXQoUPVuHFjhYSEWNLPzp07NXjwYEvO5csYHwDW4XoCYNTp06dNrdQbGhqqH3/80WMv00ie3RHIzAItiYmJhhe6gOfwzIQvKVmypKl4sy/agHsC/MOxY8fUpEkTwzuh/Vt8fLzmz59PQRo8yuyLodeuXbMpE8DzuB6cw1wI/F18fLzh2MwKZk6fPq2+ffsaOkepUqU0bNgww316uwMHDuill15SbGysGjVqpI8//thQYVF2du/erQ8//FDx8fFq1KiRZs2aZUG27nXs2DGNHz/+hot23HLLLSpQoIClfZmRk3aGQs5HcREAAAA8ypkt08+ePetSn2a+rHQ4HE59yeUO+/fvNxXPl7SeUaRIEcOx3vpZO3DggKdTgJe6ePGiZs6cabpd69atrU/GD/y149MLL7ygxYsX69y5c5o0aZI6dOigsLAwl849YsQIHTp0yKJMfRPjA8A6XE8AjJo6daqpF6MHDhyo2rVr25hR9jz5snzx4sVNxbuy8zPcg2cmfEn58uVNxbu6QJQ/4p6AnO7kyZNq0qSJ/vjjD9Nt4+LitHDhQhUsWNCGzADjSpQoYSrem3eaA1zF9eAc5kLg7+Li4gwvoLh37145HI7//PennnpK586dy7Z9QECAvv766xyxa9qWLVt07733qmzZsho6dKit99Rly5apTZs2atmypU/NLy5btizTYw0bNrS0L7NzHuXKlbO0f8BOFBcBAADAo4KDg023cXXbbbOrKGW11bInmV19hC9pPcPMz/306dNeufKTt14D8LzJkyfr+vXrpttRXGSN3Llz64EHHtD06dN1/PhxDRs2zPQLp39JTU3ViBEjrE3QxzA+AKzD9QTAqMWLFxuOLViwoAYMGGBjNsZ48mV5s2O9bdu22ZQJrMIzE77EbHERLyCaxz0BOdnp06fVpEkT7dmzx3TbMmXKaNGiRSpcuLANmQHmmC2moNgWORnXg3OYC4G/Cw0NNfz75bVr13T48OH/+W8zZ87UtGnTDLV/8skn1bhxY9M5epMDBw7ovvvuU7Vq1TRjxowbFlvZZe7cuYqPj9fkyZPd1qcr3FlcZGbOIyIiwvTv+4AnUVwEAAAAj3KmUCg1NdWlPsuWLWsqfufOnS71Z4eUlBRTq/vxy6rnxMXFmYq3YstqK6Wnp/vUajRwn/T0dH3wwQem25UvX970dYHsFShQQP369dPevXv17rvvKjw83PQ5Jk6cqPT0dBuy8w2MDwDrcD0BMMLhcGjFihWG47t37+7U7sdW27Fjh8f6rlSpkqn43377zaZMYBWemfAlFSpUMBXPC4jmcU9ATnXu3Dk1bdrUqc9siRIltHjxYj4n8BpmV50/cOCATZkAnsf1YB5zIcCf4uPjDcf++/2Jixcv6sknnzTUrkyZMnr33XdN5+YtUlNTNWjQIFWsWFHTp0/3WB7Jycnq3Lmzhg8f7rEcjFq+fHmmxxo0aGBpX2bmPMqXL6+AgABL+wfsRHERAAAAPOry5cum20RGRrrUZ5UqVUzFr1mzxqX+7LBx40ZTRVaVK1dWYCDDf08wMzEmSevWrbMpE+ds27bN5d3CkDNNmDBBe/fuNd2uR48eNmSDv4SFhWnAgAFaunSp8uTJY6rt2bNnTX2pldMwPgCsw/UEwIjjx4/r7NmzhuO9ZffLLVu2eKzv22+/3VR8Vl+owzvwzIQvKVq0qAoWLGg43hsLX7wd9wTkRBcvXtSdd97p1I6KsbGxWrx4sUqWLGlDZoBzqlevbip+06ZNNmUCeB7Xg3nMhQB/qly5suHYf+/Y+txzz+nEiRPZtgkICNDYsWOVK1cup/LztD179qhOnTp64403lJyc7Ol05HA49Pzzz+urr77ydCqZOnXqVKYL+VaqVEnR0dGW9ZWcnGyqYLZq1aqW9Q24A7M0AAAA8ChnVrB0dQLglltuMRW/atUql/qzg9mc+GXVc8xMjEnS6tWrbcrEOd6WD7xDamqq3nzzTdPtwsPD1bNnTxsywv91xx136JdffjH9go4/FxcxPgCsw/UEwAgzuxoEBgbqjjvusDEbYxwOh9auXeux/m+99VZT47uNGzfq0qVLNmYEV/HMhK8x8+/H7mnmcU9ATnP58mU1b95cmzdvNt02JiZGixYtMr2jF2C3mjVrmorfsGGDTZkAnsf1YB5zIcCfnNm5aMGCBRo7dqyhNn369LF8pxp3+fzzz1WtWjVT98zAwEBVr15d/fr105dffqkVK1bowIEDOnv2rFJSUpSSkqJLly7pjz/+0MqVK/XVV1+pT58+qlKliqkddfr06eO1xYZZLbLUsGFDS/v6/ffflZaWZjie33vhayguAgAAgEft37/fdJt8+fK51Gf58uVN7X508uRJbd++3aU+rTZ//nxT8bfeeqs9iSBbN998s6KiogzHL1myRA6Hw8aMzFm0aJGnU4AXevvtt526f3fq1MnUKsdwTb169fToo4+aarNx40ZL+vbFrd0ZH+DffPEz7E24ngAYcfDgQcOxJUqUUHh4uH3JGLRp0yadOXPGY/3nypXL1AIW6enpmjNnjo0ZeRdffH7zzISvMfNCzKlTpzx6z/RF3BOQkyQmJqply5Zat26d6bYFCxbUwoULVaFCBRsyA1xTqFAhlSlTxnD8tm3bdPr0aRszAjyH68E85kKAP5ktLkpMTDT8nWf58uU1ZMgQZ1PzmKSkJLVr105PPPGErl27lm18QECAGjdurIkTJ+rMmTNav369hg0bpp49e6pevXoqVaqUChYsqJCQEIWEhChPnjwqU6aM6tatqx49emjkyJHaunWrDh8+rLfffluFCxfOts/r16+rc+fOSk9Pt+KvbKlly5ZleqxRo0aW9mV2MRV+74WvobgIAAAAHuXMCkVmJilvJCgoSPXr1zfVZubMmS71aaWLFy9q6dKlptpY/csyjAsODla9evUMx588edKpL1ztkJycrHnz5nk6DXiZTZs26e2333aqbZ8+fSzOBtkZMGCAqXgzW7hnJSgoyHCsmZWd7MT4AP/mi59hb8L1BMAIMzvqFCpUyMZMjPv55589nYJatmxpKn7ixIk2ZeJ9fPH5zTMTvsbs6vRbt261KZOciXsCcopr167p7rvv1q+//mq6bb58+TR//nzTO3kB7nTnnXcajs3IyNCsWbNszAbwLK4Hc5gLAf5Urlw5w8Vzu3fv1ksvvaRDhw5lGxsYGKixY8eaWrTBG1y4cEFNmzY19PtdUFCQevTooT179mjx4sXq0qWLChQo4HTfxYoV08CBA7Vv3z699NJL2c6v7dy5U99++63T/dklq+Iiq3exMlNcFBAQoOrVq1vaP2A3iosAAADgMQ6HQ6tWrTLdrly5ci733bRpU1Px06dPd7lPq/zwww9KTU01HF+kSBFTK7/Aeo0bNzYV//3339uUiTnz589XYmKip9OAF0lMTNRDDz3k1It4bdu2VbVq1WzIClkpU6aMqdXtjx8/bkm/YWFhhmPNPNPsxvgAf/HVz7A34XoCkB0jK3D+xRtW6nU4HPrmm288nYbuuusuU/Hz5s3TyZMnbcrGu/jq85tnJnxJ7dq1TcWbXc0X3BPg+5KTk9W2bdssX+7LTO7cuTVnzhzddtttNmQGWKdt27am4idNmmRPIoAX4Howh7kQ4E+BgYGqWLGiodjjx4/r008/NRTbt29f1a1b15XU3O748eNq0KCBocL8Nm3aaMeOHfrqq68seW/q36KiovTOO+9o0aJFiomJyTL2jTfeUEZGhqX9u+LcuXPasWPHDY/FxcWpSJEilvZnZq6jUqVKyps3r6X9A3ajuAgAAAAes27dOqdecLFixTozqyhJf66yuXr1apf7tYLRiZO/JCQk2JQJjDL7bzB+/HiveNHpiy++8HQK8CJpaWm67777Mp2Yy0poaKiGDRtmQ1YwomrVqoZjrSooNPNi5+XLly3p0wqMD/AXX/0MexOuJwDZSUlJMRx78eJF+xIxaNGiRdq/f7+n01CdOnWUP39+w/FpaWn68MMPbczIe/jq85tnJnxJyZIlddNNNxmOp7jIPO4J8GUpKSnq0KGDFixYYLptZGSkfvnlF9WqVcuGzABrNWnSRHny5DEcv2jRIu3atcvGjADP4Xowh7kQ4B9mFhowUshy880366233nIlJbfbt2+f6tSpo+3bt2cZV6BAAU2cOFE//vij4uLibM2pYcOGWr58uYoXL55pTFJSkgIDvaf8YMWKFXI4HDc81rBhQ8v7MzPXUadOHcv7B+zmPVc3AAAA/M5XX31luk1ISIglv3xVrVpVZcqUMdXmk08+cblfV61Zs0YbNmww1aZdu3Y2ZQOjbr/9dpUqVcpw/KlTpzy+e9HBgwc1Z84cj+YA7+FwOPTYY49p7ty5TrXv27evypYta3FWMKpw4cKGY60qbMyXL5/h2OvXryspKcmSfl3F+AB/8dXPsDfhegKQHTMr8J46dcrGTIzxlpcTgoOD1alTJ1NtPvvsM50/f96mjLyHrz6/eWbC19SrV89wLMVF5nFPgK9KS0vTAw88oF9++cV02/DwcM2aNUv169e3ITPAeqGhobr33ntNtXnvvfdsygbwLK4Hc5gLAf5RuXJly84VGBiocePGKSIiwrJz2u3cuXNq2bKlDh06lGXcHXfcoW3btqlLly5uyuzP3X4WLlyY6Y47jRs3dlsuRmS1a6rVxUWnTp3S6dOnDcebmUMBvAXFRQAAAPCIEydO6NtvvzXdrmbNmoqMjLQkh65du5qKnzx5sn7//XdL+nbWq6++aiq+QIECat26tU3ZwIyOHTuain/rrbc8upX0m2++qfT0dI/1D++RnJyszp076+uvv3aqfdGiRfXyyy9bnBXMMPNlVVRUlCV9xsTEmIo/evSoJf1agfEBJN/+DHsTricAWTEz7jh37pxlOyw6Y9GiRVl+Se1ujz32mKn4K1eu6KWXXrIpG+/hy89vnpnwJWZ2m/ntt9905coVG7PJmbgnwNekp6frwQcf1A8//GC6bVhYmGbOnKkmTZrYkBlgn6eeespU/Pjx47V161absgE8i+vBOOZCgH+Y2bkoO/369VPt2rUtO5/dUlJS1L59e+3bty/LuM6dO2vp0qWKjY11U2b/uPnmmzVx4sQbHvPn4qKVK1eaimfHXvgiiosAAADgES+88IJTK8SaXfkoKw8++KCp+IyMDI++jDN//nwtXLjQVJuOHTsqNDTUpoxgRufOnU3Fb9++Xd99951N2WRt165d+uabbzzSN7zLuXPn1LRpU02ePNmp9kFBQfruu++UJ08eizODGWZWT8psBSqzzOyWJEl79uyxpF8rMD6A5NufYW/C9QQgK2a+FM/IyNCCBQtszCZzycnJevLJJz3Sd2aqVKmiWrVqmWrz1VdfafXq1TZl5B18+fnNMxO+pGnTpoZj09PTtWLFChuzyZm4J8CXOBwO9ejRw6n5w5CQEE2bNk3Nmze3ITPAXtWqVTO1En1GRoYef/xxpaWl2ZgV4BlcD8YxFwL8w6rioooVK+rNN9+05Fzu8thjj2n58uVZxjz33HP69ttvTS0iabW7775bbdu2/c9/96biokuXLmVasFquXDnddNNNlva3dOlSw7EVKlSwvH/AHSguAgAAgNtNmzZNEyZMMN0uODjYdIFGVsqVK2d6lYiffvpJ06ZNsywHoxITE02vTCyZX80Y9qlSpYrpLY/79eun8+fP25TRjTkcDj366KN+OaGP//XDDz+ocuXKplff+bfBgwerUaNG1iUFp2zatMlwbNmyZS3pM3/+/MqfP7/h+I0bN1rSrxUYH0Dy7c+wN+F6ApCV0qVLm4r/+eefbcoka6+88opXFaH8ZcCAAabiMzIy1KlTJ7f/julOvvz85pkJX1K6dGlTvzsuWbLExmxyJu4J8CVPPPGExo8fb7pdcHCwJk2axA5W8Gn9+/c3Fb9mzRq99tprNmUDeBbXgzHMhQD/KFmypHLnzu3SOYKCgjR+/HiFhYVZlJX93n//fY0bNy7LmGeffVbDhw93T0LZePfddxUQEPD3/y9RooTKlCnjwYz+14oVK5SRkXHDY1bvWiSZm+MwszgL4E0oLgIAAIBbrVq1So888ohTbTt06KCYmBhL83n55ZdNt+ndu7eOHTtmaR7ZeeaZZ3Tw4EFTbe6++25VrVrVnoTglH79+pmKP336tHr37m1TNjc2YsQIl4pJ4PuOHDmiTp06qX379jp16pTT52nRooUGDhxoYWZwxv79+7V582bD8RUrVrSs77i4OMOxixYtsqxfKzA+gOTbn2FvwvUEIDNxcXGmdiyYPHmyjh8/bmNG//XDDz9o2LBhbu3TqHbt2qlmzZqm2hw6dEidOnVSamqqTVl5ni8/v3lmwpfcddddhmPNrOqLf3BPgC/o27evRo8ebbpdYGCgvvnmG3Xo0MGGrAD3adOmjenFtYYOHZrtC8WAL+J6MIa5EOB/Va5c2aX2AwYMUI0aNSzKxn47duzQK6+8kmXMo48+qg8++MBNGWXv5ptvVv369f/+/960a5EkLVu2LNNjVhcXnTlzRr///rvheDNzJ4A3obgIAAAAbvPTTz+pZcuWSkxMNN02MDBQgwYNsjynxo0bq3bt2qbanDlzRm3btlVSUpLl+dzIxx9/rK+//tp0O2e+gIa92rRpo5tvvtlUm8mTJ7tt8mjJkiWmV79GznHkyBE9+eSTKleunCZPnuzSuapXr65Jkyb9zypGOdWqVavUo0cP7du3z9Op3NDQoUNNxTdo0MCyvs28KLRixQrt37/fsr5dxfgAkm9/hr0J1xOAzISFhalatWqG469du+bW627lypXq2rWr2/pzxjvvvGO6zfz589WpU6ccu1utLz+/eWbCl7Rp08Zw7ObNm3Xp0iUbs8mZuCfA2w0cOFAfffSR6XYBAQEaM2aMOnXqZENWgPsNHz7c1Dy4w+FQz5499e2339qYlTVWrFihzz77zNNpwIdwPWSPuRDgf7lSXFS5cmW9/vrr1iVjs4yMDPXo0UMpKSmZxjRp0kSffvqpG7MypkuXLn//b28rLlq+fHmmx6wuLlq6dKkcDoeh2Ny5c6tJkyaW9g+4C8VFAAAAsN3Fixf11FNPqW3btrpy5YpT5+jWrZuluyn8m9kXryVpw4YN6tChg65fv25DRv/49ttv9eyzz5pud88996hWrVo2ZARXBAYGasiQIabbDRgwQJMmTbIho39s3LhRHTp0yLEvmOHG0tLS9PPPP+v+++9XuXLl9Nlnn2U5oWnEbbfdpvnz5ytfvnzWJOnlUlNT9fXXX6tChQp68MEHtWXLFk+n9Ld58+bpq6++MhwfFBSkZs2aWdZ/3bp1Dcc6HA6vK25kfABf/wx7E64nAJkx+wXrN998o+nTp9uUzT9Wrlypu+66S9euXbO9L1ckJCTo/vvvN91uxowZat++vdNzNFY5c+aM5S+B+Przm2cmfEXDhg0N/96fnp6e5cs+yBz3BHirt99+26l57oCAAH3++efq3r279UkBHnLbbbfpySefNNUmPT1dDz74oN58803DL6i6i8Ph0Lx589SoUSM1aNBAq1at8nRK8CFcD8YwFwL8Iz4+3ql2wcHBGj9+vKmdwDxtxIgRWrt2babHy5Ytq+nTpys4ONiNWRlTr169v/+3NxUXJSYmatOmTTc8VqpUKZUoUcLS/pYsWWI4tnnz5j71+QT+jeIiAAAA2ObkyZN6/fXXVa5cOY0aNcrpCcHY2FgNHz7c4uz+0aBBAz300EOm282ZM0etWrXS+fPnbchK+vTTT/XQQw8pPT3dVLtcuXLp448/tiUnuK59+/Zq1KiRqTZ/Tax/+eWXtuS0bNkyJSQk6MKFC7acH97l/Pnzmj59uh5//HHddNNNat26taZNm+ZyUZEk3XrrrVqwYIHy589vQaa+JT09XRMnTlS1atVUv359TZ06VampqR7LZ8WKFbr//vtNPXtbtWpl6b+d2XvdjBkz9PTTTys5OdmyHFzB+AC+/hn2JlxPADJz3333mYrPyMhQ165dtXjxYpsyksaNG6eEhARdvnzZtj6sNGrUKMXExJhuN2vWLN1xxx3atm2bDVll7eTJkxo4cKDKlCmjESNGWHpuX39+88yErwgODlbr1q0Nx5t5AQf/4J4AbzRixAi98sorTrX96KOP1KtXL4szAjzv/fffV6VKlUy1+++BFAAAK19JREFUcTgceu2119SsWTMdPnzYpsyMu3z5skaOHKkKFSqoRYsWWrZsmadTgo/iesgecyHAP5wtLnrxxRd1++23W5yNffbv369XX3010+NBQUGaOHGi137HXqFCBVWrVk2NGjWyvGAnKSlJs2bN0vPPP69mzZqpdOnSypcvn0JCQhQTE6P4+Hh169ZNEyZM+M+uyKtWrcp08Vyrdy2SzM1ttGvXzvL+AXehuAgAAACWSU5O1vr16zV8+HAlJCSoWLFiGjx4sM6dO+f0OQMDAzVmzBjbf4keNmyYChQoYLrdkiVLVK1aNa1cudKyXC5duqSuXbuqd+/eysjIMN3+jTfeUPHixS3LB9YbMWKEQkJCTLVJT09Xr1691LNnTyUmJlqSR3p6ut599101bdr0PxMx/xYQEGBJf3C/U6dOafHixRo5cqR69eql22+/XdHR0brvvvs0evRonT592rK+2rVrp2XLljl1L81pVq5cqY4dO6po0aJ66qmnslyFymppaWkaMWKE7rzzTtNfAvXp08fSXIoXL66aNWuaavPxxx+rQoUKev/997V3715L83EG4wP/lhM+w96E6wnAjVSrVk1VqlQx1SY5OVl33323Ro0aZWkup0+f1n333aeHH344y8J7b1s9tFChQho9erRTbXfu3Knbb79dAwcOtOz3zKysWbNGDz/8sEqWLKkhQ4bY0mdOeH7zzISv6Nixo+HYX375xcZMcjbuCfAmX3zxhVM7Vkl/vmxu9dwT4C0iIiI0adIkhYWFmW67cOFCVa5cWa+//rrbdxZNTU3VTz/9pAceeEBFihTRM888oz179rg1B+Q8XA/ZYy4E+IczxUVVqlTRa6+9ZkM29nn++eez3BXspZde8uodXgMDA7Vp0yZLFw5Zv369unbtqkKFCqlNmzYaPny4FixYoIMHD+rSpUtKS0vTmTNntGPHDn3zzTd66KGHVKJECb3wwgt/v4OWVfGn2QWIsrN//37t2rXLUGxkZKTuueceS/sH3ImnPgAAgB/YvHmz0yvJ3YjD4VBKSoquX7+u8+fP6/Tp0zp48KAOHDhgerXC7AwfPlwtWrSw9Jw3Eh0drXHjxumee+4xvcPS4cOH1aBBA3Xu3FmDBw9W2bJlncohOTlZ48aN06uvvqozZ844dY5mzZqpb9++TrWF+1StWlWDBw/WwIEDTbcdM2aM5syZoyFDhqhz585OT+YuXLhQ/fr102+//ZZt7JNPPmn5ZDX+5Or9OTk5WcnJybp+/bqSk5N16dIlnTx5UidOnNDJkyct2Y0oO0FBQRoyZIj69+9ve1++5ty5cxo1apRGjRqlEiVK6O6771br1q3VsGFDRUREWNpXenq6vv32W7355pvat2+f6fYNGzbUnXfeaWlOktSlSxetW7fOVJuDBw9qwIABGjBggAoVKqSKFSuqRIkSKlCggCIjI03f99566y1T8f/G+AC+/hn2JlxPADLz3HPPqXv37qbaJCUl6amnntLs2bM1ZMgQ0y/l/Nu5c+c0YsQIffTRR4ZeXho0aFCWK416Qtu2bfXyyy/r7bffNt02NTVVQ4YM0ejRo/X000/rscceU5EiRSzLbfv27Zo5c6a+/fZbw1/Au8rXn988M+ErmjVrpgIFChjaHWfPnj3atWuXKlSo4IbMchbuCfAm77zzjtNt+/fv7zPzh2avNUD680XncePGqXPnzqY/Q4mJiRo8eLA+/vhjPfzww3r00UcVFxdnS56nTp3S3LlzNXv2bM2fP18XL160pR/4N66H7DEXAvypSJEiKliwoOEFi0NCQjR+/HjTC7l60rp16/TDDz9kevzmm2/2uWIpV2zZskXPPfecU4VKly9f1nvvvacJEybo66+/zrK4yOqdi3788UfDsa1bt1auXLks7R9wKwcAAAB8TsOGDR2Scvyf559/3u0/25dfftmlnAMDAx2tWrVyTJgwwXHq1Kls+0tLS3OsXLnSMWDAAEd0dLRLfZcsWdJx9uxZN/yUHI5u3boZzqtbt25uyckIb8o7PT3d0aBBA5f+zW+66SbHoEGDHBs2bHBkZGRk2+fu3bsdH374oSM+Pt5wHx06dHAsWbLEVF7+zF/uz3/9KV26tGPp0qWe/rE7HA6Hxz6nZvuV5AgJCXHUqlXL8fzzzzsmT57s2LZtmyM5Odl030eOHHFMnTrV8eCDDzoKFizo9L9jcHCwY+vWrZb9TP7typUrjvz583v0c2oFxgfGeNNz1iq+/Bn21uc311P2fPVa8tW83c3seNEfflYpKSmOihUrunR9Nm7c2DFx4kTH4cOHDfV54sQJx6RJkxwdOnRwhIaGGu6ndu3ajrS0NFO5LVmyxN4f4P+XkZHh6NChg8vPncDAQEdCQoLj448/dmzevNmRlpZmOIeUlBTHtm3bHGPHjnU8/PDDjtKlS2fbX968eS3/Wfjy8/vfeGYaw/PHs3r16mX45//uu+96Ot2/jR071tTn2RtwT8ge9wP7lSxZ0u3PVE/8gfXM/huMHTvW0yk77cMPP7TkcxgfH+8YMGCAY86cOY6TJ086lcvx48cdS5YscXzyySeOBx980FGuXDnTeXTp0sXin5D389XniTfmzfWQOeZCnOONn3O4zsw7E4MGDfJ0uqa1aNEiy7/TrFmzPJ2iWyQmJjoef/xxR2BgoCXPBkmZnqt48eKW529mXn/mzJmW9w+4EzsXAQAAwCu9/fbbTu3q4qo33nhD27Zt008//eRU+4yMDM2ePVuzZ89WQECASpUqpYoVK6pYsWKKiopSaGioEhMTdeHCBe3Zs0c7d+5UYmKiy3nnyZNH33//vQoWLOjyueAegYGBmjRpku644w4dPXrUqXMcO3ZMgwcP1uDBg5UvXz5VqlRJ5cqVU758+RQZGanr16/r8uXLOnjwoH7//XedPHnS1PkLFSqkUaNGaefOnU7lh5wrPDxcL7zwgl588UWFh4d7Oh2fk5qaqjVr1mjNmjV//7fg4GAVK1ZMN910k2JjY1WgQAGFh4crPDxcDodDV69eVWJiohITE3XgwAHt2bPHkueHJL377rsurXCXlaioKA0YMEAvvfSSLed3F8YH/iunfIa9CdcTgP8rJCREH3/8sZo2ber0OZYsWfL3apfFixfXLbfcogIFCih//vzKlSuXkpKSdOXKFR06dEh79+7V4cOHTfeRJ08eTZgwQUFBQU7naaeAgABNmDBB58+fd2rlz79kZGRo0aJFWrRokSQpMjJSZcqUUZkyZVS4cGFFRkYqMjJSaWlpSkpK0qVLl3T8+HEdO3ZMf/zxh1JTU636Kzktpzy/eWbCF3Tv3l1ffPGFodgZM2ZowIABNmeUc3FPAADf0LdvX124cEFvvPGGS+fZvn27tm/frvfee0+SVLhwYZUsWVLFihVTdHS0IiIi/p47vn79+t/fB508eVKnTp3S0aNHdfnyZSv+SoDTuB4yx1wI8I/4+HgtX74827hq1arp5ZdfdkNG1tm+fbvmzp2b6fEmTZro7rvvdmNGnrF+/Xp16dJFe/futfS8GRkZN/zvVu9adPr0aa1cudJQbHR0tFq1amVp/4C7UVwEAAAAr5I7d259/vnn6ty5s0f6DwwM1NSpU9WmTRvNnz/fpXM5HA4dOHBABw4csCi7G4uKitKcOXN022232doPrBcbG6tffvlF9evXd3lS++LFi/r111/166+/WpJbaGiovv/+exUuXJjiIvyPtm3b6oMPPlDp0qU9nUqOkpaWpoMHD+rgwYNu7bdz58567rnnbO2jX79++u6777Rt2zZb+7ET4wP/lhM+w96E6wnAjSQkJOipp57SJ5984vK5jhw5oiNHjliQ1T/CwsI0c+ZMlS1b1tLzWi0iIkK//PKL2rdvn+WLC2Zcu3bt7xe5fElOeH7zzIQvqF27tipWrGho7mjdunU6cOAA8wlO4p4AAL5j8ODBio6O1jPPPJPpS69mnTp1SqdOndK6dessOR/gLlwPmWMuBPhTfHx8tjGhoaEaN26cQkJC3JCRdT788MMsj/v6wjhGfPfdd3rkkUeUnJzstj6tLi6aNm2a0tPTDcU+9NBDPvc5Bf6vQE8nAAAAAPzljjvu0ObNmz1WWPSXvybKXFkpyF1y586tX375RXXq1PF0KnBSlSpV9P333ysyMtLTqfyPMWPGqH79+p5OA14iNDRU3bt31/bt2/XDDz/wIlAO0b59e40fP972fkJCQvTDDz8oOjra9r7sxPjAf+WUz7A34XoCcCPDhw9XrVq1PJ3GfwQGBmrChAlq3Lixp1MxJCIiQj/++KPuv/9+T6fiUTnl+c0zE77gkUceMRw7efJkGzPJ+bgnAIDveOqppzRlyhSv++4H8ASuh8wxFwIYKy569dVXVaVKFTdkY53ExERNmTIl0+NVqlTxid/tXPHmm2+qS5cuWRYWhYSEqG3btho3bpx27Nihy5cvKyUlRcePH/97jjMw0Fypg9XFRWbmMszMkQDeiuIiAAAAeFzRokU1ZswY/frrr16z8k1ERITmzJmjJ5980tOpZKpcuXJas2aNGjRo4OlU4KKEhATNnz9fefPm9XQqCggI0EcffaSuXbt6OhV4gdjYWL300ks6ePCgxo4dq8qVK3s6JVikd+/emjJlioKD3bOpddmyZbVgwQIVK1bMLf3ZhfGB/8opn2FvwvUE4P8KDQ3V7Nmzdcstt3g6lb+FhYVp/Pjxuu+++zydiimhoaGaMmWKhg8f7rbxnjfKKc9vnpnwdt26dVNYWJihWIqLXMc9AQB8x7333qtNmzaxgxsgrofMMBcCZF9cdPvtt+vFF190UzbWmT59uq5evZrp8d69e7sxG/cbOHCgXnvttUyPBwcH66mnntKBAwf0ww8/qFu3bqpUqZJy586tkJAQFS1aVG3atNGUKVO0evVqFS9e3FC/sbGxKl++vFV/DR09elSrVq0yFFu3bl1VqlTJsr4BT6G4CAAAAB5TsmRJDRs2THv27NEjjzxierUJuwUHB2vUqFH68ssvlStXLk+n8z/uuusurVu3jl9Mc5C6detq+fLlKlOmjMdyCAsL05QpU/T00097LAd4XmxsrPr06aPly5fr6NGjeuedd1S0aFFPpwWL5M6dW19//bU++eQTt79oWrVqVa1fv15t27Z1a79WY3zgv3LKZ9ibcD0B+L/y58+vRYsWqXbt2p5ORdHR0Vq0aJFPL7zw3HPPaenSpSpXrpynU/GYnPL85pkJbxYdHa2OHTsaiv3tt9+0efNmmzPK+bgnAIDviIuL0+rVq/XCCy8oJCTE0+mY5us7gcK7cD3cGHMh8Hf58+fP9Lvo0NBQjRs3zicXz5k6dWqmx4KDg9WhQwc3ZuNeL7/8soYMGZLp8VtuuUUbN27Uxx9/rJtuuinb89WsWVO//vqroVirdy0aP368HA6Hodg+ffpY2jfgKd719iYAAAByvIiICLVv317Tp0/XH3/8oX79+ikqKsrTaWWpZ8+e2r59u5o1a+bpVBQdHa1vv/1WP//8s/Lnz+/pdGCxKlWqaNOmTR5ZCaps2bJavHgxq1D5oTx58qh58+Z6++23tWrVKh05ckQjR45U/fr1FRAQ4On0vF7BggV9pviqZcuW2r59ux5++GGP5VCkSBH98MMPmj9/vhISEjyWhxUYH/innPQZ9iZcTwD+LTo6WosXL1b37t09lkPTpk21fv161a1b12M5WKVu3bravn27Bg8erIiICE+n8x/uWJ05Jz2/eWbCW5l5gWbs2LE2ZuJfuCcAgG8IDQ3V0KFDtWPHDt1zzz2eTidbuXPn1qOPPqr169frww8/9HQ6yGG4Hm6MuRD4u8x2L3r99dez3dnIG129elWLFy/O9HiTJk1UsGBBN2bkPp999pneeeedTI8/+OCDWrdunapUqWLqvMWKFdOUKVOyfX/B6uKicePGGYqLjY1V+/btLe0b8BSKiwAAAGCrwMBAVa1aVU899ZSmT5+uM2fOaMaMGerQoYOCgoI8nZ5hpUqV0rx58zRt2jTTv+RaISoqSs8//7x27typzp07u71/uE/evHk1depUTZkyRSVLlrS9v8DAQD377LPatm2b6tSpY3t/8KyYmBg1aNBAvXr10siRI7Vx40adP39ec+fO1cCBA1WnTh2v20XO291yyy06duyYfv31Vw0YMECVK1f2dEr/UatWLS1atEizZ89WiRIlPJ2OJOnOO+/UwoULtWvXLr311luqWbOmT646xvjAf+WUz7A34XoC8G/h4eEaO3asZs6caWhFSqsUKVJE3377rRYsWOCW38fcJSwsTK+99pp27typJ5980uNFRmFhYbr//vu1fPlyrVixwm395pTnN89MeKPq1aurVq1ahmK/++47paSk2JyR/+CeAAC+o3z58po5c6ZWrlypdu3aedX3pBEREerQoYOmTp2qU6dO6YsvvlD16tU9nRZyMK6H/2IuBP7sRgVENWvW1IABAzyQjesWL16s5OTkTI+3atXKjdm4z9y5c7NcfGTgwIH65ptvFB4e7tT569atm20RppXFRcuXL9e+ffsMxT7++OM+uSsfcCO+N2MOAAAArxAUFKSwsDCFhYUpPDxcBQsWVOHChVW4cGGVKFFCcXFxqlixoipVqqTcuXN7Ol3L3HvvverQoYNmzZqljz76SEuXLlVGRoZt/RUvXlwPP/ywnn766Ry7cglu7P7771ebNm00cuRIjRw5UseOHbP0/KGhoerSpYv69++vihUrWnpu2C8kJOTve/C//+TJk0eFCxdWTEzM338KFy6sUqVKqWLFisqXL5+nU8+RAgICVLt2bdWuXVvvvvuujh07pnnz5mnRokVavny5jh496vaccuXKpXvvvVdPPPGE7rjjDrf3b1RcXJxefvllvfzyy7p27Zo2bNigbdu2ae/evdq/f79Onz6ts2fP6sKFC0pOTlZKSopSU1M9nfZ/MD7wXznlM+xNuJ6Q03Xv3l2NGjUyHH/rrbfalosvuOeee9SsWTONHDlSH374oU6dOmVLPxUqVFCfPn3UrVs35cqVy5Y+vEHJkiU1atQoDR48WJ999pkmTJigvXv3uqXv4OBgNWjQQPfdd586duzo0V0tcsrzm2cmvM3zzz+ve++9N9u4c+fOacaMGerUqZMbsvIf3BMAeLNBgwaZis/pvwfVrVtXdevW1eHDh/XZZ59pypQpOnDggNvzKFmypFq0aKFWrVopISEhR/8uBO/F9fBfzIXAH/3f4qLw8HCNGzfOqwoPzchuMZ169eq5KRP3OXr0qLp06aL09PQbHn/llVf05ptvutxP//79M90RuXDhwqpQoYLLffzlyy+/NBQXGRmpJ554wrJ+AU8LcDgcDk8nAQAAAPiq48ePa/LkyZo1a5bWrl2rpKQkl89Zvnx5JSQkqFOnTqpfv3622/oi50tLS9OPP/6o8ePHa/Hixbp69apT5wkKClLt2rXVunVrde3aVbGxsRZnCuBGDhw4oFWrVmnDhg3auHGjtm7dqitXrljaR0BAgOLi4lS/fn21bt1ad955p9OrPsF1jA8A63A9AfhLamqqfvjhB3333XdasGCBrl275tL5ypcvr+bNm+uee+5RQkKCqXvBhg0bDMfGxcV59aIrmzdv1rRp07Rw4UJt2bLFsiKawMBAVahQQQ0bNlSjRo3UrFkzFjuwGc9MeFpGRoYqVKhgqGixbt26WrlypRuyujGHw5HpC0//V0BAgE++0MY9AQB8y9atWzVz5kwtWrRImzZtcvp7oMxERESocuXKql69uurWrav69euzQwm8FtfDP5gLgb9Yt27d/yyW+N5776l///4ezMg1devW1a+//nrDY7ly5dLFixd9cjftzGRkZCghIUFLly694fFevXpp9OjRlvT166+/qm7dujc8dt9992nq1KmW9HPmzBkVL148yx2o/tKnTx+NHDnSkn4Bb0BxEQAAAGCR1NRUbdiwQRs2bNC+ffu0f/9+HTx4UBcvXtTVq1d17do1paWlKSIiQrly5VJUVJRiY2NVpkwZlSlTRvHx8apXr55iYmI8/VeBF0tOTtbKlSu1du1a7dy5Uzt37tTp06d15coVJSYmKjg4WFFRUcqdO7cKFCigm2++WZUrV1blypVVv359VhIFvMThw4e1c+dO7d27V4cOHdLhw4d18uRJnTt3TufPn9eVK1f+XiH937sF5s2b9+8dqf7aKbBChQq67bbbVKBAAU//tXADjA8A63A9AfjL9evXtWbNGm3YsEFbt27VoUOHdOTIEV28eFFJSUlKTU1VZGTk3/eCAgUKqHz58oqLi1NcXJzuuOMOlSpVytN/Da+TlJSk9evXa/PmzX/fYw8ePKgLFy7o2rVrunbtmq5fv67g4GCFhoYqMjJSBQoUUKFChRQbG6vSpUurTJkyuuWWW1S1alVWPvYgnpnwlC+//FK9evUyFLtlyxZVrVrV5owgcU8AAF+Tnp6u33//XRs2bNAff/yhw4cP6/Dhwzpx4oQSExN17do1JSUlKSUlRSEhIQoLC1N4eLjy5cun6OhoRUdHq1ixYipdurRKly6tihUr6uabb/bJYlmA6+EfzIUAvsHhcCh37tyZFkbefvvtpor1fMEnn3yiPn363PBYw4YNtXDhQsuKqYYOHaqXXnop0zx69+5tST9DhgzRwIEDs40LDg7W3r17ub8iR6G4CAAAAAAAAAAAAAAAuCQ5OVlly5bVsWPHso3t2bOnvvzySzdkBQAAAACAexw6dCjLQhMrd9fxBmfOnNHNN9+sixcv/udY3rx5tW3bNhUvXtyy/lq1aqU5c+bc8Nj27dtVuXJll/tIT09X2bJldejQoWxjH3zwQX3zzTcu9wl4k0BPJwAAAAAAAAAAAAAAAHxbWFhYpisI/18TJ07UmTNnbM4IAAAAAAD32bNnT5bHy5Qp46ZM3OP111+/YWGRJL3zzjuWFhZlZGRo1apVNzxWqFAhVapUyZJ+pk+fbqiwKCgoSK+++qolfQLehOIiAAAAAAAAAAAAAADgsp49e6pYsWLZxl2/fl2ffPKJGzICAAAAAMA9jh8/nuXxggULuikT+508eVJjxoy54bGKFSuqV69elva3ZcsWXb58+YbHGjRooICAAEv6GTZsmKG4Ll26qHz58pb0CXgTiosAAAAAAAAAAAAAAIDLwsLCNHDgQEOxn376qZKSkmzOCAAAAAAA9zhx4kSWx3PlyuWmTOz30UcfKTk5+YbH+vfvr+DgYEv7W7FiRabHGjZsaEkfS5cu1YYNG7KNCw4OZtci5FgUFwEAAAAAAAAAAAAAAEv07NlTZcuWzTbu7Nmz+uqrr9yQEQAAAAAA9rt06VKWx3NKcVF6errGjh17w2MFCxZU586dLe9z+fLlmR6zqrho6NChhuJ69OihcuXKWdIn4G0oLgIAAAAAAAAAAAAAAJYICQnRW2+9ZSj2vffeU0pKis0ZAQAAAABgv+x2583IyHBTJvZatGiRTp06dcNjbdu2VVhYmOV9ZrZzUf78+XXLLbe4fP7169dr3rx52cZFRkbq9ddfd7k/wFtRXAQAAAAAAAAAAAAAACzTsWNH3X777dnGHT16NNPVjgEAAAAA8CXZLZ5x7do1N2Vir+nTp2d67J577rG8v507d+rMmTM3PNagQQMFBrpeDvHmm28ainvuuedUpEgRl/sDvBXFRQAAAAAAAAAAAAAAwDIBAQEaNmyYodghQ4YoNTXV5owAAAAAALBXaGholsePHz/upkzstWTJkhv+94CAANWpU8fy/pYvX57psYYNG7p8/i1btmjWrFnZxhUuXFj9+/d3uT/Am1FcBAAAAAAAAAAAAAAALNWoUSO1b98+27hDhw7piy++cENGAAAAAADYJzIyMsvj+/fvd1Mm9jlx4oT27dt3w2MlS5ZUwYIFLe/T7uKil19+2VDc22+/rTx58rjcH+DNKC4CAAAAAAAAAAAAAACWGzZsmMLDw7ONe+utt3Tt2jU3ZAQAAAAAgD2io6OzPL5x40Y3ZWKfLVu2ZHqsTJkytvS5YsWKG/73vHnz6tZbb3Xp3CtXrtTs2bOzjbvtttv08MMPu9QX4AsoLgIAAAAAAAAAAAAAAJYrXbq0+vXrl23cyZMnNXLkSDdkBAAAAACAPUqWLJnl8b179+ro0aNuysYeme1aJEmxsbGW93fgwAEdOXLkhsfq1aunwEDXSiEGDhxoKO6jjz5yuS/AF/ApBwAAAAAAAAAAAAAAthg4cGC2L1hJ0tChQ3X27Fk3ZAQAAAAAgPXi4uKyjfn+++/dkIk5+/fv15UrVwzFHjhwINNjuXLlsiqlvy1fvjzTYw0bNnTp3LNmzcp0V6R/e+ihh1SvXj2X+gJ8BcVFAAAAAAAAAAAAAADAFpGRkfr444+zjbt06ZJef/11+xMCAAAAAMAGFStWVO7cubOM+fzzz92UjTGLFy9WjRo19NhjjxmKv3DhQqbHgoODrUrrb1kVFzVq1Mjp86alpal///7ZxhUoUEDDhg1zuh/A11BcBAAAAAAAAAAAAAAAbNO6dWu1bds227jRo0dr165d9icEAAAAAIDFAgMDVbt27Sxjdu7cqWnTprkpo6x98sknat68uc6fP69Jkybpiy++yLZNYmJipscuXbpkZXo6d+6cZs2adcNjuXPn1m233eb0uT/77DPt3r0727ihQ4cqOjra6X4AX2N9iSAAAAAAAAAAAAAAAMC/fPzxx6patWq2cQcPHlSFChXckBEAAAAAANZq166d5s+fn2XM888/r+bNmytPnjxuyup/nTt3Tj179tTMmTP/578/88wzqlWrlqpUqZJp27S0tEyPnT171qoUJUlPPvmkzpw5c8NjdevWVVBQkNPnDggI0KBBg7KMiYyMVM+ePZ3uA/BFAQ6Hw+HpJAAAAAAAAAAAAAAAAAAAAAAA8FWnT59W8eLFlZKSkmXcfffdpylTpiggIMBNmf1p3rx5euSRR3T8+PEbHo+Li9OGDRsUFRV1w+Pdu3fX+PHjb3gsOjpap0+ftiTPr776So8++mimx4cMGaIXX3zRkr4A/CPQ0wkAAAAAAAAAAAAAAAAAAAAAAODLYmJi1LFjx2zjpk2bpr59+9qf0P937NgxdezYUS1atMi0sEiSSpUqpcDAzMsLChQokOmxM2fOaOfOnS7lKUkrVqxQ7969s4ypW7euy/0A+C+KiwAAAAAAAAAAAAAAAAAAAAAAcNGAAQMUFBSUbdzIkSP14IMPKikpybZcLl68qMGDB6tChQqaOnVqlrH333+/Zs2apcjIyExjYmNjszzH559/7lSef1m7dq3uvvvuLHd+CgkJUfXq1V3qB8CNUVwEAAAAAAAAAAAAAAAAAAAAAICL4uPj1atXL0OxEydO1K233qrFixdbmsOxY8f06quvqlSpUnr99deVmJiYZfxjjz2mSZMmKSQkJMu4WrVqZXl8zJgx2rNnj+l8JWn+/Plq1qyZLl++nGXcrbfeqoiICKf6AJA1iosAAAAAAAAAAAAAAAAAAAAAALDAO++8o5IlSxqK3bNnjxISEpSQkKDvv/9eqampTvV58eJFTZ06VXfddZdKliypt956S5cuXcqyTWhoqD755BN9/vnnCgzMvqygRo0aCgsLy/T41atXdf/99+vChQuG805PT9fQoUPVqlWrbAuLJLFrEWCjAIfD4fB0EgAAAAAAAAAAAAAAAAAAAAAA5ASrV69Wo0aNlJKSYqpdnjx5lJCQoFq1aqlKlSoqWbKkihQposjISIWEhCgxMVGXL1/WiRMn9Pvvv2vHjh1asWKF1q9fr/T0dMP93HTTTZo+fXq2uxH9X/fee69mzJiRZUxcXJwmTZqkatWqZRm3Zs0a9enTRxs2bDDc/1dffaUePXoYjgdgHMVFAAAAAAAAAAAAAAAAAAAAAABYaNq0aXrggQeUkZHh6VT+R/v27fXZZ58pJibGdNtVq1apXr162cYFBASoXbt26tChg2rVqqXChQsrICBAR44c0ZIlSzRp0iQtX77cdP+bNm3KtmgJgHMoLgIAAAAAAAAAAAAAAAAAAAAAwGLfffedHn74YdM7GNkhNjZWo0aNUtu2bV06z5133qmFCxdak5QJQUFBSkxMVHh4uNv7BvxBoKcTAAAAAAAAAAAAAAAAAAAAAAAgp+ncubMWLFigokWLeiyHyMhIPf/88/r9999dLiySpPHjxys6Otr1xG4gq12JypYtS2ERYCOKiwAAAAAAAAAAAAAAAAAAAAAAsEGDBg20fft2denSxa39hoeH65lnntH+/fv1/vvvK2/evJacNzY2VlOnTlXu3LktOZ8kFSxYUGPHjtXTTz+daczNN99sWX8A/oviIgAAAAAAAAAAAAAAAAAAAAAAbFKgQAFNnDhR69evV6tWrRQQEGBbX/Hx8frggw905MgRjRgxQoULF7a8j0aNGmnFihUqVqyYS+eJiIhQ3759tWfPHnXv3l3r1q3LNLZ8+fIu9QUgawEOh8Ph6SQAAAAAAAAAAAAAAAAAAAAAAPAHBw8e1NixY/Xjjz9q69atLp0rKChI1atXV9OmTdWmTRvVrFnToiyzd+nSJb3//vsaMWKErl69arhdmTJl9PDDD+vRRx/9n+KnGjVqaMOGDX///2LFiqlNmzZq166dGjVqpODgYEvzB/APiosAAAAAAAAAAAAAAAAAAAAAAPCAEydOaPXq1dqyZYt27dqlo0eP6tixY7p8+bKSkpKUmpqqyMhI5c6dW1FRUSpcuLDi4uJUoUIFVapUSXXq1FG+fPk8+nc4f/685s6dq7lz52rr1q06c+aMzp49q8DAQOXJk0fFihVThQoVVLNmTSUkJOiWW2654XmKFy+u3Llzq23btmrXrp2qV69u6y5PAP5BcREAAAAAAAAAAAAAAAAAAAAAAPCo1NRUhYSEeDoNwC9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4qUBPJwAAAAAAAAAAAAAAAAAAAAAAAADAMyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH6K4iIAAAAAAAAAAAAAAAAAAAAAAADAT1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgpiosAAAAAAAAAAAAAAAAAAAAAAAAAP0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCnKC4CAAAAAAAAAAAAAAAAAAAAAAAA/BTFRQAAAAAAAAAAAAAAAAAAAAAAAICforgIAAAAAAAAAAAAAAAAAAAAAAAA8FMUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgpyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH6K4iIAAAAAAAAAAAAAAAAAAAAAAADAT1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgpiosAAAAAAAAAAAAAAAAAAAAAAAAAP0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCnKC4CAAAAAAAAAAAAAAAAAAAAAAAA/BTFRQAAAAAAAAAAAAAAAAAAAAAAAICforgIAAAAAAAAAAAAAAAAAAAAAAAA8FMUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgpyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH7q/wHCP7KD/1pNaAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 56, "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Show plots\n", - "from IPython.core.display import SVG\n", - "SVG(filename=\"./v_Cd_0/v_Cd_0.svg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "id": "7c1b4b76-3015-43a1-acc6-e3974d92ba83", - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ + "output_type": "display_data" + }, { "data": { - "image/svg+xml": "\n \n \n \n \n 2022-10-19T11:42:09.729598\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADRcAAAziCAYAAACpQXt5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdaXiW5Z3/4V8SZIeyIyq4ABWSaF1BcImKWlpRwaVaUatVtFqty2FFO/2rUKtV674gVKRSpy5TddxatYqTCFZRQQQ0yOJeEQWBsi95/i9mpjOOSp48eZYk93keR49p4bru+xunr7Af76JUKpUKAAAAAAAAAAAAAAAAIHGKCz0AAAAAAAAAAAAAAAAAKAxxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAABZsH79+rjvvvvi7bffLvQUAAAAAIC0iYsAAAAAAAAAoB42btwYEyZMiL59+8bJJ58cpaWlMW3atELPAgAAAABIS7NCDwAAAAAAAACAxmjz5s3xhz/8IcaOHRvvvvvul35v48aNBVoFAAAAAFA34iIAAAAAAAAAqIOampp48MEH48orr4x33nmn0HMAAAAAAOpFXAQAAAAAAAAAaUilUvHoo4/GFVdcEXPmzCn0HAAAAACArBAXAQAAAAAAAEAtnnzyybj88stj5syZhZ4CAAAAAJBV4iIAAAAAAAAA+AZ//etf4//9v/8Xr7zySqGnAAAAAADkhLgIAAAAAAAAAP6Pqqqq+OUvfxkvvvhioacAAAAAAORUcaEHAAAAAAAAAEBD8fLLL8ehhx4aFRUVwiIAAAAAIBHERQAAAAAAAAAk3owZM2LYsGExaNCgeO655wo9BwAAAAAgb8RFAAAAAAAAACTW7Nmz4+ijj44999wznnrqqULPAQAAAADIu2aFHgAAAAAAAAAAhXD//ffHyJEjI5VKFXoKAAAAAEDB+HIRAAAAAAAAAIn06aefCosAAAAAgMQTFwEAAAAAAABAGgYMGBCPPvpooWcAAAAAAGRVs0IPAAAAAAAAAICGbPDgwXH55ZfHd7/73UJPAQAAAADIOnERAAAAAAAAAHyNgQMHxpgxY0RFAAAAAECTJi4CAAAAAAAAgP9l9913j7Fjx8awYcMKPQUAAAAAIOfERQAAAAAAAAAQEf3794+xY8fGMcccE0VFRYWeAwAAAACQF+IiAAAAAAAAABJtp512iiuuuCJGjhwZJSUlhZ4DAAAAAJBX4iIAAAAAAAAAEqlHjx4xbty4OP3002OrrbYq9BwAAAAAgIIQFwEAAAAAAACQSMcff3yhJwAAAAAAFFxxoQcAAAAAAAAAAAAAAAAAhSEuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAJAgU6ZMiaKiooz/deGFFxb6R2gQlixZEl26dMn4r+O2224by5cvL/SPAQAAAAAA4iIAAAAAAABIkrKysnrdnzdvXpaWNG4/+9nPYunSpRnfHz9+fHTo0CF7gwAAAAAAIEPiIgAAAAAAAEiQ7t27R5cuXTK+Ly6KeOKJJ+LBBx/M+P7JJ58cw4YNy+IiAAAAAADInLgIAAAAAAAAEqY+Xy967733Yv369Vlc07isXLkyzj777Izv9+jRI2655ZYsLgIAAAAAgPoRFwEAAAAAAEDC1Ccuqqmpifnz52dxTeNyySWXxMcff5zx/fHjx0fHjh2zuAgAAAAAAOpHXAQAAAAAAAAJU15eXq/78+bNy9KSxqWysjImTJiQ8f2TTjopjjjiiCwuAgAAAACA+hMXAQAAAAAAQMLU58tFEcmMi9atWxejRo2KVCqV0f2tt946br311iyvAgAAAACA+hMXAQAAAAAAQMLU98tF1dXVWVrSeFx55ZUxf/78jO/fdddd0bFjxywuAgAAAACA7BAXAQAAAAAAQMJ06tQptt5664zvJ+3LRTNnzowbbrgh4/sjR46Mo446KouLAAAAAAAge8RFAAAAAAAAkEBlZWUZ301SXLRp06Y4/fTTY9OmTRnd33rrrePWW2/N8ioAAAAAAMgecREAAAAAAAAkUHl5ecZ3V6xYEYsXL87imobrt7/9bcycOTPj++PGjYtOnTplcREAAAAAAGSXuAgAAAAAAAASqD5fLopIxteL3nnnnRgzZkzG93/4wx/G8OHDszcIAAAAAAByQFwEAAAAAAAACVSfLxdFNP24KJVKxahRo2LdunUZ3e/evXvcdtttWV4FAAAAAADZ16zQAwAAAAAAAID88+WiLRs/fnxUVVVlfH/cuHHRuXPnLC6KmDx5ckyePDmrz2xszjrrrDjuuOMKPQMAAAAAoEkRFwEAAAAAAEACtW/fPnr27BkffvhhRverq6uzvKjh+Oijj2L06NEZ3z/hhBNixIgRWVz0nxYtWhTPP/981p/bmAwdOrTQEwAAAAAAmpziQg8AAAAAAAAACqM+Xy9qyl8uOvvss2PlypUZ3e3WrVvcfvvtWV4EAAAAAAC5Iy4CAAAAAACAhKpPXPTee+/Fhg0bsrimYXjggQfiySefzPj+nXfeGZ07d87iIgAAAAAAyC1xEQAAAAAAACRUeXl5xnc3b94c8+fPz+Kawlu6dGn87Gc/y/j+8ccfH8ccc0wWFwEAAAAAQO6JiwAAAAAAACCh6vPlooiIefPmZWlJw3DBBRfEZ599ltHdbt26xe23357lRQAAAAAAkHviIgAAAAAAAEio0tLSKCoqyvh+U4qLnn766bjvvvsyvn/HHXdEly5dsrgIAAAAAADyQ1wEAAAAAAAACdWmTZvYYYcdMr7fVOKiVatWxVlnnZXx/eOOOy6OPfbYLC4CAAAAAID8aVboAQAAAAAAAEDhlJeXx7vvvpvR3erq6iyvKYzLLrssPvjgg4zudu3aNe64444sL/p6V155ZVx55ZV5eRcAAAAAAMnhy0UAAAAAAACQYGVlZRnfbQpfLnrppZfizjvvzPj+HXfcEV27ds3iIgAAAAAAyC9xEQAAAAAAACRYfeKi5cuXx5IlS7K4Jr/Wr18fZ5xxRtTU1GR0/9hjj43jjjsuy6sAAAAAACC/xEUAAAAAAACQYOXl5fW635i/XnTVVVfF22+/ndHdLl261OuLRwAAAAAA0FCIiwAAAAAAACDB+vXrFyUlJRnfr66uzuKa/Jk9e3Zce+21Gd+//fbbo2vXrllcBAAAAAAAhSEuAgAAAAAAgARr2bJl9O7dO+P7jfHLRZs3b47TTz89Nm7cmNH9Y445Jo4//vgsrwIAAAAAgMIQFwEAAAAAAEDClZWVZXy3McZFN998c7z66qsZ3e3SpUvceeedWV4EAAAAAACFIy4CAAAAAACAhCsvL8/4bnV1dRaX5N6iRYvi8ssvz/j+bbfdFt26dcviIgAAAAAAKCxxEQAAAAAAACRcfb5c9O6778aGDRuyuCa3Ro0aFWvWrMno7ogRI+KEE07I8iIAAAAAACgscREAAAAAAAAkXH2+XLR58+ZYuHBhFtfkzsSJE2PKlCkZ3e3cuXOMGzcuy4sAAAAAAKDwxEUAAAAAAACQcN/+9rdjq622yvj+vHnzsrgmNz755JO4+OKLM75/2223Rffu3bO4CAAAAAAAGgZxEQAAAAAAACTcVlttFX379s34fnV1dRbX5Ma5554by5cvz+ju8OHD44c//GF2BwEAAAAAQAMhLgIAAAAAAACivLw847sN/ctFDz/8cDzyyCMZ3e3UqVPcddddWV4EAAAAAAANh7gIAAAAAAAAiLKysozvNuS4aPny5XHuuedmfP+2226L7t27Z3ERAAAAAAA0LOIiAAAAAAAAoMl+ueiiiy6KxYsXZ3T3qKOOihNPPDHLiwAAAAAAoGERFwEAAAAAAAD1+nLRsmXL4rPPPsvimux4/vnnY9KkSRnd7dSpU9x1111ZXgQAAAAAAA2PuAgAAAAAAACIPn36RIsWLTK+39C+XrRmzZo488wzM75/yy23xNZbb53FRQAAAAAA0DCJiwAAAAAAAIAoKSmJfv36ZXy/ocVFv/zlL2PRokUZ3T3iiCPipJNOyvIiAAAAAABomMRFAAAAAAAAQERElJWVZXy3uro6i0vqZ/r06XHLLbdkdLdjx44xfvz4LC8CAAAAAICGS1wEAAAAAAAAREREeXl5xncbypeLNm7cGGeccUbU1NRkdP+WW26JHj16ZHkVAAAAAAA0XOIiAAAAAAAAICLq9+WihhIXXXPNNTF79uyM7g4bNixOPvnkLC8CAAAAAICGTVwEAAAAAAAARET9vly0aNGi2LhxYxbX1N1bb70Vv/71rzO626FDhxg/fnyWFwEAAAAAQMMnLgIAAAAAAAAiImLHHXeM1q1bZ3R306ZNsXDhwiwvSl9NTU2cccYZsWHDhozu33LLLbHNNttkeRUAAAAAADR84iIAAAAAAAAgIiKKioqitLQ04/vz5s3L4pq6uf322+Nvf/tbRneHDRsWp5xySpYXAQAAAABA4yAuAgAAAAAAAP6prKws47uFiovef//9+Jd/+ZeM7nbo0CHGjx+f5UUAAAAAANB4iIsAAAAAAACAf6pPXFRdXZ3FJek766yzYtWqVRndvemmm2KbbbbJ8iIAAAAAAGg8mhV6AAAAAAAAANBwlJeXZ3y3EF8umjx5cjzzzDMZ3f3+978fp556anYHkQipVKrQEwAAAAAAsqYo5U89AQAAAAAAgP/ywQcfxPbbb5/R3c6dO8fnn3+e5UXfbMmSJdG/f/9YtmxZne926NAh5syZE9tuu20OlgEAAAAAQONRXOgBAAAAAAAAQMPRq1evaN++fUZ3ly5dGkuXLs3yom923nnnZRQWRUTceOONwiIAAAAAAAhxEQAAAAAAAPB/lJaWZny3uro6i0u+2eOPPx4PPfRQRne/973vxWmnnZblRQAAAAAA0DiJiwAAAAAAAIAvKS8vz/juvHnzsrjk661cuTLOOeecjO5+61vfigkTJmR5EQAAAAAANF7iIgAAAAAAAOBLysrKMr6bj7jo5z//eXz88ccZ3b3xxhtju+22y/IiAAAAAABovMRFAAAAAAAAwJfUJy6qrq7O4pKvqqysjN/97ncZ3R06dGj8+Mc/zvIiAAAAAABo3MRFAAAAAAAAwJeUl5dnfDeXXy5at25djBo1KlKpVJ3vtm/fPiZMmJCDVQAAAAAA0LiJiwAAAAAAAIAv6dGjR3Tq1Cmju4sWLYpNmzZledF/uuKKK2L+/PkZ3b3hhhuiZ8+eWV4EAAAAAACNn7gIAAAAAAAA+IqysrKM7m3cuDEWLVqU5TURM2bMiBtuuCGju4cddlicccYZWV4EAAAAAABNg7gIAAAAAAAA+IpM46KIiOrq6iwuidi0aVOcccYZsXnz5jrfbd++fdx9991Z3QMAAAAAAE2JuAgAAAAAAAD4ivLy8ozvzps3L4tLIq6//vqYOXNmRnd/+9vfRs+ePbO6BwAAAAAAmhJxEQAAAAAAAPAV9flyUTbjonfeeSfGjh2b0d1DDz00Ro0albUtAAAAAADQFImLAAAAAAAAgK9oCF8uSqVSMWrUqFi3bl2d77Zr1y7uvvvurOwAAAAAAICmTFwEAAAAAAAAfEWXLl2iW7duGd2trq7Oyoa77rorqqqqMrr729/+Nnr16pWVHQAAAAAA0JQVpVKpVKFHAAAAAAAAAA3PwQcfHC+88EJGd5cuXRqdOnXK+N0fffRRlJWVxcqVK+t895BDDom//vWvGb8bAAAAAACSxJeLAAAAAAAAgK9VXl6e8d158+bV691nn312RmFRu3bt4u67767XuwEAAAAAIEnERQAAAAAAAMDXKisry/hudXV1xnfvv//+ePLJJzO6e91118X222+f8bsBAAAAACBpxEUAAAAAAADA1yrEl4uWLl0a559/fkZ3hwwZEmeddVZGdwEAAAAAIKnERQAAAAAAAMDXqs+XizKNiy644IL47LPP6nyvbdu2MXHixCgqKsrovQAAAAAAkFTiIgAAAAAAAOBrdejQIbbddtuM7mYSF/3lL3+J++67L6P3XXfddbH99ttndBfyYcmSJbFixYpCzwAAAAAA+ApxEQAAAAAAAPCNMv160cKFC2PTpk1pn1+1alX85Cc/yehdBx10UMZ3IZfef//9uPnmm6OioiJ69OgR+++/f6EnAQAAAAB8RbNCDwAAAAAAAAAarrKysnj22WfrfG/Dhg3x7rvvRt++fdM6f9lll8UHH3xQ5/e0bds27rnnnigqKqrzXciFt99+Ox555JF45JFHYsaMGV/6vT59+hRoFQAAAADANxMXAQAAAAAAAN+ovLw847vz5s1LKy566aWX4s4778zoHddee23ssMMOGd1NohUrVsScOXNizpw58fbbb8fHH38cH3/8cSxevDhWrVoVa9eujXXr1kWzZs2iXbt2//xXt27dol+/ftG/f//o169ffOc734lOnToV+sdpUK6++uqYPHlyzJs37xvPVFRU5HERAAAAAEB6ilKpVKrQIwAAAAAAAICG6ZVXXol99tkno7vXX399XHzxxVs8s379+thtt92iurq6zs8/6KCD4vnnn/fVoi34/PPP47nnnovKysqorKyMt99+OyvPLS4ujj333DOGDh0aQ4cOjYEDB0ZJSUlWnt0YLV++PDp37hw1NTVbPDdz5szYbbfd8jMKAAAAACBNvlwEAAAAAAAAfKOysrIoKiqKTP6ZhVv6gst/u+qqqzIKi9q0aRMTJ04UFn2NJUuWxJ/+9Kd4+OGHo7KyMjZv3pz1d9TU1MSrr74ar776avzqV7+K7bbbLkaNGhWjRo2KHj16ZP19Dd2LL75Ya1jUoUOH2HXXXfO0CAAAAAAgfcWFHgAAAAAAAAA0XG3bto1evXpldLe2uOjNN9+Ma6+9NqNnX3vttbHjjjtmdLcpSqVSMWXKlDj++ONju+22i5/+9KcxZcqUnIRFX+ejjz6KK664Inr16hXHHXdczJo1Ky/vbSiqqqpqPbP//vtHcbG/RQ8AAAAANDz+5BIAAAAAAADYovLy8ozubSku2rx5c5x++umxcePGOj/3wAMPjHPOOSejTU3N5s2b449//GPssssuMWTIkHjooYcy+muaLZs2bYo//elPsccee8Spp54aS5cuLdiWfKqsrKz1zIEHHpj7IQAAAAAAGRAXAQAAAAAAAFtUVlaW0b0lS5bEF1988bW/d/PNN8drr71W52e2adMmJk6cGEVFRRltaipSqVT84Q9/iH79+sXIkSNj7ty5hZ70JTU1NXHvvfdGaWlp/PnPfy70nJxatWpVzJw5s9ZzFRUVeVgDAAAAAFB34iIAAAAAAABgizKNiyK+/utFCxcujMsvvzyj511zzTWx0047ZbynKZg2bVoMHDgwTjnllFiwYEGh52zRkiVL4ogjjojf/OY3hZ6SM9OmTYtNmzZt8Uz79u1jt912y88gAAAAAIA6EhcBAAAAAAAAW1ReXp7x3a+Li84888xYs2ZNnZ91wAEHxLnnnpvxlsZu2bJl8aMf/Sj222+/ePXVVws9J201NTVx2WWXxSWXXFLoKTlRWVlZ65n99tsvSkpK8rAGAAAAAKDuxEUAAAAAAADAFvXv3z+KizP7W4v/Ny6aOHFiTJkypc7Pad26ddxzzz1RVFSU0Y7G7uGHH47S0tKYPHlyoadk7Prrr2+SXzCqqqqq9UxFRUUelgAAAAAAZKZZoQcAAAAAAAAADVurVq1ip512igULFtT5bnV19T///SeffBIXX3xxRhuuueaa6N27d0Z3G7PVq1fHOeeck5WoqEWLFjFgwIAoLS2Nfv36Rf/+/WPbbbeNdu3aRfv27aNdu3ZRU1MT69ati9WrV8fixYvjk08+iQULFsTs2bPjjTfeiJkzZ8bmzZsz3vCLX/widtlllzj88MPr/fM0BGvXrk3rK1LiIgAAAACgIStKpVKpQo8AAAAAAAAAGrbhw4fHY489Vud7paWlMXfu3IiIOProo+PRRx+t8zP233//qKysTNxXi+bMmRM/+MEP4u233874Gb17944jjzwyDjvssKioqIhWrVrVa9OKFSuisrIy7rvvvnj88cdj/fr1dX5G9+7dY/bs2dG1a9d6bWkIpkyZEkOGDNnimbZt28YXX3wRzZr5Z38CAAAAAA1TcaEHAAAAAAAAAA1feXl5RvcWLFgQmzdvjocffjijsKh169Zxzz33JC4sevTRR2PgwIEZhUXNmzePH/zgB/Hcc8/F/Pnz48Ybb4yhQ4fWOyyKiPjWt74VRx55ZDz00EPx97//PUaPHh0tW7as0zM+/fTTGD16dL23NARVVVW1nhk8eLCwCAAAAABo0MRFAAAAAAAAQK3Kysoyurdhw4aYMWNGnHvuuRndv/rqq6NPnz4Z3W2srrvuujjmmGNizZo1dbrXvHnzOPfcc+ODDz6IBx98MIYMGZLTKKtTp07xm9/8JubNmxeHHXZYne7ee++9MWvWrBwty5/Kyspazxx44IG5HwIAAAAAUA/iIgAAAAAAAKBWmcZFEREjR46MxYsX1/nefvvtF+edd17G721sUqlUnHvuuTF69OhIpVJp3ysqKoqRI0dGdXV13HbbbdG9e/ccrvyqXr16xdNPPx2//vWvo6SkJK07NTU1cc011+R4WW5t2LAhXnnllVrPVVRU5GENAAAAAEDmilJ1+VNpAAAAAAAAIJE2bNgQbdq0iU2bNuXlfa1atYo333wzMV8tqqmpiTPPPDMmTpxYp3u9evWKe+65J4YMGZKjZXXzyCOPxA9/+MPYsGFDrWdbt24dq1atyunXlXJp6tSpsf/++2/xTOvWrWP58uWx1VZb5WkVAAAAAEDd+XIRAAAAAAAAUKvmzZvnNfT59a9/nZiwKJVKxWmnnVbnsOi0006L2bNnN5iwKCLi6KOPjieeeCJatmxZ69m999670YZFERGVlZW1nhk0aJCwCAAAAABo8MRFAAAAAAAAQFrKy8vz8p599903zj///Ly8qyG48MILY/LkyWmfb9GiRdx7771xzz33RPv27XO4LDOHHXZY3HXXXbWeO/jgg/OwJneqqqpqPVNRUZGHJQAAAAAA9SMuAgAAAAAAANJSVlaW83e0atUqJk2aFMXFyfhbmddcc03ccsstaZ/v2rVrPP/883HKKafkcFX9/ehHP6o1EDvooIPytCb7Nm3aFC+99FKt58RFAAAAAEBjkIw/kQcAAAAAAADqLR9fLrrqqquib9++OX9PQ/Bv//Zv8Ytf/CLt83379o3p06fHvvvum8NV2XPttdfGDjvs8LW/17p16xg4cGB+B2XR66+/HqtWrdrimZYtWzbqnxEAAAAASA5xEQAAAAAAAJCWXH+5aPDgwXHBBRfk9B0Nxdy5c+O0005L+3yfPn3ihRde+MZYpyFq0aJFXHPNNV/7e/vuu280b948z4uyp6qqqtYzAwcOjBYtWuRhDQAAAABA/YiLAAAAAAAAgLT07ds3Z0FIy5Yt45577oni4qb/tzBXrFgRw4cPj9WrV6d1vnfv3vHCCy/Etttum+Nl2XfCCSfErrvu+pVfP/jggwuwJnsqKytrPXPggQfmfggAAAAAQBY0/T+ZBwAAAAAAALKiWbNmsfPOO+fk2VdddVXOnt3Q/PSnP40FCxakdXabbbaJF154Ibbbbrscr8qdU0899Su/dtBBB+V/SJbU1NTEtGnTaj1XUVGRhzUAAAAAAPUnLgIAAAAAAADSVlZWlvVnDho0KC688MKsP7cheuihh+Jf//Vf0zrbqlWrePzxx6Nnz545XpVbJ554YjRr1uyf/7ldu3ax5557FnBR/cyaNSuWL1++xTPNmzePffbZJz+DAAAAAADqSVwEAAAAAAAApK28vDyrz2vZsmVMmjQpioub/t+6XLx4cZx99tlpnS0qKop77723UUc4/6179+5fCm0OOOCAL8VGjU1lZWWtZwYMGBCtWrXKwxoAAAAAgPprvH9iCwAAAAAAAORdtr9cNHbs2Nh5552z+syG6qKLLoply5aldfaXv/xlHHfccTlelD8DBgyIqVOnRkTEQQcdlPf3v/fee1FVVRWzZs2KN998Mz744INYsWJFLF++PGpqaqJdu3bRs2fPKC0tjcGDB8fhhx8eO+6449c+q6qqqtb3VVRUZPtHAAAAAADImaJUKpUq9AgAAAAAAACgcViwYEH07ds3K8/aZ599YurUqVFSUpKV5zVkU6ZMiSFDhqR1tin+dXnwwQfjhBNOiIiIGTNmxO67757zdy5cuDDuvffeeOyxx+LNN9+s8/199903zj///Dj22GOjqKgoIiJSqVR069YtPv/88y3effbZZ+PQQw/NaDcAAAAAQL6JiwAAAAAAAIC01dTURNu2bWPt2rX1ek7Lli1j5syZ0a9fvywta7g2bdoUu+yyS1RXV9d6tk2bNvHGG29Enz598rAsf9asWRNvvfVWRETsscceUVxcnLN3/cd//EfcdNNN8eSTT0ZNTU29n/ed73wnxo0bF4MGDYq5c+dGeXn5Fs83a9Ysli9fHm3atKn3uwEAAAAA8qFZoQcAAAAAAAAAjUdxcXH0798/ZsyYUa/njBkzJhFhUUTExIkT0wqLIiJuuOGGJhcWRUS0bt069tprr5y+Y+7cuXHRRRfFs88+m9Xnzpo1K/bbb7+45JJLokePHrWe32uvvYRFAAAAAECj4stFAAAAAAAAQJ2ccsop8Yc//CHj+wMHDoxp06ZFSUlJFlc1TGvXro0+ffrE3//+91rPDhgwIF5++eUoKirKw7KmY/Xq1XHppZfGuHHjYvPmzTl911ZbbRUbN27c4plLL700rrnmmpzuAAAAAADIJl8uAgAAAAAAAOqkrKws47stWrSISZMmJSIsioi444470gqLIiJuuukmYVEdTZ8+PU466aSYP39+Xt5XW1gUEVFRUZGHJQAAAAAA2VNc6AEAAAAAAABA41JeXp7x3TFjxkT//v2zuKbh2rhxY9x8881pnf3BD34QgwcPzu2gJub666+PfffdN29hUTpKSkpi3333LfQMAAAAAIA68eUiAAAAAAAAoE4y/XLRgAED4uKLL87ymobr/vvvj48//rjWc8XFxXH11VfnYVHTsHHjxjjzzDPj97//faGnfMUee+wR7dq1K/QMAAAAAIA6ERcBAAAAAAAAdbL99ttH27ZtY9WqVWnfadGiRUyaNClKSkpyuKxhufHGG9M6N2LEiOjdu3eO1zQNX3zxRYwYMSIqKyvrdK9v375x9NFHx8CBA2PXXXeNLl26ROvWrWP58uWxcOHCmDZtWkyePDnefPPNeu2rqKio130AAAAAgEIoSqVSqUKPAAAAAAAAABqXgQMHxvTp09M+f/XVV8dll12Ww0UNy6uvvhoDBgxI6+y0adNi8ODBOV7U+C1btiwOOeSQmDlzZlrni4uLY8SIEfHzn/88Bg4cmNadJ554Is4777x4//33M9r4xBNPxLBhwzK6CwAAAABQKMWFHgAAAAAAAAA0PuXl5Wmf3XvvveOSSy7J4ZqGZ9KkSWmdGzhwoLAoDUuXLo0hQ4akHRYNHjw4Xn/99fjTn/6UdlgUEXHEEUfE66+/ntH/T4qLi2O//far8z0AAAAAgEITFwEAAAAAAAB1VlZWlta55s2bx6RJk6KkpCTHixqO9evXxwMPPJDW2VNPPTW3Y5qAFStWxJAhQ+KNN96o9Wzz5s3jpptuiqlTp8Zuu+2W0fs6d+4czzzzTOy66651uved73wnOnTokNE7AQAAAAAKSVwEAAAAAAAA1Fm6cdEVV1yR9tmmYsqUKfHFF1/Ueq6kpCSOPvroPCxqvDZt2hTHHntszJo1q9azPXv2jL/97W9xwQUXRFFRUb3e27Zt23jssceiTZs2ad858MAD6/VOAAAAAIBCERcBAAAAAAAAdVZeXl7rmT333DMuueSSPKxpWJ544om0zlVUVES3bt1yvKZx+8lPfhLPPfdcred23333ePnll2OPPfbI2rt32GGHGDNmTNrnKyoqsvZuAAAAAIB8EhcBAAAAAAAAdbbttttGhw4dvvH3mzdvHr///e+jWbNm+RvVQDz55JNpnTvmmGNyvKRxu/HGG2PixIm1nttnn32isrIyttlmm6xvOO+889J6blFRUey///5Zfz8AAAAAQD6IiwAAAAAAAICMlJWVfePvXX755Wl93aipefvtt+PDDz9M66wv3Xyz1157LS699NJazw0cODCeeeaZaNeuXU52NG/ePM4888xaz+2yyy7RqVOnnGwAAAAAAMg1cREAAAAAAACQkW+Ki/bcc88YPXp0ntc0DNOmTUvrXMeOHaO0tDTHaxqnVatWxYknnhgbN27c4rk+ffrEU089Fe3bt8/pnnRiMaEYAAAAANCYiYsAAAAAAACAjHzdl4maN28ekyZNimbNmhVgUeFNnTo1rXODBg2KoqKiHK9pnC666KKYP3/+Fs907NgxnnrqqejcuXPO91RVVdV6RlwEAAAAADRm4iIAAAAAAAAgI1/35aJf/vKXscsuuxRgTcPwyiuvpHVuwIABOV7SOE2fPj3uvvvuWs9NnDgxvv3tb+d8z+LFi2sNnSIiDjjggJxvAQAAAADIlWT+48IAAAAAAACAejv44IMjlUoVekaDsWHDhliwYEFaZ3v37p3jNY1PKpWK8847r9b/Tv34xz+OESNG5GVTOl8tKi0tja5du+ZhDQAAAABAbvhyEQAAAAAAAEAWzJ8/PzZt2pTWWXHRV02ePDmmT5++xTNdu3aNm266KU+L0ouLDjzwwNwPAQAAAADIIXERAAAAAAAAQBZUV1enfXannXbK4ZLGp6amJq6++upaz40dOzbat2+fh0X/KZ24qKKiIg9LAAAAAAByR1wEAAAAAAAAkAUffPBBWue22mqr6N69e47XNC6PPvpovPPOO1s806dPnxg1alSeFkUsW7Ys5syZU+u5Aw44IA9rAAAAAAByR1wEAAAAAAAAkAWLFy9O61ybNm1yvKTxue6662o9c/7550dJSUke1vynF198MVKp1BbP7LzzzrH11lvnaREAAAAAQG6IiwAAAAAAAACy4JNPPknrXNu2bXO8pHGZPXt2TJ8+fYtn2rdvH6eeemp+Bv2XqqqqWs9UVFTkYQkAAAAAQG6JiwAAAAAAAACy4IsvvkjrnC8Xfdkf//jHWs8ceeSReY+yxEUAAAAAQFKIiwAAAAAAAACyYO3atWmda968eY6XNB6pVCoeeOCBWs8de+yxeVjzP1atWhUzZ86s9Zy4CAAAAABoCsRFAAAAAAAAAFmwbt26rJ5LglmzZsV77723xTPNmjWLQw89ND+D/su0adNi8+bNWzzTp0+f2HbbbfO0CAAAAAAgd8RFAAAAAAAAAFmwYcOGtM6tWbMmx0saj8rKylrP7LbbbtG6des8rPkfVVVVtZ7x1SIAAAAAoKkQFwEAAAAAAABkQYsWLdI699lnn0UqlcrxmsYhnbhon332ycOSLxMXAQAAAABJIi4CAAAAAAAAyIJWrVqldW7Dhg2xePHiHK9pHKZOnVrrmZ133jkPS/7HunXr4tVXX631nLgIAAAAAGgqxEUAAAAAAAAAWdCmTZu0z86bNy+HSxqHpUuXxmeffVbruR133DEPa/7HK6+8EuvXr9/imR122CF69eqVp0UAAAAAALklLgIAAAAAAADIgh49eqR9Np0v4zR1CxYsSOvcdtttl+MlX1ZZWVnrGV8tAgAAAACaEnERAAAAAAAAQBbssMMOaZ+dNm1a7oY0EvPnz0/rXF2+CJUNVVVVtZ4RFwEAAAAATYm4CAAAAAAAACAL6hIX/fWvf421a9fmbkwj8Pe//z2tc/mMizZu3Bgvv/xyrefERQAAAABAUyIuAgAAAAAAAMiC3XbbLe2za9asiaeeeip3Y/Lkvffeiz//+c8Z3V21alVa52pqajJ6fiZef/31WL169RbP9OzZM3baaac8LQIAAAAAyD1xEQAAAAAAAEAWfPvb345OnTqlff7222/P4Zrcq6qqir333jtOOOGEWLBgQZ3vpxsXLV++vM7PztQf//jHWs/4ahEAAAAA0NSIiwAAAAAAAACyZNCgQWmfraysjOnTp+dwTe787ne/i0MOOSQ+//zz+Mc//hHHH398rF+/vk7PWLNmTVrn8hUXvfjii3HHHXfUek5cBAAAAAA0NeIiAAAAAAAAgCw58sgj63T+oosuytGS3Fi3bl2cc845ceaZZ8bGjRv/+eszZsyIiy++uE7PKioqSuvcokWL6vTcTKxevTpOO+20qKmpqfWsuAgAAAAAaGrERQAAAAAAAABZMnz48CgpKUn7/LRp02L8+PE5XJQ9s2fPjr322ivGjRv3tb9/++23x6OPPpr281q1apXWub/97W9pPzMTqVQqTjnllFi4cGGtZ3v06BF9+/bN6R4AAAAAgHwTFwEAAAAAAABkSbdu3eLQQw+t050LL7ww5syZk6NF9ZdKpeLWW2+NvffeO+bOnbvFs6effnq8//77aT23S5cuaZ2bOnVqWucydeWVV8YjjzyS1tnBgwfndAsAAAAAQCGIiwAAAAAAAACy6Pzzz6/T+bVr18b3v//9+PDDD3O0KHOzZs2K/fbbL84///xYv359ree/+OKLeP7559N69nbbbZfWudmzZ8drr72W1tm6Gj9+fPzqV79K+7y4CAAAAABoisRFAAAAAAAAAFn03e9+N0pLS+t058MPP4xDDjkk3n333RytqpuVK1fGBRdcEHvuuWe89NJLad0pKSmJCRMmxI9//OO0zvfr1y/tPTfffHPaZ9M1fvz4OPvssyOVSqV9R1wEAAAAADRFRam6/EkpAAAAAAAAALV68skn44gjjqjzvW7dusXDDz8c++23Xw5W1W716tUxbty4uP7662PJkiVp32vRokXcf//9MWLEiLTvrF27Ntq3bx+bNm2q9WxxcXE8++yzMWTIkLSf/01SqVSMGTMmxo4dW6ewqHnz5vGPf/wjmjdvXu8NAAAAAAANiS8XAQAAAAAAAGTZsGHDYujQoXW+t2TJkqioqIjRo0fH2rVrc7Ds661cuTKuvfba2GGHHeLnP/95ncKi9u3bxzPPPFOnsCgiolWrVjFo0KC0ztbU1MRJJ50UH3/8cZ3e8X+tWLEiRowYEWPGjKlTWBQRseuuuwqLAAAAAIAmSVwEAAAAAAAAkAN33HFHtG/fvs73ampq4rrrrovevXvHuHHjYt26dTlY95+mTp0ap512WvTo0SMuvfTS+Pzzz+t0v7S0NF5++eWoqKjI6P11+brT4sWLY9CgQfHmm29m9K5///d/j9LS0njssccyur/nnntmdA8AAAAAoKErStX1H8cEAAAAAAAAQFoeeuihOP744+v1jI4dO8bIkSPj2GOPjX333TeaNWuW8bPWrl0bVVVV8cwzz8STTz4Z8+fPz/hZJ554YkyYMCHatGmT8TM++eST6NmzZ2zevDntO23bto3Ro0fHBRdcEG3btq31/IsvvhhXX311PP300xnvjIiYMGFCjBo1ql7PAAAAAABoiMRFAAAAAAAAADl08cUXxw033JCVZ7Vv3z4GDx4cu+++e+yyyy7Rs2fP2G677aJDhw7RsmXLaN68eaxevTpWrlwZK1eujMWLF8dbb70Vc+fOjblz58b06dPr/SWk5s2bx0033RTnnHNOVn6mk08+Oe6777463+vSpUscddRRMXTo0CgvL49u3bpF27Zt47PPPov33nsvnnvuuXj88cdjxowZWdk5ffr02HvvvbPyLAAAAACAhkRcBAAAAAAAAJBDqVQqTjvttLj33nsLPaXe9thjj7j77rtj9913z9ozFy5cGGVlZbF+/fqsPTPbioqKYtWqVdG6detCTwEAAAAAyLriQg8AAAAAAAAAaMqKiopi4sSJcfLJJxd6SsbatGkTN9xwQ0yfPj2rYVFERO/eveOKK67I6jOzbccddxQWAQAAAABNlrgIAAAAAAAAIMdKSkpi8uTJcfnllxd6Sp0NGzYs3nrrrbjooouipKQkJ+8YPXp0HH744Tl59pb85Cc/ie9973u1nistLc3DGgAAAACAwhAXAQAAAAAAAOTJmDFj4rHHHovu3bsXekqtDjrooKisrIwnnngievXqldN3FRcXxwMPPBD77bdfTt/z33r37h1/+ctfYty4cfHWW2/Ver5Pnz55WAUAAAAAUBjiIgAAAAAAAIA8OvLII2Pu3LkxcuTIKCoqKvScr/jvqGjKlClxwAEH5O29bdu2jaeffjqOPvronL2jQ4cOcdVVV8XcuXNj6NChsWTJknj//fdrvde7d++cbQIAAAAAKDRxEQAAAAAAAECede7cOe677754/fXX43vf+16h50THjh3jnHPOiddeey3vUdH/1qZNm3j44Ydj3Lhx0aFDh6w9d5tttomxY8fGe++9F//yL/8SLVq0iIiIV199dYv3evfuHRdddFEcddRRWdsCAAAAANDQFKVSqVShRwAAAAAAAAAk2Zw5c+J3v/td3HfffbFs2bK8vLNFixZx4IEHxqmnnhrDhw+Pli1b5uW96fr888/j1ltvjQkTJsSnn35a5/sdO3aMoUOHxgknnBCHH354lJSUfOXMlVdeGWPGjPnSr+2+++4xfPjwGD58eOy6664Z7wcAAAAAaCzERQAAAAAAAAANxPr166OysjL+8pe/xNNPPx3V1dVZe3ZxcXHstttuccghh8SQIUNi//33j1atWmXt+bmyefPmqKqqiilTpsRrr70WixYtisWLF8eaNWsiIqJ169bRsWPH6NWrV+y0006xxx57xIABA2KvvfaKZs2abfHZv/jFL+L666+P/fff/59BUa9evfLxYwEAAAAANBjiIgAAAAAAAIAGavny5fHGG2/ErFmzYv78+fHxxx/HRx99FJ9++mmsWbMm1q1bF+vWrYvi4uJo165dtGvXLtq2bRvt2rWLnj17Rr9+/WLnnXf+5/9t27ZtoX+kBmfVqlX+ugAAAAAAiSYuAgAAAAAAAAAAAAAAgIQqLvQAAAAAAAAAAAAAAAAAoDDERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUM0KPQAAyNymTZti/vz5X/q1Tp06RXGxfhgAAAAAAAAAAAAA0lVTUxPLli370q/17ds3mjVr+ulN0/8JAaAJmz9/fpSWlhZ6BgAAAAAAAAAAAAA0OW+99Vb079+/0DNyzmcNAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIqGaFHgAAZK5Tp05f+bW33norunTpUoA1AAAAAAAAAAAAANA4ff7551FaWvqlX/u6/61uUyQuAoBGrLj4qx8h7NKlS3Tt2rUAawAAAAAAAAAAAACg6fi6/61uU5SMnxIAAAAAAAAAAAAAAAD4CnERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAQB6kUqlIpVKFngEAAAAAAF8iLgIAAAAAAADIg7+9/068/MH8Qs8AAAAAAIAvaVboAQAAAAAAAABN3dqNG+K+mS9GUUTsts0O0Wqr5oWeBAAAAAAAEeHLRQAAAAAAAAA59/Dsl2P52tXxxdrV8cjsVwo9BwAAAAAA/klcBAAAAAAAAJBDHy7/PJ6e98Y///Nf5s2MD5d/XrhBAAAAAADwv4iLAACA/8/enUbJdZd34n+qWi11dbekbtmWbFk23i3bWLYkr1jyAoZgm8AQcDAxWzgzhyT8gSQTksAwYQ5zICwnCyR4CHMShu2weSYYjLFjwMa7sSRvWJYRtrxvwu6W1N3V3equ+r8wIV7rVrdu3du36vN5h+qn+n11D49LR93ffgAAAABokXq9Hl/acHXU6vXf/Frt179Wf9avAQAAAABAXpSLAAAAAAAAAFrkuvu3xJYnH3nBr2958pG4/v57ckgEAAAAAADPpVwEAAAAAAAA0AKjkxPx9VuvfcnXv37rtTE2OZFhIgAAAAAAeCHlIgAAAAAAAIAWuPiOG2PnePUlX98xPhbfueOmDBMBAAAAAMALKRcBAAAAAAAApOz+oe3xb1vvSDz3b1tvjweGtmeQCAAAAAAAXpxyEQAAAAAAAECKavV6fOmWq6Jeryeerf/6bK2JswAAAAAA0ArKRQAAAAAAAAApuua+zbH1V481ff4Xv3osrt12dwsTAQAAAADAS1MuAgAAAAAAAEjJyMR4fOO262f8+75x63UxMjnegkQAAAAAANCYchEAAAAAAABASr59xw2xa6I649+3c6Ia37n9xhYkAgAAAACAxpSLAAAAAAAAAFJw31NPxI+33jnr3/+jrXfEfU8/kWIiAAAAAABIplwEAAAAAAAAsIdqtVr8yy1XRX0P3qMeEV+65aqo1ffkXQAAAAAAYGaUiwAAAAAAAAD20FX33ZXK1qF7n3oirr73rhQSAQAAAABAc5SLAAAAAAAAAPbAzvFqfOu2G1J7v2/edn3sHK+m9n4AAAAAANCIchEAAAAAAADAHvjW7dfHyOR4au83Mjke37o9vbISAAAAAAA0olwEAAAAAAAAMEtbf/VYXHXvXam/79X3/jx++avHU39fAAAAAAB4PuUiAAAAAAAAgFmo1WrxpVuuasl71yPiX265Kmq1WkveHwAAAAAA/p1yEQAAAAAAAMAs/OiXd8b9Q9tb9v73Dz0ZP/7lnS17fwAAAAAAiFAuAgAAAAAAAJixHdXR+PbtN7T8nm/dfmPsGB9r+T0AAAAAAHQu5SIAAAAAAACAGfrGbdfH2O7Jlt8ztnsivnHbdS2/BwAAAACAzqVcBAAAAAAAADADW558JK7Zdndm911z391xz/ZHM7sPAAAAAIDOolwEAAAAAAAA0KTpWi2+tOGqzO/90i1XxXStlvm9AAAAAAC0P+UiAAAAAAAAgCb92y9uj4eGn8r83geHfxX/9ovbM78XAAAAAID2Ny/vAAB52717d1x77bVx/fXXx+bNm2PLli2xffv22LVrV4yOjkalUolFixbFkiVL4sgjj4yjjz46Tj755HjlK18ZlUol7/iFsn379rjiiivi1ltvjc2bN8e9994bO3bsiF27dsXu3btj4cKFsWjRoli+fHkcffTRccwxx8QrX/nKOO644/KODgAAAAAAMVQdjYvvuCm3+y++86Y45WVHxGClL7cMAAAAAAC0n1K9Xq/nHQIgD9ddd118/vOfj8suuyx27tw5499fqVTi7LPPjj/8wz+M1772tVEqlVqQsviq1Wp89atfjX/5l3+JW265JWq12ozfY8WKFXH++efH+973vjj44INbkLK4tm/fHkuXLn3Orz355JOxzz775JQIAAAAAKB9/eP1l8cND9yTa4bTDjoy3vuK1+aaAQAAAACgHXXy9+WW8w4AkLVrrrkmTjzxxFi/fn1885vfnFWxKOKZ0sz3v//9OPfcc+Ooo46K7373u+kGLbjdu3fHpz71qTjggAPiPe95T9x8882zKhZFRDz88MPxd3/3d3HYYYfF+eefH/fff3+6YQEAAAAAIMHmJx7OvVgUEXH9/ffE3U88nHcMAAAAAADaiHIR0DGGh4fjne98Z5xxxhmxYcOGVN/7nnvuiTe+8Y3x27/92/Hoo4+m+t5FdP3118dxxx0Xf/mXfxlPPfVUau9bq9Xi4osvjmOOOSY+/elPh+V7AAAAAABkYao2HV/acFXeMX7jSxuujqnadN4xAAAAAABoE8pFQEfYvHlznHTSSfGVr3ylpfdceumlsXbt2rjhhhtaes9cdtFFF8VZZ50Vd999d8vuGBsbi7/4i7+IN7zhDbPePAUAAAAAAM364Zbb4pEdT+cd4zce3vFUXH7PbXnHAAAAAACgTSgXAW3vuuuui1NOOSW2bt2ayX2PP/54nHXWWfGv//qvmdw3l/zpn/5pvPe9743du3dnct/3v//9OPXUU2P79u2Z3AcAAAAAQOd5amxX/L+f35x3jBf4v3feHE+N7co7BgAAAAAAbWBe3gEAWmnDhg1x3nnnxa5d2X5xbXJyMi644IL43ve+F7/1W7+V6d15+fCHPxx/93d/l/m9mzdvjte85jVx1VVXxcDAQOb3Q5ZqtVo8unMo7nv6yXh4x1MxOjkeu6enY6o2HfPKXdHd1RV983tixeK94pC9lsbyhYNRLuuSw4sxT5AOswTpMEuQHvME6TBL8Fxf23RtTExl80O1ZmJiand8fdO18f515+YdBVrOZxMAAAAAtJZyEdC2Hn744TjnnHNi586dTf+enp6eOP300+OEE06I/fffPxYtWhQjIyPx2GOPxaZNm+Lqq6+OkZGRpt5rcnIyfud3fiduvvnmePnLXz7bP0Yh/NM//VP89V//9Yx+z4oVK+L000+PVatWxd577x3d3d0xPDwcW7dujZtvvjk2bNgQ9Xq9qfe67bbb4o1vfGP86Ec/iq6urtn8EWBOqtfrcfeTj8TGh++Ne59+Ih54entMTE81/fsXzOuOlw3uHYcuWRZrVxwaRy3dP0qlUgsTw9xlniAdZgnSYZYgPeYJ0mGW4KXd+dgDcfODW/OO8ZJuenBrnPX4g3HsvgfmHQVS5bMJAAAAALJVqjf7ndsABTI1NRVnnXVWXHfddU2dX7p0aXzkIx+Jd7zjHbF48eKXPDc2Nhbf/va343/8j/8RDzzwQFPvvXLlytiwYUP09fU1db5obrvttjj11FNjfHy8qfOnn356/NVf/VW88pWvbPhFnG3btsXnPve5uOiii2JycrKp9/7IRz4S//N//s+mzraL7du3x9KlS5/za08++WTss88+OSUiDaOTE3HttrvjR1vviEd3DqX2vssXDcbZh6+K9QcfFX3zF6T2vjCXmSdIh1mCdJglSI95gnSYJWhs9/RU/OVlX4/Hdg3nHaWh/RYNxifP+b3o7vJzJSk+n00AAAAA5KmTvy9XuQhoSx/72Mfiox/9aFNn3/KWt8QXv/jFWLRoUdPvPzExEf/1v/7X+PznP9/U+f/yX/5LfPGLX2z6/YticnIyVq1aFffcc0/i2UqlEhdddFG8613vmtEd99xzT7z5zW+On//854lny+Vy/PSnP41169bN6I4i6+S/xLSjJ3YNx/c2b4wb7t8yo5/AOFMLuubFKw5aGa8/em0sWzjQsnsgT+YJ0mGWIB1mCdJjniAdZgmac8ldt8S3br8h7xhNueC4V8Trjzkx7xgwaz6bAAAAAJgLOvn7cpWLgLazbdu2OProo5vapPOhD30oPvGJT8z6rn/8x3+M973vfYnnSqVS3HzzzXHiie31hb1PfvKT8aEPfSjx3KJFi+LKK6+Mk046aVb3jI6OxnnnnRc//elPE88ed9xxsXHjxujq6prVXUXTyX+JaSfTtVr8YMum+L933BS7a9OZ3dtd7oo3rzolzlu5Jsrlcmb3QiuZJ0iHWYJ0mCVIj3mCdJglaN720Z3xwUu/GpMtLDmkaUHXvPjM694ee/c1/4PUYC7w2QQAAADAXNLJ35erXAS0nTe+8Y3x3e9+N/Hce97znvjCF76wx/d9/OMfj4985COJ50466aS46aabolQq7fGdc8Gjjz4aRxxxRIyOjjY8193dHT/+8Y9j/fr1e3TfyMhIrF+/Pm677bbEs5///Ofjj/7oj/bovqLo5L/EtItHdjwdX7jp3+Lep57ILcNhe+0b7znl1bH/4iW5ZYA0mCdIh1mCdJglSI95gnSYJZiZv73m0tjw8L15x5iRE1ccGn9y+uvyjgFN89kEAAAAwFzTyd+Xq1wEtJXbbrstVq9enXhu9erVceONN8aCBQv2+M56vR7nnHNOXHHFFYlnv//978frXtceX9j74z/+4/jsZz+beO7Tn/50fPCDH0zlzl/84hexdu3aGBkZaXhu+fLlsW3btpg/f34q985lnfyXmKKr1evxg7s3xcV33JjpT2N8Kc/8lMZT47yj1kS5TUqQdA7zBOkwS5AOswTpMU+QDrMEM3frI9viMz/9Xt4xZuXPz3xDHL/8oLxjQEM+mwAAAACYqzr5+3KVi4C28nu/93vxjW98o+GZcrkct9xyS6xZsya1ex988MFYuXJlVKvVhufWr18f11xzTWr35mVoaCgOOOCAxK1Fq1evjg0bNkS5XE7t7s985jPx53/+54nn/vmf/zne/e53p3bvXNXJf4kpsqnadPzTTVfG9fffk3eUFzjtoCPjPae8OuaVu/KOAk0xT5AOswTpMEuQHvME6TBLMHOT01PxFz/4WjwxsiPvKLOyrH9xfOq8t8X8rnl5R4EX5bMJAAAAgLmsk78vN73v9gbI2UMPPRTf+c53Es+9/e1vT7VYFBFx4IEHxp/+6Z8mnrv22mvjlltuSfXuPHzhC19ILBZFRPzt3/5tqsWiiIgPfOADcfDBByee+5u/+ZtU74W0TE5Pxd9f+4M5+YXTiIjr778n/v7aH8Tk9FTeUSCReYJ0mCVIh1mC9JgnSIdZgtm5dPPGwhaLIiKeGNkRl27emHcMeFE+mwAAAABg7lIuAtrG17/+9ZiaavyP/aVSKf7iL/6iJfd/4AMfiJ6ensRzX/7yl1tyf5aa+TOcfPLJceaZZ6Z+9/z58+NP/uRPEs9t3rw5NmzYkPr9sCematPxuesui02PbMs7SkObHtkW/3DdD2OqNp13FHhJ5gnSYZYgHWYJ0mOeIB1mCWbniZEdccnm4v+AsEs23xJPFrggRXvy2QQAAAAAc5tyEdA2vv71ryeeec1rXhNHHXVUS+7fZ5994sILL0w89+1vfzuxBDWXbdy4Me65J/knyv3xH/9xyzK8+93vjkWLFiWea+b/E5CVWr0e/3TTlXP+C6f/buMj98U/3XRl1Or1vKPAC5gnSIdZgnSYJUiPeYJ0mCWYva9s+Gnsni5+oWD39HR8ZeNP844Bv+GzCQAAAADmPuUioC38/Oc/j5///OeJ5972tre1NEcz7799+/b40Y9+1NIcrfSNb3wj8czChQvjDW94Q8sy9PX1xRvf+MbEc9/85jej7gs/zBE/uHtTXH9/cjFvLrn+/nvisi2b8o4BL2CeIB1mCdJhliA95gnSYZZgdjY+fF/c+mgxig/N2PTIttj48H15x4CI8NkEAAAAAEWgXAS0hcsvvzzxTE9PT0sLLxERp59+eixfvjzx3A9/+MOW5milZp7161//+qhUKi3NccEFFySeefzxx+O2225raQ5oxiM7no6L77gx7xiz8p3bb4xHdjyddwz4DfME6TBLkA6zBOkxT5AOswSzMzG1O7688eq8Y6TuKxt/GpNTU3nHoMP5bAIAAACAYlAuAtrClVdemXhm3bp1sXDhwpbmKJfL8ZrXvCbxXDN556LHHnss7rrrrsRz55xzTsuznHnmmdHT05N4rqjPmvYxXavFF276t9hdm847yqzsrk3HP910ZdRqtbyjgHmClJglSIdZgvSYJ0iHWYLZu+SuDfGr0V15x0jd9tGdccnmW/KOQQfz2QQAAAAAxaFcBBTe5ORkXHfddYnnzj777AzSNHfP3XffHY888kgGadL14x//uKlzr3rVq1qc5JlNVOvWrUs8p1xE3i7bsinufeqJvGPskV8+9Xj8YMumvGOAeYKUmCVIh1mC9JgnSIdZgtl5bOdQXHr3xrxjtMz3N2+Mx3YO5R2DDuWzCQAAAACKQ7kIKLzbb789xsbGEs81U0RJw/r165s6d/PNN7c4SfpuvPHGxDOHHXZY7Lvvvhmkae5Z/+xnP4t6vZ5BGnihJ3YNx8V33JR3jFRcfMdN8cSu4bxj0MHME6TDLEE6zBKkxzxBOswSzE69Xo//s+HqmCroVpVmTNWm48sbf+rfycmczyYAAAAAKBblIqDwbr311sQz5XI5jj/++NaHiYgDDzww9t5778RzzeSea5rJvGbNmgySPGPt2rWJZ3bu3Bn33XdfBmnghb63eWPsbpNvTNhdm47vbW7fn+DK3GeeIB1mCdJhliA95gnSYZZgdm556Jdx5+MP5h2j5e547IG45eF7845Bh/HZBAAAAADFolwEFN6mTZsSzxxxxBHR19eXQZpnNFN6KVq5qFarxe233554bq6ViyKK96xpD6OTE3HD/VvyjpGqG+7fEmOTE3nHoAOZJ0iHWYJ0mCVIj3mCdJglmJ3xqd3xlU3X5B0jM1/d+NMYn9qddww6hM8mAAAAACge5SKg8O68887EMytXrswgyX848sgjE8/ccccdGSRJz7333htjY2OJ57J81vvuu28sXrw48VzRnjXt4dptd8fE9FTeMVI1MT0V1267O+8YdCDzBOkwS5AOswTpMU+QDrMEs/OvP785nh4byTtGZp4aG4nv/vxnecegQ/hsAgAAAIDiUS4CCu++++5LPHP44YdnkOQ/HHbYYYlnHnnkkZicnMwgTTqaec4R2T/rQw89NPFMs9khLfV6Pa7c2p6ltiu33hH1ej3vGHQQ8wTpMEuQDrME6TFPkA6zBLPzyI6n47K7O2/j/Q+2bIpHdjyddwzanM8mAAAAACgm5SKg0KrVajz++OOJ55opoKSpmXJRrVaLBx54IIM06di2bVtT5w455JAWJ3muZp51s9khLXc/+Ug8tnMo7xgt8ejOodjy5CN5x6CDmCdIh1mCdJglSI95gnSYJZi5er0e/2fDVTFdr+UdJXPTtVr8nw1XK0fQUj6bAAAAAKCYlIuAQmu2nLN8+fIWJ3mu/fbbr6lzRSq93H///YlnlixZEj09Pa0P8yzNPOsiPWfaw8aH7807QktteNg2MLJjniAdZgnSYZYgPeYJ0mGWYOZufOAXcdcTD+cdIzd3PfFQ3PTg1rxj0MZ8NgEAAABAMSkXAYX2yCPN/XSwfffdt8VJZnffww8X5wuYzTzrrJ9zs3c+/vjjMT09nUEaeMa9Tz+Rd4SWuq/N/3zMLeYJ0mGWIB1mCdJjniAdZglmprp7Mr5267V5x8jd1zZdE9Xdk3nHoE35bAIAAACAYlIuAgrtqaeeaurcsmXLWpzkuZYuXRrlcvJ/Yp9++ukM0qSjmWed9XOOaK5cVK/XY2hoKIM0EFGr1eKBp7fnHaOl7h/aHrVaLe8YdADzBOkwS5AOswTpMU+QDrMEM/d/77wphqujecfI3VB1NP7fnTfnHYM25LMJAAAAAIpLuQgotGbLRQMDA60N8jzlcjkWLlyYeK7Z/HNBM1mzfs4zubNIz5pie3TnUExMT+Udo6UmpnbHo7sU9mg98wTpMEuQDrME6TFPkA6zBDPz0PCv4vJ7bss7xpzxw3tujYeGf5V3DNqMzyYAAAAAKK55eQcA2BPNbv7p7+9vcZIXWrhwYezYsaPhmSJtLmomazOFqrQ1e2eRnjXFdt/TT+YdIROfvOq70Td/Qd4xaHOjkxN5R8iEeaLVzBKkwyxBeswTpMMsQfPq9XpsH9kZtXo97yhzRq1ej7+64luxT/+iKJVKecehTXTKZ9O2p5+MFYv3yjsGAAAAAKRKuQgotJ07dyae6evri3I5+0VtixYtSjyTVD6aS5p51nmUi5p5zhHFetYU28M7OmNL1tNjI/H02EjeMaAtmCdIh1mCdJglSI95gnSYJWidiempeHiHH8wFM/XwcGd8HQAAAACAzpL9d9sDpGhycjLxTKVSySDJC/X09CSeaSb/XDFXn3UzzzmiWM+aYhudHM87AgAAAAAA0CIjHbKhCQAAAIDOYnMRUGjNFEa6uroySPJC8+Yl/ye2SIWXufqsm3nOEcV61ntq3bp1TT8X0nfA68+KJccenncMAAAAAACgBXZPT+UdAQAAAABSZ3MRUGjNFEbyKlk0c+/u3bszSJKOufqsm72zSM+aYit3+esVAAAAAAC0q6nadN4RAAAAACB11hoAhTY1lfyTwZSL0jFXn7Vy0Qtdd911sc8+++Qdo2NddMMVcd39W/KOAQAAAAAAtMC8clfeEQAAAAAgdX60PlBozRRLpqfz+elhzdybV/FpNubqs272ziI9a4qtu8sXFQEAAAAAoF11d/maEwAAAADtR7kIKLT58+cnnmlm404rNLMpp5n8c8VcfdbNbiQq0rOm2Prm9+QdAQAAAAAAaJH++QvyjgAAAAAAqfMjdYBC6+7uTjyTV7momXuLVHiZq8+62TuL9KwpthWL98o7QibW7H9wHDiwd94xaHMPDv8qNj2yLe8YLWeeaDWzBOkwS5Ae8wTpMEswMzvHx+Kqe++Ket5B5ohSRJx16MtjUU8l7yi0kU75bFox0BlfBwAAAACgsygXAYW2YEHyTwYbHx/PIMns7i1S4WWuPutm7yzSs6bYDlmyNO8Imbjg+NM6pkhFfh4efqojvhnBPNFqZgnSYZYgPeYJ0mGWYOZ6uufHZVtuzTvGnHDuyjVx4Zr1ecegzXTKZ9PBHfJ1AAAAAAA6SznvAAB7YuHChYlnRkdHo17P/mcR7tq1K/HMokWLMkiSjmaedTN/5rQ1e2eRnjXFtnzRYCzoau/+9oJ53bF84WDeMegA5gnSYZYgHWYJ0mOeIB1mCWbuTceeEoOVvrxj5G6w0he/c+zJecegDflsAgAAAIDiUi4CCm3JkiWJZ+r1ei6ll507dyaeaSb/XNFM1mb+zGlr9s4iPWuKrVwux8uW7JN3jJY6aHCfKJf9NZLWM0+QDrME6TBLkB7zBOkwSzBzle75ceFq23retub0qHTPzzsGbchnEwAAAAAUl3/1Agptr732aurcjh07WpzkuWq1WoyMjCSeazb/XNBM1qyf80zuLNKzpvgOXbIs7wgtdUib//mYW8wTpMMsQTrMEqTHPEE6zBLM3KkvOyKOWbYi7xi5efm+B8QpBx6edwzamM8mAAAAACgm5SKg0JotjDzxxBMtTvJc27dvj+np6cRzRSq8NJM16+ccEfH4448nnimVSjE4OJhBGnjG2hWH5h2hpU5YcUjeEegg5gnSYZYgHWYJ0mOeIB1mCWauVCrFu044K7o6cPNIV7kc71x7ZpRKpbyj0MZ8NgEAAABAMXXev5oDbWX//fdv6lwzBZQ0NXtfs/nngmayZv2cm71z2bJlMW/evAzSwDOOWrp/7LeoPQttyxcNxsqlxflvF8VnniAdZgnSYZYgPeYJ0mGWYHb2X7wkzl25Ou8YmTtv5ZrYf/GSvGPQ5nw2AQAAAEAxKRcBhXbQQQc1de7RRx9tbZDneeyxx5o6d/DBB7c4SXqaedZPP/10TExMtD7MszTzrIv0nGkPpVIpXn34qrxjtMSrD1/lJ5uSKfME6TBLkA6zBOkxT5AOswSz98aXnxx79fbnHSMze/X2x396+Ul5x6AD+GwCAAAAgGJSLgIKrVKpxLJlyxLP3XvvvRmk+Q+//OUvE8+USqV42ctelkGadDRT0KnX63HfffdlkOY/NPOslYvIw/qDj4oFXe21MWtB17xYf/BRecegA5knSIdZgnSYJUiPeYJ0mCWYnZ553fH2NafnHSMzb197RvTM6847Bh3CZxMAAAAAFI9yEVB4hxxySOKZrVu3ZpDkPzRTeNl///1jwYIFGaRJRzPPOWJuPutms0Oa+uYviFcctDLvGKl6xUEro3d+cf67RfswT5AOswTpMEuQHvME6TBLMHsnHnBYrNqvOD8EbLaO2+9lceKKQ/OOQQfx2QQAAAAAxaNcBBTesccem3hmy5YtGSSZ2X3N5J5LDj300KhUKonnsnzWjz/+eOzYsSPxXNGeNe3j9Uevje5yV94xUtFd7orXH7027xh0MPME6TBLkA6zBOkxT5AOswSzUyqV4p1rz4h5bTI/L2ZeuSvesfaMKJVKeUehw/hsAgAAAIBiUS4CCm/16tWJZ+65554YGxvLIM0zNm3alHhmzZo1GSRJT1dXV6xatSrxXDN/9rQ0e1fRnjXtY9nCgXjzqlPyjpGKN686JZYtHMg7Bh3MPEE6zBKkwyxBeswTpMMsweztt2gwXndU+5YGfvvotbHfosG8Y9CBfDYBAAAAQLEoFwGF10xxpFarxW233db6MBHx0EMPxfbt2xPPNVOKmmuaedZZlos2btyYeGbhwoVx6KGHZpAGXty5K9fEoXstyzvGHjlsr33jvJVKeuTPPEE6zBKkwyxBeswTpMMswey94ZgTYp++RXnHSN0+fYviDUefmHcMOpjPJgAAAAAoDuUioPCOO+64qFQqieeuvfbaDNJEXHPNNU2dO/nkk1ucJH2nnnpq4pmtW7fGE088kUGa5p71SSedFKVSKYM08OK6yuX4g1NeE93lrryjzEp3uSvec8qro1z210byZ54gHWYJ0mGWID3mCdJhlmD2FszrjnesPSPvGKl7x9ozYv68eXnHoIP5bAIAAACA4vCvYEDhLViwINatW5d47sc//nEGaZq7Z+XKlbFixYoM0qTrVa96VVPnsnjWExMTcf311yeee/WrX93yLJBk/8VL4s2rkst5c9H5x50a+y9ekncM+A3zBOkwS5AOswTpMU+QDrMEs7d2xSGxevnBecdIzZr9D461Kw7JOwb4bAIAAACAglAuAtrC2WefnXjm2muvjZGRkZbmqNVqccUVVySeK2rhZfny5XHUUUclnvvhD3/Y8ixXX311VKvVxHNFfda0n/OOWhOnHXRk3jFm5LSDjoxzV67JOwa8gHmCdJglSIdZgvSYJ0iHWYLZe8cJZ0R3VzE3rDxbd1dXW25iorh8NgEAAADA3KdcBLSF1772tYlnxsfH45JLLmlpjmuvvTYeffTRxHPN5J2rmsl+ySWXxPj4eEtzfPOb30w8s2zZsli9enVLc0CzyqVSvOeUV8ea/Yvx00/X7n9IvOeUV0e5VMo7CryAeYJ0mCVIh1mC9JgnSIdZgtlb1r843nD0iXnH2GNvOPrEWNq/OO8Y8Bs+mwAAAABg7lMuAtrCqlWr4uijj04897Wvfa2lOb761a8mntlrr70KvU3nrW99a+KZXbt2tbTINTo6Gv/6r/+aeO4tb3lLlHzhhzlkXrkr3r/u3Dn/BdS1+x8S71t3TswrF/+ntNK+zBOkwyxBOswSpMc8QTrMEsze645eG8sKXMxZ1r84Xnf02rxjwAv4bAIAAACAuU25CGgbF154YeKZK664IrZs2dKS+7dv3x5f//rXE8/97u/+bnR3d7ckQxZOPPHEOPzwwxPP/f3f/33LMnzpS1+KHTt2JJ5r5v8TkLX5XfPij9efF6cddGTeUV7UaQcdGR9Yf27M75qXdxRIZJ4gHWYJ0mGWID3mCdJhlmB25nfNi3eecGbeMWbtXSecaa6Ys3w2AQAAAMDcpVwEtI23ve1t0dXV+KeI1ev1+OQnP9mS+z/72c/G+Ph44rl3vvOdLbk/S838GW666aa4+uqrU797cnIy/vZv/zbx3MqVK+Okk05K/X5Iw7xyV/zhqb8Vbz1+XXTPkZ9+2F3uit9bvS7+8NTf8hMZKRTzBOkwS5AOswTpMU+QDrMEs3P88oPihBWH5h1jxk5ccWgct/ygvGNAQz6bAAAAAGBuKtXr9XreIQDScsEFF8S3vvWthmfK5XLccsstsWbNmtTuffDBB2PlypVRrVYbnjvttNPiuuuuS+3evDz11FNx4IEHxtjYWMNza9asiVtuuSXK5fS6rJ/5zGfiz//8zxPP/e///b/jP//n/5zavXPV9u3bY+nSpc/5tSeffDL22WefnBIxU4/seDq+cNO/xb1PPZFbhsP22jfec8qrY//FS3LLAGkwT5AOswTpMEuQHvME6TBLMDPbR3fGBy/9akxOT+UdpSkLuubFZ1739ti7b1HeUaBpPpsAAAAAmGs6+ftylYuAtrJp06ZYu3Zt4rk1a9bEjTfeGPPnz9/jO+v1epx77rlx+eWXJ5695JJL4vWvf/0e3/nv3vWud8WXv/zlxHNXXXVVnHnmmandGxHx/ve/P/7hH/4h8dxnPvOZ+LM/+7NU7ty6dWusWbMmRkZGGp7bb7/9Ytu2bbFgwYJU7p3LOvkvMe1kulaLy7ZsiovvuCl216Yzu7e73BVvXnVqnLdydaolQMiTeYJ0mCVIh1mC9JgnSIdZgpm55K5b4lu335B3jKZccNwr4vXHnJh3DJgxn00AAAAAzCWd/H25ykVA23nDG94Q3/ve9xLP/cEf/EH8r//1v/b4vk984hPx3/7bf0s8d8IJJ8TPfvazKJVKe3znv8uzXPTwww/HkUcembi9qLu7O37yk5/EunXr9ui+0dHRWL9+fdx6662JZz/3uc/F+973vj26ryg6+S8x7eiJXcPxvc0b44b7t8REC38i6oKuefGKg1bG649eG8sWDrTsHsiTeYJ0mCVIh1mC9JgnSIdZgubsnp6Kv7zs6/HYruG8ozS036LB+NQ5F8a8rq68o8Cs+WwCAAAAYC7o5O/LVS4C2s69994bxxxzTExMTCSe/fCHPxwf//jHZ33XRRddFO9973sTz5VKpbjhhhvilFNOmfVdLybPclFExMc//vH4yEc+knhu8eLF8aMf/ShOOOGEWd0zNjYWr3vd6+Kqq65KPHvsscfGrbfeGl0d8kXUTv5LTDsbm5yIa7fdHVduvSMe3TmU2vsuXzQYrz58Vaw/+Kjond/+m70gwjxBWswSpMMsQXrME6TDLEGyOx97IP76qu/mHaOhD73yjXHsvgfmHQNS4bMJAAAAgDx18vflKhcBbemjH/1ofOxjH2vq7AUXXBBf/OIXY+HChU2//8TERHzwgx+Mf/iHf2jq/Lvf/e7453/+56bfv1l5l4smJibi2GOPja1btyae7e3tjYsuuije+c53zuiOe+65J84///y48847E8+WSqW4+uqr4/TTT5/RHUXWyX+J6QT1ej22PPlIbHj4vrjv6Sfi/qefnNFPbFwwrzsOGtwnDlmyLE5YcUisXLp/qtvToEjME6TDLEE6zBKkxzxBOswSNPbZ6y6Lmx9M/nfwPJxy4OHx/nXn5h0DUrenn02liDhin+U+mwAAAACYkU7+vlzlIqAtTU1Nxemnnx433nhjU+eXLVsW//2///d4+9vfHosWLXrJc9VqNb7zne/ERz/60bj//vubeu8jjjgiNm7cGP39/U2dn4m8y0UREZs2bYpXvOIVTW2Kiog488wz46/+6q/izDPPbPhFnPvvvz8+97nPxec///mYnJxs6r0/9KEPxSc+8YmmzraLTv5LTCeq1Wrx6K6h2Pb0k/Hw8FMxMjkRu6enYqo2HfPKXdHdNS/65y+IFQN7xcFLlsbyhYNRLpfzjg1zknmCdJglSIdZgvSYJ0iHWYLnempsV/zZpV+NiandeUd5jgXzuuNvXveOWNKb/tcfYK55/mfT5icfjnufeuIlz/fP74kvvvk9GSYEAAAAoB108vflKhcBbeuhhx6K1atXx1NPPdX076lUKnHGGWfE2rVrY8WKFbFw4cIYGRmJxx9/PDZu3BhXX3117Nq1a0bvd+ONN8Zxxx03mz9CorlQLoqIuOiii+K9733vjH7PAQccEGeccUasWrUq9tprr+ju7o7h4eH45S9/GTfffHP87Gc/i5l8RK1fvz6uuuqq6Orqmmn8Quvkv8QAAAAAAGTl+5s3xjduuy7vGM/xe6vXxeuOWpt3DMjFddu2xEU3XtHwzFfe8v/FvA77uhEAAAAAe6aTvy93Xt4BAFrlgAMOiMsuuyzOPvvspgtB1Wo1Lr/88rj88sv3+P7u7u64+OKLW1Ysmkv+6I/+KB544IH49Kc/3fTveeihh+JrX/taKvcfe+yx8d3vfrfjikUAAAAAAGTjnJXHxzXbNscjO57OO0pERKxYvFe89sjj844BuRms9CWeGR4fjb37FmWQBgAAAACKr5x3AIBWOumkk+LSSy+N/v7+TO/t7u6Ob3zjG3Huuedmem+ePvWpT8X73//+zO9duXJlXHnllbFkyZLM7wYAAAAAoDPMK3fF759wVt4xfuP3Tzgz5pX9wC0610AT5aKh6mgGSQAAAACgPSgXAW3v9NNPjxtvvDEOOeSQTO5bunRp/OQnP4k3velNmdw3l3z2s5+Nz372szFvXjaL8c4999y46aabYtmyZZncBwAAAABA5zp62Yp4xcuOzDtGnHbQkXHUshV5x4BcNbW5SLkIAAAAAJqmXAR0hJe//OWxYcOGuPDCC1t6zznnnBMbN26MdevWtfSeuez9739//OQnP4kjj2zdF1grlUp8/OMfj+9///uxePHilt0DAAAAAADPduGa9VGZNz+3+yvd8+PC1etzux/mikr3/Jjf1fiH3dlcBAAAAADNUy4COsbg4GB87Wtfi6uuuirWrl2b6nsfccQRcfHFF8dll10WK1b4aYHr16+PO+64Iz7xiU/EkiVLUnvfcrkcb3rTm+Kuu+6KD3/4w1Eu+xgDAAAAACA7g5W+ePOqU3K7/83HnhIDTWxsgXZXKpUStxcpFwEAAABA83xXNtBxzjzzzNiwYUNcffXVcf7550d/f/+s3qenpyfOO++8uPTSS2PLli3xpje9KeWkxTZ//vz40Ic+FA899FBcdNFFceKJJ0apVJrVey1fvjw+8IEPxC9+8Yu4+OKL4+CDD045LQAAAAAANOc1RxwXBwzslfm9Bw7sHa854rjM74W5KqlcNKxcBAAAAABNK9Xr9XreIQDyNDk5Gddcc01cf/31sXnz5tiyZUv86le/il27dsXY2Fj09PTEwoULY8mSJXHkkUfG0UcfHSeffHK86lWvit7e3rzjF8oTTzwRV1xxRdx6662xefPmuO+++2LHjh2xa9eumJqaiv7+/li4cGHsv//+cdRRR8UxxxwTr3zlK2P16tV5R5+ztm/fHkuXLn3Orz355JOxzz775JQIAAAAAKD9bXnykfjYjy7O9M6Pvvr8OHKf5ZneCXPZ5667LG56cOtLvr5qv5fFX571n7ILBAAAAEDhdfL35c7LOwBA3ubPnx9nn312nH322XlHaXvLli2Ld7zjHfGOd7wj7ygAAAAAADBrK5fuH6cffFRcs+3uTO47/ZCjFIvgeWwuAgAAAID0lPMOAAAAAAAAAFA0bz3+tOjtnt/ye3q7F8Rbj1/X8nugaAYSykVDykUAAAAA0DTlIgAAAAAAAIAZWlzpi9897hUtv+ctx50ai3t6W34PFM1gpb/h67smqjE1PZ1RGgAAAAAoNuUiAAAAAAAAgFk4+7Bj46DBfVr2/gcNLo1XHXZsy94fimygkly6Gx63vQgAAAAAmqFcBAAAAAAAADAL5XI5fv/Es1ry3qWIePeJZ0W57Eu68GKSNhdFRAxXxzJIAgAAAADF51+iAQAAAAAAAGbp8L33i7MOPSb19z3z0JfHYXvvm/r7QrsYqPQlnhmqjmSQBAAAAACKT7kIAAAAAAAAYA+85bjTon9+T2rv1z+/J95y3CtSez9oR73d82N+17yGZ4aqoxmlAQAAAIBiUy4CAAAAAAAA2AOLeirxluPTKwNdcPxpsainktr7QTsqlUoxmLC9aFi5CAAAAACaolwEAAAAAAAAsIfOOuSYOGTJsj1+n0P3WhZnHnpMComg/Q0klItsLgIAAACA5igXAQAAAAAAAOyhcrkc7z7xrCjtwXuUIuL3TzwryqU9eRfoHDYXAQAAAEA6lIsAAAAAAAAAUnDIXsviVYcfO+vff/bhq1LZfgSdwuYiAAAAAEiHchEAAAAAAABASn531Sti4YLKjH/fogWVOP+4U1uQCNqXzUUAAAAAkA7lIgAAAAAAAICU9C/oibcef9qMf99bV6+L/vk9LUgE7Stpc9HOiWpMTU9nlAYAAAAAiku5CAAAAAAAACBFpx9ydBy+935Nnz9i7/1i/cFHtTARtKekzUURETvGxzJIAgAAAADFplwEAAAAAAAAkKJyqRS/f+JZUSqVEs+Wfn223MRZ4LmSNhdFRAxVRzNIAgAAAADFplwEAAAAAAAAkLKDBveJ1xy+KvHcaw4/Ll42uE8GiaD9DFb6E88MVUcySAIAAAAAxaZcBAAAAAAAANACb151aizu6X3J1xf39Mb5q07JMBG0l97u+TG/a17DM8M2FwEAAABAIuUiAAAAAAAAgBbom78gfm/1upd8/cLV66N3/oIME0F7KZVKMVDpa3hmSLkIAAAAABIpFwEAAAAAAAC0yLqDVsbKpfu/4NePWrp/nHbQkTkkgvYymFAusrkIAAAAAJIpFwEAAAAAAAC0SKlUit8/4cwol0q/+bVyqRS/f8JZUXrWrwGzY3MRAAAAAOw55SIAAAAAAACAFjpgYO947ZHH/+Z/n3Pk6lgxsFd+gaCN2FwEAAAAAHtOuQgAAAAAAACgxd507CkxWOmLwUpf/M6xJ+cdB9qGzUUAAAAAsOfm5R0AAAAAAAAAoN1VuufHhavXR6lUikr3/LzjQNtI2ly0c6IaU7XpmFfuyigRAAAAABSPchEAAAAAAABABk592RF5R4C2k7S5KCJiR3Us9upbmEEaAAAAACimct4BAAAAAAAAADpBqVSKUqmUdwxoK0mbiyIihqqjGSQBAAAAgOJSLgIAAAAAAAAACmmw0p94RrkIAAAAABpTLgIAAAAAAAAACqm3e350d3U1PDNcHckoDQAAAAAUk3IRAAAAAAAAAFBIpVIpcXvRUHUsozQAAAAAUEzKRQAAAAAAAABAYQ1Uehu+bnMRAAAAADSmXAQAAAAAAAAAFFby5qLRjJIAAAAAQDEpFwEAAAAAAAAAhTXQ09fw9WHlIgAAAABoSLkIAAAAAAAAACiswd7G5aKhceUiAAAAAGhEuQgAAAAAAAAAKKykzUU7x6sxVZvOKA0AAAAAFI9yEQAAAAAAAABQWEmbiyIidoyPZZAEAAAAAIpJuQgAAAAAAAAAKKzBhM1FERFDY6MZJAEAAACAYlIuAgAAAAAAAAAKa6CJzUVDVeUiAAAAAHgpykUAAAAAAAAAQGH1dS+I7q6uhmeGx5WLAAAAAOClKBcBAAAAAAAAAIVVKpVioKfx9qKhMeUiAAAAAHgpykUAAAAAAAAAQKEN9jYuF9lcBAAAAAAvTbkIAAAAAAAAACi05M1FIxklAQAAAIDiUS4CAAAAAAAAAAptsNLf8PXh8bGMkgAAAABA8SgXAQAAAAAAAACFNljpbfj6UNXmIgAAAAB4KcpFAAAAAAAAAEChDSRsLto1Xo2p2nRGaQAAAACgWJSLAAAAAAAAAIBCS9pcVI+IHeNj2YQBAAAAgIJRLgIAAAAAAAAACm0wYXNRRMTQ2GgGSQAAAACgeJSLAAAAAAAAAIBCG+jtSzwzPK5cBAAAAAAvRrkIAAAAAAAAACi0vu4F0V3uanhmqKpcBAAAAAAvRrkIAAAAAAAAACi0UqkUA5XG24uGlYsAAAAA4EUpFwEAAAAAAAAAhTeYUC6yuQgAAAAAXpxyEQAAAAAAAABQeDYXAQAAAMDsKBcBAAAAAAAAAIVncxEAAAAAzI5yEQAAAAAAAABQeEnlIpuLAAAAAODFKRcBAAAAAAAAAIU3kFAu2jk+FlO16YzSAAAAAEBxKBcBAAAAAAAAAIWXtLmoHhE7xseyCQMAAAAABaJcBAAAAAAAAAAU3mClP/HMcHU0gyQAAAAAUCzKRQAAAAAAAABA4Q0kbC6KiBhSLgIAAACAF1AuAgAAAAAAAAAKr2/+gugudzU8Y3MRAAAAALyQchEAAAAAAAAAUHilUilxe5HNRQAAAADwQspFAAAAAAAAAEBbGEwoF9lcBAAAAAAvpFwEAAAAAAAAALQFm4sAAAAAYOaUiwAAAAAAAACAtmBzEQAAAADMnHIRAAAAAAAAANAWbC4CAAAAgJlTLgIAAAAAAAAA2kLS5qKd42MxXatllAYAAAAAikG5CAAAAAAAAABoC0nlonpE7BgfyyYMAAAAABSEchEAAAAAAAAA0BYGEspFERFD1ZEMkgAAAABAcSgXAQAAAAAAAABtYbDSn3hmuGpzEQAAAAA8m3IRAAAAAAAAANAW+uYviO5yV8MzNhcBAAAAwHMpFwEAAAAAAAAAbaFUKsVApa/hmeHqaEZpAAAAAKAYlIsAAAAAAAAAgLaRVC4aUi4CAAAAgOdQLgIAAAAAAAAA2sagzUUAAAAAMCPKRQAAAAAAAABA27C5CAAAAABmRrkIAAAAAAAAAGgbNhcBAAAAwMwoFwEAAAAAAAAAbSOpXLRjfCyma7WM0gAAAADA3KdcBAAAAAAAAAC0jYGEclE9nikYAQAAAADPUC4CAAAAAAAAANpG0uaiiIjh6mgGSQAAAACgGJSLAAAAAAAAAIC2kbS5KCJiSLkIAAAAAH5DuQgAAAAAAAAAaBv983tiXrmr4RmbiwAAAADgPygXAQAAAAAAAABto1QqxUClt+GZoepIRmkAAAAAYO5TLgIAAAAAAAAA2spgpb/h60PVsYySAAAAAMDcp1wEAAAAAAAAALSVpM1FwzYXAQAAAMBvKBcBAAAAAAAAAG3F5iIAAAAAaJ5yEQAAAAAAAADQVmwuAgAAAIDmKRcBAAAAAAAAAG0laXPRjvGxmK7VMkoDAAAAAHObchEAAAAAAAAA0FYGK30NX69HxM7xsWzCAAAAAMAcp1wEAAAAAAAAALSVgYRyUUTEUHU0gyQAAAAAMPcpFwEAAAAAAAAAbSVpc1GEchEAAAAA/DvlIgAAAAAAAACgrfTP74l55a6GZ4aViwAAAAAgIpSLAAAAAAAAAIA2UyqVYqDS2/CMzUUAAAAA8AzlIgAAAAAAAACg7Qz09DV8XbkIAAAAAJ6hXAQAAAAAAAAAtJ3B3sblomHlIgAAAACICOUiAAAAAAAAAKAN2VwEAAAAAM1RLgIAAAAAAAAA2k7y5qKRjJIAAAAAwNymXAQAAAAAAAAAtJ3BSn/D13dMVGO6VssoDQAAAADMXcpFAAAAAAAAAEDbGehpvLmoXq/HzvGxjNIAAAAAwNylXAQAAAAAAAAAtJ3B3sblooiIofHRDJIAAAAAwNymXAQAAAAAAAAAtJ2kzUUREUNjykUAAAAAoFwEAAAAAAAAALSdhQt6oqvc+Nsihm0uAgAAAADlIgAAAAAAAACg/ZRKpRhM2F5kcxEAAAAAKBcBAAAAAAAAAG1qoNK4XGRzEQAAAAAoFwEAAAAAAAAAbWowoVxkcxEAAAAAKBcBAAAAAAAAAG0qaXPRUFW5CAAAAACUiwAAAAAAAACAtjTY27hcNDyuXAQAAAAAykUAAAAAAAAAQFsa6GlcLtoxPha1Wi2jNAAAAAAwNykXAQAAAAAAAABtabDS3/D1er0eOyaqGaUBAAAAgLlJuQgAAAAAAAAAaEuDld7EM0PVkQySAAAAAMDcpVwEAAAAAAAAALSlgYTNRRERw9XRDJIAAAAAwNylXAQAAAAAAAAAtKWFC3qiq9z4WyOGlIsAAAAA6HDKRQAAAAAAAABAWyqVSjHY09fwjM1FAAAAAHQ65SIAAAAAAAAAoG0NVBqXi2wuAgAAAKDTKRcBAAAAAAAAAG1rMKlcNKZcBAAAAEBnUy4CAAAAAAAAANpW0uai4XHlIgAAAAA6m3IRAAAAAAAAANC2EjcXVZWLAAAAAOhsykUAAAAAAAAAQNtK2ly0Y3wsarVaRmkAAAAAYO5RLgIAAAAAAAAA2lbS5qJ6vR47JqoZpQEAAACAuUe5CAAAAAAAAABoW0nlooiI4epoBkkAAAAAYG5SLgIAAAAAAAAA2tZAE+WioepIBkkAAAAAYG5SLgIAAAAAAAAA2lb/gkp0lRt/e8RwdSyjNAAAAAAw9ygXAQAAAAAAAABtq1wqxUBPb8MzNhcBAAAA0MmUiwAAAAAAAACAtjZY6W/4+nB1NKMkAAAAADD3KBcBAAAAAAAAAG1tsNLX8PUh5SIAAAAAOphyEQAAAAAAAADQ1gaUiwAAAADgJSkXAQAAAAAAAABtLWlz0bByEQAAAAAdTLkIAAAAAAAAAGhrSZuLhsfHolarZZQGAAAAAOYW5SIAAAAAAAAAoK0lbS6q1+uxc6KaURoAAAAAmFuUiwAAAAAAAACAtpa0uSgiYqg6mkESAAAAAJh7lIsAAAAAAAAAgLaWtLkoImJYuQgAAACADqVcBAAAAAAAAAC0tf4FlegqNf4WCZuLAAAAAOhUykUAAAAAAAAAQFsrl0oxUOlteMbmIgAAAAA6lXIRAAAAAAAAAND2Bip9DV8fqo5klAQAAAAA5hblIgAAAAAAAACg7Q1W+hu+PmRzEQAAAAAdSrkIAAAAAAAAAGh7gwmbi4aViwAAAADoUMpFAAAAAAAAAEDbG0goF9lcBAAAAECnUi4CAAAAAAAAANpe0uaiHeNjUavVMkoDAAAAAHOHchEAAAAAAAAA0PaSNhfV6vXYOVHNKA0AAAAAzB3KRQAAAAAAAABA20vaXBQRMVwdzSAJAAAAAMwtykUAAAAAAAAAQNtL2lwUETGkXAQAAABAB1IuAgAAAAAAAADa3sIFlegqNf42CZuLAAAAAOhEykUAAAAAAAAAQNsrl0qxuNLb8IzNRQAAAAB0IuUiAAAAAAAAAKAjDFb6Gr4+VB3JKAkAAAAAzB3KRQAAAAAAAABARxis9Dd8fbg6llESAAAAAJg7lIsAAAAAAAAAgI4wUOlt+LrNRQAAAAB0IuUiAAAAAAAAAKAj2FwEAAAAAC+kXAQAAAAAAAAAdISkzUXD46NRq9UySgMAAAAAc4NyEQAAAAAAAADQEZI2F9Xq9dg1Uc0oDQAAAADMDcpFAAAAAAAAAEBHGKj0JZ4Zqo5mkAQAAAAA5g7lIgAAAAAAAACgIwwqFwEAAADACygXAQAAAAAAAAAdYeGCSnSVGn+rxLByEQAAAAAdRrkIAAAAAAAAAOgI5VIpFld6G56xuQgAAACATqNcBAAAAAAAAAB0jMFKX8PXlYsAAAAA6DTKRQAAAAAAAABAxxhIKBcNKxcBAAAA0GGUiwAAAAAAAACAjmFzEQAAAAA8l3IRAAAAAAAAANAxBnpsLgIAAACAZ1MuAgAAAAAAAAA6xmBvQrlofDRq9XpGaQAAAAAgf8pFAAAAAAAAAEDHSNpcVKvXY9f4WEZpAAAAACB/ykUAAAAAAAAAQMcY7O1PPDOkXAQAAABAB1EuAgAAAAAAAAA6xmBPb+KZobGRDJIAAAAAwNygXAQAAAAAAAAAdIyFPb1RLpUanhmujmaUBgAAAADyp1wEAAAAAAAAAHSMcqkUA5W+hmeGlIsAAAAA6CDKRQAAAAAAAABARxnoUS4CAAAAgH+nXAQAAAAAAAAAdJTB3sblouFx5SIAAAAAOodyEQAAAAAAAADQURI3F40pFwEAAADQOZSLAAAAAAAAAICOMlixuQgAAAAA/p1yEQAAAAAAAADQUZLKRTuqY1Gr1zNKAwAAAAD5Ui4CAAAAAAAAADrKQEK5aLpei10T1YzSAAAAAEC+lIsAAAAAAAAAgI6StLkoImKoOppBEgAAAADIn3IRAAAAAAAAANBRmikXDSsXAQAAANAhlIsAAAAAAAAAgI6ysKc3yqVSwzND1ZGM0gAAAABAvpSLAAAAAAAAAICOUi6VYqCn8faioTGbiwAAAADoDMpFAAAAAAAAAEDHGag0LhcNjysXAQAAANAZlIsAAAAAAAAAgI4zmFAuGqoqFwEAAADQGZSLAAAAAAAAAICOk7i5SLkIAAAAgA6hXAQAAAAAAAAAdBybiwAAAADgGcpFAAAAAAAAAEDHSSoX7aiORa1ezygNAAAAAORHuQgAAAAAAAAA6DgDCeWi6Xotdk1UM0oDAAAAAPlRLgIAAAAAAAAAOk7S5qKIiOHqaAZJAAAAACBfykUAAAAAAAAAQMdJ2lwUETGkXAQAAABAB1AuAgAAAAAAAAA6zqIFlSiXSg3PDFVHMkoDAAAAAPlRLgIAAAAAAAAAOk65XI6Bnsbbi4arYxmlAQAAAID8KBcBAAAAAAAAAB1poNLb8HWbiwAAAADoBMpFAAAAAAAAAEBHGqz0N3zd5iIAAAAAOoFyEQAAAAAAAADQkWwuAgAAAADlIgAAAAAAAACgQyVvLhrNKAkAAAAA5Ee5CAAAAAAAAADoSAOVvoavD1fHolavZ5QGAAAAAPKhXAQAAAAAAAAAdKTBhHLRdL0WIxPVjNIAAAAAQD6UiwAAAAAAAACAjpS0uSgiYqg6mkESAAAAAMiPchEAAAAAAAAA0JGSNhdFKBcBAAAA0P6UiwAAAAAAAACAjrRoQSXKpVLDM8PKRQAAAAC0OeUiAAAAAAAAAKAjlcvlWNzT2/CMzUUAAAAAtDvlIgAAAAAAAACgYw1W+hq+bnMRAAAAAO1OuQgAAAAAAAAA6FgDCeUim4sAAAAAaHfKRQAAAAAAAABAx7K5CAAAAIBOp1wEAAAAAAAAAHSs5M1FIxklAQAAAIB8KBcBAAAAAAAAAB1rsNLf8PXh8bGo1esZpQEAAACA7CkXAQAAAAAAAAAda6DS2/D16VotRiaqGaUBAAAAgOwpFwEAAAAAAAAAHStpc1FExFB1NIMkAAAAAJAP5SIAAAAAAAAAoGMNVvoSzwwrFwEAAADQxpSLAAAAAAAAAICOtWhBJUqlUsMzNhcBAAAA0M6UiwAAAAAAAACAjlUul2Ogp7fhGZuLAAAAAGhnykUAAAAAAAAAQEcbqPQ1fN3mIgAAAADamXIRAAAAAAAAANDRBhPKRTYXAQAAANDOlIsAAAAAAAAAgI5mcxEAAAAAnUy5CAAAAAAAAADoaDYXAQAAANDJlIsAAAAAAAAAgI6WuLlofDRq9XpGaQAAAAAgW8pFAAAAAAAAAEBHS9pcNF2rxchENaM0AAAAAJAt5SIAAAAAAAAAoKMNVvoTzwxXRzNIAgAAAADZUy4CAAAAAAAAADraQMLmooiIIeUiAAAAANqUchEAAAAAAAAA0NEWL6hEqVRqeEa5CAAAAIB2pVwEAAAAAAAAAHS0crkci3t6G54ZVi4CAAAAoE0pFwEAAAAAAAAAHW+w0tfwdZuLAAAAAGhXykUAAAAAAAAAQMcb6GlcLrK5CAAAAIB2pVwEAAAAAAAAAHS8wV6biwAAAADoTMpFAAAAAAAAAEDHs7kIAAAAgE6lXAQAAAAAAAAAdLzEzUXjo1Gv1zNKAwAAAADZUS4CAAAAAAAAADreYKVxuWi6VotdE+MZpQEAAACA7CgXAQAAAAAAAAAdbyChXBQRMVwdySAJAAAAAGRLuQgAAAAAAAAA6HiDlf7EM0PVsQySAAAAAEC2lIsAAAAAAAAAgI63eEElSqVSwzNDNhcBAAAA0IaUiwAAAAAAAACAjlcul2NxT2/DM8PjoxmlAQAAAIDsKBcBAAAAAAAAAETEQE9fw9eHxpSLAAAAAGg/ykUAAAAAAAAAABExWGlcLrK5CAAAAIB2pFwEAAAAAAAAABARAwnlIpuLAAAAAGhHykUAAAAAAAAAAGFzEQAAAACdSbkIAAAAAAAAACCSy0VD1dGo1+sZpQEAAACAbCgXAQAAAAAAAABExEBCuWi6VotdE+MZpQEAAACAbCgXAQAAAAAAAABExGBv43JRRMTw+GgGSQAAAAAgO8pFAAAAAAAAAAARMdiTXC4aGlMuAgAAAKC9KBcBAAAAAAAAAETEop7eKJVKDc/YXAQAAABAu1EuAgAAAAAAAACIiK5yORYvqDQ8M1QdySgNAAAAAGRDuQgAAAAAAAAA4NcGKv0NXx+ujmWUBAAAAACyoVwEAAAAAAAAAPBrg5Xehq/bXAQAAABAu1EuAgAAAAAAAAD4NZuLAAAAAOg0ykUAAAAAAAAAAL9mcxEAAAAAnUa5CAAAAAAAAADg1wab2FxUr9czSgMAAAAAradcBAAAAAAAAADwawOVvoavT9WmY2RyPKM0AAAAANB6ykUAAAAAAAAAAL82mFAuiogYqo5mkAQAAAAAsqFcBAAAAAAAAADwa82Ui4aViwAAAABoI8pFAAAAAAAAAAC/tqinN0oJZ2wuAgAAAKCdKBcBAAAAAAAAAPxaV7kci3t6G56xuQgAAACAdqJcBAAAAAAAAADwLAOVvoav21wEAAAAQDtRLgIAAAAAAAAAeJbBhHKRzUUAAAAAtBPlIgAAAAAAAACAZ7G5CAAAAIBOolwEAAAAAAAAAPAsSZuLhqojGSUBAAAAgNZTLgIAAAAAAAAAeJbBSn/D14erY1Gv1zNKAwAAAACtpVwEAAAAAAAAAPAsAwmbi6Zq0zEyOZ5RGgAAAABoLeUiAAAAAAAAAIBnGUwoF0VEDFdHM0gCAAAAAK2nXAQAAAAAAAAA8CxJm4siIoaUiwAAAABoE8pFAAAAAAAAAADPsrinN0oJZ2wuAgAAAKBdKBcBAAAAAAAAADxLV7kci3p6G56xuQgAAACAdqFcBAAAAAAAAADwPIOVvoav21wEAAAAQLtQLgIAAAAAAAAAeJ6BhHKRzUUAAAAAtAvlIgAAAAAAAACA50naXKRcBAAAAEC7UC4CAAAAAAAAAHiepHLRsHIRAAAAAG1CuQgAAAAAAAAA4HkGmthcVK/XM0oDAAAAAK2jXAQAAAAAAAAA8DyDlf6Gr0/VpmN0ciKjNAAAAADQOspFAAAAAAAAAADPM1DpTTwzVB3JIAkAAAAAtJZyEQAAAAAAAADA8yRtLoqIGK6OZpAEAAAAAFpLuQgAAAAAAAAA4HkW9/RGKeHMkHIRAAAAAG1AuQgAAAAAAAAA4Hm6yuVY1NPb8IzNRQAAAAC0A+UiAAAAAAAAAIAXMVDpa/i6zUUAAAAAtAPlIgAAAAAAAACAFzGoXAQAAABAB1AuAgAAAAAAAAB4EUnlomHlIgAAAADagHIRAAAAAAAAAMCLGLC5CAAAAIAOoFwEAAAAAAAAAPAimtlcVK/XM0oDAAAAAK2hXAQAAAAAAAAA8CKSNhftrk3H6ORERmkAAAAAoDWUiwAAAAAAAAAAXkTS5qKIZ7YXAQAAAECRKRcBAAAAAAAAALyIpM1FERFD1ZEMkgAAAABA6ygXAQAAAAAAAAC8iMU9vVFKODNUHcskCwAAAAC0inIRAAAAAAAAAMCLmFfuioU9lYZnhm0uAgAAAKDglIsAAAAAAAAAAF7CYKW/4es2FwEAAABQdMpFAAAAAAAAAAAvYbDS1/D1IZuLAAAAACg45SIAAAAAAAAAgJcwkFAuGq6OZpQEAAAAAFpDuQgAAAAAAAAA4CUkby5SLgIAAACg2JSLAAAAAAAAAABeQjObi+r1ekZpAAAAACB9ykUAAAAAAAAAAC8haXPR7tp0jO6eyCgNAAAAAKRPuQgAAAAAAAAA4CUM9DQuF0VEDI+NZpAEAAAAAFpDuQgAAAAAAAAA4CUM9iaXi4bGlYsAAAAAKC7lIgAAAAAAAACAl7C4pzdKCWeGbC4CAAAAoMCUiwAAAAAAAAAAXsK8clcs7Kk0PDNscxEAAAAABaZcBAAAAAAAAADQwGBPX8PXbS4CAAAAoMiUiwAAAAAAAAAAGhioJJSLqiMZJQEAAACA9CkXAQAAAAAAAAA0MNjb3/D14XGbiwAAAAAoLuUiAAAAAAAAAIAGBnoSNheNKRcBAAAAUFzKRQAAAAAAAAAADQz2Ni4XDY+PRr1ezygNAAAAAKRLuQgAAAAAAAAAoIGkzUW7p6djdPdERmkAAAAAIF3KRQAAAAAAAAAADQxWGpeLIiKGq6MZJAEAAACA9CkXAQAAAAAAAAA00Ey5aEi5CAAAAICCUi4CAAAAAAAAAGhgcaU38YzNRQAAAAAUlXIRAAAAAAAAAEAD88pdsWhBpeEZm4sAAAAAKCrlIgAAAAAAAACABIOVvoavD40pFwEAAABQTMpFAAAAAAAAAAAJBhLKRcPjykUAAAAAFJNyEQAAAAAAAABAgsTNRdWRjJIAAAAAQLqUiwAAAAAAAAAAEgxU+hu+PlwdyygJAAAAAKRLuQgAAAAAAAAAIMFgpbfh60PVkajX6xmlAQAAAID0KBcBAAAAAAAAACRI2ly0e3o6xnZPZpQGAAAAANKjXAQAAAAAAAAAkGCw0pd4Zqg6kkESAAAAAEiXchEAAAAAAAAAQIJmykXD1dEMkgAAAABAupSLAAAAAAAAAAASLO7pTTwzpFwEAAAAQAEpFwEAAAAAAAAAJJjX1RWLFlQanlEuAgAAAKCIlIsAAAAAAAAAAJowWOlr+PqwchEAAAAABaRcBAAAAAAAAADQhIGEcpHNRQAAAAAUkXIRAAAAAAAAAEATbC4CAAAAoB0pFwEAAAAAAAAANMHmIgAAAADakXIRAAAAAAAAAEATmtlcVK/XM0oDAAAAAOlQLgIAAAAAAAAAaELS5qLJ6akY2z2ZURoAAAAASIdyEQAAAAAAAABAEwYr/YlnhqujGSQBAAAAgPQoFwEAAAAAAAAANGGg0pt4Zqg6kkESAAAAAEiPchEAAAAAAAAAQBMGevoSzwzZXAQAAABAwSgXAQAAAAAAAAA0YV5XVyxaUGl4Zli5CAAAAICCUS4CAAAAAAAAAGjSQKXx9iKbiwAAAAAoGuUiAAAAAAAAAIAmDSaUi2wuAgAAAKBolIsAAAAAAAAAAJpkcxEAAAAA7Ua5CAAAAAAAAACgSTYXAQAAANBulIsAAAAAAAAAAJrUzOaier2eURoAAAAA2HPKRQAAAAAAAAAATUraXDQ5PRXV3ZMZpQEAAACAPadcBAAAAAAAAADQpKTNRRHPbC8CAAAAgKJQLgIAAAAAAAAAaFLS5qKIiGHlIgAAAAAKRLkIAAAAAAAAAKBJAz02FwEAAADQXpSLAAAAAAAAAACaNK+rKxYuqDQ8M1QdySgNAAAAAOw55SIAAAAAAAAAgBkYrDTeXjRscxEAAAAABaJcBAAAAAAAAAAwAwMJ5aIh5SIAAAAACkS5CAAAAAAAAABgBmwuAgAAAKCdKBcBAAAAAAAAAMyAzUUAAAAAtBPlIgAAAAAAAACAGWhmc1G9Xs8oDQAAAADsGeUiAAAAAAAAAIAZSNpcNDE9FdXdkxmlAQAAAIA9o1wEAAAAAAAAADADSZuLIiKGqqMZJAEAAACAPadcBAAAAAAAAAAwA0mbiyIihpWLAAAAACgI5SIAAAAAAAAAgBkY6OlNPGNzEQAAAABFoVwEAAAAAAAAADAD3V3zYuGCSsMzykUAAAAAFIVyEQAAAAAAAADADA1UGm8vGq6OZJQEAAAAAPaMchEAAAAAAAAAwAwNVvobvj5UHcsoCQAAAADsGeUiAAAAAAAAAIAZsrkIAAAAgHahXAQAAAAAAAAAMEPJm4tGM0oCAAAAAHtGuQgAAAAAAAAAYIYGevoavj5cHY16vZ5RGgAAAACYPeUiAAAAAAAAAIAZGuxtXC6amJ6K6tRkRmkAAAAAYPaUiwAAAAAAAAAAZihpc1FExNDYaAZJAAAAAGDPKBcBAAAAAAAAAMxQ0uaiiIjhqnIRAAAAAHOfchEAAAAAAAAAwAwN9PQmnhlSLgIAAACgAJSLAAAAAAAAAABmqLtrXvQv6Gl4RrkIAAAAgCJQLgIAAAAAAAAAmIXBSl/D14eViwAAAAAoAOUiAAAAAAAAAIBZGOhpXC6yuQgAAACAIlAuAgAAAAAAAACYhcHehM1F48pFAAAAAMx9ykUAAAAAAAAAALOQuLlobCSjJAAAAAAwe8pFAAAAAAAAAACzMFjpb/j68PhY1Ov1jNIAAAAAwOwoFwEAAAAAAAAAzMJgpbfh6xNTu6M6NZlRGgAAAACYHeUiAAAAAAAAAIBZGEjYXBQRMTQ2mkESAAAAAJg95SIAAAAAAAAAgFkY7O1LPDM8rlwEAAAAwNymXAQAAAAAAAAAMAsDPb2JZ2wuAgAAAGCuUy4CAAAAAAAAAJiF7q550b+gp+EZm4sAAAAAmOuUiwAAAAAAAAAAZmmwp6/h6zYXAQAAADDXKRcBAAAAAAAAAMzSQKVxucjmIgAAAADmOuUiAAAAAAAAAIBZGkwoFw1VlYsAAAAAmNuUiwAAAAAAAAAAZilxc5FyEQAAAABznHIRAAAAAAAAAMAsNbO5qF6vZ5QGAAAAAGZOuQgAAAAAAAAAYJaSykUTU7ujOjWZURoAAAAAmDnlIuD/Z+9Oo+QsyMRv39Xp7nR1J6EKCCRA2GSXRSICoqCyDoKEERGML0IiKDPMOLgcUJARdQZxAfcVJGEVxL8IsiibwCA7OGTYZI2QsBhCV0J3V3eS7no/aDBAup5Kd9dTVd3XdU4+TJ6beu7KePQckl9uAAAAAAAAAIYol52QOFMo9qSwCQAAAAAMjbgIAAAAAAAAAGCIki4XRUR0FrtS2AQAAAAAhkZcBAAAAAAAAAAwRLlse+JModidwiYAAAAAMDTiIgAAAAAAAACAIWoZ1xwTWtvKznSKiwAAAACoY+IiAAAAAAAAAIBhyGc7yj53uQgAAACAeiYuAgAAAAAAAAAYhlxCXORyEQAAAAD1TFwEAAAAAAAAADAMLhcBAAAA0MjERQAAAAAAAAAAw+ByEQAAAACNTFwEAAAAAAAAADAMLhcBAAAA0MjERQAAAAAAAAAAw5AUF/WuWB7F5ctS2gYAAAAA1oy4CAAAAAAAAABgGHIJcVFERKfrRQAAAADUKXERAAAAAAAAAMAw5LMTEmcK4iIAAAAA6pS4CAAAAAAAAABgGNbKtifOdBa7UtgEAAAAANacuAgAAAAAAAAAYBhaxzXHhNa2sjOFYk9K2wAAAADAmhEXAQAAAAAAAAAMUy7bUfa5y0UAAAAA1CtxEQAAAAAAAADAMOUT4qJCsTulTQAAAABgzYiLAAAAAAAAAACGKflykbgIAAAAgPokLgIAAAAAAAAAGCaXiwAAAABoVOIiAAAAAAAAAIBhcrkIAAAAgEYlLgIAAAAAAAAAGKaky0W9K5ZHcfmylLYBAAAAgMqJiwAAAAAAAAAAhikpLoqIKLheBAAAAEAdEhcBAAAAAAAAAAxTroK4qFNcBAAAAEAdEhcBAAAAAAAAAAxTJXGRy0UAAAAA1CNxEQAAAAAAAADAMLWOa46O1vFlZ1wuAgAAAKAeiYsAAAAAAAAAAEZAPjuh7HOXiwAAAACoR+IiAAAAAAAAAIARkMu2l33eWexKaRMAAAAAqJy4CAAAAAAAAABgBCRfLupJaRMAAAAAqJy4CAAAAAAAAABgBLhcBAAAAEAjEhcBAAAAAAAAAIyApMtFncXulDYBAAAAgMqJiwAAAAAAAAAARkA+21H2ee+K5VFcviylbQAAAACgMuIiAAAAAAAAAIARkEuIiyIiCq4XAQAAAFBnxEUAAAAAAAAAACMg6XJRhLgIAAAAgPojLgIAAAAAAAAAGAGVXC7qFBcBAAAAUGfERQAAAAAAAAAAI6B1XHN0tI4vOyMuAgAAAKDeiIsAAAAAAAAAAEZI0vWigrgIAAAAgDojLgIAAAAAAAAAGCH5hLjI5SIAAAAA6o24CAAAAAAAAABghOTaXC4CAAAAoLGIiwAAAAAAAAAARki+PelyUVdKmwAAAABAZcRFAAAAAAAAAAAjJJ+dUPZ5odiT0iYAAAAAUBlxEQAAAAAAAADACMlly18uKq5YFr3Ll6W0DQAAAAAkExcBAAAAAAAAAIyQfEJcFBHRWexOYRMAAAAAqIy4CAAAAAAAAABghCRdLoqIKIiLAAAAAKgj4iIAAAAAAAAAgBGSb3O5CAAAAIDGIi4CAAAAAAAAABghrc3N0d4yvuyMuAgAAACAetJc6wUAau25556L3//+9zFv3rx45JFH4plnnolXX301li5dGqVSKSZOnBgTJ06MjTfeOLbbbrvYYYcdYr/99ostt9yy1qvXvcWLF8c999wTDz30UDz66KPx9NNPxwsvvBCLFi2KYrEYy5Yti/Hjx0c2m418Ph8bbLBBTJs2LbbffvvYaaedYo899ohcLlfrrwEAAAAAAABrJN/eET1L+gZ9XugVFwEAAABQP8RFwJhUKBTi3HPPjQsvvDDmzZtXdnbx4sWxePHimD9/ftx2222v/fyWW24ZM2fOjH/5l3+J9ddfv9orN4SXXnopbrrpprj55pvjlltuiaeeeirxnykWi1EsFuOVV1550/y4ceNil112iUMOOSSOOuqomDZtWrVWBwAAAAAAgBGTa+uIhUteGfR5Z4+4CAAAAID6kSmVSqVaLwGQlq6urvjqV78aP/zhD6O7e2T+hX1ra2scffTRccYZZ8S66647Ip/ZSJ544on41a9+FVdddVXcc889MTAwUJX3NDU1xfvf//449dRTY/fdd6/KOxrRokWLYr311nvdz/31r3+NyZMn12gjAAAAAAAAfnTH7+P2+Y8N+ny79TaKL+57WIobAQAAAJBkLP+53KZaLwCQlquuuiq23Xbb+MY3vjFiYVFExLJly+Kcc86JrbfeOubMmTNin1vPXnrppTjrrLNil112ia222ipOOeWUuOuuu6oWFkVEDAwMxNVXXx3vfOc749BDD41nn322au8CAAAAAACA4ci3d5R93tnrchEAAAAA9UNcBIx6AwMD8cUvfjEOPfTQWLBgQdXe88orr8Ts2bPjE5/4RCxbtqxq76mlhx9+OA499NDYaKON4nOf+1zcf//9NdnjyiuvjG233TbOO++8mrwfAAAAAAAAysm1lY+LCj3iIgAAAADqh7gIGNX6+/vjyCOPjP/+7/+OUqmUyjvPOeec2H///aOnpyeV96Xpf/7nf+LKK6+MFStW1HqV6OnpiY9//ONx3HHH1cU+AAAAAAAAsFK+fULZ58UVy6J3+ej8CwsBAAAAaDziImDUGhgYiGOOOSYuv/zy1N996623xj//8z9HX19f6u8ea84999w4/PDDR+21KAAAAAAAABpPrq09caaz6HoRAAAAAPWhudYLAFTLqaeeGhdddNEa/TNbbrllvOtd74rtt98+1l577chkMtHZ2RmPPvpo3HnnnfHQQw9V/FnXX399HHfccXHBBRes6eqsod/85jcxa9asuPjii2u9CgAAAAAAACReLoqIKPT2xNRJ+RS2AQAAAIDyxEXAqHTdddfF17/+9YrnZ8yYEaecckrsuuuuZeceeuih+OY3vxkXXXRRDAwMJH7uhRdeGO95z3vi4x//eMW7jDbrr79+7LbbbvGOd7wjtt1229h0001jo402io6Ojshms7FkyZJ4+eWX48UXX4w777wzbrnllrjtttuip6dnjd5zySWXxPbbbx9f+MIXqvRNAAAAAAAAoDL5to7Emc6erhQ2AQAAAIBkmVKpVKr1EgAjafHixbHNNtvEyy+/nDi79tprx4UXXhjvf//71+gdd911V3z4wx+O5557LnE2m83GvHnzYosttlijd9Sjn/zkJ/Ev//IviXO77LJLfOhDH4oDDjgg3va2t63xe1555ZX44Q9/GN///vdj0aJFFf9zLS0tcd9998WOO+64xu9sVIsWLYr11lvvdT/317/+NSZPnlyjjQAAAAAAAIiIOPbyn0TP8r5Bn/9/0/eM928zPcWNAAAAAChnLP+53KZaLwAw0k499dSKwqKNNtoo7rnnnjUOiyIidt9997jvvvtiu+22S5wtFovx6U9/eo3f0WimTJkSp512Wjz++ONx7733xsknnzyksCjib9HXaaedFk8++WQcccQRFf9zy5cvryh+AgAAAAAAgGrLZ8tfL+osdqe0CQAAAACUJy4CRpU//elPcc455yTOrbXWWnHjjTfGW97yliG/a7311oubbropNtpoo8TZq6++Oq699tohv6ue7bLLLnHppZfGs88+G1/5yldiyy23HLHPnjRpUlx66aXxgx/8IDKZTEX/zB133BHXXXfdiO0AAAAAAAAAQ5FLiIsK4iIAAAAA6oS4CBhVvvzlL8fAwEDi3DnnnBNbb731sN83ZcqUuOSSS2LcuHGJs1/60peG/b56sueee8bvf//7uPfee+OII46IlpaWqr3rhBNOiG9961sVz3/3u9+t2i4AAAAAAABQCZeLAAAAAGgU4iJg1Pjzn/8cV111VeLcjBkz4vDDDx+x9+65557xyU9+MnHuvvvui5tvvnnE3lsrO+20U1x77bVx2223xf7775/aez/zmc/EJz7xiYpmb7zxxnjhhReqvBEAAAAAAAAMTlwEAAAAQKMQFwGjxtlnnx2lUqnsTHNz8xpdwKnUV77ylZg0aVLi3FlnnTXi707TYYcdFg888EAceOCBNXn/1772tcjn84lz/f398bvf/S6FjQAAAAAAAGD1cglxUUFcBAAAAECdEBcBo0JfX19cdtlliXOHHXZYbLHFFiP+/nXWWSeOPfbYxLnf//738dJLL434+9MyefLkaGqq3f90rL322nHqqadWNHvLLbdUdxkAAAAAAAAoI+lyUXH5suhdsTylbQAAAABgcOIiYFS4+uqrY8mSJYlzJ554YtV2+NSnPpUY3vT398ell15atR3GgpkzZ0Ymk0mce/DBB1PYBgAAAAAAAFYv6XJRhOtFAAAAANQHcREwKvziF79InNliiy1i9913r9oOm2yySey5556Jc5XsyuCmTp0a06dPT5x76qmnUtgGAAAAAAAAVi/pclFERKe4CAAAAIA6IC4CGl5/f3/ceOONiXNHHHFE1Xc58sgjE2fuvffeWLx4cdV3Gc122223xJmurq7o6upKYRsAAAAAAAB4M5eLAAAAAGgU4iKg4d1zzz2xZMmSxLkDDzyw6rtU8o6BgYG46aabqr7LaLb++utXNNfd7TdjAAAAAAAAqI3xzS3R3tJadqaz6C/LAwAAAKD2xEVAw6sk1Jk4cWJF126Ga5NNNoktttgice6GG26o+i6jWaVx0YoVK6q8CQAAAAAAAAwun51Q9nmh2JPSJgAAAAAwOHER0PDuvPPOxJnddtstmpubU9gmYs8990ycufvuu1PYZPRavnx5RXMdHR1V3gQAAAAAAAAGl8u2l33uchEAAAAA9UBcBDS8P/3pT4kz06dPT2GTv3n729+eOPPoo49GX19fCtuMTosWLUqcaW5ujokTJ6awDQAAAAAAAKxe0uWizmJ3SpsAAAAAwODERUBDe+mll+KFF15InKu3uGjFihXxf//3fylsMzpV8mu32Wabxbhx41LYBgAAAAAAAFYvn+0o+7wgLgIAAACgDoiLgIY2b968iua22WabKm/yD1tvvXVFc5XuzuuVSqW46667Eue23XbbFLYBAAAAAACAweUS4iKXiwAAAACoB+IioKE9/fTTFc1tscUWVd7kH/L5fKy99tqJc5XuzuvdddddFV2r2nPPPVPYBgAAAAAAAAaXdLmouHxZ9K5YntI2AAAAALB64iKgoT3zzDOJM1OmTImOjvL/0n6kVRIzVbI7bzZ37tyK5vbZZ5/qLgIAAAAAAAAJki4XRUQUXC8CAAAAoMbERUBDmz9/fuLMBhtsUP1F3mDq1KmJM+KiNffyyy/HhRdemDi39dZbx84775zCRgAAAAAAADC4pMtFEeIiAAAAAGpPXAQ0tIULFybOTJkyJYVN1vydCxYsSGGT0eWrX/1qFIvFxLljjjmm+ssAAAAAAABAgkouF3WKiwAAAACoMXER0NAWL16cOLP++uunsMnrVRIXvfLKKylsMno89thj8eMf/zhxbtKkSXH88censBEAAAAAAACUN765JdpbWsvOuFwEAAAAQK2Ji4CGVklclMvlqr/IEN7Z3d0dfX191V9mFOjv74/Zs2fH8uXLE2f//d//vSb/PwcAAAAAAIDVSbpe5HIRAAAAALUmLgIaWmdnZ+LMxIkTU9hkaO90vagy3/rWt+LOO+9MnNtggw3i85//fAobAQAAAAAAQGXyiXFRV0qbAAAAAMDqiYuAhlUsFiu6ZFOLuGjSpEkVzS1ZsqTKmzS+O+64I0477bSKZr/xjW/EhAkTqrwRAAAAAAAAVC6fLf/7VwWXiwAAAACoMXER0LCWLVtW0Vw2m63yJm/W1tZW0Vyl32GsWrRoURxxxBEVRWQHH3xwfPSjH01hKwAAAAAAAKhcLvFykbgIAAAAgNpqrvUCAENVaZgzbty4Km/yZs3Nlf3Xq7hocMuXL4/DDz88FixYkDi7zjrrxDnnnJPCVo3h3e9+d8X/GaR6Hn744VqvAAAAAAAA1IF8QlzkchEAAAAAteZyEdCwKg1zahFZVPrOSi7yjFXHH3983HrrrRXN/vznP48pU6ZUeSMAAAAAAABYc0mXi3qWL4u+FX7fEAAAAIDacdYAaFgrVqyoaE5c1Hi+/vWvx3nnnVfR7Oc+97mYMWNGlTdqLLfffntMnjy51msAAAAAAAAQyZeLIv52vWj9ibnqLwMAAAAAq+FyEdCwKg14+vv7q7zJ0N9Zi/Cp3l188cXxhS98oaLZPffcM772ta9VeSMAAAAAAAAYuqTLRRERncXuFDYBAAAAgNUTFwENq7W1taK5Si8cjaRKLxJV+h3GimuvvTZmzZoVpVIpcXabbbaJK664QqAFAAAAAABAXaskLiqIiwAAAACoIXER0LBaWloqmqtFXFTpO8VF/3D77bfHhz70oYrCrI033jhuuOGGWGeddVLYDAAAAAAAAIaurbklsi3lf1/Q5SIAAAAAaklcBDSs8ePHVzTX29tb5U2G/k5x0d/cf//9cdBBB0WxWEycXW+99eKGG26IjTbaKIXNAAAAAAAAYPjyCdeLxEUAAAAA1FJzrRcAGsszzzwTd999d1Xf0dHRER/4wAcS57LZbDQ3NydeCXr11VdHarWKVfrOSZMmVXmT+vfwww/HAQccEEuXLk2czeVycf3118dWW22VwmYAAAAAAAAwMvLZjnh+aeegzwviIgAAAABqSFwErJFbb701Zs2aVdV3bLLJJhXFRRER+Xw+Fi1aVHamkmhlpFX6zrXXXrvKm9S3J554Ivbdd99YvHhx4mxHR0dce+21sdNOO6WwGQAAAAAAAIycXOLloq6UNgEAAACAN2uq9QIAw7HOOuskzixZsiSFTdb8ne3t7dHW1pbCNvXpmWeeib333jtefPHFxNm2tra46qqr4p3vfGcKmwEAAAAAAMDIymcnlH1eKPaktAkAAAAAvJm4CGholcRFL730UgqbvF4lwUwlu49WCxYsiH322ScWLFiQONvS0hKXX3557L333ilsBgAAAAAAACMvl20v+9zlIgAAAABqSVwENLQNN9wwcaaS0GekVfLOSnYfjV588cXYe++945lnnkmcHTduXFx88cVx8MEHp7AZAAAAAAAAVEfS5aKe5cuib8XylLYBAAAAgNcTFwENbdNNN02cef7556u/yBu88MILiTObbbZZCpvUl0WLFsU+++wTTzzxROJsJpOJ8847Lw4//PAUNgMAAAAAAIDqyWU7EmcKxe4UNgEAAACANxMXAQ2tkkDnxRdfjJ6enhS2+Ycnn3wycWasxUWLFy+OfffdNx555JGK5n/0ox/Fxz72sSpvBQAAAAAAANWXryAu6hQXAQAAAFAj4iKgoW2++eaJM6VSqaLYZ6QUCoVYvHhx4lwlu48WhUIh9t9//5g3b15F82eddVYcf/zxVd4KAAAAAAAA0uFyEQAAAAD1TFwErJFjjjkmSqVSVX/Mnz+/4n122GGHiuYee+yxIX7jNVfpuyrdvdEtXbo0DjjggHjggQcqmv/KV74Sn/nMZ6q8FQAAAAAAAKSnrbklsi2tZWdcLgIAAACgVsRFQEObOnVqrL/++olzlYYtI6GSdzU3N8eOO+6Ywja11dXVFQceeGDcc889Fc1//vOfj9NOO63KWwEAAAAAAED68gnXi1wuAgAAAKBWxEVAw5s+fXriTJpx0f333584s80220RbW1sK29ROT09PHHTQQXHHHXdUNP+pT30qvva1r1V5KwAAAAAAAKiNXEJc5HIRAAAAALUiLgIa3jvf+c7EmbvuuitWrFiRwjYRt912W+LMbrvtlsImtdPb2xuHHHJIRb8WERHHHXdcfPe7363yVgAAAAAAAFA7SZeLxEUAAAAA1Iq4CGh4++yzT+LMq6++Gvfcc0/Vd3n22WfjySefTJzbb7/9qr5LrSxbtiz++Z//OW666aaK5o866qj4yU9+UuWtAAAAAAAAoLaSLhcVxEUAAAAA1Ii4CGh4u+66a0yaNClx7rrrrqv6LpW8I5PJVBRENaLly5fH4YcfHr/73e8qmj/88MNjzpw50dTkf44AAAAAAAAY3VwuAgAAAKBe+dPcQMNrbm6uKNa57LLLqr7LpZdemjizyy67xLrrrlv1XdLW398fM2fOjKuuuqqi+Q984ANx8cUXx7hx46q8GQAAAAAAANRerq18XNSzvC+WrViR0jYAAAAA8A/iImBU+MhHPpI488QTT8Tdd99dtR2effbZuO222xLnKtm10QwMDMTHPvax+NWvflXR/AEHHBCXX355tLS0VHkzAAAAAAAAqA/59gmJM529rhcBAAAAkD5xETAqfOADH4hJkyYlzn3nO9+p2g7f+973YmBgoOxMU1NTHHnkkVXboRZKpVIce+yxcckll1Q0/973vjeuuOKKGD9+fJU3AwAAAAAAgPqRa2tPnOns6UphEwAAAAB4PXERMCq0tbXFhz/84cS5X/3qV/Hkk0+O+PsXL14c55xzTuLc/vvvH1OnTh3x99fSCSecEHPmzKlodo899ojf/va3kc1mq7wVAAAAAAAA1Jd8tiNxptDbk8ImAAAAAPB64iJg1PjMZz4TmUym7MyKFSvic5/73Ii/+z//8z9j6dKliXOf/exnR/zdtfSZz3wmfvzjH1c0u8suu8R1110XEyZMqPJWAAAAAAAAUH/aWloj29JadsblIgAAAABqQVwEjBrbbrttHHzwwYlzV155ZVx++eUj9t7bb789fvrTnybOTZ8+Pfbdd98Re29ExPz58yOTyST+eO973zui742IOPXUU+Pb3/52RbM77bRTXH/99TFp0qQR3wMAAAAAAAAaRS7helGh2J3SJgAAAADwD+IiYFT50pe+FE1Nyf/Vdtxxx8Xjjz8+7Pe9+OKLMXPmzOjv70+cPf3004f9vnrx3//933HGGWdUNLvddtvFDTfcEPl8vspbAQAAAAAAQH3LJ8RFneIiAAAAAGpAXASMKm9/+9tj9uzZiXNLliyJffbZJ55++ukhv2vRokWx7777xnPPPZc4e+CBB8YHPvCBIb+rnnznO9+JL37xixXNbrnllnHTTTfF5MmTq7wVAAAAAAAA1L9cm7gIAAAAgPojLgJGnTPOOCPWWWedxLkFCxbErrvuGtddd90av+Puu++OXXbZJR5++OHE2ba2tvjud7+7xu+oRz/72c/i05/+dEWzm266adx8880xZcqUKm8FAAAAAAAAjSHfXj4uKvSKiwAAAABIn7gIGHUmT54cc+fOjUwmkzi7ePHieP/73x8f/OAH47777kucf+SRR2LWrFmxxx57xLPPPlvRPt/97ndjyy23rGi23p1xxhkVz86fPz+mTZsWmUymZj9OP/306v1iAAAAAAAAwBpKvFzUIy4CAAAAIH3NtV4AoBoOPvjg+NznPhff/OY3K5q/4oor4oorroitttoq3v3ud8db3/rWWHvttSOTyURnZ2c89thjceedd8a8efPWaI+ZM2fGJz7xiaF8BQAAAAAAAGCUyWfLx0U9y/ti2YoV0drsj3MAAAAAkB7/NgoYtc4888xYsGBB/OIXv6j4n3n88cfj8ccfH5H377PPPnHeeeeNyGcBAAAAAAAAjS8pLoqI6OztjvUnrJXCNgAAAADwN021XgCgWpqamuKCCy6ID37wg6m/+93vfndceeWVMX78+NTfDQAAAAAAANSnXAVxUaHYncImAAAAAPAP4iJgVGtubo7LL788Tj755NTeOWvWrLjxxhujoyP5NwYAAAAAAACAsaOiy0XiIgAAAABSJi4CRr2mpqY488wz44orrogNNtigau/J5/NxzjnnxHnnnediEQAAAAAAAPAmbS2tkW1uLTvT2dOV0jYAAAAA8DfiImDMOPTQQ+Oxxx6Lz33ucyN6Vai1tTU+/vGPx5///Oc49thjR+xzAQAAAAAAgNEn117+9yoLvS4XAQAAAJAucREwpkycODG++c1vxnPPPRdnnnlmvPWtbx3yZ73lLW+JL37xizF//vw499xzY/LkySO4KQAAAAAAADAa5dvKx0WdPeIiAAAAANLVXOsFAGohn8/HySefHCeffHL85S9/ieuvvz4efPDBeOSRR2L+/PmxdOnSePXVV6NUKsXEiRNj4sSJMW3atNhuu+1ihx12iH333Te22WabWn+N2HTTTaNUKqX2vvnz56f2LgAAAAAAABiNclmXiwAAAACoL+IiYMzbZJNN4rjjjqv1GgAAAAAAAMAYkE+IizqL4iIAAAAA0tVU6wUAAAAAAAAAAMaKxMtF4iIAAAAAUiYuAgAAAAAAAABISdLlou5lfbFsxYqUtgEAAAAAcREAAAAAAAAAQGqS4qKIiEKv60UAAAAApEdcBAAAAAAAAACQklwFcVFnUVwEAAAAQHrERQAAAAAAAAAAKREXAQAAAFBvxEUAAAAAAAAAACnJtrRGtrm17ExBXAQAAABAisRFAAAAAAAAAAApymXbyz7vLHaltAkAAAAAiIsAAAAAAAAAAFKVz04o+7xQ7ElpEwAAAAAQFwEAAAAAAAAApMrlIgAAAADqibgIAAAAAAAAACBFLhcBAAAAUE/ERQAAAAAAAAAAKcplO8o+d7kIAAAAgDSJiwAAAAAAAAAAUpRPiIu6l/XFsv4VKW0DAAAAwFgnLgIAAAAAAAAASFHS5aKIiEKxO4VNAAAAAEBcBAAAAAAAAACQqqTLRRERneIiAAAAAFIiLgIAAAAAAAAASJHLRQAAAADUE3ERAAAAAAAAAECKsi2t0dbcUnbG5SIAAAAA0iIuAgAAAAAAAABIWT7hepHLRQAAAACkRVwEAAAAAAAAAJCyXEJc5HIRAAAAAGkRFwEAAAAAAAAApMzlIgAAAADqhbgIAAAAAAAAACBlLhcBAAAAUC/ERQAAAAAAAAAAKctnJ5R97nIRAAAAAGkRFwEAAAAAAAAApCyXbS/7vGtZbyzrX5HSNgAAAACMZeIiAAAAAAAAAICUJV0uinC9CAAAAIB0iIsAAAAAAAAAAFKWz3YkzoiLAAAAAEiDuAgAAAAAAAAAIGW5CuKiTnERAAAAACkQFwEAAAAAAAAApCzb0hptzS1lZ1wuAgAAACAN4iIAAAAAAAAAgBpIul7kchEAAAAAaRAXAQAAAAAAAADUQD4hLnK5CAAAAIA0iIsAAAAAAAAAAGrA5SIAAAAA6oG4CAAAAAAAAACgBlwuAgAAAKAeiIsAAAAAAAAAAGrA5SIAAAAA6oG4CAAAAAAAAACgBpIuF3Ut643l/StS2gYAAACAsUpcBAAAAAAAAABQA/nshMSZQrEnhU0AAAAAGMvERQAAAAAAAAAANZBLuFwUEdFZ7EphEwAAAADGMnERAAAAAAAAAEAN5CuIiwrF7hQ2AQAAAGAsExcBAAAAAAAAANRAtqU1xje3lJ3pFBcBAAAAUGXiIgAAAAAAAACAGkm6XiQuAgAAAKDaxEUAAAAAAAAAADWSS4iLCuIiAAAAAKpMXAQAAAAAAAAAUCMuFwEAAABQa+IiAAAAAAAAAIAaybW5XAQAAABAbYmLAAAAAAAAAABqJN+ecLmoV1wEAAAAQHWJiwAAAAAAAAAAaiTpclFXX28s71+R0jYAAAAAjEXiIgAAAAAAAACAGkm6XBQRUSj2pLAJAAAAAGOVuAgAAAAAAAAAoEby2QmJM53F7hQ2AQAAAGCsEhcBAAAAAAAAANRILtueOFModqWwCQAAAABjlbgIAAAAAAAAAKBGss2tMb65pexMZ7EnpW0AAAAAGIvERQAAAAAAAAAANZLJZCLXVv56UafLRQAAAABUkbgIAAAAAAAAAKCG8u0Tyj4v9HantAkAAAAAY5G4CAAAAAAAAACghnJtHWWfd/aIiwAAAACoHnERAAAAAAAAAEAN5bPl4yKXiwAAAACoJnERAAAAAAAAAEAN5RLios6iuAgAAACA6hEXAQAAAAAAAADUUNLloq6+3ljevyKlbQAAAAAYa8RFAAAAAAAAAAA1lG8vHxdFRBR6e1LYBAAAAICxSFwEAAAAAAAAAFBDubbkuKizpzuFTQAAAAAYi8RFAAAAAAAAAAA1VNnlInERAAAAANUhLgIAAAAAAAAAqKFsc2uMH9dcdsblIgAAAACqRVwEAAAAAAAAAFBDmUwmctny14tcLgIAAACgWsRFAAAAAAAAAAA1lk+IizqLXSltAgAAAMBYIy4CAAAAAAAAAKixXHZC2eeFYk9KmwAAAAAw1oiLAAAAAAAAAABqLJ9tL/vc5SIAAAAAqkVcBAAAAAAAAABQY0mXizqL3SltAgAAAMBYIy4CAAAAAAAAAKixfLaj7POuvt5Y3r8ipW0AAAAAGEvERQAAAAAAAAAANZYUF0VEFHp7UtgEAAAAgLFGXAQAAAAAAAAAUGO5SuKiYncKmwAAAAAw1oiLAAAAAAAAAABqrJLLRZ3iIgAAAACqQFwEAAAAAAAAAFBj2ZbWGD+uueyMy0UAAAAAVIO4CAAAAAAAAACgxjKZTOQSrhe5XAQAAABANYiLAAAAAAAAAADqQD4hLnK5CAAAAIBqEBcBAAAAAAAAANQBl4sAAAAAqAVxEQAAAAAAAABAHUi6XNRZ7EppEwAAAADGEnERAAAAAAAAAEAdyGUnlH1eKPaktAkAAAAAY4m4CAAAAAAAAACgDiRdLnq1rxgr+vtT2gYAAACAsUJcBAAAAAAAAABQB5LiooiIQm93CpsAAAAAMJaIiwAAAAAAAAAA6kCugriosyguAgAAAGBkiYsAAAAAAAAAAOpARZeLxEUAAAAAjDBxEQAAAAAAAABAHci2tEbruOayMy4XAQAAADDSxEUAAAAAAAAAAHUgk8kkXi9yuQgAAACAkSYuAgAAAAAAAACoE7mEuMjlIgAAAABGmrgIAAAAAAAAAKBOuFwEAAAAQNrERQAAAAAAAAAAdSIpLnK5CAAAAICRJi4CAAAAAAAAAKgTOXERAAAAACkTFwEAAAAAAAAA1Il8dkLZ56/2FWNFf39K2wAAAAAwFoiLAAAAAAAAAADqRC7bnjhT6HW9CAAAAICRIy4CAAAAAAAAAKgTSZeLIiIKxZ4UNgEAAABgrBAXAQAAAAAAAADUiVy2I3Gms9iVwiYAAAAAjBXiIgAAAAAAAACAOtHe0hqt45rLzhSK3SltAwAAAMBYIC4CAAAAAAAAAKgTmUwm8XpRp7gIAAAAgBEkLgIAAAAAAAAAqCP5hLjI5SIAAAAARpK4CAAAAAAAAACgjrhcBAAAAECaxEUAAAAAAAAAAHUk6XKRuAgAAACAkSQuAgAAAAAAAACoI0lxUUFcBAAAAMAIEhcBAAAAAAAAANSRXEJctLSvGCv6+1PaBgAAAIDRTlwEAAAAAAAAAFBHki4XRUQs6e1JYRMAAAAAxgJxEQAAAAAAAABAHUm6XBQR0VnsTmETAAAAAMYCcREAAAAAAAAAQB3JZyckzoiLAAAAABgp4iIAAAAAAAAAgDrS3tIaLePGlZ0pFLtS2gYAAACA0U5cBAAAAAAAAABQRzKZTOL1os5iT0rbAAAAADDaiYsAAAAAAAAAAOpMLtte9rnLRQAAAACMFHERAAAAAAAAAECdSb5c1J3SJgAAAACMduIiAAAAAAAAAIA6k892lH1eEBcBAAAAMELERQAAAAAAAAAAdSaXEBe5XAQAAADASBEXAQAAAAAAAADUmaTLRUv7irFioD+lbQAAAAAYzcRFAAAAAAAAAAB1JulyUUTEkmJPCpsAAAAAMNqJiwAAAAAAAAAA6kzS5aKIiM5idwqbAAAAADDaiYsAAAAAAAAAAOpMJZeLxEUAAAAAjARxEQAAAAAAAABAneloGR8t48aVnSn0iosAAAAAGD5xEQAAAAAAAABAnclkMpFrK3+9qLNHXAQAAADA8ImLAAAAAAAAAADqUL69fFxUKHaltAkAAAAAo5m4CAAAAAAAAACgDuWzE8o+7yy6XAQAAADA8ImLAAAAAAAAAADqUK4t6XKRuAgAAACA4RMXAQAAAAAAAADUoXx7+bios1dcBAAAAMDwiYsAAAAAAAAAAOpQ0uWipb3FWDHQn9I2AAAAAIxW4iIAAAAAAAAAgDqUdLkoImJJb08KmwAAAAAwmomLAAAAAAAAAADqUD7hclFERGdPdwqbAAAAADCaiYsAAAAAAAAAAOpQroLLRYVecREAAAAAwyMuAgAAAAAAAACoQx0t46OlaVzZmc6iuAgAAACA4REXAQAAAAAAAADUoUwmE7ls+etFnT3iIgAAAACGR1wEAAAAAAAAAFCn8u3l46JCr7gIAAAAgOERFwEAAAAAAAAA1KlcW9Lloq6UNgEAAABgtBIXAQAAAAAAAADUqXx2Qtnnhd6elDYBAAAAYLQSFwEAAAAAAAAA1Kl8tr3s886iy0UAAAAADI+4CAAAAAAAAACgTuUSLhe92luMFQP9KW0DAAAAwGgkLgIAAAAAAAAAqFNJl4tKEbGktyedZQAAAAAYlcRFAAAAAAAAAAB1Kp9wuSgiolDsTmETAAAAAEYrcREAAAAAAAAAQJ3KZTsSZzrFRQAAAAAMg7gIAAAAAAAAAKBOdbSOj5amcWVnXC4CAAAAYDjERQAAAAAAAAAAdSqTySReL3K5CAAAAIDhEBcBAAAAAAAAANSxvLgIAAAAgCoSFwEAAAAAAAAA1LGky0UFcREAAAAAwyAuAgAAAAAAAACoYy4XAQAAAFBN4iIAAAAAAAAAgDqWFBe5XAQAAADAcIiLAAAAAAAAAADqWC4hLlra2xP9AwMpbQMAAADAaCMuAgAAAAAAAACoY0mXi0oRsaS3J51lAAAAABh1xEUAAAAAAAAAAHUs6XJRRERnsSuFTQAAAAAYjcRFAAAAAAAAAAB1LJ+dkDhTKLpcBAAAAMDQiIsAAAAAAAAAAOpYR+v4aGkaV3bG5SIAAAAAhkpcBAAAAAAAAABQxzKZTOSyHWVnOovdKW0DAAAAwGgjLgIAAAAAAAAAqHP5hLioIC4CAAAAYIjERQAAAAAAAAAAdc7lIgAAAACqRVwEAAAAAAAAAFDnXC4CAAAAoFrERQAAAAAAAAAAdc7lIgAAAACqRVwEAAAAAAAAAFDnki4XLe3tif6BgZS2AQAAAGA0ERcBAAAAAAAAANS5pMtFpYhY0tuTzjIAAAAAjCriIgAAAAAAAACAOpd0uSgiolDsTmETAAAAAEYbcREAAAAAAAAAQJ1LulwUEdEpLgIAAABgCMRFAAAAAAAAAAB1bkJrWzQ3jSs701nsSmkbAAAAAEYTcREAAAAAAAAAQJ3LZDKRT7heVHC5CAAAAIAhEBcBAAAAAAAAADSAXEJc1CkuAgAAAGAIxEUAAAAAAAAAAA3A5SIAAAAAqkFcBAAAAAAAAADQAFwuAgAAAKAaxEUAAAAAAAAAAA3A5SIAAAAAqkFcBAAAAAAAAADQAJIuFy3p7Yn+gYGUtgEAAABgtBAXAQAAAAAAAAA0gKTLRaWIWNrbk84yAAAAAIwa4iIAAAAAAAAAgAaQdLkoIqKz2J3CJgAAAACMJuIiAAAAAAAAAIAGkHS5KEJcBAAAAMCaExcBAAAAAAAAADSACa1t0dw0ruxMQVwEAAAAwBoSFwEAAAAAAAAANIBMJhO5bHvZmc5iV0rbAAAAADBaiIsAAAAAAAAAABpEPjuh7PPOYk9KmwAAAAAwWoiLAAAAAAAAAAAaRNLlooLLRQAAAACsIXERAAAAAAAAAECDcLkIAAAAgJEmLgIAAAAAAAAAaBAuFwEAAAAw0sRFAAAAAAAAAAANIuly0ZK+YvQPDKS0DQAAAACjgbgIAAAAAAAAAKBB5No6yj4vlUqxtLcnpW0AAAAAGA3ERQAAAAAAAAAADSLfXj4uiojoLHansAkAAAAAo4W4CAAAAAAAAACgQeSz4iIAAAAARpa4CAAAAAAAAACgQUxobYvmpnFlZwriIgAAAADWgLgIAAAAAAAAAKBBZDKZyGXby864XAQAAADAmhAXAQAAAAAAAAA0kFxbR9nn4iIAAAAA1oS4CAAAAAAAAACggeTby8dFBXERAAAAAGtAXAQAAAAAAAAA0EBcLgIAAABgJImLAAAAAAAAAAAaSOLlol5xEQAAAACVExcBAAAAAAAAADSQpMtFS3p7YmBgIKVtAAAAAGh04iIAAAAAAAAAgAaSz04o+7xUKsWSvmJK2wAAAADQ6MRFAAAAAAAAAAANJN9e/nJRRERnsSuFTQAAAAAYDcRFAAAAAAAAAAANJNdWQVzU053CJgAAAACMBuIiAAAAAAAAAIAGMnF8W4xrKv9HPgq94iIAAAAAKiMuAgAAAAAAAABoIJlMJvIJ14tcLgIAAACgUuIiAAAAAAAAAIAGk8uWj4tcLgIAAACgUuIiAAAAAAAAAIAGk0+Ii1wuAgAAAKBS4iIAAAAAAAAAgAbjchEAAAAAI0VcBAAAAAAAAADQYBIvFxXFRQAAAABURlwEAAAAAAAAANBgki4XLentiYGBgZS2AQAAAKCRiYsAAAAAAAAAABpM0uWiUqkUS/qKKW0DAAAAQCMTFwEAAAAAAAAANJikuCgiorPYlcImAAAAADQ6cREAAAAAAAAAQIPJZSckzhSK3SlsAgAAAECjExcBAAAAAAAAADSYiePbYlxT+T/20SkuAgAAAKAC4iIAAAAAAAAAgAaTyWQi39ZRdsblIgAAAAAqIS4CAAAAAAAAAGhAuWz5uMjlIgAAAAAqIS4CAAAAAAAAAGhA+YS4yOUiAAAAACohLgIAAAAAAAAAaEAuFwEAAAAwEsRFAAAAAAAAAAANyOUiAAAAAEaCuAgAAAAAAAAAoAElXS4q9PbEwMBAStsAAAAA0Kiaa70Alent7Y2FCxfGyy+/HEuWLIlCoRCvvvpqLFu2LJYtWxbLly+PcePGRWtra7S0tER7e3ustdZakcvlIp/Px9SpU2Odddap9dcAAAAAAAAAAEZI0uWiUqkUS/qKiXMAAAAAjG3iojrS1dUVDz74YDzyyCPxxBNPxBNPPBFPPfVULFy4MAqFwrA/v7W1NaZOnRqbbrppbLHFFrHlllvGVlttFTvttFNsuummw/58AAAAAAAAACA9lURDhWK3uAgAAACAssRFNbJ8+fJ44IEH4o477og777wzHnjggZg/f36USqXXzb3x/x6Ovr6+mD9/fvzlL3+JW2+99XXPJk2aFDvuuGO84x3viD322CP22GOPmDJlyoi9GwAAAAAAAAAYWbkKoqHOYldsFuulsA0AAAAAjUpclKL77rsvbrzxxrjhhhvizjvvjL6+vteelYuIMpnMiO6xunctWbIkbr/99rj99tvj29/+dkREbLbZZrHPPvvEvvvuG/vss0+svfbaI7oHAAAAAAAAADB0E8ZnY1xTU/QPDAw6Uyj2pLgRAAAAAI1IXFRFPT098fvf/z6uuuqquOaaa2Lx4sWvPXtj4JMUEI3EBaOV7xjsXW98x9NPPx3PPPNMnHvuuZHJZGLXXXeNGTNmxCGHHBLbbrvtsPcBAAAAAAAAAIauKZOJXFt7LO7pGnSmszj4MwAAAACIEBeNuGXLlsXVV18dl1xySVx77bWvXSeqNCYaiYhoMEnXkVa308p/plQqxd133x133313nHLKKbHlllvGzJkz48gjj4ytttqqajsDAAAAAAAAAIPLZyeUjYsKxe4UtwEAAACgETXVeoHR4o477oiPf/zjsd5668Xhhx8eV1xxRfT29kapVIpSqfRavLNqxLPy2ao/amWwXVbdedVnjz/+eHz5y1+ObbfdNt7+9rfHD37wg+js7KzZ/gAAAAAAAAAwFuWyHWWfd4qLAAAAAEggLhqGzs7O+Na3vhXbbbdd7LnnnjF37txYunTpaoOiiDcHPPWuXGi0amz0pz/9Kf7jP/4jNthgg/jIRz4SN998c403BwAAAAAAAICxIZ8QF7lcBAAAAEAScdEQzJs3L4477rjYaKON4uSTT47HHnusoqCokZW7arTyeV9fX/zyl7+M/fbbL7bffvv46U9/Gj09PbVcGwAAAAAAAABGNZeLAAAAABgucdEa+N3vfhd777137LzzznHeeedFsVgc1UFROat+x9VdM3rkkUfiX//1X2PDDTeMU045JV566aVarwwAAAAAAAAAo07i5aLenhgYGEhpGwAAAAAakbgoQalUiksuuSTe9ra3xUEHHRS33nrrm6KalXPVCIpWDXdG6sdIK3fNaMmSJfH1r389Nttss/jkJz8ZTz755Ii/HwAAAAAAAADGqqS4qFQqxdK+YkrbAAAAANCIxEWDKJVKcfHFF8e2224bRx11VMybN69sVDQclYRAq8ZLw/mR9L7hxEflrhn19vbGueeeG9ttt13MmjUrnnrqqWH9mgEAAAAAAAAAEbmEuCgiorPYncImAAAAADSq5lovUI8uu+yyOP300+Pxxx9/XTi0alA0VIPFO4N9ZjabjQ033PC1HxMnToxsNrvaH8uXL4+enp4oFotv+vHSSy/FggULYuHChbF48eKyu61uxzX9zoNdMlqxYkVccMEFcfHFF8dRRx0Vp59+ekybNm2NPhsAAAAAAAAA+Juky0UREQVxEQAAAABliItWcfPNN8fJJ58cDzzwwOvimJWGEhVVEupMmjQpdthhh9hxxx1jxx13jE022SQ23HDD2GijjSKfz6/xO5P09fXFwoULY+HChbFgwYJ49NFHY968eTFv3rz4y1/+8qb9VndFqVLlIqO5c+fGL37xizjhhBPilFNOqcp3BQAAAAAAAIDRbML4bIzLNEV/aWDQGZeLAAAAAChHXBQRDz/8cHz2s5+NG264ISL+Fr8MNaZJionWXnvteM973hPTp09/XUyUpvHjx8fmm28em2+++Zuevfrqq/F///d/r8VGt99+ezz88MOrjYRWquTXZ7DIqLe3N84+++z4+c9/Hqeeemr8x3/8RzQ3+48lAAAAAAAAAFSiKZOJXLY9Fvd0DTrjchEAAAAA5YzpiqOzszNOO+20+NnPfhb9/f1vulZUaVRULrbJ5XKx1157xXvf+9543/veFzvuuONqA6R6MXHixNhjjz1ijz32eO3nFi9eHLfcckvccsst8Yc//CEeeeSR156t6VWjwSKjQqEQJ510Uvz0pz+Ns88+Ow4++OCR/FoAAAAAAAAAMGrlsh1l46LO4uDPAAAAAGBMxkWlUil+/OMfx3/+539GZ2fniERFq37GbrvtFjNmzIj9998/dt5557qOiSqxzjrrxGGHHRaHHXZYREQsWrQo/vCHP8TVV18d1157bbzyyisRsWah0WCR0ZNPPhkzZsyI/fbbL37wgx/EFltsUa2vBQAAAAAAAACjQj47ISJeGvR5odiT3jIAAAAANJwxFxfdf//9cfzxx8cDDzwwpKhodfFMU1NTvPe9740jjjgiDjnkkJgyZUoVNq8fkydPjg9/+MPx4Q9/OAYGBuJ//ud/4te//nVcfvnl8eKLL0ZE5aHRYJHR9ddfHzvssEOcfPLJccopp0Rra2uVvxUAAAAAAAAANKZctr3sc5eLAAAAACinqdYLpOnf/u3fYvfdd38tLHpj0FLOG2dLpVK84x3viO985zuxYMGCuOmmm+ITn/jEqA+L3qipqSne8573xHe/+91YuHBh3HjjjfHxj388Jk6c+NqvU8SbY6M3euNsRERfX1989atfjR122CHuvffe6n8ZAAAAAAAAAGhAf7tcNLjOYndKmwAAAADQiMZUXPSjH/0oBgYGXguLIl4ftbzRyiAmk8m8NrfuuuvGiSeeGPPmzYu77747PvWpT425oGgwmUwm9t577zjnnHPixRdfjPPPPz/e9773RcTqLxStzspf51V/3Z988sm47rrrUvkOAAAAAAAAANBo8tmOss+X9PbEwMBAStsAAAAA0GjGVFy00qqx0GDP3xgf7bHHHnHxxRfHggUL4uyzz47tt98+zZUbTltbWxx11FFx0003xZ///Oc48cQTY6211lqjyAgAAAAAAAAASJZLiIsGSqVY2ldMaRsAAAAAGs2YjIsqjYpaWlpi1qxZ8b//+79x++23x0c+8pFoaWlJc9VRYYsttoizzz47nn/++fjZz34W22677ZsuFAEAAAAAAAAAQ5N0uSgiolDsTmETAAAAABrRmIyL3uiNUdFaa60Vn//852P+/Pnx85//PHbccccabzg6tLW1xbHHHhsPPfRQ/Pa3v4299tpLZAQAAAAAAAAAw5R0uSgiolNcBAAAAMAgxnRc9MaoaN11140zzjgjnn322TjjjDNiypQpNd5w9DrooIPilltuiTvuuCMOPPBAkREAAAAAAAAADNHE8dkYlyn/R0BcLgIAAABgMGMyLnpjVDR58uQ466yzYv78+fH5z38+JkyYUOMNx47dd989rrnmmrjvvvtixowZr4uMAAAAAAAAAIBkTZlMrJVtLzvjchEAAAAAgxmTcVHE36KitdZaK/7rv/4rnn766fj0pz8d2Wy21muNWdOnT48rrrgi7rrrrth7772jVCpFRIiMAAAAAAAAAKAC+WxH2efiIgAAAAAGM+biolKpFK2trXHSSSfF008/Haecckq0t5f/23tIz6677ho33nhj3HjjjTF9+vTXIiMAAAAAAAAAYHC5hLioIC4CAAAAYBBjKi7KZDIxc+bM+POf/xxnnnlm5HK5Wq/EIPbee++499574/zzz48NN9yw1usAAAAAAAAAQF1zuQgAAACAoWqu9QJpuuuuu+Id73hHrddgDRx11FFx+OGHx1NPPVXrVQAAAAAAAACgbuWzE8o+d7kIAAAAgMGMqctFwqLG1NbWFm9961trvQYAAAAAAAAA1K1ctr3s80JvdwwMDKS0DQAAAACNZEzFRQAAAAAAAAAAo1HS5aKBUile7SumtA0AAAAAjURcBAAAAAAAAADQ4HLZjsSZzmJ3CpsAAAAA0GjERQAAAAAAAAAADS4vLgIAAABgiMRFAAAAAAAAAAANbuL4bIzLlP9jIAVxEQAAAACrIS4CAAAAAAAAAGhwTZlMrJVtLzvjchEAAAAAqyMuAgAAAAAAAAAYBXJtHWWfi4sAAAAAWB1xEQAAAAAAAADAKJBvLx8XFXrFRQAAAAC8mbgIAAAAAAAAAGAUSLxc1CMuAgAAAODNxEUAAAAAAAAAAKNAPptwuagoLgIAAADgzcZ0XHTDDTfUegUAAAAAAAAAgBGRb0+Ii3q7Y6BUSmkbAAAAABrFmI6LDjjggNh0003j9NNPj/nz59d6HQAAAAAAAACAIcu1lY+LBkqleLW3J6VtAAAAAGgUYzouioh47rnn4qtf/WpsscUWsffee8fFF18cvb29tV4LAAAAAAAAAGCN5NsnJM50iosAAAAAeIMxHxdFRJRKpRgYGIhbb701Pvaxj8WUKVPi+OOPj7vvvrvWqwEAAAAAAAAAVCTf1p4409nTlcImAAAAADQScVFEZDKZyGQyUSqVolQqxdKlS+Occ86JPfbYI9761rfGWWedFX/9619rvSYAAAAAAAAAwKAmtrVHUyZTdqbQ253SNgAAAAA0CnFR/O1yUcQ/IqNVQ6NHH300TjrppJg2bVoceuihceWVV0Z/f3+NNwYAAAAAAAAAeL2mTCZybR1lZzp7xEUAAAAAvJ646O9WxkRvDI1WPlu+fHn89re/jQ9+8IOx0UYbxUknnRSPPPJILVcGAAAAAAAAAHidXLZ8XORyEQAAAABvJC5ajVVDo9VdM3rppZfirLPOih122CF23333OOecc2Lp0qW1XhsAAAAAAAAAGOPyCXFRZ1FcBAAAAMDriYsSrO6a0aqh0b333hvHH398TJ06NT72sY/FH/7whxpvDAAAAAAAAACMVUmXizp7xEUAAAAAvJ64qEKrXjOKiDdFRsViMS6++OLYd999Y/PNN4+vfvWr8eyzz9Z4awAAAAAAAABgLEm6XFToFRcBAAAA8HrioiFYNTRa3TWj+fPnx+mnnx6bb7557LfffnHppZdGX19frdcGAAAAAAAAAEa5pLhoSbEnBv7+F6sCAAAAQIS4aNhWd81oZWg0MDAQN998c3z0ox+NqVOnxgknnBD33XdfjTcGAAAAAAAAAEarXEJc1F8aiFf7iiltAwAAAEAjEBfF66OgoVr1mtGqn7ny5wqFQvzkJz+J3XbbLXbcccf4zne+Ey+//PJIfQUAAAAAAAAAgMTLRRERncXuFDYBAAAAoFGM6bjopJNOiqlTp642ChqOcteMSqVSPPTQQ/HZz342NtpoozjssMPi6quvjoGBgWF/HwAAAAAAAABgbKskLiqIiwAAAABYxZiOi84888x49tln45prronDDjssWltbXwuAqnnNaOWzZcuWxW9+85uYMWNGTJs2Lb7whS/En//85xH5bgAAAAAAAADA2DOxrT2aEv6sQ2exK6VtAAAAAGgEYzouiohoamqKAw88MC6//PJ4/vnn43vf+15Mnz590OtDQ7VqaLS6a0YvvPBCfOMb34jtttsu3vWud8V5550XXV3+ZR4AAAAAAAAAULmmTCZybeWvFxWKPSltAwAAAEAjGPNx0ary+Xz827/9W9x3330xb968OPHEE2Py5MmDXh8aqsHCpZU/f9ddd8Vxxx0XU6dOjVmzZsVtt9027O8GAAAAAAAAAIwNuWx72ecuFwEAAACwKnHRILbffvs4++yzY+HChfGb3/wmZsyYEePGjVvt9aGhWvWaUUS8KTLq7u6OCy64IN73vvfFlltuGWeccUYsXLhwpL4iAAAAAAAAADAK5bMTyj7vLHantAkAAAAAjUBclGDcuHFxyCGHxBVXXBELFy6Mb33rW7HDDjsMen1oqFYNjVZ3zeipp56K0047LTbddNP4p3/6p7j88stj+fLlI/U1AQAAAAAAAIBRIpftKPu8IC4CAAAAYBXiojUwefLk+MxnPhMPPvhg3HffffGv//qvkc/nVxsaDcdg4VKpVIr+/v644YYb4sgjj4ypU6fGpz71qfjTn/407O8GAAAAAAAAAIwO+YS4yOUiAAAAAFYlLhqi6dOnxw9+8IN4/vnn47LLLosDDzwwmpqaqnbNaNXPXPlzr7zySvzwhz+MXXbZJXbeeef4/ve/H6+88sqIfD8AAAAAAAAAoDElxUVLij0x8Pc/iwAAAAAA4qJham1tjcMPPzyuueaaeO655+JrX/tabL311oNeHxqqcteMSqVSPPjgg3HiiSfGhhtuGEcccURcd911r80DAAAAAAAAAGNHLiEu6i8NxKt9xZS2AQAAAKDeiYtG0JQpU+Lkk0+ORx55JO6444447rjjYtKkSasNg4ZqsGtGK5/19fXFr371qzj44INj4403ji9+8Yvx5JNPDv/LAQAAAAAAAAANIelyUUREodidwiYAAAAANAJxUZXsvvvu8dOf/jReeOGFuPDCC2Pfffd97dJQxMheMyqVSqu9ZrRw4cLXLinttddecf7550dPT89IfUUAAAAAAAAAoA4lXS6KiOgUFwEAAADwd+KiKmtra4uPfvSjcf3118czzzwTX/7yl2PzzTdf7fWhkQiN3vh5K3/+j3/8Y8yePTumTJkSxx57bPzxj38cke8HAAAAAAAAANSXSeOz0ZTwZxBcLgIAAABgJXFRiqZNmxannXZaPPHEE3HrrbfG0UcfHe3t7asNg4Zq1WtGq37eyp/r6uqKOXPmxF577RVbb711fP3rX48XXnhhRL4fAAAAAAAAAFB7TU1NsVZbe9kZl4sAAAAAWElcVCN77rlnzJkzJ1588cU477zzYq+99oqIqMo1o1KptNprRk888USccsopsfHGG8dBBx0Uv/71r2PFihUj8v0AAAAAAAAAgNrJZzvKPu8sdqW0CQAAAAD1TlxUYx0dHXHMMcfELbfcEk8++WR88YtfjGnTpo3oNaOIWO3nrQyN+vv743e/+10cfvjhscEGG8SnP/3pmDdv3rC/GwAAAAAAAABQG/nshLLPC8WelDYBAAAAoN6Ji+rIZpttFl/5ylfimWeeiRtuuCFmzpwZbW1tq70+NFSrXjOKiDddM3r55Zfje9/7Xuy8886xyy67xI9+9KMoFAoj9A0BAAAAAAAAgDTksu1ln7tcBAAAAMBK4qI6lMlkYp999omLLrooXnzxxfjJT34Su++++6DXh4aq3DWjUqkUDzzwQPz7v/97bLDBBjFz5sy4/vrrR+T7AQAAAAAAAADVlXy5qDulTQAAAACod+KiOjdx4sT4xCc+EXfccUc89thjcdJJJ8XUqVNXGwYN1WDXjFY+6+3tjcsuuywOPPDA2GSTTeJLX/pSPP3008P/cgAAAAAAAABAVeSyHWWfF4o9MfD3PycAAAAAwNgmLmogW221VZx55pnx7LPPxrXXXhsf+tCHorW19bUwaCSvGb3x81b+3HPPPRf/9V//FVtuuWW8733vi4suuiiKxeIIfksAAAAAAAAAYLjyCXFRf2kguvr8fj8AAAAA4qKG1NTUFP/0T/8Uv/zlL+P555+P73//+/H2t799tdeHRiI0euPnrfz52267LY4++uiYOnVqfPKTn4y77rprRL4fAAAAAAAAADA8SZeLIiI6i90pbAIAAABAvRMXNbh8Ph8nnHBC3HvvvTFv3rw48cQTY/LkyasNg4Zq1WtGq37eyp9bunRpnHvuufGud70rtttuu/jWt74VL7300oh8PwAAAAAAAABgzSVdLoqIKIiLAAAAAAhx0aiy/fbbx9lnnx0LFy6M3/zmNzFjxoxobm5+LQIayWtGb/y8lT/32GOPxcknnxzTpk2LQw45JK688sro7+8fwW8JAAAAAAAAACSZND6b+OcDXC4CAAAAIEJcNCqNGzcuDjnkkLjiiiti4cKFcdZZZ8WOO+642utDIxEavfHzSqVSrFixIq655pr44Ac/GBtuuOGIfC8AAAAAAAAAoDJNTU2Ra2svO+NyEQAAAAAR4qJRb911141Pf/rT8b//+79x//33xwknnBD5fH61YdBQrXrN6I2fVyqVYtGiRcP/IgAAAAAAAADAGslnO8o+d7kIAAAAgAhx0Ziy8847x/e///144YUX4pe//GW8//3vj6ampqpdMwIAAAAAAAAAaicnLgIAAACgAuKiMailpSU+9KEPxdVXXx3PPfdcfO1rX4utt956tdeHhhoaCYwAAAAAAAAAoLaSLhcVxEUAAAAAhLhozJsyZUqcfPLJ8cgjj8Sdd94Zxx13XEyaNGm1oREAAAAAAAAA0DiSLxd1pbQJAAAAAPVMXMRrdtttt/jpT38aL7zwQlx00UWx7777RiaTeS00EhgBAAAAAAAAQOPIZyeUfV7o7YmBv//FowAAAACMXeIi3qStrS1mzpwZ119/fcyfPz++8pWvxFve8haBEQAAAAAAAAA0kFy2vezz/oGB6OorprQNAAAAAPVKXERZG220UZxyyinx7W9/W2AEAAAAAAAAAA0k6XJRRESh2J3CJgAAAADUs+ZaL0D9evTRR2Pu3Llx0UUXxYsvvvjaz5ecRAcAAAAAAACAupfLdiTOdBa7Y+P85BS2AQAAAKBeiYt4nSVLlsQvfvGLmDNnTtx3330RISYCAAAAAAAAgEa01vhsZDKZsr/v3+lyEQAAAMCYJy4iSqVSXH/99TF37ty48soro6+v73X/YjGTybxuFgAAAAAAAACof01NTbFWW3sUygRE5Z4BAAAAMDaIi8awJ554IubMmRMXXnhhPP/88xERoiIAAAAAAAAAGEXy2Y6yAZHLRQAAAACIi8aYV199NS699NKYO3du3HXXXREhKAIAAAAAAACA0Sqf7Yhnyjx3uQgAAAAAcdEYcdNNN8WcOXPiN7/5TRSLxYj4Rzy0alC06s8P1Rs/DwAAAAAAAACojVy2o+xzl4sAAAAAEBeNYk8//XTMnTs3LrjggnjuuecionpXigYLlN72trfF7Nmzh/XZAAAAAAAAAMDQ5BPiIpeLAAAAABAXjTLd3d3xy1/+MubMmRN//OMfI6J6QdFgn7f22mvHzJkzY/bs2fG2t71t2O8AAAAAAAAAAIYm8XJRb3eUSqU3/aWiAAAAAIwd4qJR4pZbbom5c+fG//t//y96enoi4h+xz2BXhYZqdZ/X1NQU+++/f8yaNSsOPfTQaG1tHdY7AAAAAAAAAIDhS7pc1D8wEK/29caktmxKGwEAAABQb8RFDewvf/lLzJ07Ny644IKYP39+RKR/pegtb3lLHHPMMXHMMcfEhhtuOOx3AAAAAAAAAAAjJ+lyUUREodglLgIAAAAYw8RFDaZYLMbll18ec+fOjdtuuy1KpVLqQVF7e3scdthhMXv27HjPe94z7HcAAAAAAAAAANWRz05InOks9sTG+RSWAQAAAKAuiYsaxO233x5z5syJX/3qV9HV1RUR/4h9Vg2AVv35oRrs83bfffeYPXt2HHHEETFx4sRhvQMAAAAAAAAAqL61xmcjk8mU/bMEncWuFDcCAAAAoN6Ii+rYggUL4vzzz4/zzz8/nnrqqYiI1K8Urb/++nHUUUfF7NmzY5ttthn2OwAAAAAAAACA9DQ1NcVabe1RKHYPOlPuGQAAAACjn7iozvT29savf/3rmDNnTvzhD3+IUqk0aFAUUZ0rRc3NzXHQQQfFrFmz4qCDDopx48YN6x0AAAAAAAAAQO3ksx1lA6JOcREAAADAmCYuqhN33nlnzJ07N375y1/G0qVLI+If4VAaQVFExHbbbRezZs2Ko446KtZbb71hvQMAAAAAAAAAqA+5to6yz10uAgAAABjbxEU19Pzzz8cFF1wQ559/fjz++OMREYNeKRpuUDTY502aNCmOOOKImD17duy2227DfgcAAAAAAAAAUF/y7eXjIpeLAAAAAMY2cVHKli1bFldccUXMnTs3brzxxhgYGBg0KIqozpWiTCYT733ve2P27Nlx2GGHRTabHdY7AAAAAAAAAID65XIRAAAAAOWIi1Jy7733xpw5c+Kyyy6LQqEQEf8Ih0Y6KHrjZ678vGnTpsXRRx8ds2bNis0222zY7wAAAAAAAAAA6l/i5aLe7tf+slIAAAAAxh5xURW99NJLceGFF8bcuXPj0UcfjYgY9EpRtYKi8ePHx6GHHhqzZs2K/fbbz78IBAAAAAAAAIAxJulyUf/AQLza1xuT2rIpbQQAAABAPREXjbDly5fHVVddFXPmzInrr78++vv7Bw2KIoYfFQ32eTvvvHPMnj07PvrRj0YulxvWOwAAAAAAAACAxpV0uSgiotDbLS4CAAAAGKPERSPkgQceiLlz58YvfvGLeOWVVyIi/StF66yzTsycOTNmz54dO+2007DfAQAAAAAAAAA0vnzC5aKIiM6e7tg4t24K2wAAAABQb8RFw7Bo0aK46KKLYu7cufHQQw9FRHpB0crPbGpqigMOOCBmz54dM2bMiJaWlmG/BwAAAAAAAAAYPSa1tUcmkyn7Zxc6i10pbgQAAABAPREXraH+/v747W9/G3Pnzo3rrrsuVqxYMWhQFFG9K0VvectbYtasWXH00UfHhhtuOOx3AAAAAAAAAACj07implirrT0Kxe5BZwq9gz8DAAAAYHQTF1Vo3rx5MWfOnLjkkkvi5Zdfjoj0rhSt/LyOjo740Ic+FLNmzYq99tpr2O8AAAAAAAAAAMaGXFtH2bios0dcBAAAADBWiYvKeOWVV+Liiy+OOXPmxIMPPhgR6QVFq37mO9/5zpg9e3YcccQRMWHChGG/BwAAAAAAAAAYW/LZjpjfOfhzl4sAAAAAxi5x0RsMDAzEtddeG3PmzIlrrrkmli9fPmhQFFG9K0VTpkyJo446KmbPnh1bb731sN8BAAAAAAAAAIxduWxH2ecuFwEAAACMXeKiv3v44Ydj7ty5cdFFF8Vf//rXiEj/SlFLS0scdNBBMXv27DjwwANj3Lhxw34PAAAAAAAAAEA+IS5yuQgAAABg7BrTcVGhUIhLLrkk5s6dG/fff39EpB8URUS89a1vjVmzZsVRRx0VkydPHvZ7AAAAAAAAAABWlRgXFXuiVCq96c82AAAAADD6jem4aMqUKbF8+fJBg6KIkY+KVn7eWmutFUceeWTMmjUrdt1112G/AwAAAAAAAABgMLmEuGjFQH90LeuNieOzKW0EAAAAQL0Y03HRsmXLXgt/0rhSlMlk4n3ve1/Mnj07DjvssGhraxv2ewAAAAAAAAAAkiRdLoqI6Cx2i4sAAAAAxqAxHRetlMlkRiQoWvlZK638zI033jiOPvromDVrVmy66aYj8h4AAAAAAAAAgEpVFBf1dMfGuXVT2AYAAACAeiIuiuFfKlpdUNTW1haHHnpozJ49O/bZZ583XTICAAAAAAAAAEjLpLb2xL98tdDbneJGAAAAANQLcdEQvTEWWvkv36ZPnx6zZ8+OmTNnRi6Xq8FmAAAAAAAAAACvN66pKf5/9u48PO663Bv/PW3abF0SCi1tWRUoFCgIBcomiAKCgMBRNllqWQuyo6jo4QBHfrIpy0GhaNkRBEURRBYVOMhOkdqyt4VSKJQlaZs0S5vO74/zJKYlmZk2M9/J8npdV64H8rlnPu9v6PG5rjTv3ENLy6O2cUmnMzUNdQkmAgAAAKC7UC5aRR1tKVpzzTXjW9/6Vnz729+OcePGFSsaAAAAAAAAAECnqsoHZSwX1TZ0fgYAAABA76VclIOOthT1798/9tprr5g0aVIccMABMWDAgCKlAwAAAAAAAADIrrq8It6u6fzc5iIAAACAvkm5KIOOthRtvPHGMXHixDjmmGNi1KhRxYoGAAAAAAAAALBKqsoHZTy3uQgAAACgb1IuWklHhaLKysr45je/GZMmTYpddtmlWNEAAAAAAAAAAFZbdXlFxnObiwAAAAD6JuWiWLFQFPHvUtFOO+0UkyZNikMPPTQqKyuLEQ0AAAAAAAAAIC+qc9hclE6nP/NzFAAAAAD0bspF/09roWjkyJFx9NFHx7e//e3YZJNNipwKAAAAAAAAACA/qsoz/2LVZctboq65MQaXlieUCAAAAIDuoM+Xi9LpdAwYMCD222+/mDRpUuyzzz7Rr1+/YscCAAAAAAAAAMir6izlooiI2oZ65SIAAACAPqZPl4u22GKL+Pa3vx1HHXVUrLnmmsWOAwAAAAAAAABQMLmUi2oa6mPdKj9DAQAAANCX9Oly0fTp04sdAQAAAAAAAAAgEUPKKiIVEekMMzUN9UnFAQAAAKCb6FfsAAAAAAAAAAAAFF7/fv1iaFlFxpla5SIAAACAPke5CAAAAAAAAACgj6gqr8x4bnMRAAAAQN+jXAQAAAAAAAAA0EdUZykX2VwEAAAA0PcoFwEAAAAAAAAA9BE2FwEAAACwMuUiAAAAAAAAAIA+wuYiAAAAAFamXAQAAAAAAAAA0EfksrkonU4nlAYAAACA7qCk2AFYfS0tLTF//vx4//33Y/HixdHQ0BANDQ3R2NjY4Tf6jj766CKkBAAAAAAAAAC6i+ryQRnPly1vifrmphhUWpZQIgAAAACKTbmoh3jttdfi2WefjX/+85/xz3/+M15//fVYsGDBKv22IOUiAAAAAAAAAOjbqsorss7UNNQpFwEAAAD0IcpF3VRLS0vcf//9cf/998fDDz8c8+bNW+F8VVeQp1KpfMYDAAAAAAAAAHqgbJuLIiJqGupj3ao1E0gDAAAAQHegXNTNvPHGG3H99dfHbbfdFh9//HFEdFwkWpWy0KoWkTK59NJL4/777886N3z48Ljnnnvydi8AAAAAAAAA0HVDyyoiFRGZfpKgtqE+qTgAAAAAdAPKRd3Ea6+9FhdeeGHcfffdsXz58hUKQZmKRNmKQ/neWLT33nvHD37wg4wz6XQ6UqlUPP7447Hbbrvl9X4AAAAAAAAAYPX179cvhpRVxMLGJZ3O1CgXAQAAAPQp/YodoK9bvHhxTJ48Obbccsu46667oqWlpa2c0/oR8X+FnY4+krbVVlvFfvvt13Z3pky/+tWvEs8HAAAAAAAAAGRWXV6Z8dzmIgAAAIC+RbmoiP70pz/F2LFjY8qUKZ8pFUVEUUtEmXz/+99v++f2Jaj2H+l0On73u9/F4sWLi5gUAAAAAAAAAFhZVZZykc1FAAAAAH2LclERpNPp+P73vx8HHnhgvPfee52WirqrHXfcMbbddttOtxe1ampqinvvvbdYMQEAAAAAAACADthcBAAAAEB7ykUJW7x4ceyzzz5x2WWX9bhSUXsnn3xyTnN33XVXgZMAAAAAAAAAAKvC5iIAAAAA2lMuStCiRYti7733jkceeaStWBSx+qWi1mJS6/sk6YgjjoihQ4e25VhZKpWKdDodjz76aCxatCjpeAAAAAAAAABAJ3LZXNRTfjkqAAAAAF2nXJSQxYsXx9577x3PPPNMRPy7fJPrN+PaF4mKVShqr7S0NA4++OAO87f/3LJly+Khhx5KMhoAAAAAAAAAkEG2zUVLl7dEfXNTQmkAAAAAKDblooQceeSR8eyzz66wrSiblYtErWWk1o+SkpKoqqqKkSNHts0n6cgjj8xp7s9//nOBkwAAAAAAAAAAucq2uSgioqahLoEkAAAAAHQHJcUO0Bf813/9V/zpT3/KuVjUviTUOrvuuuvG3nvvHePHj48vfOELsf7668fw4cPb5vr1S74ntvvuu8eIESNiwYIFbZuY2mv9nM1FAAAAAAAAANB9VJcPyjpT21Af61atmUAaAAAAAIpNuajAnnrqqbjoootWuViUTqdj6NChcfTRR8exxx4b48aNK3jWVZVKpeKrX/1q3HzzzZ/ZmpROp9s+9+GHH8abb74ZG2+8cTFiAgAAAAAAAADtDC2riFREZPoJhpqG+qTiAAAAAFBkya+76UOWLl0aJ5xwQluhKFOxKJVKtW36KS0tjfPOOy/mzJkTV111VbcsFrXad999c5p78sknC5wEAAAAAAAAAMhF/379YkhZRcaZWuUiAAAAgD5DuaiAfvazn8Urr7zSVhrqTPttRTvuuGO8/PLLcdFFF0VVVVVCSVffnnvu2ZZ/5e1F7SkXAQAAAAAAAED3UVVemfHc5iIAAACAvkO5qECWLFkSl19+ecbCTUS0FY/S6XScdNJJ8fjjj8fGG2+cUMquq6qqirFjx2acSafTMW3atIQSAQAAAAAAAADZVCsXAQAAAPD/KBcVyPXXXx+ffPJJRESnW4tai0WpVCrOO++8+MUvfhElJSVJxsyLHXfcMeMzRkS8+uqrsWzZsiRjAQAAAAAAAACdyLa5qFa5CAAAAKDPUC4qkGuuuSbj1qL2xaLJkyfHRRddlGC6/Np+++07/Hz7wtHSpUvj1VdfTSoSAAAAAAAAAJCBzUUAAAAAtFIuKoBnnnkm3n777YjoeGtR+2LRzjvvHFdddVXCCfNr7NixOc29/vrrBU4CAAAAAAAAAOQil81FHf3MAwAAAAC9j3JRAdxxxx2dnrXfZlRaWhpTp06N/v37JxGrYMaMGZPT3Jw5cwqcBAAAAAAAAADIRbbNRUuXt0R9c1NCaQAAAAAoJuWiAnjwwQdXKBGtrHVr0WmnnRYbbbRRgskKY9iwYbHGGmtERGR8buUiAAAAAAAAAOgespWLIv5vexEAAAAAvZ9yUZ59+OGHMWvWrIiIz6wHb1+8KS8vj3POOSfRbIU0evTorOvQ33vvvYTSAAAAAAAAAACZVOVQLqppqEsgCQAAAADFplyUZ08++WTG89atRfvvv3+sueaaCaUqvBEjRmSd+eijjxJIAgAAAAAAAABkM7SsIlJZZmoaliSSBQAAAIDiUi7Ks+nTp+c0d+ihhxY4SbLWXnvtTs9SqVSk0+n4+OOPE0wEAAAAAAAAAHSmpF//GFxWnnGm1uYiAAAAgD5BuSjPZs+e3eHnU6nUCv+8++67J5QoGYMGDco6U1tbW/ggAAAAAAAAAEBOqssz/12/zUUAAAAAfYNyUZ51Vi5qb+ONN46qqqrCh0lQWVlZ1pmmpqYEkgAAAAAAAAAAuagqq8h4XmNzEQAAAECfoFyUZ/Pnz19hS1F76XQ6UqlUbLTRRgmnKjzlIgAAAAAAAADoWaorMm8uqm2sTygJAAAAAMWkXJRn9fXZv7G2zjrrJJCk+1m2bFmxIwAAAAAAAAAA/09VWWXG85olykUAAAAAfYFyUZ7lUi4aNCjzb/7piRoaGrLOlJaWJpAEAAAAAAAAAMhFdUXmclFtQ32k0+mE0gAAAABQLMpFedbY2Jh1ZuDAgQkkSdaSJUuyzlRUVCSQBAAAAAAAAADIRXV55nLR0uUtUb+0KaE0AAAAABSLclGelZeXZ53JZctPT7NgwYKsM7l8bQAAAAAAAACAZFSVZS4XRUTULqlPIAkAAAAAxaRclGe5bOepr+9933ibN29ep2etK9IHDx6cVBwAAAAAAAAAIIvqiuzloprG3vczDgAAAACsSLkozyors3/j7f33308gSbLmzJkTqVSq0/NUKhWjR49OMBEAAAAAAAAAkMnQsoro/G/6/0+NzUUAAAAAvZ5yUZ5VV1e3berpSDqdjrlz5yaYqPDmzZsXn376aURExmdfb731kooEAAAAAAAAAGRR0q9/DC4rzzhTa3MRAAAAQK+nXJRnG264YadnrZt93njjjVi6dGlSkQpu2rRpOc0pFwEAAAAAAABA91JdVpnx3OYiAAAAgN5PuSjPPve5z3X4+fYbfZqbm+Pll19OKlLB/fWvf81pbuONNy5wEgAAAAAAAABgVVSVZy4X2VwEAAAA0PspF+VZZ+WilT3yyCMFTpKcP//5z21bmTIZP358AmkAAAAAAAAAgFxVZykX1TTUJZQEAAAAgGJRLsqzbbfdNqe5++67r8BJkjFt2rSYNWtWRKy4nSkiVigcVVVV2VwEAAAAAAAAAN1MVfmgjOe1DUsSSgIAAABAsSgX5dkXvvCFKC8vj4j4zDafdDodqVQq0ul0PPfcc/Hqq68WI2JeTZkyJeN56zPbWgQAAAAAAAAA3U91RfbNRSv/slEAAAAAehflojwrKSmJ7bffPqdvrF177bUJJCqcjz76KG6//fbPlKg6stdeeyWQCAAAAAAAAABYFVVlmctFS1taon5pU0JpAAAAACgG5aICyFakad1e9Otf/zreeeedhFLl38UXXxz19fUREVnLVAcddFASkQAAAAAAAACAVVBdnrlcFBFR21CfQBIAAAAAikW5qAAOPfTQTs/al3Cam5vj7LPPTiJS3s2cOTN++ctfdrq1qLVAFRExduzY+NznPpdkPAAAAAAAAAAgB7mUi2qUiwAAAAB6NeWiAvjc5z4X48ePj3Q63WH5pvXz6XQ67r333rj99tuLkHL1tbS0xDHHHBPNzc0RkXlrUSqVim9961tJRQMAAAAAAAAAVsHQ8oqsMzYXAQAAAPRuykUFcswxx2SdaS0YTZ48OV5++eUEUuXHd77znZg2bdoK24naa1+oKi0tjeOPPz7JeAAAAAAAAABAjkr69Y8hpeUZZ2wuAgAAAOjdlIsK5Nhjj4211lorIqLT7UWtZ3V1dfG1r30tZs2alWjG1XHppZfG9ddf3+Eztde6nemwww6LYcOGJZQOAAAAAAAAAFhV1eWVGc9tLgIAAADo3ZSLCqSsrCxOO+20Djf7tGpfMHr//fdjl112ienTpycVcZVdeOGF8YMf/KCtWJRta1G/fv3i7LPPTiwfAAAAAAAAALDqqrKUi2wuAgAAAOjdlIsK6NRTT43hw4dHRMfbiyJWLBh9+OGHsdNOO8Wtt96aWMZc1NXVxZFHHhkXXHBBW95spalUKhXHHHNMbL755knFBAAAAAAAAABWg81FAAAAAH2bclEBDRkyJC6//PKMRZyIFQtGS5YsiYkTJ8bXv/71mDt3bhIxM3rggQdi6623jt/85jdtpaHOnqd9gaqysjJ+8pOfJBUTAAAAAAAAAFhNNhcBAAAA9G3KRQV25JFHxu67795WzOlM+4JROp2O+++/P8aMGROnnHJKzJkzJ6m4bR555JH4yle+EgcccEDMnj07a7GoVevchRdeGCNGjEgoLQAAAAAAAACwurJtLqppqMv68wIAAAAA9FzKRQm48cYbY9iwYRERq1Qwampqiuuuuy423njj+MpXvhJTp06N+fPnFyzntGnT4vzzz48xY8bEV7/61fj73//eVhbKVixqPU+lUvGVr3wlzjjjjILlBAAAAAAAAADyp6p8UMbzpS0tsWRpc0JpAAAAAEhaSbED9AXrr79+3H777bHvvvtm3QDUvmDU+u/pdDr+/ve/x9///veIiNhss81i/Pjxsc0228TnP//5WG+99XLKMWfOnGhoaIglS5bEhx9+GPPmzYs5c+bEtGnTYtq0aVFTU7NChpVzdKZ9YWrNNdeMm2++Oac8AAAAAAAAAEDxZdtcFPF/24sqB5YmkAYAAACApCkXJWSvvfaKn/zkJ/GDH/wg4/aiVu03BrX+e6tXXnklXn311bj11ls/85qO3qf1/91oo40y3teqfb5sa83b5ysvL4/f/e53sfbaa2d8DQAAAAAAAADQfeRSLqptqI91hg5LIA0AAAAASVMuStC5554bixcvjosvvjinjUDttxitXPjJVvrJ9H4dWbnwlMv7t3+G/v37x+233x677LLLKucCAAAAAAAAAIpnaFlF1pmahvoEkgAAAABQDP2KHaCv+e///u/47ne/u0JxKJvWMlHrR2vZqP1HLjp63crbkXItLrV/Tb9+/eK6666LAw88MKccAAAAAAAAAED3UdK/fwwpLc84U6tcBAAAANBrKRcVwSWXXBJXXHFF9Ov3f1/+XMtBrVYuG+W6xaij163qe7TPm06no7S0NH7729/Gscceu0rPAAAAAAAAAAB0H1XllRnPbS4CAAAA6L2Ui4rkzDPPjPvvvz+GDh26wjai7q59sWjYsGHx0EMPxcEHH1zkVAAAAAAAAABAV1RnKRfZXAQAAADQeykXFdHee+8dL774Yuyxxx5tm4O6a8mofa50Oh177LFHTJ8+Pb74xS8WORkAAAAAAAAA0FU2FwEAAAD0XcpFRbbhhhvGo48+Gtddd10MHjy425WMVi4VlZeXx2WXXRaPPPJIjBw5ssjpAAAAAAAAAIB8yLa5SLkIAAAAoPdSLuomTjjhhJg9e3acffbZUVZW9pmSUdJFo5VLRRERxxxzTLz55ptx9tlnd4viEwAAAAAAAACQH9nKRbUN9W0/PwAAAABA76Jc1I2sscYacdlll7WVjIYNGxbpdLrDolG+yz0dvXc6nY4BAwbEkUceGdOmTYsbb7zRtiIAAAAAAAAA6IWqspSLmluWxZKlzQmlAQAAACBJykXd0IgRI+Kyyy6L9957L+68887Ye++9Y8CAASsUjSI+WwjqykdEtL1/Op2OMWPGxIUXXhhz586NW265JbbaaqtifTkAAAAAAAAAgAKrLh+Udaa2oT6BJAAAAAAkraTYAejcgAED4pBDDolDDjkk6uvr469//Ws80JH8tgABAABJREFU+OCD8b//+7/x+uuvR0tLy2dek8tGo47WlA8ZMiTGjx8fe+65Zxx44IExZsyYvDwDAAAAAAAAAND9VZVXZJ2paaiL0UPXSCANAAAAAElSLuohKisr44ADDogDDjggIiIaGxvj5ZdfjpdffjnmzJkT8+bNi3nz5sX8+fOjrq4uGhoaorGxMZqammLAgAFRUVER5eXlMWjQoBg9enSst956sd5668VGG20U48ePj0033TSnYhIAAAAAAAAA0PtUlVVmnaltWJJAEgAAAACSplzUQ5WVlcUOO+wQO+ywQ7GjAAAAAAAAAAA9XEn//jG4tDwWNzV0OlPTUJdgIgAAAACS0q/YAQAAAAAAAAAAKL7q8szbi2ob6hNKAgAAAECSlIsAAAAAAAAAAIiqLOWiGuUiAAAAgF5JuQgAAAAAAAAAgKybi5SLAAAAAHon5SIAAAAAAAAAALKWi2qViwAAAAB6JeUiAAAAAAAAAACiKofNRel0OqE0AAAAACRFuQgAAAAAAAAAgKybi5pblkXD0uaE0gAAAACQFOUiAAAAAAAAAACybi6K+L/tRQAAAAD0LspFAAAAAAAAAABk3VwUEVGrXAQAAADQ6ygXAQAAAAAAAAAQVWU2FwEAAAD0RSXFDgBQbO+++2489NBDMX369HjllVdizpw5sXjx4li0aFGk0+kYPHhwDB48ONZbb70YO3ZsbLnllrHnnnvGxhtvXOzoAAAAAAAAAHlT0r9/DC4tj8VNDZ3OKBcBAAAA9D7KRUCfVFtbG7/61a/i1ltvjenTp2ec/eSTT+KTTz6Jt99+O5544om2z2+88cZxxBFHxOTJk2PEiBGFjtynzJ49O2655Zac5zfYYIOYOHFi4QIBAAAAAABAH1FVXpGxXFTbUJdgGgAAAACSoFwE9Cl1dXVx0UUXxbXXXhv19V37jVpvvvlmXHDBBfH//X//XxxzzDFx8cUXx5prrpmnpH1XOp2OSZMmxeOPP57za3bbbTflIgAAAAAAAMiD6vJB8W7tJ52e21wEAAAA0Pv0K3YAgKTcd999sdlmm8Wll17a5WJRe83NzXHDDTfEmDFj4sYbb8zb+/ZV119//SoViwAAAAAAAID8qS6vzHheq1wEAAAA0OsoFwG93vLly+NHP/pRHHjggTFv3ryC3fPpp5/GpEmT4oQTTojm5uaC3dObzZs3L84999xixwAAAAAAAIA+qypLucjmIgAAAIDeR7kI6NVaWlrisMMOi5/85CeRTqcTufOGG26IvfbaK5YsWZLIfb3J5MmTY9GiRcWOAQAAAAAAAH1WLpuLkvq7VwAAAACSoVwE9FrLly+PiRMnxt1335343Y8//ngcdNBB0dTUlPjdPdUdd9wR999/f7FjAAAAAAAAQJ+WbXNRU8uyaFjanFAaAAAAAJJQUuwASZowYUJceeWVMWHChGJHIUdLliyJn/70pzFkyJA455xzih2HHua8886L2267bZVes/HGG8fOO+8cW2yxRayxxhqRSqWipqYmXn311Xj66adjxowZOb/Xww8/HMcff3zccsstqxq9z/n444/j9NNPL3YMAAAAAAAA6POybS6KiKhpqI+KgaUJpAEAAAAgCX2qXPTcc8/FzjvvHIccckj89Kc/jfXXX7/Ykchg6tSp8eMf/zg++OCDOP/884sdhx7mwQcfjEsuuSTn+a9//evxwx/+MLbffvuMczNmzIjLLrssbrvttli+fHnW97311ltjt912i2OPPTbnLH3RaaedFh9//HGxYwAAAAAAAECfl21zUUREbUN9jB66RgJpAAAAAEhCv2IHKIbf/va3semmm8YZZ5wRH330UbHjsJI//OEPseWWW8bxxx8f8+fPL3YceqBPPvkkjj766Ein01ln11hjjXjggQfiD3/4Q9ZiUUTEFltsETfffHP84x//iHXXXTenPKeeemq89dZbOc32Rffff3/85je/6fS8X78++f9VAQAAAAAAQFFUlVVknalpqE8gCQAAAABJ6ZM/sZ1Op6OpqSmuueaa+PznPx//+Z//GQsXLix2rD7v0UcfjQkTJsR//Md/xMyZM3MqhkBHzjvvvJy24Kyzzjrx3HPPxb777rvKd0yYMCFeeOGFGDt2bNbZhoaGOPPMM1f5jr5g8eLFMXny5E7PR44cGQcccECCiQAAAAAAAKBvG9C/JAaVlmWcUS4CAAAA6F36ZLkolUpFKpWKdDoddXV18ZOf/CQ22GCD+M///M+oqakpdrw+5y9/+UvsvPPOsffee8fzzz/fVipKpVJFTkZP9NJLL8UNN9yQdW7o0KHx6KOPxuc///nVvmv48OHx17/+NdZZZ52ss/fff3/8+c9/Xu27eqvvfe97MW/evE7Pr7766hg6dGiCiQAAAAAAAIDq8sqM57XKRQAAAAC9Sp8sF7Uvr7SWjBYuXNhWMvrBD34Q8+fPL3LK3i2dTsfvfve72H777eNrX/taPPPMM5FOpyOdTrf9d4HVccEFF8Ty5cuzzt1www0xZsyYLt+39tprxx133BH9+/fPOnv++ed3+b7e5Iknnojrr7++0/P9998/vvGNbySYCAAAAAAAAIiIqC4flPHc5iIAAACA3qVPlosioq3IErFiyWjx4sVx6aWXxoYbbhjHHntszJw5s8hJe5eGhoa49tprY5NNNolDDjkkXnzxxc+Uitr/t4FV8frrr8d9992Xde7rX/96fPOb38zbvbvuumuceOKJWedeeOGF+Nvf/pa3e3uyxsbGOO644zr9v/VBgwbFtddem3AqAAAAAAAAICKiqrwi43ltQ11CSQAAAABIQp8tF7XqrGTU3NwcN910U4wbNy723nvvuO+++xReumDWrFlx9tlnxzrrrBOnnXZazJo1S6mIvPvZz36W9c9QSUlJXH755Xm/+8ILL4whQ4ZknbviiivyfndPdP7558ebb77Z6fl///d/x7rrrptgIgAAAAAAAKCVzUUAAAAAfUufLBelUqnPfK6zklE6nY5HH300DjrooNhwww3jpz/9abz//vtJR+6Rli1bFvfee2/ss88+MWbMmLjyyiujpqZmhUKRUhH50tTUFHfddVfWuf/4j/+IjTbaKO/3Dxs2LI477riscw899FB8+OGHeb+/J5k2bVrGktV2220Xp556aoKJAAAAAAAAgPaqyiozntc21Pt7fgAAAIBepE+Vi4YNG7ZCgagjmUpGc+fOjfPOOy/WX3/92HfffeN3v/tdNDc3J5a/p3j55ZfjzDPPjFGjRsU3vvGNePjhh2P58uUrlIoiImOpqP1/n3Q6HWuuuWYi2em57r///li4cGHWuTPOOKNgGU477bTo1y/z/6y2tLTEnXfeWbAM3d2yZcti0qRJ0dLS0uF5SUlJ3HDDDVm/jgAAAAAAAEDhVFdkLhc1tSyLhmV+XgIAAACgt+hTP739+uuvx8SJE9v+vX3RZWWtxZeOtuy0tLTEQw89FIccckgMHz48Jk6cGH/5y186/WH5vuD111+PCy64IMaOHRvbbLNNXH311fHxxx9/5msYkblUFBErzK233nrxhz/8IU4++eREnoOe6ze/+U3WmY022igmTJhQsAzrr79+7LrrrlnncsnaW11yySXx8ssvd3p+5plnxlZbbZVgIgAAAAAAAGBl2TYXRUTULKlPIAkAAAAASehT5aI11lgjpk6dGo899lhsuummn9lQ1JlM24wWLVoUt956a3zta1+L4cOHx1FHHRX33HNP1NXVJfJMxfTss8/GD3/4w9hiiy1i7NixceGFF8Zrr73WYSkrIrdSUevXtn///nHOOefEK6+8EgcccEBSj0QP1dLSEo8++mjWuUMPPbTgWQ477LCsM88//3x88sknBc/S3bz++utx0UUXdXq+4YYbxn/9138lFwgAAAAAAADoULbNRRERtY3KRQAAAAC9RUmxAxTDrrvuGtOnT49rrrkmLrzwwqitrV2h2NKZzspIrZ+vqamJO+64I+64444YMGBA7LDDDvGlL30pdt9999hpp51i4MCBhX2wAnv11Vfj73//e/z973+Pxx9/vK0c0f5rtnJJK9PXc+XXtM7utddeceWVV8amm26ar+j0cs8991wsXLgw69w+++xT8Cy53LF8+fL461//GoccckjB83QX6XQ6jjvuuGhqaup05pe//GVUVFQkmAoAAAAAAADoSFVZ9r+3s7kIAAAAoPfok+WiiIj+/fvHGWecEUcddVT88Ic/jF//+texfPnyzxRdOrJymaajolFzc3M8+eST8eSTT8ZFF10UpaWlK5SNvvCFL8TgwYML9HRd19LSEq+++mo8+eST8dhjj8Vjjz0WH330Udv5yl+fjr4G2az8mo033jiuuOKK2G+//bqYnr7mr3/9a9aZwYMHxw477FDwLOuvv35stNFG8dZbb2Wce+SRR/pUuejaa6+NJ598stPzI444Ivbee+8EEwEAAAAAAACdGdC/JAaVlkVdU2OnMzYXAQAAAPQefbZc1GrYsGFx/fXXx6mnnhrnnntuPPjggysUhrIVZXIpGkVENDY2xhNPPBFPPPFEXHDBBRERsd5668W4ceNi3LhxseWWW8a4ceNik002iX79+uXzEbP64IMPYvr06St8vPbaa7F06dIOnyVi9TYUdfTadDoda621Vvz4xz+Ok046KUpK+vwfSVbD008/nXVmhx12SOzP16677pq1XPTss88mkqU7mDt3bvzgBz/o9HyNNdaIK6+8MrlAAAAAAAAAQFbVZZUZy0U2FwEAAAD0Hpoc/88WW2wRDzzwQDz22GPxve99L1544YVVKhmtPLNy0aij93jnnXdi7ty5cf/997d9buDAgTF69OgYPXp0rLPOOm3/3PoxePDgKC8vj7KysigvL2/7aNXc3BwNDQ0rfCxZsiQWLFgQ8+bNi/feey/ee++9tn+eN29eLFq0KGPO1ufJ9Ly5WLlUVFlZGWeddVZ897vfjUGDBq3Se0F7L730UtaZbbbZJoEk/2fbbbeNG2+8MePMq6++Gk1NTVFaWppQquI58cQTo66urtPzyy67LNZaa60EEwEAAAAAAADZVJVXxrsLP+n0vKZBuQgAAACgt1AuWsnuu+8ezz33XPzxj3+MCy64IP75z3+ucsmoo7mOykYdzTU1NcXs2bNjzpw5q5R7wIAB0dLSEsuXL8/5NZmeJR9loo7eK51OR0VFRZxyyinx3e9+N9Zcc83Vek9o9eGHH8b8+fOzziVdLspm2bJl8a9//SvGjx+fQKLiueWWW+Ivf/lLp+e77757TJo0KcFEAAAAAAAAQC6qKyozntc2KhcBAAAA9Bb9ih2gu/r6178e06ZNi9/97nex9dZbRzqdjnQ63VYS6qh8k0nr69t/RMQK79f+o6P5TB/Nzc3R0tKySq/JdH9HmVfVyu9VWVkZ55xzTsyZMycuueQSxSLyYvr06TnNbbrppgVO8m9jxozJaS7X7D3VggUL4swzz+z0vLS0NK6//voEEwEAAAAAAAC5qirLXC6qWVKXUBIAAAAACk25KIuDDjooXnzxxXjwwQdj991377CYs7o6K/y0f+9Cf3SWoytbilYuSK255ppx0UUXxdy5c+PSSy+NtdZaa7W/ZrCy2bNn5zS30UYbFTjJv1VXV8caa6yRdS7X7D3Vd77znfj00087PT/vvPNik002STARAAAAAAAAkKvq8kEZz2sbl6z2zxYAAAAA0L0oF+Vo7733jr/97W/x3HPPxeGHHx4lJSUdbv/pqlXdWLRyEagrr+2KjspKW2yxRVx33XXxzjvvxHnnnRdVVVV5uQvamzNnTtaZtddeOyorM/9WrXzLpcyUS/ae6o9//GPcfffdnZ6PHTs2zj333AQTAQAAAAAAAKuiurwi43nTsqXRsKw5oTQAAAAAFJJy0SoaP3583H777TF37tw4//zzY+TIkXndZrS68lkUylVHG5D69+8fBx10UPztb3+L6dOnxwknnBBlZWWJ5qJvefvtt7POjBo1qvBBVjJy5MisM721XLRw4cI4+eSTOz1PpVIxZcqUGDhwYIKpAAAAAAAAgFVRlWVzUUREbcOSBJIAAAAAUGjKRatpxIgRcf7558fcuXPjj3/8YxxwwAHRv3//tpJP++JNMcpGhdJRoSidTscmm2wSl1xySbz77rvxu9/9LnbffffiBqXPeO+997LOrL322gkkWfU7582bl0CS5J1zzjnx/vvvd3p+wgknxM4775xgIgAAAAAAAGBVVZdXZp2paahLIAkAAAAAhVZS7AA9Xb9+/WL//feP/fffPxYsWBC/+c1v4q677opnnnmmbWblglHSG4a6oqNiVGv+ESNGxCGHHBKHH354TJgwIeloEBERn3zySdaZESNGJJBkRbmUiz799NMEkiTr73//e/zqV7/q9HzkyJFxySWXJJgIAAAAAAAAWB1V5RVZZ2ob6hNIAgAAAEChKRfl0fDhw+P000+P008/Pd55552455574o9//GM89dRTsXz58oj4bNEoonuVjTKViSIi1l133TjggAPi4IMPjt122y369bP8iuLKpVxUVVVV+CCrcWd9fX00NTVFaWlp4QMlYMmSJXH88cdnnLn66qtj6NChCSUCAAAAAAAAVteA/iUxaGBZ1DU3djpTo1wEAAAA0CsoFxXI+uuvH2effXacffbZ8cknn8QDDzwQDz30UPztb3+LDz/8sG2uo7JRq0KWjjq7c+V7Bw4cGBMmTIg999wzvva1r8XWW29dsEywOmpqarLODB48OIEkq3fnp59+GiNHjixwmmT8+Mc/jlmzZnV6vt9++8U3vvGNBBMBAAAAAAAAXVFdXpm5XLREuQgAAACgN1AuSsCwYcPi6KOPjqOPPjoiImbMmBGPPfZYPPXUU/H000/HO++885nXZCod5dPKBabKysrYbrvtYqeddopdd901dt1116ioyL7qHIqhoaEhli5dmnWuGOWiIUOG5DS3cOHCXlEuev755+Oqq67q9HzQoEHxi1/8IsFEAAAAAAAAQFdVlVfGuws/6fS8tlG5CAAAAKA3UC4qgi222CK22GKL+M53vhMRER988EG89NJL8fLLL8fLL78cr7zySrz11lvR0NCQ9b06KiDlsvEolUrFuuuuG5tuumlsueWWsdVWW8VWW20Vm2++efTr12/VHwqKoLm5Oae58vLyAif5rLKyspzmcn2G7mzp0qVx7LHHRktLS6czF110Uay77roJpgIAAAAAAAC6qrq8MuN5TYNyEQAAAEBvoFzUDay99tqxzz77xD777LPC5997772YPXt2zJs3L957772YP39+fPTRR7Fw4cKora2Nurq6aGpqiqVLl8ayZcuiX79+MWDAgBg4cGCUl5fH0KFDo6qqKtZYY41Ye+21Y9SoUTF69OhYf/314/Of/3yUlpYW6YkhP3It5vTv37/AST6rpCS3/3ntDeWiiy++OP71r391ej5+/Pg47bTTEkzELrvskvOfQQpn5syZxY4AAAAAAADQJVVZykW1ykUAAAAAvYKfPO7GRo8eHaNHjy52DOi2ci3mFKNkkeudS5cuLXCSwnrllVfi4osv7vS8pKQkbrjhBhvRAAAAAAAAoAeyuQgAAACgb1AuAnqsZcuW5TSnXFQYy5cvj2OPPTZjyeuMM86IrbfeOrlQRETEk08+GWuttVaxYwAAAAAAANDDZSsXNS1bGg1Lm6N8wMCEEgEAAABQCFZJAD1WrgWelpaWAidZ/TuLUXzKl6uvvjqeeeaZTs833HDDuOCCCxJMBAAAAAAAAORTVZZyUYTtRQAAAAC9gXIR0GMNHJjbb7/KdcNRPuW6kSjXZ+hu5syZEz/60Y8yzvzyl7+MioqKhBIBAAAAAAAA+VZdPijrTK1yEQAAAECPp1wE9FgDBgzIaa4Y5aJc7+yp5aITTjgh6us7/0uCww8/PPbee+8EEwEAAAAAAAD5NrQ8+y8TrGmoSyAJAAAAAIWkXAT0WKWlpTnNNTY2FjjJ6t/ZE8tFU6dOjUcffbTT8zXWWCOuvPLK5AIBAAAAAAAABTGwf0kMGliWcabG5iIAAACAHq+k2AGAnmXOnDnx7LPPFvSOysrK2H///bPOlZeXR0lJSdYtQYsXL85XtJzleueQIUMKnCS/Pvjggzj77LMzzlx22WUxfPjwhBIBAAAAAAAAhVRdXhl1zZ3/csVa5SIAAACAHk+5CFgljz/+eHz7298u6B3rr79+TuWiiIjq6ur46KOPMs4sWrQoH7FWSa53rrHGGgVOkl+nnHJK1NbWdnq+2267FfzPBwAAAAAAAJCcqvLKeHfhJ52e21wEAAAA0PP1K3YAgK4YNmxY1pmFCxcmkGTV76yoqIiysrIE0uTHPffcE7///e87PS8tLY0pU6ZEKpVKMBUAAAAAAABQSNXllRnPbS4CAAAA6PmUi4AeLZdy0YcffphAkhV98MEHWWdyyd5d1NTUxKmnnppx5rzzzotNNtkkoUQAAAAAAABAEqqylItsLgIAAADo+ZSLgB5t9OjRWWdyKfrkWy535pK9uzjrrLMyPtPYsWPj3HPPTTARAAAAAAAAkASbiwAAAAB6P+UioEfbYIMNss68//77hQ+ykvnz52ed2XDDDRNI0nVvvfVW3HTTTZ2ep1KpuP7662PgwIHJhQIAAAAAAAASkW1zUeOypdGwtDmhNAAAAAAUQkmxAwB0RS4FnQ8++CCWLFkSFRUVCST6P2+99VbWmZ5SLqqrq8t4vvXWW8e8efPizjvvLMj9c+bMyTqzYMGCnO4fPnx47LHHHvmIBQAAAAAAAH1Cts1FEf+3vah8gF9GCAAAANBTKRcBPdrnPve5rDPpdDreeuutGDduXAKJImpra+OTTz7JOpdL9p7gpZdeisMPP7yoGV599dWcMuy2227KRQAAAAAAALAKsm0uioioaaiPkUOqE0gDAAAAQCH0K3YAoGeZOHFipNPpgn68/fbbOefZcsstc5p77bXXVvOJV12ud+WaHQAAAAAAAKBYcisX1SWQBAAAAIBCUS4CerSRI0fGiBEjss5NmzYtgTS531VSUpLYJiUAAAAAAACA1TWwf0kMGliWcaa2YUlCaQAAAAAoBOUioMfbZpttss4kWS568cUXs85suummUVaW+RvwAAAAAAAAAN1Btu1FNhcBAAAA9GzKRUCPt+OOO2adeeaZZ2LZsmUJpIl44oknss7ssMMOCSQBAAAAAAAA6LrqLOWi2ob6hJIAAAAAUAjKRUCP9+UvfznrzOLFi+O5554reJa5c+fGW2+9lXVuzz33LHgWAAAAAAAAgHzIvrlIuQgAAACgJ1MuAnq87bffPoYMGZJ17sEHHyx4llzuSKVSORWiAAAAAAAAALoDm4sAAAAAejflIqDHKykpyamsc9dddxU8y5133pl1Zvz48bHmmmsWPEu+bL311pFOp4v2ccwxx2TNuNtuu+X0Xo899ljhv2AAAAAAAADQy9hcBAAAANC7KRcBvcLhhx+edebNN9+MZ599tmAZ5s6dG0888UTWuVyyAgAAAAAAAHQX2TYXNS5bGg1LmxNKAwAAAEC+KRcBvcL+++8fQ4YMyTp35ZVXFizD1VdfHcuXL884069fvzjssMMKlgEAAAAAAAAg37JtLoqIqLW9CAAAAKDHUi4CeoWysrI45JBDss7dc8898dZbb+X9/k8++SRuuOGGrHN77bVXjBw5Mu/3AwAAAAAAABRKts1FEcpFAAAAAD2ZchHQa5x11lmRSqUyzixbtizOOeecvN/9n//5n7Fo0aKsc2effXbe7wYAAAAAAAAopFw2F9UoFwEAAAD0WMpFQK+x2WabxX777Zd17o9//GPcfffdebv3ySefjOuvvz7r3DbbbBNf+cpX8nZvRMTbb78dqVQq68fuu++e13sBAAAAAACAvmNg/5KoHFiacUa5CAAAAKDnUi4CepXzzz8/+vXL/j9txx9/fLzxxhtdvu+DDz6II444IlpaWrLO/td//VeX7wMAAAAAAAAohuryQRnPa5WLAAAAAHos5SKgV9l2221j0qRJWecWLlwYX/7yl2P27NmrfddHH30UX/nKV+Ldd9/NOrvPPvvE/vvvv9p3AQAAAAAAABRTVXlFxvOahrqEkgAAAACQb8pFQK9z8cUXx7Bhw7LOzZs3L7bffvt48MEHV/mOZ599NsaPHx8zZ87MOltWVhZXXXXVKt8BAAAAAAAA0F1k31y0JKEkAAAAAOSbchHQ66y11lpx0003RSqVyjr7ySefxL777hsHH3xwvPDCC1nnX3nllfj2t78dO+20U8ydOzenPFdddVVsvPHGOc0CAAAAAAAAdEc2FwEAAAD0XiXFDgBQCPvtt1+cc845cdlll+U0f++998a9994bm2yySeyyyy6x+eabxxprrBGpVCpqamritddei6effjqmT5++SjmOOOKIOOGEE1bnEQAAAAAAAAC6DZuLAAAAAHov5SKg1/rpT38a8+bNi9/85jc5v+aNN96IN954Iy/3f/nLX46pU6fm5b0AAAAAAAAAiqmqvDLjecOy5mhc2hxlAwYmlAgAAACAfOlX7AAAhdKvX7+45ZZb4uCDD0787l122SX++Mc/RmlpaeJ3AwAAAAAAAORbdZZyUURETUN9AkkAAAAAyDflIqBXKykpibvvvjvOPffcxO789re/HY8++mhUVmb/5joAAAAAAABAT5Btc1FERK1yEQAAAECPpFwE9Hr9+vWLn/70p3HvvffGqFGjCnZPdXV13HDDDTF16lQbiwAAAAAAAIBepbrM5iIAAACA3kq5COgzDjzwwHjttdfinHPOyetWoYEDB8axxx4br7/+ehx33HF5e18AAAAAAACA7mJgSUlUDsz8SxaViwAAAAB6ppJiBwBI0uDBg+Oyyy6LH/7whzFlypS49dZbY+bMmav1Xp///Ofj8MMPj5NPPjlGjhyZ56S0OvDAA2ODDTbIOJPtHAAAAAAAAOi6qvLKqG9u6vS8VrkIAAAAoEdKpdPpdLFDABTTO++8Ew8//HC8/PLL8corr8Tbb78dixYtisWLF0c6nY7BgwfH4MGDY911142xY8fGlltuGV/5yldi0003LXZ0iI8++iiGDx++wucWLFgQa621VpESAQAAAAAA0Ftd/Lffx4wP3u30fKf1x8R3dv5qgokAAAAA8qcv/1yuzUVAn7f++uvH8ccfX+wYAAAAAAAAAN1aVVllxnObiwAAAAB6pn7FDgAAAAAAAAAAQPdXXZG5XFTTqFwEAAAA0BMpFwEAAAAAAAAAkFXWzUVLlIsAAAAAeiLlIgAAAAAAAAAAsqquGJTxvGFZczQubU4oDQAAAAD5olwEAAAAAAAAAEBWVWUVWWdqGmwvAgAAAOhplIsAAAAAAAAAAMgq2+aiiIha5SIAAACAHke5CAAAAAAAAACArKrLKrPO2FwEAAAA0PMoFwEAAAAAAAAAkNXAkpKoGFCacUa5CAAAAKDnUS4CAAAAAAAAACAn1RWZtxfVNioXAQAAAPQ0ykUAAAAAAAAAAOSkqixzuahmiXIRAAAAQE+jXAQAAAAAAAAAQE6qy20uAgAAAOhtlIsAAAAAAAAAAMhJtnJRTYNyEQAAAEBPo1wEAAAAAAAAAEBOqrJtLlIuAgAAAOhxlIsAAAAAAAAAAMhJts1FDUubo3Fpc0JpAAAAAMgH5SIAAAAAAAAAAHKSbXNRRESN7UUAAAAAPYpyEQAAAAAAAAAAOamuGJR1prZxSQJJAAAAAMgX5aICuOmmm+JnP/tZfPrpp8WOAgAAAAAAAACQN9VlOWwuWlKXQBIAAAAA8kW5qADeeeed+O53vxujR4+OI488Mp544oliRwIAAAAAAAAA6LKBJSVRMaA040xtY31CaQAAAADIB+WiAkmn09HU1BS/+c1v4ktf+lKMHTs2rrzyStuMAAAAAAAAAIAerbo88/aimgblIgAAAICeRLmogFKpVKTT6Uin0/Haa6/F2WefHeuss04cffTR8eSTTxY7HgAAAAAAAADAKqvKUi6qVS4CAAAA6FGUiwoslUq1faTT6WhsbIzbb789dtttt9h8883j6quvjtra2mLHBAAAAAAAAADIic1FAAAAAL2LclGBtW4uiogVSkbpdDpeffXVOPPMM2P06NExceLEeOqpp4qcFgAAAAAAAAAgs2zlIpuLAAAAAHoW5aKEdFQyav18Q0ND3HrrrbHrrrvGlltuGf/zP/8TCxcuLGZcAAAAAAAAAIAOVdlcBAAAANCrKBclrLVklE6n20pG7bcZzZw5M04//fQYNWpUTJo0KZ5++uliRwYAAAAAAAAAaJNtc1HD0uZoXLY0oTQAAAAAdJVyURFl22Z08803xy677BLjxo2LX/ziF7Fo0aJixgUAAAAAAAAAyLq5KCKi1vYiAAAAgB5DuagbyLbNaMaMGXHqqafGqFGj4thjj41nn3222JEBAAAAAAAAgD4q2+aiiIga5SIAAACAHkO5qJvJtM1oyZIlcdNNN8VOO+0UW2+9dVx33XWxePHiYsYFAAAAAAAAAPoYm4sAAAAAehflogJrv4loVWTbZjR9+vQ45ZRTYtSoUXH88cfH888/X6AnAAAAAAAAAAD4t9KSAVExYGDGmZqGuoTSAAAAANBVykUFcPrpp8fPf/7zGDt2bKebiFZFpm1G9fX1MXXq1JgwYUJss802MWXKlKir8w06AAAAAAAAAKBwqssHZTyvbViSUBIAAAAAukq5qACqqqri9NNPj3/961/x5JNPxpFHHhllZWWfKQjle5vRP//5z5g8eXKMGjUqTjzxxHjxxRcL8XgAAAAAAAAAQB9XVV6R8dzmIgAAAICeQ7mowHbaaae45ZZb4r333osrr7wykW1GdXV18atf/Sq23377GD9+fNxwww1RX1+fv4cCAAAAAAAAAPq07JuL/JwCAAAAQE+hXJSQqqqqOO2009q2GR111FGJbDOaNm1anHTSSTFq1KiYPHlyvPTSS4V4PAAAAAAAAACgD6kqr8x4XqNcBAAAANBjKBcVwU477RQ333xzvP/++3HllVfG5ptvXvBtRosXL44pU6bE+PHjY7vttotf//rXsWTJkvw9FAAAAAAAAADQZ1RnKRfZXAQAAADQcygXFdHQoUPjtNNOi+nTp8c//vGPxLYZvfjii3HCCSfEqFGj4pRTTol//vOfBXg6AAAAAAAAAKC3ylYuWrK0ORqXLU0oDQAAAABdoVzUTey4445t24yuuuqqRLYZLVq0KK677rrYdtttY4cddogbb7wxGhoa8vdQAAAAAAAAAECvVJWlXBRhexEAAABAT6Fc1M0MHTo0Tj311LZtRkcffXTbNqOVNxGtimzbjJ5//vk47rjjYtSoUW33AwAAAAAAAAB0JNvmogjlIgAAAICeQrmoG9txxx3jpptuattmtOWWWxZ8m9HChQvjF7/4RXzhC19o26bU2NiYv4cCAAAAAAAAAHq8XDYX1SgXAQAAAPQIykU9QOs2o5dffjmeeuqpxLYZPffcczFp0qQYNWpUnHbaaTFjxowCPSEAAAAAAAAA0JOUlgyIigEDM87YXAQAAADQMygX9TATJkyIm266KebPnx9XX311QbcZtX6utrY2rr322thqq61i5513jltvvTWampry+lwAAAAAAAAAQM+SbXuRzUUAAAAAPYNyUQ81ZMiQ+M53vtO2zeiYY45JZJvRM888ExMnToyRI0fGGWecEa+88kqBnhAAAAAAAAAA6M6qs5SLbC4CAAAA6BmUi3qBCRMmxI033pj4NqNrrrkmttxyy9h1113jtttus80IAAAAAAAAAPqQ7JuL6hJKAgAAAEBXKBf1Ih1tMyovLy/4NqPWu0aNGhVnnXVWvPbaawV6QgAAAAAAAACgu6guH5TxvLZhSUJJAAAAAOgK5aJeqnWb0fvvvx9XX311jBs3ruDbjGpqauKqq66KzTffPHbbbbe44447orm5Oa/PBQAAAAAAAAB0D1XlFRnPbS4CAAAA6BmUi3q51m1G//znP+Ppp5+OiRMnJrLN6Mknn4yjjjoqRo0aFeecc068/vrrBXpCAAAAAAAAAKAYsm0uWrK0OZqWLU0oDQAAAACrS7moD9lhhx1i6tSp8f7778c111yTyDajTz/9NH7+85/H2LFjY/fdd48777wzli71jUMAAAAAAAAA6OmqyyuzztQ21CeQBAAAAICuUC7qg4YMGRKnnHJK4tuM/vd//ze+9a1vxejRo+N73/tevPnmmwV6QgAAAAAAAACg0KpyKBfVKBcBAAAAdHvKRX3cytuMttpqq4JvM/r444/jiiuuiE033TT22GOPuPvuu2PZsmV5fS4AAAAAAAAAoLByKRfZXAQAAADQ/SkXERH/3mb00ksvxTPPPNPhNqPVkW2b0eOPPx6HHXZYrLPOOvHjH/84Pvjggzw/GQAAAAAAAABQCGUlA6J8wMCMMzYXAQAAAHR/ykV8xvbbbx9Tp06N+fPnx//8z//EuHHjulQwapVpm9GCBQvi4osvjg022CAmTpwYM2fOzMejAAAAAAAAAAAFVJ1le5HNRQAAAADdn3IRnRo8eHCcfPLJ8Y9//CMmTZqUl4JRROZtRs3NzXHrrbfGVlttFd/4xjdi+vTpeXgSAAAAAAAAAKAQqrKUi2wuAgAAAOj+lIvo1EsvvRSTJ0+OUaNGxY033thWAMqnzrYZLV++PO69997YZpttYuLEiTFv3ry83gsAAAAAAAAAdF22zUXKRQAAAADdn3IRK6ivr48bbrghtttuuxg/fnxMmTIlFi9evEIJqBAylYxuvfXW2GyzzeLyyy+P5cuXFywDAAAAAAAAALBqsm0uqlUuAgAAAOj2lIuIiIhp06bFSSedFKNGjYqTTjopXnzxxbbCT2vZJwmdlYzq6+vj3HPPjQkTJsSsWbMSyQIAAAAAAAAAZJZ9c1FdQkkAAAAAWF3KRX1YfX19TJkyJbbbbrvYbrvt4oYbbmjbUhQRK5SKVnVrUetrV/7IVWcloxdeeCG+8IUvxP33379KeQAAAAAAAACA/KsuH5TxfMnS5mhatjShNAAAAACsDuWiPujFF1+ME088MUaNGhWTJ0/ucEtRa5mnfcknFysXklZ+j3yUjOrq6uKggw6KqVOnrsJTAwAAAAAAAAD5VpVlc1FERG1DfQJJAAAAAFhdykV9ROuWovHjx8f2228fv/rVrzJuKVqdQlH7QtIaa6wR55xzTrz++utx3333xf777x/9+vX7zH25Fo1WLhm1tLTEiSeeGA888MCqfBkAAAAAAAAAgDyqzqFcVKNcBAAAANCtlRQ7AIX1wgsvxJQpU+LOO++M+vr6FUpD7Ys9q1ImyvT6CRMmxMknnxzf/OY3o7S0NCIiNt5449hvv/1i/vz5MXXq1Ljxxhtj9uzZbe/RvtSUTfvtSi0tLXHcccfFK6+8EtXV1aucHwAAAAAAAADoGpuLAAAAAHo+m4t6obq6urj++utj2223jR122CF+/etfR11dXd63FLW+vqKiIk444YR46aWX4qmnnoojjzyyrVjU3siRI+O8886Lt956Kx555JH45je/GSUlJR3myqR93gULFsRpp52Wc34AAAAAAAAAIH/KSgZE+YCBGWdsLgIAAADo3pSLepEXXnghjj/++Bg1alScfPLJ8dJLL7WVh9qXglo/tzqlooh/F5I222yzuOaaa+L999+P6667Lrbaaquc3+/LX/5y3HXXXfHOO+/Ej3/841hjjTVWqWTU+kzpdDruuOOOeP3113O+GwAAAAAAAADIn2zbi2wuAgAAAOjelIt6uLq6urjuuuvathRNnTq1oFuKBgwYEIcddlg8/vjjMWPGjDjllFNi8ODBq51/7bXXjgsuuCDmzp0bl19+eay11lorZM/Vddddt9oZAAAAAAAAAIDVV52lXGRzEQAAAED3plzUQz3//PNx3HHHxciRI+OUU04p+Jai9dZbL37yk5/Eu+++G3fccUfsuuuueX2e8vLyOOuss+Ktt96K7373u9G/f/+2LNmyptPpuPnmm6O5uTmvmQAAAAAAAACA7KrKlIsAAAAAejLloh5k8eLF8ctf/jK22WabmDBhQtx4441RX1+fly1FHb0+lUrFvvvuG3/6059i9uzZ8YMf/CDWWmut/D7USgYNGhSXXHJJPP3007H++uu35ehI++dbuHBhPPfccwXNBgAAAAAAAAB8VnVF5nJRrXIRAAAAQLdWUuwAZPfcc8/FlClT4q677oolS5asUKppX7xZ1TJRZ69fa621YtKkSXHiiSfGBhtssPrBu2DbbbeNZ555Jr74xS/Gm2++2bahKJNnnnkmdtlll4QSAgAAAAAAAAAREdXlNhcBAAAA9GTKRd3U4sWL49Zbb40bbrghpk+fHhFR8FLRzjvvHCeffHJ84xvfiAEDBqxu9LwZPnx43HHHHbHjjjvGsmXLshaMnn322QTTAQAAAAAAAAAREVVlmctFS5Y2RfOyZTGwxI+pAAAAAHRHvmvTzTz77LMxZcqU+O1vf5vIlqLBgwfHkUceGZMnT44tttiiC8kLY5tttolvf/vbMWXKlBXyryydTsfs2bMTTAYAAAAAAAAARERUVwzKOlPTWB8jBg1NIA0AAAAAq0q5qBto3VI0ZcqU+Ne//hURhd9SNG7cuJg8eXIceeSRUVmZ+TcIFdvJJ58cU6ZM6fS8daNRbW1tcqEAAAAAAAAAgIiIqCqryDpTs6ROuQgAAACgm1IuKqJnnnmmbUtRQ0NDwQpFre9RWloa3/jGN2Ly5Mmx0047rX7whI0bNy6GDx8eH330UVuRqCPKRQAAAAAAAACQvOry7L/UtLZxSQJJAAAAAFgdykUJW7RoUduWohkzZkRE4bcUbbjhhnHiiSfGscceG8OGDVvd6EW13XbbxQMPPPCZ0lR7ixYtSjARAAAAAAAAABARUTZgYJSXDIyGZc2dztQsqUswEQAAAACrQrkoIU8//XRMmTIl7r777rxvKeroPfr16xf77bdfTJ48Ofbee++MpZyeYNSoUR1+Pp1Otz3b8uXLk4wEAAAAAAAAAPw/VRWV0bCo83JRbWN9gmkAAAAAWBXKRQW0cOHCti1FM2fOjIjCbykaMWJEHHvssXHCCSfEeuutt7rRu52qqqpiRwAAAAAAAAAAOlFdVhnzF9V0el6zRLkIAAAAoLtSLiqAV199NS655JK45557EtlSFBGx2267xeTJk+Pggw+OkpLe95914MCBxY4AAAAAAAAAAHSiqrwy43lNg3IRAAAAQHfV+1oo3cBvf/vbuOWWW1b4XCG2FA0ZMiSOPvromDx5cmy22WarmRYAAAAAAAAAoGuqKzKXi2oblYsAAAAAuivlogIq1JaiL3zhCzF58uQ44ogjoqKiomshAQAAAAAAAAC6qKosy+aiJcpFAAAAAN2VclGBdXVLUet7lJWVxSGHHBKTJ0+OHXbYIV/xAAAAAAAAAAC6rLo8c7loydKmaF62LAaW+FEVAAAAgO7Gd2y6kY62FG200UZx4oknxqRJk6K6urpY0bqVlctXAAAAAAAAAEBxZSsXRUTUNNbHiEFDE0gDAAAAwKpQLuoGVi4V9e/fP/bff/+YPHly7LnnnkVM1v2sziYoAAAAAAAAAKCwqnIoF9U2KBcBAAAAdEfKRUXS0ZaikSNHxnHHHRcnnHBCjB49uljRuqU99tgjSqxGBwAAAAAAAIBuKafNRQ31CSQBAAAAYFVpaySso1LRHnvsEZMnT44DDzww+vfvX6xo3dqXvvSl+NKXvlTsGAAAAAAAAABAB8oGDIzykoHRsKy505la5SIAAACAbkm5KAEdFYqqqqrimGOOiZNOOinGjBlTrGgAAAAAAAAAAHlRVV4RDYs7LxfVNNQlmAYAAACAXCkXFVhrsai1VLTtttvGySefHIcddliUl5cXMxoAAAAAAAAAQN5Ulw+K+YtrOz2vbViSXBgAAAAAcqZcVGDpdDrKy8vjsMMOi8mTJ8f48eOLHQkAAAAAAAAAIO+qyisznttcBAAAANA9KRcV0MYbbxyTJ0+OY445JqqqqoodBwAAAAAAAACgYKqzlovqE0oCAAAAwKpQLiqAHXbYIR599NHYY489ih0FAAAAAAAAACAR2TYX1SoXAQAAAHRLykUF8NWvfrXYEQAAAAAAAAAAEpVtc1F9c1M0L1sWA0v8uAoAAABAd9Kv2AEAAAAAAAAAAOj5spWLIiJqG20vAgAAAOhulIsAAAAAAAAAAOiyqhzKRTUNykUAAAAA3Y1yEQAAAAAAAAAAXZZLuahWuQgAAACg21EuAgAAAAAAAACgy8oHDIyykgEZZ2wuAgAAAOh+lIsAAAAAAAAAAMiL6izbi2wuAgAAAOh+lIsAAAAAAAAAAMiLqizlIpuLAAAAALof5SIAAAAAAAAAAPIi2+aimoa6hJIAAAAAkCvlIgAAAAAAAAAA8qK6fFDG89qGJQklAQAAACBXykUAAAAAAAAAAORFlc1FAAAAAD2OchEAAAAAAAAAAHlRnaVcVN/cFM0tyxJKAwAAAEAulIsAAAAAAAAAAMiLbJuLIiJqG+oTSAIAAABArpSLAAAAAAAAAADIi2ybiyKUiwAAAAC6G+UiAAAAAAAAAADyIpfNRTXKRQAAAADdSkmxA/RGH3/8cbzyyivFjpGYVCoVpaWlUVpaGmVlZVFWVhbDhg2LQYMGFTsaAAAAAAAAAJCg8gEDo6xkQDQuW9rpjM1FAAAAAN2LclEB/PWvf40jjjii2DGKrry8PEaMGBFrr712bLLJJjF27NjYfPPNY6uttorRo0cXOx4AAAAAAAAAUABV5ZXxweLaTs9tLgIAAADoXpSLCiSdThc7QtEtWbIk5syZE2+//XY888wzK5xtsMEGsfvuu8eXvvSl2H///WPo0KFFSgkAAAAAAAAA5FO1chEAAABAj6JcVECpVKrYEbqFjopWraWjm266KQYOHBhf/epX44gjjoiDDjooSkr8sQQAAAAAAACAnqq6vDLjea1yEQAAAEC30q/YAXq7dDrdZz9apVKpDj9a55qamuK+++6Lww47LD7/+c/HNddcEw0NDUX8rwYAAAAAAAAArK6qLOUim4sAAAAAuhflIgomW/Goo6LRu+++G2eccUZsuOGGceuttxb5CQAAAAAAAACAVVVdPijjuc1FAAAAAN2LchFFka1otGDBgpg4cWLsscceMXv27CKnBQAAAAAAAAByVVVekfG8rrkxmluWJZQGAAAAgGyUiyi6zopG6XQ6HnvssRg/fnz85S9/KXJKAAAAAAAAACAX2TYXRUQsbFiSQBIAAAAAcqFcRLeycskoIqK2tjb233//+PnPf17MaAAAAAAAAABADqrKK7PO1DTUJZAEAAAAgFyUFDsAdGTlglFLS0ucc845kUql4owzzihiMgAAAAAAAAAgk+ocykW1DfUJJAEAAAAgF8pFBdZajsmktUiTz/dcFUnev6p3pdPpSKVSkUqlIp1Ox9lnnx2DBw+OY489drUzAAAAAAAAAACFUz5gYJSWDIimZUs7nalRLgIAAADoNvoVO0Bvlk6nc/rIRWvBprXYk+t753L3yu+dr+fKdteq3Nf62nQ6Hd/5znfipZdeyum1AAAAAAAAAEDysm0vUi4CAAAA6D5sLiqAQw89NA499NCMM3V1dfG9730vrr/++rbPrVw0al++aX9WUVER48ePj7Fjx8aYMWPi85//fAwfPjzWWmutqKqqitLS0igtLY1UKhWNjY3R1NQUCxcujI8++igWLFgQs2bNijfeeCNmzpwZL7zwQtTX12e9s32pqV+/fnHiiSfGpZdeGpWVK34zsLGxMRobG6Ouri7mz58f8+fPj9dffz3+9a9/xbRp0+KVV15Z4T3bv28m7TcYNTU1xWGHHRYvvvhiDBo0KOPrAAAAAAAAAIDkVZdXxgeLazs9r1UuAgAAAOg2lIuK4OGHH44TTzwx5s6dGxG5lYq23nrrOOigg2LfffeNrbfeOvr375/TXRUVFVFRURHV1dWxwQYbfOa8paUlXn755fjzn/8cf/jDH2LatGltGVbektT6+XQ6Hdddd138+c9/jilTpsSee+7Z9n5lZWVRVlYWVVVVsc4663zmvg8++CAefvjhuO222+Jvf/tbLF++vO2uXAtGERFvvfVWXHDBBXHZZZfl9HUAAAAAAAAAAJJTZXMRAAAAQI/Rr9gB+pqLL7449t1333jnnXdWKO20al/oqaysjFNOOSVmzJgR06ZNix//+Mex7bbb5lwsykX//v1jm222iR/96EfxwgsvxCuvvBLf+c53YtCgQSsUilq1Zk6n0/HOO+/EPvvsE5deemnO96299tpx9NFHx8MPPxxz5syJk046KQYMGLDCZqJsWotI11xzTcyaNWvVHxoAAAAAAAAAKKjqLOUim4sAAAAAug/looQsW7YsJk2aFD/+8Y9X2NbTWqZpv72npKQkTj311Jg1a1Zcc801MXbs2MRybrrppnH11VfH7Nmz4/TTT48BAwa05WvVPvvy5cvjBz/4QRx33HHR0tKySnetu+668Ytf/CJeffXV+PKXv9xhmWll7ctYS5cujfPOO2+V7gQAAAAAAAAACs/mIgAAAICeQ7koId/61rfi5ptvbtvQE/HvLUDt/32rrbaK559/Pq666qpYa621ipZ32LBh8fOf/zyef/752HrrrTvMHfHvLUI33nhjHH300at114YbbhiPPPJIXH755SuUrTJpvff3v/99zJs3b7XuBQAAAAAAAAAKI9vmorrmxljasiyhNAAAAABkolyUgHPOOSfuvvvuiIgVCjor//sxxxwTzz33XIwbN644QTuw5ZZbxrPPPhuTJk1aoWAUEZ8pGN15553xve99b7XvOuuss+L3v/99h9uS2mu/vailpSV++ctfrvadAAAAAAAAAED+ZdtcFBFR27AkgSQAAAAAZKNcVGBTp06Nn/3sZxm3/kRE/OhHP4obb7yxrVjTnZSUlMSvfvWrOP/88zssGLV+Lp1OxxVXXBE333zzat91wAEHxC233JLTBqPWO6dOnbra9wEAAAAAAAAA+VddPijrTE1DfQJJAAAAAMhGuaiA3nvvvTjrrLM+s60o4t/FmFQqFaeffnpceOGFxYqZs/PPPz/OPPPMzxSMWrU+0xlnnBHvv//+at9zyCGHxPe///0Vvl4ra3+2YMGCePrpp1f7PgAAAAAAAAAgv6rKK7LO1DbUJZAEAAAAgGyUiwropJNOikWLFkVE58WiL37xi3HFFVcUK+Iqu/zyy2O33XbrcINRq0WLFsVJJ53UpXsuuOCC2GabbSIi8/aiVn/605+6dB8AAAAAAAAAkD/lJQOjtGRAxhmbiwAAAAC6B+WiAnn88cfjgQceaCsStWpflKmoqIjbbrstp/JMd5FKpeK2226LysrKtn9v1Vo4SqfT8cADD8QTTzyx2vf0798/fv7zn2fcXtT+3r/85S+rfRcAAAAAAAAAkF+pVCqqyyszzigXAQAAAHQPykUFcumll3Z61lrCOeuss2L06NEJpsqP0aNHx9lnn521+JPpa5CLXXfdNfbaa6/PbElqr/XzM2bMiKampi7dBwAAAAAAAADkT1WWclGtchEAAABAt6BcVAAzZ86MBx98MOvWonPOOacY8fLi7LPPzrq96MEHH4yZM2d26Z5TTjml07P2X9uWlpZ4+eWXu3QXAAAAAAAAAJA/NhcBAAAA9AzKRQXwm9/8ptOz1vLNIYccEoMHD04wVX4NHjw4Dj300Kzbi+64444u3fO1r30tRowYERHR6faiVtOmTevSXQAAAAAAAABA/lSV2VwEAAAA0BMoFxXAfffdl7UIc/DBByeUpnD+4z/+I+N5Op2OP/3pT126o1+/frHvvvtmLTFFRMyaNatLdwEAAAAAAAAA+VNdkWVzUaNyEQAAAEB3oFyUZ2+//XbMmDEjImKFQkz7slFJSUnsvvvuSUfLuy9+8YsxYMCAiFjx+Vq3M0VEzJw5M955550u3fPVr341p7l58+Z16R4AAAAAAAAAIH+ybS6qa2qMpS3LEkoDAAAAQGeUi/Ls2Wef7fSstWy00UYbRWVl5m+g9QSVlZWx8cYbZ517+umnu3TPdtttl9Pcu+++26V7AAAAAAAAAID8yba5KCKitnFJAkkAAAAAyES5KM9mzpyZ8TyVSsWYMWMSSlN4m2yyyQobmjryyiuvdOmODTbYIKqqqiJixQ1JrVKpVKTT6fjwww+7dA8AAAAAAAAAkD/ZNhdFRNQsqU8gCQAAAACZKBflWbZyUUTEiBEjEkiSjLXXXjvrTC5fk2w+97nPZS0x1df7hiMAAAAAAAAAdBe5bS7yd/0AAAAAxaZclGezZ8/OOjN48OAEkiRj0KBBGc/T6XTMmjWry/ess846WWcaGhq6fA8AAAAAAAAAkB/lJQOjtGRAxhmbiwAAAACKT7kozxYuXBipVCrjTElJSUJpCi/Ts7R+HRYtWtTle3LZkKRcBAAAAAAAAADdRyqViqqyiowzNQ11CaUBAAAAoDPKRXm2ePHivMz0FHV12b/Jl4/nLS8vzzrT0tLS5XsAAAAAAAAAgPyprhiU8by20eYiAAAAgGJTLsqzXIo0NTU1CSRJxqeffpp1Jh/lorKysqwzuRSQAAAAAAAAAIDkVJVVZjyvWaJcBAAAAFBsykV5lkqlMp6n0+l44403EkpTeG+++WbWmWxfk1zk8h4VFZlXqQMAAAAAAAAAyaouz1wusrkIAAAAoPiUi/Js8ODBnZ61FmRef/31SKfTSUUqmOXLl8drr72WtfgzaFDmFee5aGxszDqjXAQAAAAAAAAA3UtVlnJRTYNyEQAAAECxKRflWWflovZlorq6unjuueeSilQwL7zwQixevDgiImNZKlPhKldLlizp9Kz1buUiAAAAAAAAAOhesm0uqmtqjKUtyxJKAwAAAEBHlIvybNSoUTltJXrggQcSSFNY2Z4hnU5HKpWKUaNGdfmuBQsWZJ1RLgIAAAAAAACA7iVbuSgiorax8184CgAAAEDhKRfl2ZgxYzKep1KpSKfTceONN8by5csTSpV/y5cvj6lTp0Yqlco6m+1rkov58+dnPE+lUjF8+PAu3wMAAAAAAAAA5E9VLuWihvoEkgAAAADQGeWiPNt00007PWu/0ej999+PO++8M4lIBXHnnXfGe++9FxGRdVPTZptt1uX75syZk7XItMEGG3T5HgAAAAAAAAAgf3LZXFSjXAQAAABQVMpFebbjjjtmnWndXnTeeedFc3NzAqnyq7m5Oc4777ycthZFREyYMKFL99XU1MSCBQsiInORSbkIAAAAAAAAALqX8gEDo7R/ScaZmiXKRQAAAADFpFyUZxMmTIjBgwdHRHRYvmlfjpk7d26cc845iWXLl3PPPTfeeeediOi47NP+uQcNGpRT4SqTGTNm5DSnXAQAAAAAAAAA3UsqlYqqLNuLahuViwAAAACKSbkoz/r37x9f/vKXM27YSafTbduLrr322rj77rsTTNg1v/vd7+Kqq65qy9+Z1mfcY489on///l268+mnn85pTrkIAAAAAAAAALqf6izlopqGuoSSAAAAANAR5aICOProo3Oaay3oHHXUUfHwww8XOFXXPfLII/Gtb32rw41MnTnmmGO6fO8//vGPnOY22mijLt8FAAAAAAAAAORXVfmgjOe1DUsSSgIAAABAR5SLCmD//fePUaNGRUR0WsRp3fqTSqWiubk5vv71r8dtt92WWMZVdccdd8TXv/71aG5ujojodGtR++cdOXJkHHDAAV26d+nSpfHYY491+HVs/7mNNtooqqqqunQXAAAAAAAAAJB/1eUVGc9tLgIAAAAoLuWiAujfv3+ccsopnRZwWqXT6Uin05FKpaKpqSmOOeaYOO2006KhoSGhpNk1NjbGGWecEUcddVQ0Nja2bVvKpPWZTj311OjXr2t/xJ544olYvHhx2/t2dteOO+7YpXsAAAAAAAAAgMKwuQgAAACge1MuKpAzzzwzRo8eHRGdby9qr7W0c+2118a4cePiT3/6U6EjZvXAAw/EVlttFddcc01biSeT9uejRo2K008/vcsZ7r333pzmlIsAAAAAAAAAoHuqLq/MeL64qSGWtbQklAYAAACAlSkXFUhZWVn893//d9YtPxH/3sjTWjCaNWtWHHjggbHLLrvEH//4x1i+fHmh466Q5b777otdd901DjjggHjzzTdXKBblurXooosuirKysi5lWbZsWdx11105lbOUiwAAAAAAAACge8pWLoqIqG2sTyAJAAAAAB1RLiqgY445Jvbdd9+ctv6k0+m2udaS0VNPPRUHH3xwbLDBBvG9730v/vGPfxQs69NPPx3f//73Y8MNN4yDDjoonnrqqc/kyVQsap1JpVKx7777xsSJE7uc6f77749PPvkkIj5bamr/9RwyZEhsueWWXb4PAAAAAAAAAMi/qhzKRTUNykUAAAAAxVJS7AC93U033RTjxo2LDz/8sK2Ak0lHhZ558+bFFVdcEVdccUUMHTo0JkyYEDvuuGNsvvnmsckmm8TnPve5qKioyClPY2NjzJ49O15//fWYOXNmPP300/HMM89EbW1t2/2tct1W1L7oM2LEiLjxxhtzypLNL37xi4zn7ctMuWw3AgAAAAAAAACSl8vmIuUiAAAAgOJRLiqwNddcM+65557Yc889o7GxMeeCUcSKpZ3Wz9XW1sZDDz0UDz300AqvqaioiLXWWiuqqqqitLQ0Bg4cGKlUKpqamqKpqSkWLlwYH330UdTXf/abcR0Vilb+fGfaF5AqKiri97//fay55ppZX5fNzJkz49FHH83p6/WNb3yjy/cBAAAAAAAAAIVRPmBglPYviaaWZZ3O1CoXAQAAABSNclECdtppp7jzzjvj4IMPjuXLl+dUmIlYsWSUrfRTX1/fVhxaeYvPqmweymV+5del0+koKSmJu+66KyZMmJDTa7O57LLLOs3XXkVFReyzzz55uRMAAAAAAAAAyL9UKhVV5ZXxYd3CTmdsLgIAAAAonn7FDtBX7L///nH77bfHgAEDIiJzYWZl6XS67aP1tZ19rDy/Oq/JRfvXDRw4MG677bb42te+lvMzZTJr1qy4/fbbO3yWlXN+9atfjbKysrzcCwAAAAAAAAAURnV5ZcZzm4sAAAAAisfmogQdcsghMXz48DjooINi0aJFOW8waq+z+dayT7bS0qrel+mudDodQ4cOjXvvvTd23333Lr9vq5dffjkmTpyY0+xRRx2Vt3sBAAAAAAAAgMKoylIusrkIAAAAoHiUixK2++67x1NPPRWHHnpozJgxY4WiTlfkozSUi/Z5t9hii7jrrrtis802y+sdBx98cBx88MF5fU8AAAAAAAAAoHhsLgIAAADovvoVO0BftNlmm8Xzzz8fJ598clspKJVKZd06VEyt+dLpdKTT6TjllFPi+eefz3uxCAAAAAAAAADofWwuAgAAAOi+lIuKpLS0NP7nf/4nHn/88Rg3bly3LRm1z5NOp2PrrbeOxx9/PK655pooLS0tcjoAAAAAAAAAoCeoLh+U8XxxU0Msa2lJKA0AAAAA7SkXFdmuu+4a06ZNi+uvvz7WX3/9ts1AraWeYhSN2t/dmme99daLKVOmxIsvvhi77rpr4pkAAAAAAAAAgJ6rqrwi60xto+1FAAAAAMWgXNQNpFKpOP744+PNN9+M22+/Pbbddtu2Uk/reSHLRh29f+v922yzTdx+++3x1ltvxXHHHdettioBAAAAAAAAAD1Dts1FERE1DcpFAAAAAMVQUuwA/Fv//v3j8MMPj8MPPzxmzJgRd9xxR9x1110xZ86ctplCFYxai0wRERtssEEcdthhccQRR8QWW2yR97sAAAAAAAAAgL6lurwy60ytchEAAABAUSgXdVNbbLFFXHzxxXHxxRfHG2+8EX/729/i73//ezz77LMxd+7cjK9duXzUvjjUkXXWWScmTJgQX/rSl2KPPfaIMWPGdDk/AAAAAAAAAECr8gEDY2D/kmhuWdbpjM1FAAAAAMWhXNQDbLLJJrHJJpvESSedFBERixcvjhkzZsSrr74a8+bNi/nz58f8+fPjk08+iYaGhmhqaorGxsaIiCgtLY2ysrIoLy+P6urqGDVqVIwcOTLWWWed2GyzzWKLLbaIIUOGFPPxAAAAAAAAAIBeLpVKRXV5ZXxYt7DTGZuLAAAAAIpDuagHGjx4cOy4446x4447FjsKAAAAAAAAAEBOqrKUi2wuAgAAACiOfsUOAAAAAAAAAABA71ddXpnx3OYiAAAAgOJQLgIAAAAAAAAAoOCqspSLbC4CAAAAKA7lIgAAAAAAAAAACs7mIgAAAIDuqaTYAXqb999/Px599NGcZjfbbLPYbrvtCpwIAAAAAAAAAKD4sm0uWtTUEMtaWqKkf/+EEgEAAAAQoVyUd/fcc0+ceeaZOc0+9thjhQ0DAAAAAAAAANBNZNtcFBFR21gfa1YOSSANAAAAAK36FTtAb/PPf/4z0ul01o8dd9wxdt1112LHBQAAAAAAAABIRHX5oKwztQ1LEkgCAAAAQHs2F+XZG2+8ERERqVSqw/N0Oh2pVCoOPfTQJGMBAAAAAAAAABRVVQ6bi2oa6hJIAgAAAEB7Nhfl2dy5c9uKRStvK2rvgAMOKEY8AAAAAAAAAICiqBgwMAb2z/x7cGsb6hNKAwAAAEAr5aI8+/jjjzv8fPtNRmuuuWasv/76SUUCAAAAAAAAACi6VCqVdXtRjXIRAAAAQOKUi/Js6dKlnZ6l0+lIpVKx+eabJ5gIAAAAAAAAAKB7qM5SLrK5CAAAACB5ykV5VlmZ+ZtgEREbbLBB4YMAAAAAAAAAAHQzNhcBAAAAdD/KRXk2aNCgrDODBw9OIAkAAAAAAAAAQPdicxEAAABA96NclGe5lItymQEAAAAAAAAA6G1sLgIAAADofpSL8mzNNdeMdDqdcaa5uTmhNAAAAAAAAAAA3Ue2zUWLmhpi2fKWhNIAAAAAEKFclHebbLJJ1pn6er9lBwAAAAAAAADoe7KViyIiFjYsSSAJAAAAAK2Ui/Isl3LRhx9+mEASAAAAAAAAAIDupSqHclFNg1/aCgAAAJAk5aI8GzNmTMbzdDods2bNSigNAAAAAAAAAED3UV0+KOuMchEAAABAspSL8mynnXbq9CyVSkVExJtvvhnLli1LKhIAAAAAAAAAQLdQMWBgDOjfP+NMbUNdQmkAAAAAiFAuyrsRI0bEVlttFel0uq1MFPF/G4taNTY2xvPPP1+MeAAAAAAAAAAARZNKpbJuL6ppWJJQGgAAAAAilIsKYq+99so685e//CWBJAAAAAAAAAAA3UtVeUXGc5uLAAAAAJKlXFQA3/zmNzs9S6VSkU6n44477kgwEQAAAAAAAABA95B9c1F9Qkn+f/buPErOukwf/l3dnXRXd5bqBAi4gIEEMIqoZIAgiwqIIgijAyIysgmIznCcwV1fF0BHBB0dx4VNFERhXBBBEUERhZ+EgbAMu0DYIUDoCkl3dZLuft4/NLEDST2VUPXU9vmc00dS37vqe1XrwXM6fdUNAAAAQIRyUU3MnTs3dtxxx0iSJHK53OrHkyRZ/c8PPPBAXHHFFfWIBwAAAAAAAABQN4WevrLnReUiAAAAgEwpF9XIhz70obLnSZLEF77whYzSAAAAAAAAAAA0hv7e8uWigWHlIgAAAIAsKRfVyCGHHBKzZ8+OiHjB9qJVf54/f35873vfq0s+AAAAAAAAAIB6SNtc9NxwKUbGRjNKAwAAAIByUY1MmDAh/vu//zuSJFnreS6XiyRJ4sQTT4yFCxdmnA4AAAAAAAAAoD7SNhdFRCwpDWWQBAAAAIAI5aKa2nvvveOggw5aY1tRRKwuHOVyuViyZEm8/e1vj2KxWKeUAAAAAAAAAADZ6c+nl4sGSoMZJAEAAAAgQrmo5s4888yYPXt2RMRaC0YREXfffXfsueee8dRTT2WeDwAAAAAAAAAgSwXlIgAAAICGolxUY1OnTo1LL700pk6dGhEvLBit+vPNN98cu+yyS9x88811yQkAAAAAAAAAkIW+Cd0xobOz7ExxWLkIAAAAICvKRRnYeuut4xe/+EVMnjw5ItZeMMrlcvHAAw/EvHnz4j/+4z9i5cqV9YoLAAAAAAAAAFAzuVwuCj3ltxcNDCkXAQAAAGRFuSgju+++e1xzzTWx6aabRkSsLhRF/LVgtOqxFStWxGc+85nYdttt44ILLoiRkZG6ZQYAAAAAAAAAqIX+3vLlIpuLAAAAALKjXJSh7bffPq677rp43etet7pQtMr4glGSJLFw4cJ43/veF694xSvic5/7XNx+++31iAwAAAAAAAAAUHXpm4uWZZQEAAAAAOWijL3iFa+I+fPnx+c///no6upa5wajVSWjxx9/PE455ZTYfvvtY9asWXH00UfHueeeGzfddFMMDvqUHgAAAAAAAACg+fTnJ5U9Lw4PZZQEAAAAgK56B2hVRx11VOrMdtttFwsWLFhdLop4YcFo/GMPPPBALFy4ML7//e+vnt9kk01ixowZMWPGjJg8eXJ0d3fHxIkT13jNesvlcnHOOefUOwYAAAAAAAAA0CD6871lzwdKNhcBAAAAZEW5qEa+//3vV1zwWVUeWttj40tGa5tdtGhRLFq0qKHKROMlSaJcBAAAAAAAAACsoZCyuei54VKMjI1GV0dnRokAAAAA2pdyUY2trTi0oc9/ftFo/MyLvQcAAAAAAAAAICv9vX2pM0uGh2J67+QM0gAAAAC0N+WiGkvbKLQ+paC1za6rcNQolJ4AAAAAAAAAgOfr70kvFw0MDSoXAQAAAGRAuajGal2uaeTyTiOXngAAAAAAAACA+ilUsLmoODyYQRIAAAAAOuodAAAAAAAAAACA9tI3oTsmdHSWnRkoKRcBAAAAZEG5CAAAAAAAAACATOVyuSjky28vKioXAQAAAGRCuQgAAAAAAAAAgMz1p5SLbC4CAAAAyIZyEQAAAAAAAAAAmbO5CAAAAKAxdNU7QKvL5XL1jgAAAAAAAAAA0HBsLgIAAABoDMpFNZQkSb0jAAAAAAAAAAA0pPRy0bKMkgAAAAC0N+WiGjn88MPrHQEAAAAAAAAAoGEV8pPKni8dLsXI2Gh0dXRmlAgAAACgPSkX1ci5555b7wgAAAAAAAAAAA2rP99b9jyJiCXDQzG9d3I2gQAAAADaVEe9AwAAAAAAAAAA0H76UzYXRUQUS4MZJAEAAABob8pFAAAAAAAAAABkrpDvS50ZUC4CAAAAqDnlIgAAAAAAAAAAMtc3sTsmdHSWnbG5CAAAAKD2lIsAAAAAAAAAAMhcLpdL3V5kcxEAAABA7SkXAQAAAAAAAABQF/0p5SKbiwAAAABqT7kIAAAAAAAAAIC6sLkIAAAAoP6UiwAAAAAAAAAAqIu0zUXKRQAAAAC1p1wEAAAAAAAAAEBdpJWLispFAAAAADWnXAQAAAAAAAAAQF0UUspFzw0PxejYWEZpAAAAANqTchEAAAAAAAAAAHWRtrkoiYglw0PZhAEAAABoU8pFAAAAAAAAAADURdrmooiIgdKyDJIAAAAAtC/lIgAAAAAAAAAA6qI/Pyl1pliyuQgAAACglpSLAAAAAAAAAACoi76J3TGho7PsjM1FAAAAALWlXAQAAAAAAAAAQF3kcrko5PvKzhRLgxmlAQAAAGhPykUAAAAAAAAAANRNWrloQLkIAAAAoKaUiwAAAAAAAAAAqJt+m4sAAAAA6qqr3gHYcKOjo/HEE0/E448/HkuXLo1SqRSlUimGh4cjSZIXzL/vfe+rQ0oAAAAAAAAAgHVLKxfZXAQAAABQW8pFTeLuu++O+fPnxy233BK33HJL3HPPPfHUU0+ttUS0LspFAAAAAAAAAECjKSgXAQAAANSVclGDGh0djcsuuywuu+yy+O1vfxuPPvroGufrUyqKiMjlctWMBwAAAAAAAABQFWmbi54bHorRsbHo7OjIKBEAAABAe1EuajD33ntvnHHGGfHDH/4wnnnmmYhYe5FofcpC61tEKucrX/lKXHbZZalzm2yySfz0pz+t2r0AAAAAAAAAQGtK21yURMSS4aGY1jspm0AAAAAAbUa5qEHcfffdcdJJJ8VPfvKTGBsbW6MQVK5IlFYcqvbGon322Sc++clPlp1JkiRyuVxcc801sccee1T1fgAAAAAAAACgtaRtLoqIKJYGlYsAAAAAasS+6DpbunRpHH/88bHddtvFRRddFKOjo6vLOau+Iv5a2FnbV9a233772G+//VbfXS7T2WefnXk+AAAAAAAAAKC5pG0uiogYKA1mkAQAAACgPSkX1dGll14ac+bMiTPPPPMFpaKIqGuJqJxPfOITq/95fAlq/FeSJPGzn/0sli5dWsekAAAAAAAAAECjmzSxJ7o6OsvOFJWLAAAAAGpGuagOkiSJT3ziE3HggQfGY489ts5SUaOaN29e7LDDDuvcXrTK8uXL4+KLL65XTAAAAAAAAACgCeRyuSjke8vODJSWZZQGAAAAoP0oF2Vs6dKl8ba3vS1OO+20pisVjffBD36wormLLrqoxkkAAAAAAAAAgGbXn59U9nygNJRREgAAAID2o1yUoeeeey722WefuPLKK1cXiyI2vFS0qpi06nWydOihh8bUqVNX53i+XC4XSZLEVVddFc8991zW8QAAAAAAAACAJpK2uahocxEAAABAzSgXZWTp0qWxzz77xPXXXx8Rfy/fVFoqGl8kqlehaLzu7u545zvfudb84x8bGRmJK664IstoAAAAAAAAAECTSd9cNJhREgAAAID2o1yUkcMOOyzmz5+/xraiNM8vEq0qI6366urqikKhEJttttnq+SwddthhFc39+te/rnESAAAAAAAAAKCZ9ef7yp4XlYsAAAAAaqar3gHawec///m49NJLKy4WjS8JrZp9+ctfHvvss0/MnTs3Xve618UWW2wRm2yyyeq5jo7se2JvfOMbY8aMGfHUU0+t3sQ03qrHbC4CAAAAAAAAAMoppJSLlgwPxejYWHTW4fcjAAAAAFqdclGN/b//9//i5JNPXu9iUZIkMXXq1Hjf+94XRx99dLzmNa+pedb1lcvl4q1vfWv84Ac/eMHWpCRJVj+2aNGi+Mtf/hKzZ8+uR0wAAAAAAAAAoMGlbS5KIuK54aHo752UTSAAAACANuLjXGpo5cqVceyxx64uFJUrFuVyudWbfrq7u+PTn/50LFy4ML7xjW80ZLFolX333beiuWuvvbbGSQAAAAAAAACAZpW2uSgiYqA0mEESAAAAgPajXFRDX/va1+LOO+9cXRpal/HbiubNmxe33nprnHzyyVEoFDJKuuH23nvv1fmfv71oPOUiAAAAAAAAAGBd0jYXRSgXAQAAANSKclGNDA0Nxemnn162cBMRq4tHSZLEBz7wgbjmmmti9uzZGaV88QqFQsyZM6fsTJIksWDBgowSAQAAAAAAAADNZtLEnujq6Cw7U1QuAgAAAKgJ5aIaOeOMM2Lx4sUREevcWrSqWJTL5eLTn/50fPvb346urq4sY1bFvHnzyr7HiIi77rorRkZGsowFAAAAAAAAADSJXC4XhXxv2RmbiwAAAABqQ7moRr75zW+W3Vo0vlh0/PHHx8knn5xhuuracccd1/r4+MLRypUr46677soqEgAAAAAAAADQZAo9fWXPlYsAAAAAakO5qAauv/76ePDBByNi7VuLxheL3vCGN8Q3vvGNjBNW15w5cyqau+eee2qcBAAAAAAAAABoVv295ctFxdKyjJIAAAAAtBflohr40Y9+tM6z8duMuru743vf+150dnZmEatmttlmm4rmFi5cWOMkAAAAAAAAAECz6s9PKns+UBrKKAkAAABAe1EuqoHLL798jRLR863aWnTCCSfErFmzMkxWG9OnT49p06ZFRJR938pFAAAAAAAAAMC6FPK9Zc9tLgIAAACoDeWiKlu0aFHcf//9EfHXEtF444s3+Xw+PvKRj2SarZZe+tKXvuD9Pt9jjz2WURoAAAAAAAAAoNmkbS5asrwUo2NjGaUBAAAAaB/KRVV27bXXlj1ftbVo//33j4022iijVLU3Y8aM1Jmnn346gyQAAAAAAAAAQDMq9PSVPU+SJJ4bHsooDQAAAED7UC6qsttuu62iuXe/+901TpKtTTfddJ1nuVwukiSJZ555JsNEAAAAAAAAAEAz6e8tXy6KiBgYHswgCQAAAEB7US6qsgceeGCtj+dyuTX++Y1vfGNGibIxaVL51eQREcVisfZBAAAAAAAAAICmlLa5KCJiYEi5CAAAAKDalIuqbF3lovFmz54dhUKh9mEy1NPTkzqzfPnyDJIAAAAAAAAAAM1ocndPdHaU/1WWos1FAAAAAFWnXFRlTzzxxBpbisZLkiRyuVzMmjUr41S1p1wEAAAAAAAAALwYuVwu+lO2F9lcBAAAAFB9ykVVNjiY/kOsl73sZRkkaTwjIyP1jgAAAAAAAAAANLBCPqVcVFIuAgAAAKg25aIqq6RcNGnSpAySZKtUKqXOdHd3Z5AEAAAAAAAAAGhW/b3ly0VF5SIAAACAqlMuqrLh4eHUmYkTJ2aQJFtDQ0OpM729vRkkAQAAAAAAAACaVaHH5iIAAACArCkXVVk+n0+dqWTLT7N56qmnUmcq+d4AAAAAAAAAAO0rdXPRsHIRAAAAQLUpF1VZJdt5Bgdb7wddjz766DrPkiSJiIjJkydnFQcAAAAAAAAAaEJpm4uWDA/F2NhYRmkAAAAA2oNyUZX19ZX/IVdExOOPP55BkmwtXLgwcrncOs9zuVy89KUvzTARAAAAAAAAANBs+vOTyp4nSRJLlpcySgMAAADQHpSLqqy/v3/1pp61SZIkHn744QwT1d6jjz4azz77bERE2fe++eabZxUJAAAAAAAAAGhC/fne1JmB0rIMkgAAAAC0D+WiKps5c+Y6z1Zt9rn33ntj5cqVWUWquQULFlQ0p1wEAAAAAAAAAJRTSNlcFBFRLA1mkAQAAACgfSgXVdmWW2651sfHb/RZsWJF3HrrrVlFqrnf/e53Fc3Nnj27xkkAAAAAAAAAgGY2ubsnOjvK/zrLgHIRAAAAQFUpF1XZuspFz3fllVfWOEl2fv3rX6/eylTO3LlzM0gDAAAAAAAAADSrXC4X/T19ZWcGhpSLAAAAAKpJuajKdthhh4rmfvnLX9Y4STYWLFgQ999/f0SsuZ0pItYoHBUKBZuLAAAAAAAAAIBUhXz5clFxWLkIAAAAoJqUi6rsda97XeTz+YiIF2zzSZIkcrlcJEkSN9xwQ9x11131iFhVZ555ZtnzVe/Z1iIAAAAAAAAAoBL9KeUim4sAAAAAqku5qMq6urpixx13fMEWn7X51re+lUGi2nn66afjggsueEGJam3e8pa3ZJAIAAAAAAAAAGh2NhcBAAAAZEu5qAbSijSrthedc8458dBDD2WUqvq+9KUvxeDgX39gl1am+sd//McsIgEAAAAAAAAATS51c1FJuQgAAACgmpSLauDd7373Os/Gl3BWrFgRJ554YhaRqu6OO+6I73znO+vcWrSqQBURMWfOnNhyyy2zjAcAAAAAAAAANKm0zUVLhodibGwsozQAAAAArU+5qAa23HLLmDt3biRJstbyzarHkySJiy++OC644II6pNxwo6Ojcfjhh8eKFSsiovzWolwuF+9973uzigYAAAAAAAAANLm0zUVJksSS5aWM0gAAAAC0PuWiGjn88MNTZ1YVjI4//vi49dZbM0hVHf/yL/8SCxYsWGM70XjjC1Xd3d1xzDHHZBkPAAAAAAAAAGhiaeWiiIhiaTCDJAAAAADtQbmoRo4++ujYeOONIyLWub1o1dmyZcvi7W9/e9x///2ZZtwQX/nKV+KMM85Y63sab9V2pkMOOSSmT5+eUToAAAAAAAAAoNkVKigXDZSWZZAEAAAAoD0oF9VIT09PnHDCCWvd7LPK+ILR448/HrvuumvcdtttWUVcbyeddFJ88pOfXF0sStta1NHRESeeeGJm+QAAAAAAAACA5jepOx+dHeV/paVYGsooDQAAAEDrUy6qoX/913+NTTbZJCLWvr0oYs2C0aJFi2KXXXaJ888/P7OMlVi2bFkcdthh8YUvfGF13rTSVC6Xi8MPPzxe9apXZRUTAAAAAAAAAGgBHblc9PeU315kcxEAAABA9SgX1dCUKVPi9NNPL1vEiVizYDQ0NBRHHHFEHHDAAfHwww9nEbOsX/3qV/Ha1742fvzjH68uDa3r/YwvUPX19cUXv/jFrGICAAAAAAAAAC2kkE8rFw1mlAQAAACg9SkX1dhhhx0Wb3zjG1cXc9ZlfMEoSZK47LLLYptttokPfehDsXDhwqzirnbllVfGXnvtFe94xzvigQceSC0WrbJq7qSTTooZM2ZklBYAAAAAAAAAaCX9KeWionIRAAAAQNUoF2Xg3HPPjenTp0dErFfBaPny5fHd7343Zs+eHXvttVd873vfiyeeeKJmORcsWBCf+9znYptttom3vvWtcfXVV68uC6UVi1ad53K52GuvveLDH/5wzXICAAAAAAAAAK3N5iIAAACA7HTVO0A72GKLLeKCCy6IfffdN3UD0PiC0ao/J0kSV199dVx99dUREfHKV74y5s6dG69//etjq622is0337yiHAsXLoxSqRRDQ0OxaNGiePTRR2PhwoWxYMGCWLBgQQwMDKyR4fk51mV8YWqjjTaKH/zgBxXlAQAAAAAAAABYG5uLAAAAALKjXJSRt7zlLfHFL34xPvnJT5bdXrTK+I1Bq/68yp133hl33XVXnH/++S94ztpeZ9V/zpo1q+x9q4zPV65UNH42SZLI5/Pxs5/9LDbddNOyzwEAAAAAAAAAKCdtc1FxeCjGxsaio6Mjo0QAAAAArctPWDL08Y9/PD71qU+9oDi0Lqu2FkXE6vnnbzQaP5Pm+c8Z/7Wu1y9n/GxnZ2dccMEFseuuu1aUBQAAAAAAAABgXdI2FyVJEs8tL2WUBgAAAKC1KRdl7JRTTomPfvSja5SG0pQrAlVSUlplbc9bV2Gpktda9ZyOjo747ne/GwceeGBFOQAAAAAAAAAAyknbXBQRMVAazCAJAAAAQOtTLqqDU089Nb761a+uXs1daTlolbVtHtrQ563va4zPmyRJdHd3x//8z//E0UcfvV7vAQAAAAAAAABgXdI2F0VEFJWLAAAAAKpCuahO/u3f/i0uu+yymDp16hrbiBrd+GLR9OnT44orroh3vvOddU4FAAAAAAAAALSSSd356MyV/7UWm4sAAAAAqkO5qI722WefuOmmm+LNb37z6s1BjVoyGp8rSZJ485vfHLfddlvsvvvudU4GAAAAAAAAALSajlwuCvnesjMDpWUZpQEAAABobcpFdTZz5sy46qqr4rvf/W5Mnjy54UpGzy8V5fP5OO200+LKK6+MzTbbrM7pAAAAAAAAAIBW1Z+fVPa8aHMRAAAAQFUoFzWIY489Nh544IE48cQTo6en5wUlo6yLRs8vFUVEHH744fGXv/wlTjzxxIYoPgEAAAAAAAAArauQ7yt7PqBcBAAAAFAVykUNZNq0aXHaaaetLhlNnz49kiRZa9Go2uWetb12kiQxYcKEOOyww2LBggVx7rnn2lYEAAAAAAAAAGSiP6VcZHMRAAAAQHUoFzWgGTNmxGmnnRaPPfZYXHjhhbHPPvvEhAkT1igaRbywEPRiviJi9esnSRLbbLNNnHTSSfHwww/HeeedF9tvv329vh0AAAAAAAAAQBuyuQgAAAAgG131DsC6TZgwIQ4++OA4+OCDY3BwMH73u9/F5ZdfHn/605/innvuidHR0Rc8p5KNRuMLSqtMmTIl5s6dG3vvvXcceOCBsc0221TlPQAAAAAAAAAAbIi0zUVLhodibGwsOjp8ti4AAADAi6Fc1CT6+vriHe94R7zjHe+IiIjh4eG49dZb49Zbb42FCxfGo48+Go8++mg88cQTsWzZsiiVSjE8PBzLly+PCRMmRG9vb+Tz+Zg0aVK89KUvjc033zw233zzmDVrVsydOze23XbbiopJAAAAAAAAAABZSNtcNJYk8dzyUuocAAAAAOUpFzWpnp6e2GmnnWKnnXaqdxQAAAAAAAAAgKpL21wUEVEsDSoXAQAAALxI9kIDAAAAAAAAANBwKikNDZQGM0gCAAAA0NqUiwAAAAAAAAAAaDiTu/PRmSv/qy3KRQAAAAAvnnIRAAAAAAAAAAANpyOXi0K+t+xMUbkIAAAA4EVTLgIAAAAAAAAAoCEV8n1lzwdKyzJKAgAAANC6lIsAAAAAAAAAAGhI/flJZc+LpaGMkgAAAAC0LuUiAAAAAAAAAAAaUiHfW/bc5iIAAACAF0+5CAAAAAAAAACAhmRzEQAAAEDtKRcBAAAAAAAAANCQ0jYXFYcHY2xsLKM0AAAAAK1JuQgAAAAAAAAAgIaUtrloLEli6fJSRmkAAAAAWpNyEQAAAAAAAAAADamQ70udGSgNZpAEAAAAoHUpFwEAAAAAAAAA0JD6lYsAAAAAak65CAAAAAAAAACAhjS5Ox+dufK/3lJULgIAAAB4UZSLAAAAAAAAAABoSB25XEzN95adsbkIAAAA4MVRLgIAAAAAAAAAoGH15/vKnisXAQAAALw4ykUAAAAAAAAAADSsQkq5qKhcBAAAAPCiKBcBAAAAAAAAANCwbC4CAAAAqK2uegcg3YoVK+Khhx6KRYsWxVNPPRWLFy+O4eHhWL58eSxfvjxGR0frHTHVZz/72XpHAAAAAAAAAACaUKHH5iIAAACAWlIuajBDQ0Px5z//Oa699tq48cYb46677oqHHnooxsbG6h3tRVEuAgAAAAAAAAA2RH9vSrloeDDGkiQ6crmMEgEAAAC0FuWiBlAsFuPnP/95/OQnP4nf//73MTIysvosSZI6JquOnB/eAQAAAAAAAAAbKG1z0ViSxNLhoZiaLz8HAAAAwNopF9XRvffeG1//+tfjvPPOi1KpFBEvLBM1ezGnFcpRAAAAAAAAAED99PdOSp0ZKA0qFwEAAABsIOWiOli8eHH8f//f/xdnn312jI6OrlHAWVeZqBlLOs1ejAIAAAAAAAAA6q+/gtLQQGkwXlH7KAAAAAAtSbkoYz//+c/jmGOOiWKxuLow9PwSTjMWiQAAAAAAAAAAamFydz46cx0xmoytc6ZYGswwEQAAAEBr6ah3gHaRJEl86EMfioMOOigGBgYiSZLI5XKri0VJkqz+AgAAAAAAAADgrzpyuZia7y07M6BcBAAAALDBbC7KwIoVK+I973lP/OIXv1hdKlpFmQgAAAAAAAAAoLxCT188O7RsnefKRQAAAAAbzuaiGkuSJN797nfHxRdfvEaxyJYiAAAAAAAAAIDK9Pf2lT0vDisXAQAAAGwom4tq7FOf+lRccskla5SKXozxW48AAAAAAAAAANpBoad8uWhgSLkIAAAAYEMpF9XQ1VdfHaeeeuoGF4vKFYlsPQIAAAAAAAAA2kV/3uYiAAAAgFpRLqqR4eHhOO6441b/eX3KQONLRc9/3oQJE2KjjTaK6dOnRz6fj+7u7ujs7HzxgQEAAAAAAAAAGlRauWhJaSjGkiQ6ynyQKwAAAABrp1xUI2eeeWbcd999kcvlKi4WPX/DUV9fX+y5554xb968mDt3bmy99dbx8pe/vGaZAQAAAAAAAAAaUSGlXDSajMXS5aWY2tObUSIAAACA1qFcVAMrV66M0047bY0NROU8v1S0zz77xAc+8IF461vfGt3d3TXLCQAAAAAAAADQDPp7J6XODJQGlYsAAAAANoByUQ1ccskl8dhjj1W0tWh8sWjXXXeNr33tazF37twsYgIAAAAAAAAANIX+CkpDA0PL4hX9G2eQBgAAAKC1dNQ7QCu66KKLUmdyudzq8lEul4tTTz01rrnmGsUiAAAAAAAAAIDnmdzTGx1/+wDXdSkOD2aUBgAAAKC12FxUZStWrIhf//rXqzcSrc34bUVdXV3x4x//ON71rndlFREAAAAAAAAAoKl05HJR6OmLZ0vL1jkzMKRcBAAAALAhbC6qsptuuilKpVJE/LU8tC6rNhb993//t2IRAAAAAAAAAECKQr6v7LnNRQAAAAAbRrmoyq677rqy57lcbnWx6IADDohjjz02o2QAAAAAAAAAAM2rP6VcNFBSLgIAAADYEMpFVXbnnXeu8yyXy63+566urvja176WRSQAAAAAAAAAgKaXurlIuQgAAABggygXVdnChQvLnq/aWnTQQQfFK17ximxCAQAAAAAAAAA0OZuLAAAAAGpDuajKHn744TU2FK3Le9/73gzSAAAAAAAAAAC0hrRy0ZLSUIwlSUZpAAAAAFqHclGVLV26dK2Pjy8cdXV1xZve9KasIgEAAAAAAAAANL1CSrloNBmLpctLGaUBAAAAaB3KRVU2OLjuFdvJ3z4dZ7vttouenp6sIgEAAAAAAAAANL20zUUREQOldf/eBgAAAABrp1xUZStWrCh7nsvlYquttsooDQAAAAAAAABAa6ikXFRULgIAAABYb8pFVTZp0qTUmU033TSDJAAAAAAAAAAArWNyT2905HJlZwZKyzJKAwAAANA6lIuqbMqUKakzfX3pn6QDAAAAAAAAAMDfdeRyUegp/zsXxdJQRmkAAAAAWodyUZVVUi4aHR3NIAkAAAAAAAAAQGsp5HvLnttcBAAAALD+lIuqbObMmZEkSdmZoSGfkgMAAAAAAAAAsL7685PKnttcBAAAALD+lIuq7NWvfnXqzDPPPJNBEgAAAAAAAACA1mJzEQAAAED1KRdVWVq5KEmSeOCBBzJKAwAAAAAAAADQOtI3Fw1mlAQAAACgdSgXVdkuu+yyzrNcLhcREffee29WcQAAAAAAAAAAWkYh31f2vFgairEkySgNAAAAQGtQLqqyV7ziFbHddttFkiSry0QRf91YtMpzzz0X//d//1ePeAAAAAAAAAAATas/pVw0mozF0uWljNIAAAAAtAbloho44IADUmeuuuqqDJIAAAAAAAAAALSOtHJRRESxNJhBEgAAAIDWoVxUA4ceeujqrUXjtxetkiRJXHTRRVnHAgAAAAAAAABoaoUKykUDykUAAAAA60W5qAa23Xbb2G+//SJJkjUeT5Jkddnof//3f+OWW26pQzoAAAAAAAAAgOY0pTsfHWv5oNfxbC4CAAAAWD/KRTXysY99LHXmP/7jPzJIAgAAAAAAAADQGjo6OmJqT2/ZGZuLAAAAANaPclGNvOENb4gDDzxwjW1FEX/fXpQkSfz0pz+NP/3pT3VMCQAAAAAAAADQXPrzfWXPbS4CAAAAWD/KRTX0rW99K6ZMmRIRsUbBaJUkSeK4446LoaGhrKMBAAAAAAAAADSlQkq5yOYiAAAAgPWjXFRDm222WZx22mmRJMkaj4/fZnTPPffEEUccUYd0AAAAAAAAAADNx+YiAAAAgOpSLqqxY445Jo455pg1CkURfy8YJUkSP/vZz+Jf/uVf6pgSAAAAAAAAAKA5pG8uWpZREgAAAIDWoFyUgW9/+9vxpje9qWzB6Dvf+U4cddRRsXLlyjomBQAAAAAAAABobP35SWXPi6WhGEuSjNIAAAAAND/logx0dnbGxRdfHLvsskvZgtEPfvCD2GOPPWLhwoV1TAsAAAAAAAAA0Lj6UzYXjSZjsWx5KaM0AAAAAM1PuSgjU6ZMiSuvvDLe8pa3rC4UrSoZjS8YXX/99bHddtvFqaeeGsPDw3VODQAAAAAAAADQWAop5aKIiIHSYAZJAAAAAFqDclGG8vl8XHrppXHkkUdG8rz12+M3Gg0NDcWnPvWpmDlzZpx66qmxaNGiesQFAAAAAAAAAGg4aZuLIiKKykUAAAAAFVMuytiECRPinHPOifPPPz/6+vrWusFo1RajRYsWxac+9al4+ctfHvvss0/853/+Z9xyyy0xMjJS53cBAAAAAAAAAFAfU7rzq3/XYl1sLgIAAACoXFe9A7Sqk046KXVmv/32iwsvvHCNH3iNLxit+vPIyEhcddVVcdVVV0XEXwtKW2+9dWy++ebxkpe8JKZMmRL5fD4mTJhQmzdTBZ/97GfrHQEAAAAAAAAAaAEdHR1R6OktWyCyuQgAAACgcspFNfL5z38+9VNyVkmSZK1/fn7JaJUVK1bE7bffHnfccUeV0taechEAAAAAAAAAUC2FfF/ZcpHNRQAAAACVUy6qsecXhzbkueNLRuPPXsxrZ6nSkhUAAAAAAAAAQCX6832xsMy5zUUAAAAAlVMuqrG0Yk0lBaHnz6ytbNSomqUABQAAAAAAAAA0j0K+r+y5zUUAAAAAlVMuqrFalGuapbDTLAUoAAAAAAAAAKC59KeWi5ZllAQAAACg+XXUOwAAAAAAAAAAAKyP/vyksufF4aEYa5IPbwUAAACoN+UiAAAAAAAAAACaSiHfW/Z8dGwsli0vZZQGAAAAoLkpFwEAAAAAAAAA0FTSNhdFRBRLgxkkAQAAAGh+ykUAAAAAAAAAADSVQr4vdWZAuQgAAACgIl31DtDqcrlcvSMAAAAAAAAAALSUqd35yOVykSTJOmeUiwAAAAAqo1xUY+V+iAUAAAAAAAAAwPrr6OiIqT29USxTICp3BgAAAMDfKRfVyO67725rEQAAAAAAAABAjfTn+8oWiGwuAgAAAKiMclGN/OEPf6h3BAAAAAAAAACAllXo6St7bnMRAAAAQGU66h0AAAAAAAAAAADWV39v+XKRzUUAAAAAlVEuAgAAAAAAAACg6fTnbS4CAAAAqAblIgAAAAAAAAAAmk4hpVw0MDwYSZJklAYAAACgeSkXAQAAAAAAAADQdNI2F42OjcXS5cMZpQEAAABoXspFAAAAAAAAAAA0nbTNRRERxdKyDJIAAAAANDflIgAAAAAAAAAAmk5/flLqzEBpKIMkAAAAAM1NuQgAAAAAAAAAgKYztTsfuVyu7MyAzUUAAAAAqZSLAAAAAAAAAABoOh0dHTG1p7fsTHF4MKM0AAAAAM1LuQgAAAAAAAAAgKZU6Okrez4wpFwEAAAAkEa5CAAAAAAAAACAptSfL18usrkIAAAAIJ1yEQAAAAAAAAAATamQUi6yuQgAAAAgnXIRAAAAAAAAAABNKXVzUUm5CAAAACCNchEAAAAAAAAAAE2pvzdlc9HwYCRJklEaAAAAgOakXAQAAAAAAAAAQFMq9JQvF42OjcXS5cMZpQEAAABoTspFAAAAAAAAAAA0pbTNRRERxeHBDJIAAAAANC/lIgAAAAAAAAAAmlJ/yuaiiIiBIeUiAAAAgHKUiwAAAAAAAAAAaEpTenojl8uVnbG5CAAAAKA85SIAAAAAAAAAAJpSZ0dHTO3Ol50ZKC3LKA0AAABAc+qqdwCa27Rp01JncrlcLF68OIM0AAAAAAAAAEC7KeQnRXF4aJ3nxdK6zwAAAABo83LRlltumTqTy+Xi/vvvzyBNcyoWi5HL5SJJknXOpK0fBwAAAAAAAADYUP353nhwYN3nNhcBAAAAlNfW5aIHH3xQMaZK1vV9Kve9BQAAAAAAAAB4sQr5SWXPB4YGM0oCAAAA0Jzauly0SiMVYzo7O1NncrlcjIyMZJAGAAAAAAAAAKCx9ef7yp4Xh5WLAAAAAMpRLmowzbrpZ225bX0CAAAAAAAAAGottVxUGookSfweAwAAAMA6dNQ7QCNIkuQFX/WUy+XW+QUAAAAAAAAAwN8VUspFI2OjsWzFcEZpAAAAAJqPclGDarTCEwAAAAAAAABAI0rbXBQRMVAazCAJAAAAQHNSLgIAAAAAAAAAoGlVUi4qKhcBAAAArJNyEQAAAAAAAAAATWtKT2/kUmZsLgIAAABYN+UiAAAAAAAAAACaVmdHR0zt6S07Y3MRAAAAwLopFwEAAAAAAAAA0NQK+b6y5zYXAQAAAKybchEAAAAAAAAAAE2tP7VctCyjJAAAAADNR7kIAAAAAAAAAICmVshPKnteLA1llAQAAACg+SgXAQAAAAAAAADQ1PrzvWXPbS4CAAAAWDflIgAAAAAAAAAAmlp/BZuLkiTJKA0AAABAc1EuAgAAAAAAAACgqRXyfWXPR8ZGY9mK4YzSAAAAADQX5SIAAAAAAAAAAJpaf0q5KCKiWBrMIAkAAABA81EuAgAAAAAAAACgqaVtLoqIGFAuAgAAAFgr5SIAAAAAAAAAAJra1J7eyKXM2FwEAAAAsHZd9Q4AUG+PPPJIXHHFFXHbbbfFnXfeGQsXLoylS5fGc889F0mSxOTJk2Py5Mmx+eabx5w5c2K77baLvffeO2bPnl3v6C3hySefjKuvvjpuv/32uOeee+Ivf/lLDAwMxNKlS2PZsmXR1dW1+r+D/v7+mDVrVmy99dax9dZbx+te97qYM2dO5HJpf00AAAAAAAAAtLLOjo6Y0tMbS4aH1jljcxEAAADA2ikXAW2pWCzG2WefHeeff37cdtttZWcXL14cixcvjgcffDD++Mc/rn589uzZceihh8bxxx8fM2bMqHXklnLffffFOeecE5dddlncfvvtZWdHRkZieHg4nn766YiIuOmmm9Y4nzZtWuy6666x++67x3777RfbbLNNzXIDAAAAAAAAjas/36dcBAAAALABckmSJPUOUS8dHR2Ry+Vibd+CVY/ncrkYHR1t60zlNFteWLZsWZx88snxrW99KwYHq/OD44kTJ8bhhx8eX/rSl2KjjTaqymu2qiuuuCK+8pWvxNVXX73Wf29Uwytf+cp45zvfGf/8z//cFkWjp59+OjbZZJM1Hnvqqadi4403rlMiAAAAAAAAqI/T/nBJ3Pz4g+s83/Hls+LDu709u0AAAABAU2nn38vtqHcAgKz88pe/jFe+8pXxla98pWrFooiIFStWxFlnnRXbbLNNnHvuuVV73VZyyy23xN577x1vfetb4/e//33NikUREXfddVd88YtfjG9+85s1uwMAAAAAAABoPIV8X9lzm4sAAAAA1k65CGh5Y2Nj8ZnPfCYOPPDAePTRR2t2z7PPPhtHHXVUHHvssbFixYqa3dNMRkdH4+STT45/+Id/iKuuuqrecQAAAAAAAIAW1p9SLioqFwEAAACsVVe9AwDU0ujoaLznPe+Jn/zkJ5ndedZZZ8W9994bv/71r6O3tzezexvNk08+GQcddFBce+219Y4CAAAAAAAAtIFKNhclSRK5XC6jRAAAAADNweYioGWNjY3FEUcckWmxaJVrrrkm/vEf/zGWL1+e+d2N4L777otddtlFsQgAAAAAAADITH9+UtnzkbHRGFzRnn+HCwAAAFCOzUVAy/r0pz8dP/zhD9frObNnz443vOEN8epXvzqmTZsWuVwuBgYG4q677oo///nPcfvtt1f8Wr/97W/jmGOOifPOO299oze12267Lfbee+946qmn6h0FAAAAAAAAaCOFfG/qzEBpWUzq7skgDQAAAEDzUC4CWtLll18ep556asXzBxxwQHzqU5+KHXfcsezc7bffHqeddlr88Ic/jLGxsdTXPf/882OPPfaIo48+uuIszezhhx+Ot73tbetdLNpoo43ijW98Y+y2226x7bbbxpZbbhnTpk2Lvr6+iIgoFotRLBZjYGAg7r777rj11lvj1ltvjZtvvjmKxWIN3gkAAAAAAADQbNI2F0VEFEuD8fLCRhmkAQAAAGgeykVAy1m8eHG8733viyRJUmenTZsW559/fuy7774VvfarX/3q+MEPfhDHH398HHzwwfHII4+kPudf//VfY4899ohZs2ZVdEezKhaLse+++8bjjz9e8XPe8Y53xLHHHhv77LNPdHWt+/+SZsyYETNmzIiIiJ133nn14yMjI3HdddfFpZdeGr/61a/i7rvv3vA3AAAAAAAAADS1qT29kYuIcn9TPFAazCoOAAAAQNPoqHcAgGr79Kc/Hc8880zq3Mte9rK44YYbKi4WjbfzzjvHjTfeGHPmzEmdLZVK8W//9m/rfUezOfroo+OOO+6oaHbevHlx4403xiWXXBJvf/vbyxaLyunq6oo99tgjTj/99LjrrrvixhtvjKOOOip6e3s36PUAAAAAAACA5tXZ0RFTesr/XaFyEQAAAMALKRcBLeXmm2+Os846K3Vu6tSpcdVVV8VWW221wXdtsskm8bvf/S5e9rKXpc5edtll8etf/3qD72p0Z599dvz85z9Pnevo6IhTTjkl/vSnP8UOO+xQ9Rw77LBDnHPOOfHYY4/FEUccUfXXBwAAAAAAABpbf76v7HlRuQgAAADgBZSLgJbyhS98IcbGxlLnzjrrrNhmm21e9H2bbrpp/OhHP4rOzs7U2c997nMv+r5GtHDhwvjwhz+cOtfd3R0XXXRRfPrTn67o+/ViFAqFmDt3bk3vAAAAAAAAABpPIaVcZHMRAAAAwAspFwEt45577olf/vKXqXMHHHBAHHTQQVW7d7fddovjjjsude7GG2+M3//+91W7t1F85CMficHB8j+A7+joiB/+8IfxT//0TxmlAgAAAAAAANqRzUUAAAAA60+5CGgZX/va1yJJkrIzXV1dcfrpp1f97pNOOimmTJmSOvfVr3616nfX0zXXXBM///nPU+dOOeUUxSIAAAAAAACg5mwuAgAAAFh/ykVAS1i+fHlcdNFFqXPvete7YtasWVW/f/r06fH+978/de6KK66IRYsWVf3+evnYxz6WOrPbbrvFxz/+8QzSAAAAAAAAAO2uks1FaR9aCQAAANBulIuAlnDZZZfFkiVLUuc+/OEP1yzDCSecEB0d5f+1Ojo6GhdeeGHNMmTpj3/8Y9xwww1lZzo7O+O73/1u6vcFAAAAAAAAoBrSNhetHBuNwRXLM0oDAAAA0Bz8tjfQEn784x+nzsyaNSt23nnnmmXYYostYrfddkudqyRrM/jqV7+aOnP44YfHnDlzMkgDAAAAAAAAkL65KOKv24sAAAAA+DvlIqDpjY6OxlVXXZU69+53v7vmWQ455JDUmf/93/+NxYsX1zxLLT300ENx6aWXps599KMfzSANAAAAAAAAwF+lbS6KiBgoLcsgCQAAAEDzUC4Cmt4NN9wQS5YsSZ1729veVvMsldwxNjYWv/vd72qepZYuvPDCSJKk7Myb3/zm2HbbbTNKBAAAAAAAABAxtac3cikzA6WhTLIAAAAANAvlIqDpVVLUmTx5cuy00041z7LFFlvErFmzUueuvPLKmmeppQsvvDB15tBDD80gCQAAAAAAAMDfdXV0xpSe3rIzRZuLAAAAANagXAQ0vT//+c+pMzvttFN0dXVlkCZit912S52ZP39+Bklq4/77749bbrml7ExHR0fst99+2QQCAAAAAAAAGKeQ7yt7PlAazCgJAAAAQHNQLgKa3s0335w68/rXvz6DJH+1ww47pM7cddddsXz58gzSVN9VV12VOvPa1742ZsyYkUEaAAAAAAAAgDX1KxcBAAAArBflIqCpLVq0KJ544onUuUYrF42MjMT//d//ZZCm+q6++urUmXnz5mWQBAAAAAAAAOCF0jYXFZWLAAAAANagXAQ0tdtuu62iuW233bbGSf5um222qWiu0uyN5pprrkmd2WmnnTJIAgAAAAAAAPBCNhcBAAAArJ+uegcAeDEeeOCBiuZmzZpV4yR/19/fH9OmTYtnn3227Fyl2RvJI488Ek8++WTq3Jw5c1JnFi9eHJdffnlcf/31cfvtt8fChQtjyZIlsWzZspg4cWL09vbG9OnTY+bMmbHVVlvFjjvuGPPmzYutt966Gm8FAAAAAAAAaFGVbC5KkiRyuVxGiQAAAAAam3IR0NQWLlyYOrPppptGX1/5Hx5X26xZs+KGG24oO1NJ9kZzxx13VDQ3e/bstT4+NjYWl112WfzXf/1X/OEPf4jR0dG1zpVKpSiVSrF48eK49957IyLi29/+9urXPuigg+L9739/zJw5cwPeBQAAAAAAANDK0jYXrRwbjcGVy2PSxJ6MEgEAAAA0NuWiChx11FH1jvACjZgJ6uHBBx9MnXnJS15S+yDPs9lmm6XOtGq5aPr06TFlypQXPH7VVVfFCSecEHfdddeLyvCXv/wlvvSlL8Wpp54a73rXu+KUU05ZZ5kJAAAAAAAAaD+FnvQPnywODSoXAQAAAPyNctE6JEmy+j9/8IMf1OXudT1ej0zlrCsvZOGxxx5Lndl0000zSLL+dz766KMZJKmuSopBm2yyyRp/HhwcjOOOOy4uuOCCqmYZHR2N//mf/4lf/OIX8dGPfjQ+97nPxYQJE6p6BwAAAAAAANB8+nvTy0UDw4PxspieQRoAAACAxtdR7wDNIEmSzL4aMVM18kKtLF68OHVmxowZGSRZUyXlomeffTaDJNX1yCOPpM5svPHGq//5/vvvj5122qnqxaLxVqxYEV/84hdj9913rygfAAAAAAAA0Nqm9vRGLmVmYGgwkywAAAAAzUC5qAK5XC6zr0bMVI28UCuVlIsKhULtg2zAnYODg7F8+fLah6miJ598MnVm1Xu///77Y4899og77rijxqn+6vrrr4+dd965ou1KAAAAAAAAQOvq6uiMyT35sjPF0rKM0gAAAAA0PuWiCjTiJqB6byyyuYhGMTAwkDozefLkDJJs2J3Ntr3oiSeeSJ2ZOHFiLFq0KN70pjfFY489lkGqv3v88cdj9913VzACAAAAAACANtefn1T2fKA0lFESAAAAgMbXVe8AABuqVCrFypUrU+fqUS6aMmVKRXNLliyJzTbbrMZpqiNJkoo2RXV2dsYhhxwSjzzySOrslClTYrfddovtttsutthii5g0aVKMjIxEsViM++67L+bPnx8333xzjI6OVpzzmWeeif333z/mz58f06dPr/h5AAAAAAAAQOso9PTGQ2XOB2wuAgAAAFhNuQhoWitWrKhoLp8vv+6+Fnp6eiqaq/Q9NILh4eEYGxtLnbvkkktieHi47MzOO+8cH/vYx2K//faLCRMmlJ198skn47zzzovTTz89nn766Yqy3n///XHYYYfF5ZdfXtE8AAAAAAAA0Fr6e8tvLioOD2aUBAAAAKDxKRcBTavSYk5nZ2eNk7xQV1dl/3pttnLRi50rFArxzW9+Mw477LCK7910003jYx/7WBx//PHxkY98JM4888yKnveb3/wmzjrrrDjmmGMqvqtV7LrrrhX/b5DaueOOO+odAQAAAAAAoG0VevrKng8MKRcBAAAArNJR7wAAG6rSYk49ShaV3rly5coaJ6me5cuXv6jnz5w5M66//vr1KhaNN3ny5DjjjDPi7LPPrrgw9olPfCKWLFmyQfcBAAAAAAAAzau/t3y5qDg8GEmSZJQGAAAAoLFZawA0rZGRkYrmlIuq48VsWdpss83id7/7XcycOfNF5zj66KOjs7MzjjzyyNTZZ599Nk477bQ45ZRTXvS9zeTaa6+NjTfeuN4xAAAAAAAAoG7SNhetHB2NwZXLY9LEnowSAQAAADQum4siIpfL+arBF9RapQWe0dHRGifZ8DvrUXzaUJVuC1qbc889tyrFolWOOOKIOPzwwyua/da3vhWlUqlqdwMAAAAAAACNrz9fvlwUEVEsDWaQBAAAAKDxKRdFRJIkvmr0BbU0ceLEiuYq3XBUTZVuJKr0PTSCDc36/ve/P/bZZ58qp4n4+te/Hi95yUtS54rFYlx44YVVvx8AAAAAAABoXJWUiwaUiwAAAAAiIqJ5VmbUwO67727DDjSxCRMmVDRXj3JRpXe2ermor68vTjvttBqkiSgUCvHlL3853ve+96XO/uhHP4ojjzyyJjkAAAAAAACAxjM135s6MzCkXAQAAAAQ0ebloj/84Q/1jgC8CN3d3RXNDQ8P1zjJht/ZTOWiSr/f4x166KFRKBSqH+ZvDj744Pj3f//3eOaZZ8rO/fGPf4xly5bFpEmTapYFAAAAAAAAaBxdHZ0xpScfzw2X1jlTHFYuAgAAAIho83IRsP4WLlwY8+fPr+kdfX19sf/++6fO5fP56OrqSt0StHTp0mpFq1ild06ZMqXGSaqnp6cnJkyYECtXrqz4OR/4wAdqmOivhacjjjgiTj/99LJzK1asiGuuuSbe/va31zQPAAAAAAAA0Dj6e/rKlotsLgIAAAD4K+UiYL1cc801ceSRR9b0ji222KKiclFERH9/fzz99NNlZ5577rlqxFovld45bdq0GieprunTp8eTTz5Z0ezMmTPj9a9/fY0TRfzTP/1TarkoIuLGG29ULgIAAAAAAIA2Usj3xUPFZ9Z5bnMRAAAAwF911DsAwIsxffr01JklS5ZkkGT97+zt7Y2enp4M0lRPJd/vVXbaaacaJvm71772tTFx4sTUuQULFmSQBgAAAAAAAGgU/fm+sucDpWUZJQEAAABobMpFQFOrpOyyaNGiDJKsqZLtPutT1GkUjVgu6u7uju233z517v77788gDQAAAAAAANAoCvlJZc+LpaGMkgAAAAA0NuUioKm99KUvTZ2ppOhTbZXcWUn2RrM+mV/zmtfUMMmaKikXPfrooxkkAQAAAAAAABpFf7637PlAaVkkSZJRGgAAAIDGpVwENLVXvOIVqTOPP/547YM8zxNPPJE6M3PmzAySVNeWW25Z8ey0adNqmGT971qyZEksX748gzQAAAAAAABAI0jbXLRydDSGVq7IKA0AAABA41IuAppaJQWdJ598MoaGsl1nf99996XOtHq5qFAo1C7IBt6V9f8OAAAAAAAAgPrpz/elzgyUlmWQBAAAAKCxKRcBTa2SskuSJBWVfaqlWCzG4sWLU+fWp6jTKLbaaquKZ5WLAAAAAAAAgHqqrFw0mEESAAAAgMamXASslyOOOCKSJKnp14MPPlhxnu22266iubvvvnsD3/H6q/SuSrM3kte85jUVz+ZyuRomqd9dAAAAAAAAQHOYmu9NnSkqFwEAAAAoFwHNbbPNNosZM2akzi1YsCCDNJXf1dXVtV5FnUbR399f8calYrFY2zDjDAwMVDTX25v+lwcAAAAAAABAa+jq6Iwp3fmyMzYXAQAAACgXAS3g9a9/fepMluWim266KXVm2223jZ6engzSVN8OO+xQ0VylhZ9qqLTI1NfXV9sgAAAAAAAAQEPpz5f/O0KbiwAAAACUi4AWMG/evNSZ66+/PkZGRjJIE/HHP/4xdWannXbKIElt7LLLLhXNPfvsszVOsn53TZ8+PSZOnJhBGgAAAAAAAKBRFFLKRTYXAQAAACgXAS1gzz33TJ1ZunRp3HDDDTXP8vDDD8d9992XOrf33nvXPEutvOUtb6lo7rbbbqtxkr+79dZbU2c233zzDJIAAAAAAAAAjcTmIgAAAIB0ykVA09txxx1jypQpqXOXX355zbNUckcul6uoENWo5syZEy972ctS5+bPn59Bmojly5dXVC7aZpttMkgDAAAAAAAANBKbiwAAAADSKRcBTa+rq6uiss5FF11U8ywXXnhh6szcuXNjo402qnmWWtp3331TZ66//voMkkTcfPPNsWLFitS5f/iHf8ggDQAAAAAAANBIKtlclCRJRmkAAAAAGpNyEdAS3vOe96TO/OUvf6npNp2HH344/vjHP6bOVZK10b33ve9NnXnwwQdjwYIFNc/y05/+tKK5efPm1TgJAAAAAAAA0GjSNhetGB2JoZXpH2YIAAAA0MqUi4CWsP/++8eUKVNS577+9a/XLMN//dd/xdjYWNmZjo6OOOSQQ2qWISu77bZbzJw5M3XuO9/5Tk1zDA8Px/e///3UuY022ih23HHHmmYBAAAAAAAAGk9/flLqzEBpWQZJAAAAABqXchHQEnp6euLggw9OnfvpT38a9913X9XvX7x4cZx11lmpc295y1tis802q/r9WcvlcnHkkUemzv34xz+OgYGBmuW46KKLYvHixalz+++/f3R2dtYsBwAAAAAAANCY+lM2F0VEFEuDGSQBAAAAaFzKRUDL+Pd///fI5XJlZ0ZGRuIjH/lI1e/+7Gc/G88991zq3Iknnlj1u+vlQx/6UPT1lf9B/ODgYM3e88DAQHzyk5+saPboo4+uSQYAAAAAAACgsU3t6U2dGVAuAgAAANqcchHQMl75ylfGfvvtlzp3ySWXxE9+8pOq3XvttdfGGWeckTr3+te/Pvbaa6+q3RsR8eCDD0Yul0v9euMb31jVeyMipk2bFscdd1zq3LnnnhuXX3551e8/4YQT4oknnkide93rXhdveMMbqn4/AAAAAAAA0Pi6OjtjSne+7IzNRQAAAEC7Uy4CWsrnPve56OhI/1fbMcccE/fee++Lvu/JJ5+MQw89NEZHR1NnP//5z7/o+xrNxz72sZg6dWrq3JFHHhkPPPBA1e4955xz4oc//GFFs634fQcAAAAAAAAqV8j3lT23uQgAAABod8pFQEvZYYcd4qijjkqdW7JkSey5554vqvDy9NNPx1577RWPPPJI6uzb3va22H///Tf4rkY1Y8aMOPnkk1PnFi1aFHvuuWfcc889L/rOs88+u6KNSRERe+yxR7zjHe940XcCAAAAAAAAzas/pVxkcxEAAADQ7pSLgJbzpS99KaZPn5469+ijj8aOO+4Yl19++XrfMX/+/Jg7d27ccccdqbM9PT3xjW98Y73vaBYf/OAHY+7cualzDz74YOy8884Vbxx6vqVLl8Zxxx0XxxxzTEWbonp7e+PMM8/coLsAAAAAAACA1mFzEQAAAEB5ykVAy9l4443j+9//fuRyudTZxYsXx7777hvvfOc748Ybb0ydv/POO+PII4+MXXbZJR5++OGK8nzjG9+I2bNnVzTbjDo7O+Oiiy6KQqGQOlssFuOf//mfY968efHzn/88Vq5cmfqcRYsWxamnnhpbbbXVepWFvv71r8fWW29d8TwAAAAAAADQmmwuAgAAACivq94BAGphv/32i4985CNx2mmnVTR/8cUXx8UXXxxbb7117LrrrvGqV70qpk2bFrlcLgYGBuLuu++OP//5z3HbbbetV45DDz00jj322A15C01lyy23jPPOOy8OOOCASJIkdf7666+Pd73rXTF16tTYbbfd4jWveU1svvnmMWnSpBgdHY2BgYG4//77Y/78+XHTTTdVtKlovBNOOCGOOeaYDX07AAAAAAAAQAupZHNRkiQVfYAlAAAAQCtSLgJa1pe//OV49NFH48c//nHFz7n33nvj3nvvrcr9e+65Z3zve9+ryms1g/333z/OPPPMOPbYYysqGEVELFmyJC677LK47LLLqpbjkEMOif/8z/+s2usBAAAAAAAAzS1tc9GK0ZEorVwRvRO7M0oEAAAA0Fg66h0AoFY6OjrivPPOi3e+852Z373rrrvGJZdcEt3d7fXD5/e///1xxhlnREdHff7v5bjjjosLLrigbvcDAAAAAAAAjac/Pyl1ZqA0mEESAAAAgMbkt6+BltbV1RU/+clP4uMf/3hmdx555JFx1VVXRV9f+U+/alXHHHNM/OY3v4np06dndmd3d3d861vfiu9+97uKRQAAAAAAAMAaCvne1JmB0rIMkgAAAAA0Jr+BDbS8jo6O+PKXvxwXX3xxvOQlL6nZPf39/XHWWWfF9773vbbbWPR8e++9dyxYsCD23Xffmt81b968mD9/fnzwgx+s+V0AAAAAAABA8yn0pH8wZLE0lEESAAAAgMakXAS0jQMPPDDuvvvu+MhHPlLVrUITJ06Mo48+Ou655554//vfX7XXbXabb755/OpXv4pLL700tttuu6q//pw5c+L888+P6667Lrbffvuqvz4AAAAAAADQGro6O2Nyd77sjM1FAAAAQDtTLgLayuTJk+O0006LRx55JL785S/Hq171qg1+ra222io+85nPxIMPPhhnn312bLzxxlVM2jr222+/uO222+Lqq6+Ogw8+OKZMmbLBrzV16tQ47LDD4je/+U3cfvvtcdhhh0Uul6tiWgAAAAAAAKAV9efLfwBlsTSYURIAAACAxpNLkiSpdwiAenrooYfit7/9bdx6661x5513xoMPPhjPPfdcLF26NJIkicmTJ8fkyZPj5S9/ecyZMye222672GuvvWLbbbetd/SmNDIyEtddd11cd911ceedd8Y999wTTz75ZCxdujQGBwcjl8tFX19fTJ06NTbffPOYOXNmbL/99jFv3rzYYYcdYuLEifV+Cw3l6aefjk022WSNx5566illNwAAAAAAABjny1f/Im574qF1nu+8+ew4Ydd9M0wEAAAANJp2/r3crnoHAKi3LbbYIo455ph6x2gbXV1dsccee8Qee+xR7ygAAAAAAABAm7C5CAAAAGDdOuodAAAAAAAAAAAAaqmQUi4aUC4CAAAA2phyEQAAAAAAAAAALa2SzUVJkmSUBgAAAKCxKBcBAAAAAAAAANDS0jYXLR8didLKFRmlAQAAAGgsykUAAAAAAAAAALS0tM1FEREDpcEMkgAAAAA0HuUiAAAAAAAAAABaWiXloqJyEQAAANCmlIsAAAAAAAAAAGhphR6biwAAAADWRbkIAAAAAAAAAICW1tXZGZO782VnlIsAAACAdqVcBAAAAAAAAABAyyvke8ueF0vLMkoCAAAA0FiUiwAAAAAAAAAAaHn9+UllzwdKQxklAQAAAGgsykUAAAAAAAAAALQ8m4sAAAAA1k65CAAAAAAAAACAlpe+uWgwoyQAAAAAjUW5CAAAAAAAAACAllfo6St7XiwNRpIkGaUBAAAAaBzKRQAAAAAAAAAAtLz+3vLlouWjI1FauSKjNAAAAACNQ7kIAAAAAAAAAICW158vXy6KiBgoDWaQBAAAAKCxKBcBAAAAAAAAANDyChWUi4rKRQAAAEAbUi4CAAAAAAAAAKDlFXp6U2dsLgIAAADakXIRAAAAAAAAAAAtb0JnV0zq7ik7o1wEAAAAtCPlIgAAAAAAAAAA2kJ/vq/seVG5CAAAAGhDykUAAAAAAAAAALSFQk/5cpHNRQAAAEA7Ui4CAAAAAAAAAKAt9PembC4aVi4CAAAA2o9yEQAAAAAAAAAAbSF1c9HQsoySAAAAADQO5SIAAAAAAAAAANpCf35S2fNiaTCSJMkoDQAAAEBjUC4CAAAAAAAAAKAt9PeW31y0fHQkSiMrMkoDAAAA0BiUiwAAAAAAAAAAaAuFnvLlooiIgaHBDJIAAAAANA7lIgAAAAAAAAAA2kLa5qKIiOKwchEAAADQXpSLAAAAAAAAAABoC4We3tQZm4sAAACAdqNcBAAAAAAAAABAW5jQ2RWTunvKzthcBAAAALQb5SIAAAAAAAAAANpGf09f2XObiwAAAIB2o1wEAAAAAAAAAEDbKOTLl4tsLgIAAADajXIRAAAAAAAAAABtoz+lXDRQUi4CAAAA2otyEQAAAAAAAAAAbSNtc9HA0LKMkgAAAAA0BuUiAAAAAAAAAADaRn9+Utnz4vBQJEmSURoAAACA+lMuAgAAAAAAAACgbfTne8ueLx9ZGaWRFRmlAQAAAKg/5SIAAAAAAAAAANpGIWVzUUREsTSUQRIAAACAxqBcBAAAAAAAAABA2+jP96XODJSWZZAEAAAAoDEoFwEAAAAAAAAA0DYK+d7UmWJpMIMkAAAAAI1BuQgAAAAAAAAAgLYxobMrJk3sKTszoFwEAAAAtBHlIgAAAAAAAAAA2kp/vq/suc1FAAAAQDtRLgIAAAAAAAAAoK0UUspFNhcBAAAA7US5CAAAAAAAAACAtmJzEQAAAMDfKRcBAAAAAAAAANBWbC4CAAAA+DvlIgAAAAAAAAAA2kra5iLlIgAAAKCdKBcBAAAAAAAAANBW0spFy0dWRmnliozSAAAAANSXchEAAAAAAAAAAG2lkFIuirC9CAAAAGgfykUAAAAAAAAAALSV/vyk1JmichEAAADQJpSLAAAAAAAAAABoK1PzvakzA6VlGSQBAAAAqD/lIgAAAAAAAAAA2srEzq6YNLGn7EyxNJRRGgAAAID6Ui4CAAAAAAAAAKDtFPJ9Zc9tLgIAAADahXIRAAAAAAAAAABtpz+lXFQsDWaUBAAAAKC+lIsAAAAAAAAAAGg76ZuLlIsAAACA9qBcBAAAAAAAAABA20nbXKRcBAAAALQL5SIAAAAAAAAAANpOWrmoqFwEAAAAtAnlIgAAAAAAAAAA2k4hpVw0PLIySitXZJQGAAAAoH6UiwAAAAAAAAAAaDtpm4sibC8CAAAA2oNyEQAAAAAAAAAAbSdtc1FExIByEQAAANAGlIsAAAAAAAAAAGg7lZSLbC4CAAAA2oFyEQAAAAAAAAAAbWdiZ1f0TewuO2NzEQAAANAOlIsAAAAAAAAAAGhL/flJZc9tLgIAAADagXIRAAAAAAAAAABtqZDvLXs+UFqWURIAAACA+lEuAgAAAAAAAACgLaVtLhqwuQgAAABoA8pFAAAAAAAAAAC0pf58X9nzonIRAAAA0AaUiwAAAAAAAAAAaEuFlHKRzUUAAABAO1AuAgAAAAAAAACgLaVtLhoeWRmllSsySgMAAABQH8pFAAAAAAAAAAC0pbTNRRERRduLAAAAgBanXAQAAAAAAAAAQFtK21wUoVwEAAAAtD7lIgAAAAAAAAAA2lIlm4sGlIsAAACAFqdcBAAAAAAAAABAW5rY2RV9E7vLzigXAQAAAK1OuQgAAAAAAAAAgLaVtr2oqFwEAAAAtDjlIgAAAAAAAAAA2lZ/SrlooLQsoyQAAAAA9aFcBAAAAAAAAABA2+rPTyp7XiwNZZQEAAAAoD6UiwAAAAAAAAAAaFuFfG/Zc5uLAAAAgFanXAQAAAAAAAAAQNuyuQgAAABod8pFAAAAAAAAAAC0rUK+r+x5aWRFDK9ckVEaAAAAgOwpFwEAAAAAAAAA0Lb6U8pFEREDpcEMkgAAAADUh3IRAAAAAAAAAABtK21zUUREUbkIAAAAaGHKRQAAAAAAAAAAtK3+HpuLAAAAgPamXAQAAAAAAAAAQNua2NUVvRO6y84oFwEAAACtTLkIAAAAAAAAAIC21t9bfntRUbkIAAAAaGHKRQAAAAAAAAAAtLX+fPlykc1FAAAAQCtTLgIAAAAAAAAAoK0VemwuAgAAANqXchEAAAAAAAAAAG2tvzdlc9GwchEAAADQupSLAAAAAAAAAABoa6mbi4aUiwAAAIDWpVwEAAAAAAAAAEBb6++dVPa8NLIihleuyCgNAAAAQLaUiwAAAAAAAAAAaGuFnt7UmYGS7UUAAABAa1IuAgAAAAAAAACgraVtLoqIKA4PZZAEAAAAIHvKRQAAAAAAAAAAtLX+nr7UmYGhZRkkAQAAAMiechEAAAAAAAAAAG1tYldX9E7oLjtTHB7MKA0AAABAtpSLAAAAAAAAAABoe/295bcXDZSUiwAAAIDWpFwEAAAAAAAAAEDbK/SklIuGlIsAAACA1qRcBAAAAAAAAABA2+vPly8XFYeViwAAAIDWpFwEAAAAAAAAAEDbSysXDZSUiwAAAIDWpFwEAAAAAAAAAEDbK6RtLlIuAgAAAFqUchEAAAAAAAAAAG0vbXNRaeWKGB5ZmVEaAAAAgOwoFwEAAAAAAAAA0PbSNhdF2F4EAAAAtCblIgAAAAAAAAAA2l7a5qKIiAHlIgAAAKAFKRcBAAAAAAAAAND2bC4CAAAA2pVyEQAAAAAAAAAAba+7a0L0TphYdmagtCyjNAAAAADZUS4CAAAAAAAAAICI6M9PKns+YHMRAAAA0IKUiwAAAAAAAAAAICIK+b6y50XlIgAAAKAFKRcBAAAAAAAAAEBE9KeUi2wuAgAAAFqRchEAAAAAAAAAAER6ucjmIgAAAKAVKRcBAAAAAAAAAEBEFGwuAgAAANqQchEAAAAAAAAAAET65qLSyhUxPLIyozQAAAAA2VAuAgAAAAAAAACASN9cFBFRtL0IAAAAaDHKRQAAAAAAAAAAEOmbiyKUiwAAAIDWo1wEAAAAAAAAAABR2eaiAeUiAAAAoMUoFwEAAAAAAAAAQER0d02I3gkTy84MlJZllAYAAAAgG8pFAAAAAAAAAADwN/35SWXPi6WhjJIAAAAAZEO5CAAAAAAAAAAA/qaQ7y17bnMRAAAA0GqUiwAAAAAAAAAA4G/SNxcNZpQEAAAAIBvKRQAAAAAAAAAA8DeFfF/Z8wHlIgAAAKDFKBcBAAAAAAAAAMDf9KeUi2wuAgAAAFqNchEAAAAAAAAAAPxN2uaioZUrYvnIyozSAAAAANSechEAAAAAAAAAAPxN2uaiCNuLAAAAgNaiXAQAAAAAAAAAAH+TtrkoImJAuQgAAABoIcpFAAAAAAAAAADwN8pFAAAAQLtRLgIAAAAAAAAAgL/p6ZoQvRMmlp0pKhcBAAAALUS5CAAAAAAAAAAAxknbXmRzEQAAANBKlIsAAAAAAAAAAGCc/pRykc1FAAAAQCtRLgIAAAAAAAAAgHHSNxctyygJAAAAQO0pFwEAAAAAAAAAwDj9+Ullz4uloYySAAAAANSechEAAAAAAAAAAIxTyPeWPbe5CAAAAGglykUAAAAAAAAAADBO2uaioZUrYvnIyozSAAAAANSWchEAAAAAAAAAAIxTyPelzhRLgxkkAQAAAKg95SIAAAAAAAAAABinv4Jy0YByEQAAANAilIsAAAAAAAAAAGAcm4sAAACAdqJcBAAAAAAAAAAA4/R0TYj8hIllZ2wuAgAAAFqFchEAAAAAAAAAADxPf8r2IpuLAAAAgFahXAQAAAAAAAAAAM9TSCkX2VwEAAAAtArlIgAAAAAAAAAAeJ60zUXKRQAAAECrUC4CAAAAAAAAAIDn+f/Z+/Moues6X/x/VXcn6erO0hXCGgiERYIIDMGBaIKALCOKgsyACILsc+XeURT8qqNXwWVGxQVxRnQYNhkBBWVRVheQRcCwi+xLIGACWarT6e7qter3hz+ZiwP1qe6u+lRX9+NxTh/O4f2qej875HRCdT37lbS5qFO5CAAAAJgglIsAAAAAAAAAAOCv2FwEAAAATBbKRQAAAAAAAAAA8Fc6WsuXi3oH+2NgaCilNAAAAAC1o1wEAAAAAAAAAAB/Jdc2PXEm32d7EQAAAND4lIsAAAAAAAAAAOCv5LLlNxdFROR7u1NIAgAAAFBbykUAAAAAAAAAAPBXOiooF3UWbC4CAAAAGp9yEQAAAAAAAAAA/JXWlimRnTK17ExeuQgAAACYAJSLAAAAAAAAAADgdSRtL7K5CAAAAJgIlIsAAAAAAAAAAOB15BLKRTYXAQAAABOBchEAAAAAAAAAALyOjlblIgAAAGDiUy4CAAAAAAAAAIDXkWsrXy7q7FMuAgAAABqfchEAAAAAAAAAALyOxM1FvcpFAAAAQONTLgIAAAAAAAAAgNeRy5YvF/UO9sfA0FBKaQAAAABqQ7kIAAAAAAAAAABeR1K5KCIi32d7EQAAANDYlIsAAAAAAAAAAOB1dFRSLurtTiEJAAAAQO0oFwEAAAAAAAAAwOuoZHNRZ19vCkkAAAAAake5CAAAAAAAAAAAXkfrlKmRbZladsbmIgAAAKDRKRcBAAAAAAAAAMAb6Ggrv72os68npSQAAAAAtaFcBAAAAAAAAAAAbyDXWr5clO9VLgIAAAAam3IRAAAAAAAAAAC8gY6szUUAAADAxKZcBAAAAAAAAAAAbyCXUC7KF5SLAAAAgMamXAQAAAAAAAAAAG8gcXORchEAAADQ4JSLAAAAAAAAAADgDSRtLuoZ6I+BoaGU0gAAAABUn3IRAAAAAAAAAAC8gaRyUUREvs/2IgAAAKBxKRcBAAAAAAAAAMAb6KigXNRZUC4CAAAAGpdyEQAAAAAAAAAAvIGKNhcpFwEAAAANTLkIAAAAAAAAAADeQOuUqZFtmVp2xuYiAAAAoJEpFwEAAAAAAAAAQBkd2bay5/lCd0pJAAAAAKpPuQgAAAAAAAAAAMrIZaeXPe8s9KaUBAAAAKD6lIsAAAAAAAAAAKAMm4sAAACAiUy5CAAAAAAAAAAAyrC5CAAAAJjIlIsAAAAAAAAAAKCMjmx72XObiwAAAIBGplwEAAAAAAAAAABl5BLKRT0D/TEwNJRSGgAAAIDqUi4CAAAAAAAAAIAykspFERGdfT0pJAEAAACoPuUiAAAAAAAAAAAoo6OCclG+oFwEAAAANCblIgAAAAAAAAAAKKOSclGnchEAAADQoJSLAAAAAAAAAACgjOyUqdHaMqXsjM1FAAAAQKNSLgIAAAAAAAAAgAS5hO1FNhcBAAAAjUq5CAAAAAAAAAAAEnQklItsLgIAAAAalXIRAAAAAAAAAAAksLkIAAAAmKiUiwAAAAAAAAAAIIHNRQAAAMBEpVwEAAAAAAAAAAAJctnpZc/zhe6UkgAAAABUl3IRAAAAAAAAAAAkyCVsLuoZ6I+B4aGU0gAAAABUj3IRAAAAAAAAAAAk6EgoF0VEdBZ6UkgCAAAAUF3KRQAAAAAAAAAAkCBpc1GEchEAAADQmJSLAAAAAAAAAAAgQSWbi/LKRQAAAEADUi4CAAAAAAAAAIAE2SlTo7VlStkZm4sAAACARqRcBAAAAAAAAAAAFUjaXmRzEQAAANCIlIsAAAAAAAAAAKACuYRykc1FAAAAQCNSLgIAAAAAAAAAgArYXAQAAABMRMpFAAAAAAAAAABQAZuLAAAAgIlIuQgAAAAAAAAAACqQy04ve25zEQAAANCIlIsAAAAAAAAAAKACHdm2sufdA30xMDyUUhoAAACA6lAuAgAAAAAAAACACiRtLoqIWFfoTSEJAAAAQPUoFwEAAAAAAAAAQAU6su2JM/lCdwpJAAAAAKpHuQgAAAAAAAAAACqQq6Bc1FnoSSEJAAAAQPUoFwEAAAAAAAAAQAWyU6bGtJYpZWfyykUAAABAg1EuAgAAAAAAAACACiVtL1IuAgAAABqNchEAAAAAAAAAAFSoI6Fc1KlcBAAAADQY5SIAAAAAAAAAAKiQzUUAAADARKNcBAAAAAAAAAAAFepotbkIAAAAmFiUiwAAAAAAAAAAoEK5NpuLAAAAgIlFuQgAAAAAAAAAACqUy5YvF3UP9MXg8FBKaQAAAADGTrkIAAAAAAAAAAAq1JFQLoqI6Cz0ppAEAAAAoDqUiwAAAAAAAAAAoEK57PTEmXyhJ4UkAAAAANWhXAQAAAAAAAAAABXqyLYlznQWulNIAgAAAFAdykUAAAAAAAAAAFChbMvUmNYypexMvtCbUhoAAACAsVMuAgAAAAAAAACACmUymehoLb+9KG9zEQAAANBAlIsAAAAAAAAAAGAEcm3Ty5539vWklAQAAABg7JSLAAAAAAAAAABgBDpa28ue53uViwAAAIDGoVwEAAAAAAAAAAAjkMuWLxd1FpSLAAAAgMahXAQAAAAAAAAAACOQa0vYXNSnXAQAAAA0DuUiAAAAAAAAAAAYgY7W8uWi7v6+GBweSikNAAAAwNgoFwEAAAAAAAAAwAgkbS6KiOjs600hCQAAAMDYKRcBAAAAAAAAAMAIJG0uiojI9/akkAQAAABg7JSLAAAAAAAAAABgBCrbXKRcBAAAADQG5SIAAAAAAAAAABiBbMvUmNbcUnbG5iIAAACgUSgXAQAAAAAAAADACGQymejIlt9eZHMRAAAA0CiUiwAAAAAAAAAAYIRyCeWifKE7pSQAAAAAY6NcBAAAAAAAAAAAI9SRnV72PN9rcxEAAADQGJSLAAAAAAAAAABghJI2F3X2KRcBAAAAjUG5CAAAAAAAAAAARqgjoVyULygXAQAAAI1BuQgAAAAAAAAAAEYoaXNRd39fDA4PpZQGAAAAYPSUiwAAAAAAAAAAYISSykUREZ19vSkkAQAAABgb5SIAAAAAAAAAABihjkrKRYWeFJIAAAAAjI1yEQAAAAAAAAAAjFAlm4vyykUAAABAA1AuAgAAAAAAAACAEcpOmRrTmlvKzthcBAAAADQC5SIAAAAAAAAAABihTCYTHQnbi2wuAgAAABqBchEAAAAAAAAAAIxCLrFc1J1SEgAAAIDRUy4CAAAAAAAAAIBR6MhOL3veWehNKQkAAADA6CkXAQAAAAAAAADAKOSybWXPbS4CAAAAGoFyEQAAAAAAAAAAjILNRQAAAMBEoFwEAAAAAAAAAACjkMu2lz1f31+IoeHhlNIAAAAAjI5yEQAAAAAAAAAAjEJSuSgiorOvJ4UkAAAAAKOnXAQAAAAAAAAAAKPQUUG5KF9QLgIAAADGN+UiAAAAAAAAAAAYhYo2FykXAQAAAOOcchEAAAAAAAAAAIxCdsrUmNrcUnbG5iIAAABgvFMuAgAAAAAAAACAUchkMonbi2wuAgAAAMY75SIAAAAAAAAAABilpHKRzUUAAADAeKdcBAAAAAAAAAAAo9ShXAQAAAA0OOUiAAAAAAAAAAAYpaTNRZ3KRQAAAMA4p1wEAAAAAAAAAACjZHMRAAAA0OiUiwAAAAAAAAAAYJRy2ellz9f3F2JoeDilNAAAAAAjp1wEAAAAAAAAAACj1JFtS5zp7LO9CAAAABi/lIsAAAAAAAAAAGCUkjYXRUR0FnpTSAIAAAAwOspFAAAAAAAAAAAwSh3Z9sSZfKE7hSQAAAAAo6NcBAAAAAAAAAAAo9Q2ZWpMbW4pO9NZ6EkpDQAAAMDIKRcBAAAAAAAAAMAoZTKZxO1FeeUiAAAAYBxTLgIAAAAAAAAAgDHIKRcBAAAADUy5CAAAAAAAAAAAxiCpXNSpXAQAAACMY8pFAAAAAAAAAAAwBh02FwEAAAANTLkIAAAAAAAAAADGwOYiAAAAoJEpFwEAAAAAAAAAwBgkbS7q6i/E0PBwSmkAAAAARka5CAAAAAAAAAAAxiBpc1FExLq+3hSSAAAAAIycchEAAAAAAAAAAIxB0uaiiIh8oSeFJAAAAAAjp1wEAAAAAAAAAABjkMtOT5xRLgIAAADGK+UiAAAAAAAAAAAYg7YpU2NKc3PZmc5Cd0ppAAAAAEZGuQgAAAAAAAAAAMYgk8kkbi+yuQgAAAAYr5SLAAAAAAAAAABgjHLZ9rLnncpFAAAAwDilXAQAAAAAAAAAAGPUkVAusrkIAAAAGK+UiwAAAAAAAAAAYIxsLgIAAAAalXIRAAAAAAAAAACMkc1FAAAAQKNSLgIAAAAAAAAAgDFK2lzU1V+IoeJwSmkAAAAAKqdcBAAAAAAAAAAAY5S0uSgiYl2hN4UkAAAAACOjXAQAAAAAAAAAAGOUtLkoIiJf6EkhCQAAAMDIKBcBAAAAAAAAAMAYVbK5SLkIAAAAGI+UiwAAAAAAAAAAYIzap0yLKc3NZWc6C90ppQEAAAConHIRAAAAAAAAAACMUSaTiVx2etmZfKE3pTQAAAAAlVMuAgAAAAAAAACAKujItpU9t7kIAAAAGI+UiwAAAAAAAAAAoAqSNxf1pJQEAAAAoHLKRQAAAAAAAAAAUAUdre1lzzuViwAAAIBxSLkIAAAAAAAAAACqINdWvlyU71MuAgAAAMYf5SIAAAAAAAAAAKiCpM1FXX2FGCoOp5QGAAAAoDLKRQAAAAAAAAAAUAVJm4siItb19aaQBAAAAKByykUAAAAAAAAAAFAFuYTNRRER+d6eFJIAAAAAVE65CAAAAAAAAAAAqqCjgs1F+YJyEQAAADC+KBcBAAAAAAAAAEAVtE+ZFlOam8vOdPYpFwEAAADji3IRAAAAAAAAAABUQSaTiY7W8tuL8r3KRQAAAMD4olwEAAAAAAAAAABVkmsrXy6yuQgAAAAYb5SLAAAAAAAAAACgSpI3F3WnlAQAAACgMspFAAAAAAAAAABQJbns9LLnnX29KSUBAAAAqIxyEQAAAAAAAAAAVEku21b2PF+wuQgAAAAYX5SLAAAAAAAAAACgSjoSNhet7yvEUHE4pTQAAAAAyZSLAAAAAAAAAACgSpI2F5UiYl1fbzphAAAAACqgXAQAAAAAAAAAAFWSS9hcFBHRWehJIQkAAABAZZSLAAAAAAAAAACgSjra2hNn8spFAAAAwDiiXAQAAAAAAAAAAFXSPmVaTGlqLjujXAQAAACMJ8pFAAAAAAAAAABQJZlMJjqy5bcXdSoXAQAAAOOIchEAAAAAAAAAAFRRLqFcZHMRAAAAMJ4oFwEAAAAAAAAAQBXZXAQAAAA0EuUiAAAAAAAAAACoIpuLAAAAgEaiXAQAAAAAAAAAAFWUVC6yuQgAAAAYT5SLAAAAAAAAAACgijoSykVdfb0xXCymlAYAAACgPOUiAAAAAAAAAACooqTNRaWIWNfXm04YAAAAgATKRQAAAAAAAAAAUEVJm4siIvKF7hSSAAAAACRTLgIAAAAAAAAAgCrKZacnzuQLPSkkAQAAAEimXAQAAAAAAAAAAFXUPnVaTGlqLjvTqVwEAAAAjBPKRQAAAAAAAAAAUEWZTCY6su1lZ2wuAgAAAMYL5SIAAAAAAAAAAKiyXEK5yOYiAAAAYLxQLgIAAAAAAAAAgCqzuQgAAABoFMpFAAAAAAAAAABQZTYXAQAAAI1CuQgAAAAAAAAAAKrM5iIAAACgUSgXAQAAAAAAAABAlSVtLurq643hYjGlNAAAAABvTLkIAAAAAAAAAACqLGlzUSki1vX1phMGAAAAoAzlIgAAAAAAAAAAqLKkzUUREflCdwpJAAAAAMpTLgIAAAAAAAAAgCrLZacnznQWbC4CAAAA6k+5CAAAAAAAAAAAqqx96rSY0tRcdsbmIgAAAGA8UC4CAAAAAAAAAIAqy2Qy0ZFtLzvTWehJKQ0AAADAG1MuAgAAAAAAAACAGkgqF+WViwAAAIBxQLkIAAAAAAAAAABqIGdzEQAAANAAlIsAAAAAAAAAAKAGbC4CAAAAGoFyEQAAAAAAAAAA1IDNRQAAAEAjUC4CAAAAAAAAAIAaSNpctK6vN4aLxZTSAAAAALw+5SIAAAAAAAAAAKiBpM1FpfhzwQgAAACgnpSLAAAAAAAAAACgBpLKRRERnYWeFJIAAAAAvDHlIgAAAAAAAAAAqIGOCspFeeUiAAAAoM6UiwAAAAAAAAAAoAamT22NlqbmsjM2FwEAAAD1plwEAAAAAAAAAAA1kMlkoiPbVnYmX+hOKQ0AAADA61MuAgAAAAAAAACAGsllp5c9zxd6U0oCAAAA8PqUiwAAAAAAAAAAoEaSNhd12lwEAAAA1JlyEQAAAAAAAAAA1IjNRQAAAMB4p1wEAAAAAAAAAAA1YnMRAAAAMN4pFwEAAAAAAAAAQI0kbS5a19cbw8ViSmkAAAAA/iflIgAAAAAAAAAAqJFctr3seSkiuvp60wkDAAAA8DqUiwAAAAAAAAAAoEY6EspFERH5Qk8KSQAAAABen3IRAAAAAAAAAADUSNLmogjlIgAAAKC+lIsAAAAAAAAAAKBGpk9tjZam5rIzncpFAAAAQB0pFwEAAAAAAAAAQI1kMpnoyLaVnbG5CAAAAKgn5SIAAAAAAAAAAKihjtb2sufKRQAAAEA9KRcBAAAAAAAAAEAN5drKl4s6lYsAAACAOlIuAgAAAAAAAACAGrK5CAAAABjPlIsAAAAAAAAAAKCGEjcX9SkXAQAAAPWjXAQAAAAAAAAAADWUy04ve76urzeGi8WU0gAAAAC8lnIRAAAAAAAAAADUUEdr+c1FpVIpuvp6U0oDAAAA8FrKRQAAAAAAAAAAUEO5tvLlooiIfF9PCkkAAAAA/iflIgAAAAAAAAAAqKGkzUUREfle5SIAAACgPpSLAAAAAAAAAACghmZMa43mpvJv0+m0uQgAAACoE+UiAAAAAAAAAACooUwmE7mE7UU2FwEAAAD1olwEAAAAAAAAAAA11pEtXy6yuQgAAACoF+UiAAAAAAAAAACosVxCucjmIgAAAKBelIsAAAAAAAAAAKDGbC4CAAAAxivlIgAAAAAAAAAAqLHEzUUF5SIAAACgPpSLAAAAAAAAAACgxpI2F63r641isZhSGgAAAID/plwEAAAAAAAAAAA1lstOL3teKpViXX8hpTQAAAAA/025CAAAAAAAAAAAaiyXbUucyRe6U0gCAAAA8FrKRQAAAAAAAAAAUGMdCZuLIiI6Cz0pJAEAAAB4LeUiAAAAAAAAAACosRnTWqO5qfxbdfLKRQAAAEAdKBcBAAAAAAAAAECNZTKZyLW2l52xuQgAAACoB+UiAAAAAAAAAABIQUe2fLnI5iIAAACgHpSLAAAAAAAAAAAgBbmEcpHNRQAAAEA9KBcBAAAAAAAAAEAKbC4CAAAAxiPlIgAAAAAAAAAASEHS5iLlIgAAAKAelIsAAAAAAAAAACAFSZuL1vX1RrFYTCkNAAAAwJ8pFwEAAAAAAAAAQAqSNheVSqVY119IKQ0AAADAnykXAQAAAAAAAABACpLKRRERnYWeFJIAAAAA/DflIgAAAAAAAAAASEFHBeWifKE7hSQAAAAA/025CAAAAAAAAAAAUjB9Wjaam8q/Xaez0JtSGgAAAIA/Uy4CAAAAAAAAAIAUNGUy0dHaVnbG5iIAAAAgbcpFAAAAAAAAAACQklx2etnzzkJPSkkAAAAA/ky5CAAAAAAAAAAAUtKRbS97nlcuAgAAAFKmXAQAAAAAAAAAACnJKRcBAAAA44xyEQAAAAAAAAAApCSpXNSpXAQAAACkTLkIAAAAAAAAAABS0pFULurrjWKxmFIaAAAAAOUiAAAAAAAAAABITdLmolKpFF39hZTSAAAAACgXAQAAAAAAAABAapI2F0VE5As9KSQBAAAA+DPlIgAAAAAAAAAASEnS5qKIiE7lIgAAACBFykUAAAAAAAAAAJCS6dOy0Zwp/5Ydm4sAAACANCkXAQAAAAAAAABASpoymejItpWdsbkIAAAASJNyEQAAAAAAAAAApKgj2172PF/oTikJAAAAgHIRAAAAAAAAAACkKpedXvY8b3MRAAAAkCLlIgAAAAAAAAAASFEuYXNRp3IRAAAAkCLlIgAAAAAAAAAASFFHQrnI5iIAAAAgTcpFAAAAAAAAAACQoqTNRev6eqNYLKaUBgAAAJjslIsAAAAAAAAAACBFSZuLiqVSdPUXUkoDAAAATHbKRQAAAAAAAAAAkKKkzUUREZ2FnhSSAAAAACgXAQAAAAAAAABAqpI2F0VE5JWLAAAAgJQoFwEAAAAAAAAAQIpmTMtGc6b823ZsLgIAAADSolwEAAAAAAAAAAApaspkYla2reyMzUUAAABAWpSLAAAAAAAAAAAgZblse9lz5SIAAAAgLcpFAAAAAAAAAACQslx2etnzTuUiAAAAICXKRQAAAAAAAAAAkLKObFvZ83yhO6UkAAAAwGSnXAQAAAAAAAAAAClL3lzUm1ISAAAAYLJTLgIAAAAAAAAAgJQlbS7q7OuJYrGYUhoAAABgMlMuAgAAAAAAAACAlCVtLiqWSrG+v5BSGgAAAGAyUy4CAAAAAAAAAICUdWTbE2fyhZ4UkgAAAACTnXIRAAAAAAAAAACkLKdcBAAAAIwTykUAAAAAAAAAAJCyGdOy0Zwp/9adTuUiAAAAIAXKRQAAAAAAAAAAkLKmTCZmZdvKzthcBAAAAKRBuQgAAAAAAAAAAOqgo7W97LlyEQAAAJAG5SIAAAAAAAAAAKiDXFv5clGnchEAAACQAuUiAAAAAAAAAACog1zW5iIAAACg/pSLAAAAAAAAAACgDjpabS4CAAAA6k+5CAAAAAAAAAAA6iDXllAu6uuJYqmUUhoAAABgslIuAgAAAAAAAACAOkjaXFQslWJ9X29KaQAAAIDJSrkIAAAAAAAAAADqINc2PXEmr1wEAAAA1JhyEQAAAAAAAAAA1EGutS1xJt/bnUISAAAAYDJTLgIAAAAAAAAAgDqY0doWTZlM2ZnOvp6U0gAAAACTlXIRAAAAAAAAAADUQVMmEx2t7WVn8r3KRQAAAEBtKRcBAAAAAAAAAECddGQTykUF5SIAAACgtpSLAAAAAAAAAACgTnJt5ctFnX3KRQAAAEBtKRcBAAAAAAAAAECddLQmbC7qVS4CAAAAaku5CAAAAAAAAAAA6iSXtbkIAAAAqC/lIgAAAAAAAAAAqJOkctG6Qm8US6WU0gAAAACTkXIRAAAAAAAAAADUSUdCuWi4VIz1/YWU0gAAAACTkXIRAAAAAAAAAADUSdLmooiIfKEnhSQAAADAZKVcBAAAAAAAAAAAdVJJuahTuQgAAACoIeUiAAAAAAAAAACokxmtbdGUyZSdyRe6U0oDAAAATEYt9Q4AUG/Lly+Pm266KR5++OF49NFH47nnnov169dHV1dXlEqlmDFjRsyYMSPmzZsXb37zm2OnnXaK/fffP7bbbrt6R28or7zyStx5552v/jq/+OKLsWLFisjn89HX1xcDAwMxZcqUaG1tjVmzZsUmm2wSc+fOjR122CF22mmnWLx4cWyxxRb1/jQAAAAAAAAAqqopk4mO1vZYW6ZAlO+1uQgAAACoHeUiYFLq7OyM//zP/4xLLrkkHn744bKza9asiTVr1sSyZcvitttue/Xfb7fddnHkkUfGRz7ykdh4441rHbkhPfnkk3HppZfGT3/603jkkUcS5/v7+6O/vz/WrVsXL7zwQkREXHXVVa+eb7vttnHIIYfEkUceGbvuumvNcgMAAAAAAACkqSNbvlzU2adcBAAAANROU70DAKSpu7s7PvWpT8Xmm28en/zkJxOLReU89dRTceaZZ8a8efPi5JNPjtWrV1cxaWO77bbb4sADD4ztt98+zjzzzIqKRZV4+umn4xvf+EYsXLgwFi9eHD//+c+r8rwAAAAAAAAA9ZTLtpc9zxeUiwAAAIDaUS4CJo1rr702dthhh/j6178ePT3Ve+F1YGAgzjvvvNh+++3jwgsvrNrzNqLly5fHP/zDP8Ree+0VN954Y03v+t3vfhfve9/7Yr/99ovHH3+8pncBAAAAAAAA1FJHQrmoU7kIAAAAqCHlImDCKxaL8bnPfS4OOeSQePHFF2t2z9q1a+P444+Pk08+OQYGBmp2z3h19dVXxy677BI//elPU73317/+dey2225xwQUXpHovAAAAAAAAQLXYXAQAAADUk3IRMKENDw/HEUccEV/5yleiVCqlcud5550XBxxwQPT29qZy33jwrW99Kw499NDI5/N1ub+3tzdOOOGE+NSnPlWX+wEAAAAAAADGIqlctK7QG8WUvucNAAAATD7KRcCEVSwW49hjj40rrrgi9bt/+9vfxvvf//7o7+9P/e60nXXWWXHaaaelVt4q5+tf/3p84hOfqHcMAAAAAAAAgBHpSCgXDZeKsb6/kFIaAAAAYLJpqXcAgFr57Gc/G//1X/81osdst912sXjx4njLW94Ss2fPjkwmE/l8Ph577LG466674pFHHqn4uW6++eY46aST4oc//OFIozeMn/3sZ6PaFtTc3Bw777xzvO1tb4vNNtsscrlczJw5M9avXx/5fD5WrlwZd999dzz44IMxODg4ouf+9re/Hdtuu22ccsopI84FAAAAAAAAUA9Jm4siIjoLPTGrtS2FNAAAAMBko1wETEg33HBDfO1rX6t4/uCDD45//ud/jt13373s3COPPBJnnXVW/Nd//VcUi8XE573kkktir732ihNOOKHiLI1ixYoVcdJJJ41oY9Fb3vKWOPXUU+MDH/hATJ8+PXG+UCjElVdeGWeffXbcf//9Fd9z2mmnxTvf+c5YsGBBxY8BAAAAAAAAqJekzUUREflCT2yZ2zCFNAAAAMBk01TvAADVtmbNmjjmmGMqKr3Mnj07rrvuurj66qsTi0URfy7HXHzxxXHnnXfGFltsUVGef/qnf4qnn366otlG8slPfjLWrl1b0Wx7e3ucf/758Yc//CFOOOGEiopFERHZbDaOPvrouO++++Lyyy+PWbNmVfS4vr6++N//+39XNAsAAAAAAABQbzOnZaMpkyk7ky90p5QGAAAAmGyUi4AJ57Of/WysXr06cW7zzTeP3//+9/Hud797xHcsWrQo7r333njzm9+cOFsoFOLjH//4iO8Yzx599NG47LLLKprdYost4t57743jjz9+THd+4AMfiIceeqjibUS/+c1v4pZbbhnTnQAAAAAAAABpaGpqio7W8tuLOgu9KaUBAAAAJhvlImBCeeCBB+K8885LnJs1a1b86le/im222WbUd2200Ubx61//OjbffPPE2V/84hdx/fXXj/qu8eb73/9+FIvFxLmZM2fGddddV3EhKMmWW24ZN9xwQ2y88cYVzX/ve9+ryr0AAAAAAAAAtdaRbSt7bnMRAAAAUCvKRcCEcuaZZ1ZUejnvvPNi++23H/N9m2yySVx66aXR3NycOPuFL3xhzPeNB8ViseKtRd/97ndjp512qur9W221VVxyySUVzf785z+Prq6uqt4PAAAAAAAAUAu57PSy5zYXAQAAALWiXARMGE888URce+21iXMHH3xwHHbYYVW7d88994x//Md/TJy799574ze/+U3V7q2Xhx56KFavXp04t+OOO8aHPvShmmTYf//9Y999902c6+/vj9tvv70mGQAAAAAAAACqyeYiAAAAoF6Ui4AJ41vf+laUSqWyMy0tLfGNb3yj6nd/8YtfjJkzZybOffOb36z63Wm7++67K5r72Mc+Fk1Ntftj5vTTT69o7ne/+13NMgAAAAAAAABUS/Lmop6UkgAAAACTjXIRMCH09/fHj3/848S5v//7v49tt9226vdvsMEGceKJJybO3XTTTfHyyy9X/f40PfHEExXNvetd76ppjr322itaW1sT55588sma5gAAAAAAAACoho5se9nzzkJvFBN+4CYAAADAaCgXARPCL37xi1i3bl3i3KmnnlqzDB/96EcTN/UMDw/H5ZdfXrMMaXjxxRcTZ7beeuvYYostapojm83G2972tsS5F154oaY5AAAAAAAAAKohl1AuGi4Vo7u/kFIaAAAAYDJRLgImhMsuuyxxZtttt41FixbVLMOWW24Ze+65Z+JcJVnHs+7u7sSZzTffPIUkEXPnzk2cWb9+fQpJAAAAAAAAAMYmaXNRRES+0JNCEgAAAGCyUS4CGt7w8HD86le/Spz7wAc+UPMsRxxxROLM0qVLY82aNTXPUivFYjFxZs6cOSkkidhwww0TZwYHB1NIAgAAAAAAADA2SZuLIiI6lYsAAACAGlAuAhre73//+1i3bl3i3IEHHljzLJXcUSwW49e//nXNs9RKLpdLnJk6dWoKSSKmTZuWODN79uwUkgAAAAAAAACMzcxp2WjKZMrO2FwEAAAA1IJyEdDwKinqzJgxI/bYY4+aZ9lyyy1j2223TZz75S9/WfMstbLBBhskzqxevTqFJBGrVq1KnFEuAgAAAAAAABpBU1NTzGptKzujXAQAAADUgnIR0PDuuuuuxJk99tgjWlpaUkgTseeeeybO3HPPPSkkqY1tttkmcaaS0k81vPLKK4kz8+bNSyEJAAAAAAAAwNjlsu1lzzuViwAAAIAaUC4CGt4DDzyQOLNw4cIUkvzZbrvtljjz2GOPRX9/fwppqm/JkiWJM4899lj09NT2Re1SqRRLly5NnFu8eHFNcwAAAAAAAABUS0dCucjmIgAAAKAWlIuAhvbyyy/HihUrEufGW7loaGgo/vCHP6SQpvoWLlwY7e3lX9AeGBiIW265paY5Hn744Vi5cmXiXCWbpAAAAAAAAADGA5uLAAAAgHpQLgIa2sMPP1zR3IIFC2qc5L9tv/32Fc1Vmn28mTJlSnzwgx9MnPvhD39Y0xwXX3xx4szuu+8e8+fPr2kOAAAAAAAAgGpJ3lzUnVISAAAAYDJRLgIa2rPPPlvR3LbbblvjJP8tl8vF7NmzE+cqzT4effSjH02cufLKK+PBBx+syf3Lly+P733ve4lzH/vYx2pyPwAAAAAAAEAt5LLTy5539vVGsVRKKQ0AAAAwWSgXAQ3tueeeS5zZZJNNor29/E93qrZKykyVZB+vdtpppzj00EPLzpRKpTj55JOjUChU9e6hoaE46aSTor+/v+zctttuG4cddlhV7wYAAAAAAACopY5sW9nz4WIxuvur+z1YAAAAAOUioKEtW7YscWazzTarfZC/summmybONHK5KCLie9/7XmywwQZlZ5YuXRpHHXVUDA8PV+XOUqkUH/nIR+Kmm24qO9fU1BQXXHBBTJkypSr3AgAAAAAAAKQhaXNRRERnoSeFJAAAAMBkolwENLSXXnopcWaTTTZJIcnI73zxxRdTSFI7G2+8cZx//vnR3Nxcdu6qq66Kd77znWP+fF955ZV4z3veE//5n/+ZOHvaaafFnnvuOab7AAAAAAAAANLWkW1PnMkrFwEAAABVplwENLQ1a9Ykzmy88cYpJHmtSspFa9euTSFJbR188MFx/vnnRyaTKTt32223xS677BJf+cpXYvXq1SO6o7OzM84666zYaaed4oYbbkicP/roo+NrX/vaiO4AAAAAAAAAGA9mTcsmfv9VuQgAAACotpZ6BwAYi0rKRR0dHbUPMoo7e3p6or+/P6ZNm1b7QDX04Q9/OJqamuJ//a//Fb29vW84t3bt2vjc5z4XX/nKV+KAAw6IxYsXx6JFi2Lu3LmRy+VixowZ0d3dHfl8PlasWBH33HNP3HnnnXHjjTdGT09lL44fc8wxccEFFyS+2A4AAAAAAAAwHjU1NUVHa1vZAlGnchEAAABQZcpFQEPL5/OJMzNmzEghyejuXLt2bWy66aY1TlN7Rx99dPzt3/5tfPCDH4wHH3yw7GyhUIhrrrkmrrnmmqrd397eHuecc04cf/zxVXtOAAAAAAAAgHroyLaXLRfZXAQAAABUW1O9AwCMVqFQiMHBwcS5epSLZs6cWdHcunXrapwkPQsWLIilS5fG+eefH1tvvXUqdzY3N8eHPvSheOihhxSLAAAAAAAAgAkhl20ve25zEQAAAFBtykVAwxoYGKhoLpvN1jjJ/9Ta2lrRXKWfQ6NoaWmJ448/Pp544om48sor44gjjqi4aDUSc+fOjX/6p3+KRx99NC655JLYZpttqn4HAAAAAAAAQD10JJSLbC4CAAAAqq2l3gEARqvSYk5zc3ONk/xPLS2VfXmdaOWiv2hpaYm/+7u/i1KpFMViMa644ooolUpVee73vOc98S//8i+x8847V+X5JqIlS5ZU/HuQ2vnjH/9Y7wgAAAAAAAA0IJuLAAAAgLTZXAQ0rEqLOfUoWVR65+DgYI2TpO+RRx6Jo446KubMmROHHXZY/OQnP6lasSgi4rrrrotddtkl5s+fH5/5zGdi5cqVVXtuAAAAAAAAgHpL3FzU11PV78ECAAAAWGsANKyhoaGK5pSL0vHss8/GaaedFtdcc00qL2QvW7YsvvrVr8bZZ58dxx13XHzuc5+LzTbbrOb3NoI77rgjNtxww3rHAAAAAAAAAEYhaXPRcLEY6/v7YmZrNqVEAAAAwERncxHQsCot8AwPD9c4yejvrEfxqRZ++MMfxt/8zd/E1VdfnfpPyOrr64tzzz033vKWt8RPfvKTVO8GAAAAAAAAqLakzUUREZ2F7hSSAAAAAJPFxHhXOzApTZ06taK5SjccVVOlG4kq/RzGq2KxGCeddFJccMEFI3pcc3Nz7LrrrrH77rvHRhttFLNnz46Ojo7o7u6OtWvXxtq1a+PBBx+Mu+++O3p7eyt6znw+Hx/4wAfixhtvjP/4j/+YMMUtAAAAAAAAYHLJZacnzuQLPTEvt2EKaQAAAIDJwDuvgYY1ZcqUiubqUS6q9M5GLheVSqU48cQT48ILL6z4MXvttVd8/OMfj3333TemT09+QXxwcDCWLl0a//7v/x4/+clPKvp1vfDCC6OnpycuvfTSaG5urjgbAAAAAAAAwHgwa1o2MplMlEqlN5zJF3pSTAQAAABMdE31DgAwWtOmTatorq+vr8ZJRn9nI5eLPvGJT1RcLNpll13innvuiVtvvTUOPvjgiopFEX8ukL397W+PH/3oR/HMM8/EP/zDP1T0uJ/85CdxzDHHVDQLAAAAAAAAMJ40NTXFrNa2sjOdykUAAABAFdlcBIzIc889F/fcc09N72hvb4/3vve9iXPZbDZaWloSt9msX7++WtEqVumdM2fOrHGS2vjlL38ZZ599dkWzJ598cnznO9+J1tbWMd05b968uOKKK+Lf/u3f4vTTT4/+/v6y85deemnss88+ceKJJ47pXgAAAAAAAIC05bLtZQtENhcBAAAA1aRcBIzIb3/72zjuuONqeseWW25ZUbkoIiKXy8WqVavKznR1dVUj1ohUeufs2bNrnKT61q1bF8cff3xFs6effnqcddZZVb3///yf/xNz586Nv//7v49SqVR29hOf+ETst99+sdVWW1U1AwAAAAAAAEAtdbS2lz23uQgAAACopqZ6BwAYiw022CBxZt26dSkkGfmdbW1tY97mUw/f/e5348UXX0ycO/jgg+NrX/taTTK8//3vr+i5169fH5/+9KdrkgEAAAAAAACgVnJt5ctFNhcBAAAA1aRcBDS0SspFL7/8cgpJXmvlypWJM5VkH28GBwfje9/7XuLcjBkz4vzzz4+mptr9MfPJT34y9thjj8S5n/70p7F8+fKa5QAAAAAAAACoNpuLAAAAgDQpFwENbe7cuYkzlRR9qq2SOyvJPt5ceeWVsWLFisS5U089NZXy1Je//OXEmaGhofi3f/u3mmcBAAAAAAAAqJbEzUV9PVEqlVJKAwAAAEx0ykVAQ9tqq60SZ/70pz/VPshfqaSAM3/+/BSSVNeNN96YONPS0hIf//jHU0gTsd9++8Wuu+6aOHfttdemkAYAAAAAAACgOpI2Fw0Xi7G+vy+lNAAAAMBEp1wENLRKCjorV66M3t7eFNL8t6effjpxphHLRbfffnvizB577BG5XC6FNH/2rne9K3Hm8ccfj1WrVqWQBgAAAAAAAGDskjYXRUR0FrpTSAIAAABMBspFQEPbeuutE2dKpVJFZZ9q6ezsjDVr1iTOVZJ9PFm5cmU899xziXMHHHBACmlGft8dd9xR4yQAAAAAAAAA1ZHLTk+cyRfS/SGbAAAAwMSlXASMyLHHHhulUqmmH8uWLas4z0477VTR3OOPPz7Kz3jkKr2r0uzjxYsvvljR3Fve8pYaJxndfc8//3yNkwAAAAAAAABUx6xp2chkMmVn8jYXAQAAAFWiXAQ0tE033TQ23njjxLn7778/hTSV39XS0hI777xzCmmqp5JtTBERc+bMqXGS15o9e3Y0NSX/cVZpfgAAAAAAAIB6a2pqilmtbWVnOvt6UkoDAAAATHTKRUDDW7hwYeJMmuWi++67L3FmwYIF0dramkKa6lm7dm1Fc2mXi5qammL27NmJc8pFAAAAAAAAQCPpaG0ve57vVS4CAAAAqkO5CGh4b3vb2xJn7r777hgaGkohTcRtt92WOLPHHnukkKS6SqVSRXOZTKbGSUZ3Z1r//QEAAAAAAACqIZctXy6yuQgAAACoFuUioOHtu+++iTPr16+P3//+9zXP8sILL8TTTz+dOLf//vvXPEu1tbW1VTS3evXqGid5rWKxWNFWokrzAwAAAAAAAIwHHQnlIpuLAAAAgGpRLgIa3u677x4zZ85MnLvhhhtqnqWSOzKZTEWFqPFm1qxZFc2tWrWqxklea+3atVEsFhPnKvk9AgAAAAAAADBe2FwEAAAApEW5CGh4LS0tFZV1fvzjH9c8y+WXX54489a3vjXmzJlT8yzVNm/evIrm/vjHP9Y4yWv94Q9/qGiu0vwAAAAAAAAA40FSuShf6IlSqZRSGgAAAGAiUy4CJoQPfvCDiTNPPfVU3HPPPTXL8MILL8Rtt92WOFdJ1vFo3rx50dLSkjh38803p5Dmv910000Vzc2fP7/GSQAAAAAAAACqpyOhXDRcLMb6/r6U0gAAAAATmXIRMCG8973vjZkzZybOnX322TXLcM4550SxWCw709TUFEcccUTNMtTSlClTYqeddkqcu/vuu6Ozs7P2gf7/brzxxsSZTCYTCxcuTCENAAAAAAAAQHXk2sqXiyIiOvt6UkgCAAAATHTKRcCE0NraGocffnji3JVXXhlPP/101e9fs2ZNnHfeeYlzBxxwQGy66aZVvz8tb3vb2xJnhoaG4tvf/nYKaSJuuOGGeOihhxLnFixYELlcLoVEAAAAAAAAANWRa00uF+V7lYsAAACAsVMuAiaMT3ziE5HJZMrODA0Nxemnn171uz//+c9HV1dX4txpp51W9bvT9J73vKeiubPPPjvWrl1b0yylUik+97nPVTR74IEH1jQLAAAAAAAAQLXNbG1L/B64zUUAAABANSgXARPGDjvsEAcddFDi3DXXXBNXXHFF1e6944474gc/+EHi3MKFC2O//far2r0REcuWLYtMJpP4sffee1flvv3337+iDUBdXV1xwgknRLFYrMq9r+dLX/pS3H///RXNVrLVCgAAAAAAAGA8aW5qilnTsmVn8oXulNIAAAAAE5lyETChfOELX4impuQvbSeddFI8+eSTY75v5cqVceSRR8bw8HDi7BlnnDHm++ptypQpceKJJ1Y0e/XVV8enPvWpmuS4/PLLK/713HXXXWOPPfaoSQ4AAAAAAACAWurITi973lnoTSkJAAAAMJEpFwETym677RbHH3984ty6deti3333jWeffXbUd61atSr222+/WL58eeLsgQceGO9973tHfdd4cuqpp8a0adMqmv3GN74RH/nIR6K/v79q93/rW9+KY445JkqlUkXzn/70p6t2NwAAAAAAAECactm2suc2FwEAAADVoFwETDj/8i//EhtssEHi3Isvvhi777573HDDDSO+45577om3vvWt8cc//jFxtrW1Nb7zne+M+I7xarPNNhvRRqLvf//7sWjRoli6dOmY7n3uuefi4IMPjtNOOy0GBwcresySJUvisMMOG9O9AAAAAAAAAPVicxEAAACQBuUiYMLZcMMN46KLLopMJpM4u2bNmnj3u98dhx56aNx7772J848++mgcd9xx8fa3vz1eeOGFivJ85zvfie22266i2Ubxmc98JnbYYYeK5x988MHYfffdY5999olrr702enp6Knrc4OBg3H777XHEEUfEdtttF9dee23Fd7a2tsb3v//9in4fAAAAAAAAAIxHNhcBAAAAaWipdwCAWjjooIPi9NNPj7POOqui+auuuiquuuqqeNOb3hRLliyJHXfcMWbPnh2ZTCby+Xw8/vjjcdddd8XDDz88ohxHHnlknHzyyaP5FMa11tbWuOqqq2L33XePrq6uih936623xq233hotLS2x6667xh577BEbbrhhzJ49Ozo6OqK7uzvWrl0ba9asiQcffDDuvvvu6O0d3U/a+sEPfhA77rjjqB4LAAAAAAAAMB7kKthcVCqV/NBFAAAAYEyUi4AJ66tf/Wq8+OKLcdlll1X8mCeffDKefPLJqty/7777xgUXXFCV5xqPtt9++7j66qvjoIMOGnEBaGhoKJYuXRpLly6tSbYvfelLccwxx9TkuQEAAAAAAADS0pFtL3s+VByO7oG+mDEtm1IiAAAAYCJqqncAgFppamqKH/7wh3HooYemfveSJUvimmuuiWnTpqV+d5r22WefuP766yOXy9U7SkT8+b/5WWedFZ/73OfqHQUAAAAAAABgzHIJ5aKIiHyhJ4UkAAAAwESmXARMaC0tLXHFFVfEpz71qdTuPO644+JXv/pVtLcnv8g7Eey1115x3333xcKFC+uaY86cOXH99dfH6aefXtccAAAAAAAAANVSSbmoU7kIAAAAGCPlImDCa2pqiq9+9atx1VVXxWabbVaze3K5XJx33nlxwQUXTPiNRX9t/vz5cc8998RZZ50V06dPT/XuTCYTxx13XDz22GPxd3/3d6neDQAAAAAAAFBLM1vbIpMwY3MRAAAAMFYt9Q4AkJZDDjkk9t133/jiF78Y5557bvT0VOcF1qlTp8bRRx8d//qv/xobbrhhVZ6zEbW0tMTpp58exx57bJx99tlx7rnnxtq1a2t235QpU+Lwww+Pz3zmM7HjjjvW7B4mjlKpFMPDw1EsFqNUKtU7DgAAAAAVymQy0dTUFM3NzZHJJL21FgBgYmluaopZrW3R2df7hjM2FwEAAABjpVwETCozZsyIs846K/75n/85/uM//iMuueSS+OMf/ziq59pmm23igx/8YJxyyimx6aabVjlp45ozZ058+ctfjs9//vNx3XXXxU9+8pP49a9/HatWrRrzc2ez2Vi8eHG8//3vjw984AOxwQYbVCExE02pVIq+vr4oFAoxODgYAwMDMTAwEIODg0pFAAAAAA0sk8nElClTYurUqTF16tSYMmVKZLPZaG1tVToCACa0jmx72XKRzUUAAADAWGVK3mULTHLPP/983HzzzfHQQw/Fo48+GsuWLYuurq5Yv359lEqlmDFjRsyYMSO22GKLePOb3xw77bRT7LfffrFgwYJ6R28YpVIp/vCHP8T9998fjzzySDz11FOxYsWKWLFiRaxfvz76+vpiYGAgWlpaorW1Ndrb22PjjTeOTTfdNObPnx877rhj7LzzzrH77rvHtGnT6v3pjCurVq2KjTba6DX/7pVXXpl0W7T+Uihav359dHV1xeDgYL0jAQAAAJCSKVOmxMyZM2PGjBmKRgDAhHTWrdfEA39a9obnu2+xbZy653vSCwQAAAAT1GR+X67NRcCkt+WWW8ZJJ51U7xgTWiaTiZ133jl23nnnekdhgimVStHV1RWrVq1SKAIAAACYpAYHB2PNmjWxZs2amDJlSmy44YYxc+ZMJSMAYMLoyLaXPbe5CAAAABgr5SIAoCH19/fHypUro7e3t95RAAAAABgnBgcH409/+lN0dnbGJptsYhM6ADAh5BLKRZ3KRQAAAMAYKRcBAA2lWCzGqlWrYu3atfWOAgAAAMA41dvbG88++2zMnj07Ntxww2hqaqp3JACAUatkc1GpVLK5EQAAABg130kBABpGsViMl156SbEIAAAAgIqsXbs2XnrppSgWi/WOAgAwarns9LLnQ8Xh6B7oSykNAAAAMBEpFwEADeEvxaLu7u56RwEAAACggXR3dysYAQANLZewuSgiorPQk0ISAAAAYKJSLgIAxj3FIgAAAADGQsEIAGhkHRWUi/LKRQAAAMAYtNQ7AABAklWrVo2qWNTc3Bytra0xderUVz+am5sjk8lEJpOpQVIAAAAAqqlUKkWpVIrh4eEYGBh49aOvry+Gh4dH9Fzd3d2xatWq2HjjjWuUFgCgNma1tkUmIkplZmwuAgAAAMZCuQgAGNf6+vpi7dq1Fc83NzfHzJkzY8aMGdHW1qZEBAAAADABlUql6O3tjfXr10dXV1fFRaO1a9dGR0dHTJs2rcYJAQCqp7mpKWa2tsW6vt43nLG5CAAAABgL5SIAYNwqlUrx8ssvVzw/e/bsmDNnTjQ3N9cwFQAAAAD1lslkor29Pdrb22PDDTeM1atXV/wDalauXBnz5s3zQ2kAgIaSy7aXLRfZXAQAAACMRVO9AwAAvJGurq7o7X3jb5L8RUtLS8yfPz823nhjxSIAAACASaa5uTk23njjmD9/frS0JP9cvd7e3ujq6kohGQBA9XRk28ue21wEAAAAjIVyEQAwLpVKpVi1alXiXEtLS8ybNy9aW1tTSAUAAADAeNXa2hrz5s2rqGC0atWqKJVKKaQCAKiOXEK5yOYiAAAAYCyUiwCAcamvry8GBwcT57bYYouYNm1aCokAAAAAGO+mTZsWW2yxReLc4OBg9PX1pZAIAKA6bC4CAAAAakm5CAAYl9avX584M3v2bBuLAAAAAHiN1tbWyOVyiXOVvP4EADBeJG0uyhd6bGYEAAAARk25CAAYd0qlUnR1dZWdaW5ujjlz5qSUCAAAAIBGsuGGG0Zzc3PZma6uLm/ABQAaRi47vez5UHE4egb6U0oDAAAATDTKRQDAuNPX1xeDg4NlZ2bOnJn4BhEAAAAAJqfm5uaYOXNm2ZnBwcHo6+tLKREAwNh0ZNsSZ/KF7hSSAAAAABORchEAMO4UCoXEmRkzZqSQBAAAAIBGVcnrR5W8DgUAMB4kbS6KiOgs9KSQBAAAAJiIlIsAgHEnaWtRc3NztLUl/3Q2AAAAACavtra2xM3XSa9DAQCMF7Na2yKTMJNXLgIAAABGSbkIABh3BgYGyp63trZGJpP07RMAAAAAJrNMJhOtra1lZ5JehwIAGC+am5piZmv5H75ncxEAAAAwWspFAMC4k/SmjqlTp6aUBAAAAIBGlvQ6knIRANBIOrLtZc9tLgIAAABGS7kIABhXSqWSchEAAAAAVZH0OtLg4GCUSqWU0gAAjE1OuQgAAACoEeUiAGBcGR4eTpxRLgIAAACgEkmvI5VKpYpejwIAGA+SNhd1KhcBAAAAo6RcBACMK8ViMXGmubk5hSQAAAAANLpKXkeyuQgAaBQ2FwEAAAC1olwEAIwrlbyZI5PJpJAEAAAAgEZXyetIlfywGwCA8SCpXNRZ6FGcBgAAAEZFuQgAaDjKRQAAAABUwutIAMBE0pFQLhosDkfPQH9KaQAAAICJRLkIAAAAAAAAAADGuaTNRRF/3l4EAAAAMFLKRQAAAAAAAAAAMM4lbS6KiMgXulNIAgAAAEw0ykUAAAAAAAAAADDOzWpti0zCTL7Qm0oWAAAAYGJRLgIAAAAAAAAAgHGupak5ZrRmy8502lwEAAAAjIJyEQAAAAAAAAAANIBcdnrZc5uLAAAAgNFQLgIAAAAAAAAAgAbQ0dpW9jxvcxEAAAAwCspFAAAAAAAAAADQAHJt5TcXdRZ6UkoCAAAATCTKRQAAAAAAAAAA0ABy2fay53nlIgAAAGAUlIsAAAAAAAAAAKABdCSUizoLPVEqlVJKAwAAAEwUykUAAAAAAAAAANAAkjYXDRaHo2ewP6U0AAAAwEShXAQAAAAAAAAAAA2go7V8uSgiorO3J4UkAAAAwESiXAQAAAAAAAAAAA0g15ZcLsr3KRcBAAAAI6NcBAAAAAAAAAAADWBWa1tkEmbyNhcBAAAAI6RcBAAAAAAAAAAADaClqTlmtGbLznTaXAQAAACMkHIRAAAAAAAAAAA0iFxre9lzm4sAAACAkVIuAgAAAAAAAACABtGRLV8usrkIAAAAGCnlIgAAAAAAAAAAaBC5tullz/OF7pSSAAAAABOFchEAAAAAAAAAADSIjtbym4vyvTYXAQAAACOjXAQAAAAAAAAAAA0i11a+XNTZ1xOlUimlNAAAAMBEoFwEAAAAAAAAAAANImlz0eDwcPQM9qeUBgAAAJgIlIsAAAAAAAAAAKBB5LLly0UREZ2FnhSSAAAAABOFchEAAABv6KKLLopMJpP4cdFFF9U7KtDAKvk6s/fee9c7JgAAAMC4UEm5KK9cBAAAAIyAchEAAAAAAAAAADSIWdm2xBmbiwAAAICRUC4CAAAAAAAAAIAG0dLUHDOnZcvO2FwEAAAAjERLvQMAAAAAAMBEUiwW4/HHH4977703nnvuuSiVSomP6ejoiFNPPbX24QAAgAkhl22Prv7CG57bXAQAAACMhHIRAAAw4Vx00UVx3HHH1eS5p06dGq2trTFt2rRXP6ZPnx4bbbTRaz7mzp0b22+/fSxYsCBmzpxZkywAANRfqVSKJ598Mu69995XPx544IHo6RnZG/m23HLLSVkuOuOMM+LMM8+sd4xx4cILL4xjjz223jEAAGgQHdn2eL5z9Rue21wEAAAAjIRyEQAAwAgMDAzEwMDAiB6z6aabxg477BC77rprLFmyJJYsWRJz5sypUUIAAGrpmWeeeU2R6P7774+urq56xwIAACaZXLa97Hm+0J1SEgAAAGAiUC4CAACosRUrVsSKFSviN7/5TXzzm9+MiIgddtgh9t577zj00ENjn332iebm5jqnJE2dnZ1x9tlnJ879zd/8TRxyyCE1z8PEdNFFF8WyZcsS584444yaZwFoVMuWLYt777037rvvvlf/mc/n6x0LAAAgOrLTy553FnpTSgIAAABMBMpFAAAAdfDYY4/FY489Fueee25suOGGceihh8aRRx4Z73jHO+odjRR0dnbGmWeemTj34Q9/WLmIUbvooovit7/9beKcchHA//SP//iP8bOf/SxWr15d7ygAAACvK5dtK3ueL3RHqVSKTCaTUiIAAACgkTXVOwAAAMBkt2rVqvjBD34Qe+21VyxcuDAuvfTSGBoaqncsAIBJ65577lEsAgAAxrWkzUWDw8PROziQUhoAAACg0SkXAQAAjCMPPPBAHHXUUbH11lvHeeedF8Visd6RAAAAAAAYZ3LZ9sSZfKE7hSQAAADARKBcBAAAMA4tX748Tj755Fi0aFH8/ve/r3ccAAAAAADGkUrKRZ2FnhSSAAAAABOBchEAAMA4tnTp0li0aFF89KMfjYGBgXrHAQAAAABgHJjV2pY4k1cuAgAAACrUUu8AAAAA9XTqqafGvvvuO6LHFIvF6Ovri/7+/ujr64vu7u5YsWJFrFy5MlasWBFPPfVUvPDCC1EqlaqSsVQqxXe/+934/e9/H1deeWVsvvnmVXneShx77LFx7LHHpnYfMDlV6+slAAAAwGTR0twcM6dlo6u/8IYzNhcBAAAAlVIuAgAAJrVddtklDjrooKo/b3d3dzzyyCNx//33x29+85u45ZZbYu3atWN6znvuuScWLlwYP/vZz2LJkiVVSgoAQLVtvfXWsdtuu8Vuu+0WP/zhD+PRRx+td6Rx64wzzogzzjgj1fvOPPPMimZvueWW2HvvvWsbCAAAxqAj2162XGRzEQAAAFAp5SIAAIAamD59eixatCgWLVoUp5xyShSLxVi6dGlccsklcfnll8eaNWtG9byrVq2KAw88MG688cZYvHhxlVMDADBS8+fPf7VI9Na3vjV22223yOVyr57fcMMNdUwHAABMZLlse7zQufoNz5WLAAAAgEopFwEAAKSgqakp9thjj9hjjz3iW9/6Vlx55ZXxpS99KR5//PERP1d3d3cceOCBcfPNN8eiRYtqkBYAgNez5ZZbvlog+ss/Z8+eXe9YAADAJJXLtpc971QuAgAAACqkXAQAwKgUi8X4U1c+nl37Sry4bk30DPTF4PBwDBWHo6WpOaY0N0f71NbYfNYGsfUGG8VmM3LR1NRU79gwLkydOjWOPPLIOOKII+LHP/5xfPKTn4yXXnppRM+xfv36ePe73x33339/bLXVVrUJCgAwSWUymZg3b97/KBJtsMEG9Y4GAADwqo6EcpHNRQAAAECllIsAAKhIqVSKx155Ke578Zl4Zu3L8fzaVdE/PFTx46e1TIktc3Nim9kbx26bbxM7bDQ3MplMDRPD+NfU1BQf/OAH48ADD4yPf/zjcdFFF43o8fl8Pg4//PC44447YurUqbUJCQAwCd1+++0xffr0escAAAAoq5LNRaVSyfdjAAAAgETKRQAAlNUz0B+3P/dY/Oqph+NPXflRP0//0GA8uWpFPLlqRdzwxIOx2cxc7LfdzrHn/B2ifeq0KiaGxtPR0REXXnhh7LfffnH88cfHwMBAxY9dunRpnH766XHOOefUMCEAwOSiWAQAADSCpM1FA8ND0Ts44PswAAAAQCLlIgAAXtfL6zvj2kfvi98te3xEG4oq9aeufPzwvt/Gjx+8M96+1YJ435t3i41ndFT9HmgkRx11VGyxxRZx8MEHR2dnZ8WP++53vxuHHXZY7LnnnrULBwAAAADAuJLLJv9ghM5Cj3IRAAAAkKip3gEAABhfhovFuPbRe+P/u+6/4pZnHqlJsej/1T88FLc880j8f9f9V/z80XujWCzW9D4Y797xjnfEtddeG9OmjeybvaeeemqUSqUapQIAAAAAYLzpyLYlzuQL3SkkAQAAABqdchEAAK96ad3aOOOXP4nLH7wzBovDqd49WByOyx68M8745RXx0rq1qd4N482ee+4Zl1xySWQymYofc//998dFF11Uu1AAAAAAAIwrHa3tiTOdhd4UkgAAAACNrqXeAQAAqL9iqRTXPXZ/XPnwXamXiv7a02tWxj/fcGn8w85vi/fssDCaRlCugInksMMOi1tuuSXOPffcih/z+c9/Po4++uhoaZm8/6s3MDAQq1atilWrVsX69eujv78/BgcHY9q0adHW1vbqR3t7e2y00UbR3Nxc78iTSm9vbyxfvjzWr18fPT09USgUYtq0adHe3h7Tp0+PLbbYImbMmFHvmKnq7u6OW2+9NR566KF44okn4sknn4xXXnkluru7o7u7OwYGBqKtrS1mzJgRG220UcydOze+973vxbx58+odnf9HqVSKFStWxKpVq6Knpyd6enqiVCpFe3t7tLe3xwYbbBBz586NpqbJ9XN+Hn300bj11lvjD3/4QzzyyCPx0ksvRVdXV6xfvz4iItra2mLWrFmx5ZZbxtZbbx1vfetbY/HixbHLLruMqGA7XpRKpVi7dm288sorkc/no7+/P/r7+6O5ufnVP3+y2Wy0tbXFBhtsEO3tyW8AAyinr68vli9fHl1dXdHb2xs9PT3R0tLy6t+tNt9888jlcvWOCQBADbU0N8eMadlY3194wxmbiwAAAIBKTN53nAEAEBERQ8Xh+MHdv4w7lz1R7yiv+vMWozvihc5V8Y+L9o+WJm/+Z3I666yz4qabbopnn322ovkXX3wxfvazn8Xhhx9etQwXXXRRHHfccYlzF154YRx77LFVu7cS+Xw+br/99vjd734XDzzwQDzxxBPxwgsvRKlUqujxLS0tMXfu3Nhqq61iq622ivnz58duu+0WixYtijlz5ow536233hr77LPPmJ7j4osvjosvvnjMWf5ir732iltvvbVqz1fOunXr4rbbbos77rgj7rrrrnjqqadi5cqViY+bM2dObLfddrFo0aJYsmRJ7LXXXrHBBhukkLi8M844I84888zEuVtuuSX23nvvsjPd3d1x8cUXx5VXXhl33nlnDA4Olp1fv359rF+/Pv70pz/Fgw8+GGvXrn21XLTVVlvF888/X/Hn8XqqXeJ47rnnYquttqp6hjR//yZ5+OGH4/bbb4877rgjHnrooXjuueeir6+v7GOmTp0aW265Zey8886xZMmS2HPPPWPhwoXjokRTzV//5cuXx7//+7/HT3/603j66afLzg4MDERnZ2c8//zzcdttt726gW/evHlx+OGHxymnnBLz58+v5FNI3fDwcCxdujR+97vfxT333BOPP/54PPnkk4m/D/5fc+bMiS233PLVP4d23HHHWLRoUSxYsGBc/L4Axpc1a9bEnXfeGXfeeWfcfffd8fTTT8eKFSsS/+47a9aseNOb3hRve9vbYvHixbHffvvF7NmzU0oNAEAactn2hHJRT4ppAAAAgEalXAQAMIkNDA/FOXdcH/e/9Fy9o7yuO5c9EYXBgfjoknfH1GZ/dWXyaW9vj29/+9tx8MEHV/yY7373u1UtF403hUIhLrvssrjsssvi1ltvjaGhoVE/19DQUDz//PPx/PPPx29/+9vXnG2zzTaxaNGi2GeffeL973+/N2BWaGhoKK666qq49NJL44Ybboj+/v4RP8fq1atj9erVcdddd8W3v/3taGlpif322y+OPPLIOOyww6K1tbUGydOxZs2a+PKXvxwXXHBBdHV11TsOI/T000/HxRdfHJdddlk888wzI378wMBAPPXUU/HUU0/FT3/604iI2GKLLeKII46ID3/4w7HjjjtWO3Kqli1bFmeccUZceumliYW5JC+88EJ84xvfiLPPPjs+9KEPxb/+67/GJptsUqWkY/O73/0uzj///Lj22mtj9erVY3quv3y9u++++17z7zs6OmL33XePxYsXxyGHHBI777zzmO4BGte6deviyiuvjMsvvzxuueWWGB4e+abhdevWxdKlS2Pp0qVxzjnnxJQpU2L//fePD33oQ3HYYYdN6q2nAAATRS7bHi90vvH/o3YqFwEAAAAVaKp3AAAA6mOoODyui0V/cf9Lz8V377ghhoojfxMVTATve9/74q1vfWvF83/ZojHRdHd3xxe/+MWYO3dunHDCCfGrX/1qTMWiJM8880z86Ec/ihNPPDE23njjeNe73hUXXnhhrFu3rmZ3NrL+/v74/ve/H9ttt10cfvjhcfXVV4+qWPR6hoaG4sYbb4xjjjkmtt566/jWt74Vvb29VXnutJRKpTjvvPPiTW96U5x99tmKRQ3mkUceiSOPPDIWLFgQX/7yl0dVLHojy5cvj7POOit22mmnOOSQQ+Lee++t2nOnpVgsxtlnnx1vectb4uKLLx5zsej/NTQ0FBdddFG8+c1vjh/96EdVe97RuO6662LhwoWxePHiuOCCC8ZcLCqns7Mzbr755vjCF74Qu+yySyxYsCA+//nPx6OPPlqzO4HxZeXKlfGpT30q5s2bFyeeeGL86le/GlWx6PUMDg7G9ddfH0ceeWRst912ce6559b079UAANReR7a97LnNRQAAAEAllIsAACahYqkUP7j7l+O+WPQX9730bPzg7l9GsVSqdxSoizPOOGNE8z/+8Y9rE6ROrr766thuu+3iC1/4QuTz+dTvHxoaiptuuimOP/74OO+881K/f7y79dZbY6eddoqPfOQjsWzZspretWLFijjttNNiwYIF8Ytf/KKmd1VLT09PHHrooXHyySfH2rVr6x2HEeju7o6Pfexjscsuu8Rll11WtTd1v55SqRTXXHNN/O3f/m2ccMIJdflaNxqdnZ1xwAEHxMc//vHo6andG5Xy+Xx86EMfik9/+tNRSvnvgy+88EIccMABcdBBB8UDDzyQ6t1/8cQTT8SXvvSlmm0mzGQyFX/U+us8THYDAwPx5S9/Obbeeuv4+te/XvNC8rJly+KUU06J3XbbLe6+++6a3gUAQO3kEspFNhcBAAAAlVAuAgCYhK577P64c9kT9Y4xIncueyKuf/z+eseAujjwwANj3rx5Fc///Oc/r2Ga9AwNDcVHPvKReP/73x8rV66sdxz+ysDAQJxyyimxzz77xFNPPZXq3cuXL4/3vve9cdRRR43rLUZ/+tOfYsmSJXH11VfXOwojdNddd8Wb3/zmOOecc6JYLKZ69wUXXBALFiyIm2++OdV7R+qZZ56JRYsWxa9//evU7vza174Wp556amr3XX/99bHTTjvFL3/5y9TuBCave+65J3beeef4v//3/0ahUEj17ocffjgWL14cX/rSl1IvcQIAMHaVbC7y9zwAAAAgiXIRAMAk89K6tXHlw3fVO8aoXPHQXfHSOlsfmHyampriwx/+cMXzjzzySMNvFujv74/3vve98f3vf7/eUXgdL7/8crzzne+Mc889t645Lr300nj7298ezz//fF1zvJ6/bHR58MEH6x2FEbrgggti7733juXLl9ctwyuvvBLvfve745vf/GbdMpTz/PPPx1577RVPPJF+Wf2cc86Jr3/96zW/54ILLoj3ve99Nd8aAhARce6558Y73vGOunxd/YtisRif//zn45BDDkm93AQAwNgkbS4aGB6KwuBASmkAAACARqVcBAAwiQwXi/H9u2+OweJwvaOMymBxOH5w9y9T3yAA48HRRx89ovnrrruuRklqr1QqxVFHHRU33nhjvaPwOl566aVYvHhx3HnnnfWOEhERDz30UCxatCiefPLJekd5VX9/f7zvfe+LP/7xj/WOwgh99atfjRNOOCEGBur/hpvh4eE4/fTT4xOf+ES9o7zGK6+8Evvvv3+89NJLdcvw2c9+Nu66q3Zl+auuuipOOumkGB5uzL8zA42jVCrFKaecEqeccsq4+LMnIuLaa6+Ngw76/7F33+FRlen/xz+TSSEJoYQShAgJ0kKHSO+CBelrBVHABQuCWPDrrmsBde0VYbGgoIKgwKq0VRCl9xoEQguhQygJKaRnfn/4U3cVkjPJOXMmk/fruvhjyX3O/ZnxPDND9tzz9PXq3SEBAADwv4rauUj6ZfciAAAAAACAwvjbHQAAAACesyR+mw6dP2N3jBI5eP60FsdvU7/G19odBfCo+vXrKzo6WocPHzZUv27dOj300EMWp7LGm2++qfnz59sdA5dx+vRpXXfddTp06JDdUf7H6dOn1aNHD61cuVL16tWzO47+8Y9/aPXq1YZq69Spo06dOql+/fqqXbu2wsLCFBgYqPT0dF28eFH79+9XXFyc1q5d6zU3Hfuqt956S3//+9/tjvEnb7/9tgICAvTqq6/aHUX5+fm65ZZbdODAgSJrQ0ND1a5dO7Vs2VLR0dEKDw9XaGiocnNzlZKSosOHD2vz5s1au3at2zew5+XlacSIEdq1a5cCAgKK+3Au6/Dhwxo2bBjD7AAsV1BQoJEjR2r69Ol2R/mTH3/8Uf3799d3330nf3/+byQAAABvV9TORZKUkpmhWhXDPZAGAAAAAACUVvy/QgAAAGXEmbQUzYvbYHcMU8yL26C2V9dTRFglu6MAHtWrVy999NFHhmq3bdtmcRprHD58WP/4xz/cPs7pdKpNmzbq1q2b6tevr3r16unqq69WaGioQkNDFRISory8PGVnZys1NVVnzpzRqVOndODAAe3fv1/btm3Tzp07lZWVZdpj6d69u1wu12V/lpiYqOjo6CLPMWzYMM2YMcO0TCWRnZ2tfv36FWuHIIfDoQ4dOuimm27Stddeq0aNGqlKlSoKDQ1VZmamkpOTtX//fm3fvl3fffedVq5cqby8PLd6nDx5UjfffLM2b96sihUrup3RLGvXrtXbb79daE2NGjV0//33a+jQoYaHoVJTU/Xtt9/+acAkMTHxisd0795dK1euLPLcV7pOy5L58+fr8ccfL9ax1apV00033aSePXuqcePGioqKUlhYmJxOp9LS0nT8+HHt2bNHK1as0OLFi3X8+HG3e7z22muqU6eORo8eXayMZnnmmWe0Zs2aK/7cz89Pt9xyi4YPH67rr7/e0OBPRkaG5s6dq5deesnQ0NKv9u3bpylTpuiRRx4xfIwR999/v9LS0tw+rnbt2rr++uvVpEkT1atXT9dcc40qVqz423uQ0+lUVlaWMjMzlZSUpKSkJCUkJOjAgQPatWuXNm/erKSkJFMfCwDv9tBDDxV7sKh+/frq1auXWrdurZiYGEVGRio8PFzBwcEqKChQenq6jh8/rv3792v9+vVasmSJ4uPj3eqxfPlyPfLII5o8eXKxMgIAAMBzKpVj5yIAAAAAAFByDBcBAACUEQv2bFVuQb7dMUyRW5CvBXu2alS7nnZHATyqZ8+ehoeL9u/fr/T0dJUvX97iVOZ69tln3dqdpX79+nriiSd06623qnLlyoXWBgYGKjAwUGFhYapVq9affp6bm6uNGzdq2bJlWrx4sbZu3ep2fl82ZswYbdmyxa1j/P39dd999+mRRx5R/aP6QIQAAQAASURBVPr1L1tTvnx5lS9fXldffbV69uyp8ePH6/jx45o8ebLeffddtwa+Dhw4oHvuuUfffPONHA6HW1nN8vzzz19xx5Pg4GA999xzevjhhxUcHOzWeStUqKC7775bQ4cOVW5urhlR8f/Fx8drxIgRbh8XExOjZ555RrfccosCAwMvWxMeHq7w8HA1b95cd955pwoKCrRo0SK9+OKL2rx5s1v9Hn30UbVu3Vrt27d3O6sZdu/erVWrVl3x571799a77757xbV+JaGhoRo+fLjuuusuPf/88/rnP/9peODt1Vdf1ejRo6/4/Ltr+fLlWrZsmeH6kJAQjRw5Ug888IBiYmKKrP914LVq1apq3Lixunfv/j8/T0hI0LJly7R06VL95z//UWZmprsPAUApMXnyZL3//vtuHVOxYkWNHDlSI0eOVKNGjQqt/e/3n1tvvVVvvvmmtm7dqtdff11fffWV4dfZKVOmqH379ho6dKhbWQEAAOBZ/k6nwoKClZZ95X9HJmemezARAAAAAAAojfzsDgAAAADrZeRka12ie99S7O3WJcbrUk623TEAj2rZsqXh2oKCAm3fvt26MBZISkrSl19+aag2ICBAkyZNUnx8vEaNGlXkYJHRc3bu3FkTJ07Uli1blJCQoBdffFF16tQp8blLu/nz52vatGluHdOmTRvFxcVpypQpbg8bREZG6pVXXtHevXt13XXXuXXsggULNGXKFLeOMdOVhuNiYmK0Y8cOPfnkk24PFv03h8Nh2iAFpPz8fA0ePNitnWoCAgL02muvKS4uToMHD3brv4efn5/69++vjRs36oMPPlBISIjhY3NycnTnnXcqI8Oebxo+d+7cZW9GDwoK0rRp07RkyRK31/p/CwgI0AsvvKCZM2fKz8/YryxPnz6tOXPmFLvnH02aNMlwbZ8+fZSYmKh3333X0GCREXXr1tX999+v+fPn6+zZs5o9e7Z69uxp27AkAGusWrVKjz76qOF6p9Op8ePH6/Dhw3rjjTeKHCy6ktjYWM2ZM0fr1q1T48aNDR83btw4nTlzplg9AQAA4DmVgwvfvSiFnYsAAAAAAEARGC4CAAAoA1Yf3qvs/Dy7Y5gqOz9Pqw/vtTsG4FH169d3ayhh//79FqYx35w5cwztyBIcHKyffvpJY8eONXwDenFER0frH//4hxISErRgwQJ17NjRsl7eLC0tTePGjXPrmL/+9a9as2ZNiW+4j4qK0tKlS/X444+7ddw//vEPnTx5skS9zdShQwetW7dODRo0sDsK/uDdd9/Vjh07DNdXrVpVq1ev1hNPPCF//+JvCO5wOHTfffdp48aNuvrqqw0fd+TIET333HPF7mu2sLAwLV++XH/9619NO+eQIUP0xhtvGK7/5JNPTOl7/vx5LVmyxFDtuHHjtHDhQlWrVs2U3pcTGhqqO++8Uz/88IP279+vBx54QOXKlbOsHwDPuHTpkkaMGKG8PGP/Po+OjtbGjRv1+uuvmzJML0nt27fXpk2bdMsttxiqv3DhgtufBQEAAOB5lYoYLkpmuAgAAAAAABSB4SIAAAAf53K5tOxAnN0xLLHsQNxlv0Ef8FV+fn5ufcv48ePHLUxjvqVLlxqqe/fdd9WpUyeL0/zOz89P/fr109q1a3X//fd7rK+3mDBhgk6cOGG4fuzYsZo2bZppu+s4nU698cYbeuaZZwwfk5qa6vZAklViYmK0ePFiVapUye4o+INTp065NahTvXp1rVy5Uu3atTMtQ9OmTbVy5UrVrl3b8DHvvvuudu/ebVqG4goMDNSSJUsseT1+5JFH1KNHD0O1q1evVlJSUol7/vTTT4Zu9u/atavefPNNj+4mVK9ePU2dOlU//fSTx3oCsMZTTz2lhIQEQ7UdOnTQ5s2bFRsba3qO0NBQffnll7r77rsN1X/11VduDeMCAADA89i5CAAAAAAAlBTDRQAAAD5ub9IJnUpNtjuGJU6mJis+yfgN74AviI6ONlx77NgxC5OYb8OGDUXWxMTEaNSoUR5Ic3lhYWG29bbDmTNnNHXqVMP1AwcO1LvvvmtJlueff97wDbCS9OWXX2rvXnt3uAsODta8efNM22kA5nr99deVnp5uqDYoKEjffPONWwOeRkVHR2vhwoUKDS38JqBf5eXl6YUXXjA9h7umTJmizp07W3Juh8Oht956y9AAT0FBgRYvXlzinkbeg6Rfrhun01nifsVR1t6DAF+zb98+TZ482VDttddeq++++05VqlSxLI/T6dTHH3+s6667rshal8ulZ5991rIsAAAAKDl2LgIAAAAAACXFcBEAAICP23r8kN0RLLXluLFvfQZ8xVVXXWW4tjTtXHThwgWdP3++yLphw4Z5IA1+9eabbyozM9NQbZ06dfTZZ59ZupvHRx99ZHi4w+Vy6Z///KdlWYx4/vnnLRlGQcmdO3dOH3zwgeH6119/XR06dLAsT/Pmzd0a5Js7d6727dtnWZ6i9O7dWyNHjrS0R8uWLdWzZ09DtatXry5xv/379xdZ06hRI7Vt27bEvQCUTc8++6zy8/OLrIuIiNA333yjChUqWJ4pICBAs2bNMjTEtGjRIh065Nu/XwAAACjNjOxc5HK5PJQGAAAAAACURgwXAQAA+LhDF87YHcFSCT7++IA/cme46OTJkxYmMdeJE8Z2IWvVqpXFSfCrrKwsffTRR4brP/74Y8t31QgKCtL06dPl52fs1xlz5szRmTP2vE9cc801evjhh23pjaJNmzZNly5dMlTbtWtXjRkzxuJE0t13362+ffsaqi0oKNB7771ncaLL8/f316RJkzzS69577zVUt3bt2hL3MvI+xHsQgOLas2eP5s6da6j2ww8/VK1atSxO9LsaNWrolVdeKbLO5XLp448/9kAiAAAAFEdROxdl5+cpMzfHQ2kAAAAAAEBpxHARAACADysoKNCRC2ftjmGpxOSzKigosDsG4DE1atQwXJuRkWFhEnOlp6cbqouMjLQ4CX61YMECpaSkGKrt16+f4R1GSqpt27YaOnSoodr8/HzNmjXL4kSXN378eAUGBtrSG0X77LPPDNU5HA699dZblu7I9d/efPNN+fv7G6qdM2eOcnI8f1PQXXfdpXr16nmk180336yAgIAi6w4ePKjs7OwS9TLyPsR7EIDiev/99w19S3y/fv3Uv39/DyT6XyNGjFD9+vWLrPvss8/4tnsAAAAvVdTORZKUnFl6fl8MAAAAAAA8z9jdCgAAAPiTnPw8JaVdtDtGoU6npSg7P8/uGJbKzsvV9hOHFRFWye4oV1Q9rKICnXz0hjmCg4MN12ZmZlqYxB65ubl2RygzPv/8c8O1L7zwgoVJ/uz555/XrFmzlJ+fX2Ttp59+qscee8wDqX5XoUIF3XPPPR7tCeO2bt2qvXv3GqodMGCAYmNjLU70uwYNGmj48OGaNm1akbXnz5/X4sWLNWjQIA8k+92DDz7osV4VK1ZU8+bNtXXr1kLrCgoKtH//fjVr1szSPL76HsSgAGCtrKwszZw501Dt888/b3Gay3M6nRo9erQeffTRQutOnDihnTt3qmXLlp4JBgAAAMOK2rlIklIyM1SrYrgH0gAAAAAAgNKIOxwBAACKKSntov5vibEbhGCtN1cvsjtCoV67eagiK1WxOwZ8RLly5QzXZmVlWZjEXFWqGFsjCQkJatGihcVpkJWVpR9++MFQbZcuXTz+36ROnTrq37+/vv766yJr4+LidPToUdWuXdsDyX7Rr18/hYSEeKwf3LNgwQLDtWPHjrUwyZV7GhkukqSFCxd6dLiofv36ateuncf6SVKbNm2KHC6SpEOHDpVouMjI+1BCQkKxzw+g7FqwYIGSk5OLrOvWrZutQztDhgzRY489VuTA4XfffcdwEQAAgBeqVK7o30WxcxEAAAAAACiMn90BAAAAAADGuTNcVJp2LqpataqhOiPDJCi51atXGx5OGzVqlMVpLu/+++83XGt0UMosAwcO9Gg/uMfo9XDNNdfouuuuszjNnzVv3lzt27c3VOvpa7t3794e7Sf9spuTEWfOnClRHyPvQ8uWLVN6enqJ+gAoexYtMvZlGMOHD7c2SBGqV6+uNm3aFFm3atUqD6QBAACAuwKc/goLKnzXe4aLAAAAAABAYRguAgAAAIBSJDAw0HBtTk6OhUnMVblyZZUvX77Iujlz5mjnzp0eSFS2GR1YCAgIUL9+/SxOc3nXXXedKleubKh22bJlFqf5X926dfNoPxiXlpamTZs2Gar15I5Af3TLLbcYqjt27Jj27dtncZrf2XFtR0dHG6or6XDR1VdfXWRNZmamnn/++RL1AVC2uFwuff/990XW+fn5qU+fPh5IVDgjw63bt2/3QBIAAAAUR6XgwncvSsnkCzMAAAAAAMCVMVwEAAAAAKVIdna24Vp3djmym8PhUJcuXYqsy83N1a233qojR454IFXZtXnzZkN1nTp1UqVKlawNcwUBAQGGd1HZsmWLxWl+V69ePVWrVs1j/eCe7du3Ky8vz1Bt3759LU5zZQMGDDBc68nru2XLlh7r9SujO9tdvHixRH2MDk699dZb+vzzz0vUC0DZsWvXLiUlJRVZ17x5c6/4/NCiRYsia06fPq3Tp097IA0AAADcVTm48C9vSs685KEkAAAAAACgNGK4CAAAAABKkaysLMO1pWm4SJJ69uxpqO7gwYPq0KGDvv76a4sTlV27du0yVGdkIMxKRvsnJCQoIyPD4jS/aNy4sUf6oHji4uIM1QUGBqpdu3YWp7my+vXrKyIiwlCt0cdUUgEBAYZ3ETKT0QFGd4ZvL6dHjx5yOBxF1uXn52vYsGEaP3680tLSStQTgO8zOgDapk0bi5MYU7t2bUN1Bw4csDgJAAAAioOdiwAAAAAAQEkwXAQAAAAApYg7w0XBwcEWJjHfgAED5HQ6DdWeOnVKf/nLX9S2bVvNmjVLmZmZFqcrO06dOqVz584Zqu3QoYPFaczpX1BQoJ9//tniNL9o2LChR/qgeIwOzrVs2dL2AU2j17enhotq1qxpaPjGbEFBQYbqSjpcVK1aNXXt2tVQrcvl0ptvvqno6Gg988wz7KYH4Iq2b99uqM5bhpOrV69uqO748eMWJwEAAEBxFL1zkWe+fAcAAAAAAJRODBcBAAAAQCnizu4rpW24qF69errzzjvdOmbz5s0aOnSoIiIiNHToUM2bN08XL160KGHZcOjQIcO1dt8I26hRI8MDae48rpKoWbOmR/qgeIxeB3Zf25LUpEkTQ3WeurbDw8M90uePAgICDNXl5eWVuNfTTz/tVv358+f14osvKjo6Wp07d9bbb7+t/fv3lzgHAN9hdAA0KirK2iAGGf33A8NFAAAA3qlSudBCf56SmSGXy+WhNAAAAAAAoLRhuAgAAAAASpHTp08brg0LC7MwiTWeeeYZ+fv7u31cWlqaZs2apdtuu01Vq1ZVhw4d9NRTT2nJkiVKTk62IKnvOnnypKG64OBg1a5d2+I0hQsKClJ0dLShWqOPq6QiIiI80gfFY/Q68IYdqGJiYgzVnTp1yuIkv/D2gVUzbo7q1auXOnfuXKzea9eu1WOPPaaGDRsqKipK9957r6ZPn64DBw6UOBeA0svozmaDBg2Sw+Gw/U+DBg0M5b1w4UJJnhYAAABYpHJI4cNF2fl5yszL8VAaAAAAAABQ2rh/xxYAAAAkSdXDKuq1m4faHaNQW48n6Mu4dXbHsNwdLToqtlZdu2NcUfWwinZHgA9x5ybyWrVqWZjEGg0bNtTbb7+tsWPHFvsceXl52rBhgzZs2CBJv90o2b59e3Xo0EGdO3dW48aN5XA4zIrtU4wOX9SsWdMrnsPIyEgdPHiwyDpPDReVxqG+ssTodRAZGWlxEvMypKenKzU1VRUqVLA0j9EdhEq7zz//XG3atNG5c+eKfY4jR45o+vTpmj59uiSpSpUqateunTp06KCOHTuqffv2CgkJMSsyAC/lcrk89vnD0zIzM+2OAAAAgMsoauciSUq+lKGQikEeSAMAAAAAAEobhosAAACKKdDpr8hKVeyOUaSyMFwUG1lXkRW9/78FYAZ3hou84eb44hgzZox27typadOmmXI+l8ulffv2ad++ffr0008lSZUrV1b37t114403qnfv3rbvwONNzp49a6iuevXqFicxxmgOo4+rpIKCuDnDW+Xm5urixYuGar3h+nYnw9mzZy0fLioroqKiNHfuXN1www3Kzc015Zznz5/XkiVLtGTJEkmSv7+/YmNjdeONN+rGG29U+/bt5efHBvOAr0lKSjLtdcTbMFwEAADgnYrauUiSUrIyVKtiuAfSAAAAAACA0ob/1xoAAMCH1axQWUFO354nD/IPUM2wynbHADzm0KFDhmtL63CRJL3//vu67777LDt/cnKyvv76az3wwAOqU6eO2rVrpzfffFNJSUmW9SwtjN4sGh7uHTchVKlibLjUUzfBlpXdXUojd64Bb7i+jV7bEjd5m6179+769ttvVb58eUvOn5eXp40bN+r5559Xp06dFBkZqTFjxmjTpk2W9ANgj5SUFLsjWCYnJ8fuCAAAALiMSuWK3iU3+VKGB5IAAAAAAIDSiOEiAAAAH+bn56c64dXsjmGpqMrV+KZ3lBl5eXmKj483XF+ah4ucTqc++OADffrpp6pYsaLl/TZt2qTx48crMjJSt99+u7Zs2WJ5T2+VlZVlqK5cuXIWJzHGaA6jjwu+y51rwBuub3cycH2br3fv3tq2bZvatm1rea9Tp05pypQpateunZo3b67p06f77G4nQFniy4OfLpfL7ggAAAC4jACnv8oHFf77hORMhosAAAAAAMDlcRcmAACAj7smPMLuCJaq6+OPD/hv+/btc+tbwmNiYixM4xn33HOP9u/fr1GjRnlkR5jc3FzNnTtXbdq0Ud++fbV3717Le3qb7OxsQ3WBgYEWJzEmKCjIUB3DFzB6bUvecX0bvbYlrm+r1K9fX+vXr9dHH32kWrVqeaTnrl27dO+996p+/fqaNWsWN/ADpRivzQAAALBD5eDQQn+ewnARAAAAAAC4AoaLAAAAfFxs5DV2R7DUtZF17Y4AeMz27dsN1/r7+6t58+YWpvGc6tWr68MPP9SBAwf0+OOPq0qVKh7pu3jxYrVo0UITJ05UXl6eR3p6A6O7wRUUFFicxBijOdjlDu5cA95wfbuTgevbOn5+fho5cqQSEhL00UcfqXXr1h7pe+TIEQ0dOlQ9e/ZUYmKiR3oCMBc7kAEAAMAOlcoVPlzEzkUAAAAAAOBKuPMAAADAx8VUr6WrKlS2O4YlalaorEbVPfMt8oA3WL58ueHaJk2aqFy5cham8bw6derojTfe0IkTJ/T1119ryJAhCg8Pt7Rnbm6uJkyYoBtvvFHJycmW9vIWRq8bd3aBsZLRHL62HuA+d64Bb7i+3cnA9W29wMBAjRw5Ulu3btWOHTv097//XY0bN7a8708//aTY2Fj99NNPlvcCYC5emwEAAGCHyiFF7FyUxXARAAAAAAC4PIaLAAAAfJzD4dD19X1j95I/ur5+czkcDrtjAB7jznBRbGyshUnsFRQUpIEDB2rWrFlKSkrS+vXr9eqrr2rAgAGqWrWqJT1//PFH9erVSxcvXrTk/N7E6I2wmZmZFicx5tKlS4bquMEX7lwD3nB9G722Ja5vT2vRooVeeukl7d69W0eOHNGMGTM0atQoNW7c2JLPphcuXFDv3r31ww8/mH5uANYJDg42XLts2TK5XK5S82fGjBnWPXEAAAAokSJ3LrqU7qEkAAAAAACgtPG3OwAAAACs1yU6Rl/uWKvs/Dy7o5gmyOmvLtExdscAPGbPnj06duyY4fqOHTtamMZ7OJ1OtW/fXu3bt//t7+Lj47VmzRqtXbtWa9eu1YEDB0zptW3bNg0ZMkSLFi3y6cHG0NDCb0D41dmzZy1OYozRHOXLl7c4CbxdcHCw/Pz8VFBQUGStN1zf7mTg+rZP7dq1NWzYMA0bNkzSL4NA//0etGXLFlN2wsrOztYtt9yiLVu2qH79+iU+HwDrGf1MJUlZWVkWJgEAAEBZUjm48N8RpGRdksvl8unfbwIAAAAAgOJh5yIAAIAyIDQwSB2jGtkdw1QdoxopJDDI7hiAx3z22WeGax0Oh/r06WNhGu/WqFEjjRw5UtOnT9f+/ft15swZffnll3rggQdUp06dEp17yZIlev/9901K6p1q1KhhqC4pKcniJMYYzWH0ccF3+fn5qVq1aoZqveH6dicD17f3CA8PV//+/fXqq69qzZo1Sk1N1apVqzRx4kR17NhRTqez2OdOTU3VPffcI5fLZWJiAFaJiIgwXJuezrfHAwAAwByVg0MK/Xl2Xq4y83I8lAYAAAAAAJQmDBcBAACUEf0bxyrAr/g3M3qTAD+n+jeOtTsG4DH5+fn6/PPPDddfe+213Gj+X6pXr67bb79dU6dOVWJiouLi4vTcc8+pbt26xTrf008/7dM3gNasWdNQ3alTp5STY/+NCAkJCYbqjD4u+Daj10FiYqK1QQwwem1XqVJFgYGBFqdBcQUGBqpLly569tlntXbtWiUlJemTTz7RDTfcID8/9381u2HDBs2ZM8eCpADMFhISoipVqhiqPXnypMVpAAAAUFZUKmLnIklKybzkgSQAAAAAAKC0YbgIAACgjIgIq6Rbm7e3O4Ypbm3eXhFhleyOAXjMwoUL3brhsF+/fhamKf2aNWumCRMm6ODBg/r+++/Vo0cPt46/cOGCPvnkE4vS2S8yMtJQXX5+vg4ePGhxmsJdvHhRp0+fNlRbq1Yti9OgNDB6fe/bt8/iJEWLj483VMe1XbqEh4drxIgR+v7775WQkKBHH31U5cqVc+scr7/+ukXpAJjN6K6ZR48etTgJAAAAyorKwaFF1iRn+u4XJwEAAAAAgOJjuAgAAKAMublRa11TJcLuGCVSr0oN9WnU2u4YgMe4XC5NnDjRcL3D4dCdd95pYSLf4XA4dMMNN+jHH3/UV199pfLli/5Wz1/NnDnTwmT2atCggRwOh6HauLg4i9OY1z8mJsbCJCgtGjVqZKjO7mvbnQxc26VXnTp19NZbb2nPnj1q166d4eO2b9+uPXv2WJgMgFmMvkb//PPPFicBAABAWVEpOKTImuRLGR5IAgAAAAAAShuGiwAAAMoQp5+fHmh/gwL8nHZHKZYAP6fub3+9/Pz4GIuy49///rd27NhhuP6GG25Q/fr1rQvko2677TYtWbJEwcHBhuo3b96ss2fPWpzKHuXLl1d0dLSh2rVr11qcxpz+wcHBrAtI+mXnMiP27dunc+fOWZzmyvLy8rRx40ZDtc2bN7c4DawWHR2tH374Qe3bG99ldMmSJRYmAmCWNm3aGKrbvn27xUkAAABQVgQ4/VU+qPAdclOyGC4CAAAAAAB/xl2ZAAAAZUytiuG6tXkHu2MUy20tOqhWxXC7YwAek5aWpscee8ytY8aOHWtRGt/XpUsXPfPMM4brjd74fznePiTZokULQ3UrVqywNohJ/Rs3biyns3QO1paEt19ndjB6bUvSypUrLUxSuC1btigjw9iNPgwX+Yby5ctr1qxZKleu8BvAfrVhwwaLEwEwQ9u2bQ3VXbhwwa0vFAAAAAAKU7lcaKE/Z+ciAAAAAABwOdxlAgAAUAb1iWmtTlEN7Y7hlk5RDXVzo9Z2xwA86rHHHtPRo0cN19erV0+9e/e2MJHve+yxx1SxYkVDtfv37y92n4CAAEN1eXl5xe5REp06dTJU9/PPPyshIcHiNJd38eJF/fjjj4ZqO3fubHEa7+Tt15kdmjRpYniNf/vttxanubKvv/7aUJ2fn586duxocRp4St26dTV8+HBDtSV5DwLgObGxsQoLCzNUu2DBAovTAAAAoKyoFFz4cBE7FwEAAAAAgMthuAgAAKAM8nM4dH/769W6VrTdUQyJrVVX97e/Xn4Oh91RAI+ZPXu2pk2b5tYxL7/8MjuVlFBQUJBuuukmQ7UnTpwodp/AwEBDdZmZmcXuURLXX3+94dq5c+damOTKvv76a+Xm5hqqdefx+BJvv87s4HQ6dd111xmqXbRokbKysixO9Gcul8vwumrdurXCw9nV0ZcMGDDAUF1J3oMAeE5gYKDh4f+ZM2fK5XJZnAgAAABlQeUihouSMxkuAgAAAAAAf8ZdZwAAAGWUv59TD3e+2esHjGJr1dXYzr3l7+e0OwrgMStWrDC8c8GvunbtqltvvdWaQGVM06ZNDdWlp6cXu4fRb7BPTk4udo+SaNasmSIiIgzVfvjhhyooKLA40Z9NnTrVUF1AQIC6detmcRrv5O3XmV2MDpslJydrzpw5Fqf5s++++06HDx82VFtWB+d8mSfegwB41qBBgwzVHThwQEuXLrU4DQAAAMqCIncuYrgIAAAAAABcBsNFAAAAZVig01+PdOmjTlEN7Y5yWZ2iGmpcl5sV6PS3OwrgMStWrNDAgQOVk5Nj+Bg/Pz+9/fbbFqYqW6pVq2aoriTfLB8YGKgKFSoUWXfy5Mli9ygJh8NheFgtISFB33zzjbWB/mD16tXatGmTodrevXurfPnyFifyTkavZbuuM7sMGjRITqexoeV33nnH47tIvPnmm4Zrb7vtNguTwA6eeA8C4Fn9+/dXpUqVDNU+99xz1oYBAABAmcDORQAAAAAAoDgYLgIAACjj/P2cerDDjRrcsrMCvGR3oAA/p4a06qwHO9zIjkUoUz7//HPdeOONunjxolvHPfXUU2rdurVFqcqelJQUQ3VGd4W5EiM7AyUmJiovL69EfYrr7rvvNlz7zDPPKD8/38I0/+vvf/+74dphw4ZZmMS7Gd196uDBgxYn8S41atQwvOPPzp07Pbp70Q8//KDly5cbqm3WrJlatWplcSJ4mqfegwB4TkhIiP76178aqt24caM+//xzixMBAADA1xU1XJSdl6vMXONfbgUAAAAAAMoGhosAAAAgP4dD/RrH6qXeQ3RNFWM3IlulXpUaeqn3EPWNiZWfw2FrFsBTUlJSNHz4cN1zzz1u7VgkSd27d9eECROsCVZGJSYmGqozOrhxJddcc02RNdnZ2dq9e3eJ+hRXu3btFBMTY6h2z549evfddy1O9ItPP/1Ua9euNVRbtWpV9e3b1+JE3svINSZJW7dutTiJ9xkxYoTh2ieffFKpqakWpvlFVlaWxo4da7jenceA0sNT70H/zeFwGP5jNB+A/zVmzBj5+xvbkXfs2LE6cuSIxYkAAADgyyoVMVwksXsRAAAAAAD4M4aLAAAA8JtaFcM14frbNbhlJ4/vYhTg59Tglp014frbVKtiuEd7A3YpKCjQrFmz1KRJE3366aduH1+jRg3Nnj1bTic7fJklPz9fCxcuNFRrdPDmSho0aGCo7vvvvy9Rn5L4v//7P8O1Tz/9tOLj4y1MIx09elSPPPKI4fpHH31UgYGB1gXyckavsaVLl1qcxPvccssthoevjh07pnHjxlmcSPrHP/5heA2Fh4dr5MiRFieCHb7++mtDdSV9DwLgWVFRUbrvvvsM1V68eFEDBgxwezdTAAAA4FeVg8sXWZOcme6BJAAAAAAAoDRhuAgAAAD/w+nnp36Nr9VrfYaqxzVNFeQ09u3KxRXk9FePa5rqtT5D1a9xrPz8+IgK35eTk/PbUNHQoUN18uRJt89RtWpVLV26VDVq1LAgoee9+OKLWrRokd0xNH/+fJ04caLIOofDobZt25aoV5s2bQzVTZs2Tfn5+SXqVVxDhw5VVFSUodrMzEwNGDBAKSkplmTJyMhw6/yVKlXSmDFjLMlSWjRt2lTBwcFF1u3Zs0erVq3yQCLv4XQ69be//c1w/YwZMzRlyhTL8syaNUtvvfWW4fpx48YpLCzMsjxlzcqVK/XPf/7T9hv5U1NTDQ8bt2/f3uI0AMw2ceJEVaxY0VDtzp071bdvX8s+V7krJydHH374oZYvX253FAAAABhQKTikyJoUdi4CAAAAAAB/wJ2bAAAAuKyIsEoa1a6npgwaqWGx3VSzQmVTz1+zQmUNi+2mKYNGalS7nooIq2Tq+QFvU1BQoI0bN2rMmDG66qqrNHTo0GLv8hIeHq4ffvhBzZo1MzmlfbZs2aJ+/fqpVatWmjVrlnJycjye4dixYxo9erSh2tjYWEVERJSoX+fOnQ3VHThwQE899VSJehWXv7+/XnzxRcP1+/fvV+/evU2/EfbSpUsaMGCAduzYYfiYv//976pQoYKpOUqbgIAAw0NwDzzwgM6fP29xIu8ybNgwt3Z/GTdunGbNmmV6jgULFujee+81XF+jRg23dvBC0ZKTk/X000+rTp06+sc//qHjx4/bkmPUqFE6ffq0odqbb77Z4jQAzFa1alW9/PLLhuvXrFmjzp0769ChQxamKlxaWpree+891a9fX/fff79OnTplWxYAAAAYF+D0V/nAcoXWJDNcBAAAAAAA/oDhIgAAABQqJDBINzZsqdf73K1net6i3g1bqWG1mm7vaBTkH6CG1Wqqd8NWeqbnLXq9z926sWFLhQQGWZQcsFd6ero2btyoqVOn6tZbb1W1atXUvn17TZkyRRcuXCj2ea+++motX75cLVq0MDGt99ixY4eGDh2q2rVr65lnnvHYzZTx8fHq1auX4eGK4cOHl7hnVFSUmjRpYqj2tdde08CBA7V9+/YS93XXXXfdpeuuu85w/YYNG9StWzcdPHjQlP7Hjx9Xz5493fqm/GbNmumxxx4zpX9p17dvX0N1e/fuVWxsrL744gtbhvvsEBAQoKlTpxquz8/P1z333KPXXntNLpfLlAy/vke485y/8847ZX5wzioXL17USy+9pOjoaN12221atmyZCgoKLO+bk5OjUaNG6auvvjJUf+211xp+/wDgXR588EH169fPcP3u3bvVokULTZ061SOvR7+Ki4vTuHHjFBkZqYcfflhHjx71WG8AAACYo3JwaKE/Z+ciAAAAAADwR+7dEQoAAIAyy+FwKCYiUjERkZJ+2YXlZFqyDl9I0vGU80rPyVZufp7yCvLl7+f8/9+MF6TISlUUHV5dNcMqy8+P2XZ4n507d2rRokVuHeNyuZSVlaXs7GxlZWUpLS1Np0+f1unTp3Xq1CkdOHBAR44cMe3m81/17NlTs2fPVrVq1Uw9rzc6c+aMXnzxRb344ovq0KGDBg8erP79+6tOnTqm9snKytKHH36op59+WmlpaYaOCQ8P1z333GNK/zvuuEPPPvusodpvv/1W3377rerWratOnTqpYcOGqlmzpipWrKiAgAA5HI4iz1GlShV16NDB7ZxTp05V69atlZFh7KaDuLg4xcbG6uWXX9b9998vp9Ppdk+Xy6XPP/9cjz/+uM6dO2f4OH9/f3344Yfy9+dXHpJ022236cknnzR0Q/KRI0d011136YEHHlCXLl3UvHlz1a5dW1WqVFG5cuUMv4/37NlTwcHBJY3uEd26ddPIkSM1bdo0Q/UFBQV68skntXz5cr333ntq0KBBsfoePXpUjz76qP7973+7dVzfvn11xx13FKsnjMvLy9O8efM0b9481axZU4MHD9agQYPUoUMH0z/Prlq1SuPHj9fmzZsNH/Poo4+amgFXtmLFCvXo0cNj/Y4cOWLo/bwoP/30k7p3717yQLDEJ598otatW+vYsWOG6jMyMjR69GhNmTJFEyZM0MCBAy35nLN3714tWLBAX3zxheLi4kw/PwAAADyrUnCojl288hcpsXMRAAAAAAD4I+60AQAAQLH4+fkpsmIVRVasYncUoETeeecdvfPOO3bHKJS/v7+efPJJTZw4sVhDGqXd+vXrtX79ej388MNq1qyZevbsqc6dO6tjx4666qqr3D6fy+XS1q1btWjRIn300Uc6efKkW8e/8MILCgsLc7vv5dx333166aWXlJWVZfiYhIQEJSQkFKtft27dtGLFCrePa9CggT766CMNGTLE8DGpqal66KGHNGnSJI0dO1ZDhgxR5cqVizwuPT1d8+bN07vvvqsdO3a4nfW1115T+/bt3T7OV9WpU0f9+/fXN998Y/iYtLQ0LVmyREuWLClWz8OHDysqKqpYx9ph0qRJ2rJli1vX29KlS9W0aVMNHjxYDz74oNq1a2doICAuLk5Tp07Vp59+qszMTLdyRkdH69NPP3XrGJTcyZMn9eabb+rNN99UlSpVdMMNN6hLly7q1KmTmjRpUqz35dOnT2vx4sWaNWuWfvrpJ7eObdu2rQYPHux2TwDeo2rVqvruu+/UuXNnJScnGz5u9+7duu2221SzZk3ddddd6tu3rzp27FisQSOXy6VDhw5p3bp1WrdunZYtW1bsz5cAAADwTuxcBAAAAAAA3MVwEQAAAAB4se7du2vy5Mlq0qSJ3VG8wq5du7Rr167fBsKqVKmiJk2aqH79+qpZs6Zq1qypsLAwBQcHy9/fXxkZGcrIyFBqaqoOHTqk+Ph4/fzzz0pKSipW/+7du+v+++837fFERERozJgxeuONN0w7p1UGDx6szZs36+2333bruH379mnMmDEaN26c2rZtq9jYWDVs2FBVqlRRSEiIsrKylJKSov3792v79u1au3atcnJyip2RHT3+bMKECVq4cKHy8/PtjuKVgoODNX/+fLVt21bnz1/5G33/KDc3V5999pk+++wzRUREqFu3bmrSpInq1Kmj8uXLy8/PT+np6Tpx4oT27NmjlStX6ujRo8XKGBoaqvnz5ys8PLxYx8Mc58+f1+zZszV79mxJUlBQkBo2bKiYmBhFRkaqZs2aqlq1qsqVK6dy5copJydH6enpysjI0IkTJxQfH//bn+LsbhgSEqKPP/7YlJ1tANircePGWrhwoW688UbDO0P+6uTJk3r99df1+uuvKzg4WC1atFDTpk119dVXq1atWgoNDVVwcPBvu61mZWXp7NmzOnPmjE6ePKl9+/YpPj5ely5dsujRAQAAwBtUKmK4iJ2LAAAAAADAHzFcBAAAAABeqF69enr++efZnaAI58+f16pVq7Rq1SrLe9WuXVtz5swxffeoCRMm6Ouvv9ahQ4dMPa8V3nzzTV24cKFYu6fk5+f/tguVFfr27cuuLlfQokULPfHEE3rllVfsjuK16tatq6VLl6pnz55KSUlx+/gzZ87oq6++Mj+Yfhl+WrBggVq1amXJ+VF82dnZiouLU1xcnOW9HA6HPvroIzVt2tTyXgA8o1OnTvrxxx/Vp08fnTt3rljnyMzM1IYNG7RhwwaT0wEAAKC0Y+ciAAAAAADgLj+7AwAAAAAAftehQwfNnz9f+/btY7DIi9SqVUs//vijIiIiTD93aGioFi1apCpVqph+brM5HA598sknGjp0qN1R/kefPn00b948BQQE2B3Fa7344ovq37+/3TG8WuvWrfXdd9+pcuXKdkf5TUhIiL755htdd911dkeBzaZMmaIhQ4bYHQOAydq2bau1a9eqXr16dkcBAACAjylq56KsvFxl5hZv93AAAAAAAOCbGC4CAAAAAJvVrFlTY8eO1caNG7Vu3Tr95S9/kZ8f/1zzFq1bt9b69et1zTXXWNajUaNG2rBhgxo3bmxZD7P4+fnp888/1wsvvCCHw2F3HD3++OP69ttvFRQUZHcUr+Z0OjV//nw9+OCDdkfxau3atdOmTZsUExNjdxTVqVNH69at0w033GB3FNgoJCREX331FWsX8GENGjTQ9u3bNXz4cLujAAAAwIcUtXORJCWzexEAAAAAAPgv3K0GAAAAAB7mcDjUrFkzPfzww1q5cqWOHTumSZMmqW3btnZHw3/x8/PT2LFjtWbNGl199dWW96tXr562b9+uf/7zn161c8qVPP3001q8eLFq1aplS/+qVatqzpw5euONN+R0Om3JUNr4+/vrX//6l5YvX67WrVvbHcdr1atXTxs2bNCwYcNsy/CXv/xFW7ZsUYsWLWzLAPvFxsZq48aNuu222+yOAsBi5cuX1/Tp0/Xvf/9bUVFRdse5rE6dOvG+BAAAUIpUDi5fZE0Kw0UAAAAAAOC/MFwEAAAAABarWbOmrrvuOj3xxBNasGCBzp8/r7i4OL377rvq2rUruxRJeuKJJ/TAAw94ZIjHiI4dO2r16tWaNGmSgoODPdY3MDBQTz31lI4dO6aPPvpIN9xwgwIDAz3W3129e/fWnj179NBDD8nf398jPf38/DRs2DDFx8frjjvu8EhPX3Pddddp69atWrFihUaNGqWIiAi7I3mdChUqaMaMGVq2bJkaNGjgsb61a9fW119/rfnz56tq1aoe61vWdezYUf/85z/VoUMHr3hPrlatmt5++21t2LBBTZs2tTsOAA8aNGiQ4uPj9corryg8PNzuOIqMjNTjjz+u3bt3a82aNWrWrJndkQAAAGBQxeCQImuSM9M9kAQAAAAAAJQWnrnzBwAAAAB8REBAgIKCgv7nT1hYmKpXr67q1asrIiJC1atXV2RkpBo2bKhGjRopLCzM7ther1OnTurUqZMkKS4uTosWLdLixYu1adMm5eXleSSDn5+fbrrpJj388MO68cYbPdLzSkJDQzVy5EiNHDlSmZmZ2rx5s7Zu3ar9+/fr0KFDOnPmjM6ePav09HRlZ2crNzdXLpfLlqwVKlTQ5MmTNX78eL366quaMWOGsrKyTO/j7++vwYMH66mnnlKjRo1MP39Z1K1bN3Xr1k0ffPCB9u3bpw0bNmjv3r06cOCATpw4obNnzyo5OVlZWVnKyclRQUGB3ZE9rlevXtqzZ4++/PJLvfzyy/r5558t6VOvXj09+eSTGjZsmAICAizpgSurXr26nnrqKT311FM6d+6clixZosWLF2vZsmVKTk72WI769evrgQce0H333afy5Yv+hmkAvikoKEhPPvmkHn74Yc2cOVOTJ09WXFycx/o3bNhQN998swYNGqTOnTvL4XB4rDcAAADME+j0V/nAckrPufLv6VIyL3kwEQAAAAAA8HYOl113HwEAgBI7e/asqlev/j9/l5SUpGrVqtmUqOSys7OVkJBQaE3dunUVFBTkoUQAADtdunRJmzdv1vr167VhwwZt2LBBZ86cMe38wcHB6tixo/r3769BgwZ5zc5JpVlKSormz5+v2bNna/Xq1crJySn2ufz9/dW+fXvdeeeduv3220v1Zxz4hk2bNmnWrFn6+uuvdezYsRKdKyIiQgMHDtSQIUPUpUsXbt72Qi6XS/Hx8Vq/fv1vf/bu3WvaoJ3D4VCjRo1+u4m/Y8eOXAeAB6xYsUIrVqwwVDt8+HBFRUVZmseIPXv26JtvvtGCBQu0detW04bv/fz8VK9ePXXs2FFdu3ZV9+7dFR0dbcq5vQm/awIAAGXV/y2eqeMXz1/x5zc3aqWhrbt6MBEAAAAAAN7PF+/LNYrhIgAASjFf/BDDDR8AgKKcPHlSBw4c0KFDh3Tw4EEdOnRIx44dU2pqqtLT05Wenq60tDTl5eUpMDBQQUFBqlSpkqpXr66rrrpK9erVU8OGDdWyZUu1atWKXUIslJWVpU2bNmn9+vXav3+/EhISdPToUaWlpSkjI0NZWVkKCgpSaGioypcvr8jISNWtW1f169dX+/bt1aFDB4WGhtr9MIDLSkxM1Jo1a7Rz504dOnRIhw8fVlJSkjIyMnTp0iW5XC6FhIQoNDRUVapUUXR0tOrWrasWLVqoU6dOatCggd0PAcWQnp7+2y5yv74HJSQkKDk5+bf3n/T0dF26dOm33Q5DQ0NVrVo1RUREqE6dOmrYsKGaNGmi9u3bKzw83O6HBKCUycrK0vbt27V582YdOHBAR48e1ZEjR3T+/HldunRJly5dUnZ2tvz9/RUUFKSQkBBVqVJF1apVU82aNX97P2rcuLFatGhRJj5r8bsmAABQVr3849fadfroFX/esU4DjenU24OJAAAAAADwfr54X65RDBcBAFCK+eKHGG74AAAAAAAAgFn4XRMAACirpq5fqtWH917x5zHVa+mZXrd6MBEAAAAAAN7PF+/LNcrP7gAAAAAAAAAAAAAAAAAAzFM5uPBdKlMyMzyUBAAAAAAAlAYMFwEAAAAAAAAAAAAAAAA+pFIRw0XJDBcBAAAAAID/wnARAAAAAAAAAAAAAAAA4EOK2rkoKy9Xmbk5HkoDAAAAAAC8HcNFAAAAAAAAAAAAAAAAgA8parhIklLYvQgAAAAAAPx/DBcBAAAAAAAAAAAAAAAAPqSSgeGiZIaLAAAAAADA/8dwEQAAAAAAAAAAAAAAAOBDjAwXsXMRAAAAAAD4FcNFAAAAAAAAAAAAAAAAgA8JdPorNDCo0Bp2LgIAAAAAAL9iuAgAAAAAAAAAAAAAAADwMZWDyxf6c3YuAgAAAAAAv2K4CAAAAAAAAAAAAAAAAPAxlYJDCv15cma6h5IAAAAAAABvx3ARAAAAAAAAAAAAAAAA4GOK3rnokoeSAAAAAAAAb8dwEQAAAAAAAAAAAAAAAOBj2LkIAAAAAAAYxXARAAAAAAAAAAAAAAAA4GPYuQgAAAAAABjFcBEAAAAAAAAAAAAAAADgYyoFhxb688y8HGXm5ngoDQAAAAAA8GYMFwEAAAAAAAAAAAAAAAA+pnIRw0WSlJKZ4YEkAAAAAADA2zFcBAAAAAAAAAAAAAAAAPgYhosAAAAAAIBRDBcBAAAAAAAAAAAAAAAAPqaSgeGiZIaLAAAAAACAGC4CAAAAAAAAAAAAAAAAfE6g01+hgUGF1jBcBAAAAAAAJIaLAAAAAAAAAAAAAAAAAJ9U1O5FKQwXAQAAAAAAMVwEAAAAAAAAAAAAAAAA+KTKRQwXsXMRAAAAAACQGC4CAAAAAAAAAAAAAAAAfFKlcuxcBAAAAAAAisZwEQAAAAAAAAAAAAAAAOCDKocUsXNRFsNFAAAAAACA4SIAAAAAAAAAAAAAAADAJxW5c9ElhosAAAAAAADDRQAAAAAAAAAAAAAAAIBPqhxSvtCfZ+blKCs3x0NpAAAAAACAt2K4CAAAAAAAAAAAAAAAAPBBlYML37lIkpIz2b0IAAAAAICyjuEiAAAAAAAAAAAAAAAAwAdVMjBclMJwEQAAAAAAZR7DRQAAAAAAAAAAAAAAAIAPqlyOnYsAAAAAAEDRGC4CAAAAAAAAAAAAAAAAfFCgv79CAoIKrWG4CAAAAAAAMFwEAAAAAAAAAAAAAAAA+KjKIYXvXpSSxXARAAAAAABlHcNFAAAAAAAAAAAAAAAAgI+qVK7w4aLkSwwXAQAAAABQ1jFcBAAAAAAAAAAAAAAAAPioysHsXAQAAAAAAArHcBEAAAAAAAAAAAAAAADgo4oaLkrOZLgIAAAAAICyjuEiAAAAAAAAAAAAAAAAwEdVKmrnoksMFwEAAAAAUNYxXAQAAAAAAAAAAAAAAAD4qMoh5Qv9eWZejrJyczyUBgAAAAAAeCOGiwAAAAAAAAAAAAAAAAAfValcSJE1yZnsXgQAAAAAQFnGcBEAAAAAAAAAAAAAAADgo4rauUiSUrIueSAJAAAAAADwVgwXAQAAAAAAAAAAAAAAAD6qcrnQImuSL6V7IAkAAAAAAPBWDBcBAAAAAAAAAAAAAAAAPirQ318hAUGF1qRkZXgoDQAAAAAA8Eb+dgcAAAAAAAAAAAAAAAAAYJ3KwaG6lJt9xZ//dHC3Tly8oNDAcoqsWEV1q1RXzbDK8vPje4uByykoKNDJ1GQlXEjS8YvnlZGTpdz8fOUV5Mvfz6kAp5P1BBjAWgLMwVoCzMN6QlnGcBEAAAAAAAAAAAAAAADgY1wul/YmndDW44eUnJleaO2J1As6kXrhf/4uyD9AdSpX1TXhEYqNvEYx1WvJ4XBYGRnwWv+9ng5dOKMjF84qOz/P8PGsJ+AXrCXAHKwlwDysJ+B3DpfL5bI7BAAAKJ6zZ8+qevXq//N3SUlJqlatmk2JSi47O1sJCQmF1tStW1dBQUEeSgQAAAAAAIDSit81AQCAsigjJ1urD+/VDwfidDI12bTz1qxQWb3qN1eX6BiFBvL5CWUD6wkwB2sJMAdrCTAP6wlX4ov35RrFcBEAAKWYL36I4YYPAAAAAAAAmIXfNQEAgLLkTFqKFuzZqnWJ8W5907a7gpz+6hjVSP0bxyoirJJlfQA7sZ4Ac7CWAHOwlgDzsJ5QFF+8L9cohosAACjFfPFDDDd8AAAAAAAAwCz8rgkAAJQF+QUFWhy/TfPjNii3IN9jfQP8nLq1eXv1adRafn5+HusLWIn1BJiDtQSYg7UEmIf1BKN88b5coxguAgCgFPPFDzHc8AEAAAAAAACz8LsmAADg605cvKD3NyzVofNnbMtQr0oN3d/+etWqGG5bBsAMrCfAHKwlwBysJcA8rCe4wxfvyzWK4SIAAEoxX/wQww0fAAAAAAAAMAu/awIAAL6qwOXS4r3bNC9uvUe/dftKfvk27g7qE9Nafg6H3XEAt7CeAHOwlgBzsJYA87CeUBy+eF+uUf52BwAAAAAAAAAAAAAAAABgTF5Bvj7YsExrE/fZHeU3uQX5mr1jjY6mnNX97a+Xv5/T7kiAIawnwBysJcAcrCXAPKwnwH0MFwEAAAAAAAAAAAAAAAClQE5+niatWaJtJw7bHeWy1ibuU2Zujh7ufLMCndyWBO/GegLMwVoCzMFaAszDegKKx8/uAAAAAAAAAAAAAAAAAAAKl1eQ79U3yP1q24nDem/Nf5RXkG93FOCKWE+AOVhLgDlYS4B5WE9A8TFcBAAAAAAAAAAAAAAAAHixApdLH2xY5vU3yP1q64kEfbBhmQpcLrujAH/CegLMwVoCzMFaAszDegJKhuEiAAAAAAAAAAAAAAAAwIst3rtNaxP32R3DLWsT92lJ/Da7YwB/wnoCzMFaAszBWgLMw3oCSobhIgAAAAAAAAAAAAAAAMBLnbh4QfPi1tsdo1jm7lyvExcv2B0D+A3rCTAHawkwB2sJMA/rCSg5hosAAAAAAAAAAAAAAAAAL5RfUKD3NyxVbkG+3VGKJbcgXx9sWKaCggK7owCsJ8AkrCXAHKwlwDysJ8AcDBcBAAAAAAAAAAAAAAAAXmhJ/DYdOn/G7hglcvD8aS2O32Z3DID1BJiEtQSYg7UEmIf1BJiD4SIAAAAAAAAAAAAAAADAy5xJS9G8uA12xzDFvLgNOpOWYncMlGGsJ8AcrCXAHKwlwDysJ8A8DBcBAAAAAAAAAAAAAAAAXmbBnq3KLci3O4YpcgvytWDPVrtjoAxjPQHmYC0B5mAtAeZhPQHmYbgIAAAAAAAAAAAAAAAA8CIZOdlalxhvdwxTrUuM16WcbLtjoAxiPQHmYC0B5mAtAeZhPQHmYrgIAAAAAAAAAAAAAAAA8CKrD+9Vdn6e3TFMlZ2fp9WH99odA2UQ6wkwB2sJMAdrCTAP6wkwF8NFAAAAAAAAAAAAAAAAgJdwuVxadiDO7hiWWHYgTi6Xy+4YKENYT4A5WEuAOVhLgHlYT4D5GC4CAACAaVwuF/+wAQAAAAAAAAAAKIG9SSd0KjXZ7hiWOJmarPikE3bHQBnCegLMwVoCzMFaAszDegLMx3ARAAAATLP+yH5tOHrA7hgAAAAAAAAAAACl1tbjh+yOYKktxxPsjoAyhPUEmIO1BJiDtQSYh/UEmM/f7gAAAADwDZm5OZq5fbUcklrWjFJwQKDdkQAAAAAAAAAAAEqdQxfO2B3BUgk+/vjgXVhPgDlYS4A5WEuAeVhPgPnYuQgAAACmmL9rg1IyM5ScmaF/79podxwAAAAAAAAAAIBSp6CgQEcunLU7hqUSk8+qoKDA7hgoA1hPgDlYS4A5WEuAeVhPgDXYuQgAAAAldizlnL7bt+O3//2ffdvVtW6Mrq5U1b5QAAAAAAAAAAAApczJ1GRl5+fZHcNS2Xm5+n7/TlUJDbM7Cnzc+Yw01hNgAtYSYA7WEmCesrKeTqYlK7JiFbujoAxhuAgAAAAl4nK5NH3LChW4XL/9XcH//7tnet4ih8NhYzoAAAAAAAAAAIDSI+FCkt0RPOLzbavsjgD4DNYTYA7WEmAO1hJgnsMXkhgugkf52R0AAAAApduaxHjFJ53409/HJ53Q2sR9NiQCAAAAAAAAAAAonY5fPG93BAAAAACAFziewr8P4VkMFwEAAKDYMnKyNWv76iv+fNb21bqUk+3BRAAAAAAAAAAAAKVXRk6W3REAAAAAAF4gnfvu4GEMFwEAAKDY5sWtV2pW5hV/fjHrkubGbfBgIgAAAAAAAAAAgNIrNz/f7ggAAAAAAC+Qm59ndwSUMQwXAQAAoFgSk89q6YG4IuuWHtipI8lnPZAIAAAAAAAAAACgdMsrYLgIAAAAAMC/D+F5DBcBAADAbQUul6Zv/kkul6vIWtf/ry0wUAsAAAAAAAAAAFCW+fs57Y4AAAAAAPAC/PsQnsZwEQAAANy2KmGPDpw7Zbh+/7lTWn14r4WJAAAAAAAAAAAASr8AJzePAQAAAACkAKe/3RFQxjBcBAAAALekZ2dp9o61bh83e/sapedkWZAIAAAAAAAAAADAN4QGlrM7AgAAAADAC5QPDLI7AsoYxtkAAADglq/i1iktO9Pt41KzMzV353qNaNPDglQAAAAAAAAAAAClX2TFKnZH8Ij7212vztGN7I4BH7fm8F59sPEHu2NYjvUEq7GWAHOwlgDzlJX1FFmpbPz7EN6D4SIAAAAYlnD+jJYf2FXs4384EKdu1zRW3fAIE1MBAAAAAAAAAAD4hrrh1e2O4BHXVI2Q08/P7hjwcddUqWF3BI9gPcFqrCXAHKwlwDxlZT1Fl5F/H8J78OoNAAAAQwoKCvTJ5p/kKsE5XJKmb/5JBa6SnAUAAAAAAAAAAMA31axQWUFO3/6u4CD/ANUMq2x3DJQBrCfAHKwlwBysJcA8rCfAGgwXAQAAwJCfEnYr4cKZEp/n0PkzWnFotwmJAAAAAAAAAAAAfIufn5/qhFezO4aloipXkx/fZg8PYD0B5mAtAeZgLQHmYT0B1uCKAwAAQJFSszL15Y51pp1vzo61Ss3KNO18AAAAAAAAAAAAvuKa8Ai7I1iqro8/PngX1hNgDtYSYA7WEmAe1hNgPoaLAAAAUKQvd65Vek6WaedLz8nSlzvNG1YCAACA91ixYoUcDkeRfyZMmGB3VOB/TJgwwdC1u2LFCrujAgAAAPBxsZHX2B3BUtdG1rU7AsoQ1hNgDtYSYA7WEmAe1hNgPoaLAAAAUKgD507pp0O7TT/vikM/6+C506afFwAAAAAAAAAAoDSLqV5LV1WobHcMS9SsUFmNqteyOwbKENYTYA7WEmAO1hJgHtYTYD6GiwAAAHBFBQUFmr75J0vO7ZL0yeafVFBQYMn5AQAAAAAAAAAASiOHw6Hr6ze3O4Ylrq/fXA6Hw+4YKENYT4A5WEuAOVhLgHlYT4D5GC4CAADAFf1wcJcSk89adv7E5CQtP7jLsvMDAAAAAAAAAACURl2iYxTk9Lc7hqmCnP7qEh1jdwyUQawnwBysJcAcrCXAPKwnwFwMFwEAAOCyLmZm6Kud6yzv8+XO9bqYdcnyPig7hg8fLofDYehPYmKi3XGvKCoqytBjiIqKsjsqAAAAAAAAAMBkoYFB6hjVyO4YpuoY1UghgUF2x0AZxHoCzMFaAszBWgLMw3oCzMVwEQAAAC5r9o61upSbY3mfS7nZmr1jjeV9AAAAAAAAAAAASpP+jWMV4Oe0O4YpAvyc6t841u4YKMNYT4A5WEuAOVhLgHlYT4B5fGsfMAAAAJgiPumEVh3e67F+qxL2qsc1TdWwWk2P9QQAoKyZMGFCkTVRUVEaPny45VkAAAAAAABQtIiwSrq1eXvN3rHW7igldmvz9ooIq2R3DJRhrCfAHKwlwBysJcA8rCfAPAwXAQAA4H/kFxRo+pafPN53+uaf9M+bBsvpx+aaAABYYeLEiUXWdOvWjeEiAAAAAAAAL3Jzo9badOygDp0/Y3eUYqtXpYb6NGptdwyA9QSYhLUEmIO1BJiH9QSYgzs3AQAA8D+W7t+pYynnPd73aMo5Ld2/0+N9AQAAAAAAAAAAvJXTz08PtL9BAX5Ou6MUS4CfU/e3v15+fLkcvADrCTAHawkwB2sJMA/rCTAHVyAAAAB+k5yZoXlxG2zrP2/XBiVnZtjWHwAAAAAAAAAAwNvUqhiuW5t3sDtGsdzWooNqVQy3OwbwG9YTYA7WEmAO1hJgHtYTUHIMFwEAAOA3s7atVmZejm39M3Nz9MX21bb1BwAAAAAAAAAA8EZ9YlqrU1RDu2O4pVNUQ93cqLXdMYA/YT0B5mAtAeZgLQHmYT0BJcNwEQAAACRJe84c17oj++yOobWJ+7T3zHG7YwAAAAAAAAAAAHgNP4dD97e/Xq1rRdsdxZDYWnV1f/vr5edw2B0F+BPWE2AO1hJgDtYSYB7WE1AyDBcBAABAeQX5mr7lJ7tj/Gb6lhXKK8i3OwYAAAAAAAAAAIDX8Pdz6uHON3v9jXKxtepqbOfe8vdz2h0FuCLWE2AO1hJgDtYSYB7WE1B8DBcBAABA/4nfoRMXL9gd4zfHL57Xd/t22B0DAAAAAAAAAADAqwQ6/fVIlz7qFNXQ7iiX1SmqocZ1uVmBTn+7owBFYj0B5mAtAeZgLQHmYT0BxcMVCQAAUMadv5Smf/+80e4YfzJ/10Z1qNNAVULC7I4CAAAAAAAAAADgNfz9nHqww42qXama5sWtV25Bvt2RFODn1G0tOujmRq3l53DYHQcwjPUEmIO1BJiDtQSYh/UEuI/hIgAAgDJu5rbVys7LtTvGn2Tn5WrWttV6uPPNdkcBAAAAAAAAAADwKn4Oh/o1jlXrWtF6f8NSHTp/xrYs9arU0P3tr1etiuG2ZQBKgvUEmIO1BJiDtQSYh/UEuIfhIgAAgDJs16kj2nj0gN0xrmjD0QPqcfqomtWobXcUAAAAAAAAAAAAr1OrYrgmXH+7lsRv07y4DR79Nu4AP6dubd5BfRq1kp+fn8f6AlZhPQHmYC0B5mAtAeZhPQHGMFwEAABQRuXm52nGlhV2xyjSjC0r9ErvIQpw8tEVAAAAAAAAAADgj5x+furX+Fq1vbqeFuzZqnWJ8crOz7OsX5DTXx2jGql/41hFhFWyrA9gB9YTYA7WEmAO1hJgHtYTUDTu0AQAACijlsRv16m0FLtjFOlUarL+E79d/Zu0sTsKAAAAAAAAAACA14oIq6RR7XrqrladtfrwXi07EKeTqcmmnb9mhcq6vn5zdYmOUUhgkGnnBbwR6wkwB2sJMAdrCTAP6wm4MoaLAAAAyqCzGan6+udNdscw7OufN6ljVENVDa1gdxQAAAAAAAAAAACvFhIYpBsbttQNDVooPumEthxPUMKFM0q8kOTWN3MH+QcoqnI11Q2P0LWRddWoei05HA4LkwPeh/UEmIO1BJiDtQSYh/UE/BnDRQAAAGXQ51tXKcfCbV3Nlp2fp8+3rtKjXfvaHQUAAAAAAAAAAKBUcDgciomIVExEpCSpoKBAJ9OSdfhCko6nnFd6TrZy8/OUV5Avfz+nApz+Kh8YpMhKVRQdXl01wyrLz8/P5kcBeAfWE2AO1hJgDtYSYB7WE/A7hosAAADKmO0nDmvL8UN2x3Db5uOHtONkolrWjLI7CgAAAAAAAAAAQKnj5+enyIpVFFmxit1RgFKP9QSYg7UEmIO1BJiH9YSyjOEiAACAMiQnP0+fbV1pd4xi+3TLCjXuM1SBTj7GAqXJ4cOHtXz5cu3atUu7du3S0aNHlZqaqtTUVBUUFCgkJERhYWGqXbu2oqOj1bp1a3Xq1EmxsbHy9/e99X7x4kX98MMP2rlzp3bv3q39+/crJSVFqampysjIUHBwsMLCwlS9enXFxMSoSZMm6tGjh9q3by+n02l3fNNlZWXp2LFjSk1N1aVLl5SRkSF/f3+FhoaqfPnyioyMVOXKle2O6TGnTp3STz/99Nu1ceDAASUnJys9PV3p6elyuVwKDQ1VhQoVVKNGDTVs2FCfffaZ3bFRSh0+fFgrVqxQfHy89u3bp0OHDiklJeW3683pdCokJESVKlVSjRo11KlTJ73++uu25T179qyWLVumXbt2affu3Tp48KAuXryotLQ0Xbp0SaGhoQoLC9NVV1312+tnz549FRsbK4fDYVtuq2RkZOj48eNKS0tTRkaGMjMzFRgY+D/vq2FhYXbHNEVBQYG2bNmiH3/8Ubt379bevXt16tSp3/7b//qYK1asqHr16qlJkyZq3ry5evXqpWrVqtkdHwAAAAAAAAAAAAC8nu/dpQUAAIArWrRnq86kX7Q7RrGdSb+oRXu26i/N2tkdBfBJUVFROnLkSKE1derUUWJiYpHnOn/+vKZOnaq5c+cqLi6u0NqLFy/q4sWLOn78uNatW6dZs2ZJkqpVq6Zbb71VDzzwgJo3b274cXij3NxcffHFF5o5c6ZWrlyp3NzcK9b+elP/qVOntHPnzt/+vlKlSrr11lv10EMPqWXLlh5Ibb7z589r7dq1Wrt2rTZs2KCDBw/q1KlTcrlchR5XsWJFNWjQQB06dFCnTp3Uq1cvhYeHeyj15XXv3l0rVxY9sFvUY5OkY8eO6cMPP9SCBQuKXC+SlJKSopSUFB09elT79u377e8TExMVHR1d5PGFWblypalDGEZfM1A4M1+f4+Pj9cEHH2jx4sU6cOBAobV5eXnKzs5WcnKyDh8+rEuXLrkT2xQZGRn65JNPNGfOHG3YsEEFBQVXrP11cPXEiRPasmXLb39frVo13XnnnRo9erQaNWrkidimO3XqlFavXq21a9dq06ZNSkhIUFJSUpHHVa1aVQ0bNlTHjh3VuXNnXXfddSpfvrwHEptjz549+te//qUvv/xS586du2JdWlqa0tLSdPLkSe3du1cLFy6U9Ms3y3Xo0EF33nmnRowYodDQUE9FBwAAAAAAAAAAAIBSxc/uAAAAAPCMM+kX9e2ezXbHKLFv92xWUikekAJ83blz5zRu3DjVrl1bzzzzjKFBiSs5e/aspk6dqpYtW2rgwIE6ePCgiUmLlpiYKIfDUeSf4cOHX/Ec+fn5evfdd1W3bl0NHz5cP/zwQ6GDRYVJSUnRtGnT1KpVK/Xq1et/Bo+82cWLF/Xxxx/r+uuvV0REhAYMGKDXXntNq1at0smTJw0N31y8eFGbN2/WpEmTdMcdd6hGjRrq06ePZs+erby8PA88Cmv8/PPPuvXWWxUdHa0XX3yxROvFV6xYscLQupswYYIt+WbMmGEo34wZM2zJV5g1a9bohhtuUOPGjfXOO+8UOVhkt8zMTE2YMEG1a9fWww8/rHXr1hU6WFSYs2fP6r333lNMTIz69++v/fv3m5zWGklJSZo0aZI6deqkWrVq6Y477tCkSZO0YcMGQ4NF0i/vy2vXrtXrr7+uAQMGqHr16rr99tu1aNEiQ6+/domPj1ffvn3VpEkTTZkypdDBosIUFBRo7dq1Gjt2rOrUqaOJEycqMzPT5LQAAAAAAAAAAAAAUPoxXAQAAFBGfLZlpXLz8+2OUWK5+fn6bGvRO0UA8LxZs2YpJiZGkyZNMnV3C5fLpW+//VbNmzfXW2+9Zdp5rfbzzz+rXbt2euSRR3T8+HFTz718+XK1bt1aY8eOVVZWlqnnNsvp06f15JNPqnbt2ho5cqR++OEH5Zv0PpSbm6slS5ZoyJAhql+/vqZOnVqqhozS09M1fvx4tWrVSvPnzzfteQEu5+zZsxoxYoS6du2qZcuWefVAya9WrVql5s2ba+LEibpw4YKp5164cKGaNm2qv//978Ue9rTaoUOH9MADD6h27doaN26c1q1bZ9p/t8zMTM2dO1f9+vVT8+bNNWfOHFPOa5bc3Fw9+eSTatasmRYvXmzquc+fP68JEyaoefPmWrVqlannBgAAAAAAAAAAAIDSjuEiAACAMmDr8QRtP3nY7him2XbisLYeT7A7BoD/Lzs7W3fddZeGDh1a7J0FjMjMzNTjjz+uu+++Wzk5OZb1McOcOXMUGxurrVu3WtajoKBAkydPVrt27bRv3z7L+rgrJydHL774ourWravXXntNqamplvZLTEzU6NGjFRsbqw0bNljaywwHDx5UmzZt9Oabb5aqgSiUTps3b1bLli01Y8aMUjFUJEmvvfaaunfvbuludbm5uXrllVfUpUsXJSYmWtbHXWlpaXr00UfVsGFDffDBB8rOzra0388//6zBgwere/fu2rt3r6W9jEhMTFSnTp302muvWfr6ePDgQXXv3l2vvvqqZT0AAAAAAAAAAAAAoLRhuAgAAMDHZefl6tOtK+yOYbrPtq5UDjdlA7Y7e/asevTooS+++MJjPWfOnKk777zTa3d7eeuttzRkyBCPDUDFxcWpY8eO2rRpk0f6FWbjxo1q3ry5nnnmGWVmZnq0d1xcnDp16qQXXnjBa4coVq9erXbt2ik+Pt7uKCgD5s2bp27duunkyZN2RzHE5XLp4Ycf1pNPPumxNbxx40Z16NBBu3bt8ki/wixevFiNGjXSO++84/H3t5UrV6pVq1aaNm2aR/v+t7i4OLVv316bN2/2SD+Xy6W//e1vGjt2rAoKCjzSEwAAAAAAAAAAAAC8GcNFAAAAPu7b3Vt0LiPN7himO5uRqm/3eObmQwCXl5ycrJ49e2r9+vUe7/31119r7NixHu9blA8//FCPP/64x4dbLly4oJ49e2rVqlUe7fvfpk6dqq5du9q6i1JBQYGeffZZDRw40OPDTUXZtm2b+vTpowsXLtgdBWXAf/7zHw0ePNjr1kFhnnzySb333nse73v69Gl169ZNW7Zs8Xhv6ffXrX79+tk6CJadna1Ro0bpwQcf9PiwzebNm9WtWzedOXPGo30lafLkyXryySc93hcAAAAAAAAAAAAAvA3DRQAAAD7sVGqyFu3dancMyyzcs1WnUpPtjgGUSRkZGerTp4+tuz1MnTpVc+fOta3/Hy1fvlwPPfSQbf3T09M1YMAA7d2716N9XS6XRo8erdGjR3tst6aiLFiwQH379tWlS5fsjiJJOnz4sG6++WalpfnesC+8z+bNm3XbbbcprxTt8Dht2jS9/vrrtvVPTk5Wnz59dPjwYY/2zc7O1qBBg7xqx7X3339f99xzj8d2T0pISFCfPn2UkpLikX6X88Ybb9i6axMAAAAAAAAAAAAAeAN/uwMAAADAGi6XSzO2rFBegWduDLRDXkG+Pt26Uk92HyCHw2F3HKBMGTlypKEdi4KCgnTttdeqdevWqlu3rqpVq6bQ0FDl5+crNTVVR44c0bZt27R69epi3Vj84IMPqlevXqpcuXIxHoV5kpKSdMcddxi6mT80NFTdunVT8+bNVa9ePVWoUEEBAQFKTU3VqVOntGfPHq1atUqJiYlu50hJSdHNN9+sTZs2qVq1asV4JO4pKCjQyJEjNX36dMt7uevHH39U//799d1338nf375ff+Tn52vw4MGGduTw8/NTs2bN1LZtW11zzTW66qqrFBoaKj8/P6Wlpen8+fPas2ePtm3bpm3btnkgPUqb9PR03XHHHcrIyCiy1t/fX61bt1ZsbKyuueYaRUREKDQ0VAUFBUpLS1NSUpL27NmjTZs2WTq0+PPPPxsezAwPD1ePHj3UpEkTRUVFKSws7Lf1cezYMe3Zs0crVqzQqVOn3M6RlJSk3r17a9OmTapQoYLbx7srKytLgwYN0nfffWd5L3fNmjVLTqdTn376qaV9Ll68qJtvvllnz54t1vFRUVHq2rWrYmJiVLNmTYWFhSkvL0+pqalKSEjQzz//rBUrVig1NbXIc40ePVrt2rUrVg4AAAAAAAAAAAAA8AUMFwEAAPiozccOatfpo3bHsFzcqSPafPyQ2l5dz+4oQJnx4Ycfas6cOYXW3HjjjfrrX/+qvn37Kjg4uMhz5uTkaNGiRXrppZe0davxHdfOnz+viRMn6p133jF8jBXGjBmj8+fPF1rTpUsXjRs3Tn379lVQUFCR54yLi9PUqVP16aefKjMz03CWxMREjRo1St98843hY4rroYceKvZgUf369dWrVy+1bt1aMTExioyMVHh4uIKDg1VQUKD09HQdP35c+/fv1/r167VkyRLFx8e71WP58uV65JFHNHny5GJlNMNrr72mjRs3FlrTsmVL3Xfffbr99ttVpUoVQ+c9fvy4Pv/88/95/qOiogrd/cTIIG63bt20YsUKQxngfR5//PEid9/p0qWLRo0apUGDBql8+fKGznvgwAF9/PHHWrdunRkxf5Ofn68RI0YUuuuZw+HQwIEDNWbMGHXv3l1+fkVvxL5p0yZNnTpVs2bNUm5uruE8+/bt0+jRozVz5kzDxxRHQUGBbr311mIPFjVv3lw9evRQ69at1aBBA1199dWqWLGigoODlZubq/T0dB09elTx8fFau3atFi1apKNH3ft3wWeffaZmzZpp/PjxxcpoxOjRo7Vv3z63jgkJCdGIESP0wAMPqGnTpkXW5+XlaenSpZoyZYqWLFlyxbrc3Fzde++9uummm9zKAwAAAAAAAAAAAAC+wuEq7K4TAADg1c6ePavq1av/z98lJSV5ZKcCq2RnZyshIaHQmrp16xq6Kbssy8rL1fhFn+nCpXS7o3hElZDyer3vPSrnH2B3FHiB4cOHG/6m/cOHDysqKsraQMUUFRWlI0eOFFlXp06dYu1wU9ye5cuXV35+/hWHXdq1a6fJkyfr2muvLVYGl8ulyZMna/z48YXebP7fgoKCdOzYMdPf/xITExUdHV1k3dVXX61jx44V+vP33ntPAwYMKFaOI0eOaOzYsVq4cKFbx3300UcaOXJksXoaMXnyZI0dO9atYypWrKiRI0dq5MiRatSokds9t27dqtdff11fffVVoUM0f/T5559r6NChbvcrTPfu3bVy5coi6wIDA694LUdGRuqdd97RX/7yl2LvwJednW34c1FpGC5asWKFevToUWTdc889pwkTJlgf6A9mzJihESNGFFk3ffp0DR8+3LS+Rl6fAwICCh2kady4sSZPnmzo+b0So9eb0f+ONWvW1MmTJ6/481atWun9999X27Zt3cr5q1+HhX788Ue3jvviiy80ePDgYvU0Yvz48XrzzTfdOqZGjRq6//77de+996p27dpuHetyubRixQq9+uqr+v777w0f53Q6tXz5cnXr1s2tfkbMnj1bQ4YMceuYW265Re+8844iIyOL1XPVqlV68MEHtWfPnivWFHVN/uqnn35S9+7di5UDgOfxuyYAAAAAAAAAAGCUL96Xa1TRX/UJAACAUufrnzeWmcEiSTp/KV3f/LzJ7hhAmZCenn7ZwSI/Pz+98MILWrduXbEHi6Rfhh/Gjh2r7777ztCOR9IvNwtOnTq12D1LqrDBop49e2rbtm3FHiySfhkgW7Bggd544w1DO3b86oknntC5c+eK3bcwq1at0qOPPmq43ul0avz48Tp8+LDeeOONYg0WSVJsbKzmzJmjdevWqXHjxoaPGzdunM6cOVOsniV1pcGiQYMG6eeff9Ytt9xS7MEiSdwEi98UNlg0evRobdu2rUSDRZL511thQxyjRo3S+vXriz1YJEkNGzbUsmXL9Nxzz7l13COPPKLU1NRi9y3MF1984dZgUXBwsF5++WUdOnRIEyZMcHuwSPrlvbVHjx767rvvtHjxYtWqVcvQcfn5+Ro5cqRbu+cZkZqaqkceecRwvb+/v6ZOnap58+YVe7BIkrp27arNmzcXOtRkZLAIAAAAAAAAAAAAAHwRw0UAAAA+5sTFC1qyd7vdMTxucfw2nbh4we4YQJkUEBCgr776Sk8//bRbwy+F6dGjh2bOnGm4fvr06ab0NVPfvn21ZMkSVa1a1ZTzPf7445oxY4bh5zglJcXtG+qNuHTpkkaMGKG8vDxD9dHR0dq4caNef/11Va5c2ZQM7du316ZNm3TLLbcYqr9w4YLGjRtnSm8zjB49WvPmzVPFihXtjoIy4JVXXtGUKVNK1SDa//3f/+nDDz80JbOfn58mTJigyZMnGx7kS0pK0osvvlji3n906tQpjRkzxnB969atFRcXp7/97W8KCQkxJcPNN9+s7du3q0uXLobqDx48qIkTJ5rS+1cvvPCCkpKSDNX++hnjgQceMKV3SEiIZs6cqdGjR5tyPgAAAAAAAAAAAADwFQwXAQAA+BCXy6UZW35SvqvA7igel19QoBlbVsjlctkdBShTHA6HZs6caXjIwx1/+ctfNHz4cEO1iYmJ2rJli+kZiqtt27aaN2+eAgMDTT3v3Xffrddff91w/QcffKCDBw+amuGpp55SQkKCodoOHTpo8+bNio2NNTWDJIWGhurLL7/U3Xffbaj+q6++0o4dO0zP4a7Bgwdr8uTJpg3iAYX529/+pieffNLuGG6555579Oqrr5p+3oceekj/+Mc/DNe/++67OnXqlKkZHnzwQSUnJxuqHTBggNasWaN69eqZmkGSqlWrpu+//169evUyVD9p0iTTnouTJ09q0qRJhuvff/99DRo0yJTev3I4HJo8ebJuvfVWU88LAAAAAAAAAAAAAKUZd7IAAAD4kPVH9mv3meN2x7DN7jPHtOHoAbtjAGXKU089pdtvv92y87/00kuGd2tYuHChZTncUblyZc2fP9+yXUIee+wxwzdE5+fn6+233zat9759+zR58mRDtddee62+++47ValSxbT+f+R0OvXxxx/ruuuuK7LW5XLp2WeftSyLETExMZo2bZrh3VOAkujRo4f++c9/2h3DLc2bN9cHH3xg2fmff/553XjjjYZqc3Jy3BqCKcoPP/ygb7/91lBtnz59NHfuXAUHB5vW/4+Cg4M1f/58NWnSpMjazMxMvfzyy6b0nTRpknJycgzV3nfffbr33ntN6ftHDodDn376qRo1amTJ+QEAAAAAAAAAAACgtGG4CAAAwEdk5uZo5vbVdsew3cxtq5SZa+yGRQAl07x5c02YMMHSHldddZWGDBliqHb1au94DXzjjTcUGRlpaY8pU6YoPDzcUO2MGTN04cIFU/o+++yzys/PL7IuIiJC33zzjSpUqGBK38IEBARo1qxZhoaYFi1apEOHDlme6XIcDodmzJhheFgOKIng4GDNmDGjVO2Q5XQ69cknn6hcuXKW9XA4HPrwww8VFhZmqP6DDz5QRkaGKb2ffvppQ3UxMTGaPXu2AgICTOlbmAoVKmjOnDmGhmE/+eQTpaWllahfRkaG4eGxq6++Wm+88UaJ+hUlJCREH3/8calaJwAAAAAAAAAAAABgFf6fUwAAAB8xf9cGpWSac/NjaZacmaF/79podwygTHj33Xfl7+9veR+juxZs3LjR0OCLldq0aWPZLgv/rXr16oYHuy5duqQvvviixD337NmjuXPnGqr98MMPVatWrRL3NKpGjRp65ZVXiqxzuVz6+OOPPZDoz+666y61bdvWlt4oex5//HHVrl3b7hhuGTFihGJjYy3vU7t2bT3xxBOGapOTk/XNN9+UuOd//vMfbdxY9OdTp9OpmTNnGh5+MkPTpk01fvz4IusyMjI0e/bsEvX6+uuvlZKSYqj25Zdf9sjz0LFjR8NDzAAAAAAAAAAAAADgyxguAgAA8AHHUs7pu3077I7hNf6zb7uOpZyzOwbg07p166bu3bt7pFf79u0VERFRZN2lS5eUkJDggURXNnHiRI/1uu+++wzvkDRnzpwS93v//fflcrmKrOvXr5/69+9f4n7uGjFihOrXr19k3WeffWbocZjJ4XDoqaee8mhPlF0hISF69NFH7Y7hloCAAD3zzDMe6/fII48Y2u1MUokHaiRp6tSphupGjx6t1q1bl7ifu/7v//5PlSpVKrLu008/LVEfo89l48aNNXjw4BL1csfEiRPldDo91g8AAAAAAAAAAAAAvBHDRQAAAKWcy+XS9C0rVODhG6W9WcH/f048ffM4UJY8+OCDHuvlcDjUuXNnQ7Xx8fEWp7myhg0bqnfv3h7rFxQUpAceeMBQ7bp163T8+PFi98rKytLMmTMN1T7//PPF7lMSTqdTo0ePLrLuxIkT2rlzpwcS/a5nz56KiYnxaE+UXUOGDFF4eLjdMdwyaNAgj+60FBYWphEjRhiqXbp0qeHddi7nxIkTWrJkSZF1wcHBtg0hVqhQQcOGDSuybsOGDbpw4UKxeqSkpGjZsmWGaseMGSM/P8/92rpu3brq16+fx/oBAAAAAAAAAAAAgDdiuAgAAKCUW5u4T/FJJ+yO4XXik05obeI+u2MAPql8+fIaOHCgR3u2adPGUN2hQ4csTnJlo0aN8njPe++919BuCy6Xy/BN3ZezYMECJScnF1nXrVs3tWzZsth9SmrIkCFyOBxF1n333XceSPO7O+64w6P9ULaVxuvtvvvu83hPo6/Zubm5WrlyZbH7zJo1S/n5+UXW3X777apRo0ax+5TU0KFDi6wpKCjQ0qVLi3X+FStWKDc3t8i64OBgQ1nMZsc1CAAAAAAAAAAAAADehOEiAACAUiwjJ1uztq+2O4bXmrV9tS7lZNsdA/A51113nYKCgjzas0GDBobqzpw5Y3GSK7v11ls93vOqq65Sx44dDdX+9NNPxe6zaNEiQ3XDhw8vdg8zVK9e3dAg2qpVqzyQ5hcOh0MDBgzwWD+UbRUrVlT37t3tjuGW8PBwWzI3aNBATZs2NVRbFl4/Y2NjFRERUWRdcV8/jT6H119/vcLCworVoyR69eqlihUrerwvAAAAAAAAAAAAAHgLhosAAABKsXlxG3Qx65LdMbzWxaxLmhu3we4YgM/p1q2bx3tGR0cbqrNruKhp06aqU6eOLb2NDq4Ud+cNl8ul77//vsg6Pz8/9enTp1g9zNS+ffsia7Zv3+6BJL+IiYlRtWrVPNYPZVunTp3k7+9vdwy39O7d29AObFbo37+/obriDtRcvHhR69evL7KucuXK6tKlS7F6mMXhcKhdu3ZF1hX39XP1amNfiNCvX79inb+kAgIC1Lt3b1t6AwAAAAAAAAAAAIA3YLgIAAAAAOCWli1berxn1apVDdVdvHjR4iSXZ+dOIV27djVUd/ToUSUnJ7t9/l27dikpKanIuubNm3vFEE2LFi2KrDl9+rROnz7tgTQyvLMUYIbSeL3ZOVTTuXNnQ3V79uxRfn6+2+dfuXKl8vLyiqzr1q2bbQNW/83I62dcXJwKCgrcOm9eXp727NljqNbO68HuAS8AAAAAAAAAAAAAsBPDRQAAAKXYbc3bq2K5ELtjeK1K5UJ0W/Oid7AA4J6GDRt6vGelSpUM1WVnZ1sb5Ao6dOhgS1/pl2GvcuXKGardvXu32+ffsmWLobo2bdq4fW4r1K5d21DdgQMHLE7yi8aNG3ukDyCVzuvNztdPIzudSb+8txTnNcMXXz8vXbqkEydOuHXeAwcOGHp/Dg8Pt+Uzxq/svBYBAAAAAAAAAAAAwG4MFwEAAJRiIYFBuqsV37B9JUNadVFIYJDdMQCf4nQ6VaNGDY/3DQoytpbtGi4ystuDVQICAgwPFBRnuGj79u2G6rxlqKF69eqG6o4fP25xkl/YeaM8yp7Sdr05nU7FxMTY1r9y5cqqVauWodq9e/e6fX5eP39h9Llr0qSJW+c1W0xMjPz8+HU5AAAAAAAAAAAAgLKJ/7cUAACglOsU1VCNqhu7KbIsialeS52iStcNtkBpUKFCBTmdTo/3DQgIMFSXl5dncZI/8/PzU7169Tze97/Vr1/fUN3Ro0fdPndcXJyhuqioKLfPbYXg4GBDdZ4aLqpZs6ZH+gBS6bveoqKiDL++W6VBgwaG6tzdrUfi9fNXRp87o/8trFKuXDnDu98BAAAAAAAAAAAAgK/xtzsAAAAASsbhcGjEtd319/98oQKXy+44XsHP4dCIa3vI4XDYHQXwOUZvPLaLy4bXwZo1axreWckq11xzjaG6U6dOuX3uI0eOGKobNGiQ2+e204ULFzzSJyIiwiN9gMDAQFWqVMnuGG7xhqEaoxncff3Mz883PFTTqlUrt85tN3dfP40+d95yPSQmJtodAwAAAAAAAAAAAAA8jp2LAAAAfMDVlarqpoYt7Y7hNXo3bKXISlXsjgH4JLt3mPBG1atXtzuC4Qzu3hzvcrl08uTJ4kTyepmZmR7pExYW5pE+QGm81qpVq2Z3BMMZ3H39PHXqlPLz84sTyeu5+/p5+vRpQ3XecD14w3s6AAAAAAAAAAAAANiB4SIAAAAfcUuz9qocHGp3DNtVDg7VX5q1szsGgDKkNN0MnZyc7NZ5k5KSlJubW5xIXs9Tw0V272qFsqM0XmtVq1a1O4Lh1/C0tDS3zmt016LSyN3Xz9TUVEN1pel6AAAAAAAAAAAAAABfw3ARAACAjwgOCNRdrbrYHcN2Q1t3VXBAoN0xAJQh5cuXtzuCQkONDZdmZWW5dd6UlJRipCkdcnJyPNKH3b7gKaXxWgsODrY7guEM2dnZbp2X18/fGX3uStP1AAAAAAAAAAAAAAC+huEiAAAAH9KhTgM1iYi0O4Ztmta4Wu1r17c7BoAyJjDQ/oFGozuWuDtc5KndfezgcrnsjgCUed6w2xKvn+5z9/XT6HNXmq4HAAAAAAAAAAAAAPA1DBcBAAD4EIfDoeHX9pDTr+x9zHP6+WlYbHc5HA67o8Bm7lwDubm5FiYpGaO7AnDN288bdgsxmsHda97dm+kBwB3e8B7mZ/Bzc0FBgVvn5fXzd0afu9J0PQAAAAAAAAAAAACAr+H/LQUAAPAxtSqG6+ZGreyO4XF9GrVWrYrhdseAF3BnFxmjAzx2MJqNb9i3nzcMqRnN4O4uS97w2AD4Lm94H87OzjZU5+77La+fvzP63JWm6wEAAAAAAAAAAAAAfA3DRQAAAD5oUNN2qhJS3u4YHlMlpLwGNm1rdwx4iXLlyhmu9YabWK/EaDZ3Hi+s4Q3XkVU3x3N9AbCSNwxyGM3g7ushr5+/M/pclKbrAQAAAAAAAAAAAAB8jb/dAQAAAGC+cv4Burt1V72zZondUTzi7thuKucfYHcMeAl3buZNSUmxLkgJ5OXlKS0tzVBtcHCwxWlQlPT0dLsjGM7g7s3u7lxfy5YtU69evdw6P4Cy7cKFC3ZH0Pnz5w3VhYSEuHVed14/Dxw4oHr16rl1/tIkNDTUUF1puh4AAAAAAAAAAAAAwNewcxEAAICPanN1PTW/qo7dMSzX4qo6ahN5jd0x4EXKlze+a5e33kDqzs217jxeWOPs2bN2RzCcITw83K3zGr0hXJKysrLcOjcAlKbXz4iICLfOy+vn76pXr26ozhuuh6SkJLsjAAAAAAAAAAAAAIAtGC4CAADwUQ6HQ8Niu8nfz2l3FMv4+zl1T2w3ORwOu6PAi9SoUcNwrTfcxHo57uRy5/HCGmfOnLE7guGbod29Xty5md4bdnACrJaTk2N3BJ9y4sQJuyMYznDVVVe5dV5eP39n9LkrTdcDAAAAAAAAAAAAAPgahosAAAB82FUVKqtvTKzdMSzTr3GsrqpQ2e4Y8DI1a9Y0XHv48GELkxSfO7ncebywxsmTJ23fdeLgwYOG6ty9OT4kJERVqlQxVHvy5Em3zg2URpmZmXZH8CkHDx6Uy+WyNcP+/fsN1bn7+lm7dm3Dtb7++mn0uTP638IqBQUFOnTokK0ZAAAAAAAAAAAAAMAuDBcBAAD4uAFNrlW10Ap2xzBdtdAKGtC4jd0x4IVq1apluDYhIcHCJMXnzo2t7jxeWMPlctl+M/KBAwcM1blzs/uv6tSpY6ju6NGjbp8b+CN/f39DdXl5eRYnubzz58/b0tdXXbp0ydbXjpycHMOfBerXr+/WucuXL6/w8HBDtb7++mn0uYuPj7c4SeESExNtHxYGAAAAAAAAAAAAALswXAQAAODjgvwDdE9sN7tjmO6e2G4KNHgDMsqW+vXry+FwGKrdu3evxWmKx52baxs0aGBhEhi1Y8cO23rn5uYavpabNGni9vljYmIM1f38889unxv4o6CgIEN1OTk5Fie5vBMnTtjS15dt3LjRtt7btm0zNKjmcDh4/SyBJk2aGPpslpiYqKSkJA8kurwNGzbY1hsAAAAAAAAAAAAA7MZwEQAAQBkQG1lXrWpG2x3DNK1rRSs2sq7dMeClQkNDVbeusesjPj5e6enpFidy3+bNmw3XtmjRwsIkMGr9+vW29d6+fbvhnRaaNm3q9vnbtDG2S9z27dvdPjfwR0aHi1JSUqwNcgX79u2zpa8vW7t2rW29161bZ6guOjpaISEhbp/f6Ovntm3b3D53aRIaGqroaGP/FikN1wMAAAAAAAAAAAAA+CKGiwAAAMqIe67tpgCn0+4YJRbgdPrkTkwwV/PmzQ3VFRQUuDXI4wmZmZmKi4szVFu1alVdddVVFieCEStWrLCt96pVqwzV1a5dW5UqVXL7/G3btjVUd+HCBVt3cELRjO7qZqeKFSsaqjt79qzFSf7M5XIZfn2Gcd99951tvZcsWWKormPHjsU6v9HXz7i4OJ0/f75YPUqLDh06GKr7z3/+Y3GSKzN6PQAAAAAAAAAAAACAL2K4CAAAoIyIKF9RAxob+/Z0bzagcRtVL2/sxmOUXe3btzdc+/3331uYxH0//vijcnNzDdW2a9fO4jQwavfu3UpMTLSl94IFCwzVde/evVjnj42NVVhYmKlZYI+AgIAia/Ly8jyQ5MqqV69uqM6O9bZt2zalpaV5vK+v279/v/bu3evxvsnJyYaHM3v06FGsHt26dTM01Jefn6/FixcXq0dpYfQ5XLhwoQoKCixO82dxcXE6fPiwx/sCAAAAAAAAAAAAgLdguAgAAKAM6ds4VhGleDAnonxF9W0ca3cMlALXX3+94dpFixZZmMR97uRx53HCevPmzfN4z1OnTmndunWGaos7XBQYGKjevXsbqp05c6ZcLlex+sB6gYGBRdZkZmZ6IMmVBQcHq0KFCkXWHTx40OMDCHbusOPrpk+f7vGeM2fONDzMW9zhopo1a6pNG2PD/Z999lmxepQW1113naG606dP27LWPv74Y4/3BAAAAAAAAAAAAABvwnARAABAGRLo9Newa7vbHaPYhl/bXYFOf7tjoBRo2bKl4d0vdu/erR07dlgbyKDs7Gx99dVXhutvvPFGC9PAXdOmTfN4z08++UT5+flF1jkcjhINow0aNMhQ3YEDB7R06dJi94G1jOxAlZyc7IEkhbvmmmuKrElPT/f4bjeff/65R/uVJdOnT/foYJvL5dL7779vqLZly5aKjo4udi+jr58//vij9u3bV+w+3i46OlotWrQwVPuvf/3L4jT/Kz093eeHuwAAAAAAAAAAAACgKAwXAQAAlDEta0bp2siib9r1Nm0ir1GLmlF2x0Ap4XA41L9/f8P1Rm8wttq8efN04cIFQ7X169dXo0aNLE4Ed+zbt0//+c9/PNYvOzvb8LXbsWNHRUZGFrtX//79ValSJUO1zz33XLH7wFrVqlUrsubUqVMeSFI4o69tK1eutDjJ75YvX+7Tgx92O3funKZMmeKxfnPnztWePXsM1d55550l6nXXXXfJ6XQWWedyufTMM8+UqJe3M/pcLl68WFu2bLE4ze/eeecdpaSkeKwfAAAAAAAAAAAAAHgjhosAAADKoLtju5aqHYCCnP66O7ar3TFQygwfPtxw7YwZM3Ts2DHrwhiQn5+vf/7zn4brR4wYYWEaFJcnB2s+/PBDHT9+3FBtSW+ODwkJ0V//+ldDtRs3bmSHFy8VERFRZE1WVpbh68oqzZo1M1S3cOFCi5P8bsKECR7rVVa98sorOnfunOV9srOzDQ/xOJ1ODR48uET9rr76ag0cONBQ7dy5c7Vq1aoS9fNmQ4YMkZ+fsV9HP/HEExan+cXp06f1xhtveKQXAAAAAAAAAAAAAHgzhosAAADKoGqhFTSoaVu7Yxg2qGlbVQ2tYHcMlDKdOnVS/fr1DdVmZ2frqaeesjhR4aZNm6a9e/caqnU6nRo2bJjFiVAcmzdv1ieffGJ5n6SkJMPDDiEhISW+OV6SxowZI39/Y4OpY8eO1ZEjR0rcE+a65hpjOxdu3brV4iSF69y5s6G6ZcuW6cSJExankWbNmqU1a9ZY3qesO3/+vMaNG2d5n4kTJ2r//v2GagcNGqTatWuXuOcjjzxiuHbYsGG6ePFiiXt6o9q1a2vQoEGGalesWKGPPvrI4kTS6NGjffb5BgAAAAAAAAAAAAB3MFwEAABQRt3cqJWuCqtkd4wiXVWhsm5u1NruGCilHn30UcO1M2fO1Ndff21hmis7dOiQxo8fb7j+jjvuUM2aNS1MhJIYP3685Tu/PPTQQ7pw4YKh2mHDhqlKlSol7hkVFaX77rvPUO3Fixc1YMAAbtj2Mg0aNDBU9/3331ucpHBt27ZVuXLliqzLz8/XW2+9ZWmWY8eOuTUYgpL54osv9PHHH1t2/u+//16vvfaa4Xp33psL07lzZ918882GahMTE3X77bcrNzfXlN7exp3n9NFHH9XOnTstyzJp0iTbPvsBAAAAAAAAAAAAgLdhuAgAAKCMCnD6a/i13e2OUaTh13aXv9NpdwyUUn/9619Vp04dw/UjRozQjh07rAt0GcnJyRo4cKDS09MN1TudTj333HMWp0JJJCcn65ZbblF2drYl53/rrbc0b948Q7VOp9OtIbuiTJw4URUrVjRUu3PnTvXt21cpKSmm9S+JnJwcffjhh1q+fLndUWzTpk0bQ3Vz5syxdTAsKChI119/vaHaf/3rXzp48KAlOdLT0zVw4ECdO3fOkvPj8kaPHq0ffvjB9PPu2LFDd955p/Lz8w3V33TTTWrXrp1p/d944w3Du78tXbpUgwcPtux9xF3p6el67bXXFBcXV+JztW/fXjfddJOh2oyMDA0YMEBHjx4tcd8/WrBggR5//HHTzwsAAAAAAAAAAAAApRXDRQAAAGVYs6vqqF3t+nbHuKL2teurWY3adsdAKRYYGOjWIM7Fixd14403avPmzRam+t2ZM2d044036ueffzZ8zLBhwwzvPgL7bNq0SbfffrtycnJMPe/MmTP1xBNPGK4fOXKk6tc373W+atWqevnllw3Xr1mzRp07d9ahQ4dMy+CutLQ0vffee6pfv77uv/9+nTp1yrYsdmvTpo2CgoKKrEtOTtaDDz6ogoICD6S6vNtuu81QXVZWloYOHWr6EEZqaqpuuukmbdu2zdTzomg5OTnq16+fFixYYNo5169fr549exoedvT39zd9V6yYmBg99thjhuvnz5+vG264QUlJSabmcMfZs2f14osvKjo6Wk8++aRSU1NNOe+bb75peNDqyJEj6tq1q+Lj403pLUmzZ8/Wrbfeqry8PNPOCQAAAAAAAAAAAAClHcNFAAAAZdzQ1l0U5B9gd4w/CfIP0NDWXe2OAR8wfPhw9ejRw3B9UlKSunbtqvfff18ul8uyXCtWrNC1117r1iBTRESEXn/9dcsywVwLFixQnz59dP78eVPO9/bbb2vYsGGGBz4qVKig559/3pTe/+3BBx9Uv379DNfv3r1bLVq00NSpUz06rBIXF6dx48YpMjJSDz/8sCU7X5Q2QUFB6tWrl6Ha2bNnq1u3blq9erXFqS7vL3/5iypVqmSoduPGjRoyZIhpw3zx8fFq37691q5da8r5cGUBAZf/DJqVlaWBAwfqb3/7m7Kysop9/vz8fL399tvq1q2bLly4YPi4sWPHKiYmpth9r+SFF15Q69atDdevWrVKTZs21dy5c03PUpj169drxIgRuvrqq/XMM8+YvntX48aNNWbMGMP1R44cUZs2bfTZZ5+VqG9GRoYefvhhDRkyRLm5uZetudI1CQAAAAAAAAAAAAC+juEiAACAMq5KSJj+0rSd3TH+5JZm7RQeUt7uGPABDodDH3/8sUJDQw0fk5WVpQcffFAdO3bU8uXLTc0THx+voUOHqkePHjp+/Lhbx06dOlXh4eGm5kHJXX311Vf82Q8//KDWrVtr4cKFxT7/0aNHNXDgQD322GNuDee8+uqrql69erH7FuaTTz4p9HH/UUZGhkaPHq3mzZtr3rx5lu0WsXfvXr366qtq0aKFWrRooUmTJpm204avuOOOOwzXrlmzRl27dlVkZKTuvPNOTZw4UdOmTdO8efO0cOFCLVq0qMg/P/74Y7FyhoaG6r777jNc/+9//1u9evXSkSNHitVPki5duqQXXnhBrVq10t69ey9bY9WaKqtGjRqlqlWrXvZnLpdLr776qmJiYjRjxgy3dqfKz8/Xv//9b7Vu3VqPPfbYFQdJLqdJkyZ66aWXDNe7IzAwULNnz1bFihUNH3P27Fndfvvt6tSpk5YuXWrJ4LPL5dK2bdv03HPPqV69eurYsaPbz7m7XnrpJTVu3NhwfXp6uoYNG6bOnTu7/TxkZGTo/fffV4MGDfTee+9dsa5q1apuve4AAAAAAAAAAAAAgC/xtzsAAAAA7Ne7UUv9P/buO8yqwtof9zoDAzOUQYYqIop0EFBBBREFUWzYjaLRRBKNLRpLotGY8tOrMbHFxB4TE7HrNRowSCxYURREURFUioAKItI7M/P7I99okhs5e+CUmTnv+zw8z726zl6fc3TiOnv22vuFOdPj4+XJ7+ieTe2btYiDuu2S7xjUIR07dow///nP8Y1vfKNaF6O++uqrsf/++0fv3r3jxBNPjKOOOiq6detW7f6fffZZjB07Nh566KEtvjD4ggsuiKOOOqraryP79ttvv1i9enU88sgj//Xvz5s3Lw4//PDYZ5994rzzzotDDz00GjRokPa477zzTtx6661x1113xdq1a6uVacSIEXHGGWdU6zXV0bJly3jyySdj7733jqVLlyZ+3bvvvhvf+MY3ol27dvHNb34zRowYEXvttVfUr1/90xNVVVUxa9asmDhxYkycODGeeuqpmD17drWPU2iOO+64uOiii2LhwoWJX/Pxxx/Hgw8+uEX9dthhh5g7d+4WvfaCCy6IW2+9NVauXJmo/sUXX4xevXrF2WefHWeeeWbsuOOOiV733nvvxb333hu33377Zp/Q0q1btzjnnHOq9cQVNq9Vq1Zx4403xje/+c2vrZk7d26MGjUqfvjDH8YhhxwSw4YNi5133jl22GGHKCsri1QqFatWrYr58+fHu+++G88991w88cQT8fHHH1c7T0lJSdx3331RUlKyNW9rs7p27RqPPfZYHHTQQdVa3pk4cWIceOCB0blz5zjxxBNjxIgR0b9//0ilUtXOUFFRETNmzPjyfz/Hjx8fn376abWPszVKS0vjvvvuiwEDBlTr6VQvv/xyHHjggbHTTjvFiBEjYvDgwdGzZ89o165dNGnSJCoqKmLFihUxe/bsePvtt+Ppp5+OJ598MpYvX5722DfeeGO8//77W/O2AAAAAAAAAGoty0UAAET9onoxqv/Q+J9n/jffUSIiYlT/IVG/qF6+Y1DHHHPMMfHLX/4yfvzjH1f7tW+//XZccsklcckll0TLli2jX79+0bVr19h+++2jTZs2UVpaGg0bNoyNGzfGunXrYunSpTFv3ryYM2dOvPHGG1u98HDEEUfENddcs1XHILtuuummePbZZ+OLL75+SfOFF16IF154IZo0aRJDhgyJPn36RKdOnaKsrCzq168fq1atik8//TSmT58ezz//fMyZM2eLsnTo0CH+8Ic/bOlbSaxnz54xZsyYOPDAA2P16tXVeu0nn3wS11xzTVxzzTVRWloaffv2jZ133jm233772G677aJx48ZRWloaVVVVsW7duli3bl0sXrw4Fi1aFJ988knMnDkzZsyYEWvWrMnSu6u7GjZsGJdddlmtWJBp06ZNXHbZZXHxxRcnfs3q1avj17/+dVxzzTWxyy67xKBBg6Jr167RunXrKC0tjfXr18fKlStj3rx5MXPmzJg4cWLMmzcv7XFLSkrioYceijfeeGNr3hL/xYknnhhPPPFE3HfffZutW7JkSYwePTpGjx6dlRypVCruueee6NOnT1aO/6+GDBkS99xzT4wcOTIqKiqq9doPP/wwLr/88rj88sujadOmseuuu0avXr2iffv2se2220bjxo2jpKQkKioqYt26dbF27dr47LPPYtGiRbFgwYKYOXNmvP/++1l9KlFSffv2jdGjR8dxxx1X7cXr2bNnx29/+9v47W9/m5EsJ554Ypx44onxi1/8IiPHAwAAAAAAAKhtLBcBABARET3btI+9dugWEz+amdccg3bsFj3atM9rBuquiy++OFavXh1XXHHFFh/j888/j/Hjx8f48eMzmOzrHXrooXH//fdHUVFRTvqxZdq0aRP3339/HHroobFp06bN1q5atSrGjh0bY8eOzXiOsrKy+Nvf/hatW7fO+LH/m0GDBsWzzz4bhx566Gaf+LI5a9eujVdffTVeffXVDKfj65x55plx3333xcSJE/MdJa0LLrgg/vKXv1T734+qqqqYOnVqTJ06daszFBUVxejRo6NPnz6Wi7Lkj3/8Y8ydOzev/05ef/31ccwxx+Ss37HHHhuPPfZYHH/88Vu8KLly5covF1drq2OPPTauu+66uOCCC/KWYeDAgTlZygUAAAAAAACoyVydBgDAl7652+Aord8gb/1LixvEN3cdnLf+FIbLL788fvvb30Yqlcp3lLROPvnkeOyxx6K0tDTfUUhg+PDhGXuCwpZo3LhxPPbYY9GrV6+c9t1jjz3i5Zdfjs6dO+e0L1uuqKgoHn300dhpp53yHSWt+vXrx/333x8tWrTIW4bbbrstjj322Lz1LwQNGzaMxx57LHr37p3z3qlUKn73u9/Feeedl/PeI0aMiGeeeSbatGmT8941yfnnnx833nhjXmaznXfeOR5//PEoKSnJeW8AAAAAAACAmsRyEQAAX2pe2jiO7TMgb/2P7T0gtiltnLf+FI5zzjknnnrqqdhuu+3yHeW/KikpiZtuuinuvvvuqF/fA2drkzPPPDN+/etf5/wC6W222SaeeuqpGDp0aE77/lPXrl1j6tSpccopp+SlP9XXpk2beOWVV2LvvffOd5S0dtxxx3jyySejadOmOe1bv379+P3vfx+nnXZaTvsWqlatWsWLL74Y++67b856Nm7cOO677774/ve/n7Oe/2nAgAExbdq0OOSQQ/KWoSY499xz4957741GjRrlrOe+++4bL730UrRq1SpnPQEAAAAAAABqKstFAAD8m+Fd+8b22+T+6QAdtmkZw7v2zXlfCtewYcNi2rRpcdJJJ9WopxgNHDgwJk+eHGeffXa+o7CFfvSjH8Xdd98dxcXFOem38847x8SJE2PgwIE56fd1mjRpEnfddVc8+uijseOOO+Y1y9cZNGhQ9O3rvzX/1Lp163j++efj1ltvrbHLlv/Uv3//ePrpp6Nt27Y56bfNNtvEk08+GaeeempO+vEPzZo1i/Hjx8f5558fRUXZPW3Zt2/fmDx5cowcOTKrfZJo3bp1PPHEE3HHHXfUyEWXoqKiOOigg7L+v+0nnHBCTJ48OetPsCoqKorzzz8/xo8fH82aNctqLwAAAAAAAIDawnIRAAD/pl5RUYzqn/snX4zafWjUy/JFpPCfysvLY/To0fH666/n7Ykv/9S5c+d4+OGHY+LEidGrV6+8ZmHrnXTSSfHaa6/FLrvskrUeRUVFceaZZ8Zrr70WPXr0yFqf6jrqqKNixowZcfXVV0d5eXm+40T79u3jwgsvjHfffTdeeumlrF+0XtsUFRXFGWecEXPmzIn7778/jjzyyJw+OaQ69thjj5z87/Whhx4ab7/9dgwbNiyrffjvGjZsGNdff3289NJLWfnf0ObNm8cNN9wQr7/+enTv3j3jx98ap512Wnz44Ydx8cUXR+PG+X+aZ9euXePnP/95zJ49O8aNGxft27fPes8ePXrE5MmT47rrrottttkm48ffZZdd4uWXX47rr78+GjZsmPHjAwAAAAAAANRWrt4EAOD/6N56u9inY+4uVN9npx7RrVW7nPWD/9SvX7949tlnY8qUKXHqqafm7ILeoqKiOPjgg2PMmDExc+bMOPbYY3PSl9zYZZdd4vXXX49rr702tt1224wee+jQoTFlypS45ZZborS0NKPHzoSGDRvGxRdfHAsWLIg77rgj+vTpk9P+3bp1i/PPPz9eeOGFmDdvXlx77bXRs2fPnGaobYqLi2PkyJHxl7/8JZYtWxavvvpq/O53v4tzzjknDj744Nhll12iffv20bRp02jYsGHWnyrzddq3bx/PPvts/PGPf4wOHTpk9Ni9evWKBx98MMaOHZuTJQo2b+DAgTF16tQYN25c7Lffflv971zHjh3jV7/6VcyaNSvOO++8nD1drrrKysri6quvjgULFsR1110XnTp1ylnvVCoVu+yyS/zkJz+JKVOmxMyZM+MXv/hF7LDDDjnLEBHRoEGDuOCCC2LWrFnxy1/+cqv7FxUVxbBhw2LcuHExderUGDBgQIaSAgAAAAAAANQdqaqqqqp8hwAAtszixYujdevW//bXPvvss2jVqlWeEm299evXx+zZszdbs9NOO7nLdA4sX7s6Lhx7d6zZuCGrfRoVN4zrDvtWNCupmU9JoDCtXr06nnrqqRg7dmyMHz8+FixYkLFjl5WVxdChQ2PEiBFx6KGHZnzphMyZO3dudOzYMW3dt7/97fjTn/602Zr169fHPffcE/fcc0+89NJLsWnTpmrnadasWRx99NHx/e9/P3bbbbdqvz7fpk+fHo899lj89a9/jSlTpmzRZ/DfFBUVRefOnWOvvfaKffbZJ4YMGZLonxu138aNG+P++++Pu+++O5577rmoqKio9jFKS0vjgAMOiNNOOy0OPfTQSKVSm63/05/+FKNGjUp73LvuuitOOeWUaufh63322WfxxBNPxN///veYNm1afPDBB7Fx48avrd9mm22iV69eMXTo0Dj44INjwIABeVuK21qTJ0+Oxx57LMaMGRPvvPNOVFZWZuS49evXjx49esSgQYNi8ODBMXTo0Bo5l1RWVsbEiRPjySefjGeffTbefffdWLFixdfWFxcXR5cuXaJPnz5x4IEHxqGHHlqrvyMDW8+5JgAAAAAAIKm6eF1uUpaLAKAWq4tDjAs+apa/v/9W/Gnyc1ntMar/kDiga9+s9oCttWjRopgyZUq89dZbMWfOnFiwYEHMnz8/vvjii1i7dm2sW7cu1q1bF8XFxVFaWholJSVRVlYW2223XWy//fbRoUOH6N27d+y2227RuXPntBevUzNkcrnoXy1btiyefvrpePPNN+Pdd9+N999/P5YtWxYrV66MNWvWRElJSTRt2jRat24d3bt3j169esWQIUNir732ivr162/FO6o51q1bF1OnTo3XX389Pvjgg5g3b1589NFHsWTJklizZk2sWbMm1q9fH/Xr14+GDRtGo0aNokWLFtGqVato165ddOzYMXbaaafo2bNn9O3bN2dPG6PmWrx4cbz44ovxyiuvxIwZM2L27Nnx2WefxerVq2P9+vXRqFGjKCsri+bNm0e3bt2id+/e0b9//xg2bFiNfPoX6W3cuDE++uijWL58eaxcuTLWrVsXpaWl0bRp09h2221r5JJMJqxcuTKmTJkSU6ZMiQ8//DDmzZsX8+bNiy+++CLWrFkTa9eujQ0bNkRxcXE0aNAgmjRpEi1btoxWrVrFdtttFx07doxOnTpFr169Yuedd46SkpJ8v6Ut8sknn8TChQu//G9no0aNomnTptGsWbPo0KFDjX0yFZAfzjUBAAAAAABJ1cXrcpOyXAQAtVhdHGJc8FGzVFZWxmXjH4i5Sxdn5fg7Nm8d/3Pg8bX2LvJA3Zat5SIAACB3nGsCAAAAAACSqovX5SblKk4AAL5WUVFRjNp9aFaOnYqI7+w+1GIRAAAAAAAAAAAAQB65khMAgM3q0nLbGNqpV8aPO6TTztG5ZduMHxcAAAAAAAAAAACA5CwXAQCQ1vF9B0WTBiUZO16TBiVxfN+9MnY8AAAAAAAAAAAAALaM5SIAANIqKymN43fJ3DLQyF0GRVlJacaOBwAAAAAAAAAAAMCWsVwEAEAiQ3fqFTuVt9nq43Rq0SaGdOqVgUQAAAAAAAAAAAAAbC3LRQAAJFJUVBTf2X1opLbiGKmIGLX70ChKbc1RAAAAAAAAAAAAAMgUy0UAACS2U4s2MaxL7y1+/f5d+mTk6UcAAAAAAAAAAAAAZIblIgAAquW4PntF04al1X5dWcPS+EbfgVlIBAAAAAAAAAAAAMCWslwEAEC1NGlYEifsMqjarzth172jSYOSLCQCAAAAAAAAAAAAYEtZLgIAoNr22alndGm5beL6ri23jcEde2QxEQAAAAAAAAAAAABbwnIRAADVVpRKxajdh0YqlUpbm/p/tUUJagEAAAAAAAAAAADILctFAABskR2bt4rhXfqkrRvepW/s0LxVDhIBAAAAAAAAAAAAUF2WiwAA2GLH9hkYzUoafe3fb1bSKL7RZ0AOEwEAAAAAAAAAAABQHZaLAADYYo0bNIwTd937a//+N3cdHI0aNMxhIgAAAAAAAAAAAACqw3IRAABbZe8du0f31tv9n7/eo/V2MWjHbnlIBAAAAAAAAAAAAEBSlosAANgqqVQqRvUfEkWp1Jd/rSiVilH9h0bqX/4aAAAAAAAAAAAAADWP5SIAALba9tu0jIO67fLl/39wt12j/TYt8hcIAAAAAAAAAAAAgEQsFwEA1GLvvPNOvPPOO/mOERERx/QeEM1LG0fz0sZxdO898x0HAKBWq0lzHgAAmdOrV6/o1atXvmMAAJAFZj0AgLrJnEehqJ/vAAAA1A2lxQ3im7sOjlQqFaXFDfIdBwAAAAAAAAAAAIAELBcBAJAxA3fomu8IAAAAAAAAAAAAAFSD5SIAADImlUrlOwJAxuy4445RVVWV7xgAAAAAAAAAAABZVZTvAAAAAAAAAAAAAAAAAEB+WC4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAgFqnqqoq3xEAAAAAqAWcRwIAAAAAAEjPchEAUKOkUqm0NS4KAQAAACCJJOeRior8ugwAAAAAAChsflsCANQoSS7mqKioyEESAAAAAGq7JOeRktzsBgAAAAAAoC6zXAQA1Cj16tVLW7Nhw4YcJAEAAACgtkt3HimVSiU6HwUAAAAAAFCXWS4CAGqUVCoVDRo02GyN5SIAAAAAkkh3Hqm4uNiTiwAAAAAAgIJnuQgAqHEsFwEAAACQCenOI6U7DwUAAAAAAFAILBcBADVOuos61q1bF1VVVTlKAwAAAEBtVFVVFevWrdtsjeUiAAAAAAAAy0UAQA1UXFy82b9fUVERa9asyVEaAAAAAGqjNWvWREVFxWZr0p2HAgAAAAAAKASWiwCAGqe0tDRtzcqVK3OQBAAAAIDaKsn5oyTnoQAAAAAAAOo6y0UAQI1TUlKS9q6xK1asSHvnWQAAAAAKU0VFRaxYsWKzNcXFxVFSUpKjRAAAAAAAADWX5SIAoMZJpVJRVla22ZqKior4/PPPc5QIAAAAgNpk8eLFaW9MU1ZWFqlUKkeJAAAAAAAAai7LRQBAjdS0adO0NV988UWsW7cuB2kAAAAAqC3WrVsXS5cuTVuX5PwTAAAAAABAIbBcBADUSCUlJVFcXJy2bv78+bF+/focJAIAAACgplu/fn3Mnz8/bV1xcXGUlJTkIBEAAAAAAEDNZ7kIAKiRUqlUtGrVKm3dpk2bYt68eZ5gBAAAAFDg1q1bF/PmzYtNmzalrW3VqlWkUqkcpAIAAAAAAKj5LBcBADVWWVlZNGrUKG3dpk2bYs6cObFw4cKoqKjIQTIAAAAAaoqKiopYuHBhzJkzJ9FiUaNGjaKsrCwHyQAAAAAAAGqH+vkOAADwdVKpVLRt2zZmz56dqH7p0qWxYsWKKCsri6ZNm0ajRo3cgRYAAACgDqqqqoo1a9bEypUrY8WKFdW64Uzbtm2dMwIAAAAAAPgXlosAgBqtYcOGUV5eHl988UWi+oqKili6dGksXbo06tWrFyUlJdGgQYMv/9SrVy9SqVSduYCkqqoqIiLWr1+f5yQAAGSSOQ8A/qGqqiqqqqqioqIiNmzY8OWfdevWbdETrMvLy6Nhw4ZZSAoAAAAAAFB7WS4CAGq8Vq1axYYNG2LVqlXVel1FRUWsXr06Vq9enaVk+bdx48aIiMRPdwIAoHYw5wFA5jVp0iRatWqV7xgAAAAAAAA1TlG+AwAApFNUVBTbbbddNGnSJN9RAAAAAKiFmjRpEtttt10UFfnVGAAAAAAAwH/yGxQAoFawYAQAAADAlrBYBAAAAAAAsHl+iwIA1Br/XDAqLy/PdxQAAAAAaoHy8nKLRQAAAAAAAGnUz3cAAIDqKCoqijZt2sQ222wTCxcujDVr1uQ7Ul7Nnj07IiJ69eqV5yQAAGSSOQ8Atk6jRo2ibdu20bBhw3xHAQAAAAAAqPEsFwEAtVLDhg2jQ4cOsWLFili8eHFs3Lgx35EAAAAAyLPi4uJo1apVlJWVRSqVynccAAAAAACAWsFyEQBQa6VSqWjWrFmUlZXFunXrYuXKlbFixQqLRgAAAAAFpLi4OMrKyqJp06ZRUlJiqQgAAAAAAKCaLBcBALVeKpWK0tLSKC0tjVatWsW6deti7dq1sXHjxtiwYUNs2LAhNm7cGFVVVfmOCgAAAMAWSqVSUVxcHA0aNIgGDRpEcXFxlJaWWigCAAAAAADYSpaLAIA65V8Xjf5VVVVVVFRURFVVVVRWVuYpXeadeeaZERExfvz4PCcBACCTzHkA8JWioqJIpVJRr149S0QAAAAAAABZYLkIACgIqVQq6teve6PP4sWLIyKiYcOGeU4CAEAmmfMAAAAAAAAAgFwpyncAAAAAAAAAAAAAAAAAID8sFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAABARPTq1St69eqV7xhQ6/lZAqCm8d8myAw/SwDUNP7bBJnhZwmAmsZ/myAz/CwBUF2WiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAlU/3wEAgC1XWVn5f/7a559/nock5MumTZsiImLx4sV5TgK1n58nyAw/S5AZfpYgc/w8QWb4WYLM8LMEmePnCTLDzxJkjp8nyAw/S5AZfpYgc/w8FZb/dg3uf7tWty5KVVVVVeU7BACwZd57773o2bNnvmMAAAAAAAAAAAAAQJ0zffr06NGjR75jZF1RvgMAAAAAAAAAAAAAAAAA+WG5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUKmqqqqqfIcAALbMpk2b4oMPPvi3v1ZeXh5FRfaHAQAAAAAAAAAAACCpysrK+OKLL/7tr3Xp0iXq16+fp0S5Y7kIAAAAAAAAAAAAAAAACpTHGgAAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUqPr5DgAAUNvMnz8/xo8fH9OmTYvp06fHnDlzYuXKlbFixYqoqqqKpk2bRtOmTaNDhw7Rs2fP6N27dxxwwAHRpUuXfEevExYuXBgTJkyId955J2bOnBkffPBBLF26NFauXBmrVq2K+vXrf/nPoHnz5tG5c+fo2rVrdO3aNXbdddfo2bNnpFKpfL8NAKAGMudlx5o1a+Ltt9+OWbNmxdy5c7/8s3Dhwli1alWsXr06Vq1aFevWrYsGDRpEw4YNo1mzZtG2bdto165ddOvWLXr16hV77rlndO3aNd9vBwDIsY0bN8aLL74YL7/8ckyfPj1mzJgRixcvjpUrV8bq1aujtLQ0ysrKory8PLp16xY9e/aMPffcM/bbb78oLS3Nd/xaZfHixTF+/PiYOnVqTJ8+PWbNmhXLly+PlStXxsaNG6Np06ZRVlYW7dq1i549e0avXr1iv/32i759++Y7OgBQS5n1suOjjz768vzmP8/FzZs3L5YtW/blubjVq1dHVVVVlJSURGlpabRq1Sratm0bO+64Y/Tq1Sv69OkTAwcOjMaNG+f77QAAtZA5L382bdoUr732WkyaNClmzpwZM2fOjPnz58eqVati5cqVsX79+mjSpMmXv/vebrvtvry2rkePHrHnnntGs2bN8v02yJNUVVVVVb5DAADUdMuWLYs777wzRo8eHdOmTduiY3Tp0iVOPPHEOPPMM6NNmzYZTli3ffjhh/GHP/whxo4dG++8885WHau8vDz23nvv2GeffWLEiBHRrVu3DKUEAGojc15mrV+/PiZNmhSvv/56TJ06Nd54442YOXNmVFZWZuT4bdu2jYMOOiiOP/742H///aN+ffdOAoC66qWXXoqbb745/va3v8WKFSuq/frS0tLYf//948wzz4yDDjrIzWa+xtq1a2P06NHxxz/+MV5//fUtmtvat28f3/jGN+Kcc86Jjh07ZiElAFDXmPUy56OPPoqXX3453njjjZg6dWpMnTo1li5dmpFj169fP3bfffc45phj4rjjjovtt98+I8cFAOouc15+bNiwIR577LG47777YsKECVv02f9TUVFR9OnTJ/bee+/Yf//9Y/jw4Ra+CojlIgCAzVi1alVcccUVcfPNN8fq1aszcswGDRrEt7/97bjqqquiZcuWGTlmXTV+/Pj49a9/HRMmTIhsja09evSIo48+Ok4++WSLRgBQQMx5mbFhw4aYNGlSPPfcczFhwoR45ZVXYt26dTnp3b59+/j+978fZ555ZpSVleWkJwCQfS+88EJceOGFMXny5Iwds1u3bnH11VfHkUcembFj1nYbN26M66+/Pq655ppYsmRJRo5ZVFQURx99dFxzzTWx4447ZuSYAEDdYtbbevPnz//yXNxzzz0Xc+bMyUnfoqKiOPzww+OHP/xhDBo0KCc9AYDaw5yXH1988UVce+21ceedd8bixYuz0qNRo0Zx0EEHxdFHHx0jR46MevXqZaUPNYPlIgCAr/HXv/41zj777FiwYEFWjl9eXh7XXnttjBo1KivHr83efPPN+NGPfhRPP/10znqeffbZcdNNN+WsHwCQP+a8zPnpT38a//M//5PXDK1bt44rrrgiTjvtNHcvA4BabNmyZfGDH/wg7r777qz1GDFiRNx+++3Rrl27rPWoDV5++eU47bTT4r333svK8Rs1ahQ///nP40c/+pH5DACICLNeplRUVNSIJ3kfeeSRcd1118VOO+2U7ygAQJ6Z8/Jj/fr18dvf/jauuuqqWLZsWc76Ll68uGBuslmoivIdAACgpqmsrIzLLrssjjzyyKxdcBrxjzsHfOc734nvfe97sWHDhqz1qU0qKiriiiuuiN133z2ni0UAQGEw52VeTbhv0WeffRann356HHDAAfHxxx/nOw4AsAWmT58ee+yxR1YvQoiIGDt2bPTr1y8mTpyY1T412S233BJDhw7N2mJRRMSaNWvi4osvjiOOOCJWrFiRtT4AQO1g1sucmnAuLiLiscceiz59+sSdd96Z7ygAQB6Z8/Ljn5/7RRddlNPFIgqD5SIAgH9RUVERI0eOjCuvvDJnJ2d///vfx/Dhw2PNmjU56VdTLVy4MIYMGRI/+9nPYtOmTfmOAwDUMea8uu+ZZ56Jfv36xZQpU/IdBQCohpdeeikGDBgQH3zwQU76LVy4MIYOHRp/+ctfctKvJrngggvi7LPPjo0bN+ak35gxY2LgwIGxePHinPQDAGoes17dtXr16jjttNPizDPPjIqKinzHAQByzJyXH3feeWf0798/pk2blu8o1FGWiwAA/p/Kyso45ZRT4uGHH8557+effz6OOuqoWL9+fc571wQffvhh7LXXXvHSSy/lOwoAUAeZ8wrHokWLYt9993XnMgCoJSZPnhyHHnporFy5Mqd9N2zYECNHjozx48fntG8+XXrppXHDDTfkvO/06dNj+PDh7qIKAAXIrFcYbrvtthg5cmRUVlbmOwoAkCPmvPz42c9+FqeddlqsXbs231Gow1JVNeV5qQAAeXbJJZfE1VdfXa3XdOnSJQYNGhQ777xzlJeXRyqViqVLl8Z7770Xr7zySrzzzjvVOt7JJ5+c9UfF1jTTpk2LAw44ID777LO85jj77LPjpptuymsGACA7zHnZc9lll8WVV16Z7xj/R/PmzWPixInRvXv3fEcBAL7GggULYtddd43PP/888WtKSkpin332if79+8d2220XZWVlsWrVqvj000/jjTfeiOeeey5WrVqV+HiNGjWKSZMmxc4777wlb6HWuP322+OMM86o1mvat28f++yzT/Tp0ydatmwZxcXFsWzZsvjggw9i0qRJMXny5Go9EXTIkCHx9NNPR7169aobHwCohcx62bFp06YoLi7Od4z/6owzzohbb7013zEAgCwz5+XHmWeeGbfddlu+Y8TixYujZcuW+Y5BFlkuAgCIiHHjxsWhhx6a+BfiRxxxRFx66aWxxx57bLbunXfeiWuuuSbuueeexHdruvPOO+O73/1uotrabt68eTFw4MD45JNPqvW6li1bxpAhQ2Lw4MHRvXv32GmnnaK8vDwaN24cERHLli2LZcuWxdKlS2PGjBnx1ltvxVtvvRVTp0792rukWi4CgLrJnJddSZaLUqlUdO3aNbp16/blny5dukR5eXmUlZVFWVlZNG3aNNasWRMrVqyIFStWxJw5c2Lq1Knx5ptvxtNPP71Fd7rv06dPvPbaa9GwYcMtfHcAQLZs2rQphg4dmvgp1q1bt47LLrssvvWtb0WzZs2+tm7NmjXx0EMPxS9+8Yv46KOPEh27e/fuMXny5C/PK9U1b775ZgwcODDWrVuXqH6fffaJn/3sZ7HffvtFKpX62ro5c+bEb3/727jllltiw4YNiY592WWXxRVXXJGoFgCovcx62ZN0uWibbbaJXr16/dv5uO233z6aNm365fm4+vXrx/Lly2PFihWxZMmSePvtt2Pq1Knx6quvxuTJk7co3/333x8jR47cotcCADWfOS8/tuRmj6lUKvr16xf77rtv9O/fPzp16hTbb799NGnSJEpLS2PVqlVfXl/36aeffnlt3VtvvRXvvffe1/5u3XJR3We5CAAoeEuWLInu3bsnuqNCeXl5jB49Og455JBq9Xj11VfjuOOOi/nz56etLS0tjWnTpkXnzp2r1aO2WbZsWey9997x7rvvJn7N4YcfHt/73vfiwAMPjPr161e756ZNm+Lll1+OMWPGxBNPPBEzZsz48u9ZLgKAusecl33/7WR2cXFx9O/fPwYPHhyDBw+OQYMGRfPmzbe4x/r16+Pxxx+P2267LSZMmFCt1/785z+PX/ziF1vcGwDIjssvvzx+/vOfJ6o9/vjj44477oiysrLEx1+/fn1ceOGFcfPNNyeqP+200+KOO+5IfPzaYsOGDdGnT5+YOXNm2trS0tK45ZZb4pRTTqlWj5kzZ8axxx6b6MmeRUVF8fzzz8fee+9drR4AQO1i1suer1suateu3Zfn4gYPHhw777xzFBUVbXGf999/P/785z/HzTffHMuXL0/8uubNm8esWbO26lwgAFBzmfNy7/e//31873vfS1zftm3bOOecc+Lkk0+O7bfffot6fvrppzF27NgYM2ZMPPPMM7FmzZov/57lorrPchEAUPDOOOOMuP3229PWtW/fPp577rno1KnTFvX57LPPYujQoTF9+vS0tSNGjIgxY8ZsUZ/a4phjjolHH300Ue3AgQPjd7/7XfTr1y+jGaZMmRK33HJLPPDAAzFq1CjLRQBQx5jzsu+fy0XNmzePQw45JI444og4+OCDo0mTJlnp9+CDD8b5558fn376aaL6xo0bx4cffhht27bNSh4AoPrmzJkTPXv2TPQknUsuuSSuuuqqLe510003xTnnnJO2LpVKxaRJk2L33Xff4l410dVXXx2XXHJJ2rqysrJ46qmn0j698+usXr06Dj300Hj++efT1vbt2zemTJkS9erV26JeAEDNZtbLrn9dLurXr18cccQRceSRR0bv3r2z0m/RokVx/vnnx/3335/4NRdeeGFce+21WckDAOSPOS/3pkyZEgMHDoyNGzemrS0pKYmf//zn8YMf/CBKS0szlmHVqlUxevTouPXWW+Ptt9+2XFQALBcBAAVt6tSp0b9//6isrNxsXbNmzWLSpEnRrVu3req3cOHC2H333WPBggVpa5944olq3zm/trjzzjvjtNNOS1tXVFQUl19+efz4xz/O6gUHy5Ytiw8//DD69++ftR4AQG6Z83JjwoQJUVlZGfvuu+8WPVlySyxcuDD222+/eO+99xLVX3755fHTn/40y6kAgKSOOuqoeOyxx9LWnX766XHbbbdtdb8rr7wyLrvssrR1e+yxR7z66quRSqW2umdN8Mknn0TXrl1j9erVm60rLi6OZ555JgYPHrxV/VatWhWDBw+ON998M23tzTffHGedddZW9QMAaiazXnZVVlbGrbfeGkcccUS0b98+Z31vvPHGOO+88xLVlpWVxSeffBKNGzfObigAIKfMebm1Zs2a2G233RI9kXznnXeOhx56KHr06JHVTC+//HLstttuGV1eouaxXAQAFLQjjzwyHn/88bR1Dz30UHzjG9/ISM8XX3wxhg4dGhUVFZut69+/f7z++usZ6VmTzJkzJ3r37p32woaGDRvGPffcE8cee2yOkgEAdYk5r2777LPPYtCgQfHhhx+mrd1pp51i1qxZOUgFAKTz5ptvxq677pq2btddd41XXnklGjZsuNU9q6qq4uCDD47x48enrR0zZkyMGDFiq3vWBOedd17ceOONaet+/etfx49+9KOM9Hz//fejX79+sWrVqs3WtWvXLubMmRMNGjTISF8AoGYw69VtN9xwQ1xwwQWJau++++44+eSTs5wIAMgVc17unX322XHLLbekrdtvv/3iL3/5S5SVleUgFYWgKN8BAADyZebMmfHXv/41bd0RRxyRsQtOIyIGDx4cp59+etq6yZMnx7PPPpuxvjXFD3/4w7SLRUVFRRaLAIAtZs6r+1q3bh133HFHotrZs2fHBx98kOVEAEASv/71r9PWFBUVxZ133pmRixAiIlKpVNxxxx2J7qiZJF9tsHTp0rjzzjvT1u26665x4YUXZqxv165d42c/+1nauk8++STuueeejPUFAGoGs17ddv7558e+++6bqPbJJ5/MchoAIJfMebn11ltvJXr604ABA2LMmDEWi8goy0UAQMG6/vrrI91DHOvXrx/XXnttxntffvnliQb76667LuO98+n555+PRx99NG3d//zP/1gsAgC2mDmvMAwdOjTxctiLL76Y5TQAQDrz58+Phx9+OG3dySefHLvttltGe3fo0CHRXdZffPHFOvGEydtuuy3tzX0i/jE3FxVl9tfFP/jBD6Jjx45p68zDAFC3mPUKw80335yozrk4AKg7zHm5d/7550dlZeVma9q1axdjxoyJRo0a5SgVhcJyEQBQkNavXx8PPvhg2rpjjjkmOnfunPH+LVq0iFNPPTVt3fjx42PRokUZ758vF110UdqawYMHx8UXX5yDNABAXWTOKywnn3xyoroZM2ZkOQkAkM69994bmzZt2mxNKpXK2nmhH/zgB1FSUpK27s9//nNW+udSkvew5557xpAhQzLeu0GDBnH++eenrZs+fXpMnjw54/0BgPww6xWGXr16JbpoeMGCBYmW3QGAms+cl1vjxo2LCRMmbLYmlUrFXXfdFS1btsxRKgqJ5SIAoCCNHTs2li9fnrbuvPPOy1qGc889N+2dQSsqKuKBBx7IWoZceuGFF+K1117bbE29evXitttuy/gdUwGAwmHOKywHHHBAojtyffTRRzlIAwBszr333pu2Zvjw4dGjR4+s9G/VqlV885vfTFv30EMPpb1goiabMmVKzJw5M21dNufh73znO4me5pnk3wkAoHYw6xWOI488Mm1NVVVVzJs3L/thAICsM+fl1jXXXJO25vjjj4/hw4fnIA2FyFWbAEBBuv/++9PWdO7cOQYMGJC1DDvssEMMHjw4bV2SrLXBddddl7bm29/+dvTs2TMHaQCAusqcV1hKSkqiS5cuaetWrlyZgzQAwNd555134p133klbd9JJJ2U1R5LjL168OJ5++ums5simJDNm06ZN44gjjshahsaNG8dRRx2Vtu6BBx6IqqqqrOUAAHLDrFdYevfunajO+TgAqP3Mebk1derUtE8tKi4ujiuvvDJHiShElosAgIJTUVGR6MvE8ccfn/UsI0eOTFvz+uuvx5IlS7KeJZs++uijGDNmTNq6H/3oRzlIAwDUVea8wtS2bdu0NRUVFTlIAgB8nSeffDJtTUlJSVYXXiIi9tlnn2jXrl3aunHjxmU1RzYl+awPP/zwKC0tzWqOJPPwwoUL480338xqDgAg+8x6hSXJubgI5+MAoC4w5+XWTTfdlLbmmGOOiZ122ikHaShUlosAgILz2muvxfLly9PWHXzwwVnPkqRHZWVlPPPMM1nPkk1J7kK63377Rffu3XOUCACoi8x5ham8vDwjNQBA9jz11FNpa/bee+9o2rRpVnMUFRXF8OHD09YlyVsTffrpp/Huu++mrcvFPDxkyJAoKSlJW1dbP2sA4CtmvcKS9Dyb83EAUPuZ83Jnw4YN8eijj6atO+uss3KQhkJmuQgAKDhJLuBs2rRp7LnnnlnPssMOO0Tnzp3T1tXmLz8R/1guSufEE0/MQRIAoC4z5xWmL774Im1NixYtcpAEAPhvNmzYEC+99FLauv333z8HaZL1ee+99+Ljjz/OQZrMSrq4PmzYsCwn+cdda/fee++0deZhAKjdzHqFJ8m5uAjn4wCgtjPn5da4ceNi2bJlm63ZfvvtY/DgwbkJRMGyXAQAFJxXXnklbc2ee+4Z9evXz0GaSDT0T5o0KQdJsmPWrFnx5ptvbramqKgoRowYkZtAAECdZc4rTIsWLUpb061btxwkAQD+m7feeivWrFmTti7JIkomJP0FfG2c05LMw507d462bdvmIE2yz/q1115L+8RzAKDmMusVniTn4lq0aGG5CABqOXNebj3yyCNpaw477LAcJKHQWS4CAArO1KlT09bstttuOUjyD/369Utb895778X69etzkCbznn766bQ1u+yyS7Rp0yYHaQCAusycV3jWrl0b77//fto6d/ECgPxJMqMVFRXFLrvskv0wEdGhQ4do2bJl2rokuWua2jgPr1ixImbPnp2DNABANpj1Ck+6m0pG/OMi41Qqlf0wAEDWmPNyK8kTyQ866KAcJKHQWS4CAArKokWL4tNPP01bV9N+yb5p06Z4++23c5Am8yZMmJC2ZuDAgTlIAgDUZea8wvT3v/897V3TysvLo0+fPjlKBAD8pzfeeCNtTdeuXaNx48Y5SPMPSea02nYhQmVlZbz11ltp62raPBxR+z5rAOArZr3C89hjj6WtGTp0aPaDAABZZc7LnRkzZiT6PfeAAQNykIZCZ7kIACgo06ZNS1TXvXv3LCf5Srdu3RLVJc1e0zz//PNpa/bcc88cJAEA6jJzXmH64x//mLbmtNNOi6Iip0EBIF+SLFLnckaLSDan1bYZbdasWWmXriNy+1m3bds2mjVrlrautn3WAMBXzHqF5Y033kj75KJGjRrFySefnJtAAEDWmPNy57nnnktbs9NOO0WrVq2yH4aCVz/fAQAAcmn27NmJ6jp37pzlJF9p3rx5lJeXxxdffLHZuqTZa5L58+fHwoUL09b17Nkzbc2SJUti3Lhx8eqrr8Y777wTc+bMieXLl8eqVauiQYMG0ahRo2jRokV07NgxOnXqFHvssUcMHDgwunbtmom3AgDUcOa8wjNu3Lj461//utma+vXrx/e///0cJQIA/psks06XLl1ykOQrSWbCjz/+ODZs2BANGjTIQaKtl3SmzPVn3alTp7R3ujUPA0DtZdYrHFVVVXH22WenrfvWt74V5eXlOUgEAGSTOS93Xn/99bQ1Sa6tq6qqitdffz3+/ve/x7Rp02L69OmxePHiWLFiRWzatCkaNWoUTZo0ifbt20fHjh1j5513joEDB8aAAQNy+gQqajbLRQBAQZkzZ07amrZt2+Z8YO7cuXO89tprm61Jkr2meffddxPVfd2XzcrKyhg7dmz89re/jeeeey4qKir+a93atWtj7dq1sWTJknj//fcjIuKWW2758tjf+MY34tRTT42OHTtuwbsAAGoDc15hmT17dnzve99LW/fDH/4w2rdvn4NEAMB/s3bt2kQ3nunUqVMO0nwlyYUIlZWV8dFHH+X8IoktlXSm3GmnnbKc5N917tw57XKReRgAaiezXmH56U9/Gq+++upma8rLy+NnP/tZjhIBANlizsutJNfXbe79fPzxx3HzzTfHXXfdtdl/bitWrIgVK1bEJ598Eq+99lo8+OCDERFRUlISBx54YJx44olxzDHHRL169ar/JqgzivIdAAAgl+bOnZu2pl27dtkP8h+23XbbtDW18ZfsSb78tGjRIsrKyv7PX3/66adj5513jiOOOCKeeeaZr10sSueDDz6Iq666Krp06RLHH398fPDBB1t0HACgZjPnFY6ZM2fGkCFDYsGCBZut6927d/x//9//l6NUAMB/89FHHyWqy/WclmRGi6hdc1qSebi8vDxKSkqyH+ZfmIcBoO4y6xWGysrK+PGPfxxXXnll2tqbb7458ecPANRc5rzcmj59etqa/3bDoOXLl8cPfvCD6NixY/zyl79MtBD236xbty4ef/zxOP7446Nz585x2223bfF1etR+losAgILy8ccfp61p27ZtDpJUv2e6iydrovfeey9tTevWrf/t/1+9enWcdNJJccABByR6fVIVFRXx0EMPxc477xyXXXZZbNy4MWPHBgDyz5xX961fvz6uuOKK2GWXXWL+/Pmbrd12223jf//3f6NBgwY5SgcA/DdJZrSI3M9pSfvVpjmtNs/DCxcudMECANRCZr2674033oiBAwfGr371q7S1F154YYwcOTIHqQCAbDPn5c6CBQti5cqVaev+8/q68ePHR7du3eK3v/1tRq+Bmzt3bpx55pnRv3//mDx5csaOS+1huQgAKChLlixJW9OmTZscJPl3Sb78fPHFFzlIklnpLvqMiGjVqtWX//esWbNizz33jHvvvTdrmTZs2BBXXnll7LPPPonyAQC1gzmv7nrrrbfiRz/6UXTs2DF+9rOfxbp16zZb37Zt25gwYUJ06dIlRwkBgK+TZEaLyP2c1rp16ygqSv9r0to0p9XmebiqqiqWLl2agzQAQCaZ9eqmlStXxujRo2P48OGx++67x2uvvZb2Needd15ce+21OUgHAOSCOS93kl679q/X1/3yl7+MQw45JBYtWpStWPHmm2/GoEGD4uabb85aD2qm+vkOAACQS0m+/GyzzTbZD7IFPVevXh3r16+Phg0bZj9QhiR53Oo/3/usWbNi3333TXz3i6316quvxoABA+Lpp5+OHj165KQnAJA95ryabdq0aTF9+vTN1mzYsCFWrFgRK1asiEWLFsVbb70Vb731Vixbtixxn/322y/+/Oc/R/v27bcyMQCQCUkvRMj1nFZUVBRNmzaN5cuXb7Yuaf6aoDbPwxH/yN+yZcvshgEAMsqsV3NVVlbGQw89tNmaqqqqWLVqVaxYsSKWL18e77//frz55pvxwQcfRGVlZaI+jRs3jt/85jdx6qmnZiI2AFBDmPNyJ8m1dRFffdaXXHJJXH311VlM9JUNGzbE97///Zg1a1Zcf/31OelJ/lkuAgAKSpI7YDZt2jQHSbas5xdffBHbbrttltNkzqeffpq2pkGDBrFo0aIYOnRozhaL/umTTz6JffbZJ1544QULRgBQy5nzarb77rsvfvWrX2Xt+C1btozLLrsszj333EilUlnrAwBUT9K7hDZp0iTLSf6vJBci1Ka7nCbJWtPnYQCgdjHr1VwbNmyIE044Ias9DjzwwPjd737n6eEAUAeZ83InybV1Ef+4vu6qq67K2WLRv7rhhhtiw4YNcdNNN+W8N7lnuQgAKBhr166NjRs3pq3Lxy/Zy8rKEtUtX7681lx0WlVVlehOEPXq1YuRI0cmesxrWVlZDB48OHr37h077LBDNGnSJDZt2hTLli2LDz/8MCZNmhRTp06NioqKxDk///zzOOyww2LSpEnRokWLxK8DAGoOc17h2nHHHeP73/9+nHHGGdG4ceN8xwEA/sOKFSvS1jRu3DiKiopykObfJZnT0l2oUJMk+axr+jwMANQuZr3CU1xcHIceemhceumlsfvuu+c7DgCQJea83Fm8eHGiuueffz5++tOfJqrt2bNnDBo0KLp06RItWrSIhg0bxpo1a2LBggXx7rvvxgsvvJC47z/dfPPN0blz5zjvvPOq9TpqH8tFAEDB2LBhQ6K60tLSLCf5v0pKShLVJX0PNcG6deuisrIybd3jjz8e69at22zNgAED4qKLLooRI0ZEcXHxZmsXLlwYd999d1x77bWJvwjNmjUrTjrppBg3blyiegCgZjHnFZ6jjz46Lr300ujXr1++owAAm5FkxsnHjBaRbE6rTTNaTf2szcMAUHfV1Pkjou7NevnWunXruOKKK+L444+PZs2a5TsOAJBl5rzcWbNmTaK6Cy+8cLPX4TVp0iTOPvvs+N73vhc77bTTZo9VWVkZEyZMiBtuuCGeeOKJxFkvvPDC2H333WPQoEGJX0Ptk/uVQQCAPEn6xaFevXpZTvJ/1a+fbOe7Nn35SbcwlKRum222idGjR8crr7wSRx11VNrFooiItm3bxkUXXRSzZs2K733ve4nzPvnkk/H73/8+cT0AUHOY8wrPo48+Gscdd1ycc8458corr+Q7DgDwNZLMOPmY0SKSzWm1aUarqZ+1eRgA6q6aOn9E1L1ZL98+++yzOPfcc+P444+Pm2++OdHTDACA2suclzuZuL5uxIgR8f7778fVV1+ddrEoIqKoqCiGDRsWY8eOjaeeeiq23377RBkqKytj1KhRiReiqJ0sFwEABSPpF4ekv/DOpKQ9N27cmOUkmbN+/fqten3Hjh3j1VdfjZNOOmmLXt+0adO4/fbb484770z8hfbHP/5xrXo0LgDwD+a8wjR79uy46aabYq+99op99tmnWnfWAgByI8mclo8ZLWnf2jSj1dTP2jwMAHVXTZ0/kvY1f1TP+vXrY/z48fH9738/OnToEJdeemksWrQo37EAgCww5+XO1l5fd+mll8Zf//rX2Hbbbbfo9fvvv39Mnjw59thjj0T1H3zwQVx33XVb1IvawXIRAFAwNm3alKjOL9kzY2vuArHtttvGM888E926ddvqHN/97nfjzjvvTFT7xRdfxDXXXLPVPQGA3DLn8eKLL8aIESPikEMOiYULF+Y7DgDw/ySZ01yIkBk19bM2DwNA3VVT54+kfc0fW2758uXxy1/+Mrp27RqjR4/OdxwAIMPMebmzNdfXXXzxxXHllVdGKpXaqgytW7eOv//979G3b99E9ddee20sWbJkq3pSc1kuAgAKRtIvNRUVFVlOsuU98/XFbEtszeNv77rrrujYsWPGspxyyinx7W9/O1HtzTffHGvXrs1YbwAg+8x5/NO4ceOid+/e8be//S3fUQCASDbj5GNGS9q3Ns1oNfWzNg8DQN1VU+ePpH3NH1tvxYoV8a1vfSuOO+64WL16db7jAAAZYs7LnS29vm7QoEFx1VVXZSxHs2bN4oEHHoiSkpK0tStWrIg77rgjY72pWSwXAQAFo0GDBonqkt75PpOS3jEh6XuoCbY066mnnhoHHnhghtNE/OY3v4l27dqlrVu2bFk88MADGe8PAGSPOa/mu/rqq6Oqqupr/1RWVsby5cvjo48+imnTpsX48ePjyiuvjKOOOirRDPevPv/88zjyyCPjsccey86bAQASSzLj5GNGi0g2p9WmGa2mftbmYQCou2rq/BFR92a96iopKdnsubiqqqpYv359LFq0KGbOnBmTJk2Ku+66K84+++wYMGBAtS/Iffjhh+PQQw+NNWvWZOkdAQC5ZM7LnS3JWlpaGnfddVcUFWV2DaR79+5x+eWXJ6r9/e9/H5WVlRntT81guQgAKBjFxcWJ6vLx5Sdpz7r+5adx48ZxzTXXZCFNxDbbbBNXX311otr77rsvKxkAgOww59V+qVQqysrKokOHDtG7d+8YPnx4XHrppfHoo4/G/Pnz48knn4xjjz028T/rjRs3xnHHHRdjx47NcnIAYHOS/Lc7XxciJOlbm2a0mvpZm4cBoO6qqfNH0r6FPn80aNAgWrduHV27do099tgjTjnllLjpppvilVdeifnz58dVV10VnTp1Sny8559/PkaMGBHr1q3LYmoAIBfMebmzJVkvuOCC6NKlSxbSJD/2nDlz4pVXXslKBvLLchEAUDAaNmyYqC4fJzyT9qxNX36Sft7/6sQTT4xtttkm82H+n+OOOy5atmyZtu6FF16IVatWZS0HAJBZ5ry6raioKA488MB4+OGH45133ol99tkn0es2btwYJ510UixYsCDLCQGAr5NkTsvXxYdJ+tamGa2mftbmYQCou2rq/JG0r/nj67Vt2zYuueSSeP/99+OGG26Ixo0bJ3rdhAkT4ic/+UmW0wEA2WbOy53qXl9Xr169OP3007OUpnrHf+KJJ7KWg/yp3jNMAQCqac6cOTFp0qSs9mjcuHEcdthhaetKS0ujfv36ae9gsHLlykxFSyxpz7KysiwnyZySkpIoLi5O9DjafzrjjDOymOgfX8hOOeWUuPbaazdbt2HDhnj++efj0EMPzWoeAKjNzHnJ1MU5L5+6du0azz33XNxyyy1x3nnnpf1nvnz58hg1alT8/e9/j1QqlaOUAMA/NW3aNG3N6tWro6qqKuf/rU4yp9WmGa1p06bx2WefbbbGPAwAZJJZr+4rKiqK8847L4488sg44YQT4tVXX037mt/85jdxxBFHJL5BEABQ85jzcifJZ/2vDjnkkNh+++2zlOYfTjnllLjsssvSLnI99dRTcdVVV2U1C7lnuQgAyKrnn38+Ro0aldUeO+ywQ6KLTiMimjdvHosXL95szYoVKzIRq1qS9iwvL89yksxq0aJFLFy4MFFtx44dY7fddstyoohjjz027XJRRMTkyZMtFwHAZpjzkqmrc14+pVKpOPvss2OHHXaIo446Ku2C0dNPPx0PPvhgjBw5MkcJAYB/SjLjVFVVxcqVK3P+S/8kc1ptmtHKy8tj1qxZm60xDwMAmWTWKxw77rhjPPPMM3HYYYfFs88+u9naysrKOP3002P69Olu9gMAtZQ5L3datmxZrfpjjz02S0m+0qJFixgyZEg8+eSTm62bNm1abNiwoVY9KYr0ivIdAAAgl1q0aJG2Zvny5TlIUv2ejRo1ipKSkhykyZwkn/c/7bnnnllM8pVddtkl0ZeaN954IwdpAIBMMecVnhEjRsSNN96YqPaGG27IchoA4L9Jem4o13NaZWVlrFq1Km1ddc5t5VttnocjatdnDQD8g1mvsDRq1CgeffTR6NKlS9raGTNmxLhx43KQCgDIBnNe7lQ3a66ur9tjjz3S1mzYsCHefffdHKQhlywXAQAFJclAvmjRohwk+XdJnu5Tm774/FNNXC5q2LBh9O3bN21duju9AgA1izmvMJ111llxwAEHpK177bXXYuLEiTlIBAD8q6RzTq7ntMWLF0dFRUXauto0p9XmeTiVSkXz5s1zkAYAyCSzXuFp1qxZ3HXXXYlqf/Ob32Q3DACQNea83KlO1m222Sa6du2axTRfSXodn+vr6h7LRQBAQdluu+3S1iT5hXemJemZJHtNU53Mffr0yWKSf5dkuWjBggU5SAIAZIo5r3D96le/SlT3yCOPZDkJAPCfks45uZ7TkvarTXNabZ6H27RpE/Xr189BGgAgk8x6hWnQoEFxxBFHpK175plnYtmyZdkPBABknDkvd6qTtXfv3pFKpbKY5itJrq2LcH1dXWS5CAAoKDvuuGPamk8++ST7Qf7Dp59+mramY8eOOUiSWTvttFPi2vLy8iwmqX6v5cuXx/r163OQBgDIBHNe4dp1110T3T3rxRdfzEEaAOBfJZnRInI/pyWZ0SJq15yW5LP+4osvcn6+yzwMAHWXWa9wnXHGGWlrKisr4+WXX85BGgAg08x5ubPjjjtGUVGydY6adm1dRH6elE52WS4CAApKki8PCxcujDVr1uQgzVc+/PDDtDW16YvPP1VnuWibbbbJXpAt7JXrfw8AgC1nzitsSe6WOnXq1Fi1alUO0gAA/1RaWhpt2rRJWzdr1qwcpPlKkhktlUrFDjvskIM0mZFkpqyqqorZs2fnIM1XzMMAUHeZ9QrXsGHDonHjxmnr3OwHAGonc17uNGjQIPHTi3J5bV1paWk0bNgwbZ1r6+oey0UAQEFJsuxSVVWV6MtIpixbtiyWLFmStq46izo1RadOnRLXWi4CALaGOa+w7bXXXmlrKioqYs6cOTlIAwD8qySzzgcffJCDJF9JMhNut912iX6BXlMknSlr4mdtHgaA2susV5iKi4tj9913T1uX63/2AEDmmPNyJ+n1dbm8ti4iolmzZmlrXFtX91guAgCy6pRTTomqqqqs/pk7d27iPL17905UN2PGjC18x9WXtFfS7DVJnz59EtemUqksJslfLwCoq8x5metVG+e8mqZz586J6pIsewEAmZVk1snljJa0X22b0Tp16hSlpaVp63L5WS9cuDCWL1+etq62fdYAwFfMeoUryfk45+IAoPYy5+VO3759E9Xl+no319cVJstFAEBB2XbbbRM9tvWNN97IQZrkverXr1+tRZ2aonnz5onvPLps2bLshvkXS5cuTVTXqFGjLCcBADLFnFfYysvLE9V98cUXWU4CAPynXXfdNW3NzJkzc3qXyyRz2m677ZaDJJlTr169RHNlTZuHI2rfZw0AfMWsV7iSnI9zLg4Aai9zXu7069cvUV0ur61L2s+1dXWP5SIAoOAk+RKRy1+yT5kyJW1N9+7do6SkJAdpMi/pF6CkCz+ZkPTLVuPGjbMbBADIKHNe4SouLk5Ut3bt2iwnAQD+U5IZrbKyMt58883sh4mI+fPnx+LFi9PWJbmAoqapjfNw06ZNo1OnTjlIAwBkg1mvcCU5H+dcHADUXua83KmJ19atXbs21q9fn7bOtXV1j+UiAKDgDBw4MG3Nq6++Gps2bcpBmogXXnghbc2ee+6ZgyTZsddeeyWqy+Wdq5L0atGiRTRo0CAHaQCATDHnFa7Vq1cnqnOCGwByr2/fvlFaWpq27sUXX8xBmmQzWkTtnNOSzMMffPBBLFq0KAdpkn3We+yxR6RSqRykAQCywaxXuJKcj3MuDgBqL3Ne7nTv3j2aN2+etq6mXVsXEdGuXbssJyHXLBcBAAVn2LBhaWtWrlwZr732WtazzJs3Lz788MO0dQcccEDWs2TL8OHDE9VNmzYty0m+8tZbb6Wt6dChQw6SAACZZM4rXAsWLEhU16RJkywnAQD+U8OGDWPvvfdOW/fMM8/kIE2yPt27d4/27dvnIE1mJZmHI3LzWa9fvz5efvnltHXmYQCo3cx6hSvJ+Tjn4gCg9jLn5U5RUVHsv//+aevefvvtqKqqykGiZNfWRbi+ri6yXAQAFJw99tgjysrK0taNGzcu61mS9EilUokvDKiJevbsmeiL26RJk3KQ5h8XNiT5AtStW7ccpAEAMsmcV7imT5+eqM4JbgDIjyS/HH/xxRdj1apVWc1RWVkZ48ePT1tXWxde2rVrFz169Ehbl4t5+Lnnnou1a9emrautnzUA8BWzXmFKcj7OuTgAqN3MebmT5Obdy5Yti/fffz8HaZJfx+f6urrHchEAUHDq16+f6CLOBx98MOtZHnjggbQ1/fv3j5YtW2Y9SzYdcsghaWteffXVHCSJmDp1amzYsCFt3e67756DNABAJpnzCtfzzz+ftqZevXqx4447Zj8MAPB/HHTQQWlr1q1bF48//nhWc7z44ovxySefpK1LkremSpL98ccfj3Xr1mU1R5J5uE2bNrHrrrtmNQcAkH1mvcKzePHieO+999LWderUKQdpAIBsMeflzsEHHxypVCptXa6ur0uyXNSsWbPo2rVrDtKQS5aLAICCdMIJJ6St+eCDD7L6NJ158+bFCy+8kLYuSdaa7pvf/Gbamrlz58Ybb7yR9SyPPPJIorqBAwdmOQkAkA3mvMKzadOm+N///d+0dT169IgGDRrkIBEA8J/69OkTPXv2TFt3zz33ZDXH6NGj09a0aNGiVt/lNMmMuXLlyqxe9LF69er4y1/+krbu+OOPT3TRBABQs5n1Cs+DDz4YVVVVaet22WWX7IcBALLGnJc72223XQwZMiRtXdLr3rbG559/Hs8991zauj333NO5vTrIchEAUJAOO+ywKCsrS1v3m9/8JmsZfvvb30ZlZeVma4qKimLkyJFZy5ArgwcPjo4dO6atu/XWW7OaY926dfGnP/0pbV3Lli1jjz32yGoWACA7zHmF58EHH4yFCxemrdt3331zkAYA+DpJbj4zfvz4mDFjRlb6L168OO699960dccdd1wUFxdnJUMu7L777tGlS5e0ddmch++6665Yvnx52rok/04AALWDWa9wVFRUxM0335y2LpVKxT777JODRABANpnzcudb3/pW2pq//e1vMW/evKzmuOuuu2L9+vVp6w499NCs5iA/LBcBAAWppKQkjjvuuLR1jzzySHz44YcZ779kyZL4/e9/n7Zu+PDhse2222a8f66lUqkYNWpU2rr7778/li5dmrUcDz74YCxZsiRt3WGHHRb16tXLWg4AIHvMeYVl1apVcdlllyWqPfDAA7OcBgDYnJNOOint+Zaqqqq4+uqrs9L/xhtvjHXr1qWt+/a3v52V/rmU5D28+uqrie5AWl0bNmyI66+/Pm1d9+7d3dwHAOoQs17huPXWWxNdPLzrrrtGq1atcpAIAMgmc17uHHvssWlvollZWRm33XZb1jJUVFTE7bffnqj2iCOOyFoO8sdyEQBQsC644IK0j+bctGlT/PCHP8x475/97GexYsWKtHUXXnhhxnvny9lnnx2NGzfebM3q1auz9p6XLl0al1xySaLa7373u1nJAADkhjmvcJx55pkxd+7ctHWtWrWKgw46KPuBAICv1aFDhzj22GPT1o0ePTreeOONjPaeN29eooWXQYMGxZ577pnR3vlwxhlnRKNGjdLWXXjhhWmfuFldN954Y8yZMydRbwCg7jDrFYZp06bFxRdfnKg2yZ33AYCaz5yXO02aNImzzjorbd0NN9wQM2fOzEqGa665JmbNmpW2bv/9948ddtghKxnIL8tFAEDB6tGjR4wYMSJt3eOPPx4PP/xwxvq+9NJLiTb8d9ttt9h///0z1jciYu7cuZFKpdL+GTJkSEb7RkSUl5fH6aefnrburrvuinHjxmW8/7nnnhuffvpp2rpdd901Bg0alPH+AEDumPOyP+eNGTMmFi1alJFjbYmqqqq48MIL45577klUf8opp0RxcXGWUwEA6Vx00UVpayorK+O0006LDRs2ZKRnVVVVnH766bF27dq0tUnyVccpp5ySaEbL9BOEWrRokejmOW+88UaiCzSS+uCDD+Lyyy9PW7ftttvGySefnLG+AEDNYNbL3qy3ZMmS+Mtf/rL1obfCjBkz4qCDDoo1a9akrW3UqFF885vfzEEqACAXzHm5OacXEXH++edHaWnpZmvWrVsXo0aNyvhNg6ZPnx6/+MUvEtWec845Ge1NzWG5CAAoaD//+c+jqCj9SHTaaafF+++/v9X9Fi5cGCeeeGJUVFSkrU06rNcmF110UTRr1ixt3ahRo2L27NkZ6/uHP/wh8YWndfFzB4BCZM7Lrv/93/+NTp06xaWXXhoLFy7Mae+lS5fGcccdl/hC2CZNmsSPfvSjLKcCAJLYbbfd4vDDD09b98Ybb8QPfvCDjPT85S9/GU8++WTauv79+8dhhx2WkZ41wUUXXZTo6UWXXnppvPTSS1vdb/Xq1XH88cfHqlWr0tZecskl0bBhw63uCQDULGa97Fm5cmUcffTRsddee8UTTzwRVVVVOe0/ZsyYGDhwYKIbOUZEfP/734+WLVtmORUAkCvmvNxp3bp1os/wlVdeiR//+McZ67ts2bIYOXJkrF+/Pm1tv3796tRnzr+zXAQAFLR+/frFd77znbR1y5cvj2HDhm3VwsvixYtj//33j/nz56etPfjgg+vkEN6mTZu44oor0tYtWrQohg0blpFHuN55552JnpgUEbHvvvsm+jIMANR85rzsW716dfzyl7+MHXbYIb71rW/Fs88+m/E7ZP2rioqKuOuuu2LnnXeORx55JPHrLr744mjVqlXWcgEA1XP99dcnWiy57bbb4ic/+clW9brlllsSHSOVSsXvfve7SKVSW9WvJmnfvn1ceumlaes2btwYI0aMiMmTJ29xrzVr1sRhhx0WU6dOTVvbu3fvOOuss7a4FwBQs5n1suuVV16JESNGRI8ePeKGG27I+k1/Zs2aFSeccEIcfvjhsWzZskSvadWqVVx88cVZzQUA5J45L3cuu+yy6NChQ9q6a665Jn7yk59s9eL5Z599FsOHD4+33347Uf21115b5z5zvmK5CAAoeFdddVW0aNEibd2CBQtijz32iHHjxlW7x6RJk6J///7x7rvvpq0tKSmJG2+8sdo9aouzzjor+vfvn7Zu7ty5MWDAgMRPHPpPK1eujNNPPz1OO+20RE8QaNSoUdxxxx1b1AsAqJnMebmxYcOGGD16dAwbNiw6dOgQZ5xxRjz++OOJLzhI54MPPoirrroqOnfuHN/5znfik08+Sfzafv36ZfSuXQDA1uvUqVPiiw2vuuqqOOGEE2LlypXV6rF+/fo499xz4+yzz05UP2rUqBgwYEC1etQGP/zhD6NLly5p65YvXx777rtv/PnPf652j5kzZ8aAAQNiwoQJaWtTqVTcdNNNUa9evWr3AQBqB7NebsycOTMuuOCCaN++fQwbNiyuu+66ePvttzNy45+1a9fG2LFj45hjjonu3bvHAw88UK3X33777VFeXr7VOQCAmsWclzuNGzeO3/3ud4lqr7rqqjj88MMTP2HyPz399NPRv3//eP311xPVn3rqqTFkyJAt6kXtYLkIACh4rVq1ij/96U+JNuqXLFkShxxySBx99NGJ7uY5ffr0GDVqVOy1114xb968RHluvPHGRL/0r63q1asXDz74YGyzzTZpa5ctWxYnn3xyDBw4MB599NHYuHFj2tcsWrQofvWrX0WnTp2qtSz0m9/8Jrp27Zq4HgCo+cx5uffxxx/H7bffHkceeWSUl5dHjx494uSTT44rr7wyHn744XjllVdi9uzZsWzZsli3bl1UVlbGpk2bYs2aNfHpp5/G22+/HU888UT85je/iW9/+9vRuXPn6Nq1a/zkJz+JuXPnVitLixYt4v7774/69etn580CAFvspz/9aQwcODBR7QMPPBBdunSJm2++OVasWLHZ2rVr18bdd98d3bt3T/wL+K5du9bJBfCIiIYNG8YDDzyQ6K6ya9asiVNOOSWGDh0aEyZMSHvH07lz58YFF1wQffr0SXxX0x//+Mexzz77JKoFAGovs17uVFRUxLPPPhs//OEPo0+fPtG8efM44IAD4oILLojbbrst/v73v8e0adNi4cKFsWrVqti4cWNUVVXF+vXrY9myZTFr1qyYOHFijB49Oi699NLYb7/9omXLlnHYYYfFo48+Gps2bapWnnPPPTeOOuqoLL1bACDfzHm5c/jhh8c555yTqHbs2LHRpUuX+PGPfxyzZ89OW19VVRXPPvtsjBgxIg444ICYP39+oj5du3aN3/zmN4lqqb1SVVv7LCwAgDrioosuimuuuaZar+natWvsvffe0atXrygvL49UKhVLly6NGTNmxCuvvBLTpk2r1vFOPPHEuPfee6v1muqYO3dudOzYMW3dvvvuG88991zWckREjBkzJo444ohqPZq1WbNmMXjw4OjTp0906NAhmjRpEhUVFbF06dKYNWtWTJo0KaZMmZLoSUX/6txzz63TXzgBoNCZ876SqTnvlFNO2aI72+dKaWlpPP3007HXXnvlOwoA8DXmz58fu+66ayxZsiTxa0pLS2PfffeNfv36Rfv27aNp06axatWqWLhwYUyZMiWee+65at0RtbS0NF555ZXo27fvlryFtJLOTBMmTMjqHT9vueWWxHd8/aftt98+9t133+jTp0+0aNEiiouLY9myZfHhhx/GpEmT4rXXXqvWeb3BgwfHhAkTPLUIAAqEWe8rmZj1kp77y6ejjz46Hn744Sgqcq9zAKjLzHlfyfY5vY0bN8aQIUNi4sSJiV+TSqWiV69esddee0XXrl2jRYsW0aBBg1izZk18/PHH8e6778YLL7wQixYtqlaWli1bxsSJE+v8jTSJcNtOAID/5+qrr44FCxbE/fffn/g177//frz//vsZ6T9s2LD44x//mJFj1QaHHXZY3HHHHfG9730v8YUIy5cvj7Fjx8bYsWMzlmPkyJFxww03ZOx4AEDNY84rLOXl5TF27NjEd04DAPJj++23j7/97W+x//77J754YO3atfHkk0/Gk08+udX9i4uL45FHHsnaRQg1yVlnnRUfffRR/PrXv078mvnz58c999yTkf69e/eOxx57zGIRABQQs15h+da3vhV/+MMfLBYBQAEw5+VOcXFxjBkzJvbbb7946623Er2mqqoq3nnnnXjnnXcylqNZs2YxZswYi0UFwkQPAPD/FBUVxd133x1HH310znvvvffe8fjjj0fDhg1z3jufTj311Lj99tvzdqL59NNPj3vvvdeJbgCo48x5haNv374xceJEi0UAUEvsscceMXbs2GjSpElO+xYXF8f9998fhxxySE775tOvfvWrOPfcc3Pet3v37vHUU09FeXl5znsDAPll1qv76tevH//zP/8Tf/rTn6J+ffc4B4BCYc7LnfLy8njmmWdil112yUv/1q1bx4QJE2LAgAF56U/uuYoSAOBf1K9fPx5++OG4+OKLc9Zz1KhR8fTTT0fjxo1z1rMmOe200+LJJ5+MFi1a5Kxnw4YN4+abb47bbrvNYhEAFAhzXt1Wv379uPDCC2PSpEnRrVu3fMcBAKphn332iVdeeSV22mmnnPRr3bp1PPvss3HMMcfkpF9NcuONN8aNN96Ysws/DznkkHj11VejTZs2OekHANQ8Zr26q0ePHvHSSy/FT37yk0ilUvmOAwDkmDkvd1q0aBEvvfRSnHDCCTntu9dee8XkyZNj1113zWlf8suVlAAA/6GoqCiuvvrq+Mtf/hLt2rXLWp/mzZvH73//+/jjH/9Y8HeyP+CAA+KNN97IyZ0lBg4cGJMmTYqzzjor670AgJrFnJc5++yzT3Ts2DHfMSKVSsXhhx8eb7/9dlx77bV19vMGgLpu5513jsmTJ8c3v/nNrPY5+OCDY8qUKbH33ntntU9Ndu6558azzz6b1YXs0tLSuPLKK2PMmDHRrFmzrPUBAGoHs97Wa9asWRx00EHRoEGDfEeJNm3axE033RTTpk2LPffcM99xAIA8MuflTuPGjeO+++6L22+/PetPCG/UqFFcccUV8fzzz8f222+f1V7UPJaLAAC+xpFHHhkzZsyIH/7whxm923yDBg3iu9/9bsycOTNOPfXUjB23tuvQoUM88cQTMWbMmOjdu3fGj9+zZ88YPXp0vPzyy9G3b9+MHx8AqD3MeVvvO9/5TsyePTvefPPN+MUvfhG77LJLTvs3a9YszjjjjHj33Xfj8ccfj+7du+e0PwCQec2bN4977rknJkyYEP369cvosbt27RqPPPJI/O1vf4v27dtn9Ni10eDBg2PatGlx1VVXZfRihKKiojjmmGPi3XffjUsvvdQTwwGAL5n1tk7z5s1j3Lhx8fnnn8cDDzwQI0eOzPkSd//+/eOuu+6Kjz76KM4+++ycPQ0TAKjZzHm59b3vfS/ef//9OPvss6O0tDSjx27YsGF897vfjRkzZsRll11m3itQqaqqqqp8hwAAqOmWLl0ad9xxR4wePTrefffdLTpGp06d4oQTToizzjortt122wwnTGbu3LmJ7jC/7777xnPPPZf9QJvx3HPPxa233hpPPvlkrFixYouO0axZszjssMPipJNOiuHDh0cqlcpwSgCgtjPnZc6nn34aL730Urz88svx8ssvx5tvvhmbNm3K2PG7dOkS++67bxxxxBExfPjwGnGnVgAge55//vm4+eabY9y4cbFq1apqv76kpCSGDRsWZ555ZhxyyCF5OS90yimnxJ///Oe0dRMmTIghQ4ZkP9B/sWbNmvjzn/8cd911V0yePDm25FfH7dq1i2984xtxzjnnRKdOnbKQEgCoa8x6W2/jxo0xZcqUL8/FTZw4MRYtWpSx4zdu3DgGDhwYw4cPj2OOOSZ22mmnjB0bAKi7zHm5s2TJkrjzzjvj3nvvjbfffnuLj7PbbrvFN77xjRg1alS0adMmgwmpjSwXAQBU00cffRR///vf46233orp06fH3LlzY8WKFbFy5cqoqqqKpk2bRtOmTWP77bePnj17Ru/evWP//fd3N/UttGnTpi9Pik+fPj1mzpwZCxcujJUrV8bq1asjlUpF48aNo1mzZtGhQ4fo2LFj9O3bNwYOHBj9+vVz0SkAkJg5L7PWrFkT77zzTnz44Ydf/pk9e3YsXbo0Vq1aFatWrYqVK1dGRUVFNGzYMBo2bBhNmjSJ1q1bR5s2bWL77bePbt26Rffu3aNfv35OZgNAgdqwYUO88MILX54bmjFjRnz++eexcuXKWLNmTZSUlETTpk2jvLw8unXrFj179ow999wzhg0bFo0aNcp3/Fpl0aJFMX78+Jg6dWpMnz49Zs+eHcuXL4+VK1fGpk2bokmTJtG0adPYbrvtokePHtGrV6/Yb7/9Ytddd813dACgljLrZdacOXNi5syZ/3Y+7pNPPomVK1d+eT5uzZo1Ub9+/WjQoEGUlJREixYtok2bNtG2bdvo1KlTdO/ePXr16hV9+/Z1t3oAYIuZ83Lr448/jqeeeireeuuteO+99/7tvN769eujtLQ0GjduHK1bt46OHTtG165dY88994y99tortttuu3zHpwaxXAQAAAAAAAAAAAAAAAAFqijfAQAAAAAAAAAAAAAAAID8sFwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAADw/7N33+FRVH0bx+90EkLvvfcIAor0IoiConQVVFAQC6AoigoqICio2ECsVEGpCgKK9N57k957b4H07PuHr+2RJDO7Mzu7yfdzXbmu53F/M+fOsjNzcnbOnAyKyUUAAAAAAAAAAAAAAAAAAAAAAABABsXkIgAAAAAAAAAAAAAAAAAAAAAAACCDYnIRAAAAAAAAAAAAAAAAAAAAAAAAkEExuQgAAAAAAAAAAAAAAAAAAAAAAADIoJhcBAAAAAAAAAAAAAAAAAAAAAAAAGRQTC4CAAAAAAAAAAAAAAAAAAAAAAAAMigmFwEAAAAAAAAAAAAAAAAAAAAAAAAZFJOLAAAAAAAAAAAAAAAAAAAAAAAAgAyKyUUAAAAAAAAAAAAAAAAAAAAAAABABsXkIgAAAAAAAAAAAAAAAAAAAAAAACCDYnIRAAAAAAAAAAAAAAAAAAAAAAAAkEExuQgAAAAAAAAAAAAAAAAAAAAAAADIoJhcBAAAAAAAAAAAAAAAAAAAAAAAAGRQTC4CAAAAAAAAAAAAAAAAAAAAAAAAMigmFwEAAAAAAAAAAAAAAAAAAAAAAAAZFJOLAAAAAAAAAAAAAAAAAAAAAAAAgAyKyUUAAAAAAAAAAAAAAAAAAAAAAABABsXkIgAAAAAAAAAAAAAAAAAAAAAAACCDYnIRAAAAAAAAAAAAAAAAAAAAAAAAkEExuQgAAAAAAAAAAAAAAAAAAAAAAADIoJhcBAAAAAAAAAAAAAAAAAAAAAAAAGRQTC4CAAAAAAAAAAAAAAAAAAAAAAAAMigmFwEAAAAAAAAAAAAAAAAAAAAAAAAZFJOLAAAAAAAAAAAAAAAAAAAAAAAAgAyKyUUAAAAAAAAAAAAAAAAAAAAAAABABsXkIgAAAAAAAAAAAAAAAAAAAAAAACCDYnIRAAAAAAAAAAAAAAAAAAAAAAAAkEExuQgAAAAAAAAAAAAAAAAAAAAAAADIoJhcBAAAAAAAAAAAAAAAAAAAAAAAAGRQTC4CAAAAAAAAAAAAAAAAAAAAAAAAMigmFwEAAAAAAAAAAAAAAAAAAAAAAAAZFJOLAAAAAAAAAAAAAAAAAAAAAAAAgAyKyUUAAAAAAAAAAAAAAAAAAAAAAABABsXkIgAAAAAAAAAAAAAAAAAAAAAAACCDYnIRAAAAAAAAAAAAAAAAAAAAAAAAkEExuQgAAAAAAAAAAAAAAAAAAAAAAADIoJhcBAAAAAAAAAAAAAAAAAAAAAAAAGRQTC4CAAAAAAAAAAAAAAAAAAAAAAA+4+rVq9qyZYvTMYAMg8lFAAAAAAAAAAAAAAAAAAAAAADAcTdv3tT777+vkiVLqlq1avr++++djgRkCMFOBwAAAAAAAAAAAAAAAAAAAAAAABlXfHy8vvnmG7377rs6c+bMX/89ISHBwVRAxsHkIgAAAAAAAAAAAAAAAAAAAAAA4HVJSUn67rvvNHDgQB09etTpOECGxeQiAAAAAAAAAAAAAAAAAAAAAADgNS6XS1OnTlX//v21d+9ep+MAGR6TiwAAAAAAAAAAAAAAAAAAAAAAgFfMmTNHb775prZt2+Z0FAD/j8lFAAAAAAAAAAAAAAAAAAAAAADAVkuWLFG/fv20Zs0ap6MA+B9MLgIAAAAAAAAAAAAAAAAAAAAAALZYt26d+vXrp0WLFjkdBUAKmFwEAAAAAAAAAAAAAAAAAAAAAAAstXv3br3++uuaNWuW01EApCHQ6QAAAAAAAAAAAAAAAAAAAAAAACB9+frrr5lYBPgJJhcBAAAAAAAAAAAAAAAAAAAAAACvCggIUKtWrdS+fXunowAZHpOLAAAAAAAAAAAAAAAAAAAAAACA17Rs2VJbt27VTz/9pAoVKjgdB8jwgp0OAAAAAAAAAAAAAAAAAAAAAAAA0r+mTZvqvffeU/Xq1Z2OAuAfWLkIAAAAADKYpUuXKiAgwPAP4AQ+pwDwb5wXAQAA4GvGjx9vqG86cuRIp6Pe0tGjRzV16lS99dZbateunerUqaOSJUsqZ86cypw5s4KCggz3v8eNG+f0rwMAAAAAgM+rVauWlixZonnz5vnNxKL7778/zXGBzJkz68iRI05HBTzGykUAAAAAAAAAAAAAAMCwS5cu6ZVXXkmzrkKFCnrmmWe8kMiYzZs367vvvtOcOXN08OBBp+MAAAAAAJAhVK5cWYMGDdKDDz7odBTTPvzwQ82bN09JSUkp1ty8eVM9e/bU7NmzvZgMsB4rFwEAAAAAAAAAAAAAAMP69OmjCxcupFk3bNgwBQc7/8zTuXPn6q677lL16tX12WefMbEIAAAAAAAvefHFF7V161a/nFgkSRUrVtTTTz+dZt2cOXM0c+ZM+wMBNmJyEQAAAAAAAAAAAAAAMGTVqlUaM2ZMmnVNmjRR8+bNvZAoZSdPntT999+v5s2ba/369Y5mAQAAAAAgIypRooQCAgKcjuGRgQMHKkuWLGnWvfDCC7p586YXEgH2cP4RQQAAAFDDhg21bNkyx9oPCQlRWFiYwsLCFBkZqTx58ihv3rzKnz+/ypYtq7Jly6pixYoqW7as3/+xBwBmeOv8HBoa+td5+J8/WbNmVd68ef/zU7x4cZUvX145c+a0PRsAAABS5vTf81br1KmTxo0b53QMAIAPS05O1gsvvCCXy5Vm7ZAhQ7yQKGUrV65Uy5YtdfHiRUdzABlJYmKidu7cqY0bN/71s2PHDsXHxxveR7FixXTkyBH7Qvq5cePG6cknn3Q6hl9p0KCBli5d6nQMAAAA+LG8efPqpZde0jvvvJNq3fHjxzV06NA06wBfxeQiAAAAKCEhQQkJCYqOjtbFixd19OjRW9blyJFDNWvWVKNGjfTQQw+pbNmyXk4KAOlTfHy84uPjdf36dVPb5cmTR+XLl1f58uVVsWJF1alTR1WrVlVwMH/uAwAAAAAA640ePVqbN29Os65Nmza64447vJDo1ubPn68HH3xQcXFxjmUA0rukpCT9/vvv2rhxozZt2qSNGzdq27Ztio2NdToaAAAAAFiud+/eGjlyZJoPMRk2bJi6dOmiYsWKeSkZYB3uNgIAAIBhly9f1ty5czV37lz16dNHFStWVOfOnfXUU08pV65cTscDgAzn/PnzOn/+vFasWPHXf8ucObNq1qypunXrqkGDBqpXrx6TjQAAAAAAgMeuXr2qN998M826oKAgDRo0yAuJbm3Hjh1q27YtE4sACyUnJ2vv3r3/WpFo69atunnzptPRAAAAAMArsmbNqtdee019+vRJtS4mJkavvvqqpk6d6qVkgHUCnQ4AAAAA//X777+rT58+Kly4sJ555hmdPHnS6UgAkOHduHFDixYt0sCBA3X33XerQIEC6tatmxYsWKDExESn48FPjRs3TgEBAYZ+ihcv7nRc4D/4DAMA4H+4fgO+591339W5c+fSrOvQoYMqVKjghUT/lZCQoMcee8z06tAA/uZyubRv3z798MMPevnll1W/fn1ly5ZNFStW1BNPPKHhw4dr9erVTCwCAAAAkOH06NFD+fLlS7Nu2rRpWr16tRcSAdZichEAAAA8Fhsbq2+++UZlypTRW2+9pfj4eKcjAQD+34ULF/Ttt9+qadOmKlCggF588UUdPnzY6VgAAAAAAMCPHD9+XCNGjEizLjAwUP369fNColv76KOPtH37dsfaB/zZ3r17dffddytHjhwqV66cOnbsqE8++UQrVqxQdHS00/EAAAAAwHHh4eHq3bu3odq0VjgCfFGw0wEAAACQfsTExGjw4MGaOXOmJkyYoNtvv93pSACAf7hw4YKGDx+ukSNHqlWrVnrllVd01113OR0LAAAAAAD4uLfeekuxsbFp1rVv317lypXzQqL/un79uj788EO3t8+ePbuqVaumggULKlu2bMqaNasCA409r7VKlSputwv4itOnT2vJkiVOxwAAAAAAn/bcc8/p/fff18WLF1OtW7VqlX7++Wc99NBDXkoGeI7JRQAAALDczp07Vbt2bU2cOFGtW7d2Og4A4H8kJSVp+vTpmj59uho1aqTPPvtMt912m9OxAAAAAACAD9qxY4cmTJiQZl1AQIDefPNNLyS6tTFjxujSpUumtsmRI4eeeuopdenSRRUqVLApGQAAAAAASC8iIyP14osv6u23306z9o033tADDzygoKAgLyQDPGfsMTsAAACASTExMWrbtq2++uorp6MAAFKxZMkSVatWTb169dLVq1edjgMAAAAAAHzM22+/reTk5DTrmjVrpkqVKnkh0a2NHz/eVH39+vX1+++/a9iwYUwsAgAAAAAAhnXv3l2ZM2dOs2737t2aNGmSFxIB1mByEQAAAGzjcrnUvXt3TZ482ekoAIBUJCYm6rPPPlPZsmU1Y8YMp+MAAAAAAAAfsWXLFs2cOdNQ7auvvmpvmFQcPHhQW7ZsMVxfqVIlzZ8/X/nz57cxFQAAAAD4ry+++EIBAQGGfz766COnI3ssMTFR1apVM/w7h4aGatu2bU7HhgNy5sypJ5980lDtoEGDlJSUZHMiwBrBTgcAAACAeZUrV1aLFi0s2VdiYqLi4uIUHR2t8+fP6+TJkzpw4ICuXLliyf6Tk5PVqVMnlS9fXrfffrsl+wQAX+Xp+Tk2NlaxsbGKi4tTbGysrl27ptOnT+v06dM6e/asEhISLEz7X+fOnVPr1q3Vp08fvffeeyzNDQAAAABABjdgwABDddWrV1fDhg1tzZKahQsXmqofM2aMwsLCbEoDAAAAAP7P7Mq0e/bssSmJ93zwwQemHlzx5ptvqkqVKjYmgi976aWX9OWXX6Y5cWjfvn36/vvv9cQTT3gpGeA+JhcBAAD4oapVq2rw4MG2tnHs2DGtXbtWv/32m2bPnq0LFy64va/4+Hh16NBBmzZtUnh4uIUpAcC32Hl+drlcOnv2rHbu3PnXz6ZNm7Rt2za5XC5L2/rggw+0fv16TZ48Wfny5bN030Y1bNjQ8t8LAPwZ50UgfejUqZPGjRvndAwAAAzZunWrZs2aZai2V69e9oZJw7JlywzXVq1aVTVq1LAxDQDYp3PnzurcubOjGQICAkzVjx071vHMAADAvKioKFP1e/futSmJd+zZs0fvvPOO4fpq1aqpb9++NiaCrytZsqRatGhhaMXnwYMH67HHHlNgYKD9wQAP8AkFAADALRUtWlTt27fXmDFjdPLkSU2aNMn0U0n+affu3frkk08sTAgAGUtAQIDy58+vJk2aqFevXho1apS2bNmi8+fPa+rUqXrmmWcsnQi0dOlS1a5dWydOnLBsnwAAAAAAwH+8//77hury5Mmjdu3a2Zwmddu3bzdc+/DDD9uYBIAkFSxYUC1atNDAgQPVvXt3p+MAAADADbly5VL+/PkN1/vzykXJycnq0qWL4uLiDNWHhoZq/PjxCg5mjY+M7vnnnzdUt3//fs2YMcPmNIDnmFwEAACANIWGhuqRRx7R9u3b9dlnn7m9+tD777+vixcvWpwOADK2XLlyqV27dvrqq6904sQJzZ49W23btlVoaKjH+z506JAaNWqkU6dOWZAUAAAAAAD4i8OHD2vatGmGap9++mmFhYXZnChliYmJ2rdvn+H6atWq2ZgGyHjy58+v+++/X/3799fs2bN1+vRpnTx5UrNmzdLbb7+tO+64w+mIAAAAcJOZ1YvOnz+vS5cu2ZjGPiNGjNDq1asN1/fv39/0yk5In5o0aaKyZcsaqv3ggw9sTgN4jslFAAAAMCwwMFAvvPCCli9frrx585re/tq1axo1apQNyQAAkhQcHKwHHnhA06ZN08GDB/Xcc895PMnowIEDatSokU6fPm1RSgAAAAAA4OuGDRumpKSkNOsCAwP1zDPPeCFRyk6dOqWEhATD9ZUrV7YxDZC+5cuXT82bN9dbb72ln3/+WSdOnNDp06c1Z84cDRgwQA888ICpp9sDAADAt5mdQLN3716bktjn8OHD6tevn+H6O++8U6+99pqNieBPAgIC9OyzzxqqXb9+vZYuXWpvIMBDTC4CAACAaXfccYd+++03RUZGmt52zJgxNiQCAPyvwoUL64svvtDBgwf1yCOPeLSvffv2qVWrVqZu1AEAAAAAAP7pypUrGj9+vKHaJk2aqGjRojYnSt2ZM2cM1wYFBSlfvnw2pgHSjzx58ui+++5Tv379NGPGDB0/flxnzpzRL7/8onfeeUcPPvigChUq5HRMAAAA2KhSpUqm6vfs2WNTEvt069ZNN27cMFQbFhamcePGKSgoyOZU8CePPfaYQkJCDNV++umn9oYBPMTkIgAAALilatWqbv3Bs2/fPu3YscP6QACAWypcuLAmTZqkGTNmePTU0HXr1qlPnz4WJgMAAAAAAL5ozJgxhm+sevLJJ21Ok7YLFy4YrnXngVlARpEvXz698cYb+vHHH3X06FGdO3dOc+fO1eDBg9WyZUsVLlzY6YgAAADwMrMrF/nb5KLRo0dr4cKFhusHDhyoihUr2pgI/ihPnjxq0aKFodrZs2fryJEj9gYCPMDkIgAAALitS5cuqlGjhuntFi9ebEMaAEBqWrZsqZ07d6p+/fpu7+PTTz/VzJkzrQsFAAAAAAB8SnJyskaOHGmoNnv27GrVqpXNidJ28+ZNw7VMLgJSVqFCBb333ntq3bq14yuSAQAAwDdUqlRJAQEBhuv37t1rYxprnTp1Sr179zZcf9ddd+mVV16xMRH8WZcuXQzVmRl3AZzA5CIAAAB45PXXXze9zcqVK21IAgBIS65cuTR//nx17NjR7X08+eSTOn/+vIWpAAAAAACAr5g3b54OHTpkqLZt27YKCwuzOVHa4uLiDNcGBwfbmAQAAAAA0pcsWbKYmnjuTysXPffcc7p69aqh2kyZMmn8+PEKCgqyORX8VdOmTZUnTx5DtWPGjFFsbKzNiQD3MLkIAAAAHrn//vuVLVs2U9v405NKACC9CQsL08SJE/X000+7tf2VK1f05ptvWpwKAAAAAAD4glGjRhmuffTRR21MYlxiYqLTEQAAAAAg3YqKijJce/DgQSUkJNiYxhqTJ0/WrFmzDNcPHjxY5cqVszER/F1wcLDatm1rqPbSpUuaMWOGzYkA9zC5CAAAAB4JDQ1V/fr1TW1z4MABm9IAAIz68ssvdf/997u17ahRo7Rt2zaLEwEAAAAAACedP39es2fPNlSbP39+NWzY0N5ABrlcLqcjAAAAAEC6ValSJcO1iYmJhlfDdcqFCxf0wgsvGK6vXbu2XnrpJY/aHDdunAICAvz6Z+LEiR69BxnBI488Yrh29OjRNiYB3MfkIgAAAHjsjjvuMFUfExOjmJgYm9IAAIwICgrSlClTVLlyZdPbJicnezyACgAAAAAAfMuECRMMP2G6TZs2CgzkdgMAAAAASO/MrFwkSXv27LEpiTVefPFFnT9/3lBteHi4xo0bx9+/MKRevXoqWLCgodrFixfr8OHDNicCzAt2OgAAAAD8X8mSJU1vEx0drfDwcBvSWCchIUGbN2/W+vXrdfDgQR0+fFhHjhzRlStXdOPGDd24cUMJCQnKnDnzXz+FChVSiRIlVLJkSUVFRalOnTrKmzev07+Kzzh9+rRWrlypnTt3aufOndq/f7+uXr2q69ev6/r16woODlZERISyZMmiwoULq0SJEipXrpxq166tu+66S5kzZ3b6V7BcfHy8Vq5cqfXr12v37t3avXu3zp07p2vXrun69esKCQlRlixZlCVLFuXIkUPlypVTxYoVValSJdWrV085c+Z0+leAH8ucObMmTJigO++8U/Hx8aa2XbJkiZYvX2569bqMIDk5Wbt27dL27du1d+9e7d+/X6dPn9a5c+d08eJFxcbGKi4uTgkJCQoLC1NERMS/fv48BxYvXlzFihVT8eLF//oJDQ11+tfL8OgfWO/MmTNavXq19u7dq3379mnfvn26cOGCoqOjFR0drRs3bigkJES5c+dW0aJFVbZsWd1+++1q06aNChcu7HR8eIDjyVr0tZFeJCQkaM+ePdq1a5cOHTqkQ4cO6fjx4zp//rwuXLiga9euKT4+XnFxcQoODlZ4eLgyZcqkLFmyqGDBgipcuLCKFCmiqKgoVatWTeXKlVNQUJDTv5Zj9u/fr/Xr1+vAgQM6cuSIjh49qpMnT+rGjRu6efOmbt68qYSEBIWGhiosLEzZsmVT7ty5lS9fvr/OtxUrVtTtt9+uAgUKOP3rZFhcM61HH/TWJkyYYLj2oYcesjEJUsM5wVqcDwDYKTY2Vhs2bNCWLVt0+PBhHTp0SEeOHNHVq1f/OmfHx8crPDxcERERioyMVKFChVSyZEmVLFlSVatWVZ06dfguyA8wLpM2joeUMRZiL/p7njM7uWjv3r02JfHcnDlz9MMPPxiuf++991SmTBkbEyE9CQgIUIsWLfT111+nWetyufTDDz+oX79+XkgGGMfkIgAAAHgsR44cprcxexO7t5w6dUpTp07VrFmztG7dOt28eTPNba5du6Zr165Jkg4cOKBly5b96/Vy5cqpcePGeuSRR1S3bl0FBATYkt1XHTt2TBMnTtSsWbO0fv16uVyuFGsTExMVGxurS5cu6ejRo1q1atVfrwUHB6tJkyZ6+OGH1bZtW0VGRnojvi2SkpI0e/ZsjRs3TosWLVJ0dHQGTROvAAB3+ElEQVSKtYmJiYqJidG5c+ckSRs3bvzrtaCgINWuXVstWrTQY489xo1ecEvlypX19ttv68033zS97YgRI5hc9P9Onjypn3/+WXPmzNHq1at19epVQ9v9uZrfxYsX06wNDQ1V1apVVbNmzb9+ihcv7mFyGEH/wHobNmzQtGnTNH/+fG3bti3N+qSkJJ04cUInTpzQ6tWrJUnZsmVT586dbU4Kq3E8WYu+NtKDo0ePauXKlVq1apXWrFmj33//3fCYQXx8vOLj43X16lWdPXtWBw4c+E9NRESEGjRooObNm+v+++9XiRIlrP4VfMqpU6c0Y8YMzZ07V2vXrjXUz5T+uMkrNjZWV69e1bFjx25ZU7BgQdWvX18NGjTQfffdR1/UZlwzrUcfNHV79+7V1q1bDdVmy5ZNDRs2tDUP/o1zgrU4HwCw0/bt2zV16lQtWrRImzdvNvT3zZ83uJ87d06HDh3SihUr/notICBAFSpUUIsWLdShQwdVrlzZzvgwgXGZtHE83BpjIfajv2etChUqKCgoSElJSYbqfXXlomvXrunZZ581XF+vXj29+OKLNiZCetSyZUtDk4skadKkSUwugu9xAQAAwHENGjRwSTL806lTJ6cj/8vChQtN5ZfkunbtmtOx/5KcnOyaOXOmq1GjRq7AwEDTv4uZn8KFC7veeust14ULF5z+tf+lU6dOln/+tm/f7nr88cddwcHBlr+POXPmdA0YMMB1+fJlW98Xq8XGxro+/PBDV5EiRSx/T8LCwlxdunRx7d69O80cS5YsMbXvjMzfz89GJSYmusqWLWv6cxccHOw6fvy4LZn84XOamJjomjFjhqtJkyaugIAAW68fKf0UKlTI1aNHD9eyZctcSUlJbv8uZq4DTv94C/0D6/sHcXFxru+++85Vo0YNS963sWPHupXV6R93+cN5MSUZ/Xiir52+ZZT+opViY2Ndv/zyi6tHjx5u9UE9/WnYsKFr6tSprvj4eKffCsvExMS4vvnmG1etWrW82i+97bbbXP3793cdOHDArdwZ4fptVka/Zrpc/tUHTW8GDBhg+H14+OGHbc9z+PBhx499pz8PGf2cwPkg/Rg7dqyp97ZYsWJOR0YaOF7+6/Lly64hQ4a4KlSoYPv1p1KlSq7Ro0enq79p7MS4jPdxPPwXYyG3Rn/Pv5j57NaqVcvpuLf09NNPG/4dIiIi3B7zuhWzfWJf/JkwYYJl70dK+vfv7/fHZFxcnCtLliyG39dt27Y5HRn4F1YuAgAAgMdiY2NN1QcFBSlLliw2pTFn2rRpGjRokHbs2OGV9k6cOKFBgwbp448/1rPPPqvXX39duXPn9krb3nLlyhX16dNHo0aNSvUJXZ64dOmSBgwYoC+//FIjRoxQu3btbGnHSj/++KNeffVVHT582Jb9x8XFafTo0Ro7dqx69eqlQYMGKSIiwpa2kP4EBQWpf//+6tixo6ntEhMT9eWXX+rdd9+1KZnvmjFjhvr27ev4k7dOnjypzz//XJ9//rkKFCigNm3a6JVXXlGxYsUczeXv6B9Yb8GCBerRo4f27dvndBR4GceTtehrw1/FxcXpl19+0fTp0zVnzhxdv37dsSxLly7V0qVLVaxYMQ0ePFgdO3b025UaLl68qOHDh+vLL7/U+fPnvd7+jh07tGPHDg0cOFB169ZV9+7d1aZNG4WEhHg9S3rANdN69EHNmTZtmuHae+65x8YkkDgnWI3zAQC7nDlzRh9//LG++uorr/2ds2vXLnXp0kUDBgzQm2++qaefftpv/6bxN4zLpI7j4d8YC/Eu+nv2q1SpkuH3d+/evTanMW/JkiUaNWqU4fqhQ4eqVKlSlrWfM2dOValSxbL9OSFnzpxOR/ALoaGhatCggebMmWOofurUqX67Eh/SKYcnNwEAAMDl/086njhxoqn8OXPmdDqy6+DBg64mTZo4/mSP3Llzu7777jun3w7Lngo0c+ZMV4ECBbz+Pj7++OOu2NhY771hJly7ds316KOPev09KVWqlGvVqlW3zOTPKx94m7+fn81ISkpyVaxY0fRnrVChQrbk8dXP6YkTJ1z33nuv149pMz+TJk0y/Xvx1Pg/0D/4Nyv6B5cvX3a1b9/elveJlYucO1aM4Hj6G33t9C0j9RfdsWfPHtczzzzjypEjh+Png5R+qlWr5tq+fbvTb5UpiYmJrhEjRvjk+1qmTBnDv0dGuH4bwTXz3/ypD5qeHDhwwNT7cPDgQdszZdSVizgn/I3zQfrBykXpD8fLH33yTz75xNRT6e36qV27tmvnzp1OvyU+i3EZ+3E8/BtjIcbR3/Mvb731lqn379y5c05H/suNGzdcpUqVMpy9YcOGruTkZKdjZ0jpYeUil8vl+uijjwx/3qKiopyOC/xLoAAAAAAPmV2JpUCBAjYlMearr75SVFSUFi5c6GgOSbpw4YKeeOIJNWvWTBcvXnQ6jkfeeecdtWrVSqdPn/Z62xMmTFCjRo10+fJlr7edmp07d6patWqaNGmS19s+ePCg7r77bk2dOtXrbcM/BQYGqnfv3qa3O3nypDZv3mxDIt+zcOFC3XbbbZo3b57TUWAD+gfW27dvn+666y6uRRkQx5P16GvDX02bNk1ff/21T39+Nm/erBo1aujzzz93OoohW7Zs0e23366ePXv65Pt67tw5pyP4Fa6Z1qMP6p6ff/7ZcG3RokVVsmRJG9NkXJwTrMX5AIBdtm/frjvvvFMvvfSSoyuR/Gn16tWqVq2avv76a6ejpFuMy6SM4+G/GAvxHvp73hUVFWWqfs+ePTYlMe/NN9/UwYMHDdVGRkZqzJgx6W51L3hXo0aNDNfu3LnT9H13gJ2YXAQAAACPbdy40VT9HXfcYVOS1CUkJOjZZ5/Vc889p5iYGEcypOS3335TjRo1tHPnTqejmBYfH69HH31U/fv3l8vlcizHmjVr1Lx5c924ccOxDP+0du1a1a9fXwcOHHAsQ1xcnB555BF99tlnjmWAf2nfvr0yZ85servZs2fbkMa3jB8/Xs2aNfPpL4PgHvoH9li+fLnuuusu7du3z+ko8CKOJ+vR1wa8IzY2Vj179tRzzz2n5ORkp+Ok6IsvvlCtWrX87lyG/+KaaQ/6oO4z83d9w4YN7QuSQXFOsB7nAwB2mTBhgmrWrKktW7Y4HeVf4uPj9eyzz6pbt26Kj493Ok66wbhM6jge/Ju/jIWkhP6e95mdXLR3716bkpizdu1aU/dLfPDBBypRooSNiZARVKlSRTly5DBcP2vWLBvTAOYwuQgAAAAeSUxM1IoVK0xtU6NGDZvSpOzmzZu69957ffqpXYcOHVKtWrW0ePFip6MYlpSUpA4dOmjy5MlOR5H0x8BQ+/btHR3gl6SlS5eqSZMmPjEJweVyqVevXpowYYLTUeAHIiMj1bZtW9PbpffJRT/++KOeeuopJSYmOh0FFqN/YI9t27apRYsWunLlitNR4EUcT9ajrw1431dffaVHH31USUlJTkf5l4SEBHXs2FHdu3dXXFyc03HgIa6Z9qAP6r4bN25o1apVhuuZXGQtzgnW43wAwA7Jycl64YUX9MQTT/jcRNB/+vbbb9W2bVsmVFiAcZmUcTykL746FpIa+nvOKFu2rEJDQw3X+8LKRfHx8erSpYvhCXSNGzfWs88+a3MqZASBgYGqX7++4fp58+bZmAYwh8lFAAAA8Mhvv/2mS5cumdrG25OLYmJi1KJFCy1ZssSr7bojOjpaLVq00PLly52OYki3bt30448/Oh3jX3799VcNGzbMsfZ37typli1b+tzTw7p27Wp6IiAypscee8z0Nps3b9aZM2dsSOO8bdu2qWPHjn751Dakjv6BPY4cOaJmzZrp2rVrTkeBF3E82YO+NuCMqVOn6qWXXnI6xl9iYmL04IMP6ocffnA6CizANdMe9EE9s2zZMiUkJBiub9SokY1pMhbOCdbjfADADklJSercubNGjBjhdBRDZs+erXbt2jGhwkOMy9wax0P65GtjIamhv+ec4OBglStXznC9L0wuGjx4sH7//XdDtVmyZNHo0aMVEBBgcypkFGbGT5YvX861Cj4j2OkAAAAA8G8ffPCBqfqSJUuqevXqNqX5r6SkJLVu3dqypyoWLVpUFSpUUJEiRZQlSxaFhobq+vXrunz5svbu3as9e/bo5s2bHrVx8+ZN3X///Vq0aJEjqzwZNWjQII0ZM8bUNhERESpbtqxKliypvHnzKnPmzAoJCdGNGzd0/vx5HTp0SNu3b1dsbKxH2fr166f7779fFStW9Gg/Zp05c0b333+/rl696vG+smXLpgoVKqhMmTLKli2bIiMjFRMTo2vXrunw4cPavXu3zp49a3h/8fHxat26tXbu3OlxNqRvdevWVaZMmUwdhy6XS+vXr9eDDz5oYzLvi4uLU8eOHS15OnxoaKhKlCihokWLKk+ePMqRI4cyZcqk0NBQJSUlKS4uTjExMbp48aLOnTun06dP68iRI6yWZBP6B/ZITExU27Ztdfr0aVPbZcqUSWXKlFGpUqWUL18+Zc6cWaGhoYqOjtb169d15MgR7dq1SxcuXLApOTzB8WQP+trAH3LlyqUiRYooX758yp8/vzJnzqxMmTIpLCxM8fHxiouL04ULF3T27FkdPHhQx44ds6TdESNGKCoqSt26dbNkf+66ceOG7rvvPq1cudKyfYaHh6tEiRIqWbKk8ufPr4iICEVERCgxMVExMTG6evWqTp48qZMnT+rQoUP0Ry3ENdMe9EE9t2jRIsO1xYoVU/Hixe0Lk4FwTrAe5wMAdkhKStLjjz+uSZMmWbK/8PBwlStXTkWKFFGBAgUUERGh8PBwxcbG6vr16zp69Kj279+vI0eOeNTOrFmz9Nxzz2n06NGW5M5oGJe5NY4H78joYyGpob/nvEqVKmnHjh2Gavfu3WtzmtRt375dQ4cONVw/bNgwFStWzMZEyGjMTC66ceOG1qxZowYNGtiYCDCGyUUAAABw26RJk0yvhNKlSxevPunj9ddf12+//eb29gEBAWrcuLE6duyoe++9VwUKFEi1PjExUatWrdLs2bM1btw4Xbx40a12o6Oj1aZNG23atEl58+Z1ax92WrZsmQYOHGiotmLFinrkkUd07733qmrVqgoJCUm1Pj4+XqtWrdKkSZM0ceJExcTEmM6XkJCgl19+2aN/e7OSk5P16KOPejSAW7BgQXXp0kUPPPCA7rzzzjSPlT179ujXX3/V6NGjDT1x58KFC+revbt69Ojhdkakf5kyZVK9evW0YMECU9tt2rQp3U0uGjFihHbt2uXWtpkyZdI999yjZs2aqV69eipfvryCg80NwyQkJOjw4cPatm2bNm7cqHXr1mnNmjU8tcgC9A/s8e6772rTpk2GakuWLKkOHTrovvvu05133qnQ0NA0tzl8+LBmzZqlKVOmaM2aNZ7GhUU4nqxHXxsZVYkSJVSrVi3VqlVLVapUUYUKFZQ7d25T+7h+/brWrVunpUuX6qefftLu3bvdztOrVy/dfffdKl26tNv78ERycrI6dOjg8cSiwMBA1a9fXy1btlTdunV1++23KygoyNC28fHx2r17t9avX68VK1Zo6dKlOn78uEd5MjKumfagD+q5pUuXGq6tVq2afUEyGM4J1uN8AMAOL7/8skcTKQIDA9WgQQO1aNFCjRs3VsWKFQ2NE58+fVqLFy/WpEmTNG/ePLcm/Y8ZM0bVq1fX888/7070DItxmZRxPFiPsRBz6O85LyoqynDt4cOHFR8fb+i9t1pSUpKeeuopw6v0Nm3a1Kcn1sE/VapUSWFhYYYfZLpkyRImF8E3uAAAAOC4Bg0auCQZ/unUqZPTkV27d+925ciRw1Tu4OBg16lTp7yWcfr06aby/e9PmzZtXHv27HG7/ZiYGNfIkSNduXLlcjtDo0aNXImJiRa+K7fWqVMnw5maN2/uKliwYJp1jRs3di1evNijXKdPn3Z16dLF7fdv/vz5Fr1DaRs6dKjbOQsWLOgaN26cKyEhwe3258+f76pcubKh9rp3724qX0bmj+dnK3zwwQemP8f333+/pRmWLFni6Of0+vXrrpw5c5p+H3LlyuV6//33XZcuXbI8k8vlct24ccP166+/up577jlX3rx5b5lh0qRJlrc7duxYw+9BsWLFLG/fSvQPjDPTP6hWrZorJCQkzboaNWq4fvnlF4+zLV261LV27VrD9enhM+z0efFWOJ6Moa+dvmXU/qJRgwYNSvG9CAoKct1zzz2uzz77zHXgwAFb2t+wYYPrkUcecQUFBbn1OW/YsKErOTnZlmxp6dWrl0fn2Bw5crjefvtty8dhNm/e7Orfv7+rdOnSt2w3W7ZslrWVHq7ff+KaaVx66oP6g+joaFdwcLDh9/ztt992OvIt+dv5gnOCMZwP0g8zx6ivHKdIndlzxtixY52O7JZvv/3W7fNkZGSk67XXXnMdPnzY4xyHDh1yde3a1RUYGGg6R0hIiGvDhg2evxl+jHEZa3A8GMdYiHH09/zPzJkzTX2edu7c6UhOM/duZMuWzXXs2DFHcuK/+vfvn+K/lT/2KatWrWr4s9i0aVOn4wIul8vlyth3iQEAAPgIf7sZaefOna7ChQubHoh69dVXvZbxzJkzruzZs7s1YFagQAHXggULLMty8eJFV/v27d3KIsk1ZMgQy7KkxMzAnZH3b/r06ZbmmzlzpisiIsJ0lnvvvdfSHCnZvn27ocHMW/089dRTruvXr1uSIzEx0TVkyJA0B4sDAgJMZczI/O38bJWlS5e6dexbyemb6N35ouzhhx+2bVLRrSQmJroWLFjgateu3b/OQUwuShn9A3Os7B9kzZrV9c0339ieOSXp4TPs9Hnxf3E8GUdfO33LqP1Fo251Q02VKlVcn3zyievMmTNey7Ft2zZX3bp13Trupk6d6rWcf/rhhx/cPk8EBwe7Xn31Vde1a9dsz7l8+XLX448//q++KJOL/otrpjnpqQ/qD8z2Ma3uh1jFn84XnBOM43yQfjC5KP0xewz6442g69atc4WGhrp1zunatavr7NmztmSqWLGi6TxVqlTx6OF2/o5xGc9xPJjDWIhx9Pf8z4EDB0z9u/z4449ez7h3715XpkyZDGccPXq01zMiZeltcpGZ81y2bNlcSUlJTkcGXIECAAAADHK5XBozZoxq1aqlEydOmNq2VKlShpeQt8JLL72kK1eumN6udu3a2rJli5o0aWJZlpw5c2rKlCn6+OOPFRAQYHr7d955R4cPH7Ysj53q1aunLVu2qE2bNpbu96GHHtL8+fMVHh5uarv58+d7tPS7Ub169TK8pPafAgMD9fXXX2v06NGKjIy0JEdQUJBef/11LVy4UNmyZUuxzuVyWdIe0q/bbrvN9DanT5/WuXPnbEjjjPHjx5uqf+211zR58mTlyJHDpkT/FRQUpCZNmmjq1Kk6fvy4+vXrp+zZs3utfX9E/8AZZcuW1aZNm/T00087HQUW4njyvoza10b6EBgYqJYtW2rJkiXaunWrevXqpXz58nmt/cqVK2vZsmUaMGCA6fPEoEGDvPo31OnTp9WjRw+3ti1Xrpw2bNigDz74QFmyZLE42X/Vq1dP3333nQ4fPqw+ffooc+bMtrfpj7hmOoM+qDFr1641VV+5cmWbkmQcnBO8j/MBALPi4uLUuXNnxcfHm9ouT548mjt3rr799lvlzZvX8lw1atTQunXr1KpVK1Pbbdu2TR9++KHleTKajDouw/HgPsZCvIf+nveULFlSERERhuv37NljY5r/crlc6tq1q2JjYw3VN2vWTE899ZTNqZCRmRlHuXr1qn7//Xcb0wDGMLkIAAAAaUpMTNSMGTN05513qkuXLrp+/bqp7UNCQjR69GjTg6LuWrhwoSZNmmR6u4YNG2r+/Pm2Deq99NJLGj16tAIDzXXDY2Ji1L17d1syWalFixZauHChbe9fnTp1NHbsWFPbuFwuff/997bk+dPMmTO1ePFiU9sEBQXpu+++U7du3WzJ1LBhQy1YsIBJBnBbzpw5VbBgQdPbHT161IY03nft2jWtWbPGcH3Lli01dOhQGxOlLV++fBo8eLCOHj2qevXqOZrFV9E/cEaVKlW0Zs0alS5d2ukosBDHk/dl1L42/F9gYKDatGmj7du3a8aMGWrYsKGjWfr3769x48YpKCjI8HY7duzQzz//bGOyf+vatasuXbpkertmzZpp3bp1uv32260PlYZChQrp/fff16FDh/Tiiy96vX1fxjXTGfRBjdu8ebPh2oiICJUqVcrGNOkf5wTv43wAwB0DBw40PWmjfPnyWrdune677z6bUv0hMjJS06dP12OPPWZqu/fee08XLlywKVX6l5HHZTgezGMsxLvo73lXQECAKlSoYLh+7969Nqb5ry+++EIrVqwwVJs9e3Z9++23NidCRmf2IS1mxmkAuzC5CAAAALd06tQp/fTTT3r22WdVpEgRtW7dWps2bTK9n+DgYE2dOlUNGjSwIeWt9e3b1/Q2t912m2bPnm37U3affPJJffDBB6a3mzt3rlauXGlDIms0btxY06dPV2hoqK3tPPzww+rQoYOpbaZPn25Tmj8G7l9//XXT273//vvq2LGjDYn+duedd+rHH39UcHCwre0g/XJn9SKzq9r5qlWrVikpKclQbWhoqD7//HObExmXNWtWFSpUyOkYPon+gfcVL15cv/32m3LmzOl0FFiM48m7MmpfG+lD7969NX36dFWqVMnpKH954okn9Omnn5raxls3GsyZM0e//vqr6e1atmypWbNmpbqCrTfkzZvXq6tW+wOumd5HH9Scbdu2Ga6tVKmS6ckn+DfOCd7F+QCAO3bv3m16VZNy5cpp2bJlKlGihE2p/i0wMFDjx49X8+bNDW8THR2tYcOG2Zgq/crI4zIcD+5hLMR76O85IyoqynCtN1cuOnr0qKl7Nz799FO+U4XtzE4uMjNOA9iFu8wAAAD80JYtW/Tmm29asq+kpCTFx8crOjpa58+f18mTJ3XgwAG3npL7v8LCwjRx4kS1bNnS86AGzZs3Txs2bDC1TY4cOTRr1ixFRkbalOrfevfura1bt2rixImmths0aJDmzZtnUyr3lShRQlOnTrV9UP1PQ4cO1U8//WR4Keu9e/dq7969KleunOVZZs2aZfppOw8//LB69+5teZZbufvuu/XBBx/o5Zdf9kp7SF+KFi1qepvjx4/bkMT7du3aZbi2devWDDz7AfoH3hcSEqJp06Ypf/78TkeBxTievCsj97XTq/Hjx2v8+PFOx/jLQw89pJkzZ9q2/7CwMNv27YkePXpo9erVhlePmDdvns6ePWvbU6olKTk52a2bzhs3bqwpU6bwYAkfxDXT++iDmnPz5k0dOHDAcL07DyHB3zgneBfnAwDuevvtt5WYmGi4Pk+ePFqwYIHy5s1rY6r/CgwM1A8//KDq1avr4MGDhrYZOXKk+vTpw034JmT0cRmOB/cwFuId9PecY2ZykTdXLnrmmWcUHR1tqLZFixbq1KmTzYmAPx7GlC9fPp09e9ZQ/datW+0NBBjANw0AAAB+aPv27dq+fbvTMVJ15513aty4capYsaJX233vvfdMb/Ppp5+qePHi1odJxciRI7V06VJTq3zMnz9fGzdu1B133GFjMnMCAgI0fvx4r34RUaRIEXXq1Elff/214W2WL19uy8C62ada5c2bV1988YXlOVLTq1cv/fTTTz77BFH4rgIFCpjeJr2sXGTm5qr77rvPxiSwCv0D73v77bd9LhOswfHkPRm9rw3Ybfjw4Zo7d66uXLmSZm1SUpKmTJmiF154wbY833//vXbs2GFqmyJFimjy5Mleu9EN5nDN9D76oObs2bNHycnJhuuLFStmY5r0j3OCd3E+AOCOrVu36scffzRcHxgYqEmTJqlIkSI2pkpZtmzZNHr0aDVq1EgulyvN+ujoaE2YMEEvvviiF9L5v4w+LsPxkD752liIJ+jvOcfM5KKrV6/qzJkztk8CGzdunOEHHuTMmdPUeRbwVLFixQxPLvr9999tTgOkjXXLAQAAYKlChQpp2LBhWrNmjdcnFu3du1fLly83tU3Tpk31xBNP2JQoZVmzZnVrksk333xjQxr3de3aVfXq1fN6u88++6ypejsm1mzfvt30fj/66COvPxEuICBA3377LU+xhmkZeXLR+fPnDddWqlTJxiSwAv0D7ytevLheffVVp2PABhxP3pWR+9qAN+TOndvUTUQLFiywMc0ffy+aERAQoB9++EG5c+e2KRE8wTXT++iDmrd//35T9aza6z7OCd7F+QCAu959911DkxL+9Nxzz6lx48Y2JkpbgwYN1KFDB8P1Y8eOtTFN+pLRx2U4HtInXxsLcRf9PWeZmVwk/fFgCzudOXNGL7/8suH64cOHu/U9OOAuM+MpZ86cMbwCF2AXJhcBAADAYyEhIbr77rs1bdo0HTlyRL1791ZQUJDXc3z33Xem6gMCAvTBBx/YlCZtLVq0UP369U1tM3XqVMXGxtqUyJywsDD179/fkbZvv/12lSpVynD9xo0bLc9gdMn4P0VFRZka0LZS+fLlWdYbphUsWND0NteuXbMhifeZGbDLnj27fUFgCfoH3jdw4ECFhYU5HQM24Hjynoze1wa85dlnn1VgoLGvypYtW6bExERbcqxdu1bbtm0ztU2XLl1Ut25dW/LAc1wzvY8+qHlmJxcVLlzYpiTpH+cE7+J8AMAd586d088//2y4Pnfu3Hr33XdtTGRc//79DX8vu23bNm3ZssXmRP4vo4/LcDykb74yFuIJ+nvOKly4sLJly2a43u7JRd27d9fly5cN1bZs2VIdO3a0NQ/wv8yOp5gdrwGsxuQiAAAAuCUoKEiPPfaYlixZoqtXr2rRokVq27atY6ujuFwuTZw40dQ2bdu2VZUqVWxKZMzgwYNN1V+9etXUYK6dnnjiCUefWHr//fcbrj1w4IDlA5+TJ082Vf/mm28aHqi1w1tvveXIpD/4r6xZs5reJiYmxoYk3mfmfHH9+nUbk8BT9A+8r0CBAnrkkUecjgEbcDx5V0bvawPekj9/fjVo0MBQ7fXr17V582Zbcnz11Vem6iMjIzV06FBbssBzXDO9jz6oew4dOmSqnpWL3MM5wbs4HwBw17hx45SQkGC4vnfv3qZurLZTmTJl1Lx5c8P1c+bMsTFN+pDRx2U4HtI3XxkLcRf9Pd9QqVIlw7V79+61Lcf06dP1008/GarNlSuX6TE4wApm+xQHDx60KQlgDJOLAAAA4JakpCRNnDhRHTp00AsvvKAFCxYoKSnJsTxbtmzRsWPHTG3Ts2dPm9IYV69ePVWtWtXUNjNnzrQnjEldu3Z1tP1atWoZro2Pjzd9w0RqNm3apCNHjhiuz5cvn1q3bm1Z++4oVqyYmjVr5mgG+JdMmTKZ3sZXnlDrqfDwcMO1Zq898C76B9731FNPKTQ01OkYsAHHk3dl5L424G2NGjUyXGt2dSEj4uPjDd8E8adnn31WuXLlsjwLrME10/vog7rnxIkTpuqZXOQezgnexfkAgLvGjBljuDYyMlLdu3e3MY15Xbp0MVw7b948G5OkDxl9XIbjIf1zeizEE/T3fENUVJThWrtWLrp06ZJ69OhhuP7zzz9Xvnz5bMkCpMbsykUnT560KQlgDJOLAAAA4JHTp09r1KhRatq0qUqUKKEhQ4boypUrXs+xYMECU/UVK1ZUvXr1bEpjznPPPWeqfvHixXK5XDalMaZ06dKqUaOGoxnuuOMOU/WHDx+2rO2FCxeaqu/cubNCQkIsa99d3bp1czoC/Ig7k4vSy8pFZm7U/OWXX2xMAk/RP/C+9u3bOx0BNuF48p6M3tcGvO3OO+80XLtz507L21+2bJmp1TCDg4P18ssvW54D1uGa6X30Qd1j5maViIgI5ciRw8Y06RfnBO/ifADAHfv37ze1qkK7du2UJUsWGxOZd8899ygsLMxQ7bp163Tt2jWbE/mvjD4uw/GQMTg9FuIJ+nu+wRcmF/Xq1Utnz541VNu2bVtWvIJjzD6shclFcBqTiwAAAGCZ48ePq2/fvn9NMoqLi/Na22Yne/jSoFObNm0UHBxsuP7cuXPavn27jYnSdt999znaviSVKFHC1IQdowNLRixZssRUvdOrFv2padOmioyMdDoG/ERGnlxUtGhRw7XTpk3TuXPnbEwDT9A/8K4SJUqocuXKjmaAfTievCej97UBbytVqpThWjtuqJkzZ46p+qZNm6pAgQKW54B1uGZ6F31Q950+fdpwbcGCBW1Mkr5xTvAezgcA3PXrr7+aqu/QoYNNSdwXERFheHJqYmKiNm3aZHMi/5XRx2U4HjIGp8dC3EV/z3eYmVx07NgxxcbGWtr+b7/9pgkTJhiqzZMnj7744gtL24d9BgwYIJfLdcufzp07Ox3PLUwugr9hchEAAAAsd+XKFfXt21e33367Vq9ebXt7SUlJWrVqlaltWrVqZVMa83LmzGn6aZRLly61J4xBZpZKt0tQUJCpCQBW3fyfmJiolStXGq4vUKCAqac/2SksLMwnvhSBfwgNDTW9TXx8vA1JvK9SpUqGa69cuaLnn3/e8Sfz4r/oH3hfgwYNHG0f9uF48q6M3NcGnJA3b17DtUePHrW8/Xnz5pmqf+yxxyzPAOtwzfQ++qDuSUpK0uXLlw3X+9rT6P0F5wTv4nwAwF1z5841XJs5c2bVr1/fxjTuM7PazdatW+0L4ucy+rgMx0PG4PRYiLvo7/kOM9+lJicna9++fZa1ff36dT3zzDOG60eOHKk8efJY1j5gltkxlQsXLtiUBDCGyUUAAACwzZ49e9SgQQN99NFHtrazd+9eU6tl5M2b1+eeaGN2wse2bdtsSmJM1apVHW3/T2YGPi9evGhJm/v27dONGzcM1zdq1EgBAQGWtG2Fxo0bOx0BfsKd1efcWe3IF9WsWdNU/Y8//qgnn3xSSUlJNiWCO+gfeF/dunUdbR/24Xjyrozc1wackDlzZsO1Z86csbTta9eumbq5IjAwUM2aNbM0A6zFNdP76IO65+rVq6bqw8PDbUqSvnFO8C7OBwDc4XK5TD0osX79+m49mMsbzIwnZMTJFEZl5HEZjoeMw8mxEE/Q3/MdefPmNTVhZ8+ePZa1/dprr+nYsWOGatu3b6927dpZ1jbgDrNjKmbHbACrMbkIAADAD3Xq1CnFZWDd+UlOTlZMTIyuXLmiQ4cOac2aNZoyZYoGDBigli1bKnfu3G5nTUxM1CuvvKJu3bopOTnZwnfhbzt27DBVX7t2bVtyeMJspu3bt9uUJG2RkZEqUaKEY+3/U65cuQzXWrXUttml32vVqmVJu1bxtTzwXe4cM+llclHx4sVVsWJFU9uMHz9etWrV0tq1a21KBbPoH3ifr90EB+twPHlPRu9rZwRW/z3v6c/MmTOdfkscFxwcbLj2xo0bun79umVtb9myxdQKmNWrV1f27Nktax/W45rpffRB3XPlyhVT9enl731v45zgXZwPALhj//79pvr4ZlZD8bZixYoZrt27d6+NSfxXRh+X4XjIOJwcC/EE/T3fEhUVZbjWquNs+fLl+uqrrwzV5s2bVyNHjrSkXcATZicXmR2zAaxmvJcAAACAdCsgIECZMmVSpkyZlC1bNpUoUeI/qzZs2LBBU6dO1dixY916+tG3336r2NhYjR8/3vJVXMx+SWt2RQpvuPPOOxUSEqKEhARD9bt27VJSUpKCgoJsTvZfRYoU8XqbKTHzR7g7q7DcitnJRXfeeacl7VolKipK4eHhpp6aiozJnS+j0tOTjB999FG99dZbprbZsGGDatWqpcaNG6tnz55q3ry5QkJCbEqItNA/8L7y5cs70i7sx/HkPRm9rw380+nTp7Vr1y4dOHBA+/fv1/Hjx3XhwgVduHBBFy9eVGxsrOLi4hQfH2/42LbC+fPnlSVLFkv2tWnTJlP1DRo0sKRd2IdrpvfRB3VPdHS0qfr09Pe+N3FO8C7OBwDcsXnzZlP11apVsymJ5woVKmS49uTJkzYm8V8ZfVyG48F5GWEsxBP093xLVFSUlixZYqjWipWLYmJi1LVrV8MP6vnqq688epAyYJXQ0FAFBgYafiC3r0zoRMbF5CIAAAAYcuedd+rOO+/UO++8o6+//loDBw40/bSECRMmqECBAnr//fctzXbgwAFT9WZXo/CGsLAwlSxZ0vATW2JjY3Xy5EkVLVrU5mT/VbBgQa+3mZKwsDDDtVYNrO/bt89Uva8NcgYFBalMmTKOP1kYvs+dYyY93WzUrVs3DR482K33YdGiRVq0aJFy586t1q1bq1WrVmrYsCFPevYy+gfelTdvXp/4chH24Hjynoze10bGdvjwYc2ZM0fLly/XunXrdPz4cacj3ZKVD2owe2MFT+j1fVwzvYs+qPvMXrvT09/73sQ5wXs4HwBw17Zt20zVlypVyqYknsuaNavh2jNnzig5OVmBgYE2JvI/GX1chuPB+8dDRhwLcRf9Pd/j7ZWL3n77be3fv99QbYcOHdSqVSuP2wSsEh4erhs3bhiqjY+PtzkNkDr+QgAAAIAp4eHh6tWrl/bu3aumTZua3v6DDz7QTz/9ZGmmU6dOmar3tckefypXrpyperO/t1XMDMbazcwTMJOSkixp08z7njdvXmXLls2Sdq1UtmxZpyPAD1y6dMn0NunpZqO8efOqV69eHu3jwoUL+uabb9SsWTPlypVLzZo107Bhw7RhwwYlJiZaExQpon/gXfny5XOkXXgHx5P3ZPS+NjKeM2fOaMiQIYqKilLJkiX1wgsvaPr06T57M43k3gqfKTH7e5q5aQPO4JrpXfRB3Wf2Kefp6e99b+Kc4D2cDwC46/Dhw6bqnZhQbZSZ63ViYqLOnTtnYxr/lNHHZTgevCOjj4W4i/6e7/Hm5KKNGzfqk08+MVSbP39+jRgxwqP2AKuZuS4xuQhOY+UiAAAAuCVv3ryaO3euunfvrq+++srUtl27dlWtWrVUoEABS7KY+bIyICBAxYsXt6Rdq5l9upNTN25k9JsJTp8+bbjWVz9rJUqUcDoC/ICZz/qfsmfPbn0QB7355puaPn26Dh486PG+bt68qd9++02//fabJCkiIkI1atRQ7dq1VatWLdWsWVO5c+f2uB38jf6Bd/HFXvrG8eQ9Gb2vjYxjz549GjhwoKZPn+53k66dnFxUpkwZy9qGPbhmehd9UPeZPfeyEq97OCd4D+cDAO46ceKEqfr0NAZ+/fp15c+f3+kYPiWjj8twPNh7PDAW4hn6e76nUqVKhmujo6N14sQJFS5c2HQ7CQkJeuqppwxPpPz666+VM2dO0+0AdjLTxzD7QBjAaqxcBAAAALcFBgbqiy++UIcOHUxtd/nyZfXu3duyHGZugM+ePbtCQkIsa9tKefPmNVXvzo3/VvDV989bzLzvZv9NvSVPnjxOR4AfcOcc486AsC+LjIzUlClTFBERYfm+b968qaVLl+q9995TixYtlCdPHpUvX15du3bV+PHjTX+Jh/+if+BdWbJkcaRdeAfHk/f46nsHWOXixYvq0qWLoqKiNHnyZL+7mUYyf0N+asz0+SIjIxUZGWlZ27AH10zvog/qvsBAc7cJ+OP52hdwTvAezgcA3JWRx2FjYmKcjuBzfPVa7C0cD/ZgLMQa9Pd8T7Zs2Ux9N+zu6kXvvfeeduzYYaj28ccf14MPPuhWO4CdzEwYMrN6IWAHJhcBAADAIwEBAfrmm29Urlw5U9tNmjRJ69ev97j9xMRE3bx503C9r072kMw/befKlSv2BEGKEhMTdePGDcP1vvp589Vc8C3u3AhSpEgRG5I4q3r16po+fbrCwsJsb2vv3r0aPXq0OnfurCJFiigqKkqvvPKK1q5dK5fLZXv76Qn9A+/zxjECZ3A8AbDKzz//rEqVKmnMmDGGnzTqi6zql7lcLl29etVwvVWrP8M+XDO9jz6o+8zeOGvms40/cE7wLs4HANzl1CRpX8DkIvwvjgfrMRZiHfp7vikqKspw7Z49e0zvf+fOnXrvvfcM1RYsWFDDhw833QbgDWbGB0JDQ21MAqSNyUUAAADwWObMmfXZZ5+Z3s7oIEBqzA70ZcuWzeM27WI2my8sP57RmP28+eoTlLJmzep0BPiBI0eOmN4mva1c9KdmzZppwYIFypUrl1fb3bVrlz766CPVqlVLxYoV0xtvvKEDBw54NYO/on/gfQx0p18cTwCs0L9/f7Vs2VJnz551OorPSE/nV/whPf2b+ss1kz6o+8y+d9x8bB7nBO/ifADAHQkJCYqPj3c6hmMY98A/cTxYfzwwFmIt+nu+yc7JRUlJSerSpYvhc9O3336r7Nmzm2oD8BYzYwQZfSVFOI/JRQAAALDEvffeq1q1apnaZtasWTp27JhH7Zod6PPlJ9qYzcagv/ell8+br+aCbzG6vPw/pdfJRZJUr149bdu2TY0bN3ak/ePHj2vo0KEqW7as7r33Xi1ZssSRHP4ivZyvJf/pHwQEBDjSLuzH8QTAEy6XS08++aTeeecdp6P4HLM3nWfKlMmmJLAK10zvow/qvvDwcFP1TC4yj3OCd3E+AOCOjH5984WVSOA7OB6sOx4YC7EH/T3fZGZy0d69e03t+9NPP9X69esN1T755JNq3ry5qf0D3pKUlKSEhATD9RERETamAdLG5CIAAABYpmfPnqbqXS6Xxo8f71GbcXFxpur5khaeSC+fN1/NBd9x9uxZnT9/3vR2xYsXtz6MDylUqJAWLlyoH374QUWLFnUkg8vl0vz583X33XerQYMG2rBhgyM5fF16OV9L9A/gPI4nAJ54+eWXNW7cOKdj+CQmF6U/XDPhT8yuRJPRbzZ1B+cEAPB9nK+Av3E8WIexEGQklSpVMlxrZuWiAwcO6K233jJUW7hwYX3yySeG9w14W3pa2RgZQ7DTAQAAAJB+PPDAAwoNDTW1ZPrPP/9seFAA8De++tQ3X80F3+HOqkXFixdXjhw5bEjjex599FG1adNG48eP18cff2xqMNxKy5cv11133aVnn31WH374oTJnzuxIDgAAgFsZNWqUPv30U0v2lSNHDlWpUkUlS5ZUqVKlVKBAAeXLl0958+ZVlixZFBkZqcjISIWEhCg4OFghISGmnmjrxNNveeIuACdlz57dVD2TiwAA6ZHZiaBAesbxYA3GQpDRVKxYUYGBgUpOTk6z9sSJE7px40aa32e6XC517drV8N+ho0aNYjIGfJrZMRWzYzaA1ZhcBAAAAMtkyZJFtWrV0rJlywxvs2XLFl24cEG5c+d2q02zT+41M/HJ28wO2vLUYu8z+5ROX/288QUB0rJu3TrT21SvXt2GJL4rNDRUTz/9tJ5++mktWbJE48eP18yZM3X16lWv5nC5XPryyy+1aNEizZo1S+XKlfNq+76K/gFgHY4nAO44ePCgXnrpJbe3z549ux544AHdc889ql+/frpcITM8PNxUPU+R9n1cM+FPwsPDlSlTJsPnlps3b9qcKP3hnAAAvi8kJMTpCIDP4HjwHGMhyIgiIiJUokQJHTx4MM1al8ulffv2qWrVqqnWff3114bvOeratavuvfdeQ7WAU8xOLsooD3SF7wp0OgAAAADSlzvuuMNUfXJystavX+92e2a/qPTlSRV8Sev70svnzVdzwXcsWLDA9DYZbXLRPzVq1Ejjxo3TuXPnNHfuXL3wwgsqX768VzPs27dPNWvW9Oiamp6kl/O1RP8AzuN4AuCOF154QdHR0aa3q1y5siZNmqQzZ85owoQJeuKJJ2y/mcaplV3NnmOYXOT7uGbC3+TPn99w7blz52xMkj5xTgAA3xcREeF0BMBncDx4jrEQZFRRUVGGa/fs2ZPq6ydOnFCfPn0M7ato0aL6+OOPDbeN9CExMVELFizQCy+8oC1btjgdx5CzZ8+aqi9QoIBNSQBjWLkIAAAAlqpUqZLpbbZu3armzZu71Z7ZLyqvXbvmVjveYHa1C7NPOYbnzL7nvvp589Vc8A03btzQmjVrTG9XrVo1G9L4l9DQUN1333267777JEkXLlzQqlWrtGLFCq1YsUKbN29WYmKibe1fuXJF9913n1atWqUKFSrY1o4/oH8AWIfjCYBZq1ev1q+//mpqm8yZM2vYsGF65plnFBAQYFOyW3Nq0o7Z86u3V8iEeVwz4W8KFiyoI0eOGKq9ePGiYmNjmTRiAucEAPB97pyvEhISFBzM7XZIfzgePMNYCDKyqKgo/fzzz4Zq05pc9Mwzz+j69euG9jV69GhlyZLFUK0/Onv2rNatW6cdO3bo999/1/Hjx3Xy5EldvnxZMTExSkhIUEREhLJmzaqsWbOqVKlSqlChgipWrKiGDRumq9XPYmJiNH/+fP3000+aPXu2Ll++LEm6++6701wJyxecOHHCVH3BggVtSgIYQ+8OAAAAlipcuLDpbQ4cOOB2e8HBwcqcObNu3LhhqN7sEyG8yewTQLNly2ZTEqQkODhYkZGRhp86df78eZsTucdXc8E3LF26VPHx8aa2CQoKUo0aNWxK5L9y586thx56SA899JCkvydurVy5UqtXr9a6dessv3no8uXLatOmjTZs2KDMmTNbum9/Qv8AsA7HEwCz3n//fVP1efLk0dy5cx1bCTMmJsaRdgMDA5UjR46/vgxPy+nTp21OBE9xzYS/KVSokKn6kydPqlSpUjalSX84JwCA7wsJCVFoaKip8fDY2FhFRkbamApwBseDZxgLQUZm5gHEe/fuTfG1iRMnGp6k98wzz6hJkyaG2/UHycnJWrFihX788UctWLAgzYlYknT9+nVdv35dJ0+e1O7duzVnzpy/XitXrpyaN2+uLl26uPWQaF/RuXNnTZ8+/T9/WwcEBKh+/foOpTLn5MmTpurNjtcAVgt0OgAAAADSlzx58pjexuxTGv6XmSVhL1++bOuqEZ4w+yUtT6twhpnPm9l/U29hchFSM3HiRNPb1KlTRzly5LAhTfqSOXNmNWnSRAMGDND8+fN16dIlrVu3TkOHDlWjRo0UEhJiSTu7d+/WwIEDLdmXP6N/AFiH4wmAUefOnTP1pN7Q0FD9/PPPjt1MIzm7IpCZB7RER0cbftAFnMM1E/6kWLFipurN3gwDzgkA4A/M3rx58+ZNm5IAzuN4cA9jIcjooqKiDNemNGHm3Llz6tWrl6F9FC9eXMOGDTPcpq87fPiw3njjDRUsWFANGzbUiBEjDE0sSsvevXv1ySefKCoqSg0bNtTs2bMtSOtdJ0+e1Pjx42/50I7bbrtNOXPmdCCVeWbHU9LTqlPwT0wuAgAAgKXcWTL9woULHrVp5stKl8ulI0eOeNSeXQ4dOmSqni9pnZE/f37Dtb76WTt8+LDTEeCjrly5opkzZ5rerkWLFtaHyQD+XPHptdde0+LFi3Xx4kVNmjRJbdq0UVhYmEf7/vTTT3X06FGLkvon+geAdTieABg1depUUzdG9+3bV7Vq1bIxUdqcvFm+SJEipuo9WfkZ3sE1E/6kTJkypuo9fUBURsQ5AQB8X9GiRU3V+/JKc4CnOB7cw1gIMrpy5coZfoDi/v375XK5/vPfe/TooYsXL6a5fUBAgMaMGZMuVk3bunWr2rZtq1KlSmno0KG2nlOXLVumBx98UM2aNfOr8cVly5al+FqDBg28mMQzZsdTSpcubVMSwBgmFwEAAMBSwcHBprfxdNlts09RSm2pZSeZffoIX9I6w8z7fu7cOZ988pOvHgNw3uTJkxUbG2t6OyYXWSNLlix65JFHNH36dJ06dUrDhg0zfcPpnxISEvTpp59aG9DP0D8ArMPxBMCoxYsXG67NlSuX+vTpY2MaY5y8Wd5sX2/Hjh02JYFVuGbCn5idXMQNiOZxTgAA32d2MgWTbZGecTy4h7EQZHShoaGG/768efOmjh079q//NnPmTE2bNs3Q9s8//7waNWpkOqMvOXz4sNq1a6eqVavqxx9/vOVkK7v89ttvioqK0uTJk73WpifSy+QiM+Mp4eHhpscSAKsxuQgAAACWcmeiUEJCgkdtlipVylT97t27PWrPDvHx8Tp48KDhev6gdE65cuVM1VuxZLWVkpKS/OppNPCepKQkffzxx6a3K1OmjOnjAmnLmTOnevfurf379+v9999XpkyZTO9j4sSJSkpKsiGdf6B/AFiH4wmAES6XSytWrDBc37lzZ7dWP7barl27HGu7YsWKpuq3b99uUxJYhWsm/En58uVN1XMDonmcEwDA95l9Mvzhw4dtSgI4j+PBPMZCgD9ERUUZrv3n/RNXrlzR888/b2i7kiVL6v333zedzVckJCSof//+qlChgqZPn+5Yjri4OHXo0EEfffSRYxmMWr58eYqv1a9f34tJPGNmPKVMmTIKCAiwMQ2QNiYXAQAAwFLXrl0zvU1ERIRHbVauXNlU/dq1az1qzw6bNm0yNcmqUqVKCgykO+8EMwNjkrR+/Xqbkrhnx44dHq8WhvRpwoQJ2r9/v+ntunTpYkMa/CksLEx9+vTR0qVLlTVrVlPbXrhwwdSXWukN/QPAOhxPAIw4deqULly4YLjeV1a/3Lp1q2NtV69e3VR9al+owzdwzYQ/KVCggHLlymW43hcnvvg6zgkA4PvuuOMOU/WbN2+2KQngPI4H8xgLAf5QqVIlw7X/XLH15Zdf1unTp9PcJiAgQGPHjlXmzJndyue0ffv2qXbt2nrnnXcUFxfndBy5XC698sorGjVqlNNRUnT27NkUH+RbsWJF5cmTx8uJ3BMXF2dqMm6VKlVsTAMYw6gOAAAALOXOEyw9HQC47bbbTNWvWrXKo/bsYDYTf1A6x8zAmCStWbPGpiTu8bU88A0JCQkaNGiQ6e0yZcqkrl272pAI/+uuu+7SL7/8YvoGnYw8uYj+AWAdjicARphZ1SAwMFB33XWXjWmMcblcWrdunWPt33777ab6d5s2bdLVq1dtTARPcc2EvzHz78fqaeZxTgAA31ejRg1T9Rs3brQpCeA8jgfzGAsB/uDOykULFizQ2LFjDW3Ts2dPv1qp5p+++uorVa1a1dQ5MzAwUHfccYd69+6tb7/9VitWrNDhw4d14cIFxcfHKz4+XlevXtXBgwe1cuVKjRo1Sj179lTlypVNrXrTs2dPn51smNpDlho0aODFJJ75/ffflZiYaLiev6nhC5hcBAAAAEsdOnTI9DbZs2f3qM0yZcqYWv3ozJkz2rlzp0dtWm3+/Pmm6m+//XZ7giBNZcuWVWRkpOH6JUuWyOVy2ZjInEWLFjkdAT7o3Xffdev8/eijj5p6yjE8U7duXT399NOmttm0aZMlbfvj8uv0D/BP/vgZ9iUcTwCMOHLkiOHaokWLKlOmTPaFMWjz5s06f/68Y+1nzpzZ1AMskpKSNHfuXBsT+RZ/vH5zzYS/MXPTytmzZx09Z/ojzgkA4Pty586tkiVLGq7fsWOHzp07Z2MiwDkcD+YxFgL8wezkoujoaMPfeZYpU0ZDhgxxN5pjYmJi1KpVKz333HO6efNmmvUBAQFq1KiRJk6cqPPnz2vDhg0aNmyYunbtqrp166p48eLKlSuXQkJCFBISoqxZs6pkyZKqU6eOunTpouHDh2vbtm06duyY3n33XeXLly/NNmNjY9WhQwclJSVZ8StbatmyZSm+1rBhQ+8F8ZDZB7XwNzV8AZOLAAAAYCl3nlBkZpDyVoKCglSvXj1T28ycOdOjNq105coVLV261NQ2/vTHcnoTHBysunXrGq4/c+aM1q9fb2Mi4+Li4jRv3jynY8DHbN68We+++65b2/bs2dPiNEhLnz59TNWbWWY9NUFBQYZrzTx9yU70D/BP/vgZ9iUcTwCMMLOiTu7cuW1MYtycOXOcjqBmzZqZqp84caJNSXyPP16/uWbC35h9Ov22bdtsSpI+cU4AAP9wzz33GK5NTk7W7NmzbUwDOIvjwRzGQoA/lC5d2vDkub179+qNN97Q0aNH06wNDAzU2LFjTT20wRdcvnxZTZo0MfT3XVBQkLp06aJ9+/Zp8eLF6tixo3LmzOl224ULF1bfvn114MABvfHGG2mOr+3evVvff/+92+3ZJbXJRf60ipWZyUUBAQG64447bEwDGMPkIgAAAFjG5XJp1apVprcrXbq0x203adLEVP306dM9btMqM2bMUEJCguH6/Pnzm3ryC6zXqFEjU/U//fSTTUnMmT9/vqKjo52OAR8SHR2tJ554wq0b8Vq2bKmqVavakAqpKVmypKmn2586dcqSdsPCwgzXmrmm2Y3+Af7kr59hX8LxBCAtRp7A+SdfeFKvy+XSd99953QM3X///abq582bpzNnztiUxrf46/Wbayb8Sa1atUzVm33iLjgnAIA/aNmypan6SZMm2RME8AEcD+YwFgL8ITAwUBUqVDBUe+rUKX3xxReGanv16qU6dep4Es3rTp06pfr162v16tVp1j744IPatWuXRo0aZcl9U/8UGRmp9957T4sWLVLevHlTrX3nnXeUnJxsafueuHjxonbt2nXL18qVK6f8+fN7OZH7zIyjVKxYUdmyZbMxDWAMk4sAAABgmfXr17t1g8ttt93mcdtmnqIk/fGUzTVr1njcrhWMDpz8qXHjxjYlgVFm/w3Gjx/vEzc6ffPNN05HgA9JTExUu3btUhyYS01oaKiGDRtmQyoYUaVKFcO1Vk0oNHNj57Vr1yxp0wr0D/Anf/0M+xKOJwBpiY+PN1x75coV+4IYtGjRIh06dMjpGKpdu7Zy5MhhuD4xMVGffPKJjYl8h79ev7lmwp8UK1ZMhQoVMlzP5CLzOCcAgO+7++67lTVrVsP1ixYt0p49e2xMBDiH48EcxkKAv5l50ICRiSxly5bV4MGDPYnkdQcOHFDt2rW1c+fOVOty5sypiRMn6ueff1a5cuVszdSgQQMtX75cRYoUSbEmJiZGgYG+M51gxYoVcrlct3ytQYMGXk7jGTPjKLVr17YxCWCc75wNAAAA4PdGjRplepuQkBBL/kCqUqWKSpYsaWqbzz//3ON2PbV27Vpt3LjR1DatWrWyKQ2Mql69uooXL264/uzZs46vXnTkyBHNnTvX0QzwHS6XS88884x+++03t7bv1auXSpUqZXEqGJUvXz7DtVZNbMyePbvh2tjYWMXExFjSrqfoH+BP/voZ9iUcTwDSYuYJvGfPnrUxiTG+cnNCcHCwHn30UVPbfPnll7p06ZJNiXyHv16/uWbC39StW9dwLZOLzOOcAAC+LzQ0VG3btjW1zQcffGBTGsBZHA/mMBYC/K1SpUqW7SswMFDjxo1TeHi4Zfu028WLF9WsWTMdPXo01bq77rpLO3bsUMeOHb2U7I/VfhYuXJjiqjiNGjXyWhYjli1bluJr/jS56OzZszp37pzhejPjM4CdmFwEAAAAS5w+fVrff/+96e1q1KihiIgISzI89thjpuonT56s33//3ZK23fXWW2+Zqs+ZM6datGhhUxqY8fDDD5uqHzx4sKNLSQ8aNEhJSUmOtQ/fERcXpw4dOmjMmDFubV+gQAH169fP4lQww8yXVZGRkZa0mTdvXlP1J06csKRdK9A/gOTfn2FfwvEEIDVm+h0XL160bIVFdyxatCjVL6m97ZlnnjFVf/36db3xxhs2pfEd/nz95poJf2JmtZnt27fr+vXrNqZJnzgnAIDv69Gjh6n68ePHa9u2bTalAZzF8WAcYyHA38ysXJSW3r17q1atWpbtz27x8fFq3bq1Dhw4kGpdhw4dtHTpUhUsWNBLyf5WtmxZTZw48ZavMbnIHitXrjRVz2rA8BVMLgIAAIAlXnvtNbeeEGv2yUepefzxx03VJycnO3ozzvz587Vw4UJT2zz88MMKDQ21KRHM6NChg6n6nTt36ocffrApTer27Nmj7777zpG24VsuXryoJk2aaPLkyW5tHxQUpB9++EFZs2a1OBnMMPOEo5SeQGWWmdWSJGnfvn2WtGsF+geQ/Psz7Es4ngCkxsyX4snJyVqwYIGNaVIWFxen559/3pG2U1K5cmXVrFnT1DajRo3SmjVrbErkG/z5+s01E/6kSZMmhmuTkpK0YsUKG9OkT5wTAMD3Va1a1dTT4pOTk/Xss88qMTHRxlSAMzgejGMsBPibVZOLKlSooEGDBlmyL2955plntHz58lRrXn75ZX3//femHiJptQceeEAtW7b8z3/3pclFV69eTXHCaunSpVWoUCEvJ3Lf0qVLDdeWL1/er343pG9MLgIAAIDHpk2bpgkTJpjeLjg42PQEjdSULl3a9JMcZs2apWnTplmWwajo6GjTTyaWzD/NGPapXLmy6WWJe/furUuXLtmU6NZcLpeefvrpDDmgj3+bMWOGKlWqZPoJOf80cOBANWzY0LpQcMvmzZsN15YqVcqSNnPkyKEcOXIYrt+0aZMl7VqB/gEk//4M+xKOJwCpKVGihKn6OXPm2JQkdW+++aZPTUL5U58+fUzVJycn69FHH/X635je5M/Xb66Z8CclSpQw9bfjkiVLbEyTPnFOAAD/8Oqrr5qqX7t2rd5++22b0gDO4ngwhrEQ4G/FihVTlixZPNpHUFCQxo8fr7CwMItS2e/DDz/UuHHjUq156aWX9NFHH3knUBref/99BQQE/PX/ixYtqpIlSzqY6N9WrFih5OTkW77mT6sWSebGT8w8+AWwG5OLAAAA4JFVq1bpqaeecmvbNm3aKG/evJbm6devn+ltunfvrpMnT1qaIy0vvviijhw5YmqbBx54QFWqVLEnENzSu3dvU/Xnzp1T9+7dbUpza59++qlHk0ng/44fP65HH31UrVu31tmzZ93ez3333ae+fftamAzuOHTokLZs2WK4vkKFCpa1Xa5cOcO1ixYtsqxdK9A/gOTfn2FfwvEEICXlypUztWLB5MmTderUKRsT/deMGTM0bNgwr7ZpVKtWrVSjRg1T2xw9elSPPvqoEhISbErlPH++fnPNhD+5//77DdeaefIu/sY5AQB834MPPmj64VpDhw5N84ZiwB9xPBjDWAjwb5UqVfJo+z59+ujOO++0KI39du3apTfffDPVmqeffloff/yxlxKlrWzZsqpXr95f/9+XVi2SpGXLlqX4mj9NLjp//rx+//13w/VmxmUAuzG5CAAAAG6bNWuWmjVrpujoaNPbBgYGqn///pZnatSokWrVqmVqm/Pnz6tly5aKiYmxPM+tjBgxQmPGjDG9nTtfQMNeDz74oMqWLWtqm8mTJ3tt8GjJkiWmn36N9OP48eN6/vnnVbp0aU2ePNmjfd1xxx2aNGnSv55ilF6tWrVKXbp00YEDB5yOcktDhw41VV+/fn3L2jZzo9CKFSt06NAhy9r2FP0DSP79GfYlHE8AUhIWFqaqVasarr9586ZXj7uVK1fqscce81p77njvvfdMbzN//nw9+uij6Xa1Wn++fnPNhD958MEHDddu2bJFV69etTFN+sQ5AQD8w0cffWRqHNzlcqlr1676/vvvbUxljRUrVujLL790Ogb8CMdD2hgLAf7Nk8lFlSpV0oABA6wLY7Pk5GR16dJF8fHxKdbcfffd+uKLL7yYypiOHTv+9b99bXLR8uXLU3zNnyYXLV26VC6Xy1BtlixZdPfdd9ucCDCOyUUAAAAw7cqVK+rRo4datmyp69evu7WPTp06Wbqawj+ZvfFakjZu3Kg2bdooNjbWhkR/+/777/XSSy+Z3u6hhx5SzZo1bUgETwQGBmrIkCGmt+vTp48mTZpkQ6K/bdq0SW3atEm3N5jh1hITEzVnzhy1b99epUuX1pdffpnqgKYR1apV0/z585U9e3ZrQvq4hIQEjRkzRuXLl9fjjz+urVu3Oh3pL/PmzdOoUaMM1wcFBalp06aWtV+nTh3DtS6Xy+cmN9I/gL9/hn0JxxOAlJj9EvS7777T9OnTbUrzt5UrV+r+++/XzZs3bW/LE40bN1b79u1Nb/fjjz+qdevWbo/RWOX8+fOW3wTi79dvrpnwFw0aNDD8d39SUlKqN/sgZZwTAMD3VatWTc8//7ypbZKSkvT4449r0KBBhm8i9RaXy6V58+apYcOGql+/vlatWuV0JPgRjgdjGAsB/hYVFeXWdsHBwRo/fryplcCc9umnn2rdunUpvl6qVClNnz5dwcHBXkxlTN26df/63740uSg6OlqbN2++5WvFixdX0aJFvZzIfUuWLDFce++99/rVZx/pH5OLAAAAYNiZM2c0YMAAlS5dWiNHjnR7QLBgwYL66KOPLE73t/r16+uJJ54wvd3cuXPVvHlzXbp0yYZU0hdffKEnnnhCSUlJprbLnDmzRowYYUsmeK5169Zq2LChqW3+HFj/9ttvbcm0bNkyNW7cWJcvX7Zl//Atly5d0vTp0/Xss8+qUKFCatGihaZNm+bxpCJJuv3227VgwQLlyJHDgqT+JSkpSRMnTlTVqlVVr149TZ06VQkJCY7lWbFihdq3b2/q2tu8eXNL/+3Mnut+/PFHvfDCC4qLi7MsgyfoH8DfP8O+hOMJQEratWtnqj45OVmPPfaYFi9ebFMiady4cWrcuLGuXbtmWxtWGjlypPLmzWt6u9mzZ+uuu+7Sjh07bEiVujNnzqhv374qWbKkPv30U0v37e/Xb66Z8BfBwcFq0aKF4XozN8ngb5wTAMA/fPjhh6pYsaKpbVwul95++201bdpUx44dsymZcdeuXdPw4cNVvnx53XfffVq2bJnTkeCnOB7SxlgI8Dd3Jxe9/vrrql69usVp7HPo0CG99dZbKb4eFBSkiRMn+ux37OXLl1fVqlXVsGFDyyfsxMTEaPbs2XrllVfUtGlTlShRQtmzZ1dISIjy5s2rqKgoderUSRMmTPjPqsirVq1K8eG5/rRqkWRu3KRVq1Y2JgHMY3IRAAAAUhQXF6cNGzboo48+UuPGjVW4cGENHDhQFy9edHufgYGBGj16tO1/RA8bNkw5c+Y0vd2SJUtUtWpVrVy50rIsV69e1WOPPabu3bsrOTnZ9PbvvPOOihQpYlkeWO/TTz9VSEiIqW2SkpLUrVs3de3aVdHR0ZbkSEpK0vvvv68mTZr8ZyDmnwICAixpD9539uxZLV68WMOHD1e3bt1UvXp15cmTR+3atdPXX3+tc+fOWdZWq1attGzZMrfOpenNypUr9fDDD6tAgQLq0aNHqk+hslpiYqI+/fRT3XPPPaa/BOrZs6elWYoUKaIaNWqY2mbEiBEqX768PvzwQ+3fv9/SPO6gf5CxpYfPsC/heAJwK1WrVlXlypVNbRMXF6cHHnhAI0eOtDTLuXPn1K5dOz355JOpTrz3taeH5s6dW19//bVb2+7evVvVq1dX3759Lfs7MzVr167Vk08+qWLFimnIkCG2tJkert9cM+EvHn74YcO1v/zyi41J0jfOCQDg+8LDwzVp0iSFhYWZ3nbhwoWqVKmSBgwY4PWVRRMSEjRr1iw98sgjyp8/v1588UXt27fPqxmQ/nA8pI2xEOBv7kwuqly5st5++20b0tjnlVdeSXVVsDfeeMOnV3gNDAzU5s2bLX1wyIYNG/TYY48pd+7cevDBB/XRRx9pwYIFOnLkiK5evarExESdP39eu3bt0nfffacnnnhCRYsW1WuvvfbXPWipTf40+wAiJx06dEh79uwxVBsREaGHHnrI5kSAOfQSAAAA/NCWLVv05ptvWrY/l8ul+Ph4xcbG6tKlSzp37pyOHDmiw4cPm35aYVo++ugj3XfffZbu81by5MmjcePG6aGHHjK9wtKxY8dUv359dejQQQMHDlSpUqXcyhAXF6dx48bprbfe0vnz593aR9OmTdWrVy+3toX3VKlSRQMHDlTfvn1Nbzt69GjNnTtXQ4YMUYcOHdwezF24cKF69+6t7du3p1n7/PPPWz5YjT94en6Oi4tTXFycYmNjFRcXp6tXr+rMmTM6ffq0zpw5Y8lqRGkJCgrSkCFD9Oqrr9relr+5ePGiRo4cqZEjR6po0aJ64IEH1KJFCzVo0EDh4eGWtpWUlKTvv/9egwYN0oEDB0xv36BBA91zzz2WZpKkjh07av369aa2OXLkiPr06aM+ffood+7cqlChgooWLaqcOXMqIiLC9Hlv8ODBpur/if4B/P0z7Es4ngCk5OWXX1bnzp1NbRMTE6MePXro119/1ZAhQ0zflPNPFy9e1KeffqrPPvvM0M1L/fv3T/VJo05o2bKl+vXrp3fffdf0tgkJCRoyZIi+/vprvfDCC3rmmWeUP39+y7Lt3LlTM2fO1Pfff2/4S3JP+fv1m2sm/EXTpk2VM2dOQ6vj7Nu3T3v27FH58uW9kCx94ZwAfzBgwAANHDjQsfaPHj1q+QOyzB5vQOXKlTVu3Dh16NDB9OcnOjpaAwcO1IgRI/Tkk0/q6aefVrly5WzJefbsWf3222/69ddfNX/+fF25csWWdpCxcTykjbEQ4A/58+dXrly5DD+wOCQkROPHjzf9IFcnrV+/XjNmzEjx9bJly/rdZClPbN26VS+//LJbE5WuXbumDz74QBMmTNCYMWNSnVzkTysX/fzzz4ZrW7RoocyZM9uYBnCDCwAAAI5r0KCBS1K6/3nllVe8/t7269fPo8yBgYGu5s2buyZMmOA6e/Zsmu0lJia6Vq5c6erTp48rT548HrVdrFgx14ULF7zwLrlcnTp1MpyrU6dOXslkhC/lTkpKctWvX9+jf/NChQq5+vfv79q4caMrOTk5zTb37t3r+uSTT1xRUVGG22jTpo1ryZIlpnJlZBnl/PznT4kSJVxLly51+m13uVwuxz6nZtuV5AoJCXHVrFnT9corr7gmT57s2rFjhysuLs5028ePH3dNnTrV9fjjj7ty5crl9r9jcHCwa9u2bZa9J/90/fp1V44cORz9nFqB/oExvnSdtYo/f4Z99frN8ZQ2fz2W/DW3t5ntL2aE9yo+Pt5VoUIFj47PRo0auSZOnOg6duyYoTZPnz7tmjRpkqtNmzau0NBQw+3UqlXLlZiYaCrbkiVL7H0D/19ycrKrTZs2Hl93AgMDXY0bN3aNGDHCtWXLFldiYqLhDPHx8a4dO3a4xo4d63ryySddJUqUSLO9bNmyWf5e+PP1+5+4ZhrD9cdZ3bp1M/z+v//++07H/cvYsWNNfZ59AeeEtHE+cE7//v29fq21+wfWMvv+jx071unIbvvkk08s+QxGRUW5+vTp45o7d67rzJkzbmU5deqUa8mSJa7PP//c9fjjj7tKly5tOkfHjh0tfod8n79eT3wxN8dDyhgLcY8vfs7hOTP3TPTv39/puKbdd999qf5Os2fPdjqiV0RHR7ueffZZV2BgoCXXBkkp7qtIkSJO/7qmmPnOYObMmU7HBf6DlYsAAADgFe+++65bq7p46p133tGOHTs0a9Yst7ZPTk7Wr7/+ql9//VUBAQEqXry4KlSooMKFCysyMlKhoaGKjo7W5cuXtW/fPu3evVvR0dEe586aNat++ukn5cqVy+N9wTsCAwM1adIk3XXXXTpx4oRb+zh58qQGDhyogQMHKnv27KpYsaJKly6t7NmzKyIiQrGxsbp27ZqOHDmi33//XWfOnDG1/9y5c2vkyJHavXu3W/mQfmXKlEmvvfaaXn/9dWXKlMnpOH4nISFBa9eu1dq1a//6b8HBwSpcuLAKFSqkggULKmfOnMqUKZMyZcokl8ulGzduKDo6WtHR0Tp8+LD27dtnyfVDkt5//32PnnCXmsjISPXp00dvvPGGLfv3FvoHGVd6+Qz7Eo4nAP8rJCREI0aMUJMmTdzex5IlS/562mWRIkV02223KWfOnMqRI4cyZ86smJgYXb9+XUePHtX+/ft17Ngx021kzZpVEyZMUFBQkNs57RQQEKAJEybo0qVLbj3580/JyclatGiRFi1aJEmKiIhQyZIlVbJkSeXLl08RERGKiIhQYmKiYmJidPXqVZ06dUonT57UwYMHlZCQYNWv5Lb0cv3mmgl/0LlzZ33zzTeGan/88Uf16dPH5kTpF+cEAPAPvXr10uXLl/XOO+94tJ+dO3dq586d+uCDDyRJ+fLlU7FixVS4cGHlyZNH4eHhf40dx8bG/vV90JkzZ3T27FmdOHFC165ds+JXAtzG8ZAyxkKAv0VFRWn58uVp1lWtWlX9+vXzQiLr7Ny5U7/99luKr99999164IEHvJjIGRs2bFDHjh21f/9+S/ebnJx8y//uT6sWnTt3TitXrjRUmydPHjVv3tzmRIB5TC4CAACArbJkyaKvvvpKHTp0cKT9wMBATZ06VQ8++KDmz5/v0b5cLpcOHz6sw4cPW5Tu1iIjIzV37lxVq1bN1nZgvYIFC+qXX35RvXr1PB7UvnLlilavXq3Vq1dbki00NFQ//fST8uXLx+Qi/EvLli318ccfq0SJEk5HSVcSExN15MgRHTlyxKvtdujQQS+//LKtbfTu3Vs//PCDduzYYWs7dqJ/kLGlh8+wL+F4AnArjRs3Vo8ePfT55597vK/jx4/r+PHjFqT6W1hYmGbOnKlSpUpZul+rhYeH65dfflHr1q1TvXHBjJs3b/51I5c/SQ/Xb66Z8Ae1atVShQoVDI0drV+/XocPH2Y8wU2cEwDAfwwcOFB58uTRiy++mOJNr2adPXtWZ8+e1fr16y3ZH+AtHA8pYywE+ENUVFSaNaGhoRo3bpxCQkK8kMg6n3zySaqv+/uDcYz44Ycf9NRTTykuLs5rbfrT5KJp06YpKSnJUO0TTzzhd8cAMoZApwMAAAAg/brrrru0ZcsWxyYW/enPgTJPnhTkLVmyZNEvv/yi2rVrOx0FbqpcubJ++uknRUREOB3lX0aPHq169eo5HQM+IjQ0VJ07d9bOnTs1Y8YMbgRKJ1q3bq3x48fb3k5ISIhmzJihPHny2N6WnegfZFzp5TPsSzieANzKRx99pJo1azod4z8CAwM1YcIENWrUyOkohoSHh+vnn39W+/btnY7iqPRy/eaaCX/w1FNPGa6dPHmyjUnSP84JAOA/evTooSlTpvjcdz+AEzgeUsZYCGBsctFbb72lypUreyGNdaKjozVlypQUX69cubJf/G3niUGDBqljx46pTiwKCQlRy5YtNW7cOO3atUvXrl1TfHy8Tp069dcYZ2CguakL/jS5yMw4iZnxF8CbmFwEAAAAyxUoUECjR4/W6tWrfebJN+Hh4Zo7d66ef/55p6OkqHTp0lq7dq3q16/vdBR4qHHjxpo/f76yZcvmdBQFBATos88+02OPPeZ0FPiAggUL6o033tCRI0c0duxYVapUyelIsEj37t01ZcoUBQd7Z5HqUqVKacGCBSpcuLBX2rML/YOMK718hn0JxxOA/xUaGqpff/1Vt912m9NR/hIWFqbx48erXbt2TkcxJTQ0VFOmTNFHH33ktf6eL0ov12+umfB1nTp1UlhYmKFaJhd5jnMCAPiPtm3bavPmzazgBojjISWMhQBpTy6qXr26Xn/9dS+lsc706dN148aNFF/v3r27F9N4X9++ffX222+n+HpwcLB69Oihw4cPa8aMGerUqZMqVqyoLFmyKCQkRAUKFNCDDz6oKVOmaM2aNSpSpIihdgsWLKgyZcpY9WvY6sSJE1q1apWh2jp16qhixYo2JwLcw+QiAAAAWKZYsWIaNmyY9u3bp6eeesr00ybsFhwcrJEjR+rbb79V5syZnY7zL/fff7/Wr1/PH4/pSJ06dbR8+XKVLFnSsQxhYWGaMmWKXnjhBccywHkFCxZUz549tXz5cp04cULvvfeeChQo4HQsWCRLliwaM2aMPv/8c6/faFqlShVt2LBBLVu29Gq7VqN/kHGll8+wL+F4AvC/cuTIoUWLFqlWrVpOR1GePHm0aNEiv37wwssvv6ylS5eqdOnSTkdxTHq5fnPNhC/LkyePHn74YUO127dv15YtW2xOlP5xTgAA/1GuXDmtWbNGr732mkJCQpyOY5q/rwQK38LxcGuMhSCjy5EjR4rfRYeGhmrcuHF++fCcqVOnpvhacHCw2rRp48U03tWvXz8NGTIkxddvu+02bdq0SSNGjFChQoXS3F+NGjW0evVqQ7X+tGrR+PHj5XK5DNX27NnT5jSA+3zrbk8AAAD4nfDwcLVu3VrTp0/XwYMH1bt3b0VGRjodK1Vdu3bVzp071bRpU6ejKE+ePPr+++81Z84c5ciRw+k4sFjlypW1efNmR54EVapUKS1evJinUGVAWbNm1b333qt3331Xq1at0vHjxzV8+HDVq1dPAQEBTsfzebly5fKbyVfNmjXTzp079eSTTzqWIX/+/JoxY4bmz5+vxo0bO5bDCvQPMqb09Bn2JRxPAP4pT548Wrx4sTp37uxYhiZNmmjDhg2qU6eOYxmsUqdOHe3cuVMDBw5UeHi403H+wxtPZ05P12+umfBVZm5yGTt2rI1JMhbOCQDgH0JDQzV06FDt2rVLDz30kNNx0pQlSxY9/fTT2rBhgz755BOn4yCd4Xi4NcZCkNGltHrRgAED0lzZyBfduHFDixcvTvH1u+++W7ly5fJiIu/58ssv9d5776X4+uOPP67169ercuXKpvZbuHBhTZkyJc37F/xpctG4ceMM1RUsWFCtW7e2NwzgASYXAQAAwJTAwEBVqVJFPXr00PTp03X+/Hn9+OOPatOmjYKCgpyOZ1jx4sU1b948TZs2zfQfuVaIjIzUK6+8ot27d6tDhw5ebx/eky1bNk2dOlVTpkxRsWLFbG8vMDBQL730knbs2KHatWvb3h6clTdvXtWvX1/dunXT8OHDtWnTJl26dEm//fab+vbtq9q1a/vcKnK+7rbbbtPJkye1evVq9enTR5UqVXI60n/UrFlTixYt0q+//qqiRYs6HUeSdM8992jhwoXas2ePBg8erBo1avjlU8foH2Rc6eUz7Es4ngD8U6ZMmTR27FjNnDnT0BMprZI/f359//33WrBggVf+HvOWsLAwvf3229q9e7eef/55xycZhYWFqX379lq+fLlWrFjhtXbTy/WbayZ80R133KGaNWsaqv3hhx8UHx9vc6KMg3MCAPiPMmXKaObMmVq5cqVatWrlU9+ThoeHq02bNpo6darOnj2rb775RnfccYfTsZCOcTz8F2MhyMhuNYGoRo0a6tOnjwNpPLd48WLFxcWl+Hrz5s29mMZ7fvvtt1QfPtK3b1999913ypQpk1v7r1OnTpqTMP1lctHy5ct14MABQ7XPPvusX674h4zD/0bYAQAAYIugoCCFhYUpLCxMmTJlUq5cuZQvXz7ly5dPRYsWVbly5VShQgVVrFhRWbJkcTquZdq2bas2bdpo9uzZ+uyzz7R06VIlJyfb1l6RIkX05JNP6oUXXki3Ty7BrbVv314PPvighg8fruHDh+vkyZOW7j80NFQdO3bUq6++qgoVKli6b9gvJCTkr3PwP3+yZs2qfPnyKW/evH/95MuXT8WLF1eFChWUPXt2p6OnSwEBAapVq5Zq1aql999/XydPntS8efO0aNEiLV++XCdOnPB6psyZM6tt27Z67rnndNddd3m9faPKlSunfv36qV+/frp586Y2btyoHTt2aP/+/Tp06JDOnTunCxcu6PLly4qLi1N8fLwSEhKcjv0f9A8yrvTyGfYlHE9I7zp37qyGDRsarr/99ttty+IPHnroITVt2lTDhw/XJ598orNnz9rSTvny5dWzZ0916tRJmTNntqUNX1CsWDGNHDlSAwcO1JdffqkJEyZo//79Xmk7ODhY9evXV7t27fTwww87uqpFerl+c82Er3nllVfUtm3bNOsuXryoH3/8UY8++qgXUmUcnBMA+LL+/fubqk/vfwfVqVNHderU0bFjx/Tll19qypQpOnz4sNdzFCtWTPfdd5+aN2+uxo0bp+u/heC7OB7+i7EQZET/O7koU6ZMGjdunE9NPDQjrYfp1K1b10tJvOfEiRPq2LGjkpKSbvn6m2++qUGDBnnczquvvpriisj58uVT+fLlPW7DG7799ltDdREREXruuedsTgN4JsDlcrmcDgEAAAD4ilOnTmny5MmaPXu21q1bp5iYGI/3WaZMGTVu3FiPPvqo6tWrl+ayvkj/EhMT9fPPP2v8+PFavHixbty44dZ+goKCVKtWLbVo0UKPPfaYChYsaHFSALdy+PBhrVq1Shs3btSmTZu0bds2Xb9+3dI2AgICVK5cOdWrV08tWrTQPffc4/ZTn+A5+geAdTieAPwpISFBM2bM0A8//KAFCxbo5s2bHu2vTJkyuvfee/XQQw+pcePGps4FGzduNFxbrlw5n37oypYtWzRt2jQtXLhQW7dutWwSTWBgoMqXL68GDRqoYcOGatq0KQ87sBnXTDgtOTlZ5cuXNzRpsU6dOlq5cqUXUt2ay+VK8Yan/xUQEOCXN7RxTgAA/7Jt2zbNnDlTixYt0ubNm93+Higl4eHhqlSpku644w7VqVNH9erVY4US+CyOh78xFoKMYv369f96WOIHH3ygV1991cFEnqlTp45Wr159y9cyZ86sK1eu+OVq2ilJTk5W48aNtXTp0lu+3q1bN3399deWtLV69WrVqVPnlq+1a9dOU6dOtaQdO50/f15FihRJdXWrP/Xs2VPDhw/3QirAfUwuAgAAAFKQkJCgjRs3auPGjTpw4IAOHTqkI0eO6MqVK7px44Zu3rypxMREhYeHK3PmzIqMjFTBggVVsmRJlSxZUlFRUapbt67y5s3r9K8CHxYXF6eVK1dq3bp12r17t3bv3q1z587p+vXrio6OVnBwsCIjI5UlSxblzJlTZcuWVaVKlVSpUiXVq1ePJ4kCPuLYsWPavXu39u/fr6NHj+rYsWM6c+aMLl68qEuXLun69et/PSH9n6sFZsuW7a8Vqf5cKbB8+fKqVq2acubM6fSvhVugfwBYh+MJwJ9iY2O1du1abdy4Udu2bdPRo0d1/PhxXblyRTExMUpISFBERMRf54KcOXOqTJkyKleunMqVK6e77rpLxYsXd/rX8DkxMTHasGGDtmzZ8tc59siRI7p8+bJu3rypmzdvKjY2VsHBwQoNDVVERIRy5syp3Llzq2DBgipRooRKliyp2267TVWqVOHJxw7imgmnfPvtt+rWrZuh2q1bt6pKlSo2J4LEOQEA/E1SUpJ+//13bdy4UQcPHtSxY8d07NgxnT59WtHR0bp586ZiYmIUHx+vkJAQhYWFKVOmTMqePbvy5MmjPHnyqHDhwipRooRKlCihChUqqGzZsn45WRbgePgbYyGAf3C5XMqSJUuKEyOrV69uarKeP/j888/Vs2fPW77WoEEDLVy40LLJVEOHDtUbb7yRYo7u3btb0o6dhgwZor59+6ZZFxwcrP3793Puhs9jchEAAAAAAAAAAAAAAPiXuLg4lSpVSidPnkyztmvXrvr222+9kAoAAAAAAO84evRoqpNB/GV1HaPOnz+vsmXL6sqVK/95LVu2bNqxY4eKFCliWXvNmzfX3Llzb/nazp07ValSJcvaskNSUpJKlSqlo0ePpln7+OOP67vvvvNCKsAzgU4HAAAAAAAAAAAAAAAAviUsLCzFJwj/r4kTJ+r8+fM2JwIAAAAAwHv27duX6uslS5b0UhLvGDBgwC0nFknSe++9Z+nEouTkZK1ateqWr+XOnVsVK1a0rC27TJ8+3dDEoqCgIL311lteSAR4jslFAAAAAAAAAAAAAADgP7p27arChQunWRcbG6vPP//cC4kAAAAAAPCOU6dOpfp6rly5vJTEfmfOnNHo0aNv+VqFChXUrVs3S9vbunWrrl27dsvX6tevr4CAAEvbs8OwYcMM1XXs2FFlypSxOQ1gDSYXAQAAAAAAAAAAAACA/wgLC1Pfvn0N1X7xxReKiYmxOREAAAAAAN5x+vTpVF/PnDmzl5LY77PPPlNcXNwtX3v11VcVHBxsaXsrVqxI8bUGDRpY2pYdli5dqo0bN6ZZFxwczKpF8CtMLgIAAAAAAAAAAAAAALfUtWtXlSpVKs26CxcuaNSoUV5IBAAAAACA/a5evZrq6+llclFSUpLGjh17y9dy5cqlDh06WN7m8uXLU3zNHyYXDR061FBdly5dVLp0aZvTANZhchEAAAAAAAAAAAAAALilkJAQDR482FDtBx98oPj4eJsTAQAAAABgv7RW501OTvZSEnstWrRIZ8+eveVrLVu2VFhYmOVtprRyUY4cOXTbbbdZ3p6VNmzYoHnz5qVZFxERoQEDBtgfCLAQk4sAAAAAAAAAAAAAAECKHn74YVWvXj3NuhMnTqT4tGMAAAAAAPxJWg/PuHnzppeS2Gv69OkpvvbQQw9Z3t7u3bt1/vz5W75Wv359BQb69vSGQYMGGap7+eWXlT9/fpvTANby7aMPAAAAAAAAAAAAAAA4KiAgQMOGDTNUO2TIECUkJNicCAAAAAAAe4WGhqb6+qlTp7yUxF5Lliy55X8PCAhQ7dq1LW9v+fLlKb7WoEEDy9uz0tatWzV79uw06/Lly6dXX33VC4kAazG5CAAAAAAAAAAAAAAApKphw4Zq3bp1mnVHjx7VN99844VEAAAAAADYJyIiItXXDx065KUk9jl9+rQOHDhwy9eKFSumXLlyWd6mP08u6tevn6G6d999V1mzZrU5DWA9JhcBAAAAAAAAAAAAAIA0DRs2TJkyZUqzbvDgwbp586YXEgEAAAAAYI88efKk+vqmTZu8lMQ+W7duTfG1kiVL2tLmihUrbvnfs2XLpttvv92WNq2wcuVK/frrr2nWVatWTU8++aQXEgHWY3IRAAAAAAAAAAAAAABIU4kSJdS7d+80686cOaPhw4d7IREAAAAAAPYoVqxYqq/v379fJ06c8FIae6S0apEkFSxY0PL2Dh8+rOPHj9/ytbp16yow0HenNvTt29dQ3WeffebTvweQGj65AAAAAAAAAAAAAADAkL59+6Z5g5UkDR06VBcuXPBCIgAAAAAArFeuXLk0a3766ScvJDHn0KFDun79uqHaw4cPp/ha5syZrYr0l+XLl6f4WoMGDSxvzyqzZ89OccWlf3riiSdUt25dLyQC7MHkIgAAAAAAAAAAAAAAYEhERIRGjBiRZt3Vq1c1YMAA+wMBAAAAAGCDChUqKEuWLKnWfPXVV15KY8zixYt155136plnnjFUf/ny5RRfCw4OtirWX1KbXNSwYUPL27NCYmKiXn311TTrcubMqWHDhnkhEWAfJhcBAAAAAAAAAAAAAADDWrRooZYtW6ZZ9/XXX2vPnj32BwIAAAAAwGKBgYGqVatWqjW7d+/WtGnTvJQodZ9//rnuvfdeXbp0SZMmTdI333yT5jbR0dEpvnb16lUr4+nixYuaPXv2LV/LkiWLqlWrZml7Vvnyyy+1d+/eNOuGDh2qPHnyeCERYB/rpxQCAAAAAAAAAAAAAIB0bcSIEapSpUqadUeOHFH58uW9kAgAAAAAAGu1atVK8+fPT7XmlVde0b333qusWbN6KdW/Xbx4UV27dtXMmTP/9d9ffPFF1axZU5UrV05x28TExBRfu3DhglURJUnPP/+8zp8/f8vX6tSpo6CgIEvbs0pAQID69++fak1ERIS6du3qpUSAfQJcLpfL6RAAAAAAAAAAAAAAAAAAAAAAAPiKc+fOqUiRIoqPj0+1rl27dpoyZYoCAgK8lOwP8+bN01NPPaVTp07d8vVy5cpp48aNioyMvOXrnTt31vjx42/5Wp48eXTu3DlLco4aNUpPP/10iq8PGTJEr7/+uiVtAXBfoNMBAAAAAAAAAAAAAAAAAAAAAADwJXnz5tXDDz+cZt20adPUq1cv+wP9v5MnT+rhhx/Wfffdl+LEIkkqXry4AgNTni6QM2fOFF87f/68du/e7VFOSVqxYoW6d++eak2dOnU8bgeA55hcBAAAAAAAAAAAAAAAAAAAAADA/+jTp4+CgoLSrBs+fLgef/xxxcTE2JblypUrGjhwoMqXL6+pU6emWtu+fXvNnj1bERERKdYULFgw1X189dVXbuX807p16/TAAw+kuvJTSEiI7rjjDo/aAWANJhcBAAAAAAAAAAAAAAAAAAAAAPA/oqKi1K1bN0O1EydO1O23367FixdbmuHkyZN66623VLx4cQ0YMEDR0dGp1j/zzDOaNGmSQkJCUq2rWbNmqq+PHj1a+/btM51XkubPn6+mTZvq2rVrqdbdfvvtCg8Pd6sNANZichEAAAAAAAAAAAAAAAAAAAAAALfw3nvvqVixYoZq9+3bp8aNG6tx48b66aeflJCQ4FabV65c0dSpU3X//ferWLFiGjx4sK5evZrqNqGhofr888/11VdfKTAw7WkCd955p8LCwlJ8/caNG2rfvr0uX75sOHdSUpKGDh2q5s2bpzmxSBKrFgE+JMDlcrmcDgEAAAAAAAAAAAAAAAAAAAAAgC9as2aNGjZsqPj4eFPbZc2aVY0bN1bNmjVVuXJlFStWTPnz51dERIRCQkIUHR2ta9eu6fTp0/r999+1a9curVixQhs2bFBSUpLhdgoVKqTp06enuRrR/2rbtq1+/PHHVGvKlSunSZMmqWrVqqnWrV27Vj179tTGjRsNtz9q1Ch16dLFcD0A+zC5CAAAAAAAAAAAAAAAAAAAAACAVEybNk2PPPKIkpOTnY7yL61bt9aXX36pvHnzmt521apVqlu3bpp1AQEBatWqldq0aaOaNWsqX758CggI0PHjx7VkyRJNmjRJy5cvN93+5s2b05y0BMA7mFwEAAAAAAAAAAAAAAAAAAAAAEAafvjhBz355JOmVzCyQ8GCBTVy5Ei1bNnSo/3cc889WrhwoTWhTAgKClJ0dLQyZcrk9bYB/Feg0wEAAAAAAAAAAAAAAAAAAAAAAPB1HTp00IIFC1SgQAHHMkREROiVV17R77//7vHEIkkaP3688uTJ43mwW0htVaJSpUoxsQjwIUwuAgAAAAAAAAAAAAAAAAAAAADAgPr162vnzp3q2LGjV9vNlCmTXnzxRR06dEgffvihsmXLZsl+CxYsqKlTpypLliyW7E+ScuXKpbFjx+qFF15IsaZs2bKWtQfAc0wuAgAAAAAAAAAAAAAAAAAAAADAoJw5c2rixInasGGDmjdvroCAANvaioqK0scff6zjx4/r008/Vb58+Sxvo2HDhlqxYoUKFy7s0X7Cw8PVq1cv7du3T507d9b69etTrC1T5v/au2OUxsIwCsPfRG2CETub2AiDQbCLKVIJWgezhBSuxsYduAa77MDGwnSWFoqFIkQQixSZbmBgYEQjYTjP093i/vfcBbz8P7/0LWCxfszn8/myRwAAAAAAAAAAAAAAwP/o7u6uLi4u6vLysiaTyZfOWllZqW63W8fHxzUYDKrX6y1o5b9Np9M6Ozur8/Pzent7+/B7Ozs7NRqN6vT09I/46eDgoK6vr38/t9vtGgwGNRwO6/DwsFZXVxe6H/g8cREAAAAAAAAAAAAAACzA4+NjXV1d1c3NTd3e3tb9/X09PDzU6+trvb+/12w2q2azWa1Wq9bX12tra6t2d3er0+nU3t5e9fv92tzcXOo/vLy81Hg8rvF4XJPJpJ6enur5+bkajUZtbGxUu92uTqdTvV6vjo6Oan9//6/nbG9vV6vVqpOTkxoOh9Xtdr/1lifg88RFAAAAAAAAAAAAAADAQs1ms1pbW1v2DOADxEUAAAAAAAAAAAAAAAAQqrHsAQAAAAAAAAAAAAAAAMByiIsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABC/QJhSfaXezJlJAAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 57, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "# Show plots\n", - "from IPython.core.display import SVG\n", - "SVG(filename=\"./v_Cd_-1/v_Cd_-1.svg\")" + "figs = plotting.plot_all_defects(defect_charges_dict)" ] }, { "cell_type": "markdown", - "id": "10d1951b-e433-4890-9495-e04b1d38a0e0", + "id": "e6283091", "metadata": { "pycharm": { "name": "#%% md\n" @@ -2356,12 +2212,11 @@ }, { "cell_type": "markdown", - "id": "fed3f81c-d447-40aa-a35c-1b0441173460", + "id": "b8e99db1", "metadata": { "pycharm": { "name": "#%% md\n" - }, - "tags": [] + } }, "source": [ "### Can also add a colorbar \n", @@ -2375,27 +2230,18 @@ }, { "cell_type": "code", - "execution_count": 58, - "id": "8c4ab021-6a67-4429-86d7-7606edbf4992", + "execution_count": null, + "id": "731b3655", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Comparing structures to Unperturbed...\n", - "Previous version of v_Cd_-1.svg found in output_path: 'v_Cd_-1/'. Will rename old plot to v_Cd_-1_2022-10-19-11-42.svg.\n", - "Plot saved to v_Cd_-1/v_Cd_-1.svg\n", - "Comparing structures to Unperturbed...\n", - "Previous version of v_Cd_0.svg found in output_path: 'v_Cd_0/'. Will rename old plot to v_Cd_0_2022-10-19-11-42.svg.\n", - "Plot saved to v_Cd_0/v_Cd_0.svg\n" - ] - } - ], + "outputs": [], "source": [ "figs = plotting.plot_all_defects(\n", " defect_charges_dict,\n", @@ -2405,55 +2251,18 @@ }, { "cell_type": "code", - "execution_count": 59, - "id": "8c4ab021-6a67-4429-86d7-7606edbf4992", - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "data": { - "image/svg+xml": "\n \n \n \n \n 2022-10-19T11:42:29.871542\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", - "text/plain": [ - "" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Show plots\n", - "from IPython.core.display import SVG\n", - "SVG(filename=\"./v_Cd_0/v_Cd_0.svg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "id": "6a7bd7f6-b558-4640-b613-226b3e625494", + "execution_count": null, + "id": "7b17c125", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Comparing structures to Unperturbed...\n", - "Previous version of v_Cd_-1.svg found in output_path: 'v_Cd_-1/'. Will rename old plot to v_Cd_-1_2022-10-19-11-42.svg.\n", - "Plot saved to v_Cd_-1/v_Cd_-1.svg\n", - "Comparing structures to Unperturbed...\n", - "Previous version of v_Cd_0.svg found in output_path: 'v_Cd_0/'. Will rename old plot to v_Cd_0_2022-10-19-11-42.svg.\n", - "Plot saved to v_Cd_0/v_Cd_0.svg\n" - ] - } - ], + "outputs": [], "source": [ "figs = plotting.plot_all_defects(\n", " defect_charges_dict,\n", @@ -2462,33 +2271,9 @@ ")" ] }, - { - "cell_type": "code", - "execution_count": 61, - "id": "609155b8", - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": "\n \n \n \n \n 2022-10-19T11:42:38.615283\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", - "text/plain": [ - "" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Show plots\n", - "from IPython.core.display import SVG\n", - "SVG(filename=\"./v_Cd_-1/v_Cd_-1.svg\")" - ] - }, { "cell_type": "markdown", - "id": "8ff48ae2-68d1-4ad5-8a2d-7fe60cb5af18", + "id": "06cd22c2", "metadata": { "pycharm": { "name": "#%% md\n" @@ -2502,7 +2287,7 @@ }, { "cell_type": "markdown", - "id": "64bbd1d9-3ae3-490d-a8b6-a3351563413b", + "id": "f252aa7d", "metadata": { "pycharm": { "name": "#%% md\n" @@ -2514,7 +2299,7 @@ }, { "cell_type": "markdown", - "id": "6ca018a4-ccb6-4ba0-985b-e748eee08a27", + "id": "61a51d49", "metadata": { "pycharm": { "name": "#%% md\n" @@ -2526,31 +2311,20 @@ }, { "cell_type": "code", - "execution_count": 62, - "id": "b8b11819-774f-4ce8-8a0b-4cc765558f2d", + "execution_count": null, + "id": "67199c62", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Energy lowering distortion number 0\n", - "Found for charge states: [-1]\n", - "Not found in: {0, -2} \n", - "\n", - "Energy lowering distortion number 1\n", - "Found for charge states: [0]\n", - "Not found in: {-1, -2} \n", - "\n" - ] - } - ], + "outputs": [], "source": [ - "for index, subdict in enumerate(low_energy_defects[\"v_Cd\"]):\n", + "for index, subdict in enumerate(low_energy_defects[\"v_Cd_s0\"]):\n", " print(f\"Energy lowering distortion number {index}\")\n", " print(\"Found for charge states:\", subdict[\"charges\"]) # Charge state for which the energy lowering was found\n", " print(f\"Not found in:\", subdict[\"excluded_charges\"], \"\\n\")" @@ -2558,7 +2332,7 @@ }, { "cell_type": "markdown", - "id": "a402b4a6-7380-4522-a686-f2880edd84eb", + "id": "2330e0cf", "metadata": { "pycharm": { "name": "#%% md\n" @@ -2570,36 +2344,30 @@ }, { "cell_type": "code", - "execution_count": 63, - "id": "4b6ea78a-48b6-48d3-856d-e059aaf1f924", + "execution_count": null, + "id": "1468a763", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Writing low-energy distorted structure to ./v_Cd_0/Bond_Distortion_20.0%_from_-1\n", - "No subfolders with VASP input files found in ./v_Cd_0, so just writing distorted POSCAR file to ./v_Cd_0/Bond_Distortion_20.0%_from_-1 directory.\n", - "Writing low-energy distorted structure to ./v_Cd_-2/Bond_Distortion_20.0%_from_-1\n", - "No subfolders with VASP input files found in ./v_Cd_-2, so just writing distorted POSCAR file to ./v_Cd_-2/Bond_Distortion_20.0%_from_-1 directory.\n", - "As ./v_Cd_-1/Bond_Distortion_-60.0%_from_0 already exists, it's assumed this structure has already been tested. Skipping...\n", - "Writing low-energy distorted structure to ./v_Cd_-2/Bond_Distortion_-60.0%_from_0\n", - "No subfolders with VASP input files found in ./v_Cd_-2, so just writing distorted POSCAR file to ./v_Cd_-2/Bond_Distortion_-60.0%_from_0 directory.\n" - ] - } - ], + "outputs": [], "source": [ - "energy_lowering_distortions.write_distorted_inputs(low_energy_defects)" + "energy_lowering_distortions.write_retest_inputs(low_energy_defects)" ] }, { "cell_type": "markdown", - "id": "614a2084-e6b9-48ab-9a56-2e07bf0b497d", - "metadata": {}, + "id": "5c48b7d6", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "```{Note}\n", "Note here the nomenclature we use for the distorted structures we've imported from other charge states (i.e. `Bond_Distortion_-60.0%_from_0` refers to the structure obtained from relaxing the -60% distortion of the neutral (q = 0) charge state).\n", @@ -2608,8 +2376,12 @@ }, { "cell_type": "markdown", - "id": "76e0728a-6e89-4f9b-9436-718d94d7bfb3", - "metadata": {}, + "id": "5cc78b6c", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "We can send these additional test distortions to the HPCs using this `bash` code:\n", "```bash\n", @@ -2623,7 +2395,7 @@ }, { "cell_type": "markdown", - "id": "7d09bbe6-693c-4c15-8586-3c9c13e78426", + "id": "2ac402c4", "metadata": { "pycharm": { "name": "#%% md\n" @@ -2635,27 +2407,31 @@ }, { "cell_type": "code", - "execution_count": 64, - "id": "7eb4d411-fc2b-4680-92a9-c3c683898814", + "execution_count": null, + "id": "3cbf3c6e", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ - "# !cp ./v_Cd_0/v_Cd_0_additional_distortions.yaml ./v_Cd_0/v_Cd_0.yaml\n", - "# !cp ./v_Cd_-1/v_Cd_-1_additional_distortions.yaml ./v_Cd_-1/v_Cd_-1.yaml\n", - "# !cp ./v_Cd_-2/v_Cd_-2_additional_distortions.yaml ./v_Cd_-2/v_Cd_-2.yaml\n", - "# !cp ./v_Cd_0/Bond_Distortion_-60.0%/CONTCAR ./v_Cd_-1/Bond_Distortion_-60.0%_from_0/\n", - "# !cp ./v_Cd_0/Bond_Distortion_-60.0%/CONTCAR ./v_Cd_-2/Bond_Distortion_-60.0%_from_0/\n", - "# !cp ./v_Cd_-1/Unperturbed/CONTCAR ./v_Cd_-2/Bond_Distortion_20.0%_from_-1/\n", - "# !cp ./v_Cd_-1/Unperturbed/CONTCAR ./v_Cd_0/Bond_Distortion_20.0%_from_-1/" + "!cp ./v_Cd_s0_0/v_Cd_s0_0_additional_distortions.yaml ./v_Cd_s0_0/v_Cd_s0_0.yaml\n", + "!cp ./v_Cd_s0_-1/v_Cd_s0_-1_additional_distortions.yaml ./v_Cd_s0_-1/v_Cd_s0_-1.yaml\n", + "!cp ./v_Cd_s0_-2/v_Cd_s0_-2_additional_distortions.yaml ./v_Cd_s0_-2/v_Cd_s0_-2.yaml\n", + "!cp ./v_Cd_s0_0/Bond_Distortion_-60.0%/CONTCAR ./v_Cd_s0_-1/Bond_Distortion_-60.0%_from_0/\n", + "!cp ./v_Cd_s0_0/Bond_Distortion_-60.0%/CONTCAR ./v_Cd_s0_-2/Bond_Distortion_-60.0%_from_0/\n", + "!cp ./v_Cd_s0_-1/Unperturbed/CONTCAR ./v_Cd_s0_-2/Bond_Distortion_20.0%_from_-1/\n", + "!cp ./v_Cd_s0_-1/Unperturbed/CONTCAR ./v_Cd_s0_0/Bond_Distortion_20.0%_from_-1/" ] }, { "cell_type": "markdown", - "id": "ff3434e0-fd91-4d00-bd6a-01e47b78524a", + "id": "d25f09d1", "metadata": { "pycharm": { "name": "#%% md\n" @@ -2667,48 +2443,25 @@ }, { "cell_type": "code", - "execution_count": 65, - "id": "da6b9e3b-c05d-4dcd-a281-0b972ea56c05", + "execution_count": null, + "id": "39f39083", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "v_Cd\n", - "v_Cd_-1: Energy difference between minimum, found with -60.0%_from_0 bond distortion, and unperturbed: -1.20 eV.\n", - "Energy lowering distortion found for v_Cd with charge -1. Adding to low_energy_defects dictionary.\n", - "v_Cd_-2: Energy difference between minimum, found with 20.0%_from_-1 bond distortion, and unperturbed: -1.90 eV.\n", - "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "New (according to structure matching) low-energy distorted structure found for v_Cd_-2, adding to low_energy_defects['v_Cd'] list.\n", - "v_Cd_0: Energy difference between minimum, found with -0.6 bond distortion, and unperturbed: -0.76 eV.\n", - "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "Low-energy distorted structure for v_Cd_0 already found with charge states [-1], storing together.\n", - "\n", - "Comparing and pruning defect structures across charge states...\n", - "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "Ground-state structure found for v_Cd with charges [-1, 0] has been also previously been found for charge state -2 (according to structure matching). Adding this charge to the corresponding entry in low_energy_defects[v_Cd].\n", - "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "Ground-state structure found for v_Cd with charges [-2] has been also previously been found for charge state 0 (according to structure matching). Adding this charge to the corresponding entry in low_energy_defects[v_Cd].\n", - "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "Ground-state structure found for v_Cd with charges [-2, 0] has been also previously been found for charge state -1 (according to structure matching). Adding this charge to the corresponding entry in low_energy_defects[v_Cd].\n" - ] } - ], + }, + "outputs": [], "source": [ "low_energy_defects = energy_lowering_distortions.get_energy_lowering_distortions(defect_charges_dict)" ] }, { "cell_type": "markdown", - "id": "2723ed3d-d108-4716-b7ea-cae91e771910", + "id": "805f4d4f", "metadata": { "pycharm": { "name": "#%% md\n" @@ -2720,174 +2473,95 @@ }, { "cell_type": "code", - "execution_count": 66, - "id": "c9b9f5d3-cce7-4d26-99ed-e8049127bab5", + "execution_count": null, + "id": "33df4aab", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Previous version of v_Cd_-1.svg found in output_path: 'v_Cd_-1/'. Will rename old plot to v_Cd_-1_2022-10-19-11-43.svg.\n", - "Plot saved to v_Cd_-1/v_Cd_-1.svg\n", - "Plot saved to v_Cd_-2/v_Cd_-2.svg\n", - "Previous version of v_Cd_0.svg found in output_path: 'v_Cd_0/'. Will rename old plot to v_Cd_0_2022-10-19-11-43.svg.\n", - "Plot saved to v_Cd_0/v_Cd_0.svg\n" - ] - } - ], + "outputs": [], "source": [ "figs = plotting.plot_all_defects(defect_charges_dict)" ] }, { - "cell_type": "code", - "execution_count": 67, - "id": "c9b9f5d3-cce7-4d26-99ed-e8049127bab5", + "cell_type": "markdown", + "id": "3b52c9b1", "metadata": { "pycharm": { - "name": "#%%\n" + "name": "#%% md\n" } }, - "outputs": [ - { - "data": { - "image/svg+xml": "\n \n \n \n \n 2022-10-19T11:43:39.855667\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", - "text/plain": [ - "" - ] - }, - "execution_count": 67, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "SVG(filename=\"./v_Cd_-2/v_Cd_-2.svg\")" + "In this example case, for VCd0 the distorted structure originally found for the -1 charge state comes out lower energy than the VCd0 unperturbed relaxation, but still higher energy than the previously identified ground-state at -0.3, -0.4 and -0.6 distortion factors. \n", + "\n", + "For VCd-1, the distorted structure originally found for the neutral (0) charge state comes out lower energy than the previously identified ground-state at distortion factors >0.2.\n", + "\n", + "We now continue our defect calculations using the ground-state `CONTCAR`s we've obtained for each defect, with our fully-converged `INCAR` and `KPOINTS` settings, to get our final defect formation energies (confident that we've identified the ground-state defect structure!). The `energy_lowering_distortions.write_groundstate_structure()` function automatically writes these lowest-energy structures to our defect folders:" ] }, { "cell_type": "code", - "execution_count": 68, - "id": "c9b9f5d3-cce7-4d26-99ed-e8049127bab5", + "execution_count": null, + "id": "ebb87933", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "data": { - "image/svg+xml": "\n \n \n \n \n 2022-10-19T11:43:39.714837\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", - "text/plain": [ - "" - ] - }, - "execution_count": 68, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "SVG(filename=\"./v_Cd_-1/v_Cd_-1.svg\")" + "energy_lowering_distortions.write_groundstate_structure()" ] }, { "cell_type": "code", - "execution_count": 69, - "id": "c9b9f5d3-cce7-4d26-99ed-e8049127bab5", + "execution_count": null, + "id": "6e0c6282", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "data": { - "image/svg+xml": "\n \n \n \n \n 2022-10-19T11:43:40.001634\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", - "text/plain": [ - "" - ] - }, - "execution_count": 69, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "SVG(filename=\"./v_Cd_0/v_Cd_0.svg\")" + "!head v_Cd_s0_0/groundstate_POSCAR # groundstate structure from -60% distortion relaxation" ] }, { - "cell_type": "markdown", - "id": "198c0f9a-b320-4c64-8951-b7f7362d9a3b", + "cell_type": "code", + "execution_count": null, + "id": "f3f12096", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { - "name": "#%% md\n" + "name": "#%%\n" } }, - "source": [ - "In this example case, for VCd0 the distorted structure originally found for the -1 charge state comes out lower energy than the VCd0 unperturbed relaxation, but still higher energy than the previously identified ground-state at -0.3, -0.4 and -0.6 distortion factors. \n", - "\n", - "For VCd-1, the distorted structure originally found for the neutral (0) charge state comes out lower energy than the previously identified ground-state at distortion factors >0.2.\n", - "\n", - "We now continue our defect calculations using the ground-state `CONTCAR`s we've obtained for each defect, with our fully-converged `INCAR` and `KPOINTS` settings, to get our final defect formation energies (confident that we've identified the ground-state defect structure!). The `energy_lowering_distortions.write_groundstate_structure()` function automatically writes these lowest-energy structures to our defect folders:" - ] - }, - { - "cell_type": "code", - "execution_count": 70, - "id": "a75f2092-edb0-46fd-aa5d-8a50aaaea253", - "metadata": {}, - "outputs": [], - "source": [ - "energy_lowering_distortions.write_groundstate_structure()" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "id": "d8112dc1-fe01-4ee4-afaf-fc06eba8eb58", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "-60.0%_Bond__vac_1_Cd[0. 0. 0.]_-dNELECT\n", - " 1.0000000000000000 \n", - " 13.0867679999999993 0.0000000000000000 0.0000000000000000\n", - " 0.0000000000000000 13.0867679999999993 0.0000000000000000\n", - " 0.0000000000000000 0.0000000000000000 13.0867679999999993\n", - " Cd Te\n", - " 31 32\n", - "Direct\n", - " 0.0014403846070577 0.0152341826280604 0.4960600473735149\n", - " 0.0018443102488570 0.5161087673464303 -0.0040398656877614\n" - ] - } - ], - "source": [ - "!head v_Cd_0/groundstate_POSCAR # groundstate structure from -60% distortion relaxation" - ] - }, - { - "cell_type": "code", - "execution_count": 72, - "id": "5b424741-3831-4c65-81ae-b8a8b2eb20f2", - "metadata": {}, "outputs": [], "source": [ - "!diff v_Cd_0/groundstate_POSCAR v_Cd_0/Bond_Distortion_-60.0%/CONTCAR # groundstate structure from -60% distortion relaxation" + "!diff v_Cd_s0_0/groundstate_POSCAR v_Cd_s0_0/Bond_Distortion_-60.0%/CONTCAR # groundstate structure from -60% distortion relaxation" ] }, { "cell_type": "markdown", - "id": "9b7e359d-0db6-435b-8385-5ab1151a3f8e", + "id": "4555c8af", "metadata": { "pycharm": { "name": "#%% md\n" @@ -2899,7 +2573,7 @@ }, { "cell_type": "markdown", - "id": "1ae78fa6-2980-4b11-9511-7a2f96d78ee3", + "id": "e3be62eb", "metadata": { "pycharm": { "name": "#%% md\n" @@ -2911,9 +2585,13 @@ }, { "cell_type": "code", - "execution_count": 75, - "id": "101f20c7-1544-4be5-b20d-a293c618a2d6", + "execution_count": null, + "id": "a0b6234b", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } @@ -2924,327 +2602,32 @@ "\n", "# Parse all structures obtained with distortions and unperturbed relaxation. \n", "# This gives a dictionary matching initial distortion to final structure\n", - "v_Cd_0 = analysis.get_structures(\"v_Cd_0\")" + "v_Cd_s0_0 = analysis.get_structures(\"v_Cd_s0_0\")" ] }, { "cell_type": "code", - "execution_count": 76, - "id": "678a51a9-098a-4c5d-a5e8-8075775153c8", + "execution_count": null, + "id": "a42aa14a", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[1mv_Cd_0 structural analysis \u001b[0m\n", - "Analysing site V [0. 0. 0.]\n", - "Local order parameters (i.e. resemblance to given structural motif, via CrystalNN):\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
CoordinationFactor
0square co-planar0.09
1tetrahedral1.00
2rectangular see-saw-like0.01
3see-saw-like0.24
4trigonal pyramidal0.25
\n", - "
" - ], - "text/plain": [ - " Coordination Factor\n", - "0 square co-planar 0.09\n", - "1 tetrahedral 1.00\n", - "2 rectangular see-saw-like 0.01\n", - "3 see-saw-like 0.24\n", - "4 trigonal pyramidal 0.25" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Bond-lengths (in Å) to nearest neighbours: \n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ElementDistance (Å)
0Te2.60
1Te2.63
2Te2.63
3Te2.65
\n", - "
" - ], - "text/plain": [ - " Element Distance (Å)\n", - "0 Te 2.60\n", - "1 Te 2.63\n", - "2 Te 2.63\n", - "3 Te 2.65" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\u001b[1mv_Cd_0 structural analysis \u001b[0m\n", - "Analysing site V [0. 0. 0.]\n", - "Local order parameters (i.e. resemblance to given structural motif, via CrystalNN):\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
CoordinationFactor
0square co-planar0.13
1tetrahedral0.74
2rectangular see-saw-like0.03
3see-saw-like0.21
4trigonal pyramidal0.21
\n", - "
" - ], - "text/plain": [ - " Coordination Factor\n", - "0 square co-planar 0.13\n", - "1 tetrahedral 0.74\n", - "2 rectangular see-saw-like 0.03\n", - "3 see-saw-like 0.21\n", - "4 trigonal pyramidal 0.21" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Bond-lengths (in Å) to nearest neighbours: \n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
ElementDistance (Å)
0Te2.19
1Te2.63
2Te2.64
3Te2.30
\n", - "
" - ], - "text/plain": [ - " Element Distance (Å)\n", - "0 Te 2.19\n", - "1 Te 2.63\n", - "2 Te 2.64\n", - "3 Te 2.30" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], + "outputs": [], "source": [ "# Can then analyse a chosen final structure with:\n", - "df = analysis.analyse_structure(\"v_Cd_0\", v_Cd_0[\"Unperturbed\"])\n", - "df = analysis.analyse_structure(\"v_Cd_0\", v_Cd_0[-0.4])" + "df = analysis.analyse_structure(\"v_Cd_s0_0\", v_Cd_s0_0[\"Unperturbed\"])\n", + "df = analysis.analyse_structure(\"v_Cd_s0_0\", v_Cd_s0_0[-0.4])" ] }, { "cell_type": "markdown", - "id": "9bc134e4-a90f-4f9b-a804-71796c20970b", + "id": "bbd81b60", "metadata": { "pycharm": { "name": "#%% md\n" @@ -3257,193 +2640,29 @@ }, { "cell_type": "code", - "execution_count": 77, - "id": "277e8e9f-ea58-404a-9559-7f9666e9efee", + "execution_count": null, + "id": "d5649727", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "v_Cd_0: Energy difference between minimum, found with -0.6 bond distortion, and unperturbed: -0.76 eV.\n", - "Comparing structures to Unperturbed...\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Bond DistortionΣ{Displacements} (Å)Max Distance (Å)Δ Energy (eV)
0-0.65.8730.810-0.76
1-0.50.0000.024-0.01
2-0.45.7600.808-0.75
3-0.35.8720.808-0.75
4-0.20.0000.0250.00
5-0.10.0000.0280.00
60.00.0000.0300.00
70.12.2850.2370.00
80.22.2850.2370.00
90.32.2850.2370.00
100.42.2850.2370.00
110.52.2850.2370.00
120.62.2850.2370.00
1320.0%_from_-12.2850.237-0.28
14Unperturbed0.0000.0000.00
\n", - "
" - ], - "text/plain": [ - " Bond Distortion Σ{Displacements} (Å) Max Distance (Å) Δ Energy (eV)\n", - "0 -0.6 5.873 0.810 -0.76\n", - "1 -0.5 0.000 0.024 -0.01\n", - "2 -0.4 5.760 0.808 -0.75\n", - "3 -0.3 5.872 0.808 -0.75\n", - "4 -0.2 0.000 0.025 0.00\n", - "5 -0.1 0.000 0.028 0.00\n", - "6 0.0 0.000 0.030 0.00\n", - "7 0.1 2.285 0.237 0.00\n", - "8 0.2 2.285 0.237 0.00\n", - "9 0.3 2.285 0.237 0.00\n", - "10 0.4 2.285 0.237 0.00\n", - "11 0.5 2.285 0.237 0.00\n", - "12 0.6 2.285 0.237 0.00\n", - "13 20.0%_from_-1 2.285 0.237 -0.28\n", - "14 Unperturbed 0.000 0.000 0.00" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "defect_energies = analysis.get_energies(\"v_Cd_0\")\n", + "defect_energies = analysis.get_energies(\"v_Cd_s0_0\")\n", "structure_comparison = analysis.compare_structures(\n", - " v_Cd_0,\n", + " v_Cd_s0_0,\n", " defect_energies\n", ")" ] }, { "cell_type": "markdown", - "id": "8dac7ce8", + "id": "0e736e53", "metadata": { "pycharm": { "name": "#%% md\n" @@ -3456,26 +2675,21 @@ }, { "cell_type": "code", - "execution_count": 79, - "id": "832f990d-ea3c-4f98-9703-60d2d4e226b1", + "execution_count": null, + "id": "72854cf8", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'Te(32)': {'Te(41)': '2.75 A'}}\n", - "So two of the vacancy neighbours formed a Te-Te bond to compensate for the charge deficiency\n" - ] - } - ], + "outputs": [], "source": [ "bonds = analysis.get_homoionic_bonds(\n", - " structure=v_Cd_0[-0.4], # Structure to analyse\n", + " structure=v_Cd_s0_0[-0.4], # Structure to analyse\n", " element=\"Te\", # we're looking for Te-Te bonds\n", " radius=2.8, # maximum bond distance between 2 Te\n", " verbose=False, # don't print bond distances\n", @@ -3486,7 +2700,7 @@ }, { "cell_type": "markdown", - "id": "1fab0baf", + "id": "c2aeff2e", "metadata": { "pycharm": { "name": "#%% md\n" @@ -3498,113 +2712,36 @@ }, { "cell_type": "code", - "execution_count": 81, - "id": "8572763e-24d6-43f9-9a56-371de03884a2", - "metadata": {}, - "outputs": [], - "source": [ - "!cp -r ../tests/data/example_results/v_Ti_0 ." - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "id": "0f400c78-71e7-486c-8145-06cffb72dfec", + "execution_count": null, + "id": "b02ce18d", "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Analysing distortion Unperturbed. Total magnetization: 4.0\n", - "Analysing distortion -0.4. Total magnetization: -0.0\n", - "No significant magnetizations found for distortion: -0.4 \n", - "\n" - ] + "collapsed": false, + "jupyter": { + "outputs_hidden": false }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SiteFrac coordsSite magDist. (Å)
O(35)O(35)[0.0, 0.167, 0.014]1.4582.26
O(53)O(53)[-0.0, 0.167, 0.486]1.4782.26
O(62)O(62)[0.165, 0.167, 0.292]1.5221.91
O(68)O(68)[0.835, 0.167, 0.292]1.5211.91
\n", - "
" - ], - "text/plain": [ - " Site Frac coords Site mag Dist. (Å)\n", - "O(35) O(35) [0.0, 0.167, 0.014] 1.458 2.26\n", - "O(53) O(53) [-0.0, 0.167, 0.486] 1.478 2.26\n", - "O(62) O(62) [0.165, 0.167, 0.292] 1.522 1.91\n", - "O(68) O(68) [0.835, 0.167, 0.292] 1.521 1.91" - ] - }, - "metadata": {}, - "output_type": "display_data" + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "!cp -r ../tests/data/example_results/v_Ti_0 ." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "da288e01", + "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "So we have 4 holes localised on 4 of the oxygen ions neighbouring the vacancy\n" - ] + "pycharm": { + "name": "#%%\n" } - ], + }, + "outputs": [], "source": [ "df = analysis.get_site_magnetizations(\n", " defect_species=\"v_Ti_0\", # neutral Ti vacancy in anatase TiO2\n", @@ -3620,7 +2757,7 @@ }, { "cell_type": "markdown", - "id": "8b8c6ebe", + "id": "99e7e710", "metadata": { "pycharm": { "name": "#%% md\n" @@ -3632,23 +2769,18 @@ }, { "cell_type": "code", - "execution_count": 83, - "id": "73db8706-09e6-4cac-b3cf-d894ef00cbee", + "execution_count": null, + "id": "3140def7", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{'O(44)': {'O(62)': '1.2 A'}}\n", - "So the formation of an O-O bond drived this distortion\n" - ] - } - ], + "outputs": [], "source": [ "bonds = analysis.get_homoionic_bonds(\n", " structure = Structure.from_file(\"./v_Ti_0/Bond_Distortion_-40.0%/CONTCAR\"),\n", @@ -3662,7 +2794,7 @@ }, { "cell_type": "markdown", - "id": "6e31b32f-d0c9-42f4-9b9a-10cff9cfedec", + "id": "a0d70fc7", "metadata": { "pycharm": { "name": "#%% md\n" @@ -3674,7 +2806,7 @@ }, { "cell_type": "markdown", - "id": "85e6dd4c-c161-43a7-bf10-be9ac4ab8329", + "id": "35290b8e", "metadata": { "pycharm": { "name": "#%% md\n" @@ -3686,7 +2818,7 @@ }, { "cell_type": "markdown", - "id": "74015500-a190-4cff-8368-59fa7594aafa", + "id": "2efe5aff", "metadata": { "pycharm": { "name": "#%% md\n" @@ -3698,112 +2830,53 @@ }, { "cell_type": "markdown", - "id": "31fe0d61", - "metadata": {}, + "id": "54cdd2c0", + "metadata": { + "pycharm": { + "name": "#%% md\n" + } + }, "source": [ "We can check the arguments of the `write_espresso_files` method with:" ] }, { "cell_type": "code", - "execution_count": 16, - "id": "6abe1ae5", + "execution_count": null, + "id": "12daee20", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mDist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_espresso_files\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mpseudopotentials\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0minput_parameters\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0minput_file\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mwrite_structures_only\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moutput_path\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'.'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Generates input files for Quantum Espresso relaxations of all output\n", - "structures.\n", - "\n", - "Args:\n", - " pseudopotentials (:obj:`dict`, optional):\n", - " Dictionary matching element to pseudopotential name.\n", - " (Defaults: None)\n", - " input_parameters (:obj:`dict`, optional):\n", - " Dictionary of user Quantum Espresso input parameters, to\n", - " overwrite/update `shakenbreak` default ones (see\n", - " `input_files/qe_input.yaml`).\n", - " (Default: None)\n", - " input_file (:obj:`str`, optional):\n", - " Path to Quantum Espresso input file, to overwrite/update\n", - " `shakenbreak` default ones (see `input_files/qe_input.yaml`).\n", - " If both `input_parameters` and `input_file` are provided,\n", - " the input_parameters will be used.\n", - " write_structures_only (:obj:`bool`, optional):\n", - " Whether to only write the structure files (in CIF format)\n", - " (without calculation inputs).\n", - " (Default: False)\n", - " output_path (:obj:`str`, optional):\n", - " Path to directory in which to write distorted defect structures\n", - " and calculation inputs.\n", - " (Default is current directory: \".\")\n", - " verbose (:obj:`bool`):\n", - " Whether to print distortion information (bond atoms and\n", - " distances).\n", - " (Default: False)\n", - "\n", - "Returns:\n", - " :obj:`tuple`:\n", - " Tuple of dictionaries with new defects_dict (containing the\n", - " distorted structures) and defect distortion parameters.\n", - "\u001b[0;31mFile:\u001b[0m ~/Python_Modules/shakenbreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m method\n" - ] - } - ], + "outputs": [], "source": [ "Dist.write_espresso_files?" ] }, { "cell_type": "code", - "execution_count": 84, - "id": "a37f935b-701c-4da3-87d9-02242109d48e", + "execution_count": null, + "id": "5493a1c4", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Oxidation states were not explicitly set, thus have been guessed as {'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set oxidation_states\n", - "Applying ShakeNBreak... Will apply the following bond distortions: ['-0.3', '0.3']. Then, will rattle with a std dev of 0.28 Å \n", - "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", - "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" - ] - } - ], + "outputs": [], "source": [ - "# oxidation_states = {\"Cd\": +2, \"Te\": -2} # explicitly specify atom oxidation states\n", - "\n", "# Create an instance of Distortion class with the defect dictionary and the distortion parameters\n", "# If distortion parameters are not specified, the default values are used\n", "Dist = Distortions(\n", - " defects_dict=dict(V_Cd_dict),\n", - " #oxidation_states=oxidation_states, # let the code guess the oxidation states\n", + " defects=v_Cd,\n", " bond_distortions=[-0.3, 0.3] # For demonstration purposes, just doing 2 distortions\n", ")\n", "\n", @@ -3818,7 +2891,7 @@ }, { "cell_type": "markdown", - "id": "29765a65-4226-42cc-8f8d-cf7f3c1e021f", + "id": "c50e2b5c", "metadata": { "pycharm": { "name": "#%% md\n" @@ -3834,140 +2907,25 @@ }, { "cell_type": "code", - "execution_count": 18, - "id": "b9024635", + "execution_count": null, + "id": "fed65238", "metadata": { - "collapsed": true, + "collapsed": false, "jupyter": { - "outputs_hidden": true + "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "&CONTROL\n", - " calculation = 'relax'\n", - " title = 'espresso'\n", - " nstep = 300\n", - " tstress = .false.\n", - " tprnfor = .true.\n", - "/\n", - "&SYSTEM\n", - " ibrav = 0\n", - " tot_charge = 0\n", - " ecutwfc = 30.0\n", - " nosym = .true.\n", - " occupations = 'smearing'\n", - " degauss = 0.0015\n", - " nspin = 2\n", - " input_dft = 'HSE'\n", - " exx_fraction = 0.25\n", - " starting_magnetization(1) = 0.0\n", - " starting_magnetization(2) = 0.0\n", - " ntyp = 2\n", - " nat = 63\n", - "/\n", - "&ELECTRONS\n", - " ecutwfc = 33.0\n", - "/\n", - "&IONS\n", - "/\n", - "&CELL\n", - "/\n", - "\n", - "ATOMIC_SPECIES\n", - "Cd 112.414 Cd_pbe_v1.uspp.F.UPF\n", - "Te 127.6 Te.pbe-n-rrkjus_psl.1.0.0.UPF\n", - "\n", - "K_POINTS automatic\n", - "1 1 1 0 0 0\n", - "\n", - "CELL_PARAMETERS angstrom\n", - "13.08676800000000 0.00000000000000 0.00000000000000\n", - "0.00000000000000 13.08676800000000 0.00000000000000\n", - "0.00000000000000 0.00000000000000 13.08676800000000\n", - "\n", - "ATOMIC_POSITIONS angstrom\n", - "Cd -0.1434911601 -0.2385151837 6.8150857816\n", - "Cd 0.4494288801 6.7769996959 -0.0135321750\n", - "Cd 0.1263646364 6.5320351698 6.4047505596\n", - "Cd 6.1744016994 -0.0422155671 -0.2883727639\n", - "Cd 7.0218513569 -0.1956932962 6.8368511812\n", - "Cd 6.4148946236 5.8427260793 -0.0941166578\n", - "Cd 6.6231445834 6.6386273355 6.5646951417\n", - "Cd -0.0930463691 2.7998390985 3.1815963828\n", - "Cd -0.4382789783 3.2224005685 10.1945490442\n", - "Cd 0.3283883823 9.8199609895 3.8588142250\n", - "Cd 0.2868375728 9.5008031100 10.1622309177\n", - "Cd 6.2236580741 3.3883053272 3.4377133240\n", - "Cd 6.9633774238 3.3859640414 9.6252804651\n", - "Cd 6.3916874783 9.6140830410 3.1716572177\n", - "Cd 6.4343753422 9.7039959522 9.4914454051\n", - "Cd 3.5290739650 -0.0102338238 3.5196904972\n", - "Cd 3.6622940322 0.0773629832 9.9548486402\n", - "Cd 3.6238402965 6.3664292031 3.1942466536\n", - "Cd 3.2709515176 6.5949379070 9.5272525954\n", - "Cd 10.0558411376 -0.1837771500 3.5341546226\n", - "Cd 9.6364301691 -0.0544704498 9.8810735404\n", - "Cd 9.3834495288 6.2323203692 3.2455048342\n", - "Cd 9.5864821955 6.2251964424 10.0537753778\n", - "Cd 2.9929046009 3.7695779217 0.0367936846\n", - "Cd 3.2695187347 3.4277104497 6.5121592001\n", - "Cd 3.7490142595 9.9037468136 0.4619742215\n", - "Cd 3.5005459698 9.9058044961 6.1735646663\n", - "Cd 10.0168838980 3.5064232914 -0.2220868039\n", - "Cd 10.0582554199 3.2072178847 6.4528722959\n", - "Cd 9.6639362700 9.9262589321 0.2457863270\n", - "Cd 9.9625737308 10.0083521620 6.8326782974\n", - "Te 1.4317034215 1.8330473632 5.4279434803\n", - "Te 2.1266235285 2.1266235285 10.9601444715\n", - "Te 1.9391896628 8.4788929397 4.9474309841\n", - "Te 1.6770602208 7.9814747527 11.6245303639\n", - "Te 7.8707506607 1.5517570052 4.5464792201\n", - "Te 8.4544681279 1.9570317189 11.3849977907\n", - "Te 8.3906081591 8.1873028630 4.9659486383\n", - "Te 7.6355771855 8.4896906729 11.7566752746\n", - "Te 1.9243151002 5.1586548520 1.4310602412\n", - "Te 1.6770642906 4.9734500802 8.0240863225\n", - "Te 2.1266235285 10.9601444715 2.1266235285\n", - "Te 1.2427283376 11.5044810739 8.5015890105\n", - "Te 7.9241624879 4.6167100396 1.2683696790\n", - "Te 8.3232724964 4.7490264262 8.2503126434\n", - "Te 7.7708359186 11.5137729195 1.7112542335\n", - "Te 8.4185500531 11.3625771643 8.4919150469\n", - "Te 4.9043822053 1.7707914499 1.9576447837\n", - "Te 4.7537708970 1.4950733142 7.9915316501\n", - "Te 4.8976539032 7.9146485988 1.8060744775\n", - "Te 5.0460973600 7.9200788121 8.1182771827\n", - "Te 11.7181873962 1.2522489835 1.8190296436\n", - "Te 11.7666060482 1.5075867949 8.3262988988\n", - "Te 11.8382652606 8.4193074354 1.4585392335\n", - "Te 11.2070619717 8.1626676217 8.8307785202\n", - "Te 4.7542068544 4.9329362339 5.5030757510\n", - "Te 4.7676801086 4.9457453322 11.4551487889\n", - "Te 4.9156377017 11.5432414287 4.4496059678\n", - "Te 4.4556361870 11.4784703262 11.6159865481\n", - "Te 11.6026136261 4.7068455418 5.3429055973\n", - "Te 11.6105882817 4.7319175681 11.4379375317\n", - "Te 11.6010799480 11.1856760790 5.0676572049\n", - "Te 11.8305502221 11.7838344102 10.9530493640\n", - "\n" - ] } - ], + }, + "outputs": [], "source": [ - "!cat ./v_Cd_0/Bond_Distortion_30.0%/espresso.pwi" + "!cat ./v_Cd_s0_0/Bond_Distortion_30.0%/espresso.pwi" ] }, { "cell_type": "markdown", - "id": "5132c519-58a8-414c-8e29-a883d068845a", + "id": "2c93c9ca", "metadata": { "pycharm": { "name": "#%% md\n" @@ -3979,91 +2937,43 @@ }, { "cell_type": "code", - "execution_count": 85, - "id": "03ffee55", + "execution_count": null, + "id": "26329a83", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mDist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_cp2k_files\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0minput_file\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'/Users/skavanagh/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/../SnB_input_files/cp2k_input.inp'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mwrite_structures_only\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moutput_path\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'.'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Generates input files for CP2K relaxations of all output structures.\n", - "\n", - "Args:\n", - " input_file (:obj:`str`, optional):\n", - " Path to CP2K input file. If not set, default input file will be\n", - " used (see `shakenbreak/SnB_input_files/cp2k_input.inp`).\n", - " write_structures_only (:obj:`bool`, optional):\n", - " Whether to only write the structure files (in CIF format)\n", - " (without calculation inputs).\n", - " (Default: False)\n", - " output_path (:obj:`str`, optional):\n", - " Path to directory in which to write distorted defect structures\n", - " and calculation inputs.\n", - " (Default is current directory: \".\")\n", - " verbose (:obj:`bool`, optional):\n", - " Whether to print distortion information (bond atoms and\n", - " distances).\n", - " (Default: False)\n", - "\n", - "Returns:\n", - " :obj:`tuple`:\n", - " Tuple of dictionaries with new defects_dict (containing the\n", - " distorted structures) and defect distortion parameters.\n", - "\u001b[0;31mFile:\u001b[0m ~/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m method\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "Dist.write_cp2k_files?" ] }, { "cell_type": "code", - "execution_count": 86, - "id": "7d24a6dc", + "execution_count": null, + "id": "881f2a8e", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Applying ShakeNBreak... Will apply the following bond distortions: ['-0.3', '0.3']. Then, will rattle with a std dev of 0.28 Å \n", - "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", - "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" - ] - } - ], + "outputs": [], "source": [ "oxidation_states = {\"Cd\": +2, \"Te\": -2} # explicitly specify atom oxidation states\n", "\n", "# Create an instance of Distortion class with the defect dictionary and the distortion parameters\n", "# If distortion parameters are not specified, the default values are used\n", "Dist = Distortions( \n", - " defects_dict=dict(V_Cd_dict), \n", + " defects=v_Cd,\n", " oxidation_states=oxidation_states, # explicitly specify atom oxidation states\n", " bond_distortions=[-0.3, 0.3] # For demonstration purposes, just doing 2 distortions\n", ")\n", @@ -4073,7 +2983,7 @@ }, { "cell_type": "markdown", - "id": "d147b8ae-48a2-4304-985c-408b676aca54", + "id": "b191bcbe", "metadata": { "pycharm": { "name": "#%% md\n" @@ -4089,155 +2999,25 @@ }, { "cell_type": "code", - "execution_count": 21, - "id": "7d0b5876", + "execution_count": null, + "id": "d84f3659", "metadata": { - "collapsed": true, + "collapsed": false, "jupyter": { - "outputs_hidden": true + "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "&GLOBAL \n", - "\tPROJECT relax ! files generated will be named relax.out etc\n", - "\tRUN_TYPE GEO_OPT ! geometry optimization\n", - "\tIOLEVEL MEDIUM ! reduce amount of IO\n", - "&END GLOBAL\n", - "&FORCE_EVAL \n", - "\tMETHOD Quickstep\n", - "\n", - "\t! the electronic structure part\n", - "\t&DFT \n", - "\t\tBASIS_SET_FILE_NAME HFX_BASIS\n", - "\t\tPOTENTIAL_FILE_NAME GTH_POTENTIALS\n", - "\t\tSPIN_POLARIZED .TRUE.\n", - "\t\tCHARGE 0\n", - "\t\t&MGRID \n", - "\t\t\tCUTOFF [eV] 500 ! PW cutoff\n", - "\t\t&END MGRID\n", - "\t\t&QS \n", - "\t\t\tMETHOD GPW\n", - "\t\t\tEPS_DEFAULT 1e-10\n", - "\t\t\tEXTRAPOLATION ASPC\n", - "\t\t&END QS\n", - "\n", - "\t\t! use the GPW method (i.e. pseudopotential\n", - "\t\t! basedcalculations with the Gaussian and Plane\n", - "\t\t! Wavesscheme)\n", - "\t\t&DFT \n", - "\t\t\t&KPOINTS \n", - "\t\t\t\tSCHEME GAMMA 1 1 1 ! Gamma point only\n", - "\t\t\t&END KPOINTS\n", - "\t\t&END DFT\n", - "\t\t&POISSON \n", - "\t\t\tPERIODIC XYZ ! the default\n", - "\t\t&END POISSON\n", - "\t\t&PRINT \n", - "\n", - "\t\t\t! at the end of the SCF procedure generate\n", - "\t\t\t! cubefiles of the density\n", - "\t\t\t&E_DENSITY_CUBE OFF\n", - "\t\t\t&END E_DENSITY_CUBE\n", - "\t\t&END PRINT\n", - "\n", - "\t\t! use the OT METHOD for robust and efficientSCF,\n", - "\t\t! suitable for all non-metallic systems.\n", - "\t\t&SCF \n", - "\t\t\tSCF_GUESS RESTART ! can be used to RESTART an interrupted calculation\n", - "\t\t\tMAX_SCF 80\n", - "\t\t\tEPS_SCF 1e-06 ! accuracy of the SCF procedure typically 1.0E-6 - 1.0E-7\n", - "\t\t\t&OT \n", - "\t\t\t\tPRECONDITIONER FULL_SINGLE_INVERSE\n", - "\t\t\t\tMINIMIZER DIIS\n", - "\t\t\t&END OT\n", - "\n", - "\t\t\t! an accurate preconditioner suitable also\n", - "\t\t\t! forlarger systems, the most robust choice\n", - "\t\t\t! (DIISmight sometimes be faster, but not\n", - "\t\t\t! asstable).\n", - "\t\t\t&OUTER_SCF ! repeat the inner SCF cycle 10 times\n", - "\t\t\t\tMAX_SCF 10\n", - "\t\t\t\tEPS_SCF 1e-06 ! must match the above\n", - "\t\t\t&END OUTER_SCF\n", - "\n", - "\t\t\t! do not store the wfn\n", - "\t\t\t&PRINT \n", - "\t\t\t\t&RESTART \n", - "\t\t\t\t&END RESTART\n", - "\t\t\t&END PRINT\n", - "\t\t&END SCF\n", - "\n", - "\t\t! specify the exchange and correlation treatment\n", - "\t\t&XC \n", - "\n", - "\t\t\t! use a PBE0 functional\n", - "\t\t\t&XC_FUNCTIONAL \n", - "\t\t\t\t&PBE \n", - "\t\t\t\t\tSCALE_X 0.75\n", - "\t\t\t\t\tSCALE_C 1.0\n", - "\t\t\t\t&END PBE\n", - "\t\t\t&END XC_FUNCTIONAL\n", - "\n", - "\t\t\t! 75% GGA exchange 100% GGA correlation\n", - "\t\t\t&HF \n", - "\t\t\t\tFRACTION 0.25\n", - "\n", - "\t\t\t\t! 25 % HFX exchange\n", - "\t\t\t\t&SCREENING \n", - "\t\t\t\t\tEPS_SCHWARZ 1e-06\n", - "\t\t\t\t\tSCREEN_ON_INITIAL_P True\n", - "\t\t\t\t&END SCREENING\n", - "\n", - "\t\t\t\t! important parameter to get stable\n", - "\t\t\t\t! HFXcalcsneeds a good (GGA) initial guess\n", - "\t\t\t\t&INTERACTION_POTENTIAL \n", - "\t\t\t\t\tPOTENTIAL_TYPE TRUNCATED\n", - "\t\t\t\t\tCUTOFF_RADIUS 6.0\n", - "\t\t\t\t\tT_C_G_DATA ./t_c_g.dat\n", - "\t\t\t\t&END INTERACTION_POTENTIAL\n", - "\n", - "\t\t\t\t! for condensed phase systemsshould be\n", - "\t\t\t\t! lessthan halve the celldata file needed with\n", - "\t\t\t\t! thetruncated operator\n", - "\t\t\t\t&MEMORY \n", - "\t\t\t\t\tMAX_MEMORY 4000\n", - "\t\t\t\t\tEPS_STORAGE_SCALING 0.1\n", - "\t\t\t\t&END MEMORY\n", - "\t\t\t&END HF\n", - "\t\t&END XC\n", - "\t&END DFT\n", - "\n", - "\t! Description of the systemStructure will be read\n", - "\t! from external file\n", - "\t&SUBSYS \n", - "\t\t&CELL \n", - "\t\t\tCELL_FILE_FORMAT CIF\n", - "\t\t\tCELL_FILE_NAME structure.cif\n", - "\t\t&END CELL\n", - "\t\t&TOPOLOGY \n", - "\t\t\tCOORD_FILE_NAME structure.cif\n", - "\t\t\tCOORD_FILE_FORMAT CIF\n", - "\t\t&END TOPOLOGY\n", - "\t&END SUBSYS\n", - "&END FORCE_EVAL\n" - ] } - ], + }, + "outputs": [], "source": [ - "!cat ./v_Cd_0/Bond_Distortion_30.0%/cp2k_input.inp" + "!cat ./v_Cd_s0_0/Bond_Distortion_30.0%/cp2k_input.inp" ] }, { "cell_type": "markdown", - "id": "6b9b82be-7a7e-4d1b-95a4-4cc29e7f9199", + "id": "0011ba6c", "metadata": { "pycharm": { "name": "#%% md\n" @@ -4249,92 +3029,43 @@ }, { "cell_type": "code", - "execution_count": 87, - "id": "5862a23e", + "execution_count": null, + "id": "8511cca0", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mDist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_castep_files\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0minput_file\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'/Users/skavanagh/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/../SnB_input_files/castep.param'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mwrite_structures_only\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moutput_path\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'.'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Generates input `.cell` and `.param` files for CASTEP relaxations of\n", - "all output structures.\n", - "\n", - "Args:\n", - " input_file (:obj:`str`, optional):\n", - " Path to CASTEP input (`.param`) file. If not set, default input\n", - " file will be used (see `shakenbreak/SnB_input_files/castep.param`).\n", - " write_structures_only (:obj:`bool`, optional):\n", - " Whether to only write the structure files (in CIF format)\n", - " (without calculation inputs).\n", - " (Default: False)\n", - " output_path (:obj:`str`, optional):\n", - " Path to directory in which to write distorted defect structures\n", - " and calculation inputs.\n", - " (Default is current directory: \".\")\n", - " verbose (:obj:`bool`, optional):\n", - " Whether to print distortion information (bond atoms and\n", - " distances).\n", - " (Default: False)\n", - "\n", - "Returns:\n", - " :obj:`tuple`:\n", - " Tuple of dictionaries with new defects_dict (containing the\n", - " distorted structures) and defect distortion parameters.\n", - "\u001b[0;31mFile:\u001b[0m ~/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m method\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "Dist.write_castep_files?" ] }, { "cell_type": "code", - "execution_count": 88, - "id": "6f4ac552", + "execution_count": null, + "id": "2ae3e7b7", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Applying ShakeNBreak... Will apply the following bond distortions: ['0.3']. Then, will rattle with a std dev of 0.28 Å \n", - "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", - "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" - ] - } - ], + "outputs": [], "source": [ "oxidation_states = {\"Cd\": +2, \"Te\": -2} # explicitly specify atom oxidation states\n", "\n", "# Create an instance of Distortion class with the defect dictionary and the distortion parameters\n", "# If distortion parameters are not specified, the default values are used\n", "Dist = Distortions(\n", - " defects_dict=dict(V_Cd_dict),\n", + " defects=v_Cd,\n", " oxidation_states=oxidation_states, # explicitly specify atom oxidation states\n", " bond_distortions=[0.3] # For demonstration purposes, just doing 2 distortions\n", ")\n", @@ -4344,7 +3075,7 @@ }, { "cell_type": "markdown", - "id": "0c687b26-8ca7-4837-bb67-c779a676dd4c", + "id": "968842c8", "metadata": { "pycharm": { "name": "#%% md\n" @@ -4360,72 +3091,25 @@ }, { "cell_type": "code", - "execution_count": 89, - "id": "63a08ef0", + "execution_count": null, + "id": "ee3a0689", "metadata": { - "collapsed": true, + "collapsed": false, "jupyter": { - "outputs_hidden": true + "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#######################################################\n", - "#CASTEP param file: /home/ireaml/Python_Modules/shakenbreak/docs/v_Cd_0/Bond_Distortion_30.0%/castep.param\n", - "#Created using the Atomic Simulation Environment (ASE)#\n", - "# Internal settings of the calculator\n", - "# This can be switched off by settings\n", - "# calc._export_settings = False\n", - "# If stated, this will be automatically processed\n", - "# by ase.io.castep.read_seed()\n", - "# ASE_INTERFACE _build_missing_pspots : True\n", - "# ASE_INTERFACE _castep_command : castep\n", - "# ASE_INTERFACE _castep_pp_path : /home/ireaml/Python_Modules/shakenbreak/docs\n", - "# ASE_INTERFACE _check_checkfile : True\n", - "# ASE_INTERFACE _copy_pspots : False\n", - "# ASE_INTERFACE _directory : /home/ireaml/Python_Modules/shakenbreak/docs/v_Cd_0/Bond_Distortion_30.0%\n", - "# ASE_INTERFACE _export_settings : True\n", - "# ASE_INTERFACE _find_pspots : False\n", - "# ASE_INTERFACE _force_write : True\n", - "# ASE_INTERFACE _label : castep\n", - "# ASE_INTERFACE _link_pspots : True\n", - "# ASE_INTERFACE _pedantic : False\n", - "# ASE_INTERFACE _prepare_input_only : False\n", - "# ASE_INTERFACE _rename_existing_dir : True\n", - "# ASE_INTERFACE _set_atoms : False\n", - "# ASE_INTERFACE _track_output : False\n", - "# ASE_INTERFACE _try_reuse : False\n", - "#######################################################\n", - "\n", - "GEOM_METHOD: BFGS\n", - "GEOM_CONVERGENCE_WIN: 4\n", - "GEOM_ENERGY_TOL: 0.00005 eV\n", - "GEOM_FORCE_TOL: 0.05 ev/ang\n", - "GEOM_MAX_ITER: 300\n", - "XC_FUNCTIONAL: HSE06\n", - "SMEARING_SCHEME: Gaussian\n", - "ELEC_ENERGY_TOL: 0.00005 eV\n", - "ELECTRONIC_MINIMIZER: CG\n", - "MAX_SCF_CYCLES: 50\n", - "BASIS_PRECISION: FINE\n", - "CHARGE: 0\n" - ] } - ], + }, + "outputs": [], "source": [ - "!cat ./v_Cd_0/Bond_Distortion_30.0%/castep.param" + "!cat ./v_Cd_s0_0/Bond_Distortion_30.0%/castep.param" ] }, { "cell_type": "markdown", - "id": "7f147a4a-5eeb-47b9-ad21-2fb9e6c0a994", + "id": "0ef1c25c", "metadata": { "pycharm": { "name": "#%% md\n" @@ -4437,99 +3121,43 @@ }, { "cell_type": "code", - "execution_count": 25, - "id": "57d9e86b", + "execution_count": null, + "id": "cc08ff85", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "data": { - "text/plain": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mDist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_fhi_aims_files\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0minput_file\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mase_calculator\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mase\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcalculators\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maims\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mAims\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mwrite_structures_only\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moutput_path\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'.'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Generates input geometry and control files for FHI-aims relaxations\n", - "of all output structures.\n", - "\n", - "Args:\n", - " input_file (:obj:`str`, optional):\n", - " Path to FHI-aims input file, to overwrite/update\n", - " `shakenbreak` default ones.\n", - " If both `input_file` and `ase_calculator` are provided,\n", - " the ase_calculator will be used.\n", - " ase_calculator (:obj:`ase.calculators.aims.Aims`, optional):\n", - " ASE calculator object to use for FHI-aims calculations.\n", - " If not set, `shakenbreak` default values will be used.\n", - " Recommended to check these.\n", - " (Default: None)\n", - " write_structures_only (:obj:`bool`, optional):\n", - " Whether to only write the structure files (in `geometry.in`\n", - " format), (without the contro-in file).\n", - " output_path (:obj:`str`, optional):\n", - " Path to directory in which to write distorted defect structures\n", - " and calculation inputs.\n", - " (Default is current directory: \".\")\n", - " verbose (:obj:`bool`, optional):\n", - " Whether to print distortion information (bond atoms and\n", - " distances).\n", - " (Default: False)\n", - "\n", - "Returns:\n", - " :obj:`tuple`:\n", - " Tuple of dictionaries with new defects_dict (containing the\n", - " distorted structures) and defect distortion parameters.\n", - "\u001b[0;31mFile:\u001b[0m ~/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m method\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "Dist.write_fhi_aims_files?" ] }, { "cell_type": "code", - "execution_count": 90, - "id": "7f925ade", + "execution_count": null, + "id": "5bfeed50", "metadata": { + "collapsed": false, + "jupyter": { + "outputs_hidden": false + }, "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Applying ShakeNBreak... Will apply the following bond distortions: ['0.3']. Then, will rattle with a std dev of 0.28 Å \n", - "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", - "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" - ] - } - ], + "outputs": [], "source": [ "oxidation_states = {\"Cd\": +2, \"Te\": -2} # specify atom oxidation states\n", "\n", "# Create an instance of Distortion class with the defect dictionary and the distortion parameters\n", "# If distortion parameters are not specified, the default values are used\n", "Dist = Distortions( \n", - " defects_dict=dict(V_Cd_dict), \n", + " defects=v_Cd,\n", " oxidation_states=oxidation_states,\n", " bond_distortions=[0.3] # For demonstration purposes, just doing 2 distortions\n", ")\n", @@ -4539,7 +3167,7 @@ }, { "cell_type": "markdown", - "id": "5fb0a9e1-06ef-4d15-a03d-dc637430d42b", + "id": "be67082b", "metadata": { "pycharm": { "name": "#%% md\n" @@ -4555,57 +3183,26 @@ }, { "cell_type": "code", - "execution_count": 91, - "id": "8ec85e94", + "execution_count": null, + "id": "64e677a2", "metadata": { - "collapsed": true, + "collapsed": false, "jupyter": { - "outputs_hidden": true + "outputs_hidden": false }, "pycharm": { "name": "#%%\n" - }, - "tags": [] - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#===============================================================================\n", - "# FHI-aims file: ./v_Cd_0/Bond_Distortion_30.0%/control.in\n", - "# Created using the Atomic Simulation Environment (ASE)\n", - "# Wed Nov 2 10:53:20 2022\n", - "#===============================================================================\n", - "k_grid 1 1 1\n", - "relax_geometry bfgs 0.005\n", - "xc hse06 0.11\n", - "hse_unit A\n", - "spin collinear\n", - "default_initial_moment 0\n", - "hybrid_xc_coeff 0.25\n", - "charge 0\n", - "#===============================================================================\n", - "\n" - ] } - ], + }, + "outputs": [], "source": [ - "!cat ./v_Cd_0/Bond_Distortion_30.0%/control.in" + "!cat ./v_Cd_s0_0/Bond_Distortion_30.0%/control.in" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "eda922b1-44cb-4dd3-8c4d-1d23a48a9562", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.10 ('snb_pymatgen')", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -4619,7 +3216,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.8.13" }, "vscode": { "interpreter": { @@ -4629,4 +3226,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} +} \ No newline at end of file diff --git a/docs/conf.py b/docs/conf.py index e7ae2c08..e72f2fbe 100644 --- a/docs/conf.py +++ b/docs/conf.py @@ -25,7 +25,7 @@ author = 'Irea Mosquera-Lois, Seán R. Kavanagh' # The full version, including alpha/beta/rc tags -release = '22.11.7' +release = '22.11.17' # -- General configuration --------------------------------------------------- diff --git a/docs/index.rst b/docs/index.rst index ecf70a05..0d7ecc15 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -147,7 +147,13 @@ Code Compatibility pip install --upgrade pymatgen shakenbreak -:code:`ShakeNBreak` can take :code:`pymatgen` :code:`Defect` objects as input (to then generate the trial distorted structures), **but also** can take in :code:`pymatgen` :code:`Structure` objects, :code:`doped` defect dictionaries or structure files (e.g. :code:`POSCAR`\s for :code:`VASP`) as inputs. As such, it should be compatible with any defect code (such as :code:`doped`, :code:`DASP`, :code:`PyLada`, :code:`PyCDT`, :code:`Spinney`, :code:`DefAP`, :code:`PyDEF`, :code:`pydefect`...) that generates these files. +:code:`ShakeNBreak` can take :code:`pymatgen` :code:`Defect` objects as input (to then generate the trial distorted +structures), **but also** can take in :code:`pymatgen` :code:`Structure` objects, :code:`doped` defect dictionaries or +structure files (e.g. :code:`POSCAR`\s for :code:`VASP`) as inputs. As such, it should be compatible with any defect code +(such as `doped `_, `pydefect `_, +`PyCDT `_, `PyLada `_, +`DASP `_, `Spinney `_, +`DefAP `_, `PyDEF `_...) that generates these files. Please let us know if you have any issues with compatibility, or if you would like to see any additional features added to :code:`ShakeNBreak` to make it more compatible with your code. Acknowledgements diff --git a/docs/vac_1_Cd_0.svg b/docs/v_Cd_0.svg similarity index 74% rename from docs/vac_1_Cd_0.svg rename to docs/v_Cd_0.svg index 22bf7c25..9928d3d7 100644 --- a/docs/vac_1_Cd_0.svg +++ b/docs/v_Cd_0.svg @@ -1,16 +1,16 @@ - + - 2022-09-02T17:11:02.373800 + 2022-11-15T22:27:30.390038 image/svg+xml - Matplotlib v3.5.1, https://matplotlib.org/ + Matplotlib v3.6.1, https://matplotlib.org/ @@ -21,11 +21,11 @@ - @@ -43,17 +43,17 @@ z - - + - + - + - + - + - + @@ -215,12 +215,12 @@ z - + - + @@ -230,12 +230,12 @@ z - + - + @@ -245,67 +245,67 @@ z - - + - + - + - + - + - + - + - + - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -650,17 +830,17 @@ z - - + - + - + - + @@ -738,12 +918,12 @@ z - + - + - + - - - - + @@ -819,12 +971,12 @@ z - + - + @@ -833,7 +985,7 @@ z - + - - - - @@ -1009,7 +1091,7 @@ z +" clip-path="url(#p4ec7e553ff)" style="fill: none; stroke: #59a590; stroke-linecap: square"/> - - - - - - - - - - - - - - - + + + + + + + + + + + + + + - - - + + @@ -1085,71 +1167,63 @@ L 394.162266 40 " style="fill: none; stroke: #000000; stroke-width: 0.5; stroke-linejoin: miter; stroke-linecap: square"/> - - - - - + + - - - + + + - - - + - - + + + + + @@ -1161,16 +1235,22 @@ L 286.394297 307.477969 + + + + + + - + - + + diff --git a/docs/vac_1_Cd_0_colorbar.svg b/docs/v_Cd_0_colorbar.svg similarity index 60% rename from docs/vac_1_Cd_0_colorbar.svg rename to docs/v_Cd_0_colorbar.svg index 01b18855..34b5188a 100644 --- a/docs/vac_1_Cd_0_colorbar.svg +++ b/docs/v_Cd_0_colorbar.svg @@ -1,16 +1,16 @@ - + - 2022-09-02T17:11:56.271636 + 2022-11-15T22:27:30.275854 image/svg+xml - Matplotlib v3.5.1, https://matplotlib.org/ + Matplotlib v3.6.1, https://matplotlib.org/ @@ -21,11 +21,11 @@ - @@ -41,7 +41,7 @@ z - - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - + + - - - + + - - + - + - + - + - + - + @@ -282,12 +282,12 @@ z - + - + @@ -297,12 +297,12 @@ z - + - + @@ -312,67 +312,67 @@ z - - + - + - + - + - + - + - + - + - - + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -717,17 +897,17 @@ z - - + - + - + - + @@ -805,12 +985,12 @@ z - + - + - + - - - - + @@ -886,12 +1038,12 @@ z - + - + @@ -900,7 +1052,7 @@ z - + - - - - @@ -1076,7 +1158,7 @@ z +" clip-path="url(#p31a97f127e)" style="fill: none; stroke: #59a590; stroke-linecap: square"/> - - - - - - - - - - - - - - - + + + + + + + + + + + + + + @@ -1139,71 +1221,76 @@ L 353.149266 40 " style="fill: none; stroke: #000000; stroke-width: 0.5; stroke-linejoin: miter; stroke-linecap: square"/> - - - - - + + - - - + + + - + + + - - + - - + + + + + @@ -1215,16 +1302,22 @@ L 245.381297 279.757969 + + + + + + - + - + - + - + - +iVBORw0KGgoAAAANSUhEUgAAAFwAAAc4CAYAAAC1LaGaAAAQT0lEQVR4nO3dwW3DMBBFQTrY/pF+AqS0pbsYHfSmAuPhn2RS+vz9/94T5ufpH/A2BccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrODZ79unf8CotHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmOzt7OcUgvHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcGz29LRQauFYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcm73dtZdaOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjHebEWjhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjvbAda+FYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjnXHB2vhWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHOswJ9bCsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRzrMCfWwrGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRzrjg/WwrGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUc644P1sKxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs41mFOrIVjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrONZhTqyFYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrONYdH6yFYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzjWHR+shWMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCsw5xYC8cKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrMOcWAvHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwbLY/7akWjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYd3ywFo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxXtiOtXCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFx2af/gUv08KxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUc644P1sKxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHOvzjlgLxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4Fjf08RaOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjXf3GWjhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXH+p4m1sKxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjvXCdqyFYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKxXMGEtHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGx3giEtXCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxzpbiLVwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFx7rjg7VwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjk13qqwWjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrODYbE8LqRaOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FgvbMdaOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmO9sB1r4VjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRzrFUxYC8cKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrKeFWAvHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKyr31gLxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcGz6yrrVwrGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzjWK5iwFo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWE8LsRaOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FhPC7EWjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4Nj0p73VwrGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUc644P1sKxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs41uNZrIVjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrODa3p4VUC8cKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYhzmxFo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrDs+WAvHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWHd8sBaOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FiHObEWjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbEOc2ItHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYd3ywFo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGx2ft5+je8SgvHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzDnFgLxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FgvbMdaOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGx7vhgLRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjPZ7FWjhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCY3P7vCPVwrGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzjWC9uxFo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrDcCYS0cKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYz2exVo4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmNz9+mf8C4tHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmN9TxNr4VjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHeiMQ1sKxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs41uNZrIVjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrONbTQqyFYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcGzu9sJ2qYVjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrONZhTqyFYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrONa/9lgLxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCsp4VYC8cKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrODY3H36J7xLC8cKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwbO7t845SC8cKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnBsTq9golo4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmO9EQhr4VjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRzre5pYC8cKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrKeFWAvHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwbE6vYKJaOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJj3fHBWjhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHOsyJtXCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxzrMibVwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFx+bu5+nf8CotHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxOd3xoVo4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFx3oFE9bCsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRybsz0ulFo4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCY72CCWvhWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo7N3ad/wru0cKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHOluItXCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOdZgTa+FYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjnWYE2vhWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjs3pjg/VwrGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUc644P1sKxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4Nnd7Piu1cKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHOsyJtXCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHemE71sKxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHJtzu+QjtXCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOze0wJ9XCsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRzrhe1YC8cKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnBszva3vdTCsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRzr845YC8cKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBY39PEWjhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYx3mxFo4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCY93xwVo4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmNzu+NDtXCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOdZgTa+FYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjs3ZnhZKLRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxOf1pT7VwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBce644O1cKzgWMGxgmMFxwqOFRwrOFZwrOBYwbGCYwXHCo71wnashWMFxwqOFRwrOFZwrOBYwbGCYwXHCo4VHCs41mFOrIVjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrOFZwrMOcWAvHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWMGxgmMFxwqOFRwrONYdH6yFYwXHCo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcGxOT2epFo4VHCs4VnCs4FjBsYJjBccKjhUcKzhWcKzgWIc5sRaOFRwrOFZwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsV7YjrVwrOBYwbGCYwXHCo4VHCs4VnCs4FjBsYJjBce+TY/tPcTzoOMAAAAASUVORK5CYII=" id="image277a925491" transform="scale(1 -1) translate(0 -221.76)" x="385.8" y="-67.68" width="11.04" height="221.76"/> + + - + @@ -1388,7 +1482,7 @@ iVBORw0KGgoAAAANSUhEUgAAALkAAA5wCAYAAAASdap9AAAnbElEQVR4nO3dwQlkORAFwd9L+c/4M7Cm - + @@ -1399,7 +1493,7 @@ iVBORw0KGgoAAAANSUhEUgAAALkAAA5wCAYAAAASdap9AAAnbElEQVR4nO3dwQlkORAFwd9L+c/4M7Cm - + @@ -1410,7 +1504,7 @@ iVBORw0KGgoAAAANSUhEUgAAALkAAA5wCAYAAAASdap9AAAnbElEQVR4nO3dwQlkORAFwd9L+c/4M7Cm - + - - - + + + @@ -1521,10 +1615,10 @@ z - + - + diff --git a/setup.py b/setup.py index 15aed5dd..71501c1d 100644 --- a/setup.py +++ b/setup.py @@ -131,7 +131,7 @@ def package_files(directory): setup( name="shakenbreak", - version="22.11.07", + version="22.11.17", description="Package to generate and analyse distorted defect structures, in order to " "identify ground-state and metastable defect configurations.", long_description="Python package to automatise the process of defect structure searching. " @@ -140,9 +140,9 @@ def package_files(directory): "https://shakenbreak.readthedocs.io/en/latest/index.html) for more info.", long_description_content_type="text/markdown", author="Irea Mosquera-Lois, Seán R. Kavanagh", - author_email="irea.lois.20@ucl.ac.uk, sean.kavanagh.19@ucl.ac.uk", + author_email="i.mosquera-lois22@imperial.ac.uk, sean.kavanagh.19@ucl.ac.uk", maintainer="Irea Mosquera-Lois, Seán R. Kavanagh", - maintainer_email="irea.lois.20@ucl.ac.uk, sean.kavanagh.19@ucl.ac.uk", + maintainer_email="i.mosquera-lois22@imperial.ac.uk, sean.kavanagh.19@ucl.ac.uk", readme="README.md", # PyPI readme url="https://github.com/SMTG-UCL/ShakeNBreak", license="MIT", @@ -161,7 +161,7 @@ def package_files(directory): packages=find_packages(), install_requires=[ "numpy", - "pymatgen==2022.10.22", + "pymatgen>=2022.10.22", "pymatgen-analysis-defects>=2022.10.28", "matplotlib", "ase", diff --git a/shakenbreak/analysis.py b/shakenbreak/analysis.py index a1cbdd9e..5a0ae5d1 100644 --- a/shakenbreak/analysis.py +++ b/shakenbreak/analysis.py @@ -187,7 +187,7 @@ def get_gs_distortion(defect_energies_dict: dict) -> tuple: Returns: :obj:`tuple`: - (Energies dictionary, Energy difference, ground state bond distortion) + (Energy difference, ground state bond distortion) """ lowest_E_distortion = min( defect_energies_dict["distortions"].values() @@ -339,7 +339,6 @@ def analyse_defect_site( raise ValueError("Either site_num or vac_site must be specified") if name is not None: - # print("==> ", name + " structural analysis ", " <==") input._bold_print(name + " structural analysis ") print("Analysing site", struct[isite].specie, struct[isite].frac_coords) coordination = crystalNN.get_local_order_parameters(struct, isite) @@ -1153,7 +1152,7 @@ def get_site_magnetizations( "should be the distortion factor (e.g. 0.2) or the " "Unperturbed/Rattled name." ) - return None + continue structure = io.read_vasp_structure( f"{output_path}/{defect_species}/{dist_label}/CONTCAR" ) @@ -1162,7 +1161,7 @@ def get_site_magnetizations( f"Structure for {defect_species} either not converged or not " "found. Skipping magnetisation analysis." ) - return None + continue if isinstance(defect_site, list) or isinstance(defect_site, np.ndarray): # for vacancies, append fake atom structure.append( @@ -1175,8 +1174,14 @@ def get_site_magnetizations( f"{dist_label}/OUTCAR. " "Skipping magnetization analysis." ) - return None + continue outcar = Outcar(f"{output_path}/{defect_species}/{dist_label}/OUTCAR") + if not outcar.spin: + warnings.warn( + f"{output_path}/{defect_species}/{dist_label}/OUTCAR is from a non-spin-polarised " + f"calculation (ISPIN = 1), so magnetization analysis is not possible. Skipping." + ) + continue if verbose: print( f"Analysing distortion {distortion}. " diff --git a/shakenbreak/bash_scripts/SnB_run.sh b/shakenbreak/bash_scripts/SnB_run.sh index 7ca70f3b..40901e73 100755 --- a/shakenbreak/bash_scripts/SnB_run.sh +++ b/shakenbreak/bash_scripts/SnB_run.sh @@ -98,6 +98,9 @@ SnB_run_loop () { if [ "$verbose" = true ] then echo "${i%?} fully relaxed" fi + if [ -f "${i}"/DOSCAR ] # remove DOSCAR to save space + then rm "${i}"/DOSCAR + fi fi; done } diff --git a/shakenbreak/bash_scripts/save_vasp_files.sh b/shakenbreak/bash_scripts/save_vasp_files.sh index 6986f822..61500f13 100755 --- a/shakenbreak/bash_scripts/save_vasp_files.sh +++ b/shakenbreak/bash_scripts/save_vasp_files.sh @@ -7,3 +7,4 @@ for i in {CONTCAR,OUTCAR,XDATCAR,POSCAR,INCAR,OSZICAR,vasprun.xml} do cp $i ${i}_${current_time} done +gzip vasprun.xml_${current_time} # gzip to save file space diff --git a/shakenbreak/cli.py b/shakenbreak/cli.py old mode 100644 new mode 100755 index fffa4024..ea215d68 --- a/shakenbreak/cli.py +++ b/shakenbreak/cli.py @@ -14,314 +14,13 @@ from monty.json import MontyDecoder from monty.serialization import dumpfn, loadfn from pymatgen.analysis.defects.core import Defect -from pymatgen.core.structure import Element, Structure +from pymatgen.core.structure import Element, PeriodicSite, Structure from pymatgen.io.vasp.inputs import Incar # ShakeNBreak from shakenbreak import analysis, energy_lowering_distortions, input, io, plotting -def identify_defect( - defect_structure, bulk_structure, defect_coords=None, defect_index=None -) -> Defect: - """ - By comparing the defect and bulk structures, identify the defect present and its site in - the supercell, and generate a pymatgen defect object - (pymatgen.analysis.defects.core.Defect) from this. - - Args: - defect_structure (:obj:`Structure`): - defect structure - bulk_structure (:obj:`Structure`): - bulk structure - defect_coords (:obj:`list`): - Fractional coordinates of the defect site in the supercell. - defect_index (:obj:`int`): - Index of the defect site in the supercell. - - Returns: :obj:`Defect` - """ - natoms_defect = len(defect_structure) - natoms_bulk = len(bulk_structure) - if natoms_defect == natoms_bulk - 1: - defect_type = "vacancy" - elif natoms_defect == natoms_bulk + 1: - defect_type = "interstitial" - elif natoms_defect == natoms_bulk: - defect_type = "substitution" - else: - raise ValueError( - f"Could not identify defect type from number of atoms in defect ({natoms_defect}) " - f"and bulk ({natoms_bulk}) structures. " - "ShakeNBreak CLI is currently only built for point defects, please contact the " - "developers if you would like to use the method for complex defects" - ) - - if defect_coords is not None: - if defect_index is None: - site_displacement_tol = ( - 0.01 # distance tolerance for site matching to identify defect, increases in - # jumps of 0.1 Å - ) - - def _possible_sites_in_sphere(structure, frac_coords, tol): - """Find possible sites in sphere of radius tol.""" - return sorted( - structure.get_sites_in_sphere( - structure.lattice.get_cartesian_coords(frac_coords), - tol, - include_index=True, - ), - key=lambda x: x[1], - ) - - max_possible_defect_sites_in_bulk_struc = _possible_sites_in_sphere( - bulk_structure, defect_coords, 2.5 - ) - max_possible_defect_sites_in_defect_struc = _possible_sites_in_sphere( - defect_structure, defect_coords, 2.5 - ) - expanded_possible_defect_sites_in_bulk_struc = _possible_sites_in_sphere( - bulk_structure, defect_coords, 3.0 - ) - expanded_possible_defect_sites_in_defect_struc = _possible_sites_in_sphere( - defect_structure, defect_coords, 3.0 - ) - - # there should be one site (including specie identity) which does not match between - # bulk and defect structures - def _remove_matching_sites(bulk_site_list, defect_site_list): - """Remove matching sites from bulk and defect structures.""" - bulk_sites_list = list(bulk_site_list) - defect_sites_list = list(defect_site_list) - for defect_site in defect_sites_list: - for bulk_site in bulk_sites_list: - if ( - defect_site.distance(bulk_site) < 0.5 - and defect_site.specie == bulk_site.specie - ): - if bulk_site in bulk_sites_list: - bulk_sites_list.remove(bulk_site) - if defect_site in defect_sites_list: - defect_sites_list.remove(defect_site) - return bulk_sites_list, defect_sites_list - - non_matching_bulk_sites, _ = _remove_matching_sites( - max_possible_defect_sites_in_bulk_struc, - expanded_possible_defect_sites_in_defect_struc, - ) - _, non_matching_defect_sites = _remove_matching_sites( - expanded_possible_defect_sites_in_bulk_struc, - max_possible_defect_sites_in_defect_struc, - ) - - if ( - len(non_matching_bulk_sites) == 0 - and len(non_matching_defect_sites) == 0 - ): - warnings.warn( - f"Coordinates {defect_coords} were specified for (auto-determined) " - f"{defect_type} defect, but there are no extra/missing/different species " - f"within a 2.5 Å radius of this site when comparing bulk and defect " - f"structures. " - f"If you are trying to generate non-defect polaronic distortions, please use " - f"the distort() and rattle() functions in shakenbreak.distortions via the " - f"Python API. " - f"Reverting to auto-site matching instead." - ) - - else: - searched = "bulk or defect" - possible_defects = [] - while site_displacement_tol < 2.5: # loop over distance tolerances - possible_defect_sites_in_bulk_struc = _possible_sites_in_sphere( - bulk_structure, defect_coords, site_displacement_tol - ) - possible_defect_sites_in_defect_struc = _possible_sites_in_sphere( - defect_structure, defect_coords, site_displacement_tol - ) - if ( - defect_type == "vacancy" - ): # defect site should be in bulk structure but not defect structure - possible_defects, _ = _remove_matching_sites( - possible_defect_sites_in_bulk_struc, - expanded_possible_defect_sites_in_defect_struc, - ) - searched = "bulk" - else: - # defect site should be in defect structure but not bulk structure - _, possible_defects = _remove_matching_sites( - expanded_possible_defect_sites_in_bulk_struc, - possible_defect_sites_in_defect_struc, - ) - searched = "defect" - - if len(possible_defects) == 1: - defect_index = possible_defects[0][2] - break - - site_displacement_tol += 0.1 - - if defect_index is None: - warnings.warn( - f"Could not locate (auto-determined) {defect_type} defect site within a " - f"2.5 Å radius of specified coordinates {defect_coords} in {searched} " - f"structure (found {len(possible_defects)} possible defect sites). " - "Will attempt auto site-matching instead." - ) - - else: # both defect_coords and defect_index given - warnings.warn( - "Both defect_coords and defect_index were provided. Only one is needed, so " - "just defect_index will be used to determine the defect site" - ) - - # if defect_index is None: - # try perform auto site-matching regardless of whether defect_coords/defect_index were given, - # so we can warn user if manual specification and auto site-matching give conflicting results - site_displacement_tol = ( - 0.01 # distance tolerance for site matching to identify defect, increases in - # jumps of 0.1 Å - ) - auto_matching_defect_index = None - possible_defects = [] - try: - while site_displacement_tol < 1.5: # loop over distance tolerances - bulk_sites = [site.frac_coords for site in bulk_structure] - defect_sites = [site.frac_coords for site in defect_structure] - dist_matrix = defect_structure.lattice.get_all_distances( - bulk_sites, defect_sites - ) - min_dist_with_index = [ - [ - min(dist_matrix[bulk_index]), - int(bulk_index), - int(dist_matrix[bulk_index].argmin()), - ] - for bulk_index in range(len(dist_matrix)) - ] # list of [min dist, bulk ind, defect ind] - - site_matching_indices = [] - if defect_type in ["vacancy", "interstitial"]: - for mindist, bulk_index, def_struc_index in min_dist_with_index: - if mindist < site_displacement_tol: - site_matching_indices.append([bulk_index, def_struc_index]) - elif defect_type == "vacancy": - possible_defects.append([bulk_index, bulk_sites[bulk_index][:]]) - - if defect_type == "interstitial": - possible_defects = [ - [ind, fc[:]] - for ind, fc in enumerate(defect_sites) - if ind not in np.array(site_matching_indices)[:, 1] - ] - - elif defect_type == "substitution": - for mindist, bulk_index, def_struc_index in min_dist_with_index: - species_match = ( - bulk_structure[bulk_index].specie - == defect_structure[def_struc_index].specie - ) - if mindist < site_displacement_tol and species_match: - site_matching_indices.append([bulk_index, def_struc_index]) - - elif not species_match: - possible_defects.append( - [def_struc_index, defect_sites[def_struc_index][:]] - ) - - if len(set(np.array(site_matching_indices)[:, 0])) != len( - set(np.array(site_matching_indices)[:, 1]) - ): - raise ValueError( - "Error occurred in site_matching routine. Double counting of site matching " - f"occurred: {site_matching_indices}\nAbandoning structure parsing." - ) - - if len(possible_defects) == 1: - auto_matching_defect_index = possible_defects[0][0] - break - - site_displacement_tol += 0.1 - except Exception: - pass # failed auto-site matching, rely on user input or raise error if no user input - - if defect_index is None and auto_matching_defect_index is None: - raise ValueError( - "Defect coordinates could not be identified from auto site-matching. " - f"Found {len(possible_defects)} possible defect sites – check bulk and defect " - "structures correspond to the same supercell and/or specify defect site with " - "--defect-coords or --defect-index." - ) - if defect_index is None and auto_matching_defect_index is not None: - defect_index = auto_matching_defect_index - - if defect_type == "vacancy": - defect_site = bulk_structure[defect_index] - else: - defect_site = defect_structure[defect_index] - - if defect_index is not None and auto_matching_defect_index is not None: - if defect_index != auto_matching_defect_index: - if defect_type == "vacancy": - auto_matching_defect_site = bulk_structure[auto_matching_defect_index] - else: - auto_matching_defect_site = defect_structure[auto_matching_defect_index] - - def _site_info(site): - return ( - f"{site.species_string} at [{site._frac_coords[0]:.3f}," - f" {site._frac_coords[1]:.3f}, {site._frac_coords[2]:.3f}]" - ) - - if defect_coords is not None: - warnings.warn( - f"Note that specified coordinates {defect_coords} for (auto-determined)" - f" {defect_type} defect gave a match to defect site:" - f" {_site_info(defect_site)} in {searched} structure, but auto site-matching " - f"predicted a different defect site: {_site_info(auto_matching_defect_site)}. " - f"Will use user-specified site: {_site_info(defect_site)}." - ) - else: - warnings.warn( - f"Note that specified defect index {defect_index} for (auto-determined)" - f" {defect_type} defect gives defect site: {_site_info(defect_site)}, " - f"but auto site-matching predicted a different defect site:" - f" {_site_info(auto_matching_defect_site)}. " - f"Will use user-specified site: {_site_info(defect_site)}." - ) - - for_monty_defect = { - "@module": "pymatgen.analysis.defects.core", - "@class": defect_type.capitalize(), - "structure": bulk_structure, - "site": defect_site, - } - try: - defect = MontyDecoder().process_decoded(for_monty_defect) - except TypeError: - # This means we have the old version of pymatgen-analysis-defects, - # where the class attributes were different (defect_site instead of site - # and no user_charges) - v_ana_def = version("pymatgen-analysis-defects") - v_pmg = version("pymatgen") - if v_ana_def < "2022.9.14": - return TypeError( - f"You have the version {v_ana_def}" - " of the package `pymatgen-analysis-defects`," - " which is incompatible. Please update this package" - " and try again." - ) - if v_pmg < "2022.7.25": - return TypeError( - f"You have the version {v_pmg}" - " of the package `pymatgen`," - " which is incompatible. Please update this package" - " and try again." - ) - return defect - - def _get_substituted_site(defect_object: Defect, defect_name: str): """Get the site in the pristine structure that has been substituted in the defect structure. @@ -343,88 +42,6 @@ def _get_substituted_site(defect_object: Defect, defect_name: str): return sub_site_in_bulk -def _generate_defect_dict( - defect_object: dict, - charges: list, - defect_name: str, -) -> dict: - """ - Create defect dictionary from a pymatgen Defect object. - - Args: - defect_object (:obj:`Defect`): - `pymatgen.analysis.defects.core.Defect` object. - charges (:obj:`list`): - List of charge states for the defect. - defect_name(:obj:`str`): - Name of the defect, to use as key in the defect dict. - - Returns: :obj:`dict` - """ - single_defect_dict = { - "name": defect_name, - "defect_type": defect_object.as_dict()["@class"].lower(), - "site_multiplicity": defect_object.multiplicity, - "supercell": { - "size": [1, 1, 1], - "structure": defect_object.defect_structure, - }, - "charges": charges, - } - - if single_defect_dict["defect_type"] != "vacancy": - # redefine bulk supercell site to ensure it exactly matches defect dict structure, - # in case defect_object.generate_defect_structure() redefines coordinates using periodic - # images (e.g. moving (0, 0.5, 0) to (1, 0.5, 1)) - bulk_supercell_site = sorted( - single_defect_dict["supercell"]["structure"].get_sites_in_sphere( - defect_object.site.coords, 0.01, include_index=True, include_image=True - ), - key=lambda x: x[1], - )[0][0].to_unit_cell() - - single_defect_dict["bulk_supercell_site"] = bulk_supercell_site - - else: # if vacancy, defect site doesn't exist in generated defect structure - single_defect_dict["bulk_supercell_site"] = defect_object.site - - if single_defect_dict["defect_type"] in ["substitution", "antisite"]: - # get bulk_site - sub_site_in_bulk = _get_substituted_site( - defect_object=defect_object, - defect_name=defect_name, - ) - - single_defect_dict["unique_site"] = sub_site_in_bulk - single_defect_dict["site_specie"] = sub_site_in_bulk.specie.symbol - single_defect_dict["substitution_specie"] = defect_object.site.specie.symbol - - else: - single_defect_dict["unique_site"] = defect_object.site - single_defect_dict["site_specie"] = defect_object.site.specie.symbol - - if single_defect_dict["defect_type"] == "vacancy": - defects_dict = { - "vacancies": [ - single_defect_dict, - ] - } - elif single_defect_dict["defect_type"] == "interstitial": - defects_dict = { - "interstitials": [ - single_defect_dict, - ] - } - elif single_defect_dict["defect_type"] == "substitution": - defects_dict = { - "substitutions": [ - single_defect_dict, - ] - } - - return defects_dict - - def generate_defect_object( single_defect_dict: dict, bulk_dict: dict, @@ -462,32 +79,31 @@ def generate_defect_object( } try: defect = MontyDecoder().process_decoded(for_monty_defect) - except TypeError: - # This means we have the old version of pymatgen-analysis-defects, - # where the class attributes were different (defect_site instead of site - # and no user_charges) + except TypeError as exc: + # This means we have the old version of pymatgen-analysis-defects, where the class + # attributes were different (defect_site instead of site and no user_charges) v_ana_def = version("pymatgen-analysis-defects") v_pmg = version("pymatgen") if v_ana_def < "2022.9.14": - return TypeError( - f"You have the version {v_ana_def}" - " of the package `pymatgen-analysis-defects`," - " which is incompatible. Please update this package" - " and try again." + raise TypeError( + f"You have the version {v_ana_def} of the package `pymatgen-analysis-defects`," + " which is incompatible. Please update this package (with `pip install " + "shakenbreak`) and try again." ) if v_pmg < "2022.7.25": - return TypeError( - f"You have the version {v_pmg}" - " of the package `pymatgen`," - " which is incompatible. Please update this package" - " and try again." + raise TypeError( + f"You have the version {v_pmg} of the package `pymatgen`, which is incompatible. " + f"Please update this package (with `pip install shakenbreak`) and try again." ) - else: - # Specify defect charge states - if isinstance(charges, list): # Priority to charges argument - defect.user_charges = charges - elif "charges" in single_defect_dict.keys(): - defect.user_charges = single_defect_dict["charges"] + else: + raise exc + + # Specify defect charge states + if isinstance(charges, list): # Priority to charges argument + defect.user_charges = charges + elif "charges" in single_defect_dict.keys(): + defect.user_charges = single_defect_dict["charges"] + return defect @@ -506,23 +122,6 @@ def _parse_defect_dirs(path) -> list: ] -def _get_defect_type_plural(defect: Defect): - """Generate the defect type (in plural, e.g. vacancies) - for a given Defect object. - - Args: - defect (:obj: Defect): Defect object - """ - defect_type = str(defect.as_dict()["@class"].lower()) - if defect_type == "vacancy": - defect_type_plural = "vacancies" - elif defect_type == "substitution": - defect_type_plural = "substitutions" - elif defect_type == "interstitial": - defect_type_plural = "interstitials" - return defect_type_plural - - def CommandWithConfigFile( config_file_param_name, ): # can also set CLI options using config file @@ -583,28 +182,38 @@ def snb(): @click.option("--charge", "-c", help="Defect charge state", default=None, type=int) @click.option( "--min-charge", - "--min", + "-min", help="Minimum defect charge state for which to generate distortions", default=None, type=int, ) @click.option( "--max-charge", - "--max", + "-max", help="Maximum defect charge state for which to generate distortions", default=None, type=int, ) +@click.option( + "--padding", + "-p", + help="If `--charge` or `--min-charge` & `--max-charge` are not set, " + "defect charges will be set to the range: 0 – {Defect oxidation state}, " + "with a `--padding` on either side of this range.", + default=1, + type=int, +) @click.option( "--defect-index", - "--idx", - help="Index of defect site in defect structure, in case auto site-matching fails", + "-idx", + help="Index of defect site in defect structure (if substitution/interstitial) " + "or bulk structure (if vacancy), in case auto site-matching fails", default=None, type=int, ) @click.option( "--defect-coords", - "--def-coords", + "-def-coords", help="Fractional coordinates of defect site in defect structure, in case auto " "site-matching fails. In the form 'x y z' (3 arguments)", type=click.Tuple([float, float, float]), @@ -622,8 +231,8 @@ def snb(): "--name", "-n", help="Defect name for folder and metadata generation. Defaults to " - "pymatgen standard: '{Defect Type}_mult{Supercell " - "Multiplicity}'", + "'{Defect.name}_m{Defect.multiplicity}' for interstitials and " + "'{Defect.name}_s{Defect.defect_site_index}' for vacancies and substitutions.", default=None, type=str, ) @@ -659,6 +268,7 @@ def generate( charge, min_charge, max_charge, + padding, defect_index, defect_coords, code, @@ -685,6 +295,8 @@ def generate( "charge", "min_charge", "max_charge", + "padding", + "charges", "defect_index", "defect_coords", "code", @@ -726,15 +338,13 @@ def generate( defect_struc = Structure.from_file(defect) bulk_struc = Structure.from_file(bulk) - defect_object = identify_defect( + defect_object = input.identify_defect( defect_structure=defect_struc, bulk_structure=bulk_struc, defect_index=defect_index, defect_coords=defect_coords, ) if verbose and defect_index is None and defect_coords is None: - # TODO: better to always print this when verbose = True - # in case user gives wrong defect position? site = defect_object.site site_info = ( f"{site.species_string} at [{site._frac_coords[0]:.3f}," @@ -750,6 +360,7 @@ def generate( charges = [ charge, ] + defect_object.user_charges = charges # Update charge states elif max_charge is not None or min_charge is not None: if max_charge is None or min_charge is None: @@ -760,32 +371,27 @@ def generate( charge_lims = [min_charge, max_charge] charges = list( range(min(charge_lims), max(charge_lims) + 1) - ) # just in case user mixes min and max - # because of different signs ("+1 to -3" etc) + ) # just in case user mixes min and max because of different signs ("+1 to -3" etc) + defect_object.user_charges = charges # Update charge states - else: - warnings.warn( - "No charge (range) set for defect, assuming default range of +/-2" - ) - charges = list(range(-2, +3)) + if user_settings and "charges" in user_settings: + charges = user_settings.pop("charges", None) + if defect_object.user_charges: + warnings.warn( + "Defect charges were specified using the CLI option, but `charges` " + "was also specified in the `--config` file – this will be ignored!" + ) + else: + defect_object.user_charges = charges # Update charge states if name is None: - name = ( - defect_object.name - ) # v_X, X_i or X_Y for vacancies, interstitials, substitutions - - # Update charge states - defect_object.user_charges = charges - defect_type_plural = _get_defect_type_plural(defect_object) + name = input._get_defect_name_from_obj(defect_object) Dist = input.Distortions( - defects_dict={ - defect_type_plural: { - name: defect_object, # So that user can specify defect name. - # (E.g. for symmetry inequivalent defects, default pymatgen-analysis-defects - # names would be the same) - } + defects={ + name: defect_object, # So that user can specify defect name. }, + padding=padding, **user_settings, ) if code.lower() == "vasp": @@ -852,8 +458,6 @@ def generate( distorted_defects_dict, distortion_metadata = Dist.write_fhi_aims_files( verbose=verbose, ) - # with open("./parsed_defects_dict.pickle", "wb") as fp: - # pickle.dump(defect_object, fp) dumpfn(defect_object, "./parsed_defects_dict.json") @@ -887,6 +491,15 @@ def generate( help="Path to bulk structure", type=click.Path(exists=True, dir_okay=False), ) +@click.option( + "--padding", + "-p", + help="For any defects where `charge` is not set in the --config file, " + "charges will be set to the range: 0 – {Defect oxidation state}, " + "with a `--padding` on either side of this range.", + default=1, + type=int, +) @click.option( "--code", help="Code to generate relaxation input files for. " @@ -924,6 +537,7 @@ def generate( def generate_all( defects, bulk, + padding, structure_file, code, config, @@ -962,6 +576,9 @@ def generate_all( "input_file", "verbose", "oxidation_states", + "charges", + "charge", + "padding", "dict_number_electrons_user", "distortion_increment", "bond_distortions", @@ -997,7 +614,8 @@ def parse_defect_name(defect, defect_settings, structure_file="POSCAR"): defect_name = None # if user included cif/POSCAR as part of the defect structure name, remove it for substring in ("cif", "POSCAR", structure_file): - defect = defect.replace(substring, "") + if defect != substring: + defect = defect.replace(substring, "") for symbol in ("-", "_", "."): if defect.endswith(symbol): # trailing characters defect = defect[:-1] @@ -1012,6 +630,8 @@ def parse_defect_name(defect, defect_settings, structure_file="POSCAR"): f"Will parse defect name from folders/files." ) if not defect_name: + # if user didn't specify defect names in config file, + # check if defect filename is recognised try: defect_name = plotting._format_defect_name( defect, include_site_num_in_name=False @@ -1024,31 +644,20 @@ def parse_defect_name(defect, defect_settings, structure_file="POSCAR"): except Exception: pass if defect_name: - # if user didn't specify defect names in config file, - # check if defect filename is recognised defect_name = defect - if not defect_name: - raise ValueError( - "Error in defect name parsing; could not parse defect name " - f"from {defect}. Please include its name in the 'defects' section of " - "the config file." - ) - return defect_name def parse_defect_charges(defect_name, defect_settings): charges = None if isinstance(defect_settings, dict): if defect_name in defect_settings: - charges = defect_settings.get(defect_name).get("charges") - if not charges: - warnings.warn( - f"No charge (range) set for defect {defect_name} in config file," - " assuming default range of +/-2" - ) - charges = list(range(-2, +3)) - return charges + charges = defect_settings.get(defect_name).get("charges", None) + if charges is None: + charges = [ + defect_settings.get(defect_name).get("charge", None), + ] + return charges # determing using padding if not set in config file def parse_defect_position(defect_name, defect_settings): if defect_settings: @@ -1068,7 +677,10 @@ def parse_defect_position(defect_name, defect_settings): if os.path.isfile(f"{defects}/{defect}"): try: # try to parse structure from it defect_struc = Structure.from_file(f"{defects}/{defect}") - defect_name = parse_defect_name(defect, defect_settings) + defect_name = parse_defect_name( + defect, defect_settings + ) # None if not recognised + except Exception: continue @@ -1103,12 +715,11 @@ def parse_defect_position(defect_name, defect_settings): warnings.warn(f"Could not parse {defects}/{defect} as a defect, skipping.") continue - # Check if charges / indices are provided in config file - charges = parse_defect_charges(defect_name, defect_settings) + # Check if indices are provided in config file defect_index, defect_coords = parse_defect_position( defect_name, defect_settings ) - defect_object = identify_defect( + defect_object = input.identify_defect( defect_structure=defect_struc, bulk_structure=bulk_struc, defect_index=defect_index, @@ -1126,22 +737,20 @@ def parse_defect_position(defect_name, defect_settings): f"with site {site_info}" ) - # Update charges and defect name + if defect_name is None: # name based on defect object + defect_name = input._get_defect_name_from_obj(defect_object) + + # Update charges if specified in config file + charges = parse_defect_charges(defect_name, defect_settings) defect_object.user_charges = charges # Add defect entry to full defects_dict - defect_type_plural = _get_defect_type_plural(defect_object) - if defect_type_plural in defects_dict: # vacancies, antisites or interstitials - defects_dict[defect_type_plural] += {defect_name: deepcopy(defect_object)} - else: - defects_dict.update( - { - defect_type_plural: {defect_name: deepcopy(defect_object)}, - } - ) + defect_name = input._update_defect_dict( + defect_object, defect_name, defects_dict + ) # Apply distortions and write input files - Dist = input.Distortions(defects_dict, **user_settings) + Dist = input.Distortions(defects_dict, padding=padding, **user_settings) if code.lower() == "vasp": if input_file: incar = Incar.from_file(input_file) @@ -1315,7 +924,6 @@ def run(submit_command, job_script, job_name_option, all, verbose): ) @click.option( "--code", - "-c", help="Code used to run the geometry optimisations. " "Options: 'vasp', 'cp2k', 'espresso', 'castep', 'fhi-aims'.", type=str, @@ -1385,7 +993,6 @@ def parse(defect, all, path, code): ) @click.option( "--code", - "-c", help="Code used to run the geometry optimisations. " "Options: 'vasp', 'cp2k', 'espresso', 'castep', 'fhi-aims'.", type=str, @@ -1517,7 +1124,6 @@ def analyse_single_defect(defect, path, code, ref_struct, verbose): ) @click.option( "--code", - "-c", help="Code used to run the geometry optimisations. " "Options: 'vasp', 'cp2k', 'espresso', 'castep', 'fhi-aims'.", type=str, @@ -1550,7 +1156,7 @@ def analyse_single_defect(defect, path, code, ref_struct, verbose): "-f", help="Format to save the plot as.", type=str, - default="svg", + default="png", show_default=True, ) @click.option( @@ -1721,7 +1327,6 @@ def plot( ) @click.option( "--code", - "-c", help="Code to generate relaxation input files for. " "Options: 'vasp', 'cp2k', 'espresso', 'castep', 'fhi-aims'.", type=str, @@ -1737,7 +1342,8 @@ def plot( show_default=True, ) @click.option( - "--min", + "--min_energy", + "-min", help="Minimum energy difference (in eV) between the ground-state" " defect structure, relative to the `Unperturbed` structure," " to consider it as having found a new energy-lowering" @@ -1764,7 +1370,7 @@ def plot( is_flag=True, show_default=True, ) -def regenerate(path, code, filename, min, metastable, verbose): +def regenerate(path, code, filename, min_energy, metastable, verbose): """ Identify defect species undergoing energy-lowering distortions and test these distortions for the other charge states of the defect. @@ -1790,7 +1396,7 @@ def regenerate(path, code, filename, min, metastable, verbose): code=code, structure_filename=filename, write_input_files=True, - min_e_diff=min, + min_e_diff=min_energy, metastable=metastable, verbose=verbose, ) @@ -1871,41 +1477,50 @@ def groundstate( ) ] ): # distortion subfolders in cwd - cwd_name = os.getcwd().split("/")[-1] - dummy_h = Element("H") - if any( - [ - substring in cwd_name.lower() - for substring in ("as", "vac", "int", "sub", "v", "i", "on") - ] - ) or any( - [ - ( - dummy_h.is_valid_symbol(substring[-2:]) - or substring[-1:] == "v" - or substring[-2:] == "Va" + # check if defect folders also in cwd + for dir in [dir for dir in os.listdir() if os.path.isdir(dir)]: + defect_name = None + try: + defect_name = plotting._format_defect_name( + dir, include_site_num_in_name=False ) - for substring in cwd_name.split("_") - ] # underscore preceded by either an element symbol or "v" (new pymatgen defect - # naming convention) - ): # cwd is defect name, assume current directory is the defect folder - if path != ".": + except Exception: + try: + defect_name = plotting._format_defect_name( + f"{dir}_0", include_site_num_in_name=False + ) + except Exception: + pass + + if ( + defect_name + ): # recognised defect folder found in cwd, warn user and proceed + # assuming they want to just parse the distortion folders in cwd warnings.warn( - "`--path` option ignored when running from within defect folder (" - "determined to be the case here based on current directory and " - "subfolder names)." + f"Both distortion folders and defect folders (i.e. {dir}) were " + f"found in the current directory. The defect folders will be " + f"ignored and the groundstate structure from the distortion folders " + f"in this directory will be generated." ) + break - energy_lowering_distortions.write_groundstate_structure( - all=False, - output_path=os.getcwd(), - groundstate_folder=directory, - groundstate_filename=groundstate_filename, - structure_filename=structure_filename, - verbose=not non_verbose, + # assume current directory is the defect folder + if path != ".": + warnings.warn( + "`--path` option ignored when running from within defect folder (assumed to be " + "the case here as distortion folders found in current directory)." ) - return + energy_lowering_distortions.write_groundstate_structure( + all=False, + output_path=os.getcwd(), + groundstate_folder=directory, + groundstate_filename=groundstate_filename, + structure_filename=structure_filename, + verbose=not non_verbose, + ) + + return # otherwise, assume top level directory is the path energy_lowering_distortions.write_groundstate_structure( diff --git a/shakenbreak/distortions.py b/shakenbreak/distortions.py index 4f93541b..ef412731 100644 --- a/shakenbreak/distortions.py +++ b/shakenbreak/distortions.py @@ -164,7 +164,8 @@ def distort( distorted = [(round(i[0], 2), i[1], i[2]) for i in distorted] nearest = [(round(i[0], 2), i[1], i[2]) for i in nearest] # round numbers print( - f"""\tDefect Site Index / Frac Coords: {site_index or frac_coords} + f"""\tDefect Site Index / Frac Coords: { + site_index or np.around(frac_coords, decimals=3)} Original Neighbour Distances: {nearest} Distorted Neighbour Distances:\n\t{distorted}""" ) diff --git a/shakenbreak/energy_lowering_distortions.py b/shakenbreak/energy_lowering_distortions.py index ffdf5436..8b8bdb94 100644 --- a/shakenbreak/energy_lowering_distortions.py +++ b/shakenbreak/energy_lowering_distortions.py @@ -189,9 +189,8 @@ def _compare_distortion( ): low_energy_defects[defect][index][property].append(value) - else: # only add to list if it doesn't match _any_ of the - # other distortions and the structure was not previously - # found, then add it to the list of distortions for this + else: # only add to list if it doesn't match _any_ of the other distortions and the + # structure was not previously found, then add it to the list of distortions for this # defect print( f"New (according to structure matching) low-energy " @@ -631,7 +630,7 @@ def get_energy_lowering_distortions( # Write input files for the identified distortions if write_input_files: - write_distorted_inputs( + write_retest_inputs( low_energy_defects=low_energy_defects, output_path=output_path, code=code, @@ -821,7 +820,7 @@ def compare_struct_to_distortions( ) # T/F, matching structure, energy_diff, distortion factor -def write_distorted_inputs( +def write_retest_inputs( low_energy_defects: dict, output_path: str = ".", code: str = "vasp", @@ -1076,7 +1075,7 @@ def _copy_cp2k_files( """ if not input_filename: input_filename = "cp2k_input.inp" - distorted_structure.to("cif", f"{distorted_dir}/structure.cif") + distorted_structure.to(fmt="cif", filename=f"{distorted_dir}/structure.cif") if os.path.exists(f"{output_path}/{defect_species}/Unperturbed/{input_filename}"): shutil.copyfile( f"{output_path}/{defect_species}/Unperturbed/{input_filename}", diff --git a/shakenbreak/input.py b/shakenbreak/input.py old mode 100644 new mode 100755 index 00b9e5c5..6c7d5f37 --- a/shakenbreak/input.py +++ b/shakenbreak/input.py @@ -6,12 +6,13 @@ import copy import datetime import functools -import json +import itertools import os +import shutil import warnings from collections import Counter from importlib.metadata import version -from typing import Optional, Tuple, Type +from typing import Optional, Tuple, Type, Union import ase import numpy as np @@ -21,11 +22,15 @@ from monty.json import MontyDecoder from monty.serialization import dumpfn, loadfn from pymatgen.analysis.defects.core import Defect -from pymatgen.core.structure import Composition, Element, Structure +from pymatgen.analysis.structure_matcher import StructureMatcher +from pymatgen.core.structure import Composition, Element, PeriodicSite, Structure from pymatgen.io.ase import AseAtomsAdaptor from pymatgen.io.cp2k.inputs import Cp2kInput from pymatgen.io.vasp.inputs import UnknownPotcarWarning from pymatgen.io.vasp.sets import BadInputSetWarning +from scipy.cluster.hierarchy import fcluster, linkage +from scipy.spatial import Voronoi +from scipy.spatial.distance import squareform from shakenbreak import analysis, cli, distortions, io, vasp @@ -103,13 +108,11 @@ def _write_distortion_metadata( ) try: print(f"Combining old and new metadata in {filename}.") - with open( + old_metadata = loadfn( os.path.join( output_path, f"distortion_metadata_{current_datetime}.json" - ), - "r", - ) as old_metadata_file: - old_metadata = json.load(old_metadata_file) + ) + ) # Combine old and new metadata dictionaries for defect in old_metadata["defects"]: if ( @@ -194,6 +197,105 @@ def _create_vasp_input( None """ # create folder for defect + defect_name_wout_charge, charge = defect_name.rsplit( + "_", 1 + ) # `defect_name` includes charge + test_letters = [ + "h", + "g", + "f", + "e", + "d", + "c", + "b", + "a", + "", + ] # reverse search to determine + # last letter used + try: + matching_dirs = [ + dir + for letter in test_letters + for dir in os.listdir(output_path) + if dir == f"{defect_name_wout_charge}{letter}_{charge}" + and os.path.isdir( + f"{output_path}/{defect_name_wout_charge}{letter}_{charge}" + ) + ] + except Exception: + matching_dirs = [] + + if len(matching_dirs) > 0: # defect species with same name already present + # check if Unperturbed structures match + match_found = False + for dir in matching_dirs: + try: + prev_unperturbed_struc = Structure.from_file( + f"{output_path}/{dir}/Unperturbed/POSCAR" + ) + current_unperturbed_struc = distorted_defect_dict["Unperturbed"][ + "Defect Structure" + ].copy() + for i in [prev_unperturbed_struc, current_unperturbed_struc]: + i.remove_oxidation_states() + if prev_unperturbed_struc == current_unperturbed_struc: + warnings.warn( + f"The previously-generated defect folder {dir} in " + f"{os.path.basename(os.path.abspath(output_path))} " + f"has the same Unperturbed defect structure as the current " + f"defect species: {defect_name}. ShakeNBreak files in {dir} will " + f"be overwritten." + ) + defect_name = dir + match_found = True + break + + except Exception: # Unperturbed structure could not be parsed / compared to + # distorted_defect_dict + pass + + if not match_found: # no matching structure found, assume inequivalent defects + last_letter = [ + letter + for letter in test_letters + for dir in matching_dirs + if dir == f"{defect_name_wout_charge}{letter}_{charge}" + ][0] + prev_dir_name = f"{defect_name_wout_charge}{last_letter}_{charge}" + if last_letter == "": # rename prev defect folder + new_prev_dir_name = f"{defect_name_wout_charge}a_{charge}" + new_current_dir_name = f"{defect_name_wout_charge}b_{charge}" + warnings.warn( + f"A previously-generated defect folder {prev_dir_name} exists in " + f"{os.path.basename(os.path.abspath(output_path))}, " + f"and the Unperturbed defect structure could not be matched to the " + f"current defect species: {defect_name}. These are assumed to be " + f"inequivalent defects, so the previous {prev_dir_name} will be " + f"renamed to {new_prev_dir_name} and ShakeNBreak files for the " + f"current defect will be saved to {new_current_dir_name}, " + f"to prevent overwriting." + ) + shutil.move( + f"{output_path}/{prev_dir_name}", + f"{output_path}/{new_prev_dir_name}", + ) + defect_name = new_current_dir_name + + else: # don't rename prev defect folder just rename current folder + next_letter = test_letters[test_letters.index(last_letter) - 1] + new_current_dir_name = ( + f"{defect_name_wout_charge}{next_letter}_{charge}" + ) + warnings.warn( + f"Previously-generated defect folders ({prev_dir_name}...) exist in " + f"{os.path.basename(os.path.abspath(output_path))}, " + f"and the Unperturbed defect structures could not be matched to the " + f"current defect species: {defect_name}. These are assumed to be " + f"inequivalent defects, so ShakeNBreak files for the current defect " + f"will be saved to {new_current_dir_name} to prevent overwriting." + ) + defect_name = new_current_dir_name + _create_folder(os.path.join(output_path, defect_name)) for ( distortion, @@ -230,7 +332,10 @@ def _get_bulk_comp(defect_object) -> Composition: return bulk_structure.composition -def _get_bulk_defect_site(defect_object): +def _get_bulk_defect_site( + defect_object: Defect, + defect_name: str, +) -> PeriodicSite: """Get defect site in the bulk structure (e.g. for a P substitution on Si, get the original Si site). """ @@ -284,16 +389,19 @@ def _most_common_oxi(element) -> int: def _calc_number_electrons( defect_object: Defect, + defect_name: str, oxidation_states: dict, verbose: bool = False, ) -> int: """ - Calculates the number of extra/missing electrons of the defect species - (in `defect_object`) based on `oxidation_states`. + Calculates the number of extra/missing electrons of the neutral + defect species (in `defect_object`) based on `oxidation_states`. Args: defect_object (:obj:`Defect`): pymatgen.analysis.defects.core.Defect object. + defect_name (:obj:`str`): + Name of the defect species. oxidation_states (:obj:`dict`): Dictionary with oxidation states of the atoms in the material (e.g. {"Cd": +2, "Te": -2}). @@ -309,7 +417,6 @@ def _calc_number_electrons( # Determine number of extra/missing electrons based on defect type and # oxidation states - defect_name = defect_object.name defect_type = defect_object.as_dict()["@class"].lower() # We use the following variables: # site_specie: Original species on the bulk site @@ -327,7 +434,7 @@ def _calc_number_electrons( elif defect_type in ["antisite", "substitution"]: # get bulk_site sub_site_in_bulk = _get_bulk_defect_site( - defect_object + defect_object, defect_name ) # bulk site of substitution site_specie = sub_site_in_bulk.specie.symbol # Species occuping the *bulk* site substituting_specie = str( @@ -335,9 +442,7 @@ def _calc_number_electrons( ) # Current species occupying the defect site (e.g. the substitution) else: - raise ValueError( - "`defect_dict` has an invalid `defect_type`:" + f"{defect_type}" - ) + raise ValueError(f"`defect_dict` has an invalid `defect_type`: {defect_type}") num_electrons = ( oxidation_states[substituting_specie] - oxidation_states[site_specie] @@ -375,7 +480,139 @@ def _calc_number_neighbours(num_electrons: int) -> int: return abs(num_neighbours) -def _identify_defect( +def _get_voronoi_nodes( + structure, +): + """ + Get the Voronoi nodes of a structure. + Templated from the TopographyAnalyzer class, added to + pymatgen.analysis.defects.utils by Yiming Chen, but now deleted. + Modified to map down to primitive, do Voronoi analysis, then map + back to original supercell; much more efficient. + + Args: + structure (:obj:`Structure`): + pymatgen `Structure` object. + """ + # map all sites to the unit cell; 0 ≤ xyz < 1. + structure = Structure.from_sites(structure, to_unit_cell=True) + # get Voronoi nodes in primitive structure and then map back to the + # supercell + prim_structure = structure.get_primitive_structure() + + # get all atom coords in a supercell of the structure because + # Voronoi polyhedra can extend beyond the standard unit cell. + coords = [] + cell_range = list(range(-1, 2)) + for shift in itertools.product(cell_range, cell_range, cell_range): + for site in prim_structure.sites: + shifted = site.frac_coords + shift + coords.append(prim_structure.lattice.get_cartesian_coords(shifted)) + + # Voronoi tessellation. + voro = Voronoi(coords) + + # Only include voronoi polyhedra within the unit cell. + vnodes = [] + tol = 1e-3 + for vertex in voro.vertices: + frac_coords = prim_structure.lattice.get_fractional_coords(vertex) + vnode = PeriodicSite("V-", frac_coords, prim_structure.lattice) + if np.all([-tol <= coord < 1 + tol for coord in frac_coords]): + if not any([p.distance(vnode) < tol for p in vnodes]): + vnodes.append(vnode) + + # cluster nodes that are within a certain distance of each other + voronoi_coords = [v.frac_coords for v in vnodes] + dist_matrix = np.array( + prim_structure.lattice.get_all_distances(voronoi_coords, voronoi_coords) + ) + dist_matrix = (dist_matrix + dist_matrix.T) / 2 + condensed_m = squareform(dist_matrix) + z = linkage(condensed_m) + cn = fcluster(z, 0.2, criterion="distance") # cluster nodes with 0.2 Å + merged_vnodes = [] + for n in set(cn): + frac_coords = [] + for i, j in enumerate(np.where(cn == n)[0]): + if i == 0: + frac_coords.append(vnodes[j].frac_coords) + else: + fcoords = vnodes[j].frac_coords + d, image = prim_structure.lattice.get_distance_and_image( + frac_coords[0], fcoords + ) + frac_coords.append(fcoords + image) + merged_vnodes.append( + PeriodicSite("V-", np.average(frac_coords, axis=0), prim_structure.lattice) + ) + vnodes = merged_vnodes + + # remove nodes less than 0.5 Å from sites in the structure + vfcoords = [v.frac_coords for v in vnodes] + sfcoords = prim_structure.frac_coords + dist_matrix = prim_structure.lattice.get_all_distances(vfcoords, sfcoords) + all_dist = np.min(dist_matrix, axis=1) + vnodes = [v for i, v in enumerate(vnodes) if all_dist[i] > 0.5] + + # map back to the supercell + sm = StructureMatcher(primitive_cell=False, attempt_supercell=True) + mapping = sm.get_supercell_matrix(structure, prim_structure) + voronoi_struc = Structure.from_sites( + vnodes + ) # Structure object with Voronoi nodes as sites + voronoi_struc.make_supercell(mapping) # Map back to the supercell + + # check if there was an origin shift between primitive and supercell + regenerated_supercell = prim_structure.copy() + regenerated_supercell.make_supercell(mapping) + fractional_shift = sm.get_transformation(structure, regenerated_supercell)[1] + if not np.allclose(fractional_shift, 0): + voronoi_struc.translate_sites( + range(len(voronoi_struc)), fractional_shift, frac_coords=True + ) + + vnodes = voronoi_struc.sites + + return vnodes + + +def _get_voronoi_multiplicity(site, structure): + """Get the multiplicity of a Voronoi site in structure""" + vnodes = _get_voronoi_nodes(structure) + + distances_and_species_list = [] + for vnode in vnodes: + distances_and_species = [ + (np.round(vnode.distance(atomic_site), decimals=3), atomic_site.species) + for atomic_site in structure.sites + ] + sorted_distances_and_species = sorted(distances_and_species) + distances_and_species_list.append(sorted_distances_and_species) + + site_distances_and_species = [ + (np.round(site.distance(atomic_site), decimals=3), atomic_site.species) + for atomic_site in structure.sites + ] + sorted_site_distances_and_species = sorted(site_distances_and_species) + + multiplicity = 0 + for distances_and_species in distances_and_species_list: + if distances_and_species == sorted_site_distances_and_species: + multiplicity += 1 + + if multiplicity == 0: + warnings.warn( + f"Multiplicity of interstitial at site " + f"{np.around(site.frac_coords, decimals=3)} could not be determined from " + f"Voronoi analysis. Multiplicity set to 1." + ) + multiplicity = 1 + + return multiplicity + + +def identify_defect( defect_structure, bulk_structure, defect_coords=None, defect_index=None ) -> Defect: """ @@ -391,7 +628,9 @@ def _identify_defect( defect_coords (:obj:`list`): Fractional coordinates of the defect site in the supercell. defect_index (:obj:`int`): - Index of the defect site in the supercell. + Index of the defect site in the supercell. For vacancies, this + should be the site index in the bulk structure, while for substitutions + and interstitials it should be the site index in the defect structure. Returns: :obj:`Defect` """ @@ -411,8 +650,32 @@ def _identify_defect( "developers if you would like to use the method for complex defects" ) + # remove oxidation states before site-matching + defect_struc = ( + defect_structure.copy() + ) # copy to prevent overwriting original structures + bulk_struc = bulk_structure.copy() + defect_struc.remove_oxidation_states() + bulk_struc.remove_oxidation_states() + + bulk_site_index = None + defect_site_index = None + + if ( + defect_type == "vacancy" and defect_index + ): # defect_index should correspond to bulk struc + bulk_site_index = defect_index + elif defect_index: # defect_index should correspond to defect struc + if defect_type == "interstitial": + defect_site_index = defect_index + if ( + defect_type == "substitution" + ): # also want bulk site index for substitutions, + # so use defect index coordinates + defect_coords = defect_struc[defect_index].frac_coords + if defect_coords is not None: - if defect_index is None: + if bulk_site_index is None and defect_site_index is None: site_displacement_tol = ( 0.01 # distance tolerance for site matching to identify defect, increases in # jumps of 0.1 Å @@ -430,16 +693,16 @@ def _possible_sites_in_sphere(structure, frac_coords, tol): ) max_possible_defect_sites_in_bulk_struc = _possible_sites_in_sphere( - bulk_structure, defect_coords, 2.5 + bulk_struc, defect_coords, 2.5 ) max_possible_defect_sites_in_defect_struc = _possible_sites_in_sphere( - defect_structure, defect_coords, 2.5 + defect_struc, defect_coords, 2.5 ) expanded_possible_defect_sites_in_bulk_struc = _possible_sites_in_sphere( - bulk_structure, defect_coords, 3.0 + bulk_struc, defect_coords, 3.0 ) expanded_possible_defect_sites_in_defect_struc = _possible_sites_in_sphere( - defect_structure, defect_coords, 3.0 + defect_struc, defect_coords, 3.0 ) # there should be one site (including specie identity) which does not match between @@ -487,12 +750,12 @@ def _remove_matching_sites(bulk_site_list, defect_site_list): else: searched = "bulk or defect" possible_defects = [] - while site_displacement_tol < 2.5: # loop over distance tolerances + while site_displacement_tol < 5: # loop over distance tolerances possible_defect_sites_in_bulk_struc = _possible_sites_in_sphere( - bulk_structure, defect_coords, site_displacement_tol + bulk_struc, defect_coords, site_displacement_tol ) possible_defect_sites_in_defect_struc = _possible_sites_in_sphere( - defect_structure, defect_coords, site_displacement_tol + defect_struc, defect_coords, site_displacement_tol ) if ( defect_type == "vacancy" @@ -502,24 +765,35 @@ def _remove_matching_sites(bulk_site_list, defect_site_list): expanded_possible_defect_sites_in_defect_struc, ) searched = "bulk" - else: + if len(possible_defects) == 1: + bulk_site_index = possible_defects[0][2] + break + + else: # interstitial or substitution # defect site should be in defect structure but not bulk structure _, possible_defects = _remove_matching_sites( expanded_possible_defect_sites_in_bulk_struc, possible_defect_sites_in_defect_struc, ) searched = "defect" + if len(possible_defects) == 1: + if defect_type == "substitution": + possible_defects_in_bulk, _ = _remove_matching_sites( + possible_defect_sites_in_bulk_struc, + expanded_possible_defect_sites_in_defect_struc, + ) + if len(possible_defects_in_bulk) == 1: + bulk_site_index = possible_defects_in_bulk[0][2] - if len(possible_defects) == 1: - defect_index = possible_defects[0][2] - break + defect_site_index = possible_defects[0][2] + break site_displacement_tol += 0.1 - if defect_index is None: + if bulk_site_index is None and defect_site_index is None: warnings.warn( f"Could not locate (auto-determined) {defect_type} defect site within a " - f"2.5 Å radius of specified coordinates {defect_coords} in {searched} " + f"5 Å radius of specified coordinates {defect_coords} in {searched} " f"structure (found {len(possible_defects)} possible defect sites). " "Will attempt auto site-matching instead." ) @@ -530,97 +804,155 @@ def _remove_matching_sites(bulk_site_list, defect_site_list): "just defect_index will be used to determine the defect site" ) - # if defect_index is None: # try perform auto site-matching regardless of whether defect_coords/defect_index were given, # so we can warn user if manual specification and auto site-matching give conflicting results site_displacement_tol = ( 0.01 # distance tolerance for site matching to identify defect, increases in # jumps of 0.1 Å ) - auto_matching_defect_index = None + auto_matching_bulk_site_index = None + auto_matching_defect_site_index = None possible_defects = [] + site_matching_indices = [] + try: - while site_displacement_tol < 1.5: # loop over distance tolerances - bulk_sites = [site.frac_coords for site in bulk_structure] - defect_sites = [site.frac_coords for site in defect_structure] - dist_matrix = defect_structure.lattice.get_all_distances( - bulk_sites, defect_sites - ) - min_dist_with_index = [ - [ - min(dist_matrix[bulk_index]), - int(bulk_index), - int(dist_matrix[bulk_index].argmin()), - ] - for bulk_index in range(len(dist_matrix)) - ] # list of [min dist, bulk ind, defect ind] - - site_matching_indices = [] - if defect_type in ["vacancy", "interstitial"]: - for mindist, bulk_index, def_struc_index in min_dist_with_index: - if mindist < site_displacement_tol: - site_matching_indices.append([bulk_index, def_struc_index]) - elif defect_type == "vacancy": - possible_defects.append([bulk_index, bulk_sites[bulk_index][:]]) - - if defect_type == "interstitial": - possible_defects = [ - [ind, fc[:]] - for ind, fc in enumerate(defect_sites) - if ind not in np.array(site_matching_indices)[:, 1] - ] + bulk_sites = [site.frac_coords for site in bulk_struc] + defect_sites = [site.frac_coords for site in defect_struc] + matched_bulk_indices = [] + matched_defect_indices = [] + dist_matrix = defect_struc.lattice.get_all_distances(bulk_sites, defect_sites) + min_dist_with_index = [ + [ + min(dist_matrix[bulk_index]), + int(bulk_index), + int(dist_matrix[bulk_index].argmin()), + ] + for bulk_index in range(len(dist_matrix)) + ] # list of [min dist, bulk ind, defect ind] + + while site_displacement_tol < 5: # loop over distance tolerances + for mindist, bulk_index, def_struc_index in min_dist_with_index: + species_match = ( + bulk_struc[bulk_index].specie + == defect_struc[def_struc_index].specie + ) - elif defect_type == "substitution": - for mindist, bulk_index, def_struc_index in min_dist_with_index: - species_match = ( - bulk_structure[bulk_index].specie - == defect_structure[def_struc_index].specie + matched_bulk_indices = [i[0] for i in site_matching_indices] + matched_defect_indices = [i[1] for i in site_matching_indices] + if ( + mindist < site_displacement_tol + and species_match + and bulk_index not in matched_bulk_indices + and def_struc_index not in matched_defect_indices + ): + site_matching_indices.append([bulk_index, def_struc_index]) + + elif ( + mindist < site_displacement_tol + and defect_type == "substitution" + and not species_match + ): + possible_defects.append( + [def_struc_index, defect_sites[def_struc_index][:], bulk_index] ) - if mindist < site_displacement_tol and species_match: - site_matching_indices.append([bulk_index, def_struc_index]) - elif not species_match: - possible_defects.append( - [def_struc_index, defect_sites[def_struc_index][:]] - ) + if defect_type == "interstitial": + if site_matching_indices: + possible_defects = [ + [ind, fc[:], None] + for ind, fc in enumerate(defect_sites) + if ind not in matched_defect_indices + ] - if len(set(np.array(site_matching_indices)[:, 0])) != len( - set(np.array(site_matching_indices)[:, 1]) - ): - raise ValueError( - "Error occurred in site_matching routine. Double counting of site matching " - f"occurred: {site_matching_indices}\nAbandoning structure parsing." - ) + elif defect_type == "vacancy": + if site_matching_indices: + possible_defects = [ + [None, fc[:], ind] + for ind, fc in enumerate(bulk_sites) + if ind not in matched_bulk_indices + ] if len(possible_defects) == 1: - auto_matching_defect_index = possible_defects[0][0] + auto_matching_defect_site_index = possible_defects[0][0] + auto_matching_bulk_site_index = possible_defects[0][2] break + if ( + site_matching_indices + and auto_matching_bulk_site_index is None + and auto_matching_defect_site_index is None + ): + # failed auto-site matching, rely on user input or raise error if no user input + if len(set(np.array(site_matching_indices)[:, 0])) != len( + set(np.array(site_matching_indices)[:, 1]) + ): + raise ValueError( + "Error occurred in site_matching routine. Double counting of site matching " + f"occurred: {site_matching_indices}\nAbandoning structure parsing." + ) + site_displacement_tol += 0.1 + except Exception: pass # failed auto-site matching, rely on user input or raise error if no user input - if defect_index is None and auto_matching_defect_index is None: + if ( + defect_site_index is None + and bulk_site_index is None + and auto_matching_bulk_site_index is None + and auto_matching_defect_site_index is None + ): raise ValueError( - "Defect coordinates could not be identified from auto site-matching. " - f"Found {len(possible_defects)} possible defect sites – check bulk and defect " - "structures correspond to the same supercell and/or specify defect site with " - "'defect_coords' or 'defect_index' keys in the input dictionary." + "Defect coordinates could not be identified from auto site-matching. Check bulk and " + "defect structures correspond to the same supercell and/or specify defect site with " + "--defect-coords or --defect-index (if using the SnB CLI), or 'defect_coords' or " + "'defect_index' keys in the input dictionary if using the SnB Python API." ) - if defect_index is None and auto_matching_defect_index is not None: - defect_index = auto_matching_defect_index + + if ( + defect_site_index is None + and bulk_site_index is None + and ( + auto_matching_defect_site_index is not None + or auto_matching_bulk_site_index is not None + ) + ): + # user didn't specify coordinates or index, but auto site-matching found a defect site + if auto_matching_bulk_site_index is not None: + bulk_site_index = auto_matching_bulk_site_index + if auto_matching_defect_site_index is not None: + defect_site_index = auto_matching_defect_site_index if defect_type == "vacancy": - defect_site = bulk_structure[defect_index] + defect_site = bulk_struc[bulk_site_index] + elif defect_type == "substitution": + defect_site_in_bulk = bulk_struc[bulk_site_index] + defect_site = PeriodicSite( + defect_struc[defect_site_index].specie, + defect_site_in_bulk.frac_coords, + bulk_struc.lattice, + ) else: - defect_site = defect_structure[defect_index] + defect_site = defect_struc[defect_site_index] - if defect_index is not None and auto_matching_defect_index is not None: - if defect_index != auto_matching_defect_index: + if (defect_index is not None or defect_coords is not None) and ( + auto_matching_defect_site_index is not None + or auto_matching_bulk_site_index is not None + ): + # user specified site, check if it matched the auto site-matching + user_index = ( + defect_site_index if defect_site_index is not None else bulk_site_index + ) + auto_index = ( + auto_matching_defect_site_index + if auto_matching_defect_site_index is not None + else auto_matching_bulk_site_index + ) + if user_index != auto_index: if defect_type == "vacancy": - auto_matching_defect_site = bulk_structure[auto_matching_defect_index] + auto_matching_defect_site = bulk_struc[auto_index] else: - auto_matching_defect_site = defect_structure[auto_matching_defect_index] + auto_matching_defect_site = defect_struc[auto_index] def _site_info(site): return ( @@ -653,29 +985,71 @@ def _site_info(site): } try: defect = MontyDecoder().process_decoded(for_monty_defect) - except TypeError: - # This means we have the old version of pymatgen-analysis-defects, - # where the class attributes were different (defect_site instead of site - # and no user_charges) + except TypeError as exc: + # This means we have the old version of pymatgen-analysis-defects, where the class + # attributes were different (defect_site instead of site and no user_charges) v_ana_def = version("pymatgen-analysis-defects") v_pmg = version("pymatgen") if v_ana_def < "2022.9.14": - return TypeError( - f"You have the version {v_ana_def}" - " of the package `pymatgen-analysis-defects`," - " which is incompatible. Please update this package" - " and try again." + raise TypeError( + f"You have the version {v_ana_def} of the package `pymatgen-analysis-defects`," + " which is incompatible. Please update this package (with `pip install " + "shakenbreak`) and try again." ) if v_pmg < "2022.7.25": - return TypeError( - f"You have the version {v_pmg}" - " of the package `pymatgen`," - " which is incompatible. Please update this package" - " and try again." + raise TypeError( + f"You have the version {v_pmg} of the package `pymatgen`, which is incompatible. " + f"Please update this package (with `pip install shakenbreak`) and try again." ) + else: + raise exc + return defect +def _get_defect_name_from_obj(defect): + """Get the SnB defect name from defect object""" + defect_type = str(defect.as_dict()["@class"].lower()) + if defect_type != "interstitial": + defect_name = f"{defect.name}_s{defect.defect_site_index}" + else: # interstitial + defect_name = ( + f"{defect.name}_" + f"m{_get_voronoi_multiplicity(defect.site, defect.structure)}" + ) + + return defect_name + + +def _update_defect_dict(defect, defect_name, defect_dict): + """Update `defect_dict` with {defect_name: defect}. + If defect_name is already in defect_dict, rename it to "{defect_name}a", + and iterate until a unique name is found for `defect`. + """ + if defect_name in defect_dict: # if name already exists, rename entry in + # dict to {defect_name}a, and rename this entry to {defect_name}b + prev_defect = defect_dict.pop(defect_name) + defect_dict[f"{defect_name}a"] = prev_defect + defect_name = f"{defect_name}b" + defect_dict[defect_name] = defect + + elif defect_name in [name[:-1] for name in defect_dict.keys()]: + # rename defect to {defect_name}{iterated letter} + last_letters = [ + name[-1] for name in defect_dict.keys() if name[:-1] == defect_name + ] + last_letters.sort() + last_letter = last_letters[-1] + new_letter = chr(ord(last_letter) + 1) + defect_name = f"{defect_name}{new_letter}" + defect_dict[defect_name] = defect + + else: + defect_dict[defect_name] = defect + + return defect_name # return defect_name in case it was updated + + # Main functions @@ -689,7 +1063,7 @@ def _apply_rattle_bond_distortions( active_atoms: Optional[list] = None, distorted_element: Optional[str] = None, verbose: bool = False, - **kwargs, + **mc_rattle_kwargs, ) -> dict: """ Applies rattle and bond distortions to the unperturbed defect structure @@ -732,7 +1106,7 @@ def _apply_rattle_bond_distortions( verbose (:obj:`bool`): Whether to print distortion information. (Default: False) - **kwargs: + **mc_rattle_kwargs: Additional keyword arguments to pass to `hiphive`'s `mc_rattle` function. These include: - max_disp (:obj:`float`): @@ -816,7 +1190,7 @@ def _apply_rattle_bond_distortions( stdev=stdev, d_min=d_min, active_atoms=active_atoms, - **kwargs, + **mc_rattle_kwargs, ) else: bond_distorted_defect["distorted_structure"] = distortions.rattle( @@ -824,7 +1198,7 @@ def _apply_rattle_bond_distortions( stdev=stdev, d_min=d_min, active_atoms=active_atoms, - **kwargs, + **mc_rattle_kwargs, ) except Exception as ex: if "attempts" in str(ex): @@ -842,7 +1216,7 @@ def _apply_rattle_bond_distortions( d_min=reduced_d_min, # min distance in supercell plus 1 stdev active_atoms=active_atoms, max_attempts=7000, # default is 5000 - **kwargs, + **mc_rattle_kwargs, ) else: bond_distorted_defect["distorted_structure"] = distortions.rattle( @@ -851,7 +1225,7 @@ def _apply_rattle_bond_distortions( d_min=reduced_d_min, # min distance in supercell plus 1 stdev active_atoms=active_atoms, max_attempts=7000, # default is 5000 - **kwargs, + **mc_rattle_kwargs, ) if verbose: warnings.warn( @@ -867,6 +1241,7 @@ def _apply_rattle_bond_distortions( def apply_snb_distortions( defect_object: dict, + defect_name: str, num_nearest_neighbours: int, bond_distortions: list, local_rattle: bool = False, @@ -874,7 +1249,7 @@ def apply_snb_distortions( d_min: Optional[float] = None, distorted_element: Optional[str] = None, verbose: bool = False, - **kwargs, + **mc_rattle_kwargs, ) -> dict: """ Applies rattle and bond distortions to `num_nearest_neighbours` of the @@ -883,6 +1258,8 @@ def apply_snb_distortions( Args: defect_object (:obj:`Defect`): pymatgen.analysis.defects.core.Defect() object. + defect_name (:obj:`str`): + Name of the defect species. num_nearest_neighbours (:obj:`int`): Number of defect nearest neighbours to apply bond distortions to bond_distortions (:obj:`list`): @@ -909,7 +1286,7 @@ def apply_snb_distortions( verbose (:obj:`bool`): Whether to print distortion information. (Default: False) - **kwargs: + **mc_rattle_kwargs: Additional keyword arguments to pass to `hiphive`'s `mc_rattle` function. These include: - max_disp (:obj:`float`): @@ -942,7 +1319,7 @@ def apply_snb_distortions( defect_type = str(defect_object.as_dict()["@class"].lower()) defect_structure = defect_object.defect_structure # Get defect site - bulk_supercell_site = _get_bulk_defect_site(defect_object) # bulk site + bulk_supercell_site = _get_bulk_defect_site(defect_object, defect_name) # bulk site defect_site_index = defect_object.defect_site_index if not d_min: @@ -959,7 +1336,7 @@ def apply_snb_distortions( ) d_min = 2.25 - seed = kwargs.pop("seed", None) + seed = mc_rattle_kwargs.pop("seed", None) if num_nearest_neighbours != 0: for distortion in bond_distortions: distortion = ( @@ -984,7 +1361,7 @@ def apply_snb_distortions( distorted_element=distorted_element, verbose=verbose, seed=seed, - **kwargs, + **mc_rattle_kwargs, ) distorted_defect_dict["distortions"][ analysis._get_distortion_filename(distortion) @@ -1025,14 +1402,14 @@ def apply_snb_distortions( frac_coords=frac_coords, stdev=stdev, d_min=d_min, - **kwargs, + **mc_rattle_kwargs, ) else: perturbed_structure = distortions.rattle( defect_structure, stdev=stdev, d_min=d_min, - **kwargs, + **mc_rattle_kwargs, ) distorted_defect_dict["distortions"]["Rattled"] = perturbed_structure distorted_defect_dict["distortion_parameters"] = { @@ -1049,44 +1426,57 @@ def apply_snb_distortions( class Distortions: """ - Class to apply rattle and bond distortion to all defects in `defects_dict` + Class to apply rattle and bond distortion to all defects in `defects` (each defect as a pymatgen.analysis.defects.core.Defect() object). """ def __init__( self, - defects_dict: dict, + defects: Union[list, dict], oxidation_states: Optional[dict] = None, + padding: int = 1, dict_number_electrons_user: Optional[dict] = None, distortion_increment: float = 0.1, bond_distortions: Optional[list] = None, local_rattle: bool = False, distorted_elements: Optional[dict] = None, - **kwargs, # for mc rattle + **mc_rattle_kwargs, ): """ Args: - defects_dict (:obj:`dict`): - Dictionary of pymatgen.analysis.defects.core.Defect() objects. - E.g.: { - "vacancies": [Vacancy(), ...], - "interstitials": [Interstitial(), ...], - "substitutions": [Substitution(), ...], - } - In this case, folders will be name with the Defect.name() property. - Alternatively, if specific defect/folder names are desired, these can be - given as keys: - { - "vacancies": {"vac_name": Vacancy(), "vac_2_name": Vacancy()}, - "interstitials": {"int_name": Interstitial(), ...}, - "substitutions": {"sub_name": Substitution(), ...}, - } + defects (:obj:`dict_or_list_or_Defect`): + List or dictionary of pymatgen.analysis.defects.core.Defect() objects. + E.g.: [Vacancy(), Interstitial(), Substitution(), ...], or single Defect(). + In this case, generated defect folders will be named in the format: + "{Defect.name}_m{Defect.multiplicity}" for interstitials and + "{Defect.name}_s{Defect.defect_site_index}" for vacancies and substitutions. + The labels "a", "b", "c"... will be appended for defects with multiple + inequivalent sites. + + Alternatively, if specific defect folder names are desired, `defects` can + be input as a dictionary in the format {"defect name": Defect()}. + E.g.: {"vac_name": Vacancy(), "vac_2_name": Vacancy(), ..., + "int_name": Interstitial(), "sub_name": Substitution(), ...}. + + Defect charge states (from which bond distortions are determined) are + taken from the `Defect.user_charges` property. If this is not set, + charge states are set to the range: 0 – {Defect oxidation state} + with a `padding` (default = 1) on either side of this range. + + Alternatively, a defects dict generated by `ChargedDefectStructures` + from `doped`/`PyCDT` can also be used as input, and the defect names + and charge states generated by these codes will be used + E.g.: {"bulk": {..}, "vacancies": [{...}, {...},], ...} oxidation_states (:obj:`dict`): Dictionary of oxidation states for species in your material, used to determine the number of defect neighbours to distort (e.g {"Cd": +2, "Te": -2}). If none is provided, the oxidation states will be guessed based on the bulk composition and most common oxidation states of any extrinsic species. + padding (:obj:`int`): + If `Defect.user_charges` is not set, charge states are set to + the range: 0 – {Defect oxidation state}, with a `padding` + (default = 1) on either side of this range. dict_number_electrons_user (:obj:`dict`): Optional argument to set the number of extra/missing charge (negative of electron count change) for the input defects @@ -1116,7 +1506,7 @@ def __init__( (e.g {'vac_1_Cd': ['Te']}). If None, the closest neighbours to the defect are chosen. (Default: None) - **kwargs: + **mc_rattle_kwargs: Additional keyword arguments to pass to `hiphive`'s `mc_rattle` function. These include: - stdev (:obj:`float`): @@ -1150,42 +1540,119 @@ def __init__( self.distorted_elements = distorted_elements self.dict_number_electrons_user = dict_number_electrons_user self.local_rattle = local_rattle - - # To allow user to specify defect names (with CLI), defect_dict can be either - # a dict of lists or a dict of dicts (e.g. {"vacancies": {"name_1": Vacancy()}}) + self.padding = int(padding) + + # To allow user to specify defect names (with CLI), `defects` can be either + # a dict or list of Defects, or a single Defect + if isinstance(defects, Defect): + defects = [ + defects, + ] # To account for this, here we refactor the list into a dict - if isinstance(list(defects_dict.values())[0], list): - comb_defs = functools.reduce( - lambda x, y: x + y, - [defects_dict[key] for key in defects_dict if key != "bulk"], - ) - counter = Counter([defect.name for defect in comb_defs]) - self.defects_dict = {defect_type: {} for defect_type in defects_dict} - if any([value > 1 for value in counter.values()]): - print( - "There are symmetry inequivalent defects." - " To avoid using the same name for them, the names will be refactored" - " as {defect_name}_{defect_site_index} (e.g. v_Cd_0)." + if isinstance(defects, list): + self.defects_dict = {} + if not all([isinstance(defect, Defect) for defect in defects]): + raise TypeError( + "Some entries in `defects` list are not Defect objects (required " + "format, see docstring). Distortions can also be initialised from " + "pymatgen Structures using `Distortions.from_structures()`" ) - for defect_type in defects_dict: - self.defects_dict[defect_type] = { - f"{defect.name}_{defect.defect_site_index}": defect - for defect in defects_dict[defect_type] - } + + for defect in defects: + defect_name = _get_defect_name_from_obj(defect) + defect_name = _update_defect_dict( + defect, defect_name, self.defects_dict + ) + + elif isinstance(defects, dict): + # check if it's a doped/PyCDT defect_dict: + if any( + [ + key in defects + for key in [ + "vacancies", + "antisites", + "substitutions", + "interstitials", + ] + ] + ): # doped/PyCDT defect dict + # Check bulk entry in doped/PyCDT defect_dict + if "bulk" not in defects: # No bulk entry - ask user to provide it + raise ValueError( + "Input `defects` dict matches `doped`/`PyCDT` format, but no 'bulk' " + "entry present. Please try again providing a `bulk` entry in `defects`." + ) + + if ( + self.padding != 1 + ): # padding explicitly set but is ignored for doped/PyCDT dicts + warnings.warn( + f"`padding` was set to {self.padding} but this is ignored when " + f"generating distortions from a `doped`/`PyCDT` format dict (" + f"charge states specifiied in the input dict are used instead)" + ) + + # Transform doped/PyCDT defect_dict to dictionary of {name: Defect()} + self.defects_dict = {} + for key, defect_dict_list in defects.items(): + if ( + key != "bulk" + ): # loop for vacancies, antisites and interstitials + for defect_dict in defect_dict_list: # loop for each defect + # transform defect_dict to Defect object + self.defects_dict[ + defect_dict["name"] + ] = cli.generate_defect_object( + single_defect_dict=defect_dict, + bulk_dict=defects["bulk"], + ) + else: - for defect_type in defects_dict: - self.defects_dict[defect_type] = { - defect.name: defect for defect in defects_dict[defect_type] - } + if not all([isinstance(defect, Defect) for defect in defects.values()]): + raise TypeError( + "Some entries in `defects` dict are not Defect objects (required format, " + "see docstring). Distortions can also be initialised from pymatgen " + "Structures using `Distortions.from_structures()`" + ) + + self.defects_dict = defects # {"defect name": Defect} + else: - self.defects_dict = defects_dict + raise TypeError( + f"`defect` must be a list or dict of defects, but got type " + f"{type(defects)} instead. From `Distortions()` docstring:\n" + "`defects`: List or dictionary of " + "pymatgen.analysis.defects.core.Defect() objects.\n" + "E.g.: [Vacancy(), Interstitial(), Substitution(), ...]\n" + "In this case, generated defect folders will be named in the format:" + "'{Defect.name}_s{Defect.defect_site_index}_m{Defect.multiplicity}'\n\n" + "Alternatively, if specific defect folder names are desired, " + "`defects` can be input as a dictionary in the format " + "{'defect name': Defect()}\n" + "E.g.: {'vac_name': Vacancy(), 'vac_2_name': Vacancy(), ..., " + "'int_name': Interstitial(), 'sub_name': Substitution(), ...}.\n\n" + "Alternatively, a defects dict generated by `ChargedDefectStructures` " + "from `doped`/`PyCDT` can also be used as input, and the defect names " + "generated by these codes will be used.\n" + "E.g.: {'bulk': {..}, 'vacancies': [{...}, {...},], ...}\n\n" + "Distortions can also be initialised from pymatgen Structures using " + "`Distortions.from_structures()`" + ) - defect_object = list(list(self.defects_dict.values())[0].values())[0] + # if user_charges not set for all defects, print info about how charge states will be + # determined + if all(not defect.user_charges for defect in self.defects_dict.values()): + print( + "Defect charge states will be set to the range: 0 – {Defect oxidation state}, " + f"with a `padding = {padding}` on either side of this range." + ) + + defect_object = list(self.defects_dict.values())[0] bulk_comp = defect_object.structure.composition - if "stdev" in kwargs: - self.stdev = kwargs.pop("stdev") + if "stdev" in mc_rattle_kwargs: + self.stdev = mc_rattle_kwargs.pop("stdev") else: - bulk_supercell = defect_object.structure sorted_distances = np.sort(bulk_supercell.distance_matrix.flatten()) self.stdev = 0.1 * sorted_distances[len(bulk_supercell)] @@ -1198,32 +1665,20 @@ def __init__( ) self.stdev = 0.25 - # Check if all expected oxidation states are provided - if len(list(list(self.defects_dict.values())[0].values())) == 0: + if len(list(self.defects_dict.values())) == 0: raise IndexError( - "Problem parsing input defects. Please check `defects_dict`." + "Problem parsing input defects; no input defects found. Please check `defects`." ) + + # Check if all expected oxidation states are provided guessed_oxidation_states = bulk_comp.oxi_state_guesses()[0] - if "substitutions" in self.defects_dict: - for substitution in self.defects_dict["substitutions"].values(): - defect_type = type(substitution).__name__.lower() - if ( - defect_type == "substitution" - and substitution.site.specie.symbol not in guessed_oxidation_states - ): - # extrinsic substituting species not in bulk composition - extrinsic_specie = substitution.site.specie.symbol - likely_substitution_oxi = _most_common_oxi(extrinsic_specie) - guessed_oxidation_states[extrinsic_specie] = likely_substitution_oxi - - if "interstitials" in self.defects_dict: - for interstitial in self.defects_dict["interstitials"].values(): - if interstitial.site.specie.symbol not in guessed_oxidation_states: - # extrinsic species not in bulk composition - extrinsic_specie = interstitial.site.specie.symbol - likely_substitution_oxi = _most_common_oxi(extrinsic_specie) - guessed_oxidation_states[extrinsic_specie] = likely_substitution_oxi + for defect in self.defects_dict.values(): + if defect.site.specie.symbol not in guessed_oxidation_states: + # extrinsic substituting/interstitial species not in bulk composition + extrinsic_specie = defect.site.specie.symbol + likely_substitution_oxi = _most_common_oxi(extrinsic_specie) + guessed_oxidation_states[extrinsic_specie] = likely_substitution_oxi if self.oxidation_states is None: print( @@ -1269,16 +1724,18 @@ def __init__( np.around(np.arange(0, 0.601, self.distortion_increment), decimals=3) ) - self._mc_rattle_kwargs = kwargs + self._mc_rattle_kwargs = mc_rattle_kwargs # Create dictionary to keep track of the bond distortions applied + rattle_parameters = self._mc_rattle_kwargs.copy() + rattle_parameters["stdev"] = self.stdev self.distortion_metadata = { "distortion_parameters": { - "distortion_increment": self.distortion_increment, # None if - # user specified bond_distortions + "distortion_increment": self.distortion_increment, # None if user specified + # bond_distortions "bond_distortions": self.bond_distortions, - "rattle_stdev": self.stdev, "local_rattle": self.local_rattle, + "mc_rattle_parameters": rattle_parameters, }, "defects": {}, } # dict with distortion parameters, useful for posterior analysis @@ -1321,10 +1778,9 @@ def _parse_distorted_element( Element(distorted_elements[defect_name]) except ValueError: warnings.warn( - "Problem reading the keys in distorted_elements.", - "Are they correct element symbols?", - "Proceeding without discriminating which neighbour " - + "elements to distort.", + "Problem reading the keys in distorted_elements. Are they correct element " + "symbols? Proceeding without discriminating which neighbour elements to " + "distort.", ) distorted_element = None else: @@ -1367,7 +1823,9 @@ def _parse_number_electrons( if dict_number_electrons_user: number_electrons = dict_number_electrons_user[defect_name] else: - number_electrons = _calc_number_electrons(defect, oxidation_states) + number_electrons = _calc_number_electrons( + defect, defect_name, oxidation_states + ) _bold_print(f"\nDefect: {defect_name}") if number_electrons < 0: @@ -1433,17 +1891,20 @@ def _update_distortion_metadata( distortion_metadata["defects"][defect_name][ "defect_site_index" ] = defect_site_index # store site index of defect if not vacancy + rattle_parameters = self._mc_rattle_kwargs.copy() + rattle_parameters["stdev"] = self.stdev distortion_metadata["defects"][defect_name]["charges"].update( { int(charge): { "num_nearest_neighbours": num_nearest_neighbours, "distorted_atoms": distorted_atoms, - "distortion_parameters": { + "distortion_parameters": { # store distortion parameters used for each charge + # state, in case posterior runs use different settings for certain defects + "distortion_increment": self.distortion_increment, # None if user specified + # bond_distortions "bond_distortions": self.bond_distortions, - # store distortions used for each charge state, - "rattle_stdev": self.stdev, - # in case posterior runs use finer mesh for only - # certain defects + "local_rattle": self.local_rattle, + "mc_rattle_parameters": rattle_parameters, }, } } @@ -1475,6 +1936,7 @@ def _generate_structure_comment( def _setup_distorted_defect_dict( self, defect: Defect, + defect_name: str, ) -> dict: """ Setup `distorted_defect_dict` with info for `defect`. @@ -1482,6 +1944,8 @@ def _setup_distorted_defect_dict( Args: defect (:obj:`pymatgen.analysis.defects.core.Defect()`): Defect object to generate `distorted_defect_dict` from. + defect_name (:obj:`str`): + Name of the defect. Returns: :obj:`dict` @@ -1491,31 +1955,24 @@ def _setup_distorted_defect_dict( if defect.user_charges: user_charges = defect.user_charges else: - padding = 1 - user_charges = defect.get_charge_states(padding=padding) - warnings.warn( - f"As charge states have not been specified for defect {defect.name}," - f" a padding of {padding} will be used on either sides of 0 and the" - " oxidation state value." - ) + user_charges = defect.get_charge_states(padding=self.padding) try: distorted_defect_dict = { "defect_type": str(defect.as_dict()["@class"].lower()), "defect_site": defect.site, # _get_bulk_defect_site(defect), - "defect_supercell_site": _get_bulk_defect_site(defect), + "defect_supercell_site": _get_bulk_defect_site(defect, defect_name), "defect_multiplicity": defect.get_multiplicity(), - # "supercell": defect["supercell"]["size"], - "charges": {charge: {} for charge in user_charges}, + "charges": {int(charge): {} for charge in user_charges}, } # General info about (neutral) defect - except NotImplementedError: + except NotImplementedError: # interstitial distorted_defect_dict = { "defect_type": str(defect.as_dict()["@class"].lower()), "defect_site": defect.site, # _get_bulk_defect_site(defect), - "defect_supercell_site": _get_bulk_defect_site(defect), - # "defect_multiplicity": defect.get_multiplicity(), - # Problem determining multiplicity # TODO: Fix this! - # "supercell": defect["supercell"]["size"], - "charges": {charge: {} for charge in user_charges}, + "defect_supercell_site": _get_bulk_defect_site(defect, defect_name), + "defect_multiplicity": _get_voronoi_multiplicity( + defect.site, defect.structure + ), + "charges": {int(charge): {} for charge in user_charges}, } # General info about (neutral) defect if ( str(defect.as_dict()["@class"].lower()) == "substitution" @@ -1554,12 +2011,10 @@ def apply_distortions( verbose: bool = False, ) -> Tuple[dict, dict]: """ - Applies rattle and bond distortion to all defects in `defect_dict` - (in `doped ChargedDefectsStructures()` format). + Applies rattle and bond distortion to all defects in `defects`. Returns a dictionary with the distorted (and undistorted) structures for each charge state of each defect. - If file generation is desired, instead use the methods - `write__files()`. + If file generation is desired, instead use the methods `write__files()`. Args: verbose (:obj:`bool`): @@ -1587,12 +2042,10 @@ def apply_distortions( distorted_defects_dict = {} # Store distorted & undistorted structures - # Remove vacancies/substitutions/interstitials classification - comb_defs = {} - for defect_dict in self.defects_dict.values(): - comb_defs.update(defect_dict) - - for defect_name, defect_object in comb_defs.items(): # loop for each defect + for ( + defect_name, + defect_object, + ) in self.defects_dict.items(): # loop for each defect bulk_supercell_site = defect_object.site # Parse distortion specifications given by user for neutral @@ -1614,7 +2067,7 @@ def apply_distortions( } distorted_defects_dict[defect_name] = self._setup_distorted_defect_dict( - defect_object + defect_object, defect_name ) for charge in distorted_defects_dict[defect_name][ @@ -1628,6 +2081,7 @@ def apply_distortions( # Generate distorted structures defect_distorted_structures = apply_snb_distortions( defect_object=defect_object, + defect_name=defect_name, num_nearest_neighbours=num_nearest_neighbours, bond_distortions=self.bond_distortions, local_rattle=self.local_rattle, @@ -1735,8 +2189,7 @@ def write_vasp_files( warnings.filterwarnings( "ignore", category=BadInputSetWarning - ) # Ignore POTCAR warnings because Pymatgen incorrectly detecting - # POTCAR types + ) # Ignore POTCAR warnings because Pymatgen incorrectly detecting POTCAR types # loop for each defect in dict for defect_name, defect_dict in distorted_defects_dict.items(): @@ -1995,8 +2448,8 @@ def write_cp2k_files( ): _create_folder(f"{output_path}/{defect_name}_{charge}/{dist}") struct.to( - "cif", - f"{output_path}/{defect_name}_{charge}/" + fmt="cif", + filename=f"{output_path}/{defect_name}_{charge}/" + f"{dist}/structure.cif", ) if not write_structures_only and cp2k_input: @@ -2226,36 +2679,46 @@ def write_fhi_aims_files( return distorted_defects_dict, self.distortion_metadata @classmethod - def from_dict( + def from_structures( cls, - doped_defects_dict: dict, + defects: list, + bulk: Structure, oxidation_states: Optional[dict] = None, + padding: int = 1, dict_number_electrons_user: Optional[dict] = None, distortion_increment: float = 0.1, bond_distortions: Optional[list] = None, local_rattle: bool = False, - stdev: float = 0.25, distorted_elements: Optional[dict] = None, - **kwargs, # for mc rattle + **mc_rattle_kwargs, ) -> None: """ - Initialise Distortion() class using a dictionary of DOPED/PyCDT defect dicts - (instead of pymatgen-analysis-defects Defect() objects). + Initialise Distortions() class from defect and bulk structures. Args: - doped_defects_dict (:obj:`dict`): - Dictionary of DOPED/pyCDT defect dictionaries - (eg.: - { - "vacancies": [{...}, {...},], - "bulk": {..}, - }) + defects (:obj:`list_or_Structure`): + List of defect structures, or a single defect structure for + which to generate distorted structures. If auto site-matching + fails, the fractional coordinates or index of the defect site + (in defect_structure for interstitials/substitutions, in + bulk_structure for vacancies) can be provided in the format: + [(defect Structure, frac_coords/index), ...] to aid site-matching. + + Defect charge states (from which bond distortions are determined) are + set to the range: 0 – {Defect oxidation state}, with a `padding` + (default = 1) on either side of this range. + bulk (:obj:`pymatgen.core.structure.Structure`): + Bulk supercell structure, matching defect supercells. oxidation_states (:obj:`dict`): Dictionary of oxidation states for species in your material, used to determine the number of defect neighbours to distort (e.g {"Cd": +2, "Te": -2}). If none is provided, the oxidation states will be guessed based on the bulk composition and most common oxidation states of any extrinsic species. + padding (:obj:`int`): + Defect charge states are set to the range: + 0 – {Defect oxidation state}, with a `padding` (default = 1) + on either side of this range. dict_number_electrons_user (:obj:`dict`): Optional argument to set the number of extra/missing charge (negative of electron count change) for the input defects @@ -2278,12 +2741,6 @@ def from_dict( performance. If False (default), all supercell sites are rattled with the same amplitude (full rattle). (Default: False) - stdev (:obj:`float`): - Standard deviation (in Angstroms) of the Gaussian distribution - from which random atomic displacement distances are drawn during - rattling. Recommended values: 0.25, or 0.15 for strongly-bound - /ionic materials. - (Default: 0.25) distorted_elements (:obj:`dict`): Optional argument to specify the neighbouring elements to distort for each defect, in the form of a dictionary with @@ -2291,14 +2748,19 @@ def from_dict( (e.g {'vac_1_Cd': ['Te']}). If None, the closest neighbours to the defect are chosen. (Default: None) - **kwargs: + **mc_rattle_kwargs: Additional keyword arguments to pass to `hiphive`'s `mc_rattle` function. These include: + - stdev (:obj:`float`): + Standard deviation (in Angstroms) of the Gaussian distribution + from which random atomic displacement distances are drawn during + rattling. Default is set to 10% of the nearest neighbour distance + in the bulk supercell. - d_min (:obj:`float`): - Minimum interatomic distance (in Angstroms). Monte Carlo rattle - moves that put atoms at distances less than this will be heavily - penalised. - (Default: 2.25) + Minimum interatomic distance (in Angstroms) in the rattled + structure. Monte Carlo rattle moves that put atoms at distances + less than this will be heavily penalised. Default is to set this + to 80% of the nearest neighbour distance in the bulk supercell. - max_disp (:obj:`float`): Maximum atomic displacement (in Angstroms) during Monte Carlo rattling. Rarely occurs and is used primarily as a safety net. @@ -2310,258 +2772,109 @@ def from_dict( Carlo rattling. By default, all atoms are rattled. (Default: None) - seed (:obj:`int`): - Seed for setting up NumPy random state from which random - numbers are generated. + Seed from which rattle random displacements are generated. Default + is to set seed = int(distortion_factor*100) (i.e. +40% distortion -> + distortion_factor = 1.4 -> seed = 140, Rattled -> + distortion_factor = 1 (no bond distortion) -> seed = 100) """ - # Check bulk entry in DOPED/PyCDT defect_dict - if "bulk" not in doped_defects_dict: - # No bulk entry - ask user to provide it - warnings.warn( - """No bulk entry in `doped_defects_dict`. Please try again - providing a `bulk` entry in `doped_defects_dict`.""" + # Transform structure to defect object + pymatgen_defects_dict = {} + if isinstance(defects, Structure): # single defect, convert to list + defects = [defects] + + if not isinstance(defects, list): + raise TypeError( + f"Wrong format for `defects`. Should be a list of pymatgen Structure objects, but " + f"got {type(defects)} instead." ) - return None - # Transform DOPED/PyCDT defect_dict to dictionary of Defect() objects - pymatgen_defects_dict = { - key: [] for key in doped_defects_dict.keys() if key != "bulk" - } - for ( - key - ) in pymatgen_defects_dict: # loop for vacancies, antisites and interstitials - for defect_dict in doped_defects_dict[key]: # loop for each defect - # transform defect_dict to Defect object - pymatgen_defects_dict[key].append( - cli.generate_defect_object( - single_defect_dict=defect_dict, - bulk_dict=doped_defects_dict["bulk"], - ) - ) - - return cls( - defects_dict=pymatgen_defects_dict, - oxidation_states=oxidation_states, - dict_number_electrons_user=dict_number_electrons_user, - distortion_increment=distortion_increment, - bond_distortions=bond_distortions, - local_rattle=local_rattle, - stdev=stdev, - distorted_elements=distorted_elements, - **kwargs, - ) - @classmethod - def from_structures( - cls, - structures_dict: dict, - oxidation_states: Optional[dict] = None, - dict_number_electrons_user: Optional[dict] = None, - distortion_increment: float = 0.1, - bond_distortions: Optional[list] = None, - local_rattle: bool = False, - stdev: float = 0.25, - distorted_elements: Optional[dict] = None, - **kwargs, # for mc rattle - ) -> None: - """ - Initialise Distortion() class using a dictionary of bulk and defect - structures (instead of pymatgen-analysis-defects Defect() objects). - - Args: - structures_dict (:obj:`dict`): - Dictionary of defect and bulk structures - (eg.: - { - "vacancies": [Structure, Structure, ...], - "substitutions": [Structure, ...], - "interstitials": [Structure, ...], - "bulk": Structure, - }) - Alternatively, the defect index or the defect fractional - coordinates can provided for each defect like this: - { - "vacancies": [ - {"structure": Structure, "defect_coords": [0.5, 0.5, 0.5]}, - ... - ], - "interstitials": [ - {"structure": Structure, "defect_index": -1}, - ... - ], - "bulk": Structure, - } - oxidation_states (:obj:`dict`): - Dictionary of oxidation states for species in your material, - used to determine the number of defect neighbours to distort - (e.g {"Cd": +2, "Te": -2}). If none is provided, the oxidation - states will be guessed based on the bulk composition and most - common oxidation states of any extrinsic species. - dict_number_electrons_user (:obj:`dict`): - Optional argument to set the number of extra/missing charge - (negative of electron count change) for the input defects - in their neutral state, as a dictionary with format - {'defect_name': charge_change} where charge_change is the - negative of the number of extra/missing electrons. - (Default: None) - distortion_increment (:obj:`float`): - Bond distortion increment. Distortion factors will range from - 0 to +/-0.6, in increments of `distortion_increment`. - Recommended values: 0.1-0.3 - (Default: 0.1) - bond_distortions (:obj:`list`): - List of bond distortions to apply to nearest neighbours, - instead of the default set (e.g. [-0.5, 0.5]). - (Default: None) - local_rattle (:obj:`bool`): - Whether to apply random displacements that tail off as we move - away from the defect site. Not recommended as typically worsens - performance. If False (default), all supercell sites are rattled - with the same amplitude (full rattle). - (Default: False) - stdev (:obj:`float`): - Standard deviation (in Angstroms) of the Gaussian distribution - from which random atomic displacement distances are drawn during - rattling. Recommended values: 0.25, or 0.15 for strongly-bound - /ionic materials. - (Default: 0.25) - distorted_elements (:obj:`dict`): - Optional argument to specify the neighbouring elements to - distort for each defect, in the form of a dictionary with - format {'defect_name': ['element1', 'element2', ...]} - (e.g {'vac_1_Cd': ['Te']}). If None, the closest neighbours to - the defect are chosen. - (Default: None) - **kwargs: - Additional keyword arguments to pass to `hiphive`'s - `mc_rattle` function. These include: - - d_min (:obj:`float`): - Minimum interatomic distance (in Angstroms). Monte Carlo rattle - moves that put atoms at distances less than this will be heavily - penalised. - (Default: 2.25) - - max_disp (:obj:`float`): - Maximum atomic displacement (in Angstroms) during Monte Carlo - rattling. Rarely occurs and is used primarily as a safety net. - (Default: 2.0) - - max_attempts (:obj:`int`): - Limit for how many attempted rattle moves are allowed a single atom. - - active_atoms (:obj:`list`): - List of the atomic indices which should undergo Monte - Carlo rattling. By default, all atoms are rattled. - (Default: None) - - seed (:obj:`int`): - Seed for setting up NumPy random state from which random - numbers are generated. + for defect_structure in defects: + if isinstance(defect_structure, Structure): + defect = identify_defect( + defect_structure=defect_structure, + bulk_structure=bulk, + ) + if defect: + defect_name = _get_defect_name_from_obj(defect) + defect_name = _update_defect_dict( + defect, defect_name, pymatgen_defects_dict + ) - """ - # Check bulk entry in DOPED/PyCDT defect_dict - if "bulk" not in structures_dict: - # No bulk entry - ask user to provide it - warnings.warn( - """No bulk entry in `structures_dict`. Please try again - providing a `bulk` entry in `structures_dict`.""" - ) - return None - # Transform structure to defect object - pymatgen_defects_dict = { - defect_type: [] - for defect_type in structures_dict.keys() - if defect_type != "bulk" - } - for defect_type in pymatgen_defects_dict: - for element in structures_dict[defect_type]: - if isinstance(element, Structure): # user only gives defect structure - defect = _identify_defect( - defect_structure=element, - bulk_structure=structures_dict["bulk"], + # Check if user gives dict with structure and defect_coords/defect_index + elif isinstance(defect_structure, tuple) or isinstance( + defect_structure, list + ): + if len(defect_structure) != 2: + raise ValueError( + "If an entry in `defects` is a tuple/list, it must be in the " + "format: (defect Structure, frac_coords/index)" + ) + elif isinstance(defect_structure[1], int) or isinstance( + defect_structure[1], float + ): # defect index + defect = identify_defect( + defect_structure=defect_structure[0], + bulk_structure=bulk, + defect_index=int(defect_structure[1]), + ) + elif ( + isinstance(defect_structure[1], list) + or isinstance(defect_structure[1], tuple) + or isinstance(defect_structure[1], np.ndarray) + ): + defect = identify_defect( + defect_structure=defect_structure[0], + bulk_structure=bulk, + defect_coords=defect_structure[1], + ) + else: + warnings.warn( + f"Unrecognised format for defect frac_coords/index: {defect_structure[1]} " + f"in `defects`. If specifying frac_coords, it should be a list or numpy " + f"array, or if specifying defect index, should be an integer. Got type" + f" {type(defect_structure[1])} instead. " + f"Will proceed with auto-site matching." + ) + defect = identify_defect( + defect_structure=defect_structure[0], bulk_structure=bulk ) - if defect: - pymatgen_defects_dict[defect_type].append(defect) - # Check if user gives dict with structure and defect_coords/defect_index - elif isinstance(element, dict): - # if "defect_index" in element or "defect_coords" in element - # and of correct type: - if ( - isinstance(element.get("defect_index"), int) - or isinstance(element.get("defect_coords"), list) - or isinstance(element.get("defect_coords"), np.ndarray) - ): - defect = _identify_defect( - defect_structure=element["structure"], - bulk_structure=structures_dict["bulk"], - defect_coords=element.get("defect_coords"), - defect_index=element.get("defect_index"), - ) - if defect: - pymatgen_defects_dict[defect_type].append(defect) - else: - warnings.warn( - "Failed to identify defect in structure" - f" with defect_index {element.get('defect_index')}" - f" and/or defect_coords {element.get('defect_coords')}" - ) - else: # wrong type for defect_coords or defect_index - def _warn_wrong_type(variable: str, correct_type: str): - warnings.warn( - f"Wrong type for `{variable}`! It should be of type " - f"{correct_type} but {type(element[variable]).__name__} was provided. " - "Will proceed with auto-site matching." - ) + if defect: + defect_name = _get_defect_name_from_obj(defect) + defect_name = _update_defect_dict( + defect, defect_name, pymatgen_defects_dict + ) - if "defect_index" in element and "defect_coords" not in element: - _warn_wrong_type("defect_index", "int") - elif ( - "defect_index" not in element and "defect_coords" in element - ): - _warn_wrong_type("defect_coords", "list/np.ndarray") - elif "defect_index" in element and "defect_coords" in element: - if not isinstance(element.get("defect_index"), int): - _warn_wrong_type("defect_index", "int") - elif not ( - isinstance(element.get("defect_coords"), list) - or isinstance(element.get("defect_coords"), np.ndarray) - ): - _warn_wrong_type("defect_coords", "list/np.ndarray") - else: # if not defect_index / defect_coords - warnings.warn( - """No `defect_index` or `defect_coords` provided, - so will continue with auto-site matching.""" - ) - # Proceed with auto-site matching - defect = _identify_defect( - defect_structure=element["structure"], - bulk_structure=structures_dict["bulk"], - ) - if defect: - pymatgen_defects_dict[defect_type].append(defect) else: - raise TypeError( - "Wrong format for `structures_dict`. " - "It should be a dictionary of " - "Structures or a dictionary of lists!" + warnings.warn( + "Failed to identify defect from input structures. Please check bulk and " + "defect structures correspond to the same supercell and/or specify defect " + "site(s) by inputting `defects = [(defect Structure, frac_coords/index), " + "...]` instead." ) + else: + raise TypeError( + "Wrong format for `defects`. Should be a list of pymatgen Structure objects, " + f"but got a list of {[type(entry) for entry in defects]} instead." + ) + # Check pymatgen_defects_dict not empty - if not any( - len(defect_list) > 0 for defect_list in pymatgen_defects_dict.values() - ): + if len(pymatgen_defects_dict) == 0: raise ValueError( - "Failed parsing defects from `structures_dict`. " - "Please check the format of the input dictionary " - "and provide 'defect_index' or 'defect_coords'." + "Failed parsing defects from structures. Please check bulk and defect structures " + "correspond to the same supercell and/or specify defect site(s) by inputting " + "`defects = [(defect Structure, frac_coords/index), ...]` instead." ) return cls( - defects_dict=pymatgen_defects_dict, + defects=pymatgen_defects_dict, oxidation_states=oxidation_states, + padding=padding, dict_number_electrons_user=dict_number_electrons_user, distortion_increment=distortion_increment, bond_distortions=bond_distortions, local_rattle=local_rattle, - stdev=stdev, distorted_elements=distorted_elements, - **kwargs, + **mc_rattle_kwargs, ) - - -# TODO: Add test for from_structures() method diff --git a/shakenbreak/plotting.py b/shakenbreak/plotting.py index ea46c7ed..2978e949 100644 --- a/shakenbreak/plotting.py +++ b/shakenbreak/plotting.py @@ -247,44 +247,51 @@ def _check_matching_defect_format( def _check_matching_defect_format_with_site_num( element, name, pre_def_type_list, post_def_type_list ): - match = re.match(r"([a-z_]+)([0-9]+)", name, re.I) - if match: - items = match.groups() - for match_generator in [ - ( - fstring in name - for pre_def_type in pre_def_type_list - for fstring in [ - f"{pre_def_type}{items[1]}{element}", - f"{pre_def_type}{element}{items[1]}", - f"{pre_def_type}{items[1]}_{element}", - f"{pre_def_type}{element}_{items[1]}", - ] - ), - ]: - if any(match_generator): - return True, items[1] - - for match_generator in [ - ( - fstring in name - for post_def_type in post_def_type_list - for fstring in [ - f"{element}{items[1]}{post_def_type}", - f"{items[1]}{element}{post_def_type}", - f"{element}{items[1]}_{post_def_type}", - f"{items[1]}_{element}{post_def_type}", - ] - ), - ]: - if any(match_generator): - return True, items[1] - - else: - return False, None + for site_preposition in ["s", "m", "mult", ""]: + for site_postposition in [r"[a-z]", ""]: + match = re.match( + r"([a-z_]+)(" + + site_preposition + + r"[0-9]+" + + site_postposition + + r")", + name, + re.I, + ) - else: - return False, None + if match: + items = match.groups() + for match_generator in [ + ( + fstring in name + for pre_def_type in pre_def_type_list + for fstring in [ + f"{pre_def_type}{items[1]}{element}", + f"{pre_def_type}{element}{items[1]}", + f"{pre_def_type}{items[1]}_{element}", + f"{pre_def_type}{element}_{items[1]}", + ] + ), + ]: + if any(match_generator): + return True, items[1].replace("mult", "m") + + for match_generator in [ + ( + fstring in name + for post_def_type in post_def_type_list + for fstring in [ + f"{element}{items[1]}{post_def_type}", + f"{items[1]}{element}{post_def_type}", + f"{element}{items[1]}_{post_def_type}", + f"{items[1]}_{element}{post_def_type}", + ] + ), + ]: + if any(match_generator): + return True, items[1].replace("mult", "m") + + return False, None def _try_vacancy_interstitial_match( element, @@ -313,7 +320,7 @@ def _try_vacancy_interstitial_match( post_vacancy_strings, ) if match_found: - defect_name = f"$V_{{{element}_{site_num}}}^{{{charge}}}$" + defect_name = f"$V_{{{element}_{{{site_num}}}}}^{{{charge}}}$" else: match_found, site_num = _check_matching_defect_format_with_site_num( @@ -323,7 +330,7 @@ def _try_vacancy_interstitial_match( post_interstitial_strings, ) if match_found: - defect_name = f"{element}$_{{i_{site_num}}}^{{{charge}}}$" + defect_name = f"{element}$_{{i_{{{site_num}}}}}^{{{charge}}}$" if ( _check_matching_defect_format( @@ -360,24 +367,36 @@ def _try_substitution_match( if ( defect_name and include_site_num_in_name ): # if we have a match, check if we can add the site number - match = re.match(r"([a-z_]+)([0-9]+)", name, re.I) - if match: - items = match.groups() - if any( - fstring in name - for fstring in [ - f"{items[1]}_{substituting_element}_{orig_site_element}", - f"{substituting_element}_{orig_site_element}_{items[1]}", - f"{items[1]}_{substituting_element}_on_{orig_site_element}", - f"{substituting_element}_on_{orig_site_element}_{items[1]}", - ] - ): - defect_name = ( - f"{substituting_element}$_{{{orig_site_element}_{items[1]}}}^" - f"{{{charge}}}$" + for site_preposition in ["s", "m", "mult", ""]: + for site_postposition in [r"[a-z]", ""]: + match = re.match( + r"([a-z_]+)(" + + site_preposition + + r"[0-9]+" + + site_postposition + + r")", + name, + re.I, ) - return defect_name + if match: + items = match.groups() + if any( + fstring in name + for fstring in [ + f"{items[1]}_{substituting_element}_{orig_site_element}", + f"{substituting_element}_{orig_site_element}_{items[1]}", + f"{items[1]}_{substituting_element}_on_{orig_site_element}", + f"{substituting_element}_on_{orig_site_element}_{items[1]}", + ] + ): + defect_name = ( + f"{substituting_element}$_{{{orig_site_element}_{{{items[1]}}}}}^" + f"{{{charge}}}$" + ) + return defect_name.replace("mult", "m") + + return defect_name.replace("mult", "m") def _defect_name_from_matching_elements( element_matches, name, include_site_num_in_name @@ -1131,7 +1150,7 @@ def plot_all_defects( line_color: Optional[str] = None, add_title: Optional[bool] = True, save_plot: bool = True, - save_format: str = "svg", + save_format: str = "png", verbose: bool = True, ) -> dict: """ @@ -1179,7 +1198,7 @@ def plot_all_defects( (Default: True) save_format (:obj:`str`): Format to save the plot as. - (Default: 'svg') + (Default: 'png') verbose (:obj:`bool`): Whether to print information about the plots (warnings and where they're saved). @@ -1311,7 +1330,7 @@ def plot_defect( line_color: Optional[str] = None, units: Optional[str] = "eV", save_plot: Optional[bool] = True, - save_format: Optional[str] = "svg", + save_format: Optional[str] = "png", verbose: bool = True, ) -> Optional[Figure]: """ @@ -1373,7 +1392,7 @@ def plot_defect( (Default: True) save_format (:obj:`str`): Format to save the plot as. - (Default: "svg") + (Default: "png") verbose (:obj:`bool`): Whether to print information about the plot (warnings and where it's saved). @@ -1533,7 +1552,7 @@ def plot_colorbar( output_path: Optional[str] = ".", y_label: Optional[str] = "Energy (eV)", line_color: Optional[str] = None, - save_format: Optional[str] = "svg", + save_format: Optional[str] = "png", verbose: Optional[bool] = True, ) -> Optional[Figure]: """ @@ -1592,7 +1611,7 @@ def plot_colorbar( (Default: 'Energy (eV)') save_format (:obj:`str`): Format to save the plot as. - (Default: 'svg') + (Default: 'png') verbose (:obj:`bool`): Whether to print information about the plot (warnings and where it's saved). @@ -1659,6 +1678,7 @@ def plot_colorbar( ) # Plotting + line = None # to later check if line was plotted, for legend formatting with plt.style.context(f"{MODULE_DIR}/shakenbreak.mplstyle"): if ( "Rattled" in energies_dict["distortions"].keys() @@ -1705,7 +1725,7 @@ def plot_colorbar( ) if len(non_imported_sorted_indices) > 1: # more than one point # Plot line connecting points - ax.plot( + (line,) = ax.plot( [sorted_distortions[i] for i in non_imported_sorted_indices], [sorted_energies[i] for i in non_imported_sorted_indices], ls="-", @@ -1785,7 +1805,23 @@ def plot_colorbar( ], ) - plt.legend(frameon=True).set_zorder( + # reformat 'line' legend handle to include 'im' datapoint handle + handles, labels = ax.get_legend_handles_labels() + # get handle and label that corresponds to line, if line present: + if line: + line_handle, line_label = [ + (handle, label) + for handle, label in zip(handles, labels) + if label == legend_label + ][0] + # remove line handle and label from handles and labels + handles = [handle for handle in handles if handle != line_handle] + labels = [label for label in labels if label != line_label] + # add line handle and label to handles and labels, with datapoint handle + handles = [(im, line_handle)] + handles + labels = [line_label] + labels + + plt.legend(handles, labels, scatteryoffsets=[0.5], frameon=True).set_zorder( 100 ) # make sure it's on top of the other points @@ -1822,7 +1858,7 @@ def plot_datasets( linewidth: Optional[float] = None, save_plot: Optional[bool] = False, output_path: Optional[str] = ".", - save_format: Optional[str] = "svg", + save_format: Optional[str] = "png", verbose: Optional[bool] = True, ) -> Figure: """ @@ -1882,7 +1918,7 @@ def plot_datasets( (Default: ".") save_format (:obj:`str`): Format to save the plot as. - (Default: 'svg') + (Default: 'png') verbose (:obj:`bool`): Whether to print information about the plot (warnings and where it's saved). diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_-10.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-10.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_-10.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-10.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_-20.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-20.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_-20.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-20.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_-30.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-30.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_-30.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-30.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_-40.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-40.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_-40.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-40.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_-50.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-50.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_-50.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-50.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_-60.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-60.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_-60.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_-60.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_0.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_0.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_0.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_0.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_10.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_10.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_10.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_10.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_20.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_20.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_20.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_20.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_30.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_30.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_30.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_30.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_40.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_40.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_40.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_40.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_50.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_50.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_50.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_50.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Bond_Distortion_60.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_60.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Bond_Distortion_60.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Bond_Distortion_60.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/Unperturbed/CONTCAR b/tests/data/example_results/v_Cd_s0_-1/Unperturbed/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-1/Unperturbed/CONTCAR rename to tests/data/example_results/v_Cd_s0_-1/Unperturbed/CONTCAR diff --git a/tests/data/example_results/v_Cd_-1/v_Cd_-1.yaml b/tests/data/example_results/v_Cd_s0_-1/v_Cd_s0_-1.yaml similarity index 100% rename from tests/data/example_results/v_Cd_-1/v_Cd_-1.yaml rename to tests/data/example_results/v_Cd_s0_-1/v_Cd_s0_-1.yaml diff --git a/tests/data/example_results/v_Cd_-1/v_Cd_-1_additional_distortions.yaml b/tests/data/example_results/v_Cd_s0_-1/v_Cd_s0_-1_additional_distortions.yaml similarity index 100% rename from tests/data/example_results/v_Cd_-1/v_Cd_-1_additional_distortions.yaml rename to tests/data/example_results/v_Cd_s0_-1/v_Cd_s0_-1_additional_distortions.yaml diff --git a/tests/data/example_results/v_Cd_-2/Rattled/CONTCAR b/tests/data/example_results/v_Cd_s0_-2/Rattled/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-2/Rattled/CONTCAR rename to tests/data/example_results/v_Cd_s0_-2/Rattled/CONTCAR diff --git a/tests/data/example_results/v_Cd_-2/Unperturbed/CONTCAR b/tests/data/example_results/v_Cd_s0_-2/Unperturbed/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_-2/Unperturbed/CONTCAR rename to tests/data/example_results/v_Cd_s0_-2/Unperturbed/CONTCAR diff --git a/tests/data/example_results/v_Cd_-2/v_Cd_-2.yaml b/tests/data/example_results/v_Cd_s0_-2/v_Cd_s0_-2.yaml similarity index 100% rename from tests/data/example_results/v_Cd_-2/v_Cd_-2.yaml rename to tests/data/example_results/v_Cd_s0_-2/v_Cd_s0_-2.yaml diff --git a/tests/data/example_results/v_Cd_-2/v_Cd_-2_additional_distortions.yaml b/tests/data/example_results/v_Cd_s0_-2/v_Cd_s0_-2_additional_distortions.yaml similarity index 100% rename from tests/data/example_results/v_Cd_-2/v_Cd_-2_additional_distortions.yaml rename to tests/data/example_results/v_Cd_s0_-2/v_Cd_s0_-2_additional_distortions.yaml diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_-10.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-10.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_-10.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-10.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_-20.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-20.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_-20.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-20.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_-30.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-30.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_-30.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-30.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_-40.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-40.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_-40.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-40.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_-50.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-50.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_-50.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-50.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_-60.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-60.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_-60.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_-60.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_0.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_0.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_0.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_0.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_10.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_10.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_10.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_10.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_20.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_20.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_20.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_20.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_30.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_30.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_30.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_30.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_40.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_40.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_40.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_40.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_50.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_50.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_50.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_50.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Bond_Distortion_60.0%/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Bond_Distortion_60.0%/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Bond_Distortion_60.0%/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Bond_Distortion_60.0%/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/Unperturbed/CONTCAR b/tests/data/example_results/v_Cd_s0_0/Unperturbed/CONTCAR similarity index 100% rename from tests/data/example_results/v_Cd_0/Unperturbed/CONTCAR rename to tests/data/example_results/v_Cd_s0_0/Unperturbed/CONTCAR diff --git a/tests/data/example_results/v_Cd_0/v_Cd_0.yaml b/tests/data/example_results/v_Cd_s0_0/v_Cd_s0_0.yaml similarity index 100% rename from tests/data/example_results/v_Cd_0/v_Cd_0.yaml rename to tests/data/example_results/v_Cd_s0_0/v_Cd_s0_0.yaml diff --git a/tests/data/example_results/v_Cd_0/v_Cd_0_additional_distortions.yaml b/tests/data/example_results/v_Cd_s0_0/v_Cd_s0_0_additional_distortions.yaml similarity index 100% rename from tests/data/example_results/v_Cd_0/v_Cd_0_additional_distortions.yaml rename to tests/data/example_results/v_Cd_s0_0/v_Cd_s0_0_additional_distortions.yaml diff --git a/tests/data/remote_baseline_plots/Cd_Te_s32c_2_displacement.png b/tests/data/remote_baseline_plots/Cd_Te_s32c_2_displacement.png new file mode 100644 index 00000000..0ee92177 Binary files /dev/null and b/tests/data/remote_baseline_plots/Cd_Te_s32c_2_displacement.png differ diff --git a/tests/data/remote_baseline_plots/Int_Se_1_6.png b/tests/data/remote_baseline_plots/Int_Se_1_6.png index 54a1b8f5..9f824bac 100644 Binary files a/tests/data/remote_baseline_plots/Int_Se_1_6.png and b/tests/data/remote_baseline_plots/Int_Se_1_6.png differ diff --git a/tests/data/remote_baseline_plots/vac_1_Cd_0_displacement.png b/tests/data/remote_baseline_plots/vac_1_Cd_0_displacement.png index 4ef0df35..b08af9a9 100644 Binary files a/tests/data/remote_baseline_plots/vac_1_Cd_0_displacement.png and b/tests/data/remote_baseline_plots/vac_1_Cd_0_displacement.png differ diff --git a/tests/data/remote_baseline_plots/vac_1_Cd_0_fake_defect_name.png b/tests/data/remote_baseline_plots/vac_1_Cd_0_fake_defect_name.png index b78f0b7f..7a14c7db 100644 Binary files a/tests/data/remote_baseline_plots/vac_1_Cd_0_fake_defect_name.png and b/tests/data/remote_baseline_plots/vac_1_Cd_0_fake_defect_name.png differ diff --git a/tests/data/remote_baseline_plots/vac_1_Cd_0_max_dist.png b/tests/data/remote_baseline_plots/vac_1_Cd_0_max_dist.png index deb9a173..27f1eee6 100644 Binary files a/tests/data/remote_baseline_plots/vac_1_Cd_0_max_dist.png and b/tests/data/remote_baseline_plots/vac_1_Cd_0_max_dist.png differ diff --git a/tests/data/remote_baseline_plots/vac_1_Cd_0_maxdist_title_linecolor_label.png b/tests/data/remote_baseline_plots/vac_1_Cd_0_maxdist_title_linecolor_label.png index 826290a3..3e7bfcdf 100644 Binary files a/tests/data/remote_baseline_plots/vac_1_Cd_0_maxdist_title_linecolor_label.png and b/tests/data/remote_baseline_plots/vac_1_Cd_0_maxdist_title_linecolor_label.png differ diff --git a/tests/data/remote_baseline_plots/vac_1_Cd_0_plot_defect_add_colorbar_max_dist.png b/tests/data/remote_baseline_plots/vac_1_Cd_0_plot_defect_add_colorbar_max_dist.png index a4dfe72e..55345374 100644 Binary files a/tests/data/remote_baseline_plots/vac_1_Cd_0_plot_defect_add_colorbar_max_dist.png and b/tests/data/remote_baseline_plots/vac_1_Cd_0_plot_defect_add_colorbar_max_dist.png differ diff --git a/tests/data/vasp/CdTe/CdTe_as_1_Te_on_Cd_-2_DX_Relaxed_CONTCAR b/tests/data/vasp/CdTe/CdTe_as_1_Te_on_Cd_-2_DX_Relaxed_CONTCAR new file mode 100644 index 00000000..a813a79b --- /dev/null +++ b/tests/data/vasp/CdTe/CdTe_as_1_Te_on_Cd_-2_DX_Relaxed_CONTCAR @@ -0,0 +1,72 @@ +Cd31 Te33 +1.0 + 13.0867681499999993 0.0000000000000000 0.0000000000000000 + 0.0000000000000000 13.0867681499999993 0.0000000000000000 + 0.0000000000000000 0.0000000000000000 13.0867681499999993 +Cd Te +31 33 +direct + 0.9997500499999999 0.0010872800000000 0.4988281300000000 Cd + 0.0036384600000000 0.5020344300000000 0.9977032000000000 Cd + 0.9995709000000000 0.5020257600000000 0.4982279300000000 Cd + 0.5025318100000000 0.0010779700000000 0.0015847700000000 Cd + 0.4909376900000000 0.9968256800000000 0.5104299400000000 Cd + 0.5030870600000000 0.5020717000000000 0.0017417800000000 Cd + 0.5014227200000000 0.4970402300000000 0.4999210900000000 Cd + 0.0100320100000000 0.2410610900000000 0.2322701800000000 Cd + 0.0081149100000000 0.2497930100000000 0.7493038500000000 Cd + 0.0112653400000000 0.7515946800000000 0.2405814200000000 Cd + 0.9955460200000000 0.7542888100000000 0.7550184900000000 Cd + 0.5081327800000000 0.2475787100000000 0.2455478200000000 Cd + 0.5056261500000000 0.2484744700000000 0.7509372100000000 Cd + 0.4995538700000000 0.7447144900000000 0.2515358800000000 Cd + 0.5007723400000000 0.7501852700000000 0.7510804900000000 Cd + 0.2477516600000000 0.9899991299999999 0.2421544100000000 Cd + 0.2472785000000000 0.9989819599999999 0.7540802000000000 Cd + 0.2544798600000000 0.5011330400000000 0.2518021700000000 Cd + 0.2520508100000000 0.4992715100000000 0.7492807300000000 Cd + 0.7326779500000000 0.9701669400000000 0.2686433400000000 Cd + 0.7592193300000000 0.9899544100000000 0.7535704700000000 Cd + 0.7541365900000000 0.4939042800000000 0.2472186800000000 Cd + 0.7495943600000000 0.5010816700000000 0.7469325300000000 Cd + 0.2521239000000000 0.2498391500000000 0.9932533800000000 Cd + 0.2503750100000000 0.2484808100000000 0.4957898600000000 Cd + 0.2463095100000000 0.7542746400000000 0.0058032900000000 Cd + 0.2502803000000000 0.7502128900000000 0.5005593000000000 Cd + 0.7689367800000000 0.2410540500000000 0.9914625600000000 Cd + 0.7558626700000000 0.2475953600000000 0.4932120600000000 Cd + 0.7608360000000000 0.7515961500000000 0.9900949999999999 Cd + 0.7498118499999999 0.7446934600000000 0.5018052700000000 Cd + 0.1273814300000000 0.1212863700000000 0.3705286100000000 Te + 0.1258549500000000 0.1247905200000000 0.8755622500000000 Te + 0.1275997200000000 0.6254946400000000 0.3745758400000000 Te + 0.1289182500000000 0.6268198000000000 0.8724143700000000 Te + 0.6142419200000000 0.1204339100000000 0.3871443000000000 Te + 0.6308467700000000 0.1212562800000000 0.8739528200000000 Te + 0.6276101400000000 0.6200422500000000 0.3737400300000000 Te + 0.6268147200000000 0.6255046300000000 0.8737562100000000 Te + 0.1339628500000000 0.3811069200000000 0.1216170900000000 Te + 0.1282986600000000 0.3769503900000000 0.6205036000000000 Te + 0.1178016200000000 0.8830412800000000 0.1133842300000000 Te + 0.1250376200000000 0.8744767400000000 0.6247663100000000 Te + 0.6294426900000000 0.3741066600000000 0.1169754700000000 Te + 0.6288966600000000 0.3720956500000000 0.6219980200000000 Te + 0.6224875100000000 0.8638379800000000 0.1208694900000000 Te + 0.6263421800000000 0.8732302199999999 0.6253749900000000 Te + 0.3758528300000000 0.1249066000000000 0.1246735600000000 Te + 0.3711760800000000 0.1271357600000000 0.6301873700000000 Te + 0.3752292300000000 0.6252266900000000 0.1238292000000000 Te + 0.3775221600000000 0.6246121900000000 0.6238186300000000 Te + 0.8020231900000000 0.1541520300000000 0.1992440300000000 Te + 0.8766899600000000 0.1249118300000000 0.6255250800000000 Te + 0.8773058300000000 0.6243844900000000 0.1240709900000000 Te + 0.8775238100000000 0.6251924800000001 0.6261286400000000 Te + 0.3793294100000000 0.3720772800000000 0.3725001400000000 Te + 0.3808868100000000 0.3769599900000000 0.8729961400000000 Te + 0.3759855100000000 0.8732594400000000 0.3750002200000000 Te + 0.3765765700000000 0.8744605900000000 0.8763198500000000 Te + 0.8844307500000000 0.3740385200000000 0.3718093800000000 Te + 0.8797026999999999 0.3810063600000000 0.8674951700000000 Te + 0.8804544800000000 0.8638607600000000 0.3788737100000000 Te + 0.8880096200000001 0.8830689700000000 0.8835563200000000 Te + 0.9535914800000000 0.1256004400000000 0.0478573600000000 Te diff --git a/tests/data/vasp/CdTe/vacancies_dist_defect_dict.json b/tests/data/vasp/CdTe/vacancies_dist_defect_dict.json index e9f221dc..737c06c1 100644 --- a/tests/data/vasp/CdTe/vacancies_dist_defect_dict.json +++ b/tests/data/vasp/CdTe/vacancies_dist_defect_dict.json @@ -1 +1 @@ -{"v_Cd": {"defect_type": "vacancy", "defect_site": {"species": [{"element": "Cd", "occu": 1}], "abc": [0.0, 0.0, 0.0], "lattice": {"@module": "pymatgen.core.lattice", "@class": "Lattice", "matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true]}, "@module": "pymatgen.core.sites", "@class": "PeriodicSite", "properties": {}, "@version": null}, "defect_supercell_site": {"species": [{"element": "Cd", "occu": 1}], "abc": [0.0, 0.0, 0.0], "lattice": {"@module": "pymatgen.core.lattice", "@class": "Lattice", "matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true]}, "@module": "pymatgen.core.sites", "@class": "PeriodicSite", "properties": {}, "@version": null}, "defect_multiplicity": 32, "charges": {"0": {"structures": {"Unperturbed": {"@module": "pymatgen.core.structure", "@class": "Structure", "charge": -2.0, "lattice": {"matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true], "a": 13.086768, "b": 13.086768, "c": 13.086768, "alpha": 90.0, "beta": 90.0, "gamma": 90.0, "volume": 2241.2856479961474}, "sites": [{"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.0, 0.5], "xyz": [0.0, 0.0, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.5, 0.0], "xyz": [0.0, 6.543384, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.5, 0.5], "xyz": [0.0, 6.543384, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.0, 0.0], "xyz": [6.543384, 0.0, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.0, 0.5], "xyz": [6.543384, 0.0, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.5, 0.0], "xyz": [6.543384, 6.543384, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.5, 0.5], "xyz": [6.543384, 6.543384, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.25, 0.25], "xyz": [0.0, 3.271692, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.25, 0.75], "xyz": [0.0, 3.271692, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.75, 0.25], "xyz": [0.0, 9.815076, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.75, 0.75], "xyz": [0.0, 9.815076, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.25, 0.25], "xyz": [6.543384, 3.271692, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.25, 0.75], "xyz": [6.543384, 3.271692, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.75, 0.25], "xyz": [6.543384, 9.815076, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.75, 0.75], "xyz": [6.543384, 9.815076, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.0, 0.25], "xyz": [3.271692, 0.0, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.0, 0.75], "xyz": [3.271692, 0.0, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.5, 0.25], "xyz": [3.271692, 6.543384, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.5, 0.75], "xyz": [3.271692, 6.543384, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.0, 0.25], "xyz": [9.815076, 0.0, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.0, 0.75], "xyz": [9.815076, 0.0, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.5, 0.25], "xyz": [9.815076, 6.543384, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.5, 0.75], "xyz": [9.815076, 6.543384, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.25, 0.0], "xyz": [3.271692, 3.271692, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.25, 0.5], "xyz": [3.271692, 3.271692, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.75, 0.0], "xyz": [3.271692, 9.815076, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.75, 0.5], "xyz": [3.271692, 9.815076, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.25, 0.0], "xyz": [9.815076, 3.271692, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.25, 0.5], "xyz": [9.815076, 3.271692, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.75, 0.0], "xyz": [9.815076, 9.815076, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.75, 0.5], "xyz": [9.815076, 9.815076, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.125, 0.375], "xyz": [1.635846, 1.635846, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.125, 0.8749999999999999], "xyz": [1.635846, 1.635846, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.625, 0.375], "xyz": [1.635846, 8.17923, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.625, 0.8749999999999999], "xyz": [1.635846, 8.17923, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.125, 0.375], "xyz": [8.17923, 1.635846, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.125, 0.8749999999999999], "xyz": [8.17923, 1.635846, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.625, 0.375], "xyz": [8.17923, 8.17923, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.625, 0.8749999999999999], "xyz": [8.17923, 8.17923, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.375, 0.125], "xyz": [1.635846, 4.907538, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.375, 0.625], "xyz": [1.635846, 4.907538, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.8749999999999999, 0.125], "xyz": [1.635846, 11.450921999999998, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.8749999999999999, 0.625], "xyz": [1.635846, 11.450921999999998, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.375, 0.125], "xyz": [8.17923, 4.907538, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.375, 0.625], "xyz": [8.17923, 4.907538, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.8749999999999999, 0.125], "xyz": [8.17923, 11.450921999999998, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.8749999999999999, 0.625], "xyz": [8.17923, 11.450921999999998, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.125, 0.125], "xyz": [4.907538, 1.635846, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.125, 0.625], "xyz": [4.907538, 1.635846, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.625, 0.125], "xyz": [4.907538, 8.17923, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.625, 0.625], "xyz": [4.907538, 8.17923, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.125, 0.125], "xyz": [11.450921999999998, 1.635846, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.125, 0.625], "xyz": [11.450921999999998, 1.635846, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.625, 0.125], "xyz": [11.450921999999998, 8.17923, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.625, 0.625], "xyz": [11.450921999999998, 8.17923, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.375, 0.375], "xyz": [4.907538, 4.907538, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.375, 0.8749999999999999], "xyz": [4.907538, 4.907538, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.8749999999999999, 0.375], "xyz": [4.907538, 11.450921999999998, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.8749999999999999, 0.8749999999999999], "xyz": [4.907538, 11.450921999999998, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.375, 0.375], "xyz": [11.450921999999998, 4.907538, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.375, 0.8749999999999999], "xyz": [11.450921999999998, 4.907538, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.8749999999999999, 0.375], "xyz": [11.450921999999998, 11.450921999999998, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.8749999999999999, 0.8749999999999999], "xyz": [11.450921999999998, 11.450921999999998, 11.450921999999998], "label": "Te2-", "properties": {}}], "@version": null}, "distortions": {"Bond_Distortion_-30.0%": {"@module": "pymatgen.core.structure", "@class": "Structure", "charge": -2.0, "lattice": {"matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true], "a": 13.086768, "b": 13.086768, "c": 13.086768, "alpha": 90.0, "beta": 90.0, "gamma": 90.0, "volume": 2241.2856479961474}, "sites": [{"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.01568711948403533, 0.016849917236106522, 0.5013659606570436], "xyz": [0.20529369327585004, 0.22051095768812726, 6.561260010215857], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.027150011566868578, 0.4957262246093266, 0.010022476367907264], "xyz": [0.35530590257292555, 6.4874540929781475, 0.13116182301228502], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.0014495703722098626, 0.498073152435215, 0.47811921679604913], "xyz": [-0.01897019116078412, 6.518167792948294, 6.257035266551598], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4722094233480639, 0.020050629436408757, -0.018269223047381645], "xyz": [6.179695170769895, 0.26239793568825215, -0.2390850835613366], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4885585281400621, -0.005387872873882472, 0.481767300464419], "xyz": [6.393652112190464, -0.07050984231399317, 6.304776891164144], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5056282073490231, 0.5186277985499153, -0.02697461158586072], "xyz": [6.617039043832561, 6.787161677973477, -0.3530104837142713], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4801688502186689, 0.5257243960661042, 0.5248055377787585], "xyz": [6.283858343638469, 6.880033203257218, 6.868008318025847], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.034831636895078275, 0.27289443167148103, 0.23874604750612521], "xyz": [-0.4558335511061297, 3.5713061157765242, 3.1244141346296392], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.010574547252808927, 0.2665553322767636, 0.72497043323812], "xyz": [-0.13838664660254776, 3.488347792668917, 9.487519866646766], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.007569072998040621, 0.7073232895687733, 0.2540302118175998], "xyz": [-0.09905470230042206, 9.256575791583357, 3.324434447047787], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.005091039737760129, 0.735542315576001, 0.7679544090557621], "xyz": [-0.06662525592684765, 9.625871638125911, 10.050041185889857], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.500581636698387, 0.282053638247884, 0.23354029093920137], "xyz": [6.5509957445320754, 3.691170527305984, 3.0562876061738304], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5164511376504562, 0.2542450219488173, 0.7322823716342084], "xyz": [6.758676221767586, 3.32724561739908, 9.583209508066666], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5070828585054892, 0.7526462759552357, 0.2894765820190052], "xyz": [6.636075726038163, 9.849707199490148, 3.7883128703156927], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5049584993998797, 0.7681671971948304, 0.759194223593266], "xyz": [6.608274731274364, 10.052825894898996, 9.9353986711052], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.23144390076130325, -0.013969158032703688, 0.27108986375916067], "xyz": [3.028852634278199, -0.18281113032932955, 3.5476901541677432], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.23763691303939355, 0.005368794424074448, 0.738165301172775], "xyz": [3.109899149182718, 0.07026016706755592, 9.660198042098234], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.27183740458126954, 0.4922892243165773, 0.2451784226567301], "xyz": [3.5574730474772114, 6.442474867531005, 3.2085931359145703], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.26229474722281126, 0.517354969716271, 0.7260213390066484], "xyz": [3.432590504523575, 6.770504462323864, 9.501272826629359], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7421013906143455, -0.03693942541801388, 0.2601101761807642], "xyz": [9.711708731447317, -0.48341769049885064, 3.404001530116787], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7643010257290317, 0.008255972386925511, 0.7375144675771959], "xyz": [10.002230205877868, 0.10804399524210039, 9.651680733826284], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7772298637541588, 0.506173787789148, 0.24188844257318742], "xyz": [10.171426909622285, 6.6241789284778125, 3.165537929836627], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7112919524310897, 0.48918180312926857, 0.7452862206392076], "xyz": [9.308512761732706, 6.401808767374411, 9.753387863102121], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.2597626037064264, 0.2654750359385809, -0.013817874624074463], "xyz": [3.3994529297819422, 3.47421020511987, -0.1808313194583497], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.2856911389734074, 0.26676074190617316, 0.4824379442736103], "xyz": [3.738773655400741, 3.4910359408339655, 6.313553451105666], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25533084923273663, 0.7324121579095495, -0.027083622475517065], "xyz": [3.341455587151802, 9.58490799094164, -0.3544370839366775], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.28778742812355695, 0.7210962747120893, 0.49605964343217374], "xyz": [3.766207305169665, 9.436819652821379, 6.4918174677595815], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7756092046801939, 0.26967412576303745, -0.009461508706947064], "xyz": [10.150217720314211, 3.529162719463694, -0.1238205693777962], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.767460332714889, 0.2433936502088358, 0.5342582586445987], "xyz": [10.043575323442562, 3.1852362329561856, 6.991713882965858], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7659806984052299, 0.759274182362689, 0.008442629968716076], "xyz": [10.024211692507214, 9.936445072970201, 0.11048673971043455], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7451092426178079, 0.7523250438453772, 0.49373546069156204], "xyz": [9.751071792794963, 9.84550330939428, 6.461401427443592], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11875684857742955, 0.1507937162676332, 0.3762100856753475], "xyz": [1.5541433257439505, 1.9734023806523413, 4.923374110493397], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.08750097632244412, 0.08750097632244412, 0.9124990236775559], "xyz": [1.1451049769053194, 1.1451049769053194, 11.94166302309468], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.13123594298367203, 0.6328551962041555, 0.42025981357204256], "xyz": [1.7174543390885435, 8.282029130318264, 5.499842679940572], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11288840793462648, 0.618295165804068, 0.8473039496781265], "xyz": [1.4773444045298159, 8.09148539039937, 11.088470214921315], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6315797807618615, 0.12259391843436342, 0.3700339946167043], "xyz": [8.265338064321345, 1.6043581687614372, 4.842549039662058], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6283847628206453, 0.11043227069263029, 0.8462095332815449], "xyz": [8.22352560576881, 1.4452015062676518, 11.074147841443857], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6231233285696897, 0.6431785472589133, 0.3803636878306193], "xyz": [8.1546704363793, 8.417128430554435, 4.977731338263738], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6132648937495118, 0.644358161160185, 0.8924510477913717], "xyz": [8.02565538704451, 8.43256576400995, 11.679299813802594], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11393398945863639, 0.36818442425335673, 0.1518017271048436], "xyz": [1.49102768735962, 4.818344141417253, 1.9865939846203997], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.12714363634965842, 0.36670784058284467, 0.6027871928487836], "xyz": [1.6638992715843466, 4.799020433488673, 7.888536146183289], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.08750097632244412, 0.9124990236775559, 0.08750097632244412], "xyz": [1.1451049769053194, 11.94166302309468, 1.1451049769053194], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.12737278928913331, 0.8919108640973763, 0.6439967743041993], "xyz": [1.6668981429397725, 11.672230555121892, 8.427836378067418], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6141821228674019, 0.3715100179204548, 0.11272616402540049], "xyz": [8.037658951713183, 4.861865414200834, 1.4752211561303623], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6173411386799441, 0.387069786365467, 0.5681915310744818], "xyz": [8.079000258760255, 5.06549249397443, 7.435790746736534], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.608224540597382, 0.8839467110079551, 0.11295790115121591], "xyz": [7.959693454704519, 11.568005531324154, 1.4782538461328956], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6742054626232512, 0.9108186394979915, 0.6062918720004151], "xyz": [8.82317047368316, 11.91967222518585, 7.934401069155128], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.36063832552584496, 0.12770918212328716, 0.16147519869745774], "xyz": [4.71959009806521, 1.6713004379172065, 2.1131884631075315], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.37525204242498533, 0.11394353706788272, 0.5933896303873651], "xyz": [4.910836420741941, 1.4911526347067814, 7.765552426485197], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.4060941606888188, 0.6079088993238952, 0.11140969169113184], "xyz": [5.314460067089292, 7.9555627305871734, 1.4579927881133699], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.3803128561907225, 0.6426243580437953, 0.6395882828468022], "xyz": [4.977066116385349, 8.409875884868082, 8.37014347313448], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8947428748509965, 0.13988220655203906, 0.0971153956045202], "xyz": [11.709292422828025, 1.830605984474615, 1.2709266515045756], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.9050213842460662, 0.12764676957276155, 0.5948089700532792], "xyz": [11.843804890667123, 1.6704836593481895, 7.784126995406211], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.895865344260897, 0.6243931913490971, 0.10527059970447229], "xyz": [11.72398191958249, 8.17128883596524, 1.3776519155532974], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8997301454086939, 0.6260280502017525, 0.6286909690625229], "xyz": [11.774559675569842, 8.192683854482688, 8.227532855816413], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.39036318842662027, 0.3750040440301268, 0.36936334792189346], "xyz": [5.108592482679464, 4.907590923284054, 4.833772441957102], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.3840986630527822, 0.3765797318809899, 0.8701975112891386], "xyz": [5.026610092481932, 4.928211584628718, 11.388072944418337], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.3794827130771702, 0.8854032160195859, 0.36748368646509866], "xyz": [4.966202226051492, 11.587066474502205, 4.809173748553486], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.3917242540183349, 0.8543409397301263, 0.878435252439452], "xyz": [5.126404432311016, 11.180561671150144, 11.495878351696541], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8817775378020919, 0.3813543713889261, 0.40317439575351394], "xyz": [11.539618064827206, 4.990696184152713, 5.276249780766422], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8794108581844571, 0.3946822747640026, 0.87570067228848], "xyz": [11.508645877740891, 5.1651153635487566, 11.460091535683366], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8832990018766742, 0.9089615994988091, 0.36272692412143825], "xyz": [11.5595291121916, 11.89536957354983, 4.746923103330866], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8460654184237592, 0.8901079778386413, 0.8694308400251983], "xyz": [11.072261843734662, 11.648636600923439, 11.378039695454884], "label": "Te2-", "properties": {}}], "@version": null}}}}}}, "v_Te": {"defect_type": "vacancy", "defect_site": {"species": [{"element": "Te", "occu": 1}], "abc": [0.125, 0.125, 0.375], "lattice": {"@module": "pymatgen.core.lattice", "@class": "Lattice", "matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true]}, "@module": "pymatgen.core.sites", "@class": "PeriodicSite", "properties": {}, "@version": null}, "defect_supercell_site": {"species": [{"element": "Te", "occu": 1}], "abc": [0.125, 0.125, 0.375], "lattice": {"@module": "pymatgen.core.lattice", "@class": "Lattice", "matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true]}, "@module": "pymatgen.core.sites", "@class": "PeriodicSite", "properties": {}, "@version": null}, "defect_multiplicity": 32, "charges": {"0": {"structures": {"Unperturbed": {"@module": "pymatgen.core.structure", "@class": "Structure", "charge": 2.0, "lattice": {"matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true], "a": 13.086768, "b": 13.086768, "c": 13.086768, "alpha": 90.0, "beta": 90.0, "gamma": 90.0, "volume": 2241.2856479961474}, "sites": [{"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.0, 0.0], "xyz": [0.0, 0.0, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.0, 0.5], "xyz": [0.0, 0.0, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.5, 0.0], "xyz": [0.0, 6.543384, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.5, 0.5], "xyz": [0.0, 6.543384, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.0, 0.0], "xyz": [6.543384, 0.0, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.0, 0.5], "xyz": [6.543384, 0.0, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.5, 0.0], "xyz": [6.543384, 6.543384, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.5, 0.5], "xyz": [6.543384, 6.543384, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.25, 0.25], "xyz": [0.0, 3.271692, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.25, 0.75], "xyz": [0.0, 3.271692, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.75, 0.25], "xyz": [0.0, 9.815076, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.75, 0.75], "xyz": [0.0, 9.815076, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.25, 0.25], "xyz": [6.543384, 3.271692, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.25, 0.75], "xyz": [6.543384, 3.271692, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.75, 0.25], "xyz": [6.543384, 9.815076, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.75, 0.75], "xyz": [6.543384, 9.815076, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.0, 0.25], "xyz": [3.271692, 0.0, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.0, 0.75], "xyz": [3.271692, 0.0, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.5, 0.25], "xyz": [3.271692, 6.543384, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.5, 0.75], "xyz": [3.271692, 6.543384, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.0, 0.25], "xyz": [9.815076, 0.0, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.0, 0.75], "xyz": [9.815076, 0.0, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.5, 0.25], "xyz": [9.815076, 6.543384, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.5, 0.75], "xyz": [9.815076, 6.543384, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.25, 0.0], "xyz": [3.271692, 3.271692, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.25, 0.5], "xyz": [3.271692, 3.271692, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.75, 0.0], "xyz": [3.271692, 9.815076, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.75, 0.5], "xyz": [3.271692, 9.815076, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.25, 0.0], "xyz": [9.815076, 3.271692, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.25, 0.5], "xyz": [9.815076, 3.271692, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.75, 0.0], "xyz": [9.815076, 9.815076, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.75, 0.5], "xyz": [9.815076, 9.815076, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.125, 0.8749999999999999], "xyz": [1.635846, 1.635846, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.625, 0.375], "xyz": [1.635846, 8.17923, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.625, 0.8749999999999999], "xyz": [1.635846, 8.17923, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.125, 0.375], "xyz": [8.17923, 1.635846, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.125, 0.8749999999999999], "xyz": [8.17923, 1.635846, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.625, 0.375], "xyz": [8.17923, 8.17923, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.625, 0.8749999999999999], "xyz": [8.17923, 8.17923, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.375, 0.125], "xyz": [1.635846, 4.907538, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.375, 0.625], "xyz": [1.635846, 4.907538, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.8749999999999999, 0.125], "xyz": [1.635846, 11.450921999999998, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.8749999999999999, 0.625], "xyz": [1.635846, 11.450921999999998, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.375, 0.125], "xyz": [8.17923, 4.907538, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.375, 0.625], "xyz": [8.17923, 4.907538, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.8749999999999999, 0.125], "xyz": [8.17923, 11.450921999999998, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.8749999999999999, 0.625], "xyz": [8.17923, 11.450921999999998, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.125, 0.125], "xyz": [4.907538, 1.635846, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.125, 0.625], "xyz": [4.907538, 1.635846, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.625, 0.125], "xyz": [4.907538, 8.17923, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.625, 0.625], "xyz": [4.907538, 8.17923, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.125, 0.125], "xyz": [11.450921999999998, 1.635846, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.125, 0.625], "xyz": [11.450921999999998, 1.635846, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.625, 0.125], "xyz": [11.450921999999998, 8.17923, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.625, 0.625], "xyz": [11.450921999999998, 8.17923, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.375, 0.375], "xyz": [4.907538, 4.907538, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.375, 0.8749999999999999], "xyz": [4.907538, 4.907538, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.8749999999999999, 0.375], "xyz": [4.907538, 11.450921999999998, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.8749999999999999, 0.8749999999999999], "xyz": [4.907538, 11.450921999999998, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.375, 0.375], "xyz": [11.450921999999998, 4.907538, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.375, 0.8749999999999999], "xyz": [11.450921999999998, 4.907538, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.8749999999999999, 0.375], "xyz": [11.450921999999998, 11.450921999999998, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.8749999999999999, 0.8749999999999999], "xyz": [11.450921999999998, 11.450921999999998, 11.450921999999998], "label": "Te2-", "properties": {}}], "@version": null}, "distortions": {"Bond_Distortion_-30.0%": {"@module": "pymatgen.core.structure", "@class": "Structure", "charge": 2.0, "lattice": {"matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true], "a": 13.086768, "b": 13.086768, "c": 13.086768, "alpha": 90.0, "beta": 90.0, "gamma": 90.0, "volume": 2241.2856479961474}, "sites": [{"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.01568711948403533, 0.016849917236106522, 0.0013659606570437218], "xyz": [0.20529369327585004, 0.22051095768812726, 0.017876010215858752], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.03749902367755584, 0.03749902367755584, 0.4625009763224441], "xyz": [0.49074102309468004, 0.49074102309468004, 6.052642976905319], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.027150011566868578, 0.4957262246093266, 0.010022476367907264], "xyz": [0.35530590257292555, 6.4874540929781475, 0.13116182301228502], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.0014495703722098626, 0.498073152435215, 0.47811921679604913], "xyz": [-0.01897019116078412, 6.518167792948294, 6.257035266551598], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4722094233480639, 0.020050629436408757, -0.018269223047381645], "xyz": [6.179695170769895, 0.26239793568825215, -0.2390850835613366], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4885585281400621, -0.005387872873882472, 0.481767300464419], "xyz": [6.393652112190464, -0.07050984231399317, 6.304776891164144], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5056282073490231, 0.5186277985499153, -0.02697461158586072], "xyz": [6.617039043832561, 6.787161677973477, -0.3530104837142713], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4801688502186689, 0.5257243960661042, 0.5248055377787585], "xyz": [6.283858343638469, 6.880033203257218, 6.868008318025847], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.03749902367755584, 0.21250097632244416, 0.2874990236775558], "xyz": [0.49074102309468004, 2.78095097690532, 3.7624330230946796], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.034831636895078275, 0.27289443167148103, 0.7387460475061252], "xyz": [-0.4558335511061297, 3.5713061157765242, 9.667798134629638], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.010574547252808927, 0.7665553322767635, 0.22497043323812005], "xyz": [-0.13838664660254776, 10.031731792668916, 2.9441358666467656], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.007569072998040621, 0.7073232895687733, 0.7540302118175998], "xyz": [-0.09905470230042206, 9.256575791583357, 9.867818447047785], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.49490896026223985, 0.23554231557600105, 0.267954409055762], "xyz": [6.476758744073152, 3.082487638125912, 3.506657185889856], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.500581636698387, 0.282053638247884, 0.7335402909392014], "xyz": [6.5509957445320754, 3.691170527305984, 9.59967160617383], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5164511376504562, 0.7542450219488174, 0.23228237163420845], "xyz": [6.758676221767586, 9.87062961739908, 3.0398255080666665], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5070828585054892, 0.7526462759552357, 0.7894765820190052], "xyz": [6.636075726038163, 9.849707199490148, 10.331696870315692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.2549584993998797, 0.018167197194830374, 0.25919422359326616], "xyz": [3.3365827312743646, 0.2377498948989959, 3.3920146711052004], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.23144390076130325, -0.013969158032703688, 0.7710898637591608], "xyz": [3.028852634278199, -0.18281113032932955, 10.091074154167744], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.23763691303939355, 0.5053687944240745, 0.23816530117277496], "xyz": [3.109899149182718, 6.613644167067555, 3.1168140420982335], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.27183740458126954, 0.4922892243165773, 0.7451784226567301], "xyz": [3.5574730474772114, 6.442474867531005, 9.751977135914569], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7622947472228112, 0.017354969716271013, 0.22602133900664856], "xyz": [9.975974504523574, 0.22712046232386454, 2.95788882662936], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7421013906143455, -0.03693942541801388, 0.7601101761807642], "xyz": [9.711708731447317, -0.48341769049885064, 9.947385530116787], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7643010257290317, 0.5082559723869255, 0.23751446757719594], "xyz": [10.002230205877868, 6.6514279952421, 3.1082967338262852], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7772298637541588, 0.506173787789148, 0.7418884425731875], "xyz": [10.171426909622285, 6.6241789284778125, 9.708921929836627], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.21129195243108964, 0.23918180312926857, -0.004713779360792357], "xyz": [2.765128761732706, 3.1301167673744117, -0.061688136897877874], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.2597626037064264, 0.2654750359385809, 0.4861821253759255], "xyz": [3.3994529297819422, 3.47421020511987, 6.362552680541649], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.2856911389734074, 0.7667607419061732, -0.0175620557263897], "xyz": [3.738773655400741, 10.034419940833965, -0.22983054889433344], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25533084923273663, 0.7324121579095495, 0.47291637752448296], "xyz": [3.341455587151802, 9.58490799094164, 6.188946916063323], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.787787428123557, 0.22109627471208937, -0.003940356567826238], "xyz": [10.309591305169665, 2.8934356528213803, -0.05156653224041824], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7756092046801939, 0.26967412576303745, 0.49053849129305294], "xyz": [10.150217720314211, 3.529162719463694, 6.419563430622204], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.767460332714889, 0.7433936502088357, 0.03425825864459876], "xyz": [10.043575323442562, 9.728620232956185, 0.44832988296585846], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7659806984052299, 0.759274182362689, 0.5084426299687161], "xyz": [10.024211692507214, 9.936445072970201, 6.653870739710435], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.12010924261780784, 0.12732504384537732, 0.8687354606915619], "xyz": [1.5718417927949637, 1.6662733093942808, 11.368939427443589], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11875684857742955, 0.6507937162676332, 0.3762100856753475], "xyz": [1.5541433257439505, 8.516786380652341, 4.923374110493397], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.13123594298367203, 0.6328551962041555, 0.9202598135720425], "xyz": [1.7174543390885435, 8.282029130318264, 12.04322667994057], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6128884079346265, 0.11829516580406792, 0.3473039496781265], "xyz": [8.020728404529816, 1.5481013903993701, 4.545086214921316], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6315797807618615, 0.12259391843436342, 0.8700339946167042], "xyz": [8.265338064321345, 1.6043581687614372, 11.385933039662056], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6283847628206453, 0.6104322706926303, 0.3462095332815449], "xyz": [8.22352560576881, 7.988585506267651, 4.530763841443857], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6231233285696897, 0.6431785472589133, 0.8803636878306192], "xyz": [8.1546704363793, 8.417128430554435, 11.521115338263737], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11326489374951178, 0.3943581611601848, 0.14245104779137183], "xyz": [1.4822713870445106, 5.160873764009949, 1.8642238138025955], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11393398945863639, 0.36818442425335673, 0.6518017271048436], "xyz": [1.49102768735962, 4.818344141417253, 8.5299779846204], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.12714363634965842, 0.8667078405828446, 0.10278719284878346], "xyz": [1.6638992715843466, 11.342404433488671, 1.345152146183288], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.12737278928913331, 0.8919108640973763, 0.6439967743041993], "xyz": [1.6668981429397725, 11.672230555121892, 8.427836378067418], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6141821228674019, 0.3715100179204548, 0.11272616402540049], "xyz": [8.037658951713183, 4.861865414200834, 1.4752211561303623], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6173411386799441, 0.387069786365467, 0.5681915310744818], "xyz": [8.079000258760255, 5.06549249397443, 7.435790746736534], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.608224540597382, 0.8839467110079551, 0.11295790115121591], "xyz": [7.959693454704519, 11.568005531324154, 1.4782538461328956], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6742054626232512, 0.9108186394979915, 0.6062918720004151], "xyz": [8.82317047368316, 11.91967222518585, 7.934401069155128], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.36063832552584496, 0.12770918212328716, 0.16147519869745774], "xyz": [4.71959009806521, 1.6713004379172065, 2.1131884631075315], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.37525204242498533, 0.11394353706788272, 0.5933896303873651], "xyz": [4.910836420741941, 1.4911526347067814, 7.765552426485197], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.4060941606888188, 0.6079088993238952, 0.11140969169113184], "xyz": [5.314460067089292, 7.9555627305871734, 1.4579927881133699], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.369165924514035, 0.6150467855183058, 0.6518612689124705], "xyz": [4.831188807620689, 8.048974591223828, 8.530757194443114], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8803128561907224, 0.14262435804379522, 0.13958828284680208], "xyz": [11.520450116385348, 1.8664918848680818, 1.8267594731344783], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8947428748509965, 0.13988220655203906, 0.5971153956045203], "xyz": [11.709292422828025, 1.830605984474615, 7.814310651504576], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.9050213842460662, 0.6276467695727617, 0.09480897005327915], "xyz": [11.843804890667123, 8.21386765934819, 1.240742995406212], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.895865344260897, 0.6243931913490971, 0.6052705997044724], "xyz": [11.72398191958249, 8.17128883596524, 7.921035915553298], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.39973014540869395, 0.37602805020175234, 0.3786909690625228], "xyz": [5.231175675569842, 4.920991854482685, 4.9558408558164135], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.36627096956773875, 0.37647047428422986, 0.8799247251675606], "xyz": [4.793303203868057, 4.926781755807682, 11.515370735731626], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.3694061068288607, 0.8514102855379397, 0.36722890002230013], "xyz": [4.834332017852516, 11.142208879648772, 4.805839417487037], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.39036318842662027, 0.8750040440301268, 0.8693633479218933], "xyz": [5.108592482679464, 11.450974923284054, 11.3771564419571], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8840986630527821, 0.3765797318809899, 0.3701975112891385], "xyz": [11.56999409248193, 4.928211584628718, 4.844688944418337], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8878406141383686, 0.39518376205924294, 0.8849706124942863], "xyz": [11.61896413820635, 5.1716782114365145, 11.581405092530625], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8794827130771701, 0.8854032160195859, 0.36748368646509866], "xyz": [11.509586226051491, 11.587066474502205, 4.809173748553486], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8917242540183349, 0.8543409397301263, 0.878435252439452], "xyz": [11.669788432311016, 11.180561671150144, 11.495878351696541], "label": "Te2-", "properties": {}}], "@version": null}}}}}}} \ No newline at end of file +{"v_Cd_s0": {"defect_type": "vacancy", "defect_site": {"species": [{"element": "Cd", "occu": 1}], "abc": [0.0, 0.0, 0.0], "lattice": {"@module": "pymatgen.core.lattice", "@class": "Lattice", "matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true]}, "@module": "pymatgen.core.sites", "@class": "PeriodicSite", "properties": {}, "@version": null}, "defect_supercell_site": {"species": [{"element": "Cd", "occu": 1}], "abc": [0.0, 0.0, 0.0], "lattice": {"@module": "pymatgen.core.lattice", "@class": "Lattice", "matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true]}, "@module": "pymatgen.core.sites", "@class": "PeriodicSite", "properties": {}, "@version": null}, "defect_multiplicity": 32, "charges": {"0": {"structures": {"Unperturbed": {"@module": "pymatgen.core.structure", "@class": "Structure", "charge": -2.0, "lattice": {"matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true], "a": 13.086768, "b": 13.086768, "c": 13.086768, "alpha": 90.0, "beta": 90.0, "gamma": 90.0, "volume": 2241.2856479961474}, "sites": [{"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.0, 0.5], "xyz": [0.0, 0.0, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.5, 0.0], "xyz": [0.0, 6.543384, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.5, 0.5], "xyz": [0.0, 6.543384, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.0, 0.0], "xyz": [6.543384, 0.0, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.0, 0.5], "xyz": [6.543384, 0.0, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.5, 0.0], "xyz": [6.543384, 6.543384, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.5, 0.5], "xyz": [6.543384, 6.543384, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.25, 0.25], "xyz": [0.0, 3.271692, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.25, 0.75], "xyz": [0.0, 3.271692, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.75, 0.25], "xyz": [0.0, 9.815076, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.75, 0.75], "xyz": [0.0, 9.815076, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.25, 0.25], "xyz": [6.543384, 3.271692, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.25, 0.75], "xyz": [6.543384, 3.271692, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.75, 0.25], "xyz": [6.543384, 9.815076, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.75, 0.75], "xyz": [6.543384, 9.815076, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.0, 0.25], "xyz": [3.271692, 0.0, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.0, 0.75], "xyz": [3.271692, 0.0, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.5, 0.25], "xyz": [3.271692, 6.543384, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.5, 0.75], "xyz": [3.271692, 6.543384, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.0, 0.25], "xyz": [9.815076, 0.0, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.0, 0.75], "xyz": [9.815076, 0.0, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.5, 0.25], "xyz": [9.815076, 6.543384, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.5, 0.75], "xyz": [9.815076, 6.543384, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.25, 0.0], "xyz": [3.271692, 3.271692, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.25, 0.5], "xyz": [3.271692, 3.271692, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.75, 0.0], "xyz": [3.271692, 9.815076, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.75, 0.5], "xyz": [3.271692, 9.815076, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.25, 0.0], "xyz": [9.815076, 3.271692, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.25, 0.5], "xyz": [9.815076, 3.271692, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.75, 0.0], "xyz": [9.815076, 9.815076, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.75, 0.5], "xyz": [9.815076, 9.815076, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.125, 0.375], "xyz": [1.635846, 1.635846, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.125, 0.8749999999999999], "xyz": [1.635846, 1.635846, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.625, 0.375], "xyz": [1.635846, 8.17923, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.625, 0.8749999999999999], "xyz": [1.635846, 8.17923, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.125, 0.375], "xyz": [8.17923, 1.635846, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.125, 0.8749999999999999], "xyz": [8.17923, 1.635846, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.625, 0.375], "xyz": [8.17923, 8.17923, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.625, 0.8749999999999999], "xyz": [8.17923, 8.17923, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.375, 0.125], "xyz": [1.635846, 4.907538, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.375, 0.625], "xyz": [1.635846, 4.907538, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.8749999999999999, 0.125], "xyz": [1.635846, 11.450921999999998, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.8749999999999999, 0.625], "xyz": [1.635846, 11.450921999999998, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.375, 0.125], "xyz": [8.17923, 4.907538, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.375, 0.625], "xyz": [8.17923, 4.907538, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.8749999999999999, 0.125], "xyz": [8.17923, 11.450921999999998, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.8749999999999999, 0.625], "xyz": [8.17923, 11.450921999999998, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.125, 0.125], "xyz": [4.907538, 1.635846, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.125, 0.625], "xyz": [4.907538, 1.635846, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.625, 0.125], "xyz": [4.907538, 8.17923, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.625, 0.625], "xyz": [4.907538, 8.17923, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.125, 0.125], "xyz": [11.450921999999998, 1.635846, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.125, 0.625], "xyz": [11.450921999999998, 1.635846, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.625, 0.125], "xyz": [11.450921999999998, 8.17923, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.625, 0.625], "xyz": [11.450921999999998, 8.17923, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.375, 0.375], "xyz": [4.907538, 4.907538, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.375, 0.8749999999999999], "xyz": [4.907538, 4.907538, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.8749999999999999, 0.375], "xyz": [4.907538, 11.450921999999998, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.8749999999999999, 0.8749999999999999], "xyz": [4.907538, 11.450921999999998, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.375, 0.375], "xyz": [11.450921999999998, 4.907538, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.375, 0.8749999999999999], "xyz": [11.450921999999998, 4.907538, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.8749999999999999, 0.375], "xyz": [11.450921999999998, 11.450921999999998, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.8749999999999999, 0.8749999999999999], "xyz": [11.450921999999998, 11.450921999999998, 11.450921999999998], "label": "Te2-", "properties": {}}], "@version": null}, "distortions": {"Bond_Distortion_-30.0%": {"@module": "pymatgen.core.structure", "@class": "Structure", "charge": -2.0, "lattice": {"matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true], "a": 13.086768, "b": 13.086768, "c": 13.086768, "alpha": 90.0, "beta": 90.0, "gamma": 90.0, "volume": 2241.2856479961474}, "sites": [{"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.01568711948403533, 0.016849917236106522, 0.5013659606570436], "xyz": [0.20529369327585004, 0.22051095768812726, 6.561260010215857], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.027150011566868578, 0.4957262246093266, 0.010022476367907264], "xyz": [0.35530590257292555, 6.4874540929781475, 0.13116182301228502], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.0014495703722098626, 0.498073152435215, 0.47811921679604913], "xyz": [-0.01897019116078412, 6.518167792948294, 6.257035266551598], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4722094233480639, 0.020050629436408757, -0.018269223047381645], "xyz": [6.179695170769895, 0.26239793568825215, -0.2390850835613366], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4885585281400621, -0.005387872873882472, 0.481767300464419], "xyz": [6.393652112190464, -0.07050984231399317, 6.304776891164144], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5056282073490231, 0.5186277985499153, -0.02697461158586072], "xyz": [6.617039043832561, 6.787161677973477, -0.3530104837142713], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4801688502186689, 0.5257243960661042, 0.5248055377787585], "xyz": [6.283858343638469, 6.880033203257218, 6.868008318025847], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.034831636895078275, 0.27289443167148103, 0.23874604750612521], "xyz": [-0.4558335511061297, 3.5713061157765242, 3.1244141346296392], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.010574547252808927, 0.2665553322767636, 0.72497043323812], "xyz": [-0.13838664660254776, 3.488347792668917, 9.487519866646766], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.007569072998040621, 0.7073232895687733, 0.2540302118175998], "xyz": [-0.09905470230042206, 9.256575791583357, 3.324434447047787], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.005091039737760129, 0.735542315576001, 0.7679544090557621], "xyz": [-0.06662525592684765, 9.625871638125911, 10.050041185889857], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.500581636698387, 0.282053638247884, 0.23354029093920137], "xyz": [6.5509957445320754, 3.691170527305984, 3.0562876061738304], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5164511376504562, 0.2542450219488173, 0.7322823716342084], "xyz": [6.758676221767586, 3.32724561739908, 9.583209508066666], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5070828585054892, 0.7526462759552357, 0.2894765820190052], "xyz": [6.636075726038163, 9.849707199490148, 3.7883128703156927], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5049584993998797, 0.7681671971948304, 0.759194223593266], "xyz": [6.608274731274364, 10.052825894898996, 9.9353986711052], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.23144390076130325, -0.013969158032703688, 0.27108986375916067], "xyz": [3.028852634278199, -0.18281113032932955, 3.5476901541677432], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.23763691303939355, 0.005368794424074448, 0.738165301172775], "xyz": [3.109899149182718, 0.07026016706755592, 9.660198042098234], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.27183740458126954, 0.4922892243165773, 0.2451784226567301], "xyz": [3.5574730474772114, 6.442474867531005, 3.2085931359145703], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.26229474722281126, 0.517354969716271, 0.7260213390066484], "xyz": [3.432590504523575, 6.770504462323864, 9.501272826629359], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7421013906143455, -0.03693942541801388, 0.2601101761807642], "xyz": [9.711708731447317, -0.48341769049885064, 3.404001530116787], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7643010257290317, 0.008255972386925511, 0.7375144675771959], "xyz": [10.002230205877868, 0.10804399524210039, 9.651680733826284], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7772298637541588, 0.506173787789148, 0.24188844257318742], "xyz": [10.171426909622285, 6.6241789284778125, 3.165537929836627], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7112919524310897, 0.48918180312926857, 0.7452862206392076], "xyz": [9.308512761732706, 6.401808767374411, 9.753387863102121], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.2597626037064264, 0.2654750359385809, -0.013817874624074463], "xyz": [3.3994529297819422, 3.47421020511987, -0.1808313194583497], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.2856911389734074, 0.26676074190617316, 0.4824379442736103], "xyz": [3.738773655400741, 3.4910359408339655, 6.313553451105666], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25533084923273663, 0.7324121579095495, -0.027083622475517065], "xyz": [3.341455587151802, 9.58490799094164, -0.3544370839366775], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.28778742812355695, 0.7210962747120893, 0.49605964343217374], "xyz": [3.766207305169665, 9.436819652821379, 6.4918174677595815], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7756092046801939, 0.26967412576303745, -0.009461508706947064], "xyz": [10.150217720314211, 3.529162719463694, -0.1238205693777962], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.767460332714889, 0.2433936502088358, 0.5342582586445987], "xyz": [10.043575323442562, 3.1852362329561856, 6.991713882965858], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7659806984052299, 0.759274182362689, 0.008442629968716076], "xyz": [10.024211692507214, 9.936445072970201, 0.11048673971043455], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7451092426178079, 0.7523250438453772, 0.49373546069156204], "xyz": [9.751071792794963, 9.84550330939428, 6.461401427443592], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11875684857742955, 0.1507937162676332, 0.3762100856753475], "xyz": [1.5541433257439505, 1.9734023806523413, 4.923374110493397], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.08750097632244412, 0.08750097632244412, 0.9124990236775559], "xyz": [1.1451049769053194, 1.1451049769053194, 11.94166302309468], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.13123594298367203, 0.6328551962041555, 0.42025981357204256], "xyz": [1.7174543390885435, 8.282029130318264, 5.499842679940572], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11288840793462648, 0.618295165804068, 0.8473039496781265], "xyz": [1.4773444045298159, 8.09148539039937, 11.088470214921315], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6315797807618615, 0.12259391843436342, 0.3700339946167043], "xyz": [8.265338064321345, 1.6043581687614372, 4.842549039662058], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6283847628206453, 0.11043227069263029, 0.8462095332815449], "xyz": [8.22352560576881, 1.4452015062676518, 11.074147841443857], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6231233285696897, 0.6431785472589133, 0.3803636878306193], "xyz": [8.1546704363793, 8.417128430554435, 4.977731338263738], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6132648937495118, 0.644358161160185, 0.8924510477913717], "xyz": [8.02565538704451, 8.43256576400995, 11.679299813802594], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11393398945863639, 0.36818442425335673, 0.1518017271048436], "xyz": [1.49102768735962, 4.818344141417253, 1.9865939846203997], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.12714363634965842, 0.36670784058284467, 0.6027871928487836], "xyz": [1.6638992715843466, 4.799020433488673, 7.888536146183289], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.08750097632244412, 0.9124990236775559, 0.08750097632244412], "xyz": [1.1451049769053194, 11.94166302309468, 1.1451049769053194], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.12737278928913331, 0.8919108640973763, 0.6439967743041993], "xyz": [1.6668981429397725, 11.672230555121892, 8.427836378067418], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6141821228674019, 0.3715100179204548, 0.11272616402540049], "xyz": [8.037658951713183, 4.861865414200834, 1.4752211561303623], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6173411386799441, 0.387069786365467, 0.5681915310744818], "xyz": [8.079000258760255, 5.06549249397443, 7.435790746736534], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.608224540597382, 0.8839467110079551, 0.11295790115121591], "xyz": [7.959693454704519, 11.568005531324154, 1.4782538461328956], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6742054626232512, 0.9108186394979915, 0.6062918720004151], "xyz": [8.82317047368316, 11.91967222518585, 7.934401069155128], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.36063832552584496, 0.12770918212328716, 0.16147519869745774], "xyz": [4.71959009806521, 1.6713004379172065, 2.1131884631075315], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.37525204242498533, 0.11394353706788272, 0.5933896303873651], "xyz": [4.910836420741941, 1.4911526347067814, 7.765552426485197], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.4060941606888188, 0.6079088993238952, 0.11140969169113184], "xyz": [5.314460067089292, 7.9555627305871734, 1.4579927881133699], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.3803128561907225, 0.6426243580437953, 0.6395882828468022], "xyz": [4.977066116385349, 8.409875884868082, 8.37014347313448], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8947428748509965, 0.13988220655203906, 0.0971153956045202], "xyz": [11.709292422828025, 1.830605984474615, 1.2709266515045756], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.9050213842460662, 0.12764676957276155, 0.5948089700532792], "xyz": [11.843804890667123, 1.6704836593481895, 7.784126995406211], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.895865344260897, 0.6243931913490971, 0.10527059970447229], "xyz": [11.72398191958249, 8.17128883596524, 1.3776519155532974], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8997301454086939, 0.6260280502017525, 0.6286909690625229], "xyz": [11.774559675569842, 8.192683854482688, 8.227532855816413], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.39036318842662027, 0.3750040440301268, 0.36936334792189346], "xyz": [5.108592482679464, 4.907590923284054, 4.833772441957102], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.3840986630527822, 0.3765797318809899, 0.8701975112891386], "xyz": [5.026610092481932, 4.928211584628718, 11.388072944418337], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.3794827130771702, 0.8854032160195859, 0.36748368646509866], "xyz": [4.966202226051492, 11.587066474502205, 4.809173748553486], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.3917242540183349, 0.8543409397301263, 0.878435252439452], "xyz": [5.126404432311016, 11.180561671150144, 11.495878351696541], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8817775378020919, 0.3813543713889261, 0.40317439575351394], "xyz": [11.539618064827206, 4.990696184152713, 5.276249780766422], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8794108581844571, 0.3946822747640026, 0.87570067228848], "xyz": [11.508645877740891, 5.1651153635487566, 11.460091535683366], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8832990018766742, 0.9089615994988091, 0.36272692412143825], "xyz": [11.5595291121916, 11.89536957354983, 4.746923103330866], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8460654184237592, 0.8901079778386413, 0.8694308400251983], "xyz": [11.072261843734662, 11.648636600923439, 11.378039695454884], "label": "Te2-", "properties": {}}], "@version": null}}}}}}, "v_Te_s32": {"defect_type": "vacancy", "defect_site": {"species": [{"element": "Te", "occu": 1}], "abc": [0.125, 0.125, 0.375], "lattice": {"@module": "pymatgen.core.lattice", "@class": "Lattice", "matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true]}, "@module": "pymatgen.core.sites", "@class": "PeriodicSite", "properties": {}, "@version": null}, "defect_supercell_site": {"species": [{"element": "Te", "occu": 1}], "abc": [0.125, 0.125, 0.375], "lattice": {"@module": "pymatgen.core.lattice", "@class": "Lattice", "matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true]}, "@module": "pymatgen.core.sites", "@class": "PeriodicSite", "properties": {}, "@version": null}, "defect_multiplicity": 32, "charges": {"0": {"structures": {"Unperturbed": {"@module": "pymatgen.core.structure", "@class": "Structure", "charge": 2.0, "lattice": {"matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true], "a": 13.086768, "b": 13.086768, "c": 13.086768, "alpha": 90.0, "beta": 90.0, "gamma": 90.0, "volume": 2241.2856479961474}, "sites": [{"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.0, 0.0], "xyz": [0.0, 0.0, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.0, 0.5], "xyz": [0.0, 0.0, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.5, 0.0], "xyz": [0.0, 6.543384, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.5, 0.5], "xyz": [0.0, 6.543384, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.0, 0.0], "xyz": [6.543384, 0.0, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.0, 0.5], "xyz": [6.543384, 0.0, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.5, 0.0], "xyz": [6.543384, 6.543384, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.5, 0.5], "xyz": [6.543384, 6.543384, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.25, 0.25], "xyz": [0.0, 3.271692, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.25, 0.75], "xyz": [0.0, 3.271692, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.75, 0.25], "xyz": [0.0, 9.815076, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.0, 0.75, 0.75], "xyz": [0.0, 9.815076, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.25, 0.25], "xyz": [6.543384, 3.271692, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.25, 0.75], "xyz": [6.543384, 3.271692, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.75, 0.25], "xyz": [6.543384, 9.815076, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5, 0.75, 0.75], "xyz": [6.543384, 9.815076, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.0, 0.25], "xyz": [3.271692, 0.0, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.0, 0.75], "xyz": [3.271692, 0.0, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.5, 0.25], "xyz": [3.271692, 6.543384, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.5, 0.75], "xyz": [3.271692, 6.543384, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.0, 0.25], "xyz": [9.815076, 0.0, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.0, 0.75], "xyz": [9.815076, 0.0, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.5, 0.25], "xyz": [9.815076, 6.543384, 3.271692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.5, 0.75], "xyz": [9.815076, 6.543384, 9.815076], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.25, 0.0], "xyz": [3.271692, 3.271692, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.25, 0.5], "xyz": [3.271692, 3.271692, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.75, 0.0], "xyz": [3.271692, 9.815076, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25, 0.75, 0.5], "xyz": [3.271692, 9.815076, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.25, 0.0], "xyz": [9.815076, 3.271692, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.25, 0.5], "xyz": [9.815076, 3.271692, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.75, 0.0], "xyz": [9.815076, 9.815076, 0.0], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.75, 0.75, 0.5], "xyz": [9.815076, 9.815076, 6.543384], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.125, 0.8749999999999999], "xyz": [1.635846, 1.635846, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.625, 0.375], "xyz": [1.635846, 8.17923, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.625, 0.8749999999999999], "xyz": [1.635846, 8.17923, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.125, 0.375], "xyz": [8.17923, 1.635846, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.125, 0.8749999999999999], "xyz": [8.17923, 1.635846, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.625, 0.375], "xyz": [8.17923, 8.17923, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.625, 0.8749999999999999], "xyz": [8.17923, 8.17923, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.375, 0.125], "xyz": [1.635846, 4.907538, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.375, 0.625], "xyz": [1.635846, 4.907538, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.8749999999999999, 0.125], "xyz": [1.635846, 11.450921999999998, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.125, 0.8749999999999999, 0.625], "xyz": [1.635846, 11.450921999999998, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.375, 0.125], "xyz": [8.17923, 4.907538, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.375, 0.625], "xyz": [8.17923, 4.907538, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.8749999999999999, 0.125], "xyz": [8.17923, 11.450921999999998, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.625, 0.8749999999999999, 0.625], "xyz": [8.17923, 11.450921999999998, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.125, 0.125], "xyz": [4.907538, 1.635846, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.125, 0.625], "xyz": [4.907538, 1.635846, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.625, 0.125], "xyz": [4.907538, 8.17923, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.625, 0.625], "xyz": [4.907538, 8.17923, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.125, 0.125], "xyz": [11.450921999999998, 1.635846, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.125, 0.625], "xyz": [11.450921999999998, 1.635846, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.625, 0.125], "xyz": [11.450921999999998, 8.17923, 1.635846], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.625, 0.625], "xyz": [11.450921999999998, 8.17923, 8.17923], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.375, 0.375], "xyz": [4.907538, 4.907538, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.375, 0.8749999999999999], "xyz": [4.907538, 4.907538, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.8749999999999999, 0.375], "xyz": [4.907538, 11.450921999999998, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.375, 0.8749999999999999, 0.8749999999999999], "xyz": [4.907538, 11.450921999999998, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.375, 0.375], "xyz": [11.450921999999998, 4.907538, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.375, 0.8749999999999999], "xyz": [11.450921999999998, 4.907538, 11.450921999999998], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.8749999999999999, 0.375], "xyz": [11.450921999999998, 11.450921999999998, 4.907538], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8749999999999999, 0.8749999999999999, 0.8749999999999999], "xyz": [11.450921999999998, 11.450921999999998, 11.450921999999998], "label": "Te2-", "properties": {}}], "@version": null}, "distortions": {"Bond_Distortion_-30.0%": {"@module": "pymatgen.core.structure", "@class": "Structure", "charge": 2.0, "lattice": {"matrix": [[13.086768, 0.0, 0.0], [0.0, 13.086768, 0.0], [0.0, 0.0, 13.086768]], "pbc": [true, true, true], "a": 13.086768, "b": 13.086768, "c": 13.086768, "alpha": 90.0, "beta": 90.0, "gamma": 90.0, "volume": 2241.2856479961474}, "sites": [{"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.01568711948403533, 0.016849917236106522, 0.0013659606570437218], "xyz": [0.20529369327585004, 0.22051095768812726, 0.017876010215858752], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.03749902367755584, 0.03749902367755584, 0.4625009763224441], "xyz": [0.49074102309468004, 0.49074102309468004, 6.052642976905319], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.027150011566868578, 0.4957262246093266, 0.010022476367907264], "xyz": [0.35530590257292555, 6.4874540929781475, 0.13116182301228502], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.0014495703722098626, 0.498073152435215, 0.47811921679604913], "xyz": [-0.01897019116078412, 6.518167792948294, 6.257035266551598], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4722094233480639, 0.020050629436408757, -0.018269223047381645], "xyz": [6.179695170769895, 0.26239793568825215, -0.2390850835613366], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4885585281400621, -0.005387872873882472, 0.481767300464419], "xyz": [6.393652112190464, -0.07050984231399317, 6.304776891164144], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5056282073490231, 0.5186277985499153, -0.02697461158586072], "xyz": [6.617039043832561, 6.787161677973477, -0.3530104837142713], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.4801688502186689, 0.5257243960661042, 0.5248055377787585], "xyz": [6.283858343638469, 6.880033203257218, 6.868008318025847], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.03749902367755584, 0.21250097632244416, 0.2874990236775558], "xyz": [0.49074102309468004, 2.78095097690532, 3.7624330230946796], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.034831636895078275, 0.27289443167148103, 0.7387460475061252], "xyz": [-0.4558335511061297, 3.5713061157765242, 9.667798134629638], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.010574547252808927, 0.7665553322767635, 0.22497043323812005], "xyz": [-0.13838664660254776, 10.031731792668916, 2.9441358666467656], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [-0.007569072998040621, 0.7073232895687733, 0.7540302118175998], "xyz": [-0.09905470230042206, 9.256575791583357, 9.867818447047785], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.49490896026223985, 0.23554231557600105, 0.267954409055762], "xyz": [6.476758744073152, 3.082487638125912, 3.506657185889856], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.500581636698387, 0.282053638247884, 0.7335402909392014], "xyz": [6.5509957445320754, 3.691170527305984, 9.59967160617383], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5164511376504562, 0.7542450219488174, 0.23228237163420845], "xyz": [6.758676221767586, 9.87062961739908, 3.0398255080666665], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.5070828585054892, 0.7526462759552357, 0.7894765820190052], "xyz": [6.636075726038163, 9.849707199490148, 10.331696870315692], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.2549584993998797, 0.018167197194830374, 0.25919422359326616], "xyz": [3.3365827312743646, 0.2377498948989959, 3.3920146711052004], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.23144390076130325, -0.013969158032703688, 0.7710898637591608], "xyz": [3.028852634278199, -0.18281113032932955, 10.091074154167744], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.23763691303939355, 0.5053687944240745, 0.23816530117277496], "xyz": [3.109899149182718, 6.613644167067555, 3.1168140420982335], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.27183740458126954, 0.4922892243165773, 0.7451784226567301], "xyz": [3.5574730474772114, 6.442474867531005, 9.751977135914569], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7622947472228112, 0.017354969716271013, 0.22602133900664856], "xyz": [9.975974504523574, 0.22712046232386454, 2.95788882662936], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7421013906143455, -0.03693942541801388, 0.7601101761807642], "xyz": [9.711708731447317, -0.48341769049885064, 9.947385530116787], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7643010257290317, 0.5082559723869255, 0.23751446757719594], "xyz": [10.002230205877868, 6.6514279952421, 3.1082967338262852], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7772298637541588, 0.506173787789148, 0.7418884425731875], "xyz": [10.171426909622285, 6.6241789284778125, 9.708921929836627], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.21129195243108964, 0.23918180312926857, -0.004713779360792357], "xyz": [2.765128761732706, 3.1301167673744117, -0.061688136897877874], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.2597626037064264, 0.2654750359385809, 0.4861821253759255], "xyz": [3.3994529297819422, 3.47421020511987, 6.362552680541649], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.2856911389734074, 0.7667607419061732, -0.0175620557263897], "xyz": [3.738773655400741, 10.034419940833965, -0.22983054889433344], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.25533084923273663, 0.7324121579095495, 0.47291637752448296], "xyz": [3.341455587151802, 9.58490799094164, 6.188946916063323], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.787787428123557, 0.22109627471208937, -0.003940356567826238], "xyz": [10.309591305169665, 2.8934356528213803, -0.05156653224041824], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7756092046801939, 0.26967412576303745, 0.49053849129305294], "xyz": [10.150217720314211, 3.529162719463694, 6.419563430622204], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.767460332714889, 0.7433936502088357, 0.03425825864459876], "xyz": [10.043575323442562, 9.728620232956185, 0.44832988296585846], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Cd", "oxidation_state": 2.0, "occu": 1}], "abc": [0.7659806984052299, 0.759274182362689, 0.5084426299687161], "xyz": [10.024211692507214, 9.936445072970201, 6.653870739710435], "label": "Cd2+", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.12010924261780784, 0.12732504384537732, 0.8687354606915619], "xyz": [1.5718417927949637, 1.6662733093942808, 11.368939427443589], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11875684857742955, 0.6507937162676332, 0.3762100856753475], "xyz": [1.5541433257439505, 8.516786380652341, 4.923374110493397], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.13123594298367203, 0.6328551962041555, 0.9202598135720425], "xyz": [1.7174543390885435, 8.282029130318264, 12.04322667994057], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6128884079346265, 0.11829516580406792, 0.3473039496781265], "xyz": [8.020728404529816, 1.5481013903993701, 4.545086214921316], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6315797807618615, 0.12259391843436342, 0.8700339946167042], "xyz": [8.265338064321345, 1.6043581687614372, 11.385933039662056], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6283847628206453, 0.6104322706926303, 0.3462095332815449], "xyz": [8.22352560576881, 7.988585506267651, 4.530763841443857], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6231233285696897, 0.6431785472589133, 0.8803636878306192], "xyz": [8.1546704363793, 8.417128430554435, 11.521115338263737], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11326489374951178, 0.3943581611601848, 0.14245104779137183], "xyz": [1.4822713870445106, 5.160873764009949, 1.8642238138025955], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.11393398945863639, 0.36818442425335673, 0.6518017271048436], "xyz": [1.49102768735962, 4.818344141417253, 8.5299779846204], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.12714363634965842, 0.8667078405828446, 0.10278719284878346], "xyz": [1.6638992715843466, 11.342404433488671, 1.345152146183288], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.12737278928913331, 0.8919108640973763, 0.6439967743041993], "xyz": [1.6668981429397725, 11.672230555121892, 8.427836378067418], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6141821228674019, 0.3715100179204548, 0.11272616402540049], "xyz": [8.037658951713183, 4.861865414200834, 1.4752211561303623], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6173411386799441, 0.387069786365467, 0.5681915310744818], "xyz": [8.079000258760255, 5.06549249397443, 7.435790746736534], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.608224540597382, 0.8839467110079551, 0.11295790115121591], "xyz": [7.959693454704519, 11.568005531324154, 1.4782538461328956], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.6742054626232512, 0.9108186394979915, 0.6062918720004151], "xyz": [8.82317047368316, 11.91967222518585, 7.934401069155128], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.36063832552584496, 0.12770918212328716, 0.16147519869745774], "xyz": [4.71959009806521, 1.6713004379172065, 2.1131884631075315], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.37525204242498533, 0.11394353706788272, 0.5933896303873651], "xyz": [4.910836420741941, 1.4911526347067814, 7.765552426485197], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.4060941606888188, 0.6079088993238952, 0.11140969169113184], "xyz": [5.314460067089292, 7.9555627305871734, 1.4579927881133699], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.369165924514035, 0.6150467855183058, 0.6518612689124705], "xyz": [4.831188807620689, 8.048974591223828, 8.530757194443114], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8803128561907224, 0.14262435804379522, 0.13958828284680208], "xyz": [11.520450116385348, 1.8664918848680818, 1.8267594731344783], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8947428748509965, 0.13988220655203906, 0.5971153956045203], "xyz": [11.709292422828025, 1.830605984474615, 7.814310651504576], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.9050213842460662, 0.6276467695727617, 0.09480897005327915], "xyz": [11.843804890667123, 8.21386765934819, 1.240742995406212], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.895865344260897, 0.6243931913490971, 0.6052705997044724], "xyz": [11.72398191958249, 8.17128883596524, 7.921035915553298], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.39973014540869395, 0.37602805020175234, 0.3786909690625228], "xyz": [5.231175675569842, 4.920991854482685, 4.9558408558164135], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.36627096956773875, 0.37647047428422986, 0.8799247251675606], "xyz": [4.793303203868057, 4.926781755807682, 11.515370735731626], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.3694061068288607, 0.8514102855379397, 0.36722890002230013], "xyz": [4.834332017852516, 11.142208879648772, 4.805839417487037], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.39036318842662027, 0.8750040440301268, 0.8693633479218933], "xyz": [5.108592482679464, 11.450974923284054, 11.3771564419571], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8840986630527821, 0.3765797318809899, 0.3701975112891385], "xyz": [11.56999409248193, 4.928211584628718, 4.844688944418337], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8878406141383686, 0.39518376205924294, 0.8849706124942863], "xyz": [11.61896413820635, 5.1716782114365145, 11.581405092530625], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8794827130771701, 0.8854032160195859, 0.36748368646509866], "xyz": [11.509586226051491, 11.587066474502205, 4.809173748553486], "label": "Te2-", "properties": {}}, {"species": [{"element": "Te", "oxidation_state": -2.0, "occu": 1}], "abc": [0.8917242540183349, 0.8543409397301263, 0.878435252439452], "xyz": [11.669788432311016, 11.180561671150144, 11.495878351696541], "label": "Te2-", "properties": {}}], "@version": null}}}}}}} diff --git a/tests/data/vasp/CdTe/vacancies_dist_metadata.json b/tests/data/vasp/CdTe/vacancies_dist_metadata.json index b084e6bb..d8497171 100644 --- a/tests/data/vasp/CdTe/vacancies_dist_metadata.json +++ b/tests/data/vasp/CdTe/vacancies_dist_metadata.json @@ -4,11 +4,14 @@ "bond_distortions": [ -0.3 ], - "rattle_stdev": 0.25, - "local_rattle": false + "local_rattle": false, + "mc_rattle_parameters": { + "seed": 42, + "stdev": 0.25 + } }, "defects": { - "v_Cd": { + "v_Cd_s0": { "unique_site": [ 0.0, 0.0, @@ -28,15 +31,20 @@ ] ], "distortion_parameters": { + "distortion_increment": null, "bond_distortions": [ -0.3 ], - "rattle_stdev": 0.25 + "local_rattle": false, + "mc_rattle_parameters": { + "seed": 42, + "stdev": 0.25 + } } } } }, - "v_Te": { + "v_Te_s32": { "unique_site": [ 0.125, 0.125, @@ -56,13 +64,18 @@ ] ], "distortion_parameters": { + "distortion_increment": null, "bond_distortions": [ -0.3 ], - "rattle_stdev": 0.25 + "local_rattle": false, + "mc_rattle_parameters": { + "seed": 42, + "stdev": 0.25 + } } } } } } -} \ No newline at end of file +} diff --git a/tests/test_analysis.py b/tests/test_analysis.py index 0d412d3a..1ef810d0 100644 --- a/tests/test_analysis.py +++ b/tests/test_analysis.py @@ -1,4 +1,5 @@ import os +import re import shutil import unittest import warnings @@ -501,7 +502,7 @@ def test_calculate_struct_comparison(self): """Test calculate_struct_comparison() function.""" # V_Cd_0 with defaults (reading from `vac_1_Cd_0` and `distortion_metadata.json`): defect_structures_dict = analysis.get_structures( - defect_species="v_Cd_0", output_path=self.EXAMPLE_RESULTS + defect_species="v_Cd_s0_0", output_path=self.EXAMPLE_RESULTS ) with patch("builtins.print") as mock_print: max_dist_dict = analysis.calculate_struct_comparison(defect_structures_dict, verbose=True) @@ -921,7 +922,7 @@ def test_get_site_magnetizations(self): threshold=0.3, orbital_projections=True, ) - self.assertAlmostEqual( + self.assertEqual( str(w[-1].message), "Could not find defect vac_1_Ti_0 in distortion_metadata.json file. Will not " "include distance between defect and sites with significant magnetization.", @@ -966,6 +967,9 @@ def test_get_site_magnetizations(self): ) # Non existent structure + os.mkdir(f"{self.DATA_DIR}/vasp/vac_1_Ti_0/Bond_Distortion_20.0%") + shutil.copyfile(f"{self.DATA_DIR}/vasp/vac_1_Ti_0/Bond_Distortion_-40.0%/OUTCAR", + f"{self.DATA_DIR}/vasp/vac_1_Ti_0/Bond_Distortion_20.0%/OUTCAR") with warnings.catch_warnings(record=True) as w: mags = analysis.get_site_magnetizations( defect_species="vac_1_Ti_0", @@ -976,11 +980,34 @@ def test_get_site_magnetizations(self): threshold=0.3, defect_site=[0.0, 0.16666666666666669, 0.25], ) - self.assertEqual( - str(w[-1].message), - "Structure for vac_1_Ti_0 either not converged or not found. " - "Skipping magnetisation analysis.", + self.assertTrue(any("Structure for vac_1_Ti_0 either not converged or not found. Skipping " + "magnetisation analysis." in str(warning.message) for warning in w)) + + # ISPIN = 1 OUTCAR: + shutil.copyfile(f"{self.DATA_DIR}/vasp/vac_1_Ti_0/Bond_Distortion_-40.0%/CONTCAR", + f"{self.DATA_DIR}/vasp/vac_1_Ti_0/Bond_Distortion_20.0%/CONTCAR") + with open(f"{self.DATA_DIR}/vasp/vac_1_Ti_0/Bond_Distortion_20.0%/OUTCAR") as f: + outcar_string = f.read() + ispin1_outcar_string = re.sub("ISPIN = 2 spin polarized calculation?", + "ISPIN = 1", outcar_string) + with open(f"{self.DATA_DIR}/vasp/vac_1_Ti_0/Bond_Distortion_20.0%/OUTCAR", "w") as f: + f.write(ispin1_outcar_string) + with warnings.catch_warnings(record=True) as w: + mags = analysis.get_site_magnetizations( + defect_species="vac_1_Ti_0", + output_path=os.path.join(self.DATA_DIR, "vasp"), + distortions=[ + 0.2, + ], + threshold=0.3, + defect_site=[0.0, 0.16666666666666669, 0.25], ) + self.assertTrue(any(f"{self.DATA_DIR}/vasp/vac_1_Ti_0/Bond_Distortion_20.0%/OUTCAR is " + f"from a " + "non-spin-polarised calculation (ISPIN = 1), so magnetization analysis " + "is not possible. Skipping." in str(warning.message) for warning in w)) + if_present_rm(f"{self.DATA_DIR}/vasp/vac_1_Ti_0/Bond_Distortion_20.0%") + # Non existent OUTCAR with warnings.catch_warnings(record=True) as w: mags = analysis.get_site_magnetizations( @@ -992,7 +1019,8 @@ def test_get_site_magnetizations(self): threshold=0.3, defect_site=[0.0, 0.16666666666666669, 0.25], ) - self.assertTrue("OUTCAR file not found in path" in str(w[-1].message)) + self.assertTrue(any("OUTCAR file not found in path" in str(warning.message) for + warning in w)) if __name__ == "__main__": diff --git a/tests/test_cli.py b/tests/test_cli.py index 6329dcdb..926b40ff 100644 --- a/tests/test_cli.py +++ b/tests/test_cli.py @@ -9,12 +9,14 @@ import numpy as np import yaml + # Click from click.testing import CliRunner from monty.serialization import loadfn + # Pymatgen from pymatgen.core.structure import Structure -from pymatgen.io.vasp.inputs import Poscar +from pymatgen.io.vasp.inputs import Poscar, UnknownPotcarWarning from shakenbreak.cli import generate_defect_object, snb from shakenbreak.distortions import rattle @@ -81,6 +83,8 @@ def setUp(self): self.previous_default_rattle_settings_config = os.path.join( os.path.dirname(__file__), "previous_default_rattle_settings.yaml" ) + warnings.filterwarnings("ignore", category=DeprecationWarning) + warnings.filterwarnings("ignore", category=UnknownPotcarWarning) def tearDown(self): os.chdir(os.path.dirname(__file__)) @@ -101,10 +105,12 @@ def tearDown(self): or "Int_Cd" in i or "Wally_McDoodle" in i or "pesky_defects" in i - or "vac_1_Cd_0" in i + or "vac_1_Cd" in i or "v_Cd" in i + or "v_Te" in i or "Cd_i" in i or "_defect_folder" in i + or "Te_Cd" in i ): shutil.rmtree(i) @@ -131,18 +137,18 @@ def tearDown(self): folder = "Bond_Distortion_-60.0%_from_0" for charge in [-1, -2]: if os.path.exists( - os.path.join(self.EXAMPLE_RESULTS, f"v_Cd_{charge}", folder) + os.path.join(self.EXAMPLE_RESULTS, f"v_Cd_s0_{charge}", folder) ): shutil.rmtree( - os.path.join(self.EXAMPLE_RESULTS, f"v_Cd_{charge}", folder) + os.path.join(self.EXAMPLE_RESULTS, f"v_Cd_s0_{charge}", folder) ) folder = "Bond_Distortion_20.0%_from_-1" for charge in [0, -2]: if os.path.exists( - os.path.join(self.EXAMPLE_RESULTS, f"v_Cd_{charge}", folder) + os.path.join(self.EXAMPLE_RESULTS, f"v_Cd_s0_{charge}", folder) ): shutil.rmtree( - os.path.join(self.EXAMPLE_RESULTS, f"v_Cd_{charge}", folder) + os.path.join(self.EXAMPLE_RESULTS, f"v_Cd_s0_{charge}", folder) ) if_present_rm( os.path.join( @@ -170,8 +176,13 @@ def test_generate_defect_object(self): bulk_dict=self.cdte_defect_dict["bulk"], ) self.assertEqual(defect.user_charges, self.Int_Cd_2_dict["charges"]) - self.assertEqual(list(defect.site.frac_coords), list(self.Int_Cd_2_dict["bulk_supercell_site"].frac_coords)) - self.assertEqual(str(defect.as_dict()["@class"].lower()), self.Int_Cd_2_dict["defect_type"]) + self.assertEqual( + list(defect.site.frac_coords), + list(self.Int_Cd_2_dict["bulk_supercell_site"].frac_coords), + ) + self.assertEqual( + str(defect.as_dict()["@class"].lower()), self.Int_Cd_2_dict["defect_type"] + ) # Test vacancy vacancy = self.cdte_defect_dict["vacancies"][0] defect = generate_defect_object( @@ -179,8 +190,13 @@ def test_generate_defect_object(self): bulk_dict=self.cdte_defect_dict["bulk"], ) self.assertEqual(defect.user_charges, vacancy["charges"]) - self.assertEqual(list(defect.site.frac_coords), list(vacancy["bulk_supercell_site"].frac_coords)) - self.assertEqual(str(defect.as_dict()["@class"].lower()), vacancy["defect_type"]) + self.assertEqual( + list(defect.site.frac_coords), + list(vacancy["bulk_supercell_site"].frac_coords), + ) + self.assertEqual( + str(defect.as_dict()["@class"].lower()), vacancy["defect_type"] + ) # Test substitution subs = self.cdte_defect_dict["substitutions"][0] defect = generate_defect_object( @@ -188,11 +204,15 @@ def test_generate_defect_object(self): bulk_dict=self.cdte_defect_dict["bulk"], ) self.assertEqual(defect.user_charges, subs["charges"]) - self.assertEqual(list(defect.site.frac_coords), list(subs["bulk_supercell_site"].frac_coords)) + self.assertEqual( + list(defect.site.frac_coords), list(subs["bulk_supercell_site"].frac_coords) + ) self.assertEqual(str(defect.as_dict()["@class"].lower()), "substitution") - def test_snb_generate(self): + """Implicitly, the `snb-generate` tests also test the functionality of + `input.identify_defect()` + """ runner = CliRunner() result = runner.invoke( snb, @@ -212,7 +232,7 @@ def test_snb_generate(self): self.assertEqual(result.exit_code, 0) self.assertIn( f"Auto site-matching identified {self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR " - f"to be type Vacancy with site Cd2+ at [0.000, 0.000, 0.000]", + f"to be type Vacancy with site Cd at [0.000, 0.000, 0.000]", result.output, ) self.assertIn( @@ -222,13 +242,12 @@ def test_snb_generate(self): result.output, ) self.assertIn( - "Applying ShakeNBreak...", "Applying ShakeNBreak... Will apply the following bond distortions: [" "'-0.6', '-0.5', '-0.4', '-0.3', '-0.2', '-0.1', '0.0', '0.1', '0.2', " "'0.3', '0.4', '0.5', '0.6']. Then, will rattle with a std dev of 0.25 Å", result.output, ) - defect_name = "v_Cd" + defect_name = "v_Cd_s0" self.assertIn(f"Defect: {defect_name}", result.output) self.assertIn("Number of missing electrons in neutral state: 2", result.output) self.assertIn( @@ -267,7 +286,6 @@ def test_snb_generate(self): # Test recognises distortion_metadata.json: if_present_rm(f"{defect_name}_0") # but distortion_metadata.json still present - runner = CliRunner() result = runner.invoke( snb, [ @@ -285,7 +303,7 @@ def test_snb_generate(self): self.assertNotIn( "Auto site-matching identified" f" {self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR " - f"to be type Vacancy with site Cd2+ at [0.000, 0.000, 0.000]", + f"to be type Vacancy with site Cd at [0.000, 0.000, 0.000]", result.output, ) self.assertIn( @@ -328,6 +346,7 @@ def test_snb_generate(self): # test defect_index option: self.tearDown() + defect_name = "v_Cd_s4" result = runner.invoke( snb, [ @@ -342,7 +361,6 @@ def test_snb_generate(self): "4", "-v", ], - catch_exceptions=False, ) self.assertEqual(result.exit_code, 0) self.assertNotIn("Auto site-matching", result.output) @@ -373,8 +391,9 @@ def test_snb_generate(self): 0.5, 0.6, ], - "rattle_stdev": 0.28333683853583164, "local_rattle": False, + "mc_rattle_parameters": + {"stdev": 0.28333683853583164} }, "defects": { defect_name: { @@ -387,6 +406,7 @@ def test_snb_generate(self): [46, "Te"], ], "distortion_parameters": { + "distortion_increment": 0.1, "bond_distortions": [ -0.6, -0.5, @@ -402,7 +422,9 @@ def test_snb_generate(self): 0.5, 0.6, ], - "rattle_stdev": 0.28333683853583164, + "local_rattle": False, + "mc_rattle_parameters": + {"stdev": 0.28333683853583164,} }, }, }, @@ -455,7 +477,7 @@ def test_snb_generate(self): + " Distorted Neighbour Distances:\n\t[(1.09, 11, 'Cd'), (1.09, 23, 'Cd')]", result.output, ) - defect_name = "Cd_i" + defect_name = "Cd_i_m128" self.assertEqual( Structure.from_file(f"{defect_name}_0/Bond_Distortion_-60.0%/POSCAR"), self.Int_Cd_2_minus0pt6_struc_rattled, @@ -480,7 +502,6 @@ def test_snb_generate(self): 0.85, # 0.8125, "-v", ], - catch_exceptions=False, ) self.assertEqual(result.exit_code, 0) if w: @@ -579,7 +600,7 @@ def test_snb_generate(self): self.assertNotIn("Coordinates", str(w[0].message)) self.assertIn("--Distortion -60.0%", result.output) self.assertIn( - f"\tDefect Site Index / Frac Coords: [0.01568712 0.01684992 0.00136596]\n" #[0.015687 0.01685 0.001366]\n" # rattled position + f"\tDefect Site Index / Frac Coords: [0.016 0.017 0.001]\n" # rattled position + " Original Neighbour Distances: [(2.33, 42, 'Te'), (2.73, 33, 'Te')]\n" + " Distorted Neighbour Distances:\n\t[(0.93, 42, 'Te'), (1.09, 33, 'Te')]", result.output, @@ -607,7 +628,7 @@ def test_snb_generate(self): ], catch_exceptions=False, ) - defect_name = "v_Cd" + defect_name = "v_Cd_s0" self.assertEqual(result.exit_code, 0) if w: # Check no problems in identifying the defect site @@ -638,8 +659,9 @@ def test_snb_generate(self): 0.5, 0.6, ], - "rattle_stdev": 0.28333683853583164, "local_rattle": False, + "mc_rattle_parameters": + {"stdev": 0.28333683853583164} }, "defects": { defect_name: { @@ -657,6 +679,7 @@ def test_snb_generate(self): [42, "Te"], ], "distortion_parameters": { + "distortion_increment": 0.1, "bond_distortions": [ -0.6, -0.5, @@ -672,7 +695,9 @@ def test_snb_generate(self): 0.5, 0.6, ], - "rattle_stdev": 0.28333683853583164, + "local_rattle": False, + "mc_rattle_parameters": + {"stdev": 0.28333683853583164} }, }, }, @@ -684,6 +709,128 @@ def test_snb_generate(self): metadata = json.load(metadata_file) np.testing.assert_equal(metadata, spec_coords_V_Cd_dict) + # test defect ID with tricky DX centre defect + result = runner.invoke( + snb, + [ + "generate", + "-d", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_as_1_Te_on_Cd_-2_DX_Relaxed_CONTCAR", + "-b", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", + "-c 0", + "-v", + ], + catch_exceptions=False, + ) + self.assertEqual(result.exit_code, 0) + self.assertIn( + f"Auto site-matching identified" + f" {self.VASP_CDTE_DATA_DIR}/CdTe_as_1_Te_on_Cd_-2_DX_Relaxed_CONTCAR " + f"to be type Substitution with site Te at [0.000, 0.000, 0.000]", + result.output, + ) + self.assertIn( + "Oxidation states were not explicitly set, thus have been guessed as {" + "'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " + "oxidation_states", + result.output, + ) + self.assertIn( + "Applying ShakeNBreak... Will apply the following bond distortions: [" + "'-0.6', '-0.5', '-0.4', '-0.3', '-0.2', '-0.1', '0.0', '0.1', '0.2', " + "'0.3', '0.4', '0.5', '0.6']. Then, will rattle with a std dev of 0.28 Å", + result.output, + ) + defect_name = "Te_Cd_s0" + self.assertIn(f"Defect: {defect_name}", result.output) + self.assertIn("Number of missing electrons in neutral state: 4", result.output) + self.assertIn( + f"Defect {defect_name} in charge state: 0. Number of distorted neighbours: 4", + result.output, + ) + self.assertIn("--Distortion -60.0%", result.output) + self.assertIn( + "\tDefect Site Index / Frac Coords: 1\n" + + " Original Neighbour Distances: [(2.83, 34, 'Te'), (2.83, 43, 'Te'), " + "(2.83, 53, 'Te'), (2.83, 64, 'Te')]\n" + + " Distorted Neighbour Distances:\n\t[(1.13, 34, 'Te'), (1.13, 43, 'Te'), " + "(1.13, 53, 'Te'), (1.13, 64, 'Te')]", + result.output, + ) + + # test padding functionality: + # default padding = 1 + result = runner.invoke( + snb, + [ + "generate", + "-d", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", + "-b", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", + ], + catch_exceptions=False, + ) + defect_name = "v_Cd_s0" + self.assertIn(f"Defect: {defect_name}", result.output) + self.assertIn("Number of missing electrons in neutral state: 2", result.output) + self.assertIn( + f"Defect {defect_name} in charge state: 0. Number of distorted neighbours: 2", + result.output, + ) + self.assertIn( + f"Defect {defect_name} in charge state: -3. Number of distorted neighbours: 1", + result.output, + ) + self.assertNotIn(f"Defect {defect_name} in charge state: -4.", result.output) + self.assertNotIn(f"Defect {defect_name} in charge state: +2.", result.output) + + # check if correct files were created: + self.assertTrue(os.path.exists(f"{defect_name}_-3")) + self.assertFalse(os.path.exists(f"{defect_name}_+2")) + self.assertFalse(os.path.exists(f"{defect_name}_-4")) + + # check print info message: + self.assertIn( + "Defect charge states will be set to the range: 0 – {Defect oxidation " + "state}, with a `padding = 1` on either side of this range.", + result.output, + ) + + # test padding explicitly set + result = runner.invoke( + snb, + [ + "generate", + "-d", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", + "-b", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", + "-p", + "4", + ], + catch_exceptions=False, + ) + self.assertIn( + f"Defect {defect_name} in charge state: -6. Number of distorted neighbours: 4", + result.output, + ) + self.assertNotIn(f"Defect {defect_name} in charge state: -7.", result.output) + self.assertNotIn(f"Defect {defect_name} in charge state: +5.", result.output) + + # check if correct files were created: + self.assertTrue(os.path.exists(f"{defect_name}_-6")) + self.assertFalse(os.path.exists(f"{defect_name}_+5")) + self.assertFalse(os.path.exists(f"{defect_name}_-7")) + + # check print info message: + self.assertIn( + "Defect charge states will be set to the range: 0 – {Defect oxidation " + "state}, with a `padding = 4` on either side of this range.", + result.output, + ) + def test_snb_generate_config(self): # test config file: test_yml = """ @@ -692,7 +839,8 @@ def test_snb_generate_config(self): d_min: 2.1250262890187375 # 0.75 * 2.8333683853583165 nbr_cutoff: 3.4 n_iter: 3 -active_atoms: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30] # np.arange(0,31) +active_atoms: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, +23, 24, 25, 26, 27, 28, 29, 30] # np.arange(0,31) width: 0.3 max_attempts: 10000 max_disp: 1.0 @@ -714,9 +862,8 @@ def test_snb_generate_config(self): "--config", "test_config.yml", ], - catch_exceptions=False, ) - defect_name = "v_Cd" + defect_name = "v_Cd_s0" self.assertEqual(result.exit_code, 0) V_Cd_kwarged_POSCAR = Poscar.from_file( f"{defect_name}_0/Bond_Distortion_-50.0%/POSCAR" @@ -732,7 +879,6 @@ def test_snb_generate_config(self): """ with open("test_config.yml", "w+") as fp: fp.write(test_yml) - runner = CliRunner() result = runner.invoke( snb, [ @@ -745,7 +891,6 @@ def test_snb_generate_config(self): "--config", "test_config.yml", ], - catch_exceptions=False, ) self.assertEqual(result.exit_code, 0) self.assertNotIn("Auto site-matching identified", result.output) @@ -756,7 +901,7 @@ def test_snb_generate_config(self): "'0.3', '0.4', '0.5', '0.6']. Then, will rattle with a std dev of 0.28 Å", result.output, ) - defect_name = "v_Cd" + defect_name = "v_Cd_s0" self.assertIn(f"Defect: {defect_name}", result.output) self.assertIn("Number of missing electrons in neutral state: 3", result.output) self.assertIn( @@ -785,7 +930,6 @@ def test_snb_generate_config(self): with open("test_config.yml", "w+") as fp: fp.write(test_yml) - runner = CliRunner() result = runner.invoke( snb, [ @@ -799,7 +943,6 @@ def test_snb_generate_config(self): "--config", "test_config.yml", ], - catch_exceptions=False, ) defect_name = "Int_Cd_2" self.assertEqual(result.exit_code, 0) @@ -823,8 +966,9 @@ def test_snb_generate_config(self): "distortion_parameters": { "distortion_increment": 0.25, "bond_distortions": [-0.5, -0.25, 0.0, 0.25, 0.5], - "rattle_stdev": 0.28333683853583164, "local_rattle": False, + "mc_rattle_parameters": + {"stdev": 0.28333683853583164, } }, "defects": { defect_name: { @@ -841,6 +985,7 @@ def test_snb_generate_config(self): [2, "Cd"], ], "distortion_parameters": { + "distortion_increment": 0.25, "bond_distortions": [ -0.5, -0.25, @@ -848,7 +993,9 @@ def test_snb_generate_config(self): 0.25, 0.5, ], - "rattle_stdev": 0.28333683853583164, + "local_rattle": False, + "mc_rattle_parameters": + {"stdev": 0.28333683853583164} }, }, }, @@ -872,7 +1019,6 @@ def test_snb_generate_config(self): with open("test_config.yml", "w+") as fp: fp.write(test_yml) - runner = CliRunner() result = runner.invoke( snb, [ @@ -886,7 +1032,6 @@ def test_snb_generate_config(self): "--config", "test_config.yml", ], - catch_exceptions=False, ) self.assertEqual(result.exit_code, 0) self.assertNotIn("Auto site-matching identified", result.output) @@ -927,7 +1072,6 @@ def test_snb_generate_config(self): with open("test_config.yml", "w+") as fp: fp.write(test_yml) - runner = CliRunner() result = runner.invoke( snb, [ @@ -939,9 +1083,8 @@ def test_snb_generate_config(self): "--config", "test_config.yml", ], - catch_exceptions=False, ) - defect_name = "v_Cd" + defect_name = "v_Cd_s0" self.assertEqual(result.exit_code, 0) self.assertIn( f"Defect {defect_name} in charge state: -7. Number of distorted neighbours: 3", @@ -974,7 +1117,6 @@ def test_snb_generate_config(self): with open("test_config.yml", "w+") as fp: fp.write(test_yml) - runner = CliRunner() result = runner.invoke( snb, [ @@ -990,7 +1132,6 @@ def test_snb_generate_config(self): "--config", "test_config.yml", ], - catch_exceptions=False, ) self.assertEqual(result.exit_code, 0) self.assertIn("Defect vac_1_Cd in charge state: 0", result.output) @@ -998,9 +1139,11 @@ def test_snb_generate_config(self): # test parsed defects json parsed_defects_dict = loadfn("parsed_defects_dict.json") vac = generate_defect_object( - self.cdte_defect_dict["vacancies"][0], - self.cdte_defect_dict["bulk"], - charges=[0,], # CLI charge + self.cdte_defect_dict["vacancies"][0], + self.cdte_defect_dict["bulk"], + charges=[ + 0, + ], # CLI charge ) # Vacancy object self.assertEqual( parsed_defects_dict.defect_site_index, @@ -1025,25 +1168,32 @@ def test_snb_generate_config(self): nonsense_key: nonsense_value""" with open("test_config.yml", "w") as fp: fp.write(test_yml) - runner = CliRunner() - result = runner.invoke( - snb, - [ - "generate", - "-d", - f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", - "-b", - f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", - "-c 0", - "--config", - "test_config.yml", - "--name", - "vac_1_Cd", # to match saved json - ], - catch_exceptions=False, - ) + + with warnings.catch_warnings(record=True) as w: + result = runner.invoke( + snb, + [ + "generate", + "-d", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", + "-b", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", + "-c 0", + "--config", + "test_config.yml", + "--name", + "vac_1_Cd", # to match saved json + ], + ) self.assertEqual(result.exit_code, 0) self.assertIn("Defect vac_1_Cd in charge state: 0", result.output) + self.assertNotIn("Defect vac_1_Cd in charge state: -1", result.output) + self.assertEqual(w[0].category, UserWarning) + self.assertEqual( + "Defect charges were specified using the CLI option, but `charges` " + "was also specified in the `--config` file – this will be ignored!", + str(w[0].message) + ) self.tearDown() def test_snb_generate_all(self): @@ -1052,8 +1202,9 @@ def test_snb_generate_all(self): # Also test local rattle parameter # Create a folder for defect files / directories defects_dir = "pesky_defects" - defect_name = "vac_1_Cd" os.mkdir(defects_dir) + runner = CliRunner() + defect_name = "vac_1_Cd" os.mkdir(f"{defects_dir}/{defect_name}") # non-standard defect name shutil.copyfile( f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", @@ -1066,8 +1217,8 @@ def test_snb_generate_all(self): seed: 42""" # previous default with open("test_config.yml", "w+") as fp: fp.write(test_yml) + with warnings.catch_warnings(record=True) as w: - runner = CliRunner() result = runner.invoke( snb, [ @@ -1086,12 +1237,6 @@ def test_snb_generate_all(self): self.assertEqual(result.exit_code, 0) self.assertIn("Auto site-matching identified", result.output) self.assertIn("Oxidation states were not explicitly set", result.output) - self.assertEqual(w[0].category, UserWarning) - self.assertEqual( - f"No charge (range) set for defect {defect_name} in config file," - " assuming default range of +/-2", - str(w[0].message), - ) self.assertIn( "Applying ShakeNBreak... Will apply the following bond distortions: ['0.3']." " Then, will rattle with a std dev of 0.25 Å", @@ -1137,18 +1282,8 @@ def test_snb_generate_all(self): + " Distorted Neighbour Distances:\n\t[(3.68, 33, 'Te'), (3.68, 42, 'Te'), (3.68, 52, 'Te')]", result.output, ) - self.assertIn( - f"Defect {defect_name} in charge state: +2. Number of distorted neighbours: 4", - result.output, - ) - self.assertIn("--Distortion 30.0%", result.output) - self.assertIn( - "\tDefect Site Index / Frac Coords: [0. 0. 0.]\n" - + " Original Neighbour Distances: [(2.83, 33, 'Te'), (2.83, 42, 'Te'), (2.83, 52, 'Te'), (2.83, 63, 'Te')]\n" - + " Distorted Neighbour Distances:\n\t[(3.68, 33, 'Te'), (3.68, 42, 'Te'), (3.68, 52, 'Te'), (3.68, 63, 'Te')]", - result.output, - ) - for charge in range(-1, 3): + self.assertNotIn(f"Defect {defect_name} in charge state: +2.", result.output) # old default + for charge in [1,] + list(range(-1, 2)): for dist in ["Unperturbed", "Bond_Distortion_30.0%"]: self.assertTrue(os.path.exists(f"{defect_name}_{charge}/{dist}/POSCAR")) for dist in ["Unperturbed", "Rattled"]: @@ -1325,7 +1460,6 @@ def test_snb_generate_all(self): with open("test_config.yml", "w") as fp: fp.write(test_yml) with warnings.catch_warnings(record=True) as w: - runner = CliRunner() result = runner.invoke( snb, [ @@ -1350,12 +1484,6 @@ def test_snb_generate_all(self): f"Will parse defect name from folders/files.", str(w[0].message), ) # Defect name not parsed from config - self.assertEqual(w[1].category, UserWarning) - self.assertEqual( - f"No charge (range) set for defect {defect_name} in config file," - " assuming default range of +/-2", - str(w[1].message), - ) self.assertIn( "Applying ShakeNBreak... Will apply the following bond distortions: ['0.3']. Then, " "will rattle with a std dev of 0.28 Å", @@ -1377,7 +1505,7 @@ def test_snb_generate_all(self): self.assertTrue(os.path.exists(f"{defect_name}_0/{dist}/POSCAR")) self.tearDown() - # Test wrong folder defect name + # Test wrong folder defect name -> named according to defect object defects_dir = "pesky_defects" defect_name = "Wally_McDoodle" os.mkdir(defects_dir) @@ -1386,17 +1514,74 @@ def test_snb_generate_all(self): f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", f"{defects_dir}/{defect_name}/POSCAR", ) - right_defect_name = "Vac_Cd" test_yml = f""" defects: - {right_defect_name}: + V_Cd: charges: [0,] defect_coords: [0.0, 0.0, 0.0] bond_distortions: [0.3,] """ with open("test_config.yml", "w") as fp: fp.write(test_yml) - runner = CliRunner() + with warnings.catch_warnings(record=True) as w: + result = runner.invoke( + snb, + [ + "generate_all", + "-d", + f"{defects_dir}/", + "-b", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", + "-v", + "--config", + "test_config.yml", + ], + catch_exceptions=False, + ) + # Test outputs + self.assertEqual(result.exit_code, 0) + self.assertIn("Auto site-matching identified", result.output) + self.assertIn("Oxidation states were not explicitly set", result.output) + self.assertEqual(w[0].category, UserWarning) + self.assertEqual( + f"Defect {defect_name} not found in config file test_config.yml. " + f"Will parse defect name from folders/files.", + str(w[0].message), + ) # Defect name not parsed from config + self.assertIn( + "Applying ShakeNBreak... Will apply the following bond distortions: ['0.3']. Then, " + "will rattle with a std dev of 0.28 Å", + result.output, # test auto-determined stdev and bond length + ) + self.assertIn( + f"Defect v_Cd_s0 in charge state: 0. Number of distorted neighbours: 2", + result.output, + ) + # Not only neutral charge state because auto-determined defect name doesn't match config + self.assertIn( + f"Defect v_Cd_s0 in charge state: -2. Number of distorted neighbours: 0", + result.output, + ) + self.assertIn("--Distortion 30.0%", result.output) + self.assertIn( + "\tDefect Site Index / Frac Coords: [0. 0. 0.]\n" + + " Original Neighbour Distances: [(2.83, 33, 'Te'), (2.83, 42, 'Te')]\n" + + " Distorted Neighbour Distances:\n\t[(3.68, 33, 'Te'), (3.68, 42, 'Te')]", + result.output, + ) + for dist in ["Unperturbed", "Bond_Distortion_30.0%"]: + self.assertTrue(os.path.exists(f"v_Cd_s0_0/{dist}/POSCAR")) + self.assertTrue(os.path.exists(f"v_Cd_s0_-1/{dist}/POSCAR")) + # The input_file option is tested in local test, as INCAR + # not written in Github Actions + + # test padding + defect_name = "Vac_Cd" + os.mkdir(f"{defects_dir}/{defect_name}") # non-standard defect name + shutil.copyfile( + f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", + f"{defects_dir}/{defect_name}_POSCAR", + ) result = runner.invoke( snb, [ @@ -1405,20 +1590,28 @@ def test_snb_generate_all(self): f"{defects_dir}/", "-b", f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", - "-v", - "--config", - "test_config.yml", + "-p", + "4", ], - catch_exceptions=True, ) - # Test outputs - self.assertIsInstance(result.exception, ValueError) self.assertIn( - "Error in defect name parsing; could not parse defect name", - str(result.exception), + f"Defect {defect_name} in charge state: -6. Number of distorted neighbours: 4", + result.output, + ) + self.assertNotIn(f"Defect {defect_name} in charge state: -7.", result.output) + self.assertNotIn(f"Defect {defect_name} in charge state: +5.", result.output) + + # check if correct files were created: + self.assertTrue(os.path.exists(f"{defect_name}_-6")) + self.assertFalse(os.path.exists(f"{defect_name}_+5")) + self.assertFalse(os.path.exists(f"{defect_name}_-7")) + + # check print info message: + self.assertIn( + "Defect charge states will be set to the range: 0 – {Defect oxidation " + "state}, with a `padding = 4` on either side of this range.", + result.output, ) - # The input_file option is tested in local test, as INCAR - # not written in Github Actions def test_run(self): """Test snb-run function""" @@ -1688,6 +1881,8 @@ def _test_OUTCAR_error(error_string): "CNORMN", "ZPOTRF", "ZTRTRI", + "FEXCP", + "FEXCF" ]: _test_OUTCAR_error(error) @@ -1850,9 +2045,7 @@ def test_parse(self): # Test parsing from inside the defect folder defect = "v_Ti" - os.remove( - f"{self.EXAMPLE_RESULTS}/pesky_defects/{defect}_-1/{defect}_-1.yaml" - ) + os.remove(f"{self.EXAMPLE_RESULTS}/pesky_defects/{defect}_-1/{defect}_-1.yaml") os.chdir(f"{self.EXAMPLE_RESULTS}/pesky_defects/{defect}_-1") result = runner.invoke( snb, @@ -1871,9 +2064,7 @@ def test_parse(self): # Test warning when setting path and parsing from inside the defect folder defect = "v_Ti" defect_name = "v_Ti_-1" - os.remove( - f"{self.EXAMPLE_RESULTS}/pesky_defects/{defect}_-1/{defect}_-1.yaml" - ) + os.remove(f"{self.EXAMPLE_RESULTS}/pesky_defects/{defect}_-1/{defect}_-1.yaml") os.chdir(f"{self.EXAMPLE_RESULTS}/pesky_defects/{defect}_-1") with warnings.catch_warnings(record=True) as w: result = runner.invoke( @@ -2235,7 +2426,7 @@ def test_parse_codes(self): defect, "-p", f"{self.DATA_DIR}/{code}", - "-c", + "--code", code, ], catch_exceptions=False, @@ -2261,7 +2452,7 @@ def test_parse_codes(self): defect, "-p", f"{self.DATA_DIR}/{code}", - "-c", + "--code", code, ], catch_exceptions=False, @@ -2287,7 +2478,7 @@ def test_parse_codes(self): defect, "-p", f"{self.DATA_DIR}/{code}", - "-c", + "--code", "espresso", ], catch_exceptions=False, @@ -2313,7 +2504,7 @@ def test_parse_codes(self): defect, "-p", f"{self.DATA_DIR}/{code}", - "-c", + "--code", "fhi-aims", ], catch_exceptions=False, @@ -2393,9 +2584,7 @@ def test_analyse(self): ) ) self.assertTrue( - os.path.exists( - f"{self.EXAMPLE_RESULTS}/pesky_defects/v_Ti_0/v_Ti_0.csv" - ) + os.path.exists(f"{self.EXAMPLE_RESULTS}/pesky_defects/v_Ti_0/v_Ti_0.csv") ) shutil.rmtree(f"{self.EXAMPLE_RESULTS}/pesky_defects/") # Test non-existent defect @@ -2580,7 +2769,9 @@ def test_plot(self): "and unperturbed: -3.26 eV.", result.output, ) # verbose output - self.assertIn(f"Plot saved to {defect_name}_0/{defect_name}_0.png", result.output) + self.assertIn( + f"Plot saved to {defect_name}_0/{defect_name}_0.png", result.output + ) self.assertEqual(w[0].category, UserWarning) self.assertEqual( f"Path {self.EXAMPLE_RESULTS}/distortion_metadata.json or {self.EXAMPLE_RESULTS}/" @@ -2606,7 +2797,7 @@ def test_plot(self): defect_name = "v_Ti" fake_distortion_metadata = { "defects": { - "v_Cd": { + "v_Cd_s0": { "charges": { "0": { "num_nearest_neighbours": 2, @@ -2647,18 +2838,16 @@ def test_plot(self): ) self.assertTrue( os.path.exists( - os.path.join(self.EXAMPLE_RESULTS, f"{defect_name}_0/{defect_name}_0.png") + os.path.join( + self.EXAMPLE_RESULTS, f"{defect_name}_0/{defect_name}_0.png" + ) ) ) self.assertTrue( - os.path.exists( - os.path.join(self.EXAMPLE_RESULTS, "v_Cd_0/v_Cd_0.png") - ) + os.path.exists(os.path.join(self.EXAMPLE_RESULTS, "v_Cd_s0_0/v_Cd_s0_0.png")) ) self.assertTrue( - os.path.exists( - os.path.join(self.EXAMPLE_RESULTS, "v_Cd_-1/v_Cd_-1.png") - ) + os.path.exists(os.path.join(self.EXAMPLE_RESULTS, "v_Cd_s0_-1/v_Cd_s0_-1.png")) ) if w: [ @@ -2693,7 +2882,7 @@ def test_plot(self): result.output, ) # non-verbose output self.assertNotIn( - "Plot saved to v_Ti_0/v_Ti_0.svg", result.output + "Plot saved to v_Ti_0/v_Ti_0.png", result.output ) # non-verbose self.assertTrue( len([warning for warning in w if warning.category == UserWarning]) == 0 @@ -2739,9 +2928,7 @@ def test_plot(self): "and unperturbed: -3.26 eV.", result.output, ) # verbose output - self.assertIn( - "Plot saved to v_Ti_0/v_Ti_0.svg", result.output - ) # verbose + self.assertIn("Plot saved to v_Ti_0/v_Ti_0.png", result.output) # verbose self.assertTrue( len([warning for warning in w if warning.category == UserWarning]) == 1 ) # verbose @@ -2761,7 +2948,7 @@ def test_plot(self): self.assertTrue( os.path.exists( f"{self.EXAMPLE_RESULTS}/{defect_name}_defect_folder" - f"/{defect_name}/v_Ti_0.svg" + f"/{defect_name}/v_Ti_0.png" ) ) self.assertTrue( @@ -2802,7 +2989,7 @@ def test_plot(self): "and unperturbed: -3.26 eV.", result.output, ) # non-verbose output - self.assertIn("Plot saved to v_Ti_0/v_Ti_0.svg", result.output) + self.assertIn("Plot saved to v_Ti_0/v_Ti_0.png", result.output) self.assertTrue( any( [ @@ -2815,7 +3002,7 @@ def test_plot(self): ] ) ) - self.assertTrue(os.path.exists("./v_Ti_0.svg")) + self.assertTrue(os.path.exists("./v_Ti_0.png")) self.assertTrue(os.path.exists(os.getcwd() + "/v_Ti_0.yaml")) if_present_rm(os.getcwd() + "/v_Ti_0.yaml") self.tearDown() @@ -2830,7 +3017,7 @@ def test_plot(self): "all defects in the specified/current directory.", str(result.exception), ) - self.assertNotIn(f"Plot saved to v_Ti_0/v_Ti_0.svg", result.output) + self.assertNotIn(f"Plot saved to v_Ti_0/v_Ti_0.png", result.output) self.assertFalse( any(os.path.exists(i) for i in os.listdir() if i.endswith(".yaml")) ) @@ -2853,19 +3040,13 @@ def test_plot(self): ) defect = "v_Ti_0" self.assertTrue( # energy diff of 3.2 eV larger than min_energy - os.path.exists( - os.path.join(self.EXAMPLE_RESULTS, f"{defect}/{defect}.png") - ) + os.path.exists(os.path.join(self.EXAMPLE_RESULTS, f"{defect}/{defect}.png")) ) self.assertFalse( # energy diff of 0.75 eV less than min_energy - os.path.exists( - os.path.join(self.EXAMPLE_RESULTS, "v_Cd_0/v_Cd_0.png") - ) + os.path.exists(os.path.join(self.EXAMPLE_RESULTS, "v_Cd_s0_0/v_Cd_s0_0.png")) ) self.assertFalse( # energy diff of 0.9 eV less than min_energy - os.path.exists( - os.path.join(self.EXAMPLE_RESULTS, "v_Cd_-1/v_Cd_-1.png") - ) + os.path.exists(os.path.join(self.EXAMPLE_RESULTS, "v_Cd_-s0_1/v_Cd_s0_-1.png")) ) [ os.remove(os.path.join(self.EXAMPLE_RESULTS, defect, file)) @@ -2887,12 +3068,8 @@ def test_regenerate(self): ], catch_exceptions=False, ) - defect = "v_Cd" # in example results - # if w: - # self.assertFalse( - # any([war.category == UserWarning for war in w]) - # ) # no User Warnings - # This fails on GA but fine locally - commeting it for now + defect = "v_Cd_s0" # in example results + self.assertEqual(len([warning for warning in w if warning.category == UserWarning]), 0) self.assertIn( "Comparing structures to specified ref_structure (Cd31 Te32)...", @@ -2913,15 +3090,18 @@ def test_regenerate(self): result.output, ) self.assertIn( - f"Writing low-energy distorted structure to {self.EXAMPLE_RESULTS}/{defect}_0/Bond_Distortion_20.0%_from_-1\n", + f"Writing low-energy distorted structure to {self.EXAMPLE_RESULTS}" + f"/{defect}_0/Bond_Distortion_20.0%_from_-1\n", result.output, ) self.assertIn( - f"Writing low-energy distorted structure to {self.EXAMPLE_RESULTS}/{defect}_-2/Bond_Distortion_20.0%_from_-1\n", + f"Writing low-energy distorted structure to {self.EXAMPLE_RESULTS}" + f"/{defect}_-2/Bond_Distortion_20.0%_from_-1\n", result.output, ) self.assertIn( - f"Writing low-energy distorted structure to {self.EXAMPLE_RESULTS}/{defect}_-1/Bond_Distortion_-60.0%_from_0\n", + f"Writing low-energy distorted structure to {self.EXAMPLE_RESULTS}/" + f"{defect}_-1/Bond_Distortion_-60.0%_from_0\n", result.output, ) vac_ti = "v_Ti" @@ -2947,13 +3127,13 @@ def test_regenerate(self): # test "*High_Energy*" ignored and doesn't cause errors if not os.path.exists( os.path.join( - self.EXAMPLE_RESULTS, "v_Cd_0/Bond_Distortion_-48.0%_High_Energy" - ) + self.EXAMPLE_RESULTS, f"{defect}_0/Bond_Distortion_-48.0%_High_Energy" + ) ): shutil.copytree( - os.path.join(self.EXAMPLE_RESULTS, "v_Cd_0/Bond_Distortion_-60.0%"), + os.path.join(self.EXAMPLE_RESULTS, f"{defect}_0/Bond_Distortion_-60.0%"), os.path.join( - self.EXAMPLE_RESULTS, "v_Cd_0/Bond_Distortion_-48.0%_High_Energy" + self.EXAMPLE_RESULTS, f"{defect}_0/Bond_Distortion_-48.0%_High_Energy" ), ) with warnings.catch_warnings(record=True) as w: @@ -2967,9 +3147,7 @@ def test_regenerate(self): ], catch_exceptions=False, ) - # if w: - # self.assertFalse(any([war.category == UserWarning for war in w])) - # This fails on GA, commenting for now + self.assertEqual(len([warning for warning in w if warning.category == UserWarning]), 0) self.assertIn( "Comparing structures to specified ref_structure (Cd31 Te32)...", result.output, @@ -2979,12 +3157,14 @@ def test_regenerate(self): result.output, ) self.assertIn( - f"Writing low-energy distorted structure to {self.EXAMPLE_RESULTS}/v_Cd_0/Bond_Distortion_20.0%_from_-1\n", + f"Writing low-energy distorted structure to" + f" {self.EXAMPLE_RESULTS}/{defect}_0/Bond_Distortion_20.0%_from_-1\n", result.output, ) self.assertIn( - f"No subfolders with VASP input files found in {self.EXAMPLE_RESULTS}/v_Cd_-2," - f" so just writing distorted POSCAR file to {self.EXAMPLE_RESULTS}/v_Cd_-2/Bond_Distortion_-60.0%_from_0 directory.\n", + f"No subfolders with VASP input files found in {self.EXAMPLE_RESULTS}/{defect}_-2," + f" so just writing distorted POSCAR file to " + f"{self.EXAMPLE_RESULTS}/{defect}_-2/Bond_Distortion_-60.0%_from_0 directory.\n", result.output, ) self.assertFalse("High_Energy" in result.output) @@ -3121,9 +3301,8 @@ def test_groundstate(self): any( [ str(warning.message) - == "`--path` option ignored when running from within defect folder (" - "determined to be the case here based on current directory and " - "subfolder names)." + == "`--path` option ignored when running from within defect folder (assumed " + "to be the case here as distortion folders found in current directory)." for warning in w ] ) @@ -3159,13 +3338,14 @@ def test_groundstate(self): defect = "vac_1_Cd_0" # in self.VASP_CDTE_DATA_DIR if not os.path.exists( os.path.join( - self.EXAMPLE_RESULTS, f"v_Cd_0/Bond_Distortion_-48.0%_High_Energy" - ) + self.EXAMPLE_RESULTS, f"v_Cd_s0_0/Bond_Distortion_-48.0%_High_Energy" + ) ): shutil.copytree( - os.path.join(self.EXAMPLE_RESULTS, f"v_Cd_0/Bond_Distortion_-60.0%"), + os.path.join(self.EXAMPLE_RESULTS, f"v_Cd_s0_0/Bond_Distortion_-60.0%"), os.path.join( - self.VASP_CDTE_DATA_DIR, f"{defect}/Bond_Distortion_-48.0%_High_Energy" + self.VASP_CDTE_DATA_DIR, + f"{defect}/Bond_Distortion_-48.0%_High_Energy", ), ) result = runner.invoke( @@ -3230,7 +3410,9 @@ def test_groundstate(self): self.assertTrue( os.path.exists(f"{self.VASP_CDTE_DATA_DIR}/{defect}/Groundstate/POSCAR") ) - self.assertFalse(result.output) # no output (No "Parsing..." or "Groundstate structure + self.assertFalse( + result.output + ) # no output (No "Parsing..." or "Groundstate structure # saved to...") gs_structure = Structure.from_file( f"{self.VASP_CDTE_DATA_DIR}/{defect}/Groundstate/POSCAR" diff --git a/tests/test_energy_lowering_distortions.py b/tests/test_energy_lowering_distortions.py index 0c8e1a93..7c9f2669 100644 --- a/tests/test_energy_lowering_distortions.py +++ b/tests/test_energy_lowering_distortions.py @@ -215,7 +215,7 @@ def test_read_defects_directories(self): def test_get_energy_lowering_distortions(self): """ Test get_energy_lowering_distortions() function, as well - as write_distorted_inputs and the internal functions called + as write_retest_inputs and the internal functions called by get_energy_lowering_distortions() """ with patch("builtins.print") as mock_print, warnings.catch_warnings( @@ -544,11 +544,9 @@ def test_get_energy_lowering_distortions(self): self.defect_charges_dict, self.VASP_CDTE_DATA_DIR, stol=0.01 ) ) # same call as before, but with stol - # self.assertEqual( - # len(w), 21 - # ) # many warnings due to difficulty in structure matching (20), no data parsed - # from Int_Cd_2_1 (1) - # with small stol (confirming stol has been passed to compare_structures) + # many warnings due to difficulty in structure matching (20) – with small stol + # (confirming stol has been passed to compare_structures), and no data parsed from + # Int_Cd_2_1 (1) for warning in w: self.assertEqual(warning.category, UserWarning) warning_message = ( @@ -736,8 +734,8 @@ def test_get_energy_lowering_distortions_metastable(self): ) struct_rattled = distortions.rattle(struct, stdev=0.35) struct_rattled.to( - "POSCAR", - f"{self.VASP_CDTE_DATA_DIR}/{defect}/Bond_Distortion_-10.0%/CONTCAR", + fmt="POSCAR", + filename=f"{self.VASP_CDTE_DATA_DIR}/{defect}/Bond_Distortion_-10.0%/CONTCAR", ) defect_charges_dict = { @@ -898,7 +896,7 @@ def test_get_energy_lowering_distortions_with_already_imported_strucs(self): mock_print.assert_any_call( "vac_1_Cd_-3: Energy difference between minimum, found with Rattled_from_-2 bond " "distortion, and unperturbed: -0.15 eV." - ) # Fails on GA? + ) # "has also been found" not in any mock_print call (i.e. Rattled_from_-2 in # `vac_1_Cd_-1`directory not compared to Rattled in `vac_1_Cd_-2` directory) self.assertFalse( @@ -973,8 +971,8 @@ def test_compare_struct_to_distortions(self): np.testing.assert_almost_equal(comparison_results[2], -0.15) self.assertEqual(comparison_results[3], "Rattled_from_1") - def test_write_distorted_inputs(self): - """Test write_distorted_inputs().""" + def test_write_retest_inputs(self): + """Test write_retest_inputs().""" for fake_distortion_dir in ["Bond_Distortion_-7.5%", "Unperturbed"]: if not os.path.exists( f"{self.VASP_CDTE_DATA_DIR}/vac_1_Cd_-1/{fake_distortion_dir}" @@ -1010,7 +1008,7 @@ def test_write_distorted_inputs(self): ) ) with patch("builtins.print") as mock_print: - energy_lowering_distortions.write_distorted_inputs( + energy_lowering_distortions.write_retest_inputs( low_energy_defects=low_energy_defects_dict, output_path=self.VASP_CDTE_DATA_DIR, ) @@ -1074,7 +1072,7 @@ def test_write_distorted_inputs(self): output_path=self.VASP_CDTE_DATA_DIR ) ) - energy_lowering_distortions.write_distorted_inputs( + energy_lowering_distortions.write_retest_inputs( low_energy_defects=low_energy_defects_dict, output_path=self.VASP_CDTE_DATA_DIR, ) @@ -1125,7 +1123,7 @@ def test_write_distorted_inputs(self): ), os.path.join(self.CP2K_DATA_DIR, "vac_1_Cd_-1/Unperturbed/cp2k_input.inp"), ) # Copy over CP2K input file - energy_lowering_distortions.write_distorted_inputs( + energy_lowering_distortions.write_retest_inputs( low_energy_defects=low_energy_defects_dict, output_path=self.CP2K_DATA_DIR, code="CP2K", @@ -1189,7 +1187,7 @@ def test_write_distorted_inputs(self): self.ESPRESSO_DATA_DIR, f"vac_1_Cd_-1/Unperturbed/{filename}" ) ) - energy_lowering_distortions.write_distorted_inputs( + energy_lowering_distortions.write_retest_inputs( low_energy_defects=low_energy_defects_dict, output_path=self.ESPRESSO_DATA_DIR, code="espresso", @@ -1257,7 +1255,7 @@ def test_write_distorted_inputs(self): self.FHI_AIMS_DATA_DIR, f"vac_1_Cd_-1/Unperturbed/{filename}" ) ) - energy_lowering_distortions.write_distorted_inputs( + energy_lowering_distortions.write_retest_inputs( low_energy_defects=low_energy_defects_dict, output_path=self.FHI_AIMS_DATA_DIR, code="FHI-aims", @@ -1322,7 +1320,7 @@ def test_write_distorted_inputs(self): f"vac_1_Cd_-1/Bond_Distortion_-7.5%/{filename}", ) ) - energy_lowering_distortions.write_distorted_inputs( + energy_lowering_distortions.write_retest_inputs( low_energy_defects=low_energy_defects_dict, output_path=self.CASTEP_DATA_DIR, code="CASTEP", diff --git a/tests/test_input.py b/tests/test_input.py old mode 100644 new mode 100755 index 755cb8bd..43578477 --- a/tests/test_input.py +++ b/tests/test_input.py @@ -1,6 +1,5 @@ import copy import datetime -import json import os import shutil import unittest @@ -12,12 +11,12 @@ from ase.calculators.aims import Aims from pymatgen.analysis.defects.core import StructureMatcher from pymatgen.core.structure import Composition, PeriodicSite, Structure -from pymatgen.io.vasp.inputs import Poscar -from monty.serialization import loadfn +from pymatgen.io.vasp.inputs import Poscar, UnknownPotcarWarning from shakenbreak import distortions, input, vasp, cli from shakenbreak.distortions import rattle + def if_present_rm(path): if os.path.exists(path): shutil.rmtree(path) @@ -49,6 +48,7 @@ class InputTestCase(unittest.TestCase): """Test ShakeNBreak structure distortion helper functions""" def setUp(self): + warnings.filterwarnings("ignore", category=UnknownPotcarWarning) self.DATA_DIR = os.path.join(os.path.dirname(__file__), "data") self.VASP_CDTE_DATA_DIR = os.path.join(self.DATA_DIR, "vasp/CdTe") self.CASTEP_DATA_DIR = os.path.join(self.DATA_DIR, "castep") @@ -59,34 +59,45 @@ def setUp(self): os.path.join(self.VASP_CDTE_DATA_DIR, "CdTe_Bulk_Supercell_POSCAR") ) - self.cdte_defect_dict = loadfn( + self.cdte_doped_defect_dict = loadfn( os.path.join(self.VASP_CDTE_DATA_DIR, "CdTe_defects_dict.json") ) - self.cdte_extrinsic_defects_dict = loadfn( + self.cdte_defects = { + defect_dict["name"]: cli.generate_defect_object( + single_defect_dict=defect_dict, + bulk_dict=self.cdte_doped_defect_dict["bulk"], + ) + for defects_type, defect_dict_list in self.cdte_doped_defect_dict.items() + if "bulk" not in defects_type + for defect_dict in defect_dict_list + } # with doped/PyCDT names + + self.cdte_doped_extrinsic_defects_dict = loadfn( os.path.join(self.VASP_CDTE_DATA_DIR, "CdTe_extrinsic_defects_dict.json") ) - # Refactor doped defect dict to dict of Defect() objects - self.cdte_defects = { - defect_type: [ - cli.generate_defect_object(defect_dict, self.cdte_defect_dict["bulk"]) - for defect_dict - in self.cdte_defect_dict[defect_type] - ] for defect_type in self.cdte_defect_dict.keys() if defect_type != "bulk" - } + self.cdte_extrinsic_defects = { + defect_dict["name"]: cli.generate_defect_object( + single_defect_dict=defect_dict, + bulk_dict=self.cdte_doped_extrinsic_defects_dict["bulk"], + ) + for defects_type, defect_dict_list in self.cdte_doped_extrinsic_defects_dict.items() + if "bulk" not in defects_type + for defect_dict in defect_dict_list + } # with doped/PyCDT names - self.CdTe_extrinsic_defects = { - defect_type: [ - cli.generate_defect_object(defect_dict, self.cdte_defect_dict["bulk"]) - for defect_dict - in self.cdte_extrinsic_defects_dict[defect_type] - ] for defect_type in self.cdte_extrinsic_defects_dict.keys() if defect_type != "bulk" - } + # Refactor doped defect dict to list of Defect() objects + self.cdte_defect_list = list(self.cdte_defects.values()) + self.CdTe_extrinsic_defect_list = list(self.cdte_extrinsic_defects.values()) - self.V_Cd_dict = self.cdte_defect_dict["vacancies"][0] - self.Int_Cd_2_dict = self.cdte_defect_dict["interstitials"][1] + self.V_Cd_dict = self.cdte_doped_defect_dict["vacancies"][0] + self.Int_Cd_2_dict = self.cdte_doped_defect_dict["interstitials"][1] # Refactor to Defect() objects - self.V_Cd = cli.generate_defect_object(self.V_Cd_dict, self.cdte_defect_dict["bulk"]) - self.Int_Cd_2 = cli.generate_defect_object(self.Int_Cd_2_dict, self.cdte_defect_dict["bulk"]) + self.V_Cd = cli.generate_defect_object( + self.V_Cd_dict, self.cdte_doped_defect_dict["bulk"] + ) + self.Int_Cd_2 = cli.generate_defect_object( + self.Int_Cd_2_dict, self.cdte_doped_defect_dict["bulk"] + ) # Setup structures and add oxidation states (as pymatgen-analysis-defects does it) self.V_Cd_struc = Structure.from_file( os.path.join(self.VASP_CDTE_DATA_DIR, "CdTe_V_Cd_POSCAR") @@ -118,15 +129,6 @@ def setUp(self): self.VASP_CDTE_DATA_DIR, "CdTe_Int_Cd_2_-60%_Distortion_NN_10_POSCAR" ) ) - # for struct in [ - # self.V_Cd_struc, - # self.V_Cd_minus0pt5_struc_rattled, - # self.V_Cd_minus0pt5_struc_0pt1_rattled, - # self.Int_Cd_2_struc, - # self.Int_Cd_2_minus0pt6_struc_rattled, - # self.Int_Cd_2_minus0pt6_NN_10_struc_unrattled, - # ]: - # struct.add_oxidation_state_by_guess() # Setup distortion parameters self.V_Cd_distortion_parameters = { @@ -137,25 +139,25 @@ def setUp(self): self.Int_Cd_2_normal_distortion_parameters = { "unique_site": self.Int_Cd_2_dict["unique_site"].frac_coords, "num_distorted_neighbours": 2, - "distorted_atoms": [(10+1, "Cd"), (22+1, "Cd")], # +1 because - # interstitial is added at the beggining of the structure + "distorted_atoms": [(10 + 1, "Cd"), (22 + 1, "Cd")], # +1 because + # interstitial is added at the beginning of the structure "defect_site_index": 1, } self.Int_Cd_2_NN_10_distortion_parameters = { "unique_site": self.Int_Cd_2_dict["unique_site"].frac_coords, "num_distorted_neighbours": 10, "distorted_atoms": [ - (10+1, "Cd"), - (22+1, "Cd"), - (29+1, "Cd"), - (1+1, "Cd"), - (14+1, "Cd"), - (24+1, "Cd"), - (30+1, "Cd"), - (38+1, "Te"), - (54+1, "Te"), - (62+1, "Te"), - # +1 because interstitial is added at the beggining of the structure + (10 + 1, "Cd"), + (22 + 1, "Cd"), + (29 + 1, "Cd"), + (1 + 1, "Cd"), + (14 + 1, "Cd"), + (24 + 1, "Cd"), + (30 + 1, "Cd"), + (38 + 1, "Te"), + (54 + 1, "Te"), + (62 + 1, "Te"), + # +1 because interstitial is added at the beginning of the structure ], "defect_site_index": 1, } @@ -165,7 +167,7 @@ def setUp(self): # also testing that the package correctly ignores these and uses the bulk bond length of # 2.8333... for d_min in the structure rattling functions. - self.cdte_defect_folders = [ + self.cdte_defect_folders_old_names = [ "as_1_Cd_on_Te_-1", "as_1_Cd_on_Te_-2", "as_1_Cd_on_Te_0", @@ -227,13 +229,91 @@ def setUp(self): "vac_2_Te_1", "vac_2_Te_2", ] + self.new_names_old_names_CdTe = { + "v_Cd_s0": "vac_1_Cd", + "v_Te_s32": "vac_2_Te", + "Cd_Te_s32": "as_1_Cd_on_Te", + "Te_Cd_s0": "as_1_Te_on_Cd", + "Cd_i_m32a": "Int_Cd_1", + "Cd_i_m128": "Int_Cd_2", + "Cd_i_m32b": "Int_Cd_3", + "Te_i_m32a": "Int_Te_1", + "Te_i_m128": "Int_Te_2", + "Te_i_m32b": "Int_Te_3", + } + self.cdte_defect_folders = [ # different charge states! + "Cd_Te_s32_-2", + "Cd_Te_s32_-1", + "Cd_Te_s32_0", + "Cd_Te_s32_1", + "Cd_Te_s32_2", + "Cd_Te_s32_3", + "Cd_Te_s32_4", + "Te_Cd_s0_-2", + "Te_Cd_s0_-1", + "Te_Cd_s0_0", + "Te_Cd_s0_1", + "Te_Cd_s0_2", + "Te_Cd_s0_3", + "Te_Cd_s0_4", + "Cd_i_m32a_-1", + "Cd_i_m32a_0", + "Cd_i_m32a_1", + "Cd_i_m32a_2", + "Cd_i_m128_-1", + "Cd_i_m128_0", + "Cd_i_m128_1", + "Cd_i_m128_2", + "Cd_i_m32b_-1", + "Cd_i_m32b_0", + "Cd_i_m32b_1", + "Cd_i_m32b_2", + "Te_i_m32a_-2", + "Te_i_m32a_-1", + "Te_i_m32a_0", + "Te_i_m32a_1", + "Te_i_m32a_2", + "Te_i_m32a_3", + "Te_i_m32a_4", + "Te_i_m32a_5", + "Te_i_m32a_6", + "Te_i_m128_-2", + "Te_i_m128_-1", + "Te_i_m128_0", + "Te_i_m128_1", + "Te_i_m128_2", + "Te_i_m128_3", + "Te_i_m128_4", + "Te_i_m128_5", + "Te_i_m128_6", + "Te_i_m32b_-2", + "Te_i_m32b_-1", + "Te_i_m32b_0", + "Te_i_m32b_1", + "Te_i_m32b_2", + "Te_i_m32b_3", + "Te_i_m32b_4", + "Te_i_m32b_5", + "Te_i_m32b_6", + "v_Cd_s0_-2", + "v_Cd_s0_-1", + "v_Cd_s0_0", + "v_Cd_s0_1", + "v_Cd_s0_2", + "v_Te_s32_-2", + "v_Te_s32_-1", + "v_Te_s32_0", + "v_Te_s32_1", + "v_Te_s32_2", + ] def tearDown(self) -> None: - for i in self.cdte_defect_folders: - if_present_rm(i) # remove test-generated defect folders if present - for charge in range(-2, 5): - if_present_rm(f"v_Cd_{charge}") - if_present_rm(f"v_Te_0") + # remove test-generated defect folders if present + for i in self.cdte_defect_folders_old_names + self.cdte_defect_folders: + if_present_rm(i) + for i in os.listdir(): + if os.path.isdir(i) and ("v_Te" in i or "v_Cd" in i or "vac_1_Cd" in i): + if_present_rm(i) for fname in os.listdir("./"): if fname.endswith("json"): # distortion_metadata and parsed_defects_dict os.remove(f"./{fname}") @@ -284,29 +364,28 @@ def test_calc_number_electrons(self, mock_print): ("Int_Te_2", -2), ("Int_Te_3", -2), ]: - for defect_type, defect_list in self.cdte_defect_dict.items(): + for defect_type, defect_list in self.cdte_doped_defect_dict.items(): if defect_type != "bulk": for i in defect_list: if i["name"] == defect: defect_object = cli.generate_defect_object( - i, - self.cdte_defect_dict["bulk"] + i, self.cdte_doped_defect_dict["bulk"] ) self.assertEqual( input._calc_number_electrons( defect_object, + defect, oxidation_states, verbose=False, # test non-verbose ), -electron_change, # returns negative of electron change ) input._calc_number_electrons( - defect_object, oxidation_states, verbose=True + defect_object, defect, oxidation_states, verbose=True ) - pmg_defect_name = defect_object.name mock_print.assert_called_with( f"Number of extra/missing electrons of " - f"defect {pmg_defect_name}: {electron_change} " + f"defect {defect}: {electron_change} " f"-> Δq = {-electron_change}" ) @@ -395,10 +474,9 @@ def test_apply_rattle_bond_distortions_Int_Cd_2(self): ) Int_Cd_2_distorted_dict["distorted_structure"].remove_oxidation_states() Int_Cd_2_distorted_dict["undistorted_structure"].remove_oxidation_states() - # With pymatgen-analysis-defects, interstitial is added at the beggining - # (rather than at the end) - - # so we need to shift all indexes + 1 - output["distorted_atoms"] = [(11, 'Cd'), (23, 'Cd')] + # With pymatgen-analysis-defects, interstitial is added at the beginning + # (rather than at the end) - so we need to shift all indexes + 1 + output["distorted_atoms"] = [(11, "Cd"), (23, "Cd")] output["defect_site_index"] = 1 np.testing.assert_equal(Int_Cd_2_distorted_dict, output) self.assertEqual( @@ -439,19 +517,19 @@ def test_apply_rattle_bond_distortions_kwargs(self, mock_print): self.assertCountEqual( Int_Cd_2_distorted_dict["distorted_atoms"], [ - (10+1, "Cd"), - (22+1, "Cd"), - (29+1, "Cd"), - (1+1, "Cd"), - (14+1, "Cd"), - (24+1, "Cd"), - (30+1, "Cd"), - (38+1, "Te"), - (54+1, "Te"), - (62+1, "Te"), + (10 + 1, "Cd"), + (22 + 1, "Cd"), + (29 + 1, "Cd"), + (1 + 1, "Cd"), + (14 + 1, "Cd"), + (24 + 1, "Cd"), + (30 + 1, "Cd"), + (38 + 1, "Te"), + (54 + 1, "Te"), + (62 + 1, "Te"), ], ) - # Interstitial is added at the beggining - shift all indexes + 1 + # Interstitial is added at the beginning - shift all indexes + 1 mock_print.assert_called_with( f"\tDefect Site Index / Frac Coords: 1\n" + " Original Neighbour Distances: [(2.71, 11, 'Cd'), (2.71, 23, 'Cd'), " @@ -501,6 +579,7 @@ def test_apply_snb_distortions_V_Cd(self): """Test apply_distortions function for V_Cd""" V_Cd_distorted_dict = input.apply_snb_distortions( self.V_Cd, + "V_Cd", num_nearest_neighbours=2, bond_distortions=[-0.5], stdev=0.25, @@ -518,6 +597,7 @@ def test_apply_snb_distortions_V_Cd(self): V_Cd_0pt1_distorted_dict = input.apply_snb_distortions( self.V_Cd, + "V_Cd", num_nearest_neighbours=2, bond_distortions=[-0.5], stdev=0.1, @@ -538,6 +618,7 @@ def test_apply_snb_distortions_V_Cd(self): V_Cd_3_neighbours_distorted_dict = input.apply_snb_distortions( self.V_Cd, + "V_Cd", num_nearest_neighbours=3, bond_distortions=[-0.5], stdev=0.25, # old default @@ -556,6 +637,7 @@ def test_apply_snb_distortions_V_Cd(self): distortion_range = np.arange(-0.6, 0.61, 0.1) V_Cd_distorted_dict = input.apply_snb_distortions( self.V_Cd, + "V_Cd", num_nearest_neighbours=2, bond_distortions=distortion_range, verbose=True, @@ -582,6 +664,7 @@ def test_apply_snb_distortions_Int_Cd_2(self): """Test apply_distortions function for Int_Cd_2""" Int_Cd_2_distorted_dict = input.apply_snb_distortions( self.Int_Cd_2, + "Int_Cd_2", num_nearest_neighbours=2, bond_distortions=[-0.6], stdev=0.28333683853583164, # 10% of CdTe bond length, default @@ -608,6 +691,7 @@ def test_apply_snb_distortions_kwargs(self, mock_print): # test distortion kwargs with Int_Cd_2 Int_Cd_2_distorted_dict = input.apply_snb_distortions( copy.deepcopy(self.Int_Cd_2), + "Int_Cd_2", num_nearest_neighbours=10, bond_distortions=[-0.6], distorted_element="Cd", @@ -643,6 +727,7 @@ def test_apply_snb_distortions_kwargs(self, mock_print): V_Cd_kwarg_distorted_dict = input.apply_snb_distortions( self.V_Cd, + "V_Cd", num_nearest_neighbours=2, bond_distortions=[-0.5], stdev=0.15, @@ -730,13 +815,28 @@ def test_create_vasp_input(self): } kwarged_incar_settings = vasp.default_incar_settings.copy() kwarged_incar_settings.update(kwarg_incar_settings) - input._create_vasp_input( - "vac_1_Cd_0", - distorted_defect_dict=V_Cd_charged_defect_dict, - incar_settings=kwarged_incar_settings, + with warnings.catch_warnings(record=True) as w: + input._create_vasp_input( + "vac_1_Cd_0", + distorted_defect_dict=V_Cd_charged_defect_dict, + incar_settings=kwarged_incar_settings, + ) + self.assertTrue( + any( # here we get this warning because no Unperturbed structures were + # written so couldn't be compared + f"A previously-generated defect folder vac_1_Cd_0 exists in " + f"{os.path.basename(os.path.abspath('.'))}, and the Unperturbed defect structure " + f"could not be matched to the current defect species: vac_1_Cd_0. These are assumed " + f"to be inequivalent defects, so the previous vac_1_Cd_0 will be renamed to " + f"vac_1_Cda_0 and ShakeNBreak files for the current defect will be saved to " + f"vac_1_Cdb_0, to prevent overwriting." in str(warning.message) + for warning in w + ) ) - V_Cd_kwarg_folder = "vac_1_Cd_0/Bond_Distortion_-50.0%" - self.assertTrue(os.path.exists(V_Cd_kwarg_folder)) + self.assertFalse(os.path.exists("vac_1_Cd_0")) + self.assertTrue(os.path.exists("vac_1_Cda_0")) + self.assertTrue(os.path.exists("vac_1_Cdb_0")) + V_Cd_kwarg_folder = "vac_1_Cdb_0/Bond_Distortion_-50.0%" V_Cd_POSCAR = Poscar.from_file(V_Cd_kwarg_folder + "/POSCAR") self.assertEqual(V_Cd_POSCAR.comment, "V_Cd Rattled") self.assertEqual(V_Cd_POSCAR.structure, self.V_Cd_minus0pt5_struc_rattled) @@ -756,18 +856,104 @@ def test_create_vasp_input(self): self.assertEqual(V_Cd_POSCAR.comment, "V_Cd Rattled") self.assertEqual(V_Cd_POSCAR.structure, self.V_Cd_minus0pt5_struc_rattled) + # Test correct handling of cases where defect folders with the same name have previously + # been written: + # 1. If the Unperturbed defect structure cannot be matched to the current defect species, + # then the previous folder will be renamed to vac_1_Cda_0 and ShakeNBreak files for the + # current defect will be saved to vac_1_Cdb_0, to prevent overwriting. – Tested above + # 2. If the Unperturbed defect structure can be matched to the current defect species, + # then the previous folder will be overwritten: + os.mkdir("vac_1_Cdb_0/Unperturbed") + unperturbed_poscar = Poscar(self.V_Cd_struc) + unperturbed_poscar.comment = ( + "V_Cd Original" # will later check that this is overwritten + ) + unperturbed_poscar.write_file("vac_1_Cdb_0/Unperturbed/POSCAR") + # make unperturbed defect entry: + V_Cd_charged_defect_dict["Unperturbed"] = _update_struct_defect_dict( + vasp_defect_inputs["vac_1_Cd_0"], + self.V_Cd_struc, + "V_Cd Unperturbed, Overwritten", # to check that files have been overwritten + ) + with warnings.catch_warnings(record=True) as w: + input._create_vasp_input( + "vac_1_Cd_0", + distorted_defect_dict=V_Cd_charged_defect_dict, + incar_settings={}, + ) + self.assertTrue( + any( + f"The previously-generated defect folder vac_1_Cdb_0 in " + f"{os.path.basename(os.path.abspath('.'))} has the same Unperturbed defect " + f"structure as the current defect species: vac_1_Cd_0. ShakeNBreak files in " + f"vac_1_Cdb_0 will be overwritten." in str(warning.message) + for warning in w + ) + ) + self.assertFalse(os.path.exists("vac_1_Cd_0")) + self.assertTrue(os.path.exists("vac_1_Cda_0")) + self.assertTrue(os.path.exists("vac_1_Cdb_0")) + self.assertFalse(os.path.exists("vac_1_Cdc_0")) + V_Cd_POSCAR = Poscar.from_file("vac_1_Cdb_0/Unperturbed/POSCAR") + self.assertEqual(V_Cd_POSCAR.comment, "V_Cd Unperturbed, Overwritten") + self.assertEqual(V_Cd_POSCAR.structure, self.V_Cd_struc) + + # 3. Unperturbed structures are present, but don't match. "a" and "b" present, + # so new folder is "c" (and no renaming of current folders): + V_Cd_charged_defect_dict["Unperturbed"] = _update_struct_defect_dict( + vasp_defect_inputs["vac_1_Cd_0"], + self.V_Cd_minus0pt5_struc_rattled, + "V_Cd Rattled, New Folder", + ) + with warnings.catch_warnings(record=True) as w: + input._create_vasp_input( + "vac_1_Cd_0", + distorted_defect_dict=V_Cd_charged_defect_dict, + incar_settings={}, + ) + self.assertTrue( + any( + f"Previously-generated defect folders (vac_1_Cdb_0...) exist in " + f"{os.path.basename(os.path.abspath('.'))}, and the Unperturbed defect structures " + f"could not be matched to the current defect species: vac_1_Cd_0. These are " + f"assumed to be inequivalent defects, so ShakeNBreak files for the current defect " + f"will be saved to vac_1_Cdc_0 to prevent overwriting." + in str(warning.message) + for warning in w + ) + ) + self.assertFalse(os.path.exists("vac_1_Cd_0")) + self.assertTrue(os.path.exists("vac_1_Cda_0")) + self.assertTrue(os.path.exists("vac_1_Cdb_0")) + self.assertTrue(os.path.exists("vac_1_Cdc_0")) + self.assertFalse(os.path.exists("vac_1_Cdd_0")) + V_Cd_prev_POSCAR = Poscar.from_file("vac_1_Cdb_0/Unperturbed/POSCAR") + self.assertEqual(V_Cd_prev_POSCAR.comment, "V_Cd Unperturbed, Overwritten") + V_Cd_new_POSCAR = Poscar.from_file("vac_1_Cdc_0/Unperturbed/POSCAR") + self.assertEqual(V_Cd_new_POSCAR.comment, "V_Cd Rattled, New Folder") + self.assertEqual(V_Cd_new_POSCAR.structure, self.V_Cd_minus0pt5_struc_rattled) + + def test_update_defect_dict(self): + # basic usage of this function has been implicitly tested already, so just test extreme + # case of four identical defect names + fake_defect_dict = {"Cd_i_m1a": 0, "Cd_i_m1c": 1, "Cd_i_m1b": 2} + new_defect_name = input._update_defect_dict( + defect=3, defect_name="Cd_i_m1", defect_dict=fake_defect_dict + ) + self.assertEqual("Cd_i_m1d", new_defect_name) + self.assertEqual( + fake_defect_dict, + {"Cd_i_m1a": 0, "Cd_i_m1c": 1, "Cd_i_m1b": 2, new_defect_name: 3}, + ) # dict edited + def test_Distortions_initialisation(self): # test auto oxidation state determination: - for defect_dict in [ - {"vacancies": [copy.deepcopy(self.V_Cd),]}, - {"interstitials": [copy.deepcopy(self.Int_Cd_2),]}, + for defect_list in [ + [copy.deepcopy(self.V_Cd)], + [copy.deepcopy(self.Int_Cd_2)], ]: with patch("builtins.print") as mock_print: - # transform defect_dict to Defect object - defects = [ - cli.generate - ] - dist = input.Distortions(defect_dict) + dist = input.Distortions(defect_list) mock_print.assert_called_once_with( "Oxidation states were not explicitly set, thus have been guessed as " "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " @@ -778,24 +964,18 @@ def test_Distortions_initialisation(self): # Test all intrinsic defects. # Test that different names are given to symmetry inequivalent defects with patch("builtins.print") as mock_print: - # transform defect_dict to Defect object - defects = [ - cli.generate - ] - dist = input.Distortions(self.cdte_defects) - # mock_print.assert_called_with( - # "There are symmetry inequivalent defects. To avoid using the same name for them, the names will be refactored as {defect_name}_s{defect_site_index} (e.g. v_Cd_s0)" - # ) # 3 Cd interstitials & 3 Te interstitials # TODO: fix this! - mock_print.assert_called_with( - "Oxidation states were not explicitly set, thus have been guessed as " - "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " - "oxidation_states" - ) - self.assertEqual(dist.oxidation_states, {"Cd": +2, "Te": -2}) + dist = input.Distortions(self.cdte_defect_list) + mock_print.assert_any_call( + "Oxidation states were not explicitly set, thus have been guessed as " + "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " + "oxidation_states" + ) + self.assertEqual(dist.oxidation_states, {"Cd": +2, "Te": -2}) + # Test extrinsic defects with patch("builtins.print") as mock_print: extrinsic_dist = input.Distortions( - self.CdTe_extrinsic_defects, + self.CdTe_extrinsic_defect_list, ) self.assertDictEqual( extrinsic_dist.oxidation_states, @@ -819,7 +999,7 @@ def test_Distortions_initialisation(self): # are not overridden: with patch("builtins.print") as mock_print: extrinsic_dist = input.Distortions( - self.CdTe_extrinsic_defects, + self.CdTe_extrinsic_defect_list, oxidation_states={"Cd": 7, "Te": -20, "Zn": 1, "Mn": 9}, ) self.assertDictEqual( @@ -835,22 +1015,23 @@ def test_Distortions_initialisation(self): }, ) mock_print.assert_called_once_with( - "Oxidation states for ['Al', 'Cl', 'Sb'] were not " - "explicitly set, thus have been guessed as {'Al': " - "3.0, 'Cl': -1, 'Sb': 0.0}. If this is " - "unreasonable you should manually set " - "oxidation_states" + "Oxidation states for ['Al', 'Cl', 'Sb'] were not explicitly set, thus have been " + "guessed as {'Al': 3.0, 'Cl': -1, 'Sb': 0.0}. If this is unreasonable you should " + "manually set oxidation_states" ) # test no print statement when all oxidation states set with patch("builtins.print") as mock_print: - dist = input.Distortions(defect_dict, oxidation_states={"Cd": 2, "Te": -2}) + dist = input.Distortions( + [copy.deepcopy(self.V_Cd), copy.deepcopy(self.Int_Cd_2)], + oxidation_states={"Cd": 2, "Te": -2}, + ) mock_print.assert_not_called() # test extrinsic interstitial defect: - fake_extrinsic_interstitial_subdict = self.cdte_defect_dict["interstitials"][ - 0 - ].copy() + fake_extrinsic_interstitial_subdict = self.cdte_doped_defect_dict[ + "interstitials" + ][0].copy() fake_extrinsic_interstitial_subdict["site_specie"] = "Li" fake_extrinsic_interstitial_site = fake_extrinsic_interstitial_subdict[ "supercell" @@ -867,25 +1048,23 @@ def test_Distortions_initialisation(self): "unique_site" ] = fake_extrinsic_interstitial_site fake_extrinsic_interstitial_subdict["name"] = "Int_Li_1" - fake_extrinsic_interstitial_dict = self.cdte_defects.copy() - fake_extrinsic_interstitial_dict["interstitials"][ - 0 - ] = cli.generate_defect_object( - fake_extrinsic_interstitial_subdict, - self.cdte_defect_dict["bulk"] + fake_extrinsic_interstitial_list = self.cdte_defect_list.copy() + fake_extrinsic_interstitial_list.append( + cli.generate_defect_object( + fake_extrinsic_interstitial_subdict, self.cdte_doped_defect_dict["bulk"] + ) ) with patch("builtins.print") as mock_print: - dist = input.Distortions(fake_extrinsic_interstitial_dict) - # mock_print.assert_called_with( - # "There are symmetry inequivalent defects." - # " To avoid using the same name for them, the names will be refactored" - # " as {defect_name}_s{defect_site_index} (e.g. v_Cd_s0)." - # ) # 3 Cd interstitials & 3 Te interstitials # TODO: fix this! - mock_print.assert_called_with( - "Oxidation states were not explicitly set, thus have been guessed as {'Cd': 2.0, " - "'Te': -2.0, 'Li': 1}. If this is unreasonable you should manually set " - "oxidation_states" - ) + dist = input.Distortions(fake_extrinsic_interstitial_list) + mock_print.assert_any_call( + "Oxidation states were not explicitly set, thus have been guessed as {'Cd': 2.0, " + "'Te': -2.0, 'Li': 1}. If this is unreasonable you should manually set " + "oxidation_states" + ) + + # test Distortions() initialised fine with a single Defect + dist = input.Distortions(self.V_Cd) + self.assertEqual(dist.defects_dict["v_Cd_s0"], self.cdte_defects["vac_1_Cd"]) def test_write_vasp_files(self): """Test `write_vasp_files` method""" @@ -893,27 +1072,9 @@ def test_write_vasp_files(self): bond_distortions = list(np.arange(-0.6, 0.601, 0.05)) # Use customised names for defects - cdte_defects = { - "vacancies": { - "vac_1_Cd": self.cdte_defects["vacancies"][0], - "vac_2_Te": self.cdte_defects["vacancies"][1], - }, - "substitutions": { - "as_1_Cd_on_Te": self.cdte_defects["substitutions"][0], - "as_1_Te_on_Cd": self.cdte_defects["substitutions"][1], - }, - "interstitials": { - "Int_Cd_1": self.cdte_defects["interstitials"][0], - "Int_Cd_2": self.cdte_defects["interstitials"][1], - "Int_Cd_3": self.cdte_defects["interstitials"][2], - "Int_Te_1": self.cdte_defects["interstitials"][3], - "Int_Te_2": self.cdte_defects["interstitials"][4], - "Int_Te_3": self.cdte_defects["interstitials"][5], - }, - } dist = input.Distortions( - cdte_defects, + self.cdte_defects, oxidation_states=oxidation_states, bond_distortions=bond_distortions, local_rattle=False, @@ -927,7 +1088,9 @@ def test_write_vasp_files(self): ) # check if expected folders were created: - self.assertTrue(set(self.cdte_defect_folders).issubset(set(os.listdir()))) + self.assertTrue( + set(self.cdte_defect_folders_old_names).issubset(set(os.listdir())) + ) # check expected info printing: mock_print.assert_any_call( "Applying ShakeNBreak...", @@ -1004,11 +1167,13 @@ def test_write_vasp_files(self): # Test `Rattled` folder not generated for non-fully-ionised defects, # and only `Rattled` and `Unperturbed` folders generated for fully-ionised defects self.tearDown() - self.assertFalse(set(self.cdte_defect_folders).issubset(set(os.listdir()))) + self.assertFalse( + set(self.cdte_defect_folders_old_names).issubset(set(os.listdir())) + ) reduced_V_Cd = copy.copy(self.V_Cd) reduced_V_Cd.user_charges = [0, -2] dist = input.Distortions( - {"vacancies": {"vac_1_Cd": reduced_V_Cd}}, + {"vac_1_Cd": reduced_V_Cd}, local_rattle=False, stdev=0.25, # old default seed=42, # old default @@ -1041,7 +1206,7 @@ def test_write_vasp_files(self): reduced_V_Cd.user_charges = [0] rattling_atom_indices = np.arange(0, 31) # Only rattle Cd dist = input.Distortions( - {"vacancies": {"vac_1_Cd": reduced_V_Cd}}, + {"vac_1_Cd": reduced_V_Cd}, oxidation_states=oxidation_states, bond_distortions=bond_distortions, stdev=0.15, @@ -1072,11 +1237,13 @@ def test_write_vasp_files(self): # test other kwargs: reduced_Int_Cd_2 = copy.deepcopy(self.Int_Cd_2) - reduced_Int_Cd_2.user_charges = [1,] + reduced_Int_Cd_2.user_charges = [ + 1, + ] with patch("builtins.print") as mock_Int_Cd_2_print: dist = input.Distortions( - {"interstitials": {"Int_Cd_2": reduced_Int_Cd_2}}, + {"Int_Cd_2": reduced_Int_Cd_2}, oxidation_states=oxidation_states, distortion_increment=0.25, distorted_elements={"Int_Cd_2": ["Cd"]}, @@ -1089,139 +1256,182 @@ def test_write_vasp_files(self): verbose=True, ) - kwarged_Int_Cd_2_dict = { - "distortion_parameters": { - "distortion_increment": 0.25, - "bond_distortions": [-0.5, -0.25, 0.0, 0.25, 0.5], - "rattle_stdev": 0.25, - "local_rattle": False, - }, - "defects": { - "Int_Cd_2": { - "unique_site": self.Int_Cd_2_dict[ - "bulk_supercell_site" - ].frac_coords, - "charges": { - 1: { - "num_nearest_neighbours": 4, - "distorted_atoms": [ - (11, "Cd"), - (23, "Cd"), - (30, "Cd"), - (39, "Te"), - ], # Defect added at index 0 - "distortion_parameters": { - "bond_distortions": [ - -0.5, - -0.25, - 0.0, - 0.25, - 0.5, - ], - "rattle_stdev": 0.25, - }, + kwarged_Int_Cd_2_dict = { + "distortion_parameters": { + "distortion_increment": 0.25, + "bond_distortions": [-0.5, -0.25, 0.0, 0.25, 0.5], + "local_rattle": False, + "mc_rattle_parameters": {"stdev": 0.25, "seed": 42}, + }, + "defects": { + "Int_Cd_2": { + "unique_site": self.Int_Cd_2_dict[ + "bulk_supercell_site" + ].frac_coords, + "charges": { + 1: { + "num_nearest_neighbours": 4, + "distorted_atoms": [ + (11, "Cd"), + (23, "Cd"), + (30, "Cd"), + (39, "Te"), + ], # Defect added at index 0 + "distortion_parameters": { + "distortion_increment": 0.25, + "bond_distortions": [ + -0.5, + -0.25, + 0.0, + 0.25, + 0.5, + ], + "local_rattle": False, + "mc_rattle_parameters": {"stdev": 0.25, "seed": 42}, }, }, - "defect_site_index": 1, - }, # Defect added at index 0 - "vac_1_Cd": { - "unique_site": [0.0, 0.0, 0.0], - "charges": { - 0: { - "num_nearest_neighbours": 2, - "distorted_atoms": [[33, "Te"], [42, "Te"]], - "distortion_parameters": { - "bond_distortions": [ - -0.6, - -0.55, - -0.5, - -0.45, - -0.4, - -0.35, - -0.3, - -0.25, - -0.2, - -0.15, - -0.1, - -0.05, - 0.0, - 0.05, - 0.1, - 0.15, - 0.2, - 0.25, - 0.3, - 0.35, - 0.4, - 0.45, - 0.5, - 0.55, - 0.6, - ], - "rattle_stdev": 0.15, + }, + "defect_site_index": 1, + }, # Defect added at index 0 + "vac_1_Cd": { + "unique_site": [0.0, 0.0, 0.0], + "charges": { + 0: { + "num_nearest_neighbours": 2, + "distorted_atoms": [[33, "Te"], [42, "Te"]], + "distortion_parameters": { + "distortion_increment": None, + "bond_distortions": [ + -0.6, + -0.55, + -0.5, + -0.45, + -0.4, + -0.35, + -0.3, + -0.25, + -0.2, + -0.15, + -0.1, + -0.05, + 0.0, + 0.05, + 0.1, + 0.15, + 0.2, + 0.25, + 0.3, + 0.35, + 0.4, + 0.45, + 0.5, + 0.55, + 0.6, + ], + "local_rattle": False, + "mc_rattle_parameters": { + "stdev": 0.15, + "width": 0.3, + "max_attempts": 10000, + "max_disp": 1.0, + "seed": 20, + "d_min": 2.1250262890187375, + "nbr_cutoff": 3.4, + "n_iter": 3, + "active_atoms": np.array( + [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + ] + ), }, }, }, }, }, - } - np.testing.assert_equal( - distortion_metadata["defects"]["Int_Cd_2"]["charges"][ - 1 - ], # check defect in distortion_defect_dict - kwarged_Int_Cd_2_dict["defects"]["Int_Cd_2"]["charges"][1], - ) - self.assertTrue(os.path.exists("distortion_metadata.json")) - # check defects from old metadata file are in new metadata file - with open(f"distortion_metadata.json", "r") as metadata_file: - metadata = json.load(metadata_file) - for defect in metadata["defects"].values(): - defect["charges"] = {int(k): v for k, v in defect["charges"].items()} - # json converts integer keys to strings - metadata["defects"]["Int_Cd_2"]["charges"][1]["distorted_atoms"] = [ - tuple(x) - for x in metadata["defects"]["Int_Cd_2"]["charges"][1][ - "distorted_atoms" - ] - ] - np.testing.assert_equal( - metadata, # check defect in distortion_defect_dict - kwarged_Int_Cd_2_dict, - ) + }, + } + np.testing.assert_equal( + distortion_metadata["defects"]["Int_Cd_2"]["charges"][ + 1 + ], # check defect in distortion_defect_dict + kwarged_Int_Cd_2_dict["defects"]["Int_Cd_2"]["charges"][1], + ) + self.assertTrue(os.path.exists("distortion_metadata.json")) + # check defects from old metadata file are in new metadata file + metadata = loadfn("distortion_metadata.json") + for defect in metadata["defects"].values(): + defect["charges"] = {int(k): v for k, v in defect["charges"].items()} + # json converts integer keys to strings + metadata["defects"]["Int_Cd_2"]["charges"][1]["distorted_atoms"] = [ + tuple(x) + for x in metadata["defects"]["Int_Cd_2"]["charges"][1]["distorted_atoms"] + ] + np.testing.assert_equal( + metadata, # check defect in distortion_defect_dict + kwarged_Int_Cd_2_dict, + ) - # check expected info printing: - mock_Int_Cd_2_print.assert_any_call( - "Applying ShakeNBreak...", - "Will apply the following bond distortions:", - "['-0.5', '-0.25', '0.0', '0.25', '0.5'].", - "Then, will rattle with a std dev of 0.25 Å \n", - ) - mock_Int_Cd_2_print.assert_any_call( - "\033[1m" + "\nDefect: Int_Cd_2" + "\033[0m" - ) - mock_Int_Cd_2_print.assert_any_call( - "\033[1m" - + "Number of missing electrons in neutral state: 3" - + "\033[0m" - ) - mock_Int_Cd_2_print.assert_any_call( - "\nDefect Int_Cd_2 in charge state: +1. Number of distorted neighbours: 4" - ) - mock_Int_Cd_2_print.assert_any_call("--Distortion -50.0%") - mock_Int_Cd_2_print.assert_any_call( - f"\tDefect Site Index / Frac Coords: 1\n" - + " Original Neighbour Distances: [(2.71, 11, 'Cd'), (2.71, 23, 'Cd'), " - + "(2.71, 30, 'Cd'), (2.71, 39, 'Te')]\n" - + " Distorted Neighbour Distances:\n\t[(1.36, 11, 'Cd'), (1.36, 23, 'Cd'), " - + "(1.36, 30, 'Cd'), (1.36, 39, 'Te')]" - ) # Defect added at index 0, so atom indexing + 1 wrt original structure - # check correct folder was created: - self.assertTrue(os.path.exists("Int_Cd_2_1/Unperturbed")) + # check expected info printing: + mock_Int_Cd_2_print.assert_any_call( + "Applying ShakeNBreak...", + "Will apply the following bond distortions:", + "['-0.5', '-0.25', '0.0', '0.25', '0.5'].", + "Then, will rattle with a std dev of 0.25 Å \n", + ) + mock_Int_Cd_2_print.assert_any_call( + "\033[1m" + "\nDefect: Int_Cd_2" + "\033[0m" + ) + mock_Int_Cd_2_print.assert_any_call( + "\033[1m" + "Number of missing electrons in neutral state: 3" + "\033[0m" + ) + mock_Int_Cd_2_print.assert_any_call( + "\nDefect Int_Cd_2 in charge state: +1. Number of distorted neighbours: 4" + ) + mock_Int_Cd_2_print.assert_any_call("--Distortion -50.0%") + mock_Int_Cd_2_print.assert_any_call( + f"\tDefect Site Index / Frac Coords: 1\n" + + " Original Neighbour Distances: [(2.71, 11, 'Cd'), (2.71, 23, 'Cd'), " + + "(2.71, 30, 'Cd'), (2.71, 39, 'Te')]\n" + + " Distorted Neighbour Distances:\n\t[(1.36, 11, 'Cd'), (1.36, 23, 'Cd'), " + + "(1.36, 30, 'Cd'), (1.36, 39, 'Te')]" + ) # Defect added at index 0, so atom indexing + 1 wrt original structure + # check correct folder was created: + self.assertTrue(os.path.exists("Int_Cd_2_1/Unperturbed")) # check correct output for "extra" electrons and positive charge state: with patch("builtins.print") as mock_Int_Cd_2_print: dist = input.Distortions( - {"interstitials": {"Int_Cd_2": reduced_Int_Cd_2}}, + {"Int_Cd_2": reduced_Int_Cd_2}, oxidation_states=oxidation_states, local_rattle=False, stdev=0.25, # old default @@ -1243,7 +1453,7 @@ def test_write_vasp_files(self): ) # test renaming of old distortion_metadata.json file if present - dist = input.Distortions({"interstitials": {"Int_Cd_2": reduced_Int_Cd_2}}) + dist = input.Distortions({"Int_Cd_2": reduced_Int_Cd_2}) with patch("builtins.print") as mock_Int_Cd_2_print: _, distortion_metadata = dist.write_vasp_files() self.assertTrue(os.path.exists("distortion_metadata.json")) @@ -1277,10 +1487,10 @@ def test_write_vasp_files(self): ) # test output_path parameter: - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders dist = input.Distortions( - {"vacancies": {"vac_1_Cd": reduced_V_Cd}}, + {"vac_1_Cd": reduced_V_Cd}, oxidation_states=oxidation_states, bond_distortions=bond_distortions, stdev=0.15, @@ -1307,6 +1517,320 @@ def test_write_vasp_files(self): V_Cd_kwarged_POSCAR.structure, self.V_Cd_minus0pt5_struc_kwarged ) + def test_write_vasp_files_from_doped_dict(self): + """Test Distortion() class with doped dict input""" + # Test normal behaviour + vacancies = { + "vacancies": [ + self.cdte_doped_defect_dict["vacancies"][0], + self.cdte_doped_defect_dict["vacancies"][1], + ], + "bulk": self.cdte_doped_defect_dict["bulk"], + } + with patch("builtins.print") as mock_print: + dist = input.Distortions(vacancies) + mock_print.assert_called_once_with( + "Oxidation states were not explicitly set, thus have been guessed as " + "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " + "oxidation_states" + ) + pmg_defects = { + "vac_1_Cd": self.cdte_defects["vac_1_Cd"], + "vac_2_Te": self.cdte_defects["vac_2_Te"], # same original names + } + self.assertDictEqual(dist.defects_dict, pmg_defects) + + # Test distortion generation + for defect_dict in vacancies["vacancies"]: + defect_dict["charges"] = [0] + with patch("builtins.print") as mock_print: + dist = input.Distortions( + vacancies, + bond_distortions=[ + -0.3, + ], + seed=42, + stdev=0.25, + ) + dist_defects_dict, dist_metadata = dist.write_vasp_files() + mock_print.assert_any_call( + "Applying ShakeNBreak...", + "Will apply the following bond distortions:", + "['-0.3'].", + "Then, will rattle with a std dev of 0.25 Å \n", + ) + mock_print.assert_any_call( + "\033[1m" + "\nDefect: vac_1_Cd" + "\033[0m" + ) # bold print + mock_print.assert_any_call( + "\033[1m" + "Number of missing electrons in neutral state: 2" + "\033[0m" + ) + mock_print.assert_any_call( + "\033[1m" + "\nDefect: vac_2_Te" + "\033[0m" + ) # bold print + mock_print.assert_any_call( + "\033[1m" + "Number of extra electrons in neutral state: 2" + "\033[0m" + ) + vacancies_dist_metadata = loadfn( + f"{self.VASP_CDTE_DATA_DIR}/vacancies_dist_metadata.json" + ) + doped_dict_metadata = loadfn("distortion_metadata.json") + self.assertNotEqual( + doped_dict_metadata, vacancies_dist_metadata + ) # new vs old names + self.assertDictEqual( + doped_dict_metadata["distortion_parameters"], + vacancies_dist_metadata["distortion_parameters"], + ) + + dumpfn(dist_defects_dict, "distorted_defects_dict.json") + test_dist_dict = loadfn( + f"{self.VASP_CDTE_DATA_DIR}/vacancies_dist_defect_dict.json" + ) + doped_dist_defects_dict = loadfn("distorted_defects_dict.json") + + for defect_name in ["vac_1_Cd", "vac_2_Te"]: + self.assertTrue( + os.path.exists(f"{defect_name}_0/Bond_Distortion_-30.0%/POSCAR") + ) + # get key for value = defect_name in self.new_names_dict + snb_name = list(self.new_names_old_names_CdTe.keys())[ + list(self.new_names_old_names_CdTe.values()).index(defect_name) + ] + self.assertDictEqual( + doped_dict_metadata["defects"][defect_name], + vacancies_dist_metadata["defects"][snb_name], + ) + self.assertDictEqual( + doped_dist_defects_dict[defect_name], test_dist_dict[snb_name] + ) + + # Test error if missing bulk entry + vacancies = { + "vacancies": [ + self.cdte_doped_defect_dict["vacancies"][0], + self.cdte_doped_defect_dict["vacancies"][1], + ], + } + with self.assertRaises(ValueError) as e: + no_bulk_error = ValueError( + "Input `defects` dict matches `doped`/`PyCDT` format, but no 'bulk' entry " + "present. Please try again providing a `bulk` entry in `defects`." + ) + dist = input.Distortions(vacancies) + self.assertIn(no_bulk_error, e.exception) + + def test_write_vasp_files_from_list(self): + """Test Distortion() class with Defect list input""" + # Test normal behaviour + with patch("builtins.print") as mock_print: + dist = input.Distortions(self.cdte_defect_list) + dist.write_vasp_files() + mock_print.assert_any_call( + "Oxidation states were not explicitly set, thus have been guessed as " + "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " + "oxidation_states" + ) + pmg_defects = { + new_key: self.cdte_defects[old_key] + for new_key, old_key in self.new_names_old_names_CdTe.items() + } + self.assertDictEqual(dist.defects_dict, pmg_defects) + + # check if expected folders were created: + self.assertFalse( + set(self.cdte_defect_folders_old_names).issubset(set(os.listdir())) + ) # new pmg names + + self.assertTrue( + set( + [ + folder_name + for folder_name in self.cdte_defect_folders # default charge states, + # but here we've generated from doped dict so uses doped's charge states + if not ( + folder_name.startswith("Cd_i") and folder_name.endswith("-1") + ) + ] + ).issubset(set(os.listdir())) + ) + # check expected info printing: + mock_print.assert_any_call( + "Applying ShakeNBreak...", + "Will apply the following bond distortions:", + "['-0.6', '-0.5', '-0.4', '-0.3', '-0.2', '-0.1', '0.0', '0.1', '0.2', '0.3', '0.4', " + "'0.5', '0.6'].", + "Then, will rattle with a std dev of 0.28 Å \n", # default stdev + ) + mock_print.assert_any_call( + "\033[1m" + "\nDefect: v_Cd_s0" + "\033[0m" + ) # bold print + mock_print.assert_any_call( + "\033[1m" + "Number of missing electrons in neutral state: 2" + "\033[0m" + ) + mock_print.assert_any_call( + "\nDefect v_Cd_s0 in charge state: -2. Number of distorted " "neighbours: 0" + ) + mock_print.assert_any_call( + "\nDefect v_Cd_s0 in charge state: -1. Number of distorted " "neighbours: 1" + ) + mock_print.assert_any_call( + "\nDefect v_Cd_s0 in charge state: 0. Number of distorted " "neighbours: 2" + ) + # test correct distorted neighbours based on oxidation states: + mock_print.assert_any_call( + "\nDefect v_Te_s32 in charge state: -2. Number of distorted " + "neighbours: 4" + ) + mock_print.assert_any_call( + "\nDefect Cd_Te_s32 in charge state: -2. Number of " + "distorted neighbours: 2" + ) + mock_print.assert_any_call( + "\nDefect Te_Cd_s0 in charge state: -2. Number of " + "distorted neighbours: 2" + ) + mock_print.assert_any_call( + "\nDefect Cd_i_m128 in charge state: 0. Number of distorted " + "neighbours: 2" + ) + mock_print.assert_any_call( + "\nDefect Cd_i_m32a in charge state: 0. Number of distorted " + "neighbours: 2" + ) + mock_print.assert_any_call( + "\nDefect Cd_i_m32b in charge state: 0. Number of distorted " + "neighbours: 2" + ) + mock_print.assert_any_call( + "\nDefect Te_i_m128 in charge state: 0. Number of distorted " + "neighbours: 2" + ) + mock_print.assert_any_call( + "\nDefect Te_i_m32a in charge state: 0. Number of distorted " + "neighbours: 2" + ) + mock_print.assert_any_call( + "\nDefect Te_i_m32b in charge state: 0. Number of distorted " + "neighbours: 2" + ) + + # check if correct files were created: + V_Cd_Bond_Distortion_folder = "v_Cd_s0_0/Bond_Distortion_-50.0%" + self.assertTrue(os.path.exists(V_Cd_Bond_Distortion_folder)) + V_Cd_POSCAR = Poscar.from_file(V_Cd_Bond_Distortion_folder + "/POSCAR") + self.assertEqual( + V_Cd_POSCAR.comment, + "-50.0%__num_neighbours=2__v_Cd_s0", + ) # default + self.assertNotEqual(V_Cd_POSCAR.structure, self.V_Cd_minus0pt5_struc_rattled) + # old default rattling + + Int_Cd_2_Bond_Distortion_folder = "Cd_i_m128_0/Bond_Distortion_-60.0%" + self.assertTrue(os.path.exists(Int_Cd_2_Bond_Distortion_folder)) + Int_Cd_2_POSCAR = Poscar.from_file(Int_Cd_2_Bond_Distortion_folder + "/POSCAR") + self.assertEqual( + Int_Cd_2_POSCAR.comment, + "-60.0%__num_neighbours=2__Cd_i_m128", + ) + self.assertEqual( + # Int_Cd_2_minus0pt6_struc_rattled is with new default `stdev` & `seed` + Int_Cd_2_POSCAR.structure, + self.Int_Cd_2_minus0pt6_struc_rattled, + ) + self.tearDown() + + # Test distortion generation + vacancies = [defect for defect in self.cdte_defect_list if "v_" in defect.name] + for vacancy in vacancies: + vacancy.user_charges = [ + 0, + ] + with patch("builtins.print") as mock_print: + dist = input.Distortions( + vacancies, + bond_distortions=[ + -0.3, + ], + seed=42, + stdev=0.25, + ) + dist_defects_dict, dist_metadata = dist.write_vasp_files() + mock_print.assert_any_call( + "Applying ShakeNBreak...", + "Will apply the following bond distortions:", + "['-0.3'].", + "Then, will rattle with a std dev of 0.25 Å \n", + ) + mock_print.assert_any_call( + "\033[1m" + "\nDefect: v_Cd_s0" + "\033[0m" + ) # bold print + mock_print.assert_any_call( + "\033[1m" + "Number of missing electrons in neutral state: 2" + "\033[0m" + ) + mock_print.assert_any_call( + "\033[1m" + "\nDefect: v_Te_s32" + "\033[0m" + ) # bold print + mock_print.assert_any_call( + "\033[1m" + "Number of extra electrons in neutral state: 2" + "\033[0m" + ) + for defect_name in ["v_Cd_s0", "v_Te_s32"]: + self.assertTrue( + os.path.exists(f"{defect_name}_0/Bond_Distortion_-30.0%/POSCAR") + ) + self.assertFalse(os.path.exists(f"{defect_name}_1")) + metadata = loadfn(f"{self.VASP_CDTE_DATA_DIR}/vacancies_dist_metadata.json") + self.assertDictEqual(loadfn("distortion_metadata.json"), metadata) + dumpfn(dist_defects_dict, "distorted_defects_dict.json") + test_dist_dict = loadfn( + f"{self.VASP_CDTE_DATA_DIR}/vacancies_dist_defect_dict.json" + ) + self.assertDictEqual(test_dist_dict, loadfn("distorted_defects_dict.json")) + + # Test error if missing bulk entry + vacancies = { + "vacancies": [ + self.cdte_doped_defect_dict["vacancies"][0], + self.cdte_doped_defect_dict["vacancies"][1], + ], + } + with self.assertRaises(ValueError) as e: + no_bulk_error = ValueError( + "Input `defects` dict matches `doped`/`PyCDT` format, but no 'bulk' entry " + "present. Please try again providing a `bulk` entry in `defects`." + ) + dist = input.Distortions(vacancies) + self.assertIn(no_bulk_error, e.exception) + + # Test padding usage + vacancies = [defect for defect in self.cdte_defect_list if "v_" in defect.name] + for vacancy in vacancies: + vacancy.user_charges = None # not set + # test default + dist = input.Distortions( + vacancies, + ) + dist_defects_dict, dist_metadata = dist.write_vasp_files() + for defect_name in ["v_Cd_s0", "v_Te_s32"]: + self.assertTrue( + os.path.exists(f"{defect_name}_1/Bond_Distortion_-30.0%/POSCAR") + ) + self.assertFalse(os.path.exists("v_Cd_s0_2")) + self.assertTrue(os.path.exists("v_Te_s32_3")) + self.assertFalse(os.path.exists("v_Te_s32_4")) + self.tearDown() + + # test explicitly set + dist = input.Distortions(vacancies, padding=4) + dist_defects_dict, dist_metadata = dist.write_vasp_files() + for defect_name in ["v_Cd_s0", "v_Te_s32"]: + self.assertTrue( + os.path.exists(f"{defect_name}_4/Bond_Distortion_-30.0%/POSCAR") + ) + self.assertFalse(os.path.exists(f"{defect_name}_7")) + self.assertFalse(os.path.exists("v_Cd_s0_5")) + self.assertTrue(os.path.exists("v_Te_s32_6")) + @patch("builtins.print") def test_write_espresso_files(self, mock_print): """Test method write_espresso_files""" @@ -1316,11 +1840,7 @@ def test_write_espresso_files(self, mock_print): ] Dist = input.Distortions( - { - "vacancies": { - "vac_1_Cd": self.V_Cd, - } - }, + {"vac_1_Cd": self.V_Cd}, oxidation_states=oxidation_states, bond_distortions=bond_distortions, local_rattle=False, @@ -1329,7 +1849,7 @@ def test_write_espresso_files(self, mock_print): ) # Test `write_espresso_files` method - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders pseudopotentials = { # Your chosen pseudopotentials "Cd": "Cd_pbe_v1.uspp.F.UPF", @@ -1350,7 +1870,7 @@ def test_write_espresso_files(self, mock_print): self.assertEqual(test_input, generated_input) # Test parameter file is not written if write_structures_only = True - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders _, _ = Dist.write_espresso_files(write_structures_only=True) with open( @@ -1399,11 +1919,7 @@ def test_write_cp2k_files(self, mock_print): ] Dist = input.Distortions( - { - "vacancies": { - "vac_1_Cd": self.V_Cd, - } - }, + {"vac_1_Cd": self.V_Cd}, oxidation_states=oxidation_states, bond_distortions=bond_distortions, local_rattle=False, @@ -1411,7 +1927,7 @@ def test_write_cp2k_files(self, mock_print): seed=42, # old default ) # Test `write_cp2k_files` method - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders _, _ = Dist.write_cp2k_files() self.assertTrue(os.path.exists("vac_1_Cd_0/Unperturbed")) @@ -1427,8 +1943,11 @@ def test_write_cp2k_files(self, mock_print): generated_input = f.read() self.assertEqual(test_input, generated_input) # Test input structure file - generated_input_struct = Structure.from_file("vac_1_Cd_0/Bond_Distortion_30.0%/structure.cif") - test_input_struct = Structure.from_file(os.path.join( + generated_input_struct = Structure.from_file( + "vac_1_Cd_0/Bond_Distortion_30.0%/structure.cif" + ) + test_input_struct = Structure.from_file( + os.path.join( self.CP2K_DATA_DIR, "vac_1_Cd_0/Bond_Distortion_30.0%/structure.cif", ) @@ -1437,7 +1956,7 @@ def test_write_cp2k_files(self, mock_print): self.assertEqual(test_input_struct, generated_input_struct) # Test parameter file not written if write_structures_only = True - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders _, _ = Dist.write_cp2k_files(write_structures_only=True) self.assertFalse( @@ -1448,7 +1967,7 @@ def test_write_cp2k_files(self, mock_print): ) # Test user defined parameters - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders _, _ = Dist.write_cp2k_files( input_file=os.path.join(self.CP2K_DATA_DIR, "cp2k_input_mod.inp"), @@ -1475,18 +1994,14 @@ def test_write_castep_files(self, mock_print): ] Dist = input.Distortions( - { - "vacancies": { - "vac_1_Cd": self.V_Cd, - } - }, + {"vac_1_Cd": self.V_Cd}, oxidation_states=oxidation_states, bond_distortions=bond_distortions, stdev=0.25, # old default seed=42, # old default ) # Test `write_castep_files` method, without specifing input file - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders _, _ = Dist.write_castep_files() self.assertTrue(os.path.exists("vac_1_Cd_0/Unperturbed")) @@ -1516,7 +2031,7 @@ def test_write_castep_files(self, mock_print): self.assertEqual(test_input_struct, generated_input_struct) # Test only structure files are written if write_structures_only = True - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders _, _ = Dist.write_castep_files(write_structures_only=True) self.assertFalse( @@ -1525,7 +2040,7 @@ def test_write_castep_files(self, mock_print): self.assertTrue(os.path.exists("vac_1_Cd_0/Bond_Distortion_30.0%/castep.cell")) # Test user defined parameters - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders _, _ = Dist.write_castep_files( input_file=os.path.join(self.CASTEP_DATA_DIR, "castep_mod.param"), @@ -1552,11 +2067,7 @@ def test_write_fhi_aims_files(self, mock_print): ] Dist = input.Distortions( - { - "vacancies": { - "vac_1_Cd": self.V_Cd, - } - }, + {"vac_1_Cd": self.V_Cd}, oxidation_states=oxidation_states, bond_distortions=bond_distortions, local_rattle=False, @@ -1564,7 +2075,7 @@ def test_write_fhi_aims_files(self, mock_print): seed=42, # old default ) # Test `write_fhi_aims_files` method - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders _, _ = Dist.write_fhi_aims_files() self.assertTrue(os.path.exists("vac_1_Cd_0/Unperturbed")) @@ -1592,14 +2103,14 @@ def test_write_fhi_aims_files(self, mock_print): self.assertEqual(test_input_struct, generated_input_struct) # Test parameter file not written if write_structures_only = True - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders _, _ = Dist.write_fhi_aims_files(write_structures_only=True) self.assertFalse(os.path.exists("vac_1_Cd_0/Bond_Distortion_30.0%/control.in")) self.assertTrue(os.path.exists("vac_1_Cd_0/Bond_Distortion_30.0%/geometry.in")) # User defined parameters - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders ase_calculator = Aims( k_grid=(1, 1, 1), @@ -1629,23 +2140,21 @@ def test_apply_distortions(self): """Test method apply_distortions""" # test default `stdev` and `seed` setting in Distortions() with Int_Cd_2 int_Cd_2 = copy.deepcopy(self.Int_Cd_2) - int_Cd_2.user_charges = [0,] + int_Cd_2.user_charges = [ + 0, + ] dist = input.Distortions( # don't set `stdev` or `seed`, in order to test default behaviour - { - "interstitials": - {"Int_Cd_2": int_Cd_2,}, - }, - bond_distortions=[-0.6, ], # zero electron change - local_rattle=False, - stdev=0.28333683853583164, # 10% of CdTe bond length, default - seed=40, # Seed used to generate test structure + {"Int_Cd_2": int_Cd_2}, + bond_distortions=[ + -0.6, + ], ) with patch("builtins.print") as mock_print: defects_dict, metadata_dict = dist.apply_distortions() # Check structure - gen_struct = defects_dict["Int_Cd_2"]["charges"][0]["structures"]["distortions"][ - "Bond_Distortion_-60.0%" - ] + gen_struct = defects_dict["Int_Cd_2"]["charges"][0]["structures"][ + "distortions" + ]["Bond_Distortion_-60.0%"] test_struct = self.Int_Cd_2_minus0pt6_struc_rattled for struct in [test_struct, gen_struct]: struct.remove_oxidation_states() @@ -1661,14 +2170,14 @@ def test_apply_distortions(self): ) # check files are not written if `apply_distortions()` method is used - for i in self.cdte_defect_folders: + for i in self.cdte_defect_folders_old_names: if_present_rm(i) # remove test-generated defect folders reduced_V_Cd = copy.copy(self.V_Cd) reduced_V_Cd.user_charges = [0] oxidation_states = {"Cd": +2, "Te": -2} bond_distortions = list(np.arange(-0.6, 0.601, 0.05)) dist = input.Distortions( - {"vacancies": {"vac_1_Cd": reduced_V_Cd}}, + {"vac_1_Cd": reduced_V_Cd}, oxidation_states=oxidation_states, bond_distortions=bond_distortions, ) @@ -1682,7 +2191,7 @@ def test_apply_distortions(self): with warnings.catch_warnings(record=True) as w: bond_distortions = list(np.arange(-1.0, 0.01, 0.05)) dist = input.Distortions( - {"vacancies": {"vac_1_Cd": reduced_V_Cd}}, + {"vac_1_Cd": reduced_V_Cd}, bond_distortions=bond_distortions, ) distortion_defect_dict, distortion_metadata = dist.apply_distortions( @@ -1771,14 +2280,14 @@ def test_apply_distortions(self): # test short interatomic distance distortions not omitted when Hydrogen knocking about fake_hydrogen_V_Cd_dict = copy.copy(self.V_Cd_dict) fake_hydrogen_V_Cd_dict["charges"] = [0] - fake_hydrogen_bulk = copy.copy(self.cdte_defect_dict["bulk"]) + fake_hydrogen_bulk = copy.copy(self.cdte_doped_defect_dict["bulk"]) fake_hydrogen_bulk["supercell"]["structure"][4].species = "H" fake_hydrogen_V_Cd = cli.generate_defect_object( fake_hydrogen_V_Cd_dict, fake_hydrogen_bulk, ) dist = input.Distortions( - {"vacancies": {"vac_1_Cd": fake_hydrogen_V_Cd}}, + {"vac_1_Cd": fake_hydrogen_V_Cd}, oxidation_states=oxidation_states, bond_distortions=bond_distortions, ) @@ -1818,7 +2327,7 @@ def test_local_rattle( reduced_V_Cd.user_charges = [0] oxidation_states = {"Cd": +2, "Te": -2} dist = input.Distortions( - {"vacancies": {"vac_1_Cd": reduced_V_Cd}}, + {"vac_1_Cd": reduced_V_Cd}, oxidation_states=oxidation_states, bond_distortions=[-0.3], local_rattle=True, # default off @@ -1855,7 +2364,7 @@ def test_local_rattle( int_Cd_2.user_charges = [+2] oxidation_states = {"Cd": +2, "Te": -2} dist = input.Distortions( - {"interstitials": {"Int_Cd_2": int_Cd_2}}, + {"Int_Cd_2": int_Cd_2}, oxidation_states=oxidation_states, bond_distortions=[ -0.3, @@ -1873,9 +2382,9 @@ def test_local_rattle( "['-0.3'].", "Then, will rattle with a std dev of 0.28 \u212B \n", ) - gen_struct = defects_dict["Int_Cd_2"]["charges"][2]["structures"]["distortions"][ - "Rattled" - ] + gen_struct = defects_dict["Int_Cd_2"]["charges"][2]["structures"][ + "distortions" + ]["Rattled"] gen_struct.remove_oxidation_states() test_struct = Structure.from_file( f"{self.VASP_CDTE_DATA_DIR}/Int_Cd_2_2_tailed_off_rattle_seed_0_stdev_0.28_POSCAR" @@ -1893,7 +2402,7 @@ def test_default_rattle_stdev_and_seed( reduced_V_Cd.user_charges = [0] oxidation_states = {"Cd": +2, "Te": -2} dist = input.Distortions( - {"vacancies": {"vac_1_Cd": reduced_V_Cd}}, + {"vac_1_Cd": reduced_V_Cd}, oxidation_states=oxidation_states, bond_distortions=[-0.3], local_rattle=True, # default off @@ -1903,9 +2412,9 @@ def test_default_rattle_stdev_and_seed( self.assertTrue(dist.local_rattle) defects_dict, metadata_dict = dist.apply_distortions() # Check structure - generated_struct = defects_dict["vac_1_Cd"]["charges"][0]["structures"]["distortions"][ - "Bond_Distortion_-30.0%" - ] + generated_struct = defects_dict["vac_1_Cd"]["charges"][0]["structures"][ + "distortions" + ]["Bond_Distortion_-30.0%"] generated_struct.remove_oxidation_states() self.assertEqual( Structure.from_file( @@ -1921,7 +2430,7 @@ def test_default_rattle_stdev_and_seed( int_Cd_2.user_charges = [+2] oxidation_states = {"Cd": +2, "Te": -2} dist = input.Distortions( - {"interstitials": {"Int_Cd_2": int_Cd_2}}, + {"Int_Cd_2": int_Cd_2}, oxidation_states=oxidation_states, bond_distortions=[ -0.3, @@ -1931,9 +2440,9 @@ def test_default_rattle_stdev_and_seed( seed=0, # distortion_factor * 100, default ) defects_dict, metadata_dict = dist.apply_distortions() - generated_struct = defects_dict["Int_Cd_2"]["charges"][2]["structures"]["distortions"][ - "Rattled" - ] + generated_struct = defects_dict["Int_Cd_2"]["charges"][2]["structures"][ + "distortions" + ]["Rattled"] generated_struct.remove_oxidation_states() test_struct = Structure.from_file( f"{self.VASP_CDTE_DATA_DIR}/Int_Cd_2_2_tailed_off_rattle_seed_0_stdev_0.28_POSCAR" @@ -1943,295 +2452,214 @@ def test_default_rattle_stdev_and_seed( generated_struct, ) - def test_from_dict(self): - """Test from_dict() method of Distortion() class.""" - # Test normal behaviour - vacancies = { - "vacancies": [ - self.cdte_defect_dict["vacancies"][0], - self.cdte_defect_dict["vacancies"][1], - ], - "bulk": self.cdte_defect_dict["bulk"] - } + def test_from_structures(self): + """Test from_structures() method of Distortion() class. + Implicitly, this also tests the functionality of `input.identify_defect()` + """ + # Test normal behaviour (no defect_index or defect_coords), with `defects` as a single + # structure with patch("builtins.print") as mock_print: - dist = input.Distortions.from_dict( - vacancies, - ) - mock_print.assert_called_once_with( - "Oxidation states were not explicitly set, thus have been guessed as " - "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " - "oxidation_states" + dist = input.Distortions.from_structures( + self.V_Cd_struc, self.CdTe_bulk_struc ) - pmg_defects = { - "vacancies": - { - "v_Cd": self.cdte_defects["vacancies"][0], - "v_Te": self.cdte_defects["vacancies"][1], - } - } - self.assertDictEqual(dist.defects_dict, pmg_defects) + dist.write_vasp_files() + self.assertDictEqual( + dist.defects_dict, + {"v_Cd_s0": self.cdte_defects["vac_1_Cd"]}, + ) - # Test error if missing bulk entry - vacancies = { - "vacancies": [ - self.cdte_defect_dict["vacancies"][0], - self.cdte_defect_dict["vacancies"][1], - ], - } - with warnings.catch_warnings(record=True) as w: - dist = input.Distortions.from_dict( - vacancies, - ) - self.assertEqual( - str(w[0].message), - """No bulk entry in `doped_defects_dict`. Please try again - providing a `bulk` entry in `doped_defects_dict`.""" - ) - self.assertEqual(dist, None) + # check expected info printing: + mock_print.assert_any_call( + "Applying ShakeNBreak...", + "Will apply the following bond distortions:", + "['-0.6', '-0.5', '-0.4', '-0.3', '-0.2', '-0.1', '0.0', '0.1', '0.2', '0.3', '0.4', " + "'0.5', '0.6'].", + "Then, will rattle with a std dev of 0.28 Å \n", # default stdev + ) + mock_print.assert_any_call( + "\033[1m" + "\nDefect: v_Cd_s0" + "\033[0m" + ) # bold print + mock_print.assert_any_call( + "\033[1m" + "Number of missing electrons in neutral state: 2" + "\033[0m" + ) + mock_print.assert_any_call( + "\nDefect v_Cd_s0 in charge state: -2. Number of distorted " "neighbours: 0" + ) + mock_print.assert_any_call( + "\nDefect v_Cd_s0 in charge state: -1. Number of distorted " "neighbours: 1" + ) + mock_print.assert_any_call( + "\nDefect v_Cd_s0 in charge state: 0. Number of distorted " "neighbours: 2" + ) - # Test distortion generation - vacancies = { - "vacancies": [ - self.cdte_defect_dict["vacancies"][0], - self.cdte_defect_dict["vacancies"][1], - ], - "bulk": self.cdte_defect_dict["bulk"] - } - for defect_dict in vacancies["vacancies"]: - defect_dict["charges"] = [0] - with patch("builtins.print") as mock_print: - dist = input.Distortions.from_dict( - vacancies, - bond_distortions=[-0.3,], - seed=42, - stdev=0.25, - ) - dist_defects_dict, dist_metadata = dist.write_vasp_files() - mock_print.assert_any_call( - "Applying ShakeNBreak...", - "Will apply the following bond distortions:", - "['-0.3'].", - "Then, will rattle with a std dev of 0.25 Å \n", - ) - mock_print.assert_any_call( - "\033[1m" + "\nDefect: v_Cd" + "\033[0m" - ) # bold print - mock_print.assert_any_call( - "\033[1m" + "Number of missing electrons in neutral state: 2" + "\033[0m" - ) - mock_print.assert_any_call( - "\033[1m" + "\nDefect: v_Te" + "\033[0m" - ) # bold print - mock_print.assert_any_call( - "\033[1m" + "Number of extra electrons in neutral state: 2" + "\033[0m" - ) - for defect_name in ["v_Cd", "v_Te"]: # default pmg-analysis-defects naming - self.assertTrue(os.path.exists(f"{defect_name}_0/Bond_Distortion_-30.0%/POSCAR")) - metadata = loadfn(f"{self.VASP_CDTE_DATA_DIR}/vacancies_dist_metadata.json") - self.assertDictEqual(loadfn("distortion_metadata.json"), metadata) - dumpfn(dist_defects_dict, "distorted_defects_dict.json") - test_dist_dict = loadfn(f"{self.VASP_CDTE_DATA_DIR}/vacancies_dist_defect_dict.json") - self.assertDictEqual(test_dist_dict, loadfn("distorted_defects_dict.json")) + # check if correct files were created: + V_Cd_Bond_Distortion_folder = "v_Cd_s0_0/Bond_Distortion_-50.0%" + self.assertTrue(os.path.exists(V_Cd_Bond_Distortion_folder)) + V_Cd_POSCAR = Poscar.from_file(V_Cd_Bond_Distortion_folder + "/POSCAR") + self.assertEqual( + V_Cd_POSCAR.comment, + "-50.0%__num_neighbours=2__v_Cd_s0", + ) # default + self.assertNotEqual(V_Cd_POSCAR.structure, self.V_Cd_minus0pt5_struc_rattled) + # old default rattling - def test_from_structures(self): - """Test from_structures() method of Distortion() class.""" - # # Test normal behaviour (no defect_index or defect_coords) - # vacancies = { - # "vacancies": [ - # self.cdte_defect_dict["vacancies"][0]["supercell"]["structure"], - # self.cdte_defect_dict["vacancies"][1]["supercell"]["structure"], - # ], - # "bulk": self.cdte_defect_dict["bulk"]["supercell"]["structure"], - # } + # test interstitial generation, with defects as list of structures # with patch("builtins.print") as mock_print: - # dist = input.Distortions.from_structures( - # vacancies, - # ) - # mock_print.assert_called_once_with( - # "Oxidation states were not explicitly set, thus have been guessed as " - # "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " - # "oxidation_states" - # ) - # self.assertDictEqual( - # dist.defects_dict, - # { - # "vacancies": { - # "v_Cd": self.cdte_defects["vacancies"][0], - # "v_Te": self.cdte_defects["vacancies"][1], - # } - # } - # ) + dist = input.Distortions.from_structures( + [self.Int_Cd_2_struc, self.V_Cd_struc], self.CdTe_bulk_struc + ) + dist.write_vasp_files() + self.assertDictEqual( + dist.defects_dict, + { + "Cd_i_m128": self.cdte_defects["Int_Cd_2"], + "v_Cd_s0": self.cdte_defects["vac_1_Cd"], + }, + ) + + # check if correct files were created: + Int_Cd_2_Bond_Distortion_folder = "Cd_i_m128_0/Bond_Distortion_-60.0%" + self.assertTrue(os.path.exists(Int_Cd_2_Bond_Distortion_folder)) + Int_Cd_2_POSCAR = Poscar.from_file(Int_Cd_2_Bond_Distortion_folder + "/POSCAR") + self.assertEqual( + Int_Cd_2_POSCAR.comment, + "-60.0%__num_neighbours=2__Cd_i_m128", + ) + self.assertEqual( + # Int_Cd_2_minus0pt6_struc_rattled is with new default `stdev` & `seed` + Int_Cd_2_POSCAR.structure, + self.Int_Cd_2_minus0pt6_struc_rattled, + ) + self.tearDown() + # Test defect position given with `defect_coords` with patch("builtins.print") as mock_print: dist = input.Distortions.from_structures( - { - "vacancies": [ - { - "structure": self.cdte_defect_dict["vacancies"][0]["supercell"]["structure"], - "defect_coords": [0,0,0], - } - ], - "bulk": self.cdte_defect_dict["bulk"]["supercell"]["structure"], - } - ) - mock_print.assert_called_once_with( - "Oxidation states were not explicitly set, thus have been guessed as " - "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " - "oxidation_states" - ) - self.assertDictEqual( - dist.defects_dict, - { - "vacancies": { - "v_Cd": self.cdte_defects["vacancies"][0], - } - } + [ + ( + self.cdte_doped_defect_dict["vacancies"][0]["supercell"][ + "structure" + ], + [0, 0, 0], + ) + ], + bulk=self.cdte_doped_defect_dict["bulk"]["supercell"]["structure"], ) + mock_print.assert_any_call( + "Oxidation states were not explicitly set, thus have been guessed as " + "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " + "oxidation_states" + ) + mock_print.assert_any_call( + "Defect charge states will be set to the range: 0 – {Defect " + "oxidation state}, with a `padding = 1` on either side of this " + "range." + ) + self.assertDictEqual( + dist.defects_dict, {"v_Cd_s0": self.cdte_defects["vac_1_Cd"]} + ) + # Test defect position given with `defect_index` with patch("builtins.print") as mock_print: dist = input.Distortions.from_structures( - { - "vacancies": [ - { - "structure": self.cdte_defect_dict["vacancies"][0]["supercell"]["structure"], - "defect_index": 0, - } - ], - "bulk": self.cdte_defect_dict["bulk"]["supercell"]["structure"], - } - ) - mock_print.assert_called_once_with( - "Oxidation states were not explicitly set, thus have been guessed as " - "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " - "oxidation_states" - ) - self.assertDictEqual( - dist.defects_dict, - { - "vacancies": { - "v_Cd": self.cdte_defects["vacancies"][0], - } - } + [(self.V_Cd_struc, 0)], bulk=self.CdTe_bulk_struc ) + self.assertDictEqual( + dist.defects_dict, {"v_Cd_s0": self.cdte_defects["vac_1_Cd"]} + ) + # Most cases already tested in test_cli.py for `snb-generate`` (which uses # the same function under the hood). Here we sanity check 2 more cases # Test defect_coords working even when slightly off correct site - struct_interst = Structure.from_file(f"{self.VASP_CDTE_DATA_DIR}/CdTe_Int_Cd_2_POSCAR") with patch("builtins.print") as mock_print: dist = input.Distortions.from_structures( - { - "interstitials": [ - { - "structure": struct_interst, - "defect_coords": [ - 0.8, # 0.8125, # actual Int_Cd_2 site - 0.15, # 0.1875, - 0.85, # 0.8125, - ], - } - ], - "bulk": self.cdte_defect_dict["bulk"]["supercell"]["structure"], - } - ) - mock_print.assert_called_once_with( - "Oxidation states were not explicitly set, thus have been guessed as " - "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " - "oxidation_states" - ) - self.assertEqual( - dist.defects_dict["interstitials"]["Cd_i"].defect_site_index, - 0 - ) - self.assertEqual( - list(dist.defects_dict["interstitials"]["Cd_i"].defect_structure[0].frac_coords), - list([0.8125, 0.1875, 0.8125]) - ) + [ + ( + self.Int_Cd_2_struc, + [ + 0.8, # 0.8125, # actual Int_Cd_2 site + 0.15, # 0.1875, + 0.85, # 0.8125, + ], + ) + ], + bulk=self.CdTe_bulk_struc, + ) + self.assertEqual(dist.defects_dict["Cd_i_m128"].defect_site_index, 0) + self.assertEqual( + list(dist.defects_dict["Cd_i_m128"].defect_structure[0].frac_coords), + list([0.8125, 0.1875, 0.8125]), + ) # test defect_coords working even when significantly off (~2.2 Å) correct site, # with rattled bulk rattled_bulk = rattle(self.CdTe_bulk_struc) with patch("builtins.print") as mock_print: dist = input.Distortions.from_structures( - { - "vacancies": [ - { - "structure": self.cdte_defect_dict["vacancies"][0]["supercell"]["structure"], - "defect_coords": [0,0,0], - } - ], - "bulk": rattled_bulk, - } - ) - mock_print.assert_called_once_with( - "Oxidation states were not explicitly set, thus have been guessed as " - "{'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set " - "oxidation_states" - ) - self.assertDictEqual( - dist.defects_dict, - { - "vacancies": { - "v_Cd": self.cdte_defects["vacancies"][0], - } - } + [(self.V_Cd_struc, [0, 0, 0])], bulk=rattled_bulk ) + self.assertDictEqual( + dist.defects_dict, {"v_Cd_s0": self.cdte_defects["vac_1_Cd"]} + ) - # Test wrong type for defect index + # Test wrong type for defect index/coords with warnings.catch_warnings(record=True) as w: dist = input.Distortions.from_structures( - { - "vacancies": [ - { - "structure": self.cdte_defect_dict["vacancies"][0]["supercell"]["structure"], - "defect_index": [0,0,0], - } - ], - "bulk": self.cdte_defect_dict["bulk"]["supercell"]["structure"], - } - ) - self.assertEqual( - str(w[0].message), - ("Wrong type for `defect_index`! It should be of type " - "int but list was provided. Will proceed " - "with auto-site matching."), - ) - self.assertDictEqual( - dist.defects_dict, - { - "vacancies": { - "v_Cd": self.cdte_defects["vacancies"][0], - } - } - ) + [(self.V_Cd_struc, "wrong type!")], bulk=self.CdTe_bulk_struc + ) # defect index as + # string + self.assertEqual( + str(w[0].message), + ( + f"Unrecognised format for defect frac_coords/index: wrong type! in `defects`. If " + f"specifying frac_coords, it should be a list or numpy array, or if specifying " + f"defect index, should be an integer. Got type instead. Will " + f"proceed with auto-site matching." + ), + ) + self.assertDictEqual( + dist.defects_dict, {"v_Cd_s0": self.cdte_defects["vac_1_Cd"]} + ) - # Test wrong type for defect coords - with warnings.catch_warnings(record=True) as w: - dist = input.Distortions.from_structures( - { - "vacancies": [ - { - "structure": self.cdte_defect_dict["vacancies"][0]["supercell"]["structure"], - "defect_coords": 0, - } - ], - "bulk": self.cdte_defect_dict["bulk"]["supercell"]["structure"], - } - ) - self.assertEqual( - str(w[0].message), - ("Wrong type for `defect_coords`! It should be of type " - "list/np.ndarray but int was provided. " - "Will proceed with auto-site matching.") - ) - self.assertDictEqual( - dist.defects_dict, - { - "vacancies": { - "v_Cd": self.cdte_defects["vacancies"][0], - } - } + # Test wrong type for `defects` + with self.assertRaises(TypeError) as e: + wrong_type_error = TypeError( + "Wrong format for `defects`. Should be a list of pymatgen Structure objects" ) + dist = input.Distortions.from_structures( + "wrong type!", bulk=self.CdTe_bulk_struc + ) # `defects` as string + self.assertIn(no_bulk_error, e.exception) + + if_present_rm(os.path.join("Cd_i_m128_3")) + if_present_rm(os.path.join("v_Cd_s0_-3")) # default padding + + # Test padding usage + vacancies = [defect for defect in self.cdte_defect_list if "v_" in defect.name] + # test default + dist = input.Distortions.from_structures(self.V_Cd_struc, self.CdTe_bulk_struc) + dist.write_vasp_files() + defect_name = "v_Cd_s0" + self.assertTrue( + os.path.exists(f"{defect_name}_1/Bond_Distortion_-30.0%/POSCAR") + ) + self.assertFalse(os.path.exists(f"{defect_name}_2")) + self.assertTrue(os.path.exists(f"{defect_name}_-3")) + self.tearDown() + + # test explicitly set + dist = input.Distortions.from_structures( + self.V_Cd_struc, self.CdTe_bulk_struc, padding=4 + ) + dist.write_vasp_files() + self.assertTrue( + os.path.exists(f"{defect_name}_4/Bond_Distortion_-30.0%/POSCAR") + ) + self.assertFalse(os.path.exists(f"{defect_name}_5")) + self.assertTrue(os.path.exists(f"{defect_name}_-6")) + self.assertFalse(os.path.exists(f"{defect_name}_-7")) + if __name__ == "__main__": unittest.main() diff --git a/tests/test_local.py b/tests/test_local.py index ba7d99c9..22d64e64 100644 --- a/tests/test_local.py +++ b/tests/test_local.py @@ -21,7 +21,7 @@ from monty.serialization import dumpfn, loadfn from pymatgen.analysis.defects.core import StructureMatcher from pymatgen.core.structure import Structure -from pymatgen.io.vasp.inputs import Incar, Kpoints, Poscar +from pymatgen.io.vasp.inputs import Incar, Kpoints, Poscar, UnknownPotcarWarning from shakenbreak import input, vasp, cli from shakenbreak.cli import snb @@ -66,44 +66,34 @@ class DistortionLocalTestCase(unittest.TestCase): """Test ShakeNBreak structure distortion helper functions""" def setUp(self): + warnings.filterwarnings("ignore", category=UnknownPotcarWarning) self.DATA_DIR = os.path.join(os.path.dirname(__file__), "data") self.VASP_CDTE_DATA_DIR = os.path.join(self.DATA_DIR, "vasp/CdTe") self.EXAMPLE_RESULTS = os.path.join(self.DATA_DIR, "example_results") - self.cdte_defect_dict = loadfn( + + # Refactor doped defect dict to dict of Defect() objects + self.cdte_doped_defect_dict = loadfn( os.path.join(self.VASP_CDTE_DATA_DIR, "CdTe_defects_dict.json") ) - # Refactor doped defect dict to dict of Defect() objects self.cdte_defects = { - defect_type: [ - cli.generate_defect_object(defect_dict, self.cdte_defect_dict["bulk"]) - for defect_dict - in self.cdte_defect_dict[defect_type] - ] for defect_type in self.cdte_defect_dict.keys() if defect_type != "bulk" - } - # Use custom names (similar to DOPED/PyCDT) - self.cdte_named_defects = { - "vacancies": { - "vac_1_Cd": self.cdte_defects["vacancies"][0], - "vac_2_Te": self.cdte_defects["vacancies"][1], - }, - "substitutions": { - "as_1_Cd_on_Te": self.cdte_defects["substitutions"][0], - "as_1_Te_on_Cd": self.cdte_defects["substitutions"][1], - }, - "interstitials": { - "Int_Cd_1": self.cdte_defects["interstitials"][0], - "Int_Cd_2": self.cdte_defects["interstitials"][1], - "Int_Cd_3": self.cdte_defects["interstitials"][2], - "Int_Te_1": self.cdte_defects["interstitials"][3], - "Int_Te_2": self.cdte_defects["interstitials"][4], - "Int_Te_3": self.cdte_defects["interstitials"][5], - }, - } - self.V_Cd_dict = self.cdte_defect_dict["vacancies"][0] - self.Int_Cd_2_dict = self.cdte_defect_dict["interstitials"][1] + defect_dict["name"]: cli.generate_defect_object( + single_defect_dict=defect_dict, + bulk_dict=self.cdte_doped_defect_dict["bulk"], + ) + for defects_type, defect_dict_list in self.cdte_doped_defect_dict.items() + if "bulk" not in defects_type + for defect_dict in defect_dict_list + } # with doped/PyCDT names + + self.V_Cd_dict = self.cdte_doped_defect_dict["vacancies"][0] + self.Int_Cd_2_dict = self.cdte_doped_defect_dict["interstitials"][1] # Refactor to Defect() objects - self.V_Cd = cli.generate_defect_object(self.V_Cd_dict, self.cdte_defect_dict["bulk"]) - self.Int_Cd_2 = cli.generate_defect_object(self.Int_Cd_2_dict, self.cdte_defect_dict["bulk"]) + self.V_Cd = cli.generate_defect_object( + self.V_Cd_dict, self.cdte_doped_defect_dict["bulk"] + ) + self.Int_Cd_2 = cli.generate_defect_object( + self.Int_Cd_2_dict, self.cdte_doped_defect_dict["bulk"] + ) self.V_Cd_struc = Structure.from_file( os.path.join(self.VASP_CDTE_DATA_DIR, "CdTe_V_Cd_POSCAR") @@ -269,24 +259,33 @@ def tearDown(self) -> None: ): shutil.rmtree(i) - for defect_folder in os.listdir(self.EXAMPLE_RESULTS): + for defect_folder in [ + dir for dir in os.listdir(self.EXAMPLE_RESULTS) + if os.path.isdir(f"{self.EXAMPLE_RESULTS}/{dir}") + ]: for file in os.listdir(f"{self.EXAMPLE_RESULTS}/{defect_folder}"): if file.endswith(".png"): os.remove(f"{self.EXAMPLE_RESULTS}/{defect_folder}/{file}") - # test create_folder and create_vasp_input simultaneously: def test_create_vasp_input(self): """Test create_vasp_input function for INCARs and POTCARs""" vasp_defect_inputs = vasp_input.prepare_vasp_defect_inputs( - copy.deepcopy(self.cdte_defect_dict) + copy.deepcopy(self.cdte_doped_defect_dict) ) V_Cd_updated_charged_defect_dict = _update_struct_defect_dict( vasp_defect_inputs["vac_1_Cd_0"], self.V_Cd_minus0pt5_struc_rattled, "V_Cd Rattled", ) + # make unperturbed defect entry: + V_Cd_unperturbed_dict = _update_struct_defect_dict( + vasp_defect_inputs["vac_1_Cd_0"], + self.V_Cd_struc, + "V_Cd Unperturbed", + ) V_Cd_charged_defect_dict = { + "Unperturbed": V_Cd_unperturbed_dict, "Bond_Distortion_-50.0%": V_Cd_updated_charged_defect_dict } self.assertFalse(os.path.exists("vac_1_Cd_0")) @@ -356,7 +355,7 @@ def test_write_vasp_files(self, mock_print): bond_distortions = list(np.arange(-0.6, 0.601, 0.05)) dist = input.Distortions( - self.cdte_named_defects, + self.cdte_defects, oxidation_states=oxidation_states, bond_distortions=bond_distortions, local_rattle=False, @@ -425,11 +424,8 @@ def test_write_vasp_files(self, mock_print): "-50.0%__num_neighbours=2__vac_1_Cd", ) # default V_Cd_POSCAR.structure.remove_oxidation_states() - # sm = StructureMatcher() - # self.assertTrue( - # sm.get_rms_dist(V_Cd_POSCAR.structure, self.V_Cd_minus0pt5_struc_rattled)[0] < 0.1 - # ) - self.assertEqual(V_Cd_POSCAR.structure, self.V_Cd_minus0pt5_struc_rattled) + self.assertNotEqual(V_Cd_POSCAR.structure, self.V_Cd_minus0pt5_struc_rattled) + # V_Cd_minus0pt5_struc_rattled was with old default seed = 42 and stdev = 0.25 # Check INCAR V_Cd_INCAR = Incar.from_file(V_Cd_minus50_folder + "/INCAR") @@ -465,9 +461,7 @@ def test_write_vasp_files(self, mock_print): ) struc = Int_Cd_2_POSCAR.structure struc.remove_oxidation_states() - self.assertEqual( - struc, self.Int_Cd_2_minus0pt6_struc_rattled - ) + self.assertEqual(struc, self.Int_Cd_2_minus0pt6_struc_rattled) # check INCAR V_Cd_INCAR = Incar.from_file(V_Cd_minus50_folder + "/INCAR") @@ -522,8 +516,9 @@ def test_plot(self): ], catch_exceptions=False, ) - self.assertTrue(os.path.exists(os.path.join(self.EXAMPLE_RESULTS, - f"{defect}/{defect}.png"))) + self.assertTrue( + os.path.exists(os.path.join(self.EXAMPLE_RESULTS, f"{defect}/{defect}.png")) + ) compare_images( os.path.join(self.EXAMPLE_RESULTS, f"{defect}/{defect}.png"), f"{_DATA_DIR}/local_baseline_plots/vac_1_Ti_0_cli_colorbar_disp.png", @@ -540,7 +535,7 @@ def test_plot(self): # distorted neighbours and their identities fake_distortion_metadata = { "defects": { - "v_Cd": { + "v_Cd_s0": { "charges": { "0": { "num_nearest_neighbours": 2, @@ -578,14 +573,17 @@ def test_plot(self): ], catch_exceptions=False, ) - self.assertTrue(os.path.exists(os.path.join(self.EXAMPLE_RESULTS, - f"{defect}/{defect}.png"))) - self.assertTrue(os.path.exists(os.path.join(self.EXAMPLE_RESULTS, - "v_Cd_0/v_Cd_0.png"))) - self.assertTrue(os.path.exists(os.path.join(self.EXAMPLE_RESULTS, - "v_Cd_-1/v_Cd_-1.png"))) + self.assertTrue( + os.path.exists(os.path.join(self.EXAMPLE_RESULTS, f"{defect}/{defect}.png")) + ) + self.assertTrue( + os.path.exists(os.path.join(self.EXAMPLE_RESULTS, "v_Cd_s0_0/v_Cd_s0_0.png")) + ) + self.assertTrue( + os.path.exists(os.path.join(self.EXAMPLE_RESULTS, "v_Cd_s0_-1/v_Cd_s0_-1.png")) + ) compare_images( - os.path.join(self.EXAMPLE_RESULTS, "v_Cd_0/v_Cd_0.png"), + os.path.join(self.EXAMPLE_RESULTS, "v_Cd_s0_0/v_Cd_s0_0.png"), f"{_DATA_DIR}/local_baseline_plots/vac_1_Cd_0_cli_default.png", tol=2.0, ) # only locally (on Github Actions, saved image has a different size) @@ -594,6 +592,56 @@ def test_plot(self): for file in os.listdir(os.path.join(self.EXAMPLE_RESULTS, defect)) if "yaml" in file or "png" in file ] + + # generate docs example plots: + shutil.copytree( + f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0", f"{self.EXAMPLE_RESULTS}/orig_v_Cd_s0_0" + ) + for i in range(1,7): + shutil.copyfile( + f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0/Unperturbed/CONTCAR", + f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0/Bond_Distortion_{i}0.0%/CONTCAR", + ) + energies_dict = loadfn(f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0/v_Cd_s0_0.yaml") + energies_dict["distortions"][-0.5] = energies_dict["distortions"][-0.6] + dumpfn(energies_dict, f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0/v_Cd_s0_0.yaml") + shutil.copyfile( + f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0/Bond_Distortion_-60.0%/CONTCAR", + f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0/Bond_Distortion_-50.0%/CONTCAR", + ) + + result = runner.invoke( + snb, + [ + "plot", + "-d", + "v_Cd_s0_0", + "-cb", + "-p", + self.EXAMPLE_RESULTS, + "-f", + "svg", + ], + ) + shutil.copyfile(f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0/v_Cd_s0_0.svg", + "../docs/v_Cd_s0_0_colorbar.svg") + result = runner.invoke( + snb, + [ + "plot", + "-d", + "v_Cd_s0_0", + "-p", + self.EXAMPLE_RESULTS, + "-f", + "svg", + ], + ) + shutil.copyfile(f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0/v_Cd_s0_0.svg", "../docs/v_Cd_s0_0.svg") + shutil.rmtree(f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0") + shutil.move( + f"{self.EXAMPLE_RESULTS}/orig_v_Cd_s0_0", f"{self.EXAMPLE_RESULTS}/v_Cd_s0_0" + ) os.remove(f"{self.EXAMPLE_RESULTS}/distortion_metadata.json") self.tearDown() @@ -841,23 +889,23 @@ def test_generate(self): """ with open("test_config.yml", "w+") as fp: fp.write(test_yml) - defect_name = "v_Cd" # pymatgen-analysis-defects default name + defect_name = "v_Cd_s0" # SnB default name runner = CliRunner() result = runner.invoke( - snb, - [ - "generate", - "-d", - f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", - "-b", - f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", - "-c 0", - "-v", - "--config", - f"test_config.yml", - ], - catch_exceptions=False, - ) + snb, + [ + "generate", + "-d", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", + "-b", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", + "-c 0", + "-v", + "--config", + f"test_config.yml", + ], + catch_exceptions=False, + ) self.assertEqual(result.exit_code, 0) self.assertTrue(os.path.exists(f"./{defect_name}_0")) self.assertTrue(os.path.exists(f"./{defect_name}_0/Bond_Distortion_-50.0%")) @@ -872,7 +920,7 @@ def test_generate(self): os.path.exists(f"{defect_name}_0/Bond_Distortion_-50.0%/{file}") ) # Check POTCAR file - with open(f"Vac_Cd_mult32_0/Bond_Distortion_-50.0%/POTCAR") as myfile: + with open(f"{defect_name}_0/Bond_Distortion_-50.0%/POTCAR") as myfile: first_line = myfile.readline() self.assertIn("PAW_PBE Cd_GW", first_line) # Check KPOINTS file @@ -885,32 +933,31 @@ def test_generate(self): self.assertEqual(incar.pop("IBRION"), 2) self.assertEqual(incar.pop("EDIFF"), 1e-5) self.assertEqual(incar.pop("ROPT"), "1e-3 1e-3") - # TODO: fix this + # Test custom name - # defect_name = "vac_1_Cd" - # runner = CliRunner() - # result = runner.invoke( - # snb, - # [ - # "generate", - # "-d", - # f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", - # "-b", - # f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", - # "-c 0", - # "-n", - # "vac_1_Cd", - # "--config", - # f"test_config.yml", - # ], - # catch_exceptions=False, - # ) - # cwd = os.getcwd() - # self.assertEqual(result.exit_code, 0) - # # self.assertTrue(os.path.exists(f"{cwd}/vac_1_Cd_0")) - # self.assertTrue(os.path.exists(f"{cwd}/vac_1_Cd_0/Bond_Distortion_-50.0%")) - # test warning when input file doesn't match expected format: + defect_name = "vac_1_Cd" + result = runner.invoke( + snb, + [ + "generate", + "-d", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_V_Cd_POSCAR", + "-b", + f"{self.VASP_CDTE_DATA_DIR}/CdTe_Bulk_Supercell_POSCAR", + "-c 0", + "-n", + "vac_1_Cd", + "--config", + f"test_config.yml", + ], + catch_exceptions=False, + ) + cwd = os.getcwd() + self.assertEqual(result.exit_code, 0) + # self.assertTrue(os.path.exists(f"{cwd}/vac_1_Cd_0")) + self.assertTrue(os.path.exists(f"{cwd}/vac_1_Cd_0/Bond_Distortion_-50.0%")) + # test warning when input file doesn't match expected format: os.remove("distortion_metadata.json") with warnings.catch_warnings(record=True) as w: result = runner.invoke( @@ -928,18 +975,29 @@ def test_generate(self): ], catch_exceptions=False, ) - incar_dict = Incar.from_file(f"{defect_name}_0/Bond_Distortion_-50.0%/INCAR").as_dict() + incar_dict = Incar.from_file( + f"{defect_name}_0/Bond_Distortion_-50.0%/INCAR" + ).as_dict() self.assertEqual(incar_dict["IBRION"], 2) # default setting # assert UserWarning about unparsed input file user_warnings = [warning for warning in w if warning.category == UserWarning] - self.assertEqual(len(user_warnings), 1) - self.assertEqual( - "Input file test_config.yml specified but no valid INCAR tags found. " - "Should be in the format of VASP INCAR file.", - str(user_warnings[-1].message), + self.assertEqual(len(user_warnings), 2) # wrong INCAR format and overwriting folder + self.assertTrue( + any("Input file test_config.yml specified but no valid INCAR tags found. " + "Should be in the format of VASP INCAR file." + in str(warning.message) for warning in user_warnings) + ) + self.assertTrue( # here we get this warning because no Unperturbed structures were + # written so couldn't be compared + any(f"The previously-generated defect folder v_Cd_s0_0 in " + f"{os.path.basename(os.path.abspath('.'))} has the same Unperturbed defect structure " + f"as the current defect species: v_Cd_s0_0. ShakeNBreak files in v_Cd_s0_0 will be " + f"overwritten." in str(warning.message) for warning in user_warnings) ) for file in ["KPOINTS", "POTCAR", "POSCAR"]: - self.assertTrue(os.path.exists(f"{defect_name}_0/Bond_Distortion_-50.0%/{file}")) + self.assertTrue( + os.path.exists(f"{defect_name}_0/Bond_Distortion_-50.0%/{file}") + ) if __name__ == "__main__": diff --git a/tests/test_plotting.py b/tests/test_plotting.py index f25a81fa..b7512725 100644 --- a/tests/test_plotting.py +++ b/tests/test_plotting.py @@ -30,7 +30,6 @@ def if_present_rm(path): class PlottingDefectsTestCase(unittest.TestCase): def setUp(self): - self.DATA_DIR = os.path.join(os.path.dirname(__file__), "data") self.VASP_CDTE_DATA_DIR = os.path.join(self.DATA_DIR, "vasp/CdTe") self.organized_V_Cd_distortion_data = loadfn( @@ -82,12 +81,13 @@ def setUp(self): def tearDown(self): if_present_rm(f"{self.VASP_CDTE_DATA_DIR}/vac_1_Cd_-2") for file in os.listdir(f"{self.VASP_CDTE_DATA_DIR}/vac_1_Cd_0"): - if file.endswith(".svg"): + if file.endswith(".svg") or file.endswith(".png"): os.remove(f"{self.VASP_CDTE_DATA_DIR}/vac_1_Cd_0/{file}") for file in os.listdir(self.VASP_CDTE_DATA_DIR): - if file.endswith(".svg"): + if file.endswith(".svg") or file.endswith(".png"): os.remove(f"{self.VASP_CDTE_DATA_DIR}/{file}") if_present_rm("Int_Se_1_6.png") + if_present_rm("vac_1_Cd_0.png") def test_verify_data_directories_exist(self): """Test _verify_data_directories_exist() function""" @@ -128,8 +128,9 @@ def test_format_axis(self): len(formatted_ax.yaxis.get_ticklabels()), 6 + 2 ) # +2 bc MaxNLocator adds ticks # beyond axis limits for autoscaling reasons - # self.assertTrue([float(tick.get_text()) % 0.3 == 0.0 for tick in formatted_ax.xaxis.get_ticklabels()]) # x ticks should be multiples of 0.3 - print(formatted_ax.xaxis.get_ticklabels()) + self.assertTrue([float(tick.get_text().replace("−", "-")) # weird mpl ticker reformatting + % 0.3 == 0.0 for tick in + formatted_ax.xaxis.get_ticklabels()]) # x ticks should be multiples of 0.3 # check x label if no nearest neighbour info ax.plot( list(self.V_Cd_energies_dict["distortions"].keys()), @@ -304,20 +305,20 @@ def test_format_defect_name(self): defect_species="vac_1_Cd_0", include_site_num_in_name=True, ) - self.assertEqual(formatted_name, "$V_{Cd_1}^{0}$") + self.assertEqual(formatted_name, "$V_{Cd_{1}}^{0}$") # test interstitial case formatted_name = plotting._format_defect_name( defect_species="Int_Cd_1_0", include_site_num_in_name=True, ) - self.assertEqual(formatted_name, "Cd$_{i_1}^{0}$") + self.assertEqual(formatted_name, "Cd$_{i_{1}}^{0}$") # test lowercase interstitial formatted_name = plotting._format_defect_name( defect_species="int_Cd_1_0", include_site_num_in_name=True, ) - self.assertEqual(formatted_name, "Cd$_{i_1}^{0}$") + self.assertEqual(formatted_name, "Cd$_{i_{1}}^{0}$") # test uppercase vacancy (pymatgen default name) formatted_name = plotting._format_defect_name( @@ -331,7 +332,7 @@ def test_format_defect_name(self): defect_species="as_1_Ni_on_Li_0", include_site_num_in_name=True, ) - self.assertEqual(formatted_name, "Ni$_{Li_1}^{0}$") + self.assertEqual(formatted_name, "Ni$_{Li_{1}}^{0}$") # check exceptions raised: invalid charge or defect_species # test error catching: @@ -400,6 +401,17 @@ def test_format_defect_name(self): "Vac_Li_mult32_-2": "$V_{Li}^{-2}$", "Vac_Li_mult32_0": "$V_{Li}^{0}$", "Vac_Li_mult32_1": "$V_{Li}^{+1}$", + "v_Cd_s0_-1": "$V_{Cd}^{-1}$", + "v_Te_s32_2": "$V_{Te}^{+2}$", + "Cd_i_m128_2": "Cd$_i^{+2}$", + "Cd_i_m32_2": "Cd$_i^{+2}$", + "Cd_i_m32a_2": "Cd$_i^{+2}$", + "Cd_i_m32b_2": "Cd$_i^{+2}$", + "Te_i_m128b_-2": "Te$_i^{-2}$", + "Te_Cd_s32_2": "Te$_{Cd}^{+2}$", + "Te_Cd_s32c_2": "Te$_{Cd}^{+2}$", + "Cd_Te_s0_2": "Cd$_{Te}^{+2}$", + "Cd_Te_s0a_2": "Cd$_{Te}^{+2}$", } for defect_species, expected_name in defect_species_name_dict.items(): @@ -409,6 +421,42 @@ def test_format_defect_name(self): ) self.assertEqual(formatted_name, expected_name) + defect_species_w_site_num_name_dict = { + "vac_Cd_mult32_0": "$V_{Cd_{m32}}^{0}$", + "Int_Li_mult64_-1": "Li$_{i_{m64}}^{-1}$", + "Int_Li_mult64_-2": "Li$_{i_{m64}}^{-2}$", + "Int_Li_mult64_0": "Li$_{i_{m64}}^{0}$", + "Int_Li_mult64_1": "Li$_{i_{m64}}^{+1}$", + "Int_Li_mult64_2": "Li$_{i_{m64}}^{+2}$", + "Sub_Li_on_Ni_mult32_-1": "Li$_{Ni_{m32}}^{-1}$", + "Sub_Li_on_Ni_mult32_-2": "Li$_{Ni_{m32}}^{-2}$", + "Sub_Li_on_Ni_mult32_0": "Li$_{Ni_{m32}}^{0}$", + "Sub_Li_on_Ni_mult32_1": "Li$_{Ni_{m32}}^{+1}$", + "Sub_Li_on_Ni_mult32_2": "Li$_{Ni_{m32}}^{+2}$", + "Sub_Ni_on_Li_mult32_-1": "Ni$_{Li_{m32}}^{-1}$", + "Sub_Ni_on_Li_mult32_-2": "Ni$_{Li_{m32}}^{-2}$", + "Sub_Ni_on_Li_mult32_0": "Ni$_{Li_{m32}}^{0}$", + "Sub_Ni_on_Li_mult32_1": "Ni$_{Li_{m32}}^{+1}$", + "Sub_Ni_on_Li_mult32_2": "Ni$_{Li_{m32}}^{+2}$", + "Vac_Li_mult32_-1": "$V_{Li_{m32}}^{-1}$", + "Vac_Li_mult32_-2": "$V_{Li_{m32}}^{-2}$", + "Vac_Li_mult32_0": "$V_{Li_{m32}}^{0}$", + "Vac_Li_mult32_1": "$V_{Li_{m32}}^{+1}$", + "v_Cd_s0_-1": "$V_{Cd_{s0}}^{-1}$", + "v_Te_s32_2": "$V_{Te_{s32}}^{+2}$", + "v_Te_s32a_2": "$V_{Te_{s32a}}^{+2}$", + "Te_Cd_s32_2": "Te$_{Cd_{s32}}^{+2}$", + "Te_Cd_s32c_2": "Te$_{Cd_{s32c}}^{+2}$", + "Cd_Te_s0_2": "Cd$_{Te_{s0}}^{+2}$", + "Cd_Te_s0a_2": "Cd$_{Te_{s0a}}^{+2}$", + } + for defect_species, expected_name in defect_species_w_site_num_name_dict.items(): + formatted_name = plotting._format_defect_name( + defect_species=defect_species, + include_site_num_in_name=True, + ) + self.assertEqual(formatted_name, expected_name) + def test_cast_energies_to_floats(self): """Test _cast_energies_to_floats() function.""" # Check numbers given as str are succesfully converted to floats @@ -601,12 +649,12 @@ def test_save_plot(self): # test previously saved plot renaming and print statement plotting._save_plot( - fig=fig, defect_name=defect_name, output_path=".", save_format="svg" + fig=fig, defect_name=defect_name, output_path=".", save_format="png" ) - self.assertTrue(os.path.exists(f"./{defect_name}.svg")) + self.assertTrue(os.path.exists(f"./{defect_name}.png")) with patch("builtins.print") as mock_print: plotting._save_plot( - fig=fig, defect_name=defect_name, output_path=".", save_format="svg" + fig=fig, defect_name=defect_name, output_path=".", save_format="png" ) current_datetime = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M") current_datetime_minus1min = ( @@ -615,42 +663,42 @@ def test_save_plot(self): "%Y-%m-%d-%H-%M" ) # in case delay between writing and testing plot generation - self.assertTrue(os.path.exists(f"./{defect_name}.svg")) - mock_print.assert_any_call(f"Plot saved to ./vac_1_Cd_0.svg") + self.assertTrue(os.path.exists(f"./{defect_name}.png")) + mock_print.assert_any_call(f"Plot saved to ./vac_1_Cd_0.png") self.assertTrue( - os.path.exists(f"./{defect_name}_{current_datetime}.svg") - or os.path.exists(f"./{defect_name}_{current_datetime_minus1min}.svg") + os.path.exists(f"./{defect_name}_{current_datetime}.png") + or os.path.exists(f"./{defect_name}_{current_datetime_minus1min}.png") ) self.assertTrue( - f"Previous version of {defect_name}.svg found in output_path: './'. Will rename " - f"old plot to {defect_name}_{current_datetime}.svg." + f"Previous version of {defect_name}.png found in output_path: './'. Will rename " + f"old plot to {defect_name}_{current_datetime}.png." in mock_print.call_args_list[0][0][0] - or f"Previous version of {defect_name}.svg found in output_path: './'. Will rename " - f"old plot to {defect_name}_{current_datetime_minus1min}.svg." + or f"Previous version of {defect_name}.png found in output_path: './'. Will rename " + f"old plot to {defect_name}_{current_datetime_minus1min}.png." in mock_print.call_args_list[0][0][0] ) - if_present_rm(f"./{defect_name}.svg") - if_present_rm(f"./{defect_name}_{current_datetime}.svg") - if_present_rm(f"./{defect_name}_{current_datetime_minus1min}.svg") + if_present_rm(f"./{defect_name}.png") + if_present_rm(f"./{defect_name}_{current_datetime}.png") + if_present_rm(f"./{defect_name}_{current_datetime_minus1min}.png") # test no print statements with verbose = False plotting._save_plot( - fig=fig, defect_name=defect_name, output_path=".", save_format="svg" + fig=fig, defect_name=defect_name, output_path=".", save_format="png" ) - self.assertTrue(os.path.exists(f"./{defect_name}.svg")) + self.assertTrue(os.path.exists(f"./{defect_name}.png")) with patch("builtins.print") as mock_print: plotting._save_plot( fig=fig, defect_name=defect_name, output_path=".", - save_format="svg", + save_format="png", verbose=False, ) - self.assertTrue(os.path.exists(f"./{defect_name}.svg")) + self.assertTrue(os.path.exists(f"./{defect_name}.png")) mock_print.assert_not_called() - if_present_rm(f"./{defect_name}.svg") - if_present_rm(f"./{defect_name}_{current_datetime}.svg") - if_present_rm(f"./{defect_name}_{current_datetime_minus1min}.svg") + if_present_rm(f"./{defect_name}.png") + if_present_rm(f"./{defect_name}_{current_datetime}.png") + if_present_rm(f"./{defect_name}_{current_datetime_minus1min}.png") @pytest.mark.mpl_image_compare( baseline_dir=f"{_DATA_DIR}/remote_baseline_plots", @@ -704,6 +752,28 @@ def test_plot_colorbar_displacement(self): ) return fig + + @pytest.mark.mpl_image_compare( + baseline_dir=f"{_DATA_DIR}/remote_baseline_plots", + filename="Cd_Te_s32c_2_displacement.png", + style=f"{_file_path}/../shakenbreak/shakenbreak.mplstyle", + savefig_kwargs={"transparent": True, "bbox_inches": "tight"}, + ) + def test_plot_colorbar_SnB_naming_w_site_num(self): + """Test plot_colorbar() function with SnB defect naming and + `include_site_num_in_name=True`""" + fig = plotting.plot_colorbar( + energies_dict=self.V_Cd_energies_dict, + disp_dict=self.V_Cd_displacement_dict, + defect_species="Cd_Te_s32c_2", + include_site_num_in_name=True, + num_nearest_neighbours=4, + neighbour_atom="Te", + metric="disp", + ) + return fig + + @pytest.mark.mpl_image_compare( baseline_dir=f"{_DATA_DIR}/remote_baseline_plots", filename="vac_1_Cd_0_maxdist_title_linecolor_label.png", @@ -722,11 +792,10 @@ def test_plot_colorbar_legend_label_linecolor_title_saveplot(self): legend_label="SnB: 2 Te", line_color="k", title="$V_{Cd}^{0}$", - save_format="svg", save_plot=True, y_label="E (eV)", ) - self.assertTrue(os.path.exists(os.path.join(os.getcwd(), "vac_1_Cd_0.svg"))) + self.assertTrue(os.path.exists(os.path.join(os.getcwd(), "vac_1_Cd_0.png"))) return fig @pytest.mark.mpl_image_compare( @@ -959,7 +1028,7 @@ def test_plot_defect_fake_output_directories(self): defect_species="fake_defect", energies_dict=self.V_Cd_energies_dict, ) - os.remove(f"{self.VASP_CDTE_DATA_DIR}/fake_defect.svg") + os.remove(f"{self.VASP_CDTE_DATA_DIR}/fake_defect.png") def test_plot_defect_missing_unperturbed_energy(self): with warnings.catch_warnings(record=True) as w: diff --git a/tests/test_shakenbreak.py b/tests/test_shakenbreak.py index e1a700b3..5f184d4b 100644 --- a/tests/test_shakenbreak.py +++ b/tests/test_shakenbreak.py @@ -2,11 +2,13 @@ import os import shutil import unittest +import warnings from unittest.mock import call, patch import pytest from monty.serialization import dumpfn, loadfn from pymatgen.core.structure import Structure +from pymatgen.io.vasp.inputs import UnknownPotcarWarning from shakenbreak import energy_lowering_distortions, input, io, plotting, cli @@ -23,13 +25,17 @@ def if_present_rm(path): class ShakeNBreakTestCase(unittest.TestCase): # integration testing ShakeNBreak def setUp(self): + warnings.simplefilter("ignore", UnknownPotcarWarning) self.DATA_DIR = os.path.join(os.path.dirname(__file__), "data") self.VASP_CDTE_DATA_DIR = os.path.join(self.DATA_DIR, "vasp/CdTe") - self.cdte_defect_dict = loadfn( + # Refactor doped defect dict to dict of Defect() objects + self.cdte_doped_defect_dict = loadfn( os.path.join(self.VASP_CDTE_DATA_DIR, "CdTe_defects_dict.json") ) - self.V_Cd_dict = self.cdte_defect_dict["vacancies"][0] - self.V_Cd = cli.generate_defect_object(self.V_Cd_dict, self.cdte_defect_dict["bulk"]) + + self.V_Cd_dict = self.cdte_doped_defect_dict["vacancies"][0] + + self.V_Cd = cli.generate_defect_object(self.V_Cd_dict, self.cdte_doped_defect_dict["bulk"]) self.V_Cd_minus_0pt55_structure = Structure.from_file( self.VASP_CDTE_DATA_DIR + "/vac_1_Cd_0/Bond_Distortion_-55.0%/CONTCAR" ) @@ -60,18 +66,22 @@ def setUp(self): f"vac_1_Cd_-2/{fake_dir}/CONTCAR", ) + for charge in [-1,-2]: + shutil.copyfile( + os.path.join(self.VASP_CDTE_DATA_DIR, "CdTe_V_Cd_POSCAR"), + f"vac_1_Cd_{charge}/Unperturbed/POSCAR", + ) # so when we generate SnB files in `test_SnB_integration` it recognises it as + # being the same defect + self.defect_charges_dict = ( energy_lowering_distortions.read_defects_directories() ) self.defect_charges_dict.pop("vac_1_Ti", None) # Used for magnetization tests def tearDown(self): - for fake_dir in [ - "vac_1_Cd_-1", - "vac_1_Cd_-2", - "vac_1_Cd_0", - ]: - if_present_rm(f"{fake_dir}") + for i in os.listdir(): + if "vac_1_Cd" in i: + if_present_rm(i) if_present_rm("distortion_metadata.json") if_present_rm("parsed_defects_dict.json") @@ -87,7 +97,7 @@ def test_SnB_integration(self): # Generate input files dist = input.Distortions( - {"vacancies": {"vac_1_Cd": reduced_V_Cd}}, + {"vac_1_Cd": reduced_V_Cd}, oxidation_states=oxidation_states, ) distortion_defect_dict, structures_defect_dict = dist.write_vasp_files( @@ -124,7 +134,7 @@ def test_SnB_integration(self): # So the dimer (0) and polaron (-1) structures should be generated and tested for -2 with patch("builtins.print") as mock_print: - energy_lowering_distortions.write_distorted_inputs(low_energy_defects) + energy_lowering_distortions.write_retest_inputs(low_energy_defects) mock_print.assert_any_call( "Writing low-energy distorted structure to " @@ -199,37 +209,27 @@ def test_SnB_integration(self): defect_charges_dict ) ) - mock_print.assert_any_call( - "vac_1_Cd_0: Energy difference between minimum, found with -0.55 bond distortion, and unperturbed: -0.76 eV." - ) - mock_print.assert_any_call( - "Comparing structures to specified ref_structure (Cd31 Te32)..." - ) - mock_print.assert_any_call( - "\nComparing and pruning defect structures across charge states..." - ) - # TODO: check this!! - # mock_print.assert_any_call( - # "Low-energy distorted structure for vac_1_Cd_-1 already " - # "found with charge states [0], storing together." - # ) - mock_print.not_called_with( - "Low-energy distorted structure for vac_1_Cd_-1 already " - "found with charge states [0], storing together." - ) # not called because -1 groundstate is -55.0%_from_0 (i.e. imported from 0) - - mock_print.not_called_with( - "Ground-state structure found for vac_1_Cd with charges [-2] has also " - "been found for charge state -1 (according to structure matching). " - "Adding this charge to the corresponding entry in low_energy_defects[vac_1_Cd]." - ) # not called because -2 groundstate is -7.5%_from_-1 (i.e. imported from -1) + mock_print.assert_any_call( + "vac_1_Cd_0: Energy difference between minimum, found with -0.55 bond distortion, " + "and unperturbed: -0.76 eV." + ) + mock_print.assert_any_call( + "Comparing structures to specified ref_structure (Cd31 Te32)..." + ) + mock_print.assert_any_call( + "\nComparing and pruning defect structures across charge states..." + ) + mock_print.assert_any_call( + "Low-energy distorted structure for vac_1_Cd_-1 already " + "found with charge states [0], storing together." + ) # Test that energy_lowering_distortions parsing functions run ok if run on folders where # we've already done _some_ re-tests from other structures (-55.0%_from_0 for -1 but not # -2 and -7.5%_from_-1 for -2 but not for 0)(i.e. if we did this parsing early when only # some of the other charge states had converged etc) with patch("builtins.print") as mock_print: - energy_lowering_distortions.write_distorted_inputs(low_energy_defects) + energy_lowering_distortions.write_retest_inputs(low_energy_defects) mock_print.assert_any_call( "As ./vac_1_Cd_0/Bond_Distortion_-7.5%_from_-1 already exists, it's assumed this " diff --git a/tutorials/ShakeNBreak_Example_Workflow.ipynb b/tutorials/ShakeNBreak_Example_Workflow.ipynb index 3c3f1312..99c87890 100644 --- a/tutorials/ShakeNBreak_Example_Workflow.ipynb +++ b/tutorials/ShakeNBreak_Example_Workflow.ipynb @@ -40,7 +40,7 @@ "In this notebook we follow the full `ShakeNBreak` (`SnB`) workflow, where we:\n", "- Apply the defect distortions\n", "- Parse the geometry relaxation results\n", - "- Re-generate any energy-lowering distortions found for _some_ (but not all) charge states for a given defect\n", + "- Re-test any energy-lowering distortions found for _some_ (but not all) charge states for a given defect\n", "- Plot the final energies to demonstrate what energy-lowering defect distortions have been identified\n", "- Then continue our defect calculations, confident we have obtained the ground-state structures. " ] @@ -78,10 +78,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Pymatgen version: 2022.10.22\n", + "Pymatgen version: 2022.11.7\n", "Pymatgen-analysis-defects version: 2022.10.28\n", "Ase version: 3.22.1\n", - "ShakeNBreak version: 22.10.14\n" + "ShakeNBreak version: 22.11.7\n" ] } ], @@ -176,12 +176,7 @@ " structure=bulk_supercell,\n", " site=bulk_supercell[0], # First Cd site\n", " user_charges=[-2, -1, 0], # Defect charge states\n", - ")\n", - "\n", - "# Store defects in a dictionary\n", - "V_Cd_dict = {\n", - " \"vacancies\": [v_Cd,]\n", - "}" + ")" ] }, { @@ -248,8 +243,18 @@ }, { "cell_type": "markdown", - "id": "c035d70a", + "id": "445377dd-3577-4fcd-9ffa-01cc56c96612", "metadata": {}, + "source": [ + "**Alternatively,** if you have already generated your defect structure files with a different defects code, these can be directly fed to `ShakeNBreak` with the `Distortions.from_structures()` method as shown below." + ] + }, + { + "cell_type": "markdown", + "id": "c035d70a", + "metadata": { + "tags": [] + }, "source": [ "### *Optional*: Generate defects with `doped`/`PyCDT` (instead of `Pymatgen`)" ] @@ -339,134 +344,6 @@ "print(\"Keys of bulk entry:\", doped_V_Cd_dict[\"bulk\"].keys())" ] }, - { - "cell_type": "markdown", - "id": "76823607", - "metadata": {}, - "source": [ - "Additionally, defects can also be generated from a dictionary of structures using `Distortions.from_structures()`." - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "id": "d1b1098c", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mDistortions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfrom_structures\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mstructures_dict\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moxidation_states\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdict_number_electrons_user\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdistortion_increment\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfloat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mbond_distortions\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mlocal_rattle\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mstdev\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfloat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.25\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdistorted_elements\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Initialise Distortion() class using a dictionary of bulk and defect\n", - "structures (instead of pymatgen-analysis-defects Defect() objects).\n", - "\n", - "Args:\n", - " structures_dict (:obj:`dict`):\n", - " Dictionary of defect and bulk structures\n", - " (eg.:\n", - " {\n", - " \"vacancies\": [Structure, Structure, ...],\n", - " \"substitutions\": [Structure, ...],\n", - " \"interstitials\": [Structure, ...],\n", - " \"bulk\": Structure,\n", - " })\n", - " Alternatively, the defect index or the defect fractional\n", - " coordinates can provided for each defect like this:\n", - " {\n", - " \"vacancies\": [\n", - " {\"structure\": Structure, \"defect_coords\": [0.5, 0.5, 0.5]},\n", - " ...\n", - " ],\n", - " \"interstitials\": [\n", - " {\"structure\": Structure, \"defect_index\": -1},\n", - " ...\n", - " ],\n", - " \"bulk\": Structure,\n", - " }\n", - " oxidation_states (:obj:`dict`):\n", - " Dictionary of oxidation states for species in your material,\n", - " used to determine the number of defect neighbours to distort\n", - " (e.g {\"Cd\": +2, \"Te\": -2}). If none is provided, the oxidation\n", - " states will be guessed based on the bulk composition and most\n", - " common oxidation states of any extrinsic species.\n", - " dict_number_electrons_user (:obj:`dict`):\n", - " Optional argument to set the number of extra/missing charge\n", - " (negative of electron count change) for the input defects\n", - " in their neutral state, as a dictionary with format\n", - " {'defect_name': charge_change} where charge_change is the\n", - " negative of the number of extra/missing electrons.\n", - " (Default: None)\n", - " distortion_increment (:obj:`float`):\n", - " Bond distortion increment. Distortion factors will range from\n", - " 0 to +/-0.6, in increments of `distortion_increment`.\n", - " Recommended values: 0.1-0.3\n", - " (Default: 0.1)\n", - " bond_distortions (:obj:`list`):\n", - " List of bond distortions to apply to nearest neighbours,\n", - " instead of the default set (e.g. [-0.5, 0.5]).\n", - " (Default: None)\n", - " local_rattle (:obj:`bool`):\n", - " Whether to apply random displacements that tail off as we move\n", - " away from the defect site. Not recommended as typically worsens\n", - " performance. If False (default), all supercell sites are rattled\n", - " with the same amplitude (full rattle).\n", - " (Default: False)\n", - " stdev (:obj:`float`):\n", - " Standard deviation (in Angstroms) of the Gaussian distribution\n", - " from which random atomic displacement distances are drawn during\n", - " rattling. Recommended values: 0.25, or 0.15 for strongly-bound\n", - " /ionic materials.\n", - " (Default: 0.25)\n", - " distorted_elements (:obj:`dict`):\n", - " Optional argument to specify the neighbouring elements to\n", - " distort for each defect, in the form of a dictionary with\n", - " format {'defect_name': ['element1', 'element2', ...]}\n", - " (e.g {'vac_1_Cd': ['Te']}). If None, the closest neighbours to\n", - " the defect are chosen.\n", - " (Default: None)\n", - " **kwargs:\n", - " Additional keyword arguments to pass to `hiphive`'s\n", - " `mc_rattle` function. These include:\n", - " - d_min (:obj:`float`):\n", - " Minimum interatomic distance (in Angstroms). Monte Carlo rattle\n", - " moves that put atoms at distances less than this will be heavily\n", - " penalised.\n", - " (Default: 2.25)\n", - " - max_disp (:obj:`float`):\n", - " Maximum atomic displacement (in Angstroms) during Monte Carlo\n", - " rattling. Rarely occurs and is used primarily as a safety net.\n", - " (Default: 2.0)\n", - " - max_attempts (:obj:`int`):\n", - " Limit for how many attempted rattle moves are allowed a single atom.\n", - " - active_atoms (:obj:`list`):\n", - " List of the atomic indices which should undergo Monte\n", - " Carlo rattling. By default, all atoms are rattled.\n", - " (Default: None)\n", - " - seed (:obj:`int`):\n", - " Seed for setting up NumPy random state from which random\n", - " numbers are generated.\n", - "\u001b[0;31mFile:\u001b[0m ~/Python_Modules/shakenbreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m method\n" - ] - } - ], - "source": [ - "Distortions.from_structures?" - ] - }, { "cell_type": "markdown", "id": "0012adc0-06cf-4359-9ccf-35152299ca9d", @@ -534,7 +411,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 3, "id": "3ff9be61-6cf8-48c0-bd35-6e8775b70158", "metadata": { "pycharm": { @@ -549,7 +426,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "id": "40013965-8d9f-4617-bc76-3ad8cd409e00", "metadata": { "pycharm": { @@ -572,46 +449,158 @@ "# If not specified, the code will guess these, otherwise you can specify as such:\n", "# oxidation_states = {\"Cd\": +2, \"Te\": -2} # specify atom oxidation states\n", "\n", - "# Create an instance of Distortion class with the defect dictionary and the distortion parameters\n", + "# Create an instance of Distortion class with the defects and distortion parameters\n", "# If distortion parameters are not specified, the default values are used\n", - "Dist = Distortions(\n", - " defects_dict=dict(V_Cd_dict),\n", - " #oxidation_states=oxidation_states, # explicitly specify oxidation states\n", - ")\n", + "Dist = Distortions(defects=v_Cd)" + ] + }, + { + "cell_type": "markdown", + "id": "792afcb1-9324-4de2-a2f4-0d2c060ecaa3", + "metadata": {}, + "source": [ + "The `Distortions()` class is flexible to the user input, so can take single `pymatgen` `Defect` objects, a list of `Defect`s, or a dictionary of `Defect`s (in which case the dictionary keys are used as the defect names) as inputs.\n", "\n", - "# Alternatively, if want specific names for our defects/defect directories, we can feed into Distortions\n", - "# a dictionary of dictionaries like this:\n", - "# V_Cd_dict_with_custom_names = {\"vacancies\": {\"vac_1_Cd\": V_Cd_dict[\"vacancies\"][0],}}\n", - "# Dist = Distortions(\n", - "# defects_dict=V_Cd_dict_with_custom_names,\n", - "# )" + "The defect dictionary output by `ChargedDefectStructures` in `doped`/`PyCDT` can also be used to initialise `Distortions`, with the code: \n", + "```python\n", + "Dist = Distortions(defects=doped_V_Cd_dict)\n", + "```\n", + "\n", + "These possibilities as well as the optional distortion parameters are detailed in the `Distortions` class docstring:" ] }, { "cell_type": "code", - "execution_count": 10, - "id": "3be9bc57", + "execution_count": 7, + "id": "84ec2e9a-4d89-4977-aab4-a9f7c28ad3ca", "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Oxidation states were not explicitly set, thus have been guessed as {'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set oxidation_states\n" - ] + "data": { + "text/plain": [ + "\u001B[0;31mInit signature:\u001B[0m\n", + "\u001B[0mDistortions\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mdefects\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mlist\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mdict\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0moxidation_states\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mpadding\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mint\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;36m1\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mdict_number_electrons_user\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mdistortion_increment\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mfloat\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;36m0.1\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mbond_distortions\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mlist\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mlocal_rattle\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mbool\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mFalse\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mdistorted_elements\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0;34m**\u001B[0m\u001B[0mmc_rattle_kwargs\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m\u001B[0;34m)\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", + "\u001B[0;31mDocstring:\u001B[0m \n", + "Class to apply rattle and bond distortion to all defects in `defects`\n", + "(each defect as a pymatgen.analysis.defects.core.Defect() object).\n", + "\u001B[0;31mInit docstring:\u001B[0m\n", + "Args:\n", + " defects (:obj:`dict_or_list_or_Defect`):\n", + " List or dictionary of pymatgen.analysis.defects.core.Defect() objects.\n", + " E.g.: [Vacancy(), Interstitial(), Substitution(), ...], or single Defect().\n", + " In this case, generated defect folders will be named in the format:\n", + " \"{Defect.name}_m{Defect.multiplicity}\" for interstitials and\n", + " \"{Defect.name}_s{Defect.defect_site_index}\" for vacancies and substitutions.\n", + " The labels \"a\", \"b\", \"c\"... will be appended for defects with multiple\n", + " inequivalent sites.\n", + "\n", + " Alternatively, if specific defect folder names are desired, `defects` can\n", + " be input as a dictionary in the format {\"defect name\": Defect()}.\n", + " E.g.: {\"vac_name\": Vacancy(), \"vac_2_name\": Vacancy(), ...,\n", + " \"int_name\": Interstitial(), \"sub_name\": Substitution(), ...}.\n", + "\n", + " Defect charge states (from which bond distortions are determined) are\n", + " taken from the `Defect.user_charges` property. If this is not set,\n", + " charge states are set to the range: 0 – {Defect oxidation state}\n", + " with a `padding` (default = 1) on either side of this range.\n", + "\n", + " Alternatively, a defects dict generated by `ChargedDefectStructures`\n", + " from `doped`/`PyCDT` can also be used as input, and the defect names\n", + " and charge states generated by these codes will be used\n", + " E.g.: {\"bulk\": {..}, \"vacancies\": [{...}, {...},], ...}\n", + " oxidation_states (:obj:`dict`):\n", + " Dictionary of oxidation states for species in your material,\n", + " used to determine the number of defect neighbours to distort\n", + " (e.g {\"Cd\": +2, \"Te\": -2}). If none is provided, the oxidation\n", + " states will be guessed based on the bulk composition and most\n", + " common oxidation states of any extrinsic species.\n", + " padding (:obj:`int`):\n", + " If `Defect.user_charges` is not set, charge states are set to\n", + " the range: 0 – {Defect oxidation state}, with a `padding`\n", + " (default = 1) on either side of this range.\n", + " dict_number_electrons_user (:obj:`dict`):\n", + " Optional argument to set the number of extra/missing charge\n", + " (negative of electron count change) for the input defects\n", + " in their neutral state, as a dictionary with format\n", + " {'defect_name': charge_change} where charge_change is the\n", + " negative of the number of extra/missing electrons.\n", + " (Default: None)\n", + " distortion_increment (:obj:`float`):\n", + " Bond distortion increment. Distortion factors will range from\n", + " 0 to +/-0.6, in increments of `distortion_increment`.\n", + " Recommended values: 0.1-0.3\n", + " (Default: 0.1)\n", + " bond_distortions (:obj:`list`):\n", + " List of bond distortions to apply to nearest neighbours,\n", + " instead of the default set (e.g. [-0.5, 0.5]).\n", + " (Default: None)\n", + " local_rattle (:obj:`bool`):\n", + " Whether to apply random displacements that tail off as we move\n", + " away from the defect site. Not recommended as typically worsens\n", + " performance. If False (default), all supercell sites are rattled\n", + " with the same amplitude (full rattle).\n", + " (Default: False)\n", + " distorted_elements (:obj:`dict`):\n", + " Optional argument to specify the neighbouring elements to\n", + " distort for each defect, in the form of a dictionary with\n", + " format {'defect_name': ['element1', 'element2', ...]}\n", + " (e.g {'vac_1_Cd': ['Te']}). If None, the closest neighbours to\n", + " the defect are chosen.\n", + " (Default: None)\n", + " **mc_rattle_kwargs:\n", + " Additional keyword arguments to pass to `hiphive`'s\n", + " `mc_rattle` function. These include:\n", + " - stdev (:obj:`float`):\n", + " Standard deviation (in Angstroms) of the Gaussian distribution\n", + " from which random atomic displacement distances are drawn during\n", + " rattling. Default is set to 10% of the nearest neighbour distance\n", + " in the bulk supercell.\n", + " - d_min (:obj:`float`):\n", + " Minimum interatomic distance (in Angstroms) in the rattled\n", + " structure. Monte Carlo rattle moves that put atoms at distances\n", + " less than this will be heavily penalised. Default is to set this\n", + " to 80% of the nearest neighbour distance in the bulk supercell.\n", + " - max_disp (:obj:`float`):\n", + " Maximum atomic displacement (in Angstroms) during Monte Carlo\n", + " rattling. Rarely occurs and is used primarily as a safety net.\n", + " (Default: 2.0)\n", + " - max_attempts (:obj:`int`):\n", + " Limit for how many attempted rattle moves are allowed a single atom.\n", + " - active_atoms (:obj:`list`):\n", + " List of the atomic indices which should undergo Monte\n", + " Carlo rattling. By default, all atoms are rattled.\n", + " (Default: None)\n", + " - seed (:obj:`int`):\n", + " Seed from which rattle random displacements are generated. Default\n", + " is to set seed = int(distortion_factor*100) (i.e. +40% distortion ->\n", + " distortion_factor = 1.4 -> seed = 140, Rattled ->\n", + " distortion_factor = 1 (no bond distortion) -> seed = 100)\n", + "\u001B[0;31mFile:\u001B[0m ~/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/input.py\n", + "\u001B[0;31mType:\u001B[0m type\n", + "\u001B[0;31mSubclasses:\u001B[0m \n" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "# Alternatively, if you used Doped/PyCDT for defect generation, you can use the `from_dict` method:\n", - "\n", - "Dist = Distortions.from_dict(\n", - " doped_defects_dict=doped_V_Cd_dict,\n", - ")" + "Distortions?" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "id": "78543a71", "metadata": { "pycharm": { @@ -624,7 +613,7 @@ "output_type": "stream", "text": [ "Bond distortions: [-0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6]\n", - "Rattle standard deviation: 0.25 Å\n" + "Rattle standard deviation: 0.28 Å\n" ] } ], @@ -634,161 +623,60 @@ "print(f\"Rattle standard deviation: {Dist.stdev:.2f} Å\") # set to 10% of the bulk bond length by default, typically a reasonable value" ] }, + { + "cell_type": "markdown", + "id": "275336d6-9e6d-4dc2-b72b-8cc1f450a826", + "metadata": {}, + "source": [ + "As mentioned above, we can also initialise `Distortions` directly from our pre-generated defect structures, using the `Distortions.from_structures()` method like this:" + ] + }, { "cell_type": "code", - "execution_count": 12, - "id": "52f9e11b", - "metadata": { - "pycharm": { - "name": "#%%\n" - } - }, + "execution_count": 11, + "id": "5fdb05f4-8a8e-4080-969f-528fa796dc1e", + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "User defined elements to distort: None\n" + "Defect charge states will be set to the range: 0 – {Defect oxidation state}, with a `padding = 1` on either side of this range.\n", + "Oxidation states were not explicitly set, thus have been guessed as {'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set oxidation_states\n" ] } ], "source": [ - "# You can restrict the ions that are distorted to a certain element using the keyword distorted_elements\n", - "# We can check it using the class attribute\n", - "print(\"User defined elements to distort:\", Dist.distorted_elements)\n", - "# If None, it means no restrictions so nearest neighbours are distorted (recommended default, \n", - "# unless you have reason to suspect otherwise; see shakenbreak.readthedocs.io/en/latest/Tips.html)" - ] - }, - { - "cell_type": "markdown", - "id": "2da28e9e-6116-4e0c-9aea-f11ab6e20d01", - "metadata": { - "pycharm": { - "name": "#%% md\n" - } - }, - "source": [ - "To see the optional parameters that can be tuned in the distortion functions, look at the docstrings: " + "from pymatgen.core.structure import Structure\n", + "V_Cd_struc = Structure.from_file(\"../tests/data/vasp/CdTe/CdTe_V_Cd_POSCAR\")\n", + "bulk_struc = Structure.from_file(\"../tests/data/vasp/CdTe/CdTe_Bulk_Supercell_POSCAR\")\n", + "Dist = Distortions.from_structures(defects = V_Cd_struc, bulk = bulk_struc)" ] }, { "cell_type": "code", - "execution_count": 13, - "id": "7da2f948-a4a7-4003-8c1b-5a31e190dd8a", + "execution_count": 12, + "id": "52f9e11b", "metadata": { "pycharm": { "name": "#%%\n" - }, - "tags": [] + } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "\u001b[0;31mInit signature:\u001b[0m\n", - "\u001b[0minput\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDistortions\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdefects_dict\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moxidation_states\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdict_number_electrons_user\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdistortion_increment\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfloat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mbond_distortions\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mlocal_rattle\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mbool\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mdistorted_elements\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m \n", - "Class to apply rattle and bond distortion to all defects in `defects_dict`\n", - "(each defect as a pymatgen.analysis.defects.core.Defect() object).\n", - "\u001b[0;31mInit docstring:\u001b[0m\n", - "Args:\n", - " defects_dict (:obj:`dict`):\n", - " Dictionary of pymatgen.analysis.defects.core.Defect() objects.\n", - " E.g.: {\n", - " \"vacancies\": [Vacancy(), ...],\n", - " \"interstitials\": [Interstitial(), ...],\n", - " \"substitutions\": [Substitution(), ...],\n", - " }\n", - " In this case, folders will be name with the Defect.name() property.\n", - " Alternatively, if specific defect/folder names are desired, these can be\n", - " given as keys:\n", - " {\n", - " \"vacancies\": {\"vac_name\": Vacancy(), \"vac_2_name\": Vacancy()},\n", - " \"interstitials\": {\"int_name\": Interstitial(), ...},\n", - " \"substitutions\": {\"sub_name\": Substitution(), ...},\n", - " }\n", - " oxidation_states (:obj:`dict`):\n", - " Dictionary of oxidation states for species in your material,\n", - " used to determine the number of defect neighbours to distort\n", - " (e.g {\"Cd\": +2, \"Te\": -2}). If none is provided, the oxidation\n", - " states will be guessed based on the bulk composition and most\n", - " common oxidation states of any extrinsic species.\n", - " dict_number_electrons_user (:obj:`dict`):\n", - " Optional argument to set the number of extra/missing charge\n", - " (negative of electron count change) for the input defects\n", - " in their neutral state, as a dictionary with format\n", - " {'defect_name': charge_change} where charge_change is the\n", - " negative of the number of extra/missing electrons.\n", - " (Default: None)\n", - " distortion_increment (:obj:`float`):\n", - " Bond distortion increment. Distortion factors will range from\n", - " 0 to +/-0.6, in increments of `distortion_increment`.\n", - " Recommended values: 0.1-0.3\n", - " (Default: 0.1)\n", - " bond_distortions (:obj:`list`):\n", - " List of bond distortions to apply to nearest neighbours,\n", - " instead of the default set (e.g. [-0.5, 0.5]).\n", - " (Default: None)\n", - " local_rattle (:obj:`bool`):\n", - " Whether to apply random displacements that tail off as we move\n", - " away from the defect site. Not recommended as typically worsens\n", - " performance. If False (default), all supercell sites are rattled\n", - " with the same amplitude (full rattle).\n", - " (Default: False)\n", - " distorted_elements (:obj:`dict`):\n", - " Optional argument to specify the neighbouring elements to\n", - " distort for each defect, in the form of a dictionary with\n", - " format {'defect_name': ['element1', 'element2', ...]}\n", - " (e.g {'vac_1_Cd': ['Te']}). If None, the closest neighbours to\n", - " the defect are chosen.\n", - " (Default: None)\n", - " **kwargs:\n", - " Additional keyword arguments to pass to `hiphive`'s\n", - " `mc_rattle` function. These include:\n", - " - stdev (:obj:`float`):\n", - " Standard deviation (in Angstroms) of the Gaussian distribution\n", - " from which random atomic displacement distances are drawn during\n", - " rattling. Default is set to 10% of the nearest neighbour distance\n", - " in the bulk supercell.\n", - " - d_min (:obj:`float`):\n", - " Minimum interatomic distance (in Angstroms) in the rattled\n", - " structure. Monte Carlo rattle moves that put atoms at distances\n", - " less than this will be heavily penalised. Default is to set this\n", - " to 80% of the nearest neighbour distance in the bulk supercell.\n", - " - max_disp (:obj:`float`):\n", - " Maximum atomic displacement (in Angstroms) during Monte Carlo\n", - " rattling. Rarely occurs and is used primarily as a safety net.\n", - " (Default: 2.0)\n", - " - max_attempts (:obj:`int`):\n", - " Limit for how many attempted rattle moves are allowed a single atom.\n", - " - active_atoms (:obj:`list`):\n", - " List of the atomic indices which should undergo Monte\n", - " Carlo rattling. By default, all atoms are rattled.\n", - " (Default: None)\n", - " - seed (:obj:`int`):\n", - " Seed from which rattle random displacements are generated. Default\n", - " is to set seed = int(distortion_factor*100) (i.e. +40% distortion ->\n", - " distortion_factor = 1.4 -> seed = 140, Rattled ->\n", - " distortion_factor = 1 (no bond distortion) -> seed = 100)\n", - "\u001b[0;31mFile:\u001b[0m ~/Python_Modules/shakenbreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m type\n", - "\u001b[0;31mSubclasses:\u001b[0m \n" + "User defined elements to distort: None\n" ] } ], "source": [ - "input.Distortions?" + "# You can restrict the ions that are distorted to a certain element using the keyword distorted_elements\n", + "# We can check it using the class attribute\n", + "print(\"User defined elements to distort:\", Dist.distorted_elements)\n", + "# If None, it means no restrictions so nearest neighbours are distorted (recommended default, \n", + "# unless you have reason to suspect otherwise; see shakenbreak.readthedocs.io/en/latest/Tips.html)" ] }, { @@ -800,12 +688,12 @@ } }, "source": [ - "If we're only interested in generating distorted structures, but not in writting `VASP`/other codes input files, we can use the class method `Distortions.apply_distortions()` to do this." + "If we're only interested in generating distorted structures, but not in writing `VASP`/other codes input files, we can use the class method `Distortions.apply_distortions()` to do this." ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 13, "id": "87a095a8", "metadata": { "pycharm": { @@ -817,13 +705,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "Applying ShakeNBreak... Will apply the following bond distortions: ['-0.6', '-0.5', '-0.4', '-0.3', '-0.2', '-0.1', '0.0', '0.1', '0.2', '0.3', '0.4', '0.5', '0.6']. Then, will rattle with a std dev of 0.25 Å \n", + "Applying ShakeNBreak... Will apply the following bond distortions: ['-0.6', '-0.5', '-0.4', '-0.3', '-0.2', '-0.1', '0.0', '0.1', '0.2', '0.3', '0.4', '0.5', '0.6']. Then, will rattle with a std dev of 0.28 Å \n", + "\n", + "\u001B[1m\n", + "Defect: v_Cd_s0\u001B[0m\n", + "\u001B[1mNumber of missing electrons in neutral state: 2\u001B[0m\n", + "\n", + "Defect v_Cd_s0 in charge state: -3. Number of distorted neighbours: 1\n", "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", + "Defect v_Cd_s0 in charge state: -2. Number of distorted neighbours: 0\n", "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" + "Defect v_Cd_s0 in charge state: -1. Number of distorted neighbours: 1\n", + "\n", + "Defect v_Cd_s0 in charge state: 0. Number of distorted neighbours: 2\n", + "\n", + "Defect v_Cd_s0 in charge state: +1. Number of distorted neighbours: 3\n" ] } ], @@ -833,7 +729,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 14, "id": "f07375f6", "metadata": { "pycharm": { @@ -847,13 +743,13 @@ "dict_keys(['defect_type', 'defect_site', 'defect_supercell_site', 'defect_multiplicity', 'charges'])" ] }, - "execution_count": 15, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "defects_dict[\"v_Cd\"].keys()" + "defects_dict[\"v_Cd_s0\"].keys()" ] }, { @@ -966,69 +862,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (0.6543, 0.6543, 12.4324) [0.0500, 0.0500, 0.9500]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (0.6543, 12.4324, 0.6543) [0.0500, 0.9500, 0.0500]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_-50.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1038,69 +934,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (0.8179, 0.8179, 12.2688) [0.0625, 0.0625, 0.9375]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (0.8179, 12.2688, 0.8179) [0.0625, 0.9375, 0.0625]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_-40.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1110,69 +1006,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (0.9815, 0.9815, 12.1052) [0.0750, 0.0750, 0.9250]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (0.9815, 12.1052, 0.9815) [0.0750, 0.9250, 0.0750]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_-30.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1182,69 +1078,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.1451, 1.1451, 11.9417) [0.0875, 0.0875, 0.9125]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.1451, 11.9417, 1.1451) [0.0875, 0.9125, 0.0875]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_-20.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1254,69 +1150,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.3087, 1.3087, 11.7781) [0.1000, 0.1000, 0.9000]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.3087, 11.7781, 1.3087) [0.1000, 0.9000, 0.1000]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_-10.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1326,69 +1222,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.4723, 1.4723, 11.6145) [0.1125, 0.1125, 0.8875]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.4723, 11.6145, 1.4723) [0.1125, 0.8875, 0.1125]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_0.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1398,69 +1294,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.6359, 1.6359, 11.4509) [0.1250, 0.1250, 0.8750]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.6359, 11.4509, 1.6359) [0.1250, 0.8750, 0.1250]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_10.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1470,69 +1366,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.7995, 1.7995, 11.2873) [0.1375, 0.1375, 0.8625]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.7995, 11.2873, 1.7995) [0.1375, 0.8625, 0.1375]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_20.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1542,69 +1438,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (1.9630, 1.9630, 11.1237) [0.1500, 0.1500, 0.8500]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (1.9630, 11.1237, 1.9630) [0.1500, 0.8500, 0.1500]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_30.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1614,69 +1510,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (2.1266, 2.1266, 10.9601) [0.1625, 0.1625, 0.8375]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (2.1266, 10.9601, 2.1266) [0.1625, 0.8375, 0.1625]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_40.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1686,69 +1582,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (2.2902, 2.2902, 10.7966) [0.1750, 0.1750, 0.8250]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (2.2902, 10.7966, 2.2902) [0.1750, 0.8250, 0.1750]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_50.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1758,69 +1654,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (2.4538, 2.4538, 10.6330) [0.1875, 0.1875, 0.8125]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (2.4538, 10.6330, 2.4538) [0.1875, 0.8125, 0.1875]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753],\n", + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067],\n", " 'Bond_Distortion_60.0%': Structure Summary\n", " Lattice\n", " abc : 13.086768 13.086768 13.086768\n", @@ -1830,69 +1726,69 @@ " B : 0.0 13.086768 0.0\n", " C : 0.0 0.0 13.086768\n", " pbc : True True True\n", - " PeriodicSite: Cd2+ (0.0790, 0.2466, 6.5050) [0.0060, 0.0188, 0.4971]\n", - " PeriodicSite: Cd2+ (0.0355, 6.8787, -0.0380) [0.0027, 0.5256, -0.0029]\n", - " PeriodicSite: Cd2+ (-0.1629, 6.6103, 6.3570) [-0.0124, 0.5051, 0.4858]\n", - " PeriodicSite: Cd2+ (6.9160, -0.4897, 0.3133) [0.5285, -0.0374, 0.0239]\n", - " PeriodicSite: Cd2+ (6.6158, 0.1858, 6.2291) [0.5055, 0.0142, 0.4760]\n", - " PeriodicSite: Cd2+ (6.4795, 6.7361, -0.3700) [0.4951, 0.5147, -0.0283]\n", - " PeriodicSite: Cd2+ (7.0050, 6.6822, 6.3394) [0.5353, 0.5106, 0.4844]\n", - " PeriodicSite: Cd2+ (0.4514, 3.4163, 3.1794) [0.0345, 0.2611, 0.2429]\n", - " PeriodicSite: Cd2+ (-0.1258, 2.9889, 9.7123) [-0.0096, 0.2284, 0.7421]\n", - " PeriodicSite: Cd2+ (0.0177, 9.7304, 3.1278) [0.0013, 0.7435, 0.2390]\n", - " PeriodicSite: Cd2+ (0.0771, 9.8398, 9.3497) [0.0059, 0.7519, 0.7144]\n", - " PeriodicSite: Cd2+ (6.6408, 2.9803, 3.1109) [0.5074, 0.2277, 0.2377]\n", - " PeriodicSite: Cd2+ (6.3383, 2.9591, 9.9370) [0.4843, 0.2261, 0.7593]\n", - " PeriodicSite: Cd2+ (6.4869, 9.8572, 3.1102) [0.4957, 0.7532, 0.2377]\n", - " PeriodicSite: Cd2+ (6.7008, 9.8899, 9.8060) [0.5120, 0.7557, 0.7493]\n", - " PeriodicSite: Cd2+ (3.1811, -0.0643, 3.3856) [0.2431, -0.0049, 0.2587]\n", - " PeriodicSite: Cd2+ (3.5918, -0.1566, 9.5756) [0.2745, -0.0120, 0.7317]\n", - " PeriodicSite: Cd2+ (3.3792, 6.4501, 3.6055) [0.2582, 0.4929, 0.2755]\n", - " PeriodicSite: Cd2+ (3.4393, 6.6414, 9.7877) [0.2628, 0.5075, 0.7479]\n", - " PeriodicSite: Cd2+ (10.0786, -0.2527, 3.1938) [0.7701, -0.0193, 0.2440]\n", - " PeriodicSite: Cd2+ (9.5921, 0.0912, 10.1557) [0.7330, 0.0070, 0.7760]\n", - " PeriodicSite: Cd2+ (9.3981, 6.5756, 2.9191) [0.7181, 0.5025, 0.2231]\n", - " PeriodicSite: Cd2+ (10.0547, 6.6497, 10.0494) [0.7683, 0.5081, 0.7679]\n", - " PeriodicSite: Cd2+ (3.0976, 3.3776, 0.1338) [0.2367, 0.2581, 0.0102]\n", - " PeriodicSite: Cd2+ (3.1153, 3.1757, 6.2480) [0.2380, 0.2427, 0.4774]\n", - " PeriodicSite: Cd2+ (3.6097, 9.7493, -0.3349) [0.2758, 0.7450, -0.0256]\n", - " PeriodicSite: Cd2+ (3.6650, 10.0709, 6.3328) [0.2801, 0.7695, 0.4839]\n", - " PeriodicSite: Cd2+ (9.7679, 3.6990, 0.1466) [0.7464, 0.2826, 0.0112]\n", - " PeriodicSite: Cd2+ (9.8622, 3.4114, 6.4855) [0.7536, 0.2607, 0.4956]\n", - " PeriodicSite: Cd2+ (9.7890, 9.9758, 0.3049) [0.7480, 0.7623, 0.0233]\n", - " PeriodicSite: Cd2+ (10.4175, 10.0413, 6.9650) [0.7960, 0.7673, 0.5322]\n", - " PeriodicSite: Te2- (1.6116, 1.5687, 4.9471) [0.1231, 0.1199, 0.3780]\n", + " PeriodicSite: Cd2+ (0.0896, 0.2795, 6.4999) [0.0068, 0.0214, 0.4967]\n", + " PeriodicSite: Cd2+ (0.0402, 6.9234, -0.0431) [0.0031, 0.5290, -0.0033]\n", + " PeriodicSite: Cd2+ (-0.1846, 6.6192, 6.3321) [-0.0141, 0.5058, 0.4839]\n", + " PeriodicSite: Cd2+ (6.6254, 0.2106, -0.3562) [0.5063, 0.0161, -0.0272]\n", + " PeriodicSite: Cd2+ (6.4710, 0.2184, 6.1241) [0.4945, 0.0167, 0.4680]\n", + " PeriodicSite: Cd2+ (7.0550, 6.7073, -0.1046) [0.5391, 0.5125, -0.0080]\n", + " PeriodicSite: Cd2+ (6.4008, 6.2229, 6.4269) [0.4891, 0.4755, 0.4911]\n", + " PeriodicSite: Cd2+ (0.0200, 3.1757, 3.1086) [0.0015, 0.2427, 0.2375]\n", + " PeriodicSite: Cd2+ (0.0873, 3.2997, 9.2876) [0.0067, 0.2521, 0.7097]\n", + " PeriodicSite: Cd2+ (0.1104, 9.4848, 3.0894) [0.0084, 0.7248, 0.2361]\n", + " PeriodicSite: Cd2+ (-0.2325, 9.4608, 9.9533) [-0.0178, 0.7229, 0.7606]\n", + " PeriodicSite: Cd2+ (6.4794, 3.3194, 3.0887) [0.4951, 0.2536, 0.2360]\n", + " PeriodicSite: Cd2+ (6.7217, 3.3565, 9.8048) [0.5136, 0.2565, 0.7492]\n", + " PeriodicSite: Cd2+ (6.4407, 9.7422, 3.4008) [0.4922, 0.7444, 0.2599]\n", + " PeriodicSite: Cd2+ (6.9061, 9.6376, 9.5437) [0.5277, 0.7364, 0.7293]\n", + " PeriodicSite: Cd2+ (3.3935, -0.1058, 3.6500) [0.2593, -0.0081, 0.2789]\n", + " PeriodicSite: Cd2+ (3.4617, 0.1110, 9.7840) [0.2645, 0.0085, 0.7476]\n", + " PeriodicSite: Cd2+ (3.5704, 6.2570, 3.1834) [0.2728, 0.4781, 0.2433]\n", + " PeriodicSite: Cd2+ (3.0190, 6.6468, 10.2011) [0.2307, 0.5079, 0.7795]\n", + " PeriodicSite: Cd2+ (9.3425, 0.0365, 2.8721) [0.7139, 0.0028, 0.2195]\n", + " PeriodicSite: Cd2+ (10.0866, 0.1205, 10.0806) [0.7707, 0.0092, 0.7703]\n", + " PeriodicSite: Cd2+ (9.6178, 6.6634, 3.4234) [0.7349, 0.5092, 0.2616]\n", + " PeriodicSite: Cd2+ (9.6378, 6.4346, 9.4803) [0.7365, 0.4917, 0.7244]\n", + " PeriodicSite: Cd2+ (3.6548, 3.1972, -0.3796) [0.2793, 0.2443, -0.0290]\n", + " PeriodicSite: Cd2+ (3.7174, 3.5616, 6.3047) [0.2841, 0.2722, 0.4818]\n", + " PeriodicSite: Cd2+ (3.2182, 10.2993, 0.1662) [0.2459, 0.7870, 0.0127]\n", + " PeriodicSite: Cd2+ (3.3251, 9.9734, 6.4778) [0.2541, 0.7621, 0.4950]\n", + " PeriodicSite: Cd2+ (9.7856, 3.4538, 0.3456) [0.7477, 0.2639, 0.0264]\n", + " PeriodicSite: Cd2+ (10.4978, 3.5281, 7.0212) [0.8022, 0.2696, 0.5365]\n", + " PeriodicSite: Cd2+ (9.7876, 9.7389, 0.0448) [0.7479, 0.7442, 0.0034]\n", + " PeriodicSite: Cd2+ (9.9345, 9.7646, 6.8041) [0.7591, 0.7461, 0.5199]\n", + " PeriodicSite: Te2- (1.5473, 1.9801, 5.3948) [0.1182, 0.1513, 0.4122]\n", " PeriodicSite: Te2- (2.6174, 2.6174, 10.4694) [0.2000, 0.2000, 0.8000]\n", - " PeriodicSite: Te2- (1.7412, 8.1347, 5.1376) [0.1331, 0.6216, 0.3926]\n", - " PeriodicSite: Te2- (1.5577, 8.4830, 11.8808) [0.1190, 0.6482, 0.9079]\n", - " PeriodicSite: Te2- (8.2299, 1.1232, 4.6494) [0.6289, 0.0858, 0.3553]\n", - " PeriodicSite: Te2- (7.7378, 1.7498, 11.5411) [0.5913, 0.1337, 0.8819]\n", - " PeriodicSite: Te2- (7.9232, 8.6497, 4.8486) [0.6054, 0.6610, 0.3705]\n", - " PeriodicSite: Te2- (8.2643, 8.6939, 11.3076) [0.6315, 0.6643, 0.8640]\n", - " PeriodicSite: Te2- (1.7548, 4.9210, 1.6556) [0.1341, 0.3760, 0.1265]\n", - " PeriodicSite: Te2- (1.9707, 4.6728, 8.5854) [0.1506, 0.3571, 0.6560]\n", + " PeriodicSite: Te2- (1.6933, 7.5982, 4.6149) [0.1294, 0.5806, 0.3526]\n", + " PeriodicSite: Te2- (1.1356, 8.3084, 11.5531) [0.0868, 0.6349, 0.8828]\n", + " PeriodicSite: Te2- (7.8890, 2.1691, 4.8407) [0.6028, 0.1657, 0.3699]\n", + " PeriodicSite: Te2- (8.2757, 2.2192, 11.2885) [0.6324, 0.1696, 0.8626]\n", + " PeriodicSite: Te2- (8.2035, 8.1637, 4.9887) [0.6269, 0.6238, 0.3812]\n", + " PeriodicSite: Te2- (8.3141, 8.1945, 11.4733) [0.6353, 0.6262, 0.8767]\n", + " PeriodicSite: Te2- (2.0153, 4.6415, 2.0961) [0.1540, 0.3547, 0.1602]\n", + " PeriodicSite: Te2- (1.6867, 4.9934, 8.3357) [0.1289, 0.3816, 0.6370]\n", " PeriodicSite: Te2- (2.6174, 10.4694, 2.6174) [0.2000, 0.8000, 0.2000]\n", - " PeriodicSite: Te2- (1.6808, 11.5267, 8.3173) [0.1284, 0.8808, 0.6356]\n", - " PeriodicSite: Te2- (7.9769, 5.1881, 1.6565) [0.6095, 0.3964, 0.1266]\n", - " PeriodicSite: Te2- (8.1361, 4.9439, 8.0897) [0.6217, 0.3778, 0.6182]\n", - " PeriodicSite: Te2- (8.2123, 11.6555, 1.8696) [0.6275, 0.8906, 0.1429]\n", - " PeriodicSite: Te2- (8.3065, 11.2528, 8.3871) [0.6347, 0.8599, 0.6409]\n", - " PeriodicSite: Te2- (4.2382, 1.7801, 1.2983) [0.3239, 0.1360, 0.0992]\n", - " PeriodicSite: Te2- (4.5741, 1.5203, 8.0404) [0.3495, 0.1162, 0.6144]\n", - " PeriodicSite: Te2- (4.6864, 7.9672, 1.1828) [0.3581, 0.6088, 0.0904]\n", - " PeriodicSite: Te2- (4.7440, 8.5686, 8.4474) [0.3625, 0.6548, 0.6455]\n", - " PeriodicSite: Te2- (11.3999, 1.7905, 1.9057) [0.8711, 0.1368, 0.1456]\n", - " PeriodicSite: Te2- (11.5615, 1.8592, 7.7205) [0.8834, 0.1421, 0.5899]\n", - " PeriodicSite: Te2- (11.4117, 8.0058, 1.7796) [0.8720, 0.6117, 0.1360]\n", - " PeriodicSite: Te2- (11.3637, 7.8547, 7.8474) [0.8683, 0.6002, 0.5996]\n", - " PeriodicSite: Te2- (5.2171, 4.5957, 5.1158) [0.3987, 0.3512, 0.3909]\n", - " PeriodicSite: Te2- (4.8757, 5.1416, 10.8265) [0.3726, 0.3929, 0.8273]\n", - " PeriodicSite: Te2- (5.1150, 11.3180, 4.8935) [0.3909, 0.8648, 0.3739]\n", - " PeriodicSite: Te2- (5.1455, 11.6203, 11.6658) [0.3932, 0.8879, 0.8914]\n", - " PeriodicSite: Te2- (11.7893, 4.8020, 4.9006) [0.9009, 0.3669, 0.3745]\n", - " PeriodicSite: Te2- (11.3666, 4.5022, 11.8173) [0.8686, 0.3440, 0.9030]\n", - " PeriodicSite: Te2- (12.1286, 11.6866, 5.2477) [0.9268, 0.8930, 0.4010]\n", - " PeriodicSite: Te2- (11.7687, 11.6028, 11.4546) [0.8993, 0.8866, 0.8753]}}" + " PeriodicSite: Te2- (1.4065, 11.7689, 8.2027) [0.1075, 0.8993, 0.6268]\n", + " PeriodicSite: Te2- (8.1303, 4.9487, 1.5344) [0.6213, 0.3781, 0.1172]\n", + " PeriodicSite: Te2- (8.3875, 4.5897, 7.8657) [0.6409, 0.3507, 0.6010]\n", + " PeriodicSite: Te2- (7.8168, 11.6132, 1.6491) [0.5973, 0.8874, 0.1260]\n", + " PeriodicSite: Te2- (8.2167, 11.6827, 8.4441) [0.6279, 0.8927, 0.6452]\n", + " PeriodicSite: Te2- (5.0518, 1.4113, 1.8714) [0.3860, 0.1078, 0.1430]\n", + " PeriodicSite: Te2- (4.1490, 1.7993, 7.7967) [0.3170, 0.1375, 0.5958]\n", + " PeriodicSite: Te2- (4.5296, 8.0483, 1.4785) [0.3461, 0.6150, 0.1130]\n", + " PeriodicSite: Te2- (4.6569, 7.9389, 7.6658) [0.3559, 0.6066, 0.5858]\n", + " PeriodicSite: Te2- (11.2656, 2.0771, 1.9398) [0.8608, 0.1587, 0.1482]\n", + " PeriodicSite: Te2- (11.3931, 1.8111, 8.4850) [0.8706, 0.1384, 0.6484]\n", + " PeriodicSite: Te2- (11.5762, 8.4324, 1.1160) [0.8846, 0.6443, 0.0853]\n", + " PeriodicSite: Te2- (11.4065, 7.9827, 8.3422) [0.8716, 0.6100, 0.6375]\n", + " PeriodicSite: Te2- (4.8087, 4.5397, 4.5315) [0.3674, 0.3469, 0.3463]\n", + " PeriodicSite: Te2- (5.2584, 4.5541, 11.6870) [0.4018, 0.3480, 0.8930]\n", + " PeriodicSite: Te2- (4.6601, 11.4685, 5.0872) [0.3561, 0.8763, 0.3887]\n", + " PeriodicSite: Te2- (4.7645, 11.6046, 11.6746) [0.3641, 0.8867, 0.8921]\n", + " PeriodicSite: Te2- (11.6860, 4.7569, 4.8917) [0.8930, 0.3635, 0.3738]\n", + " PeriodicSite: Te2- (11.7206, 5.0995, 11.6945) [0.8956, 0.3897, 0.8936]\n", + " PeriodicSite: Te2- (11.8344, 11.3313, 4.8996) [0.9043, 0.8659, 0.3744]\n", + " PeriodicSite: Te2- (11.3554, 10.9915, 11.8662) [0.8677, 0.8399, 0.9067]}}" ] }, "execution_count": 16, @@ -1902,12 +1798,12 @@ ], "source": [ "# The output dictionary contains information about each defect:\n", - "print(\"Keys for each defect entry:\", defects_dict[\"v_Cd\"].keys())\n", + "print(\"Keys for each defect entry:\", defects_dict[\"v_Cd_s0\"].keys())\n", "\n", "# As well as the distorted structures for each charge state of all defects\n", "# We can access the distorted structures of v_Cd_0 like this:\n", "print(\"\\nUndistorted and distorted structures:\")\n", - "defects_dict[\"v_Cd\"][\"charges\"][0][\"structures\"]" + "defects_dict[\"v_Cd_s0\"][\"charges\"][0][\"structures\"]" ] }, { @@ -1959,13 +1855,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "Applying ShakeNBreak... Will apply the following bond distortions: ['-0.6', '-0.5', '-0.4', '-0.3', '-0.2', '-0.1', '0.0', '0.1', '0.2', '0.3', '0.4', '0.5', '0.6']. Then, will rattle with a std dev of 0.25 Å \n", + "Applying ShakeNBreak... Will apply the following bond distortions: ['-0.6', '-0.5', '-0.4', '-0.3', '-0.2', '-0.1', '0.0', '0.1', '0.2', '0.3', '0.4', '0.5', '0.6']. Then, will rattle with a std dev of 0.28 Å \n", + "\n", + "\u001B[1m\n", + "Defect: v_Cd_s0\u001B[0m\n", + "\u001B[1mNumber of missing electrons in neutral state: 2\u001B[0m\n", + "\n", + "Defect v_Cd_s0 in charge state: -3. Number of distorted neighbours: 1\n", "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", + "Defect v_Cd_s0 in charge state: -2. Number of distorted neighbours: 0\n", "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" + "Defect v_Cd_s0 in charge state: -1. Number of distorted neighbours: 1\n", + "\n", + "Defect v_Cd_s0 in charge state: 0. Number of distorted neighbours: 2\n", + "\n", + "Defect v_Cd_s0 in charge state: +1. Number of distorted neighbours: 3\n" ] } ], @@ -2011,7 +1915,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "id": "50d39076-a262-4eac-84df-27ef74def826", "metadata": { "pycharm": { @@ -2056,7 +1960,7 @@ } ], "source": [ - "!cat ./v_Cd_0/Bond_Distortion_-10.0%/INCAR" + "!cat ./v_Cd_s0_0/Bond_Distortion_-10.0%/INCAR" ] }, { @@ -2173,25 +2077,17 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 30, "id": "1ddbe86f-a21d-4bc0-b95d-0a8373258f53", "metadata": { "pycharm": { "name": "#%%\n" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "cp: cannot stat '../tests/data/example_results/distortion_metadata.json': No such file or directory\n" - ] - } - ], + "outputs": [], "source": [ - "!cp -r ../tests/data/example_results/v_Cd* .\n", - "!cp ../tests/data/example_results/distortion_metadata.json .\n", + "!rm -r ./v_Cd_s0*\n", + "!cp -r ../tests/data/example_results/v_Cd_s0* .\n", "# may need to change path if you've moved the example notebook elsewhere" ] }, @@ -2222,7 +2118,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 31, "id": "7398d15b-498a-448a-a3d4-f555d1641ec9", "metadata": { "pycharm": { @@ -2236,7 +2132,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 32, "id": "cadb8e69-f8e5-47c1-ae38-60d47c42b17b", "metadata": { "pycharm": { @@ -2250,16 +2146,16 @@ "output_type": "stream", "text": [ "\n", - "v_Cd\n", - "Parsing v_Cd_-1...\n", - "v_Cd_-1: Energy difference between minimum, found with 0.2 bond distortion, and unperturbed: -0.90 eV.\n", - "Energy lowering distortion found for v_Cd with charge -1. Adding to low_energy_defects dictionary.\n", - "Parsing v_Cd_-2...\n", - "No energy lowering distortion with energy difference greater than min_e_diff = 0.05 eV found for v_Cd with charge -2.\n", - "Parsing v_Cd_0...\n", - "v_Cd_0: Energy difference between minimum, found with -0.6 bond distortion, and unperturbed: -0.76 eV.\n", + "v_Cd_s0\n", + "Parsing v_Cd_s0_-2...\n", + "No energy lowering distortion with energy difference greater than min_e_diff = 0.05 eV found for v_Cd_s0 with charge -2.\n", + "Parsing v_Cd_s0_0...\n", + "v_Cd_s0_0: Energy difference between minimum, found with -0.6 bond distortion, and unperturbed: -0.76 eV.\n", + "Energy lowering distortion found for v_Cd_s0 with charge 0. Adding to low_energy_defects dictionary.\n", + "Parsing v_Cd_s0_-1...\n", + "v_Cd_s0_-1: Energy difference between minimum, found with 0.2 bond distortion, and unperturbed: -0.90 eV.\n", "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "New (according to structure matching) low-energy distorted structure found for v_Cd_0, adding to low_energy_defects['v_Cd'] list.\n", + "New (according to structure matching) low-energy distorted structure found for v_Cd_s0_-1, adding to low_energy_defects['v_Cd_s0'] list.\n", "\n", "Comparing and pruning defect structures across charge states...\n" ] @@ -2284,7 +2180,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 33, "id": "7c1b4b76-3015-43a1-acc6-e3974d92ba83", "metadata": { "pycharm": { @@ -2296,15 +2192,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "Energy lowering distortion found for v_Cd with charge -1. Generating distortion plot...\n", - "Plot saved to v_Cd_-1/v_Cd_-1.svg\n", - "Energy lowering distortion found for v_Cd with charge 0. Generating distortion plot...\n", - "Plot saved to v_Cd_0/v_Cd_0.svg\n" + "Energy lowering distortion found for v_Cd_s0 with charge 0. Generating distortion plot...\n", + "Plot saved to v_Cd_s0_0/v_Cd_s0_0.png\n", + "Energy lowering distortion found for v_Cd_s0 with charge -1. Generating distortion plot...\n", + "Plot saved to v_Cd_s0_-1/v_Cd_s0_-1.png\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADRcAAAzOCAYAAADZL740AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdaXiW5Z3/4V8SZIeyIyq4ABWSaF1BcImKWlpRwaVaUatVtFqty2FFO/2rUKtV674gVKRSpy5TddxatYqTCFZRQQQ0yOJeEQWBsi95/i9mpjOOSp48eZYk93keR49p4bru+xunr7Af76JUKpUKAAAAAAAAAAAAAAAAIHGKCz0AAAAAAAAAAAAAAAAAKAxxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAABZsH79+rjvvvvi7bffLvQUAAAAAIC0iYsAAAAAAAAAoB42btwYEyZMiL59+8bJJ58cpaWlMW3atELPAgAAAABIS7NCDwAAAAAAAACAxmjz5s3xhz/8IcaOHRvvvvvul35v48aNBVoFAAAAAFA34iIAAAAAAAAAqIOampp48MEH48orr4x33nmn0HMAAAAAAOpFXAQAAAAAAAAAaUilUvHoo4/GFVdcEXPmzCn0HAAAAACArBAXAQAAAAAAAEAtnnzyybj88stj5syZhZ4CAAAAAJBV4iIAAAAAAAAA+AZ//etf4//9v/8Xr7zySqGnAAAAAADkhLgIAAAAAAAAAP6Pqqqq+OUvfxkvvvhioacAAAAAAORUcaEHAAAAAAAAAEBD8fLLL8ehhx4aFRUVwiIAAAAAIBHERQAAAAAAAAAk3owZM2LYsGExaNCgeO655wo9BwAAAAAgb8RFAAAAAAAAACTW7Nmz4+ijj44999wznnrqqULPAQAAAADIu2aFHgAAAAAAAAAAhXD//ffHyJEjI5VKFXoKAAAAAEDB+HIRAAAAAAAAAIn06aefCosAAAAAgMQTFwEAAAAAAABAGgYMGBCPPvpooWcAAAAAAGRVs0IPAAAAAAAAAICGbPDgwXH55ZfHd7/73UJPAQAAAADIOnERAAAAAAAAAHyNgQMHxpgxY0RFAAAAAECTJi4CAAAAAAAAgP9l9913j7Fjx8awYcMKPQUAAAAAIOfERQAAAAAAAAAQEf3794+xY8fGMcccE0VFRYWeAwAAAACQF+IiAAAAAAAAABJtp512iiuuuCJGjhwZJSUlhZ4DAAAAAJBX4iIAAAAAAAAAEqlHjx4xbty4OP3002OrrbYq9BwAAAAAgIIQFwEAAAAAAACQSMcff3yhJwAAAAAAFFxxoQcAAAAAAAAAAAAAAAAAhSEuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAJAgU6ZMiaKiooz/deGFFxb6R2gQlixZEl26dMn4r+O2224by5cvL/SPAQAAAAAA4iIAAAAAAABIkrKysnrdnzdvXpaWNG4/+9nPYunSpRnfHz9+fHTo0CF7gwAAAAAAIEPiIgAAAAAAAEiQ7t27R5cuXTK+Ly6KeOKJJ+LBBx/M+P7JJ58cw4YNy+IiAAAAAADInLgIAAAAAAAAEqY+Xy967733Yv369Vlc07isXLkyzj777Izv9+jRI2655ZYsLgIAAAAAgPoRFwEAAAAAAEDC1Ccuqqmpifnz52dxTeNyySWXxMcff5zx/fHjx0fHjh2zuAgAAAAAAOpHXAQAAAAAAAAJU15eXq/78+bNy9KSxqWysjImTJiQ8f2TTjopjjjiiCwuAgAAAACA+hMXAQAAAAAAQMLU58tFEcmMi9atWxejRo2KVCqV0f2tt946br311iyvAgAAAACA+hMXAQAAAAAAQMLU98tF1dXVWVrSeFx55ZUxf/78jO/fdddd0bFjxywuAgAAAACA7BAXAQAAAAAAQMJ06tQptt5664zvJ+3LRTNnzowbbrgh4/sjR46Mo446KouLAAAAAAAge8RFAAAAAAAAkEBlZWUZ301SXLRp06Y4/fTTY9OmTRnd33rrrePWW2/N8ioAAAAAAMgecREAAAAAAAAkUHl5ecZ3V6xYEYsXL87imobrt7/9bcycOTPj++PGjYtOnTplcREAAAAAAGSXuAgAAAAAAAASqD5fLopIxteL3nnnnRgzZkzG93/4wx/G8OHDszcIAAAAAAByQFwEAAAAAAAACVSfLxdFNP24KJVKxahRo2LdunUZ3e/evXvcdtttWV4FAAAAAADZ16zQAwAAAAAAAID88+WiLRs/fnxUVVVlfH/cuHHRuXPnLC6KmDx5ckyePDmrz2xszjrrrDjuuOMKPQMAAAAAoEkRFwEAAAAAAEACtW/fPnr27BkffvhhRverq6uzvKjh+Oijj2L06NEZ3z/hhBNixIgRWVz0nxYtWhTPP/981p/bmAwdOrTQEwAAAAAAmpziQg8AAAAAAAAACqM+Xy9qyl8uOvvss2PlypUZ3e3WrVvcfvvtWV4EAAAAAAC5Iy4CAAAAAACAhKpPXPTee+/Fhg0bsrimYXjggQfiySefzPj+nXfeGZ07d87iIgAAAAAAyC1xEQAAAAAAACRUeXl5xnc3b94c8+fPz+Kawlu6dGn87Gc/y/j+8ccfH8ccc0wWFwEAAAAAQO6JiwAAAAAAACCh6vPlooiIefPmZWlJw3DBBRfEZ599ltHdbt26xe23357lRQAAAAAAkHviIgAAAAAAAEio0tLSKCoqyvh+U4qLnn766bjvvvsyvn/HHXdEly5dsrgIAAAAAADyQ1wEAAAAAAAACdWmTZvYYYcdMr7fVOKiVatWxVlnnZXx/eOOOy6OPfbYLC4CAAAAAID8aVboAQAAAAAAAEDhlJeXx7vvvpvR3erq6iyvKYzLLrssPvjgg4zudu3aNe64444sL/p6V155ZVx55ZV5eRcAAAAAAMnhy0UAAAAAAACQYGVlZRnfbQpfLnrppZfizjvvzPj+HXfcEV27ds3iIgAAAAAAyC9xEQAAAAAAACRYfeKi5cuXx5IlS7K4Jr/Wr18fZ5xxRtTU1GR0/9hjj43jjjsuy6sAAAAAACC/xEUAAAAAAACQYOXl5fW635i/XnTVVVfF22+/ndHdLl261OuLRwAAAAAA0FCIiwAAAAAAACDB+vXrFyUlJRnfr66uzuKa/Jk9e3Zce+21Gd+//fbbo2vXrllcBAAAAAAAhSEuAgAAAAAAgARr2bJl9O7dO+P7jfHLRZs3b47TTz89Nm7cmNH9Y445Jo4//vgsrwIAAAAAgMIQFwEAAAAAAEDClZWVZXy3McZFN998c7z66qsZ3e3SpUvceeedWV4EAAAAAACFIy4CAAAAAACAhCsvL8/4bnV1dRaX5N6iRYvi8ssvz/j+bbfdFt26dcviIgAAAAAAKCxxEQAAAAAAACRcfb5c9O6778aGDRuyuCa3Ro0aFWvWrMno7ogRI+KEE07I8iIAAAAAACgscREAAAAAAAAkXH2+XLR58+ZYuHBhFtfkzsSJE2PKlCkZ3e3cuXOMGzcuy4sAAAAAAKDwxEUAAAAAAACQcN/+9rdjq622yvj+vHnzsrgmNz755JO4+OKLM75/2223Rffu3bO4CAAAAAAAGgZxEQAAAAAAACTcVlttFX379s34fnV1dRbX5Ma5554by5cvz+ju8OHD44c//GF2BwEAAAAAQAMhLgIAAAAAAACivLw847sN/ctFDz/8cDzyyCMZ3e3UqVPcddddWV4EAAAAAAANh7gIAAAAAAAAiLKysozvNuS4aPny5XHuuedmfP+2226L7t27Z3ERAAAAAAA0LOIiAAAAAAAAoMl+ueiiiy6KxYsXZ3T3qKOOihNPPDHLiwAAAAAAoGERFwEAAAAAAAD1+nLRsmXL4rPPPsvimux4/vnnY9KkSRnd7dSpU9x1111ZXgQAAAAAAA2PuAgAAAAAAACIPn36RIsWLTK+39C+XrRmzZo488wzM75/yy23xNZbb53FRQAAAAAA0DCJiwAAAAAAAIAoKSmJfv36ZXy/ocVFv/zlL2PRokUZ3T3iiCPipJNOyvIiAAAAAABomMRFAAAAAAAAQERElJWVZXy3uro6i0vqZ/r06XHLLbdkdLdjx44xfvz4LC8CAAAAAICGS1wEAAAAAAAAREREeXl5xncbypeLNm7cGGeccUbU1NRkdP+WW26JHj16ZHkVAAAAAAA0XOIiAAAAAAAAICLq9+WihhIXXXPNNTF79uyM7g4bNixOPvnkLC8CAAAAAICGTVwEAAAAAAAARET9vly0aNGi2LhxYxbX1N1bb70Vv/71rzO626FDhxg/fnyWFwEAAAAAQMMnLgIAAAAAAAAiImLHHXeM1q1bZ3R306ZNsXDhwiwvSl9NTU2cccYZsWHDhozu33LLLbHNNttkeRUAAAAAADR84iIAAAAAAAAgIiKKioqitLQ04/vz5s3L4pq6uf322+Nvf/tbRneHDRsWp5xySpYXAQAAAABA4yAuAgAAAAAAAP6prKws47uFiovef//9+Jd/+ZeM7nbo0CHGjx+f5UUAAAAAANB4iIsAAAAAAACAf6pPXFRdXZ3FJek766yzYtWqVRndvemmm2KbbbbJ8iIAAAAAAGg8mhV6AAAAAAAAANBwlJeXZ3y3EF8umjx5cjzzzDMZ3f3+978fp556anYHkQipVKrQEwAAAAAAsqYo5U89AQAAAAAAgP/ywQcfxPbbb5/R3c6dO8fnn3+e5UXfbMmSJdG/f/9YtmxZne926NAh5syZE9tuu20OlgEAAAAAQONRXOgBAAAAAAAAQMPRq1evaN++fUZ3ly5dGkuXLs3yom923nnnZRQWRUTceOONwiIAAAAAAAhxEQAAAAAAAPB/lJaWZny3uro6i0u+2eOPPx4PPfRQRne/973vxWmnnZblRQAAAAAA0DiJiwAAAAAAAIAvKS8vz/juvHnzsrjk661cuTLOOeecjO5+61vfigkTJmR5EQAAAAAANF7iIgAAAAAAAOBLysrKMr6bj7jo5z//eXz88ccZ3b3xxhtju+22y/IiAAAAAABovMRFAAAAAAAAwJfUJy6qrq7O4pKvqqysjN/97ncZ3R06dGj8+Mc/zvIiAAAAAABo3MRFAAAAAAAAwJeUl5dnfDeXXy5at25djBo1KlKpVJ3vtm/fPiZMmJCDVQAAAAAA0LiJiwAAAAAAAIAv6dGjR3Tq1Cmju4sWLYpNmzZledF/uuKKK2L+/PkZ3b3hhhuiZ8+eWV4EAAAAAACNn7gIAAAAAAAA+IqysrKM7m3cuDEWLVqU5TURM2bMiBtuuCGju4cddlicccYZWV4EAAAAAABNg7gIAAAAAAAA+IpM46KIiOrq6iwuidi0aVOcccYZsXnz5jrfbd++fdx9991Z3QMAAAAAAE2JuAgAAAAAAAD4ivLy8ozvzps3L4tLIq6//vqYOXNmRnd/+9vfRs+ePbO6BwAAAAAAmhJxEQAAAAAAAPAV9flyUTbjonfeeSfGjh2b0d1DDz00Ro0albUtAAAAAADQFImLAAAAAAAAgK9oCF8uSqVSMWrUqFi3bl2d77Zr1y7uvvvurOwAAAAAAICmTFwEAAAAAAAAfEWXLl2iW7duGd2trq7Oyoa77rorqqqqMrr729/+Nnr16pWVHQAAAAAA0JQVpVKpVKFHAAAAAAAAAA3PwQcfHC+88EJGd5cuXRqdOnXK+N0fffRRlJWVxcqVK+t895BDDom//vWvGb8bAAAAAACSxJeLAAAAAAAAgK9VXl6e8d158+bV691nn312RmFRu3bt4u67767XuwEAAAAAIEnERQAAAAAAAMDXKisry/hudXV1xnfvv//+ePLJJzO6e91118X222+f8bsBAAAAACBpxEUAAAAAAADA1yrEl4uWLl0a559/fkZ3hwwZEmeddVZGdwEAAAAAIKnERQAAAAAAAMDXqs+XizKNiy644IL47LPP6nyvbdu2MXHixCgqKsrovQAAAAAAkFTiIgAAAAAAAOBrdejQIbbddtuM7mYSF/3lL3+J++67L6P3XXfddbH99ttndBfyYcmSJbFixYpCzwAAAAAA+ApxEQAAAAAAAPCNMv160cKFC2PTpk1pn1+1alX85Cc/yehdBx10UMZ3IZfef//9uPnmm6OioiJ69OgR+++/f6EnAQAAAAB8RbNCDwAAAAAAAAAarrKysnj22WfrfG/Dhg3x7rvvRt++fdM6f9lll8UHH3xQ5/e0bds27rnnnigqKqrzXciFt99+Ox555JF45JFHYsaMGV/6vT59+hRoFQAAAADANxMXAQAAAAAAAN+ovLw847vz5s1LKy566aWX4s4778zoHddee23ssMMOGd1NohUrVsScOXNizpw58fbbb8fHH38cH3/8cSxevDhWrVoVa9eujXXr1kWzZs2iXbt2//xXt27dol+/ftG/f//o169ffOc734lOnToV+sdpUK6++uqYPHlyzJs37xvPVFRU5HERAAAAAEB6ilKpVKrQIwAAAAAAAICG6ZVXXol99tkno7vXX399XHzxxVs8s379+thtt92iurq6zs8/6KCD4vnnn/fVoi34/PPP47nnnovKysqorKyMt99+OyvPLS4ujj333DOGDh0aQ4cOjYEDB0ZJSUlWnt0YLV++PDp37hw1NTVbPDdz5szYbbfd8jMKAAAAACBNvlwEAAAAAAAAfKOysrIoKiqKTP6ZhVv6gst/u+qqqzIKi9q0aRMTJ04UFn2NJUuWxJ/+9Kd4+OGHo7KyMjZv3pz1d9TU1MSrr74ar776avzqV7+K7bbbLkaNGhWjRo2KHj16ZP19Dd2LL75Ya1jUoUOH2HXXXfO0CAAAAAAgfcWFHgAAAAAAAAA0XG3bto1evXpldLe2uOjNN9+Ma6+9NqNnX3vttbHjjjtmdLcpSqVSMWXKlDj++ONju+22i5/+9KcxZcqUnIRFX+ejjz6KK664Inr16hXHHXdczJo1Ky/vbSiqqqpqPbP//vtHcbG/RQ8AAAAANDz+5BIAAAAAAADYovLy8ozubSku2rx5c5x++umxcePGOj/3wAMPjHPOOSejTU3N5s2b449//GPssssuMWTIkHjooYcy+muaLZs2bYo//elPsccee8Spp54aS5cuLdiWfKqsrKz1zIEHHpj7IQAAAAAAGRAXAQAAAAAAAFtUVlaW0b0lS5bEF1988bW/d/PNN8drr71W52e2adMmJk6cGEVFRRltaipSqVT84Q9/iH79+sXIkSNj7ty5hZ70JTU1NXHvvfdGaWlp/PnPfy70nJxatWpVzJw5s9ZzFRUVeVgDAAAAAFB34iIAAAAAAABgizKNiyK+/utFCxcujMsvvzyj511zzTWx0047ZbynKZg2bVoMHDgwTjnllFiwYEGh52zRkiVL4ogjjojf/OY3hZ6SM9OmTYtNmzZt8Uz79u1jt912y88gAAAAAIA6EhcBAAAAAAAAW1ReXp7x3a+Li84888xYs2ZNnZ91wAEHxLnnnpvxlsZu2bJl8aMf/Sj222+/ePXVVws9J201NTVx2WWXxSWXXFLoKTlRWVlZ65n99tsvSkpK8rAGAAAAAKDuxEUAAAAAAADAFvXv3z+KizP7W4v/Ny6aOHFiTJkypc7Pad26ddxzzz1RVFSU0Y7G7uGHH47S0tKYPHlyoadk7Prrr2+SXzCqqqqq9UxFRUUelgAAAAAAZKZZoQcAAAAAAAAADVurVq1ip512igULFtT5bnV19T///SeffBIXX3xxRhuuueaa6N27d0Z3G7PVq1fHOeeck5WoqEWLFjFgwIAoLS2Nfv36Rf/+/WPbbbeNdu3aRfv27aNdu3ZRU1MT69ati9WrV8fixYvjk08+iQULFsTs2bPjjTfeiJkzZ8bmzZsz3vCLX/widtlllzj88MPr/fM0BGvXrk3rK1LiIgAAAACgIStKpVKpQo8AAAAAAAAAGrbhw4fHY489Vud7paWlMXfu3IiIOProo+PRRx+t8zP233//qKysTNxXi+bMmRM/+MEP4u233874Gb17944jjzwyDjvssKioqIhWrVrVa9OKFSuisrIy7rvvvnj88cdj/fr1dX5G9+7dY/bs2dG1a9d6bWkIpkyZEkOGDNnimbZt28YXX3wRzZr5Z38CAAAAAA1TcaEHAAAAAAAAAA1feXl5RvcWLFgQmzdvjocffjijsKh169Zxzz33JC4sevTRR2PgwIEZhUXNmzePH/zgB/Hcc8/F/Pnz48Ybb4yhQ4fWOyyKiPjWt74VRx55ZDz00EPx97//PUaPHh0tW7as0zM+/fTTGD16dL23NARVVVW1nhk8eLCwCAAAAABo0MRFAAAAAAAAQK3Kysoyurdhw4aYMWNGnHvuuRndv/rqq6NPnz4Z3W2srrvuujjmmGNizZo1dbrXvHnzOPfcc+ODDz6IBx98MIYMGZLTKKtTp07xm9/8JubNmxeHHXZYne7ee++9MWvWrBwty5/Kyspazxx44IG5HwIAAAAAUA/iIgAAAAAAAKBWmcZFEREjR46MxYsX1/nefvvtF+edd17G721sUqlUnHvuuTF69OhIpVJp3ysqKoqRI0dGdXV13HbbbdG9e/ccrvyqXr16xdNPPx2//vWvo6SkJK07NTU1cc011+R4WW5t2LAhXnnllVrPVVRU5GENAAAAAEDmilJ1+VNpAAAAAAAAIJE2bNgQbdq0iU2bNuXlfa1atYo333wzMV8tqqmpiTPPPDMmTpxYp3u9evWKe+65J4YMGZKjZXXzyCOPxA9/+MPYsGFDrWdbt24dq1atyunXlXJp6tSpsf/++2/xTOvWrWP58uWx1VZb5WkVAAAAAEDd+XIRAAAAAAAAUKvmzZvnNfT59a9/nZiwKJVKxWmnnVbnsOi0006L2bNnN5iwKCLi6KOPjieeeCJatmxZ69m999670YZFERGVlZW1nhk0aJCwCAAAAABo8MRFAAAAAAAAQFrKy8vz8p599903zj///Ly8qyG48MILY/LkyWmfb9GiRdx7771xzz33RPv27XO4LDOHHXZY3HXXXbWeO/jgg/OwJneqqqpqPVNRUZGHJQAAAAAA9SMuAgAAAAAAANJSVlaW83e0atUqJk2aFMXFyfhbmddcc03ccsstaZ/v2rVrPP/883HKKafkcFX9/ehHP6o1EDvooIPytCb7Nm3aFC+99FKt58RFAAAAAEBjkIw/kQcAAAAAAADqLR9fLrrqqquib9++OX9PQ/Bv//Zv8Ytf/CLt83379o3p06fHvvvum8NV2XPttdfGDjvs8LW/17p16xg4cGB+B2XR66+/HqtWrdrimZYtWzbqnxEAAAAASA5xEQAAAAAAAJCWXH+5aPDgwXHBBRfk9B0Nxdy5c+O0005L+3yfPn3ihRde+MZYpyFq0aJFXHPNNV/7e/vuu280b948z4uyp6qqqtYzAwcOjBYtWuRhDQAAAABA/YiLAAAAAAAAgLT07ds3Z0FIy5Yt45577oni4qb/tzBXrFgRw4cPj9WrV6d1vnfv3vHCCy/Etttum+Nl2XfCCSfErrvu+pVfP/jggwuwJnsqKytrPXPggQfmfggAAAAAQBY0/T+ZBwAAAAAAALKiWbNmsfPOO+fk2VdddVXOnt3Q/PSnP40FCxakdXabbbaJF154Ibbbbrscr8qdU0899Su/dtBBB+V/SJbU1NTEtGnTaj1XUVGRhzUAAAAAAPUnLgIAAAAAAADSVlZWlvVnDho0KC688MKsP7cheuihh+Jf//Vf0zrbqlWrePzxx6Nnz545XpVbJ554YjRr1uyf/7ldu3ax5557FnBR/cyaNSuWL1++xTPNmzePffbZJz+DAAAAAADqSVwEAAAAAAAApK28vDyrz2vZsmVMmjQpioub/t+6XLx4cZx99tlpnS0qKop77723UUc4/6179+5fCm0OOOCAL8VGjU1lZWWtZwYMGBCtWrXKwxoAAAAAgPprvH9iCwAAAAAAAORdtr9cNHbs2Nh5552z+syG6qKLLoply5aldfaXv/xlHHfccTlelD8DBgyIqVOnRkTEQQcdlPf3v/fee1FVVRWzZs2KN998Mz744INYsWJFLF++PGpqaqJdu3bRs2fPKC0tjcGDB8fhhx8eO+6449c+q6qqqtb3VVRUZPtHAAAAAADImaJUKpUq9AgAAAAAAACgcViwYEH07ds3K8/aZ599YurUqVFSUpKV5zVkU6ZMiSFDhqR1tin+dXnwwQfjhBNOiIiIGTNmxO67757zdy5cuDDuvffeeOyxx+LNN9+s8/199903zj///Dj22GOjqKgoIiJSqVR069YtPv/88y3effbZZ+PQQw/NaDcAAAAAQL6JiwAAAAAAAIC01dTURNu2bWPt2rX1ek7Lli1j5syZ0a9fvywta7g2bdoUu+yyS1RXV9d6tk2bNvHGG29Enz598rAsf9asWRNvvfVWRETsscceUVxcnLN3/cd//EfcdNNN8eSTT0ZNTU29n/ed73wnxo0bF4MGDYq5c+dGeXn5Fs83a9Ysli9fHm3atKn3uwEAAAAA8qFZoQcAAAAAAAAAjUdxcXH0798/ZsyYUa/njBkzJhFhUUTExIkT0wqLIiJuuOGGJhcWRUS0bt069tprr5y+Y+7cuXHRRRfFs88+m9Xnzpo1K/bbb7+45JJLokePHrWe32uvvYRFAAAAAECj4stFAAAAAAAAQJ2ccsop8Yc//CHj+wMHDoxp06ZFSUlJFlc1TGvXro0+ffrE3//+91rPDhgwIF5++eUoKirKw7KmY/Xq1XHppZfGuHHjYvPmzTl911ZbbRUbN27c4plLL700rrnmmpzuAAAAAADIJl8uAgAAAAAAAOqkrKws47stWrSISZMmJSIsioi444470gqLIiJuuukmYVEdTZ8+PU466aSYP39+Xt5XW1gUEVFRUZGHJQAAAAAA2VNc6AEAAAAAAABA41JeXp7x3TFjxkT//v2zuKbh2rhxY9x8881pnf3BD34QgwcPzu2gJub666+PfffdN29hUTpKSkpi3333LfQMAAAAAIA68eUiAAAAAAAAoE4y/XLRgAED4uKLL87ymobr/vvvj48//rjWc8XFxXH11VfnYVHTsHHjxjjzzDPj97//faGnfMUee+wR7dq1K/QMAAAAAIA6ERcBAAAAAAAAdbL99ttH27ZtY9WqVWnfadGiRUyaNClKSkpyuKxhufHGG9M6N2LEiOjdu3eO1zQNX3zxRYwYMSIqKyvrdK9v375x9NFHx8CBA2PXXXeNLl26ROvWrWP58uWxcOHCmDZtWkyePDnefPPNeu2rqKio130AAAAAgEIoSqVSqUKPAAAAAAAAABqXgQMHxvTp09M+f/XVV8dll12Ww0UNy6uvvhoDBgxI6+y0adNi8ODBOV7U+C1btiwOOeSQmDlzZlrni4uLY8SIEfHzn/88Bg4cmNadJ554Is4777x4//33M9r4xBNPxLBhwzK6CwAAAABQKMWFHgAAAAAAAAA0PuXl5Wmf3XvvveOSSy7J4ZqGZ9KkSWmdGzhwoLAoDUuXLo0hQ4akHRYNHjw4Xn/99fjTn/6UdlgUEXHEEUfE66+/ntH/T4qLi2O//far8z0AAAAAgEITFwEAAAAAAAB1VlZWlta55s2bx6RJk6KkpCTHixqO9evXxwMPPJDW2VNPPTW3Y5qAFStWxJAhQ+KNN96o9Wzz5s3jpptuiqlTp8Zuu+2W0fs6d+4czzzzTOy66651uved73wnOnTokNE7AQAAAAAKSVwEAAAAAAAA1Fm6cdEVV1yR9tmmYsqUKfHFF1/Ueq6kpCSOPvroPCxqvDZt2hTHHntszJo1q9azPXv2jL/97W9xwQUXRFFRUb3e27Zt23jssceiTZs2ad858MAD6/VOAAAAAIBCERcBAAAAAAAAdVZeXl7rmT333DMuueSSPKxpWJ544om0zlVUVES3bt1yvKZx+8lPfhLPPfdcred23333ePnll2OPPfbI2rt32GGHGDNmTNrnKyoqsvZuAAAAAIB8EhcBAAAAAAAAdbbttttGhw4dvvH3mzdvHr///e+jWbNm+RvVQDz55JNpnTvmmGNyvKRxu/HGG2PixIm1nttnn32isrIyttlmm6xvOO+889J6blFRUey///5Zfz8AAAAAQD6IiwAAAAAAAICMlJWVfePvXX755Wl93aipefvtt+PDDz9M66wv3Xyz1157LS699NJazw0cODCeeeaZaNeuXU52NG/ePM4888xaz+2yyy7RqVOnnGwAAAAAAMg1cREAAAAAAACQkW+Ki/bcc88YPXp0ntc0DNOmTUvrXMeOHaO0tDTHaxqnVatWxYknnhgbN27c4rk+ffrEU089Fe3bt8/pnnRiMaEYAAAAANCYiYsAAAAAAACAjHzdl4maN28ekyZNimbNmhVgUeFNnTo1rXODBg2KoqKiHK9pnC666KKYP3/+Fs907NgxnnrqqejcuXPO91RVVdV6RlwEAAAAADRm4iIAAAAAAAAgI1/35aJf/vKXscsuuxRgTcPwyiuvpHVuwIABOV7SOE2fPj3uvvvuWs9NnDgxvv3tb+d8z+LFi2sNnSIiDjjggJxvAQAAAADIlWT+48IAAAAAAACAejv44IMjlUoVekaDsWHDhliwYEFaZ3v37p3jNY1PKpWK8847r9b/Tv34xz+OESNG5GVTOl8tKi0tja5du+ZhDQAAAABAbvhyEQAAAAAAAEAWzJ8/PzZt2pTWWXHRV02ePDmmT5++xTNdu3aNm266KU+L0ouLDjzwwNwPAQAAAADIIXERAAAAAAAAQBZUV1enfXannXbK4ZLGp6amJq6++upaz40dOzbat2+fh0X/KZ24qKKiIg9LAAAAAAByR1wEAAAAAAAAkAUffPBBWue22mqr6N69e47XNC6PPvpovPPOO1s806dPnxg1alSeFkUsW7Ys5syZU+u5Aw44IA9rAAAAAAByR1wEAAAAAAAAkAWLFy9O61ybNm1yvKTxue6662o9c/7550dJSUke1vynF198MVKp1BbP7LzzzrH11lvnaREAAAAAQG6IiwAAAAAAAACy4JNPPknrXNu2bXO8pHGZPXt2TJ8+fYtn2rdvH6eeemp+Bv2XqqqqWs9UVFTkYQkAAAAAQG6JiwAAAAAAAACy4IsvvkjrnC8Xfdkf//jHWs8ceeSReY+yxEUAAAAAQFKIiwAAAAAAAACyYO3atWmda968eY6XNB6pVCoeeOCBWs8de+yxeVjzP1atWhUzZ86s9Zy4CAAAAABoCsRFAAAAAAAAAFmwbt26rJ5LglmzZsV77723xTPNmjWLQw89ND+D/su0adNi8+bNWzzTp0+f2HbbbfO0CAAAAAAgd8RFAAAAAAAAAFmwYcOGtM6tWbMmx0saj8rKylrP7LbbbtG6des8rPkfVVVVtZ7x1SIAAAAAoKkQFwEAAAAAAABkQYsWLdI699lnn0UqlcrxmsYhnbhon332ycOSLxMXAQAAAABJIi4CAAAAAAAAyIJWrVqldW7Dhg2xePHiHK9pHKZOnVrrmZ133jkPS/7HunXr4tVXX631nLgIAAAAAGgqxEUAAAAAAAAAWdCmTZu0z86bNy+HSxqHpUuXxmeffVbruR133DEPa/7HK6+8EuvXr9/imR122CF69eqVp0UAAAAAALklLgIAAAAAAADIgh49eqR9Np0v4zR1CxYsSOvcdtttl+MlX1ZZWVnrGV8tAgAAAACaEnERAAAAAAAAQBbssMMOaZ+dNm1a7oY0EvPnz0/rXF2+CJUNVVVVtZ4RFwEAAAAATYm4CAAAAAAAACAL6hIX/fWvf421a9fmbkwj8Pe//z2tc/mMizZu3Bgvv/xyrefERQAAAABAUyIuAgAAAAAAAMiC3XbbLe2za9asiaeeeip3Y/Lkvffeiz//+c8Z3V21alVa52pqajJ6fiZef/31WL169RbP9OzZM3baaac8LQIAAAAAyD1xEQAAAAAAAEAWfPvb345OnTqlff7222/P4Zrcq6qqir333jtOOOGEWLBgQZ3vpxsXLV++vM7PztQf//jHWs/4ahEAAAAA0NSIiwAAAAAAAACyZNCgQWmfraysjOnTp+dwTe787ne/i0MOOSQ+//zz+Mc//hHHH398rF+/vk7PWLNmTVrn8hUXvfjii3HHHXfUek5cBAAAAAA0NeIiAAAAAAAAgCw58sgj63T+oosuytGS3Fi3bl2cc845ceaZZ8bGjRv/+eszZsyIiy++uE7PKioqSuvcokWL6vTcTKxevTpOO+20qKmpqfWsuAgAAAAAaGrERQAAAAAAAABZMnz48CgpKUn7/LRp02L8+PE5XJQ9s2fPjr322ivGjRv3tb9/++23x6OPPpr281q1apXWub/97W9pPzMTqVQqTjnllFi4cGGtZ3v06BF9+/bN6R4AAAAAgHwTFwEAAAAAAABkSbdu3eLQQw+t050LL7ww5syZk6NF9ZdKpeLWW2+NvffeO+bOnbvFs6effnq8//77aT23S5cuaZ2bOnVqWucydeWVV8YjjzyS1tnBgwfndAsAAAAAQCGIiwAAAAAAAACy6Pzzz6/T+bVr18b3v//9+PDDD3O0KHOzZs2K/fbbL84///xYv359ree/+OKLeP7559N69nbbbZfWudmzZ8drr72W1tm6Gj9+fPzqV79K+7y4CAAAAABoisRFAAAAAAAAAFn03e9+N0pLS+t058MPP4xDDjkk3n333RytqpuVK1fGBRdcEHvuuWe89NJLad0pKSmJCRMmxI9//OO0zvfr1y/tPTfffHPaZ9M1fvz4OPvssyOVSqV9R1wEAAAAADRFRam6/EkpAAAAAAAAALV68skn44gjjqjzvW7dusXDDz8c++23Xw5W1W716tUxbty4uP7662PJkiVp32vRokXcf//9MWLEiLTvrF27Ntq3bx+bNm2q9WxxcXE8++yzMWTIkLSf/01SqVSMGTMmxo4dW6ewqHnz5vGPf/wjmjdvXu8NAAAAAAANiS8XAQAAAAAAAGTZsGHDYujQoXW+t2TJkqioqIjRo0fH2rVrc7Ds661cuTKuvfba2GGHHeLnP/95ncKi9u3bxzPPPFOnsCgiolWrVjFo0KC0ztbU1MRJJ50UH3/8cZ3e8X+tWLEiRowYEWPGjKlTWBQRseuuuwqLAAAAAIAmSVwEAAAAAAAAkAN33HFHtG/fvs73ampq4rrrrovevXvHuHHjYt26dTlY95+mTp0ap512WvTo0SMuvfTS+Pzzz+t0v7S0NF5++eWoqKjI6P11+brT4sWLY9CgQfHmm29m9K5///d/j9LS0njssccyur/nnntmdA8AAAAAoKErStX1H8cEAAAAAAAAQFoeeuihOP744+v1jI4dO8bIkSPj2GOPjX333TeaNWuW8bPWrl0bVVVV8cwzz8STTz4Z8+fPz/hZJ554YkyYMCHatGmT8TM++eST6NmzZ2zevDntO23bto3Ro0fHBRdcEG3btq31/IsvvhhXX311PP300xnvjIiYMGFCjBo1ql7PAAAAAABoiMRFAAAAAAAAADl08cUXxw033JCVZ7Vv3z4GDx4cu+++e+yyyy7Rs2fP2G677aJDhw7RsmXLaN68eaxevTpWrlwZK1eujMWLF8dbb70Vc+fOjblz58b06dPr/SWk5s2bx0033RTnnHNOVn6mk08+Oe6777463+vSpUscddRRMXTo0CgvL49u3bpF27Zt47PPPov33nsvnnvuuXj88cdjxowZWdk5ffr02HvvvbPyLAAAAACAhkRcBAAAAAAAAJBDqVQqTjvttLj33nsLPaXe9thjj7j77rtj9913z9ozFy5cGGVlZbF+/fqsPTPbioqKYtWqVdG6detCTwEAAAAAyLriQg8AAAAAAAAAaMqKiopi4sSJcfLJJxd6SsbatGkTN9xwQ0yfPj2rYVFERO/eveOKK67I6jOzbccddxQWAQAAAABNlrgIAAAAAAAAIMdKSkpi8uTJcfnllxd6Sp0NGzYs3nrrrbjooouipKQkJ+8YPXp0HH744Tl59pb85Cc/ie9973u1nistLc3DGgAAAACAwhAXAQAAAAAAAOTJmDFj4rHHHovu3bsXekqtDjrooKisrIwnnngievXqldN3FRcXxwMPPBD77bdfTt/z33r37h1/+ctfYty4cfHWW2/Ver5Pnz55WAUAAAAAUBjiIgAAAAAAAIA8OvLII2Pu3LkxcuTIKCoqKvScr/jvqGjKlClxwAEH5O29bdu2jaeffjqOPvronL2jQ4cOcdVVV8XcuXNj6NChsWTJknj//fdrvde7d++cbQIAAAAAKDRxEQAAAAAAAECede7cOe677754/fXX43vf+16h50THjh3jnHPOiddeey3vUdH/1qZNm3j44Ydj3Lhx0aFDh6w9d5tttomxY8fGe++9F//yL/8SLVq0iIiIV199dYv3evfuHRdddFEcddRRWdsCAAAAANDQFKVSqVShRwAAAAAAAAAk2Zw5c+J3v/td3HfffbFs2bK8vLNFixZx4IEHxqmnnhrDhw+Pli1b5uW96fr888/j1ltvjQkTJsSnn35a5/sdO3aMoUOHxgknnBCHH354lJSUfOXMlVdeGWPGjPnSr+2+++4xfPjwGD58eOy6664Z7wcAAAAAaCzERQAAAAAAAAANxPr166OysjL+8pe/xNNPPx3V1dVZe3ZxcXHstttuccghh8SQIUNi//33j1atWmXt+bmyefPmqKqqiilTpsRrr70WixYtisWLF8eaNWsiIqJ169bRsWPH6NWrV+y0006xxx57xIABA2KvvfaKZs2abfHZv/jFL+L666+P/fff/59BUa9evfLxYwEAAAAANBjiIgAAAAAAAIAGavny5fHGG2/ErFmzYv78+fHxxx/HRx99FJ9++mmsWbMm1q1bF+vWrYvi4uJo165dtGvXLtq2bRvt2rWLnj17Rr9+/WLnnXf+5/9t27ZtoX+kBmfVqlX+ugAAAAAAiSYuAgAAAAAAAAAAAAAAgIQqLvQAAAAAAAAAAAAAAAAAoDDERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUM0KPQAAyNymTZti/vz5X/q1Tp06RXGxfhgAAAAAAAAAAAAA0lVTUxPLli370q/17ds3mjVr+ulN0/8JAaAJmz9/fpSWlhZ6BgAAAAAAAAAAAAA0OW+99Vb079+/0DNyzmcNAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIqGaFHgAAZK5Tp05f+bW33norunTpUoA1AAAAAAAAAAAAANA4ff7551FaWvqlX/u6/61uUyQuAoBGrLj4qx8h7NKlS3Tt2rUAawAAAAAAAAAAAACg6fi6/61uU5SMnxIAAAAAAAAAAAAAAAD4CnERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAQB6kUqlIpVKFngEAAAAAAF8iLgIAAAAAAADIg7+9/068/MH8Qs8AAAAAAIAvaVboAQAAAAAAAABN3dqNG+K+mS9GUUTsts0O0Wqr5oWeBAAAAAAAEeHLRQAAAAAAAAA59/Dsl2P52tXxxdrV8cjsVwo9BwAAAAAA/klcBAAAAAAAAJBDHy7/PJ6e98Y///Nf5s2MD5d/XrhBAAAAAADwv4iLAACA/8/enUfJdZd3wn+qWq3u6m5JXbIt2bJsvFu2sYwk29ggeQFDsE1gCDiYmC2cmUMSXiDJBBIYJsybOZAAJwskOMCchGE7bJ43LMZgDNh4N5a8YllGeMOrLOxuSd1d3S111fsHDHitW926dW/fqs/nP3R/Xfere3hcfdT9rQcAAACANmk0GvHZjVdEvdH4zZ/Vf/1njSf9GQAAAAAA5EW5CAAAAAAAAKBNrr5vS2x57KFn/PmWxx6Ka+67K4dEAAAAAADwVMpFAAAAAAAAAG0wPj0VX7r5que8/qWbr4qJ6akMEwEAAAAAwDMpFwEAAAAAAAC0wUW3XRc7J2vPeX3H5ER8/bbrM0wEAAAAAADPpFwEAAAAAAAAkLL7RrbH97felnju+1tvjftHtmeQCAAAAAAAnp1yEQAAAAAAAECK6o1GfPbGy6PRaCSebfz6bL2FswAAAAAA0A7KRQAAAAAAAAApuvKezbH1l4+0fP5nv3wkrrr3zjYmAgAAAACA56ZcBAAAAAAAAJCSsanJ+PIt18z6675889UxNj3ZhkQAAAAAANCcchEAAAAAAABASr5227Wxa6o266/bOVWLr996XRsSAQAAAABAc8pFAAAAAAAAACm45/Ft8cOtt8/563+w9ba454ltKSYCAAAAAIBkykUAAAAAAAAAe6ler8e/33h5NPbiNRoR8dkbL496Y29eBQAAAAAAZke5CAAAAAAAAGAvXX7PHalsHbr78W1xxd13pJAIAAAAAABao1wEAAAAAAAAsBd2Ttbiq7dcm9rrfeWWa2LnZC211wMAAAAAgGaUiwAAAAAAAAD2wldvvSbGpidTe72x6cn46q3plZUAAAAAAKAZ5SIAAAAAAACAOdr6y0fi8rvvSP11r7j7p/HzXz6a+usCAAAAAMDTKRcBAAAAAAAAzEG9Xo/P3nh5W167ERH/fuPlUa/X2/L6AAAAAADwfykXAQAAAAAAAMzBD35+e9w3sr1tr3/fyGPxw5/f3rbXBwAAAACACOUiAAAAAAAAgFnbURuPr916bdvv89Vbr4sdkxNtvw8AAAAAAN1LuQgAAAAAAABglr58yzUxsXu67feZ2D0VX77l6rbfBwAAAACA7qVcBAAAAAAAADALWx57KK68987M7nflPXfGXdsfzux+AAAAAAB0F+UiAAAAAAAAgBbN1Ovx2Y2XZ37fz954eczU65nfFwAAAACAzqdcBAAAAAAAANCi7//s1nhg9PHM7/uL0V/G9392a+b3BQAAAACg8y3IOwBA3nbv3h1XXXVVXHPNNbF58+bYsmVLbN++PXbt2hXj4+NRqVRi8eLFsXTp0jj66KPj2GOPjRe+8IXxkpe8JCqVSt7xC2X79u1x6aWXxs033xybN2+Ou+++O3bs2BG7du2K3bt3x6JFi2Lx4sWxYsWKOPbYY+O4446Ll7zkJXHCCSfkHR0AAAAAAGKkNh4X3XZ9bve/6Pbr45TnHRXVymBuGQAAAAAA6DylRqPRyDsEQB6uvvrq+OQnPxmXXHJJ7Ny5c9ZfX6lU4qyzzoo//uM/jle84hVRKpXakLL4arVafOELX4h///d/jxtvvDHq9fqsX2PlypVx3nnnxTvf+c449NBD25CyuLZv3x7Lli17yp899thjsd9+++WUCAAAAACgc/3LNd+La++/K9cMLz7k6HjHi16RawYAAAAAgE7Uzb+XW847AEDWrrzyyjjppJNiw4YN8ZWvfGVOxaKIX5Vmvv3tb8c555wTxxxzTHzjG99IN2jB7d69Oz7ykY/EQQcdFG9/+9vjhhtumFOxKCLiwQcfjH/8x3+MI444Is4777y477770g0LAAAAAAAJNm97MPdiUUTENffdFXduezDvGAAAAAAAdBDlIqBrjI6Oxlve8pY4/fTTY+PGjam+9l133RWvec1r4nd/93fj4YcfTvW1i+iaa66JE044If7qr/4qHn/88dRet16vx0UXXRTHHXdcfPSjHw3L9wAAAAAAyMKe+kx8duPlecf4jc9uvCL21GfyjgEAAAAAQIdQLgK6wubNm+Pkk0+Oz3/+8229z8UXXxzr1q2La6+9tq33mc8uvPDCOPPMM+POO+9s2z0mJibiL//yL+PVr371nDdPAQAAAABAq7675ZZ4aMcTecf4jQd3PB7fu+uWvGMAAAAAANAhlIuAjnf11VfHKaecElu3bs3kfo8++miceeaZ8R//8R+Z3G8++fM///N4xzveEbt3787kft/+9rfj1FNPje3bt2dyPwAAAAAAus/jE7vi//vpDXnHeIb/c/sN8fjErrxjAAAAAADQARbkHQCgnTZu3Bjnnntu7NqV7Q/Xpqen4/zzz49vfetb8Tu/8zuZ3jsv73//++Mf//EfM7/v5s2b4+Uvf3lcfvnlMTw8nPn9IUv1ej0e3jkS9zzxWDy44/EYn56M3TMzsac+EwvKPdHb0xODC/tj5ZJ94rB9lsWKRdUol3XJ4dmYJ0iHWYJ0mCVIj3mCdJgleKov3nRVTO3J5kO1ZmNqz+740k1XxbvWn5N3FGg7700AAAAA0F7KRUDHevDBB+Pss8+OnTt3tvw1/f39cdppp8WJJ54YBx54YCxevDjGxsbikUceiZtuuimuuOKKGBsba+m1pqen4/d+7/fihhtuiOc///lz/WsUwqc//en427/921l9zcqVK+O0006L1atXx7777hu9vb0xOjoaW7dujRtuuCE2btwYjUajpde65ZZb4jWveU384Ac/iJ6enrn8FWBeajQacedjD8WmB++Ou5/YFvc/sT2mZva0/PV9C3rjedV94/Cly2PdysPjmGUHRqlUamNimL/ME6TDLEE6zBKkxzxBOswSPLfbH7k/bvjF1rxjPKfrf7E1znz0F3H8/gfnHQVS5b0JAAAAALJVarT6m9sABbJnz54488wz4+qrr27p/LJly+IDH/hAvPnNb44lS5Y857mJiYn42te+Fv/jf/yPuP/++1t67VWrVsXGjRtjcHCwpfNFc8stt8Spp54ak5OTLZ0/7bTT4q//+q/jJS95SdMf4tx7773xiU98Ii688MKYnp5u6bU/8IEPxP/8n/+zpbOdYvv27bFs2bKn/Nljjz0W++23X06JSMP49FRcde+d8YOtt8XDO0dSe90Vi6tx1pGrY8Ohx8Tgwr7UXhfmM/ME6TBLkA6zBOkxT5AOswTN7Z7ZE391yZfikV2jeUdp6oDF1fi7s/8gent8riTF570JAAAAgDx18+/lKhcBHelv/uZv4oMf/GBLZ1//+tfHZz7zmVi8eHHLrz81NRX/9b/+1/jkJz/Z0vn/8l/+S3zmM59p+fWLYnp6OlavXh133XVX4tlKpRIXXnhhvPWtb53VPe6666543eteFz/96U8Tz5bL5fjxj38c69evn9U9iqybv4npRNt2jca3Nm+Ka+/bMqtPYJytvp4F8aJDVsWrjl0XyxcNt+0+kCfzBOkwS5AOswTpMU+QDrMErfnmHTfGV2+9Nu8YLTn/hBfFq447Ke8YMGfemwAAAACYD7r593KVi4COc++998axxx7b0iad973vffHhD394zvf6l3/5l3jnO9+ZeK5UKsUNN9wQJ53UWT/Y+7u/+7t43/vel3hu8eLFcdlll8XJJ588p/uMj4/HueeeGz/+8Y8Tz55wwgmxadOm6OnpmdO9iqabv4npJDP1enxny03xf267PnbXZzK7b2+5J163+pQ4d9XaKJfLmd0X2sk8QTrMEqTDLEF6zBOkwyxB67aP74z3XPyFmG5jySFNfT0L4mOvfFPsO9j6B6nBfOC9CQAAAID5pJt/L1e5COg4r3nNa+Ib3/hG4rm3v/3t8alPfWqv7/ehD30oPvCBDySeO/nkk+P666+PUqm01/ecDx5++OE46qijYnx8vOm53t7e+OEPfxgbNmzYq/uNjY3Fhg0b4pZbbkk8+8lPfjL+5E/+ZK/uVxTd/E1Mp3hoxxPxqeu/H3c/vi23DEfss3+8/ZSXxYFLluaWAdJgniAdZgnSYZYgPeYJ0mGWYHb+4cqLY+ODd+cdY1ZOWnl4/Nlpr8w7BrTMexMAAAAA8003/16uchHQUW655ZZYs2ZN4rk1a9bEddddF319fXt9z0ajEWeffXZceumliWe//e1vxytf2Rk/2PvTP/3T+PjHP5547qMf/Wi85z3vSeWeP/vZz2LdunUxNjbW9NyKFSvi3nvvjYULF6Zy3/msm7+JKbp6oxHfufOmuOi26zL9NMbn8qtPaTw1zj1mbZQ7pARJ9zBPkA6zBOkwS5Ae8wTpMEswezc/dG987MffyjvGnLz3jFfHC1YckncMaMp7EwAAAADzVTf/Xq5yEdBR/uAP/iC+/OUvNz1TLpfjxhtvjLVr16Z231/84hexatWqqNVqTc9t2LAhrrzyytTum5eRkZE46KCDErcWrVmzJjZu3Bjlcjm1e3/sYx+L9773vYnn/u3f/i3e9ra3pXbf+aqbv4kpsj31mfj09ZfFNffdlXeUZ3jxIUfH2095WSwo9+QdBVpiniAdZgnSYZYgPeYJ0mGWYPamZ/bEX37ni7FtbEfeUeZk+dCS+Mi5b4yFPQvyjgLPynsTAAAAAPNZN/9ebnq/7Q2QswceeCC+/vWvJ55705velGqxKCLi4IMPjj//8z9PPHfVVVfFjTfemOq98/CpT30qsVgUEfEP//APqRaLIiLe/e53x6GHHpp47u///u9TvS+kZXpmT/zTVd+Zlz84jYi45r674p+u+k5Mz+zJOwokMk+QDrME6TBLkB7zBOkwSzA3F2/eVNhiUUTEtrEdcfHmTXnHgGflvQkAAAAA5i/lIqBjfOlLX4o9e5r/Y3+pVIq//Mu/bMv93/3ud0d/f3/iuc997nNtuX+WWvk7vPCFL4wzzjgj9XsvXLgw/uzP/izx3ObNm2Pjxo2p3x/2xp76THzi6kvipofuzTtKUzc9dG/889XfjT31mbyjwHMyT5AOswTpMEuQHvME6TBLMDfbxnbENzcX/wPCvrn5xniswAUpOpP3JgAAAACY35SLgI7xpS99KfHMy1/+8jjmmGPacv/99tsvLrjggsRzX/va1xJLUPPZpk2b4q67kj9R7k//9E/bluFtb3tbLF68OPFcK/+fgKzUG4349PWXzfsfnP5fmx66Jz59/WVRbzTyjgLPYJ4gHWYJ0mGWID3mCdJhlmDuPr/xx7F7pviFgt0zM/H5TT/OOwb8hvcmAAAAAJj/lIuAjvDTn/40fvrTnyaee+Mb39jWHK28/vbt2+MHP/hBW3O005e//OXEM4sWLYpXv/rVbcswODgYr3nNaxLPfeUrX4mGH/wwT3znzpvimvuSi3nzyTX33RWXbLkp7xjwDOYJ0mGWIB1mCdJjniAdZgnmZtOD98TNDxej+NCKmx66NzY9eE/eMSAivDcBAAAAQBEoFwEd4Xvf+17imf7+/rYWXiIiTjvttFixYkXiue9+97ttzdFOrTzrV73qVVGpVNqa4/zzz0888+ijj8Ytt9zS1hzQiod2PBEX3XZd3jHm5Ou3XhcP7Xgi7xjwG+YJ0mGWIB1mCdJjniAdZgnmZmrP7vjcpivyjpG6z2/6cUzv2ZN3DLqc9yYAAAAAKAblIqAjXHbZZYln1q9fH4sWLWprjnK5HC9/+csTz7WSdz565JFH4o477kg8d/bZZ7c9yxlnnBH9/f2J54r6rOkcM/V6fOr678fu+kzeUeZkd30mPn39ZVGv1/OOAuYJUmKWIB1mCdJjniAdZgnm7pt3bIxfju/KO0bqto/vjG9uvjHvGHQx700AAAAAUBzKRUDhTU9Px9VXX5147qyzzsogTWv3ufPOO+Ohhx7KIE26fvjDH7Z07qUvfWmbk/xqE9X69esTzykXkbdLttwUdz++Le8Ye+Xnjz8a39lyU94xwDxBSswSpMMsQXrME6TDLMHcPLJzJC6+c1PeMdrm25s3xSM7R/KOQZfy3gQAAAAAxaFcBBTerbfeGhMTE4nnWimipGHDhg0tnbvhhhvanCR91113XeKZI444Ivbff/8M0rT2rH/yk59Eo9HIIA0807Zdo3HRbdfnHSMVF912fWzbNZp3DLqYeYJ0mCVIh1mC9JgnSIdZgrlpNBrxvzdeEXsKulWlFXvqM/G5TT/27+RkznsTAAAAABSLchFQeDfffHPimXK5HC94wQvaHyYiDj744Nh3330Tz7WSe75pJfPatWszSPIr69atSzyzc+fOuOeeezJIA8/0rc2bYneH/GLC7vpMfGtz536CK/OfeYJ0mCVIh1mC9JgnSIdZgrm58YGfx+2P/iLvGG132yP3x40P3p13DLqM9yYAAAAAKBblIqDwbrrppsQzRx11VAwODmaQ5ldaKb0UrVxUr9fj1ltvTTw338pFEcV71nSG8empuPa+LXnHSNW1922JiempvGPQhcwTpMMsQTrMEqTHPEE6zBLMzeSe3fH5m67MO0ZmvrDpxzG5Z3feMegS3psAAAAAoHiUi4DCu/322xPPrFq1KoMkv3X00UcnnrntttsySJKeu+++OyYmJhLPZfms999//1iyZEniuaI9azrDVffeGVMze/KOkaqpmT1x1b135h2DLmSeIB1mCdJhliA95gnSYZZgbv7jpzfEExNjecfIzOMTY/GNn/4k7xh0Ce9NAAAAAFA8ykVA4d1zzz2JZ4488sgMkvzWEUcckXjmoYceiunp6QzSpKOV5xyR/bM+/PDDE8+0mh3S0mg04rKtnVlqu2zrbdFoNPKOQRcxT5AOswTpMEuQHvME6TBLMDcP7XgiLrmz+zbef2fLTfHQjifyjkGH894EAAAAAMWkXAQUWq1Wi0cffTTxXCsFlDS1Ui6q1+tx//33Z5AmHffee29L5w477LA2J3mqVp51q9khLXc+9lA8snMk7xht8fDOkdjy2EN5x6CLmCdIh1mCdJglSI95gnSYJZi9RqMR/3vj5THTqOcdJXMz9Xr8741XKEfQVt6bAAAAAKCYlIuAQmu1nLNixYo2J3mqAw44oKVzRSq93HfffYlnli5dGv39/e0P8yStPOsiPWc6w6YH7847QlttfNA2MLJjniAdZgnSYZYgPeYJ0mGWYPauu/9ncce2B/OOkZs7tj0Q1/9ia94x6GDemwAAAACgmJSLgEJ76KHWPh1s//33b3OSud3vwQeL8wPMVp511s+51Xs++uijMTMzk0Ea+JW7n9iWd4S2uqfD/37ML+YJ0mGWIB1mCdJjniAdZglmp7Z7Or5481V5x8jdF2+6Mmq7p/OOQYfy3gQAAAAAxaRcBBTa448/3tK55cuXtznJUy1btizK5eT/xD7xxBMZpElHK8866+cc0Vq5qNFoxMjISAZpIKJer8f9T2zPO0Zb3TeyPer1et4x6ALmCdJhliAdZgnSY54gHWYJZu//3H59jNbG846Ru5HaePx/t9+Qdww6kPcmAAAAACgu5SKg0FotFw0PD7c3yNOUy+VYtGhR4rlW888HrWTN+jnP5p5FetYU28M7R2JqZk/eMdpqas/ueHiXwh7tZ54gHWYJ0mGWID3mCdJhlmB2Hhj9ZXzvrlvyjjFvfPeum+OB0V/mHYMO470JAAAAAIprQd4BAPZGq5t/hoaG2pzkmRYtWhQ7duxoeqZIm4taydpKoSptrd6zSM+aYrvnicfyjpCJf7ryO7GkMpB3DDrcaG0i7wiZME+0m1mCdJglSI95gnSYJWhdo9GIX4z+MuqNRt5R5o16oxH/72Vfj4OH941SqZR3HDpEt7w33fvEY7FyyT55xwAAAACAVCkXAYW2c+fOxDODg4NRLme/qG3x4sWJZ5LKR/NJK886j3JRK885oljPmmJ7cEd3bMl6eNeIT2eElJgnSIdZgnSYJUiPeYJ0mCVon4nd07Fl+8N5x4DCeXC0O34OAAAAAEB3yf637QFSND09nXimUqlkkOSZ+vv7E8+0kn++mK/PupXnHFGsZ02xjU9P5h0BAAAAAABok7HpqbwjAAAAAEDqbC4CCq2VwkhPT08GSZ5pwYLk/8QWqfAyX591K885oljPem+tX7++5edC+g561Zmx9Pgj844BAAAAAAC0we6ZPXlHAAAAAIDU2VwEFForhZG8Shat3Hf37t0ZJEnHfH3Wrd6zSM+aYiv3+PYKAAAAAAA61Z76TN4RAAAAACB11hoAhbZnT/IngykXpWO+Pmvlome6+uqrY7/99ss7Rte68NpL4+r7tuQdAwAAAAAAaIMF5Z68IwAAAABA6ny0PlBorRRLZmby+fSwVu6bV/FpLubrs271nkV61hRbb48fKgIAAAAAQKfq7fEzJwAAAAA6j3IRUGgLFy5MPNPKxp12aGVTTiv554v5+qxb3UhUpGdNsQ0u7M87AgAAAAAA0CZDC/vyjgAAAAAAqfOROkCh9fb2Jp7Jq1zUyn2LVHiZr8+61XsW6VlTbCuX7JN3hEwct/ygWLG4mncMOtzDO0fijm0P5B2j7cwT7WaWIB1mCdJjniAdZglmZ2xqMq7/xc+ikXeQeaIUEaccfFQM9fmwJNLTLe9NK4e74+cAAAAAAHQX5SKg0Pr6kj8ZbHJyMoMkc7tvkQov8/VZt3rPIj1riu2wpcvyjpCJt5x4etcUqcjPg6OPx3sv+WLeMdrOPNFuZgnSYZYgPeYJ0mGWYPaqNw3GJVtuzjvGvHDOqrVxwdoNecegw3TLe9OhXfJzAAAAAAC6SznvAAB7Y9GiRYlnxsfHo9HI/rMId+3alXhm8eLFGSRJRyvPupW/c9pavWeRnjXFtmJxNfp6Oru/3begN1Ys8onBtJ95gnSYJUiHWYL0mCdIh1mC2Xvt8adEtTKYd4zcVSuD8XvHvzDvGHQg700AAAAAUFzKRUChLV26NPFMo9HIpfSyc+fOxDOt5J8vWsnayt85ba3es0jPmmIrl8vxvKX75R2jrQ6p7hflsm8jaT/zBOkwS5AOswTpMU+QDrMEs1fpXRgXrLGt541rT4tK78K8Y9CBvDcBAAAAQHH5Vy+g0PbZZ5+Wzu3YsaPNSZ6qXq/H2NhY4rlW888HrWTN+jnP5p5FetYU3+FLl+cdoa0O6/C/H/OLeYJ0mCVIh1mC9JgnSIdZgtk79XlHxXHLV+YdIzfP3/+gOOXgI/OOQQfz3gQAAAAAxaRcBBRaq4WRbdu2tTnJU23fvj1mZmYSzxWp8NJK1qyfc0TEo48+mnimVCpFtVrNIA38yrqVh+cdoa1OXHlY3hHoIuYJ0mGWIB1mCdJjniAdZglmr1QqxVtPPDN6unDzSE+5HG9Zd0aUSqW8o9DBvDcBAAAAQDF137+aAx3lwAMPbOlcKwWUNLV6v1bzzwetZM36Obd6z+XLl8eCBQsySAO/csyyA+OAxZ1ZaFuxuBqrlhXnv10Un3mCdJglSIdZgvSYJ0iHWYK5OXDJ0jhn1Zq8Y2Tu3FVr48AlS/OOQYfz3gQAAAAAxaRcBBTaIYcc0tK5hx9+uL1BnuaRRx5p6dyhhx7a5iTpaeVZP/HEEzE1NdX+ME/SyrMu0nOmM5RKpXjZkavzjtEWLztytU82JVPmCdJhliAdZgnSY54gHWYJ5u41z39h7DMwlHeMzOwzMBT/6fkn5x2DLuC9CQAAAACKSbkIKLRKpRLLly9PPHf33XdnkOa3fv7znyeeKZVK8bznPS+DNOlopaDTaDTinnvuySDNb7XyrJWLyMOGQ4+Jvp7O2pjV17MgNhx6TN4x6ELmCdJhliAdZgnSY54gHWYJ5qZ/QW+8ae1pecfIzJvWnR79C3rzjkGX8N4EAAAAAMWjXAQU3mGHHZZ4ZuvWrRkk+a1WCi8HHnhg9PX1ZZAmHa0854j5+axbzQ5pGlzYFy86ZFXeMVL1okNWxcDC4vx3i85hniAdZgnSYZYgPeYJ0mGWYO5OOuiIWH1AcT4EbK5OOOB5cdLKw/OOQRfx3gQAAAAAxaNcBBTe8ccfn3hmy5YtGSSZ3f1ayT2fHH744VGpVBLPZfmsH3300dixY0fiuaI9azrHq45dF73lnrxjpKK33BOvOnZd3jHoYuYJ0mGWIB1mCdJjniAdZgnmplQqxVvWnR4LOmR+ns2Cck+8ed3pUSqV8o5Cl/HeBAAAAADFolwEFN6aNWsSz9x1110xMTGRQZpfuemmmxLPrF27NoMk6enp6YnVq1cnnmvl756WVu9VtGdN51i+aDhet/qUvGOk4nWrT4nli4bzjkEXM0+QDrME6TBLkB7zBOkwSzB3ByyuxiuP6dzSwO8euy4OWFzNOwZdyHsTAAAAABSLchFQeK0UR+r1etxyyy3tDxMRDzzwQGzfvj3xXCulqPmmlWedZblo06ZNiWcWLVoUhx9+eAZp4Nmds2ptHL7P8rxj7JUj9tk/zl2lpEf+zBOkwyxBOswSpMc8QTrMEszdq487MfYbXJx3jNTtN7g4Xn3sSXnHoIt5bwIAAACA4lAuAgrvhBNOiEqlknjuqquuyiBNxJVXXtnSuRe+8IVtTpK+U089NfHM1q1bY9u2bRmkae1Zn3zyyVEqlTJIA8+up1yOPzrl5dFb7sk7ypz0lnvi7ae8LMpl3zaSP/ME6TBLkA6zBOkxT5AOswRz17egN9687vS8Y6TuzetOj4ULFuQdgy7mvQkAAAAAisO/ggGF19fXF+vXr08898Mf/jCDNK3dZ9WqVbFy5coM0qTrpS99aUvnsnjWU1NTcc011ySee9nLXtb2LJDkwCVL43Wrk8t589F5J5waBy5ZmncM+A3zBOkwS5AOswTpMU+QDrMEc7du5WGxZsWhecdIzdoDD411Kw/LOwZ4bwIAAACAglAuAjrCWWedlXjmqquuirGxsbbmqNfrcemllyaeK2rhZcWKFXHMMccknvvud7/b9ixXXHFF1Gq1xHNFfdZ0nnOPWRsvPuTovGPMyosPOTrOWbU27xjwDOYJ0mGWIB1mCdJjniAdZgnm7s0nnh69PcXcsPJkvT09HbmJieLy3gQAAAAA859yEdARXvGKVySemZycjG9+85ttzXHVVVfFww8/nHiulbzzVSvZv/nNb8bk5GRbc3zlK19JPLN8+fJYs2ZNW3NAq8qlUrz9lJfF2gOL8emn6w48LN5+ysuiXCrlHQWewTxBOswSpMMsQXrME6TDLMHcLR9aEq8+9qS8Y+y1Vx97UiwbWpJ3DPgN700AAAAAMP8pFwEdYfXq1XHssccmnvviF7/Y1hxf+MIXEs/ss88+hd6m84Y3vCHxzK5du9pa5BofH4//+I//SDz3+te/Pkp+8MM8sqDcE+9af868/wHqugMPi3euPzsWlIv/Ka10LvME6TBLkA6zBOkxT5AOswRz98pj18XyAhdzlg8tiVceuy7vGPAM3psAAAAAYH5TLgI6xgUXXJB45tJLL40tW7a05f7bt2+PL33pS4nnfv/3fz96e3vbkiELJ510Uhx55JGJ5/7pn/6pbRk++9nPxo4dOxLPtfL/Ccjawp4F8acbzo0XH3J03lGe1YsPOTreveGcWNizIO8okMg8QTrMEqTDLEF6zBOkwyzB3CzsWRBvOfGMvGPM2VtPPMNcMW95bwIAAACA+Uu5COgYb3zjG6Onp/mniDUajfi7v/u7ttz/4x//eExOTiaee8tb3tKW+2eplb/D9ddfH1dccUXq956eno5/+Id/SDy3atWqOPnkk1O/P6RhQbkn/vjU34k3vGB99M6TTz/sLffEH6xZH3986u/4REYKxTxBOswSpMMsQXrME6TDLMHcvGDFIXHiysPzjjFrJ608PE5YcUjeMaAp700AAAAAMD+VGo1GI+8QAGk5//zz46tf/WrTM+VyOW688cZYu3Ztavf9xS9+EatWrYpardb03Itf/OK4+uqrU7tvXh5//PE4+OCDY2Jioum5tWvXxo033hjlcnpd1o997GPx3ve+N/Hc//pf/yv+83/+z6ndd77avn17LFu27Cl/9thjj8V+++2XUyJm66EdT8Snrv9+3P34ttwyHLHP/vH2U14WBy5ZmlsGSIN5gnSYJUiHWYL0mCdIh1mC2dk+vjPec/EXYnpmT95RWtLXsyA+9so3xb6Di/OOAi3z3gQAAADAfNPNv5erXAR0lJtuuinWrVuXeG7t2rVx3XXXxcKFC/f6no1GI84555z43ve+l3j2m9/8ZrzqVa/a63v+X29961vjc5/7XOK5yy+/PM4444zU7hsR8a53vSv++Z//OfHcxz72sfiLv/iLVO65devWWLt2bYyNjTU9d8ABB8S9994bfX19qdx3Puvmb2I6yUy9HpdsuSkuuu362F2fyey+veWeeN3qU+PcVWtSLQFCnswTpMMsQTrMEqTHPEE6zBLMzjfvuDG+euu1ecdoyfknvCheddxJeceAWfPeBAAAAMB80s2/l6tcBHScV7/61fGtb30r8dwf/dEfxb/+67/u9f0+/OEPx3/7b/8t8dyJJ54YP/nJT6JUKu31Pf+vPMtFDz74YBx99NGJ24t6e3vjRz/6Uaxfv36v7jc+Ph4bNmyIm2++OfHsJz7xiXjnO9+5V/crim7+JqYTbds1Gt/avCmuvW9LTLXxE1H7ehbEiw5ZFa86dl0sXzTctvtAnswTpMMsQTrMEqTHPEE6zBK0ZvfMnvirS74Uj+wazTtKUwcsrsZHzr4gFvT05B0F5sx7EwAAAADzQTf/Xq5yEdBx7r777jjuuONiamoq8ez73//++NCHPjTne1144YXxjne8I/FcqVSKa6+9Nk455ZQ53+vZ5Fkuioj40Ic+FB/4wAcSzy1ZsiR+8IMfxIknnjin+0xMTMQrX/nKuPzyyxPPHn/88XHzzTdHT5f8ELWbv4npZBPTU3HVvXfGZVtvi4d3jqT2uisWV+NlR66ODYceEwMLO3+zF0SYJ0iLWYJ0mCVIj3mCdJglSHb7I/fH317+jbxjNPW+l7wmjt//4LxjQCq8NwEAAACQp27+vVzlIqAjffCDH4y/+Zu/aens+eefH5/5zGdi0aJFLb/+1NRUvOc974l//ud/bun82972tvi3f/u3ll+/VXmXi6ampuL444+PrVu3Jp4dGBiICy+8MN7ylrfM6h533XVXnHfeeXH77bcnni2VSnHFFVfEaaedNqt7FFk3fxPTDRqNRmx57KHY+OA9cc8T2+K+Jx6b1Sc29i3ojUOq+8VhS5fHiSsPi1XLDkx1exoUiXmCdJglSIdZgvSYJ0iHWYLmPn71JXHDL5L/HTwPpxx8ZLxr/Tl5x4DU7e17UykijtpvhfcmAAAAAGalm38vV7kI6Eh79uyJ0047La677rqWzi9fvjz++3//7/GmN70pFi9e/JznarVafP3rX48PfvCDcd9997X02kcddVRs2rQphoaGWjo/G3mXiyIibrrppnjRi17U0qaoiIgzzjgj/vqv/zrOOOOMpj/Eue++++ITn/hEfPKTn4zp6emWXvt973tffPjDH27pbKfo5m9iulG9Xo+Hd43EvU88Fg+OPh5j01Oxe2ZP7KnPxIJyT/T2LIihhX2xcnifOHTpslixqBrlcjnv2DAvmSdIh1mCdJglSI95gnSYJXiqxyd2xV9c/IWY2rM77yhP0begN/7+lW+OpQPp//wB5punvzfd8diDcc/j257z/KK+/vj0a9+eYUIAAAAAOkE3/16uchHQsR544IFYs2ZNPP744y1/TaVSidNPPz3WrVsXK1eujEWLFsXY2Fg8+uijsWnTprjiiiti165ds3q96667Lk444YS5/BUSzYdyUUTEhRdeGO94xztm9TUHHXRQnH766bF69erYZ599ore3N0ZHR+PnP/953HDDDfGTn/wkZvMWtWHDhrj88sujp6dntvELrZu/iQEAAAAAyMq3N2+KL99ydd4xnuIP1qyPVx6zLu8YkIur7r0z/vW67zc98/nz/59YUO6unxsBAAAAsHe6+fdyF+QdAKBdDjrooLjkkkvirLPOarkQVKvV4nvf+15873vf2+v79/b2xkUXXdS2YtF88id/8idx//33x0c/+tGWv+aBBx6IL37xi6nc//jjj49vfOMbXVcsAgAAAAAgG2evekFcee/meGjHE3lHiYiIlUv2iVcc/YK8Y0BuhiuDiWd21CZin8FFGaQBAAAAgOIr5x0AoJ1OPvnkuPjii2NoaCjT+/b29saXv/zlOOecczK9b54+8pGPxLve9a7M77tq1aq47LLLYunSpZnfGwAAAACA7rCg3BN/eOKZecf4jT888QwbWehq1RbKRSO18QySAAAAAEBnUC4COt5pp50W1113XRx22GGZ3G/ZsmXxox/9KF772tdmcr/55OMf/3h8/OMfjwULslmMd84558T1118fy5cvz+R+AAAAAAB0r2OXr4wXPe/ovGPEiw85Oo5ZvjLvGJCrVjYXKRcBAAAAQOuUi4Cu8PznPz82btwYF1xwQVvvc/bZZ8emTZti/fr1bb3PfPaud70rfvSjH8XRR7fvB6yVSiU+9KEPxbe//e1YsmRJ2+4DAAAAAABPdsHaDVFZsDC3+1d6F8YFazbkdn+YLwZ7+6K3p/n2rtFJ5SIAAAAAaJVyEdA1qtVqfPGLX4zLL7881q1bl+prH3XUUXHRRRfFJZdcEitX+rTADRs2xG233RYf/vCHY+nSpam9brlcjte+9rVxxx13xPvf//4ol72NAQAAAACQnWplMF63+pTc7v+6409paWMLdLpSqRTD/c1nYWRCuQgAAAAAWuW3soGuc8YZZ8TGjRvjiiuuiPPOOy+Ghobm9Dr9/f1x7rnnxsUXXxxbtmyJ1772tSknLbaFCxfG+973vnjggQfiwgsvjJNOOilKpdKcXmvFihXx7ne/O372s5/FRRddFIceemjKaQEAAAAAoDUvP+qEOGh4n8zve/DwvvHyo07I/L4wX1UHmpeLbC4CAAAAgNaVGo1GI+8QAHmanp6OK6+8Mq655prYvHlzbNmyJX75y1/Grl27YmJiIvr7+2PRokWxdOnSOProo+PYY4+NF77whfHSl740BgYG8o5fKNu2bYtLL700br755ti8eXPcc889sWPHjti1a1fs2bMnhoaGYtGiRXHggQfGMcccE8cdd1y85CUviTVr1uQdfd7avn17LFu27Cl/9thjj8V+++2XUyIAAAAAgM635bGH4m9+cFGm9/zgy86Lo/dbkek9YT77p6u+Ez954OfPef2EA54Xf3nmf8ouEAAAAACF182/l7sg7wAAeVu4cGGcddZZcdZZZ+UdpeMtX7483vzmN8eb3/zmvKMAAAAAAMCcrVp2YJx26DFx5b13ZnK/0w47RrEInqZaGWp6fXRyIqMkAAAAAFB85bwDAAAAAAAAABTNG17w4hjoXdj2+wz09sUbXrC+7feBoqkODDa9PlIbyygJAAAAABSfchEAAAAAAADALC2pDMbvn/Citt/n9SecGkv6B9p+Hyia4f7m5aKdk7XYU5/JKA0AAAAAFJtyEQAAAAAAAMAcnHXE8XFIdb+2vf4h1WXx0iOOb9vrQ5ElbS6KiNgxOZFBEgAAAAAoPuUiAAAAAAAAgDkol8vxhyed2ZbXLkXE2046M8plP9KFZ1NN2FwUETEyMZ5BEgAAAAAoPv8SDQAAAAAAADBHR+57QJx5+HGpv+4Zhz8/jth3/9RfFzrFcAubi0YnlYsAAAAAoBXKRQAAAAAAAAB74fUnvDiGFvan9npDC/vj9Se8KLXXg0402NsXveWepmdGaspFAAAAANAK5SIAAAAAAACAvbC4vxKvf0F6ZaDzX/DiWNxfSe31oBOVSqUYrjTfXjSqXAQAAAAALVEuAgAAAAAAANhLZx52XBy2dPlev87h+yyPMw4/LoVE0PmqCeUim4sAAAAAoDXKRQAAAAAAAAB7qVwux9tOOjNKe/EapYj4w5POjHJpb14FuofNRQAAAACQDuUiAAAAAAAAgBQcts/yeOmRx8/56886cnUq24+gW1QrQ02v21wEAAAAAK1RLgIAAAAAAABIye+vflEs6qvM+usW91XivBNObUMi6FzVykDT6yO1sYySAAAAAECxKRcBAAAAAAAApGSorz/e8IIXz/rr3rBmfQwt7G9DIuhcwwmbi3ZN1mJPfSajNAAAAABQXMpFAAAAAAAAACk67bBj48h9D2j5/FH7HhAbDj2mjYmgMyVtLmpExI7JiWzCAAAAAECBKRcBAAAAAAAApKhcKsUfnnRmlEqlxLOlX58tt3AWeKpqwuaiiIjR2ngGSQAAAACg2JSLAAAAAAAAAFJ2SHW/ePmRqxPPvfzIE+J51f0ySASdZ7gymHhmRLkIAAAAABIpFwEAAAAAAAC0wetWnxpL+gee8/qS/oE4b/UpGSaCzjK4sC96yz1Nz9hcBAAAAADJlIsAAAAAAAAA2mBwYV/8wZr1z3n9gjUbYmBhX4aJoLOUSqXE7UU2FwEAAABAMuUiAAAAAAAAgDZZf8iqWLXswGf8+THLDowXH3J0Domgs1QTykU2FwEAAABAMuUiAAAAAAAAgDYplUrxhyeeEeVS6Td/Vi6V4g9PPDNKT/ozYG5sLgIAAACAvadcBAAAAAAAANBGBw3vG684+gW/+d9nH70mVg7vk18g6CA2FwEAAADA3lMuAgAAAAAAAGiz1x5/SlQrg1GtDMbvHf/CvONAx0gqF9lcBAAAAADJFuQdAAAAAAAAAKDTVXoXxgVrNkSpVIpK78K840DHGE4oF+2cnIiZej16yj57FQAAAACei3IRAAAAAAAAQAZOfd5ReUeAjpO0uagRETsmJ2LpwFA2gQAAAACggHw0DwAAAAAAAEAGSqVSlEqlvGNAR0naXBQRMVIbyyAJAAAAABSXchEAAAAAAAAAUEjVSvJGotHaRAZJAAAAAKC4lIsAAAAAAAAAgEIaXNgXveWepmdsLgIAAACA5pSLAAAAAAAAAIBCKpVKMVwZbHpmtDaeURoAAAAAKCblIgAAAAAAAACgsJLKRSPKRQAAAADQlHIRAAAAAAAAAFBYVZuLAAAAAGCvKBcBAAAAAAAAAIWVVC6yuQgAAAAAmlMuAgAAAAAAAAAKa1i5CAAAAAD2inIRAAAAAAAAAFBYSZuLdk5OxEy9nlEaAAAAACge5SIAAAAAAAAAoLCSNhc1ImLH5EQ2YQAAAACggJSLAAAAAAAAAIDCStpcFBExWhvPIAkAAAAAFJNyEQAAAAAAAABQWEmbiyIiRpSLAAAAAOA5KRcBAAAAAAAAAIU1tLA/FpR7mp6xuQgAAAAAnptyEQAAAAAAAABQWKVSKYYrA03PjNTGMkoDAAAAAMWjXAQAAAAAAAAAFFq1MtT0+khtIqMkAAAAAFA8ykUAAAAAAAAAQKFVK4NNr4/aXAQAAAAAz0m5CAAAAAAAAAAotOGEctFIbTyjJAAAAABQPMpFAAAAAAAAAEChJW8uUi4CAAAAgOeiXAQAAAAAAAAAFFrS5qIdkxMxU69nlAYAAAAAikW5CAAAAAAAAAAotKTNRY2I2Dk5kU0YAAAAACgY5SIAAAAAAAAAoNCSNhdFRIzUxjNIAgAAAADFo1wEAAAAAAAAABRa0uaiCOUiAAAAAHguykUAAAAAAAAAQKENLeyPBeWepmdGlYsAAAAA4FkpFwEAAAAAAAAAhVYqlWK4MtD0jM1FAAAAAPDslIsAAAAAAAAAgMKrVoaaXlcuAgAAAIBnp1wEAAAAAAAAABRe0uai0dpYRkkAAAAAoFiUiwAAAAAAAACAwkveXDSRURIAAAAAKBblIgAAAAAAAACg8GwuAgAAAIC5US4CAAAAAAAAAAovaXPRjqlazNTrGaUBAAAAgOJQLgIAAAAAAAAACm+4f7Dp9UajETsnJzJKAwAAAADFoVwEAAAAAAAAABRedaB5uSgiYmRyPIMkAAAAAFAsykUAAAAAAAAAQOElbS6KiBiZUC4CAAAAgKdTLgIAAAAAAAAACm9RX3/0lJv/GsSozUUAAAAA8AzKRQAAAAAAAABA4ZVKpahWmm8vsrkIAAAAAJ5JuQgAAAAAAAAA6AjD/QnloppyEQAAAAA8nXIRAAAAAAAAANARqgPNy0WjykUAAAAA8AzKRQAAAAAAAABAR7C5CAAAAABmT7kIAAAAAAAAAOgIiZuLJpWLAAAAAODplIsAAAAAAAAAgI6QtLlox+RE1Ov1jNIAAAAAQDEoFwEAAAAAAAAAHaFaGWp6vdFoxI6pWkZpAAAAAKAYlIsAAAAAAAAAgI5QrQwknhmpjWWQBAAAAACKQ7kIAAAAAAAAAOgIwwmbiyIiRmvjGSQBAAAAgOJQLgIAAAAAAAAAOsKivv7oKTf/VYgR5SIAAAAAeArlIgAAAAAAAACgI5RKpaj2DzY9Y3MRAAAAADyVchEAAAAAAAAA0DGGK83LRTYXAQAAAMBTKRcBAAAAAAAAAB2jmlQumlAuAgAAAIAnUy4CAAAAAAAAADpG0uai0UnlIgAAAAB4MuUiAAAAAAAAAKBjJG4uqikXAQAAAMCTKRcBAAAAAAAAAB0jaXPRjsmJqNfrGaUBAAAAgPlPuQgAAAAAAAAA6BhJm4sajUbsmKpllAYAAAAA5j/lIgAAAAAAAACgYySViyIiRmvjGSQBAAAAgGJQLgIAAAAAAAAAOsZwC+WikdpYBkkAAAAAoBiUiwAAAAAAAACAjjHUV4mecvNfhxitTWSUBgAAAADmP+UiAAAAAAAAAKBjlEulqPY3315kcxEAAAAA/JZyEQAAAAAAAADQUYYrSeWi8YySAAAAAMD8p1wEAAAAAAAAAHSUakK5aFS5CAAAAAB+Q7kIAAAAAAAAAOgoNhcBAAAAQOuUiwAAAAAAAACAjmJzEQAAAAC0TrkIAAAAAAAAAOgoSZuLRicnol6vZ5QGAAAAAOY35SIAAAAAAAAAoKMkbS5qNBqxc6qWURoAAAAAmN+UiwAAAAAAAACAjpK0uSgiYqQ2nkESAAAAAJj/lIsAAAAAAAAAgI6StLkoImJUuQgAAAAAIkK5CAAAAAAAAADoMEN9legpN/+VCJuLAAAAAOBXlIsAAAAAAAAAgI5SLpViuH+g6ZmR2lhGaQAAAABgflMuAgAAAAAAAAA6TrUy1PT6qM1FAAAAABARykUAAAAAAAAAQAcargw2vT6iXAQAAAAAEaFcBAAAAAAAAAB0oGpCucjmIgAAAAD4FeUiAAAAAAAAAKDj2FwEAAAAAK1RLgIAAAAAAAAAOk7S5qIdkxNRr9czSgMAAAAA85dyEQAAAAAAAADQcZI2F9Ubjdg5VcsoDQAAAADMX8pFAAAAAAAAAEDHSdpcFBExWhvPIAkAAAAAzG/KRQAAAAAAAABAx2mlXDSiXAQAAAAAykUAAAAAAAAAQOcZ6qtET6n5r0UoFwEAAACAchEAAAAAAAAA0IHKpVIMVwaanhlVLgIAAAAA5SIAAAAAAAAAoDMNVwabXh+pjWWUBAAAAADmL+UiAAAAAAAAAKAjVStDTa+P1iYySgIAAAAA85dyEQAAAAAAAADQkYYrA02v21wEAAAAAMpFAAAAAAAAAECHsrkIAAAAAJIpFwEAAAAAAAAAHSlpc9Ho5HjU6/WM0gAAAADA/KRcBAAAAAAAAAB0pKTNRfVGI3ZN1TJKAwAAAADzk3IRAAAAAAAAANCRqpXBxDMjtfEMkgAAAADA/KVcBAAAAAAAAAB0pGHlIgAAAABIpFwEAAAAAAAAAHSkRX2V6Ck1/9WIUeUiAAAAALqcchEAAAAAAAAA0JHKpVIsqQw0PWNzEQAAAADdTrkIAAAAAAAAAOhY1cpg0+vKRQAAAAB0O+UiAAAAAAAAAKBjDSeUi0aViwAAAADocspFAAAAAAAAAEDHsrkIAAAAAJpTLgIAAAAAAAAAOtZwv81FAAAAANCMchEAAAAAAAAA0LGqAwnlosnxqDcaGaUBAAAAgPlHuQgAAAAAAAAA6FhJm4vqjUbsmpzIKA0AAAAAzD/KRQAAAAAAAABAx6oODCWeGVEuAgAAAKCLKRcBAAAAAAAAAB2rWmm+uSgiYmRiLIMkAAAAADA/KRcBAAAAAAAAAB1rUV8lekrNfz1itDaeURoAAAAAmH+UiwAAAAAAAACAjlUulWJJZaDpmRHlIgAAAAC6mHIRAAAAAAAAANDRhvsHm15XLgIAAACgmykXAQAAAAAAAAAdrTrQvFw0OqlcBAAAAED3Ui4CAAAAAAAAADpa4uaiCeUiAAAAALqXchEAAAAAAAAA0NGqFZuLAAAAAOC5KBcBAAAAAAAAAB0tqVy0ozYR9UYjozQAAAAAML8oFwEAAAAAAAAAHW04oVw006jHrqlaRmkAAAAAYH5RLgIAAAAAAAAAOlp1YCjxzEhtPIMkAAAAADD/KBcBAAAAAAAAAB2t2j+QeGZkYiyDJAAAAAAw/ygXAQAAAAAAAAAdbVH/QJRLpaZnRidtLgIAAACgOykXAQAAAAAAAAAdrVwqxXD/YNMzIxPKRQAAAAB0J+UiAAAAAAAAAKDjDVeal4tsLgIAAACgWykXAQAAAAAAAAAdr5pQLhqpKRcBAAAA0J2UiwAAAAAAAACAjpe4uUi5CAAAAIAupVwEAAAAAAAAAHQ8m4sAAAAA4NkpFwEAAAAAAAAAHS+pXLSjNhH1RiOjNAAAAAAwfygXAQAAAAAAAAAdbzihXDTTqMeuqVpGaQAAAABg/lAuAgAAAAAAAAA6XtLmooiIkdp4BkkAAAAAYH5RLgIAAAAAAAAAOl4r5aJR5SIAAAAAupByEQAAAAAAAADQ8Rb1D0S5VGp6ZqQ2llEaAAAAAJg/lIsAAAAAAAAAgI5XLpViuL/59qLR2kRGaQAAAABg/lAuAgAAAAAAAAC6wnBloOl1m4sAAAAA6EbKRQAAAAAAAABAV6hWhppet7kIAAAAgG6kXAQAAAAAAAAAdAWbiwAAAADgmZSLAAAAAAAAAICukLy5aDyjJAAAAAAwfygXAQAAAAAAAABdoVoZbHp9tDYR9UYjozQAAAAAMD8oFwEAAAAAAAAAXWE4oVw006jHrqlaRmkAAAAAYH5QLgIAAAAAAAAAukLS5qKIiNHaeAZJAAAAAGD+UC4CAAAAAAAAALpC0uaiiIgR5SIAAAAAuoxyEQAAAAAAAADQFRb3VaJcKjU9Y3MRAAAAAN1GuQgAAAAAAAAA6ArlcjmW9A80PWNzEQAAAADdRrkIAAAAAAAAAOga1cpg0+s2FwEAAADQbZSLAAAAAAAAAICuMZxQLrK5CAAAAIBuo1wEAAAAAAAAAHQNm4sAAAAA4KmUiwAAAAAAAACArlGtDDW9PlIbyygJAAAAAMwPykUAAAAAAAAAQNcYTtxcNBH1RiOjNAAAAACQP+UiAAAAAAAAAKBrVBPKRTONeoxN1TJKAwAAAAD5Uy4CAAAAAAAAALpG0uaiiIiR2ngGSQAAAABgflAuAgAAAAAAAAC6RtLmooiIUeUiAAAAALqIchEAAAAAAAAA0DUW91WiVCo1PWNzEQAAAADdRLkIAAAAAAAAAOga5XI5hvsHmp6xuQgAAACAbqJcBAAAAAAAAAB0leHKYNPrNhcBAAAA0E2UiwAAAAAAAACArlJNKBfZXAQAAABAN1EuAgAAAAAAAAC6is1FAAAAAPBbykUAAAAAAAAAQFexuQgAAAAAfku5CAAAAAAAAADoKtXKUNPrI5PjUW80MkoDAAAAAPlSLgIAAAAAAAAAuspwZaDp9Zl6PcamahmlAQAAAIB8KRcBAAAAAAAAAF0laXNRRMRobTyDJAAAAACQP+UiAAAAAAAAAKCrDFcGE8+MKBcBAAAA0CWUiwAAAAAAAACArrKkrxKlUqnpGeUiAAAAALqFchEAAAAAAAAA0FXK5XIs6R9oemZUuQgAAACALqFcBAAAAAAAAAB0nWplsOl1m4sAAAAA6BbKRQAAAAAAAABA1xnub14usrkIAAAAgG6hXAQAAAAAAAAAdJ3qgM1FAAAAABChXAQAAAAAAAAAdKFqxeYiAAAAAIhQLgIAAAAAAAAAutBwQrloZHI8Go1GRmkAAAAAID/KRQAAAAAAAABA10naXDRTr8euqcmM0gAAAABAfpSLAAAAAAAAAICuk7S5KCJitDaWQRIAAAAAyJdyEQAAAAAAAADQdaqVocQzI7WJDJIAAAAAQL6UiwAAAAAAAACArrOkrxKlUqnpmRGbiwAAAADoAspFAAAAAAAAAEDXKZfLsaR/oOmZ0cnxjNIAAAAAQH6UiwAAAAAAAACArjTcP9j0+siEchEAAAAAnU+5CAAAAAAAAADoStVK83KRzUUAAAAAdAPlIgAAAAAAAACgK1UHbC4CAAAAAOUiAAAAAAAAAKArDfcnbC6qKRcBAAAA0PmUiwAAAAAAAACArpS4uWhyPBqNRkZpAAAAACAfykUAAAAAAAAAQFdK2lw0U6/HrqnJjNIAAAAAQD6UiwAAAAAAAACArpS0uSgiYnRyPIMkAAAAAJAf5SIAAAAAAAAAoCtVEzYXRUSMTCgXAQAAANDZlIsAAAAAAAAAgK60uH8gSqVS0zM2FwEAAADQ6ZSLAAAAAAAAAICu1FMux5K+StMzI7WxjNIAAAAAQD6UiwAAAAAAAACArjVcGWp6fbQ2kVESAAAAAMiHchEAAAAAAAAA0LWqlcGm120uAgAAAKDTKRcBAAAAAAAAAF1rOKlcNDGeURIAAAAAyIdyEQAAAAAAAADQtZI2F41OKhcBAAAA0NmUiwAAAAAAAACArpVYLqpNRKPRyCgNAAAAAGRPuQgAAAAAAAAA6FrDCeWiPfWZGJuezCgNAAAAAGRPuQgAAAAAAAAA6FpJm4siIkZq4xkkAQAAAIB8KBcBAAAAAAAAAF2rlXLRqHIRAAAAAB1MuQgAAAAAAAAA6FqL+weilHDG5iIAAAAAOplyEQAAAAAAAADQtXrK5VjSP9D0jM1FAAAAAHQy5SIAAAAAAAAAoKsNV4aaXre5CAAAAIBOplwEAAAAAAAAAHS1aqX55qKR2lhGSQAAAAAge8pFAAAAAAAAAEBXS9pcNFqbyCgJAAAAAGRPuQgAAAAAAAAA6Go2FwEAAADQzZSLAAAAAAAAAICuVm1hc1Gj0cgoDQAAAABkS7kIAAAAAAAAAOhqw5XBptf31GdibHoyozQAAAAAkC3lIgAAAAAAAACgq1UTykUREaO18QySAAAAAED2lIsAAAAAAAAAgK6WtLkoImJEuQgAAACADqVcBAAAAAAAAAB0tSX9A1FKOGNzEQAAAACdSrkIAAAAAAAAAOhqPeVyLO4faHrG5iIAAAAAOpVyEQAAAAAAAADQ9aqVwabXbS4CAAAAoFMpFwEAAAAAAAAAXS+pXGRzEQAAAACdSrkIAAAAAAAAAOh6w8pFAAAAAHQp5SIAAAAAAAAAoOslbS4aVS4CAAAAoEMpFwEAAAAAAAAAXa+VzUWNRiOjNAAAAACQHeUiAAAAAAAAAKDrVStDTa/vqc/E+PRURmkAAAAAIDvKRQAAAAAAAABA1xuuDCSeGamNZZAEAAAAALKlXAQAAAAAAAAAdL2kzUUREaO18QySAAAAAEC2lIsAAAAAAAAAgK63pH8gSglnRpSLAAAAAOhAykUAAAAAAAAAQNfrKZdjcf9A0zM2FwEAAADQiZSLAAAAAAAAAAAioloZbHrd5iIAAAAAOpFyEQAAAAAAAABARAwrFwEAAADQhZSLAAAAAAAAAAAieXPRqHIRAAAAAB1IuQgAAAAAAAAAIGwuAgAAAKA7KRcBAAAAAAAAAERrm4sajUZGaQAAAAAgG8pFAAAAAAAAAACRvLlod30mxqenMkoDAAAAANlQLgIAAAAAAAAAiOTNRRG/2l4EAAAAAJ1EuQgAAAAAAAAAIJI3F0VEjNTGMkgCAAAAANlRLgIAAAAAAAAAiIgl/QNRSjgzUpvIJAsAAAAAZEW5CAAAAAAAAAAgIhaUe2Jx/0DTM6M2FwEAAADQYZSLAAAAAAAAAAB+bbgy2PT6SG08oyQAAAAAkA3lIgAAAAAAAACAX6sqFwEAAADQZZSLAAAAAAAAAAB+LWlz0ahyEQAAAAAdRrkIAAAAAAAAAODXbC4CAAAAoNsoFwEAAAAAAAAA/Form4sajUZGaQAAAACg/ZSLAAAAAAAAAAB+LWlz0e76TIzvnsooDQAAAAC0n3IRAAAAAAAAAMCvDfc3LxdFRIxOjGeQBAAAAACyoVwEAAAAAAAAAPBr1YHkctHIpHIRAAAAAJ1DuQgAAAAAAAAA4NeW9A9EKeHMiM1FAAAAAHQQ5SIAAAAAAAAAgF9bUO6JRf2VpmdGa2MZpQEAAACA9lMuAgAAAAAAAAB4kmplqOn1kdpERkkAAAAAoP2UiwAAAAAAAAAAnmS4f6Dp9RGbiwAAAADoIMpFAAAAAAAAAABPUh1ovrlodHI8oyQAAAAA0H7KRQAAAAAAAAAATzLcP9j0+siEchEAAAAAnUO5CAAAAAAAAADgSaoDzctFo5Pj0Wg0MkoDAAAAAO2lXAQAAAAAAAAA8CRJm4t2z8zE+O6pjNIAAAAAQHspFwEAAAAAAAAAPEm10rxcFBExWhvPIAkAAAAAtJ9yEQAAAAAAAADAk1QHkstFI8pFAAAAAHQI5SIAAAAAAAAAgCdZ0j8QpYQzIxPKRQAAAAB0BuUiAAAAAAAAAIAnWVDuiUX9laZnRieViwAAAADoDMpFAAAAAAAAAABPU+0fbHrd5iIAAAAAOoVyEQAAAAAAAADA0wxXmpeLbC4CAAAAoFMoFwEAAAAAAAAAPE01oVw0UhvLKAkAAAAAtJdyEQAAAAAAAADA0wxXhppeH61NZJQEAAAAANpLuQgAAAAAAAAA4GmqlYGm10dqY9FoNDJKAwAAAADto1wEAAAAAAAAAPA0SZuLds/MxMTu6YzSAAAAAED7KBcBAAAAAAAAADxNtTKYeGakNpZBEgAAAABoL+UiAAAAAAAAAICnaaVcNFobzyAJAAAAALSXchEAAAAAAAAAwNMsqQwknhlRLgIAAACgAygXAQAAAAAAAAA8zYJyTyzuqzQ9o1wEAAAAQCdQLgIAAAAAAAAAeBbVymDT66PKRQAAAAB0AOUiAAAAAAAAAIBnMZxQLrK5CAAAAIBOoFwEAAAAAAAAAPAsbC4CAAAAoBsoFwEAAAAAAAAAPAubiwAAAADoBspFAAAAAAAAAADPopXNRY1GI6M0AAAAANAeykUAAAAAAAAAAM8iaXPR9MyemNg9nVEaAAAAAGgP5SIAAAAAAAAAgGdRrQwlnhmtjWeQBAAAAADaR7kIAAAAAAAAAOBZVBM2F0VEjNTGMkgCAAAAAO2jXAQAAAAAAAAA8CyW9A8knhmxuQgAAACAglMuAgAAAAAAAAB4Fgt6emJxX6XpmVHlIgAAAAAKTrkIAAAAAAAAAOA5DFcGm163uQgAAACAolMuAgAAAAAAAAB4DtWEcpHNRQAAAAAUnXIRAAAAAAAAAMBzsLkIAAAAgE6nXAQAAAAAAAAA8BxsLgIAAACg0ykXAQAAAAAAAAA8h1Y2FzUajYzSAAAAAED6lIsAAAAAAAAAAJ5D0uai6Zk9Uds9nVEaAAAAAEifchEAAAAAAAAAwHOoVoYSz4zUxjNIAgAAAADtoVwEAAAAAAAAAPAchisDiWdGamMZJAEAAACA9lAuAgAAAAAAAAB4DsP9g4lnRmsTGSQBAAAAgPZQLgIAAAAAAAAAeA4LenpiUV+l6RmbiwAAAAAoMuUiAAAAAAAAAIAmqpXm24tGa+MZJQEAAACA9CkXAQAAAAAAAAA0MZxQLhpRLgIAAACgwJSLAAAAAAAAAACasLkIAAAAgE6mXAQAAAAAAAAA0ITNRQAAAAB0MuUiAAAAAAAAAIAmWtlc1Gg0MkoDAAAAAOlSLgIAAAAAAAAAaCKpXDQ1sydqu6czSgMAAAAA6VIuAgAAAAAAAABoYjihXBQRMVIbzyAJAAAAAKRPuQgAAAAAAAAAoImkzUUREaPKRQAAAAAUlHIRAAAAAAAAAEATw/02FwEAAADQuZSLAAAAAAAAAACaWNDTE4v6Kk3PKBcBAAAAUFTKRQAAAAAAAAAACYYrA02vj9bGMkoCAAAAAOlSLgIAAAAAAAAASFCtDDW9PlKbyCgJAAAAAKRLuQgAAAAAAAAAIIHNRQAAAAB0KuUiAAAAAAAAAIAEyZuLxjNKAgAAAADpUi4CAAAAAAAAAEhQrQw2vT5aG49Go5FRGgAAAABIj3IRAAAAAAAAAECC4YRy0dTMnqjtns4oDQAAAACkR7kIAAAAAAAAACBB0uaiiIiR2ngGSQAAAAAgXcpFAAAAAAAAAAAJkjYXRUSMKhcBAAAAUEDKRQAAAAAAAAAACYb7BxLP2FwEAAAAQBEpFwEAAAAAAAAAJOjtWRBDff1NzygXAQAAAFBEykUAAAAAAAAAAC2oVgabXh9VLgIAAACggJSLAAAAAAAAAABaMNzfvFxkcxEAAAAARaRcBAAAAAAAAADQgupAwuaiSeUiAAAAAIpHuQgAAAAAAAAAoAWJm4smxjJKAgAAAADpUS4CAAAAAAAAAGhBtTLU9Pro5EQ0Go2M0gAAAABAOpSLAAAAAAAAAABaUB1ovrloas/uqO2ZzigNAAAAAKRDuQgAAAAAAAAAoAXD/c3LRRERIxPjGSQBAAAAgPQoFwEAAAAAAAAAtCBpc1FExOikchEAAAAAxaJcBAAAAAAAAADQguH+gcQzNhcBAAAAUDTKRQAAAAAAAAAALejtWRBDff1Nz9hcBAAAAEDRKBcBAAAAAAAAALSo2j/Y9LrNRQAAAAAUjXIRAAAAAAAAAECLhivNy0U2FwEAAABQNMpFAAAAAAAAAAAtqiaUi0ZqykUAAAAAFItyEQAAAAAAAABAixI3FykXAQAAAFAwykUAAAAAAAAAAC2qVoaaXh+pjUej0cgoDQAAAADsPeUiAAAAAAAAAIAWVSsDTa9P7dkdtT3TGaUBAAAAgL2nXAQAAAAAAAAA0KLhhM1FERGjtYkMkgAAAABAOpSLAAAAAAAAAABaVK0MJp4ZqY1lkAQAAAAA0qFcBAAAAAAAAADQouHKQOKZ0dp4BkkAAAAAIB3KRQAAAAAAAAAALertWRBDC/ubnhlRLgIAAACgQJSLAAAAAAAAAABmoVoZbHrd5iIAAAAAikS5CAAAAAAAAABgFoYTykU2FwEAAABQJMpFAAAAAAAAAACzYHMRAAAAAJ1EuQgAAAAAAAAAYBZsLgIAAACgkygXAQAAAAAAAADMQtLmIuUiAAAAAIpEuQgAAAAAAAAAYBaSykVTe3ZHbfd0RmkAAAAAYO8oFwEAAAAAAAAAzMJwQrkowvYiAAAAAIpDuQgAAAAAAAAAYBaqlaHEM6PKRQAAAAAUhHIRAAAAAAAAAMAsLKkMJJ4ZqY1lkAQAAAAA9p5yEQAAAAAAAADALCzsWRBDC/ubnhmtTWSUBgAAAAD2jnIRAAAAAAAAAMAsDVcGm163uQgAAACAolAuAgAAAAAAAACYpWpCuWi0Np5REgAAAADYO8pFAAAAAAAAAACzlFQuGlEuAgAAAKAglIsAAAAAAAAAAGZpWLkIAAAAgA6hXAQAAAAAAAAAMEtJm4tGlYsAAAAAKAjlIgAAAAAAAACAWUraXDS5Z3fUdk9nlAYAAAAA5k65CAAAAAAAAABglpI2F0XYXgQAAABAMSgXAQAAAAAAAADMUtLmooiIEeUiAAAAAApAuQgAAAAAAAAAYJZaKRfZXAQAAABAESgXAQAAAAAAAADM0sKeBTG4sK/pGZuLAAAAACgC5SIAAAAAAAAAgDmoVoaaXre5CAAAAIAiUC4CAAAAAAAAAJiDamWw6fWR2lhGSQAAAABg7pSLAAAAAAAAAADmYDixXGRzEQAAAADzn3IRAAAAAAAAAMAcJG0uGlUuAgAAAKAAlIsAAAAAAAAAAObA5iIAAAAAOoFyEQAAAAAAAADAHCRtLprcsztqu6czSgMAAAAAc6NcBAAAAAAAAAAwB0mbiyIiRm0vAgAAAGCeUy4CAAAAAAAAAJiDpM1FEcpFAAAAAMx/ykUAAAAAAAAAAHPQyuaiEeUiAAAAAOY55SIAAAAAAAAAgDlY2LMgBhf2NT2jXAQAAADAfKdcBAAAAAAAAAAwR0nbi0aViwAAAACY55SLAAAAAAAAAADmqJpQLrK5CAAAAID5TrkIAAAAAAAAAGCOqpWhptdtLgIAAABgvlMuAgAAAAAAAACYo+HKQNPrI7WxjJIAAAAAwNwoFwEAAAAAAAAAzFHy5qKJjJIAAAAAwNwoFwEAAAAAAAAAzNFwZbDp9dqe6ZjcPZ1RGgD+f/buNErOgkz89l2d7qSrO0sVEEggYZN9FURAFFTCMggSRkQwHoQEUWaYcXA5oCAj4gziAu4rSMIqiK8IsiibwCA7OGTY1wgJiyF0J3R3dZbuej/4D4aQrqfSXfVUVfd1nZMPk+emnrsYj54T+scNAADA2hMXAQAAAAAAAAAMUj4hLoqI6Ch0p7AJAAAAAAyOuAgAAAAAAAAAYJCSLhdFRHSKiwAAAACoY+IiAAAAAAAAAIBByre6XAQAAABAYxMXAQAAAAAAAAAM0ujm5mhrGVNyRlwEAAAAQD0TFwEAAAAAAAAADEG+rfT1os5ecREAAAAA9UtcBAAAAAAAAAAwBPls6bioo0dcBAAAAED9EhcBAAAAAAAAAAxBrjXhclFBXAQAAABA/RIXAQAAAAAAAAAMQb4t4XJRr7gIAAAAgPolLgIAAAAAAAAAGILEy0U94iIAAAAA6pe4CAAAAAAAAABgCPJtY0s+L6xYFr3Ll6W0DQAAAACsHXERAAAAAAAAAMAQ5FrbEmc6Cq4XAQAAAFCfxEUAAAAAAAAAAEOQdLkoIqKztyeFTQAAAABg7YmLAAAAAAAAAACGIN/anjjT0dOVwiYAAAAAsPbERQAAAAAAAAAAQzC6uTnaWsaUnOns7U5pGwAAAABYO+IiAAAAAAAAAIAhyreVvl7UURAXAQAAAFCfxEUAAAAAAAAAAEOUa02Ii3rERQAAAADUJ3ERAAAAAAAAAMAQ5bOl46LOXnERAAAAAPVJXAQAAAAAAAAAMERJcVFHQVwEAAAAQH0SFwEAAAAAAAAADFEu6XKRuAgAAACAOiUuAgAAAAAAAAAYoqTLRYXly6J3xfKUtgEAAACA8omLAAAAAAAAAACGKOlyUYTrRQAAAADUJ3ERAAAAAAAAAMAQJV0uiojoEBcBAAAAUIfERQAAAAAAAAAAQ+RyEQAAAACNSlwEAAAAAAAAADBEY5pboq1lTMmZjkJXStsAAAAAQPnERQAAAAAAAAAAFZBPuF7U4XIRAAAAAHVIXAQAAAAAAAAAUAG5hLioU1wEAAAAQB0SFwEAAAAAAAAAVIDLRQAAAAA0InERAAAAAAAAAEAFJMVFLhcBAAAAUI/ERQAAAAAAAAAAFZBzuQgAAACABiQuAgAAAAAAAACogKTLRYXly6J3xfKUtgEAAACA8oiLAAAAAAAAAAAqIOlyUUREp+tFAAAAANQZcREAAAAAAAAAQAUkXS6KEBcBAAAAUH/ERQAAAAAAAAAAFVDO5aIOcREAAAAAdUZcBAAAAAAAAABQAWOaW6KtZXTJmY5CV0rbAAAAAEB5xEUAAAAAAAAAABWSz44t+byz0JPSJgAAAABQHnERAAAAAAAAAECF5LJtJZ+7XAQAAABAvREXAQAAAAAAAABUSPLlou6UNgEAAACA8oiLAAAAAAAAAAAqJJdtL/m8Q1wEAAAAQJ0RFwEAAAAAAAAAVEg+IS5yuQgAAACAeiMuAgAAAAAAAACokKTLRT3Ll8XSFctT2gYAAAAAkomLAAAAAAAAAAAqJOlyUYTrRQAAAADUF3ERAAAAAAAAAECFJF0uiojoEBcBAAAAUEfERQAAAAAAAAAAFVJOXORyEQAAAAD1RFwEAAAAAAAAAFAhrc0t0dYyuuSMy0UAAAAA1JPmWi8AUGsvvvhi/PGPf4y5c+fGY489Fs8//3y88cYbsWTJkigWizFu3LgYN25cbLzxxrHddtvFjjvuGPvvv39sueWWtV697i1atCjuu+++eOSRR+Lxxx+P5557Ll5++eVYuHBhFAqFWLZsWYwZMyay2Wzk8/nYcMMNY+rUqbHDDjvEzjvvHHvttVfkcrlafw0AAAAAAABYK7lse/QsXzbgc3ERAAAAAPVEXASMSJ2dnXH++efHxRdfHHPnzi05u2jRoli0aFHMmzcv7rjjjjd/f8stt4wZM2bEv/zLv8QGG2xQ7ZUbwquvvhq33HJL3HrrrXHbbbfFs88+m/jXFAqFKBQK8frrr79tftSoUbHbbrvFoYceGkcffXRMnTq1WqsDAAAAAABAxeSz7fHSko4Bn3eKiwAAAACoI5lisVis9RIAaenq6oqvf/3r8eMf/zi6uyvzB/ajR4+OY445Js4666xYb731KvKZjeTpp5+O3/zmN3HNNdfEfffdF/39/VV5T1NTU3zoQx+K0047Lfbcc8+qvKMRLVy4MNZff/23/N7f/va3mDhxYo02AgAAAAAA4Md3/SH+PO/JAZ9vv8GUOG3a4SluBAAAAECSkfxzuU21XgAgLddcc01su+228a1vfatiYVFExLJly+K8886LrbfeOmbPnl2xz61nr776apxzzjmx2267xVZbbRWnnnpq3HPPPVULiyIi+vv749prr433vOc9cdhhh8ULL7xQtXcBAAAAAADAUOSzY0s+7yz0pLQJAAAAACQTFwHDXn9/f3zlK1+Jww47LObPn1+197z++usxa9as+PSnPx3Lli2r2ntq6dFHH43DDjsspkyZEl/84hfjwQcfrMkeV199dWy77bZxwQUX1OT9AAAAAAAAUEou21byeUehK6VNAAAAACCZuAgY1vr6+uKoo46K//7v/45isZjKO88777w44IADoqdn+P3bxv7nf/4nrr766lixYkWtV4menp447rjj4vjjj6+LfQAAAAAAAGClpMtFPcuXxdIVy1PaBgAAAABKExcBw1Z/f38ce+yxceWVV6b+7ttvvz3++Z//OZYuXZr6u0ea888/P4444ohhey0KAAAAAACAxpPLtifOdBa6U9gEAAAAAJI113oBgGo57bTT4pJLLlmrv2bLLbeM9773vbHDDjvEOuusE5lMJjo6OuLxxx+Pu+++Ox555JGyP+vGG2+M448/Pi666KK1XZ219Lvf/S5mzpwZl156aa1XAQAAAAAAgMiXERd1FLpjg3G56i8DAAAAAAnERcCwdMMNN8Q3v/nNsuenT58ep556auy+++4l5x555JH49re/HZdcckn09/cnfu7FF18c73//++O4444re5fhZoMNNog99tgj3v3ud8e2224bm266aUyZMiXa29sjm83G4sWL47XXXotXXnkl7r777rjtttvijjvuiJ6enrV6z2WXXRY77LBDfPnLX67SNwEAAAAAAIDyuFwEAAAAQCPJFIvFYq2XAKikRYsWxTbbbBOvvfZa4uw666wTF198cXzoQx9aq3fcc8898bGPfSxefPHFxNlsNhtz586NLbbYYq3eUY9+9rOfxb/8y78kzu22227x0Y9+NA488MB45zvfudbvef311+PHP/5x/PCHP4yFCxeW/de1tLTEAw88EDvttNNav7NRLVy4MNZff/23/N7f/va3mDhxYo02AgAAAAAAICLiuCt/GoXlywZ8fvSu+8RB2+yS4kYAAAAAlDKSfy63qdYLAFTaaaedVlZYNGXKlLjvvvvWOiyKiNhzzz3jgQceiO222y5xtlAoxOc+97m1fkejmTRpUpx++unx1FNPxf333x+nnHLKoMKiiL9HX6effno888wzceSRR5b91y1fvrys+AkAAAAAAACqLZ9wvcjlIgAAAADqhbgIGFb+8pe/xHnnnZc4N2HChLj55pvjHe94x6Dftf7668ctt9wSU6ZMSZy99tpr4/rrrx/0u+rZbrvtFpdffnm88MILceaZZ8aWW25Zsc8eP358XH755fGjH/0oMplMWX/NXXfdFTfccEPFdgAAAAAAAIDByCXERR3iIgAAAADqhLgIGFa+9rWvRX9/f+LceeedF1tvvfWQ3zdp0qS47LLLYtSoUYmzX/3qV4f8vnqy9957xx//+Me4//7748gjj4yWlpaqvevEE0+M73znO2XPf//736/aLgAAAAAAAFCOpMtF4iIAAAAA6oW4CBg2nnzyybjmmmsS56ZPnx5HHHFExd679957x2c+85nEuQceeCBuvfXWir23Vnbeeee4/vrr44477ogDDjggtfd+/vOfj09/+tNlzd58883x8ssvV3kjAAAAAAAAGFjS5aJOcREAAAAAdUJcBAwb5557bhSLxZIzzc3Na3UBp1xnnnlmjB8/PnHunHPOqfi703T44YfHQw89FAcddFBN3v+Nb3wj8vl84lxfX1/84Q9/SGEjAAAAAAAAWDOXiwAAAABoFOIiYFhYunRpXHHFFYlzhx9+eGyxxRYVf/+6664bn/rUpxLn/vjHP8arr75a8fenZeLEidHUVLv/6VhnnXXitNNOK2v2tttuq+4yAAAAAAAAUEKutXRc1LN8aSxbsSKlbQAAAABgYOIiYFi49tprY/HixYlzJ510UtV2+OxnP5sY3vT19cXll19etR1GghkzZkQmk0mce/jhh1PYBgAAAAAAANYs3zY2caaj1/UiAAAAAGpPXAQMC7/61a8SZ7bYYovYc889q7bDJptsEnvvvXfiXDm7MrDJkyfHrrvumjj37LPPprANAAAAAAAArFk+W/pyUURER09XCpsAAAAAQGniIqDh9fX1xc0335w4d+SRR1Z9l6OOOipx5v77749FixZVfZfhbI899kic6erqiq4u/zAGAAAAAACA2siVERd1FlwuAgAAAKD2xEVAw7vvvvti8eLFiXMHHXRQ1Xcp5x39/f1xyy23VH2X4WyDDTYoa6672z+MAQAAAAAAoDZam1si2zK65EyHuAgAAACAOiAuAhpeOaHOuHHjyrp2M1SbbLJJbLHFFolzN910U9V3Gc7KjYtWrFhR5U0AAAAAAABgYEnXi1wuAgAAAKAeiIuAhnf33Xcnzuyxxx7R3NycwjYRe++9d+LMvffem8Imw9fy5cvLmmtvL/0PawAAAAAAAKCa8glxkctFAAAAANQDcRHQ8P7yl78kzuy6664pbPJ373rXuxJnHn/88Vi6dGkK2wxPCxcuTJxpbm6OcePGpbANAAAAAAAArFmuVVwEAAAAQP0TFwEN7dVXX42XX345ca7e4qIVK1bE//3f/6WwzfBUzt+7zTbbLEaNGpXCNgAAAAAAALBm+bbScVFnr7gIAAAAgNoTFwENbe7cuWXNbbPNNlXe5B+23nrrsubK3Z23KhaLcc899yTObbvttilsAwAAAAAAAANLvFzUIy4CAAAAoPbERUBDe+6558qa22KLLaq8yT/k8/lYZ511EufK3Z23uueee8q6VrX33nunsA0AAAAAAAAMLJ8tHRf1LF8ay1asSGkbAAAAAFgzcRHQ0J5//vnEmUmTJkV7e+k/tK+0cmKmcnbn7ebMmVPW3LRp06q7CAAAAAAAACTIt41NnOnodb0IAAAAgNoSFwENbd68eYkzG264YfUXWc3kyZMTZ8RFa++1116Liy++OHFu6623jl122SWFjQAAAAAAAGBguda2xJmOnq4UNgEAAACAgYmLgIa2YMGCxJlJkyalsMnav3P+/PkpbDK8fP3rX49CoZA4d+yxx1Z/GQAAAAAAAEiQz7YnznT29qSwCQAAAAAMTFwENLRFixYlzmywwQYpbPJW5cRFr7/+egqbDB9PPPFE/PSnP02cGz9+fJxwwgkpbAQAAAAAAACltbaMjmzz6JIzLhcBAAAAUGviIqChlRMX5XK56i8yiHd2d3fH0qVLq7/MMNDX1xezZs2K5cuXJ87++7//e03+fw4AAAAAAABrkmsrfb2os7c7pU0AAAAAYM3ERUBD6+joSJwZN25cCpsM7p2uF5XnO9/5Ttx9992JcxtuuGF86UtfSmEjAAAAAAAAKE++tXRc1NEjLgIAAACgtsRFQMMqFAplXbKpRVw0fvz4suYWL15c5U0a31133RWnn356WbPf+ta3YuzYsVXeCAAAAAAAAMqXy7pcBAAAAEB9ExcBDWvZsmVlzWWz2Spv8natra1lzZX7HUaqhQsXxpFHHllWRHbIIYfEJz7xiRS2AgAAAAAAgPLlE+KijoK4CAAAAIDaaq71AgCDVW6YM2rUqCpv8nbNzeX916u4aGDLly+PI444IubPn584u+6668Z5552XwlaN4X3ve1/Z/xmkeh599NFarwAAAAAAANSBxMtF4iIAAAAAaszlIqBhlRvm1CKyKPed5VzkGalOOOGEuP3228ua/eUvfxmTJk2q8kYAAAAAAACw9pIuF3UvWxrLVqxIaRsAAAAAeDtnDYCGtaLMP2AXFzWeb37zm3HBBReUNfvFL34xpk+fXuWNGsudd94ZEydOrPUaAAAAAAAARHJcFBHR0dsdG4ydkMI2AAAAAPB2LhcBDavcgKevr6/Kmwz+nbUIn+rdpZdeGl/+8pfLmt17773jG9/4RpU3AgAAAAAAgMHLlREXdRa6U9gEAAAAANZMXAQ0rNGjR5c1V+6Fo0oq9yJRud9hpLj++utj5syZUSwWE2e32WabuOqqqwRaAAAAAAAA1LWyLheJiwAAAACoIXER0LBaWlrKmqtFXFTuO8VF/3DnnXfGRz/60bLCrI033jhuuummWHfddVPYDAAAAAAAAAavtWV0ZJtL/3NBl4sAAAAAqCVxEdCwxowZU9Zcb29vlTcZ/DvFRX/34IMPxsEHHxyFQiFxdv3114+bbroppkyZksJmAAAAAAAAMHS5bFvJ5x2FrpQ2AQAAAIC3a671AkBjef755+Pee++t6jva29vjwx/+cOJcNpuN5ubmxCtBb7zxRqVWK1u57xw/fnyVN6l/jz76aBx44IGxZMmSxNlcLhc33nhjbLXVVilsBgAAAAAAAJWRz46Nl9/oHPB5Z6EnvWUAAAAAYDXiImCt3H777TFz5syqvmOTTTYpKy6KiMjn87Fw4cKSM+VEK5VW7jvXWWedKm9S355++unYb7/9YtGiRYmz7e3tcf3118fOO++cwmYAAAAAAABQOS4XAQAAAFDPmmq9AMBQrLvuuokzixcvTmGTtX9nW1tbtLa2prBNfXr++edj3333jVdeeSVxtrW1Na655pp4z3vek8JmAAAAAAAAUFn57NiSz10uAgAAAKCWxEVAQysnLnr11VdT2OStyglmytl9uJo/f35MmzYt5s+fnzjb0tISV155Zey7774pbAYAAAAAAACVl8u2l3zuchEAAAAAtSQuAhraRhttlDhTTuhTaeW8s5zdh6NXXnkl9t1333j++ecTZ0eNGhWXXnppHHLIISlsBgAAAAAAANWRT4iLupctjWV9K1LaBgAAAADeSlwENLRNN900ceall16q/iKrefnllxNnNttssxQ2qS8LFy6MadOmxdNPP504m8lk4oILLogjjjgihc0AAAAAAACgepLiooiIzkJ3CpsAAAAAwNuJi4CGVk6g88orr0RPT08K2/zDM888kzgz0uKiRYsWxX777RePPfZYWfM/+clP4pOf/GSVtwIAAAAAAIDqy5URF3WIiwAAAACoEXER0NA233zzxJlisVhW7FMpnZ2dsWjRosS5cnYfLjo7O+OAAw6IuXPnljV/zjnnxAknnFDlrQAAAAAAACAd5cRFLhcBAAAAUCviImCtHHvssVEsFqv6a968eWXvs+OOO5Y198QTTwzyG6+9ct9V7u6NbsmSJXHggQfGQw89VNb8mWeeGZ///OervBUAAAAAAACkJ9syOlqbW0rOuFwEAAAAQK2Ii4CGNnny5Nhggw0S58oNWyqhnHc1NzfHTjvtlMI2tdXV1RUHHXRQ3HfffWXNf+lLX4rTTz+9ylsBAAAAAABA+vIJ14tcLgIAAACgVsRFQMPbddddE2fSjIsefPDBxJltttkmWltbU9imdnp6euLggw+Ou+66q6z5z372s/GNb3yjylsBAAAAAABAbeQS4iKXiwAAAACoFXER0PDe8573JM7cc889sWLFihS2ibjjjjsSZ/bYY48UNqmd3t7eOPTQQ8v6exERcfzxx8f3v//9Km8FAAAAAAAAteNyEQAAAAD1SlwENLxp06Ylzrzxxhtx3333VX2XF154IZ555pnEuf3337/qu9TKsmXL4p//+Z/jlltuKWv+6KOPjp/97GdV3goAAAAAAABqy+UiAAAAAOqVuAhoeLvvvnuMHz8+ce6GG26o+i7lvCOTyZQVRDWi5cuXxxFHHBF/+MMfypo/4ogjYvbs2dHU5H+OAAAAAAAAGN7y2bEln7tcBAAAAECt+GluoOE1NzeXFetcccUVVd/l8ssvT5zZbbfdYr311qv6Lmnr6+uLGTNmxDXXXFPW/Ic//OG49NJLY9SoUVXeDAAAAAAAAGovn3C5qGtZbyzrW5HSNgAAAADwD+IiYFj4+Mc/njjz9NNPx7333lu1HV544YW44447EufK2bXR9Pf3xyc/+cn4zW9+U9b8gQceGFdeeWW0tLRUeTMAAAAAAACoD7mEuCjC9SIAAAAAakNcBAwLH/7wh2P8+PGJc9/73veqtsMPfvCD6O/vLznT1NQURx11VNV2qIVisRif+tSn4rLLLitr/gMf+EBcddVVMWbMmCpvBgAAAAAAAPUj6XJRhLgIAAAAgNoQFwHDQmtra3zsYx9LnPvNb34TzzzzTMXfv2jRojjvvPMS5w444ICYPHlyxd9fSyeeeGLMnj27rNm99torfv/730c2m63yVgAAAAAAAFBfyrlc1CEuAgAAAKAGxEXAsPH5z38+MplMyZkVK1bEF7/4xYq/+z//8z9jyZIliXNf+MIXKv7uWvr85z8fP/3pT8ua3W233eKGG26IsWPHVnkrAAAAAAAAqD/ZltHR2txScsblIgAAAABqQVwEDBvbbrttHHLIIYlzV199dVx55ZUVe++dd94ZP//5zxPndt1119hvv/0q9t6IiHnz5kUmk0n89YEPfKCi742IOO200+K73/1uWbM777xz3HjjjTF+/PiK7wEAAAAAAACNIul6kctFAAAAANSCuAgYVr761a9GU1Pyf7Udf/zx8dRTTw35fa+88krMmDEj+vr6EmfPOOOMIb+vXvz3f/93nHXWWWXNbrfddnHTTTdFPp+v8lYAAAAAAABQ3/IJcZHLRQAAAADUgrgIGFbe9a53xaxZsxLnFi9eHNOmTYvnnntu0O9auHBh7LfffvHiiy8mzh500EHx4Q9/eNDvqiff+9734itf+UpZs1tuuWXccsstMXHixCpvBQAAAAAAAPXP5SIAAAAA6pG4CBh2zjrrrFh33XUT5+bPnx+777573HDDDWv9jnvvvTd22223ePTRRxNnW1tb4/vf//5av6Me/eIXv4jPfe5zZc1uuummceutt8akSZOqvBUAAAAAAAA0BpeLAAAAAKhH4iJg2Jk4cWLMmTMnMplM4uyiRYviQx/6UHzkIx+JBx54IHH+sccei5kzZ8Zee+0VL7zwQln7fP/7348tt9yyrNl6d9ZZZ5U9O2/evJg6dWpkMpma/TrjjDOq9zcDAAAAAAAA1lI+O7bkc5eLAAAAAKiF5lovAFANhxxySHzxi1+Mb3/722XNX3XVVXHVVVfFVlttFe973/ti++23j3XWWScymUx0dHTEE088EXfffXfMnTt3rfaYMWNGfPrTnx7MVwAAAAAAAACGmVy2reTzrmW9saxvRYwe5cc5AAAAAEiPP40Chq2zzz475s+fH7/61a/K/mueeuqpeOqppyry/mnTpsUFF1xQkc8CAAAAAAAAGl/S5aKIiMWFnpg4dnwK2wAAAADA3zXVegGAamlqaoqLLrooPvKRj6T+7ve9731x9dVXx5gxY1J/NwAAAAAAAFCfctn2xJmOQlcKmwAAAADAP4iLgGGtubk5rrzyyjjllFNSe+fMmTPj5ptvjvb25H8wAAAAAAAAAIwc+TLios5CdwqbAAAAAMA/iIuAYa+pqSnOPvvsuOqqq2LDDTes2nvy+Xycd955ccEFF7hYBAAAAAAAALxNtmV0jGluKTnTIS4CAAAAIGXiImDEOOyww+KJJ56IL37xixW9KjR69Og47rjj4sknn4xPfepTFftcAAAAAAAAYPhJul4kLgIAAAAgbeIiYEQZN25cfPvb344XX3wxzj777Nh+++0H/VnveMc74itf+UrMmzcvzj///Jg4cWIFNwUAAAAAAACGo1xCXNQpLgIAAAAgZc21XgCgFvL5fJxyyilxyimnxF//+te48cYb4+GHH47HHnss5s2bF0uWLIk33ngjisVijBs3LsaNGxdTp06N7bbbLnbcccfYb7/9Yptttqn114hNN900isViau+bN29eau8CAAAAAACA4cjlIgAAAADqjbgIGPE22WSTOP7442u9BgAAAAAAADACJMVFLhcBAAAAkLamWi8AAAAAAAAAADBS5FwuAgAAAKDOiIsAAAAAAAAAAFKSdLmoa1lvLO9bkdI2AAAAACAuAgAAAAAAAABITdLlooiIzkJPCpsAAAAAwN+JiwAAAAAAAAAAUpLPjk2c6Sh0p7AJAAAAAPyduAgAAAAAAAAAICW5bFviTGehK4VNAAAAAODvxEUAAAAAAAAAACnJNo+OMc0tJWc6Cj0pbQMAAAAA4iIAAAAAAAAAgNRkMpnItZa+XtThchEAAAAAKRIXAQAAAAAAAACkKN82tuTzzt7ulDYBAAAAAHERAAAAAAAAAECq8tn2ks87esRFAAAAAKRHXAQAAAAAAAAAkKJca+m4qLMgLgIAAAAgPeIiAAAAAAAAAIAU5dsSLhf1iosAAAAASI+4CAAAAAAAAAAgRUmXi7qW9sbyvhUpbQMAAADASCcuAgAAAAAAAABIUdLlooiIzt6eFDYBAAAAAHERAAAAAAAAAECqki4XRUR09HSnsAkAAAAAiIsAAAAAAAAAAFJV3uUicREAAAAA6RAXAQAAAAAAAACkKNs8OsaMai4543IRAAAAAGkRFwEAAAAAAAAApCiTyUQuW/p6kctFAAAAAKRFXAQAAAAAAAAAkLJ8QlzUUehKaRMAAAAARjpxEQAAAAAAAABAynLZsSWfdxZ6UtoEAAAAgJFOXAQAAAAAAAAAkDKXiwAAAACoF+IiAAAAAAAAAICU5RLjou6UNgEAAABgpBMXAQAAAAAAAACkLOlyUdfS3ljetyKlbQAAAAAYycRFAAAAAAAAAAApS4qLIiI6e3tS2AQAAACAkU5cBAAAAAAAAACQslw5cVGhO4VNAAAAABjpxEUAAAAAAAAAACkr53JRh7gIAAAAgBSIiwAAAAAAAAAAUpZtGR1jRjWXnHG5CAAAAIA0iIsAAAAAAAAAAFKWyWQil3C9yOUiAAAAANIgLgIAAAAAAAAAqIF8QlzkchEAAAAAaRAXAQAAAAAAAADUQC47tuRzl4sAAAAASIO4CAAAAAAAAACgBvLZtpLPOwpdKW0CAAAAwEgmLgIAAAAAAAAAqIGky0WdhZ6UNgEAAABgJBMXAQAAAAAAAADUQD7bXvL5G0sLsaKvL6VtAAAAABipxEUAAAAAAAAAADWQFBdFRHT2dqewCQAAAAAjmbgIAAAAAAAAAKAGcmXERR0FcREAAAAA1SUuAgAAAAAAAACogbIuF4mLAAAAAKgycREAAAAAAAAAQA1kW0bH6FHNJWdcLgIAAACg2sRFAAAAAAAAAAA1kMlkEq8XuVwEAAAAQLWJiwAAAAAAAAAAaiQpLnK5CAAAAIBqExcBAAAAAAAAANRITlwEAAAAQI2JiwAAAAAAAAAAaiTpclGnuAgAAACAKhMXAQAAAAAAAADUiMtFAAAAANSauAgAAAAAAAAAoEby2bEln7+xtBAr+vpS2gYAAACAkUhcBAAAAAAAAABQI7lsW+JMZ6/rRQAAAABUj7gIAAAAAAAAAKBGki4XRUR0FnpS2AQAAACAkUpcBAAAAAAAAABQI7lse+JMR6ErhU0AAAAAGKnERQAAAAAAAAAANdLWMjpGj2ouOdNZ6E5pGwAAAABGInERAAAAAAAAAECNZDKZyCdcL+oQFwEAAABQReIiAAAAAAAAAIAayomLAAAAAKghcREAAAAAAAAAQA0lXS7qFBcBAAAAUEXiIgAAAAAAAACAGnK5CAAAAIBaEhcBAAAAAAAAANSQy0UAAAAA1JK4CAAAAAAAAACghpIuFy1ZWogVfX0pbQMAAADASCMuAgAAAAAAAACooaTLRRERi3t7UtgEAAAAgJFIXAQAAAAAAAAAUENJl4siIjoK3SlsAgAAAMBIJC4CAAAAAAAAAKihfHZs4oy4CAAAAIBqERcBAAAAAAAAANRQW8voGD2queRMZ6ErpW0AAAAAGGnERQAAAAAAAAAANZTJZCKXbS8543IRAAAAANUiLgIAAAAAAAAAqLF8QlzUKS4CAAAAoErERQAAAAAAAAAANeZyEQAAAAC1Ii4CAAAAAAAAAKgxl4sAAAAAqBVxEQAAAAAAAABAjblcBAAAAECtiIsAAAAAAAAAAGos6XLRkqWFWNHfl9I2AAAAAIwk4iIAAAAAAAAAgBpLulwUEbG40JPCJgAAAACMNOIiAAAAAAAAAIAaS7pcFBHRUehOYRMAAAAARhpxEQAAAAAAAABAjZVzuUhcBAAAAEA1iIsAAAAAAAAAAGqsvWVMtIwaVXKms1dcBAAAAEDliYsAAAAAAAAAAGosk8lEPju25ExHj7gIAAAAgMoTFwEAAAAAAAAA1IFctq3k885CV0qbAAAAADCSiIsAAAAAAAAAAOpA4uWigstFAAAAAFSeuAgAAAAAAAAAoA7kWttLPu8UFwEAAABQBeIiAAAAAAAAAIA6kG8rHRd19IqLAAAAAKg8cREAAAAAAAAAQB1Iuly0pLcQK/r7UtoGAAAAgJFCXAQAAAAAAAAAUAeSLhdFRCzu7UlhEwAAAABGEnERAAAAAAAAAEAdyCdcLoqI6OjpTmETAAAAAEYScREAAAAAAAAAQB3IlXG5qLNXXAQAAABAZYmLAAAAAAAAAADqQHvLmGgZNarkTEdBXAQAAABAZYmLAAAAAAAAAADqQCaTiVxr6etFHT3iIgAAAAAqS1wEAAAAAAAAAFAn8m2l46LOXnERAAAAAJUlLgIAAAAAAAAAqBPJl4u6UtoEAAAAgJFCXAQAAAAAAAAAUCfy2bEln3f29qS0CQAAAAAjhbgIAAAAAAAAAKBO5LNtJZ93FFwuAgAAAKCyxEUAAAAAAAAAAHUil3C56I3eQqzo70tpGwAAAABGAnERAAAAAAAAAECdSLpcVIyIxb096SwDAAAAwIggLgIAAAAAAAAAqBP5hMtFERGdhe4UNgEAAABgpBAXAQAAAAAAAADUiVxbe+JMh7gIAAAAgAoSFwEAAAAAAAAA1In2ljHR0jSq5Iy4CAAAAIBKEhcBAAAAAAAAANSJTCYTuWzp60Wd4iIAAAAAKkhcBAAAAAAAAABQR/IJcZHLRQAAAABUkrgIAAAAAAAAAKCOuFwEAAAAQJrERQAAAAAAAAAAdcTlIgAAAADSJC4CAAAAAAAAAKgjSXGRy0UAAAAAVJK4CAAAAAAAAACgjuQS4qIlvT3R19+f0jYAAAAADHfiIgAAAAAAAACAOpJ0uagYEYt7e9JZBgAAAIBhT1wEAAAAAAAAAFBH8tmxiTMdha4UNgEAAABgJBAXAQAAAAAAAADUkVzC5aKIiI5CdwqbAAAAADASiIsAAAAAAAAAAOpI++gx0dI0quRMp7gIAAAAgAoRFwEAAAAAAAAA1JFMJpN4vcjlIgAAAAAqRVwEAAAAAAAAAFBn8glxkctFAAAAAFSKuAgAAAAAAAAAoM64XAQAAABAWsRFAAAAAAAAAAB1xuUiAAAAANIiLgIAAAAAAAAAqDMuFwEAAACQFnERAAAAAAAAAECdSbpctKS3J/r6+1PaBgAAAIDhTFwEAAAAAAAAAFBnkuKiYkQs7u1JZxkAAAAAhjVxEQAAAAAAAABAncklxEURER2FrhQ2AQAAAGC4ExcBAAAAAAAAANSZfHZs4kxnweUiAAAAAIZOXAQAAAAAAAAAUGfaR4+JlqZRJWdcLgIAAACgEsRFAAAAAAAAAAB1JpPJRC7bXnKms9Cd0jYAAAAADGfiIgAAAAAAAACAOpQUF3WIiwAAAACoAHERAAAAAAAAAEAdyrtcBAAAAEAKxEUAAAAAAAAAAHXI5SIAAAAA0iAuAgAAAAAAAACoQy4XAQAAAJAGcREAAAAAAAAAQB1Kuly0uLcn+vr7U9oGAAAAgOFKXAQAAAAAAAAAUIeSLhcVI2JJb086ywAAAAAwbImLAAAAAAAAAADqUFJcFBHRUehOYRMAAAAAhjNxEQAAAAAAAABAHcqJiwAAAABIgbgIAAAAAAAAAKAOjR3dGs1No0rOdIqLAAAAABgicREAAAAAAAAAQB3KZDKRy7aVnOkodKW0DQAAAADDlbgIAAAAAAAAAKBO5bNjSz7vKPSktAkAAAAAw5W4CAAAAAAAAACgTiVdLup0uQgAAACAIRIXAQAAAAAAAADUKZeLAAAAAKg2cREAAAAAAAAAQJ1yuQgAAACAahMXAQAAAAAAAADUqaTLRYuXFqKvvz+lbQAAAAAYjsRFAAAAAAAAAAB1Kp9tL/m8WCzGkt6elLYBAAAAYDgSFwEAAAAAAAAA1KlcQlwUEdFR6E5hEwAAAACGK3ERAAAAAAAAAECdSrpcFCEuAgAAAGBoxEUAAAAAAAAAAHVq7OjWaG4aVXKmU1wEAAAAwBCIiwAAAAAAAAAA6lQmk4lctq3kjMtFAAAAAAyFuAgAAAAAAAAAoI7lWttLPhcXAQAAADAU4iIAAAAAAAAAgDqWbysdF3WKiwAAAAAYAnERAAAAAAAAAEAdc7kIAAAAgGoSFwEAAAAAAAAA1LHEy0W94iIAAAAABk9cBAAAAAAAAABQx/LZsSWfL+7tib7+/pS2AQAAAGC4ERcBAAAAAAAAANSxXGvpy0XFYjGW9PaktA0AAAAAw424CAAAAAAAAACgjuXbSsdFEREdvd0pbAIAAADAcCQuAgAAAAAAAACoY0mXiyIiOnrERQAAAAAMjrgIAAAAAAAAAKCOjRvTGqOaSv+IR6fLRQAAAAAMkrgIAAAAAAAAAKCOZTKZyCdcL3K5CAAAAIDBEhcBAAAAAAAAANS5XLZ0XORyEQAAAACDJS4CAAAAAAAAAKhz+YS4yOUiAAAAAAZLXAQAAAAAAAAAUOdcLgIAAACgWsRFAAAAAAAAAAB1Lt+WcLmoIC4CAAAAYHDERQAAAAAAAAAAdS7XWjouWtzbE/39/SltAwAAAMBwIi4CAAAAAAAAAKhz+ezYks+LxWIsXlpIaRsAAAAAhhNxEQAAAAAAAABAnctn2xJnOgpdKWwCAAAAwHAjLgIAAAAAAAAAqHO5hMtFERGdhe4UNgEAAABguBEXAQAAAAAAAADUuXFjWmNUU+kf8+gQFwEAAAAwCOIiAAAAAAAAAIA6l8lkIt/aXnLG5SIAAAAABkNcBAAAAAAAAADQAHLZ0nGRy0UAAAAADIa4CAAAAAAAAACgAeQT4iKXiwAAAAAYDHERAAAAAAAAAEADcLkIAAAAgGoQFwEAAAAAAAAANICky0XiIgAAAAAGQ1wEAAAAAAAAANAAki4XLe7tif7+/pS2AQAAAGC4EBcBAAAAAAAAADSApMtFxWIxFi8tpLQNAAAAAMOFuAgAAAAAAAAAoAEkxUUREZ2F7hQ2AQAAAGA4ERcBAAAAAAAAADSAXBlxUUehK4VNAAAAABhOxEUAAAAAAAAAAA1g7JhsjGoq/aMenYWelLYBAAAAYLgQFwEAAAAAAAAANICmTCZyrW0lZ1wuAgAAAGBtiYsAAAAAAAAAABpEPju25PPOQndKmwAAAAAwXIiLAAAAAAAAAAAaRC7bXvJ5h7gIAAAAgLUkLgIAAAAAAAAAaBD5hLjI5SIAAAAA1pa4CAAAAAAAAACgQSTFRS4XAQAAALC2xEUAAAAAAAAAAA0il3S5qLcn+vv7U9oGAAAAgOFAXAQAAAAAAAAA0CCSLhcVi8VYsrSQ0jYAAAAADAfiIgAAAAAAAACABpF0uSgioqPQncImAAAAAAwX4iIAAAAAAAAAgAaRdLkoIqJTXAQAAADAWhAXAQAAAAAAAAA0iLFjsjEqU/rHPVwuAgAAAGBtiIsAAAAAAAAAABpEUyYTuWxbyRmXiwAAAABYG+IiAAAAAAAAAIAGksu2l3zeUehKaRMAAAAAhgNxEQAAAAAAAABAA8lnx5Z83lnoSWkTAAAAAIYDcREAAAAAAAAAQAPJu1wEAAAAQAWJiwAAAAAAAAAAGkguMS7qTmkTAAAAAIYDcREAAAAAAAAAQANJuly0uLcn+vv7U9oGAAAAgEYnLgIAAAAAAAAAaCBJl4v6i8VYsrSQ0jYAAAAANDpxEQAAAAAAAABAA0m6XBQR0VnoTmETAAAAAIYDcREAAAAAAAAAQANJulwUEdEhLgIAAACgTOIiAAAAAAAAAIAGMm5MNkZlSv/Ih8tFAAAAAJRLXAQAAAAAAAAA0ECaMpmYkG0rOeNyEQAAAADlEhcBAAAAAAAAADSYfLa95HNxEQAAAADlEhcBAAAAAAAAADSYfHZsyeed4iIAAAAAyiQuAgAAAAAAAABoMLlsW8nnHYWulDYBAAAAoNGJiwAAAAAAAAAAGkzy5aKelDYBAAAAoNGJiwAAAAAAAAAAGkzS5aLO3u7o7+9PaRsAAAAAGpm4CAAAAAAAAACgwSRdLuovFuONpYWUtgEAAACgkYmLAAAAAAAAAAAaTC7bnjjTUehOYRMAAAAAGp24CAAAAAAAAACgweTFRQAAAABUiLgIAAAAAAAAAKDBjBuTjVGZ0j/20SkuAgAAAKAM4iIAAAAAAAAAgAbTlMnEhGxbyRmXiwAAAAAoh7gIAAAAAAAAAKAB5bPtJZ+LiwAAAAAoh7gIAAAAAAAAAKAB5RLiok5xEQAAAABlEBcBAAAAAAAAADQgl4sAAAAAqARxEQAAAAAAAABAA8q1ulwEAAAAwNCJiwAAAAAAAAAAGlC+LSEu6u2O/mIxpW0AAAAAaFTNtV6A8vT29saCBQvitddei8WLF0dnZ2e88cYbsWzZsli2bFksX748Ro0aFaNHj46WlpZoa2uLCRMmRC6Xi3w+H5MnT45111231l8DAAAAAAAAAKiQpMtF/cVivNHbExOypecAAAAAGNnERXWkq6srHn744Xjsscfi6aefjqeffjqeffbZWLBgQXR2dg7580ePHh2TJ0+OTTfdNLbYYovYcsstY6uttoqdd945Nt100yF/PgAAAAAAAACQnnzb2MSZDnERAAAAAAnERTWyfPnyeOihh+Kuu+6Ku+++Ox566KGYN29eFFc7R776/z0US5cujXnz5sVf//rXuP3229/ybPz48bHTTjvFu9/97thrr71ir732ikmTJlXs3QAAAAAAAABAZeVb2xJnOnq6YtP8xBS2AQAAAKBRiYtS9MADD8TNN98cN910U9x9992xdOnSN5+ViogymUxF91jTuxYvXhx33nln3HnnnfHd7343IiI222yzmDZtWuy3334xbdq0WGeddSq6BwAAAAAAAAAweONa26Ipk4n+Ej9z0NnbneJGAAAAADQicVEV9fT0xB//+Me45ppr4rrrrotFixa9+Wz1wCcpIKrEBaOV7xjoXau/47nnnovnn38+zj///MhkMrH77rvH9OnT49BDD41tt912yPsAAAAAAAAAAIPXlMlELtser/d0DTjT0SMuAgAAAKA0cVGFLVu2LK699tq47LLL4vrrr3/zOlG5MVElIqKBJF1HWtNOK/+aYrEY9957b9x7771x6qmnxpZbbhkzZsyIo446Krbaaquq7QwAAAAAAAAADCzXmhAXFcRFAAAAAJTWVOsFhou77rorjjvuuFh//fXjiCOOiKuuuip6e3ujWCxGsVh8M95ZNeJZ+WzVX7Uy0C6r7rzqs6eeeiq+9rWvxbbbbhvvete74kc/+lF0dHTUbH8AAAAAAAAAGInybe0ln3f2iosAAAAAKE1cNAQdHR3xne98J7bbbrvYe++9Y86cObFkyZI1BkURbw946l2p0GjV2Ogvf/lL/Md//EdsuOGG8fGPfzxuvfXWGm8OAAAAAAAAACNDrrV0XNTRIy4CAAAAoDRx0SDMnTs3jj/++JgyZUqccsop8cQTT5QVFDWyUleNVj5funRp/PrXv479998/dthhh/j5z38ePT09tVwbAAAAAAAAAIa1fNblIgAAAACGRly0Fv7whz/EvvvuG7vssktccMEFUSgUhnVQVMqq33FN14wee+yx+Nd//dfYaKON4tRTT41XX3211isDAAAAAAAAwLCTFBctLvRE/zD++QUAAAAAhk5clKBYLMZll10W73znO+Pggw+O22+//W1Rzcq5agRFq4Y7lfpVaaWuGS1evDi++c1vxmabbRaf+cxn4plnnqn4+wEAAAAAAABgpMolxEV9xf54Y2khpW0AAAAAaETiogEUi8W49NJLY9ttt42jjz465s6dWzIqGopyQqBV46Wh/Ep631Dio1LXjHp7e+P888+P7bbbLmbOnBnPPvvskP6eAQAAAAAAAADJl4siIjoK3SlsAgAAAECjaq71AvXoiiuuiDPOOCOeeuqpt4RDqwZFgzVQvDPQZ2az2dhoo43e/DVu3LjIZrNr/LV8+fLo6emJQqHwtl+vvvpqzJ8/PxYsWBCLFi0quduadlzb7zzQJaMVK1bERRddFJdeemkcffTRccYZZ8TUqVPX6rMBAAAAAAAAgL8rJy7qLHRH5CemsA0AAAAAjUhctIpbb701TjnllHjooYfeEsesNJioqJxQZ/z48bHjjjvGTjvtFDvttFNssskmsdFGG8WUKVMin8+v9TuTLF26NBYsWBALFiyI+fPnx+OPPx5z586NuXPnxl//+te37bemK0rlKhUZzZkzJ371q1/FiSeeGKeeempVvisAAAAAAAAADGfjWtuiKZOJ/hL/LL+j0JXiRgAAAAA0GnFRRDz66KPxhS98IW666aaI+Hv8MtiYJikmWmeddeL9739/7Lrrrm+JidI0ZsyY2HzzzWPzzTd/27M33ngj/u///u/N2OjOO++MRx99dI2R0Erl/P0ZKDLq7e2Nc889N375y1/GaaedFv/xH/8Rzc3+YwkAAAAAAAAA5WjKZCLX2h6vlwiIOgs9KW4EAAAAQKMZ0RVHR0dHnH766fGLX/wi+vr63natqNyoqFRsk8vlYp999okPfOAD8cEPfjB22mmnNQZI9WLcuHGx1157xV577fXm7y1atChuu+22uO222+JPf/pTPPbYY28+W9urRgNFRp2dnXHyySfHz3/+8zj33HPjkEMOqeTXAgAAAAAAAIBhK5ctHRe5XAQAAABAKSMyLioWi/HTn/40/vM//zM6OjoqEhWt+hl77LFHTJ8+PQ444IDYZZdd6jomKse6664bhx9+eBx++OEREbFw4cL405/+FNdee21cf/318frrr0fE2oVGA0VGzzzzTEyfPj3233//+NGPfhRbbLFFtb4WAAAAAAAAAAwL+Wx7yecdhe6UNgEAAACgEY24uOjBBx+ME044IR566KFBRUVrimeampriAx/4QBx55JFx6KGHxqRJk6qwef2YOHFifOxjH4uPfexj0d/fH//zP/8Tv/3tb+PKK6+MV155JSLKD40GioxuvPHG2HHHHeOUU06JU089NUaPHl3lbwUAAAAAAAAAjSmXEBd1iosAAAAAKKGp1guk6d/+7d9izz33fDMsWj1oKWX12WKxGO9+97vje9/7XsyfPz9uueWW+PSnPz3sw6LVNTU1xfvf//74/ve/HwsWLIibb745jjvuuBg3btybf58i3h4brW712YiIpUuXxte//vXYcccd4/7776/+lwEAAAAAAACABuRyEQAAAABDMaLiop/85CfR39//ZlgU8daoZXUrg5hMJvPm3HrrrRcnnXRSzJ07N+6999747Gc/O+KCooFkMpnYd99947zzzotXXnklLrzwwvjgBz8YEWu+ULQmK/8+r/r3/Zlnnokbbrghle8AAAAAAAAAAI0mKS5aXOiJ/oR/6SoAAAAAI9eIiotWWjUWGuj56vHRXnvtFZdeemnMnz8/zj333Nhhhx3SXLnhtLa2xtFHHx233HJLPPnkk3HSSSfFhAkT1ioyAgAAAAAAAACS5RLior5if7yxtJDSNgAAAAA0mhEZF5UbFbW0tMTMmTPjf//3f+POO++Mj3/849HS0pLmqsPCFltsEeeee2689NJL8Ytf/CK23Xbbt10oAgAAAAAAAAAGJ+lyUUREZ6E7hU0AAAAAaEQjMi5a3epR0YQJE+JLX/pSzJs3L375y1/GTjvtVOMNh4fW1tb41Kc+FY888kj8/ve/j3322UdkBAAAAAAAAABDlHS5KCKiQ1wEAAAAwABGdFy0elS03nrrxVlnnRUvvPBCnHXWWTFp0qQabzh8HXzwwXHbbbfFXXfdFQcddJDICAAAAAAAAAAGafyYbDQl/LN2l4sAAAAAGMiIjItWj4omTpwY55xzTsybNy++9KUvxdixY2u84cix5557xnXXXRcPPPBATJ8+/S2REQAAAAAAAACQrKmpKXKtpa8XuVwEAAAAwEBGZFwU8feoaMKECfFf//Vf8dxzz8XnPve5yGaztV5rxNp1113jqquuinvuuSf23XffKBaLEREiIwAAAAAAAAAoQy7bVvJ5R6ErpU0AAAAAaDQjLi4qFosxevToOPnkk+O5556LU089NdraSv8BG+nZfffd4+abb46bb745dt111zcjIwAAAAAAAABgYPns2JLPOws9KW0CAAAAQKMZUXFRJpOJGTNmxJNPPhlnn3125HK5Wq/EAPbdd9+4//7748ILL4yNNtqo1usAAAAAAAAAQF1zuQgAAACAwWqu9QJpuueee+Ld7353rddgLRx99NFxxBFHxLPPPlvrVQAAAAAAAACgbiVfLupOaRMAAAAAGs2IulwkLGpMra2tsf3229d6DQAAAAAAAACoW7lse8nnnYWe6C8WU9oGAAAAgEYyouIiAAAAAAAAAIDhKJ8QF/UV+6NraSGlbQAAAABoJOIiAAAAAAAAAIAGl3S5KCKio9CdwiYAAAAANBpxEQAAAAAAAABAg0u6XBQR0SkuAgAAAGANxEUAAAAAAAAAAA1u/JhsNGUyJWdcLgIAAABgTcRFAAAAAAAAAAANrqmpKSa0tpWcERcBAAAAsCbiIgAAAAAAAACAYSCfbS/5vFNcBAAAAMAaiIsAAAAAAAAAAIaBXEJc5HIRAAAAAGsiLgIAAAAAAAAAGAZcLgIAAABgMMRFAAAAAAAAAADDQPLloq6UNgEAAACgkYzouOimm26q9QoAAAAAAAAAABWRz44t+byztyf6i8WUtgEAAACgUYzouOjAAw+MTTfdNM4444yYN29erdcBAAAAAAAAABi0XLat5PO+/v7oWlpIaRsAAAAAGsWIjosiIl588cX4+te/HltssUXsu+++cemll0Zvb2+t1wIAAAAAAAAAWCtJl4siIjoL3SlsAgAAAEAjGfFxUUREsViM/v7+uP322+OTn/xkTJo0KU444YS49957a70aAAAAAAAAAEBZ8tn2xJkOcREAAAAAqxEXRUQmk4lMJhPFYjGKxWIsWbIkzjvvvNhrr71i++23j3POOSf+9re/1XpNAAAAAAAAAIABjR+TjUwmU3JGXAQAAADA6sRF8ffLRRH/iIxWDY0ef/zxOPnkk2Pq1Klx2GGHxdVXXx19fX013hgAAAAAAAAA4K2ampoi19pWcqZTXAQAAADAasRF/8/KmGj10Gjls+XLl8fvf//7+MhHPhJTpkyJk08+OR577LFargwAAAAAAAAA8Ba5bHvJ5y4XAQAAALA6cdEarBoarema0auvvhrnnHNO7LjjjrHnnnvGeeedF0uWLKn12gAAAAAAAADACJdPiItcLgIAAABgdeKiBGu6ZrRqaHT//ffHCSecEJMnT45PfvKT8ac//anGGwMAAAAAAAAAI5XLRQAAAACsLXFRmVa9ZhQRb4uMCoVCXHrppbHffvvF5ptvHl//+tfjhRdeqPHWAAAAAAAAAMBI4nIRAAAAAGtLXDQIq4ZGa7pmNG/evDjjjDNi8803j/333z8uv/zyWLp0aa3XBgAAAAAAAACGucTLRb3db/6LVQEAAAAgQlw0ZGu6ZrQyNOrv749bb701PvGJT8TkyZPjxBNPjAceeKDGGwMAAAAAAAAAw1XS5aK+/v54Y2lvStsAAAAA0AjERfHWKGiwVr1mtOpnrvy9zs7O+NnPfhZ77LFH7LTTTvG9730vXnvttUp9BQAAAAAAAACAyGfHJs50FrpS2AQAAACARjGi46KTTz45Jk+evMYoaChKXTMqFovxyCOPxBe+8IWYMmVKHH744XHttddGf3//kL8PAAAAAAAAADCy5RIuF0VEdBS6U9gEAAAAgEYxouOis88+O1544YW47rrr4vDDD4/Ro0e/GQBV85rRymfLli2L3/3udzF9+vSYOnVqfPnLX44nn3yyIt8NAAAAAAAAABh5JozJJv6sg7gIAAAAgFWN6LgoIqKpqSkOOuiguPLKK+Oll16KH/zgB7HrrrsOeH1osFYNjdZ0zejll1+Ob33rW7HddtvFe9/73rjggguiq8sZcgAAAAAAAACgfE1NTTGhta3kTKe4CAAAAIBVjPi4aFX5fD7+7d/+LR544IGYO3dunHTSSTFx4sQBrw8N1kDh0srfv+eee+L444+PyZMnx8yZM+OOO+4Y8ncDAAAAAAAAAEaGfLa95HOXiwAAAABYlbhoADvssEOce+65sWDBgvjd734X06dPj1GjRq3x+tBgrXrNKCLeFhl1d3fHRRddFB/84Adjyy23jLPOOisWLFhQqa8IAAAAAAAAAAxDudbScZHLRQAAAACsSlyUYNSoUXHooYfGVVddFQsWLIjvfOc7seOOOw54fWiwVg2N1nTN6Nlnn43TTz89Nt100/inf/qnuPLKK2P58uWV+poAAAAAAAAAwDCRb3O5CAAAAIDyiYvWwsSJE+Pzn/98PPzww/HAAw/Ev/7rv0Y+n19jaDQUA4VLxWIx+vr64qabboqjjjoqJk+eHJ/97GfjL3/5y5C/GwAAAAAAAAAwPLhcBAAAAMDaEBcN0q677ho/+tGP4qWXXoorrrgiDjrooGhqaqraNaNVP3Pl773++uvx4x//OHbbbbfYZZdd4oc//GG8/vrrFfl+AAAAAAAAAEBjSrxc1Nv95s8iAAAAAIC4aIhGjx4dRxxxRFx33XXx4osvxje+8Y3YeuutB7w+NFilrhkVi8V4+OGH46STToqNNtoojjzyyLjhhhv8QSAAAAAAAAAAjEBJl4v6+vvjjaW9KW0DAAAAQL0TF1XQpEmT4pRTTonHHnss7rrrrjj++ONj/PjxawyDBmuga0Yrny1dujR+85vfxCGHHBIbb7xxfOUrX4lnnnlm6F8OAAAAAAAAAGgISZeLIiI6C10pbAIAAABAIxAXVcmee+4ZP//5z+Pll1+Oiy++OPbbb783Lw1FVPaaUbFYXOM1owULFrx5SWmfffaJCy+8MHp6eir1FQEAAAAAAACAOpTPjk2c6Sj4+QEAAAAA/k5cVGWtra3xiU98Im688cZ4/vnn42tf+1psvvnma7w+VInQaPXPW/n7f/7zn2PWrFkxadKk+NSnPhV//vOfK/L9AAAAAAAAAID6MmFMNvFnEDpcLgIAAADg/xEXpWjq1Klx+umnx9NPPx233357HHPMMdHW1rbGMGiwVr1mtOrnrfy9rq6umD17duyzzz6x9dZbxze/+c14+eWXK/L9AAAAAAAAAIDaa2pqigmtbSVnOnu7U9oGAAAAgHonLqqRvffeO2bPnh2vvPJKXHDBBbHPPvtERFTlmlGxWFzjNaOnn346Tj311Nh4443j4IMPjt/+9rexYsWKinw/AAAAAAAAAKB2cq3tJZ939IiLAAAAAPg7cVGNtbe3x7HHHhu33XZbPPPMM/GVr3wlpk6dWtFrRhGxxs9bGRr19fXFH/7whzjiiCNiww03jM997nMxd+7cIX83AAAAAAAAAKA28tnScZHLRQAAAACsJC6qI5tttlmceeaZ8fzzz8dNN90UM2bMiNbW1jVeHxqsVa8ZRcTbrhm99tpr8YMf/CB22WWX2G233eInP/lJdHZ2VugbAgAAAAAAAABpyCXERS4XAQAAALCSuKgOZTKZmDZtWlxyySXxyiuvxM9+9rPYc889B7w+NFilrhkVi8V46KGH4t///d9jww03jBkzZsSNN95Yke8HAAAAAAAAAFSXy0UAAAAAlEtcVOfGjRsXn/70p+Ouu+6KJ554Ik4++eSYPHnyGsOgwRromtHKZ729vXHFFVfEQQcdFJtsskl89atfjeeee27oXw4AAAAAAAAAqIrEuKjQ8+bPCQAAAAAwsomLGshWW20VZ599drzwwgtx/fXXx0c/+tEYPXr0m2FQJa8Zrf55K3/vxRdfjP/6r/+KLbfcMj74wQ/GJZdcEoVCoYLfEgAAAAAAAAAYqlxCXLSivy+6lvWmtA0AAAAA9Uxc1ICamprin/7pn+LXv/51vPTSS/HDH/4w3vWud63x+lAlQqPVP2/l799xxx1xzDHHxOTJk+Mzn/lM3HPPPRX5fgAAAAAAAADA0OTbSsdFEREdhe4UNgEAAACg3omLGlw+n48TTzwx7r///pg7d26cdNJJMXHixDWGQYO16jWjVT9v5e8tWbIkzj///Hjve98b2223XXznO9+JV199tSLfDwAAAAAAAABYe/nWMuKiHnERAAAAAOKiYWWHHXaIc889NxYsWBC/+93vYvr06dHc3PxmBFTJa0arf97K33viiSfilFNOialTp8ahhx4aV199dfT19VXwWwIAAAAAAAAASca3tiX+fEBnr7gIAAAAAHHRsDRq1Kg49NBD46qrrooFCxbEOeecEzvttNMarw9VIjRa/fOKxWKsWLEirrvuuvjIRz4SG220UUW+FwAAAAAAAABQnlFNTTFhTLbkTEehK6VtAAAAAKhn4qJhbr311ovPfe5z8b//+7/x4IMPxoknnhj5fH6NYdBgrXrNaPXPKxaLsXDhwqF/EQAAAAAAAABgreSyY0s+7yz0pLQJAAAAAPVMXDSC7LLLLvHDH/4wXn755fj1r38dH/rQh6Kpqalq14wAAAAAAAAAgNrJZ9tKPne5CAAAAIAIcdGI1NLSEh/96Efj2muvjRdffDG+8Y1vxNZbb73G60ODDY0ERgAAAAAAAABQWy4XAQAAAFAOcdEIN2nSpDjllFPisccei7vvvjuOP/74GD9+/BpDIwAAAAAAAACgcbhcBAAAAEA5xEW8aY899oif//zn8fLLL8cll1wS++23X2QymTdDI4ERAAAAAAAAADSOfBmXi1b+i0cBAAAAGLnERbxNa2trzJgxI2688caYN29enHnmmfGOd7xDYAQAAAAAAAAADSSXbS/5fEV/X3Qt601pGwAAAADqlbiIkqZMmRKnnnpqfPe73xUYAQAAAAAAAEADySfERRERHYXuFDYBAAAAoJ4113oB6tfjjz8ec+bMiUsuuSReeeWVN3/fSXQAAAAAAAAAqH/lxEWdhe7YOLdeCtsAAAAAUK/ERbzF4sWL41e/+lXMnj07HnjggYgQEwEAAAAAAABAIxrf2haZiCj1T/1dLgIAAABAXEQUi8W48cYbY86cOXH11VfH0qVL3xIUZTKZt8wCAAAAAAAAAPVvVFNTTGhti87engFnOsVFAAAAACOeuGgEe/rpp2P27Nlx8cUXx0svvRQRISoCAAAAAAAAgGEkl20vGRe5XAQAAACAuGiEeeONN+Lyyy+POXPmxD333BMRgiIAAAAAAAAAGK7y2faY17FwwOcuFwEAAAAgLhohbrnllpg9e3b87ne/i0KhEBH/iIdWDYpW/f3BWv3zAAAAAAAAAIDayGXbSz53uQgAAAAAcdEw9txzz8WcOXPioosuihdffDEiqnelaKBA6Z3vfGfMmjVrSJ8NAAAAAAAAAAxOPiEucrkIAAAAAHHRMNPd3R2//vWvY/bs2fHnP/85IqoXFA30eeuss07MmDEjZs2aFe985zuH/A4AAAAAAAAAYHDy2bEln3cUuqNYLL7tXyoKAAAAwMghLhombrvttpgzZ078f//f/xc9PT0R8Y/YZ6CrQoO1ps9ramqKAw44IGbOnBmHHXZYjB49ekjvAAAAAAAAAACGLpdwuWhFf190LeuNcWOyKW0EAAAAQL0RFzWwv/71rzFnzpy46KKLYt68eRGR/pWid7zjHXHsscfGscceGxtttNGQ3wEAAAAAAAAAVE4+IS6KiOgsdIuLAAAAAEYwcVGDKRQKceWVV8acOXPijjvuiGKxmHpQ1NbWFocffnjMmjUr3v/+9w/5HQAAAAAAAABAdSRdLoqI6Ch0x9TceilsAwAAAEA9Ehc1iDvvvDNmz54dv/nNb6Krqysi/hH7rBoArfr7gzXQ5+25554xa9asOPLII2PcuHFDegcAAAAAAAAAUH0TWtsiExGlfpKgs9Cd1joAAAAA1CFxUR2bP39+XHjhhXHhhRfGs88+GxGR+pWiDTbYII4++uiYNWtWbLPNNkN+BwAAAAAAAACQnlFNTTG+tS0W9/YMONMhLgIAAAAY0cRFdaa3tzd++9vfxuzZs+NPf/pTFIvFAYOiiOpcKWpubo6DDz44Zs6cGQcffHCMGjVqSO8AAAAAAAAAAGonn20vGRe5XAQAAAAwsomL6sTdd98dc+bMiV//+texZMmSiPhHOJRGUBQRsd1228XMmTPj6KOPjvXXX39I7wAAAAAAAAAA6kMu2x7RsXDA5y4XAQAAAIxs4qIaeumll+Kiiy6KCy+8MJ566qmIiAGvFA01KBro88aPHx9HHnlkzJo1K/bYY48hvwMAAAAAAAAAqC/5bHvJ5y4XAQAAAIxs4qKULVu2LK666qqYM2dO3HzzzdHf3z9gUBRRnStFmUwmPvCBD8SsWbPi8MMPj2w2O6R3AAAAAAAAAAD1K5cQF7lcBAAAADCyiYtScv/998fs2bPjiiuuiM7Ozoj4RzhU6aBo9c9c+XlTp06NY445JmbOnBmbbbbZkN8BAAAAAAAAANS/pMtFHYXuN/9lpQAAAACMPOKiKnr11Vfj4osvjjlz5sTjjz8eETHglaJqBUVjxoyJww47LGbOnBn777+/PwgEAAAAAAAAgBEmnx1b8vmK/r7oXrY0xo5pTWkjAAAAAOqJuKjCli9fHtdcc03Mnj07brzxxujr6xswKIoYelQ00OftsssuMWvWrPjEJz4RuVxuSO8AAAAAAAAAABpXLtuWONNR6BIXAQAAAIxQ4qIKeeihh2LOnDnxq1/9Kl5//fWISP9K0brrrhszZsyIWbNmxc477zzkdwAAAAAAAAAAjS/pclFERGehO6bm1kthGwAAAADqjbhoCBYuXBiXXHJJzJkzJx555JGISC8oWvmZTU1NceCBB8asWbNi+vTp0dLSMuT3AAAAAAAAAADDx4TWtshERKmfXOgodKe1DgAAAAB1Rly0lvr6+uL3v/99zJkzJ2644YZYsWLFgEFRRPWuFL3jHe+ImTNnxjHHHBMbbbTRkN8BAAAAAAAAAAxPo5qaYnxrWyzu7RlwplNcBAAAADBiiYvKNHfu3Jg9e3Zcdtll8dprr0VEeleKVn5ee3t7fPSjH42ZM2fGPvvsM+R3AAAAAAAAAAAjQy7bXjIucrkIAAAAYOQSF5Xw+uuvx6WXXhqzZ8+Ohx9+OCLSC4pW/cz3vOc9MWvWrDjyyCNj7NixQ34PAAAAAAAAADCy5LPt8deOhQM+FxcBAAAAjFziotX09/fH9ddfH7Nnz47rrrsuli9fPmBQFFG9K0WTJk2Ko48+OmbNmhVbb731kN8BAAAAAAAAAIxcuWx7yeed4iIAAACAEUtc9P88+uijMWfOnLjkkkvib3/7W0Skf6WopaUlDj744Jg1a1YcdNBBMWrUqCG/BwAAAAAAAAAgnxAXuVwEAAAAMHKN6Lios7MzLrvsspgzZ048+OCDEZF+UBQRsf3228fMmTPj6KOPjokTJw75PQAAAAAAAAAAq0qKizoL3VEsFt/2sw0AAAAADH8jOi6aNGlSLF++fMCgKKLyUdHKz5swYUIcddRRMXPmzNh9992H/A4AAAAAAAAAgIHkEuKi5f190b1saYwd05rSRgAAAADUixEdFy1btuzN8CeNK0WZTCY++MEPxqxZs+Lwww+P1lZ/IAcAAAAAAAAAVF/S5aKIv18vEhcBAAAAjDwjOi5aKZPJVCQoWvlZK638zI033jiOOeaYmDlzZmy66aYVeQ8AAAAAAAAAQLmSLhdFRHQUumJKbt0UtgEAAACgnoiLYuiXitYUFLW2tsZhhx0Ws2bNimnTpr3tkhEAAAAAAAAAQFomtLZFJiJK/YRER6EnrXUAAAAAqCPiokFaPRZaGRXtuuuuMWvW/8/enYfZPd/943+dZCazZZkREkmsLUIQShBKqRalKO7WVksaa6hdq632duOuX1Gt5dYSbexKUa1StbTFV+2iUrEnIQ0hlpkksyaZnN8f9z3TScycc5I553NmeTyua66beb/OeT8/I3Vf15jnvCbH4YcfHtXV1UVIBgAAAAAAAACwopIBA2NIeUUsam7qcqauqT7BRAAAAAD0FMpFq6izLUVrrrlmfPOb34xvfetbMX78+GJFAwAAAAAAAADoUk3F4IzlIpuLAAAAAPon5aIcdLalaODAgbHnnnvG5MmTY//994/S0tIipQMAAAAAAAAAyK66vDLeyXBea3MRAAAAQL+kXJRBZ1uKNt5445g0aVIcffTRMXr06GJFAwAAAAAAAABYJTWVgzOe1zU3JJQEAAAAgJ5EuWglnRWKqqqq4hvf+EZMnjw5dt5552JFAwAAAAAAAABYbTUVVRnPaxuViwAAAAD6I+WiWLFQFPHvUtFOO+0UkydPjkMOOSSqqjJ/gw0AAAAAAAAAoCerzlIuqmtqiHQ6/amfowAAAACgb1Mu+j9thaJRo0bFUUcdFd/61rdik002KXIqAAAAAAAAAID8yLa5aOny1mhY2hKDB5UnlAgAAACAnqDfl4vS6XSUlpbGvvvuG5MnT4699947BgwYUOxYAAAAAAAAAAB5VV2euVwUEVHX2KBcBAAAANDP9Oty0RZbbBHf+ta34sgjj4w111yz2HEAAAAAAAAAAAqmpjJ7uai2uSHWieEJpAEAAACgp+jX5aIZM2YUOwIAAAAAAAAAQCKGlVdGKiLSGWZqGxuSigMAAABADzGg2AEAAAAAAAAAACi8kgEDY0h5RcaZumblIgAAAID+RrkIAAAAAAAAAKCfqCmvynhucxEAAABA/6NcBAAAAAAAAADQT1RXZC4X2VwEAAAA0P8oFwEAAAAAAAAA9BM1lYMzntc21SeUBAAAAICeQrkIAAAAAAAAAKCfqC7PvLmottHmIgAAAID+RrkIAAAAAAAAAKCfqKnMXC6qa26IdDqdUBoAAAAAeoKSYgdg9bW2tsb8+fPjvffei8WLF0dTU1M0NTVFc3Nzp9/oO+qoo4qQEgAAAAAAAADoKbJtLlra2hoNS1ti8KDyhBIBAAAAUGzKRb3Ea6+9Fs8880z84x//iH/84x/x+uuvx4IFC1bptwUpFwEAAAAAAABA/1ZTkblcFBFR19SgXAQAAADQjygX9VCtra1x3333xX333RcPPfRQzJs3b4XzVV1Bnkql8hkPAAAAAAAAAOiFcikX1TY1xDrDhieQBgAAAICeQLmoh3njjTfi2muvjVtuuSU++uijiOi8SLQqZaFVLSJlcskll8R9992XdW7EiBFx11135e1eAAAAAAAAAKD7hlVUZp2pa2pIIAkAAAAAPYVyUQ/x2muvxQUXXBB33nlnLF++fIVCUKYiUbbiUL43Fu21117x/e9/P+NMOp2OVCoVjz32WOy66655vR8AAAAAAAAAWH0lAwbG0LKKWNTS1OVMrXIRAAAAQL8yoNgB+rvFixfHlClTYsstt4w77rgjWltb28s5bR8R/1vY6ewjaVtttVXsu+++7XdnyvSrX/0q8XwAAAAAAAAAQGY1FVUZz20uAgAAAOhflIuK6I9//GOMGzcupk6d+qlSUUQUtUSUyfe+9732v+5Ygur4kU6n4+67747FixcXMSkAAAAAAAAAsLLqLOUim4sAAAAA+hfloiJIp9Pxve99Lw444IB49913uywV9VQ77rhjbLvttl1uL2rT0tIS99xzT7FiAgAAAAAAAACdyLa5qLapPqEkAAAAAPQEykUJW7x4cey9995x6aWX9rpSUUcnnXRSTnN33HFHgZMAAAAAAAAAAKuiumJwxvO6psaEkgAAAADQEygXJWjRokWx1157xcMPP9xeLIpY/VJRWzGp7X2SdPjhh8ewYcPac6wslUpFOp2ORx55JBYtWpR0PAAAAAAAAACgCzUVlRnPa5vqe80vRwUAAACg+5SLErJ48eLYa6+94umnn46If5dvcv1mXMciUbEKRR2VlZXFQQcd1Gn+jp9btmxZPPjgg0lGAwAAAAAAAAAyyLa5aGlrazQuXZJQGgAAAACKTbkoIUcccUQ888wzK2wrymblIlFbGanto6SkJKqrq2PUqFHt80k64ogjcpr705/+VOAkAAAAAAAAAECuaiqqss7UNtUnkAQAAACAnqCk2AH6g//6r/+KP/7xjzkXizqWhNpm11133dhrr71iwoQJ8bnPfS7WX3/9GDFiRPvcgAHJ98R22223GDlyZCxYsKB9E1NHbZ+zuQgAAAAAAAAAeo5cykV1TQ2xzrDhCaQBAAAAoNiUiwrsySefjAsvvHCVi0XpdDqGDRsWRx11VBxzzDExfvz4gmddValUKr7yla/EjTfe+KmtSel0uv1zH3zwQbz55pux8cYbFyMmAAAAAAAAANDBsPLKrDO1TQ0JJAEAAACgJ0h+3U0/snTp0jj++OPbC0WZikWpVKp9009ZWVmce+65MWfOnLjiiit6ZLGozT777JPT3BNPPFHgJAAAAAAAAABALkoGDoyhZRUZZ+qUiwAAAAD6DeWiAvrZz34Wr7zySntpqCsdtxXtuOOO8dJLL8WFF14Y1dXVCSVdfXvssUd7/pW3F3WkXAQAAAAAAAAAPUd1RVXGc5uLAAAAAPoP5aICaWxsjJ/+9KcZCzcR0V48SqfTceKJJ8Zjjz0WG2+8cUIpu6+6ujrGjRuXcSadTsf06dMTSgQAAAAAAAAAZFOjXAQAAADA/1EuKpBrr702Pv7444iILrcWtRWLUqlUnHvuufGLX/wiSkpKkoyZFzvuuGPGZ4yIePXVV2PZsmVJxgIAAAAAAAAAupCtXFSnXAQAAADQbygXFchVV12VcWtRx2LRlClT4sILL0wwXX5tv/32nX6+Y+Fo6dKl8eqrryYVCQAAAAAAAADIoNrmIgAAAAD+j3JRATz99NPx9ttvR0TnW4s6Fos+//nPxxVXXJFwwvwaN25cTnOvv/56gZMAAAAAAAAAALnIZXNRZz/zAAAAAEDfo1xUALfddluXZx23GZWVlcW0adNi4MCBScQqmLFjx+Y0N2fOnAInAQAAAAAAAABykW1z0ZLWZdG4dElCaQAAAAAoJuWiAnjggQdWKBGtrG1r0amnnhobbbRRgskKY/jw4bHGGmtERGR8buUiAAAAAAAAAOgZaioGZ52pa2pIIAkAAAAAxaZclGcffPBBzJo1KyLiU+vBOxZvKioq4uyzz040WyGNGTMm6zr0d999N6E0AAAAAAAAAEAm1RWVWWdqm+oTSAIAAABAsSkX5dkTTzyR8bxta9F+++0Xa665ZkKpCm/kyJFZZz788MMEkgAAAAAAAAAA2VSXV2WdqWtqTCAJAAAAAMWmXJRnM2bMyGnukEMOKXCSZK299tpdnqVSqUin0/HRRx8lmAgAAAAAAAAA6ErJwIExpKwi44zNRQAAAAD9g3JRns2ePbvTz6dSqRX+erfddksoUTIGDx6cdaaurq7wQQAAAAAAAACAnNRUZN5eVNvUkFASAAAAAIpJuSjPuioXdbTxxhtHdXV14cMkqLy8POtMS0tLAkkAAAAAAAAAgFxkKxfVKRcBAAAA9AvKRXk2f/78FbYUdZROpyOVSsVGG22UcKrCUy4CAAAAAAAAgN6l2uYiAAAAAEK5KO8aGrJ/Y22dddZJIEnPs2zZsmJHAAAAAAAAAAD+j81FAAAAAEQoF+VdLuWiwYMHJ5AkWU1NTVlnysrKEkgCAAAAAAAAAOQil81F6XQ6oTQAAAAAFItyUZ41NzdnnRk0aFACSZLV2NiYdaaysjKBJAAAAAAAAABALrJtLlrSuiyali5JKA0AAAAAxaJclGcVFRVZZ3LZ8tPbLFiwIOtMLl8bAAAAAAAAACAZ2TYXRfzv9iIAAAAA+jblojzLZTtPQ0Pf+8bbvHnzujxrW5E+ZMiQpOIAAAAAAAAAAFlk21wUEVGnXAQAAADQ5ykX5VlVVfZvvL333nsJJEnWnDlzIpVKdXmeSqVizJgxCSYCAAAAAAAAADKpLre5CAAAAADloryrqalp39TTmXQ6HXPnzk0wUeHNmzcvPvnkk4iIjM++3nrrJRUJAAAAAAAAAMiiZODAGFJWkXFGuQgAAACg71MuyrMNN9ywy7O2zT5vvPFGLF26NKlIBTd9+vSc5pSLAAAAAAAAAKBnqanIvL2orqk+oSQAAAAAFItyUZ595jOf6fTzHTf6LFmyJF566aWkIhXcX/7yl5zmNt544wInAQAAAAAAAABWRXWWcpHNRQAAAAB9n3JRnnVVLlrZww8/XOAkyfnTn/7UvpUpkwkTJiSQBgAAAAAAAADIVfbNRcpFAAAAAH2dclGebbvttjnN3XvvvQVOkozp06fHrFmzImLF7UwRsULhqLq62uYiAAAAAAAAAOhhbC4CAAAAQLkozz73uc9FRUVFRMSntvmk0+lIpVKRTqfj2WefjVdffbUYEfNq6tSpGc/bntnWIgAAAAAAAADoeXLZXLTyLxsFAAAAoG9RLsqzkpKS2H777XP6xtrVV1+dQKLC+fDDD+PWW2/9VImqM3vuuWcCiQAAAAAAAACAVZFtc1FL67JoWrokoTQAAAAAFINyUQFkK9K0bS/69a9/He+8805CqfLvoosuioaG/11/nq1MdeCBByYRCQAAAAAAAABYBdk2F0VE1DY1JJAEAAAAgGJRLiqAQw45pMuzjiWcJUuWxFlnnZVEpLybOXNm/PKXv+xya1FbgSoiYty4cfGZz3wmyXgAAAAAAAAAQA6ybS6KiKhTLgIAAADo05SLCuAzn/lMTJgwIdLpdKflm7bPp9PpuOeee+LWW28tQsrV19raGkcffXQsWfK/a88zbS1KpVLxzW9+M6loAAAAAAAAAMAqqC6vzDpjcxEAAABA36ZcVCBHH3101pm2gtGUKVPipZdeSiBVfnz729+O6dOnr7CdqKOOhaqysrI47rjjkowHAAAAAAAAAOSodGBJDCmryDijXAQAAADQtykXFcgxxxwTa621VkREl9uL2s7q6+vjq1/9asyaNSvRjKvjkksuiWuvvbbTZ+qobTvToYceGsOHD08oHQAAAAAAAACwqqorMm8vqmuqTygJAAAAAMWgXFQg5eXlceqpp3a62adNx4LRe++9FzvvvHPMmDEjqYir7IILLojvf//77cWibFuLBgwYEGeddVZi+QAAAAAAAACAVVdTMTjjeW1TY0JJAAAAACgG5aICOuWUU2LEiBER0fn2oogVC0YffPBB7LTTTnHzzTcnljEX9fX1ccQRR8T555/fnjdbaSqVSsXRRx8dm2++eVIxAQAAAAAAAIDVYHMRAAAAQP+mXFRAQ4cOjZ/+9KcZizgRKxaMGhsbY9KkSfG1r30t5s6dm0TMjO6///7Yeuut4ze/+U17aair5+lYoKqqqoof//jHScUEAAAAAAAAAFZT9s1FDQklAQAAAKAYlIsK7IgjjojddtutvZjTlY4Fo3Q6Hffdd1+MHTs2Tj755JgzZ05Scds9/PDD8eUvfzn233//mD17dtZiUZu2uQsuuCBGjhyZUFoAAAAAAAAAYHVVl1dlPK9rasj68wIAAAAA9F7KRQm4/vrrY/jw4RERq1QwamlpiWuuuSY23njj+PKXvxzTpk2L+fPnFyzn9OnT47zzzouxY8fGV77ylfjb3/7WXhbKVixqO0+lUvHlL385Tj/99ILlBAAAAAAAAADyp6Yyc7mopXVZNC1bklAaAAAAAJJWUuwA/cH6668ft956a+yzzz5ZNwB1LBi1/X06nY6//e1v8be//S0iIjbbbLOYMGFCbLPNNvHZz3421ltvvZxyzJkzJ5qamqKxsTE++OCDmDdvXsyZMyemT58e06dPj9ra2hUyrJyjKx0LU2uuuWbceOONOeUBAAAAAAAAAIov2+aiiIjaxoaoHFaWQBoAAAAAkqZclJA999wzfvzjH8f3v//9jNuL2nTcGNT2921eeeWVePXVV+Pmm2/+1Gs6e5+2/7vRRhtlvK9Nx3zZ1pp3zFdRURF33313rL322hlfAwAAAAAAAAD0HNk2F0VE1DU3xJhhaySQBgAAAICkKRcl6JxzzonFixfHRRddlNNGoI5bjFYu/GQr/WR6v86sXHjK5f07PsPAgQPj1ltvjZ133nmVcwEAAAAAAAAAxVNdXpl1praxIYEkAAAAABTDgGIH6G/++7//O77zne+sUBzKpq1M1PbRVjbq+JGLzl638nakXItLHV8zYMCAuOaaa+KAAw7IKQcAAAAAAAAA0HOUDiyJwWXlGWdqm5SLAAAAAPoq5aIiuPjii+Oyyy6LAQP+98ufazmozcplo1y3GHX2ulV9j4550+l0lJWVxW9/+9s45phjVukZAAAAAAAAAICeo6aiKuN5nXIRAAAAQJ+lXFQkZ5xxRtx3330xbNiwFbYR9XQdi0XDhw+PBx98MA466KAipwIAAAAAAAAAuqO6PHO5yOYiAAAAgL5LuaiI9tprr3jhhRdi9913b98c1FNLRh1zpdPp2H333WPGjBnxhS98ocjJAAAAAAAAAIDuqqnMsrmoWbkIAAAAoK9SLiqyDTfcMB555JG45pprYsiQIT2uZLRyqaiioiIuvfTSePjhh2PUqFFFTgcAAAAAAAAA5EPWzUWN9QklAQAAACBpykU9xPHHHx+zZ8+Os846K8rLyz9VMkq6aLRyqSgi4uijj44333wzzjrrrB5RfAIAAAAAAAAA8qOmYnDG87rmxvafHwAAAACgb1Eu6kHWWGONuPTSS9tLRsOHD490Ot1p0Sjf5Z7O3judTkdpaWkcccQRMX369Lj++uttKwIAAAAAAACAPqimojLjecuypdG0bElCaQAAAABIknJRDzRy5Mi49NJL4913343bb7899tprrygtLV2haBTx6UJQdz4iov390+l0jB07Ni644IKYO3du3HTT4TvcfwABAABJREFUTbHVVlsV68sBAAAAAAAAABRYdZbNRRERdU2NCSQBAAAAIGklxQ5A10pLS+Pggw+Ogw8+OBoaGuIvf/lLPPDAA/H//t//i9dffz1aW1s/9ZpcNhp1tqZ86NChMWHChNhjjz3igAMOiLFjx+blGQAAAAAAAACAnq+moirrTG1TfYweWpNAGgAAAACSpFzUS1RVVcX+++8f+++/f0RENDc3x0svvRQvvfRSzJkzJ+bNmxfz5s2L+fPnR319fTQ1NUVzc3O0tLREaWlpVFZWRkVFRQwePDjGjBkT6623Xqy33nqx0UYbxYQJE2LTTTfNqZgEAAAAAAAAAPQ91RWVWWdqGxsSSAIAAABA0pSLeqny8vLYYYcdYocddih2FAAAAAAAAACglysdWBKDy8qjvqW5y5m6ZuUiAAAAgL5oQLEDAAAAAAAAAABQfDXlVRnPbS4CAAAA6JuUiwAAAAAAAAAAiOqKzOUim4sAAAAA+iblIgAAAAAAAAAAoiZLuai2SbkIAAAAoC9SLgIAAAAAAAAAIPvmIuUiAAAAgD5JuQgAAAAAAAAAAJuLAAAAAPop5SIAAAAAAAAAALKWi1qWLY2mpUsSSgMAAABAUpSLAAAAAAAAAACI6izlogjbiwAAAAD6IuUiAAAAAAAAAACipmJw1pnapvoEkgAAAACQJOUiAAAAAAAAAACiuqIy60ydzUUAAAAAfU5JsQMAFNu//vWvePDBB2PGjBnxyiuvxJw5c2Lx4sWxaNGiSKfTMWTIkBgyZEist956MW7cuNhyyy1jjz32iI033rjY0QEAAAAAAADypnRgSQweVB71S5q7nKlVLgIAAADoc5SLgH6prq4ufvWrX8XNN98cM2bMyDj78ccfx8cffxxvv/12PP744+2f33jjjePwww+PKVOmxMiRIwsduV+ZPXt23HTTTTnPb7DBBjFp0qTCBQIAAAAAAIB+oqaiKmO5yOYiAAAAgL5HuQjoV+rr6+PCCy+Mq6++OhoauvdN7zfffDPOP//8+P/+v/8vjj766LjoootizTXXzFPS/iudTsfkyZPjsccey/k1u+66q3IRAAAAAAAA5EF1RVX8a+HHXZ7bXAQAAADQ9wwodgCApNx7772x2WabxSWXXNLtYlFHS5Ysieuuuy7Gjh0b119/fd7et7+69tprV6lYBAAAAAAAAORPTUVVxnObiwAAAAD6HuUioM9bvnx5/PCHP4wDDjgg5s2bV7B7Pvnkk5g8eXIcf/zxsWTJkoLd05fNmzcvzjnnnGLHAAAAAAAAgH6rOku5yOYiAAAAgL5HuQjo01pbW+PQQw+NH//4x5FOpxO587rrros999wzGhsbE7mvL5kyZUosWrSo2DEAAAAAAACg37K5CAAAAKD/US4C+qzly5fHpEmT4s4770z87sceeywOPPDAaGlpSfzu3uq2226L++67r9gxAAAAAAAAoF/LtrmoednSaFq6JKE0AAAAACShpNgBkjRx4sS4/PLLY+LEicWOQo4aGxvjJz/5SQwdOjTOPvvsYsehlzn33HPjlltuWaXXbLzxxvH5z38+tthii1hjjTUilUpFbW1tvPrqq/HUU0/Fyy+/nPN7PfTQQ3HcccfFTTfdtKrR+52PPvooTjvttGLHAAAAAAAAgH4v2+aiiP/dXlRROiiBNAAAAAAkoV+Vi5599tn4/Oc/HwcffHD85Cc/ifXXX7/Ykchg2rRp8aMf/Sjef//9OO+884odh17mgQceiIsvvjjn+a997Wvxgx/8ILbffvuMcy+//HJceumlccstt8Ty5cuzvu/NN98cu+66axxzzDE5Z+mPTj311Pjoo4+KHQMAAAAAAAD6vZqKwVlnapsaYtTQmgTSAAAAAJCEAcUOUAy//e1vY9NNN43TTz89Pvzww2LHYSW///3vY8stt4zjjjsu5s+fX+w49EIff/xxHHXUUZFOp7POrrHGGnH//ffH73//+6zFooiILbbYIm688cb4+9//Huuuu25OeU455ZR46623cprtj+677774zW9+0+X5gAH98v9VAQAAAAAAQFEMq6jMOlPbVJ9AEgAAAACS0i9/YjudTkdLS0tcddVV8dnPfjb+8z//MxYuXFjsWP3eI488EhMnToz/+I//iJkzZ+ZUDIHOnHvuuTltwVlnnXXi2WefjX322WeV75g4cWI8//zzMW7cuKyzTU1NccYZZ6zyHf3B4sWLY8qUKV2ejxo1Kvbff/8EEwEAAAAAAED/NmhgSQweVJ5xpq6pMaE0AAAAACShX5aLUqlUpFKpSKfTUV9fHz/+8Y9jgw02iP/8z/+M2traYsfrd/785z/H5z//+dhrr73iueeeay8VpVKpIiejN3rxxRfjuuuuyzo3bNiweOSRR+Kzn/3sat81YsSI+Mtf/hLrrLNO1tn77rsv/vSnP632XX3Vd7/73Zg3b16X51deeWUMGzYswUQAAAAAAABAdUVVxnObiwAAAAD6ln5ZLupYXmkrGS1cuLC9ZPT9738/5s+fX+SUfVs6nY677747tt9++/jqV78aTz/9dKTT6Uin0+3/XGB1nH/++bF8+fKsc9ddd12MHTu22/etvfbacdttt8XAgQOzzp533nndvq8vefzxx+Paa6/t8ny//faLr3/96wkmAgAAAAAAACIiarKUi+qaGhJKAgAAAEAS+mW5KCLaiywRK5aMFi9eHJdccklsuOGGccwxx8TMmTOLnLRvaWpqiquvvjo22WSTOPjgg+OFF174VKmo4z8bWBWvv/563HvvvVnnvva1r8U3vvGNvN27yy67xAknnJB17vnnn4+//vWvebu3N2tubo5jjz22y/+tDx48OK6++uqEUwEAAAAAAAARuWwuUi4CAAAA6Ev6bbmoTVcloyVLlsQNN9wQ48ePj7322ivuvfdehZdumDVrVpx11lmxzjrrxKmnnhqzZs1SKiLvfvazn2X9M1RSUhI//elP8373BRdcEEOHDs06d9lll+X97t7ovPPOizfffLPL8//+7/+OddddN8FEAAAAAAAAQBubiwAAAAD6l35ZLkqlUp/6XFclo3Q6HY888kgceOCBseGGG8ZPfvKTeO+995KO3CstW7Ys7rnnnth7771j7Nixcfnll0dtbe0KhSKlIvKlpaUl7rjjjqxz//Ef/xEbbbRR3u8fPnx4HHvssVnnHnzwwfjggw/yfn9vMn369Iwlq+222y5OOeWUBBMBAAAAAAAAHdlcBAAAANC/9Kty0fDhw1coEHUmU8lo7ty5ce6558b6668f++yzT9x9992xZMmSxPL3Fi+99FKcccYZMXr06Pj6178eDz30UCxfvnyFUlFEZCwVdfznk06nY80110wkO73XfffdFwsXLsw6d/rppxcsw6mnnhoDBmT+12pra2vcfvvtBcvQ0y1btiwmT54cra2tnZ6XlJTEddddl/XrCAAAAAAAABROts1FzcuWRtNSPy8BAAAA0Ff0q5/efv3112PSpEntf9+x6LKytuJLZ1t2Wltb48EHH4yDDz44RowYEZMmTYo///nPXf6wfH/w+uuvx/nnnx/jxo2LbbbZJq688sr46KOPPvU1jMhcKoqIFebWW2+9+P3vfx8nnXRSIs9B7/Wb3/wm68xGG20UEydOLFiG9ddfP3bZZZesc7lk7asuvvjieOmll7o8P+OMM2KrrbZKMBEAAAAAAACwsmzlooiIOtuLAAAAAPqMflUuWmONNWLatGnx6KOPxqabbvqpDUVdybTNaNGiRXHzzTfHV7/61RgxYkQceeSRcdddd0V9fX0iz1RMzzzzTPzgBz+ILbbYIsaNGxcXXHBBvPbaa52WsiJyKxW1fW0HDhwYZ599drzyyiux//77J/VI9FKtra3xyCOPZJ075JBDCp7l0EMPzTrz3HPPxccff1zwLD3N66+/HhdeeGGX5xtuuGH813/9V3KBAAAAAAAAgE5V51AuqlUuAgAAAOgzSoodoBh22WWXmDFjRlx11VVxwQUXRF1d3QrFlq50VUZq+3xtbW3cdtttcdttt0VpaWnssMMO8cUvfjF222232GmnnWLQoEGFfbACe/XVV+Nvf/tb/O1vf4vHHnusvRzR8Wu2ckkr09dz5de0ze65555x+eWXx6abbpqv6PRxzz77bCxcuDDr3N57713wLLncsXz58vjLX/4SBx98cMHz9BTpdDqOPfbYaGlp6XLml7/8ZVRWViaYCgAAAAAAAOhMLuUim4sAAAAA+o5+WS6KiBg4cGCcfvrpceSRR8YPfvCD+PWvfx3Lly//VNGlMyuXaTorGi1ZsiSeeOKJeOKJJ+LCCy+MsrKyFcpGn/vc52LIkCEFerrua21tjVdffTWeeOKJePTRR+PRRx+NDz/8sP185a9PZ1+DbFZ+zcYbbxyXXXZZ7Lvvvt1MT3/zl7/8JevMkCFDYocddih4lvXXXz822mijeOuttzLOPfzww/2qXHT11VfHE0880eX54YcfHnvttVeCiQAAAAAAAICuDBpYElWDyqJhSde/PNDmIgAAAIC+o9+Wi9oMHz48rr322jjllFPinHPOiQceeGCFwlC2okwuRaOIiObm5nj88cfj8ccfj/PPPz8iItZbb70YP358jB8/PrbccssYP358bLLJJjFgwIB8PmJW77//fsyYMWOFj9deey2WLl3a6bNErN6Gos5em06nY6211oof/ehHceKJJ0ZJSb//I8lqeOqpp7LO7LDDDon9+dpll12yloueeeaZRLL0BHPnzo3vf//7XZ6vscYacfnllycXCAAAAAAAAMiqpmJwxnKRzUUAAAAAfYcmx//ZYost4v77749HH300vvvd78bzzz+/SiWjlWdWLhp19h7vvPNOzJ07N+677772zw0aNCjGjBkTY8aMiXXWWaf9r9s+hgwZEhUVFVFeXh4VFRXtH22WLFkSTU1NK3w0NjbGggULYt68efHuu+/Gu+++2/7X8+bNi0WLFmXM2fY8mZ43FyuXiqqqquLMM8+M73znOzF48OBVei/o6MUXX8w6s8022ySQ5H9tu+22cf3112ecefXVV6OlpSXKysoSSlU8J5xwQtTX13d5fumll8Zaa62VYCIAAAAAAAAgm+qKypi38OMuz2ubuv5vgAAAAAD0LspFK9ltt93i2WefjT/84Q9x/vnnxz/+8Y9VLhl1NtdZ2aizuZaWlpg9e3bMmTNnlXKXlpZGa2trLF++POfXZHqWfJSJOnuvdDodlZWVcfLJJ8d3vvOdWHPNNVfrPaHNBx98EPPnz886l3S5KJtly5bFP//5z5gwYUICiYrnpptuij//+c9dnu+2224xefLkBBMBAAAAAAAAuaipyPxLQuuaGhNKAgAAAEChDSh2gJ7qa1/7WkyfPj3uvvvu2HrrrSOdTkc6nW4vCXVWvsmk7fUdPyJihffr+NHZfKaPJUuWRGtr6yq9JtP9nWVeVSu/V1VVVZx99tkxZ86cuPjiixWLyIsZM2bkNLfpppsWOMm/jR07Nqe5XLP3VgsWLIgzzjijy/OysrK49tprE0wEAAAAAAAA5Kq6ojLjuc1FAAAAAH2HclEWBx54YLzwwgvxwAMPxG677dZpMWd1dVX46fjehf7oKkd3thStXJBac80148ILL4y5c+fGJZdcEmuttdZqf81gZbNnz85pbqONNipwkn+rqamJNdZYI+tcrtl7q29/+9vxySefdHl+7rnnxiabbJJgIgAAAAAAACBXNhcBAAAA9B/KRTnaa6+94q9//Ws8++yzcdhhh0VJSUmn23+6a1U3Fq1cBOrOa7ujs7LSFltsEddcc0288847ce6550Z1dXVe7oKO5syZk3Vm7bXXjqqqqgTS/FsuZaZcsvdWf/jDH+LOO+/s8nzcuHFxzjnnJJgIAAAAAAAAWBU1FZn/G2vTsiXRtHRJQmkAAAAAKCTlolU0YcKEuPXWW2Pu3Llx3nnnxahRo/K6zWh15bMolKvONiANHDgwDjzwwPjrX/8aM2bMiOOPPz7Ky8sTzUX/8vbbb2edGT16dOGDrGTUqFFZZ/pquWjhwoVx0kkndXmeSqVi6tSpMWjQoARTAQAAAAAAAKuiOku5KCKirqkhgSQAAAAAFJpy0WoaOXJknHfeeTF37tz4wx/+EPvvv38MHDiwveTTsXhTjLJRoXRWKEqn07HJJpvExRdfHP/617/i7rvvjt122624Qek33n333awza6+9dgJJVv3OefPmJZAkeWeffXa89957XZ4ff/zx8fnPfz7BRAAAAAAAAMCqyra5KEK5CAAAAKCvKCl2gN5uwIABsd9++8V+++0XCxYsiN/85jdxxx13xNNPP90+s3LBKOkNQ93RWTGqLf/IkSPj4IMPjsMOOywmTpyYdDSIiIiPP/4468zIkSMTSLKiXMpFn3zySQJJkvW3v/0tfvWrX3V5PmrUqLj44osTTAQAAAAAAACsjlw2F9UqFwEAAAD0CcpFeTRixIg47bTT4rTTTot33nkn7rrrrvjDH/4QTz75ZCxfvjwiPl00iuhZZaNMZaKIiHXXXTf233//OOigg2LXXXeNAQMsv6K4cikXVVdXFz7IatzZ0NAQLS0tUVZWVvhACWhsbIzjjjsu48yVV14Zw4YNSygRAAAAAAAAsLoGDSyJqkFl0bCkpcsZ5SIAAACAvkG5qEDWX3/9OOuss+Kss86Kjz/+OO6///548MEH469//Wt88MEH7XOdlY3aFLJ01NWdK987aNCgmDhxYuyxxx7x1a9+NbbeeuuCZYLVUVtbm3VmyJAhCSRZvTs/+eSTGDVqVIHTJONHP/pRzJo1q8vzfffdN77+9a8nmAgAAAAAAADojuqKqozlojrlIgAAAIA+QbkoAcOHD4+jjjoqjjrqqIiIePnll+PRRx+NJ598Mp566ql45513PvWaTKWjfFq5wFRVVRXbbbdd7LTTTrHLLrvELrvsEpWVlQXPAaujqakpli5dmnWuGOWioUOH5jS3cOHCPlEueu655+KKK67o8nzw4MHxi1/8IsFEAAAAAAAAQHfVVFTFuws/6fLc5iIAAACAvkG5qAi22GKL2GKLLeLb3/52RES8//778eKLL8ZLL70UL730Urzyyivx1ltvRVNTU9b36qyAlMvGo1QqFeuuu25suummseWWW8ZWW20VW221VWy++eYxYMCAVX8oKIIlS5bkNFdRUVHgJJ9WXl6e01yuz9CTLV26NI455phobW3tcubCCy+MddddN8FUAAAAAAAAQHdVl1dlPLe5CAAAAKBvUC7qAdZee+3Ye++9Y++9917h8++++27Mnj075s2bF++++27Mnz8/Pvzww1i4cGHU1dVFfX19tLS0xNKlS2PZsmUxYMCAKC0tjUGDBkVFRUUMGzYsqqurY4011oi11147Ro8eHWPGjIn1118/PvvZz0ZZWVmRnhjyI9dizsCBAwuc5NNKSnL712tfKBdddNFF8c9//rPL8wkTJsSpp56aYCIAAAAAAAAgH2oqM5eLapuViwAAAAD6AuWiHmzMmDExZsyYYseAHivXYk6uRZ98yvXOpUuXFjhJYb3yyitx0UUXdXleUlIS1113nY1oCdt5552L8ueeFc2cObPYEQAAAAAAALol6+aiRuUiAAAAgL7AT3sDvdayZctymlMuKozly5fHMccck7Hkdfrpp8fWW2+dXCgAAAAAAAAgb2oqB2c8b1q2JJqX5vZLIQEAAADouaw1AHqtXAs8ra2tBU6y+nf25u0yV155ZTz99NNdnm+44YZx/vnnJ5iINk888USstdZaxY4BAAAAAABAL1dTkXlzUUREbVNDjCodlEAaAAAAAArF5iKg1xo0KLdvUOe64Sifct1IlOsz9DRz5syJH/7whxlnfvnLX0ZlZWVCiQAAAAAAAIB8q86hXFTX1JBAEgAAAAAKSbkI6LVKS0tzmitGuSjXO3truej444+Phoau/yPBYYcdFnvttVeCiQAAAAAAAIB8qynPbXMRAAAAAL2bchHQa5WVleU019zcXOAkq39nbywXTZs2LR555JEuz9dYY424/PLLkwsEAAAAAAAAFMSgkpKoLM3832WViwAAAAB6v5JiBwB6lzlz5sQzzzxT0Duqqqpiv/32yzpXUVERJSUlWbcELV68OF/RcpbrnUOHDi1wkvx6//3346yzzso4c+mll8aIESMSSgQAAAAAAAAUUk1lVTQubOnyvK5ZuQgAAACgt1MuAlbJY489Ft/61rcKesf666+fU7koIqKmpiY+/PDDjDOLFi3KR6xVkuuda6yxRoGT5NfJJ58cdXV1XZ7vuuuuBf/zAQAAAAAAACSnurwq3l34SZfntY3KRQAAAAC93YBiBwDojuHDh2edWbhwYQJJVv3OysrKKC8vTyBNftx1113xu9/9rsvzsrKymDp1aqRSqQRTAQAAAAAAAIVUU1GV8dzmIgAAAIDeT7kI6NVyKRd98MEHCSRZ0fvvv591JpfsPUVtbW2ccsopGWfOPffc2GSTTRJKBAAAAAAAACQhW7motkm5CAAAAKC3Uy4CerUxY8Zkncml6JNvudyZS/ae4swzz8z4TOPGjYtzzjknwUQAAAAAAABAEqqzbS5qVC4CAAAA6O2Ui4BebYMNNsg689577xU+yErmz5+fdWbDDTdMIEn3vfXWW3HDDTd0eZ5KpeLaa6+NQYMGJRcKAAAAAAAASERN5eCM503LlkTz0iUJpQEAAACgEEqKHQCgO3Ip6Lz//vvR2NgYlZWVCST6X2+99VbWmd5SLqqvr894vvXWW8e8efPi9ttvL8j9c+bMyTqzYMGCnO4fMWJE7L777vmIBQAAAAAAAP1CdXn2/85a29QQo0r9MkIAAACA3kq5COjVPvOZz2SdSafT8dZbb8X48eMTSBRRV1cXH3/8cda5XLL3Bi+++GIcdthhRc3w6quv5pRh1113VS4CAAAAAACAVZBtc1FERF1zY4waWpNAGgAAAAAKYUCxAwC9y6RJkyKdThf04+233845z5ZbbpnT3GuvvbaaT7zqcr0r1+wAAAAAAAAAxVJTXpV1praxPoEkAAAAABSKchHQq40aNSpGjhyZdW769OkJpMn9rpKSksQ2KQEAAAAAAACsrkElJVFZWpZxpq65IaE0AAAAABSCchHQ622zzTZZZ5IsF73wwgtZZzbddNMoLy9PIA0AAAAAAABA99RUZN5eVNukXAQAAADQmykXAb3ejjvumHXm6aefjmXLliWQJuLxxx/POrPDDjskkAQAAAAAAACg+6qzlIvqlIsAAAAAejXlIqDX+9KXvpR1ZvHixfHss88WPMvcuXPjrbfeyjq3xx57FDwLAAAAAAAAQD7YXAQAAADQtykXAb3e9ttvH0OHDs0698ADDxQ8Sy53pFKpnApRAAAAAAAAAD1BtnKRzUUAAAAAvZtyEdDrlZSU5FTWueOOOwqe5fbbb886M2HChFhzzTULniVftt5660in00X7OProo7Nm3HXXXXN6r0cffbTwXzAAAAAAAADoY6ptLgIAAADo05SLgD7hsMMOyzrz5ptvxjPPPFOwDHPnzo3HH38861wuWQEAAAAAAAB6imybi5qWLonmZUsTSgMAAABAvikXAX3CfvvtF0OHDs06d/nllxcsw5VXXhnLly/PODNgwIA49NBDC5YBAAAAAAAAIN+ybS6KiKizvQgAAACg11IuAvqE8vLyOPjgg7PO3XXXXfHWW2/l/f6PP/44rrvuuqxze+65Z4waNSrv9wMAAAAAAAAUSrbNRRERtcpFAAAAAL2WchHQZ5x55pmRSqUyzixbtizOPvvsvN/9n//5n7Fo0aKsc2eddVbe7wYAAAAAAAAoJJuLAAAAAPo25SKgz9hss81i3333zTr3hz/8Ie6888683fvEE0/Etddem3Vum222iS9/+ct5uzci4u23345UKpX1Y7fddsvrvQAAAAAAAED/UVZSGpWlgzLO1DbVJ5QGAAAAgHxTLgL6lPPOOy8GDMj+r7bjjjsu3njjjW7f9/7778fhhx8era2tWWf/67/+q9v3AQAAAAAAABRDTcXgjOd1TY0JJQEAAAAg35SLgD5l2223jcmTJ2edW7hwYXzpS1+K2bNnr/ZdH374YXz5y1+Of/3rX1ln995779hvv/1W+y4AAAAAAACAYqquqMx4bnMRAAAAQO+lXAT0ORdddFEMHz4869y8efNi++23jwceeGCV73jmmWdiwoQJMXPmzKyz5eXlccUVV6zyHQAAAAAAAAA9RfbNRQ0JJQEAAAAg35SLgD5nrbXWihtuuCFSqVTW2Y8//jj22WefOOigg+L555/POv/KK6/Et771rdhpp51i7ty5OeW54oorYuONN85pFgAAAAAAAKAnqqmoynheq1wEAAAA0GuVFDsAQCHsu+++cfbZZ8ell16a0/w999wT99xzT2yyySax8847x+abbx5rrLFGpFKpqK2tjddeey2eeuqpmDFjxirlOPzww+P4449fnUcAAAAAAAAA6DGqlYsAAAAA+izlIqDP+slPfhLz5s2L3/zmNzm/5o033og33ngjL/d/6UtfimnTpuXlvQAAAAAAAACKKdvmoqalS6J52dIoLylNKBEAAAAA+TKg2AEACmXAgAFx0003xUEHHZT43TvvvHP84Q9/iLKyssTvBgAAAAAAAMi3bJuLIiLqbC8CAAAA6JWUi4A+raSkJO68884455xzErvzW9/6VjzyyCNRVZX9m+sAAAAAAAAAvUG2zUURykUAAAAAvZVyEdDnDRgwIH7yk5/EPffcE6NHjy7YPTU1NXHdddfFtGnTbCwCAAAAAAAA+pRcNhfVKhcBAAAA9ErKRUC/ccABB8Rrr70WZ599dl63Cg0aNCiOOeaYeP311+PYY4/N2/sCAAAAAAAA9BRlJaVRWToo44zNRQAAAAC9U0mxAwAkaciQIXHppZfGD37wg5g6dWrcfPPNMXPmzNV6r89+9rNx2GGHxUknnRSjRo3Kc1LaHHDAAbHBBhtknMl2DgAAAAAAAHRfdUVVNC5d0uW5zUUAAAAAvVMqnU6nix0CoJjeeeedeOihh+Kll16KV155Jd5+++1YtGhRLF68ONLpdAwZMiSGDBkS6667bowbNy623HLL+PKXvxybbrppsaNDfPjhhzFixIgVPrdgwYJYa621ipQIAAAAAACAvurHf7k7Zn4wr8vznTfYNE7aaa8EEwEAAADkT3/+uVybi4B+b/3114/jjjuu2DEAAAAAAAAAerSaisEZz2ub6hNKAgAAAEA+DSh2AAAAAAAAAAAAer7qiqqM57VNDQklAQAAACCflIsAAAAAAAAAAMiqJku5qE65CAAAAKBXUi4CAAAAAAAAACCrbJuLGpcuiZZlSxNKAwAAAEC+KBcBAAAAAAAAAJBVts1FEbYXAQAAAPRGykUAAAAAAAAAAGSVbXNRREStchEAAABAr6NcBAAAAAAAAABAVrmUi2wuAgAAAOh9lIsAAAAAAAAAAMiqvKQ0KkoHZZyxuQgAAACg91EuAgAAAAAAAAAgJzVZthfZXAQAAADQ+ygXAQAAAAAAAACQk+os5SKbiwAAAAB6H+UiAAAAAAAAAABykm1zUW1TfUJJAAAAAMgX5SIAAAAAAAAAAHJSUzE443ldU2NCSQAAAADIF+UiAAAAAAAAAAByUl1RmfHc5iIAAACA3ke5CAAAAAAAAACAnGTbXNS4dEm0LFuaUBoAAAAA8kG5CAAAAAAAAACAnFRXVGWdqWtqSCAJAAAAAPmiXAQAAAAAAAAAQE5qcigX1SoXAQAAAPQqykUFcMMNN8TPfvaz+OSTT4odBQAAAAAAAAAgb2wuAgAAAOh7lIsK4J133onvfOc7MWbMmDjiiCPi8ccfL3YkAAAAAAAAAIBuKy8pjYrSQRlnbC4CAAAA6F2UiwoknU5HS0tL/OY3v4kvfvGLMW7cuLj88sttMwIAAAAAAAAAerVs24tsLgIAAADoXZSLCiiVSkU6nY50Oh2vvfZanHXWWbHOOuvEUUcdFU888USx4wEAAAAAAAAArLKaLOUim4sAAAAAehflogJLpVLtH+l0Opqbm+PWW2+NXXfdNTbffPO48soro66urtgxAQAAAAAAAAByolwEAAAA0LcoFxVY2+aiiFihZJROp+PVV1+NM844I8aMGROTJk2KJ598sshpAQAAAAAAAAAyq85SLqpTLgIAAADoVZSLEtJZyajt801NTXHzzTfHLrvsEltuuWX8z//8TyxcuLCYcQEAAAAAAAAAOmVzEQAAAEDfolyUsLaSUTqdbi8ZddxmNHPmzDjttNNi9OjRMXny5HjqqaeKHRkAAAAAAAAAoF11eeZyUePSlliybFlCaQAAAADoLuWiIsq2zejGG2+MnXfeOcaPHx+/+MUvYtGiRcWMCwAAAAAAAAAQNZWDs87UNtteBAAAANBbKBf1ANm2Gb388stxyimnxOjRo+OYY46JZ555ptiRAQAAAAAAAIB+qrq8MutMbWN9AkkAAAAAyAfloh4m0zajxsbGuOGGG2KnnXaKrbfeOq655ppYvHhxMeMCAAAAAAAAAP1MTUVV1pm65sYEkgAAAACQD8pFBdZxE9GqyLbNaMaMGXHyySfH6NGj47jjjovnnnuuQE8AAAAAAAAAAPBv5aWDoqJkUMYZm4sAAAAAeg/logI47bTT4uc//3mMGzeuy01EqyLTNqOGhoaYNm1aTJw4MbbZZpuYOnVq1Nf7Bh0AAAAAAAAAUDjVlZm3F9U1NySUBAAAAIDuUi4qgOrq6jjttNPin//8ZzzxxBNxxBFHRHl5+acKQvneZvSPf/wjpkyZEqNHj44TTjghXnjhhUI8HgAAAAAAAADQz9VUZC4X1TYqFwEAAAD0FspFBbbTTjvFTTfdFO+++25cfvnliWwzqq+vj1/96lex/fbbx4QJE+K6666LhgbftAMAAAAAAAAA8qO6PEu5qMnPKQAAAAD0FspFCamuro5TTz21fZvRkUcemcg2o+nTp8eJJ54Yo0ePjilTpsSLL75YiMcDAAAAAAAAAPqRmsrM5aK6ZuUiAAAAgN5CuagIdtppp7jxxhvjvffei8svvzw233zzgm8zWrx4cUydOjUmTJgQ2223Xfz617+OxsbG/D0UAAAAAAAAANBvZN1c1KhcBAAAANBbKBcV0bBhw+LUU0+NGTNmxN///vfEthm98MILcfzxx8fo0aPj5JNPjn/84x8FeDoAAAAAAAAAoK+qqchcLmpc2hJLli1LKA0AAAAA3aFc1EPsuOOO7duMrrjiikS2GS1atCiuueaa2HbbbWOHHXaI66+/PpqamvL3UAAAAAAAAABAn5StXBQRUdtsexEAAABAb6Bc1MMMGzYsTjnllPZtRkcddVT7NqOVNxGtimzbjJ577rk49thjY/To0e33AwAAAAAAAAB0pjqHclFdk3IRAAAAQG+gXNSD7bjjjnHDDTe0bzPacsstC77NaOHChfGLX/wiPve5z7VvU2pubs7fQwEAAAAAAAAAvV5Om4uUiwAAAAB6BeWiXqBtm9FLL70UTz75ZGLbjJ599tmYPHlyjB49Ok499dR4+eWXC/SEAAAAAAAAAEBvUl46KCpKBmWcsbkIAAAAoHdQLuplJk6cGDfccEPMnz8/rrzyyoJuM2r7XF1dXVx99dWx1VZbxec///m4+eabo6WlJa/PBQAAAAAAAAD0LtWVmbcX1TbVJ5QEAAAAgO5QLuqlhg4dGt/+9rfbtxkdffTRiWwzevrpp2PSpEkxatSoOP300+OVV14p0BMCAAAAAAAAAD1ZTXmWclGjzUUAAAAAvYFyUR8wceLEuP766xPfZnTVVVfFlltuGbvsskvccsstthkBAAAAAAAAQD9SXZG5XFTXrFwEAAAA0BsoF/UhnW0zqqioKPg2o7a7Ro8eHWeeeWa89tprBXpCAAAAAAAAAKCnqMlSLqptUi4CAAAA6A2Ui/qotm1G7733Xlx55ZUxfvz4gm8zqq2tjSuuuCI233zz2HXXXeO2226LJUuW5PW5AAAAAAAAAICeIevmIuUiAAAAgF5BuaiPa9tm9I9//COeeuqpmDRpUiLbjJ544ok48sgjY/To0XH22WfH66+/XqAnBAAAAAAAAACKIdvmooYlLbFk2bKE0gAAAACwupSL+pEddtghpk2bFu+9915cddVViWwz+uSTT+LnP/95jBs3Lnbbbbe4/fbbY+nSpXl9LgAAAAAAAAAgednKRRERdc22FwEAAAD0dMpF/dDQoUPj5JNPTnyb0f/7f/8vvvnNb8aYMWPiu9/9brz55psFekIAAAAAAAAAoNCqcygX1TYpFwEAAAD0dMpF/dzK24y22mqrgm8z+uijj+Kyyy6LTTfdNHbfffe48847Y5k16AAAAAAAAADQq+RSLqpTLgIAAADo8ZSLiIh/bzN68cUX4+mnn+50m9HqyLbN6LHHHotDDz001llnnfjRj34U77//fp6fDAAAAAAAAAAohIrSQVFRMijjjM1FAAAAAD2fchGfsv3228e0adNi/vz58T//8z8xfvz4bhWM2mTaZrRgwYK46KKLYoMNNohJkybFzJkz8/EoAAAAAAAAAEABVVdUZjyvbapPKAkAAAAAq0u5iC4NGTIkTjrppPj73/8ekydPzkvBKCLzNqMlS5bEzTffHFtttVV8/etfjxkzZuThSQAAAAAAAACAQqipGJzxvK6pMaEkAAAAAKwu5SK69OKLL8aUKVNi9OjRcf3117cXgPKpq21Gy5cvj3vuuSe22WabmDRpUsybNy+v9wIAAAAAAAAA3WdzEQAAAEDvp1zEChoaGuK6666L7bbbLiZMmBBTp06NxYsXr1ACKoRMJaObb745Nttss/jpT38ay5cvL1gGAAAAAAAAAGDV2FwEAAAA0PspFxEREdOnT48TTzwxRo8eHSeeeGK88MIL7YWftrJPEroqGTU0NMQ555wTEydOjFmzZiWSBQAAAAAAAADIrLqiKuO5zUUAAAAAPZ9yUT/W0NAQU6dOje222y622267uO6669q3FEXECqWiVd1a1PbalT9y1VXJ6Pnnn4/Pfe5zcd99961SHgAAAAAAAAAg/2qylIsalrTEktZlCaUBAAAAYHUoF/VDL7zwQpxwwgkxevTomDJlSqdbitrKPB1LPrlYuZC08nvko2RUX18fBx54YEybNm0VnhoAAAAAAAAAyLdsm4siIuqaGhJIAgAAAMDqUi7qJ9q2FE2YMCG23377+NWvfpVxS9HqFIo6FpLWWGONOPvss+P111+Pe++9N/bbb78YMGDAp+7LtWi0csmotbU1TjjhhLj//vtX5csAAAAAAAAAAORRts1FEcpFAAAAAD1dSbEDUFjPP/98TJ06NW6//fZoaGhYoTTUsdizKmWiTK+fOHFinHTSSfGNb3wjysrKIiJi4403jn333Tfmz58f06ZNi+uvvz5mz57d/h4dS03ZdNyu1NraGscee2y88sorUVNTs8r5AQAAAAAAAIDuyWVzUa1yEQAAAECPZnNRH1RfXx/XXnttbLvttrHDDjvEr3/966ivr8/7lqK211dWVsbxxx8fL774Yjz55JNxxBFHtBeLOho1alSce+658dZbb8XDDz8c3/jGN6KkpKTTXJl0zLtgwYI49dRTc84PAAAAAAAAAORPRemgKC8pzTijXAQAAADQsykX9SHPP/98HHfccTF69Og46aST4sUXX2wvD3UsBbV9bnVKRRH/LiRtttlmcdVVV8V7770X11xzTWy11VY5v9+XvvSluOOOO+Kdd96JH/3oR7HGGmusUsmo7ZnS6XTcdttt8frrr+d8NwAAAAAAAACQPzVZthfVKRcBAAAA9GjKRb1cfX19XHPNNe1biqZNm1bQLUWlpaVx6KGHxmOPPRYvv/xynHzyyTFkyJDVzr/22mvH+eefH3Pnzo2f/vSnsdZaa62QPVfXXHPNamcAAAAAAAAAAFZfdZZykc1FAAAAAD2bclEv9dxzz8Wxxx4bo0aNipNPPrngW4rWW2+9+PGPfxz/+te/4rbbbotddtklr89TUVERZ555Zrz11lvxne98JwYOHNieJVvWdDodN954YyxZsiSvmQAAAAAAAACA7GwuAgAAAOjdlIt6kcWLF8cvf/nL2GabbWLixIlx/fXXR0NDQ162FHX2+lQqFfvss0/88Y9/jNmzZ8f3v//9WGuttfL7UCsZPHhwXHzxxfHUU0/F+uuv356jMx2fb+HChfHss88WNBsAAAAAAAAA8Gk2FwEAAAD0biXFDkB2zz77bEydOjXuuOOOaGxsXKFU07F4s6ploq5ev9Zaa8XkyZPjhBNOiA022GD1g3fDtttuG08//XR84QtfiDfffLN9Q1EmTz/9dOy8884JJQQAAAAAAAAAIiJqKgZnPLe5CAAAAKBnUy7qoRYvXhw333xzXHfddTFjxoyIiIKXij7/+c/HSSedFF//+tejtLR0daPnzYgRI+K2226LHXfcMZYtW5a1YPTMM88kmA4AAAAAAAAAiIiorqjMeF6/pDmWtC6LQQP9mAoAAABAT+S7Nj3MM888E1OnTo3f/va3iWwpGjJkSBxxxBExZcqU2GKLLbqRvDC22Wab+Na3vhVTp05dIf/K0ul0zJ49O8FkAAAAAAAAAEBE9s1FERELmxpjrcFDE0gDAAAAwKpSLuoB2rYUTZ06Nf75z39GROG3FI0fPz6mTJkSRxxxRFRVVa1u9EScdNJJMXXq1C7P2zYa1dXVJRcKAAAAAAAAAIiIiOqK7D93UNtUr1wEAAAA0EMpFxXR008/3b6lqKmpqWCForb3KCsri69//esxZcqU2GmnnVY/eMLGjx8fI0aMiA8//LC9SNQZ5SIAAAAAAAAASF5NTuWihgSSAAAAALA6lIsStmjRovYtRS+//HJEFH5L0YYbbhgnnHBCHHPMMTF8+PDVjV5U2223Xdx///2fKk11tGjRogQTAQAAAAAAAAARERWlg6K8pDSaly3tcqZOuQgAAACgx1IuSshTTz0VU6dOjTvvvDPvW4o6e48BAwbEvvvuG1OmTIm99torYymnNxg9enSnn0+n0+3Ptnz58iQjAQAAAAAAAAD/p7qiKt5fXNfluc1FAAAAAD2XclEBLVy4sH1L0cyZMyOi8FuKRo4cGcccc0wcf/zxsd56661u9B6nurq62BEAAAAAAAAAgC7UZCkX2VwEAAAA0HMpFxXAq6++GhdffHHcddddiWwpiojYddddY8qUKXHQQQdFSUnf+8c6aNCgYkcAAAAAAAAAALpQXVGV8dzmIgAAAICeq++1UHqA3/72t3HTTTet8LlCbCkaOnRoHHXUUTFlypTYbLPNVjMtAAAAAAAAAED31GQpF9lcBAAAANBzKRcVUKG2FH3uc5+LKVOmxOGHHx6VlZXdCwkAAAAAAAAA0E02FwEAAAD0XspFBdbdLUVt71FeXh4HH3xwTJkyJXbYYYd8xQMAAAAAAAAA6LZsm4vqlzTH0tZlUTrQj6oAAAAA9DS+Y9ODdLalaKONNooTTjghJk+eHDU1NcWK1qOsXL4CAAAAAAAAAIor2+aiiIi6psZYa/DQBNIAAAAAsCqUi3qAlUtFAwcOjP322y+mTJkSe+yxRxGT9TyrswkKAAAAAAAAACismorBWWdqmxqUiwAAAAB6IOWiIulsS9GoUaPi2GOPjeOPPz7GjBlTrGg90u677x4lJf64AgAAAAAAAEBPVJPT5qL6BJIAAAAAsKq0NRLWWalo9913jylTpsQBBxwQAwcOLFa0Hu2LX/xifPGLXyx2DAAAAAAAAACgExWlg6KspDRali3tcqa2qSHBRAAAAADkSrkoAZ0Viqqrq+Poo4+OE088McaOHVusaAAAAAAAAAAAeVFTURXvL67r8ly5CAAAAKBnUi4qsLZiUVupaNttt42TTjopDj300KioqChmNAAAAAAAAACAvKnOUi6qUy4CAAAA6JGUiwosnU5HRUVFHHrooTFlypSYMGFCsSMBAAAAAAAAAORdTUVVxnObiwAAAAB6JuWiAtp4441jypQpcfTRR0d1dXWx4wAAAAAAAAAAFEx1eeZykc1FAAAAAD2TclEB7LDDDvHII4/E7rvvXuwoAAAAAAAAAACJqKnMsrmoWbkIAAAAoCdSLiqAr3zlK8WOAAAAAAAAAACQqGybi+pbmmNp67IoHejHVQAAAAB6kgHFDgAAAAAAAAAAQO+XbXNRRERdc2MCSQAAAABYFcpFAAAAAAAAAAB0W03F4KwztY0NCSQBAAAAYFUoFwEAAAAAAAAA0G3VFZVZZ+qa6hNIAgAAAMCqUC4CAAAAAAAAAKDbKkoGRVlJacaZ2qbGhNIAAAAAkCvlIgAAAAAAAAAAui2VSkV1eebtRbU2FwEAAAD0OMpFAAAAAAAAAADkRU3l4Izndc0NCSUBAAAAIFfKRQAAAAAAAAAA5EV1eVXG89pG5SIAAACAnka5CAAAAAAAAACAvKipyFwusrkIAAAAoOdRLgIAAAAAAAAAIC+qs5SLapuUiwAAAAB6GuUiAAAAAAAAAADyItvmovqW5ljauiyhNAAAAADkQrkIAAAAAAAAAIC8qKnMXC6KiKhrbkwgCQAAAAC5Ui4CAAAAAAAAACAvqsuzl4tqGxsSSAIAAABArpSLAAAAAAAAAADIi9w2FykXAQAAAPQkJcUO0Bd99NFH8corrxQ7RmJSqVSUlZVFWVlZlJeXR3l5eQwfPjwGDx5c7GgAAAAAAAAAQIIqSgZF2cCSaGld1uWMzUUAAAAAPYtyUQH85S9/icMPP7zYMYquoqIiRo4cGWuvvXZssskmMW7cuNh8881jq622ijFjxhQ7HgAAAAAAAACQZ6lUKqorquKD+oVdzthcBAAAANCzKBcVSDqdLnaEomtsbIw5c+bE22+/HU8//fQKZxtssEHstttu8cUvfjH222+/GDZsWJFSAgAAAAAAAAD5VJOlXFTbVJ9gGgAAAACyUS4qoFQqVewIPUJnRau20tENN9wQgwYNiq985Stx+OGHx4EHHhglJf5YAgAAAAAAAEBvVV0xOON5XVNjQkkAAAAAyMWAYgfo69LpdL/9aJNKpTr9aJtraWmJe++9Nw499ND47Gc/G1dddVU0NTUV8Z8aAAAAAAAAALC6aioqM57bXAQAAADQsygXUTDZikedFY3+9a9/xemnnx4bbrhh3HzzzUV+AgAAAAAAAABgVdlcBAAAANC7KBdRFNmKRgsWLIhJkybF7rvvHrNnzy5yWgAAAAAAAAAgVzUVVRnPF7c0xdLWZQmlAQAAACAb5SKKrquiUTqdjkcffTQmTJgQf/7zn4ucEgAAAAAAAADIRbZyUUREXbPtRQAAAAA9hXIRPcrKJaOIiLq6uthvv/3i5z//eTGjAQAAAAAAAAA5qM6lXNTUkEASAAAAAHJRUuwA0JmVC0atra1x9tlnRyqVitNPP72IyQAAAAAAAACATHLZXFSrXAQAAADQYygXFVhbOSaTtiJNPt9zVSR5/6relU6nI5VKRSqVinQ6HWeddVYMGTIkjjnmmNXOAAAAAAAAAAAUTkXpoCgbWBItrcu6nLG5CAAAAKDnGFDsAH1ZOp3O6SMXbQWbtmJPru+dy90rv3e+nivbXatyX9tr0+l0fPvb344XX3wxp9cCAAAAAAAAAMlKpVJRnWV7kc1FAAAAAD2HzUUFcMghh8QhhxyScaa+vj6++93vxrXXXtv+uZWLRh3LNx3PKisrY8KECTFu3LgYO3ZsfPazn40RI0bEWmutFdXV1VFWVhZlZWWRSqWiubk5WlpaYuHChfHhhx/GggULYtasWfHGG2/EzJkz4/nnn4+Ghoasd3YsNQ0YMCBOOOGEuOSSS6KqasVvBjY3N0dzc3PU19fH/PnzY/78+fH666/HP//5z5g+fXq88sorK7xnx/fNpOMGo5aWljj00EPjhRdeiMGDB2d8HQAAAAAAAACQvJqKqvigfmGX5zYXAQAAAPQcykVF8NBDD8UJJ5wQc+fOjYjcSkVbb711HHjggbHPPvvE1ltvHQMHDszprsrKyqisrIyamprYYIMNPnXe2toaL730UvzpT3+K3//+9zF9+vT2DCtvSWr7fDqdjmuuuSb+9Kc/xdSpU2OPPfZof7/y8vIoLy+P6urqWGeddT513/vvvx8PPfRQ3HLLLfHXv/41li9f3n5XrgWjiIi33norzj///Lj00ktz+joAAAAAAAAAAMmxuQgAAACg9xhQ7AD9zUUXXRT77LNPvPPOOyuUdtp0LPRUVVXFySefHC+//HJMnz49fvSjH8W2226bc7EoFwMHDoxtttkmfvjDH8bzzz8fr7zySnz729+OwYMHr1AoatOWOZ1OxzvvvBN77713XHLJJTnft/baa8dRRx0VDz30UMyZMydOPPHEKC0tXWEzUTZtRaSrrroqZs2ateoPDQAAAAAAAAAUVE2WcpHNRQAAAAA9h3JRQpYtWxaTJ0+OH/3oRyts62kr03Tc3lNSUhKnnHJKzJo1K6666qoYN25cYjk33XTTuPLKK2P27Nlx2mmnRWlpaXu+Nh2zL1++PL7//e/HscceG62trat017rrrhu/+MUv4tVXX40vfelLnZaZVtaxjLV06dI499xzV+lOAAAAAAAAAKDwbC4CAAAA6D2UixLyzW9+M2688cb2DT0R/94C1PHvt9pqq3juuefiiiuuiLXWWqtoeYcPHx4///nP47nnnoutt96609wR/94idP3118dRRx21WndtuOGG8fDDD8dPf/rTFcpWmbTd+7vf/S7mzZu3WvcCAAAAAAAAAIVRUzE44/nilqZYtoq/xBQAAACAwlAuSsDZZ58dd955Z0TECgWdlf/+6KOPjmeffTbGjx9fnKCd2HLLLeOZZ56JyZMnr1AwiohPFYxuv/32+O53v7vad5155pnxu9/9rtNtSR113F7U2toav/zlL1f7TgAAAAAAAAAg/2qybC6KiKhrtr0IAAAAoCdQLiqwadOmxc9+9rOMW38iIn74wx/G9ddf316s6UlKSkriV7/6VZx33nmdFozaPpdOp+Oyyy6LG2+8cbXv2n///eOmm27KaYNR253Tpk1b7fsAAAAAAAAAgPyrzqFcVNukXAQAAADQEygXFdC7774bZ5555qe2FUX8uxiTSqXitNNOiwsuuKBYMXN23nnnxRlnnPGpglGbtmc6/fTT47333lvtew4++OD43ve+t8LXa2UdzxYsWBBPPfXUat8HAAAAAAAAAORXTpuLlIsAAAAAegTlogI68cQTY9GiRRHRdbHoC1/4Qlx22WXFirjKfvrTn8auu+7a6QajNosWLYoTTzyxW/ecf/75sc0220RE5u1Fbf74xz926z4AAAAAAAAAIH8qSgfFoIElGWdsLgIAAADoGZSLCuSxxx6L+++/v71I1KZjUaaysjJuueWWnMozPUUqlYpbbrklqqqq2v++TVvhKJ1Ox/333x+PP/74at8zcODA+PnPf55xe1HHe//85z+v9l0AAAAAAAAAQH6lUqms24tsLgIAAADoGZSLCuSSSy7p8qythHPmmWfGmDFjEkyVH2PGjImzzjora/En09cgF7vsskvsueeen9qS1FHb519++eVoaWnp1n0AAAAAAAAAQP5UZykX2VwEAAAA0DMoFxXAzJkz44EHHsi6tejss88uRry8OOuss7JuL3rggQdi5syZ3brn5JNP7vKs49e2tbU1XnrppW7dBQAAAAAAAADkj81FAAAAAL2DclEB/OY3v+nyrK18c/DBB8eQIUMSTJVfQ4YMiUMOOSTr9qLbbrutW/d89atfjZEjR0ZEdLm9qM306dO7dRcAAAAAAAAAkD82FwEAAAD0DspFBXDvvfdmLcIcdNBBCaUpnP/4j//IeJ5Op+OPf/xjt+4YMGBA7LPPPllLTBERs2bN6tZdAAAAAAAAAED+2FwEAAAA0DsoF+XZ22+/HS+//HJExAqFmI5lo5KSkthtt92SjpZ3X/jCF6K0tDQiVny+tu1MEREzZ86Md955p1v3fOUrX8lpbt68ed26BwAAAAAAAADIn5qKwRnPF7U0xbLW1oTSAAAAANAV5aI8e+aZZ7o8aysbbbTRRlFVlfm38/QGVVVVsfHGG2ede+qpp7p1z3bbbZfT3L/+9a9u3QMAAAAAAAAA5E91RWXWmbpm24sAAAAAik25KM9mzpyZ8TyVSsXYsWMTSlN4m2yyyQobmjrzyiuvdOuODTbYIKqrqyNixQ1JbVKpVKTT6fjggw+6dQ8AAAAAAAAAkD/ZNhdFRNQ1NSaQBAAAAIBMlIvyLFu5KCJi5MiRCSRJxtprr511JpevSTaf+cxnspaYGhr8NiMAAAAAAAAA6CmqK6qyztQ21SeQBAAAAIBMlIvybPbs2VlnhgwZkkCSZAwenPm3DKXT6Zg1a1a371lnnXWyzjQ1NXX7HgAAAAAAAAAgPypLB8WggSUZZ+qa/CJRAAAAgGJTLsqzhQsXRiqVyjhTUpL5G2e9SaZnafs6LFq0qNv35LIhSbkIAAAAAAAAAHqOVCqVdXtRrXIRAAAAQNEpF+XZ4sWL8zLTW9TXZ19Pno/nraioyDrT2tra7XsAAAAAAAAAgPypyVIusrkIAAAAoPiUi/IslyJNbW1tAkmS8cknn2SdyUe5qLy8POtMLgUkAAAAAAAAACA5NhcBAAAA9HzKRXmWSqUynqfT6XjjjTcSSlN4b775ZtaZbF+TXOTyHpWVld2+BwAAAAAAAADIH5uLAAAAAHo+5aI8GzJkSJdnbQWZ119/PdLpdFKRCmb58uXx2muvZS3+DB48uNt3NTc3Z51RLgIAAAAAAACAniVbucjmIgAAAIDiUy7Ks67KRR3LRPX19fHss88mFalgnn/++Vi8eHFERMayVKbCVa4aGxu7PGu7W7kIAAAAAAAAAHqW6izlokUtTbGstTWhNAAAAAB0Rrkoz0aPHp3TVqL7778/gTSFle0Z0ul0pFKpGD16dLfvWrBgQdYZ5SIAAAAAAAAA6FmybS6KiFjY3PUvHAUAAACg8JSL8mzs2LEZz1OpVKTT6bj++utj+fLlCaXKv+XLl8e0adMilUplnc32NcnF/PnzM56nUqkYMWJEt+8BAAAAAAAAAPIn2+aiiIjapoYEkgAAAADQFeWiPNt00027POu40ei9996L22+/PYlIBXH77bfHu+++GxGRdVPTZptt1u375syZk7XItMEGG3T7HgAAAAAAAAAgf2oqBmedUS4CAAAAKC7lojzbcccds860bS8699xzY8mSJQmkyq8lS5bEueeem9PWooiIiRMnduu+2traWLBgQURkLjIpFwEAAAAAAABAz1JZOihKBw7MOFPXVJ9QGgAAAAA6o1yUZxMnTowhQ4ZERHRavulYjpk7d26cffbZiWXLl3POOSfeeeediOi87NPxuQcPHpxT4SqTl19+Oac55SIAAAAAAAAA6FlSqVTW7UW1TY0JpQEAAACgM8pFeTZw4MD40pe+lHHDTjqdbt9edPXVV8edd96ZYMLuufvuu+OKK65oz9+VtmfcfffdY2CW30CUzVNPPZXTnHIRAAAAAAAAAPQ81RWVGc9tLgIAAAAoLuWiAjjqqKNymmsr6Bx55JHx0EMPFThV9z388MPxzW9+s9ONTF05+uiju33v3//+95zmNtpoo27fBQAAAAAAAADkV/bNRQ0JJQEAAACgM8pFBbDffvvF6NGjIyK6LOK0bf1JpVKxZMmS+NrXvha33HJLYhlX1W233RZf+9rXYsmSJRERXW4t6vi8o0aNiv33379b9y5dujQeffTRTr+OHT+30UYbRXV1dbfuAgAAAAAAAADyr6aiKuN5nXIRAAAAQFEpFxXAwIED4+STT+6ygNMmnU5HOp2OVCoVLS0tcfTRR8epp54aTU1NCSXNrrm5OU4//fQ48sgjo7m5uX3bUiZtz3TKKafEgAHd+yP2+OOPx+LFi9vft6u7dtxxx27dAwAAAAAAAAAURnWWcpHNRQAAAADFpVxUIGeccUaMGTMmIrreXtRRW2nn6quvjvHjx8cf//jHQkfM6v7774+tttoqrrrqqvYSTyYdz0ePHh2nnXZatzPcc889Oc0pFwEAAAAAAABAz5Rtc9GilqZYtrw1oTQAAAAArEy5qEDKy8vjv//7v7Nu+Yn490aetoLRrFmz4oADDoidd945/vCHP8Ty5csLHXeFLPfee2/ssssusf/++8ebb765QrEo161FF154YZSXl3cry7Jly+KOO+7IqZylXAQAAAAAAAAAPVO2zUUREQubGhNIAgAAAEBnlIsK6Oijj4599tknp60/6XS6fa6tZPTkk0/GQQcdFBtssEF897vfjb///e8Fy/rUU0/F9773vdhwww3jwAMPjCeffPJTeTIVi9pmUqlU7LPPPjFp0qRuZ7rvvvvi448/johPl5o6fj2HDh0aW265ZbfvAwAAAAAAAADyL9vmooiI2qaGBJIAAAAA0JmSYgfo62644YYYP358fPDBB+0FnEw6K/TMmzcvLrvssrjsssti2LBhMXHixNhxxx1j8803j0022SQ+85nPRGVlZU55mpubY/bs2fH666/HzJkz46mnnoqnn3466urq2u9vk+u2oo5Fn5EjR8b111+fU5ZsfvGLX2Q871hmymW7EQAAAAAAAACQvFw2FykXAQAAABSPclGBrbnmmnHXXXfFHnvsEc3NzTkXjCJWLO20fa6uri4efPDBePDBB1d4TWVlZay11lpRXV0dZWVlMWjQoEilUtHS0hItLS2xcOHC+PDDD6Oh4dPfjOusULTy57vSsYBUWVkZv/vd72LNNdfM+rpsZs6cGY888khOX6+vf/3r3b4PAAAAAAAAACiMqtKyKB04MJa2tnY5U9esXAQAAABQLMpFCdhpp53i9ttvj4MOOiiWL1+eU2EmYsWSUbbST0NDQ3txaOUtPquyeSiX+ZVfl06no6SkJO64446YOHFiTq/N5tJLL+0yX0eVlZWx99575+VOAAAAAAAAACD/UqlUVJdXxYcNi7qcqW1ULgIAAAAolgHFDtBf7LfffnHrrbdGaWlpRGQuzKwsnU63f7S9tquPledX5zW56Pi6QYMGxS233BJf/epXc36mTGbNmhW33nprp8+ycs6vfOUrUV5enpd7AQAAAAAAAIDCqKmsynhucxEAAABA8dhclKCDDz44RowYEQceeGAsWrQo5w1GHXU131b2yVZaWtX7Mt2VTqdj2LBhcc8998Ruu+3W7fdt89JLL8WkSZNymj3yyCPzdi8AAAAAAAAAUBjV5ZnLRbWN9QklAQAAAGBlykUJ22233eLJJ5+MQw45JF5++eUVijrdkY/SUC465t1iiy3ijjvuiM022yyvdxx00EFx0EEH5fU9AQAAAAAAAIDiqakYnPG8rsnmIgAAAIBiGVDsAP3RZpttFs8991ycdNJJ7aWgVCqVdetQMbXlS6fTkU6n4+STT47nnnsu78UiAAAAAAAAAKDvqanMsrmoWbkIAAAAoFiUi4qkrKws/ud//icee+yxGD9+fI8tGXXMk06nY+utt47HHnssrrrqqigrKytyOgAAAAAAAACgN6guz1wuWtTcFMuWtyaUBgAAAICOlIuKbJdddonp06fHtddeG+uvv377ZqC2Uk8xikYd727Ls95668XUqVPjhRdeiF122SXxTAAAAAAAAABA75Vtc1FExMLmxgSSAAAAALAy5aIeIJVKxXHHHRdvvvlm3HrrrbHtttu2l3razgtZNurs/dvu32abbeLWW2+Nt956K4499tgetVUJAAAAAAAAAOgdarJsLoqIqG1sSCAJAAAAACsrKXYA/m3gwIFx2GGHxWGHHRYvv/xy3HbbbXHHHXfEnDlz2mcKVTBqKzJFRGywwQZx6KGHxuGHHx5bbLFF3u8CAAAAAAAAAPqX6hw2F9U1KxcBAAAAFINyUQ+1xRZbxEUXXRQXXXRRvPHGG/HXv/41/va3v8UzzzwTc+fOzfjalctHHYtDnVlnnXVi4sSJ8cUvfjF23333GDt2bLfzAwAAAAAAAAC0qSoti9IBA2Pp8tYuZ2qblIsAAAAAikG5qBfYZJNNYpNNNokTTzwxIiIWL14cL7/8crz66qsxb968mD9/fsyfPz8+/vjjaGpqipaWlmhubo6IiLKysigvL4+KioqoqamJ0aNHx6hRo2KdddaJzTbbLLbYYosYOnRoMR8PAAAAAAAAAOjjUqlUVFdUxYcNi7qcqVMuAgAAACgK5aJeaMiQIbHjjjvGjjvuWOwoAAAAAAAAAAA5qclSLrK5CAAAAKA4BhQ7AAAAAAAAAAAAfV91RVXG89rG+oSSAAAAANCRchEAAAAAAAAAAAVXUzE443ldc2NCSQAAAADoSLkIAAAAAAAAAICCq6mozHhe22RzEQAAAEAxlBQ7QF/z3nvvxSOPPJLT7GabbRbbbbddgRMBAAAAAAAAABRfdZbNRYubm2LZ8tYoGTAwoUQAAAAARCgX5d1dd90VZ5xxRk6zjz76aGHDAAAAAAAAAAD0ENk2F6UjYmFzYwyvHJJMIAAAAAAiImJAsQP0Nf/4xz8inU5n/dhxxx1jl112KXZcAAAAAAAAAIBE1GTZXBQRUdfUkEASAAAAADqyuSjP3njjjYiISKVSnZ6n0+lIpVJxyCGHJBkLAAAAAAAAAKCoqiuqss7UKhcBAAAAJM7mojybO3due7Fo5W1FHe2///7FiAcAAAAAAAAAUBRVg8qidMDAjDM2FwEAAAAkT7kozz766KNOP99xk9Gaa64Z66+/flKRAAAAAAAAAACKLpVKZd1eZHMRAAAAQPKUi/Js6dKlXZ6l0+lIpVKx+eabJ5gIAAAAAAAAAKBnqMlSLrK5CAAAACB5ykV5VlWV+ZtgEREbbLBB4YMAAAAAAAAAAPQwNhcBAAAA9DzKRXk2ePDgrDNDhgxJIAkAAAAAAAAAQM+SbXORchEAAABA8pSL8iyXclEuMwAAAAAAAAAAfU22clGdchEAAABA4pSL8mzNNdeMdDqdcWbJkiUJpQEAAAAAAAAA6Dmqs5SLFjU3Ruvy5QmlAQAAACBCuSjvNtlkk6wzDQ1+yw4AAAAAAAAA0P9k21yUjoiFzY3JhAEAAAAgIpSL8i6XctEHH3yQQBIAAAAAAAAAgJ4l2+aiiIjapvoEkgAAAADQRrkoz8aOHZvxPJ1Ox6xZsxJKAwAAAAAAAADQc9RUDM46U9dkcxEAAABAkpSL8mynnXbq8iyVSkVExJtvvhnLli1LKhIAAAAAAAAAQI9QNagsSgcMzDhjcxEAAABAspSL8mzkyJGx1VZbRTqdbi8TRfzvxqI2zc3N8dxzzxUjHgAAAAAAAABA0aRSqaiuqMo4U9fUkFAaAAAAACKUiwpizz33zDrz5z//OYEkAAAAAAAAAAA9S02WctH/z96fR9dd0Pnj/+umaZObdElaoOACFlrAKqLSAYosKiCKIIwOiMjIJiA6w88ZcPfrAuiIoKPjuLCJgiiMCyIoIiii8JEyUJZhFyg7FCi5pU1ukiZ5//7A1hTa+75t733f7fE4p2ck71fyfqYzxzmn5Nlnn3IRAAAAQKaUi6rgoIMOWuuzXC4XSZLEj3/84wwTAQAAAAAAAADUh7TlIuUiAAAAgGwpF1XBvHnzYscdd4wkSSKXy636eJIkq/7zgw8+GFdeeWUt4gEAAAAAAAAA1EzaclFBuQgAAAAgU8pFVfKRj3yk5PMkSeKLX/xiRmkAAAAAAAAAAOqD5SIAAACA+qJcVCWHHHJIzJkzJyLiJetFK/95wYIF8f3vf78m+QAAAAAAAAAAaiFtuej5wYEYHRvLKA0AAAAAykVVMnHixPjv//7vSJJkjc9zuVwkSRInnnhiLFq0KON0AAAAAAAAAAC1kbZclETE0sGBbMIAAAAAoFxUTXvvvXccdNBBq60VRcSqwlEul4ulS5fGO9/5zigUCjVKCQAAAAAAAACQnbTlooiIQrE/gyQAAAAARCgXVd1ZZ50Vc+bMiYhYY8EoIuKee+6JPffcM55++unM8wEAAAAAAAAAZCltuSgiok+5CAAAACAzykVVNm3atLjsssti2rRpEfHSgtHKf77llltil112iVtuuaUmOQEAAAAAAAAAsjB5Ume0t00oeWO5CAAAACA7ykUZ2HrrreOXv/xlTJkyJSLWXDDK5XLx4IMPxvz58+M//uM/YsWKFbWKCwAAAAAAAABQNblcLnpT1ov6isszSgMAAACAclFGdt9997j22mtj0003jYhYVSiKeKFgtPJjw8PD8dnPfja23XbbuPDCC2NkZKRmmQEAAAAAAAAAqqEntVxkuQgAAAAgK8pFGdp+++3j+uuvjze84Q2rCkUrjS8YJUkSixYtig984APxqle9Kj7/+c/HHXfcUYvIAAAAAAAAAAAVl7ZcVFAuAgAAAMiMclHGXvWqV8WCBQviC1/4QrS3t691wWhlyeiJJ56IU089NbbffvuYPXt2HH300XHeeefFzTffHP39/iANAAAAAAAAAGg8losAAAAA6kd7rQM0q6OOOir1ZrvttouFCxeuKhdFvLRgNP5jDz74YCxatCh+8IMfrLrfZJNNYubMmTFz5syYMmVKdHR0xKRJk1b7mrWWy+Xi3HPPrXUMAAAAAAAAAKBOWC4CAAAAqB/KRVXygx/8oOyCz8ry0Jo+Nr5ktKbbxYsXx+LFi+uqTDRekiTKRQAAAAAAAADAatKWi5YODsTo2FhMaGvLKBEAAABA61IuqrI1FYfW9/NfXDQaf7Oh7wEAAAAAAAAAyEraclESEc8PDkRv1+RsAgEAAAC0MOWiKktbFFqXUtCabtdWOKoXSk8AAAAAAAAAwIulLRdFRPQV+5WLAAAAADKgXFRl1S7X1HN5p55LTwAAAAAAAABA7aQtF0W8UC4CAAAAoPraah0AAAAAAAAAAIDWMnlSZ7S3TSh5U1AuAgAAAMiEchEAAAAAAAAAAJnK5XLRk+8qedNXXJ5RGgAAAIDWplwEAAAAAAAAAEDmevOTSz7vKw5klAQAAACgtSkXAQAAAAAAAACQubTlooLlIgAAAIBMtNc6QLPL5XK1jgAAAAAAAAAAUHcsFwEAAADUB+WiKkqSpNYRAAAAAAAAAADqkuUiAAAAgPqgXFQlhx9+eK0jAAAAAAAAAADUrbTloqVDxRgdG4sJbW0ZJQIAAABoTcpFVXLeeefVOgIAAAAAAAAAQN3q6ewu+TxJknh+cCB6u0qXkAAAAADYMP5qFwAAAAAAAAAAMtfbVbpcFBHRN9ifQRIAAACA1qZcBAAAAAAAAABA5tKWiyIi+gaUiwAAAACqTbkIAAAAAAAAAIDMTenojAltpX90pVBULgIAAACoNuUiAAAAAAAAAAAyl8vlojdfer2oT7kIAAAAoOqUiwAAAAAAAAAAqImeTuUiAAAAgFpTLgIAAAAAAAAAoCZ6u0qXiwrKRQAAAABVp1wEAAAAAAAAAEBNWC4CAAAAqD3lIgAAAAAAAAAAaiJ1uWhQuQgAAACg2pSLAAAAAAAAAACoibTloqWDAzE2NpZRGgAAAIDWpFwEAAAAAAAAAEBN9OYnl3yeJEksHSpmlAYAAACgNSkXAQAAAAAAAABQE735rtSbvuLyDJIAAAAAtC7lIgAAAAAAAAAAaqInZbkoIqJQ7M8gCQAAAEDrUi4CAAAAAAAAAKAmpnR0xoS20j++0qdcBAAAAFBVykUAAAAAAAAAANRELpeL3s7ukjd9A8pFAAAAANWkXAQAAAAAAAAAQM305EuXiwqDykUAAAAA1aRcBAAAAAAAAABAzfSmlIssFwEAAABUV3utA7D+RkdH48knn4wnnngili1bFsViMYrFYgwODkaSJC+5/8AHPlCDlAAAAAAAAAAAa2e5CAAAAKC2lIsaxD333BMLFiyIW2+9NW699da499574+mnn15jiWhtlIsAAAAAAAAAgHqTulxUVC4CAAAAqCblojo1Ojoal19+eVx++eXxu9/9Lh577LHVnq9LqSgiIpfLVTIeAAAAAAAAAEBFpC0XLR0ciLGxsWhra8soEQAAAEBrUS6qM/fdd1+ceeaZ8aMf/SieffbZiFhzkWhdykLrWkQq5atf/WpcfvnlqXebbLJJ/OxnP6vYewEAAAAAAACA5pS2XJQkSSwdKqbeAQAAALB+lIvqxD333BMnn3xy/PSnP42xsbHVCkGlikRpxaFKLxbts88+8alPfarkTZIkkcvl4tprr4099tijou8HAAAAAAAAAJpLOaWhQrFfuQgAAACgSuxF19iyZcvi+OOPj+222y4uvvjiGB0dXVXOWfkr4oXCzpp+ZW377beP/fbbb9W7S2U655xzMs8HAAAAAAAAADSWnvzk1Ju+4vIMkgAAAAC0JuWiGrrsssti7ty5cdZZZ72kVBQRNS0RlfLJT35y1X8eX4Ia/ytJkvj5z38ey5Ytq2FSAAAAAAAAAKDeTenojAltpX+Epa/Yn1EaAAAAgNajXFQDSZLEJz/5yTjwwAPj8ccfX2upqF7Nnz8/dthhh7WuF600NDQUl1xySa1iAgAAAAAAAAANIJfLRW9nd8mbgnIRAAAAQNUoF2Vs2bJl8Y53vCNOP/30hisVjffhD3+4rLuLL764ykkAAAAAAAAAgEbXky9dLrJcBAAAAFA9ykUZev7552OfffaJq666alWxKGL9S0Uri0krv06WDj300Jg2bdqqHC+Wy+UiSZK4+uqr4/nnn886HgAAAAAAAADQQHpTykWWiwAAAACqR7koI8uWLYt99tknbrjhhoj4e/mm3FLR+CJRrQpF43V0dMS73/3uNeYf/7GRkZG48sors4wGAAAAAAAAADQYy0UAAAAAtaNclJHDDjssFixYsNpaUZoXF4lWlpFW/mpvb4+enp7YbLPNVt1n6bDDDivr7je/+U2VkwAAAAAAAAAAjcxyEQAAAEDttNc6QCv4whe+EJdddlnZxaLxJaGVt6985Stjn332iXnz5sUb3vCG2GKLLWKTTTZZddfWln1P7M1vfnPMnDkznn766VVLTOOt/JjlIgAAAAAAAACglLTlosLgQIyNjdXk5yMAAAAAmp1yUZX9v//3/+KUU05Z52JRkiQxbdq0+MAHPhBHH310vO51r6t61nWVy+Xi7W9/e/zwhz98yWpSkiSrPrZ48eL461//GnPmzKlFTAAAAAAAAACgzqUtFyVJEs8PFVNLSAAAAACsO3+dSxWtWLEijj322FWFolLFolwut2rpp6OjIz7zmc/EokWL4pvf/GZdFotW2nfffcu6u+6666qcBAAAAAAAAABoVGnlooiIvmJ/BkkAAAAAWo9yURV9/etfj7vuumtVaWhtxq8VzZ8/P2677bY45ZRToqenJ6Ok62/vvfdelf/F60XjKRcBAAAAAAAAAGtTziJRX3F5BkkAAAAAWo9yUZUMDAzEGWecUbJwExGrikdJksSHPvShuPbaa2POnDkZpdxwPT09MXfu3JI3SZLEwoULM0oEAAAAAAAAADSayR35mNBW+sdYCsWBjNIAAAAAtBbloio588wzY8mSJRERa10tWlksyuVy8ZnPfCa+853vRHt7e5YxK2L+/Pklv8eIiLvvvjtGRkayjAUAAAAAAAAANIi2XC56OrtK3lguAgAAAKgO5aIq+da3vlVytWh8sej444+PU045JcN0lbXjjjuu8ePjC0crVqyIu+++O6tIAAAAAAAAAECD6c1PLvm8UOzPKAkAAABAa1EuqoIbbrghHnrooYhY82rR+GLRm970pvjmN7+ZccLKmjt3bll39957b5WTAAAAAAAAAACNqiffXfJ5n3IRAAAAQFUoF1XBj3/847U+G79m1NHREd///vdjwoQJWcSqmm222aasu0WLFlU5CQAAAAAAAADQqHpTykWWiwAAAACqQ7moCq644orVSkQvtnK16IQTTojZs2dnmKw6ZsyYEdOnT4+IKPl9KxcBAAAAAAAAAGtjuQgAAACgNpSLKmzx4sXxwAMPRMQLJaLxxhdv8vl8nHTSSZlmq6aXv/zlL/l+X+zxxx/PKA0AAAAAAAAA0GjSlouWDg7E2NhYRmkAAAAAWodyUYVdd911JZ+vXC3af//9Y6ONNsooVfXNnDkz9eaZZ57JIAkAAAAAAAAA0IjSlovGkiSeHypmlAYAAACgdSgXVdjtt99e1t173/veKifJ1qabbrrWZ7lcLpIkiWeffTbDRAAAAAAAAABAI0lbLoqI6Cv2Z5AEAAAAoLUoF1XYgw8+uMaP53K51f7zm9/85owSZWPy5MmpN4VCofpBAAAAAAAAAICGVE65qKBcBAAAAFBxykUVtrZy0Xhz5syJnp6e6ofJUGdnZ+rN0NBQBkkAAAAAAAAAgEY0uSMfE3Klf5TFchEAAABA5SkXVdiTTz652krReEmSRC6Xi9mzZ2ecqvqUiwAAAAAAAACADdGWy0VPvqvkjeUiAAAAgMpTLqqw/v70P8R6xStekUGS+jMyMlLrCAAAAAAAAABAHevJd5d83ldcnlESAAAAgNahXFRh5ZSLJk+enEGSbBWLxdSbjo6ODJIAAAAAAAAAAI2qN1/6ZyoKxYGMkgAAAAC0DuWiChscHEy9mTRpUgZJsjUwkP6Hd11dpafLAQAAAAAAAIDW1pMv/bMFlosAAAAAKk+5qMLy+XzqTTkrP43m6aefTr0p5/cGAAAAAAAAAGhdlosAAAAAsqdcVGHlrPP09/dnkCRbjz322FqfJUkSERFTpkzJKg4AAAAAAAAA0IDSlosKg/0xNjaWURoAAACA1qBcVGHd3d2pN0888UQGSbK1aNGiyOVya32ey+Xi5S9/eYaJAAAAAAAAAIBGk7ZcNJYk8fxQMaM0AAAAAK1BuajCent7Vy31rEmSJPHII49kmKj6HnvssXjuueciIkp+75tvvnlWkQAAAAAAAACABtSbT/9LXQvF/gySAAAAALQO5aIKmzVr1lqfrVz2ue+++2LFihVZRaq6hQsXlnWnXAQAAAAAAAAAlNJTRrmoT7kIAAAAoKKUiypsyy23XOPHxy/6DA8Px2233ZZVpKr7/e9/X9bdnDlzqpwEAAAAAAAAAGhkUzryMSFX+sdZLBcBAAAAVJZyUYWtrVz0YldddVWVk2TnN7/5zapVplLmzZuXQRoAAAAAAAAAoFG15XIxLd9V8sZyEQAAAEBlKRdV2A477FDW3a9+9asqJ8nGwoUL44EHHoiI1deZImK1wlFPT4/lIgAAAAAAAAAgVW++u+Rz5SIAAACAylIuqrA3vOENkc/nIyJesuaTJEnkcrlIkiRuvPHGuPvuu2sRsaLOOuusks9Xfs9WiwAAAAAAAACAcvSklIsKykUAAAAAFaVcVGHt7e2x4447vmTFZ02+/e1vZ5Coep555pm48MILX1KiWpO3ve1tGSQCAAAAAAAAABqd5SIAAACAbCkXVUFakWbletG5554bDz/8cEapKu/LX/5y9Pe/8Ad2aWWqf/zHf8wiEgAAAAAAAADQ4Ho6LRcBAAAAZEm5qAre+973rvXZ+BLO8PBwnHjiiVlEqrg777wzvvvd7651tWhlgSoiYu7cubHllltmGQ8AAAAAAAAAaFC9XSnlosH+GEv5S1ABAAAAKJ9yURVsueWWMW/evEiSZI3lm5UfT5IkLrnkkrjwwgtrkHL9jY6OxuGHHx7Dw8MRUXq1KJfLxfvf//6sogEAAAAAAAAADa43P7nk87EkiWWDAxmlAQAAAGh+ykVVcvjhh6ferCwYHX/88XHbbbdlkKoy/uVf/iUWLly42jrReOMLVR0dHXHMMcdkGQ8AAAAAAAAAaGA9+dLLRRERfcX+DJIAAAAAtAbloio5+uijY+ONN46IWOt60cpny5cvj3e+853xwAMPZJpxfXz1q1+NM888c43f03gr15kOOeSQmDFjRkbpAAAAAAAAAIBG16tcBAAAAJAp5aIq6ezsjBNOOGGNyz4rjS8YPfHEE7HrrrvG7bffnlXEdXbyySfHpz71qVXForTVora2tjjxxBMzywcAAAAAAAAANL4pHfmYkCv9Iy0F5SIAAACAilEuqqJ//dd/jU022SQi1rxeFLF6wWjx4sWxyy67xAUXXJBZxnIsX748DjvssPjiF7+4Km9aaSqXy8Xhhx8er3nNa7KKCQAAAAAAAAA0gbZcLqblu0reWC4CAAAAqBzloiqaOnVqnHHGGSWLOBGrF4wGBgbiiCOOiAMOOCAeeeSRLGKW9Otf/zpe//rXx09+8pNVpaG1fT/jC1Td3d3xpS99KauYAAAAAAAAAEAT6ensLvlcuQgAAACgcpSLquywww6LN7/5zauKOWszvmCUJElcfvnlsc0228RHPvKRWLRoUVZxV7nqqqtir732ine9613x4IMPphaLVlp5d/LJJ8fMmTMzSgsAAAAAAAAANJPertLlosKgchEAAABApSgXZeC8886LGTNmRESsU8FoaGgovve978WcOXNir732iu9///vx5JNPVi3nwoUL4/Of/3xss8028fa3vz2uueaaVWWhtGLRyue5XC722muv+OhHP1q1nAAAAAAAAABAc0tdLhpQLgIAAAColPZaB2gFW2yxRVx44YWx7777pi4AjS8YrfznJEnimmuuiWuuuSYiIl796lfHvHnz4o1vfGNstdVWsfnmm5eVY9GiRVEsFmNgYCAWL14cjz32WCxatCgWLlwYCxcujL6+vtUyvDjH2owvTG200Ubxwx/+sKw8AAAAAAAAAABr0pu3XAQAAACQFeWijLztbW+LL33pS/GpT32q5HrRSuMXg1b+80p33XVX3H333XHBBRe85HPW9HVW/s/Zs2eXfN9K4/OVKhWNv02SJPL5fPz85z+PTTfdtOTnAAAAAAAAAACU0tuVUi4q9sdYkkRbGT+DAQAAAEBpbbUO0Eo+8YlPxKc//emXFIfWZuVqUUSsun/xotH4mzQv/pzxv9b29UsZfzthwoS48MILY9dddy0rCwAAAAAAAADA2vR0li4XjSVJLBscyCgNAAAAQHNTLsrYqaeeGh/72MdWKw2lKVUEKqektNKaPm9thaVyvtbKz2lra4vvfe97ceCBB5aVAwAAAAAAAACglN6uyak3fcpFAAAAABWhXFQDp512Wnzta1+LtrYXfvvLLQettKblofX9vHX9GuPzJkkSHR0d8T//8z9x9NFHr9P3AAAAAAAAAACwNr2dXak3fQPLM0gCAAAA0PyUi2rk3/7t3+Lyyy+PadOmrbZGVO/GF4tmzJgRV155Zbz73e+ucSoAAAAAAAAAoJlM6eyKtpSfoygM9meUBgAAAKC5KRfV0D777BM333xzvPWtb121HFSvJaPxuZIkibe+9a1x++23x+67717jZAAAAAAAAABAs2nL5aKns7vkTd+AchEAAABAJSgX1disWbPi6quvju9973sxZcqUuisZvbhUlM/n4/TTT4+rrroqNttssxqnAwAAAAAAAACaVU++dLnIchEAAABAZSgX1Yljjz02HnzwwTjxxBOjs7PzJSWjrItGLy4VRUQcfvjh8de//jVOPPHEuig+AQAAAAAAAADNqzelXNRXVC4CAAAAqATlojoyffr0OP3001eVjGbMmBFJkqyxaFTpcs+avnaSJDFx4sQ47LDDYuHChXHeeedZKwIAAAAAAAAAMpG6XKRcBAAAAFARykV1aObMmXH66afH448/HhdddFHss88+MXHixNWKRhEvLQRtyK+IWPX1kySJbbbZJk4++eR45JFH4vzzz4/tt9++Vr8dAAAAAAAAAEALslwEAAAAkI32Wgdg7SZOnBgHH3xwHHzwwdHf3x+///3v44orrog///nPce+998bo6OhLPqecRaPxBaWVpk6dGvPmzYu99947DjzwwNhmm20q8j0AAAAAAAAAAKyPtHLR0uJAjCVJtJXxsxIAAAAArJ1yUYPo7u6Od73rXfGud70rIiIGBwfjtttui9tuuy0WLVoUjz32WDz22GPx5JNPxvLly6NYLMbg4GAMDQ3FxIkTo6urK/L5fEyePDle/vKXx+abbx6bb755zJ49O+bNmxfbbrttWcUkAAAAAAAAAIAs9KSUi0aTsVg2VIxpnV0ZJQIAAABoTspFDaqzszN22mmn2GmnnWodBQAAAAAAAACg4tKWiyIi+or9ykUAAAAAG6it1gEAAAAAAAAAAODFyikXFYr9GSQBAAAAaG7KRQAAAAAAAAAA1J0pnV3RlsuVvOkrLs8oDQAAAEDzUi4CAAAAAAAAAKDutOVy0dNZer2oUBzIKA0AAABA81IuAgAAAAAAAACgLvXku0o+t1wEAAAAsOGUiwAAAAAAAAAAqEu9+ckln1suAgAAANhwykUAAAAAAAAAANQly0UAAAAA1adcBAAAAAAAAABAXUpbLuor9meUBAAAAKB5KRcBAAAAAAAAAFCXevPdJZ8vLQ7EWJJklAYAAACgOSkXAQAAAAAAAABQl3pSykWjyVgsGypmlAYAAACgOSkXAQAAAAAAAABQl9KWiyIiCsX+DJIAAAAANC/lIgAAAAAAAAAA6lLaclFERJ9yEQAAAMAGUS4CAAAAAAAAAKAuTe3IR1suV/LGchEAAADAhlEuAgAAAAAAAACgLrW1tcW0zq6SN5aLAAAAADaMchEAAAAAAAAAAHWrN99d8rnlIgAAAIANo1wEAAAAAAAAAEDd6kkpF1kuAgAAANgwykUAAAAAAAAAANSttOWivuLyjJIAAAAANKf2Wgcg3fDwcDz88MOxePHiePrpp2PJkiUxODgYQ0NDMTQ0FKOjo7WOmOpzn/tcrSMAAAAAAAAAAA2oNz+55POC5SIAAACADaJcVGcGBgbiL3/5S1x33XVx0003xd133x0PP/xwjI2N1TraBlEuAgAAAAAAAADWR0/KclGhOBBjSRJtuVxGiQAAAACai3JRHSgUCvGLX/wifvrTn8Yf/vCHGBkZWfUsSZIaJquMnD+8AwAAAAAAAADWU29KuWg0GYvlQ8WY2tmVUSIAAACA5qJcVEP33XdffOMb34jzzz8/isViRLy0TNToxZxmKEcBAAAAAAAAALWTtlwUEdFX7FcuAgAAAFhPykU1sGTJkvj//r//L84555wYHR1drYCztjJRI5Z0Gr0YBQAAAAAAAADUXtpyUUREodgfW/RunEEaAAAAgOajXJSxX/ziF3HMMcdEoVBYVRh6cQmnEYtEAAAAAAAAAADVMLUjH7lcruTPU/QV+zNMBAAAANBc2modoFUkSRIf+chH4qCDDoq+vr5IkiRyudyqYlGSJKt+AQAAAAAAAADwgra2tujp7Cp5U1AuAgAAAFhvlosyMDw8HO973/vil7/85apS0UrKRAAAAAAAAAAApfXku0uuE1kuAgAAAFh/louqLEmSeO973xuXXHLJasUiK0UAAAAAAAAAAOXpzXeXfG65CAAAAGD9WS6qsk9/+tNx6aWXrlYq2hDjV48AAAAAAAAAAFpBWrnIchEAAADA+lMuqqJrrrkmTjvttPUuFpUqElk9AgAAAAAAAABaRU9quWh5RkkAAAAAmo9yUZUMDg7Gcccdt+qf16UMNL5U9OLPmzhxYmy00UYxY8aMyOfz0dHRERMmTNjwwAAAAAAAAAAAdao3P7nk88LgQIwlSbSV+ItcAQAAAFgz5aIqOeuss+L++++PXC5XdrHoxQtH3d3dseeee8b8+fNj3rx5sfXWW8crX/nKqmUGAAAAAAAAAKhHPfmuks9Hx8Zi+VAxpnaWvgMAAADgpZSLqmDFihVx+umnr7ZAVMqLS0X77LNPfOhDH4q3v/3t0dHRUbWcAAAAAAAAAACNIG25KCKiUOxXLgIAAABYD8pFVXDppZfG448/XtZq0fhi0a677hpf//rXY968eVnEBAAAAAAAAABoCD357tSbvmJ/bN67cQZpAAAAAJpLW60DNKOLL7449SaXy60qH+VyuTjttNPi2muvVSwCAAAAAAAAAHiRaR35VX+B69r0FfszSgMAAADQXCwXVdjw8HD85je/KfkHWuPXitrb2+MnP/lJvOc978kqIgAAAAAAAABAQ2lra4tpnV1RKFEgKvUMAAAAgLWzXFRhN998cxSLxYh4oTy0NisXi/77v/9bsQgAAAAAAAAAIEVvvrvkc8tFAAAAAOtHuajCrr/++pLPc7ncqmLRAQccEMcee2xGyQAAAAAAAAAAGldauchyEQAAAMD6US6qsLvuumutz3K53Kr/3N7eHl//+teziAQAAAAAAAAA0PB6LBcBAAAAVIVyUYUtWrSo5POVq0UHHXRQvOpVr8omFAAAAAAAAABAg7NcBAAAAFAdykUV9sgjj6y2ULQ273//+zNIAwAAAAAAAADQHFKXiwb7I0mSjNIAAAAANA/logpbtmzZGj8+vnDU3t4eb3nLW7KKBAAAAAAAAADQ8NKWi0bHxmLZ0GBGaQAAAACah3JRhfX3r31ie+XfjrPddttFZ2dnVpEAAAAAAAAAABpe2nJRREShuDyDJAAAAADNRbmowoaHh0s+z+VysdVWW2WUBgAAAAAAAACgOfTmJ6fe9BUHMkgCAAAA0FyUiyps8uT0P8jadNNNM0gCAAAAAAAAANA8pnXkI5fLlbzps1wEAAAAsM6Uiyps6tSpqTfd3ekz3QAAAAAAAAAA/F1bW1tM6+wqeVMY7M8oDQAAAEDzUC6qsHLKRaOjoxkkAQAAAAAAAABoLr350n+ha9+AchEAAADAulIuqrBZs2ZFkiQlbwYGBjJKAwAAAAAAAADQPHo6S5eLCkXlIgAAAIB1pVxUYa997WtTb5599tkMkgAAAAAAAAAANJferpTlIuUiAAAAgHWmXFRhaeWiJEniwQcfzCgNAAAAAAAAAEDzsFwEAAAAUHnKRRW2yy67rPVZLpeLiIj77rsvqzgAAAAAAAAAAE0jdblosD+SJMkoDQAAAEBzUC6qsFe96lWx3XbbRZIkq8pEEbHaH1w9//zz8X//93+1iAcAAAAAAAAA0LDSlotGx8Zi2dBgRmkAAAAAmoNyURUccMABqTdXX311BkkAAAAAAAAAAJpH2nJRRERhsD+DJAAAAADNQ7moCg499NBVq0Xj14tWSpIkLr744qxjAQAAAAAAAAA0tN6U5aKIiL4B5SIAAACAdaFcVAXbbrtt7LfffpEkyWofT5JkVdnof//3f+PWW2+tQToAAAAAAAAAgMY0tbNrjX/R63iWiwAAAADWjXJRlXz84x9PvfmP//iPDJIAAAAAAAAAADSHCW1tMa0jX/Kmr7g8ozQAAAAAzUG5qEre9KY3xYEHHrjaWlHE39eLkiSJn/3sZ/HnP/+5hikBAAAAAAAAABpLT35yyed9A5aLAAAAANaFclEVffvb346pU6dGRKxxkjtJkjjuuONiYGAg62gAAAAAAAAAAA2pN99d8nlhULkIAAAAYF0oF1XRZpttFqeffnokSbLax8evGd17771xxBFH1CAdAAAAAAAAAEDj6UkpF1kuAgAAAFg3ykVVdswxx8QxxxyzWqEo4u8FoyRJ4uc//3n8y7/8Sw1TAgAAAAAAAAA0BstFAAAAAJWlXJSB73znO/GWt7ylZMHou9/9bhx11FGxYsWKGiYFAAAAAAAAAKhvqeWi4kAkSZJRGgAAAIDGp1yUgQkTJsQll1wSu+yyS8mC0Q9/+MPYY489YtGiRTVMCwAAAAAAAABQv3pSykUjY6OxfHgwozQAAAAAjU+5KCNTp06Nq666Kt72tretKhStLBmNLxjdcMMNsd1228Vpp50Wg4P+oAsAAAAAAAAAYLy05aKIiL5ifwZJAAAAAJqDclGG8vl8XHbZZXHkkUe+ZH57/KLRwMBAfPrTn45Zs2bFaaedFosXL65FXAAAAAAAAACAulNOuaigXAQAAABQNuWijE2cODHOPffcuOCCC6K7u3uNC0YrV4wWL14cn/70p+OVr3xl7LPPPvGf//mfceutt8bIyEiNvwsAAAAAAAAAgNqY2tkVuZQby0UAAAAA5WuvdYBmdfLJJ6fe7LfffnHRRRetKhdFrF4wWvnPIyMjcfXVV8fVV18dES8UlLbeeuvYfPPN42Uve1lMnTo18vl8TJw4sTrfTAV87nOfq3UEAAAAAAAAAKAJTGhri2mdXVEYHFjrTV9xeYaJAAAAABqbclGVfOELX1itNFRKkiRr/OcXl4xWGh4ejjvuuCPuvPPOCqWtPuUiAAAAAAAAAKBSevKTS5aLCsW1PwMAAABgdcpFVfbi4tD6fO74ktH4ZxvytbNUbskKAAAAAAAAAKAcvfmueKhv7c8tFwEAAACUT7moytKKNeUUhF58s6ayUb1qlAIUAAAAAAAAANA4evKTSz63XAQAAABQPuWiKqtGuaZRCjuNUoACAAAAAAAAABpLb76r5HPLRQAAAADla6t1AAAAAAAAAAAAWBe9ZSwXNcpf3goAAABQa8pFAAAAAAAAAAA0lJ58d8nnI2OjsXx4MKM0AAAAAI1NuQgAAAAAAAAAgIbSm1IuiogoFPszSAIAAADQ+JSLAAAAAAAAAABoKGnLRRERfcpFAAAAAGVpr3WAZpfL5WodAQAAAAAAAACgqUzr7IpcRCQlbiwXAQAAAJRHuajKkqTUH2MBAAAAAAAAALCuJrS1xbTOrigMDqz1xnIRAAAAQHmUi6pk9913t1oEAAAAAAAAAFAlPflu5SIAAACAClAuqpI//vGPtY4AAAAAAAAAANC0evPd8VDfM2t9XlAuAgAAAChLW60DAAAAAAAAAADAuurJd5d8brkIAAAAoDzKRQAAAAAAAAAANJzelHKR5SIAAACA8igXAQAAAAAAAADQcMpZLkqSJKM0AAAAAI1LuQgAAAAAAAAAgIbTm59c8vnI2Gj0Dw9llAYAAACgcSkXAQAAAAAAAADQcHryXak3fcXlGSQBAAAAaGzKRQAAAAAAAAAANJy05aKIiEKxP4MkAAAAAI1NuQgAAAAAAAAAgIYzrbMrcik3fcpFAAAAAKmUiwAAAAAAAAAAaDgT2tpiamdXyRvlIgAAAIB0ykUAAAAAAAAAADSk3nx3yecF5SIAAACAVMpFAAAAAAAAAAA0pJ6UcpHlIgAAAIB0ykUAAAAAAAAAADQky0UAAAAAG065CAAAAAAAAACAhmS5CAAAAGDDKRcBAAAAAAAAANCQylkuSpIkozQAAAAAjUm5CAAAAAAAAACAhpS2XLRibDT6h4cySgMAAADQmJSLAAAAAAAAAABoSGnLRREvrBcBAAAAsHbKRQAAAAAAAAAANKTe/OTUm77i8gySAAAAADQu5SIAAAAAAAAAABrStM6uyKXc9FkuAgAAAChJuQgAAAAAAAAAgIY0oa0tpnZ2lbwpKBcBAAAAlNRe6wA0tunTp6fe5HK5WLJkSQZpAAAAAAAAAIBW05PvjqWDA2t9brkIAAAAoLSWLhdtueWWqTe5XC4eeOCBDNI0pkKhELlcLpIkWetNLpc2QA4AAAAAAAAAsH56893xcN8za32uXAQAAABQWkuXix566CHFmApZ2+9Tqd9bAAAAAAAAAIAN1ZPvLvm8oFwEAAAAUFJLl4tWqqdizIQJE1JvcrlcjIyMZJAGAAAAAAAAAKC+9aaUiywXAQAAAJSmXFRnGnXpZ025rT4BAAAAAAAAANVWznJRkiR+jgEAAABgLdpqHaAeJEnykl+1lMvl1voLAAAAAAAAAIC/S1suWjE2Gv0rhjJKAwAAANB4lIvqVL0VngAAAAAAAAAA6lFPZ+lyUUREYaA/gyQAAAAAjUm5CAAAAAAAAACAhtXblV4u6isuzyAJAAAAQGNSLgIAAAAAAAAAoGFN6+yKXMpNX3EgkywAAAAAjUi5CAAAAAAAAACAhtXeNiGmdOZL3hQsFwEAAACslXIRAAAAAAAAAAANrTc/ueRzy0UAAAAAa6dcBAAAAAAAAABAQ+vp7Cr5vM9yEQAAAMBaKRcBAAAAAAAAANDQertKLxcVBvszSgIAAADQeJSLAAAAAAAAAABoaD2d3SWf9w0oFwEAAACsjXIRAAAAAAAAAAANrberdLmoMNgfSZJklAYAAACgsSgXAQAAAAAAAADQ0NKWi1aMjkb/iqGM0gAAAAA0FuUiAAAAAAAAAAAaWm++dLkoIqIw0J9BEgAAAIDGo1wEAAAAAAAAAEBD6+1KLxf1DSoXAQAAAKyJchEAAAAAAAAAAA1tWmdX5FJu+iwXAQAAAKxRe60DANTao48+GldeeWXcfvvtcdddd8WiRYti2bJl8fzzz0eSJDFlypSYMmVKbL755jF37tzYbrvtYu+99445c+bUOnpTeOqpp+Kaa66JO+64I+69997461//Gn19fbFs2bJYvnx5tLe3r/rfQW9vb8yePTu23nrr2HrrreMNb3hDzJ07N3K5tH9NAAAAAAAAADSz9rYJMaUzH88PFtd6U7BcBAAAALBGykVASyoUCnHOOefEBRdcELfffnvJ2yVLlsSSJUvioYceij/96U+rPj5nzpw49NBD4/jjj4+ZM2dWO3JTuf/+++Pcc8+Nyy+/PO64446StyMjIzE4OBjPPPNMRETcfPPNqz2fPn167LrrrrH77rvHfvvtF9tss03VcgMAAAAAAAD1q7ezu2S5yHIRAAAAwJrlkiRJah2iVtra2iKXy8WafgtWfjyXy8Xo6GhLZyql0fLC8uXL45RTTolvf/vb0d9fmT84njRpUhx++OHx5S9/OTbaaKOKfM1mdeWVV8ZXv/rVuOaaa9b43xuV8OpXvzre/e53xz//8z+3RNHomWeeiU022WS1jz399NOx8cYb1ygRAAAAAAAA1MZp1/wybnvy4bU+32nzOfH/23XfDBMBAAAAjaSVfy63rdYBALLyq1/9Kl796lfHV7/61YoViyIihoeH4+yzz45tttkmzjvvvIp93WZy6623xt577x1vf/vb4w9/+EPVikUREXfffXd86Utfim9961tVewcAAAAAAABQf3rz3SWf9xWXZ5QEAAAAoLEoFwFNb2xsLD772c/GgQceGI899ljV3vPcc8/FUUcdFccee2wMDw9X7T2NZHR0NE455ZT4h3/4h7j66qtrHQcAAAAAAABoYj35ySWfF4oDGSUBAAAAaCzttQ4AUE2jo6Pxvve9L376059m9s6zzz477rvvvvjNb34TXV1dmb233jz11FNx0EEHxXXXXVfrKAAAAAAAAEAL6M2X/vezfcXlkSRJ5HK5jBIBAAAANAbLRUDTGhsbiyOOOCLTYtFK1157bfzjP/5jDA0NZf7uenD//ffHLrvsolgEAAAAAAAAZCZtuWjF6GgMrBjOKA0AAABA47BcBDStz3zmM/GjH/1onT5nzpw58aY3vSle+9rXxvTp0yOXy0VfX1/cfffd8Ze//CXuuOOOsr/W7373uzjmmGPi/PPPX9foDe3222+PvffeO55++ulaRwEAAAAAAABaSG++O/Wmr7g8uid1ZJAGAAAAoHEoFwFN6YorrojTTjut7PsDDjggPv3pT8eOO+5Y8u6OO+6I008/PX70ox/F2NhY6te94IILYo899oijjz667CyN7JFHHol3vOMd61ws2mijjeLNb35z7LbbbrHtttvGlltuGdOnT4/u7hf+8L9QKEShUIi+vr6455574rbbbovbbrstbrnlligUClX4TgAAAAAAAIBGU165qD9eMW1GBmkAAAAAGodyEdB0lixZEh/4wAciSZLU2+nTp8cFF1wQ++67b1lf+7WvfW388Ic/jOOPPz4OPvjgePTRR1M/51//9V9jjz32iNmzZ5f1jkZVKBRi3333jSeeeKLsz3nXu94Vxx57bOyzzz7R3r72/5c0c+bMmDlzZkRE7Lzzzqs+PjIyEtdff31cdtll8etf/zruueee9f8GAAAAAAAAgIY2Ld+VelMo9meQBAAAAKCxtNU6AEClfeYzn4lnn3029e4Vr3hF3HjjjWUXi8bbeeed46abboq5c+em3haLxfi3f/u3dX5Hozn66KPjzjvvLOt2/vz5cdNNN8Wll14a73znO0sWi0ppb2+PPfbYI84444y4++6746abboqjjjoqurrS/6UBAAAAAAAA0Fza2ybE1I58yZs+5SIAAACAl1AuAprKLbfcEmeffXbq3bRp0+Lqq6+Orbbaar3ftckmm8Tvf//7eMUrXpF6e/nll8dvfvOb9X5XvTvnnHPiF7/4RepdW1tbnHrqqfHnP/85dthhh4rn2GGHHeLcc8+Nxx9/PI444oiKf30AAAAAAACgvvXmu0s+t1wEAAAA8FLKRUBT+eIXvxhjY2Opd2effXZss802G/y+TTfdNH784x/HhAkTUm8///nPb/D76tGiRYviox/9aOpdR0dHXHzxxfGZz3ymrN+vDdHT0xPz5s2r6jsAAAAAAACA+tOTUi6yXAQAAADwUspFQNO4995741e/+lXq3QEHHBAHHXRQxd672267xXHHHZd6d9NNN8Uf/vCHir23Xpx00knR31/6D+Db2triRz/6UfzTP/1TRqkAAAAAAACAVmS5CAAAAGDdKRcBTePrX/96JElS8qa9vT3OOOOMir/75JNPjqlTp6befe1rX6v4u2vp2muvjV/84hepd6eeeqpiEQAAAAAAAFB1losAAAAA1p1yEdAUhoaG4uKLL069e8973hOzZ8+u+PtnzJgRH/zgB1Pvrrzyyli8eHHF318rH//4x1Nvdtttt/jEJz6RQRoAAAAAAACg1ZWzXJT2l1YCAAAAtBrlIqApXH755bF06dLUu49+9KNVy3DCCSdEW1vp/1odHR2Niy66qGoZsvSnP/0pbrzxxpI3EyZMiO9973upvy8AAAAAAAAAldCTn1zy+fDoSAysGM4oDQAAAEBj8NPeQFP4yU9+knoze/bs2HnnnauWYYsttojddtst9a6crI3ga1/7WurN4YcfHnPnzs0gDQAAAAAAAED6clFERF9xeQZJAAAAABqHchHQ8EZHR+Pqq69OvXvve99b9SyHHHJI6s3//u//xpIlS6qepZoefvjhuOyyy1LvPvaxj2WQBgAAAAAAAOAF5ZSLCsX+DJIAAAAANA7lIqDh3XjjjbF06dLUu3e84x1Vz1LOO8bGxuL3v/991bNU00UXXRRJkpS8eetb3xrbbrttRokAAAAAAAAAIqZ1dqXe9CkXAQAAAKxGuQhoeOUUdaZMmRI77bRT1bNsscUWMXv27NS7q666qupZqumiiy5KvTn00EMzSAIAAAAAAADwd+0TJsTUjnzJG8tFAAAAAKtTLgIa3l/+8pfUm5122ina29szSBOx2267pd4sWLAggyTV8cADD8Stt95a8qatrS3222+/bAIBAAAAAAAAjNOT7y753HIRAAAAwOqUi4CGd8stt6TevPGNb8wgyQt22GGH1Ju77747hoaGMkhTeVdffXXqzetf//qYOXNmBmkAAAAAAAAAVtebUi6yXAQAAACwOuUioKEtXrw4nnzyydS7eisXjYyMxP/93/9lkKbyrrnmmtSb+fPnZ5AEAAAAAAAA4KUsFwEAAACsG+UioKHdfvvtZd1tu+22VU7yd9tss01Zd+VmrzfXXntt6s1OO+2UQRIAAAAAAACAl7JcBAAAALBu2msdAGBDPPjgg2XdzZ49u8pJ/q63tzemT58ezz33XMm7crPXk0cffTSeeuqp1Lu5c+em3ixZsiSuuOKKuOGGG+KOO+6IRYsWxdKlS2P58uUxadKk6OrqihkzZsSsWbNiq622ih133DHmz58fW2+9dSW+FQAAAAAAAKBJpZWL+or9kSRJ5HK5jBIBAAAA1DflIqChLVq0KPVm0003je7u0n94XGmzZ8+OG2+8seRNOdnrzZ133lnW3Zw5c9b48bGxsbj88svjv/7rv+KPf/xjjI6OrvGuWCxGsViMJUuWxH333RcREd/5zndWfe2DDjooPvjBD8asWbPW47sAAAAAAAAAmllPSrloeHQkBlYMR/ekjowSAQAAANQ35aIyHHXUUbWO8BL1mAlq4aGHHkq9ednLXlb9IC+y2Wabpd40a7loxowZMXXq1Jd8/Oqrr44TTjgh7r777g3K8Ne//jW+/OUvx2mnnRbvec974tRTT11rmQkAAAAAAABoPb35yak3hWK/chEAAADA3ygXrUWSJKv+5w9/+MOavHttH69FplLWlhey8Pjjj6febLrpphkkWfd3PvbYYxkkqaxyikGbbLLJav/c398fxx13XFx44YUVzTI6Ohr/8z//E7/85S/jYx/7WHz+85+PiRMnVvQdAAAAAAAAQOPpyXel3vQVl8fLp03PIA0AAABA/WurdYBGkCRJZr/qMVMl8kK1LFmyJPVm5syZGSRZXTnloueeey6DJJX16KOPpt5svPHGq/7zAw88EDvttFPFi0XjDQ8Px5e+9KXYfffdy8oHAAAAAAAANLeezu7Um0JxIIMkAAAAAI1BuagMuVwus1/1mKkSeaFayikX9fT0VD/Ieryzv78/hoaGqh+mgp566qnUm5Xf+wMPPBB77LFH3HnnnVVO9YIbbrghdt5557LWlQAAAAAAAIDm1T5hQkzpyJe86SsuzygNAAAAQP1TLipDPS4B1XqxyHIR9aKvry/1ZsqUKRkkWb93Ntp60ZNPPpl6M2nSpFi8eHG85S1viccffzyDVH/3xBNPxO67765gBAAAAAAAAC2uN196vahQ7M8oCQAAAED9a691AID1VSwWY8WKFal3tSgXTZ06tay7pUuXxmabbVblNJWRJElZS1ETJkyIQw45JB599NHU26lTp8Zuu+0W2223XWyxxRYxefLkGBkZiUKhEPfff38sWLAgbrnllhgdHS0757PPPhv7779/LFiwIGbMmFH25wEAAAAAAADNoyffHY8Unl3r8z7lIgAAAIBVlIuAhjU8PFzWXT5feu6+Gjo7O8u6K/d7qAeDg4MxNjaWenfppZfG4OBgyZudd945Pv7xj8d+++0XEydOLHn71FNPxfnnnx9nnHFGPPPMM2VlfeCBB+Kwww6LK664oqx7AAAAAAAAoLlYLgIAAAAon3IR0LDKLeZMmDChykleqr29vP96bbRy0Ybe9fT0xLe+9a047LDDyn7vpptuGh//+Mfj+OOPj5NOOinOOuussj7vt7/9bZx99tlxzDHHlP2uZrHrrruW/X+DVM+dd95Z6wgAAAAAAAAtqyelXGS5CAAAAODv2modAGB9lVvMqUXJotx3rlixospJKmdoaGiDPn/WrFlxww03rFOxaLwpU6bEmWeeGeecc07ZhbFPfvKTsXTp0vV6HwAAAAAAANC40paL+or9kSRJRmkAAAAA6ptZA6BhjYyMlHWnXFQZG7KytNlmm8Xvf//7mDVr1gbnOProo2PChAlx5JFHpt4+99xzcfrpp8epp566we9tJNddd11svPHGtY4BAAAAAAAANZNWLhoeHYniiuHomtSRUSIAAACA+mW5KCJyuZxfVfgF1VZugWd0dLTKSdb/nbUoPq2vcteC1uS8886rSLFopSOOOCIOP/zwsm6//e1vR7FYrNi7AQAAAAAAgPrXk1IuinhhvQgAAAAA5aKIiEiSxK8q/YJqmjRpUll35S4cVVK5i0Tlfg/1YH2zfvCDH4x99tmnwmkivvGNb8TLXvay1LtCoRAXXXRRxd8PAAAAAAAA1K+05aKIiIJyEQAAAEBERDTOZEYV7L777hZ2oIFNnDixrLtalIvKfWezl4u6u7vj9NNPr0KaiJ6envjKV74SH/jAB1Jvf/zjH8eRRx5ZlRwAAAAAAABA/enptFwEAAAAUK6WLhf98Y9/rHUEYAN0dHSUdTc4OFjlJOv/zkYqF5X7+z3eoYceGj09PZUP8zcHH3xw/Pu//3s8++yzJe/+9Kc/xfLly2Py5MlVywIAAAAAAADUj/YJE2JKRz6WDRXXeqNcBAAAAPCCli4XAetu0aJFsWDBgqq+o7u7O/bff//Uu3w+H+3t7akrQcuWLatUtLKV+86pU6dWOUnldHZ2xsSJE2PFihVlf86HPvShKiZ6ofB0xBFHxBlnnFHybnh4OK699tp45zvfWdU8AAAAAAAAQP3oyXeVLBcVisszTAMAAABQv5SLgHVy7bXXxpFHHlnVd2yxxRZllYsiInp7e+OZZ54pefP8889XItY6Kfed06dPr3KSypoxY0Y89dRTZd3OmjUr3vjGN1Y5UcQ//dM/pZaLIiJuuukm5SIAAAAAAABoIb35yfFoYclan/cVBzJMAwAAAFC/2modAGBDzJgxI/Vm6dKlGSRZ93d2dXVFZ2dnBmkqp5zf75V22mmnKib5u9e//vUxadKk1LuFCxdmkAYAAAAAAACoFz35rpLPLRcBAAAAvEC5CGho5ZRdFi9enEGS1ZWz7rMuRZ16UY/loo6Ojth+++1T7x544IEM0gAAAAAAAAD1ojc/ueTzvmJ/RkkAAAAA6ptyEdDQXv7yl6felFP0qbRy3llO9nqzLplf97rXVTHJ6sopFz322GMZJAEAAAAAAADqRW++u+TzQrE/kiTJKA0AAABA/VIuAhraq171qtSbJ554ovpBXuTJJ59MvZk1a1YGSSpryy23LPt2+vTpVUyy7u9aunRpDA0NZZAGAAAAAAAAqAc9KeWiodGRKK4YzigNAAAAQP1SLgIaWjkFnaeeeioGBgYySPN3999/f+pNs5eLenp6qhdkPd+V9f8dAAAAAAAAALWTtlwUEdFX7M8gCQAAAEB9Uy4CGlo5ZZckScoq+1RKoVCIJUuWpN6tS1GnXmy11VZl3yoXAQAAAAAAALWUtlwUEVFQLgIAAABQLgLWzRFHHBFJklT110MPPVR2nu22266su3vuuWc9v+N1V+67ys1eT173uteVfZvL5aqYpHbvAgAAAAAAABpDT2dX6o3lIgAAAADlIqDBbbbZZjFz5szUu4ULF2aQpvx3tbe3r1NRp1709vaWvbhUKBSqG2acvr6+su66utL/5QEAAAAAAADQHCZOaI/JHZ0lb5SLAAAAAJSLgCbwxje+MfUmy3LRzTffnHqz7bbbRmdn6T/Erlc77LBDWXflFn4qodwiU3d3d3WDAAAAAAAAAHWlN1/63xEWlIsAAAAAlIuAxjd//vzUmxtuuCFGRkYySBPxpz/9KfVmp512yiBJdeyyyy5l3T333HNVTrJu75oxY0ZMmjQpgzQAAAAAAABAvejpLF0uslwEAAAAoFwENIE999wz9WbZsmVx4403Vj3LI488Evfff3/q3d577131LNXytre9ray722+/vcpJ/u62225Lvdl8880zSAIAAAAAAADUk96ulOWiQeUiAAAAAOUioOHtuOOOMXXq1NS7K664oupZynlHLpcrqxBVr+bOnRuveMUrUu8WLFiQQZqIoaGhsspF22yzTQZpAAAAAAAAgHrSm59c8nnfwPKMkgAAAADUL+UioOG1t7eXVda5+OKLq57loosuSr2ZN29ebLTRRlXPUk377rtv6s0NN9yQQZKIW265JYaHh1Pv/uEf/iGDNAAAAAAAAEA96elMWS4q9keSJBmlAQAAAKhPykVAU3jf+96XevPXv/61qms6jzzySPzpT39KvSsna717//vfn3rz0EMPxcKFC6ue5Wc/+1lZd/Pnz69yEgAAAAAAAKDe9HaVLhcNjY5EcST9LzMEAAAAaGbKRUBT2H///WPq1Kmpd9/4xjeqluG//uu/YmxsrORNW1tbHHLIIVXLkJXddtstZs2alXr33e9+t6o5BgcH4wc/+EHq3UYbbRQ77rhjVbMAAAAAAAAA9SdtuSgiom+gP4MkAAAAAPVLuQhoCp2dnXHwwQen3v3sZz+L+++/v+LvX7JkSZx99tmpd29729tis802q/j7s5bL5eLII49MvfvJT34SfX19Vctx8cUXx5IlS1Lv9t9//5gwYULVcgAAAAAAAAD1KW25KCKiMKhcBAAAALQ25SKgafz7v/975HK5kjcjIyNx0kknVfzdn/vc5+L5559PvTvxxBMr/u5a+chHPhLd3aX/IL6/v79q33NfX1986lOfKuv26KOPrkoGAAAAAAAAoL71dHal3lguAgAAAFqdchHQNF796lfHfvvtl3p36aWXxk9/+tOKvfe6666LM888M/XujW98Y+y1114Ve29ExEMPPRS5XC7115vf/OaKvjciYvr06XHcccel3p133nlxxRVXVPz9J5xwQjz55JOpd294wxviTW96U8XfDwAAAAAAANS/iRPaY3JHZ8kby0UAAABAq1MuAprK5z//+WhrS/+vtmOOOSbuu+++DX7fU089FYceemiMjo6m3n7hC1/Y4PfVm49//OMxbdq01LsjjzwyHnzwwYq999xzz40f/ehHZd024+87AAAAAAAAUL7ezu6Szy0XAQAAAK1OuQhoKjvssEMcddRRqXdLly6NPffcc4MKL88880zstdde8eijj6bevuMd74j9999/vd9Vr2bOnBmnnHJK6t3ixYtjzz33jHvvvXeD33nOOeeUtZgUEbHHHnvEu971rg1+JwAAAAAAANC4evKly0WWiwAAAIBWp1wENJ0vf/nLMWPGjNS7xx57LHbccce44oor1vkdCxYsiHnz5sWdd96ZetvZ2Rnf/OY31/kdjeLDH/5wzJs3L/XuoYceip133rnsxaEXW7ZsWRx33HFxzDHHlLUU1dXVFWedddZ6vQsAAAAAAABoHr1dKctFReUiAAAAoLUpFwFNZ+ONN44f/OAHkcvlUm+XLFkS++67b7z73e+Om266KfX+rrvuiiOPPDJ22WWXeOSRR8rK881vfjPmzJlT1m0jmjBhQlx88cXR09OTelsoFOKf//mfY/78+fGLX/wiVqxYkfo5ixcvjtNOOy222mqrdSoLfeMb34itt9667HsAAAAAAACgOfV0ppSLBpZnlAQAAACgPrXXOgBANey3335x0kknxemnn17W/SWXXBKXXHJJbL311rHrrrvGa17zmpg+fXrkcrno6+uLe+65J/7yl7/E7bffvk45Dj300Dj22GPX51toKFtuuWWcf/75ccABB0SSJKn3N9xwQ7znPe+JadOmxW677Rave93rYvPNN4/JkyfH6Oho9PX1xQMPPBALFiyIm2++uaylovFOOOGEOOaYY9b32wEAAAAAAACaSG9+csnnhcGBSJKkrL/AEgAAAKAZKRcBTesrX/lKPPbYY/GTn/yk7M+577774r777qvI+/fcc8/4/ve/X5Gv1Qj233//OOuss+LYY48tq2AUEbF06dK4/PLL4/LLL69YjkMOOST+8z//s2JfDwAAAAAAAGhsvfmuks+HRlZEcWQ4uiZ2ZJQIAAAAoL601ToAQLW0tbXF+eefH+9+97szf/euu+4al156aXR0tNYfPn/wgx+MM888M9raavP/Xo477ri48MILa/Z+AAAAAAAAoP70pCwXRUQUigMZJAEAAACoT376Gmhq7e3t8dOf/jQ+8YlPZPbOI488Mq6++uro7u7O7J315Jhjjonf/va3MWPGjMze2dHREd/+9rfje9/7nmIRAAAAAAAAsJrefPq/u+0rLs8gCQAAAEB98hPYQNNra2uLr3zlK3HJJZfEy172sqq9p7e3N84+++z4/ve/33KLRS+29957x8KFC2Pfffet+rvmz58fCxYsiA9/+MNVfxcAAAAAAADQeHryXak3hWJ/BkkAAAAA6pNyEdAyDjzwwLjnnnvipJNOquiq0KRJk+Loo4+Oe++9Nz74wQ9W7Os2us033zx+/etfx2WXXRbbbbddxb/+3Llz44ILLojrr78+tt9++4p/fQAAAAAAAKA5TJzQHpMndZa86VMuAgAAAFqYchHQUqZMmRKnn356PProo/GVr3wlXvOa16z319pqq63is5/9bDz00ENxzjnnxMYbb1zBpM1jv/32i9tvvz2uueaaOPjgg2Pq1Knr/bWmTZsWhx12WPz2t7+NO+64Iw477LDI5XIVTAsAAAAAAAA0o9586b+A0nIRAAAA0MpySZIktQ4BUEsPP/xw/O53v4vbbrst7rrrrnjooYfi+eefj2XLlkWSJDFlypSYMmVKvPKVr4y5c+fGdtttF3vttVdsu+22tY7ekEZGRuL666+P66+/Pu666664995746mnnoply5ZFf39/5HK56O7ujmnTpsXmm28es2bNiu233z7mz58fO+ywQ0yaNKnW30JdeeaZZ2KTTTZZ7WNPP/20shsAAAAAAACM8x9/uCT+76lH1vp8/hZbx7++6R0ZJgIAAADqTSv/XG57rQMA1NoWW2wRxxxzTK1jtIz29vbYY489Yo899qh1FAAAAAAAAKBFpC0X9VkuAgAAAFpYW60DAAAAAAAAAABANfWklIsKykUAAABAC1MuAgAAAAAAAACgqVkuAgAAAFg75SIAAAAAAAAAAJpaWrloaGRFFFcMZ5QGAAAAoL4oFwEAAAAAAAAA0NR6UspFEdaLAAAAgNalXAQAAAAAAAAAQFPrzU9OvSkoFwEAAAAtSrkIAAAAAAAAAICmNi3flXrTV1yeQRIAAACA+qNcBAAAAAAAAABAU5s0oT0mT+oseVMoDmSUBgAAAKC+KBcBAAAAAAAAAND0evLdJZ9bLgIAAABalXIRAAAAAAAAAABNrze1XNSfURIAAACA+qJcBAAAAAAAAABA00srFxWUiwAAAIAWpVwEAAAAAAAAAEDT67FcBAAAALBGykUAAAAAAAAAADQ9y0UAAAAAa6ZcBAAAAAAAAABA00tbLhocWRHFFcMZpQEAAACoH8pFAAAAAAAAAAA0vbTlogjrRQAAAEBrUi4CAAAAAAAAAKDppS0XRUT0KRcBAAAALUi5CAAAAAAAAACApldOuchyEQAAANCKlIsAAAAAAAAAAGh6kya0R/ekjpI3losAAACAVqRcBAAAAAAAAABAS+jNTy75vK+4PKMkAAAAAPVDuQgAAAAAAAAAgJbQm+8u+bxguQgAAABoQcpFAAAAAAAAAAC0hJ6UclGfchEAAADQgpSLAAAAAAAAAABoCZaLAAAAAF5KuQgAAAAAAAAAgJZguQgAAADgpZSLAAAAAAAAAABoCWnLRYMjK6K4YjijNAAAAAD1QbkIAAAAAAAAAICWkLZcFBFRsF4EAAAAtBjlIgAAAAAAAAAAWkLaclGEchEAAADQepSLAAAAAAAAAABoCeUsF/UpFwEAAAAtRrkIAAAAAAAAAICWMGlCe3RP6ih5o1wEAAAAtBrlIgAAAAAAAAAAWkZvfnLJ5wXlIgAAAKDFKBcBAAAAAAAAANAyevJdJZ/3FZdnlAQAAACgPigXAQAAAAAAAADQMtKXiwYySgIAAABQH5SLAAAAAAAAAABoGZaLAAAAAFanXAQAAAAAAAAAQMuwXAQAAACwOuUiAAAAAAAAAABaRk++u+Tz4shwDK4YzigNAAAAQO0pFwEAAAAAAAAA0DJ6U8pFERF9xf4MkgAAAADUB+UiAAAAAAAAAABaRtpyUUREQbkIAAAAaCHKRQAAAAAAAAAAtIzeTstFAAAAAOMpFwEAAAAAAAAA0DImtbdH96SOkjfKRQAAAEArUS4CAAAAAAAAAKCl9ORLrxcVlIsAAACAFqJcBAAAAAAAAABAS+lNKRdZLgIAAABaiXIRAAAAAAAAAAAtpafTchEAAADASspFAAAAAAAAAAC0lN6ulOWiQeUiAAAAoHUoFwEAAAAAAAAA0FJSl4sGlIsAAACA1qFcBAAAAAAAAABAS+ntmlzyeXFkOAZXDGeUBgAAAKC2lIsAAAAAAAAAAGgpPZ1dqTd9RetFAAAAQGtQLgIAAAAAAAAAoKWkLRdFRBQGBzJIAgAAAFB7ykUAAAAAAAAAALSU3s7u1Ju+geUZJAEAAACoPeUiAAAAAAAAAABayqT29uia2FHypq/Yn1EaAAAAgNpSLgIAAAAAAAAAoOX0dpVeLyoMKhcBAAAArUG5CAAAAAAAAACAltPTWbpc1DegXAQAAAC0BuUiAAAAAAAAAABaTm/echEAAABAhHIRAAAAAAAAAAAtKK1c1FdULgIAAABag3IRAAAAAAAAAAAtpydtuUi5CAAAAGgRykUAAAAAAAAAALSctOWi4orhGBxZkVEaAAAAgNpRLgIAAAAAAAAAoOWkLRdFWC8CAAAAWoNyEQAAAAAAAAAALSdtuSgiok+5CAAAAGgBykUAAAAAAAAAALSccpaL+gaWZ5AEAAAAoLaUiwAAAAAAAAAAaDkd7ROja2JHyZvCoOUiAAAAoPkpFwEAAAAAAAAA0JJ6U9aL+orKRQAAAEDzUy4CAAAAAAAAAKAl9aSUiwrKRQAAAEALUC4CAAAAAAAAAKAlWS4CAAAAUC4CAAAAAAAAAKBFpZWLLBcBAAAArUC5CAAAAAAAAACAltRjuQgAAABAuQgAAAAAAAAAgNaUtlxUXDEcgyMrMkoDAAAAUBvKRQAAAAAAAAAAtKS05aKIiIL1IgAAAKDJKRcBAAAAAAAAANCS0paLIiL6lIsAAACAJqdcBAAAAAAAAABAS7JcBAAAAKBcBAAAAAAAAABAi+ponxhdEyeVvOkrLs8oDQAAAEBtKBcBAAAAAAAAANCyevOTSz4vFAcySgIAAABQG8pFAAAAAAAAAAC0rJ58V8nnlosAAACAZqdcBAAAAAAAAABAy0pfLurPKAkAAABAbSgXAQAAAAAAAADQsnry3SWf9ykXAQAAAE1OuQgAAAAAAAAAgJbVm1IuslwEAAAANDvlIgAAAAAAAAAAWlbactHAiuEYGlmRURoAAACA7CkXAQAAAAAAAADQstKWiyKsFwEAAADNTbkIAAAAAAAAAICWVU65qE+5CAAAAGhiykUAAAAAAAAAALSsHuUiAAAAoMUpFwEAAAAAAAAA0LI62idG18RJJW8KykUAAABAE1MuAgAAAAAAAACgpaWtF1kuAgAAAJqZchEAAAAAAAAAAC2tN6VcZLkIAAAAaGbKRQAAAAAAAAAAtLT05aLlGSUBAAAAyJ5yEQAAAAAAAAAALa03P7nk80JxIKMkAAAAANlTLgIAAAAAAAAAoKX15LtKPrdcBAAAADQz5SIAAAAAAAAAAFpa2nLRwIrhGBpZkVEaAAAAgGwpFwEAAAAAAAAA0NJ6892pN4VifwZJAAAAALKnXAQAAAAAAAAAQEvrKaNc1KdcBAAAADQp5SIAAAAAAAAAAFpaOeUiy0UAAABAs1IuAgAAAAAAAACgpXW2T4z8xEklbywXAQAAAM1KuQgAAAAAAAAAgJbXm7JeZLkIAAAAaFbKRQAAAAAAAAAAtLyelHKR5SIAAACgWSkXAQAAAAAAAADQ8tKWi5SLAAAAgGalXAQAAAAAAAAAQMtLWy4qKBcBAAAATUq5CAAAAAAAAACAlme5CAAAAGhVykUAAAAAAAAAALS8ns7S5aKBFUMxNLIiozQAAAAA2VEuAgAAAAAAAACg5fV2TU69KVgvAgAAAJqQchEAAAAAAAAAAC2vN196uSgiok+5CAAAAGhCykUAAAAAAAAAALS8njLKRZaLAAAAgGakXAQAAAAAAAAAQMvrbJ8Y+YmTSt5YLgIAAACakXIRAAAAAAAAAABE+nqR5SIAAACgGSkXAQAAAAAAAABARPSmlIssFwEAAADNSLkIAAAAAAAAAAAioqdTuQgAAABoPcpFAAAAAAAAAAAQEb1dpctFhUHlIgAAAKD5KBcBAAAAAAAAAECUsVw0oFwEAAAANB/lIgAAAAAAAAAAiIjefOly0cCKoRgeGckoDQAAAEA2lIsAAAAAAAAAACAiersmp970DVovAgAAAJqLchEAAAAAAAAAAERET2dX6k3fwPIMkgAAAABkR7kIAAAAAAAAAAAiojffnXpTGBzIIAkAAABAdpSLAAAAAAAAAAAgIjonTop8+6SSN5aLAAAAgGajXAQAAAAAAAAAAH/T01V6vagw2J9REgAAAIBsKBcBAAAAAAAAAMDf9HaWLhf1DSgXAQAAAM1FuQgAAAAAAAAAAP6mJ2+5CAAAAGgtykUAAAAAAAAAAPA3vSnlor6ichEAAADQXJSLAAAAAAAAAADgb9KWi/oGlIsAAACA5qJcBAAAAAAAAAAAf5O2XDSwYiiGR0YySgMAAABQfcpFAAAAAAAAAADwN2nlooiIvkHrRQAAAEDzUC4CAAAAAAAAAIC/6SmjXFQoKhcBAAAAzUO5CAAAAAAAAAAA/qas5SLlIgAAAKCJKBcBAAAAAAAAAMDfdE6cFPn2SSVvLBcBAAAAzUS5CAAAAAAAAAAAxunJd5V83ldcnlESAAAAgOpTLgIAAAAAAAAAgHF685NLPi8UBzJKAgAAAFB9ykUAAAAAAAAAADCO5SIAAACglSgXAQAAAAAAAADAOJaLAAAAgFaiXAQAAAAAAAAAAOP05LtLPrdcBAAAADQT5SIAAAAAAAAAABinN6Vc1D88FMMjIxmlAQAAAKgu5SIAAAAAAAAAABgnrVwUEVEY7M8gCQAAAED1KRcBAAAAAAAAAMA4PWWUi/qKykUAAABAc1AuAgAAAAAAAACAccopFxWUiwAAAIAmoVwEAAAAAAAAAADj5CdOis72iSVvLBcBAAAAzUK5CAAAAAAAAAAAXqQ3Zb3IchEAAADQLJSLAAAAAAAAAADgRXpSykWWiwAAAIBmoVwEAAAAAAAAAAAvYrkIAAAAaBXKRQAAAAAAAAAA8CK9+ckln1suAoD/P3t3Hh9nXe6N/5okbTJJl0wpm0DZj0UsSPVAlXIAQY64gXhABEEW4XnQcxQBH0V9EBVXXBA9oIddFFRAFq2AiCA7FBEQ2ZdCgRZKO2maZLLO/P7wp+fRQ+eeJDP3ZNL3+/XqP9zX3N9Pbvtq62Q+uQAAmCyUiwAAAAAAAAAA4B90Jmwuyhd6UkoCAAAAUFvKRQAAAAAAAAAA8A9yCeWi3sGBGBwZTikNAAAAQO0oFwEAAAAAAAAAwD9I2lwUEdFV6E0hCQAAAEBtKRcBAAAAAAAAAMA/SNpcFKFcBAAAAEwOykUAAAAAAAAAAPAPKtlclFcuAgAAACYB5SIAAAAAAAAAAPgH2SlTo61lStkZm4sAAACAyUC5CAAAAAAAAAAAXkXS9iKbiwAAAIDJQLkIAAAAAAAAAABeRS6hXGRzEQAAADAZKBcBAAAAAAAAAMCrsLkIAAAAWBcoFwEAAAAAAAAAwKtI2lykXAQAAABMBspFAAAAAAAAAADwKnLZaWWvdykXAQAAAJOAchEAAAAAAAAAALyKzmx72es9g/0xODKcUhoAAACA2lAuAgAAAAAAAACAV5G0uSgiYnWhL4UkAAAAALWjXAQAAAAAAAAAAK+iM9uROJMv9KSQBAAAAKB2lIsAAAAAAAAAAOBV5CooF3UVelNIAgAAAFA7ykUAAAAAAAAAAPAqslOmRmvLlLIzeeUiAAAAoMEpFwEAAAAAAAAAwFokbS9SLgIAAAAanXIRAAAAAAAAAACsRWdCuahLuQgAAABocMpFAAAAAAAAAACwFjYXAQAAAJOdchEAAAAAAAAAAKxFUrnI5iIAAACg0SkXAQAAAAAAAADAWnTaXAQAAABMcspFAAAAAAAAAACwFkmbi3oG+2NoZDilNAAAAADVp1wEAAAAAAAAAABrkbS5KCKiq9CXQhIAAACA2lAuAgAAAAAAAACAtchlpyXO5Au9KSQBAAAAqA3lIgAAAAAAAAAAWIvObHviTFehJ4UkAAAAALWhXAQAAAAAAAAAAGuRbZkarS1Tys7kC30ppQEAAACoPuUiAAAAAAAAAABYi0wmE51t5bcX5W0uAgAAABqYchEAAAAAAAAAAJSRa59W9npXoTelJAAAAADVp1wEAAAAAAAAAABl5LIdZa/nlYsAAACABqZcBAAAAAAAAAAAZXS2lS8X2VwEAAAANDLlIgAAAAAAAAAAKCPXnrC5qF+5CAAAAGhcykUAAAAAAAAAAFBG0uainoH+GBoZTikNAAAAQHUpFwEAAAAAAAAAQBlJm4siIrr6+1JIAgAAAFB9ykUAAAAAAAAAAFBG0uaiiIh8X28KSQAAAACqT7kIAAAAAAAAAADKqGxzkXIRAAAA0JiUiwAAAAAAAAAAoIxsy9RobW4pO2NzEQAAANColIsAAAAAAAAAAKCMTCYTndny24tsLgIAAAAalXIRAAAAAAAAAAAkyLVPK3s9X+hJKQkAAABAdSkXAQAAAAAAAABAgs628puL8n02FwEAAACNSbkIAAAAAAAAAAAS5LLly0Vd/cpFAAAAQGNSLgIAAAAAAAAAgASdCeWifEG5CAAAAGhMykUAAAAAAAAAAJAgaXNRz0B/DI0Mp5QGAAAAoHqUiwAAAAAAAAAAIEFSuSgioqu/L4UkAAAAANWlXAQAAAAAAAAAAAk6KykXFXpTSAIAAABQXcpFAAAAAAAAAACQoJLNRXnlIgAAAKABKRcBAAAAAAAAAECC7JSp0drcUnbG5iIAAACgESkXAQAAAAAAAABAgkwmE50J24tsLgIAAAAakXIRAAAAAAAAAABUIJdYLupJKQkAAABA9SgXAQAAAAAAAABABTqz08pe7yr0pZQEAAAAoHqUiwAAAAAAAAAAoAK5bHvZ6zYXAQAAAI1IuQgAAAAAAAAAACpgcxEAAAAwGSkXAQAAAAAAAABABXLZjrLX1wwUYnhkJKU0AAAAANWhXAQAAAAAAAAAABVIKhdFRHT196aQBAAAAKB6lIsAAAAAAAAAAKACnRWUi/IF5SIAAACgsSgXAQAAAAAAAABABSraXKRcBAAAADQY5SIAAAAAAAAAAKhAdsrUmNrcUnbG5iIAAACg0SgXAQAAAAAAAABABTKZTOL2IuUiAAAAoNEoFwEAAAAAAAAAQIWSykVdykUAAABAg1EuAgAAAAAAAACACnXaXAQAAABMMspFAAAAAAAAAABQIZuLAAAAgMlGuQgAAAAAAAAAACpkcxEAAAAw2SgXAQAAAAAAAABAhXLZaWWvrxkoxPDISEppAAAAAMZPuQgAAAAAAAAAACrUmW1PnOnqt70IAAAAaBzKRQAAAAAAAAAAUKGkzUUREV2FvhSSAAAAAFSHchEAAAAAAAAAAFSoM9uROJMv9KSQBAAAAKA6lIsAAAAAAAAAAKBC7VOmxtTmlrIz+UJvSmkAAAAAxk+5CAAAAAAAAAAAKpTJZCKXsL2oS7kIAAAAaCDKRQAAAAAAAAAAMAqdCeUim4sAAACARqJcBAAAAAAAAAAAo2BzEQAAADCZKBcBAAAAAAAAAMAo2FwEAAAATCbKRQAAAAAAAAAAMAo2FwEAAACTiXIRAAAAAAAAAACMQtLmou6BQgyPjKSUBgAAAGB8lIsAAAAAAAAAAGAUkjYXRUSs7u9LIQkAAADA+CkXAQAAAAAAAADAKCRtLoqIyBd6U0gCAAAAMH7KRQAAAAAAAAAAMAq57LTEmXyhJ4UkAAAAAOOnXAQAAAAAAAAAAKPQPmVqTG1uKTvTZXMRAAAA0CCUiwAAAAAAAAAAYBQymUx0ZjvKzuSViwAAAIAGoVwEAAAAAAAAAACjlEsoF9lcBAAAADQK5SIAAAAAAAAAABglm4sAAACAyUK5CAAAAAAAAAAARsnmIgAAAGCyUC4CAAAAAAAAAIBRsrkIAAAAmCyUiwAAAAAAAAAAYJSSNhd1DxRiuDiSUhoAAACAsVMuAgAAAAAAAACAUUraXBQRsbrQl0ISAAAAgPFRLgIAAAAAAAAAgFFK2lwUEZEv9KaQBAAAAGB8lIsAAAAAAAAAAGCUctlpiTPKRQAAAEAjUC4CAAAAAAAAAIBRap8yNaY0N5ed6Sr0pJQGAAAAYOyUiwAAAAAAAAAAYJQymUzi9qJ8oS+lNAAAAABjp1wEAAAAAAAAAABj0JltL3vd5iIAAACgESgXAQAAAAAAAADAGCRvLupNKQkAAADA2CkXAQAAAAAAAADAGHS2dZS93qVcBAAAADQA5SIAAAAAAAAAABiDXHv5clG+X7kIAAAAmPiUiwAAAAAAAAAAYAySNhd19xdiuDiSUhoAAACAsVEuAgAAAAAAAACAMUjaXBQRsbq/L4UkAAAAAGOnXAQAAAAAAAAAAGOQyyaXi/J9vSkkAQAAABg75SIAAAAAAAAAABiDzkrKRQXlIgAAAGBiUy4CAAAAAAAAAIAx6JjSGlOam8vOdPUrFwEAAAATm3IRAAAAAAAAAACMQSaTic628tuL8n3KRQAAAMDEplwEAAAAAAAAAABjlGsvXy6yuQgAAACY6JSLAAAAAAAAAABgjJI3F/WklAQAAABgbJSLAAAAAAAAAABgjHLZaWWvd/X3pZQEAAAAYGyUiwAAAAAAAAAAYIxy2fay1/MFm4sAAACAiU25CAAAAAAAAAAAxqgzYXPRmv5CDBdHUkoDAAAAMHrKRQAAAAAAAAAAMEZJm4tKEbG6vy+dMAAAAABjoFwEAAAAAAAAAABjlEvYXBQRke/rTSEJAAAAwNgoFwEAAAAAAAAAwBh1tnckznT1KxcBAAAAE5dyEQAAAAAAAAAAjFHHlNaY0tRcdiZfUC4CAAAAJi7lIgAAAAAAAAAAGKNMJhOd2fLbi7qUiwAAAIAJTLkIAAAAAAAAAADGIZdQLrK5CAAAAJjIlIsAAAAAAAAAAGAcbC4CAAAAGplyEQAAAAAAAAAAjIPNRQAAAEAjUy4CAAAAAAAAAIBxSCoX2VwEAAAATGTKRQAAAAAAAAAAMA6dCeWi7v6+GC6OpJQGAAAAYHSUiwAAAAAAAAAAYBySNheVImJ1f186YQAAAABGSbkIAAAAAAAAAADGIZedljjTVehNIQkAAADA6CkXAQAAAAAAAADAOHQmbC6KiMgrFwEAAAATlHIRAAAAAAAAAACMQ8fU1pjS1Fx2xuYiAAAAYKJSLgIAAAAAAAAAgHHIZDKJ24tsLgIAAAAmKuUiAAAAAAAAAAAYp1xCucjmIgAAAGCiUi4CAAAAAAAAAIBxsrkIAAAAaFTKRQAAAAAAAAAAME42FwEAAACNSrkIAAAAAAAAAADGyeYiAAAAoFEpFwEAAAAAAAAAwDglbS7q7u+LkWIxpTQAAAAAlVMuAgAAAAAAAACAcUoqF5UiYnV/XzphAAAAAEZBuQgAAAAAAAAAAMapM6FcFBGRL/SkkAQAAABgdJSLAAAAAAAAAABgnHLZaYkzXQWbiwAAAICJR7kIAAAAAAAAAADGqWNqa0xpai47Y3MRAAAAMBEpFwEAAAAAAAAAwDhlMpnozHaUnekq9KaUBgAAAKByykUAAAAAAAAAAFAFSeWivHIRAAAAMAEpFwEAAAAAAAAAQBXkbC4CAAAAGpByEQAAAAAAAAAAVIHNRQAAAEAjUi4CAAAAAAAAAIAqsLkIAAAAaETKRQAAAAAAAAAAUAVJ5aLV/X0xUiymlAYAAACgMspFAAAAAAAAAABQBZ0J5aJS/KVgBAAAADCRKBcBAAAAAAAAAEAVJG0uiojoKvSmkAQAAACgcspFAAAAAAAAAABQBUmbiyIi8spFAAAAwASjXAQAAAAAAAAAAFUwbWpbtDQ1l52xuQgAAACYaJSLAAAAAAAAAACgCjKZTHRm28vO5As9KaUBAAAAqIxyEQAAAAAAAAAAVEkuO63s9XyhL6UkAAAAAJVRLgIAAAAAAAAAgCpJ2lzUZXMRAAAAMMEoFwEAAAAAAAAAQJXYXAQAAAA0GuUiAAAAAAAAAACokly2o+x1m4sAAACAiUa5CAAAAAAAAAAAqqQzoVy0ur8vRorFlNIAAAAAJFMuAgAAAAAAAACAKknaXFSKiO7+vnTCAAAAAFRAuQgAAAAAAAAAAKokaXNRRES+0JtCEgAAAIDKKBcBAAAAAAAAAECVJG0uilAuAgAAACYW5SIAAAAAAAAAAKiSaVPboqWpuexMl3IRAAAAMIEoFwEAAAAAAAAAQJVkMpnozLaXnbG5CAAAAJhIlIsAAAAAAAAAAKCKOts6yl5XLgIAAAAmEuUiAAAAAAAAAACoolx7+XJRl3IRAAAAMIEoFwEAAAAAAAAAQBXZXAQAAAA0EuUiAAAAAAAAAACoouTNRT0pJQEAAABIplwEAAAAAAAAAABVlMtOK3t99UAhRorFlNIAAAAAlKdcBAAAAAAAAAAAVdTZVn5zUalUiu7+vpTSAAAAAJSnXAQAAAAAAAAAAFWUay9fLoqIyPf3ppAEAAAAIJlyEQAAAAAAAAAAVFHS5qKIiHyfchEAAAAwMSgXAQAAAAAAAABAFU1vbYvmpvIfy+myuQgAAACYIJSLAAAAAAAAAACgijKZTOQSthfZXAQAAABMFMpFAAAAAAAAAABQZZ3Z8uUim4sAAACAiUK5CAAAAAAAAAAAqiyXUC6yuQgAAACYKJSLAAAAAAAAAACgypI2F+ULykUAAADAxKBcBAAAAAAAAAAAVZZrL18u6upXLgIAAAAmBuUiAAAAAAAAAACoss628uWi1f19USwWU0oDAAAAsHbKRQAAAAAAAAAAUGW57LSy10ulUqweKKSUBgAAAGDtlIsAAAAAAAAAAKDKctn2xJl8oSeFJAAAAADlKRcBAAAAAAAAAECVdSZsLoqI6Cr0ppAEAAAAoDzlIgAAAAAAAAAAqLLprW3R3FT+ozl55SIAAABgAlAuAgAAAAAAAACAKstkMpFr6yg7Y3MRAAAAMBEoFwEAAAAAAAAAQA10ZsuXi2wuAgAAACYC5SIAAAAAAAAAAKiBXFK5qE+5CAAAAKg/5SIAAAAAAAAAAKiBpM1FXf3KRQAAAED9KRcBAAAAAAAAAEANJG4uKigXAQAAAPWnXAQAAAAAAAAAADWQtLlodX9fFIvFlNIAAAAAvDrlIgAAAAAAAAAAqIGkzUWlUilWDxRSSgMAAADw6pSLAAAAAAAAAACgBpLKRRERXYXeFJIAAAAArJ1yEQAAAAAAAAAA1EBnBeWifKEnhSQAAAAAa6dcBAAAAAAAAAAANTCtNRvNTeU/ntNV6EspDQAAAMCrUy4CAAAAAAAAAIAaaMpkorOtveyMzUUAAABAvSkXAQAAAAAAAABAjeSy08pe7yr0ppQEAAAA4NUpFwEAAAAAAAAAQI3ksh1lr+eViwAAAIA6Uy4CAAAAAAAAAIAa6VQuAgAAACY45SIAAAAAAAAAAKiRpM1FXcpFAAAAQJ0pFwEAAAAAAAAAQI0kbS7q6u+LYrGYUhoAAACA/0m5CAAAAAAAAAAAaiRpc1GpVIrugUJKaQAAAAD+J+UiAAAAAAAAAACokaTNRRER+UJvCkkAAAAAXp1yEQAAAAAAAAAA1EjS5qKIiC7lIgAAAKCOlIsAAAAAAAAAAKBGprVmozlT/iM6NhcBAAAA9aRcBAAAAAAAAAAANdKUyURntr3sjM1FAAAAQD0pFwEAAAAAAAAAQA3lstPKXs8XelJKAgAAAPA/KRcBAAAAAAAAAEANdWY7yl7P21wEAAAA1JFyEQAAAAAAAAAA1FAuoVzUpVwEAAAA1JFyEQAAAAAAAAAA1JDNRQAAAMBEplwEAAAAAAAAAAA1lLS5aHV/XxSLxZTSAAAAAPw95SIAAAAAAAAAAKihpM1FxVIpugcKKaUBAAAA+HvKRQAAAAAAAAAAUENJm4siIroKvSkkAQAAAPiflIsAAAAAAAAAAKCGkjYXRUTklYsAAACAOlEuAgAAAAAAAACAGpremo3mTPmP6dhcBAAAANSLchEAAAAAAAAAANRQUyYTM7PtZWdsLgIAAADqRbkIAAAAAAAAAABqLJftKHs9X+hJKQkAAADA31MuAgAAAAAAAACAGstlp5W93lXoSykJAAAAwN9TLgIAAAAAAAAAgBrrzLaXvW5zEQAAAFAvykUAAAAAAAAAAFBjNhcBAAAAE5VyEQAAAAAAAAAA1FjS5qKu/t4oFosppQEAAAD4b8pFAAAAAAAAAABQY0mbi4qlUqwZKKSUBgAAAOC/KRcBAAAAAAAAAECNdWY7Emfyhd4UkgAAAAD8PeUiAAAAAAAAAACosZxyEQAAADBBKRcBAAAAAAAAAECNTW/NRnOm/Ed1upSLAAAAgDpQLgIAAAAAAAAAgBprymRiZra97IzNRQAAAEA9KBcBAAAAAAAAAEAKctmOsteViwAAAIB6UC4CAAAAAAAAAIAUdCaUi7qUiwAAAIA6UC4CAAAAAAAAAIAU2FwEAAAATETKRQAAAAAAAAAAkILONpuLAAAAgIlHuQgAAAAAAAAAAFKQa08oF/X3RrFUSikNAAAAwF8oFwEAAAAAAAAAQAqSNhcVS6VY09+XUhoAAACAv1AuAgAAAAAAAACAFOTapyXO5JWLAAAAgJQpFwEAAAAAAAAAQApybe2JM/m+nhSSAAAAAPw35SIAAAAAAAAAAEjB9Lb2aMpkys50FXpTSgMAAADwF8pFAAAAAAAAAACQgqZMJjqzHWVn8spFAAAAQMqUiwAAAAAAAAAAICWdbcpFAAAAwMSiXAQAAAAAAAAAACnJtZcvF3X1KxcBAAAA6VIuAgAAAAAAAACAlCRuLupTLgIAAADSpVwEAAAAAAAAAAApyWVtLgIAAAAmFuUiAAAAAAAAAABISVK5aHWhL4qlUkppAAAAAJSLAAAAAAAAAAAgNZ0J5aKRUjHWDBRSSgMAAACgXAQAAAAAAAAAAKlJ2lwUEZEv9KaQBAAAAOAvlIsAAAAAAAAAACAllZSLupSLAAAAgBQpFwEAAAAAAAAAQEqmt7VHUyZTdiZf6EkpDQAAAIByEQAAAAAAAAAApKYpk4nOtvLbi/J9NhcBAAAA6VEuAgAAAAAAAACAFHVmy5eLuvqViwAAAID0KBcBAAAAAAAAAECKcgnlonxBuQgAAABIj3IRAAAAAAAAAACkKHFzkXIRAAAAkCLlIgAAAAAAAAAASJHNRQAAAMBEolwEAAAAAAAAAAApSioXrS70RbFUSikNAAAAsK5TLgIAAAAAAAAAgBR1JpSLRkrFWDNQSCkNAAAAsK5TLgIAAAAAAAAAgBQlbS6KiOgq9KaQBAAAAEC5CAAAAAAAAAAAUlVJuSivXAQAAACkRLkIAAAAAAAAAABSNL2tPZoymbIz+UJPSmkAAACAdZ1yEQAAAAAAAAAApKgpk4nOtvLbi7oKfSmlAQAAANZ1ykUAAAAAAAAAAJCyzmx72es2FwEAAABpUS4CAAAAAAAAAICU5bLTyl63uQgAAABIi3IRAAAAAAAAAACkzOYiAAAAYKJQLgIAAAAAAAAAgJQlby7qTSkJAAAAsK5TLgIAAAAAAAAAgJR1ZjvKXu8q9EWxVEopDQAAALAuUy4CAAAAAAAAAICU5RLKRSOlYvQMFFJKAwAAAKzLlIsAAAAAAAAAACBlSZuLIiLyhd4UkgAAAADrOuUiAAAAAAAAAABIWdLmogjlIgAAACAdykUAAAAAAAAAAJCyGa3ZaMpkys50KRcBAAAAKVAuAgAAAAAAAACAlDU1NcXMtvayMzYXAQAAAGlQLgIAAAAAAAAAgDrIZTvKXre5CAAAAEiDchEAAAAAAAAAANRBZ0K5yOYiAAAAIA3KRQAAAAAAAAAAUAc2FwEAAAATgXIRAAAAAAAAAADUQfLmop6UkgAAAADrMuUiAAAAAAAAAACog1x2WtnrXf19USyVUkoDAAAArKuUiwAAAAAAAAAAoA46s+1lr48Ui9EzUEgpDQAAALCuUi4CAAAAAAAAAIA6SNpcFBGRL/SmkAQAAABYlykXAQAAAAAAAABAHeSyHYkzXcpFAAAAQI0pFwEAAAAAAAAAQB3MaM1GJpMpO2NzEQAAAFBrykUAAAAAAAAAAFAHTU1N0dnWXnbG5iIAAACg1pSLAAAAAAAAAACgTjqzHWWv21wEAAAA1JpyEQAAAAAAAAAA1EkuoVxkcxEAAABQa8pFAAAAAAAAAABQJzYXAQAAAPWmXAQAAAAAAAAAAHVicxEAAABQb8pFAAAAAAAAAABQJ4mbi/p7o1gqpZQGAAAAWBcpFwEAAAAAAAAAQJ0kbS4aKRajZ6CQUhoAAABgXaRcBAAAAAAAAAAAdZLLTkuc6Sr0ppAEAAAAWFcpFwEAAAAAAAAAQJ10JmwuiojIKxcBAAAANaRcBAAAAAAAAAAAdTKzNRuZTKbsjHIRAAAAUEst9Q4AUG9Lly6N66+/Ph588MF4+OGH45lnnok1a9ZEd3d3lEqlmD59ekyfPj3mzJkTr3vd62LevHnxtre9Lbbddtt6R28oL7/8ctx+++1/e87PP/98LFu2LPL5fPT398fg4GBMmTIl2traYubMmbHRRhvFJptsEtttt13Mmzcvdt1119hss83q/WUAAAAAAAAAVFVTU1PMbGuPrjIFonLXAAAAAMZLuQhYJ3V1dcW5554bF198cTz44INlZ1euXBkrV66MJUuWxC233PK3/77tttvGIYccEscdd1xsuOGGtY7ckB5//PG45JJL4oorroiHHnoocX5gYCAGBgZi9erV8dxzz0VExJVXXvm369tss03sv//+ccghh8ROO+1Us9wAAAAAAAAAacplO8oWiGwuAgAAAGqpqd4BANLU09MTn/rUp2LTTTeNT37yk4nFonKeeOKJ+MIXvhBz5syJY489Nl555ZUqJm1st9xyS+y7777x2te+Nr7whS9UVCyqxJNPPhnf/OY3Y/78+bHrrrvGL3/5y6rcFwAAAAAAAKCeOts6yl63uQgAAACoJeUiYJ1xzTXXxHbbbRff+MY3ore3em+8Dg4OxjnnnBOvfe1r44ILLqjafRvR0qVL49/+7d9i9913j+uuu66mZ91xxx3xnve8J/bee+949NFHa3oWAAAAAAAAQC3l2suXi2wuAgAAAGpJuQiY9IrFYnzuc5+L/fffP55//vmanbNq1ao46qij4thjj43BwcGanTNRXXXVVbHjjjvGFVdckeq5N954Y7zxjW+M888/P9VzAQAAAAAAAKrF5iIAAACgnpSLgEltZGQkDj744Pjyl78cpVIplTPPOeec2GeffaKvry+V8yaCb3/723HAAQdEPp+vy/l9fX1x9NFHx6c+9am6nA8AAAAAAAAwHombi/p7U/ueNwAAALDuUS4CJq1isRhHHHFEXHbZZamf/fvf/z7e+973xsDAQOpnp+3000+PE088cUK8kf2Nb3wjTjjhhHrHAAAAAAAAABiVXLZ8uWikWIw1A/0ppQEAAADWNS31DgBQK5/97Gfjxz/+8ahes+2228auu+4ar3/962PWrFmRyWQin8/HI488EnfeeWc89NBDFd/rN7/5TRxzzDHxox/9aLTRG8YvfvGLMW0Lam5ujh122CHe/OY3x2te85rI5XIxY8aMWLNmTeTz+Vi+fHncddddcf/998fQ0NCo7v2d73wnttlmm/jIRz4y6lwAAAAAAAAA9dCZUC6KiOgq9MSMtmwKaQAAAIB1jXIRMClde+218fWvf73i+f322y8+85nPxM4771x27qGHHorTTz89fvzjH0exWEy878UXXxy77757HH300RVnaRTLli2LY445ZlQbi17/+tfH8ccfH+9///tj2rRpifOFQiEuv/zyOOOMM+K+++6r+JwTTzwx3vrWt8bcuXMrfg0AAAAAAABAveSyyd8/zRf6Yk4uhTAAAADAOqep3gEAqm3lypVx+OGHV1R6mTVrVixatCiuuuqqxGJRxF/KMRdddFHcfvvtsdlmm1WU5z/+4z/iySefrGi2kXzyk5+MVatWVTTb0dER5513XvzpT3+Ko48+uqJiUURENpuNww47LP7whz/ET3/605g5c2ZFr+vv74+PfvSjFc0CAAAAAAAA1NvM1mxkMpmyM/lCT0ppAAAAgHWNchEw6Xz2s5+NV155JXFu0003jXvuuSfe8Y53jPqMBQsWxL333huve93rEmcLhUJ84hOfGPUZE9nDDz8cl156aUWzm222Wdx7771x1FFHjevM97///fHAAw9UvI3od7/7Xdx0003jOhMAAAAAAAAgDU1NTTGzrb3sTFd/b0ppAAAAgHWNchEwqfzxj3+Mc845J3Fu5syZ8dvf/ja23nrrMZ+1wQYbxI033hibbrpp4uyvfvWr+PWvfz3msyaaH/zgB1EsFhPnZsyYEYsWLaq4EJRk8803j2uvvTY23HDDiubPOuusqpwLAAAAAAAAUGudbR1lr+f7lIsAAACA2lAuAiaVL3zhCxWVXs4555x47WtfO+7zNtpoo7jkkkuiubk5cfbzn//8uM+bCIrFYsVbi773ve/FvHnzqnr+FltsERdffHFFs7/85S+ju7u7qucDAAAAAAAA1EIuW75cZHMRAAAAUCvKRcCk8dhjj8U111yTOLfffvvFgQceWLVzd9ttt/hf/+t/Jc7de++98bvf/a5q59bLAw88EK+88kri3Pbbbx8f/OAHa5LhbW97W+y1116JcwMDA3HrrbfWJAMAAAAAAABANXUmlItsLgIAAABqRbkImDS+/e1vR6lUKjvT0tIS3/zmN6t+9he/+MWYMWNG4ty3vvWtqp+dtrvuuquiuY9//OPR1FS7v2ZOOumkiubuuOOOmmUAAAAAAAAAqBabiwAAAIB6US4CJoWBgYH42c9+ljj3vve9L7bZZpuqn7/eeuvFhz/84cS566+/Pl566aWqn5+mxx57rKK5t7/97TXNsfvuu0dbW1vi3OOPP17THAAAAAAAAADVkGtP2FxU6E38gZsAAAAAY6FcBEwKv/rVr2L16tWJc8cff3zNMnzsYx9L3NQzMjISP/3pT2uWIQ3PP/984sxWW20Vm222WU1zZLPZePOb35w499xzz9U0BwAAAAAAAEA1dLaVLxeNFIuxZqA/pTQAAADAukS5CJgULr300sSZbbbZJhYsWFCzDJtvvnnstttuiXOVZJ3Ienp6Emc23XTTFJJEbLLJJokza9asSSEJAAAAAAAAwPgkbS6KiOjq700hCQAAALCuUS4CGt7IyEj89re/TZx7//vfX/MsBx98cOLM4sWLY+XKlTXPUivFYjFxZvbs2SkkiVh//fUTZ4aGhlJIAgAAAAAAADA+uYTNRRER+T7lIgAAAKD6lIuAhnfPPffE6tWrE+f23Xffmmep5IxisRg33nhjzbPUSi6XS5yZOnVqCkkiWltbE2dmzZqVQhIAAAAAAACA8ZnR1h6ZTKbsjM1FAAAAQC0oFwENr5KizvTp02OXXXapeZbNN988ttlmm8S5G264oeZZamW99dZLnHnllVdSSBKxYsWKxBnlIgAAAAAAAKARNDc1xczWbNmZfKEnpTQAAADAukS5CGh4d955Z+LMLrvsEi0tLSmkidhtt90SZ+6+++4UktTG1ltvnThTSemnGl5++eXEmTlz5qSQBAAAAAAAAGD8OrPTyl7vKvSllAQAAABYlygXAQ3vj3/8Y+LM/PnzU0jyF2984xsTZx555JEYGBhIIU31LVy4MHHmkUceid7e3prmKJVKsXjx4sS5XXfdtaY5AAAAAAAAAKoll20ve93mIgAAAKAWlIuAhvbSSy/FsmXLEucmWrloeHg4/vSnP6WQpvrmz58fHR0dZWcGBwfjpptuqmmOBx98MJYvX544V8kmKQAAAAAAAICJwOYiAAAAoB6Ui4CG9uCDD1Y0N3fu3Bon+W+vfe1rK5qrNPtEM2XKlPjABz6QOPejH/2opjkuuuiixJmdd945ttxyy5rmAAAAAAAAAKgWm4sAAACAelAuAhra008/XdHcNttsU+Mk/y2Xy8WsWbMS5yrNPhF97GMfS5y5/PLL4/7776/J+UuXLo2zzjorce7jH/94Tc4HAAAAAAAAqIVcBZuLSqVSSmkAAACAdYVyEdDQnnnmmcSZjTbaKDo6OlJI898qKTNVkn2imjdvXhxwwAFlZ0qlUhx77LFRKBSqevbw8HAcc8wxMTAwUHZum222iQMPPLCqZwMAAAAAAADUUme2/Pe2h4sj0TPYn1IaAAAAYF2hXAQ0tCVLliTOvOY1r6l9kH+w8cYbJ840crkoIuKss86K9dZbr+zM4sWL49BDD42RkZGqnFkqleK4446L66+/vuxcU1NTnH/++TFlypSqnAsAAAAAAACQhlxCuSgiIl/oTSEJAAAAsC5RLgIa2gsvvJA4s9FGG6WQZPRnPv/88ykkqZ0NN9wwzjvvvGhubi47d+WVV8Zb3/rWcX+9L7/8crzzne+Mc889N3H2xBNPjN12221c5wEAAAAAAACkrZJyUZdyEQAAAFBlykVAQ1u5cmXizIYbbphCkr9XSblo1apVKSSprf322y/OO++8yGQyZeduueWW2HHHHePLX/5yvPLKK6M6o6urK04//fSYN29eXHvttYnzhx12WHz9618f1RkAAAAAAAAAE8GMtvYo/91Xm4sAAACA6mupdwCA8aikXNTZ2Vn7IGM4s7e3NwYGBqK1tbX2gWroQx/6UDQ1NcX//t//O/r6+tY6t2rVqvjc5z4XX/7yl2OfffaJXXfdNRYsWBCbbLJJ5HK5mD59evT09EQ+n49ly5bF3XffHbfffntcd9110dtb2Zvjhx9+eJx//vmJZScAAAAAAACAiai5qSlmtrVHV//av/dqcxEAAABQbcpFQEPL5/OJM9OnT08hydjOXLVqVWy88cY1TlN7hx12WPzzP/9zfOADH4j777+/7GyhUIirr746rr766qqd39HREWeeeWYcddRRVbsnAAAAAAAAQD10ZjvKlotsLgIAAACqraneAQDGqlAoxNDQUOJcPcpFM2bMqGhu9erVNU6Snrlz58bixYvjvPPOi6222iqVM5ubm+ODH/xgPPDAA4pFAAAAAAAAwKSQy3aUvW5zEQAAAFBtykVAwxocHKxoLpvN1jjJ/9TW1lbRXKVfQ6NoaWmJo446Kh577LG4/PLL4+CDD664aDUam2yySfzHf/xHPPzww3HxxRfH1ltvXfUzAAAAAAAAAOqhM6FcZHMRAAAAUG0t9Q4AMFaVFnOam5trnOR/ammp7I/XyVYu+quWlpb413/91yiVSlEsFuOyyy6LUqlUlXu/853vjK985Suxww47VOV+k9HChQsr/j1I7fz5z3+udwQAAAAAAAAaUNLmonyhJ6UkAAAAwLrC5iKgYVVazKlHyaLSM4eGhmqcJH0PPfRQHHrooTF79uw48MAD4+c//3nVikUREYsWLYodd9wxttxyyzj55JNj+fLlVbs3AAAAAAAAQL3lstPKXu8q9FX1e7AAAAAA1hoADWt4eLiiOeWidDz99NNx4oknxtVXX53KG9lLliyJr33ta3HGGWfEkUceGZ/73OfiNa95Tc3PbQS33XZbrL/++vWOAQAAAAAAAIxBZ8LmouHiSPQM9sf01mxKiQAAAIDJzuYioGFVWuAZGRmpcZKxn1mP4lMt/OhHP4o3vOENcdVVV6X+E7L6+/vj7LPPjte//vXx85//PNWzAQAAAAAAAKotl1AuiojoKvSmkAQAAABYV0yOT7UD66SpU6dWNFfphqNqqnQjUaVfw0RVLBbjmGOOifPPP39Ur2tubo6ddtopdt5559hggw1i1qxZ0dnZGT09PbFq1apYtWpV3H///XHXXXdFX19fRffM5/Px/ve/P6677rr4r//6r0lT3AIAAAAAAADWLUmbiyIi8oXe2KxzdgppAAAAgHWBT14DDWvKlCkVzdWjXFTpmY1cLiqVSvHhD384Lrjggopfs/vuu8cnPvGJ2GuvvWLatGmJ80NDQ7F48eL4z//8z/j5z39e0XO94IILore3Ny655JJobm6uOBsAAAAAAADARDCzrT0yEVEqM2NzEQAAAFBNTfUOADBWra2tFc319/fXOMnYz2zkctEJJ5xQcbFoxx13jLvvvjtuvvnm2G+//SoqFkX8pUD2lre8JX7yk5/EU089Ff/2b/9W0et+/vOfx+GHH17RLAAAAAAAAMBE0tzUFDPa2svO5JWLAAAAgCqyuQgYlWeeeSbuvvvump7R0dER7373uxPnstlstLS0JG6zWbNmTbWiVazSM2fMmFHjJLVxww03xBlnnFHR7LHHHhvf/e53o62tbVxnzpkzJy677LL4/ve/HyeddFIMDAyUnb/kkktizz33jA9/+MPjOhcAAAAAAAAgbblsR6zu71vrdZuLAAAAgGpSLgJG5fe//30ceeSRNT1j8803r6hcFBGRy+VixYoVZWe6u7urEWtUKj1z1qxZNU5SfatXr46jjjqqotmTTjopTj/99Kqe/+///u+xySabxPve974olUplZ0844YTYe++9Y4sttqhqBgAAAAAAAIBa6sx2ROTX/r1wm4sAAACAamqqdwCA8VhvvfUSZ1avXp1CktGf2d7ePu5tPvXwve99L55//vnEuf322y++/vWv1yTDe9/73oruvWbNmvj0pz9dkwwAAAAAAAAAtZLLdpS9rlwEAAAAVJNyEdDQKikXvfTSSykk+XvLly9PnKkk+0QzNDQUZ511VuLc9OnT47zzzoumptr9NfPJT34ydtlll8S5K664IpYuXVqzHAAAAAAAAADVllQu6lIuAgAAAKpIuQhoaJtsskniTCVFn2qr5MxKsk80l19+eSxbtixx7vjjj0+lPHXaaaclzgwPD8f3v//9mmcBAAAAAAAAqJbOCjYXlUqllNIAAAAAk51yEdDQtthii8SZF198sfZB/kElBZwtt9wyhSTVdd111yXOtLS0xCc+8YkU0kTsvffesdNOOyXOXXPNNSmkAQAAAAAAAKiOXHZa2evDxZHoHRxIKQ0AAAAw2SkXAQ2tkoLO8uXLo6+vL4U0/+3JJ59MnGnEctGtt96aOLPLLrtELpdLIc1fvP3tb0+cefTRR2PFihUppAEAAAAAAAAYv85se+JMvtCTQhIAAABgXaBcBDS0rbbaKnGmVCpVVPaplq6urli5cmXiXCXZJ5Lly5fHM888kzi3zz77pJBm9OfddtttNU4CAAAAAAAAUB1Jm4siIroKvSkkAQAAANYFykXAqBxxxBFRKpVq+mvJkiUV55k3b15Fc48++ugYv+LRq/SsSrNPFM8//3xFc69//etrnGRs5z377LM1TgIAAAAAAABQHTPb2iOTMJNXLgIAAACqRLkIaGgbb7xxbLjhholz9913XwppKj+rpaUldthhhxTSVE8l25giImbPnl3jJH9v1qxZ0dSU/NdZpfkBAAAAAAAA6q25qSlmtLWXnbG5CAAAAKgW5SKg4c2fPz9xJs1y0R/+8IfEmblz50ZbW1sKaapn1apVFc2lXS5qamqKWbNmJc4pFwEAAAAAAACNpDPbUfa6zUUAAABAtSgXAQ3vzW9+c+LMXXfdFcPDwymkibjlllsSZ3bZZZcUklRXqVSqaC6TydQ4ydjOTOt/fwAAAAAAAIBqyCkXAQAAAClRLgIa3l577ZU4s2bNmrjnnntqnuW5556LJ598MnHubW97W82zVFt7e3tFc6+88kqNk/y9YrFY0VaiSvMDAAAAAAAATARJ5aIu5SIAAACgSpSLgIa38847x4wZMxLnrr322ppnqeSMTCZTUSFqopk5c2ZFcytWrKhxkr+3atWqKBaLiXOV/B4BAAAAAAAAmCg6bS4CAAAAUqJcBDS8lpaWiso6P/vZz2qe5ac//WnizJve9KaYPXt2zbNU25w5cyqa+/Of/1zjJH/vT3/6U0VzleYHAAAAAAAAmAgq2VxUKpVSSgMAAABMZspFwKTwgQ98IHHmiSeeiLvvvrtmGZ577rm45ZZbEucqyToRzZkzJ1paWhLnfvOb36SQ5r9df/31Fc1tueWWNU4CAAAAAAAAUD1Jm4uGiiPROziQUhoAAABgMlMuAiaFd7/73TFjxozEuTPOOKNmGc4888woFotlZ5qamuLggw+uWYZamjJlSsybNy9x7q677oqurq7aB/r/XXfddYkzmUwm5s+fn0IaAAAAAAAAgOpI2lwU8ZftRQAAAADjpVwETAptbW1x0EEHJc5dfvnl8eSTT1b9/JUrV8Y555yTOLfPPvvExhtvXPXz0/LmN785cWZ4eDi+853vpJAm4tprr40HHnggcW7u3LmRy+VSSAQAAAAAAABQHUmbiyIi8oWeFJIAAAAAk51yETBpnHDCCZHJZMrODA8Px0knnVT1s0855ZTo7u5OnDvxxBOrfnaa3vnOd1Y0d8YZZ8SqVatqmqVUKsXnPve5imb33XffmmYBAAAAAAAAqLaZbe1R/jvgEflCXypZAAAAgMlNuQiYNLbbbrt417velTh39dVXx2WXXVa1c2+77bb44Q9/mDg3f/782Hvvvat2bkTEkiVLIpPJJP7aY489qnLe2972too2AHV3d8fRRx8dxWKxKue+mi996Utx3333VTRbyVYrAAAAAAAAgImkpak5prdly8502VwEAAAAVIFyETCpfP7zn4+mpuQ/2o455ph4/PHHx33e8uXL45BDDomRkZHE2VNPPXXc59XblClT4sMf/nBFs1dddVV86lOfqkmOn/70pxU/z5122il22WWXmuQAAAAAAAAAqKVcdlrZ6zYXAQAAANWgXARMKm984xvjqKOOSpxbvXp17LXXXvH000+P+awVK1bE3nvvHUuXLk2c3XfffePd7373mM+aSI4//vhobW2taPab3/xmHHfccTEwMFC187/97W/H4YcfHqVSqaL5T3/601U7GwAAAAAAACBNuWxH2et5m4sAAACAKlAuAiadr3zlK7Heeuslzj3//POx8847x7XXXjvqM+6+++5405veFH/+858TZ9va2uK73/3uqM+YqF7zmteMaiPRD37wg1iwYEEsXrx4XOc+88wzsd9++8WJJ54YQ0NDFb1m4cKFceCBB47rXAAAAAAAAIB66UwoF3UVelNKAgAAAExmykXApLP++uvHhRdeGJlMJnF25cqV8Y53vCMOOOCAuPfeexPnH3744TjyyCPjLW95Szz33HMV5fnud78b2267bUWzjeLkk0+O7bbbruL5+++/P3beeefYc88945prrone3sre4B4aGopbb701Dj744Nh2223jmmuuqfjMtra2+MEPflDR7wMAAAAAAACAiSh5c5FyEQAAADB+LfUOAFAL73rXu+Kkk06K008/vaL5K6+8Mq688sr4p3/6p1i4cGFsv/32MWvWrMhkMpHP5+PRRx+NO++8Mx588MFR5TjkkEPi2GOPHcuXMKG1tbXFlVdeGTvvvHN0d3dX/Lqbb745br755mhpaYmddtopdtlll1h//fVj1qxZ0dnZGT09PbFq1apYuXJl3H///XHXXXdFX1/fmDL+8Ic/jO23335MrwUAAAAAAACYCCrZXFQqlfzQRQAAAGBclIuASetrX/taPP/883HppZdW/JrHH388Hn/88aqcv9dee8X5559flXtNRK997Wvjqquuine9612jLgANDw/H4sWLY/HixTXJ9qUvfSkOP/zwmtwbAAAAAAAAIC1Jm4uGiiPROzQQ06a2pZQIAAAAmIya6h0AoFaampriRz/6URxwwAGpn71w4cK4+uqro7W1NfWz07TnnnvGr3/968jlcvWOEhF/+d/89NNPj8997nP1jgIAAAAAAAAwbp1t5ctFERFdfb0pJAEAAAAmM+UiYFJraWmJyy67LD71qU+lduaRRx4Zv/3tb6OjI/lN3slg9913jz/84Q8xf/78uuaYPXt2/PrXv46TTjqprjkAAAAAAAAAqiXXnvx953y/chEAAAAwPspFwKTX1NQUX/va1+LKK6+M17zmNTU7J5fLxTnnnBPnn3/+pN9Y9I+23HLLuPvuu+P000+PadOmpXp2JpOJI488Mh555JH413/911TPBgAAAAAAAKilmW3tkUmYydtcBAAAAIxTS70DAKRl//33j7322iu++MUvxtlnnx29vdV5g3Xq1Klx2GGHxVe/+tVYf/31q3LPRtTS0hInnXRSHHHEEXHGGWfE2WefHatWrarZeVOmTImDDjooTj755Nh+++1rdg6TR6lUipGRkSgWi1EqleodBwAAAKBqMplMNDU1RXNzc2QySR89BQCgkbQ0Ncf0tmx09xfWOtNlcxEAAAAwTspFwDpl+vTpcfrpp8dnPvOZ+K//+q+4+OKL489//vOY7rX11lvHBz7wgfjIRz4SG2+8cZWTNq7Zs2fHaaedFqecckosWrQofv7zn8eNN94YK1asGPe9s9ls7LrrrvHe97433v/+98d6661XhcRMNqVSKfr7+6NQKMTQ0FAMDg7G4OBgDA0NKRUBAAAAk1omk4kpU6bE1KlTY+rUqTFlypTIZrPR1tamdAQA0MBybR1ly0U2FwEAAADjlSn5lC2wjnv22WfjN7/5TTzwwAPx8MMPx5IlS6K7uzvWrFkTpVIppk+fHtOnT4/NNtssXve618W8efNi7733jrlz59Y7esMolUrxpz/9Ke6777546KGH4oknnohly5bFsmXLYs2aNdHf3x+Dg4PR0tISbW1t0dHRERtuuGFsvPHGseWWW8b2228fO+ywQ+y8887R2tpa7y9nQlmxYkVssMEGf/ffXn755XVui9ZfC0Vr1qyJ7u7uGBoaqnckAAAAgAljypQpMWPGjJg+fbqiEQBAA/r6TVfFA8ueXev1nTfbJo7f7Z0pJgIAAIDJaV3+XK7NRcA6b/PNN49jjjmm3jEmtUwmEzvssEPssMMO9Y7CJFMqlaK7uztWrFihUAQAAACwFkNDQ7Fy5cpYuXJlTJkyJdZff/2YMWOGkhEAQIPItU8re72r3+YiAAAAYHyUiwCAhjQwMBDLly+Pvr6+ekcBAAAAaBhDQ0Px4osvRldXV2y00UY2hQMANIDOto6y1/N9ykUAAADA+CgXAQANpVgsxooVK2LVqlX1jgIAAADQsPr6+uLpp5+OWbNmxfrrrx9NTU31jgQAwFrk2suXi7r6e6NUKtlMCQAAAIyZ7xQBAA2jWCzGCy+8oFgEAAAAUCWrVq2KF154IYrFYr2jAACwFkmbi4ZGRqJ3aCClNAAAAMBkpFwEADSEvxaLenp66h0FAAAAYFLp6elRMAIAmMBy2fLlooiIrkJvCkkAAACAyUq5CACY8BSLAAAAAGpLwQgAYOKqpFyUVy4CAAAAxqGl3gEAAJKsWLFiTMWi5ubmaGtri6lTp/7tV3Nzc2QymchkMjVICgAAAJCuUqkUpVIpRkZGYnBw8G+/+vv7Y2RkZFT36unpiRUrVsSGG25Yo7QAAIzFzGx74ozNRQAAAMB4KBcBABNaf39/rFq1quL55ubmmDFjRkyfPj3a29uViAAAAIB1UqlUir6+vlizZk10d3dXXDRatWpVdHZ2Rmtra40TAgBQqZam5pjRmo3ugcJaZ2wuAgAAAMZDuQgAmLBKpVK89NJLFc/PmjUrZs+eHc3NzTVMBQAAADDxZTKZ6OjoiI6Ojlh//fXjlVdeqfgHuCxfvjzmzJnjh7YAAEwguWxH+XJRn3IRAAAAMHZN9Q4AALA23d3d0dfXlzjX0tISW265ZWy44YaKRQAAAAD/oLm5OTbccMPYcssto6Ul+efO9fX1RXd3dwrJAACoVGe2o+z1rn7lIgAAAGDslIsAgAmpVCrFihUrEudaWlpizpw50dbWlkIqAAAAgMbV1tYWc+bMqahgtGLFiiiVSimkAgCgErmEclG+0JNSEgAAAGAyUi4CACak/v7+GBoaSpzbbLPNorW1NYVEAAAAAI2vtbU1Nttss8S5oaGh6O/vTyERAACV6MxOK3u9q9CXUhIAAABgMlIuAgAmpDVr1iTOzJo1y8YiAAAAgFFqa2uLXC6XOFfJ+zMAAKQjl20vez1f6LF5EgAAABgz5SIAYMIplUrR3d1ddqa5uTlmz56dUiIAAACAyWX99deP5ubmsjPd3d0+oAoAMEEkbS4aGhmJvqHBlNIAAAAAk41yEQAw4fT398fQ0FDZmRkzZiR+AAYAAACAV9fc3BwzZswoOzM0NBT9/f0pJQIAoJxctiNxJl/oSSEJAAAAMBkpFwEAE06hUEicmT59egpJAAAAACavSt5fqeR9GgAAaq+SclFXoTeFJAAAAMBkpFwEAEw4SVuLmpubo729PaU0AAAAAJNTe3t74mbopPdpAABIx8y25O+N5ZWLAAAAgDFSLgIAJpzBwcGy19va2iKTyaSUBgAAAGByymQy0dbWVnYm6X0aAADS0dLcHDNas2VnlIsAAACAsVIuAgAmnKQPrUydOjWlJAAAAACTW9L7LMpFAAATRy7bUfZ6l3IRAAAAMEbKRQDAhFIqlZSLAAAAAFKS9D7L0NBQlEqllNIAAFBOZ0K5yOYiAAAAYKyUiwCACWVkZCRxRrkIAAAAoDqS3mcplUoVvV8DAEDt2VwEAAAA1IpyEQAwoRSLxcSZ5ubmFJIAAAAATH6VvM9icxEAwMRgcxEAAABQK8pFAMCEUsmHVTKZTApJAAAAACa/St5nqeSHwQAAUHuVbC5SDAcAAADGQrkIAGg4ykUAAAAA1eF9FgCAxpG0uWhwZDj6hgZTSgMAAABMJspFAAAAAAAAAAAwweWy0xJnugq9KSQBAAAAJhvlIgAAAAAAAAAAmOA6s+2JM/lCTwpJAAAAgMlGuQgAAAAAAAAAACa4zraOxJm8zUUAAADAGCgXAQAAAAAAAADABNfS3BwzWrNlZ7qUiwAAAIAxUC4CAAAAAAAAAIAG0Jktv73I5iIAAABgLJSLAAAAAAAAAACgAeQSykU2FwEAAABjoVwEAAAAAAAAAAANwOYiAAAAoBaUiwAAAAAAAAAAoAHYXAQAAADUgnIRAAAAAAAAAAA0gEo2F5VKpZTSAAAAAJOFchEAAAAAAAAAADSApM1FgyPDURgaTCkNAAAAMFkoFwEAAAAAAAAAQANI2lwU8ZftRQAAAACjoVwEAAAAAAAAAAANIGlzUUREl3IRAAAAMErKRQAAAAAAAAAA0AA622wuAgAAAKpPuQgAAAAAAAAAABpAS3NzTG/Nlp3JF3pSSgMAAABMFspFAAAAAAAAAADQIHLZ8tuLumwuAgAAAEZJuQgAAAAAAAAAABpEZ0K5KK9cBAAAAIySchEAAAAAAAAAADQIm4sAAACAalMuAgAAAAAAAACABmFzEQAAAFBtykUAAAAAAAAAANAgKtlcVCqVUkoDAAAATAbKRQAAAAAAAAAA0CCSNhcNjAxHYWgwpTQAAADAZKBcBAAAAAAAAAAADSJpc1FERL7Qm0ISAAAAYLJQLgIAAGCtLrzwwshkMom/LrzwwnpHBRpYJX/O7LHHHvWOCQAAADAhJG0uiojoUi4CAAAARkG5CAAAAAAAAAAAGkRnW3vijM1FAAAAwGgoFwEAAAAAAAAAQIOY0twS01uzZWeUiwAAAIDRUC4CAAAAAAAAAIAG0pktv72oq9CTUhIAAABgMlAuAgAAJp0LL7wwMplMTX61trbGzJkzY4MNNojNNtssttlmm3jDG94Q++yzT3zwgx+ME044Ib72ta/FxRdfHPfcc090d3fX+3EAAFChJUuWjPnfiSeffHK94//NHnvsUVHmI444oupne4YAAJCOXHZa2ev5Ql9KSQAAAIDJoKXeAQAAABrJ4OBgDA4Ojuo1G2+8cWy33Xax0047xcKFC2PhwoUxe/bsGiUEAKAezjzzzPjYxz4WG2+8cb2jNCzPEAAAKmdzEQAAAFBNykUAAAA1tmzZsli2bFn87ne/i29961sREbHddtvFHnvsEQcccEDsueee0dzcXOeUpKmrqyvOOOOMxLk3vOENsf/++9c8D5PThRdeGEuWLEmcO/XUU2ueBWBd0NfXF1/60pfirLPOqneUhuUZAgBA5ZI3F/WmlAQAAACYDJSLAAAA6uCRRx6JRx55JM4+++xYf/3144ADDohDDjkk/uVf/qXe0UhBV1dXfOELX0ic+9CHPqRcxJhdeOGF8fvf/z5xTrkIoHrOPffcOPHEE2Prrbeud5SG5RkCAEBlOts6yl7vKvRGqVSKTCaTUiIAAACgkTXVOwAAAMC6bsWKFfHDH/4wdt9995g/f35ccsklMTw8XO9YAACM0tDQUJxyyin1jtHQPEMAAKhMrr18uWhgZDgKw4MppQEAAAAanXIRAADABPLHP/4xDj300Nhqq63inHPOiWKxWO9IAACMwqWXXhoPPvhgvWM0NM8QAACSJW0uiojI9/WmkAQAAACYDJSLAAAAJqClS5fGscceGwsWLIh77rmn3nEAAKhQqVSKz3zmM/WO0dA8QwAASJa0uSgioqugXAQAAABURrkIAABgAlu8eHEsWLAgPvaxj8Xg4GC94wAAUIFFixbFbbfdVu8YDc0zBACA8jrb2hNn8spFAAAAQIVa6h0AAACgno4//vjYa6+9RvWaYrEY/f39MTAwEP39/dHT0xPLli2L5cuXx7Jly+KJJ56I5557LkqlUlUylkql+N73vhf33HNPXH755bHppptW5b6VOOKII+KII45I7Txg3VStPy8BJpKTTz45br311nrHaGieIQAArN2U5paY1toWPQP9a51RLgIAAAAqpVwEAACs03bcccd417veVfX79vT0xEMPPRT33Xdf/O53v4ubbropVq1aNa573n333TF//vz4xS9+EQsXLqxSUgAAauG2226LRYsWxTvf+c56R2lYniEAAJSXy3aULRd1KRcBAAAAFWqqdwAAAIDJaNq0abFgwYL4yEc+EpdffnmsWLEi7rrrrvjoRz8a66233pjvu2LFith3333j9ttvr2JaAABq4bOf/aztbOPkGQIAwNp1tnWUvW5zEQAAAFAp5SIAAIAUNDU1xS677BLf//7348UXX4yf/OQnMXfu3DHdq6enJ/bdd9+46667qpwSAIBqeuCBB+LSSy+td4yG5hkCAMDa5drLl4u6+pWLAAAAgMq01DsAAACNqVgsxovd+Xh61cvx/OqV0TvYH0MjIzFcHImWpuaY0twcHVPbYtOZ68VW620Qr5mei6Ym3XaIiJg6dWoccsghcfDBB8fPfvaz+OQnPxkvvPDCqO6xZs2aeMc73hH33XdfbLHFFrUJCgDAuJ1yyilx4IEHxpQpU+odpWF5hgAA8OoSNxf19aSUBAAAAGh0ykUAAFSkVCrFIy+/EH94/ql4atVL8eyqFTEwMlzx61tbpsTmudmx9awN442bbh3bbbBJZDKZGiaGia+pqSk+8IEPxL777huf+MQn4sILLxzV6/P5fBx00EFx2223xdSpU2sTEgCAV7XffvvF1VdfnTj31FNPxbnnnhvHHXdcCqkai2cIAADjk8tOK3u9q78vSqWS78cAAAAAifzoeAAAyuodHIjrHrs/Prno4jjtxivi2sfuj8dXLBtVsSgiYmB4KB5fsSyufez+OO3GK+KTiy6O6x67P3oHB2qUHBpHZ2dnXHDBBfHjH/941CWhxYsXx0knnVSjZAAArM1xxx0Xc+bMqWj2S1/6UhQKhRonajyeIQAAjE8u2172+sDwUBSGB1NKAwAAADQy5SIAAF7VS2u64py7b4x/v/Lc+NEffh8vduerev8Xu/Pxoz/8Pv79ynPjnLtvjJfWdFX1/tCIDj300Ljhhhuis7NzVK/73ve+F7feemttQgEA8KpaW1vj1FNPrWh22bJl8d3vfre2gRqQZwgAAOPTmbC5KCIi39ebQhIAAACg0SkXAQDwd0aKxbjm4Xvj/yz6cdz01EOj3lA0WgMjw3HTUw/F/1n04/jlw/dGsVis6Xkw0f3Lv/xLXHPNNdHa2jqq1x1//PFRKpVqlAoAgFdz+OGHx3bbbVfR7De+8Y3o6uqqbaAG5BkCAMDY5do7Eme6+pWLAAAAgGTKRQAA/M0Lq1fFqTf8PH56/+0xVBxJ9eyh4khcev/tceoNl8ULq1elejZMNLvttltcfPHFkclkKn7NfffdFxdeeGHtQgEA8D80NzfHaaedVtFsPp+Pr3/96zVO1Hg8QwAAGLvOtvbEGZuLAAAAgEq01DsAAAD1VyyVYtEj98XlD96ZeqnoHz25cnl85tpL4t92eHO8c7v50TSKcgVMJgceeGDcdNNNcfbZZ1f8mlNOOSUOO+ywaGlZd/+v3uDgYKxYsSJWrFgRa9asiYGBgRgaGorW1tZob2//26+Ojo7YYIMNorm5ud6R1yl9fX2xdOnSWLNmTfT29kahUIjW1tbo6OiIadOmxWabbRbTp0+vd8xU9fT0xM033xwPPPBAPPbYY/H444/Hyy+/HD09PdHT0xODg4PR3t4e06dPjw022CA22WSTOOuss2LOnDn1js7/o1QqxbJly2LFihXR29sbvb29USqVoqOjIzo6OmK99daLTTbZJJqa1q2f8/Pwww/HzTffHH/605/ioYceihdeeCG6u7tjzZo1ERHR3t4eM2fOjM033zy22mqreNOb3hS77rpr7LjjjqMq2E4UpVIpVq1aFS+//HLk8/kYGBiIgYGBaG5u/tvfP9lsNtrb22O99daLjo7kny5NYzjggANi5513jnvuuSdx9swzz4yPf/zjsdFGG6WQrHF4hgAAMDZTmltiWmtb9Az0r3XG5iIAAACgEuvuJ84AAIiIiOHiSPzwrhvi9iWP1TvK3/xli9Ft8VzXivhfC94WLU0+/M+66fTTT4/rr78+nn766Yrmn3/++fjFL34RBx10UNUyXHjhhXHkkUcmzl1wwQVxxBFHVO3cSuTz+bj11lvjjjvuiD/+8Y/x2GOPxXPPPRelUqmi17e0tMQmm2wSW2yxRWyxxRax5ZZbxhvf+MZYsGBBzJ49e9z5br755thzzz3HdY+LLrooLrroonFn+avdd989br755qrdr5zVq1fHLbfcErfddlvceeed8cQTT8Ty5csTXzd79uzYdtttY8GCBbFw4cLYfffdY7311kshcXmnnnpqfOELX0icu+mmm2KPPfYoO9PT0xMXXXRRXH755XH77bfH0NBQ2fk1a9bEmjVr4sUXX4z7778/Vq1a9bdy0RZbbBHPPvtsxV/Hq6l2ieOZZ56JLbbYouoZ0vz9m+TBBx+MW2+9NW677bZ44IEH4plnnon+/rV/iCciYurUqbH55pvHDjvsEAsXLozddtst5s+fPyFKNNV8/kuXLo3//M//jCuuuCKefPLJsrODg4PR1dUVzz77bNxyyy1/28A3Z86cOOigg+IjH/lIbLnllpV8CakbGRmJxYsXxx133BF33313PProo/H4448n/j74f82ePTs233zzv/09tP3228eCBQti7ty5E+L3BaPzla98Jfbee+/Eub6+vvjiF78YZ511VgqpGotnCAAAY5Nr6yhbLrK5CAAAAKiEchEAwDpscGQ4zrzt13HfC8/UO8qrun3JY1EYGoyPLXxHTG32T1fWPR0dHfGd73wn9ttvv4pf873vfa+q5aKJplAoxKWXXhqXXnpp3HzzzTE8PDzmew0PD8ezzz4bzz77bPz+97//u2tbb711LFiwIPbcc89473vfG7NmzRpv9HXC8PBwXHnllXHJJZfEtddeGwMDA6O+xyuvvBKvvPJK3HnnnfGd73wnWlpaYu+9945DDjkkDjzwwGhra6tB8nSsXLkyTjvttDj//POju7u73nEYpSeffDIuuuiiuPTSS+Opp54a9esHBwfjiSeeiCeeeCKuuOKKiIjYbLPN4uCDD44PfehDsf3221c7cqqWLFkSp556alxyySWJhbkkzz33XHzzm9+MM844Iz74wQ/GV7/61QmzoeSOO+6I8847L6655pp45ZVXxnWvv/5594c//OHv/ntnZ2fsvPPOseuuu8b+++8fO+yww7jOIR177bVX7L333vHb3/42cfbcc8+Nk046KbbaaqsUkjUOzxAAAMamM9sRS1evXOt1m4sAAACASjTVOwAAAPUxXByZ0MWiv7rvhWfie7ddG8PFkXpHgbp4z3veE29605sqnv/rFo3JpqenJ774xS/GJptsEkcffXT89re/HVexKMlTTz0VP/nJT+LDH/5wbLjhhvH2t789Lrjggli9enXNzmxkAwMD8YMf/CC23XbbOOigg+Kqq64aU7Ho1QwPD8d1110Xhx9+eGy11Vbx7W9/O/r6+qpy77SUSqU455xz4p/+6Z/ijDPOUCxqMA899FAccsghMXfu3DjttNPGVCxam6VLl8bpp58e8+bNi/333z/uvffeqt07LcViMc4444x4/etfHxdddNG4i0X/r+Hh4bjwwgvjda97XfzkJz+p2n3HYtGiRTF//vzYdddd4/zzzx93saicrq6u+M1vfhOf//znY8cdd4y5c+fGKaecEg8//HDNzqQ6vvrVr1Y0NzQ0FP/3//7fGqdpTJ4hAACMXi7bUfZ6vqBcBAAAACRTLgIAWAcVS6X44V03TPhi0V/94YWn44d33RDFUqneUaAuTj311FHN/+xnP6tNkDq56qqrYtttt43Pf/7zkc/nUz9/eHg4rr/++jjqqKPinHPOSf38ie7mm2+OefPmxXHHHRdLliyp6VnLli2LE088MebOnRu/+tWvanpWtfT29sYBBxwQxx57bKxatarecRiFnp6e+PjHPx477rhjXHrppTEyUruic6lUiquvvjr++Z//OY4++ui6/Fk3Fl1dXbHPPvvEJz7xiejtrd0HlfL5fHzwgx+MT3/601FK+d+Dzz33XOyzzz7xrne9K/74xz+mevZfPfbYY/GlL32pZpsJM5lMxb9q/ed8o3vTm94U73vf+yqavfTSS+PBBx+scaLG4xkCAMDodSaUi7qUiwAAAIAKKBcBAKyDFj1yX9y+5LF6xxiV25c8Fr9+9L56x4C62HfffWPOnDkVz//yl7+sYZr0DA8Px3HHHRfvfe97Y/ny5fWOwz8YHByMj3zkI7HnnnvGE088kerZS5cujXe/+91x6KGHTugtRi+++GIsXLgwrrrqqnpHYZTuvPPOeN3rXhdnnnlmFIvFVM8+//zzY+7cufGb3/wm1XNH66mnnooFCxbEjTfemNqZX//61+P4449P7bxf//rXMW/evLjhhhtSO5PGd9ppp0Vzc3PiXKlUis985jMpJGo8niEAAIxOJZuL0v5hHQAAAEDjUS4CAFjHvLB6VVz+4J31jjEmlz1wZ7yw2tYH1j1NTU3xoQ99qOL5hx56qOE3CwwMDMS73/3u+MEPflDvKLyKl156Kd761rfG2WefXdccl1xySbzlLW+JZ599tq45Xs1fN7rcf//99Y7CKJ1//vmxxx57xNKlS+uW4eWXX453vOMd8a1vfatuGcp59tlnY/fdd4/HHku/rH7mmWfGN77xjZqfc/7558d73vOe6O7urvlZTC5z586t+N9tixYtittvv73GiRqPZwgAAKOTVC4aGB6KwvBgSmkAAACARqVcBACwDhkpFuMHd/0mhooj9Y4yJkPFkfjhXTekvkEAJoLDDjtsVPOLFi2qUZLaK5VKceihh8Z1111X7yi8ihdeeCF23XXXCfNB3gceeCAWLFgQjz/+eL2j/M3AwEC85z3viT//+c/1jsIofe1rX4ujjz46Bgfr/4GbkZGROOmkk+KEE06od5S/8/LLL8fb3va2eOGFF+qW4bOf/WzceWftyvJXXnllHHPMMTEy0pj/Zqb+Tj311Ghtba1o9uSTT65xmsbkGQIAQOU6s9MSZ7oKE3f7NwAAADAxtNQ7AAAA6fn1o/fFUytfqneMcXly5fJY9Oh98e7XvaneUSBV2267bWy55ZbxzDPPVDR/xx13xEc/+tEap6qNb33rW3HFFVfUOwavYvny5fHW/4+9+w6Pqkz/P/6ZVJIQSihBeofQIdK7YKGDHUQBFxRQ7K4rNlDUFSusfLGgooKgwqoIqCBKkV4NAqGF0CGUhBTSM78//KmrQuZMcs6cmcn7dV38seQ+5/7M8TwzIXvuPFddpYMHD9od5U9OnTqlnj17atWqVapfv77dcfTEE09ozZo1hmpr1aqlzp07q0GDBqpZs6YiIyMVEhKi9PR0XbhwQfv27VNcXJzWrl3rFQMv/uy1117zygfUX3/9dQUHB+ull16yO4ry8/N1ww03aP/+/S5rIyIi1L59e7Vq1Up16tRRVFSUIiIilJubq5SUFB06dEibN2/W2rVrdfGiew845eXladSoUdq5c6eCg4OL+nIu6dChQxoxYgTD7CiWGjVqaPz48Xr99ddd1q5Zs0ZLly5V3759PZDMd3ANAQAAAONc7VwkScmZ6apaprwH0gAAAAAAAF/FcBEAAEAJcTotRQviNtgdwxQL4jaoXY36io4sZ3cUwKN69+6td99911Dttm3bLE5jjUOHDumJJ55w+7jAwEC1bdtW3bt3V4MGDVS/fn3VqFFDERERioiIUHh4uPLy8pSdna3U1FSdPn1aJ0+e1P79+7Vv3z5t27ZNP//8s7Kyskx7LT169JDT6bzk1xITE1WnTh2X5xgxYoRmz55tWqbiyM7O1oABA4q0Q5DD4VDHjh113XXX6corr1Tjxo1VoUIFRUREKDMzU8nJydq3b5+2b9+ub7/9VqtWrVJeXp5bPU6cOKG+fftq8+bNKlu2rNsZzbJ27VqXD0JXqVJFd999t4YPH254GCo1NVVfffXV3wZMEhMTL3tMjx49tGrVKpfnvtx9WpIsXLhQDz/8cJGOrVSpkq677jr16tVLTZo0Ue3atRUZGanAwEClpaXp2LFj2r17t1auXKklS5bo2LFjbveYOnWqatWqpfHjxxcpo1meeuop/fTTT5f9ekBAgG644QaNHDlSV199taHBn4yMDH3++ed64YUXDA0t/Wbv3r2aMWOGHnjgAcPHGHH33XcrLS3N7eNq1qypq6++Wk2bNlX9+vVVr149lS1b9vfPoMDAQGVlZSkzM1NJSUlKSkpSQkKC9u/fr507d2rz5s1KSkoy9bXAXhMnTtSsWbMM3U8TJ05Unz595HA4PJDMd3ANAQAAAGPKhYW7rEnJzPBAEgAAAAAA4MsYLgIAACghFu3eqtyCfLtjmCK3IF+Ldm/VmPa97I4CeFSvXr0MDxft27dP6enpKl26tMWpzPX000+7tTtLgwYN9Oijj+rGG29U+fKF/+bNkJAQhYSEKDIyUtWqVfvb13Nzc7Vx40YtX75cS5Ys0datW93O78/uvfdebdmyxa1jgoKCdNddd+mBBx5QgwYNLllTunRplS5dWjVq1FCvXr30yCOP6NixY3rzzTc1bdo0twa+9u/frzvuuENffvmlbQ8XP/vss5fd8SQsLEzPPPOM7rvvPoWFhbl13jJlyuj222/X8OHDlZuba0ZU/H/x8fEaNWqU28fFxMToqaee0g033KCQkJBL1gc8WswAAQAASURBVERFRSkqKkotWrTQrbfeqoKCAi1evFhTpkzR5s2b3er34IMPqk2bNurQoYPbWc2wa9curV69+rJf79Onj6ZNm3bZtX45ERERGjlypG677TY9++yzev755w0PvL300ksaP378Za+/u1asWKHly5cbrg8PD9fo0aM1duxYxcTEuKz/beC1YsWKatKkiXr06PGnryckJGj58uVatmyZvvnmG2VmZrr7EuBFKlasqIcffliTJk1yWfvzzz9r/vz5Gjp0qPXBfAjXEAAAADAmODBIpUNKKT3n8j9HS2a4CAAAAAAAuBBgdwAAAABYLyMnW+sS4+2OYap1ifG6mJNtdwzAo1q1amW4tqCgQNu3b7cujAWSkpL06aefGqoNDg7W9OnTFR8frzFjxrgcLDJ6zi5dumjy5MnasmWLEhISNGXKFNWqVavY5/Z1Cxcu1KxZs9w6pm3btoqLi9OMGTPcHjaoXr26/v3vf2vPnj266qqr3Dp20aJFmjFjhlvHmOlyw3ExMTHasWOHHnvsMbcHi/6Xw+EwbZACUn5+voYOHerWTjXBwcGaOnWq4uLiNHToULf+ewQEBGjgwIHauHGj3n77bYWHu/7Nwr/JycnRrbfeqowMex4GOnv27CWHfkJDQzVr1iwtXbrU7bX+v4KDg/Xcc89pzpw5Cggw9iPLU6dOaf78+UXu+VfTp083XNuvXz8lJiZq2rRphgaLjKhbt67uvvtuLVy4UGfOnNG8efPUq1cvdmLxYQ899JAqVapkqPbpp592e9e+koBrCAAAABhTPiyi0K+zcxEAAAAAAHCF4SIAAIASYM2hPcrO96+HrLLz87Tm0B67YwAe1aBBA7eGEvbt22dhGvPNnz/f0I4sYWFh+vHHHzVhwgTDD6AXRZ06dfTEE08oISFBixYtUqdOnSzr5c3S0tJ0//33u3XMP/7xD/3000/FfuC+du3aWrZsmR5++GG3jnviiSd04sSJYvU2U8eOHbVu3To1bNjQ7ij4i2nTpmnHjh2G6ytWrKg1a9bo0UcfVVBQ0TcEdzgcuuuuu7Rx40bVqFHD8HGHDx/WM888U+S+ZouMjNSKFSv0j3/8w7RzDhs2TK+88orh+vfff9+UvufOndPSpUsN1d5///36+uuvDQ88FEVERIRuvfVWff/999q3b5/Gjh2rUqVKWdYP1oiMjNTEiRMN1R44cMDtQd6SgGsIAAAAGFPOxXAROxcBAAAAAABXGC4CAADwc06nU8v3x9kdwxLL98dd8jfoA/4qICBATZo0MVx/7NgxC9OYb9myZYbqpk2bps6dO1uc5g8BAQEaMGCA1q5dq7vvvttjfb3FpEmTdPz4ccP1EyZM0KxZs0zbXScwMFCvvPKKnnrqKcPHpKamuj2QZJWYmBgtWbJE5cqVszsK/uLkyZNuDepUrlxZq1atUvv27U3L0KxZM61atUo1a9Y0fMy0adO0a9cu0zIUVUhIiJYuXWrJ+/EDDzygnj17Gqpds2aNkpKSit3zxx9/NLTjSbdu3fTqq696dDeh+vXra+bMmfrxxx891hPmGTdunOE1/txzzykzM9PiRL6HawgAAAC4xs5FAAAAAACguBguAgAA8HN7ko7rZGqy3TEscSI1WfFJxh94B/xBnTp1DNcePXrUwiTm27Bhg8uamJgYjRkzxgNpLi0yMtK23nY4ffq0Zs6cabh+8ODBmjZtmiVZnn32Wd1+++2G6z/99FPt2WPvDndhYWFasGCBypcvb2sOXNrLL7+s9PR0Q7WhoaH68ssv3RrwNKpOnTr6+uuvFRFR+ENAv8nLy9Nzzz1neg53zZgxQ126dLHk3A6HQ6+99pqhAZ6CggItWbKk2D2NfAZJv943gYGBxe5XFCXtM8hfhIaGatKkSYZqT5w4oenTp1sbyAdxDQEAAADX2LkIAAAAAAAUF8NFAAAAfm7rsYN2R7DUlmMJdkcAPOqKK64wXOtLOxedP39e586dc1k3YsQID6TBb1599VXDv/2/Vq1a+uijjyzdzePdd981PNzhdDr1/PPPW5bFiGeffdaSYRQU39mzZ/X2228brn/55ZfVsWNHy/K0aNHCrUG+zz//XHv37rUsjyt9+vTR6NGjLe3RqlUr9erVy1DtmjVrit1v3759LmsaN26sdu3aFbsXSp477rhDMTExhmpfeuklpaSkWBvIB3ENAQAAgMKxcxEAAAAAACguhosAAAD83MHzp+2OYKkEP399wF+5M1x04sQJC5OY6/hxY7uQtW7d2uIk+E1WVpbeffddw/Xvvfee5btqhIaG6oMPPlBAgLEfZ8yfP1+nT9vzOVGvXj3dd999tvSGa7NmzdLFixcN1Xbr1k333nuvxYmk22+/Xf379zdUW1BQoP/85z8WJ7q0oKAgj+0KcueddxqqW7t2bbF7Gfkc4jMIRRUYGKgpU6YYqk1OTtbUqVMtTuR7uIYAAABA4VwNF2Xl5SozN8dDaQAAAAAAgC9iuAgAAMCPFRQU6PD5M3bHsFRi8hkVFBTYHQPwmCpVqhiuzcjwnd9GmZ6ebqiuevXqFifBbxYtWmT4t/4PGDDA8A4jxdWuXTsNHz7cUG1+fr7mzp1rcaJLe+SRRxQSEmJLb7j20UcfGapzOBx67bXXLN2R63+9+uqrCgoKMlQ7f/585eR4/qGg2267TfXr1/dIr759+yo4ONhl3YEDB5SdnV2sXkY+h/gMQnFcf/31atu2raHaadOm6dSpUxYn8j1cQwAAAODyyrkYLpKkZHYvAgAAAAAAhTD2tAIAAAD+Jic/T0lpF+yOUahTaSnKzs+zO4alsvNytf34IUVHlrM7ymVVjiyrkEC+9YY5wsLCDNdmZmZamMQeubm5dkcoMT7++GPDtc8995yFSf7u2Wef1dy5c5Wfn++y9sMPP9RDDz3kgVR/KFOmjO644w6P9oRxW7du1Z49ewzVDho0SLGxsRYn+kPDhg01cuRIzZo1y2XtuXPntGTJEg0ZMsQDyf4wbtw4j/UqW7asWrRooa1btxZaV1BQoH379ql58+aW5vHXzyCn02l3hBLjxRdfVO/evV3WXbx4Uc8995xmzJjhgVS+hWsIAAAAXFr5sNIua1IyM1S1THkPpAEAAAAAAL6IJxwBAACKKCntgv65dI7dMSDp1TWL7Y5QqKl9h6t6uQp2x4CfKFWqlOHarKwsC5OYq0IFY2skISFBLVu2tDgNsrKy9P333xuq7dq1q8f/m9SqVUsDBw7UF1984bI2Li5OR44cUc2aNT2Q7FcDBgxQeHi4x/rBPYsWLTJcO2HCBAuTXL6nkeEiSfr66689OlzUoEEDtW/f3mP9JKlt27Yuh4sk6eDBg8UaLjLyOZSQkFDk8wOS1KtXL/Xq1UsrVqxwWfvuu+/q4YcfVt26dT2QzHdwDQEAAIBLKxvm+mdRyZnGdo8HAAAAAAAlU4DdAQAAAAAAxrkzXORLOxdVrFjRUJ2RYRIU35o1awwPp40ZM8biNJd29913G641OihllsGDB3u0H9xj9H6oV6+errrqKovT/F2LFi3UoUMHQ7Wevrf79Onj0X7Sr7s5GXH69Oli9THyObR8+XKlp/MgFornxRdfNFSXm5urp59+2uI0volrCAAAAPxdSGCQSocU/rPjlMyLHkoDAAAAAAB8EcNFAAAAAOBDQkJCDNfm5ORYmMRc5cuXV+nSpV3WzZ8/Xz///LMHEpVsRgcWgoODNWDAAIvTXNpVV12l8uXLG6pdvny5xWn+rHv37h7tB+PS0tK0adMmQ7We3BHor2644QZDdUePHtXevXstTvMHO+7tOnXqGKor7nBRjRo1XNZkZmbq2WefLVYfoG3btrr++usN1c6bN087d+60OJHv4RoCAAAAl1YuLKLQr7NzEQAAAAAAKAzDRQAAAADgQ7Kzsw3XurPLkd0cDoe6du3qsi43N1c33nijDh8+7IFUJdfmzZsN1XXu3FnlypWzNsxlBAcHG95FZcuWLRan+UP9+vVVqVIlj/WDe7Zv3668vDxDtf3797c4zeUNGjTIcK0n7+9WrVp5rNdvjO5sd+HChWL1MTo49dprr+njjz8uVi9gypQpCgwMdFlXUFCgiRMneiCR7+EaAgAAAH9X3sVwUUpmhoeSAAAAAAAAX8RwEQAAAAD4kKysLMO1vjRcJEm9evUyVHfgwAF17NhRX3zxhcWJSi6jv+HfyECYlYz2T0hIUEaGZx6eaNKkiUf6oGji4uIM1YWEhKh9+/YWp7m8Bg0aKDo62lCt0ddUXMHBwYZ3ETKT0QFGd4ZvL6Vnz55yOBwu6/Lz8zVixAg98sgjSktLK1ZPlFwxMTG64447DNUuXrxYa9eutTiR7+EaAgAAAH/neucihosAAAAAAMDlMVwEAAAAAD7EneGisLAwC5OYb9CgQYZ+A70knTx5Utdff73atWunuXPnKjMz0+J0JcfJkyd19uxZQ7UdO3a0OI05/QsKCvTLL79YnOZXjRo18kgfFI3RwblWrVrZPqBp9P721HBR1apVDQ3fmC00NNRQXXGHiypVqqRu3boZqnU6nXr11VdVp04dPfXUU+ymhyKZNGmS4fv78ccftziNb+IaAgAAAH/GzkUAAAAAAKA4GC4CAAAAAB/izu4rvjZcVL9+fd16661uHbN582YNHz5c0dHRGj58uBYsWKALFy5YlLBkOHjwoOFau3fpady4seGBNHdeV3FUrVrVI31QNEbvA7vvbUlq2rSpoTpP3dtRUVEe6fNXwcHBhury8vKK3evJJ590q/7cuXOaMmWK6tSpoy5duuj111/Xvn37ip0DJUPNmjU1btw4Q7Vr1qzR0qVLLU7ke7iGAAAAwJ+xcxEAAAAAACgOhosAAAAAwIecOnXKcG1kZKSFSazx1FNPKSgoyO3j0tLSNHfuXN10002qWLGiOnbsqIkTJ2rp0qVKTk62IKn/OnHihKG6sLAw1axZ0+I0hQsNDVWdOnUM1Rp9XcUVHR3tkT4oGqP3gTfsQBUTE2Oo7uTJkxYn+ZW3D6w6nc5in6N3797q0qVLkXqvXbtWDz30kBo1aqTatWvrzjvv1AcffKD9+/cXOxf81xNPPGH4+7UnnnjClPvc33ANAQAAgD+42rkoKy9Xmbk5HkoDAAAAAAB8jftPbAEAAECSVDmyrKb2HW53jEJtPZagT+PW2R3Dcre07KTYanXtjnFZlSPL2h0BfsSdh8irVatmYRJrNGrUSK+//romTJhQ5HPk5eVpw4YN2rBhgyTJ4XCoYcOG6tChgzp27KguXbqoSZMmcjgcZsX2K0aHL6pWreoV17B69eo6cOCAyzpPDRf54lBfSWL0PqhevbrFSczLkJ6ertTUVJUpU8bSPEZ3EPJ1H3/8sdq2bauzZ88W+RyHDx/WBx98oA8++ECSVKFCBbVv314dO3ZUp06d1KFDB4WHh5sVGT6sYsWKeuihhzR58mSXtTt27ND8+fM1dOhQDyTzHVxDAAAA4A+uhoskKSUzQ2HBIR5IAwAAAAAAfA3DRQAAAEUUEhik6uUq2B3DpZIwXBRbva6ql/X+/xaAGdwZLvKGh+OL4t5779XPP/+sWbNmmXI+p9OpvXv3au/evfrwww8lSeXLl1ePHj107bXXqk+fPrbvwONNzpw5Y6iucuXKFicxxmgOo6+ruEJDQz3SB+7Lzc3VhQsXDNV6w/3tToYzZ85YPlxUUtSuXVuff/65rrnmGuXm5ppyznPnzmnp0qVaunSpJCkoKEixsbG69tprde2116pDhw4KCGCD+ZLq4Ycf1owZMwwNtD399NO66aabirTLoz/jGgIAAAC/KmdguCg5M0NXlCnvgTQAAAAAAMDX8P9aAwAA+LGqZcorNNC/H5oKDQpW1Uj+jzCUHAcPHjRc66vDRZL01ltv6a677rLs/MnJyfriiy80duxY1apVS+3bt9err76qpKQky3r6iszMTEN1UVFRFicxpkIFY8OlRl9XcZWU3V18kTv3gDfc30bvbclz93dJ0aNHD3311VcqXbq0JefPy8vTxo0b9eyzz6pz586qXr267r33Xm3atMmSfvBukZGRmjhxoqHaAwcOmDZ87U+4hgAAAMCvjAwXpWRmeCAJAAAAAADwRQwXAQAA+LGAgADViqpkdwxL1S5fid/0jhIjLy9P8fHxhut9ebgoMDBQb7/9tj788EOVLVvW8n6bNm3SI488ourVq+vmm2/Wli1bLO/prbKysgzVlSpVyuIkxhjNYfR1wX+5cw94w/3tTgbub/P16dNH27ZtU7t27SzvdfLkSc2YMUPt27dXixYt9MEHH5i2axJ8w/jx41WjRg1Dtc899xwDhZfANQQAAACkkMAgRYQUvqt2MsNFAAAAAADgMngKEwAAwM/Vi4q2O4Kl6vr56wP+1969e5WTk2O4PiYmxsI0nnHHHXdo3759GjNmjEd2hMnNzdXnn3+utm3bqn///tqzZ4/lPb1Ndna2obqQkBCLkxgTGlr4AxO/YfgCRu9tyTvub6P3tsT9bZUGDRpo/fr1evfdd1WtWjWP9Ny5c6fuvPNONWjQQHPnzpXT6fRIX9grNDRUkyZNMlR74sQJTZ8+3dpAPohrCAAAAPyqfFjhu/CycxEAAAAAALgchosAAAD8XGz1enZHsNSV1evaHQHwmO3btxuuDQoKUosWLSxM4zmVK1fWO++8o/379+vhhx9WhQoVPNJ3yZIlatmypSZPnqy8vDyP9PQGRneDKygosDiJMUZzsMsd3LkHvOH+dicD97d1AgICNHr0aCUkJOjdd99VmzZtPNL38OHDGj58uHr16qXExESP9IS9RowYocaNGxuqfemll5SSkmJtIB/ENQQAAACkcmHhhX49OTPdQ0kAAAAAAICv4ckDAAAAPxdTuZquKFPe7hiWqFqmvBpX9sxvkQe8wYoVKwzXNm3aVKVKlbIwjefVqlVLr7zyio4fP64vvvhCw4YNU1RUlKU9c3NzNWnSJF177bVKTk62tJe3MHrfuLMLjJWM5vC39QD3uXMPeMP97U4G7m/rhYSEaPTo0dq6dat27Nihxx9/XE2aNLG8748//qjY2Fj9+OOPlveCvQIDAzVlyhRDtcnJyZo6darFiXwP1xAAAAAwsnPRRQ8lAQAAAAAAvobhIgAAAD/ncDh0dQP/2L3kr65u0EIOh8PuGIDHuDNcFBsba2ESe4WGhmrw4MGaO3eukpKStH79er300ksaNGiQKlasaEnPH374Qb1799aFCxcsOb83MTqkkJmZaXESYy5eNPZABMMXcOce8Ib72+i9LXF/e1rLli31wgsvaNeuXTp8+LBmz56tMWPGqEmTJpZ8b3r+/Hn16dNH33//vennhne54YYb1LZtW0O106ZN06lTpyxO5Hu4hgAAACjp2LkIAAAAAAAUFcNFAAAAJUDXOjEKDQyyO4apQgOD1LVOjN0xAI/ZvXu3jh49ari+U6dOFqbxHoGBgerQoYP++c9/6ssvv9SZM2e0Z88evfvuuxo5cqQaNGhgWq9t27Zp2LBhcjqdpp3TG0VERBiqO3PmjMVJjDGao3Tpwn9rK/xfWFiYAgKM/SjMG+5vdzJwf9unZs2aGjFihN555x3t2rVLZ8+e1VdffaV//vOf6ty5s0JDQ03pk52drRtuuEH79+835XzwXi+88IKhuosXL+q5556zOI1v4hoCAACgJHO1c1FyZoaHkgAAAAAAAF/DcBEAAEAJEBESqk61G9sdw1SdajdWeIg5D2sCvuCjjz4yXOtwONSvXz8L03i3xo0ba/To0frggw+0b98+nT59Wp9++qnGjh2rWrVqFevcS5cu1VtvvWVSUu9UpUoVQ3VJSUkWJzHGaA6jrwv+KyAgQJUqVTJU6w33tzsZuL+9R1RUlAYOHKiXXnpJP/30k1JTU7V69WpNnjxZnTp1UmBgYJHPnZqaqjvuuMPvh1xLut69e6tXr16Gat99910lJCRYnMj3cA0BAABQkpUPK/wXB2Xl5SozN8dDaQAAAAAAgC9huAgAAKCEGNgkVsEBRX+Y0ZsEBwRqYJNYu2MAHpOfn6+PP/7YcP2VV17Jg+b/o3Llyrr55ps1c+ZMJSYmKi4uTs8884zq1q1bpPM9+eSTSk9PNzml96hataqhupMnTyonx/4HEYw+EGz0dcG/Gb0PEhMTrQ1igNF7u0KFCgoJCbE4DYoqJCREXbt21dNPP621a9cqKSlJ77//vq655hrDO2n9rw0bNmj+/PkWJIU3efHFFw3V5ebm6umnn7Y4jW/iGgIAAKCkKudiuEiSUti9CAAAAAAAXALDRQAAACVEdGQ53diig90xTHFjiw6KjixndwzAY77++mudOHHCcP2AAQMsTOP7mjdvrkmTJunAgQP67rvv1LNnT7eOP3/+vN5//32L0tmvevXqhury8/N14MABi9MU7sKFCzp16pSh2mrVqlmcBr7A6P29d+9ei5O4Fh8fb6iOe9u3REVFadSoUfruu++UkJCgBx98UKVKlXLrHC+//LJF6eAt2rZtq+uvv95Q7bx587Rz506LE/keriEAAABKKlc7F0kMFwEAAAAAgEtjuAgAAKAE6du4jepViLY7RrHUr1BF/Rq3sTsG4DFOp1OTJ082XO9wOHTrrbdamMh/OBwOXXPNNfrhhx/02WefqXTp0oaPnTNnjoXJ7NWwYUM5HA5DtXFxcRanMa9/TEyMhUngKxo3bmyozu57250M3Nu+q1atWnrttde0e/dutW/f3vBx27dv1+7duy1MBm8wZcoUBQa63nm2oKBAEydO9EAi38M1BAAAQElkZOeiZIaLAAAAAADAJTBcBAAAUIIEBgRobIdrFBzg+gErbxQcEKi7O1ytgAC+jUXJ8d///lc7duwwXH/NNdeoQYMG1gXyUzfddJOWLl2qsLAwQ/WbN2/WmTNnLE5lj9KlS6tOnTqGateuXWtxGnP6h4WFsS4g6dedy4zYu3evzp49a3Gay8vLy9PGjRsN1bZo0cLiNLBanTp19P3336tDB+O7jC5dutTCRPAGMTExuuOOOwzVLl68WOvWrbM4ke/hGgIAAKAkCgkMUkRIaKE1DBcBAAAAAIBL4alMAACAEqZa2Sjd2KKj3TGK5KaWHVWtbJTdMQCPSUtL00MPPeTWMRMmTLAojf/r2rWrnnrqKcP1Rh/8vxRvH5Js2bKlobqVK1daG8Sk/k2aNDG0c4G/8fb7zA5G721JWrVqlYVJCrdlyxZlZBh70IfhIv9QunRpzZ07V6VKlTJUv2HDBosTwRtMmjRJoaGFPxT4m8cff9ziNL6JawgAAICSyNXuRSkMFwEAAAAAgEvgKRMAAIASqF9MG3Wu3cjuGG7pXLuR+jZuY3cMwKMeeughHTlyxHB9/fr11adPHwsT+b+HHnpIZcuWNVS7b9++IvcJDg42VJeXl1fkHsXRuXNnQ3W//PKLEhISLE5zaRcuXNAPP/xgqLZLly4Wp/FO3n6f2aFp06aG1/hXX31lcZrL++KLLwzVBQQEqFOnThangafUrVtXI0eONFRbnM8g+I6aNWtq3LhxhmpXr16tb775xuJEvodrCAAAgJKovIvhInYuAgAAAAAAl8JwEQAAQAkU4HDo7g5Xq021OnZHMSS2Wl3d3eFqBTgcdkcBPGbevHmaNWuWW8e8+OKL7FRSTKGhobruuusM1R4/frzIfUJCQgzVZWZmFrlHcVx99dWGaz///HMLk1zeF198odzcXEO17rwef+Lt95kdAgMDddVVVxmqXbx4sbKysixO9HdOp9PwumrTpo2iotjV0Z8MGjTIUF1xPoPgWyZOnKjIyEjDtU6n0+JEvodrCAAAgJKmXCl2LgIAAAAAAO7jqTMAAIASKiggUPd16ev1A0ax1epqQpc+CgoItDsK4DErV640vHPBb7p166Ybb7zRmkAlTLNmzQzVpaenF7mH0Qdck5OTi9yjOJo3b67o6GhDte+8844KCgosTvR3M2fONFQXHBys7t27W5zGO3n7fWYXo8NmycnJmj9/vsVp/u7bb7/VoUOHDNWW1ME5f+aJzyD4lkqVKumhhx4yVLtjxw59+umnFifyPVxDAAAAlDTlw13tXMS/KQEAAAAAwN8xXAQAAFCChQQG6YGu/dS5diO7o1xS59qNdH/XvgoJDLI7CuAxK1eu1ODBg5WTk2P4mICAAL3++usWpipZKlWqZKiuOL/VPiQkRGXKlHFZd+LEiSL3KA6Hw2F4WC0hIUFffvmltYH+Ys2aNdq0aZOh2j59+qh06dIWJ/JORu9lu+4zuwwZMkSBgcaGlt944w2P72Dx6quvGq696aabLEwCO3jiMwi+5+GHH1bFihUN1T711FPKy8uzOJHv4RoCAACgJCkfVvjPwlIyL3ooCQAAAAAA8CUMFwEAAJRwQQGBGtfxWg1t1UXBXrI7UHBAoIa17qJxHa9lxyKUKB9//LGuvfZaXbhwwa3jJk6cqDZt2liUquRJSUkxVGd0V5jLMbIzUGJiom0Pt95+++2Ga5966inl5+dbmObPHn/8ccO1I0aMsDCJdzO6+9SBAwcsTuJdqlSpYnjHn59//tmjuxd9//33WrFihaHa5s2bq3Xr1hYngqd56jMIviUyMlITJ040VHvgwAG99957FifyPVxDAAAAlCTlwgrfuSgzL0dZucZ/uRUAAAAAACgZGC4CAACAAhwODWgSqxf6DFO9CsYeRLZK/QpV9EKfYeofE6sAh8PWLICnpKSkaOTIkbrjjjvc2rFIknr06KFJkyZZE6yESkxMNFRndHDjcurVq+eyJjs7W7t27SpWn6Jq3769YmJiDNXu3r1b06ZNszjRrz788EOtXbvWUG3FihXVv39/ixN5LyP3mCRt3brV4iTeZ9SoUYZrH3vsMaWmplqY5ldZWVmaMGGC4Xp3XgN8h6c+g/6Xw+Ew/MdoPphv/PjxqlGjhqHaZ599VpmZmRYn8j1cQwAAAJQU5V0MF0lScmaGB5IAAAAAAABfwnARAAAAfletbJQmXX2zhrbq7PFdjIIDAjW0VRdNuvomVSsb5dHegF0KCgo0d+5cNW3aVB9++KHbx1epUkXz5s1TYCA7fJklPz9fX3/9taFao4M3l9OwYUNDdd99912x+hTHP//5T8O1Tz75pOLj4y1MIx05ckQPPPCA4foHH3xQISEh1gXyckbvsWXLllmcxPvccMMNhoevjh49qvvvv9/iRNITTzxheA1FRUVp9OjRFieCHb744gtDdcX9DILvCQ0NNTxQfuLECW3atMnaQD6IawgAAICSwtXORZKUwnARAAAAAAD4C4aLAAAA8CeBAQEa0ORKTe03XD3rNVNoYJCl/UIDg9SzXjNN7TdcA5rEKiCAb1Hh/3Jycn4fKho+fLhOnDjh9jkqVqyoZcuWqUqVKhYk9LwpU6Zo8eLFdsfQwoULdfz4cZd1DodD7dq1K1avtm3bGqqbNWuW8vPzi9WrqIYPH67atWsbqs3MzNSgQYOUkpJiSZaMjAy3zl+uXDnde++9lmTxFc2aNVNYWJjLut27d2v16tUeSOQ9AgMD9a9//ctw/ezZszVjxgzL8sydO1evvfaa4fr7779fkZGRluUpaVatWqXnn39eFy5csDVHamqq4WHjDh06WJwG3mjEiBFq3Lix3TF8GtcQAAAAJUH5UuxcBAAAAAAA3MeTmwAAALik6MhyGtO+l2YMGa0Rsd1VtUx5U89ftUx5jYjtrhlDRmtM+16Kjixn6vkBb1NQUKCNGzfq3nvv1RVXXKHhw4cXeZeXqKgoff/992revLnJKe2zZcsWDRgwQK1bt9bcuXOVk5Pj8QxHjx7V+PHjDdXGxsYqOjq6WP26dOliqG7//v2aOHFisXoVVVBQkKZMmWK4ft++ferTp4/pA0YXL17UoEGDtGPHDsPHPP744ypTpoypOXxNcHCw4SG4sWPH6ty5cxYn8i4jRoxwa/eX+++/X3PnzjU9x6JFi3TnnXcarq9SpYpbO3jBteTkZD355JOqVauWnnjiCR07dsyWHGPGjNGpU6cM1fbt29fiNPBGgYGBbn0u4++4hgAAACgJQoKCFB4cWmgNw0UAAAAAAOCvGC4CAABAocJDQnVto1Z6ud/teqrXDerTqLUaVarq9o5GoUHBalSpqvo0aq2net2gl/vdrmsbtVJ4SOH/Bxfgq9LT07Vx40bNnDlTN954oypVqqQOHTpoxowZOn/+fJHPW6NGDa1YsUItW7Y0Ma332LFjh4YPH66aNWvqqaee0sGDBz3SNz4+Xr179zY8XDFy5Mhi96xdu7aaNm1qqHbq1KkaPHiwtm/fXuy+7rrtttt01VVXGa7fsGGDunfvrgMHDpjS/9ixY+rVq5dWrFhh+JjmzZvroYceMqW/r+vfv7+huj179ig2NlaffPKJLcN9dggODtbMmTMN1+fn5+uOO+7Q1KlT5XQ6Tcnw22eEO9f8jTfeKPGDc1a5cOGCXnjhBdWpU0c33XSTli9froKCAsv75uTkaMyYMfrss88M1V955ZWGPz/gf2644QZdeeWVdsfwaVxDAAAAlATlwwvfvSgli+EiAAAAAADwZ+49EQoAAIASy+FwKCa6umKiq0v6dReWE2nJOnQ+ScdSzik9J1u5+XnKK8hXUECgggODVDokVNXLVVCdqMqqGlleAQHMtsP7/Pzzz1q8eLFbxzidTmVlZSk7O1tZWVlKS0vTqVOndOrUKZ08eVL79+/X4cOHTXv4/De9evXSvHnzVKlSJVPP641Onz6tKVOmaMqUKerYsaOGDh2qgQMHqlatWqb2ycrK0jvvvKMnn3xSaWlpho6JiorSHXfcYUr/W265RU8//bSh2q+++kpfffWV6tatq86dO6tRo0aqWrWqypYtq+DgYDkcDpfnqFChgjp27Oh2zpkzZ6pNmzbKyDD20EFcXJxiY2P14osv6u6771ZgYKDbPZ1Opz7++GM9/PDDOnv2rOHjgoKC9M477ygoiB95SNJNN92kxx57zNCAxOHDh3Xbbbdp7Nix6tq1q1q0aKGaNWuqQoUKKlWqlOHP8V69eiksLKy40T2ie/fuGj16tGbNmmWovqCgQI899phWrFih//znP2rYsGGR+h45ckQPPvig/vvf/7p1XP/+/XXLLbcUqSeMy8vL04IFC7RgwQJVrVpVQ4cO1ZAhQ9SxY0fTv59dvXq1HnnkEW3evNnwMQ8++KCpGeB7XnzxRV199dV2x/BpXEMAAAD4u3KlInT8wuV/yVXyRYaLAAAAAADAn/GkDQAAAIokICBA1ctWUPWyFeyOAhTLG2+8oTfeeMPuGIUKCgrSY489psmTJxdpSMPXrV+/XuvXr9d9992n5s2bq1evXurSpYs6deqkK664wu3zOZ1Obd26VYsXL9a7776rEydOuHX8c889p8jISLf7Xspdd92lF154QVlZWYaPSUhIUEJCQpH6de/eXStXrnT7uIYNG+rdd9/VsGHDDB+Tmpqqe+65R9OnT9eECRM0bNgwlS9f3uVx6enpWrBggaZNm6YdO3a4nXXq1Knq0KGD28f5q1q1amngwIH68ssvDR+TlpampUuXaunSpUXqeejQIdWuXbtIx9ph+vTp2rJli1v327Jly9SsWTMNHTpU48aNU/v27Q0N+MXFxWnmzJn68MMPlZmZ6VbOOnXq6MMPP3TrGBTfiRMn9Oqrr+rVV19VhQoVdM0116hr167q3LmzmjZtWqTP5VOnTmnJkiWaO3eufvzxR7eObdeunYYOHep2T/iX3r1766qrrtIPP/xgdxSfxTUEAACAvysf5mLnokyGiwAAAAAAwJ8xXAQAAAAAXqxHjx5688031bRpU7ujeIWdO3dq586dvw+EVahQQU2bNlWDBg1UtWpVVa1aVZGRkQoLC1NQUJAyMjKUkZGh1NRUHTx4UPHx8frll1+UlJRUpP49evTQ3XffbdrriY6O1r333qtXXnnFtHNaZejQodq8ebNef/11t47bu3ev7r33Xt1///1q166dYmNj1ahRI1WoUEHh4eHKyspSSkqK9u3bp+3bt2vt2rXKyckpckZ29Pi7SZMm6euvv1Z+fr7dUbxSWFiYFi5cqHbt2uncuXOGj8vNzdVHH32kjz76SNHR0erevbuaNm2qWrVqqXTp0goICFB6erqOHz+u3bt3a9WqVTpy5EiRMkZERGjhwoWKiooq0vEwx7lz5zRv3jzNmzdPkhQaGqpGjRopJiZG1atXV9WqVVWxYkWVKlVKpUqVUk5OjtLT05WRkaHjx48rPj7+9z9F2d0wPDxc7733nqFBNvi/F198Ue3bt7c7hk/jGgIAAMCflQ8vfLgoOYvhIgAAAAAA8GcMFwEAAACAF6pfv76effZZdidw4dy5c1q9erVWr15tea+aNWtq/vz5pu8eNWnSJH3xxRc6ePCgqee1wquvvqrz588XafeU/Pz833ehskL//v3Z1eUyWrZsqUcffVT//ve/7Y7iterWratly5apV69eSklJcfv406dP67PPPjM/mH4dflq0aJFat25tyflRdNnZ2YqLi1NcXJzlvRwOh9599101a9bM8l7wDe3atdOQIUP0xRdf2B3FZ3ENAQAA4M/KlXKxc9FFhosAAAAAAMCfBdgdAAAAAADwh44dO2rhwoXau3cvg0VepFq1avrhhx8UHR1t+rkjIiK0ePFiVahQwfRzm83hcOj999/X8OHD7Y7yJ/369dOCBQsUHBxsdxSvNWXKFA0cONDuGF6tTZs2+vbbb1W+fHm7o/wuPDxcX375pa666iq7o8BmM2bM0LBhw+yOAS/z/PPPmz70XNJwDQEAAOCvyoeXLvTrmXk5ysot2u7hAAAAAADAPzFcBAAAAAA2q1q1qiZMmKCNGzdq3bp1uv766xUQwD/XvEWbNm20fv161atXz7IejRs31oYNG9SkSRPLepglICBAH3/8sZ577jk5HA674+jhhx/WV199pdDQULujeLXAwEAtXLhQ48aNszuKV2vfvr02bdqkmJgYu6OoVq1aWrduna655hq7o8BG4eHh+uyzz1i7uKSYmBjdfvvtdsfwaVxDAAAA+KtypcJd1iRnsnsRAAAAAAD4A0+rAQAAAICHORwONW/eXPfdd59WrVqlo0ePavr06WrXrp3d0fA/AgICNGHCBP3000+qUaOG5f3q16+v7du36/nnn/eqnVMu58knn9SSJUtUrVo1W/pXrFhR8+fP1yuvvMKOAwYFBQXp//7v/7RixQq1adPG7jheq379+tqwYYNGjBhhW4brr79eW7ZsUcuWLW3LAPvFxsZq48aNuummm+yOAi82efJkBmyLiWsIAAAAf+Rq5yJJSsm66IEkAAAAAADAVzBcBAAAAAAWq1q1qq666io9+uijWrRokc6dO6e4uDhNmzZN3bp1Y5ciSY8++qjGjh3rkSEeIzp16qQ1a9Zo+vTpCgsL81jfkJAQTZw4UUePHtW7776ra665RiEhIR7r764+ffpo9+7duueeexQUFOSRngEBARoxYoTi4+N1yy23eKSnv7nqqqu0detWrVy5UmPGjFF0dLTdkbxOmTJlNHv2bC1fvlwNGzb0WN+aNWvqiy++0MKFC1WxYkWP9S3pOnXqpOeff14dO3b0is/kSpUq6fXXX9eGDRvUrFkzu+PAy9WsWVNjx461O4ZP4xoCAADAH5UvFeGyJvliugeSAAAAAAAAX+GZJ38AAAAAwE8EBwcrNDT0T38iIyNVuXJlVa5cWdHR0apcubKqV6+uRo0aqXHjxoqMjLQ7ttfr3LmzOnfuLEmKi4vT4sWLtWTJEm3atEl5eXkeyRAQEKDrrrtO9913n6699lqP9LyciIgIjR49WqNHj1ZmZqY2b96srVu3at++fTp48KBOnz6tM2fOKD09XdnZ2crNzZXT6bQla5kyZfTmm2/qkUce0UsvvaTZs2crKyvL9D5BQUEaOnSoJk6cqMaNG5t+/pKoe/fu6t69u95++23t3btXGzZs0J49e7R//34dP35cZ86cUXJysrKyspSTk6OCggK7I3tc7969tXv3bn366ad68cUX9csvv1jSp379+nrsscc0YsQIBQcHW9IDl1e5cmVNnDhREydO1NmzZ7V06VItWbJEy5cvV3JyssdyNGjQQGPHjtVdd92l0qVd/4Zp4DdPPPGE3n//faWlpdkdxWdxDQEAAOBvQoKCFB4cqou52ZetScnK8GAiAAAAAADg7RxOu54+AgAAxXbmzBlVrlz5T3+XlJSkSpUq2ZSo+LKzs5WQkFBoTd26dRUaGuqhRAAAO128eFGbN2/W+vXrtWHDBm3YsEGnT5827fxhYWHq1KmTBg4cqCFDhnjNzkm+LCUlRQsXLtS8efO0Zs0a5eTkFPlcQUFB6tChg2699VbdfPPNPv09DvzDpk2bNHfuXH3xxRc6evRosc4VHR2twYMHa9iwYeratascDodJKWEWp9Op+Ph4rV+//vc/e/bsMW3QzuFwqHHjxurbt6+GDBmiTp06cR8AsAU/iwEAAPBPjy7+WMdTz1/26/1i2ui21l09mAgAAAAAAO/nj8/lGsVwEQAAPswfv4nhgRYAgCsnTpzQ/v37dfDgQR04cEAHDx7U0aNHlZqaqvT0dKWnpystLU15eXkKCQlRaGioypUrp8qVK+uKK65Q/fr11ahRI7Vq1UqtW7dmlxALZWVladOmTVq/fr327dunhIQEHTlyRGlpacrIyFBWVpZCQ0MVERGh0qVLq3r16qpbt64aNGigDh06qGPHjoqIiLD7ZQCXlJiYqJ9++kk///yzDh48qEOHDikpKUkZGRm6ePGinE6nwsPDFRERoQoVKqhOnTqqW7euWrZsqc6dO6thw4Z2vwQUQXp6+u+7yP32GZSQkKDk5OTfP3/S09N18eLF33c7jIiIUKVKlRQdHa1atWqpUaNGatq0qTp06KCoqCi7XxIA8LMYAAAAP/X8iv9q1+nL/3KUzrUb6Z5O13kwEQAAAAAA3s8fn8s1KsjuAAAAAAAAuKNq1aqqWrWqunfvbncUuFCqVCl169ZN3bp1szsKYLratWurdu3aGj58uN1R4EGlS5dWmzZt1KZNG7ujAAAAAABQqPJhhf/SnuTMDA8lAQAAAAAAviDA7gAAAAAAAAAAAAAAAAAAzMNwEQAAAAAAcAfDRQAAAAAAAAAAAAAAAIAfKediuCiF4SIAAAAAAPA/GC4CAAAAAAAAAAAAAAAA/IirnYsyc3OUlZfroTQAAAAAAMDbMVwEAAAAAAAAAAAAAAAA+BFXOxdJ7F4EAAAAAAD+wHARAAAAAAAAAAAAAAAA4Edc7VwkSckMFwEAAAAAgP+P4SIAAAAAAAAAAAAAAADAj7BzEQAAAAAAcAfDRQAAAAAAAAAAAAAAAIAfCQ0KVnhwSKE1yZnpHkoDAAAAAAC8HcNFAAAAAAAAAAAAAAAAgJ8pH1a60K+nZF70UBIAAAAAAODtGC4CAAAAAAAAAAAAAAAA/Ey5sPBCv87ORQAAAAAA4DcMFwEAAAAAAAAAAAAAAAB+xtXORcmZGR5KAgAAAAAAvB3DRQAAAAAAAAAAAAAAAICfKR8WUejXUxguAgAAAAAA/x/DRQAAAAAAAAAAAAAAAICfKediuIidiwAAAAAAwG8YLgIAAAAAAAAAAAAAAAD8jKudizJzc5SVl+uhNAAAAAAAwJsxXAQAAAAAAAAAAAAAAAD4GVc7F0lSCrsXAQAAAAAAMVwEAAAAAAAAAAAAAAAA+B1XOxdJDBcBAAAAAIBfMVwEAAAAAAAAAAAAAAAA+BkjOxclM1wEAAAAAADEcBEAAAAAAAAAAAAAAADgd0KDghUeHFJoDTsXAQAAAAAAieEiAAAAAAAAAAAAAAAAwC+52r2InYsAAAAAAIDEcBEAAAAAAAAAAAAAAADgl8q7HC5K91ASAAAAAADgzRguAgAAAAAAAAAAAAAAAPxQ+bDShX49hZ2LAAAAAACAGC4CAAAAAAAAAAAAAAAA/FI5lzsXMVwEAAAAAAAYLgIAAAAAAAAAAAAAAAD8UnkXw0XsXAQAAAAAACSGiwAAAAAAAAAAAAAAAAC/5Grnoou5OcrOy/VQGgAAAAAA4K0YLgIAAAAAAAAAAAAAAAD8kKudiyR2LwIAAAAAAAwXAQAAAAAAAAAAAAAAAH7J1c5FkpTMcBEAAAAAACUew0UAAAAAAAAAAAAAAACAHzIyXMTORQAAAAAAgOEiAAAAAAAAAAAAAAAAwA+VCgpWWHBIoTXsXAQAAAAAABguAgAAAAAAAAAAAAAAAPxUeRe7FzFcBAAAAAAAGC4CAAAAAAAAAAAAAAAA/JSr4aIUhosAAAAAACjxGC4CAAAAAAAAAAAAAAAA/FQ5lzsXpXsoCQAAAAAA8FYMFwEAAAAAAAAAAAAAAAB+qnxY6UK/npJ50UNJAAAAAACAt2K4CAAAAAAAAAAAAAAAAPBT5cLCC/06OxcBAAAAAACGiwAAAAAAAAAAAAAAAAA/5Wrnoou5OcrOy/VQGgAAAAAA4I0YLgIAAAAAAAAAAAAAAAD8VLmwCJc1KZkZHkgCAAAAAAC8FcNFAAAAAAAAAAAAAAAAgJ8qb2C4KJnhIgAAAAAASjSGiwAAAAAAAAAAAAAAAAA/xc5FAAAAAADAFYaLAAAAAAAAAAAAAAAAAD9VKihYYcEhhdawcxEAAAAAACVbkN0BAAAAAAAAAAAAAAAAAFinfFiEMnNzLvv1Hw78omMXzikipJSql62guhUqq2pkeQUE8HuLgUspKCjQidRkJZxP0rEL55SRk6Xc/HzlFeQrKCBQwYGBrCfAANYSYA7WEmAe1hNKMoaLAAAAAAAAAAAAAAAAAD/jdDq1J+m4th476HJnouOp53U89fyf/i40KFi1yldUvahoxVavp5jK1eRwOKyMDHit/11PB8+f1uHzZ5Sdn2f4eNYT8CvWEmAO1hJgHtYT8AeH0+l02h0CAAAUzZkzZ1S5cuU//V1SUpIqVapkU6Liy87OVkJCQqE1devWVWhoqIcSAQAAAAAA+C9+FgMAAOB/MnKytebQHn2/P04nUpNNO2/VMuXVu0ELda0To4gQvj9EycB6AszBWgLMwVoCzMN6wuX443O5RjFcBACAD/PHb2J4oAUAAAAAAMBz+FkMAACA/zidlqJFu7dqXWK8W79p212hgUHqVLuxBjaJVXRkOcv6AHZiPQHmYC0B5mAtAeZhPcEVf3wu1yiGiwAA8GH++E0MD7QAAAAAAAB4Dj+LAQAA8H35BQVaEr9NC+M2KLcg32N9gwMCdWOLDurXuI0CAgI81hewEusJMAdrCTAHawkwD+sJRvnjc7lGMVwEAIAP88dvYnigBQAAAAAAwHP4WQwAAIBvO37hvN7asEwHz522LUP9ClV0d4erVa1slG0ZADOwngBzsJYAc7CWAPOwnuAOf3wu1yiGiwAA8GH++E0MD7QAAAAAAAB4Dj+LAQAA8E0FTqeW7NmmBXHrPfpbty/n19/G3VH9YtoowOGwOw7gFtYTYA7WEmAO1hJgHtYTisIfn8s1KsjuAAAAAAAAAAAAAAAAAACMySvI19sblmtt4l67o/wutyBf83b8pCMpZ3R3h6sVFBBodyTAENYTYA7WEmAO1hJgHtYT4D6GiwAAAAAAAAAAAAAAAAAfkJOfp+k/LdW244fsjnJJaxP3KjM3R/d16auQQB5LgndjPQHmYC0B5mAtAeZhPQFFE2B3AAAAAAAAAAAAAAAAAACFyyvI9+oH5H6z7fgh/eenb5RXkG93FOCyWE+AOVhLgDlYS4B5WE9A0TFcBAAAAAAAAAAAAAAAAHixAqdTb29Y7vUPyP1m6/EEvb1huQqcTrujAH/DegLMwVoCzMFaAszDegKKh+EiAAAAAAAAAAAAAAAAwIst2bNNaxP32h3DLWsT92pp/Da7YwB/w3oCzMFaAszBWgLMw3oCiofhIgAAAAAAAAAAAAAAAMBLHb9wXgvi1tsdo0g+/3m9jl84b3cM4HesJ8AcrCXAHKwlwDysJ6D4GC4CAAAAAAAAAAAAAAAAvFB+QYHe2rBMuQX5dkcpktyCfL29YbkKCgrsjgKwngCTsJYAc7CWAPOwngBzMFwEAAAAAAAAAAAAAAAAeKGl8dt08Nxpu2MUy4Fzp7QkfpvdMQDWE2AS1hJgDtYSYB7WE2AOhosAAAAAAAAAAAAAAAAAL3M6LUUL4jbYHcMUC+I26HRait0xUIKxngBzsJYAc7CWAPOwngDzMFwEAAAAAAAAAAAAAAAAeJlFu7cqtyDf7himyC3I16LdW+2OgRKM9QSYg7UEmIO1BJiH9QSYh+EiAAAAAAAAAAAAAAAAwItk5GRrXWK83TFMtS4xXhdzsu2OgRKI9QSYg7UEmIO1BJiH9QSYi+EiAAAAAAAAAAAAAAAAwIusObRH2fl5dscwVXZ+ntYc2mN3DJRArCfAHKwlwBysJcA8rCfAXAwXAQAAAAAAAAAAAAAAAF7C6XRq+f44u2NYYvn+ODmdTrtjoARhPQHmYC0B5mAtAeZhPQHmY7gIAAAApnE6nfzDBgAAAAAAAAAAoBj2JB3XydRku2NY4kRqsuKTjtsdAyUI6wkwB2sJMAdrCTAP6wkwH8NFAAAAMM36w/u04ch+u2MAAAAAAAAAAAD4rK3HDtodwVJbjiXYHQElCOsJMAdrCTAHawkwD+sJMF+Q3QEAAADgHzJzczRn+xo5JLWqWlthwSF2RwIAAAAAAAAAAPA5B8+ftjuCpRL8/PXBu7CeAHOwlgBzsJYA87CeAPOxcxEAAABMsXDnBqVkZig5M0P/3bnR7jgAAAAAAAAAAAA+p6CgQIfPn7E7hqUSk8+ooKDA7hgoAVhPgDlYS4A5WEuAeVhPgDXYuQgAAADFdjTlrL7du+P3//3N3u3qVjdGNcpVtC8UAAAAAAAAAACAjzmRmqzs/Dy7Y1gqOy9Xaw7Fq1LpMnZHgZ87k57KegJMwFoCzMFaAsxTUtbTibRkVS9bwe4oKEEYLgIAAECxOJ1OfbBlpQqczt//ruD//91TvW6Qw+GwMR0AAAAAAAAAAIDvSDifZHcEj3h743K7IwB+g/UEmIO1BJiDtQSY59D5JIaL4FEBdgcAAACAb/spMV7xScf/9vfxSce1NnGvDYkAAAAAAAAAAAB807EL5+yOAAAAAADwAsdS+PchPIvhIgAAABRZRk625m5fc9mvz92+Rhdzsj2YCAAAAAAAAAAAwHdl5GTZHQEAAAAA4AXSee4OHsZwEQAAAIpsQdx6pWZlXvbrF7Iu6vO4DR5MBAAAAAAAAAAA4Lty8/PtjgAAAAAA8AK5+Xl2R0AJw3ARAAAAiiQx+YyW7Y9zWbds/886nHzGA4kAAAAAAAAAAAB8W14Bw0UAAAAAAP59CM9juAgAAABuK3A69cHmH+V0Ol3WOv9/bYGBWgAAAAAAAAAAgJIsKCDQ7ggAAAAAAC/Avw/haQwXAQAAwG2rE3Zr/9mThuv3nT2pNYf2WJgIAAAAAAAAAADA9wUH8vAYAAAAAEAKDgyyOwJKGIaLAAAA4Jb07CzN27HW7ePmbf9J6TlZFiQCAAAAAAAAAADwDxEhpeyOAAAAAADwAqVDQu2OgBKGcTYAAAC45bO4dUrLznT7uNTsTH3+83qNatvTglQAAAAAAAAAAAC+r3rZCnZH8IiRV/ZQh5oN7I4BP7fh8D7N3rrK7hiWYz3BaqwlwBysJcA8JWU9VS9XMv59CO/BcBEAAAAMSzh3Wiv27yzy8d/vj1P3ek1UNyraxFQAAAAAAAAAAAD+oW5UZbsjeEST6OoqUyrc7hjwc02ia9gdwSNYT7AaawkwB2sJME9JWU91Ssi/D+E9AuwOAAAAAN9QUFCg9zf/KGcxzuGU9MHmH1XgLM5ZAAAAAAAAAAAA/FPVMuUVGujfvys4NChYVSPL2x0DJQDrCTAHawkwB2sJMA/rCbAGw0UAAAAw5MeEXUo4f7rY5zl47rRWHtxlQiIAAAAAAAAAAAD/EhAQoFpRleyOYana5SspIIBHlmA91hNgDtYSYA7WEmAe1hNgDe44AAAAuJSalalPd6wz7Xzzd6xValamaecDAAAAAAAAAADwF/Wiou2OYKm6fv764F1YT4A5WEuAOVhLgHlYT4D5GC4CAACAS5/+vFbpOVmmnS89J0uf/mzesBIAAAC8x8qVK+VwOFz+mTRpkt1RgT+ZNGmSoXt35cqVdkcFAAAA4Odiq9ezO4Klrqxe1+4IKEFYT4A5WEuAOVhLgHlYT4D5GC4CAABAofafPakfD+4y/bwrD/6iA2dPmX5eAAAAAAAAAAAAXxZTuZquKFPe7hiWqFqmvBpXrmZ3DJQgrCfAHKwlwBysJcA8rCfAfAwXAQAA4LIKCgr0weYfLTm3U9L7m39UQUGBJecHAAAAAAAAAADwRQ6HQ1c3aGF3DEtc3aCFHA6H3TFQgrCeAHOwlgBzsJYA87CeAPMxXAQAAIDL+v7ATiUmn7Hs/InJSVpxYKdl5wcAAAAAAAAAAPBFXevEKDQwyO4YpgoNDFLXOjF2x0AJxHoCzMFaAszBWgLMw3oCzMVwEQAAAC7pQmaGPvt5neV9Pv15vS5kXbS8D0qOkSNHyuFwGPqTmJhod9zLql27tqHXULt2bbujAgAAAAAAAABMFhESqk61G9sdw1SdajdWeEio3TFQArGeAHOwlgBzsJYA87CeAHMxXAQAAIBLmrdjrS7m5lje52Jutubt+MnyPgAAAAAAAAAAAL5kYJNYBQcE2h3DFMEBgRrYJNbuGCjBWE+AOVhLgDlYS4B5WE+AefxrHzAAAACYIj7puFYf2uOxfqsT9qhnvWZqVKmqx3oCAFDSTJo0yWVN7dq1NXLkSMuzAAAAAAAAwLXoyHK6sUUHzdux1u4oxXZjiw6KjixndwyUYKwnwBysJcAcrCXAPKwnwDwMFwEAAOBP8gsK9MGWHz3e94PNP+r564YqMIDNNQEAsMLkyZNd1nTv3p3hIgAAAAAAAC/St3EbbTp6QAfPnbY7SpHVr1BF/Rq3sTsGwHoCTMJaAszBWgLMw3oCzMGTmwAAAPiTZft+1tGUcx7veyTlrJbt+9njfQEAAAAAAAAAALxVYECAxna4RsEBgXZHKZLggEDd3eFqBfDL5eAFWE+AOVhLgDlYS4B5WE+AObgDAQAA8LvkzAwtiNtgW/8FOzcoOTPDtv4AAAAAAAAAAADeplrZKN3YoqPdMYrkppYdVa1slN0xgN+xngBzsJYAc7CWAPOwnoDiY7gIAAAAv5u7bY0y83Js65+Zm6NPtq+xrT8AAAAAAAAAAIA36hfTRp1rN7I7hls6126kvo3b2B0D+BvWE2AO1hJgDtYSYB7WE1A8DBcBAABAkrT79DGtO7zX7hham7hXe04fszsGAAAAAAAAAACA1whwOHR3h6vVplodu6MYElutru7ucLUCHA67owB/w3oCzMFaAszBWgLMw3oCiofhIgAAACivIF8fbPnR7hi/+2DLSuUV5NsdAwAAAAAAAAAAwGsEBQTqvi59vf5BudhqdTWhSx8FBQTaHQW4LNYTYA7WEmAO1hJgHtYTUHQMFwEAAEDfxO/Q8Qvn7Y7xu2MXzunbvTvsjgEAAAAAAAAAAOBVQgKD9EDXfupcu5HdUS6pc+1Gur9rX4UEBtkdBXCJ9QSYg7UEmIO1BJiH9QQUDXckAABACXfuYpr++8tGu2P8zcKdG9WxVkNVCI+0OwoAAAAAAAAAAIDXCAoI1LiO16pmuUpaELdeuQX5dkdScECgbmrZUX0bt1GAw2F3HMAw1hNgDtYSYA7WEmAe1hPgPoaLAAAASrg529YoOy/X7hh/k52Xq7nb1ui+Ln3tjgIAAAAAAAAAAOBVAhwODWgSqzbV6uitDct08Nxp27LUr1BFd3e4WtXKRtmWASgO1hNgDtYSYA7WEmAe1hPgHoaLAAAASrCdJw9r45H9dse4rA1H9qvnqSNqXqWm3VEAAAAAAAAAAAC8TrWyUZp09c1aGr9NC+I2ePS3cQcHBOrGFh3Vr3FrBQQEeKwvYBXWE2AO1hJgDtYSYB7WE2AMw0UAAAAlVG5+nmZvWWl3DJdmb1mpf/cZpuBAvnUFAAAAAAAAAAD4q8CAAA1ocqXa1aivRbu3al1ivLLz8yzrFxoYpE61G2tgk1hFR5azrA9gB9YTYA7WEmAO1hJgHtYT4BpPaAIAAJRQS+O362Rait0xXDqZmqxv4rdrYNO2dkcBAAAAAAAAAADwWtGR5TSmfS/d1rqL1hzao+X743QiNdm081ctU15XN2ihrnViFB4Satp5AW/EegLMwVoCzMFaAszDegIuj+EiAACAEuhMRqq++GWT3TEM++KXTepUu5EqRpSxOwoAAAAAAAAAAIBXCw8J1bWNWumahi0Vn3RcW44lKOH8aSWeT3LrN3OHBgWrdvlKqhsVrSur11XjytXkcDgsTA54H9YTYA7WEmAO1hJgHtYT8HcMFwEAAJRAH29drRwLt3U1W3Z+nj7euloPdutvdxQAAAAAAAAAAACf4HA4FBNdXTHR1SVJBQUFOpGWrEPnk3Qs5ZzSc7KVm5+nvIJ8BQUEKjgwSKVDQlW9XAXViaqsqpHlFRAQYPOrALwD6wkwB2sJMAdrCTAP6wn4A8NFAAAAJcz244e05dhBu2O4bfOxg9pxIlGtqta2OwoAAAAAAAAAAIDPCQgIUPWyFVS9bAW7owA+j/UEmIO1BJiDtQSYh/WEkozhIgAAgBIkJz9PH21dZXeMIvtwy0o16TdcIYF8Gwv4kkOHDmnFihXauXOndu7cqSNHjig1NVWpqakqKChQeHi4IiMjVbNmTdWpU0dt2rRR586dFRsbq6Ag/1vvFy5c0Pfff6+ff/5Zu3bt0r59+5SSkqLU1FRlZGQoLCxMkZGRqly5smJiYtS0aVP17NlTHTp0UGBgoN3xTZeVlaWjR48qNTVVFy9eVEZGhoKCghQREaHSpUurevXqKl++vN0xPebkyZP68ccff7839u/fr+TkZKWnpys9PV1Op1MREREqU6aMqlSpokaNGumjjz6yOzZ81KFDh7Ry5UrFx8dr7969OnjwoFJSUn6/3wIDAxUeHq5y5cqpSpUq6ty5s15++WXb8p45c0bLly/Xzp07tWvXLh04cEAXLlxQWlqaLl68qIiICEVGRuqKK674/f2zV69eio2NlcPhsC23VTIyMnTs2DGlpaUpIyNDmZmZCgkJ+dPnamRkpN0xTVFQUKAtW7bohx9+0K5du7Rnzx6dPHny9//2v73msmXLqn79+mratKlatGih3r17q1KlSnbHBwAAAAAAAAAAAACv539PaQEAAOCyFu/eqtPpF+yOUWSn0y9o8e6tur55e7ujAH6pdu3aOnz4cKE1tWrVUmJiostznTt3TjNnztTnn3+uuLi4QmsvXLigCxcu6NixY1q3bp3mzp0rSapUqZJuvPFGjR07Vi1atDD8OrxRbm6uPvnkE82ZM0erVq1Sbm7uZWt/e6j/5MmT+vnnn3//+3LlyunGG2/UPffco1atWnkgtfnOnTuntWvXau3atdqwYYMOHDigkydPyul0Fnpc2bJl1bBhQ3Xs2FGdO3dW7969FRUV5aHUl9ajRw+tWuV6YNfVa5Oko0eP6p133tGiRYtcrhdJSklJUUpKio4cOaK9e/f+/veJiYmqU6eOy+MLs2rVKlOHMIy+Z6BwZr4/x8fH6+2339aSJUu0f//+Qmvz8vKUnZ2t5ORkHTp0SBcvXnQntikyMjL0/vvva/78+dqwYYMKCgouW/vb4Orx48e1ZcuW3/++UqVKuvXWWzV+/Hg1btzYE7FNd/LkSa1Zs0Zr167Vpk2blJCQoKSkJJfHVaxYUY0aNVKnTp3UpUsXXXXVVSpdurQHEptj9+7d+r//+z99+umnOnv27GXr0tLSlJaWphMnTmjPnj36+uuvJf36m+U6duyoW2+9VaNGjVJERISnogMAAAAAAAAAAACATwmwOwAAAAA843T6BX21e7PdMYrtq92bleTDA1KAvzt79qzuv/9+1axZU0899ZShQYnLOXPmjGbOnKlWrVpp8ODBOnDggIlJXUtMTJTD4XD5Z+TIkZc9R35+vqZNm6a6detq5MiR+v777wsdLCpMSkqKZs2apdatW6t3795/GjzyZhcuXNB7772nq6++WtHR0Ro0aJCmTp2q1atX68SJE4aGby5cuKDNmzdr+vTpuuWWW1SlShX169dP8+bNU15engdehTV++eUX3XjjjapTp46mTJlSrPXiL1auXGlo3U2aNMmWfLNnzzaUb/bs2bbkK8xPP/2ka665Rk2aNNEbb7zhcrDIbpmZmZo0aZJq1qyp++67T+vWrSt0sKgwZ86c0X/+8x/FxMRo4MCB2rdvn8lprZGUlKTp06erc+fOqlatmm655RZNnz5dGzZsMDRYJP36ubx27Vq9/PLLGjRokCpXrqybb75ZixcvNvT+a5f4+Hj1799fTZs21YwZMwodLCpMQUGB1q5dqwkTJqhWrVqaPHmyMjMzTU4LAAAAAAAAAAAAAL6P4SIAAIAS4qMtq5Sbn293jGLLzc/XR1td7xQBwPPmzp2rmJgYTZ8+3dTdLZxOp7766iu1aNFCr732mmnntdovv/yi9u3b64EHHtCxY8dMPfeKFSvUpk0bTZgwQVlZWaae2yynTp3SY489ppo1a2r06NH6/vvvlW/S51Bubq6WLl2qYcOGqUGDBpo5c6ZPDRmlp6frkUceUevWrbVw4ULTrgtwKWfOnNGoUaPUrVs3LV++3KsHSn6zevVqtWjRQpMnT9b58+dNPffXX3+tZs2a6fHHHy/ysKfVDh48qLFjx6pmzZq6//77tW7dOtP+u2VmZurzzz/XgAED1KJFC82fP9+U85olNzdXjz32mJo3b64lS5aYeu5z585p0qRJatGihVavXm3quQEAAAAAAAAAAADA1zFcBAAAUAJsPZag7ScO2R3DNNuOH9LWYwl2xwDw/2VnZ+u2227T8OHDi7yzgBGZmZl6+OGHdfvttysnJ8eyPmaYP3++YmNjtXXrVst6FBQU6M0331T79u21d+9ey/q4KycnR1OmTFHdunU1depUpaamWtovMTFR48ePV2xsrDZs2GBpLzMcOHBAbdu21auvvupTA1HwTZs3b1arVq00e/ZsnxgqkqSpU6eqR48elu5Wl5ubq3//+9/q2rWrEhMTLevjrrS0ND344INq1KiR3n77bWVnZ1va75dfftHQoUPVo0cP7dmzx9JeRiQmJqpz586aOnWqpe+PBw4cUI8ePfTSSy9Z1gMAAAAAAAAAAAAAfA3DRQAAAH4uOy9XH25daXcM0320dZVyeCgbsN2ZM2fUs2dPffLJJx7rOWfOHN16661eu9vLa6+9pmHDhnlsACouLk6dOnXSpk2bPNKvMBs3blSLFi301FNPKTMz06O94+Li1LlzZz333HNeO0SxZs0atW/fXvHx8XZHQQmwYMECde/eXSdOnLA7iiFOp1P33XefHnvsMY+t4Y0bN6pjx47auXOnR/oVZsmSJWrcuLHeeOMNj3++rVq1Sq1bt9asWbM82vd/xcXFqUOHDtq8ebNH+jmdTv3rX//ShAkTVFBQ4JGeAAAAAAAAAAAAAODNGC4CAADwc1/t2qKzGWl2xzDdmYxUfbXbMw8fAri05ORk9erVS+vXr/d47y+++EITJkzweF9X3nnnHT388MMeH245f/68evXqpdWrV3u07/+aOXOmunXrZusuSgUFBXr66ac1ePBgjw83ubJt2zb169dP58+ftzsKSoBvvvlGQ4cO9bp1UJjHHntM//nPfzze99SpU+revbu2bNni8d7SH+9bAwYMsHUQLDs7W2PGjNG4ceM8PmyzefNmde/eXadPn/ZoX0l688039dhjj3m8LwAAAAAAAAAAAAB4G4aLAAAA/NjJ1GQt3rPV7hiW+Xr3Vp1MTbY7BlAiZWRkqF+/frbu9jBz5kx9/vnntvX/qxUrVuiee+6xrX96eroGDRqkPXv2eLSv0+nU+PHjNX78eI/t1uTKokWL1L9/f128eNHuKJKkQ4cOqW/fvkpL879hX3ifzZs366abblKeD+3wOGvWLL388su29U9OTla/fv106NAhj/bNzs7WkCFDvGrHtbfeekt33HGHx3ZPSkhIUL9+/ZSSkuKRfpfyyiuv2LprEwAAAAAAAAAAAAB4gyC7AwAAAMAaTqdTs7esVF6BZx4MtENeQb4+3LpKj/UYJIfDYXccoEQZPXq0oR2LQkNDdeWVV6pNmzaqW7euKlWqpIiICOXn5ys1NVWHDx/Wtm3btGbNmiI9WDxu3Dj17t1b5cuXL8KrME9SUpJuueUWQw/zR0REqHv37mrRooXq16+vMmXKKDg4WKmpqTp58qR2796t1atXKzEx0e0cKSkp6tu3rzZt2qRKlSoV4ZW4p6CgQKNHj9YHH3xgeS93/fDDDxo4cKC+/fZbBQXZ9+OP/Px8DR061NCOHAEBAWrevLnatWunevXq6YorrlBERIQCAgKUlpamc+fOaffu3dq2bZu2bdvmgfTwNenp6brllluUkZHhsjYoKEht2rRRbGys6tWrp+joaEVERKigoEBpaWlKSkrS7t27tWnTJkuHFn/55RfDg5lRUVHq2bOnmjZtqtq1aysyMvL39XH06FHt3r1bK1eu1MmTJ93OkZSUpD59+mjTpk0qU6aM28e7KysrS0OGDNG3335reS93zZ07V4GBgfrwww8t7XPhwgX17dtXZ86cKdLxtWvXVrdu3RQTE6OqVasqMjJSeXl5Sk1NVUJCgn755RetXLlSqampLs81fvx4tW/fvkg5AAAAAAAAAAAAAMAfMFwEAADgpzYfPaCdp47YHcNycScPa/Oxg2pXo77dUYAS45133tH8+fMLrbn22mv1j3/8Q/3791dYWJjLc+bk5Gjx4sV64YUXtHWr8R3Xzp07p8mTJ+uNN94wfIwV7r33Xp07d67Qmq5du+r+++9X//79FRoa6vKccXFxmjlzpj788ENlZmYazpKYmKgxY8boyy+/NHxMUd1zzz1FHixq0KCBevfurTZt2igmJkbVq1dXVFSUwsLCVFBQoPT0dB07dkz79u3T+vXrtXTpUsXHx7vVY8WKFXrggQf05ptvFimjGaZOnaqNGzcWWtOqVSvddddduvnmm1WhQgVD5z127Jg+/vjjP13/2rVrF7r7iZFB3O7du2vlypWGMsD7PPzwwy533+natavGjBmjIUOGqHTp0obOu3//fr333ntat26dGTF/l5+fr1GjRhW665nD4dDgwYN17733qkePHgoIcL0R+6ZNmzRz5kzNnTtXubm5hvPs3btX48eP15w5cwwfUxQFBQW68cYbizxY1KJFC/Xs2VNt2rRRw4YNVaNGDZUtW1ZhYWHKzc1Venq6jhw5ovj4eK1du1aLFy/WkSPu/bvgo48+UvPmzfXII48UKaMR48eP1969e906Jjw8XKNGjdLYsWPVrFkzl/V5eXlatmyZZsyYoaVLl162Ljc3V3feeaeuu+46t/IAAAAAAAAAAAAAgL9wOAt76gQAAHi1M2fOqHLlyn/6u6SkJI/sVGCV7OxsJSQkFFpTt25dQw9ll2RZebl6ZPFHOn8x3e4oHlEhvLRe7n+HSgUF2x0FXmDkyJGGf9P+oUOHVLt2bWsDFVHt2rV1+PBhl3W1atUq0g43Re1ZunRp5efnX3bYpX379nrzzTd15ZVXFimD0+nUm2++qUceeaTQh83/V2hoqI4ePWr6519iYqLq1Knjsq5GjRo6evRooV//z3/+o0GDBhUpx+HDhzVhwgR9/fXXbh337rvvavTo0UXqacSbb76pCRMmuHVM2bJlNXr0aI0ePVqNGzd2u+fWrVv18ssv67PPPit0iOavPv74Yw0fPtztfoXp0aOHVq1a5bIuJCTksvdy9erV9cYbb+j6668v8g582dnZhr8v8oXhopUrV6pnz54u65555hlNmjTJ+kB/MXv2bI0aNcpl3QcffKCRI0ea1tfI+3NwcHChgzRNmjTRm2++aej6Xo7R+83of8eqVavqxIkTl/1669at9dZbb6ldu3Zu5fzNb8NCP/zwg1vHffLJJxo6dGiRehrxyCOP6NVXX3XrmCpVqujuu+/WnXfeqZo1a7p1rNPp1MqVK/XSSy/pu+++M3xcYGCgVqxYoe7du7vVz4h58+Zp2LBhbh1zww036I033lD16tWL1HP16tUaN26cdu/efdkaV/fkb3788Uf16NGjSDkAb8TPYgAAAAAAAAAAAH7lj8/lGuX6V30CAADA53zxy8YSM1gkSecupuvLXzbZHQMoEdLT0y85WBQQEKDnnntO69atK/JgkfTr8MOECRP07bffGtrxSPr1YciZM2cWuWdxFTZY1KtXL23btq3Ig0XSrwNkixYt0iuvvGJox47fPProozp79myR+xZm9erVevDBBw3XBwYG6pFHHtGhQ4f0yiuvFGmwSJJiY2M1f/58rVu3Tk2aNDF83P3336/Tp08XqWdxXW6waMiQIfrll190ww03FHmwSBIP+eJ3hQ0WjR8/Xtu2bSvWYJFk/v1W2BDHmDFjtH79+iIPFklSo0aNtHz5cj3zzDNuHffAAw8oNTW1yH0L88knn7g1WBQWFqYXX3xRBw8e1KRJk9weLJJ+/Wzt2bOnvv32Wy1ZskTVqlUzdFx+fr5Gjx7t1u55RqSmpuqBBx4wXB8UFKSZM2dqwYIFRR4skqRu3bpp8+bNhQ41GRksAgAAAAAAAAAAAAB/xHARAACAnzl+4byW7tludwyPWxK/TccvnLc7BlAiBQcH67PPPtOTTz7p1vBLYXr27Kk5c+YYrv/ggw9M6Wum/v37a+nSpapYsaIp53v44Yc1e/Zsw9c4JSXF7Qfqjbh48aJGjRqlvLw8Q/V16tTRxo0b9fLLL6t8+fKmZOjQoYM2bdqkG264wVD9+fPndf/995vS2wzjx4/XggULVLZsWbujoAT497//rRkzZvjUINo///lPvfPOO6ZkDggI0KRJk/Tmm28aHuRLSkrSlClTit37r06ePKl7773XcH2bNm0UFxenf/3rXwoPDzclQ9++fbV9+3Z17drVUP2BAwc0efJkU3r/5rnnnlNSUpKh2t++xxg7dqwpvcPDwzVnzhyNHz/elPMBAAAAAAAAAAAAgL9guAgAAMCPOJ1Ozd7yo/KdBXZH8bj8ggLN3rJSTqfT7ihAieJwODRnzhzDQx7uuP766zVy5EhDtYmJidqyZYvpGYqqXbt2WrBggUJCQkw97+23366XX37ZcP3bb7+tAwcOmJph4sSJSkhIMFTbsWNHbd68WbGxsaZmkKSIiAh9+umnuv322w3Vf/bZZ9qxY4fpOdw1dOhQvfnmm6YN4gGF+de//qXHHnvM7hhuueOOO/TSSy+Zft577rlHTzzxhOH6adOm6eTJk6ZmGDdunJKTkw3VDho0SD/99JPq169vagZJqlSpkr777jv17t3bUP306dNNuxYnTpzQ9OnTDde/9dZbGjJkiCm9f+NwOPTmm2/qxhtvNPW8AAAAAAAAAAAAAODLeJIFAADAj6w/vE+7Th+zO4Ztdp0+qg1H9tsdAyhRJk6cqJtvvtmy87/wwguGd2v4+uuvLcvhjvLly2vhwoWW7RLy0EMPGX4gOj8/X6+//rppvffu3as333zTUO2VV16pb7/9VhUqVDCt/18FBgbqvffe01VXXeWy1ul06umnn7YsixExMTGaNWuW4d1TgOLo2bOnnn/+ebtjuKVFixZ6++23LTv/s88+q2uvvdZQbU5OjltDMK58//33+uqrrwzV9uvXT59//rnCwsJM6/9XYWFhWrhwoZo2beqyNjMzUy+++KIpfadPn66cnBxDtXfddZfuvPNOU/r+lcPh0IcffqjGjRtbcn4AAAAAAAAAAAAA8DUMFwEAAPiJzNwczdm+xu4YtpuzbbUyc409sAigeFq0aKFJkyZZ2uOKK67QsGHDDNWuWeMd74GvvPKKqlevbmmPGTNmKCoqylDt7Nmzdf78eVP6Pv3008rPz3dZFx0drS+//FJlypQxpW9hgoODNXfuXENDTIsXL9bBgwctz3QpDodDs2fPNjwsBxRHWFiYZs+e7VM7ZAUGBur9999XqVKlLOvhcDj0zjvvKDIy0lD922+/rYyMDFN6P/nkk4bqYmJiNG/ePAUHB5vStzBlypTR/PnzDQ3Dvv/++0pLSytWv4yMDMPDYzVq1NArr7xSrH6uhIeH67333vOpdQIAAAAAAAAAAAAAVuH/OQUAAPATC3duUEqmOQ8/+rLkzAz9d+dGu2MAJcK0adMUFBRkeR+juxZs3LjR0OCLldq2bWvZLgv/q3LlyoYHuy5evKhPPvmk2D13796tzz//3FDtO++8o2rVqhW7p1FVqlTRv//9b5d1TqdT7733ngcS/d1tt92mdu3a2dIbJc/DDz+smjVr2h3DLaNGjVJsbKzlfWrWrKlHH33UUG1ycrK+/PLLYvf85ptvtHGj6+9PAwMDNWfOHMPDT2Zo1qyZHnnkEZd1GRkZmjdvXrF6ffHFF0pJSTFU++KLL3rkOnTq1MnwEDMAAAAAAAAAAAAA+DOGiwAAAPzA0ZSz+nbvDrtjeI1v9m7X0ZSzdscA/Fr37t3Vo0cPj/Tq0KGDoqOjXdZdvHhRCQkJHkh0eZMnT/ZYr7vuusvwDknz588vdr+33npLTqfTZd2AAQM0cODAYvdz16hRo9SgQQOXdR999JGh12Emh8OhiRMnerQnSq7w8HA9+OCDdsdwS3BwsJ566imP9XvggQcM7XYmqdgDNZI0c+ZMQ3Xjx49XmzZtit3PXf/85z9Vrlw5l3UffvhhsfoYvZZNmjTR0KFDi9XLHZMnT1ZgYKDH+gEAAAAAAAAAAACAN2K4CAAAwMc5nU59sGWlCjz8oLQ3K/j/18TTD48DJcm4ceM81svhcKhLly6GauPj4y1Oc3mNGjVSnz59PNYvNDRUY8eONVS7bt06HTt2rMi9srKyNGfOHEO1zz77bJH7FEdgYKDGjx/vsu748eP6+eefPZDoD7169VJMTIxHe6LkGjZsmKKiouyO4ZYhQ4Z4dKelyMhIjRo1ylDtsmXLDO+2cynHjx/X0qVLXdaFhYXZNoRYpkwZjRgxwmXdhg0bdP78+SL1SElJ0fLlyw3V3nvvvQoI8NyPrevWrasBAwZ4rB8AAAAAAAAAAAAAeCOGiwAAAHzc2sS9ik86bncMrxOfdFxrE/faHQPwS6VLl9bgwYM92rNt27aG6g4ePGhxkssbM2aMx3veeeedhnZbcDqdhh/qvpRFixYpOTnZZV337t3VqlWrIvcprmHDhsnhcLis+/bbbz2Q5g+33HKLR/uhZPPF++2uu+7yeE+j79m5ublatWpVkfvMnTtX+fn5LutuvvlmValSpch9imv48OEuawoKCrRs2bIinX/lypXKzc11WRcWFmYoi9nsuAcBAAAAAAAAAAAAwJswXAQAAODDMnKyNXf7GrtjeK2529foYk623TEAv3PVVVcpNDTUoz0bNmxoqO706dMWJ7m8G2+80eM9r7jiCnXq1MlQ7Y8//ljkPosXLzZUN3LkyCL3MEPlypUNDaKtXr3aA2l+5XA4NGjQII/1Q8lWtmxZ9ejRw+4YbomKirIlc8OGDdWsWTNDtSXh/TM2NlbR0dEu64r6/mn0Gl599dWKjIwsUo/i6N27t8qWLevxvgAAAAAAAAAAAADgLRguAgAA8GEL4jboQtZFu2N4rQtZF/V53Aa7YwB+p3v37h7vWadOHUN1dg0XNWvWTLVq1bKlt9HBlaLuvOF0OvXdd9+5rAsICFC/fv2K1MNMHTp0cFmzfft2DyT5VUxMjCpVquSxfijZOnfurKCgILtjuKVPnz6GdmCzwsCBAw3VFXWg5sKFC1q/fr3LuvLly6tr165F6mEWh8Oh9u3bu6wr6vvnmjXGfiHCgAEDinT+4goODlafPn1s6Q0AAAAAAAAAAAAA3oDhIgAAAACAW1q1auXxnhUrVjRUd+HCBYuTXJqdO4V069bNUN2RI0eUnJzs9vl37typpKQkl3UtWrTwiiGali1buqw5deqUTp065YE0MryzFGAGX7zf7Byq6dKli6G63bt3Kz8/3+3zr1q1Snl5eS7runfvbtuA1f8y8v4ZFxengoICt86bl5en3bt3G6q1836we8ALAAAAAAAAAAAAAOzEcBEAAIAPu6lFB5UtFW53DK9VrlS4bmrhegcLAO5p1KiRx3uWK1fOUF12dra1QS6jY8eOtvSVfh32KlWqlKHaXbt2uX3+LVu2GKpr27at2+e2Qs2aNQ3V7d+/3+Ikv2rSpIlH+gCSb95vdr5/GtnpTPr1s6Uo7xn++P558eJFHT9+3K3z7t+/39Dnc1RUlC3fY/zGznsRAAAAAAAAAAAAAOzGcBEAAIAPCw8J1W2t+Q3blzOsdVeFh4TaHQPwK4GBgapSpYrH+4aGGlvLdg0XGdntwSrBwcGGBwqKMly0fft2Q3XeMtRQuXJlQ3XHjh2zOMmv7HxQHiWPr91vgYGBiomJsa1/+fLlVa1aNUO1e/bscfv8vH/+yui1a9q0qVvnNVtMTIwCAvhxOQAAAAAAAAAAAICSif+3FAAAwMd1rt1IjSsbeyiyJImpXE2da/vWA7aALyhTpowCAwM93jc4ONhQXV5ensVJ/i4gIED169f3eN//1aBBA0N1R44ccfvccXFxhupq167t9rmtEBYWZqjOU8NFVatW9UgfQPK9+6127dqG39+t0rBhQ0N17u7WI/H++Ruj187ofwurlCpVyvDudwAAAAAAAAAAAADgb4LsDgAAAIDicTgcGnVlDz3+zScqcDrtjuMVAhwOjbqypxwOh91RAL9j9MFjuzhteB+sWrWq4Z2VrFKvXj1DdSdPnnT73IcPHzZUN2TIELfPbafz5897pE90dLRH+gAhISEqV66c3THc4g1DNUYzuPv+mZ+fb3iopnXr1m6d227uvn8avXbecj8kJibaHQMAAAAAAAAAAAAAPI6diwAAAPxAjXIVdV2jVnbH8Bp9GrVW9XIV7I4B+CW7d5jwRpUrV7Y7guEM7j4c73Q6deLEiaJE8nqZmZke6RMZGemRPoAv3muVKlWyO4LhDO6+f548eVL5+flFieT13H3/PHXqlKE6b7gfvOEzHQAAAAAAAAAAAADswHARAACAn7iheQeVD4uwO4btyodF6Prm7e2OAaAE8aWHoZOTk906b1JSknJzc4sSyet5arjI7l2tUHL44r1WsWJFuyMYfg9PS0tz67xGdy3yRe6+f6amphqq86X7AQAAAAAAAAAAAAD8DcNFAAAAfiIsOES3te5qdwzbDW/TTWHBIXbHAFCClC5d2u4IiogwNlyalZXl1nlTUlKKkMY35OTkeKQPu33BU3zxXgsLC7M7guEM2dnZbp2X988/GL12vnQ/AAAAAAAAAAAAAIC/YbgIAADAj3Ss1VBNo6vbHcM2zarUUIeaDeyOAaCECQmxf6DR6I4l7g4XeWp3Hzs4nU67IwAlnjfstsT7p/vcff80eu186X4AAAAAAAAAAAAAAH/DcBEAAIAfcTgcGnllTwUGlLxv8wIDAjQitoccDofdUWAzd+6B3NxcC5MUj9FdAbjn7ecNu4UYzeDuPe/uw/QA4A5v+AwLMPh9c0FBgVvn5f3zD0avnS/dDwAAAAAAAAAAAADgb/h/SwEAAPxMtbJR6tu4td0xPK5f4zaqVjbK7hjwAu7sImN0gMcORrPxG/bt5w1DakYzuLvLkje8NgD+yxs+h7Ozsw3Vuft5y/vnH4xeO1+6HwAAAAAAAAAAAADA3zBcBAAA4IeGNGuvCuGl7Y7hMRXCS2tws3Z2x4CXKFWqlOFab3iI9XKMZnPn9cIa3nAfWfVwPPcXACt5wyCH0Qzuvh/y/vkHo9fCl+4HAAAAAAAAAAAAAPA3QXYHAAAAgPlKBQXr9jbd9MZPS+2O4hG3x3ZXqaBgu2PAS7jzMG9KSop1QYohLy9PaWlphmrDwsIsTgNX0tPT7Y5gOIO7D7u7c38tX75cvXv3duv8AEq28+fP2x1B586dM1QXHh7u1nndef/cv3+/6tev79b5fUlERIShOl+6HwAAAAAAAAAAAADA37BzEQAAgJ9qW6O+WlxRy+4Ylmt5RS21rV7P7hjwIqVLG9+1y1sfIHXn4Vp3Xi+scebMGbsjGM4QFRXl1nmNPhAuSVlZWW6dGwB86f0zOjrarfPy/vmHypUrG6rzhvshKSnJ7ggAAAAAAAAAAAAAYAuGiwAAAPyUw+HQiNjuCgoItDuKZYICAnVHbHc5HA67o8CLVKlSxXCtNzzEeinu5HLn9cIap0+ftjuC4Yeh3b1f3HmY3ht2cAKslpOTY3cEv3L8+HG7IxjOcMUVV7h1Xt4//2D02vnS/QAAAAAAAAAAAAAA/obhIgAAAD92RZny6h8Ta3cMywxoEqsrypS3Owa8TNWqVQ3XHjp0yMIkRedOLndeL6xx4sQJ23edOHDggKE6dx+ODw8PV4UKFQzVnjhxwq1zA74oMzPT7gh+5cCBA3I6nbZm2Ldvn6E6d98/a9asabjW398/jV47o/8trFJQUKCDBw/amgEAAAAAAAAAAAAA7MJwEQAAgJ8b1PRKVYooY3cM01WKKKNBTdraHQNeqFq1aoZrExISLExSdO482OrO64U1nE6n7Q8j79+/31CdOw+7/6ZWrVqG6o4cOeL2uYG/CgoKMlSXl5dncZJLO3funC19/dXFixdtfe/Iyckx/L1AgwYN3Dp36dKlFRUVZajW398/jV67+Ph4i5MULjEx0fZhYQAAAAAAAAAAAACwC8NFAAAAfi40KFh3xHa3O4bp7ojtrhCDDyCjZGnQoIEcDoeh2j179licpmjcebi2YcOGFiaBUTt27LCtd25uruF7uWnTpm6fPyYmxlDdL7/84va5gb8KDQ01VJeTk2Nxkks7fvy4LX392caNG23rvW3bNkODag6Hg/fPYmjatKmh780SExOVlJTkgUSXtmHDBtt6AwAAAAAAAAAAAIDdGC4CAAAoAWKr11XrqnXsjmGaNtXqKLZ6XbtjwEtFRESobl1j90d8fLzS09MtTuS+zZs3G65t2bKlhUlg1Pr1623rvX37dsM7LTRr1szt87dta2yXuO3bt7t9buCvjA4XpaSkWBvkMvbu3WtLX3+2du1a23qvW7fOUF2dOnUUHh7u9vmNvn9u27bN7XP7koiICNWpY+zfIr5wPwAAAAAAAAAAAACAP2K4CAAAoIS448ruCg4MtDtGsQUHBvrlTkwwV4sWLQzVFRQUuDXI4wmZmZmKi4szVFuxYkVdccUVFieCEStXrrSt9+rVqw3V1axZU+XKlXP7/O3atTNUd/78eVt3cIJrRnd1s1PZsmUN1Z05c8biJH/ndDoNvz/DuG+//da23kuXLjVU16lTpyKd3+j7Z1xcnM6dO1ekHr6iY8eOhuq++eYbi5NcntH7AQAAAAAAAAAAAAD8EcNFAAAAJUR06bIa1MTYb0/3ZoOatFXl0sYePEbJ1aFDB8O13333nYVJ3PfDDz8oNzfXUG379u0tTgOjdu3apcTERFt6L1q0yFBdjx49inT+2NhYRUZGmpoF9ggODnZZk5eX54Ekl1e5cmVDdXast23btiktLc3jff3dvn37tGfPHo/3TU5ONjyc2bNnzyL16N69u6Ghvvz8fC1ZsqRIPXyF0Wv49ddfq6CgwOI0fxcXF6dDhw55vC8AAAAAAAAAAAAAeAuGiwAAAEqQ/k1iFe3DgznRpcuqf5NYu2PAB1x99dWGaxcvXmxhEve5k8ed1wnrLViwwOM9T548qXXr1hmqLepwUUhIiPr06WOods6cOXI6nUXqA+uFhIS4rMnMzPRAkssLCwtTmTJlXNYdOHDA4wMIdu6w4+8++OADj/ecM2eO4WHeog4XVa1aVW3bGhvu/+ijj4rUw1dcddVVhupOnTply1p77733PN4TAAAAAAAAAAAAALwJw0UAAAAlSEhgkEZc2cPuGEU28soeCgkMsjsGfECrVq0M736xa9cu7dixw9pABmVnZ+uzzz4zXH/ttddamAbumjVrlsd7vv/++8rPz3dZ53A4ijWMNmTIEEN1+/fv17Jly4rcB9YysgNVcnKyB5IUrl69ei5r0tPTPb7bzccff+zRfiXJBx984NHBNqfTqbfeestQbatWrVSnTp0i9zL6/vnDDz9o7969Re7j7erUqaOWLVsaqv2///s/i9P8WXp6ut8PdwEAAAAAAAAAAACAKwwXAQAAlDCtqtbWldVdP7TrbdpWr6eWVWvbHQM+wuFwaODAgYbrjT5gbLUFCxbo/PnzhmobNGigxo0bW5wI7ti7d6+++eYbj/XLzs42fO926tRJ1atXL3KvgQMHqly5coZqn3nmmSL3gbUqVarksubkyZMeSFI4o+9tq1atsjjJH1asWOHXgx92O3v2rGbMmOGxfp9//rl2795tqPbWW28tVq/bbrtNgYGBLuucTqeeeuqpYvXydkav5ZIlS7RlyxaL0/zhjTfeUEpKisf6AQAAAAAAAAAAAIA3YrgIAACgBLo9tptP7QAUGhik22O72R0DPmbkyJGGa2fPnq2jR49aF8aA/Px8Pf/884brR40aZWEaFJUnB2veeecdHTt2zFBtcR+ODw8P1z/+8Q9DtRs3bmSHFy8VHR3tsiYrK8vwfWWV5s2bG6r7+uuvLU7yh0mTJnmsV0n173//W2fPnrW8T3Z2tuEhnsDAQA0dOrRY/WrUqKHBgwcbqv3888+1evXqYvXzZsOGDVNAgLEfRz/66KMWp/nVqVOn9Morr3ikFwAAAAAAAAAAAAB4M4aLAAAASqBKEWU0pFk7u2MYNqRZO1WMKGN3DPiYzp07q0GDBoZqs7OzNXHiRIsTFW7WrFnas2ePodrAwECNGDHC4kQois2bN+v999+3vE9SUpLhYYfw8PBiPxwvSffee6+CgowNpk6YMEGHDx8udk+Yq149YzsXbt261eIkhevSpYuhuuXLl+v48eMWp5Hmzp2rn376yfI+Jd25c+d0//33W95n8uTJ2rdvn6HaIUOGqGbNmsXu+cADDxiuHTFihC5cuFDsnt6oZs2aGjJkiKHalStX6t1337U4kTR+/Hi/vd4AAAAAAAAAAAAA4A6GiwAAAEqovo1b64rIcnbHcOmKMuXVt3Ebu2PARz344IOGa+fMmaMvvvjCwjSXd/DgQT3yyCOG62+55RZVrVrVwkQojkceecTynV/uuecenT9/3lDtiBEjVKFChWL3rF27tu666y5DtRcuXNCgQYN4YNvLNGzY0FDdd999Z3GSwrVr106lSpVyWZefn6/XXnvN0ixHjx51azAExfPJJ5/ovffes+z83333naZOnWq43p3P5sJ06dJFffv2NVSbmJiom2++Wbm5uab09jbuXNMHH3xQP//8s2VZpk+fbtv3fgAAAAAAAAAAAADgbRguAgAAKKGCA4M08soedsdwaeSVPRQUGGh3DPiof/zjH6pVq5bh+lGjRmnHjh3WBbqE5ORkDR48WOnp6YbqAwMD9cwzz1icCsWRnJysG264QdnZ2Zac/7XXXtOCBQsM1QYGBro1ZOfK5MmTVbZsWUO1P//8s/r376+UlBTT+hdHTk6O3nnnHa1YscLuKLZp27atobr58+fbOhgWGhqqq6++2lDt//3f/+nAgQOW5EhPT9fgwYN19uxZS86PSxs/fry+//5708+7Y8cO3XrrrcrPzzdUf91116l9+/am9X/llVcM7/62bNkyDR061LLPEXelp6dr6tSpiouLK/a5OnTooOuuu85QbUZGhgYNGqQjR44Uu+9fLVq0SA8//LDp5wUAAAAAAAAAAAAAX8VwEQAAQAnW/Ipaal+zgd0xLqtDzQZqXqWm3THgw0JCQtwaxLlw4YKuvfZabd682cJUfzh9+rSuvfZa/fLLL4aPGTFihOHdR2CfTZs26eabb1ZOTo6p550zZ44effRRw/WjR49Wgwbmvc9XrFhRL774ouH6n376SV26dNHBgwdNy+CutLQ0/ec//1GDBg1099136+TJk7ZlsVvbtm0VGhrqsi45OVnjxo1TQUGBB1Jd2k033WSoLisrS8OHDzd9CCM1NVXXXXedtm3bZup54VpOTo4GDBigRYsWmXbO9evXq1evXoaHHYOCgkzfFSsmJkYPPfSQ4fqFCxfqmmuuUVJSkqk53HHmzBlNmTJFderU0WOPPabU1FRTzvvqq68aHrQ6fPiwunXrpvj4eFN6S9K8efN04403Ki8vz7RzAgAAAAAAAAAAAICvY7gIAACghBvepqtCg4LtjvE3oUHBGt6mm90x4AdGjhypnj17Gq5PSkpSt27d9NZbb8npdFqWa+XKlbryyivdGmSKjo7Wyy+/bFkmmGvRokXq16+fzp07Z8r5Xn/9dY0YMcLwwEeZMmX07LPPmtL7f40bN04DBgwwXL9r1y61bNlSM2fO9OiwSlxcnO6//35Vr15d9913nyU7X/ia0NBQ9e7d21DtvHnz1L17d61Zs8biVJd2/fXXq1y5coZqN27cqGHDhpk2zBcfH68OHTpo7dq1ppwPlxccfOnvQbOysjR48GD961//UlZWVpHPn5+fr9dff13du3fX+fPnDR83YcIExcTEFLnv5Tz33HNq06aN4frVq1erWbNm+vzzz03PUpj169dr1KhRqlGjhp566inTd+9q0qSJ7r33XsP1hw8fVtu2bfXRRx8Vq29GRobuu+8+DRs2TLm5uZesudw9CQAAAAAAAAAAAAD+juEiAACAEq5CeKSub9be7hh/c0Pz9ooKL213DPgBh8Oh9957TxEREYaPycrK0rhx49SpUyetWLHC1Dzx8fEaPny4evbsqWPHjrl17MyZMxUVFWVqHhRfjRo1Lvu177//Xm3atNHXX39d5PMfOXJEgwcP1kMPPeTWcM5LL72kypUrF7lvYd5///1CX/dfZWRkaPz48WrRooUWLFhg2W4Re/bs0UsvvaSWLVuqZcuWmj59umk7bfiLW265xXDtTz/9pG7duql69eq69dZbNXnyZM2aNUsLFizQ119/rcWLF7v888MPPxQpZ0REhO666y7D9f/973/Vu3dvHT58uEj9JOnixYt67rnn1Lp1a+3Zs+eSNVatqZJqzJgxqlix4iW/5nQ69dJLLykmJkazZ892a3eq/Px8/fe//1WbNm300EMPXXaQ5FKaNm2qF154wXC9O0JCQjRv3jyVLVvW8DFnzpzRzTffrM6dO2vZsmWWDD47nU5t27ZNzzzzjOrXr69OnTq5fc3d9cILL6hJkyaG69PT0zVixAh16dLF7euQkZGht956Sw0bNtR//vOfy9ZVrFjRrfcdAAAAAAAAAAAAAPAnQXYHAAAAgP36NG6l1Yd26/gF47/R3UrVy1bQdY1a2R0DfqROnTr68MMPddNNN7n1MOqGDRvUu3dvNW/eXMOGDdOQIUPUqFEjt/snJSVp8eLF+uyzz4r8YPBDDz2kIUOGuH0crHfVVVcpIyNDCxYsuOTXjxw5ooEDB6pbt2564IEH1K9fP4WEhLg87y+//KKZM2fqgw8+UGZmpluZ+vfvr7Fjx7p1jDsqVqyob7/9Vl26dFFycrLh43bt2qWbbrpJVatW1W233ab+/furU6dOCgpy/8cTTqdTBw8e1Lp167Ru3TotX75cCQkJbp+npLn55pv1z3/+U6dOnTJ8zPHjx/Xpp58WqV+tWrWUmJhYpGMfeughzZw5U2lpaYbq16xZo6ZNm+qee+7RuHHjVLt2bUPH7dmzR3PnztXbb79d6A4tjRo10oQJE9zacQWFq1SpkqZNm6bbbrvtsjWJiYkaNWqUHnnkEfXt21e9evVSs2bNVKtWLZUpU0YOh0Pp6ek6evSodu3apZUrV2rJkiU6fvy423lKlSqlTz75RKVKlSrOyypUw4YN9eWXX+q6665za3hn3bp1uvbaa1W/fn0NGzZM/fv315VXXimHw+F2hvz8fMXHx//+/vndd9/p5MmTbp+nOMLCwvTJJ5+oQ4cObu1OtXbtWl177bWqW7eu+vfvr65du6pJkyaqWrWqSpcurfz8fKWmpiohIUE7d+7U999/r2+//VYXLlxwee5p06Zp3759xXlZAAAAAAAAAAAAAOCzGC4CAACAggICNerKnpqyYqHdUSRJo67soaCAQLtjwM/ccMMNevHFF/Wvf/3L7WN37typxx9/XI8//rgqVqyo2NhYNWzYUDVq1FB0dLTCwsIUGhqq3NxcZWVlKTk5WUeOHNGhQ4e0bdu2Yg88DBo0SC+//HKxzgFrvfnmm/rhhx90/vzlhzRXr16t1atXq3Tp0urRo4datGihevXqqUyZMgoKClL6/2PvzsOsLMj/8d9nWGaGYZFhFRFFdhAQQQURBVHccDdF05Jy33IpLbPlpx/NcjcxNcsSTc0+poEhbrgjCqKoCCKLgggiyg7DMvP7o29afZLzAGeZmfN6XRfXVXif537PwZH7PPPcz7NqVXzyyScxffr0eP7552Pu3LlblaVdu3bxu9/9bmu/lMS6d+8eY8aMiYMOOihWr169Ra9duHBhXHfddXHddddFaWlp9O7dO3bdddfYcccdY4cddoiysrIoLS2NqqqqWLduXaxbty6WLFkSixcvjoULF8bMmTNjxowZsWbNmix9dbVXcXFxXHHFFTViQaZVq1ZxxRVXxGWXXZb4NatXr45f/epXcd1118Vuu+0WAwcOjM6dO0fLli2jtLQ0KioqYuXKlfHRRx/FzJkz45VXXomPPvoo7XFLSkriz3/+c7zxxhvb8iXxX5x00knx+OOPx5/+9KfN1i1dujRGjx4do0ePzkqOVCoV9913X/Tq1Ssrx/9XgwcPjvvuuy9GjBgRmzZt2qLXfvDBB3HllVfGlVdeGY0aNYo+ffpEjx49om3btrH99ttHWVlZlJSUxKZNm2LdunWxdu3a+PTTT2Px4sWxYMGCmDlzZrz//vtZfSpRUr17947Ro0fH8ccfv8WL13PmzIlbb701br311oxkOemkk+Kkk06Kn//85xk5HgAAAAAAAEBNY7kIAICIiOjeqm3svVOXeOXDmXnNMXDnLtGtVdu8ZqD2uuyyy2L16tVx1VVXbfUxPvvssxg/fnyMHz8+g8m+3mGHHRYPPPBAFBUV5aQfW6dVq1bxwAMPxGGHHRYbN27cbO2qVati7NixMXbs2IznaNy4cfz973+Pli1bZvzY/83AgQPj2WefjcMOO2yzT3zZnLVr18arr74ar776aobT8XXOPvvs+NOf/hSvvPJKvqOkdfHFF8df//rXLf73o6qqKqZOnRpTp07d5gxFRUUxevTo6NWrl+WiLPn9738f8+bNy+u/kzfeeGMce+yxOet33HHHxaOPPhonnHDCVi9Krly58svF1ZrquOOOixtuuCEuvvjivGUYMGBATpZyAQAAAAAAAKozV6cBAPClb+4+KErr1s9b/9J69eObfQblrT+F4corr4xbb701UqlUvqOkdcopp8Sjjz4apaWl+Y5CAsOGDcvYExS2RllZWTz66KPRo0ePnPbdc8894+WXX46OHTvmtC9br6ioKB555JHYZZdd8h0lrbp168YDDzwQzZo1y1uGO+64I4477ri89S8ExcXF8eijj0bPnj1z3juVSsWvf/3ruPDCC3Pee/jw4fHMM89Eq1atct67Ornooovilltuyctstuuuu8Zjjz0WJSUlOe8NAAAAAAAAUJ1YLgIA4EtNS8viuF7989b/uJ79Y7vSsrz1p3Ccf/758dRTT8UOO+yQ7yj/VUlJSdx2221x7733Rt26Hjhbk5x99tnxq1/9KucXSG+33Xbx1FNPxZAhQ3La9586d+4cU6dOjVNPPTUv/dlyrVq1iokTJ8Y+++yT7yhp7bzzzvHEE09Eo0aNctq3bt268dvf/jZOP/30nPYtVC1atIgXX3wx9ttvv5z1LCsriz/96U9x3nnn5aznf+rfv39MmzYtDj300LxlqA4uuOCCuP/++6NBgwY567nffvvFSy+9FC1atMhZTwAAAAAAAIDqynIRAAD/Zljn3rHjdrl/OkC77ZrHsM69c96XwjV06NCYNm1anHzyydXqKUYDBgyIyZMnx7nnnpvvKGylH/zgB3HvvfdGvXr1ctJv1113jVdeeSUGDBiQk35fp2HDhnHPPffEI488EjvvvHNes3ydgQMHRu/e/q75p5YtW8bzzz8fv/nNb6rtsuU/9evXL55++ulo3bp1Tvptt9128cQTT8Rpp52Wk378Q5MmTWL8+PFx0UUXRVFRdk9b9u7dOyZPnhwjRozIap8kWrZsGY8//njcdddd1XLRpaioKA4++OCs/7f9xBNPjMmTJ2f9CVZFRUVx0UUXxfjx46NJkyZZ7QUAAAAAAABQU1guAgDg39QpKoqR/XL/5IuRewyJOlm+iBT+U3l5eYwePTpef/31vD3x5Z86duwYDz/8cLzyyivRo0ePvGZh25188snx2muvxW677Za1HkVFRXH22WfHa6+9Ft26dctany119NFHx4wZM+Laa6+N8vLyfMeJtm3bxiWXXBLvvvtuvPTSS1m/aL2mKSoqirPOOivmzp0bDzzwQBx11FE5fXLIlthzzz1z8t/rww47LN5+++0YOnRoVvvw3xUXF8eNN94YL730Ulb+G9q0adO46aab4vXXX4+uXbtm/Pjb4vTTT48PPvggLrvssigry//TPDt37hw/+9nPYs6cOTFu3Lho27Zt1nt269YtJk+eHDfccENst912GT/+brvtFi+//HLceOONUVxcnPHjAwAAAAAAANRUrt4EAOD/6Npyh9i3fe4uVN93l27RpUWbnPWD/9S3b9949tlnY8qUKXHaaafl7ILeoqKiOOSQQ2LMmDExc+bMOO6443LSl9zYbbfd4vXXX4/rr78+tt9++4wee8iQITFlypS4/fbbo7S0NKPHzoTi4uK47LLLYsGCBXHXXXdFr169ctq/S5cucdFFF8ULL7wQH330UVx//fXRvXv3nGaoaerVqxcjRoyIv/71r7Fs2bJ49dVX49e//nWcf/75ccghh8Ruu+0Wbdu2jUaNGkVxcXHWnyrzddq2bRvPPvts/P73v4927dpl9Ng9evSIhx56KMaOHZuTJQo2b8CAATF16tQYN25c7L///tv871z79u3jl7/8ZcyePTsuvPDCnD1dbks1btw4rr322liwYEHccMMN0aFDh5z1TqVSsdtuu8WPf/zjmDJlSsycOTN+/vOfx0477ZSzDBER9evXj4svvjhmz54dv/jFL7a5f1FRUQwdOjTGjRsXU6dOjf79+2coKQAAAAAAAEDtkaqqqqrKdwgAYOssWbIkWrZs+W+/9+mnn0aLFi3ylGjbVVRUxJw5czZbs8suu7jLdA4sX7s6Lhl7b6zZsD6rfRrUK44bDv9WNCmpnk9JoDCtXr06nnrqqRg7dmyMHz8+FixYkLFjN27cOIYMGRLDhw+Pww47LONLJ2TOvHnzon379mnrvv3tb8cf/vCHzdZUVFTEfffdF/fdd1+89NJLsXHjxi3O06RJkzjmmGPivPPOi913332LX59v06dPj0cffTT+9re/xZQpU7bqPfhvioqKomPHjrH33nvHvvvuG4MHD07050bNt2HDhnjggQfi3nvvjeeeey42bdq0xccoLS2NAw88ME4//fQ47LDDIpVKbbb+D3/4Q4wcOTLtce+555449dRTtzgPX+/TTz+Nxx9/PJ588smYNm1azJo1KzZs2PC19dttt1306NEjhgwZEoccckj0798/b0tx22ry5Mnx6KOPxpgxY+Kdd96JysrKjBy3bt260a1btxg4cGAMGjQohgwZUi3nksrKynjllVfiiSeeiGeffTbefffdWLFixdfW16tXLzp16hS9evWKgw46KA477LAa/RkZcsG5GAAAAAAAgH+ojdflJmW5CABqsNo4xLigpXp58v234g+Tn8tqj5H9BseBnXtntQdsq8WLF8eUKVPirbfeirlz58aCBQti/vz58fnnn8fatWtj3bp1sW7duqhXr16UlpZGSUlJNG7cOHbYYYfYcccdo127dtGzZ8/Yfffdo2PHjmkvXqd6yORy0b9atmxZPP300/Hmm2/Gu+++G++//34sW7YsVq5cGWvWrImSkpJo1KhRtGzZMrp27Ro9evSIwYMHx9577x1169bdhq+o+li3bl1MnTo1Xn/99Zg1a1Z89NFH8eGHH8bSpUtjzZo1sWbNmqioqIi6detGcXFxNGjQIJo1axYtWrSINm3aRPv27WOXXXaJ7t27R+/evXP2tDGqryVLlsSLL74YEydOjBkzZsScOXPi008/jdWrV0dFRUU0aNAgGjduHE2bNo0uXbpEz549o1+/fjF06NBq+fQv0tuwYUN8+OGHsXz58li5cmWsW7cuSktLo1GjRrH99ttXyyWZTFi5cmVMmTIlpkyZEh988EF89NFH8dFHH8Xnn38ea9asibVr18b69eujXr16Ub9+/WjYsGE0b948WrRoETvssEO0b98+OnToED169Ihdd901SkpK8v0lbZWFCxfGokWLvvy7s0GDBtGoUaNo0qRJtGvXrto+mQqqK+diAAAAAAAA/qE2XpeblOUiAKjBauMQ44KW6qWysjKuGP9gzPtiSVaOv3PTlvE/B51QY+8iD9Ru2VouAgCA6sS5GAAAAAAAgH+ojdflJuUqTgAAvlZRUVGM3GNIVo6diojv7DHEYhEAAAAAAAAAAABAHrmSEwCAzerUfPsY0qFHxo87uMOu0bF564wfFwAAAAAAAAAAAIDkLBcBAJDWCb0HRsP6JRk7XsP6JXFC770zdjwAAAAAAAAAAAAAto7lIgAA0mpcUhon7Ja5ZaARuw2MxiWlGTseAAAAAAAAAAAAAFvHchEAAIkM2aVH7FLeapuP06FZqxjcoUcGEgEAAAAAAAAAAACwrSwXAQCQSFFRUXxnjyGR2oZjpCJi5B5Doii1LUcBAAAAAAAAAAAAIFMsFwEAkNguzVrF0E49t/r1B3TqlZGnHwEAAAAAAAAAAACQGZaLAADYIsf32jsaFZdu8esaF5fGN3oPyEIiAAAAAAAAAAAAALaW5SIAALZIw+KSOHG3gVv8uhP77BMN65dkIREAAAAAAAAAAAAAW8tyEQAAW2zfXbpHp+bbJ67v3Hz7GNS+WxYTAQAAAAAAAAAAALA1LBcBALDFilKpGLnHkEilUmlrU/+vtihBLQAAAAAAAAAAAAC5ZbkIAICtsnPTFjGsU6+0dcM69Y6dmrbIQSIAAAAAAAAAAAAAtpTlIgAAttpxvQZEk5IGX/vPm5Q0iG/06p/DRAAAAAAAAAAAAABsCctFAABstbL6xXFSn32+9p9/s8+gaFC/OIeJAAAAAAAAAAAAANgSlosAANgm++zcNbq23OH//H63ljvEwJ275CERAAAAAAAAAAAAAElZLgIAYJukUqkY2W9wFKVSX/5eUSoVI/sNidS//B4AAAAAAAAAAAAA1Y/lIgAAttmO2zWPg7vs9uX/P6RLn2i7XbP8BQIAAAAAAAAAAAAgEctFAAA12DvvvBPvvPNOvmNERMSxPftH09KyaFpaFsf03CvfcQAAarTqNOcBAJA5PXr0iB49euQ7BgAAWWDWAwConcx5FIq6+Q4AAEDtUFqvfnyzz6BIpVJRWq9+vuMAAAAAAAAAAAAAkIDlIgAAMmbATp3zHQEAAAAAAAAAAACALWC5CACAjEmlUvmOAJAxO++8c1RVVeU7BgAAAAAAAAAAQFYV5TsAAAAAAAAAAAAAAAAAkB+WiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgCgxqmqqsp3BAAAAIBawXkWAAAAAAAALBcBANVKKpVKW+OiFwAAAIDMSHKepajIj5MAAAAAAABqMz8NAgCqlSQXq1RWVuYgCQAAAEDtl+Q8S5KbwQAAAAAAAFBzWS4CAKqVOnXqpK1Zv359DpIAAAAA1H5JzrMkOV8DAAAAAABAzWW5CACoVlKpVNSrV2+zNRs2bMhRGgAAAIDaLd15lnr16nlyEQAAAAAAQC1nuQgAqHbSLRd5chEAAABAZqQ7z1K/fv0cJQEAAAAAACBfLBcBANVOuotWLBcBAAAAZEa68yzpbgIDAAAAAABAzWe5CACodtItF1VUVMSGDRtylAYAAACgdlq/fn1UVFRstsaTiwAAAAAAAGo/y0UAQLWT5KKVlStX5iAJAAAAQO21atWqtDXFxcU5SAIAAAAAAEA+WS4CAKqdsrKySKVSm62xXAQAAACwbdKdX0mlUtGgQYMcpQEAAAAAACBfLBcBANVOUVFRNGzYcLM1a9asiTVr1uQoEQAAAEDtkuTcSsOGDaOoyI+SAAAAAAAAajs/EQIAqqVGjRqlrVm8eHFUVVXlIA0AAABA7VFVVRWLFy9OW5fk/AwAAAAAAAA1n+UiAKBaSvfkooiIdevWxbJly7IfBgAAAKAWWbZsWaxbt26zNalUKtH5GQAAAAAAAGo+y0UAQLVUp06daNy4cdq6RYsWxYoVK3KQCAAAAKDmW7FiRSxatChtXaNGjaJOnTo5SAQAAAAAAEC+WS4CAKqtFi1aRCqVSlu3cOHCWL58eVRVVeUgFQAAAEDNU1VVFcuXL4+PP/44bW0qlYoWLVrkIBUAAAAAAADVgeUiAKDaql+/fpSXl6etq6qqioULF8aCBQti/fr1OUgGAAAAUHOsX78+5s+fHwsXLkxUX15eHvXr189yKgAAAAAAAKqLuvkOAACwOc2bN4/ly5fHxo0b09auWrUqVq9eHQ0bNowmTZpEWVlZFBXZpQYAAAAKT2VlZaxevTqWL18eq1atSvzE57p160bz5s2znA4AAAAAAIDqxHIRAFCtFRUVRatWreLjjz9OVF9VVRUrV66MlStXRlFRUZSUlET9+vW//FWnTp0oKiqKVCqV5eS58c8LgyoqKvKcBACATDLnAZBUVVVVVFZWxqZNm2L9+vVf/lq3bl1UVlZu8fFatWrlZi0AAAAAAAAFxnIRAFDtNW7cODZu3BiLFy/eotdVVlbGmjVrYs2aNVlKln8bNmyIiIg5c+bkOQkAAJlkzgMgH1q1ahWNGzfOdwwAAAAAAAByzK3nAIAaoby8PFq0aJHvGAAAAAC1UosWLaK8vDzfMQAAAAAAAMgDy0UAQI3RrFmzaNasWb5jAAAAANQqzrkAAAAAAAAUtrr5DgAAkFQqlYoWLVpEcXFxLF68ODZt2pTvSAAAAAA1Vp06daJVq1bRuHHjSKVS+Y4DAAAAAABAnlguAgBqlFQqFU2aNImGDRvG4sWLY/ny5fmOlFdz5syJiIgePXrkOQkAAJlkzgMg25o0aRKtWrWKOnXq5DsKAAAAAAAAeWa5CACokerUqRNt2rSJJk2axJIlS2Lt2rX5jgQAAABQ7ZWWlkaLFi2irKws31EAAAAAAACoJiwXAQA1WllZWZSVlcWGDRtixYoVsXz58qioqMh3LAAAAIBqo7i4OJo0aRKNGzeOevXq5TsOAAAAAAAA1YzlIgCgVqhXr140a9YsmjVrFhUVFbF27dpYv379v/2qqqrKd0wAAACArEmlUlG/fv1/+1VaWhrFxcX5jgYAAAAAAEA1ZrkIAKh1iouL/89FM1VVVbFp06aoqqqKysrKPCXLvLPPPjsiIsaPH5/nJAAAZJI5D4AtUVRUFKlUKurUqROpVCrfcQAAAAAAAKhhLBcBAAUhlUpF3bq1b/RZsmRJRIQ7EAMA1DLmPAAAAAAAAAAgV4ryHQAAAAAAAAAAAAAAAADID8tFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAARESPHj2iR48e+Y4BNZ7vJQCqG383QWb4XgKguvF3E2SG7yUAqht/N0Fm+F4CYEtZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAAClTdfAcAALZeZWXl//m9zz77LA9JyJeNGzdGRMSSJUvynARqPt9PkBm+lyAzfC9B5vh+gszwvQSZ4XsJMsf3E2SG7yXIHN9PkBm+lyAzfC9B5vh+Kiz/7Rrc/3atbm2Uqqqqqsp3CABg67z33nvRvXv3fMcAAAAAAAAAAAAAgFpn+vTp0a1bt3zHyLqifAcAAAAAAAAAAAAAAAAA8sNyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoFJVVVVV+Q4BAGydjRs3xqxZs/7t98rLy6OoyP4wAAAAAAAAAAAAACRVWVkZn3/++b/9XqdOnaJu3bp5SpQ7losAAAAAAAAAAAAAAACgQHmsAQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBqpvvAAAANc38+fNj/PjxMW3atJg+fXrMnTs3Vq5cGStWrIiqqqpo1KhRNGrUKNq1axfdu3ePnj17xoEHHhidOnXKd/RaYdGiRTFhwoR45513YubMmTFr1qz44osvYuXKlbFq1aqoW7ful38GTZs2jY4dO0bnzp2jc+fO0adPn+jevXukUql8fxkAQDVkzsuONWvWxNtvvx2zZ8+OefPmfflr0aJFsWrVqli9enWsWrUq1q1bF/Xr14/i4uJo0qRJtG7dOtq0aRNdunSJHj16xF577RWdO3fO95cDAOTYhg0b4sUXX4yXX345pk+fHjNmzIglS5bEypUrY/Xq1VFaWhqNGzeO8vLy6NKlS3Tv3j322muv2H///aO0tDTf8WuUJUuWxPjx42Pq1Kkxffr0mD17dixfvjxWrlwZGzZsiEaNGkXjxo2jTZs20b179+jRo0fsv//+0bt373xHBwBqKLNednz44Ydfnt/857m4jz76KJYtW/blubjVq1dHVVVVlJSURGlpabRo0SJat24dO++8c/To0SN69eoVAwYMiLKysnx/OQBADWTOy5+NGzfGa6+9FpMmTYqZM2fGzJkzY/78+bFq1apYuXJlVFRURMOGDb/82fcOO+zw5bV13bp1i7322iuaNGmS7y+DPElVVVVV5TsEAEB1t2zZsrj77rtj9OjRMW3atK06RqdOneKkk06Ks88+O1q1apXhhLXbBx98EL/73e9i7Nix8c4772zTscrLy2OfffaJfffdN4YPHx5dunTJUEoAoCYy52VWRUVFTJo0KV5//fWYOnVqvPHGGzFz5syorKzMyPFbt24dBx98cJxwwglxwAEHRN267p0EALXVSy+9FKNGjYq///3vsWLFii1+fWlpaRxwwAFx9tlnx8EHH+xmM19j7dq1MXr06Pj9738fr7/++lbNbW3bto1vfOMbcf7550f79u2zkBIAqG3Mepnz4YcfxssvvxxvvPFGTJ06NaZOnRpffPFFRo5dt27d2GOPPeLYY4+N448/PnbccceMHBcAqL3Mefmxfv36ePTRR+NPf/pTTJgwYave+38qKiqKXr16xT777BMHHHBADBs2zMJXAbFcBACwGatWrYqrrroqRo0aFatXr87IMevXrx/f/va345prronmzZtn5Ji11fjx4+NXv/pVTJgwIbI1tnbr1i2OOeaYOOWUUywaAUABMedlxvr162PSpEnx3HPPxYQJE2LixImxbt26nPRu27ZtnHfeeXH22WdH48aNc9ITAMi+F154IS655JKYPHlyxo7ZpUuXuPbaa+Ooo47K2DFrug0bNsSNN94Y1113XSxdujQjxywqKopjjjkmrrvuuth5550zckwAoHYx6227+fPnf3ku7rnnnou5c+fmpG9RUVEcccQR8f3vfz8GDhyYk54AQM1hzsuPzz//PK6//vq4++67Y8mSJVnp0aBBgzj44IPjmGOOiREjRkSdOnWy0ofqwXIRAMDX+Nvf/hbnnntuLFiwICvHLy8vj+uvvz5GjhyZlePXZG+++Wb84Ac/iKeffjpnPc8999y47bbbctYPAMgfc17m/OQnP4n/+Z//yWuGli1bxlVXXRWnn366u5cBQA22bNmy+N73vhf33ntv1noMHz487rzzzmjTpk3WetQEL7/8cpx++unx3nvvZeX4DRo0iJ/97Gfxgx/8wHwGAESEWS9TNm3aVC2e5H3UUUfFDTfcELvssku+owAAeWbOy4+Kioq49dZb45prrolly5blrO+SJUsK5iabhaoo3wEAAKqbysrKuOKKK+Koo47K2gWnEf+4c8B3vvOdOOOMM2L9+vVZ61OTbNq0Ka666qrYY489crpYBAAUBnNe5lWH+xZ9+umnceaZZ8aBBx4YH3/8cb7jAABbYfr06bHnnntm9SKEiIixY8dG375945VXXslqn+rs9ttvjyFDhmRtsSgiYs2aNXHZZZfFkUceGStWrMhaHwCgZjDrZU51OBcXEfHoo49Gr1694u677853FAAgj8x5+fHP9/3SSy/N6WIRhcFyEQDAv9i0aVOMGDEirr766pydnP3tb38bw4YNizVr1uSkX3W1aNGiGDx4cPz0pz+NjRs35jsOAFDLmPNqv2eeeSb69u0bU6ZMyXcUAGALvPTSS9G/f/+YNWtWTvotWrQohgwZEn/9619z0q86ufjii+Pcc8+NDRs25KTfmDFjYsCAAbFkyZKc9AMAqh+zXu21evXqOP300+Pss8+OTZs25TsOAJBj5rz8uPvuu6Nfv34xbdq0fEehlrJcBADw/1RWVsapp54aDz/8cM57P//883H00UdHRUVFzntXBx988EHsvffe8dJLL+U7CgBQC5nzCsfixYtjv/32c+cyAKghJk+eHIcddlisXLkyp33Xr18fI0aMiPHjx+e0bz5dfvnlcdNNN+W87/Tp02PYsGHuogoABcisVxjuuOOOGDFiRFRWVuY7CgCQI+a8/PjpT38ap59+eqxduzbfUajFUlXV5XmpAAB59qMf/SiuvfbaLXpNp06dYuDAgbHrrrtGeXl5pFKp+OKLL+K9996LiRMnxjvvvLNFxzvllFOy/qjY6mbatGlx4IEHxqeffprXHOeee27cdtttec0AAGSHOS97rrjiirj66qvzHeP/aNq0abzyyivRtWvXfEcBAL7GggULok+fPvHZZ58lfk1JSUnsu+++0a9fv9hhhx2icePGsWrVqvjkk0/ijTfeiOeeey5WrVqV+HgNGjSISZMmxa677ro1X0KNceedd8ZZZ521Ra9p27Zt7LvvvtGrV69o3rx51KtXL5YtWxazZs2KSZMmxeTJk7foiaCDBw+Op59+OurUqbOl8QGAGsislx0bN26MevXq5TvGf3XWWWfFb37zm3zHAACyzJyXH2effXbccccd+Y4RS5YsiebNm+c7BllkuQgAICLGjRsXhx12WOIfiB955JFx+eWXx5577rnZunfeeSeuu+66uO+++xLfrenuu++O7373u4lqa7qPPvooBgwYEAsXLtyi1zVv3jwGDx4cgwYNiq5du8Yuu+wS5eXlUVZWFhERy5Yti2XLlsUXX3wRM2bMiLfeeiveeuutmDp16tfeJdVyEQDUTua87EqyXJRKpaJz587RpUuXL3916tQpysvLo3HjxtG4ceNo1KhRrFmzJlasWBErVqyIuXPnxtSpU+PNN9+Mp59+eqvudN+rV6947bXXori4eCu/OgAgWzZu3BhDhgxJ/BTrli1bxhVXXBHf+ta3okmTJl9bt2bNmvjzn/8cP//5z+PDDz9MdOyuXbvG5MmTvzyvVNu8+eabMWDAgFi3bl2i+n333Td++tOfxv777x+pVOpr6+bOnRu33npr3H777bF+/fpEx77iiiviqquuSlQLANRcZr3sSbpctN1220WPHj3+7XzcjjvuGI0aNfryfFzdunVj+fLlsWLFili6dGm8/fbbMXXq1Hj11Vdj8uTJW5XvgQceiBEjRmzVawGA6s+clx9bc7PHVCoVffv2jf322y/69esXHTp0iB133DEaNmwYpaWlsWrVqi+vr/vkk0++vLburbfeivfee+9rf7Zuuaj2s1wEABS8pUuXRteuXRPdUaG8vDxGjx4dhx566Bb1ePXVV+P444+P+fPnp60tLS2NadOmRceOHbeoR02zbNmy2GeffeLdd99N/JojjjgizjjjjDjooIOibt26W9xz48aN8fLLL8eYMWPi8ccfjxkzZnz5zywXAUDtY87Lvv92MrtevXrRr1+/GDRoUAwaNCgGDhwYTZs23eoeFRUV8dhjj8Udd9wREyZM2KLX/uxnP4uf//znW90bAMiOK6+8Mn72s58lqj3hhBPirrvuisaNGyc+fkVFRVxyySUxatSoRPWnn3563HXXXYmPX1OsX78+evXqFTNnzkxbW1paGrfffnuceuqpW9Rj5syZcdxxxyV6smdRUVE8//zzsc8++2xRDwCgZjHrZc/XLRe1adPmy3NxgwYNil133TWKioq2us/7778ff/zjH2PUqFGxfPnyxK9r2rRpzJ49e5vOBQIA1Zc5L/d++9vfxhlnnJG4vnXr1nH++efHKaecEjvuuONW9fzkk09i7NixMWbMmHjmmWdizZo1X/4zy0W1n+UiAKDgnXXWWXHnnXemrWvbtm0899xz0aFDh63q8+mnn8aQIUNi+vTpaWuHDx8eY8aM2ao+NcWxxx4bjzzySKLaAQMGxK9//evo27dvRjNMmTIlbr/99njwwQdj5MiRlosAoJYx52XfP5eLmjZtGoceemgceeSRccghh0TDhg2z0u+hhx6Kiy66KD755JNE9WVlZfHBBx9E69ats5IHANhyc+fOje7duyd6ks6PfvSjuOaaa7a612233Rbnn39+2rpUKhWTJk2KPfbYY6t7VUfXXntt/OhHP0pb17hx43jqqafSPr3z66xevToOO+yweP7559PW9u7dO6ZMmRJ16tTZql4AQPVm1suuf10u6tu3bxx55JFx1FFHRc+ePbPSb/HixXHRRRfFAw88kPg1l1xySVx//fVZyQMA5I85L/emTJkSAwYMiA0bNqStLSkpiZ/97Gfxve99L0pLSzOWYdWqVTF69Oj4zW9+E2+//bblogJguQgAKGhTp06Nfv36RWVl5WbrmjRpEpMmTYouXbpsU79FixbFHnvsEQsWLEhb+/jjj2/xnfNrirvvvjtOP/30tHVFRUVx5ZVXxg9/+MOsXnCwbNmy+OCDD6Jfv35Z6wEA5JY5LzcmTJgQlZWVsd9++23VkyW3xqJFi2L//feP9957L1H9lVdeGT/5yU+ynAoASOroo4+ORx99NG3dmWeeGXfcccc297v66qvjiiuuSFu35557xquvvhqpVGqbe1YHCxcujM6dO8fq1as3W1evXr145plnYtCgQdvUb9WqVTFo0KB4880309aOGjUqzjnnnG3qBwBUT2a97KqsrIzf/OY3ceSRR0bbtm1z1veWW26JCy+8MFFt48aNY+HChVFWVpbdUABATpnzcmvNmjWx++67J3oi+a677hp//vOfo1u3blnN9PLLL8fuu++e0eUlqh/LRQBAQTvqqKPiscceS1v35z//Ob7xjW9kpOeLL74YQ4YMiU2bNm22rl+/fvH6669npGd1Mnfu3OjZs2faCxuKi4vjvvvui+OOOy5HyQCA2sScV7t9+umnMXDgwPjggw/S1u6yyy4xe/bsHKQCANJ58803o0+fPmnr+vTpExMnTozi4uJt7llVVRWHHHJIjB8/Pm3tmDFjYvjw4dvcszq48MIL45Zbbklb96tf/Sp+8IMfZKTn+++/H3379o1Vq1Zttq5NmzYxd+7cqF+/fkb6AgDVg1mvdrvpppvi4osvTlR77733ximnnJLlRABArpjzcu/cc8+N22+/PW3d/vvvH3/961+jcePGOUhFISjKdwAAgHyZOXNm/O1vf0tbd+SRR2bsgtOIiEGDBsWZZ56Ztm7y5Mnx7LPPZqxvdfH9738/7WJRUVGRxSIAYKuZ82q/li1bxl133ZWods6cOTFr1qwsJwIAkvjVr36VtqaoqCjuvvvujFyEEBGRSqXirrvuSnRHzST5aoIvvvgi7r777rR1ffr0iUsuuSRjfTt37hw//elP09YtXLgw7rvvvoz1BQCqB7Ne7XbRRRfFfvvtl6j2iSeeyHIaACCXzHm59dZbbyV6+lP//v1jzJgxFovIKMtFAEDBuvHGGyPdQxzr1q0b119/fcZ7X3nllYkG+xtuuCHjvfPp+eefj0ceeSRt3f/8z/9YLAIAtpo5rzAMGTIk8XLYiy++mOU0AEA68+fPj4cffjht3SmnnBK77757Rnu3a9cu0V3WX3zxxVrxhMk77rgj7c19Iv4xNxcVZfbHxd/73veiffv2aevMwwBQu5j1CsOoUaMS1TkXBwC1hzkv9y666KKorKzcbE2bNm1izJgx0aBBgxylolBYLgIAClJFRUU89NBDaeuOPfbY6NixY8b7N2vWLE477bS0dePHj4/FixdnvH++XHrppWlrBg0aFJdddlkO0gAAtZE5r7CccsopiepmzJiR5SQAQDr3339/bNy4cbM1qVQqa+eFvve970VJSUnauj/+8Y9Z6Z9LSb6GvfbaKwYPHpzx3vXr14+LLroobd306dNj8uTJGe8PAOSHWa8w9OjRI9FFwwsWLEi07A4AVH/mvNwaN25cTJgwYbM1qVQq7rnnnmjevHmOUlFILBcBAAVp7NixsXz58rR1F154YdYyXHDBBWnvDLpp06Z48MEHs5Yhl1544YV47bXXNltTp06duOOOOzJ+x1QAoHCY8wrLgQcemOiOXB9++GEO0gAAm3P//fenrRk2bFh069YtK/1btGgR3/zmN9PW/fnPf057wUR1NmXKlJg5c2baumzOw9/5zncSPc0zyb8TAEDNYNYrHEcddVTamqqqqvjoo4+yHwYAyDpzXm5dd911aWtOOOGEGDZsWA7SUIhctQkAFKQHHnggbU3Hjh2jf//+Wcuw0047xaBBg9LWJclaE9xwww1pa7797W9H9+7dc5AGAKitzHmFpaSkJDp16pS2buXKlTlIAwB8nXfeeSfeeeedtHUnn3xyVnMkOf6SJUvi6aefzmqObEoyYzZq1CiOPPLIrGUoKyuLo48+Om3dgw8+GFVVVVnLAQDkhlmvsPTs2TNRnfNxAFDzmfNya+rUqWmfWlSvXr24+uqrc5SIQmS5CAAoOJs2bUr0YeKEE07IepYRI0akrXn99ddj6dKlWc+STR9++GGMGTMmbd0PfvCDHKQBAGorc15hat26ddqaTZs25SAJAPB1nnjiibQ1JSUlWV14iYjYd999o02bNmnrxo0bl9Uc2ZTkvT7iiCOitLQ0qzmSzMOLFi2KN998M6s5AIDsM+sVliTn4iKcjwOA2sCcl1u33XZb2ppjjz02dtlllxykoVBZLgIACs5rr70Wy5cvT1t3yCGHZD1Lkh6VlZXxzDPPZD1LNiW5C+n+++8fXbt2zVEiAKA2MucVpvLy8ozUAADZ89RTT6Wt2WeffaJRo0ZZzVFUVBTDhg1LW5ckb3X0ySefxLvvvpu2Lhfz8ODBg6OkpCRtXU19rwGAr5j1CkvS82zOxwFAzWfOy53169fHI488krbunHPOyUEaCpnlIgCg4CS5gLNRo0ax1157ZT3LTjvtFB07dkxbV5M//ET8Y7konZNOOikHSQCA2sycV5g+//zztDXNmjXLQRIA4L9Zv359vPTSS2nrDjjggBykSdbnvffei48//jgHaTIr6eL60KFDs5zkH3et3WeffdLWmYcBoGYz6xWeJOfiIpyPA4CazpyXW+PGjYtly5ZttmbHHXeMQYMG5SYQBctyEQBQcCZOnJi2Zq+99oq6devmIE0kGvonTZqUgyTZMXv27HjzzTc3W1NUVBTDhw/PTSAAoNYy5xWmxYsXp63p0qVLDpIAAP/NW2+9FWvWrElbl2QRJROS/gC+Js5pSebhjh07RuvWrXOQJtl7/dprr6V94jkAUH2Z9QpPknNxzZo1s1wEADWcOS+3/vKXv6StOfzww3OQhEJnuQgAKDhTp05NW7P77rvnIMk/9O3bN23Ne++9FxUVFTlIk3lPP/102prddtstWrVqlYM0AEBtZs4rPGvXro33338/bZ27eAFA/iSZ0YqKimK33XbLfpiIaNeuXTRv3jxtXZLc1U1NnIdXrFgRc+bMyUEaACAbzHqFJ91NJSP+cZFxKpXKfhgAIGvMebmV5InkBx98cA6SUOgsFwEABWXx4sXxySefpK2rbj9k37hxY7z99ts5SJN5EyZMSFszYMCAHCQBAGozc15hevLJJ9PeNa28vDx69eqVo0QAwH9644030tZ07tw5ysrKcpDmH5LMaTXtQoTKysp466230tZVt3k4oua91wDAV8x6hefRRx9NWzNkyJDsBwEAssqclzszZsxI9HPu/v375yANhc5yEQBQUKZNm5aormvXrllO8pUuXbokqkuavbp5/vnn09bstddeOUgCANRm5rzC9Pvf/z5tzemnnx5FRU6DAkC+JFmkzuWMFpFsTqtpM9rs2bPTLl1H5Pa9bt26dTRp0iRtXU17rwGAr5j1Cssbb7yR9slFDRo0iFNOOSU3gQCArDHn5c5zzz2XtmaXXXaJFi1aZD8MBa9uvgMAAOTSnDlzEtV17Ngxy0m+0rRp0ygvL4/PP/98s3VJs1cn8+fPj0WLFqWt6969e9qapUuXxrhx4+LVV1+Nd955J+bOnRvLly+PVatWRf369aNBgwbRrFmzaN++fXTo0CH23HPPGDBgQHTu3DkTXwoAUM2Z8wrPuHHj4m9/+9tma+rWrRvnnXdejhIBAP9NklmnU6dOOUjylSQz4ccffxzr16+P+vXr5yDRtks6U+b6ve7QoUPaO92ahwGg5jLrFY6qqqo499xz09Z961vfivLy8hwkAgCyyZyXO6+//nramiTX1lVVVcXrr78eTz75ZEybNi2mT58eS5YsiRUrVsTGjRujQYMG0bBhw2jbtm20b98+dt111xgwYED0798/p0+gonqzXAQAFJS5c+emrWndunXOB+aOHTvGa6+9ttmaJNmrm3fffTdR3dd92KysrIyxY8fGrbfeGs8991xs2rTpv9atXbs21q5dG0uXLo33338/IiJuv/32L4/9jW98I0477bRo3779VnwVAEBNYM4rLHPmzIkzzjgjbd33v//9aNu2bQ4SAQD/zdq1axPdeKZDhw45SPOVJBciVFZWxocffpjziyS2VtKZcpdddslykn/XsWPHtMtF5mEAqJnMeoXlJz/5Sbz66qubrSkvL4+f/vSnOUoEAGSLOS+3klxft7mv5+OPP45Ro0bFPffcs9k/txUrVsSKFSti4cKF8dprr8VDDz0UERElJSVx0EEHxUknnRTHHnts1KlTZ8u/CGqNonwHAADIpXnz5qWtadOmTfaD/Iftt98+bU1N/CF7kg8/zZo1i8aNG/+f33/66adj1113jSOPPDKeeeaZr10sSmfWrFlxzTXXRKdOneKEE06IWbNmbdVxAIDqzZxXOGbOnBmDBw+OBQsWbLauZ8+e8f/9f/9fjlIBAP/Nhx9+mKgu13NakhktombNaUnm4fLy8igpKcl+mH9hHgaA2susVxgqKyvjhz/8YVx99dVpa0eNGpX4/QcAqi9zXm5Nnz49bc1/u2HQ8uXL43vf+160b98+fvGLXyRaCPtv1q1bF4899liccMIJ0bFjx7jjjju2+jo9aj7LRQBAQfn444/T1rRu3ToHSba8Z7qLJ6uj9957L21Ny5Yt/+3/r169Ok4++eQ48MADE70+qU2bNsWf//zn2HXXXeOKK66IDRs2ZOzYAED+mfNqv4qKirjqqqtit912i/nz52+2dvvtt4///d//jfr16+coHQDw3ySZ0SJyP6cl7VeT5rSaPA8vWrTIBQsAUAOZ9Wq/N954IwYMGBC//OUv09ZecsklMWLEiBykAgCyzZyXOwsWLIiVK1emrfvP6+vGjx8fXbp0iVtvvTWj18DNmzcvzj777OjXr19Mnjw5Y8el5rBcBAAUlKVLl6atadWqVQ6S/LskH34+//zzHCTJrHQXfUZEtGjR4sv/PXv27Nhrr73i/vvvz1qm9evXx9VXXx377rtvonwAQM1gzqu93nrrrfjBD34Q7du3j5/+9Kexbt26zda3bt06JkyYEJ06dcpRQgDg6ySZ0SJyP6e1bNkyiorS/5i0Js1pNXkerqqqii+++CIHaQCATDLr1U4rV66M0aNHx7Bhw2KPPfaI1157Le1rLrzwwrj++utzkA4AyAVzXu4kvXbtX6+v+8UvfhGHHnpoLF68OFux4s0334yBAwfGqFGjstaD6qluvgMAAORSkg8/2223XfaDbEXP1atXR0VFRRQXF2c/UIYkedzqP7/22bNnx3777Zf47hfb6tVXX43+/fvH008/Hd26dctJTwAge8x51du0adNi+vTpm61Zv359rFixIlasWBGLFy+Ot956K956661YtmxZ4j77779//PGPf4y2bdtuY2IAIBOSXoiQ6zmtqKgoGjVqFMuXL99sXdL81UFNnocj/pG/efPm2Q0DAGSUWa/6qqysjD//+c+bramqqopVq1bFihUrYvny5fH+++/Hm2++GbNmzYrKyspEfcrKyuLmm2+O0047LROxAYBqwpyXO0murYv46r3+0Y9+FNdee20WE31l/fr1cd5558Xs2bPjxhtvzElP8s9yEQBQUJLcAbNRo0Y5SLJ1PT///PPYfvvts5wmcz755JO0NfXr14/FixfHkCFDcrZY9E8LFy6MfffdN1544QULRgBQw5nzqrc//elP8ctf/jJrx2/evHlcccUVccEFF0QqlcpaHwBgyyS9S2jDhg2znOT/SnIhQk26y2mSrNV9HgYAahazXvW1fv36OPHEE7Pa46CDDopf//rXnh4OALWQOS93klxbF/GP6+uuueaanC0W/aubbrop1q9fH7fddlvOe5N7losAgIKxdu3a2LBhQ9q6fPyQvXHjxonqli9fXmMuOq2qqkp0J4g6derEiBEjEj3mtXHjxjFo0KDo2bNn7LTTTtGwYcPYuHFjLFu2LD744IOYNGlSTJ06NTZt2pQ452effRaHH354TJo0KZo1a5b4dQBA9WHOK1w777xznHfeeXHWWWdFWVlZvuMAAP9hxYoVaWvKysqiqKgoB2n+XZI5Ld2FCtVJkve6us/DAEDNYtYrPPXq1YvDDjssLr/88thjjz3yHQcAyBJzXu4sWbIkUd3zzz8fP/nJTxLVdu/ePQYOHBidOnWKZs2aRXFxcaxZsyYWLFgQ7777brzwwguJ+/7TqFGjomPHjnHhhRdu0euoeSwXAQAFY/369YnqSktLs5zk/yopKUlUl/RrqA7WrVsXlZWVaesee+yxWLdu3WZr+vfvH5deemkMHz486tWrt9naRYsWxb333hvXX3994g9Cs2fPjpNPPjnGjRuXqB4AqF7MeYXnmGOOicsvvzz69u2b7ygAwGYkmXHyMaNFJJvTatKMVl3fa/MwANRe1XX+iKh9s16+tWzZMq666qo44YQTokmTJvmOAwBkmTkvd9asWZOo7pJLLtnsdXgNGzaMc889N84444zYZZddNnusysrKmDBhQtx0003x+OOPJ856ySWXxB577BEDBw5M/BpqntyvDAIA5EnSDw516tTJcpL/q27dZDvfNenDT7qFoSR12223XYwePTomTpwYRx99dNrFooiI1q1bx6WXXhqzZ8+OM844I3HeJ554In77298mrgcAqg9zXuF55JFH4vjjj4/zzz8/Jk6cmO84AMDXSDLj5GNGi0g2p9WkGa26vtfmYQCovarr/BFR+2a9fPv000/jggsuiBNOOCFGjRqV6GkGAEDNZc7LnUxcXzd8+PB4//3349prr027WBQRUVRUFEOHDo2xY8fGU089FTvuuGOiDJWVlTFy5MjEC1HUTJaLAICCkfSDQ9IfeGdS0p4bNmzIcpLMqaio2KbXt2/fPl599dU4+eSTt+r1jRo1ijvvvDPuvvvuxB9of/jDH9aoR+MCAP9gzitMc+bMidtuuy323nvv2HfffbfozloAQG4kmdPyMaMl7VuTZrTq+l6bhwGg9qqu80fSvuaPLVNRURHjx4+P8847L9q1axeXX355LF68ON+xAIAsMOflzrZeX3f55ZfH3/72t9h+++236vUHHHBATJ48Ofbcc89E9bNmzYobbrhhq3pRM1guAgAKxsaNGxPV+SF7ZmzLXSC23377eOaZZ6JLly7bnOO73/1u3H333YlqP//887juuuu2uScAkFvmPF588cUYPnx4HHroobFo0aJ8xwEA/p8kc5oLETKjur7X5mEAqL2q6/yRtK/5Y+stX748fvGLX0Tnzp1j9OjR+Y4DAGSYOS93tuX6ussuuyyuvvrqSKVS25ShZcuW8eSTT0bv3r0T1V9//fWxdOnSbepJ9WW5CAAoGEk/1GzatCnLSba+Z74+mG2NbXn87T333BPt27fPWJZTTz01vv3tbyeqHTVqVKxduzZjvQGA7DPn8U/jxo2Lnj17xt///vd8RwEAItmMk48ZLWnfmjSjVdf32jwMALVXdZ0/kvY1f2y7FStWxLe+9a04/vjjY/Xq1fmOAwBkiDkvd7b2+rqBAwfGNddck7EcTZo0iQcffDBKSkrS1q5YsSLuuuuujPWmerFcBAAUjPr16yeqS3rn+0xKeseEpF9DdbC1WU877bQ46KCDMpwm4uabb442bdqkrVu2bFk8+OCDGe8PAGSPOa/6u/baa6Oqquprf1VWVsby5cvjww8/jGnTpsX48ePj6quvjqOPPjrRDPevPvvsszjqqKPi0Ucfzc4XAwAklmTGyceMFpFsTqtJM1p1fa/NwwBQe1XX+SOi9s16W6qkpGSz5+KqqqqioqIiFi9eHDNnzoxJkybFPffcE+eee270799/iy/Iffjhh+Owww6LNWvWZOkrAgByyZyXO1uTtbS0NO65554oKsrsGkjXrl3jyiuvTFT729/+NiorKzPan+rBchEAUDDq1auXqC4fH36S9qztH37Kysriuuuuy0KaiO222y6uvfbaRLV/+tOfspIBAMgOc17Nl0qlonHjxtGuXbvo2bNnDBs2LC6//PJ45JFHYv78+fHEE0/Ecccdl/jPesOGDXH88cfH2LFjs5wcANicJH935+tChCR9a9KMVl3fa/MwANRe1XX+SNq30OeP+vXrR8uWLaNz586x5557xqmnnhq33XZbTJw4MebPnx/XXHNNdOjQIfHxnn/++Rg+fHisW7cui6kBgFww5+XO1mS9+OKLo1OnTllIk/zYc+fOjYkTJ2YlA/lluQgAKBjFxcWJ6vJxwjNpz5r04Sfp+/2vTjrppNhuu+0yH+b/Of7446N58+Zp61544YVYtWpV1nIAAJllzqvdioqK4qCDDoqHH3443nnnndh3330TvW7Dhg1x8sknx4IFC7KcEAD4OknmtHxdfJikb02a0arre20eBoDaq7rOH0n7mj++XuvWreNHP/pRvP/++3HTTTdFWVlZotdNmDAhfvzjH2c5HQCQbea83NnS6+vq1KkTZ555ZpbSbNnxH3/88azlIH+27BmmAABbaO7cuTFp0qSs9igrK4vDDz88bV1paWnUrVs37R0MVq5cmaloiSXt2bhx4ywnyZySkpKoV69eosfR/tNZZ52VxUT/+EB26qmnxvXXX7/ZuvXr18fzzz8fhx12WFbzAEBNZs5LpjbOefnUuXPneO655+L222+PCy+8MO2f+fLly2PkyJHx5JNPRiqVylFKAOCfGjVqlLZm9erVUVVVlfO/q5PMaTVpRmvUqFF8+umnm60xDwMAmWTWq/2KioriwgsvjKOOOipOPPHEePXVV9O+5uabb44jjzwy8Q2CAIDqx5yXO0ne63916KGHxo477pilNP9w6qmnxhVXXJF2keupp56Ka665JqtZyD3LRQBAVj3//PMxcuTIrPbYaaedEl10GhHRtGnTWLJkyWZrVqxYkYlYWyRpz/Ly8iwnyaxmzZrFokWLEtW2b98+dt999ywnijjuuOPSLhdFREyePNlyEQBshjkvmdo65+VTKpWKc889N3baaac4+uij0y4YPf300/HQQw/FiBEjcpQQAPinJDNOVVVVrFy5Muc/9E8yp9WkGa28vDxmz5692RrzMACQSWa9wrHzzjvHM888E4cffng8++yzm62trKyMM888M6ZPn+5mPwBQQ5nzcqd58+ZbVH/cccdlKclXmjVrFoMHD44nnnhis3XTpk2L9evX16gnRZFeUb4DAADkUrNmzdLWLF++PAdJtrxngwYNoqSkJAdpMifJ+/1Pe+21VxaTfGW33XZL9KHmjTfeyEEaACBTzHmFZ/jw4XHLLbckqr3pppuynAYA+G+SnhvK9ZxWWVkZq1atSlu3Jee28q0mz8MRNeu9BgD+waxXWBo0aBCPPPJIdOrUKW3tjBkzYty4cTlIBQBkgzkvd7Y0a66ur9tzzz3T1qxfvz7efffdHKQhlywXAQAFJclAvnjx4hwk+XdJnu5Tkz74/FN1XC4qLi6O3r17p61Ld6dXAKB6MecVpnPOOScOPPDAtHWvvfZavPLKKzlIBAD8q6RzTq7ntCVLlsSmTZvS1tWkOa0mz8OpVCqaNm2agzQAQCaZ9QpPkyZN4p577klUe/PNN2c3DACQNea83NmSrNttt1107tw5i2m+kvQ6PtfX1T6WiwCAgrLDDjukrUnyA+9MS9IzSfbqZksy9+rVK4tJ/l2S5aIFCxbkIAkAkCnmvML1y1/+MlHdX/7ylywnAQD+U9I5J9dzWtJ+NWlOq8nzcKtWraJu3bo5SAMAZJJZrzANHDgwjjzyyLR1zzzzTCxbtiz7gQCAjDPn5c6WZO3Zs2ekUqkspvlKkmvrIlxfVxtZLgIACsrOO++ctmbhwoXZD/IfPvnkk7Q17du3z0GSzNpll10S15aXl2cxyZb3Wr58eVRUVOQgDQCQCea8wtWnT59Ed8968cUXc5AGAPhXSWa0iNzPaUlmtIiaNaclea8///zznJ/vMg8DQO1l1itcZ511VtqaysrKePnll3OQBgDINHNe7uy8885RVJRsnaO6XVsXkZ8npZNdlosAgIKS5MPDokWLYs2aNTlI85UPPvggbU1N+uDzT1uyXLTddttlL8hW9sr1vwcAwNYz5xW2JHdLnTp1aqxatSoHaQCAfyotLY1WrVqlrZs9e3YO0nwlyYyWSqVip512ykGazEgyU1ZVVcWcOXNykOYr5mEAqL3MeoVr6NChUVZWlrbOzX4AoGYy5+VO/fr1Ez+9KJfX1pWWlkZxcXHaOtfW1T6WiwCAgpJk2aWqqirRh5FMWbZsWSxdujRt3ZYs6lQXHTp0SFxruQgA2BbmvMK29957p63ZtGlTzJ07NwdpAIB/lWTWmTVrVg6SfCXJTLjDDjsk+gF6dZF0pqyO77V5GABqLrNeYapXr17sscceaety/WcPAGSOOS93kl5fl8tr6yIimjRpkrbGtXW1j+UiACCrTj311Kiqqsrqr3nz5iXO07Nnz0R1M2bM2MqveMsl7ZU0e3XSq1evxLWpVCqLSfLXCwBqK3Ne5nrVxDmvuunYsWOiuiTLXgBAZiWZdXI5oyXtV9NmtA4dOkRpaWnauly+14sWLYrly5enratp7zUA8BWzXuFKcj7OuTgAqLnMebnTu3fvRHW5vt7N9XWFyXIRAFBQtt9++0SPbX3jjTdykCZ5r7p1627Rok510bRp08R3Hl22bFl2w/yLL774IlFdgwYNspwEAMgUc15hKy8vT1T3+eefZzkJAPCf+vTpk7Zm5syZOb3LZZI5bffdd89BksypU6dOormyus3DETXvvQYAvmLWK1xJzsc5FwcANZc5L3f69u2bqC6X19Yl7efautrHchEAUHCSfIjI5Q/Zp0yZkrama9euUVJSkoM0mZf0A1DShZ9MSPphq6ysLLtBAICMMucVrnr16iWqW7t2bZaTAAD/KcmMVllZGW+++Wb2w0TE/PnzY8mSJWnrklxAUd3UxHm4UaNG0aFDhxykAQCywaxXuJKcj3MuDgBqLnNe7lTHa+vWrl0bFRUVaetcW1f7WC4CAArOgAED0ta8+uqrsXHjxhykiXjhhRfS1uy11145SJIde++9d6K6XN65KkmvZs2aRf369XOQBgDIFHNe4Vq9enWiOie4ASD3evfuHaWlpWnrXnzxxRykSTajRdTMOS3JPDxr1qxYvHhxDtIke6/33HPPSKVSOUgDAGSDWa9wJTkf51wcANRc5rzc6dq1azRt2jRtXXW7ti4iok2bNllOQq5ZLgIACs7QoUPT1qxcuTJee+21rGf56KOP4oMPPkhbd+CBB2Y9S7YMGzYsUd20adOynOQrb731Vtqadu3a5SAJAJBJ5rzCtWDBgkR1DRs2zHISAOA/FRcXxz777JO27plnnslBmmR9unbtGm3bts1BmsxKMg9H5Oa9rqioiJdffjltnXkYAGo2s17hSnI+zrk4AKi5zHm5U1RUFAcccEDaurfffjuqqqpykCjZtXURrq+rjSwXAQAFZ88994zGjRunrRs3blzWsyTpkUqlEl8YUB1179490Qe3SZMm5SDNPy5sSPIBqEuXLjlIAwBkkjmvcE2fPj1RnRPcAJAfSX44/uKLL8aqVauymqOysjLGjx+ftq6mLry0adMmunXrlrYuF/Pwc889F2vXrk1bV1PfawDgK2a9wpTkfJxzcQBQs5nzcifJzbuXLVsW77//fg7SJL+Oz/V1tY/lIgCg4NStWzfRRZwPPfRQ1rM8+OCDaWv69esXzZs3z3qWbDr00EPT1rz66qs5SBIxderUWL9+fdq6PfbYIwdpAIBMMucVrueffz5tTZ06dWLnnXfOfhgA4P84+OCD09asW7cuHnvssazmePHFF2PhwoVp65Lkra6SZH/sscdi3bp1Wc2RZB5u1apV9OnTJ6s5AIDsM+sVniVLlsR7772Xtq5Dhw45SAMAZIs5L3cOOeSQSKVSaetydX1dkuWiJk2aROfOnXOQhlyyXAQAFKQTTzwxbc2sWbOy+jSdjz76KF544YW0dUmyVnff/OY309bMmzcv3njjjaxn+ctf/pKobsCAAVlOAgBkgzmv8GzcuDH+93//N21dt27don79+jlIBAD8p169ekX37t3T1t13331ZzTF69Oi0Nc2aNavRdzlNMmOuXLkyqxd9rF69Ov7617+mrTvhhBMSXTQBAFRvZr3C89BDD0VVVVXaut122y37YQCArDHn5c4OO+wQgwcPTluX9Lq3bfHZZ5/Fc889l7Zur732cm6vFrJcBAAUpMMPPzwaN26ctu7mm2/OWoZbb701KisrN1tTVFQUI0aMyFqGXBk0aFC0b98+bd1vfvObrOZYt25d/OEPf0hb17x589hzzz2zmgUAyA5zXuF56KGHYtGiRWnr9ttvvxykAQC+TpKbz4wfPz5mzJiRlf5LliyJ+++/P23d8ccfH/Xq1ctKhlzYY489olOnTmnrsjkP33PPPbF8+fK0dUn+nQAAagazXuHYtGlTjBo1Km1dKpWKfffdNweJAIBsMuflzre+9a20NX//+9/jo48+ymqOe+65JyoqKtLWHXbYYVnNQX5YLgIAClJJSUkcf/zxaev+8pe/xAcffJDx/kuXLo3f/va3aeuGDRsW22+/fcb751oqlYqRI0emrXvggQfiiy++yFqOhx56KJYuXZq27vDDD486depkLQcAkD3mvMKyatWquOKKKxLVHnTQQVlOAwBszsknn5z2fEtVVVVce+21Wel/yy23xLp169LWffvb385K/1xK8jW8+uqrie5AuqXWr18fN954Y9q6rl27urkPANQiZr3C8Zvf/CbRxcN9+vSJFi1a5CARAJBN5rzcOe6449LeRLOysjLuuOOOrGXYtGlT3HnnnYlqjzzyyKzlIH8sFwEABeviiy9O+2jOjRs3xve///2M9/7pT38aK1asSFt3ySWXZLx3vpx77rlRVla22ZrVq1dn7Wv+4osv4kc/+lGi2u9+97tZyQAA5IY5r3CcffbZMW/evLR1LVq0iIMPPjj7gQCAr9WuXbs47rjj0taNHj063njjjYz2/uijjxItvAwcODD22muvjPbOh7POOisaNGiQtu6SSy5J+8TNLXXLLbfE3LlzE/UGAGoPs15hmDZtWlx22WWJapPceR8AqP7MebnTsGHDOOecc9LW3XTTTTFz5sysZLjuuuti9uzZaesOOOCA2GmnnbKSgfyyXAQAFKxu3brF8OHD09Y99thj8fDDD2es70svvZRow3/33XePAw44IGN9IyLmzZsXqVQq7a/BgwdntG9ERHl5eZx55plp6+65554YN25cxvtfcMEF8cknn6St69OnTwwcODDj/QGA3DHnZX/OGzNmTCxevDgjx9oaVVVVcckll8R9992XqP7UU0+NevXqZTkVAJDOpZdemramsrIyTj/99Fi/fn1GelZVVcWZZ54Za9euTVubJN+WOPXUUxPNaJl+glCzZs0S3TznjTfeSHSBRlKzZs2KK6+8Mm3d9ttvH6ecckrG+gIA1YNZL3uz3tKlS+Ovf/3rtofeBjNmzIiDDz441qxZk7a2QYMG8c1vfjMHqQCAXDDn5eacXkTERRddFKWlpZutWbduXYwcOTLjNw2aPn16/PznP09Ue/7552e0N9WH5SIAoKD97Gc/i6Ki9CPR6aefHu+///4291u0aFGcdNJJsWnTprS1SYf1muTSSy+NJk2apK0bOXJkzJkzJ2N9f/e73yW+8LQ2vu8AUIjMedn1v//7v9GhQ4e4/PLLY9GiRTnt/cUXX8Txxx+f+ELYhg0bxg9+8IMspwIAkth9993jiCOOSFv3xhtvxPe+972M9PzFL34RTzzxRNq6fv36xeGHH56RntXBpZdemujpRZdffnm89NJL29xv9erVccIJJ8SqVavS1v7oRz+K4uLibe4JAFQvZr3sWblyZRxzzDGx9957x+OPPx5VVVU57T9mzJgYMGBAohs5RkScd9550bx58yynAgByxZyXOy1btkz0Hk6cODF++MMfZqzvsmXLYsSIEVFRUZG2tm/fvrXqPeffWS4CAApa37594zvf+U7auuXLl8fQoUO3aeFlyZIlccABB8T8+fPT1h5yyCG1cghv1apVXHXVVWnrFi9eHEOHDs3II1zvvvvuRE9MiojYb7/9En0YBgCqP3Ne9q1evTp+8YtfxE477RTf+ta34tlnn834HbL+1aZNm+Kee+6JXXfdNf7yl78kft1ll10WLVq0yFouAGDL3HjjjYkWS+6444748Y9/vE29br/99kTHSKVS8etf/zpSqdQ29atO2rZtG5dffnnaug0bNsTw4cNj8uTJW91rzZo1cfjhh8fUqVPT1vbs2TPOOeecre4FAFRvZr3smjhxYgwfPjy6desWN910U9Zv+jN79uw48cQT44gjjohly5Ylek2LFi3isssuy2ouACD3zHm5c8UVV0S7du3S1l133XXx4x//eJsXzz/99NMYNmxYvP3224nqr7/++lr3nvMVy0UAQMG75pprolmzZmnrFixYEHvuuWeMGzdui3tMmjQp+vXrF++++27a2pKSkrjlllu2uEdNcc4550S/fv3S1s2bNy/69++f+IlD/2nlypVx5plnxumnn57oCQINGjSIu+66a6t6AQDVkzkvN9avXx+jR4+OoUOHRrt27eKss86Kxx57LPEFB+nMmjUrrrnmmujYsWN85zvfiYULFyZ+bd++fTN61y4AYNt16NAh8cWG11xzTZx44omxcuXKLepRUVERF1xwQZx77rmJ6keOHBn9+/ffoh41wfe///3o1KlT2rrly5fHfvvtF3/84x+3uMfMmTOjf//+MWHChLS1qVQqbrvttqhTp84W9wEAagazXm7MnDkzLr744mjbtm0MHTo0brjhhnj77bczcuOftWvXxtixY+PYY4+Nrl27xoMPPrhFr7/zzjujvLx8m3MAANWLOS93ysrK4te//nWi2muuuSaOOOKIxE+Y/E9PP/109OvXL15//fVE9aeddloMHjx4q3pRM1guAgAKXosWLeIPf/hDoo36pUuXxqGHHhrHHHNMort5Tp8+PUaOHBl77713fPTRR4ny3HLLLYl+6F9T1alTJx566KHYbrvt0tYuW7YsTjnllBgwYEA88sgjsWHDhrSvWbx4cfzyl7+MDh06bNGy0M033xydO3dOXA8AVH/mvNz7+OOP484774yjjjoqysvLo1u3bnHKKafE1VdfHQ8//HBMnDgx5syZE8uWLYt169ZFZWVlbNy4MdasWROffPJJvP322/H444/HzTffHN/+9rejY8eO0blz5/jxj38c8+bN26IszZo1iwceeCDq1q2bnS8WANhqP/nJT2LAgAGJah988MHo1KlTjBo1KlasWLHZ2rVr18a9994bXbt2TfwD+M6dO9fKBfCIiOLi4njwwQcT3VV2zZo1ceqpp8aQIUNiwoQJae94Om/evLj44oujV69eie9q+sMf/jD23XffRLUAQM1l1sudTZs2xbPPPhvf//73o1evXtG0adM48MAD4+KLL4477rgjnnzyyZg2bVosWrQoVq1aFRs2bIiqqqqoqKiIZcuWxezZs+OVV16J0aNHx+WXXx77779/NG/ePA4//PB45JFHYuPGjVuU54ILLoijjz46S18tAJBv5rzcOeKII+L8889PVDt27Njo1KlT/PCHP4w5c+akra+qqopnn302hg8fHgceeGDMnz8/UZ/OnTvHzTffnKiWmitVta3PwgIAqCUuvfTSuO6667boNZ07d4599tknevToEeXl5ZFKpeKLL76IGTNmxMSJE2PatGlbdLyTTjop7r///i16zZaYN29etG/fPm3dfvvtF88991zWckREjBkzJo488sgtejRrkyZNYtCgQdGrV69o165dNGzYMDZt2hRffPFFzJ49OyZNmhRTpkxJ9KSif3XBBRfU6g+cAFDozHlfydScd+qpp27Vne1zpbS0NJ5++unYe++98x0FAPga8+fPjz59+sTSpUsTv6a0tDT222+/6Nu3b7Rt2zYaNWoUq1atikWLFsWUKVPiueee26I7opaWlsbEiROjd+/eW/MlpJV0ZpowYUJW7/h5++23J77j6z/tuOOOsd9++0WvXr2iWbNmUa9evVi2bFl88MEHMWnSpHjttde26LzeoEGDYsKECZ5aBAAFwqz3lUzMeknP/eXTMcccEw8//HAUFbnXOQDUZua8r2T7nN6GDRti8ODB8corryR+TSqVih49esTee+8dnTt3jmbNmkX9+vVjzZo18fHHH8e7774bL7zwQixevHiLsjRv3jxeeeWVWn8jTSLcthMA4P+59tprY8GCBfHAAw8kfs37778f77//fkb6Dx06NH7/+99n5Fg1weGHHx533XVXnHHGGYkvRFi+fHmMHTs2xo4dm7EcI0aMiJtuuiljxwMAqh9zXmEpLy+PsWPHJr5zGgCQHzvuuGP8/e9/jwMOOCDxxQNr166NJ554Ip544olt7l+vXr34y1/+krWLEKqTc845Jz788MP41a9+lfg18+fPj/vuuy8j/Xv27BmPPvqoxSIAKCBmvcLyrW99K373u99ZLAKAAmDOy5169erFmDFjYv/994+33nor0WuqqqrinXfeiXfeeSdjOZo0aRJjxoyxWFQgTPQAAP9PUVFR3HvvvXHMMcfkvPc+++wTjz32WBQXF+e8dz6ddtppceedd+btRPOZZ54Z999/vxPdAFDLmfMKR+/eveOVV16xWAQANcSee+4ZY8eOjYYNG+a0b7169eKBBx6IQw89NKd98+mXv/xlXHDBBTnv27Vr13jqqaeivLw8570BgPwy69V+devWjf/5n/+JP/zhD1G3rnucA0ChMOflTnl5eTzzzDOx22675aV/y5YtY8KECdG/f/+89Cf3XEUJAPAv6tatGw8//HBcdtllOes5cuTIePrpp6OsrCxnPauT008/PZ544olo1qxZznoWFxfHqFGj4o477rBYBAAFwpxXu9WtWzcuueSSmDRpUnTp0iXfcQCALbDvvvvGxIkTY5dddslJv5YtW8azzz4bxx57bE76VSe33HJL3HLLLTm78PPQQw+NV199NVq1apWTfgBA9WPWq726desWL730Uvz4xz+OVCqV7zgAQI6Z83KnWbNm8dJLL8WJJ56Y07577713TJ48Ofr06ZPTvuSXKykBAP5DUVFRXHvttfHXv/412rRpk7U+TZs2jd/+9rfx+9//vuDvZH/ggQfGG2+8kZM7SwwYMCAmTZoU55xzTtZ7AQDVizkvc/bdd99o3759vmNEKpWKI444It5+++24/vrra+37DQC13a677hqTJ0+Ob37zm1ntc8ghh8SUKVNin332yWqf6uyCCy6IZ599NqsL2aWlpXH11VfHmDFjokmTJlnrAwDUDGa9bdekSZM4+OCDo379+vmOEq1atYrbbrstpk2bFnvttVe+4wAAeWTOy52ysrL405/+FHfeeWfWnxDeoEGDuOqqq+L555+PHXfcMau9qH4sFwEAfI2jjjoqZsyYEd///vczerf5+vXrx3e/+92YOXNmnHbaaRk7bk3Xrl27ePzxx2PMmDHRs2fPjB+/e/fuMXr06Hj55Zejd+/eGT8+AFBzmPO23Xe+852YM2dOvPnmm/Hzn/88dtttt5z2b9KkSZx11lnx7rvvxmOPPRZdu3bNaX8AIPOaNm0a9913X0yYMCH69u2b0WN37tw5/vKXv8Tf//73aNu2bUaPXRMNGjQopk2bFtdcc01GL0YoKiqKY489Nt599924/PLLPTEcAPiSWW/bNG3aNMaNGxefffZZPPjggzFixIicL3H369cv7rnnnvjwww/j3HPPzdnTMAGA6s2cl1tnnHFGvP/++3HuuedGaWlpRo9dXFwc3/3ud2PGjBlxxRVXmPcKVKqqqqoq3yEAAKq7L774Iu66664YPXp0vPvuu1t1jA4dOsSJJ54Y55xzTmy//fYZTpjMvHnzEt1hfr/99ovnnnsu+4E247nnnovf/OY38cQTT8SKFSu26hhNmjSJww8/PE4++eQYNmxYpFKpDKcEAGo6c17mfPLJJ/HSSy/Fyy+/HC+//HK8+eabsXHjxowdv1OnTrHffvvFkUceGcOGDasWd2oFALLn+eefj1GjRsW4ceNi1apVW/z6kpKSGDp0aJx99tlx6KGH5uW80Kmnnhp//OMf09ZNmDAhBg8enP1A/8WaNWvij3/8Y9xzzz0xefLk2JofHbdp0ya+8Y1vxPnnnx8dOnTIQkoAoLYx6227DRs2xJQpU748F/fKK6/E4sWLM3b8srKyGDBgQAwbNiyOPfbY2GWXXTJ2bACg9jLn5c7SpUvj7rvvjvvvvz/efvvtrT7O7rvvHt/4xjdi5MiR0apVqwwmpCayXAQAsIU+/PDDePLJJ+Ott96K6dOnx7x582LFihWxcuXKqKqqikaNGkWjRo1ixx13jO7du0fPnj3jgAMOcDf1rbRx48YvT4pPnz49Zs6cGYsWLYqVK1fG6tWrI5VKRVlZWTRp0iTatWsX7du3j969e8eAAQOib9++LjoFABIz52XWmjVr4p133okPPvjgy19z5syJL774IlatWhWrVq2KlStXxqZNm6K4uDiKi4ujYcOG0bJly2jVqlXsuOOO0aVLl+jatWv07dvXyWwAKFDr16+PF1544ctzQzNmzIjPPvssVq5cGWvWrImSkpJo1KhRlJeXR5cuXaJ79+6x1157xdChQ6NBgwb5jl+jLF68OMaPHx9Tp06N6dOnx5w5c2L58uWxcuXK2LhxYzRs2DAaNWoUO+ywQ3Tr1i169OgR+++/f/Tp0yff0QGAGsqsl1lz586NmTNn/tv5uIULF8bKlSu/PB+3Zs2aqFu3btSvXz9KSkqiWbNm0apVq2jdunV06NAhunbtGj169IjevXu7Wz0AsNXMebn18ccfx1NPPRVvvfVWvPfee/92Xq+ioiJKS0ujrKwsWrZsGe3bt4/OnTvHXnvtFXvvvXfssMMO+Y5PNWK5CAAAAAAAAAAAAAAAAApUUb4DAAAAAAAAAAAAAAAAAPlhuQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAP7/9u47Oqpyffv4NUlIIfQSEBBCr4KhCtIRpQqCoCACggUVELuCCirosYOdJkgRKdJEQOm99xIIkIDUAIGQkF7m/cNXfsejwuzJ3tmTzPezVtY66/jc+7lmMjN7T3ju/QAAAAAAAAAAAAAAAACAl6K5CAAAAAAAAAAAAAAAAAAAAAAAAPBSNBcBAAAAAAAAAAAAAAAAAAAAAAAAXormIgAAAAAAAAAAAAAAAAAAAAAAAMBL0VwEAAAAAAAAAAAAAAAAAAAAAAAAeCmaiwAAAAAAAAAAAAAAAAAAAAAAAAAvRXMRAAAAAAAAAAAAAAAAAAAAAAAA4KVoLgIAAAAAAAAAAAAAAAAAAAAAAAC8FM1FAAAAAAAAAAAAAAAAAAAAAAAAgJeiuQgAAAAAAAAAAAAAAAAAAAAAAADwUjQXAQAAAAAAAAAAAAAAAAAAAAAAAF6K5iIAAAAAAAAAAAAAAAAAAAAAAADAS9FcBAAAAAAAAAAAAAAAAAAAAAAAAHgpmosAAAAAAAAAAAAAAAAAAAAAAAAAL0VzEQAAAAAAAAAAAAAAAAAAAAAAAOClaC4CAAAAAAAAAAAAAAAAAAAAAAAAvBTNRQAAAAAAAAAAAAAAAAAAAAAAAICXorkIAAAAAAAAAAAAAAAAAAAAAAAA8FI0FwEAAAAAAAAAAAAAAAAAAAAAAABeiuYiAAAAAAAAAAAAAAAAAAAAAAAAwEvRXAQAAAAAAAAAAAAAAAAAAAAAAAB4KZqLAAAAAAAAAAAAAAAAAAAAAAAAAC9FcxEAAAAAAAAAAAAAAAAAAAAAAADgpWguAgAAAAAAAAAAAAAAAAAAAAAAALwUzUUAAAAAAAAAALgpNDRUDofDpZ+pU6faHRdeatSoUS6/Tlu2bGl3XACwXMuWLV3+XBw1apTdcQEAAAAAAADAcjQXAQAAAAAAAAAAAAAAAAAAAAAAAF6K5iIAAAAAAAAAAAAAAAAAAAAAAADAS9FcBAAAAAAAAAAAAAAAAAAAAAAAAHgpP7sDAAAAAAAAAGZp2bKl1q1bZ9v8efLkUUBAgAICApQvXz4VL15cISEhKlmypKpUqaIqVaqoRo0aqlKlihwOh205ASC7rV27Vq1atbJ8Hl9fXwUEBMjf3//G53FAQICCgoJUrFgxhYSE/OXntttuU5UqVVShQgX5+fFPJgAAAHY5efKkypcvb3cMU61Zs0YtW7a0OwYAAAAAAIBL+JcyAAAAAAAAwCRpaWlKS0vT9evXFRMTo1OnTv3juMKFC+uuu+5Sq1at1KVLF1WpUiWbkwJA7pSRkaHExEQlJiYaqsuTJ48qVaqkatWqqWrVqqpXr56aNm2qkiVLWpQUAAAAAAAAAAAA8Bw0FwEAAAAAAADZ7OrVq1q2bJmWLVumV155RTVq1FD//v01YMAAFS1a1O54AOB10tLSFB4ervDw8L/8/5UqVVKzZs3UtGlT3XvvvSpTpoxNCQEAAAAAAAAAAADr+NgdAAAAAAAAAPB2hw8f1iuvvKIyZcroqaee0tmzZ+2OBACQdPz4cU2ZMkUDBw5U2bJldffdd2vcuHE6c+aM3dGQg7Vs2VIOh8Oln1GjRtkdF/ib0NBQl1/DU6dOtTsuAAC5lqvnY4fDobVr19odFwAAAADg4WguAgAAAAAAADxEcnKyJkyYoMqVK+vNN99Uamqq3ZEAAP+f0+nU5s2bNWzYMJUtW1bNmjXT7NmzlZGRYXc0AAAAAAAAAAAAIEtoLgIAAAAAAAA8TFJSkkaPHq169epp7969dscBAPwPp9OpjRs36uGHH1bFihX12WefKT4+3u5YAAAAAAAAAAAAgFtoLgIAAAAAAAA81MGDB9WkSRPNnz/f7igAgH9x6tQpvfDCC7r99tv10UcfKS0tze5IAAAAAAAAAAAAgCE0FwEAAAAAAAAeLCkpSQ8++KC+/fZbu6MAAG7i2rVreuWVV1S7dm2tXLnS7jgAAAAAAAAAAACAy2guAgAAAAAAADyc0+nUs88+qx9//NHuKACAWzhy5Ijatm2rhx56SLGxsXbHAQAAAAAAAAAAAG7Jz+4AAAAAAAAAgF1q166tzp07m3Ks9PR0paSk6Pr167p06ZLOnj2r48ePm7awPDMzU/369VO1atV05513mnJMAPBkgwcPVsGCBd2qzcjIUFJSklJSUpScnKykpCRdvHhR58+f14ULF7Kl6WfOnDnatWuXfvrpJ9WpU8fy+QAAAAAAAAAAAAB30VwEAAAAAAAArxUWFqbRo0dbOsfvv/+urVu3avny5fr55591+fJlt4+Vmpqq3r17a9euXQoKCjIxJQB4nhdffFGhoaGWHDs5OVkRERE6ePDgjZ9NmzbpypUrps5z4sQJNW7cWN9884369etn6rGNGDVqlEaNGmXb/ADgadauXWt3BAAmWLNmjVq2bGl3DAAAAAAAgFyB5iIAAAAAAADAQmXLllXZsmXVs2dPpaamav78+Ro9erQOHTrk1vHCw8P12Wefafjw4SYnBQDvERgYqNq1a6t27do3/r/MzEzt2bNHq1at0rJly7Ru3To5nc4sz5WUlKT+/fvr3Llzev3117N8PAAAAAAAAAAAAMBsPnYHAAAAAAAAALyFv7+/Hn74Ye3fv1/jxo1ze/ehDz74QDExMSanAwDv5uPjo3r16umVV17RmjVrdPLkSY0ePVqVK1c25fjDhw/XRx99ZMqxAAAAAAAAAAAAADPRXAQAAAAAAABkMx8fHw0dOlTr169XSEiI4fq4uDhNmjTJgmQAgD+VLVtWI0aM0NGjRzV79mzVrFkzy8d85ZVX9Omnn5qQDgAAAAAAAAAAADAPzUUAAAAAAACATerXr6/ly5crX758hmu/++47CxIBAP6Xw+FQz549deDAAf3www8qUaJElo734osvavHixSalAwAAAAAAAAAAALKO5iIAAAAAAADARmFhYRo7dqzhuoiICB04cMD8QACAf+RwONSrVy8dPnxYjzzySJaO1b9/f508edKcYAAAAAAAAAAAAEAW0VwEAAAAAAAA2GzgwIFq2LCh4brVq1dbkAYAcDNFihTRjBkzNGPGDPn7+7t1jKtXr6pnz55KTU01OR0AAAAAAAAAAABgHM1FAAAAAAAAgAd47bXXDNds3LjRgiQAAFc88sgjWrFihYoUKeJW/Y4dO/T222+bnAoAAAAAAAAAAAAwjuYiAAAAAAAAwAN07NhRBQsWNFRz9OhRi9IAAFzRvHlzrV+/XoUKFXKr/pNPPlFUVJS5oQAAAAAAAAAAAACDaC4CAAAAAAAAPIC/v7+aN29uqOb48eMWpQEAuKpmzZpauHChAgICDNempKTo5ZdftiAVAAAAAAAAAAAA4DqaiwAAAAAAAAAPUb9+fUPjk5KSlJSUZFEaAICrWrRooUmTJrlV+9NPP2ndunUmJwIAAAAAAAAAAABc52d3AAAAAAAAAAB/qFChguGa69evKygoyII05oqPj9eWLVu0d+9eRUZGKjIyUqdPn1Z8fLwSEhKUkJAgh8Oh4OBgBQcHK3/+/CpbtqwqVKigChUqqG7durrrrruUN29eux+KR7hy5Yo2bNigAwcO6ODBg4qIiNDVq1cVFxen+Pj4vzyXpUuXVvny5VW5cmU1btxYjRs3VqFChex+CJY4evSo1qxZo8OHDys8PFwnT5688ZykpaUpf/78N35CQ0NVo0YN1axZU/Xr11fNmjXtjo8crk+fPlqyZIlmz55tuPbtt9/W6tWrLUiV8129elU7duzQkSNHdPToUZ08eVIXL17UxYsXFR8fr5SUFKWkpMjhcChv3rx/+ylWrJhCQ0MVGhqqcuXKKTQ0VOXLl1fx4sXtfmiQFBMTo02bNungwYM3rg/OnDlz49ogISFBvr6+N85pBQoUUGhoqCpUqKCKFSuqfv36ql+/vls7h+VGFy5c0ObNm3X06FFFREQoIiJCly9f1vXr13X9+nUlJCQoT548KlasmMqWLasqVarozjvvVPfu3VWmTBm74yOLjhw5oi1btigiIuLG++ny5ctKTExUQkKCkpKSFBQUdOP9VLx48RvX2lWqVNHdd9+tSpUq2f0wPILT6dSePXu0c+dOHTx4UAcPHtS5c+cUFxenuLg4JScnKygoSHnz5lXhwoVvnFvuvPNO3X333apZs6YcDofdDwO5VFpamo4cOaJDhw795bv1pUuXdPnyZcXFxSk1NVUpKSny8/NTUFCQAgMDlT9/fpUqVUplypTR7bffrlq1aqlu3bqqWrWqfH197X5YtkhOTtaePXu0e/dunTx5UqdOndLJkydvfHb++eNwOBQQEKDAwEAVLVpUxYoVU+nSpW9cj9SuXVt33HEHf6+wWVRUlDZv3qwjR44oMjJSUVFRio6OvnFNmZSUpICAgBvnwSJFitw4D1aqVEmNGzfm8/u/hIeHa9euXYqIiNDRo0d14sQJxcbG3riu/PO6okSJEipfvryqVaumsLAwPfLIIwoMDLQ7PgAAAAA30VwEAAAAAAAAeIjChQsbrklNTbUgiTkOHDigWbNm6ddff9W+ffuUkZFxy5rU1FRdvXpV0h8LGf6bn5+f6tatq/bt26tXr16qWrWqJbk91eXLlzVjxgwtWrRIGzduVHp6+k3H//lcnjlzRtu2bbvx/zscDjVt2lQPPfSQHnroIRUrVszq6JYKDw/X+PHjtXjxYkVFRd107NWrV2+8vg4dOqRffvnlxn8LDQ1V586d1bNnTzVt2tTSzMi9vvrqK61bt04XLlwwVLdmzRodPHhQtWrVsihZzpGenq7169dr4cKFWrVqlcLDw+V0Ol2q/XPRtytKly6tu+6668ZPvXr1ckSzbm6wZcsW/fjjj1q5cqVLv9/09HSlpKToypUrkv74/P5vgYGBatCggTp37qyHH35Yt99+u2XZPdGOHTs0d+5c/fbbb9q3b98tx2dkZOjMmTM6c+aMNm/eLEkqWLCg+vfvb3FSmC0hIUGLFi3SvHnztGHDBl2+fNmlmoSEBEl/LMLevn37X/57yZIl1bx5c/Xo0UOdOnXyusXBq1ev1ty5c7V48WKdO3fupmP/XFx98eJFHT169C//rXjx4urevbt69eql5s2bWxkZXuDUqVPauHGjNm3apC1btujw4cMu/x0gNTVVqampunbtmqKjo3X8+PG/jcmbN69atGihDh06qGPHjipfvrzZD8FjOJ1Obd++XfPnz9eaNWu0d+9epaWluVSbnp6uhIQExcTEKCIi4m//3cfHR7Vr11aLFi3UqlUr3XPPPQoODjb7IeC/pKamatmyZZo7d67Wrl2rs2fP3rLmz4axS5cu6eTJk9q9e/df/nvhwoXVrFkzdevWTQ888IAKFChgVXyPk5GRoV9++UU///yzfv31V50+ffqWNQkJCTeaHFetWiVJatOmjUJDQy1OCwAAAMAyTgAAAAAAACCXaNGihVOSyz/9+vWzO/JfrFy50lB+Sc64uDi7Y/9FYmKic9y4cc6aNWsafixGf8LCwpwTJkxwpqSk2P2wbxg5cqTL+Vu0aOHSMSMjI52DBw925s2b1/TnMG/evM7nn3/eee7cOWufGAusXr3a2bp1a0teW40aNXL+9NNPzoyMjFvmKFeunMvHnTJlivVPjIdas2aN4d9DVFSU3bHdMm3aNLded0899ZRlmaz4bDLbqVOnnMOHD3eGhIRYfv74px8/Pz9nq1atnN98840zOjo6S4/Fjvzu/GTnddDVq1ed7777rjM0NNTSx+RwOJzNmjVzzp4926XP8OzSr18/U38vKSkpzmnTpjkbNmxoyvP23+enqKgo21+brv6MHDnS7d+Jke8NWZnHCrt373b27t3bkmvD//7Jnz+/87HHHnMePnzY7of8F0Yew5o1a255vPT0dOesWbOcYWFhljyP9erVc86fP9/6JyYXcOfzx5XfcU6TnJzs/OWXX5yDBw92VqlSJds/W1u2bOmcM2eOMzU11e6nwjSRkZHOF154wVm6dOlsex4DAwOdHTp0cE6bNs15/fp1t3K78x3Krp/s/K577Ngx51NPPeUsVKiQ5b/DHj16OLdu3Zptj80VZv8N4vLly87333/fWbZsWVOet5z6PR4AAADAH3wEAAAAAAAAwCMkJycbGu/r66v8+fNblMaY5ORkffDBBwoNDdVzzz33t10FrLBnzx49+eSTqlixor788kuX7zicUyQnJ2vEiBGqWrWqvvzySyUmJpo+R2Jioj777DNVq1ZNX3/9tcu7g9jpxIkTeuCBB9S6dWutXr3akjm2bdum7t27q3HjxtnyWkbu0rt3b1WrVs1w3YwZMxQbG2t+IA8XHR2tZ555RhUrVtR7772nixcv2pIjPT1da9as0dNPP61SpUqpdevWmjZtmi1ZcpPY2FgNHz5c5cqV05tvvqmTJ09aOp/T6dSGDRv00EMPqWbNmpoxY0aOOLcZsWLFCt1xxx3q27fv33adQe62c+dOderUSXXr1tUPP/xgybXhf4uPj9eUKVNUq1Yt9ejRI1deE23btk1hYWHq1auX9uzZY8kcu3btUrdu3dS2bVtFRkZaMgdyvpSUFM2fP1+9e/dW8eLF1bFjR3355Zf/uEOO1dauXauePXuqcuXKOf48un37dj344IOqXLmyPv30U5d2tjFLcnKyli5dqr59+6pkyZJ6/PHHXdphEP8uIiJCjzzyiKpVq6bx48db/t0pOTlZc+fO1V133aW2bdve2PExt8jMzNRXX32lSpUq6fXXX9fvv/9udyQAAAAAHoDmIgAAAAAAAMBDGF0YUbBgQWuCGLR69Wrdcccdeu2112xZFH7mzBkNGTJE9erV07Zt27J9fits2rRJtWvX1nvvvZctTVNxcXF69tln1a5dO49ubvj+++9Vp04dLVy4MFvm2759u+rWrasxY8bk6EV1yF6+vr4aNWqU4bqEhATNnTvX/EAebMqUKapSpYq++eYbpaen2x3nhoyMDK1Zs0bvvfee3VFytLlz56p69ep6//33FRcXl+3zHzlyRI8++qhatmypo0ePZvv8ZouNjdVDDz2ke++915bF5rBPfHy8hg4dqkaNGumXX37J9vkzMzM1b948hYWFacSIEYZviOCJUlJS9Nxzz6lJkyY6cOBAtsy5cuVK3XHHHZo3b162zIec4ejRoxo0aJBuu+02de/eXbNmzVJ8fLzdsSRJp06d0qOPPqr69etn2/vELOfOnVOfPn3UqFEj/fTTT8rIyLA1z/Xr1zV58mTdeeedXF+6ITU1Ve+8845q166tH374wZbf58qVK9W0aVM9+eSTHv03E1cdPHhQDRo00ODBg3PF4wEAAABgHpqLAAAAAAAAAA8RFRVlaPxtt91mURLXpKamatCgQWrTpo2OHz9uaxZJOnDggJo0aaJXX33V9sVDWTF58mS1atVKx44dy/a5f/vtN9111106depUts99M6mpqerXr5/69++vhISEbJ/7jTfeUK9evZSSkpKtcyPn6tmzp8qVK2e47ueff7YgjedJSkpSz549NWDAAFuaTmCta9eu6YEHHlDPnj114cIFu+No/fr1qlOnjj777DO7o7gtIiJCjRo10pw5c+yOgmy2adMm1axZU1988YUyMzNtzZKWlqb33ntPtWvX1t69e23NkhXR0dFq1aqVPv/882x/ThMTE9WzZ0/95z//ydZ54bnmzp2r8ePH6+rVq3ZH+Ve7d+9Ww4YN9eWXX9odxSXjxo1TlSpVNHPmTLuj/CO7dunMqcLDw1W3bl2NHDnS9u/jTqdTEydOVPXq1bVq1Spbs2TFzz//rCZNmmj37t12RwEAAADggWguAgAAAAAAADzEzp07DY2vX7++RUlu7cKFC2rZsqXGjx9vW4Z/kpmZqQ8//FAdOnTw6AVa/8TpdOqll17S448/ni27Ff2bo0eP6p577vGIBeHSH7u5dOzYUdOmTbM1x+zZs9WuXTsaIeASh8Ohfv36Ga5buXKlkpKSLEjkOa5cuaJWrVp53S5N3uLPJpjs2mHOVSkpKXrhhRfUt2/fHLfryvr169WoUSN2K/JCkyZNUuvWrXX69Gm7o/zFsWPHdPfdd+fIz/GDBw+qYcOG2rJli20ZnE6nXn/9dX3yySe2ZQCMSk5O1pAhQ/T000/b3uj4b65evaouXbpo2LBh2X5DClhjyZIluuuuu3To0CG7o/zFhQsX1K5dO33++ed2RzFs3Lhx6tq1q8fskAYAAADA89BcBAAAAAAAAHiA9PR0bdiwwVBNw4YNLUpzcxEREWrQoIGti/Ju5bffflOjRo105swZu6O47IUXXvCYRYbHjx9X+/btbV+AHR8fr3vuuUcrV660Ncef1q5dq549eyo9Pd3uKMgB+vfvL4fDYagmKSkpR98F+1YSExPVqVMnbdu2ze4osMCWLVvUsGFDHT161O4o/2r69Olq1aqVrl27ZncUl+zbt0+dO3dWbGys3VGQzV599VU98cQTSk1NtTvKP/pzB54PPvjA7iguO3bsmNq0aaPff//d7iiSpJdeekk//vij3TEAQ7799lv16tXL43YKPnz4sMLCwrR48WK7o8AkX331lbp06eKxN/dIT0/Xc889p2effVZOp9PuOC6ZMmWKhg0b5rENggAAAAA8A81FAAAAAAAAgAdYvny5rly5YqjGjuaiyMhItW7dOkc07Rw7dkytW7fW+fPn7Y5yS++8847Gjh1rd4y/2Lt3r1588UXb5k9PT1ePHj20detW2zL8k19//VVDhw61OwZygPLly6tJkyaG63755RcL0niGgQMHenRjKty3Y8cOtWvXLkc07WzdulXt27f3+Du2nzx5Uu3bt/fYRbWwzvDhw/Xhhx/aHcMlr732mj7++GO7Y9zS6dOndc899+jixYt2R/mLp556SidOnLA7BmDInDlz9Pzzz9sd44adO3eqefPmOnXqlN1RYJLx48dr8ODBOaIJ5uuvv84Rfx9YunSpnnzySbtjAAAAAMgB/OwOAAAAAAAAAECGFxBWqFBB9erVsyjNPzt37pxatWqls2fPZvlYfn5+qlSpkqpXr66QkBDlz59fDodDcXFxunjxosLDw3X8+PEs7xBz7NgxtWrVSps3b1aRIkWynNsK06dP18iRIw3V+Pv7q0qVKipfvrxKlSql4OBg+fv7KzExUVeuXFFUVJT279+f5YXTX3/9tbp27aq2bdtm6TjueOaZZ/Trr79m+Th+fn6qXLmyqlWrppCQEBUoUEBOp1NxcXGKjo5WeHi4TpyxX3r2AABb5UlEQVQ4Yeju2998843q1aungQMHZjkfcre2bdtq06ZNhmpy664+M2bMMG2HhpCQEIWGhqp06dIqXLiwChYsqDx58sjPz0/JyclKSUlRfHy8Ll68qIsXLyoqKkpXr141ZW783cGDB3XfffeZ0gQTEBCgqlWrqlq1aipatKjy58+vjIwMxcXF6fz58woPD1dUVFSWF5tu2bJFHTp00MqVKxUQEJDl3GZLT0/Xgw8+aLhBOjAwUJUrV1bFihVVokSJG9cH169fV3x8vE6ePKlDhw7p8uXLFiVHVo0ZM0bvv/++KccqVqyYqlevrooVK6pAgQLKmzevEhMTFRcXpxMnTujw4cOKiYnJ8jwvv/yy8ubNq2eeecaE1OZLTExUhw4dDO9YVLJkSVWuXFmhoaEqWLCggoODlZGRoevXr+v06dOKiIjQsWPHspQtLi5O/fr108aNG7N0HHivokWL6vbbb1eJEiVUsmRJBQcHKzAwUAEBAUpNTVVKSoouX76s6OhonThxwrSdu7744gvVqlXL9maFTZs2md4wXLx4cVWoUEHly5e/8d4PCAhQcnKykpKSdPHiRZ07d06nTp3KETcyyWlmzJihp59+2pRjFSxYUNWrV1flypVVsGBB5cuXT0lJSTeuicLDw035HX755ZcKCgry2MbgU6dOqVevXob/vlaoUCFVqVJFFSpUUJEiRZQ3b175+PgoLi5OcXFxioiIUHh4uBISEixKDgAAAMAONBcBAAAAAAAANps1a5Y2bNhgqGbgwIFyOBwWJfq7tLQ09ejRI0uLkQIDA9WzZ09169ZNbdq0Ub58+W46Pj4+XitXrtRPP/2kuXPnKjU11a15jx49qkceeUS//PKLfHw8azP3I0eOuLxwJjQ0VD179lSnTp3UoEEDBQYG3nR8RkaGdu7cqdmzZ2vq1KluL6x//vnntW/fPvn6+rpV744pU6Zo4sSJbtfnyZNH3bt3V48ePdS2bVvlz5//puNjY2P122+/afbs2Vq0aJFLjUYvvvii2rVr53ZGeIe2bdtq1KhRhmoOHjyolJQUj2x4cFdCQoJeeuklt+srVaqkrl27qlWrVmrYsKGKFStm+BgxMTE6cuSIdu7cqZ07d2r9+vWmLbD1ZteuXdMDDzyQpeatAgUK6NFHH9X999+vFi1a3PK1HxMTo19//VWzZ8/WkiVL3G402rhxo4YMGaIJEya4VW+lMWPGaNeuXS6NrVChgnr37q127dqpQYMG8vf3v2VNVFSUFi9erNmzZ7ObmAdZsmSJ3nzzzSwdo2bNmurfv7/at2+vmjVr3nL8wYMHtXTpUn333Xc6evSo2/M+99xzqlWrlpo3b+72MawyZMgQHTx48Jbj8uTJo7Zt26pnz55q0aKFQkNDb1lz6dIlLVmyRFOnTtX69evdyrdp0yb9+OOPevjhh92qh/coX768GjdurMaNG6tOnTqqXr264Wui+Ph4bdu2TWvXrtX8+fMVHh7udp5hw4apdevWqlSpktvHyIqIiAjdf//9WW4sKlSokB544AG1bdtWTZs21e233+5ybUxMjPbv369NmzZpw4YN2rhxoxITE7OUx5vt2rVLTzzxhJxOp9vHKFeunAYMGKAOHTqoXr16t/y72YkTJ7Rs2TJNnTrV5Wuvf/LRRx/pzjvvVO/evd0+hhWcTqcGDBjg8k0AGjVqpN69e6t169aqWbPmLZ8/p9OpXbt2adGiRZo5c6aioqLMiA0AAADATk4AAAAAAAAgl2jRooVTkss//fr1szuyMzw83Fm4cGFDuf38/Jznzp3L1pxDhgwxlPG/fwICApyvvfaa8/Lly27PHx0d7Xz++eedfn5+bud48803TXxG/tnIkSNdztOwYUPnHXfccctx9evXdy5YsMCZmZnpdq7Y2Fjnq6++6vT19XXruZswYYKJz9LNHT9+3JkvXz63cvr6+jqfeeYZ5/nz592e//Tp084BAwY4HQ7HLefr1KmTs1y5ci7nmzJlinlPVA6zZs0aw7/PqKgou2NnWVpamrNAgQKGH/uOHTtMzWHks6lFixamzu10Op1jxoxx6z3dvn1757p160zP86ejR486P//8c2ezZs2cPj4+f5u/atWqlsxr5Hpl5MiRlmQwQ2ZmpvP+++9363cryVmgQAHnhx9+6IyPj3c7Q1RUlLNv374ufWb/2893331n4rPyz/r16+dynrp16zrz5Mlzy3ENGzZ0/vLLL1nOtnbtWufWrVsN1eSGc5+nvQ9PnDjhLFSokNuv47CwMOfKlSvdnj8zM9P5yy+/OGvUqOF2hpIlS2bLdxQjmR5//PFbjgkKCnK+8MILzrNnz2Yp17p165w1a9Z067krV66cMy0tzaRnKOeKiooy/NytWbPG7thZ8u677/7rY/P19XW2bdvWOW7cOOfx48ctmX/Hjh3Ohx9+2O3viS1btszS91R3Xb582VmpUiW3P6+kP863c+bMcaakpJiWKzEx0blw4UJnv379nMHBwf8473PPPWfafE6nsc9ET36/xMTEOENDQ93+fVasWNE5b948Z0ZGhtsZNm3a5GzSpInbGfLmzes8cOCAic/KPzNyHdawYcNbjnE4HM4ePXpkOXtaWppz6tSpzkuXLpn0SAEAAADYwbNu0wkAAAAAAAB4kUOHDqlt27aG7/b//PPP67bbbrMo1d/9+uuv+uKLL9yqbdSokQ4dOqT3339fRYsWdTtDSEiIPv30U+3bt0+1a9d26xijR4/2qLvzb9++XQcOHPjX/16wYEF9++232r59u7p27ZqlnaoKFiyo//znP1q/fr2KFy9uuP7TTz/N0t2DXeV0OvXoo4/q+vXrhmurVKminTt36quvvlLJkiXdzlCmTBlNnjxZmzdvVrly5W46dsmSJex8gpvy8/NT3bp1Ddft3r3bgjT2yMzM1Pjx4w3VFCtWTIsWLdLSpUst3QWjSpUqGjJkiNavX68zZ87ogw8+UMWKFS2bL7eZMGGCFi9e7FZtx44ddezYMb388su33MnwZkJDQ/X9999rw4YNKlu2rFvHePbZZz3qLuu7d+9WWlrav/73AgUKaMKECdq2bZs6dOiQ5flatGihRo0aZfk4cN+f1z+xsbGGa/39/TV27Fjt3LlTbdq0cTuDw+FQhw4dtG/fPo0ePdqtHSsvXLigAQMGuJ3BCpMmTbrpf7/vvvt06NAhffLJJypVqlSW5mrevLl27drl1nNw6tQpzZs3L0vzI/eoU6eOPvvsM509e1a//fabhg4datn1Sf369TVr1izt3r1bTZs2NVy/du1aW167jzzyiI4fP+5W7e23364FCxZo165d6tGjh0s7/rkqKChIXbp00dSpU3XhwgV99913bn0X8EbPPvusTp48abjO4XDo9ddf16FDh9S9e/cs7VbdpEkTbdy4URMnTlRQUJDh+sTERPXq1eum13HZbfv27Tf975UqVdL69es1Z84c1apVK0tz+fn5qV+/fm7tMgsAAADAc9BcBAAAAAAAAGQzp9Op7777To0bN9aZM2cM1VasWFFvv/22Rcn+LikpSc8884xbtYMGDdKGDRtMXQhVo0YNbd26Vb169TJc63Q69dRTTyk9Pd20PFapWbOmduzYoaeeeipLTUX/68/FMkYbjI4cOaJff/3VtBz/Zvr06W41gLVv3147duzQnXfeaVqWu+66S7t371arVq1uOi47mq6Qs91xxx2Ga/bu3Wt+EJusWbPGUBNe6dKltWXLFt1///0Wpvq72267Ta+88oqOHTumZcuWqXnz5qZ+/uY20dHReu2119yqfffdd/Xzzz8rJCTEtDx333239uzZo9atWxuuzcq1TnarUqWKdu3apSeeeMLuKDDRxIkTtXnzZsN1JUqU0MaNG/Xcc89laTH1f/Pz89OIESO0cuVKFSpUyHD98uXLNXv2bFOyWMnHx0ejR4/WsmXLVL58edOOGxAQoMmTJ2vo0KGGa8eOHWtaDuQ8Pj4+6tq1q9asWaO9e/dq2LBhKlGiRLbNX7t2ba1bt06jRo0yfP3z7rvvZut3om+//dbt76YDBw7U4cOH1bVrV3ND/YN8+fLpscce065du7RmzRrdd999ls+ZU/3222/68ccfDdfly5dPv/zyi9577z0FBASYksXhcOjxxx/X1q1b3WpcP3jwoD799FNTslitU6dO2rNnj1uNhQAAAAByL5qLAAAAAAAAgGySnp6uBQsWqEGDBho4cKDi4+MN1efJk0eTJ0926w6q7hozZowiIyMN17388sv65ptvlCdPHtMzBQUFacaMGRo4cKDh2gMHDnj8Qo+GDRtq06ZNqly5siXHr1KlihYuXGj4jvQzZsywJM+fEhIS9Prrrxuu69y5sxYuXKgCBQqYnqlIkSL65Zdf1LZtW9OPDe/hTnPRqVOnLEhiDyOLP/38/LRw4UJVqlTJwkQ353A41K5dO61bt07z58+3LYene/HFFw3vsuJwOPTFF1/ojTfesKRx68/P7Pbt2xuuXb58uebMmWN6JjPVqVNHW7ZssfX9AfNdunTJrUa90qVLa/369WrQoIEFqaSWLVtq9erVbu08OmzYMMXFxVmQyhy+vr6aNm2aRowYYVkT6dixY9WxY0dDNdu2bXN7JxbkXD4+Purevbv279+vBQsWqGXLlrZmGTlypKZOnWrou+KBAwe0aNEiC5P9n6ioKL388suG6/z8/PTVV19p0qRJWdox0V0tW7bU8uXLtWHDBss+t3OqlJQUt5q8CxQooF9//dWt6z5X/Nlw504D6jvvvOPWLkzZqV+/flq0aJEt7wcAAAAAno3mIgAAAAAAAMBC586d0/z58zVo0CDdfvvt6tatm3bt2mX4OH5+fpozZ45atGhhQcp/dunSJX322WeG6x577DF9+OGHFiT6Pz4+Ppo4caJbO1v85z//MdzYlV1q1aql3377TQULFrR0niZNmujVV181VPPzzz8rJSXFokTSuHHjdO7cOUM19evX15w5c+Tv729Rqj+a2ebPn+9WgwgguddcZHRXO0+2bt06l8c+9dRTql+/voVpjKlevbrdETzSwYMH9cMPPxiuGzlypAYPHmxBov8TGBio+fPnu7Vw980331RmZqYFqbIuNDRUy5cvV5EiReyOApN9+OGHunr1qqGa/Pnza/ny5apSpYpFqf4QFhamxYsXG77OunDhgsaNG2dRqqybMGGCHnnkEUvncDgcmjx5suH37Ny5cy1KBE/14osvat68eapZs6bdUW7o27ev4Z20Jk6caE2Y//Hyyy/r+vXrhmp8fX01Y8YMj9ilsGnTppZ//uQ0kyZN0okTJwzV+Pn5af78+WrSpIlFqf4QGhqq3377TYULFzZUl5iYqHfffdeiVFnXqVMnTZo0ybRdDwEAAADkLn52BwAAAAAAAADssmfPHr3xxhumHCsjI0Opqam6fv26Ll26pLNnz+r48eO6cuVKlo8dEBCgGTNmqGvXrlkPasCnn36qxMREQzWNGjXSt99+a1Giv3I4HJoxY4YaNWqk8PBwl+uuXr2qL7/80q1dcqxUpEgRLVq0yPLGoj8NHz5ckydPVnR0tEvj4+LitHbtWt13332mZ0lJSdEXX3xhqKZo0aJasGCBAgMDTc/zv/Lly6dFixYpLCxM165ds3w+5C5ly5Y1XHP69GkLktjj8OHDLo8dMmSIhUlgljFjxsjpdBqqeeCBB/TWW29ZlOivAgMDtXDhQtWtW9flc5wkRUREaPbs2erVq5eF6YzLkyeP5s6dq5IlS9odBSaLiYlx67p5+vTpqlWrlgWJ/q5Jkyb6+uuv9fjjjxuqGzdunJ5//nmP2xHhueee04ABA7JlrhIlSuj11183tMvK4sWLPe47iqdr1aqV3RH+YsGCBYa+twcEBFgXJgsGDx6szZs3a9asWS6N//XXXxUdHa0SJUpYlmn79u366aefDNdNmDBBDz30kAWJkFVpaWlu3Zjm448/Vps2bSxI9HeVKlXS7Nmzdd999xm6/p0+fbpGjhzp1ndBK4WGhmrGjBny82O5IAAAAIB/xrcFAAAAAAAAeK39+/dr//79dse4qQYNGmjq1KmqUaNGts577do1ff3114ZqAgMD9f3331u6i8z/yp8/v6ZOnaomTZooIyPD5brPPvtMw4YNU1BQkIXpjPn8889VoUKFbJsvODhYw4YNM7SAcf369ZY0F82YMUMXLlwwVDN27FiVKVPG9Cz/pnz58vroo4/05JNPZtucyB1KlCghHx8fQzuiXL16VYmJicqbN6+Fyax34cIFl+8uHxoaqqpVq1qcCFl1/PhxwztrhISEaMKECXI4HBal+rtSpUrp66+/Vvfu3Q3Vvffeex7XXPTWW2951I5eMM/nn39ueAeOxx57TF26dLEo0T8bOHCgFi1apJ9//tnlmpiYGI0fP14vvviihcmMqVGjhuW7q/6vZ599Vu+9957Lu1Pt2rUrV5z/kTt8/vnnWrZsmWJjY285NiMjQ7Nnz9bQoUMty+NO493TTz+dbQ2FMG7GjBn6/fffDdW0bt3a0tfZP2nbtq0GDx5s6IYoaWlp+uijjwzfRMVq06ZNy7Yb2gAAAADImdjjFAAAAAAAAPBApUuX1scff6wtW7Zke2ORJP3444+Ki4szVPPWW2/ZsjC8YcOGeu655wzVXLp0SQsWLLAokXFt27bVI488ku3zDhgwQHny5HF5/MaNGy3J8dVXXxka36ZNG/Xp08eSLDfzxBNPqGnTptk+L3I2X19fFS9e3HDdmTNnLEiTvS5duuTy2Jo1a1qYBGaZPHmyoWZe6Y9m0GLFilmU6N9169ZN3bp1M1Rz8OBBbd682aJExoWGhhra9QQ5R2ZmpiZPnmyoJiQkRJ999plFiW7u22+/NbwL0YQJEyxK454JEyZk600QJCkoKEh9+/Z1eXxaWpq2bdtmYSLAdcWKFTP0PXvFihWWZdm7d69Wr15tqKZWrVoaO3asNYFgCqPniYCAAE2aNClbG9b/9P777xvehWjatGlKSkqyKJFxDz/8sJo1a2Z3DAAAAAAejuYiAAAAAAAAwEPkyZNHrVu31ty5c3Xy5Em9+OKL8vX1tSXLtGnTDI0vXbq0hg0bZk0YF7zxxhsqVKiQoZrvv//emjBueO+992yZNyQkRM2bN3d5/K5du+R0Ok3NcPToUe3Zs8dQjV3Pl/THoiLAqFKlShmuMdrg6YmM7Mhh9DMc2S8zM1MzZ840VFOvXj09/PDDFiW6tf/85z/y8/MzVONJ1wdvv/22AgIC7I4BC6xatUpnz541VDNixAjbdhsoVaqUXnjhBUM1ERER2rJli0WJjOnYsaPuvvtuW+Z+8MEHDY3fuXOnRUkA4wYNGiQfH9eWFa1bt07p6emW5Pj2228NjXc4HPrmm2+yvaEQrjt27Ji2bt1qqOaZZ55R+fLlLUp0c8HBwRo1apShmri4OC1cuNCSPEb5+vpqzJgxdscAAAAAkAPQXAQAAAAAAADYyNfXV3369NGaNWt07do1rVq1Sg8++KDhhbBmOnHihOG79g8fPlxBQUEWJbq1woULG17wuGrVKp07d86iRK5r27at6tevb9v8HTt2dHlsQkKCTp8+ber8s2bNMjS+Xbt2atiwoakZjGjatKnatGlj2/zImQoUKGC4xpPucu0uIwtM4+PjLUwCM6xdu9bwOeCdd96x5e7yf6pcubKhXUMkac6cOUpOTrYoketuu+02WxuzYK3p06cbGl+6dGkNGjTIojSuefHFFw03ghq9YYFVhg8fbtvcTZo0UeHChV0eHx4ebmEawJiSJUuqRYsWLo2Nj4/X7t27Tc8QHx9vuLn54YcfZsdZD2f0PBgUFGTrZ7kk9e3bV1WqVDFU4ynnwa5du6pChQp2xwAAAACQA9BcBAAAAAAAANgoIyNDM2bMUO/evTV06FCtWLFCGRkZtmZatGiRofEFChRQv379LErjukGDBhm6M3FGRoZ+/vlnCxO55vHHH7d1/saNGxsaf+TIEVPn/+mnnwyNf+aZZ0yd3x1PP/203RGQwwQGBhqu8YTmhqwy0nT6+++/W5gEZjB65/VKlSqpffv21oQxYOjQoYbGx8bGat26dRalcd2AAQPYcSGXcuca9KmnnrL99VCgQAH179/fUI3R7xVWqFGjhpo0aWLb/D4+PoYa482+1gayqlWrVi6P3bdvn+nzL1myxNBumA6Hw/YmFNya0evKXr16qVixYtaEcZGvr6/hv0esWrXK0OvXKnY3KAMAAADIOWguAgAAAAAAADzA+fPnNWnSJN17770qX7683n//fcXGxtqSZcWKFYbG9+nTR8HBwRalcV3x4sX14IMPGqpZuXKlRWlcExwcrC5dutiaISwsTL6+vi6Pj4qKMm3u6OhoHTx40OXxpUqVUocOHUyb311dunRRiRIl7I6BHMSd5qLcsHNR0aJFXR67b98+nT171sI0yCqj1wdPPvmkrbsW/alOnTqGGwvsvj6QpJ49e9odARbZuXOnoet8X19f25vR/2S0wfr8+fM6dOiQRWlc07t3b1vnl2Rol1Izr7UBMzRo0MDlsUa+27lqyZIlhsZ36NBBtWrVMj0HzBMdHa0DBw4YqvGU5pj+/fsbuoFCWlqa7U3rxYsXN9QkCAAAAMC70VwEAAAAAAAAeJjTp09r+PDhN5qMUlJSsm3u1NRUbdiwwVCNJy1+feihhwyNX716tTIzMy1Kc2utWrVSQECAbfNLUkBAgMqWLevy+OjoaNPmXrNmjaHxXbp0MdQIZRU/Pz/df//9dsdADuKtzUVlypSRj49r/xTldDr11VdfWZwI7jp79qzh3TR69OhhURrjjF4f2N1cVL58edWuXdvWDLCO0ddXs2bNdNttt1mUxpgqVaooLCzMUI3d76d27drZOr/0x/PmqkuXLsnpdFqYBjCmYsWKLo81u7koIyNDy5cvN1TjCbsq4+aMnhdCQ0MNNblZqWDBgobPK3afBzt16uQRf0cBAAAAkDPQXAQAAAAAAAB4qNjYWA0fPlx33nmnNm/enC1z7ty5UwkJCS6PL1asmJo2bWphImPatm2rvHnzujz+ypUrhu+YayZPuXtshQoVXB578eJF0+Zdu3atofGe1NBj945TyFn8/f0N16SmplqQJHvlyZNHlStXdnn8xx9/rN27d1uYCO4yesf1sLAwhYaGWhPGDV27djU0ft++fbbtIClJLVq0sG1uWM/o++mBBx6wKIl7jL6fjF7vmalgwYKqW7eubfP/yci1dkZGhmJiYixMAxgTEhLi8thTp06ZOveOHTt05coVl8cXKFBAnTt3NjUDzMd5MHtxXQkAAADACJqLAAAAAAAAAA935MgRtWjRQp988onlc+3du9fQ+NatW3vUHVCDgoIML5zYt2+fRWluzeid361iZMGYmYsdjTQR+Pn5qXnz5qbNnVUtWrTwqNc+PJs7O9C5s9uRJ7rrrrtcHpuWlqa2bdtq+/btFiaCO4xeH7Rt29aaIG4qW7asqlev7vJ4p9Op/fv3W5jo5jypcRvmM3rt6WnvJ6M7Nth5rV2nTh05HA7b5v+TkWttydzrbSCrgoODXR574cIFU+fesWOHofH33HNPrrmGzs1y+nWl0fPg4cOHlZ6eblGaW+O6EgAAAIARNBcBAAAAAADAa/Xr109Op9O0n8zMTCUlJSk2NlaRkZHasmWLZs+erVGjRqlr164qVqyY21nT09P10ksv6cknn1RmZqaJz8JfGd3Fp0mTJhYlcZ/RTHYuHr7jjjtsm/u/FS1a1OWxycnJpszpdDp1+PBhl8fXqVPH0K5UVsuXL5/H/P7g+dx53+SWhZEdO3Y0NP7KlStq3ry53nnnHUM76cFaXB9kr9q1a9s2N6wVHR1taBfIIkWKqFq1ahYmMi4sLExBQUEujz958qTi4+MtTPTvPOVazci1tmTe9bY3WLNmjanf6bP6Y3RHk5zAz8/P5bEJCQmmvt+N7mjZpk0b0+aGNTIzM3Xo0CGXxzscDjVu3NjCRMaFhISoYsWKLo9PTU3VkSNHLEz074KDgw3tngcAAAAArv8VAAAAAAAAAMBNORwOBQYGKjAwUAULFlT58uX/tmPDjh07NGfOHE2ZMsWtO1JPnDhRycnJ+v777y25C7fRxcNGdqTILjll8XBQUFCWGs7MZGSBqDs7sPyTqKgoQ40DDRo0MGVeMzVs2NDwXZfhndxZJGzkfenJOnTooAIFCiguLs7lmpSUFI0cOVJffPGFBg0apIEDByo0NNS6kLil3HJ9MHnyZJfH29lc5GnNJDCP0fdSw4YNPWLnnf+WJ08e1a9fXxs2bHBpvNPp1IEDB2xpOixbtmy2z/lPjJ7TzbreRu52/vx5HTp0SMePH9exY8d0+vRpXb58WZcvX1ZMTIySk5OVkpKi1NRUpaWlZVuuS5cuKX/+/KYca9euXYbGG93FGNkvMjJSiYmJLo+vWrWqChUqZF0gNzVp0kQnTpxwefz+/ftVq1YtCxP9s2rVqnncdQQAAAAAz0ZzEQAAAAAAAJCNGjRooAYNGuidd97R+PHj9fbbbys2NtbQMaZPn67bbrtNH3zwgen5jh8/bmh8jRo1TM+QVUYzGX3MZilVqpQt8/6TgIAAl8eatdgxIiLC0HhPXGjtiZngmdx53+SW5qLg4GANHDhQn332meHay5cva/To0RozZoyaNGmiBx98UJ07dzZ0p3BkXXJyss6ePevy+CJFiqhEiRIWJnJPTrk+CAkJMW1RNjxPbrjWlv7I5WpzkfTH47ajuchTrreNXGtLNBfhn0VFRWnJkiVav369tm3bptOnT9sd6R8lJSWZchyn02noO6O/v7+qVq1qytywTm46Dxph13Ul35sAAAAAGOVjdwAAAAAAAADAGwUFBWnYsGE6evSo7r33XsP1H374oebPn29qpvT0dF26dMnl8aVKlfLIxa8lS5ZUwYIFXR5//vx5C9P8uwIFCtgy7z/x9fV1eWxGRoYpc547d87Q+CpVqpgyr5k8MRM805UrVwzX5JbmIkl67bXXsvSZ53Q6tWnTJj3//POqVKmSqlatqmeffVbz5s1TdHS0iUnxT4x+Xntq46XRBcdGH7dZPLExC+bh/ZS9POV628i1tmTe9TZyvgsXLuj9999XrVq1VKFCBQ0dOlTz5s3z2MYiyb0dO//JxYsXDTXaVatWTX5+3F/Z03EezF5cVwIAAAAwiuYiAAAAAAAAwEYhISFatmyZBg0aZLj28ccfN7Ux5sKFC8rMzHR5fPny5U2b22wVKlRweWxycrJbC/+zKjc1DrjD6Gs3NDTUmiBZ4MnvAXgWdz6rCxUqZH4Qm4SEhJi6215ERIS+/vpr9ejRQyVLllSlSpXUt29fffPNN9q3bx+Lsk1mdDGkp342Fi5cWIULF3Z5PItAYYXc8n4yuhOCXe8nb7/eRs515MgR9erVS7fffruGDx+uQ4cO2R3JZWY1FxltoKpcubIp88JanAezF9eVAAAAAIyiuQgAAAAAAACwmY+Pj77++mv17t3bUN3Vq1f14osvmpbD6OL3kJAQ0+Y2m9FsduxelCdPnmyf05Pkhtdb8eLF7Y6AHCAtLU0xMTGGahwOh0qXLm1RInsMGjRIDz30kCXHPnHihKZPn65nnnlGd955pwoVKqR7771X7777rtatW6e0tDRL5vUWueHz+k9GssXHxyshIcHCNP/ME3eFhHlyy/spJ1xrS1xvI+eJiYnRwIEDVatWLf34449KT0+3O5JhZmU+c+aMofG33XabKfPCWpwHsxfXlQAAAACMorkIAAAAAAAA8AAOh0MTJkxQ1apVDdXNmjVL27dvNyXDtWvXDI331EUekvG7s8bGxloTBP/KyHPu6+urIkWKWBfGTUWLFpWvr6/dMeDhLly4IKfTaaimePHiCggIsCiRfb7//nu1bdvW8nmuX7+uFStW6K233lLLli1VpEgRdenSRZMnTzbc6AWuD7Jbbnzv4//klvdTTngvATnNokWLVLNmTX333Xc5ehdGo9e9/+bq1auGxtNclDPklvNg8eLF5ePj+pI7u86DXFcCAAAAMIrmIgAAAAAAAMBDBAcHa9y4cYbr3nvvPVPmT0pKMjS+YMGCpsxrBaPZkpOTLUqCf2Pk9ZYvXz45HA4L07jHx8dHwcHBdseAhzt58qThmjJlypgfxAMEBARoyZIl6tOnT7bOe/36dS1evFiPP/64SpYsqfbt22vu3LlKTU3N1hw5FdcH2cvf3z/b50T2yS3vp5zwXgJykpEjR6pr166Kjo62O4rHyC2fl/ir3PJ79fX1NfS3ALvOg1xXAgAAADCK5iIAAAAAAADAg9x3331q3LixoZrFixfr999/z/LcRhc7ePIdUI1mY8Fj9jPynOem1xq8z4EDBwzX5NbmIumPBW7Tp0/XxIkTlS9fvmyfPz09XcuXL1fPnj1VpkwZvfvuu4bvjO9tuD7IXp7YTAvz5Jb3U054LwE5gdPp1GOPPaZ33nnH7igex2gTSmBgoEVJYKbcch6UjGWz6zzIdSUAAAAAo2guAgAAAAAAADzMkCFDDI13Op36/vvvszxvSkqKofG5ZZGHxIJHOxh5veWm1xq8jzvNReXLl7cgiWd5/PHHdfToUfXp00c+Pvb8c9WlS5f01ltvqVy5cnrvvfcML2L1FlwfAOYx8n7y8/Oz7fPxVngvAeZ44YUXNHXqVLtjeCSai3Inb72u5DwIAAAAIKfwzL9GAgAAAAAAAF6sU6dO8vf3N1SzaNEii9IA9nM6nXZH+FeenA2ewZ3morCwMAuSeJ5SpUpp+vTpOnjwoPr27Wvb4sH4+HiNGDFCNWrU0Nq1a23JAAAAvMukSZM0duxYU45VuHBhtWzZUgMGDNCYMWP03Xff6ZdfftGOHTt05MgRnTlzRrGxsUpISFBKSooyMzPldDpd/rEDO64AAAAAAJD9/OwOAAAAAAAAAOCv8ufPr8aNG2vdunUu1+zZs0eXL19WsWLF3J7X6J1+U1NT3Z7LakbvhstdjrOfkSaC3PRag3dJTU3Vnj17DNfVq1fPgjSeq3r16vr+++/1ySefaNq0afrhhx+0a9eubM9x8uRJtW7dWm+++aZGjRrFotb/j+sDwDxGXlPp6elyOp0e+VnEewnImhMnTuj55593u75QoULq1KmT2rZtq+bNmys0NNS8cB4iKCjI0Hh2hskZvPW6kvMgAAAAgJyCnYsAAAAAAAAAD1S/fn1D4zMzM7V9+/YszWl0sYMnN1Ww4NHzGXnOc9NrDd5l8+bNSkxMNFQTFBSk6tWrW5TIsxUrVkwvvPCCdu7cqRMnTujzzz9Xx44dlS9fvmzL4HQ69c4776hv377KzMzMtnk9GdcHgHlyy/uJ9xKQNUOHDtX169cN19WuXVuzZs3ShQsXNH36dPXt29fyxiK7di4y+rlBc1HOkFvOgxLNRQAAAAByJ5qLAAAAAAAAAA9Us2ZNwzV79+7N0pxGFzvExcVlaT4rXbt2zdB4o3dFRtYZec6vX79u26K2m8nMzFRCQoLdMeDBVqxYYbimTp068vX1tSBNzlKhQgUNGTJES5YsUWxsrHbt2qXPP/9cDz74oEqWLGn5/DNmzNAzzzxj+Tw5AdcHgHlyy/uJ9xLgvs2bN2vp0qWGaoKDg/XNN99o7969evjhhw3tAptVdjXtGP3cMPq5BHvklvNgRkaGob8FcB4EAAAAkFP42R0AAAAAAAAAwN+VKVPGcM3x48ezNGehQoUMjY+Ojs7SfFa6ePGiofEFCxa0KAn+TeHChV0em5GRoStXrqho0aIWJjIuJiaGnU1wU7/99pvhmiZNmliQJGfz9fVV3bp1VbduXQ0ZMkSSFBERoY0bN2rTpk3asmWLwsPDTZ93/PjxatiwoQYMGGD6sXMSrg8A87jzfgoJCbEmTBbwXgLc98EHHxgaX7x4cS1btkz16tWzKNHNJSUl2TKv0e9+58+ftygJzJRbrisvX75s6G8BnAcBAAAA5BTsXAQAAAAAAAB4oOLFixuuOXPmTJbmvO222wyNN7qoMDsZzVaqVCmLkuDf5IbX26VLl+yOAA929OhR7dy503Bdp06dLEiT+1SpUkUDBgzQ5MmTdfjwYUVHR2v27Nl64okndPvtt5s2z/PPP68LFy6YdrycKDd8Xv/JSLYCBQooODjYwjTwRrnl/cS1NuCeixcvGtq1yN/fX4sWLbKtsUiyb0cgozdcobkoZ+A8CAAAAACejeYiAAAAAAAAwAMFBQUZrrl8+XKW5ixZsqR8fFz/k2FUVFSW5rNSZGSky2ODgoIM7aIDc5QsWdLQ+JMnT1oTJAs8+T0A+02dOtVwTaFChdSsWTPzw3iBkJAQ9ezZUxMmTNDvv/+uffv2aeTIkapcuXKWjhsXF6e33nrLpJQ5k9HFkJ762Xjt2jVduXLF5fEsAoUVcsv7yci1tsT7CfjTnDlzlJ6e7vL44cOHq3HjxhYmurWzZ8/aMq/RZvGs7uSM7MF5EAAAAAA8G81FAAAAAAAAgAfy8/MzXJOUlJSlOX19fVWiRAmXx589e1bXr1/P0pxWiI6OVmxsrMvjjd45F+YwurgmIiLCoiTuO3r0qN0R4KEyMjI0bdo0w3Xt2rVz6/Mff1e7dm2NGjVKERERWr9+vbp3726ogfa/TZs2TdHR0SYnzDmMfl576mfjkSNHDI1nESisULp0aUPjeT8Bucvq1atdHlu0aFG98sorFqZxTVZ3SHZX8eLFFRgY6PL4I0eOGGrcgj04DwIAAACAZ6O5CAAAAAAAAPBA7jQKpaWlZXneihUrGhpvdEFFdggPDzc0vlKlShYlwc1UrVrV0HhPfK15YiZ4hpkzZ+rcuXOG6zp37mxBGjRr1kzz5s3T7t273br7f0pKin788UcLkuUMAQEBKlOmjMvjL1++nOXdFK3A9QE8gdFrbaOv2+zC+wkwzul0asOGDS6P79+/v1s7Gpvt0KFDts1dvXp1l8empKR4bCMK/g/nQQAAAADwbDQXAQAAAAAAAB4oLi7OcE3evHmzPG/t2rUNjd+6dWuW5zTbli1bDI03+phhjtDQUAUHB7s8fvv27RamcY8nZoL90tPT9e677xquK1KkiB544AELEuFPderU0YYNG9S7d2/DtQsWLLAgUc7B9QFgDqOvq23btlmUxH3p6enauXOny+MdDofuuOMOCxMBOcO5c+cMNd96StP53r17bZu7Xr16hsavX7/eoiQwS4UKFZQvXz6Xx4eHh7v19zGrcV0JAAAAILeiuQgAAAAAAADwQGfOnDFcY6RR498YXfi3adOmLM9pNqOZ6tSpY1ES3IzD4VCNGjVcHr9//34lJiZamMiY69ev6+DBg3bHgAeaNm2ajh8/brhu4MCBHnF3+tzO19dX06ZNU7t27QzVbdu2zZQdAnMqrg8AcxQvXlwlSpRwefzly5c9bieOvXv3KiEhweXxRheSA7nViRMnXB7r4+OjRo0aWZjGNU6n09Ymx7p16xoav2rVKouSwCwOh0M1a9Z0eXxmZqbhRh6rXb58WRERES6PDwgIMLxzMwAAAADYheYiAAAAAAAAwANFRkYarilUqFCW573zzjsNjV+9erUyMzOzPK9ZUlJSDN+t2OhjhnmM3Ik6PT1d69atszCNMWvXrlVGRobdMeBhLl26pNdee81wnY+Pj5555hkLEuGf+Pr66uuvv1ZgYKDLNcnJyTp06JAp8zscDlOOk52MnitXrFhhTRA3nT17VocPH3Z5vI+PD3eYv4mc+Br2JDn9/fTbb78ZGs+1NvCHkydPujy2bNmyhq5TrLJ7925dunTJtvmNNlitXLlSKSkpFqWBWbztPFirVi35+flZlAYAAAAAzEVzEQAAAAAAAOCBdu7cabimQoUKWZ63fv36hu4sfvHiRW3evDnL85pl5cqVio+Pd3l88eLFDd01F+Zq2bKlofGLFy+2JogbFi1aZHcEeKBBgwa5tQCzU6dOCg0NNT8Q/lX58uXVo0cPQzVRUVGmzO3r6+vy2PT0dFPmzCqjn9e7du1yaxdGqyxcuFBOp9Pl8WFhYSpQoICFiXK2nPga9iRG308LFy60JIe7FixYYGi80ccL5FbXrl1zeWyxYsUsTOK6JUuW2Dp/WFiYod3erl27pp9//tnCRJ4nJ56TjZ4XPO27N+dBAAAAALkZzUUAAAAAAACAh3E6ndq0aZPhukqVKmV5bj8/P7Vo0cJQzdy5c7M8r1nmzJljaHzr1q25+76N3FlU5Am7BaWnp3vdojXc2pQpUzR//nzDdT4+Pho1apT5gXBL999/v6Hx586dM2XegIAAl8empaWZMmdWlSxZ0nAzbk6+PrjnnnssSpI75MTXsCcx+vpat26drTuH/LfIyEjDN0Hg/QT8ITEx0eWxnrBrkdPp1LRp02zN4HA41KFDB0M133//vUVpPFNOPCe3adPG0N9hjh8/rj179liYyHXx8fFatmyZoRrOgwAAAAByEpqLAAAAAAAAAA+zfft2XbhwwXDdHXfcYcr8bdu2NTR+2rRpSkpKMmXurIiJiWHxcA5TokQJ1apVy+Xx58+f1y+//GJhItcsWrRI0dHRdseAB1m9erUGDRrkVu1jjz2msLAwkxPBFXXq1DE0/vr166bMa2QRaFxcnClzmsHo9cGECRMsSmLMoUOHtH79ekM1XB/cXE59DXuKunXrqkiRIi6PT09P16RJkyxM5LpvvvnG0PgyZcqoWrVqFqUBcpbU1FSXx8bGxloXxEWrVq1SZGSk3THUqVMnQ+N/+eUXHT582KI0nicnnpOLFy9u+Dr822+/tSiNMdOmTVNCQoLL4/39/dW8eXMLEwEAAACAuWguAgAAAAAAADyMO4sH8+TJoyZNmpgyf5cuXQzdRTY2NlYzZswwZe6smDhxopKTk10e7+fnp86dO1uYCK7o3r27ofFGF7Va4euvv7Y7AjzI/v371a1bN0MLRv+UP39+jRkzxoJUcEWJEiUMjTfrbu+FChVyeeyVK1dMmdMMDzzwgKHxR44c0YoVKyxK47ovvvjC0PgiRYqwCPQWcupr2FP4+PioS5cuhmrGjx+v9PR0ixK5JiEhQVOmTDFU07VrV2vCADmQkd2IPOFGBqNHj7Y7giSpQ4cOhhoynU6nV11f59RzstHrypkzZ+rq1asWpXFNZmam4b8F3HvvvcqbN69FiQAAAADAfDQXAQAAAAAAAB7k/PnzmjlzpuG6hg0bmrZgITQ0VM2aNTNUM2bMGLcW1pslLi5OH3/8saGa++67z/DCcpjv4YcfNjR++fLl2r59u0Vpbm3Dhg1avXq1bfPDs6xdu1YtWrTQtWvX3Kp/6623+ByykZFFvpKUL18+U+YNCQlxeeyZM2dMmdMMzZo1U2hoqKGakSNHWhPGRVFRUfruu+8M1fTq1Uv+/v4WJcodcupr2JM8+uijhsafOnVKkydPtiiNa8aOHauYmBhDNf369bMoDZDzGLmOiImJMW3HRHesWrVK69ats23+/xYYGGj4s2TWrFnavHmzRYk8S049J/fp08fQTW0SEhL04YcfWpjo1mbNmmV4VyzOgwAAAAByGpqLAAAAAAAAAA/y6quvKikpyXDdgw8+aGqOvn37Ghp/6tQpffXVV6ZmMOI///mP4cWORh8jrFGtWjWFhYUZqhk+fLhFaTx7bniW6dOn67777lNsbKxb9W3bttULL7xgbigYcvHiRUPjCxYsaMq8RhrKIiIiTJnTDA6HQ3369DFUs2XLFi1YsMCiRLc2YsQIwztOcX1wazn1NexJWrZsqbJlyxqqeeedd2xrNrh48aI++ugjQzU1atRQ/fr1LUoE5DylSpVyeWxmZqZtu/+lpKTomWeesWXuf/Pkk08aGu90OvX000+btuukJ8up5+QKFSro7rvvNlTz+eef29YglZycrLfeestQTeHChdktGwAAAECOQ3MRAAAAAAAA4CHmzp2r6dOnG67z8/NT7969Tc3Ss2dPFS5c2FDNm2++qaioKFNzuGLv3r2GFzuWLFlSXbp0sSgRjHr22WcNjV+1apVmzJhhUZp/N3HiRG3cuDHb54VniYmJ0SOPPKK+ffu6vWNbqVKlNHPmTPn48M80dtq9e7eh8RUrVjRlXiPHuXz5sn7//XdT5jXDwIED5efnZ6hm8ODBbjfhZcWSJUs0a9YsQzVhYWFq2LChRYlyDyOv4YMHD9q6u6WncjgceuKJJwzVnDt3Tq+++qpFiW7u2WefNbxL31NPPWVRGiBnKl++vKHxS5YssSjJzb3xxhse1YQi/XFDivvvv99Qzf79+72ikd/IOXnXrl0WJjHO6HkiMTHRtnPLG2+8ocjISEM1/fv3V0BAgEWJAAAAAMAa/KsVAAAAAAAA4AE2bdqkAQMGuFXbvXt3hYSEmJonf/78GjJkiKGahIQE9e/fX+np6aZmuZnExET17dvX8JwvvfQSizw8SJ8+fQzdcVmShg0bprNnz1qU6O9Onjypl19+Odvmg+fJzMzUDz/8oJo1a+qHH35w+zi+vr768ccfVbx4cRPTwR0//fSTofHVq1c3Zd6qVasaGr9q1SpT5jVDaGio4Ybmc+fOZfsOCNHR0W4tPh0xYoQFaXIfI6/h5ORkbdq0ycI0OdfgwYNVoEABQzXffPONfv31V4sS/bPp06dr3rx5hmpCQkIMN08BuV3VqlXl7+/v8vgff/xR586dszDR3y1YsEAff/xxts7pqjFjxhhuzP/yyy/1/fffW5TIMxg5J0dFRdlyQ5h/06tXL1WoUMFQzdKlSzVhwgSLEv2ztWvX6rPPPjNUExAQoJdeesmiRAAAAABgHZqLAAAAAAAAAJstXrxY7du31/Xr1w3X+vj4aOTIkRakkp577jnly5fPUM369ev13HPPWZLnfzmdTvXr108HDhwwVFe0aFENGjTIolRwR0BAgOFmtpiYGHXr1k0pKSkWpfo/CQkJ6tKli+E79iN3cDqdmjNnjmrXrq1HHnlE0dHRbh/Lx8dH3333nZo1a2ZiQs/11FNP6fvvv8/WplNXRUVF6ccff3R5fLVq1UxrCKtYsaKCg4NdHj916lRT5jXL66+/bnhx76xZswzvMuiu1NRUdevWzfCC7OrVq6tbt24Wpcpd6tSpY2i8p72GPUWhQoUM797odDr18MMPZ9uuIjt27NCTTz5puO75559XUFCQBYmAnCsgIEBhYWEuj09MTMzWpteNGzeqT58+2TafUbVq1XJrx+aBAwcabpDMSXLyOdnX19etHfmGDBmSbY3LJ0+eVI8ePZSZmWmorn///ipVqpRFqQAAAADAOjQXAQAAAAAAADaJjY3V4MGD1bVrV8XHx7t1jH79+pm2k8L/KlKkiFs7tXz99dd6++23LUj0f5xOp5599lm3Fgm98cYbhhZ1I3sMGzZMt912m6Ga7du366GHHlJqaqpFqaSkpCR169ZN+/fvt2wOeKbff/9dY8aMUdWqVfXQQw/p0KFDWTqew+HQ5MmT1bdvX5MSer6jR4+qf//+qlq1qsaPH6/ExES7I0mS0tLS9Nhjjxn67Gjfvr1p8/v5+alRo0Yuj1+/fr2WLFli2vxZVa1aNfXr189w3WuvvaYpU6ZYkOj/pKamqkePHtq8ebPh2vfee08Oh8OCVLlPyZIlDe008MMPP2jv3r3WBcrBXnrpJRUrVsxQTWxsrNq1a6eTJ09aE+r/279/vzp16qTk5GRDdWXKlNHgwYMtSgXkbK1btzY0ftq0adnSGLNx40Z17NjRY67V/s0HH3ygwoULG6rJyMhQ7969NXHiRItSuW7Tpk2aOXOmqcesW7euoWbOcePG6cyZM6ZmyIo/vysYkZqaqi5dumj37t0WpfrD6dOnde+99+ry5cuG6vLly6c33njDolQAAAAAYC2aiwAAAAAAAIBsduHCBY0aNUqVKlXSV199JafT6dZxSpUqpU8++cTkdH/16quvqkqVKobrRo0apRdeeEEZGRmmZ0pJSVH//v31zTffGK4NCwszvEMOskdwcLDee+89w3WLFi3SAw884HaD3s1cvXpVnTp10m+//Wb6seF5MjMztXv3bn344Ydq1aqVQkND9cYbb+jYsWNZPrbD4dDEiRPVv3//rAfNgSIjIzVo0CCVLl1aL730kk6cOGFblrS0ND366KNat26doTqz7+TfqlUrw/MvW7bM1AxZ8eGHH6po0aKGajIzMzVw4EB9+umnlmSKjY3V/fffr8WLFxuuvf/++9W1a1fzQ+ViRl7D6enp6tSpk3bs2GFhopypSJEi+vDDDw3XRUVFqXnz5pY1P2/cuFGtW7fWxYsXDdd+/vnnhnc/BbxFjx49DI3PzMxUnz59tHr1aosS/bGTTZs2bRQXF2fZHGYpVaqUxo0bZ7guLS1NTz75pAYNGqSEhAQLkt3chg0b1KFDBzVt2tT0c6G/v7+aNGni8vhr166pXbt2pnzHMYO/v79bf9uJiYlR69attWbNGgtSSeHh4WrRooVbz9M777yjMmXKWJAKAAAAAKxHcxEAAAAAAABgsZSUFO3YsUOffPKJ2rRpozJlyujtt99WTEyM28f08fHR5MmTDd+116iAgAB9/fXXbtV+9tlnatOmjU6fPm1anoiICDVp0kTTpk0zXOvj46Px48fL19fXtDwwV79+/Qzt5vGnpUuXqkGDBtq3b59pWbZt26a6deveciEfu1zkTCkpKTp48KB+/PFHvfHGG+rSpYtCQkJUr149vfrqq1q7dq3bjZ//q1ChQlq8eLEGDhxoyvFystjYWH3yySeqXLmymjVrpokTJyo2Njbb5o+IiFCLFi00e/ZsQ3VNmjRR3bp1Tc3SvXt3Q+OvXbumDh06qH379po3b56uXbtmah6jihUr5lZDhNPp1IsvvqgePXroypUrpuXZvn276tWrp19//dVwbXBwsL744gvTsngLo6/hs2fP6q677tJDDz2kpUuXevzuGNmpf//+at68ueG606dP66677tLEiRNNO2dlZGToo48+UqtWrdz6rtKpUyc98MADpmQBcqOwsDDVrl3bUE1KSoo6deqkr776ytQsFy9eVI8ePW65m6Ofn5+p82bVo48+6nZD8Pjx41WzZk39/PPP5ob6B4mJiZo+fboaNmyo5s2bW9okbvScfOjQId1xxx164okntHbtWkt3AnZFq1at9Oijjxquu3btmtq2bavRo0crPT3dtDzff/+9GjRooKioKMO1d955p4YOHWpaFgAAAADIbp71VwAAAAAAAAAgG+3Zs0dvvPGGacdzOp1KTU1VcnKyrly5oosXL+rkyZOKiooyfQefTz75RO3atTP1mP+mTZs2evHFF93aJWndunWqVq2aXn75ZQ0bNkyFChVyK8Ply5f1wQcf6PPPP3d74cvbb7+tBg0auFWL7OFwODR9+nSFhYUZvqP00aNHVa9ePT399NMaMWKESpYs6VaGM2fOaNSoUZoyZYoyMzNvOrZjx446ePCgTp065dZcuLlPPvlEBQsWdKs2IyNDKSkpSk5OVkpKipKSknTx4kWdP39eFy5cMLWp4WbuvPNO/fTTT6pQoUK2zJdTOJ1Obdy4URs3btSzzz6rFi1aqHPnzurYsaMqVqxo+nyRkZEaPXq0pk+f7tbCwzFjxpieqXr16goLC9OePXsM1S1fvlzLly+Xw+FQ5cqVValSJZUsWVKFChVSQECAfHxcv69g3bp11a1bN6PRbxgwYICWLVumefPmGa6dN2+eVq9erbfeektPPvmkgoKC3Mrw+++/6+2339aUKVPcbq749ttvVbZsWbdqvdk999yjkJAQQzvbZGZmas6cOZozZ478/PxUtWpVVaxYUSEhISpYsKD8/f0NvYZbt26t1q1buxPfozgcDk2bNk316tUz3NCTlJSkJ598UpMnT9aHH37oVpPSn3799Ve9/PLLOnDggFv1pUuX1qRJk9yeH/AWL7zwguHdLJOSkjR48GAtXbpU77//vuEGpf8WExOjsWPHaty4cS7t/jpy5Ei9+eabbs9nhalTp6pJkyY6fPiw4dpTp07p/vvvV/369fXqq6+qS5cuypMnjym5UlJStGrVKs2fP19z587Ntt2gHnzwQQ0bNszQ30pSUlI0adIkTZo0SQEBAapevbrKly+vkJAQ5c+fX/7+/oZupNG9e3eFhYW5E1/SH7vebd682fAOpxkZGXrzzTf1ww8/6IMPPlCnTp3cvgHI1q1b9corr2jDhg1u1efLl08//PADN7QBAAAAkKPRXAQAAAAAAACvtX//fu3fv9/uGIa99NJLGjZsWLbO+Z///Ec7d+7UunXrDNcmJibq7bff1kcffaTevXvrgQceUMuWLZU3b96b1iUkJGj16tWaN2+eZs+erZSUFHfjq3PnzhoxYoTb9cg+lStX1tixY/XEE08Yrs3IyNCXX36pCRMmqEePHurRo4fatGmjfPny3bTu2rVrWrlypX788UctXLjQpeaDggULavz48br77rsN54RrvvzyS7sjuM3hcOipp57Sp59+6nbThLdIS0vTypUrtXLlSj333HMqVaqUmjZtqiZNmuiOO+5QzZo1VaJECUPHTExM1OHDh7V8+XItWbJE27dvd7vxpEePHmrZsqVbtbfy4osvqk+fPm7VOp1ORUREKCIiwu35+/Xrl6XmIkn67rvvdPDgQR05csRw7ZUrVzRs2DC9/fbb6tevn+6//37dfffd8vf3v2nd1atX9dtvv2n27NlavHhxlhq4n332Wbd/B94uT548Gjp0qNuN+unp6Tp06JAOHTrkdgY/P79c0VwkSeXKldPMmTPVoUOHWzY3/5Nt27apRYsWuvPOO9W/f3+1b99eVapUuWVdeHi4li5dqsmTJys8PNyd6JL+eD3MnTvX8Oc14I169+6tDz74wK333NKlS7V06VK1atVKAwcOVPPmzXX77bffsu7ChQtau3at5s2bp59//tnlJpTGjRvr9ddf97jmooIFC+rnn39Wo0aNdPnyZbeOsXPnTvXo0UNFihRRt27ddO+996pJkyYqXbq0y8eIjY3VgQMHtHnzZq1fv17r16/X9evX3cqTFcWLF1ffvn3dbvBMSUnR3r17tXfvXrczVKpUKUvNRYUKFdL8+fN11113KSkpyXB9eHi47r//flWqVEkDBgxQhw4dVLt27Vs2Gp08eVLLli3T1KlTtX37dnfjS5KmTJmi6tWrZ+kYAAAAAGA3mosAAAAAAACAHGTMmDEaPnx4ts/r5+en2bNnq0mTJoqMjHTrGImJiTfujOvv76/KlSurWrVqCgkJUb58+eRwOBQfH6+LFy/qyJEjioiIUFpaWpaz16pVS9OmTXP77rXIfo8//ri2bNmi7777zq361NRUzZw5UzNnzlSePHlUpUqVG6+1/Pnzy+l0Kj4+XhcuXNCRI0d07Ngxw4vTP/30U0MLz+A9GjRooK+++oqd0tx07ty5Gzub/Klw4cIqU6aMSpcurZIlSyo4OFiBgYHy9/dXUlKSEhISdP36dcXExOjo0aP6/fff3W4m+m/lypXTt99+m+Xj/JuHH35Y77//fpaaK+yWP39+LViwQE2bNjW848qfrl69qrFjx2rs2LEKCgpS1apVVbVqVRUtWlT58+dXRkaG4uPjdf78eR05ckTHjx93q/nif7Vq1UqfffZZlo/jzQYPHqwvvvhC0dHRdkfJFe677z598MEHevnll90+xt69ezVs2DANGzZMISEhql69uipUqKACBQooKChISUlJiouLU2RkpA4fPqxLly6Zkv3rr79W48aNTTkWkNvlyZNHX3zxhe655x63j7FmzRqtWbNGknT77bfrjjvuUJEiRVS4cGEFBwcrKSlJ8fHxOnXqlI4dO6bff//d8BwFChTQ9OnTPXYXlgoVKmjJkiW67777dO3aNbePc+XKlRt/p5CkEiVKqEKFCgoNDVWhQoWUN29e+fv739gN9dKlSzp37pxOnjypc+fOmfVwsmz48OGaOXOmW405nqJ27dqaMmWKevfu7fa13vHjxzV8+HANHz5chQsXVvXq1VWpUiUVLFhQwcHBSklJUVxcnE6dOqXw8HCdPXvWlOxvvPGGHnzwQVOOBQAAAAB2orkIAAAAAAAAyAHy58+vb7/9Vr1797YtQ4kSJbR69Wo1b97crcVJ/y01NTXLd6t3RbVq1bRq1SoVKlTI0nlgvm+//Va///67Vq5cmaXjpKWlmf5ae/rppzVgwADTjofcoUSJEnr33Xc1cOBA+fj42B0nV7l69aquXr2qAwcOZNuc+fPn108//aQiRYpYNoevr68mTpyopk2bmtIsY5dq1appxYoVat26tWJjY7N0rKSkpCzfOd8VzZo1088//6w8efJYOk9uV7BgQY0bN04PP/yw3VFyjZdeeknXr1/X22+/neVjXbx4URcvXnRr51Ejxo0bp8cff9zSOYDcpk2bNho8eLApO3WePn1ap0+fNiHV/wkICNDChQtVsWJFU49rtkaNGmnVqlW69957deXKFVOOGR0drejoaG3ZssWU42WX8uXLa+TIkXrttdfsjpIlDz30kBISEvT4449n+WYBV69e1ebNm7V582aT0v2z559/Xu+++66lcwAAAABAduFftwAAAAAAAAAP16hRI+3Zs8fWxqI/lStXTqtXr1bZsmXtjnJL1apV0+rVqxUSEmJ3FLghT548+umnnzxu95d27drpiy++sDsGPEi1atU0YcIEnTp1Sk888QSNRblAcHCwli5dqnr16lk+V+PGjXPF7jlhYWH69ddfVbhwYbuj3FLTpk31yy+/KDg42O4oucJDDz2k559/3u4YucqoUaM0YsQIu2PcksPh0CeffKKhQ4faHQXIkT755BPddddddsf4Gx8fH02fPl2tWrWyO4pL6tWrp7Vr1+r222+3O4rtXn75ZXXv3t3uGFk2YMAAffPNNznie9Vzzz2nTz/91O4YAAAAAGAaz/8mBgAAAAAAAHip2267TZMnT9bmzZs96o7BFStW1I4dO9S0aVO7o/yr9u3ba+vWrbrtttvsjoIsKFCggFatWuUxC9tatWqlOXPmyNfX1+4osJmvr6/atm2rxYsX6/Dhw3riiScUEBBgdyyYoHTp0lq7dm22nuOGDh2qDz/8MEcsoLyZhg0bavv27apRo4bdUf7VY489plWrVil//vx2R8lVaDAx3+jRo/Xdd9957LklX758+umnn/TCCy/YHQXIsfz9/bV06VLdcccddke5ISAgQN9//7169OhhdxRD7rjjDu3evVv33nuv3VFs5ePjoxkzZujBBx+0O0qWPfXUU1qyZIkKFixod5R/5Ofnpy+//FJjx461OwoAAAAAmCpn/ysFAAAAAAAAkAuVK1dOH3/8sSIiIjRgwACPXGwcEhKi1atX69lnn5XD4bA7zg2+vr56/fXXPXoRCozJnz+/li1bpkceecTWHA8//LCWL1/OgnQv5uvrq9atW+vbb7/V+fPn9dtvv6lz584e9RmIrLnnnnu0c+dO1a9fP9vnfvnll7V06VKFhoZm+9xmqlSpkrZu3epxi1oDAwM1btw4fffdd/L397c7Tq7jcDg0btw4TZ8+XcWLF7c7Tq7x2GOPae3atSpXrpzdUf6iatWq2rx5sx544AG7owA5XuHChbVq1So1btzY7igqXry4Vq1apT59+tgdxS3FihXTsmXLNHr0aI9tzMwOgYGBmjNnjj755BPly5fP7jhZ0r59e23bts2jGvAkqVSpUlqxYoWeffZZu6MAAAAAgOk8b1UCAAAAAAAA4IWCgoLUrVs3zZs3TydOnNCLL77o8QtB8uTJoy+//FKrV69W5cqV7Y6jOnXqaOvWrXrvvfc8siEL7gsICNCMGTM0adIk5c2bN1vn9vf31+jRo/XDDz+wIN3LOBwOVa9eXU8++aSmT5+u8+fPa9WqVXrqqadYPO+i6tWr54idvgoXLqzx48drxYoVKlmypG057rvvPh0+fFgfffSRbr/9dttyZFX+/Pk1d+5czZs3zyN2EGzZsqX279/PzjrZoE+fPjp69KjeeOMNFStWzO44ucJdd92lgwcP6rnnnrP9+jZPnjx64403tG/fPo9b6A3kZMWLF9fq1avVv39/2zLcc8892rFjh+6++27bMpjBx8dHI0aM0MGDB9WuXTu74/yNv7+/qlatavk8DodDL7zwgo4cOaKhQ4d6/N+WbqZq1aratWuX3n33XdubxhwOh5566imFh4erZcuWtmYBAAAAAKvwL+wAAAAAAACADXx8fFSnTh0NHjxY8+bN06VLl/TTTz+pe/fuOWIh9n/7c9Huhx9+qBIlSmT7/GXLltWXX35p224TyD4DBw7U3r171blz52yZr2HDhtq9e7dGjBjB7jS5nL+/v2rUqKFu3bppxIgRWrBggS5evKjDhw9r/Pjx6tOnDw1Fbvjmm2904cIFfffdd+ratavH7fyVL18+DR8+XJGRkXryySftjiPpj2bjl156SZGRkVq2bJmefPJJlS1b1u5YbunevbvCw8M1fPhwW3YTrF69umbOnOkxTdDeonDhwnr33Xd1+vRp/fTTT3rkkUdsuT7MTfLly6exY8dq+/bt6tixY7bP7+Pjox49emjv3r0esbgbyI0CAwM1ZcoULVy4UKVLl862eUuWLKmZM2dqxYoVHrdLWlZUqlRJy5Yt09KlS9W8eXO746hMmTJ68803derUKT399NPZNm/p0qU1btw4nT17VtOnT1e3bt1UuHDhbJvfLH82tx44cECPPPKILX8zu/fee7V582Z9++23KlCgQLbPDwAAAADZxc/uAAAAAAAAAEBu4uvrq4CAAAUEBCgwMFBFixZViRIlVKJECZUtW1ZVq1ZV9erVVaNGDY9bZJ0VgYGBevnllzVkyBBNmjRJ48eP18GDBy2ds27dunrmmWfUt29f5cmTx9K54DkqV66sxYsXa/Xq1XrnnXe0bt060+do2LChXn75ZXXr1s32XQJgjI+Pz43PYH9//xv/OygoSMWLF1dISMhffkqVKqUqVaqoQoUKOa6xM6coVqyYHnvsMT322GNKS0vT5s2btWLFCq1Zs0Y7d+5UampqtmeqXbu2nnjiCfXt29djFwf6+fmpXbt2N+66f/bsWW3fvl1HjhzRsWPHdPr0aV26dEkxMTGKi4tTamqqUlNTlZmZaXPyvypYsKDGjBmjV155RV9++aUmT56sqKgoy+ZzOBxq1qyZhgwZou7du9MYaqPAwEB169ZN3bp1kyRFRkZqx44dioiIuPEajomJUUxMjK5fv+6xr2FPUq9ePS1ZskT79u3TRx99pAULFigxMdGy+QoUKKAePXropZdeUrVq1SybB/hToUKFNHLkSEM1oaGh1oSxSZcuXXTvvffq888/12effabo6GhL5qlWrZqGDBmifv36KTg42JI5PEH79u3Vvn17bd++XV988YUWLVqk+Pj4bJm7WLFi6ty5s3r16qU2bdrY+r2yQIEC6tOnj/r06SOn06kjR45o165dioiI0PHjx3X27FldvnxZMTExSkxMVGpqqtLS0jzunFy5cmXNmDFDb7/9tj7++GP9+OOPio2NtWy+wMBA3X///XrppZfUoEEDy+YBAAAAAE/icDqdTrtDAAAAAAAAAMh99u/frx9++EG//vqrDhw4oIyMjCwdz8/PT3feeac6dOig3r17q2rVqiYlRU526NAhjR8/XosXL9apU6fcPk5oaKg6duyohx56SM2aNTMxIYB/k5SUpG3btmn79u3auXOndu/ercjISJn9T1cFChRQo0aNdO+996pr166qVKmSqceHMVu2bNGsWbO0YsUKHT16NMu/74CAADVo0ECdOnVS7969dfvtt5uUFPBsCQkJWrhwoebNm6eNGzfq8uXLWT5miRIl1Lx5c/Xo0UOdO3dWYGCgCUkBuCMtLU0LFizQDz/8oBUrVmS5mbBy5cq677771KVLF7Vp08ZQA+7OnTtdHlu1alWPvZFKcnKyli5dqgULFmjDhg1Z+v74v/LmzatGjRqpRYsWatOmjZo0acKNKiyWmpqqpUuXas6cOVq3bp3OnTuX5WMWLlxYd999t7p3765u3bp57I0IAAAAAMAqNBcBAAAAAAAAsFxcXJw2b96sffv26cSJE4qMjNTp06cVHx+vxMREJSQkSJKCg4MVHBys/Pnzq2zZsqpQoYIqVqyosLAwNW7cOFffVRlZFx4errVr1+rQoUMKDw/XqVOnFBcXp/j4eKWnpytfvnzKly+fChQooHLlyqlmzZqqWbOmGjRooJo1a9odH4CkxMREHTlyREeOHFFkZKR+//13nTlz5sYuPbGxsUpOTlZqaqqcTqf8/f3l7++vvHnzqlixYgoJCdFtt92mypUrq2rVqjfe5yzu9EwxMTHatGmT9u/fr8jISEVGRurs2bO6fv26EhISlJiYKF9fX+XNm1fBwcEqWLCgQkNDb1wf1K9fXw0aNFBAQIDdDwWwldPpVHh4uLZu3aqIiAidOHFCUVFRunz5shISEpSQkKCUlBQFBgbeeD+FhISofPnyqlChgqpVq6bGjRurSpUqdj8UAP8gOTlZW7du1c6dO7Vv3z6dOnVKp0+fVmxsrJKSkpSWlnbjvZ0vXz4VKVLkxrVQ1apV1ahRo1y3y5MZzp8/r82bNys8PFxRUVGKiorSmTNndP36dSUmJioxMVEZGRnKkyePAgIClD9/fhUrVkzFixdX2bJlVb58eVWuXFl16tRRlSpVuN60WWRkpDZv3nzje0RkZKSio6NvXFMmJSXJ39//xt+dihYteuM8WKVKFd11112qVasWO18CAAAA8Go0FwEAAAAAAAAAAAAAAAAAAAAAAABeittmAAAAAAAAAAAAAAAAAAAAAAAAAF6K5iIAAAAAAAAAAAAAAAAAAAAAAADAS9FcBAAAAAAAAAAAAAAAAAAAAAAAAHgpmosAAAAAAAAAAAAAAAAAAAAAAAAAL0VzEQAAAAAAAAAAAAAAAAAAAAAAAOClaC4CAAAAAAAAAAAAAAAAAAAAAAAAvBTNRQAAAAAAAAAAAAAAAAAAAAAAAICXorkIAAAAAAAAAAAAAAAAAAAAAAAA8FI0FwEAAAAAAAAAAAAAAAAAAAAAAABeiuYiAAAAAAAAAAAAAAAAAAAAAAAAwEvRXAQAAAAAAAAAAAAAAAAAAAAAAAB4KZqLAAAAAAAAAAAAAAAAAAAAAAAAAC9FcxEAAAAAAAAAAAAAAAAAAAAAAADgpWguAgAAAAAAAAAAAAAAAAAAAAAAALwUzUUAAAAAAAAAAAAAAAAAAAAAAACAl6K5CAAAAAAAAAAAAAAAAAAAAAAAAPBSNBcBAAAAAAAAAAAAAAAAAAAAAAAAXormIgAAAAAAAAAAAAAAAAAAAAAAAMBL0VwEAAAAAAAAAAAAAAAAAAAAAAAAeCmaiwAAAAAAAAAAAAAAAAAAAAAAAAAvRXMRAAAAAAAAAAAAAAAAAAAAAAAA4KVoLgIAAAAAAAAAAAAAAAAAAAAAAAC8FM1FAAAAAAAAAAAAAAAAAAAAAAAAgJeiuQgAAAAAAAAAAAAAAAAAAAAAAADwUjQXAQAAAAAAAAAAAAAAAAAAAAAAAF6K5iIAAAAAAAAAAAAAAAAAAAAAAADAS9FcBAAAAAAAAAAAAAAAAAAAAAAAAHgpmosAAAAAAAAAAAAAAAAAAAAAAAAAL0VzEQAAAAAAAAAAAAAAAAAAAAAAAOClaC4CAAAAAAAAAAAAAAAAAAAAAAAAvBTNRQAAAAAAAAAAAAAAAAAAAAAAAICXorkIAAAAAAAAAAAAAAAAAAAAAAAA8FI0FwEAAAAAAAAAAAAAAAAAAAAAAABeiuYiAAAAAAAAAAAAAAAAAAAAAAAAwEvRXAQAAAAAAAAAAAAAAAAAAAAAAAB4KZqLAAAAAAAAAAAAAAAAAAAAAAAAAC9FcxEAAAAAAAAAAAAAAAAAAAAAAADgpWguAgAAAAAAAAAAAAAAAAAAAAAAALwUzUUAAAAAAAAAAAAAAAAAAAAAAACAl6K5CAAAAAAAAAAAAAAAAAAAAAAAAPBSNBcBAAAAAAAAAAAAAAAAAAAAAAAAXormIgAAAAAAAAAAAAAAAAAAAAAAAMBL0VwEAAAAAAAAAAAAAAAAAAAAAAAAeCmaiwAAAAAAAAAAAAAAAAAAAAAAAAAvRXMRAAAAAAAAAAAAAAAAAAAAAAAA4KVoLgIAAAAAAAAAAAAAAAAAAAAAAAC8FM1FAAAAAAAAAAAAAAAAAAAAAAAAgJeiuQgAAAAAAAAAAAAAAAAAAAAAAADwUjQXAQAAAAAAAAAAAAAAAAAAAAAAAF6K5iIAAAAAAAAAAAAAAAAAAAAAAADAS9FcBAAAAAAAAAAAAAAAAAAAAAAAAHgpmosAAAAAAAAAAAAAAAAAAAAAAAAAL0VzEQAAAAAAAAAAAAAAAAAAAAAAAOClaC4CAAAAAAAAAAAAAAAAAAAAAAAAvBTNRQAAAAAAAAAAAAAAAAAAAAAAAICXorkIAAAAAAAAAAAAAAAAAAAAAAAA8FI0FwEAAAAAAAAAAAAAAAAAAAAAAABeiuYiAAAAAAAAAAAAAAAAAAAAAAAAwEvRXAQAAAAAAAAAAAAAAAAAAAAAAAB4KZqLAAAAAAAAAAAAAAAAAAAAAAAAAC9FcxEAAAAAAAAAAAAAAAAAAAAAAADgpWguAgAAAAAAAAAAAAAAAAAAAAAAALwUzUUAAAAAAAAAAAAAAAAAAAAAAACAl6K5CAAAAAAAAAAAAAAAAAAAAAAAAPBSNBcBAAAAAAAAAAAAAAAAAAAAAAAAXormIgAAAAAAAAAAAAAAAAAAAAAAAMBL0VwEAAAAAAAAAAAAAAAAAAAAAAAAeCmaiwAAAAAAAAAAAAAAAAAAAAAAAAAvRXMRAAAAAAAAAAAAAAAAAAAAAAAA4KVoLgIAAAAAAAAAAAAAAAAAAAAAAAC8FM1FAAAAAAAAAAAAAAAAAAAAAAAAgJeiuQgAAAAAAAAAAAAAAAAAAAAAAADwUjQXAQAAAAAAAAAAAAAAAAAAAAAAAF6K5iIAAAAAAAAAAAAAAAAAAAAAAADAS9FcBAAAAAAAAAAAAAAAAAAAAAAAAHgpmosAAAAAAAAAAAAAAAAAAAAAAAAAL0VzEQAAAAAAAAAAAAAAAAAAAAAAAOClaC4CAAAAAAAAAAAAAAAAAAAAAAAAvBTNRQAAAAAAAAAAAAAAAAAAAAAAAICXorkIAAAAAAAAAAAAAAAAAAAAAAAA8FI0FwEAAAAAAAAAAAAAAAAAAAAAAABeiuYiAAAAAAAAAAAAAAAAAAAAAAAAwEvRXAQAAAAAAAAAAAAAAAAAAAAAAAB4qf8Htvzh1BY07eMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADRcAAAzlCAYAAAC0REvBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdeZjd890//tcsyWSZpElksySWLJgZSlQiEQbBTW0Jaqe2KGr/qqAuFVWK2mls4ZZbW3UXtdXSiu9EgsYSESGR2JuKkE0n22Qy5/dHv3f7cyPnzJlzziyfx+O6erWdeb3e7+dJ+9eMZ95FqVQqFQAAAAAAAAAAAAAAAEDiFDd3AAAAAAAAAAAAAAAAAKB5KBcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEKVNncAAAAAAAAAAPJr7dq18dJLL8VLL70Ur7/+enzwwQfxySefRG1tbaxatSrKy8ujW7du0adPn9h+++1jhx12iFGjRsUWW2zR3NEBAAAAAMizolQqlWruEAAAAAAAAADk3ssvvxy33357PPbYY7F06dJG7++0005x7LHHxoknnhgdOnTIQ0IAAAAAAJqbchEAAAAAAABAGzNlypS48MIL46WXXsrJeRtttFH89Kc/jVNOOSVKS0tzciYAAAAAAC2DchEAAAAAAABAG/HFF1/Ej3/843jwwQfzcv6OO+4Y999/fwwePDgv5wMAAAAAUHjKRQAAAAAAAABtwPPPPx9HHnlkfPbZZ3m9p1OnTnHXXXfFUUcdldd7AAAAAAAojOLmDgAAAAAAAABA09x1112x9957571YFBGxcuXKOOaYY+L666/P+10AAAAAAOSfchEAAAAAAABAK3b77bfHKaecEvX19QW7M5VKxf/5P/8nLrvssoLdCQAAAABAfhSlUqlUc4cAAAAAAAAAoPEmTZoUxx9/fDTnr33vvPPOGDt2bLPdDwAAAABA0ygXAQAAAAAAALRCDz30UBx++OGxbt26jHf69esXhx9+eIwYMSK++93vRo8ePaJz586xZMmS+OCDD+KFF16I3//+9/Haa69lfGZpaWk88cQT8R//8R/ZfAwAAAAAAJqZchEAAAAAAABAKzN37twYMmRIrFy5MqP5wYMHxzXXXBMHHHBAFBcXp52fOnVqnHXWWTFjxoyMzu/Vq1e8+eab0bdv34zmAQAAAABoOdL/1BgAAAAAAACAFqOuri6OPPLIjItFF1xwQcyaNSsOOuigjIpFEREjR46MV155JS655JKM5j///PM4/vjjw99tCQAAAADQ+igXAQAAAAAAALQiF110UUYvCpWUlMSkSZPi6quvjvbt2zf6npKSkvj5z38e99xzTxQVFaWdf+aZZ+L2229v9D0AAAAAADSvopS/OgoAAAAAAACgVXj55ZdjxIgRGb0QdNddd8XJJ5+ck3tvuummOOecc9LO9ejRI+bNmxc9evTIyb0AAAAAAOSfl4sAAAAAAAAAWokLL7wwo2LRueeem7NiUUTE2WefndF5S5YsiUsvvTRn9wIAAAAAkH9eLgIAAAAAAABoBZ566qn4/ve/n3auqqoqXn311SgrK8vp/StWrIghQ4bEu+++u965kpKSeOedd2LQoEE5vR8AAAAAgPzwchEAAAAAAABAC5dKpeLiiy/OaPbOO+/MebEoIqJz584xYcKEtHPr1q2La665Juf3AwAAAACQH8pFAAAAAAAAAC3cs88+G2+88UbauYMPPjiGDx+etxx77LFHjBkzJu3cpEmTYsGCBXnLAQAAAABA7igXAQAAAAAAALRw9957b0Zzl19+eZ6TRFx11VVRXLz+XzXX1dXFzTffnPcsAAAAAAA0XVEqlUo1dwgAAAAAAAAAvtny5cujb9++sXr16vXO7bXXXvHss88WJNPBBx8cjzzyyHpn+vbtG5988kmUlpYWJBMAAAAAANnxchEAAAAAAABAC/bAAw+kLRZFRJx99tkFSPNPF1xwQdqZhQsXxjPPPFOANAAAAAAANIVyEQAAAAAAAEAL9sADD6Sd6dOnT+yzzz4FSPNPO+20U1RUVKSdu++++wqQBgAAAACAplAuAgAAAAAAAGihVq1aFS+++GLaucMPPzxKSkoKkOjfTjjhhLQzf/rTn6Kurq4AaQAAAAAAyJZyEQAAAAAAAEALNXXq1IzKOYceemgB0nzVYYcdlnZmxYoVUVNTU4A0AAAAAABkS7kIAAAAAAAAoIV67rnn0s5069YtRowYUYA0X9W/f//Ydttt08796U9/KkAaAAAAAACypVwEAAAAAAAA0EJNnjw57cxee+0VJSUlBUjzdfvvv3/amT//+c8FSAIAAAAAQLaUiwAAAAAAAABaoPr6+pg5c2bauV122aUAab5ZdXV12pl33nknvvzyywKkAQAAAAAgG8pFAAAAAAAAAC3Q3Llzo66uLu3cTjvtVIA032z48OFpX01qaGiIV199tUCJAAAAAABoLOUiAAAAAAAAgBZo1qxZaWfKyspiu+22y3+Yb9GlS5eoqqpKO/fKK68UIA0AAAAAANlQLgIAAAAAAABogTIpF2255ZbRrl27AqT5dttss03amZkzZxYgCQAAAAAA2VAuAgAAAAAAAGiBZs+enXamoqKiAEnWr7KyMu3MvHnzCpAEAAAAAIBsKBcBAAAAAAAAtECffPJJ2pmtt966AEnWT7kIAAAAAKB1Uy4CAAAAAAAAaIE+/fTTtDP9+/cvQJL123TTTdPOLF++PD7//PMCpAEAAAAAoLGUiwAAAAAAAABamHXr1sWiRYvSzvXr168AaXKT4eOPP85zEgAAAAAAsqFcBAAAAAAAAAkyefLkKCoqyvpf5557bnN/hBZh0aJF0bNnz6z/HDfeeONYtmzZes9ft25d2hwbb7xxDj9Vdrp37x7l5eVp57xcBAAAAADQMikXAQAAAAAAQIJUVlY2aX/u3Lk5StK6nXXWWbF48eKs9++4447o1q3bt35/4cKFGZ3To0ePrDPkUs+ePdPOKBcBAAAAALRMykUAAAAAAACQIH369MmoCPJtlIsiHn/88fj973+f9f6xxx4b+++//3pnamtrMzqre/fuWefIpUxyKBcBAAAAALRMykUAAAAAAACQME15vejDDz+MNWvW5DBN6/Lll1/GaaedlvX+hhtuGDfddFPaudWrV6ed6dSpU7Rr1y7rLLmUSblo6dKlBUgCAAAAAEBjKRcBAAAAAABAwjSlXNTQ0BDz5s3LYZrW5YILLogFCxZkvX/HHXdkVMTJpFzUsWPHrHPkWnl5edqZJJfSAAAAAABaMuUiAAAAAAAASJiqqqom7c+dOzdHSVqXmpqauPPOO7PeP+aYY+KAAw7IaDaTclFLebUoIrMsykUAAAAAAC2TchEAAAAAAAAkTFNeLopIZrlo9erVMXbs2EilUlnt9+3bN26++eaM5zMp4rSkclH79u3TztTV1RUgCQAAAAAAjaVcBAAAAAAAAAnT1JeL5syZk6Mkrcdll10W8+bNy3r/9ttvj+7du2c8n0mJKduiUz5kUnRSLgIAAAAAaJmUiwAAAAAAACBhevToEX379s16P2kvF82YMSOuu+66rPePPvroOOiggxq1k8lLQKtWrco2Us6tXbs27UxpaWkBkgAAAAAA0FjKRQAAAAAAAJBAlZWVWe8mqVxUX18fJ510UtTX12e137dv37j55psbvZfJS0AtqVyUyatEHTp0KEASAAAAAAAaS7kIAAAAAAAAEqiqqirr3eXLl8fChQtzmKbl+tWvfhUzZszIen/ChAnRo0ePRu+VlZWlnVm9enU2kfJizZo1aWeUiwAAAAAAWiblIgAAAAAAAEigprxcFJGM14vefffdGD9+fNb7Rx55ZIwePTqr3a5du6adaWhoaDEFIy8XAQAAAAC0XspFAAAAAAAAkEBNebkoou2Xi1KpVIwdOzbr8k6fPn3illtuyfr+TF87WrVqVdZ35NKyZcvSzigXAQAAAAC0TMpFAAAAAAAAkEBeLlq/O+64I6ZMmZL1/oQJE2KDDTbIej/T3aVLl2Z9Ry598cUXaWe6d+9egCQAAAAAADSWchEAAAAAAAAkUNeuXaNfv35Z78+ZMyeHaVqWv/3tbzFu3Lis94844ogYM2ZMkzJssMEGUVRUlHbuk08+adI9ubJ48eK0M3379i1AEgAAAAAAGku5CAAAAAAAABKqKa8XteWXi0477bT48ssvs9rt3bt33HrrrU3O0K5du4zKOB9//HGT72qq+vr6WL58edo55SIAAAAAgJZJuQgAAAAAAAASqinlog8//DDq6upymKZleOCBB+KJJ57Iev/Xv/51bLDBBjnJ0r9//7QzLeHlokwLTspFAAAAAAAtk3IRAAAAAAAAJFRVVVXWu+vWrYt58+blME3zW7x4cZx11llZ7x9++OFxyCGH5CzPpptumnamJbxc9N5772U0p1wEAAAAANAyKRcBAAAAAABAQjXl5aKIiLlz5+YoSctwzjnnxOeff57Vbu/evePWW2/NaZ7BgwennWkJ5aL3338/7cxGG20UHTp0KEAaAAAAAAAaS7kIAAAAAAAAEqqioiKKioqy3m9L5aKnn3467r///qz3b7vttujZs2cOE2X2stQ777yT0zuzMX/+/LQzFRUVBUgCAAAAAEA2lIsAAAAAAAAgoTp37hybbbZZ1vttpVxUW1sbP/rRj7Le/8EPfhCHHnpoDhP90zbbbJN25sMPP4zly5fn/O7GeOONN9LONPWVLAAAAAAA8ke5CAAAAAAAABIsk9dxvs2cOXNymKT5XHTRRfHxxx9ntdurV6+47bbbcpzonwYPHhwdOnRIOzdz5sy83J+p119/Pe2Ml4sAAAAAAFou5SIAAAAAAABIsKa8KNMWXi568cUX49e//nXW+7fddlv06tUrh4n+rbS0NHbccce0c1OnTs3L/Zn48MMPY8mSJWnnmlJiAwAAAAAgv5SLAAAAAAAAIMGaUi5atmxZLFq0KIdpCmvNmjVx8sknR0NDQ1b7hx56aPzgBz/IcaqvGjlyZNqZF154Ia8Z1uell15KO1NWVhZDhgwpQBoAAAAAALKhXAQAAAAAAAAJ1tQXZVrz60VXXHFFvPPOO1nt9uzZs0kvHmVql112STszderUqKury3uWb/L000+nnRk6dGh06NChAGkAAAAAAMiGchEAAAAAAAAk2FZbbRUlJSVZ78+ZMyeHaQpn1qxZcfXVV2e9f+utt0avXr1ymOib7brrrlFWVrbemdra2qipqcl7lv8tlUrFM888k3Zu1113LUAaAAAAAACypVwEAAAAAAAACdahQ4cYMGBA1vut8eWidevWxUknnRRr167Nav+QQw6Jww8/PMepvlnnzp1j9913Tzv3xBNPFCDNV7366qvx2WefpZ2rrq4uQBoAAAAAALKlXAQAAAAAAAAJV1lZmfVuaywX3XjjjfHKK69ktduzZ8/49a9/neNE63fAAQeknfnv//7vaGhoKECaf7vnnnvSzpSXl8fOO+9cgDQAAAAAAGRLuQgAAAAAAAASrqqqKuvdOXPm5DBJ/r3//vtx6aWXZr1/yy23RO/evXOYKL3Ro0dHcfH6f7X76aefxnPPPVegRBG1tbXxm9/8Ju3cQQcdFJ06dSpAIgAAAAAAsqVcBAAAAAAAAAnXlJeLPvjgg6irq8thmvwaO3ZsrFy5MqvdMWPGxBFHHJHjROlttNFGsccee6Sdy+QloVz5zW9+E//4xz/Szh199NEFSAMAAAAAQFMoFwEAAAAAAEDCNeXlonXr1sV7772XwzT5M3HixJg8eXJWuxtssEFMmDAhx4kyd+yxx6ad+cMf/hAfffRR3rOsXr06fvGLX6Sd69WrV+y11155zwMAAAAAQNMoFwEAAAAAAEDCDR48ONq1a5f1/ty5c3OYJj8+/fTTOP/887Pev+WWW6JPnz45TNQ4hxxySHTt2nW9M/X19XHdddflPcuNN94Yn3zySdq5Y489NkpLS/OeBwAAAACAplEuAgAAAAAAgIRr165dDBo0KOv9OXPm5DBNfpxxxhmxbNmyrHZHjx4dRx55ZG4DNVLnzp3jxBNPTDt3++23x9tvv523HAsXLoxf/vKXaec6duwYP/nJT/KWAwAAAACA3FEuAgAAAAAAAKKqqirr3Zb+ctFDDz0UDz/8cFa7PXr0iNtvvz3HibJz1llnRXHx+n/Fu3bt2jj99NOjoaEh5/enUqn44Q9/GMuXL087e+qpp0bfvn1zngEAAAAAgNxTLgIAAAAAAACisrIy692WXC5atmxZnHHGGVnv33LLLdGnT58cJsre5ptvHmPGjEk7V1NTE5dddlnO7//Vr34Vzz77bNq5jh07xrhx43J+PwAAAAAA+aFcBAAAAAAAALTZl4vOO++8WLhwYVa7Bx10UBx11FE5TtQ0V1xxRZSWlmY09+CDD+bs3j//+c/x05/+NKPZCy64oMUUsgAAAAAASK8olUqlmjsEAAAAAAAA0Lzmzp0bW221Vdb7ixYtil69euUwUdM999xzseeee2a126NHj5g9e3b07ds3x6ma7rTTTovbb7897VxJSUncd999cfTRRzfpvueffz4OPPDAqK2tTTs7ZMiQePnll6Ndu3ZNuhMAAAAAgMLxchEAAAAAAAAQAwcOjLKysqz3W9rrRStXroxTTjkl6/2bbrqpRRaLIiLGjx8fPXr0SDu3bt26OO644+LCCy+Murq6rO664447Yt99982oWFRWVhb33XefYhEAAAAAQCujXAQAAAAAAABESUlJk14uamnloksuuSTef//9rHYPOOCAOOaYY3KcKHd69+4d9957b0azDQ0NcfXVV8fQoUPj8ccfj1QqldHejBkzYq+99opTTz011qxZk9HOFVdcEVVVVRnNAgAAAADQchSlMv3pMQAAAAAAANCmHX300fHb3/42q93zzz8/rr322hwnys706dNj+PDh0dDQ0Ojd7t27x+zZs2PDDTfMQ7LcOuuss+KWW25p1M6WW24Zo0ePjj322CMGDx4cPXv2jA4dOsSyZcti3rx58dJLL8XDDz8c06ZNa9S5J5xwQtxzzz2N2gEAAAAAoGVQLgIAAAAAAAAiIuKqq66Kiy++OKvdAw44IB577LEcJ2q8tWvXxg477BCzZs3Kan/SpElx7LHH5jhVftTV1cVBBx0UTz/9dLPm2G+//eKPf/xjlJaWNmsOAAAAAACyU9zcAQAAAAAAAICWobKyMuvduXPn5jBJ9q666qqsi0X7779/qykWRUS0b98+Hn744dh9992bLcPQoUPjwQcfVCwCAAAAAGjFvFwEAAAAAAAARETE+++/HwMGDMhqt7S0NFauXBnt2rXLcarMvf3227H99ttHXV1do3e7desWs2fPjo022igPyfKrtrY2DjvssHjqqacKeu9uu+0Wf/zjH+M73/lOQe8FAAAAACC3vFwEAAAAAAAARETE5ptvHp06dcpqt76+Pt57770cJ8pcQ0NDnHzyyVkViyIibrrpplZZLIqIKC8vjyeeeCIuueSSKCoqKsidJ510Ujz99NOKRQAAAAAAbYByEQAAAAAAABAREUVFRVFRUZH1/ty5c3OYpnFuvfXWeOmll7La3X///eO4447LcaLCKi4ujp///Ofx5JNPxhZbbJG3e3r16hUPPPBA3H333VFWVpa3ewAAAAAAKBzlIgAAAAAAAOBfKisrs95trnLRRx99FD/96U+z2u3WrVvccccdOU7UfPbdd994++2345e//GV06dIlZ+d26tQpzj333Hj33Xfj8MMPz9m5AAAAAAA0P+UiAAAAAAAA4F+aUi6aM2dODpNk7kc/+lHU1tZmtXvDDTfERhttlONEzausrCzGjRsXCxYsiLvvvjt23nnnrM+qrKyMK6+8Mj7++OO4/vrro1u3brkLCgAAAABAi1CUSqVSzR0CAAAAAAAAaBmeeuqp+P73v5/V7ogRI2LatGk5TrR+kyZNih/+8IdZ7X7/+9+PJ598MseJWqYFCxbESy+9FNOnT4/XXnstFi5cGMuWLYulS5fG2rVro1OnTtGtW7fYdNNNY/DgwTFs2LCorq6OwYMHN3d0AAAAAADyTLkIAAAAAAAA+JePP/44Nt1006x2N9hgg/jiiy9ynOjbLVq0KLbeeutYsmRJo3e7desWb731Vmy88cZ5SAYAAAAAAK1HcXMHAAAAAAAAAFqO/v37R9euXbPaXbx4cSxevDjHib7dmWeemVWxKCLi+uuvVywCAAAAAIBQLgIAAAAAAAD+l4qKiqx358yZk8Mk3+6xxx6LBx98MKvdfffdN0444YQcJwIAAAAAgNZJuQgAAAAAAAD4iqqqqqx3586dm8Mk3+zLL7+M008/Pavd73znO3HnnXfmOBEAAAAAALReykUAAAAAAADAV1RWVma9W4hy0U9+8pNYsGBBVrvXX399bLLJJjlOBAAAAAAArZdyEQAAAAAAAPAVTSkXzZkzJ4dJvq6mpibuuuuurHb32WefOPHEE3OcCAAAAAAAWjflIgAAAAAAAOArqqqqst7N58tFq1evjrFjx0YqlWr0bteuXePOO+/MQyoAAAAAAGjdlIsAAAAAAACAr9hwww2jR48eWe2+//77UV9fn+NE//Szn/0s5s2bl9XuddddF/369ctxIgAAAAAAaP2UiwAAAAAAAICvqayszGpv7dq18f777+c4TcTrr78e1113XVa7e++9d5x88sk5TgQAAAAAAG2DchEAAAAAAADwNdmWiyIi5syZk8MkEfX19XHyySfHunXrGr3btWvXuPvuu3OaBwAAAAAA2hLlIgAAAAAAAOBrqqqqst6dO3duDpNEXHvttTFjxoysdn/1q19Fv379cpoHAAAAAADaEuUiAAAAAAAA4Gua8nJRLstF7777blx++eVZ7e61114xduzYnGUBAAAAAIC2SLkIAAAAAAAA+JqW8HJRKpWKsWPHxurVqxu926VLl7j77rtzkgMAAAAAANoy5SIAAAAAAADga3r27Bm9e/fOanfOnDk5yXD77bfHlClTstr91a9+Ff37989JDgAAAAAAaMuKUqlUqrlDAAAAAAAAAC3PHnvsEc8//3xWu4sXL44ePXpkffff/va3qKysjC+//LLRu3vuuWf8+c9/zvpuAAAAAABIEi8XAQAAAAAAAN+oqqoq6925c+c26e7TTjstq2JRly5d4u67727S3QAAAAAAkCTKRQAAAAAAAMA3qqyszHp3zpw5We/+7ne/iyeeeCKr3WuuuSY23XTTrO8GAAAAAICkUS4CAAAAAAAAvlFzvFy0ePHiOPvss7PaHTVqVPzoRz/KahcAAAAAAJJKuQgAAAAAAAD4Rk15uSjbctE555wTn3/+eaP3ysvLY+LEiVFUVJTVvQAAAAAAkFTKRQAAAAAAAMA36tatW2y88cZZ7WZTLnrqqafi/vvvz+q+a665JjbddNOsdqEQFi1aFMuXL2/uGAAAAAAAX6NcBAAAAAAAAHyrbF8veu+996K+vj7j+dra2jj11FOzumv33XfPehfy6aOPPoobb7wxqqurY8MNN4xddtmluSMBAAAAAHxNaXMHAAAAAAAAAFquysrKePbZZxu9V1dXFx988EEMGjQoo/mLLrooPv7440bfU15eHvfcc08UFRU1ehfy4Z133omHH344Hn744Xj99de/8r2BAwc2UyoAAAAAgG+nXAQAAAAAAAB8q6qqqqx3586dm1G56MUXX4xf//rXWd1x9dVXx2abbZbVbhItX7483nrrrXjrrbfinXfeiQULFsSCBQti4cKFUVtbG6tWrYrVq1dHaWlpdOnS5V//6t27d2y11Vax9dZbx1ZbbRXf/e53o0ePHs39cVqUK6+8MiZNmhRz58791pnq6uoCJgIAAAAAyExRKpVKNXcIAAAAAAAAoGX661//GjvttFNWu9dee22cf/75651Zs2ZNbLfddjFnzpxGn7/77rvHc88959Wi9fjiiy/iL3/5S9TU1ERNTU288847OTm3uLg4dthhh9hnn31in332iWHDhkVJSUlOzm6Nli1bFhtssEE0NDSsd27GjBmx3XbbFSYUAAAAAECGvFwEAAAAAAAAfKvKysooKiqKbP7OwvW94PI/rrjiiqyKRZ07d46JEycqFn2DRYsWxR/+8Id46KGHoqamJtatW5fzOxoaGuKVV16JV155JX7+85/HJptsEmPHjo2xY8fGhhtumPP7WroXXnghbbGoW7duse222xYoEQAAAABA5oqbOwAAAAAAAADQcpWXl0f//v2z2k1XLnrzzTfj6quvzursq6++OjbffPOsdtuiVCoVkydPjsMPPzw22WST+PGPfxyTJ0/OS7Hom/ztb3+Ln/3sZ9G/f//4wQ9+EDNnzizIvS3FlClT0s7ssssuUVzsV/QAAAAAQMvjJ5cAAAAAAADAelVVVWW1t75y0bp16+Kkk06KtWvXNvrc3XbbLU4//fSsMrU169ati9/+9rexzTbbxKhRo+LBBx/M6s80V+rr6+MPf/hDDBkyJI4//vhYvHhxs2UppJqamrQzu+22W/6DAAAAAABkQbkIAAAAAAAAWK/Kysqs9hYtWhRLly79xu/deOON8eqrrzb6zM6dO8fEiROjqKgoq0xtRSqViv/6r/+KrbbaKo4++uiYPXt2c0f6ioaGhrjvvvuioqIi/vSnPzV3nLyqra2NGTNmpJ2rrq4uQBoAAAAAgMZTLgIAAAAAAADWK9tyUcQ3v1703nvvxaWXXprVeVdddVVsscUWWedpC6ZNmxbDhg2L4447LubPn9/ccdZr0aJFccABB8Qvf/nL5o6SN9OmTYv6+vr1znTt2jW22267wgQCAAAAAGgk5SIAAAAAAABgvaqqqrLe/aZy0SmnnBIrV65s9Fm77rprnHHGGVlnae2WLFkSP/zhD2PkyJHxyiuvNHecjDU0NMRFF10UF1xwQXNHyYuampq0MyNHjoySkpICpAEAAAAAaDzlIgAAAAAAAGC9tt566yguzu5Xi/+7XDRx4sSYPHlyo8/p1KlT3HPPPVFUVJRVjtbuoYceioqKipg0aVJzR8natdde2yZfMJoyZUramerq6gIkAQAAAADITmlzBwAAAAAAAABato4dO8YWW2wR8+fPb/TunDlz/vWfP/300zj//POzynDVVVfFgAEDstptzVasWBGnn356TkpFZWVlMXTo0KioqIitttoqtt5669h4442jS5cu0bVr1+jSpUs0NDTE6tWrY8WKFbFw4cL49NNPY/78+TFr1qx44403YsaMGbFu3bqsM1x88cWxzTbbxH777dfkz9MSrFq1KqNXpJSLAAAAAICWrCiVSqWaOwQAAAAAAADQso0ePToeffTRRu9VVFTE7NmzIyLi4IMPjkceeaTRZ+yyyy5RU1OTuFeL3nrrrTjssMPinXfeyfqMAQMGxIEHHhh77713VFdXR8eOHZuUafny5VFTUxP3339/PPbYY7FmzZpGn9GnT5+YNWtW9OrVq0lZWoLJkyfHqFGj1jtTXl4eS5cujdJSf/cnAAAAANAyFTd3AAAAAAAAAKDlq6qqympv/vz5sW7dunjooYeyKhZ16tQp7rnnnsQVix555JEYNmxYVsWi9u3bx2GHHRZ/+ctfYt68eXH99dfHPvvs0+RiUUTEd77znTjwwAPjwQcfjL///e8xbty46NChQ6PO+Oyzz2LcuHFNztISTJkyJe3MiBEjFIsAAAAAgBZNuQgAAAAAAABIq7KyMqu9urq6eP311+OMM87Iav/KK6+MgQMHZrXbWl1zzTVxyCGHxMqVKxu11759+zjjjDPi448/jt///vcxatSovJayevToEb/85S9j7ty5sffeezdq97777ouZM2fmKVnh1NTUpJ3Zbbfd8h8EAAAAAKAJlIsAAAAAAACAtLItF0VEHH300bFw4cJG740cOTLOPPPMrO9tbVKpVJxxxhkxbty4SKVSGe8VFRXF0UcfHXPmzIlbbrkl+vTpk8eUX9e/f/94+umn4xe/+EWUlJRktNPQ0BBXXXVVnpPlV11dXfz1r39NO1ddXV2ANAAAAAAA2StKNean0gAAAAAAAEAi1dXVRefOnaO+vr4g93Xs2DHefPPNxLxa1NDQEKecckpMnDixUXv9+/ePe+65J0aNGpWnZI3z8MMPx5FHHhl1dXVpZzt16hS1tbV5fV0pn6ZOnRq77LLLemc6deoUy5Yti3bt2hUoFQAAAABA43m5CAAAAAAAAEirffv2BS36/OIXv0hMsSiVSsUJJ5zQ6GLRCSecELNmzWoxxaKIiIMPPjgef/zx6NChQ9rZHXfcsdUWiyIiampq0s4MHz5csQgAAAAAaPGUiwAAAAAAAICMVFVVFeSenXfeOc4+++yC3NUSnHvuuTFp0qSM58vKyuK+++6Le+65J7p27ZrHZNnZe++94/bbb087t8ceexQgTf5MmTIl7Ux1dXUBkgAAAAAANI1yEQAAAAAAAJCRysrKvN/RsWPHuPfee6O4OBm/yrzqqqvipptuyni+V69e8dxzz8Vxxx2Xx1RN98Mf/jBtQWz33XcvUJrcq6+vjxdffDHtnHIRAAAAANAaJOMn8gAAAAAAAECTFeLloiuuuCIGDRqU93tagv/+7/+Oiy++OOP5QYMGxfTp02PnnXfOY6rcufrqq2OzzTb7xu916tQphg0bVthAOfTaa69FbW3temc6dOjQqj8jAAAAAJAcykUAAAAAAABARvL9ctGIESPinHPOyesdLcXs2bPjhBNOyHh+4MCB8fzzz39rWaclKisri6uuuuobv7fzzjtH+/btC5wod6ZMmZJ2ZtiwYVFWVlaANAAAAAAATaNcBAAAAAAAAGRk0KBBeSuEdOjQIe65554oLm77v8Jcvnx5jB49OlasWJHR/IABA+L555+PjTfeOM/Jcu+II46Ibbfd9mtf32OPPZohTe7U1NSkndltt93yHwQAAAAAIAfa/k/mAQAAAAAAgJwoLS2NLbfcMi9nX3HFFXk7u6X58Y9/HPPnz89odqONNornn38+Ntlkkzynyp/jjz/+a1/bfffdCx8kRxoaGmLatGlp56qrqwuQBgAAAACg6ZSLAAAAAAAAgIxVVlbm/Mzhw4fHueeem/NzW6IHH3wwfvOb32Q027Fjx3jssceiX79+eU6VX0cddVSUlpb+67936dIldthhh2ZM1DQzZ86MZcuWrXemffv2sdNOOxUmEAAAAABAEykXAQAAAAAAABmrqqrK6XkdOnSIe++9N4qL2/6vLhcuXBinnXZaRrNFRUVx3333teoSzv/o06fPV4o2u+6661fKRq1NTU1N2pmhQ4dGx44dC5AGAAAAAKDpWu9PbAEAAAAAAICCy/XLRZdffnlsueWWOT2zpTrvvPNiyZIlGc1ecskl8YMf/CDPiQpn6NChMXXq1IiI2H333Qt+/4cffhhTpkyJmTNnxptvvhkff/xxLF++PJYtWxYNDQ3RpUuX6NevX1RUVMSIESNiv/32i8033/wbz5oyZUra+6qrq3P9EQAAAAAA8qYolUqlmjsEAAAAAAAA0DrMnz8/Bg0alJOzdtppp5g6dWqUlJTk5LyWbPLkyTFq1KiMZtvin8vvf//7OOKIIyIi4vXXX4/tt98+73e+9957cd9998Wjjz4ab775ZqP3d9555zj77LPj0EMPjaKiooiISKVS0bt37/jiiy/Wu/vss8/GXnvtlVVuAAAAAIBCUy4CAAAAAAAAMtbQ0BDl5eWxatWqJp3ToUOHmDFjRmy11VY5StZy1dfXxzbbbBNz5sxJO9u5c+d44403YuDAgQVIVjgrV66Mt99+OyIihgwZEsXFxXm76//+3/8bN9xwQzzxxBPR0NDQ5PO++93vxoQJE2L48OExe/bsqKqqWu98aWlpLFu2LDp37tzkuwEAAAAACqG0uQMAAAAAAAAArUdxcXFsvfXW8frrrzfpnPHjxyeiWBQRMXHixIyKRRER1113XZsrFkVEdOrUKb73ve/l9Y7Zs2fHeeedF88++2xOz505c2aMHDkyLrjggthwww3Tzn/ve99TLAIAAAAAWhUvFwEAAAAAAACNctxxx8V//dd/Zb0/bNiwmDZtWpSUlOQwVcu0atWqGDhwYPz9739POzt06NB4+eWXo6ioqADJ2o4VK1bEhRdeGBMmTIh169bl9a527drF2rVr1ztz4YUXxlVXXZXXHAAAAAAAueTlIgAAAAAAAKBRKisrs94tKyuLe++9NxHFooiI2267LaNiUUTEDTfcoFjUSNOnT49jjjkm5s2bV5D70hWLIiKqq6sLkAQAAAAAIHeKmzsAAAAAAAAA0LpUVVVlvTt+/PjYeuutc5im5Vq7dm3ceOONGc0edthhMWLEiPwGamOuvfba2HnnnQtWLMpESUlJ7Lzzzs0dAwAAAACgUbxcBAAAAAAAADRKti8XDR06NM4///wcp2m5fve738WCBQvSzhUXF8eVV15ZgERtw9q1a+OUU06J//zP/2zuKF8zZMiQ6NKlS3PHAAAAAABoFOUiAAAAAAAAoFE23XTTKC8vj9ra2ox3ysrK4t57742SkpI8JmtZrr/++ozmxowZEwMGDMhzmrZh6dKlMWbMmKipqWnU3qBBg+Lggw+OYcOGxbbbbhs9e/aMTp06xbJly+K9996LadOmxaRJk+LNN99sUr7q6uom7QMAAAAANIeiVCqVau4QAAAAAAAAQOsybNiwmD59esbzV155ZVx00UV5TNSyvPLKKzF06NCMZqdNmxYjRozIc6LWb8mSJbHnnnvGjBkzMpovLi6OMWPGxE9+8pMYNmxYRjuPP/54nHnmmfHRRx9llfHxxx+P/fffP6tdAAAAAIDmUtzcAQAAAAAAAIDWp6qqKuPZHXfcMS644II8pml57r333ozmhg0bpliUgcWLF8eoUaMyLhaNGDEiXnvttfjDH/6QcbEoIuKAAw6I1157Lav/TYqLi2PkyJGN3gMAAAAAaG7KRQAAAAAAAECjVVZWZjTXvn37uPfee6OkpCTPiVqONWvWxAMPPJDR7PHHH5/fMG3A8uXLY9SoUfHGG2+knW3fvn3ccMMNMXXq1Nhuu+2yum+DDTaIZ555JrbddttG7X33u9+Nbt26ZXUnAAAAAEBzUi4CAAAAAAAAGi3TctHPfvazjGfbismTJ8fSpUvTzpWUlMTBBx9cgEStV319fRx66KExc+bMtLP9+vWLl156Kc4555woKipq0r3l5eXx6KOPRufOnTPe2W233Zp0JwAAAABAc1EuAgAAAAAAABqtqqoq7cwOO+wQF1xwQQHStCyPP/54RnPV1dXRu3fvPKdp3U499dT4y1/+knZu++23j5dffjmGDBmSs7s322yzGD9+fMbz1dXVObsbAAAAAKCQlIsAAAAAAACARtt4442jW7du3/r99u3bx3/+539GaWlp4UK1EE888URGc4ccckiek7Ru119/fUycODHt3E477RQ1NTWx0UYb5TzDmWeemdG5RUVFscsuu+T8fgAAAACAQlAuAgAAAAAAALJSWVn5rd+79NJLM3rdqK1555134pNPPslo1ks33+7VV1+NCy+8MO3csGHD4plnnokuXbrkJUf79u3jlFNOSTu3zTbbRI8ePfKSAQAAAAAg35SLAAAAAAAAgKx8W7lohx12iHHjxhU4Tcswbdq0jOa6d+8eFRUVeU7TOtXW1sZRRx0Va9euXe/cwIED48knn4yuXbvmNU8mZTFFMQAAAACgNVMuAgAAAAAAALLyTS8TtW/fPu69994oLS1thkTNb+rUqRnNDR8+PIqKivKcpnU677zzYt68eeud6d69ezz55JOxwQYb5D3PlClT0s4oFwEAAAAArZlyEQAAAAAAAJCVb3q56JJLLoltttmmGdK0DH/9618zmhs6dGiek7RO06dPj7vvvjvt3MSJE2Pw4MF5z7Nw4cK0RaeIiF133TXvWQAAAAAA8iWZf10YAAAAAAAA0GR77LFHpFKp5o7RYtTV1cX8+fMzmh0wYECe07Q+qVQqzjzzzLT/nzrxxBNjzJgxBcmUyatFFRUV0atXrwKkAQAAAADIDy8XAQAAAAAAAOTAvHnzor6+PqNZ5aKvmzRpUkyfPn29M7169YobbrihQIkyKxfttttu+Q8CAAAAAJBHykUAAAAAAAAAOTBnzpyMZ7fYYos8Jml9Ghoa4sorr0w7d/nll0fXrl0LkOifMikXVVdXFyAJAAAAAED+KBcBAAAAAAAA5MDHH3+c0Vy7du2iT58+eU7TujzyyCPx7rvvrndm4MCBMXbs2AIliliyZEm89dZbaed23XXXAqQBAAAAAMgf5SIAAAAAAACAHFi4cGFGc507d85zktbnmmuuSTtz9tlnR0lJSQHS/NMLL7wQqVRqvTNbbrll9O3bt0CJAAAAAADyQ7kIAAAAAAAAIAc+/fTTjObKy8vznKR1mTVrVkyfPn29M127do3jjz++MIH+nylTpqSdqa6uLkASAAAAAID8Ui4CAAAAAAAAyIGlS5dmNOfloq/67W9/m3bmwAMPLHgpS7kIAAAAAEgK5SIAAAAAAACAHFi1alVGc+3bt89zktYjlUrFAw88kHbu0EMPLUCaf6utrY0ZM2aknVMuAgAAAADaAuUiAAAAAAAAgBxYvXp1TueSYObMmfHhhx+ud6a0tDT22muvwgT6f6ZNmxbr1q1b78zAgQNj4403LlAiAAAAAID8US4CAAAAAAAAyIG6urqM5lauXJnnJK1HTU1N2pntttsuOnXqVIA0/zZlypS0M14tAgAAAADaCuUiAAAAAAAAgBwoKyvLaO7zzz+PVCqV5zStQyblop122qkASb5KuQgAAAAASBLlIgAAAAAAAIAc6NixY0ZzdXV1sXDhwjynaR2mTp2admbLLbcsQJJ/W716dbzyyitp55SLAAAAAIC2QrkIAAAAAAAAIAc6d+6c8ezcuXPzmKR1WLx4cXz++edp5zbffPMCpPm3v/71r7FmzZr1zmy22WbRv3//AiUCAAAAAMgv5SIAAAAAAACAHNhwww0zns3kZZy2bv78+RnNbbLJJnlO8lU1NTVpZ7xaBAAAAAC0JcpFAAAAAAAAADmw2WabZTw7bdq0/AVpJebNm5fRXGNehMqFKVOmpJ1RLgIAAAAA2hLlIgAAAAAAAIAcaEy56M9//nOsWrUqf2Fagb///e8ZzRWyXLR27dp4+eWX084pFwEAAAAAbYlyEQAAAAAAAEAObLfddhnPrly5Mp588sn8hSmQDz/8MP70pz9ltVtbW5vRXENDQ1bnZ+O1116LFStWrHemX79+scUWWxQoEQAAAABA/ikXAQAAAAAAAOTA4MGDo0ePHhnP33rrrXlMk39TpkyJHXfcMY444oiYP39+o/czLRctW7as0Wdn67e//W3aGa8WAQAAAABtjXIRAAAAAAAAQI4MHz4849mampqYPn16HtPkz1133RV77rlnfPHFF/GPf/wjDj/88FizZk2jzli5cmVGc4UqF73wwgtx2223pZ1TLgIAAAAA2hrlIgAAAAAAAIAcOfDAAxs1f9555+UpSX6sXr06Tj/99DjllFNi7dq1//r666+/Hueff36jzioqKspo7v3332/UudlYsWJFnHDCCdHQ0JB2VrkIAAAAAGhrlIsAAAAAAAAAcmT06NFRUlKS8fy0adPijjvuyGOi3Jk1a1Z873vfiwkTJnzj92+99dZ45JFHMj6vY8eOGc299NJLGZ+ZjVQqFccdd1y89957aWc33HDDGDRoUF7zAAAAAAAUmnIRAAAAAAAAQI707t079tprr0btnHvuufHWW2/lKVHTpVKpuPnmm2PHHXeM2bNnr3f2pJNOio8++iijc3v27JnR3NSpUzOay9Zll10WDz/8cEazI0aMyGsWAAAAAIDmoFwEAAAAAAAAkENnn312o+ZXrVoV3//+9+OTTz7JU6LszZw5M0aOHBlnn312rFmzJu380qVL47nnnsvo7E022SSjuVmzZsWrr76a0Wxj3XHHHfHzn/8843nlIgAAAACgLVIuAgAAAAAAAMih//iP/4iKiopG7XzyySex5557xgcffJCnVI3z5ZdfxjnnnBM77LBDvPjiixntlJSUxJ133hknnnhiRvNbbbVVxnluvPHGjGczdccdd8Rpp50WqVQq4x3lIgAAAACgLSpKNeYnpQAAAAAAAACk9cQTT8QBBxzQ6L3evXvHQw89FCNHjsxDqvRWrFgREyZMiGuvvTYWLVqU8V5ZWVn87ne/izFjxmS8s2rVqujatWvU19ennS0uLo5nn302Ro0alfH53yaVSsX48ePj8ssvb1SxqH379vGPf/wj2rdv3+QMAAAAAAAtiZeLAAAAAAAAAHJs//33j3322afRe4sWLYrq6uoYN25crFq1Kg/JvtmXX34ZV199dWy22Wbxk5/8pFHFoq5du8YzzzzTqGJRRETHjh1j+PDhGc02NDTEMcccEwsWLGjUHf/b8uXLY8yYMTF+/PhGFYsiIrbddlvFIgAAAACgTVIuAgAAAAAAAMiD2267Lbp27drovYaGhrjmmmtiwIABMWHChFi9enUe0v3T1KlT44QTTogNN9wwLrzwwvjiiy8atV9RUREvv/xyVFdXZ3V/Y153WrhwYQwfPjzefPPNrO764x//GBUVFfHoo49mtb/DDjtktQcAAAAA0NIVpRr71zEBAAAAAAAAkJEHH3wwDj/88Cad0b179zj66KPj0EMPjZ133jlKS0uzPmvVqlUxZcqUeOaZZ+KJJ56IefPmZX3WUUcdFXfeeWd07tw56zM+/fTT6NevX6xbty7jnfLy8hg3blycc845UV5ennb+hRdeiCuvvDKefvrprHNGRNx5550xduzYJp0BAAAAANASKRcBAAAAAAAA5NH5558f1113XU7O6tq1a4wYMSK233772GabbaJfv36xySabRLdu3aJDhw7Rvn37WLFiRXz55Zfx5ZdfxsKFC+Ptt9+O2bNnx+zZs2P69OlNfgmpffv2ccMNN8Tpp5+ek8907LHHxv3339/ovZ49e8ZBBx0U++yzT1RVVUXv3r2jvLw8Pv/88/jwww/jL3/5Szz22GPx+uuv5yTn9OnTY8cdd8zJWQAAAAAALYlyEQAAAAAAAEAepVKpOOGEE+K+++5r7ihNNmTIkLj77rtj++23z9mZ7733XlRWVsaaNWtydmauFRUVRW1tbXTq1Km5owAAAAAA5FxxcwcAAAAAAAAAaMuKiopi4sSJceyxxzZ3lKx17tw5rrvuupg+fXpOi0UREQMGDIif/exnOT0z1zbffHPFIgAAAACgzVIuAgAAAAAAAMizkpKSmDRpUlx66aXNHaXR9t9//3j77bfjvPPOi5KSkrzcMW7cuNhvv/3ycvb6nHrqqbHvvvumnauoqChAGgAAAACA5qFcBAAAAAAAAFAg48ePj0cffTT69OnT3FHS2n333aOmpiYef/zx6N+/f17vKi4ujgceeCBGjhyZ13v+x4ABA+Kpp56KCRMmxNtvv512fuDAgQVIBQAAAADQPJSLAAAAAAAAAArowAMPjNmzZ8fRRx8dRUVFzR3na/6nVDR58uTYddddC3ZveXl5PP3003HwwQfn7Y5u3brFFVdcEbNnz4599tknFi1aFB999FHavQEDBuQtEwAAAABAc1MuAgAAAAAAACiwDTbYIO6///547bXXYt99923uONG9e/c4/fTT49VXXy14qej/r3PnzvHQQw/FhAkTolu3bjk7d6ONNorLL788Pvzww/jpT38aZWVlERHxyiuvrHdvwIABcd5558VBBx2UsywAAAAAAC1NUSqVSjV3CAAAAAAAAIAke+utt+Kuu+6K+++/P5YsWVKQO8vKymK33XaL448/PkaPHh0dOnQoyL2Z+uKLL+Lmm2+OO++8Mz777LNG73fv3j322WefOOKII2K//faLkpKSr81cdtllMX78+K98bfvtt4/Ro0fH6NGjY9ttt806PwAAAABAa6FcBAAAAAAAANBCrFmzJmpqauKpp56Kp59+OubMmZOzs4uLi2O77baLPffcM0aNGhW77LJLdOzYMWfn58u6detiypQpMXny5Hj11Vfj/fffj4ULF8bKlSsjIqJTp07RvXv36N+/f2yxxRYxZMiQGDp0aHzve9+L0tLS9Z598cUXx7XXXhu77LLLvwpF/fv3L8THAgAAAABoMZSLAAAAAAAAAFqoZcuWxRtvvBEzZ86MefPmxYIFC+Jvf/tbfPbZZ7Fy5cpYvXp1rF69OoqLi6NLly7RpUuXKC8vjy5dukS/fv1iq622ii233PJf/15eXt7cH6nFqa2t9ecCAAAAACSachEAAAAAAAAAAAAAAAAkVHFzBwAAAAAAAAAAAAAAAACah3IRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAkVGlzBwAAsldfXx/z5s37ytd69OgRxcX6wwAAAAAAAAAAAACQqYaGhliyZMlXvjZo0KAoLW371Zu2/wkBoA2bN29eVFRUNHcMAAAAAAAAAAAAAGhz3n777dh6662bO0beedYAAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASqrS5AwAA2evRo8fXvvb2229Hz549myENAAAAAAAAAAAAALROX3zxRVRUVHzla9/0z+q2RcpFANCKFRd//RHCnj17Rq9evZohDQAAAAAAAAAAAAC0Hd/0z+q2Rcn4lAAAAAAAAAAAAAAAAMDXKBcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQD/H3v3HmV3Wd+L/7P3XPdkksyAXCSxchEJKEEuIoioqHjBapc9UmutrfasLk+PVVv1aOvx17rac2y19d56tMtTq0Lr9XhFROwCDQgIBEQNwQhEJYEQYHaSyey57v37g2sI2c93Zr77/nqtVsnsZ3+fz2x5sp8987y/HwAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAgCao1WpRq9VaXQYAAAAAAOxDuAgAAAAAAACgCa765c/j6l9taXUZAAAAAACwj/5WFwAAAAAAAADQ7Spzs3HBDRuiEBFPO+LIKA0MtrokAAAAAACICJ2LAAAAAAAAABruKz+5OsqVvTFR2Rv/7yfXtLocAAAAAAB4iHARAAAAAAAAQAP9unxPfOeWGx/688W33BC/Lt/TuoIAAAAAAOARhIsAAAAAAAAAGqRWq8Wnr7s8qrXaQ1+rPvC12iO+BgAAAAAArSJcBAAAAAAAANAgV2zdHJvv3rbf1zffvS2u3HpLCyoCAAAAAIB9CRcBAAAAAAAANMDe2Zm48IYNB3z8whs2xNTsTBMrAgAAAACA/QkXAQAAAAAAADTAl2+6KnZPVw74+K7pqfjSTVc3sSIAAAAAANifcBEAAAAAAABAzrZO7IzvbrkpOe67W34cv5zY2YSKAAAAAADgsQkXAQAAAAAAAOSoWqvFp6+9LGq1WnJs7YGx1QxjAQAAAACgEYSLAAAAAAAAAHL0g9s2xZZ77sw8/uf33Bkbbr+5gRUBAAAAAMCBCRcBAAAAAAAA5GRyZjr+48YrF/28/7jhipicnW5ARQAAAAAAUJ9wEQAAAAAAAEBOvnjTD2PPTGXRz9s9U4kv/fiqBlQEAAAAAAD1CRcBAAAAAAAA5OC2e3fEf275yZKf/70tN8Vt9+3IsSIAAAAAAEgTLgIAAAAAAABYpmq1Gv967WVRW8Y1ahHx6Wsvi2ptOVcBAAAAAIDFES4CAAAAAAAAWKbLbvtZLl2Hbr13R1x+689yqAgAAAAAALIRLgIAAAAAAABYht3TlfjCjT/M7Xqfv/HK2D1dye16AAAAAABQj3ARAAAAAAAAwDJ84cdXxuTsdG7Xm5ydji/8OL+wEgAAAAAA1CNcBAAAAAAAALBEW+65My679We5X/fyW38av7jnrtyvCwAAAAAAjyZcBAAAAAAAALAE1Wo1Pn3tZQ25di0i/vXay6JarTbk+gAAAAAA8CDhIgAAAAAAAIAl+N4vfhJbJ3Y27PpbJ+6O//zFTxp2fQAAAAAAiBAuAgAAAAAAAFi0XZW98cUf/7Dh83zhx1fFrumphs8DAAAAAEDvEi4CAAAAAAAAWKT/uPHKmJqbbfg8U3Mz8R83XtHweQAAAAAA6F3CRQAAAAAAAACLsPnubfGD229u2nw/uO3muGXn9qbNBwAAAABAbxEuAgAAAAAAAMhooVqNT193WdPn/fS1l8VCtdr0eQEAAAAA6H7CRQAAAAAAAAAZfffnP45fl+9t+ry/Kt8T3/35j5s+LwAAAAAA3a+/1QUAtNrc3Fxs2LAhrrzyyti0aVNs3rw5du7cGXv27Im9e/dGqVSKVatWxUEHHRTHHXdcnHDCCfGMZzwjnve850WpVGp1+R1l586dcckll8QNN9wQmzZtiltvvTV27doVe/bsibm5uVi5cmWsWrUqjjjiiDjhhBPiKU95Sjzvec+Lk046qdWlAwAAAABATFT2xpdvurpl83/5J1fHGU98coyXVrSsBgAAAAAAuk+hVqvVWl0EQCtcccUV8c///M/x7W9/O3bv3r3o55dKpXjBC14Qf/InfxIvfvGLo1AoNKDKzlepVOJzn/tc/Ou//mtce+21Ua1WF32NtWvXxvnnnx9vetOb4qijjmpAlZ1r586dceihh+7ztbvvvjsOOeSQFlUEAAAAANC9/unK78QPf3lLS2s468jj4o3PfHFLawAAAAAA6Ea9fC632OoCAJrtBz/4QTz96U+Ps88+Oz7/+c8vKVgUcX9o5pvf/Gacd955cfzxx8fXvva1fAvtcHNzc/G+970vnvCEJ8Qb3vCGuOaaa5YULIqIuOOOO+JDH/pQPOlJT4rzzz8/tm7dmm+xAAAAAACQsGnHHS0PFkVEXLn1lrh5xx2tLgMAAAAAgC4iXAT0jHK5HH/4h38Yz3nOc+K6667L9dq33HJLvOIVr4iXvexlsX379lyv3YmuvPLKOOmkk+Iv/uIv4t57783tutVqNb785S/HU57ylHj/+98fmu8BAAAAANAM89WF+PR1l7W6jId8+rrLY7660OoyAAAAAADoEsJFQE/YtGlTnH766fHZz362ofN861vfilNPPTV++MMfNnSedvbxj388zjnnnLj55psbNsfU1FS8853vjN/6rd9acucpAAAAAADI6uLNN8a2Xfe1uoyH3LHr3vjOLTe2ugwAAAAAALqEcBHQ9a644oo444wzYsuWLU2Z76677opzzjknvvrVrzZlvnby1re+Nd74xjfG3NxcU+b75je/GWeeeWbs3LmzKfMBAAAAANB77p3aE//vp9e0uoz9fOUn18S9U3taXQYAAAAAAF1AuAjoatddd1289KUvjT17mvvLtdnZ2fjd3/3duOSSS5o6byu9613vig996ENNn3fTpk3xwhe+MMrlctPnBgAAAACg+12wcUPMzDfnplqLMTM/Fxdu3NDqMgAAAAAA6AL9rS4AoFHuuOOOeMlLXhK7d+/O/Jzh4eF49rOfHaeddlqsWbMmVq1aFZOTk3HnnXfGxo0b4/LLL4/JyclM15qdnY3f/u3fjmuuuSae+tSnLvXb6Aif/OQn4+/+7u8W9Zy1a9fGs5/97Fi/fn087nGPi4GBgSiXy7Fly5a45ppr4rrrrotarZbpWjfeeGO84hWviO9973vR19e3lG8BAAAAAAD285M7fxnX/GpLq8s4oKt/tSXOuetXceLhv9HqUgAAAAAA6GDCRUBXmp+fj1e/+tVxzz33ZBp/6KGHxrvf/e74gz/4g1i9evUBx01NTcUXv/jFeM973hO//OUvk9edmpqK888/P6677rpYsWJF5vo7yY033hh/9md/lnn8s5/97Pirv/qreN7znheFQuGA426//fb46Ec/Gh//+MdjdnY2ed3LL7883vOe98Tf/u3fZq4FAAAAAAAOZG5hPv7tustbXUbSv113efz9S34vBvr86hcAAAAAgKUptroAgEZ473vfG1dccUWmsa961atiy5Yt8aY3valusCgiYmRkJF73utfFLbfcEm984xszXX/z5s3x53/+55nGdprZ2dn43d/93Zienk6OLZVK8elPfzq+//3vx/Of//y6waKIiKOOOio+9KEPxU033ZS589Ni/ncHAAAAAIB6vr35hrhzT7nVZSTduXsiLt58Q6vLAAAAAACggwkXAV3n9ttvj7/7u7/LNPYv//Iv4/Of/3ysWrVqUXMMDQ3FP/3TP8XHPvaxTOM/9alPxbXXXruoOTrBBz/4wbjllluS41atWhWXX355vO51r1v0HMcdd1xcffXV8ZznPCc5tlqtxp/+6Z/GwsLCoucBAAAAAIAH7dy7O7760x+1uozMvvrTH8U9e3e3ugwAAAAAADqUcBHQdd761rdm6qTzhje8Id773vcua64//dM/jf/1v/5XclytVos//dM/jVqttqz52sn27dszfe8DAwPxrW99K04//fQlz7VixYr41re+FU972tOSY3/84x/HJz/5ySXPBQAAAAAAn7v+BzG7MN/qMjKbWZiPz13/g1aXAQAAAABAhxIuArrKjTfeGF/72teS404++eT4yEc+ksuc73rXu+JFL3pRctyPfvSjuOiii3KZsx28//3vj7179ybH/e///b/j7LPPXvZ8o6Oj8YUvfCFGR0czzTk7O7vsOQEAAAAA6D03bLs9rrvj1laXsWjX3nFr3Lh9a6vLAAAAAACgAwkXAV3l/e9/f3JMsViMT33qUzE0NJTLnIVCIf7lX/4lSqVScmyW+jrBxMREfOpTn0qOO/nkk+Ntb3tbbvM++clPjr/6q79Kjtu+fXtccMEFuc0LAAAAAEBvmF2Yj89e//1Wl7Fkn7nu8o7quAQAAAAAQHsQLgK6xq9//ev40pe+lBz32te+Nk455ZRc5/6N3/iNeOtb35oct2HDhrj22mtznbsVPvGJT2TqWvTBD34wisV832re8pa3xFFHHZUc94EPfCDXeQEAAAAA6H7f2nR97Jjc1eoylmzH5K741qbrW10GAAAAAAAdpr/VBQDk5cILL4z5+fp34ysUCvHOd76zIfO/5S1viQ984AMxPT1dd9xnPvOZePrTn96QGprlM5/5THLMM57xjHjuc5+b+9yDg4Px53/+5/HmN7+57rhNmzbFddddF6eddlruNQAAAABAN6tWq7F990Tcdt/dcceue2Pv7HTMLSzEfHUh+ot9MdDXFysGh2Pt6oPj6IMPjSNWjud+kyFohR2Tu+Lrmzr/BmFf33RtPOuodXHo6OpWlwK58d4EAAAAAI0lXAR0jQsvvDA55oUvfGEcf/zxDZn/kEMOide85jXxf//v/6077otf/GJ8+MMfjv7+zvwr+Prrr49bbrklOe7P/uzPGlbDH/3RH8W73/3u2L17d91xF154oXARAAAA9BCHTmFparVa3Hz3trj+jlvj1vt2xC/v2xkzC/Vv5PRIQ/0D8cTxx8UxBx0Wp649Jo4/dE0UCoUGVgyN8dnrvh9zCwutLmPZ5hYW4rPXfz/e/pyXt7oUWDLvTdAYPjNBfqwnyIe1BPmwliA/1hO9rFCr1WqtLgJguX7605/GiSeemBz3uc99Ln7/93+/YXVcfvnlcc455yTHXXzxxfHiF7+4YXU00tvf/vb4wAc+UHfMypUrY8eOHVEqlRpWx+te97pkB6XDDz88tm/f3tW/LNq5c2cceuih+3zt7rvvjkMOOaRFFQEAAEDzOHQKy7N3diY23H5zfG/LTbF990Ru1z1i1Xi84Nj1cfZRx8eKwaHcrguNdP0dt8UHfvDNVpeRq7c9+2Vx6tqjW10GLIr3JsiXz0yQH+sJ8mEtQT6sJciP9cSj9fK5XOEioCv84z/+Y/yP//E/6o4ZHh6Ou+++O1auXNmwOqrVajzhCU+I7du31x335je/OT7ykY80rI5GeupTnxo/+9nP6o55zWteExdccEFD6/jOd74TL3nJS5LjNm7cGCeffHJDa2mlXt7EAAAA0LscOoXl2bGnHN/YdH38cOvmRf2SdLGG+vrjmUeui5efcGoctnKsYfPAcs3Mz8X/uOhzcc/ePa0uJVeHrFgV//DS18Zgf3+rS4Ek702QL5+ZID/WE+TDWoJ8WEuQH+uJA+nlc7nCRUBXeNGLXhTf/e536455wQteEJdeemnDa3n9618f//Zv/1Z3zPHHHx+bNm1qeC15u/POO+OII45IjrvgggviNa95TUNrmZ6ejvHx8Zienq477n3ve1+84x3vaGgtrdTLmxgAAAB6j0OnsDwL1WpctHljfOWmq2OuutC0eQeKffHK9WfES9edEsVisWnzQlZf/PFV8bWf/ajVZTTEK556epy//sxWlwEH5L0J8uUzE+THeoJ8WEuQD2sJ8mM9kdLL53KFi4CONzs7G+Pj4zE1NVV33N///d/HO9/5zobXc+GFF8bv//7vJ8fdcccdsWbNmobXk6cLLrggXvva1ybH3XnnnXH44Yc3vJ5zzz03vve979Ud06xQWav08iYGYDmq1Wps3z0Rt913d9yx697YOzsdcwsLMV9diP5iXwz09cWKweFYu/rgOPrgQ+OIleMOGQAAtJBDp7B823bdF5+4+rtx6707WlbDkw4+PN5wxrmxZvVBLasBHu3O3RPxzm9fGPNNfH9ppv5iX7zvvNfE41eNt7oU2I/3JsiPz0yQH+sJ8mEtQT6sJciP9URWvXwuV7gI6HjXXnttnH766clxV1xxRZx11lkNr+dXv/pVPPGJT0yO+8pXvhK//du/3fB68vTGN74xPv7xj9cd86QnPSm2bNnSlHr+5m/+Jv76r/+67phVq1ZFuVyOQqHQlJqarZc3MQCLUavV4ua7t8X1d9wat963I355385F3X1kqH8gnjj+uDjmoMPi1LXHxPGHruna9xYAgHbj0CksT7VWi4tu3hhfvumqpv7C9EDu/0XqmfHS40+Jos9VtFitVou/v+xr8ZO7ftXqUhpq/eOfGO987m/5WQZtw3sT5MtnJsiP9QT5sJYgH9YS5Md6YjF6+VyucBHQ8f7lX/4l3vCGN9QdUywWY/fu3bFixYqm1HTIIYfEPffcU3fMu9/97vjbv/3bptSTl2c+85lx1VVX1R3zO7/zO/GFL3yhKfVcdNFF8Zu/+ZvJcb/4xS/imGOOaUJFzdfLmxiALPbOzsSG22+O7225KbbvnsjtukesGo8XHLs+zj7q+FgxOJTbdQEAeJhDp7B889WF+OTVl8aVW29pdSn7OevI4+INZ5wb/cW+VpdCD/vRr7bEh6/4dqvLaIo/O/ulcfoTntTqMsB7E+TIZybIj/UE+bCWIB/WEuTHemIpevlcbn+rCwBYro0bNybHPPnJT25asCgi4tRTT41LLrmk7pgbbrihSdXko1qtxo9//OPkuFNOOaUJ1dzv1FNPzTTuhhtu6NpwEQCPbceecnxj0/Xxw62bF9WhKKvtuyfis9d/P75w45XxzCPXxctPODUOWzmW+zwAAL2qHQ+dzlUX4j9uvCJ+Vd7p0CkdYXZhPj56xbdj47bbW13KY7py6y1RmZuNNz/rvBjs8+sqmm96fi4+u/EHrS6jaT53/fdj/eOfGMP9A60uhR7mvQny4zMT5Md6gnxYS5APawnyYz3B4hVbXQDAcv3kJz9Jjlm3bl0TKnnYcccdlxxz0003NaGS/Nx6660xNTWVHNfM1/rwww+P1atXJ8d12msNwNItVKvxjU3XxTsuuiAuu/WnDQkWPdLMwnxcdutP4x0XXRDf3HRdVKvVhs4HANALZhfm48MbLmqrX/Y80pVbb4kPb7goZhu814TlmK8utPXh7Qdt3HZ7fOyKi2O+De4YSe/56k+vifumJltdRtPcOzUZX/vpj1pdBj3MexPkx2cmyI/1BPmwliAf1hLkx3qCpREuAjrebbfdlhxz7LHHNqGShz3pSU9Kjtm2bVvMzs42oZp8ZHmdI5r/WmfpSJS1dgA627Zd98V7Lv1ifP7GK5veyvj+O4tcGe+59Euxbdd9TZ0bAKCbOHQKy1et1eKTV1/a9uvoQddvuy0+efWlUa3VWl0KPWTbrvvi2zff0Ooymu6izRv93IKW8N4E+fGZCfJjPUE+rCXIh7UE+bGeYOmEi4COVqlU4q677kqOyxJAyVOWcFG1Wo1f/vKXTagmH7ffnm2jdfTRRze4kn1lea2z1g5AZ6rWavHNTdfHuy7+97j13h0treUX994V77r43+Obm653+AAAYJEcOoV8XHTzxra9G+OBXLn1lvj25o2tLoMeUavV4t+uuywWar3XfXihWo1/u+7yqHnvosm8N0E+fGaC/FhPkA9rCfJhLUF+rCdYHuEioKNlDeccccQRDa5kX49//OMzjeuk0MvWrVuTYw466KAYHh5ufDGPkOW17qTXGYDFma8uxP+56pL4jxuvaHq3ogO5v4vRFfF/rrrE3UUAABbBoVNYvm277osv33RVq8tYki/9+CodVWiKq3758/jZjjtaXUbL/GzHr+PqX21pdRn0EO9NkB+fmSA/1hPkw1qCfFhLkB/rCZZHuAjoaNu2bcs07vDDD29wJUub7447OucXmFle62a/zlnnvOuuu2JhweFugG4zuzAfH95wUdv+UODKrbfEhzdcFLML860uBQCg7Tl0Csu3UK3GJ67+btvceGGx5qoL99+hsdp73WRonsrcbFxww4ZWl9FyF2z8QVTmZltdBj3AexPkx2cmyI/1BPmwliAf1hLkx3qC5RMuAjravffem2ncYYcd1uBK9nXooYdGsZj+K/a++zpnM5DltW726xyRLVxUq9ViYmKiCdUA0Czz1YX46BXfbvs2xhu33R4fu+JiHYwAAOpw6BTy8e3NG+PWe3e0uoxl+cW9d8VF7tBIA33lJ1dHubK31WW03ERlb/y/n1zT6jLoAd6bIB8+M0F+rCfIh7UE+bCWID/WE+RDuAjoaFnDRWNjY40t5FGKxWKsXLkyOS5r/e0gS63Nfp0XM2cnvdYA1Fet1eKTV1/a9sGiB12/7bb7fwBQq7W6FACAtuTQKSzfjj3l+PJNV7e6jFx8+aarY8eecqvLoAv9unxPfOeWG1tdRtu4+JYb4tfle1pdBl3MexPkx2cmyI/1BPmwliAf1hLkx3qCfAgXAR0ta+ef0dHRBleyvyzhok7qXJSl1izfc96yztlJrzUA9V1088a4custrS5jUa7cekt82w8AAAD249Ap5OMbm67v2DsyPtpcdSG+sen6VpdBl6nVavHp6y53449HqD7wmtS8JjSI9ybIh89MkB/rCfJhLUE+rCXIj/UE+REuAjra7t27k2NWrFgRxWLz/7pbtWpVcsyuXbuaUEk+srzWrQgXZXmdIzrrtQbgwLbtui++fNNVrS5jSb7046ti2y5hVwCAR3LoFJZv7+xM/HDr5laXkasfbt0cU7MzrS6DLnLl1lti893bWl1G29l897aOu4ELncF7E+THZybIj/UE+bCWIB/WEuTHeoL8CBcBHW12djY5plQqNaGS/Q0PDyfHZKm/XbTra53ldY7orNcagMe2UK3GJ67+bsf+QGCuuhCfvPrSqFarrS4FAKAtOHQK+dhw+80xszDf6jJyNbMwHxtuv7nVZdAl9s7OxIU3bGh1GW3rwhs2eO8id96bIB8+M0F+rCfIh7UE+bCWID/WE+Srv9UFACxHlsBIX19fEyrZX39/+q/YTgq8tOtrneV1juis13q5nvWsZ2V+XWicn/3sZ60uAbrOtzdvjFvv3dHqMpblF/feFRdt3hgvO+G0VpcCANBy3Xzo9EXHPa3VpdAjarVaXLrlplaX0RCXbrkpXvjkk6JQKLS6FDrcl2+6OnZNT7W6jLa1a3oqvnTT1fGHpz2n1aXQJbw3QX58ZoL8WE+QD2sJ8mEtQX6sJ8iXzkVAR8sSGGlVyCLLvHNzc02oJB/t+lpnnbOTXmsA9rdjTzm+fNPVrS4jF1++6erYsafc6jIAAFqq2w+d1mq1VpdBj7j57m1x5+6JVpfRENt3T8Tmu7e1ugwAFsl7E+TDZybIj/UE+bCWIB/WEuTHeoL8aWsAdLT5+XTiWLgoH+36WgsX7e+KK66IQw45pNVlAOTqG5uuj7nqQqvLyMVcdSG+sen6+ONnPL/VpQAAtEwvHDo9/rC1rS6FHnD9Hbe2uoSGuu6O26wllu389WfE1b/6ue5FBzA2PBLnrz+j1WXQRbw3QT58ZoL8WE+QD2sJ8mEtQX6sJ8ifzkVAR8sSLFlYaM1B5Czztir4tBTt+lpnnbOTXmsA9rV3diZ+uHVzq8vI1Q+3bo6p2ZlWlwEA0DK9cOgUmuHW+3a0uoSGuq3Lvz+aY2RwKF5z8tmtLqNt/d7JZ8fI4FCry6CLeG+CfPjMBPmxniAf1hLkw1qC/FhPkD/hIqCjDQ4OJsdk6bjTCFk65WSpv12062udtSNRJ73WAOxrw+03x8xCa97PG2VmYT423H5zq8sAAGgZh05h+arVavzyvp2tLqOhtk7sjGq12uoy6AJnHXlcrDt0TavLaDvHH7omzjryuFaXQRfx3gT58ZkJ8mM9QT6sJciHtQT5sZ4gf8JFQEcbGBhIjmlVuCjLvJ0UeGnX1zrrnJ30WgPwsFqtFpduuanVZTTEpVtuilqt1uoyAACazqFTyMf23RNddyOGR5uZn4vteyZaXQZdoFAoxOtPe24UC4VWl9I2ioVCvP60c6LgNSFH3psgHz4zQX6sJ8iHtQT5sJYgP9YTNEZ/qwsAWI6hoaHkmOnp6SZUsrR5Oynw0q6vddY5O+m1BuBhN9+9Le7c3Z2/rN++eyI2370tjj9sbatLAQBoql45dLrh9s3xuNGV93+hFlGLWtQiIh4ImNce+sfaA//8cPC8FrV4ZA794T8/cI0HrlN74Dr7XrMWjxz54HX2veZjz/nA/z08S0PrfmCyunXXHjHfEuquPXj1/euOR82ZGtvauh/+50fWfV9lMnrB+y77eowODWcau7SIxBKftYSnNau+pdXWvIDJUsIsS6ruMZ60engkJip7l3K1rrN6eCQ+de1/PvaDS7gXylJun9Ksm67UllRdxNLKW/yTlvbaLeFJS30dFjF2cqY1v5Nrto9ecXGMl1Y89PfZg3/dFAqP/Nu0EIXCA3+/Fh76yv3/WNj3792Hn/fAfz70lMJDf6c/NKLw8DX2veZjzf3oaz58jUc88oix7VL3I+fIWPcD11l63Q//82PX/fAzmlH3zsndPfGZ6cY7fxmHrxxrdSl0ubv2lK0nyIG1BPmwliA/vbKetu+ZiLWrD251KfQQ4SKgo61cuTI5Zu/evVGr1Zp+9709e/Ykx6xataoJleRj5cqVcffdd9cdk+V7zlvWOTvptQbgYdffcWurS2io6+64TbgIAOg5t91X/+cL3eKT11za6hKgK9w7tSfunWr+zx2h201U9gpawRLdseveuGPXva0uAzreP37/G60uAbqG9QT5sJYgH9YS5Of2++4WLqKpiq0uAGA5DjrooOSYWq3WktDL7t27k2Oy1N8ustSa5XvOW9Y5O+m1BuBht963o9UlNNRtXf79AQA8FgcxAQAAAAAAoL47yn6nRnMJFwEd7eCDsyVyd+3a1eBK9lWtVmNycjI5Lmv97SBLrc1+nRczZye91gDcr1qtxi/v29nqMhpq68TOqFarrS4DAKCp9s5Ot7oEAAAAAAAAaGuTszOtLoEeI1wEdLSsgZEdO5rbFWDnzp2xsLCQHNdJgZcstTb7dY6IuOuuu5JjCoVCjI+PN6EaAPK0ffdEzCzMt7qMhpqZn4vteyZaXQYAQFPNZfiZCQAAAAAAAPSyuS4/N0X7ES4COtqaNWsyjcsSQMlT1vmy1t8OstTa7Nc565yHHXZY9Pf3N6EaAPJ02313t7qEpri9R75PAIAHzVeFiwAAAAAAAKAev1Oj2YSLgI525JFHZhq3ffv2xhbyKHfeeWemcUcddVSDK8lPltf6vvvui5mZ5rZhzPJad9LrDMDD7th1b6tLaIo7yr3xfQIAPKi/2NfqEgAAAAAAAKCt+Z0azSZcBHS0UqkUhx12WHLcrbfe2oRqHvaLX/wiOaZQKMQTn/jEJlSTjywBnVqtFrfddlsTqnlYltdauAigM+2dnW51CU0xOdvcYC4AQKsN9PlFCAAAAAAAANQz0Nff6hLoMf6NAzre0UcfHTt27Kg7ZsuWLU2q5n5ZAi9r1qyJoaGhJlSTj6OPPjrTuC1btsTxxx/f4GoeluW1zlo7AO1lbqE3WvvOLcy3ugQAgKZaMTjc6hK6WiEiolB46J8LUYj7/6/wiMfv/3PhoScV9hn70LgoROERz93neQ99qfDQnA9e7+E593/u/UMfUcsDf65fy8Nz7vt97POnB2p9uO6Hatlvjn3r3v+1enjgPt//o66z7/eR7bXar5aHnvfo7+MxXqtH/e921+Su2Hz3tuh2Jx9xVDxh7ODkuFrUFn/xJTxlqU9rVn1Lmae2xNdhKQUu6bVbUn3ZnlSr1eKHv/x5TPbADU6eetjaWLM6vZYeVkgPefQzFv+UJcyytGctpbb7Z2rON7WUeZb0LTX4dfh1+Z64YfvWpU3SQdYdckQcvnIsavHA37u1h//WqT3wl1Ytao/4++v+v53v//ODj+879sEvPvKa+16n9hhzPPzPjx770H/WHvj6Q4NqjzHH/rU8cs5Hfx8PXiMecZ1aPPr7eHjs/nPs/1rt8/0+4hoPfx+1x5gj/VodsJZH/+/20J/3f60AAACgVUYHO+eMMd1BuAjoeCeeeGJcddVVdcds3ry5SdVkn+/EE09sQiX5OeaYY6JUKkWlUqk7bvPmzfHyl7+8KTXdddddsWvXruS4TnutAbjffLU3wkW98n0CADxo7aIONneu15323DjjN4594E+PCJ5kDMzsG1I50HP3D7rQO+4o3xvv+PYFrS6j4V598lk98/cGrXHSEUfGP3z/G60uo+H+4LTnWks03B3le3siXPRHpz/Peuox+wSjHjPo9HAoKmLfQFOmINajQmFX//Ln8Znrv9/ob6vlfmf9mXHKmqNaXQZd7vptt8WXbrq61WU0nPVEo1lLkA9rCfLTK+tpbYYbb0GehIuAjnfyyScnx9xyyy0xNTUVIyMjTagoYuPGjckxp5xyShMqyU9fX1+sX78+rrnmmrrjsnzveck6V6e91gDcr7/Y1+oSmqJXvk8AgAcdfdChrS6hKU44bG2sGm7Oz6LoTUesGo+hvv6Y6eJuqEP9A3HEyvFWl0GXO+nxT4y+QiEWlt7Cqe1ZSzSL9ya61b7dJBsf6n/KYU9o+Bzt4LQnHCOoR8MVC8WeOHRqPdFo1hLkw1qC/PTKejqqR36nRvsotroAgOXKEhypVqtx4403Nr6YiPj1r38dO3fuTI7LEopqN1le62aGi66//vrkmJUrV8YxxxzThGoAyNtAX2+Ebgb63PMBAOgtDx467WYOndIMxWIxnnjQIa0uo6GOHD8kikW/yqKxisViHHXwYa0uo6GsJZrFexPkw2cmyI/1BPmwliAf1hLkx3qCxvBTL6DjnXTSSVEqlZLjNmzY0IRqIn7wgx9kGveMZzyjwZXk78wzz0yO2bJlS+zYsaMJ1WR7rU8//fSH7iYGQGdZMTjc6hKaYnRwqNUlAAA0lUOnkJ9jDuruQMTRXf790T6OPfjwVpfQUNYSzeS9CZbPZybIj/UE+bCWIB/WEuTHeoLG8G8c0PGGhobiWc96VnLcf/7nfzahmmzzrFu3LtauXduEavL1/Oc/P9O4ZrzWMzMzceWVVybHnXvuuQ2vBYDG6JU22WvHeuP7BAB4JIdOIR+nru3ujt2nrT261SXQI6wlyI/1BPnwmQnyYz1BPqwlyIe1BPmxniB/wkVAV3jBC16QHLNhw4aYnJxsaB3VajUuueSS5LhODbwcccQRcfzxxyfHXXzxxQ2v5fLLL49KpZIc16mvNQARRx90aKtLaIqjeuT7BAB4JIdOIR/HH7omHr9qvNVlNMQRq8Zj3aFrWl0GPcJagvxYT5APn5kgP9YT5MNagnxYS5Af6wnyJ1wEdIUXv/jFyTHT09Px9a9/vaF1bNiwIbZv354cl6XedpWl9q9//esxPT3d0Do+//nPJ8ccdthhcfLJJze0DgAa54hV4zHU19/qMhpqqH8gjljZnYctAADqcegU8lEoFOLcY9e3uoyGOPfY9VEoFFpdBj3CWoL8WE+QD5+ZID/WE+TDWoJ8WEuQH+sJ8idcBHSF9evXxwknnJAcd8EFFzS0js997nPJMQcffHBHd9N59atfnRyzZ8+ehga59u7dG1/96leT4171qlf5JQ9ABysWi/HEgw5pdRkNdeT4IVEs+lgGAPQeh04hP2cfdXzX3ZhhqK8/zj4q3UEd8mQtQX6sJ1g+n5kgP9YT5MNagnxYS5Af6wny5xQb0DVe85rXJMdccsklsXnz5obMv3PnzrjwwguT437nd34nBgYGGlJDMzz96U+PY489Njnuwx/+cMNq+PSnPx27du1Kjsvy7wQA7e2Ygw5rdQkNdXSXf38AAPU4dAr5WDE4FM88cl2ry8jVM49cFyODQ60ugx5jLUF+rCfIh89MkB/rCfJhLUE+rCXIj/UE+RIuArrG7//+70dfX1/dMbVaLf7+7/++IfN/5CMfienp6eS4P/zDP2zI/M2U5Xu4+uqr4/LLL8997tnZ2fjgBz+YHLdu3bo4/fTTc58fgOY6de0xrS6hoU5be3SrSwAAaBmHTiE/Lz/h1Bgo1v/ZaKcYKPbFy084tdVl0KOsJciP9QTL5zMT5Md6gnxYS5APawnyYz1BvoSLgK7xG7/xG/HKV74yOe5zn/tcbNy4Mde5f/WrX2UKvJx11lnxjGc8I9e5W+G//bf/FiMjI8lxb3vb26JareY690c+8pG4/fbbM80NQOc7/tA18fhV460uoyGOWDUe6w5d0+oyAABayqFTyMdhK8filevPaHUZuXjl+jPisJVjrS6DHmUtQX6sJ8iHz0yQH+sJ8mEtQT6sJciP9QT5ES4Cuso73vGO5JhqtRp//Md/HLOzs7nMWavV4g1veENUKpXk2Cz1LcbrXve6KBQKyf/Pu4PQwQcfHP/1v/7X5LiNGzdmCl1ltWXLlvibv/mb5LjHP/7x8drXvja3eQFonUKhEOceu77VZTTEuceuj0Kh0OoyAABayqFTyM95606JYw4+rNVlLMuTDj48XrrulFaXQY+zliA/1hMsn89MkB/rCfJhLUE+rCXIj/UE+REuArrKKaecEi9/+cuT4zZu3Bhvectbcpnz7/7u7+I73/lOctxpp50WL3vZy3KZsx284x3vyNS96F3veldcccUVy55v79698apXvSomJyeTY//yL/8yhoa0hQToFmcfdXwM9fW3uoxcDfX1x9lHHd/qMgAA2oJDp5CPvmIx/tsZL+zYOzQOFPviDWecG8WiX13RWtYS5Md6gnz4zAT5sZ4gH9YS5MNagvxYT5APPwUDus4HP/jBTMGST3ziE/E//+f/XNZcH//4xzNdo1AoxMc+9rGu6k6wdu3aeNe73pUcNzc3F7/5m78Z11133ZLnmpqaipe97GVxww03JMeeeOKJ8d//+39f8lwAtJ8Vg0PxzCPXtbqMXD3zyHUxMigICwAQ4dAp5GnN6oPilevPbHUZS3L+SWfGmtUHtboMiAhrCfJkPcHy+cwE+bGeIB/WEuTDWoL8WE+QD/8GAl3nmGOOiXe+852Zxr73ve+NV7/61bFnz55FzTEzMxNvfvOb441vfGOm8a9//evjjDO6o+3iI7397W+PY489Njlu165d8ZznPCc+85nPLHqOW265Jc4444y47LLLkmMLhUL80z/9U/T1deYGEYADe/kJp3bsDwAebaDYFy8/4dRWlwEA0FYcOoX8vPT4U+KsI49rdRmLctaRx8V57shIm7GWID/WEyyfz0yQH+sJ8mEtQT6sJciP9QTLJ1wEdKX/7//7/+LMM7NtEj7/+c/HscceG//8z/8cu3fvrju2UqnEZz/72Vi3bl187GMfy3T9Jz/5yfGRj3wk09hOMzQ0FJ///OczdYqampqK173udXHOOefEZZddFrVare74rVu3xlvf+tZYv359/OQnP8lUz1/8xV/Es5/97ExjAegsh60ci1eu746g7ivXnxGHrRxrdRkAAG3HoVPIR7FQiDeccW6csuaoVpeSyalrjr7/joxd1PWd7mAtQX6sJ8iHz0yQH+sJ8mEtQT6sJciP9QTLU6ilTncDdKhf//rXcfLJJ8e9996b+TmlUime85znxKmnnhpr166NlStXxuTkZNx1111x/fXXx+WXX76oLkelUimuuuqqOOmkk5byLSS97nWvy9QN6LLLLovnPve5DakhIuLjH/945i5OD3rCE54Qz3nOc2L9+vVx8MEHx8DAQJTL5fjFL34R11xzTfzoRz9KBpAe6eyzz47LLrus57oW7dy5Mw499NB9vnb33XfHIYcc0qKKABpnoVqN91z6xbj13h2tLmXJnnTw4fGec8/XxhgA4ADmqwvx4Q0XxcZtt7e6lKRT1xwdbzn7vOjvkg6bdJ/Zhfn46BXfbuv1dOqao+NNz3pJDPb1t7oUOCBrCfJjPcHy+cwE+bGeIB/WEuTDWoL8WE8sVy+fyxUuArraj370o3jBC16wqEBQXgYGBuJrX/tanHfeeQ2bo13CRRER73znO+P9739/Q+c4kBNPPDEuv/zyOOig3msL2cubGKA3bdt1X7zr4n+PuepCq0tZtIFiX7z3Jb+njTEAQIJDp5Cf+epCfPLqS+PKrbe0upT9nHXkcfGGM871S1M6wnx1If7PVd+Nq37581aXsh9riU7jvQmWz2cmyI/1BPmwliAf1hLkx3piOXr5XK7bZQNd7fTTT49vfetbMTo62tR5BwYG4j/+4z8aGixqN+973/vizW9+c9PnXbduXVx66aU9GSwC6EVrVh8Ur1x/ZqvLWJLzTzpTsAgAIIPBvv74s7NfGmcdeVyrS3lMZx15XLzl7PP8soeO0F/siz8580Xx6qc9Kwba5KD0QLEvfu/kZ8WfnPkih7fpGP3FvnjjM18czzvmqa0u5SF9haK1REfy3gTL5zMT5Md6gnxYS5APawnyYz3B0uhcBPSEn/70p/Fbv/VbcdtttzV8rkMPPTS+8pWvxLOe9ayGz9VOnYse9NGPfjTe9ra3xfz8fMPnOu+88+Lf//3fY/Xq1Q2fq131ckIa6F3VWi3+z1WXtOXdTQ/krCOPiz8580VRLBRaXQoAQMeo1mpx0c0b48s3XdUWnSsHin1x/klnxnnrTrGvoyNt23VffOLq78at9+5oWQ1POvjweMMZ57rxAh3tHy7/etywfWtLaxgdHI6/Pvd8a4mO570JlsdnJsiP9QT5sJYgH9YS5Md6Yil6+VyucBHQMyYmJuJNb3pTXHjhhQ2b4yUveUn8y7/8S6xdu7ZhczxSO4aLIiI2bNgQf/zHfxy33NKYQ9+lUine/e53x1/8xV9EsdjbTfh6eRMD9Lb56kJ8eMNFbd2++EGnrjk63nL2ee56CgCwRA6dQn4WqtX49uaN8eWbrm7qL1IHin3xyvVnxkvXndzzP8+j801U9sbbvvmZmJ6fa8n8A8W++NDL/jAOWrGyJfND3rw3wfL5zAT5sZ4gH9YS5MNagvxYTyxGL5/LFS4Ces7ll18eb3/72+P666/P7ZpPfvKT473vfW/8l//yX3K7ZhbtGi6KiJidnY0PfOAD8Y//+I9x33335XLNYrEYr3jFK+If/uEf4qijjsrlmp2ulzcxALML8/HRK77d1gGjU9ccHW961ku0MQYAWCaHTiFfO/aU4xubro8fbt0cMwuN60A+1NcfzzxyXbz8hFPjsJVjDZsHmu3izTfE5zb+oCVzv/aUZ8dL1p3ckrmhkbw3wfL4zAT5sZ4gH9YS5MNagvxYT2TVy+dyhYuAnvX9738//vmf/zkuvvjimJycXPTzh4eH4/nPf378yZ/8SZx33nlRaEGLwnYOFz1oamoqPvOZz8SnP/3puO6662IpbztHHHFEnH/++fGmN70pjjnmmAZU2bl6eRMDEHF/B6NPXn1pXLm1Md3yluOsI4+LN5xxro5FAAA5cugU8jU1OxMbbr85Lt1yU2zfPZHbdY9YNR7nHrs+zj7q+BgZHMrtutAuFqrVeNd3/j1+Xb63qfP+xtjj4n+/+NXR5xACXcx7EyyPz0yQH+sJ8mEtQT6sJciP9URKL5/LFS4Cet7s7Gz84Ac/iCuvvDI2bdoUmzdvjnvuuSf27NkTU1NTMTw8HCtXroyDDjoojjvuuDjhhBPiGc94Rjz/+c+PkZGRVpffUXbs2BGXXHJJ3HDDDbFp06a47bbbYteuXbFnz56Yn5+P0dHRWLlyZaxZsyaOP/74eMpTnhLPe97z4uST3YXxQHp5EwPwoGqtFhfdvDG+fNNVTb2zyIEMFPvi/JPOjPPWnRLFFoSPAQB6gUOnkK9arRab794W191xW9x2347Yet/di/ql6lD/QBw5fkgcfdBhcdrao2PdoWtacjMmaKbNd2+Lv/nel5s651+fe34cd8gRTZ0TWsV7EyyPz0yQH+sJ8mEtQT6sJciP9cSB9PK5XOEiAOhgvbyJAXi0bbvui09c/d249d4dLavhSQcfHm8449xYs/qgltUAANBLHjx0etHmjbFx2+2Lfr5Dp/DYqtVqbN8zEbffd3fcUb43JmdnYm5hPuarC9Ff7IuBvv4YHRyKtWMHx1EHHRpHrByPok4q9KBPXPXd+MHtNzdlrmcffXz8tzNe2JS5oB15b4KlEdSD/FhPkA9rCfJhLUF+rCcerZfP5QoXAUAH6+VNDMBjWahW49ubN8aXb7q6qV2MBop98cr1Z8ZL153s0AIAQAt89+c/jn+77vIDPl4sFOKZTzzOoVMAcrWrsjfe9q3PxtTcbEPnGRkYig+87A9i9fBIQ+cBoPsJ6kF+rCfIh7UE+bCWID/WE718Lre/1QUAAADkpa9YjJedcFqc/oQnxTc2XR8/3Lp5UXcTWayhvv545pHr4uUnnBqHrRxr2DwAANQ3Udlb9/FDVqyK//7MFzWpGgB6xerSividk55ZN+Cah1eddKZgEQC5KBaLsXb1wbF29cGtLgU6nvUE+bCWIB/WEuTHeqKXCRcBAABd57CVY/HHz3h+vObkZ8WG22+OS7fcFNt3T+R2/SNWjce5x66Ps486PkYGh3K7LgAAS1NOhIvGR0abVAkAveYFTzoxLr/1Z7F1YmdDrn/k+KHx/Ced2JBrAwAAAADAg4SLAACArjUyOBQvOu5p8cInnxSb794WX/3Zj+Knd/160dcpFgpx7OMeH0cfdFictvboWHfomigUCg2oGACApUh1LhobXtGkSgDoNcViMV7/9HPir7/7xdyvXYiIP3r6OVEsFnO/NgAAAAAAPJJwEQAA0PUKhUIcf9jauPnubUsKFx1z8GHx1+ee34DKAADIw0Rlsu7j4yXhIgAa59jHPT7OOeYpcdmtP8v1us895qnxpMcdnus1AQAAAADgsbjNFQAA0DNSd7Q/kHJlKudKAADIU2q/Nj4iXARAY73qpLNidHA4t+uNDg7Hq056Zm7XAwAAAACAeoSLAACAnlGeXmq4aG/UarWcqwEAIA9zC/OxZ6ZSd8zYsHARAI21argUr3pafmGg333aWbFquJTb9QAAAAAAoB7hIgAAoGdMTC0tXDRXXYi9czM5VwMAQB7K0+kukzoXAdAM5xz9lDj6oMOWfZ1jDj4snnvMU3KoCAAAAAAAshEuAgAAeka5srRwUUREeYnBJAAAGivLHm+8NNqESgDodcViMf7o6edEYRnXKETE659+ThQLy7kKAAAAAAAsjnARAADQE6q1WpSnlx4QmqhM5lgNAAB5mcgQLhorjTShEgCIOPrgw+L5x5645Oe/4Nj1uXQ/AgAAAACAxRAuAgAAesKe6amo1mpLfn6WQ6sAADTfRKLD5FD/QJT6B5tUDQBE/M76Z8bKodKin7dqqBTnn3RmAyoCAAAAAID6hIsAAICesNxwUFm4CACgLaW6U46XVkShUGhSNQAQMTo0HK9+2lmLft6rT35WjA4ON6AiAAAAAACoT7gIAADoCcsNF+lcBADQniYqk3UfHyutaFIlAPCwZx99Qhz7uMdnHv/kxz0+zj7q+AZWBAAAAAAAByZcBAAA9ITldh4SLgIAaE8TU+nORQDQbMVCIV7/9HMydc8rPDC2qNMeAAAAAAAtIlwEAAD0hOWGg5YbTgIAoDFS+zThIgBa5cjxQ+KFx65PjnvhsSfFE8cPaUJFAAAAAADw2ISLAACAnjBRmVzm84WLAADa0cR0Klw02qRKAGB/r1x/ZqweHjng46uHR+L89Wc0sSIAAAAAANifcBEAANATlhsOmqjsjVqtllM1AADkYW5hPiZnpuuOGSsd+EA3ADTaisGh+L2Tn3XAx19z8tkxMjjUxIoAAAAAAGB/wkUAAEBPKCfCRQeP1L+j/Xx1ISZn6x9cBQCgucqVqeQYnYsAaLVnHbku1h26Zr+vH3/omjjryONaUBEAAAAAAOxLuAgAAOgJqc5FRx10WPIaqYASAADNlaU75XhpRRMqAYADKxQK8frTnhvFQuGhrxULhXj9aedE4RFfAwAAAACAVhEuAgAAul61Wo3ydP272h990KHJ62Q5vAoAQPOUK5PJMWPCRQC0gSeMPS5efNzTHvrzS447OdaOHdy6ggAAAAAA4BGEiwAAgK63e6YStVqt7pgnjh+SvFuwcBEAQHtJ7c+G+weiNDDYpGoAoL7/cuIZMV5aEeOlFfHbJz6j1eUAAAAAAMBD+ltdAAAAQKNlCQUdPDIaq4dKdTscTWS4Mz4AAM2T2ueN61oEQBspDQzGa04+OwqFgvArAAAAAABtRbgIAADoellCQWOl0RgrjdYNF5UrB34MAIDmKyfCRWPCRQC0mTOf+ORWlwAAAAAAAPsptroAAACARkvd0b6vWIyVQ8PJO9vrXAQA0F50LgKg0xQKhSgUCq0uAwAAAAAA9iFcBAAAdL3UHe3HSyuiUCjE+EgiXDRV/zoAADRXep832qRKAAAAAAAAADqXcBEAAND1Une0Hxtesc9/H0jq8CoAAM2V3OfpXAQAAAAAAACQJFwEAAB0vVTHoQc7FiU7F03vjVqtlltdAAAs3ezCfEzOTtcdMy5cBAAAAAAAAJAkXAQAAHS91B3tx0ujD/x3/cOnC9Vq7Jmpf4AVAIDmyNJVUrgIAAAAAAAAIE24CAAA6Hrl6foHT8dKIxHxcMio7rUqk7nUBADA8mQJF40JFwEAAAAAAAAkCRcBAABdbaFajV3TU3XHPBgqynL4NNUFCQCA5siyL9O5CAAAAAAAACBNuAgAAOhqu6enolar1R3z4KHT1UOlKBQKdccKFwEAtIfUvqzUPxjDA4NNqgYAAAAAAACgcwkXAQAAXW1iOvsd7YvFYowNj9QdWxYuAgBoC6l92diIrkUAAAAAAAAAWQgXAQAAXW1iKh0GGis9fPB0vFT/EKrORQAA7SG1LxsfFi4CAAAAAAAAyEK4CAAA6GqpO9r3F/tidHD4oT+PJcJFOhcBALSHicpk3cdT+zoAAAAAAAAA7idcBAAAdLXUodPx0oooFAr7/Ln+9YSLAADaQbkyVffx8RHhIgAAAAAAAIAshIsAAICuNpE6dPqoMNF4aTRxvfphJQAAmiPZuWhYuAgAAAAAAAAgC+EiAACgq5VTh04fFS569J/3v95UVGu1ZdcFAMDSzc7Px97ZmbpjUh0pAQAAAAAAALifcBEAANDVJip76z6+f+ei+odQF2rVmJypLLsuAACWrjxdf48XETE+Ur8jJQAAAAAAAAD3Ey4CAAC6Wt7hoizXBACgsbLsx8aGR5pQCQAAAAAAAEDnEy4CAAC61kK1Grunp+qOGRMuAgDoOFn2Y1n2dQAAAAAAAAAIFwEAAF1s1/RU1BJjHn3odOXwSBQLhbrPmahMLrMyAACWY2Kq/n6sNDAYwwODTaoGAAAAAAAAoLMJFwEAAF0rSwhovDS6z5+LhUKMDde/y325Ur8bEgAAjVWert+5SNciAAAAAAAAgOyEiwAAgK6VJQQ0NrL/wdOxxGFUnYsAAFprYqp+uCi1nwMAAAAAAADgYcJFAABA10qFgAaKfbFiYGi/r48/RuBo3+vWP8wKAEBjpfZjOhcBAAAAAAAAZCdcBAAAdK3UodOx0oooFAr7f304ES5K3CkfAIDGKk+nwkWjTaoEAAAAAAAAoPMJFwEAAF0reUf7A3QoSt3pPnWYFQCAxkqFvcdKI02qBAAAAAAAAKDzCRcBAABdq5wKFx3gjvYHCh098rrVWm3JdQEAsHSz8/MxNTdTd4zORQAAAAAAAADZCRcBAABdK9W5aGz4QJ2L6h9GrdZqsWd6asl1AQCwdBMZukimOlECAAAAAAAA8DDhIgAAoGtNVCbrPn6gDkVjGQ6jpoJLAAA0xsRU/T1eRLb9HAAAAAAAAAD3Ey4CAAC60nx1IXZPV+qOOdAd7bPc6V64CACgNcoZ9mHCRQAAAAAAAADZCRcBAABdadf0VHLMgQ6drhwqRV+h/selLIdaAQDIXyrkPTIwGMP9A02qBgAAAAAAAKDzCRcBAABdaWIqHf45UIeiYqEQY6WR+tcXLgIAaIlUyFvXIgAAAAAAAIDFES4CAAC6Upbwz3hp9ICPpQ6lTlQmF10TAADLl9rnHShADgAAAAAAAMBjEy4CAAC6Unm6/qHTwb7+GBkYPODj9YJHERHlytSS6gIAYHlSIe/UPg4AAAAAAACAfQkXAQAAXWliqn64aKy0IgqFwgEfT93xXuciAIDWSIW8Ux0oAQAAAAAAANiXcBEAANCVysk72tc/dJo6lDpRqR9eAgCgMdKdi4SLAAAAAAAAABZDuAgAAOhKqfBP6tBp6vFd01NRrVYXXRcAAEs3Mz8XU3OzdccIFwEAAAAAAAAsjnARAADQlcoNDhdVa7XYPVNZdF0AACxdao8Xke5ACQAAAAAAAMC+hIsAAICulOpclDp0muWO96k5AADIV5b9l85FAAAAAAAAAIsjXAQAAHSd+YWFZFeh8dJo3cez3PF+ojK5qLoAAFieLOEinYsAAAAAAAAAFke4CAAA6Drl6eXf0X50qBR9xfofmcqVqUXVBQDA8pQT4aKRgaEY6h9oUjUAAAAAAAAA3UG4CAAA6DpZQj+pO9oXC4UYH64/RuciAIDmSnUuSgXIAQAAAAAAANifcBEAANB1soR+shw8TQWQUodbAQDIV2qfl9q/AQAAAAAAALA/4SIAAKDrpEI/Q339URoYTF4nFUCamBIuAgBoprLORQAAAAAAAAC5Ey4CAAC6TurQ6VhpRRQKheR1Une+L08LFwEANFMqRC5cBAAAAAAAALB4wkUAAEDXyevQ6fhIonNRYh4AAPKV2n+lwuEAAAAAAAAA7E+4CAAA6DrpQ6ejma4znhi3a3oqFqrVzHUBALB00/NzUZmbrTtmfCTbPg8AAAAAAACAhwkXAQAAXWeiMln38aydi8aG64+r1Wqxe3oqc10AACxdOUPXyLHhkSZUAgAAAAAAANBdhIsAAICuU67UD/yMj2QLF2UZNzGdPuQKAMDypbpTRuhcBAAAAAAAALAUwkUAAEBXmVuYjz0zlbpjUh2JHpSlw9HElHARAEAzTEzV704ZETGecZ8HAAAAAAAAwMOEiwAAgK5Snq7ftSgie+ei0cHh6C/21Z8vwx30AQBYvnKiY+SKwaEY7O9vUjUAAAAAAAAA3UO4CAAA6CpZOgmNl0YzXatQKMRYaaT+fJX0HfQBAFi+iUSoeyxD10kAAAAAAAAA9idcBAAAdJXUHe0jIhkYeqRUEGmiku6UBADA8qVC5OPCRQAAAAAAAABLIlwEAAB0ldSh06H+gSj1D2a+XuqQalnnIgCApkiFyLN2pwQAAAAAAABgX8JFAABAV5lIhH3GSyuiUChkvt5YIlw0UUl3SgIAYPlS+67FdKcEAAAAAAAA4GHCRQAAQFdJ39G+flhosePLwkUAAE1RTnSo1LkIAAAAAAAAYGmEiwAAgK4ykTh0mupE9GipcNGu6alYqFYXdU0AABZnem42KvOzdccsNkQOAAAAAAAAwP2EiwAAgK6S6iSUd+eiWtwfMAIAoHEmMnSLXGyIHAAAAAAAAID7CRcBAABdJXXwdLw0uqjrZTmkOlGZXNQ1AQBYnFSAPELnIgAAAAAAAIClEi4CAAC6xtzCfEzOTtcds/jORekwUrmicxEAQCPpXAQAAAAAAADQOMJFAABA18gS8lnsodMVg0MxUOyrO0bnIgCAxkqFi1YMDsVgX3+TqgEAAAAAAADoLsJFAABA18gS8lls56JCoZAMJGW5kz4AAEtXTuy3snSbBAAAAAAAAOCxCRcBAABdI0vIZ7GdiyLSgSThIgCAxkqFyBcbIAcAAAAAAADgYcJFAABA10jd0X64fyBKA4OLvm4qkJSaFwCA5SlXpuo+LlwEAAAAAAAAsHTCRQAAQNdIdRBa6qHT8dLosuYFAGB5Up2LltKdEgAAAAAAAID7CRcBAABdIx0uqh8SOuDzRuofVk0ddgUAYHkaFSIHAAAAAAAAQLgIAADoIo26o/3YcP3n7Z6uxHx1YUnXBgCgvsrcbEzPz9UdI1wEAAAAAAAAsHTCRQAAQNcoV6bqPr7UQ6epzkUREbum688NAMDSlBNdiyKWHiIHAAAAAAAAQLgIAADoIo3qXJQllDQxlT70CgDA4k1kCBeNl0abUAkAAAAAAABAdxIuAgAAusLs/HzsnZ2pO2bJnYsyHFbNcugVAIDFy9a5aKQJlQAAAAAAAAB0J+EiAACgK5SnM9zRfmRpd7QfGRiMgb6++vMnuiYBALA0qRD36OBwDPT1N6kaAAAAAAAAgO4jXAQAAHSFLJ2DxoaXdkf7QqGQ7F40UZla0rUBAKhvIhHiXmp3SgAAAAAAAADuJ1wEAAB0hSzhouUcPE09V+ciAIDGKCf2eWPCRQAAAAAAAADLIlwEAAB0hYmp+uGe0sBgDA8MLvn6qUOrWcJNAAAsXmqfpXMRAAAAAAAAwPIIFwEAAF2hPN3YO9qnOxcJFwEANEIqXKRzEQAAAAAAAMDyCBcBAABdYWKqsXe0Tz1f5yIAgMZIdy4abVIlAAAAAAAAAN1JuAgAAOgK6UOnyw0X1T+0unumEvMLC8uaAwCAfVXmZmNmfq7umPERnYsAAAAAAAAAlkO4CAAA6ArlBt/Rfqw0kq5hWvciAIA8ZekOOTYsXAQAAAAAAACwHMJFAABAV0gdPM0SDqonSzipXJla1hwAAOxrojKZHKNzEQAAAAAAAMDyCBcBAAAdb2Z+LqbmZuqOWW7novFS+tBqlsOvAABkl+pOGRExNry8EDkAAAAAAABArxMuAgAAOl6WQ6dZwkH1lAYGY6ivv+6YVPckAAAWJ7W/Gh0ajoHEHg0AAAAAAACA+oSLAACAjpcl1LPccFGhUIixxDWEiwAA8jUxVX9/tdw9HgAAAAAAAADCRQAAQBfI0rkoFQzKInV4NUsdAABkV55OhYtGm1QJAAAAAAAAQPcSLgIAADpeqmPQyMBgDPUPLHuescThVZ2LAADyldpfjZVGmlQJAAAAAAAAQPcSLgIAADpe6tBpXne0T3UumqhM5jIPAAD3m5iqv7/SuQgAAAAAAABg+YSLAACAjldu0h3tx5LhIp2LAADyUqvVojw9VXdMKvwNAAAAAAAAQJpwEQAA0PFSHYOa1blocmY65hbmc5kLAKDXVeZnY2Z+ru6YVPgbAAAAAAAAgDThIgAAoOOlOgbldUf78ZH0dVJ31wcAIJuJqXRXSJ2LAAAAAAAAAJZPuAgAAOh4qXBRXne0z9IBKcshWAAA0sqJPV6EcBEAAAAAAABAHoSLAACAjjY9PxeVudm6Y/I6dDpWGkmOKVcmc5kLAKDXpQLkERFjw8JFAAAAAAAAAMslXAQAAHS0LHe0z6tzUal/MIb6B+qOmahM5TIXAECvS4WLVg6Vor+vr0nVAAAAAAAAAHQv4SIAAKCjZbmj/fjIaC5zFQqFZBekCZ2LAABykeoImVd3SgAAAAAAAIBeJ1wEAAB0tCydi8aH8zt4muqClKUeAADSUh0hhYsAAAAAAAAA8iFcBAAAdLRUp6CRgaEY7O/Pbb505yLhIgCAPKQ6F6VC3wAAAAAAAABkI1wEAAB0tFSYZ3wk30OnqXCRzkUAAPlI7vOEiwAAAAAAAAByIVwEAAB0tImp5h46HS+N1n1c5yIAgOWr1WrJ0LZwEQAAAAAAAEA+hIsAAICOVp6uf+h0bDjfQ6djpZG6j0/OTsfswnyucwIA9JrK3GzMJPZUY8JFAAAAAAAAALkQLgIAADpaqlPQ+EhzOxdFROyqTOU6JwBAr8nSDTLLvgwAAAAAAACANOEiAACgo5WnEuGinA+djme4Q/5EZTLXOQEAek05U7hI5yIAAAAAAACAPAgXAQAAHWt6bjYq87N1x+R96HQsU7gofRgWAIADy7KfWj080oRKAAAAAAAAALqfcBEAANCxshw6zRIGWozSwGAM9w/UHSNcBACwPKlOkKuGStHf19ekagAAAAAAAAC6m3ARAADQscoZQjx5dy7Kcs0sdQEAcGCpsHYj9ngAAAAAAAAAvUq4CAAA6Fit6FwUETFeGq37uM5FAADLkwprN2KPBwAAAAAAANCrhIsAAICOlQrxjA4Ox2Bff+7zpg6zTlQmc58TAKCX6FwEAAAAAAAA0DzCRQAAQMdq1R3tU4dZdS4CAFie1H5qLNFJEgAAAAAAAIDshIsAAICOleoQ1Kg72qdCS6nQEwAAB1ar1ZL7qfERnYsAAAAAAAAA8iJcBAAAdKzUHe0bFS5KXXfv7EzMzs83ZG4AgG43NTcbswv191Jjw8JFAAAAAAAAAHkRLgIAADpW6o72qQ5DSzU+MpocMzGtexEAwFKkulNGNC5EDgAAAAAAANCLhIsAAICO1arORWPDI8kxE1PpQ7EAAOwvFSCPiBgfES4CAAAAAAAAyItwEQAA0JEqc7MxPT9Xd0yjwkVZrluenmrI3AAA3S4VIC9ExOoMYW8AAAAAAAAAshEuAgAAOlLq0GlExFhptCFzDw8MRmlgsO4YnYsAAJYmtc9bOVyK/mJfk6oBAAAAAAAA6H7CRQAAQEcqZwgXNapzUZZrZ6kPAID9pfZR4w0KkAMAAAAAAAD0KuEiAACgI01U0p2BxkojDZt/LBEuytJZCQCA/aX2UWPDjdvjAQAAAAAAAPQi4SIAAKAjpQ6djg4Nx0Bff8PmT3UuEi4CAFiaVIh8fETnIgAAAAAAAIA8CRcBAAAdqZwI76TCP8s1Xqp/qDVVHwAAj21iqrX7PAAAAAAAAIBeI1wEAAB0pFRnoLHhxh46HSuN1H08dcd9AAD2V6vVojyd2OcJFwEAAAAAAADkSrgIAADoSKlw0fhIazsXTc3Nxsz8XENrAADoNnvnZmJuYaHuGJ2LAAAAAAAAAPIlXAQAAHSkian6nYFS4Z/lynKotZwIQAEAsK/yVHr/JFwEAAAAAAAAkC/hIgAAoOPUarUoT0/VHdPoQ6dZrp/qrgQAwL4mprOEixobIgcAAAAAAADoNcJFAABAx6nMz8bM/FzdMWMNDhdlub5wEQDA4kwkOhcVImL18EhzigEAAAAAAADoEcJFAABAx0kdOo1ofOeiof6BGBkYrDumLFwEALAo5cpk3cdXDY9EX9GPtQEAAAAAAADy5LewAABAx8kS2ml0uOj+OUbrPq5zEQDA4kxUpuo+3ow9HgAAAAAAAECvES4CAAA6TpbQzthw4w+ejiUOt04k7rwPAMC+Uvun1P4LAAAAAAAAgMUTLgIAADpOKly0cqgU/X19Da8jded8nYsAABYn1aFS5yIAAAAAAACA/AkXAQAAHaecuKN9sw6dpuZJHY4FAGBfqXC2cBEAAAAAAABA/oSLAACAjjNRmar7eLMOnY7pXAQAkJtarZYMZ6f2XwAAAAAAAAAsnnARAADQcVKdi5p16HR8ZLTu45W52Ziem21KLQAAnW7v7EzMVRfqjhkv1d9/AQAAAAAAALB4wkUAAEDHSXUEalrnouGR5BjdiwAAsplIBMgjmrfPAwAAAAAAAOglwkUAAEBHqdVqbRMuSnUuiogoT081oRIAgM5XzhDKblaHSgAAAAAAAIBeIlwEAAB0lMrcbMwuzNcdM1ZKh37yMD6cPtw6MZW+Az8AAOmOj4WIWJ2hcyQAAAAAAAAAiyNcBAAAdJTUodOI5nUuGuzvjxWDQ3XHZKkXAID0vmn18Ej0Ff1IGwAAAAAAACBvfhMLAAB0lIlKuhNQs8JFERFjibnKwkUAAJmk9k3N6k4JAAAAAAAA0GuEiwAAgI6SpRPQ6tJIEyq5XyrIpHMRAEA2qX3TeBP3eAAAAAAAAAC9RLgIAADoKKk72q8aKkV/sa9J1USMJ+6gr3MRAEA2qXCRzkUAAAAAAAAAjSFcBAAAdJT0He3rdxLK21jiDvoTlckmVQIA0NlSoexm7/MAAAAAAAAAeoVwEQAA0FHSd7Rv7qHTdOeiqSZVAgDQuWq1WtuFyAEAAAAAAAB6hXARAADQUZJ3tB+pH/bJW+qQa2V+Nipzs02qBgCgM03OTsd8daHumGaHyAEAAAAAAAB6hXARAADQUZKdi4ab3bkoPV8qEAUA0Ouy7JfGR4SLAAAAAAAAABpBuAgAAOgYtVotJiqTdcc0+9BpljvopwJRAAC9Lst+abzJIXIAAAAAAACAXiFcBAAAdIy9czMxt7BQd0yWTkJ5yhIu0rkIAKC+VLioUCjEquGRJlUDAAAAAAAA0FuEiwAAgI6RJaTT7HDRYF9/jA4O1x2jcxEAQH2p7pSrh0eir+jH2QAAAAAAAACN4LexAABAx8gS0snSSShvqUBT6rAsAECvK1em6j4+Ntz8PR4AAAAAAABArxAuAgAAOsbEVP1wUSHuv6t9s6UCTToXAQDUlwpjN7s7JQAAAAAAAEAvES4CAAA6Rjlx6HTV8Ej0F/uaVM3DUoddy8JFAAB1pULk4yPCRQAAAAAAAACNIlwEAAB0jInKVN3HUx2EGkXnIgCA5SlPJ8JFOhcBAAAAAAAANIxwEQAA0DEmEp2LWnXodLw0WvfxicreqNVqTaoGAKCz1Gq1ZBi7VSFyAAAAAAAAgF4gXAQAAHSMcuLQaevCRSN1H5+Zn4vK/GyTqgEA6Cx7ZqZjoVqtO0bnIgAAAAAAAIDGES4CAAA6RuqO9q06dDqW6FwUEVGuTDWhEgCAzlOerr/Hi0h3igQAAAAAAABg6YSLAACAjlCr1ZKdi8Za1bloJD3vRGWyCZUAAHSeial0uKhV+zwAAAAAAACAXiBcBAAAdIS9szMxV12oO6ZVd7QfGx5JjslyaBYAoBelQtiFQiFWD5WaVA0AAAAAAABA7xEuAgAAOkKWzj/jLbqj/UBff4wODdcdM5HougQA0KvK04nulMMjUSz6UTYAAAAAAABAo/iNLAAA0BHKGcI5rQoXZZk7S/0AAL0o1eFxrIV7PAAAAAAAAIBeIFwEAAB0hFTnn0JErBoeaU4xj2G8NFr3cZ2LAAAeWyqE3coAOQAAAAAAAEAvEC4CAAA6Qiqcs3p4JPqKrfuIM1aqH2wqVyabVAkAQGdJ7fOEiwAAAAAAAAAaS7gIAADoCKlDp2OJzkGNpnMRAMDSpDoXjQkXAQAAAAAAADSUcBEAANARUodOxxOdgxotdUf9cmVv1Gq1JlUDANAZqrVaTEyn9nmtDZEDAAAAAAAAdDvhIgAAoCO0f+ei+uGimYX5qMzNNqkaAIDOMDlTiYVqte6Y1D4LAAAAAAAAgOURLgIAADrCRGWy7uOtPnQ6lmH+VEAKAKDXpLpTRrR+nwcAAAAAAADQ7YSLAACAtler1aJcmao7ZnyktYdOsxx6zXJ4FgCgl2QJX2cJcQMAAAAAAACwdMJFAABA25ucnY756kLdMWPDLe5clGF+nYsAAPaV2h8VC4VYNVRqUjUAAAAAAAAAvUm4CAAAaHtZQjmt7lzU39eXPPg6UZlsUjUAAJ0h1dlxbHhFFIt+jA0AAAAAAADQSH4rCwAAtL2JqQzhotJoEyqpb6xUP+CkcxEAwL5S+6Ox0kiTKgEAAAAAAADoXcJFAABA2ytP1z90WigUYnWia1AzjCfCRak78wMA9JpUuKgdAuQAAAAAAAAA3U64CAAAaHsTlcm6j68eHolisfUfb1LhIp2LAAD2lQpfpzpDAgAAAAAAALB8rT99BwAAkDAxlbqjfXscOh1L3FlfuAgAYF+pEHm77PMAAAAAAAAAuplwEQAA0PZSd7Rvl0On46WRuo9PVCajVqs1qRoAgPZWrdWiXJmqO6Zd9nkAAAAAAAAA3Uy4CAAAaHupjj9jbXLoNNW5aG5hIabmZptUDQBAe5ucqcRCrVp3TLvs8wAAAAAAAAC6mXARAADQ9jqnc1G6jonKZBMqAQBof6kAeUT77PMAAAAAAAAAuplwEQAA0NZqtVpMTKfCRfU7BjXL+EiWcFH6EC0AQC8QLgIAAAAAAABoD8JFAABAW9szMx0L1WrdMe1y6HT18EgUEmMmpoSLAAAi0h0di4VCrBweaVI1AAAAAAAAAL1LuAgAAGhr5cSh04iIsTYJF/UX+2LlcKnumHKiCxMAQK8oV6bqPj5WWhHFQiq6DQAAAAAAAMByCRcBAABtbaKSDuO0S+eiiIjx0mjdx3UuAgC4X6pz0dhw++zxAAAAAAAAALqZcBEAANDWUuGiYqEQq4bqdwtqprHhkbqPpw7RAgD0itQ+b3xEuAgAAAAAAACgGYSLAACAtlZOHDodG14RxWL7fLQZH6nfuag8rXMRAEBEep/XTt0pAQAAAAAAALpZ+5zAAwAAeAypO9qPlep3Cmq21CHYiSnhIgCAiAz7vGHhIgAAAAAAAIBmEC4CAADaWurQ6XipfqegZkuFi8qVvVGr1ZpUDQBAe6rWarGrMlV3zPiIcBEAAAAAAABAMwgXAQAAbW2iMln38bFEmKfZUvXMVRdi7+xMk6oBAGhPe2YqsVCr1h3TbiFyAAAAAAAAgG4lXAQAALS1crJzUXuFi7LUk/qeAAC6Xao7ZUT7hcgBAAAAAAAAupVwEQAA0LaqtVqUK1N1x7RfuCh9h/1UNyYAgG43MZXeD7XbPg8AAAAAAACgWwkXAQAAbWvPTCUWatW6Y9rtjvarh0eikBiT5U79AADdrDxdfz/UVyjGyqFSk6oBAAAAAAAA6G3CRQAAQNsqZwjhjI+kOwU1U1+xGKuGR+qOES4CAHrdxFT9/dDq0kgUC6nINgAAAAAAAAB5EC4CAADaVpYQzngiyNMK44luSllCUwAA3Sy1z0vtpwAAAAAAAADIj3ARAADQtiYqk3UfLxYKsbIDw0U6FwEAvS4Vth4vtVd3SgAAAAAAAIBuJlwEAAC0rYmp+odOx0orolgoNKma7MYSh2GFiwCAXqdzEQAAAAAAAED7EC4CAADaVnm6Mw+djpfqd1NKdWQCAOh2qc5FY226zwMAAAAAAADoRsJFAABA20rd0b5dD52OJzoXlStTUavVmlQNAEB7qVarHRsiBwAAAAAAAOhGwkUAAEDbmpjqzEOnqdDTfHUhJmenm1QNAEB72TNTiWoiaN2u+zwAAAAAAACAbiRcBAAAtK1yonNRqkNQq4yPpA/DproyAQB0qyz7oHbtUAkAAAAAAADQjYSLAACAtlSt1aI8Xf/g6VhppEnVLM74cIZwUaIrEwBAt8oSLtK5CAAAAAAAAKB5hIsAAIC2tGd6Kqq1Wt0x7dq5aNXwSBQKhbpjUsEpAIBulepO2VcsxuhQqUnVAAAAAAAAACBcBAAAtKVOvqN9X7EYq4frd1WaqEw2qRoAgPaS2ueNDY9EMRHUBgAAAAAAACA/wkUAAEBb6uRwUUTE2HD92iamdC4CAHpTKmTdrt0pAQAAAAAAALqVcBEAANCWyolwUV+hGKNDpSZVs3ip4FPq+wMA6FblylTdx9s5QA4AAAAAAADQjYSLAACAtpTqXDRWGoliodCkahZvfCTRuUi4CADoUanORWPCRQAAAAAAAABNJVwEAAC0pdSh0/HSaJMqWRqdiwAAHlsqZK1zEQAAAAAAAEBzCRcBAABtqVyZqvt4ux86Td1xf2J6b9RqtSZVAwDQHqrVapSn6+/zdC4CAAAAAAAAaC7hIgAAoC2lOhe1+6HTVPhpoVqNPTPTTaoGAKA97J6pJAPW7R4iBwAAAAAAAOg2wkUAAEBbmqjsrft4ux86HS+NJseUEwEqAIBuk9rjRbT/Pg8AAAAAAACg2wgXAQAAbadarUZ5eqrumE7vXBSR7XAtAEA3SXWnjIgYyxDSBgAAAAAAACA/wkUAAEDb2T1TiVqtVndMu9/RftVQKQqFQt0xwkUAQK8pV+oHyPuKxVg5NNykagAAAAAAAACIEC4CAADaUJbQTbuHi4rFYowNj9QdUxYuAgB6TKpz0fjwimRAGwAAAAAAAIB8CRcBAABtJ3XoNCJirDTahEqWJxWA0rkIAOg1qf3PWJsHyAEAAAAAAAC6kXARAADQdsqVqbqP9xWLsXJouEnVLN14IgAlXAQA9JpU58bxEeEiAAAAAAAAgGYTLgIAANpOqnPR+PCKKBQKTapm6cZKI3Ufz9KhCQCgmyQ7Fw0LFwEAAAAAAAA0m3ARAADQdpKHTkudceg01bkoded+AIBuk9rn6VwEAAAAAAAA0HzCRQAAQNuZmOqOQ6fjiRBUuTIV1VqtSdUAALRWtVqNXdNTdcekwtkAAAAAAAAA5E+4CAAAaDvl6US4qEMOnaY6LC3UqrFnptKkagAAWmvXTCVqiWD12HBnhMgBAAAAAAAAuolwEQAA0HYmKvXDRWOlkSZVsjypzkUR6e8VAKBbTFQmk2M6pUMlAAAAAAAAQDcRLgIAANrKQrUau6an6o7plM5FWcJFZeEiAKBHTEyl9z1Z9k8AAAAAAAAA5Eu4CAAAaCu7p6eiVqvVHdMph05XDo9EsVCoOybLHfwBALpBebp+uKi/2Bejg8NNqgYAAAAAAACABwkXAQAAbWUiceg0ImKsQ8JFxUIhWWuWO/gDAHSD1L5nrDQShUQwGwAAAAAAAID8CRcBAABtJUvYplM6F0VEjA0nwkUV4SIAoDek9j3jpdEmVQIAAAAAAADAIwkXAQAAbaWcOHTaX+yL0cHhJlWzfOMj9cNF5QydmgAAukFqn9dJAXIAAAAAAACAbiJcBAAAtJX0He1XRKFQaFI1y5c6JJulUxMAQDdI7fPGhIsAAAAAAAAAWkK4CAAAaCvdduh0bDjRuSjx/QIAdItyZbLu4zoXAQAAAAAAALSGcBEAANBWuu3Q6fhIIlw0vTeqtVqTqgEAaI2FajV2zVTqjum0fR4AAAAAAABAtxAuAgAA2kqqc1GnHTodL43Wfbxaq8We6akmVQMA0Bq7p6eilghUd1qHSgAAAAAAAIBuIVwEAAC0lXLXhYvS9aYCVQAAnS7LfqfT9nkAAAAAAAAA3UK4CAAAaBsL1WrsSnTx6bQ72mepV7gIAOh22cJF9Ts+AgAAAAAAANAYwkUAAEDb2DU9FbXEmE67o/3KoVL0Fep/9Ep1awIA6HSp/c5AsS9WDA41qRoAAAAAAAAAHkm4CAAAaBsTlcnkmE67o32xUIix0kjdMToXAQDdLrXPGyutiEKh0KRqAAAAAAAAAHgk4SIAAKBtlCtTyTFjHda5KCIdiMoSqgIA6GSpMHWndacEAAAAAAAA6CbCRQAAQNtIhWwGin2xYnCoSdXkJxWI0rkIAOh25cR+pxMD5AAAAAAAAADdQrgIAABoG6mQzVhpRRQKhSZVk5/UnfhTh20BADqdzkUAAAAAAAAA7Uu4CAAAaBupkM34SGceOk0dltW5CADodsJFAAAAAAAAAO1LuAgAAGgbyc5Fw5156HQs1bloeiqq1WqTqgEAaK6FajV2T0/VHTNWGm1SNQAAAAAAAAA8mnARAADQNtJ3tO/MQ6epO/HXarXYNVNpUjUAAM21a3oqaokx46WRptQCAAAAAAAAwP6EiwAAgLYxUZms+/j4SGd2LkqFiyIiyolgFQBAp0rt8SI6N0QOAAAAAAAA0A2EiwAAgLYwX12IPdP1u/dkCem0o7EMh2WzHLoFAOhE5cpUcsxYh4bIAQAAAAAAALqBcBEAANAWdk1PRS0xZqxDw0Urh4ajr1j/49eEzkUAQJdKhagHin2xYmCoSdUAAAAAAAAA8GjCRQAAQFuYmEqHazq1c1GhUIjx4fq1Z/n+AQA6USpEPVZaEYVCoUnVAAAAAAAAAPBowkUAAEBbyNK5Z7w02oRKGiPVdak8LVwEAHSncmKfNz7SmQFyAAAAAAAAgG4hXAQAALSFVLhmoK8vRgYGm1RN/lKHZnUuAgC6VbJzUaLDIwAAAAAAAACNJVwEAAC0hVS4Zrw0GoVCoUnV5C91aDZL5yYAgE6U2ud0cndKAAAAAAAAgG4gXAQAALSFcmWy7uPjpc6+o32qc1GqcxMAQKeaSO3zEvskAAAAAAAAABpLuAgAAGgL6Tvad/ah09Qd+XdNT8VCtdqkagAAmmO+uhB7pit1x6Q6PAIAAAAAAADQWMJFAABAWygnwkVjHR8uql9/rVaL3dNTTaoGAKA5dk1PRS0xRuciAAAAAAAAgNYSLgIAANpCt3cuyhKOSr0GAACdZmIqvb/p9H0eAAAAAAAAQKcTLgIAAFpufmEhds9U6o4ZL402qZrGyHJoVrgIAOg25eks4aLO3ucBAAAAAAAAdDrhIgAAoOV2TU8lx3T6He1HB4ejv9hXd0xZuAgA6DKp8PRAX1+MDAw2qRoAAAAAAAAAHotwEQAA0HJZOvaMdXi4qFAoJANSE5XJJlUDANAcE1P193njpdEoFApNqgYAAAAAAACAxyJcBAAAtFyWUE2ndy6KSAeksoSsAAA6SXk6FS7q/D0eAAAAAAAAQKcTLgIAgP+fvTuPmrQs78R/1btWVb/dXQVBAVHRAAoRjIobI9ER1GNcMDGoIUePqBgdJ5txhgQ0GnPiEpfojBPHoOhocBlyhtFxcAGMGo6I65EoGkBBhREOtlXd/VJV71q/P/xB2Pq5n3676qnl+XzO6T/0uei63qo+1t1yfe+LkUuFahZn56I2v1BQN8OTGp5tCxcBAFOm1ckOkU/6dkoAAAAAAACAaSBcBAAAjFwqVNOobYtKpVJQN8OTChfZXAQATJvUOc/mIgAAAAAAAIDREy4CAABGLhWqmZahU+EiAKBsWr1ynPMAAAAAAAAAJplwEQAAMHKpUE2jtlRQJ8PVSAzP7ul1YmNzs6BuAACGa31zI/b0upk1qfMRAAAAAAAAAMMnXAQAAIxc2+aiiIjoR8TuXqeYZgAAhmx3N32umZZzHgAAAAAAAMAkEy4CAABGLr25aDqGTps5NjC1ussFdAIAMHypM15EvvMRAAAAAAAAAMMlXAQAAIzU2sZ67F3pZtZMy432jXr658gzhAsAMAnynGumJUQOAAAAAAAAMMmEiwAAgJFq9zrJmmaOUM4k2Da/GPMzs5k1wkUAwLRoJzYyLszORX1+oaBuAAAAAAAAANgX4SIAAGCk2jnCNM3aUgGdDF+lUknezp/n/QAAmASp0HSzti0qlUpB3QAAAAAAAACwL8JFAADASOXZ1NOo1QvopBipLUw2FwEA0yIVmm4mQtcAAAAAAAAAFEO4CAAAGKlWJ3vodHFuPmpzCwV1M3yNaiJc1FkuqBMAgOFKhaZTGx0BAAAAAAAAKIZwEQAAMFKtbnaYplnbFpVKpaBuhq9ZW8p83u51CuoEAGC4UuEim4sAAAAAAAAAxoNwEQAAMFLtXrlutG/WE5uLEmErAIBJ0U5uLsoOXQMAAAAAAABQDOEiAABgpFqdct1on/p59vS6sb65UVA3AADDsb6xEXtWupk103bOAwAAAAAAAJhUwkUAAMBIpW60n7ah0zybmHZ3OwV0AgAwPKntlBHTd84DAAAAAAAAmFTCRQAAwEi1kuGipYI6KUaeIdrUewIAMO7aOcLSeULXAAAAAAAAAAyfcBEAADAyaxvrsbzay6xp1OoFdVOMPGEp4SIAYNK1usvJGpuLAAAAAAAAAMaDcBEAADAyeW60n7bNRfX5hViYncusaecYxgUAGGepsPTi7FzU5hcK6gYAAAAAAACALMJFAADAyJTxRvtKpRKNxM9kcxEAMOnaifNMo7YtKpVKQd0AAAAAAAAAkEW4CAAAGJnU0GlEJIM4kygVmMrzvgAAjLNUWHraAuQAAAAAAAAAk0y4CAAAGJnU0Gl1bj5q8wsFdVOc1DCtzUUAwKRLnWcataWCOgEAAAAAAAAgRbgIAAAYmbLeaC9cBABMu1Z3OfP5tJ7zAAAAAAAAACaRcBEAADAy6XDRdN5o3xAuAgCmXLvbyXzerAsXAQAAAAAAAIwL4SIAAGBk2okQTaNWL6iTYqVCU3tXurG+sVFQNwAAg7W2sR57V7qZNY2qcBEAAAAAAADAuBAuAgAARqasm4uaic1FERHtnu1FAMBkaveytxZF2FwEAAAAAAAAME6EiwAAgJFpdZcznzdyhHAmUZ6fKxW8AgAYV6ntlBHTGyIHAAAAAAAAmETCRQAAwEisrq/HbasrmTV5NvxMojw/l3ARADCp8pxjGrV6AZ0AAAAAAAAAkIdwEQAAMBLtXp4b7aczXFSbX4jF2bnMmjw3/gMAjKNWJ/scszg3H7W5hYK6AQAAAAAAACBFuAgAABiJfDfaT2e4qFKpJH82m4sAgEmVCpE3a9uiUqkU1A0AAAAAAAAAKcJFAADASOQJz0zr5qKI9M/W6i4X1AkAwGClzjHTGiAHAAAAAAAAmFTCRQAAwEi0E+Gi2vxCVOcXCuqmeI3aUubzVsfmIgBgMqXOMdMcIAcAAAAAAACYRMJFAADASJT9RvvUUG27J1wEAEym1DlGuAgAAAAAAABgvAgXAQAAI1H2G+2b9eyfr5XY7AQAMK5S55hpD5EDAAAAAAAATBrhIgAAYCRSQ6fTHi5qVLN/vuWVXqxtrBfUDQDAYKxtrMfySi+zZtrPeQAAAAAAAACTRrgIAAAYiXYvFS5aKqiT0UhtLoqIaPc6BXQCADA47W76/DLt5zwAAAAAAACASSNcBAAAjESrkx0uatTqBXUyGnmGalPvEQDAuEltp4yIaNhcBAAAAAAAADBWhIsAAIDCrayvRWdtJbNm2m+0b+YYqm13lwvoBABgcPKcX/KcgwAAAAAAAAAojnARAABQuHaOG+2nfei0Nr8Qi3PzmTV5bv4HABgnqfNLdW4+avMLBXUDAAAAAAAAQB7CRQAAQOHyhGYaUx4uikgHqISLAIBJkzq/THuAHAAAAAAAAGASCRcBAACFy7O5SLgo3/sEADBOUueXMpzxAAAAAAAAACaNcBEAAFC41I329fmFqM7NF9TN6NhcBABMG5uLAAAAAAAAACaPcBEAAFC41I32zdpSQZ2MVurmfuEiAGDSOOcBAAAAAAAATB7hIgAAoHCp0EyjVi+ok9FKDdemhnMBAMZN+pxncxEAAAAAAADAuBEuAgAACtfqLmc+L8uN9s3EcO3yai9WN9YL6gYA4MCsbqzH8movsyZ1/gEAAAAAAACgeMJFAABA4VI32pdl6DTPz2l7EQAwKXZ3O8maspzzAAAAAAAAACaJcBEAAFC4VGCmUZKh0zw/ZyqIBQAwLlLbKSPKc84DAAAAAAAAmCTCRQAAQKF662vRWVvNrCnLjfZ5hmttLgIAJkWeULRwEQAAAAAAAMD4ES4CAAAKlScsU5ah09r8QtTmFjJrbC4CACZF6txSm1uI2nz22QcAAAAAAACA4gkXAQAAhcoTlmnWlwroZDw0avXM563uckGdAAAcmFSIPHXuAQAAAAAAAGA0hIsAAIBC5dlc1KyWY3NRRESzlh2kanVsLgIAJkMqRJ469wAAAAAAAAAwGsJFAABAoVKbeOrzi7EwN1dQN6PXqGUHqdo94SIAYDKkznmpcw8AAAAAAAAAoyFcBAAAFCp5o329XEOnqZ839X4BAIyLdreT+bxs5zwAAAAAAACASSFcBAAAFKqdCheV7Eb7RjURLuoIFwEAkyG5uShx7gEAAAAAAABgNISLAACAQqU28ZRt6DQVpuqsrcTq+npB3QAAbM3q+nrctrqSWVO2EDkAAAAAAADApBAuAgAACpUKFzXr5Ro6bdaXkjWtnu1FAMB4a+c4r+Q59wAAAAAAAABQPOEiAACgUO1OIlxUK9fQaZ4b/Fud5QI6AQDYulSAPCKiUa0X0AkAAAAAAAAA+0u4CAAAKExvbTW666uZNXnCNtOkkePnbecY1gUAGKU84aKynfMAAAAAAAAAJoVwEQAAUJhcN9qXbOi0OjcftfmFzJo87xsAwCilwtC1+YWoJs48AAAAAAAAAIyGcBEAAFCYPBt4ynijfepntrkIABh3re5y5vOyBcgBAAAAAAAAJolwEQAAUBibi+5dKlxkcxEAMO5anezzShkD5AAAAAAAAACTQrgIAAAoTCoks21hMRZm5wrqZnykAlWpTQAAAKOWOucJFwEAAAAAAACML+EiAACgMO3k0OlSQZ2Ml9TP3e52CuoEAGBr2r3sc14Zt1MCAAAAAAAATArhIgAAoDCpDTxlvdE+9XPbXAQAjLtWx+YiAAAAAAAAgEklXAQAABQmtYGnrEOnqZ+7s7YavfW1groBANg/q+vr0Vlbyawp64ZKAAAAAAAAgEkgXAQAABQmtYGnUdJwUZ6fu93N3gYAADAqrV76nFLWEDkAAAAAAADAJBAuAgAACtNKBGTKOnSa5+cWLgIAxlWrkx0gjyhviBwAAAAAAABgEggXAQAAheiurUZvfS2zpqzhojzDtqlgFgDAqOQJQQsXAQAAAAAAAIwv4SIAAKAQ+YZOlwroZPwszs1HfX4xs6bVTW8EAAAYhVQIuj6/ENW5+YK6AQAAAAAAAGB/CRcBAACFyLN5p6ybiyLSP7vNRQDAuEqFyG0tAgAAAAAAABhvwkUAAEAh8mzeadTqBXQynlJDt3k2PwEAjEIqBF3mADkAAAAAAADAJBAuAgAACpEaOl1arMb87FxB3Ywfm4sAgEmVDhctFdQJAAAAAAAAAFshXAQAABQitXmnWS33jfbCRQDApEqd81IbGgEAAAAAAAAYLeEiAACgEKlwTNmHTlM/f2poFwBgVFrd5cznqRA1AAAAAAAAAKMlXAQAABQiFS5q1ss9dNqsL2U+766tRm9ttaBuAADyWVlfi07ijCJcBAAAAAAAADDehIsAAIBCpDbvNGvZ4Zppl2foNhXQAgAoWp7timXfUAkAAAAAAAAw7oSLAACAoev3+8lgTKNa7qHTPEO3eYZ3AQCKlCf8bHMRAAAAAAAAwHgTLgIAAIauu74aK+trmTXNermHTps5wlU2FwEA4ybP+cTmIgAAAAAAAIDxJlwEAAAMXavjRvuUhbm52LawmFkjXAQAjJvUZsX6/GIszs0X1A0AAAAAAAAAWyFcBAAADF27J1yUR7O2lPk8NbwLAFC0VPjZGQ8AAAAAAABg/AkXAQAAQ5dnc1GjavC0UatnPm91lwvqBAAgn9T5pCFcBAAAAAAAADD2hIsAAIChS91ov32xFnOzswV1M77Sm4s6BXUCAJBParOizUUAAAAAAAAA40+4CAAAGLp24kZ7Q6e/lHofbC4CAMZNKkTunAcAAAAAAAAw/oSLAACAoWslNu40DJ1GRJ5wUfbwLgBA0VLnE+c8AAAAAAAAgPEnXAQAAAydzUX5pIZve+tr0V1bLagbAIBsec4mzfpSQd0AAAAAAAAAsFXCRQAAwNClbrQXLvqlPO9D2/YiAGBM5DmXNKr1AjoBAAAAAAAA4EAIFwEAAEPV7/eTg6fCRb/UrKVv9k8FtQAAipLnXGJzEQAAAAAAAMD4Ey4CAACGqru2Gisb65k1DeGiiIho1NI3+7e6ywV0AgCQ1uqkzyXNqnMeAAAAAAAAwLgTLgIAAIYq1432OTb2lMH87FwsLVQza2wuAgDGRbuXfS6pzy/GwtxcQd0AAAAAAAAAsFXCRQAAwFDl2bTTtLnoDqn3oi1cBACMiVTouVl3xgMAAAAAAACYBMJFAADAULW7nWTNzlq9gE4mQyMRLrK5CAAYF61OIlwkQA4AAAAAAAAwEYSLAACAoUptLtqxWIu5mdmCuhl/qSFc4SIAYFy0e6lw0VJBnQAAAAAAAABwIISLAACAoUqFYdxof1epzUVt4SIAYEykznkN2ykBAAAAAAAAJoJwEQAAMFTpoVPhojtL3fDf6t4W/X6/oG4AAPat3bG5CAAAAAAAAGAaCBcBAABDldq0Y3PRXTXr2e/HyvpadNdXC+oGAODe9dZWk2cS5zwAAAAAAACAySBcBAAADFV6c5Eb7e+sUU0P4bYSWwIAAIYtdcaLsKESAAAAAAAAYFIIFwEAAEPT7/ej1V3OrElt6imbPO9HuydcBACMVmo7ZYTNRQAAAAAAAACTQrgIAAAYms7aaqxtbGTWGDq9q0a1nqyxuQgAGDWbiwAAAAAAAACmh3ARAAAwNKmtRRERjaqh0zubn52L7Yu1zJo8w7wAAMOUOo9sW1iMhdm5groBAAAAAAAA4EAIFwEAAEOTJwTTrAsX3V2jlr29qJ0jtAUAMEztxDmvWVsqqBMAAAAAAAAADpRwEQAAMDStTvbQaSUidlazgzRllBrGbXU7BXUCAHDvUiHyZk2AHAAAAAAAAGBSCBcBAABD0+5lD53uqNZjbma2oG4mR2oY1+YiAGDUUpuLGsJFAAAAAAAAABNDuAgAABia1OYiQ6f3LhUuSm0KAAAYtlYi7GxzEQAAAAAAAMDkEC4CAACGxtDp1qRCV63ubdHv9wvqBgDgnlJhZ+c8AAAAAAAAgMkhXAQAAAxN29DplqTel9WN9eiurRbUDQDAXXXXVqO3vpZZ45wHAAAAAAAAMDmEiwAAgKFJ3Wif2tBTVs3aUrIm9d4CAAxLKkAe4ZwHAAAAAAAAMEmEiwAAgKHo9/s2F21Rnvel1V0uoBMAgHvKE3LOE5YGAAAAAAAAYDwIFwEAAENx2+pKrG1uZNYYOr13O6v1ZI3NRQDAqOTbXJQ+zwAAAAAAAAAwHoSLAACAocgzdGpz0b2bm52NHYu1zJo87y8AwDCkQs5LC9WYn50rqBsAAAAAAAAADpRwEQAAMBSt7nKypiFctE+p4JXNRQDAqKTOeQLkAAAAAAAAAJNFuAgAABiKVPilEhE7q/VimplAqeCVcBEAMCqpDYoC5AAAAAAAAACTRbgIAAAYilT4ZWe1HrMz/kqyL6kb/1NDvQAAw5I659lcBAAAAAAAADBZTPIBAABDkb7RfqmgTiZT6v2xuQgAGJXUOcTmIgAAAAAAAIDJIlwEAAAMRfpG+3pBnUymZj17KLfVXY5+v19QNwAA/yYVIm8KkQMAAAAAAABMFOEiAABgKNI32hs6zdKoZoeL1jY24ra1lYK6AQD4pe7aavTW1zJrhMgBAAAAAAAAJotwEQAAMBSt7nLm82YtOzxTdnnen9TWAACAQUsFyCOEyAEAAAAAAAAmjXARAAAwcP1+P9rdTmaNcFG2Zj39/uQZ7gUAGKRUgDwi3zkGAAAAAAAAgPEhXAQAAAzc8mov1jc3MmsawkWZdlbrUUnUtDrCRQBAsfJsTmxU6wV0AgAAAAAAAMCgCBcBAAADl2ejjhvts83NzMb2ai2zpp1jcwAAwCClznlLi9WYn50rqBsAAAAAAAAABkG4CAAAGLg8N9o3a0sFdDLZUu9Rq9spqBMAgF9KbU5s2k4JAAAAAAAAMHGEiwAAgIFL3WhfqVRi52L2Vh7Sw7ktm4sAgIK1e6lwkQA5AAAAAAAAwKQRLgIAAAYuFXrZWa3HzIy/jqSkwkV5NkQBAAxSKkTeqNUL6gQAAAAAAACAQTHNBwAADFyrk7rRPjs0wy81kpuLhIsAgGK1OtkhcpuLAAAAAAAAACaPcBEAADBw7Z5w0SDk2VzU7/cL6gYAKLt+vx/tXiezxjkPAAAAAAAAYPIIFwEAAAOX2lyU2sjDL6Vu/l/b3IjbVlcK6gYAKLvu+mqsrK9l1jjnAQAAAAAAAEwe4SIAAGDg2l2biwYhz/vU6i4X0AkAQDpAHuGcBwAAAAAAADCJhIsAAICB6vf70eqlwkXZG3n4pTw3/7cSQS4AgEFpJ854EcJFAAAAAAAAAJNIuAgAABiovSu92NjczKxp1OoFdTPZdlbrUUnUpLZEAQAMSp7NRY2qcBEAAAAAAADApBEuAgAABqrdXU7W2FyUz+zMTOysZgexbC4CAIqSOndsX6zF3OxsQd0AAAAAAAAAMCjCRQAAwEDlCbs0a260z6uReK+EiwCAoqRC5M54AAAAAAAAAJNJuAgAABioVNhlplKJHYu1grqZfKkh3VaOTVEAAIPQ6nYyn6dC0QAAAAAAAACMJ+EiAABgoNqJcNHOaj1mZvxVJK9GbSnzeTsx5AsAMCg2FwEAAAAAAABMJxN9AADAQKU2Fxk63T82FwEA48I5DwAAAAAAAGA6CRcBAAADlR46zd7Ew12lhnTb3U70+/2CugEAyqrf7yc3VAoXAQAAAAAAAEwm4SIAAGCgUkOnDUOn+yX1fq1vbsTyaq+gbgCAsuqurcbKxnpmjXMeAAAAAAAAwGQSLgIAAAaq1V3OfO5G+/3TrKffr9S2KACAA5XnvGFDJQAAAAAAAMBkEi4CAAAGZrPfj3a3k1kjXLR/8gzptjrCRQDAcKW2U0Y45wEAAAAAAABMKuEiAABgYPaudGOjv5lZ0zB0ul92LtaiUqlk1qS2RQEAHKg8m4t2VusFdAIAAAAAAADAoAkXAQAAA+NG+8GbmZlJDuq2ezYXAQDDlQoz71isxdzsbEHdAAAAAAAAADBIwkUAAMDA5LnRXrho/6Xes1ZHuAgAGK5UiNwZDwAAAAAAAGByCRcBAAADk7rRfqZSie2JLTzcU2pYN8/GKACAA5EKkTeEiwAAAAAAAAAmlnARAAAwMO1uJ/N5o7YtZiqVgrqZHqlh3TwbowAADkTqvGFzEQAAAAAAAMDkEi4CAAAGJrW5qFE1dLoVNhcBAKOW3ly0VFAnAAAAAAAAAAyacBEAADAwyRvt68JFW9FMDOu2erfFZr9fUDcAQNn0+/1kmLlZqxfUDQAAAAAAAACDJlwEAAAMTKuTGjoVLtqK1Pu2sbkZyyvdgroBAMqms7YaqxvrmTU2FwEAAAAAAABMLuEiAABgYNq9VLjI0OlWNHKEslJbowAAtqrVXU7WCJEDAAAAAAAATC7hIgAAYCA2+/1oJwIujVq9oG6mS55h3dR7DwCwVXnOGc26cBEAAAAAAADApBIuAgAABmJvrxOb/X5mjc1FW7NjsRYzlUpmjc1FAMCwpM4ZlYjYWRUiBwAAAAAAAJhUwkUAAMBA5Am35NnAwz3NzMwkB3aFiwCAYUmdM7ZXazE3M1tQNwAAAAAAAAAMmnARAAAwEHnCLQ3hoi1LBbNa3eWCOgEAyqadOOfZTgkAAAAAAAAw2YSLAACAgUgNnc5WZmL7Yq2gbqZPami33e0U1AkAUDapEHkjsWERAAAAAAAAgPEmXAQAAAxEcui0Vo+ZSqWgbqZPauuTzUUAwLCkzhnNus1FAAAAAAAAAJNMuAgAABiIVLgotXmHbM1kuCj7/QcA2KrUhsTUOQUAAAAAAACA8SZcBAAADEQ7ubnI0OmBSA3t7u52YrPfL6gbAKAs+v1+cnORcx4AAAAAAADAZBMuAgAABiI1dOpG+wOTGtrd6G/G3pVuQd0AAGVx29pKrG1sZNY45wEAAAAAAABMNuEiAABgIFqJzUWGTg9Ms76UrEl9BgAA+6vdSZ8vnPMAAAAAAAAAJptwEQAAcMA2Nzdjd6+TWZPavEO2ZrWerGl1srdHAQDsr1YvHS5yzgMAAAAAAACYbMJFAADAAduz0o3Nfj+zxo32B2Z7tR4zlUpmTTvH8C8AwP5oJTYXVSJiZ44QNAAAAAAAAADjS7gIAAA4YK1uOtQiXHRgZiqV5FaA1PAvAMD+anezNyPuqNZjbma2oG4AAAAAAAAAGAbhIgAA4IC1EkOnERGN2lIBnUy3VEArT8gLAGB/tLqdzOcC5AAAAAAAAACTT7gIAAA4YO3E0OnszExsX6wW1M30Sm0uagsXAQADlgqRp84nAAAAAAAAAIw/4SIAAOCApYZOm9VtUalUCupmetlcBAAULRVetrkIAAAAAAAAYPIJFwEAAAcsFWpxo/1gNGtLmc9tLgIABi11zhMuAgAAAAAAAJh8wkUAAMABS95oXzd0Ogip4d1277bY3NwsqBsAYNr1+/3kOU+IHAAAAAAAAGDyCRcBAAAHLLm5qGrodBBSw7ub/X7sWekW1A0AMO1uW12Jtc2NzJrUZkUAAAAAAAAAxp9wEQAAcMBS4SKbiwYjtbkoIr1FCgAgrzznijznEwAAAAAAAADGm3ARAABwQDY3N2N3r5NZ40b7wcgzvJsKegEA5NXqLidrUpsVAQAAAAAAABh/wkUAAMAB2b3SjX6/n1njRvvBWFqsxexM9l/jhIsAgEFJnSsqEbGzWi+mGQAAAAAAAACGRrgIAAA4IG60L85MpRKNxABvns8DACCPVLhoZ7WeDD4DAAAAAAAAMP78m18AAOCAtDrpTTk2Fw1Os7aU+bxtcxEAMCCpc4UAOQAAAAAAAMB0EC4CAAAOSGrodG5mNpYWqgV1M/1SQa3UhgEAgLxS5woBcgAAAAAAAIDpIFwEAAAckNTQaaNWj0qlUlA30y+1IUC4CAAYlPQ5L3ujIgAAAAAAAACTQbgIAAA4IOkb7Q2dDlJqQ0BqkxQAQF6pc4XNRQAAAAAAAADTQbgIAAA4IO3ucuZzQ6eDldpc1O51YnNzs6BuAIBp1e/3c4TInfMAAAAAAAAApoFwEQAAcEBa3U7mc0Ong5XaBNXv92P3SregbgCAabW82ov1zY3MmlToGQAAAAAAAIDJIFwEAAAckNTmIkOng9Ws1ZM1rcRnAgCQ0k5sLYqIaNad8wAAAAAAAACmgXARAACwZRubm7G7Z3NRkRqJzUUR+YaBAQCytPKEi6rOeQAAAAAAAADTQLgIAADYst29TvQTNcJFg7V9sRqzM9l/lcszDAwAkCV1nqhUKrGjmt6oCAAAAAAAAMD4Ey4CAAC2LM+GnGaOTTvkV6lUkoGtVke4CAA4MKlz3s5qPRl4BgAAAAAAAGAy+Le/AADAluXZkNOwuWjgGtVEuMjmIgDgAKXOE6nzCAAAAAAAAACTQ7gIAADYslZ3OfP5/MxsbFtYLKib8mjWs4d582yUAgDIkjrnpTYpAgAAAAAAADA5hIsAAIAtS95oX9sWlUqloG7Ko1lbynxucxEAcKDa3U7m81TYGQAAAAAAAIDJIVwEAABsWWpDjhvthyP1vrYTmwYAAFJSm4saVec8AAAAAAAAgGkhXAQAAGxZns1FDF7qfd3d68TG5mZB3QAA06bf7yfPeTYXAQAAAAAAAEwP4SIAAGDLkkOntaWCOimX1OaifkTs6XWKaQYAmDp7V3rJoLINlQAAAAAAAADTQ7gIAADYsrYb7UcizzBvKvgFALAv7V76HCFEDgAAAAAAADA9hIsAAIAtWd/cSG7HaVSFi4YhzzCvcBEAsFWtTvoc0bC5CAAAAAAAAGBqCBcBAABbsrvXiX6ixuai4di2sBjzM7OZNa3uckHdAADTJnWOqFQqsXOxVlA3AAAAAAAAAAybcBEAALAleW60b7rRfigqlUpyW0Db5iIAYIvavexzRKNaj5kZ/9cyAAAAAAAAwLTwb4ABAIAtSQ2dRkQ0a0sFdFJOqeBWS7gIANiiVIg8FXIGAAAAAAAAYLIIFwEAAFuSCq/Mz85GfX6hoG7KJzXUK1wEAGxVagOi7ZQAAAAAAAAA00W4CAAA2JLUjfbN2lJUKpWCuimf1FBvaigYAGBfUiFl4SIAAAAAAACA6SJcBAAAbEm7u5z53NDpcKXeX5uLAICtSoWUUxsUAQAAAAAAAJgswkUAAMCWpMIrhk6Hq1Fbyny+p9eJ9c2NgroBAKZFv9+PVi+9oRIAAAAAAACA6SFcBAAAbEnqRnubi4arWatnPu9HxO5ep5hmAICpsXelFxubm5k1znkAAAAAAAAA00W4CAAA2JLU5iJDp8OVZ2NAKgAGAHB37e5yssaGSgAAAAAAAIDpIlwEAADst/XNjdiz0s2syRN+Yesa9fRQbyoABgBwd3nOD0LkAAAAAAAAANNFuAgAANhvu7udZE2jVi+gk/LaNr8Y87OzmTXCRQDA/kqdH2YqldixWCuoGwAAAAAAAACKIFwEAADst3w32ttcNEyVSiUa1eytAa2OcBEAsH/aiXNeo7otZmb838oAAAAAAAAA08S/BQYAAPZbq7ucrGnWsoMvHLhmPfs9bveEiwCA/ZMKkdtOCQAAAAAAADB9hIsAAID9lrrRfnF2LmrzCwV1U16p7VCtTjoEBgBwZ6lwke2UAAAAAAAAANNHuAgAANhv6Rvtt0WlUimom/JKbYdKhcAAAO4udX5o2E4JAAAAAAAAMHWEiwAAgP2WvtHe0GkRUsO9qc8JAODuWt3szYfOeQAAAAAAAADTR7gIAADYb+nNRUsFdVJuqeHePSvdWN/cKKgbAGDSbfb70e52MmuEiwAAAAAAAACmj3ARAACw39o2F42FPO/z7sSAMADA7ZZXurHR38ysSW1OBAAAAAAAAGDyCBcBAAD7Lb25yNBpEZo5NkSlPisAgNvlOTcIkQMAAAAAAABMH+EiAABgv6xtrMfelW5mjaHTYuQJcbW6ywV0AgBMA+EiAAAAAAAAgHISLgIAAPZLu9dJ1jTrhk6LUJ9fiIXZucyats1FAEBOqXPDTKUS26v1groBAAAAAAAAoCjCRQAAwH7JE1ZpVIWLilCpVJLbA/JsIAAAiEifGxrVbTFTqRTUDQAAAAAAAABFES4CAAD2S56wis1FxWkIFwEAA9LqLmc+T507AAAAAAAAAJhMwkUAAMB+aXWywyqLc/NRm1soqBtsLgIABiV1bhAgBwAAAAAAAJhOwkUAAMB+afcSQ6e1bVGpVArqhlS4qC1cBADklDo3NKrCRQAAAAAAAADTSLgIAADYL63ucubzRiLswmA1akuZz20uAgDySm4ucs4DAAAAAAAAmErCRQAAwH5pdQydjpPU+713pRvrGxsFdQMATKrNfj92dzuZNc26cx4AAAAAAADANBIuAgAA9kvbjfZjJc/73e7ZXgQAZNu70o2N/mZmTTOxMREAAAAAAACAySRcBAAA7JdWIqhi6LRYjRzholYiEAYAkOe8kOfcAQAAAAAAAMDkES4CAAByW9tYj+WVXmZNo1YvqBsiIpp14SIA4MC1OsvJGhsqAQAAAAAAAKaTcBEAAJBbu9tJ1thcVKza3EIszs5l1rQ6wkUAQLZ2YjvlbGUmti/WCuoGAAAAAAAAgCIJFwEAALm1um60HzeVSiUaifc8NSwMAJAKI++s1WOmUimoGwAAAAAAAACKJFwEAADk1u6mQyqpoAuD16xnb4vKEwoDAMqtlTjnCZADAAAAAAAATC/hIgAAILfU0Gl1bj5q8wsFdcPtUsO+qU0EAACpTYfNWnaYGQAAAAAAAIDJJVwEAADk5kb78dSoZr/veTZOAQDllgojN2r1gjoBAAAAAAAAoGjCRQAAQG6pkIob7UejWU9sLkpsIgAAcM4DAAAAAAAAKC/hIgAAILfU5iI32o9GamPU8kov1jbWC+oGAJg0m5ub0U6EkW2oBAAAAAAAAJhewkUAAEBuqXCRG+1HI8/73u52CugEAJhEe1e6sdnvZ9Y0hIsAAAAAAAAAppZwEQAAkFuru5z53NDpaOR531OfHQBQXqkAeYTNRQAAAAAAAADTbG7UDQCM2k9/+tP43Oc+F1dddVVcffXVcf3118fevXtjz5490e/3Y/v27bF9+/Z4wAMeEMcdd1wcf/zx8ZSnPCWOPvroUbc+9nbt2hVf+9rX4rvf/W58//vfjx/96Efxs5/9LG699dbodruxuroai4uLUavVotlsxuGHHx73v//942EPe1g8/OEPj5NOOikajcaofwwA/n+rG+tx2+pKZo2h09HI8763cwwNAwDlJFwEAAAAAAAAUG7CRUAptdvteP/73x8f+chH4qqrrsqs3bVrV+zatStuuOGG+PKXv3zHf3/00UfHGWecEa985Svjvve977Bbngi33HJLXHbZZfGFL3whvvjFL8YPf/jD5D/T7Xaj2+3GL37xi3vUz87OxoknnhjPfvaz44UvfGHc//73H1brAOSQJ5xi6HQ0avMLUZ2bj9762j5r8gwNAwDllDrnzc7MxNJiraBuAAAAAAAAACjazKgbACjS8vJynH322XHEEUfEf/pP/ykZLMpy7bXXxl/+5V/GAx7wgHj5y18eP//5zwfY6eS49tpr481vfnM8/vGPj8MPPzx+7/d+Lz7wgQ/kChalbGxsxJVXXhnnnntuHHnkkfGsZz0rvvrVrw6gawC2Ik84pSFcNDKp9164CADYl9Q5oVGtx0ylUlA3AAAAAAAAABRNuAgojU996lNx7LHHxt/8zd/EbbcNbrh2dXU1zjvvvHjIQx4SH/zgBwf2+46zW265Jd7xjnfEiSeeGMccc0ycc8458dWvfjU2NzeH9pqbm5vx6U9/Oh7/+MfHc57znPjJT34ytNcC4N7lCafYXDQ6qfdeuAgA2JdWdznzebO2VFAnAAAAAAAAAIyCcBEw9TY3N+O1r31tPOc5z4kbb7xxaK/zi1/8Il7ykpfEy1/+8lhdXR3a64zS9773vXjOc54TRxxxRLzmNa+Jb37zmyPp45Of/GQce+yxcf7554/k9QHKqp0Ip9TmFqI6v1BQN9xdKlyU+vwAgPJqdzuZzwXIAQAAAAAAAKabcBEw1TY2NuIFL3hB/PVf/3X0+/1CXvO8886Lpz71qdHpZA/mTKJ//ud/jk9+8pOxvr4+6lai0+nES1/60jjrrLPGoh+AMkjdaN+oGzodpdRGAZuLAIB9SZ7zhIsAAAAAAAAApppwETC1Njc348UvfnFceOGFhb/2l770pfit3/qtWFlZKfy1y+b9739/nH766VO7LQpgnLQ62eEUN9qPVmroNzU0DACUVyqE7JwHAAAAAAAAMN3mRt0AwLCce+658Q//8A/79c8cffTR8e/+3b+Lhz3sYXHQQQdFpVKJVqsV3//+9+OKK66I7373u7l/r89//vNx1llnxYc//OH9bZ399L//9/+OM888My644IJRtwIw1do9Q6fjLPX+37a6Eqsb67Ew66+BAMC/2dzcjN297O3LNhcBAAAAAAAATDdTZcBU+sxnPhNvfetbc9efdtppcc4558RjHvOYzLrvfve78ba3vS3+4R/+ITY3N5O/70c+8pF44hOfGC996Utz9zJt7nvf+8ZjH/vYePSjHx3HHntsHHnkkXHEEUfEtm3bolarxe7du+PnP/953HzzzXHFFVfEF7/4xfjyl78cnU72YNPdffSjH42HPexh8ed//udD+kkASN1ob+h0tPKEu9rd2+I+SzsL6AYAmBR7Vrqx2e9n1giRAwAAAAAAAEw34SJg6uzatSte9KIXRT8xGBMRcdBBB8VHPvKR+M3f/M1cv/fDHvaw+B//43/EK1/5ynje854XP/3pT5P/zB/8wR/EE5/4xDjqqKNyvcY0OPHEE+N3fud34mlPe1r8+q//embtQQcdFAcddFAcc8wx8Ru/8Rtx9tlnxy9+8Yv4b//tv8V//a//NW699dbcr/v6178+nvGMZ8QJJ5xwgD8BAPem1bG5aJzlCXe1hIsAgLtJBcgjnPMAAAAAAAAApt3MqBsAGLRzzz03fv7znyfrjjjiiPja176WO1h0Z4973OPiG9/4Rhx33HHJ2m63G3/yJ3+y368xaQ499NB43eteF9dcc018/etfj7PPPjsZLNqXgw46KF73utfFddddF89//vNz/3Nra2vxyle+ckuvCUC21fX16KytZNY0a0sFdcO9yTP0m2d4GAAol1Z3OVnTcM4DAAAAAAAAmGrCRcBU+fa3vx3nnXdesm7nzp1x6aWXxq/+6q9u+bXuc5/7xGWXXRZHHHFEsvbTn/50XHzxxVt+rXF24oknxsc//vH4yU9+Em984xvj6KOPHtjvvWPHjvj4xz8e73nPe6JSqeT6Z77yla/EZz7zmYH1AMAvtXputB931fmFqM0tZNa0hYsAgLtpdzuZz2dnZmL7YrWgbgAAAAAAAAAYBeEiYKr85V/+ZWxubibrzjvvvHjIQx5ywK936KGHxkc/+tGYnZ1N1r7+9a8/4NcbJyeffHJ87nOfi69//evx/Oc/P+bn54f2Wq961avi7W9/e+76d7/73UPrBaCsWp08N9oLF41ao579GeTZTAAAlEvqfNCsbst94QcAAAAAAAAAk0m4CJga//qv/xqf+tSnknWnnXZanH766QN73ZNPPjl+//d/P1n3jW98I77whS8M7HVH5eEPf3hcfPHF8eUvfzme+tSnFva6r371q+PlL395rtpLL700fvaznw25I4ByybPxRrho9FLbo1odm4sAgLtqJc55zngAAAAAAAAA00+4CJga73znO6Pf72fWzM3N7dcGnLze+MY3xo4dO5J173jHOwb+2kV67nOfG9/61rfi6U9/+khe/81vfnM0m81k3cbGRnz2s58toCOA8kgNndbnF6I6N7wtduTTqKY2FwkXAQB3lQqRNxObEQEAAAAAAACYfMJFwFRYWVmJT3ziE8m65z73uXHUUUcN/PUPPvjgeNnLXpas+9znPhe33HLLwF+/KIccckjMzIzuq+Oggw6Kc889N1ftF7/4xeE2A1AyqaFTN9qPh9Twb7snXAQA3FVyc1EivAwAAAAAAADA5BMuAqbCpz/96di9e3ey7o//+I+H1sMf/uEfJoM3Gxsb8fGPf3xoPZTBGWecEZVKJVn3ne98p4BuAMojNXTaFC4aC6nPodURLgIA7ip5zrO5CAAAAAAAAGDqCRcBU+FjH/tYsuaoo46Kxz3ucUPr4YEPfGCcfPLJybo8vbJvhx12WDzykY9M1v3whz8soBuA8mh1lzOfN2tLBXVCltTn0FlbiZX1tYK6AQDG3ebmZuzudTJrnPMAAAAAAAAApp9wETDxNjY24tJLL03WPf/5zx96Ly94wQuSNV//+tdj165dQ+9lmj32sY9N1iwvL8fycvYgPAD5tbupoVM32o+DRo7PoZ3YTgAAlMfulW70+/3MmkbVOQ8AAAAAAABg2gkXARPva1/7WuzevTtZ9/SnP33oveR5jc3NzbjsssuG3ss0u+9975ur7rbbDE8DDEpqc1GeUAvDlyfk1RIuAgD+f6kzXkREs+6cBwAAAAAAADDthIuAiZcnqLN9+/Zc224O1AMf+MA46qijknWXXHLJ0HuZZnnDRevr60PuBKAceutr0VlbzayxuWg82FwEAOyPPOcC5zwAAAAAAACA6SdcBEy8K664Ilnz2Mc+Nubm5groJuLkk09O1lx55ZUFdDK91tbWctVt22YACmAQ8gyd2lw0Hqpz81GbX8issbkIALhd6lwwNzMbSwvVgroBAAAAAAAAYFSEi4CJ9+1vfztZ88hHPrKATn7pUY96VLLm+9//fqysrBTQzXS69dZbkzVzc3Oxffv2AroBmH65brSvLxXQCXmktgsIFwEAt2t1ss8FjVo9KpVKQd0AAAAAAAAAMCrCRcBEu+WWW+JnP/tZsm7cwkXr6+vxL//yLwV0M53yvHcPetCDYnZ2toBuAKZfnjBKs2pz0bhIhYvyhMUAgHJInfOaNQFyAAAAAAAAgDIQLgIm2lVXXZWr7qEPfeiQO/k3D3nIQ3LV5e2du+r3+/HVr341WXfssccW0A1AObS6y5nP6/OLsTA3V1A3pKSGgFOfJwBQHqnQcaNWL6gTAAAAAAAAAEZJuAiYaD/60Y9y1R111FFD7uTfNJvNOOigg5J1eXvnrr761a/m2lZ18sknF9ANQDkkb7Sv21o0ThqJzUV5NlEBAOVgcxEAAAAAAAAAEcJFwIS7/vrrkzWHHnpobNtW7NBznjBTnt65pw996EO56k455ZThNgJQIskb7avCReOkmQgXpT5PAKA82omNhqlzBQAAAAAAAADTQbgImGg33HBDsubwww8ffiN3c9hhhyVrhIv2389//vP4yEc+kqx7yEMeEo94xCMK6AigHNI32hs6HSepz6Ozthq99bWCugEAxtXG5mbsXulm1jjnAQAAAAAAAJSDcBEw0W666aZkzaGHHlpAJ/v/mjfeeGMBnUyXv/qrv4puN3vwKSLixS9+8fCbASiRZLiobuh0nDRyDAHbXgQA7Ol1ot/vZ9bkOVcAAAAAAAAAMPmEi4CJtmvXrmTNfe973wI6uas84aJf/OIXBXQyPX7wgx/Ee9/73mTdjh074hWveEUBHQGURyqI0qwtFdQJeeTZMJAKjAEA0y/PecDmIgAAAAAAAIByEC4CJlqecFGj0Rh+I1t4zdtuuy1WVlaG38wU2NjYiJe85CWxtraWrP2DP/iDkXzmANOqt7Ya3bXVzBo32o8Xm4sAgDzyhYuEyAEAAAAAAADKQLgImGitVitZs3379gI62dpr2l6Uz9vf/va44oorknWHH354/Nmf/VkBHQGUhxvtJ8/i3HzU5xcza1rd5YK6AQDGVSpsPD8zG9sWss8UAAAAAAAAAEwH4SJgYnW73VybbEYRLtqxY0euut27dw+5k8n3la98JV73utflqv2bv/mbWFpyqzLAIOXZcCNcNH6a9ezPJE9oDACYbqmwcaO2LSqVSkHdAAAAAAAAADBKwkXAxFpdXc1VV6vVhtzJPVWr1Vx1eX+Gsrr11lvj+c9/fq4Q2TOf+cz4vd/7vQK6AiiXPCGUhnDR2GlUE+GijnARAJRdq9vJfC5ADgAAAAAAAFAec6NuAGCr8gZzZmdnh9zJPc3N5fufV+GifVtbW4vTTz89brzxxmTtwQcfHOedd14BXU2GJzzhCbn/DDI83/ve90bdAgxEKly0bWExFmb9b864SQ0Dt3vCRQBQdu0cm4sAAAAAAAAAKAebi4CJlTeYM4qQRd7XzLORp6xe8YpXxJe+9KVctR/4wAfi0EMPHXJHAOXUToSLmrWlgjphfzTric1FOTZSAQDTLXUesLkIAAAAAAAAoDxcMQ5MrPX19Vx1wkWT561vfWucf/75uWpf85rXxGmnnTbkjibL5ZdfHocccsio2wCmRCtxo72h0/GUCn21O8JFAFB2wkUAAAAAAAAA3M7mImBi5Q3wbGxsDLmTrb/mKIJP4+6CCy6IP//zP89Ve/LJJ8eb3/zmIXcEUG7tbifzecPQ6VhKfS7d9dXoreXbAgkATJ+Nzc3Y03POAwAAAAAAAOCXhIuAibWwsJCrLu+Go0HKu5Eo789QFhdffHGceeaZ0e/3k7UPfehD46KLLhLQAhgym4smU57PJbWtAACYXrt7nUj9zds5DwAAAAAAAKA8hIuAiTU/P5+rbhThoryvKVz0by6//PL4nd/5nVzBrAc84AFxySWXxMEHH1xAZwDllgqgGDodT3k+l7ZwEQCUVipAHhHRrC0V0AkAAAAAAAAA40C4CJhYi4uLuep6vd6QO9n6awoX/dI3v/nNeMYznhHdbjdZe5/73CcuueSSOOKIIwroDKDcumur0VvPDn0KF42nhs1FAECGdreTrGnUnfMAAAAAAAAAymJu1A0Ak+X666+PK6+8cqivsW3btnjWs56VrKvVajE3N5fcErR3795BtZZb3tfcsWPHkDsZf9/73vfiaU97WuzZsydZ22g04vOf/3wcc8wxBXQGQJ7NNnlCLBRvYXYuti0sxm2rK/usES4CgPJKbS6an5mNbfP5LnUBAAAAAAAAYPIJFwH75Utf+lKceeaZQ32NBz7wgbnCRRERzWYzbr311syaPKGVQcv7mgcddNCQOxlv1157bZx66qmxa9euZO22bdvi4osvjoc//OEFdAZARL7wSbO2VEAnbEWztpQZLsoTHgMAplPqnNeobYtKpVJQNwAAAAAAAACM2syoGwA4EAcffHCyZvfu3QV0sv+vWa/Xo1qtFtDNeLr++uvjyU9+ctx8883J2mq1Gp/61Kfi8Y9/fAGdAXC71I32ERGNWr2ATtiKZmKrVJ7PFwCYTqmQcbNuOyUAAAAAAABAmQgXARMtT7jolltuKaCTu8oTmMnT+7S68cYb45RTTokbb7wxWTs/Px8XXnhhPPnJTy6gMwDurN3tZD5fWqzG/KxlqOOqkQwX2VwEAGWV3FxUFS4CAAAAAAAAKBPhImCi3e9+90vW5An6DFqe18zT+zS6+eab48lPfnJcf/31ydrZ2dm44IIL4pnPfGYBnQFwd6nNNk1Dp2MttbkotbEAAJheqXBRs7ZUUCcAAAAAAAAAjAPhImCiHXnkkcma//f//t/wG7mbn/3sZ8maBz3oQQV0Ml5uvfXWOOWUU+Laa69N1lYqlTj//PPj9NNPL6AzAO5N8kb7RHiF0UqFi2wuAoDySoWMm3XnPAAAAAAAAIAyES4CJlqegM7NN98cnU6ngG7+zXXXXZesKVu4aNeuXXHqqafG1Vdfnav+7/7u7+JFL3rRkLsCIEvyRntDp2MtFS7qra9Fd221oG4AgHGxvrkRe3rZ/z9Jw4ZKAAAAAAAAgFIRLgIm2oMf/OBkTb/fzxX2GZR2ux27du1K1uXpfVq02+146lOfGldddVWu+ne84x3xile8YshdAZCSutHe0Ol4y7NZyvYiACif3b1O9BM1QuQAAAAAAAAA5SJcBOyXF7/4xdHv94f664Ybbsjdz/HHH5+r7gc/+MEWf+L9l/e18vY+6fbs2RNPe9rT4lvf+lau+je+8Y3x6le/eshdAZDS7/fTm4tqSwV1w1bk+XxSATIAYPrk+f5PbUAEAAAAAAAAYLoIFwET7bDDDov73ve+ybq8wZZByPNac3NzccIJJxTQzWgtLy/H05/+9Pja176Wq/7P/uzP4nWve92QuwIgj+76aqysr2XWuNF+vDVq9WRNq7tcQCcAwDjJs7kwzwZEAAAAAAAAAKaHcBEw8R75yEcma4oMF33zm99M1jz0oQ+NarVaQDej0+l04hnPeEZ85StfyVX/h3/4h/HmN795yF0BkFe720nWuNF+vM3PzsXSYvZ5I89wMQAwXVLf//Ozs7FtfrGgbgAAAAAAAAAYB8JFwMR7/OMfn6z56le/Guvr6wV0E/HlL385WfPYxz62gE5Gp9frxbOf/exc70VExFlnnRXvfve7h9wVAPsjz0YbN9qPv2Y1+zNqdYSLAKBsUt//zdpSVCqVgroBAAAAAAAAYBwIFwET75RTTknW7N27N772ta8NvZef/OQncd111yXrnvKUpwy9l1FZXV2N3/qt34rLLrssV/0LX/jC+O///b8PuSsA9lee0EmjWi+gEw5EKgDW7gkXAUDZpL7/bacEAAAAAAAAKB/hImDiPeYxj4kdO3Yk6z7zmc8MvZc8r1GpVHIFoibR2tpanH766fHZz342V/3pp58eH/zgB2NmxtcRwLhpdbOHTrcv1mJ+dq6gbtiqZj2xuSjxOQMA06fVyd5QaTslAAAAAAAAQPmY5gYm3tzcXK6wzic+8Ymh9/Lxj388WXPiiSfGr/zKrwy9l6JtbGzEGWecEZ/61Kdy1T/rWc+KCy64IGZnZ4fcGQBb0U6ETtxoPxmataXM56nhYgBg+jjnAQAAAAAAAHB3wkXAVPjd3/3dZM21114bV1555dB6+MlPfhJf/vKXk3V5ep00m5ub8aIXvSj+8R//MVf90572tLjwwgtjfn5+yJ0BsFWpjTZutJ8MjWr259Tu3hb9fr+gbgCAcdDqCRcBAAAAAAAAcFfCRcBUeNaznhU7duxI1r3rXe8aWg//5b/8l9jc3MysmZmZiRe84AVD62EU+v1+vOxlL4uPfvSjueqf9KQnxUUXXRSLi4tD7gyAA9HuZm+0MXQ6GZr17M9pZWM9uuurBXUDAIza+uZG7Ol1M2uEyAEAAAAAAADKR7gImArVajWe97znJev+8R//Ma677rqBv/6uXbvivPPOS9Y99alPjcMOO2zgrz9Kr3rVq+KDH/xgrtqTTjop/s//+T9Rq9WG3BUAByq1uUi4aDLk+ZxanezPGgCYHru7nWSNcx4AAAAAAABA+QgXAVPj1a9+dVQqlcya9fX1eM1rXjPw1/6Lv/iL2LNnT7LuT//0Twf+2qP06le/Ot773vfmqj3xxBPjM5/5TCwtLQ25KwAOVL/fj3YiXORG+8mQZzg49VkDANMjFSCPiGjW/L0dAAAAAAAAoGyEi4Cpceyxx8Yzn/nMZN0nP/nJuPDCCwf2updffnm8733vS9Y98pGPjFNPPXVgrxsRccMNN0SlUkn+etKTnjTQ142IOPfcc+Nv//Zvc9U+/OEPj89//vOxY8eOgfcBwOB111ZjZWM9s8aN9pOhUc2xuUi4CABKI8/3vhA5AAAAAAAAQPkIFwFT5fWvf33MzKT/p+2ss86Ka6655oBf7+abb44zzjgjNjY2krVveMMbDvj1xsVf//Vfx5ve9KZctccdd1xccskl0Ww2h9wVAIPiRvvpMTc7G9sXa5k1wkUAUB7t7nLm84XZuajPLxTUDQAAAAAAAADjQrgImCqPetSj4iUveUmybvfu3XHKKafEj370oy2/1q233hqnnnpq/PSnP03WPv3pT49nPetZW36tcfKud70rXvva1+aqPfroo+Oyyy6LQw45ZMhdATBI7VzhIjfaT4rUZ5UaMgYApker28l83qxti0qlUlA3AAAAAAAAAIwL4SJg6rzpTW+Kgw8+OFl34403xmMe85j4zGc+s9+vceWVV8aJJ54Y3/ve95K11Wo13v3ud+/3a4yjv//7v48/+ZM/yVV75JFHxhe+8IU49NBDh9wVAIOWZ5PNzmq9gE4YhEYiXGRzEQCURypUnDo3AAAAAAAAADCdhIuAqXPIIYfEhz70oVw37e7atSt+8zd/M377t387vvGNbyTrr7766jjzzDPjpJNOip/85Ce5+nn3u98dRx99dK7acfemN70pd+0NN9wQ97///aNSqYzs1xve8IbhvRkAU6yVGDrdsViLudnZgrrhQKU2FwkXAUB5pL73bacEAAAAAAAAKKe5UTcAMAzPfOYz4zWveU287W1vy1V/0UUXxUUXXRTHHHNMPOEJT4hf+7Vfi4MOOigqlUq0Wq34wQ9+EFdccUVcddVV+9XHGWecES9/+cu38iMAwMgYOp0uqc+rLVwEAKXhnAcAAAAAAADAvREuAqbWW97ylrjxxhvjYx/7WO5/5pprrolrrrlmIK9/yimnxPnnnz+Q3wsAipQKmzQMnU6UPJuL+v1+rq2PAMBkc84DAAAAAAAA4N7MjLoBgGGZmZmJD3/4w/Hbv/3bhb/2E57whPjkJz8Zi4uLhb82ABwoN9pPl9SQ8OrGenTWVgvqBgAYlfWNjdiz0s2sadaWCuoGAAAAAAAAgHEiXARMtbm5ubjwwgvj7LPPLuw1zzzzzLj00ktj2zaD1wBMplS4qGHodKLkGRJObTEAACZfu5f+vhciBwAAAAAAACgn4SJg6s3MzMRb3vKWuOiii+Lwww8f2us0m80477zz4vzzz7exCICJ1e/3o9Vdzqxp1g2dTpI8Q8KpzxwAmHztbidZk9p4CAAAAAAAAMB0Ei4CSuM5z3lO/OAHP4jXvOY1A90qtLCwEC996UvjX//1X+NlL3vZwH5fABiFztpqrG1sZNY0qoZOJ8nOWj1Zk9pWBQBMvjxhYpuLAAAAAAAAAMpJuAgole3bt8fb3va2+OlPfxpvectb4td+7de2/Hv96q/+arz2ta+NG264Id7//vfHIYccMsBOAWA0DJ1On7mZ2dixWMusES4CgOmX+r5fnJ2L2vxCQd0AAAAAAAAAME7mRt0AwCg0m804++yz4+yzz44f//jH8fnPfz6+853vxNVXXx033HBD7NmzJ/bu3Rv9fj+2b98e27dvj/vf//5x3HHHxfHHHx+nnnpqPPShDx31jxFHHnlk9Pv9wl7vhhtuKOy1ABiNPCGTZl24aNI0a9tiz0p3n8/bwkUAMPVS3/eN2raoVCoFdQMAAAAAAADAOBEuAkrvgQ98YJx11lmjbgMAxkJq6LQSETur9WKaYWAatW3x4/bP9/nc5iIAmH6p73vbKQEAAAAAAADKa2bUDQAAAOMjNXS6vVqLuZnZgrphUJr1pcznre5yQZ0AAKOSOuc1atnnBQAAAAAAAACml3ARAABwh1YndaO9odNJ1KhmbyJIfe4AwORLbai0uQgAAAAAAACgvISLAACAO6Q22Bg6nUzNevbn1u7dFv1+v6BuAIBRSG8ucs4DAAAAAAAAKCvhIgAA4A7tnhvtp1Hqc1vb2Ijb1lYK6gYAKNraxnrsXelm1jjnAQAAAAAAAJSXcBEAAHCHVseN9tMoz7BwO/HZAwCTq93rJGtSmw4BAAAAAAAAmF7CRQAAQERE9Pv9aHdtLppGeUJhre5yAZ0AAKOQOuNFRDSqznkAAAAAAAAAZSVcBAAARETEbasrsba5kVnTrC0V1A2DtLNaj0qiptVNbzQAACZTK0e4yOYiAAAAAAAAgPISLgIAACIi5432tXoBnTBoczOzsaOa/dm1bS4CgKnV6mSf8xbn5qM2t1BQNwAAAAAAAACMG+EiAAAgIiJaOcIlNhdNrkYtextBno0GAMBkaveyv+ebtW1RqaT2HAIAAAAAAAAwrYSLAACAiEiHSyoRsTOx/Ybx1RQuAoDSSoXIUyFkAAAAAAAAAKabcBEAABAREe1EuGRntR6zM/4KMalS4aLU5w8ATK5WJ725CAAAAAAAAIDyMhkIAABERHpzjRvtJ5vNRQBQXu2ecBEAAAAAAAAA+yZcBAAAREQ6XGLodLKlwmGt7m3R7/cL6gYAKJIQOQAAAAAAAABZhIsAAICIyDN0ulRQJwxDM/H5rW9uxG2rKwV1AwAUZW1jPZZXepk1QuQAAAAAAAAA5SZcBAAARERE2+aiqZbn82t1lwvoBAAoUrvXSdakQsgAAAAAAAAATDfhIgAAIPr9fnJzkXDRZMsXLsr+MwAATJ5WJ/393nDOAwAAAAAAACg14SIAACCWV3uxvrmRWWPodLLtqNajkqgRLgKA6dPOsZlQiBwAAAAAAACg3ISLAACAXKGSZt3Q6SSbnZmJndV6Zk1buAgApk7qnFedm4/a/EJB3QAAAAAAAAAwjoSLAACAXKGSZlW4aNI1akuZz20uAoDpk/p+t50SAAAAAAAAAOEiAAAgOXRaqVRiR2LrDeOvmRgebnWXC+oEAChKKkSeOh8AAAAAAAAAMP2EiwAAgGSoZGe1HrMz/vow6VKbCVodm4sAYNqkQuTCRQAAAAAAAACYDgQAAKLd7WQ+N3Q6HVKfY7snXAQA0ya9uWipoE4AAAAAAAAAGFfCRQAAQHJzUaMqXDQNmvXE5qLubdHv9wvqBgAoQmpzUWqzIQAAAAAAAADTT7gIAACIVidxo30ilMJkSG0u2tjcjL0rvYK6AQCGbXVjPZZXs7/bbagEAAAAAAAAQLgIAACIduJGe0On0yHPZoJ2YosVADA5dnc7yRrnPAAAAAAAAACEiwAAoOT6/X60eqlw0VJB3TBMeT7HVo4hZABgMrRyhIbzhI8BAAAAAAAAmG7CRQAAUHJ7V3qxsbmZWdOo1QvqhmHauViLSqWSWZNnCBkAmAytxHbKCOEiAAAAAAAAAISLAACg9No5wiQ2F02HmZmZ2FnNDoq1cwwhAwCTIfW9XptbiNr8QkHdAAAAAAAAADCuhIsAAKDk8txo33Sj/dRIfZZ5/jwAAJMh9b1uOyUAAAAAAAAAEcJFAABQeqmh00qlEjsWawV1w7ClwkU2FwHA9Eid82ynBAAAAAAAACBCuAgAAEovFSZpVOsxM+OvDtPC5iIAKI9WdznzecN2SgAAAAAAAABCuAgAAEovfaO9odNpkhoiTg0hAwCTo93tZD53zgMAAAAAAAAgQrgIAABKL7W5qFlbKqgTipD6PNu9Tmz2+wV1AwAMk81FAAAAAAAAAOQhXAQAACWX2lzUqNUL6oQipDYUbGxuxvJKt6BuAIBhWV1fj9tWVzJrbC4CAAAAAAAAIEK4CAAASi91o73NRdMlzxBxKnAGAIy/di/9fd6sO+cBAAAAAAAAIFwEAAClttnvR7vbyaxxo/10aQgXAUAp5Pk+b1RtqAQAAAAAAABAuAgAAEpteaUbG/3NzJo8YRQmx47FWsxUKpk1beEiAJh4ecJFQuQAAAAAAAAARAgXAQBAqRk6LZ+ZmZloVLM/U5uLAGDypcLCtfmFqM4vFNQNAAAAAAAAAONMuAgAAEpMuKicUtuoWt3lgjoBAIYl9X1uOyUAAAAAAAAAtxMuAgCAEksNnc5UKrG9Wi+oG4qSCozZXAQAk6/Vyf4+FyAHAAAAAAAA4HbCRQAAUGLtbifzeaO6LWYqlYK6oSipTQVt4SIAmHjtnnARAAAAAAAAAPkIFwEAQImlNhelQihMJpuLAGD6pb7PnfMAAAAAAAAAuJ1wEQAAlFhq6LRZN3Q6jVKfa7t7W2z2+wV1AwAMQ6tjcxEAAAAAAAAA+QgXAQBAibVT4SJDp1OpUc3+XDf7/djb6xTUDQAwaKvr69FZW8msadaWCuoGAAAAAAAAgHEnXAQAACWW2lyUCqEwmZr19DBxS7gIACZWq5d9xouIaAiRAwAAAAAAAPD/Ey4CAICS2uz305uL6oZOp1GejVStznIBnQAAw5Dne9yGSgAAAAAAAABuJ1wEAAAltbfXic1+P7OmWUtvuGHybF+sxWwl+6+DqeAZADC+8nyP21wEAAAAAAAAwO2EiwAAoKRavU6yxo3202mmUomdtXpmTUu4CAAmVup7vD6/ENW5+YK6AQAAAAAAAGDcCRcBAEBJtTrLyRo32k+vVHBMuAgAJldqc5EzHgAAAAAAAAB3JlwEAAAllRo6na3MxPbFWkHdULRmbSnzeerPBwAwvlIhYdspAQAAAAAAALgz4SIAACip1NBpo1aPmUqloG4oWqNWz3ze6qY3WwEA4ykdLsoOGQMAAAAAAABQLsJFAABQUulwkRvtp1l6c1GnoE4AgEFLbSB0zgMAAAAAAADgzoSLAACgpFJDp260n27NxFBxu3dbbG5uFtQNADBIqQ2EqXMAAAAAAAAAAOUiXAQAACVl6LTcUp/vZr8fe1a6BXUDAAzKyvpadNZWM2uc8wAAAAAAAAC4M+EiAAAoqXa3k/nc0Ol0a+T4fFuJ7VYAyq3OWAABAABJREFUwPhJbaeMyHcOAAAAAAAAAKA8hIsAAKCENjc3o93LHjw1dDrd8oTH8gwnAwDjJU84WIgcAAAAAAAAgDsTLgIAgBLas9KNzX4/s8bQ6XRbWqzF7Ez2XwltLgKAyWNzEQAAAAAAAAD7S7gIAABKyI32zFQq0axmf8at7nJB3QAAg5I659XnF2Jxbr6gbgAAAAAAAACYBMJFAABQQvlutF8qoBNGKbW1wOYiAJg8qe/vpjMeAAAAAAAAAHcjXAQAACWUGjqdnZmJ7YvVgrphVFLbqfKE0ACA8ZLaPJgKFwMAAAAAAABQPsJFAABQQqmh02Z1W1QqlYK6YVRsLgKA6ZMKB6fCxQAAAAAAAACUj3ARAACUUCo04kb7cmjWhYsAYNqkvr+FiwAAAAAAAAC4O+EiAAAooeSN9onQCdOhUc3+nHf3OrG5uVlQNwDAIAiRAwAAAAAAALC/hIsAAKCEkkOnidAJ06FZW8p83u/3Y/dKt6BuAIAD1Vtfi+7aamZNs579/Q8AAAAAAABA+QgXAQBACaXCRTYXlUOez7nVXS6gEwBgEFLbKSMiGtV6AZ0AAAAAAAAAMEmEiwAAoGQ2Nzdjd6+TWZPaaMN0yLOhqtVJDykDAOMhFSCPsLkIAAAAAAAAgHsSLgIAgJLZvdKNfr+fWZMndMLk275YjdmZ7L8W5tmAAACMhzzf203nPAAAAAAAAADuRrgIAABKptVdTtY064ZOy6BSqUSzlv1Z59mAAACMh9Q5rz6/GAtzcwV1AwAAAAAAAMCkEC4CAICSaXVy3GifCJwwPZq1pcznwkUAMDlS39sC5AAAAAAAAADcG+EiAAAomXYve+h0bmY2lhaqBXXDqDVq9czn7RybrgCA8dBOhYsEyAEAAAAAAAC4F8JFAABQMqnNRY1aPSqVSkHdMGo2FwHA9Eh9bzeqwkUAAAAAAAAA3JNwEQAAlExq6DQVNmG6pDYYpDYgAADjI3nOqwsXAQAAAAAAAHBPwkUAAFAy7e5y5vNU2ITpkvq8d/c6sbG5WVA3AMCBaCc2VAqRAwAAAAAAAHBvhIsAAKBkWt1O5nPhonJpJD7vfvwyYAQAjLfe2mp011cza1Lf+wAAAAAAAACUk3ARAACUTGpzkaHTcskTJmt3s7cgAACj18rxfS1EDgAAAAAAAMC9ES4CAIAS2djcTG6hMXRaLs3aUrImz7AyADBaecLAznkAAAAAAAAA3BvhIgAAKJE9vU70EzWGTstl28JizM/MZta0EtuuAIDRyxMGtqESAAAAAAAAgHsjXAQAACVi6JS7q1Qqyc/c5iIAGH+p7+ttC4uxMDtXUDcAAAAAAAAATBLhIgAAKJE8IZFmbamAThgnqW1VbeEiABh7qe9rZzwAAAAAAAAA9kW4CAAASqTVXc58Pj8zG9sWFgvqhnFhcxEATL7U93UqTAwAAAAAAABAeQkXAQBAiaRutG/UtkWlUimoG8ZFapOBcBEAjL885zwAAAAAAAAAuDfCRQAAUCJutOfeNGv1zOepjVcAwOilvq+d8wAAAAAAAADYF+EiAAAokVS4yI325dRIbC7a2+vG+uZGQd0AAFvR7nYynwsXAQAAAAAAALAvwkUAAFAi6c1F2SETplOznj1s3I+I3b3sgWUAYHS6a6vRXV/NrBEiBwAAAAAAAGBfhIsAAKBE2qlwUSJkwnTKs8mg1cn+swMAjE7qjBdhcxEAAAAAAAAA+yZcBAAAJbG+uRF7EttnGlVDp2WUZ5NBausVADA6eb6nbagEAAAAAAAAYF+EiwAAoCR29zrRT9TYXFRO2+YXY352NrOm3RMuAoBxlWdz0c5avYBOAAAAAAAAAJhEwkUAAFASeYZOmzk22DB9KpVKcptBqyNcBADjKrW5aGmhGguzcwV1AwAAAAAAAMCkES4CAICSSA2dRkQ0hItKq5HYZtDuLhfUCQCwv1qJ72kBcgAAAAAAAACyCBcBAEBJpMJF87OzsW1+saBuGDfJzUU5wmkAwGikNlQKkAMAAAAAAACQRbgIAABKotXJHjpt1paiUqkU1A3jJrXRIDW0DACMTioEbHMRAAAAAAAAAFmEiwAAoCTaPUOn7Fvq87e5CADGV+p72uYiAAAAAAAAALIIFwEAQEm0OsuZzw2dllvq89+z0o31jY2CugEA9kdqw2CztlRQJwAAAAAAAABMIuEiAAAoifTQqXBRmeX5/Hf3OgV0AgDsj+7aavTW1zJrmrV6Qd0AAAAAAAAAMImEiwAAoCRawkVkyLPRIPVnCAAoXp7v54bNRQAAAAAAAABkEC4CAIASWN/ciD0r3cyaPOESpleecFmru1xAJwDA/khtp4yIaNaFyAEAAAAAAADYN+EiAAAogd3dTrKmUasX0Anjqja/EAuzc5k1NhcBwPjJE/5tVJ3zAAAAAAAAANg34SIAACiBPKEQm4vKrVKpJLcX5dmMAAAUK3XOW1qsxnwiQAwAAAAAAABAuQkXAQBACeQLF2UHS5h+qT8DNhcBwPhpdbK/n53xAAAAAAAAAEgRLgIAgBJod5czny/MzkVtfqGgbhhXjcT2KuEiABg/7V7293OjKlwEAAAAAAAAQDbhIgAAKIFUKKRZ2xaVSqWgbhhXzVo983krEVIDAIqXPOfVhYsAAAAAAAAAyCZcBAAAJZAnXASpzUXtbqegTgCAvFqd7PBvM/H9DgAAAAAAAABzo26AfHq9Xtx0003x85//PHbv3h3tdjv27t0bq6ursbq6GmtrazE7OxsLCwsxPz8f9Xo9du7cGY1GI5rNZhx22GFx8MEHj/rHAABgRNqJcFEqVEI5pEJme1e6sbaxHvOz/ioJAOOg3+9Hu5cd/hUiBwAAAAAAACDFRNgYWV5eju985ztx9dVXx7XXXhvXXntt/PCHP4ybbrop2u32Af/+CwsLcdhhh8WRRx4ZRx11VBx99NFxzDHHxMMf/vA48sgjD/j3BwBgfKU3F9UL6oRx1qynh4/bvU4csm1HAd0AACnd9dVYWV/LrGkIFwEAAAAAAACQIFw0Imtra/Gtb30rvvKVr8QVV1wR3/rWt+KGG26Ifr9/l7q7/+cDsbKyEjfccEP8+Mc/ji996Ut3ebZjx4444YQT4tGPfnScdNJJcdJJJ8Whhx46sNcGAGC0UuEim4uIiGhU08PHrc5twkUAMCZanewzXoTNRQAAAAAAAACkCRcV6Bvf+EZceumlcckll8QVV1wRKysrdzzLChFVKpWB9nFvr7V79+64/PLL4/LLL4+//du/jYiIBz3oQXHKKafEqaeeGqecckocdNBBA+0DAIBirG9sxN6VbmaNoVMi8m4uSg8xAwDFyPO97JwHAAAAAAAAQIpw0RB1Op343Oc+F5/61Kfi//7f/xu7du2649ndAz6pANEgNhjd/hr7eq27v8aPfvSjuP766+P9739/VCqVeMxjHhOnnXZaPPvZz45jjz32gPsBAKAYuYZOc4RKmH61uYVYnJuPlfW1fdbk2ZAAABQjz/dyns2EAAAAAAAAAJSbcNGAra6uxqc//en46Ec/GhdffPEd24nyhokGESLal9R2pHvr6fZ/pt/vx5VXXhlXXnllnHPOOXH00UfHGWecES94wQvimGOOGVrPAAAcuFbX0Cn5VCqVaFTrccvy7n3WtLrLBXYEAGRJnfO2L9Zibna2oG4AAAAAAAAAmFQzo25gWnzlK1+Jl770pXGf+9wnTj/99Ljoooui1+tFv9+Pfr9/R3jnziGe25/d+deo7KuXO/d852fXXHNN/OVf/mUce+yx8ahHPSre8573RKvVGln/AADsW55wkc1F3K5ZX8p83s7x5wkAKEbqe7lZc8YDAAAAAAAAIE246AC0Wq14+9vfHscdd1ycfPLJ8aEPfSj27Nlzr4GiiHsGeMZdVtDozmGjb3/72/FHf/RHcfjhh8fv/u7vxhe+8IURdw4AwJ21OtlDp4tz81GbWyioG8Zdagg5T1gNAChG6nu5IVwEAAAAAAAAQA7CRVtw1VVXxVlnnRVHHHFEnH322fGDH/wgV6BokmVtNbr9+crKSvzP//k/4ylPeUo87GEPi/e9733R6XRG2TYAABHR7iWGTqv1O851kAoX2VwEAOOj3V3OfG5zEQAAAAAAAAB5CBfth89+9rPx5Cc/OR7xiEfE+eefH91ud6oDRVnu/DPe2zajq6++Ov7Df/gPcb/73S/OOeecuOWWW0bdMgBAabVSQ6f1pYI6YRKkNhzYXAQA4yP1vSxcBAAAAAAAAEAewkUJ/X4/PvrRj8av//qvxzOe8Yz40pe+dI9Qze11wwgU3Tm4M6hfg5a1zWj37t3x1re+NR70oAfF7//+78d111038NcHACBbq2PolPxSfx6WV3uxtrFeUDcAwL70+/3kRsFUaBgAAAAAAAAAIoSL9qnf78cFF1wQxx57bLzwhS+Mq666KjNUdCDyBIHuHF46kF+p1zuQ8FHWNqNerxfvf//747jjjoszzzwzfvjDHx7QewYAQH7tnnAR+TVr6U1W7W6ngE4AgCzdtdVYSQR+nfMAAAAAAAAAyGNu1A2Mo0984hPxhje8Ia655pq7BIfuHCjaqn2Fd/b1e9Zqtbjf/e53x6/t27dHrVa7119ra2vR6XSi2+3e49ctt9wSN954Y9x0002xa9euzN7urcf9/Zn3tclofX09PvzhD8cFF1wQL3zhC+MNb3hD3P/+99+v3xsAgP3TcqM9+yHPEHKruxyHLO0ooBsAYF9SZ7yIfKFhAAAAAAAAABAuupMvfOELcfbZZ8e3vvWtu4RjbreVUFGeoM6OHTvi+OOPjxNOOCFOOOGEeOADHxj3u9/94ogjjohms7nfr5mysrISN910U9x0001x4403xve///246qqr4qqrroof//jH9+jv3rYo5ZUVMvrQhz4UH/vYx+JVr3pVnHPOOUP5WQEAym5tYz2WV3qZNW60587yhM3yDDMDAMPVzhUucs4DAAAAAAAAIE24KCK+973vxZ/+6Z/GJZdcEhG/DL9sNUyTChMddNBB8cQnPjEe+chH3iVMVKTFxcV48IMfHA9+8IPv8Wzv3r3xL//yL3eEjS6//PL43ve+d68hodvleX/2FTLq9Xrxzne+Mz7wgQ/EueeeG3/0R38Uc3P+WAIADEq720nWuNGeO6vNL0R1bj5662v7rMkzzAwADFeesO/Oar2ATgAAAAAAAACYdKVOcbRarXjd614Xf//3fx8bGxv32FaUN1SUFbZpNBrxG7/xG/GkJz0p/v2///dxwgkn3GsAaVxs3749TjrppDjppJPu+O927doVX/ziF+OLX/xi/NM//VNcffXVdzzb361G+woZtdvt+M//+T/H+973vnjnO98Zz3zmMwf5YwEAlFaeoVM32nN3zdq2+Nne9j6f21wEAKPX6i5nPt+xWIu52dmCugEAAAAAAABgkpUyXNTv9+O9731v/MVf/EW0Wq2BhIru/Hs89rGPjdNOOy2e+tSnxiMe8YixDhPlcfDBB8dzn/vceO5znxsREbfeemv80z/9U3z605+Oiy++OH7xi19ExP4FjfYVMrruuuvitNNOi6c85Snxnve8J4466qhh/VgAAKXQTgydRkQ0hIu4m2ZtSbgIAMZcapOgADkAAAAAAAAAeZUuXPTNb34zXvGKV8S3vvWtLYWK7i08MzMzE0960pPi+c9/fjz72c+OQw89dAidj49DDjkknve858Xznve82NzcjH/+53+O//W//ldceOGFcfPNN0dE/qDRvkJGn//85+P444+Ps88+O84555xYWFgY8k8FADCdUiGQ6tx81OadtbirRq2e+Ty1KQEAGL7UOU+AHAAAAAAAAIC8ZkbdQJH+43/8j/G4xz3ujmDR3QMtWe5e2+/349GPfnS8613vihtvvDEuu+yyePnLXz71waK7m5mZiSc+8Ynx7ne/O2666aa49NJL46UvfWls3779jvcp4p5ho7u7e21ExMrKSvzVX/1VHH/88fH1r399+D8MAMAUSg2dutGee9OsLWU+b3c7BXUCAOyLcx4AAAAAAAAAg1KqcNHf/d3fxebm5h3Booi7hlru7vZATKVSuaPuV37lV+KP//iP46r/j707D5OzKvMG/FQvSVVnq5Y9AVwRZRVEQNyAURFRxF2RLVGRgCKKu5/jiKMzrqMyOohKgiwK6riBjoKKDiLIImSQZZRVFlmkO0mnq/f6/nA6JKG7TqW76q3qrvu+rlwz0+9J9VOZ6ut9E87v/FatiquuuipOPvnklgsUTSaXy8XBBx8cX/va1+Kvf/1rnH322XHQQQdFxMQNRRMZ/3Pe8M/9z3/+c/z0pz/N5D0AAMw2vU60ZwpSnwvNRQDQeOnnvMphYQAAAAAAAAAY11LhonEbhoUmu75p+OiAAw6I8847L+655574/Oc/H7vttluWI884+Xw+jj766PjFL34Rt956a5xyyimxaNGizQoZAQAwfU60ZypSn4t1Q4MxNDKS0TQAwKbK5XIVz3ldGU0DAAAAAAAAwEzXkuGiakNFnZ2dsXTp0rj++uvj8ssvjze+8Y3R2dmZ5aizwlOe8pT4/Oc/H/fdd1+ceeaZ8fSnP/0xDUUAANRHetOpE+15rGpCZz0DlT9bAED99A8PxdBo5aCv5iIAAAAAAAAAqtWS4aJNbRoqWrRoUXzgAx+IO++8M77xjW/EHnvs0eAJZ4d8Ph9vectb4sYbb4wf//jH8fznP1/ICACgznoT4aKi5iImUM3nIvXZAgDqp6fUl1yjoRIAAAAAAACAarV0uGjTUNGWW24Zn/zkJ+Puu++OT37yk7Httts2eMLZ67DDDovLLrssrrjiijj00EOFjAAA6mBodCT6hgYqrrHplIlU1VwkXAQADVNNyNdzHgAAAAAAAADVaslw0aahoq222io+97nPxZ133hkf+MAHYv78+Q2esHXsv//+cfHFF8c111wTr3jFKzYKGQEAMD02nTJV+c45UeiYU3FNT3+6MQEAqI9qQr6LCl0ZTAIAAAAAAADAbNCS4aKIv4eKFi1aFP/8z/8ct99+e7zrXe+KQqHQ6LFa1t577x3f//7348orr4yDDz44yuVyRISQEQDANFSz6bQoXMQkil2VPxvVhNcAgPpIPectzBeio609o2kAAAAAAAAAmOlaLlxULpdjzpw58b73vS9uv/32+NCHPhRdXU7xbBb77rtvXHrppXHppZfG3nvvvT5kBADA5tNcxHSkPhvVhNcAgPpIPed1FzSzAwAAAAAAAFC9lgoX5XK5OPLII+PWW2+Nf/3Xf41isdjokZjEwQcfHFdffXWcffbZsWTJkkaPAwAwI6XCH4WOOZHvnJPRNMw0wkUA0LxS9+Fi3mFKAAAAAAAAAFSvo9EDZOnKK6+MZz3rWY0eg81w9NFHx2tf+9q47bbbGj0KAMCM01Pqq3i92KW1iMkVE+GiapqxAID6SD3ndXdpLgIAAAAAAACgei3VXCRYNDPl8/nYddddGz0GAMCM09NfOfyRaqahtWkuAoDm1Vvqr3jdcx4AAAAAAAAAm6OlwkUAANBKegcqhz+KeZtOmVx3oXLjQf/wYAyODGc0DQAwrlwupxsqhYsAAAAAAAAA2AzCRQAAMEulmmW6u2w6ZXLVNB70ai8CgMytGx6M4dHRims0FwEAAAAAAACwOYSLAABglurpT4SLbDqlgmoaD1IBNgCg9qoJ93rOAwAAAAAAAGBzCBcBAMAsNDQyEv3DgxXXdBfmZzQNM1E14SLNRQCQvWrCvdXcxwEAAAAAAABgnHARAADMQj0DNp0yPfmOzujqnFNxjeYiAMheqp0yFxGL8l3ZDAMAAAAAAADArCBcBAAAs1BPf19yTbdwEQmpdivhIgDIXm8iRL4w3xUdbe0ZTQMAAAAAAADAbCBcBAAAs1BvFaEPzUWkFAuVWw96SukQGwBQW6nmIs94AAAAAAAAAGwu4SIAAJiFUo0yXZ1zIt/RmdE0zFSp5qJqQmwAQG2lwr3aKQEAAAAAAADYXMJFAAAwC6VCH060pxqpzcmpEBsAUHup5zzhIgAAAAAAAAA2V0uHiy655JJGjwAAAHWRCn3YdEo1UiE04SIAyJ7nPAAAAAAAAABqraXDRYccckg84QlPiH/6p3+KO++8s9HjAABAzfSU+ipe7y7Mz2gSZrLU5uTS8FAMjAxnNA0AUC6XNVQCAAAAAAAAUHMtHS6KiPjLX/4SH//4x+MpT3lKHHzwwXHeeefFwMBAo8cCAIBp6S31V7xu0ynVqOZzktrgDADUzrqhwRgeG624RogcAAAAAAAAgM3V8uGiiL+f+Dk2Nha//vWv45hjjoltt902TjjhhLjqqqsaPRoAAExJurlIuIi07q705uQe4SIAyEw1oV7PeQAAAAAAAABsLuGiiMjlcpHL5aJcLke5XI41a9bE1772tTjggANi1113jc997nPx4IMPNnpMAACoyuDIcPQPD1VcY9Mp1ejOpz8nPf2Vg2wAQO2kAuQRGioBAAAAAAAA2HzCRfH35qKIR0NGGwaNbr755njf+94XO+ywQxxxxBHxwx/+MEZHRxs8MQAATK6aE+1tOqUaczo6oqtzbsU1mosAIDup+24uIhblu7IZBgAAAAAAAIBZQ7jo/4yHiTYNGo1fGx4ejh//+Mfxqle9Krbffvt43/veFzfddFMjRwYAgAlVE/bQXES1ursqf1Z6B4SLACArqRD5onxXtLf5J18AAAAAAAAANo//0jyBDYNGE7UZPfDAA/G5z30udt9999h///3ja1/7WqxZs6bRYwMAQERUFy7SXES1UkG0nn7hIgDISuo5zzMeAAAAAAAAAFMhXJQwUZvRhkGjq6++Ok444YTYbrvt4phjjolf/epXDZ4YAIBW11Pqq3i9q3NuzO3ozGgaZrpiPtFcVEWYDQCojVS4SDslAAAAAAAAAFMhXFSlDduMIuIxIaNSqRTnnXdevPCFL4wnPelJ8fGPfzzuvvvuBk8NAEAr6i31V7ze3WXTKdVLfV5SYTYAoHZSod5iYX5GkwAAAAAAAAAwmwgXTcGGQaOJ2ozuvPPO+Kd/+qd40pOeFC960Yvi29/+dgwODjZ6bAAAWkQq7JFqooENdSc2KafCbABA7aSbi7oymgQAAAAAAACA2US4aJomajMaDxqNjY3FL3/5y3jTm94U2223XZx00klxzTXXNHhiAABmu/SmU+Eiqpf6vJRGhqI0PJTRNADQusrlchXPeZqLAAAAAAAAANh8wkWxcShoqjZsM9rwNce/1tvbG2eccUbst99+sccee8QXvvCFePjhh2v1FgAAYL3kptMu4SKqV6wijNab+MwBANPXNzQQI2OjFddUc98GAAAAAAAAgE21dLjofe97X2y33XYThoKmo1KbUblcjhtvvDFOPfXU2H777ePVr351XHTRRTE2Njbt9wMAABHpoEcxb9Mp1aum6Uq4CADqr5r7rYZKAAAAAAAAAKaipcNF//qv/xp33313XHzxxfHqV7865syZsz4AVM82o/FrQ0ND8YMf/CBe8YpXxA477BAf/OAH49Zbb63JewMAoDUNDA9FaXio4prurvkZTcNsUE0DQqotCwCYvmrut8JFAAAAAAAAAExFS4eLIiLa2tri0EMPje985ztx3333xZe+9KXYe++9J20fmqoNg0YTtRndf//98elPfzp22WWXeM5znhNnnXVW9PX11eptAgDQImw6pdbmtHfE/Dn5imuEiwCg/lL321wuFwvzXRlNAwAAAAAAAMBs0vLhog11d3fH29/+9rjmmmti1apVccopp8RWW201afvQVE0WXBr/+pVXXhlvfetbY7vttoulS5fGb37zm2m/NwAAWkPvQH9yjXARmyvVXtRTcjACANRbbyJctCjfFe1t/rkXAAAAAAAAgM3nvzZPYrfddovPf/7zce+998YPfvCDeMUrXhHt7e0Ttg9N1YZtRhHxmJDRunXr4pvf/GYcdNBBsdNOO8UnP/nJuPfee2v1FgEAmIV6+tMhj1RQBDaVCqSlNjsDANOXai4q5j3jAQAAAAAAADA1wkUJ7e3tcfjhh8f3v//9uPfee+Ozn/1s7L777pO2D03VhkGjidqMbrvttvjIRz4ST3jCE+IlL3lJfOc734nh4eFavU0AAGaJ1KbTeXPmxpz2joymYbZIhYtSnzsAYPpSTYHaKQEAAAAAAACYKuGizbDVVlvFu9/97rjhhhvimmuuiRNPPDG6u7snDBpNx2TBpXK5HKOjo3HJJZfEG97whthuu+3i5JNPjj/84Q/Tfm8AAMwOqQaZ7sL8jCZhNkm1XQkXAUD99Zb6K17v7hIuAgAAAAAAAGBqhIumaO+9945///d/j/vuuy8uuOCCOPTQQ6Otra1ubUYbvub41x555JH48pe/HPvss0/stddecfrpp8cjjzxSk/cHAMDMlAp5ONGeqdBcBACNl2ouKuY95wEAAAAAAAAwNcJF0zRnzpx47WtfGxdffHH85S9/iX/5l3+JnXfeedL2oamq1GZULpfjhhtuiFNOOSWWLFkSr3/96+OnP/3p+vUAALSOVHNRqoEGJpIKFw2ODEdpeCijaQCg9ZTLZc1FAAAAAAAAANSNcFENbbvttvH+978/brrpprjiiivirW99ayxcuHDCYNBUTdZmNH5tcHAwvvvd78bLXvay2HHHHeP//b//F3/+85+n/+YAAJgRUifaay5iKoqF+ck12osAoH76hgZiZGy04hrPeQAAAAAAAABMlXBRney///7x1a9+Ne6///4455xz4oUvfOH6pqGI2rYZlcvlCduM7r333vVNSs9//vPj7LPPjv7+yiecAgAws6UCHjadMhXVfG5SwTYAYOqqCfFqqAQAAAAAAABgqoSL6iyfz8eb3vSm+PnPfx533HFHfOxjH4snPelJE7YP1SJotOnrjX/9t7/9bSxbtiy23XbbeMtb3hK//e1va/L+AABoHqXhoRgYGa64xqZTpqJY6Equ6enXXAQA9VLNfba7iqZBAAAAAAAAAJiIcFGGdthhh/jIRz4Sf/rTn+LXv/51HHvssdHV1TVhMGiqNmwz2vD1xr/W19cXK1asiOc///mx8847x6c+9am4//77a/L+AABorN4qTrTXXMRUdLZ3xPy5+YpregeEiwCgXlINgblcLhbNLWQ0DQAAAAAAAACzjXBRgzzvec+LFStWxF//+tc466yz4vnPf35ERF3ajMrl8oRtRn/605/iQx/6UOy4445x2GGHxX/+53/GyMhITd4fAADZ66kqXOREe6YmFUzTXAQA9ZMK8S7Kd0Vbm3/qBQAAAAAAAGBq/BfnBps3b14cd9xxcdlll8Wf//zn+H//7//FDjvsUNM2o4iY8PXGg0ajo6PxX//1X/Ha1742Fi9eHO9617ti1apV035vAABkq5rmomKhK4NJmI2K+US4qIrPHwAwNakQr3ZKAAAAAAAAAKZDuKiJPPGJT4zTTjst7rjjjrjkkkviyCOPjHw+P2H70FRt2GYUEY9pM3r44YfjS1/6Uuy1116xzz77xFe+8pXo7e2t0TsEAKCeUuGO+XPy0dnekdE0zDbdXZU3LfeW+jKaBABaTypELlwEAAAAAAAAwHQIFzWhXC4X//AP/xDnnntu/PWvf40zzjgj9t9//0nbh6aqUptRuVyO6667Lt7xjnfE4sWL48gjj4yf//znNXl/AADUR08i3GHTKdPRXZhf8brmIgCon9R91nMeAAAAAAAAANMhXNTkFixYEMcff3xcccUVccstt8T73ve+2G677SYMBk3VZG1G49cGBgbiggsuiEMPPTQe//jHx0c/+tG4/fbbp//mAACoqdSm06JNp0xDatNyb2nd+r9TAAC1lWou8pwHAAAAAAAAwHQIF80gT33qU+Nf//Vf4+67746f/OQn8ZrXvCbmzJmzPhhUyzajTV9v/Gt/+ctf4p//+Z9jp512ioMOOijOPffcKJVKNXyXAABMVWrTaXeXTadMXWrT8uDoSJSGhzKaBgBaR7lcjp6BVHNR5YZBAAAAAAAAAKhEuGgGamtri5e85CVx4YUXxn333Renn356PPOZz5ywfagWQaNNX2/867/5zW/i2GOPje222y7e9ra3xZVXXlmT9wcAwNQkm4vywkVMXaq5KCL9GQQANt/awYEYHRuruKaa+zQAAAAAAAAATEa4aIbr7u6Ok046Ka6++upYtWpVnHLKKbHVVltNGAyaqg3bjDZ8vfGvrVmzJr7+9a/Hc57znNhll13is5/9bDzwwAM1eX8AAFSnXC4ngx1OtGc6qtm0nGrPAgA2X2+pL7km1TAIAAAAAAAAAJUIF80iu+22W3z+85+Pe++9N37wgx/EK17xiujo6FgfAqplm9Gmrzf+tVtuuSXe//73xw477BCHH354/PCHP4zR0dEavksAACZSGhmKwZHhimu6u2w6Zeqqab7SXAQAtVfN/VVzEQAAAAAAAADTIVw0C7W3t8fhhx8e3//+9+Pee++Nz33uc7HHHntM2D5Ui6DRpq9XLpdjZGQkLr744njVq14VS5Ysqcn7AgBgcr2l/uSaasIhMJmO9vZYMLdQcU1PFc0KAMDmSYWL2nK5WJi4RwMAAAAAAABAJcJFs9yWW24Z73rXu+L666+Pa6+9Nk466aTo7u6eMBg0VRu2GW36euVyOR566KHpvxEAACqqJtShuYjpSrUi9GouAoCaS91fF+W7oq3NP/MCAAAAAAAAMHX+q3ML2WuvveL000+P+++/Py688MJ46UtfGm1tbXVrMwIAIDs9/elQRzHflcEkzGapcFGqWQEA2Hyp+2vq/gwAAAAAAAAAKcJFLaizszNe85rXxEUXXRR/+ctf4l/+5V9i5513nrB9aKpBIwEjAIBs9Q5U3nS6YG4hOts7MpqG2Uq4CACylw4Xzc9oEgAAAAAAAABmK+GiFrftttvG+9///rjpppvid7/7Xbz1rW+NhQsXThg0AgCgeaWai4oFrUVMX1G4CAAy15u4v3rOAwAAAAAAAGC6hItYb7/99ouvfvWrcf/998e5554bL3zhCyOXy60PGgkYAQA0Lyfak4VUc1FvaZ0WUwCosZ5SX8XrnvMAAAAAAAAAmC7hIh4jn8/HkUceGT//+c/jzjvvjNNOOy2e/OQnCxgBADSx3uSm08qhEKhGMbF5eWh0JPqHhzKaBgBmv7FyOXpL/RXXeM4DAAAAAAAAYLqEi6ho++23jw996EPxb//2bwJGAABNLN1cZNMp01fN5yjVrgAAVK9vsBSj5bGKa4qe8wAAAAAAAACYpo5GD0Dzuvnmm2PlypVx7rnnxl//+tf1Xy+Xyw2cCgCATZXL5ehNhItsOqUWqgsXrYvtF22RwTQAMPulAuQRQuQAAAAAAAAATJ9wERtZvXp1fOtb34oVK1bENddcExHCRAAAza40PBSDoyMV19h0Si0sKnQl16SCbgBA9YSLAAAAAAAAAMiCcBFRLpfj5z//eaxcuTJ++MMfxuDg4EaBolwut9FaAACaS3WbTudnMAmzXUdbeyzMF2LNQGnSNdV8HgGA6qRCu225XCzIp8O/AAAAAAAAAFCJcFEL+9Of/hQrVqyIc845J+67776ICKEiAIAZqJqmmGIVjTNQje78vMrhon7hIgColVRot5ifF20b/BseAAAAAAAAAEyFcFGLWbt2bXz729+OlStXxpVXXhkRAkUAADNdNU0xxfy8DCahFRQL8+Ku3ocnvd5T6stwGgCY3VL31WLBMx4AAAAAAAAA0ydc1CJ+8YtfxIoVK+IHP/hBlEp/P2V8PDyU2+R00+mGijZ9PQAA6iu16XTh3EJ0tLdnNA2zXXfX/IrXewc0FwFArfSW+ite7+4SLgIAAAAAAABg+oSLZrHbb789Vq5cGd/85jfjL3/5S0TUr6VosoDSM57xjFi2bNm0XhsAgMp6E81F3U60p4ZSn6eefuEiAKiVZHORdkoAAAAAAAAAakC4aJZZt25dXHjhhbFixYr47W9/GxH1CxRN9nqPe9zj4sgjj4xly5bFM57xjGl/DwAAKutJhIuKwkXUUOrz1FtaF+VyWaMpANRA6jlPiBwAAAAAAACAWhAumiUuu+yyWLlyZXzve9+L/v7+iHg07DNZq9BUTfR6bW1t8eIXvziWLl0aRxxxRMyZM2da3wMAgOrZdEqWUp+n4bHRWDc8GPPn5DOaCABmp7FyOVaX+iuu6e7ynAcAAAAAAADA9AkXzWB33XVXrFy5Mr75zW/GnXfeGRHZtxQ9+clPjuOOOy6OO+64WLJkybS/BwAAmy/dXDQ/o0loBdWE1Xr71wkXAcA0rR0sxWh5rOKaYl64CAAAAAAAAIDpEy6aYUqlUnznO9+JlStXxm9+85sol8uZB4q6urri1a9+dSxbtixe8IIXTPt7AAAwdeVyOXpTzUVOtKeGuqsIq/WU+mL74hYZTAMAs1cqQB4R0d0lRA4AAAAAAADA9AkXzRCXX355rFixIr773e9GX19fRDwa9tkwALTh16dqstfbf//9Y9myZfH6178+FixYMK3vAQBAbfQPD8XQ6EjFNU60p5YW5bsiFxGV/tZRzWZoAKCynv6+5JpqGgUBAAAAAAAAIEW4qIndc889cfbZZ8fZZ58dt912W0RE5i1F22yzTRx99NGxbNmyeNrTnjbt7wEAQG31lGw6JVvtbW2xMN8Vqwf6J12TatMCANJ6ByrfT9tzbbFgbiGjaQAAAAAAAACYzYSLmszAwED853/+Z6xYsSJ+9atfRblcnjRQFFGflqKOjo447LDDYunSpXHYYYdFe3v7tL4HAAD1U01DTHeXcBG11V2YVzFcpLkIAKavp7/y/XRRoSvaNvm3PQAAAAAAAACYCuGiJvG73/0uVq5cGRdeeGGsWbMmIh4NDmURKIqI2GWXXWLp0qVx9NFHx9Zbbz2t7wEAQDZSDTG5iFiU78pmGFpGd2Fe3Nnz0KTXhYsAYPpS91PtlAAAAAAAAADUinBRA913333xzW9+M84+++z43//934iISVuKphsomuz1Fi5cGK9//etj2bJlsd9++037ewAAkK3UptMF+UJ0tGmipLaKic3MwkUAMH29A6lw0fyMJgEAAAAAAABgthMuytjQ0FB8//vfj5UrV8all14aY2NjkwaKIurTUpTL5eLAAw+MZcuWxatf/eooFArT+h4AADROT79Np2Qv1ZSQatQCANJSz3nFgnZKAAAAAAAAAGpDuCgjV199daxYsSIuuOCC6O3tjYhHg0O1DhRt+prjr7fDDjvEscceG0uXLo0nPvGJ0/4eAAA0XvpE+8ohEJiKVGitp7Ru/cEGAMDUpMK6QuQAAAAAAAAA1IpwUR098MADcc4558TKlSvj5ptvjoiYtKWoXoGiuXPnxhFHHBFLly6NF73oRTb3AQDMMj2lvorXi8JF1EHqczUyNhp9QwOxYK6WVACYirFyWYgcAAAAAAAAgMwIF9XY8PBw/OhHP4oVK1bEz3/+8xgdHZ00UBQx/VDRZK+31157xbJly+JNb3pTFIvFaX0PAACaV0+/Tadkr5rPVU9pnXARAEzR2oH+GEv8u6EQOQAAAAAAAAC1IlxUI9ddd12sXLkyvvWtb8UjjzwSEdm3FG2xxRZx5JFHxrJly2LPPfec9vcAAKC5lcvl6C0JF5G9aj5XvaV1sWNxywymAYDZpyfxjBfhOQ8AAAAAAACA2hEumoaHHnoozj333Fi5cmXceOONEZFdoGj8Ndva2uKQQw6JZcuWxSte8Yro7Oyc9vcBAGBmWDc8GMNjoxXXdBfmZzQNrWRhvityuVzFv+dUsykaAJiYcBEAAAAAAAAAWRIu2kyjo6Px4x//OFauXBk//elPY2RkZNJAUUT9Woqe/OQnx9KlS+PYY4+NJUuWTPt7AAAw8/T2pzedFgtdGUxCq2lva4tFcwvRO9A/6ZqeUl+GEwHA7JJqp2zPtcX8uYWMpgEAAAAAAABgthMuqtKqVatixYoVcf7558fDDz8cEdm1FI2/3rx58+I1r3lNLF26NJ7//OdP+3sAADCzVRPe0FxEvRQL8yuHi6oIvwEAE0s1FxULXdG2ySFHAAAAAAAAADBVwkUVPPLII3HeeefFihUr4oYbboiI7AJFG77ms5/97Fi2bFm8/vWvj/nzbQ4FAODvUptOcxGxKK+5iProLsyLO3smv947IFwEAFOVCpELkAMAAAAAAABQS8JFmxgbG4uf/OQnsWLFirj44otjeHh40kBRRP1airbddts4+uijY9myZbHzzjtP+3sAADD79CbCRQvzXdHe1pbRNLSa7q55Fa9rLgKAqestTd4OGPH3kC8AAAAAAAAA1Ipw0f/54x//GCtXroxzzz03HnzwwYjIvqWos7MzDjvssFi2bFkceuih0d7ePu3vAwDA7JVqLrLplHoq5it/vlLhNwBgcqnmoqLnPAAAAAAAAABqqKXDRb29vXH++efHypUr49prr42I7ANFERG77rprLF26NI4++ujYaqutpv19AABoDcJFNFKyuWhgXZTL5cf8PQgASPOcBwAAAAAAAECWWjpctO2228bw8PCkgaKI2oeKxl9v0aJF8YY3vCGWLl0a++6777S/BwAArSfVDFMszM9oElpRalPz6NhYrB0ciIX5QkYTAcDsMDY2FqsH+iuu0VwEAAAAAAAAQC21dLhoaGhoffAni5aiXC4XBx10UCxbtixe/epXRz6fn/b3AQCgdaVPtO/KaBJaUXcV4bXeUp9wEQBspjWDpRhL/Puk5iIAAAAAAAAAaqmlw0XjcrlcTQJF4681bvw1d9xxxzj22GNj6dKl8YQnPKEm3wcAgNZWLperCBdpLqJ+qmlM6Cmtix27t8pgGgCYPVLPeBHCRQAAAAAAAADUlnBRTL+paKJAUT6fjyOOOCKWLVsW//AP//CYJiMAAJiOvqGBGBkbrbimmvAHTNWiuYXkQQ3VbI4GADbWW8X9syhEDgAAAAAAAEANCRdN0aZhofENdXvvvXcsW7YsjjzyyCgWiw2YDACAVlDNptPuLuEi6qetrS2K+a6KAaJqPqcAwMZS4dz2trZYMDef0TQAAAAAAAAAtALhos00UUvRlltuGW9605ti6dKlscceezRqNAAAWkg1jTDdeeEi6qu7MK/iZ1FzEQBsvp5SX8Xr3fl5WtIBAAAAAAAAqCnhoipM1FLU3t4eL37xi2PZsmVx+OGHR2dnZ4OmAwCgFaVCG7lcLhbmuzKahlZVLFQOsAkXAcDmS90/U/dfAAAAAAAAANhcwkUVTNRStNNOO8Vxxx0Xxx57bCxevLhRowEA0OJSJ9ovyndFe1tbRtPQqroTm5t7hYsAYLOl7p+p+y8AAAAAAAAAbC7hok1MFCiaN29evPa1r41ly5bFc5/73EaNBgAA6/WW+iteL+ZtOqX+ugvzK15PheAAgMfSXAQAAAAAAABA1oSLYuNAUcSjoaIDDjggli1bFq9//etj3jz/0R4AgOaRCm040Z4spJuL+mOsXI62Tf7OBQBMLhUu6u7ynAcAAAAAAABAbQkX/Z/xQNF2220XxxxzTCxdujSe+tSnNngqAACYWE+/Tac0Xqo5YbQ8FmsHS7Eo35XRRAAws42NjcXqgcoNlanmQAAAAAAAAADYXC0fLiqXy9HZ2Rkve9nLYtmyZXHooYdGW1tbo8cCAICKegcS4SLNRWSgms9Zb2mdcBEAVGn1YGn9IUiTKeY95wEAAAAAAABQWy0dLtptt91i6dKlcfTRR8eWW27Z6HEAAKAq5XI5ekqVw0WpRhmohWrCRT2ldfH47q0ymAYAZr6eUl9yjYZKAAAAAAAAAGqtpcNFq1atavQIAACw2dYODsTo2FjFNZqLyMKCfFe05XIxVqFhoZpN0gDA3/UmAuQRnvMAAAAAAAAAqL22Rg8AAABsnt5qTrQvzM9gElpdWy4XxXzlDc49/elN0gDA36XaKTva2mP+nHxG0wAAAAAAAADQKoSLAABghukp9SfXONGerBQTn7XeAeEiAKhWKpRbLHRFLpfLaBoAAAAAAAAAWoVwEQAAzDA9ieaiXC4XC+cWMpqGVtfdlWguSjQwAACPSoVytVMCAAAAAAAAUA/CRQAAMMP0JsIaxXxXtLV51CcbxXwiXJRoYAAAHlVNcxEAAAAAAAAA1JodhwAAMMOkmmC6C5XDHlBLqc9bqoEBAHhU+jlPcxEAAAAAAAAAtSdcBAAAM0yqucimU7LU3ZUIF5XWxVi5nNE0ADCzpUK5QuQAAAAAAAAA1ENHowdg6kZHR+P++++P++67L9auXRulUilKpVIMDAxEeYLNe8ccc0wDpgQAoNZSJ9oXC10ZTQLpMNtYuRxrB/pjkc3QAFDR6NhYrB7or7im6H4KAAAAAAAAQB0IF80Qt9xyS1x11VVx/fXXx/XXXx+33nprPPjggxOGiCYjXAQAMDv0lPoqXtdcRJaq2eTcU1onXAQACWsG+pP/1qe5CAAAAAAAAIB6EC5qUqOjo3HRRRfFRRddFD//+c/jnnvu2ej65oSKIiJyuVwtxwMAoEHGyuXoTZxob9MpWarm89ZTWhdPqP8oADCjpdopIzznAQAAAAAAAFAfwkVN5n//93/jq1/9apx77rnx8MMPR8TEQaLNCQttbhCpkk9/+tNx0UUXJddtvfXW8d3vfrdm3xcAgL/rGyzF6NhYxTXVNMlArSyYW4j2XFuMlif/XPZWsVkaAFpdNeEiz3kAAAAAAAAA1INwUZO45ZZb4rTTTovvfOc7MTY2tlEgqFKQKBUcqnVj0SGHHBIf/OAHK64pl8uRy+Xi17/+dbzgBS+o6fcHAGh1TrSn2bTlclEsdMXf+vsmXVPN5xYAWl0qjNvR1h7z5+QzmgYAAAAAAACAVtLW6AFa3dq1a2P58uWx++67xwUXXBCjo6PrwznjvyL+HtiZ6FfW9txzz3jZy162/ntXmunrX/965vMBAMx2wkU0o1SLQk9p8uARAPB3qftld2FezQ8SAgAAAAAAAIAI4aKG+vGPfxy77LJLnHnmmY8JFUVEQ0NElXzgAx9Y/79vGILa8Fe5XI7vfe97sXbt2gZOCgAw+6ROtG/L5WJBviujaeDvugvzK17vLfVnNAkAzFw9ifulADkAAAAAAAAA9SJc1ADlcjk+8IEPxBFHHBH33nvvpKGiZvXsZz87nvnMZ07aXjRucHAwvv/97zdqTACAWSnVXFTMz4s2J9qTsdRmZ81FAJDWm7hfppoCAQAAAAAAAGCqhIsytnbt2jj00EPjM5/5zIwLFW3oxBNPrGrdBRdcUOdJAABaSyqkYdMpjZAOF1UOxQEA6ful5iIAAAAAAAAA6kW4KENr1qyJQw45JC655JL1waKIqYeKxoNJuQacTH/kkUfGokWL1s+xqVwuF+VyOS699NJYs2ZN1uMBAMxayU2nXTadkr1UqK13oD/GxsYymgYAZqZe4SIAAAAAAAAAGkS4KCNr166NQw45JK688sqIeDR8U22oaMMgUaMCRRuaO3duvOpVr5pw/g2/NjIyEj/72c+yHA0AYFaz6ZRmlPrclcvlWDNYymgaAJh5RsfGYvVAf8U1GioBAAAAAAAAqBfhoowcddRRcdVVV23UVpSyaZBoPIw0/qujoyOKxWJst91269dn6aijjqpq3U9+8pM6TwIA0DpSzUXFvE2nZK+aUFvqswsArWz1QH+k/rVQiBwAAAAAAACAeulo9ACt4J/+6Z/ixz/+cdXBog1DQuNrd9hhhzjkkENin332ib322ise//jHx9Zbb71+XVtb9jmxAw88MLbZZpt48MEH1zcxbWj8a5qLAABqY6xcjtWlyifad3fZdEr2qmlS6Cn1xRNj6+Q6AGhFqXbKiIjuwvwMJgEAAAAAAACgFQkX1dkVV1wRH//4xzc7WFQul2PRokVxzDHHxJvf/ObYY4896j7r5srlcvGSl7wkzj777Me0JpXL5fVfe+CBB+JPf/pT7LTTTo0YEwBg1lg7WIrR8ljFNTad0gjz5xaiva0tRscm/3xqLgKAyVVzn6wmzAsAAAAAAAAAU5F93U0LGR4ejuOPP359oKhSsCiXy61v+pk7d258+MMfjjvuuCO++MUvNmWwaNxLX/rSqtZdfvnldZ4EAGD2s+mUZtWWy0V3vvJnr5pGBgBoVT2lvorXO9vaY96cuRlNAwAAAAAAAECrES6qo89//vNx0003rQ8NTWbDtqJnP/vZccMNN8THP/7xKBaLGU06dS960YvWz79pe9GGhIsAAKavp7/yptOIiG7hIhokFWzTXAQAk0vdJ4uFeRX/7Q0AAAAAAAAApkO4qE76+/vjs5/9bPI/+o8Hj8rlcpxwwgnx61//OnbaaaeMppy+YrEYu+yyS8U15XI5rrvuuowmAgCYvVLNL+25tlgwt5DRNLCxVLCtp1+4CAAmk3rOEyAHAAAAAAAAoJ6Ei+rkq1/9avztb3+LiJi0tWg8WJTL5eLDH/5wfOUrX4mOjo4sx6yJZz/72RXfY0TEzTffHCMjI1mOBQAw66RPtO+KNifa0yCaiwBg6qppLgIAAAAAAACAehEuqpPTTz+9YmvRhsGi5cuXx8c//vEMp6utfffdd8Kvbxg4Gh4ejptvvjmrkQAAZiWbTmlm3V2VP3+9A8JFADCZ1HNed2F+RpMAAAAAAAAA0IqEi+rgyiuvjDvvvDMiJm4t2jBY9JznPCe++MUvZjxhbe2yyy5Vrbv11lvrPAkAwOzWa9MpTSz1+Vs90B+jY2MZTQMAM0vyOS8R4gUAAAAAAACA6RAuqoPzzz9/0msbthnNnTs3zjrrrGhvb89irLrZeeedq1p3xx131HkSAIDZrafUV/F6t+YiGqiYr/z5K5fLsWagP6NpAGDmGBkbTd4jU/dZAAAAAAAAAJgO4aI6+OlPf7pRiGhT461FJ598cjzlKU/JcLL62GKLLeJxj3tcRETF9y1cBAAwPb2lyptOhYtopGoaFXoGKrcyAEArWj3QH4/tPt+Y5iIAAAAAAAAA6km4qMYeeOCBuO222yLi7yGiDW0YvCkUCvGe97wn09nqacmSJY95v5u69957M5oGAGD2GRsbi95EMKMoXEQDVRNu6+kXLgKATfWW0vdHIXIAAAAAAAAA6km4qMYuv/zyitfHW4te/vKXx5ZbbpnRVPW3zTbbJNc89NBDGUwCADA7rRksxVgizG3TKY00f04+OtraK66pZvM0ALSaniruj0LkAAAAAAAAANSTcFGNrVq1qqp1r3/96+s8Sba23XbbSa/lcrkol8vx8MMPZzgRAMDs4kR7ml0ul4tioavimp5SX0bTAMDMkQoXdba3x7zOuRlNAwAAAAAAAEArEi6qsdtvv33Cr+dyuY3+9wMPPDCjibIxf/785Jre3t76DwIAMEs50Z6ZoLtQ+e8FPaX+jCYBgJkjFSLvLszf6N8WAQAAAAAAAKDWhItqbLJw0YZ22mmnKBaL9R8mQ/l8PrlmcHAwg0kAAGanVLiova0t5s8tZDQNTCzVntWruQgAHiP1nJdqBgQAAAAAAACA6RIuqrH7779/0pNEy+Vy5HK5eMpTnpLxVPUnXAQAUF89iVBGd35etDnRngZLhYuqaeACgFbT0594zks0AwIAAAAAAADAdAkX1di6denNcttvv30GkzSfkZGRRo8AADBj9SZPtK8c6oAspD6HwkUA8Fip57xUeBcAAAAAAAAApku4qMaqCRfNnz/7ThstlUrJNXPnzs1gEgCA2SkVyrDplGaQ+hyuGeiP0bGxjKYBgJmhZ0CIHAAAAAAAAIDGEi6qsYGBgeSaOXPmZDBJtvr7+5Nrurq6MpgEAGB2SoWLbDqlGaTCReWIWD2Q/rsDALSKkbHRWDNQ+dAeIXIAAAAAAAAA6k24qMYKhUJyTTUtPzPNgw8+mFxTzZ8NAAATSzYXddl0SuNVE3LrKfVlMAkAzAyrS+nQrXARAAAAAAAAAPUmXFRj1bTzrFtXeWPoTHTPPfdMeq1cLkdExIIFC7IaBwBgVhkbG0u2vXQX5mc0DUyums9hKigHAK2kmvui5zwAAAAAAAAA6k24qMbmzUufJHrfffdlMEm27rjjjsjlcpNez+VysWTJkgwnAgCYPVYPltYHtidTzDvRnsabN2dudLa1V1zTK1wEAOtVEy6qphkQAAAAAAAAAKZDuKjGuru7K278LJfLcffdd2c4Uf3dc8898cgjj0REVHzvO+64Y1YjAQDMKj2lvuSa7i6bTmm8XC6X3ACtuQgAHtWbeM6b094RXZ1zMpoGAAAAAAAAgFYlXFRjT3ziEye9Nt7s87//+78xPDyc1Uh1d91111W1TrgIAGBqqml66XaiPU0i9VkULgKAR/WU+ite7y7Mq9gWDgAAAAAAAAC1IFxUY0960pMm/PqGjT5DQ0Nxww03ZDVS3f3iF7+oat1OO+1U50kAAGanVBijo6095s/JZzQNVJZsLupPN3EBQKtINRel7qsAAAAAAAAAUAvCRTU2WbhoU5dcckmdJ8nOT37yk6pOUN1nn30ymAYAYPbp6a8cLioWupxoT9PoLsyveL13oHJDAwC0klSIXDslAAAAAAAAAFkQLqqxZz7zmVWt+9GPflTnSbJx3XXXxW233RYRG7czRcRGG1yLxaLmIgCAKUpvOq0c5oAsdXclmosSDQ0A0Ep6hYsAAAAAAAAAaALCRTW21157RaFQiIh4zOnx5XI5crlclMvl+P3vfx8333xzI0asqTPPPLPi9fH3rLUIAGDqbDplJinmK38e1wyUYmRsNKNpAKC5pULkRc95AAAAAAAAAGRAuKjGOjo6Yt99931Mi89EvvzlL2cwUf089NBDcd555z0mRDWRF7/4xRlMBAAwO9l0ykySai6KiFg90J/BJADQ3EZGR2PNYKniGg2VAAAAAAAAAGRBuKgOUkGa8faib3zjG3HXXXdlNFXtffKTn4x16/6+0TUVpnrlK1+ZxUgAALNSb6mv4nXNRTSTaj6PPf2VA3MA0Ap6B9L3Q895AAAAAAAAAGRBuKgOXv/61096bcMQztDQUJx66qlZjFRzf/zjH+M//uM/Jm0tGg9QRUTssssu8aQnPSnL8QAAZo3RsbFky4tNpzSTahoWUm1cANAKekvpJj8NlQAAAAAAAABkQbioDp70pCfFPvvsE+VyecLwzfjXy+VyfP/734/zzjuvAVNO3ejoaBx77LExNDQUEZVbi3K5XLzpTW/KajQAgFlnzUB/VO6IFC6iuXR1zonO9vaKa1JtXADQCnqquB96zgMAAAAAAAAgC8JFdXLssccm14wHjJYvXx433HBDBlPVxtvf/va47rrrNmon2tCGgaq5c+fGW9/61izHAwCYVappeHGiPc0kl8sl24t6qmhqAIDZLvWcN7e9IwqdczKaBgAAAAAAAIBWJlxUJ29+85tjq622ioiYtL1o/FpfX18cdthhcdttt2U641R8+tOfjq9+9asTvqcNjbczveENb4gtttgio+kAAGafasJFqSAHZC3VsqC5CAAiehPPecXCvOS/wQEAAAAAAABALQgX1Uk+n4+TTz55wmafcRsGjO6777547nOfG6tWrcpqxM122mmnxQc/+MH1mxpSrUVtbW1x6qmnZjYfAMBslNp02tnWHvPmzM1oGqhOKlxUTWgOAGa71P0wdT8FAAAAAAAAgFoRLqqjd7zjHbH11ltHxMTtRREbB4weeOCBOOCAA+Kcc87JbMZq9PX1xVFHHRUf+9jH1s+bCk3lcrk49thjY9ddd81qTACAWakn0fDiRHuaUVG4CACSUvfDonZKAAAAAAAAADIiXFRHCxcujM9+9rMVgzgRGweM+vv747jjjotXvOIVcffdd2cxZkUXX3xxPOMZz4hvfetb60NDk72fDTe1zps3Lz7xiU9kNSYAwKzlRHtmotTnMtXIBQCtIHU/9JwHAAAAAAAAQFaEi+rsqKOOigMPPHB9MGcyGwaMyuVyXHTRRbHzzjvHSSedFHfccUdW4653ySWXxAtf+MI4/PDD4/bbb08Gi8aNrzvttNNim222yWhaAIDZK32ivU2nNJ/uRNPCmsFSjIyOZjQNADQnz3kAAAAAAAAANAvhogysWLEitthii4iIzQoYDQ4OxhlnnBE77bRTvPCFL4yzzjor7r///rrNed1118VHP/rR2HnnneMlL3lJ/OpXv1ofFkoFi8av53K5eOELXxinnHJK3eYEAGgl6RPtK4c4oBGqaVroHdBeBEDrGhkdjbWDpYprNBcBAAAAAAAAkJWORg/QCh7/+MfHeeedFy996UuTDUAbBozG/+9yuRy/+tWv4le/+lVERDz96U+PffbZJ/bee+948pOfHDvuuGNVc9xxxx1RKpWiv78/HnjggbjnnnvijjvuiOuuuy6uu+666Onp2WiGTeeYzIaBqS233DLOPvvsquYBACAtdaJ9d6Ero0mgetU0LfSU1sWW8xZmMA0ANJ9qQrbdXcJFAAAAAAAAAGRDuCgjL37xi+MTn/hEfPCDH6zYXjRuw8ag8f973E033RQ333xznHPOOY/5PRO9zvj/fMpTnlLx+43bcL5KoaIN15bL5SgUCvG9730vtt1224q/BwCA6oyMjcaagf6Ka4qai2hCVTUXJYJzADCbpQLkERHFvHARAAAAAAAAANloa/QAreT9739/fOhDH3pMcGgy461FEbF+/aaNRhuuSdn092z4a7LXr2TDte3t7XHeeefFc5/73KpmAQAgbfVAf6Se9JxoTzMqdM6Jue2Vz7KoZlM1AMxW1dwHPecBAAAAAAAAkBXhooz98z//c7z3ve/dKDSUUikIVE1IadxEv2+ywFI1rzX+e9ra2uKMM86II444oqo5AACoTjXNLtU0xEDWcrlcFBOfTeEiAFpZT3/l++Dcjs4odMzJaBoAAAAAAAAAWp1wUQN86lOfis997nPR1vb3P/5qw0HjJmoemurv29zX2HDecrkcc+fOjQsvvDDe/OY3b9Z7AAAgrZrwRSrAAY2SCr71lPoymgQAmk/vQOXnvGK+a7P/zRAAAAAAAAAApkq4qEHe9a53xUUXXRSLFi3aqI2o2W0YLNpiiy3iZz/7WbzqVa9q8FQAALNTKlzU2d4e8zrnZjQNbJ5iYX7F672l/owmAYDmkwrZdndVvo8CAAAAAAAAQC0JFzXQIYccEtdee20cfPDB65uDmjVktOFc5XI5Dj744Fi1alU8//nPb/BkAACzV28iXNRdmN+Uz44QobkIACrp6U8952mnBAAAAAAAACA7wkUN9sQnPjEuvfTSOOOMM2LBggVNFzLaNFRUKBTiM5/5TFxyySWx3XbbNXg6AIDZLdVcVCx0ZTQJbL5iMlxU+fMNALNZ74BwEQAAAAAAAADNQ7ioSRx//PFx++23x6mnnhr5fP4xIaOsg0abhooiIo499tj405/+FKeeempTBJ8AAGa7nv7KzS7dhfkZTQKbL7Upum9wIIZHRzKaBgCaSzpELlwEAAAAAAAAQHaEi5rI4x73uPjMZz6zPmS0xRZbRLlcnjBoVOtwz0SvXS6Xo7OzM4466qi47rrrYsWKFdqKAAAy1JvYdOpEe5pZd1f689k70J/BJADQXIZHR6JvcKDiGs95AAAAAAAAAGRJuKgJbbPNNvGZz3wm7r333vj2t78dhxxySHR2dm4UNIp4bCBoOr8iYv3rl8vl2HnnneO0006Lu+++O775zW/Gnnvu2ag/DgCAltUzIFzEzFVNs1ZPf+XPOADMRtWEazVUAgAAAAAAAJCljkYPwOQ6Ozvjda97Xbzuda+LdevWxS9+8Yv46U9/Gv/93/8dt956a4yOjj7m91TTaLRhQGncwoULY5999okXvehFccQRR8TOO+9ck/cAAMDUjIyNxpqBUsU1ReEimlix0JVc01vqy2ASAGgu1YRrPecBAAAAAAAAkCXhohli3rx5cfjhh8fhhx8eEREDAwNxww03xA033BB33HFH3HPPPXHPPffE/fffH319fVEqlWJgYCAGBwejs7Mzurq6olAoxPz582PJkiWx4447xo477hhPecpTYp999omnPe1pVQWTAADIxupSNSfa23RK8yp0zIm5HZ0xODI86ZqeKj7nADDbVBOu9ZwHAAAAAAAAQJaEi2aofD4f++23X+y3336NHgUAgDroKaVPtO8uzM9gEpiaXC4X3YV58de1vZOu6dFcBEALSoVr8x2dUeick9E0AAAAAAAAABDR1ugBAACAx6ouXOREe5pb6jPaW8XnHABmm1S4tugZDwAAAAAAAICMCRcBAEAT6k1sOp3T3uFEe5peanN0NSE6AJhtUuFaAXIAAAAAAAAAsiZcBAAATSgVuuguzItcLpfRNDA1mosA4LGqec4DAAAAAAAAgCwJFwEAQBOy6ZTZoLswv+J1zUUAtKJUuDbV/AcAAAAAAAAAtSZcBAAATcimU2aDVAiub2gghkZHMpoGAJpDOkReOZwLAAAAAAAAALUmXAQAAE1IcxGzQTUhuFSQDgBmk6HRkegbGqi4xnMeAAAAAAAAAFkTLgIAgCaUChcVnWjPDFDN5mjhIgBayepSf3KNcBEAAAAAAAAAWRMuAgCAJjMyOhprB0sV19h0ykxQTXNRKkgHALNJT6kvuaaa+ycAAAAAAAAA1JJwEQAANJnegXTYQriImaDQOSfyHZ0V1wgXAdBKqrnvCRcBAAAAAAAAkDXhIgAAaDI2nTKbpIJw1TQ4AMBs0Zt4zit0zIlC55yMpgEAAAAAAACAvxMuAgCAJlNNuKi7S7iImaG7ML/i9d5Sf0aTAEDjpZ7zioWujCYBAAAAAAAAgEcJFwEAQJNJnWg/t6MzCh1OtGdmSLVsaS4CoJWkwkWpUC4AAAAAAAAA1INwEQAANJnkifb5rsjlchlNA9PTnQwXpZu6AGC2SIXIU6FcAAAAAAAAAKgH4SIAAGgyqSaX7i4n2jNzpDZJpzZZA8Bskm4uEi4CAAAAAAAAIHvCRQAA0GR6+m06ZfZIfV7XDQ3G0MhIRtMAQGOlQuSaiwAAAAAAAABoBOEiAABoMr0DlcNFxbxNp8wc1TRt9SQ+8wAwGwyNjsS6ocGKa4TIAQAAAAAAAGiElgoX7b///nHllVc2egw2Q39/f/zjP/5jfPazn230KAAAmekpJZqLumw6ZeYo5ruSa3r6K7c4AMBs0Jt4xosQLgIAAAAAAACgMVoqXPT73/8+nvOc58Qb3/jGuOuuuxo9DglnnXVW7LTTTvGJT3wi+vv7Gz0OAEAmhkdHom9woOIam06ZSar5vPYOeN4HYPZLBcgjIoqe8wAAAAAAAABogJYKF4278MIL42lPe1qccsop8dBDDzV6HDbxgx/8IHbfffd461vfGvfff3+jxwEAyFQ1IYvuwvwMJoHayHfOiULnnIprNBcB0AqqCRcJkQMAAAAAAADQCC0ZLiqXyzE4OBinn356PPnJT45//Md/jNWrVzd6rJZ36aWXxv777x+vfvWr449//GOUy+VGjwQAkLmefifaM/ukNkr3VrHZGgBmutT9rtAxJ/KJQC4AAAAAAAAA1ENLhotyuVzkcrkol8vR19cXn/jEJ+IJT3hC/OM//mP09PQ0eryW81//9V/xnOc8Jw455JC4+uqr14eKcrlcgycDAMhebynd4OJEe2aaVCCumiYHAJjpehLPecUuz3gAAAAAAAAANEZLhos2DK+Mh4xWr169PmT0wQ9+MO6///4GTzm7lcvl+N73vhf77rtvHHbYYXHllVdGuVyOcrm8/v8vAACtKBWyyHd0RsGJ9swwqUCccBEArSDVUClADgAAAAAAAECjtGS4KCLWB1kiNg4ZrV27Nj796U/HE5/4xHjzm98cf/zjHxs86exSKpXiy1/+cjz1qU+N173udXHttdc+JlS04f9vAABaTSpkYdMpM1F3YX7F673CRQC0gN4Bz3kAAAAAAAAANKeWDReNmyxkNDQ0FCtXrow99tgjDjnkkPjRj34k8DINt912W5x66qmx/fbbx8knnxy33XabUBEAwARSIYuiTafMQOnmor6MJgGAxkmFyD3nAQAAAAAAANAoHY0eoBHGgywb2jRgtOHXLr300rj00ktjhx12iBNOOCGOOeaYWLx4cbZDz0AjIyPx4x//OM4888y45JJLHhPkGidQBADwKM1FzEapzdL9w0MxODIcczs6M5oIALLX0+85DwAAAAAAAIDm1FLNRVtsscWE4ZYNTdZkVC6X4+67744Pf/jD8fjHPz5e+tKXxve+970YGhrKbP6Z4oYbboh3vetdsXjx4njNa14TP//5z2NsbGyjlqKIqNhUtGn4aMstt8xkdgCARkuHi+ZnNAnUTjWbpVOtXQAwkw2NjET/8GDFNZ7zAAAAAAAAAGiUlgoX3XrrrXHcccet/783DLpsajz4smEgZjxoNDo6Gj/72c/ida97XWy99dZx3HHHxX/913/F6OhoRu+k+dx6663xsY99LHbZZZfYe++940tf+lI8/PDDj/kzjKgcKoqIjdbtuOOO8YMf/CBOPPHETN4HAECjpQIWqQYYaEbVhItSwToAmMl6BtL3Oc95AAAAAAAAADRKS4WLHve4x8VZZ50Vl112WTztaU97TEPRZCq1Ga1ZsybOOeecOOyww2LrrbeOo48+Or773e9GX19fJu+pka666qr40Ic+FLvttlvssssucdppp8Utt9wyYSgrorpQ0fifbXt7e7znPe+Jm266KQ4//PCs3hIAQEMNjY5E39BAxTXVhDSg2VSzWVq4CIDZrKc//W+FnvMAAAAAAAAAaJSORg/QCM973vNi1apVcfrpp8dpp50Wvb29GwVbJjNZGGn86z09PXH++efH+eefH52dnbHffvvFQQcdFAceeGAccMABMWfOnPq+sTq7+eab41e/+lX86le/il//+tfxt7/9LSJioz+zTUNalf48N/0942tf/OIXxxe+8IV42tOeVqvRAQBmhFRrUYRNp8xMczs6o6tzTvQPD026pqc0+w9oAKB19Q70J9doLgIAAAAAAACgUVoyXBQR0d7eHqecckocffTR8aEPfSi+8Y1vxNjY2GOCLhPZNEwzUdBoaGgoLr/88rj88svj4x//eMydO3ejsNFee+0VCxYsqNO7m77R0dG4+eab4/LLL4/LLrssLrvssnjooYfWX9/0z2eiP4OUTX/PTjvtFJ/73OfiZS972TSnBwCYmaoJF9l0ykzVXZgf/cOPTHq9t5TedA0AM1WquajQOSfyHZ0ZTQMAAAAAAAAAG2vZcNG4LbbYIr761a/GO97xjnj/+98fP/3pTzcKDKWCMtUEjSIiBgYG4je/+U385je/iY997GMREbHjjjvGHnvsEXvssUfsvvvusccee8RTn/rUaGtrq+VbTPrrX/8aq1at2ujXLbfcEsPDwxO+l4ipNRRN9HvL5XJstdVW8ZGPfCROOOGE6Oho+Y8kANDCejQXMYsVC/Pi3jWTh4s0FwEwm6VC5J7xAAAAAAAAAGgkSY7/s9tuu8XFF18cl112Wbzvfe+La665ZrNCRpuu2TRoNNFr3HXXXXH33XfHRRddtP5rc+bMiSVLlsSSJUti++23X/+/j/9asGBBFAqFyOfzUSgU1v8aNzQ0FKVSaaNf/f398eCDD8Y999wT9957b9x7773r//d77rkn1qxZU3HO8fdT6f1WY9NQ0bx58+Ld7353vPe974358+dv1msBAMxGqXBRoWNO5DvnZDQN1FZq03Q14ToAmKlS9znhIgAAAAAAAAAaSbhoEwceeGD8/ve/jx/+8IfxsY99LK6//vrNDhlNtG6isNFE6wYHB+P222+PO+64Y7Pm7uzsjNHR0RgbG6v691R6L7UIE030WuVyObq6uuKkk06K9773vbHllltO6TUBAGajVHNLscumU2Yu4SIAWlnqPlcULgIAAAAAAACggdoaPUCzesUrXhHXXXddfO9734tnPOMZUS6Xo1wurw8JTRS+qWT892/4KyI2er0Nf020vtKvoaGhGB0d3azfU+n7TzTz5tr0tebNmxfvec974o477ohPfepTgkUAAJvoLfVXvO5Ee2ay1KbpXuEiAGax1H2uu6DVGwAAAAAAAIDGES5KeOUrXxnXXntt/PSnP40DDzxwwmDOVE0W+Nnwtev9a7I5ptNStGlAasstt4yPf/zjcffdd8enP/3p2Gqrrab8ZwYAMJslm4vywkXMXN1dlTdNl4aHYmB4KKNpACBbqec8IXIAAAAAAAAAGkm4qEqHHHJI/PKXv4zf//738cY3vjE6OjombP+Zrs1tLNo0CDSd3zsdE4WVdttttzjjjDPirrvuig9/+MNRLBZr8r0AAGarntSJ9l02nTJzFfNdyTWpnwEAmIkGR4ajPxGgFS4CAAAAAAAAoJGEizbTPvvsE+edd17cfffd8dGPfjS22267mrYZTVUtg0LVmqgBqb29PV75ylfGL3/5y1i1alUcf/zxkc/nM50LAGCm6ulPhItsOmUGSzUXRUT0DvRnMAkAZKu3ivBs0XMeAAAAAAAAAA0kXDRF22yzTXz0ox+Nu+++O374wx/G4YcfHu3t7etDPhsGbxoRNqqXiQJF5XI5nvrUp8anPvWp+Mtf/hLf+9734sADD2zsoAAAM8zQyEj0Dw9WXFPM23TKzNVdxee3p78vg0kAIFvVNPMJkQMAAAAAAADQSB2NHmCma2tri5e//OXx8pe/PB588MH41re+FRdccEFceeWV69dsGjDKumFoOiYKRo3Pv80228TrXve6eOMb3xj7779/1qMBAMwqPQNVbDqtovkFmtWcjo6YN2durBuaPERXzeZrAJhpNBcBAAAAAAAA0OyEi2po6623jne+853xzne+M+6666747ne/Gz/84Q/jiiuuiLGxsYh4bNAoornCRpXCRBERO+ywQxx++OHxqle9Kl7wghdEW5vyKwCAWqimscWJ9sx0xcK8iuGiajZfA8BMkwrPdnXOibkdnRlNAwAAAAAAAACPJVxUJ49//OPj1FNPjVNPPTX+9re/xcUXXxw/+9nP4pe//GU88MAD69dNFDYaV8/Q0WTfc9PvO2fOnNh///3jRS96URx22GHxjGc8o24zAQC0st6B/uQaJ9oz03UX5sW9qx+Z9LrmIgBmo9T9rbugnRIAAAAAAACAxhIuysAWW2wRxxxzTBxzzDEREXHjjTfGZZddFldccUX87ne/i7vuuusxv6dS6KiWNg0wzZs3L571rGfFAQccEM973vPiec97XnR1ddV9DgCAVpdqLip0zom8E+2Z4VKbpzUXATAbpe5vAuQAAAAAAAAANJpwUQPstttusdtuu8Xb3/72iIj461//Gn/4wx/ihhtuiBtuuCFuuumm+POf/xylUin5WhMFkKppPMrlcrHDDjvE0572tNh9991jzz33jD333DN23XXXaGtr2/w3BQDAtKQ2nXbbdMoskPoc95Qqh+wAYCZK3d885wEAAAAAAADQaMJFTWDbbbeNQw89NA499NCNvn7vvffG7bffHvfcc0/ce++9cf/998dDDz0Uq1evjt7e3ujr64vBwcEYHh6OkZGRaGtri87OzpgzZ04UCoVYtGhRFIvFeNzjHhfbbrttLF68OJYsWRKPf/zj48lPfnLMnTu3Qe8YAIBN9QgX0QJSzQypnwMAmIk85wEAAAAAAADQ7ISLmtiSJUtiyZIljR4DAIAMpDedzs9oEqif1ObpgZHhKA0PRaFzTkYTAUD9pZ7zUuFbAAAAAAAAAKi3tkYPAAAARPTadEoLqKaZIfWzAAAzyXhwthLNRQAAAAAAAAA0mnARAAA0gZ5SX8XrNp0yG1QTkku1OwDATFJNaFaIHAAAAAAAAIBGEy4CAIAGGxwZjn4n2tMCqgsXVQ7aAcBMUk1otrtrfgaTAAAAAAAAAMDkhIsAAKDBnGhPq5jT3hHz5+Qrrukt9Wc0DQDUXzXPed15z3kAAAAAAAAANJZwEQAANFhVJ9oLFzFLpD7LmosAmE1S97Wuzrkxp6Mjo2kAAAAAAAAAYGLCRQAA0GDVhIs0FzFbpD7L1fw8AMBMkbqvdXd5xgMAAAAAAACg8YSLAACgwXoTm067OufG3I7OjKaB+ko3FwkXATB7pJ7ztFMCAAAAAAAA0AyEiwAAoMGSJ9rbdMoskmouSm3CBoCZJPWcV8x7zgMAAAAAAACg8YSLAACgwXpKfRWvp8IYMJN0F+ZXvN5TWhflcjmjaQCgvpIh8i7PeQAAAAAAAAA0nnARAAA0mOYiWkl3oavi9cGR4SiNDGU0DQDUV6qRLxW6BQAAAAAAAIAsCBcBAECDJTedOtGeWaRYxSbq3lJ/BpMAQH0NDA9FabhyYFZDJQAAAAAAAADNQLgIAAAaLNVcVMzbdMrsUU1YrqfUl8EkAFBfqWe8CA2VAAAAAAAAADQH4SIAAGigak607+5KN73ATFHMdyXX9PSnN2MDQLNLtVNGCBcBAAAAAAAA0ByEiwAAoIGcaE+r6WzviPlz8xXXVPNzAQDNrpr7WdFzHgAAAAAAAABNQLgIAAAaqHegP7nGplNmm1RgrpqmBwBodqlw0bw5c2NOe0dG0wAAAAAAAADA5ISLAACggXr6+5JruvPCRcwu3YX5Fa9rLgJgNkiFZVP3QwAAAAAAAADIinARAAA0UFUn2nc40Z7ZJd1clA7dAUCzSz3npe6HAAAAAAAAAJAV4SIAAGig3gEn2tN6ionN1JqLAJgNUs1FqfshAAAAAAAAAGRFuAgAABqopz+16bQro0kgO+nmonVRLpczmgYA6qMn0cSnuQgAAAAAAACAZiFcBAAADZQ60V5zEbNRajP14OhIlIaHMpoGAOqjt9Rf8bpwEQAAAAAAAADNQrgIAAAayIn2tKJiFZ/rnkTwDgCaWWl4KEojlYOy1dwPAQAAAAAAACALwkUAANBATrSnFVXzuU4F7wCgmaXaKSM85wEAAAAAAADQPISLAACgQZxoT6sq5tOf61TwDgCaWXXhovkZTAIAAAAAAAAAacJFAADQIE60p1V1tLfHwrmFims0FwEwk/VU8Zy3qNCVwSQAAAAAAAAAkCZcBAAADVLNplMn2jNbpVq5qvn5AIBmlbqPzZ+TjzntHRlNAwAAAAAAAACVCRcBAECDVNNc5ER7ZqtUK5dwEQAzWaqBTzslAAAAAAAAAM1EuAgAABrEifa0stSm6mrCdwDQrFL3sVSDHwAAAAAAAABkSbgIAAAaxIn2tLJiYX7F65qLAJjJUvcxz3kAAAAAAAAANBPhIgAAaBAn2tPKugtdFa/3lPqiXC5nNA0A1FYqXOQ5DwAAAAAAAIBmIlwEAAAN4kR7WlmquWh4dDT6h4cymgYAaisVIu9O3AcBAAAAAAAAIEvCRQAA0CBOtKeVVROe6yn1ZTAJANRWaXgoBkaGK65JNfgBAAAAAAAAQJaEiwAAoEHSzUVOtGf26u6qJlxU+WcEAJpRNfevVIMfAAAAAAAAAGRJuAgAABqgNDwUg6kT7asIX8BMtSjfFbnEmp5+4SIAZp7eKsJFnvMAAAAAAAAAaCbCRQAA0ABVnWift+mU2aujrT0W5AsV1/QOCBcBMPP0lPqSa4r5rgwmAQAAAAAAAIDqCBcBAEADVLPp1In2zHbdhfkVr2suAmAmSoXI58/NR2d7R0bTAAAAAAAAAECacBEAADRANaEJJ9oz23UXKgfoqgnhAUCz6U2Ei1L3PwAAAAAAAADImnARAAA0QO+AE+2hmNhcndqcDQDNKNVcVMwLFwEAAAAAAADQXISLAACgAVLNRU60pxWkm4uEiwCYeVL3r+4uz3kAAAAAAAAANBfhIgAAaIDkptPC/IwmgcZJhYt6S+uiXC5nNA0A1EZPf1/F657zAAAAAAAAAGg2wkUAANAAvQOai6CY+JwPj43GuqHBjKYBgOkrl8vRO9BfcU0x7zkPAAAAAAAAgOYiXAQAAA2QOtE+FbqA2aCaEF1PqfLPCgA0k9LIUAyODFdc093lOQ8AAAAAAACA5iJcBAAAGSuXy9Fb0lwE3YX5yTWpnxUAaCY9/en7luc8AAAAAAAAAJqNcBEAAGSsNDwUg6MjFdfYdEorWJTvilxiTY9wEQAzSO+AcBEAAAAAAAAAM49wEQAAZKyasEQ1jS4w07W3tcXCfFfFNcJFAMwk1TQXFfPCRQAAAAAAAAA0F+EiAADIWG8VYYlioXLgAmaLVHuDcBEAM0nqvrVgbiE62tszmgYAAAAAAAAAqiNcBAAAGasmLOFEe1pFKlxUTRgPAJpF6r6Vuu8BAAAAAAAAQCMIFwEAQMZ6Sn0Vry90oj0tpFiYX/G65iIAZpLUfasoXAQAAAAAAABAExIuAgCAjDnRHh7VXeiqeD0VxgOAZtKbuG95zgMAAAAAAACgGQkXAQBAxpxoD4/qTjQX9Zb6o1wuZzQNAExP6jlPuAgAAAAAAACAZiRcBAAAGbPpFB6VCtONjI1G39BARtMAwNSVy+VkQ6UQOQAAAAAAAADNSLgIAAAylt50WrnJBWaT7q70JutUIA8AmkFpeCgGR0cqrhEiBwAAAAAAAKAZCRcBAECGyuVyFc1FXRlNA43Xna8iXNQvXARA86smDNstRA4AAAAAAABAExIuAgCADPUPD8VQ4kR7zUW0koX5rsjlchXX9A4IFwHQ/FLtlBERRSFyAAAAAAAAAJqQcFEdrFy5Mj7/+c/HI4880uhRAABoMj2lvuSa7kK6yQVmi/a2tliUr7zRupqfGwBotGqai4pVNPYBAAAAAAAAQNaEi+rgrrvuive+972xZMmSOOqoo+I3v/lNo0cCAKBJVHOifXeXTae0llSgrqdfcxEAzS8Vhl04txAd7e0ZTQMAAAAAAAAA1RMuqpNyuRyDg4PxrW99Kw466KDYZZdd4gtf+II2IwCAFpc60T4XkWxxgdkm1eJQTSgPABotdb8qaqcEAAAAAAAAoEkJF9VRLpeLcrkc5XI5brnlljj11FNj++23j2OOOSYuv/zyRo8HAEADpMJFC/KF6Ghzoj2tJdXWlfq5AYBmkLpfpZr6AAAAAAAAAKBRhIvqLJfLrf9VLpdjYGAgzjvvvHjBC14Qu+66a3zpS1+K3t7eRo8JAEBGevpTm07nZzQJNI/UZmvNRQDMBMJFAAAAAAAAAMxUwkV1Nt5cFBEbhYzK5XLcfPPN8a53vSuWLFkSxx13XFxxxRUNnhYAgHrrHbDpFDaVCtX1DKyLsf/7exUANKtUGLYoRA4AAAAAAABAkxIuyshEIaPxr5dKpTjnnHPiec97Xuy+++7x7//+77F69epGjgsAQJ30lPoqXi8KF9GCioWuitdHx8aib7CU0TQAsPnK5XIVzUWV73cAAAAAAAAA0CjCRRkbDxmVy+X1IaMN24z++Mc/xjvf+c5YvHhxLFu2LH73u981emQAAGqop19zEWwq1VwUkW6DAIBG6h8eiqHRkYprNBcBAAAAAAAA0KyEixoo1WZ09tlnx3Of+9zYY4894itf+UqsWbOmkeMCADBN5XI5egeEi2BT1XzuU20QANBI1YRgPecBAAAAAAAA0KyEi5pAqs3oxhtvjHe84x2xePHiePOb3xxXXXVVo0cGAGAK1g0PxvDoaMU1RZtOaUEL5xbWH7YwGeEiAJpZT6kvuUa4CAAAAAAAAIBmJVzUZCq1GfX398fKlSvjgAMOiGc84xlxxhlnxNq1axs5LgAAm6G334n2MJG2trYo5rsqrhEuAqCZVXOfWlSofK8DAAAAAAAAgEYRLqqzDZuINkeqzWjVqlVx0kknxeLFi+Otb31rXH311XV6BwAA1Ep1J9rPz2ASaD6pYF2vcBEATSx1n1qYL0RHW3tG0wAAAAAAAADA5hEuqoN3vvOd8W//9m+xyy67TNpEtDkqtRmtW7cuzjrrrNh///1j7733jjPPPDP6+tKbVgEAyF5Pqb/i9VxELEq0t8BslQrWaS4CoJml7lPdee2UAAAAAAAAADQv4aI6KBaL8c53vjP+53/+Jy6//PI46qijIp/PPyYgVOs2o+uvvz6WL18eixcvjre97W1x7bXX1uPtAQAwRb2J5qKF+a5ob/OITmsqFioH66pp/gKARkmFi4qJhj4AAAAAAAAAaCQ7F+vsgAMOiG9+85tx7733xhe+8IVM2oz6+vri61//euy7776xzz77xNe+9rVYt84p3wAAjZY80d6mU1qY5iIAZrJUCLa7q/J9DgAAAAAAAAAaSbgoI8ViMU4++eT1bUZHH310Jm1G1113XZxwwgmxePHiWL58efzhD3+ox9sDAKAKwkUwudTnf3WpP8b+7+9PANBsekv9Fa8X857zAAAAAAAAAGhewkUNcMABB8TZZ58d9913X3zhC1+IXXfdte5tRmvXro0zzzwz9tlnn3jWs54V3/jGN6K/v/KmBwAAaqs3ES4qJppbYDYrJsJFo+WxWDtYymgaAKheuVyuorlIuAgAAAAAAACA5iVc1ECLFi2Kk08+OVatWhW//e1vM2szuvbaa+P444+PxYsXx0knnRTXX399Hd4dAACbSjcXdWU0CTSfapq7Uj9DANAI64YHY3h0tOIaDZUAAAAAAAAANDPhoibx7Gc/e32b0Re/+MVM2ozWrFkTZ5xxRjzzmc+M/fbbL1asWBGlkpPAAQDq4e8n2qfCRZqLaF3VbLpOtX8BQCNUc38SLgIAAAAAAACgmQkXNZlFixbFO97xjvVtRsccc8z6NqNNm4g2R6rN6Oqrr463vOUtsXjx4vXfHwCA2lk3NBgjY5VPtC/adEoLW5DvirbE33N6Sn0ZTQMA1aumWc9zHgAAAAAAAADNTLioiT372c+OlStXrm8z2n333eveZrR69er4yle+Envttdf6NqWBgYHavSkAgBZVTSjCifa0srZcLrnxuqdfcxEAzSd1f8pFxKJ8VzbDAAAAAAAAAMAUCBfNAONtRjfccENcccUVmbUZ/f73v49ly5bF4sWL4+STT44bb7yxTu8QAGD2q+ZEe+EiWl0xnwgXVfFzBABZ6x2ofH9amO+Kjrb2jKYBAAAAAAAAgM0nXDTD7L///rFy5cq4//7740tf+lJd24zGv9bb2xtf/vKXY88994znPOc5cc4558Tg4GBN3xcAwGyXCkXkcrlY6ER7Wlx3V+VwUWrzNgA0Qqq5KNXMBwAAAAAAAACNJlw0Qy1cuDDe/va3r28zOvbYYzNpM7ryyivjuOOOi+222y5OOeWUuOmmm+r0DgEAZpfeRLhoUb4r2ts8ntPaUu1dqc3bANAIPaW+ite1UwIAAAAAAADQ7OxenAX233//WLFiReZtRqeffnrsvvvu8bznPS/OPfdcbUYAABWkmouKeZtOobswv+L1VEgPABoh1awnXAQAAAAAAABAsxMumkUmajMqFAp1bzMa/16LFy+Od7/73XHLLbfU6R0CAMxcTrSHtGKhq+L13oF1MTY2ltE0AFCdVLNe0XMeAAAAAAAAAE1OuGiWGm8zuu++++JLX/pS7LHHHnVvM+rp6YkvfvGLseuuu8YLXvCCOP/882NoaKim7wsAYKZKbTrt7rLpFFLNRWPlcqwdLGU0DQCklcvlZLOeEDkAAAAAAAAAzU64aJYbbzO6/vrr43e/+10cd9xxmbQZXX755XH00UfH4sWL4z3veU/ceuutdXqHAAAzQ++ATaeQUs3PQU9iAzcAZGnd0GAMj41WXJMKzwIAAAAAAABAowkXtZD99tsvzjrrrLjvvvvi9NNPz6TN6JFHHol/+7d/i1122SUOPPDA+Pa3vx3Dw8M1fV8AAM2uXC4nAxFF4SKo6udAuAiAZpJqLYqIKBa6MpgEAAAAAAAAAKZOuKgFLVy4ME466aTM24z++7//O970pjfFkiVL4n3ve1/86U9/qtM7BABoLmsHB2J0bKziGs1FELFgbiHac5X/mipcBEAz6Sn1JddoLgIAAAAAAACg2QkXtbhN24z23HPPurcZPfzww/G5z30unva0p8XBBx8c3/nOd2JkZKSm7wsAoJn0DqTDEDadQkRbLpdsd6imIQIAspIKveYiYlFecxEAAAAAAAAAzU24iIh4tM3oD3/4Q1x55ZUTthlNRarN6Ne//nW84Q1viO233z4+8pGPxF//+tcavzMAgMbr6U+HIYqaiyAi0kG7ahoiACArqdDronxXtLf5J1gAAAAAAAAAmpv/ss1j7LvvvnHWWWfF/fffH//+7/8ee+yxx7QCRuMqtRk9+OCD8clPfjKe8IQnxHHHHRd//OMfa/FWAACaQioMkcvlYtHcQkbTQHNLBe1SDREAkKXUfUmAHAAAAAAAAICZQLiISS1YsCBOPPHE+O1vfxvLli2rScAoonKb0dDQUJxzzjmx5557xmte85pYtWpVDd4JAEBjpU60L+a7os2J9hAREd3CRQDMIKn7Uuq+BgAAAAAAAADNwA5GJvWHP/whli9fHosXL44VK1asDwDV0mRtRmNjY/H9738/9t577zjuuOPinnvuqen3BQDIkk2nUL3Uz0MqrAcAWUqGyAvzM5oEAAAAAAAAAKZOuIiNrFu3Lr72ta/Fs571rNhnn33izDPPjLVr124UAqqHSiGjc845J57+9KfHZz/72RgbG6vbDAAA9ZLedCpcBONSPw+9A/3+XgBA00iHyLsymgQAAAAAAAAApk64iIiIuO666+KEE06IxYsXxwknnBDXXnvt+sDPeNgnC5OFjNatWxfvf//7Y//994/bbrstk1kAAGpFcxFUL/XzUC6XY/VgKaNpAGBy5XK5iuc8zUUAAAAAAAAAND/hoha2bt26OPPMM+NZz3pWPOtZz4qvfe1r61uKImKjUNHmthaN/95Nf1VrspDRNddcE3vttVdcdNFFmzUPAEAj9ZT6Kl636RQeVU3YLtUGBgBZWDc0GCNjoxXXaKgEAAAAAAAAYCYQLmpB1157bbztbW+LxYsXx/LlyydsKRoP82wY8qnGpoGkTV+jFiGjvr6+eOUrXxlnnXXWZrxrAIDGGCuXo3egv+IazUXwqGIVYbtUYA8AslDN/chzHgAAAAAAAAAzgXBRixhvKdpnn31i3333ja9//esVW4qmEijaMJD0uMc9Lt7znvfErbfeGj/60Y/i5S9/ebS1tT3m+1UbNNo0ZDQ6Ohpve9vb4uKLL96cPwYAgMz1DZZidGys4hon2sOjFszNR3tb5b+q9mguAqAJVHM/Ei4CAAAAAAAAYCboaPQA1Nc111wTZ555Znz729+OdevWbRQa2jDYszlhokq/f//9948TTzwxXvva18bcuXMjImKnnXaKl73sZXH//ffHWWedFStWrIjbb799/WtsGGpK2bBdaXR0NN7ylrfETTfdFN3d3Zs9PwBAFmw6hc2Ty+WiOz8vHu5fO+mann7hIgAaL/Wcl8vlYmG+K6NpAAAAAAAAAGDqNBfNQn19ffHVr341nvnMZ8Z+++0X3/jGN6Kvr6/mLUXjv7+rqyuOP/74+MMf/hBXXHFFHHXUUeuDRRvabrvt4sMf/nD8+c9/jksuuSRe+9rXRkdHx4RzVbLhvA8++GCcfPLJVc8PAJC1XuEi2GypNq/eAeEiABov9Zy3aG4h2cYHAAAAAAAAAM3Af92eRa655pp461vfGosXL44TTzwx/vCHP6wPD20YChr/2lRCRRGPBpKe/vSnx+mnnx733XdfnHHGGbHnnntW/Xr/8A//EBdccEHcdddd8ZGPfCQe97jHbVbIaPw9lcvlOP/88+PWW2+t+nsDAGQpdaJ9Wy4XC5xoDxvp7qocLtJcBEAzSD3nFQvzM5oEAAAAAAAAAKZHuGiG6+vrizPOOGN9S9FZZ51V15aizs7OeMMb3hC//vWv48Ybb4yTTjopFixYMOX5t9122/jYxz4Wd999d3z2s5+NrbbaaqPZq3XGGWdMeQYAgHpKbjrNz4u2zXjugVbQndiMnfq5AoAs9JT6Kl7XTgkAAAAAAADATCFcNENdffXV8Za3vCW22267OOmkk+reUrTjjjvGJz7xifjLX/4S559/fjzvec+r6fspFArx7ne/O/785z/He9/73mhvb18/S2rWcrkcZ599dgwNDdV0JgCAWkhtOi3adAqPUSxUbvPqTfxcAUAWekv9Fa+nmvgAAAAAAAAAoFkIF80ga9eujf/4j/+IvffeO/bff/9YsWJFrFu3riYtRRP9/lwuFy996Uvjxz/+cdx+++3xwQ9+MLbaaqvavqlNzJ8/Pz71qU/F7373u3j84x+/fo6JbPj+Vq9eHb///e/rOhsAwFTYdAqbL9VctHqwFKNjYxlNAwATS4bI857zAAAAAAAAAJgZOho9AGm///3v48wzz4wLLrgg+vv7NwrVbBi82dww0WS/f6uttoply5bF2972tnjCE54w9cGn4ZnPfGZceeWV8fznPz/+9Kc/rW8oquTKK6+M5z73uRlNCABQHZtOYfN1Jxq9yuVyrBnoj+6uyiEkAKiXcrksRA4AAAAAAADArCFc1KTWrl0b55xzTnzta1+LVatWRUTUPVT0nOc8J0488cR4zWteE52dnVMdvWa23nrrOP/88+PZz352jIyMJANGV111VYbTAQBUp6e0ruL1VIgCWlGxip+LntI64SIAGqZvaCBGxkYrrvGcBwAAAAAAAMBMIVzUZK666qo488wz48ILL8ykpWjBggVx1FFHxfLly2O33XabxuT1sffee8fSpUvjzDPP3Gj+TZXL5bj99tsznAwAIG2sXI7VTrSHzVbNZuxUcA8A6qma+1A1YVkAAAAAAAAAaAbCRU1gvKXozDPPjP/5n/+JiPq3FO2xxx6xfPnyOOqoo2LevObe6HDiiSfGmWeeOen18Uaj3t7e7IYCAKjC2sFSjJbHKq7pLmhegU3Nn5OPjrb2io0QvcJFADRQT3/6PuQ5DwAAAAAAAICZQrioga688sr1LUWlUqlugaLx15g7d2685jWvieXLl8cBBxww9cEztscee8TWW28dDz300Pog0USEiwCAZuNEe5iaXC4X3YV58dC6NZOu6Sn1ZTgRAGysd6Dyc14ul4tFcwsZTQMAAAAAAAAA0yNclLE1a9asbym68cYbI6L+LUVPfOIT421ve1u8+c1vji222GKqozfUs571rLj44osfE5ra0Jo1k288BABohJ7+dPihW7gIJlRMhos0FwHQOKmQ66J8V7S1tWU0DQAAAAAAAABMj3BRRn73u9/FmWeeGd/5zndq3lI00Wu0tbXFy172sli+fHkccsghFUM5M8HixYsn/Hq5XF7/3sbGxrIcCQAgKXWifXuuLRY40R4mlAreCRcB0Eg9/ZXvQwLkAAAAAAAAAMwkwkV1tHr16vUtRX/84x8jov4tRdtss028+c1vjuOPPz523HHHqY7edIrFYqNHAADYbKlNp4sKXdE2w0PgUC+pTdm9wkUANFDqPiRcBAAAAAAAAMBMIlxUBzfffHN86lOfiu9+97uZtBRFRLzgBS+I5cuXx6te9aro6Jh9/2+dM2dOo0cAANhsqWYVm05hcpqLAGhmqftQ0XMeAAAAAAAAADPI7EuhNIELL7wwvvnNb270tXq0FC1cuDCOOeaYWL58eTz96U+f4rQAANRL+kT7+RlNAjNPalP2moH+GB0bi/a2towmAoBHaS4CAAAAAAAAYDYRLqqjerUU7bXXXrF8+fI48sgjo6ura3pDAgBQN5qLYOpSPx/liFg90B+P6xLSAyBb5XI5egaEyAEAAAAAAACYPYSL6my6LUXjr5HP5+N1r3tdLF++PPbbb79ajQcAQB2lTrRPNbNAK6tmU3ZPqU+4CIDMrR0ciNGxsYprhMgBAAAAAAAAmEmEi5rIRC1FT3nKU+Jtb3tbLFu2LLq7uxs1WlPZNHwFANCMxsbGojd5or1NpzCZYlf65yPVDgYA9dBb6kuuESIHAAAAAAAAYCYRLmoCm4aK2tvb4+Uvf3ksX748XvSiFzVwsuYzlSYoAIBGWDNYirHEs4twEUxuXufc6Gxrj+Gx0UnXCBcB0AjV3H885wEAAAAAAAAwkwgXNchELUXbbbddvOUtb4njjz8+lixZ0qjRmtLBBx8cHR0+rgDAzNFr0ylMSy6Xi2JhXjy0bs2ka6r5OQOAWkuFi9pyuVg4t5DRNAAAAAAAAAAwfdIaGZsoVHTwwQfH8uXL44gjjoj29vZGjdbUDjrooDjooIMaPQYAQNWqOdG+KFwEFXV3VQ4XaS4CoBFS4dZF+a5oa2vLaBoAAAAAAAAAmD7hogxMFCgqFotx7LHHxgknnBA777xzo0YDAKBOUqGH9ra2mO9Ee6iouzC/4vWe/r6MJgGAR6We87RTAgAAAAAAADDTCBfV2XiwaDxU9MxnPjNOPPHEeMMb3hCFgs2kAACzVepE++78vGjbIIQOPFYxX3lzdurnDADqIfmclwjHAgAAAAAAAECzES6qs3K5HIVCId7whjfE8uXLY5999mn0SAAAZKCnVLlRpehEe0jq7qr8c9IzIFwEQPZSzUXFQldGkwAAAAAAAABAbQgX1dFOO+0Uy5cvj2OPPTaKxWKjxwEAIEOpTafdwkWQlPo5WTNQipGx0ehoa89oIgBIh8g1FwEAAAAAAAAw0wgX1cF+++0Xl156aRx88MGNHgUAgAZJn2gvXAQp1fycrC71xxbzFmQwDQBEjJXL0Vvqr7hGiBwAAAAAAACAmUa4qA5e8pKXNHoEAAAarDfVXNRl0ymkVLM5u6e0TrgIgMz0DZZitDxWcY0QOQAAAAAAAAAzTVujBwAAgNlmbGwsegcqn2hfzNt0CindhfnJNamWMACopWruO5qLAAAAAAAAAJhphIsAAKDGVg+WolwuV1xTTWgCWl1X55yY0165cLe31JfRNAAgXAQAAAAAAADA7CRcBAAANdZTRdihu8umU0jJ5XJRTGzQ1lwEQJZ6E/edtlwuFuS7MpoGAAAAAAAAAGpDuAgAAGostek0won2UK3Uz4pwEQBZSt13ivl50ZbLZTQNAAAAAAAAANSGcBEAANRYatNpR1t7zJ+Tz2gamNlS4aJqwnwAUCuphspU4x4A8P/Zu/Mwuco6ffjf6iXd1ekk3YAsIgLKoiiiyKg4KriiKIrMKIKOIIgb7vATFR3FBQdxd1xQB3eFccEFV3DBcUM0CrIIAgGMYFDsytbV+3n/8O3YgXQ9J+mqU11Vn8915Zqhz5M+d2c4p06Y5z5fAAAAAABgMVIuAgCAOhsZTbzRvjwQJW+0h1xMLgJgMalUR2seHx5QLgIAAAAAAACg9SgXAQBAnVXGapcdhsuDBSWB1peaAKFcBECRkpOL+pWLAAAAAAAAAGg9ykUAAFBneSYXAfmkynjrx6sxNT1dUBoAOl2q1JqauAcAAAAAAAAAi5FyEQAA1Fl606nJRZBXnk3aqWlhAFAPM1kWa6ujNdcMDygXAQAAAAAAANB6lIsAAKDOKtUNNY97oz3kN5TjekkV+gCgHtaPV2M6m6m5Zqjfcx4AAAAAAAAArUe5CAAA6mh6ZibWjldrrlEugvzyXC/KRQAUIc/nzfCACZUAAAAAAAAAtB7lIgAAqKN1Y6ORZVnNNXkmsQD/UO5dEn3dPTXXVJSLACjAyGjt6ZQRSuQAAAAAAAAAtCblIgAAqKNcb7S36RRyK5VKyUKeyUUAFKEyVvvzprvUFcv6ygWlAQAAAAAAAID6qf36Z7bJ3/72t7j66qubHaMwpVIp+vr6oq+vL/r7+6O/vz+23377GBwcbHY0AIDC5SsXeU6CrTE8MBhrNqyd9/hINT1JAgAWamS09nPeivJAdJVKBaUBAAAAAAAAgPpRLmqAH/zgB3Hsscc2O0bTlcvl2GmnnWLnnXeOffbZJ/bbb7+43/3uFwcccEDsuuuuzY4HANAQlUS5qLerO5Yu6SsoDbSHof7E5KLEZm8AqIdUidx0SgAAAAAAAABalXJRg2RZ1uwITTc6OhqrVq2Km266KX75y19udmyPPfaIQw89NB796EfHEUccEStWrGhSSgCA+kpNUBkqL42SN9rDVklt1q6MKRcB0Hipz5sh5SIAAAAAAAAAWpRyUQPZNPoPWypazZaOPvWpT8WSJUviiU98Yhx77LHx9Kc/PXp6/GsJALQub7SH+hseSEwuSlx3AFAPqUl5nvMAAAAAAAAAaFVdzQ7Q7rIs69hfs0ql0hZ/za4bHx+Pb3zjG/GsZz0r7n3ve8cHP/jBqFarTfy/GgDAtqskSg7eaA9bb6i/9nWzYXwsJqenCkoDQKdKPecNlwcLSgIAAAAAAAAA9aVcRMOkikdbKhr96U9/ile+8pWx5557xmc/+9km/wQAAFvP5CKov9TkooiISnW0gCQAdKqZLIvKmOc8AAAAAAAAANqTchFNkSoa3X777XH88cfHYx7zmLjxxhubnBYAID/lIqi/PJMgUtceACzE+rHRmJkzqXtLTKgEAAAAAAAAoFUpF9F08xWNsiyLH//4x3HQQQfFd7/73SanBABIm56ZiXVjtaenDOUoSQCby1PKq1Q3FJAEgE6Vp8SqRA4AAAAAAABAq1IuYlG5c8koIqJSqcQRRxwR733ve5sZDQAgae3YaNR+n33E8IBNp7C1yr1Loq+nt+Yak4sAaCTlIgAAAAAAAADamXIRi9JsyWh2itH09HSceuqp8b73va/Z0QAA5jWSY3LKcL9Np7AtUhu2lYsAaKRK4nOmu9QVg33lgtIAAAAAAAAAQH31NDtAu5udvlPL7KSeen7PrVHk+bf2XHMLRlmWxSmnnBLLli2LE088cZszwJ396U9/iu9973txxRVXxNVXXx2rVq2K9evXx7p16yLLsli2bFksW7Ys7nnPe8Z+++0X+++/fzz+8Y+Pvffeu9nRAVhk8pQbhkwugm0yXF4af1lfmfd4atM3ACxE6jlvqDwQXXX+b3YAAAAAAAAAUBTlogba2iJNLXcu9NTre88Wd7bm+27rue98rq0539yC0Utf+tI48MAD40EPetA25YCIiEqlEp/4xCfis5/9bFxxxRU1195xxx1xxx13xE033RQ/+clPNn197733jmOPPTZe/OIXx0477dToyB3lxhtvjM985jO51++xxx5x/PHHNy4QQE6pTae93d2xtLevoDTQXkwuAqCZUp8zw+XBgpIAAAAAAAAAQP0pFzXA0UcfHUcffXTNNRs2bIjXvOY1cc4552z62p2LNvOVfgYGBuKggw6K/fbbL/bdd9+4973vHTvuuGPc7W53i6Ghoejr64u+vr4olUoxNjYW4+PjsXbt2vjrX/8at99+e9xwww1x3XXXxVVXXRW//vWvY+PGjclzzn49y7Lo6uqKF77whfHOd74zli7dfIPf2NhYjI2NxYYNG+K2226L2267La699tr4/e9/HytXroyrr756s+859/vWMrdgND4+Hs961rPiN7/5TQwO2rjB1tmwYUO89a1vjQ996EOb/bu/Lf74xz/GGWecEe94xzviuOOOizPPPDN22GGHOiXtXFmWxQknnBCXXHJJ7t9zyCGHKBcBi0JqcspwebDuUyihUwwpFwHQRKnnvNTnFAAAAAAAAAAsZspFTfD9738/XvjCF8Ytt9wSEflKRQ984APj6U9/ehx++OHxwAc+MLq7u3Oda2BgIAYGBmJ4eDj22GOPuxyfnp6Oyy+/PL797W/H1772tVi5cuWmDHOLP7M5ZqcHffSjH41vf/vb8bGPfSwe//jHb/p+/f390d/fH0NDQ3GPe9zjLuf7y1/+Et///vfjc5/7XPzwhz+MmZmZzaYS1TJbMIqIuP766+OMM86Is88+O9efA0REfOMb34iTTz45Vq9eXdfvOzExER//+MfjK1/5SrzrXe+K5z3veXX9/p3mnHPO2apiEcBikio3DJUHCkoC7Sc1EWKkuqGgJAB0otTnTGrCHgAAAAAAAAAsZl3NDtBpzjzzzDj88MPj5ptv3qy0M2tuoWfp0qVx8sknx5VXXhkrV66MN77xjfHgBz84d7Eoj+7u7jjwwAPjDW94Q/z617+Oq6++Ol760pfG4ODgZoWiWbOZsyyLm2++OZ70pCfFO9/5ztzn23nnneO5z31ufP/7349Vq1bFi170oujt7d1sMlHKbBHpgx/8YNxwww1b/0PTcWZmZuINb3hDHHnkkXUvFs3197//PU444YR4wQteEBMTEw07TztbvXp1nHbaac2OAbDNRkZTm05NXYRtldq0vXFiPCampwpKA0CnSZXIlYsAAAAAAAAAaGXKRQWZmpqKE044Id74xjduNq1ntkwzd3pPT09PvOxlL4sbbrghPvjBD8Z+++1XWM773Oc+8YEPfCBuvPHGeMUrXhG9vb2b8s2am31mZiZe97rXxfOf//yYnp7eqnPttttu8eEPfziuueaaeOxjH7vFMtOdzS1jTU5Oxumnn75V56TzTE9Px7Oe9ax4+9vfnpyOVS8f//jH4wlPeEKMjo4Wcr528uIXvzjWrVvX7BgA26xi0yk0TJ7rJ3UNAsC2mJmZibVjtf+OP+Q5DwAAAAAAAIAWplxUkGc/+9nx6U9/etOEnoh/TgGa+88HHHBAXHbZZfH+978/7na3uzUt7/bbbx/vfe9747LLLosHPvCBW8wd8c8pQp/85Cfjuc997jada88994yLLroo3vWud21Wtqpl9rxf/epXGzqJhtY2MzMTxx9/fHzpS18q/NyXXHJJPP3pT4/x8fHCz92qvvCFL8SFF17Y7BgACzIyVrvYYNMpbLs8109qqgQAbIt149WYSbywRIkcAAAAAAAAgFamXFSAU089dVO5YW5B587/fNxxx8WvfvWreMADHtCcoFuw//77x6WXXhonnHDCZgWjiLhLwei8886L17zmNdt8rle/+tXx1a9+dYvTkuaaO31meno6PvKRj2zzOWlvp59+enzuc5/bqt+z9957x/HHHx/vete74txzz41PfvKT8Z73vCdOOumkuP/9779V3+v73/9+nHTSSVv1ezrV3/72t3jFK17R7BgACzI1Mx3rxqo119h0CtsuT7nI5CIAGiFPedVzHgAAAAAAAACtrKfZAdrdueeeG+95z3vuUiqK+Gcpp1QqxRve8IZ4y1ve0qyYNfX09MQnPvGJ2G233eKMM87YlDvirgWjd7/73XG/+90vjjvuuG0611Of+tT4zGc+E8cee+ymP5tsnjfDzh4799xz4+1vf/u2/XC0re985ztx1lln5V7/tKc9LV7/+tfHQx7ykJrrrrzyyjj77LPjc5/7XMzMzCS/72c/+9k45JBD4sQTT8ydpRO9/OUvj7/97W/NjgGwIGuro8k1Np3Ctiv3Lolyz5KoTk3Mu8bkIgAaIU95dag8WEASAAAAAAAAAGgMk4sa6M9//nO8+tWvThaLXvGKVyzaYtFcb3rTm+JVr3rVXSYYzZr9mV75ylfGrbfeus3neeYznxmvfe1r5y0VRWz+Z3n77bfHL37xi20+H+3njjvuiOc+97k1/x2atd1228W3vvWt+NrXvpYsFkVE3P/+949Pf/rT8bOf/Sx22223XHle9rKXxfXXX59rbSe68MIL44tf/OK8x7u6fFQBrSHfG+1tOoWFGBqoXdAbqW4oKAkAnST1nNfd1RXL+voLSgMAAAAAAAAA9WfHdgO96EUvinXr1kXE/MWiRz3qUfHud7+7WRG32rve9a445JBD7lIwmvvzrVu3Ll70ohct6DxnnHFGHHjggRERWywy3dk3v/nNBZ2P9nL66afnmoJzj3vcI371q1/F4YcfvtXneNjDHha//vWvY7/99kuurVar8apXvWqrz9EJ1q9fHy9+8YvnPb7LLrvEU5/61AITAWy7POWiIZOLYEGG+xPlolGTiwCov1R5dbh/aa7/fgUAAAAAAAAAi5VyUYNccskl8a1vfWtTkWjW3I0GAwMD8bnPfa6lNh+USqX43Oc+F0uXLt30z7NmC0dZlsW3vvWt+MlPfrLN5+nu7o73vve9uSbPZFkW3/3ud7f5XLSX3/72t/Hxj388uW7FihVx8cUXx73vfe9tPteOO+4YP/jBD+Ie97hHcu2FF14Y3/72t7f5XO3qNa95TaxevXre4x/4wAdixYoVBSYC2HaVxKbTJd09MdC7pKA00J5SBb3KmHIRAPVXSZTIFcgBAAAAAAAAaHXKRQ3yzne+c95jsyWcV7/61bHrrrsWmKo+dt111zjllFOSxZ9afwZ5PPKRj4wnPOEJd5mSNNfs16+88soYHx9f0PloD2eccUbMzMwk13384x+Pfffdd8Hn23nnneMLX/hCdHd3J9e+6U1vWvD52slPfvKTOOecc+Y9fsQRR8S///u/F5gIYGFSk4uGy95oDws1PJCYXJRjghgAbK08z3kAAAAAAAAA0MqUixrgqquuiu985zvJqUWnnnpqM+LVxSmnnJKcXvSd73wnrrrqqgWd5+STT5732Nw/2+np6bj88ssXdC5a37XXXhvf+MY3kuue9rSnxTOe8Yy6nfeRj3xkvPCFL0yu+/Wvfx0//OEP63beVjY2NhbPf/7z5y0pDg4Oxoc+9KGCUwEsTOqN9jadwsKlrqORUeUiAOovVS4yuQgAAAAAAACAVqdc1ABf/OIX5z02W7555jOfGcuWLSswVX0tW7Ysjj766OT0oi984QsLOs+Tn/zk2GmnnSIikm/6X7ly5YLORet7z3vek/x3sqenJ971rnfV/dxvectbYvny5cl17373u+t+7lb0pje9Kf74xz/Oe/xtb3tb7LbbbgUmAlg4m06h8Yb6a19Ho5PjMTE1VVAaADpFskSemKwHAAAAAAAAAIudclEDfOMb30gWYY466qiC0jTOv/3bv9U8nmVZfPOb31zQObq6uuLwww9PFkYiIm644YYFnYvWNj4+Hueff35y3b/927/FXnvtVffzb7/99vH85z8/ue573/terFmzpu7nbyUrV66sWbL6l3/5l3jZy15WYCKA+kiVi0wugoUbHhhMrhkZM70IgPqZmZmJythozTWp8isAAAAAAAAALHbKRXV20003xZVXXhkRsVkhZm7ZqKenJw499NCio9Xdox71qOjt7Y2IzX++2elMERFXXXVV3HzzzQs6zxOf+MRc61avXr2g89DaLrzwwli7dm1y3Stf+cqGZXj5y18eXV21b6vT09Nx3nnnNSzDYjc1NRUnnHBCTE9Pb/F4T09PfPzjH0/+OQIsRunJRelSBFBbnpLeyOiGApIA0CnWjleTL70Z9pwHAAAAAAAAQIuze7vOLr300nmPzW5E2GuvvWLp0tZ/o+nSpUtj7733Tq77xS9+saDz/Mu//EuudX/6058WdB5a2xe/+MXkmr322ise9rCHNSzD7rvvHo985COT6/JkbVdnnXVWXH755fMef9WrXhUHHHBAgYkA6mNqejrWj1drrjG5CBZuKMd1VEkU/QBga4xU06XV4QHPeQAAAAAAAAC0NuWiOrvqqqtqHi+VSrHvvvsWlKbx9tlnn+TbW6+++uoFnWOPPfaIoaGhiNh8QtKsUqkUWZbFmjVrFnQeWtf09HRcfPHFyXVHH310w7M861nPSq657LLL4o477mh4lsXm2muvjbe+9a3zHt9zzz3jzW9+c3GBAOqoMpYuMygXwcL19/RGuXdJzTWpKWIAsDXylFaH+j3nAQAAAAAAANDalIvqLFUuiojYaaedCkhSjJ133jm5Js+fScq97nWvZIlp40abCDvVr371q1i7dm1y3ZOe9KSGZ8lzjpmZmfjBD37Q8CyLSZZl8fznPz/Gx8fnXfORj3wkBgYGCkwFUD95ygx5Jq4AaaminslFANRT6jmvu6srlvX1F5QGAAAAAAAAABpDuajObrzxxuSaZcuWFZCkGIODgzWPZ1kWN9xww4LPc4973CO5plqtLvg8tKY8RZ1ly5bFQx/60IZn2X333WOvvfZKrrvooosanmUx+dCHPhQ//elP5z1+7LHHxmGHHVZgIoD6ylNmGB5QLoJ6SJWLTC4CoJ5GRmt/rgyXl25x0jYAAAAAAAAAtBLlojpbu3ZtckNBT09PQWkar9bPMvvnsG7dugWfJ8+EJOWizvWLX/wiueahD31oYdfeIx/5yOSaSy+9tIAki8Mtt9wSr3vd6+Y9vt1228X73ve+4gIBNECqzNDX3RPlniUFpYH2lpoCNlLdUFASADpBZSxVLqr94h0AAAAAAAAAaAXKRXW2fv36uqxpFRs2pDfu1ePnLZfLyTXT09MLPg+t6be//W1yzYEHHlhAkn948IMfnFxzzTXXxPj4eAFpmu+FL3xhzXvF2WefHXe7290KTARQf6ly0ZA32kPdpDZxm1wEQD2lJhcNlQcKSgIAAAAAAAAAjaNcVGd5ijQjIyMFJCnG3//+9+SaepSL+vv7k2vyFJBoP2vWrInbbrstuW6xlYumpqbi97//fQFpmuszn/lMfPe73533+KGHHhonnHBCgYkAGiM1KWV4wBvtoV6GE5OLKspFANRRqrRqchEAAAAAAAAA7UC5qM5Sb6TPsiyuu+66gtI03h//+Mfkmnq8pT/P9xgY8KbYTnTFFVfkWnef+9ynwUn+ad999821Lm/2VnX77bfHq171qnmP9/X1xTnnnFNgIoDGqVRHax5PlSGA/FLX0+jkRIxNTRaUBoB2VxlLlYs85wEAAAAAAADQ+pSL6mzZsmXzHpstyFx77bWRZVlRkRpmZmYm/vCHPySLP4ODC3+D69jYWHKNclFnuvHGG3Ot22uvvRqc5J+Gh4dju+22S67Lm71VvfSlL6053ez000+PffbZp8BEAI2Tmlw01G/TKdTLUI5N3KYXAVAP0zMzsXasdok8z+cSAAAAAAAAACx2ykV1Nl+5aG6ZaMOGDfGrX/2qqEgN8+tf/zrWr18fEVGzLFWrcJXX6Oj8Gzlmz61c1JlWrVqVXLPzzjvH0qXFbvbJU2bKk71Vff3rX48vfelL8x7fb7/94rTTTiswEUBjjSSKDMMDNp1CveSZEKFcBEA9rBsbTb4gyOQiAAAAAAAAANqBclGd3f3ud881lehb3/pWAWkaK/UzZFkWpVIp7n73uy/4XLfffntyjXJRZ7rpppuSa+rx7+DW2mWXXZJr2rVctHbt2njJS14y7/FSqRQf+9jHYsmSJQWmAmicyemp2DBee8qiTadQP3kmRKQKfwCQx8hY+vPEcx4AAAAAAAAA7UC5qM723XffmsdLpVJkWRaf/OQnY2ZmpqBU9TczMxPnnntulEql5NrUn0ket912W83jpVIpdtxxxwWfh9bz5z//Oblm5513LiDJ1p9z9erVBSQp3qmnnhq33nrrvMdf8IIXxL/+678WmAigsSpj809YnJWnDAHk09fTGwO9fTXXjFQ3FJQGgHY2MpouF3nOAwAAAAAAAKAdKBfV2X3uc595j82daHTrrbfGeeedV0SkhjjvvPM2lTpSk5rue9/7Lvh8q1atShaZ9thjjwWfh9Zzxx13JNfstNNOBSTZXJ5y0d///vcCkhTrRz/6UXziE5+Y9/guu+wSZ511VoGJABovz6bT4fJgAUmgc6SmRJhcBEA9VBKfJz1d3TG4pL+gNAAAAAAAAADQOMpFdXbwwQcn18xOLzr99NNjYmKigFT1NTExEaeffnquqUUREQ972MMWdL6RkZG4/fbbI6J2kUm5qDPlKRcNDQ01Psg2nHPjxo0xPj7e+DAFGR0djZNOOqnmmg984AOxYsWKghIBFKOSY0JKqggBbJ3UlIjUZnAAyCM1CW+4vDT3fx8DAAAAAAAAgMVMuajOHvawh8WyZcsiIra4uWBuOeaWW26JU089tbBs9XLaaafFzTffHBFbLvvM/bkHBwdzFa5qufLKK3OtUy7qTCMjI8k1s9dkkfKes52mF73xjW+MG264Yd7jT3nKU+Lf//3fC0wEUIyR6mjN4/09vVHuXVJQGugMJhcBUITUc16q7AoAAAAAAAAArUK5qM66u7vjsY99bM0JO1mWbZpe9KEPfSi+9KUvFZhwYb7yla/E+9///k355zP7Mz7mMY+J7u7uBZ3zF7/4Ra51ykWdp1qtxuTkZHJdM8pFy5cvz7Vu7dq1DU5SjMsuuyze//73z3t8cHAwPvzhDxeYCKA4qTfa23QK9Tc8oFwEQOOlJlSaTgkAAAAAAABAu1AuaoDnPve5udbNFnT+4z/+I77//e83ONXCXXTRRfHsZz97ixOZ5nPcccct+Lw/+9nPcq3ba6+9FnwuWsvExESudeVyucFJ7qq/vz/Xurw/w2I2OTkZJ554YkxPT8+75q1vfWvstttuBaYCKE4lUWKw6RTqb6i/9nVVGVUuAmDhUmVVz3kAAAAAAAAAtAvlogY44ogj4u53v3tExLxFnNmpP6VSKSYmJuJpT3tafO5znyss49b6whe+EE972tM2FSHmm1o09+fdZZdd4qlPfeqCzjs5ORk//vGPt/jnOPdre+21VwwNDS3oXLSevMWchU7P2hY9PT251rVDuejMM8+M3//+9/MeP+igg+LlL395gYkAimXTKRRveGCw5vHq1ESMTbb+cxYAzaVEDgAAAAAAAECnyLf7na3S3d0dJ598cpx++uk1p/zMLRiNj4/HcccdF7/61a/irLPOasqklS0ZGxuL1772tfHBD34wsizbNG2pltl1L3vZy6Kra2H9tZ/85Cexfv36ec87e66DDz54QeehNeUt5uQt+tRT3nNOTk42OEljXX311XHmmWfOe7ynpyc+/vGPL/hewNZ5xCMe0ZR/79ncVVdd1ewIFCS96bR2CQLYenk2c49UN8YuvUsKSANAO5qemYm1Y6M11wwpFwEAAAAAAADQJuz2bpBXvepVseuuu0bE/NOL5potz3zoQx+KBzzgAfHNb36z0RGTvvWtb8UBBxywWbGolrnH7373u8crXvGKBWe44IILcq1TLupMU1NTudYpFzXGzMxMnHjiiTVLXq985SvjgQ98YHGhAJogNbnIplOovzzXVar4BwC1rB0bjdqv1zG5CAAAAAAAAID2YaxBg/T398fb3va2eN7znpcs5cwWd2YLRjfccEMceeSRcfDBB8f/+3//L4444ojCpn5kWRbf/OY34+yzz46f//znm01Xmj2e+v2lUine+ta3Rn9//4KyTE1Nxfnnn5+rnKVc1JnyFnimp6cbnGTbz9nK02U+8IEPxC9/+ct5j++5555xxhlnFJiIWT/96U/jbne7W7NjQEeYmJ6KDRNjNdfYdAr1N9yfb3IRAGyrPCVVEyoBAAAAAAAAaBcmFzXQcccdF4cffniuqT9Zlt2lZPTzn/88jjrqqNhjjz3iNa95TfzsZz9rWNZf/OIX8drXvjb23HPPePrTn76pWDQ3T61i0eyaUqkUhx9+eBx//PELznThhRfGHXfcERF3LTXN/fNcvnx57L///gs+H61nyZIludblnXBUT3knEuX9GRabVatWxRve8Iaaaz7ykY/EwMBAQYkAmiPfplPlIqi3JT09sXRJX801ykUALESezxETKgEAAAAAAABoF607MqNFfOpTn4oHPOABsWbNmk0FnFq2VOhZvXp1vPvd7453v/vdsWLFinjYwx4WBx98cNzvfveLffbZJ+51r3vl3sA/NjYWN954Y1x77bVx1VVXxS9+8Yv45S9/GZVKZdP5Z+WdVjS36LPTTjvFJz/5yVxZUj784Q/XPD63zJRnuhHtp7e3N9e6ZpSL8p6zVctFL3jBC2Ljxvk3Wh1zzDFx2GGHFZgIoDnylItsOoXGGC4PxsaJ8XmP57k+AWA+I9UNNY/3dnUni64AAAAAAAAA0CqUixpshx12iC9/+cvx+Mc/PsbGxnIXjCI2L+3Mfq1SqcT3vve9+N73vrfZ7xkYGIi73e1uMTQ0FH19fbFkyZIolUoxPj4e4+PjsXbt2vjrX/+6xTLAlgpFd/76fOYWkAYGBuKrX/1q7LDDDsnfl3LVVVfFxRdfnOvP69///d8XfD5aU19fvk08Y2NjDU6y7edsxXLRueeeGxdffPG8x7fbbrt43/veV1wggCbyRntonqHyQKxee8e8x1ObwgGgllRJdai81MtuAAAAAAAAAGgbykUFePjDHx7nnXdeHHXUUTEzM5OrMBOxeckoVfrZuHHjpuLQnTc2bM3koTzr7/z7siyLnp6eOP/88+NhD3tYrt+bcvbZZ8+bb66BgYF40pOeVJdzks+qVavi0ksvbeg5li5dGkcccURyXblcjp6enuSUoPXr19crWm55z7l8+fIGJ6mvv/zlL3HKKafUXHP22WfHjjvuWFAigOZKlYvKPUui3Nt6RVJoBcPlwZrH85T/AGA+qc+RYQVyAAAAAAAAANqIclFBjjjiiPj85z8fz33uc2NycjJ3wSjirpOFapVtsizb4vdNvUk1b5Y7f78sy2LJkiXxmc98Jp785Cdv1feYzw033BCf//znc+V64hOfGP39/XU5L/lccskl8bznPa+h59h9991zlYsiIoaHh+Ovf/1rzTXr1q2rR6ytkvec2223XYOT1NfJJ58clUpl3uOHHHJIw//9AFhMkm+0H7DpFBoltak7dX0CQC2pcpHplAAAAAAAAAC0E+WiAj3zmc+MHXfcMZ7+9KfHunXrtqpgNGu+9bNln3qXiGqdK8uyWLFiRVxwwQVx6KGHLvj7zrr88svj+OOPz7X2P/7jP+p2XlrT9ttvnywXrV27tqA0W3fOgYGBlirHffnLX46vfvWr8x7v6+uLj33sY8n7EEA7Sb7Rvt+mU2iUVLnI5CIAFiI9uaj2BD0AAAAAAAAAaCXKRQU79NBD4+c//3kcffTRceWVV25W1FmIepSG8pib9/73v3+cf/75cd/73reu5zjqqKPiqKOOquv3pH1tv/32yTVr1qwpIMnm/vKXvyTX5Mm+WIyMjMTLXvaymmtOP/302GeffQpKBLA4jFQ31DzujfbQOKnra2xqMqqTE1HuXVJQIgDaSWoC3nB5oKAkAAAAAAAAANB4Xc0O0Inue9/7xmWXXRYveclLNpWCSqXSop72MZsvy7LIsixOPvnkuOyyy+peLIKtteuuuybX5Cn61Fuec+bJvli8+tWvrvkz7bfffnHaaacVmAhgcUi+0X5AuQgaJTW5KCK9MRwAtmRqZjrWjY3WXDNkchEAAAAAAAAAbUS5qEn6+vriv//7v+OSSy6JBzzgAYu2ZDQ3T5Zl8cAHPjAuueSS+OAHPxh9fX1NTgcRe+yxR3LNrbfe2vggd3Lbbbcl1+y5554FJFm466+/Pj71qU/Ne7xUKsU555wTS5aYCgB0nvQb7ZWLoFGGc2zqThUAAWBL1o6NRmpGuBI5AAAAAAAAAO2kp9kBOt0jH/nIWLlyZXziE5+Id7zjHXHTTTdFRGxWMJotHhVlS+fefffd4/TTT48TTzxxUZWfIE9B5y9/+UuMjo7GwMBAAYn+4frrr0+uaZVy0YYNG2oef+ADHxirV6+O8847ryHnX7VqVXLN7bffnuv8O+64YzzmMY+pRyyAmJiaio0T4zXXDPXbdAqNMlROP9uNVGs/xwDAluSZfKdEDgAAAAAAAEA7US5aBEqlUpx00klxwgknxP/+7//Ge97znvjNb36z6didyzz1LhttqSw0e44DDzwwTjnllHjmM58Z3d3ddT0v1MO97nWv5Josy+L666+PBzzgAQUkiqhUKnHHHXck1+XJ3gp++9vfxjHHHNPUDNdcc02uDIcccohyEVA3I2M5Np0OpCerANumt7snBpf0x4aJsXnXmFwEwLbI8/kxpFwEAAAAAAAAQBvpanYA/qm7uzuOOeaYuOyyy+KKK66I1772tbHHHntElmWbfkX8s3BUr18Rsdk5dt9993jta18bV1xxRfz617+OY445RrGITY4//vjN/n1pxK/ZCV557L///rnW/eEPf9jGn3jr5T1X3uwALE4jo+mJKN5oD42VusbyTJ4AgDtLlYt6u7tjaW9fQWkAAAAAAAAAoPFMLlqk7n//+8eZZ54ZZ555Zlx33XXxwx/+MH70ox/FpZdeGrfcckvN37u1k47ucY97xMMe9rB49KMfHY95zGNi3333XXB+KMouu+wSO+20U6xZs6bmupUrV8Yzn/nMQjKtXLkyuaanp6ewSUoANEZlbDS5xhvtobGGykvjT2vnnxhpchEA2yJVTh0uD25xEjgAAAAAAAAAtCrlohawzz77xD777BMvetGLIiJi/fr1ceWVV8Y111wTq1evjttuuy1uu+22uOOOO6Jarcb4+HiMjY1FRERfX1/09/dHuVyO4eHhuPvd7x677LJL3OMe94j73ve+cf/73z+WL1/ezB8PFuzAAw+M73znOzXX5Cn81MtvfvOb5Jr73Oc+0d/fX0AaABolNbmo3Lsk+nt6C0oDnWl4oHaBT7kIgG2R+vwYKg8UlAQAAAAAAAAAiqFc1IKWLVsWBx98cBx88MHNjgKLwsEHH5wsF/3yl7+Mqamp6Olp/G3vJz/5SXLNQx/60IbnAKCx0m+0N7UIGm2oP1EuSpQAAWBLUp8fw+XBgpIAAAAAAAAAQDG6mh0AYKEe+9jHJtesX78+fvWrXzU8yy233BLXX399ct3jH//4hmcBoLFSb7RXLoLGS23uroyNRpZlBaUBoF1UxkZrHvecBwAAAAAAAEC7US4CWt5DHvKQWL58eXJdarpRPeQ5R6lUylWIAmBxS5WLhmw6hYYbHqh9nY1PTUZ1aqKgNAC0i5Fq7clFnvMAAAAAAAAAaDfKRUDL6+npyVXWOf/88xue5bzzzkuuOeigg2KHHXZoeJZ6eeADHxhZljXt13HHHZfMeMghh+T6Xj/+8Y8b/wcGdIxKcnJR7YkqwMIN9ac3d4+M1r5WAWCuqZnpWDdWrbnG5CIAAAAAAAAA2k1PswO0m1tvvTUuvvjiXGvve9/7xr/8y780OBF0hmOOOSYuuOCCmmv++Mc/xqWXXhoPfehDG5LhlltuiZ/85CfJdcccc0xDzg9AsVJvtLfpFBovNbko4h9FwF1XbFdAGgDawdrqaHKN5zwAAAAAAAAA2o1yUZ19+ctfjle96lW51pqgAfVzxBFHxPLly2PdunU1173vfe+LL37xiw3J8IEPfCBmZmZqrunq6opnPetZDTk/AMUZn5qM0cmJmmtsOoXGG+ofSK4ZSUwZA4C58nxuDHnOAwAAAAAAAKDNdDU7QLv53e9+F1mWJX8dfPDB8chHPrLZcaFt9Pf3xzOf+czkui9/+ctx/fXX1/38d9xxR3z84x9PrnvCE54Qu+yyS93PD0CxKjadwqLQ290Ty/rKNdcoFwGwNfJ8bgyXBwtIAgAAAAAAAADFUS6qs+uuuy4iIkql0hZ/zR47+uijmxkT2tKrX/3qTdfZfKampuLUU0+t+7n/8z//Mzk1KSLilFNOqfu5AShevk2nykVQhKFy7elFleqGgpIA0A5SnxtLuntioHdJQWkAAAAAAAAAoBjKRXV2yy23bCo33Hla0VxPfepTmxEP2tp973vfeMpTnpJc9/Wvfz2+9KUv1e28P/3pT+Occ85JrjvwwAPjcY97XN3OGxFx0003zVtmnPvr0EMPret5ATpdnnKRyUVQjNT0CJOLANgaI9XRmseHy0uTLzYBAAAAAAAAgFajXFRnf/vb37b49bmbDnbYYYfYfffdi4oEHeVNb3pTdHWlb20nnXTSpkljC/GXv/wljj322Jienk6uffOb37zg8wGwOFQSZYWB3iXR19NbUBrobKkpYanrFQDmSk0uUiAHAAAAAAAAoB0pF9XZ5OTkvMeyLItSqRT3u9/9CkwEneXBD35wnHDCCcl1a9eujcc+9rFx4403bvO5/vrXv8bjHve4+NOf/pRc+6QnPSmOOOKIbT4XAItLahJKapIKUD+pcpHJRQBsjfRznnIRAAAAAAAAAO1HuajOli5NbzDYY489Gh8EOtiZZ54Z22+/fXLd6tWr4yEPeUh85zvf2epzXHrppXHQQQfFVVddlVzb398f73//+7f6HAAsXiPeaA+LRup6G6lujCzLCkoDQKtLTbxTLgIAAAAAAACgHSkX1dngYPot9cuWLSsgCXSuu93tbvGpT30qSqVScu0dd9wRhx9+eBx11FHx61//Orn+6quvjuc973nx8Ic/PG655ZZced7//vfH3nvvnWstAK3BplNYPFLX28T0VFQnJwpKA0CrS00uUiIHAAAAAAAAoB31NDtAu8lTLsqzBliYpzzlKXHqqafG2WefnWv9BRdcEBdccEHss88+8YhHPCLud7/7xXbbbRelUilGRkbiD3/4Q/ziF7+IK664YqtyHHvssfGCF7xgW34EABax1KZT5SIoznA5/ferkerGGFjSV0AaAFrZ1PR0rBuv1lyT53MHAAAAAAAAAFqNclGd7bDDDnHdddfVnJgyMeGt2VCE//qv/4rVq1fHF7/4xdy/57rrrovrrruuLud/7GMfG+eee25dvhcAi4s32sPikafMN1LdELuu2K6ANAC0srVjo8k1SuQAAAAAAAAAtKOuZgdoN/vss09yzcaNtTejAvXR1dUVn/nMZ+Koo44q/NyPeMQj4utf/3r09XlDPkC7GZuajOpk7bL48IA32kNRVvQPJNekCoEAEJHv80KJHAAAAAAAAIB2pFxUZ3nKRWvWrCkgCRAR0dPTE1/60pfitNNOK+ycz3ve8+Liiy+OpUttOAJoR5Ucm0690R6K09PdHcv7yjXX5LluAWCkuiG5xnMeAAAAAAAAAO1IuajO9t1335rHsyyLG264oaA0QMQ/Jhj913/9V1xwwQVx97vfvWHnGR4ejo9//ONx7rnnmlgE0Ma80R4Wn9RGb5OLAMgj9XnR190T5d4lBaUBAAAAAAAAgOIoF9XZwx/+8HmPlUqliIj44x//GFNTU0VFAv5/Rx55ZPzhD3+IU089ta5ThZYsWRInnnhiXHvttfH85z+/bt8XgMVpZDTHG+37lYugSKlCn3IRAHmkJt0NlZdu+u97AAAAAAAAANBOepodoN3stNNOccABB8Tll18epVIpsiyLiH9MLJrdfDA2NhaXXXZZHHzwwc2MCh1p2bJlcfbZZ8frX//6+NjHPhaf/exn46qrrtqm73Xve987jjnmmHjJS14Su+yyS52TMuvII4+MPfbYo+aa1HGAekqVFJYu6YslPR6zoUjpyUXpUiAApJ7zUp83AAAAAAAAANCq7HpsgCc84Qlx+eWX11zz3e9+V7kImmh4eDhOO+20OO200+Lmm2+O73//+3H55ZfH1VdfHTfddFOsW7cu1q9fH1mWxbJly2LZsmWx2267xX777Rf7779/PO5xj4v73Oc+zf4xYo899thUYmxXRx55ZBx55JHNjgGwSWUstel0sKAkwKyhxHVXqY4WlASAVpYqF6U+bwAAAAAAAACgVSkXNcAznvGMOPvss7d4bHaa0Re+8IU444wzCk4GbMnuu+8eJ510UrNjANAiRkZTm04HCkoCzBoeSE8umjtNFgC2pJKcXOQ5DwAAAAAAAID21NXsAO3ooIMOioc85CF32bw2d7rIjTfeGN/73veaEQ8AgAVIbzr1Rnso2lB/7XLR5PR0bJwcLygNAK3K5CIAAAAAAAAAOpVyUYOcfPLJNY9nWWZyEQBACxoZS5WLapccgPrLc91VElPHAOhsU9PTsX68WnON5zwAAAAAAAAA2pVyUYM861nPir333jsi4i7Ti2b/+dJLL41zzz23KfkAANg2qYLCkE2nULjhgfR1lyoGAtDZKjk+J/J83gAAAAAAAABAK1IuapDe3t747//+78iybIvHS6VSZFkWp5xySqxatargdAAAbIvq5ERUpyZqrvFGeyjeiv6BKCXWjJhcBEANI9X058RQv+c8AAAAAAAAANqTclEDPf7xj49nPOMZm00riohNhaNSqRRr166NJz/5yVGpVJqUEgCAvCo5Np0qF0Hxerq6Y1l/ueaaSnVDQWkAaEV5ykUmFwEAAAAAAADQrpSLGuxjH/tY7L333hERWywYRUT84Q9/iMc+9rFx++23F54PAID88pWLBgtIAtxZ6trLs2kcgM6Ves7r6+mNcs+SgtIAAAAAAAAAQLGUixpsxYoV8c1vfjNWrFgREXctGM3+829/+9t4+MMfHr/97W+bkhMAgLQ85YQV5YECkgB3lpoaplwEQC2pz4mh/oHN/rseAAAAAAAAALQT5aIC7LPPPvG1r30tli1bFhFbLhiVSqW48cYb4+CDD453vOMdMTk52ay4AADMI7XpdHBJfyzp7ikoDTBXqlyUZ/IYAJ1rpLqh5vHhAdMpAQAAAAAAAGhfykUFedSjHhWXXHJJ7LzzzhERmwpFEf8oGM1+bWJiIt7whjfEfe5zn/j85z8fU1NTTcsMAMDmkptOE+UGoHGGTC4CYAFGRmt/TnjOAwAAAAAAAKCdKRcV6IADDoif/exn8aAHPWhToWjW3IJRlmWxatWqeO5znxt77LFHvOlNb4orr7yyGZEBAJgjNfkkVW4AGie16XukuvEufw8DgFmVscRzXr/nPAAAAAAAAADal3JRwfbYY4+49NJL481vfnP09PTMO8FotmR06623xtve9rY44IADYq+99ooTTzwxPvnJT8ZvfvOb2LjRm7cBAIqUmnzijfbQPMPlwZrHp2amY+PEeEFpAGg1yee8Ac95AAAAAAAAALSvnmYHaFcnnHBCcs3+++8fK1eu3FQuirhrwWju12688cZYtWpVfOpTn9q0fscdd4yddtopdtppp1i2bFn09fXFkiVLNvuezVYqleJ//ud/mh0DAGDBUptOTS6C5slT7hupbojBvv4C0gDQSianp2LD+FjNNUrkAAAAAAAAALQz5aIG+dSnPpW74DNbHtrS1+aWjLa0ds2aNbFmzZpFVSaaK8sy5SIAoG1UkpOLak9OARonT7lvpLoxdhvaoYA0ALSSythoco0SOQAAAAAAAADtTLmowbZUHNrW33/notHcNQs9DwAAtVUnJ2JsarLmmuHyQEFpgDtb0T8QpYio9TejVEEQgM40Mpr+fFAiBwAAAAAAAKCdKRc1WGqi0NaUgra0dr7C0WKh9AQAtIuRHKWEIZtOoWm6u7piRf9AzekTea5jADpPpbohuWbY5CIAAAAAAAAA2phyUYM1ulyzmMs7i7n0BACwtUbybDodsOkUmmmoPKhcBMBWG6nO/9kREdHf0xvl3iUFpQEAAAAAAACA4nU1OwAAALSCSp7JRf0DBSQB5jNcrn0N5ikJAtB5Up8PQ6YWAQAAAAAAANDmlIsAACCH1MSTwb7+6O02GBSaaag8WPN4JTGZAoDOlCqRDysXAQAAAAAAANDmlIsAACCHkVGbTmGxS12HJhcBsCWpErnnPAAAAAAAAADanXIRAADkkN50WntiCtB46XLRxsiyrKA0ALSK1OSiIeUiAAAAAAAAANpcT7MDtLtSqdTsCAAA1EFlzBvtYbFLbf6enpmJ9eNjsby/XFAiAFqBEjkAAAAAAAAAnU65qIG8ERsAoH2MjG6oedwb7aH5hgfS12FlbKNyEQCbTE5PxYaJsZprlMgBAAAAAAAAaHfKRQ1y3HHHNTsCAAB1kmVZVJJvtLfpFJotz2SJkdGNcc+hHQpIA0ArqFRHk2uUyAEAAAAAAABod8pFDfLJT36y2REAAKiT6tREjE9P1VyjXATNt6KvHKVSqeYU2ZFq7SlkAHSWPJ8LnvMAAAAAAAAAaHddzQ4AAACL3cho7alFEd5oD4tBV1dXrOgfqLkmNYUMgM4ykuNzwXMeAAAAAAAAAO1OuQgAABLylBG80R4Wh9S1mGcTOQCdI/Wc19/TG+XeJQWlAQAAAAAAAIDmUC4CAICEXG+071cugsUgVS4yuQiAuVLPeQrkAAAAAAAAAHQC5SIAAEhIbTpd3leOnu7ugtIAtQyZXATAVkiXiwYLSgIAAAAAAAAAzaNcBAAACZXqhprHU2UGoDipCRMjiesZgM6SmmjnOQ8AAAAAAACATqBcBAAACek32tt0CotFasJEZWw0ZrKsoDQALHae8wAAAAAAAABAuQgAAJJsOoXWkboep2dmYsN4taA0ACx2qYl2JhcBAAAAAAAA0AmUiwAAIKGSKBcNJSalAMXJswk8VRgEoDNMTE/FxonxmmuUyAEAAAAAAADoBMpFAABQQ5ZlOSYXDRSUBkjJswk8VRgEoDPk+TxQLgIAAAAAAACgEygXAQBADaOTEzExPVVzjclFsHgs7ytHV6lUc43JRQBE5Ps8yDMRDwAAAAAAAABanXIRAADU4I320Fq6urpiqL/2NalcBECE5zwAAAAAAAAAmKVcBAAANYxUNyTX2HQKi8tQeaDm8TzXNQDtL1U2Lfcsif7eJQWlAQAAAAAAAIDmUS4CAIAa8kw4WZEoMgDFGi4P1jxeqY4WlASAxSxVNh0aUCAHAAAAAAAAoDMoFwEAQA2pctHy/nL0dHUXlAbIYygxTczkIgAiIkZGaz/nmU4JAAAAAAAAQKdQLgIAgBoqiXJRakIKULzUZvA8E8kAaH+VsdqfB0P9ykUAAAAAAAAAdAblIgAAqCFVQhjqHygoCZBXqly0tjoaM1lWUBoAFqvUc97wgHIRAAAAAAAAAJ2hp9kB2HbT09Nx2223xa233hrr16+ParUa1Wo1xsbGItvCRrnnPve5TUgJANDaRqobah4fHjC5CBaboUS5aDqbifXj1VihHAjQ0UZGUxMqlYsAAAAAAAAA6AzKRS3iD3/4Q1x66aXxu9/9Ln73u9/FtddeG7fffvsWS0TzUS4CANh6Np1C68lT+hupblQuAuhgE1NTMTo5XnPNcFmJHAAAAAAAAIDOoFy0SE1PT8eFF14YF154YXz/+9+P1atXb3Z8a0pFERGlUqme8QAAOkKWZVEZUy6CVjOcozQ0Mroh9hi+WwFpAFiMRhLPeBHpSXgAAAAAAAAA0C6UixaZ6667Ls4555z43Oc+F3/7298iYstFoq0pC21tEamWd77znXHhhRcm1+24447x5S9/uW7nBQBoho2T4zE5PV1zjU2nsPgs6x+IrlIpZmr8XahSTW8qB6B9jYxuSK5RIgcAAAAAAACgUygXLRJ/+MMf4i1veUt86UtfipmZmc0KQbWKRKniUL0nFh122GHxute9ruaaLMuiVCrFJZdcEoccckhdzw8AUKTKaLp8YNMpLD5dpVIMlZfG32tsHB9RLgLoaJWx0eQaJXIAAAAAAAAAOkVXswN0uvXr18eLX/zi2H///eP888+P6enpTeWc2V8R/yjsbOlX0Q444IB4ylOesunctTJ94hOfKDwfAEA9jYzlKRcNFpAE2Fqp4p9yEUBnS00uKvcuif6e3oLSAAAAAAAAAEBzKRc10Te/+c3Yb7/94mMf+9hdSkUR0dQSUS2vfe1rN/3vc0tQc39lWRZf+cpXYv369U1MCgCwMCOJyUWliFjRP1BMGGCrpKZNVJSLADpa6nPAdEoAAAAAAAAAOolyURNkWRavfe1r48gjj4w///nP85aKFquDDz44HvzgB887vWjW+Ph4XHDBBc2KCQCwYJVq7TfaL+8fiO4uj9SwGKUnF9W+vgFob6kJdspFAAAAAAAAAHQSOyELtn79+njSk54UZ599dsuViuZ6yUtekmvd+eef3+AkAACNY9MptK7h8mDN45XqaEFJAFiMUs95qQl4AAAAAAAAANBOlIsKtG7dujjssMPioosu2lQsitj2UtFsMWn2+xTp2GOPjRUrVmzKcWelUimyLIuLL7441q1bV3Q8AIC6UC6C1pW6PitjG2NmZqagNAAsNpXkc17tkioAAAAAAAAAtBPlooKsX78+DjvssPjlL38ZEf8s3+QtFc0tEjWrUDRXX19fHHXUUVvMP/drU1NT8b3vfa/IaAAAdZPadOqN9rB4pa7PmSyLdePVgtIAsNiMVDfUPK5EDgAAAAAAAEAnUS4qyHOe85y49NJLN5tWlHLnItFsGWn2V09PTwwNDcUuu+yyaX2RnvOc5+Ra9+1vf7vBSQAAGsPkImhdea7PVIEQgPY0PjUZo5MTNdcokQMAAAAAAADQSXqaHaATvPnNb45vfvObuYtFc0tCs2t32223OOyww+Kggw6KBz3oQbH77rvHjjvuuGldV1fxPbFDDz00dtppp7j99ts3TWKaa/ZrJhcBAK0oy7Ic5aLBgtIAWytPuWikujH2aHwUABaZPOVSJXIAAAAAAAAAOolyUYP9/Oc/j7e+9a1bXSzKsixWrFgRz33uc+PEE0+MBzzgAQ3PurVKpVI88YlPjE9/+tN3mZqUZdmmr61Zsyb++Mc/xt57792MmAAA22TjxHhMzUzXXOON9rB4DfaVo7urK6ZnZuZdkyoQAtCe8tz/lYsAAAAAAAAA6CTFj7vpIJOTk/GCF7xgU6GoVrGoVCptmvTT19cXp59+eqxatSre//73L8pi0azDDz8817qf/vSnDU4CAFBfI9UNyTU2ncLi1VUqxVD/QM01ea5zANpPnslFSuQAAAAAAAAAdBLlogZ6z3veE1dfffWm0tB85k4rOvjgg+Pyyy+Pt771rTE0NFRQ0m33+Mc/flP+O08vmku5CABoNd5oD61vuDxY83iezeUAtJ/Uc95A75Lo6+ktKA0AAAAAAAAANJ9yUYOMjo7Gu971rpqFm4jYVDzKsixe9KIXxSWXXBJ77713QSkXbmhoKPbbb7+aa7Isi5UrVxaUCACgPlKlg1KpFMsTU1GA5koVAPOUCAFoP6n7f6qcCgAAAAAAAADtRrmoQc4555y44447IiLmnVo0WywqlUpx+umnx4c//OHo6ekpMmZdHHzwwTV/xoiIa665JqampoqMBQCwIKlNpyv6ytHd5XEaFrMh5SIAtiBVIk99fgAAAAAAAABAu7EbskE++MEP1pxaNLdY9OIXvzje+ta3Fpiuvh7ykIds8etzC0eTk5NxzTXXFBUJAGDBUqWDIW+0h0XP5CIAtmSkuqHm8dTnBwAAAAAAAAC0G+WiBvjlL38ZN910U0RseWrR3GLRv/7rv8b73//+ghPW13777Zdr3bXXXtvgJAAA9WPTKbS+1OSJtWOjMTMzU1AaABaLVLnUcx4AAAAAAAAAnUa5qAG+8IUvzHts7jSjvr6+OPfcc6O7u7uIWA2z77775lq3atWqBicBAKifSnW05vHhAZtOYbEbTkwYy7Is1o5XC0oDwGJRSU6o9JwHAAAAAAAAQGdRLmqA73znO5uViO5sdmrRy1/+8thrr70KTNYY22+/fWy33XYRETV/buUiAKCVpCYXDfXbdAqL3XB5ILkmda0D0F7GpiZjdHKi5hqTiwAAAAAAAADoNMpFdbZmzZq44YYbIuIfJaK55hZvyuVynHrqqYVma6Rdd931Lj/vnf35z38uKA0AwMJkWRYjiTfam1wEi99QYnJRRMTIaO1rHYD2kppaFGFyEQAAAAAAAACdR7mozn7605/WPD47teiII46IHXbYoaBUjbfTTjsl1/z1r38tIAkAwMKtHx+L6ZmZmmu80R4Wv2V9/dHdVfuvvZUx5SKATpIqkEdEDA+ky6kAAAAAAAAA0E6Ui+rsiiuuyLXu6KOPbnCSYu28887zHiuVSpFlWfztb38rMBEAwLbLUzYYzjERBWiuUqmULAKaXATQWfJMLhruVyIHAAAAAAAAoLMoF9XZjTfeuMWvl0qlzf73Qw89tKBExRgcTG+urVQqjQ8CAFAHecoGQyYXQUsYSmwQzzPBAoD2MVLdUPP4QG9fLOnpKSgNAAAAAAAAACwOykV1Nl+5aK699947hoaGGh+mQP39/ck14+PjBSQBAFi41KbTUqkUK/rKBaUBFmJ4oHa5qJK43gFoL6lSaepzAwAAAAAAAADakXJRnd12222bTSmaK8uyKJVKsddeexWcqvGUiwCAdlIZq73pdKh/ILq6PEpDKxgu156yOlIdLSgJAItBJVUuMp0SAAAAAAAAgA5kR2SdbdxYe4NCRMQ97nGPApIsPlNTU82OAACQy8hoolxk0ym0jNQmcZOLADpLanLRUL/nPAAAAAAAAAA6j3JRneUpFw0O1n5zdiuqVqvJNX19fQUkAQBYOG+0h/aRKgOuHRuN6ZmZgtIA0GypctHwgOc8AAAAAAAAADqPclGdjY2NJdcsWbKkgCTFGh0dTa4ZGBgoIAkAwMIlN50qF0HLSF2vWUSsG0v/fQaA9pAukbffS4EAAAAAAAAAIEW5qM7K5XJyTZ4pP63m9ttvT67J82cDALAY2HQK7SNPGTBVKASgPYxNTkR1cqLmmtTEOwAAAAAAAABoR8pFdZZnOs/Gje23cW316tXzHsuyLCIili1bVlQcAIBtNpNlMTJW+3nNplNoHXnKgMpFAJ0hz/3ehEoAAAAAAAAAOpFyUZ0tXZregHDrrbcWkKRYq1atilKpNO/xUqkUu+66a4GJAAC2zYbxakzPzNRcY9MptI6lS/qit6u75pqR6oaC0gDQTJWx0eQaz3kAAAAAAAAAdCLlojobHh7eNKlnS7Isi1tuuaXARI23evXq+Pvf/x4RUfNnv+c971lUJACAbeaN9tBeSqVSctpYxeQigI4wMpouk5pQCQAAAAAAAEAnUi6qsz333HPeY7OTfa677rqYnJwsKlLDrVy5Mtc65SIAoBXkKRkoF0FrSV2zeUqFALS+1P1+6ZK+WNLdU1AaAAAAAAAAAFg8lIvq7F73utcWvz53os/ExERcfvnlRUVquB/84Ae51u29994NTgIAsHCpTaddpVIs6x8oKA1QD6kpFMpFAJ0hVSIfLg8WlAQAAAAAAAAAFhflojqbr1x0ZxdddFGDkxTn29/+9qapTLUcdNBBBaQBAFiYVMlgqH9pdOV49gEWD5OLAIjI8ZxXViAHAAAAAAAAoDMpF9XZgx/84FzrvvGNbzQ4STFWrlwZN9xwQ0RsPp0pIjYrHA0NDZlcBAC0hNQb7VMTUIDFJ1UuSl33ALQHk4sAAAAAAAAAYMuUi+rsQQ96UJTL5YiIu0zzybIsSqVSZFkWv/rVr+Kaa65pRsS6+tjHPlbz+OzPbGoRANAqUm+0T5UUgMVnKLFZfN3YaEzNTBeUBoBmGaluqHnccx4AAAAAAAAAnUq5qM56enriIQ95yF2m+GzJhz70oQISNc5f//rX+PznP3+XEtWWPOEJTyggEQDAwqU2nZpcBK1nuDxQ83gWEWvHRosJA0DTVKq17/We8wAAAAAAAADoVMpFDZAq0sxOL/qf//mfuPnmmwtKVX9nnnlmbNz4jzf7p8pUT3/604uIBACwYCYXQfsZTkwuiogYGa197QPQ2qqTE1Gdmqi5xnMeAAAAAAAAAJ1KuagBjj766HmPzS3hTExMxCmnnFJEpLq76qqr4iMf+ci8U4tmC1QREfvtt1/c6173KjIeAMA2mcmyWJt4o/3wgE2n0GqGcly3lTHlIoB2VkkUyCOUiwAAAAAAAADoXMpFDXCve90rDjrooMiybIvlm9mvZ1kWF1xwQXz+859vQsptNz09Hccdd1xMTPzjba+1phaVSqV49rOfXVQ0AIAFWT9ejelspuaaoX6bTqHVLO3ti97u7pprUlPLAGht+cpF6Ul3AAAAAAAAANCOlIsa5LjjjkuumS0YvfjFL47LL7+8gFT18dKXvjRWrly52XSiueYWqvr6+uKkk04qMh4AwDbLUy4YHrDpFFpNqVRKFgNHRpWLANpZnue8FeWBApIAAAAAAAAAwOKjXNQgJ554YtztbneLiJh3etHssQ0bNsSTn/zkuOGGGwrNuC3e+c53xjnnnLPFn2mu2elMz3rWs2L77bcvKB0AwMKMjG5Irhkum1wErWh4oPa1W6mmr38AWleqXDS4pD+WdPcUlAYAAAAAAAAAFhflogbp7++Pl7/85Vuc7DNrbsHo1ltvjUc84hFxxRVXFBVxq73lLW+J173udZuKRampRV1dXXHKKacUlg8AYKEqY7U3nXaXumJZX7mgNEA9DZdrTx3LM9ECgNZVSdznFcgBAAAAAAAA6GTKRQ30spe9LHbccceI2PL0oojNC0Zr1qyJhz/84fHZz362sIx5bNiwIZ7znOfEGWecsSlvqjRVKpXiuOOOi/vd735FxQQAWLCR0dqbTleUB6IrMcERWJxSm8ZTm84BaG0jiQl1Q8pFAAAAAAAAAHQw5aIGWr58ebzrXe+qWcSJ2LxgNDo6Gscff3w87WlPi1tuuaWImDV961vfigc+8IHxxS9+cVNpaL6fZ26BaunSpfH2t7+9qJgAAHWRmlzijfbQulKbxk0uAmhvnvMAAAAAAAAAYH7KRQ32nOc8Jw499NBNxZz5zC0YZVkWF154Yey7775x8sknx6pVq4qKu8lFF10Uj3vc4+KpT31q3Hjjjcli0azZdW95y1tip512KigtAEB9VMZSm04HC0oC1Ftq0/i68WpMTU8XlAaAoqXKRSYXAQAAAAAAANDJlIsK8MlPfjK23377iIitKhiNj4/HRz/60dh7773jcY97XJx77rlx2223NSznypUr401velPsu+++8cQnPjF+9KMfbSoLpYpFs8dLpVI87nGPi1e+8pUNywkA0Cgjo6lNpwMFJQHqLc9EirVjowUkAaAZKiYXAQAAAAAAAMC8epodoBPsvvvu8fnPfz4OP/zw5ASguQWj2X/Osix+9KMfxY9+9KOIiLjvfe8bBx10UBx44IFx73vfO+55z3vmyrFq1aqoVqsxOjoaa9asidWrV8eqVati5cqVsXLlyhgZGdksw51zzGduYWqHHXaIT3/607nyAAAsNulNpyYXQavKc/2OVDfG9kuXFZAGgCJVJydibGqy5hrlIgAAAAAAAAA6mXJRQZ7whCfE29/+9njd615Xc3rRrLkTg2b/edbVV18d11xzTXz2s5+9y+/Z0veZ/Z977bVXzfPNmpuvVqlo7tosy6JcLsdXvvKV2HnnnWv+HgCAxWhmZiYqY95oD+1qKMf1O1LdUEASAIo2kiiQR0QMKZEDAAAAAAAA0MG6mh2gk5x22mnx+te//i7FofnMTi2KiE3r7zzRaO6alDv/nrm/5vv+tcxd293dHZ///OfjEY94RK4sAACLzfrxaswknn+Ui6B1DfQuiSXdtd+vkZpeBkBrynN/95wHAAAAAAAAQCdTLirY2972tvh//+//bVYaSqlVBMpTUpq1pd83X2Epz/ea/T1dXV3x0Y9+NI488shcOQAAFqN8b7S36RRaValUSm4cz3MfAKD15JlMN1QeKCAJAAAAAAAAACxOykVNcNZZZ8W73/3u6Or6xx9/3nLQrC1NHtrW37e132Nu3izLoq+vL/73f/83TjzxxK36GQAAFps8pQJvtIfWplwE0JlS9/fBvv7oTUy3AwAAAAAAAIB2plzUJK961aviwgsvjBUrVmw2jWixm1ss2n777eN73/teHHXUUU1OBQCwcKlNp91dXTHYVy4oDdAIqeljykUA7amSuL8rkAMAAAAAAADQ6ZSLmuiwww6L3/zmN/GYxzxm0+SgxVoympsry7J4zGMeE1dccUU86lGPanIyAID6SG467V8aXYvwOQ3IL7V5PHUfAKA1pcqjQ/3KRQAAAAAAAAB0NuWiJttzzz3j4osvjo9+9KOxbNmyRVcyunOpqFwux9lnnx0XXXRR7LLLLk1OBwBQPyPVDTWPpyaeAIvfUHmw5nGTiwDaU+r+PjzgOQ8AAAAAAACAzqZctEi84AUviBtvvDFOOeWU6O/vv0vJqOii0Z1LRRERxx13XPzxj3+MU045ZVEUnwAA6im56VS5CFpe6jpeP16NyempgtIAUJTkhMpE+RQAAAAAAAAA2p1y0SKy3Xbbxdlnn72pZLT99ttHlmVbLBrVu9yzpe+dZVn09vbGc57znFi5cmV88pOfNK0IAGhbqU2nJhdB68tTEqyMjRaQBICiZFmWLJEP9XvOAwAAAAAAAKCzKRctQjvttFOcffbZ8ec//znOO++8OOyww6K3t3ezolHEXQtBC/kVEZu+f5Zlse+++8Zb3vKWuOWWW+Izn/lMHHDAAc364wAAKITJRdD+8pQEU0VDAFpLdWoixqcma64ZHvCcBwAAAAAAAEBn62l2AObX29sbz3zmM+OZz3xmbNy4MX7wgx/Ed77znfi///u/uPbaa2N6evouvyfPRKO5BaVZy5cvj4MOOige//jHx5FHHhn77rtvXX4GAIBWMDMzk5xWYnIRtL48m8dTRUMAWkulmp5Ip0QOAAAAAAAAQKdTLmoRS5cujac+9anx1Kc+NSIixsbG4vLLL4/LL788Vq1aFatXr47Vq1fHbbfdFhs2bIhqtRpjY2MxPj4evb29MTAwEOVyOQYHB2PXXXeNe97znnHPe94z9tprrzjooIPiPve5T65iEgBAO1o7Xt1iAXuu4fJgQWmARin3LIm+7p4Yn56ad83IqHIRQDsZqW5IrlEiBwAAAAAAAKDTKRe1qP7+/njoQx8aD33oQ5sdBQCg5VVyTCrJM/EEWNxKpVIMlZfGmg1r512TZxM6AK0jT2l0qH+ggCQAAAAAAAAAsHh1NTsAAAA0W6432vcrF0E7GB6oPYWsMmZyEUA7GUmUyJf1laO32/uXAAAAAAAAAOhsykUAAHS81KbT7q6uWNbXX1AaoJGGy7WLgnkmXADQOlITKofKphYBAAAAAAAAgHIRAAAdL1UmGC4vjVKpVFAaoJFSU8hSm9ABaC2pEvlwufZEOwAAAAAAAADoBMpFAAB0vMqYTafQKYYHEpOLlIsA2kqluqHm8dREOwAAAAAAAADoBMpFAAB0vNTkoqHyQEFJgEZLbSLfMDEWk9NTBaUBoNHSk4uUiwAAAAAAAABAuQgAgI6X3nRqchG0izzXc6U6WkASABoty7KoJJ7zhpSLAAAAAAAAAEC5CAAAKmPeaA+dIs8m8pHqhgKSANBo1cmJGE9Mo/OcBwAAAAAAAADKRQAAdLjpmZlYO1Z7Sok32kP7yLOJPDXlAoDWkJpOGWFCJQAAAAAAAABEKBcBANDh1o2NRpZlNdd4oz20j3Lvkujv6a25Js9mdAAWvzxl0aHyQAFJAAAAAAAAAGBxUy4CAKCj5XujvXIRtJPUNa1cBNAe8tzPh/o95wEAAAAAAACAchEAAB0tX7losIAkQFGGlIsAOkLqfr68rxw93d0FpQEAAAAAAACAxUu5CACAjlZJbDrt7eqOpUv6CkoDFCE1uSh1XwCgNVSqG2oeT5VNAQAAAAAAAKBTKBcBANDRRnJsOi2VSgWlAYqQmkZmchFAe0jdz1NlUwAAAAAAAADoFMpFAAB0NJtOofOkJlWkSocAtAbPeQAAAAAAAACQj3IRAAAdrZLYdJoqIQCtJ7WZfOPEeExMTRWUBoBG8ZwHAAAAAAAAAPkoFwEA0NG80R46T57rujJW+94AwOKWZZnnPAAAAAAAAADIqafZAUibmJiIm2++OdasWRO333573HHHHTE2Nhbj4+MxPj4e09PTzY6Y9J//+Z/NjgAAsEU2nULnyTOpYqS6MXYcXFFAGgAaYXRyIiama0+hGyoPFpQGAAAAAAAAABY35aJFZnR0NH7xi1/ET3/60/j1r38d11xzTdx8880xMzPT7GgLolwEACxG0zMzsW5stOYam06h/eQpDaaKhwAsbpUc93ElcgAAAAAAAAD4B+WiRaBSqcRXv/rV+NKXvhQ//OEPY2rqn29VzbKsicnqo1QqNTsCAMAWrR0bjdTT1nB5oJAsQHH6e5dEuWdJVKcm5l0zMrqhwEQA1NtINX0fVy4CAAAAAAAAgH9QLmqi6667Lt73vvfFZz7zmahWqxFx1zJRqxdz2qEcBQC0r3ybTk0ugnY0NLA0quvmLxdVxkwuAmhleSbQrVAiBwAAAAAAAICIUC5qijvuuCPe+MY3xic+8YmYnp7erIAzX5moFUs6rV6MAgDaX55Np0MD3mgP7Wi4vDRuWzcy7/GRUeUigFZWSTznLe8vR09Xd0FpAAAAAAAAAGBxUy4q2Fe/+tU46aSTolKpbCoM3bmE04pFIgCAVpTadNrb3R1Le/sKSgMUaai/dnEwT/kQgMUrdR8fTnwOAAAAAAAAAEAn6Wp2gE6RZVmcfPLJ8YxnPCNGRkYiy7IolUqbikVZlm36BQBAMVKbTof6l5rGCG1qODGVLFU+BGBxSz7nlZWLAAAAAAAAAGCWyUUFmJiYiGOOOSa+9rWvbSoVzVImAgBonuQb7RPlA6B1DSc2lZtcBNDaUiXR4YHBgpIAAAAAAAAAwOJnclGDZVkWRx99dFxwwQWbFYtMKQIAaL6R0Q01jw+XbTqFdpW6vkcnx2N8arKgNADUW54JlQAAAAAAAADAP5hc1GCvf/3r4+tf//pmpaKFmDv1CACAhamMjdY8nppsArSuoRzXd6W6MXZaNtT4MADUVZZlMVJNlMhNqAQAAAAAAACATZSLGuhHP/pRnHXWWdtcLKpVJDL1CABg4VKbTvOUD4DWlKc8OKJcBNCSNk6Ox+T0dM01SuQAAAAAAAAA8E/KRQ0yNjYWL3zhCzf989aUgeaWiu78+3p7e2OHHXaI7bffPsrlcvT19UV3d/fCAwMAdJipmelYN1atucamU2hfeScXAdB68ty/h/o95wEAAAAAAADALOWiBvnYxz4W119/fZRKpdzFojtPOFq6dGk89rGPjYMPPjgOOuig2GeffWK33XZrWGYAgE6ytjqaXKNcBO2rv6c3BnqXxOjkxLxrRpSLAFpSnvv38IDnPAAAAAAAAACYpVzUAJOTk3H22WdvNoGoljuXig477LB40YteFE984hOjr6+vYTkBADpZnk2neSabAK1rqLxUuQigDY2M1r5/lyJiRf9AMWEAAAAAAAAAoAUoFzXA17/+9fjzn/+ca2rR3GLRIx7xiHjPe94TBx10UBExAQA6Wq432pcHC0gCNMtweWncum5k3uMV5SKAllQZq33/Xt4/ED1d3QWlAQAAAAAAAIDFr6vZAdrR+eefn1xTKpU2lY9KpVKcddZZcckllygWAQAUpFLdUPP4ku6eGOhdUlAaoBlSBcKRxH0CgMUpNbnIdEoAAAAAAAAA2JzJRXU2MTER3/72tzdNJNqSudOKenp64otf/GL827/9W1ERAQCIiJHqaM3jw+WlNZ/pgNY3nNhcnmfCGQCLT6ocmrr/AwAAAAAAAECnMbmozn7zm99EtVqNiH+Uh+YzO7Hov//7vxWLAACaIDW5yBvtof2lrnPlIoDWVBmrff9WLgIAAAAAAACAzSkX1dnPfvazmsdLpdKmYtHTnva0eMELXlBQMgAA5kqVBmw6hfaXus6rkxMxNjVZUBoA6mVktPZznhI5AAAAAAAAAGxOuajOrr766nmPlUqlTf97T09PvOc97ykiEgAAW6BcBOTZXF4xvQigpWRZlrx3e84DAAAAAAAAgM0pF9XZqlWrah6fnVr0jGc8I/bYY49iQgEAcBepTadD5cGCkgDNkmdzeaqICMDisnFyPCZnpmuuGfacBwAAAAAAAACbUS6qs1tuuWWzCUXzefazn11AGgAAtmRqejrWjVdrrvFGe2h/eSYXjYxuKCAJAPVSGU2XQofKAwUkAQAAAAAAAIDWoVxUZ+vXr9/i1+cWjnp6euLRj350UZEAALiTylh606lyEbS/vp7eGOjtq7kmz/0CgMVjpJouhZpcBAAAAAAAAACbUy6qs40b5994lmVZRETsv//+0d/fX1QkAADuZKSa5432ykXQCYYHal/ree4XACweqft2KSJW9JtcBAAAAAAAAABzKRfV2cTERM3jpVIp7n3vexeUBgCALankKAuYXASdYag/US4aVS4CaCWp57zl/QPR3eU/iQIAAAAAAADAXP4/6XU2ODiYXLPzzjsXkAQAgPmk3mjf190T5d4lBaUBmilVJMxTRgRg8Ug95ymQAwAAAAAAAMBdKRfV2fLly5Nrli61iQEAoJlSm06HykujVCoVlAZopuGBxOSiMeUigFaiXAQAAAAAAAAAW0+5qM7ylIump6cLSAIAwHxSk0iGB9LTKIH2MFyufb1XRpWLAFpJ6jlvKHHfBwAAAAAAAIBOpFxUZ3vuuWdkWVZzzejoaEFpAADYkuTkon5vtIdOMZSYYFGdmoixyYmC0gCwUOnJRQMFJQEAAAAAAACA1qFcVGf3v//9k2v+9re/FZAEAID5jFQ31Dw+nCgbAO0jz/We2qgOwOKQZVmOcpHJRQAAAAAAAABwZ8pFdZYqF2VZFjfeeGNBaQAA2JLkptMB5SLoFHnKRRXlIoCWsHFiPKZmpmuuSU2sAwAAAAAAAIBOpFxUZw9/+MPnPVYqlSIi4rrrrisqDgAAdzI5PRUbxsdqrjG5CDpHnk3mJhcBtIbUdMoIz3kAAAAAAAAAsCXKRXW2xx57xP777x9Zlm0qE0X8Y2LRrHXr1sXvf//7ZsQDAOh4lbHR5BpvtIfOsaS7J5Yu6au5RrkIoDXkuV8rFwEAAAAAAADAXSkXNcDTnva05JqLL764gCQAANzZyGieTaeDBSQBFovUNV9RLgJoCan7dalUiuX9AwWlAQAAAAAAAIDWoVzUAMcee+ymqUVzpxfNyrIszj///KJjAQAQEZXqhuQab7SHzpK65kdy3DcAaL7U5KIVfeXo7vKfQwEAAAAAAADgzvx/0xvgPve5TzzlKU+JLMs2+3qWZZvKRpdddln87ne/a0I6AIDONlIdrXm8v6c3yr1LCkoDLAbpcpHJRQCtIHW/HjKdEgAAAAAAAAC2SLmoQV7zmtck17zjHe8oIAkAAHOlJpAMmVoEHSd13SsXAbSG1HOe6ZQAAAAAAAAAsGXKRQ3yr//6r3HkkUduNq0o4p/Ti7Isiy9/+cvxf//3f01MCQDQeSqJkoBNp9B5Utd96r4BwOJQSUyoVCIHAAAAAAAAgC1TLmqgD33oQ7F8+fKIiM0KRrOyLIsXvvCFMTpae+MDAAD1k5pAolwEnSd13Y9NTUZ1cqKgNABsK5OLAAAAAAAAAGDbKBc10C677BJnn312ZFm22dfnTjO69tpr4/jjj29COgCAzpSaQOKN9tB58lz3qWIiAM2VZVlyctHwgOc8AAAAAAAAANgS5aIGO+mkk+Kkk07arFAU8c+CUZZl8ZWvfCVe+tKXNjElAEDnSE8uGiwoCbBY5LnuU9MwAGiuDRNjMTUzXXONyUUAAAAAAAAAsGXKRQX48Ic/HI9+9KNrFow+8pGPxAknnBCTk5NNTAoA0N4mpqdiw8RYzTU2nULnGSoPJNekpp4B0Fx5JsyZUAkAAAAAAAAAW6ZcVIDu7u644IIL4uEPf3jNgtGnP/3pOOSQQ2LVqlVNTAsA0L7WVkeTa5SLoPP0dvfEYF9/zTV5Nq0D0Dwjo+n7tAmVAAAAAAAAALBlykUFWb58eVx00UXxhCc8YVOhaLZkNLdg9Mtf/jL233//OOuss2JsrPZb9QEA2Doj1Q3JNd5oD51puL/2tZ9n0zoAzVMZq32fLpVKsaKvXFAaAAAAAAAAAGgtykUFKpfL8c1vfjOe97znRZZlmx2bO9FodHQ0Xv/618eee+4ZZ511VqxZs6YZcQEA2k6eySPKRdCZUte+yUUAi1uqRL6ifyC6uvynUAAAAAAAAADYEv8f9YL19vbG//zP/8RnP/vZWLp06RYnGM1OMVqzZk28/vWvj9122y0OO+yweO973xu/+93vYmpqqsk/BQBAa0qVA8o9S6Lcu6SgNMBiMjxQu1yUmogBQHOlJswNK5ADAAAAAAAAwLx6mh2gXb3lLW9JrnnKU54S55133qZyUcTmBaPZf56amoqLL744Lr744oj4R0Fpn332iXve855x97vfPZYvXx7lcjl6e3sb88PUwX/+5382OwIAQFQS5aKhRLkAaF/D5cGax0dGa0/EAKC5UiVQ5SIAAAAAAAAAmJ9yUYO8+c1v3qw0VEuWZVv85zuXjGZNTEzElVdeGVdddVWd0jaechEAsBikJhcN99t0Cp1qKHH9V6obN70MAoDFJzW5aEi5CAAAAAAAAADmpVzUYHcuDm3L751bMpp7bCHfu0g23wEAi8VItfbkEZtOoXMNJyaXjU9PRXVqIgZ6+wpKBMDWSE2oNLkIAAAAAAAAAOanXNRgqWJNnoLQnddsqWy0WLVKAQoA6AyV6mjN46lyAdC+8mw6HxndGAMrlIsAFpssy2JkLFUuGiwoDQAAAAAAAAC0HuWiBmtEuaZVCjutUoACADpHcnJRv3IRdKo85aJKdWPsumK7AtIAsDXWj4/F9MxMzTVD5YGC0gAAAAAAAABA6+lqdgAAACjCxNRUbJwYr7kmT7kAaE95yoUj1dpTMQBojkqiQB5hchEAAAAAAAAA1KJcBABARxgZS5cChgdsOoVO1dPdHcv6yjXXKBcBLE557s9K5AAAAAAAAAAwP+UiAAA6QsWmUyAhdQ/IMxkDgOKlykWlUimWJwqkAAAAAAAAANDJlIsAAOgIed5oP6RcBB0tVS4yuQhgcUqVyIf6B6Kry38GBQAAAAAAAID59DQ7QLsrlUrNjgAAQESMjNaeOFLuXRL9Pb0FpQEWo1TBULkIYHFK3Z9NpwQAAAAAAACA2pSLGizLsmZHAAAg0m+0t+kUSN0HUvcRAJoj/Zw3WFASAAAAAAAAAGhNykUN8qhHPcrUIgCARcQb7YGU1H1gpLoxsizzdz2ARSb1nDdUHigoCQAAAAAAAAC0JuWiBvnxj3/c7AgAAMyR3nSqXASdLnUfmJieitHJiVi6pK+gRADkMVLdUPO4yUUAAAAAAAAAUFtXswMAAEARKsnJRTadQqfLcx9IbWAHoFgzWRaVsdGaa0yoBAAAAAAAAIDalIsAAOgIqclFNp0Cee4DqaIiAMXaMF6N6ZmZmmtMqAQAAAAAAACA2pSLAABoe+NTkzE6OV5zjU2nwIryQHJNqqgIQLHy3JeVyAEAAAAAAACgNuUiAADaXp5JIzadAj1d3bG8r1xzjXIRwOKiXAQAAAAAAAAAC6dcBABA27PpFMgrdS8YGVUuAlhMUiXyrlIplvWnJ9MBAAAAAAAAQCdTLgIAoO3lmVw0pFwERPpeUBlTLgJYTFIl8qH+pdFVKhWUBgAAAAAAAABak3IRAABtL7XpdKB3SfT19BaUBljMhgcGax4fqW4oKAkAeaTuywrkAAAAAAAAAJCmXAQAQNtLlYuGy7XLBEDnGOqvvQl9ZNTkIoDFpFIdrXl8WLkIAAAAAAAAAJKUiwAAaHveaA/kNTxQ+35QqW6MLMsKSgNAiuc8AAAAAAAAAFg45SIAANpeJTm5yKZT4B9S94PJmenYODleUBoAUtITKj3nAQAAAAAAAECKchEAAG3PplMgrzz3g8po7XsKAMWYybJYWx2tuSY1kQ4AAAAAAAAAUC4CAKADpMpFQ8pFwP8vz/1gpLqhgCQApKwfr8Z0NlNzzVC/5zwAAAAAAAAASFEuAgCgrY1NTUZ1cqLmmuGBwYLSAIvdiv6BKCXWjCSmZABQjFSBPMJzHgAAAAAAAADkoVwEAEBbq+TYdDrUP1BAEqAV9HR1x/LEPaFichHAopDnOW/YhEoAAAAAAAAASFIuAgCgrXmjPbC1UhvR89xXAGi8kUTZs7vUFcv6ygWlAQAAAAAAAIDWpVwEAEBbGxlNTxgZ7vdGe+CfhpSLAFrCyGjt+/GK8kB0lUoFpQEAAAAAAACA1qVcBABAW6uM1d50unRJXyzp6SkoDdAKUpOLKspFAItC6jkvdT8HAAAAAAAAAP5BuQgAgLaWmjCSmlACdJ7UZnSTiwAWB895AAAAAAAAAFAfXtHOgmy33XbJNaVSKe64444C0gAA3NXIqDfaA1sntRl9pLoxsiyLUqlUUCIAtsRzHgAAAAAAAADUR0eXi+51r3sl15RKpbjhhhsKSNOaKpVKlEqlyLJs3jU23AEAzVRJvNF+uDxYUBKgVaTuC1Mz07FhYiyW9ZULSgTAlnjOAwAAAAAAAID66Ohy0U033aQYUyfz/TnV+rMFACjCyJg32gNbJ899oVLdqFwE0EQzWRaVxHPeUHmgoDQAAAAAAAAA0No6ulw0azEVY7q7u5NrSqVSTE1NFZAGAKD1VUZTm06Vi4DN5SkXjVQ3xm5DOxSQBoAtWT82GjOJ/3ZnchEAAAAAAAAA5KNctMi06qSfLeU29QkAaLaxyYmoTk3UXGNyEXBny/sHohQRtf52NlKtXVwEoLHy3Ic95wEAAAAAAABAPl3NDrAYZFl2l1/NVCqV5v0FAEB+Np0C26K7qytW9A/UXDNS3VBQGgC2xHMeAAAAAAAAANSPctEitdgKTwAAraiSY9PpkE2nwBYMlQdrHq9URwtKAsCWpJ7zuktdMdhXLigNAAAAAAAAALQ25SIAANpWnjfaKxcBW5KadmFyEUBzpZ7zhsoD0WUKOAAAAAAAAADkolwEAEDbSm06HVzSH0u6ewpKA7SSVPFwZDRdXgSgcVLPecOJCXQAAAAAAAAAwD8pFwEA0LYqyU2nphYBW5a6P6TuLwA0Vuo+bDolAAAAAAAAAOSnXAQAQNsaqW6oedymU2A+wwOJyUVjGyPLsoLSAHBnqec8JXIAAAAAAAAAyE+5CACAtjVichGwjVL3h+mZmVg/PlZQGgDurFIdrXnccx4AAAAAAAAA5KdcBABA20qVi0wuAuaT5/5QSUzNAKAxZmZmojLmOQ8AAAAAAAAA6kW5CACAtlVJTi4aLCgJ0Gry3B9GElMzAGiMdePVmMmymmtMLgIAAAAAAACA/JSLAABoS9XJiRibmqy5Zrg8UFAaoNWs6CtHqVSquWbE5CKApkhNp4xQLgIAAAAAAACAraFcBABAW8qz6XTI5CJgHl1dXTHUX7uAmJqOBkBj5Ln/DikXAQAAAAAAAEBuykUAALSlPJtOhwdsOgXml9qYnqfECED9pe6/3V1dMdhXLigNAAAAAAAAALQ+5SIAANrSSHVDck1qKgnQ2YYT5SKTiwCaI/WcN9y/NLpKpYLSAAAAAAAAAEDrUy4CAKAtpd5oP9jXH73dPQWlAVpRqlxkchFAc6TKnanJcwAAAAAAAADA5pSLAABoSyOjtTedpkoDAKnN6XkmpAFQf6lyp+c8AAAAAAAAANg6ykUAALSlylhq0+lgQUmAVpW6T1SqozGTZQWlAWBWqlxkchEAAAAAAAAAbB3lIgAA2lJ60+lAQUmAVpWafDGdzcSG8WpBaQCYVUlNLhpQLgIAAAAAAACAraFcBABAWxoZ3VDzuMlFQEqqXBSRLjICUF8zMzNRGRutuWaoX7kIAAAAAAAAALaGchEAAG0ny7L0G+1zlAaAzjakXASw6Kwdr0aWZTXXKJEDAAAAAAAAwNZRLgIAoO1UpyZifHqq5hrlIiBleV85ukqlmmtGqrWnpAFQX6kCeUTE8IDnPAAAAAAAAADYGspFAAC0nZHR9KbTPBNJgM7W1dUVQ/217xWV6mhBaQCIyFfqTN27AQAAAAAAAIDNKRcBANB2cr3RXrkIyCFVRDS5CKBYI4nnvO6urljW119QGgAAAAAAAABoD8pFAAC0ndSm0whvtAfySRUR89xvAKif1ITK4fLSKJVKBaUBAAAAAAAAgPagXAQAQNtJbfZf1leOnu7ugtIArSw5uSixyR2A+qqM1b7vKpADAAAAAAAAwNZTLgIAoO1UqhtqHk9NIgGYlbpfpDa5A1BfyclFA57zAAAAAAAAAGBrKRcBANB2UpOLlIuAvFKb1CvVjTGTZQWlASD9nDdYUBIAAAAAAAAAaB/KRQAAtJ2KchFQJ0P9te8XM1kW68dGC0oDQGpinOc8AAAAAAAAANh6ykUAALSd1Bvth2w6BXIaHkhPwBhRLgIoxPTMTKxN3HM95wEAAAAAAADA1lMuAgCgrWRZliwXeaM9kFee+8XI6IYCkgCwbmw0siyrucZzHgAAAAAAAABsPeUiAADayujkRExMT9VcM1ROTyIBiIhY1leO7lLtvzpXEoVGAOpjZCx9v1UuAgAAAAAAAICtp1wEAEBbybPJ36ZTIK+uUilWlAdqrklNSwOgPkZG0/fbIc95AAAAAAAAALDVlIsAAGgrI9UNyTXKRcDWSN0zlIsAipEqkfd0dcfgkv6C0gAAAAAAAABA+1AuAgCgreTZ5J+aQgIw13B5sObxPBPTAFi41HPecHlplEqlgtIAAAAAAAAAQPtQLgIAoK2kNvkv7y9HT1d3QWmAdpCeXJSemAbAwqXKRUOmUwIAAAAAAADANlEuAgCgrSTfaN9v0ymwdVKb1fNMTANg4SqJMmeqDAoAAAAAAAAAbJlyEQAAbcUb7YF6S21WXzs2GjMzMwWlAehcyRK55zwAAAAAAAAA2CbKRQAAtJWR1BvtBwYLSgK0i9Rm9Zksi3Xj1YLSAHSuihI5AAAAAAAAADSEchEAAG2lUh2tedwb7YGtlWezemqaBgALMz0zE2vHPOcBAAAAAAAAQCMoFwEA0DayLEtOLvJGe2Br5dmsnrr3ALAwa8dGI0usUS4CAAAAAAAAgG2jXAQAQNvYODkek9PTNdfYdApsrcG+cnR31f7rc2pqGgALU8kxIW64PFhAEgAAAAAAAABoP8pFAAC0jcponk2nykXA1ukqlWK4v/a9w+QigMYayVEuMqESAAAAAAAAALZNT7MDtIITTjih2RHuYjFmAgBotpExb7QHGmOovDT+Nrp+3uN5Nr0DsO1SJc7eru5YuqSvoDQAAAAAAAAA0F6Ui+aRZdmm//npT3+6Keee7+vNyFTLfHkBAIo2kphcVIqIFf0DxYQB2kpq6lnq/gPAwlQSJc6h8tIolUoFpQEAAAAAAACA9qJclMNiLM8sxkwAAM1WSbzRfnn/QHR3dRWUBmgnQ4lyUSXH5DQAtl1qQlyqBAoAAAAAAAAAzE+5KIci33qatzS0WN7EquQEACwmI9XRmsdtOgW21fBAYnJRYtM7AAuTus+mSqAAAAAAAAAAwPyUi3JYjAWaxZgJAKDZRhKTi2w6BbbVUH/t+8fasdGYmZmJLtPRABqikpxcNFhQEgAAAAAAAABoP3Y9AQDQNtKbTpWLgG2T2rSeZVmsHa8WlAag86QmFw2XBwpKAgAAAAAAAADtR7kIAIC2kd50qlwEbJvhgfT9IzU9DYBtMzUzHevGRmuuGTK5CAAAAAAAAAC2mXIRAABtIcuyHJOLbDoFtk2ecuLIaO17EADbZu3YaGSJNXlKoAAAAAAA/H/s3X+0bHdZH/5nzplzzszcc++dSYAQSoOBJMTIDyVIEiSEFqIFE7EqiJRWAgSKXWXZNkJbWLVWdGHBFnXZCgGxgALFBQuIBmwQobBIaABJw49AIpHwIynczNx7z52Z83O+f+SLEMjdn33Omdmz98zrtRZrafZzz35udH343OR57wcAAO6bcBEAADPhxMZ6bO5sZ9a0bS4C9mh1uRH1hcXMmlTAEYC9yXO+dhrueQAAAAAAAACwV8JFAADMhO5gLVmTZ/MIwH2p1WrRbrYya7rCRQATked8bdtcBAAAAAAAAAB7Vp92A2VQq9Wm3QIAAPuUZ+hUuAjYj05zNb514vhJnwsXAUxG6nxdWlyMA0srBXUDAAAAAAAAALNHuCgiRqPRtFsAAGCfeomh01qtFoca2VtHALKkAoq9HBvUANi91D2v3Tjg40EAAAAAAAAAsA9zHS564hOfaPAAAGBGpL5of3ilGYsLCwV1A8yidiJcZHMRwGSkztdOy3ZKAAAAAAAAANiPuQ4X/dVf/dW0WwAAYExSQ6ft5mpBnQCzKr25SLgIYBK6/ezNcB33PAAAAAAAAADYF59uBwBgJqSG+lOhAICU1DlydNiP7Z2dgroBmB+9YT/zuXseAAAAAAAAAOyPcBEAADMhvbnI0CmwP6lzZBT3BIwAGK/uIHtzkXseAAAAAAAAAOyPcBEAADMhNXTqi/bAfuU5R1JnEQC7s7WzHceGg8wa9zwAAAAAAAAA2B/hIgAAKm80GkVvkL0tpNMydArsT6e5mqxJnUUA7E6ejXDCRQAAAAAAAACwP8JFAABU3trGMLZ2tjNrDJ0C+3VgeSWWFhYza2wuAhivbv9EsqbtngcAAAAAAAAA+yJcBABA5XUHhk6ByavVasmzJM95BEB+ec7VPJvlAAAAAAAAAICTEy4CAKDy8nzR3tApMA6pLWjCRQDj1UtshFterEdrabmgbgAAAAAAAABgNgkXAQBQed3E0GmtVovDK82CugFmWWpzUU+4CGCsuoN+5vN280DUarWCugEAAAAAAACA2SRcBABA5fWG2cP87UYrFhZcfYH9S21Bs7kIYLxSm4tSG+UAAAAAAAAAgDQTlgAAVF63nwgXGToFxqTTbGU+T21SA2B3UqFN4SIAAAAAAAAA2D/hIgAAKq9n6BQoSDuxuejYcBBbO9sFdQMw+1L3PCFyAAAAAAAAANg/4SIAACrPF+2BonRa6fPk6LBfQCcA88E9DwAAAAAAAAAmT7gIAIDK80V7oCh5hti7/ewzCYB8tra349j6ILOmk9goBwAAAAAAAACkCRcBAFBpO6NRdIepL9obOgXGI09YMbVlA4B88myCs7kIAAAAAAAAAPZPuAgAgEpbWx/E9s5OZo2hU2BcDiytxNLiYmZNLxF4BCCfPGFNGyoBAAAAAAAAYP+EiwAAqLRejqFT4SJgXGq1WnIbWrcvXAQwDt3BWrLGPQ8AAAAAAAAA9k+4CACASvNFe6BoqUH2Xo5heADSUiHylcV6NJeWC+oGAAAAAAAAAGaXcBEAAJWWChct1GpxaKVZUDfAPEgFFvOEHgFIS52n7eaBqNVqBXUDAAAAAAAAALNLuAgAgEpLDp02DsTCgmsvMD7pzUXCRQDjkLrnpc5jAAAAAAAAACAfU5YAAFRaaog/tWEEYLdSw+w2FwGMR/qet1pQJwAAAAAAAAAw24SLAACoNF+0B4qWCi0eWx/E1vZ2Qd0AzK70Pa9VUCcAAAAAAAAAMNuEiwAAqLTuYC3zuc1FwLjlCS32hrYXAexXKlxkcxEAAAAAAAAAjIdwEQAAldazuQgoWCfHMHtv0C+gE4DZtbW9HcfXB5k17nkAAAAAAAAAMB7CRQAAVNbOaJQc4Dd0CoxbnnMltVUNgGx5NsC55wEAAAAAAADAeAgXAQBQWcfXB7E92smsaRs6BcasubQcy4v1zJpuYqsaANnynKPueQAAAAAAAAAwHsJFAABUVp6h005rtYBOgHlSq9WS2zKEiwD2J989T7gIAAAAAAAAAMZBuAgAgMrq5Rk69UV7YAJSZ0ue8wmAk0udoyv1pWjWlwvqBgAAAAAAAABmm3ARAACV1R2sZT5frC3EwZVmQd0A86TdzN6KZnMRwP6kztF2oxW1Wq2gbgAAAAAAAABgtgkXAQBQWd1+9tDp4WYrFgydAhPQabYyn6fCjwBkS52jnVZ2yBMAAAAAAAAAyE+4CACAykp90b7TPFBQJ8C8sbkIYLJ6g37mc/c8AAAAAAAAABgf4SIAACqrN0yFi3zRHpiM1FD72vowNre3CuoGYPakNhe1G8JFAAAAAAAAADAuwkUAAFRWt58dLmo3WwV1AsybTis91N4bZm/dAODkkhsqc5zDAAAAAAAAAEA+wkUAAFRWLzV0anMRMCF5NmakApAA3LfN7a1YWx9m1qQ2yAEAAAAAAAAA+QkXAQBQSTujUfSGqXCRoVNgMvJtLhIuAtiLPJvf2u55AAAAAAAAADA2wkUAAFTS8WE/dkajzBpDp8CkNOvLsVJfyqyxuQhgb/KcnzZUAgAAAAAAAMD4CBcBAFBJ3UGeoVPhImAyarVa8ozpDtYK6gZgtvRynJ/ueQAAAAAAAAAwPsJFAABUknARMG2p7Wi9HOcUAN+vO+hnPl+pL0VzabmgbgAAAAAAAABg9gkXAQBQSamh/cWFhVhdaRbUDTCP0puLhIsA9iK1+U2AHAAAAAAAAADGS7gIAIBKSg3ttxutWKjVCuoGmEep4XabiwD2JnV+ChcBAAAAAAAAwHgJFwEAUEnpL9qvFtQJMK/aNhcBTETq/BQuAgAAAAAAAIDxEi4CAKCSDJ0C05Y6Z9Y2hrGxvVVQNwCzI7W5KBXuBAAAAAAAAAB2R7gIAIBKMnQKTFueDWlHB/0COgGYLekQuQ2VAAAAAAAAADBOwkUAAFSSzUXAtOU5Z7qDtQI6AZgdm9tbsbYxzKxxzwMAAAAAAACA8RIuAgCgcnZ2dqI3zN4GYnMRMGl5zplUEBKAe+vl2PjmngcAAAAAAAAA4yVcBABA5RxbH8RoNMqs6TRXC+oGmFfNpeVo1Jcya4SLAHYnz8Y3m4sAAAAAAAAAYLyEiwAAqJw8w/qdZquAToB5lxpw7wkXAexKnnPT5iIAAAAAAAAAGC/hIgAAKifPF+3bNhcBBUhtSbO5CGB3Uudmo74UzaXlgroBAAAAAAAAgPkgXAQAQOWkhk4XFxbi4EqjoG6AedZObEnLE4YE4DtS97zUxjgAAAAAAAAAYPeEiwAAqJxejqHTWq1WUDfAPLO5CGC80uEi2ykBAAAAAAAAYNyEiwAAqJzU0Gm74Yv2QDHaiQ0aqTAkAPeWOjdTG+MAAAAAAAAAgN0TLgIAoHK6/cQX7VvCRUAxOolw0YmN9djY2iqoG4Dqs7kIAAAAAAAAAIonXAQAQOUYOgXKIhUuiojoDm0vAsirO1jLfJ7aGAcAAAAAAAAA7J5wEQAAldNLDOrnGfYHGIc8Q+69RCASgHtsbG/FiY31zBr3PAAAAAAAAAAYP+EiAAAqZXtnJ44O+5k1vmgPFCXX5iLhIoBc8oQxhYsAAAAAAAAAYPyEiwAAqJRjw36MRqPMGkOnQFEaS8vRXFrOrOn21wrqBqDa8oQxhcgBAAAAAAAAYPyEiwAAqJQ8Q6fCRUCRUoPueTZxAGBzEQAAAAAAAABMi3ARAACV4ov2QNmkBt3znFsApM/LZn05GoltcQAAAAAAAADA7gkXAQBQKakv2tcXFmN1uVFQNwDCRQDj0h2sZT5vtwTIAQAAAAAAAGAShIsAAKiU1NBpp3kgarVaQd0ApLelpUKRANyjN+hnPk+FOQEAAAAAAACAvREuAgCgUrqGToGSSW8uyg5FAnCP5OaihnseAAAAAAAAAEyCcBEAAJXSSw2dChcBBes0VzOf9zc3Yn1rs6BuAKqrm9j01mm55wEAAAAAAADAJAgXAQBQKcmhU+EioGB5zp1e4uwCIKLbd88DAAAAAAAAgGkQLgIAoFKEi4CyybMxLXV2Acy7ja2t6G+uZ9a0G+55AAAAAAAAADAJwkUAAFTG9s5OHBv2M2vazdWCugG4h3ARwP51h+lzstNyzwMAAAAAAACASRAuAgCgMo4O+zFK1HSarUJ6Afi2Rn0pWkvLmTU94SKATN3+WrLGhkoAAAAAAAAAmAzhIgAAKqM7yDN06ov2QPFSZ4/NRQDZeontlBH5NsUBAAAAAAAAALsnXAQAQGXkGc5vtwydAsVrJ7am5QlHAsyz1Oai5tJyNOpLBXUDAAAAAAAAAPNFuAgAgMroJcJFS4uLcWBppaBuAL7D5iKA/Und8zq2FgEAAAAAAADAxAgXAQBQGanh/HbjQNRqtYK6AfiO1NB7amgeYN6l7nnCRQAAAAAAAAAwOcJFAABURnLotGXoFJiOdmLo3eYigGzJELlwEQAAAAAAAABMjHARAACVkdr80WmuFtQJwL2lNmoMNjdiuLVZUDcA1eOeBwAAAAAAAADTI1wEAEBlJL9o3/BFe2A68mzUSA3OA8yz5IZKm4sAAAAAAAAAYGKEiwAAqIzuYC3zeadl6BSYjk4rvVEjNTgPMK/Wtzajv7meWZMnxAkAAAAAAAAA7I1wEQAAlbC1sx3HhoPMGl+0B6alk2NzWrefHZAEmFd5Nru55wEAAAAAAADA5AgXAQBQCUeH/WSNoVNgWpbr9WgtrWTW2FwEcN/ynI/ueQAAAAAAAAAwOcJFAABUQrefHjptGzoFpqjTyj6DekPhIoD7kmdzkXseAAAAAAAAAEyOcBEAAJWQ74v2qwV0AnDfUls18oQkAeZR6p7XWlqOlfpSQd0AAAAAAAAAwPwRLgIAoBJ6g7XM58uL9WgtLRfUDcD3azcSm4tyhCQB5lEqXCRADgAAAAAAAACTJVwEAEAldAf9zOed5oGo1WoFdQPw/TqtxOaiREgSYF6lwpftZqugTgAAAAAAAABgPgkXAQBQCanNRe1m9lA/wKSlNmv0EiFJgHmVCl/aXAQAAAAAAAAAkyVcBABAJXQTX7TvCBcBU5Y6hwZbGzHY3CioG4DqcM8DAAAAAAAAgOkSLgIAoBJ6hk6BksuzQS11lgHMo9TZaEMlAAAAAAAAAEyWcBEAAJWQ+qK9oVNg2vKEHFNnGcC8GW5tRj+x1U2IHAAAAAAAAAAmS7gIAIDS29rejmPrg8yaTnO1oG4A7pvNRQC7l+dcFCIHAAAAAAAAgMkSLgIAoPR6w/TQqS/aA9O2vFiP1eVGZo3NRQD3lidc1GkJkQMAAAAAAADAJAkXAQBQer1BP1nji/ZAGaTOou5graBOAKohT+iy03DPAwAAAAAAAIBJEi4CAKD08gzj21wElEHqLLK5CODeUve81tJKLNfrBXUDAAAAAAAAAPNJuAgAgNJLDeOvLNajubRcUDcAJ5cKF/WEiwDuJXXP67QEyAEAAAAAAABg0oSLAAAovdTQabt5IGq1WkHdAJxc2+YigF1JhS7bDeEiAAAAAAAAAJg04SIAAEovNXTaaa0W1AlAttTmou7gRIxGo4K6ASi/5OaixLkKAAAAAAAAAOyfcBEAAKWX3Fzki/ZASaSG4Ne3NmOwtVFQNwDllwwXtdzzAAAAAAAAAGDShIsAACi97mAt87kv2gNl0W6mN6n1Bv0COgGohtSGSiFyAAAAAAAAAJg84SIAAEovNYjvi/ZAWeQ5j1KBSYB5MdzciMFm9ja3Tisd2gQAAAAAAAAA9ke4CACAUtvc3orj64PMGl+0B8qi3Wgla7r97C0dAPOim9haFGFDJQAAAAAAAAAUQbgIAIBS6w2ztxZF2FwElMfSYj1WVxqZNb2hcBFARM57nnARAAAAAAAAAEyccBEAAKWWZ8NHp7laQCcA+aQG4W0uArhHt7+WrGkLFwEAAAAAAADAxAkXAQBQank2fPiiPVAmqcBjdyBcBBCRPg8PLK/E8mK9oG4AAAAAAAAAYH4JFwEAUGqpDR8r9aVoLi0X1A1AWrvZynzeG6Q3dQDMg1SI3HZKAAAAAAAAACiGcBEAAKXWTQzh21oElI3NRQD5pELkqbAmAAAAAAAAADAewkUAAJRaLzGEL1wElE3qXOoNTsRoNCqoG4DySpqf75MAAQAASURBVN/zbC4CAAAAAAAAgCIIFwEAUGqpDR/CRUDZtBPn0vr2Vgw2NwrqBqC8ukP3PAAAAAAAAAAoA+EiAABKLfVF+9QQP0DR8gzDp4KTAPOg13fPAwAAAAAAAIAyEC4CAKDU0puLVgvqBCCfPOGiVHASYNYNNjdisJW9xc3mIgAAAAAAAAAohnARAACltbm9FWsbw8waQ6dA2bQbNhcBpOQJWbrnAQAAAAAAAEAxhIsAACit3qCfrGkbOgVKpr64GAdXmpk13cFaQd0AlFOecJF7HgAAAAAAAAAUQ7gIAIDSyjN874v2QBmlziabi4B5l+ccFC4CAAAAAAAAgGIIFwEAUFqGToGqSoWL8mzsAJhlqXve6nIjlhfrBXUDAAAAAAAAAPNNuAgAgNJKDd8368vRXFouqBuA/GwuAsiWuufZTgkAAAAAAAAAxREuAgCgtFLD9+1mq6BOAHYntVVNuAiYd93BWuZz2ykBAAAAAAAAoDjCRQAAlFZq+L7TXC2oE4DdSW8uWovRaFRQNwDlk77nCRcBAAAAAAAAQFGEiwAAKC1ftAeqqp0IP25ub0d/c6OgbgDKp5fcUOmeBwAAAAAAAABFES4CAKC0eoN+5vNOy9ApUE55Nm6kApQAs8zmIgAAAAAAAAAoD+EiAABKK7m5qGHoFCinfOGi7MF6gFk12NyI4dZmZo1wEQAAAAAAAAAUR7gIAIBS2tjaihMb65k1hk6BsjrcbCVresJFwJzKc/61m6sFdAIAAAAAAAAARAgXAQBQUr1heui00zJ0CpRTfWExDjWamTU2FwHzKs/5J0QOAAAAAAAAAMURLgIAoJTyDJ22G+nNIADT0kls3ej2hYuA+dQdrCVr2jk2wAEAAAAAAAAA4yFcBABAKfmiPVB1qQBknuF6gFmUuuetrjRiabFeUDcAAAAAAAAAgHARAACl1O1nD903l5ajsbRcUDcAu9dpZW8u6g1tLgLmUy8RLuo0BMgBAAAAAAAAoEjCRQAAlFJq6N7WIqDsUudUty9cBMyn1OaitnseAAAAAAAAABRKuAgAgFJKDd0bOgXKLnVO9QYnYjQaFdQNQHmkwkWdlnseAAAAAAAAABRJuAgAgFJKDp0KFwEllzqnNne248TGekHdAJRHL3nPWy2oEwAAAAAAAAAgQrgIAICSMnQKVF2eEGTqrAOYNaPRKBkibzeEyAEAAAAAAACgSMJFAACUks1FQNXlCUF2B2sFdAJQHoOtjVjf2sys6bTc8wAAAAAAAACgSMJFAACUzvrWZvQ31zNr2sJFQMkdbrSilqhJBSkBZk1v0E/WCJEDAAAAAAAAQLGEiwAAKJ1ejmF7Q6dA2S0uLMShRiuzRrgImDd5NrYJkQMAAAAAAABAsYSLAAAonTzD9sJFQBWkzqo8YUqAWdLtp8+9diKYCQAAAAAAAACMl3ARAAClk2fY3hftgSpIhYtsLgLmTW+Yfe4dXGnG0mK9oG4AAAAAAAAAgAjhIgAASig1bN9aWo6V+lJB3QDsXSoIKVwEzJvU5qJ209YiAAAAAAAAACiacBEAAKWTGrbvNFcL6gRgf9Kbi9YK6gSgHNzzAAAAAAAAAKB8hIsAACidXmLoNLUJBKAsUkPyvUE/RqNRQd0ATF8vEapMhTIBAAAAAAAAgPETLgIAoHRSmzwMnQJVkQpDbu1sx9rGsKBuAKYvtblIiBwAAAAAAAAAiidcBABA6aSGToWLgKrIc16lzjyAWTEajZIbKt3zAAAAAAAAAKB4wkUAAJSOL9oDsyLPkHxq0B5gVgw2N2J9eyuzRrgIAAAAAAAAAIonXAQAQKkMtzZjsLmRWdNprRbUDcD+HGq0olarZdbYXATMizznXafpngcAAAAAAAAARRMuAgCgVPJs8Gg3WgV0ArB/iwsLcThxZnUHawV1AzBdue55Tfc8AAAAAAAAACiacBEAAKWS64v2NhcBFdJuHMh83u3bXATMhzz3vNSZCQAAAAAAAACMn3ARAAClkueL9h1Dp0CFdJrZZ1ZvKFwEzIdUuOjQSjPqi4sFdQMAAAAAAAAAfJtwEQAApdIdrGU+by2txHK9XlA3APvXadlcBBAR0Uvc89qJMCYAAAAAAAAAMBnCRQAAlErqi/apIX2Asmkntq3l2dgGMAuS9zzhIgAAAAAAAACYCuEiAABKJbXBw9ApUDXJzUXDEzEajQrqBmB6UmFK9zwAAAAAAAAAmA7hIgAASqU3TA2drhbUCcB4pIblt3d24vj6sKBuAKYntbmoLVwEAAAAAAAAAFMhXAQAQKmkh05bBXUCMB55QpG9wVoBnQBMz2g0St7zbC4CAAAAAAAAgOkQLgIAoFR6fZuLgNmSZxNHauAeoOr6mxuxsb2VWdN2zwMAAAAAAACAqRAuAgCgNIabGzHY2sis8UV7oGoOrzSjVqtl1ggXAbOul+Occ88DAAAAAAAAgOkQLgIAoDTyDNcbOgWqZmFhIdqNVmZNnqF7gCrrDtaSNe55AAAAAAAAADAdwkUAAJRGnuH6tqFToIJSA/M2FwGzLs85d7iZHcQEAAAAAAAAACZDuAgAgNLIM3QqXARUUersEi4CZl0qRH6o0Yz6wmJB3QAAAAAAAAAA3024CACA0kgN168uN2J5sV5QNwDjk95ctFZQJwDTkbrndRoC5AAAAAAAAAAwLcJFAACURuqL9rYWAVXVaa5mPk+dfwBVlwoXuecBAAAAAAAAwPQIFwEAUBqpzR2pzR8AZZU6v3qDfuyMRgV1A1C8VIiy08oOYQIAAAAAAAAAkyNcBABAaaS+aC9cBFRVaiPH9mgnjq8PCuoGoHjJzUUN9zwAAAAAAAAAmBbhIgAASiP1RfvUcD5AWeUJR6bOQICqGo1G6Q2VLfc8AAAAAAAAAJgW4SIAAErD5iJgVuU5v1JnIEBV9Tc3YnN7O7PGPQ8AAAAAAAAApke4CACAUhhsbsRwazOzxtApUFUHG61YqNUya1JbPQCqKs/51m645wEAAAAAAADAtAgXAQBQCnk2drSbqwV0AjB+C7VacnC+27e5CJhNee55nZZwEQAAAAAAAABMi3ARAACl0DN0Csy4dmL7Wm8oXATMplR4shYRhxutYpoBAAAAAAAAAL6PcBEAAKXQHawla9qGToEKSwUk82z2AKiiVHjyYKMZ9YXFgroBAAAAAAAAAL6XcBEAAKWQGqpfXWnE0mK9oG4Axq/dSISLEps9AKoqdb51mqsFdQIAAAAAAAAA3BfhIgAASqGXCBd1mtlD+QBllzrHUucgQFWlNlS65wEAAAAAAADAdAkXAQBQCqnNRamNHwBl12klwkXDE7EzGhXUDUBxesPEPU+4CAAAAAAAAACmSrgIAIBSSIWLUkP5AGXXaa5mPt8ZjeL4sF9QNwDF6fZtqAQAAAAAAACAMhMuAgCgFLr9tcznqaF8gLLLs5kjFbQEqJrRaBS9VIhcuAgAAAAAAAAApkq4CACAqRuNRtFLbOswdApUXZ5zTLgImDUnNtdjc2c7s0aIHAAAAAAAAACmS7gIAICpG2xtxPrWZmZNno0fAGV2cKUZi7XsP4antnsAVE2vnz7X2s1WAZ0AAAAAAAAAACcjXAQAwNR1cwyd2lwEVN1CrZYcoLe5CJg13cFassbmIgAAAAAAAACYLuEiAACmLs+mDuEiYBaktrDlGcIHqJLuoJ/5vBYRhxs2FwEAAAAAAADANAkXAQAwdXk2dbQbwkVA9aW2c9hcBMyaXiI0eajRisUF/4gSAAAAAAAAAKbJv7kHAGDqUsP0B1eaUV9cLKgbgMlJbWHLs8kNoEpS9zzbKQEAAAAAAABg+oSLAACYutQX7Q2dArMidZ7ZXATMGuEiAAAAAAAAACg/4SIAAKauO+hnPjd0CsyKdmpz0bAfOzs7BXUDMHmpjWypcxEAAAAAAAAAmDzhIgAApi61ucjQKTArUmHJ0WgUR9cHBXUDMHk2FwEAAAAAAABA+QkXAQAwdYZOgXmR5zxLbfkAqIrRaJTjnrdaUDcAAAAAAAAAwMkIFwEAMFX5hk6Fi4DZ0M4xRN9NbHMDqIoTG+uxtbOdWWNDJQAAAAAAAABMn3ARAABTNdjciI3trcyaPMP4AFVwcKURiwvZfxRPBS4BqiJPWFKIHAAAAAAAAACmT7gIAICpyjNEb+gUmBW1Wi06jewzrSdcBMwI9zwAAAAAAAAAqAbhIgAApsoX7YF5006caTYXAbMiFZas1WpxqNEqqBsAAAAAAAAA4GSEiwAAmKo8Q/SHm4ZOgdmRCkx2+8JFwGxI3fMOrzRjccE/ngQAAAAAAACAafNv7wEAmKrUF+0PNZpRX1gsqBuAybO5CJgXqfOs3VwtqBMAAAAAAAAAIItwEQAAU5UaOu00sofwAaqm08o+13pD4SJgNqRC5KlNbgAAAAAAAABAMYSLAACYqvQX7Q2dArOlk9jUcXTYj+2dnYK6AZgc9zwAAAAAAAAAqAbhIgAApir5RftW9hA+QNW0ExvZRqNRHBv2C+oGYHK6g7XM5zYXAQAAAAAAAEA5CBcBADBVyS/aJ4bwAaqm00qfa6mzEaDsRqNR9AbZQck85yEAAAAAAAAAMHnCRQAATM1oNEp/0d7QKTBj8mzqEC4Cqm5tYxhbO9uZNULkAAAAAAAAAFAOwkUAAEzNic312NzOHjrNM4QPUCWry42oLyxm1vSEi4CKyxOSFCIHAAAAAAAAgHIQLgIAYGryDM8LFwGzplarRbvZyqxJbXUDKLtuP889b7WATgAAAAAAAACAFOEiAACmJs8X7dvCRcAMSg3U5zkfAcqsN8w+x2q1WhxeaRbUDQAAAAAAAACQRbgIAICpSX3RvhYRhxvZ2z0Aqii1lS3PZjeAMkttYDvcaMXCgn80CQAAAAAAAABl4N/gAwAwNb3E0OmhRivqC4sFdQNQnFS4yOYioOpSIfLUOQgAAAAAAAAAFEe4CACAqekO+pnPDZ0Cs6otXATMuN5QuAgAAAAAAAAAqkK4CACAqekmNhelhu8Bqio1VH9s2I/tnZ2CugEYv9TmIvc8AAAAAAAAACgP4SIAAKaml9jM4Yv2wKxKnW+jiDg6zN7uBlBm7nkAAAAAAAAAUB3CRQAATE3X0CkwpzrN1WRNarsbQFmNRqPoDlP3vPQ5CAAAAAAAAAAUQ7gIAICpGI1GyS/at4WLgBmV53xLBTAByur4+jC2d3Yya9rNVkHdAAAAAAAAAAApwkUAAEzFiY312NzZzqzxRXtgVh1YXomlhcXMmlQAE6Csejk2r7nnAQAAAAAAAEB5CBcBADAV3VxDpzYXAbOpVqsltxfZXARUVXfQT9a45wEAAAAAAABAeQgXAQAwFXk2chg6BWZZpyVcBMymVIi8VqvFoZVmQd0AAAAAAAAAACnCRQAATEVqaL4WEYcarWKaAZiCdiMRLuqnN7wBlFEqRN5utGJhwT+WBAAAAAAAAICy8G/xAQCYilS46HCjFYuGToEZ1mmuZj7vDfsFdQIwXql7nu2UAAAAAAAAAFAupjUBAJiK1NBpOzF0D1B1nVZic9HA5iKgmpKbi4SLAAAAAAAAAKBUhIsAAJiK1NCpL9oDs67dyD7njg0HsbWzXVA3AONjcxEAAAAAAAAAVItwEQAAU5HeXGToFJhtqc1FERFHB/0COgEYr9TmtY4NlQAAAAAAAABQKsJFAABMRXroVLgImG15zrlUEBOgbHZGo+gNs4OR7nkAAAAAAAAAUC7CRQAAFG40GkUvsY0jz0YPgCrLs7lDuAiomrX1QWzv7GTW2FAJAAAAAAAAAOUiXAQAQOHWNoaxtbOdWdNuGDoFZltraTmWFhcza3qJLW8AZZMnFGlzEQAAAAAAAACUi3ARAACFyzV0anMRMONqtVpye5HNRUDV9ISLAAAAAAAAAKByhIsAAChct59n6DR74B5gFqQG7PMM6QOUSSoUuVCrxcFGq6BuAAAAAAAAAIA8hIsAAChcb5g9dFqr1eLwSrOgbgCmJxUusrkIqJrUudVuHIiFWq2gbgAAAAAAAACAPISLAAAoXHewlvn8cKMVCwuuqsDsawsXATMmtXEtde4BAAAAAAAAAMUzsQkAQOG6/eyh09QmD4BZYXMRMGtS55Z7HgAAAAAAAACUj3ARAACFS33R3tApMC86zdXM58fXB7G1vV1QNwD7l9pQaXMRAAAAAAAAAJSPcBEAAIXzRXuAe+Q573pD24uA6nDPAwAAAAAAAIDqES4CAKBwqc1FvmgPzIs8511qUB+gLHZGozg66GfWCBcBAAAAAAAAQPkIFwEAUKjRaBTdxBaOTnO1oG4ApivX5iLhIqAijq8PYnu0k1kjRA4AAAAAAAAA5SNcBABAoY6vD2N7J3vo1BftgXnRXFqOlcV6Zo3NRUBV5DmvOi0hcgAAAAAAAAAoG+EiAAAK1RusJWt80R6YF7VaLXnmCRcBVZFn05oQOQAAAAAAAACUj3ARAACFyvVFe0OnwBxJnXndHKFMgDJInVeLtYU4uNIsqBsAAAAAAAAAIC/hIgAACpUKFy3UanHI0CkwR9rN1cznvUG/oE4A9qfbz77nHW62YqFWK6gbAAAAAAAAACAv4SIAAArVS4SL2o0DsbDgmgrMD5uLgFnRG2bf82ynBAAAAAAAAIByMrUJAEChUpuL2s1WQZ0AlEM7GS7KPjcByiJ9zxMuAgAAAAAAAIAyEi4CAKBQqaHTTnO1oE4AyiG1yWNtfRib21sFdQOwd92+zUUAAAAAAAAAUEXCRQAAFKo7WMt87ov2wLzptNLnXm/YL6ATgP3pDYXIAQAAAAAAAKCKhIsAAChUL7m5SLgImC95hu1T20AApm1nNEre89rNVkHdAAAAAAAAAAC7IVwEAEBh7hk6zd6+IVwEzJs8w/a9xNY3gGk7PuzHzmiUWWNzEQAAAAAAAACUk3ARAACFOb4+iO3RTmZNW7gImDPN+nKs1Jcya7qJbSAA05bnnBIiBwAAAAAAAIByEi4CAKAwvTxDpy1ftAfmS61WSw7cCxcBZZfnnBIiBwAAAAAAAIByEi4CAKAwvmgPcN9SZ1+ecCbANKXOqcXaQhxcaRbUDQAAAAAAAACwG8JFAAAUpjtYy3xu6BSYV6ltHjYXAWWXOqfazVYs1GoFdQMAAAAAAAAA7IZwEQAAhen2s4dODxs6BeZUanORcBFQdqlzqtNcLagTAAAAAAAAAGC3hIsAAChMb5gaOs0ergeYVamh+55wEVByqXMqtaENAAAAAAAAAJie+rQbAJi2O+64Iz7wgQ/ETTfdFJ/73Ofiy1/+chw/fjyOHTsWo9EoDh48GAcPHowzzjgjzjvvvHjkIx8Zl156aZx99tnTbn0m3HnnnfGhD30obr755rjlllviS1/6UnS73Th+/Hisra1FvV7/u/8bdDqdOOuss+Kcc86Jc845J37kR34kzjvvvKjZcgKVkfqivaFTYF6lwpVrG8PY2N6K5UV/jAfKqTtYy3wuRA4AAAAAAAAA5WUqCZhLvV4v3vCGN8Rb3vKWuOmmmzJrjxw5EkeOHInbb789PvKRj/zdXz/77LPj2c9+drz4xS+O0047bdItz5Rbb7013vjGN8Y111wTN998c2bt1tZWDIfD+OY3vxkREZ/85Cfv9fyUU06JJzzhCfHEJz4xLrvssnj4wx8+sb6B/ev2bS4CuC95wpW9wYl4wOrhAroB2L3eoJ/53D0PAAAAAAAAAMprYdoNABRpbW0tXvayl8WDH/zg+JVf+ZVksCjLl770pfi1X/u1OOOMM+KFL3xhfOtb3xpjp7PpAx/4QDz5yU+Oc845J171qlclg0V53H333fHe9743rrrqqjj33HPjvPPOi1e84hVxyy23jKFjYNx6ic1FneZqQZ0AlEueofvUGQowLTs7O9Eb2lAJAAAAAAAAAFUlXATMjfe+973xgz/4g/Gf//N/jhMnxjeYubGxEVdffXU8/OEPjze96U1j+7mz5K//+q/j0ksvjX/0j/5R/OVf/mWMRqOJvevzn/98/MZv/Eb83u/93sTeAezNzmiUHDr1RXtgXuUZuu8KFwEldWx9EDuJP+e55wEAAAAAAABAeQkXATNvZ2cnXvGKV8RP//RPx1e/+tWJvefuu++O5z3vefHCF74wNjY2JvaeKtne3o5f//Vfjx/90R+N6667btrtAFN2fNhPDp36oj0wr5pLy9GsL2fWCBcBZZVns5pwEQAAAAAAAACUV33aDQBM0vb2dvzCL/xCvPOd7yzsnVdffXV88YtfjD//8z+PVqtV2HvL5s4774xnPOMZ8dGPfnTarQAlkWco3tApMM/azVYMjp88pN4drBXYDUB+ee55QuQAAAAAAAAAUF42FwEza2dnJ5773OcWGiz6tg9/+MPxj//xP4719fXC310Gt956azz+8Y8XLALuRbgIIFunuZr5vDfoF9QJwO6k7nmLCwuxutIsqBsAAAAAAAAAYLdsLgJm1stf/vJ461vfuqtfc/bZZ8eP/diPxSMe8Yg45ZRTolarRbfbjc9//vPx8Y9/PG6++ebcP+sv/uIv4sorr4w3v/nNu2290m666aa49NJL4//9v/837VaAkukZOgXIlNrqYXMRUFap86nTOBALtVpB3QAAAAAAAAAAuyVcBMyka6+9Nn7rt34rd/3Tn/70+Pf//t/H4x73uMy6m2++OV796lfHW9/61tjZ2Un+3Le85S1xySWXxPOf//zcvVTZV77ylXjqU5+662DR/e53v3jSk54UF198cZx77rnx0Ic+NE455ZQ4cOCeAdterxe9Xi+63W584QtfiM985jPxmc98Jj796U9Hr9ebwO8EmITUF+3bjZahU2Cupba35dkABzANqRB5KjwJAAAAAAAAAEyXcBEwc44cORL/7J/9sxiNRsnaU045Jd7ylrfE0572tFw/+xGPeET8j//xP+LFL35xPPOZz4w77rgj+Wv+5b/8l3HJJZfEWWedlesdVdXr9eJpT3tafP3rX8/9a37qp34qXvjCF8ZP/MRPRL1+8v9KOu200+K0006LiIgLL7zw7/761tZWfOxjH4v3ve998Wd/9mfxhS98Ye+/AWDikl+0b64W1AlAOSU3F/WFi4BySoUfU+FJAAAAAAAAAGC6FqbdAMC4vfzlL49vfetbyboHP/jB8YlPfCJ3sOi7XXjhhXHjjTfGeeedl6wdDAbxr/7Vv9r1O6rm+c9/fnz2s5/NVXvRRRfFjTfeGO95z3viJ3/yJzODRVnq9Xpccskl8ZrXvCY+//nPx4033hjPe97zotVq7ennAZPVG/Qznxs6BeZd6hzsb67HxtZWQd0A5JfcUOmeBwAAAAAAAAClJlwEzJRPf/rTcfXVVyfrDh8+HNddd1087GEP2/O7HvCAB8QHP/jBePCDH5ysveaaa+LP//zP9/yusnvDG94Q73rXu5J1CwsL8cpXvjL+9//+33H++eePvY/zzz8/3vjGN8bXvva1eO5znzv2nw/sT2pzkaFTYN51WukNbt2h7UVA+fRsLgIAAAAAAACAShMuAmbKr/3ar8XOzk6y7uqrr46HP/zh+37fAx/4wPiTP/mTWFxcTNb+6q/+6r7fV0Zf/vKX45d/+ZeTdSsrK/GOd7wjXv7yl+f6+7Uf7XY7HvvYx070HcDupb5ob+gUmHftRnr7YrefHdQEKNrOzk70htkbKoXIAQAAAAAAAKDchIuAmXHLLbfEe9/73mTd05/+9HjGM54xtvdefPHF8aIXvShZd+ONN8Zf/uVfju29ZXHVVVfFiRPZgYGFhYV461vfGj/3cz9XUFdA2Rg6BUjLE7JMbQcBKNrR9UGMRqPMmk4zvZkNAAAAAAAAAJge4SJgZvyX//JfkgNN9Xo9XvOa14z93f/pP/2nOHToULLut3/7t8f+7mn68Ic/HO9617uSda985SsFi2DOHTN0CpDUWFqO5tJyZk1qCxxA0fKEHjstIXIAAAAAAAAAKDPhImAmrK+vxzve8Y5k3c/+7M/GWWedNfb3n3rqqfGCF7wgWfeBD3wg7rrrrrG/f1pe+tKXJmsuvvjieNnLXlZAN0CZ5RmG7zRbBXQCUG6p7UU2FwFl0x2sJWvaDeEiAAAAAAAAACgz4SJgJlxzzTVx9OjRZN0v//IvT6yHl7zkJbGwkH2sbm9vx9vf/vaJ9VCkj3zkI/GJT3wis2ZxcTH+4A/+IPn3BZh9uYZObS4CiHYiXGRzEVA2qXNpcWEhDq40CuoGAAAAAAAAANgL097ATHjb296WrDnrrLPiwgsvnFgPD3nIQ+Liiy9O1uXptQp++7d/O1nzi7/4i3HeeecV0A1QdoZOAfJJbS7KE9YEKFJqo1qneSBqtVpB3QAAAAAAAAAAeyFcBFTe9vZ2XHfddcm6n//5n594L8961rOSNf/n//yfOHLkyMR7maS//du/jfe9733Jul/5lV8poBugCgydAuTTSWxx6w36BXUCkE8qRN5uZIcmAQAAAAAAAIDpEy4CKu8Tn/hEHD16NFn31Kc+deK95HnHzs5OfPCDH5x4L5P09re/PUajUWbNP/yH/zDOPffcgjoCys7QKUA+NhcBVdPtJ0LkLfc8AAAAAAAAACg74SKg8vIEdQ4ePBgXXHDBxHt5yEMeEmeddVay7n/9r/818V4m6e1vf3uy5tnPfnYBnQBVYegUIJ92IlzU39yI4dZmQd0ApKVC5KmNbAAAAAAAAADA9AkXAZX38Y9/PFlzwQUXRL1eL6CbiIsvvjhZc8MNNxTQyWTcdttt8dd//deZNQsLC3HZZZcV0xBQCb2hoVOAPFKbiyIieolBfoAipe557WaroE4AAAAAAAAAgL0SLgIq79Of/nSy5jGPeUwBndzj/PPPT9Z8/vOfj/X19QK6Gb/rrrsuWfPDP/zDcdpppxXQDVAVqS/aGzoFuIdwEVAl2zs7cXTYz6wRIgcAAAAAAACA8hMuAirtrrvuim984xvJurKFi7a2tuL//t//W0A34/ehD30oWXPRRRcV0AlQFYZOAfJr5wgXpQKbAEU5NuzHaDTKrMkTmgQAAAAAAAAApku4CKi0m266KVfdueeeO+FOvuPhD394rrq8vZfNhz/84WTNBRdcUEAnQFUYOgXIb6W+FK2l5cya7mCtoG4AsnWH6bBjntAkAAAAAAAAADBd9Wk3ALAff/M3f5Or7qyzzppwJ9/R6XTilFNOibvvvjuzLm/vZXLHHXfEnXfemaw777zzkjVHjhyJa6+9Nq6//vq4+eab48tf/nIcPXo01tbWYnl5OVqtVpx66qlx5plnxsMe9rB43OMeFxdddFGcc8454/itAAXKM3QqXATwHZ3mavQ3T36X7A2yt8EBFKXbd88DAAAAAAAAgFkgXARU2pe//OVkzQMf+MA4cKDYYaazzjorPvGJT2TW5Om9bD772c/mqjv77LPv86/v7OzENddcE7/7u78bf/VXfxXb29v3WTcYDGIwGMSRI0fii1/8YkRE/Lf/9t/+7mc/4xnPiBe84AVx5pln7uF3ARQtz9CpL9oDfEe7eSC+duzk4SKbi4Cy6A2y73n1hcVYXW4U1A0AAAAAAAAAsFcL024AYD9uv/32ZM2DHvSgyTfyPU4//fRkzayGi0499dQ4dOjQ9/316667Lh7xiEfE05/+9PjgBz940mBRype+9KX4zd/8zTj77LPj53/+5+NLX/rSnn4OUBxDpwC7k9ry0U2cqwBFSZ1HneaBqNVqBXUDAAAAAAAAAOyVcBFQaV/72teSNQ984AML6GT37/zqV79aQCfj9fnPfz5Z84AHPOBe//uJEyfiOc95Tlx66aW5fn1e29vb8T//5/+MRzziEfGKV7wiNjc3x/azgfFKbdgwdApwb8JFQFWkziPbKQEAAAAAAACgGoSLgEo7cuRIsua0004roJN7yxMuuvvuuwvoZLzuuOOOZM3973//v/ufb7vttrjgggvij//4jyfW08bGRvzGb/xGPPGJT8zVH1C87qCf+Tw1RA8wb1LD+KmNcABF6eUIkQMAAAAAAAAA5SdcBFRannBRu92efCN7eOeJEydifX198s2M0Z133pms+fbv/bbbbotLLrkkPvvZz064q3tcf/31ceGFF451OxIwHqmhU1+0B7i3Tms18/lgcyOGmxsFdQNwckLkAAAAAAAAADAbhIuASut2u8magwcPFtDJ3t5Zte1F3/jGN5I1y8vLcdddd8U/+Af/IL72ta8V0NV3fP3rX48nPvGJAkZQMt3Ehg1DpwD31m60kjWpsxWgCELkAAAAAAAAADAb6tNuAGCvBoNBbG5uJuumES46dOhQrrqjR4/G6aefPuFuxmM0GuXaFLW4uBjPetaz4o477kjWHjp0KC6++OJ45CMfGQ95yENidXU1tra2otfrxa233ho33HBDfPrTn47t7e3cfX7rW9+Kyy+/PG644YY49dRTc/86YHJ6wkUAu5LaXBRxz9l6+qFOAd0A3LftnZ04OrS5CAAAAAAAAABmgXARUFkbGxu56prN5oQ7+X6NRiNXXd7fQxkMh8PY2dlJ1r3nPe+J4XCYWXPhhRfGS1/60rjssstiaWkps/bOO++MN7/5zfGa17wmvvnNb+bq9bbbbovnPOc5ce211+aqByYnz9CpL9oD3FunkT4XbS4Cpu3osB+jRI1wEQAAAAAAAABUg3ARUFl5gzmLi4sT7uT71ev5jteqhYv2W9dut+P3fu/34jnPeU7u9z7wgQ+Ml770pfHiF784rrrqqnj961+f69e9//3vj6uvvjquvPLK3O+aFU94whNy//8gk/PZz3522i2UgqFTgN1brtfjwPJKnNhYP2mNcBEwbantlBFC5AAAAAAAAABQFQvTbgBgr/IGc6YRssj7zs3NzQl3Mj7r6ycfbs3jzDPPjOuvv35XwaLvdvDgwXjd614Xb3jDG3IHxv7tv/23cfTo0T29DxiP7mAtWdNprhbQCUC1pAby8wz1A0xSnpCjex4AAAAAAAAAVIO1BkBlbW1t5aoTLhqP/WxZOv300+ODH/xgnHnmmfvu4/nPf34sLi7GFVdckay9++6749WvfnW88pWv3Pd7q+SjH/1o3P/+9592GxAREb1BP1nTbvmiPcD36jQPxNeO3n3S53nCmwCTlDqHlhYW48DySkHdAAAAAAAAAAD7YXMRUFl5Azzb29sT7mTv75xG8Gmv8m4Lui9vetObxhIs+rbnPve58Yu/+Iu5an//938/BoPB2N4N7E6uodMlQ6cA3yu17SNPeBNgklIb1NrNA1Gr1QrqBgAAAAAAAADYD+EioLKWl5dz1eXdcDROeTcS5f09lMFee33BC14QP/ETPzHmbiJe+9rXxoMe9KBkXa/Xi7e//e1jfz+QT9fQKcCedJrZW91sLgKmLXXPS51jAAAAAAAAAEB5CBcBlbW0tJSrbhrhorzvnPVw0YEDB+LVr371BLqJaLfb8apXvSpX7Z/8yZ9MpAcgLTl02jJ0CnBf2slwUfb5CjBpeULkAAAAAAAAAEA1CBcBlbWyspKrbjgcTriTvb+zSuGivH+/v9uzn/3saLfb42/m//fMZz4z7ne/+yXrPvKRj8Tamq/7wzT0kl+0Xy2oE4BqSW38GG5txmBzo6BuAL6fex4AAAAAAAAAzI76tBsAquXLX/5y3HDDDRN9x4EDB+Lyyy9P1jWbzajX68ktQcePHx9Xa7nlfeehQ4cm3Mn4NBqNWFpais3Nzdy/5p//838+wY7uCTw997nPjde85jWZdRsbG/HhD384fvInf3Ki/QDfL/lF+4Yv2gPcl1S4KOKewf7mUnXC6sBsSW6obLYK6gQAAAAAAAAA2C/hImBXPvzhD8cVV1wx0Xc85CEPyRUuiojodDrxzW9+M7Pm2LFj42hrV/K+85RTTplwJ+N16qmnxp133pmr9swzz4zHPOYxE+4o4ud+7ueS4aKIiBtvvFG4CKagO8jeGtZpCRcB3Jc8Gz+6gxNx+qFOAd0A3Nv2zk4cG/Yza9o2FwEAAAAAAABAZSxMuwGA/Tj11FOTNUePHi2gk92/s9VqRaPRKKCb8cnz9/vbLrjgggl28h0//MM/HMvL6S/2f+pTnyqgG+C7be1sx/HhILMmz2YOgHl0OMfGj1SAE2BSjg77MUrUCJEDAAAAAAAAQHUIFwGVlifsctdddxXQyb3l2e6zm6BOWZQxXLSyshKPfvSjk3W33XZbAd0A3y3P0GlbuAjgPi0v1mN1OTuI3htkbw0BmJQ84cZOwz0PAAAAAAAAAKpCuAiotL/39/5esiZP0Gfc8rwzT+9ls5ueH/WoR02wk3vLEy766le/WkAnwHfr9k8ka2wuAji51BlpcxEwLd1B+p7XtrkIAAAAAAAAACpDuAiotB/4gR9I1nz961+ffCPf4xvf+Eay5swzzyygk/F66EMfmrv2lFNOmWAnu3/X0aNHY319vYBugG/LM3Taaa4W0AlANaW2u+U5ZwEmoZc4f5YWF+PA0kpB3QAAAAAAAAAA+yVcBFRanoDOnXfeGf1+v4BuvuPWW29N1sx6uKjdbk+ukT2+q+j/P4B51xtmD50uL9ajtbRcUDcA1ZPeXCRcBExH6vxpNw5ErVYrqBsAAAAAAAAAYL+Ei4BKyxN2GY1GucI+49Lr9eLIkSPJut0EdcriYQ97WO5a4SKg208MnTYNnQJkSW0uSm0OAZiUVLio08o+vwAAAAAAAACAchEuAnbluc99boxGo4n+5/bbb8/dzyMf+chcdV/4whf2+Dvevbzvytt7mTzqUY/KXVtkYEA4AcqpN1jLfJ7ayAEw7zrN1czn3cGJGI1GBXUD8B3dfuqel31+AQAAAAAAAADlIlwEVNrpp58ep512WrLuU5/6VAHd5H9XvV7fVVCnLDqdTu6NS71eb7LNfJdut5urrtVqTbgT4Lslv2gvXASQqdPMvrusb23GYGujoG4AvqM3zN4K22645wEAAAAAAABAlQgXAZX3mMc8JllTZLjok5/8ZLLm3HPPjUajUUA343f++efnqssb+BmHvEGmAwcMuEGResJFAPvSzrH5o9vPPmsBJqGb2lDZcs8DAAAAAAAAgCoRLgIq76KLLkrWXH/99bG1tVVANxEf+chHkjUXXHBBAZ1MxuMf//hcdXffffeEO9ndu0499dRYXl4uoBvg21Kbi9rCRQCZ8gzn94bCRUCxtna249hwkFkjRA4AAAAAAAAA1SJcBFTek5/85GTN8ePH4xOf+MTEe/nKV74St956a7Lu0ksvnXgvk/LjP/7juepuuummCXfyHZ/5zGeSNWeccUYBnQDftrW9HcfWU0On6Y0cAPOs3Wgla2wuAop2dNhP1ggXAQAAAAAAAEC1CBcBlfe4xz0uDh06lKy79tprJ95LnnfUarVcgaiyOu+88+LBD35wsu6GG24ooJuI9fX1XOGihz/84QV0A3yboVOA/VtarMfqSiOzJrUlDmDc8oQabagEAAAAAAAAgGoRLgIqr16v5wrrvOMd75h4L29/+9uTNY997GPjfve738R7maSnPe1pyZrrr7++gE4iPv3pT8fGxkay7kd/9EcL6Ab4tjzD7oZOAdJSQczeYK2gTgDukeeeZ0MlAAAAAAAAAFSLcBEwE37hF34hWfOlL31pott0vvKVr8RHPvKRZF2eXsvun/yTf5Ksuf322+NTn/rUxHv50z/901x1F1100YQ7Ab5bN8ewu81FAGmpAf3uIL0pDmCcesPscNHyYj1aS8sFdQMAAAAAAAAAjINwETATLr/88jh06FCy7rWvfe3Eevjd3/3d2NnZyaxZWFiIZz3rWRProSgXX3xxnHnmmcm6//7f//tE+xgOh/FHf/RHybr73e9+8bjHPW6ivQD3lvqi/cpiPZqGTgGSbC4Cyqbbz77ntZsHolarFdQNAAAAAAAAADAOwkXATGg0GvHMZz4zWfenf/qnceutt479/UeOHImrr746WffjP/7jcfrpp4/9/UWr1WpxxRVXJOve9ra3RbfbnVgf73jHO+LIkSPJussvvzwWFxcn1gfw/XqJcJGhU4B82olwUSrMCTBuqVCj7ZQAAAAAAAAAUD3CRcDM+Nf/+l8nB9W3trbiqquuGvu7/8N/+A9x7NixZN2/+Tf/ZuzvnpZ/8S/+RRw4kD00duLEiYn9nrvdbvy7f/fvctU+//nPn0gPwMmlht0NnQLkkzovu4MTMRqNCuoGwD0PAAAAAAAAAGaRcBEwM37wB38wLrvssmTde97znnjnO985tvd+9KMfjde97nXJusc85jHxlKc8ZWzvjYi4/fbbo1arJf/zpCc9aazvjYg45ZRT4kUvelGy7k1velNce+21Y3//S17ykvjGN76RrPuRH/mR+LEf+7Gxvx/Ilho6bTdXC+oEoNpSQ/ob21sx2NwoqBuAfBsqAQAAAAAAAIBqES4CZsqv/uqvxsJC+mi78sor44tf/OK+33fnnXfGs5/97Nje3k7W/sf/+B/3/b6yeelLXxqHDx9O1l1xxRXxN3/zN2N77xvf+MZ461vfmqt2Fv++QxV0B2uZz33RHiCfTo4wZirQCTBONhcBAAAAAAAAwOwRLgJmyvnnnx/Pe97zknVHjx6NJz/5yfsKvHzzm9+MpzzlKXHHHXcka5/61KfG5Zdfvud3ldVpp50Wv/7rv56su+uuu+LJT35y3HLLLft+5xve8IZcG5MiIi655JL4qZ/6qX2/E9i93qCf+bzTMnQKkEe72UrWpAKdAOOytb0dx9YHmTV5QpEAAAAAAAAAQLkIFwEz5zd/8zfj1FNPTdZ99atfjcc97nFx7bXX7vodN9xwQzz2sY+Nz372s8naRqMRv/M7v7Prd1TFL/3SL8VjH/vYZN3tt98eF154Ye6NQ9/r+PHj8aIXvSiuvPLKXJuiWq1WvP71r9/Tu4D92dzeiuOJodN2Q7gIII8852Uq0AkwLkeH6fMmTygSAAAAAAAAACgX4SJg5tz//vePP/qjP4parZasPXLkSDztaU+Ln/mZn4kbb7wxWf+5z30urrjiinj84x8fX/nKV3L18zu/8ztx9tln56qtosXFxXjHO94R7XY7Wdvr9eKf/tN/GhdddFG8613vis3NzeSvueuuu+K3fuu34mEPe9iuwkKvfe1r45xzzsldD4xPL8fQqc1FAPnUFxfj0Eozs8bmIqAo3cGJZI3NRQAAAAAAAABQPfVpNwAwCZdddllcddVV8epXvzpX/bvf/e5497vfHeecc0484QlPiB/6oR+KU045JWq1WnS73fjCF74QH//4x+Omm27aVR/Pfvaz44UvfOFefguV8tCHPjTe/OY3x9Of/vQYjUbJ+uuvvz5+9md/Ng4fPhwXX3xxPOpRj4ozzjgjVldXY3t7O7rdbtx2221xww03xCc/+clcm4q+20te8pK48sor9/rbAfapZ+gUYKw6zQNxLGMjXJ5hf4BxyBNm7DSFyAEAAAAAAACgaoSLgJn1qle9Kr761a/G2972tty/5otf/GJ88YtfHMv7n/zkJ8cf/uEfjuVnVcHll18er3/96+OFL3xhroBRRMTRo0fjmmuuiWuuuWZsfTzrWc+K//pf/+vYfh6we3mG3NvNVgGdAMyGdvNA/G3vWyd9LlwEFCUVIl9ZrEdzabmgbgAAAAAAAACAcVmYdgMAk7KwsBBvfvOb42d+5mcKf/cTnvCEeM973hMrKyuFv3uaXvCCF8TrXve6WFiYzn+9vOhFL4o//uM/ntr7gXt0+4mh0/pSNOuGTgHySm0BybMxDmAcUmHGdvNA1Gq1groBAAAAAAAAAMbF9DUw0+r1erzzne+Ml73sZYW984orrojrrrsuDhzIHgKdVVdeeWW8//3vj1NPPbWwd66srMTv//7vxx/8wR8IFkEJdAdrmc87hk4BdqXdXM18bnMRUJTUeZMKQwIAAAAAAAAA5WQCG5h5CwsL8apXvSre/e53x4Me9KCJvafT6cTVV18df/iHfzh3G4u+16WXXhqf+tSn4mlPe9rE33XRRRfFDTfcEL/0S7808XcB+fSGhk4BxqnTbGU+7w7WYjQaFdQNMM9Sm9JSYUgAAAAAAAAAoJyEi4C58dM//dPxhS98Ia666qqxbhVaXl6O5z//+XHLLbfEC17wgrH93Ko744wz4s/+7M/ife97XzzykY8c+88/77zz4i1veUt87GMfi0c/+tFj//nA3nX7qaFT4SKA3UgN629ub8eJzfWCugHmWXpzUXYYEgAAAAAAAAAoJ+EiYK4cPHgwXv3qV8cdd9wRr3rVq+KHfuiH9vyzHvawh8UrXvGKuP322+MNb3hD3P/+9x9jp7Pjsssui5tuuik+9KEPxTOf+cw4dOjQnn/W4cOH4znPeU68//3vj5tvvjme85znRK1WG2O3wDikvmhvcxHA7uQ5N1NnL8A4pMJFNhcBAAAAAAAAQDXVp90AwDR0Op142cteFi972cvib//2b+Mv/uIv4jOf+Ux87nOfi9tvvz2OHTsWx48fj9FoFAcPHoyDBw/G3//7fz/OO++8eOQjHxlPecpT4txzz532byN+4Ad+IEaj0bTbyOVJT3pSPOlJT4qtra342Mc+Fh/72Mfic5/7XNxyyy1x5513xvHjx+PEiRNRq9XiwIEDcfjw4TjjjDPizDPPjEc/+tFx0UUXxfnnnx/Ly8vT/q0ACekv2hs6BdiNTisdLuoOTsSDD59aQDfAvNra3o7j64PMGiFyAAAAAAAAAKgm4SJg7j3kIQ+JK6+8ctptzI16vR6XXHJJXHLJJdNuBZiAze2tWNsYZtYYOgXYncONVtQiIitS3u3bXARMVm+YPmfc8wAAAAAAAACgmham3QAAALOjN+gna9qGTgF2pb6wGAcbzcya3mCtoG6AeZXaThnhngcAAAAAAAAAVSVcBADA2HRzDLf7oj3A7nWaq5nPuznCnQD7kSdc1Gm55wEAAAAAAABAFQkXAQAwNj1ftAeYiFQwM0+4E2A/Uve8lcV6NOvLBXUDAAAAAAAAAIyTcBEAAGOT+qJ9o74UzSVDpwC7lQpm5gl3AuxH6p7Xbh6IWq1WUDcAAAAAAAAAwDgJFwEAMDapodPU5g0A7lt6c5FwETBZqQ1pndZqQZ0AAAAAAAAAAOMmXAQAwNikw0WGTgH2IhUu6g1OxGg0KqgbYB71Bv3M50LkAAAAAAAAAFBdwkUAAIxNLxEuahs6BdiTVDhzc2c7TmysF9QNMI9Sm4vaDfc8AAAAAAAAAKgq4SIAAMYmvbnI0CnAXrSbrWRNavAfYD+S97yWex4AAAAAAAAAVJVwEQAAY5P8or1wEcCepDYXRaS3xwHs1eb2VqytDzNrhMgBAAAAAAAAoLqEiwAAGIuNra04sbGeWWPoFGBvDjdaUUvUpLaKAOxVb9hP1giRAwAAAAAAAEB1CRcBADAWvWF6qL3TSm/eAOD7LS4sxOFGK7NGuAiYlG4/xz0vx4Y1AAAAAAAAAKCchIsAABiLPEPt7cRgPAAnl9oKIlwETEquELnNRQAAAAAAAABQWcJFAACMRZ6hdkOnAHuXOkN7wkXAhKQ2F63Ul6K5tFxQNwAAAAAAAADAuAkXAQAwFqmh9ubScjQMnQLsWbu5mvnc5iJgUrqDtcznAuQAAAAAAAAAUG3CRQAAjEVq6LRt6BRgXzrNVubz1DkMsFepELlwEQAAAAAAAABUm3ARAABj0e0bOgWYpE5ic1Fv0I/RaFRQN8A8SW1GEyIHAAAAAAAAgGoTLgIAYCxSQ6fCRQD7kxre39rZjrWNYUHdAPPE5iIAAAAAAAAAmG3CRQAAjEVvmBo6zd64AUC2Tis9vJ8KegLsRTpE7p4HAAAAAAAAAFUmXAQAwFh0+9lDp+1mq6BOAGZTp5EjXJQ4iwF2a3N7K7kVzT0PAAAAAAAAAKpNuAgAgH1b39qM/uZ6Zo0v2gPsz6FGK2q1WmZNd7BWUDfAvOgN+ska9zwAAAAAAAAAqDbhIgAA9q03SG/K6DTTGzcAOLnFhYU43MjeDtIb2lwEjFee0KJ7HgAAAAAAAABUm3ARAAD71hUuAihE6izt9oWLgPHKEyJvu+cBAAAAAAAAQKUJFwEAsG+GTgGK0W5kn6V5zmOA3UiFyBv1pWguLRfUDQAAAAAAAAAwCcJFAADsW2rotLW0HCv1pYK6AZhdnVZic5FwETBmqXPFdkoAAAAAAAAAqD7hIgAA9i21KaPTXC2oE4DZlhrit7kIGDf3PAAAAAAAAACYfcJFAADsW+qL9u1mq6BOAGZbaoi/OzwRO6NRQd0A88A9DwAAAAAAAABmn3ARAAD71h2sZT73RXuA8UgN8W/v7MTa+qCgboB5kAoXuecBAAAAAAAAQPUJFwEAsG/podMDBXUCMNvyDPH3EmcywG6kQuRt9zwAAAAAAAAAqDzhIgAA9i01yG7oFGA88oQ1U4FPgLw2trfixMZ6Zo0QOQAAAAAAAABUn3ARAAD7MtzajP7mRmaNoVOA8Ti00oyFWi2zRrgIGJc8m9Dc8wAAAAAAAACg+oSLAADYlzxDpzYXAYzHwsJCHG60MmuEi4BxyXOeuOcBAAAAAAAAQPUJFwEAsC95hk47rdUCOgGYD6ktIXlCnwB52FwEAAAAAAAAAPNBuAgAgH3JNXTaMHQKMC6dZnZg0+YiYFxS50mzvhyNpeWCugEAAAAAAAAAJkW4CACAfekO1jKft5ZWYrleL6gbgNnXbrYyn6fOZYC8UudJuyVADgAAAAAAAACzQLgIAIB9SX3RvmPoFGCsbC4CitIb9DOfd5rueQAAAAAAAAAwC4SLAADYl14qXGToFGCsUufq0UE/dkajgroBZllyc1HDPQ8AAAAAAAAAZoFwEQAA+5LakGHoFGC82olw0fZoJ46vDwrqBphlNlQCAAAAAAAAwHwQLgIAYF8MnQIUK89GuNTZDJCHDZUAAAAAAAAAMB+EiwAA2JdePzV0ulpQJwDzIVe4qL9WQCfALNvY2ooTG+uZNTZUAgAAAAAAAMBsEC4CAGDPhpsbMdjayKzxRXuA8TrYaMVCrZZZ0xvaXATsTzfHOdJpCZEDAAAAAAAAwCwQLgIAYM+6g/TQaVu4CGCsFmq15NnaTWyVA0jJswFNiBwAAAAAAAAAZoNwEQAAe9bLES4ydAowfu1GIlyU43wGyNIb9pM1QuQAAAAAAAAAMBuEiwAA2DObiwCmo9PKPlvzhD8BsqQ2FzWXlqNRXyqoGwAAAAAAAABgkoSLAADYs1S4aHW5EcuL9YK6AZgfqa1wNhcB+5UKKdpOCQAAAAAAAACzQ7gIAIA9Sw2d2loEMBmd5mrmc5uLgP1KhRTd8wAAAAAAAABgdggXAQCwZ93BWuZzX7QHmIx2s5X5vDc8ETs7OwV1A8yiVLjIPQ8AAAAAAAAAZodwEQAAe9Yb9DOfGzoFmIzU5qKd0SiOrQ8K6gaYRakNaKlzCAAAAAAAAACoDuEiAAD2LLW5qC1cBDARecKbqWAAQBabiwAAAAAAAABgfggXAQCwZ4ZOAaYjz/maOqMBTmZ9azP6m+uZNULkAAAAAAAAADA7hIsAANiTweZGDLc2M2uEiwAmY3WlGYu17D/SCxcBe5Vn85l7HgAAAAAAAADMDuEiAAD2JM/Qabu5WkAnAPNnoVaLdrOVWZPnnAa4L3nCicJFAAAAAAAAADA7hIsAANgTQ6cA09VJBDi7g7WCOgFmTb4QuXseAAAAAAAAAMwK4SIAAPYkz9B6aqsGAHuXGuzPEwIFuC+p86O1tBwr9aWCugEAAAAAAAAAJk24CACAPUkNna6uNGJpsV5QNwDzJ7UdTrgI2KvU+ZHanAYAAAAAAAAAVItwEQAAe9JLDp1mD70DsD+pczZ1TgOcTOr8sJ0SAAAAAAAAAGaLcBEAAHuS+qJ9uyFcBDBJ7VS4aNiPnZ2dgroBZkl3sJb53OYiAAAAAAAAAJgtwkUAAOxJKlzUaQkXAUxSanPRaDSKo+uDgroBZknynmdDJQAAAAAAAADMFOEiAAD2pJccOvVFe4BJyjPcn9o+AnBfUve81OY0AAAAAAAAAKBahIsAANi10WiU/KJ9u2HoFGCS2jlCnKmAAMD3Gm5tRn9zI7PG5iIAAAAAAAAAmC3CRQAA7NpgayPWtzYzazotQ6cAk3RwpRGLC9l/rE8FQQG+V55Qos1FAAAAAAAAADBbhIsAANi1bj89dOqL9gCTVavVopPYEpfnvAb4bnnCRZ1WenMaAAAAAAAAAFAdwkUAAOxabyhcBFAGqe0hNhcBu5Xn3EgFGwEAAAAAAACAahEuAgBg1/JswmgbOgWYuE4r+6zNs4EE4Lt1B2uZz1tLK7FcrxfUDQAAAAAAAABQBOEiAAB2LfVF+4MrzagvLhbUDcD86jRXM5/bXATsVm/Qz3yeCjUCAAAAAAAAANUjXAQAwK71El+07zQNnQIUod1sZT5PndcA3yu1uch2SgAAAAAAAACYPcJFAADsWjf1RXvhIoBCpDYXHR32Y3tnp6BugFmQ2njmngcAAAAAAAAAs0e4CACAXUttwmgbOgUoRGrIfxQRx4bZgVCA79ZLhYta7nkAAAAAAAAAMGuEiwAA2DVftAcohzznberMBvhuqTOj3XDPAwAAAAAAAIBZI1wEAMCujEaj9BfthYsACpFnU5xwEZDXcHMjBpsbmTWd1mpB3QAAAAAAAAAARREuAgBgVwabG7G+vZVZk2fYHYD9W11uRH1hMbMmFQgF+LY8YUQhcgAAAAAAAACYPcJFAADsSr6hU1+0ByhCrVZLDvp3B2sFdQNUXW/YT9YIkQMAAAAAAADA7BEuAgBgV/IMqfuiPUBxUoP+eUKhABER3X6Oe17DPQ8AAAAAAAAAZo1wEQAAu9IbpL9of7jZKqATACLSgU7hIiCv1HlxYHklluv1groBAAAAAAAAAIoiXAQAwK6kNhcdWmlGfWGxoG4ASIWLesJFQE69YfZ50WmuFtQJAAAAAAAAAFAk4SIAAHYl9UX71JA7AONlcxEwLt1+9nnRtp0SAAAAAAAAAGaScBEAALuSGlJvCxcBFCp17h4b9mNrZ7ugboAqS206s7kIAAAAAAAAAGaTcBEAALuSHDptGToFKFJqc9EoIo4O+8U0A1Rad2hDJQAAAAAAAADMI+EiAAB2Jbm5qGHoFKBIeTaJpIKhABERvb4NlQAAAAAAAAAwj4SLAADIbTQaRXewllnTaRk6BShSO8e5mwqGAgw3N2KwtZFZY3MRAAAAAAAAAMwm4SIAAHLrb27E5vZ2Zo2hU4BiHVhaiaWFxcwa4SIgJc854Z4HAAAAAAAAALNJuAgAgNxSW4siItoNQ6cARarVatFODPx3+8JFQLZejnBR6qwBAAAAAAAAAKpJuAgAgNxyfdG+ZegUoGips7c3FC4CsuW55wkXAQAAAAAAAMBsEi4CACC31OaLWkQcbrSKaQaAv9NprmY+7/bTm+eA+ZYKF60uN2J5sV5QNwAAAAAAAABAkYSLAADILbX54lCjFfWFxYK6AeDb2o3E5qIcG0mA+ZY6J2wtAgAAAAAAAIDZJVwEAEBuqc1Fhk4BpqPTyj5/UxtJALqD7A1nHfc8AAAAAAAAAJhZwkUAAORm6BSgnFLn77H1QWztbBfUDVBFqRCiex4AAAAAAAAAzC7hIgAAcusZOgUopTzn79FBv4BOgKpK3fNsqAQAAAAAAACA2SVcBABAbr5oD1BOeYb+U2c4MN/c8wAAAAAAAABgfgkXAQCQy2g08kV7gJLqNFeTNcJFwMkMNjdiuLWZWSNcBAAAAAAAAACzS7gIAIBcTmysx+bOdmZNnuF2AMavtbQcy4v1zJreYK2gboCqSQXIIyLa7nkAAAAAAAAAMLOEiwAAyCXP0Kkv2gNMR61WS57BNhcBJ5PnfHDPAwAAAAAAAIDZJVwEAEAu3RwbLwydAkxPW7gI2KM897x2s1VAJwAAAAAAAADANAgXAQCQS2oovRYRhxqGTgGmJRXwzLOBDphPvUE/8/nqSiOWFusFdQMAAAAAAAAAFE24CACAXFLhosONViwuuF4CTEsqXGRzEXAyqc1FnYbtlAAAAAAAAAAwy0x/AgCQS2rjRbu5WlAnANyXtnARsEep8yF1vgAAAAAAAAAA1SZcBABALqmh006zVVAnANyXTiLkeXx9EFvb2wV1A1RJ8p7XEi4CAAAAAAAAgFkmXAQAQC7pL9rbXAQwTZ0cm0V6Q9uLgO+X3FDZEC4CAAAAAAAAgFkmXAQAQC7dwVrm8zxD7QBMTjvHOZwKigLzZzQa5dhQKUQOAAAAAAAAALNMuAgAgKTRaBS9QT+zptMSLgKYpjwhT+Ei4HsNtjZifWszs8Y9DwAAAAAAAABmm3ARAABJaxvD2NrZzqxpNwydAkxTc2k5VhbrmTXdvnARcG+pAHmEex4AAAAAAAAAzDrhIgAAkvJsuvBFe4DpqtVq0U5sL+oNhYuAe+sO1pI17nkAAAAAAAAAMNuEiwAASOrlCRc1VwvoBIAsnVb2WZwnRADMlzwbzdqNVgGdAAAAAAAAAADTIlwEAEBSanNRrVaLwyvNgroB4GTajeztInlCBMB8SW00O7jSjKXFekHdAAAAAAAAAADTIFwEAEBSatPF4UYrFhZcLQGmrdPMDhfl2UQHzJdU6LDdtLUIAAAAAAAAAGadCVAAAJJSQ6epYXYAitFpJTYXJTaUAPMntaGy01wtqBMAAAAAAAAAYFqEiwAASOolhtGFiwDKIXUer60PY3N7q6BugCpwzwMAAAAAAAAAhIsAAEhKbS5qGzoFKIU853Fv0C+gE6Aquv21zOfueQAAAAAAAAAw+4SLAABI6g180R6gCjrN1WRNN3GmA/NjNBq55wEAAAAAAAAAwkUAAGQbjUbRHaaGTtPD7ABMXp4QQG+QvaUEmB+DzY1Y397KrBEuAgAAAAAAAIDZJ1wEAECm4+vD2N7ZyawxdApQDs2l5WjUlzJrbC4Cvi3PedB2zwMAAAAAAACAmSdcBABApjwbLgydApRH6kwWLgK+rZfjPBAiBwAAAAAAAIDZJ1wEAECmPEPohk4ByiN1JucJEwDzIdfmooZ7HgAAAAAAAADMOuEiAAAypYZOF2q1OLTSLKgbAFJS4SKbi4BvS50HB1eaUV9cLKgbAAAAAAAAAGBahIsAAMiU2nDRbhyIhQXXSoCyaAsXATn1BmuZz22nBAAAAAAAAID5YAoUAIBMqSH0drNVUCcA5NFprmY+7ybCBMD8SN3zhIsAAAAAAAAAYD4IFwEAkCk9dJo9xA5AsVJhgBMb67GxvVVQN0CZpTZUChcBAAAAAAAAwHwQLgIAIFNq6LRt6BSgVPKEAVJnOzAf0hsq3fMAAAAAAAAAYB4IFwEAkKk7WMt87ov2AOWSJwyQChQAs280GuXYUOmeBwAAAAAAAADzQLgIAICT2hmNojfoZ9YYOgUoF+EiII/B5kZsbG9l1rSbqwV1AwAAAAAAAABMk3ARAAAndXx9ENujncyaPEPsABSnubQczfpyZk1PuAjmXp6QoRA5AAAAAAAAAMwH4SIAAE4qz/B5p+WL9gBl025lBwK6g7WCOgHKKs85IFwEAAAAAAAAAPNBuAgAgJPK9UX7RquATgDYjU4jES7q21wE8y7PPe9w0z0PAAAAAAAAAOaBcBEAACeV+qL9Qq0WB4WLAEqnndg2kidUAMy21IbKQyvNqC8sFtQNAAAAAAAAADBNwkUAAJxUb9DPfN5uHoiFWq2gbgDIq9PKDhf1hsJFMO9SIcNOIqQIAAAAAAAAAP8fe/cd5lSZ/n/8k2QmM5kCM1Slg3QUFCxDEwRFUbHrCqKoi3V17atrxbauBQu7rnUVdBFcZUEFLIiCSBMQRZfeOzNCpidTkvz+2J9+LZBzMpNz0t6v6+Ifc58892CSc8g8n3MjeRAuAgAAwCEZTS5i0ykAxCejz2dvJeEiINUZhYuMJqABAAAAAAAAAAAAAIDkQbgIAAAAh8SmUwBITHmZ4T+fK2uqVFVbY1M3AOJRMZOLAAAAAAAAAAAAAADA/0e4CAAAAIdkNNmCTacAEJ/ys3IMa4yCBQCSm3GI3PhzBAAAAAAAAAAAAAAAJAfCRQAAADikYr9RuIhNpwAQj8yEP42CBQCSVygUktdXHrYmP4sQOQAAAAAAAAAAAAAAqYJwEQAAAA4qGAoZTrXI82TZ1A0AIBJ5JsJFTC4CUldlTbVqAoGwNUyoBAAAAAAAAAAAAAAgdRAuAgAAwEGV+SsVDIXC1jC5CADiU2Zaujzp7rA1TC4CUpfR1CJJysskXAQAAAAAAAAAAAAAQKogXAQAAICDMrPpnDvaA0D8MvqMZnIRkLpMXedlcZ0HAAAAAAAAAAAAAECqIFwEAACAgyJcBACJzegzmslFQOoyChc6JDXMzLKnGQAAAAAAAAAAAAAAEHOEiwAAAHBQRptOXQ6ncjI8NnUDAIhUnmG4qNymTgDEG6NwYW6mR2lOl03dAAAAAAAAAAAAAACAWCNcBAAAgIMy2nSa58mS0+GwqRsAQKTyPTlhH2dyEZC6vJXh3/9Gnx8AAAAAAAAAAAAAACC5EC4CAADAQRlNtGDTKQDEt3yDyUVGE+oAJC/j67zwnx8AAAAAAAAAAAAAACC5EC4CAADAQRX7KsM+zqZTAIhvRp/TlTXV8tfW2NQNgHhS7DeaUMl1HgAAAAAAAAAAAAAAqYRwEQAAAA7K6I72bDoFgPhm5nOa6UVAavJWhn/vEyIHAAAAAAAAAAAAACC1EC4CAADAQXkNNpyz6RQA4puZz2mjz3oAyScUChkGC7nOAwAAAAAAAAAAAAAgtRAuAgAAwG8Eg0GV+CvD1jC5CADiG5OLABxMRU2VaoKBsDVc5wEAAAAAAAAAAAAAkFoIFwEAAOA3Sqt8CoZCYWu4oz0AxLeMtHRlpWeErfH6ym3qBkC8KK40DhVynQcAAAAAAAAAAAAAQGohXAQAAIDf8JqYZMGmUwCIf0af1WY+7wEkFzOhwnxPjg2dAAAAAAAAAAAAAACAeEG4CAAAAL9hZtNpHptOASDu5RmFi0xMMAGQXLy+yrCPOyQ1zMyypxkAAAAAAAAAAAAAABAXCBcBAADgN4oNNp26nE7lZmTa1A0AoK6MJhcV+wkXAamm2CBE3iAzSy4nXxkCAAAAAAAAAAAAAJBK2CkAAACA3zCaXJSfmS2Hw2FTNwCAusrPMphc5CNcBKQao/e9USgRAAAAAAAAAAAAAAAkH8JFAAAA+A2jTad5bDoFgISQl2kwuaiScBGQaggXAQAAAAAAAAAAAACAXyNcBAAAgN/wGmw2N5qEAQCID/lZOWEf99VWy19TbVM3AOJBMSFyAAAAAAAAAAAAAADwK4SLAAAA8BvFfqM72offrA4AiA9mJpAYTTEBkFyYXAQAAAAAAAAAAAAAAH6NcBEAAAB+w2jTaZ4ny6ZOAAD1YSYkYDTFBEDyCIVChu95QuQAAAAAAAAAAAAAAKQewkUAAAD4hWAwqBJ/ZdgaNp0CQGLIY3IRgJ+pqK5STTAQtsbM5wYAAAAAAAAAAAAAAEguhIsAAADwCyVVPoVCobA1ZiZhAABiz+1KU7Y7I2wN4SIgdXh95YY1XOcBAAAAAAAAAAAAAJB6CBcBAADgF8xsOuWO9gCQOIymzRUTLgJShpkwIeEiAAAAAAAAAAAAAABSD+EiAAAA/IK3kk2nAJBM8jxZYR83EyoFkByMwoQOSQ0yw39mAAAAAAAAAAAAAACA5EO4CAAAAL9gtOk0zelSjjvTpm4AAPVlNLnIzCQTAMnB6P3eMDNLLidfFwIAAAAAAAAAAAAAkGrYLQAAAIBfMNp0mu/JlsPhsKkbAEB9GU2bMwqVAkgeRtd5eQZhRAAAAAAAAAAAAAAAkJwIFwEAAOAXjDedht+kDgCIL0bhIiYXAanDKExo9HkBAAAAAAAAAAAAAACSE+EiAAAA/EKxrzzs42w6BYDEYhQK9dfWyFdTbVM3AGKJEDkAAAAAAAAAAAAAADgYwkUAAAD4BaNNp4SLACCxmPncZnoRkBq8hMgBAAAAAAAAAAAAAMBBEC4CAADALxQTLgKApJLvyTGsMfrsB5D4QqGQin2VYWvys7jOAwAAAAAAAAAAAAAgFREuAgAAwE8CwaBK/OE3neYRLgKAhJLnyTKsMZpmAiDxlVf7VRsMhK3Jy+Q6DwAAAAAAAAAAAACAVES4CAAAAD8p8VcqZFDD5CIASCzprjTluDPD1niZXAQkPTPvcyYXAQAAAAAAAAAAAACQmggXAQAA4CfFZjadenJs6AQAEE1GwVBvJeEiINlxnQcAAAAAAAAAAAAAAA6FcBEAAAB+YuaO9nlMLgKAhGP02V3sJ1wEJDuj6zyHw6GGGR6bugEAAAAAAAAAAAAAAPGEcBEAAAB+4vWVh3083elStjvDpm4AANGSn2UwuchEuBRAYjO6zmuYmSWnk68KAQAAAAAAAAAAAABIRewYAAAAwE+MNpfnebLlcDhs6gYAEC15mQbhosrwoQMAic9bGf46L5/plAAAAAAAAAAAAAAApCzCRQAAAPhJsUG4yGjyBQAgPuV7csI+XuyrUCgUsqkbALFQ7DcIkRuEEAEAAAAAAAAAAAAAQPIiXAQAAICfGE4uYtMpACQko3BoVaBWvtpqm7oBEAuGk4sIkQMAAAAAAAAAAAAAkLIIFwEAAOAnRuEio8kXAID4lO8xDg0YBQ8AJDbDCZUmPicAAAAAAAAAAAAAAEByIlwEAACAn3h95WEf5472AJCY8kyEBoyCBwASVygUktdPiBwAAAAAAAAAAAAAABwc4SIAAABIkmqDAZX5fWFruKM9ACSmvMwswxqj6XUAEldZlV+BYDBsTZ7H+HMCAAAAAAAAAAAAAAAkJ8JFAAAAkCSV+CsVMqgxM/kCABB/0l1pys3whK0hXAQkr2KD6ZQSk4sAAAAAAAAAAAAAAEhlhIsAAAAgSfJWGm8qZ3IRACQuo6kkZsIHABKT11dpWMN1HgAAAAAAAAAAAAAAqYtwEQAAACRJxX4z4SLuaA8AicroM5zJRUDy8hqEBx0OhxoYTDcDAAAAAAAAAAAAAADJi3ARAAAAJBlvKk93uZSV7rapGwBAtBlNJSkmXAQkLaP3d15mlpxOviYEAAAAAAAAAAAAACBVsWsAAAAAkiRvZfhNp/meHDkcDpu6AQBEm1G4iMlFQPIyen8bfT4AAAAAAAAAAAAAAIDkRrgIAAAAkqRiX3nYx9l0CgCJLc9EuCgUCtnUDQA7GU4u4joPAAAAAAAAAAAAAICURrgIAAAAkrijPQAkO6PP8epArSprqm3qBoCduM4DAAAAAAAAAAAAAADhEC4CAACAJO5oDwDJLt+TY1hjdC4AkJi8hhMqjT8fAAAAAAAAAAAAAABA8iJcBAAAAEnc0R4Akp2Zz3GjAAKAxBMMhVTsrwxbQ4gcAAAAAAAAAAAAAIDURrgIAAAAqg0EVFrlC1vDHe0BILE1zMwyrDEKmgJIPOVVPgWCwbA1hMgBAAAAAAAAAAAAAEhthIsAAACgEoO72UtsOgWARJfmcqlBhidsDeEiIPmYeV9znQcAAAAAAAAAAAAAQGojXAQAAABTm07z2HQKAAnPKEBQTLgISDpm3tdc5wEAAAAAAAAAAAAAkNoIFwEAAEBeX7lhDXe0B4DEZxQgYHIRkHyM3tdOh8NwqhkAAAAAAAAAAAAAAEhuhIsAAABgeEf7DFeaPOlum7oBAFjFKChqJmwKILEYhYvyMrPldPIVIQAAAAAAAAAAAAAAqYydAwAAADDedOrJlsPhsKkbAIBV8jw5YR/3VjK5CEg2RiFyo4lmAAAAAAAAAAAAAAAg+REuAgAAgGG4yGjSBQAgMeRnhf88L/ZXKBQK2dQNADtwnQcAAAAAAAAAAAAAAIwQLgIAAICJyUXhJ10AABKDUYigJhBQRU2VTd0AsIPXVx72cSYXAQAAAAAAAAAAAAAAwkUAAABQMXe0B4CUkJdp/HleXBn+nAAgsXCdBwAAAAAAAAAAAAAAjBAuAgAAgInJRWw6BYBkkJ9l/Hnu9RMuApJFMBRSsa8ybA3hIgAAAAAAAAAAAAAAQLgIAAAgxdUEalVW5Qtbw6ZTAEgODTOz5DCo8TK5CEgaZVU+BULBsDWEyAEAAAAAAAAAAAAAAOEiAACAFFfsD383e8ncpAsAQPxLc7qUm+kJW1PsK7epGwBWM5pOKUn5WTk2dAIAAAAAAAAAAAAAAOIZ4SIAAIAUV2xm06mHTacAkCyMPtPNhBEAJAZT13mZWTZ0AgAAAAAAAAAAAAAA4hnhIgAAgBRnZhN5nodNpwCQLPI94afRES4CkofXYBKZ0+FQLuEiAAAAAAAAAAAAAABSHuEiAACAFOetDL+JPCMtXZ40t03dAACsZhQuMjPpBEBiMLrOy/Nky+lw2NQNAAAAAAAAAAAAAACIV4SLAAAAUlyxP/ym03xPthxsOgWApJHH5CIgZRhd5+Vlhv88AAAAAAAAAAAAAAAAqYFwEQAAQIrz+srDPm60CR0AkFiMJhd5fRUKhUI2dQPASkZhwfwsrvMAAAAAAAAAAAAAAADhIgAAgJTnrTSeXAQASB75npywj9cGA6qorrKpGwBW4joPAAAAAAAAAAAAAACYkRbrBgAAABBbxUZ3tGfTKQAkFTOf615fuXIyMm3oBoCViv1G13nhw4YAAAAAEE4oFFIgEFAoFFIwGIx1OwAAAAAAADDJ6XTK4XDI5XLJ4XDEuh3ECcJFAAAAKc7LplMASCl5psJFFWqd18SGbgBYJRgKGYbI8zxZNnUDAAAAINFVVVXJ5/OpurpaVVVVqq6uVk1NjUKhUKxbAwAAAAAAQB05HA6lp6fL7XYrIyNDbrdbHo9HGRkZsW4NMUC4CAAAIIXVBGpVXuUPW8OmUwBILg0zs+SQFG7rj9cgkAAg/pX5KxU02ORHiBwAAABAONXV1SotLVVpaamqqqpi3Q4AAAAAAACiLBQKqbq6WtXV1SovL//pv2dkZKhBgwZq0KCB3G53DDuEnQgXAQAApLBiX6VhDZtOASC5uJxONczMUrH/0OcAo2knAOKfN8x7/Ef5JiaZAQAAAEg9FRUVKioqks/ni3UrAAAAAAAAiIGqqioVFRWpqKhIHo9HTZs2VXY2v19OdoSLAAAAUpjXV25Yw6ZTAEg+eZ6csOEiJhcBic9baXydl8d1HgAAAICfCQQC2rdvn0pKSmLdCgAAAAAAAOKEz+fT9u3b1bBhQzVv3lwulyvWLcEihIsAAABSmJnJFGw6BYDkk+/J0lbvoR83Ez4FEN+MrvNcDqdyMzw2dQMAAAAgnoVCIZWWlmrfvn0KBAKxbgcAAAAAAABxqKSkROXl5WrevLkaNGggh8MR65YQZYSLAAAAUpjRZIrMtHR50t02dQMAsEueJyfs495KJhcBic7oOi/PkyUnX/YCAAAAKS8UCqmoqEj79++PdSsAAAAAAACIc4FAQLt371ZVVZWaNm1KwCjJOGPdAAAAAGLHaNNpPlOLACApGX2+F/sJFwGJzjhcxHUeAAAAAGn//v0EiwAAAAAAABARvlNKToSLAAAAUlixYbgo/GQLAEBiys8KHyrw+ioUCoVs6gaAFbjOAwAAAGDkwIEDKioqinUbAAAAAAAASEBFRUU6cOBArNtAFKXFugEAAADEjvEd7bNs6gQAYKe8zPDhokAwqLIqvxpkemzqCEC0eX3lYR9nQiUAAACQ2kpLS7Vv376Ij3M6ncrMzJTb7VZGRobS09OVlpYmh8Mhh8NhQacAAAAAAACIplAopFAopNraWtXU1KiqqkrV1dXy+/0KBoMRPde+ffuUlpamBg0aWNQt7ES4CAAAIIUZhYu4oz0AJCejyUWSVOwrJ1wEJLBiX2XYx/MIFwEAAAApKxgMRhQscjgcys3NVYMGDZSdnS2n02lhdwAAAAAAAIiFYDCoiooKlZaWqqysTKFQyNRx+/btU05ODt8ZJQHCRQAAACnM6I72bDoFgORkJjzq9VWqTb4NzQCIumAwqGK/UYic6zwAAAAgVf3www+qra01VZuTk6PmzZvL7XZb3BUAAAAAAABiyel0Kjc3V7m5uaqurtbevXtVURH+986SVFtbqx9++EHNmjWzoUtYiXgYAABAiqoO1KqiuipsDZtOASA5NczwyOFwhK0xCqACiF+lVT4FDe4ixXUeAAAAkJqqq6t14MABwzqHw6EWLVqoVatWBIsAAAAAAABSjNvtVuvWrdWiRQvD/SWSdODAAVVXV9vQGaxEuAgAACBFFfuM7yrAplMASE5Op1MNM7PC1pg5TwCIT1znAQAAADiUoqIihQxuRiBJLVq0UMOGDU1tHgEAAAAAAEDycTgcatiwoVq0aGFYGwqFVFRUZENXsBLhIgAAgBTlNbHpNI9NpwCQtIyCBWbOEwDiE9d5AAAAAA4mEAiotLTUsO6www5TgwYNbOgIAAAAAAAA8a5BgwY67LDDDOvKysoUCARs6AhWIVwEAACQosxsOuWO9gCQvIw+45lcBCQuo+s8l9OpnAyPTd0AAAAAiBfl5eWGNZmZmcrLy7O+GQAAAAAAACSMvLw8ZWZmhq0JhUKmvn9C/CJcBAAAkKKMNo170t3KTHfb1A0AwG5GU0uYXAQkLqPrvPzMbDkdDpu6AQAAABAvysrKDGuaN28uB/9eAAAAAAAAwM84HA41b97csM7M90+IX4SLAAAAUpTXF/4uAUabzgEAic1ocpHReQJA/OI6DwAAAMCvBYNBwzvHZmVlKSsry6aOAAAAAAAAkEjMfHdUXl6uYDBoU0eINsJFAAAAKcpbaXBHezadAkBSy/fkhH282F+pYChkUzcAoslo8hjXeQAAAEDqqaioUMjg3/m5ubk2dQMAAAAAAIBEZPT9USgUUmVlpU3dINoIFwEAAKSoYj+bTgEglRl9zgeCQZVX+WzqBkA0GYWLmFwEAAAApJ7q6mrDGsJFAAAAAAAACCcnJ/yNbCWpqqrKhk5gBcJFAAAAKYpNpwCQ2sx8zhudKwDEp2ImFwEAAAD4FaNwUUZGhtLT023qBgAAAAAAAInI7XYrIyMjbI2Zm9wgPhEuAgAASFHeSjadAkAqM/M5T7gISDzBYFDF/vBj5gmRAwAAAKnHaFOH2+22qRMAAAAAAAAkMqPvkWpqamzqBNFGuAgAACAFVdfWqrIm/PjRfI/xCFMAQOJqkOGR0+EIW2M0/QRA/Cmp8ikUCoWt4ToPAAAASD1GmzoIFwEAAAAAAMAMo++RmFyUuAgXAQAApCCv33izOJOLACC5OZ1O5WWG/6xnchGQeMyEAvM9WTZ0AgAAACBehEIhw3BRenq6Td0AAAAAAAAgkRl9j1RTU2N4Q0zEJ8JFAAAAKchbWW5Yk0e4CACSXp5BwMDrMz5fAIgvZt63eUwuAgAAAFJKIBAwrGFyEQAAAAAAAMww8z2Sme+jEH8IFwEAAKQgM3e0J1wEAMkv3yBgwOQiIPEYvW9dTqdyMzJt6gYAAABAPAgGg4Y1TidbBwAAAAAAAGDMzPdITC5KTHxDCAAAkIKMNp1mpbuVmRZ+fCkAIPEZBUnNhFEBxBej922+J1sOh8OmbgAAAADEAzObOfh3AgAAAAAAAMww8z2SmZvdIP4QLgIAAEhBxptOw0+yAAAkh3yDcBGTi4DEY/S+zctkOiUAAACA3yJcBAAAAAAAADP4Hil5ES4CAABIQYabTj1ZNnUCAIglo3BRsa9CQUZVAwnFW2kQIs8iXAQAAAAAAAAAAAAAAH6JcBEAAEAK8vrKwz7O5CIASA15BuGiYCikMn+lTd0AiIZiPxMqAQAAAAAAAAAAAABAZAgXAQAApKBiX/iN4kaTLAAAySE/yzhk4CVcBCQUJlQCAAAAAAAAAAAAAIBIES4CAABIQUaTi4wmWQAAkoOZMKm3Mvw5A0D8CASDKjEIBDK5CAAAAAAAAAAAAAAA/BrhIgAAgBTjr61RZU112BomFwFAasjN8MjlCP/VQLHBFBQA8aPUX6lQKBS2hus8AAAAAAAAAAAAAADwa4SLAAAAUoyZTeJMLgKA1OB0ONTQkxW2xku4CEgYXj/XeQAAAAAAAAAAAAAAIHKEiwAAAFKMmXBRflaODZ0AAOKB0RQTwkVA4vBWmrjOI1wEAAAAAAAAAAAAAAB+hXARAABAijGzSTw/k02nAJAqjKaYmAmlAogPRu/XNKdLOe5Mm7oBAAAAAAAAAAAAAACJgnARAABAivH6ysM+npWeIXdamk3dAABizXhyUfjzBoD4YRQiz/NkyeFw2NQNAAAAAAAAAAAAAABIFISLAAAAUozRptP8LKYWAUAqyffkhH282FdpUycA6svwOs/g/Q4AAAAAAAAAAAAAAFIT4SIAAIAUU2y46ZRwEQCkEqPP/WJ/hYLBoE3dAKiPYoNJY1znAQAAAAAAAAAAAACAgyFcBAAAkGKM7mifl8mmUwBIJXkGYYNgKKTSKp9N3QCoD6/BpDHCRQAAAAAAAAAAAAAA4GAIFwEAAKQYo3BRfhabTgEglZgJGxidOwDEB6PJRUZhQgAAAAAAAAAAAAAAkJoIFwEAAKSYYqNwkSfHpk4AAPHATLjI6NwBIPYCwaBK/EwuAgAAAAAAAAAAAAAAkSNcBAAAkEL8NdXy1VSHreGO9gCQWnIyPHI5w389wOQiIP6V+isVMqghXAQAAAAAAAAAAAAAAA6GcBEAAEAKMbM5nE2nAJBanA6H8jKzwtZ4feU2dQOgrsxc5xEiBwAAAAAAAAAAAAAAB0O4CAAAIIUUEy4CABxEvicn7ONMLgLin7kQefj3OgAAAAAAAAAAAAAASE2EiwAAAFIId7QHAByMUbDUTDgVQGwZvU/TnS5luzNs6gYAAAAAAAAAAAAAACQSwkUAAAApxChclO3OkNuVZlM3AIB4YRQsZXIREP+8vvKwj+d5suVwOGzqBgAAAAAAAAAAAAAAJBLCRQAAACnE6I72+Z4cmzoBAMQTo8lFhIuA+Gf0PjV6nwMAAAAAAAAAAAAAgNRFuAgAACCFGN3Rnk2nAJCajCYXlfgrFQwGbeoGQF0YhYuM3ucAAAAAAAAAAAAAACB1ES4CAABIIcW+yrCPEy4CgNRkNLkuFAqppMpnUzcA6sJ4QiXXeQAAAAAAAPFg4sSJcjgchn8mTpwY61YBJDAznzODBw+OdZsAAACII4SLAAAAUojR5CLuaA8AqSk/y/jz3+gcAiC2jCYXES4CAAAAAAAAAAAAAACHkhbrBgAAAGAfNp0CAA4mL9NEuKiyQmpkQzMAIhYIBlXqDz+hMs9gQhkAAAAAAAAAAAAQa6WlpVq5cqVWr16tNWvWaPPmzdq9e7f27t2riooKVVb+73dimZmZ8ng8ys/PV4sWLdSyZUt16dJFvXr10jHHHKPWrVvH+CcBgMRDuAgAACBF+Gqq5a+tCVtDuAgAUlNuRqZcTqcCweAha4r94QOqAGKnxF+pkEGNmQllAAAAAAAAAAAAgJ327Nmjzz77TJ9//rkWLVqkdevWKRjm99Y/Ki8vV3l5uYqKirR+/frfPN6xY0edfPLJOvfcc3XyySfL6XRa0T4AJBXCRQAAACmi2GBqkcQd7QEgVTkcDuV7svVDRdkha7yVhIuAeOX1lRvW5JuYUAYAAAAAAHAoEydO1BVXXGHJc7vdbmVmZiojI+OnPzk5OWrWrNkv/vx4N/quXbuqQYMGlvQCAAAAa4VCIS1dulQffPCBPvjgA3333XeWrLNx40Zt3LhRL774olq0aKErrrhCN910k5o2bWrJevHk8ssv16RJk2LdRlz4/PPPNXjw4Fi3ASQMwkUAAAApwmsiXMTkIgBIXXmZBuEiE+cRALFh5v2Zx+QiAAAAAAAQp6qrq1VdXR3RMYcffri6deumY445RgMGDNCAAQPUpEkTizoEAABAfX311VeaOnWq/v3vf2vXrl22rr179249+uijeuaZZ3TNNdfogQceUMOGDW3tAQASAeEiAACAFGHmjvZ5niwbOgEAxKP8rGxp/6EfLzZxHgEQG0YTKtNdLmWnZ9jUDQAAAAAAgPX27NmjPXv26LPPPtP48eMlSd26ddPgwYN13nnn6aSTTpLL5Ypxl7BTcXGxnn32WcO6o48+Wuecc47l/SA5TZw4UVu3bjWsGzdunOW9AEAi2L17t9544w29/vrrWr9+fazbUWVlpZ555hm99dZbevbZZ3XxxRfHuiUAiCuEiwAAAFJEsa8y7OM5GZlKd3F5CACpKt+TE/Zxr8F5BEDsGE0uysvMlsPhsKkbAAAAAACA2FizZo3WrFmjF154QU2bNtV5552nUaNG6cQTT4x1a7BBcXGxHnzwQcO6MWPGEC5CnU2cOFHz5883rCNcBADShx9+qBEjRigQCMS6ld/Yt2+fRo4cqU8++UTPP/+8PB5PrFsCgLjgjHUDAAAAsIfR5KL8zGybOgEAxKN8T/jzAJOLgPhlFC7Kz+I6DwAAAAAApJaioiK99NJLGjRokHr37q233npLtbW1sW4LAAAgZZSUlMRlsOjnXn/9dQ0YMEBFRUWxbgUA4gLhIgAAgBRheEd7g03lAIDkZnQeKPFXKhAM2tQNgEgUG4WLDCaTAQAAAAAAJLOVK1fqkksuUYcOHfTKK68oyPecAAAA+P++/vprnXjiidq1a1esWwGAmCNcBAAAkCK4oz0AIByjyUUh/S9gBCD+GIbImVAJAAAAAACgHTt26Oqrr1ZBQYG++uqrWLcDAACAOLF27VqdfvrpKisri3UrABBTabFuAAAAAPbgjvYAgHCMwkXS/84ljbI4XwDxxusrD/s4IXIAAAAAAID/s2zZMhUUFOiGG27QU089JbfbHeuWAAAA8DPZ2dnq3bu3jjvuOPXo0UPt2rVT27Zt1bBhQ+Xk5MjpdGr//v3av3+/CgsLtWTJEs2fP1+LFi1SeXn435sdyqpVqzRq1Ch98MEHUf5pACBxEC4CAABIAaFQiDvaAwDCMhMyNTqXALBfbTCgUr8vbI2Z8CAAAAAAAEC03HzzzRo6dGhExwSDQfn9flVVVcnv96u8vFx79uzR3r17tWfPHm3YsEHbt29XKBSKSo+hUEh/+9vf9NVXX+ndd99Vq1atovK8Zlx++eW6/PLLbVsPQGqK1uclANilT58+Ov3003XqqaeqoKBALpcrbP3hhx+uww8/XJI0ZMgQ3X333fL7/Zo4caLGjx+vjRs3RtzDzJkz9fLLL+vqq6+u088AAImOcBEAAEAK8NVWq6q2JmwNd7QHgNSW7c5QutOlmmDgkDVG01EA2K/EX2lYk0e4CAAAAAAA2KhXr14688wzo/685eXl+v777/X111/rs88+0+eff64DBw7U6zmXLl2q3r176z//+Y8GDBgQpU4BAABgRqdOnTR69GiNHDlSnTp1qvfzZWZm6tprr9XVV1+t119/XTfddJMqKiK7gebtt9+us846S4cddli9+4mViRMnauLEibatd/nll2vSpEmmards2aJ27dpZ2xCAOnPGugEAAABYr9hnvOmUO9oDQGpzOByGAQQmFwHxx1tp/L7kOg8AAAAAACSDnJwcFRQU6Prrr9e7776roqIiLVmyRH/4wx/UuHHjOj9vUVGRhg8froULF0axWwAAAByMy+XS2WefrY8//ljr1q3T/fffH5Vg0c85nU79/ve/1/Lly9WzZ8+Iji0rK9Ojjz4a1X4AIFEQLgIAAEgBZiZNsOkUAGB0LigmXATEHTOhv3xPjg2dAAAAAAAA2MvpdOqEE07Q3//+d+3evVuTJ09W165d6/Rc5eXlGj58uJYsWRLlLgEAACBJGRkZuvrqq7V+/XrNmDFDw4YNk8PhsHTNrl27atGiRTrxxBMjOu7ll1/Wvn37LOoKAOJXWqwbAAAAgPXM3NE+L5NwEQCkOiYXAYmn2B/+fZnucikr3W1TNwAAAACA+ggGg9pd6tXmA4XaWbJfFdV+1QQCqg0GlOZ0Kd3lUrY7U60aNlaHxs3UIjdfTif3lAUkye12a9SoUbr44ov19ttv64477tCuXbsieo6ysjKdfvrp+vrrr9WuXTtrGgUAAEgxbrdb11xzje666y61aNHC9vWzs7M1c+ZMFRQUaPXq1aaOqa6u1r/+9S/ddtttFncHAPGFcBEAAEAKMNoMnpvhUZrLZVM3AIB4ZTS5iHAREH+MQuT5nhzL7/oGAAAAAKibUCikNYW7tGLnJm06sE/bDhSpKlBr+viMtHS1zW+iIxo1V59WR6hbs5b8GxApz+l0auTIkRo+fLhuueUWTZw4MaLjvV6vLrroIn355Zdyu7lhCwAAQF05nU5dcsklevjhh9W+ffuY9pKbm6t33nlHxxxzjKqrq00d8+abbxIuApByCBcBAACkgGKDzeBGm8kBAKnBOFxUblMnAMwqNnhfcp0HAAAAAPGnorpKC7as0acbVml3qbfOz1NVW6P1RXu0vmiPPlz3jVo0yNfJnXpqYPtuynZnRLFjIPHk5eXp9ddf18knn6wrr7zS9CZSSVq2bJluv/12TZgwwcIOAQAAktsFF1ygiy66KNZt/KR79+665ZZb9Pjjj5uq//bbb1VYWKhmzZpZ3BkAxA/mYwMAAKQAo0kTeWw6BQBIyvPkhH28zO9TbTBgUzcAzDC6ziNcBAAAAADxY19ZsV5ZOlc3TH9Vb6yYX69g0cHsLvXqjRXzdcP0V/XK0rnaV1Yc1ecHEtEll1yiOXPmKC8vL6Lj/va3v2nBggXWNAUAAJACnM7426J+xx13yOPxmK6fN2+edc0AQByKv09uAAAARB13tAcAmJGfFf58EJJU4q+0pxkAphhNqCREDgAAAACxFwgG9f7q5frTrH/p803fqypQa+l6VYFafb7pe/1p1r/0werlCgaDlq4HxLsTTzxR77//vjIyIpvodfPNNysUClnUFQAAAOzWuHFjnX322abrv/vuOwu7AYD4Q7gIAAAgBXBHewCAGfmZxucDb2X4cwoAe3GdBwAAAADxbVfJAY2b829N/WahamyeCF0TDGjKNws1bs472lVywNa1gXgzcOBAvfnmm3I4HKaP+frrrzVx4kTrmgIAAIDtzjjjDNO1GzZssLATAIg/abFuAAAAANYKhUKGd7Rn0ykAQJLyDCYXSVKxn3AREC9qgwGVVvnC1uR7cmzqBgAAAADwc8FQSLPWfK13Vy22PVT0axv379XdH76lC3r21RndessZQbgCSCYXXnihPv/8c73wwgumj7n//vt16aWXKi0tdbdYVVdXq6ioSEVFRSorK1NVVZVqamqUkZGhrKysn/5kZ2erWbNmcrlcsW45pVRWVmrHjh0qKytTRUWFfD6fMjIylJ2drZycHLVu3Vq5ubmxbtNW5eXlmjdvnr799lutW7dO69evV2FhocrLy1VeXq7q6mplZWUpNzdXzZo1U8uWLfWPf/xDbdq0iXXr+JlQKKQ9e/aoqKhIFRUVqqioUCgUUnZ2trKzs9W4cWO1bNlSTmdq3V9/9erVmjdvnr777jt9//332rVrl0pLS1VWViZJysrKUsOGDdW2bVt16NBBxx57rPr3769evXpFFLCNF6FQSAcOHFBhYaG8Xq+qqqpUVVUll8v10/nH4/EoKytLjRs3VnY2e19grG/fvqZrd+7caWEniEcVFRXauXPnL66t3G73T9cObdq0SblrK6SW1P2XLwAAQIrw1VSrKlAbtiaPcBEAQFJ2eobSXS7VBA694cVoSgoA+5T4Kg1r8jxZNnQCAAAAAPi52mBALy2Zo4Vb18W6lZ/8b4rRl9peXKRrCk5RmpPN/0hNTz75pD7++GNt3rzZVP3OnTv1n//8RxdddFHUepg4caKuuOIKw7rXX39dl19+edTWNcPr9WrBggVatGiRVq5cqXXr1mn79u0KhUKmjk9LS1PLli3Vrl07tWvXTu3bt1efPn1UUFCgJk2a1Lu/efPm6aSTTqrXc0yaNEmTJk2qdy8/GjRokObNmxe15wunpKREX3zxhb788kstXrxYGzZs0N69ew2Pa9KkiTp16qSCggINGDBAgwYNUuPGjW3oOLxx48bpwQcfNKz7/PPPNXjw4LA15eXlmjRpkt59910tXLhQNTU1YevLyspUVlam3bt365tvvtGBAwd+Che1a9dO27ZtM/1zHEy0QxxbtmxRu3btot6Dna9fI6tWrdKCBQv05Zdf6ttvv9WWLVvk9/vDHuN2u9W2bVv17NlTAwYM0MCBA9W7d++4CNFE8+9/x44dev755zVt2jRt3LgxbG11dbWKi4u1bds2ffHFFz9N4GvTpo0uuugiXX/99Wrfvr2ZH8F2gUBAy5Yt06JFi7R06VKtXbtW69evN3wd/FyTJk3Utm3bn85DPXr0UEFBgbp27RoXrwvEh3bt2ik9Pd3wXCHpp+AektOePXu0YMECLVy4UF999ZU2b96swsJCw+OaNGmiLl26qF+/fhowYICGDBminBxu+IjkQLgIAAAgyZnZBM4d7QEA0v9+0ZGXma2iitJD1ngrCRcB8YLrPAAAAACIP9WBWk34cra+3rUl1q0c1MKt6+SrqdYfB5wut4stI0g92dnZeuaZZ3T22WebPuZvf/tbVMNF8cbn82nKlCmaMmWK5s2bp9ra8DctDKe2tlbbtm3Ttm3bNH/+/F88dsQRR6igoEAnnXSSzj33XDVq1Ki+raeE2tpaTZ8+XW+99ZY+/PBDVVVVRfwcP/zwg3744QctXrxYzzzzjNLS0nTyySdr1KhRuvDCC5WZmWlB5/bYv3+/HnnkEb322msqLT307zYQnzZu3KhJkyZpypQp2rRpU8THV1dXa8OGDdqwYYOmTZsmSWrdurUuvvhijRkzRj169Ih2y7baunWrxo0bp7feestUCCKc7du366mnntKzzz6r0aNH67HHHtNhhx0WpU7rZ9GiRfrnP/+p999/Xz/88EO9nuvHz7sVK1b84r/n5eXp+OOPV//+/XXOOeeoZ8+e9VoHic3lcikvL09FRUWGtRUV/G482RQWFmrq1Kl6++23tXjxYtMh+p/78bNm4cKFevLJJ+XxeHTmmWfqsssu0xlnnEGYEQkttWZCAgAApKBiU5tOmVwEAPif/Kzw54RiX7lNnQAw4jXxfuQ6DwAAAADsUxsMxHWw6Edf79qiv335oWqDh55eDSSzs846S8cee6zp+h+naCSb8vJyPfTQQ2rZsqV+//vf69NPP61XsMjIpk2bNHnyZI0dO1bNmzfXaaedptdff10lJSWWrZnIqqqq9OKLL6pTp0666KKLNGPGjDoFiw6mtrZWH330kS677DJ16NBBTz/9tCorjaekx5NQKKRXXnlFnTt31rPPPkuwKMF8//33GjVqlLp27apHHnmkTsGiQ9mxY4eefPJJHXXUUTrnnHO0fPnyqD23XYLBoJ599lkdeeSRmjRpUr2DRT9XW1uriRMnqnv37po8eXLUnrcuZs2apd69e6t///567bXX6h0sCqe4uFiffPKJHnjgAfXq1Utdu3bV/fffr9WrV1u2JuKb2+2Oah3i36ZNm3TttdeqTZs2uummm7Ro0aI6BYsOxufz6Z133tGIESPUs2dPTZ06NSrPC8QC4SIAAIAkZ+aO9g09WTZ0AgBIBEZTTsycVwDYwyhE7nalyZPOLz0AAAAAwA7BUEgvLZkT98GiH63YtVkvLZmjYJQ2UwGJZty4cRHVv/3229Y0EiMzZsxQp06d9MADD8jr9dq+fm1trT7++GNdeeWVeuWVV2xfP97NmzdPRx11lK677jpt3brV0rX27Nmj2267TV27dtXMmTMtXStaKioqdN555+nqq6/WgQMHYt0OIlBeXq6bbrpJvXr10pQpUxQIWBd0DoVCeu+993Tcccfp97//fUw+6+qiuLhYw4YN0y233GLpxBSv16vRo0frrrvuitrmerO2b9+uYcOG6cwzz9TKlSttXftH69at08MPP2zZZEKHw2H6j9Wf8zg4s+Hm3NxcizuB1crKynTLLbeoS5cueumll6IW1j6U77//XiNHjtTgwYO1Zs0aS9cCrEC4CAAAIMkZ3dG+QYZHaU6XTd0AAOKd0ZQTMxPxANjDKOyX78mWw+GwqRsAAAAASG2z1nythVvXxbqNiCzcuk6z134d6zaAmBg+fLjatGljuv6DDz6wsBv71NbW6rrrrtO5556rvXv3xrod/Ep1dbWuv/56nXTSSdqwYYOta+/YsUMjRozQJZdcEtdTjHbv3q0BAwZoxowZsW4FEVq8eLG6d++uCRMmKBgM2rr2a6+9pq5du+qTTz6xdd1Ibdq0SQUFBZo7d65taz7++OO6+eabbVtv9uzZOuqoozRnzhzb1gR+rby8XOXl4fdS/ahp06YWdwMrzZo1S127dtWzzz5raaD1YObPn69jjjlGr776qq3rAvVFuAgAACDJmdl0CgDAj/IMzgtMLgLiB9d5AAAAABAfdpUc0LurFse6jTp559vF2lXC1AekHqfTqTFjxpiu//777xN+skBVVZVGjBihF198Mdat4CD27dunIUOG6IUXXohpH2+99Zb69eunbdu2xbSPg/lxoss333wT61YQoddee02DBw/Wjh07YtZDYWGhTj/9dI0fPz5mPYSzbds2DRo0SOvW2R9WnzBhgp544gnL13nttdd01llnqbS01PK1gHAiOY906tTJukZgmWAwqPvvv18jRozQ7t27Y9ZHVVWVrrrqKl133XW2B2uBuiJcBAAAkOSMJkwYbSIHAKQWozBCaZVPtTbf1QfAwXGdBwAAAACxFwgG9eKST1QTTMzvS2qCAb20ZA4bnZCSLr300ojqZ82aZVEn1guFQrrkkkv00UcfxboVHMSuXbvUv39/LVy4MNatSJK+/fZbFRQUaP369bFu5SdVVVU666yz9N///jfWrSBCf/3rX/X73/9e1dXVsW5FgUBAt99+u2699dZYt/ILhYWFOuWUU7Rr166Y9XDPPfdo8WLrwvLTp0/XVVddZfvkEOBgInmtd+3a1cJOYIWqqiqde+65evjhhxUKhWLdjiTpxRdf1GWXXcZnIBJCWqwbAAAAgLW4oz0AIBJmzgsl/ko1zs61oRsA4XCdBwAAAACxN3vt19q0f1+s26iXjfv3atbarzWi+7GxbgWwVadOndS+fXtt2bLFVP2iRYv0hz/8weKurDF+/HhNmzYt1m3gIPbu3ashQ4Zo06ZNsW7lF/bu3auTTjpJ8+fPV8eOHWPdju655x4tWLDAVG3btm3Vv39/derUSW3atFFubq7cbrfKy8tVUlKi9evXa9WqVVq4cGFcBF6S2dNPP60///nPsW7jN5555hmlp6fr8ccfj3UrCgQCOv/887VhwwbD2uzsbJ1wwgk6+uij1b59ezVq1EjZ2dmqqalRcXGxtmzZomXLlmnhwoWqrKyMqI/a2lpdccUV+u6775Senl7XH+egtmzZojFjxhBmR9yYPn266doBAwZY2Amize/369xzz43LQP3kyZPlcrk0adKkWLcChEW4CAAAIMkZbTrN8+TY1AkAIBHkmzgveH0VhIuAOMB1HgAAAADE1r6yYr27akms24iKd1ct0fGtO6p5bl6sWwFsdfLJJ+uVV14xVfv1119b3I01tmzZonvuuSfi41wul4477jgNGjRInTp1UseOHdW6dWtlZ2crOztbWVlZqq2tVVVVlUpLS7Vv3z7t2bNHGzZs0Pr16/X111/r22+/ld/vj9rPMnjw4EPegX7r1q1q37694XOMGTNGEydOjFpP9VFVVaURI0bUaUKQw+FQ3759ddppp+nYY49V165d1bhxY2VnZ8vn88nr9Wr9+vVauXKlPvroI82fP1+1tbURrbF7926dfvrpWrZsmRo2bBhxj9GycOFCPfPMM2FrDjvsMF1zzTUaPXq06TBUaWmp3nvvvd8ETLZu3XrIYwYPHqz58+cbPne8TEqIpWnTpum2226r07FNmzbVaaedpqFDh6p79+5q166dcnNz5XK5VFZWpp07d2r16tWaN2+eZs2apZ07d0a8xhNPPKG2bdvq+uuvr1OP0XLffffpyy+/POTjTqdT559/vi6//HKdcsoppoI/FRUVeuedd/SXv/zFVGjpR+vWrdPzzz+vm2++2fQxZlxzzTUqKyuL+Lg2bdrolFNOUY8ePdSxY0cdccQRatiw4U/nIJfLJb/fL5/Pp8LCQhUWFmrz5s3asGGDvvvuOy1btkyFhYVR/VmQ+LZs2aIlS8z9G65Zs2bq0aOHxR0hWoLBoC644II6B4t69uypk046Sb1791bnzp3VunVrNWzYUB6PRzU1NSovL9f27du1du1aLVy4UDNnztT27dsjWuONN97QUUcdpdtvv71OPQJ2IFwEAACQxEKhkLy+8rA1+Vnc0R4A8H/yTEw6MTq3ALBebSCgsipf2BomFwEAAACAtd5fvUI1wUCs24iKmmBA769eoatOGBrrVgBbDR061HS4aP369SovL1dOTmLd0OX++++PaDpLp06ddMcdd+iCCy5Qfn5+2Fq32y23263c3Fy1bNnyN4/X1NRo6dKlmjNnjmbNmqUVK1ZE3H8yu+GGG7R8+fKIjklLS9PVV1+tm2++WZ06dTpoTU5OjnJyctS6dWsNHTpUt99+u3bu3Km///3veu655yIKfG3YsEGXXXaZZsyYIYfDEVGv0fLQQw8dcuKJx+PRAw88oD/+8Y/yeDwRPW+DBg106aWXavTo0aqpqYlGq/j/1q5dqyuuuCLi47p166b77rtP559/vtxu90FrGjVqpEaNGqlnz566+OKLFQwGNXPmTD3yyCNatmxZROvdcsst6t27twoKCiLuNRr++9//6osvvjjk48OHD9dzzz13yPf6oWRnZ+vyyy/XJZdcooceekiPPvqo6cDb448/ruuvv/6Qf/+Rmjt3rubMmWO6PisrS2PHjtW1116rbt26Gdb/GHht0qSJunfvrsGDB//i8c2bN2vOnDn65JNP9OGHH8rnC/97FSS/Z5991vT74bzzzrO4G0TTn/70J82aNSuiY34MJ1955ZVq06bNIetcLpcyMzPVpEkT9e7dW6NGjdLf//53zZs3T48//rg+/vhj02veddddPwX4gXjkjHUDAAAAsE5lTbVqAuF/scmmUwDAz2Wlu+V2hb8XidG0FADWK/Ybvw+5zgMAAAAA61RUV2nR1rWxbiOqFm1dq8rqqli3Adjq6KOPNl0bDAa1cuVK65qxQGFhod5++21Ttenp6ZowYYLWrl2rq666yjBYZPY5BwwYoAcffFDLly/X5s2b9cgjj6ht27b1fu5EN23aNL366qsRHXPcccdp1apVev755yMOG7Rq1Up//etftWbNGg0ZMiSiY99//309//zzER0TTYcKx3Xr1k3ffPON7rzzzoiDRT/ncDiiFqSAFAgENHLkyIgm1aSnp+uJJ57QqlWrNHLkyIj+fzidTp111llaunSpXnrpJWVlZZk+trq6WhdffLEqKmLze68ffvjhoCGHjIwMvfrqq5o9e3bE7/WfS09P18MPP6x//etfcjrNbRXeu3evpk6dWuc1f23ChAmma8844wxt3bpVzz33nKlgkRkdOnTQNddco2nTpqmoqEhTpkzR0KFDYxaWRGzt27dPr732mun6Sy65xMJuEE1vvfWWxo8fb7re4/Hoscce06ZNmzRu3LiwwaJDcTgcOumkk/TRRx9p1qxZBw3aH0wgENDYsWMJOyJuES4CAABIYmYmS+RlsukUAPB/HA6HYSChmHAREHNmQn5mJpEBAAAAAOpmwZY1qgrUxrqNqKoK1GrBljWxbgOwVadOnSIKJaxfv97CbqJv6tSppiayeDweff7557rxxhtNb0Cvi/bt2+uee+7R5s2b9f7776tfv36WrRXPysrKdNNNN0V0zO9//3t9+eWX9d5w365dO33yySe67bbbIjrunnvu0e7du+u1djT17dtXixYtUufOnWPdCn7lueee0zfffGO6vkmTJlqwYIHuuOMOpaWFv/ldOA6HQ1dffbWWLl2q1q1bmz5u27ZteuCBB+q8brTl5uZq7ty5+v3vfx+15xw1apSeeuop0/WRhC/C2b9/v2bPnm2q9qabbtIHH3ygpk2bRmXtg8nOztbFF1+sTz/9VOvXr9e1116rzMxMy9ZD/Ln33ntVXm68j0qSevbsqf79+1vcEaJhz549uuGGG0zX9+7dW6tWrdJdd90VUSA1nNNPP10rV67UwIEDTdVv3LhRDz74YFTWBqKNcBEAAEASM7PpND+LTacAgF8yChcxuQiIPTMhP67zAAAAAMAaoVBIczasinUblpizYdVB76APJCun06nu3bubrt+5c6eF3UTfJ598Yqruueees3UDrdPp1IgRI7Rw4UJdc801tq0bL8aNG6ddu3aZrr/xxhv16quvRm26jsvl0lNPPaX77rvP9DGlpaURB5Ks0q1bN82aNUt5eXmxbgW/smfPnoiCOs2aNdP8+fN1wgknRK2HI488UvPnz49oCsVzzz2n//73v1Hroa7cbrdmz55tyefxzTffrJNOOslU7YIFC1RYWFjvNT///HPV1hqH8U888USNHz/e1mlCHTt21AsvvKDPP//ctjURW8uXL48oOHf33Xcz4SpBXHfddfJ6vaZqzz77bH355Zfq2LFj1Pto2rSpPv74Y5188smm6idMmKA9e/ZEvQ+gvggXAQAAJDGjTacOSQ0zo3MXBgBA8jCadkK4CIg9o/dhhitNnrTobDYAAAAAAPzSmsJd2lNqbvNSotld6tXaQvMb3oFk0L59e9O1O3bssLCT6FuyZIlhTbdu3XTVVVfZ0M3B5ebmxmztWNi3b59eeOEF0/XnnHOOnnvuOUt6eeihh3TppZearn/77be1Zk1sJ9x5PB69++67ys/Pj2kfOLgnn3zS9FSQjIwMzZgxI6KAp1nt27fXBx98oOxsczfgqq2t1cMPPxz1PiL1/PPPa8CAAZY8t8Ph0NNPP20qLBEMBjVr1qx6r2nmHCT973XjcrnqvV5dpNo5KFVVVVVpzJgxCgaDpup79OihCy+80OKuEA2ffvqp3nvvPVO1Z5xxht55552IppZGyuPxaNq0aerRo4dhrc/n02OPPWZZL0BdES4CAABIYkabThtkZinNGZsvaQAA8ct4cpG5XwwBsI7RdV6eJ5s7qgEAAACARVbs3BTrFiy1fOfmWLcA2Orwww83XZtIk4sOHDig/fv3G9aNGTPGhm7wo/Hjx8vn85mqbdu2rd544w1Lv+d75ZVXTIc7QqGQHn30Uct6MeOhhx6yJIyC+vvhhx/00ksvma5/8skn1bdvX8v66dmzZ0RBvnfeeUfr1q2zrB8jw4cP19ixYy1d4+ijj9bQoUNN1S5YsKDe661fv96wpmvXrjr++OPrvRYQzr333qvVq1ebrp8wYYKcTrbXJ4J7773XVF23bt00ZcoUpaenW9yR1KBBA02dOlUZGRmGta+99prKysos7wmIBJ9+AAAAScxbabzpFACAX8vz5IR9vNhXaVMnAA7FKOSXnxX+fQwAAAAAqLtNB/bFugVLbU7ynw/4tUjCRbt377awk+jatcvcFLJjjjnG4k7wI7/fr1deecV0/T//+U/Lp2pkZGTo9ddfN72JeurUqdq3LzbniSOOOEJ//OMfY7I2jL366quqrDT3+6MTTzxRN9xwg8UdSZdeeqnOPPNMU7XBYFB/+9vfLO7o4NLS0jRhwgRb1rryyitN1S1cuLDea5k5D3EOgtVmzZql8ePHm66/8MILNWTIEAs7QrR8+OGHWrp0qWGdy+XSv/71L1snlR155JG6/fbbDesqKio0ZcoUGzoCzCNcBAAAkMQMN50SLgIAHITR+aGsyqeaQK1N3QA4GKOQX14m13kAAAAAYIVgMKhtB4pi3YaltnqLFAwGY90GYJvDDjvMdG1FRfgb+8WT8nJzE+hbtWplcSf40fvvv6/i4mJTtSNGjDA9YaS+jj/+eI0ePdpUbSAQ0OTJky3u6OBuv/12ud3umKwNY2+88YapOofDoaefftrSiVw/N378eKWlpZmqnTp1qqqrqy3u6LcuueQSdezY0Za1Tj/9dFOTOzZu3Kiqqqp6rWXmPMQ5CFbaunWrLr30UoVCIVP1TZo0iVnIEJEzO53u+uuvV+/evS3u5rf+9Kc/KS8vz7Bu0qRJ1jcDRMDcVRMAAAASUrE//C84CBcBAA7GzPmh2F+pptkNbOgGwMEQIgcAAACQjKoDtSosK4l1G2HtLStWVZLfdKWqtkYrd21R89y8WLdySM1yG8rtYssLosPj8Ziu9fl8FnYSGzU1NbFuIWW8+eabpmsffvhhCzv5rYceekiTJ09WIBAwrJ00aZJuvfVWG7r6Pw0aNNBll11m65owb8WKFVqzZo2p2rPPPlt9+vSxuKP/07lzZ11++eV69dVXDWv379+vWbNm6dxzz7Whs/9z3XXX2bZWw4YN1bNnT61YsSJsXTAY1Pr163XUUUdZ2k+ynoPMhllgncrKSp1//vnyer2mj3nxxRfVvHlzC7tCtOzatUuzZ882rPN4PLr77rtt6Oi3GjRooDFjxui5554LW7dkyRIdOHBAjRo1sqkzIDy+aQEAAEhi3srw4aI8Np0CAA7CzPnBW1lBuAiIIa/PIESexXUeAAAAgMRTWFaiP83+V6zbgKTxC2bGuoWwnjh9tFrlNY51G0gSmZmZpmv9fr+FnURX48bm3iObN29Wr169LO4Gfr9fn376qanagQMH2v7/pG3btjrrrLM0ffp0w9pVq1Zp+/btatOmjQ2d/c+IESOUlZVl23qIzPvvv2+69sYbb7Swk0OvaSZcJEkffPCBreGiTp066YQTTrBtPUk67rjjDMNFkrRp06Z6hYvMnIc2b95c5+cHDiUUCmn06NH6+uuvTR8zZswYnX/++RZ2hWgyG4i+6KKLIppSGm2jR482DBcFg0F98sknuvjii23qCgjPGesGAAAAYI1QKKRio02nhIsAAAdhJpRgNB0PgHVqArUqrwq/kSUvk+s8AAAAAAAAMyIJFyXS5KImTZqYqjMTJkH9LViwwHQ47aqrrrK4m4O75pprTNeaDUpFyznnnGPreoiM2dfDEUccoSFDhljczW/17NlTBQUFpmrtfm0PHz7c1vWk/01zMmPfvn31WsfMeWjOnDkqLy+v1zrAr911110RXd8ceeSR+sc//mFhR4i2mTPN3Qzj8ssvt7YRA3369DE1DeuLL76woRvAHMJFAAAASaqiuko1wfB3acj35NjUDQAgkXjS3MpwhR92bDQdD4B1iv2VhjVMLgIAAAAAADDH7Xabrq2urrawk+jKz89XTo7x7wKnTp2qb7/91oaOUpvZwEJ6erpGjBhhcTcHN2TIEOXn55uqnTNnjsXd/NKgQYNsXQ/mlZWV6auvvjJVa+dEoF8zO5Fkx44dWrduncXd/J9YvLbbt29vqq6+4aLWrVsb1vh8Pj300EP1Wgf4uZdffllPPPGE6frc3Fy9++67TMdLICUlJVq8eLFhXX5+vgYOHGhDR4fmcDhMTadbuXKlDd0A5hAuAgAASFJGU4skJhcBAA7O4XAoz+Ac4fVxFzEgVsyE+wiRAwAAAAAAmFNVVWW6NpIpR7HmcDhMbaisqanRBRdcoG3bttnQVepatmyZqbr+/fsrLy/P2mYOIT093fQUleXLl1vczf/p2LGjmjZtatt6iMzKlStVW1trqvbMM8+0uJtDO/vss03X2vn6Pvroo21b60dmJ9uVlJTUax2zwamnn35ab775Zr3WAqT/TWO8/vrrTdc7nU5NnDhRXbp0sbArRNv8+fNNnXcGDRokl8tlQ0fh9erVy7Bm1apVCgaDNnQDGCNcBAAAkKTMbPo22jgOAEhd+VnhgwnFfiYXAbFi5v1HiBwAAAAAAMAcv99vujaRwkWSNHToUFN1GzduVN++fTV9+nSLO0pd3333nam6WN9h3+z6mzdvVkWFPb8n6N69uy3roG5WrVplqs7tdpua3mCVTp06qXnz5qZqzf5M9ZWenm56ilA0mQ0wRhK+PZiTTjpJDofDsC4QCGjMmDG6/fbbVVZWVq81kbrmzp2rkSNHKhAImD5mwoQJOu+88yzsClYwGwA97rjjLO7EnDZt2hjWVFZWateuXTZ0AxgjXAQAAJCkvAaTixySGmYy1hcAcHBGwQQzk1MAWMPo/ZeRli5PutumbgAAAAAAABJbJOEij8djYSfRd/bZZ5u+Y/uePXt03nnn6fjjj9fkyZPl8/ks7i517NmzRz/88IOp2r59+1rcTXTWDwaD+v777y3u5n+YKBHfzAbnjj766JgHNM2+vu0KF7Vo0cJU+CbaMjIyTNXVN1zUtGlTnXjiiaZqQ6GQxo8fr/bt2+u+++5jmh4ismTJEp1zzjkRvWYfeugh/eEPf7CwK1hl5cqVpuriJZzcrFkzU3U7d+60uBPAHMJFAAAASarYIFzUMDNLLieXgwCAg8vLDB8uMjrPALCO0YRKphYBAAAAAACYF8n0lUQLF3Xs2FEXX3xxRMcsW7ZMo0ePVvPmzTV69Gi9++67KikpsajD1LBp0ybTtbHeCNu1a1fTgbRIfq76aNGihS3roG7Mvg5i/dqWpB49epiqs+u13ahRI1vW+bX09HRTdbW1tfVe6957742ofv/+/XrkkUfUvn17DRgwQM8884zWr19f7z6QvL755hsNHz5c5eXhf3f2c7feeqvuu+8+C7uClcwGQNu1a2dtIyaZ/fcD4SLEC3aTAgAAJCmjyUV5nhybOgEAJKL8LIPJRYSLgJgp9od//xEuAgAAAAAAMG/v3r2ma3Nzcy3sxBr33Xef0tLSIj6urKxMkydP1oUXXqgmTZqob9++uvvuuzV79mx5vV4LOk1eu3fvNlXn8XjUpk0bi7sJLyMjQ+3btzdVa/bnqq/mzZvbsg7qxuzrIB4mUHXr1s1U3Z49eyzu5H/iPbAaCoXq/Rwnn3yyBgwYUKe1Fy5cqFtvvVVdunRRu3btdOWVV+r111/Xhg0b6t0XksOaNWs0bNgwFRcXmz5m7NixGj9+vHVNwVKBQEC7du0yVXvMMcfI4XDE/M+wYcNM9XvgwIH6/NUAURP5vxwBAACQEIw2fed7smzqBACQiIzCCeXVftUEapXu4qsFwG7eSqMQOeEiAAAAAImpWW5DPXH66Fi3EdaKnZv19qpFsW7Dcr/r1U99WnaIdRuH1Cy3YaxbQBKJZBN5y5YtLezEGl26dNEzzzyjG2+8sc7PUVtbqyVLlmjJkiWSJIfDoc6dO6ugoEB9+/bVgAED1L17dzkcjmi1nVTMhi9atGgRF3+HrVq10saNGw3r7AoXJWKoL5WYfR20atXK4k6i10N5eblKS0vVoEEDS/sxO0Eo0b355ps67rjj9MMPP9T5ObZt26bXX39dr7/+uiSpcePGOuGEE9S3b1/169dPBQUFyspiD0wq2bhxo4YOHaqioiLTx4waNUovvfSShV3Banv27FEgEIh1G5bw+XyxbgGQRLgIAAAgaTG5CABQH/kmzhPFvko1zbH2FysAfqvYMEROuAgAAABAYnK70tQqr3Gs2zCUCuGiPq06qFXD+P9/AURDJOGieNgcXxc33HCDvv32W7366qtReb5QKKR169Zp3bp1mjRpkiQpPz9fgwcP1qmnnqrhw4fHfAJPPDG78blZs2YWd2KO2T4i2dBdHxkZGbasg8jV1NSopKTEVG08vL4j6aGoqMjycFGqaNeund555x0NGzZMNTU1UXnO/fv3a/bs2Zo9e7YkKS0tTX369NGpp56qU089VQUFBXI6nVFZC/Fn27ZtGjp0aETXcOecc44mTZrE6yLBmZ1alIgIFyFe8CkJAACQpNh0CgCoDzOTT7y+chs6AfBrxhMqCZEDAAAAgFVaNMhXRpJPcs5IS1eL3PxYtwHYZtOmTaZrEzVcJEkvvviirr76asue3+v1avr06br22mvVtm1bnXDCCRo/frwKCwstWzNRmN0s2qhRI4s7MadxY3PhUrs2wabKdJdEFMlrIB5e32Zf2xKbvKNt8ODBeu+995STY83vL2pra7V06VI99NBD6t+/v1q1aqUbbrhBX331lSXrIXZ27dqlIUOGaPv27aaPOfXUU/X2228rLS25/x2XCoqLi2PdgmWqq6tj3QIgiXARAABAUgqFQiY2nRIuAgAcmpnzhNG5BkD01QRqVV7tD1uT58myqRsAAAAASD1Op1NtGzWNdRuWapfflDt6I2XU1tZq7dq1pusTOVzkcrn00ksvadKkSWrYsKHl63311Ve6/fbb1apVK1100UVavny55WvGK78//Pd5P8rMzLS4E3PM9mH250LyiuQ1EA+v70h64PUdfcOHD9fXX3+t448/3vK19uzZo+eff14nnHCCevbsqddffz1qU5MQO3v37tWQIUO0efNm08eceOKJmj59utxut4WdwS7JHPwMhUKxbgGQRLgIAAAgKZVX+1UbDIStMTORAgCQujzpbmWmhb8boNGUPADRV+yrNKxhchEAAAAAWOuIRs1j3YKlOiT5zwf83Lp16yK6S3i3bt0s7MYel112mdavX6+rrrrKlokwNTU1euedd3TcccfpzDPP1Jo1ayxfM95UVVWZqouXjc8ZGRmm6ghfwOxrW4qP17fZ17bE69sqnTp10uLFi/XKK6+oZcuWtqz53Xff6corr1SnTp00efJkNvAnqKKiIg0dOlTr1683fcwJJ5ygmTNnyuPxWNgZ7MRnM2A9wkUAAABJyMwkifwswkUAgPCMphcxuQiwn9dXbljDhEoAAAAAsFafVkfEugVLHduqQ6xbAGyzcuVK07VpaWnq2bOnhd3Yp1mzZnr55Ze1YcMG3XbbbWrcuLEt686aNUu9evXSgw8+qNraWlvWjAdmp8EFg0GLOzHHbB9MuUMkr4F4eH1H0gOvb+s4nU6NHTtWmzdv1iuvvKLevXvbsu62bds0evRoDR06VFu3brVlTUTH/v37NXToUK1evdr0MUcffbQ++ugj5ebmWtgZ7MYEMsB6XAEBAAAkITOTJLijPQDAiNGUO8JFgP3MXOcxoRIAAAAArNWtWUsd3iA/1m1YokWDfHVtZs9d5IF4MHfuXNO1PXr0UGZmpoXd2K9t27Z66qmntGvXLk2fPl2jRo1So0aNLF2zpqZG48aN06mnniqv12vpWvHC7OsmkikwVjLbR7K9HxC5SF4D8fD6jqQHXt/Wc7vdGjt2rFasWKFvvvlGf/7zn9W9e3fL1/3888/Vp08fff7555avhfrzer065ZRT9N1335k+pnv37pozZ47y8vKsawwxwWczYD3CRQAAAEnIaLO3w+FQwwzG/gIAwjOeXGQ8QQVAdBld52WmpcuT7rapGwAAAABITQ6HQ6d0So7pJb92SqeecjgcsW4DsE0k4aI+ffpY2ElsZWRk6JxzztHkyZNVWFioxYsX6/HHH9fZZ5+tJk2aWLLmZ599ppNPPlklJSWWPH88MbsR1ufzWdyJOZWVlabq2OCLSF4D8fD6Nvvalnh9261Xr176y1/+ov/+97/atm2bJk6cqKuuukrdu3e35Nr0wIEDGj58uD799NOoPzeip6SkRMOGDYto0mSnTp00d+5cy65fEFsej/m9bhs2bFAoFEqYP+PGjbPuLw6IQFqsGwAAAED0GW32bpiZxRhvAIAhoyl3xT7zv4QBEB1G4SKjUCAAAAAAIDoGtu+mt79ZqKpAbaxbiZoMV5oGtu8W6zYA26xevVo7duwwXd+vXz8Lu4kfLpdLBQUFKigo+Om/rV27Vl9++aUWLlyohQsXasOGDVFZ6+uvv9aoUaM0c+bMpA42Zmeb+86uqKjI4k7MMdtHTk743yEg+Xk8HjmdTgWDQcPaeHh9R9IDr+/YadOmjcaMGaMxY8ZI+l8Q6OfnoOXLl0dlElZVVZXOP/98LV++XJ06dar38yG6ysrKdNppp2n58uWmj2nXrp3mzp2rww47zMLOEEtmr6kkye/3W9gJkLzYUQoAAJCEjDZ7s+kUAGBGHpOLgLhTbBgu4heeAAAAAGCHbHeG+rXrGus2oqpfu67KcmfEug3ANm+88YbpWofDoTPOOMPCbuJb165dNXbsWL3++utav3699u3bp7ffflvXXnut2rZtW6/nnj17tl588cUodRqfzG5yLiwstLgTc8z2weZtOJ1ONW3a1FRtPLy+I+mB13f8aNSokc466yw9/vjj+vLLL1VaWqovvvhCDz74oPr16yeXy1Xn5y4tLdVll12mUCgUxY5RX+Xl5Ro+fLiWLFli+phWrVrps88+U+vWrS3sDLHWvHlz07Xl5exlAOqCcBEAAEASMtrsTbgIAGCG0fmiorpK1bXJc3deIBEYTS7K82TZ1AkAAAAA4KzufZTurPtmxniS7nTprO59Yt0GYJtAIKA333zTdP2xxx7LRvOfadasmS666CK98MIL2rp1q1atWqUHHnhAHTp0qNPz3XvvvUm9AbRFixam6vbs2aPq6mqLuzG2efNmU3Vmfy4kN7Ovg61bt1rbiAlmX9uNGzeW2+22uBvUldvt1sCBA3X//fdr4cKFKiws1GuvvaZhw4bJ6Yx8S/SSJUs0depUCzpFXVRWVurMM8/UwoULTR/TvHlzzZ07V+3bt7ewM8SDNm3amK7dvXu3hZ0AyYtwEQAAQBLyVhptOiVcBAAwZiaM6vWHP+cAiC6jcBGTiwAAAADAPs1z83RBz4JYtxEVF/QsUPPcvFi3Adjmgw8+iGjD4YgRIyzsJvEdddRRGjdunDZu3KiPP/5YJ510UkTHHzhwQK+99ppF3cVeq1atTNUFAgFt3LjR4m7CKykp0d69e03VtmzZ0uJukAjMvr7XrVtncSfG1q5da6qO13ZiadSoka644gp9/PHH2rx5s2655RZlZmZG9BxPPvmkRd0hEn6/X2eddZbmz59v+pgmTZpo7ty56ty5s4WdIV7k5OSoUaNGpmq3b99ucTdAciJcBAAAkISKDTedEi4CABgzE0Y1OucAiC6j9xwhcgAAAACw1+lde+uIxs1j3Ua9dGx8mM7o2jvWbQC2CYVCevDBB03XOxwOXXzxxRZ2lDwcDoeGDRumzz77TP/+97+Vk2P+Rjj/+te/LOwstjp37iyHw2GqdtWqVRZ3E731u3XrZmEnSBRdu3Y1VRfr13YkPfDaTlxt27bV008/rdWrV+uEE04wfdzKlSu1evVqCzuDkaqqKp1zzjmaO3eu6WPy8/M1Z84c9ejRw8LOEG/MfkZ///33FncCJCfCRQAAAEkmFAoZTpHgjvYAADNMTS4iXATYpjpQq/Jqf9gaQuQAAAAAYC+X06lrC4Yp3emKdSt1ku506ZqCU+R0sn0EqeM///mPvvnmG9P1w4YNU6dOnaxrKEldeOGFmj17tjwej6n6ZcuWqaioyOKuYiMnJ0ft27c3Vbtw4UKLu4nO+h6Ph/cFJP1vcpkZ69at0w8//GBxN4dWW1urpUuXmqrt2bOnxd3Aau3bt9enn36qggLzU0Znz55tYUcIp7q6Wueff74+/vhj08c0aNBAH330kY4++mjrGkNcOu6440zVff311xZ3AiQnvh0CAABIMmVVfgWCwbA1eZ4sm7oBACSyzHS3PGnusDXeynKbugFgZlIY4SIAAAAAsF/Lho10Qc++sW6jTi7s1VctGzaKdRuAbcrKynTrrbdGdMyNN95oUTfJb+DAgbrvvvtM15vd+H8w8R6S7NWrl6m6efPmWdtIlNbv3r27XK7EDNbWR7y/zmLB7GtbkubPn29hJ+EtX75cFRXmbphHuCg55OTkaPLkycrMzDRVv2TJEos7wsHU1tbqd7/7nWbNmmX6mOzsbM2ePVvHH3+8hZ0hXpn9/75q1Srt37/f4m6A5MPVLgAAQJIp9hlv8mZyEQDArLys8EGFYoNpeQCix8yksDzCRQAAAAAQE2d0663+7brEuo2I9G/XRad37R3rNgBb3Xrrrdq+fbvp+o4dO2r48OEWdpT8br31VjVs2NBU7fr16+u8Tnp6uqm62traOq9RH/379zdV9/3332vz5s0Wd3NwJSUl+uyzz0zVDhgwwOJu4lO8v85ioUePHqbf4++9957F3Rza9OnTTdU5nU7169fP4m5glw4dOujyyy83VVufcxDqJhAIaNSoUZoxY4bpYzwejz744APT51Ukn0GDBsnhcBjWBQKBiEJrAP6HcBEAAECSMbPplDvaAwDMMjpneCsJFwF2YXIRAAAAAMQvp8OhawpOUe+W7WPdiil9WnbQNQWnyGliUxaQLKZMmaJXX301omMee+wxJpXUU0ZGhk477TRTtbt27arzOm6321Sdz+er8xr1ccopp5iufeeddyzs5NCmT5+umpoaU7WR/DzJJN5fZ7Hgcrk0ZMgQU7UzZ86U3++3uKPfCoVCpt9XvXv3VqNGTHVMJmeffbapuvqcgxC5YDCoMWPGRHTOy8jI0IwZM3TSSSdZ2BniXYsWLXTccceZqn3jjTcs7gZIPvzrFwAAIMkYhYucDocaZHhs6gYAkOjyMg3CRSbCDgCiw+j95klzKzPd3C+3AQAAAADRl+Z06Y8DTo/7gFGflh1044DhSnO6Yt0KYJt58+aZnlzwoxNPPFEXXHCBNQ2lmCOPPNJUXXl5eZ3XyM3NNVXn9XrrvEZ9HHXUUWrevLmp2pdfflnBYNDijn7rhRdeMFWXnp6uQYMGWdxNfIr311msmA2beb1eTZ061eJufuujjz7Sli1bTNWmanAumdlxDkJkQqGQxo4dq8mTJ5s+Jj09Xe+++66GDRtmYWdIFOeee66pus8++0zr1q2zuBsguRAuAgAASDJGd7RvmJnFHdYAAKblZ4UPF5mZpAIgOry+8L/YyjN4vwIAAAAArOd2penmgWeof7susW7loPq366KbBp4utyst1q0Atpk3b57OOeccVVdXmz7G6XTqmWeesbCr1NK0aVNTdaFQqM5ruN1uNWjQwLBu9+7ddV6jPhwOh+mw2ubNmzVjxgxrG/qVBQsW6KuvvjJVO3z4cOXk5FjcUXwy+1qO1essVs4991y5XOZCy88++2y93ut1MX78eNO1F154oYWdIBbsOAchMtddd51ef/110/VpaWmaOnWqzjzzTAu7QiK55JJLTJ13QqGQ7rvvPhs6ApIHu0oBAACSjNEd7fM9bDoFAJhndN5gchFgn2JfZdjH8w0mjQEAAAAA7JHmdOm6vqdq5NEDlB4n04HSnS6NOmaArut7KhOLkFLefPNNnXrqqSopKYnouLvvvlu9e/e2qKvUU1xcbKrO7FSYQzEzGWjr1q2qra2t1zp1demll5quve+++xQIBCzs5pf+/Oc/m64dM2aMhZ3EN7PTpzZu3GhxJ/HlsMMOMz3x59tvv7V1etGnn36quXPnmqo96qijdMwxx1jcEexm1zkI5tx000166aWXTNe7XC69+eabOu+88yzsCommdevWOuecc0zVvvPOO/riiy+sbQhIIoSLAAAAkozRBIl8T2reRQoAUDdG543KmipV1dbY1A2Q2gwnFxEiBwAAAIC44XQ4NKJ7H/1l+Cgd0djcRmSrdGx8mP4yfJTO7NZHTocjpr0AdikuLtbll1+uyy67LKKJRZI0ePBgjRs3zprGUtTWrVtN1ZkNbhzKEUccYVhTVVWl//73v/Vap65OOOEEdevWzVTt6tWr9dxzz1nc0f9MmjRJCxcuNFXbpEmTlJ4cYeY1JkkrVqywuJP4c8UVV5iuvfPOO1VaWmphN//j9/t14403mq6P5GdA4rDrHPRzDofD9B+z/SWDO++8UxMmTDBd73A49Nprr+niiy+2sCskqptvvtl07ZgxYyK+2QCQqggXAQAAJBmjCRJsOgUARMLMecMo2AogOgwnVGZxnQcAAAAA8aZlw0Yad8pFGnl0f9unGKU7XRp59ACNO+VCtWzYyNa1gVgJBoOaPHmyevTooUmTJkV8/GGHHaYpU6bI5WLCV7QEAgF98MEHpmrNBm8OpXPnzqbqPv7443qtUx9/+tOfTNfee++9Wrt2rYXdSNu3b49oc+4tt9wit9ttXUNxzuxr7JNPPrG4k/hz/vnnmw5f7dixQzfddJPFHUn33HOP6fdQo0aNNHbsWIs7QixMnz7dVF19z0EI74EHHtATTzxhut7hcOill17SZZddZmFXSGQDBgzQ6aefbqp269atuuiii1RTw01TASOEiwAAAJKM0R3t8wkXAQAiYOa8YRR4ABAdxhMquc4DAAAAgHjkcjo1ovuxeuKM0TrpiCOV4UqzdL0MV5pOOuJIPXHGaI3o3kdOJ1tDkPyqq6t/ChWNHj1au3fvjvg5mjRpok8++USHHXaYBR3a75FHHtHMmTNj3YamTZumXbt2GdY5HA4df/zx9VrruOOOM1X36quvKhAI1Gutuho9erTatWtnqtbn8+nss89WcXGxJb1UVFRE9Px5eXm64YYbLOklURx55JHyeDyGdatXr9YXX3xhQ0fxw+Vy6a677jJdP3HiRD3//POW9TN58mQ9/fTTputvuukm5ebmWtZPqpk/f74effTRmE8KKS0tNR02LigosLib1PXXv/5VDz30UETH/O1vf9NVV11lUUdIFk899ZTS0sz9+/qTTz7RyJEjVVVVZXFX5pSXl+uJJ57QqlWrYt0K8At8gwQAAJBEgqGQin2VYWvYdAoAiASTi4D4UF1bq4rq8F9252VynQcAAAAA8ax5bp6uOmGonj93rMb0GaQWDfKj+vwtGuRrTJ9Bev7csbrqhKFqnpsX1ecH4k0wGNTSpUt1ww036PDDD9fo0aPrPOWlUaNG+vTTT3XUUUdFucvYWb58uUaMGKFjjjlGkydPVnV1te097NixQ9dff72p2j59+qh58+b1Wm/AgAGm6jZs2KC77767XmvVVVpamh555BHT9evXr9fw4cOjHjCqrKzU2WefrW+++cb0MX/+85/VoEGDqPaRaNLT002H4K699lrt37/f4o7iy5gxYyKa/nLTTTdp8uTJUe/j/fff15VXXmm6/rDDDotogheMeb1e3XvvvWrbtq3uuece7dy5MyZ9XHXVVdq7d6+pWrMTUBCZ5557Tn/+858jOubpp5/WH/7wB4s6QjLp1q2bbr31VtP106ZN07Bhw1RYWGhhV+EVFRXpkUceUfv27XXnnXeqtLQ0Zr0AB0O4CAAAIImUV/kUCAXD1pjZJA4AwI8y09KVle4OW8PkIsB6Xr/x+yw/K8eGTgAAAAAA9ZXlztCpXY7Wk2dcqvuGnq/hXY5Rl6YtIp5olJGWri5NW2h4l2N039Dz9eQZl+rULkcry51hUedAbJWXl2vp0qV64YUXdMEFF6hp06YqKCjQ888/rwMHDtT5eVu3bq25c+eqV69eUew2fnzzzTcaPXq02rRpo/vuu0+bNm2yZd21a9fq5JNPNh2uuPzyy+u9Zrt27dSjRw9TtU888YTOOeccrVy5st7rRuqSSy7RkCFDTNcvWbJEgwYN0saNG6Oy/s6dOzV06FDNnTvX9DFHHXVURJt3k9mZZ55pqm7NmjXq06eP3nrrrZiE+2IhPT1dL7zwgun6QCCgyy67TE888YRCoVBUevjxHBHJ3/mzzz6b8sE5q5SUlOgvf/mL2rdvrwsvvFBz5sxRMBh+T0s0VFdX66qrrtK///1vU/XHHnus6fMHzHv55ZcjDu499thjuuWWW6xpCEnp4YcfVu/evU3Xf/HFFzryyCP1zjvvWNjVby1evFhXXHGFWrdurfvuu08//PCDresDZlk7axsAAAC2MrO5m8lFAIBI5XmyVVlz6F/CEC4CrGdmQhjXeQAAAACQWBwOh7o1b6VuzVtJ+t8Ult1lXm05UKidxftVXl2lmkCtaoMBpTldSnelKcedoVZ5jdW+UTO1yM2X08k9ZRF/vv32W82cOTOiY0KhkPx+v6qqquT3+1VWVqa9e/dq79692rNnjzZs2KBt27ZFbfP5j4YOHaopU6aoadOmUX3eeLRv3z498sgjeuSRR9S3b1+NHDlSZ511ltq2bRvVdfx+v15++WXde++9KisrM3VMo0aNdNlll0Vl/d/97ne6//77TdW+9957eu+999ShQwf1799fXbp0UYsWLdSwYUOlp6fL4XAYPkfjxo3Vt2/fiPt84YUX1Lt3b1VUmPt+fdWqVerTp48ee+wxXXPNNXK5XBGvGQqF9Oabb+q2226LaENrWlqaXn75ZaWlsdVQki688ELdeeedpgIS27Zt0yWXXKJrr71WAwcOVM+ePdWmTRs1btxYmZmZps/jQ4cOlcfjqW/rthg0aJDGjh2rV1991VR9MBjUnXfeqblz5+pvf/ubOnfuXKd1t2/frltuuUX/+c9/IjruzDPP1O9+97s6rQnzamtr9e677+rdd99VixYtNHLkSJ177rnq27dv1K9nv/jiC91+++1atmyZ6WMIs1jjL3/5S8TH/PnPf4540pHVPv/8cw0ePDjWbeAQ3G63pkyZouOPP14lJSWmjikqKtJFF12kfv366YEHHtApp5xi6rovEqFQSCtXrtR7772nyZMn2xbwB+qLK34AAIAkQrgIAGCFfE+2dpd6D/m411duYzdAajJznceESgAAAABIbE6nU60aNlarho1j3QpQL88++6yeffbZWLcRVlpamu688049+OCDdQppJLrFixdr8eLF+uMf/6ijjjpKQ4cO1YABA9SvXz8dfvjhET9fKBTSihUrNHPmTL3yyivavXt3RMc//PDDys3NjXjdg7n66qv1l7/8RX6/3/Qxmzdv1ubNm+u03qBBgzRv3ryIj+vcubNeeeUVjRo1yvQxpaWl+sMf/qAJEyboxhtv1KhRo5Sfn294XHl5ud59910999xz+uabbyLu9YknnlBBQUHExyWrtm3b6qyzztKMGTNMH1NWVqbZs2dr9uzZdVpzy5YtateuXZ2OjYUJEyZo+fLlEb3ePvnkEx155JEaOXKkrrvuOp1wwgmmNnqvWrVKL7zwgiZNmiSfzxdRn+3bt9ekSZMiOgb1t3v3bo0fP17jx49X48aNNWzYMA0cOFD9+/dXjx496nRe3rt3r2bNmqXJkyfr888/j+jY448/XiNHjox4TQDxo3PnzpoxY4ZOO+00VVVVmT5u0aJFOvXUU9WxY0eNGjVKZ555po499tg6BY0CgYDWrl2rRYsWadGiRfr444+1Z8+eiJ8HiDXCRQAAAEnEaHO30+FQbmaWTd0AAJJFvicn7ONmJqoAqB9vZfjrPE+6W5lp6TZ1AwAAAAAAkLgGDx6sv//97+rRo0esW4kL3333nb777rufAmGNGzdWjx491KlTJ7Vo0UItWrRQbm6uPB6P0tLSVFFRoYqKCpWWlmrTpk1au3atvv/+exUWFtZp/cGDB+uaa66J2s/TvHlz3XDDDXrqqaei9pxWGTlypJYtW6ZnnnkmouPWrVunG264QTfddJOOP/549enTR126dFHjxo2VlZUlv9+v4uJirV+/XitXrtTChQtVXV1d5x6Z6PFb48aN0wcffKBAIBDrVuKSx+PRtGnTdPzxx2v//v2mj6upqdEbb7yhN954Q82bN9egQYPUo0cPtW3bVjk5OXI6nSovL9euXbu0evVqzZ8/X9u3b69Tj9nZ2Zo2bZoaNWpUp+MRHfv379eUKVM0ZcoUSVJGRoa6dOmibt26qVWrVmrRooWaNGmizMxMZWZmqrq6WuXl5aqoqNCuXbu0du3an/7UZbphVlaW/vnPf0Z9YgkA+w0ePFj/+te/dPHFF0d8ft64caMeeughPfTQQ8rNzdUxxxyjHj16qFWrVjr88MOVnZ2tzMxMBQIB+f1++Xw+FRYWat++fdq5c6fWrVun9evXRxRsAuIV4SIAAIAkUuyrDPt4nidbTr4UAQBEyGjqnZmJKgDqp9gf/n3GdEoAAAAAAIDwOnbsqIceeojpBAb279+vL774Ql988YXla7Vp00ZTp06N+vSocePGafr06dq0aVNUn9cK48eP14EDB+o0PSUQCPw0hcoKZ555JlNdDqFXr16644479Ne//jXWrcStDh066JNPPtHQoUNVXFwc8fH79u3Tv//97+g3pv+Fn95//30dc8wxljw/6q6qqkqrVq3SqlWrLF/L4XDolVde0ZFHHmn5WgDsccEFF2jGjBn63e9+p8rK8HvoDqWsrMy2a2EgHjlj3QAAAACix2hyUV4mm04BAJHLI1wExJy3Mvz7zOh9CgAAAAAAkKr69u2radOmad26dQSL4kjLli312WefqXnz5lF/7uzsbM2cOVONGzeO+nNHm8Ph0GuvvabRo0fHupVfOOOMM/Tuu+8qPZ1p6YfyyCOP6Kyzzop1G3Gtd+/e+uijj5Sfnx/rVn6SlZWlGTNmaMiQIbFuBTH2/PPPa9SoUbFuA0CUnXnmmZo7d64l15hAKiBcBAAAkESMNnfnZ7HpFAAQOaOJKL6aavlra2zqBkhNhtd5hIsAAAAAAAB+0qJFC914441aunSpFi1apPPOO09OJ9uk4kXv3r21ePFiHXHEEZat0bVrVy1ZskTdu3e3bI1ocTqdevPNN/Xwww/L4XDEuh3ddttteu+995SRkRHrVuKay+XStGnTdN1118W6lbh2wgkn6KuvvlK3bt1i3Yratm2rRYsWadiwYbFuBTGUlZWlf//737x3gSRWUFCgVatW6fTTT491K0DC4V/NAAAAScTojvZsOgUA1IWZiSjFTC8CLGX0Hsv35NjUCQAAAAAAQPxxOBw66qij9Mc//lHz58/Xjh07NGHCBB1//PGxbg0/43Q6deONN+rLL79U69atLV+vY8eOWrlypR599NG4mpxyKPfee69mzZqlli1bxmT9Jk2aaOrUqXrqqafkcrli0kOiSUtL0z/+8Q/NnTtXvXv3jnU7catjx45asmSJxowZE7MezjvvPC1fvly9evWKWQ+IvT59+mjp0qW68MILY90KAIs1a9ZMs2bN0ssvv6ymTZvGup3fcDqdOu2009SuXbtYtwL8AuEiAACAJFLsZ9MpACD68rOMzx9GU1UA1I/ReyzPk2VTJwAAAAAAALHXokULDRkyRHfccYfef/997d+/X6tWrdJzzz2nE088kSlFku644w5de+21toR4zOjXr58WLFigCRMmyOPx2Lau2+3W3XffrR07duiVV17RsGHD5Ha7bVs/UsOHD9fq1av1hz/8QWlpabas6XQ6NWbMGK1du1a/+93vbFkz2QwZMkQrVqzQvHnzdNVVV6l58+axbinuNGjQQBMnTtScOXPUuXNn29Zt06aNpk+frmnTpqlJkya2rZvq+vXrp0cffVR9+/aNi3Ny06ZN9cwzz2jJkiU68sgjY90OABtdddVV2rhxo+68805lZ8f+ptydO3fWAw88oM2bN+vDDz9Uq1atYt0S8Av2/AsEAAAAlguGQoZ3tGfTKQCgLvIzjb9k81aW29AJkJqqamtUWVMVtoYQOQAAAAAASFTp6enKyMj4xZ/c3Fw1a9ZMzZo1U/PmzdWsWTO1atVKXbp0UdeuXZWbmxvrtuNe//791b9/f0nSqlWrNHPmTM2aNUtfffWVamtrbenhxzuy//GPf9Spp55qy5qHkp2drbFjx2rs2LHy+XxatmyZVqxYofXr12vTpk3at2+fioqKVF5erqqqKtXU1CgUCsWk1wYNGujvf/+7br/9dj3++OOaOHGi/H5/1NdJS0vTyJEjdffdd6tr165Rf/5UNGjQIA0aNEgvvfSS1q1bpyVLlmjNmjXasGGDdu3apaKiInm9Xvn9flVXVysYDMa6ZdudfPLJWr16td5++2099thj+v777y1Zp2PHjrrzzjs1ZswYpaenW7IGDq1Zs2a6++67dffdd+uHH37Q7NmzNWvWLM2ZM0der9e2Pjp16qRrr71WV199tXJy+D0KkKoaNGigv/71r7rrrrv02muv6R//+Ic2bdpky9oOh0O9evXSGWecofPOO49Jh4h7jlCs/hUEAADqraioSM2aNfvFfyssLIzLUZ6wXomvQtdNfzVszZ8Gn62jW7SzpyEAQFIZ+86LYcMNo3sP1Old+SIMsMK+smLd8sGksDX3n3yBujZraVNHAAAAABJJVVWVNm/eHLamQ4cOysjIsKkjAEAsVVZWatmyZVq8eLGWLFmiJUuWaN++fVF7fo/Ho379+umss87SueeeGzeTkxJZcXGxpk2bpilTpmjBggWqrq6u83OlpaWpoKBAF198sS666CL2FiDmvvrqK02ePFnTp0/Xjh076vVczZs31znnnKNRo0Zp4MCBcjgcUeoS0RIKhbR27VotXrz4pz9r1qyJWtDO4XCoa9euOv3003XuueeqX79+vA4AG8yYMUPffPONqdqbb75ZeXl5lvZjxvLlyzVjxgx98MEH+v7776P2OZSWlqZu3bqpf//+GjhwoE466SQdfvjhUXnueJLs3zWl8r5cwkUAACSwVL6IwW9t9Rbp7g/fClvz2PBRapvP6wMAELk7Zr2pXSUHDvn4Gd1665JjBtrYEZA61hbu0kOfvhu25pkRY9Q8N8+ehgAAAAAklGTf8AEAqL/du3drw4YN2rRpkzZu3KhNmzZpx44dKi0tVXl5ucrLy1VWVqba2lq53W5lZGQoLy9PzZo10+GHH66OHTuqS5cuOvroo3XMMccwJcRCfr9fX331lRYvXqz169dr8+bN2r59u8rKylRRUSG/36+MjAxlZ2crJydHrVq1UocOHdSpUycVFBSob9++ys7OjvWPARzU1q1b9eWXX+rbb7/Vpk2btGXLFhUWFqqiokKVlZUKhULKyspSdna2GjdurPbt26tDhw7q1auX+vfvr86dO8f6R0AdlJeX/zRF7sdz0ObNm+X1en86/5SXl6uysvKnaYfZ2dlq2rSpmjdvrrZt26pLly7q0aOHCgoK1KhRo1j/SAASTFlZmVasWKEVK1Zo48aN2r59u7Zv364DBw6osrJSPp9P1dXVSk9Pl9vtVk5Ojpo0aaKmTZuqZcuWat++vY444gj16NFDRx55pDIzM2P9I1ku2b9rSuV9uWmxbgAAAADR4a0sN6zJ8/BFMQCgbvIys8OGi7yVFTZ2A6SWYp/x+4vrPAAAAAAAANRVixYt1KJFCw0aNCjWrcBAZmamTjzxRJ144omxbgWIunbt2qldu3YaPXp0rFuBjXJyctS7d2/17t071q0ASFG5ubkaPHiwBg8eHOtWgJhzxroBAAAARIfRplOXw6ncDI9N3QAAkk2+QXDBTPgBQN14Dd5fWeluZaRxN1gAAAAAAAAAAAAAAFA3hIsAAACShNGm0zxPlpwOh03dAACSTX5W+HCR10+4CLCKUXgv35NjUycAAAAAAAAAAAAAACAZES4CAABIEkbhIjadAgDqw+g8UlxJuAiwipkQOQAAAAAAAAAAAAAAQF0RLgIAAEgSRne0z/OEnzgBAEA4RucRX221fDXVNnUDpBavrzzs44TIAQAAAAAAAAAAAABAfRAuAgAASBLGm04JFwEA6s7MecQo6Aqgbop9lWEf5zoPAAAAAAAAAAAAAADUB+EiAACAJOE12NDNplMAQH0QLgJixyhEzoRKAAAAAAAAAAAAAABQH4SLAAAAkkAwGFSJP/wd7dl0CgCoDzPnEaOgK4DI+WtrVFlTHbaGEDkAAAAAAAAAAAAAAKgPwkUAAABJoLTKp2AoFLaGTacAgPpwu9KU7c4IW0O4CIg+MxPBCJEDAAAAAAAAAAAAAID6IFwEAACQBMxs5iZcBACor3xPTtjHvb5ymzoBUoeZcBHXeQAAAAAAAAAAAAAAoD4IFwEAACQBc3e0D78hHAAAI0YBBjPnIwCRMRMiZ3IRAAAAAAAAAAAAAACoD8JFAAAAScBo06nL6VRuRqZN3QAAkpVRuMhMCAJAZIwmgmWlZygjLd2mbgAAAAAAAAAAAAAAQDIiXAQAAJAEjDad5mdmy+Fw2NQNACBZGU1HIVwERF+xrzLs40ahPwAAAAAAAAAAAAAAACOEiwAAAJKA0WZuo83gAACYweQiwH5GIXKu8wAAAAAAAAAAAAAAQH0RLgIAAEgCxQabufOz2HQKAKg/o3BRVW2NfDXVNnUDpAaj0B6TiwAAAAAAAAAAAAAAQH0RLgIAAEgChpOLMtl0CgCovzxPjmEN04uA6CJEDgAAAAAAAAAAAAAArEa4CAAAIAkY3tGeTacAgCgwMyHF6yu3oRMgdRAiBwAAAAAAAAAAAAAAViNcBAAAkOCCwaBK/JVha/JNTJoAAMBInifLsMZoygoA8/y1NfLVVIetyc/iOg8AAAAAAAAAAAAAANQP4SIAAIAEV1LlUygUCltjZtIEAABG0l1pysnIDFtjNGUFgHlmwnpc5wEAAAAAAAAAAAAAgPoiXAQAAJDgvL5yw5o8Np0CAKIkPzP8OcVbSbgIiBYzYT2u8wAAAAAAAAAAAAAAQH0RLgIAAEhwZjZxc0d7AEC0GAUZmFwERI+30jhEbhT4AwAAAAAAAAAAAAAAMEK4CAAAIMEV+8Nv4k5zupTjzrSpGwBAssvPCh9kMDovATDPKKyX7c6QOy3Npm4AAAAAAAAAAAAAAECyIlwEAACQ4IwmF+V5suRwOGzqBgCQ7PI9OWEfNzNpBYA5RmE9o0liAAAAAAAAAAAAAAAAZhAuAgAASHBGd7Q32gQOAEAk8jINJhf5KhQKhWzqBkhuRiHyfMJFAAAAAAAAAAAAAAAgCggXAQAAJLhiX/gJEWw6BQBEU35W+PNKVaBWvppqm7oBklsxIXIAAAAAAAAAAAAAAGADwkUAAAAJzuurDPs44SIAQDSZOa8YTdUDYI7XH/69lOfJsqkTAAAAAAAAAAAAAACQzAgXAQAAJDijyUV5hIsAAFFkJlxkNG0FgDnFlUwuAgAAAAAAAAAAAAAA1iNcBAAAkMACwaBK/EwuAgDYJy+TyUWAHfw11fLVVoet4ToPAAAAAAAAAAAAAABEA+EiAACABFbir1TIoIZNpwCAaEpzuZSb4Qlb4zWYqgfAmJmQHtd5AAAAAAAAAAAAAAAgGggXAQAAJLBiU5tOc2zoBACQSowCDWbOTwDCM/M+yiNcBAAAAAAAAAAAAAAAooBwEQAAQAIzc0d7Np0CAKLNKFxk5vwEIDyu8wAAAAAAAAAAAAAAgF0IFwEAACQwr6887OPpTpey3Rk2dQMASBVGgQbCRUD9Gb2PctyZcrvSbOoGAAAAAAAAAAAAAAAkM8JFAAAACazYYNNpnidbDofDpm4AAKmCyUWA9cxc5wEAAAAAAAAAAAAAAEQD4SIAAIAEZrR522jzNwAAdWF0fin2VSgUCtnUDZCcjCZUcp0HAAAAAAAAAAAAAACihXARAABAAjMKF3FHewCAFfI8OWEfrw7UqrKm2qZugOREiBwAAAAAAAAAAAAAANiFcBEAAEACM950Gn7zNwAAdWEm1GA0dQVAeMWEyAEAAAAAAAAAAAAAgE3SYt0AAAAA6s5o02l+FptOAQDRZy5cVKFWDRvb0A2Q+ILBoHaXerX5QKF2luxXRbVf+8pLwh7D5CIAAAAAAAAAAAAAABAthIsAAAASxK83nZZV+VTirwx7TF4mm04BANHX0JNlWDNt1RIt2bZe2e5MtWrYWB0aN1OL3Hw5nQxRBkKhkNYU7tKKnZu06cA+bTtQpKpAbUTPMWfDKhWWl6hPqyPUrVlLORwOi7oFAAAAAAAAAAAAAADJjnARAABAnIrGptOZa5Zrm7eQTacAgKj4+bnJ5XAqEAoesnb9D3u0/oc9v/hvGWnpapvfREc0as65CSmporpKC7as0acbVml3qbdez7W71KvdpV59uO4btWiQr5M79dTA9t2U7c6IUrcAAAAAAAAAAAAAACBVOEKhUCjWTQAAgLopKipSs2bNfvHfCgsL1bRp0xh1hGiI5qbTn2PTKQCgrjg3AfWzr6xY769eoUVb10YcFo9EhitN/dp11Vnd+6h5bp5l6wAAAABILFVVVdq8eXPYmg4dOigjg3+bAwAAAAAAILxk/64plfflEi4CACCBpfJFTDJi0ykAIN5wbgLqJxAMatbarzVt1RLVBAO2rZvudOmCngU6o2tvOZ1O29YFAAAAEJ+SfcMHAAAAAAAA7JPs3zWl8r7ctFg3AAAAkOrs3nRaFajV55u+15db1rDpFABwUJybgPrbVXJALy75RJv277N97ZpgQFO+WahlOzbpmoJT1LJhI9t7AAAAAAAAAAAAAAAAiYNwEQAAQAyx6RQAEG84NwH1EwyFNGvN13r3/7F33/FRlukax6+ZdEIChBI6oRMCofcu2AAFFKXYQMEVFEXFg+u6K+quq6KuIoqNIiC4gisiKIggvffeCRAIBEhI7zPnD9e6kHknmZl3kvl9Px/P2Q33PPc1w+R9s/G559m7yaOnFV3L8SsX9Nx38zQ4tpP6RbeW1WIxNQ8AAAAAAAAAAAAAAPBOfAwwAACACWx2u745uEPPfTfPlM3bv/XzptNvDu6QzW43NQsAwDzcm4Diy7cVaNqm5Zq/e73pg0U/+2lob72mbVqufC/JBAAAAAAAAAAAAAAAvAsnFwEAAHhYvq1AH25eoQ1xR8yO8oufN52euXpJf+p4o/ytfmZHAgB4EPcmoPhyC/I1Zf232nnulNlRrmlD3BFl5eXq8a59FejHrwQBAAAAAAAAAAAAAMCvOLkIAADAg3IL8vX2uqVetXn7tzbEHdHb65YqtyDf7CgAAA/h3gQUX76twKsHi36289wpvbv+O04wAgAAAAAAAAAAAAAAv8NwEQAAgIew6RQA4G24NwHFZ7Pb9eHmFV7/ffSzHedO6sPNK2Sz282OAgAAAAAAAAAAAAAAvATDRQAAAB7AplMAgLfh3gS4xtJDO7325K/r2RB3RN8e3ml2DAAAAAAAAAAAAAAA4CUYLgIAAPAANp0CALwN9yag+M6lJGnh3k1mxyiSBXs26VxKktkxAAAAAAAAAAAAAACAF2C4CAAAwM3YdAoA8Dbcm4DiK7DZ9MHm75VnKzA7SpHk2Qp+Og3MZjM7CgAAAAAAAAAAAAAAMBnDRQAAAG7EplMAgLfh3gS4xreHd+rElYtmxyiW41cuaCmngQEAAAAAAAAAAAAA4PMYLgIAAHAjNp0CALwN9yag+C6mXdXCvZvNjuESC/du1sW0q2bHAAAAAAAAAAAAAAAAJmK4CAAAwE3YdAoA8DbcmwDXWHxwR4k9/euP8mwFWnxwh9kxAAAAAAAAAAAAAACAiRguAgAAcBM2nQIAvA33JqD4MnJztDHusNkxXGpj3GFl5uaYHQMAAAAAAAAAAAAAAJiE4SIAAAA3YNMpAMDbcG8CXGPdqUPKKcg3O4ZL5RTka92pQ2bHAAAAAAAAAAAAAAAAJmG4CAAAwA3YdAoA8Dbcm4Dis9vtWnFsr9kx3GLFsb2y2+1mxwAAAAAAAAAAAAAAACZguAgAAMDF2HQKAPA23JsA1ziUeE4Jqclmx3CL86nJOpx4zuwYAAAAAAAAAAAAAADABAwXAQAAuBibTgEA3oZ7E+AaO+JPmB3BrbbHnzQ7AgAAAAAAAAAAAAAAMAHDRQAAAC7GplMAgLfh3gS4xomki2ZHcKuTpfz5AQAAAEBJZLfbObUZAAAAAAAAbsdwEQAAgIux6RQA4G24NwHFZ7PZdDrpktkx3Cou+ZJsNpvZMQAAAAAAv7Hp9FFtPnPM7BgAAAAAAAAo5fzNDgAAAFCa+NKmU6uVOXUAKAm4NwGucT41WTkF+WbHcKuc/DydT0tWzXIVzY4CAAAAAJCUlZerubvWySKpZfUohQQEmh0JAAAAAAAApRTDRQAAAC7EplMAgLfxlXvTO+u/VZnAIEmSXXbJrv/+5//+f7v9l3r7f7/605fsf6i71tf+97G/afGHr/127d/96R/WcZTr94/9tcVvv/ZrTvsfnrArnrfs9us8x0Ke97Uea/B5X/s5Ov+8r7neHxa0/+HPf/3aH16X3zzhArtvnOhzKimRn/MAAAAAwEt8uW+zrmZlSJL+s2+L7mndzeREAAAAAAAAKK0YLgIAAHChk0mJZkfwCDadAkDJ4Sv3pm3xJ8yOAJQK8VevmB0BAAAAACDp7NXLWnZk9y///bsju9S9XrRqla9kXigAAAAAAACUWlazAwAAAJQm8Sm+sRmTTacAUHL4yr0JgGuk5+aYHQEAAAAAfJ7dbtfM7atl+83Jv7b/fu23pwEDAAAAAAAArsJwEQAAgAtl5GabHcEj2HQKACWHr9ybALhGXkG+2REAAAAAwOetjzusw4nn/ufrhxPPaUPcERMSAQAAAAAAoLRjuAgAAMCF8goKzI7gEWw6BYCSw1fuTQBcI9/GNQMAAAAAzJSRm6PPdq277p9/tmudMvkAMAAAAAAAALgYw0UAAAAu5CubMX3leQJAacA1G4Az/K1+ZkcAAAAAAJ+2cO8mpWZnXffPU7IztWDvZg8mAgAAAAAAgC9guAgAAMCFfGUzpq88TwAoDbhmA3BGgJ+/2REAAAAAwGfFJV/S98f2Oqz7/tgenU6+5IFEAAAAAAAA8BUMFwEAALhQgJ9vbOBm0ykAlBy+cm8C4BplA4PMjgAAAAAAPslmt2vmth9lt9sd1tr/W2szUAsAAAAAAAAYwa5QAAAAFwoNDDY7gkew6RQASg5fuTdVCg1T9fAISZLlN1+3WCx/+JpF//2SLPrlP/zyny2/lv36579Z67fr/PQ1XedrhTz2N/1//dpv+1t++6XrfO03XYvy2D+sY/lDrmuv/d8//d3af/xaIY+95ut8vdf0j69fEf4+ftP/t3/XP+e81t/HtbP/9H+PXj6vVcf3q7SrWb6i2REAAAAAwCetPXlQxy4nGK4/ejlB604dUo96Td2YCgAAAAAAAL6C4SIAAAAXqlnONzZjsukUAEoOX7k33RXbSd3qRpsdA6VYvYgqPjFcVDeiitkRAAAAAMDnpOdka/7uDU4/bv6u9WpTs57K+siHywAAAAAAAMB9rGYHAAAAKE3q+chmTDadAkDJwb0JcI3q4RUU5Fe6P6cnyD9A1cMqmB0DAAAAAHzOF3s3Ki0ny+nHpeZkacGeTW5IBAAAAAAAAF/DcBEAAIALsekUAOBtuDcBrmG1WlUnorLZMdwqqkJlWa38uhAAAAAAPOnklYtaeWxfkR//w7G9Opl00YWJAAAAAAAA4IvYLQAAAOBCbDoFAHgb7k2A69SPiDQ7glvVK+XPDwAAAAC8jc1m04xtP8pejDXskmZu+1E2e3FWAQAAAAAAgK9j5w0AAICLsekUAOBtuDcBrtGmZn2zI7hV25r1zI4AAAAAAD7lx5MHXHLq0IkrF7X6xAEXJAIAAAAAAICvYrgIAADAxdh0CgDwNtybANeIrlJD1cIrmB3DLaqHV1CTKjXMjgEAAAAAPiM1O0v/3r3RZet9vnuDUrOzXLYeAAAAvMfq1atlsVgc/jNp0iSzowK/M2nSJEPv3dWrV5sdFQAghosAAABcjk2nAABvw70JcA2LxaIbG8aaHcMtbmwYK4vFYnYMAAAAAPAZ/96zQem52S5bLz03W//e47phJQAAAAAAAPgWhosAAABcjE2nAABvw70JcJ1udaMV5OdvdgyXCvLzV7e60WbHAAAAAACfcexygn48ccDl664+sV/HL19w+boAAAAAAAAo/RguAgAAcAM2nQIAvA33JsA1QgOD1DmqidkxXKpzVBOVCQwyOwYAAAAA+ASbzaaZ2350y9p2STO2/SibzeaW9QEAAAAAAFB6MVwEAADgBmw6BQB4G+5NgOvc3rSNAqx+ZsdwiQCrn25v2sbsGAAAAADgM344vk9xyZfctn5ccqJWHt/ntvXhm0aMGCGLxWLon7i4OLPjXldUVJSh5xAVFWV2VAAAAAAAPI7hIgAAADdh0ykAwNtwbwJcIzKsvAbHdjQ7hksMju2oyLDyZscAAAAAAJ+QkpWhL/ZsdHuff+/ZpJTsTLf3AQAAAAAAQOnhb3YAAACA0urnTafzd28wO0qxsekUAEoH7k2A6/Rt0lpbzx7XiSsXzY5SZA0qVlW/Jq3NjgEAAAAAPmP+7g3KzMt1e5/MvBzN371ej3S8ye29AADwZZMmTXJYExUVpREjRrg9CwAAAFBcDBcBAAC4EZtOAQDehnsT4Bp+Vqse6XiTnvtunvJsBWbHcVqA1U9/6nijrFYONgcAAAAATziceE5rTx3yWL+1Jw+pV/1maly5usd6AgDga1588UWHNT169GC4CAAAACUCuwcAAADc6OdNpwFWP7OjFAmbTgGg9OHeBLhOjXIRGhzbyewYRXJXi06qUS7C7BgAAAAA4BMKbDbN3P6jx/vO3PajCmw2j/cFAAAAAABAycNOHAAAADdj0ykAwNtwbwJcp190a3WJamx2DKd0iWqsvpz+BQAAAAAe8/3RPTp79YrH+565elnfH93j8b4AAAAAAAAoeRguAgAA8AA2nQIAvA33JsA1rBaL/tTxRrWuUdfsKIa0qVHvp9O/LBazowAAAACAT0jOytDCvZtN679w32YlZ2WY1h8AAAAAAAAlA8NFAAAAHsCmUwCAt+HeBLiOv9VPj3ft6/XfT21q1NO4rrfK3+pndhQAAAAA8Bmf7VynrPxc0/pn5eVq3q51pvUHAAAAAABAycBwEQAAgIew6RQA4G24NwGuE+jnr/Hd+nntiWBdohrriW59Fejnb3YUAAAAAPAZBy/Ga+PpI2bH0Ia4Izp0Md7sGAAAAAAAAPBiDBcBAAB4EJtOAQDehnsT4Dr+Vj+N6XSzhrXsqgAvGYYLsPppeKuuGtPpZgb0AAAAAMCD8m0Fmrn9R7Nj/GLm9tXKtxWYHQMAAAAAAABeiuEiAAAAD2PTKQDA23BvAlzHarHotqZt9Mqtw1W/YqSpWRpUrKpXbh2u/tFtZLVYTM0CAAAAAL7mu8O7dS4lyewYv4hPuaJlR3abHQMAAAAAAABeio/9BQAAMMHPm05b16irDzZ/rxNXLpqWpUHFqvpTxxtVo1yEaRkAAObj3gS4Vo1yEZp049369vBOLdy7WXke/HToAKufBsd2Ur8mrWS18tlCAAAAAOBpVzLT9J/9W8yO8T++3LdFneo0UsUyYWZHAQAAAAAAgJdhuAgAAMBEbDoFAHgb7k2A6/hZrbqtaVu1r9VAiw/u0Ma4w8opyHdbvyA/f3WOaqLbm7ZRZFh5t/UBAAAAABRu7s51ysnPMzvG/8jJz9NnO9fp8a59zY4CAAAAAAAAL8NwEQAAgMnYdAoA8DbcmwDXigwrr9EdeuueVl217tQhrTi2V+dTk122fvXwCrqxYay61Y1WmcAgl60LAAAAAHDevoTT2nLmmNkxrmvzmWPqdeGMmletbXYUAAAAAAAAeBGGiwAAALwEm04BAN6GexPgWmUCg3Rz45a6qVELHU48p+3xJ3Uy6aLikhKdGuAL8g9QVIXKqhcRqbY166lJlRqyWCxuTA4AAAAAMCKvIF+ztq82O4ZDs7av1qu3DleAH1tGAAAAAAAA8BN+UwQAAOBl2HQKAPA23JsA17JYLIqOrKnoyJqSJJvNpvNpyTqVlKj4q1eUnpujvIJ85dsK5G/1U4Cfv8oGBqlm+YqqG1FF1cMqyGq1mvwsAAAAAAB/9O3hXUpIu2p2DIcSUpP13eFduj2mndlRAAAAAAAA4CUYLgIAAPBSbDoFAHgb7k2Ae1itVtUsV1E1y1U0OwoAAAAAoIguZaTqq/1bzY5h2Ff7t6pzVGNVCg03OwoAAAAAAAC8AMNFAAAAJQSbTgEA3oZ7EwAAAAAAwE/m7FirXCdOeDZbTkG+5uxYqye79zc7CgAAAAAAALwAw0UAAAAAAAAAAAAAAABFtOvcKW2PP2F2DKdtiz+h3efj1LJ6lNlRADjp1KlTWrlypfbt26d9+/bpzJkzSk1NVWpqqmw2m8qUKaOwsDDVrl1bdevWVevWrdWlSxe1adNG/v6lb7tYSkqKfvjhB+3Zs0cHDhzQ0aNHdfXqVaWmpiojI0MhISEKCwtTlSpVFB0drZiYGPXq1UsdO3aUn5+f2fFdLjs7W2fPnlVqaqoyMzOVkZEhf39/hYaGqmzZsqpZs6YqVKhgdkyPSUhI0I8//vjLe+PYsWNKTk5Wenq60tPTZbfbFRoaqvDwcFWtWlWNGzfW7NmzzY6NEurUqVNavXq1Dh8+rCNHjujEiRO6evXqL+83Pz8/lSlTRuXLl1fVqlXVpUsXTZ482bS8ly5d0ooVK7Rv3z4dOHBAx48fV0pKitLS0pSZmanQ0FCFhYWpWrVqv1w/e/furTZt2shisZiW210yMjIUHx+vtLQ0ZWRkKCsrS4GBgb+7r4aFhZkd0yVsNpu2b9+uVatW6cCBAzp06JASEhJ++bv/+TmXK1dODRo0UExMjGJjY9WnTx9VrlzZ7PgAADcpff9rEQAAAAAAAAAAAAAAwANyC/I1e8cas2MU2afbV6tpv3sV6Mf2EcAdoqKidPr06UJr6tSpo7i4OIdrXblyRdOmTdOCBQu0d+/eQmtTUlKUkpKi+Ph4bdy4UZ999pkkqXLlyho8eLAeeeQRxcbGGn4e3igvL0/z5s3T3LlztWbNGuXl5V239udN/QkJCdqzZ88vXy9fvrwGDx6sRx99VC1btvRAate7cuWKNmzYoA0bNmjz5s06fvy4EhISZLfbC31cuXLl1KhRI3Xq1EldunRRnz59FBER4aHU19azZ0+tWeP4nurouUnS2bNn9dFHH2nx4sUOv18k6erVq7p69arOnDmjI0eO/PL1uLg41a1b1+HjC7NmzRqXDmEYvWagcK68Ph8+fFgffvihli5dqmPHjhVam5+fr5ycHCUnJ+vUqVPKzMx0JrZLZGRkaMaMGfr888+1efNm2Wy269b+PLh67tw5bd++/ZevV65cWUOHDtXYsWPVpEkTT8R2uYSEBK1bt04bNmzQ1q1bdfLkSSUmJjp8XKVKldS4cWN17txZXbt21Q033KCyZct6ILFrHDx4UO+//77+/e9/6/Lly9etS0tLU1pams6fP69Dhw7pm2++kSRZrVZ16tRJQ4cO1ciRIxUaGuqp6AAAD7CaHQAAAAAAAAAAAAAAAKAkWnJwhy6mp5gdo8gupqdoycEdZscAUIjLly/riSeeUO3atfXXv/7V0KDE9Vy6dEnTpk1Ty5YtNXDgQB0/ftyFSR2Li4uTxWJx+M+IESOuu0ZBQYHeeecd1atXTyNGjNAPP/xQ6GBRYa5evapPPvlErVq1Up8+fX43eOTNUlJSNH36dN14442KjIzUgAED9Prrr2vt2rU6f/68oeGblJQUbdu2TVOmTNGQIUNUtWpV9evXT/Pnz1d+fr4HnoV77N+/X4MHD1bdunX197//vVjfL6XF6tWrDX3fTZo0yZR8s2bNMpRv1qxZpuQrzPr163XTTTepadOmevvttx0OFpktKytLkyZNUu3atfX4449r48aNhQ4WFebSpUt69913FR0drdtvv11Hjx51cVr3SExM1JQpU9SlSxfVqFFDQ4YM0ZQpU7R582ZDg0XST/flDRs2aPLkyRowYICqVKmiu+++W0uWLDF0/TXL4cOH1b9/f8XExOi9994rdLCoMDabTRs2bNC4ceNUp04dvfjii8rKynJxWgCAWRguAgAAAAAAAAAAAAAAcNLF9BR9fXCb2TGK7euD25RYggekgNLss88+U3R0tKZMmeLS0y3sdru+/vprxcbG6q233nLZuu62f/9+dejQQePHj1d8fLxL1165cqVat26tcePGKTs726Vru8qFCxc0ceJE1a5dW6NGjdIPP/yggoICl6ydl5enb7/9VsOHD1fDhg01bdq0EjVklJ6ergkTJqhVq1b68ssvXfa6ANdy6dIljRw5Ut27d9eKFSu8eqDkZ2vXrlVsbKxefPFFJSUluXTtb775Rs2aNdOf//znIg97utuJEyf0yCOPqHbt2nriiSe0ceNGl/29ZWVlacGCBbrtttsUGxurzz//3CXrukpeXp4mTpyo5s2ba+nSpS5d+8qVK5o0aZJiY2O1du1al64NADAHw0UAAAAAAAAAAAAAAABOmr19jfJKweblvIICzd6xxuwYAH4jJydH99xzj+69994inyxgRFZWlp5++mndd999ys3NdVsfV/j888/Vpk0b7djhvtPWbDabpk6dqg4dOujIkSNu6+Os3Nxc/f3vf1e9evX0+uuvKzU11a394uLiNHbsWLVp00abN292ay9XOH78uNq1a6c333yzRA1EoWTatm2bWrZsqVmzZpWIoSJJev3119WzZ0+3nlaXl5enV199Vd26dVNcXJzb+jgrLS1NTz75pBo3bqwPP/xQOTk5bu23f/9+DRs2TD179tShQ4fc2suIuLg4denSRa+//rpbr4/Hjx9Xz5499dprr7mtBwDAMxguAgAAAAAAAAAAAAAAcMKO+JPadf6U2TFcZue5U9oRf9LsGAD004kYvXr10rx58zzWc+7cuRo6dKjXnvby1ltvafjw4R4bgNq7d686d+6srVu3eqRfYbZs2aLY2Fj99a9/VVZWlkd77927V126dNHLL7/stUMU69atU4cOHXT48GGzo8AHLFy4UD169ND58+fNjmKI3W7X448/rokTJ3rse3jLli3q1KmT9u3b55F+hVm6dKmaNGmit99+2+P3tzVr1qhVq1b65JNPPNr3t/bu3auOHTtq2zbPnLRqt9v17LPPaty4cbLZbB7pCQBwPYaLAAAAAAAAAAAAAAAADMrJz9OnO1abHcPlZu9Yo1xOfABMlZycrN69e2vTpk0e7/3VV19p3LhxHu/ryEcffaSnn37a48MtSUlJ6t27t9auXevRvr81bdo0de/e3dRTlGw2m/72t79p4MCBHh9ucmTnzp3q16+fkpKSzI4CH/Ddd99p2LBhXvd9UJiJEyfq3Xff9XjfCxcuqEePHtq+fbvHe0u/Xrduu+02UwfBcnJyNHr0aI0ZM8bjwzbbtm1Tjx49dPHiRY/2laSpU6dq4sSJHu8LAHANhosAAAAAAAAAAAAAAAAM+vrAdl3OSDM7hstdykjV1wc988nmAP5XRkaG+vXrZ+ppD9OmTdOCBQtM6/9HK1eu1KOPPmpa//T0dA0YMECHDh3yaF+73a6xY8dq7NixHjutyZHFixerf//+yszMNDuKJOnUqVPq27ev0tJK3/0Y3mfbtm266667lF+ChrA/+eQTTZ482bT+ycnJ6tevn06d8uxJnzk5ORo0aJBXnbj2wQcf6P777/fY6UknT55Uv379dPXqVY/0u5Y33njD1FObAABF5292AAAAAAAAAAAAAAAAgJIgITVZSw7tMDuG23xzcIe6RjVRtfAKZkcBfM6oUaMMnVgUFBSktm3bqnXr1qpXr54qV66s0NBQFRQUKDU1VadPn9bOnTu1bt26Im0sHjNmjPr06aMKFcy9DiQmJmrIkCGGNvOHhoaqR48eio2NVYMGDRQeHq6AgAClpqYqISFBBw8e1Nq1axUXF+d0jqtXr6pv377aunWrKleuXIRn4hybzaZRo0Zp5syZbu/lrFWrVun222/XsmXL5O9v3rbDgoICDRs2zNCJHFarVc2bN1f79u1Vv359VatWTaGhobJarUpLS9OVK1d08OBB7dy5Uzt37vRAepQ06enpGjJkiDIyMhzW+vv7q3Xr1mrTpo3q16+vyMhIhYaGymazKS0tTYmJiTp48KC2bt3q1qHF/fv3Gx7MjIiIUK9evRQTE6OoqCiFhYX98v1x9uxZHTx4UKtXr1ZCQoLTORITE3Xrrbdq69atCg8Pd/rxzsrOztagQYO0bNkyt/dy1meffSY/Pz99+umnbu2TkpKivn376tKlS0V6fFRUlLp3767o6GhVr15dYWFhys/PV2pqqk6ePKn9+/dr9erVSk1NdbjW2LFj1aFDhyLlAACYh+EiAAAAAAAAAAAAAAAAB+x2u2ZtX618m2c+ddwM+bYCfbpjjSb2HCCLxWJ2HMBnfPTRR/r8888Lrbn55pv10EMPqX///goJCXG4Zm5urpYsWaJXXnlFO3YYH4q8cuWKXnzxRb399tuGH+MOjz32mK5cuVJoTbdu3fTEE0+of//+CgoKcrjm3r17NW3aNH366afKysoynCUuLk6jR4/WokWLDD+mqB599NEiDxY1bNhQffr0UevWrRUdHa2aNWsqIiJCISEhstlsSk9PV3x8vI4ePapNmzbp22+/1eHDh53qsXLlSo0fP15Tp04tUkZXeP3117Vly5ZCa1q2bKmHH35Yd999typWrGho3fj4eM2ZM+d3r39UVFShp58YuVf26NFDq1evNpQB3ufpp592ePpOt27dNHr0aA0aNEhly5Y1tO6xY8c0ffp0bdy40RUxf1FQUKCRI0cWeuqZxWLRwIED9dhjj6lnz56yWq0O1926daumTZumzz77THl5eYbzHDlyRGPHjtXcuXMNP6YobDabBg8eXOTBotjYWPXq1UutW7dWo0aNVKtWLZUrV04hISHKy8tTenq6zpw5o8OHD2vDhg1asmSJzpw541SP2bNnq3nz5powYUKRMhoxduxYHTlyxKnHlClTRiNHjtQjjzyiZs2aOazPz8/X999/r/fee0/ffvvtdevy8vL04IMP6pZbbnEqDwDAXBa7t5z9BwAAnHbp0iVVqVLld19LTEz0yCcmAQAAAAAAAAAA75eTk6OTJ08WWlOvXj1Dm7J93dYzx/T2+utvoCtNxnfrp/a1GpgdA15ixIgRhj9p/9SpU4qKinJvoCKKiorS6dOnHdbVqVOnSCfcFLVn2bJlVVBQcN1hlw4dOmjq1Klq27ZtkTLY7XZNnTpVEyZMKHSz+W8FBQXp7NmzLv/3znFxcapbt67Dulq1auns2bOF/vm7776rAQMGFCnH6dOnNW7cOH3zzTdOPe7jjz/WqFGjitTTiKlTp2rcuHFOPaZcuXIaNWqURo0apSZNmjjdc8eOHZo8ebK++OKLQodo/mjOnDm69957ne5XmJ49e2rNmjUO6wIDA6/7Xq5Zs6befvtt3XHHHUUeks3JyTH8c1FJGC5avXq1evXq5bDuhRde0KRJk9wf6A9mzZqlkSNHOqybOXOmRowY4bK+Rq7PAQEBhQ7SNG3aVFOnTjX0+l6P0feb0b/H6tWr6/z589f981atWumDDz5Q+/btncr5s5+HhVatWuXU4+bNm6dhw4YVqacREyZM0JtvvunUY6pWrao//elPevDBB1W7dm2nHmu327V69Wq99tprWr58ueHH+fn5aeXKlerRo4dT/YyYP3++hg8f7tRj7rzzTr399tuqWbNmkXquXbtWY8aM0cGDB69b4+g9+bMff/xRPXv2LFIOAJ5X2n/X5Mv7ch2PHAMAAAAAAAAAAAAAAPiw7Pw8zd651uwYHjNnxxpl5xv/VHoARZeenn7NwSKr1aqXX35ZGzduLPJgkfTT8MO4ceO0bNkyQyceST9tFpw2bVqRexZXYYNFvXv31s6dO4s8WCT9NEC2ePFivfHGG4ZO7PjZM888o8uXLxe5b2HWrl2rJ5980nC9n5+fJkyYoFOnTumNN94o0mCRJLVp00aff/65Nm7cqKZNmxp+3BNPPKGLFy8WqWdxXW+waNCgQdq/f7/uvPPOYp2+V1I3wcL1ChssGjt2rHbu3FmswSLJ9e+3woY4Ro8erU2bNhV5sEiSGjdurBUrVuiFF15w6nHjx49XampqkfsWZt68eU4NFoWEhOif//ynTpw4oUmTJjk9WCT9dG/t1auXli1bpqVLl6pGjRqGHldQUKBRo0Y5dXqeEampqRo/frzhen9/f02bNk0LFy4s8mCRJHXv3l3btm0rdKjJyGARAMB7MFwEAAAAAAAAAAAAAABQiK/2b1FSZrrZMTzmSma6Fu3fanYMwGcFBAToiy++0PPPP+/U8EthevXqpblz5xqunzlzpkv6ulL//v317bffqlKlSi5Z7+mnn9asWbMMv8ZXr151ekO9EZmZmRo5cqTy8/MN1detW1dbtmzR5MmTVaFCBZdk6Nixo7Zu3ao777zTUH1SUpKeeOIJl/R2hbFjx2rhwoUqV66c2VHgA1599VW99957JWoQ7f/+7//00UcfuSSz1WrVpEmTNHXqVMODfImJifr73/9e7N5/lJCQoMcee8xwfevWrbV37149++yzKlOmjEsy9O3bV7t27VK3bt0M1R8/flwvvviiS3r/7OWXX1ZiYqKh2p9/xnjkkUdc0rtMmTKaO3euxo4d65L1AADmYrgIAAAAAAAAAAAAAADgOs6lJOnbQ7vMjuFxSw/v1LmUJLNjAD7HYrFo7ty5hoc8nHHHHXdoxIgRhmrj4uK0fft2l2coqvbt22vhwoUKDAx06br33XefJk+ebLj+ww8/1PHjx12a4bnnntPJkycN1Xbq1Enbtm1TmzZtXJpBkkJDQ/Xvf/9b9913n6H6L774Qrt373Z5DmcNGzZMU6dOddkgHlCYZ599VhMnTjQ7hlPuv/9+vfbaay5f99FHH9Vf/vIXw/XvvPOOEhISXJphzJgxSk5ONlQ7YMAArV+/Xg0aNHBpBkmqXLmyli9frj59+hiqnzJlistei/Pnz2vKlCmG6z/44AMNGjTIJb1/ZrFYNHXqVA0ePNil6wIAPI+fqAEAAAAAAAAAAAAAAK7Bbrdr1vYfVWC3mR3F4wpsNs3avlp2u93sKIBPee6553T33Xe7bf1XXnnF8GkN33zzjdtyOKNChQr68ssv3XZKyFNPPWV4Q3RBQYH+9a9/uaz3kSNHNHXqVEO1bdu21bJly1SxYkWX9f8jPz8/TZ8+XTfccIPDWrvdrr/97W9uy2JEdHS0PvnkE8OnpwDF0atXL/3jH/8wO4ZTYmNj9eGHH7pt/Zdeekk333yzodrc3FynhmAc+eGHH/T1118bqu3Xr58WLFigkJAQl/X/o5CQEH355ZeKiYlxWJuVlaV//vOfLuk7ZcoU5ebmGqp9+OGH9eCDD7qk7x9ZLBZ9+umnatKkiVvWBwB4BsNFAAAAAAAAAAAAAAAA17Dp9FEduBhvdgzTHLh4VpvPHDM7BuAzYmNjNWnSJLf2qFatmoYPH26odt26dW7NYtQbb7yhmjVrurXHe++9p4iICEO1s2bNUlKSa052+9vf/qaCggKHdZGRkVq0aJHCw8Nd0rcwAQEB+uyzzwwNMS1ZskQnTpxwe6ZrsVgsmjVrluFhOaA4QkJCNGvWrBJ1Qpafn59mzJih4OBgt/WwWCz66KOPFBYWZqj+ww8/VEZGhkt6P//884bqoqOjNX/+fAUEBLikb2HCw8P1+eefGxqGnTFjhtLS0orVLyMjw/DwWK1atfTGG28Uq58jZcqU0fTp00vU9wkA4Pe4ggMAAAAAAAAAAAAAAPxBVl6u5u7yjo31Zpq7c62y8ox9GjqA4nnnnXfk7+/v9j5GTy3YsmWLocEXd2rXrp3bTln4rSpVqhge7MrMzNS8efOK3fPgwYNasGCBodqPPvpINWrUKHZPo6pWrapXX33VYZ3dbtf06dM9kOh/3XPPPWrfvr0pveF7nn76adWuXdvsGE4ZOXKk2rRp4/Y+tWvX1jPPPGOoNjk5WYsWLSp2z++++05btmxxWOfn56e5c+caHn5yhWbNmmnChAkO6zIyMjR//vxi9frqq6909epVQ7X//Oc/PfI6dO7c2fAQMwDA+zBcBAAAAAAAAAAAAAAA8Adf7tusq1mu+WT1kiw5K0P/2ed48yaA4unRo4d69uzpkV4dO3ZUZGSkw7rMzEydPHnSA4mu78UXX/RYr4cfftjwCUmff/55sft98MEHstvtDutuu+023X777cXu56yRI0eqYcOGDutmz55t6Hm4ksVi0XPPPefRnvBdZcqU0ZNPPml2DKcEBATor3/9q8f6jR8/3tBpZ5KKPVAjSdOmTTNUN3bsWLVu3brY/Zz1f//3fypfvrzDuk8//bRYfYy+lk2bNtWwYcOK1csZL774ovz8/DzWDwDgOgwXAQAAAAAAAAAAAAAA/MbZq5e17Mhus2N4je+O7NLZq5fNjgGUamPGjPFYL4vFoq5duxqqPXz4sJvTXF/jxo116623eqxfUFCQHnnkEUO1GzduVHx8fJF7ZWdna+7cuYZqX3rppSL3KQ4/Pz+NHTvWYd25c+e0Z88eDyT6Ve/evRUdHe3RnvBdw4cPV0REhNkxnDJo0CCPnrQUFhamkSNHGqr9/vvvDZ+2cy3nzp3Tt99+67AuJCTEtCHE8PBwPfDAAw7rNm/erKSkpCL1uHr1qlasWGGo9rHHHpPV6rnt4vXq1dNtt93msX4AANdhuAgAAAAAAAAAAAAAAOC/7Ha7Zm5fLZuHT2HwZrb/viaePpkC8BVly5bVwIEDPdqzXbt2hupOnDjh5iTXN3r0aI/3fPDBBw2dtmC32w1v6r6WxYsXKzk52WFdjx491LJlyyL3Ka7hw4fLYrE4rFu2bJkH0vxqyJAhHu0H31YS328PP/ywx3savWbn5eVpzZo1Re7z2WefqaCgwGHd3XffrapVqxa5T3Hde++9DmtsNpu+//77Iq2/evVq5eXlOawLCQkxlMXVzHgPAgCKj+EiAAAAAAAAAAAAAACA/9oQd0SHE8+ZHcPrHE48pw1xR8yOAZRKN9xwg4KCgjzas1GjRobqLl686OYk1zd48GCP96xWrZo6d+5sqPbHH38scp8lS5YYqhsxYkSRe7hClSpVDA2irV271gNpfmKxWDRgwACP9YNvK1eunHr27Gl2DKdERESYkrlRo0Zq1qyZoVpfuH62adNGkZGRDuuKev00+hreeOONCgsLK1KP4ujTp4/KlSvn8b4AgOJhuAgAAAAAAAAAAAAAAEBSRm6OPtu1zuwYXuuzXeuUmZtjdgyg1OnRo4fHe9atW9dQnVnDRc2aNVOdOnVM6W10cKWoJ2/Y7XYtX77cYZ3ValW/fv2K1MOVOnbs6LBm165dHkjyk+joaFWuXNlj/eDbunTpIn9/f7NjOOXWW281dAKbO9x+++2G6oo6UJOSkqJNmzY5rKtQoYK6detWpB6uYrFY1KFDB4d1Rb1+rltn7H+z3HbbbUVav7gCAgJ06623mtIbAFB0DBcBAAAAAAAAAAAAAABIWrh3s1KyM82O4bVSsjO1YO9ms2MApU7Lli093rNSpUqG6lJSUtyc5NrMPCmke/fuhurOnDmj5ORkp9fft2+fEhMTHdbFxsZ6xRBNixYtHNZcuHBBFy5c8EAaGT5ZCnCFkvh+M3OopmvXrobqDh48qIKCAqfXX7NmjfLz8x3W9ejRw7QBq98ycv3cu3evbDabU+vm5+fr4MGDhmrNfD+YPeAFAHAew0UAAAAAAAAAAAAAAAAAYJLGjRt7vGf58uUN1eXkmHNaWadOnUzpK/007BUcHGyo9sCBA06vv337dkN17dq1c3ptd6hdu7ahumPHjrk5yU+aNm3qkT6AVDLfb2ZeP42cdCb9dG8pyjWjNF4/MzMzde7cOafWPXbsmKH7c0REhCk/Y/zMzPciAKBoGC4CAAAAAAAAAAAAAACQdFdsR5ULLmN2DK9VPriM7oo1tmkUgDF+fn6qWrWqx/sGBQUZqjNruMjIaQ/uEhAQYHigoCjDRbt27TJU5y1DDVWqVDFUFx8f7+YkPzFzozx8T0l7v/n5+Sk6Otq0/hUqVFCNGjUM1R46dMjp9bl+/sToaxcTE+PUuq4WHR0tq5Vt6gBQknDVBgAAAAAAAAAAAAAAkFQmMEj3tOpmdgyvNbxVN5UJNDaQAMCY8PBw+fn5ebxvQECAobr8/Hw3J/lfVqtVDRo08Hjf32rYsKGhujNnzji99t69ew3VRUVFOb22O4SEhBiq89RwUfXq1T3SB5BK3vstKirK8PXdXRo1amSoztnTeiSunz8z+toZ/btwl+DgYMOn3wEAvIO/2QEAAAAAAAAAAAAAAAC8RZeoxlp1Yr8OJzq/4bE0i65SQ12iStan9wMlgdGNx2ax2+0e71m9enXDJyu5S/369Q3VJSQkOL326dOnDdUNGjTI6bXNlJSU5JE+kZGRHukDBAYGqnz58mbHcIo3DNUYzeDs9bOgoMDwUE2rVq2cWttszl4/jb523vJ+iIuLMzsGAMAgTi4CAAAAAAAAAAAAAAD4L4vFopFte8pqsZgdxWtYLRaNbNtLFl4TwOXMPmHCG1WpUsXsCIYzOLs53m636/z580WJ5PWysrI80icsLMwjfYCS+F6rXLmy2REMZ3D2+pmQkKCCgoKiRPJ6zl4/L1y4YKjOG94P3nBPBwAYx3ARAAAAAAAAAAAAAADAb9QqX0m3NG5pdgyvcWvjVqpZvqLZMQD4iJK0GTo5OdmpdRMTE5WXl1eUSF7PU8NFZp9qBd9REt9rlSpVMjuC4Wt4WlqaU+saPbWoJHL2+pmammqoriS9HwAA3oHhIgAAAAAAAAAAAAAAgD+4s3lHVQgJNTuG6SqEhOqO5h3MjgHAh5QtW9bsCAoNNXb9z87Odmrdq1evFiFNyZCbm+uRPpz2BU8pie+1kJAQsyMYzpCTk+PUulw/f2X0tStJ7wcAgHdguAgAAAAAAAAAAAAAAOAPQgICdU+rbmbHMN29rbsrJCDQ7BgAfEhgoPnXHKMnljg7XOSp033MYLfbzY4A+DxvOG2J66fznL1+Gn3tStL7AQDgHRguAgAAAAAAAAAAAAAAuIZOdRopJrKm2TFM06xqLXWs3dDsGDCZxWIxXJuXl+fGJMVj9FQAZ54v3MMbTgsxmsHZ97yzm+kBwBnecA+zWo1tS7bZbE6ty/XzV0Zfu5L0fgAAeAeu2gAAAAAAAAAAAAAAANdgsVg0om0v+fngpjg/q1UPtOnpFZsSYS5nTpExOsBjBqPZ+IR983nDkJrRDM6esuQNzw1A6eUN9+GcnBxDdc7eb7l+/sroa1eS3g8AAO/ge7/9AgAAAAAAAAAAAAAAMKhGuQj1bdLK7Bge169Ja9UoF2F2DHiB4OBgw7XesIn1eoxmc+b5wj284X3krs3xvL8AuJM3DHIYzeDs9ZDr56+MvhYl6f0AAPAO/mYHAAAAAAAAAAAAAAAA8GaDmnXQxrgjupKZbnYUj6hYpqwGNmtvdgx4CWc28169etV9QYohPz9faWlphmpDQkLcnAaOpKebf601msHZze7OvL9WrFihPn36OLU+AN+WlJRkdgRduXLFUF2ZMmWcWteZ6+exY8fUoEEDp9YvSUJDQw3VlaT3AwDAO3ByEQAAAAAAAAAAAAAAQCGC/QN0X+vuZsfwmPva9FCwf4DZMeAlypYta7jWWzeQOrO51pnnC/e4dOmS2REMZ4iIcO6EN6MbwiUpOzvbqbUBoCRdPyMjI51al+vnr6pUqWKozhveD4mJiWZHAAA4geEiAAAAAAAAAAAAAAAAB9rVaqDYanXMjuF2LarVUbua9c2OAS9StWpVw7XesIn1WpzJ5czzhXtcvHjR7AiGN0M7+35xZjO9N5zgBLhbbm6u2RFKlXPnzpkdwXCGatWqObUu189fGX3tStL7AQDgHRguAgAAAAAAAAAAAAAAcMBiseiBNj3kb/UzO4rb+Fv9dH+bHrJYLGZHgRepXr264dpTp065MUnROZPLmecL9zh//rzpp04cP37cUJ2zm+PLlCmjihUrGqo9f/68U2sDJVFWVpbZEUqV48ePy263m5rh6NGjhuqcvX7Wrl3bcG1pv34afe2M/l24i81m04kTJ0zNAABwDsNFAAAAAAAAAAAAAAAABlQLr6D+0W3MjuE2tzVto2rhFcyOAS9To0YNw7UnT550Y5Kic2ZjqzPPF+5ht9tN34x87NgxQ3XObHb/WZ06xk7BO3PmjNNrA3/k7+9vqC4/P9/NSa7typUrpvQtrTIzM029duTm5hr+WaBhw4ZOrV22bFlFREQYqi3t10+jr93hw4fdnKRwcXFxpg8LAwCcw3ARAAAAAAAAAAAAAACAQQNi2qpyaLjZMVyucmi4BjRtZ3YMeKGGDRsaPs3q0KFDbk5TNM5srm3UqJEbk8Co3bt3m9Y7Ly/P8Hs5JibG6fWjo6MN1e3fv9/ptYE/CgoKMlSXm5vr5iTXdu7cOVP6lmZbtmwxrffOnTsNDapZLBaun8UQExNj6GezuLg4JSYmeiDRtW3evNm03gCAomG4CAAAAAAAAAAAAAAAwKAg/wDd36aH2TFc7v42PRRo8HQD+JbQ0FDVq1fPUO3hw4eVnp7u5kTO27Ztm+HaFi1auDEJjNq0aZNpvXft2mX4pIVmzZo5vX67dsYGOXft2uX02sAfGR0uunr1qnuDXMeRI0dM6VuabdiwwbTeGzduNFRXt25dlSlTxun1jV4/d+7c6fTaJUloaKjq1q1rqLYkvB8AAN6D4SIAAAAAAAAAAAAAAAAntKlZT62qG9vQVxK0rlFXbWoaGx6Bb4qNjTVUZ7PZnBrk8YSsrCzt3bvXUG2lSpVUrVo1NyeCEatXrzat99q1aw3V1a5dW+XLl3d6/fbt2xuqS0pKMvUEJzhm9FQ3M5UrV85Q3aVLl9yc5H/Z7XbD12cYt2zZMtN6f/vtt4bqOnfuXKT1jV4/9+7dqytXrhSpR0nRqVMnQ3Xfffedm5Ncn9H3AwDAezBcBAAAAAAAAAAAAAAA4KT72/ZQgJ+f2TGKLcDPr1SexATX6tixo+Ha5cuXuzGJ81atWqW8vDxDtR06dHBzGhh14MABxcXFmdJ78eLFhup69uxZpPXbtGmjsLAwl2aBOQICAhzW5OfneyDJ9VWpUsVQnRnfbzt37lRaWprH+5Z2R48e1aFDhzzeNzk52fBwZq9evYrUo0ePHoaG+goKCrR06dIi9SgpjL6G33zzjWw2m5vT/K+9e/fq1KlTHu8LACgehosAAAAAAAAAAAAAAACcFFm2nAY0bWd2jGIb0LSdqpQ1dqoBfNeNN95ouHbJkiVuTOI8Z/I48zzhfgsXLvR4z4SEBG3cuNFQbVGHiwIDA3Xrrbcaqp07d67sdnuR+sD9AgMDHdZkZWV5IMn1hYSEKDw83GHd8ePHPT6AYOYJO6XdzJkzPd5z7ty5hod5izpcVL16dbVrZ+zn79mzZxepR0lxww03GKq7cOGCKd9r06dP93hPAEDxMVwEAAAAAAAAAAAAAABQBP2btlFkCR7MiSxbTv2btjE7BkqAli1bGj794sCBA9q9e7d7AxmUk5OjL774wnD9zTff7MY0cNYnn3zi8Z4zZsxQQUGBwzqLxVKsYbRBgwYZqjt27Ji+//77IveBexk5gSo5OdkDSQpXv359hzXp6ekeP+1mzpw5Hu1mC4DIAAEAAElEQVTnS2bOnOnRwTa73a4PPvjAUG3Lli1Vt27dIvcyev1ctWqVjhw5UuQ+3q5u3bpq0aKFodr333/fzWl+Lz09vdQPdwFAacVwEQAAAAAAAAAAAAAAQBEE+vnrgbY9zY5RZCPa9lSgn7/ZMVACWCwW3X777YbrjW4wdreFCxcqKSnJUG3Dhg3VpEkTNyeCM44cOaLvvvvOY/1ycnIMv3c7d+6smjVrFrnX7bffrvLlyxuqfeGFF4rcB+5VuXJlhzUJCQkeSFI4o9e2NWvWuDnJr1auXFmqBz/MdvnyZb333nse67dgwQIdPHjQUO3QoUOL1euee+6Rn5+fwzq73a6//vWvxerl7Yy+lkuXLtX27dvdnOZXb7/9tq5eveqxfgAA12G4CAAAAAAAAAAAAAAAoIhaVo9S25qOTwTwNu1q1leL6lFmx0AJMmLECMO1s2bN0tmzZ90XxoCCggL94x//MFw/cuRIN6ZBUXlysOajjz5SfHy8odribo4vU6aMHnroIUO1W7Zs4YQXLxUZGemwJjs72/D7yl2aN29uqO6bb75xc5JfTZo0yWO9fNWrr76qy5cvu71PTk6O4SEePz8/DRs2rFj9atWqpYEDBxqqXbBggdauXVusft5s+PDhslqNbQN/5pln3JzmJxcuXNAbb7zhkV4AANdjuAgAAAAAAAAAAAAAAKAY7mvTvUSdABTk56/72nQ3OwZKmC5duqhhw4aGanNycvTcc8+5OVHhPvnkEx06dMhQrZ+fnx544AE3J0JRbNu2TTNmzHB7n8TERMPDDmXKlCn25nhJeuyxx+Tvb+zeMW7cOJ0+fbrYPeFa9esbGy7esWOHm5MUrmvXrobqVqxYoXPnzrk5jfTZZ59p/fr1bu/j665cuaInnnjC7X1efPFFHT161FDtoEGDVLt27WL3HD9+vOHaBx54QCkpKcXu6Y1q166tQYMGGapdvXq1Pv74YzcnksaOHVtqX28A8AUMFwEAAAAAAAAAAAAAABRD5dBwDWrW3uwYhg1q1l6VQsPNjoES6MknnzRcO3fuXH311VduTHN9J06c0IQJEwzXDxkyRNWrV3djIhTHhAkT3H7yy6OPPqqkpCRDtQ888IAqVqxY7J5RUVF6+OGHDdWmpKRowIABbNj2Mo0aNTJUt3z5cjcnKVz79u0VHBzssK6goEBvvfWWW7OcPXvWqcEQFM+8efM0ffp0t62/fPlyvf7664brnbk3F6Zr167q27evodq4uDjdfffdysvLc0lvb+PMa/rkk09qz549bssyZcoU0372AwC4BsNFAAAAAAAAAAAAAAAAxdS3SStVCytvdgyHqoVXUN8mrc2OgRLqoYceUp06dQzXjxw5Urt373ZfoGtITk7WwIEDlZ6ebqjez89PL7zwgptToTiSk5N15513Kicnxy3rv/XWW1q4cKGhWj8/P6eG7Bx58cUXVa5cOUO1e/bsUf/+/XX16lWX9S+O3NxcffTRR1q5cqXZUUzTrl07Q3Wff/65qYNhQUFBuvHGGw3Vvv/++zp+/LhbcqSnp2vgwIG6fPmyW9bHtY0dO1Y//PCDy9fdvXu3hg4dqoKCAkP1t9xyizp06OCy/m+88Ybh09++//57DRs2zG33EWelp6fr9ddf1969e4u9VseOHXXLLbcYqs3IyNCAAQN05syZYvf9o8WLF+vpp592+boAAM9iuAgAAAAAAAAAAAAAAKCYAvz8NaJtT7NjODSibU/5+/mZHQMlVGBgoFODOCkpKbr55pu1bds2N6b61cWLF3XzzTdr//79hh/zwAMPGD59BObZunWr7r77buXm5rp03blz5+qZZ54xXD9q1Cg1bNjQZf0rVaqkf/7zn4br169fr65du+rEiRMuy+CstLQ0vfvuu2rYsKH+9Kc/KSEhwbQsZmvXrp2CgoIc1iUnJ2vMmDGy2WweSHVtd911l6G67Oxs3XvvvS4fwkhNTdUtt9yinTt3unRdOJabm6vbbrtNixcvdtmamzZtUu/evQ0PO/r7+7v8VKzo6Gg99dRThuu//PJL3XTTTUpMTHRpDmdcunRJf//731W3bl1NnDhRqampLln3zTffNDxodfr0aXXv3l2HDx92SW9Jmj9/vgYPHqz8/HyXrQkAMAfDRQAAAAAAAAAAAAAAAC7QvFoddajtuk3nrtaxdkM1r1rb7Bgo4UaMGKFevXoZrk9MTFT37t31wQcfyG63uy3X6tWr1bZtW6cGmSIjIzV58mS3ZYJrLV68WP369dOVK1dcst6//vUvPfDAA4YHPsLDw/XSSy+5pPdvjRkzRrfddpvh+gMHDqhFixaaNm2aR4dV9u7dqyeeeEI1a9bU448/7paTL0qaoKAg9enTx1Dt/Pnz1aNHD61bt87Nqa7tjjvuUPny5Q3VbtmyRcOHD3fZMN/hw4fVsWNHbdiwwSXr4foCAgKu+fXs7GwNHDhQzz77rLKzs4u8fkFBgf71r3+pR48eSkpKMvy4cePGKTo6ush9r+fll19W69bGT+Rcu3atmjVrpgULFrg8S2E2bdqkkSNHqlatWvrrX//q8tO7mjZtqscee8xw/enTp9WuXTvNnj27WH0zMjL0+OOPa/jw4crLy7tmzfXekwAA78RwEQAAAAAAAAAAAAAAgIvc27qbgvy9bxNdkH+A7m3d3ewYKAUsFoumT5+u0NBQw4/Jzs7WmDFj1LlzZ61cudKleQ4fPqx7771XvXr1Unx8vFOPnTZtmiIiIlyaB8VXq1at6/7ZDz/8oNatW+ubb74p8vpnzpzRwIED9dRTTzk1nPPaa6+pSpUqRe5bmBkzZhT6vP8oIyNDY8eOVWxsrBYuXOi20yIOHTqk1157TS1atFCLFi00ZcoUl520UVoMGTLEcO369evVvXt31axZU0OHDtWLL76oTz75RAsXLtQ333yjJUuWOPxn1apVRcoZGhqqhx9+2HD9f/7zH/Xp00enT58uUj9JyszM1Msvv6xWrVrp0KFD16xx1/eUrxo9erQqVap0zT+z2+167bXXFB0drVmzZjl1OlVBQYH+85//qHXr1nrqqaeuO0hyLTExMXrllVcM1zsjMDBQ8+fPV7ly5Qw/5tKlS7r77rvVpUsXff/9924ZfLbb7dq5c6deeOEFNWjQQJ07d3b6NXfWK6+8oqZNmxquT09P1wMPPKCuXbs6/TpkZGTogw8+UKNGjfTuu+9et65SpUpOXXcAAOYzdg4eAAAAAAAAAAAAAAAAHKpYJkx3NOug+bvXmx3ld+5s3kERZcqaHQOlRN26dfXpp5/qrrvucmoz6ubNm9WnTx81b95cw4cP16BBg9S4cWOn+ycmJmrJkiX64osvirwx+KmnntKgQYOcfhzc74YbblBGRoYWLlx4zT8/c+aMbr/9dnXv3l3jx49Xv379FBgY6HDd/fv3a9q0aZo5c6aysrKcytS/f3898sgjTj3GGZUqVdKyZcvUtWtXJScnG37cgQMHdNddd6l69eq655571L9/f3Xu3Fn+/s5vC7Tb7Tpx4oQ2btyojRs3asWKFTp58qTT6/iau+++W//3f/+nCxcuGH7MuXPn9O9//7tI/erUqaO4uLgiPfapp57StGnTlJaWZqh+3bp1iomJ0aOPPqoxY8YoKirK0OMOHTqkzz77TB9++GGhJ7Q0btxY48aNc+rEFRSucuXKeuedd3TPPfdctyYuLk4jR47UhAkT1LdvX/Xu3VvNmjVTnTp1FB4eLovFovT0dJ09e1YHDhzQ6tWrtXTpUp07d87pPMHBwZo3b56Cg4OL87QK1ahRIy1atEi33HKLU8M7Gzdu1M0336wGDRpo+PDh6t+/v9q2bSuLxeJ0hoKCAh0+fPiX6+fy5cuVkJDg9DrFERISonnz5qljx45OnU61YcMG3XzzzapXr5769++vbt26qWnTpqpevbrKli2rgoICpaam6uTJk9q3b59++OEHLVu2TCkpKQ7Xfuedd3T06NHiPC0AgIcxXAQAAAAAAAAAAAAAAOBCtzZpqbWnDupcSpLZUSRJNctV1C2NW5odA6XMnXfeqX/+85969tlnnX7svn379Oc//1l//vOfValSJbVp00aNGjVSrVq1FBkZqZCQEAUFBSkvL0/Z2dlKTk7WmTNndOrUKe3cubPYAw8DBgzQ5MmTi7UG3Gvq1KlatWqVkpKufx1du3at1q5dq7Jly6pnz56KjY1V/fr1FR4eLn9/f6WnpyshIUEHDx7UmjVrdOrUqSJlqV27tqZPn17Up2JY06ZN9c033+jmm29WRkaGU489f/68Jk+erMmTJyskJEQtWrRQs2bNVKtWLdWoUUOhoaEKCQmR3W5Xdna2srOzdenSJV28eFHnz5/XkSNHdPjwYWVmZrrp2ZVeQUFBev7550vEgExkZKSef/55TZw40fBjMjIy9Prrr2vy5Mlq2bKlunTpokaNGqlKlSoKCQlRTk6O0tLSdObMGR05ckQbN27UmTNnHK4bHBysL774Qjt37izOU8I1DB8+XEuXLtW8efMKrbty5YrmzJmjOXPmuCWHxWLR3LlzFRsb65b1f6tnz56aO3euhg4dqoKCAqcee/z4cb300kt66aWXFBYWplatWikmJkY1a9ZUtWrVFBoaquDgYBUUFCg7O1tZWVlKTEzUxYsXFR8fryNHjujo0aNuPZXIqBYtWmjOnDm6++67nR68PnnypKZMmaIpU6a4JMvw4cM1fPhwTZo0ySXrAQA8g+EiAAAAAAAAAAAAAAAAF/K3+mlk2176+8ovzY4iSRrZtqf8rX5mx0ApNHHiRGVkZOjll18u8hqXL1/W8uXLtXz5chcmu75+/fpp/vz5slqtHumHoomMjNT8+fPVr18/5efnF1qbnp6uJUuWaMmSJS7PER4erm+//VZVqlRx+drX0qVLF61atUr9+vUr9MSXwmRlZWnz5s3avHmzi9PhesaMGaN58+Zp48aNZkdx6KmnntJXX33l9PvDbrdr165d2rVrV7EzWK1WzZkzR7GxsQwXucmMGTMUFxdn6nvyrbfe0p133umxfoMHD9aiRYs0ZMiQIg9KpqWl/TK4WlINHjxYb775pp566inTMnTq1MkjQ7kAANfjfyUDAAAAAAAAAAAAAAC4WNPImupcp7HZMdQlqrGiI2uaHQOl2EsvvaQpU6bIYrGYHcWh++67T4sWLVJISIjZUWDATTfd5LITFIoiNDRUixYtUkxMjEf7tm/fXhs2bFCDBg082hdFZ7Va9Z///Ef16tUzO4pD/v7+mj9/vipWrGhahg8++ECDBw82rb8vCAoK0qJFi9S8eXOP97ZYLHr33Xc1fvx4j/fu37+/Vq5cqcjISI/39iZPPvmk3nnnHVN+NmvWrJm+/vprBQcHe7w3AKD4GC4CAAAAAAAAAAAAAABwg3tad1OIf6Bp/UMCAnVPq26m9YfvGDdunFasWKEaNWqYHeWagoODNXXqVM2ePVv+/v5mx4ETxowZo9dff93jG6TLly+vFStWqFevXh7t+7NGjRpp165dGjFihCn94bzIyEht2rRJXbt2NTuKQ1FRUVq2bJnCwsI82tff318ff/yxRo8e7dG+vqpy5cpat26devTo4bGeoaGhmjdvnh577DGP9fyjjh07au/everbt69pGbzB448/rs8++0xlypTxWM8ePXpo/fr1qly5ssd6AgBci+EiAAAAAAAAAAAAAAAAN6gQEqrBsR1N6z+4eUeVDwk1rT98S+/evbV3717de++9XnWKUadOnbR9+3Y9+uijZkdBET3zzDOaPXu2AgICPNKvWbNm2rhxozp16uSRftdTtmxZzZw5U//5z38UFRVlapbr6dKli1q0aGF2DK9RpUoVrVmzRtOmTfPaYcuftW3bVj/88IOqVq3qkX7ly5fXsmXLNGrUKI/0w0/KlSun5cuX68knn5TV6t7twi1atND27ds1dOhQt/YxokqVKlq6dKk++ugjrxx0sVqtuuWWW9x+bR82bJi2b9/u9hOsrFarnnzySS1fvlzlypVzay8AgHsxXAQAAAAAAAAAAAAAAOAmNzVqoVrlK3q8b+3ylXRTIzZ8w7MiIiI0Z84cbdu2zbQTX37WoEEDLViwQBs3blRMTIypWVB89957r7Zu3aqWLVu6rYfVatWYMWO0detWRUdHu62PswYNGqTDhw/r1VdfVUREhNlxVLNmTT399NM6cOCA1q9f7/ZN6yWN1WrVI488olOnTmn+/PkaOHCgR08OcUb79u09cr3u16+f9u3bp969e7u1D64tKChIb731ltavX++Wa2iFChX0r3/9S9u2bVOTJk1cvn5xjB49WsePH9fEiRMVGmr+wH2jRo30wgsv6OTJk/ruu+9Us2ZNt/eMjo7W9u3b9eabb6p8+fIuX79ly5basGGD3nrrLQUFBbl8fQCAZ3HOLwCfd/bsWS1fvlx79+7VwYMHderUKaWlpSk1NVV2u11hYWEKCwtT7dq11bRpUzVv3lw33nijGjZsaHb0EiUxMVEbNmz45XWOj49XQkKCkpOTlZ2drdzcXAUEBCg4OFjlypVT1apVVaNGDUVHR6t58+bq0qWLatWqZfbTAAAAAAAAAAAAAJziZ7VqZNteeumHhR7tO7JdL/m5+RPqgetp06aNVq1apZ07d2ratGmaP3++MjIy3N7XarXq5ptv1tixY9W3b1+3n9IAz2rZsqW2bdumd955R2+++aYSEhJctnavXr301ltvuXV4qTiCgoI0ceJEPf7445o7d66mTp2qvXv3eqx/48aN1bdvXw0aNEhdu3b1qtPJvFVAQICGDh2qoUOHKi8vTzt37tS2bdt09OhRHT9+XAkJCbp8+bJSUlKUm5urvLw82Ww2j+esWbOmVq1apZkzZ2rSpEk6c+aMy9aOiYnR3/72N919990uWxNF16lTJ+3atUvLli3T5MmTtXr16mK95+rWratHHnlEo0ePVoUKFVyY1LXCw8P16quv6tlnn9WMGTP0/vvv68SJEx7pbbFY1KJFC/Xr10933HGHWrdu7ZG+fxQYGKinnnpKI0aM0EcffaQPPvhAp0+fLvJ6VqtVvXr10oQJE3TLLbe4MCkAwGwWu91uNzsEAHja1atX9cknn2jOnDlF/mVLw4YNNXz4cI0ZM0aRkZEuTlg6HD16VPPmzdOXX36p/fv3F3u9Bg0aaODAgRo+fLhatWrlgoQl36VLl1SlSpXffS0xMdErj/QFAAAAAAAAAACel5OTo5MnTxZaU69ePT5l2gM+2PS91p465JFe3etF65GON3mkF2BERkaGVqxYoSVLlmj58uWKj4932drh4eHq1auX+vfvr379+qlatWouWxuuFRcXp7p16zqse+CBBzRr1qxCa3JycjR37lzNnTtX69evV35+vtN5ypUrpzvuuEOPPfaYaRu+i+PgwYNatGiRFi9erB07dhTpNbgWq9WqBg0aqHPnzurevbt69uxp6O8NJV9eXp7mz5+v2bNna/Xq1SooKHB6jZCQEN14440aPXq0+vXr53AQbdasWRo5cqTDdWfOnKkRI0Y4nQfXl5iYqKVLl+r777/X3r17dezYMeXl5V23vnz58oqJiVGvXr106623qmPHjiV2iHf79u1atGiRvvnmG+3fv99lg33+/v6Kjo5Wly5d1K1bN/Xq1csrfy6x2WzauHGjli1bplWrVunAgQNKTU29bn1AQIAaNmyo2NhY3XzzzerXrx970wAfV9p/1+TL+3IZLgLgU9LT0/Xyyy/rvffec9mnIgUGBuqBBx7QK6+8okqVKrlkzZJu7dq1+uc//6lly5a5rUfnzp317LPP6rbbbnNbj5LAl3+IAQAAAAAAAAAAjpX2DR8lSUpWhp5eMluZeblu7VMmIEhv3na/ygWXcWsfoDguXryoHTt2aM+ePTp16pTi4+N19uxZJSUlKSsrS9nZ2crOzlZAQIBCQkIUHBys8PBw1ahRQ7Vq1VLt2rXVvHlztW7dWg0aNOAUlRLClcNFv3X16lX98MMP2r17tw4cOKCjR4/q6tWrSktLU2ZmpoKDgxUWFqYqVaqoSZMmiomJUc+ePdW5c2f5+/sX4xl5j+zsbO3atUvbtm3TsWPHdObMGZ0+fVpXrlxRZmamMjMzlZOTI39/fwUFBalMmTKqWLGiKleurOrVq6tu3bqqV6+emjZtqhYtWig0NNTspwSTXbp0SevWrdOmTZt0+PBhnTx5UomJicrIyFBOTo7KlCmj8PBwVahQQY0bN1bz5s3Vtm1b9e7dWyEhIWbHRxHk5eXp9OnTSklJUVpamrKzsxUSEqKwsDBVq1bNK4dkXCEtLU07duzQjh07dPz4cZ05c0ZnzpxRUlKSMjMzlZWVpdzcXAUEBCgwMFBly5ZVpUqVVLlyZdWoUUN169ZV/fr1FRMTo2bNmik4ONjsp1Qk58+f14ULF365d5YpU0ZhYWEqV66cateurYCAALMjAvAipf13Tb68L5fhIgA+Y/HixXr00Udd+glIvxUREaE33njD0KdplFZnz57Vk08+qS+//NJjPXv37q2pU6eqSZMmHuvpTXz5hxgAAAAAAAAAAOBYad/wUdJ8f3SPZm1f7dYeI9v21I2NWri1BwAUhbuGiwAAAAB4Tmn/XZMv78stmWcSAoATbDabnn/+eQ0cONBtg0WSlJSUpAcffFAPP/ywcnPd+2lj3mjRokVq0aKFRweLJGnlypVq06aNZsyY4dG+AAAAAAAAAAAAgLP6NGiuqAru24wSVaGKejdo7rb1AQAAAAAAUDoxXASgVCsoKNDQoUP1j3/8Q546qO3jjz/WTTfdpMzMTI/08wZvvfWW7rjjDiUnJ5vSPzMzUw899JAmTpxoSn8AAAAAAAAAAADACKvVqpHterllbYukB9v1ktXKVhAAAAAAAAA4h98oASi1bDabRowYoQULFni895o1azRo0CDl5OR4vLenTZ48WU8//bTHhrcK8/rrr+upp54yOwYAAAAAAAAAAABwXQ0rVVOv+jEuX7dn/WZqUKmqy9cFAAAAAABA6edvdgAAcJe//OUvmjt3rlOPadiwobp06aJmzZopIiJCFotFycnJOnTokDZt2qT9+/cbXuv777/X6NGjNXv2bGejlxj/+c9/inRakJ+fn2JjY9WpUydVr15dFSpUUHh4uNLS0pScnKwLFy5o8+bN2r17t/Ly8pxa+1//+pcaNGigsWPHOp0LAAAAAAAAAAAA8IQhLbpo29kTSs/Ndsl6ZQODNaRFZ5esBQAAAAAAAN/DcBGAUum7777Ta6+9Zrh+wIABeu6559S+fftC6/bv36/Jkydr7ty5stlsDtedM2eOevTooYceeshwlpIiISFBo0ePdurEombNmmn8+PEaMmSIypYt67A+KytLCxcu1Ntvv62dO3ca7vP000/rhhtuUJMmTQw/BgAAAAAAAAAAAPCU8OAQDWnZWdO3rnLJekNbdlF4cIhL1gIAAAAAAIDvsZodAABc7cqVK7r//vsNDb1ERERo6dKlWrRokcPBIumn4ZhPP/1UGzZsUK1atQzlGTdunI4fP26otiR55plnlJSUZKg2NDRU06dP1759+/TQQw8ZGiySpJCQEN13333asWOHPv/8c5UrV87Q47Kzs/Xoo48aqgUAAAAAAAAAAADM0KtejOpFRBZ7nfoVI9WzfowLEgEAAAAAAMBXMVwEoNT5y1/+osuXLzusq1mzprZu3aq+ffs63aNjx47avn27mjZt6rA2KytLTz75pNM9vNnBgwc1f/58Q7W1atXS9u3b9eCDDxar55AhQ7Rnzx7DpxGtWrVKP/74Y7F6AgAAAAAAAAAAAO5itVr1YLteshRjDYukke16yWopzioAAAAAAADwdQwXAShVdu3apY8//thhXbly5fTDDz+ofv36Re5VpUoVrVy5UjVr1nRYu2TJEn377bdF7uVtPvjgA9lsNod14eHhWrp0qeGBIEfq1Kmj7777TpGRxj7B7f3333dJXwAAAAAAAAAAAMAd6lWMVO+GzYv8+D4NY11y+hEAAAAAAAB8G8NFAEqVF1980dDQy8cff6zGjRsXu1/VqlU1b948+fn5Oax94YUXit3PG9hsNsOnFr377rtq3rzo/zLkWqKiojRnzhxDtd98841SU1Nd2h8AAAAAAAAAAABwpbtjOyssKMTpx4UHheiuFp3ckAgAAAAAAAC+huEiAKXGkSNHtHjxYod1AwYM0F133eWyvt26ddOf/vQnh3Xbt2/XqlWrXNbXLHv27NHly5cd1sXExOjee+91S4Ybb7xRvXv3dliXk5OjdevWuSUDAAAAAAAAAAAA4Aplg4I1rGUXpx83rFVXlQ0MdkMiAAAAAAAA+BqGiwCUGm+99ZbsdnuhNf7+/nrjjTdc3vull15SeHi4w7o333zT5b09bfPmzYbqnnjiCVmt7rvNTJgwwVDdxo0b3ZYBAAAAAAAAAAAAcIXu9ZqqYaVqhusbVaqmbnWj3ZgIAAAAAAAAvoThIgClQk5Ojv797387rLvzzjvVoEEDl/evWLGiRo0a5bBu+fLlunjxosv7e9KRI0cM1d1yyy1uzdGjRw8FBzv+JLajR4+6NQcAAAAAAAAAAABQXFaLRSPb9ZLFYnFYa/lvrdVALQAAAAAAAGAEw0UASoUlS5YoJSXFYd348ePdluHxxx93eFJPQUGBPv/8c7dl8IT4+HiHNfXq1VOtWrXcmiMkJESdOnVyWHfmzBm35gAAAAAAAAAAAABcIapCZd3UMNZh3U0NW6hOhcoeSAQAAAAAAABfwXARgFJh/vz5DmsaNGigjh07ui1DnTp11K1bN4d1RrJ6s/T0dIc1NWvW9EASqUaNGg5r0tLSPJAEAAAAAAAAAAAAKL7BsZ1ULrjMdf+8XHAZ3RXrvn/nCQAAAAAAAN/EcBGAEq+goEA//PCDw7ohQ4a4PcvQoUMd1mzbtk1XrlxxexZ3sdlsDmsqVarkgSRS5cqOP5EtLy/PA0kAAAAAAAAAAACA4gsNDNLwVl2v++f3tOqmMoFBHkwEAAAAAAAAX8BwEYASb+vWrUpJSXFYd+utt7o9i5EeNptNK1eudHsWd6lQoYLDmsDAQA8kkYKCHP+Lk4iICA8kAQAAAAAAAAAAAFyja1QTNalS43++Hl2lhrpENTYhEQAAAAAAAEo7hosAlHhGBnXCwsLUoUMHt2epU6eOGjRo4LBuxYoVbs/iLhUrVnRYc/nyZQ8kkS5duuSwhuEiAAAAAAAAAAAAlCQWi0Uj2/aU1WL55WtWi0Uj2/aS5TdfAwAAAAAAAFyF4SIAJd6mTZsc1nTo0EH+/v4eSCN169bNYc2WLVs8kMQ96tev77DGyNCPKyQmJjqsqV27tgeSAOaJiYlRTEyM2TEAAADgYvycBwAAUDrxcx4Ao2qVr6RbGrf85b/f2riVapZ3/CGAAADz7N+/X/v37zc7BgAAAFyMn/PgKxguAlDi7dq1y2FN69atPZDkJ23atHFYc+jQIeXk5Hggjet17drVYc2hQ4eUkZHh1hx2u13btm1zWNelSxe35gAAAAAAAAAAAADc4c7mHVUhJFQVQkJ1R/MOZscBAAAAAABAKcZwEYAS7eLFi0pISHBY523DRfn5+dq3b58H0rhe69atFRoaWmhNbm6ufvzxR7fm2Lt3ry5cuOCwzshJUgAAAAAAAAAAAIC3CQkI1D2tuune1t0VEhBodhwAAAAAAACUYgwXASjR9u7da6iuSZMmbk7yq8aNGxuqM5rd2wQEBGjYsGEO62bPnu3WHJ9++qnDmvbt26tu3bpuzQEAAAAAAAAAAAC4S6c6jdSxdkOzYwCAS0RFRclutzv8Z9asWWZHBQAAAACfw3ARgBLt5MmThuoaNGjg5iS/qlChgiIiIhzWGc3ujR5//HGHNQsXLtTu3bvd0v/s2bN6//33HdY98cQTbukPAAAAAAAAAAAAeILFYpHFYjE7BgAAAAAAAEo5hosAlGinTp1yWFO1alWFhoZ6IM2vjAwzGcnurZo3b6477rij0Bq73a6HH35YWVlZLu2dn5+v0aNHKycnp9C6Bg0a6K677nJpbwAAAAAAAAAAAAAAAAAAAAAobRguAlCixcXFOaypXr26+4P8QbVq1RzWlOThIkl6//33VbFixUJrtm3bpnvuuUcFBQUu6Wm32zVmzBgtX7680Dqr1aoZM2YoICDAJX0BAAAAAAAAAAAAAAAAAAAAoLRiuAhAiXbu3DmHNVWrVvVAEud7xsfHeyCJ+0RGRmr69Ony8/MrtO6rr77SDTfcUOznm5iYqH79+umTTz5xWPv000+rW7duxeoHAAAAAAAAAAAAAAAAAAAAAL6A4SIAJdqVK1cc1kRGRnogye8ZGS5KSkryQBL3GjBggKZPny6LxVJo3dq1a9WiRQv94x//0OXLl53qcfXqVU2ePFnNmzfXd99957D+vvvu02uvveZUDwAAAAAAAAAAAAAAAAAAAADwVf5mBwCA4jAyXFS+fHn3BylCz4yMDOXk5CgoKMj9gdzogQcekNVq1SOPPKLMzMzr1iUlJen555/XP/7xD910003q0qWLOnbsqBo1aqhChQoKCwtTenq6kpOTlZCQoC1btmjDhg1atmyZMjIyDGW5//77NWPGDIfDTgAAAAAAAAAAAAAAAAAAAACAnzBcBKBES05OdlgTFhbmgSRF65mUlKRq1aq5OY373XfffWrXrp2GDRum3bt3F1qblZWlr7/+Wl9//bXL+oeGhmrKlCl68MEHXbYmAAAAAAAAAAAAAAAAAAAAAPgCq9kBAKCosrKylJeX57DOjOGi8PBwQ3UpKSluTuI5TZo00bZt2zR9+nTVq1fPIz39/Px07733as+ePQwWAQAAAAAAAAAAAAAAAAAAAEARMFwEoMTKzc01VBcSEuLmJP8rODjYUJ3R51BS+Pv768EHH9SRI0e0cOFCDR061PCglTNq1KihcePG6eDBg5ozZ47q16/v8h4AAAAAAAAAAAAAAAAAAAAA4Av8zQ4AAEVldDDHz8/PzUn+l7+/sctraRsu+pm/v79uvvlm2e122Ww2LViwQHa73SVr9+vXT6+88opiY2Ndsl5p1LVrV8PvQbjPgQMHzI4AAAAAAAAAAAAAAAAAAAAAOMTJRQBKLKODOWYMWRjtmZeX5+Yknrd//37dc889qlSpku666y598cUXLhsskqSlS5eqRYsWqlu3rv785z/rwoULLlsbAAAAAAAAAAAAAAAAAAAAAHwNxxoAKLHy8/MN1TFc5BknT57U008/ra+//tqlw0TXExcXp1dffVVvv/22Ro4cqeeff17Vq1d3e9+SYP369apcubLZMQAAAAAAAAAAAAAAAAAAAACUAJxcBKDEMjrAU1BQ4OYkRe9pxuCTO8yePVstW7bUokWLPDJY9FvZ2dmaNm2amjVrpi+++MKjvQEAAAAAAAAAAAAAAAAAAACgpCsdu9oB+KTAwEBDdUZPOHIloycSGX0O3spms2n06NGaMWOGU4/z8/NTq1at1L59e1WpUkUREREqX7680tPTlZSUpKSkJO3evVubN29WZmamoTWTk5M1ZMgQLVu2TB999FGpGdwCAAAAAAAAAAAAAAAAAAAAAHdi5zWAEisgIMBQnRnDRUZ7luThIrvdrlGjRmnmzJmGH9OjRw89+eST6t27t8qWLeuwPi8vT9u2bdN7772nL774wtDrOnPmTGVkZGjevHny8/MznA0AAAAAAAAAAAAAAAAAAAAAfJHV7AAAUFRBQUGG6rKzs92cpOg9S/Jw0VNPPWV4sKhFixbasmWLVq9erQEDBhgaLJJ+GiDr3LmzPvvsM504cUKDBw829LgvvvhC999/v6FaAAAAAAAAAAAAAAAAAAAAAPBlnFwEwCmnTp3Sli1b3NojNDRUt912m8O6kJAQ+fv7OzzNJi0tzVXRDDPaMzw83M1J3GPFihV6++23DdU+/PDDeueddxQcHFysnrVr19aCBQs0depUTZgwQTk5OYXWz5s3T7169dKoUaOK1RcAAAAAAAAAAAAAAAAAAAAASjOGiwA4Zc2aNRo5cqRbe9SpU8fQcJEkVahQQZcuXSq0JjU11RWxnGK0Z0REhJuTuF5KSooefPBBQ7UTJkzQ5MmTXdr/scceU40aNXTnnXfKbrcXWvvUU0+pT58+ioqKcmkGAAAAAAAAAAAAAAAAAAAAACgtrGYHAIDiqFixosOalJQUDyRxvmeZMmWKfZqPGd59913Fx8c7rBswYIBee+01t2QYNGiQobXT0tL07LPPuiUDAAAAAAAAAAAAAAAAAAAAAJQGDBcBKNGMDBddvHjRA0l+78KFCw5rjGT3Nnl5eXr//fcd1oWFhWn69OmyWt13m3nmmWfUoUMHh3Vffvmlzp4967YcAAAAAAAAAAAAAAAAAAAAAFCSMVwEoESrUaOGwxojgz6uZqSnkezeZuHChUpISHBYN378eI8MT/397393WJOfn6+pU6e6PQsAAAAAAAAAAEBJZbfbzY4AAAAAAACAEoDfI5VeDBcBKNGioqIc1pw/f979Qf7AyABO3bp1PZDEtZYtW+awxt/fX08++aQH0kh9+vRRq1atHNYtXrzYA2kAAAAAAAAAAAC8j8VicVjDphAAAAAAAAAYYeT3SFYrYyolEX9rAEo0IwM6Fy5cUGZmpgfS/Or48eMOa0ricNG6desc1nTo0EEVKlTwQJqf3HLLLQ5rDh8+rEuXLnkgDQAAAAAAAAAAgHcxspnDZrN5IAkAAAAAAABKOiO/RzLyYTfwPgwXASjR6tWr57DGbrcbGvZxlatXr+rKlSsO64xk9yYXLlzQqVOnHNbddNNNHkjjfL/169e7OQkAAAAAAAAAAID38fPzc1iTm5vrgSQAAAAAAAAo6Yz8HsnI76PgfRguAuCUESNGyG63u/WfuLg4w3maN29uqO7w4cNFfMbOM9rLaHZvER8fb6iuWbNmbk5StH6nT592cxIAAAAAAAAAAADvY7FYFBAQUGhNXl6eh9IAAAAAAACgJHP0e6SAgABOLiqhGC4CUKJVq1ZNkZGRDut27tzpgTTGe/n7+ys2NtYDaVzHyGlMklSpUiU3J/m9iIgIWa2Ob2dG8wMAAAAAAAAAAJQ2joaLOLkIAAAAAAAARjj6PVJgYKCHksDVGC4CUOK1bt3aYY0nh4t27NjhsKZJkyYKDg72QBrXSUpKMlTn6eEiq9WqiIgIh3UMFwEAAAAAAAAAAF/laFMHw0UAAAAAAAAwwtHvkRx9yA28F8NFAEq8Tp06OazZvHmz8vPzPZBGWrt2rcOaDh06eCCJa9ntdkN1ZhxlaKSnp/7+AQAAAAAAAAAAvI2j4aKcnBzl5eV5KA0AAAAAAABKotzcXOXk5BRaw8lFJRfDRQBKvN69ezusSUtL09atW92e5cyZMzp+/LjDuhtvvNHtWVytTJkyhuouX77s5iS/Z7PZDJ1KZDQ/AAAAAAAAAABAaWNkU0daWpoHkgAAAAAAAKCkSk9Pd1gTFBTkgSRwB4aLAJR47du3V3h4uMO67777zu1ZjPSwWCyGBqK8Tbly5QzVXbp0yc1Jfi8pKUk2m81hnZH3CAAAAAAAAAAAQGkUGhoqi8VSaA3DRQAAAAAAACiMo98fWSwWDgMowRguAlDi+fv7GxrW+fe//+32LJ9//rnDmrZt26pSpUpuz+JqtWvXNlR34MABNyf5vX379hmqM5ofAAAAAAAAAACgtLFarSpbtmyhNZmZmcrMzPRQIgAAAAAAAJQkRn53VLZsWVmtjKiUVPzNASgVhg0b5rDm2LFj2rJli9synDlzRmvXrnVYZySrN6pdu7b8/f0d1n3//fceSPOr5cuXG6qrW7eum5MAAAAAAAAAAAB4r7CwMIc1Fy9elN1u90AaAAAAAAAAlBR2u10XL150WGfk90/wXgwXASgVbrvtNoWHhzuse/vtt92WYcqUKbLZbIXWWK1WDR061G0Z3CkgIEDNmzd3WLd582ZdvXrV/YH+a9myZQ5rLBaLWrdu7YE0AAAAAAAAAAAA3snRyUWSlJ2d7dF/zwMAAAAAAADvd/XqVWVnZxdaY7FYDP3+Cd6L4SIApUJwcLDuvvtuh3ULFy7U8ePHXd7/ypUr+vjjjx3W3XTTTapWrZrL+3tKp06dHNbk5+frX//6lwfSSN9995327NnjsK5JkyaqUKGCBxIBAAAAAAAAAAB4Jz8/P0Mf1nfhwgWlpqZ6IBEAAAAAAAC8XWpqqi5cuOCwLiwsTH5+fh5IBHdhuAhAqfHUU0/JYrEUWpOfn68JEya4vPff/vY3Q/+S5emnn3Z5b0/q16+fobq3335bSUlJbs1it9v1/PPPG6q99dZb3ZoFAAAAAAAAAACgJKhcubLDf58mSefPn1dKSorsdrsHUgEAAAAAAMDb2O12paSk6Ny5cw5rLRaLKleu7IFUcCeGiwCUGtHR0erfv7/Duq+//loLFixwWd/169frww8/dFjXunVr9enTx2V9JSkuLk4Wi8XhPz179nRJvxtvvNHQCUCpqal66KGHZLPZXNL3Wl5++WXt3LnTUK2RU60AAAAAAAAAAABKu8DAQEVERDiss9vtOn/+vOLj45Wbm+uBZAAAAAAAAPAWubm5Onv2rM6fP2+oPiIiQoGBgW5OBXdjuAhAqfLCCy/IanV8aRs9erSOHj1a7H4XLlzQ8OHDVVBQ4LB20qRJxe5ntoCAAI0aNcpQ7aJFizRx4kS35Pj8888Nv56tWrVShw4d3JIDAAAAAAAAAACgpKlUqZL8/f0N1aanp+vkyZOKj49XWlqaWz9YDgAAAAAAAOax2WxKS0tTfHy8Tp48qYyMDEOP8/f3V6VKldycDp5g7DeGAFBCtGnTRg8++KA++eSTQutSUlLUu3dvrVmzRvXq1StSr0uXLqlPnz46e/asw9pbb71Vt912W5H6eJvx48drypQpysnJcVj7xhtvKD09XW+//baCgoJc0v+tt97Ss88+K7vdbqj+2WefdUlfAAAAAAAAAACA0sBqtSoyMlLnzp0zVG+325WWlqa0tDRZrVYFBwcrMDDwl3/8/PxktVplsVjcnBwAAO/28z4GI/spAAAAUHKUtp/z7Ha7bDabCgoKlJub+8s/2dnZRfpgmcjISEMHQ8D7MVwEoNR55ZVX9NVXX+nKlSuF1sXHx6t9+/aaM2eObr31Vqd6bNmyRXfffbfOnDnjsDY4OFjvvPOOU+t7s+rVq2vixIl66aWXDNV/8MEH2rx5sz766CO1a9euyH1PnTql8ePHa/HixYYf07VrV911111F7gkAAAAAAAAAAFAahYeHKz8/XxcvXnTqcTabTZmZmcrMzHRTMgAASq68vDxJ0smTJ01OAgAAAFfi57zri4yMVHh4uNkx4CKMiAEodSpXrqxZs2YZ+nS0K1euqG/fvrrjjju0fft2h/UHDx7UyJEj1blzZ0ODRZL0zjvvqGHDhoZqS4o///nPio6ONly/e/dutW/fXr169dLixYsNH5WYl5endevWaejQoWrYsKFTg0XBwcH64IMP+JQ8AAAAAAAAAACAa4iIiFDlypXNjgEAAAAAAIASqHLlyoqIiDA7BlyIk4sAlEr9+/fXhAkTNHnyZEP1X331lb766is1atRIXbt2VUxMjCIiImSxWJScnKzDhw9r06ZN2rt3r1M5hg8frocffrgoT8GrBQcH66uvvlL79u2Vmppq+HGrV6/W6tWr5e/vr1atWqlDhw6//HBRvnx5paenKykpSVeuXNHu3bu1efPmIn/y3YcffqiYmJgiPRYAAAAAAAAAAMAXVKxYUTabTVeuXDE7CgAAAAAAAEqIihUrqmLFimbHgIsxXASg1Hr11VcVHx+v+fPnG37M0aNHdfToUZf07927t2bMmOGStbxR48aNtWjRIvXv39/pAaD8/Hxt27ZN27Ztc0u2l19+Wffff79b1gYAAAAAAAAAACgtLBaLKleurKCgIF28eFEFBQVmRwIAAAAAAICX8vPzU2RkpMLDw2WxWMyOAxezmh0AANzFarVq9uzZuuOOOzzeu2vXrvr6668VFBTk8d6e1KtXL3377beqUKGC2VEk/fR3PnnyZD3//PNmRwEAAAAAAAAAACgRLBaLypUrp/r166tcuXJmxwEAoMQ6efKkTp48aXYMAAAAuBg/5/3kt78/YrCodGK4CECp5u/vrwULFmjixIke6zly5Ej98MMPCg0N9VhPM/Xo0UM7duxQ69atTc1RqVIlffvtt5owYYKpOQAAAAAAAAAAAEoiPz8/Va9eXbVr11ZISIjZcQAAAAAAAOAFQkJCVLt2bVWvXl1+fn5mx4EbMVwEoNSzWq169dVX9dVXX6l69epu61OhQgV9/PHHmjFjRqk/seiP6tatqy1btmjy5MkqW7asR3tbLBaNHDlShw4d0s033+zR3gAAAAAAAAAAAKVNaGiooqKi1KBBA1WpUsXn/r0XAAAAAACArwsKClKVKlXUoEEDRUVF+cyBC76O4SIAPmPgwIE6fPiwJkyY4NKbXGBgoB566CEdOXJEo0aNctm6JY2/v78mTJigU6dO6S9/+YsiIiLc2i8gIED33HOP9u3bpxkzZqhSpUpu7QcAAAAAAAAAAOBLAgICVLFiRdWrV0/16tVTtWrVVLFiRYWFhSkoKEgWi8XsiAAAAAAAACgGi8WioKAghYWFqWLFiqpWrdovvwuqWLGiAgICzI4ID/I3OwAAeFJYWJgmT56s5557Th999JHmzJmjAwcOFGmt+vXra9iwYRo7dqyqVavm4qQlV6VKlfT3v/9df/vb37R06VJ98cUXWrlypS5dulTstUNCQtSlSxcNGjRIQ4YMUcWKFV2QGAAAAAAAAAAAAIUJCgr6nxOM7Ha7CgoKZLfbZbPZTEoGAID3GDNmjCRp+fLlJicBAACAK5XGn/OsVqssFov8/Pz4ABn8guEiAD6pQoUKmjhxoiZOnKjTp0/r+++/1549e3Tw4EHFxcUpNTVVaWlpstvtCgsLU1hYmGrVqqWmTZuqefPm6tOnj5o0aWL201BUVJTsdrvZMa4pMDBQgwYN0qBBg2S327Vv3z7t3LlT+/fv17Fjx5SQkKCEhASlpaUpOztbubm58vf3V3BwsEJDQxUZGalq1aqpbt26iomJUWxsrNq3b/8//+IKAAAAAAAAAAAAnmexWOTvz5YDAAB+9vOHrrKvAQAAoHTh5zz4Cn7TB8Dn1alTR6NHjzY7RqlmsVgUGxur2NhYs6MAAAAAAAAAAAAAAAAAAAAAAH7DanYAAAAAAAAAAAAAAAAAAAAAAAAAAOZguAgAAAAAAAAAAAAAAAAAAAAAAADwUQwXAQAAAAAAAAAAAAAAAAAAAAAAAD6K4SIAAAAAAAAAAAAAAAAAAAAAAADARzFcBAAAAAAAAAAAAAAAAAAAAAAAAPgohosAAAAAQFJMTIxiYmLMjgGUeHwvAQC8DfcmwDX4XgIAeBvuTYBr8L0EAPA23JsA1+B7CQDgLIaLAAAAAAAAAAAAAAAAAAAAAAAAAB/FcBEAAAAAAAAAAAAAAAAAAAAAAADgoxguAgAAAAAAAAAAAAAAAAAAAAAAAHwUw0UAAAAAAAAAAAAAAAAAAAAAAACAj2K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRDBcBAAAAAAAAAAAAAAAAAAAAAAAAPorhIgAAAAAAAAAAAAAAAAAAAAAAAMBHMVwEAAAAAAAAAAAAAAAAAAAAAAAA+CiGiwAAAAAAAAAAAAAAAAAAAAAAAAAfxXARAAAAAAAAAAAAAAAAAAAAAAAA4KMYLgIAAAAAAAAAAAAAAAAAAAAAAAB8FMNFAAAAAAAAAAAAAAAAAAAAAAAAgI9iuAgAAAAAAAAAAAAAAAAAAAAAAADwUQwXAQAAAAAAAAAAAAAAAAAAAAAAAD6K4SIAAAAAAAAAAAAAAAAAAAAAAADARzFcBAAAAAAAAAAAAAAAAAAAAAAAAPgohosAAAAAAAAAAAAAAAAAAAAAAAAAH8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCjGC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTDRQAAAAAAAAAAAAAAAAAAAAAAAICPYrgIAAAAAAAAAAAAAAAAAAAAAAAA8FEMFwEAAAAAAAAAAAAAAAAAAAAAAAA+iuEiAAAAAAAAAAAAAAAAAAAAAAAAwEcxXAQAAAAAAAAAAAAAAAAAAAAAAAD4KIaLAAAAAAAAAAAAAAAAAAAAAAAAAB/FcBEAAAAAAAAAAAAAAAAAAAAAAADgoxguAgAAAAAAAAAAAAAAAAAAAAAAAHwUw0UAAAAAAAAAAAAAAAAAAAAAAACAj2K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRDBcBAAAAAAAAAAAAAAAAAAAAAAAAPorhIgAAAAAAAAAAAAAAAAAAAAAAAMBHMVwEAAAAAAAAAAAAAAAAAAAAAAAA+CiGiwAAAAAAAAAAAAAAAAAAAAAAAAAfxXARAAAAAAAAAAAAAAAAAAAAAAAA4KMYLgIAAAAAAAAAAAAAAAAAAAAAAAB8FMNFAAAAAAAAAAAAAAAAAAAAAAAAgI9iuAgAAAAAAAAAAAAAAAAAAAAAAADwUQwXAQAAAAAAAAAAAAAAAAAAAAAAAD7K3+wAAACg6Gw22/987fLlyyYkgVny8/MlSZcuXTI5CVDy8f0EuAbfS4Br8L0EuA7fT4Br8L0EuAbfS4Dr8P0EuAbfS4Dr8P0EuAbfS4Br8L0EuA7fT77lWntwr7VXtzSy2O12u9khAABA0Rw6dEhNmzY1OwYAAAAAAAAAAAAAAAAAAABQ6hw8eFDR0dFmx3A7q9kBAAAAAAAAAAAAAAAAAAAAAAAAAJiD4SIAAAAAAAAAAAAAAAAAAAAAAADARzFcBAAAAAAAAAAAAAAAAAAAAAAAAPgoi91ut5sdAgAAFE1+fr6OHTv2u69FRETIamV+GAAAAAAAAAAAAAAAAAAAADDKZrMpKSnpd19r2LCh/P39TUrkOQwXAQAAAAAAAAAAAAAAAAAAAAAAAD6KYw0AAAAAAAAAAAAAAAAAAAAAAAAAH8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCjGC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTDRQAAAAAAAAAAAAAAAAAAAAAAAICPYrgIAAAAAAAAAAAAAAAAAAAAAAAA8FEMFwEAAAAAAAAAAAAAAAAAAAAAAAA+iuEiAAAAAAAAAAAAAAAAAAAAAAAAwEcxXAQAAAAAAAAAAAAAAAAAAAAAAAD4KIaLAAAAAAAAAAAAAAAAAAAAAAAAAB/FcBEAAAAAAAAAAAAAAAAAAAAAAADgoxguAgAAAAAAAAAAAAAAAAAAAAAAAHwUw0UAAAAAAAAAAAAAAAAAAAAAAACAj2K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRDBcBAAAAAAAAAAAAAAAAAAAAAAAAPorhIgAAAAAAAAAAAAAAAAAAAADA/7N33+FR1Gsbx+8UEkIIJXQEpIYO0nsTRBQQBATEBipNFAuKiliOKBawoKCoCCIWBBuCAgoGkC69Bwi9BEJJ78m+f5zXdiTZ2bAzu5v5fq4r13UO+8z87l2TzbOTeWYAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADYV6OkAAAAAvubkyZNavny5du3apX379uno0aNKTExUQkKCHA6HwsLCFBYWpipVqqhevXpq2LChbrjhBtWqVcvT0QuEmJgYRUZGas+ePYqKitKhQ4d0+fJlJSYmKikpSYGBgX/+NyhZsqRq1qypiIgIRUREqEmTJqpXr578/Pw8/TQAAIAXos8zR0pKinbv3q3o6GgdO3bsz6+YmBglJSUpOTlZSUlJSktLU1BQkIKDg1W8eHGVL19eFStWVO3atVW/fn21atVKERERnn46AADAYpmZmfrtt9+0bt067du3TwcOHFBsbKwSExOVnJyskJAQFStWTOHh4apdu7bq1aunVq1a6frrr1dISIin4/uU2NhYLV++XNu3b9e+ffsUHR2t+Ph4JSYmKjMzU2FhYSpWrJgqVqyoevXqqX79+rr++uvVuHFjT0cHAAA+il7PHMePH//z+OYfx+JOnDihuLi4P4/FJScny+FwqHDhwgoJCVGZMmVUvnx5Va1aVfXr11ejRo3Upk0bhYaGevrpAAAAH0Sf5zlZWVnavHmzNm3apKioKEVFRenkyZNKSkpSYmKi0tPTVbRo0T//9n3NNdf8eW5d3bp11apVKxUvXtzTTwMe4udwOByeDgEAAODt4uLiNGvWLM2bN0+7du3K1z5q1aqlIUOGaPTo0SpXrpybExZshw8f1scff6wlS5Zoz549V7Wv8PBwtW/fXh07dlSvXr1Uu3ZtN6UEAAC+iD7PvdLT07Vp0yb9/vvv2r59u7Zt26aoqCjl5OS4Zf/ly5dXjx49NGjQIHXr1k2BgVw7CQCAgmrt2rWaMWOGfvrpJyUkJLi8fUhIiLp166bRo0erR48eXGwmF6mpqZo3b55mz56t33//PV99W6VKlXTbbbfpoYceUrVq1UxICQAAChp6Pfc5fvy41q1bp23btmn79u3avn27Ll++7JZ9BwYGqkWLFurfv78GDhyoypUru2W/AACg4KLP84yMjAx9//33+uKLLxQZGZmv1/4P/v7+atSokdq3b69u3bqpe/fuDHzZCMNFAAAAeUhKStKkSZM0Y8YMJScnu2WfQUFBuueeezR58mSVLl3aLfssqJYvX67XX39dkZGRMqttrVu3rvr166e77rqLQSMAAGyEPs89MjIytGnTJq1atUqRkZHasGGD0tLSLFm7UqVKevDBBzV69GgVK1bMkjUBAID51qxZo3HjxmnLli1u22ft2rX16quvqm/fvm7bp6/LzMzUm2++qSlTpujixYtu2ae/v7/69eunKVOmqGrVqm7ZJwAAKFjo9a7eyZMn/zwWt2rVKh09etSSdf39/XXLLbfo8ccfV7t27SxZEwAA+A76PM+4dOmSpk6dqlmzZik2NtaUNYoUKaIePXqoX79+Gjx4sAICAkxZB96B4SIAAIBc/PDDDxozZoxOnTplyv7Dw8M1depUDRs2zJT9+7IdO3boiSee0IoVKyxbc8yYMZo+fbpl6wEAAM+hz3OfZ599Vi+99JJHM5QtW1aTJk3S8OHDuXoZAAA+LC4uTg8//LA+/fRT09bo1auXPvjgA1WsWNG0NXzBunXrNHz4cO3fv9+U/RcpUkTPP/+8nnjiCfozAAAgiV7PXbKzs73iTt59+/bVG2+8oerVq3s6CgAA8DD6PM9IT0/XO++8o8mTJysuLs6ydWNjY21zkU278vd0AAAAAG+Tk5OjiRMnqm/fvqadcCr998oB9957r0aMGKGMjAzT1vEl2dnZmjRpklq0aGHpYBEAALAH+jz384brFp0/f14jR47UDTfcoNOnT3s6DgAAyId9+/apZcuWpp6EIElLlixRs2bNtH79elPX8WbvvfeeunTpYtpgkSSlpKToySefVJ8+fZSQkGDaOgAAwDfQ67mPNxyLk6Tvv/9ejRo10qxZszwdBQAAeBB9nmf88bqPHz/e0sEi2APDRQAAAH+TnZ2twYMH6+WXX7bs4OxHH32k7t27KyUlxZL1vFVMTIw6d+6s5557TllZWZ6OAwAAChj6vIJv5cqVatasmbZu3erpKAAAwAVr165V69atdejQIUvWi4mJUZcuXfTdd99Zsp43eeyxxzRmzBhlZmZast7ixYvVpk0bxcbGWrIeAADwPvR6BVdycrKGDx+u0aNHKzs729NxAACAxejzPGPWrFlq3ry5du3a5ekoKKAYLgIAAPh/OTk5Gjp0qBYuXGj52qtXr9att96q9PR0y9f2BocPH1bbtm21du1aT0cBAAAFEH2efZw7d06dOnXiymUAAPiILVu2qGfPnkpMTLR03YyMDA0ePFjLly+3dF1PmjBhgt566y3L1923b5+6d+/OVVQBALAhej17mDlzpgYPHqycnBxPRwEAABahz/OM5557TsOHD1dqaqqno6AA83N4y/1SAQAAPOzpp5/Wq6++6tI2tWrVUrt27dSgQQOFh4fLz89Ply9f1v79+7Vhwwbt2bPHpf3dddddpt8q1tvs2rVLN9xwg86fP+/RHGPGjNH06dM9mgEAAJiDPs88EydO1Msvv+zpGP9SsmRJrV+/XnXq1PF0FAAAkItTp06pSZMmunDhguFtChcurI4dO6p58+a65pprVKxYMSUlJens2bPatm2bVq1apaSkJMP7K1KkiDZt2qQGDRrk5yn4jA8++ECjRo1yaZtKlSqpY8eOatSokUqXLq1ChQopLi5Ohw4d0qZNm7RlyxaX7gjauXNnrVixQgEBAa7GBwAAPohezxxZWVkqVKiQp2Nc0ahRo/T+++97OgYAADAZfZ5njB49WjNnzvR0DMXGxqp06dKejgETMVwEAAAgaenSperZs6fhP4j36dNHEyZMUMuWLfOs27Nnj6ZMmaLPPvvM8NWaZs2apfvuu89Qra87ceKE2rRpozNnzri0XenSpdW5c2d16NBBderUUfXq1RUeHq7Q0FBJUlxcnOLi4nT58mUdOHBAO3fu1M6dO7V9+/Zcr5LKcBEAAAUTfZ65jAwX+fn5KSIiQrVr1/7zq1atWgoPD1exYsVUrFgxhYWFKSUlRQkJCUpISNDRo0e1fft27dixQytWrMjXle4bNWqkzZs3Kzg4OJ/PDgAAmCUrK0tdunQxfBfrsmXLauLEibr77rtVvHjxXOtSUlK0YMECvfDCCzp+/LihfdepU0dbtmz587hSQbNjxw61adNGaWlphuo7duyo5557Ttdff738/PxyrTt69Kjeeecdvffee8rIyDC074kTJ2rSpEmGagEAgO+i1zOP0eGiEiVKqH79+v84Hle5cmWFhYX9eTwuMDBQ8fHxSkhI0MWLF7V7925t375dGzdu1JYtW/KV78svv9TgwYPztS0AAPB+9HmekZ+LPfr5+alZs2bq1KmTmjdvrho1aqhy5coqWrSoQkJClJSU9Of5dWfPnv3z3LqdO3dq//79uf5tneGigo/hIgAAYHsXL15UnTp1DF1RITw8XPPmzdPNN9/s0hobN27UwIEDdfLkSae1ISEh2rVrl2rWrOnSGr4mLi5O7du31969ew1vc8stt2jEiBG68cYbFRgY6PKaWVlZWrdunRYvXqwff/xRBw4c+PMxhosAACh46PPMd6WD2YUKFVLz5s3VoUMHdejQQe3atVPJkiXzvUZ6eroWLVqkmTNnKjIy0qVtn3/+eb3wwgv5XhsAAJjjxRdf1PPPP2+odtCgQfrwww9VrFgxw/tPT0/XuHHjNGPGDEP1w4cP14cffmh4/74iIyNDjRo1UlRUlNPakJAQvffeexo6dKhLa0RFRWnAgAGG7uzp7++v1atXq3379i6tAQAAfAu9nnlyGy6qWLHin8fiOnTooAYNGsjf3z/f6xw8eFBz587VjBkzFB8fb3i7kiVLKjo6+qqOBQIAAO9Fn2e9jz76SCNGjDBcX758eT300EO66667VLly5XytefbsWS1ZskSLFy/WypUrlZKS8udjDBcVfAwXAQAA2xs1apQ++OADp3WVKlXSqlWrVKNGjXytc/78eXXp0kX79u1zWturVy8tXrw4X+v4iv79++vbb781VNumTRu9++67atasmVszbN26Ve+9957mz5+vYcOGMVwEAEABQ59nvj+Gi0qWLKmbb75Zffr00U033aSiRYuast5XX32lRx99VGfPnjVUHxoaqsOHD6t8+fKm5AEAAK47evSo6tWrZ+hOOk8//bQmT56c77WmT5+uhx56yGmdn5+fNm3apBYtWuR7LW/06quv6umnn3ZaV6xYMf3yyy9O796Zm+TkZPXs2VOrV692Wtu4cWNt3bpVAQEB+VoLAAB4N3o9c/19uKhZs2bq06eP+vbtq4YNG5qy3rlz5/Too4/qyy+/NLzNuHHjNHXqVFPyAAAAz6HPs97WrVvVpk0bZWZmOq0tXLiwnn/+eT388MMKCQlxW4akpCTNmzdP77//vnbv3s1wkQ0wXAQAAGxt+/btat68uXJycvKsK168uDZt2qTatWtf1XoxMTFq0aKFTp065bT2xx9/dPnK+b5i1qxZGj58uNM6f39/vfjii3rqqadMPeEgLi5Ohw8fVvPmzU1bAwAAWIs+zxqRkZHKyclRp06d8nVnyfyIiYnR9ddfr/379xuqf/HFF/Xss8+anAoAABh166236vvvv3daN3LkSM2cOfOq13v55Zc1ceJEp3UtW7bUxo0b5efnd9VreoMzZ84oIiJCycnJedYVKlRIK1euVIcOHa5qvaSkJHXo0EE7duxwWjtjxgw98MADV7UeAADwTvR65srJydH777+vPn36qFKlSpatO23aND3yyCOGaosVK6YzZ84oNDTU3FAAAMBS9HnWSklJUdOmTQ3dkbxBgwZasGCB6tata2qmdevWqWnTpm4dXoL3YbgIAADYWt++fbVo0SKndQsWLNBtt93mljV/++03denSRdnZ2XnWNW/eXL///rtb1vQmR48eVcOGDZ2e2BAcHKzPPvtMAwYMsCgZAAAoSOjzCrbz58+rXbt2Onz4sNPa6tWrKzo62oJUAADAmR07dqhJkyZO65o0aaINGzYoODj4qtd0OBy66aabtHz5cqe1ixcvVq9eva56TW/wyCOPaNq0aU7rXn/9dT3xxBNuWfPgwYNq1qyZkpKS8qyrWLGijh49qqCgILesCwAAvAO9XsH21ltv6bHHHjNU++mnn+quu+4yOREAALAKfZ71xowZo/fee89p3fXXX6/vvvtOxYoVsyAV7MDf0wEAAAA8JSoqSj/88IPTuj59+rjthFNJ6tChg0aOHOm0bsuWLfr111/dtq63ePzxx50OFvn7+zNYBAAA8o0+r+ArW7asPvzwQ0O1R44c0aFDh0xOBAAAjHj99ded1vj7+2vWrFluOQlBkvz8/PThhx8auqKmkXy+4PLly5o1a5bTuiZNmmjcuHFuWzciIkLPPfec07ozZ87os88+c9u6AADAO9DrFWyPPvqoOnXqZKh22bJlJqcBAABWos+z1s6dOw3d/al169ZavHgxg0VwK4aLAACAbb355ptydhPHwMBATZ061e1rv/jii4Ya+zfeeMPta3vS6tWr9e233zqte+mllxgsAgAA+UafZw9dunQxPBz222+/mZwGAAA4c/LkSS1cuNBp3V133aWmTZu6de0qVaoYusr6b7/9ViDuMDlz5kynF/eR/ts3+/u798/FDz/8sKpVq+a0jn4YAICChV7PHmbMmGGojmNxAAAUHPR51nv00UeVk5OTZ03FihW1ePFiFSlSxKJUsAuGiwAAgC2lp6frq6++clrXv39/1axZ0+3rlypVSvfff7/TuuXLl+vcuXNuX99Txo8f77SmQ4cOevLJJy1IAwAACiL6PHu56667DNUdOHDA5CQAAMCZzz//XFlZWXnW+Pn5mXZc6OGHH1bhwoWd1s2dO9eU9a1k5Dm0atVKnTt3dvvaQUFBevTRR53W7du3T1u2bHH7+gAAwDPo9eyhfv36hk4aPnXqlKFhdwAA4P3o86y1dOlSRUZG5lnj5+enOXPmqHTp0halgp0wXAQAAGxpyZIlio+Pd1r3yCOPmJZh7NixTq8Mmp2drfnz55uWwUpr1qzR5s2b86wJCAjQzJkz3X7FVAAAYB/0efZyww03GLoi1/Hjxy1IAwAA8vL55587renevbvq1q1ryvplypTRHXfc4bRuwYIFTk+Y8GZbt25VVFSU0zoz++F7773X0N08jXxPAAAA30CvZx99+/Z1WuNwOHTixAnzwwAAANPR51lrypQpTmsGDRqk7t27W5AGdsRZmwAAwJa+/PJLpzU1a9ZU69atTctw7bXXqkOHDk7rjGT1BW+88YbTmnvuuUf16tWzIA0AACio6PPspXDhwqpVq5bTusTERAvSAACA3OzZs0d79uxxWnfnnXeamsPI/mNjY7VixQpTc5jJSI8ZFhamPn36mJYhNDRUt956q9O6+fPny+FwmJYDAABYg17PXho2bGiojuNxAAD4Pvo8a23fvt3pXYsKFSqkl19+2aJEsCOGiwAAgO1kZ2cb+jAxaNAg07MMHjzYac3vv/+uixcvmp7FTMePH9fixYud1j3xxBMWpAEAAAUVfZ49lS9f3mlNdna2BUkAAEBuli1b5rSmcOHCpg68SFLHjh1VsWJFp3VLly41NYeZjLzWt9xyi0JCQkzNYaQfjomJ0Y4dO0zNAQAAzEevZy9GjsVJHI8DAKAgoM+z1vTp053W9O/fX9WrV7cgDeyK4SIAAGA7mzdvVnx8vNO6m266yfQsRtbIycnRypUrTc9iJiNXIb3++utVp04dixIBAICCiD7PnsLDw91SAwAAzPPLL784rWnfvr3CwsJMzeHv76/u3bs7rTOS1xudPXtWe/fudVpnRT/cuXNnFS5c2Gmdr77WAADgL/R69mL0OBvH4wAA8H30edbJyMjQt99+67TugQcesCAN7IzhIgAAYDtGTuAMCwtTq1atTM9y7bXXqmbNmk7rfPnDj/Tf4SJnhgwZYkESAABQkNHn2dOlS5ec1pQqVcqCJAAA4EoyMjK0du1ap3XdunWzII2xdfbv36/Tp09bkMa9jA6ud+3a1eQk/71qbfv27Z3W0Q8DAODb6PXsx8ixOInjcQAA+Dr6PGstXbpUcXFxedZUrlxZHTp0sCYQbIvhIgAAYDsbNmxwWtOqVSsFBgZakEaGmv5NmzZZkMQc0dHR2rFjR541/v7+6tWrlzWBAABAgUWfZ0/nzp1zWlO7dm0LkgAAgCvZuXOnUlJSnNYZGURxB6N/gPfFPs1IP1yzZk2VL1/egjTGXuvNmzc7veM5AADwXvR69mPkWFypUqUYLgIAwMfR51nr66+/dlrTu3dvC5LA7hguAgAAtrN9+3anNU2bNrUgyX81a9bMac3+/fuVnp5uQRr3W7FihdOa6667TuXKlbMgDQAAKMjo8+wnNTVVBw8edFrHVbwAAPAcIz2av7+/rrvuOvPDSKpSpYpKly7ttM5Ibm/ji/1wQkKCjhw5YkEaAABgBno9+3F2UUnpvycZ+/n5mR8GAACYhj7PWkbuSN6jRw8LksDuGC4CAAC2cu7cOZ09e9Zpnbf9kT0rK0u7d++2II37RUZGOq1p06aNBUkAAEBBRp9nTz///LPTq6aFh4erUaNGFiUCAAD/a9u2bU5rIiIiFBoaakGa/zLSp/naiQg5OTnauXOn0zpv64cl33utAQDAX+j17Of77793WtOlSxfzgwAAAFPR51nnwIEDhv7O3bp1awvSwO4YLgIAALaya9cuQ3V16tQxOclfateubajOaHZvs3r1aqc1rVq1siAJAAAoyOjz7Gn27NlOa4YPHy5/fw6DAgDgKUYGqa3s0SRjfZqv9WjR0dFOh64la1/r8uXLq3jx4k7rfO21BgAAf6HXs5dt27Y5vXNRkSJFdNddd1kTCAAAmIY+zzqrVq1yWlO9enWVKVPG/DCwvUBPBwAAALDSkSNHDNXVrFnT5CR/KVmypMLDw3Xp0qU864xm9yYnT55UTEyM07p69eo5rbl48aKWLl2qjRs3as+ePTp69Kji4+OVlJSkoKAgFSlSRKVKlVK1atVUo0YNtWzZUm3atFFERIQ7ngoAAPBy9Hn2s3TpUv3www951gQGBurBBx+0KBEAALgSI71OrVq1LEjyFyM94enTp5WRkaGgoCALEl09oz2l1a91jRo1nF7pln4YAADfRa9nHw6HQ2PGjHFad/fddys8PNyCRAAAwEz0edb5/fffndYYObfO4XDo999/188//6xdu3Zp3759io2NVUJCgrKyslSkSBEVLVpUlSpVUrVq1dSgQQO1adNGrVu3tvQOVPBuDBcBAABbOXr0qNOa8uXLW94w16xZU5s3b86zxkh2b7N3715Ddbl92MzJydGSJUv0zjvvaNWqVcrOzr5iXWpqqlJTU3Xx4kUdPHhQkvTee+/9ue/bbrtN999/v6pVq5aPZwEAAHwBfZ69HDlyRCNGjHBa9/jjj6tSpUoWJAIAAFeSmppq6MIzNWrUsCDNX4yciJCTk6Pjx49bfpJEfhntKatXr25ykn+qWbOm0+Ei+mEAAHwTvZ69PPvss9q4cWOeNeHh4XruuecsSgQAAMxCn2ctI+fX5fV8Tp8+rRkzZmjOnDl5/ndLSEhQQkKCzpw5o82bN+urr76SJBUuXFg33nijhgwZov79+ysgIMD1J4ECw9/TAQAAAKx07NgxpzUVK1Y0P8j/qFChgtMaX/wju5EPP6VKlVKxYsX+9e8rVqxQgwYN1KdPH61cuTLXwSJnDh06pMmTJ6tWrVoaNGiQDh06lK/9AAAA70afZx9RUVHq3LmzTp06lWddw4YN9Z///MeiVAAA4EqOHz9uqM7qPs1Ijyb5Vp9mpB8ODw9X4cKFzQ/zN/TDAAAUXPR69pCTk6OnnnpKL7/8stPaGTNmGH79AQCA96LPs9a+ffuc1lzpgkHx8fF6+OGHVa1aNb3yyiuGBsKuJC0tTYsWLdKgQYNUs2ZNzZw5M9/n6cH3MVwEAABs5fTp005rypcvb0ES19d0dvKkN9q/f7/TmrJly/7j/ycnJ+vOO+/UDTfcYGh7o7Kzs7VgwQI1aNBAEydOVGZmptv2DQAAPI8+r+BLT0/XpEmTdN111+nkyZN51laoUEHffPONgoKCLEoHAACuxEiPJlnfpxldz5f6NF/uh2NiYjhhAQAAH0SvV/Bt27ZNbdq00Wuvvea0dty4cRo8eLAFqQAAgNno86xz6tQpJSYmOq373/Prli9frtq1a+udd95x6zlwx44d0+jRo9W8eXNt2bLFbfuF72C4CAAA2MrFixed1pQrV86CJP9k5MPPpUuXLEjiXs5O+pSkMmXK/Pm/o6Oj1apVK33++eemZcrIyNDLL7+sjh07GsoHAAB8A31ewbVz50498cQTqlatmp577jmlpaXlWV++fHlFRkaqVq1aFiUEAAC5MdKjSdb3aWXLlpW/v/M/k/pSn+bL/bDD4dDly5ctSAMAANyJXq9gSkxM1Lx589S9e3e1aNFCmzdvdrrNI488oqlTp1qQDgAAWIE+zzpGz137+/l1r7zyim6++WadO3fOrFjasWOH2rVrpxkzZpi2BrxToKcDAAAAWMnIh58SJUqYHyQfayYnJys9PV3BwcHmB3ITI7db/eO5R0dHq1OnToavfnG1Nm7cqNatW2vFihWqW7euJWsCAADz0Od5t127dmnfvn151mRkZCghIUEJCQk6d+6cdu7cqZ07dyouLs7wOtdff73mzp2rSpUqXWViAADgDkZPRLC6T/P391dYWJji4+PzrDOa3xv4cj8s/Td/6dKlzQ0DAADcil7Pe+Xk5GjBggV51jgcDiUlJSkhIUHx8fE6ePCgduzYoUOHDiknJ8fQOqGhoXr77bd1//33uyM2AADwEvR51jFybp3012v99NNP69VXXzUx0V8yMjL04IMPKjo6Wm+++aYla8LzGC4CAAC2YuQKmGFhYRYkyd+aly5dUoUKFUxO4z5nz551WhMUFKRz586pS5culg0W/eHMmTPq2LGj1qxZw4ARAAA+jj7Pu33xxRd67bXXTNt/6dKlNXHiRI0dO1Z+fn6mrQMAAFxj9CqhRYsWNTnJvxk5EcGXrnJqJKu398MAAMC30Ot5r4yMDN1+++2mrnHjjTfq3Xff5e7hAAAUQPR51jFybp303/PrJk+ebNlg0d+99dZbysjI0PTp0y1fG9ZjuAgAANhGamqqMjMzndZ54o/sxYoVM1QXHx/vMyedOhwOQ1eCCAgI0ODBgw3d5rVYsWLq0KGDGjZsqGuvvVZFixZVVlaW4uLidPjwYW3atEnbt29Xdna24ZwXLlxQ7969tWnTJpUqVcrwdgAAwHvQ59lX1apV9eCDD2rUqFEKDQ31dBwAAPA/EhISnNaEhobK39/fgjT/ZKRPc3aigjcx8lp7ez8MAAB8C72e/RQqVEg9e/bUhAkT1KJFC0/HAQAAJqHPs05sbKyhutWrV+vZZ581VFuvXj21a9dOtWrVUqlSpRQcHKyUlBSdOnVKe/fu1Zo1awyv+4cZM2aoZs2aeuSRR1zaDr6H4SIAAGAbGRkZhupCQkJMTvJvhQsXNlRn9Dl4g7S0NOXk5DitW7RokdLS0vKsad26tcaPH69evXqpUKFCedbGxMTo008/1dSpUw1/EIqOjtadd96ppUuXGqoHAADehT7Pfvr166cJEyaoWbNmno4CAADyYKTH8USPJhnr03ypR/PW15p+GACAgstb+w+p4PV6nla2bFlNmjRJgwYNUvHixT0dBwAAmIw+zzopKSmG6saNG5fneXhFixbVmDFjNGLECFWvXj3PfeXk5CgyMlJvvfWWfvzxR8NZx40bpxYtWqhdu3aGt4HvsX5kEAAAwEOMfnAICAgwOcm/BQYam/n2pQ8/zgaGjNSVKFFC8+bN04YNG3Trrbc6HSySpPLly2v8+PGKjo7WiBEjDOddtmyZPvroI8P1AADAe9Dn2c+3336rgQMH6qGHHtKGDRs8HQcAAOTCSI/jiR5NMtan+VKP5q2vNf0wAAAFl7f2H1LB6/U87fz58xo7dqwGDRqkGTNmGLqbAQAA8F30edZxx/l1vXr10sGDB/Xqq686HSySJH9/f3Xt2lVLlizRL7/8osqVKxvKkJOTo2HDhhkeiIJvYrgIAADYhtEPDkb/4O1ORtfMzMw0OYn7pKenX9X21apV08aNG3XnnXfma/uwsDB98MEHmjVrluEPtE899ZRP3RoXAAD8F32ePR05ckTTp09X27Zt1bFjR5eurAUAAKxhpE/zRI9mdF1f6tG89bWmHwYAoODy1v7D6Lr0H65JT0/X8uXL9eCDD6pKlSqaMGGCzp075+lYAADABPR51rna8+smTJigH374QRUqVMjX9t26ddOWLVvUsmVLQ/WHDh3SG2+8ka+14BsYLgIAALaRlZVlqI4/srvH1VwFokKFClq5cqVq16591Tnuu+8+zZo1y1DtpUuXNGXKlKteEwAAWIs+D7/99pt69eqlm2++WTExMZ6OAwAA/p+RPo0TEdzDW19r+mEAAAoub+0/jK5L/5F/8fHxeuWVVxQREaF58+Z5Og4AAHAz+jzrXM35dU8++aRefvll+fn5XVWGsmXL6ueff1bjxo0N1U+dOlUXL168qjXhvRguAgAAtmH0Q012drbJSfK/pqc+mOXH1dz+ds6cOapWrZrbsgwdOlT33HOPodoZM2YoNTXVbWsDAADz0efhD0uXLlXDhg31008/eToKAACQsR7HEz2a0XV9qUfz1teafhgAgILLW/sPo+vSf1y9hIQE3X333Ro4cKCSk5M9HQcAALgJfZ518nt+Xbt27TR58mS35ShevLjmz5+vwoULO61NSEjQhx9+6La14V0YLgIAALYRFBRkqM7ole/dyegVE4w+B2+Q36z333+/brzxRjenkd5++21VrFjRaV1cXJzmz5/v9vUBAIB56PO836uvviqHw5HrV05OjuLj43X8+HHt2rVLy5cv18svv6xbb73VUA/3dxcuXFDfvn31/fffm/NkAACAYUZ6HE/0aJKxPs2XejRvfa3phwEAKLi8tf+QCl6v56rChQvneSzO4XAoPT1d586dU1RUlDZt2qQ5c+ZozJgxat26tcsn5C5cuFA9e/ZUSkqKSc8IAABYiT7POvnJGhISojlz5sjf371jIHXq1NGLL75oqPajjz5STk6OW9eHd2C4CAAA2EahQoUM1Xniw4/RNQv6h5/Q0FBNmTLFhDRSiRIl9Oqrrxqq/eKLL0zJAAAAzEGf5/v8/PxUrFgxValSRQ0bNlT37t01YcIEffvttzp58qSWLVumAQMGGP5vnZmZqYEDB2rJkiUmJwcAAHkx8rvbUyciGFnXl3o0b32t6YcBACi4vLX/MLqu3fuPoKAglS1bVhEREWrZsqWGDh2q6dOna8OGDTp58qQmT56sGjVqGN7f6tWr1atXL6WlpZmYGgAAWIE+zzr5yfrYY4+pVq1aJqQxvu+jR49qw4YNpmSAZzFcBAAAbCM4ONhQnScOeBpd05c+/Bh9vf9uyJAhKlGihPvD/L+BAweqdOnSTuvWrFmjpKQk03IAAAD3os8r2Pz9/XXjjTdq4cKF2rNnjzp27Ghou8zMTN155506deqUyQkBAEBujPRpnjr50Mi6vtSjeetrTT8MAEDB5a39h9F16T9yV758eT399NM6ePCg3nrrLYWGhhraLjIyUs8884zJ6QAAgNno86zj6vl1AQEBGjlypElpXNv/jz/+aFoOeI5r9zAFAABw0dGjR7Vp0yZT1wgNDVXv3r2d1oWEhCgwMNDpFQwSExPdFc0wo2sWK1bM5CTuU7hwYRUqVMjQ7Wj/MGrUKBMT/fcD2dChQzV16tQ86zIyMrR69Wr17NnT1DwAAPgy+jxjCmKf50kRERFatWqV3nvvPT3yyCNO/5vHx8dr2LBh+vnnn+Xn52dRSgAA8IewsDCnNcnJyXI4HJb/rjbSp/lSjxYWFqbz58/nWUM/DAAA3Iler+Dz9/fXI488or59++r222/Xxo0bnW7z9ttvq0+fPoYvEAQAALwPfZ51jLzWf3fzzTercuXKJqX5r6FDh2rixIlOB7l++eUXTZ482dQssB7DRQAAwFSrV6/WsGHDTF3j2muvNXTSqSSVLFlSsbGxedYkJCS4I5ZLjK4ZHh5uchL3KlWqlGJiYgzVVqtWTU2bNjU5kTRgwACnw0WStGXLFoaLAADIA32eMQW1z/MkPz8/jRkzRtdee61uvfVWpwNGK1as0FdffaXBgwdblBAAAPzBSI/jcDiUmJho+R/9jfRpvtSjhYeHKzo6Os8a+mEAAOBO9Hr2UbVqVa1cuVK9e/fWr7/+mmdtTk6ORo4cqX379nGxHwAAfBR9nnVKly7tUv2AAQNMSvKXUqVKqXPnzlq2bFmedbt27VJGRoZP3SkKzvl7OgAAAICVSpUq5bQmPj7egiSur1mkSBEVLlzYgjTuY+T1/kOrVq1MTPKX6667ztCHmm3btlmQBgAAuAt9nv306tVL06ZNM1T71ltvmZwGAABcidFjQ1b3aTk5OUpKSnJa58qxLU/z5X5Y8q3XGgAA/Be9nr0UKVJE3377rWrVquW09sCBA1q6dKkFqQAAgBno86zjalarzq9r2bKl05qMjAzt3bvXgjSwEsNFAADAVow05OfOnbMgyT8ZubuPL33w+YM3DhcFBwercePGTuucXekVAAB4F/o8e3rggQd0ww03OK3bvHmz1q9fb0EiAADwd0b7HKv7tNjYWGVnZzut86U+zZf7YT8/P5UsWdKCNAAAwJ3o9eynePHimjNnjqHat99+29wwAADANPR51nEla4kSJRQREWFimr8YPY+P8+sKHoaLAACArVxzzTVOa4z8wdvdjKxpJLu3cSVzo0aNTEzyT0aGi06dOmVBEgAA4C70efb12muvGar7+uuvTU4CAAD+l9E+x+o+zeh6vtSn+XI/XK5cOQUGBlqQBgAAuBO9nj21a9dOffr0cVq3cuVKxcXFmR8IAAC4HX2edVzJ2rBhQ/n5+ZmY5i9Gzq2TOL+uIGK4CAAA2ErVqlWd1pw5c8b8IP/j7NmzTmuqVatmQRL3ql69uuHa8PBwE5O4vlZ8fLzS09MtSAMAANyBPs++mjRpYujqWb/99psFaQAAwN8Z6dEk6/s0Iz2a5Ft9mpHX+tKlS5Yf76IfBgCg4KLXs69Ro0Y5rcnJydG6dessSAMAANyNPs86VatWlb+/sXEObzu3TvLMndJhLoaLAACArRj58BATE6OUlBQL0vzl8OHDTmt86YPPH1wZLipRooR5QfK5ltXfBwAAIP/o8+zNyNVSt2/frqSkJAvSAACAP4SEhKhcuXJO66Kjoy1I8xcjPZqfn5+uvfZaC9K4h5Ge0uFw6MiRIxak+Qv9MAAABRe9nn117dpVoaGhTuu42A8AAL6JPs86QUFBhu9eZOW5dSEhIQoODnZax7l1BQ/DRQAAwFaMDLs4HA5DH0bcJS4uThcvXnRa58qgjreoUaOG4VqGiwAAwNWgz7O3tm3bOq3Jzs7W0aNHLUgDAAD+zkivc+jQIQuS/MVIT3jNNdcY+gO6tzDaU3rja00/DACA76LXs6dChQqpRYsWTuus/m8PAADchz7POkbPr7Py3DpJKl68uNMazq0reBguAgAApho6dKgcDoepX8eOHTOcp2HDhobqDhw4kM9n7DqjaxnN7k0aNWpkuNbPz8/EJJ5bCwCAgoo+z31r+WKf521q1qxpqM7IsBcAAHAvI72OlT2a0fV8rUerUaOGQkJCnNZZ+VrHxMQoPj7eaZ2vvdYAAOAv9Hr2ZeR4HMfiAADwXfR51mncuLGhOqvPd+P8OntiuAgAANhKhQoVDN22ddu2bRakMb5WYGCgS4M63qJkyZKGrzwaFxdnbpi/uXz5sqG6IkWKmJwEAAC4C32evYWHhxuqu3TpkslJAADA/2rSpInTmqioKEuvcmmkT2vatKkFSdwnICDAUF/pbf2w5HuvNQAA+Au9nn0ZOR7HsTgAAHwXfZ51mjVrZqjOynPrjK7HuXUFD8NFAADAdox8iLDyj+xbt251WlOnTh0VLlzYgjTuZ/QDkNGBH3cw+mErNDTU3CAAAMCt6PPsq1ChQobqUlNTTU4CAAD+l5EeLScnRzt27DA/jKSTJ08qNjbWaZ2REyi8jS/2w2FhYapRo4YFaQAAgBno9ezLyPE4jsUBAOC76POs443n1qWmpio9Pd1pHefWFTwMFwEAANtp06aN05qNGzcqKyvLgjTSmjVrnNa0atXKgiTmaNu2raE6K69cZWStUqVKKSgoyII0AADAXejz7Cs5OdlQHQe4AQCwXuPGjRUSEuK07rfffrMgjbEeTfLNPs1IP3zo0CGdO3fOgjTGXuuWLVvKz8/PgjQAAMAM9Hr2ZeR4HMfiAADwXfR51qlTp45KlizptM7bzq2TpIoVK5qcBFZjuAgAANhO165dndYkJiZq8+bNpmc5ceKEDh8+7LTuhhtuMD2LWbp3726obteuXSYn+cvOnTud1lSpUsWCJAAAwJ3o8+zr1KlThuqKFi1qchIAAPC/goOD1b59e6d1K1eutCCNsXXq1KmjSpUqWZDGvYz0w5I1r3V6errWrVvntI5+GAAA30avZ19GjsdxLA4AAN9Fn2cdf39/devWzWnd7t275XA4LEhk7Nw6ifPrCiKGiwAAgO20bNlSxYoVc1q3dOlS07MYWcPPz8/wiQHeqF69eoY+uG3atMmCNP89scHIB6DatWtbkAYAALgTfZ597du3z1AdB7gBAPAMI38c/+2335SUlGRqjpycHC1fvtxpna8OvFSsWFF169Z1WmdFP7xq1SqlpqY6rfPV1xoAAPyFXs+ejByP41gcAAC+jT7POkYu3h0XF6eDBw9akMb4eXycX1fwMFwEAABsJzAw0NBJnF999ZXpWebPn++0pnnz5ipdurTpWcx08803O63ZuHGjBUmk7du3KyMjw2ldixYtLEgDAADciT7PvlavXu20JiAgQFWrVjU/DAAA+JcePXo4rUlLS9OiRYtMzfHbb7/pzJkzTuuM5PVWRrIvWrRIaWlppuYw0g+XK1dOTZo0MTUHAAAwH72e/cTGxmr//v1O62rUqGFBGgAAYBb6POvcdNNN8vPzc1pn1fl1RoaLihcvroiICAvSwEoMFwEAAFu6/fbbndYcOnTI1LvpnDhxQmvWrHFaZySrt7vjjjuc1hw7dkzbtm0zPcvXX39tqK5NmzYmJwEAAGagz7OfrKwsffPNN07r6tatq6CgIAsSAQCA/9WoUSPVq1fPad1nn31mao558+Y5rSlVqpRPX+XUSI+ZmJho6kkfycnJ+u6775zWDRo0yNBJEwAAwLvR69nPV199JYfD4bTuuuuuMz8MAAAwDX2eda655hp17tzZaZ3R896uxoULF7Rq1Sqnda1ateLYXgHEcBEAALCl3r17q1ixYk7r3n77bdMyvPPOO8rJycmzxt/fX4MHDzYtg1U6dOigatWqOa17//33Tc2RlpamTz75xGld6dKl1bJlS1OzAAAAc9Dn2c9XX32lmJgYp3WdOnWyIA0AAMiNkYvPLF++XAcOHDBl/djYWH3++edO6wYOHKhChQqZksEKLVq0UK1atZzWmdkPz5kzR/Hx8U7rjHxPAAAA30CvZx/Z2dmaMWOG0zo/Pz917NjRgkQAAMBM9HnWufvuu53W/PTTTzpx4oSpOebMmaP09HSndT179jQ1BzyD4SIAAGBLhQsX1sCBA53Wff311zp8+LDb17948aI++ugjp3Xdu3dXhQoV3L6+1fz8/DRs2DCndV9++aUuX75sWo6vvvpKFy9edFrXu3dvBQQEmJYDAACYhz7PXpKSkjRx4kRDtTfeeKPJaQAAQF7uvPNOp8dbHA6HXn31VVPWnzZtmtLS0pzW3XPPPaasbyUjz2Hjxo2GrkDqqoyMDL355ptO6+rUqcPFfQAAKEDo9ezj/fffN3TycJMmTVSmTBkLEgEAADPR51lnwIABTi+imZOTo5kzZ5qWITs7Wx988IGh2j59+piWA57DcBEAALCtxx57zOmtObOysvT444+7fe3nnntOCQkJTuvGjRvn9rU9ZcyYMQoNDc2zJjk52bTnfPnyZT399NOGau+77z5TMgAAAGvQ59nH6NGjdezYMad1ZcqUUY8ePcwPBAAAclWlShUNGDDAad28efO0bds2t6594sQJQwMv7dq1U6tWrdy6tieMGjVKRYoUcVo3btw4p3fcdNW0adN09OhRQ2sDAICCg17PHnbt2qUnn3zSUK2RK+8DAADvR59nnaJFi+qBBx5wWvfWW28pKirKlAxTpkxRdHS007pu3brp2muvNSUDPIvhIgAAYFt169ZVr169nNYtWrRICxcudNu6a9euNTTh37RpU3Xr1s1t60rSsWPH5Ofn5/Src+fObl1XksLDwzVy5EindXPmzNHSpUvdvv7YsWN19uxZp3VNmjRRu3bt3L4+AACwDn2e+X3e4sWLde7cObfsKz8cDofGjRunzz77zFD90KFDVahQIZNTAQAAZ8aPH++0JicnR8OHD1dGRoZb1nQ4HBo5cqRSU1Od1hrJ54qhQ4ca6tHcfQehUqVKGbp4zrZt2wydoGHUoUOH9OKLLzqtq1Chgu666y63rQsAALwDvZ55vd7Fixf13XffXX3oq3DgwAH16NFDKSkpTmuLFCmiO+64w4JUAADACvR51hzTk6RHH31UISEhedakpaVp2LBhbr9o0L59+/TCCy8Yqn3ooYfcuja8B8NFAADA1p5//nn5+ztviYYPH66DBw9e9XoxMTEaMmSIsrOzndYabdZ9yfjx41W8eHGndcOGDdORI0fctu7HH39s+MTTgvi6AwBgR/R55vrmm29Uo0YNTZgwQTExMZauffnyZQ0cONDwibBFixbVE088YXIqAABgRNOmTXXLLbc4rdu2bZsefvhht6z5yiuvaNmyZU7rmjdvrt69e7tlTW8wfvx4Q3cvmjBhgtauXXvV6yUnJ2vQoEFKSkpyWvv0008rODj4qtcEAADehV7PPImJierXr5/atm2rH3/8UQ6Hw9L1Fy9erDZt2hi6kKMkPfjggypdurTJqQAAgFXo86xTtmxZQ6/hhg0b9NRTT7lt3bi4OA0ePFjp6elOa5s1a1agXnP8E8NFAADA1po1a6Z7773XaV18fLy6du16VQMvsbGx6tatm06ePOm09qabbiqQTXi5cuU0adIkp3Xnzp1T165d3XIL11mzZhm6Y5IkderUydCHYQAA4P3o88yXnJysV155Rddee63uvvtu/frrr26/QtbfZWdna86cOWrQoIG+/vprw9s9+eSTKlOmjGm5AACAa958801DgyUzZ87UM888c1Vrvffee4b24efnp3fffVd+fn5XtZ43qVSpkiZMmOC0LjMzU7169dKWLVvyvVZKSop69+6t7du3O61t2LChHnjggXyvBQAAvBu9nrk2bNigXr16qW7dunrrrbdMv+hPdHS0br/9dt1yyy2Ki4sztE2ZMmX05JNPmpoLAABYjz7POhMnTlSVKlWc1k2ZMkXPPPPMVQ+enz9/Xt27d9fu3bsN1U+dOrXAveb4C8NFAADA9iZPnqxSpUo5rTt16pRatmyppUuXurzGpk2b1Lx5c+3du9dpbeHChTVt2jSX1/AVDzzwgJo3b+607tixY2rdurXhOw79r8TERI0cOVLDhw83dAeBIkWK6MMPP8zXWgAAwDvR51kjIyND8+bNU9euXVWlShWNGjVKixYtMnzCgTOHDh3S5MmTVbNmTd177706c+aM4W2bNWvm1qt2AQCAq1ejRg3DJxtOnjxZt99+uxITE11aIz09XWPHjtWYMWMM1Q8bNkytW7d2aQ1f8Pjjj6tWrVpO6+Lj49WpUyfNnTvX5TWioqLUunVrRUZGOq318/PT9OnTFRAQ4PI6AADAN9DrWSMqKkqPPfaYKlWqpK5du+qNN97Q7t273XLhn9TUVC1ZskT9+/dXnTp1NH/+fJe2/+CDDxQeHn7VOQAAgHehz7NOaGio3n33XUO1kydP1i233GL4DpP/a8WKFWrevLl+//13Q/X333+/OnfunK+14BsYLgIAALZXpkwZffLJJ4Ym6i9evKibb75Z/fr1M3Q1z3379mnYsGFq27atTpw4YSjPtGnTDP3R31cFBAToq6++UokSJZzWxsXF6a677lKbNm307bffKjMz0+k2586d02uvvaYaNWq4NCz09ttvKyIiwnA9AADwfvR51jt9+rQ++OAD9e3bV+Hh4apbt67uuusuvfzyy1q4cKE2bNigI0eOKC4uTmlpacrJyVFWVpZSUlJ09uxZ7d69Wz/++KPefvtt3XPPPapZs6YiIiL0zDPP6NixYy5lKVWqlL788ksFBgaa82QBAEC+Pfvss2rTpo2h2vnz56tWrVqaMWOGEhIS8qxNTU3Vp59+qjp16hj+A3xERESBHACXpODgYM2fP9/QVWVTUlI0dOhQdenSRZGRkU6veHrs2DE99thjatSokeGrmj711FPq2LGjoVoAAOC76PWsk52drV9//VWPP/64GjVqpJIlS+qGG27QY489ppkzZ+rnn3/Wrl27FBMTo6SkJGVmZsrhcCg9PV1xcXGKjo7W+vXrNW/ePE2YMEHXX3+9Spcurd69e+vbb79VVlaWS3nGjh2rW2+91aRnCwAAPI0+zzq33HKLHnroIUO1S5YsUa1atfTUU0/pyJEjTusdDod+/fVX9erVSzfccINOnjxpaJ2IiAi9/fbbhmrhu/wcV3svLAAAgAJi/PjxmjJlikvbREREqH379qpfv77Cw8Pl5+eny5cv68CBA9qwYYN27drl0v6GDBmizz//3KVtXHHs2DFVq1bNaV2nTp20atUq03JI0uLFi9WnTx+Xbs1avHhxdejQQY0aNVKVKlVUtGhRZWdn6/Lly4qOjtamTZu0detWQ3cq+ruxY8cW6A+cAADYHX3eX9zV5w0dOjRfV7a3SkhIiFasWKG2bdt6OgoAAMjFyZMn1aRJE128eNHwNiEhIerUqZOaNWumSpUqKSwsTElJSYqJidHWrVu1atUql66IGhISog0bNqhx48b5eQpOGe2ZIiMjTb3i53vvvWf4iq9/qFy5sjp16qRGjRqpVKlSKlSokOLi4nT48GFt2rRJmzdvdum4XocOHRQZGcldiwAAsAl6vb+4o9czeuzPk/r166eFCxfK359rnQMAUJDR5/3F7GN6mZmZ6ty5s9avX294Gz8/P9WvX19t27ZVRESESpUqpaCgIKWkpOj06dPau3ev1qxZo3PnzrmUpXTp0lq/fn2Bv5AmJC7bCQAA8P9effVVnTp1Sl9++aXhbQ4ePKiDBw+6Zf2uXbtq9uzZbtmXL+jdu7c+/PBDjRgxwvCJCPHx8VqyZImWLFnithyDBw/WW2+95bb9AQAA70OfZy/h4eFasmSJ4SunAQAAz6hcubJ++ukndevWzfDJA6mpqVq2bJmWLVt21esXKlRIX3/9tWknIXiTBx54QMePH9frr79ueJuTJ0/qs88+c8v6DRs21Pfff89gEQAANkKvZy933323Pv74YwaLAACwAfo86xQqVEiLFy/W9ddfr507dxraxuFwaM+ePdqzZ4/bchQvXlyLFy9msMgm6OgBAAD+n7+/vz799FP169fP8rXbt2+vRYsWKTg42PK1Pen+++/XBx984LEDzSNHjtTnn3/OgW4AAAo4+jz7aNy4sdavX89gEQAAPqJly5ZasmSJihYtaum6hQoV0pdffqmbb77Z0nU96bXXXtPYsWMtX7dOnTr65ZdfFB4ebvnaAADAs+j1Cr7AwEC99NJL+uSTTxQYyDXOAQCwC/o864SHh2vlypW67rrrPLJ+2bJlFRkZqdatW3tkfViPsygBAAD+JjAwUAsXLtSTTz5p2ZrDhg3TihUrFBoaatma3mT48OFatmyZSpUqZdmawcHBmjFjhmbOnMlgEQAANkGfV7AFBgZq3Lhx2rRpk2rXru3pOAAAwAUdO3bUhg0bVL16dUvWK1u2rH799Vf179/fkvW8ybRp0zRt2jTLTvy8+eabtXHjRpUrV86S9QAAgPeh1yu46tatq7Vr1+qZZ56Rn5+fp+MAAACL0edZp1SpUlq7dq1uv/12S9dt27attmzZoiZNmli6LjyLMykBAAD+h7+/v1599VV99913qlixomnrlCxZUh999JFmz55t+yvZ33DDDdq2bZslV5Zo06aNNm3apAceeMD0tQAAgHehz3Ofjh07qlq1ap6OIT8/P91yyy3avXu3pk6dWmBfbwAACroGDRpoy5YtuuOOO0xd56abbtLWrVvVvn17U9fxZmPHjtWvv/5q6kB2SEiIXn75ZS1evFjFixc3bR0AAOAb6PWuXvHixdWjRw8FBQV5OorKlSun6dOna9euXWrVqpWn4wAAAA+iz7NOaGiovvjiC33wwQem3yG8SJEimjRpklavXq3KlSubuha8D8NFAAAAuejbt68OHDigxx9/3K1Xmw8KCtJ9992nqKgo3X///W7br6+rUqWKfvzxRy1evFgNGzZ0+/7r1aunefPmad26dWrcuLHb9w8AAHwHfd7Vu/fee3XkyBHt2LFDL7zwgq677jpL1y9evLhGjRqlvXv3atGiRapTp46l6wMAAPcrWbKkPvvsM0VGRqpZs2Zu3XdERIS+/vpr/fTTT6pUqZJb9+2LOnTooF27dmny5MluPRnB399f/fv31969ezVhwgTuGA4AAP5Er3d1SpYsqaVLl+rChQuaP3++Bg8ebPkQd/PmzTVnzhwdP35cY8aMsexumAAAwLvR51lrxIgROnjwoMaMGaOQkBC37js4OFj33XefDhw4oIkTJ9Lv2ZSfw+FweDoEAACAt7t8+bI+/PBDzZs3T3v37s3XPmrUqKHbb79dDzzwgCpUqODmhMYcO3bM0BXmO3XqpFWrVpkfKA+rVq3S+++/r2XLlikhISFf+yhevLh69+6tO++8U927d5efn5+bUwIAAF9Hn+c+Z8+e1dq1a7Vu3TqtW7dOO3bsUFZWltv2X6tWLXXq1El9+vRR9+7dveJKrQAAwDyrV6/WjBkztHTpUiUlJbm8feHChdW1a1eNHj1aN998s0eOCw0dOlRz5851WhcZGanOnTubH+gKUlJSNHfuXM2ZM0dbtmxRfv50XLFiRd1222166KGHVKNGDRNSAgCAgoZe7+plZmZq69atfx6LW79+vc6dO+e2/YeGhqpNmzbq3r27+vfvr+rVq7tt3wAAoOCiz7POxYsXNWvWLH3++efavXt3vvfTtGlT3XbbbRo2bJjKlSvnxoTwRQwXAQAAuOj48eP6+eeftXPnTu3bt0/Hjh1TQkKCEhMT5XA4FBYWprCwMFWuXFn16tVTw4YN1a1bN66mnk9ZWVl/HhTft2+foqKiFBMTo8TERCUnJ8vPz0+hoaEqXry4qlSpomrVqqlx48Zq06aNmjVrxkmnAADAMPo890pJSdGePXt0+PDhP7+OHDmiy5cvKykpSUlJSUpMTFR2draCg4MVHBysokWLqmzZsipXrpwqV66s2rVrq06dOmrWrBkHswEAsKmMjAytWbPmz2NDBw4c0IULF5SYmKiUlBQVLlxYYWFhCg8PV+3atVWvXj21atVKXbt2VZEiRTwd36ecO3dOy5cv1/bt27Vv3z4dOXJE8fHxSkxMVFZWlooWLaqwsDBdc801qlu3rurXr6/rr79eTZo08XR0AADgo+j13Ovo0aOKior6x/G4M2fOKDEx8c/jcSkpKQoMDFRQUJAKFy6sUqVKqVy5cipfvrxq1KihOnXqqH79+mrcuDFXqwcAAPlGn2et06dP65dfftHOnTu1f//+fxzXS09PV0hIiEJDQ1W2bFlVq1ZNERERatWqldq2batrrrnG0/HhRRguAgAAAAAAAAAAAAAAAAAAAAAAAGzK39MBAAAAAAAAAAAAAAAAAAAAAAAAAHgGw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATQV6OgAAAAAAAAAAAAAAAAAAAAAAADDu3LlzWrJkidatW6c9e/bo+PHjSkhIUHZ2tkqUKKEKFSqoSZMmat++vfr166fw8HBPRwbgxfwcDofD0yEAAAAAAAAAAAAAAAAAAAAAAEDeVq1apalTp2rp0qXKyckxtE2hQoU0YMAAvfDCC4qIiDA5IQBfxHARAAAAAAAAAAAAAAAAAAAAAABe7OTJk3rggQe0ZMmSfO8jICBAjz/+uCZNmqRChQq5MR0AX8dwEQAAAAAAAAAAAAAAAAAAAAAAXuqHH37Q3Xffrfj4eLfsr1mzZlq8eLEqVKjglv0B8H3+ng4AAAAAAAAAAAAAAAAAAAAAAAD+bebMmbr11lvdNlgkSVu3blXbtm11+PBht+0TgG/jzkUAAAAAAAAAAAAAAAAAAAAAAHiZTz/9VEOHDpVZp/xXq1ZNGzduVNmyZU3ZPwDfwZ2LAAAAAAAAAAAAAAAAAAAAAADwIosWLdK9996b52BRSEiI7r77bn399dc6duyYkpOTlZKSokOHDmnu3Lnq0qVLnmscPXpUvXv3VkZGhrvjA/Ax3LkIAAAAAAAAAAAAAAAAAAAAAAAvcfz4cTVu3Fjx8fG51tx+++168803Vb58+Tz3tXLlSt1///06duxYrjXjxo3T1KlT8xsXQAHAcBEAAAAAAAAAAAAAAAAAAAAAAF4gOztbnTt31tq1a6/4uJ+fn6ZNm6aHHnrI8D5jY2PVs2dP/f7777nuMzIyUp06dcpXZgC+z9/TAQAAAAAAAAAAAAAAAAAAAAAAgDR9+vRcB4sk6a233nJpsEiSypQpo6VLl6pOnTpXfNzhcOjBBx9Udna2S/sFUHBw5yIAAAAAAAAAAAAAAAAAAAAAADwsKSlJ1atXV2xs7BUfv/322/XFF1/ke/979uxRixYtlJaWdsXHZ8yYoQceeCDf+wfgu7hzEQAAAAAAAAAAAAAAAAAAAAAAHvbmm2/mOlhUqlQpzZgx46r236BBA73wwgu5Pv7KK68oIyPjqtYA4JsYLgIAAAAAAAAAAAAAAAAAAAAAwIPS09P19ttv5/r4xIkTVbJkyate59FHH1WNGjWu+NipU6f02WefXfUaAHwPw0UAAAAAAAAAAAAAAAAAAAAAAHjQDz/8oMuXL1/xseLFi2vEiBFuWScoKEgTJkzI9fF33nnHLesA8C0MFwEAAAAA8rRq1Sr5+fkZ/gI8ge9TAPgn3hcBAADgbebOnWuoN50xY4ano17R8ePHtWDBAj377LO67bbb1K5dO1WvXl3h4eEKDQ1VQECA4f77k08+8fTTAQAAAAB4obw+L95xxx0qUqSI29a68847VbFixSs+tnPnTu3cudNta3mbnj17Ov3sHhoaqmPHjnk6KmCpQE8HAAAAAAAAAAAAAAAABdelS5f0+OOPO62rW7euRo4caUEiY7Zt26ZPP/1US5YsUXR0tKfjAAAAAAAKsPj4eC1fvjzXx91116I/BAUFaejQoZo8efIVH//000/1xhtvuHVNbzFlyhQtX75c2dnZudakpKTooYce0uLFiy1MBngWw0UAAAAAAAAAAAAAAMA048eP14ULF5zWTZ06VYGBnj+NYenSpXrhhRe0efNmT0cBCpSYmBjt2bNHUVFRioqK0okTJ3T27FnFxMQoMTFRaWlpSk9PV1BQkEJCQlS4cGGFh4erYsWKuuaaa1S1alU1atRIjRo1UvXq1bkTLwAAAAqUVatW5Trs0rRpUzVu3Njta+Y1XPTDDz8U2OGievXqafjw4Zo5c2aedUuWLNH333+vvn37WhMM8DDPH5UDAAAAAAAAAAAAAAAF0rp16zR79myndd26ddPNN99sQaLcnT59WiNGjNBPP/3k0RxAQZCZmanff/9dq1ev1qZNm7RlyxadPn3a0LZpaWlKS0uTJJ09e1Z79+79V014eLi6dOmibt26qWfPnqpcubJb8wMAAABWW7lyZa6P9ejRw5Q1a9Wqpbp162r//v3/euzw4cM6dOiQatWqZcranvaf//xHn3/+uRITE/OsGzt2rLp3764iRYpYlAzwHIaLAAAAfFDnzp21evVqj61fqFAhBQcHKzg4WEWLFlWZMmVUtmxZlS9fXhEREYqIiFC9evUUERHBVeMA2IpV789BQUF/vg///atYsWIqW7bsv76qVq2qOnXqKDw83PRsAAAAyJ2nP8+72z333KNPPvnE0zEAAF4sJydHY8eOlcPhcFr7yiuvWJAod2vXrlXfvn118eJFj+YAfNnBgwf1008/aenSpVq3bp2Sk5NNW+vSpUv65ptv9M0338jPz0+dO3fWPffco0GDBqlw4cKmretrPvnkEw0bNszTMXxKp06dtGrVKk/HAAAANpRXD9KlSxfT1u3Zs+cVh4sk6Zdffimww0Vly5bVo48+qhdffDHPupMnT+rVV191WgcUBAwXAQAAwGWZmZnKzMxUUlKSLl68qOPHj1+xrmTJkmrdurW6dOmiPn36KCIiwuKkAFAwZWRkKCMjw+kVdP5XmTJlVKdOHdWpU0f16tVTu3bt1KRJEwUGcngAAAAAAAC438cff6xt27Y5revfv7+aN29uQaIr+/nnn3XLLbcoPT3dYxkAX+RwOLR582YtXLhQixYt0uHDhz2WIzIyUpGRkXryySf12GOPafTo0QoLC/NIHgAAAMBVaWlp2rdv3xUfCwoKUrt27Uxbu2PHjpo6deoVH9u0aZMeeOAB09b2tHHjxmnGjBlOLzQydepU3Xfffbr22mstSgZ4hr+nAwAAAKDgunz5spYuXarx48erdu3aql+/vqZMmcKVHwHAQ2JjY/Xbb7/po48+0qOPPqqWLVuqRIkS6tatm1544QVFRkYqKyvL0zEBAAAAAEABEB8fr4kTJzqtCwgI0KRJkyxIdGW7d+/WgAEDGCwCXLBjxw49/vjjqlq1qlq3bq033njDY4NF/+vcuXN68sknVaNGDc2dO9fTcQAAAABD9u/fr+zs7Cs+1qJFC4WEhJi2dl6DS5s3bzZtXW9QrFgxPfnkk07rUlNT9cQTT1iQCPAshosAAABgmX379mn8+PGqVKmSRo4cqdOnT3s6EgDYXnJyslauXKn//Oc/uv7661WhQgWNGDFCv/zyC4NGyLdPPvlEfn5+hr6qVq3q6bjAv/A9DACA7+H3N+B9Xn75ZZ0/f95p3ZAhQ1S3bl0LEv1bZmam7rzzTpfvDg3YUXx8vKZOnapGjRqpSZMmeuONN3TixAlPx8pVbGyshg4dqk6dOunYsWOejgMAAADkaffu3bk+Vr9+fVPXDg8PV+XKla/4WFRUlNLS0kxd39MefPBBlStXzmndwoULtX79egsSAZ7DcBEAAAAsl5aWpg8//FC1atXSs88+q4yMDE9HAgD8vwsXLuijjz5S9+7dVaFCBT388MM6evSop2MBAAAAAAAfcvLkSb377rtO6/z9/fXMM89YkOjK3njjDe3atctj6wO+5Pfff9cTTzyR50mP3mjNmjVq2rSpFi9e7OkoAAAAQK6ioqJyfaxGjRqmr9+gQYMr/rvD4VB0dLTp63tSSEiIxo0bZ6h2/PjxJqcBPCvQ0wEAAABgX6mpqXrppZf0/fffa968ebruuus8HQkA8DcXLlzQO++8oxkzZujWW2/V448/rlatWnk6FgAAAAAA8HLPPvusoSsbDxw4ULVr17Yg0b8lJiZqypQp+d6+RIkSatq0qSpWrKjixYurWLFi8vc3dn3Xxo0b53tdAK67fPmy+vTpo9dee01PPPGEp+MAAAAA/3LmzJlcH6tZs6bp6+e1xqFDh0y/e5KnjR49Wq+99pouXryYZ926deu0aNEi9enTx6JkgLUYLgIAAIDH7dmzR23bttVnn32mfv36eToOAOB/ZGdn6+uvv9bXX3+tLl26aNq0aWrYsKGnYwEAAAAAAC+0e/duzZs3z2mdn5+fJk6caEGiK5s9e7YuXbrk0jYlS5bUvffeq/vuu09169Y1KRkAMzgcDo0fP14JCQmaNGmSp+MAAAAA/5DXcJEVdy6qUqVKro8dP37c9PU9rWjRonr44Yf13HPPOa19+umn1atXLwUEBFiQDLCWscvmAAAAACZLTU3VgAEDNHPmTE9HAQDkITIyUk2bNtUjjzyi+Ph4T8cBAAAAAABe5rnnnlNOTo7TuptuusmjVz6eO3euS/UdO3bUvn37NHXqVAaLAB/20ksv6ZVXXvF0DAAAAOAfzp49m+tjlSpVMn39vNaIjY01fX1vMGbMGIWGhjqt279/v7788ksLEgHWY7gIAAAAXsPhcGjMmDGaP3++p6MAAPKQlZWladOmKSIiQt99952n4wAAAAAAAC+xfft2ff/994Zqn3jiCXPD5CE6Olrbt283XF+/fn39/PPPKl++vImpAHsoXLiwWrdurYceekjvvvuuFi9erD179ujMmTOKj49XVlaW0tLSdOnSJe3du1dLly7VK6+8or59+yosLMwtGZ555hl9/fXXbtkXAAAA/uu9996Tn5+f4a833njD05GvWlZWlpo2bWr4OQcFBWnnzp1X3Nfly5dzXado0aJmPYU/lSxZMtfHLly4YPr63iA8PFzDhg0zVDtp0iRlZ2ebnAiwXqCnAwAAAMB8jRo1Uu/evd2yr6ysLKWnpyspKUmxsbE6ffq0Dh8+rLi4OLfsPycnR/fcc4/q1Kmj6667zi37BABvdbXvz2lpaUpLS1N6errS0tKUkJCgs2fP6uzZszp37pwyMzPdmPbfzp8/r379+mn8+PGaPHkyt/0GAAAAAMDmXnjhBUN1zZo1U+fOnU3NkpcVK1a4VD979mwFBweblAYo2AIDA9WqVSv16NFDN954o5o0aaLAwLxPVwoICFBwcLBKliypevXqqUePHpKkzMxMLVu2TO+9956WLVuW70wOh0NDhw5Vs2bNVK1atXzvBwAAAH9x9c60Bw4cMCmJdV5//XWXLlwxceJENW7c+IqPpaamXvHf/+iNzZbXcNGlS5dMX99bPProo3r//fedDg4dPHhQn3/+ue6++26LkgHWYLgIAADABpo0aaKXXnrJ1DVOnDihjRs3atmyZVq8ePFVXbUiIyNDQ4YM0datWxUSEuLGlADgXcx8f3Y4HDp37pz27Nnz59fWrVu1c+dOORwOt671+uuva/PmzZo/f77KlSvn1n0b1blzZ7c/LwDwZbwvAgXDPffco08++cTTMQAAMGTHjh364YcfDNU+8sgj5oZxYvXq1YZrmzRpopYtW5qYBih4/P391aFDBw0ZMkQDBgxQeHi4W/ZbqFAh9e7dW71799bmzZs1btw4rV27Nl/7Sk5O1r333qtff/1Vfn5+bsnnjYYOHaqhQ4d6NIOrr++cOXM8nhkAALiuQYMGLtVHRUWZlMQaBw4c0Isvvmi4vmnTppowYUKuj6elpV3x34sUKeJytvzIa5309HRLMniD6tWrq3fv3obuyvzSSy/pzjvvlL+/v/nBAIvw3QwAAAC3qFKligYOHKjZs2fr9OnT+vLLL12+Ksnf7d+/X2+99ZYbEwKAvfj5+al8+fLq1q2bHnnkEc2aNUvbt29XbGysFixYoJEjR7p1EGjVqlVq27atTp065bZ9AgAAAAAA3/Haa68ZqitTpoxuu+02k9PkbdeuXYZrBw0aZGISoGCpWLGiXnjhBZ04cUKrVq3SiBEj3DZY9L9atmypNWvW6O2331ahQoXytY9Vq1bp008/dXMyAAAAeypVqpTKly9vuN6X71yUk5Oj++67z/DQTVBQkObOnZvnHTxzGy4KDQ3NV0ZXBQUF5fqYnYaLJOmBBx4wVHfo0CF99913JqcBrMVwEQAAANwuKChIgwcP1q5duzRt2rR8333otdde08WLF92cDgDsrVSpUrrttts0c+ZMnTp1SosXL9aAAQPyPFho1JEjR9SlSxedOXPGDUkBAAAAAICvOHr0qBYuXGiodvjw4QoODjY5Ue6ysrJ08OBBw/VNmzY1MQ1QMLRt21YLFizQ8ePH9fzzz+uaa66xZF0/Pz89/PDDWrlypUqWLJmvffznP/9RZmamm5MBAADYkyt3L4qNjdWlS5dMTGOed999V+vXrzdc//zzzzt9bRwOxxX/Pb+D9K7Ka52MjAxLMniLbt26KSIiwlDt66+/bnIawFoMFwEAAMA0/v7+Gjt2rNasWaOyZcu6vH1CQoJmzZplQjIAgCQFBgaqV69eWrhwoaKjozV69OirHjI6fPiwunTporNnz7opJQAAAAAA8HZTp05Vdna20zp/f3+NHDnSgkS5O3PmjEuDBI0aNTIxDeDbunXrpsjISK1bt0633XZbnldiN1OHDh20YsUKlShRwuVtjx49qnnz5rk/FAAAgA25MlwkSVFRUSYlMc/Ro0f1zDPPGK5v0aKFnnzySad1uQ33pKamGl7rauT1OdkdFyr1JX5+fho1apSh2s2bN2vVqlXmBgIsxHARAAAATNe8eXMtW7ZMRYsWdXnb2bNnm5AIAPC/KlWqpPfee0/R0dEaPHjwVe3r4MGDuvXWW7niJwAAAAAANhAXF6e5c+caqu3WrZuqVKlicqK8xcTEGK4NCAhQuXLlTEwD+Kbrr79eGzdu1C+//KLOnTt7Oo6k/95lbMGCBQoICHB5Wy50BwAA4B7169d3qf7AgQMmJTHPiBEjlJycbKg2ODhYn3zyiaEeNbcBHquGi/K6O5En7z7sKXfeeafhu0a9/fbb5oYBLMRwEQAAACzRpEmTfH2YOnjwoHbv3u3+QACAK6pUqZK+/PJLfffddypfvny+97Np0yaNHz/ejckAAAAAAIA3mj17tuETq4YNG2ZyGucuXLhguDY/F8wCCrLGjRtr6dKlWrlypVq1auXpOP9yww036Omnn3Z5uw0bNujgwYMmJAIAALAXV+9c5GvDRR9//LFWrFhhuP4///mP6tWrZ6g2t8+fVg0Xpaen5/pY4cKFLcngTcqUKaPevXsbql28eLGOHTtmbiDAIgwXAQAAwDL33XefWrZs6fJ2v/76qwlpAAB56du3r/bs2aOOHTvmex9vv/22vv/+e/eFAgAAAAAAXiUnJ0czZswwVFuiRAndeuutJidyLiUlxXAtw0XAX9q0aaNt27apR48eno6Sp4kTJ6pGjRoub/fDDz+YkAYAAMBe6tevLz8/P8P1UVFRJqZxrzNnzmjcuHGG61u1aqXHH3/ccH14ePgV/z0nJyfPwR93iYuLy/WxIkWKmL6+N7rvvvsM1blybATwdgwXAQAAwFJPPfWUy9usXbvWhCQAAGdKlSqln3/+WXfccUe+9zFs2DDFxsa6MRUAAAAAAPAWy5cv15EjRwzVDhgwQMHBwSYncs6Vk7ICAwNNTAL4ltDQUPn7e/9pRsHBwZo4caLL261atcr9YQAAAGwmLCxMVapUMVzvS3cuGj16tOLj4w3VFi5cWHPnzlVAQIDh/ZcuXTrXx2JiYgzvJ7/yustvmTJlTF/fG3Xv3t3wc589e7bS0tJMTgSYz/s/9QMAAKBA6dmzp4oXL+7SNr50pRIAKGiCg4P12Wefafjw4fnaPi4uLl9/zAcAAAAAAN5v1qxZhmtvv/12E5MYl5WV5ekIAEw2ZMgQlSxZ0qVtfvvtNzkcDpMSAQAA2EeDBg0M10ZHRyszM9PENO4xf/58l+50+dJLL6l27dourVGxYsVcHzt58qRL+8qPixcv5vpY+fLlTV/fGwUGBmrAgAGGai9duqTvvvvO5ESA+RguAgAAgKWCgoLUsWNHl7Y5fPiwSWkAAEa9//776tmzZ762nTVrlnbu3OnmRAAAAAAAwJNiY2O1ePFiQ7Xly5dX586dzQ1kEMMDQMEXFBSkfv36ubRNQkKCzpw5Y1IiAAAA+6hfv77h2qysLMN3w/WUCxcuaOzYsYbr27Ztq0cffdTlda699tpcHztx4oTL+3PV8ePHc32sXLlypq/vrQYPHmy49uOPPzYxCWANhosAAABguebNm7tUn5qaqtTUVJPSAACMCAgI0FdffaVGjRq5vG1OTk6+DqACAAAAAADvNW/ePMNXmO7fv7/8/Tk9AYB1unbt6vI2hw4dMiEJAACAvbhy5yJJOnDggElJ3OPhhx9WbGysodqQkBB98skn+fr8W61atVwfs+LORdHR0bk+VqlSJdPX91YdOnTI865Sf/frr7/q6NGjJicCzBXo6QAAAACwn+rVq7u8TVJSkkJCQkxI4z6ZmZnatm2bNm/erOjoaB09elTHjh1TXFyckpOTlZycrMzMTIWGhv75dc0116hatWqqXr26GjRooHbt2qls2bKefipe4+zZs1q7dq327NmjPXv26NChQ4qPj1diYqISExMVGBioIkWKKCwsTJUqVVK1atVUu3ZttW3bVq1atVJoaKinn4LbZWRkaO3atdq8ebP279+v/fv36/z580pISFBiYqIKFSqksLAwhYWFqWTJkqpdu7bq1aun+vXrq0OHDgoPD/f0U4APCw0N1bx589SiRQtlZGS4tG1kZKTWrFnj8t3r7CAnJ0d79+7Vrl27FBUVpUOHDuns2bM6f/68Ll68qLS0NKWnpyszM1PBwcEqUqTIP77+eA+sWrWqrr32WlWtWvXPr6CgIE8/PdujP3C/mJgYrV+/XlFRUTp48KAOHjyoCxcuKCkpSUlJSUpOTlahQoVUunRpValSRREREbruuuvUv39/W//xoyDg58m96LVRUGRmZurAgQPau3evjhw5oiNHjujkyZOKjY3VhQsXlJCQoIyMDKWnpyswMFAhISEqXLiwwsLCVLFiRVWqVEmVK1dWgwYN1LRpU9WuXVsBAQGefloec+jQIW3evFmHDx/WsWPHdPz4cZ0+fVrJyclKSUlRSkqKMjMzFRQUpODgYBUvXlylS5dWuXLl/ny/rVevnq677jpVqFDB00/Htvid6X70oFc2b948w7V9+vQxMQnywnuCe/F+4DtatGjh8jZWXBEeyEtaWpp+//13bd++XUePHtWRI0d07NgxxcfH//menZGRoZCQEBUpUkRFixbVNddco+rVq6t69epq0qSJ2rVrx9+CfADHZZzj5yF3HAsxF/3e1XN1uCgqKsqkJFdvyZIl+uKLLwzXT548WbVq1crXWnm9bvv378/XPl2R13BRvXr1TF/fW/n5+al379764IMPnNY6HA598cUXeuaZZyxIBpiD4SIAAABYrmTJki5v4+pJ7FY5c+aMFixYoB9++EGbNm1SSkqK020SEhKUkJAgSTp8+LBWr179j8dr166trl27avDgwWrfvr38/PxMye6tTpw4oc8++0w//PCDNm/eLIfDkWttVlaW0tLSdOnSJR0/flzr1q3787HAwEB169ZNgwYN0oABA1S0aFEr4psiOztbixcv1ieffKKVK1cqKSkp19qsrCylpqbq/PnzkqQtW7b8+VhAQIDatm2r3r1768477+REL+RLo0aN9Nxzz2nixIkub/vuu+8yXPT/Tp8+rUWLFmnJkiVav3694uPjDW33x938Ll686LQ2KChITZo0UevWrf/8qlq16lUmhxH0B+73+++/a+HChfr555+1c+dOp/XZ2dk6deqUTp06pfXr10uSihcvrqFDh5qcFO7Gz5N70WujIDh+/LjWrl2rdevWacOGDdq3b5/hYwYZGRnKyMhQfHy8zp07p8OHD/+rpkiRIurUqZNuvvlm9ezZM88rhhYEZ86c0XfffaelS5dq48aNhvpM6b8neaWlpSk+Pj7Xk3ArVqyojh07qlOnTurRowe9qMn4nel+9KB5i4qK0o4dOwzVFi9eXJ07dzY1D/6J9wT34v3AN1177bUKCAhQdna24W0SExNNTARc2a5du7RgwQKtXLlS27ZtM/T55o8T3M+fP68jR47ot99++/MxPz8/1a1bV71799aQIUPUqFEjM+PDBRyXcY6fhyvjWIj56Pfcq27dui71Yd5656KEhASNGjXKcH2HDh308MMP53u9vIaLNm/enO/9GpGRkaF9+/Zd8bHSpUurTJkypq7v7fr27WtouEiSvvzyS4aL4NscAAAA8DmdOnVySDL8dc8993g68j+sWLHCpfySHAkJCZ6O/aecnBzH999/7+jSpYvD39/f5efiylelSpUczz77rOPChQueftr/cM8997j9+2/Xrl2Ou+66yxEYGOj21zE8PNzxwgsvOC5fvmzq6+JuaWlpjilTpjgqV67s9tckODjYcd999zn279/vNEdkZKRL+7YzX39/NiorK8sRERHh8vddYGCg4+TJk6Zk8oXv06ysLMd3333n6Natm8PPz8/U3x+5fV1zzTWOBx980LF69WpHdnZ2vp+LK78HPP1lFfoD9/cH6enpjk8//dTRsmVLt7xuc+bMyVdWT3/lly+8L+bG7j9P9NoFm136RXdKS0tz/Pjjj44HH3wwXz3o1X517tzZsWDBAkdGRoanXwq3SU1NdXz44YeONm3aWNqXNmzY0PH88887Dh8+nK/cdvj97Sq7/850OHyrBy1oXnjhBcOvw6BBg0zPc/ToUY//7Hv6+8Hu7wm8H+BKSpYs6dJ/p1dffdXTkQskfl7+7fLly45XXnnFUbduXdN//9SvX9/x8ccfF6jPNGbiuIz1+Hn4N46FXBn9nm9x5Xu3TZs2no57RcOHDzf8HIoUKZLvY15/l9vr5u/v74iPj3fDs7qyrVu35vrcOnXqZNq6viI9Pd0RFhZm+Pth586dno4M5Ju/AAAAAIulpaW5VB8QEKCwsDCT0rhm4cKFaty4sfr27avIyEjl5OSYut6pU6c0adIkXXvttXr88cd14cIFU9fzhLi4OI0YMUKNGzfWvHnzlJWV5fY1Ll26pBdeeEF16tTRwoUL3b5/M3zzzTeqW7eunnjiCZ08edLt+09PT9fHH3+s+vXra9y4cYauXgr8ISAgQM8//7zL22VlZen99983IZH3++6779SgQQPdeuutWrFiRZ5XJDTT6dOnNX36dHXq1EmVKlXSQw89pOPHj3skS0FCf+B+v/zyixo2bKi7777b9Kuxwbvw8+Re9NrwVenp6fr22281ZMgQlSlTRj179tT06dN18OBBy7OsWrVKAwcOVK1atfTZZ595rI9zh4sXL+r5559XlSpVNGLECG3YsMHS57N792795z//Uc2aNdWhQwfNnz9fmZmZlq1f0PA70/3oQV3jyu/9G264wcQkkHhPcDfeDwqO0NBQl+rN+MwE/F1MTIzGjx+vKlWq6Omnn9b+/ftNX3Pv3r267777VKNGDX344Yc+/ZnG13BcJm/8PPwTx0KsRb9nvvr16xuujYqKMjFJ/kRGRmrWrFmG61999VXVqFHjqtdt167dFf89JydHW7Zsuer95yavn4MWLVqYtq6vCAoKUqdOnQzXL1iwwMQ0gLkYLgIAAIDl4uLiXKovXry4OUFccOTIEd1www0aOHCgdu/ebfn6ycnJeuONN1S3bl3NmzfP8vXNsmjRItWrV08fffSRJQclz507p4EDB+ruu+9Wenq66evlR2JiooYMGaIBAwbo6NGjpq+Xk5OjN998U40aNfrzlu2AEYMHD1a9evVc3m7u3LkmpPFep0+fVo8ePdSvXz8dOHDA03H+4ezZs5o+fbo2bNjg6Sg+i/7A/eLi4jRo0CB1797dI380hefw8+R+9NrwRVFRURo1apQqVKig/v3768svv1RiYqKnY0mSjh8/rrvuukvNmzf3yPvU1cjOztb06dNVq1Ytvfjii4qNjfV0JK1du1a33367Syea4L/4nel+9KCui46O1t69ew3Xd+nSxcQ09sZ7gnvxflDwJCUluVTv6jASYFR2drbefvttRUREaMqUKR75nHPy5EmNHDlS7du3d+n3OPKH4zK54+fhnzgWYi36Pes0aNDAcO2lS5e84njVH1JSUjR8+HDD79+dO3fWgw8+6Ja1O3bsmOtjK1eudMsaV7Js2bJcH3NlqKYgc+XYxqJFi0xMApiL4SIAAABYztWBiQoVKpiUxJiZM2eqQYMGWrFihUdzSNKFCxd0991366abbtLFixc9HeeqvPjii7r11lt19uxZy9eeN2+eunTposuXL1u+dl727Nmjpk2b6ssvv7R87ejoaF1//fVcQQWG+fv7a9y4cS5vd/r0aW3bts2ERN5nxYoVatiwoZYvX+7pKDAB/YH7HTx4UK1ateJ3kQ3x8+R+9NrwVQsXLtQHH3zg1d8/27ZtU8uWLTV9+nRPRzFk+/btuu666/TQQw955et6/vx5T0fwKfzOdD960Pxx5SSZKlWqqHr16iamsS/eE9yL94OCJycnRwkJCS5tExYWZlIa2NmuXbvUokULPfroo14xMLB+/Xo1bdpUH3zwgaejFFgcl8kdPw//xrEQ69DvWcuV4SJJXnWRxokTJyo6OtpQbdGiRTV79mz5+fm5Ze0ePXrkuq9vvvnGLWv8r8zMTP36669XfMzf31/t27c3ZV1f48pw0Z49eyy5mDBgBoaLAAAAYDlXb9XbvHlzk5LkLTMzU6NGjdLo0aOVmprqkQy5WbZsmVq2bKk9e/Z4OorLMjIydPvtt+v555/36C3UN2zYoJtvvlnJyckey/B3GzduVMeOHXX48GGPZUhPT9fgwYM1bdo0j2WAbxk4cGC+rua5ePFiE9J4l7lz5+qmm27y6j8GIX/oD8yxZs0atWrViisF2gw/T+5Hrw1YIy0tTQ899JBGjx6tnJwcT8fJ1Xvvvac2bdr43HsZ/o3fmeagB80/Vz7Xd+7c2bwgNsV7gvvxflAwHTlyxOVezdMXu0PBM2/ePLVu3Vrbt2/3dJR/yMjI0KhRozRixAhlZGR4Ok6BwXGZvPHz4Nt85VhIbuj3rOfqcFFUVJRJSVyzceNGl86XeP3111WtWjW3rV++fPlcz5GKiooy5S5iP/zwQ64Dn82bN1eJEiXcvqYvaty4sUqWLGm4/ocffjAxDWAehosAAABgqaysLP32228ubdOyZUuT0uQuJSVFN954o1dftevIkSNq06ZNrlcQ8UbZ2dkaMmSI5s+f7+kokv57YGjgwIEePcAvSatWrVK3bt28YgjB4XDokUce0bx58zwdBT6gaNGiGjBggMvbFfThom+++Ub33nuvsrKyPB0FbkZ/YI6dO3eqd+/eiouL83QUWIifJ/ej1wasN3PmTN1+++3Kzs72dJR/yMzM1B133KExY8YoPT3d03FwlfidaQ560PxLTk7WunXrDNczXORevCe4H+8HBVd+7p5eq1YtE5LAjnJycjR27FjdfffdXjcI+ncfffSRBgwYwECFG3BcJnf8PBQs3nosJC/0e54RERGhoKAgw/XecOeijIwM3XfffYYH6Lp27apRo0a5PUf//v1zfezrr792+3p5fb4cPHiw29fzVf7+/urYsaPh+uXLl5uYBjAPw0UAAACw1LJly3Tp0iWXtrF6uCg1NVW9e/dWZGSkpevmR1JSknr37q01a9Z4OoohI0aMMO1Wzfn1008/aerUqR5bf8+ePerbt6/XXT3s/vvvd3kQEPZ05513urzNtm3bFBMTY0Iaz9u5c6fuuOMOn7xqG/JGf2COY8eO6aabblJCQoKno8BC/DyZg14b8IwFCxbo0Ucf9XSMP6WmpuqWW27RF1984ekocAN+Z5qDHvTqrF69WpmZmYbru3TpYmIae+E9wf14PyjY1q5d61J9oUKF3HrVedhXdna2hg4dqnfffdfTUQxZvHixbrvtNgYqrhLHZa6Mn4eCyduOheSFfs9zAgMDVbt2bcP13jBc9NJLL2nfvn2GasPCwvTxxx/Lz8/P7TnuuOMO+ftf+fT+2bNnu/UCl3v27NGKFSuu+Ji/vz/DRf/DlWMca9as4fcJfFKgpwMAAADAXl5//XWX6qtXr65mzZqZlObfsrOz1a9fP7ddVbFKlSqqW7euKleurLCwMAUFBSkxMVGXL19WVFSUDhw4oJSUlKtaIyUlRT179tTKlSs9cpcnoyZNmqTZs2e7tE2RIkUUERGh6tWrq2zZsgoNDVWhQoWUnJys2NhYHTlyRLt27VJaWtpVZXvmmWfUs2dP1fu/9u4zuoqq/fv4L70QOgkQ6cVQIogC0luQpiBFRYqCglgQRRFULIgNVFBEUVEREJSuKErvRXoTkCq99xIIqed54WO5/5Jk5pyZU3K+n7VY676da8++CGdmdvaZa+9KlVw6j1knT57UXXfdpUuXLrl8rrx586pixYoqX7688ubNq6ioKCUlJeny5cs6cOCAdu7cqVOnThk+X0pKitq3b6/t27e7nBtytnr16ik8PNzUdehwOLRu3Tq1adPGxszcLzk5WV26dLFkdfjQ0FCVLl1aJUqUUHR0tPLnz6/w8HCFhoYqPT1dycnJSkpK0rlz53T69GmdOHFCBw8eZLckmzA+sEdaWpruvfdenThxwlS78PBwlS9fXmXLllXhwoWVK1cuhYaGKjExUVeuXNHBgwe1Y8cOnT171qbM4QquJ3sw1gb+VLBgQRUvXlyFCxdWkSJFlCtXLoWHhyssLEwpKSlKTk7W2bNnderUKf3xxx86fPiwJf1+/PHHio+PV69evSw5n7OuXr2qFi1amH6RNisREREqXbq0ypQpoyJFiigyMlKRkZFKS0tTUlKSLl26pGPHjunYsWPav38/41EL8cy0B2NQ1y1atMhwbMmSJVWqVCn7kvEj3BOsx/0gZ3M4HJo5c6apNtWrV1dwMK9RwTXp6el68MEHNWnSJEvOFxERobi4OBUvXlxFixZVZGSkIiIidP36dV25ckWHDh3S3r17dfDgQZf6+emnn/TEE09ozJgxluTtb5iXuTGuB/fw97mQrDDe87zKlStr27ZthmJ3795tczZZ++233zR06FDD8cOGDVPJkiVtyaVYsWJKSEjQggUL/nPs6NGj+u677/TQQw9Z0teAAQMy3eWuWbNmKlq0qCX95BRmiouuXr2q1atXq2HDhjZmBFiP34oBAADgNpMmTTK9E0qPHj1sWekjMy+++KLmzp3rdPuAgAAlJCSoS5cuat68eba/aKelpWnVqlWaNWuWxo0bp3PnzjnVb2Jiojp06KCNGzcqJibGqXPYadmyZRo8eLCh2EqVKumBBx5Q8+bNVa1aNYWEhGQZn5KSolWrVmnSpEmaOHGikpKSTOeXmpqq5557zqV/e7MyMjLUqVMnlyZwY2Nj1aNHD919992qUaNGttfKrl27NHv2bI0ZM8bQijtnz55V79699dRTTzmdI3K+8PBw1a9f/4aTm1nZuHFjjisu+vjjj7Vjxw6n2oaHh+vOO+9Uy5YtVb9+fVWoUMH0ywypqak6cOCAtm7dqg0bNmjt2rVavXo1KyJZgPGBPd5++21t3LjRUGyZMmXUuXNntWjRQjVq1FBoaGi2bQ4cOKCffvpJU6ZM0erVq11NFxbherIeY234q9KlS6t27dqqXbu2qlatqooVK6pQoUKmznHlyhWtXbtWS5cu1ffff6+dO3c6nU/fvn3VpEkTlStXzulzuCIjI0OdO3d2ubAoMDBQDRo0UNu2bVWvXj3deuutCgoKMtQ2JSVFO3fu1Lp167RixQotXbpUR44ccSkff8Yz0x6MQV23dOlSw7G33XabfYn4Ge4J1uN+kLOtWbPG9DikUaNG9iQDv/Lcc8+5VEgRGBiohg0bqnXr1kpISFClSpUMzROfOHFCixcv1qRJkzRv3jyniv6//vpr3X777XryySedSd1vMS+TOa4H6zEXYg7jPc+Lj483HHvgwAGlpKQY+tlbLT09XY888ojhXXqbNWtme2Fdnz59Mv3+feDAgWrfvr2ioqJc6mP27NmaM2dOpsdffvlll86fE1WuXFlhYWGGFxtdsmQJxUXwPQ4AAAD4nIYNGzokGf7TrVs3T6fs2LlzpyN//vym8g4ODnYcP37cbTlOnz7dVH7/90+HDh0cu3btcrr/pKQkx6hRoxwFCxZ0OofGjRs70tLSLPyp3Fi3bt0M59SqVStHbGxstnEJCQmOxYsXu5TXiRMnHD169HD65zd//nyLfkLZGzp0qNN5xsbGOsaNG+dITU11uv/58+c7qlSpYqi/3r17m8rPn/ni/dkK7733nunP8V133WVpDkuWLPHo5/TKlSuOAgUKmP45FCxY0PHuu+86zp8/b3lODofDcfXqVcfs2bMdTzzxhCMmJuaGOUyaNMnyfseOHWv4Z1CyZEnL+7cS4wPjzIwPbrvtNkdISEi2cTVr1nT88ssvLue2dOlSx5o1awzH54TPsKfvizfC9WQMY+2czV/Hi0a9+eabmf4sgoKCHHfeeafjo48+cuzbt8+W/tevX+944IEHHEFBQU59zhs1auTIyMiwJbfs9O3b16V7bP78+R2vvfaa5fMwmzZtcgwaNMhRrly5G/abN29ey/rKCc/vv/DMNC4njUF9QWJioiM4ONjwz/y1117zdMo35Gv3C+4JxnA/wL898MADpj+nS5Ys8XTaOZbZf4uxY8d6OmWnfPnll07fJ6OiohwvvPCC48CBAy7nsX//fkfPnj0dgYGBpvMICQlxrF+/3vUfhg9jXsYaXA/GMRdiHOM93zNz5kxTn6ft27d7JE8z727kzZvXcfjwYdtzSk9Pz3Q+TZKjV69eLp3/5MmTmX53/NezCzdWrVo1w5+XZs2aeTpdwDT/fusLAADAR/nay0jbt293FCtWzPREVP/+/d2W48mTJx358uVzasKsaNGijgULFliWy7lz5xz333+/U7lIcgwZMsSyXDJjZuLOyM9v+vTpluY3c+ZMR2RkpOlcmjdvbmkemfntt98MTWbe6M8jjzziuHLliiV5pKWlOYYMGZLtZHFAQICpHP2Zr92frbJ06VKnrn0refoleme+KOvYsaNtRUU3kpaW5liwYIHjvvvu+597EMVFmWN8YI6V44M8efI4vvjiC9tzzkxO+Ax7+r74f3E9GcdYO2fz1/GiUTd6oaZq1aqODz/80HHy5Em35bF161ZHvXr1nLrupk6d6rY8//Ldd985fZ8IDg529O/f33H58mXb81y+fLnjwQcf/J+xKMVF/8Uz05ycNAb1BWbHmFaPQ6ziS/cL7gnGcT/AXw4fPmyqEFKSo1ixYo709HRPp55jmb0GfbG4aO3atY7Q0FCn7jk9e/Z0nDp1ypacKlWqZDqfqlWrurS4na9jXsZ1XA/mMBdiHOM937Nv3z5T/y4zZsxwe467d+92hIeHG85xzJgxbsvtm2++yTKX0aNHO3Xea9euORo1apTpeQMDAx1r1661+G+Tc5i5F+XNm5ffM+BzAgUAAADYxOFw6Ouvv1bt2rV19OhRU23Lli1reAt5Kzz77LO6ePGi6XZ16tTR5s2b1bRpU8tyKVCggKZMmaIPPvhAAQEBptu/8cYbOnDggGX52Kl+/fravHmzOnToYOl577nnHs2fP18RERGm2s2fP9+lrd+N6tu3r+Ettf8SGBio0aNHa8yYMS5vb/2XoKAgvfjii1q4cKHy5s2baZzD4bCkP+Rct9xyi+k2J06c0OnTp23IxjPGjx9vKv6FF17Q5MmTlT9/fpsy+q+goCA1bdpUU6dO1ZEjR/Tyyy8rX758buvfFzE+8Iybb75ZGzdu1KOPPurpVGAhrif389exNnKGwMBAtW3bVkuWLNGWLVvUt29fFS5c2G39V6lSRcuWLdPrr79u+j7x5ptvuvV3qBMnTuipp55yqm1cXJzWr1+v9957T7lz57Y4s/+qX7++vvnmGx04cEADBgxQrly5bO/TF/HM9AzGoMasWbPGVHyVKlVsysR/cE9wP+4Hvu/VV19VWlqaqTadOnVSYCCvUME5ycnJ6t69u1JSUky1i46O1pw5c/Tll18qJibG8rxq1qyptWvXql27dqbabd26Ve+//77l+fgbf52X4XpwHnMh7sN4z33KlCmjyMhIw/G7du2yMZv/cjgc6tmzp65fv24ovmXLlnrkkUdszuofXbt21a233prp8SeeeEKff/65qXMmJSWpTZs2Wrp0aaYxzz//vGrWrGnqvP7EzFzHpUuX9Pvvv9uYDWA9fjMGAACA5dLS0vTDDz+oRo0a6tGjh65cuWKqfUhIiMaMGWN6UtRZCxcu1KRJk0y3a9SokebPn2/bpN6zzz6rMWPGmP5CKykpSb1797YlJyu1bt1aCxcutO3nV7duXY0dO9ZUG4fDoW+//daWfP4yc+ZMLV682FSboKAgffPNN+rVq5ctOTVq1EgLFiygyABOK1CggGJjY023O3TokA3ZuN/ly5e1evVqw/Ft27bV0KFDbcwoe4ULF9Zbb72lQ4cOqX79+h7NxVsxPvCMqlWravXq1SpXrpynU4GFuJ7cz1/H2vB9gYGB6tChg3777Tf98MMPatSokUdzGTRokMaNG6egoCDD7bZt26Yff/zRxsz+V8+ePXX+/HnT7Vq2bKm1a9dm+YKCXW666Sa9++672r9/v5555hm39+/NeGZ6BmNQ4zZt2mQ4NjIyUmXLlrUxm5yPe4L7cT/wfRs3btQ333xjqk1wcLCeeOIJmzKCPxg8eLDpoo0KFSpo7dq1atGihU1Z/SkqKkrTp09X165dTbV75513dPbsWZuyyvn8eV6G68E85kLci/GeewUEBKhixYqG43fv3m1jNv/16aefasWKFYZi8+XLpy+//NLmjP5XQECARo8erZCQkBsez8jI0BNPPKGuXbvqzJkz2Z5vxYoVqlatmhYuXJhpTOXKlfXGG284nbM/MLuQipm5FMAbUFwEAAAASxw/flzff/+9Hn/8cRUvXlzt27fXxo0bTZ8nODhYU6dOVcOGDW3I8sYGDhxous0tt9yiWbNm2b7K7sMPP6z33nvPdLs5c+Zo5cqVNmRkjYSEBE2fPl2hoaG29tOxY0d17tzZVJvp06fblM2fE/cvvvii6XbvvvuuunTpYkNG/6hRo4ZmzJih4OBgW/tBzuXM7kVmd7XzVqtWrVJ6erqh2NDQUH3yySc2Z2Rcnjx5dNNNN3k6Da/E+MD9SpUqpblz56pAgQKeTgUW43pyL38dayNn6Nevn6ZPn67KlSt7OpW/PfTQQxoxYoSpNu560eDnn3/W7NmzTbdr27atfvrppyx3sHWHmJgYt+5a7Qt4ZrofY1Bztm7daji2cuXK7ALiIu4J7sX9wPdlZGSoT58+pndO6Ny5s0qXLm1TVsjpdu7caXpXk7i4OC1btsxtn7vAwECNHz9erVq1MtwmMTFRw4YNszGrnMuf52W4HpzDXIj7MN7zjPj4eMOx7ty56NChQ6be3RgxYoRHvlOtWbOm3nzzzSxjvv32W5UsWVKPPfaYfvzxRx09elTJycm6ePGiduzYoa+++koJCQlq2LBhlgVcBQoU0PTp0xUWFmb1XyNHMVtcZGYuBfAGvDUGAADgBzZv3qxXXnnFknOlp6crJSVFiYmJOnPmjI4dO6Z9+/Y5tUru/xUWFqaJEyeqbdu2ridq0Lx587R+/XpTbfLnz6+ffvpJUVFRNmX1v/r166ctW7Zo4sSJptq9+eabmjdvnk1ZOa906dKaOnWq7ZPqfxk6dKi+//57w1tZ7969W7t371ZcXJzlufz000+mV9vp2LGj+vXrZ3kuN9KkSRO99957eu6559zSH3KWEiVKmG5z5MgRGzJxvx07dhiObd++PcU8PoDxgfuFhIRo2rRpKlKkiKdTgcW4ntzLn8faOdX48eM1fvx4T6fxt3vuuUczZ8607fze+sX1U089pV9//dXw7hHz5s3TqVOnbFulWvrz5VlnXjpPSEjQlClTWFjCC/HMdD/GoOZcu3ZN+/btMxzvzCIk+Af3BPfifpAzDB8+3NTu4pIUFBSkl156yaaM4A9ee+01paWlGY6Pjo7WggULFBMTY2NW/xUYGKjvvvtOt99+u/744w9DbUaNGqUBAwbwEr4J/j4vw/XgHOZC3IPxnueYKS5y585Fjz32mBITEw3Ftm7dWt26dbM5o8wNGDBAO3fuzHKeOCkpSV988YW++OILp/qIiIjQrFmzVKFCBWfT9BsxMTEqXLiwTp06ZSh+y5Yt9iYEWIxvDgAAAPzAb7/9pt9++83TaWSpRo0aGjdunCpVquTWft955x3TbUaMGKFSpUpZn0wWRo0apaVLl5ra5WP+/PnasGGDqlevbmNm5gQEBGj8+PFu/SKiePHi6tatm0aPHm24zfLly22ZWDe7qlVMTIw+/fRTy/PISt++ffX999977Qqi8F5FixY13San7Fxk5uWqFi1a2JgJrML4wP1ee+01r8sJ1uB6ch9/H2sDdhs5cqTmzJmjixcvZhubnp6uKVOm6Omnn7Ytn2+//Vbbtm0z1aZ48eKaPHmy2150gzk8M92PMag5u3btUkZGhuH4kiVL2phNzsc9wb24H/i+33//Xa+++qrpdr179+YFSjhty5YtmjFjhuH4wMBATZo0ScWLF7cxq8zlzZtXY8aMUePGjQ3t8JWYmKgJEybomWeecUN2vs/f52W4HnImb5sLcQXjPc8xU1x06dIlnTx50vYisHHjxhle8KBAgQKm7rN2CAgI0JgxY3T9+nVNmTLF8vOHh4dr6tSpqlOnjuXnzqlKlixpuLjo999/tzkbwFrsQw4AAACPuummmzRs2DCtXr3a7YVFu3fv1vLly021adasmR566CGbMspcnjx5nCoycXZVErv07NlT9evXd3u/jz/+uKl4OwprfvvtN9PnHT58uNtXhAsICNCXX37JKtYwzZ+Li86cOWM4tnLlyjZmAiswPnC/UqVKqX///p5OAzbgenIvfx5rA+5QqFAhUy8RLViwwMZs/vx90YyAgAB99913KlSokE0ZwRU8M92PMah5e/fuNRXPrr3O457gXtwPfF9SUpI6deqk5ORkU+1iYmI0ePBgm7KCP3j77bcNFSX85YknnlBCQoKNGWWvYcOG6ty5s+H4sWPH2phNzuLv8zJcDzmTt82FOIvxnmeZKS6S/lzYwk4nT57Uc889Zzh+5MiRTn0PbrWgoCBNmjRJgwYNUkBAgGXnLVy4sBYsWKC7777bsnP6AzNzHidPnjS8SxbgDSguAgAAgNuFhISoSZMmmjZtmg4ePKh+/fopKCjI7Xl88803puIDAgL03nvv2ZRN9lq3bq0GDRqYajN16lRdv37dpozMCQsL06BBgzzS96233qqyZcsajt+wYYPlORjdMv4v8fHxpia0rVShQgWPbusN3xQbG2u6zeXLl23IxP3MTAbmy5fPvkRgCcYH7jd48GCFhYV5Og3YgOvJffx9rA24y+OPP67AQGNfrS1btkxpaWm25LFmzRpt3brVVJsePXqoXr16tuQD1/HMdD/GoOaZLS4qVqyYTZnkfNwT3Iv7ge978skn9dtvv5lu9/777zNXB6edPn1aP/74o+H4QoUK6e2337YxI+MGDRpk+HvZrVu3avPmzTZn5Pv8fV6G6yFn85a5EFcw3vOsYsWKKW/evIbj7S4u6t27ty5cuGAotm3bturSpYut+ZgREBCg119/XfPnz7dk9817771XW7duZc7QCWbnPMzOqQCeRHERAAAA3CIoKEhdu3bVkiVLdOnSJS1atEj33nuvx3ZHcTgcmjhxoqk29957r6pWrWpTRsa89dZbpuIvXbpkajLXTg899JBHVyy96667DMfu27fP8onPyZMnm4p/5ZVXDE/U2uHVV1/1SNEffFeePHlMt0lKSrIhE/czc7+4cuWKjZnAVYwP3K9o0aJ64IEHPJ0GbMD15F7+PtYG3KVIkSJq2LChodgrV65o06ZNtuTx+eefm4qPiorS0KFDbckFruOZ6X6MQZ2zf/9+U/HsXOQc7gnuxf3A940ZM0bjxo0z3a5NmzYe2e0LOce4ceOUmppqOL5fv36mXqy2U/ny5dWqVSvD8T///LON2eQM/j4vw/WQs3nLXIizGO95h8qVKxuO3b17t215TJ8+Xd9//72h2IIFC5qeg3OXpk2batu2bRo1apRuueUWU20DAwN11113afny5Zo2bZoKFy5sU5Y5m9nn/h9//GFTJoD1KC4CAACAW6Snp2vixInq3Lmznn76aS1YsEDp6ekey2fz5s06fPiwqTZ9+vSxKRvj6tevr2rVqplqM3PmTHuSMalnz54e7b927dqGY1NSUky/MJGVjRs36uDBg4bjCxcurPbt21vWvzNKliypli1bejQH+Jbw8HDTbbxlhVpXRUREGI41++yBezE+cL9HHnlEoaGhnk4DNuB6ci9/HmsD7ta4cWPDsWZ3FzIiJSXF8EsQf3n88cdVsGBBy3OBNXhmuh9jUOccPXrUVDzFRc7hnuBe3A982+rVq9W7d2/T7QoVKqQvvvjChozgT77++mvDsVFRUU59Vu3Uo0cPw7Hz5s2zMZOcwd/nZbgecj5Pz4W4gvGed4iPjzcca9fORefPn9dTTz1lOP6TTz7x6sKb4ODgv3fw3Lhxo4YOHar27dsrLi5O0dHRCg0NVWhoqAoWLKhq1aqpa9euGj16tI4dO6aff/5Z9evX9/RfwaeZ3bno2LFjNmUCWI/iIgAAALjViRMn9NVXX6lZs2YqXbq0hgwZoosXL7o9jwULFpiKr1Spktf8cv3EE0+Yil+8eLEcDodN2RhTrlw51axZ06M5VK9e3VT8gQMHLOt74cKFpuK7d++ukJAQy/p3Vq9evTydAnyIM8VFOWXnIjMvav7yyy82ZgJXMT5wv/vvv9/TKcAmXE/u4+9jbcDdatSoYTh2+/btlve/bNkyU7thBgcH67nnnrM8D1iHZ6b7MQZ1jpkXYSIjI5U/f34bs8m5uCe4F/cD33Xw4EG1bdtWycnJptt+8cUXXv2iKLzf3r17Te2qcN999yl37tw2ZmTenXfeqbCwMEOxa9eu1eXLl23OyHf5+7wM14N/8PRciCsY73kHbygu6tu3r06dOmUo9t577/WpHa9uu+02vfDCC5oxY4Z27dql06dPKzk5WcnJyTp79qw2bdqkCRMmqFevXipSpIin080RzC6oQnERfAnFRQAAAPCYI0eOaODAgX8XGTnzJZCzzBZ7eNOkU4cOHRQcHGw4/vTp0/rtt99szCh7LVq08Gj/klS6dGlTBTtGJ5aMWLJkial4T+9a9JdmzZopKirK02nAR/hzcVGJEiUMx06bNk2nT5+2MRu4gvGBe5UuXVpVqlTxaA6wD9eT+/j7WBtwt7JlyxqOteOFmp9//tlUfLNmzVS0aFHL84B1eGa6F2NQ5504ccJwbGxsrI2Z5GzcE9yH+4Hvunz5slq3bu3UHFvfvn3Vrl07G7KCP5k9e7ap+M6dO9uUifMiIyMNF6empaVp48aNNmfku/x9XobrwT94ei7EWYz3vIeZ4qLDhw/r+vXrlvY/d+5cTZgwwVBsdHS0Pv30U0v7R85DcRFyMoqLAAAA4HEXL17UwIEDdeutt+rXX3+1vb/09HStWrXKVBtv+rKpQIECplejXLp0qT3JGGRmq3S7BAUFmSoAsOrl/7S0NK1cudJwfNGiRU2t/mSnsLAwr/hSBL4hNDTUdJuUlBQbMnG/ypUrG469ePGinnzySY+vzIv/Ynzgfg0bNvRo/7AP15N7+fNYG/CEmJgYw7GHDh2yvP958+aZiu/atavlOcA6PDPdjzGoc9LT03XhwgXD8d62Gr2v4J7gXtwPfFNaWpo6duzo1IvLderU0XvvvWdDVvA3c+bMMRybK1cuNWjQwMZsnGdmt5stW7bYl4iP8/d5Ga4H/+DpuRBnMd7zHma+S83IyNCePXss6/vKlSt67LHHDMePGjVK0dHRlvWPnMnsvMfZs2dtygSwHsVFAAAA8Bq7du1Sw4YNNXz4cFv72b17t6ndMmJiYrxuRRuzBR9bt261KRNjqlWr5tH+/2Jm4vPcuXOW9Llnzx5dvXrVcHzjxo0VEBBgSd9WSEhI8HQK8BHO7D7nzG5H3qhWrVqm4mfMmKGHH35Y6enpNmUEZzA+cL969ep5tH/Yh+vJvfx5rA14Qq5cuQzHnjx50tK+L1++bOrlisDAQLVs2dLSHGAtnpnuxxjUOZcuXTIVHxERYVMmORv3BPfifuB7HA6Hevbsqblz55puGx0dralTp5ra2QO4EYfDYWqhxAYNGji1MJc7mJlP8MdiCqP8eV6G68F/eHIuxBWM97xHTEyMqYKdXbt2Wdb3Cy+8oMOHDxuKvf/++3XfffdZ1jdyLrPzHmbnVQBPorgIAADAD3Tr1k0Oh8OyPxkZGUpKStLFixe1f/9+rV69WlOmTNHrr7+utm3bqlChQk7nmpaWpueff169evVSRkaGhT+Ff2zbts1UfJ06dWzJwxVmc/rtt99syiR7UVFRKl26tMf6/7eCBQsajrVqq22zKyjWrl3bkn6t4m35wHs5c83klOKiUqVKqVKlSqbajB8/XrVr19aaNWtsygpmMT5wP297CQ7W4XpyH38fa/sDq3+fd/XPzJkzPf0j8bjg4GDDsVevXtWVK1cs63vz5s2mdsC8/fbblS9fPsv6h/V4ZrofY1DnXLx40VR8Tvl93924J7gX9wPf079/f40fP950u8jISM2aNUs33XSTDVnB3+zdu9fUGN/MbijuVrJkScOxu3fvtjET3+Xv8zJcD/7Dk3MhrmC8513i4+MNx1p1nS1fvlyff/65odiYmBiNGjXKkn6R85ktLjI7rwJ4kvGnPgAAAPD/BQQEKDw8XOHh4cqbN69Kly79n10b1q9fr6lTp2rs2LFOrX705Zdf6vr16xo/frzlu7iY/ZLW7I4U7lCjRg2FhIQoNTXVUPyOHTuUnp6uoKAgmzP7r+LFi7u9z8yY+QXfmV1YbsRscVGNGjUs6dcq8fHxioiIMLVqKvyTM19G5aSVjDt16qRXX33VVJv169erdu3aSkhIUJ8+fdSqVStWT/UgxgfuV6FCBY/0C/txPbmPv4+1gX87ceKEduzYoX379mnv3r06cuSIzp49q7Nnz+rcuXO6fv26kpOTlZKSYvjatsKZM2eUO3duS861ceNGU/ENGza0pF/Yh2em+zEGdU5iYqKp+Jz0+747cU9wL+4HvuWdd97R8OHDTbcLCQnRjBkzdMcdd9iQFfzRpk2bTMXfdtttNmXiOjMFd8eOHbMxE9/l7/MyXA+e5w9zIa5gvOdd4uPjtWTJEkOxVuxclJSUpJ49expeqOfzzz93aSFl+JfQ0FAFBgYaXjTbW4ouASMoLgIAAIAtatSooRo1auiNN97Q6NGjNXjwYNMrMUyYMEFFixbVu+++a2lu+/btMxVvdjcKdwgLC1OZMmUMr9hy/fp1HTt2TCVKlLA5s/+KjY11e5+ZCQsLMxxr1cT6nj17TMV72yRnUFCQypcv7/GVheH9nLlmctLLRr169dJbb73l1M9h0aJFWrRokQoVKqT27durXbt2atSoESs9uxnjA/eKiYnxii8XYQ+uJ/fx97E2/NuBAwf0888/a/ny5Vq7dq2OHDni6ZRuyMqFGsy+WMEKvd6PZ6Z7MQZ1ntlnd076fd+duCe4D/cD3zJq1Ci9/PLLptsFBgZqwoQJatGihQ1ZwV9t3brVVHzZsmVtysR1efLkMRx78uRJZWRkKDAw0MaMfI+/z8twPbj/evDHuRBnMd7zPu7euei1117T3r17DcV27txZ7dq1c7lP+JeIiAhdvXrVUGxKSorN2QDWYcQPAAAAW0VERKhv377avXu3mjVrZrr9e++9p++//97SnI4fP24q3tuKPf4SFxdnKt7s39sqZiZj7WZmBcz09HRL+jTzc4+JiVHevHkt6ddKN998s6dTgA84f/686TY56WWjmJgY9e3b16VznD17Vl988YVatmypggULqmXLlho2bJjWr1+vtLQ0axJFphgfuFfhwoU90i/cg+vJffx9rA3/c/LkSQ0ZMkTx8fEqU6aMnn76aU2fPt1rX6aRnNvhMzNm/55mXtqAZ/DMdC/GoM4zu8p5Tvp93524J7gP9wPf8c0336hPnz5OtR09erQ6duxocUbwdwcOHDAV74mCaqPMPK/T0tJ0+vRpG7PxTf4+L8P14B7+PhfiLMZ73sedxUUbNmzQhx9+aCi2SJEi+vjjj13qD/7JzLOD4iL4EnYuAgAAgFvExMRozpw56t27tz7//HNTbXv27KnatWuraNGiluRi5svKgIAAlSpVypJ+rWZ2dSdPvbjh7y8TnDhxwnCst37WSpcu7ekU4APMfNb/ki9fPusT8aBXXnlF06dP1x9//OHyua5du6a5c+dq7ty5kqTIyEjVrFlTderUUe3atVWrVi0VKlTI5X7wD8YH7sUXezkb15P7+PtYG/5j165dGjx4sKZPn+5zRdeeLC4qX768ZX3DHjwz3YsxqPPM3nvZidc53BPch/uBb5gxY4YeeeQRORwO020/+OAD9ezZ04as4O+OHj1qKj4nzYFfuXJFRYoU8XQaXsXf52W4Huy9HpgLcQ3jPe9TuXJlw7GJiYk6evSoihUrZrqf1NRUPfLII4YLKUePHq0CBQqY7gcwMw4wu2gL4EnsXAQAAAC3CQwM1KeffqrOnTubanfhwgX169fPsjzMvACfL18+hYSEWNa3lWJiYkzFO/PivxW89efnLmZ+7mb/Td0lOjra0ynABzhzj3FmQtibRUVFacqUKYqMjLT83NeuXdPSpUv1zjvvqHXr1oqOjlaFChXUs2dPjR8/3vSXePgvxgfulTt3bo/0C/fgenIfb/3ZAVY5d+6cevToofj4eE2ePNnnXqaRzL+QnxUzY76oqChFRUVZ1jfswTPTvRiDOi8w0NxrBb54v/YG3BPch/uB95s9e7Y6derk1O4agwcP1rPPPmtDVoD5YoqcJCkpydMpeB1vfRa7C9eDPZgLsQbjPe+TN29eU98NO7t70TvvvKNt27YZin3wwQfVpk0bp/oBzBQMmdlhEPA0iosAAADgVgEBAfriiy8UFxdnqt2kSZO0bt06l/tPS0vTtWvXDMd7a7GHZH61nYsXL9qTCDKVlpamq1evGo731s+bt+YF7+LMiyDFixe3IRPPuv322zV9+nSFhYXZ3tfu3bs1ZswYde/eXcWLF1d8fLyef/55rVmzxqkVXf0Z4wP3c8c1As/gegJglR9//FGVK1fW119/7dRLpd7CqnGZw+HQpUuXDMdbtfsz7MMz0/0YgzrP7IuzZj7b+BP3BPfifuDdFi9erA4dOji1unf//v312muv2ZAV8CdPFUl7A4qL8H9xPViPuRDrMN7zTvHx8YZjd+3aZfr827dv1zvvvGMoNjY2ViNHjjTdB/AXM7/Dh4aG2pgJYC2KiwAAAOB2uXLl0kcffWS6ndFJgKyYnejLmzevy33axWxu3rD9uL8x+3nz1hWU8uTJ4+kU4AMOHjxouk1O27noLy1bttSCBQtUsGBBt/a7Y8cODR8+XLVr11bJkiX10ksvad++fW7NwVcxPnA/JtFzLq4nAFYYNGiQ2rZtq1OnTnk6Fa+Rk+6v+FNO+jf1lWcmY1Dnmf3Z8fKxedwT3Iv7gfdauXKl2rRp49Tn4oknntB7771nQ1bAn1JTU5WSkuLpNDyGeQ/8G9eD9dcDcyHWYrznnewsLkpPT1ePHj0M35u+/PJL5cuXz1QfwL+Z+T3e33c7hG+huAgAAAAe0bx5c9WuXdtUm59++kmHDx92qV+zE33evKKN2dyY9He/nPJ589a84F2Mbi//bzm1uEiS6tevr61btyohIcEj/R85ckRDhw7VzTffrObNm2vJkiUeycNX5JT7teQ744OAgACP9Av7cT0BcIXD4dDDDz+sN954w9OpeB2zL52Hh4fblAmswjPT/RiDOi8iIsJUPMVF5nFPcC/uB95p3bp1atWqla5evWq6bbdu3TRq1CgbsgL+4e/PN2/YiQTeg+vBuuuBuRB7MN7zTmaKi3bv3m3q3CNGjNC6desMxT788MNq1aqVqfMD/5aenm5qp9XIyEgbswGsRXERAAAAPKZPnz6m4h0Oh8aPH+9Sn8nJyabi+ZIWrsgpnzdvzQve49SpUzpz5ozpdqVKlbI+GS9y0003aeHChfruu+9UokQJj+TgcDg0f/58NWnSRA0bNtT69es9koe3yyn3a4nxATyP6wmAK5577jmNGzfO02l4JYqLch6emfAlZnei8feXTZ3BPQH+bvPmzWrevLmuXLliuu3999+vMWPG8BIxbMf9CvgH14N1mAuBP6lcubLhWDM7F+3bt0+vvvqqodhixYrpww8/NHxu4EZy0u7DwP8V7OkEAAAA4L/uvvtuhYaGmtoy/ccffzQ8KQD4Gm9d9c1b84L3cGbXolKlSil//vw2ZON9OnXqpA4dOmj8+PH64IMPTE2GW2n58uW644479Pjjj+v9999Xrly5PJIHAADAjXz11VcaMWKEJefKnz+/qlatqjJlyqhs2bIqWrSoChcurJiYGOXOnVtRUVGKiopSSEiIgoODFRISYuplVE+8uMrLsgA8KV++fKbiKS4CYMa2bdt055136uLFi6bbtm7dWhMnTlRQUJD1iQH/h9lCUCAn43qwBnMh8DeVKlVSYGCgMjIyso09evSorl69mu33mQ6HQz179jT8e+hXX31FoQdcZnbew+y8CuBJFBcBAADAY3Lnzq3atWtr2bJlhtts3rxZZ8+eVaFChZzq0+zKvWYKn9zN7KQtqxa7n9lVOr3188YXBMjO2rVrTbe5/fbbbcjEe4WGhurRRx/Vo48+qiVLlmj8+PGaOXOmLl265NY8HA6HPvvsMy1atEg//fST4uLi3Nq/t2J8AFiH6wmAM/744w89++yzTrfPly+f7r77bt15551q0KBBjtwhMyIiwlQ8q0h7P56Z8CUREREKDw83fG+5du2azRnlPNwT4K927dqlpk2b6ty5c6bbNmvWTNOmTVNISIgNmQH/xWcN+AfXg+uYC4E/ioyMVOnSpfXHH39kG+twOLRnzx5Vq1Yty7jRo0cbfueoZ8+eat68uaFYICtmi4v8ZdFV5AyBnk4AAAAA/q169eqm4jMyMrRu3Tqn+zP7RaU3F1XwJa33yymfN2/NC95jwYIFptv4W3HRvzVu3Fjjxo3T6dOnNWfOHD399NOqUKGCW3PYs2ePatWq5dIzNSfJKfdrifEBPI/rCYAznn76aSUmJppuV6VKFU2aNEknT57UhAkT9NBDD9n+Mo2ndnY1e4+huMj78cyErylSpIjh2NOnT9uYSc7EPQH+aN++fWrSpIlT94yGDRtq5syZphf4AlwRGRnp6RQAr8H14DrmQuCv4uPjDcfu2rUry+NHjx7VgAEDDJ2rRIkS+uCDDwz3jZwhLS1NCxYs0NNPP63Nmzdbdt5Tp06Zii9atKhlfQN2Y+ciAAAAeFTlypVNt9myZYtatWrlVH9mv6i8fPmyU/24g9ndLsyucgzXmf2Ze+vnzVvzgne4evWqVq9ebbrdbbfdZkM2viU0NFQtWrRQixYtJElnz57VqlWrtGLFCq1YsUKbNm1SWlqabf1fvHhRLVq00KpVq1SxYkXb+vEFjA8A63A9ATDr119/1ezZs021yZUrl4YNG6bHHntMAQEBNmV2Y54q2jF7f3X3Dpkwj2cmfE1sbKwOHjxoKPbcuXO6fv06RSMmcE+Avzlw4IAaN26sEydOmG5bu3Zt/fzzz3x24HbOfOZSU1MVHMzrech5uB5cw1wI/Fl8fLx+/PFHQ7HZFRc99thjunLliqFzjRkzRrlz5zYU64tOnTqltWvXatu2bfr999915MgRHTt2TBcuXFBSUpJSU1MVGRmpPHnyKE+ePCpbtqwqVqyoSpUqqVGjRjlq97OkpCTNnz9f33//vWbNmqULFy5Ikpo0aZLtTlhGHT161FR8bGysJf0C7sBoDQAAAB5VrFgx02327dvndH/BwcHKlSuXrl69aije7GoT7mR2Nb+8efPalAkyExwcrKioKMOrTp05c8bmjJzjrXnBOyxdulQpKSmm2gQFBalmzZo2ZeS7ChUqpHvuuUf33HOPpH8Kt1auXKlff/1Va9eutfzloQsXLqhDhw5av369cuXKZem5fQnjA8A6XE8AzHr33XdNxUdHR2vOnDke2wkzKSnJI/0GBgYqf/78f38Znh1nXtSFe/HMhK+56aabTMUfO3ZMZcuWtSmbnId7AvzJ4cOH1aRJE9Mv5El/Llg0Z84cRUVF2ZAZkLWQkBCFhoaamg+/fv06n1fkSFwPrmEuBP7MzALEu3fvzvTYxIkTDRfpPfbYY2ratKnhfn1BRkaGVqxYoRkzZmjBggXZFmJJ0pUrV3TlyhUdO3ZMO3fu1M8///z3sbi4OLVq1Uo9evRwapFob9G9e3dNnz79P79bBwQEqEGDBpb1c+zYMVPxZudUAE8K9HQCAAAA8G/R0dGm2zjzhdO/mdlu9sKFC7buGuEKs1/SshKGZ5j5vJn9N3UXiouQlYkTJ5puU7duXeXPn9+GbHKWXLlyqWnTpnr99dc1f/58nT9/XmvXrtXQoUPVuHFjhYSEWNLPzp07NXjwYEvO5csYHwDW4XoCYNTp06dNrdQbGhqqH3/80WMv00ie3RHIzAItiYmJhhe6gOfwzIQvKVmypKl4sy/agHsC/MOxY8fUpEkTwzuh/Vt8fLzmz59PQRo8yuyLodeuXbMpE8DzuB6cw1wI/F18fLzh2MwKZk6fPq2+ffsaOkepUqU0bNgww316uwMHDuill15SbGysGjVqpI8//thQYVF2du/erQ8//FDx8fFq1KiRZs2aZUG27nXs2DGNHz/+hot23HLLLSpQoIClfZmRk3aGQs5HcREAAAA8ypkt08+ePetSn2a+rHQ4HE59yeUO+/fvNxXPl7SeUaRIEcOx3vpZO3DggKdTgJe6ePGiZs6cabpd69atrU/GD/y149MLL7ygxYsX69y5c5o0aZI6dOigsLAwl849YsQIHTp0yKJMfRPjA8A6XE8AjJo6daqpF6MHDhyo2rVr25hR9jz5snzx4sVNxbuy8zPcg2cmfEn58uVNxbu6QJQ/4p6AnO7kyZNq0qSJ/vjjD9Nt4+LitHDhQhUsWNCGzADjSpQoYSrem3eaA1zF9eAc5kLg7+Li4gwvoLh37145HI7//PennnpK586dy7Z9QECAvv766xyxa9qWLVt07733qmzZsho6dKit99Rly5apTZs2atmypU/NLy5btizTYw0bNrS0L7NzHuXKlbO0f8BOFBcBAADAo4KDg023cXXbbbOrKGW11bInmV19hC9pPcPMz/306dNeufKTt14D8LzJkyfr+vXrpttRXGSN3Llz64EHHtD06dN1/PhxDRs2zPQLp39JTU3ViBEjrE3QxzA+AKzD9QTAqMWLFxuOLViwoAYMGGBjNsZ48mV5s2O9bdu22ZQJrMIzE77EbHERLyCaxz0BOdnp06fVpEkT7dmzx3TbMmXKaNGiRSpcuLANmQHmmC2moNgWORnXg3OYC4G/Cw0NNfz75bVr13T48OH/+W8zZ87UtGnTDLV/8skn1bhxY9M5epMDBw7ovvvuU7Vq1TRjxowbFlvZZe7cuYqPj9fkyZPd1qcr3FlcZGbOIyIiwvTv+4AnUVwEAAAAj3KmUCg1NdWlPsuWLWsqfufOnS71Z4eUlBRTq/vxy6rnxMXFmYq3YstqK6Wnp/vUajRwn/T0dH3wwQem25UvX970dYHsFShQQP369dPevXv17rvvKjw83PQ5Jk6cqPT0dBuy8w2MDwDrcD0BMMLhcGjFihWG47t37+7U7sdW27Fjh8f6rlSpkqn43377zaZMYBWemfAlFSpUMBXPC4jmcU9ATnXu3Dk1bdrUqc9siRIltHjxYj4n8BpmV50/cOCATZkAnsf1YB5zIcCf4uPjDcf++/2Jixcv6sknnzTUrkyZMnr33XdN5+YtUlNTNWjQIFWsWFHTp0/3WB7Jycnq3Lmzhg8f7rEcjFq+fHmmxxo0aGBpX2bmPMqXL6+AgABL+wfsRHERAAAAPOry5cum20RGRrrUZ5UqVUzFr1mzxqX+7LBx40ZTRVaVK1dWYCDDf08wMzEmSevWrbMpE+ds27bN5d3CkDNNmDBBe/fuNd2uR48eNmSDv4SFhWnAgAFaunSp8uTJY6rt2bNnTX2pldMwPgCsw/UEwIjjx4/r7NmzhuO9ZffLLVu2eKzv22+/3VR8Vl+owzvwzIQvKVq0qAoWLGg43hsLX7wd9wTkRBcvXtSdd97p1I6KsbGxWrx4sUqWLGlDZoBzqlevbip+06ZNNmUCeB7Xg3nMhQB/qly5suHYf+/Y+txzz+nEiRPZtgkICNDYsWOVK1cup/LztD179qhOnTp64403lJyc7Ol05HA49Pzzz+urr77ydCqZOnXqVKYL+VaqVEnR0dGW9ZWcnGyqYLZq1aqW9Q24A7M0AAAA8ChnVrB0dQLglltuMRW/atUql/qzg9mc+GXVc8xMjEnS6tWrbcrEOd6WD7xDamqq3nzzTdPtwsPD1bNnTxsywv91xx136JdffjH9go4/FxcxPgCsw/UEwAgzuxoEBgbqjjvusDEbYxwOh9auXeux/m+99VZT47uNGzfq0qVLNmYEV/HMhK8x8+/H7mnmcU9ATnP58mU1b95cmzdvNt02JiZGixYtMr2jF2C3mjVrmorfsGGDTZkAnsf1YB5zIcCfnNm5aMGCBRo7dqyhNn369LF8pxp3+fzzz1WtWjVT98zAwEBVr15d/fr105dffqkVK1bowIEDOnv2rFJSUpSSkqJLly7pjz/+0MqVK/XVV1+pT58+qlKliqkddfr06eO1xYZZLbLUsGFDS/v6/ffflZaWZjie33vhayguAgAAgEft37/fdJt8+fK51Gf58uVN7X508uRJbd++3aU+rTZ//nxT8bfeeqs9iSBbN998s6KiogzHL1myRA6Hw8aMzFm0aJGnU4AXevvtt526f3fq1MnUKsdwTb169fToo4+aarNx40ZL+vbFrd0ZH+DffPEz7E24ngAYcfDgQcOxJUqUUHh4uH3JGLRp0yadOXPGY/3nypXL1AIW6enpmjNnjo0ZeRdffH7zzISvMfNCzKlTpzx6z/RF3BOQkyQmJqply5Zat26d6bYFCxbUwoULVaFCBRsyA1xTqFAhlSlTxnD8tm3bdPr0aRszAjyH68E85kKAP5ktLkpMTDT8nWf58uU1ZMgQZ1PzmKSkJLVr105PPPGErl27lm18QECAGjdurIkTJ+rMmTNav369hg0bpp49e6pevXoqVaqUChYsqJCQEIWEhChPnjwqU6aM6tatqx49emjkyJHaunWrDh8+rLfffluFCxfOts/r16+rc+fOSk9Pt+KvbKlly5ZleqxRo0aW9mV2MRV+74WvobgIAAAAHuXMCkVmJilvJCgoSPXr1zfVZubMmS71aaWLFy9q6dKlptpY/csyjAsODla9evUMx588edKpL1ztkJycrHnz5nk6DXiZTZs26e2333aqbZ8+fSzOBtkZMGCAqXgzW7hnJSgoyHCsmZWd7MT4AP/mi59hb8L1BMAIMzvqFCpUyMZMjPv55589nYJatmxpKn7ixIk2ZeJ9fPH5zTMTvsbs6vRbt261KZOciXsCcopr167p7rvv1q+//mq6bb58+TR//nzTO3kB7nTnnXcajs3IyNCsWbNszAbwLK4Hc5gLAf5Urlw5w8Vzu3fv1ksvvaRDhw5lGxsYGKixY8eaWrTBG1y4cEFNmzY19PtdUFCQevTooT179mjx4sXq0qWLChQo4HTfxYoV08CBA7Vv3z699NJL2c6v7dy5U99++63T/dklq+Iiq3exMlNcFBAQoOrVq1vaP2A3iosAAADgMQ6HQ6tWrTLdrly5ci733bRpU1Px06dPd7lPq/zwww9KTU01HF+kSBFTK7/Aeo0bNzYV//3339uUiTnz589XYmKip9OAF0lMTNRDDz3k1It4bdu2VbVq1WzIClkpU6aMqdXtjx8/bkm/YWFhhmPNPNPsxvgAf/HVz7A34XoCkB0jK3D+xRtW6nU4HPrmm288nYbuuusuU/Hz5s3TyZMnbcrGu/jq85tnJnxJ7dq1TcWbXc0X3BPg+5KTk9W2bdssX+7LTO7cuTVnzhzddtttNmQGWKdt27am4idNmmRPIoAX4Howh7kQ4E+BgYGqWLGiodjjx4/r008/NRTbt29f1a1b15XU3O748eNq0KCBocL8Nm3aaMeOHfrqq68seW/q36KiovTOO+9o0aJFiomJyTL2jTfeUEZGhqX9u+LcuXPasWPHDY/FxcWpSJEilvZnZq6jUqVKyps3r6X9A3ajuAgAAAAes27dOqdecLFixTozqyhJf66yuXr1apf7tYLRiZO/JCQk2JQJjDL7bzB+/HiveNHpiy++8HQK8CJpaWm67777Mp2Yy0poaKiGDRtmQ1YwomrVqoZjrSooNPNi5+XLly3p0wqMD/AXX/0MexOuJwDZSUlJMRx78eJF+xIxaNGiRdq/f7+n01CdOnWUP39+w/FpaWn68MMPbczIe/jq85tnJnxJyZIlddNNNxmOp7jIPO4J8GUpKSnq0KGDFixYYLptZGSkfvnlF9WqVcuGzABrNWnSRHny5DEcv2jRIu3atcvGjADP4Xowh7kQ4B9mFhowUshy880366233nIlJbfbt2+f6tSpo+3bt2cZV6BAAU2cOFE//vij4uLibM2pYcOGWr58uYoXL55pTFJSkgIDvaf8YMWKFXI4HDc81rBhQ8v7MzPXUadOHcv7B+zmPVc3AAAA/M5XX31luk1ISIglv3xVrVpVZcqUMdXmk08+cblfV61Zs0YbNmww1aZdu3Y2ZQOjbr/9dpUqVcpw/KlTpzy+e9HBgwc1Z84cj+YA7+FwOPTYY49p7ty5TrXv27evypYta3FWMKpw4cKGY60qbMyXL5/h2OvXryspKcmSfl3F+AB/8dXPsDfhegKQHTMr8J46dcrGTIzxlpcTgoOD1alTJ1NtPvvsM50/f96mjLyHrz6/eWbC19SrV89wLMVF5nFPgK9KS0vTAw88oF9++cV02/DwcM2aNUv169e3ITPAeqGhobr33ntNtXnvvfdsygbwLK4Hc5gLAf5RuXJly84VGBiocePGKSIiwrJz2u3cuXNq2bKlDh06lGXcHXfcoW3btqlLly5uyuzP3X4WLlyY6Y47jRs3dlsuRmS1a6rVxUWnTp3S6dOnDcebmUMBvAXFRQAAAPCIEydO6NtvvzXdrmbNmoqMjLQkh65du5qKnzx5sn7//XdL+nbWq6++aiq+QIECat26tU3ZwIyOHTuain/rrbc8upX0m2++qfT0dI/1D++RnJyszp076+uvv3aqfdGiRfXyyy9bnBXMMPNlVVRUlCV9xsTEmIo/evSoJf1agfEBJN/+DHsTricAWTEz7jh37pxlOyw6Y9GiRVl+Se1ujz32mKn4K1eu6KWXXrIpG+/hy89vnpnwJWZ2m/ntt9905coVG7PJmbgnwNekp6frwQcf1A8//GC6bVhYmGbOnKkmTZrYkBlgn6eeespU/Pjx47V161absgE8i+vBOOZCgH+Y2bkoO/369VPt2rUtO5/dUlJS1L59e+3bty/LuM6dO2vp0qWKjY11U2b/uPnmmzVx4sQbHvPn4qKVK1eaimfHXvgiiosAAADgES+88IJTK8SaXfkoKw8++KCp+IyMDI++jDN//nwtXLjQVJuOHTsqNDTUpoxgRufOnU3Fb9++Xd99951N2WRt165d+uabbzzSN7zLuXPn1LRpU02ePNmp9kFBQfruu++UJ08eizODGWZWT8psBSqzzOyWJEl79uyxpF8rMD6A5NufYW/C9QQgK2a+FM/IyNCCBQtszCZzycnJevLJJz3Sd2aqVKmiWrVqmWrz1VdfafXq1TZl5B18+fnNMxO+pGnTpoZj09PTtWLFChuzyZm4J8CXOBwO9ejRw6n5w5CQEE2bNk3Nmze3ITPAXtWqVTO1En1GRoYef/xxpaWl2ZgV4BlcD8YxFwL8w6rioooVK+rNN9+05Fzu8thjj2n58uVZxjz33HP69ttvTS0iabW7775bbdu2/c9/96biokuXLmVasFquXDnddNNNlva3dOlSw7EVKlSwvH/AHSguAgAAgNtNmzZNEyZMMN0uODjYdIFGVsqVK2d6lYiffvpJ06ZNsywHoxITE02vTCyZX80Y9qlSpYrpLY/79eun8+fP25TRjTkcDj366KN+OaGP//XDDz+ocuXKplff+bfBgwerUaNG1iUFp2zatMlwbNmyZS3pM3/+/MqfP7/h+I0bN1rSrxUYH0Dy7c+wN+F6ApCV0qVLm4r/+eefbcoka6+88opXFaH8ZcCAAabiMzIy1KlTJ7f/julOvvz85pkJX1K6dGlTvzsuWbLExmxyJu4J8CVPPPGExo8fb7pdcHCwJk2axA5W8Gn9+/c3Fb9mzRq99tprNmUDeBbXgzHMhQD/KFmypHLnzu3SOYKCgjR+/HiFhYVZlJX93n//fY0bNy7LmGeffVbDhw93T0LZePfddxUQEPD3/y9RooTKlCnjwYz+14oVK5SRkXHDY1bvWiSZm+MwszgL4E0oLgIAAIBbrVq1So888ohTbTt06KCYmBhL83n55ZdNt+ndu7eOHTtmaR7ZeeaZZ3Tw4EFTbe6++25VrVrVnoTglH79+pmKP336tHr37m1TNjc2YsQIl4pJ4PuOHDmiTp06qX379jp16pTT52nRooUGDhxoYWZwxv79+7V582bD8RUrVrSs77i4OMOxixYtsqxfKzA+gOTbn2FvwvUEIDNxcXGmdiyYPHmyjh8/bmNG//XDDz9o2LBhbu3TqHbt2qlmzZqm2hw6dEidOnVSamqqTVl5ni8/v3lmwpfcddddhmPNrOqLf3BPgC/o27evRo8ebbpdYGCgvvnmG3Xo0MGGrAD3adOmjenFtYYOHZrtC8WAL+J6MIa5EOB/Va5c2aX2AwYMUI0aNSzKxn47duzQK6+8kmXMo48+qg8++MBNGWXv5ptvVv369f/+/960a5EkLVu2LNNjVhcXnTlzRr///rvheDNzJ4A3obgIAAAAbvPTTz+pZcuWSkxMNN02MDBQgwYNsjynxo0bq3bt2qbanDlzRm3btlVSUpLl+dzIxx9/rK+//tp0O2e+gIa92rRpo5tvvtlUm8mTJ7tt8mjJkiWmV79GznHkyBE9+eSTKleunCZPnuzSuapXr65Jkyb9zypGOdWqVavUo0cP7du3z9Op3NDQoUNNxTdo0MCyvs28KLRixQrt37/fsr5dxfgAkm9/hr0J1xOAzISFhalatWqG469du+bW627lypXq2rWr2/pzxjvvvGO6zfz589WpU6ccu1utLz+/eWbCl7Rp08Zw7ObNm3Xp0iUbs8mZuCfA2w0cOFAfffSR6XYBAQEaM2aMOnXqZENWgPsNHz7c1Dy4w+FQz5499e2339qYlTVWrFihzz77zNNpwIdwPWSPuRDgf7lSXFS5cmW9/vrr1iVjs4yMDPXo0UMpKSmZxjRp0kSffvqpG7MypkuXLn//b28rLlq+fHmmx6wuLlq6dKkcDoeh2Ny5c6tJkyaW9g+4C8VFAAAAsN3Fixf11FNPqW3btrpy5YpT5+jWrZuluyn8m9kXryVpw4YN6tChg65fv25DRv/49ttv9eyzz5pud88996hWrVo2ZARXBAYGasiQIabbDRgwQJMmTbIho39s3LhRHTp0yLEvmOHG0tLS9PPPP+v+++9XuXLl9Nlnn2U5oWnEbbfdpvnz5ytfvnzWJOnlUlNT9fXXX6tChQp68MEHtWXLFk+n9Ld58+bpq6++MhwfFBSkZs2aWdZ/3bp1Dcc6HA6vK25kfABf/wx7E64nAJkx+wXrN998o+nTp9uUzT9Wrlypu+66S9euXbO9L1ckJCTo/vvvN91uxowZat++vdNzNFY5c+aM5S+B+Przm2cmfEXDhg0N/96fnp6e5cs+yBz3BHirt99+26l57oCAAH3++efq3r279UkBHnLbbbfpySefNNUmPT1dDz74oN58803DL6i6i8Ph0Lx589SoUSM1aNBAq1at8nRK8CFcD8YwFwL8Iz4+3ql2wcHBGj9+vKmdwDxtxIgRWrt2babHy5Ytq+nTpys4ONiNWRlTr169v/+3NxUXJSYmatOmTTc8VqpUKZUoUcLS/pYsWWI4tnnz5j71+QT+jeIiAAAA2ObkyZN6/fXXVa5cOY0aNcrpCcHY2FgNHz7c4uz+0aBBAz300EOm282ZM0etWrXS+fPnbchK+vTTT/XQQw8pPT3dVLtcuXLp448/tiUnuK59+/Zq1KiRqTZ/Tax/+eWXtuS0bNkyJSQk6MKFC7acH97l/Pnzmj59uh5//HHddNNNat26taZNm+ZyUZEk3XrrrVqwYIHy589vQaa+JT09XRMnTlS1atVUv359TZ06VampqR7LZ8WKFbr//vtNPXtbtWpl6b+d2XvdjBkz9PTTTys5OdmyHFzB+AC+/hn2JlxPADJz3333mYrPyMhQ165dtXjxYpsyksaNG6eEhARdvnzZtj6sNGrUKMXExJhuN2vWLN1xxx3atm2bDVll7eTJkxo4cKDKlCmjESNGWHpuX39+88yErwgODlbr1q0Nx5t5AQf/4J4AbzRixAi98sorTrX96KOP1KtXL4szAjzv/fffV6VKlUy1+++BFAAAK19JREFUcTgceu2119SsWTMdPnzYpsyMu3z5skaOHKkKFSqoRYsWWrZsmadTgo/iesgecyHAP5wtLnrxxRd1++23W5yNffbv369XX3010+NBQUGaOHGi137HXqFCBVWrVk2NGjWyvGAnKSlJs2bN0vPPP69mzZqpdOnSypcvn0JCQhQTE6P4+Hh169ZNEyZM+M+uyKtWrcp08Vyrdy2SzM1ttGvXzvL+AXehuAgAAACWSU5O1vr16zV8+HAlJCSoWLFiGjx4sM6dO+f0OQMDAzVmzBjbf4keNmyYChQoYLrdkiVLVK1aNa1cudKyXC5duqSuXbuqd+/eysjIMN3+jTfeUPHixS3LB9YbMWKEQkJCTLVJT09Xr1691LNnTyUmJlqSR3p6ut599101bdr0PxMx/xYQEGBJf3C/U6dOafHixRo5cqR69eql22+/XdHR0brvvvs0evRonT592rK+2rVrp2XLljl1L81pVq5cqY4dO6po0aJ66qmnslyFymppaWkaMWKE7rzzTtNfAvXp08fSXIoXL66aNWuaavPxxx+rQoUKev/997V3715L83EG4wP/lhM+w96E6wnAjVSrVk1VqlQx1SY5OVl33323Ro0aZWkup0+f1n333aeHH344y8J7b1s9tFChQho9erRTbXfu3Knbb79dAwcOtOz3zKysWbNGDz/8sEqWLKkhQ4bY0mdOeH7zzISv6Nixo+HYX375xcZMcjbuCfAmX3zxhVM7Vkl/vmxu9dwT4C0iIiI0adIkhYWFmW67cOFCVa5cWa+//rrbdxZNTU3VTz/9pAceeEBFihTRM888oz179rg1B+Q8XA/ZYy4E+IczxUVVqlTRa6+9ZkM29nn++eez3BXspZde8uodXgMDA7Vp0yZLFw5Zv369unbtqkKFCqlNmzYaPny4FixYoIMHD+rSpUtKS0vTmTNntGPHDn3zzTd66KGHVKJECb3wwgt/v4OWVfGn2QWIsrN//37t2rXLUGxkZKTuueceS/sH3ImnPgAAgB/YvHmz0yvJ3YjD4VBKSoquX7+u8+fP6/Tp0zp48KAOHDhgerXC7AwfPlwtWrSw9Jw3Eh0drXHjxumee+4xvcPS4cOH1aBBA3Xu3FmDBw9W2bJlncohOTlZ48aN06uvvqozZ844dY5mzZqpb9++TrWF+1StWlWDBw/WwIEDTbcdM2aM5syZoyFDhqhz585OT+YuXLhQ/fr102+//ZZt7JNPPmn5ZDX+5Or9OTk5WcnJybp+/bqSk5N16dIlnTx5UidOnNDJkyct2Y0oO0FBQRoyZIj69+9ve1++5ty5cxo1apRGjRqlEiVK6O6771br1q3VsGFDRUREWNpXenq6vv32W7355pvat2+f6fYNGzbUnXfeaWlOktSlSxetW7fOVJuDBw9qwIABGjBggAoVKqSKFSuqRIkSKlCggCIjI03f99566y1T8f/G+AC+/hn2JlxPADLz3HPPqXv37qbaJCUl6amnntLs2bM1ZMgQ0y/l/Nu5c+c0YsQIffTRR4ZeXho0aFCWK416Qtu2bfXyyy/r7bffNt02NTVVQ4YM0ejRo/X000/rscceU5EiRSzLbfv27Zo5c6a+/fZbw1/Au8rXn988M+ErmjVrpgIFChjaHWfPnj3atWuXKlSo4IbMchbuCfAm77zzjtNt+/fv7zPzh2avNUD680XncePGqXPnzqY/Q4mJiRo8eLA+/vhjPfzww3r00UcVFxdnS56nTp3S3LlzNXv2bM2fP18XL160pR/4N66H7DEXAvypSJEiKliwoOEFi0NCQjR+/HjTC7l60rp16/TDDz9kevzmm2/2uWIpV2zZskXPPfecU4VKly9f1nvvvacJEybo66+/zrK4yOqdi3788UfDsa1bt1auXLks7R9wKwcAAAB8TsOGDR2Scvyf559/3u0/25dfftmlnAMDAx2tWrVyTJgwwXHq1Kls+0tLS3OsXLnSMWDAAEd0dLRLfZcsWdJx9uxZN/yUHI5u3boZzqtbt25uyckIb8o7PT3d0aBBA5f+zW+66SbHoEGDHBs2bHBkZGRk2+fu3bsdH374oSM+Pt5wHx06dHAsWbLEVF7+zF/uz3/9KV26tGPp0qWe/rE7HA6Hxz6nZvuV5AgJCXHUqlXL8fzzzzsmT57s2LZtmyM5Odl030eOHHFMnTrV8eCDDzoKFizo9L9jcHCwY+vWrZb9TP7typUrjvz583v0c2oFxgfGeNNz1iq+/Bn21uc311P2fPVa8tW83c3seNEfflYpKSmOihUrunR9Nm7c2DFx4kTH4cOHDfV54sQJx6RJkxwdOnRwhIaGGu6ndu3ajrS0NFO5LVmyxN4f4P+XkZHh6NChg8vPncDAQEdCQoLj448/dmzevNmRlpZmOIeUlBTHtm3bHGPHjnU8/PDDjtKlS2fbX968eS3/Wfjy8/vfeGYaw/PHs3r16mX45//uu+96Ot2/jR071tTn2RtwT8ge9wP7lSxZ0u3PVE/8gfXM/huMHTvW0yk77cMPP7TkcxgfH+8YMGCAY86cOY6TJ086lcvx48cdS5YscXzyySeOBx980FGuXDnTeXTp0sXin5D389XniTfmzfWQOeZCnOONn3O4zsw7E4MGDfJ0uqa1aNEiy7/TrFmzPJ2iWyQmJjoef/xxR2BgoCXPBkmZnqt48eKW529mXn/mzJmW9w+4EzsXAQAAwCu9/fbbTu3q4qo33nhD27Zt008//eRU+4yMDM2ePVuzZ89WQECASpUqpYoVK6pYsWKKiopSaGioEhMTdeHCBe3Zs0c7d+5UYmKiy3nnyZNH33//vQoWLOjyueAegYGBmjRpku644w4dPXrUqXMcO3ZMgwcP1uDBg5UvXz5VqlRJ5cqVU758+RQZGanr16/r8uXLOnjwoH7//XedPHnS1PkLFSqkUaNGaefOnU7lh5wrPDxcL7zwgl588UWFh4d7Oh2fk5qaqjVr1mjNmjV//7fg4GAVK1ZMN910k2JjY1WgQAGFh4crPDxcDodDV69eVWJiohITE3XgwAHt2bPHkueHJL377rsurXCXlaioKA0YMEAvvfSSLed3F8YH/iunfIa9CdcTgP8rJCREH3/8sZo2ber0OZYsWfL3apfFixfXLbfcogIFCih//vzKlSuXkpKSdOXKFR06dEh79+7V4cOHTfeRJ08eTZgwQUFBQU7naaeAgABNmDBB58+fd2rlz79kZGRo0aJFWrRokSQpMjJSZcqUUZkyZVS4cGFFRkYqMjJSaWlpSkpK0qVLl3T8+HEdO3ZMf/zxh1JTU636Kzktpzy/eWbCF3Tv3l1ffPGFodgZM2ZowIABNmeUc3FPAADf0LdvX124cEFvvPGGS+fZvn27tm/frvfee0+SVLhwYZUsWVLFihVTdHS0IiIi/p47vn79+t/fB508eVKnTp3S0aNHdfnyZSv+SoDTuB4yx1wI8I/4+HgtX74827hq1arp5ZdfdkNG1tm+fbvmzp2b6fEmTZro7rvvdmNGnrF+/Xp16dJFe/futfS8GRkZN/zvVu9adPr0aa1cudJQbHR0tFq1amVp/4C7UVwEAAAAr5I7d259/vnn6ty5s0f6DwwM1NSpU9WmTRvNnz/fpXM5HA4dOHBABw4csCi7G4uKitKcOXN022232doPrBcbG6tffvlF9evXd3lS++LFi/r111/166+/WpJbaGiovv/+exUuXJjiIvyPtm3b6oMPPlDp0qU9nUqOkpaWpoMHD+rgwYNu7bdz58567rnnbO2jX79++u6777Rt2zZb+7ET4wP/lhM+w96E6wnAjSQkJOipp57SJ5984vK5jhw5oiNHjliQ1T/CwsI0c+ZMlS1b1tLzWi0iIkK//PKL2rdvn+WLC2Zcu3bt7xe5fElOeH7zzIQvqF27tipWrGho7mjdunU6cOAA8wlO4p4AAL5j8ODBio6O1jPPPJPpS69mnTp1SqdOndK6dessOR/gLlwPmWMuBPhTfHx8tjGhoaEaN26cQkJC3JCRdT788MMsj/v6wjhGfPfdd3rkkUeUnJzstj6tLi6aNm2a0tPTDcU+9NBDPvc5Bf6vQE8nAAAAAPzljjvu0ObNmz1WWPSXvybKXFkpyF1y586tX375RXXq1PF0KnBSlSpV9P333ysyMtLTqfyPMWPGqH79+p5OA14iNDRU3bt31/bt2/XDDz/wIlAO0b59e40fP972fkJCQvTDDz8oOjra9r7sxPjAf+WUz7A34XoCcCPDhw9XrVq1PJ3GfwQGBmrChAlq3Lixp1MxJCIiQj/++KPuv/9+T6fiUTnl+c0zE77gkUceMRw7efJkGzPJ+bgnAIDveOqppzRlyhSv++4H8ASuh8wxFwIYKy569dVXVaVKFTdkY53ExERNmTIl0+NVqlTxid/tXPHmm2+qS5cuWRYWhYSEqG3btho3bpx27Nihy5cvKyUlRcePH/97jjMw0Fypg9XFRWbmMszMkQDeiuIiAAAAeFzRokU1ZswY/frrr16z8k1ERITmzJmjJ5980tOpZKpcuXJas2aNGjRo4OlU4KKEhATNnz9fefPm9XQqCggI0EcffaSuXbt6OhV4gdjYWL300ks6ePCgxo4dq8qVK3s6JVikd+/emjJlioKD3bOpddmyZbVgwQIVK1bMLf3ZhfGB/8opn2FvwvUE4P8KDQ3V7Nmzdcstt3g6lb+FhYVp/Pjxuu+++zydiimhoaGaMmWKhg8f7rbxnjfKKc9vnpnwdt26dVNYWJihWIqLXMc9AQB8x7333qtNmzaxgxsgrofMMBcCZF9cdPvtt+vFF190UzbWmT59uq5evZrp8d69e7sxG/cbOHCgXnvttUyPBwcH66mnntKBAwf0ww8/qFu3bqpUqZJy586tkJAQFS1aVG3atNGUKVO0evVqFS9e3FC/sbGxKl++vFV/DR09elSrVq0yFFu3bl1VqlTJsr4BT6G4CAAAAB5TsmRJDRs2THv27NEjjzxierUJuwUHB2vUqFH68ssvlStXLk+n8z/uuusurVu3jl9Mc5C6detq+fLlKlOmjMdyCAsL05QpU/T00097LAd4XmxsrPr06aPly5fr6NGjeuedd1S0aFFPpwWL5M6dW19//bU++eQTt79oWrVqVa1fv15t27Z1a79WY3zgv3LKZ9ibcD0B+L/y58+vRYsWqXbt2p5ORdHR0Vq0aJFPL7zw3HPPaenSpSpXrpynU/GYnPL85pkJbxYdHa2OHTsaiv3tt9+0efNmmzPK+bgnAIDviIuL0+rVq/XCCy8oJCTE0+mY5us7gcK7cD3cGHMh8Hf58+fP9Lvo0NBQjRs3zicXz5k6dWqmx4KDg9WhQwc3ZuNeL7/8soYMGZLp8VtuuUUbN27Uxx9/rJtuuinb89WsWVO//vqroVirdy0aP368HA6Hodg+ffpY2jfgKd719iYAAAByvIiICLVv317Tp0/XH3/8oX79+ikqKsrTaWWpZ8+e2r59u5o1a+bpVBQdHa1vv/1WP//8s/Lnz+/pdGCxKlWqaNOmTR5ZCaps2bJavHgxq1D5oTx58qh58+Z6++23tWrVKh05ckQjR45U/fr1FRAQ4On0vF7BggV9pviqZcuW2r59ux5++GGP5VCkSBH98MMPmj9/vhISEjyWhxUYH/innPQZ9iZcTwD+LTo6WosXL1b37t09lkPTpk21fv161a1b12M5WKVu3bravn27Bg8erIiICE+n8x/uWJ05Jz2/eWbCW5l5gWbs2LE2ZuJfuCcAgG8IDQ3V0KFDtWPHDt1zzz2eTidbuXPn1qOPPqr169frww8/9HQ6yGG4Hm6MuRD4u8x2L3r99dez3dnIG129elWLFy/O9HiTJk1UsGBBN2bkPp999pneeeedTI8/+OCDWrdunapUqWLqvMWKFdOUKVOyfX/B6uKicePGGYqLjY1V+/btLe0b8BSKiwAAAGCrwMBAVa1aVU899ZSmT5+uM2fOaMaMGerQoYOCgoI8nZ5hpUqV0rx58zRt2jTTv+RaISoqSs8//7x27typzp07u71/uE/evHk1depUTZkyRSVLlrS9v8DAQD377LPatm2b6tSpY3t/8KyYmBg1aNBAvXr10siRI7Vx40adP39ec+fO1cCBA1WnTh2v20XO291yyy06duyYfv31Vw0YMECVK1f2dEr/UatWLS1atEizZ89WiRIlPJ2OJOnOO+/UwoULtWvXLr311luqWbOmT646xvjAf+WUz7A34XoC8G/h4eEaO3asZs6caWhFSqsUKVJE3377rRYsWOCW38fcJSwsTK+99pp27typJ5980uNFRmFhYbr//vu1fPlyrVixwm395pTnN89MeKPq1aurVq1ahmK/++47paSk2JyR/+CeAAC+o3z58po5c6ZWrlypdu3aedX3pBEREerQoYOmTp2qU6dO6YsvvlD16tU9nRZyMK6H/2IuBP7sRgVENWvW1IABAzyQjesWL16s5OTkTI+3atXKjdm4z9y5c7NcfGTgwIH65ptvFB4e7tT569atm20RppXFRcuXL9e+ffsMxT7++OM+uSsfcCO+N2MOAAAArxAUFKSwsDCFhYUpPDxcBQsWVOHChVW4cGGVKFFCcXFxqlixoipVqqTcuXN7Ol3L3HvvverQoYNmzZqljz76SEuXLlVGRoZt/RUvXlwPP/ywnn766Ry7cglu7P7771ebNm00cuRIjRw5UseOHbP0/KGhoerSpYv69++vihUrWnpu2C8kJOTve/C//+TJk0eFCxdWTEzM338KFy6sUqVKqWLFisqXL5+nU8+RAgICVLt2bdWuXVvvvvuujh07pnnz5mnRokVavny5jh496vaccuXKpXvvvVdPPPGE7rjjDrf3b1RcXJxefvllvfzyy7p27Zo2bNigbdu2ae/evdq/f79Onz6ts2fP6sKFC0pOTlZKSopSU1M9nfZ/MD7wXznlM+xNuJ6Q03Xv3l2NGjUyHH/rrbfalosvuOeee9SsWTONHDlSH374oU6dOmVLPxUqVFCfPn3UrVs35cqVy5Y+vEHJkiU1atQoDR48WJ999pkmTJigvXv3uqXv4OBgNWjQQPfdd586duzo0V0tcsrzm2cmvM3zzz+ve++9N9u4c+fOacaMGerUqZMbsvIf3BMAeLNBgwaZis/pvwfVrVtXdevW1eHDh/XZZ59pypQpOnDggNvzKFmypFq0aKFWrVopISEhR/8uBO/F9fBfzIXAH/3f4qLw8HCNGzfOqwoPzchuMZ169eq5KRP3OXr0qLp06aL09PQbHn/llVf05ptvutxP//79M90RuXDhwqpQoYLLffzlyy+/NBQXGRmpJ554wrJ+AU8LcDgcDk8nAQAAAPiq48ePa/LkyZo1a5bWrl2rpKQkl89Zvnx5JSQkqFOnTqpfv3622/oi50tLS9OPP/6o8ePHa/Hixbp69apT5wkKClLt2rXVunVrde3aVbGxsRZnCuBGDhw4oFWrVmnDhg3auHGjtm7dqitXrljaR0BAgOLi4lS/fn21bt1ad955p9OrPsF1jA8A63A9AfhLamqqfvjhB3333XdasGCBrl275tL5ypcvr+bNm+uee+5RQkKCqXvBhg0bDMfGxcV59aIrmzdv1rRp07Rw4UJt2bLFsiKawMBAVahQQQ0bNlSjRo3UrFkzFjuwGc9MeFpGRoYqVKhgqGixbt26WrlypRuyujGHw5HpC0//V0BAgE++0MY9AQB8y9atWzVz5kwtWrRImzZtcvp7oMxERESocuXKql69uurWrav69euzQwm8FtfDP5gLgb9Yt27d/yyW+N5776l///4ezMg1devW1a+//nrDY7ly5dLFixd9cjftzGRkZCghIUFLly694fFevXpp9OjRlvT166+/qm7dujc8dt9992nq1KmW9HPmzBkVL148yx2o/tKnTx+NHDnSkn4Bb0BxEQAAAGCR1NRUbdiwQRs2bNC+ffu0f/9+HTx4UBcvXtTVq1d17do1paWlKSIiQrly5VJUVJRiY2NVpkwZlSlTRvHx8apXr55iYmI8/VeBF0tOTtbKlSu1du1a7dy5Uzt37tTp06d15coVJSYmKjg4WFFRUcqdO7cKFCigm2++WZUrV1blypVVv359VhIFvMThw4e1c+dO7d27V4cOHdLhw4d18uRJnTt3TufPn9eVK1f+XiH937sF5s2b9+8dqf7aKbBChQq67bbbVKBAAU//tXADjA8A63A9AfjL9evXtWbNGm3YsEFbt27VoUOHdOTIEV28eFFJSUlKTU1VZGTk3/eCAgUKqHz58oqLi1NcXJzuuOMOlSpVytN/Da+TlJSk9evXa/PmzX/fYw8ePKgLFy7o2rVrunbtmq5fv67g4GCFhoYqMjJSBQoUUKFChRQbG6vSpUurTJkyuuWWW1S1alVWPvYgnpnwlC+//FK9evUyFLtlyxZVrVrV5owgcU8AAF+Tnp6u33//XRs2bNAff/yhw4cP6/Dhwzpx4oQSExN17do1JSUlKSUlRSEhIQoLC1N4eLjy5cun6OhoRUdHq1ixYipdurRKly6tihUr6uabb/bJYlmA6+EfzIUAvsHhcCh37tyZFkbefvvtpor1fMEnn3yiPn363PBYw4YNtXDhQsuKqYYOHaqXXnop0zx69+5tST9DhgzRwIEDs40LDg7W3r17ub8iR6G4CAAAAAAAAAAAAAAAuCQ5OVlly5bVsWPHso3t2bOnvvzySzdkBQAAAACAexw6dCjLQhMrd9fxBmfOnNHNN9+sixcv/udY3rx5tW3bNhUvXtyy/lq1aqU5c+bc8Nj27dtVuXJll/tIT09X2bJldejQoWxjH3zwQX3zzTcu9wl4k0BPJwAAAAAAAAAAAAAAAHxbWFhYpisI/18TJ07UmTNnbM4IAAAAAAD32bNnT5bHy5Qp46ZM3OP111+/YWGRJL3zzjuWFhZlZGRo1apVNzxWqFAhVapUyZJ+pk+fbqiwKCgoSK+++qolfQLehOIiAAAAAAAAAAAAAADgsp49e6pYsWLZxl2/fl2ffPKJGzICAAAAAMA9jh8/nuXxggULuikT+508eVJjxoy54bGKFSuqV69elva3ZcsWXb58+YbHGjRooICAAEv6GTZsmKG4Ll26qHz58pb0CXgTiosAAAAAAAAAAAAAAIDLwsLCNHDgQEOxn376qZKSkmzOCAAAAAAA9zhx4kSWx3PlyuWmTOz30UcfKTk5+YbH+vfvr+DgYEv7W7FiRabHGjZsaEkfS5cu1YYNG7KNCw4OZtci5FgUFwEAAAAAAAAAAAAAAEv07NlTZcuWzTbu7Nmz+uqrr9yQEQAAAAAA9rt06VKWx3NKcVF6errGjh17w2MFCxZU586dLe9z+fLlmR6zqrho6NChhuJ69OihcuXKWdIn4G0oLgIAAAAAAAAAAAAAAJYICQnRW2+9ZSj2vffeU0pKis0ZAQAAAABgv+x2583IyHBTJvZatGiRTp06dcNjbdu2VVhYmOV9ZrZzUf78+XXLLbe4fP7169dr3rx52cZFRkbq9ddfd7k/wFtRXAQAAAAAAAAAAAAAACzTsWNH3X777dnGHT16NNPVjgEAAAAA8CXZLZ5x7do1N2Vir+nTp2d67J577rG8v507d+rMmTM3PNagQQMFBrpeDvHmm28ainvuuedUpEgRl/sDvBXFRQAAAAAAAAAAAAAAwDIBAQEaNmyYodghQ4YoNTXV5owAAAAAALBXaGholsePHz/upkzstWTJkhv+94CAANWpU8fy/pYvX57psYYNG7p8/i1btmjWrFnZxhUuXFj9+/d3uT/Am1FcBAAAAAAAAAAAAAAALNWoUSO1b98+27hDhw7piy++cENGAAAAAADYJzIyMsvj+/fvd1Mm9jlx4oT27dt3w2MlS5ZUwYIFLe/T7uKil19+2VDc22+/rTx58rjcH+DNKC4CAAAAAAAAAAAAAACWGzZsmMLDw7ONe+utt3Tt2jU3ZAQAAAAAgD2io6OzPL5x40Y3ZWKfLVu2ZHqsTJkytvS5YsWKG/73vHnz6tZbb3Xp3CtXrtTs2bOzjbvtttv08MMPu9QX4AsoLgIAAAAAAAAAAAAAAJYrXbq0+vXrl23cyZMnNXLkSDdkBAAAAACAPUqWLJnl8b179+ro0aNuysYeme1aJEmxsbGW93fgwAEdOXLkhsfq1aunwEDXSiEGDhxoKO6jjz5yuS/AF/ApBwAAAAAAAAAAAAAAthg4cGC2L1hJ0tChQ3X27Fk3ZAQAAAAAgPXi4uKyjfn+++/dkIk5+/fv15UrVwzFHjhwINNjuXLlsiqlvy1fvjzTYw0bNnTp3LNmzcp0V6R/e+ihh1SvXj2X+gJ8BcVFAAAAAAAAAAAAAADAFpGRkfr444+zjbt06ZJef/11+xMCAAAAAMAGFStWVO7cubOM+fzzz92UjTGLFy9WjRo19NhjjxmKv3DhQqbHgoODrUrrb1kVFzVq1Mjp86alpal///7ZxhUoUEDDhg1zuh/A11BcBAAAAAAAAAAAAAAAbNO6dWu1bds227jRo0dr165d9icEAAAAAIDFAgMDVbt27Sxjdu7cqWnTprkpo6x98sknat68uc6fP69Jkybpiy++yLZNYmJipscuXbpkZXo6d+6cZs2adcNjuXPn1m233eb0uT/77DPt3r0727ihQ4cqOjra6X4AX2N9iSAAAAAAAAAAAAAAAMC/fPzxx6patWq2cQcPHlSFChXckBEAAAAAANZq166d5s+fn2XM888/r+bNmytPnjxuyup/nTt3Tj179tTMmTP/578/88wzqlWrlqpUqZJp27S0tEyPnT171qoUJUlPPvmkzpw5c8NjdevWVVBQkNPnDggI0KBBg7KMiYyMVM+ePZ3uA/BFAQ6Hw+HpJAAAAAAAAAAAAAAAAAAAAAAA8FWnT59W8eLFlZKSkmXcfffdpylTpiggIMBNmf1p3rx5euSRR3T8+PEbHo+Li9OGDRsUFRV1w+Pdu3fX+PHjb3gsOjpap0+ftiTPr776So8++mimx4cMGaIXX3zRkr4A/CPQ0wkAAAAAAAAAAAAAAAAAAAAAAODLYmJi1LFjx2zjpk2bpr59+9qf0P937NgxdezYUS1atMi0sEiSSpUqpcDAzMsLChQokOmxM2fOaOfOnS7lKUkrVqxQ7969s4ypW7euy/0A+C+KiwAAAAAAAAAAAAAAAAAAAAAAcNGAAQMUFBSUbdzIkSP14IMPKikpybZcLl68qMGDB6tChQqaOnVqlrH333+/Zs2apcjIyExjYmNjszzH559/7lSef1m7dq3uvvvuLHd+CgkJUfXq1V3qB8CNUVwEAAAAAAAAAAAAAAAAAAAAAICL4uPj1atXL0OxEydO1K233qrFixdbmsOxY8f06quvqlSpUnr99deVmJiYZfxjjz2mSZMmKSQkJMu4WrVqZXl8zJgx2rNnj+l8JWn+/Plq1qyZLl++nGXcrbfeqoiICKf6AJA1iosAAAAAAAAAAAAAAAAAAAAAALDAO++8o5IlSxqK3bNnjxISEpSQkKDvv/9eqampTvV58eJFTZ06VXfddZdKliypt956S5cuXcqyTWhoqD755BN9/vnnCgzMvqygRo0aCgsLy/T41atXdf/99+vChQuG805PT9fQoUPVqlWrbAuLJLFrEWCjAIfD4fB0EgAAAAAAAAAAAAAAAAAAAAAA5ASrV69Wo0aNlJKSYqpdnjx5lJCQoFq1aqlKlSoqWbKkihQposjISIWEhCgxMVGXL1/WiRMn9Pvvv2vHjh1asWKF1q9fr/T0dMP93HTTTZo+fXq2uxH9X/fee69mzJiRZUxcXJwmTZqkatWqZRm3Zs0a9enTRxs2bDDc/1dffaUePXoYjgdgHMVFAAAAAAAAAAAAAAAAAAAAAABYaNq0aXrggQeUkZHh6VT+R/v27fXZZ58pJibGdNtVq1apXr162cYFBASoXbt26tChg2rVqqXChQsrICBAR44c0ZIlSzRp0iQtX77cdP+bNm3KtmgJgHMoLgIAAAAAAAAAAAAAAAAAAAAAwGLfffedHn74YdM7GNkhNjZWo0aNUtu2bV06z5133qmFCxdak5QJQUFBSkxMVHh4uNv7BvxBoKcTAAAAAAAAAAAAAAAAAAAAAAAgp+ncubMWLFigokWLeiyHyMhIPf/88/r9999dLiySpPHjxys6Otr1xG4gq12JypYtS2ERYCOKiwAAAAAAAAAAAAAAAAAAAAAAsEGDBg20fft2denSxa39hoeH65lnntH+/fv1/vvvK2/evJacNzY2VlOnTlXu3LktOZ8kFSxYUGPHjtXTTz+daczNN99sWX8A/oviIgAAAAAAAAAAAAAAAAAAAAAAbFKgQAFNnDhR69evV6tWrRQQEGBbX/Hx8frggw905MgRjRgxQoULF7a8j0aNGmnFihUqVqyYS+eJiIhQ3759tWfPHnXv3l3r1q3LNLZ8+fIu9QUgawEOh8Ph6SQAAAAAAAAAAAAAAAAAAAAAAPAHBw8e1NixY/Xjjz9q69atLp0rKChI1atXV9OmTdWmTRvVrFnToiyzd+nSJb3//vsaMWKErl69arhdmTJl9PDDD+vRRx/9n+KnGjVqaMOGDX///2LFiqlNmzZq166dGjVqpODgYEvzB/APiosAAAAAAAAAAAAAAAAAAAAAAPCAEydOaPXq1dqyZYt27dqlo0eP6tixY7p8+bKSkpKUmpqqyMhI5c6dW1FRUSpcuLDi4uJUoUIFVapUSXXq1FG+fPk8+nc4f/685s6dq7lz52rr1q06c+aMzp49q8DAQOXJk0fFihVThQoVVLNmTSUkJOiWW2654XmKFy+u3Llzq23btmrXrp2qV69u6y5PAP5BcREAAAAAAAAAAAAAAAAAAAAAAPCo1NRUhYSEeDoNwC9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4qUBPJwAAAAAAAAAAAAAAAAAAAAAAAADAMyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH6K4iIAAAAAAAAAAAAAAAAAAAAAAADAT1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgpiosAAAAAAAAAAAAAAAAAAAAAAAAAP0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCnKC4CAAAAAAAAAAAAAAAAAAAAAAAA/BTFRQAAAAAAAAAAAAAAAAAAAAAAAICforgIAAAAAAAAAAAAAAAAAAAAAAAA8FMUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgpyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH6K4iIAAAAAAAAAAAAAAAAAAAAAAADAT1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgpiosAAAAAAAAAAAAAAAAAAAAAAAAAP0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCnKC4CAAAAAAAAAAAAAAAAAAAAAAAA/BTFRQAAAAAAAAAAAAAAAAAAAAAAAICforgIAAAAAAAAAAAAAAAAAAAAAAAA8FMUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgpyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH7q/wHCP7KD/1pNaAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2314,7 +2210,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADRcAAAzlCAYAAAC0REvBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/av/WaAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdeZjd890//tcsyWSZpElksySWLJgZSlQiEQbBTW0Jaqe2KGr/qqAuFVWK2mls4ZZbW3UXtdXSiu9EgsYSESGR2JuKkE0n22Qy5/dHv3f7cyPnzJlzziyfx+O6erWdeb3e7+dJ+9eMZ95FqVQqFQAAAAAAAAAAAAAAAEDiFDd3AAAAAAAAAAAAAAAAAKB5KBcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEKVNncAAAAAAAAAAPJr7dq18dJLL8VLL70Ur7/+enzwwQfxySefRG1tbaxatSrKy8ujW7du0adPn9h+++1jhx12iFGjRsUWW2zR3NEBAAAAAMizolQqlWruEAAAAAAAAADk3ssvvxy33357PPbYY7F06dJG7++0005x7LHHxoknnhgdOnTIQ0IAAAAAAJqbchEAAAAAAABAGzNlypS48MIL46WXXsrJeRtttFH89Kc/jVNOOSVKS0tzciYAAAAAAC2DchEAAAAAAABAG/HFF1/Ej3/843jwwQfzcv6OO+4Y999/fwwePDgv5wMAAAAAUHjKRQAAAAAAAABtwPPPPx9HHnlkfPbZZ3m9p1OnTnHXXXfFUUcdldd7AAAAAAAojOLmDgAAAAAAAABA09x1112x9957571YFBGxcuXKOOaYY+L666/P+10AAAAAAOSfchEAAAAAAABAK3b77bfHKaecEvX19QW7M5VKxf/5P/8nLrvssoLdCQAAAABAfhSlUqlUc4cAAAAAAAAAoPEmTZoUxx9/fDTnr33vvPPOGDt2bLPdDwAAAABA0ygXAQAAAAAAALRCDz30UBx++OGxbt26jHf69esXhx9+eIwYMSK++93vRo8ePaJz586xZMmS+OCDD+KFF16I3//+9/Haa69lfGZpaWk88cQT8R//8R/ZfAwAAAAAAJqZchEAAAAAAABAKzN37twYMmRIrFy5MqP5wYMHxzXXXBMHHHBAFBcXp52fOnVqnHXWWTFjxoyMzu/Vq1e8+eab0bdv34zmAQAAAABoOdL/1BgAAAAAAACAFqOuri6OPPLIjItFF1xwQcyaNSsOOuigjIpFEREjR46MV155JS655JKM5j///PM4/vjjw99tCQAAAADQ+igXAQAAAAAAALQiF110UUYvCpWUlMSkSZPi6quvjvbt2zf6npKSkvj5z38e99xzTxQVFaWdf+aZZ+L2229v9D0AAAAAADSvopS/OgoAAAAAAACgVXj55ZdjxIgRGb0QdNddd8XJJ5+ck3tvuummOOecc9LO9ejRI+bNmxc9evTIyb0AAAAAAOSfl4sAAAAAAAAAWokLL7wwo2LRueeem7NiUUTE2WefndF5S5YsiUsvvTRn9wIAAAAAkH9eLgIAAAAAAABoBZ566qn4/ve/n3auqqoqXn311SgrK8vp/StWrIghQ4bEu+++u965kpKSeOedd2LQoEE5vR8AAAAAgPzwchEAAAAAAABAC5dKpeLiiy/OaPbOO+/MebEoIqJz584xYcKEtHPr1q2La665Juf3AwAAAACQH8pFAAAAAAAAAC3cs88+G2+88UbauYMPPjiGDx+etxx77LFHjBkzJu3cpEmTYsGCBXnLAQAAAABA7igXAQAAAAAAALRw9957b0Zzl19+eZ6TRFx11VVRXLz+XzXX1dXFzTffnPcsAAAAAAA0XVEqlUo1dwgAAAAAAAAAvtny5cujb9++sXr16vXO7bXXXvHss88WJNPBBx8cjzzyyHpn+vbtG5988kmUlpYWJBMAAAAAANnxchEAAAAAAABAC/bAAw+kLRZFRJx99tkFSPNPF1xwQdqZhQsXxjPPPFOANAAAAAAANIVyEQAAAAAAAEAL9sADD6Sd6dOnT+yzzz4FSPNPO+20U1RUVKSdu++++wqQBgAAAACAplAuAgAAAAAAAGihVq1aFS+++GLaucMPPzxKSkoKkOjfTjjhhLQzf/rTn6Kurq4AaQAAAAAAyJZyEQAAAAAAAEALNXXq1IzKOYceemgB0nzVYYcdlnZmxYoVUVNTU4A0AAAAAABkS7kIAAAAAAAAoIV67rnn0s5069YtRowYUYA0X9W/f//Ydttt08796U9/KkAaAAAAAACypVwEAAAAAAAA0EJNnjw57cxee+0VJSUlBUjzdfvvv3/amT//+c8FSAIAAAAAQLaUiwAAAAAAAABaoPr6+pg5c2bauV122aUAab5ZdXV12pl33nknvvzyywKkAQAAAAAgG8pFAAAAAAAAAC3Q3Llzo66uLu3cTjvtVIA032z48OFpX01qaGiIV199tUCJAAAAAABoLOUiAAAAAAAAgBZo1qxZaWfKyspiu+22y3+Yb9GlS5eoqqpKO/fKK68UIA0AAAAAANlQLgIAAAAAAABogTIpF2255ZbRrl27AqT5dttss03amZkzZxYgCQAAAAAA2VAuAgAAAAAAAGiBZs+enXamoqKiAEnWr7KyMu3MvHnzCpAEAAAAAIBsKBcBAAAAAAAAtECffPJJ2pmtt966AEnWT7kIAAAAAKB1Uy4CAAAAAAAAaIE+/fTTtDP9+/cvQJL123TTTdPOLF++PD7//PMCpAEAAAAAoLGUiwAAAAAAAABamHXr1sWiRYvSzvXr168AaXKT4eOPP85zEgAAAAAAsqFcBAAAAAAAAAkyefLkKCoqyvpf5557bnN/hBZh0aJF0bNnz6z/HDfeeONYtmzZes9ft25d2hwbb7xxDj9Vdrp37x7l5eVp57xcBAAAAADQMikXAQAAAAAAQIJUVlY2aX/u3Lk5StK6nXXWWbF48eKs9++4447o1q3bt35/4cKFGZ3To0ePrDPkUs+ePdPOKBcBAAAAALRMykUAAAAAAACQIH369MmoCPJtlIsiHn/88fj973+f9f6xxx4b+++//3pnamtrMzqre/fuWefIpUxyKBcBAAAAALRMykUAAAAAAACQME15vejDDz+MNWvW5DBN6/Lll1/GaaedlvX+hhtuGDfddFPaudWrV6ed6dSpU7Rr1y7rLLmUSblo6dKlBUgCAAAAAEBjKRcBAAAAAABAwjSlXNTQ0BDz5s3LYZrW5YILLogFCxZkvX/HHXdkVMTJpFzUsWPHrHPkWnl5edqZJJfSAAAAAABaMuUiAAAAAAAASJiqqqom7c+dOzdHSVqXmpqauPPOO7PeP+aYY+KAAw7IaDaTclFLebUoIrMsykUAAAAAAC2TchEAAAAAAAAkTFNeLopIZrlo9erVMXbs2EilUlnt9+3bN26++eaM5zMp4rSkclH79u3TztTV1RUgCQAAAAAAjaVcBAAAAAAAAAnT1JeL5syZk6Mkrcdll10W8+bNy3r/9ttvj+7du2c8n0mJKduiUz5kUnRSLgIAAAAAaJmUiwAAAAAAACBhevToEX379s16P2kvF82YMSOuu+66rPePPvroOOiggxq1k8lLQKtWrco2Us6tXbs27UxpaWkBkgAAAAAA0FjKRQAAAAAAAJBAlZWVWe8mqVxUX18fJ510UtTX12e137dv37j55psbvZfJS0AtqVyUyatEHTp0KEASAAAAAAAaS7kIAAAAAAAAEqiqqirr3eXLl8fChQtzmKbl+tWvfhUzZszIen/ChAnRo0ePRu+VlZWlnVm9enU2kfJizZo1aWeUiwAAAAAAWiblIgAAAAAAAEigprxcFJGM14vefffdGD9+fNb7Rx55ZIwePTqr3a5du6adaWhoaDEFIy8XAQAAAAC0XspFAAAAAAAAkEBNebkoou2Xi1KpVIwdOzbr8k6fPn3illtuyfr+TF87WrVqVdZ35NKyZcvSzigXAQAAAAC0TMpFAAAAAAAAkEBeLlq/O+64I6ZMmZL1/oQJE2KDDTbIej/T3aVLl2Z9Ry598cUXaWe6d+9egCQAAAAAADSWchEAAAAAAAAkUNeuXaNfv35Z78+ZMyeHaVqWv/3tbzFu3Lis94844ogYM2ZMkzJssMEGUVRUlHbuk08+adI9ubJ48eK0M3379i1AEgAAAAAAGku5CAAAAAAAABKqKa8XteWXi0477bT48ssvs9rt3bt33HrrrU3O0K5du4zKOB9//HGT72qq+vr6WL58edo55SIAAAAAgJZJuQgAAAAAAAASqinlog8//DDq6upymKZleOCBB+KJJ57Iev/Xv/51bLDBBjnJ0r9//7QzLeHlokwLTspFAAAAAAAtk3IRAAAAAAAAJFRVVVXWu+vWrYt58+blME3zW7x4cZx11llZ7x9++OFxyCGH5CzPpptumnamJbxc9N5772U0p1wEAAAAANAyKRcBAAAAAABAQjXl5aKIiLlz5+YoSctwzjnnxOeff57Vbu/evePWW2/NaZ7BgwennWkJ5aL3338/7cxGG20UHTp0KEAaAAAAAAAaS7kIAAAAAAAAEqqioiKKioqy3m9L5aKnn3467r///qz3b7vttujZs2cOE2X2stQ777yT0zuzMX/+/LQzFRUVBUgCAAAAAEA2lIsAAAAAAAAgoTp37hybbbZZ1vttpVxUW1sbP/rRj7Le/8EPfhCHHnpoDhP90zbbbJN25sMPP4zly5fn/O7GeOONN9LONPWVLAAAAAAA8ke5CAAAAAAAABIsk9dxvs2cOXNymKT5XHTRRfHxxx9ntdurV6+47bbbcpzonwYPHhwdOnRIOzdz5sy83J+p119/Pe2Ml4sAAAAAAFou5SIAAAAAAABIsKa8KNMWXi568cUX49e//nXW+7fddlv06tUrh4n+rbS0NHbccce0c1OnTs3L/Zn48MMPY8mSJWnnmlJiAwAAAAAgv5SLAAAAAAAAIMGaUi5atmxZLFq0KIdpCmvNmjVx8sknR0NDQ1b7hx56aPzgBz/IcaqvGjlyZNqZF154Ia8Z1uell15KO1NWVhZDhgwpQBoAAAAAALKhXAQAAAAAAAAJ1tQXZVrz60VXXHFFvPPOO1nt9uzZs0kvHmVql112STszderUqKury3uWb/L000+nnRk6dGh06NChAGkAAAAAAMiGchEAAAAAAAAk2FZbbRUlJSVZ78+ZMyeHaQpn1qxZcfXVV2e9f+utt0avXr1ymOib7brrrlFWVrbemdra2qipqcl7lv8tlUrFM888k3Zu1113LUAaAAAAAACypVwEAAAAAAAACdahQ4cYMGBA1vut8eWidevWxUknnRRr167Nav+QQw6Jww8/PMepvlnnzp1j9913Tzv3xBNPFCDNV7366qvx2WefpZ2rrq4uQBoAAAAAALKlXAQAAAAAAAAJV1lZmfVuaywX3XjjjfHKK69ktduzZ8/49a9/neNE63fAAQeknfnv//7vaGhoKECaf7vnnnvSzpSXl8fOO+9cgDQAAAAAAGRLuQgAAAAAAAASrqqqKuvdOXPm5DBJ/r3//vtx6aWXZr1/yy23RO/evXOYKL3Ro0dHcfH6f7X76aefxnPPPVegRBG1tbXxm9/8Ju3cQQcdFJ06dSpAIgAAAAAAsqVcBAAAAAAAAAnXlJeLPvjgg6irq8thmvwaO3ZsrFy5MqvdMWPGxBFHHJHjROlttNFGsccee6Sdy+QloVz5zW9+E//4xz/Szh199NEFSAMAAAAAQFMoFwEAAAAAAEDCNeXlonXr1sV7772XwzT5M3HixJg8eXJWuxtssEFMmDAhx4kyd+yxx6ad+cMf/hAfffRR3rOsXr06fvGLX6Sd69WrV+y11155zwMAAAAAQNMoFwEAAAAAAEDCDR48ONq1a5f1/ty5c3OYJj8+/fTTOP/887Pev+WWW6JPnz45TNQ4hxxySHTt2nW9M/X19XHdddflPcuNN94Yn3zySdq5Y489NkpLS/OeBwAAAACAplEuAgAAAAAAgIRr165dDBo0KOv9OXPm5DBNfpxxxhmxbNmyrHZHjx4dRx55ZG4DNVLnzp3jxBNPTDt3++23x9tvv523HAsXLoxf/vKXaec6duwYP/nJT/KWAwAAAACA3FEuAgAAAAAAAKKqqirr3Zb+ctFDDz0UDz/8cFa7PXr0iNtvvz3HibJz1llnRXHx+n/Fu3bt2jj99NOjoaEh5/enUqn44Q9/GMuXL087e+qpp0bfvn1zngEAAAAAgNxTLgIAAAAAAACisrIy692WXC5atmxZnHHGGVnv33LLLdGnT58cJsre5ptvHmPGjEk7V1NTE5dddlnO7//Vr34Vzz77bNq5jh07xrhx43J+PwAAAAAA+aFcBAAAAAAAALTZl4vOO++8WLhwYVa7Bx10UBx11FE5TtQ0V1xxRZSWlmY09+CDD+bs3j//+c/x05/+NKPZCy64oMUUsgAAAAAASK8olUqlmjsEAAAAAAAA0Lzmzp0bW221Vdb7ixYtil69euUwUdM999xzseeee2a126NHj5g9e3b07ds3x6ma7rTTTovbb7897VxJSUncd999cfTRRzfpvueffz4OPPDAqK2tTTs7ZMiQePnll6Ndu3ZNuhMAAAAAgMLxchEAAAAAAAAQAwcOjLKysqz3W9rrRStXroxTTjkl6/2bbrqpRRaLIiLGjx8fPXr0SDu3bt26OO644+LCCy+Murq6rO664447Yt99982oWFRWVhb33XefYhEAAAAAQCujXAQAAAAAAABESUlJk14uamnloksuuSTef//9rHYPOOCAOOaYY3KcKHd69+4d9957b0azDQ0NcfXVV8fQoUPj8ccfj1QqldHejBkzYq+99opTTz011qxZk9HOFVdcEVVVVRnNAgAAAADQchSlMv3pMQAAAAAAANCmHX300fHb3/42q93zzz8/rr322hwnys706dNj+PDh0dDQ0Ojd7t27x+zZs2PDDTfMQ7LcOuuss+KWW25p1M6WW24Zo0ePjj322CMGDx4cPXv2jA4dOsSyZcti3rx58dJLL8XDDz8c06ZNa9S5J5xwQtxzzz2N2gEAAAAAoGVQLgIAAAAAAAAiIuKqq66Kiy++OKvdAw44IB577LEcJ2q8tWvXxg477BCzZs3Kan/SpElx7LHH5jhVftTV1cVBBx0UTz/9dLPm2G+//eKPf/xjlJaWNmsOAAAAAACyU9zcAQAAAAAAAICWobKyMuvduXPn5jBJ9q666qqsi0X7779/qykWRUS0b98+Hn744dh9992bLcPQoUPjwQcfVCwCAAAAAGjFvFwEAAAAAAAARETE+++/HwMGDMhqt7S0NFauXBnt2rXLcarMvf3227H99ttHXV1do3e7desWs2fPjo022igPyfKrtrY2DjvssHjqqacKeu9uu+0Wf/zjH+M73/lOQe8FAAAAACC3vFwEAAAAAAAARETE5ptvHp06dcpqt76+Pt57770cJ8pcQ0NDnHzyyVkViyIibrrpplZZLIqIKC8vjyeeeCIuueSSKCoqKsidJ510Ujz99NOKRQAAAAAAbYByEQAAAAAAABAREUVFRVFRUZH1/ty5c3OYpnFuvfXWeOmll7La3X///eO4447LcaLCKi4ujp///Ofx5JNPxhZbbJG3e3r16hUPPPBA3H333VFWVpa3ewAAAAAAKBzlIgAAAAAAAOBfKisrs95trnLRRx99FD/96U+z2u3WrVvccccdOU7UfPbdd994++2345e//GV06dIlZ+d26tQpzj333Hj33Xfj8MMPz9m5AAAAAAA0P+UiAAAAAAAA4F+aUi6aM2dODpNk7kc/+lHU1tZmtXvDDTfERhttlONEzausrCzGjRsXCxYsiLvvvjt23nnnrM+qrKyMK6+8Mj7++OO4/vrro1u3brkLCgAAAABAi1CUSqVSzR0CAAAAAAAAaBmeeuqp+P73v5/V7ogRI2LatGk5TrR+kyZNih/+8IdZ7X7/+9+PJ598MseJWqYFCxbESy+9FNOnT4/XXnstFi5cGMuWLYulS5fG2rVro1OnTtGtW7fYdNNNY/DgwTFs2LCorq6OwYMHN3d0AAAAAADyTLkIAAAAAAAA+JePP/44Nt1006x2N9hgg/jiiy9ynOjbLVq0KLbeeutYsmRJo3e7desWb731Vmy88cZ5SAYAAAAAAK1HcXMHAAAAAAAAAFqO/v37R9euXbPaXbx4cSxevDjHib7dmWeemVWxKCLi+uuvVywCAAAAAIBQLgIAAAAAAAD+l4qKiqx358yZk8Mk3+6xxx6LBx98MKvdfffdN0444YQcJwIAAAAAgNZJuQgAAAAAAAD4iqqqqqx3586dm8Mk3+zLL7+M008/Pavd73znO3HnnXfmOBEAAAAAALReykUAAAAAAADAV1RWVma9W4hy0U9+8pNYsGBBVrvXX399bLLJJjlOBAAAAAAArZdyEQAAAAAAAPAVTSkXzZkzJ4dJvq6mpibuuuuurHb32WefOPHEE3OcCAAAAAAAWjflIgAAAAAAAOArqqqqst7N58tFq1evjrFjx0YqlWr0bteuXePOO+/MQyoAAAAAAGjdlIsAAAAAAACAr9hwww2jR48eWe2+//77UV9fn+NE//Szn/0s5s2bl9XuddddF/369ctxIgAAAAAAaP2UiwAAAAAAAICvqayszGpv7dq18f777+c4TcTrr78e1113XVa7e++9d5x88sk5TgQAAAAAAG2DchEAAAAAAADwNdmWiyIi5syZk8MkEfX19XHyySfHunXrGr3btWvXuPvuu3OaBwAAAAAA2hLlIgAAAAAAAOBrqqqqst6dO3duDpNEXHvttTFjxoysdn/1q19Fv379cpoHAAAAAADaEuUiAAAAAAAA4Gua8nJRLstF7777blx++eVZ7e61114xduzYnGUBAAAAAIC2SLkIAAAAAAAA+JqW8HJRKpWKsWPHxurVqxu926VLl7j77rtzkgMAAAAAANoy5SIAAAAAAADga3r27Bm9e/fOanfOnDk5yXD77bfHlClTstr91a9+Ff37989JDgAAAAAAaMuKUqlUqrlDAAAAAAAAAC3PHnvsEc8//3xWu4sXL44ePXpkffff/va3qKysjC+//LLRu3vuuWf8+c9/zvpuAAAAAABIEi8XAQAAAAAAAN+oqqoq6925c+c26e7TTjstq2JRly5d4u67727S3QAAAAAAkCTKRQAAAAAAAMA3qqyszHp3zpw5We/+7ne/iyeeeCKr3WuuuSY23XTTrO8GAAAAAICkUS4CAAAAAAAAvlFzvFy0ePHiOPvss7PaHTVqVPzoRz/KahcAAAAAAJJKuQgAAAAAAAD4Rk15uSjbctE555wTn3/+eaP3ysvLY+LEiVFUVJTVvQAAAAAAkFTKRQAAAAAAAMA36tatW2y88cZZ7WZTLnrqqafi/vvvz+q+a665JjbddNOsdqEQFi1aFMuXL2/uGAAAAAAAX6NcBAAAAAAAAHyrbF8veu+996K+vj7j+dra2jj11FOzumv33XfPehfy6aOPPoobb7wxqqurY8MNN4xddtmluSMBAAAAAHxNaXMHAAAAAAAAAFquysrKePbZZxu9V1dXFx988EEMGjQoo/mLLrooPv7440bfU15eHvfcc08UFRU1ehfy4Z133omHH344Hn744Xj99de/8r2BAwc2UyoAAAAAgG+nXAQAAAAAAAB8q6qqqqx3586dm1G56MUXX4xf//rXWd1x9dVXx2abbZbVbhItX7483nrrrXjrrbfinXfeiQULFsSCBQti4cKFUVtbG6tWrYrVq1dHaWlpdOnS5V//6t27d2y11Vax9dZbx1ZbbRXf/e53o0ePHs39cVqUK6+8MiZNmhRz58791pnq6uoCJgIAAAAAyExRKpVKNXcIAAAAAAAAoGX661//GjvttFNWu9dee22cf/75651Zs2ZNbLfddjFnzpxGn7/77rvHc88959Wi9fjiiy/iL3/5S9TU1ERNTU288847OTm3uLg4dthhh9hnn31in332iWHDhkVJSUlOzm6Nli1bFhtssEE0NDSsd27GjBmx3XbbFSYUAAAAAECGvFwEAAAAAAAAfKvKysooKiqKbP7OwvW94PI/rrjiiqyKRZ07d46JEycqFn2DRYsWxR/+8Id46KGHoqamJtatW5fzOxoaGuKVV16JV155JX7+85/HJptsEmPHjo2xY8fGhhtumPP7WroXXnghbbGoW7duse222xYoEQAAAABA5oqbOwAAAAAAAADQcpWXl0f//v2z2k1XLnrzzTfj6quvzursq6++OjbffPOsdtuiVCoVkydPjsMPPzw22WST+PGPfxyTJ0/OS7Hom/ztb3+Ln/3sZ9G/f//4wQ9+EDNnzizIvS3FlClT0s7ssssuUVzsV/QAAAAAQMvjJ5cAAAAAAADAelVVVWW1t75y0bp16+Kkk06KtWvXNvrc3XbbLU4//fSsMrU169ati9/+9rexzTbbxKhRo+LBBx/M6s80V+rr6+MPf/hDDBkyJI4//vhYvHhxs2UppJqamrQzu+22W/6DAAAAAABkQbkIAAAAAAAAWK/Kysqs9hYtWhRLly79xu/deOON8eqrrzb6zM6dO8fEiROjqKgoq0xtRSqViv/6r/+KrbbaKo4++uiYPXt2c0f6ioaGhrjvvvuioqIi/vSnPzV3nLyqra2NGTNmpJ2rrq4uQBoAAAAAgMZTLgIAAAAAAADWK9tyUcQ3v1703nvvxaWXXprVeVdddVVsscUWWedpC6ZNmxbDhg2L4447LubPn9/ccdZr0aJFccABB8Qvf/nL5o6SN9OmTYv6+vr1znTt2jW22267wgQCAAAAAGgk5SIAAAAAAABgvaqqqrLe/aZy0SmnnBIrV65s9Fm77rprnHHGGVlnae2WLFkSP/zhD2PkyJHxyiuvNHecjDU0NMRFF10UF1xwQXNHyYuampq0MyNHjoySkpICpAEAAAAAaDzlIgAAAAAAAGC9tt566yguzu5Xi/+7XDRx4sSYPHlyo8/p1KlT3HPPPVFUVJRVjtbuoYceioqKipg0aVJzR8natdde2yZfMJoyZUramerq6gIkAQAAAADITmlzBwAAAAAAAABato4dO8YWW2wR8+fPb/TunDlz/vWfP/300zj//POzynDVVVfFgAEDstptzVasWBGnn356TkpFZWVlMXTo0KioqIitttoqtt5669h4442jS5cu0bVr1+jSpUs0NDTE6tWrY8WKFbFw4cL49NNPY/78+TFr1qx44403YsaMGbFu3bqsM1x88cWxzTbbxH777dfkz9MSrFq1KqNXpJSLAAAAAICWrCiVSqWaOwQAAAAAAADQso0ePToeffTRRu9VVFTE7NmzIyLi4IMPjkceeaTRZ+yyyy5RU1OTuFeL3nrrrTjssMPinXfeyfqMAQMGxIEHHhh77713VFdXR8eOHZuUafny5VFTUxP3339/PPbYY7FmzZpGn9GnT5+YNWtW9OrVq0lZWoLJkyfHqFGj1jtTXl4eS5cujdJSf/cnAAAAANAyFTd3AAAAAAAAAKDlq6qqympv/vz5sW7dunjooYeyKhZ16tQp7rnnnsQVix555JEYNmxYVsWi9u3bx2GHHRZ/+ctfYt68eXH99dfHPvvs0+RiUUTEd77znTjwwAPjwQcfjL///e8xbty46NChQ6PO+Oyzz2LcuHFNztISTJkyJe3MiBEjFIsAAAAAgBZNuQgAAAAAAABIq7KyMqu9urq6eP311+OMM87Iav/KK6+MgQMHZrXbWl1zzTVxyCGHxMqVKxu11759+zjjjDPi448/jt///vcxatSovJayevToEb/85S9j7ty5sffeezdq97777ouZM2fmKVnh1NTUpJ3Zbbfd8h8EAAAAAKAJlIsAAAAAAACAtLItF0VEHH300bFw4cJG740cOTLOPPPMrO9tbVKpVJxxxhkxbty4SKVSGe8VFRXF0UcfHXPmzIlbbrkl+vTpk8eUX9e/f/94+umn4xe/+EWUlJRktNPQ0BBXXXVVnpPlV11dXfz1r39NO1ddXV2ANAAAAAAA2StKNean0gAAAAAAAEAi1dXVRefOnaO+vr4g93Xs2DHefPPNxLxa1NDQEKecckpMnDixUXv9+/ePe+65J0aNGpWnZI3z8MMPx5FHHhl1dXVpZzt16hS1tbV5fV0pn6ZOnRq77LLLemc6deoUy5Yti3bt2hUoFQAAAABA43m5CAAAAAAAAEirffv2BS36/OIXv0hMsSiVSsUJJ5zQ6GLRCSecELNmzWoxxaKIiIMPPjgef/zx6NChQ9rZHXfcsdUWiyIiampq0s4MHz5csQgAAAAAaPGUiwAAAAAAAICMVFVVFeSenXfeOc4+++yC3NUSnHvuuTFp0qSM58vKyuK+++6Le+65J7p27ZrHZNnZe++94/bbb087t8ceexQgTf5MmTIl7Ux1dXUBkgAAAAAANI1yEQAAAAAAAJCRysrKvN/RsWPHuPfee6O4OBm/yrzqqqvipptuyni+V69e8dxzz8Vxxx2Xx1RN98Mf/jBtQWz33XcvUJrcq6+vjxdffDHtnHIRAAAAANAaJOMn8gAAAAAAAECTFeLloiuuuCIGDRqU93tagv/+7/+Oiy++OOP5QYMGxfTp02PnnXfOY6rcufrqq2OzzTb7xu916tQphg0bVthAOfTaa69FbW3temc6dOjQqj8jAAAAAJAcykUAAAAAAABARvL9ctGIESPinHPOyesdLcXs2bPjhBNOyHh+4MCB8fzzz39rWaclKisri6uuuuobv7fzzjtH+/btC5wod6ZMmZJ2ZtiwYVFWVlaANAAAAAAATaNcBAAAAAAAAGRk0KBBeSuEdOjQIe65554oLm77v8Jcvnx5jB49OlasWJHR/IABA+L555+PjTfeOM/Jcu+II46Ibbfd9mtf32OPPZohTe7U1NSkndltt93yHwQAAAAAIAfa/k/mAQAAAAAAgJwoLS2NLbfcMi9nX3HFFXk7u6X58Y9/HPPnz89odqONNornn38+Ntlkkzynyp/jjz/+a1/bfffdCx8kRxoaGmLatGlp56qrqwuQBgAAAACg6ZSLAAAAAAAAgIxVVlbm/Mzhw4fHueeem/NzW6IHH3wwfvOb32Q027Fjx3jssceiX79+eU6VX0cddVSUlpb+67936dIldthhh2ZM1DQzZ86MZcuWrXemffv2sdNOOxUmEAAAAABAEykXAQAAAAAAABmrqqrK6XkdOnSIe++9N4qL2/6vLhcuXBinnXZaRrNFRUVx3333teoSzv/o06fPV4o2u+6661fKRq1NTU1N2pmhQ4dGx44dC5AGAAAAAKDpWu9PbAEAAAAAAICCy/XLRZdffnlsueWWOT2zpTrvvPNiyZIlGc1ecskl8YMf/CDPiQpn6NChMXXq1IiI2H333Qt+/4cffhhTpkyJmTNnxptvvhkff/xxLF++PJYtWxYNDQ3RpUuX6NevX1RUVMSIESNiv/32i8033/wbz5oyZUra+6qrq3P9EQAAAAAA8qYolUqlmjsEAAAAAAAA0DrMnz8/Bg0alJOzdtppp5g6dWqUlJTk5LyWbPLkyTFq1KiMZtvin8vvf//7OOKIIyIi4vXXX4/tt98+73e+9957cd9998Wjjz4ab775ZqP3d9555zj77LPj0EMPjaKiooiISKVS0bt37/jiiy/Wu/vss8/GXnvtlVVuAAAAAIBCUy4CAAAAAAAAMtbQ0BDl5eWxatWqJp3ToUOHmDFjRmy11VY5StZy1dfXxzbbbBNz5sxJO9u5c+d44403YuDAgQVIVjgrV66Mt99+OyIihgwZEsXFxXm76//+3/8bN9xwQzzxxBPR0NDQ5PO++93vxoQJE2L48OExe/bsqKqqWu98aWlpLFu2LDp37tzkuwEAAAAACqG0uQMAAAAAAAAArUdxcXFsvfXW8frrrzfpnPHjxyeiWBQRMXHixIyKRRER1113XZsrFkVEdOrUKb73ve/l9Y7Zs2fHeeedF88++2xOz505c2aMHDkyLrjggthwww3Tzn/ve99TLAIAAAAAWhUvFwEAAAAAAACNctxxx8V//dd/Zb0/bNiwmDZtWpSUlOQwVcu0atWqGDhwYPz9739POzt06NB4+eWXo6ioqADJ2o4VK1bEhRdeGBMmTIh169bl9a527drF2rVr1ztz4YUXxlVXXZXXHAAAAAAAueTlIgAAAAAAAKBRKisrs94tKyuLe++9NxHFooiI2267LaNiUUTEDTfcoFjUSNOnT49jjjkm5s2bV5D70hWLIiKqq6sLkAQAAAAAIHeKmzsAAAAAAAAA0LpUVVVlvTt+/PjYeuutc5im5Vq7dm3ceOONGc0edthhMWLEiPwGamOuvfba2HnnnQtWLMpESUlJ7Lzzzs0dAwAAAACgUbxcBAAAAAAAADRKti8XDR06NM4///wcp2m5fve738WCBQvSzhUXF8eVV15ZgERtw9q1a+OUU06J//zP/2zuKF8zZMiQ6NKlS3PHAAAAAABoFOUiAAAAAAAAoFE23XTTKC8vj9ra2ox3ysrK4t57742SkpI8JmtZrr/++ozmxowZEwMGDMhzmrZh6dKlMWbMmKipqWnU3qBBg+Lggw+OYcOGxbbbbhs9e/aMTp06xbJly+K9996LadOmxaRJk+LNN99sUr7q6uom7QMAAAAANIeiVCqVau4QAAAAAAAAQOsybNiwmD59esbzV155ZVx00UV5TNSyvPLKKzF06NCMZqdNmxYjRozIc6LWb8mSJbHnnnvGjBkzMpovLi6OMWPGxE9+8pMYNmxYRjuPP/54nHnmmfHRRx9llfHxxx+P/fffP6tdAAAAAIDmUtzcAQAAAAAAAIDWp6qqKuPZHXfcMS644II8pml57r333ozmhg0bpliUgcWLF8eoUaMyLhaNGDEiXnvttfjDH/6QcbEoIuKAAw6I1157Lav/TYqLi2PkyJGN3gMAAAAAaG7KRQAAAAAAAECjVVZWZjTXvn37uPfee6OkpCTPiVqONWvWxAMPPJDR7PHHH5/fMG3A8uXLY9SoUfHGG2+knW3fvn3ccMMNMXXq1Nhuu+2yum+DDTaIZ555JrbddttG7X33u9+Nbt26ZXUnAAAAAEBzUi4CAAAAAAAAGi3TctHPfvazjGfbismTJ8fSpUvTzpWUlMTBBx9cgEStV319fRx66KExc+bMtLP9+vWLl156Kc4555woKipq0r3l5eXx6KOPRufOnTPe2W233Zp0JwAAAABAc1EuAgAAAAAAABqtqqoq7cwOO+wQF1xwQQHStCyPP/54RnPV1dXRu3fvPKdp3U499dT4y1/+knZu++23j5dffjmGDBmSs7s322yzGD9+fMbz1dXVObsbAAAAAKCQlIsAAAAAAACARtt4442jW7du3/r99u3bx3/+539GaWlp4UK1EE888URGc4ccckiek7Ru119/fUycODHt3E477RQ1NTWx0UYb5TzDmWeemdG5RUVFscsuu+T8fgAAAACAQlAuAgAAAAAAALJSWVn5rd+79NJLM3rdqK1555134pNPPslo1ks33+7VV1+NCy+8MO3csGHD4plnnokuXbrkJUf79u3jlFNOSTu3zTbbRI8ePfKSAQAAAAAg35SLAAAAAAAAgKx8W7lohx12iHHjxhU4Tcswbdq0jOa6d+8eFRUVeU7TOtXW1sZRRx0Va9euXe/cwIED48knn4yuXbvmNU8mZTFFMQAAAACgNVMuAgAAAAAAALLyTS8TtW/fPu69994oLS1thkTNb+rUqRnNDR8+PIqKivKcpnU677zzYt68eeud6d69ezz55JOxwQYb5D3PlClT0s4oFwEAAAAArZlyEQAAAAAAAJCVb3q56JJLLoltttmmGdK0DH/9618zmhs6dGiek7RO06dPj7vvvjvt3MSJE2Pw4MF5z7Nw4cK0RaeIiF133TXvWQAAAAAA8iWZf10YAAAAAAAA0GR77LFHpFKp5o7RYtTV1cX8+fMzmh0wYECe07Q+qVQqzjzzzLT/nzrxxBNjzJgxBcmUyatFFRUV0atXrwKkAQAAAADIDy8XAQAAAAAAAOTAvHnzor6+PqNZ5aKvmzRpUkyfPn29M7169YobbrihQIkyKxfttttu+Q8CAAAAAJBHykUAAAAAAAAAOTBnzpyMZ7fYYos8Jml9Ghoa4sorr0w7d/nll0fXrl0LkOifMikXVVdXFyAJAAAAAED+KBcBAAAAAAAA5MDHH3+c0Vy7du2iT58+eU7TujzyyCPx7rvvrndm4MCBMXbs2AIliliyZEm89dZbaed23XXXAqQBAAAAAMgf5SIAAAAAAACAHFi4cGFGc507d85zktbnmmuuSTtz9tlnR0lJSQHS/NMLL7wQqVRqvTNbbrll9O3bt0CJAAAAAADyQ7kIAAAAAAAAIAc+/fTTjObKy8vznKR1mTVrVkyfPn29M127do3jjz++MIH+nylTpqSdqa6uLkASAAAAAID8Ui4CAAAAAAAAyIGlS5dmNOfloq/67W9/m3bmwAMPLHgpS7kIAAAAAEgK5SIAAAAAAACAHFi1alVGc+3bt89zktYjlUrFAw88kHbu0EMPLUCaf6utrY0ZM2aknVMuAgAAAADaAuUiAAAAAAAAgBxYvXp1TueSYObMmfHhhx+ud6a0tDT22muvwgT6f6ZNmxbr1q1b78zAgQNj4403LlAiAAAAAID8US4CAAAAAAAAyIG6urqM5lauXJnnJK1HTU1N2pntttsuOnXqVIA0/zZlypS0M14tAgAAAADaCuUiAAAAAAAAgBwoKyvLaO7zzz+PVCqV5zStQyblop122qkASb5KuQgAAAAASBLlIgAAAAAAAIAc6NixY0ZzdXV1sXDhwjynaR2mTp2admbLLbcsQJJ/W716dbzyyitp55SLAAAAAIC2QrkIAAAAAAAAIAc6d+6c8ezcuXPzmKR1WLx4cXz++edp5zbffPMCpPm3v/71r7FmzZr1zmy22WbRv3//AiUCAAAAAMgv5SIAAAAAAACAHNhwww0zns3kZZy2bv78+RnNbbLJJnlO8lU1NTVpZ7xaBAAAAAC0JcpFAAAAAAAAADmw2WabZTw7bdq0/AVpJebNm5fRXGNehMqFKVOmpJ1RLgIAAAAA2hLlIgAAAAAAAIAcaEy56M9//nOsWrUqf2Fagb///e8ZzRWyXLR27dp4+eWX084pFwEAAAAAbYlyEQAAAAAAAEAObLfddhnPrly5Mp588sn8hSmQDz/8MP70pz9ltVtbW5vRXENDQ1bnZ+O1116LFStWrHemX79+scUWWxQoEQAAAABA/ikXAQAAAAAAAOTA4MGDo0ePHhnP33rrrXlMk39TpkyJHXfcMY444oiYP39+o/czLRctW7as0Wdn67e//W3aGa8WAQAAAABtjXIRAAAAAAAAQI4MHz4849mampqYPn16HtPkz1133RV77rlnfPHFF/GPf/wjDj/88FizZk2jzli5cmVGc4UqF73wwgtx2223pZ1TLgIAAAAA2hrlIgAAAAAAAIAcOfDAAxs1f9555+UpSX6sXr06Tj/99DjllFNi7dq1//r666+/Hueff36jzioqKspo7v3332/UudlYsWJFnHDCCdHQ0JB2VrkIAAAAAGhrlIsAAAAAAAAAcmT06NFRUlKS8fy0adPijjvuyGOi3Jk1a1Z873vfiwkTJnzj92+99dZ45JFHMj6vY8eOGc299NJLGZ+ZjVQqFccdd1y89957aWc33HDDGDRoUF7zAAAAAAAUmnIRAAAAAAAAQI707t079tprr0btnHvuufHWW2/lKVHTpVKpuPnmm2PHHXeM2bNnr3f2pJNOio8++iijc3v27JnR3NSpUzOay9Zll10WDz/8cEazI0aMyGsWAAAAAIDmoFwEAAAAAAAAkENnn312o+ZXrVoV3//+9+OTTz7JU6LszZw5M0aOHBlnn312rFmzJu380qVL47nnnsvo7E022SSjuVmzZsWrr76a0Wxj3XHHHfHzn/8843nlIgAAAACgLVIuAgAAAAAAAMih//iP/4iKiopG7XzyySex5557xgcffJCnVI3z5ZdfxjnnnBM77LBDvPjiixntlJSUxJ133hknnnhiRvNbbbVVxnluvPHGjGczdccdd8Rpp50WqVQq4x3lIgAAAACgLSpKNeYnpQAAAAAAAACk9cQTT8QBBxzQ6L3evXvHQw89FCNHjsxDqvRWrFgREyZMiGuvvTYWLVqU8V5ZWVn87ne/izFjxmS8s2rVqujatWvU19ennS0uLo5nn302Ro0alfH53yaVSsX48ePj8ssvb1SxqH379vGPf/wj2rdv3+QMAAAAAAAtiZeLAAAAAAAAAHJs//33j3322afRe4sWLYrq6uoYN25crFq1Kg/JvtmXX34ZV199dWy22Wbxk5/8pFHFoq5du8YzzzzTqGJRRETHjh1j+PDhGc02NDTEMcccEwsWLGjUHf/b8uXLY8yYMTF+/PhGFYsiIrbddlvFIgAAAACgTVIuAgAAAAAAAMiD2267Lbp27drovYaGhrjmmmtiwIABMWHChFi9enUe0v3T1KlT44QTTogNN9wwLrzwwvjiiy8atV9RUREvv/xyVFdXZ3V/Y153WrhwYQwfPjzefPPNrO764x//GBUVFfHoo49mtb/DDjtktQcAAAAA0NIVpRr71zEBAAAAAAAAkJEHH3wwDj/88Cad0b179zj66KPj0EMPjZ133jlKS0uzPmvVqlUxZcqUeOaZZ+KJJ56IefPmZX3WUUcdFXfeeWd07tw56zM+/fTT6NevX6xbty7jnfLy8hg3blycc845UV5ennb+hRdeiCuvvDKefvrprHNGRNx5550xduzYJp0BAAAAANASKRcBAAAAAAAA5NH5558f1113XU7O6tq1a4wYMSK233772GabbaJfv36xySabRLdu3aJDhw7Rvn37WLFiRXz55Zfx5ZdfxsKFC+Ptt9+O2bNnx+zZs2P69OlNfgmpffv2ccMNN8Tpp5+ek8907LHHxv3339/ovZ49e8ZBBx0U++yzT1RVVUXv3r2jvLw8Pv/88/jwww/jL3/5Szz22GPx+uuv5yTn9OnTY8cdd8zJWQAAAAAALYlyEQAAAAAAAEAepVKpOOGEE+K+++5r7ihNNmTIkLj77rtj++23z9mZ7733XlRWVsaaNWtydmauFRUVRW1tbXTq1Km5owAAAAAA5FxxcwcAAAAAAAAAaMuKiopi4sSJceyxxzZ3lKx17tw5rrvuupg+fXpOi0UREQMGDIif/exnOT0z1zbffHPFIgAAAACgzVIuAgAAAAAAAMizkpKSmDRpUlx66aXNHaXR9t9//3j77bfjvPPOi5KSkrzcMW7cuNhvv/3ycvb6nHrqqbHvvvumnauoqChAGgAAAACA5qFcBAAAAAAAAFAg48ePj0cffTT69OnT3FHS2n333aOmpiYef/zx6N+/f17vKi4ujgceeCBGjhyZ13v+x4ABA+Kpp56KCRMmxNtvv512fuDAgQVIBQAAAADQPJSLAAAAAAAAAArowAMPjNmzZ8fRRx8dRUVFzR3na/6nVDR58uTYddddC3ZveXl5PP3003HwwQfn7Y5u3brFFVdcEbNnz4599tknFi1aFB999FHavQEDBuQtEwAAAABAc1MuAgAAAAAAACiwDTbYIO6///547bXXYt99923uONG9e/c4/fTT49VXXy14qej/r3PnzvHQQw/FhAkTolu3bjk7d6ONNorLL788Pvzww/jpT38aZWVlERHxyiuvrHdvwIABcd5558VBBx2UsywAAAAAAC1NUSqVSjV3CAAAAAAAAIAke+utt+Kuu+6K+++/P5YsWVKQO8vKymK33XaL448/PkaPHh0dOnQoyL2Z+uKLL+Lmm2+OO++8Mz777LNG73fv3j322WefOOKII2K//faLkpKSr81cdtllMX78+K98bfvtt4/Ro0fH6NGjY9ttt806PwAAAABAa6FcBAAAAAAAANBCrFmzJmpqauKpp56Kp59+OubMmZOzs4uLi2O77baLPffcM0aNGhW77LJLdOzYMWfn58u6detiypQpMXny5Hj11Vfj/fffj4ULF8bKlSsjIqJTp07RvXv36N+/f2yxxRYxZMiQGDp0aHzve9+L0tLS9Z598cUXx7XXXhu77LLLvwpF/fv3L8THAgAAAABoMZSLAAAAAAAAAFqoZcuWxRtvvBEzZ86MefPmxYIFC+Jvf/tbfPbZZ7Fy5cpYvXp1rF69OoqLi6NLly7RpUuXKC8vjy5dukS/fv1iq622ii233PJf/15eXt7cH6nFqa2t9ecCAAAAACSachEAAAAAAAAAAAAAAAAkVHFzBwAAAAAAAAAAAAAAAACah3IRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAkVGlzBwAAsldfXx/z5s37ytd69OgRxcX6wwAAAAAAAAAAAACQqYaGhliyZMlXvjZo0KAoLW371Zu2/wkBoA2bN29eVFRUNHcMAAAAAAAAAAAAAGhz3n777dh6662bO0beedYAAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASqrS5AwAA2evRo8fXvvb2229Hz549myENAAAAAAAAAAAAALROX3zxRVRUVHzla9/0z+q2RcpFANCKFRd//RHCnj17Rq9evZohDQAAAAAAAAAAAAC0Hd/0z+q2Rcn4lAAAAAAAAAAAAAAAAMDXKBcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQD/H3v3HmV3Wd+L/7P3XPdkksyAXCSxchEJKEEuIoioqHjBapc9UmutrfasLk+PVVv1aOvx17rac2y19d56tMtTq0Lr9XhFROwCDQgIBEQNwQhEJYEQYHaSyey57v37g2sI2c93Zr77/nqtVsnsZ3+fz2x5sp8987y/HwAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAgCao1WpRq9VaXQYAAAAAAOxDuAgAAAAAAACgCa765c/j6l9taXUZAAAAAACwj/5WFwAAAAAAAADQ7Spzs3HBDRuiEBFPO+LIKA0MtrokAAAAAACICJ2LAAAAAAAAABruKz+5OsqVvTFR2Rv/7yfXtLocAAAAAAB4iHARAAAAAAAAQAP9unxPfOeWGx/688W33BC/Lt/TuoIAAAAAAOARhIsAAAAAAAAAGqRWq8Wnr7s8qrXaQ1+rPvC12iO+BgAAAAAArSJcBAAAAAAAANAgV2zdHJvv3rbf1zffvS2u3HpLCyoCAAAAAIB9CRcBAAAAAAAANMDe2Zm48IYNB3z8whs2xNTsTBMrAgAAAACA/QkXAQAAAAAAADTAl2+6KnZPVw74+K7pqfjSTVc3sSIAAAAAANifcBEAAAAAAABAzrZO7IzvbrkpOe67W34cv5zY2YSKAAAAAADgsQkXAQAAAAAAAOSoWqvFp6+9LGq1WnJs7YGx1QxjAQAAAACgEYSLAAAAAAAAAHL0g9s2xZZ77sw8/uf33Bkbbr+5gRUBAAAAAMCBCRcBAAAAAAAA5GRyZjr+48YrF/28/7jhipicnW5ARQAAAAAAUJ9wEQAAAAAAAEBOvnjTD2PPTGXRz9s9U4kv/fiqBlQEAAAAAAD1CRcBAAAAAAAA5OC2e3fEf275yZKf/70tN8Vt9+3IsSIAAAAAAEgTLgIAAAAAAABYpmq1Gv967WVRW8Y1ahHx6Wsvi2ptOVcBAAAAAIDFES4CAAAAAAAAWKbLbvtZLl2Hbr13R1x+689yqAgAAAAAALIRLgIAAAAAAABYht3TlfjCjT/M7Xqfv/HK2D1dye16AAAAAABQj3ARAAAAAAAAwDJ84cdXxuTsdG7Xm5ydji/8OL+wEgAAAAAA1CNcBAAAAAAAALBEW+65My679We5X/fyW38av7jnrtyvCwAAAAAAjyZcBAAAAAAAALAE1Wo1Pn3tZQ25di0i/vXay6JarTbk+gAAAAAA8CDhIgAAAAAAAIAl+N4vfhJbJ3Y27PpbJ+6O//zFTxp2fQAAAAAAiBAuAgAAAAAAAFi0XZW98cUf/7Dh83zhx1fFrumphs8DAAAAAEDvEi4CAAAAAAAAWKT/uPHKmJqbbfg8U3Mz8R83XtHweQAAAAAA6F3CRQAAAAAAAACLsPnubfGD229u2nw/uO3muGXn9qbNBwAAAABAbxEuAgAAAAAAAMhooVqNT193WdPn/fS1l8VCtdr0eQEAAAAA6H7CRQAAAAAAAAAZfffnP45fl+9t+ry/Kt8T3/35j5s+LwAAAAAA3a+/1QUAtNrc3Fxs2LAhrrzyyti0aVNs3rw5du7cGXv27Im9e/dGqVSKVatWxUEHHRTHHXdcnHDCCfGMZzwjnve850WpVGp1+R1l586dcckll8QNN9wQmzZtiltvvTV27doVe/bsibm5uVi5cmWsWrUqjjjiiDjhhBPiKU95Sjzvec+Lk046qdWlAwAAAABATFT2xpdvurpl83/5J1fHGU98coyXVrSsBgAAAAAAuk+hVqvVWl0EQCtcccUV8c///M/x7W9/O3bv3r3o55dKpXjBC14Qf/InfxIvfvGLo1AoNKDKzlepVOJzn/tc/Ou//mtce+21Ua1WF32NtWvXxvnnnx9vetOb4qijjmpAlZ1r586dceihh+7ztbvvvjsOOeSQFlUEAAAAANC9/unK78QPf3lLS2s468jj4o3PfHFLawAAAAAA6Ea9fC632OoCAJrtBz/4QTz96U+Ps88+Oz7/+c8vKVgUcX9o5pvf/Gacd955cfzxx8fXvva1fAvtcHNzc/G+970vnvCEJ8Qb3vCGuOaaa5YULIqIuOOOO+JDH/pQPOlJT4rzzz8/tm7dmm+xAAAAAACQsGnHHS0PFkVEXLn1lrh5xx2tLgMAAAAAgC4iXAT0jHK5HH/4h38Yz3nOc+K6667L9dq33HJLvOIVr4iXvexlsX379lyv3YmuvPLKOOmkk+Iv/uIv4t57783tutVqNb785S/HU57ylHj/+98fmu8BAAAAANAM89WF+PR1l7W6jId8+rrLY7660OoyAAAAAADoEsJFQE/YtGlTnH766fHZz362ofN861vfilNPPTV++MMfNnSedvbxj388zjnnnLj55psbNsfU1FS8853vjN/6rd9acucpAAAAAADI6uLNN8a2Xfe1uoyH3LHr3vjOLTe2ugwAAAAAALqEcBHQ9a644oo444wzYsuWLU2Z76677opzzjknvvrVrzZlvnby1re+Nd74xjfG3NxcU+b75je/GWeeeWbs3LmzKfMBAAAAANB77p3aE//vp9e0uoz9fOUn18S9U3taXQYAAAAAAF1AuAjoatddd1289KUvjT17mvvLtdnZ2fjd3/3duOSSS5o6byu9613vig996ENNn3fTpk3xwhe+MMrlctPnBgAAAACg+12wcUPMzDfnplqLMTM/Fxdu3NDqMgAAAAAA6AL9rS4AoFHuuOOOeMlLXhK7d+/O/Jzh4eF49rOfHaeddlqsWbMmVq1aFZOTk3HnnXfGxo0b4/LLL4/JyclM15qdnY3f/u3fjmuuuSae+tSnLvXb6Aif/OQn4+/+7u8W9Zy1a9fGs5/97Fi/fn087nGPi4GBgSiXy7Fly5a45ppr4rrrrotarZbpWjfeeGO84hWviO9973vR19e3lG8BAAAAAAD285M7fxnX/GpLq8s4oKt/tSXOuetXceLhv9HqUgAAAAAA6GDCRUBXmp+fj1e/+tVxzz33ZBp/6KGHxrvf/e74gz/4g1i9evUBx01NTcUXv/jFeM973hO//OUvk9edmpqK888/P6677rpYsWJF5vo7yY033hh/9md/lnn8s5/97Pirv/qreN7znheFQuGA426//fb46Ec/Gh//+MdjdnY2ed3LL7883vOe98Tf/u3fZq4FAAAAAAAOZG5hPv7tustbXUbSv113efz9S34vBvr86hcAAAAAgKUptroAgEZ473vfG1dccUWmsa961atiy5Yt8aY3valusCgiYmRkJF73utfFLbfcEm984xszXX/z5s3x53/+55nGdprZ2dn43d/93Zienk6OLZVK8elPfzq+//3vx/Of//y6waKIiKOOOio+9KEPxU033ZS589Ni/ncHAAAAAIB6vr35hrhzT7nVZSTduXsiLt58Q6vLAAAAAACggwkXAV3n9ttvj7/7u7/LNPYv//Iv4/Of/3ysWrVqUXMMDQ3FP/3TP8XHPvaxTOM/9alPxbXXXruoOTrBBz/4wbjllluS41atWhWXX355vO51r1v0HMcdd1xcffXV8ZznPCc5tlqtxp/+6Z/GwsLCoucBAAAAAIAH7dy7O7760x+1uozMvvrTH8U9e3e3ugwAAAAAADqUcBHQdd761rdm6qTzhje8Id773vcua64//dM/jf/1v/5XclytVos//dM/jVqttqz52sn27dszfe8DAwPxrW99K04//fQlz7VixYr41re+FU972tOSY3/84x/HJz/5ySXPBQAAAAAAn7v+BzG7MN/qMjKbWZiPz13/g1aXAQAAAABAhxIuArrKjTfeGF/72teS404++eT4yEc+ksuc73rXu+JFL3pRctyPfvSjuOiii3KZsx28//3vj7179ybH/e///b/j7LPPXvZ8o6Oj8YUvfCFGR0czzTk7O7vsOQEAAAAA6D03bLs9rrvj1laXsWjX3nFr3Lh9a6vLAAAAAACgAwkXAV3l/e9/f3JMsViMT33qUzE0NJTLnIVCIf7lX/4lSqVScmyW+jrBxMREfOpTn0qOO/nkk+Ntb3tbbvM++clPjr/6q79Kjtu+fXtccMEFuc0LAAAAAEBvmF2Yj89e//1Wl7Fkn7nu8o7quAQAAAAAQHsQLgK6xq9//ev40pe+lBz32te+Nk455ZRc5/6N3/iNeOtb35oct2HDhrj22mtznbsVPvGJT2TqWvTBD34wisV832re8pa3xFFHHZUc94EPfCDXeQEAAAAA6H7f2nR97Jjc1eoylmzH5K741qbrW10GAAAAAAAdpr/VBQDk5cILL4z5+fp34ysUCvHOd76zIfO/5S1viQ984AMxPT1dd9xnPvOZePrTn96QGprlM5/5THLMM57xjHjuc5+b+9yDg4Px53/+5/HmN7+57rhNmzbFddddF6eddlruNQAAAABAN6tWq7F990Tcdt/dcceue2Pv7HTMLSzEfHUh+ot9MdDXFysGh2Pt6oPj6IMPjSNWjud+kyFohR2Tu+Lrmzr/BmFf33RtPOuodXHo6OpWlwK58d4EAAAAAI0lXAR0jQsvvDA55oUvfGEcf/zxDZn/kEMOide85jXxf//v/6077otf/GJ8+MMfjv7+zvwr+Prrr49bbrklOe7P/uzPGlbDH/3RH8W73/3u2L17d91xF154oXARAAAA9BCHTmFparVa3Hz3trj+jlvj1vt2xC/v2xkzC/Vv5PRIQ/0D8cTxx8UxBx0Wp649Jo4/dE0UCoUGVgyN8dnrvh9zCwutLmPZ5hYW4rPXfz/e/pyXt7oUWDLvTdAYPjNBfqwnyIe1BPmwliA/1hO9rFCr1WqtLgJguX7605/GiSeemBz3uc99Ln7/93+/YXVcfvnlcc455yTHXXzxxfHiF7+4YXU00tvf/vb4wAc+UHfMypUrY8eOHVEqlRpWx+te97pkB6XDDz88tm/f3tW/LNq5c2cceuih+3zt7rvvjkMOOaRFFQEAAEDzOHQKy7N3diY23H5zfG/LTbF990Ru1z1i1Xi84Nj1cfZRx8eKwaHcrguNdP0dt8UHfvDNVpeRq7c9+2Vx6tqjW10GLIr3JsiXz0yQH+sJ8mEtQT6sJciP9cSj9fK5XOEioCv84z/+Y/yP//E/6o4ZHh6Ou+++O1auXNmwOqrVajzhCU+I7du31x335je/OT7ykY80rI5GeupTnxo/+9nP6o55zWteExdccEFD6/jOd74TL3nJS5LjNm7cGCeffHJDa2mlXt7EAAAA0LscOoXl2bGnHN/YdH38cOvmRf2SdLGG+vrjmUeui5efcGoctnKsYfPAcs3Mz8X/uOhzcc/ePa0uJVeHrFgV//DS18Zgf3+rS4Ek702QL5+ZID/WE+TDWoJ8WEuQH+uJA+nlc7nCRUBXeNGLXhTf/e536455wQteEJdeemnDa3n9618f//Zv/1Z3zPHHHx+bNm1qeC15u/POO+OII45IjrvgggviNa95TUNrmZ6ejvHx8Zienq477n3ve1+84x3vaGgtrdTLmxgAAAB6j0OnsDwL1WpctHljfOWmq2OuutC0eQeKffHK9WfES9edEsVisWnzQlZf/PFV8bWf/ajVZTTEK556epy//sxWlwEH5L0J8uUzE+THeoJ8WEuQD2sJ8mM9kdLL53KFi4CONzs7G+Pj4zE1NVV33N///d/HO9/5zobXc+GFF8bv//7vJ8fdcccdsWbNmobXk6cLLrggXvva1ybH3XnnnXH44Yc3vJ5zzz03vve979Ud06xQWav08iYGYDmq1Wps3z0Rt913d9yx697YOzsdcwsLMV9diP5iXwz09cWKweFYu/rgOPrgQ+OIleMOGQAAtJBDp7B823bdF5+4+rtx6707WlbDkw4+PN5wxrmxZvVBLasBHu3O3RPxzm9fGPNNfH9ppv5iX7zvvNfE41eNt7oU2I/3JsiPz0yQH+sJ8mEtQT6sJciP9URWvXwuV7gI6HjXXnttnH766clxV1xxRZx11lkNr+dXv/pVPPGJT0yO+8pXvhK//du/3fB68vTGN74xPv7xj9cd86QnPSm2bNnSlHr+5m/+Jv76r/+67phVq1ZFuVyOQqHQlJqarZc3MQCLUavV4ua7t8X1d9wat963I355385F3X1kqH8gnjj+uDjmoMPi1LXHxPGHruna9xYAgHbj0CksT7VWi4tu3hhfvumqpv7C9EDu/0XqmfHS40+Jos9VtFitVou/v+xr8ZO7ftXqUhpq/eOfGO987m/5WQZtw3sT5MtnJsiP9QT5sJYgH9YS5Md6YjF6+VyucBHQ8f7lX/4l3vCGN9QdUywWY/fu3bFixYqm1HTIIYfEPffcU3fMu9/97vjbv/3bptSTl2c+85lx1VVX1R3zO7/zO/GFL3yhKfVcdNFF8Zu/+ZvJcb/4xS/imGOOaUJFzdfLmxiALPbOzsSG22+O7225KbbvnsjtukesGo8XHLs+zj7q+FgxOJTbdQEAeJhDp7B889WF+OTVl8aVW29pdSn7OevI4+INZ5wb/cW+VpdCD/vRr7bEh6/4dqvLaIo/O/ulcfoTntTqMsB7E+TIZybIj/UE+bCWIB/WEuTHemIpevlcbn+rCwBYro0bNybHPPnJT25asCgi4tRTT41LLrmk7pgbbrihSdXko1qtxo9//OPkuFNOOaUJ1dzv1FNPzTTuhhtu6NpwEQCPbceecnxj0/Xxw62bF9WhKKvtuyfis9d/P75w45XxzCPXxctPODUOWzmW+zwAAL2qHQ+dzlUX4j9uvCJ+Vd7p0CkdYXZhPj56xbdj47bbW13KY7py6y1RmZuNNz/rvBjs8+sqmm96fi4+u/EHrS6jaT53/fdj/eOfGMP9A60uhR7mvQny4zMT5Md6gnxYS5APawnyYz3B4hVbXQDAcv3kJz9Jjlm3bl0TKnnYcccdlxxz0003NaGS/Nx6660xNTWVHNfM1/rwww+P1atXJ8d12msNwNItVKvxjU3XxTsuuiAuu/WnDQkWPdLMwnxcdutP4x0XXRDf3HRdVKvVhs4HANALZhfm48MbLmqrX/Y80pVbb4kPb7goZhu814TlmK8utPXh7Qdt3HZ7fOyKi2O+De4YSe/56k+vifumJltdRtPcOzUZX/vpj1pdBj3MexPkx2cmyI/1BPmwliAf1hLkx3qCpREuAjrebbfdlhxz7LHHNqGShz3pSU9Kjtm2bVvMzs42oZp8ZHmdI5r/WmfpSJS1dgA627Zd98V7Lv1ifP7GK5veyvj+O4tcGe+59Euxbdd9TZ0bAKCbOHQKy1et1eKTV1/a9uvoQddvuy0+efWlUa3VWl0KPWTbrvvi2zff0Ooymu6izRv93IKW8N4E+fGZCfJjPUE+rCXIh7UE+bGeYOmEi4COVqlU4q677kqOyxJAyVOWcFG1Wo1f/vKXTagmH7ffnm2jdfTRRze4kn1lea2z1g5AZ6rWavHNTdfHuy7+97j13h0treUX994V77r43+Obm653+AAAYJEcOoV8XHTzxra9G+OBXLn1lvj25o2tLoMeUavV4t+uuywWar3XfXihWo1/u+7yqHnvosm8N0E+fGaC/FhPkA9rCfJhLUF+rCdYHuEioKNlDeccccQRDa5kX49//OMzjeuk0MvWrVuTYw466KAYHh5ufDGPkOW17qTXGYDFma8uxP+56pL4jxuvaHq3ogO5v4vRFfF/rrrE3UUAABbBoVNYvm277osv33RVq8tYki/9+CodVWiKq3758/jZjjtaXUbL/GzHr+PqX21pdRn0EO9NkB+fmSA/1hPkw1qCfFhLkB/rCZZHuAjoaNu2bcs07vDDD29wJUub7447OucXmFle62a/zlnnvOuuu2JhweFugG4zuzAfH95wUdv+UODKrbfEhzdcFLML860uBQCg7Tl0Csu3UK3GJ67+btvceGGx5qoL99+hsdp73WRonsrcbFxww4ZWl9FyF2z8QVTmZltdBj3AexPkx2cmyI/1BPmwliAf1hLkx3qC5RMuAjravffem2ncYYcd1uBK9nXooYdGsZj+K/a++zpnM5DltW726xyRLVxUq9ViYmKiCdUA0Czz1YX46BXfbvs2xhu33R4fu+JiHYwAAOpw6BTy8e3NG+PWe3e0uoxl+cW9d8VF7tBIA33lJ1dHubK31WW03ERlb/y/n1zT6jLoAd6bIB8+M0F+rCfIh7UE+bCWID/WE+RDuAjoaFnDRWNjY40t5FGKxWKsXLkyOS5r/e0gS63Nfp0XM2cnvdYA1Fet1eKTV1/a9sGiB12/7bb7fwBQq7W6FACAtuTQKSzfjj3l+PJNV7e6jFx8+aarY8eecqvLoAv9unxPfOeWG1tdRtu4+JYb4tfle1pdBl3MexPkx2cmyI/1BPmwliAf1hLkx3qCfAgXAR0ta+ef0dHRBleyvyzhok7qXJSl1izfc96yztlJrzUA9V1088a4custrS5jUa7cekt82w8AAAD249Ap5OMbm67v2DsyPtpcdSG+sen6VpdBl6nVavHp6y53449HqD7wmtS8JjSI9ybIh89MkB/rCfJhLUE+rCXIj/UE+REuAjra7t27k2NWrFgRxWLz/7pbtWpVcsyuXbuaUEk+srzWrQgXZXmdIzrrtQbgwLbtui++fNNVrS5jSb7046ti2y5hVwCAR3LoFJZv7+xM/HDr5laXkasfbt0cU7MzrS6DLnLl1lti893bWl1G29l897aOu4ELncF7E+THZybIj/UE+bCWIB/WEuTHeoL8CBcBHW12djY5plQqNaGS/Q0PDyfHZKm/XbTra53ldY7orNcagMe2UK3GJ67+bsf+QGCuuhCfvPrSqFarrS4FAKAtOHQK+dhw+80xszDf6jJyNbMwHxtuv7nVZdAl9s7OxIU3bGh1GW3rwhs2eO8id96bIB8+M0F+rCfIh7UE+bCWID/WE+Srv9UFACxHlsBIX19fEyrZX39/+q/YTgq8tOtrneV1juis13q5nvWsZ2V+XWicn/3sZ60uAbrOtzdvjFvv3dHqMpblF/feFRdt3hgvO+G0VpcCANBy3Xzo9EXHPa3VpdAjarVaXLrlplaX0RCXbrkpXvjkk6JQKLS6FDrcl2+6OnZNT7W6jLa1a3oqvnTT1fGHpz2n1aXQJbw3QX58ZoL8WE+QD2sJ8mEtQX6sJ8iXzkVAR8sSGGlVyCLLvHNzc02oJB/t+lpnnbOTXmsA9rdjTzm+fNPVrS4jF1++6erYsafc6jIAAFqq2w+d1mq1VpdBj7j57m1x5+6JVpfRENt3T8Tmu7e1ugwAFsl7E+TDZybIj/UE+bCWIB/WEuTHeoL8aWsAdLT5+XTiWLgoH+36WgsX7e+KK66IQw45pNVlAOTqG5uuj7nqQqvLyMVcdSG+sen6+ONnPL/VpQAAtEwvHDo9/rC1rS6FHnD9Hbe2uoSGuu6O26wllu389WfE1b/6ue5FBzA2PBLnrz+j1WXQRbw3QT58ZoL8WE+QD2sJ8mEtQX6sJ8ifzkVAR8sSLFlYaM1B5Czztir4tBTt+lpnnbOTXmsA9rV3diZ+uHVzq8vI1Q+3bo6p2ZlWlwEA0DK9cOgUmuHW+3a0uoSGuq3Lvz+aY2RwKF5z8tmtLqNt/d7JZ8fI4FCry6CLeG+CfPjMBPmxniAf1hLkw1qC/FhPkD/hIqCjDQ4OJsdk6bjTCFk65WSpv12062udtSNRJ73WAOxrw+03x8xCa97PG2VmYT423H5zq8sAAGgZh05h+arVavzyvp2tLqOhtk7sjGq12uoy6AJnHXlcrDt0TavLaDvHH7omzjryuFaXQRfx3gT58ZkJ8mM9QT6sJciHtQT5sZ4gf8JFQEcbGBhIjmlVuCjLvJ0UeGnX1zrrnJ30WgPwsFqtFpduuanVZTTEpVtuilqt1uoyAACazqFTyMf23RNddyOGR5uZn4vteyZaXQZdoFAoxOtPe24UC4VWl9I2ioVCvP60c6LgNSFH3psgHz4zQX6sJ8iHtQT5sJYgP9YTNEZ/qwsAWI6hoaHkmOnp6SZUsrR5Oynw0q6vddY5O+m1BuBhN9+9Le7c3Z2/rN++eyI2370tjj9sbatLAQBoql45dLrh9s3xuNGV93+hFlGLWtQiIh4ImNce+sfaA//8cPC8FrV4ZA794T8/cI0HrlN74Dr7XrMWjxz54HX2veZjz/nA/z08S0PrfmCyunXXHjHfEuquPXj1/euOR82ZGtvauh/+50fWfV9lMnrB+y77eowODWcau7SIxBKftYSnNau+pdXWvIDJUsIsS6ruMZ60engkJip7l3K1rrN6eCQ+de1/PvaDS7gXylJun9Ksm67UllRdxNLKW/yTlvbaLeFJS30dFjF2cqY1v5Nrto9ecXGMl1Y89PfZg3/dFAqP/Nu0EIXCA3+/Fh76yv3/WNj3792Hn/fAfz70lMJDf6c/NKLw8DX2veZjzf3oaz58jUc88oix7VL3I+fIWPcD11l63Q//82PX/fAzmlH3zsndPfGZ6cY7fxmHrxxrdSl0ubv2lK0nyIG1BPmwliA/vbKetu+ZiLWrD251KfQQ4SKgo61cuTI5Zu/evVGr1Zp+9709e/Ykx6xataoJleRj5cqVcffdd9cdk+V7zlvWOTvptQbgYdffcWurS2io6+64TbgIAOg5t91X/+cL3eKT11za6hKgK9w7tSfunWr+zx2h201U9gpawRLdseveuGPXva0uAzreP37/G60uAbqG9QT5sJYgH9YS5Of2++4WLqKpiq0uAGA5DjrooOSYWq3WktDL7t27k2Oy1N8ustSa5XvOW9Y5O+m1BuBht963o9UlNNRtXf79AQA8FgcxAQAAAAAAoL47yn6nRnMJFwEd7eCDsyVyd+3a1eBK9lWtVmNycjI5Lmv97SBLrc1+nRczZye91gDcr1qtxi/v29nqMhpq68TOqFarrS4DAKCp9s5Ot7oEAAAAAAAAaGuTszOtLoEeI1wEdLSsgZEdO5rbFWDnzp2xsLCQHNdJgZcstTb7dY6IuOuuu5JjCoVCjI+PN6EaAPK0ffdEzCzMt7qMhpqZn4vteyZaXQYAQFPNZfiZCQAAAAAAAPSyuS4/N0X7ES4COtqaNWsyjcsSQMlT1vmy1t8OstTa7Nc565yHHXZY9Pf3N6EaAPJ02313t7qEpri9R75PAIAHzVeFiwAAAAAAAKAev1Oj2YSLgI525JFHZhq3ffv2xhbyKHfeeWemcUcddVSDK8lPltf6vvvui5mZ5rZhzPJad9LrDMDD7th1b6tLaIo7yr3xfQIAPKi/2NfqEgAAAAAAAKCt+Z0azSZcBHS0UqkUhx12WHLcrbfe2oRqHvaLX/wiOaZQKMQTn/jEJlSTjywBnVqtFrfddlsTqnlYltdauAigM+2dnW51CU0xOdvcYC4AQKsN9PlFCAAAAAAAANQz0Nff6hLoMf6NAzre0UcfHTt27Kg7ZsuWLU2q5n5ZAi9r1qyJoaGhJlSTj6OPPjrTuC1btsTxxx/f4GoeluW1zlo7AO1lbqE3WvvOLcy3ugQAgKZaMTjc6hK6WiEiolB46J8LUYj7/6/wiMfv/3PhoScV9hn70LgoROERz93neQ99qfDQnA9e7+E593/u/UMfUcsDf65fy8Nz7vt97POnB2p9uO6Hatlvjn3r3v+1enjgPt//o66z7/eR7bXar5aHnvfo7+MxXqtH/e921+Su2Hz3tuh2Jx9xVDxh7ODkuFrUFn/xJTxlqU9rVn1Lmae2xNdhKQUu6bVbUn3ZnlSr1eKHv/x5TPbADU6eetjaWLM6vZYeVkgPefQzFv+UJcyytGctpbb7Z2rON7WUeZb0LTX4dfh1+Z64YfvWpU3SQdYdckQcvnIsavHA37u1h//WqT3wl1Ytao/4++v+v53v//ODj+879sEvPvKa+16n9hhzPPzPjx770H/WHvj6Q4NqjzHH/rU8cs5Hfx8PXiMecZ1aPPr7eHjs/nPs/1rt8/0+4hoPfx+1x5gj/VodsJZH/+/20J/3f60AAACgVUYHO+eMMd1BuAjoeCeeeGJcddVVdcds3ry5SdVkn+/EE09sQiX5OeaYY6JUKkWlUqk7bvPmzfHyl7+8KTXdddddsWvXruS4TnutAbjffLU3wkW98n0CADxo7aIONneu15323DjjN4594E+PCJ5kDMzsG1I50HP3D7rQO+4o3xvv+PYFrS6j4V598lk98/cGrXHSEUfGP3z/G60uo+H+4LTnWks03B3le3siXPRHpz/Peuox+wSjHjPo9HAoKmLfQFOmINajQmFX//Ln8Znrv9/ob6vlfmf9mXHKmqNaXQZd7vptt8WXbrq61WU0nPVEo1lLkA9rCfLTK+tpbYYbb0GehIuAjnfyyScnx9xyyy0xNTUVIyMjTagoYuPGjckxp5xyShMqyU9fX1+sX78+rrnmmrrjsnzveck6V6e91gDcr7/Y1+oSmqJXvk8AgAcdfdChrS6hKU44bG2sGm7Oz6LoTUesGo+hvv6Y6eJuqEP9A3HEyvFWl0GXO+nxT4y+QiEWlt7Cqe1ZSzSL9ya61b7dJBsf6n/KYU9o+Bzt4LQnHCOoR8MVC8WeOHRqPdFo1hLkw1qC/PTKejqqR36nRvsotroAgOXKEhypVqtx4403Nr6YiPj1r38dO3fuTI7LEopqN1le62aGi66//vrkmJUrV8YxxxzThGoAyNtAX2+Ebgb63PMBAOgtDx467WYOndIMxWIxnnjQIa0uo6GOHD8kikW/yqKxisViHHXwYa0uo6GsJZrFexPkw2cmyI/1BPmwliAf1hLkx3qCxvBTL6DjnXTSSVEqlZLjNmzY0IRqIn7wgx9kGveMZzyjwZXk78wzz0yO2bJlS+zYsaMJ1WR7rU8//fSH7iYGQGdZMTjc6hKaYnRwqNUlAAA0lUOnkJ9jDuruQMTRXf790T6OPfjwVpfQUNYSzeS9CZbPZybIj/UE+bCWIB/WEuTHeoLG8G8c0PGGhobiWc96VnLcf/7nfzahmmzzrFu3LtauXduEavL1/Oc/P9O4ZrzWMzMzceWVVybHnXvuuQ2vBYDG6JU22WvHeuP7BAB4JIdOIR+nru3ujt2nrT261SXQI6wlyI/1BPnwmQnyYz1BPqwlyIe1BPmxniB/wkVAV3jBC16QHLNhw4aYnJxsaB3VajUuueSS5LhODbwcccQRcfzxxyfHXXzxxQ2v5fLLL49KpZIc16mvNQARRx90aKtLaIqjeuT7BAB4JIdOIR/HH7omHr9qvNVlNMQRq8Zj3aFrWl0GPcJagvxYT5APn5kgP9YT5MNagnxYS5Af6wnyJ1wEdIUXv/jFyTHT09Px9a9/vaF1bNiwIbZv354cl6XedpWl9q9//esxPT3d0Do+//nPJ8ccdthhcfLJJze0DgAa54hV4zHU19/qMhpqqH8gjljZnYctAADqcegU8lEoFOLcY9e3uoyGOPfY9VEoFFpdBj3CWoL8WE+QD5+ZID/WE+TDWoJ8WEuQH+sJ8idcBHSF9evXxwknnJAcd8EFFzS0js997nPJMQcffHBHd9N59atfnRyzZ8+ehga59u7dG1/96leT4171qlf5JQ9ABysWi/HEgw5pdRkNdeT4IVEs+lgGAPQeh04hP2cfdXzX3ZhhqK8/zj4q3UEd8mQtQX6sJ1g+n5kgP9YT5MNagnxYS5Af6wny5xQb0DVe85rXJMdccsklsXnz5obMv3PnzrjwwguT437nd34nBgYGGlJDMzz96U+PY489Njnuwx/+cMNq+PSnPx27du1Kjsvy7wQA7e2Ygw5rdQkNdXSXf38AAPU4dAr5WDE4FM88cl2ry8jVM49cFyODQ60ugx5jLUF+rCfIh89MkB/rCfJhLUE+rCXIj/UE+RIuArrG7//+70dfX1/dMbVaLf7+7/++IfN/5CMfienp6eS4P/zDP2zI/M2U5Xu4+uqr4/LLL8997tnZ2fjgBz+YHLdu3bo4/fTTc58fgOY6de0xrS6hoU5be3SrSwAAaBmHTiE/Lz/h1Bgo1v/ZaKcYKPbFy084tdVl0KOsJciP9QTL5zMT5Md6gnxYS5APawnyYz1BvoSLgK7xG7/xG/HKV74yOe5zn/tcbNy4Mde5f/WrX2UKvJx11lnxjGc8I9e5W+G//bf/FiMjI8lxb3vb26JareY690c+8pG4/fbbM80NQOc7/tA18fhV460uoyGOWDUe6w5d0+oyAABayqFTyMdhK8filevPaHUZuXjl+jPisJVjrS6DHmUtQX6sJ8iHz0yQH+sJ8mEtQT6sJciP9QT5ES4Cuso73vGO5JhqtRp//Md/HLOzs7nMWavV4g1veENUKpXk2Cz1LcbrXve6KBQKyf/Pu4PQwQcfHP/1v/7X5LiNGzdmCl1ltWXLlvibv/mb5LjHP/7x8drXvja3eQFonUKhEOceu77VZTTEuceuj0Kh0OoyAABayqFTyM95606JYw4+rNVlLMuTDj48XrrulFaXQY+zliA/1hMsn89MkB/rCfJhLUE+rCXIj/UE+REuArrKKaecEi9/+cuT4zZu3Bhvectbcpnz7/7u7+I73/lOctxpp50WL3vZy3KZsx284x3vyNS96F3veldcccUVy55v79698apXvSomJyeTY//yL/8yhoa0hQToFmcfdXwM9fW3uoxcDfX1x9lHHd/qMgAA2oJDp5CPvmIx/tsZL+zYOzQOFPviDWecG8WiX13RWtYS5Md6gnz4zAT5sZ4gH9YS5MNagvxYT5APPwUDus4HP/jBTMGST3ziE/E//+f/XNZcH//4xzNdo1AoxMc+9rGu6k6wdu3aeNe73pUcNzc3F7/5m78Z11133ZLnmpqaipe97GVxww03JMeeeOKJ8d//+39f8lwAtJ8Vg0PxzCPXtbqMXD3zyHUxMigICwAQ4dAp5GnN6oPilevPbHUZS3L+SWfGmtUHtboMiAhrCfJkPcHy+cwE+bGeIB/WEuTDWoL8WE+QD/8GAl3nmGOOiXe+852Zxr73ve+NV7/61bFnz55FzTEzMxNvfvOb441vfGOm8a9//evjjDO6o+3iI7397W+PY489Njlu165d8ZznPCc+85nPLHqOW265Jc4444y47LLLkmMLhUL80z/9U/T1deYGEYADe/kJp3bsDwAebaDYFy8/4dRWlwEA0FYcOoX8vPT4U+KsI49rdRmLctaRx8V57shIm7GWID/WEyyfz0yQH+sJ8mEtQT6sJciP9QTLJ1wEdKX/7//7/+LMM7NtEj7/+c/HscceG//8z/8cu3fvrju2UqnEZz/72Vi3bl187GMfy3T9Jz/5yfGRj3wk09hOMzQ0FJ///OczdYqampqK173udXHOOefEZZddFrVare74rVu3xlvf+tZYv359/OQnP8lUz1/8xV/Es5/97ExjAegsh60ci1eu746g7ivXnxGHrRxrdRkAAG3HoVPIR7FQiDeccW6csuaoVpeSyalrjr7/joxd1PWd7mAtQX6sJ8iHz0yQH+sJ8mEtQT6sJciP9QTLU6ilTncDdKhf//rXcfLJJ8e9996b+TmlUime85znxKmnnhpr166NlStXxuTkZNx1111x/fXXx+WXX76oLkelUimuuuqqOOmkk5byLSS97nWvy9QN6LLLLovnPve5DakhIuLjH/945i5OD3rCE54Qz3nOc2L9+vVx8MEHx8DAQJTL5fjFL34R11xzTfzoRz9KBpAe6eyzz47LLrus57oW7dy5Mw499NB9vnb33XfHIYcc0qKKABpnoVqN91z6xbj13h2tLmXJnnTw4fGec8/XxhgA4ADmqwvx4Q0XxcZtt7e6lKRT1xwdbzn7vOjvkg6bdJ/Zhfn46BXfbuv1dOqao+NNz3pJDPb1t7oUOCBrCfJjPcHy+cwE+bGeIB/WEuTDWoL8WE8sVy+fyxUuArraj370o3jBC16wqEBQXgYGBuJrX/tanHfeeQ2bo13CRRER73znO+P9739/Q+c4kBNPPDEuv/zyOOig3msL2cubGKA3bdt1X7zr4n+PuepCq0tZtIFiX7z3Jb+njTEAQIJDp5Cf+epCfPLqS+PKrbe0upT9nHXkcfGGM871S1M6wnx1If7PVd+Nq37581aXsh9riU7jvQmWz2cmyI/1BPmwliAf1hLkx3piOXr5XK7bZQNd7fTTT49vfetbMTo62tR5BwYG4j/+4z8aGixqN+973/vizW9+c9PnXbduXVx66aU9GSwC6EVrVh8Ur1x/ZqvLWJLzTzpTsAgAIIPBvv74s7NfGmcdeVyrS3lMZx15XLzl7PP8soeO0F/siz8580Xx6qc9Kwba5KD0QLEvfu/kZ8WfnPkih7fpGP3FvnjjM18czzvmqa0u5SF9haK1REfy3gTL5zMT5Md6gnxYS5APawnyYz3B0uhcBPSEn/70p/Fbv/VbcdtttzV8rkMPPTS+8pWvxLOe9ayGz9VOnYse9NGPfjTe9ra3xfz8fMPnOu+88+Lf//3fY/Xq1Q2fq131ckIa6F3VWi3+z1WXtOXdTQ/krCOPiz8580VRLBRaXQoAQMeo1mpx0c0b48s3XdUWnSsHin1x/klnxnnrTrGvoyNt23VffOLq78at9+5oWQ1POvjweMMZ57rxAh3tHy7/etywfWtLaxgdHI6/Pvd8a4mO570JlsdnJsiP9QT5sJYgH9YS5Md6Yil6+VyucBHQMyYmJuJNb3pTXHjhhQ2b4yUveUn8y7/8S6xdu7ZhczxSO4aLIiI2bNgQf/zHfxy33NKYQ9+lUine/e53x1/8xV9EsdjbTfh6eRMD9Lb56kJ8eMNFbd2++EGnrjk63nL2ee56CgCwRA6dQn4WqtX49uaN8eWbrm7qL1IHin3xyvVnxkvXndzzP8+j801U9sbbvvmZmJ6fa8n8A8W++NDL/jAOWrGyJfND3rw3wfL5zAT5sZ4gH9YS5MNagvxYTyxGL5/LFS4Ces7ll18eb3/72+P666/P7ZpPfvKT473vfW/8l//yX3K7ZhbtGi6KiJidnY0PfOAD8Y//+I9x33335XLNYrEYr3jFK+If/uEf4qijjsrlmp2ulzcxALML8/HRK77d1gGjU9ccHW961ku0MQYAWCaHTiFfO/aU4xubro8fbt0cMwuN60A+1NcfzzxyXbz8hFPjsJVjDZsHmu3izTfE5zb+oCVzv/aUZ8dL1p3ckrmhkbw3wfL4zAT5sZ4gH9YS5MNagvxYT2TVy+dyhYuAnvX9738//vmf/zkuvvjimJycXPTzh4eH4/nPf378yZ/8SZx33nlRaEGLwnYOFz1oamoqPvOZz8SnP/3puO6662IpbztHHHFEnH/++fGmN70pjjnmmAZU2bl6eRMDEHF/B6NPXn1pXLm1Md3yluOsI4+LN5xxro5FAAA5cugU8jU1OxMbbr85Lt1yU2zfPZHbdY9YNR7nHrs+zj7q+BgZHMrtutAuFqrVeNd3/j1+Xb63qfP+xtjj4n+/+NXR5xACXcx7EyyPz0yQH+sJ8mEtQT6sJciP9URKL5/LFS4Cet7s7Gz84Ac/iCuvvDI2bdoUmzdvjnvuuSf27NkTU1NTMTw8HCtXroyDDjoojjvuuDjhhBPiGc94Rjz/+c+PkZGRVpffUXbs2BGXXHJJ3HDDDbFp06a47bbbYteuXbFnz56Yn5+P0dHRWLlyZaxZsyaOP/74eMpTnhLPe97z4uST3YXxQHp5EwPwoGqtFhfdvDG+fNNVTb2zyIEMFPvi/JPOjPPWnRLFFoSPAQB6gUOnkK9arRab794W191xW9x2347Yet/di/ql6lD/QBw5fkgcfdBhcdrao2PdoWtacjMmaKbNd2+Lv/nel5s651+fe34cd8gRTZ0TWsV7EyyPz0yQH+sJ8mEtQT6sJciP9cSB9PK5XOEiAOhgvbyJAXi0bbvui09c/d249d4dLavhSQcfHm8449xYs/qgltUAANBLHjx0etHmjbFx2+2Lfr5Dp/DYqtVqbN8zEbffd3fcUb43JmdnYm5hPuarC9Ff7IuBvv4YHRyKtWMHx1EHHRpHrByPok4q9KBPXPXd+MHtNzdlrmcffXz8tzNe2JS5oB15b4KlEdSD/FhPkA9rCfJhLUF+rCcerZfP5QoXAUAH6+VNDMBjWahW49ubN8aXb7q6qV2MBop98cr1Z8ZL153s0AIAQAt89+c/jn+77vIDPl4sFOKZTzzOoVMAcrWrsjfe9q3PxtTcbEPnGRkYig+87A9i9fBIQ+cBoPsJ6kF+rCfIh7UE+bCWID/WE718Lre/1QUAAADkpa9YjJedcFqc/oQnxTc2XR8/3Lp5UXcTWayhvv545pHr4uUnnBqHrRxr2DwAANQ3Udlb9/FDVqyK//7MFzWpGgB6xerSividk55ZN+Cah1eddKZgEQC5KBaLsXb1wbF29cGtLgU6nvUE+bCWIB/WEuTHeqKXCRcBAABd57CVY/HHz3h+vObkZ8WG22+OS7fcFNt3T+R2/SNWjce5x66Ps486PkYGh3K7LgAAS1NOhIvGR0abVAkAveYFTzoxLr/1Z7F1YmdDrn/k+KHx/Ced2JBrAwAAAADAg4SLAACArjUyOBQvOu5p8cInnxSb794WX/3Zj+Knd/160dcpFgpx7OMeH0cfdFictvboWHfomigUCg2oGACApUh1LhobXtGkSgDoNcViMV7/9HPir7/7xdyvXYiIP3r6OVEsFnO/NgAAAAAAPJJwEQAA0PUKhUIcf9jauPnubUsKFx1z8GHx1+ee34DKAADIw0Rlsu7j4yXhIgAa59jHPT7OOeYpcdmtP8v1us895qnxpMcdnus1AQAAAADgsbjNFQAA0DNSd7Q/kHJlKudKAADIU2q/Nj4iXARAY73qpLNidHA4t+uNDg7Hq056Zm7XAwAAAACAeoSLAACAnlGeXmq4aG/UarWcqwEAIA9zC/OxZ6ZSd8zYsHARAI21argUr3pafmGg333aWbFquJTb9QAAAAAAoB7hIgAAoGdMTC0tXDRXXYi9czM5VwMAQB7K0+kukzoXAdAM5xz9lDj6oMOWfZ1jDj4snnvMU3KoCAAAAAAAshEuAgAAeka5srRwUUREeYnBJAAAGivLHm+8NNqESgDodcViMf7o6edEYRnXKETE659+ThQLy7kKAAAAAAAsjnARAADQE6q1WpSnlx4QmqhM5lgNAAB5mcgQLhorjTShEgCIOPrgw+L5x5645Oe/4Nj1uXQ/AgAAAACAxRAuAgAAesKe6amo1mpLfn6WQ6sAADTfRKLD5FD/QJT6B5tUDQBE/M76Z8bKodKin7dqqBTnn3RmAyoCAAAAAID6hIsAAICesNxwUFm4CACgLaW6U46XVkShUGhSNQAQMTo0HK9+2lmLft6rT35WjA4ON6AiAAAAAACoT7gIAADoCcsNF+lcBADQniYqk3UfHyutaFIlAPCwZx99Qhz7uMdnHv/kxz0+zj7q+AZWBAAAAAAAByZcBAAA9ITldh4SLgIAaE8TU+nORQDQbMVCIV7/9HMydc8rPDC2qNMeAAAAAAAtIlwEAAD0hOWGg5YbTgIAoDFS+zThIgBa5cjxQ+KFx65PjnvhsSfFE8cPaUJFAAAAAADw2ISLAACAnjBRmVzm84WLAADa0cR0Klw02qRKAGB/r1x/ZqweHjng46uHR+L89Wc0sSIAAAAAANifcBEAANATlhsOmqjsjVqtllM1AADkYW5hPiZnpuuOGSsd+EA3ADTaisGh+L2Tn3XAx19z8tkxMjjUxIoAAAAAAGB/wkUAAEBPKCfCRQeP1L+j/Xx1ISZn6x9cBQCgucqVqeQYnYsAaLVnHbku1h26Zr+vH3/omjjryONaUBEAAAAAAOxLuAgAAOgJqc5FRx10WPIaqYASAADNlaU75XhpRRMqAYADKxQK8frTnhvFQuGhrxULhXj9aedE4RFfAwAAAACAVhEuAgAAul61Wo3ydP272h990KHJ62Q5vAoAQPOUK5PJMWPCRQC0gSeMPS5efNzTHvrzS447OdaOHdy6ggAAAAAA4BGEiwAAgK63e6YStVqt7pgnjh+SvFuwcBEAQHtJ7c+G+weiNDDYpGoAoL7/cuIZMV5aEeOlFfHbJz6j1eUAAAAAAMBD+ltdAAAAQKNlCQUdPDIaq4dKdTscTWS4Mz4AAM2T2ueN61oEQBspDQzGa04+OwqFgvArAAAAAABtRbgIAADoellCQWOl0RgrjdYNF5UrB34MAIDmKyfCRWPCRQC0mTOf+ORWlwAAAAAAAPsptroAAACARkvd0b6vWIyVQ8PJO9vrXAQA0F50LgKg0xQKhSgUCq0uAwAAAAAA9iFcBAAAdL3UHe3HSyuiUCjE+EgiXDRV/zoAADRXep832qRKAAAAAAAAADqXcBEAAND1Une0Hxtesc9/H0jq8CoAAM2V3OfpXAQAAAAAAACQJFwEAAB0vVTHoQc7FiU7F03vjVqtlltdAAAs3ezCfEzOTtcdMy5cBAAAAAAAAJAkXAQAAHS91B3tx0ujD/x3/cOnC9Vq7Jmpf4AVAIDmyNJVUrgIAAAAAAAAIE24CAAA6Hrl6foHT8dKIxHxcMio7rUqk7nUBADA8mQJF40JFwEAAAAAAAAkCRcBAABdbaFajV3TU3XHPBgqynL4NNUFCQCA5siyL9O5CAAAAAAAACBNuAgAAOhqu6enolar1R3z4KHT1UOlKBQKdccKFwEAtIfUvqzUPxjDA4NNqgYAAAAAAACgcwkXAQAAXW1iOvsd7YvFYowNj9QdWxYuAgBoC6l92diIrkUAAAAAAAAAWQgXAQAAXW1iKh0GGis9fPB0vFT/EKrORQAA7SG1LxsfFi4CAAAAAAAAyEK4CAAA6GqpO9r3F/tidHD4oT+PJcJFOhcBALSHicpk3cdT+zoAAAAAAAAA7idcBAAAdLXUodPx0oooFAr7/Ln+9YSLAADaQbkyVffx8RHhIgAAAAAAAIAshIsAAICuNpE6dPqoMNF4aTRxvfphJQAAmiPZuWhYuAgAAAAAAAAgC+EiAACgq5VTh04fFS569J/3v95UVGu1ZdcFAMDSzc7Px97ZmbpjUh0pAQAAAAAAALifcBEAANDVJip76z6+f+ei+odQF2rVmJypLLsuAACWrjxdf48XETE+Ur8jJQAAAAAAAAD3Ey4CAAC6Wt7hoizXBACgsbLsx8aGR5pQCQAAAAAAAEDnEy4CAAC61kK1Grunp+qOGRMuAgDoOFn2Y1n2dQAAAAAAAAAIFwEAAF1s1/RU1BJjHn3odOXwSBQLhbrPmahMLrMyAACWY2Kq/n6sNDAYwwODTaoGAAAAAAAAoLMJFwEAAF0rSwhovDS6z5+LhUKMDde/y325Ur8bEgAAjVWert+5SNciAAAAAAAAgOyEiwAAgK6VJQQ0NrL/wdOxxGFUnYsAAFprYqp+uCi1nwMAAAAAAADgYcJFAABA10qFgAaKfbFiYGi/r48/RuBo3+vWP8wKAEBjpfZjOhcBAAAAAAAAZCdcBAAAdK3UodOx0oooFAr7f304ES5K3CkfAIDGKk+nwkWjTaoEAAAAAAAAoPMJFwEAAF0reUf7A3QoSt3pPnWYFQCAxkqFvcdKI02qBAAAAAAAAKDzCRcBAABdq5wKFx3gjvYHCh098rrVWm3JdQEAsHSz8/MxNTdTd4zORQAAAAAAAADZCRcBAABdK9W5aGz4QJ2L6h9GrdZqsWd6asl1AQCwdBMZukimOlECAAAAAAAA8DDhIgAAoGtNVCbrPn6gDkVjGQ6jpoJLAAA0xsRU/T1eRLb9HAAAAAAAAAD3Ey4CAAC60nx1IXZPV+qOOdAd7bPc6V64CACgNcoZ9mHCRQAAAAAAAADZCRcBAABdadf0VHLMgQ6drhwqRV+h/selLIdaAQDIXyrkPTIwGMP9A02qBgAAAAAAAKDzCRcBAABdaWIqHf45UIeiYqEQY6WR+tcXLgIAaIlUyFvXIgAAAAAAAIDFES4CAAC6Upbwz3hp9ICPpQ6lTlQmF10TAADLl9rnHShADgAAAAAAAMBjEy4CAAC6Unm6/qHTwb7+GBkYPODj9YJHERHlytSS6gIAYHlSIe/UPg4AAAAAAACAfQkXAQAAXWliqn64aKy0IgqFwgEfT93xXuciAIDWSIW8Ux0oAQAAAAAAANiXcBEAANCVysk72tc/dJo6lDpRqR9eAgCgMdKdi4SLAAAAAAAAABZDuAgAAOhKqfBP6tBp6vFd01NRrVYXXRcAAEs3Mz8XU3OzdccIFwEAAAAAAAAsjnARAADQlcoNDhdVa7XYPVNZdF0AACxdao8Xke5ACQAAAAAAAMC+hIsAAICulOpclDp0muWO96k5AADIV5b9l85FAAAAAAAAAIsjXAQAAHSd+YWFZFeh8dJo3cez3PF+ojK5qLoAAFieLOEinYsAAAAAAAAAFke4CAAA6Drl6eXf0X50qBR9xfofmcqVqUXVBQDA8pQT4aKRgaEY6h9oUjUAAAAAAAAA3UG4CAAA6DpZQj+pO9oXC4UYH64/RuciAIDmSnUuSgXIAQAAAAAAANifcBEAANB1soR+shw8TQWQUodbAQDIV2qfl9q/AQAAAAAAALA/4SIAAKDrpEI/Q339URoYTF4nFUCamBIuAgBoprLORQAAAAAAAAC5Ey4CAAC6TurQ6VhpRRQKheR1Une+L08LFwEANFMqRC5cBAAAAAAAALB4wkUAAEDXyevQ6fhIonNRYh4AAPKV2n+lwuEAAAAAAAAA7E+4CAAA6DrpQ6ejma4znhi3a3oqFqrVzHUBALB00/NzUZmbrTtmfCTbPg8AAAAAAACAhwkXAQAAXWeiMln38aydi8aG64+r1Wqxe3oqc10AACxdOUPXyLHhkSZUAgAAAAAAANBdhIsAAICuU67UD/yMj2QLF2UZNzGdPuQKAMDypbpTRuhcBAAAAAAAALAUwkUAAEBXmVuYjz0zlbpjUh2JHpSlw9HElHARAEAzTEzV704ZETGecZ8HAAAAAAAAwMOEiwAAgK5Snq7ftSgie+ei0cHh6C/21Z8vwx30AQBYvnKiY+SKwaEY7O9vUjUAAAAAAAAA3UO4CAAA6CpZOgmNl0YzXatQKMRYaaT+fJX0HfQBAFi+iUSoeyxD10kAAAAAAAAA9idcBAAAdJXUHe0jIhkYeqRUEGmiku6UBADA8qVC5OPCRQAAAAAAAABLIlwEAAB0ldSh06H+gSj1D2a+XuqQalnnIgCApkiFyLN2pwQAAAAAAABgX8JFAABAV5lIhH3GSyuiUChkvt5YIlw0UUl3SgIAYPlS+67FdKcEAAAAAAAA4GHCRQAAQFdJ39G+flhosePLwkUAAE1RTnSo1LkIAAAAAAAAYGmEiwAAgK4ykTh0mupE9GipcNGu6alYqFYXdU0AABZnem42KvOzdccsNkQOAAAAAAAAwP2EiwAAgK6S6iSUd+eiWtwfMAIAoHEmMnSLXGyIHAAAAAAAAID7CRcBAABdJXXwdLw0uqjrZTmkOlGZXNQ1AQBYnFSAPELnIgAAAAAAAIClEi4CAAC6xtzCfEzOTtcds/jORekwUrmicxEAQCPpXAQAAAAAAADQOMJFAABA18gS8lnsodMVg0MxUOyrO0bnIgCAxkqFi1YMDsVgX3+TqgEAAAAAAADoLsJFAABA18gS8lls56JCoZAMJGW5kz4AAEtXTuy3snSbBAAAAAAAAOCxCRcBAABdI0vIZ7GdiyLSgSThIgCAxkqFyBcbIAcAAAAAAADgYcJFAABA10jd0X64fyBKA4OLvm4qkJSaFwCA5SlXpuo+LlwEAAAAAAAAsHTCRQAAQNdIdRBa6qHT8dLosuYFAGB5Up2LltKdEgAAAAAAAID7CRcBAABdIx0uqh8SOuDzRuofVk0ddgUAYHkaFSIHAAAAAAAAQLgIAADoIo26o/3YcP3n7Z6uxHx1YUnXBgCgvsrcbEzPz9UdI1wEAAAAAAAAsHTCRQAAQNcoV6bqPr7UQ6epzkUREbum688NAMDSlBNdiyKWHiIHAAAAAAAAQLgIAADoIo3qXJQllDQxlT70CgDA4k1kCBeNl0abUAkAAAAAAABAdxIuAgAAusLs/HzsnZ2pO2bJnYsyHFbNcugVAIDFy9a5aKQJlQAAAAAAAAB0J+EiAACgK5SnM9zRfmRpd7QfGRiMgb6++vMnuiYBALA0qRD36OBwDPT1N6kaAAAAAAAAgO4jXAQAAHSFLJ2DxoaXdkf7QqGQ7F40UZla0rUBAKhvIhHiXmp3SgAAAAAAAADuJ1wEAAB0hSzhouUcPE09V+ciAIDGKCf2eWPCRQAAAAAAAADLIlwEAAB0hYmp+uGe0sBgDA8MLvn6qUOrWcJNAAAsXmqfpXMRAAAAAAAAwPIIFwEAAF2hPN3YO9qnOxcJFwEANEIqXKRzEQAAAAAAAMDyCBcBAABdYWKqsXe0Tz1f5yIAgMZIdy4abVIlAAAAAAAAAN1JuAgAAOgK6UOnyw0X1T+0unumEvMLC8uaAwCAfVXmZmNmfq7umPERnYsAAAAAAAAAlkO4CAAA6ArlBt/Rfqw0kq5hWvciAIA8ZekOOTYsXAQAAAAAAACwHMJFAABAV0gdPM0SDqonSzipXJla1hwAAOxrojKZHKNzEQAAAAAAAMDyCBcBAAAdb2Z+LqbmZuqOWW7novFS+tBqlsOvAABkl+pOGRExNry8EDkAAAAAAABArxMuAgAAOl6WQ6dZwkH1lAYGY6ivv+6YVPckAAAWJ7W/Gh0ajoHEHg0AAAAAAACA+oSLAACAjpcl1LPccFGhUIixxDWEiwAA8jUxVX9/tdw9HgAAAAAAAADCRQAAQBfI0rkoFQzKInV4NUsdAABkV55OhYtGm1QJAAAAAAAAQPcSLgIAADpeqmPQyMBgDPUPLHuescThVZ2LAADyldpfjZVGmlQJAAAAAAAAQPcSLgIAADpe6tBpXne0T3UumqhM5jIPAAD3m5iqv7/SuQgAAAAAAABg+YSLAACAjldu0h3tx5LhIp2LAADyUqvVojw9VXdMKvwNAAAAAAAAQJpwEQAA0PFSHYOa1blocmY65hbmc5kLAKDXVeZnY2Z+ru6YVPgbAAAAAAAAgDThIgAAoOOlOgbldUf78ZH0dVJ31wcAIJuJqXRXSJ2LAAAAAAAAAJZPuAgAAOh4qXBRXne0z9IBKcshWAAA0sqJPV6EcBEAAAAAAABAHoSLAACAjjY9PxeVudm6Y/I6dDpWGkmOKVcmc5kLAKDXpQLkERFjw8JFAAAAAAAAAMslXAQAAHS0LHe0z6tzUal/MIb6B+qOmahM5TIXAECvS4WLVg6Vor+vr0nVAAAAAAAAAHQv4SIAAKCjZbmj/fjIaC5zFQqFZBekCZ2LAABykeoImVd3SgAAAAAAAIBeJ1wEAAB0tCydi8aH8zt4muqClKUeAADSUh0hhYsAAAAAAAAA8iFcBAAAdLRUp6CRgaEY7O/Pbb505yLhIgCAPKQ6F6VC3wAAAAAAAABkI1wEAAB0tFSYZ3wk30OnqXCRzkUAAPlI7vOEiwAAAAAAAAByIVwEAAB0tImp5h46HS+N1n1c5yIAgOWr1WrJ0LZwEQAAAAAAAEA+hIsAAICOVp6uf+h0bDjfQ6djpZG6j0/OTsfswnyucwIA9JrK3GzMJPZUY8JFAAAAAAAAALkQLgIAADpaqlPQ+EhzOxdFROyqTOU6JwBAr8nSDTLLvgwAAAAAAACANOEiAACgo5WnEuGinA+djme4Q/5EZTLXOQEAek05U7hI5yIAAAAAAACAPAgXAQAAHWt6bjYq87N1x+R96HQsU7gofRgWAIADy7KfWj080oRKAAAAAAAAALqfcBEAANCxshw6zRIGWozSwGAM9w/UHSNcBACwPKlOkKuGStHf19ekagAAAAAAAAC6m3ARAADQscoZQjx5dy7Kcs0sdQEAcGCpsHYj9ngAAAAAAAAAvUq4CAAA6Fit6FwUETFeGq37uM5FAADLkwprN2KPBwAAAAAAANCrhIsAAICOlQrxjA4Ox2Bff+7zpg6zTlQmc58TAKCX6FwEAAAAAAAA0DzCRQAAQMdq1R3tU4dZdS4CAFie1H5qLNFJEgAAAAAAAIDshIsAAICOleoQ1Kg72qdCS6nQEwAAB1ar1ZL7qfERnYsAAAAAAAAA8iJcBAAAdKzUHe0bFS5KXXfv7EzMzs83ZG4AgG43NTcbswv191Jjw8JFAAAAAAAAAHkRLgIAADpW6o72qQ5DSzU+MpocMzGtexEAwFKkulNGNC5EDgAAAAAAANCLhIsAAICO1arORWPDI8kxE1PpQ7EAAOwvFSCPiBgfES4CAAAAAAAAyItwEQAA0JEqc7MxPT9Xd0yjwkVZrluenmrI3AAA3S4VIC9ExOoMYW8AAAAAAAAAshEuAgAAOlLq0GlExFhptCFzDw8MRmlgsO4YnYsAAJYmtc9bOVyK/mJfk6oBAAAAAAAA6H7CRQAAQEcqZwgXNapzUZZrZ6kPAID9pfZR4w0KkAMAAAAAAAD0KuEiAACgI01U0p2BxkojDZt/LBEuytJZCQCA/aX2UWPDjdvjAQAAAAAAAPQi4SIAAKAjpQ6djg4Nx0Bff8PmT3UuEi4CAFiaVIh8fETnIgAAAAAAAIA8CRcBAAAdqZwI76TCP8s1Xqp/qDVVHwAAj21iqrX7PAAAAAAAAIBeI1wEAAB0pFRnoLHhxh46HSuN1H08dcd9AAD2V6vVojyd2OcJFwEAAAAAAADkSrgIAADoSKlw0fhIazsXTc3Nxsz8XENrAADoNnvnZmJuYaHuGJ2LAAAAAAAAAPIlXAQAAHSkian6nYFS4Z/lynKotZwIQAEAsK/yVHr/JFwEAAAAAAAAkC/hIgAAoOPUarUoT0/VHdPoQ6dZrp/qrgQAwL4mprOEixobIgcAAAAAAADoNcJFAABAx6nMz8bM/FzdMWMNDhdlub5wEQDA4kwkOhcVImL18EhzigEAAAAAAADoEcJFAABAx0kdOo1ofOeiof6BGBkYrDumLFwEALAo5cpk3cdXDY9EX9GPtQEAAAAAAADy5LewAABAx8kS2ml0uOj+OUbrPq5zEQDA4kxUpuo+3ow9HgAAAAAAAECvES4CAAA6TpbQzthw4w+ejiUOt04k7rwPAMC+Uvun1P4LAAAAAAAAgMUTLgIAADpOKly0cqgU/X19Da8jded8nYsAABYn1aFS5yIAAAAAAACA/AkXAQAAHaecuKN9sw6dpuZJHY4FAGBfqXC2cBEAAAAAAABA/oSLAACAjjNRmar7eLMOnY7pXAQAkJtarZYMZ6f2XwAAAAAAAAAsnnARAADQcVKdi5p16HR8ZLTu45W52Ziem21KLQAAnW7v7EzMVRfqjhkv1d9/AQAAAAAAALB4wkUAAEDHSXUEalrnouGR5BjdiwAAsplIBMgjmrfPAwAAAAAAAOglwkUAAEBHqdVqbRMuSnUuiogoT081oRIAgM5XzhDKblaHSgAAAAAAAIBeIlwEAAB0lMrcbMwuzNcdM1ZKh37yMD6cPtw6MZW+Az8AAOmOj4WIWJ2hcyQAAAAAAAAAiyNcBAAAdJTUodOI5nUuGuzvjxWDQ3XHZKkXAID0vmn18Ej0Ff1IGwAAAAAAACBvfhMLAAB0lIlKuhNQs8JFERFjibnKwkUAAJmk9k3N6k4JAAAAAAAA0GuEiwAAgI6SpRPQ6tJIEyq5XyrIpHMRAEA2qX3TeBP3eAAAAAAAAAC9RLgIAADoKKk72q8aKkV/sa9J1USMJ+6gr3MRAEA2qXCRzkUAAAAAAAAAjSFcBAAAdJT0He3rdxLK21jiDvoTlckmVQIA0NlSoexm7/MAAAAAAAAAeoVwEQAA0FHSd7Rv7qHTdOeiqSZVAgDQuWq1WtuFyAEAAAAAAAB6hXARAADQUZJ3tB+pH/bJW+qQa2V+Nipzs02qBgCgM03OTsd8daHumGaHyAEAAAAAAAB6hXARAADQUZKdi4ab3bkoPV8qEAUA0Ouy7JfGR4SLAAAAAAAAABpBuAgAAOgYtVotJiqTdcc0+9BpljvopwJRAAC9Lst+abzJIXIAAAAAAACAXiFcBAAAdIy9czMxt7BQd0yWTkJ5yhIu0rkIAKC+VLioUCjEquGRJlUDAAAAAAAA0FuEiwAAgI6RJaTT7HDRYF9/jA4O1x2jcxEAQH2p7pSrh0eir+jH2QAAAAAAAACN4LexAABAx8gS0snSSShvqUBT6rAsAECvK1em6j4+Ntz8PR4AAAAAAABArxAuAgAAOsbEVP1wUSHuv6t9s6UCTToXAQDUlwpjN7s7JQAAAAAAAEAvES4CAAA6Rjlx6HTV8Ej0F/uaVM3DUoddy8JFAAB1pULk4yPCRQAAAAAAAACNIlwEAAB0jInKVN3HUx2EGkXnIgCA5SlPJ8JFOhcBAAAAAAAANIxwEQAA0DEmEp2LWnXodLw0WvfxicreqNVqTaoGAKCz1Gq1ZBi7VSFyAAAAAAAAgF4gXAQAAHSMcuLQaevCRSN1H5+Zn4vK/GyTqgEA6Cx7ZqZjoVqtO0bnIgAAAAAAAIDGES4CAAA6RuqO9q06dDqW6FwUEVGuTDWhEgCAzlOerr/Hi0h3igQAAAAAAABg6YSLAACAjlCr1ZKdi8Za1bloJD3vRGWyCZUAAHSeial0uKhV+zwAAAAAAACAXiBcBAAAdIS9szMxV12oO6ZVd7QfGx5JjslyaBYAoBelQtiFQiFWD5WaVA0AAAAAAABA7xEuAgAAOkKWzj/jLbqj/UBff4wODdcdM5HougQA0KvK04nulMMjUSz6UTYAAAAAAABAo/iNLAAA0BHKGcI5rQoXZZk7S/0AAL0o1eFxrIV7PAAAAAAAAIBeIFwEAAB0hFTnn0JErBoeaU4xj2G8NFr3cZ2LAAAeWyqE3coAOQAAAAAAAEAvEC4CAAA6Qiqcs3p4JPqKrfuIM1aqH2wqVyabVAkAQGdJ7fOEiwAAAAAAAAAaS7gIAADoCKlDp2OJzkGNpnMRAMDSpDoXjQkXAQAAAAAAADSUcBEAANARUodOxxOdgxotdUf9cmVv1Gq1JlUDANAZqrVaTEyn9nmtDZEDAAAAAAAAdDvhIgAAoCO0f+ei+uGimYX5qMzNNqkaAIDOMDlTiYVqte6Y1D4LAAAAAAAAgOURLgIAADrCRGWy7uOtPnQ6lmH+VEAKAKDXpLpTRrR+nwcAAAAAAADQ7YSLAACAtler1aJcmao7ZnyktYdOsxx6zXJ4FgCgl2QJX2cJcQMAAAAAAACwdMJFAABA25ucnY756kLdMWPDLe5clGF+nYsAAPaV2h8VC4VYNVRqUjUAAAAAAAAAvUm4CAAAaHtZQjmt7lzU39eXPPg6UZlsUjUAAJ0h1dlxbHhFFIt+jA0AAAAAAADQSH4rCwAAtL2JqQzhotJoEyqpb6xUP+CkcxEAwL5S+6Ox0kiTKgEAAAAAAADoXcJFAABA2ytP1z90WigUYnWia1AzjCfCRak78wMA9JpUuKgdAuQAAAAAAAAA3U64CAAAaHsTlcm6j68eHolisfUfb1LhIp2LAAD2lQpfpzpDAgAAAAAAALB8rT99BwAAkDAxlbqjfXscOh1L3FlfuAgAYF+pEHm77PMAAAAAAAAAuplwEQAA0PZSd7Rvl0On46WRuo9PVCajVqs1qRoAgPZWrdWiXJmqO6Zd9nkAAAAAAAAA3Uy4CAAAaHupjj9jbXLoNNW5aG5hIabmZptUDQBAe5ucqcRCrVp3TLvs8wAAAAAAAAC6mXARAADQ9jqnc1G6jonKZBMqAQBof6kAeUT77PMAAAAAAAAAuplwEQAA0NZqtVpMTKfCRfU7BjXL+EiWcFH6EC0AQC8QLgIAAAAAAABoD8JFAABAW9szMx0L1WrdMe1y6HT18EgUEmMmpoSLAAAi0h0di4VCrBweaVI1AAAAAAAAAL1LuAgAAGhr5cSh04iIsTYJF/UX+2LlcKnumHKiCxMAQK8oV6bqPj5WWhHFQiq6DQAAAAAAAMByCRcBAABtbaKSDuO0S+eiiIjx0mjdx3UuAgC4X6pz0dhw++zxAAAAAAAAALqZcBEAANDWUuGiYqEQq4bqdwtqprHhkbqPpw7RAgD0itQ+b3xEuAgAAAAAAACgGYSLAACAtlZOHDodG14RxWL7fLQZH6nfuag8rXMRAEBEep/XTt0pAQAAAAAAALpZ+5zAAwAAeAypO9qPlep3Cmq21CHYiSnhIgCAiAz7vGHhIgAAAAAAAIBmEC4CAADaWurQ6XipfqegZkuFi8qVvVGr1ZpUDQBAe6rWarGrMlV3zPiIcBEAAAAAAABAMwgXAQAAbW2iMln38bFEmKfZUvXMVRdi7+xMk6oBAGhPe2YqsVCr1h3TbiFyAAAAAAAAgG4lXAQAALS1crJzUXuFi7LUk/qeAAC6Xao7ZUT7hcgBAAAAAAAAupVwEQAA0LaqtVqUK1N1x7RfuCh9h/1UNyYAgG43MZXeD7XbPg8AAAAAAACgWwkXAQAAbWvPTCUWatW6Y9rtjvarh0eikBiT5U79AADdrDxdfz/UVyjGyqFSk6oBAAAAAAAA6G3CRQAAQNsqZwjhjI+kOwU1U1+xGKuGR+qOES4CAHrdxFT9/dDq0kgUC6nINgAAAAAAAAB5EC4CAADaVpYQzngiyNMK44luSllCUwAA3Sy1z0vtpwAAAAAAAADIj3ARAADQtiYqk3UfLxYKsbIDw0U6FwEAvS4Vth4vtVd3SgAAAAAAAIBuJlwEAAC0rYmp+odOx0orolgoNKma7MYSh2GFiwCAXqdzEQAAAAAAAED7EC4CAADaVnm6Mw+djpfqd1NKdWQCAOh2qc5FY226zwMAAAAAAADoRsJFAABA20rd0b5dD52OJzoXlStTUavVmlQNAEB7qVarHRsiBwAAAAAAAOhGwkUAAEDbmpjqzEOnqdDTfHUhJmenm1QNAEB72TNTiWoiaN2u+zwAAAAAAACAbiRcBAAAtK1yonNRqkNQq4yPpA/DproyAQB0qyz7oHbtUAkAAAAAAADQjYSLAACAtlSt1aI8Xf/g6VhppEnVLM74cIZwUaIrEwBAt8oSLtK5CAAAAAAAAKB5hIsAAIC2tGd6Kqq1Wt0x7dq5aNXwSBQKhbpjUsEpAIBulepO2VcsxuhQqUnVAAAAAAAAACBcBAAAtKVOvqN9X7EYq4frd1WaqEw2qRoAgPaS2ueNDY9EMRHUBgAAAAAAACA/wkUAAEBb6uRwUUTE2HD92iamdC4CAHpTKmTdrt0pAQAAAAAAALqVcBEAANCWyolwUV+hGKNDpSZVs3ip4FPq+wMA6FblylTdx9s5QA4AAAAAAADQjYSLAACAtpTqXDRWGoliodCkahZvfCTRuUi4CADoUanORWPCRQAAAAAAAABNJVwEAAC0pdSh0/HSaJMqWRqdiwAAHlsqZK1zEQAAAAAAAEBzCRcBAABtqVyZqvt4ux86Td1xf2J6b9RqtSZVAwDQHqrVapSn6+/zdC4CAAAAAAAAaC7hIgAAoC2lOhe1+6HTVPhpoVqNPTPTTaoGAKA97J6pJAPW7R4iBwAAAAAAAOg2wkUAAEBbmqjsrft4ux86HS+NJseUEwEqAIBuk9rjRbT/Pg8AAAAAAACg2wgXAQAAbadarUZ5eqrumE7vXBSR7XAtAEA3SXWnjIgYyxDSBgAAAAAAACA/wkUAAEDb2T1TiVqtVndMu9/RftVQKQqFQt0xwkUAQK8pV+oHyPuKxVg5NNykagAAAAAAAACIEC4CAADaUJbQTbuHi4rFYowNj9QdUxYuAgB6TKpz0fjwimRAGwAAAAAAAIB8CRcBAABtJ3XoNCJirDTahEqWJxWA0rkIAOg1qf3PWJsHyAEAAAAAAAC6kXARAADQdsqVqbqP9xWLsXJouEnVLN14IgAlXAQA9JpU58bxEeEiAAAAAAAAgGYTLgIAANpOqnPR+PCKKBQKTapm6cZKI3Ufz9KhCQCgmyQ7Fw0LFwEAAAAAAAA0m3ARAADQdpKHTkudceg01bkoded+AIBuk9rn6VwEAAAAAAAA0HzCRQAAQNuZmOqOQ6fjiRBUuTIV1VqtSdUAALRWtVqNXdNTdcekwtkAAAAAAAAA5E+4CAAAaDvl6US4qEMOnaY6LC3UqrFnptKkagAAWmvXTCVqiWD12HBnhMgBAAAAAAAAuolwEQAA0HYmKvXDRWOlkSZVsjypzkUR6e8VAKBbTFQmk2M6pUMlAAAAAAAAQDcRLgIAANrKQrUau6an6o7plM5FWcJFZeEiAKBHTEyl9z1Z9k8AAAAAAAAA5Eu4CAAAaCu7p6eiVqvVHdMph05XDo9EsVCoOybLHfwBALpBebp+uKi/2Bejg8NNqgYAAAAAAACABwkXAQAAbWUiceg0ImKsQ8JFxUIhWWuWO/gDAHSD1L5nrDQShUQwGwAAAAAAAID8CRcBAABtJUvYplM6F0VEjA0nwkUV4SIAoDek9j3jpdEmVQIAAAAAAADAIwkXAQAAbaWcOHTaX+yL0cHhJlWzfOMj9cNF5QydmgAAukFqn9dJAXIAAAAAAACAbiJcBAAAtJX0He1XRKFQaFI1y5c6JJulUxMAQDdI7fPGhIsAAAAAAAAAWkK4CAAAaCvdduh0bDjRuSjx/QIAdItyZbLu4zoXAQAAAAAAALSGcBEAANBWuu3Q6fhIIlw0vTeqtVqTqgEAaI2FajV2zVTqjum0fR4AAAAAAABAtxAuAgAA2kqqc1GnHTodL43Wfbxaq8We6akmVQMA0Bq7p6eilghUd1qHSgAAAAAAAIBuIVwEAAC0lXLXhYvS9aYCVQAAnS7LfqfT9nkAAAAAAAAA3UK4CAAAaBsL1WrsSnTx6bQ72mepV7gIAOh22cJF9Ts+AgAAAAAAANAYwkUAAEDb2DU9FbXEmE67o/3KoVL0Fep/9Ep1awIA6HSp/c5AsS9WDA41qRoAAAAAAAAAHkm4CAAAaBsTlcnkmE67o32xUIix0kjdMToXAQDdLrXPGyutiEKh0KRqAAAAAAAAAHgk4SIAAKBtlCtTyTFjHda5KCIdiMoSqgIA6GSpMHWndacEAAAAAAAA6CbCRQAAQNtIhWwGin2xYnCoSdXkJxWI0rkIAOh25cR+pxMD5AAAAAAAAADdQrgIAABoG6mQzVhpRRQKhSZVk5/UnfhTh20BADqdzkUAAAAAAAAA7Uu4CAAAaBupkM34SGceOk0dltW5CADodsJFAAAAAAAAAO1LuAgAAGgbyc5Fw5156HQs1bloeiqq1WqTqgEAaK6FajV2T0/VHTNWGm1SNQAAAAAAAAA8mnARAADQNtJ3tO/MQ6epO/HXarXYNVNpUjUAAM21a3oqaokx46WRptQCAAAAAAAAwP6EiwAAgLYxUZms+/j4SGd2LkqFiyIiyolgFQBAp0rt8SI6N0QOAAAAAAAA0A2EiwAAgLYwX12IPdP1u/dkCem0o7EMh2WzHLoFAOhE5cpUcsxYh4bIAQAAAAAAALqBcBEAANAWdk1PRS0xZqxDw0Urh4ajr1j/49eEzkUAQJdKhagHin2xYmCoSdUAAAAAAAAA8GjCRQAAQFuYmEqHazq1c1GhUIjx4fq1Z/n+AQA6USpEPVZaEYVCoUnVAAAAAAAAAPBowkUAAEBbyNK5Z7w02oRKGiPVdak8LVwEAHSncmKfNz7SmQFyAAAAAAAAgG4hXAQAALSFVLhmoK8vRgYGm1RN/lKHZnUuAgC6VbJzUaLDIwAAAAAAAACNJVwEAAC0hVS4Zrw0GoVCoUnV5C91aDZL5yYAgE6U2ud0cndKAAAAAAAAgG4gXAQAALSFcmWy7uPjpc6+o32qc1GqcxMAQKeaSO3zEvskAAAAAAAAABpLuAgAAGgL6Tvad/ah09Qd+XdNT8VCtdqkagAAmmO+uhB7pit1x6Q6PAIAAAAAAADQWMJFAABAWygnwkVjHR8uql9/rVaL3dNTTaoGAKA5dk1PRS0xRuciAAAAAAAAgNYSLgIAANpCt3cuyhKOSr0GAACdZmIqvb/p9H0eAAAAAAAAQKcTLgIAAFpufmEhds9U6o4ZL402qZrGyHJoVrgIAOg25eks4aLO3ucBAAAAAAAAdDrhIgAAoOV2TU8lx3T6He1HB4ejv9hXd0xZuAgA6DKp8PRAX1+MDAw2qRoAAAAAAAAAHotwEQAA0HJZOvaMdXi4qFAoJANSE5XJJlUDANAcE1P193njpdEoFApNqgYAAAAAAACAxyJcBAAAtFyWUE2ndy6KSAeksoSsAAA6SXk6FS7q/D0eAAAAAAAAQKcTLgIAgP+fvTuPmrQs78R/1btWVb/dXQVBAVHRAAoRjIobI9ER1GNcMDGoIUePqBgdJ5txhgQ0GnPiEpfojBPHoOhocBlyhtFxcAGMGo6I65EoGkBBhREOtlXd/VJV71q/P/xB2Pq5n3676qnl+XzO6T/0uei63qo+1t1yfe+LkUuFahZn56I2v1BQN8OTGp5tCxcBAFOm1ckOkU/6dkoAAAAAAACAaSBcBAAAjFwqVNOobYtKpVJQN8OTChfZXAQATJvUOc/mIgAAAAAAAIDREy4CAABGLhWqmZahU+EiAKBsWr1ynPMAAAAAAAAAJplwEQAAMHKpUE2jtlRQJ8PVSAzP7ul1YmNzs6BuAACGa31zI/b0upk1qfMRAAAAAAAAAMMnXAQAAIxc2+aiiIjoR8TuXqeYZgAAhmx3N32umZZzHgAAAAAAAMAkEy4CAABGLr25aDqGTps5NjC1ussFdAIAMHypM15EvvMRAAAAAAAAAMMlXAQAAIzU2sZ67F3pZtZMy432jXr658gzhAsAMAnynGumJUQOAAAAAAAAMMmEiwAAgJFq9zrJmmaOUM4k2Da/GPMzs5k1wkUAwLRoJzYyLszORX1+oaBuAAAAAAAAANgX4SIAAGCk2jnCNM3aUgGdDF+lUknezp/n/QAAmASp0HSzti0qlUpB3QAAAAAAAACwL8JFAADASOXZ1NOo1QvopBipLUw2FwEA0yIVmm4mQtcAAAAAAAAAFEO4CAAAGKlWJ3vodHFuPmpzCwV1M3yNaiJc1FkuqBMAgOFKhaZTGx0BAAAAAAAAKIZwEQAAMFKtbnaYplnbFpVKpaBuhq9ZW8p83u51CuoEAGC4UuEim4sAAAAAAAAAxoNwEQAAMFLtXrlutG/WE5uLEmErAIBJ0U5uLsoOXQMAAAAAAABQDOEiAABgpFqdct1on/p59vS6sb65UVA3AADDsb6xEXtWupk103bOAwAAAAAAAJhUwkUAAMBIpW60n7ah0zybmHZ3OwV0AgAwPKntlBHTd84DAAAAAAAAmFTCRQAAwEi1kuGipYI6KUaeIdrUewIAMO7aOcLSeULXAAAAAAAAAAyfcBEAADAyaxvrsbzay6xp1OoFdVOMPGEp4SIAYNK1usvJGpuLAAAAAAAAAMaDcBEAADAyeW60n7bNRfX5hViYncusaecYxgUAGGepsPTi7FzU5hcK6gYAAAAAAACALMJFAADAyJTxRvtKpRKNxM9kcxEAMOnaifNMo7YtKpVKQd0AAAAAAAAAkEW4CAAAGJnU0GlEJIM4kygVmMrzvgAAjLNUWHraAuQAAAAAAAAAk0y4CAAAGJnU0Gl1bj5q8wsFdVOc1DCtzUUAwKRLnWcataWCOgEAAAAAAAAgRbgIAAAYmbLeaC9cBABMu1Z3OfP5tJ7zAAAAAAAAACaRcBEAADAy6XDRdN5o3xAuAgCmXLvbyXzerAsXAQAAAAAAAIwL4SIAAGBk2okQTaNWL6iTYqVCU3tXurG+sVFQNwAAg7W2sR57V7qZNY2qcBEAAAAAAADAuBAuAgAARqasm4uaic1FERHtnu1FAMBkaveytxZF2FwEAAAAAAAAME6EiwAAgJFpdZcznzdyhHAmUZ6fKxW8AgAYV6ntlBHTGyIHAAAAAAAAmETCRQAAwEisrq/HbasrmTV5NvxMojw/l3ARADCp8pxjGrV6AZ0AAAAAAAAAkIdwEQAAMBLtXp4b7aczXFSbX4jF2bnMmjw3/gMAjKNWJ/scszg3H7W5hYK6AQAAAAAAACBFuAgAABiJfDfaT2e4qFKpJH82m4sAgEmVCpE3a9uiUqkU1A0AAAAAAAAAKcJFAADASOQJz0zr5qKI9M/W6i4X1AkAwGClzjHTGiAHAAAAAAAAmFTCRQAAwEi0E+Gi2vxCVOcXCuqmeI3aUubzVsfmIgBgMqXOMdMcIAcAAAAAAACYRMJFAADASJT9RvvUUG27J1wEAEym1DlGuAgAAAAAAABgvAgXAQAAI1H2G+2b9eyfr5XY7AQAMK5S55hpD5EDAAAAAAAATBrhIgAAYCRSQ6fTHi5qVLN/vuWVXqxtrBfUDQDAYKxtrMfySi+zZtrPeQAAAAAAAACTRrgIAAAYiXYvFS5aKqiT0UhtLoqIaPc6BXQCADA47W76/DLt5zwAAAAAAACASSNcBAAAjESrkx0uatTqBXUyGnmGalPvEQDAuEltp4yIaNhcBAAAAAAAADBWhIsAAIDCrayvRWdtJbNm2m+0b+YYqm13lwvoBABgcPKcX/KcgwAAAAAAAAAojnARAABQuHaOG+2nfei0Nr8Qi3PzmTV5bv4HABgnqfNLdW4+avMLBXUDAAAAAAAAQB7CRQAAQOHyhGYaUx4uikgHqISLAIBJkzq/THuAHAAAAAAAAGASCRcBAACFy7O5SLgo3/sEADBOUueXMpzxAAAAAAAAACaNcBEAAFC41I329fmFqM7NF9TN6NhcBABMG5uLAAAAAAAAACaPcBEAAFC41I32zdpSQZ2MVurmfuEiAGDSOOcBAAAAAAAATB7hIgAAoHCp0EyjVi+ok9FKDdemhnMBAMZN+pxncxEAAAAAAADAuBEuAgAACtfqLmc+L8uN9s3EcO3yai9WN9YL6gYA4MCsbqzH8movsyZ1/gEAAAAAAACgeMJFAABA4VI32pdl6DTPz2l7EQAwKXZ3O8maspzzAAAAAAAAACaJcBEAAFC4VGCmUZKh0zw/ZyqIBQAwLlLbKSPKc84DAAAAAAAAmCTCRQAAQKF662vRWVvNrCnLjfZ5hmttLgIAJkWeULRwEQAAAAAAAMD4ES4CAAAKlScsU5ah09r8QtTmFjJrbC4CACZF6txSm1uI2nz22QcAAAAAAACA4gkXAQAAhcoTlmnWlwroZDw0avXM563uckGdAAAcmFSIPHXuAQAAAAAAAGA0hIsAAIBC5dlc1KyWY3NRRESzlh2kanVsLgIAJkMqRJ469wAAAAAAAAAwGsJFAABAoVKbeOrzi7EwN1dQN6PXqGUHqdo94SIAYDKkznmpcw8AAAAAAAAAoyFcBAAAFCp5o329XEOnqZ839X4BAIyLdreT+bxs5zwAAAAAAACASSFcBAAAFKqdCheV7Eb7RjURLuoIFwEAkyG5uShx7gEAAAAAAABgNISLAACAQqU28ZRt6DQVpuqsrcTq+npB3QAAbM3q+nrctrqSWVO2EDkAAAAAAADApBAuAgAACpUKFzXr5Ro6bdaXkjWtnu1FAMB4a+c4r+Q59wAAAAAAAABQPOEiAACgUO1OIlxUK9fQaZ4b/Fud5QI6AQDYulSAPCKiUa0X0AkAAAAAAAAA+0u4CAAAKExvbTW666uZNXnCNtOkkePnbecY1gUAGKU84aKynfMAAAAAAAAAJoVwEQAAUJhcN9qXbOi0OjcftfmFzJo87xsAwCilwtC1+YWoJs48AAAAAAAAAIyGcBEAAFCYPBt4ynijfepntrkIABh3re5y5vOyBcgBAAAAAAAAJolwEQAAUBibi+5dKlxkcxEAMO5anezzShkD5AAAAAAAAACTQrgIAAAoTCoks21hMRZm5wrqZnykAlWpTQAAAKOWOucJFwEAAAAAAACML+EiAACgMO3k0OlSQZ2Ml9TP3e52CuoEAGBr2r3sc14Zt1MCAAAAAAAATArhIgAAoDCpDTxlvdE+9XPbXAQAjLtWx+YiAAAAAAAAgEklXAQAABQmtYGnrEOnqZ+7s7YavfW1groBANg/q+vr0Vlbyawp64ZKAAAAAAAAgEkgXAQAABQmtYGnUdJwUZ6fu93N3gYAADAqrV76nFLWEDkAAAAAAADAJBAuAgAACtNKBGTKOnSa5+cWLgIAxlWrkx0gjyhviBwAAAAAAABgEggXAQAAheiurUZvfS2zpqzhojzDtqlgFgDAqOQJQQsXAQAAAAAAAIwv4SIAAKAQ+YZOlwroZPwszs1HfX4xs6bVTW8EAAAYhVQIuj6/ENW5+YK6AQAAAAAAAGB/CRcBAACFyLN5p6ybiyLSP7vNRQDAuEqFyG0tAgAAAAAAABhvwkUAAEAh8mzeadTqBXQynlJDt3k2PwEAjEIqBF3mADkAAAAAAADAJBAuAgAACpEaOl1arMb87FxB3Ywfm4sAgEmVDhctFdQJAAAAAAAAAFshXAQAABQitXmnWS33jfbCRQDApEqd81IbGgEAAAAAAAAYLeEiAACgEKlwTNmHTlM/f2poFwBgVFrd5cznqRA1AAAAAAAAAKMlXAQAABQiFS5q1ss9dNqsL2U+766tRm9ttaBuAADyWVlfi07ijCJcBAAAAAAAADDehIsAAIBCpDbvNGvZ4Zppl2foNhXQAgAoWp7timXfUAkAAAAAAAAw7oSLAACAoev3+8lgTKNa7qHTPEO3eYZ3AQCKlCf8bHMRAAAAAAAAwHgTLgIAAIauu74aK+trmTXNermHTps5wlU2FwEA4ybP+cTmIgAAAAAAAIDxJlwEAAAMXavjRvuUhbm52LawmFkjXAQAjJvUZsX6/GIszs0X1A0AAAAAAAAAWyFcBAAADF27J1yUR7O2lPk8NbwLAFC0VPjZGQ8AAAAAAABg/AkXAQAAQ5dnc1GjavC0UatnPm91lwvqBAAgn9T5pCFcBAAAAAAAADD2hIsAAIChS91ov32xFnOzswV1M77Sm4s6BXUCAJBParOizUUAAAAAAAAA40+4CAAAGLp24kZ7Q6e/lHofbC4CAMZNKkTunAcAAAAAAAAw/oSLAACAoWslNu40DJ1GRJ5wUfbwLgBA0VLnE+c8AAAAAAAAgPEnXAQAAAydzUX5pIZve+tr0V1bLagbAIBsec4mzfpSQd0AAAAAAAAAsFXCRQAAwNClbrQXLvqlPO9D2/YiAGBM5DmXNKr1AjoBAAAAAAAA4EAIFwEAAEPV7/eTg6fCRb/UrKVv9k8FtQAAipLnXGJzEQAAAAAAAMD4Ey4CAACGqru2Gisb65k1DeGiiIho1NI3+7e6ywV0AgCQ1uqkzyXNqnMeAAAAAAAAwLgTLgIAAIYq1432OTb2lMH87FwsLVQza2wuAgDGRbuXfS6pzy/GwtxcQd0AAAAAAAAAsFXCRQAAwFDl2bTTtLnoDqn3oi1cBACMiVTouVl3xgMAAAAAAACYBMJFAADAULW7nWTNzlq9gE4mQyMRLrK5CAAYF61OIlwkQA4AAAAAAAAwEYSLAACAoUptLtqxWIu5mdmCuhl/qSFc4SIAYFy0e6lw0VJBnQAAAAAAAABwIISLAACAoUqFYdxof1epzUVt4SIAYEykznkN2ykBAAAAAAAAJoJwEQAAMFTpoVPhojtL3fDf6t4W/X6/oG4AAPat3bG5CAAAAAAAAGAaCBcBAABDldq0Y3PRXTXr2e/HyvpadNdXC+oGAODe9dZWk2cS5zwAAAAAAACAySBcBAAADFV6c5Eb7e+sUU0P4bYSWwIAAIYtdcaLsKESAAAAAAAAYFIIFwEAAEPT7/ej1V3OrElt6imbPO9HuydcBACMVmo7ZYTNRQAAAAAAAACTQrgIAAAYms7aaqxtbGTWGDq9q0a1nqyxuQgAGDWbiwAAAAAAAACmh3ARAAAwNKmtRRERjaqh0zubn52L7Yu1zJo8w7wAAMOUOo9sW1iMhdm5groBAAAAAAAA4EAIFwEAAEOTJwTTrAsX3V2jlr29qJ0jtAUAMEztxDmvWVsqqBMAAAAAAAAADpRwEQAAMDStTvbQaSUidlazgzRllBrGbXU7BXUCAHDvUiHyZk2AHAAAAAAAAGBSCBcBAABD0+5lD53uqNZjbma2oG4mR2oY1+YiAGDUUpuLGsJFAAAAAAAAABNDuAgAABia1OYiQ6f3LhUuSm0KAAAYtlYi7GxzEQAAAAAAAMDkEC4CAACGxtDp1qRCV63ubdHv9wvqBgDgnlJhZ+c8AAAAAAAAgMkhXAQAAAxN29DplqTel9WN9eiurRbUDQDAXXXXVqO3vpZZ45wHAAAAAAAAMDmEiwAAgKFJ3Wif2tBTVs3aUrIm9d4CAAxLKkAe4ZwHAAAAAAAAMEmEiwAAgKHo9/s2F21Rnvel1V0uoBMAgHvKE3LOE5YGAAAAAAAAYDwIFwEAAENx2+pKrG1uZNYYOr13O6v1ZI3NRQDAqOTbXJQ+zwAAAAAAAAAwHoSLAACAocgzdGpz0b2bm52NHYu1zJo87y8AwDCkQs5LC9WYn50rqBsAAAAAAAAADpRwEQAAMBSt7nKypiFctE+p4JXNRQDAqKTOeQLkAAAAAAAAAJNFuAgAABiKVPilEhE7q/VimplAqeCVcBEAMCqpDYoC5AAAAAAAAACTRbgIAAAYilT4ZWe1HrMz/kqyL6kb/1NDvQAAw5I659lcBAAAAAAAADBZTPIBAABDkb7RfqmgTiZT6v2xuQgAGJXUOcTmIgAAAAAAAIDJIlwEAAAMRfpG+3pBnUymZj17KLfVXY5+v19QNwAA/yYVIm8KkQMAAAAAAABMFOEiAABgKNI32hs6zdKoZoeL1jY24ra1lYK6AQD4pe7aavTW1zJrhMgBAAAAAAAAJotwEQAAMBSt7nLm82YtOzxTdnnen9TWAACAQUsFyCOEyAEAAAAAAAAmjXARAAAwcP1+P9rdTmaNcFG2Zj39/uQZ7gUAGKRUgDwi3zkGAAAAAAAAgPEhXAQAAAzc8mov1jc3MmsawkWZdlbrUUnUtDrCRQBAsfJsTmxU6wV0AgAAAAAAAMCgCBcBAAADl2ejjhvts83NzMb2ai2zpp1jcwAAwCClznlLi9WYn50rqBsAAAAAAAAABkG4CAAAGLg8N9o3a0sFdDLZUu9Rq9spqBMAgF9KbU5s2k4JAAAAAAAAMHGEiwAAgIFL3WhfqVRi52L2Vh7Sw7ktm4sAgIK1e6lwkQA5AAAAAAAAwKQRLgIAAAYuFXrZWa3HzIy/jqSkwkV5NkQBAAxSKkTeqNUL6gQAAAAAAACAQTHNBwAADFyrk7rRPjs0wy81kpuLhIsAgGK1OtkhcpuLAAAAAAAAACaPcBEAADBw7Z5w0SDk2VzU7/cL6gYAKLt+vx/tXiezxjkPAAAAAAAAYPIIFwEAAAOX2lyU2sjDL6Vu/l/b3IjbVlcK6gYAKLvu+mqsrK9l1jjnAQAAAAAAAEwe4SIAAGDg2l2biwYhz/vU6i4X0AkAQDpAHuGcBwAAAAAAADCJhIsAAICB6vf70eqlwkXZG3n4pTw3/7cSQS4AgEFpJ854EcJFAAAAAAAAAJNIuAgAABiovSu92NjczKxp1OoFdTPZdlbrUUnUpLZEAQAMSp7NRY2qcBEAAAAAAADApBEuAgAABqrdXU7W2FyUz+zMTOysZgexbC4CAIqSOndsX6zF3OxsQd0AAAAAAAAAMCjCRQAAwEDlCbs0a260z6uReK+EiwCAoqRC5M54AAAAAAAAAJNJuAgAABioVNhlplKJHYu1grqZfKkh3VaOTVEAAIPQ6nYyn6dC0QAAAAAAAACMJ+EiAABgoNqJcNHOaj1mZvxVJK9GbSnzeTsx5AsAMCg2FwEAAAAAAABMJxN9AADAQKU2Fxk63T82FwEA48I5DwAAAAAAAGA6CRcBAAADlR46zd7Ew12lhnTb3U70+/2CugEAyqrf7yc3VAoXAQAAAAAAAEwm4SIAAGCgUkOnDUOn+yX1fq1vbsTyaq+gbgCAsuqurcbKxnpmjXMeAAAAAAAAwGQSLgIAAAaq1V3OfO5G+/3TrKffr9S2KACAA5XnvGFDJQAAAAAAAMBkEi4CAAAGZrPfj3a3k1kjXLR/8gzptjrCRQDAcKW2U0Y45wEAAAAAAABMKuEiAABgYPaudGOjv5lZ0zB0ul92LtaiUqlk1qS2RQEAHKg8m4t2VusFdAIAAAAAAADAoAkXAQAAA+NG+8GbmZlJDuq2ezYXAQDDlQoz71isxdzsbEHdAAAAAAAAADBIwkUAAMDA5LnRXrho/6Xes1ZHuAgAGK5UiNwZDwAAAAAAAGByCRcBAAADk7rRfqZSie2JLTzcU2pYN8/GKACAA5EKkTeEiwAAAAAAAAAmlnARAAAwMO1uJ/N5o7YtZiqVgrqZHqlh3TwbowAADkTqvGFzEQAAAAAAAMDkEi4CAAAGJrW5qFE1dLoVNhcBAKOW3ly0VFAnAAAAAAAAAAyacBEAADAwyRvt68JFW9FMDOu2erfFZr9fUDcAQNn0+/1kmLlZqxfUDQAAAAAAAACDJlwEAAAMTKuTGjoVLtqK1Pu2sbkZyyvdgroBAMqms7YaqxvrmTU2FwEAAAAAAABMLuEiAABgYNq9VLjI0OlWNHKEslJbowAAtqrVXU7WCJEDAAAAAAAATC7hIgAAYCA2+/1oJwIujVq9oG6mS55h3dR7DwCwVXnOGc26cBEAAAAAAADApBIuAgAABmJvrxOb/X5mjc1FW7NjsRYzlUpmjc1FAMCwpM4ZlYjYWRUiBwAAAAAAAJhUwkUAAMBA5Am35NnAwz3NzMwkB3aFiwCAYUmdM7ZXazE3M1tQNwAAAAAAAAAMmnARAAAwEHnCLQ3hoi1LBbNa3eWCOgEAyqadOOfZTgkAAAAAAAAw2YSLAACAgUgNnc5WZmL7Yq2gbqZPami33e0U1AkAUDapEHkjsWERAAAAAAAAgPEmXAQAAAxEcui0Vo+ZSqWgbqZPauuTzUUAwLCkzhnNus1FAAAAAAAAAJNMuAgAABiIVLgotXmHbM1kuCj7/QcA2KrUhsTUOQUAAAAAAACA8SZcBAAADEQ7ubnI0OmBSA3t7u52YrPfL6gbAKAs+v1+cnORcx4AAAAAAADAZBMuAgAABiI1dOpG+wOTGtrd6G/G3pVuQd0AAGVx29pKrG1sZNY45wEAAAAAAABMNuEiAABgIFqJzUWGTg9Ms76UrEl9BgAA+6vdSZ8vnPMAAAAAAAAAJptwEQAAcMA2Nzdjd6+TWZPavEO2ZrWerGl1srdHAQDsr1YvHS5yzgMAAAAAAACYbMJFAADAAduz0o3Nfj+zxo32B2Z7tR4zlUpmTTvH8C8AwP5oJTYXVSJiZ44QNAAAAAAAAADjS7gIAAA4YK1uOtQiXHRgZiqV5FaA1PAvAMD+anezNyPuqNZjbma2oG4AAAAAAAAAGAbhIgAA4IC1EkOnERGN2lIBnUy3VEArT8gLAGB/tLqdzOcC5AAAAAAAAACTT7gIAAA4YO3E0OnszExsX6wW1M30Sm0uagsXAQADlgqRp84nAAAAAAAAAIw/4SIAAOCApYZOm9VtUalUCupmetlcBAAULRVetrkIAAAAAAAAYPIJFwEAAAcsFWpxo/1gNGtLmc9tLgIABi11zhMuAgAAAAAAAJh8wkUAAMABS95oXzd0Ogip4d1277bY3NwsqBsAYNr1+/3kOU+IHAAAAAAAAGDyCRcBAAAHLLm5qGrodBBSw7ub/X7sWekW1A0AMO1uW12Jtc2NzJrUZkUAAAAAAAAAxp9wEQAAcMBS4SKbiwYjtbkoIr1FCgAgrzznijznEwAAAAAAAADGm3ARAABwQDY3N2N3r5NZ40b7wcgzvJsKegEA5NXqLidrUpsVAQAAAAAAABh/wkUAAMAB2b3SjX6/n1njRvvBWFqsxexM9l/jhIsAgEFJnSsqEbGzWi+mGQAAAAAAAACGRrgIAAA4IG60L85MpRKNxABvns8DACCPVLhoZ7WeDD4DAAAAAAAAMP78m18AAOCAtDrpTTk2Fw1Os7aU+bxtcxEAMCCpc4UAOQAAAAAAAMB0EC4CAAAOSGrodG5mNpYWqgV1M/1SQa3UhgEAgLxS5woBcgAAAAAAAIDpIFwEAAAckNTQaaNWj0qlUlA30y+1IUC4CAAYlPQ5L3ujIgAAAAAAAACTQbgIAAA4IOkb7Q2dDlJqQ0BqkxQAQF6pc4XNRQAAAAAAAADTQbgIAAA4IO3ucuZzQ6eDldpc1O51YnNzs6BuAIBp1e/3c4TInfMAAAAAAAAApoFwEQAAcEBa3U7mc0Ong5XaBNXv92P3SregbgCAabW82ov1zY3MmlToGQAAAAAAAIDJIFwEAAAckNTmIkOng9Ws1ZM1rcRnAgCQ0k5sLYqIaNad8wAAAAAAAACmgXARAACwZRubm7G7Z3NRkRqJzUUR+YaBAQCytPKEi6rOeQAAAAAAAADTQLgIAADYst29TvQTNcJFg7V9sRqzM9l/lcszDAwAkCV1nqhUKrGjmt6oCAAAAAAAAMD4Ey4CAAC2LM+GnGaOTTvkV6lUkoGtVke4CAA4MKlz3s5qPRl4BgAAAAAAAGAy+Le/AADAluXZkNOwuWjgGtVEuMjmIgDgAKXOE6nzCAAAAAAAAACTQ7gIAADYslZ3OfP5/MxsbFtYLKib8mjWs4d582yUAgDIkjrnpTYpAgAAAAAAADA5hIsAAIAtS95oX9sWlUqloG7Ko1lbynxucxEAcKDa3U7m81TYGQAAAAAAAIDJIVwEAABsWWpDjhvthyP1vrYTmwYAAFJSm4saVec8AAAAAAAAgGkhXAQAAGxZns1FDF7qfd3d68TG5mZB3QAA06bf7yfPeTYXAQAAAAAAAEwP4SIAAGDLkkOntaWCOimX1OaifkTs6XWKaQYAmDp7V3rJoLINlQAAAAAAAADTQ7gIAADYsrYb7UcizzBvKvgFALAv7V76HCFEDgAAAAAAADA9hIsAAIAtWd/cSG7HaVSFi4YhzzCvcBEAsFWtTvoc0bC5CAAAAAAAAGBqCBcBAABbsrvXiX6ixuai4di2sBjzM7OZNa3uckHdAADTJnWOqFQqsXOxVlA3AAAAAAAAAAybcBEAALAleW60b7rRfigqlUpyW0Db5iIAYIvavexzRKNaj5kZ/9cyAAAAAAAAwLTwb4ABAIAtSQ2dRkQ0a0sFdFJOqeBWS7gIANiiVIg8FXIGAAAAAAAAYLIIFwEAAFuSCq/Mz85GfX6hoG7KJzXUK1wEAGxVagOi7ZQAAAAAAAAA00W4CAAA2JLUjfbN2lJUKpWCuimf1FBvaigYAGBfUiFl4SIAAAAAAACA6SJcBAAAbEm7u5z53NDpcKXeX5uLAICtSoWUUxsUAQAAAAAAAJgswkUAAMCWpMIrhk6Hq1Fbyny+p9eJ9c2NgroBAKZFv9+PVi+9oRIAAAAAAACA6SFcBAAAbEnqRnubi4arWatnPu9HxO5ep5hmAICpsXelFxubm5k1znkAAAAAAAAA00W4CAAA2JLU5iJDp8OVZ2NAKgAGAHB37e5yssaGSgAAAAAAAIDpIlwEAADst/XNjdiz0s2syRN+Yesa9fRQbyoABgBwd3nOD0LkAAAAAAAAANNFuAgAANhvu7udZE2jVi+gk/LaNr8Y87OzmTXCRQDA/kqdH2YqldixWCuoGwAAAAAAAACKIFwEAADst3w32ttcNEyVSiUa1eytAa2OcBEAsH/aiXNeo7otZmb838oAAAAAAAAA08S/BQYAAPZbq7ucrGnWsoMvHLhmPfs9bveEiwCA/ZMKkdtOCQAAAAAAADB9hIsAAID9lrrRfnF2LmrzCwV1U16p7VCtTjoEBgBwZ6lwke2UAAAAAAAAANNHuAgAANhv6Rvtt0WlUimom/JKbYdKhcAAAO4udX5o2E4JAAAAAAAAMHWEiwAAgP2WvtHe0GkRUsO9qc8JAODuWt3szYfOeQAAAAAAAADTR7gIAADYb+nNRUsFdVJuqeHePSvdWN/cKKgbAGDSbfb70e52MmuEiwAAAAAAAACmj3ARAACw39o2F42FPO/z7sSAMADA7ZZXurHR38ysSW1OBAAAAAAAAGDyCBcBAAD7Lb25yNBpEZo5NkSlPisAgNvlOTcIkQMAAAAAAABMH+EiAABgv6xtrMfelW5mjaHTYuQJcbW6ywV0AgBMA+EiAAAAAAAAgHISLgIAAPZLu9dJ1jTrhk6LUJ9fiIXZucyats1FAEBOqXPDTKUS26v1groBAAAAAAAAoCjCRQAAwH7JE1ZpVIWLilCpVJLbA/JsIAAAiEifGxrVbTFTqRTUDQAAAAAAAABFES4CAAD2S56wis1FxWkIFwEAA9LqLmc+T507AAAAAAAAAJhMwkUAAMB+aXWywyqLc/NRm1soqBtsLgIABiV1bhAgBwAAAAAAAJhOwkUAAMB+afcSQ6e1bVGpVArqhlS4qC1cBADklDo3NKrCRQAAAAAAAADTSLgIAADYL63ucubzRiLswmA1akuZz20uAgDySm4ucs4DAAAAAAAAmErCRQAAwH5pdQydjpPU+713pRvrGxsFdQMATKrNfj92dzuZNc26cx4AAAAAAADANBIuAgAA9kvbjfZjJc/73e7ZXgQAZNu70o2N/mZmTTOxMREAAAAAAACAySRcBAAA7JdWIqhi6LRYjRzholYiEAYAkOe8kOfcAQAAAAAAAMDkES4CAAByW9tYj+WVXmZNo1YvqBsiIpp14SIA4MC1OsvJGhsqAQAAAAAAAKaTcBEAAJBbu9tJ1thcVKza3EIszs5l1rQ6wkUAQLZ2YjvlbGUmti/WCuoGAAAAAAAAgCIJFwEAALm1um60HzeVSiUaifc8NSwMAJAKI++s1WOmUimoGwAAAAAAAACKJFwEAADk1u6mQyqpoAuD16xnb4vKEwoDAMqtlTjnCZADAAAAAAAATC/hIgAAILfU0Gl1bj5q8wsFdcPtUsO+qU0EAACpTYfNWnaYGQAAAAAAAIDJJVwEAADk5kb78dSoZr/veTZOAQDllgojN2r1gjoBAAAAAAAAoGjCRQAAQG6pkIob7UejWU9sLkpsIgAAcM4DAAAAAAAAKC/hIgAAILfU5iI32o9GamPU8kov1jbWC+oGAJg0m5ub0U6EkW2oBAAAAAAAAJhewkUAAEBuqXCRG+1HI8/73u52CugEAJhEe1e6sdnvZ9Y0hIsAAAAAAAAAppZwEQAAkFuru5z53NDpaOR531OfHQBQXqkAeYTNRQAAAAAAAADTbG7UDQCM2k9/+tP43Oc+F1dddVVcffXVcf3118fevXtjz5490e/3Y/v27bF9+/Z4wAMeEMcdd1wcf/zx8ZSnPCWOPvroUbc+9nbt2hVf+9rX4rvf/W58//vfjx/96Efxs5/9LG699dbodruxuroai4uLUavVotlsxuGHHx73v//942EPe1g8/OEPj5NOOikajcaofwwA/n+rG+tx2+pKZo2h09HI8763cwwNAwDlJFwEAAAAAAAAUG7CRUAptdvteP/73x8f+chH4qqrrsqs3bVrV+zatStuuOGG+PKXv3zHf3/00UfHGWecEa985Svjvve977Bbngi33HJLXHbZZfGFL3whvvjFL8YPf/jD5D/T7Xaj2+3GL37xi3vUz87OxoknnhjPfvaz44UvfGHc//73H1brAOSQJ5xi6HQ0avMLUZ2bj9762j5r8gwNAwDllDrnzc7MxNJiraBuAAAAAAAAACjazKgbACjS8vJynH322XHEEUfEf/pP/ykZLMpy7bXXxl/+5V/GAx7wgHj5y18eP//5zwfY6eS49tpr481vfnM8/vGPj8MPPzx+7/d+Lz7wgQ/kChalbGxsxJVXXhnnnntuHHnkkfGsZz0rvvrVrw6gawC2Ik84pSFcNDKp9164CADYl9Q5oVGtx0ylUlA3AAAAAAAAABRNuAgojU996lNx7LHHxt/8zd/EbbcNbrh2dXU1zjvvvHjIQx4SH/zgBwf2+46zW265Jd7xjnfEiSeeGMccc0ycc8458dWvfjU2NzeH9pqbm5vx6U9/Oh7/+MfHc57znPjJT34ytNcC4N7lCafYXDQ6qfdeuAgA2JdWdznzebO2VFAnAAAAAAAAAIyCcBEw9TY3N+O1r31tPOc5z4kbb7xxaK/zi1/8Il7ykpfEy1/+8lhdXR3a64zS9773vXjOc54TRxxxRLzmNa+Jb37zmyPp45Of/GQce+yxcf7554/k9QHKqp0Ip9TmFqI6v1BQN9xdKlyU+vwAgPJqdzuZzwXIAQAAAAAAAKabcBEw1TY2NuIFL3hB/PVf/3X0+/1CXvO8886Lpz71qdHpZA/mTKJ//ud/jk9+8pOxvr4+6lai0+nES1/60jjrrLPGoh+AMkjdaN+oGzodpdRGAZuLAIB9SZ7zhIsAAAAAAAAApppwETC1Njc348UvfnFceOGFhb/2l770pfit3/qtWFlZKfy1y+b9739/nH766VO7LQpgnLQ62eEUN9qPVmroNzU0DACUVyqE7JwHAAAAAAAAMN3mRt0AwLCce+658Q//8A/79c8cffTR8e/+3b+Lhz3sYXHQQQdFpVKJVqsV3//+9+OKK66I7373u7l/r89//vNx1llnxYc//OH9bZ399L//9/+OM888My644IJRtwIw1do9Q6fjLPX+37a6Eqsb67Ew66+BAMC/2dzcjN297O3LNhcBAAAAAAAATDdTZcBU+sxnPhNvfetbc9efdtppcc4558RjHvOYzLrvfve78ba3vS3+4R/+ITY3N5O/70c+8pF44hOfGC996Utz9zJt7nvf+8ZjH/vYePSjHx3HHntsHHnkkXHEEUfEtm3bolarxe7du+PnP/953HzzzXHFFVfEF7/4xfjyl78cnU72YNPdffSjH42HPexh8ed//udD+kkASN1ob+h0tPKEu9rd2+I+SzsL6AYAmBR7Vrqx2e9n1giRAwAAAAAAAEw34SJg6uzatSte9KIXRT8xGBMRcdBBB8VHPvKR+M3f/M1cv/fDHvaw+B//43/EK1/5ynje854XP/3pT5P/zB/8wR/EE5/4xDjqqKNyvcY0OPHEE+N3fud34mlPe1r8+q//embtQQcdFAcddFAcc8wx8Ru/8Rtx9tlnxy9+8Yv4b//tv8V//a//NW699dbcr/v6178+nvGMZ8QJJ5xwgD8BAPem1bG5aJzlCXe1hIsAgLtJBcgjnPMAAAAAAAAApt3MqBsAGLRzzz03fv7znyfrjjjiiPja176WO1h0Z4973OPiG9/4Rhx33HHJ2m63G3/yJ3+y368xaQ499NB43eteF9dcc018/etfj7PPPjsZLNqXgw46KF73utfFddddF89//vNz/3Nra2vxyle+ckuvCUC21fX16KytZNY0a0sFdcO9yTP0m2d4GAAol1Z3OVnTcM4DAAAAAAAAmGrCRcBU+fa3vx3nnXdesm7nzp1x6aWXxq/+6q9u+bXuc5/7xGWXXRZHHHFEsvbTn/50XHzxxVt+rXF24oknxsc//vH4yU9+Em984xvj6KOPHtjvvWPHjvj4xz8e73nPe6JSqeT6Z77yla/EZz7zmYH1AMAvtXputB931fmFqM0tZNa0hYsAgLtpdzuZz2dnZmL7YrWgbgAAAAAAAAAYBeEiYKr85V/+ZWxubibrzjvvvHjIQx5ywK936KGHxkc/+tGYnZ1N1r7+9a8/4NcbJyeffHJ87nOfi69//evx/Oc/P+bn54f2Wq961avi7W9/e+76d7/73UPrBaCsWp08N9oLF41ao579GeTZTAAAlEvqfNCsbst94QcAAAAAAAAAk0m4CJga//qv/xqf+tSnknWnnXZanH766QN73ZNPPjl+//d/P1n3jW98I77whS8M7HVH5eEPf3hcfPHF8eUvfzme+tSnFva6r371q+PlL395rtpLL700fvaznw25I4ByybPxRrho9FLbo1odm4sAgLtqJc55zngAAAAAAAAA00+4CJga73znO6Pf72fWzM3N7dcGnLze+MY3xo4dO5J173jHOwb+2kV67nOfG9/61rfi6U9/+khe/81vfnM0m81k3cbGRnz2s58toCOA8kgNndbnF6I6N7wtduTTqKY2FwkXAQB3lQqRNxObEQEAAAAAAACYfMJFwFRYWVmJT3ziE8m65z73uXHUUUcN/PUPPvjgeNnLXpas+9znPhe33HLLwF+/KIccckjMzIzuq+Oggw6Kc889N1ftF7/4xeE2A1AyqaFTN9qPh9Twb7snXAQA3FVyc1EivAwAAAAAAADA5BMuAqbCpz/96di9e3ey7o//+I+H1sMf/uEfJoM3Gxsb8fGPf3xoPZTBGWecEZVKJVn3ne98p4BuAMojNXTaFC4aC6nPodURLgIA7ip5zrO5CAAAAAAAAGDqCRcBU+FjH/tYsuaoo46Kxz3ucUPr4YEPfGCcfPLJybo8vbJvhx12WDzykY9M1v3whz8soBuA8mh1lzOfN2tLBXVCltTn0FlbiZX1tYK6AQDG3ebmZuzudTJrnPMAAAAAAAAApp9wETDxNjY24tJLL03WPf/5zx96Ly94wQuSNV//+tdj165dQ+9lmj32sY9N1iwvL8fycvYgPAD5tbupoVM32o+DRo7PoZ3YTgAAlMfulW70+/3MmkbVOQ8AAAAAAABg2gkXARPva1/7WuzevTtZ9/SnP33oveR5jc3NzbjsssuG3ss0u+9975ur7rbbDE8DDEpqc1GeUAvDlyfk1RIuAgD+f6kzXkREs+6cBwAAAAAAADDthIuAiZcnqLN9+/Zc224O1AMf+MA46qijknWXXHLJ0HuZZnnDRevr60PuBKAceutr0VlbzayxuWg82FwEAOyPPOcC5zwAAAAAAACA6SdcBEy8K664Ilnz2Mc+Nubm5groJuLkk09O1lx55ZUFdDK91tbWctVt22YACmAQ8gyd2lw0Hqpz81GbX8issbkIALhd6lwwNzMbSwvVgroBAAAAAAAAYFSEi4CJ9+1vfztZ88hHPrKATn7pUY96VLLm+9//fqysrBTQzXS69dZbkzVzc3Oxffv2AroBmH65brSvLxXQCXmktgsIFwEAt2t1ss8FjVo9KpVKQd0AAAAAAAAAMCrCRcBEu+WWW+JnP/tZsm7cwkXr6+vxL//yLwV0M53yvHcPetCDYnZ2toBuAKZfnjBKs2pz0bhIhYvyhMUAgHJInfOaNQFyAAAAAAAAgDIQLgIm2lVXXZWr7qEPfeiQO/k3D3nIQ3LV5e2du+r3+/HVr341WXfssccW0A1AObS6y5nP6/OLsTA3V1A3pKSGgFOfJwBQHqnQcaNWL6gTAAAAAAAAAEZJuAiYaD/60Y9y1R111FFD7uTfNJvNOOigg5J1eXvnrr761a/m2lZ18sknF9ANQDkkb7Sv21o0ThqJzUV5NlEBAOVgcxEAAAAAAAAAEcJFwIS7/vrrkzWHHnpobNtW7NBznjBTnt65pw996EO56k455ZThNgJQIskb7avCReOkmQgXpT5PAKA82omNhqlzBQAAAAAAAADTQbgImGg33HBDsubwww8ffiN3c9hhhyVrhIv2389//vP4yEc+kqx7yEMeEo94xCMK6AigHNI32hs6HSepz6Ozthq99bWCugEAxtXG5mbsXulm1jjnAQAAAAAAAJSDcBEw0W666aZkzaGHHlpAJ/v/mjfeeGMBnUyXv/qrv4puN3vwKSLixS9+8fCbASiRZLiobuh0nDRyDAHbXgQA7Ol1ot/vZ9bkOVcAAAAAAAAAMPmEi4CJtmvXrmTNfe973wI6uas84aJf/OIXBXQyPX7wgx/Ee9/73mTdjh074hWveEUBHQGURyqI0qwtFdQJeeTZMJAKjAEA0y/PecDmIgAAAAAAAIByEC4CJlqecFGj0Rh+I1t4zdtuuy1WVlaG38wU2NjYiJe85CWxtraWrP2DP/iDkXzmANOqt7Ya3bXVzBo32o8Xm4sAgDzyhYuEyAEAAAAAAADKQLgImGitVitZs3379gI62dpr2l6Uz9vf/va44oorknWHH354/Nmf/VkBHQGUhxvtJ8/i3HzU5xcza1rd5YK6AQDGVSpsPD8zG9sWss8UAAAAAAAAAEwH4SJgYnW73VybbEYRLtqxY0euut27dw+5k8n3la98JV73utflqv2bv/mbWFpyqzLAIOXZcCNcNH6a9ezPJE9oDACYbqmwcaO2LSqVSkHdAAAAAAAAADBKwkXAxFpdXc1VV6vVhtzJPVWr1Vx1eX+Gsrr11lvj+c9/fq4Q2TOf+cz4vd/7vQK6AiiXPCGUhnDR2GlUE+GijnARAJRdq9vJfC5ADgAAAAAAAFAec6NuAGCr8gZzZmdnh9zJPc3N5fufV+GifVtbW4vTTz89brzxxmTtwQcfHOedd14BXU2GJzzhCbn/DDI83/ve90bdAgxEKly0bWExFmb9b864SQ0Dt3vCRQBQdu0cm4sAAAAAAAAAKAebi4CJlTeYM4qQRd7XzLORp6xe8YpXxJe+9KVctR/4wAfi0EMPHXJHAOXUToSLmrWlgjphfzTric1FOTZSAQDTLXUesLkIAAAAAAAAoDxcMQ5MrPX19Vx1wkWT561vfWucf/75uWpf85rXxGmnnTbkjibL5ZdfHocccsio2wCmRCtxo72h0/GUCn21O8JFAFB2wkUAAAAAAAAA3M7mImBi5Q3wbGxsDLmTrb/mKIJP4+6CCy6IP//zP89Ve/LJJ8eb3/zmIXcEUG7tbifzecPQ6VhKfS7d9dXoreXbAgkATJ+Nzc3Y03POAwAAAAAAAOCXhIuAibWwsJCrLu+Go0HKu5Eo789QFhdffHGceeaZ0e/3k7UPfehD46KLLhLQAhgym4smU57PJbWtAACYXrt7nUj9zds5DwAAAAAAAKA8hIuAiTU/P5+rbhThoryvKVz0by6//PL4nd/5nVzBrAc84AFxySWXxMEHH1xAZwDllgqgGDodT3k+l7ZwEQCUVipAHhHRrC0V0AkAAAAAAAAA40C4CJhYi4uLuep6vd6QO9n6awoX/dI3v/nNeMYznhHdbjdZe5/73CcuueSSOOKIIwroDKDcumur0VvPDn0KF42nhs1FAECGdreTrGnUnfMAAAAAAAAAymJu1A0Ak+X666+PK6+8cqivsW3btnjWs56VrKvVajE3N5fcErR3795BtZZb3tfcsWPHkDsZf9/73vfiaU97WuzZsydZ22g04vOf/3wcc8wxBXQGQJ7NNnlCLBRvYXYuti0sxm2rK/usES4CgPJKbS6an5mNbfP5LnUBAAAAAAAAYPIJFwH75Utf+lKceeaZQ32NBz7wgbnCRRERzWYzbr311syaPKGVQcv7mgcddNCQOxlv1157bZx66qmxa9euZO22bdvi4osvjoc//OEFdAZARL7wSbO2VEAnbEWztpQZLsoTHgMAplPqnNeobYtKpVJQNwAAAAAAAACM2syoGwA4EAcffHCyZvfu3QV0sv+vWa/Xo1qtFtDNeLr++uvjyU9+ctx8883J2mq1Gp/61Kfi8Y9/fAGdAXC71I32ERGNWr2ATtiKZmKrVJ7PFwCYTqmQcbNuOyUAAAAAAABAmQgXARMtT7jolltuKaCTu8oTmMnT+7S68cYb45RTTokbb7wxWTs/Px8XXnhhPPnJTy6gMwDurN3tZD5fWqzG/KxlqOOqkQwX2VwEAGWV3FxUFS4CAAAAAAAAKBPhImCi3e9+90vW5An6DFqe18zT+zS6+eab48lPfnJcf/31ydrZ2dm44IIL4pnPfGYBnQFwd6nNNk1Dp2MttbkotbEAAJheqXBRs7ZUUCcAAAAAAAAAjAPhImCiHXnkkcma//f//t/wG7mbn/3sZ8maBz3oQQV0Ml5uvfXWOOWUU+Laa69N1lYqlTj//PPj9NNPL6AzAO5N8kb7RHiF0UqFi2wuAoDySoWMm3XnPAAAAAAAAIAyES4CJlqegM7NN98cnU6ngG7+zXXXXZesKVu4aNeuXXHqqafG1Vdfnav+7/7u7+JFL3rRkLsCIEvyRntDp2MtFS7qra9Fd221oG4AgHGxvrkRe3rZ/z9Jw4ZKAAAAAAAAgFIRLgIm2oMf/OBkTb/fzxX2GZR2ux27du1K1uXpfVq02+146lOfGldddVWu+ne84x3xile8YshdAZCSutHe0Ol4y7NZyvYiACif3b1O9BM1QuQAAAAAAAAA5SJcBOyXF7/4xdHv94f664Ybbsjdz/HHH5+r7gc/+MEWf+L9l/e18vY+6fbs2RNPe9rT4lvf+lau+je+8Y3x6le/eshdAZDS7/fTm4tqSwV1w1bk+XxSATIAYPrk+f5PbUAEAAAAAAAAYLoIFwET7bDDDov73ve+ybq8wZZByPNac3NzccIJJxTQzWgtLy/H05/+9Pja176Wq/7P/uzP4nWve92QuwIgj+76aqysr2XWuNF+vDVq9WRNq7tcQCcAwDjJs7kwzwZEAAAAAAAAAKaHcBEw8R75yEcma4oMF33zm99M1jz0oQ+NarVaQDej0+l04hnPeEZ85StfyVX/h3/4h/HmN795yF0BkFe720nWuNF+vM3PzsXSYvZ5I89wMQAwXVLf//Ozs7FtfrGgbgAAAAAAAAAYB8JFwMR7/OMfn6z56le/Guvr6wV0E/HlL385WfPYxz62gE5Gp9frxbOf/exc70VExFlnnRXvfve7h9wVAPsjz0YbN9qPv2Y1+zNqdYSLAKBsUt//zdpSVCqVgroBAAAAAAAAYBwIFwET75RTTknW7N27N772ta8NvZef/OQncd111yXrnvKUpwy9l1FZXV2N3/qt34rLLrssV/0LX/jC+O///b8PuSsA9lee0EmjWi+gEw5EKgDW7gkXAUDZpL7/bacEAAAAAAAAKB/hImDiPeYxj4kdO3Yk6z7zmc8MvZc8r1GpVHIFoibR2tpanH766fHZz342V/3pp58eH/zgB2NmxtcRwLhpdbOHTrcv1mJ+dq6gbtiqZj2xuSjxOQMA06fVyd5QaTslAAAAAAAAQPmY5gYm3tzcXK6wzic+8Ymh9/Lxj388WXPiiSfGr/zKrwy9l6JtbGzEGWecEZ/61Kdy1T/rWc+KCy64IGZnZ4fcGQBb0U6ETtxoPxmataXM56nhYgBg+jjnAQAAAAAAAHB3wkXAVPjd3/3dZM21114bV1555dB6+MlPfhJf/vKXk3V5ep00m5ub8aIXvSj+8R//MVf90572tLjwwgtjfn5+yJ0BsFWpjTZutJ8MjWr259Tu3hb9fr+gbgCAcdDqCRcBAAAAAAAAcFfCRcBUeNaznhU7duxI1r3rXe8aWg//5b/8l9jc3MysmZmZiRe84AVD62EU+v1+vOxlL4uPfvSjueqf9KQnxUUXXRSLi4tD7gyAA9HuZm+0MXQ6GZr17M9pZWM9uuurBXUDAIza+uZG7Ol1M2uEyAEAAAAAAADKR7gImArVajWe97znJev+8R//Ma677rqBv/6uXbvivPPOS9Y99alPjcMOO2zgrz9Kr3rVq+KDH/xgrtqTTjop/s//+T9Rq9WG3BUAByq1uUi4aDLk+ZxanezPGgCYHru7nWSNcx4AAAAAAABA+QgXAVPj1a9+dVQqlcya9fX1eM1rXjPw1/6Lv/iL2LNnT7LuT//0Twf+2qP06le/Ot773vfmqj3xxBPjM5/5TCwtLQ25KwAOVL/fj3YiXORG+8mQZzg49VkDANMjFSCPiGjW/L0dAAAAAAAAoGyEi4Cpceyxx8Yzn/nMZN0nP/nJuPDCCwf2updffnm8733vS9Y98pGPjFNPPXVgrxsRccMNN0SlUkn+etKTnjTQ142IOPfcc+Nv//Zvc9U+/OEPj89//vOxY8eOgfcBwOB111ZjZWM9s8aN9pOhUc2xuUi4CABKI8/3vhA5AAAAAAAAQPkIFwFT5fWvf33MzKT/p+2ss86Ka6655oBf7+abb44zzjgjNjY2krVveMMbDvj1xsVf//Vfx5ve9KZctccdd1xccskl0Ww2h9wVAIPiRvvpMTc7G9sXa5k1wkUAUB7t7nLm84XZuajPLxTUDQAAAAAAAADjQrgImCqPetSj4iUveUmybvfu3XHKKafEj370oy2/1q233hqnnnpq/PSnP03WPv3pT49nPetZW36tcfKud70rXvva1+aqPfroo+Oyyy6LQw45ZMhdATBI7VzhIjfaT4rUZ5UaMgYApker28l83qxti0qlUlA3AAAAAAAAAIwL4SJg6rzpTW+Kgw8+OFl34403xmMe85j4zGc+s9+vceWVV8aJJ54Y3/ve95K11Wo13v3ud+/3a4yjv//7v48/+ZM/yVV75JFHxhe+8IU49NBDh9wVAIOWZ5PNzmq9gE4YhEYiXGRzEQCURypUnDo3AAAAAAAAADCdhIuAqXPIIYfEhz70oVw37e7atSt+8zd/M377t387vvGNbyTrr7766jjzzDPjpJNOip/85Ce5+nn3u98dRx99dK7acfemN70pd+0NN9wQ97///aNSqYzs1xve8IbhvRkAU6yVGDrdsViLudnZgrrhQKU2FwkXAUB5pL73bacEAAAAAAAAKKe5UTcAMAzPfOYz4zWveU287W1vy1V/0UUXxUUXXRTHHHNMPOEJT4hf+7Vfi4MOOigqlUq0Wq34wQ9+EFdccUVcddVV+9XHGWecES9/+cu38iMAwMgYOp0uqc+rLVwEAKXhnAcAAAAAAADAvREuAqbWW97ylrjxxhvjYx/7WO5/5pprrolrrrlmIK9/yimnxPnnnz+Q3wsAipQKmzQMnU6UPJuL+v1+rq2PAMBkc84DAAAAAAAA4N7MjLoBgGGZmZmJD3/4w/Hbv/3bhb/2E57whPjkJz8Zi4uLhb82ABwoN9pPl9SQ8OrGenTWVgvqBgAYlfWNjdiz0s2sadaWCuoGAAAAAAAAgHEiXARMtbm5ubjwwgvj7LPPLuw1zzzzzLj00ktj2zaD1wBMplS4qGHodKLkGRJObTEAACZfu5f+vhciBwAAAAAAACgn4SJg6s3MzMRb3vKWuOiii+Lwww8f2us0m80477zz4vzzz7exCICJ1e/3o9Vdzqxp1g2dTpI8Q8KpzxwAmHztbidZk9p4CAAAAAAAAMB0Ei4CSuM5z3lO/OAHP4jXvOY1A90qtLCwEC996UvjX//1X+NlL3vZwH5fABiFztpqrG1sZNY0qoZOJ8nOWj1Zk9pWBQBMvjxhYpuLAAAAAAAAAMpJuAgole3bt8fb3va2+OlPfxpvectb4td+7de2/Hv96q/+arz2ta+NG264Id7//vfHIYccMsBOAWA0DJ1On7mZ2dixWMusES4CgOmX+r5fnJ2L2vxCQd0AAAAAAAAAME7mRt0AwCg0m804++yz4+yzz44f//jH8fnPfz6+853vxNVXXx033HBD7NmzJ/bu3Rv9fj+2b98e27dvj/vf//5x3HHHxfHHHx+nnnpqPPShDx31jxFHHnlk9Pv9wl7vhhtuKOy1ABiNPCGTZl24aNI0a9tiz0p3n8/bwkUAMPVS3/eN2raoVCoFdQMAAAAAAADAOBEuAkrvgQ98YJx11lmjbgMAxkJq6LQSETur9WKaYWAatW3x4/bP9/nc5iIAmH6p73vbKQEAAAAAAADKa2bUDQAAAOMjNXS6vVqLuZnZgrphUJr1pcznre5yQZ0AAKOSOuc1atnnBQAAAAAAAACml3ARAABwh1YndaO9odNJ1KhmbyJIfe4AwORLbai0uQgAAAAAAACgvISLAACAO6Q22Bg6nUzNevbn1u7dFv1+v6BuAIBRSG8ucs4DAAAAAAAAKCvhIgAA4A7tnhvtp1Hqc1vb2Ijb1lYK6gYAKNraxnrsXelm1jjnAQAAAAAAAJSXcBEAAHCHVseN9tMoz7BwO/HZAwCTq93rJGtSmw4BAAAAAAAAmF7CRQAAQERE9Pv9aHdtLppGeUJhre5yAZ0AAKOQOuNFRDSqznkAAAAAAAAAZSVcBAAARETEbasrsba5kVnTrC0V1A2DtLNaj0qiptVNbzQAACZTK0e4yOYiAAAAAAAAgPISLgIAACIi5432tXoBnTBoczOzsaOa/dm1bS4CgKnV6mSf8xbn5qM2t1BQNwAAAAAAAACMG+EiAAAgIiJaOcIlNhdNrkYtextBno0GAMBkaveyv+ebtW1RqaT2HAIAAAAAAAAwrYSLAACAiEiHSyoRsTOx/Ybx1RQuAoDSSoXIUyFkAAAAAAAAAKabcBEAABAREe1EuGRntR6zM/4KMalS4aLU5w8ATK5WJ725CAAAAAAAAIDyMhkIAABERHpzjRvtJ5vNRQBQXu2ecBEAAAAAAAAA+yZcBAAAREQ6XGLodLKlwmGt7m3R7/cL6gYAKJIQOQAAAAAAAABZhIsAAICIyDN0ulRQJwxDM/H5rW9uxG2rKwV1AwAUZW1jPZZXepk1QuQAAAAAAAAA5SZcBAAARERE2+aiqZbn82t1lwvoBAAoUrvXSdakQsgAAAAAAAAATDfhIgAAIPr9fnJzkXDRZMsXLsr+MwAATJ5WJ/393nDOAwAAAAAAACg14SIAACCWV3uxvrmRWWPodLLtqNajkqgRLgKA6dPOsZlQiBwAAAAAAACg3ISLAACAXKGSZt3Q6SSbnZmJndV6Zk1buAgApk7qnFedm4/a/EJB3QAAAAAAAAAwjoSLAACAXKGSZlW4aNI1akuZz20uAoDpk/p+t50SAAAAAAAAAOEiAAAgOXRaqVRiR2LrDeOvmRgebnWXC+oEAChKKkSeOh8AAAAAAAAAMP2EiwAAgGSoZGe1HrMz/vow6VKbCVodm4sAYNqkQuTCRQAAAAAAAACYDgQAAKLd7WQ+N3Q6HVKfY7snXAQA0ya9uWipoE4AAAAAAAAAGFfCRQAAQHJzUaMqXDQNmvXE5qLubdHv9wvqBgAoQmpzUWqzIQAAAAAAAADTT7gIAACIVidxo30ilMJkSG0u2tjcjL0rvYK6AQCGbXVjPZZXs7/bbagEAAAAAAAAQLgIAACIduJGe0On0yHPZoJ2YosVADA5dnc7yRrnPAAAAAAAAACEiwAAoOT6/X60eqlw0VJB3TBMeT7HVo4hZABgMrRyhIbzhI8BAAAAAAAAmG7CRQAAUHJ7V3qxsbmZWdOo1QvqhmHauViLSqWSWZNnCBkAmAytxHbKCOEiAAAAAAAAAISLAACg9No5wiQ2F02HmZmZ2FnNDoq1cwwhAwCTIfW9XptbiNr8QkHdAAAAAAAAADCuhIsAAKDk8txo33Sj/dRIfZZ5/jwAAJMh9b1uOyUAAAAAAAAAEcJFAABQeqmh00qlEjsWawV1w7ClwkU2FwHA9Eid82ynBAAAAAAAACBCuAgAAEovFSZpVOsxM+OvDtPC5iIAKI9WdznzecN2SgAAAAAAAABCuAgAAEovfaO9odNpkhoiTg0hAwCTo93tZD53zgMAAAAAAAAgQrgIAABKL7W5qFlbKqgTipD6PNu9Tmz2+wV1AwAMk81FAAAAAAAAAOQhXAQAACWX2lzUqNUL6oQipDYUbGxuxvJKt6BuAIBhWV1fj9tWVzJrbC4CAAAAAAAAIEK4CAAASi91o73NRdMlzxBxKnAGAIy/di/9fd6sO+cBAAAAAAAAIFwEAAClttnvR7vbyaxxo/10aQgXAUAp5Pk+b1RtqAQAAAAAAABAuAgAAEpteaUbG/3NzJo8YRQmx47FWsxUKpk1beEiAJh4ecJFQuQAAAAAAAAARAgXAQBAqRk6LZ+ZmZloVLM/U5uLAGDypcLCtfmFqM4vFNQNAAAAAAAAAONMuAgAAEpMuKicUtuoWt3lgjoBAIYl9X1uOyUAAAAAAAAAtxMuAgCAEksNnc5UKrG9Wi+oG4qSCozZXAQAk6/Vyf4+FyAHAAAAAAAA4HbCRQAAUGLtbifzeaO6LWYqlYK6oSipTQVt4SIAmHjtnnARAAAAAAAAAPkIFwEAQImlNhelQihMJpuLAGD6pb7PnfMAAAAAAAAAuJ1wEQAAlFhq6LRZN3Q6jVKfa7t7W2z2+wV1AwAMQ6tjcxEAAAAAAAAA+QgXAQBAibVT4SJDp1OpUc3+XDf7/djb6xTUDQAwaKvr69FZW8msadaWCuoGAAAAAAAAgHEnXAQAACWW2lyUCqEwmZr19DBxS7gIACZWq5d9xouIaAiRAwAAAAAAAPD/Ey4CAICS2uz305uL6oZOp1GejVStznIBnQAAw5Dne9yGSgAAAAAAAABuJ1wEAAAltbfXic1+P7OmWUtvuGHybF+sxWwl+6+DqeAZADC+8nyP21wEAAAAAAAAwO2EiwAAoKRavU6yxo3202mmUomdtXpmTUu4CAAmVup7vD6/ENW5+YK6AQAAAAAAAGDcCRcBAEBJtTrLyRo32k+vVHBMuAgAJldqc5EzHgAAAAAAAAB3JlwEAAAllRo6na3MxPbFWkHdULRmbSnzeerPBwAwvlIhYdspAQAAAAAAALgz4SIAACip1NBpo1aPmUqloG4oWqNWz3ze6qY3WwEA4ykdLsoOGQMAAAAAAABQLsJFAABQUulwkRvtp1l6c1GnoE4AgEFLbSB0zgMAAAAAAADgzoSLAACgpFJDp260n27NxFBxu3dbbG5uFtQNADBIqQ2EqXMAAAAAAAAAAOUiXAQAACVl6LTcUp/vZr8fe1a6BXUDAAzKyvpadNZWM2uc8wAAAAAAAAC4M+EiAAAoqXa3k/nc0Ol0a+T4fFuJ7VYAyq3OWAABAABJREFUwPhJbaeMyHcOAAAAAAAAAKA8hIsAAKCENjc3o93LHjw1dDrd8oTH8gwnAwDjJU84WIgcAAAAAAAAgDsTLgIAgBLas9KNzX4/s8bQ6XRbWqzF7Ez2XwltLgKAyWNzEQAAAAAAAAD7S7gIAABKyI32zFQq0axmf8at7nJB3QAAg5I659XnF2Jxbr6gbgAAAAAAAACYBMJFAABQQvlutF8qoBNGKbW1wOYiAJg8qe/vpjMeAAAAAAAAAHcjXAQAACWUGjqdnZmJ7YvVgrphVFLbqfKE0ACA8ZLaPJgKFwMAAAAAAABQPsJFAABQQqmh02Z1W1QqlYK6YVRsLgKA6ZMKB6fCxQAAAAAAAACUj3ARAACUUCo04kb7cmjWhYsAYNqkvr+FiwAAAAAAAAC4O+EiAAAooeSN9onQCdOhUc3+nHf3OrG5uVlQNwDAIAiRAwAAAAAAALC/hIsAAKCEkkOnidAJ06FZW8p83u/3Y/dKt6BuAIAD1Vtfi+7aamZNs579/Q8AAAAAAABA+QgXAQBACaXCRTYXlUOez7nVXS6gEwBgEFLbKSMiGtV6AZ0AAAAAAAAAMEmEiwAAoGQ2Nzdjd6+TWZPaaMN0yLOhqtVJDykDAOMhFSCPsLkIAAAAAAAAgHsSLgIAgJLZvdKNfr+fWZMndMLk275YjdmZ7L8W5tmAAACMhzzf203nPAAAAAAAAADuRrgIAABKptVdTtY064ZOy6BSqUSzlv1Z59mAAACMh9Q5rz6/GAtzcwV1AwAAAAAAAMCkEC4CAICSaXVy3GifCJwwPZq1pcznwkUAMDlS39sC5AAAAAAAAADcG+EiAAAomXYve+h0bmY2lhaqBXXDqDVq9czn7RybrgCA8dBOhYsEyAEAAAAAAAC4F8JFAABQMqnNRY1aPSqVSkHdMGo2FwHA9Eh9bzeqwkUAAAAAAAAA3JNwEQAAlExq6DQVNmG6pDYYpDYgAADjI3nOqwsXAQAAAAAAAHBPwkUAAFAy7e5y5vNU2ITpkvq8d/c6sbG5WVA3AMCBaCc2VAqRAwAAAAAAAHBvhIsAAKBkWt1O5nPhonJpJD7vfvwyYAQAjLfe2mp011cza1Lf+wAAAAAAAACUk3ARAACUTGpzkaHTcskTJmt3s7cgAACj18rxfS1EDgAAAAAAAMC9ES4CAIAS2djcTG6hMXRaLs3aUrImz7AyADBaecLAznkAAAAAAAAA3BvhIgAAKJE9vU70EzWGTstl28JizM/MZta0EtuuAIDRyxMGtqESAAAAAAAAgHsjXAQAACVi6JS7q1Qqyc/c5iIAGH+p7+ttC4uxMDtXUDcAAAAAAAAATBLhIgAAKJE8IZFmbamAThgnqW1VbeEiABh7qe9rZzwAAAAAAAAA9kW4CAAASqTVXc58Pj8zG9sWFgvqhnFhcxEATL7U93UqTAwAAAAAAABAeQkXAQBAiaRutG/UtkWlUimoG8ZFapOBcBEAjL885zwAAAAAAAAAuDfCRQAAUCJutOfeNGv1zOepjVcAwOilvq+d8wAAAAAAAADYF+EiAAAokVS4yI325dRIbC7a2+vG+uZGQd0AAFvR7nYynwsXAQAAAAAAALAvwkUAAFAi6c1F2SETplOznj1s3I+I3b3sgWUAYHS6a6vRXV/NrBEiBwAAAAAAAGBfhIsAAKBE2qlwUSJkwnTKs8mg1cn+swMAjE7qjBdhcxEAAAAAAAAA+yZcBAAAJbG+uRF7EttnGlVDp2WUZ5NBausVADA6eb6nbagEAAAAAAAAYF+EiwAAoCR29zrRT9TYXFRO2+YXY352NrOm3RMuAoBxlWdz0c5avYBOAAAAAAAAAJhEwkUAAFASeYZOmzk22DB9KpVKcptBqyNcBADjKrW5aGmhGguzcwV1AwAAAAAAAMCkES4CAICSSA2dRkQ0hItKq5HYZtDuLhfUCQCwv1qJ72kBcgAAAAAAAACyCBcBAEBJpMJF87OzsW1+saBuGDfJzUU5wmkAwGikNlQKkAMAAAAAAACQRbgIAABKotXJHjpt1paiUqkU1A3jJrXRIDW0DACMTioEbHMRAAAAAAAAAFmEiwAAoCTaPUOn7Fvq87e5CADGV+p72uYiAAAAAAAAALIIFwEAQEm0OsuZzw2dllvq89+z0o31jY2CugEA9kdqw2CztlRQJwAAAAAAAABMIuEiAAAoifTQqXBRmeX5/Hf3OgV0AgDsj+7aavTW1zJrmrV6Qd0AAAAAAAAAMImEiwAAoCRawkVkyLPRIPVnCAAoXp7v54bNRQAAAAAAAABkEC4CAIASWN/ciD0r3cyaPOESpleecFmru1xAJwDA/khtp4yIaNaFyAEAAAAAAADYN+EiAAAogd3dTrKmUasX0Anjqja/EAuzc5k1NhcBwPjJE/5tVJ3zAAAAAAAAANg34SIAACiBPKEQm4vKrVKpJLcX5dmMAAAUK3XOW1qsxnwiQAwAAAAAAABAuQkXAQBACeQLF2UHS5h+qT8DNhcBwPhpdbK/n53xAAAAAAAAAEgRLgIAgBJod5czny/MzkVtfqGgbhhXjcT2KuEiABg/7V7293OjKlwEAAAAAAAAQDbhIgAAKIFUKKRZ2xaVSqWgbhhXzVo983krEVIDAIqXPOfVhYsAAAAAAAAAyCZcBAAAJZAnXASpzUXtbqegTgCAvFqd7PBvM/H9DgAAAAAAAABzo26AfHq9Xtx0003x85//PHbv3h3tdjv27t0bq6ursbq6GmtrazE7OxsLCwsxPz8f9Xo9du7cGY1GI5rNZhx22GFx8MEHj/rHAABgRNqJcFEqVEI5pEJme1e6sbaxHvOz/ioJAOOg3+9Hu5cd/hUiBwAAAAAAACDFRNgYWV5eju985ztx9dVXx7XXXhvXXntt/PCHP4ybbrop2u32Af/+CwsLcdhhh8WRRx4ZRx11VBx99NFxzDHHxMMf/vA48sgjD/j3BwBgfKU3F9UL6oRx1qynh4/bvU4csm1HAd0AACnd9dVYWV/LrGkIFwEAAAAAAACQIFw0Imtra/Gtb30rvvKVr8QVV1wR3/rWt+KGG26Ifr9/l7q7/+cDsbKyEjfccEP8+Mc/ji996Ut3ebZjx4444YQT4tGPfnScdNJJcdJJJ8Whhx46sNcGAGC0UuEim4uIiGhU08PHrc5twkUAMCZanewzXoTNRQAAAAAAAACkCRcV6Bvf+EZceumlcckll8QVV1wRKysrdzzLChFVKpWB9nFvr7V79+64/PLL4/LLL4+//du/jYiIBz3oQXHKKafEqaeeGqecckocdNBBA+0DAIBirG9sxN6VbmaNoVMi8m4uSg8xAwDFyPO97JwHAAAAAAAAQIpw0RB1Op343Oc+F5/61Kfi//7f/xu7du2649ndAz6pANEgNhjd/hr7eq27v8aPfvSjuP766+P9739/VCqVeMxjHhOnnXZaPPvZz45jjz32gPsBAKAYuYZOc4RKmH61uYVYnJuPlfW1fdbk2ZAAABQjz/dyns2EAAAAAAAAAJSbcNGAra6uxqc//en46Ec/GhdffPEd24nyhokGESLal9R2pHvr6fZ/pt/vx5VXXhlXXnllnHPOOXH00UfHGWecES94wQvimGOOGVrPAAAcuFbX0Cn5VCqVaFTrccvy7n3WtLrLBXYEAGRJnfO2L9Zibna2oG4AAAAAAAAAmFQzo25gWnzlK1+Jl770pXGf+9wnTj/99Ljoooui1+tFv9+Pfr9/R3jnziGe25/d+deo7KuXO/d852fXXHNN/OVf/mUce+yx8ahHPSre8573RKvVGln/AADsW55wkc1F3K5ZX8p83s7x5wkAKEbqe7lZc8YDAAAAAAAAIE246AC0Wq14+9vfHscdd1ycfPLJ8aEPfSj27Nlzr4GiiHsGeMZdVtDozmGjb3/72/FHf/RHcfjhh8fv/u7vxhe+8IURdw4AwJ21OtlDp4tz81GbWyioG8Zdagg5T1gNAChG6nu5IVwEAAAAAAAAQA7CRVtw1VVXxVlnnRVHHHFEnH322fGDH/wgV6BokmVtNbr9+crKSvzP//k/4ylPeUo87GEPi/e9733R6XRG2TYAABHR7iWGTqv1O851kAoX2VwEAOOj3V3OfG5zEQAAAAAAAAB5CBfth89+9rPx5Cc/OR7xiEfE+eefH91ud6oDRVnu/DPe2zajq6++Ov7Df/gPcb/73S/OOeecuOWWW0bdMgBAabVSQ6f1pYI6YRKkNhzYXAQA4yP1vSxcBAAAAAAAAEAewkUJ/X4/PvrRj8av//qvxzOe8Yz40pe+dI9Qze11wwgU3Tm4M6hfg5a1zWj37t3x1re+NR70oAfF7//+78d111038NcHACBbq2PolPxSfx6WV3uxtrFeUDcAwL70+/3kRsFUaBgAAAAAAAAAIoSL9qnf78cFF1wQxx57bLzwhS+Mq666KjNUdCDyBIHuHF46kF+p1zuQ8FHWNqNerxfvf//747jjjoszzzwzfvjDHx7QewYAQH7tnnAR+TVr6U1W7W6ngE4AgCzdtdVYSQR+nfMAAAAAAAAAyGNu1A2Mo0984hPxhje8Ia655pq7BIfuHCjaqn2Fd/b1e9Zqtbjf/e53x6/t27dHrVa7119ra2vR6XSi2+3e49ctt9wSN954Y9x0002xa9euzN7urcf9/Zn3tclofX09PvzhD8cFF1wQL3zhC+MNb3hD3P/+99+v3xsAgP3TcqM9+yHPEHKruxyHLO0ooBsAYF9SZ7yIfKFhAAAAAAAAABAuupMvfOELcfbZZ8e3vvWtu4RjbreVUFGeoM6OHTvi+OOPjxNOOCFOOOGEeOADHxj3u9/94ogjjohms7nfr5mysrISN910U9x0001x4403xve///246qqr4qqrroof//jH9+jv3rYo5ZUVMvrQhz4UH/vYx+JVr3pVnHPOOUP5WQEAym5tYz2WV3qZNW60587yhM3yDDMDAMPVzhUucs4DAAAAAAAAIE24KCK+973vxZ/+6Z/GJZdcEhG/DL9sNUyTChMddNBB8cQnPjEe+chH3iVMVKTFxcV48IMfHA9+8IPv8Wzv3r3xL//yL3eEjS6//PL43ve+d68hodvleX/2FTLq9Xrxzne+Mz7wgQ/EueeeG3/0R38Uc3P+WAIADEq720nWuNGeO6vNL0R1bj5662v7rMkzzAwADFeesO/Oar2ATgAAAAAAAACYdKVOcbRarXjd614Xf//3fx8bGxv32FaUN1SUFbZpNBrxG7/xG/GkJz0p/v2///dxwgkn3GsAaVxs3749TjrppDjppJPu+O927doVX/ziF+OLX/xi/NM//VNcffXVdzzb361G+woZtdvt+M//+T/H+973vnjnO98Zz3zmMwf5YwEAlFaeoVM32nN3zdq2+Nne9j6f21wEAKPX6i5nPt+xWIu52dmCugEAAAAAAABgkpUyXNTv9+O9731v/MVf/EW0Wq2BhIru/Hs89rGPjdNOOy2e+tSnxiMe8YixDhPlcfDBB8dzn/vceO5znxsREbfeemv80z/9U3z605+Oiy++OH7xi19ExP4FjfYVMrruuuvitNNOi6c85Snxnve8J4466qhh/VgAAKXQTgydRkQ0hIu4m2ZtSbgIAMZcapOgADkAAAAAAAAAeZUuXPTNb34zXvGKV8S3vvWtLYWK7i08MzMzE0960pPi+c9/fjz72c+OQw89dAidj49DDjkknve858Xznve82NzcjH/+53+O//W//ldceOGFcfPNN0dE/qDRvkJGn//85+P444+Ps88+O84555xYWFgY8k8FADCdUiGQ6tx81OadtbirRq2e+Ty1KQEAGL7UOU+AHAAAAAAAAIC8ZkbdQJH+43/8j/G4xz3ujmDR3QMtWe5e2+/349GPfnS8613vihtvvDEuu+yyePnLXz71waK7m5mZiSc+8Ynx7ne/O2666aa49NJL46UvfWls3779jvcp4p5ho7u7e21ExMrKSvzVX/1VHH/88fH1r399+D8MAMAUSg2dutGee9OsLWU+b3c7BXUCAOyLcx4AAAAAAAAAg1KqcNHf/d3fxebm5h3Booi7hlru7vZATKVSuaPuV37lV+KP//iP46r/j707D5OzKvMG/FQvSVVnq5Y9AVwRZRVEQNyAURFRxF2RLVGRgCKKu5/jiKMzrqMyOohKgiwK6riBjoKKDiLIImSQZZRVFlmkO0mnq/f6/nA6JKG7TqW76q3qrvu+rlwz0+9J9VOZ6ut9E87v/FatiquuuipOPvnklgsUTSaXy8XBBx8cX/va1+Kvf/1rnH322XHQQQdFxMQNRRMZ/3Pe8M/9z3/+c/z0pz/N5D0AAMw2vU60ZwpSnwvNRQDQeOnnvMphYQAAAAAAAAAY11LhonEbhoUmu75p+OiAAw6I8847L+655574/Oc/H7vttluWI884+Xw+jj766PjFL34Rt956a5xyyimxaNGizQoZAQAwfU60ZypSn4t1Q4MxNDKS0TQAwKbK5XIVz3ldGU0DAAAAAAAAwEzXkuGiakNFnZ2dsXTp0rj++uvj8ssvjze+8Y3R2dmZ5aizwlOe8pT4/Oc/H/fdd1+ceeaZ8fSnP/0xDUUAANRHetOpE+15rGpCZz0DlT9bAED99A8PxdBo5aCv5iIAAAAAAAAAqtWS4aJNbRoqWrRoUXzgAx+IO++8M77xjW/EHnvs0eAJZ4d8Ph9vectb4sYbb4wf//jH8fznP1/ICACgznoT4aKi5iImUM3nIvXZAgDqp6fUl1yjoRIAAAAAAACAarV0uGjTUNGWW24Zn/zkJ+Puu++OT37yk7Httts2eMLZ67DDDovLLrssrrjiijj00EOFjAAA6mBodCT6hgYqrrHplIlU1VwkXAQADVNNyNdzHgAAAAAAAADVaslw0aahoq222io+97nPxZ133hkf+MAHYv78+Q2esHXsv//+cfHFF8c111wTr3jFKzYKGQEAMD02nTJV+c45UeiYU3FNT3+6MQEAqI9qQr6LCl0ZTAIAAAAAAADAbNCS4aKIv4eKFi1aFP/8z/8ct99+e7zrXe+KQqHQ6LFa1t577x3f//7348orr4yDDz44yuVyRISQEQDANFSz6bQoXMQkil2VPxvVhNcAgPpIPectzBeio609o2kAAAAAAAAAmOlaLlxULpdjzpw58b73vS9uv/32+NCHPhRdXU7xbBb77rtvXHrppXHppZfG3nvvvT5kBADA5tNcxHSkPhvVhNcAgPpIPed1FzSzAwAAAAAAAFC9lgoX5XK5OPLII+PWW2+Nf/3Xf41isdjokZjEwQcfHFdffXWcffbZsWTJkkaPAwAwI6XCH4WOOZHvnJPRNMw0wkUA0LxS9+Fi3mFKAAAAAAAAAFSvo9EDZOnKK6+MZz3rWY0eg81w9NFHx2tf+9q47bbbGj0KAMCM01Pqq3i92KW1iMkVE+GiapqxAID6SD3ndXdpLgIAAAAAAACgei3VXCRYNDPl8/nYddddGz0GAMCM09NfOfyRaqahtWkuAoDm1Vvqr3jdcx4AAAAAAAAAm6OlwkUAANBKegcqhz+KeZtOmVx3oXLjQf/wYAyODGc0DQAwrlwupxsqhYsAAAAAAAAA2AzCRQAAMEulmmW6u2w6ZXLVNB70ai8CgMytGx6M4dHRims0FwEAAAAAAACwOYSLAABglurpT4SLbDqlgmoaD1IBNgCg9qoJ93rOAwAAAAAAAGBzCBcBAMAsNDQyEv3DgxXXdBfmZzQNM1E14SLNRQCQvWrCvdXcxwEAAAAAAABgnHARAADMQj0DNp0yPfmOzujqnFNxjeYiAMheqp0yFxGL8l3ZDAMAAAAAAADArCBcBAAAs1BPf19yTbdwEQmpdivhIgDIXm8iRL4w3xUdbe0ZTQMAAAAAAADAbCBcBAAAs1BvFaEPzUWkFAuVWw96SukQGwBQW6nmIs94AAAAAAAAAGwu4SIAAJiFUo0yXZ1zIt/RmdE0zFSp5qJqQmwAQG2lwr3aKQEAAAAAAADYXMJFAAAwC6VCH060pxqpzcmpEBsAUHup5zzhIgAAAAAAAAA2V0uHiy655JJGjwAAAHWRCn3YdEo1UiE04SIAyJ7nPAAAAAAAAABqraXDRYccckg84QlPiH/6p3+KO++8s9HjAABAzfSU+ipe7y7Mz2gSZrLU5uTS8FAMjAxnNA0AUC6XNVQCAAAAAAAAUHMtHS6KiPjLX/4SH//4x+MpT3lKHHzwwXHeeefFwMBAo8cCAIBp6S31V7xu0ynVqOZzktrgDADUzrqhwRgeG624RogcAAAAAAAAgM3V8uGiiL+f+Dk2Nha//vWv45hjjoltt902TjjhhLjqqqsaPRoAAExJurlIuIi07q705uQe4SIAyEw1oV7PeQAAAAAAAABsLuGiiMjlcpHL5aJcLke5XI41a9bE1772tTjggANi1113jc997nPx4IMPNnpMAACoyuDIcPQPD1VcY9Mp1ejOpz8nPf2Vg2wAQO2kAuQRGioBAAAAAAAA2HzCRfH35qKIR0NGGwaNbr755njf+94XO+ywQxxxxBHxwx/+MEZHRxs8MQAATK6aE+1tOqUaczo6oqtzbsU1mosAIDup+24uIhblu7IZBgAAAAAAAIBZQ7jo/4yHiTYNGo1fGx4ejh//+Mfxqle9Krbffvt43/veFzfddFMjRwYAgAlVE/bQXES1ursqf1Z6B4SLACArqRD5onxXtLf5J18AAAAAAAAANo//0jyBDYNGE7UZPfDAA/G5z30udt9999h///3ja1/7WqxZs6bRYwMAQERUFy7SXES1UkG0nn7hIgDISuo5zzMeAAAAAAAAAFMhXJQwUZvRhkGjq6++Ok444YTYbrvt4phjjolf/epXDZ4YAIBW11Pqq3i9q3NuzO3ozGgaZrpiPtFcVEWYDQCojVS4SDslAAAAAAAAAFMhXFSlDduMIuIxIaNSqRTnnXdevPCFL4wnPelJ8fGPfzzuvvvuBk8NAEAr6i31V7ze3WXTKdVLfV5SYTYAoHZSod5iYX5GkwAAAAAAAAAwmwgXTcGGQaOJ2ozuvPPO+Kd/+qd40pOeFC960Yvi29/+dgwODjZ6bAAAWkQq7JFqooENdSc2KafCbABA7aSbi7oymgQAAAAAAACA2US4aJomajMaDxqNjY3FL3/5y3jTm94U2223XZx00klxzTXXNHhiAABmu/SmU+Eiqpf6vJRGhqI0PJTRNADQusrlchXPeZqLAAAAAAAAANh8wkWxcShoqjZsM9rwNce/1tvbG2eccUbst99+sccee8QXvvCFePjhh2v1FgAAYL3kptMu4SKqV6wijNab+MwBANPXNzQQI2OjFddUc98GAAAAAAAAgE21dLjofe97X2y33XYThoKmo1KbUblcjhtvvDFOPfXU2H777ePVr351XHTRRTE2Njbt9wMAABHpoEcxb9Mp1aum6Uq4CADqr5r7rYZKAAAAAAAAAKaipcNF//qv/xp33313XHzxxfHqV7865syZsz4AVM82o/FrQ0ND8YMf/CBe8YpXxA477BAf/OAH49Zbb63JewMAoDUNDA9FaXio4prurvkZTcNsUE0DQqotCwCYvmrut8JFAAAAAAAAAExFS4eLIiLa2tri0EMPje985ztx3333xZe+9KXYe++9J20fmqoNg0YTtRndf//98elPfzp22WWXeM5znhNnnXVW9PX11eptAgDQImw6pdbmtHfE/Dn5imuEiwCg/lL321wuFwvzXRlNAwAAAAAAAMBs0vLhog11d3fH29/+9rjmmmti1apVccopp8RWW201afvQVE0WXBr/+pVXXhlvfetbY7vttoulS5fGb37zm2m/NwAAWkPvQH9yjXARmyvVXtRTcjACANRbbyJctCjfFe1t/rkXAAAAAAAAgM3nvzZPYrfddovPf/7zce+998YPfvCDeMUrXhHt7e0Ttg9N1YZtRhHxmJDRunXr4pvf/GYcdNBBsdNOO8UnP/nJuPfee2v1FgEAmIV6+tMhj1RQBDaVCqSlNjsDANOXai4q5j3jAQAAAAAAADA1wkUJ7e3tcfjhh8f3v//9uPfee+Ozn/1s7L777pO2D03VhkGjidqMbrvttvjIRz4ST3jCE+IlL3lJfOc734nh4eFavU0AAGaJ1KbTeXPmxpz2joymYbZIhYtSnzsAYPpSTYHaKQEAAAAAAACYKuGizbDVVlvFu9/97rjhhhvimmuuiRNPPDG6u7snDBpNx2TBpXK5HKOjo3HJJZfEG97whthuu+3i5JNPjj/84Q/Tfm8AAMwOqQaZ7sL8jCZhNkm1XQkXAUD99Zb6K17v7hIuAgAAAAAAAGBqhIumaO+9945///d/j/vuuy8uuOCCOPTQQ6Otra1ubUYbvub41x555JH48pe/HPvss0/stddecfrpp8cjjzxSk/cHAMDMlAp5ONGeqdBcBACNl2ouKuY95wEAAAAAAAAwNcJF0zRnzpx47WtfGxdffHH85S9/iX/5l3+JnXfeedL2oamq1GZULpfjhhtuiFNOOSWWLFkSr3/96+OnP/3p+vUAALSOVHNRqoEGJpIKFw2ODEdpeCijaQCg9ZTLZc1FAAAAAAAAANSNcFENbbvttvH+978/brrpprjiiivirW99ayxcuHDCYNBUTdZmNH5tcHAwvvvd78bLXvay2HHHHeP//b//F3/+85+n/+YAAJgRUifaay5iKoqF+ck12osAoH76hgZiZGy04hrPeQAAAAAAAABMlXBRney///7x1a9+Ne6///4455xz4oUvfOH6pqGI2rYZlcvlCduM7r333vVNSs9//vPj7LPPjv7+yiecAgAws6UCHjadMhXVfG5SwTYAYOqqCfFqqAQAAAAAAABgqoSL6iyfz8eb3vSm+PnPfx533HFHfOxjH4snPelJE7YP1SJotOnrjX/9t7/9bSxbtiy23XbbeMtb3hK//e1va/L+AABoHqXhoRgYGa64xqZTpqJY6Equ6enXXAQA9VLNfba7iqZBAAAAAAAAAJiIcFGGdthhh/jIRz4Sf/rTn+LXv/51HHvssdHV1TVhMGiqNmwz2vD1xr/W19cXK1asiOc///mx8847x6c+9am4//77a/L+AABorN4qTrTXXMRUdLZ3xPy5+YpregeEiwCgXlINgblcLhbNLWQ0DQAAAAAAAACzjXBRgzzvec+LFStWxF//+tc466yz4vnPf35ERF3ajMrl8oRtRn/605/iQx/6UOy4445x2GGHxX/+53/GyMhITd4fAADZ66kqXOREe6YmFUzTXAQA9ZMK8S7Kd0Vbm3/qBQAAAAAAAGBq/BfnBps3b14cd9xxcdlll8Wf//zn+H//7//FDjvsUNM2o4iY8PXGg0ajo6PxX//1X/Ha1742Fi9eHO9617ti1apV035vAABkq5rmomKhK4NJmI2K+US4qIrPHwAwNakQr3ZKAAAAAAAAAKZDuKiJPPGJT4zTTjst7rjjjrjkkkviyCOPjHw+P2H70FRt2GYUEY9pM3r44YfjS1/6Uuy1116xzz77xFe+8pXo7e2t0TsEAKCeUuGO+XPy0dnekdE0zDbdXZU3LfeW+jKaBABaTypELlwEAAAAAAAAwHQIFzWhXC4X//AP/xDnnntu/PWvf40zzjgj9t9//0nbh6aqUptRuVyO6667Lt7xjnfE4sWL48gjj4yf//znNXl/AADUR08i3GHTKdPRXZhf8brmIgCon9R91nMeAAAAAAAAANMhXNTkFixYEMcff3xcccUVccstt8T73ve+2G677SYMBk3VZG1G49cGBgbiggsuiEMPPTQe//jHx0c/+tG4/fbbp//mAACoqdSm06JNp0xDatNyb2nd+r9TAAC1lWou8pwHAAAAAAAAwHQIF80gT33qU+Nf//Vf4+67746f/OQn8ZrXvCbmzJmzPhhUyzajTV9v/Gt/+ctf4p//+Z9jp512ioMOOijOPffcKJVKNXyXAABMVWrTaXeXTadMXWrT8uDoSJSGhzKaBgBaR7lcjp6BVHNR5YZBAAAAAAAAAKhEuGgGamtri5e85CVx4YUXxn333Renn356PPOZz5ywfagWQaNNX2/867/5zW/i2GOPje222y7e9ra3xZVXXlmT9wcAwNQkm4vywkVMXaq5KCL9GQQANt/awYEYHRuruKaa+zQAAAAAAAAATEa4aIbr7u6Ok046Ka6++upYtWpVnHLKKbHVVltNGAyaqg3bjDZ8vfGvrVmzJr7+9a/Hc57znNhll13is5/9bDzwwAM1eX8AAFSnXC4ngx1OtGc6qtm0nGrPAgA2X2+pL7km1TAIAAAAAAAAAJUIF80iu+22W3z+85+Pe++9N37wgx/EK17xiujo6FgfAqplm9Gmrzf+tVtuuSXe//73xw477BCHH354/PCHP4zR0dEavksAACZSGhmKwZHhimu6u2w6Zeqqab7SXAQAtVfN/VVzEQAAAAAAAADTIVw0C7W3t8fhhx8e3//+9+Pee++Nz33uc7HHHntM2D5Ui6DRpq9XLpdjZGQkLr744njVq14VS5Ysqcn7AgBgcr2l/uSaasIhMJmO9vZYMLdQcU1PFc0KAMDmSYWL2nK5WJi4RwMAAAAAAABAJcJFs9yWW24Z73rXu+L666+Pa6+9Nk466aTo7u6eMBg0VRu2GW36euVyOR566KHpvxEAACqqJtShuYjpSrUi9GouAoCaS91fF+W7oq3NP/MCAAAAAAAAMHX+q3ML2WuvveL000+P+++/Py688MJ46UtfGm1tbXVrMwIAIDs9/elQRzHflcEkzGapcFGqWQEA2Hyp+2vq/gwAAAAAAAAAKcJFLaizszNe85rXxEUXXRR/+ctf4l/+5V9i5513nrB9aKpBIwEjAIBs9Q5U3nS6YG4hOts7MpqG2Uq4CACylw4Xzc9oEgAAAAAAAABmK+GiFrftttvG+9///rjpppvid7/7Xbz1rW+NhQsXThg0AgCgeaWai4oFrUVMX1G4CAAy15u4v3rOAwAAAAAAAGC6hItYb7/99ouvfvWrcf/998e5554bL3zhCyOXy60PGgkYAQA0Lyfak4VUc1FvaZ0WUwCosZ5SX8XrnvMAAAAAAAAAmC7hIh4jn8/HkUceGT//+c/jzjvvjNNOOy2e/OQnCxgBADSx3uSm08qhEKhGMbF5eWh0JPqHhzKaBgBmv7FyOXpL/RXXeM4DAAAAAAAAYLqEi6ho++23jw996EPxb//2bwJGAABNLN1cZNMp01fN5yjVrgAAVK9vsBSj5bGKa4qe8wAAAAAAAACYpo5GD0Dzuvnmm2PlypVx7rnnxl//+tf1Xy+Xyw2cCgCATZXL5ehNhItsOqUWqgsXrYvtF22RwTQAMPulAuQRQuQAAAAAAAAATJ9wERtZvXp1fOtb34oVK1bENddcExHCRAAAza40PBSDoyMV19h0Si0sKnQl16SCbgBA9YSLAAAAAAAAAMiCcBFRLpfj5z//eaxcuTJ++MMfxuDg4EaBolwut9FaAACaS3WbTudnMAmzXUdbeyzMF2LNQGnSNdV8HgGA6qRCu225XCzIp8O/AAAAAAAAAFCJcFEL+9Of/hQrVqyIc845J+67776ICKEiAIAZqJqmmGIVjTNQje78vMrhon7hIgColVRot5ifF20b/BseAAAAAAAAAEyFcFGLWbt2bXz729+OlStXxpVXXhkRAkUAADNdNU0xxfy8DCahFRQL8+Ku3ocnvd5T6stwGgCY3VL31WLBMx4AAAAAAAAA0ydc1CJ+8YtfxIoVK+IHP/hBlEp/P2V8PDyU2+R00+mGijZ9PQAA6iu16XTh3EJ0tLdnNA2zXXfX/IrXewc0FwFArfSW+ite7+4SLgIAAAAAAABg+oSLZrHbb789Vq5cGd/85jfjL3/5S0TUr6VosoDSM57xjFi2bNm0XhsAgMp6E81F3U60p4ZSn6eefuEiAKiVZHORdkoAAAAAAAAAakC4aJZZt25dXHjhhbFixYr47W9/GxH1CxRN9nqPe9zj4sgjj4xly5bFM57xjGl/DwAAKutJhIuKwkXUUOrz1FtaF+VyWaMpANRA6jlPiBwAAAAAAACAWhAumiUuu+yyWLlyZXzve9+L/v7+iHg07DNZq9BUTfR6bW1t8eIXvziWLl0aRxxxRMyZM2da3wMAgOrZdEqWUp+n4bHRWDc8GPPn5DOaCABmp7FyOVaX+iuu6e7ynAcAAAAAAADA9AkXzWB33XVXrFy5Mr75zW/GnXfeGRHZtxQ9+clPjuOOOy6OO+64WLJkybS/BwAAmy/dXDQ/o0loBdWE1Xr71wkXAcA0rR0sxWh5rOKaYl64CAAAAAAAAIDpEy6aYUqlUnznO9+JlStXxm9+85sol8uZB4q6urri1a9+dSxbtixe8IIXTPt7AAAwdeVyOXpTzUVOtKeGuqsIq/WU+mL74hYZTAMAs1cqQB4R0d0lRA4AAAAAAADA9AkXzRCXX355rFixIr773e9GX19fRDwa9tkwALTh16dqstfbf//9Y9myZfH6178+FixYMK3vAQBAbfQPD8XQ6EjFNU60p5YW5bsiFxGV/tZRzWZoAKCynv6+5JpqGgUBAAAAAAAAIEW4qIndc889cfbZZ8fZZ58dt912W0RE5i1F22yzTRx99NGxbNmyeNrTnjbt7wEAQG31lGw6JVvtbW2xMN8Vqwf6J12TatMCANJ6ByrfT9tzbbFgbiGjaQAAAAAAAACYzYSLmszAwED853/+Z6xYsSJ+9atfRblcnjRQFFGflqKOjo447LDDYunSpXHYYYdFe3v7tL4HAAD1U01DTHeXcBG11V2YVzFcpLkIAKavp7/y/XRRoSvaNvm3PQAAAAAAAACYCuGiJvG73/0uVq5cGRdeeGGsWbMmIh4NDmURKIqI2GWXXWLp0qVx9NFHx9Zbbz2t7wEAQDZSDTG5iFiU78pmGFpGd2Fe3Nnz0KTXhYsAYPpS91PtlAAAAAAAAADUinBRA913333xzW9+M84+++z43//934iISVuKphsomuz1Fi5cGK9//etj2bJlsd9++037ewAAkK3UptMF+UJ0tGmipLaKic3MwkUAMH29A6lw0fyMJgEAAAAAAABgthMuytjQ0FB8//vfj5UrV8all14aY2NjkwaKIurTUpTL5eLAAw+MZcuWxatf/eooFArT+h4AADROT79Np2Qv1ZSQatQCANJSz3nFgnZKAAAAAAAAAGpDuCgjV199daxYsSIuuOCC6O3tjYhHg0O1DhRt+prjr7fDDjvEscceG0uXLo0nPvGJ0/4eAAA0XvpE+8ohEJiKVGitp7Ru/cEGAMDUpMK6QuQAAAAAAAAA1IpwUR098MADcc4558TKlSvj5ptvjoiYtKWoXoGiuXPnxhFHHBFLly6NF73oRTb3AQDMMj2lvorXi8JF1EHqczUyNhp9QwOxYK6WVACYirFyWYgcAAAAAAAAgMwIF9XY8PBw/OhHP4oVK1bEz3/+8xgdHZ00UBQx/VDRZK+31157xbJly+JNb3pTFIvFaX0PAACaV0+/Tadkr5rPVU9pnXARAEzR2oH+GEv8u6EQOQAAAAAAAAC1IlxUI9ddd12sXLkyvvWtb8UjjzwSEdm3FG2xxRZx5JFHxrJly2LPPfec9vcAAKC5lcvl6C0JF5G9aj5XvaV1sWNxywymAYDZpyfxjBfhOQ8AAAAAAACA2hEumoaHHnoozj333Fi5cmXceOONEZFdoGj8Ndva2uKQQw6JZcuWxSte8Yro7Oyc9vcBAGBmWDc8GMNjoxXXdBfmZzQNrWRhvityuVzFv+dUsykaAJiYcBEAAAAAAAAAWRIu2kyjo6Px4x//OFauXBk//elPY2RkZNJAUUT9Woqe/OQnx9KlS+PYY4+NJUuWTPt7AAAw8/T2pzedFgtdGUxCq2lva4tFcwvRO9A/6ZqeUl+GEwHA7JJqp2zPtcX8uYWMpgEAAAAAAABgthMuqtKqVatixYoVcf7558fDDz8cEdm1FI2/3rx58+I1r3lNLF26NJ7//OdP+3sAADCzVRPe0FxEvRQL8yuHi6oIvwEAE0s1FxULXdG2ySFHAAAAAAAAADBVwkUVPPLII3HeeefFihUr4oYbboiI7AJFG77ms5/97Fi2bFm8/vWvj/nzbQ4FAODvUptOcxGxKK+5iProLsyLO3smv947IFwEAFOVCpELkAMAAAAAAABQS8JFmxgbG4uf/OQnsWLFirj44otjeHh40kBRRP1airbddts4+uijY9myZbHzzjtP+3sAADD79CbCRQvzXdHe1pbRNLSa7q55Fa9rLgKAqestTd4OGPH3kC8AAAAAAAAA1Ipw0f/54x//GCtXroxzzz03HnzwwYjIvqWos7MzDjvssFi2bFkceuih0d7ePu3vAwDA7JVqLrLplHoq5it/vlLhNwBgcqnmoqLnPAAAAAAAAABqqKXDRb29vXH++efHypUr49prr42I7ANFERG77rprLF26NI4++ujYaqutpv19AABoDcJFNFKyuWhgXZTL5cf8PQgASPOcBwAAAAAAAECWWjpctO2228bw8PCkgaKI2oeKxl9v0aJF8YY3vCGWLl0a++6777S/BwAArSfVDFMszM9oElpRalPz6NhYrB0ciIX5QkYTAcDsMDY2FqsH+iuu0VwEAAAAAAAAQC21dLhoaGhoffAni5aiXC4XBx10UCxbtixe/epXRz6fn/b3AQCgdaVPtO/KaBJaUXcV4bXeUp9wEQBspjWDpRhL/Puk5iIAAAAAAAAAaqmlw0XjcrlcTQJF4681bvw1d9xxxzj22GNj6dKl8YQnPKEm3wcAgNZWLperCBdpLqJ+qmlM6Cmtix27t8pgGgCYPVLPeBHCRQAAAAAAAADUlnBRTL+paKJAUT6fjyOOOCKWLVsW//AP//CYJiMAAJiOvqGBGBkbrbimmvAHTNWiuYXkQQ3VbI4GADbWW8X9syhEDgAAAAAAAEANCRdN0aZhofENdXvvvXcsW7YsjjzyyCgWiw2YDACAVlDNptPuLuEi6qetrS2K+a6KAaJqPqcAwMZS4dz2trZYMDef0TQAAAAAAAAAtALhos00UUvRlltuGW9605ti6dKlscceezRqNAAAWkg1jTDdeeEi6qu7MK/iZ1FzEQBsvp5SX8Xr3fl5WtIBAAAAAAAAqCnhoipM1FLU3t4eL37xi2PZsmVx+OGHR2dnZ4OmAwCgFaVCG7lcLhbmuzKahlZVLFQOsAkXAcDmS90/U/dfAAAAAAAAANhcwkUVTNRStNNOO8Vxxx0Xxx57bCxevLhRowEA0OJSJ9ovyndFe1tbRtPQqroTm5t7hYsAYLOl7p+p+y8AAAAAAAAAbC7hok1MFCiaN29evPa1r41ly5bFc5/73EaNBgAA6/WW+iteL+ZtOqX+ugvzK15PheAAgMfSXAQAAAAAAABA1oSLYuNAUcSjoaIDDjggli1bFq9//etj3jz/0R4AgOaRCm040Z4spJuL+mOsXI62Tf7OBQBMLhUu6u7ynAcAAAAAAABAbQkX/Z/xQNF2220XxxxzTCxdujSe+tSnNngqAACYWE+/Tac0Xqo5YbQ8FmsHS7Eo35XRRAAws42NjcXqgcoNlanmQAAAAAAAAADYXC0fLiqXy9HZ2Rkve9nLYtmyZXHooYdGW1tbo8cCAICKegcS4SLNRWSgms9Zb2mdcBEAVGn1YGn9IUiTKeY95wEAAAAAAABQWy0dLtptt91i6dKlcfTRR8eWW27Z6HEAAKAq5XI5ekqVw0WpRhmohWrCRT2ldfH47q0ymAYAZr6eUl9yjYZKAAAAAAAAAGqtpcNFq1atavQIAACw2dYODsTo2FjFNZqLyMKCfFe05XIxVqFhoZpN0gDA3/UmAuQRnvMAAAAAAAAAqL22Rg8AAABsnt5qTrQvzM9gElpdWy4XxXzlDc49/elN0gDA36XaKTva2mP+nHxG0wAAAAAAAADQKoSLAABghukp9SfXONGerBQTn7XeAeEiAKhWKpRbLHRFLpfLaBoAAAAAAAAAWoVwEQAAzDA9ieaiXC4XC+cWMpqGVtfdlWguSjQwAACPSoVytVMCAAAAAAAAUA/CRQAAMMP0JsIaxXxXtLV51CcbxXwiXJRoYAAAHlVNcxEAAAAAAAAA1JodhwAAMMOkmmC6C5XDHlBLqc9bqoEBAHhU+jlPcxEAAAAAAAAAtSdcBAAAM0yqucimU7LU3ZUIF5XWxVi5nNE0ADCzpUK5QuQAAAAAAAAA1ENHowdg6kZHR+P++++P++67L9auXRulUilKpVIMDAxEeYLNe8ccc0wDpgQAoNZSJ9oXC10ZTQLpMNtYuRxrB/pjkc3QAFDR6NhYrB7or7im6H4KAAAAAAAAQB0IF80Qt9xyS1x11VVx/fXXx/XXXx+33nprPPjggxOGiCYjXAQAMDv0lPoqXtdcRJaq2eTcU1onXAQACWsG+pP/1qe5CAAAAAAAAIB6EC5qUqOjo3HRRRfFRRddFD//+c/jnnvu2ej65oSKIiJyuVwtxwMAoEHGyuXoTZxob9MpWarm89ZTWhdPqP8oADCjpdopIzznAQAAAAAAAFAfwkVN5n//93/jq1/9apx77rnx8MMPR8TEQaLNCQttbhCpkk9/+tNx0UUXJddtvfXW8d3vfrdm3xcAgL/rGyzF6NhYxTXVNMlArSyYW4j2XFuMlif/XPZWsVkaAFpdNeEiz3kAAAAAAAAA1INwUZO45ZZb4rTTTovvfOc7MTY2tlEgqFKQKBUcqnVj0SGHHBIf/OAHK64pl8uRy+Xi17/+dbzgBS+o6fcHAGh1TrSn2bTlclEsdMXf+vsmXVPN5xYAWl0qjNvR1h7z5+QzmgYAAAAAAACAVtLW6AFa3dq1a2P58uWx++67xwUXXBCjo6PrwznjvyL+HtiZ6FfW9txzz3jZy162/ntXmunrX/965vMBAMx2wkU0o1SLQk9p8uARAPB3qftld2FezQ8SAgAAAAAAAIAI4aKG+vGPfxy77LJLnHnmmY8JFUVEQ0NElXzgAx9Y/79vGILa8Fe5XI7vfe97sXbt2gZOCgAw+6ROtG/L5WJBviujaeDvugvzK17vLfVnNAkAzFw9ifulADkAAAAAAAAA9SJc1ADlcjk+8IEPxBFHHBH33nvvpKGiZvXsZz87nvnMZ07aXjRucHAwvv/97zdqTACAWSnVXFTMz4s2J9qTsdRmZ81FAJDWm7hfppoCAQAAAAAAAGCqhIsytnbt2jj00EPjM5/5zIwLFW3oxBNPrGrdBRdcUOdJAABaSyqkYdMpjZAOF1UOxQEA6ful5iIAAAAAAAAA6kW4KENr1qyJQw45JC655JL1waKIqYeKxoNJuQacTH/kkUfGokWL1s+xqVwuF+VyOS699NJYs2ZN1uMBAMxayU2nXTadkr1UqK13oD/GxsYymgYAZqZe4SIAAAAAAAAAGkS4KCNr166NQw45JK688sqIeDR8U22oaMMgUaMCRRuaO3duvOpVr5pw/g2/NjIyEj/72c+yHA0AYFaz6ZRmlPrclcvlWDNYymgaAJh5RsfGYvVAf8U1GioBAAAAAAAAqBfhoowcddRRcdVVV23UVpSyaZBoPIw0/qujoyOKxWJst91269dn6aijjqpq3U9+8pM6TwIA0DpSzUXFvE2nZK+aUFvqswsArWz1QH+k/rVQiBwAAAAAAACAeulo9ACt4J/+6Z/ixz/+cdXBog1DQuNrd9hhhzjkkENin332ib322ise//jHx9Zbb71+XVtb9jmxAw88MLbZZpt48MEH1zcxbWj8a5qLAABqY6xcjtWlyifad3fZdEr2qmlS6Cn1xRNj6+Q6AGhFqXbKiIjuwvwMJgEAAAAAAACgFQkX1dkVV1wRH//4xzc7WFQul2PRokVxzDHHxJvf/ObYY4896j7r5srlcvGSl7wkzj777Me0JpXL5fVfe+CBB+JPf/pT7LTTTo0YEwBg1lg7WIrR8ljFNTad0gjz5xaiva0tRscm/3xqLgKAyVVzn6wmzAsAAAAAAAAAU5F93U0LGR4ejuOPP359oKhSsCiXy61v+pk7d258+MMfjjvuuCO++MUvNmWwaNxLX/rSqtZdfvnldZ4EAGD2s+mUZtWWy0V3vvJnr5pGBgBoVT2lvorXO9vaY96cuRlNAwAAAAAAAECrES6qo89//vNx0003rQ8NTWbDtqJnP/vZccMNN8THP/7xKBaLGU06dS960YvWz79pe9GGhIsAAKavp7/yptOIiG7hIhokFWzTXAQAk0vdJ4uFeRX/7Q0AAAAAAAAApkO4qE76+/vjs5/9bPI/+o8Hj8rlcpxwwgnx61//OnbaaaeMppy+YrEYu+yyS8U15XI5rrvuuowmAgCYvVLNL+25tlgwt5DRNLCxVLCtp1+4CAAmk3rOEyAHAAAAAAAAoJ6Ei+rkq1/9avztb3+LiJi0tWg8WJTL5eLDH/5wfOUrX4mOjo4sx6yJZz/72RXfY0TEzTffHCMjI1mOBQAw66RPtO+KNifa0yCaiwBg6qppLgIAAAAAAACAehEuqpPTTz+9YmvRhsGi5cuXx8c//vEMp6utfffdd8Kvbxg4Gh4ejptvvjmrkQAAZiWbTmlm3V2VP3+9A8JFADCZ1HNed2F+RpMAAAAAAAAA0IqEi+rgyiuvjDvvvDMiJm4t2jBY9JznPCe++MUvZjxhbe2yyy5Vrbv11lvrPAkAwOzWa9MpTSz1+Vs90B+jY2MZTQMAM0vyOS8R4gUAAAAAAACA6RAuqoPzzz9/0msbthnNnTs3zjrrrGhvb89irLrZeeedq1p3xx131HkSAIDZrafUV/F6t+YiGqiYr/z5K5fLsWagP6NpAGDmGBkbTd4jU/dZAAAAAAAAAJgO4aI6+OlPf7pRiGhT461FJ598cjzlKU/JcLL62GKLLeJxj3tcRETF9y1cBAAwPb2lyptOhYtopGoaFXoGKrcyAEArWj3QH4/tPt+Y5iIAAAAAAAAA6km4qMYeeOCBuO222yLi7yGiDW0YvCkUCvGe97wn09nqacmSJY95v5u69957M5oGAGD2GRsbi95EMKMoXEQDVRNu6+kXLgKATfWW0vdHIXIAAAAAAAAA6km4qMYuv/zyitfHW4te/vKXx5ZbbpnRVPW3zTbbJNc89NBDGUwCADA7rRksxVgizG3TKY00f04+OtraK66pZvM0ALSaniruj0LkAAAAAAAAANSTcFGNrVq1qqp1r3/96+s8Sba23XbbSa/lcrkol8vx8MMPZzgRAMDs4kR7ml0ul4tioavimp5SX0bTAMDMkQoXdba3x7zOuRlNAwAAAAAAAEArEi6qsdtvv33Cr+dyuY3+9wMPPDCjibIxf/785Jre3t76DwIAMEs50Z6ZoLtQ+e8FPaX+jCYBgJkjFSLvLszf6N8WAQAAAAAAAKDWhItqbLJw0YZ22mmnKBaL9R8mQ/l8PrlmcHAwg0kAAGanVLiova0t5s8tZDQNTCzVntWruQgAHiP1nJdqBgQAAAAAAACA6RIuqrH7779/0pNEy+Vy5HK5eMpTnpLxVPUnXAQAUF89iVBGd35etDnRngZLhYuqaeACgFbT0594zks0AwIAAAAAAADAdAkX1di6denNcttvv30GkzSfkZGRRo8AADBj9SZPtK8c6oAspD6HwkUA8Fip57xUeBcAAAAAAAAApku4qMaqCRfNnz/7ThstlUrJNXPnzs1gEgCA2SkVyrDplGaQ+hyuGeiP0bGxjKYBgJmhZ0CIHAAAAAAAAIDGEi6qsYGBgeSaOXPmZDBJtvr7+5Nrurq6MpgEAGB2SoWLbDqlGaTCReWIWD2Q/rsDALSKkbHRWDNQ+dAeIXIAAAAAAAAA6k24qMYKhUJyTTUtPzPNgw8+mFxTzZ8NAAATSzYXddl0SuNVE3LrKfVlMAkAzAyrS+nQrXARAAAAAAAAAPUmXFRj1bTzrFtXeWPoTHTPPfdMeq1cLkdExIIFC7IaBwBgVhkbG0u2vXQX5mc0DUyums9hKigHAK2kmvui5zwAAAAAAAAA6k24qMbmzUufJHrfffdlMEm27rjjjsjlcpNez+VysWTJkgwnAgCYPVYPltYHtidTzDvRnsabN2dudLa1V1zTK1wEAOtVEy6qphkQAAAAAAAAAKZDuKjGuru7K278LJfLcffdd2c4Uf3dc8898cgjj0REVHzvO+64Y1YjAQDMKj2lvuSa7i6bTmm8XC6X3ACtuQgAHtWbeM6b094RXZ1zMpoGAAAAAAAAgFYlXFRjT3ziEye9Nt7s87//+78xPDyc1Uh1d91111W1TrgIAGBqqml66XaiPU0i9VkULgKAR/WU+ite7y7Mq9gWDgAAAAAAAAC1IFxUY0960pMm/PqGjT5DQ0Nxww03ZDVS3f3iF7+oat1OO+1U50kAAGanVBijo6095s/JZzQNVJZsLupPN3EBQKtINRel7qsAAAAAAAAAUAvCRTU2WbhoU5dcckmdJ8nOT37yk6pOUN1nn30ymAYAYPbp6a8cLioWupxoT9PoLsyveL13oHJDAwC0klSIXDslAAAAAAAAAFkQLqqxZz7zmVWt+9GPflTnSbJx3XXXxW233RYRG7czRcRGG1yLxaLmIgCAKUpvOq0c5oAsdXclmosSDQ0A0Ep6hYsAAAAAAAAAaALCRTW21157RaFQiIh4zOnx5XI5crlclMvl+P3vfx8333xzI0asqTPPPLPi9fH3rLUIAGDqbDplJinmK38e1wyUYmRsNKNpAKC5pULkRc95AAAAAAAAAGRAuKjGOjo6Yt99931Mi89EvvzlL2cwUf089NBDcd555z0mRDWRF7/4xRlMBAAwO9l0ykySai6KiFg90J/BJADQ3EZGR2PNYKniGg2VAAAAAAAAAGRBuKgOUkGa8faib3zjG3HXXXdlNFXtffKTn4x16/6+0TUVpnrlK1+ZxUgAALNSb6mv4nXNRTSTaj6PPf2VA3MA0Ap6B9L3Q895AAAAAAAAAGRBuKgOXv/61096bcMQztDQUJx66qlZjFRzf/zjH+M//uM/Jm0tGg9QRUTssssu8aQnPSnL8QAAZo3RsbFky4tNpzSTahoWUm1cANAKekvpJj8NlQAAAAAAAABkQbioDp70pCfFPvvsE+VyecLwzfjXy+VyfP/734/zzjuvAVNO3ejoaBx77LExNDQUEZVbi3K5XLzpTW/KajQAgFlnzUB/VO6IFC6iuXR1zonO9vaKa1JtXADQCnqquB96zgMAAAAAAAAgC8JFdXLssccm14wHjJYvXx433HBDBlPVxtvf/va47rrrNmon2tCGgaq5c+fGW9/61izHAwCYVappeHGiPc0kl8sl24t6qmhqAIDZLvWcN7e9IwqdczKaBgAAAAAAAIBWJlxUJ29+85tjq622ioiYtL1o/FpfX18cdthhcdttt2U641R8+tOfjq9+9asTvqcNjbczveENb4gtttgio+kAAGafasJFqSAHZC3VsqC5CAAiehPPecXCvOS/wQEAAAAAAABALQgX1Uk+n4+TTz55wmafcRsGjO6777547nOfG6tWrcpqxM122mmnxQc/+MH1mxpSrUVtbW1x6qmnZjYfAMBslNp02tnWHvPmzM1oGqhOKlxUTWgOAGa71P0wdT8FAAAAAAAAgFoRLqqjd7zjHbH11ltHxMTtRREbB4weeOCBOOCAA+Kcc87JbMZq9PX1xVFHHRUf+9jH1s+bCk3lcrk49thjY9ddd81qTACAWakn0fDiRHuaUVG4CACSUvfDonZKAAAAAAAAADIiXFRHCxcujM9+9rMVgzgRGweM+vv747jjjotXvOIVcffdd2cxZkUXX3xxPOMZz4hvfetb60NDk72fDTe1zps3Lz7xiU9kNSYAwKzlRHtmotTnMtXIBQCtIHU/9JwHAAAAAAAAQFaEi+rsqKOOigMPPHB9MGcyGwaMyuVyXHTRRbHzzjvHSSedFHfccUdW4653ySWXxAtf+MI4/PDD4/bbb08Gi8aNrzvttNNim222yWhaAIDZK32ivU2nNJ/uRNPCmsFSjIyOZjQNADQnz3kAAAAAAAAANAvhogysWLEitthii4iIzQoYDQ4OxhlnnBE77bRTvPCFL4yzzjor7r///rrNed1118VHP/rR2HnnneMlL3lJ/OpXv1ofFkoFi8av53K5eOELXxinnHJK3eYEAGgl6RPtK4c4oBGqaVroHdBeBEDrGhkdjbWDpYprNBcBAAAAAAAAkJWORg/QCh7/+MfHeeedFy996UuTDUAbBozG/+9yuRy/+tWv4le/+lVERDz96U+PffbZJ/bee+948pOfHDvuuGNVc9xxxx1RKpWiv78/HnjggbjnnnvijjvuiOuuuy6uu+666Onp2WiGTeeYzIaBqS233DLOPvvsquYBACAtdaJ9d6Ero0mgetU0LfSU1sWW8xZmMA0ANJ9qQrbdXcJFAAAAAAAAAGRDuCgjL37xi+MTn/hEfPCDH6zYXjRuw8ag8f973E033RQ333xznHPOOY/5PRO9zvj/fMpTnlLx+43bcL5KoaIN15bL5SgUCvG9730vtt1224q/BwCA6oyMjcaagf6Ka4qai2hCVTUXJYJzADCbpQLkERHFvHARAAAAAAAAANloa/QAreT9739/fOhDH3pMcGgy461FEbF+/aaNRhuuSdn092z4a7LXr2TDte3t7XHeeefFc5/73KpmAQAgbfVAf6Se9JxoTzMqdM6Jue2Vz7KoZlM1AMxW1dwHPecBAAAAAAAAkBXhooz98z//c7z3ve/dKDSUUikIVE1IadxEv2+ywFI1rzX+e9ra2uKMM86II444oqo5AACoTjXNLtU0xEDWcrlcFBOfTeEiAFpZT3/l++Dcjs4odMzJaBoAAAAAAAAAWp1wUQN86lOfis997nPR1vb3P/5qw0HjJmoemurv29zX2HDecrkcc+fOjQsvvDDe/OY3b9Z7AAAgrZrwRSrAAY2SCr71lPoymgQAmk/vQOXnvGK+a7P/zRAAAAAAAAAApkq4qEHe9a53xUUXXRSLFi3aqI2o2W0YLNpiiy3iZz/7WbzqVa9q8FQAALNTKlzU2d4e8zrnZjQNbJ5iYX7F672l/owmAYDmkwrZdndVvo8CAAAAAAAAQC0JFzXQIYccEtdee20cfPDB65uDmjVktOFc5XI5Dj744Fi1alU8//nPb/BkAACzV28iXNRdmN+Uz44QobkIACrp6U8952mnBAAAAAAAACA7wkUN9sQnPjEuvfTSOOOMM2LBggVNFzLaNFRUKBTiM5/5TFxyySWx3XbbNXg6AIDZLdVcVCx0ZTQJbL5iMlxU+fMNALNZ74BwEQAAAAAAAADNQ7ioSRx//PFx++23x6mnnhr5fP4xIaOsg0abhooiIo499tj405/+FKeeempTBJ8AAGa7nv7KzS7dhfkZTQKbL7Upum9wIIZHRzKaBgCaSzpELlwEAAAAAAAAQHaEi5rI4x73uPjMZz6zPmS0xRZbRLlcnjBoVOtwz0SvXS6Xo7OzM4466qi47rrrYsWKFdqKAAAy1JvYdOpEe5pZd1f689k70J/BJADQXIZHR6JvcKDiGs95AAAAAAAAAGRJuKgJbbPNNvGZz3wm7r333vj2t78dhxxySHR2dm4UNIp4bCBoOr8iYv3rl8vl2HnnneO0006Lu+++O775zW/Gnnvu2ag/DgCAltUzIFzEzFVNs1ZPf+XPOADMRtWEazVUAgAAAAAAAJCljkYPwOQ6Ozvjda97Xbzuda+LdevWxS9+8Yv46U9/Gv/93/8dt956a4yOjj7m91TTaLRhQGncwoULY5999okXvehFccQRR8TOO+9ck/cAAMDUjIyNxpqBUsU1ReEimlix0JVc01vqy2ASAGgu1YRrPecBAAAAAAAAkCXhohli3rx5cfjhh8fhhx8eEREDAwNxww03xA033BB33HFH3HPPPXHPPffE/fffH319fVEqlWJgYCAGBwejs7Mzurq6olAoxPz582PJkiWx4447xo477hhPecpTYp999omnPe1pVQWTAADIxupSNSfa23RK8yp0zIm5HZ0xODI86ZqeKj7nADDbVBOu9ZwHAAAAAAAAQJaEi2aofD4f++23X+y3336NHgUAgDroKaVPtO8uzM9gEpiaXC4X3YV58de1vZOu6dFcBEALSoVr8x2dUeick9E0AAAAAAAAABDR1ugBAACAx6ouXOREe5pb6jPaW8XnHABmm1S4tugZDwAAAAAAAICMCRcBAEAT6k1sOp3T3uFEe5peanN0NSE6AJhtUuFaAXIAAAAAAAAAsiZcBAAATSgVuuguzItcLpfRNDA1mosA4LGqec4DAAAAAAAAgCwJFwEAQBOy6ZTZoLswv+J1zUUAtKJUuDbV/AcAAAAAAAAAtSZcBAAATcimU2aDVAiub2gghkZHMpoGAJpDOkReOZwLAAAAAAAAALUmXAQAAE1IcxGzQTUhuFSQDgBmk6HRkegbGqi4xnMeAAAAAAAAAFkTLgIAgCaUChcVnWjPDFDN5mjhIgBayepSf3KNcBEAAAAAAAAAWRMuAgCAJjMyOhprB0sV19h0ykxQTXNRKkgHALNJT6kvuaaa+ycAAAAAAAAA1JJwEQAANJnegXTYQriImaDQOSfyHZ0V1wgXAdBKqrnvCRcBAAAAAAAAkDXhIgAAaDI2nTKbpIJw1TQ4AMBs0Zt4zit0zIlC55yMpgEAAAAAAACAvxMuAgCAJlNNuKi7S7iImaG7ML/i9d5Sf0aTAEDjpZ7zioWujCYBAAAAAAAAgEcJFwEAQJNJnWg/t6MzCh1OtGdmSLVsaS4CoJWkwkWpUC4AAAAAAAAA1INwEQAANJnkifb5rsjlchlNA9PTnQwXpZu6AGC2SIXIU6FcAAAAAAAAAKgH4SIAAGgyqSaX7i4n2jNzpDZJpzZZA8Bskm4uEi4CAAAAAAAAIHvCRQAA0GR6+m06ZfZIfV7XDQ3G0MhIRtMAQGOlQuSaiwAAAAAAAABoBOEiAABoMr0DlcNFxbxNp8wc1TRt9SQ+8wAwGwyNjsS6ocGKa4TIAQAAAAAAAGiElgoX7b///nHllVc2egw2Q39/f/zjP/5jfPazn230KAAAmekpJZqLumw6ZeYo5ruSa3r6K7c4AMBs0Jt4xosQLgIAAAAAAACgMVoqXPT73/8+nvOc58Qb3/jGuOuuuxo9DglnnXVW7LTTTvGJT3wi+vv7Gz0OAEAmhkdHom9woOIam06ZSar5vPYOeN4HYPZLBcgjIoqe8wAAAAAAAABogJYKF4278MIL42lPe1qccsop8dBDDzV6HDbxgx/8IHbfffd461vfGvfff3+jxwEAyFQ1IYvuwvwMJoHayHfOiULnnIprNBcB0AqqCRcJkQMAAAAAAADQCC0ZLiqXyzE4OBinn356PPnJT45//Md/jNWrVzd6rJZ36aWXxv777x+vfvWr449//GOUy+VGjwQAkLmefifaM/ukNkr3VrHZGgBmutT9rtAxJ/KJQC4AAAAAAAAA1ENLhotyuVzkcrkol8vR19cXn/jEJ+IJT3hC/OM//mP09PQ0eryW81//9V/xnOc8Jw455JC4+uqr14eKcrlcgycDAMhebynd4OJEe2aaVCCumiYHAJjpehLPecUuz3gAAAAAAAAANEZLhos2DK+Mh4xWr169PmT0wQ9+MO6///4GTzm7lcvl+N73vhf77rtvHHbYYXHllVdGuVyOcrm8/v8vAACtKBWyyHd0RsGJ9swwqUCccBEArSDVUClADgAAAAAAAECjtGS4KCLWB1kiNg4ZrV27Nj796U/HE5/4xHjzm98cf/zjHxs86exSKpXiy1/+cjz1qU+N173udXHttdc+JlS04f9vAABaTSpkYdMpM1F3YX7F673CRQC0gN4Bz3kAAAAAAAAANKeWDReNmyxkNDQ0FCtXrow99tgjDjnkkPjRj34k8DINt912W5x66qmx/fbbx8knnxy33XabUBEAwARSIYuiTafMQOnmor6MJgGAxkmFyD3nAQAAAAAAANAoHY0eoBHGgywb2jRgtOHXLr300rj00ktjhx12iBNOOCGOOeaYWLx4cbZDz0AjIyPx4x//OM4888y45JJLHhPkGidQBADwKM1FzEapzdL9w0MxODIcczs6M5oIALLX0+85DwAAAAAAAIDm1FLNRVtsscWE4ZYNTdZkVC6X4+67744Pf/jD8fjHPz5e+tKXxve+970YGhrKbP6Z4oYbboh3vetdsXjx4njNa14TP//5z2NsbGyjlqKIqNhUtGn4aMstt8xkdgCARkuHi+ZnNAnUTjWbpVOtXQAwkw2NjET/8GDFNZ7zAAAAAAAAAGiUlgoX3XrrrXHcccet/783DLpsajz4smEgZjxoNDo6Gj/72c/ida97XWy99dZx3HHHxX/913/F6OhoRu+k+dx6663xsY99LHbZZZfYe++940tf+lI8/PDDj/kzjKgcKoqIjdbtuOOO8YMf/CBOPPHETN4HAECjpQIWqQYYaEbVhItSwToAmMl6BtL3Oc95AAAAAAAAADRKS4WLHve4x8VZZ50Vl112WTztaU97TEPRZCq1Ga1ZsybOOeecOOyww2LrrbeOo48+Or773e9GX19fJu+pka666qr40Ic+FLvttlvssssucdppp8Utt9wyYSgrorpQ0fifbXt7e7znPe+Jm266KQ4//PCs3hIAQEMNjY5E39BAxTXVhDSg2VSzWVq4CIDZrKc//W+FnvMAAAAAAAAAaJSORg/QCM973vNi1apVcfrpp8dpp50Wvb29GwVbJjNZGGn86z09PXH++efH+eefH52dnbHffvvFQQcdFAceeGAccMABMWfOnPq+sTq7+eab41e/+lX86le/il//+tfxt7/9LSJioz+zTUNalf48N/0942tf/OIXxxe+8IV42tOeVqvRAQBmhFRrUYRNp8xMczs6o6tzTvQPD026pqc0+w9oAKB19Q70J9doLgIAAAAAAACgUVoyXBQR0d7eHqecckocffTR8aEPfSi+8Y1vxNjY2GOCLhPZNEwzUdBoaGgoLr/88rj88svj4x//eMydO3ejsNFee+0VCxYsqNO7m77R0dG4+eab4/LLL4/LLrssLrvssnjooYfWX9/0z2eiP4OUTX/PTjvtFJ/73OfiZS972TSnBwCYmaoJF9l0ykzVXZgf/cOPTHq9t5TedA0AM1WquajQOSfyHZ0ZTQMAAAAAAAAAG2vZcNG4LbbYIr761a/GO97xjnj/+98fP/3pTzcKDKWCMtUEjSIiBgYG4je/+U385je/iY997GMREbHjjjvGHnvsEXvssUfsvvvusccee8RTn/rUaGtrq+VbTPrrX/8aq1at2ujXLbfcEsPDwxO+l4ipNRRN9HvL5XJstdVW8ZGPfCROOOGE6Oho+Y8kANDCejQXMYsVC/Pi3jWTh4s0FwEwm6VC5J7xAAAAAAAAAGgkSY7/s9tuu8XFF18cl112Wbzvfe+La665ZrNCRpuu2TRoNNFr3HXXXXH33XfHRRddtP5rc+bMiSVLlsSSJUti++23X/+/j/9asGBBFAqFyOfzUSgU1v8aNzQ0FKVSaaNf/f398eCDD8Y999wT9957b9x7773r//d77rkn1qxZU3HO8fdT6f1WY9NQ0bx58+Ld7353vPe974358+dv1msBAMxGqXBRoWNO5DvnZDQN1FZq03Q14ToAmKlS9znhIgAAAAAAAAAaSbhoEwceeGD8/ve/jx/+8IfxsY99LK6//vrNDhlNtG6isNFE6wYHB+P222+PO+64Y7Pm7uzsjNHR0RgbG6v691R6L7UIE030WuVyObq6uuKkk06K9773vbHllltO6TUBAGajVHNLscumU2Yu4SIAWlnqPlcULgIAAAAAAACggdoaPUCzesUrXhHXXXddfO9734tnPOMZUS6Xo1wurw8JTRS+qWT892/4KyI2er0Nf020vtKvoaGhGB0d3azfU+n7TzTz5tr0tebNmxfvec974o477ohPfepTgkUAAJvoLfVXvO5Ee2ay1KbpXuEiAGax1H2uu6DVGwAAAAAAAIDGES5KeOUrXxnXXntt/PSnP40DDzxwwmDOVE0W+Nnwtev9a7I5ptNStGlAasstt4yPf/zjcffdd8enP/3p2Gqrrab8ZwYAMJslm4vywkXMXN1dlTdNl4aHYmB4KKNpACBbqec8IXIAAAAAAAAAGkm4qEqHHHJI/PKXv4zf//738cY3vjE6OjombP+Zrs1tLNo0CDSd3zsdE4WVdttttzjjjDPirrvuig9/+MNRLBZr8r0AAGarntSJ9l02nTJzFfNdyTWpnwEAmIkGR4ajPxGgFS4CAAAAAAAAoJGEizbTPvvsE+edd17cfffd8dGPfjS22267mrYZTVUtg0LVmqgBqb29PV75ylfGL3/5y1i1alUcf/zxkc/nM50LAGCm6ulPhItsOmUGSzUXRUT0DvRnMAkAZKu3ivBs0XMeAAAAAAAAAA0kXDRF22yzTXz0ox+Nu+++O374wx/G4YcfHu3t7etDPhsGbxoRNqqXiQJF5XI5nvrUp8anPvWp+Mtf/hLf+9734sADD2zsoAAAM8zQyEj0Dw9WXFPM23TKzNVdxee3p78vg0kAIFvVNPMJkQMAAAAAAADQSB2NHmCma2tri5e//OXx8pe/PB588MH41re+FRdccEFceeWV69dsGjDKumFoOiYKRo3Pv80228TrXve6eOMb3xj7779/1qMBAMwqPQNVbDqtovkFmtWcjo6YN2durBuaPERXzeZrAJhpNBcBAAAAAAAA0OyEi2po6623jne+853xzne+M+6666747ne/Gz/84Q/jiiuuiLGxsYh4bNAoornCRpXCRBERO+ywQxx++OHxqle9Kl7wghdEW5vyKwCAWqimscWJ9sx0xcK8iuGiajZfA8BMkwrPdnXOibkdnRlNAwAAAAAAAACPJVxUJ49//OPj1FNPjVNPPTX+9re/xcUXXxw/+9nP4pe//GU88MAD69dNFDYaV8/Q0WTfc9PvO2fOnNh///3jRS96URx22GHxjGc8o24zAQC0st6B/uQaJ9oz03UX5sW9qx+Z9LrmIgBmo9T9rbugnRIAAAAAAACAxhIuysAWW2wRxxxzTBxzzDEREXHjjTfGZZddFldccUX87ne/i7vuuusxv6dS6KiWNg0wzZs3L571rGfFAQccEM973vPiec97XnR1ddV9DgCAVpdqLip0zom8E+2Z4VKbpzUXATAbpe5vAuQAAAAAAAAANJpwUQPstttusdtuu8Xb3/72iIj461//Gn/4wx/ihhtuiBtuuCFuuumm+POf/xylUin5WhMFkKppPMrlcrHDDjvE0572tNh9991jzz33jD333DN23XXXaGtr2/w3BQDAtKQ2nXbbdMoskPoc95Qqh+wAYCZK3d885wEAAAAAAADQaMJFTWDbbbeNQw89NA499NCNvn7vvffG7bffHvfcc0/ce++9cf/998dDDz0Uq1evjt7e3ujr64vBwcEYHh6OkZGRaGtri87OzpgzZ04UCoVYtGhRFIvFeNzjHhfbbrttLF68OJYsWRKPf/zj48lPfnLMnTu3Qe8YAIBN9QgX0QJSzQypnwMAmIk85wEAAAAAAADQ7ISLmtiSJUtiyZIljR4DAIAMpDedzs9oEqif1ObpgZHhKA0PRaFzTkYTAUD9pZ7zUuFbAAAAAAAAAKi3tkYPAAAARPTadEoLqKaZIfWzAAAzyXhwthLNRQAAAAAAAAA0mnARAAA0gZ5SX8XrNp0yG1QTkku1OwDATFJNaFaIHAAAAAAAAIBGEy4CAIAGGxwZjn4n2tMCqgsXVQ7aAcBMUk1otrtrfgaTAAAAAAAAAMDkhIsAAKDBnGhPq5jT3hHz5+Qrrukt9Wc0DQDUXzXPed15z3kAAAAAAAAANJZwEQAANFhVJ9oLFzFLpD7LmosAmE1S97Wuzrkxp6Mjo2kAAAAAAAAAYGLCRQAA0GDVhIs0FzFbpD7L1fw8AMBMkbqvdXd5xgMAAAAAAACg8YSLAACgwXoTm067OufG3I7OjKaB+ko3FwkXATB7pJ7ztFMCAAAAAAAA0AyEiwAAoMGSJ9rbdMoskmouSm3CBoCZJPWcV8x7zgMAAAAAAACg8YSLAACgwXpKfRWvp8IYMJN0F+ZXvN5TWhflcjmjaQCgvpIh8i7PeQAAAAAAAAA0nnARAAA0mOYiWkl3oavi9cGR4SiNDGU0DQDUV6qRLxW6BQAAAAAAAIAsCBcBAECDJTedOtGeWaRYxSbq3lJ/BpMAQH0NDA9FabhyYFZDJQAAAAAAAADNQLgIAAAaLNVcVMzbdMrsUU1YrqfUl8EkAFBfqWe8CA2VAAAAAAAAADQH4SIAAGigak607+5KN73ATFHMdyXX9PSnN2MDQLNLtVNGCBcBAAAAAAAA0ByEiwAAoIGcaE+r6WzviPlz8xXXVPNzAQDNrpr7WdFzHgAAAAAAAABNQLgIAAAaqHegP7nGplNmm1RgrpqmBwBodqlw0bw5c2NOe0dG0wAAAAAAAADA5ISLAACggXr6+5JruvPCRcwu3YX5Fa9rLgJgNkiFZVP3QwAAAAAAAADIinARAAA0UFUn2nc40Z7ZJd1clA7dAUCzSz3npe6HAAAAAAAAAJAV4SIAAGig3gEn2tN6ionN1JqLAJgNUs1FqfshAAAAAAAAAGRFuAgAABqopz+16bQro0kgO+nmonVRLpczmgYA6qMn0cSnuQgAAAAAAACAZiFcBAAADZQ60V5zEbNRajP14OhIlIaHMpoGAOqjt9Rf8bpwEQAAAAAAAADNQrgIAAAayIn2tKJiFZ/rnkTwDgCaWWl4KEojlYOy1dwPAQAAAAAAACALwkUAANBATrSnFVXzuU4F7wCgmaXaKSM85wEAAAAAAADQPISLAACgQZxoT6sq5tOf61TwDgCaWXXhovkZTAIAAAAAAAAAacJFAADQIE60p1V1tLfHwrmFims0FwEwk/VU8Zy3qNCVwSQAAAAAAAAAkCZcBAAADVLNplMn2jNbpVq5qvn5AIBmlbqPzZ+TjzntHRlNAwAAAAAAAACVCRcBAECDVNNc5ER7ZqtUK5dwEQAzWaqBTzslAAAAAAAAAM1EuAgAABrEifa0stSm6mrCdwDQrFL3sVSDHwAAAAAAAABkSbgIAAAaxIn2tLJiYX7F65qLAJjJUvcxz3kAAAAAAAAANBPhIgAAaBAn2tPKugtdFa/3lPqiXC5nNA0A1FYqXOQ5DwAAAAAAAIBmIlwEAAAN4kR7WlmquWh4dDT6h4cymgYAaisVIu9O3AcBAAAAAAAAIEvCRQAA0CBOtKeVVROe6yn1ZTAJANRWaXgoBkaGK65JNfgBAAAAAAAAQJaEiwAAoEHSzUVOtGf26u6qJlxU+WcEAJpRNfevVIMfAAAAAAAAAGRJuAgAABqgNDwUg6kT7asIX8BMtSjfFbnEmp5+4SIAZp7eKsJFnvMAAAAAAAAAaCbCRQAA0ABVnWift+mU2aujrT0W5AsV1/QOCBcBMPP0lPqSa4r5rgwmAQAAAAAAAIDqCBcBAEADVLPp1In2zHbdhfkVr2suAmAmSoXI58/NR2d7R0bTAAAAAAAAAECacBEAADRANaEJJ9oz23UXKgfoqgnhAUCz6U2Ei1L3PwAAAAAAAADImnARAAA0QO+AE+2hmNhcndqcDQDNKNVcVMwLFwEAAAAAAADQXISLAACgAVLNRU60pxWkm4uEiwCYeVL3r+4uz3kAAAAAAAAANBfhIgAAaIDkptPC/IwmgcZJhYt6S+uiXC5nNA0A1EZPf1/F657zAAAAAAAAAGg2wkUAANAAvQOai6CY+JwPj43GuqHBjKYBgOkrl8vRO9BfcU0x7zkPAAAAAAAAgOYiXAQAAA2QOtE+FbqA2aCaEF1PqfLPCgA0k9LIUAyODFdc093lOQ8AAAAAAACA5iJcBAAAGSuXy9Fb0lwE3YX5yTWpnxUAaCY9/en7luc8AAAAAAAAAJqNcBEAAGSsNDwUg6MjFdfYdEorWJTvilxiTY9wEQAzSO+AcBEAAAAAAAAAM49wEQAAZKyasEQ1jS4w07W3tcXCfFfFNcJFAMwk1TQXFfPCRQAAAAAAAAA0F+EiAADIWG8VYYlioXLgAmaLVHuDcBEAM0nqvrVgbiE62tszmgYAAAAAAAAAqiNcBAAAGasmLOFEe1pFKlxUTRgPAJpF6r6Vuu8BAAAAAAAAQCMIFwEAQMZ6Sn0Vry90oj0tpFiYX/G65iIAZpLUfasoXAQAAAAAAABAExIuAgCAjDnRHh7VXeiqeD0VxgOAZtKbuG95zgMAAAAAAACgGQkXAQBAxpxoD4/qTjQX9Zb6o1wuZzQNAExP6jlPuAgAAAAAAACAZiRcBAAAGbPpFB6VCtONjI1G39BARtMAwNSVy+VkQ6UQOQAAAAAAAADNSLgIAAAylt50WrnJBWaT7q70JutUIA8AmkFpeCgGR0cqrhEiBwAAAAAAAKAZCRcBAECGyuVyFc1FXRlNA43Xna8iXNQvXARA86smDNstRA4AAAAAAABAExIuAgCADPUPD8VQ4kR7zUW0koX5rsjlchXX9A4IFwHQ/FLtlBERRSFyAAAAAAAAAJqQcFEdrFy5Mj7/+c/HI4880uhRAABoMj2lvuSa7kK6yQVmi/a2tliUr7zRupqfGwBotGqai4pVNPYBAAAAAAAAQNaEi+rgrrvuive+972xZMmSOOqoo+I3v/lNo0cCAKBJVHOifXeXTae0llSgrqdfcxEAzS8Vhl04txAd7e0ZTQMAAAAAAAAA1RMuqpNyuRyDg4PxrW99Kw466KDYZZdd4gtf+II2IwCAFpc60T4XkWxxgdkm1eJQTSgPABotdb8qaqcEAAAAAAAAoEkJF9VRLpeLcrkc5XI5brnlljj11FNj++23j2OOOSYuv/zyRo8HAEADpMJFC/KF6Ghzoj2tJdXWlfq5AYBmkLpfpZr6AAAAAAAAAKBRhIvqLJfLrf9VLpdjYGAgzjvvvHjBC14Qu+66a3zpS1+K3t7eRo8JAEBGevpTm07nZzQJNI/UZmvNRQDMBMJFAAAAAAAAAMxUwkV1Nt5cFBEbhYzK5XLcfPPN8a53vSuWLFkSxx13XFxxxRUNnhYAgHrrHbDpFDaVCtX1DKyLsf/7exUANKtUGLYoRA4AAAAAAABAkxIuyshEIaPxr5dKpTjnnHPiec97Xuy+++7x7//+77F69epGjgsAQJ30lPoqXi8KF9GCioWuitdHx8aib7CU0TQAsPnK5XIVzUWV73cAAAAAAAAA0CjCRRkbDxmVy+X1IaMN24z++Mc/xjvf+c5YvHhxLFu2LH73u981emQAAGqop19zEWwq1VwUkW6DAIBG6h8eiqHRkYprNBcBAAAAAAAA0KyEixoo1WZ09tlnx3Of+9zYY4894itf+UqsWbOmkeMCADBN5XI5egeEi2BT1XzuU20QANBI1YRgPecBAAAAAAAA0KyEi5pAqs3oxhtvjHe84x2xePHiePOb3xxXXXVVo0cGAGAK1g0PxvDoaMU1RZtOaUEL5xbWH7YwGeEiAJpZT6kvuUa4CAAAAAAAAIBmJVzUZCq1GfX398fKlSvjgAMOiGc84xlxxhlnxNq1axs5LgAAm6G334n2MJG2trYo5rsqrhEuAqCZVXOfWlSofK8DAAAAAAAAgEYRLqqzDZuINkeqzWjVqlVx0kknxeLFi+Otb31rXH311XV6BwAA1Ep1J9rPz2ASaD6pYF2vcBEATSx1n1qYL0RHW3tG0wAAAAAAAADA5hEuqoN3vvOd8W//9m+xyy67TNpEtDkqtRmtW7cuzjrrrNh///1j7733jjPPPDP6+tKbVgEAyF5Pqb/i9VxELEq0t8BslQrWaS4CoJml7lPdee2UAAAAAAAAADQv4aI6KBaL8c53vjP+53/+Jy6//PI46qijIp/PPyYgVOs2o+uvvz6WL18eixcvjre97W1x7bXX1uPtAQAwRb2J5qKF+a5ob/OITmsqFioH66pp/gKARkmFi4qJhj4AAAAAAAAAaCQ7F+vsgAMOiG9+85tx7733xhe+8IVM2oz6+vri61//euy7776xzz77xNe+9rVYt84p3wAAjZY80d6mU1qY5iIAZrJUCLa7q/J9DgAAAAAAAAAaSbgoI8ViMU4++eT1bUZHH310Jm1G1113XZxwwgmxePHiWL58efzhD3+ox9sDAKAKwkUwudTnf3WpP8b+7+9PANBsekv9Fa8X857zAAAAAAAAAGhewkUNcMABB8TZZ58d9913X3zhC1+IXXfdte5tRmvXro0zzzwz9tlnn3jWs54V3/jGN6K/v/KmBwAAaqs3ES4qJppbYDYrJsJFo+WxWDtYymgaAKheuVyuorlIuAgAAAAAAACA5iVc1ECLFi2Kk08+OVatWhW//e1vM2szuvbaa+P444+PxYsXx0knnRTXX399Hd4dAACbSjcXdWU0CTSfapq7Uj9DANAI64YHY3h0tOIaDZUAAAAAAAAANDPhoibx7Gc/e32b0Re/+MVM2ozWrFkTZ5xxRjzzmc+M/fbbL1asWBGlkpPAAQDq4e8n2qfCRZqLaF3VbLpOtX8BQCNUc38SLgIAAAAAAACgmQkXNZlFixbFO97xjvVtRsccc8z6NqNNm4g2R6rN6Oqrr463vOUtsXjx4vXfHwCA2lk3NBgjY5VPtC/adEoLW5DvirbE33N6Sn0ZTQMA1aumWc9zHgAAAAAAAADNTLioiT372c+OlStXrm8z2n333eveZrR69er4yle+Envttdf6NqWBgYHavSkAgBZVTSjCifa0srZcLrnxuqdfcxEAzSd1f8pFxKJ8VzbDAAAAAAAAAMAUCBfNAONtRjfccENcccUVmbUZ/f73v49ly5bF4sWL4+STT44bb7yxTu8QAGD2q+ZEe+EiWl0xnwgXVfFzBABZ6x2ofH9amO+Kjrb2jKYBAAAAAAAAgM0nXDTD7L///rFy5cq4//7740tf+lJd24zGv9bb2xtf/vKXY88994znPOc5cc4558Tg4GBN3xcAwGyXCkXkcrlY6ER7Wlx3V+VwUWrzNgA0Qqq5KNXMBwAAAAAAAACNJlw0Qy1cuDDe/va3r28zOvbYYzNpM7ryyivjuOOOi+222y5OOeWUuOmmm+r0DgEAZpfeRLhoUb4r2ts8ntPaUu1dqc3bANAIPaW+ite1UwIAAAAAAADQ7OxenAX233//WLFiReZtRqeffnrsvvvu8bznPS/OPfdcbUYAABWkmouKeZtOobswv+L1VEgPABoh1awnXAQAAAAAAABAsxMumkUmajMqFAp1bzMa/16LFy+Od7/73XHLLbfU6R0CAMxcTrSHtGKhq+L13oF1MTY2ltE0AFCdVLNe0XMeAAAAAAAAAE1OuGiWGm8zuu++++JLX/pS7LHHHnVvM+rp6YkvfvGLseuuu8YLXvCCOP/882NoaKim7wsAYKZKbTrt7rLpFFLNRWPlcqwdLGU0DQCklcvlZLOeEDkAAAAAAAAAzU64aJYbbzO6/vrr43e/+10cd9xxmbQZXX755XH00UfH4sWL4z3veU/ceuutdXqHAAAzQ++ATaeQUs3PQU9iAzcAZGnd0GAMj41WXJMKzwIAAAAAAABAowkXtZD99tsvzjrrrLjvvvvi9NNPz6TN6JFHHol/+7d/i1122SUOPPDA+Pa3vx3Dw8M1fV8AAM2uXC4nAxFF4SKo6udAuAiAZpJqLYqIKBa6MpgEAAAAAAAAAKZOuKgFLVy4ME466aTM24z++7//O970pjfFkiVL4n3ve1/86U9/qtM7BABoLmsHB2J0bKziGs1FELFgbiHac5X/mipcBEAz6Sn1JddoLgIAAAAAAACg2QkXtbhN24z23HPPurcZPfzww/G5z30unva0p8XBBx8c3/nOd2JkZKSm7wsAoJn0DqTDEDadQkRbLpdsd6imIQIAspIKveYiYlFecxEAAAAAAAAAzU24iIh4tM3oD3/4Q1x55ZUTthlNRarN6Ne//nW84Q1viO233z4+8pGPxF//+tcavzMAgMbr6U+HIYqaiyAi0kG7ahoiACArqdDronxXtLf5J1gAAAAAAAAAmpv/ss1j7LvvvnHWWWfF/fffH//+7/8ee+yxx7QCRuMqtRk9+OCD8clPfjKe8IQnxHHHHRd//OMfa/FWAACaQioMkcvlYtHcQkbTQHNLBe1SDREAkKXUfUmAHAAAAAAAAICZQLiISS1YsCBOPPHE+O1vfxvLli2rScAoonKb0dDQUJxzzjmx5557xmte85pYtWpVDd4JAEBjpU60L+a7os2J9hAREd3CRQDMIKn7Uuq+BgAAAAAAAADNwA5GJvWHP/whli9fHosXL44VK1asDwDV0mRtRmNjY/H9738/9t577zjuuOPinnvuqen3BQDIkk2nUL3Uz0MqrAcAWUqGyAvzM5oEAAAAAAAAAKZOuIiNrFu3Lr72ta/Fs571rNhnn33izDPPjLVr124UAqqHSiGjc845J57+9KfHZz/72RgbG6vbDAAA9ZLedCpcBONSPw+9A/3+XgBA00iHyLsymgQAAAAAAAAApk64iIiIuO666+KEE06IxYsXxwknnBDXXnvt+sDPeNgnC5OFjNatWxfvf//7Y//994/bbrstk1kAAGpFcxFUL/XzUC6XY/VgKaNpAGBy5XK5iuc8zUUAAAAAAAAAND/hoha2bt26OPPMM+NZz3pWPOtZz4qvfe1r61uKImKjUNHmthaN/95Nf1VrspDRNddcE3vttVdcdNFFmzUPAEAj9ZT6Kl636RQeVU3YLtUGBgBZWDc0GCNjoxXXaKgEAAAAAAAAYCYQLmpB1157bbztbW+LxYsXx/LlyydsKRoP82wY8qnGpoGkTV+jFiGjvr6+eOUrXxlnnXXWZrxrAIDGGCuXo3egv+IazUXwqGIVYbtUYA8AslDN/chzHgAAAAAAAAAzgXBRixhvKdpnn31i3333ja9//esVW4qmEijaMJD0uMc9Lt7znvfErbfeGj/60Y/i5S9/ebS1tT3m+1UbNNo0ZDQ6Ohpve9vb4uKLL96cPwYAgMz1DZZidGys4hon2sOjFszNR3tb5b+q9mguAqAJVHM/Ei4CAAAAAAAAYCboaPQA1Nc111wTZ555Znz729+OdevWbRQa2jDYszlhokq/f//9948TTzwxXvva18bcuXMjImKnnXaKl73sZXH//ffHWWedFStWrIjbb799/WtsGGpK2bBdaXR0NN7ylrfETTfdFN3d3Zs9PwBAFmw6hc2Ty+WiOz8vHu5fO+mann7hIgAaL/Wcl8vlYmG+K6NpAAAAAAAAAGDqNBfNQn19ffHVr341nvnMZ8Z+++0X3/jGN6Kvr6/mLUXjv7+rqyuOP/74+MMf/hBXXHFFHHXUUeuDRRvabrvt4sMf/nD8+c9/jksuuSRe+9rXRkdHx4RzVbLhvA8++GCcfPLJVc8PAJC1XuEi2GypNq/eAeEiABov9Zy3aG4h2cYHAAAAAAAAAM3Af92eRa655pp461vfGosXL44TTzwx/vCHP6wPD20YChr/2lRCRRGPBpKe/vSnx+mnnx733XdfnHHGGbHnnntW/Xr/8A//EBdccEHcdddd8ZGPfCQe97jHbVbIaPw9lcvlOP/88+PWW2+t+nsDAGQpdaJ9Wy4XC5xoDxvp7qocLtJcBEAzSD3nFQvzM5oEAAAAAAAAAKZHuGiG6+vrizPOOGN9S9FZZ51V15aizs7OeMMb3hC//vWv48Ybb4yTTjopFixYMOX5t9122/jYxz4Wd999d3z2s5+NrbbaaqPZq3XGGWdMeQYAgHpKbjrNz4u2zXjugVbQndiMnfq5AoAs9JT6Kl7XTgkAAAAAAADATCFcNENdffXV8Za3vCW22267OOmkk+reUrTjjjvGJz7xifjLX/4S559/fjzvec+r6fspFArx7ne/O/785z/He9/73mhvb18/S2rWcrkcZ599dgwNDdV0JgCAWkhtOi3adAqPUSxUbvPqTfxcAUAWekv9Fa+nmvgAAAAAAAAAoFkIF80ga9eujf/4j/+IvffeO/bff/9YsWJFrFu3riYtRRP9/lwuFy996Uvjxz/+cdx+++3xwQ9+MLbaaqvavqlNzJ8/Pz71qU/F7373u3j84x+/fo6JbPj+Vq9eHb///e/rOhsAwFTYdAqbL9VctHqwFKNjYxlNAwATS4bI857zAAAAAAAAAJgZOho9AGm///3v48wzz4wLLrgg+vv7NwrVbBi82dww0WS/f6uttoply5bF2972tnjCE54w9cGn4ZnPfGZceeWV8fznPz/+9Kc/rW8oquTKK6+M5z73uRlNCABQHZtOYfN1Jxq9yuVyrBnoj+6uyiEkAKiXcrksRA4AAAAAAADArCFc1KTWrl0b55xzTnzta1+LVatWRUTUPVT0nOc8J0488cR4zWteE52dnVMdvWa23nrrOP/88+PZz352jIyMJANGV111VYbTAQBUp6e0ruL1VIgCWlGxip+LntI64SIAGqZvaCBGxkYrrvGcBwAAAAAAAMBMIVzUZK666qo488wz48ILL8ykpWjBggVx1FFHxfLly2O33XabxuT1sffee8fSpUvjzDPP3Gj+TZXL5bj99tsznAwAIG2sXI7VTrSHzVbNZuxUcA8A6qma+1A1YVkAAAAAAAAAaAbCRU1gvKXozDPPjP/5n/+JiPq3FO2xxx6xfPnyOOqoo2LevObe6HDiiSfGmWeeOen18Uaj3t7e7IYCAKjC2sFSjJbHKq7pLmhegU3Nn5OPjrb2io0QvcJFADRQT3/6PuQ5DwAAAAAAAICZQrioga688sr1LUWlUqlugaLx15g7d2685jWvieXLl8cBBxww9cEztscee8TWW28dDz300Pog0USEiwCAZuNEe5iaXC4X3YV58dC6NZOu6Sn1ZTgRAGysd6Dyc14ul4tFcwsZTQMAAAAAAAAA0yNclLE1a9asbym68cYbI6L+LUVPfOIT421ve1u8+c1vji222GKqozfUs571rLj44osfE5ra0Jo1k288BABohJ7+dPihW7gIJlRMhos0FwHQOKmQ66J8V7S1tWU0DQAAAAAAAABMj3BRRn73u9/FmWeeGd/5zndq3lI00Wu0tbXFy172sli+fHkccsghFUM5M8HixYsn/Hq5XF7/3sbGxrIcCQAgKXWifXuuLRY40R4mlAreCRcB0Eg9/ZXvQwLkAAAAAAAAAMwkwkV1tHr16vUtRX/84x8jov4tRdtss028+c1vjuOPPz523HHHqY7edIrFYqNHAADYbKlNp4sKXdE2w0PgUC+pTdm9wkUANFDqPiRcBAAAAAAAAMBMIlxUBzfffHN86lOfiu9+97uZtBRFRLzgBS+I5cuXx6te9aro6Jh9/2+dM2dOo0cAANhsqWYVm05hcpqLAGhmqftQ0XMeAAAAAAAAADPI7EuhNIELL7wwvvnNb270tXq0FC1cuDCOOeaYWL58eTz96U+f4rQAANRL+kT7+RlNAjNPalP2moH+GB0bi/a2towmAoBHaS4CAAAAAAAAYDYRLqqjerUU7bXXXrF8+fI48sgjo6ura3pDAgBQN5qLYOpSPx/liFg90B+P6xLSAyBb5XI5egaEyAEAAAAAAACYPYSL6my6LUXjr5HP5+N1r3tdLF++PPbbb79ajQcAQB2lTrRPNbNAK6tmU3ZPqU+4CIDMrR0ciNGxsYprhMgBAAAAAAAAmEmEi5rIRC1FT3nKU+Jtb3tbLFu2LLq7uxs1WlPZNHwFANCMxsbGojd5or1NpzCZYlf65yPVDgYA9dBb6kuuESIHAAAAAAAAYCYRLmoCm4aK2tvb4+Uvf3ksX748XvSiFzVwsuYzlSYoAIBGWDNYirHEs4twEUxuXufc6Gxrj+Gx0UnXCBcB0AjV3H885wEAAAAAAAAwkwgXNchELUXbbbddvOUtb4njjz8+lixZ0qjRmtLBBx8cHR0+rgDAzNFr0ylMSy6Xi2JhXjy0bs2ka6r5OQOAWkuFi9pyuVg4t5DRNAAAAAAAAAAwfdIaGZsoVHTwwQfH8uXL44gjjoj29vZGjdbUDjrooDjooIMaPQYAQNWqOdG+KFwEFXV3VQ4XaS4CoBFS4dZF+a5oa2vLaBoAAAAAAAAAmD7hogxMFCgqFotx7LHHxgknnBA777xzo0YDAKBOUqGH9ra2mO9Ee6iouzC/4vWe/r6MJgGAR6We87RTAgAAAAAAADDTCBfV2XiwaDxU9MxnPjNOPPHEeMMb3hCFgs2kAACzVepE++78vGjbIIQOPFYxX3lzdurnDADqIfmclwjHAgAAAAAAAECzES6qs3K5HIVCId7whjfE8uXLY5999mn0SAAAZKCnVLlRpehEe0jq7qr8c9IzIFwEQPZSzUXFQldGkwAAAAAAAABAbQgX1dFOO+0Uy5cvj2OPPTaKxWKjxwEAIEOpTafdwkWQlPo5WTNQipGx0ehoa89oIgBIh8g1FwEAAAAAAAAw0wgX1cF+++0Xl156aRx88MGNHgUAgAZJn2gvXAQp1fycrC71xxbzFmQwDQBEjJXL0Vvqr7hGiBwAAAAAAACAmUa4qA5e8pKXNHoEAAAarDfVXNRl0ymkVLM5u6e0TrgIgMz0DZZitDxWcY0QOQAAAAAAAAAzTVujBwAAgNlmbGwsegcqn2hfzNt0CindhfnJNamWMACopWruO5qLAAAAAAAAAJhphIsAAKDGVg+WolwuV1xTTWgCWl1X55yY0165cLe31JfRNAAgXAQAAAAAAADA7CRcBAAANdZTRdihu8umU0jJ5XJRTGzQ1lwEQJZ6E/edtlwuFuS7MpoGAAAAAAAAAGpDuAgAAGostek0won2UK3Uz4pwEQBZSt13ivl50ZbLZTQNAAAAAAAAANSGcBEAANRYatNpR1t7zJ+Tz2gamNlS4aJqwnwAUCuphspU4x4A8P/Zu/Mwuco6ffjf6iXd1ekk3YAsIgLKoiiiyKg4KriiKIrMKIKOIIgb7vATFR3FBQdxd1xQB3eFccEFV3DBcUM0CrIIAgGMYFDsytbV+3n/8O3YgXQ9J+mqU11Vn8915Zqhz5M+d2c4p06Y5z5fAAAAAABgMVIuAgCAOhsZTbzRvjwQJW+0h1xMLgJgMalUR2seHx5QLgIAAAAAAACg9SgXAQBAnVXGapcdhsuDBSWB1peaAKFcBECRkpOL+pWLAAAAAAAAAGg9ykUAAFBneSYXAfmkynjrx6sxNT1dUBoAOl2q1JqauAcAAAAAAAAAi5FyEQAA1Fl606nJRZBXnk3aqWlhAFAPM1kWa6ujNdcMDygXAQAAAAAAANB6lIsAAKDOKtUNNY97oz3kN5TjekkV+gCgHtaPV2M6m6m5Zqjfcx4AAAAAAAAArUe5CAAA6mh6ZibWjldrrlEugvzyXC/KRQAUIc/nzfCACZUAAAAAAAAAtB7lIgAAqKN1Y6ORZVnNNXkmsQD/UO5dEn3dPTXXVJSLACjAyGjt6ZQRSuQAAAAAAAAAtCblIgAAqKNcb7S36RRyK5VKyUKeyUUAFKEyVvvzprvUFcv6ygWlAQAAAAAAAID6qf36Z7bJ3/72t7j66qubHaMwpVIp+vr6oq+vL/r7+6O/vz+23377GBwcbHY0AIDC5SsXeU6CrTE8MBhrNqyd9/hINT1JAgAWamS09nPeivJAdJVKBaUBAAAAAAAAgPpRLmqAH/zgB3Hsscc2O0bTlcvl2GmnnWLnnXeOffbZJ/bbb7+43/3uFwcccEDsuuuuzY4HANAQlUS5qLerO5Yu6SsoDbSHof7E5KLEZm8AqIdUidx0SgAAAAAAAABalXJRg2RZ1uwITTc6OhqrVq2Km266KX75y19udmyPPfaIQw89NB796EfHEUccEStWrGhSSgCA+kpNUBkqL42SN9rDVklt1q6MKRcB0Hipz5sh5SIAAAAAAAAAWpRyUQPZNPoPWypazZaOPvWpT8WSJUviiU98Yhx77LHx9Kc/PXp6/GsJALQub7SH+hseSEwuSlx3AFAPqUl5nvMAAAAAAAAAaFVdzQ7Q7rIs69hfs0ql0hZ/za4bHx+Pb3zjG/GsZz0r7n3ve8cHP/jBqFarTfy/GgDAtqskSg7eaA9bb6i/9nWzYXwsJqenCkoDQKdKPecNlwcLSgIAAAAAAAAA9aVcRMOkikdbKhr96U9/ile+8pWx5557xmc/+9km/wQAAFvP5CKov9TkooiISnW0gCQAdKqZLIvKmOc8AAAAAAAAANqTchFNkSoa3X777XH88cfHYx7zmLjxxhubnBYAID/lIqi/PJMgUtceACzE+rHRmJkzqXtLTKgEAAAAAAAAoFUpF9F08xWNsiyLH//4x3HQQQfFd7/73SanBABIm56ZiXVjtaenDOUoSQCby1PKq1Q3FJAEgE6Vp8SqRA4AAAAAAABAq1IuYlG5c8koIqJSqcQRRxwR733ve5sZDQAgae3YaNR+n33E8IBNp7C1yr1Loq+nt+Yak4sAaCTlIgAAAAAAAADamXIRi9JsyWh2itH09HSceuqp8b73va/Z0QAA5jWSY3LKcL9Np7AtUhu2lYsAaKRK4nOmu9QVg33lgtIAAAAAAAAAQH31NDtAu5udvlPL7KSeen7PrVHk+bf2XHMLRlmWxSmnnBLLli2LE088cZszwJ396U9/iu9973txxRVXxNVXXx2rVq2K9evXx7p16yLLsli2bFksW7Ys7nnPe8Z+++0X+++/fzz+8Y+Pvffeu9nRAVhk8pQbhkwugm0yXF4af1lfmfd4atM3ACxE6jlvqDwQXXX+b3YAAAAAAAAAUBTlogba2iJNLXcu9NTre88Wd7bm+27rue98rq0539yC0Utf+tI48MAD40EPetA25YCIiEqlEp/4xCfis5/9bFxxxRU1195xxx1xxx13xE033RQ/+clPNn197733jmOPPTZe/OIXx0477dToyB3lxhtvjM985jO51++xxx5x/PHHNy4QQE6pTae93d2xtLevoDTQXkwuAqCZUp8zw+XBgpIAAAAAAAAAQP0pFzXA0UcfHUcffXTNNRs2bIjXvOY1cc4552z62p2LNvOVfgYGBuKggw6K/fbbL/bdd9+4973vHTvuuGPc7W53i6Ghoejr64u+vr4olUoxNjYW4+PjsXbt2vjrX/8at99+e9xwww1x3XXXxVVXXRW//vWvY+PGjclzzn49y7Lo6uqKF77whfHOd74zli7dfIPf2NhYjI2NxYYNG+K2226L2267La699tr4/e9/HytXroyrr756s+859/vWMrdgND4+Hs961rPiN7/5TQwO2rjB1tmwYUO89a1vjQ996EOb/bu/Lf74xz/GGWecEe94xzviuOOOizPPPDN22GGHOiXtXFmWxQknnBCXXHJJ7t9zyCGHKBcBi0JqcspwebDuUyihUwwpFwHQRKnnvNTnFAAAAAAAAAAsZspFTfD9738/XvjCF8Ytt9wSEflKRQ984APj6U9/ehx++OHxwAc+MLq7u3Oda2BgIAYGBmJ4eDj22GOPuxyfnp6Oyy+/PL797W/H1772tVi5cuWmDHOLP7M5ZqcHffSjH41vf/vb8bGPfSwe//jHb/p+/f390d/fH0NDQ3GPe9zjLuf7y1/+Et///vfjc5/7XPzwhz+MmZmZzaYS1TJbMIqIuP766+OMM86Is88+O9efA0REfOMb34iTTz45Vq9eXdfvOzExER//+MfjK1/5SrzrXe+K5z3veXX9/p3mnHPO2apiEcBikio3DJUHCkoC7Sc1EWKkuqGgJAB0otTnTGrCHgAAAAAAAAAsZl3NDtBpzjzzzDj88MPj5ptv3qy0M2tuoWfp0qVx8sknx5VXXhkrV66MN77xjfHgBz84d7Eoj+7u7jjwwAPjDW94Q/z617+Oq6++Ol760pfG4ODgZoWiWbOZsyyLm2++OZ70pCfFO9/5ztzn23nnneO5z31ufP/7349Vq1bFi170oujt7d1sMlHKbBHpgx/8YNxwww1b/0PTcWZmZuINb3hDHHnkkXUvFs3197//PU444YR4wQteEBMTEw07TztbvXp1nHbaac2OAbDNRkZTm05NXYRtldq0vXFiPCampwpKA0CnSZXIlYsAAAAAAAAAaGXKRQWZmpqKE044Id74xjduNq1ntkwzd3pPT09PvOxlL4sbbrghPvjBD8Z+++1XWM773Oc+8YEPfCBuvPHGeMUrXhG9vb2b8s2am31mZiZe97rXxfOf//yYnp7eqnPttttu8eEPfziuueaaeOxjH7vFMtOdzS1jTU5Oxumnn75V56TzTE9Px7Oe9ax4+9vfnpyOVS8f//jH4wlPeEKMjo4Wcr528uIXvzjWrVvX7BgA26xi0yk0TJ7rJ3UNAsC2mJmZibVjtf+OP+Q5DwAAAAAAAIAWplxUkGc/+9nx6U9/etOEnoh/TgGa+88HHHBAXHbZZfH+978/7na3uzUt7/bbbx/vfe9747LLLosHPvCBW8wd8c8pQp/85Cfjuc997jada88994yLLroo3vWud21Wtqpl9rxf/epXGzqJhtY2MzMTxx9/fHzpS18q/NyXXHJJPP3pT4/x8fHCz92qvvCFL8SFF17Y7BgACzIyVrvYYNMpbLs8109qqgQAbIt149WYSbywRIkcAAAAAAAAgFamXFSAU089dVO5YW5B587/fNxxx8WvfvWreMADHtCcoFuw//77x6WXXhonnHDCZgWjiLhLwei8886L17zmNdt8rle/+tXx1a9+dYvTkuaaO31meno6PvKRj2zzOWlvp59+enzuc5/bqt+z9957x/HHHx/vete74txzz41PfvKT8Z73vCdOOumkuP/9779V3+v73/9+nHTSSVv1ezrV3/72t3jFK17R7BgACzI1Mx3rxqo119h0CtsuT7nI5CIAGiFPedVzHgAAAAAAAACtrKfZAdrdueeeG+95z3vuUiqK+Gcpp1QqxRve8IZ4y1ve0qyYNfX09MQnPvGJ2G233eKMM87YlDvirgWjd7/73XG/+90vjjvuuG0611Of+tT4zGc+E8cee+ymP5tsnjfDzh4799xz4+1vf/u2/XC0re985ztx1lln5V7/tKc9LV7/+tfHQx7ykJrrrrzyyjj77LPjc5/7XMzMzCS/72c/+9k45JBD4sQTT8ydpRO9/OUvj7/97W/NjgGwIGuro8k1Np3Ctiv3Lolyz5KoTk3Mu8bkIgAaIU95dag8WEASAAAAAAAAAGgMk4sa6M9//nO8+tWvThaLXvGKVyzaYtFcb3rTm+JVr3rVXSYYzZr9mV75ylfGrbfeus3neeYznxmvfe1r5y0VRWz+Z3n77bfHL37xi20+H+3njjvuiOc+97k1/x2atd1228W3vvWt+NrXvpYsFkVE3P/+949Pf/rT8bOf/Sx22223XHle9rKXxfXXX59rbSe68MIL44tf/OK8x7u6fFQBrSHfG+1tOoWFGBqoXdAbqW4oKAkAnST1nNfd1RXL+voLSgMAAAAAAAAA9WfHdgO96EUvinXr1kXE/MWiRz3qUfHud7+7WRG32rve9a445JBD7lIwmvvzrVu3Ll70ohct6DxnnHFGHHjggRERWywy3dk3v/nNBZ2P9nL66afnmoJzj3vcI371q1/F4YcfvtXneNjDHha//vWvY7/99kuurVar8apXvWqrz9EJ1q9fHy9+8YvnPb7LLrvEU5/61AITAWy7POWiIZOLYEGG+xPlolGTiwCov1R5dbh/aa7/fgUAAAAAAAAAi5VyUYNccskl8a1vfWtTkWjW3I0GAwMD8bnPfa6lNh+USqX43Oc+F0uXLt30z7NmC0dZlsW3vvWt+MlPfrLN5+nu7o73vve9uSbPZFkW3/3ud7f5XLSX3/72t/Hxj388uW7FihVx8cUXx73vfe9tPteOO+4YP/jBD+Ie97hHcu2FF14Y3/72t7f5XO3qNa95TaxevXre4x/4wAdixYoVBSYC2HaVxKbTJd09MdC7pKA00J5SBb3KmHIRAPVXSZTIFcgBAAAAAAAAaHXKRQ3yzne+c95jsyWcV7/61bHrrrsWmKo+dt111zjllFOSxZ9afwZ5PPKRj4wnPOEJd5mSNNfs16+88soYHx9f0PloD2eccUbMzMwk13384x+Pfffdd8Hn23nnneMLX/hCdHd3J9e+6U1vWvD52slPfvKTOOecc+Y9fsQRR8S///u/F5gIYGFSk4uGy95oDws1PJCYXJRjghgAbK08z3kAAAAAAAAA0MqUixrgqquuiu985zvJqUWnnnpqM+LVxSmnnJKcXvSd73wnrrrqqgWd5+STT5732Nw/2+np6bj88ssXdC5a37XXXhvf+MY3kuue9rSnxTOe8Yy6nfeRj3xkvPCFL0yu+/Wvfx0//OEP63beVjY2NhbPf/7z5y0pDg4Oxoc+9KGCUwEsTOqN9jadwsKlrqORUeUiAOovVS4yuQgAAAAAAACAVqdc1ABf/OIX5z02W7555jOfGcuWLSswVX0tW7Ysjj766OT0oi984QsLOs+Tn/zk2GmnnSIikm/6X7ly5YLORet7z3vek/x3sqenJ971rnfV/dxvectbYvny5cl17373u+t+7lb0pje9Kf74xz/Oe/xtb3tb7LbbbgUmAlg4m06h8Yb6a19Ho5PjMTE1VVAaADpFskSemKwHAAAAAAAAAIudclEDfOMb30gWYY466qiC0jTOv/3bv9U8nmVZfPOb31zQObq6uuLwww9PFkYiIm644YYFnYvWNj4+Hueff35y3b/927/FXnvtVffzb7/99vH85z8/ue573/terFmzpu7nbyUrV66sWbL6l3/5l3jZy15WYCKA+kiVi0wugoUbHhhMrhkZM70IgPqZmZmJythozTWp8isAAAAAAAAALHbKRXV20003xZVXXhkRsVkhZm7ZqKenJw499NCio9Xdox71qOjt7Y2IzX++2elMERFXXXVV3HzzzQs6zxOf+MRc61avXr2g89DaLrzwwli7dm1y3Stf+cqGZXj5y18eXV21b6vT09Nx3nnnNSzDYjc1NRUnnHBCTE9Pb/F4T09PfPzjH0/+OQIsRunJRelSBFBbnpLeyOiGApIA0CnWjleTL70Z9pwHAAAAAAAAQIuze7vOLr300nmPzW5E2GuvvWLp0tZ/o+nSpUtj7733Tq77xS9+saDz/Mu//EuudX/6058WdB5a2xe/+MXkmr322ise9rCHNSzD7rvvHo985COT6/JkbVdnnXVWXH755fMef9WrXhUHHHBAgYkA6mNqejrWj1drrjG5CBZuKMd1VEkU/QBga4xU06XV4QHPeQAAAAAAAAC0NuWiOrvqqqtqHi+VSrHvvvsWlKbx9tlnn+TbW6+++uoFnWOPPfaIoaGhiNh8QtKsUqkUWZbFmjVrFnQeWtf09HRcfPHFyXVHH310w7M861nPSq657LLL4o477mh4lsXm2muvjbe+9a3zHt9zzz3jzW9+c3GBAOqoMpYuMygXwcL19/RGuXdJzTWpKWIAsDXylFaH+j3nAQAAAAAAANDalIvqLFUuiojYaaedCkhSjJ133jm5Js+fScq97nWvZIlp40abCDvVr371q1i7dm1y3ZOe9KSGZ8lzjpmZmfjBD37Q8CyLSZZl8fznPz/Gx8fnXfORj3wkBgYGCkwFUD95ygx5Jq4AaaminslFANRT6jmvu6srlvX1F5QGAAAAAAAAABpDuajObrzxxuSaZcuWFZCkGIODgzWPZ1kWN9xww4LPc4973CO5plqtLvg8tKY8RZ1ly5bFQx/60IZn2X333WOvvfZKrrvooosanmUx+dCHPhQ//elP5z1+7LHHxmGHHVZgIoD6ylNmGB5QLoJ6SJWLTC4CoJ5GRmt/rgyXl25x0jYAAAAAAAAAtBLlojpbu3ZtckNBT09PQWkar9bPMvvnsG7dugWfJ8+EJOWizvWLX/wiueahD31oYdfeIx/5yOSaSy+9tIAki8Mtt9wSr3vd6+Y9vt1228X73ve+4gIBNECqzNDX3RPlniUFpYH2lpoCNlLdUFASADpBZSxVLqr94h0AAAAAAAAAaAXKRXW2fv36uqxpFRs2pDfu1ePnLZfLyTXT09MLPg+t6be//W1yzYEHHlhAkn948IMfnFxzzTXXxPj4eAFpmu+FL3xhzXvF2WefHXe7290KTARQf6ly0ZA32kPdpDZxm1wEQD2lJhcNlQcKSgIAAAAAAAAAjaNcVGd5ijQjIyMFJCnG3//+9+SaepSL+vv7k2vyFJBoP2vWrInbbrstuW6xlYumpqbi97//fQFpmuszn/lMfPe73533+KGHHhonnHBCgYkAGiM1KWV4wBvtoV6GE5OLKspFANRRqrRqchEAAAAAAAAA7UC5qM5Sb6TPsiyuu+66gtI03h//+Mfkmnq8pT/P9xgY8KbYTnTFFVfkWnef+9ynwUn+ad999821Lm/2VnX77bfHq171qnmP9/X1xTnnnFNgIoDGqVRHax5PlSGA/FLX0+jkRIxNTRaUBoB2VxlLlYs85wEAAAAAAADQ+pSL6mzZsmXzHpstyFx77bWRZVlRkRpmZmYm/vCHPySLP4ODC3+D69jYWHKNclFnuvHGG3Ot22uvvRqc5J+Gh4dju+22S67Lm71VvfSlL6053ez000+PffbZp8BEAI2Tmlw01G/TKdTLUI5N3KYXAVAP0zMzsXasdok8z+cSAAAAAAAAACx2ykV1Nl+5aG6ZaMOGDfGrX/2qqEgN8+tf/zrWr18fEVGzLFWrcJXX6Oj8Gzlmz61c1JlWrVqVXLPzzjvH0qXFbvbJU2bKk71Vff3rX48vfelL8x7fb7/94rTTTiswEUBjjSSKDMMDNp1CveSZEKFcBEA9rBsbTb4gyOQiAAAAAAAAANqBclGd3f3ud881lehb3/pWAWkaK/UzZFkWpVIp7n73uy/4XLfffntyjXJRZ7rpppuSa+rx7+DW2mWXXZJr2rVctHbt2njJS14y7/FSqRQf+9jHYsmSJQWmAmicyemp2DBee8qiTadQP3kmRKQKfwCQx8hY+vPEcx4AAAAAAAAA7UC5qM723XffmsdLpVJkWRaf/OQnY2ZmpqBU9TczMxPnnntulEql5NrUn0ket912W83jpVIpdtxxxwWfh9bz5z//Oblm5513LiDJ1p9z9erVBSQp3qmnnhq33nrrvMdf8IIXxL/+678WmAigsSpj809YnJWnDAHk09fTGwO9fTXXjFQ3FJQGgHY2MpouF3nOAwAAAAAAAKAdKBfV2X3uc595j82daHTrrbfGeeedV0SkhjjvvPM2lTpSk5rue9/7Lvh8q1atShaZ9thjjwWfh9Zzxx13JNfstNNOBSTZXJ5y0d///vcCkhTrRz/6UXziE5+Y9/guu+wSZ511VoGJABovz6bT4fJgAUmgc6SmRJhcBEA9VBKfJz1d3TG4pL+gNAAAAAAAAADQOMpFdXbwwQcn18xOLzr99NNjYmKigFT1NTExEaeffnquqUUREQ972MMWdL6RkZG4/fbbI6J2kUm5qDPlKRcNDQ01Psg2nHPjxo0xPj7e+DAFGR0djZNOOqnmmg984AOxYsWKghIBFKOSY0JKqggBbJ3UlIjUZnAAyCM1CW+4vDT3fx8DAAAAAAAAgMVMuajOHvawh8WyZcsiIra4uWBuOeaWW26JU089tbBs9XLaaafFzTffHBFbLvvM/bkHBwdzFa5qufLKK3OtUy7qTCMjI8k1s9dkkfKes52mF73xjW+MG264Yd7jT3nKU+Lf//3fC0wEUIyR6mjN4/09vVHuXVJQGugMJhcBUITUc16q7AoAAAAAAAAArUK5qM66u7vjsY99bM0JO1mWbZpe9KEPfSi+9KUvFZhwYb7yla/E+9///k355zP7Mz7mMY+J7u7uBZ3zF7/4Ra51ykWdp1qtxuTkZHJdM8pFy5cvz7Vu7dq1DU5SjMsuuyze//73z3t8cHAwPvzhDxeYCKA4qTfa23QK9Tc8oFwEQOOlJlSaTgkAAAAAAABAu1AuaoDnPve5udbNFnT+4z/+I77//e83ONXCXXTRRfHsZz97ixOZ5nPcccct+Lw/+9nPcq3ba6+9FnwuWsvExESudeVyucFJ7qq/vz/Xurw/w2I2OTkZJ554YkxPT8+75q1vfWvstttuBaYCKE4lUWKw6RTqb6i/9nVVGVUuAmDhUmVVz3kAAAAAAAAAtAvlogY44ogj4u53v3tExLxFnNmpP6VSKSYmJuJpT3tafO5znyss49b6whe+EE972tM2FSHmm1o09+fdZZdd4qlPfeqCzjs5ORk//vGPt/jnOPdre+21VwwNDS3oXLSevMWchU7P2hY9PT251rVDuejMM8+M3//+9/MeP+igg+LlL395gYkAimXTKRRveGCw5vHq1ESMTbb+cxYAzaVEDgAAAAAAAECnyLf7na3S3d0dJ598cpx++uk1p/zMLRiNj4/HcccdF7/61a/irLPOasqklS0ZGxuL1772tfHBD34wsizbNG2pltl1L3vZy6Kra2H9tZ/85Cexfv36ec87e66DDz54QeehNeUt5uQt+tRT3nNOTk42OEljXX311XHmmWfOe7ynpyc+/vGPL/hewNZ5xCMe0ZR/79ncVVdd1ewIFCS96bR2CQLYenk2c49UN8YuvUsKSANAO5qemYm1Y6M11wwpFwEAAAAAAADQJuz2bpBXvepVseuuu0bE/NOL5potz3zoQx+KBzzgAfHNb36z0RGTvvWtb8UBBxywWbGolrnH7373u8crXvGKBWe44IILcq1TLupMU1NTudYpFzXGzMxMnHjiiTVLXq985SvjgQ98YHGhAJogNbnIplOovzzXVar4BwC1rB0bjdqv1zG5CAAAAAAAAID2YaxBg/T398fb3va2eN7znpcs5cwWd2YLRjfccEMceeSRcfDBB8f/+3//L4444ojCpn5kWRbf/OY34+yzz46f//znm01Xmj2e+v2lUine+ta3Rn9//4KyTE1Nxfnnn5+rnKVc1JnyFnimp6cbnGTbz9nK02U+8IEPxC9/+ct5j++5555xxhlnFJiIWT/96U/jbne7W7NjQEeYmJ6KDRNjNdfYdAr1N9yfb3IRAGyrPCVVEyoBAAAAAAAAaBcmFzXQcccdF4cffniuqT9Zlt2lZPTzn/88jjrqqNhjjz3iNa95TfzsZz9rWNZf/OIX8drXvjb23HPPePrTn76pWDQ3T61i0eyaUqkUhx9+eBx//PELznThhRfGHXfcERF3LTXN/fNcvnx57L///gs+H61nyZIludblnXBUT3knEuX9GRabVatWxRve8Iaaaz7ykY/EwMBAQYkAmiPfplPlIqi3JT09sXRJX801ykUALESezxETKgEAAAAAAABoF607MqNFfOpTn4oHPOABsWbNmk0FnFq2VOhZvXp1vPvd7453v/vdsWLFinjYwx4WBx98cNzvfveLffbZJ+51r3vl3sA/NjYWN954Y1x77bVx1VVXxS9+8Yv45S9/GZVKZdP5Z+WdVjS36LPTTjvFJz/5yVxZUj784Q/XPD63zJRnuhHtp7e3N9e6ZpSL8p6zVctFL3jBC2Ljxvk3Wh1zzDFx2GGHFZgIoDnylItsOoXGGC4PxsaJ8XmP57k+AWA+I9UNNY/3dnUni64AAAAAAAAA0CqUixpshx12iC9/+cvx+Mc/PsbGxnIXjCI2L+3Mfq1SqcT3vve9+N73vrfZ7xkYGIi73e1uMTQ0FH19fbFkyZIolUoxPj4e4+PjsXbt2vjrX/+6xTLAlgpFd/76fOYWkAYGBuKrX/1q7LDDDsnfl3LVVVfFxRdfnOvP69///d8XfD5aU19fvk08Y2NjDU6y7edsxXLRueeeGxdffPG8x7fbbrt43/veV1wggCbyRntonqHyQKxee8e8x1ObwgGgllRJdai81MtuAAAAAAAAAGgbykUFePjDHx7nnXdeHHXUUTEzM5OrMBOxeckoVfrZuHHjpuLQnTc2bM3koTzr7/z7siyLnp6eOP/88+NhD3tYrt+bcvbZZ8+bb66BgYF40pOeVJdzks+qVavi0ksvbeg5li5dGkcccURyXblcjp6enuSUoPXr19crWm55z7l8+fIGJ6mvv/zlL3HKKafUXHP22WfHjjvuWFAigOZKlYvKPUui3Nt6RVJoBcPlwZrH85T/AGA+qc+RYQVyAAAAAAAAANqIclFBjjjiiPj85z8fz33uc2NycjJ3wSjirpOFapVtsizb4vdNvUk1b5Y7f78sy2LJkiXxmc98Jp785Cdv1feYzw033BCf//znc+V64hOfGP39/XU5L/lccskl8bznPa+h59h9991zlYsiIoaHh+Ovf/1rzTXr1q2rR6ytkvec2223XYOT1NfJJ58clUpl3uOHHHJIw//9AFhMkm+0H7DpFBoltak7dX0CQC2pcpHplAAAAAAAAAC0E+WiAj3zmc+MHXfcMZ7+9KfHunXrtqpgNGu+9bNln3qXiGqdK8uyWLFiRVxwwQVx6KGHLvj7zrr88svj+OOPz7X2P/7jP+p2XlrT9ttvnywXrV27tqA0W3fOgYGBlirHffnLX46vfvWr8x7v6+uLj33sY8n7EEA7Sb7Rvt+mU2iUVLnI5CIAFiI9uaj2BD0AAAAAAAAAaCXKRQU79NBD4+c//3kcffTRceWVV25W1FmIepSG8pib9/73v3+cf/75cd/73reu5zjqqKPiqKOOquv3pH1tv/32yTVr1qwpIMnm/vKXvyTX5Mm+WIyMjMTLXvaymmtOP/302GeffQpKBLA4jFQ31DzujfbQOKnra2xqMqqTE1HuXVJQIgDaSWoC3nB5oKAkAAAAAAAAANB4Xc0O0Inue9/7xmWXXRYveclLNpWCSqXSop72MZsvy7LIsixOPvnkuOyyy+peLIKtteuuuybX5Cn61Fuec+bJvli8+tWvrvkz7bfffnHaaacVmAhgcUi+0X5AuQgaJTW5KCK9MRwAtmRqZjrWjY3WXDNkchEAAAAAAAAAbUS5qEn6+vriv//7v+OSSy6JBzzgAYu2ZDQ3T5Zl8cAHPjAuueSS+OAHPxh9fX1NTgcRe+yxR3LNrbfe2vggd3Lbbbcl1+y5554FJFm466+/Pj71qU/Ne7xUKsU555wTS5aYCgB0nvQb7ZWLoFGGc2zqThUAAWBL1o6NRmpGuBI5AAAAAAAAAO2kp9kBOt0jH/nIWLlyZXziE5+Id7zjHXHTTTdFRGxWMJotHhVlS+fefffd4/TTT48TTzxxUZWfIE9B5y9/+UuMjo7GwMBAAYn+4frrr0+uaZVy0YYNG2oef+ADHxirV6+O8847ryHnX7VqVXLN7bffnuv8O+64YzzmMY+pRyyAmJiaio0T4zXXDPXbdAqNMlROP9uNVGs/xwDAluSZfKdEDgAAAAAAAEA7US5aBEqlUpx00klxwgknxP/+7//Ge97znvjNb36z6didyzz1LhttqSw0e44DDzwwTjnllHjmM58Z3d3ddT0v1MO97nWv5Josy+L666+PBzzgAQUkiqhUKnHHHXck1+XJ3gp++9vfxjHHHNPUDNdcc02uDIcccohyEVA3I2M5Np0OpCerANumt7snBpf0x4aJsXnXmFwEwLbI8/kxpFwEAAAAAAAAQBvpanYA/qm7uzuOOeaYuOyyy+KKK66I1772tbHHHntElmWbfkX8s3BUr18Rsdk5dt9993jta18bV1xxRfz617+OY445RrGITY4//vjN/n1pxK/ZCV557L///rnW/eEPf9jGn3jr5T1X3uwALE4jo+mJKN5oD42VusbyTJ4AgDtLlYt6u7tjaW9fQWkAAAAAAAAAoPFMLlqk7n//+8eZZ54ZZ555Zlx33XXxwx/+MH70ox/FpZdeGrfcckvN37u1k47ucY97xMMe9rB49KMfHY95zGNi3333XXB+KMouu+wSO+20U6xZs6bmupUrV8Yzn/nMQjKtXLkyuaanp6ewSUoANEZlbDS5xhvtobGGykvjT2vnnxhpchEA2yJVTh0uD25xEjgAAAAAAAAAtCrlohawzz77xD777BMvetGLIiJi/fr1ceWVV8Y111wTq1evjttuuy1uu+22uOOOO6Jarcb4+HiMjY1FRERfX1/09/dHuVyO4eHhuPvd7x677LJL3OMe94j73ve+cf/73z+WL1/ezB8PFuzAAw+M73znOzXX5Cn81MtvfvOb5Jr73Oc+0d/fX0AaABolNbmo3Lsk+nt6C0oDnWl4oHaBT7kIgG2R+vwYKg8UlAQAAAAAAAAAiqFc1IKWLVsWBx98cBx88MHNjgKLwsEHH5wsF/3yl7+Mqamp6Olp/G3vJz/5SXLNQx/60IbnAKCx0m+0N7UIGm2oP1EuSpQAAWBLUp8fw+XBgpIAAAAAAAAAQDG6mh0AYKEe+9jHJtesX78+fvWrXzU8yy233BLXX399ct3jH//4hmcBoLFSb7RXLoLGS23uroyNRpZlBaUBoF1UxkZrHvecBwAAAAAAAEC7US4CWt5DHvKQWL58eXJdarpRPeQ5R6lUylWIAmBxS5WLhmw6hYYbHqh9nY1PTUZ1aqKgNAC0i5Fq7clFnvMAAAAAAAAAaDfKRUDL6+npyVXWOf/88xue5bzzzkuuOeigg2KHHXZoeJZ6eeADHxhZljXt13HHHZfMeMghh+T6Xj/+8Y8b/wcGdIxKcnJR7YkqwMIN9ac3d4+M1r5WAWCuqZnpWDdWrbnG5CIAAAAAAAAA2k1PswO0m1tvvTUuvvjiXGvve9/7xr/8y780OBF0hmOOOSYuuOCCmmv++Mc/xqWXXhoPfehDG5LhlltuiZ/85CfJdcccc0xDzg9AsVJvtLfpFBovNbko4h9FwF1XbFdAGgDawdrqaHKN5zwAAAAAAAAA2o1yUZ19+ctfjle96lW51pqgAfVzxBFHxPLly2PdunU1173vfe+LL37xiw3J8IEPfCBmZmZqrunq6opnPetZDTk/AMUZn5qM0cmJmmtsOoXGG+ofSK4ZSUwZA4C58nxuDHnOAwAAAAAAAKDNdDU7QLv53e9+F1mWJX8dfPDB8chHPrLZcaFt9Pf3xzOf+czkui9/+ctx/fXX1/38d9xxR3z84x9PrnvCE54Qu+yyS93PD0CxKjadwqLQ290Ty/rKNdcoFwGwNfJ8bgyXBwtIAgAAAAAAAADFUS6qs+uuuy4iIkql0hZ/zR47+uijmxkT2tKrX/3qTdfZfKampuLUU0+t+7n/8z//Mzk1KSLilFNOqfu5AShevk2nykVQhKFy7elFleqGgpIA0A5SnxtLuntioHdJQWkAAAAAAAAAoBjKRXV2yy23bCo33Hla0VxPfepTmxEP2tp973vfeMpTnpJc9/Wvfz2+9KUv1e28P/3pT+Occ85JrjvwwAPjcY97XN3OGxFx0003zVtmnPvr0EMPret5ATpdnnKRyUVQjNT0CJOLANgaI9XRmseHy0uTLzYBAAAAAAAAgFajXFRnf/vb37b49bmbDnbYYYfYfffdi4oEHeVNb3pTdHWlb20nnXTSpkljC/GXv/wljj322Jienk6uffOb37zg8wGwOFQSZYWB3iXR19NbUBrobKkpYanrFQDmSk0uUiAHAAAAAAAAoB0pF9XZ5OTkvMeyLItSqRT3u9/9CkwEneXBD35wnHDCCcl1a9eujcc+9rFx4403bvO5/vrXv8bjHve4+NOf/pRc+6QnPSmOOOKIbT4XAItLahJKapIKUD+pcpHJRQBsjfRznnIRAAAAAAAAAO1HuajOli5NbzDYY489Gh8EOtiZZ54Z22+/fXLd6tWr4yEPeUh85zvf2epzXHrppXHQQQfFVVddlVzb398f73//+7f6HAAsXiPeaA+LRup6G6lujCzLCkoDQKtLTbxTLgIAAAAAAACgHSkX1dngYPot9cuWLSsgCXSuu93tbvGpT30qSqVScu0dd9wRhx9+eBx11FHx61//Orn+6quvjuc973nx8Ic/PG655ZZced7//vfH3nvvnWstAK3BplNYPFLX28T0VFQnJwpKA0CrS00uUiIHAAAAAAAAoB31NDtAu8lTLsqzBliYpzzlKXHqqafG2WefnWv9BRdcEBdccEHss88+8YhHPCLud7/7xXbbbRelUilGRkbiD3/4Q/ziF7+IK664YqtyHHvssfGCF7xgW34EABax1KZT5SIoznA5/ferkerGGFjSV0AaAFrZ1PR0rBuv1lyT53MHAAAAAAAAAFqNclGd7bDDDnHdddfVnJgyMeGt2VCE//qv/4rVq1fHF7/4xdy/57rrrovrrruuLud/7GMfG+eee25dvhcAi4s32sPikafMN1LdELuu2K6ANAC0srVjo8k1SuQAAAAAAAAAtKOuZgdoN/vss09yzcaNtTejAvXR1dUVn/nMZ+Koo44q/NyPeMQj4utf/3r09XlDPkC7GZuajOpk7bL48IA32kNRVvQPJNekCoEAEJHv80KJHAAAAAAAAIB2pFxUZ3nKRWvWrCkgCRAR0dPTE1/60pfitNNOK+ycz3ve8+Liiy+OpUttOAJoR5Ucm0690R6K09PdHcv7yjXX5LluAWCkuiG5xnMeAAAAAAAAAO1IuajO9t1335rHsyyLG264oaA0QMQ/Jhj913/9V1xwwQVx97vfvWHnGR4ejo9//ONx7rnnmlgE0Ma80R4Wn9RGb5OLAMgj9XnR190T5d4lBaUBAAAAAAAAgOIoF9XZwx/+8HmPlUqliIj44x//GFNTU0VFAv5/Rx55ZPzhD3+IU089ta5ThZYsWRInnnhiXHvttfH85z+/bt8XgMVpZDTHG+37lYugSKlCn3IRAHmkJt0NlZdu+u97AAAAAAAAANBOepodoN3stNNOccABB8Tll18epVIpsiyLiH9MLJrdfDA2NhaXXXZZHHzwwc2MCh1p2bJlcfbZZ8frX//6+NjHPhaf/exn46qrrtqm73Xve987jjnmmHjJS14Su+yyS52TMuvII4+MPfbYo+aa1HGAekqVFJYu6YslPR6zoUjpyUXpUiAApJ7zUp83AAAAAAAAANCq7HpsgCc84Qlx+eWX11zz3e9+V7kImmh4eDhOO+20OO200+Lmm2+O73//+3H55ZfH1VdfHTfddFOsW7cu1q9fH1mWxbJly2LZsmWx2267xX777Rf7779/PO5xj4v73Oc+zf4xYo899thUYmxXRx55ZBx55JHNjgGwSWUstel0sKAkwKyhxHVXqY4WlASAVpYqF6U+bwAAAAAAAACgVSkXNcAznvGMOPvss7d4bHaa0Re+8IU444wzCk4GbMnuu+8eJ510UrNjANAiRkZTm04HCkoCzBoeSE8umjtNFgC2pJKcXOQ5DwAAAAAAAID21NXsAO3ooIMOioc85CF32bw2d7rIjTfeGN/73veaEQ8AgAVIbzr1Rnso2lB/7XLR5PR0bJwcLygNAK3K5CIAAAAAAAAAOpVyUYOcfPLJNY9nWWZyEQBACxoZS5WLapccgPrLc91VElPHAOhsU9PTsX68WnON5zwAAAAAAAAA2pVyUYM861nPir333jsi4i7Ti2b/+dJLL41zzz23KfkAANg2qYLCkE2nULjhgfR1lyoGAtDZKjk+J/J83gAAAAAAAABAK1IuapDe3t747//+78iybIvHS6VSZFkWp5xySqxatargdAAAbIvq5ERUpyZqrvFGeyjeiv6BKCXWjJhcBEANI9X058RQv+c8AAAAAAAAANqTclEDPf7xj49nPOMZm00riohNhaNSqRRr166NJz/5yVGpVJqUEgCAvCo5Np0qF0Hxerq6Y1l/ueaaSnVDQWkAaEV5ykUmFwEAAAAAAADQrpSLGuxjH/tY7L333hERWywYRUT84Q9/iMc+9rFx++23F54PAID88pWLBgtIAtxZ6trLs2kcgM6Ves7r6+mNcs+SgtIAAAAAAAAAQLGUixpsxYoV8c1vfjNWrFgREXctGM3+829/+9t4+MMfHr/97W+bkhMAgLQ85YQV5YECkgB3lpoaplwEQC2pz4mh/oHN/rseAAAAAAAAALQT5aIC7LPPPvG1r30tli1bFhFbLhiVSqW48cYb4+CDD453vOMdMTk52ay4AADMI7XpdHBJfyzp7ikoDTBXqlyUZ/IYAJ1rpLqh5vHhAdMpAQAAAAAAAGhfykUFedSjHhWXXHJJ7LzzzhERmwpFEf8oGM1+bWJiIt7whjfEfe5zn/j85z8fU1NTTcsMAMDmkptOE+UGoHGGTC4CYAFGRmt/TnjOAwAAAAAAAKCdKRcV6IADDoif/exn8aAHPWhToWjW3IJRlmWxatWqeO5znxt77LFHvOlNb4orr7yyGZEBAJgjNfkkVW4AGie16XukuvEufw8DgFmVscRzXr/nPAAAAAAAAADal3JRwfbYY4+49NJL481vfnP09PTMO8FotmR06623xtve9rY44IADYq+99ooTTzwxPvnJT8ZvfvOb2LjRm7cBAIqUmnzijfbQPMPlwZrHp2amY+PEeEFpAGg1yee8Ac95AAAAAAAAALSvnmYHaFcnnHBCcs3+++8fK1eu3FQuirhrwWju12688cZYtWpVfOpTn9q0fscdd4yddtopdtppp1i2bFn09fXFkiVLNvuezVYqleJ//ud/mh0DAGDBUptOTS6C5slT7hupbojBvv4C0gDQSianp2LD+FjNNUrkAAAAAAAAALQz5aIG+dSnPpW74DNbHtrS1+aWjLa0ds2aNbFmzZpFVSaaK8sy5SIAoG1UkpOLak9OARonT7lvpLoxdhvaoYA0ALSSythoco0SOQAAAAAAAADtTLmowbZUHNrW33/notHcNQs9DwAAtVUnJ2JsarLmmuHyQEFpgDtb0T8QpYio9TejVEEQgM40Mpr+fFAiBwAAAAAAAKCdKRc1WGqi0NaUgra0dr7C0WKh9AQAtIuRHKWEIZtOoWm6u7piRf9AzekTea5jADpPpbohuWbY5CIAAAAAAAAA2phyUYM1ulyzmMs7i7n0BACwtUbybDodsOkUmmmoPKhcBMBWG6nO/9kREdHf0xvl3iUFpQEAAAAAAACA4nU1OwAAALSCSp7JRf0DBSQB5jNcrn0N5ikJAtB5Up8PQ6YWAQAAAAAAANDmlIsAACCH1MSTwb7+6O02GBSaaag8WPN4JTGZAoDOlCqRDysXAQAAAAAAANDmlIsAACCHkVGbTmGxS12HJhcBsCWpErnnPAAAAAAAAADanXIRAADkkN50WntiCtB46XLRxsiyrKA0ALSK1OSiIeUiAAAAAAAAANpcT7MDtLtSqdTsCAAA1EFlzBvtYbFLbf6enpmJ9eNjsby/XFAiAFqBEjkAAAAAAAAAnU65qIG8ERsAoH2MjG6oedwb7aH5hgfS12FlbKNyEQCbTE5PxYaJsZprlMgBAAAAAAAAaHfKRQ1y3HHHNTsCAAB1kmVZVJJvtLfpFJotz2SJkdGNcc+hHQpIA0ArqFRHk2uUyAEAAAAAAABod8pFDfLJT36y2REAAKiT6tREjE9P1VyjXATNt6KvHKVSqeYU2ZFq7SlkAHSWPJ8LnvMAAAAAAAAAaHddzQ4AAACL3cho7alFEd5oD4tBV1dXrOgfqLkmNYUMgM4ykuNzwXMeAAAAAAAAAO1OuQgAABLylBG80R4Wh9S1mGcTOQCdI/Wc19/TG+XeJQWlAQAAAAAAAIDmUC4CAICEXG+071cugsUgVS4yuQiAuVLPeQrkAAAAAAAAAHQC5SIAAEhIbTpd3leOnu7ugtIAtQyZXATAVkiXiwYLSgIAAAAAAAAAzaNcBAAACZXqhprHU2UGoDipCRMjiesZgM6SmmjnOQ8AAAAAAACATqBcBAAACek32tt0CotFasJEZWw0ZrKsoDQALHae8wAAAAAAAABAuQgAAJJsOoXWkboep2dmYsN4taA0ACx2qYl2JhcBAAAAAAAA0AmUiwAAIKGSKBcNJSalAMXJswk8VRgEoDNMTE/FxonxmmuUyAEAAAAAAADoBMpFAABQQ5ZlOSYXDRSUBkjJswk8VRgEoDPk+TxQLgIAAAAAAACgEygXAQBADaOTEzExPVVzjclFsHgs7ytHV6lUc43JRQBE5Ps8yDMRDwAAAAAAAABanXIRAADU4I320Fq6urpiqL/2NalcBECE5zwAAAAAAAAAmKVcBAAANYxUNyTX2HQKi8tQeaDm8TzXNQDtL1U2Lfcsif7eJQWlAQAAAAAAAIDmUS4CAIAa8kw4WZEoMgDFGi4P1jxeqY4WlASAxSxVNh0aUCAHAAAAAAAAoDMoFwEAQA2pctHy/nL0dHUXlAbIYygxTczkIgAiIkZGaz/nmU4JAAAAAAAAQKdQLgIAgBoqiXJRakIKULzUZvA8E8kAaH+VsdqfB0P9ykUAAAAAAAAAdAblIgAAqCFVQhjqHygoCZBXqly0tjoaM1lWUBoAFqvUc97wgHIRAAAAAAAAAJ2hp9kB2HbT09Nx2223xa233hrr16+ParUa1Wo1xsbGItvCRrnnPve5TUgJANDaRqobah4fHjC5CBaboUS5aDqbifXj1VihHAjQ0UZGUxMqlYsAAAAAAAAA6AzKRS3iD3/4Q1x66aXxu9/9Ln73u9/FtddeG7fffvsWS0TzUS4CANh6Np1C68lT+hupblQuAuhgE1NTMTo5XnPNcFmJHAAAAAAAAIDOoFy0SE1PT8eFF14YF154YXz/+9+P1atXb3Z8a0pFERGlUqme8QAAOkKWZVEZUy6CVjOcozQ0Mroh9hi+WwFpAFiMRhLPeBHpSXgAAAAAAAAA0C6UixaZ6667Ls4555z43Oc+F3/7298iYstFoq0pC21tEamWd77znXHhhRcm1+24447x5S9/uW7nBQBoho2T4zE5PV1zjU2nsPgs6x+IrlIpZmr8XahSTW8qB6B9jYxuSK5RIgcAAAAAAACgUygXLRJ/+MMf4i1veUt86UtfipmZmc0KQbWKRKniUL0nFh122GHxute9ruaaLMuiVCrFJZdcEoccckhdzw8AUKTKaLp8YNMpLD5dpVIMlZfG32tsHB9RLgLoaJWx0eQaJXIAAAAAAAAAOkVXswN0uvXr18eLX/zi2H///eP888+P6enpTeWc2V8R/yjsbOlX0Q444IB4ylOesunctTJ94hOfKDwfAEA9jYzlKRcNFpAE2Fqp4p9yEUBnS00uKvcuif6e3oLSAAAAAAAAAEBzKRc10Te/+c3Yb7/94mMf+9hdSkUR0dQSUS2vfe1rN/3vc0tQc39lWRZf+cpXYv369U1MCgCwMCOJyUWliFjRP1BMGGCrpKZNVJSLADpa6nPAdEoAAAAAAAAAOolyURNkWRavfe1r48gjj4w///nP85aKFquDDz44HvzgB887vWjW+Ph4XHDBBc2KCQCwYJVq7TfaL+8fiO4uj9SwGKUnF9W+vgFob6kJdspFAAAAAAAAAHQSOyELtn79+njSk54UZ599dsuViuZ6yUtekmvd+eef3+AkAACNY9MptK7h8mDN45XqaEFJAFiMUs95qQl4AAAAAAAAANBOlIsKtG7dujjssMPioosu2lQsitj2UtFsMWn2+xTp2GOPjRUrVmzKcWelUimyLIuLL7441q1bV3Q8AIC6UC6C1pW6PitjG2NmZqagNAAsNpXkc17tkioAAAAAAAAAtBPlooKsX78+DjvssPjlL38ZEf8s3+QtFc0tEjWrUDRXX19fHHXUUVvMP/drU1NT8b3vfa/IaAAAdZPadOqN9rB4pa7PmSyLdePVgtIAsNiMVDfUPK5EDgAAAAAAAEAnUS4qyHOe85y49NJLN5tWlHLnItFsGWn2V09PTwwNDcUuu+yyaX2RnvOc5+Ra9+1vf7vBSQAAGsPkImhdea7PVIEQgPY0PjUZo5MTNdcokQMAAAAAAADQSXqaHaATvPnNb45vfvObuYtFc0tCs2t32223OOyww+Kggw6KBz3oQbH77rvHjjvuuGldV1fxPbFDDz00dtppp7j99ts3TWKaa/ZrJhcBAK0oy7Ic5aLBgtIAWytPuWikujH2aHwUABaZPOVSJXIAAAAAAAAAOolyUYP9/Oc/j7e+9a1bXSzKsixWrFgRz33uc+PEE0+MBzzgAQ3PurVKpVI88YlPjE9/+tN3mZqUZdmmr61Zsyb++Mc/xt57792MmAAA22TjxHhMzUzXXOON9rB4DfaVo7urK6ZnZuZdkyoQAtCe8tz/lYsAAAAAAAAA6CTFj7vpIJOTk/GCF7xgU6GoVrGoVCptmvTT19cXp59+eqxatSre//73L8pi0azDDz8817qf/vSnDU4CAFBfI9UNyTU2ncLi1VUqxVD/QM01ea5zANpPnslFSuQAAAAAAAAAdBLlogZ6z3veE1dfffWm0tB85k4rOvjgg+Pyyy+Pt771rTE0NFRQ0m33+Mc/flP+O08vmku5CABoNd5oD61vuDxY83iezeUAtJ/Uc95A75Lo6+ktKA0AAAAAAAAANJ9yUYOMjo7Gu971rpqFm4jYVDzKsixe9KIXxSWXXBJ77713QSkXbmhoKPbbb7+aa7Isi5UrVxaUCACgPlKlg1KpFMsTU1GA5koVAPOUCAFoP6n7f6qcCgAAAAAAAADtRrmoQc4555y44447IiLmnVo0WywqlUpx+umnx4c//OHo6ekpMmZdHHzwwTV/xoiIa665JqampoqMBQCwIKlNpyv6ytHd5XEaFrMh5SIAtiBVIk99fgAAAAAAAABAu7EbskE++MEP1pxaNLdY9OIXvzje+ta3Fpiuvh7ykIds8etzC0eTk5NxzTXXFBUJAGDBUqWDIW+0h0XP5CIAtmSkuqHm8dTnBwAAAAAAAAC0G+WiBvjlL38ZN910U0RseWrR3GLRv/7rv8b73//+ghPW13777Zdr3bXXXtvgJAAA9WPTKbS+1OSJtWOjMTMzU1AaABaLVLnUcx4AAAAAAAAAnUa5qAG+8IUvzHts7jSjvr6+OPfcc6O7u7uIWA2z77775lq3atWqBicBAKifSnW05vHhAZtOYbEbTkwYy7Is1o5XC0oDwGJRSU6o9JwHAAAAAAAAQGdRLmqA73znO5uViO5sdmrRy1/+8thrr70KTNYY22+/fWy33XYRETV/buUiAKCVpCYXDfXbdAqL3XB5ILkmda0D0F7GpiZjdHKi5hqTiwAAAAAAAADoNMpFdbZmzZq44YYbIuIfJaK55hZvyuVynHrqqYVma6Rdd931Lj/vnf35z38uKA0AwMJkWRYjiTfam1wEi99QYnJRRMTIaO1rHYD2kppaFGFyEQAAAAAAAACdR7mozn7605/WPD47teiII46IHXbYoaBUjbfTTjsl1/z1r38tIAkAwMKtHx+L6ZmZmmu80R4Wv2V9/dHdVfuvvZUx5SKATpIqkEdEDA+ky6kAAAAAAAAA0E6Ui+rsiiuuyLXu6KOPbnCSYu28887zHiuVSpFlWfztb38rMBEAwLbLUzYYzjERBWiuUqmULAKaXATQWfJMLhruVyIHAAAAAAAAoLMoF9XZjTfeuMWvl0qlzf73Qw89tKBExRgcTG+urVQqjQ8CAFAHecoGQyYXQUsYSmwQzzPBAoD2MVLdUPP4QG9fLOnpKSgNAAAAAAAAACwOykV1Nl+5aK699947hoaGGh+mQP39/ck14+PjBSQBAFi41KbTUqkUK/rKBaUBFmJ4oHa5qJK43gFoL6lSaepzAwAAAAAAAADakXJRnd12222bTSmaK8uyKJVKsddeexWcqvGUiwCAdlIZq73pdKh/ILq6PEpDKxgu156yOlIdLSgJAItBJVUuMp0SAAAAAAAAgA5kR2SdbdxYe4NCRMQ97nGPApIsPlNTU82OAACQy8hoolxk0ym0jNQmcZOLADpLanLRUL/nPAAAAAAAAAA6j3JRneUpFw0O1n5zdiuqVqvJNX19fQUkAQBYOG+0h/aRKgOuHRuN6ZmZgtIA0GypctHwgOc8AAAAAAAAADqPclGdjY2NJdcsWbKkgCTFGh0dTa4ZGBgoIAkAwMIlN50qF0HLSF2vWUSsG0v/fQaA9pAukbffS4EAAAAAAAAAIEW5qM7K5XJyTZ4pP63m9ttvT67J82cDALAY2HQK7SNPGTBVKASgPYxNTkR1cqLmmtTEOwAAAAAAAABoR8pFdZZnOs/Gje23cW316tXzHsuyLCIili1bVlQcAIBtNpNlMTJW+3nNplNoHXnKgMpFAJ0hz/3ehEoAAAAAAAAAOpFyUZ0tXZregHDrrbcWkKRYq1atilKpNO/xUqkUu+66a4GJAAC2zYbxakzPzNRcY9MptI6lS/qit6u75pqR6oaC0gDQTJWx0eQaz3kAAAAAAAAAdCLlojobHh7eNKlnS7Isi1tuuaXARI23evXq+Pvf/x4RUfNnv+c971lUJACAbeaN9tBeSqVSctpYxeQigI4wMpouk5pQCQAAAAAAAEAnUi6qsz333HPeY7OTfa677rqYnJwsKlLDrVy5Mtc65SIAoBXkKRkoF0FrSV2zeUqFALS+1P1+6ZK+WNLdU1AaAAAAAAAAAFg8lIvq7F73utcWvz53os/ExERcfvnlRUVquB/84Ae51u29994NTgIAsHCpTaddpVIs6x8oKA1QD6kpFMpFAJ0hVSIfLg8WlAQAAAAAAAAAFhflojqbr1x0ZxdddFGDkxTn29/+9qapTLUcdNBBBaQBAFiYVMlgqH9pdOV49gEWD5OLAIjI8ZxXViAHAAAAAAAAoDMpF9XZgx/84FzrvvGNbzQ4STFWrlwZN9xwQ0RsPp0pIjYrHA0NDZlcBAC0hNQb7VMTUIDFJ1UuSl33ALQHk4sAAAAAAAAAYMuUi+rsQQ96UJTL5YiIu0zzybIsSqVSZFkWv/rVr+Kaa65pRsS6+tjHPlbz+OzPbGoRANAqUm+0T5UUgMVnKLFZfN3YaEzNTBeUBoBmGaluqHnccx4AAAAAAAAAnUq5qM56enriIQ95yF2m+GzJhz70oQISNc5f//rX+PznP3+XEtWWPOEJTyggEQDAwqU2nZpcBK1nuDxQ83gWEWvHRosJA0DTVKq17/We8wAAAAAAAADoVMpFDZAq0sxOL/qf//mfuPnmmwtKVX9nnnlmbNz4jzf7p8pUT3/604uIBACwYCYXQfsZTkwuiogYGa197QPQ2qqTE1Gdmqi5xnMeAAAAAAAAAJ1KuagBjj766HmPzS3hTExMxCmnnFJEpLq76qqr4iMf+ci8U4tmC1QREfvtt1/c6173KjIeAMA2mcmyWJt4o/3wgE2n0GqGcly3lTHlIoB2VkkUyCOUiwAAAAAAAADoXMpFDXCve90rDjrooMiybIvlm9mvZ1kWF1xwQXz+859vQsptNz09Hccdd1xMTPzjba+1phaVSqV49rOfXVQ0AIAFWT9ejelspuaaoX6bTqHVLO3ti97u7pprUlPLAGht+cpF6Ul3AAAAAAAAANCOlIsa5LjjjkuumS0YvfjFL47LL7+8gFT18dKXvjRWrly52XSiueYWqvr6+uKkk04qMh4AwDbLUy4YHrDpFFpNqVRKFgNHRpWLANpZnue8FeWBApIAAAAAAAAAwOKjXNQgJ554YtztbneLiJh3etHssQ0bNsSTn/zkuOGGGwrNuC3e+c53xjnnnLPFn2mu2elMz3rWs2L77bcvKB0AwMKMjG5Irhkum1wErWh4oPa1W6mmr38AWleqXDS4pD+WdPcUlAYAAAAAAAAAFhflogbp7++Pl7/85Vuc7DNrbsHo1ltvjUc84hFxxRVXFBVxq73lLW+J173udZuKRampRV1dXXHKKacUlg8AYKEqY7U3nXaXumJZX7mgNEA9DZdrTx3LM9ECgNZVSdznFcgBAAAAAAAA6GTKRQ30spe9LHbccceI2PL0oojNC0Zr1qyJhz/84fHZz362sIx5bNiwIZ7znOfEGWecsSlvqjRVKpXiuOOOi/vd735FxQQAWLCR0dqbTleUB6IrMcERWJxSm8ZTm84BaG0jiQl1Q8pFAAAAAAAAAHQw5aIGWr58ebzrXe+qWcSJ2LxgNDo6Gscff3w87WlPi1tuuaWImDV961vfigc+8IHxxS9+cVNpaL6fZ26BaunSpfH2t7+9qJgAAHWRmlzijfbQulKbxk0uAmhvnvMAAAAAAAAAYH7KRQ32nOc8Jw499NBNxZz5zC0YZVkWF154Yey7775x8sknx6pVq4qKu8lFF10Uj3vc4+KpT31q3Hjjjcli0azZdW95y1tip512KigtAEB9VMZSm04HC0oC1Ftq0/i68WpMTU8XlAaAoqXKRSYXAQAAAAAAANDJlIsK8MlPfjK23377iIitKhiNj4/HRz/60dh7773jcY97XJx77rlx2223NSznypUr401velPsu+++8cQnPjF+9KMfbSoLpYpFs8dLpVI87nGPi1e+8pUNywkA0Cgjo6lNpwMFJQHqLc9EirVjowUkAaAZKiYXAQAAAAAAAMC8epodoBPsvvvu8fnPfz4OP/zw5ASguQWj2X/Osix+9KMfxY9+9KOIiLjvfe8bBx10UBx44IFx73vfO+55z3vmyrFq1aqoVqsxOjoaa9asidWrV8eqVati5cqVsXLlyhgZGdksw51zzGduYWqHHXaIT3/607nyAAAsNulNpyYXQavKc/2OVDfG9kuXFZAGgCJVJydibGqy5hrlIgAAAAAAAAA6mXJRQZ7whCfE29/+9njd615Xc3rRrLkTg2b/edbVV18d11xzTXz2s5+9y+/Z0veZ/Z977bVXzfPNmpuvVqlo7tosy6JcLsdXvvKV2HnnnWv+HgCAxWhmZiYqY95oD+1qKMf1O1LdUEASAIo2kiiQR0QMKZEDAAAAAAAA0MG6mh2gk5x22mnx+te//i7FofnMTi2KiE3r7zzRaO6alDv/nrm/5vv+tcxd293dHZ///OfjEY94RK4sAACLzfrxaswknn+Ui6B1DfQuiSXdtd+vkZpeBkBrynN/95wHAAAAAAAAQCdTLirY2972tvh//+//bVYaSqlVBMpTUpq1pd83X2Epz/ea/T1dXV3x0Y9+NI488shcOQAAFqN8b7S36RRaValUSm4cz3MfAKD15JlMN1QeKCAJAAAAAAAAACxOykVNcNZZZ8W73/3u6Or6xx9/3nLQrC1NHtrW37e132Nu3izLoq+vL/73f/83TjzxxK36GQAAFps8pQJvtIfWplwE0JlS9/fBvv7oTUy3AwAAAAAAAIB2plzUJK961aviwgsvjBUrVmw2jWixm1ss2n777eN73/teHHXUUU1OBQCwcKlNp91dXTHYVy4oDdAIqeljykUA7amSuL8rkAMAAAAAAADQ6ZSLmuiwww6L3/zmN/GYxzxm0+SgxVoympsry7J4zGMeE1dccUU86lGPanIyAID6SG467V8aXYvwOQ3IL7V5PHUfAKA1pcqjQ/3KRQAAAAAAAAB0NuWiJttzzz3j4osvjo9+9KOxbNmyRVcyunOpqFwux9lnnx0XXXRR7LLLLk1OBwBQPyPVDTWPpyaeAIvfUHmw5nGTiwDaU+r+PjzgOQ8AAAAAAACAzqZctEi84AUviBtvvDFOOeWU6O/vv0vJqOii0Z1LRRERxx13XPzxj3+MU045ZVEUnwAA6im56VS5CFpe6jpeP16NyempgtIAUJTkhMpE+RQAAAAAAAAA2p1y0SKy3Xbbxdlnn72pZLT99ttHlmVbLBrVu9yzpe+dZVn09vbGc57znFi5cmV88pOfNK0IAGhbqU2nJhdB68tTEqyMjRaQBICiZFmWLJEP9XvOAwAAAAAAAKCzKRctQjvttFOcffbZ8ec//znOO++8OOyww6K3t3ezolHEXQtBC/kVEZu+f5Zlse+++8Zb3vKWuOWWW+Izn/lMHHDAAc364wAAKITJRdD+8pQEU0VDAFpLdWoixqcma64ZHvCcBwAAAAAAAEBn62l2AObX29sbz3zmM+OZz3xmbNy4MX7wgx/Ed77znfi///u/uPbaa2N6evouvyfPRKO5BaVZy5cvj4MOOige//jHx5FHHhn77rtvXX4GAIBWMDMzk5xWYnIRtL48m8dTRUMAWkulmp5Ip0QOAAAAAAAAQKdTLmoRS5cujac+9anx1Kc+NSIixsbG4vLLL4/LL788Vq1aFatXr47Vq1fHbbfdFhs2bIhqtRpjY2MxPj4evb29MTAwEOVyOQYHB2PXXXeNe97znnHPe94z9tprrzjooIPiPve5T65iEgBAO1o7Xt1iAXuu4fJgQWmARin3LIm+7p4Yn56ad83IqHIRQDsZqW5IrlEiBwAAAAAAAKDTKRe1qP7+/njoQx8aD33oQ5sdBQCg5VVyTCrJM/EEWNxKpVIMlZfGmg1r512TZxM6AK0jT2l0qH+ggCQAAAAAAAAAsHh1NTsAAAA0W6432vcrF0E7GB6oPYWsMmZyEUA7GUmUyJf1laO32/uXAAAAAAAAAOhsykUAAHS81KbT7q6uWNbXX1AaoJGGy7WLgnkmXADQOlITKofKphYBAAAAAAAAgHIRAAAdL1UmGC4vjVKpVFAaoJFSU8hSm9ABaC2pEvlwufZEOwAAAAAAAADoBMpFAAB0vMqYTafQKYYHEpOLlIsA2kqluqHm8dREOwAAAAAAAADoBMpFAAB0vNTkoqHyQEFJgEZLbSLfMDEWk9NTBaUBoNHSk4uUiwAAAAAAAABAuQgAgI6X3nRqchG0izzXc6U6WkASABoty7KoJJ7zhpSLAAAAAAAAAEC5CAAAKmPeaA+dIs8m8pHqhgKSANBo1cmJGE9Mo/OcBwAAAAAAAADKRQAAdLjpmZlYO1Z7Sok32kP7yLOJPDXlAoDWkJpOGWFCJQAAAAAAAABEKBcBANDh1o2NRpZlNdd4oz20j3Lvkujv6a25Js9mdAAWvzxl0aHyQAFJAAAAAAAAAGBxUy4CAKCj5XujvXIRtJPUNa1cBNAe8tzPh/o95wEAAAAAAACAchEAAB0tX7losIAkQFGGlIsAOkLqfr68rxw93d0FpQEAAAAAAACAxUu5CACAjlZJbDrt7eqOpUv6CkoDFCE1uSh1XwCgNVSqG2oeT5VNAQAAAAAAAKBTKBcBANDRRnJsOi2VSgWlAYqQmkZmchFAe0jdz1NlUwAAAAAAAADoFMpFAAB0NJtOofOkJlWkSocAtAbPeQAAAAAAAACQj3IRAAAdrZLYdJoqIQCtJ7WZfOPEeExMTRWUBoBG8ZwHAAAAAAAAAPkoFwEA0NG80R46T57rujJW+94AwOKWZZnnPAAAAAAAAADIqafZAUibmJiIm2++OdasWRO333573HHHHTE2Nhbj4+MxPj4e09PTzY6Y9J//+Z/NjgAAsEU2nULnyTOpYqS6MXYcXFFAGgAaYXRyIiama0+hGyoPFpQGAAAAAAAAABY35aJFZnR0NH7xi1/ET3/60/j1r38d11xzTdx8880xMzPT7GgLolwEACxG0zMzsW5stOYam06h/eQpDaaKhwAsbpUc93ElcgAAAAAAAAD4B+WiRaBSqcRXv/rV+NKXvhQ//OEPY2rqn29VzbKsicnqo1QqNTsCAMAWrR0bjdTT1nB5oJAsQHH6e5dEuWdJVKcm5l0zMrqhwEQA1NtINX0fVy4CAAAAAAAAgH9QLmqi6667Lt73vvfFZz7zmahWqxFx1zJRqxdz2qEcBQC0r3ybTk0ugnY0NLA0quvmLxdVxkwuAmhleSbQrVAiBwAAAAAAAICIUC5qijvuuCPe+MY3xic+8YmYnp7erIAzX5moFUs6rV6MAgDaX55Np0MD3mgP7Wi4vDRuWzcy7/GRUeUigFZWSTznLe8vR09Xd0FpAAAAAAAAAGBxUy4q2Fe/+tU46aSTolKpbCoM3bmE04pFIgCAVpTadNrb3R1Le/sKSgMUaai/dnEwT/kQgMUrdR8fTnwOAAAAAAAAAEAn6Wp2gE6RZVmcfPLJ8YxnPCNGRkYiy7IolUqbikVZlm36BQBAMVKbTof6l5rGCG1qODGVLFU+BGBxSz7nlZWLAAAAAAAAAGCWyUUFmJiYiGOOOSa+9rWvbSoVzVImAgBonuQb7RPlA6B1DSc2lZtcBNDaUiXR4YHBgpIAAAAAAAAAwOJnclGDZVkWRx99dFxwwQWbFYtMKQIAaL6R0Q01jw+XbTqFdpW6vkcnx2N8arKgNADUW54JlQAAAAAAAADAP5hc1GCvf/3r4+tf//pmpaKFmDv1CACAhamMjdY8nppsArSuoRzXd6W6MXZaNtT4MADUVZZlMVJNlMhNqAQAAAAAAACATZSLGuhHP/pRnHXWWdtcLKpVJDL1CABg4VKbTvOUD4DWlKc8OKJcBNCSNk6Ox+T0dM01SuQAAAAAAAAA8E/KRQ0yNjYWL3zhCzf989aUgeaWiu78+3p7e2OHHXaI7bffPsrlcvT19UV3d/fCAwMAdJipmelYN1atucamU2hfeScXAdB68ty/h/o95wEAAAAAAADALOWiBvnYxz4W119/fZRKpdzFojtPOFq6dGk89rGPjYMPPjgOOuig2GeffWK33XZrWGYAgE6ytjqaXKNcBO2rv6c3BnqXxOjkxLxrRpSLAFpSnvv38IDnPAAAAAAAAACYpVzUAJOTk3H22WdvNoGoljuXig477LB40YteFE984hOjr6+vYTkBADpZnk2neSabAK1rqLxUuQigDY2M1r5/lyJiRf9AMWEAAAAAAAAAoAUoFzXA17/+9fjzn/+ca2rR3GLRIx7xiHjPe94TBx10UBExAQA6Wq432pcHC0gCNMtweWncum5k3uMV5SKAllQZq33/Xt4/ED1d3QWlAQAAAAAAAIDFr6vZAdrR+eefn1xTKpU2lY9KpVKcddZZcckllygWAQAUpFLdUPP4ku6eGOhdUlAaoBlSBcKRxH0CgMUpNbnIdEoAAAAAAAAA2JzJRXU2MTER3/72tzdNJNqSudOKenp64otf/GL827/9W1ERAQCIiJHqaM3jw+WlNZ/pgNY3nNhcnmfCGQCLT6ocmrr/AwAAAAAAAECnMbmozn7zm99EtVqNiH+Uh+YzO7Hov//7vxWLAACaIDW5yBvtof2lrnPlIoDWVBmrff9WLgIAAAAAAACAzSkX1dnPfvazmsdLpdKmYtHTnva0eMELXlBQMgAA5kqVBmw6hfaXus6rkxMxNjVZUBoA6mVktPZznhI5AAAAAAAAAGxOuajOrr766nmPlUqlTf97T09PvOc97ykiEgAAW6BcBOTZXF4xvQigpWRZlrx3e84DAAAAAAAAgM0pF9XZqlWrah6fnVr0jGc8I/bYY49iQgEAcBepTadD5cGCkgDNkmdzeaqICMDisnFyPCZnpmuuGfacBwAAAAAAAACbUS6qs1tuuWWzCUXzefazn11AGgAAtmRqejrWjVdrrvFGe2h/eSYXjYxuKCAJAPVSGU2XQofKAwUkAQAAAAAAAIDWoVxUZ+vXr9/i1+cWjnp6euLRj350UZEAALiTylh606lyEbS/vp7eGOjtq7kmz/0CgMVjpJouhZpcBAAAAAAAAACbUy6qs40b5994lmVZRETsv//+0d/fX1QkAADuZKSa5432ykXQCYYHal/ree4XACweqft2KSJW9JtcBAAAAAAAAABzKRfV2cTERM3jpVIp7n3vexeUBgCALankKAuYXASdYag/US4aVS4CaCWp57zl/QPR3eU/iQIAAAAAAADAXP4/6XU2ODiYXLPzzjsXkAQAgPmk3mjf190T5d4lBaUBmilVJMxTRgRg8Ug95ymQAwAAAAAAAMBdKRfV2fLly5Nrli61iQEAoJlSm06HykujVCoVlAZopuGBxOSiMeUigFaiXAQAAAAAAAAAW0+5qM7ylIump6cLSAIAwHxSk0iGB9LTKIH2MFyufb1XRpWLAFpJ6jlvKHHfBwAAAAAAAIBOpFxUZ3vuuWdkWVZzzejoaEFpAADYkuTkon5vtIdOMZSYYFGdmoixyYmC0gCwUOnJRQMFJQEAAAAAAACA1qFcVGf3v//9k2v+9re/FZAEAID5jFQ31Dw+nCgbAO0jz/We2qgOwOKQZVmOcpHJRQAAAAAAAABwZ8pFdZYqF2VZFjfeeGNBaQAA2JLkptMB5SLoFHnKRRXlIoCWsHFiPKZmpmuuSU2sAwAAAAAAAIBOpFxUZw9/+MPnPVYqlSIi4rrrrisqDgAAdzI5PRUbxsdqrjG5CDpHnk3mJhcBtIbUdMoIz3kAAAAAAAAAsCXKRXW2xx57xP777x9Zlm0qE0X8Y2LRrHXr1sXvf//7ZsQDAOh4lbHR5BpvtIfOsaS7J5Yu6au5RrkIoDXkuV8rFwEAAAAAAADAXSkXNcDTnva05JqLL764gCQAANzZyGieTaeDBSQBFovUNV9RLgJoCan7dalUiuX9AwWlAQAAAAAAAIDWoVzUAMcee+ymqUVzpxfNyrIszj///KJjAQAQEZXqhuQab7SHzpK65kdy3DcAaL7U5KIVfeXo7vKfQwEAAAAAAADgzvx/0xvgPve5TzzlKU+JLMs2+3qWZZvKRpdddln87ne/a0I6AIDONlIdrXm8v6c3yr1LCkoDLAbpcpHJRQCtIHW/HjKdEgAAAAAAAAC2SLmoQV7zmtck17zjHe8oIAkAAHOlJpAMmVoEHSd13SsXAbSG1HOe6ZQAAAAAAAAAsGXKRQ3yr//6r3HkkUduNq0o4p/Ti7Isiy9/+cvxf//3f01MCQDQeSqJkoBNp9B5Utd96r4BwOJQSUyoVCIHAAAAAAAAgC1TLmqgD33oQ7F8+fKIiM0KRrOyLIsXvvCFMTpae+MDAAD1k5pAolwEnSd13Y9NTUZ1cqKgNABsK5OLAAAAAAAAAGDbKBc10C677BJnn312ZFm22dfnTjO69tpr4/jjj29COgCAzpSaQOKN9tB58lz3qWIiAM2VZVlyctHwgOc8AAAAAAAAANgS5aIGO+mkk+Kkk07arFAU8c+CUZZl8ZWvfCVe+tKXNjElAEDnSE8uGiwoCbBY5LnuU9MwAGiuDRNjMTUzXXONyUUAAAAAAAAAsGXKRQX48Ic/HI9+9KNrFow+8pGPxAknnBCTk5NNTAoA0N4mpqdiw8RYzTU2nULnGSoPJNekpp4B0Fx5JsyZUAkAAAAAAAAAW6ZcVIDu7u644IIL4uEPf3jNgtGnP/3pOOSQQ2LVqlVNTAsA0L7WVkeTa5SLoPP0dvfEYF9/zTV5Nq0D0Dwjo+n7tAmVAAAAAAAAALBlykUFWb58eVx00UXxhCc8YVOhaLZkNLdg9Mtf/jL233//OOuss2JsrPZb9QEA2Doj1Q3JNd5oD51puL/2tZ9n0zoAzVMZq32fLpVKsaKvXFAaAAAAAAAAAGgtykUFKpfL8c1vfjOe97znRZZlmx2bO9FodHQ0Xv/618eee+4ZZ511VqxZs6YZcQEA2k6eySPKRdCZUte+yUUAi1uqRL6ifyC6uvynUAAAAAAAAADYEv8f9YL19vbG//zP/8RnP/vZWLp06RYnGM1OMVqzZk28/vWvj9122y0OO+yweO973xu/+93vYmpqqsk/BQBAa0qVA8o9S6Lcu6SgNMBiMjxQu1yUmogBQHOlJswNK5ADAAAAAAAAwLx6mh2gXb3lLW9JrnnKU54S55133qZyUcTmBaPZf56amoqLL744Lr744oj4R0Fpn332iXve855x97vfPZYvXx7lcjl6e3sb88PUwX/+5382OwIAQFQS5aKhRLkAaF/D5cGax0dGa0/EAKC5UiVQ5SIAAAAAAAAAmJ9yUYO8+c1v3qw0VEuWZVv85zuXjGZNTEzElVdeGVdddVWd0jaechEAsBikJhcN99t0Cp1qKHH9V6obN70MAoDFJzW5aEi5CAAAAAAAAADmpVzUYHcuDm3L751bMpp7bCHfu0g23wEAi8VItfbkEZtOoXMNJyaXjU9PRXVqIgZ6+wpKBMDWSE2oNLkIAAAAAAAAAOanXNRgqWJNnoLQnddsqWy0WLVKAQoA6AyV6mjN46lyAdC+8mw6HxndGAMrlIsAFpssy2JkLFUuGiwoDQAAAAAAAAC0HuWiBmtEuaZVCjutUoACADpHcnJRv3IRdKo85aJKdWPsumK7AtIAsDXWj4/F9MxMzTVD5YGC0gAAAAAAAABA6+lqdgAAACjCxNRUbJwYr7kmT7kAaE95yoUj1dpTMQBojkqiQB5hchEAAAAAAAAA1KJcBABARxgZS5cChgdsOoVO1dPdHcv6yjXXKBcBLE557s9K5AAAAAAAAAAwP+UiAAA6QsWmUyAhdQ/IMxkDgOKlykWlUimWJwqkAAAAAAAAANDJlIsAAOgIed5oP6RcBB0tVS4yuQhgcUqVyIf6B6Kry38GBQAAAAAAAID59DQ7QLsrlUrNjgAAQESMjNaeOFLuXRL9Pb0FpQEWo1TBULkIYHFK3Z9NpwQAAAAAAACA2pSLGizLsmZHAAAg0m+0t+kUSN0HUvcRAJoj/Zw3WFASAAAAAAAAAGhNykUN8qhHPcrUIgCARcQb7YGU1H1gpLoxsizzdz2ARSb1nDdUHigoCQAAAAAAAAC0JuWiBvnxj3/c7AgAAMyR3nSqXASdLnUfmJieitHJiVi6pK+gRADkMVLdUPO4yUUAAAAAAAAAUFtXswMAAEARKsnJRTadQqfLcx9IbWAHoFgzWRaVsdGaa0yoBAAAAAAAAIDalIsAAOgIqclFNp0Cee4DqaIiAMXaMF6N6ZmZmmtMqAQAAAAAAACA2pSLAABoe+NTkzE6OV5zjU2nwIryQHJNqqgIQLHy3JeVyAEAAAAAAACgNuUiAADaXp5JIzadAj1d3bG8r1xzjXIRwOKiXAQAAAAAAAAAC6dcBABA27PpFMgrdS8YGVUuAlhMUiXyrlIplvWnJ9MBAAAAAAAAQCdTLgIAoO3lmVw0pFwERPpeUBlTLgJYTFIl8qH+pdFVKhWUBgAAAAAAAABak3IRAABtL7XpdKB3SfT19BaUBljMhgcGax4fqW4oKAkAeaTuywrkAAAAAAAAAJCmXAQAQNtLlYuGy7XLBEDnGOqvvQl9ZNTkIoDFpFIdrXl8WLkIAAAAAAAAAJKUiwAAaHveaA/kNTxQ+35QqW6MLMsKSgNAiuc8AAAAAAAAAFg45SIAANpeJTm5yKZT4B9S94PJmenYODleUBoAUtITKj3nAQAAAAAAAECKchEAAG3PplMgrzz3g8po7XsKAMWYybJYWx2tuSY1kQ4AAAAAAAAAUC4CAKADpMpFQ8pFwP8vz/1gpLqhgCQApKwfr8Z0NlNzzVC/5zwAAAAAAAAASFEuAgCgrY1NTUZ1cqLmmuGBwYLSAIvdiv6BKCXWjCSmZABQjFSBPMJzHgAAAAAAAADkoVwEAEBbq+TYdDrUP1BAEqAV9HR1x/LEPaFichHAopDnOW/YhEoAAAAAAAAASFIuAgCgrXmjPbC1UhvR89xXAGi8kUTZs7vUFcv6ygWlAQAAAAAAAIDWpVwEAEBbGxlNTxgZ7vdGe+CfhpSLAFrCyGjt+/GK8kB0lUoFpQEAAAAAAACA1qVcBABAW6uM1d50unRJXyzp6SkoDdAKUpOLKspFAItC6jkvdT8HAAAAAAAAAP5BuQgAgLaWmjCSmlACdJ7UZnSTiwAWB895AAAAAAAAAFAfXtHOgmy33XbJNaVSKe64444C0gAA3NXIqDfaA1sntRl9pLoxsiyLUqlUUCIAtsRzHgAAAAAAAADUR0eXi+51r3sl15RKpbjhhhsKSNOaKpVKlEqlyLJs3jU23AEAzVRJvNF+uDxYUBKgVaTuC1Mz07FhYiyW9ZULSgTAlnjOAwAAAAAAAID66Ohy0U033aQYUyfz/TnV+rMFACjCyJg32gNbJ899oVLdqFwE0EQzWRaVxHPeUHmgoDQAAAAAAAAA0No6ulw0azEVY7q7u5NrSqVSTE1NFZAGAKD1VUZTm06Vi4DN5SkXjVQ3xm5DOxSQBoAtWT82GjOJ/3ZnchEAAAAAAAAA5KNctMi06qSfLeU29QkAaLaxyYmoTk3UXGNyEXBny/sHohQRtf52NlKtXVwEoLHy3Ic95wEAAAAAAABAPl3NDrAYZFl2l1/NVCqV5v0FAEB+Np0C26K7qytW9A/UXDNS3VBQGgC2xHMeAAAAAAAAANSPctEitdgKTwAAraiSY9PpkE2nwBYMlQdrHq9URwtKAsCWpJ7zuktdMdhXLigNAAAAAAAAALQ25SIAANpWnjfaKxcBW5KadmFyEUBzpZ7zhsoD0WUKOAAAAAAAAADkolwEAEDbSm06HVzSH0u6ewpKA7SSVPFwZDRdXgSgcVLPecOJCXQAAAAAAAAAwD8pFwEA0LYqyU2nphYBW5a6P6TuLwA0Vuo+bDolAAAAAAAAAOSnXAQAQNsaqW6oedymU2A+wwOJyUVjGyPLsoLSAHBnqec8JXIAAAAAAAAAyE+5CACAtjVichGwjVL3h+mZmVg/PlZQGgDurFIdrXnccx4AAAAAAAAA5KdcBABA20qVi0wuAuaT5/5QSUzNAKAxZmZmojLmOQ8AAAAAAAAA6kW5CACAtlVJTi4aLCgJ0Gry3B9GElMzAGiMdePVmMmymmtMLgIAAAAAAACA/JSLAABoS9XJiRibmqy5Zrg8UFAaoNWs6CtHqVSquWbE5CKApkhNp4xQLgIAAAAAAACAraFcBABAW8qz6XTI5CJgHl1dXTHUX7uAmJqOBkBj5Ln/DikXAQAAAAAAAEBuykUAALSlPJtOhwdsOgXml9qYnqfECED9pe6/3V1dMdhXLigNAAAAAAAAALQ+5SIAANrSSHVDck1qKgnQ2YYT5SKTiwCaI/WcN9y/NLpKpYLSAAAAAAAAAEDrUy4CAKAtpd5oP9jXH73dPQWlAVpRqlxkchFAc6TKnanJcwAAAAAAAADA5pSLAABoSyOjtTedpkoDAKnN6XkmpAFQf6lyp+c8AAAAAAAAANg6ykUAALSlylhq0+lgQUmAVpW6T1SqozGTZQWlAWBWqlxkchEAAAAAAAAAbB3lIgAA2lJ60+lAQUmAVpWafDGdzcSG8WpBaQCYVUlNLhpQLgIAAAAAAACAraFcBABAWxoZ3VDzuMlFQEqqXBSRLjICUF8zMzNRGRutuWaoX7kIAAAAAAAAALaGchEAAG0ny7L0G+1zlAaAzjakXASw6Kwdr0aWZTXXKJEDAAAAAAAAwNZRLgIAoO1UpyZifHqq5hrlIiBleV85ukqlmmtGqrWnpAFQX6kCeUTE8IDnPAAAAAAAAADYGspFAAC0nZHR9KbTPBNJgM7W1dUVQ/217xWV6mhBaQCIyFfqTN27AQAAAAAAAIDNKRcBANB2cr3RXrkIyCFVRDS5CKBYI4nnvO6urljW119QGgAAAAAAAABoD8pFAAC0ndSm0whvtAfySRUR89xvAKif1ITK4fLSKJVKBaUBAAAAAAAAgPagXAQAQNtJbfZf1leOnu7ugtIArSw5uSixyR2A+qqM1b7vKpADAAAAAAAAwNZTLgIAoO1UqhtqHk9NIgGYlbpfpDa5A1BfyclFA57zAAAAAAAAAGBrKRcBANB2UpOLlIuAvFKb1CvVjTGTZQWlASD9nDdYUBIAAAAAAAAAaB/KRQAAtJ2KchFQJ0P9te8XM1kW68dGC0oDQGpinOc8AAAAAAAAANh6ykUAALSd1Bvth2w6BXIaHkhPwBhRLgIoxPTMTKxN3HM95wEAAAAAAADA1lMuAgCgrWRZliwXeaM9kFee+8XI6IYCkgCwbmw0siyrucZzHgAAAAAAAABsPeUiAADayujkRExMT9VcM1ROTyIBiIhY1leO7lLtvzpXEoVGAOpjZCx9v1UuAgAAAAAAAICtp1wEAEBbybPJ36ZTIK+uUilWlAdqrklNSwOgPkZG0/fbIc95AAAAAAAAALDVlIsAAGgrI9UNyTXKRcDWSN0zlIsAipEqkfd0dcfgkv6C0gAAAAAAAABA+1AuAgCgreTZ5J+aQgIw13B5sObxPBPTAFi41HPecHlplEqlgtIAAAAAAAAAQPtQLgIAoK2kNvkv7y9HT1d3QWmAdpCeXJSemAbAwqXKRUOmUwIAAAAAAADANlEuAgCgrSTfaN9v0ymwdVKb1fNMTANg4SqJMmeqDAoAAAAAAAAAbJlyEQAAbcUb7YF6S21WXzs2GjMzMwWlAehcyRK55zwAAAAAAAAA2CbKRQAAtJWR1BvtBwYLSgK0i9Rm9Zksi3Xj1YLSAHSuihI5AAAAAAAAADSEchEAAG2lUh2tedwb7YGtlWezemqaBgALMz0zE2vHPOcBAAAAAAAAQCMoFwEA0DayLEtOLvJGe2Br5dmsnrr3ALAwa8dGI0usUS4CAAAAAAAAgG2jXAQAQNvYODkek9PTNdfYdApsrcG+cnR31f7rc2pqGgALU8kxIW64PFhAEgAAAAAAAABoP8pFAAC0jcponk2nykXA1ukqlWK4v/a9w+QigMYayVEuMqESAAAAAAAAALZNT7MDtIITTjih2RHuYjFmAgBotpExb7QHGmOovDT+Nrp+3uN5Nr0DsO1SJc7eru5YuqSvoDQAAAAAAAAA0F6Ui+aRZdmm//npT3+6Keee7+vNyFTLfHkBAIo2kphcVIqIFf0DxYQB2kpq6lnq/gPAwlQSJc6h8tIolUoFpQEAAAAAAACA9qJclMNiLM8sxkwAAM1WSbzRfnn/QHR3dRWUBmgnQ4lyUSXH5DQAtl1qQlyqBAoAAAAAAAAAzE+5KIci33qatzS0WN7EquQEACwmI9XRmsdtOgW21fBAYnJRYtM7AAuTus+mSqAAAAAAAAAAwPyUi3JYjAWaxZgJAKDZRhKTi2w6BbbVUH/t+8fasdGYmZmJLtPRABqikpxcNFhQEgAAAAAAAABoP3Y9AQDQNtKbTpWLgG2T2rSeZVmsHa8WlAag86QmFw2XBwpKAgAAAAAAAADtR7kIAIC2kd50qlwEbJvhgfT9IzU9DYBtMzUzHevGRmuuGTK5CAAAAAAAAAC2mXIRAABtIcuyHJOLbDoFtk2ecuLIaO17EADbZu3YaGSJNXlKoAAAAAAA/H/s3X+0bHdZH/5nzplzzszcc++dSYAQSoOBJMTIDyVIEiSEFqIFE7EqiJRWAgSKXWXZNkJbWLVWdGHBFnXZCgGxgALFBQuIBmwQobBIaABJw49AIpHwIynczNx7z52Z83O+f+SLEMjdn33Omdmz98zrtRZrafZzz35udH343OR57wcAAO6bcBEAADPhxMZ6bO5sZ9a0bS4C9mh1uRH1hcXMmlTAEYC9yXO+dhrueQAAAAAAAACwV8JFAADMhO5gLVmTZ/MIwH2p1WrRbrYya7rCRQATked8bdtcBAAAAAAAAAB7Vp92A2VQq9Wm3QIAAPuUZ+hUuAjYj05zNb514vhJnwsXAUxG6nxdWlyMA0srBXUDAAAAAAAAALNHuCgiRqPRtFsAAGCfeomh01qtFoca2VtHALKkAoq9HBvUANi91D2v3Tjg40EAAAAAAAAAsA9zHS564hOfaPAAAGBGpL5of3ilGYsLCwV1A8yidiJcZHMRwGSkztdOy3ZKAAAAAAAAANiPuQ4X/dVf/dW0WwAAYExSQ6ft5mpBnQCzKr25SLgIYBK6/ezNcB33PAAAAAAAAADYF59uBwBgJqSG+lOhAICU1DlydNiP7Z2dgroBmB+9YT/zuXseAAAAAAAAAOyPcBEAADMhvbnI0CmwP6lzZBT3BIwAGK/uIHtzkXseAAAAAAAAAOyPcBEAADMhNXTqi/bAfuU5R1JnEQC7s7WzHceGg8wa9zwAAAAAAAAA2B/hIgAAKm80GkVvkL0tpNMydArsT6e5mqxJnUUA7E6ejXDCRQAAAAAAAACwP8JFAABU3trGMLZ2tjNrDJ0C+3VgeSWWFhYza2wuAhivbv9EsqbtngcAAAAAAAAA+yJcBABA5XUHhk6ByavVasmzJM95BEB+ec7VPJvlAAAAAAAAAICTEy4CAKDy8nzR3tApMA6pLWjCRQDj1UtshFterEdrabmgbgAAAAAAAABgNgkXAQBQed3E0GmtVovDK82CugFmWWpzUU+4CGCsuoN+5vN280DUarWCugEAAAAAAACA2SRcBABA5fWG2cP87UYrFhZcfYH9S21Bs7kIYLxSm4tSG+UAAAAAAAAAgDQTlgAAVF63nwgXGToFxqTTbGU+T21SA2B3UqFN4SIAAAAAAAAA2D/hIgAAKq9n6BQoSDuxuejYcBBbO9sFdQMw+1L3PCFyAAAAAAAAANg/4SIAACrPF+2BonRa6fPk6LBfQCcA88E9DwAAAAAAAAAmT7gIAIDK80V7oCh5hti7/ewzCYB8tra349j6ILOmk9goBwAAAAAAAACkCRcBAFBpO6NRdIepL9obOgXGI09YMbVlA4B88myCs7kIAAAAAAAAAPZPuAgAgEpbWx/E9s5OZo2hU2BcDiytxNLiYmZNLxF4BCCfPGFNGyoBAAAAAAAAYP+EiwAAqLRejqFT4SJgXGq1WnIbWrcvXAQwDt3BWrLGPQ8AAAAAAAAA9k+4CACASvNFe6BoqUH2Xo5heADSUiHylcV6NJeWC+oGAAAAAAAAAGaXcBEAAJWWChct1GpxaKVZUDfAPEgFFvOEHgFIS52n7eaBqNVqBXUDAAAAAAAAALNLuAgAgEpLDp02DsTCgmsvMD7pzUXCRQDjkLrnpc5jAAAAAAAAACAfU5YAAFRaaog/tWEEYLdSw+w2FwGMR/qet1pQJwAAAAAAAAAw24SLAACoNF+0B4qWCi0eWx/E1vZ2Qd0AzK70Pa9VUCcAAAAAAAAAMNuEiwAAqLTuYC3zuc1FwLjlCS32hrYXAexXKlxkcxEAAAAAAAAAjIdwEQAAldazuQgoWCfHMHtv0C+gE4DZtbW9HcfXB5k17nkAAAAAAAAAMB7CRQAAVNbOaJQc4Dd0CoxbnnMltVUNgGx5NsC55wEAAAAAAADAeAgXAQBQWcfXB7E92smsaRs6BcasubQcy4v1zJpuYqsaANnynKPueQAAAAAAAAAwHsJFAABUVp6h005rtYBOgHlSq9WS2zKEiwD2J989T7gIAAAAAAAAAMZBuAgAgMrq5Rk69UV7YAJSZ0ue8wmAk0udoyv1pWjWlwvqBgAAAAAAAABmm3ARAACV1R2sZT5frC3EwZVmQd0A86TdzN6KZnMRwP6kztF2oxW1Wq2gbgAAAAAAAABgtgkXAQBQWd1+9tDp4WYrFgydAhPQabYyn6fCjwBkS52jnVZ2yBMAAAAAAAAAyE+4CACAykp90b7TPFBQJ8C8sbkIYLJ6g37mc/c8AAAAAAAAABgf4SIAACqrN0yFi3zRHpiM1FD72vowNre3CuoGYPakNhe1G8JFAAAAAAAAADAuwkUAAFRWt58dLmo3WwV1AsybTis91N4bZm/dAODkkhsqc5zDAAAAAAAAAEA+wkUAAFRWLzV0anMRMCF5NmakApAA3LfN7a1YWx9m1qQ2yAEAAAAAAAAA+QkXAQBQSTujUfSGqXCRoVNgMvJtLhIuAtiLPJvf2u55AAAAAAAAADA2wkUAAFTS8WE/dkajzBpDp8CkNOvLsVJfyqyxuQhgb/KcnzZUAgAAAAAAAMD4CBcBAFBJ3UGeoVPhImAyarVa8ozpDtYK6gZgtvRynJ/ueQAAAAAAAAAwPsJFAABUknARMG2p7Wi9HOcUAN+vO+hnPl+pL0VzabmgbgAAAAAAAABg9gkXAQBQSamh/cWFhVhdaRbUDTCP0puLhIsA9iK1+U2AHAAAAAAAAADGS7gIAIBKSg3ttxutWKjVCuoGmEep4XabiwD2JnV+ChcBAAAAAAAAwHgJFwEAUEnpL9qvFtQJMK/aNhcBTETq/BQuAgAAAAAAAIDxEi4CAKCSDJ0C05Y6Z9Y2hrGxvVVQNwCzI7W5KBXuBAAAAAAAAAB2R7gIAIBKMnQKTFueDWlHB/0COgGYLekQuQ2VAAAAAAAAADBOwkUAAFSSzUXAtOU5Z7qDtQI6AZgdm9tbsbYxzKxxzwMAAAAAAACA8RIuAgCgcnZ2dqI3zN4GYnMRMGl5zplUEBKAe+vl2PjmngcAAAAAAAAA4yVcBABA5RxbH8RoNMqs6TRXC+oGmFfNpeVo1Jcya4SLAHYnz8Y3m4sAAAAAAAAAYLyEiwAAqJw8w/qdZquAToB5lxpw7wkXAexKnnPT5iIAAAAAAAAAGC/hIgAAKifPF+3bNhcBBUhtSbO5CGB3Uudmo74UzaXlgroBAAAAAAAAgPkgXAQAQOWkhk4XFxbi4EqjoG6AedZObEnLE4YE4DtS97zUxjgAAAAAAAAAYPeEiwAAqJxejqHTWq1WUDfAPLO5CGC80uEi2ykBAAAAAAAAYNyEiwAAqJzU0Gm74Yv2QDHaiQ0aqTAkAPeWOjdTG+MAAAAAAAAAgN0TLgIAoHK6/cQX7VvCRUAxOolw0YmN9djY2iqoG4Dqs7kIAAAAAAAAAIonXAQAQOUYOgXKIhUuiojoDm0vAsirO1jLfJ7aGAcAAAAAAAAA7J5wEQAAldNLDOrnGfYHGIc8Q+69RCASgHtsbG/FiY31zBr3PAAAAAAAAAAYP+EiAAAqZXtnJ44O+5k1vmgPFCXX5iLhIoBc8oQxhYsAAAAAAAAAYPyEiwAAqJRjw36MRqPMGkOnQFEaS8vRXFrOrOn21wrqBqDa8oQxhcgBAAAAAAAAYPyEiwAAqJQ8Q6fCRUCRUoPueTZxAGBzEQAAAAAAAABMi3ARAACV4ov2QNmkBt3znFsApM/LZn05GoltcQAAAAAAAADA7gkXAQBQKakv2tcXFmN1uVFQNwDCRQDj0h2sZT5vtwTIAQAAAAAAAGAShIsAAKiU1NBpp3kgarVaQd0ApLelpUKRANyjN+hnPk+FOQEAAAAAAACAvREuAgCgUrqGToGSSW8uyg5FAnCP5OaihnseAAAAAAAAAEyCcBEAAJXSSw2dChcBBes0VzOf9zc3Yn1rs6BuAKqrm9j01mm55wEAAAAAAADAJAgXAQBQKcmhU+EioGB5zp1e4uwCIKLbd88DAAAAAAAAgGkQLgIAoFKEi4CyybMxLXV2Acy7ja2t6G+uZ9a0G+55AAAAAAAAADAJwkUAAFTG9s5OHBv2M2vazdWCugG4h3ARwP51h+lzstNyzwMAAAAAAACASRAuAgCgMo4O+zFK1HSarUJ6Afi2Rn0pWkvLmTU94SKATN3+WrLGhkoAAAAAAAAAmAzhIgAAKqM7yDN06ov2QPFSZ4/NRQDZeontlBH5NsUBAAAAAAAAALsnXAQAQGXkGc5vtwydAsVrJ7am5QlHAsyz1Oai5tJyNOpLBXUDAAAAAAAAAPNFuAgAgMroJcJFS4uLcWBppaBuAL7D5iKA/Und8zq2FgEAAAAAAADAxAgXAQBQGanh/HbjQNRqtYK6AfiO1NB7amgeYN6l7nnCRQAAAAAAAAAwOcJFAABURnLotGXoFJiOdmLo3eYigGzJELlwEQAAAAAAAABMjHARAACVkdr80WmuFtQJwL2lNmoMNjdiuLVZUDcA1eOeBwAAAAAAAADTI1wEAEBlJL9o3/BFe2A68mzUSA3OA8yz5IZKm4sAAAAAAAAAYGKEiwAAqIzuYC3zeadl6BSYjk4rvVEjNTgPMK/Wtzajv7meWZMnxAkAAAAAAAAA7I1wEQAAlbC1sx3HhoPMGl+0B6alk2NzWrefHZAEmFd5Nru55wEAAAAAAADA5AgXAQBQCUeH/WSNoVNgWpbr9WgtrWTW2FwEcN/ynI/ueQAAAAAAAAAwOcJFAABUQrefHjptGzoFpqjTyj6DekPhIoD7kmdzkXseAAAAAAAAAEyOcBEAAJWQ74v2qwV0AnDfUls18oQkAeZR6p7XWlqOlfpSQd0AAAAAAAAAwPwRLgIAoBJ6g7XM58uL9WgtLRfUDcD3azcSm4tyhCQB5lEqXCRADgAAAAAAAACTJVwEAEAldAf9zOed5oGo1WoFdQPw/TqtxOaiREgSYF6lwpftZqugTgAAAAAAAABgPgkXAQBQCanNRe1m9lA/wKSlNmv0EiFJgHmVCl/aXAQAAAAAAAAAkyVcBABAJXQTX7TvCBcBU5Y6hwZbGzHY3CioG4DqcM8DAAAAAAAAgOkSLgIAoBJ6hk6BksuzQS11lgHMo9TZaEMlAAAAAAAAAEyWcBEAAJWQ+qK9oVNg2vKEHFNnGcC8GW5tRj+x1U2IHAAAAAAAAAAmS7gIAIDS29rejmPrg8yaTnO1oG4A7pvNRQC7l+dcFCIHAAAAAAAAgMkSLgIAoPR6w/TQqS/aA9O2vFiP1eVGZo3NRQD3lidc1GkJkQMAAAAAAADAJAkXAQBQer1BP1nji/ZAGaTOou5graBOAKohT+iy03DPAwAAAAAAAIBJEi4CAKD08gzj21wElEHqLLK5CODeUve81tJKLNfrBXUDAAAAAAAAAPNJuAgAgNJLDeOvLNajubRcUDcAJ5cKF/WEiwDuJXXP67QEyAEAAAAAAABg0oSLAAAovdTQabt5IGq1WkHdAJxc2+YigF1JhS7bDeEiAAAAAAAAAJg04SIAAEovNXTaaa0W1AlAttTmou7gRIxGo4K6ASi/5OaixLkKAAAAAAAAAOyfcBEAAKWX3Fzki/ZASaSG4Ne3NmOwtVFQNwDllwwXtdzzAAAAAAAAAGDShIsAACi97mAt87kv2gNl0W6mN6n1Bv0COgGohtSGSiFyAAAAAAAAAJg84SIAAEovNYjvi/ZAWeQ5j1KBSYB5MdzciMFm9ja3Tisd2gQAAAAAAAAA9ke4CACAUtvc3orj64PMGl+0B8qi3Wgla7r97C0dAPOim9haFGFDJQAAAAAAAAAUQbgIAIBS6w2ztxZF2FwElMfSYj1WVxqZNb2hcBFARM57nnARAAAAAAAAAEyccBEAAKWWZ8NHp7laQCcA+aQG4W0uArhHt7+WrGkLFwEAAAAAAADAxAkXAQBQank2fPiiPVAmqcBjdyBcBBCRPg8PLK/E8mK9oG4AAAAAAAAAYH4JFwEAUGqpDR8r9aVoLi0X1A1AWrvZynzeG6Q3dQDMg1SI3HZKAAAAAAAAACiGcBEAAKXWTQzh21oElI3NRQD5pELkqbAmAAAAAAAAADAewkUAAJRaLzGEL1wElE3qXOoNTsRoNCqoG4DySpqf75MAAQAASURBVN/zbC4CAAAAAAAAgCIIFwEAUGqpDR/CRUDZtBPn0vr2Vgw2NwrqBqC8ukP3PAAAAAAAAAAoA+EiAABKLfVF+9QQP0DR8gzDp4KTAPOg13fPAwAAAAAAAIAyEC4CAKDU0puLVgvqBCCfPOGiVHASYNYNNjdisJW9xc3mIgAAAAAAAAAohnARAACltbm9FWsbw8waQ6dA2bQbNhcBpOQJWbrnAQAAAAAAAEAxhIsAACit3qCfrGkbOgVKpr64GAdXmpk13cFaQd0AlFOecJF7HgAAAAAAAAAUQ7gIAIDSyjN874v2QBmlziabi4B5l+ccFC4CAAAAAAAAgGIIFwEAUFqGToGqSoWL8mzsAJhlqXve6nIjlhfrBXUDAAAAAAAAAPNNuAgAgNJKDd8368vRXFouqBuA/GwuAsiWuufZTgkAAAAAAAAAxREuAgCgtFLD9+1mq6BOAHYntVVNuAiYd93BWuZz2ykBAAAAAAAAoDjCRQAAlFZq+L7TXC2oE4DdSW8uWovRaFRQNwDlk77nCRcBAAAAAAAAQFGEiwAAKC1ftAeqqp0IP25ub0d/c6OgbgDKp5fcUOmeBwAAAAAAAABFES4CAKC0eoN+5vNOy9ApUE55Nm6kApQAs8zmIgAAAAAAAAAoD+EiAABKK7m5qGHoFCinfOGi7MF6gFk12NyI4dZmZo1wEQAAAAAAAAAUR7gIAIBS2tjaihMb65k1hk6BsjrcbCVresJFwJzKc/61m6sFdAIAAAAAAAAARAgXAQBQUr1heui00zJ0CpRTfWExDjWamTU2FwHzKs/5J0QOAAAAAAAAAMURLgIAoJTyDJ22G+nNIADT0kls3ej2hYuA+dQdrCVr2jk2wAEAAAAAAAAA4yFcBABAKfmiPVB1qQBknuF6gFmUuuetrjRiabFeUDcAAAAAAAAAgHARAACl1O1nD903l5ajsbRcUDcAu9dpZW8u6g1tLgLmUy8RLuo0BMgBAAAAAAAAoEjCRQAAlFJq6N7WIqDsUudUty9cBMyn1OaitnseAAAAAAAAABRKuAgAgFJKDd0bOgXKLnVO9QYnYjQaFdQNQHmkwkWdlnseAAAAAAAAABRJuAgAgFJKDp0KFwEllzqnNne248TGekHdAJRHL3nPWy2oEwAAAAAAAAAgQrgIAICSMnQKVF2eEGTqrAOYNaPRKBkibzeEyAEAAAAAAACgSMJFAACUks1FQNXlCUF2B2sFdAJQHoOtjVjf2sys6bTc8wAAAAAAAACgSMJFAACUzvrWZvQ31zNr2sJFQMkdbrSilqhJBSkBZk1v0E/WCJEDAAAAAAAAQLGEiwAAKJ1ejmF7Q6dA2S0uLMShRiuzRrgImDd5NrYJkQMAAAAAAABAsYSLAAAonTzD9sJFQBWkzqo8YUqAWdLtp8+9diKYCQAAAAAAAACMl3ARAAClk2fY3hftgSpIhYtsLgLmTW+Yfe4dXGnG0mK9oG4AAAAAAAAAgAjhIgAASig1bN9aWo6V+lJB3QDsXSoIKVwEzJvU5qJ209YiAAAAAAAAACiacBEAAKWTGrbvNFcL6gRgf9Kbi9YK6gSgHNzzAAAAAAAAAKB8hIsAACidXmLoNLUJBKAsUkPyvUE/RqNRQd0ATF8vEapMhTIBAAAAAAAAgPETLgIAoHRSmzwMnQJVkQpDbu1sx9rGsKBuAKYvtblIiBwAAAAAAAAAiidcBABA6aSGToWLgKrIc16lzjyAWTEajZIbKt3zAAAAAAAAAKB4wkUAAJSOL9oDsyLPkHxq0B5gVgw2N2J9eyuzRrgIAAAAAAAAAIonXAQAQKkMtzZjsLmRWdNprRbUDcD+HGq0olarZdbYXATMizznXafpngcAAAAAAAAARRMuAgCgVPJs8Gg3WgV0ArB/iwsLcThxZnUHawV1AzBdue55Tfc8AAAAAAAAACiacBEAAKWS64v2NhcBFdJuHMh83u3bXATMhzz3vNSZCQAAAAAAAACMn3ARAAClkueL9h1Dp0CFdJrZZ1ZvKFwEzIdUuOjQSjPqi4sFdQMAAAAAAAAAfJtwEQAApdIdrGU+by2txHK9XlA3APvXadlcBBAR0Uvc89qJMCYAAAAAAAAAMBnCRQAAlErqi/apIX2Asmkntq3l2dgGMAuS9zzhIgAAAAAAAACYCuEiAABKJbXBw9ApUDXJzUXDEzEajQrqBmB6UmFK9zwAAAAAAAAAmA7hIgAASqU3TA2drhbUCcB4pIblt3d24vj6sKBuAKYntbmoLVwEAAAAAAAAAFMhXAQAQKmkh05bBXUCMB55QpG9wVoBnQBMz2g0St7zbC4CAAAAAAAAgOkQLgIAoFR6fZuLgNmSZxNHauAeoOr6mxuxsb2VWdN2zwMAAAAAAACAqRAuAgCgNIabGzHY2sis8UV7oGoOrzSjVqtl1ggXAbOul+Occ88DAAAAAAAAgOkQLgIAoDTyDNcbOgWqZmFhIdqNVmZNnqF7gCrrDtaSNe55AAAAAAAAADAdwkUAAJRGnuH6tqFToIJSA/M2FwGzLs85d7iZHcQEAAAAAAAAACZDuAgAgNLIM3QqXARUUersEi4CZl0qRH6o0Yz6wmJB3QAAAAAAAAAA3024CACA0kgN168uN2J5sV5QNwDjk95ctFZQJwDTkbrndRoC5AAAAAAAAAAwLcJFAACURuqL9rYWAVXVaa5mPk+dfwBVlwoXuecBAAAAAAAAwPQIFwEAUBqpzR2pzR8AZZU6v3qDfuyMRgV1A1C8VIiy08oOYQIAAAAAAAAAkyNcBABAaaS+aC9cBFRVaiPH9mgnjq8PCuoGoHjJzUUN9zwAAAAAAAAAmBbhIgAASiP1RfvUcD5AWeUJR6bOQICqGo1G6Q2VLfc8AAAAAAAAAJgW4SIAAErD5iJgVuU5v1JnIEBV9Tc3YnN7O7PGPQ8AAAAAAAAApke4CACAUhhsbsRwazOzxtApUFUHG61YqNUya1JbPQCqKs/51m645wEAAAAAAADAtAgXAQBQCnk2drSbqwV0AjB+C7VacnC+27e5CJhNee55nZZwEQAAAAAAAABMi3ARAACl0DN0Csy4dmL7Wm8oXATMplR4shYRhxutYpoBAAAAAAAAAL6PcBEAAKXQHawla9qGToEKSwUk82z2AKiiVHjyYKMZ9YXFgroBAAAAAAAAAL6XcBEAAKWQGqpfXWnE0mK9oG4Axq/dSISLEps9AKoqdb51mqsFdQIAAAAAAAAA3BfhIgAASqGXCBd1mtlD+QBllzrHUucgQFWlNlS65wEAAAAAAADAdAkXAQBQCqnNRamNHwBl12klwkXDE7EzGhXUDUBxesPEPU+4CAAAAAAAAACmSrgIAIBSSIWLUkP5AGXXaa5mPt8ZjeL4sF9QNwDF6fZtqAQAAAAAAACAMhMuAgCgFLr9tcznqaF8gLLLs5kjFbQEqJrRaBS9VIhcuAgAAAAAAAAApkq4CACAqRuNRtFLbOswdApUXZ5zTLgImDUnNtdjc2c7s0aIHAAAAAAAAACmS7gIAICpG2xtxPrWZmZNno0fAGV2cKUZi7XsP4antnsAVE2vnz7X2s1WAZ0AAAAAAAAAACcjXAQAwNR1cwyd2lwEVN1CrZYcoLe5CJg13cFassbmIgAAAAAAAACYLuEiAACmLs+mDuEiYBaktrDlGcIHqJLuoJ/5vBYRhxs2FwEAAAAAAADANAkXAQAwdXk2dbQbwkVA9aW2c9hcBMyaXiI0eajRisUF/4gSAAAAAAAAAKbJv7kHAGDqUsP0B1eaUV9cLKgbgMlJbWHLs8kNoEpS9zzbKQEAAAAAAABg+oSLAACYutQX7Q2dArMidZ7ZXATMGuEiAAAAAAAAACg/4SIAAKauO+hnPjd0CsyKdmpz0bAfOzs7BXUDMHmpjWypcxEAAAAAAAAAmDzhIgAApi61ucjQKTArUmHJ0WgUR9cHBXUDMHk2FwEAAAAAAABA+QkXAQAwdYZOgXmR5zxLbfkAqIrRaJTjnrdaUDcAAAAAAAAAwMkIFwEAMFX5hk6Fi4DZ0M4xRN9NbHMDqIoTG+uxtbOdWWNDJQAAAAAAAABMn3ARAABTNdjciI3trcyaPMP4AFVwcKURiwvZfxRPBS4BqiJPWFKIHAAAAAAAAACmT7gIAICpyjNEb+gUmBW1Wi06jewzrSdcBMwI9zwAAAAAAAAAqAbhIgAApsoX7YF5006caTYXAbMiFZas1WpxqNEqqBsAAAAAAAAA4GSEiwAAmKo8Q/SHm4ZOgdmRCkx2+8JFwGxI3fMOrzRjccE/ngQAAAAAAACAafNv7wEAmKrUF+0PNZpRX1gsqBuAybO5CJgXqfOs3VwtqBMAAAAAAAAAIItwEQAAU5UaOu00sofwAaqm08o+13pD4SJgNqRC5KlNbgAAAAAAAABAMYSLAACYqvQX7Q2dArOlk9jUcXTYj+2dnYK6AZgc9zwAAAAAAAAAqAbhIgAApir5RftW9hA+QNW0ExvZRqNRHBv2C+oGYHK6g7XM5zYXAQAAAAAAAEA5CBcBADBVyS/aJ4bwAaqm00qfa6mzEaDsRqNR9AbZQck85yEAAAAAAAAAMHnCRQAATM1oNEp/0d7QKTBj8mzqEC4Cqm5tYxhbO9uZNULkAAAAAAAAAFAOwkUAAEzNic312NzOHjrNM4QPUCWry42oLyxm1vSEi4CKyxOSFCIHAAAAAAAAgHIQLgIAYGryDM8LFwGzplarRbvZyqxJbXUDKLtuP889b7WATgAAAAAAAACAFOEiAACmJs8X7dvCRcAMSg3U5zkfAcqsN8w+x2q1WhxeaRbUDQAAAAAAAACQRbgIAICpSX3RvhYRhxvZ2z0Aqii1lS3PZjeAMkttYDvcaMXCgn80CQAAAAAAAABl4N/gAwAwNb3E0OmhRivqC4sFdQNQnFS4yOYioOpSIfLUOQgAAAAAAAAAFEe4CACAqekO+pnPDZ0Cs6otXATMuN5QuAgAAAAAAAAAqkK4CACAqekmNhelhu8Bqio1VH9s2I/tnZ2CugEYv9TmIvc8AAAAAAAAACgP4SIAAKaml9jM4Yv2wKxKnW+jiDg6zN7uBlBm7nkAAAAAAAAAUB3CRQAATE3X0CkwpzrN1WRNarsbQFmNRqPoDlP3vPQ5CAAAAAAAAAAUQ7gIAICpGI1GyS/at4WLgBmV53xLBTAByur4+jC2d3Yya9rNVkHdAAAAAAAAAAApwkUAAEzFiY312NzZzqzxRXtgVh1YXomlhcXMmlQAE6Csejk2r7nnAQAAAAAAAEB5CBcBADAV3VxDpzYXAbOpVqsltxfZXARUVXfQT9a45wEAAAAAAABAeQgXAQAwFXk2chg6BWZZpyVcBMymVIi8VqvFoZVmQd0AAAAAAAAAACnCRQAATEVqaL4WEYcarWKaAZiCdiMRLuqnN7wBlFEqRN5utGJhwT+WBAAAAAAAAICy8G/xAQCYilS46HCjFYuGToEZ1mmuZj7vDfsFdQIwXql7nu2UAAAAAAAAAFAupjUBAJiK1NBpOzF0D1B1nVZic9HA5iKgmpKbi4SLAAAAAAAAAKBUhIsAAJiK1NCpL9oDs67dyD7njg0HsbWzXVA3AONjcxEAAAAAAAAAVItwEQAAU5HeXGToFJhtqc1FERFHB/0COgEYr9TmtY4NlQAAAAAAAABQKsJFAABMRXroVLgImG15zrlUEBOgbHZGo+gNs4OR7nkAAAAAAAAAUC7CRQAAFG40GkUvsY0jz0YPgCrLs7lDuAiomrX1QWzv7GTW2FAJAAAAAAAAAOUiXAQAQOHWNoaxtbOdWdNuGDoFZltraTmWFhcza3qJLW8AZZMnFGlzEQAAAAAAAACUi3ARAACFyzV0anMRMONqtVpye5HNRUDV9ISLAAAAAAAAAKByhIsAAChct59n6DR74B5gFqQG7PMM6QOUSSoUuVCrxcFGq6BuAAAAAAAAAIA8hIsAAChcb5g9dFqr1eLwSrOgbgCmJxUusrkIqJrUudVuHIiFWq2gbgAAAAAAAACAPISLAAAoXHewlvn8cKMVCwuuqsDsawsXATMmtXEtde4BAAAAAAAAAMUzsQkAQOG6/eyh09QmD4BZYXMRMGtS55Z7HgAAAAAAAACUj3ARAACFS33R3tApMC86zdXM58fXB7G1vV1QNwD7l9pQaXMRAAAAAAAAAJSPcBEAAIXzRXuAe+Q573pD24uA6nDPAwAAAAAAAIDqES4CAKBwqc1FvmgPzIs8511qUB+gLHZGozg66GfWCBcBAAAAAAAAQPkIFwEAUKjRaBTdxBaOTnO1oG4ApivX5iLhIqAijq8PYnu0k1kjRA4AAAAAAAAA5SNcBABAoY6vD2N7J3vo1BftgXnRXFqOlcV6Zo3NRUBV5DmvOi0hcgAAAAAAAAAoG+EiAAAK1RusJWt80R6YF7VaLXnmCRcBVZFn05oQOQAAAAAAAACUj3ARAACFyvVFe0OnwBxJnXndHKFMgDJInVeLtYU4uNIsqBsAAAAAAAAAIC/hIgAACpUKFy3UanHI0CkwR9rN1cznvUG/oE4A9qfbz77nHW62YqFWK6gbAAAAAAAAACAv4SIAAArVS4SL2o0DsbDgmgrMD5uLgFnRG2bf82ynBAAAAAAAAIByMrUJAEChUpuL2s1WQZ0AlEM7GS7KPjcByiJ9zxMuAgAAAAAAAIAyEi4CAKBQqaHTTnO1oE4AyiG1yWNtfRib21sFdQOwd92+zUUAAAAAAAAAUEXCRQAAFKo7WMt87ov2wLzptNLnXm/YL6ATgP3pDYXIAQAAAAAAAKCKhIsAAChUL7m5SLgImC95hu1T20AApm1nNEre89rNVkHdAAAAAAAAAAC7IVwEAEBh7hk6zd6+IVwEzJs8w/a9xNY3gGk7PuzHzmiUWWNzEQAAAAAAAACUk3ARAACFOb4+iO3RTmZNW7gImDPN+nKs1Jcya7qJbSAA05bnnBIiBwAAAAAAAIByEi4CAKAwvTxDpy1ftAfmS61WSw7cCxcBZZfnnBIiBwAAAAAAAIByEi4CAKAwvmgPcN9SZ1+ecCbANKXOqcXaQhxcaRbUDQAAAAAAAACwG8JFAAAUpjtYy3xu6BSYV6ltHjYXAWWXOqfazVYs1GoFdQMAAAAAAAAA7IZwEQAAhen2s4dODxs6BeZUanORcBFQdqlzqtNcLagTAAAAAAAAAGC3hIsAAChMb5gaOs0ergeYVamh+55wEVByqXMqtaENAAAAAAAAAJie+rQbAJi2O+64Iz7wgQ/ETTfdFJ/73Ofiy1/+chw/fjyOHTsWo9EoDh48GAcPHowzzjgjzjvvvHjkIx8Zl156aZx99tnTbn0m3HnnnfGhD30obr755rjlllviS1/6UnS73Th+/Hisra1FvV7/u/8bdDqdOOuss+Kcc86Jc845J37kR34kzjvvvKjZcgKVkfqivaFTYF6lwpVrG8PY2N6K5UV/jAfKqTtYy3wuRA4AAAAAAAAA5WUqCZhLvV4v3vCGN8Rb3vKWuOmmmzJrjxw5EkeOHInbb789PvKRj/zdXz/77LPj2c9+drz4xS+O0047bdItz5Rbb7013vjGN8Y111wTN998c2bt1tZWDIfD+OY3vxkREZ/85Cfv9fyUU06JJzzhCfHEJz4xLrvssnj4wx8+sb6B/ev2bS4CuC95wpW9wYl4wOrhAroB2L3eoJ/53D0PAAAAAAAAAMprYdoNABRpbW0tXvayl8WDH/zg+JVf+ZVksCjLl770pfi1X/u1OOOMM+KFL3xhfOtb3xpjp7PpAx/4QDz5yU+Oc845J171qlclg0V53H333fHe9743rrrqqjj33HPjvPPOi1e84hVxyy23jKFjYNx6ic1FneZqQZ0AlEueofvUGQowLTs7O9Eb2lAJAAAAAAAAAFUlXATMjfe+973xgz/4g/Gf//N/jhMnxjeYubGxEVdffXU8/OEPjze96U1j+7mz5K//+q/j0ksvjX/0j/5R/OVf/mWMRqOJvevzn/98/MZv/Eb83u/93sTeAezNzmiUHDr1RXtgXuUZuu8KFwEldWx9EDuJP+e55wEAAAAAAABAeQkXATNvZ2cnXvGKV8RP//RPx1e/+tWJvefuu++O5z3vefHCF74wNjY2JvaeKtne3o5f//Vfjx/90R+N6667btrtAFN2fNhPDp36oj0wr5pLy9GsL2fWCBcBZZVns5pwEQAAAAAAAACUV33aDQBM0vb2dvzCL/xCvPOd7yzsnVdffXV88YtfjD//8z+PVqtV2HvL5s4774xnPOMZ8dGPfnTarQAlkWco3tApMM/azVYMjp88pN4drBXYDUB+ee55QuQAAAAAAAAAUF42FwEza2dnJ5773OcWGiz6tg9/+MPxj//xP4719fXC310Gt956azz+8Y8XLALuRbgIIFunuZr5vDfoF9QJwO6k7nmLCwuxutIsqBsAAAAAAAAAYLdsLgJm1stf/vJ461vfuqtfc/bZZ8eP/diPxSMe8Yg45ZRTolarRbfbjc9//vPx8Y9/PG6++ebcP+sv/uIv4sorr4w3v/nNu2290m666aa49NJL4//9v/837VaAkukZOgXIlNrqYXMRUFap86nTOBALtVpB3QAAAAAAAAAAuyVcBMyka6+9Nn7rt34rd/3Tn/70+Pf//t/H4x73uMy6m2++OV796lfHW9/61tjZ2Un+3Le85S1xySWXxPOf//zcvVTZV77ylXjqU5+662DR/e53v3jSk54UF198cZx77rnx0Ic+NE455ZQ4cOCeAdterxe9Xi+63W584QtfiM985jPxmc98Jj796U9Hr9ebwO8EmITUF+3bjZahU2Cupba35dkABzANqRB5KjwJAAAAAAAAAEyXcBEwc44cORL/7J/9sxiNRsnaU045Jd7ylrfE0572tFw/+xGPeET8j//xP+LFL35xPPOZz4w77rgj+Wv+5b/8l3HJJZfEWWedlesdVdXr9eJpT3tafP3rX8/9a37qp34qXvjCF8ZP/MRPRL1+8v9KOu200+K0006LiIgLL7zw7/761tZWfOxjH4v3ve998Wd/9mfxhS98Ye+/AWDikl+0b64W1AlAOSU3F/WFi4BySoUfU+FJAAAAAAAAAGC6FqbdAMC4vfzlL49vfetbyboHP/jB8YlPfCJ3sOi7XXjhhXHjjTfGeeedl6wdDAbxr/7Vv9r1O6rm+c9/fnz2s5/NVXvRRRfFjTfeGO95z3viJ3/yJzODRVnq9Xpccskl8ZrXvCY+//nPx4033hjPe97zotVq7ennAZPVG/Qznxs6BeZd6hzsb67HxtZWQd0A5JfcUOmeBwAAAAAAAAClJlwEzJRPf/rTcfXVVyfrDh8+HNddd1087GEP2/O7HvCAB8QHP/jBePCDH5ysveaaa+LP//zP9/yusnvDG94Q73rXu5J1CwsL8cpXvjL+9//+33H++eePvY/zzz8/3vjGN8bXvva1eO5znzv2nw/sT2pzkaFTYN51WukNbt2h7UVA+fRsLgIAAAAAAACAShMuAmbKr/3ar8XOzk6y7uqrr46HP/zh+37fAx/4wPiTP/mTWFxcTNb+6q/+6r7fV0Zf/vKX45d/+ZeTdSsrK/GOd7wjXv7yl+f6+7Uf7XY7HvvYx070HcDupb5ob+gUmHftRnr7YrefHdQEKNrOzk70htkbKoXIAQAAAAAAAKDchIuAmXHLLbfEe9/73mTd05/+9HjGM54xtvdefPHF8aIXvShZd+ONN8Zf/uVfju29ZXHVVVfFiRPZgYGFhYV461vfGj/3cz9XUFdA2Rg6BUjLE7JMbQcBKNrR9UGMRqPMmk4zvZkNAAAAAAAAAJge4SJgZvyX//JfkgNN9Xo9XvOa14z93f/pP/2nOHToULLut3/7t8f+7mn68Ic/HO9617uSda985SsFi2DOHTN0CpDUWFqO5tJyZk1qCxxA0fKEHjstIXIAAAAAAAAAKDPhImAmrK+vxzve8Y5k3c/+7M/GWWedNfb3n3rqqfGCF7wgWfeBD3wg7rrrrrG/f1pe+tKXJmsuvvjieNnLXlZAN0CZ5RmG7zRbBXQCUG6p7UU2FwFl0x2sJWvaDeEiAAAAAAAAACgz4SJgJlxzzTVx9OjRZN0v//IvT6yHl7zkJbGwkH2sbm9vx9vf/vaJ9VCkj3zkI/GJT3wis2ZxcTH+4A/+IPn3BZh9uYZObS4CiHYiXGRzEVA2qXNpcWEhDq40CuoGAAAAAAAAANgL097ATHjb296WrDnrrLPiwgsvnFgPD3nIQ+Liiy9O1uXptQp++7d/O1nzi7/4i3HeeecV0A1QdoZOAfJJbS7KE9YEKFJqo1qneSBqtVpB3QAAAAAAAAAAeyFcBFTe9vZ2XHfddcm6n//5n594L8961rOSNf/n//yfOHLkyMR7maS//du/jfe9733Jul/5lV8poBugCgydAuTTSWxx6w36BXUCkE8qRN5uZIcmAQAAAAAAAIDpEy4CKu8Tn/hEHD16NFn31Kc+deK95HnHzs5OfPCDH5x4L5P09re/PUajUWbNP/yH/zDOPffcgjoCys7QKUA+NhcBVdPtJ0LkLfc8AAAAAAAAACg74SKg8vIEdQ4ePBgXXHDBxHt5yEMeEmeddVay7n/9r/818V4m6e1vf3uy5tnPfnYBnQBVYegUIJ92IlzU39yI4dZmQd0ApKVC5KmNbAAAAAAAAADA9AkXAZX38Y9/PFlzwQUXRL1eL6CbiIsvvjhZc8MNNxTQyWTcdttt8dd//deZNQsLC3HZZZcV0xBQCb2hoVOAPFKbiyIieolBfoAipe557WaroE4AAAAAAAAAgL0SLgIq79Of/nSy5jGPeUwBndzj/PPPT9Z8/vOfj/X19QK6Gb/rrrsuWfPDP/zDcdpppxXQDVAVqS/aGzoFuIdwEVAl2zs7cXTYz6wRIgcAAAAAAACA8hMuAirtrrvuim984xvJurKFi7a2tuL//t//W0A34/ehD30oWXPRRRcV0AlQFYZOAfJr5wgXpQKbAEU5NuzHaDTKrMkTmgQAAAAAAAAApku4CKi0m266KVfdueeeO+FOvuPhD394rrq8vZfNhz/84WTNBRdcUEAnQFUYOgXIb6W+FK2l5cya7mCtoG4AsnWH6bBjntAkAAAAAAAAADBd9Wk3ALAff/M3f5Or7qyzzppwJ9/R6XTilFNOibvvvjuzLm/vZXLHHXfEnXfemaw777zzkjVHjhyJa6+9Nq6//vq4+eab48tf/nIcPXo01tbWYnl5OVqtVpx66qlx5plnxsMe9rB43OMeFxdddFGcc8454/itAAXKM3QqXATwHZ3mavQ3T36X7A2yt8EBFKXbd88DAAAAAAAAgFkgXARU2pe//OVkzQMf+MA4cKDYYaazzjorPvGJT2TW5Om9bD772c/mqjv77LPv86/v7OzENddcE7/7u78bf/VXfxXb29v3WTcYDGIwGMSRI0fii1/8YkRE/Lf/9t/+7mc/4xnPiBe84AVx5pln7uF3ARQtz9CpL9oDfEe7eSC+duzk4SKbi4Cy6A2y73n1hcVYXW4U1A0AAAAAAAAAsFcL024AYD9uv/32ZM2DHvSgyTfyPU4//fRkzayGi0499dQ4dOjQ9/316667Lh7xiEfE05/+9PjgBz940mBRype+9KX4zd/8zTj77LPj53/+5+NLX/rSnn4OUBxDpwC7k9ry0U2cqwBFSZ1HneaBqNVqBXUDAAAAAAAAAOyVcBFQaV/72teSNQ984AML6GT37/zqV79aQCfj9fnPfz5Z84AHPOBe//uJEyfiOc95Tlx66aW5fn1e29vb8T//5/+MRzziEfGKV7wiNjc3x/azgfFKbdgwdApwb8JFQFWkziPbKQEAAAAAAACgGoSLgEo7cuRIsua0004roJN7yxMuuvvuuwvoZLzuuOOOZM3973//v/ufb7vttrjgggvij//4jyfW08bGRvzGb/xGPPGJT8zVH1C87qCf+Tw1RA8wb1LD+KmNcABF6eUIkQMAAAAAAAAA5SdcBFRannBRu92efCN7eOeJEydifX198s2M0Z133pms+fbv/bbbbotLLrkkPvvZz064q3tcf/31ceGFF451OxIwHqmhU1+0B7i3Tms18/lgcyOGmxsFdQNwckLkAAAAAAAAADAbhIuASut2u8magwcPFtDJ3t5Zte1F3/jGN5I1y8vLcdddd8U/+Af/IL72ta8V0NV3fP3rX48nPvGJAkZQMt3Ehg1DpwD31m60kjWpsxWgCELkAAAAAAAAADAb6tNuAGCvBoNBbG5uJuumES46dOhQrrqjR4/G6aefPuFuxmM0GuXaFLW4uBjPetaz4o477kjWHjp0KC6++OJ45CMfGQ95yENidXU1tra2otfrxa233ho33HBDfPrTn47t7e3cfX7rW9+Kyy+/PG644YY49dRTc/86YHJ6wkUAu5LaXBRxz9l6+qFOAd0A3LftnZ04OrS5CAAAAAAAAABmgXARUFkbGxu56prN5oQ7+X6NRiNXXd7fQxkMh8PY2dlJ1r3nPe+J4XCYWXPhhRfGS1/60rjssstiaWkps/bOO++MN7/5zfGa17wmvvnNb+bq9bbbbovnPOc5ce211+aqByYnz9CpL9oD3FunkT4XbS4Cpu3osB+jRI1wEQAAAAAAAABUg3ARUFl5gzmLi4sT7uT71ev5jteqhYv2W9dut+P3fu/34jnPeU7u9z7wgQ+Ml770pfHiF784rrrqqnj961+f69e9//3vj6uvvjquvPLK3O+aFU94whNy//8gk/PZz3522i2UgqFTgN1brtfjwPJKnNhYP2mNcBEwbantlBFC5AAAAAAAAABQFQvTbgBgr/IGc6YRssj7zs3NzQl3Mj7r6ycfbs3jzDPPjOuvv35XwaLvdvDgwXjd614Xb3jDG3IHxv7tv/23cfTo0T29DxiP7mAtWdNprhbQCUC1pAby8wz1A0xSnpCjex4AAAAAAAAAVIO1BkBlbW1t5aoTLhqP/WxZOv300+ODH/xgnHnmmfvu4/nPf34sLi7GFVdckay9++6749WvfnW88pWv3Pd7q+SjH/1o3P/+9592GxAREb1BP1nTbvmiPcD36jQPxNeO3n3S53nCmwCTlDqHlhYW48DySkHdAAAAAAAAAAD7YXMRUFl5Azzb29sT7mTv75xG8Gmv8m4Lui9vetObxhIs+rbnPve58Yu/+Iu5an//938/BoPB2N4N7E6uodMlQ6cA3yu17SNPeBNgklIb1NrNA1Gr1QrqBgAAAAAAAADYD+EioLKWl5dz1eXdcDROeTcS5f09lMFee33BC14QP/ETPzHmbiJe+9rXxoMe9KBkXa/Xi7e//e1jfz+QT9fQKcCedJrZW91sLgKmLXXPS51jAAAAAAAAAEB5CBcBlbW0tJSrbhrhorzvnPVw0YEDB+LVr371BLqJaLfb8apXvSpX7Z/8yZ9MpAcgLTl02jJ0CnBf2slwUfb5CjBpeULkAAAAAAAAAEA1CBcBlbWyspKrbjgcTriTvb+zSuGivH+/v9uzn/3saLfb42/m//fMZz4z7ne/+yXrPvKRj8Tamq/7wzT0kl+0Xy2oE4BqSW38GG5txmBzo6BuAL6fex4AAAAAAAAAzI76tBsAquXLX/5y3HDDDRN9x4EDB+Lyyy9P1jWbzajX68ktQcePHx9Xa7nlfeehQ4cm3Mn4NBqNWFpais3Nzdy/5p//838+wY7uCTw997nPjde85jWZdRsbG/HhD384fvInf3Ki/QDfL/lF+4Yv2gPcl1S4KOKewf7mUnXC6sBsSW6obLYK6gQAAAAAAAAA2C/hImBXPvzhD8cVV1wx0Xc85CEPyRUuiojodDrxzW9+M7Pm2LFj42hrV/K+85RTTplwJ+N16qmnxp133pmr9swzz4zHPOYxE+4o4ud+7ueS4aKIiBtvvFG4CKagO8jeGtZpCRcB3Jc8Gz+6gxNx+qFOAd0A3Nv2zk4cG/Yza9o2FwEAAAAAAABAZSxMuwGA/Tj11FOTNUePHi2gk92/s9VqRaPRKKCb8cnz9/vbLrjgggl28h0//MM/HMvL6S/2f+pTnyqgG+C7be1sx/HhILMmz2YOgHl0OMfGj1SAE2BSjg77MUrUCJEDAAAAAAAAQHUIFwGVlifsctdddxXQyb3l2e6zm6BOWZQxXLSyshKPfvSjk3W33XZbAd0A3y3P0GlbuAjgPi0v1mN1OTuI3htkbw0BmJQ84cZOwz0PAAAAAAAAAKpCuAiotL/39/5esiZP0Gfc8rwzT+9ls5ueH/WoR02wk3vLEy766le/WkAnwHfr9k8ka2wuAji51BlpcxEwLd1B+p7XtrkIAAAAAAAAACpDuAiotB/4gR9I1nz961+ffCPf4xvf+Eay5swzzyygk/F66EMfmrv2lFNOmWAnu3/X0aNHY319vYBugG/LM3Taaa4W0AlANaW2u+U5ZwEmoZc4f5YWF+PA0kpB3QAAAAAAAAAA+yVcBFRanoDOnXfeGf1+v4BuvuPWW29N1sx6uKjdbk+ukT2+q+j/P4B51xtmD50uL9ajtbRcUDcA1ZPeXCRcBExH6vxpNw5ErVYrqBsAAAAAAAAAYL+Ei4BKyxN2GY1GucI+49Lr9eLIkSPJut0EdcriYQ97WO5a4SKg208MnTYNnQJkSW0uSm0OAZiUVLio08o+vwAAAAAAAACAchEuAnbluc99boxGo4n+5/bbb8/dzyMf+chcdV/4whf2+Dvevbzvytt7mTzqUY/KXVtkYEA4AcqpN1jLfJ7ayAEw7zrN1czn3cGJGI1GBXUD8B3dfuqel31+AQAAAAAAAADlIlwEVNrpp58ep512WrLuU5/6VAHd5H9XvV7fVVCnLDqdTu6NS71eb7LNfJdut5urrtVqTbgT4Lslv2gvXASQqdPMvrusb23GYGujoG4AvqM3zN4K22645wEAAAAAAABAlQgXAZX3mMc8JllTZLjok5/8ZLLm3HPPjUajUUA343f++efnqssb+BmHvEGmAwcMuEGResJFAPvSzrH5o9vPPmsBJqGb2lDZcs8DAAAAAAAAgCoRLgIq76KLLkrWXH/99bG1tVVANxEf+chHkjUXXHBBAZ1MxuMf//hcdXffffeEO9ndu0499dRYXl4uoBvg21Kbi9rCRQCZ8gzn94bCRUCxtna249hwkFkjRA4AAAAAAAAA1SJcBFTek5/85GTN8ePH4xOf+MTEe/nKV74St956a7Lu0ksvnXgvk/LjP/7juepuuummCXfyHZ/5zGeSNWeccUYBnQDftrW9HcfWU0On6Y0cAPOs3Wgla2wuAop2dNhP1ggXAQAAAAAAAEC1CBcBlfe4xz0uDh06lKy79tprJ95LnnfUarVcgaiyOu+88+LBD35wsu6GG24ooJuI9fX1XOGihz/84QV0A3yboVOA/VtarMfqSiOzJrUlDmDc8oQabagEAAAAAAAAgGoRLgIqr16v5wrrvOMd75h4L29/+9uTNY997GPjfve738R7maSnPe1pyZrrr7++gE4iPv3pT8fGxkay7kd/9EcL6Ab4tjzD7oZOAdJSQczeYK2gTgDukeeeZ0MlAAAAAAAAAFSLcBEwE37hF34hWfOlL31pott0vvKVr8RHPvKRZF2eXsvun/yTf5Ksuf322+NTn/rUxHv50z/901x1F1100YQ7Ab5bN8ewu81FAGmpAf3uIL0pDmCcesPscNHyYj1aS8sFdQMAAAAAAAAAjINwETATLr/88jh06FCy7rWvfe3Eevjd3/3d2NnZyaxZWFiIZz3rWRProSgXX3xxnHnmmcm6//7f//tE+xgOh/FHf/RHybr73e9+8bjHPW6ivQD3lvqi/cpiPZqGTgGSbC4Cyqbbz77ntZsHolarFdQNAAAAAAAAADAOwkXATGg0GvHMZz4zWfenf/qnceutt479/UeOHImrr746WffjP/7jcfrpp4/9/UWr1WpxxRVXJOve9ra3RbfbnVgf73jHO+LIkSPJussvvzwWFxcn1gfw/XqJcJGhU4B82olwUSrMCTBuqVCj7ZQAAAAAAAAAUD3CRcDM+Nf/+l8nB9W3trbiqquuGvu7/8N/+A9x7NixZN2/+Tf/ZuzvnpZ/8S/+RRw4kD00duLEiYn9nrvdbvy7f/fvctU+//nPn0gPwMmlht0NnQLkkzovu4MTMRqNCuoGwD0PAAAAAAAAAGaRcBEwM37wB38wLrvssmTde97znnjnO985tvd+9KMfjde97nXJusc85jHxlKc8ZWzvjYi4/fbbo1arJf/zpCc9aazvjYg45ZRT4kUvelGy7k1velNce+21Y3//S17ykvjGN76RrPuRH/mR+LEf+7Gxvx/Ilho6bTdXC+oEoNpSQ/ob21sx2NwoqBuAfBsqAQAAAAAAAIBqES4CZsqv/uqvxsJC+mi78sor44tf/OK+33fnnXfGs5/97Nje3k7W/sf/+B/3/b6yeelLXxqHDx9O1l1xxRXxN3/zN2N77xvf+MZ461vfmqt2Fv++QxV0B2uZz33RHiCfTo4wZirQCTBONhcBAAAAAAAAwOwRLgJmyvnnnx/Pe97zknVHjx6NJz/5yfsKvHzzm9+MpzzlKXHHHXcka5/61KfG5Zdfvud3ldVpp50Wv/7rv56su+uuu+LJT35y3HLLLft+5xve8IZcG5MiIi655JL4qZ/6qX2/E9i93qCf+bzTMnQKkEe72UrWpAKdAOOytb0dx9YHmTV5QpEAAAAAAAAAQLkIFwEz5zd/8zfj1FNPTdZ99atfjcc97nFx7bXX7vodN9xwQzz2sY+Nz372s8naRqMRv/M7v7Prd1TFL/3SL8VjH/vYZN3tt98eF154Ye6NQ9/r+PHj8aIXvSiuvPLKXJuiWq1WvP71r9/Tu4D92dzeiuOJodN2Q7gIII8852Uq0AkwLkeH6fMmTygSAAAAAAAAACgX4SJg5tz//vePP/qjP4parZasPXLkSDztaU+Ln/mZn4kbb7wxWf+5z30urrjiinj84x8fX/nKV3L18zu/8ztx9tln56qtosXFxXjHO94R7XY7Wdvr9eKf/tN/GhdddFG8613vis3NzeSvueuuu+K3fuu34mEPe9iuwkKvfe1r45xzzsldD4xPL8fQqc1FAPnUFxfj0Eozs8bmIqAo3cGJZI3NRQAAAAAAAABQPfVpNwAwCZdddllcddVV8epXvzpX/bvf/e5497vfHeecc0484QlPiB/6oR+KU045JWq1WnS73fjCF74QH//4x+Omm27aVR/Pfvaz44UvfOFefguV8tCHPjTe/OY3x9Of/vQYjUbJ+uuvvz5+9md/Ng4fPhwXX3xxPOpRj4ozzjgjVldXY3t7O7rdbtx2221xww03xCc/+clcm4q+20te8pK48sor9/rbAfapZ+gUYKw6zQNxLGMjXJ5hf4BxyBNm7DSFyAEAAAAAAACgaoSLgJn1qle9Kr761a/G2972tty/5otf/GJ88YtfHMv7n/zkJ8cf/uEfjuVnVcHll18er3/96+OFL3xhroBRRMTRo0fjmmuuiWuuuWZsfTzrWc+K//pf/+vYfh6we3mG3NvNVgGdAMyGdvNA/G3vWyd9LlwEFCUVIl9ZrEdzabmgbgAAAAAAAACAcVmYdgMAk7KwsBBvfvOb42d+5mcKf/cTnvCEeM973hMrKyuFv3uaXvCCF8TrXve6WFiYzn+9vOhFL4o//uM/ntr7gXt0+4mh0/pSNOuGTgHySm0BybMxDmAcUmHGdvNA1Gq1groBAAAAAAAAAMbF9DUw0+r1erzzne+Ml73sZYW984orrojrrrsuDhzIHgKdVVdeeWW8//3vj1NPPbWwd66srMTv//7vxx/8wR8IFkEJdAdrmc87hk4BdqXdXM18bnMRUJTUeZMKQwIAAAAAAAAA5WQCG5h5CwsL8apXvSre/e53x4Me9KCJvafT6cTVV18df/iHfzh3G4u+16WXXhqf+tSn4mlPe9rE33XRRRfFDTfcEL/0S7808XcB+fSGhk4BxqnTbGU+7w7WYjQaFdQNMM9Sm9JSYUgAAAAAAAAAoJyEi4C58dM//dPxhS98Ia666qqxbhVaXl6O5z//+XHLLbfEC17wgrH93Ko744wz4s/+7M/ife97XzzykY8c+88/77zz4i1veUt87GMfi0c/+tFj//nA3nX7qaFT4SKA3UgN629ub8eJzfWCugHmWXpzUXYYEgAAAAAAAAAoJ+EiYK4cPHgwXv3qV8cdd9wRr3rVq+KHfuiH9vyzHvawh8UrXvGKuP322+MNb3hD3P/+9x9jp7Pjsssui5tuuik+9KEPxTOf+cw4dOjQnn/W4cOH4znPeU68//3vj5tvvjme85znRK1WG2O3wDikvmhvcxHA7uQ5N1NnL8A4pMJFNhcBAAAAAAAAQDXVp90AwDR0Op142cteFi972cvib//2b+Mv/uIv4jOf+Ux87nOfi9tvvz2OHTsWx48fj9FoFAcPHoyDBw/G3//7fz/OO++8eOQjHxlPecpT4txzz532byN+4Ad+IEaj0bTbyOVJT3pSPOlJT4qtra342Mc+Fh/72Mfic5/7XNxyyy1x5513xvHjx+PEiRNRq9XiwIEDcfjw4TjjjDPizDPPjEc/+tFx0UUXxfnnnx/Ly8vT/q0ACekv2hs6BdiNTisdLuoOTsSDD59aQDfAvNra3o7j64PMGiFyAAAAAAAAAKgm4SJg7j3kIQ+JK6+8ctptzI16vR6XXHJJXHLJJdNuBZiAze2tWNsYZtYYOgXYncONVtQiIitS3u3bXARMVm+YPmfc8wAAAAAAAACgmham3QAAALOjN+gna9qGTgF2pb6wGAcbzcya3mCtoG6AeZXaThnhngcAAAAAAAAAVSVcBADA2HRzDLf7oj3A7nWaq5nPuznCnQD7kSdc1Gm55wEAAAAAAABAFQkXAQAwNj1ftAeYiFQwM0+4E2A/Uve8lcV6NOvLBXUDAAAAAAAAAIyTcBEAAGOT+qJ9o74UzSVDpwC7lQpm5gl3AuxH6p7Xbh6IWq1WUDcAAAAAAAAAwDgJFwEAMDapodPU5g0A7lt6c5FwETBZqQ1pndZqQZ0AAAAAAAAAAOMmXAQAwNikw0WGTgH2IhUu6g1OxGg0KqgbYB71Bv3M50LkAAAAAAAAAFBdwkUAAIxNLxEuahs6BdiTVDhzc2c7TmysF9QNMI9Sm4vaDfc8AAAAAAAAAKgq4SIAAMYmvbnI0CnAXrSbrWRNavAfYD+S97yWex4AAAAAAAAAVJVwEQAAY5P8or1wEcCepDYXRaS3xwHs1eb2VqytDzNrhMgBAAAAAAAAoLqEiwAAGIuNra04sbGeWWPoFGBvDjdaUUvUpLaKAOxVb9hP1giRAwAAAAAAAEB1CRcBADAWvWF6qL3TSm/eAOD7LS4sxOFGK7NGuAiYlG4/xz0vx4Y1AAAAAAAAAKCchIsAABiLPEPt7cRgPAAnl9oKIlwETEquELnNRQAAAAAAAABQWcJFAACMRZ6hdkOnAHuXOkN7wkXAhKQ2F63Ul6K5tFxQNwAAAAAAAADAuAkXAQAwFqmh9ubScjQMnQLsWbu5mvnc5iJgUrqDtcznAuQAAAAAAAAAUG3CRQAAjEVq6LRt6BRgXzrNVubz1DkMsFepELlwEQAAAAAAAABUm3ARAABj0e0bOgWYpE5ic1Fv0I/RaFRQN8A8SW1GEyIHAAAAAAAAgGoTLgIAYCxSQ6fCRQD7kxre39rZjrWNYUHdAPPE5iIAAAAAAAAAmG3CRQAAjEVvmBo6zd64AUC2Tis9vJ8KegLsRTpE7p4HAAAAAAAAAFUmXAQAwFh0+9lDp+1mq6BOAGZTp5EjXJQ4iwF2a3N7K7kVzT0PAAAAAAAAAKpNuAgAgH1b39qM/uZ6Zo0v2gPsz6FGK2q1WmZNd7BWUDfAvOgN+ska9zwAAAAAAAAAqDbhIgAA9q03SG/K6DTTGzcAOLnFhYU43MjeDtIb2lwEjFee0KJ7HgAAAAAAAABUm3ARAAD71hUuAihE6izt9oWLgPHKEyJvu+cBAAAAAAAAQKUJFwEAsG+GTgGK0W5kn6V5zmOA3UiFyBv1pWguLRfUDQAAAAAAAAAwCcJFAADsW2rotLW0HCv1pYK6AZhdnVZic5FwETBmqXPFdkoAAAAAAAAAqD7hIgAA9i21KaPTXC2oE4DZlhrit7kIGDf3PAAAAAAAAACYfcJFAADsW+qL9u1mq6BOAGZbaoi/OzwRO6NRQd0A88A9DwAAAAAAAABmn3ARAAD71h2sZT73RXuA8UgN8W/v7MTa+qCgboB5kAoXuecBAAAAAAAAQPUJFwEAsG/podMDBXUCMNvyDPH3EmcywG6kQuRt9zwAAAAAAAAAqDzhIgAA9i01yG7oFGA88oQ1U4FPgLw2trfixMZ6Zo0QOQAAAAAAAABUn3ARAAD7MtzajP7mRmaNoVOA8Ti00oyFWi2zRrgIGJc8m9Dc8wAAAAAAAACg+oSLAADYlzxDpzYXAYzHwsJCHG60MmuEi4BxyXOeuOcBAAAAAAAAQPUJFwEAsC95hk47rdUCOgGYD6ktIXlCnwB52FwEAAAAAAAAAPNBuAgAgH3JNXTaMHQKMC6dZnZg0+YiYFxS50mzvhyNpeWCugEAAAAAAAAAJkW4CACAfekO1jKft5ZWYrleL6gbgNnXbrYyn6fOZYC8UudJuyVADgAAAAAAAACzQLgIAIB9SX3RvmPoFGCsbC4CitIb9DOfd5rueQAAAAAAAAAwC4SLAADYl14qXGToFGCsUufq0UE/dkajgroBZllyc1HDPQ8AAAAAAAAAZoFwEQAA+5LakGHoFGC82olw0fZoJ46vDwrqBphlNlQCAAAAAAAAwHwQLgIAYF8MnQIUK89GuNTZDJCHDZUAAAAAAAAAMB+EiwAA2JdePzV0ulpQJwDzIVe4qL9WQCfALNvY2ooTG+uZNTZUAgAAAAAAAMBsEC4CAGDPhpsbMdjayKzxRXuA8TrYaMVCrZZZ0xvaXATsTzfHOdJpCZEDAAAAAAAAwCwQLgIAYM+6g/TQaVu4CGCsFmq15NnaTWyVA0jJswFNiBwAAAAAAAAAZoNwEQAAe9bLES4ydAowfu1GIlyU43wGyNIb9pM1QuQAAAAAAAAAMBuEiwAA2DObiwCmo9PKPlvzhD8BsqQ2FzWXlqNRXyqoGwAAAAAAAABgkoSLAADYs1S4aHW5EcuL9YK6AZgfqa1wNhcB+5UKKdpOCQAAAAAAAACzQ7gIAIA9Sw2d2loEMBmd5mrmc5uLgP1KhRTd8wAAAAAAAABgdggXAQCwZ93BWuZzX7QHmIx2s5X5vDc8ETs7OwV1A8yiVLjIPQ8AAAAAAAAAZodwEQAAe9Yb9DOfGzoFmIzU5qKd0SiOrQ8K6gaYRakNaKlzCAAAAAAAAACoDuEiAAD2LLW5qC1cBDARecKbqWAAQBabiwAAAAAAAABgfggXAQCwZ4ZOAaYjz/maOqMBTmZ9azP6m+uZNULkAAAAAAAAADA7hIsAANiTweZGDLc2M2uEiwAmY3WlGYu17D/SCxcBe5Vn85l7HgAAAAAAAADMDuEiAAD2JM/Qabu5WkAnAPNnoVaLdrOVWZPnnAa4L3nCicJFAAAAAAAAADA7hIsAANgTQ6cA09VJBDi7g7WCOgFmTb4QuXseAAAAAAAAAMwK4SIAAPYkz9B6aqsGAHuXGuzPEwIFuC+p86O1tBwr9aWCugEAAAAAAAAAJk24CACAPUkNna6uNGJpsV5QNwDzJ7UdTrgI2KvU+ZHanAYAAAAAAAAAVItwEQAAe9JLDp1mD70DsD+pczZ1TgOcTOr8sJ0SAAAAAAAAAGaLcBEAAHuS+qJ9uyFcBDBJ7VS4aNiPnZ2dgroBZkl3sJb53OYiAAAAAAAAAJgtwkUAAOxJKlzUaQkXAUxSanPRaDSKo+uDgroBZknynmdDJQAAAAAAAADMFOEiAAD2pJccOvVFe4BJyjPcn9o+AnBfUve81OY0AAAAAAAAAKBahIsAANi10WiU/KJ9u2HoFGCS2jlCnKmAAMD3Gm5tRn9zI7PG5iIAAAAAAAAAmC3CRQAA7NpgayPWtzYzazotQ6cAk3RwpRGLC9l/rE8FQQG+V55Qos1FAAAAAAAAADBbhIsAANi1bj89dOqL9gCTVavVopPYEpfnvAb4bnnCRZ1WenMaAAAAAAAAAFAdwkUAAOxabyhcBFAGqe0hNhcBu5Xn3EgFGwEAAAAAAACAahEuAgBg1/JswmgbOgWYuE4r+6zNs4EE4Lt1B2uZz1tLK7FcrxfUDQAAAAAAAABQBOEiAAB2LfVF+4MrzagvLhbUDcD86jRXM5/bXATsVm/Qz3yeCjUCAAAAAAAAANUjXAQAwK71El+07zQNnQIUod1sZT5PndcA3yu1uch2SgAAAAAAAACYPcJFAADsWjf1RXvhIoBCpDYXHR32Y3tnp6BugFmQ2njmngcAAAAAAAAAs0e4CACAXUttwmgbOgUoRGrIfxQRx4bZgVCA79ZLhYta7nkAAAAAAAAAMGuEiwAA2DVftAcohzznberMBvhuqTOj3XDPAwAAAAAAAIBZI1wEAMCujEaj9BfthYsACpFnU5xwEZDXcHMjBpsbmTWd1mpB3QAAAAAAAAAARREuAgBgVwabG7G+vZVZk2fYHYD9W11uRH1hMbMmFQgF+LY8YUQhcgAAAAAAAACYPcJFAADsSr6hU1+0ByhCrVZLDvp3B2sFdQNUXW/YT9YIkQMAAAAAAADA7BEuAgBgV/IMqfuiPUBxUoP+eUKhABER3X6Oe17DPQ8AAAAAAAAAZo1wEQAAu9IbpL9of7jZKqATACLSgU7hIiCv1HlxYHklluv1groBAAAAAAAAAIoiXAQAwK6kNhcdWmlGfWGxoG4ASIWLesJFQE69YfZ50WmuFtQJAAAAAAAAAFAk4SIAAHYl9UX71JA7AONlcxEwLt1+9nnRtp0SAAAAAAAAAGaScBEAALuSGlJvCxcBFCp17h4b9mNrZ7ugboAqS206s7kIAAAAAAAAAGaTcBEAALuSHDptGToFKFJqc9EoIo4O+8U0A1Rad2hDJQAAAAAAAADMI+EiAAB2Jbm5qGHoFKBIeTaJpIKhABERvb4NlQAAAAAAAAAwj4SLAADIbTQaRXewllnTaRk6BShSO8e5mwqGAgw3N2KwtZFZY3MRAAAAAAAAAMwm4SIAAHLrb27E5vZ2Zo2hU4BiHVhaiaWFxcwa4SIgJc854Z4HAAAAAAAAALNJuAgAgNxSW4siItoNQ6cARarVatFODPx3+8JFQLZejnBR6qwBAAAAAAAAAKpJuAgAgNxyfdG+ZegUoGips7c3FC4CsuW55wkXAQAAAAAAAMBsEi4CACC31OaLWkQcbrSKaQaAv9NprmY+7/bTm+eA+ZYKF60uN2J5sV5QNwAAAAAAAABAkYSLAADILbX54lCjFfWFxYK6AeDb2o3E5qIcG0mA+ZY6J2wtAgAAAAAAAIDZJVwEAEBuqc1Fhk4BpqPTyj5/UxtJALqD7A1nHfc8AAAAAAAAAJhZwkUAAORm6BSgnFLn77H1QWztbBfUDVBFqRCiex4AAAAAAAAAzC7hIgAAcusZOgUopTzn79FBv4BOgKpK3fNsqAQAAAAAAACA2SVcBABAbr5oD1BOeYb+U2c4MN/c8wAAAAAAAABgfgkXAQCQy2g08kV7gJLqNFeTNcJFwMkMNjdiuLWZWSNcBAAAAAAAAACzS7gIAIBcTmysx+bOdmZNnuF2AMavtbQcy4v1zJreYK2gboCqSQXIIyLa7nkAAAAAAAAAMLOEiwAAyCXP0Kkv2gNMR61WS57BNhcBJ5PnfHDPAwAAAAAAAIDZJVwEAEAu3RwbLwydAkxPW7gI2KM897x2s1VAJwAAAAAAAADANAgXAQCQS2oovRYRhxqGTgGmJRXwzLOBDphPvUE/8/nqSiOWFusFdQMAAAAAAAAAFE24CACAXFLhosONViwuuF4CTEsqXGRzEXAyqc1FnYbtlAAAAAAAAAAwy0x/AgCQS2rjRbu5WlAnANyXtnARsEep8yF1vgAAAAAAAAAA1SZcBABALqmh006zVVAnANyXTiLkeXx9EFvb2wV1A1RJ8p7XEi4CAAAAAAAAgFkmXAQAQC7pL9rbXAQwTZ0cm0V6Q9uLgO+X3FDZEC4CAAAAAAAAgFkmXAQAQC7dwVrm8zxD7QBMTjvHOZwKigLzZzQa5dhQKUQOAAAAAAAAALNMuAgAgKTRaBS9QT+zptMSLgKYpjwhT+Ei4HsNtjZifWszs8Y9DwAAAAAAAABmm3ARAABJaxvD2NrZzqxpNwydAkxTc2k5VhbrmTXdvnARcG+pAHmEex4AAAAAAAAAzDrhIgAAkvJsuvBFe4DpqtVq0U5sL+oNhYuAe+sO1pI17nkAAAAAAAAAMNuEiwAASOrlCRc1VwvoBIAsnVb2WZwnRADMlzwbzdqNVgGdAAAAAAAAAADTIlwEAEBSanNRrVaLwyvNgroB4GTajeztInlCBMB8SW00O7jSjKXFekHdAAAAAAAAAADTIFwEAEBSatPF4UYrFhZcLQGmrdPMDhfl2UQHzJdU6LDdtLUIAAAAAAAAAGadCVAAAJJSQ6epYXYAitFpJTYXJTaUAPMntaGy01wtqBMAAAAAAAAAYFqEiwAASOolhtGFiwDKIXUer60PY3N7q6BugCpwzwMAAAAAAAAAhIsAAEhKbS5qGzoFKIU853Fv0C+gE6Aquv21zOfueQAAAAAAAAAw+4SLAABI6g180R6gCjrN1WRNN3GmA/NjNBq55wEAAAAAAAAAwkUAAGQbjUbRHaaGTtPD7ABMXp4QQG+QvaUEmB+DzY1Y397KrBEuAgAAAAAAAIDZJ1wEAECm4+vD2N7ZyawxdApQDs2l5WjUlzJrbC4Cvi3PedB2zwMAAAAAAACAmSdcBABApjwbLgydApRH6kwWLgK+rZfjPBAiBwAAAAAAAIDZJ1wEAECmPEPohk4ByiN1JucJEwDzIdfmooZ7HgAAAAAAAADMOuEiAAAypYZOF2q1OLTSLKgbAFJS4SKbi4BvS50HB1eaUV9cLKgbAAAAAAAAAGBahIsAAMiU2nDRbhyIhQXXSoCyaAsXATn1BmuZz22nBAAAAAAAAID5YAoUAIBMqSH0drNVUCcA5NFprmY+7ybCBMD8SN3zhIsAAAAAAAAAYD4IFwEAkCk9dJo9xA5AsVJhgBMb67GxvVVQN0CZpTZUChcBAAAAAAAAwHwQLgIAIFNq6LRt6BSgVPKEAVJnOzAf0hsq3fMAAAAAAAAAYB4IFwEAkKk7WMt87ov2AOWSJwyQChQAs280GuXYUOmeBwAAAAAAAADzQLgIAICT2hmNojfoZ9YYOgUoF+EiII/B5kZsbG9l1rSbqwV1AwAAAAAAAABMk3ARAAAndXx9ENujncyaPEPsABSnubQczfpyZk1PuAjmXp6QoRA5AAAAAAAAAMwH4SIAAE4qz/B5p+WL9gBl025lBwK6g7WCOgHKKs85IFwEAAAAAAAAAPNBuAgAgJPK9UX7RquATgDYjU4jES7q21wE8y7PPe9w0z0PAAAAAAAAAOaBcBEAACeV+qL9Qq0WB4WLAEqnndg2kidUAMy21IbKQyvNqC8sFtQNAAAAAAAAADBNwkUAAJxUb9DPfN5uHoiFWq2gbgDIq9PKDhf1hsJFMO9SIcNOIqQIAAAAAAAAAP8fe/cd5lSZ/n/8k2QmM5kCM1Slg3QUFCxDEwRFUbHrCqKoi3V17atrxbauBQu7rnUVdBFcZUEFLIiCSBMQRZfeOzNCpidTkvz+2J9+LZBzMpNz0t6v6+Ifc58892CSc8g8n3MjeRAuAgAAwCEZTS5i0ykAxCejz2dvJeEiINUZhYuMJqABAAAAAAAAAAAAAIDkQbgIAAAAh8SmUwBITHmZ4T+fK2uqVFVbY1M3AOJRMZOLAAAAAAAAAAAAAADA/0e4CAAAAIdkNNmCTacAEJ/ys3IMa4yCBQCSm3GI3PhzBAAAAAAAAAAAAAAAJAfCRQAAADikYr9RuIhNpwAQj8yEP42CBQCSVygUktdXHrYmP4sQOQAAAAAAAAAAAAAAqYJwEQAAAA4qGAoZTrXI82TZ1A0AIBJ5JsJFTC4CUldlTbVqAoGwNUyoBAAAAAAAAAAAAAAgdRAuAgAAwEGV+SsVDIXC1jC5CADiU2Zaujzp7rA1TC4CUpfR1CJJysskXAQAAAAAAAAAAAAAQKogXAQAAICDMrPpnDvaA0D8MvqMZnIRkLpMXedlcZ0HAAAAAAAAAAAAAECqIFwEAACAgyJcBACJzegzmslFQOoyChc6JDXMzLKnGQAAAAAAAAAAAAAAEHOEiwAAAHBQRptOXQ6ncjI8NnUDAIhUnmG4qNymTgDEG6NwYW6mR2lOl03dAAAAAAAAAAAAAACAWCNcBAAAgIMy2nSa58mS0+GwqRsAQKTyPTlhH2dyEZC6vJXh3/9Gnx8AAAAAAAAAAAAAACC5EC4CAADAQRlNtGDTKQDEt3yDyUVGE+oAJC/j67zwnx8AAAAAAAAAAAAAACC5EC4CAADAQRX7KsM+zqZTAIhvRp/TlTXV8tfW2NQNgHhS7DeaUMl1HgAAAAAAAAAAAAAAqYRwEQAAAA7K6I72bDoFgPhm5nOa6UVAavJWhn/vEyIHAAAAAAAAAAAAACC1EC4CAADAQXkNNpyz6RQA4puZz2mjz3oAyScUChkGC7nOAwAAAAAAAAAAAAAgtRAuAgAAwG8Eg0GV+CvD1jC5CADiG5OLABxMRU2VaoKBsDVc5wEAAAAAAAAAAAAAkFoIFwEAAOA3Sqt8CoZCYWu4oz0AxLeMtHRlpWeErfH6ym3qBkC8KK40DhVynQcAAAAAAAAAAAAAQGohXAQAAIDf8JqYZMGmUwCIf0af1WY+7wEkFzOhwnxPjg2dAAAAAAAAAAAAAACAeEG4CAAAAL9hZtNpHptOASDu5RmFi0xMMAGQXLy+yrCPOyQ1zMyypxkAAAAAAAAAAAAAABAXCBcBAADgN4oNNp26nE7lZmTa1A0AoK6MJhcV+wkXAamm2CBE3iAzSy4nXxkCAAAAAAAAAAAAAJBK2CkAAACA3zCaXJSfmS2Hw2FTNwCAusrPMphc5CNcBKQao/e9USgRAAAAAAAAAAAAAAAkH8JFAAAA+A2jTad5bDoFgISQl2kwuaiScBGQaggXAQAAAAAAAAAAAACAXyNcBAAAgN/wGmw2N5qEAQCID/lZOWEf99VWy19TbVM3AOJBMSFyAAAAAAAAAAAAAADwK4SLAAAA8BvFfqM72offrA4AiA9mJpAYTTEBkFyYXAQAAAAAAAAAAAAAAH6NcBEAAAB+w2jTaZ4ny6ZOAAD1YSYkYDTFBEDyCIVChu95QuQAAAAAAAAAAAAAAKQewkUAAAD4hWAwqBJ/ZdgaNp0CQGLIY3IRgJ+pqK5STTAQtsbM5wYAAAAAAAAAAAAAAEguhIsAAADwCyVVPoVCobA1ZiZhAABiz+1KU7Y7I2wN4SIgdXh95YY1XOcBAAAAAAAAAAAAAJB6CBcBAADgF8xsOuWO9gCQOIymzRUTLgJShpkwIeEiAAAAAAAAAAAAAABSD+EiAAAA/IK3kk2nAJBM8jxZYR83EyoFkByMwoQOSQ0yw39mAAAAAAAAAAAAAACA5EO4CAAAAL9gtOk0zelSjjvTpm4AAPVlNLnIzCQTAMnB6P3eMDNLLidfFwIAAAAAAAAAAAAAkGrYLQAAAIBfMNp0mu/JlsPhsKkbAEB9GU2bMwqVAkgeRtd5eQZhRAAAAAAAAAAAAAAAkJwIFwEAAOAXjDedht+kDgCIL0bhIiYXAanDKExo9HkBAAAAAAAAAAAAAACSE+EiAAAA/EKxrzzs42w6BYDEYhQK9dfWyFdTbVM3AGKJEDkAAAAAAAAAAAAAADgYwkUAAAD4BaNNp4SLACCxmPncZnoRkBq8hMgBAAAAAAAAAAAAAMBBEC4CAADALxQTLgKApJLvyTGsMfrsB5D4QqGQin2VYWvys7jOAwAAAAAAAAAAAAAgFREuAgAAwE8CwaBK/OE3neYRLgKAhJLnyTKsMZpmAiDxlVf7VRsMhK3Jy+Q6DwAAAAAAAAAAAACAVES4CAAAAD8p8VcqZFDD5CIASCzprjTluDPD1niZXAQkPTPvcyYXAQAAAAAAAAAAAACQmggXAQAA4CfFZjadenJs6AQAEE1GwVBvJeEiINlxnQcAAAAAAAAAAAAAAA6FcBEAAAB+YuaO9nlMLgKAhGP02V3sJ1wEJDuj6zyHw6GGGR6bugEAAAAAAAAAAAAAAPGEcBEAAAB+4vWVh3083elStjvDpm4AANGSn2UwuchEuBRAYjO6zmuYmSWnk68KAQAAAAAAAAAAAABIRewYAAAAwE+MNpfnebLlcDhs6gYAEC15mQbhosrwoQMAic9bGf46L5/plAAAAAAAAAAAAAAApCzCRQAAAPhJsUG4yGjyBQAgPuV7csI+XuyrUCgUsqkbALFQ7DcIkRuEEAEAAAAAAAAAAAAAQPIiXAQAAICfGE4uYtMpACQko3BoVaBWvtpqm7oBEAuGk4sIkQMAAAAAAAAAAAAAkLIIFwEAAOAnRuEio8kXAID4lO8xDg0YBQ8AJDbDCZUmPicAAAAAAAAAAAAAAEByIlwEAACAn3h95WEf5472AJCY8kyEBoyCBwASVygUktdPiBwAAAAAAAAAAAAAABwc4SIAAABIkmqDAZX5fWFruKM9ACSmvMwswxqj6XUAEldZlV+BYDBsTZ7H+HMCAAAAAAAAAAAAAAAkJ8JFAAAAkCSV+CsVMqgxM/kCABB/0l1pys3whK0hXAQkr2KD6ZQSk4sAAAAAAAAAAAAAAEhlhIsAAAAgSfJWGm8qZ3IRACQuo6kkZsIHABKT11dpWMN1HgAAAAAAAAAAAAAAqYtwEQAAACRJxX4z4SLuaA8AicroM5zJRUDy8hqEBx0OhxoYTDcDAAAAAAAAAAAAAADJi3ARAAAAJBlvKk93uZSV7rapGwBAtBlNJSkmXAQkLaP3d15mlpxOviYEAAAAAAAAAAAAACBVsWsAAAAAkiRvZfhNp/meHDkcDpu6AQBEm1G4iMlFQPIyen8bfT4AAAAAAAAAAAAAAIDkRrgIAAAAkqRiX3nYx9l0CgCJLc9EuCgUCtnUDQA7GU4u4joPAAAAAAAAAAAAAICURrgIAAAAkrijPQAkO6PP8epArSprqm3qBoCduM4DAAAAAAAAAAAAAADhEC4CAACAJO5oDwDJLt+TY1hjdC4AkJi8hhMqjT8fAAAAAAAAAAAAAABA8iJcBAAAAEnc0R4Akp2Zz3GjAAKAxBMMhVTsrwxbQ4gcAAAAAAAAAAAAAIDURrgIAAAAqg0EVFrlC1vDHe0BILE1zMwyrDEKmgJIPOVVPgWCwbA1hMgBAAAAAAAAAAAAAEhthIsAAACgEoO72UtsOgWARJfmcqlBhidsDeEiIPmYeV9znQcAAAAAAAAAAAAAQGojXAQAAABTm07z2HQKAAnPKEBQTLgISDpm3tdc5wEAAAAAAAAAAAAAkNoIFwEAAEBeX7lhDXe0B4DEZxQgYHIRkHyM3tdOh8NwqhkAAAAAAAAAAAAAAEhuhIsAAABgeEf7DFeaPOlum7oBAFjFKChqJmwKILEYhYvyMrPldPIVIQAAAAAAAAAAAAAAqYydAwAAADDedOrJlsPhsKkbAIBV8jw5YR/3VjK5CEg2RiFyo4lmAAAAAAAAAAAAAAAg+REuAgAAgGG4yGjSBQAgMeRnhf88L/ZXKBQK2dQNADtwnQcAAAAAAAAAAAAAAIwQLgIAAICJyUXhJ10AABKDUYigJhBQRU2VTd0AsIPXVx72cSYXAQAAAAAAAAAAAAAAwkUAAABQMXe0B4CUkJdp/HleXBn+nAAgsXCdBwAAAAAAAAAAAAAAjBAuAgAAgInJRWw6BYBkkJ9l/Hnu9RMuApJFMBRSsa8ybA3hIgAAAAAAAAAAAAAAQLgIAAAgxdUEalVW5Qtbw6ZTAEgODTOz5DCo8TK5CEgaZVU+BULBsDWEyAEAAAAAAAAAAAAAAOEiAACAFFfsD383e8ncpAsAQPxLc7qUm+kJW1PsK7epGwBWM5pOKUn5WTk2dAIAAAAAAAAAAAAAAOIZ4SIAAIAUV2xm06mHTacAkCyMPtPNhBEAJAZT13mZWTZ0AgAAAAAAAAAAAAAA4hnhIgAAgBRnZhN5nodNpwCQLPI94afRES4CkofXYBKZ0+FQLuEiAAAAAAAAAAAAAABSHuEiAACAFOetDL+JPCMtXZ40t03dAACsZhQuMjPpBEBiMLrOy/Nky+lw2NQNAAAAAAAAAAAAAACIV4SLAAAAUlyxP/ym03xPthxsOgWApJHH5CIgZRhd5+Vlhv88AAAAAAAAAAAAAAAAqYFwEQAAQIrz+srDPm60CR0AkFiMJhd5fRUKhUI2dQPASkZhwfwsrvMAAAAAAAAAAAAAAADhIgAAgJTnrTSeXAQASB75npywj9cGA6qorrKpGwBW4joPAAAAAAAAAAAAAACYkRbrBgAAABBbxUZ3tGfTKQAkFTOf615fuXIyMm3oBoCViv1G13nhw4YAAAAAEE4oFFIgEFAoFFIwGIx1OwAAAAAAADDJ6XTK4XDI5XLJ4XDEuh3ECcJFAAAAKc7LplMASCl5psJFFWqd18SGbgBYJRgKGYbI8zxZNnUDAAAAINFVVVXJ5/OpurpaVVVVqq6uVk1NjUKhUKxbAwAAAAAAQB05HA6lp6fL7XYrIyNDbrdbHo9HGRkZsW4NMUC4CAAAIIXVBGpVXuUPW8OmUwBILg0zs+SQFG7rj9cgkAAg/pX5KxU02ORHiBwAAABAONXV1SotLVVpaamqqqpi3Q4AAAAAAACiLBQKqbq6WtXV1SovL//pv2dkZKhBgwZq0KCB3G53DDuEnQgXAQAApLBiX6VhDZtOASC5uJxONczMUrH/0OcAo2knAOKfN8x7/Ef5JiaZAQAAAEg9FRUVKioqks/ni3UrAAAAAAAAiIGqqioVFRWpqKhIHo9HTZs2VXY2v19OdoSLAAAAUpjXV25Yw6ZTAEg+eZ6csOEiJhcBic9baXydl8d1HgAAAICfCQQC2rdvn0pKSmLdCgAAAAAAAOKEz+fT9u3b1bBhQzVv3lwulyvWLcEihIsAAABSmJnJFGw6BYDkk+/J0lbvoR83Ez4FEN+MrvNcDqdyMzw2dQMAAAAgnoVCIZWWlmrfvn0KBAKxbgcAAAAAAABxqKSkROXl5WrevLkaNGggh8MR65YQZYSLAAAAUpjRZIrMtHR50t02dQMAsEueJyfs495KJhcBic7oOi/PkyUnX/YCAAAAKS8UCqmoqEj79++PdSsAAAAAAACIc4FAQLt371ZVVZWaNm1KwCjJOGPdAAAAAGLHaNNpPlOLACApGX2+F/sJFwGJzjhcxHUeAAAAAGn//v0EiwAAAAAAABARvlNKToSLAAAAUlixYbgo/GQLAEBiys8KHyrw+ioUCoVs6gaAFbjOAwAAAGDkwIEDKioqinUbAAAAAAAASEBFRUU6cOBArNtAFKXFugEAAADEjvEd7bNs6gQAYKe8zPDhokAwqLIqvxpkemzqCEC0eX3lYR9nQiUAAACQ2kpLS7Vv376Ij3M6ncrMzJTb7VZGRobS09OVlpYmh8Mhh8NhQacAAAAAAACIplAopFAopNraWtXU1KiqqkrV1dXy+/0KBoMRPde+ffuUlpamBg0aWNQt7ES4CAAAIIUZhYu4oz0AJCejyUWSVOwrJ1wEJLBiX2XYx/MIFwEAAAApKxgMRhQscjgcys3NVYMGDZSdnS2n02lhdwAAAAAAAIiFYDCoiooKlZaWqqysTKFQyNRx+/btU05ODt8ZJQHCRQAAACnM6I72bDoFgORkJjzq9VWqTb4NzQCIumAwqGK/UYic6zwAAAAgVf3www+qra01VZuTk6PmzZvL7XZb3BUAAAAAAABiyel0Kjc3V7m5uaqurtbevXtVURH+986SVFtbqx9++EHNmjWzoUtYiXgYAABAiqoO1KqiuipsDZtOASA5NczwyOFwhK0xCqACiF+lVT4FDe4ixXUeAAAAkJqqq6t14MABwzqHw6EWLVqoVatWBIsAAAAAAABSjNvtVuvWrdWiRQvD/SWSdODAAVVXV9vQGaxEuAgAACBFFfuM7yrAplMASE5Op1MNM7PC1pg5TwCIT1znAQAAADiUoqIihQxuRiBJLVq0UMOGDU1tHgEAAAAAAEDycTgcatiwoVq0aGFYGwqFVFRUZENXsBLhIgAAgBTlNbHpNI9NpwCQtIyCBWbOEwDiE9d5AAAAAA4mEAiotLTUsO6www5TgwYNbOgIAAAAAAAA8a5BgwY67LDDDOvKysoUCARs6AhWIVwEAACQosxsOuWO9gCQvIw+45lcBCQuo+s8l9OpnAyPTd0AAAAAiBfl5eWGNZmZmcrLy7O+GQAAAAAAACSMvLw8ZWZmhq0JhUKmvn9C/CJcBAAAkKKMNo170t3KTHfb1A0AwG5GU0uYXAQkLqPrvPzMbDkdDpu6AQAAABAvysrKDGuaN28uB/9eAAAAAAAAwM84HA41b97csM7M90+IX4SLAAAAUpTXF/4uAUabzgEAic1ocpHReQJA/OI6DwAAAMCvBYNBwzvHZmVlKSsry6aOAAAAAAAAkEjMfHdUXl6uYDBoU0eINsJFAAAAKcpbaXBHezadAkBSy/fkhH282F+pYChkUzcAoslo8hjXeQAAAEDqqaioUMjg3/m5ubk2dQMAAAAAAIBEZPT9USgUUmVlpU3dINoIFwEAAKSoYj+bTgEglRl9zgeCQZVX+WzqBkA0GYWLmFwEAAAApJ7q6mrDGsJFAAAAAAAACCcnJ/yNbCWpqqrKhk5gBcJFAAAAKYpNpwCQ2sx8zhudKwDEp2ImFwEAAAD4FaNwUUZGhtLT023qBgAAAAAAAInI7XYrIyMjbI2Zm9wgPhEuAgAASFHeSjadAkAqM/M5T7gISDzBYFDF/vBj5gmRAwAAAKnHaFOH2+22qRMAAAAAAAAkMqPvkWpqamzqBNFGuAgAACAFVdfWqrIm/PjRfI/xCFMAQOJqkOGR0+EIW2M0/QRA/Cmp8ikUCoWt4ToPAAAASD1GmzoIFwEAAAAAAMAMo++RmFyUuAgXAQAApCCv33izOJOLACC5OZ1O5WWG/6xnchGQeMyEAvM9WTZ0AgAAACBehEIhw3BRenq6Td0AAAAAAAAgkRl9j1RTU2N4Q0zEJ8JFAAAAKchbWW5Yk0e4CACSXp5BwMDrMz5fAIgvZt63eUwuAgAAAFJKIBAwrGFyEQAAAAAAAMww8z2Sme+jEH8IFwEAAKQgM3e0J1wEAMkv3yBgwOQiIPEYvW9dTqdyMzJt6gYAAABAPAgGg4Y1TidbBwAAAAAAAGDMzPdITC5KTHxDCAAAkIKMNp1mpbuVmRZ+fCkAIPEZBUnNhFEBxBej922+J1sOh8OmbgAAAADEAzObOfh3AgAAAAAAAMww8z2SmZvdIP4QLgIAAEhBxptOw0+yAAAkh3yDcBGTi4DEY/S+zctkOiUAAACA3yJcBAAAAAAAADP4Hil5ES4CAABIQYabTj1ZNnUCAIglo3BRsa9CQUZVAwnFW2kQIs8iXAQAAAAAAAAAAAAAAH6JcBEAAEAK8vrKwz7O5CIASA15BuGiYCikMn+lTd0AiIZiPxMqAQAAAAAAAAAAAABAZAgXAQAApKBiX/iN4kaTLAAAySE/yzhk4CVcBCQUJlQCAAAAAAAAAAAAAIBIES4CAABIQUaTi4wmWQAAkoOZMKm3Mvw5A0D8CASDKjEIBDK5CAAAAAAAAAAAAAAA/BrhIgAAgBTjr61RZU112BomFwFAasjN8MjlCP/VQLHBFBQA8aPUX6lQKBS2hus8AAAAAAAAAAAAAADwa4SLAAAAUoyZTeJMLgKA1OB0ONTQkxW2xku4CEgYXj/XeQAAAAAAAAAAAAAAIHKEiwAAAFKMmXBRflaODZ0AAOKB0RQTwkVA4vBWmrjOI1wEAAAAAAAAAAAAAAB+hXARAABAijGzSTw/k02nAJAqjKaYmAmlAogPRu/XNKdLOe5Mm7oBAAAAAAAAAAAAAACJgnARAABAivH6ysM+npWeIXdamk3dAABizXhyUfjzBoD4YRQiz/NkyeFw2NQNAAAAAAAAAAAAAABIFISLAAAAUozRptP8LKYWAUAqyffkhH282FdpUycA6svwOs/g/Q4AAAAAAAAAAAAAAFIT4SIAAIAUU2y46ZRwEQCkEqPP/WJ/hYLBoE3dAKiPYoNJY1znAQAAAAAAAAAAAACAgyFcBAAAkGKM7mifl8mmUwBIJXkGYYNgKKTSKp9N3QCoD6/BpDHCRQAAAAAAAAAAAAAA4GAIFwEAAKQYo3BRfhabTgEglZgJGxidOwDEB6PJRUZhQgAAAAAAAAAAAAAAkJoIFwEAAKSYYqNwkSfHpk4AAPHATLjI6NwBIPYCwaBK/EwuAgAAAAAAAAAAAAAAkSNcBAAAkEL8NdXy1VSHreGO9gCQWnIyPHI5w389wOQiIP6V+isVMqghXAQAAAAAAAAAAAAAAA6GcBEAAEAKMbM5nE2nAJBanA6H8jKzwtZ4feU2dQOgrsxc5xEiBwAAAAAAAAAAAAAAB0O4CAAAIIUUEy4CABxEvicn7ONMLgLin7kQefj3OgAAAAAAAAAAAAAASE2EiwAAAFIId7QHAByMUbDUTDgVQGwZvU/TnS5luzNs6gYAAAAAAAAAAAAAACQSwkUAAAApxChclO3OkNuVZlM3AIB4YRQsZXIREP+8vvKwj+d5suVwOGzqBgAAAAAAAAAAAAAAJBLCRQAAACnE6I72+Z4cmzoBAMQTo8lFhIuA+Gf0PjV6nwMAAAAAAAAAAAAAgNRFuAgAACCFGN3Rnk2nAJCajCYXlfgrFQwGbeoGQF0YhYuM3ucAAAAAAAAAAAAAACB1ES4CAABIIcW+yrCPEy4CgNRkNLkuFAqppMpnUzcA6sJ4QiXXeQAAAAAAAPFg4sSJcjgchn8mTpwY61YBJDAznzODBw+OdZsAAACII4SLAAAAUojR5CLuaA8AqSk/y/jz3+gcAiC2jCYXES4CAAAAAAAAAAAAAACHkhbrBgAAAGAfNp0CAA4mL9NEuKiyQmpkQzMAIhYIBlXqDz+hMs9gQhkAAAAAAAAAAAAQa6WlpVq5cqVWr16tNWvWaPPmzdq9e7f27t2riooKVVb+73dimZmZ8ng8ys/PV4sWLdSyZUt16dJFvXr10jHHHKPWrVvH+CcBgMRDuAgAACBF+Gqq5a+tCVtDuAgAUlNuRqZcTqcCweAha4r94QOqAGKnxF+pkEGNmQllAAAAAAAAAAAAgJ327Nmjzz77TJ9//rkWLVqkdevWKRjm99Y/Ki8vV3l5uYqKirR+/frfPN6xY0edfPLJOvfcc3XyySfL6XRa0T4AJBXCRQAAACmi2GBqkcQd7QEgVTkcDuV7svVDRdkha7yVhIuAeOX1lRvW5JuYUAYAAAAAAHAoEydO1BVXXGHJc7vdbmVmZiojI+OnPzk5OWrWrNkv/vx4N/quXbuqQYMGlvQCAAAAa4VCIS1dulQffPCBPvjgA3333XeWrLNx40Zt3LhRL774olq0aKErrrhCN910k5o2bWrJevHk8ssv16RJk2LdRlz4/PPPNXjw4Fi3ASQMwkUAAAApwmsiXMTkIgBIXXmZBuEiE+cRALFh5v2Zx+QiAAAAAAAQp6qrq1VdXR3RMYcffri6deumY445RgMGDNCAAQPUpEkTizoEAABAfX311VeaOnWq/v3vf2vXrl22rr179249+uijeuaZZ3TNNdfogQceUMOGDW3tAQASAeEiAACAFGHmjvZ5niwbOgEAxKP8rGxp/6EfLzZxHgEQG0YTKtNdLmWnZ9jUDQAAAAAAgPX27NmjPXv26LPPPtP48eMlSd26ddPgwYN13nnn6aSTTpLL5Ypxl7BTcXGxnn32WcO6o48+Wuecc47l/SA5TZw4UVu3bjWsGzdunOW9AEAi2L17t9544w29/vrrWr9+fazbUWVlpZ555hm99dZbevbZZ3XxxRfHuiUAiCuEiwAAAFJEsa8y7OM5GZlKd3F5CACpKt+TE/Zxr8F5BEDsGE0uysvMlsPhsKkbAAAAAACA2FizZo3WrFmjF154QU2bNtV5552nUaNG6cQTT4x1a7BBcXGxHnzwQcO6MWPGEC5CnU2cOFHz5883rCNcBADShx9+qBEjRigQCMS6ld/Yt2+fRo4cqU8++UTPP/+8PB5PrFsCgLjgjHUDAAAAsIfR5KL8zGybOgEAxKN8T/jzAJOLgPhlFC7Kz+I6DwAAAAAApJaioiK99NJLGjRokHr37q233npLtbW1sW4LAAAgZZSUlMRlsOjnXn/9dQ0YMEBFRUWxbgUA4gLhIgAAgBRheEd7g03lAIDkZnQeKPFXKhAM2tQNgEgUG4WLDCaTAQAAAAAAJLOVK1fqkksuUYcOHfTKK68oyPecAAAA+P++/vprnXjiidq1a1esWwGAmCNcBAAAkCK4oz0AIByjyUUh/S9gBCD+GIbImVAJAAAAAACgHTt26Oqrr1ZBQYG++uqrWLcDAACAOLF27VqdfvrpKisri3UrABBTabFuAAAAAPbgjvYAgHCMwkXS/84ljbI4XwDxxusrD/s4IXIAAAAAAID/s2zZMhUUFOiGG27QU089JbfbHeuWAAAA8DPZ2dnq3bu3jjvuOPXo0UPt2rVT27Zt1bBhQ+Xk5MjpdGr//v3av3+/CgsLtWTJEs2fP1+LFi1SeXn435sdyqpVqzRq1Ch98MEHUf5pACBxEC4CAABIAaFQiDvaAwDCMhMyNTqXALBfbTCgUr8vbI2Z8CAAAAAAAEC03HzzzRo6dGhExwSDQfn9flVVVcnv96u8vFx79uzR3r17tWfPHm3YsEHbt29XKBSKSo+hUEh/+9vf9NVXX+ndd99Vq1atovK8Zlx++eW6/PLLbVsPQGqK1uclANilT58+Ov3003XqqaeqoKBALpcrbP3hhx+uww8/XJI0ZMgQ3X333fL7/Zo4caLGjx+vjRs3RtzDzJkz9fLLL+vqq6+u088AAImOcBEAAEAK8NVWq6q2JmwNd7QHgNSW7c5QutOlmmDgkDVG01EA2K/EX2lYk0e4CAAAAAAA2KhXr14688wzo/685eXl+v777/X111/rs88+0+eff64DBw7U6zmXLl2q3r176z//+Y8GDBgQpU4BAABgRqdOnTR69GiNHDlSnTp1qvfzZWZm6tprr9XVV1+t119/XTfddJMqKiK7gebtt9+us846S4cddli9+4mViRMnauLEibatd/nll2vSpEmmards2aJ27dpZ2xCAOnPGugEAAABYr9hnvOmUO9oDQGpzOByGAQQmFwHxx1tp/L7kOg8AAAAAACSDnJwcFRQU6Prrr9e7776roqIiLVmyRH/4wx/UuHHjOj9vUVGRhg8froULF0axWwAAAByMy+XS2WefrY8//ljr1q3T/fffH5Vg0c85nU79/ve/1/Lly9WzZ8+Iji0rK9Ojjz4a1X4AIFEQLgIAAEgBZiZNsOkUAGB0LigmXATEHTOhv3xPjg2dAAAAAAAA2MvpdOqEE07Q3//+d+3evVuTJ09W165d6/Rc5eXlGj58uJYsWRLlLgEAACBJGRkZuvrqq7V+/XrNmDFDw4YNk8PhsHTNrl27atGiRTrxxBMjOu7ll1/Wvn37LOoKAOJXWqwbAAAAgPXM3NE+L5NwEQCkOiYXAYmn2B/+fZnucikr3W1TNwAAAACA+ggGg9pd6tXmA4XaWbJfFdV+1QQCqg0GlOZ0Kd3lUrY7U60aNlaHxs3UIjdfTif3lAUkye12a9SoUbr44ov19ttv64477tCuXbsieo6ysjKdfvrp+vrrr9WuXTtrGgUAAEgxbrdb11xzje666y61aNHC9vWzs7M1c+ZMFRQUaPXq1aaOqa6u1r/+9S/ddtttFncHAPGFcBEAAEAKMNoMnpvhUZrLZVM3AIB4ZTS5iHAREH+MQuT5nhzL7/oGAAAAAKibUCikNYW7tGLnJm06sE/bDhSpKlBr+viMtHS1zW+iIxo1V59WR6hbs5b8GxApz+l0auTIkRo+fLhuueUWTZw4MaLjvV6vLrroIn355Zdyu7lhCwAAQF05nU5dcsklevjhh9W+ffuY9pKbm6t33nlHxxxzjKqrq00d8+abbxIuApByCBcBAACkgGKDzeBGm8kBAKnBOFxUblMnAMwqNnhfcp0HAAAAAPGnorpKC7as0acbVml3qbfOz1NVW6P1RXu0vmiPPlz3jVo0yNfJnXpqYPtuynZnRLFjIPHk5eXp9ddf18knn6wrr7zS9CZSSVq2bJluv/12TZgwwcIOAQAAktsFF1ygiy66KNZt/KR79+665ZZb9Pjjj5uq//bbb1VYWKhmzZpZ3BkAxA/mYwMAAKQAo0kTeWw6BQBIyvPkhH28zO9TbTBgUzcAzDC6ziNcBAAAAADxY19ZsV5ZOlc3TH9Vb6yYX69g0cHsLvXqjRXzdcP0V/XK0rnaV1Yc1ecHEtEll1yiOXPmKC8vL6Lj/va3v2nBggXWNAUAAJACnM7426J+xx13yOPxmK6fN2+edc0AQByKv09uAAAARB13tAcAmJGfFf58EJJU4q+0pxkAphhNqCREDgAAAACxFwgG9f7q5frTrH/p803fqypQa+l6VYFafb7pe/1p1r/0werlCgaDlq4HxLsTTzxR77//vjIyIpvodfPNNysUClnUFQAAAOzWuHFjnX322abrv/vuOwu7AYD4Q7gIAAAgBXBHewCAGfmZxucDb2X4cwoAe3GdBwAAAADxbVfJAY2b829N/WahamyeCF0TDGjKNws1bs472lVywNa1gXgzcOBAvfnmm3I4HKaP+frrrzVx4kTrmgIAAIDtzjjjDNO1GzZssLATAIg/abFuAAAAANYKhUKGd7Rn0ykAQJLyDCYXSVKxn3AREC9qgwGVVvnC1uR7cmzqBgAAAADwc8FQSLPWfK13Vy22PVT0axv379XdH76lC3r21RndessZQbgCSCYXXnihPv/8c73wwgumj7n//vt16aWXKi0tdbdYVVdXq6ioSEVFRSorK1NVVZVqamqUkZGhrKysn/5kZ2erWbNmcrlcsW45pVRWVmrHjh0qKytTRUWFfD6fMjIylJ2drZycHLVu3Vq5ubmxbtNW5eXlmjdvnr799lutW7dO69evV2FhocrLy1VeXq7q6mplZWUpNzdXzZo1U8uWLfWPf/xDbdq0iXXr+JlQKKQ9e/aoqKhIFRUVqqioUCgUUnZ2trKzs9W4cWO1bNlSTmdq3V9/9erVmjdvnr777jt9//332rVrl0pLS1VWViZJysrKUsOGDdW2bVt16NBBxx57rPr3769evXpFFLCNF6FQSAcOHFBhYaG8Xq+qqqpUVVUll8v10/nH4/EoKytLjRs3VnY2e19grG/fvqZrd+7caWEniEcVFRXauXPnL66t3G73T9cObdq0SblrK6SW1P2XLwAAQIrw1VSrKlAbtiaPcBEAQFJ2eobSXS7VBA694cVoSgoA+5T4Kg1r8jxZNnQCAAAAAPi52mBALy2Zo4Vb18W6lZ/8b4rRl9peXKRrCk5RmpPN/0hNTz75pD7++GNt3rzZVP3OnTv1n//8RxdddFHUepg4caKuuOIKw7rXX39dl19+edTWNcPr9WrBggVatGiRVq5cqXXr1mn79u0KhUKmjk9LS1PLli3Vrl07tWvXTu3bt1efPn1UUFCgJk2a1Lu/efPm6aSTTqrXc0yaNEmTJk2qdy8/GjRokObNmxe15wunpKREX3zxhb788kstXrxYGzZs0N69ew2Pa9KkiTp16qSCggINGDBAgwYNUuPGjW3oOLxx48bpwQcfNKz7/PPPNXjw4LA15eXlmjRpkt59910tXLhQNTU1YevLyspUVlam3bt365tvvtGBAwd+Che1a9dO27ZtM/1zHEy0QxxbtmxRu3btot6Dna9fI6tWrdKCBQv05Zdf6ttvv9WWLVvk9/vDHuN2u9W2bVv17NlTAwYM0MCBA9W7d++4CNFE8+9/x44dev755zVt2jRt3LgxbG11dbWKi4u1bds2ffHFFz9N4GvTpo0uuugiXX/99Wrfvr2ZH8F2gUBAy5Yt06JFi7R06VKtXbtW69evN3wd/FyTJk3Utm3bn85DPXr0UEFBgbp27RoXrwvEh3bt2ik9Pd3wXCHpp+AektOePXu0YMECLVy4UF999ZU2b96swsJCw+OaNGmiLl26qF+/fhowYICGDBminBxu+IjkQLgIAAAgyZnZBM4d7QEA0v9+0ZGXma2iitJD1ngrCRcB8YLrPAAAAACIP9WBWk34cra+3rUl1q0c1MKt6+SrqdYfB5wut4stI0g92dnZeuaZZ3T22WebPuZvf/tbVMNF8cbn82nKlCmaMmWK5s2bp9ra8DctDKe2tlbbtm3Ttm3bNH/+/F88dsQRR6igoEAnnXSSzj33XDVq1Ki+raeE2tpaTZ8+XW+99ZY+/PBDVVVVRfwcP/zwg3744QctXrxYzzzzjNLS0nTyySdr1KhRuvDCC5WZmWlB5/bYv3+/HnnkEb322msqLT307zYQnzZu3KhJkyZpypQp2rRpU8THV1dXa8OGDdqwYYOmTZsmSWrdurUuvvhijRkzRj169Ih2y7baunWrxo0bp7feestUCCKc7du366mnntKzzz6r0aNH67HHHtNhhx0WpU7rZ9GiRfrnP/+p999/Xz/88EO9nuvHz7sVK1b84r/n5eXp+OOPV//+/XXOOeeoZ8+e9VoHic3lcikvL09FRUWGtRUV/G482RQWFmrq1Kl6++23tXjxYtMh+p/78bNm4cKFevLJJ+XxeHTmmWfqsssu0xlnnEGYEQkttWZCAgAApKBiU5tOmVwEAPif/Kzw54RiX7lNnQAw4jXxfuQ6DwAAAADsUxsMxHWw6Edf79qiv335oWqDh55eDSSzs846S8cee6zp+h+naCSb8vJyPfTQQ2rZsqV+//vf69NPP61XsMjIpk2bNHnyZI0dO1bNmzfXaaedptdff10lJSWWrZnIqqqq9OKLL6pTp0666KKLNGPGjDoFiw6mtrZWH330kS677DJ16NBBTz/9tCorjaekx5NQKKRXXnlFnTt31rPPPkuwKMF8//33GjVqlLp27apHHnmkTsGiQ9mxY4eefPJJHXXUUTrnnHO0fPnyqD23XYLBoJ599lkdeeSRmjRpUr2DRT9XW1uriRMnqnv37po8eXLUnrcuZs2apd69e6t///567bXX6h0sCqe4uFiffPKJHnjgAfXq1Utdu3bV/fffr9WrV1u2JuKb2+2Oah3i36ZNm3TttdeqTZs2uummm7Ro0aI6BYsOxufz6Z133tGIESPUs2dPTZ06NSrPC8QC4SIAAIAkZ+aO9g09WTZ0AgBIBEZTTsycVwDYwyhE7nalyZPOLz0AAAAAwA7BUEgvLZkT98GiH63YtVkvLZmjYJQ2UwGJZty4cRHVv/3229Y0EiMzZsxQp06d9MADD8jr9dq+fm1trT7++GNdeeWVeuWVV2xfP97NmzdPRx11lK677jpt3brV0rX27Nmj2267TV27dtXMmTMtXStaKioqdN555+nqq6/WgQMHYt0OIlBeXq6bbrpJvXr10pQpUxQIWBd0DoVCeu+993Tcccfp97//fUw+6+qiuLhYw4YN0y233GLpxBSv16vRo0frrrvuitrmerO2b9+uYcOG6cwzz9TKlSttXftH69at08MPP2zZZEKHw2H6j9Wf8zg4s+Hm3NxcizuB1crKynTLLbeoS5cueumll6IW1j6U77//XiNHjtTgwYO1Zs0aS9cCrEC4CAAAIMkZ3dG+QYZHaU6XTd0AAOKd0ZQTMxPxANjDKOyX78mWw+GwqRsAAAAASG2z1nythVvXxbqNiCzcuk6z134d6zaAmBg+fLjatGljuv6DDz6wsBv71NbW6rrrrtO5556rvXv3xrod/Ep1dbWuv/56nXTSSdqwYYOta+/YsUMjRozQJZdcEtdTjHbv3q0BAwZoxowZsW4FEVq8eLG6d++uCRMmKBgM2rr2a6+9pq5du+qTTz6xdd1Ibdq0SQUFBZo7d65taz7++OO6+eabbVtv9uzZOuqoozRnzhzb1gR+rby8XOXl4fdS/ahp06YWdwMrzZo1S127dtWzzz5raaD1YObPn69jjjlGr776qq3rAvVFuAgAACDJmdl0CgDAj/IMzgtMLgLiB9d5AAAAABAfdpUc0LurFse6jTp559vF2lXC1AekHqfTqTFjxpiu//777xN+skBVVZVGjBihF198Mdat4CD27dunIUOG6IUXXohpH2+99Zb69eunbdu2xbSPg/lxoss333wT61YQoddee02DBw/Wjh07YtZDYWGhTj/9dI0fPz5mPYSzbds2DRo0SOvW2R9WnzBhgp544gnL13nttdd01llnqbS01PK1gHAiOY906tTJukZgmWAwqPvvv18jRozQ7t27Y9ZHVVWVrrrqKl133XW2B2uBuiJcBAAAkOSMJkwYbSIHAKQWozBCaZVPtTbf1QfAwXGdBwAAAACxFwgG9eKST1QTTMzvS2qCAb20ZA4bnZCSLr300ojqZ82aZVEn1guFQrrkkkv00UcfxboVHMSuXbvUv39/LVy4MNatSJK+/fZbFRQUaP369bFu5SdVVVU666yz9N///jfWrSBCf/3rX/X73/9e1dXVsW5FgUBAt99+u2699dZYt/ILhYWFOuWUU7Rr166Y9XDPPfdo8WLrwvLTp0/XVVddZfvkEOBgInmtd+3a1cJOYIWqqiqde+65evjhhxUKhWLdjiTpxRdf1GWXXcZnIBJCWqwbAAAAgLW4oz0AIBJmzgsl/ko1zs61oRsA4XCdBwAAAACxN3vt19q0f1+s26iXjfv3atbarzWi+7GxbgWwVadOndS+fXtt2bLFVP2iRYv0hz/8weKurDF+/HhNmzYt1m3gIPbu3ashQ4Zo06ZNsW7lF/bu3auTTjpJ8+fPV8eOHWPdju655x4tWLDAVG3btm3Vv39/derUSW3atFFubq7cbrfKy8tVUlKi9evXa9WqVVq4cGFcBF6S2dNPP60///nPsW7jN5555hmlp6fr8ccfj3UrCgQCOv/887VhwwbD2uzsbJ1wwgk6+uij1b59ezVq1EjZ2dmqqalRcXGxtmzZomXLlmnhwoWqrKyMqI/a2lpdccUV+u6775Senl7XH+egtmzZojFjxhBmR9yYPn266doBAwZY2Amize/369xzz43LQP3kyZPlcrk0adKkWLcChEW4CAAAIMkZbTrN8+TY1AkAIBHkmzgveH0VhIuAOMB1HgAAAADE1r6yYr27akms24iKd1ct0fGtO6p5bl6sWwFsdfLJJ+uVV14xVfv1119b3I01tmzZonvuuSfi41wul4477jgNGjRInTp1UseOHdW6dWtlZ2crOztbWVlZqq2tVVVVlUpLS7Vv3z7t2bNHGzZs0Pr16/X111/r22+/ld/vj9rPMnjw4EPegX7r1q1q37694XOMGTNGEydOjFpP9VFVVaURI0bUaUKQw+FQ3759ddppp+nYY49V165d1bhxY2VnZ8vn88nr9Wr9+vVauXKlPvroI82fP1+1tbURrbF7926dfvrpWrZsmRo2bBhxj9GycOFCPfPMM2FrDjvsMF1zzTUaPXq06TBUaWmp3nvvvd8ETLZu3XrIYwYPHqz58+cbPne8TEqIpWnTpum2226r07FNmzbVaaedpqFDh6p79+5q166dcnNz5XK5VFZWpp07d2r16tWaN2+eZs2apZ07d0a8xhNPPKG2bdvq+uuvr1OP0XLffffpyy+/POTjTqdT559/vi6//HKdcsoppoI/FRUVeuedd/SXv/zFVGjpR+vWrdPzzz+vm2++2fQxZlxzzTUqKyuL+Lg2bdrolFNOUY8ePdSxY0cdccQRatiw4U/nIJfLJb/fL5/Pp8LCQhUWFmrz5s3asGGDvvvuOy1btkyFhYVR/VmQ+LZs2aIlS8z9G65Zs2bq0aOHxR0hWoLBoC644II6B4t69uypk046Sb1791bnzp3VunVrNWzYUB6PRzU1NSovL9f27du1du1aLVy4UDNnztT27dsjWuONN97QUUcdpdtvv71OPQJ2IFwEAACQxEKhkLy+8rA1+Vnc0R4A8H/yTEw6MTq3ALBebSCgsipf2BomFwEAAACAtd5fvUI1wUCs24iKmmBA769eoatOGBrrVgBbDR061HS4aP369SovL1dOTmLd0OX++++PaDpLp06ddMcdd+iCCy5Qfn5+2Fq32y23263c3Fy1bNnyN4/X1NRo6dKlmjNnjmbNmqUVK1ZE3H8yu+GGG7R8+fKIjklLS9PVV1+tm2++WZ06dTpoTU5OjnJyctS6dWsNHTpUt99+u3bu3Km///3veu655yIKfG3YsEGXXXaZZsyYIYfDEVGv0fLQQw8dcuKJx+PRAw88oD/+8Y/yeDwRPW+DBg106aWXavTo0aqpqYlGq/j/1q5dqyuuuCLi47p166b77rtP559/vtxu90FrGjVqpEaNGqlnz566+OKLFQwGNXPmTD3yyCNatmxZROvdcsst6t27twoKCiLuNRr++9//6osvvjjk48OHD9dzzz13yPf6oWRnZ+vyyy/XJZdcooceekiPPvqo6cDb448/ruuvv/6Qf/+Rmjt3rubMmWO6PisrS2PHjtW1116rbt26Gdb/GHht0qSJunfvrsGDB//i8c2bN2vOnDn65JNP9OGHH8rnC/97FSS/Z5991vT74bzzzrO4G0TTn/70J82aNSuiY34MJ1955ZVq06bNIetcLpcyMzPVpEkT9e7dW6NGjdLf//53zZs3T48//rg+/vhj02veddddPwX4gXjkjHUDAAAAsE5lTbVqAuF/scmmUwDAz2Wlu+V2hb8XidG0FADWK/Ybvw+5zgMAAAAA61RUV2nR1rWxbiOqFm1dq8rqqli3Adjq6KOPNl0bDAa1cuVK65qxQGFhod5++21Ttenp6ZowYYLWrl2rq666yjBYZPY5BwwYoAcffFDLly/X5s2b9cgjj6ht27b1fu5EN23aNL366qsRHXPcccdp1apVev755yMOG7Rq1Up//etftWbNGg0ZMiSiY99//309//zzER0TTYcKx3Xr1k3ffPON7rzzzoiDRT/ncDiiFqSAFAgENHLkyIgm1aSnp+uJJ57QqlWrNHLkyIj+fzidTp111llaunSpXnrpJWVlZZk+trq6WhdffLEqKmLze68ffvjhoCGHjIwMvfrqq5o9e3bE7/WfS09P18MPP6x//etfcjrNbRXeu3evpk6dWuc1f23ChAmma8844wxt3bpVzz33nKlgkRkdOnTQNddco2nTpqmoqEhTpkzR0KFDYxaWRGzt27dPr732mun6Sy65xMJuEE1vvfWWxo8fb7re4/Hoscce06ZNmzRu3LiwwaJDcTgcOumkk/TRRx9p1qxZBw3aH0wgENDYsWMJOyJuES4CAABIYmYmS+RlsukUAPB/HA6HYSChmHAREHNmQn5mJpEBAAAAAOpmwZY1qgrUxrqNqKoK1GrBljWxbgOwVadOnSIKJaxfv97CbqJv6tSppiayeDweff7557rxxhtNb0Cvi/bt2+uee+7R5s2b9f7776tfv36WrRXPysrKdNNNN0V0zO9//3t9+eWX9d5w365dO33yySe67bbbIjrunnvu0e7du+u1djT17dtXixYtUufOnWPdCn7lueee0zfffGO6vkmTJlqwYIHuuOMOpaWFv/ldOA6HQ1dffbWWLl2q1q1bmz5u27ZteuCBB+q8brTl5uZq7ty5+v3vfx+15xw1apSeeuop0/WRhC/C2b9/v2bPnm2q9qabbtIHH3ygpk2bRmXtg8nOztbFF1+sTz/9VOvXr9e1116rzMxMy9ZD/Ln33ntVXm68j0qSevbsqf79+1vcEaJhz549uuGGG0zX9+7dW6tWrdJdd90VUSA1nNNPP10rV67UwIEDTdVv3LhRDz74YFTWBqKNcBEAAEASM7PpND+LTacAgF8yChcxuQiIPTMhP67zAAAAAMAaoVBIczasinUblpizYdVB76APJCun06nu3bubrt+5c6eF3UTfJ598Yqruueees3UDrdPp1IgRI7Rw4UJdc801tq0bL8aNG6ddu3aZrr/xxhv16quvRm26jsvl0lNPPaX77rvP9DGlpaURB5Ks0q1bN82aNUt5eXmxbgW/smfPnoiCOs2aNdP8+fN1wgknRK2HI488UvPnz49oCsVzzz2n//73v1Hroa7cbrdmz55tyefxzTffrJNOOslU7YIFC1RYWFjvNT///HPV1hqH8U888USNHz/e1mlCHTt21AsvvKDPP//ctjURW8uXL48oOHf33Xcz4SpBXHfddfJ6vaZqzz77bH355Zfq2LFj1Pto2rSpPv74Y5188smm6idMmKA9e/ZEvQ+gvggXAQAAJDGjTacOSQ0zo3MXBgBA8jCadkK4CIg9o/dhhitNnrTobDYAAAAAAPzSmsJd2lNqbvNSotld6tXaQvMb3oFk0L59e9O1O3bssLCT6FuyZIlhTbdu3XTVVVfZ0M3B5ebmxmztWNi3b59eeOEF0/XnnHOOnnvuOUt6eeihh3TppZearn/77be1Zk1sJ9x5PB69++67ys/Pj2kfOLgnn3zS9FSQjIwMzZgxI6KAp1nt27fXBx98oOxsczfgqq2t1cMPPxz1PiL1/PPPa8CAAZY8t8Ph0NNPP20qLBEMBjVr1qx6r2nmHCT973XjcrnqvV5dpNo5KFVVVVVpzJgxCgaDpup79OihCy+80OKuEA2ffvqp3nvvPVO1Z5xxht55552IppZGyuPxaNq0aerRo4dhrc/n02OPPWZZL0BdES4CAABIYkabThtkZinNGZsvaQAA8ct4cpG5XwwBsI7RdV6eJ5s7qgEAAACARVbs3BTrFiy1fOfmWLcA2Orwww83XZtIk4sOHDig/fv3G9aNGTPGhm7wo/Hjx8vn85mqbdu2rd544w1Lv+d75ZVXTIc7QqGQHn30Uct6MeOhhx6yJIyC+vvhhx/00ksvma5/8skn1bdvX8v66dmzZ0RBvnfeeUfr1q2zrB8jw4cP19ixYy1d4+ijj9bQoUNN1S5YsKDe661fv96wpmvXrjr++OPrvRYQzr333qvVq1ebrp8wYYKcTrbXJ4J7773XVF23bt00ZcoUpaenW9yR1KBBA02dOlUZGRmGta+99prKysos7wmIBJ9+AAAAScxbabzpFACAX8vz5IR9vNhXaVMnAA7FKOSXnxX+fQwAAAAAqLtNB/bFugVLbU7ynw/4tUjCRbt377awk+jatcvcFLJjjjnG4k7wI7/fr1deecV0/T//+U/Lp2pkZGTo9ddfN72JeurUqdq3LzbniSOOOEJ//OMfY7I2jL366quqrDT3+6MTTzxRN9xwg8UdSZdeeqnOPPNMU7XBYFB/+9vfLO7o4NLS0jRhwgRb1rryyitN1S1cuLDea5k5D3EOgtVmzZql8ePHm66/8MILNWTIEAs7QrR8+OGHWrp0qWGdy+XSv/71L1snlR155JG6/fbbDesqKio0ZcoUGzoCzCNcBAAAkMQMN50SLgIAHITR+aGsyqeaQK1N3QA4GKOQX14m13kAAAAAYIVgMKhtB4pi3YaltnqLFAwGY90GYJvDDjvMdG1FRfgb+8WT8nJzE+hbtWplcSf40fvvv6/i4mJTtSNGjDA9YaS+jj/+eI0ePdpUbSAQ0OTJky3u6OBuv/12ud3umKwNY2+88YapOofDoaefftrSiVw/N378eKWlpZmqnTp1qqqrqy3u6LcuueQSdezY0Za1Tj/9dFOTOzZu3Kiqqqp6rWXmPMQ5CFbaunWrLr30UoVCIVP1TZo0iVnIEJEzO53u+uuvV+/evS3u5rf+9Kc/KS8vz7Bu0qRJ1jcDRMDcVRMAAAASUrE//C84CBcBAA7GzPmh2F+pptkNbOgGwMEQIgcAAACQjKoDtSosK4l1G2HtLStWVZLfdKWqtkYrd21R89y8WLdySM1yG8rtYssLosPj8Ziu9fl8FnYSGzU1NbFuIWW8+eabpmsffvhhCzv5rYceekiTJ09WIBAwrJ00aZJuvfVWG7r6Pw0aNNBll11m65owb8WKFVqzZo2p2rPPPlt9+vSxuKP/07lzZ11++eV69dVXDWv379+vWbNm6dxzz7Whs/9z3XXX2bZWw4YN1bNnT61YsSJsXTAY1Pr163XUUUdZ2k+ynoPMhllgncrKSp1//vnyer2mj3nxxRfVvHlzC7tCtOzatUuzZ882rPN4PLr77rtt6Oi3GjRooDFjxui5554LW7dkyRIdOHBAjRo1sqkzIDy+aQEAAEhi3srw4aI8Np0CAA7CzPnBW1lBuAiIIa/PIESexXUeAAAAgMRTWFaiP83+V6zbgKTxC2bGuoWwnjh9tFrlNY51G0gSmZmZpmv9fr+FnURX48bm3iObN29Wr169LO4Gfr9fn376qanagQMH2v7/pG3btjrrrLM0ffp0w9pVq1Zp+/btatOmjQ2d/c+IESOUlZVl23qIzPvvv2+69sYbb7Swk0OvaSZcJEkffPCBreGiTp066YQTTrBtPUk67rjjDMNFkrRp06Z6hYvMnIc2b95c5+cHDiUUCmn06NH6+uuvTR8zZswYnX/++RZ2hWgyG4i+6KKLIppSGm2jR482DBcFg0F98sknuvjii23qCgjPGesGAAAAYI1QKKRio02nhIsAAAdhJpRgNB0PgHVqArUqrwq/kSUvk+s8AAAAAAAAMyIJFyXS5KImTZqYqjMTJkH9LViwwHQ47aqrrrK4m4O75pprTNeaDUpFyznnnGPreoiM2dfDEUccoSFDhljczW/17NlTBQUFpmrtfm0PHz7c1vWk/01zMmPfvn31WsfMeWjOnDkqLy+v1zrAr911110RXd8ceeSR+sc//mFhR4i2mTPN3Qzj8ssvt7YRA3369DE1DeuLL76woRvAHMJFAAAASaqiuko1wfB3acj35NjUDQAgkXjS3MpwhR92bDQdD4B1iv2VhjVMLgIAAAAAADDH7Xabrq2urrawk+jKz89XTo7x7wKnTp2qb7/91oaOUpvZwEJ6erpGjBhhcTcHN2TIEOXn55uqnTNnjsXd/NKgQYNsXQ/mlZWV6auvvjJVa+dEoF8zO5Fkx44dWrduncXd/J9YvLbbt29vqq6+4aLWrVsb1vh8Pj300EP1Wgf4uZdffllPPPGE6frc3Fy9++67TMdLICUlJVq8eLFhXX5+vgYOHGhDR4fmcDhMTadbuXKlDd0A5hAuAgAASFJGU4skJhcBAA7O4XAoz+Ac4fVxFzEgVsyE+wiRAwAAAAAAmFNVVWW6NpIpR7HmcDhMbaisqanRBRdcoG3bttnQVepatmyZqbr+/fsrLy/P2mYOIT093fQUleXLl1vczf/p2LGjmjZtatt6iMzKlStVW1trqvbMM8+0uJtDO/vss03X2vn6Pvroo21b60dmJ9uVlJTUax2zwamnn35ab775Zr3WAqT/TWO8/vrrTdc7nU5NnDhRXbp0sbArRNv8+fNNnXcGDRokl8tlQ0fh9erVy7Bm1apVCgaDNnQDGCNcBAAAkKTMbPo22jgOAEhd+VnhgwnFfiYXAbFi5v1HiBwAAAAAAMAcv99vujaRwkWSNHToUFN1GzduVN++fTV9+nSLO0pd3333nam6WN9h3+z6mzdvVkWFPb8n6N69uy3roG5WrVplqs7tdpua3mCVTp06qXnz5qZqzf5M9ZWenm56ilA0mQ0wRhK+PZiTTjpJDofDsC4QCGjMmDG6/fbbVVZWVq81kbrmzp2rkSNHKhAImD5mwoQJOu+88yzsClYwGwA97rjjLO7EnDZt2hjWVFZWateuXTZ0AxgjXAQAAJCkvAaTixySGmYy1hcAcHBGwQQzk1MAWMPo/ZeRli5PutumbgAAAAAAABJbJOEij8djYSfRd/bZZ5u+Y/uePXt03nnn6fjjj9fkyZPl8/ks7i517NmzRz/88IOp2r59+1rcTXTWDwaD+v777y3u5n+YKBHfzAbnjj766JgHNM2+vu0KF7Vo0cJU+CbaMjIyTNXVN1zUtGlTnXjiiaZqQ6GQxo8fr/bt2+u+++5jmh4ismTJEp1zzjkRvWYfeugh/eEPf7CwK1hl5cqVpuriJZzcrFkzU3U7d+60uBPAHMJFAAAASarYIFzUMDNLLieXgwCAg8vLDB8uMjrPALCO0YRKphYBAAAAAACYF8n0lUQLF3Xs2FEXX3xxRMcsW7ZMo0ePVvPmzTV69Gi9++67KikpsajD1LBp0ybTtbHeCNu1a1fTgbRIfq76aNGihS3roG7Mvg5i/dqWpB49epiqs+u13ahRI1vW+bX09HRTdbW1tfVe6957742ofv/+/XrkkUfUvn17DRgwQM8884zWr19f7z6QvL755hsNHz5c5eXhf3f2c7feeqvuu+8+C7uClcwGQNu1a2dtIyaZ/fcD4SLEC3aTAgAAJCmjyUV5nhybOgEAJKL8LIPJRYSLgJgp9od//xEuAgAAAAAAMG/v3r2ma3Nzcy3sxBr33Xef0tLSIj6urKxMkydP1oUXXqgmTZqob9++uvvuuzV79mx5vV4LOk1eu3fvNlXn8XjUpk0bi7sJLyMjQ+3btzdVa/bnqq/mzZvbsg7qxuzrIB4mUHXr1s1U3Z49eyzu5H/iPbAaCoXq/Rwnn3yyBgwYUKe1Fy5cqFtvvVVdunRRu3btdOWVV+r111/Xhg0b6t0XksOaNWs0bNgwFRcXmz5m7NixGj9+vHVNwVKBQEC7du0yVXvMMcfI4XDE/M+wYcNM9XvgwIH6/NUAURP5vxwBAACQEIw2fed7smzqBACQiIzCCeXVftUEapXu4qsFwG7eSqMQOeEiAAAAAImpWW5DPXH66Fi3EdaKnZv19qpFsW7Dcr/r1U99WnaIdRuH1Cy3YaxbQBKJZBN5y5YtLezEGl26dNEzzzyjG2+8sc7PUVtbqyVLlmjJkiWSJIfDoc6dO6ugoEB9+/bVgAED1L17dzkcjmi1nVTMhi9atGgRF3+HrVq10saNGw3r7AoXJWKoL5WYfR20atXK4k6i10N5eblKS0vVoEEDS/sxO0Eo0b355ps67rjj9MMPP9T5ObZt26bXX39dr7/+uiSpcePGOuGEE9S3b1/169dPBQUFyspiD0wq2bhxo4YOHaqioiLTx4waNUovvfSShV3Banv27FEgEIh1G5bw+XyxbgGQRLgIAAAgaTG5CABQH/kmzhPFvko1zbH2FysAfqvYMEROuAgAAABAYnK70tQqr3Gs2zCUCuGiPq06qFXD+P9/AURDJOGieNgcXxc33HCDvv32W7366qtReb5QKKR169Zp3bp1mjRpkiQpPz9fgwcP1qmnnqrhw4fHfAJPPDG78blZs2YWd2KO2T4i2dBdHxkZGbasg8jV1NSopKTEVG08vL4j6aGoqMjycFGqaNeund555x0NGzZMNTU1UXnO/fv3a/bs2Zo9e7YkKS0tTX369NGpp56qU089VQUFBXI6nVFZC/Fn27ZtGjp0aETXcOecc44mTZrE6yLBmZ1alIgIFyFe8CkJAACQpNh0CgCoDzOTT7y+chs6AfBrxhMqCZEDAAAAgFVaNMhXRpJPcs5IS1eL3PxYtwHYZtOmTaZrEzVcJEkvvviirr76asue3+v1avr06br22mvVtm1bnXDCCRo/frwKCwstWzNRmN0s2qhRI4s7MadxY3PhUrs2wabKdJdEFMlrIB5e32Zf2xKbvKNt8ODBeu+995STY83vL2pra7V06VI99NBD6t+/v1q1aqUbbrhBX331lSXrIXZ27dqlIUOGaPv27aaPOfXUU/X2228rLS25/x2XCoqLi2PdgmWqq6tj3QIgiXARAABAUgqFQiY2nRIuAgAcmpnzhNG5BkD01QRqVV7tD1uT58myqRsAAAAASD1Op1NtGzWNdRuWapfflDt6I2XU1tZq7dq1pusTOVzkcrn00ksvadKkSWrYsKHl63311Ve6/fbb1apVK1100UVavny55WvGK78//Pd5P8rMzLS4E3PM9mH250LyiuQ1EA+v70h64PUdfcOHD9fXX3+t448/3vK19uzZo+eff14nnHCCevbsqddffz1qU5MQO3v37tWQIUO0efNm08eceOKJmj59utxut4WdwS7JHPwMhUKxbgGQRLgIAAAgKZVX+1UbDIStMTORAgCQujzpbmWmhb8boNGUPADRV+yrNKxhchEAAAAAWOuIRs1j3YKlOiT5zwf83Lp16yK6S3i3bt0s7MYel112mdavX6+rrrrKlokwNTU1euedd3TcccfpzDPP1Jo1ayxfM95UVVWZqouXjc8ZGRmm6ghfwOxrW4qP17fZ17bE69sqnTp10uLFi/XKK6+oZcuWtqz53Xff6corr1SnTp00efJkNvAnqKKiIg0dOlTr1683fcwJJ5ygmTNnyuPxWNgZ7MRnM2A9wkUAAABJyMwkifwswkUAgPCMphcxuQiwn9dXbljDhEoAAAAAsFafVkfEugVLHduqQ6xbAGyzcuVK07VpaWnq2bOnhd3Yp1mzZnr55Ze1YcMG3XbbbWrcuLEt686aNUu9evXSgw8+qNraWlvWjAdmp8EFg0GLOzHHbB9MuUMkr4F4eH1H0gOvb+s4nU6NHTtWmzdv1iuvvKLevXvbsu62bds0evRoDR06VFu3brVlTUTH/v37NXToUK1evdr0MUcffbQ++ugj5ebmWtgZ7MYEMsB6XAEBAAAkITOTJLijPQDAiNGUO8JFgP3MXOcxoRIAAAAArNWtWUsd3iA/1m1YokWDfHVtZs9d5IF4MHfuXNO1PXr0UGZmpoXd2K9t27Z66qmntGvXLk2fPl2jRo1So0aNLF2zpqZG48aN06mnniqv12vpWvHC7OsmkikwVjLbR7K9HxC5SF4D8fD6jqQHXt/Wc7vdGjt2rFasWKFvvvlGf/7zn9W9e3fL1/3888/Vp08fff7555avhfrzer065ZRT9N1335k+pnv37pozZ47y8vKsawwxwWczYD3CRQAAAEnIaLO3w+FQwwzG/gIAwjOeXGQ8QQVAdBld52WmpcuT7rapGwAAAABITQ6HQ6d0So7pJb92SqeecjgcsW4DsE0k4aI+ffpY2ElsZWRk6JxzztHkyZNVWFioxYsX6/HHH9fZZ5+tJk2aWLLmZ599ppNPPlklJSWWPH88MbsR1ufzWdyJOZWVlabq2OCLSF4D8fD6Nvvalnh9261Xr176y1/+ov/+97/atm2bJk6cqKuuukrdu3e35Nr0wIEDGj58uD799NOoPzeip6SkRMOGDYto0mSnTp00d+5cy65fEFsej/m9bhs2bFAoFEqYP+PGjbPuLw6IQFqsGwAAAED0GW32bpiZxRhvAIAhoyl3xT7zv4QBEB1G4SKjUCAAAAAAIDoGtu+mt79ZqKpAbaxbiZoMV5oGtu8W6zYA26xevVo7duwwXd+vXz8Lu4kfLpdLBQUFKigo+Om/rV27Vl9++aUWLlyohQsXasOGDVFZ6+uvv9aoUaM0c+bMpA42Zmeb+86uqKjI4k7MMdtHTk743yEg+Xk8HjmdTgWDQcPaeHh9R9IDr+/YadOmjcaMGaMxY8ZI+l8Q6OfnoOXLl0dlElZVVZXOP/98LV++XJ06dar38yG6ysrKdNppp2n58uWmj2nXrp3mzp2rww47zMLOEEtmr6kkye/3W9gJkLzYUQoAAJCEjDZ7s+kUAGBGHpOLgLhTbBgu4heeAAAAAGCHbHeG+rXrGus2oqpfu67KcmfEug3ANm+88YbpWofDoTPOOMPCbuJb165dNXbsWL3++utav3699u3bp7ffflvXXnut2rZtW6/nnj17tl588cUodRqfzG5yLiwstLgTc8z2weZtOJ1ONW3a1FRtPLy+I+mB13f8aNSokc466yw9/vjj+vLLL1VaWqovvvhCDz74oPr16yeXy1Xn5y4tLdVll12mUCgUxY5RX+Xl5Ro+fLiWLFli+phWrVrps88+U+vWrS3sDLHWvHlz07Xl5exlAOqCcBEAAEASMtrsTbgIAGCG0fmiorpK1bXJc3deIBEYTS7K82TZ1AkAAAAA4KzufZTurPtmxniS7nTprO59Yt0GYJtAIKA333zTdP2xxx7LRvOfadasmS666CK98MIL2rp1q1atWqUHHnhAHTp0qNPz3XvvvUm9AbRFixam6vbs2aPq6mqLuzG2efNmU3Vmfy4kN7Ovg61bt1rbiAlmX9uNGzeW2+22uBvUldvt1sCBA3X//fdr4cKFKiws1GuvvaZhw4bJ6Yx8S/SSJUs0depUCzpFXVRWVurMM8/UwoULTR/TvHlzzZ07V+3bt7ewM8SDNm3amK7dvXu3hZ0AyYtwEQAAQBLyVhptOiVcBAAwZiaM6vWHP+cAiC6jcBGTiwAAAADAPs1z83RBz4JYtxEVF/QsUPPcvFi3Adjmgw8+iGjD4YgRIyzsJvEdddRRGjdunDZu3KiPP/5YJ510UkTHHzhwQK+99ppF3cVeq1atTNUFAgFt3LjR4m7CKykp0d69e03VtmzZ0uJukAjMvr7XrVtncSfG1q5da6qO13ZiadSoka644gp9/PHH2rx5s2655RZlZmZG9BxPPvmkRd0hEn6/X2eddZbmz59v+pgmTZpo7ty56ty5s4WdIV7k5OSoUaNGpmq3b99ucTdAciJcBAAAkISKDTedEi4CABgzE0Y1OucAiC6j9xwhcgAAAACw1+lde+uIxs1j3Ua9dGx8mM7o2jvWbQC2CYVCevDBB03XOxwOXXzxxRZ2lDwcDoeGDRumzz77TP/+97+Vk2P+Rjj/+te/LOwstjp37iyHw2GqdtWqVRZ3E731u3XrZmEnSBRdu3Y1VRfr13YkPfDaTlxt27bV008/rdWrV+uEE04wfdzKlSu1evVqCzuDkaqqKp1zzjmaO3eu6WPy8/M1Z84c9ejRw8LOEG/MfkZ///33FncCJCfCRQAAAEkmFAoZTpHgjvYAADNMTS4iXATYpjpQq/Jqf9gaQuQAAAAAYC+X06lrC4Yp3emKdSt1ku506ZqCU+R0sn0EqeM///mPvvnmG9P1w4YNU6dOnaxrKEldeOGFmj17tjwej6n6ZcuWqaioyOKuYiMnJ0ft27c3Vbtw4UKLu4nO+h6Ph/cFJP1vcpkZ69at0w8//GBxN4dWW1urpUuXmqrt2bOnxd3Aau3bt9enn36qggLzU0Znz55tYUcIp7q6Wueff74+/vhj08c0aNBAH330kY4++mjrGkNcOu6440zVff311xZ3AiQnvh0CAABIMmVVfgWCwbA1eZ4sm7oBACSyzHS3PGnusDXeynKbugFgZlIY4SIAAAAAsF/Lho10Qc++sW6jTi7s1VctGzaKdRuAbcrKynTrrbdGdMyNN95oUTfJb+DAgbrvvvtM15vd+H8w8R6S7NWrl6m6efPmWdtIlNbv3r27XK7EDNbWR7y/zmLB7GtbkubPn29hJ+EtX75cFRXmbphHuCg55OTkaPLkycrMzDRVv2TJEos7wsHU1tbqd7/7nWbNmmX6mOzsbM2ePVvHH3+8hZ0hXpn9/75q1Srt37/f4m6A5MPVLgAAQJIp9hlv8mZyEQDArLys8EGFYoNpeQCix8yksDzCRQAAAAAQE2d0663+7brEuo2I9G/XRad37R3rNgBb3Xrrrdq+fbvp+o4dO2r48OEWdpT8br31VjVs2NBU7fr16+u8Tnp6uqm62traOq9RH/379zdV9/3332vz5s0Wd3NwJSUl+uyzz0zVDhgwwOJu4lO8v85ioUePHqbf4++9957F3Rza9OnTTdU5nU7169fP4m5glw4dOujyyy83VVufcxDqJhAIaNSoUZoxY4bpYzwejz744APT51Ukn0GDBsnhcBjWBQKBiEJrAP6HcBEAAECSMbPplDvaAwDMMjpneCsJFwF2YXIRAAAAAMQvp8OhawpOUe+W7WPdiil9WnbQNQWnyGliUxaQLKZMmaJXX301omMee+wxJpXUU0ZGhk477TRTtbt27arzOm6321Sdz+er8xr1ccopp5iufeeddyzs5NCmT5+umpoaU7WR/DzJJN5fZ7Hgcrk0ZMgQU7UzZ86U3++3uKPfCoVCpt9XvXv3VqNGTHVMJmeffbapuvqcgxC5YDCoMWPGRHTOy8jI0IwZM3TSSSdZ2BniXYsWLXTccceZqn3jjTcs7gZIPvzrFwAAIMkYhYucDocaZHhs6gYAkOjyMg3CRSbCDgCiw+j95klzKzPd3C+3AQAAAADRl+Z06Y8DTo/7gFGflh1044DhSnO6Yt0KYJt58+aZnlzwoxNPPFEXXHCBNQ2lmCOPPNJUXXl5eZ3XyM3NNVXn9XrrvEZ9HHXUUWrevLmp2pdfflnBYNDijn7rhRdeMFWXnp6uQYMGWdxNfIr311msmA2beb1eTZ061eJufuujjz7Sli1bTNWmanAumdlxDkJkQqGQxo4dq8mTJ5s+Jj09Xe+++66GDRtmYWdIFOeee66pus8++0zr1q2zuBsguRAuAgAASDJGd7RvmJnFHdYAAKblZ4UPF5mZpAIgOry+8L/YyjN4vwIAAAAArOd2penmgWeof7susW7loPq366KbBp4utyst1q0Atpk3b57OOeccVVdXmz7G6XTqmWeesbCr1NK0aVNTdaFQqM5ruN1uNWjQwLBu9+7ddV6jPhwOh+mw2ubNmzVjxgxrG/qVBQsW6KuvvjJVO3z4cOXk5FjcUXwy+1qO1essVs4991y5XOZCy88++2y93ut1MX78eNO1F154oYWdIBbsOAchMtddd51ef/110/VpaWmaOnWqzjzzTAu7QiK55JJLTJ13QqGQ7rvvPhs6ApIHu0oBAACSjNEd7fM9bDoFAJhndN5gchFgn2JfZdjH8w0mjQEAAAAA7JHmdOm6vqdq5NEDlB4n04HSnS6NOmaArut7KhOLkFLefPNNnXrqqSopKYnouLvvvlu9e/e2qKvUU1xcbKrO7FSYQzEzGWjr1q2qra2t1zp1demll5quve+++xQIBCzs5pf+/Oc/m64dM2aMhZ3EN7PTpzZu3GhxJ/HlsMMOMz3x59tvv7V1etGnn36quXPnmqo96qijdMwxx1jcEexm1zkI5tx000166aWXTNe7XC69+eabOu+88yzsCommdevWOuecc0zVvvPOO/riiy+sbQhIIoSLAAAAkozRBIl8T2reRQoAUDdG543KmipV1dbY1A2Q2gwnFxEiBwAAAIC44XQ4NKJ7H/1l+Cgd0djcRmSrdGx8mP4yfJTO7NZHTocjpr0AdikuLtbll1+uyy67LKKJRZI0ePBgjRs3zprGUtTWrVtN1ZkNbhzKEUccYVhTVVWl//73v/Vap65OOOEEdevWzVTt6tWr9dxzz1nc0f9MmjRJCxcuNFXbpEmTlJ4cYeY1JkkrVqywuJP4c8UVV5iuvfPOO1VaWmphN//j9/t14403mq6P5GdA4rDrHPRzDofD9B+z/SWDO++8UxMmTDBd73A49Nprr+niiy+2sCskqptvvtl07ZgxYyK+2QCQqggXAQAAJBmjCRJsOgUARMLMecMo2AogOgwnVGZxnQcAAAAA8aZlw0Yad8pFGnl0f9unGKU7XRp59ACNO+VCtWzYyNa1gVgJBoOaPHmyevTooUmTJkV8/GGHHaYpU6bI5WLCV7QEAgF98MEHpmrNBm8OpXPnzqbqPv7443qtUx9/+tOfTNfee++9Wrt2rYXdSNu3b49oc+4tt9wit9ttXUNxzuxr7JNPPrG4k/hz/vnnmw5f7dixQzfddJPFHUn33HOP6fdQo0aNNHbsWIs7QixMnz7dVF19z0EI74EHHtATTzxhut7hcOill17SZZddZmFXSGQDBgzQ6aefbqp269atuuiii1RTw01TASOEiwAAAJKM0R3t8wkXAQAiYOa8YRR4ABAdxhMquc4DAAAAgHjkcjo1ovuxeuKM0TrpiCOV4UqzdL0MV5pOOuJIPXHGaI3o3kdOJ1tDkPyqq6t/ChWNHj1au3fvjvg5mjRpok8++USHHXaYBR3a75FHHtHMmTNj3YamTZumXbt2GdY5HA4df/zx9VrruOOOM1X36quvKhAI1Gutuho9erTatWtnqtbn8+nss89WcXGxJb1UVFRE9Px5eXm64YYbLOklURx55JHyeDyGdatXr9YXX3xhQ0fxw+Vy6a677jJdP3HiRD3//POW9TN58mQ9/fTTputvuukm5ebmWtZPqpk/f74effTRmE8KKS0tNR02LigosLib1PXXv/5VDz30UETH/O1vf9NVV11lUUdIFk899ZTS0sz9+/qTTz7RyJEjVVVVZXFX5pSXl+uJJ57QqlWrYt0K8At8gwQAAJBEgqGQin2VYWvYdAoAiASTi4D4UF1bq4rq8F9252VynQcAAAAA8ax5bp6uOmGonj93rMb0GaQWDfKj+vwtGuRrTJ9Bev7csbrqhKFqnpsX1ecH4k0wGNTSpUt1ww036PDDD9fo0aPrPOWlUaNG+vTTT3XUUUdFucvYWb58uUaMGKFjjjlGkydPVnV1te097NixQ9dff72p2j59+qh58+b1Wm/AgAGm6jZs2KC77767XmvVVVpamh555BHT9evXr9fw4cOjHjCqrKzU2WefrW+++cb0MX/+85/VoEGDqPaRaNLT002H4K699lrt37/f4o7iy5gxYyKa/nLTTTdp8uTJUe/j/fff15VXXmm6/rDDDotogheMeb1e3XvvvWrbtq3uuece7dy5MyZ9XHXVVdq7d6+pWrMTUBCZ5557Tn/+858jOubpp5/WH/7wB4s6QjLp1q2bbr31VtP106ZN07Bhw1RYWGhhV+EVFRXpkUceUfv27XXnnXeqtLQ0Zr0AB0O4CAAAIImUV/kUCAXD1pjZJA4AwI8y09KVle4OW8PkIsB6Xr/x+yw/K8eGTgAAAAAA9ZXlztCpXY7Wk2dcqvuGnq/hXY5Rl6YtIp5olJGWri5NW2h4l2N039Dz9eQZl+rULkcry51hUedAbJWXl2vp0qV64YUXdMEFF6hp06YqKCjQ888/rwMHDtT5eVu3bq25c+eqV69eUew2fnzzzTcaPXq02rRpo/vuu0+bNm2yZd21a9fq5JNPNh2uuPzyy+u9Zrt27dSjRw9TtU888YTOOeccrVy5st7rRuqSSy7RkCFDTNcvWbJEgwYN0saNG6Oy/s6dOzV06FDNnTvX9DFHHXVURJt3k9mZZ55pqm7NmjXq06eP3nrrrZiE+2IhPT1dL7zwgun6QCCgyy67TE888YRCoVBUevjxHBHJ3/mzzz6b8sE5q5SUlOgvf/mL2rdvrwsvvFBz5sxRMBh+T0s0VFdX66qrrtK///1vU/XHHnus6fMHzHv55ZcjDu499thjuuWWW6xpCEnp4YcfVu/evU3Xf/HFFzryyCP1zjvvWNjVby1evFhXXHGFWrdurfvuu08//PCDresDZlk7axsAAAC2MrO5m8lFAIBI5XmyVVlz6F/CEC4CrGdmQhjXeQAAAACQWBwOh7o1b6VuzVtJ+t8Ult1lXm05UKidxftVXl2lmkCtaoMBpTldSnelKcedoVZ5jdW+UTO1yM2X08k9ZRF/vv32W82cOTOiY0KhkPx+v6qqquT3+1VWVqa9e/dq79692rNnjzZs2KBt27ZFbfP5j4YOHaopU6aoadOmUX3eeLRv3z498sgjeuSRR9S3b1+NHDlSZ511ltq2bRvVdfx+v15++WXde++9KisrM3VMo0aNdNlll0Vl/d/97ne6//77TdW+9957eu+999ShQwf1799fXbp0UYsWLdSwYUOlp6fL4XAYPkfjxo3Vt2/fiPt84YUX1Lt3b1VUmPt+fdWqVerTp48ee+wxXXPNNXK5XBGvGQqF9Oabb+q2226LaENrWlqaXn75ZaWlsdVQki688ELdeeedpgIS27Zt0yWXXKJrr71WAwcOVM+ePdWmTRs1btxYmZmZps/jQ4cOlcfjqW/rthg0aJDGjh2rV1991VR9MBjUnXfeqblz5+pvf/ubOnfuXKd1t2/frltuuUX/+c9/IjruzDPP1O9+97s6rQnzamtr9e677+rdd99VixYtNHLkSJ177rnq27dv1K9nv/jiC91+++1atmyZ6WMIs1jjL3/5S8TH/PnPf4540pHVPv/8cw0ePDjWbeAQ3G63pkyZouOPP14lJSWmjikqKtJFF12kfv366YEHHtApp5xi6rovEqFQSCtXrtR7772nyZMn2xbwB+qLK34AAIAkQrgIAGCFfE+2dpd6D/m411duYzdAajJznceESgAAAABIbE6nU60aNlarho1j3QpQL88++6yeffbZWLcRVlpamu688049+OCDdQppJLrFixdr8eLF+uMf/6ijjjpKQ4cO1YABA9SvXz8dfvjhET9fKBTSihUrNHPmTL3yyivavXt3RMc//PDDys3NjXjdg7n66qv1l7/8RX6/3/Qxmzdv1ubNm+u03qBBgzRv3ryIj+vcubNeeeUVjRo1yvQxpaWl+sMf/qAJEyboxhtv1KhRo5Sfn294XHl5ud59910999xz+uabbyLu9YknnlBBQUHExyWrtm3b6qyzztKMGTNMH1NWVqbZs2dr9uzZdVpzy5YtateuXZ2OjYUJEyZo+fLlEb3ePvnkEx155JEaOXKkrrvuOp1wwgmmNnqvWrVKL7zwgiZNmiSfzxdRn+3bt9ekSZMiOgb1t3v3bo0fP17jx49X48aNNWzYMA0cOFD9+/dXjx496nRe3rt3r2bNmqXJkyfr888/j+jY448/XiNHjox4TQDxo3PnzpoxY4ZOO+00VVVVmT5u0aJFOvXUU9WxY0eNGjVKZ555po499tg6BY0CgYDWrl2rRYsWadGiRfr444+1Z8+eiJ8HiDXCRQAAAEnEaHO30+FQbmaWTd0AAJJFvicn7ONmJqoAqB9vZfjrPE+6W5lp6TZ1AwAAAAAAkLgGDx6sv//97+rRo0esW4kL3333nb777rufAmGNGzdWjx491KlTJ7Vo0UItWrRQbm6uPB6P0tLSVFFRoYqKCpWWlmrTpk1au3atvv/+exUWFtZp/cGDB+uaa66J2s/TvHlz3XDDDXrqqaei9pxWGTlypJYtW6ZnnnkmouPWrVunG264QTfddJOOP/549enTR126dFHjxo2VlZUlv9+v4uJirV+/XitXrtTChQtVXV1d5x6Z6PFb48aN0wcffKBAIBDrVuKSx+PRtGnTdPzxx2v//v2mj6upqdEbb7yhN954Q82bN9egQYPUo0cPtW3bVjk5OXI6nSovL9euXbu0evVqzZ8/X9u3b69Tj9nZ2Zo2bZoaNWpUp+MRHfv379eUKVM0ZcoUSVJGRoa6dOmibt26qVWrVmrRooWaNGmizMxMZWZmqrq6WuXl5aqoqNCuXbu0du3an/7UZbphVlaW/vnPf0Z9YgkA+w0ePFj/+te/dPHFF0d8ft64caMeeughPfTQQ8rNzdUxxxyjHj16qFWrVjr88MOVnZ2tzMxMBQIB+f1++Xw+FRYWat++fdq5c6fWrVun9evXRxRsAuIV4SIAAIAkUuyrDPt4nidbTr4UAQBEyGjqnZmJKgDqp9gf/n3GdEoAAAAAAIDwOnbsqIceeojpBAb279+vL774Ql988YXla7Vp00ZTp06N+vSocePGafr06dq0aVNUn9cK48eP14EDB+o0PSUQCPw0hcoKZ555JlNdDqFXr16644479Ne//jXWrcStDh066JNPPtHQoUNVXFwc8fH79u3Tv//97+g3pv+Fn95//30dc8wxljw/6q6qqkqrVq3SqlWrLF/L4XDolVde0ZFHHmn5WgDsccEFF2jGjBn63e9+p8rK8HvoDqWsrMy2a2EgHjlj3QAAAACix2hyUV4mm04BAJHLI1wExJy3Mvz7zOh9CgAAAAAAkKr69u2radOmad26dQSL4kjLli312WefqXnz5lF/7uzsbM2cOVONGzeO+nNHm8Ph0GuvvabRo0fHupVfOOOMM/Tuu+8qPZ1p6YfyyCOP6Kyzzop1G3Gtd+/e+uijj5Sfnx/rVn6SlZWlGTNmaMiQIbFuBTH2/PPPa9SoUbFuA0CUnXnmmZo7d64l15hAKiBcBAAAkESMNnfnZ7HpFAAQOaOJKL6aavlra2zqBkhNhtd5hIsAAAAAAAB+0qJFC914441aunSpFi1apPPOO09OJ9uk4kXv3r21ePFiHXHEEZat0bVrVy1ZskTdu3e3bI1ocTqdevPNN/Xwww/L4XDEuh3ddttteu+995SRkRHrVuKay+XStGnTdN1118W6lbh2wgkn6KuvvlK3bt1i3Yratm2rRYsWadiwYbFuBTGUlZWlf//737x3gSRWUFCgVatW6fTTT491K0DC4V/NAAAAScTojvZsOgUA1IWZiSjFTC8CLGX0Hsv35NjUCQAAAAAAQPxxOBw66qij9Mc//lHz58/Xjh07NGHCBB1//PGxbg0/43Q6deONN+rLL79U69atLV+vY8eOWrlypR599NG4mpxyKPfee69mzZqlli1bxmT9Jk2aaOrUqXrqqafkcrli0kOiSUtL0z/+8Q/NnTtXvXv3jnU7catjx45asmSJxowZE7MezjvvPC1fvly9evWKWQ+IvT59+mjp0qW68MILY90KAIs1a9ZMs2bN0ssvv6ymTZvGup3fcDqdOu2009SuXbtYtwL8AuEiAACAJFLsZ9MpACD68rOMzx9GU1UA1I/ReyzPk2VTJwAAAAAAALHXokULDRkyRHfccYfef/997d+/X6tWrdJzzz2nE088kSlFku644w5de+21toR4zOjXr58WLFigCRMmyOPx2Lau2+3W3XffrR07duiVV17RsGHD5Ha7bVs/UsOHD9fq1av1hz/8QWlpabas6XQ6NWbMGK1du1a/+93vbFkz2QwZMkQrVqzQvHnzdNVVV6l58+axbinuNGjQQBMnTtScOXPUuXNn29Zt06aNpk+frmnTpqlJkya2rZvq+vXrp0cffVR9+/aNi3Ny06ZN9cwzz2jJkiU68sgjY90OABtdddVV2rhxo+68805lZ8f+ptydO3fWAw88oM2bN+vDDz9Uq1atYt0S8Av2/AsEAAAAlguGQoZ3tGfTKQCgLvIzjb9k81aW29AJkJqqamtUWVMVtoYQOQAAAAAASFTp6enKyMj4xZ/c3Fw1a9ZMzZo1U/PmzdWsWTO1atVKXbp0UdeuXZWbmxvrtuNe//791b9/f0nSqlWrNHPmTM2aNUtfffWVamtrbenhxzuy//GPf9Spp55qy5qHkp2drbFjx2rs2LHy+XxatmyZVqxYofXr12vTpk3at2+fioqKVF5erqqqKtXU1CgUCsWk1wYNGujvf/+7br/9dj3++OOaOHGi/H5/1NdJS0vTyJEjdffdd6tr165Rf/5UNGjQIA0aNEgvvfSS1q1bpyVLlmjNmjXasGGDdu3apaKiInm9Xvn9flVXVysYDMa6ZdudfPLJWr16td5++2099thj+v777y1Zp2PHjrrzzjs1ZswYpaenW7IGDq1Zs2a6++67dffdd+uHH37Q7NmzNWvWLM2ZM0der9e2Pjp16qRrr71WV199tXJy+D0KkKoaNGigv/71r7rrrrv02muv6R//+Ic2bdpky9oOh0O9evXSGWecofPOO49Jh4h7jlCs/hUEAADqraioSM2aNfvFfyssLIzLUZ6wXomvQtdNfzVszZ8Gn62jW7SzpyEAQFIZ+86LYcMNo3sP1Old+SIMsMK+smLd8sGksDX3n3yBujZraVNHAAAAABJJVVWVNm/eHLamQ4cOysjIsKkjAEAsVVZWatmyZVq8eLGWLFmiJUuWaN++fVF7fo/Ho379+umss87SueeeGzeTkxJZcXGxpk2bpilTpmjBggWqrq6u83OlpaWpoKBAF198sS666CL2FiDmvvrqK02ePFnTp0/Xjh076vVczZs31znnnKNRo0Zp4MCBcjgcUeoS0RIKhbR27VotXrz4pz9r1qyJWtDO4XCoa9euOv3003XuueeqX79+vA4AG8yYMUPffPONqdqbb75ZeXl5lvZjxvLlyzVjxgx98MEH+v7776P2OZSWlqZu3bqpf//+GjhwoE466SQdfvjhUXnueJLs3zWl8r5cwkUAACSwVL6IwW9t9Rbp7g/fClvz2PBRapvP6wMAELk7Zr2pXSUHDvn4Gd1665JjBtrYEZA61hbu0kOfvhu25pkRY9Q8N8+ehgAAAAAklGTf8AEAqL/du3drw4YN2rRpkzZu3KhNmzZpx44dKi0tVXl5ucrLy1VWVqba2lq53W5lZGQoLy9PzZo10+GHH66OHTuqS5cuOvroo3XMMccwJcRCfr9fX331lRYvXqz169dr8+bN2r59u8rKylRRUSG/36+MjAxlZ2crJydHrVq1UocOHdSpUycVFBSob9++ys7OjvWPARzU1q1b9eWXX+rbb7/Vpk2btGXLFhUWFqqiokKVlZUKhULKyspSdna2GjdurPbt26tDhw7q1auX+vfvr86dO8f6R0AdlJeX/zRF7sdz0ObNm+X1en86/5SXl6uysvKnaYfZ2dlq2rSpmjdvrrZt26pLly7q0aOHCgoK1KhRo1j/SAASTFlZmVasWKEVK1Zo48aN2r59u7Zv364DBw6osrJSPp9P1dXVSk9Pl9vtVk5Ojpo0aaKmTZuqZcuWat++vY444gj16NFDRx55pDIzM2P9I1ku2b9rSuV9uWmxbgAAAADR4a0sN6zJ8/BFMQCgbvIys8OGi7yVFTZ2A6SWYp/x+4vrPAAAAAAAANRVixYt1KJFCw0aNCjWrcBAZmamTjzxRJ144omxbgWIunbt2qldu3YaPXp0rFuBjXJyctS7d2/17t071q0ASFG5ubkaPHiwBg8eHOtWgJhzxroBAAAARIfRplOXw6ncDI9N3QAAkk2+QXDBTPgBQN14Dd5fWeluZaRxN1gAAAAAAAAAAAAAAFA3hIsAAACShNGm0zxPlpwOh03dAACSTX5W+HCR10+4CLCKUXgv35NjUycAAAAAAAAAAAAAACAZES4CAABIEkbhIjadAgDqw+g8UlxJuAiwipkQOQAAAAAAAAAAAAAAQF0RLgIAAEgSRne0z/OEnzgBAEA4RucRX221fDXVNnUDpBavrzzs44TIAQAAAAAAAAAAAABAfRAuAgAASBLGm04JFwEA6s7MecQo6Aqgbop9lWEf5zoPAAAAAAAAAAAAAADUB+EiAACAJOE12NDNplMAQH0QLgJixyhEzoRKAAAAAAAAAAAAAABQH4SLAAAAkkAwGFSJP/wd7dl0CgCoDzPnEaOgK4DI+WtrVFlTHbaGEDkAAAAAAAAAAAAAAKgPwkUAAABJoLTKp2AoFLaGTacAgPpwu9KU7c4IW0O4CIg+MxPBCJEDAAAAAAAAAAAAAID6IFwEAACQBMxs5iZcBACor3xPTtjHvb5ymzoBUoeZcBHXeQAAAAAAAAAAAAAAoD4IFwEAACQBc3e0D78hHAAAI0YBBjPnIwCRMRMiZ3IRAAAAAAAAAAAAAACoD8JFAAAAScBo06nL6VRuRqZN3QAAkpVRuMhMCAJAZIwmgmWlZygjLd2mbgAAAAAAAAAAAAAAQDIiXAQAAJAEjDad5mdmy+Fw2NQNACBZGU1HIVwERF+xrzLs40ahPwAAAAAAAAAAAAAAACOEiwAAAJKA0WZuo83gAACYweQiwH5GIXKu8wAAAAAAAAAAAAAAQH0RLgIAAEgCxQabufOz2HQKAKg/o3BRVW2NfDXVNnUDpAaj0B6TiwAAAAAAAAAAAAAAQH0RLgIAAEgChpOLMtl0CgCovzxPjmEN04uA6CJEDgAAAAAAAAAAAAAArEa4CAAAIAkY3tGeTacAgCgwMyHF6yu3oRMgdRAiBwAAAAAAAAAAAAAAViNcBAAAkOCCwaBK/JVha/JNTJoAAMBInifLsMZoygoA8/y1NfLVVIetyc/iOg8AAAAAAAAAAAAAANQP4SIAAIAEV1LlUygUCltjZtIEAABG0l1pysnIDFtjNGUFgHlmwnpc5wEAAAAAAAAAAAAAgPoiXAQAAJDgvL5yw5o8Np0CAKIkPzP8OcVbSbgIiBYzYT2u8wAAAAAAAAAAAAAAQH0RLgIAAEhwZjZxc0d7AEC0GAUZmFwERI+30jhEbhT4AwAAAAAAAAAAAAAAMEK4CAAAIMEV+8Nv4k5zupTjzrSpGwBAssvPCh9kMDovATDPKKyX7c6QOy3Npm4AAAAAAAAAAAAAAECyIlwEAACQ4IwmF+V5suRwOGzqBgCQ7PI9OWEfNzNpBYA5RmE9o0liAAAAAAAAAAAAAAAAZhAuAgAASHBGd7Q32gQOAEAk8jINJhf5KhQKhWzqBkhuRiHyfMJFAAAAAAAAAAAAAAAgCggXAQAAJLhiX/gJEWw6BQBEU35W+PNKVaBWvppqm7oBklsxIXIAAAAAAAAAAAAAAGADwkUAAAAJzuurDPs44SIAQDSZOa8YTdUDYI7XH/69lOfJsqkTAAAAAAAAAAAAAACQzAgXAQAAJDijyUV5hIsAAFFkJlxkNG0FgDnFlUwuAgAAAAAAAAAAAAAA1iNcBAAAkMACwaBK/EwuAgDYJy+TyUWAHfw11fLVVoet4ToPAAAAAAAAAAAAAABEA+EiAACABFbir1TIoIZNpwCAaEpzuZSb4Qlb4zWYqgfAmJmQHtd5AAAAAAAAAAAAAAAgGggXAQAAJLBiU5tOc2zoBACQSowCDWbOTwDCM/M+yiNcBAAAAAAAAAAAAAAAooBwEQAAQAIzc0d7Np0CAKLNKFxk5vwEIDyu8wAAAAAAAAAAAAAAgF0IFwEAACQwr6887OPpTpey3Rk2dQMASBVGgQbCRUD9Gb2PctyZcrvSbOoGAAAAAAAAAAAAAAAkM8JFAAAACazYYNNpnidbDofDpm4AAKmCyUWA9cxc5wEAAAAAAAAAAAAAAEQD4SIAAIAEZrR522jzNwAAdWF0fin2VSgUCtnUDZCcjCZUcp0HAAAAAAAAAAAAAACihXARAABAAjMKF3FHewCAFfI8OWEfrw7UqrKm2qZugOREiBwAAAAAAAAAAAAAANiFcBEAAEACM950Gn7zNwAAdWEm1GA0dQVAeMWEyAEAAAAAAAAAAAAAgE3SYt0AAAAA6s5o02l+FptOAQDRZy5cVKFWDRvb0A2Q+ILBoHaXerX5QKF2luxXRbVf+8pLwh7D5CIAAAAAAAAAAAAAABAthIsAAAASxK83nZZV+VTirwx7TF4mm04BANHX0JNlWDNt1RIt2bZe2e5MtWrYWB0aN1OL3Hw5nQxRBkKhkNYU7tKKnZu06cA+bTtQpKpAbUTPMWfDKhWWl6hPqyPUrVlLORwOi7oFAAAAAAAAAAAAAADJjnARAABAnIrGptOZa5Zrm7eQTacAgKj4+bnJ5XAqEAoesnb9D3u0/oc9v/hvGWnpapvfREc0as65CSmporpKC7as0acbVml3qbdez7W71KvdpV59uO4btWiQr5M79dTA9t2U7c6IUrcAAAAAAAAAAAAAACBVOEKhUCjWTQAAgLopKipSs2bNfvHfCgsL1bRp0xh1hGiI5qbTn2PTKQCgrjg3AfWzr6xY769eoUVb10YcFo9EhitN/dp11Vnd+6h5bp5l6wAAAABILFVVVdq8eXPYmg4dOigjg3+bAwAAAAAAILxk/64plfflEi4CACCBpfJFTDJi0ykAIN5wbgLqJxAMatbarzVt1RLVBAO2rZvudOmCngU6o2tvOZ1O29YFAAAAEJ+SfcMHAAAAAAAA7JPs3zWl8r7ctFg3AAAAkOrs3nRaFajV55u+15db1rDpFABwUJybgPrbVXJALy75RJv277N97ZpgQFO+WahlOzbpmoJT1LJhI9t7AAAAAAAAAAAAAAAAiYNwEQAAQAyx6RQAEG84NwH1EwyFNGvN13r3/7F33/FRlukax6+ZdEIChBI6oRMCofcu2AAFFKXYQMEVFEXFg+u6K+quq6KuIoqNIiC4gisiKIggvffeCRAIBEhI7zPnD9e6kHknmZl3kvl9Px/P2Q33PPc1w+R9s/G559m7yaOnFV3L8SsX9Nx38zQ4tpP6RbeW1WIxNQ8AAAAAAAAAAAAAAPBOfAwwAACACWx2u745uEPPfTfPlM3bv/XzptNvDu6QzW43NQsAwDzcm4Diy7cVaNqm5Zq/e73pg0U/+2lob72mbVqufC/JBAAAAAAAAAAAAAAAvAsnFwEAAHhYvq1AH25eoQ1xR8yO8oufN52euXpJf+p4o/ytfmZHAgB4EPcmoPhyC/I1Zf232nnulNlRrmlD3BFl5eXq8a59FejHrwQBAAAAAAAAAAAAAMCvOLkIAADAg3IL8vX2uqVetXn7tzbEHdHb65YqtyDf7CgAAA/h3gQUX76twKsHi36289wpvbv+O04wAgAAAAAAAAAAAAAAv8NwEQAAgIew6RQA4G24NwHFZ7Pb9eHmFV7/ffSzHedO6sPNK2Sz282OAgAAAAAAAAAAAAAAvATDRQAAAB7AplMAgLfh3gS4xtJDO7325K/r2RB3RN8e3ml2DAAAAAAAAAAAAAAA4CUYLgIAAPAANp0CALwN9yag+M6lJGnh3k1mxyiSBXs26VxKktkxAAAAAAAAAAAAAACAF2C4CAAAwM3YdAoA8Dbcm4DiK7DZ9MHm75VnKzA7SpHk2Qp+Og3MZjM7CgAAAAAAAAAAAAAAMBnDRQAAAG7EplMAgLfh3gS4xreHd+rElYtmxyiW41cuaCmngQEAAAAAAAAAAAAA4PMYLgIAAHAjNp0CALwN9yag+C6mXdXCvZvNjuESC/du1sW0q2bHAAAAAAAAAAAAAAAAJmK4CAAAwE3YdAoA8DbcmwDXWHxwR4k9/euP8mwFWnxwh9kxAAAAAAAAAAAAAACAiRguAgAAcBM2nQIAvA33JqD4MnJztDHusNkxXGpj3GFl5uaYHQMAAAAAAAAAAAAAAJiE4SIAAAA3YNMpAMDbcG8CXGPdqUPKKcg3O4ZL5RTka92pQ2bHAAAAAAAAAAAAAAAAJmG4CAAAwA3YdAoA8Dbcm4Dis9vtWnFsr9kx3GLFsb2y2+1mxwAAAAAAAAAAAAAAACZguAgAAMDF2HQKAPA23JsA1ziUeE4Jqclmx3CL86nJOpx4zuwYAAAAAAAAAAAAAADABAwXAQAAuBibTgEA3oZ7E+AaO+JPmB3BrbbHnzQ7AgAAAAAAAAAAAAAAMAHDRQAAAC7GplMAgLfh3gS4xomki2ZHcKuTpfz5AQAAAEBJZLfbObUZAAAAAAAAbsdwEQAAgIux6RQA4G24NwHFZ7PZdDrpktkx3Cou+ZJsNpvZMQAAAAAAv7Hp9FFtPnPM7BgAAAAAAAAo5fzNDgAAAFCa+NKmU6uVOXUAKAm4NwGucT41WTkF+WbHcKuc/DydT0tWzXIVzY4CAAAAAJCUlZerubvWySKpZfUohQQEmh0JAAAAAAAApRTDRQAAAC7EplMAgLfxlXvTO+u/VZnAIEmSXXbJrv/+5//+f7v9l3r7f7/605fsf6i71tf+97G/afGHr/127d/96R/WcZTr94/9tcVvv/ZrTvsfnrArnrfs9us8x0Ke97Uea/B5X/s5Ov+8r7neHxa0/+HPf/3aH16X3zzhArtvnOhzKimRn/MAAAAAwEt8uW+zrmZlSJL+s2+L7mndzeREAAAAAAAAKK0YLgIAAHChk0mJZkfwCDadAkDJ4Sv3pm3xJ8yOAJQK8VevmB0BAAAAACDp7NXLWnZk9y///bsju9S9XrRqla9kXigAAAAAAACUWlazAwAAAJQm8Sm+sRmTTacAUHL4yr0JgGuk5+aYHQEAAAAAfJ7dbtfM7atl+83Jv7b/fu23pwEDAAAAAAAArsJwEQAAgAtl5GabHcEj2HQKACWHr9ybALhGXkG+2REAAAAAwOetjzusw4nn/ufrhxPPaUPcERMSAQAAAAAAoLRjuAgAAMCF8goKzI7gEWw6BYCSw1fuTQBcI9/GNQMAAAAAzJSRm6PPdq277p9/tmudMvkAMAAAAAAAALgYw0UAAAAu5CubMX3leQJAacA1G4Az/K1+ZkcAAAAAAJ+2cO8mpWZnXffPU7IztWDvZg8mAgAAAAAAgC9guAgAAMCFfGUzpq88TwAoDbhmA3BGgJ+/2REAAAAAwGfFJV/S98f2Oqz7/tgenU6+5IFEAAAAAAAA8BUMFwEAALhQgJ9vbOBm0ykAlBy+cm8C4BplA4PMjgAAAAAAPslmt2vmth9lt9sd1tr/W2szUAsAAAAAAAAYwa5QAAAAFwoNDDY7gkew6RQASg5fuTdVCg1T9fAISZLlN1+3WCx/+JpF//2SLPrlP/zyny2/lv36579Z67fr/PQ1XedrhTz2N/1//dpv+1t++6XrfO03XYvy2D+sY/lDrmuv/d8//d3af/xaIY+95ut8vdf0j69fEf4+ftP/t3/XP+e81t/HtbP/9H+PXj6vVcf3q7SrWb6i2REAAAAAwCetPXlQxy4nGK4/ejlB604dUo96Td2YCgAAAAAAAL6C4SIAAAAXqlnONzZjsukUAEoOX7k33RXbSd3qRpsdA6VYvYgqPjFcVDeiitkRAAAAAMDnpOdka/7uDU4/bv6u9WpTs57K+siHywAAAAAAAMB9rGYHAAAAKE3q+chmTDadAkDJwb0JcI3q4RUU5Fe6P6cnyD9A1cMqmB0DAAAAAHzOF3s3Ki0ny+nHpeZkacGeTW5IBAAAAAAAAF/DcBEAAIALsekUAOBtuDcBrmG1WlUnorLZMdwqqkJlWa38uhAAAAAAPOnklYtaeWxfkR//w7G9Opl00YWJAAAAAAAA4IvYLQAAAOBCbDoFAHgb7k2A69SPiDQ7glvVK+XPDwAAAAC8jc1m04xtP8pejDXskmZu+1E2e3FWAQAAAAAAgK9j5w0AAICLsekUAOBtuDcBrtGmZn2zI7hV25r1zI4AAAAAAD7lx5MHXHLq0IkrF7X6xAEXJAIAAAAAAICvYrgIAADAxdh0CgDwNtybANeIrlJD1cIrmB3DLaqHV1CTKjXMjgEAAAAAPiM1O0v/3r3RZet9vnuDUrOzXLYeAAAAvMfq1atlsVgc/jNp0iSzowK/M2nSJEPv3dWrV5sdFQAghosAAABcjk2nAABvw70JcA2LxaIbG8aaHcMtbmwYK4vFYnYMAAAAAPAZ/96zQem52S5bLz03W//e47phJQAAAAAAAPgWhosAAABcjE2nAABvw70JcJ1udaMV5OdvdgyXCvLzV7e60WbHAAAAAACfcexygn48ccDl664+sV/HL19w+boAAAAAAAAo/RguAgAAcAM2nQIAvA33JsA1QgOD1DmqidkxXKpzVBOVCQwyOwYAAAAA+ASbzaaZ2350y9p2STO2/SibzeaW9QEAAAAAAFB6MVwEAADgBmw6BQB4G+5NgOvc3rSNAqx+ZsdwiQCrn25v2sbsGAAAAADgM344vk9xyZfctn5ccqJWHt/ntvXhm0aMGCGLxWLon7i4OLPjXldUVJSh5xAVFWV2VAAAAAAAPI7hIgAAADdh0ykAwNtwbwJcIzKsvAbHdjQ7hksMju2oyLDyZscAAAAAAJ+QkpWhL/ZsdHuff+/ZpJTsTLf3AQAAAAAAQOnhb3YAAACA0urnTafzd28wO0qxsekUAEoH7k2A6/Rt0lpbzx7XiSsXzY5SZA0qVlW/Jq3NjgEAAAAAPmP+7g3KzMt1e5/MvBzN371ej3S8ye29AADwZZMmTXJYExUVpREjRrg9CwAAAFBcDBcBAAC4EZtOAQDehnsT4Bp+Vqse6XiTnvtunvJsBWbHcVqA1U9/6nijrFYONgcAAAAATziceE5rTx3yWL+1Jw+pV/1maly5usd6AgDga1588UWHNT169GC4CAAAACUCuwcAAADc6OdNpwFWP7OjFAmbTgGg9OHeBLhOjXIRGhzbyewYRXJXi06qUS7C7BgAAAAA4BMKbDbN3P6jx/vO3PajCmw2j/cFAAAAAABAycNOHAAAADdj0ykAwNtwbwJcp190a3WJamx2DKd0iWqsvpz+BQAAAAAe8/3RPTp79YrH+565elnfH93j8b4AAAAAAAAoeRguAgAA8AA2nQIAvA33JsA1rBaL/tTxRrWuUdfsKIa0qVHvp9O/LBazowAAAACAT0jOytDCvZtN679w32YlZ2WY1h8AAAAAAAAlA8NFAAAAHsCmUwCAt+HeBLiOv9VPj3ft6/XfT21q1NO4rrfK3+pndhQAAAAA8Bmf7VynrPxc0/pn5eVq3q51pvUHAAAAAABAycBwEQAAgIew6RQA4G24NwGuE+jnr/Hd+nntiWBdohrriW59Fejnb3YUAAAAAPAZBy/Ga+PpI2bH0Ia4Izp0Md7sGAAAAAAAAPBiDBcBAAB4EJtOAQDehnsT4Dr+Vj+N6XSzhrXsqgAvGYYLsPppeKuuGtPpZgb0AAAAAMCD8m0Fmrn9R7Nj/GLm9tXKtxWYHQMAAAAAAABeiuEiAAAAD2PTKQDA23BvAlzHarHotqZt9Mqtw1W/YqSpWRpUrKpXbh2u/tFtZLVYTM0CAAAAAL7mu8O7dS4lyewYv4hPuaJlR3abHQMAAAAAAABeio/9BQAAMMHPm05b16irDzZ/rxNXLpqWpUHFqvpTxxtVo1yEaRkAAObj3gS4Vo1yEZp049369vBOLdy7WXke/HToAKufBsd2Ur8mrWS18tlCAAAAAOBpVzLT9J/9W8yO8T++3LdFneo0UsUyYWZHAQAAAAAAgJdhuAgAAMBEbDoFAHgb7k2A6/hZrbqtaVu1r9VAiw/u0Ma4w8opyHdbvyA/f3WOaqLbm7ZRZFh5t/UBAAAAABRu7s51ysnPMzvG/8jJz9NnO9fp8a59zY4CAAAAAAAAL8NwEQAAgMnYdAoA8DbcmwDXigwrr9EdeuueVl217tQhrTi2V+dTk122fvXwCrqxYay61Y1WmcAgl60LAAAAAHDevoTT2nLmmNkxrmvzmWPqdeGMmletbXYUAAAAAAAAeBGGiwAAALwEm04BAN6GexPgWmUCg3Rz45a6qVELHU48p+3xJ3Uy6aLikhKdGuAL8g9QVIXKqhcRqbY166lJlRqyWCxuTA4AAAAAMCKvIF+ztq82O4ZDs7av1qu3DleAH1tGAAAAAAAA8BN+UwQAAOBl2HQKAPA23JsA17JYLIqOrKnoyJqSJJvNpvNpyTqVlKj4q1eUnpujvIJ85dsK5G/1U4Cfv8oGBqlm+YqqG1FF1cMqyGq1mvwsAAAAAAB/9O3hXUpIu2p2DIcSUpP13eFduj2mndlRAAAAAAAA4CUYLgIAAPBSbDoFAHgb7k2Ae1itVtUsV1E1y1U0OwoAAAAAoIguZaTqq/1bzY5h2Ff7t6pzVGNVCg03OwoAAAAAAAC8AMNFAAAAJQSbTgEA3oZ7EwAAAAAAwE/m7FirXCdOeDZbTkG+5uxYqye79zc7CgAAAAAAALwAw0UAAAAAAAAAAAAAAABFtOvcKW2PP2F2DKdtiz+h3efj1LJ6lNlRADjp1KlTWrlypfbt26d9+/bpzJkzSk1NVWpqqmw2m8qUKaOwsDDVrl1bdevWVevWrdWlSxe1adNG/v6lb7tYSkqKfvjhB+3Zs0cHDhzQ0aNHdfXqVaWmpiojI0MhISEKCwtTlSpVFB0drZiYGPXq1UsdO3aUn5+f2fFdLjs7W2fPnlVqaqoyMzOVkZEhf39/hYaGqmzZsqpZs6YqVKhgdkyPSUhI0I8//vjLe+PYsWNKTk5Wenq60tPTZbfbFRoaqvDwcFWtWlWNGzfW7NmzzY6NEurUqVNavXq1Dh8+rCNHjujEiRO6evXqL+83Pz8/lSlTRuXLl1fVqlXVpUsXTZ482bS8ly5d0ooVK7Rv3z4dOHBAx48fV0pKitLS0pSZmanQ0FCFhYWpWrVqv1w/e/furTZt2shisZiW210yMjIUHx+vtLQ0ZWRkKCsrS4GBgb+7r4aFhZkd0yVsNpu2b9+uVatW6cCBAzp06JASEhJ++bv/+TmXK1dODRo0UExMjGJjY9WnTx9VrlzZ7PgAADcpff9rEQAAAAAAAAAAAAAAwANyC/I1e8cas2MU2afbV6tpv3sV6Mf2EcAdoqKidPr06UJr6tSpo7i4OIdrXblyRdOmTdOCBQu0d+/eQmtTUlKUkpKi+Ph4bdy4UZ999pkkqXLlyho8eLAeeeQRxcbGGn4e3igvL0/z5s3T3LlztWbNGuXl5V239udN/QkJCdqzZ88vXy9fvrwGDx6sRx99VC1btvRAate7cuWKNmzYoA0bNmjz5s06fvy4EhISZLfbC31cuXLl1KhRI3Xq1EldunRRnz59FBER4aHU19azZ0+tWeP4nurouUnS2bNn9dFHH2nx4sUOv18k6erVq7p69arOnDmjI0eO/PL1uLg41a1b1+HjC7NmzRqXDmEYvWagcK68Ph8+fFgffvihli5dqmPHjhVam5+fr5ycHCUnJ+vUqVPKzMx0JrZLZGRkaMaMGfr888+1efNm2Wy269b+PLh67tw5bd++/ZevV65cWUOHDtXYsWPVpEkTT8R2uYSEBK1bt04bNmzQ1q1bdfLkSSUmJjp8XKVKldS4cWN17txZXbt21Q033KCyZct6ILFrHDx4UO+//77+/e9/6/Lly9etS0tLU1pams6fP69Dhw7pm2++kSRZrVZ16tRJQ4cO1ciRIxUaGuqp6AAAD7CaHQAAAAAAAAAAAAAAAKAkWnJwhy6mp5gdo8gupqdoycEdZscAUIjLly/riSeeUO3atfXXv/7V0KDE9Vy6dEnTpk1Ty5YtNXDgQB0/ftyFSR2Li4uTxWJx+M+IESOuu0ZBQYHeeecd1atXTyNGjNAPP/xQ6GBRYa5evapPPvlErVq1Up8+fX43eOTNUlJSNH36dN14442KjIzUgAED9Prrr2vt2rU6f/68oeGblJQUbdu2TVOmTNGQIUNUtWpV9evXT/Pnz1d+fr4HnoV77N+/X4MHD1bdunX197//vVjfL6XF6tWrDX3fTZo0yZR8s2bNMpRv1qxZpuQrzPr163XTTTepadOmevvttx0OFpktKytLkyZNUu3atfX4449r48aNhQ4WFebSpUt69913FR0drdtvv11Hjx51cVr3SExM1JQpU9SlSxfVqFFDQ4YM0ZQpU7R582ZDg0XST/flDRs2aPLkyRowYICqVKmiu+++W0uWLDF0/TXL4cOH1b9/f8XExOi9994rdLCoMDabTRs2bNC4ceNUp04dvfjii8rKynJxWgCAWRguAgAAAAAAAAAAAAAAcNLF9BR9fXCb2TGK7euD25RYggekgNLss88+U3R0tKZMmeLS0y3sdru+/vprxcbG6q233nLZuu62f/9+dejQQePHj1d8fLxL1165cqVat26tcePGKTs726Vru8qFCxc0ceJE1a5dW6NGjdIPP/yggoICl6ydl5enb7/9VsOHD1fDhg01bdq0EjVklJ6ergkTJqhVq1b68ssvXfa6ANdy6dIljRw5Ut27d9eKFSu8eqDkZ2vXrlVsbKxefPFFJSUluXTtb775Rs2aNdOf//znIg97utuJEyf0yCOPqHbt2nriiSe0ceNGl/29ZWVlacGCBbrtttsUGxurzz//3CXrukpeXp4mTpyo5s2ba+nSpS5d+8qVK5o0aZJiY2O1du1al64NADAHw0UAAAAAAAAAAAAAAABOmr19jfJKweblvIICzd6xxuwYAH4jJydH99xzj+69994inyxgRFZWlp5++mndd999ys3NdVsfV/j888/Vpk0b7djhvtPWbDabpk6dqg4dOujIkSNu6+Os3Nxc/f3vf1e9evX0+uuvKzU11a394uLiNHbsWLVp00abN292ay9XOH78uNq1a6c333yzRA1EoWTatm2bWrZsqVmzZpWIoSJJev3119WzZ0+3nlaXl5enV199Vd26dVNcXJzb+jgrLS1NTz75pBo3bqwPP/xQOTk5bu23f/9+DRs2TD179tShQ4fc2suIuLg4denSRa+//rpbr4/Hjx9Xz5499dprr7mtBwDAMxguAgAAAAAAAAAAAAAAcMKO+JPadf6U2TFcZue5U9oRf9LsGAD004kYvXr10rx58zzWc+7cuRo6dKjXnvby1ltvafjw4R4bgNq7d686d+6srVu3eqRfYbZs2aLY2Fj99a9/VVZWlkd77927V126dNHLL7/stUMU69atU4cOHXT48GGzo8AHLFy4UD169ND58+fNjmKI3W7X448/rokTJ3rse3jLli3q1KmT9u3b55F+hVm6dKmaNGmit99+2+P3tzVr1qhVq1b65JNPPNr3t/bu3auOHTtq2zbPnLRqt9v17LPPaty4cbLZbB7pCQBwPYaLAAAAAAAAAAAAAAAADMrJz9OnO1abHcPlZu9Yo1xOfABMlZycrN69e2vTpk0e7/3VV19p3LhxHu/ryEcffaSnn37a48MtSUlJ6t27t9auXevRvr81bdo0de/e3dRTlGw2m/72t79p4MCBHh9ucmTnzp3q16+fkpKSzI4CH/Ddd99p2LBhXvd9UJiJEyfq3Xff9XjfCxcuqEePHtq+fbvHe0u/Xrduu+02UwfBcnJyNHr0aI0ZM8bjwzbbtm1Tjx49dPHiRY/2laSpU6dq4sSJHu8LAHANhosAAAAAAAAAAAAAAAAM+vrAdl3OSDM7hstdykjV1wc988nmAP5XRkaG+vXrZ+ppD9OmTdOCBQtM6/9HK1eu1KOPPmpa//T0dA0YMECHDh3yaF+73a6xY8dq7NixHjutyZHFixerf//+yszMNDuKJOnUqVPq27ev0tJK3/0Y3mfbtm266667lF+ChrA/+eQTTZ482bT+ycnJ6tevn06d8uxJnzk5ORo0aJBXnbj2wQcf6P777/fY6UknT55Uv379dPXqVY/0u5Y33njD1FObAABF5292AAAAAAAAAAAAAAAAgJIgITVZSw7tMDuG23xzcIe6RjVRtfAKZkcBfM6oUaMMnVgUFBSktm3bqnXr1qpXr54qV66s0NBQFRQUKDU1VadPn9bOnTu1bt26Im0sHjNmjPr06aMKFcy9DiQmJmrIkCGGNvOHhoaqR48eio2NVYMGDRQeHq6AgAClpqYqISFBBw8e1Nq1axUXF+d0jqtXr6pv377aunWrKleuXIRn4hybzaZRo0Zp5syZbu/lrFWrVun222/XsmXL5O9v3rbDgoICDRs2zNCJHFarVc2bN1f79u1Vv359VatWTaGhobJarUpLS9OVK1d08OBB7dy5Uzt37vRAepQ06enpGjJkiDIyMhzW+vv7q3Xr1mrTpo3q16+vyMhIhYaGymazKS0tTYmJiTp48KC2bt3q1qHF/fv3Gx7MjIiIUK9evRQTE6OoqCiFhYX98v1x9uxZHTx4UKtXr1ZCQoLTORITE3Xrrbdq69atCg8Pd/rxzsrOztagQYO0bNkyt/dy1meffSY/Pz99+umnbu2TkpKivn376tKlS0V6fFRUlLp3767o6GhVr15dYWFhys/PV2pqqk6ePKn9+/dr9erVSk1NdbjW2LFj1aFDhyLlAACYh+EiAAAAAAAAAAAAAAAAB+x2u2ZtX618m2c+ddwM+bYCfbpjjSb2HCCLxWJ2HMBnfPTRR/r8888Lrbn55pv10EMPqX///goJCXG4Zm5urpYsWaJXXnlFO3YYH4q8cuWKXnzxRb399tuGH+MOjz32mK5cuVJoTbdu3fTEE0+of//+CgoKcrjm3r17NW3aNH366afKysoynCUuLk6jR4/WokWLDD+mqB599NEiDxY1bNhQffr0UevWrRUdHa2aNWsqIiJCISEhstlsSk9PV3x8vI4ePapNmzbp22+/1eHDh53qsXLlSo0fP15Tp04tUkZXeP3117Vly5ZCa1q2bKmHH35Yd999typWrGho3fj4eM2ZM+d3r39UVFShp58YuVf26NFDq1evNpQB3ufpp592ePpOt27dNHr0aA0aNEhly5Y1tO6xY8c0ffp0bdy40RUxf1FQUKCRI0cWeuqZxWLRwIED9dhjj6lnz56yWq0O1926daumTZumzz77THl5eYbzHDlyRGPHjtXcuXMNP6YobDabBg8eXOTBotjYWPXq1UutW7dWo0aNVKtWLZUrV04hISHKy8tTenq6zpw5o8OHD2vDhg1asmSJzpw541SP2bNnq3nz5powYUKRMhoxduxYHTlyxKnHlClTRiNHjtQjjzyiZs2aOazPz8/X999/r/fee0/ffvvtdevy8vL04IMP6pZbbnEqDwDAXBa7t5z9BwAAnHbp0iVVqVLld19LTEz0yCcmAQAAAAAAAAAA75eTk6OTJ08WWlOvXj1Dm7J93dYzx/T2+utvoCtNxnfrp/a1GpgdA15ixIgRhj9p/9SpU4qKinJvoCKKiorS6dOnHdbVqVOnSCfcFLVn2bJlVVBQcN1hlw4dOmjq1Klq27ZtkTLY7XZNnTpVEyZMKHSz+W8FBQXp7NmzLv/3znFxcapbt67Dulq1auns2bOF/vm7776rAQMGFCnH6dOnNW7cOH3zzTdOPe7jjz/WqFGjitTTiKlTp2rcuHFOPaZcuXIaNWqURo0apSZNmjjdc8eOHZo8ebK++OKLQodo/mjOnDm69957ne5XmJ49e2rNmjUO6wIDA6/7Xq5Zs6befvtt3XHHHUUeks3JyTH8c1FJGC5avXq1evXq5bDuhRde0KRJk9wf6A9mzZqlkSNHOqybOXOmRowY4bK+Rq7PAQEBhQ7SNG3aVFOnTjX0+l6P0feb0b/H6tWr6/z589f981atWumDDz5Q+/btncr5s5+HhVatWuXU4+bNm6dhw4YVqacREyZM0JtvvunUY6pWrao//elPevDBB1W7dm2nHmu327V69Wq99tprWr58ueHH+fn5aeXKlerRo4dT/YyYP3++hg8f7tRj7rzzTr399tuqWbNmkXquXbtWY8aM0cGDB69b4+g9+bMff/xRPXv2LFIOAJ5X2n/X5Mv7ch2PHAMAAAAAAAAAAAAAAPiw7Pw8zd651uwYHjNnxxpl5xv/VHoARZeenn7NwSKr1aqXX35ZGzduLPJgkfTT8MO4ceO0bNkyQyceST9tFpw2bVqRexZXYYNFvXv31s6dO4s8WCT9NEC2ePFivfHGG4ZO7PjZM888o8uXLxe5b2HWrl2rJ5980nC9n5+fJkyYoFOnTumNN94o0mCRJLVp00aff/65Nm7cqKZNmxp+3BNPPKGLFy8WqWdxXW+waNCgQdq/f7/uvPPOYp2+V1I3wcL1ChssGjt2rHbu3FmswSLJ9e+3woY4Ro8erU2bNhV5sEiSGjdurBUrVuiFF15w6nHjx49XampqkfsWZt68eU4NFoWEhOif//ynTpw4oUmTJjk9WCT9dG/t1auXli1bpqVLl6pGjRqGHldQUKBRo0Y5dXqeEampqRo/frzhen9/f02bNk0LFy4s8mCRJHXv3l3btm0rdKjJyGARAMB7MFwEAAAAAAAAAAAAAABQiK/2b1FSZrrZMTzmSma6Fu3fanYMwGcFBAToiy++0PPPP+/U8EthevXqpblz5xqunzlzpkv6ulL//v317bffqlKlSi5Z7+mnn9asWbMMv8ZXr151ekO9EZmZmRo5cqTy8/MN1detW1dbtmzR5MmTVaFCBZdk6Nixo7Zu3ao777zTUH1SUpKeeOIJl/R2hbFjx2rhwoUqV66c2VHgA1599VW99957JWoQ7f/+7//00UcfuSSz1WrVpEmTNHXqVMODfImJifr73/9e7N5/lJCQoMcee8xwfevWrbV37149++yzKlOmjEsy9O3bV7t27VK3bt0M1R8/flwvvviiS3r/7OWXX1ZiYqKh2p9/xnjkkUdc0rtMmTKaO3euxo4d65L1AADmYrgIAAAAAAAAAAAAAADgOs6lJOnbQ7vMjuFxSw/v1LmUJLNjAD7HYrFo7ty5hoc8nHHHHXdoxIgRhmrj4uK0fft2l2coqvbt22vhwoUKDAx06br33XefJk+ebLj+ww8/1PHjx12a4bnnntPJkycN1Xbq1Enbtm1TmzZtXJpBkkJDQ/Xvf/9b9913n6H6L774Qrt373Z5DmcNGzZMU6dOddkgHlCYZ599VhMnTjQ7hlPuv/9+vfbaay5f99FHH9Vf/vIXw/XvvPOOEhISXJphzJgxSk5ONlQ7YMAArV+/Xg0aNHBpBkmqXLmyli9frj59+hiqnzJlistei/Pnz2vKlCmG6z/44AMNGjTIJb1/ZrFYNHXqVA0ePNil6wIAPI+fqAEAAAAAAAAAAAAAAK7Bbrdr1vYfVWC3mR3F4wpsNs3avlp2u93sKIBPee6553T33Xe7bf1XXnnF8GkN33zzjdtyOKNChQr68ssv3XZKyFNPPWV4Q3RBQYH+9a9/uaz3kSNHNHXqVEO1bdu21bJly1SxYkWX9f8jPz8/TZ8+XTfccIPDWrvdrr/97W9uy2JEdHS0PvnkE8OnpwDF0atXL/3jH/8wO4ZTYmNj9eGHH7pt/Zdeekk333yzodrc3FynhmAc+eGHH/T1118bqu3Xr58WLFigkJAQl/X/o5CQEH355ZeKiYlxWJuVlaV//vOfLuk7ZcoU5ebmGqp9+OGH9eCDD7qk7x9ZLBZ9+umnatKkiVvWBwB4BsNFAAAAAAAAAAAAAAAA17Dp9FEduBhvdgzTHLh4VpvPHDM7BuAzYmNjNWnSJLf2qFatmoYPH26odt26dW7NYtQbb7yhmjVrurXHe++9p4iICEO1s2bNUlKSa052+9vf/qaCggKHdZGRkVq0aJHCw8Nd0rcwAQEB+uyzzwwNMS1ZskQnTpxwe6ZrsVgsmjVrluFhOaA4QkJCNGvWrBJ1Qpafn59mzJih4OBgt/WwWCz66KOPFBYWZqj+ww8/VEZGhkt6P//884bqoqOjNX/+fAUEBLikb2HCw8P1+eefGxqGnTFjhtLS0orVLyMjw/DwWK1atfTGG28Uq58jZcqU0fTp00vU9wkA4Pe4ggMAAAAAAAAAAAAAAPxBVl6u5u7yjo31Zpq7c62y8ox9GjqA4nnnnXfk7+/v9j5GTy3YsmWLocEXd2rXrp3bTln4rSpVqhge7MrMzNS8efOK3fPgwYNasGCBodqPPvpINWrUKHZPo6pWrapXX33VYZ3dbtf06dM9kOh/3XPPPWrfvr0pveF7nn76adWuXdvsGE4ZOXKk2rRp4/Y+tWvX1jPPPGOoNjk5WYsWLSp2z++++05btmxxWOfn56e5c+caHn5yhWbNmmnChAkO6zIyMjR//vxi9frqq6909epVQ7X//Oc/PfI6dO7c2fAQMwDA+zBcBAAAAAAAAAAAAAAA8Adf7tusq1mu+WT1kiw5K0P/2ed48yaA4unRo4d69uzpkV4dO3ZUZGSkw7rMzEydPHnSA4mu78UXX/RYr4cfftjwCUmff/55sft98MEHstvtDutuu+023X777cXu56yRI0eqYcOGDutmz55t6Hm4ksVi0XPPPefRnvBdZcqU0ZNPPml2DKcEBATor3/9q8f6jR8/3tBpZ5KKPVAjSdOmTTNUN3bsWLVu3brY/Zz1f//3fypfvrzDuk8//bRYfYy+lk2bNtWwYcOK1csZL774ovz8/DzWDwDgOgwXAQAAAAAAAAAAAAAA/MbZq5e17Mhus2N4je+O7NLZq5fNjgGUamPGjPFYL4vFoq5duxqqPXz4sJvTXF/jxo116623eqxfUFCQHnnkEUO1GzduVHx8fJF7ZWdna+7cuYZqX3rppSL3KQ4/Pz+NHTvWYd25c+e0Z88eDyT6Ve/evRUdHe3RnvBdw4cPV0REhNkxnDJo0CCPnrQUFhamkSNHGqr9/vvvDZ+2cy3nzp3Tt99+67AuJCTEtCHE8PBwPfDAAw7rNm/erKSkpCL1uHr1qlasWGGo9rHHHpPV6rnt4vXq1dNtt93msX4AANdhuAgAAAAAAAAAAAAAAOC/7Ha7Zm5fLZuHT2HwZrb/viaePpkC8BVly5bVwIEDPdqzXbt2hupOnDjh5iTXN3r0aI/3fPDBBw2dtmC32w1v6r6WxYsXKzk52WFdjx491LJlyyL3Ka7hw4fLYrE4rFu2bJkH0vxqyJAhHu0H31YS328PP/ywx3savWbn5eVpzZo1Re7z2WefqaCgwGHd3XffrapVqxa5T3Hde++9DmtsNpu+//77Iq2/evVq5eXlOawLCQkxlMXVzHgPAgCKj+EiAAAAAAAAAAAAAACA/9oQd0SHE8+ZHcPrHE48pw1xR8yOAZRKN9xwg4KCgjzas1GjRobqLl686OYk1zd48GCP96xWrZo6d+5sqPbHH38scp8lS5YYqhsxYkSRe7hClSpVDA2irV271gNpfmKxWDRgwACP9YNvK1eunHr27Gl2DKdERESYkrlRo0Zq1qyZoVpfuH62adNGkZGRDuuKev00+hreeOONCgsLK1KP4ujTp4/KlSvn8b4AgOJhuAgAAAAAAAAAAAAAAEBSRm6OPtu1zuwYXuuzXeuUmZtjdgyg1OnRo4fHe9atW9dQnVnDRc2aNVOdOnVM6W10cKWoJ2/Y7XYtX77cYZ3ValW/fv2K1MOVOnbs6LBm165dHkjyk+joaFWuXNlj/eDbunTpIn9/f7NjOOXWW281dAKbO9x+++2G6oo6UJOSkqJNmzY5rKtQoYK6detWpB6uYrFY1KFDB4d1Rb1+rltn7H+z3HbbbUVav7gCAgJ06623mtIbAFB0DBcBAAAAAAAAAAAAAABIWrh3s1KyM82O4bVSsjO1YO9ms2MApU7Lli093rNSpUqG6lJSUtyc5NrMPCmke/fuhurOnDmj5ORkp9fft2+fEhMTHdbFxsZ6xRBNixYtHNZcuHBBFy5c8EAaGT5ZCnCFkvh+M3OopmvXrobqDh48qIKCAqfXX7NmjfLz8x3W9ejRw7QBq98ycv3cu3evbDabU+vm5+fr4MGDhmrNfD+YPeAFAHAew0UAAAAAAAAAAAAAAAAAYJLGjRt7vGf58uUN1eXkmHNaWadOnUzpK/007BUcHGyo9sCBA06vv337dkN17dq1c3ptd6hdu7ahumPHjrk5yU+aNm3qkT6AVDLfb2ZeP42cdCb9dG8pyjWjNF4/MzMzde7cOafWPXbsmKH7c0REhCk/Y/zMzPciAKBoGC4CAAAAAAAAAAAAAACQdFdsR5ULLmN2DK9VPriM7oo1tmkUgDF+fn6qWrWqx/sGBQUZqjNruMjIaQ/uEhAQYHigoCjDRbt27TJU5y1DDVWqVDFUFx8f7+YkPzFzozx8T0l7v/n5+Sk6Otq0/hUqVFCNGjUM1R46dMjp9bl+/sToaxcTE+PUuq4WHR0tq5Vt6gBQknDVBgAAAAAAAAAAAAAAkFQmMEj3tOpmdgyvNbxVN5UJNDaQAMCY8PBw+fn5ebxvQECAobr8/Hw3J/lfVqtVDRo08Hjf32rYsKGhujNnzji99t69ew3VRUVFOb22O4SEhBiq89RwUfXq1T3SB5BK3vstKirK8PXdXRo1amSoztnTeiSunz8z+toZ/btwl+DgYMOn3wEAvIO/2QEAAAAAAAAAAAAAAAC8RZeoxlp1Yr8OJzq/4bE0i65SQ12iStan9wMlgdGNx2ax2+0e71m9enXDJyu5S/369Q3VJSQkOL326dOnDdUNGjTI6bXNlJSU5JE+kZGRHukDBAYGqnz58mbHcIo3DNUYzeDs9bOgoMDwUE2rVq2cWttszl4/jb523vJ+iIuLMzsGAMAgTi4CAAAAAAAAAAAAAAD4L4vFopFte8pqsZgdxWtYLRaNbNtLFl4TwOXMPmHCG1WpUsXsCIYzOLs53m636/z580WJ5PWysrI80icsLMwjfYCS+F6rXLmy2REMZ3D2+pmQkKCCgoKiRPJ6zl4/L1y4YKjOG94P3nBPBwAYx3ARAAAAAAAAAAAAAADAb9QqX0m3NG5pdgyvcWvjVqpZvqLZMQD4iJK0GTo5OdmpdRMTE5WXl1eUSF7PU8NFZp9qBd9REt9rlSpVMjuC4Wt4WlqaU+saPbWoJHL2+pmammqoriS9HwAA3oHhIgAAAAAAAAAAAAAAgD+4s3lHVQgJNTuG6SqEhOqO5h3MjgHAh5QtW9bsCAoNNXb9z87Odmrdq1evFiFNyZCbm+uRPpz2BU8pie+1kJAQsyMYzpCTk+PUulw/f2X0tStJ7wcAgHdguAgAAAAAAAAAAAAAAOAPQgICdU+rbmbHMN29rbsrJCDQ7BgAfEhgoPnXHKMnljg7XOSp033MYLfbzY4A+DxvOG2J66fznL1+Gn3tStL7AQDgHRguAgAAAAAAAAAAAAAAuIZOdRopJrKm2TFM06xqLXWs3dDsGDCZxWIxXJuXl+fGJMVj9FQAZ54v3MMbTgsxmsHZ97yzm+kBwBnecA+zWo1tS7bZbE6ty/XzV0Zfu5L0fgAAeAeu2gAAAAAAAAAAAAAAANdgsVg0om0v+fngpjg/q1UPtOnpFZsSYS5nTpExOsBjBqPZ+IR983nDkJrRDM6esuQNzw1A6eUN9+GcnBxDdc7eb7l+/sroa1eS3g8AAO/ge7/9AgAAAAAAAAAAAAAAMKhGuQj1bdLK7Bge169Ja9UoF2F2DHiB4OBgw7XesIn1eoxmc+b5wj284X3krs3xvL8AuJM3DHIYzeDs9ZDr56+MvhYl6f0AAPAO/mYHAAAAAAAAAAAAAAAA8GaDmnXQxrgjupKZbnYUj6hYpqwGNmtvdgx4CWc28169etV9QYohPz9faWlphmpDQkLcnAaOpKebf601msHZze7OvL9WrFihPn36OLU+AN+WlJRkdgRduXLFUF2ZMmWcWteZ6+exY8fUoEEDp9YvSUJDQw3VlaT3AwDAO3ByEQAAAAAAAAAAAAAAQCGC/QN0X+vuZsfwmPva9FCwf4DZMeAlypYta7jWWzeQOrO51pnnC/e4dOmS2REMZ4iIcO6EN6MbwiUpOzvbqbUBoCRdPyMjI51al+vnr6pUqWKozhveD4mJiWZHAAA4geEiAAAAAAAAAAAAAAAAB9rVaqDYanXMjuF2LarVUbua9c2OAS9StWpVw7XesIn1WpzJ5czzhXtcvHjR7AiGN0M7+35xZjO9N5zgBLhbbm6u2RFKlXPnzpkdwXCGatWqObUu189fGX3tStL7AQDgHRguAgAAAAAAAAAAAAAAcMBiseiBNj3kb/UzO4rb+Fv9dH+bHrJYLGZHgRepXr264dpTp065MUnROZPLmecL9zh//rzpp04cP37cUJ2zm+PLlCmjihUrGqo9f/68U2sDJVFWVpbZEUqV48ePy263m5rh6NGjhuqcvX7Wrl3bcG1pv34afe2M/l24i81m04kTJ0zNAABwDsNFAAAAAAAAAAAAAAAABlQLr6D+0W3MjuE2tzVto2rhFcyOAS9To0YNw7UnT550Y5Kic2ZjqzPPF+5ht9tN34x87NgxQ3XObHb/WZ06xk7BO3PmjNNrA3/k7+9vqC4/P9/NSa7typUrpvQtrTIzM029duTm5hr+WaBhw4ZOrV22bFlFREQYqi3t10+jr93hw4fdnKRwcXFxpg8LAwCcw3ARAAAAAAAAAAAAAACAQQNi2qpyaLjZMVyucmi4BjRtZ3YMeKGGDRsaPs3q0KFDbk5TNM5srm3UqJEbk8Co3bt3m9Y7Ly/P8Hs5JibG6fWjo6MN1e3fv9/ptYE/CgoKMlSXm5vr5iTXdu7cOVP6lmZbtmwxrffOnTsNDapZLBaun8UQExNj6GezuLg4JSYmeiDRtW3evNm03gCAomG4CAAAAAAAAAAAAAAAwKAg/wDd36aH2TFc7v42PRRo8HQD+JbQ0FDVq1fPUO3hw4eVnp7u5kTO27Ztm+HaFi1auDEJjNq0aZNpvXft2mX4pIVmzZo5vX67dsYGOXft2uX02sAfGR0uunr1qnuDXMeRI0dM6VuabdiwwbTeGzduNFRXt25dlSlTxun1jV4/d+7c6fTaJUloaKjq1q1rqLYkvB8AAN6D4SIAAAAAAAAAAAAAAAAntKlZT62qG9vQVxK0rlFXbWoaGx6Bb4qNjTVUZ7PZnBrk8YSsrCzt3bvXUG2lSpVUrVo1NyeCEatXrzat99q1aw3V1a5dW+XLl3d6/fbt2xuqS0pKMvUEJzhm9FQ3M5UrV85Q3aVLl9yc5H/Z7XbD12cYt2zZMtN6f/vtt4bqOnfuXKT1jV4/9+7dqytXrhSpR0nRqVMnQ3Xfffedm5Ncn9H3AwDAezBcBAAAAAAAAAAAAAAA4KT72/ZQgJ+f2TGKLcDPr1SexATX6tixo+Ha5cuXuzGJ81atWqW8vDxDtR06dHBzGhh14MABxcXFmdJ78eLFhup69uxZpPXbtGmjsLAwl2aBOQICAhzW5OfneyDJ9VWpUsVQnRnfbzt37lRaWprH+5Z2R48e1aFDhzzeNzk52fBwZq9evYrUo0ePHoaG+goKCrR06dIi9SgpjL6G33zzjWw2m5vT/K+9e/fq1KlTHu8LACgehosAAAAAAAAAAAAAAACcFFm2nAY0bWd2jGIb0LSdqpQ1dqoBfNeNN95ouHbJkiVuTOI8Z/I48zzhfgsXLvR4z4SEBG3cuNFQbVGHiwIDA3Xrrbcaqp07d67sdnuR+sD9AgMDHdZkZWV5IMn1hYSEKDw83GHd8ePHPT6AYOYJO6XdzJkzPd5z7ty5hod5izpcVL16dbVrZ+zn79mzZxepR0lxww03GKq7cOGCKd9r06dP93hPAEDxMVwEAAAAAAAAAAAAAABQBP2btlFkCR7MiSxbTv2btjE7BkqAli1bGj794sCBA9q9e7d7AxmUk5OjL774wnD9zTff7MY0cNYnn3zi8Z4zZsxQQUGBwzqLxVKsYbRBgwYZqjt27Ji+//77IveBexk5gSo5OdkDSQpXv359hzXp6ekeP+1mzpw5Hu1mC4DIAAEAAElEQVTnS2bOnOnRwTa73a4PPvjAUG3Lli1Vt27dIvcyev1ctWqVjhw5UuQ+3q5u3bpq0aKFodr333/fzWl+Lz09vdQPdwFAacVwEQAAAAAAAAAAAAAAQBEE+vnrgbY9zY5RZCPa9lSgn7/ZMVACWCwW3X777YbrjW4wdreFCxcqKSnJUG3Dhg3VpEkTNyeCM44cOaLvvvvOY/1ycnIMv3c7d+6smjVrFrnX7bffrvLlyxuqfeGFF4rcB+5VuXJlhzUJCQkeSFI4o9e2NWvWuDnJr1auXFmqBz/MdvnyZb333nse67dgwQIdPHjQUO3QoUOL1euee+6Rn5+fwzq73a6//vWvxerl7Yy+lkuXLtX27dvdnOZXb7/9tq5eveqxfgAA12G4CAAAAAAAAAAAAAAAoIhaVo9S25qOTwTwNu1q1leL6lFmx0AJMmLECMO1s2bN0tmzZ90XxoCCggL94x//MFw/cuRIN6ZBUXlysOajjz5SfHy8odribo4vU6aMHnroIUO1W7Zs4YQXLxUZGemwJjs72/D7yl2aN29uqO6bb75xc5JfTZo0yWO9fNWrr76qy5cvu71PTk6O4SEePz8/DRs2rFj9atWqpYEDBxqqXbBggdauXVusft5s+PDhslqNbQN/5pln3JzmJxcuXNAbb7zhkV4AANdjuAgAAAAAAAAAAAAAAKAY7mvTvUSdABTk56/72nQ3OwZKmC5duqhhw4aGanNycvTcc8+5OVHhPvnkEx06dMhQrZ+fnx544AE3J0JRbNu2TTNmzHB7n8TERMPDDmXKlCn25nhJeuyxx+Tvb+zeMW7cOJ0+fbrYPeFa9esbGy7esWOHm5MUrmvXrobqVqxYoXPnzrk5jfTZZ59p/fr1bu/j665cuaInnnjC7X1efPFFHT161FDtoEGDVLt27WL3HD9+vOHaBx54QCkpKcXu6Y1q166tQYMGGapdvXq1Pv74YzcnksaOHVtqX28A8AUMFwEAAAAAAAAAAAAAABRD5dBwDWrW3uwYhg1q1l6VQsPNjoES6MknnzRcO3fuXH311VduTHN9J06c0IQJEwzXDxkyRNWrV3djIhTHhAkT3H7yy6OPPqqkpCRDtQ888IAqVqxY7J5RUVF6+OGHDdWmpKRowIABbNj2Mo0aNTJUt3z5cjcnKVz79u0VHBzssK6goEBvvfWWW7OcPXvWqcEQFM+8efM0ffp0t62/fPlyvf7664brnbk3F6Zr167q27evodq4uDjdfffdysvLc0lvb+PMa/rkk09qz549bssyZcoU0372AwC4BsNFAAAAAAAAAAAAAAAAxdS3SStVCytvdgyHqoVXUN8mrc2OgRLqoYceUp06dQzXjxw5Urt373ZfoGtITk7WwIEDlZ6ebqjez89PL7zwgptToTiSk5N15513Kicnxy3rv/XWW1q4cKGhWj8/P6eG7Bx58cUXVa5cOUO1e/bsUf/+/XX16lWX9S+O3NxcffTRR1q5cqXZUUzTrl07Q3Wff/65qYNhQUFBuvHGGw3Vvv/++zp+/LhbcqSnp2vgwIG6fPmyW9bHtY0dO1Y//PCDy9fdvXu3hg4dqoKCAkP1t9xyizp06OCy/m+88Ybh09++//57DRs2zG33EWelp6fr9ddf1969e4u9VseOHXXLLbcYqs3IyNCAAQN05syZYvf9o8WLF+vpp592+boAAM9iuAgAAAAAAAAAAAAAAKCYAvz8NaJtT7NjODSibU/5+/mZHQMlVGBgoFODOCkpKbr55pu1bds2N6b61cWLF3XzzTdr//79hh/zwAMPGD59BObZunWr7r77buXm5rp03blz5+qZZ54xXD9q1Cg1bNjQZf0rVaqkf/7zn4br169fr65du+rEiRMuy+CstLQ0vfvuu2rYsKH+9Kc/KSEhwbQsZmvXrp2CgoIc1iUnJ2vMmDGy2WweSHVtd911l6G67Oxs3XvvvS4fwkhNTdUtt9yinTt3unRdOJabm6vbbrtNixcvdtmamzZtUu/evQ0PO/r7+7v8VKzo6Gg99dRThuu//PJL3XTTTUpMTHRpDmdcunRJf//731W3bl1NnDhRqampLln3zTffNDxodfr0aXXv3l2HDx92SW9Jmj9/vgYPHqz8/HyXrQkAMAfDRQAAAAAAAAAAAAAAAC7QvFoddajtuk3nrtaxdkM1r1rb7Bgo4UaMGKFevXoZrk9MTFT37t31wQcfyG63uy3X6tWr1bZtW6cGmSIjIzV58mS3ZYJrLV68WP369dOVK1dcst6//vUvPfDAA4YHPsLDw/XSSy+5pPdvjRkzRrfddpvh+gMHDqhFixaaNm2aR4dV9u7dqyeeeEI1a9bU448/7paTL0qaoKAg9enTx1Dt/Pnz1aNHD61bt87Nqa7tjjvuUPny5Q3VbtmyRcOHD3fZMN/hw4fVsWNHbdiwwSXr4foCAgKu+fXs7GwNHDhQzz77rLKzs4u8fkFBgf71r3+pR48eSkpKMvy4cePGKTo6ush9r+fll19W69bGT+Rcu3atmjVrpgULFrg8S2E2bdqkkSNHqlatWvrrX//q8tO7mjZtqscee8xw/enTp9WuXTvNnj27WH0zMjL0+OOPa/jw4crLy7tmzfXekwAA78RwEQAAAAAAAAAAAAAAgIvc27qbgvy9bxNdkH+A7m3d3ewYKAUsFoumT5+u0NBQw4/Jzs7WmDFj1LlzZ61cudKleQ4fPqx7771XvXr1Unx8vFOPnTZtmiIiIlyaB8VXq1at6/7ZDz/8oNatW+ubb74p8vpnzpzRwIED9dRTTzk1nPPaa6+pSpUqRe5bmBkzZhT6vP8oIyNDY8eOVWxsrBYuXOi20yIOHTqk1157TS1atFCLFi00ZcoUl520UVoMGTLEcO369evVvXt31axZU0OHDtWLL76oTz75RAsXLtQ333yjJUuWOPxn1apVRcoZGhqqhx9+2HD9f/7zH/Xp00enT58uUj9JyszM1Msvv6xWrVrp0KFD16xx1/eUrxo9erQqVap0zT+z2+167bXXFB0drVmzZjl1OlVBQYH+85//qHXr1nrqqaeuO0hyLTExMXrllVcM1zsjMDBQ8+fPV7ly5Qw/5tKlS7r77rvVpUsXff/9924ZfLbb7dq5c6deeOEFNWjQQJ07d3b6NXfWK6+8oqZNmxquT09P1wMPPKCuXbs6/TpkZGTogw8+UKNGjfTuu+9et65SpUpOXXcAAOYzdg4eAAAAAAAAAAAAAAAAHKpYJkx3NOug+bvXmx3ld+5s3kERZcqaHQOlRN26dfXpp5/qrrvucmoz6ubNm9WnTx81b95cw4cP16BBg9S4cWOn+ycmJmrJkiX64osvirwx+KmnntKgQYOcfhzc74YbblBGRoYWLlx4zT8/c+aMbr/9dnXv3l3jx49Xv379FBgY6HDd/fv3a9q0aZo5c6aysrKcytS/f3898sgjTj3GGZUqVdKyZcvUtWtXJScnG37cgQMHdNddd6l69eq655571L9/f3Xu3Fn+/s5vC7Tb7Tpx4oQ2btyojRs3asWKFTp58qTT6/iau+++W//3f/+nCxcuGH7MuXPn9O9//7tI/erUqaO4uLgiPfapp57StGnTlJaWZqh+3bp1iomJ0aOPPqoxY8YoKirK0OMOHTqkzz77TB9++GGhJ7Q0btxY48aNc+rEFRSucuXKeuedd3TPPfdctyYuLk4jR47UhAkT1LdvX/Xu3VvNmjVTnTp1FB4eLovFovT0dJ09e1YHDhzQ6tWrtXTpUp07d87pPMHBwZo3b56Cg4OL87QK1ahRIy1atEi33HKLU8M7Gzdu1M0336wGDRpo+PDh6t+/v9q2bSuLxeJ0hoKCAh0+fPiX6+fy5cuVkJDg9DrFERISonnz5qljx45OnU61YcMG3XzzzapXr5769++vbt26qWnTpqpevbrKli2rgoICpaam6uTJk9q3b59++OEHLVu2TCkpKQ7Xfuedd3T06NHiPC0AgIcxXAQAAAAAAAAAAAAAAOBCtzZpqbWnDupcSpLZUSRJNctV1C2NW5odA6XMnXfeqX/+85969tlnnX7svn379Oc//1l//vOfValSJbVp00aNGjVSrVq1FBkZqZCQEAUFBSkvL0/Z2dlKTk7WmTNndOrUKe3cubPYAw8DBgzQ5MmTi7UG3Gvq1KlatWqVkpKufx1du3at1q5dq7Jly6pnz56KjY1V/fr1FR4eLn9/f6WnpyshIUEHDx7UmjVrdOrUqSJlqV27tqZPn17Up2JY06ZN9c033+jmm29WRkaGU489f/68Jk+erMmTJyskJEQtWrRQs2bNVKtWLdWoUUOhoaEKCQmR3W5Xdna2srOzdenSJV28eFHnz5/XkSNHdPjwYWVmZrrp2ZVeQUFBev7550vEgExkZKSef/55TZw40fBjMjIy9Prrr2vy5Mlq2bKlunTpokaNGqlKlSoKCQlRTk6O0tLSdObMGR05ckQbN27UmTNnHK4bHBysL774Qjt37izOU8I1DB8+XEuXLtW8efMKrbty5YrmzJmjOXPmuCWHxWLR3LlzFRsb65b1f6tnz56aO3euhg4dqoKCAqcee/z4cb300kt66aWXFBYWplatWikmJkY1a9ZUtWrVFBoaquDgYBUUFCg7O1tZWVlKTEzUxYsXFR8fryNHjujo0aNuPZXIqBYtWmjOnDm6++67nR68PnnypKZMmaIpU6a4JMvw4cM1fPhwTZo0ySXrAQA8g+EiAAAAAAAAAAAAAAAAF/K3+mlk2176+8ovzY4iSRrZtqf8rX5mx0ApNHHiRGVkZOjll18u8hqXL1/W8uXLtXz5chcmu75+/fpp/vz5slqtHumHoomMjNT8+fPVr18/5efnF1qbnp6uJUuWaMmSJS7PER4erm+//VZVqlRx+drX0qVLF61atUr9+vUr9MSXwmRlZWnz5s3avHmzi9PhesaMGaN58+Zp48aNZkdx6KmnntJXX33l9PvDbrdr165d2rVrV7EzWK1WzZkzR7GxsQwXucmMGTMUFxdn6nvyrbfe0p133umxfoMHD9aiRYs0ZMiQIg9KpqWl/TK4WlINHjxYb775pp566inTMnTq1MkjQ7kAANfjfyUDAAAAAAAAAAAAAAC4WNPImupcp7HZMdQlqrGiI2uaHQOl2EsvvaQpU6bIYrGYHcWh++67T4sWLVJISIjZUWDATTfd5LITFIoiNDRUixYtUkxMjEf7tm/fXhs2bFCDBg082hdFZ7Va9Z///Ef16tUzO4pD/v7+mj9/vipWrGhahg8++ECDBw82rb8vCAoK0qJFi9S8eXOP97ZYLHr33Xc1fvx4j/fu37+/Vq5cqcjISI/39iZPPvmk3nnnHVN+NmvWrJm+/vprBQcHe7w3AKD4GC4CAAAAAAAAAAAAAABwg3tad1OIf6Bp/UMCAnVPq26m9YfvGDdunFasWKEaNWqYHeWagoODNXXqVM2ePVv+/v5mx4ETxowZo9dff93jG6TLly+vFStWqFevXh7t+7NGjRpp165dGjFihCn94bzIyEht2rRJXbt2NTuKQ1FRUVq2bJnCwsI82tff318ff/yxRo8e7dG+vqpy5cpat26devTo4bGeoaGhmjdvnh577DGP9fyjjh07au/everbt69pGbzB448/rs8++0xlypTxWM8ePXpo/fr1qly5ssd6AgBci+EiAAAAAAAAAAAAAAAAN6gQEqrBsR1N6z+4eUeVDwk1rT98S+/evbV3717de++9XnWKUadOnbR9+3Y9+uijZkdBET3zzDOaPXu2AgICPNKvWbNm2rhxozp16uSRftdTtmxZzZw5U//5z38UFRVlapbr6dKli1q0aGF2DK9RpUoVrVmzRtOmTfPaYcuftW3bVj/88IOqVq3qkX7ly5fXsmXLNGrUKI/0w0/KlSun5cuX68knn5TV6t7twi1atND27ds1dOhQt/YxokqVKlq6dKk++ugjrxx0sVqtuuWWW9x+bR82bJi2b9/u9hOsrFarnnzySS1fvlzlypVzay8AgHsxXAQAAAAAAAAAAAAAAOAmNzVqoVrlK3q8b+3ylXRTIzZ8w7MiIiI0Z84cbdu2zbQTX37WoEEDLViwQBs3blRMTIypWVB89957r7Zu3aqWLVu6rYfVatWYMWO0detWRUdHu62PswYNGqTDhw/r1VdfVUREhNlxVLNmTT399NM6cOCA1q9f7/ZN6yWN1WrVI488olOnTmn+/PkaOHCgR08OcUb79u09cr3u16+f9u3bp969e7u1D64tKChIb731ltavX++Wa2iFChX0r3/9S9u2bVOTJk1cvn5xjB49WsePH9fEiRMVGmr+wH2jRo30wgsv6OTJk/ruu+9Us2ZNt/eMjo7W9u3b9eabb6p8+fIuX79ly5basGGD3nrrLQUFBbl8fQCAZ3HOLwCfd/bsWS1fvlx79+7VwYMHderUKaWlpSk1NVV2u11hYWEKCwtT7dq11bRpUzVv3lw33nijGjZsaHb0EiUxMVEbNmz45XWOj49XQkKCkpOTlZ2drdzcXAUEBCg4OFjlypVT1apVVaNGDUVHR6t58+bq0qWLatWqZfbTAAAAAAAAAAAAAJziZ7VqZNteeumHhR7tO7JdL/m5+RPqgetp06aNVq1apZ07d2ratGmaP3++MjIy3N7XarXq5ptv1tixY9W3b1+3n9IAz2rZsqW2bdumd955R2+++aYSEhJctnavXr301ltvuXV4qTiCgoI0ceJEPf7445o7d66mTp2qvXv3eqx/48aN1bdvXw0aNEhdu3b1qtPJvFVAQICGDh2qoUOHKi8vTzt37tS2bdt09OhRHT9+XAkJCbp8+bJSUlKUm5urvLw82Ww2j+esWbOmVq1apZkzZ2rSpEk6c+aMy9aOiYnR3/72N919990uWxNF16lTJ+3atUvLli3T5MmTtXr16mK95+rWratHHnlEo0ePVoUKFVyY1LXCw8P16quv6tlnn9WMGTP0/vvv68SJEx7pbbFY1KJFC/Xr10933HGHWrdu7ZG+fxQYGKinnnpKI0aM0EcffaQPPvhAp0+fLvJ6VqtVvXr10oQJE3TLLbe4MCkAwGwWu91uNzsEAHja1atX9cknn2jOnDlF/mVLw4YNNXz4cI0ZM0aRkZEuTlg6HD16VPPmzdOXX36p/fv3F3u9Bg0aaODAgRo+fLhatWrlgoQl36VLl1SlSpXffS0xMdErj/QFAAAAAAAAAACel5OTo5MnTxZaU69ePT5l2gM+2PS91p465JFe3etF65GON3mkF2BERkaGVqxYoSVLlmj58uWKj4932drh4eHq1auX+vfvr379+qlatWouWxuuFRcXp7p16zqse+CBBzRr1qxCa3JycjR37lzNnTtX69evV35+vtN5ypUrpzvuuEOPPfaYaRu+i+PgwYNatGiRFi9erB07dhTpNbgWq9WqBg0aqHPnzurevbt69uxp6O8NJV9eXp7mz5+v2bNna/Xq1SooKHB6jZCQEN14440aPXq0+vXr53AQbdasWRo5cqTDdWfOnKkRI0Y4nQfXl5iYqKVLl+r777/X3r17dezYMeXl5V23vnz58oqJiVGvXr106623qmPHjiV2iHf79u1atGiRvvnmG+3fv99lg33+/v6Kjo5Wly5d1K1bN/Xq1csrfy6x2WzauHGjli1bplWrVunAgQNKTU29bn1AQIAaNmyo2NhY3XzzzerXrx970wAfV9p/1+TL+3IZLgLgU9LT0/Xyyy/rvffec9mnIgUGBuqBBx7QK6+8okqVKrlkzZJu7dq1+uc//6lly5a5rUfnzp317LPP6rbbbnNbj5LAl3+IAQAAAAAAAAAAjpX2DR8lSUpWhp5eMluZeblu7VMmIEhv3na/ygWXcWsfoDguXryoHTt2aM+ePTp16pTi4+N19uxZJSUlKSsrS9nZ2crOzlZAQIBCQkIUHBys8PBw1ahRQ7Vq1VLt2rXVvHlztW7dWg0aNOAUlRLClcNFv3X16lX98MMP2r17tw4cOKCjR4/q6tWrSktLU2ZmpoKDgxUWFqYqVaqoSZMmiomJUc+ePdW5c2f5+/sX4xl5j+zsbO3atUvbtm3TsWPHdObMGZ0+fVpXrlxRZmamMjMzlZOTI39/fwUFBalMmTKqWLGiKleurOrVq6tu3bqqV6+emjZtqhYtWig0NNTspwSTXbp0SevWrdOmTZt0+PBhnTx5UomJicrIyFBOTo7KlCmj8PBwVahQQY0bN1bz5s3Vtm1b9e7dWyEhIWbHRxHk5eXp9OnTSklJUVpamrKzsxUSEqKwsDBVq1bNK4dkXCEtLU07duzQjh07dPz4cZ05c0ZnzpxRUlKSMjMzlZWVpdzcXAUEBCgwMFBly5ZVpUqVVLlyZdWoUUN169ZV/fr1FRMTo2bNmik4ONjsp1Qk58+f14ULF365d5YpU0ZhYWEqV66cateurYCAALMjAvAipf13Tb68L5fhIgA+Y/HixXr00Udd+glIvxUREaE33njD0KdplFZnz57Vk08+qS+//NJjPXv37q2pU6eqSZMmHuvpTXz5hxgAAAAAAAAAAOBYad/wUdJ8f3SPZm1f7dYeI9v21I2NWri1BwAUhbuGiwAAAAB4Tmn/XZMv78stmWcSAoATbDabnn/+eQ0cONBtg0WSlJSUpAcffFAPP/ywcnPd+2lj3mjRokVq0aKFRweLJGnlypVq06aNZsyY4dG+AAAAAAAAAAAAgLP6NGiuqAru24wSVaGKejdo7rb1AQAAAAAAUDoxXASgVCsoKNDQoUP1j3/8Q546qO3jjz/WTTfdpMzMTI/08wZvvfWW7rjjDiUnJ5vSPzMzUw899JAmTpxoSn8AAAAAAAAAAADACKvVqpHterllbYukB9v1ktXKVhAAAAAAAAA4h98oASi1bDabRowYoQULFni895o1azRo0CDl5OR4vLenTZ48WU8//bTHhrcK8/rrr+upp54yOwYAAAAAAAAAAABwXQ0rVVOv+jEuX7dn/WZqUKmqy9cFAAAAAABA6edvdgAAcJe//OUvmjt3rlOPadiwobp06aJmzZopIiJCFotFycnJOnTokDZt2qT9+/cbXuv777/X6NGjNXv2bGejlxj/+c9/inRakJ+fn2JjY9WpUydVr15dFSpUUHh4uNLS0pScnKwLFy5o8+bN2r17t/Ly8pxa+1//+pcaNGigsWPHOp0LAAAAAAAAAAAA8IQhLbpo29kTSs/Ndsl6ZQODNaRFZ5esBQAAAAAAAN/DcBGAUum7777Ta6+9Zrh+wIABeu6559S+fftC6/bv36/Jkydr7ty5stlsDtedM2eOevTooYceeshwlpIiISFBo0ePdurEombNmmn8+PEaMmSIypYt67A+KytLCxcu1Ntvv62dO3ca7vP000/rhhtuUJMmTQw/BgAAAAAAAAAAAPCU8OAQDWnZWdO3rnLJekNbdlF4cIhL1gIAAAAAAIDvsZodAABc7cqVK7r//vsNDb1ERERo6dKlWrRokcPBIumn4ZhPP/1UGzZsUK1atQzlGTdunI4fP26otiR55plnlJSUZKg2NDRU06dP1759+/TQQw8ZGiySpJCQEN13333asWOHPv/8c5UrV87Q47Kzs/Xoo48aqgUAAAAAAAAAAADM0KtejOpFRBZ7nfoVI9WzfowLEgEAAAAAAMBXMVwEoNT5y1/+osuXLzusq1mzprZu3aq+ffs63aNjx47avn27mjZt6rA2KytLTz75pNM9vNnBgwc1f/58Q7W1atXS9u3b9eCDDxar55AhQ7Rnzx7DpxGtWrVKP/74Y7F6AgAAAAAAAAAAAO5itVr1YLteshRjDYukke16yWopzioAAAAAAADwdQwXAShVdu3apY8//thhXbly5fTDDz+ofv36Re5VpUoVrVy5UjVr1nRYu2TJEn377bdF7uVtPvjgA9lsNod14eHhWrp0qeGBIEfq1Kmj7777TpGRxj7B7f3333dJXwAAAAAAAAAAAMAd6lWMVO+GzYv8+D4NY11y+hEAAAAAAAB8G8NFAEqVF1980dDQy8cff6zGjRsXu1/VqlU1b948+fn5Oax94YUXit3PG9hsNsOnFr377rtq3rzo/zLkWqKiojRnzhxDtd98841SU1Nd2h8AAAAAAAAAAABwpbtjOyssKMTpx4UHheiuFp3ckAgAAAAAAAC+huEiAKXGkSNHtHjxYod1AwYM0F133eWyvt26ddOf/vQnh3Xbt2/XqlWrXNbXLHv27NHly5cd1sXExOjee+91S4Ybb7xRvXv3dliXk5OjdevWuSUDAAAAAAAAAAAA4Aplg4I1rGUXpx83rFVXlQ0MdkMiAAAAAAAA+BqGiwCUGm+99ZbsdnuhNf7+/nrjjTdc3vull15SeHi4w7o333zT5b09bfPmzYbqnnjiCVmt7rvNTJgwwVDdxo0b3ZYBAAAAAAAAAAAAcIXu9ZqqYaVqhusbVaqmbnWj3ZgIAAAAAAAAvoThIgClQk5Ojv797387rLvzzjvVoEEDl/evWLGiRo0a5bBu+fLlunjxosv7e9KRI0cM1d1yyy1uzdGjRw8FBzv+JLajR4+6NQcAAAAAAAAAAABQXFaLRSPb9ZLFYnFYa/lvrdVALQAAAAAAAGAEw0UASoUlS5YoJSXFYd348ePdluHxxx93eFJPQUGBPv/8c7dl8IT4+HiHNfXq1VOtWrXcmiMkJESdOnVyWHfmzBm35gAAAAAAAAAAAABcIapCZd3UMNZh3U0NW6hOhcoeSAQAAAAAAABfwXARgFJh/vz5DmsaNGigjh07ui1DnTp11K1bN4d1RrJ6s/T0dIc1NWvW9EASqUaNGg5r0tLSPJAEAAAAAAAAAAAAKL7BsZ1ULrjMdf+8XHAZ3RXrvn/nCQAAAAAAAN/EcBGAEq+goEA//PCDw7ohQ4a4PcvQoUMd1mzbtk1XrlxxexZ3sdlsDmsqVarkgSRS5cqOP5EtLy/PA0kAAAAAAAAAAACA4gsNDNLwVl2v++f3tOqmMoFBHkwEAAAAAAAAX8BwEYASb+vWrUpJSXFYd+utt7o9i5EeNptNK1eudHsWd6lQoYLDmsDAQA8kkYKCHP+Lk4iICA8kAQAAAAAAAAAAAFyja1QTNalS43++Hl2lhrpENTYhEQAAAAAAAEo7hosAlHhGBnXCwsLUoUMHt2epU6eOGjRo4LBuxYoVbs/iLhUrVnRYc/nyZQ8kkS5duuSwhuEiAAAAAAAAAAAAlCQWi0Uj2/aU1WL55WtWi0Uj2/aS5TdfAwAAAAAAAFyF4SIAJd6mTZsc1nTo0EH+/v4eSCN169bNYc2WLVs8kMQ96tev77DGyNCPKyQmJjqsqV27tgeSAOaJiYlRTEyM2TEAAADgYvycBwAAUDrxcx4Ao2qVr6RbGrf85b/f2riVapZ3/CGAAADz7N+/X/v37zc7BgAAAFyMn/PgKxguAlDi7dq1y2FN69atPZDkJ23atHFYc+jQIeXk5Hggjet17drVYc2hQ4eUkZHh1hx2u13btm1zWNelSxe35gAAAAAAAAAAAADc4c7mHVUhJFQVQkJ1R/MOZscBAAAAAABAKcZwEYAS7eLFi0pISHBY523DRfn5+dq3b58H0rhe69atFRoaWmhNbm6ufvzxR7fm2Lt3ry5cuOCwzshJUgAAAAAAAAAAAIC3CQkI1D2tuune1t0VEhBodhwAAAAAAACUYgwXASjR9u7da6iuSZMmbk7yq8aNGxuqM5rd2wQEBGjYsGEO62bPnu3WHJ9++qnDmvbt26tu3bpuzQEAAAAAAAAAAAC4S6c6jdSxdkOzYwCAS0RFRclutzv8Z9asWWZHBQAAAACfw3ARgBLt5MmThuoaNGjg5iS/qlChgiIiIhzWGc3ujR5//HGHNQsXLtTu3bvd0v/s2bN6//33HdY98cQTbukPAAAAAAAAAAAAeILFYpHFYjE7BgAAAAAAAEo5hosAlGinTp1yWFO1alWFhoZ6IM2vjAwzGcnurZo3b6477rij0Bq73a6HH35YWVlZLu2dn5+v0aNHKycnp9C6Bg0a6K677nJpbwAAAAAAAAAAAAAAAAAAAAAobRguAlCixcXFOaypXr26+4P8QbVq1RzWlOThIkl6//33VbFixUJrtm3bpnvuuUcFBQUu6Wm32zVmzBgtX7680Dqr1aoZM2YoICDAJX0BAAAAAAAAAAAAAAAAAAAAoLRiuAhAiXbu3DmHNVWrVvVAEud7xsfHeyCJ+0RGRmr69Ony8/MrtO6rr77SDTfcUOznm5iYqH79+umTTz5xWPv000+rW7duxeoHAAAAAAAAAAAAAAAAAAAAAL6A4SIAJdqVK1cc1kRGRnogye8ZGS5KSkryQBL3GjBggKZPny6LxVJo3dq1a9WiRQv94x//0OXLl53qcfXqVU2ePFnNmzfXd99957D+vvvu02uvveZUDwAAAAAAAAAAAAAAAAAAAADwVf5mBwCA4jAyXFS+fHn3BylCz4yMDOXk5CgoKMj9gdzogQcekNVq1SOPPKLMzMzr1iUlJen555/XP/7xD910003q0qWLOnbsqBo1aqhChQoKCwtTenq6kpOTlZCQoC1btmjDhg1atmyZMjIyDGW5//77NWPGDIfDTgAAAAAAAAAAAAAAAAAAAACAnzBcBKBES05OdlgTFhbmgSRF65mUlKRq1aq5OY373XfffWrXrp2GDRum3bt3F1qblZWlr7/+Wl9//bXL+oeGhmrKlCl68MEHXbYmAAAAAAAAAAAAAAAAAAAAAPgCq9kBAKCosrKylJeX57DOjOGi8PBwQ3UpKSluTuI5TZo00bZt2zR9+nTVq1fPIz39/Px07733as+ePQwWAQAAAAAAAAAAAAAAAAAAAEARMFwEoMTKzc01VBcSEuLmJP8rODjYUJ3R51BS+Pv768EHH9SRI0e0cOFCDR061PCglTNq1KihcePG6eDBg5ozZ47q16/v8h4AAAAAAAAAAAAAAAAAAAAA4Av8zQ4AAEVldDDHz8/PzUn+l7+/sctraRsu+pm/v79uvvlm2e122Ww2LViwQHa73SVr9+vXT6+88opiY2Ndsl5p1LVrV8PvQbjPgQMHzI4AAAAAAAAAAAAAAAAAAAAAOMTJRQBKLKODOWYMWRjtmZeX5+Yknrd//37dc889qlSpku666y598cUXLhsskqSlS5eqRYsWqlu3rv785z/rwoULLlsbAAAAAAAAAAAAAAAAAAAAAHwNxxoAKLHy8/MN1TFc5BknT57U008/ra+//tqlw0TXExcXp1dffVVvv/22Ro4cqeeff17Vq1d3e9+SYP369apcubLZMQAAAAAAAAAAAAAAAAAAAACUAJxcBKDEMjrAU1BQ4OYkRe9pxuCTO8yePVstW7bUokWLPDJY9FvZ2dmaNm2amjVrpi+++MKjvQEAAAAAAAAAAAAAAAAAAACgpCsdu9oB+KTAwEBDdUZPOHIloycSGX0O3spms2n06NGaMWOGU4/z8/NTq1at1L59e1WpUkUREREqX7680tPTlZSUpKSkJO3evVubN29WZmamoTWTk5M1ZMgQLVu2TB999FGpGdwCAAAAAAAAAAAAAAAAAAAAAHdi5zWAEisgIMBQnRnDRUZ7luThIrvdrlGjRmnmzJmGH9OjRw89+eST6t27t8qWLeuwPi8vT9u2bdN7772nL774wtDrOnPmTGVkZGjevHny8/MznA0AAAAAAAAAAAAAAAAAAAAAfJHV7AAAUFRBQUGG6rKzs92cpOg9S/Jw0VNPPWV4sKhFixbasmWLVq9erQEDBhgaLJJ+GiDr3LmzPvvsM504cUKDBw829LgvvvhC999/v6FaAAAAAAAAAAAAAAAAAAAAAPBlnFwEwCmnTp3Sli1b3NojNDRUt912m8O6kJAQ+fv7OzzNJi0tzVXRDDPaMzw83M1J3GPFihV6++23DdU+/PDDeueddxQcHFysnrVr19aCBQs0depUTZgwQTk5OYXWz5s3T7169dKoUaOK1RcAAAAAAAAAAAAAAAAAAAAASjOGiwA4Zc2aNRo5cqRbe9SpU8fQcJEkVahQQZcuXSq0JjU11RWxnGK0Z0REhJuTuF5KSooefPBBQ7UTJkzQ5MmTXdr/scceU40aNXTnnXfKbrcXWvvUU0+pT58+ioqKcmkGAAAAAAAAAAAAAAAAAAAAACgtrGYHAIDiqFixosOalJQUDyRxvmeZMmWKfZqPGd59913Fx8c7rBswYIBee+01t2QYNGiQobXT0tL07LPPuiUDAAAAAAAAAAAAAAAAAAAAAJQGDBcBKNGMDBddvHjRA0l+78KFCw5rjGT3Nnl5eXr//fcd1oWFhWn69OmyWt13m3nmmWfUoUMHh3Vffvmlzp4967YcAAAAAAAAAAAAAAAAAAAAAFCSMVwEoESrUaOGwxojgz6uZqSnkezeZuHChUpISHBYN378eI8MT/397393WJOfn6+pU6e6PQsAAAAAAAAAAEBJZbfbzY4AAAAAAACAEoDfI5VeDBcBKNGioqIc1pw/f979Qf7AyABO3bp1PZDEtZYtW+awxt/fX08++aQH0kh9+vRRq1atHNYtXrzYA2kAAAAAAAAAAAC8j8VicVjDphAAAAAAAAAYYeT3SFYrYyolEX9rAEo0IwM6Fy5cUGZmpgfS/Or48eMOa0ricNG6desc1nTo0EEVKlTwQJqf3HLLLQ5rDh8+rEuXLnkgDQAAAAAAAAAAgHcxspnDZrN5IAkAAAAAAABKOiO/RzLyYTfwPgwXASjR6tWr57DGbrcbGvZxlatXr+rKlSsO64xk9yYXLlzQqVOnHNbddNNNHkjjfL/169e7OQkAAAAAAAAAAID38fPzc1iTm5vrgSQAAAAAAAAo6Yz8HsnI76PgfRguAuCUESNGyG63u/WfuLg4w3maN29uqO7w4cNFfMbOM9rLaHZvER8fb6iuWbNmbk5StH6nT592cxIAAAAAAAAAAADvY7FYFBAQUGhNXl6eh9IAAAAAAACgJHP0e6SAgABOLiqhGC4CUKJVq1ZNkZGRDut27tzpgTTGe/n7+ys2NtYDaVzHyGlMklSpUiU3J/m9iIgIWa2Ob2dG8wMAAAAAAAAAAJQ2joaLOLkIAAAAAAAARjj6PVJgYKCHksDVGC4CUOK1bt3aYY0nh4t27NjhsKZJkyYKDg72QBrXSUpKMlTn6eEiq9WqiIgIh3UMFwEAAAAAAAAAAF/laFMHw0UAAAAAAAAwwtHvkRx9yA28F8NFAEq8Tp06OazZvHmz8vPzPZBGWrt2rcOaDh06eCCJa9ntdkN1ZhxlaKSnp/7+AQAAAAAAAAAAvI2j4aKcnBzl5eV5KA0AAAAAAABKotzcXOXk5BRaw8lFJRfDRQBKvN69ezusSUtL09atW92e5cyZMzp+/LjDuhtvvNHtWVytTJkyhuouX77s5iS/Z7PZDJ1KZDQ/AAAAAAAAAABAaWNkU0daWpoHkgAAAAAAAKCkSk9Pd1gTFBTkgSRwB4aLAJR47du3V3h4uMO67777zu1ZjPSwWCyGBqK8Tbly5QzVXbp0yc1Jfi8pKUk2m81hnZH3CAAAAAAAAAAAQGkUGhoqi8VSaA3DRQAAAAAAACiMo98fWSwWDgMowRguAlDi+fv7GxrW+fe//+32LJ9//rnDmrZt26pSpUpuz+JqtWvXNlR34MABNyf5vX379hmqM5ofAAAAAAAAAACgtLFarSpbtmyhNZmZmcrMzPRQIgAAAAAAAJQkRn53VLZsWVmtjKiUVPzNASgVhg0b5rDm2LFj2rJli9synDlzRmvXrnVYZySrN6pdu7b8/f0d1n3//fceSPOr5cuXG6qrW7eum5MAAAAAAAAAAAB4r7CwMIc1Fy9elN1u90AaAAAAAAAAlBR2u10XL150WGfk90/wXgwXASgVbrvtNoWHhzuse/vtt92WYcqUKbLZbIXWWK1WDR061G0Z3CkgIEDNmzd3WLd582ZdvXrV/YH+a9myZQ5rLBaLWrdu7YE0AAAAAAAAAAAA3snRyUWSlJ2d7dF/zwMAAAAAAADvd/XqVWVnZxdaY7FYDP3+Cd6L4SIApUJwcLDuvvtuh3ULFy7U8ePHXd7/ypUr+vjjjx3W3XTTTapWrZrL+3tKp06dHNbk5+frX//6lwfSSN9995327NnjsK5JkyaqUKGCBxIBAAAAAAAAAAB4Jz8/P0Mf1nfhwgWlpqZ6IBEAAAAAAAC8XWpqqi5cuOCwLiwsTH5+fh5IBHdhuAhAqfHUU0/JYrEUWpOfn68JEya4vPff/vY3Q/+S5emnn3Z5b0/q16+fobq3335bSUlJbs1it9v1/PPPG6q99dZb3ZoFAAAAAAAAAACgJKhcubLDf58mSefPn1dKSorsdrsHUgEAAAAAAMDb2O12paSk6Ny5cw5rLRaLKleu7IFUcCeGiwCUGtHR0erfv7/Duq+//loLFixwWd/169frww8/dFjXunVr9enTx2V9JSkuLk4Wi8XhPz179nRJvxtvvNHQCUCpqal66KGHZLPZXNL3Wl5++WXt3LnTUK2RU60AAAAAAAAAAABKu8DAQEVERDiss9vtOn/+vOLj45Wbm+uBZAAAAAAAAPAWubm5Onv2rM6fP2+oPiIiQoGBgW5OBXdjuAhAqfLCCy/IanV8aRs9erSOHj1a7H4XLlzQ8OHDVVBQ4LB20qRJxe5ntoCAAI0aNcpQ7aJFizRx4kS35Pj8888Nv56tWrVShw4d3JIDAAAAAAAAAACgpKlUqZL8/f0N1aanp+vkyZOKj49XWlqaWz9YDgAAAAAAAOax2WxKS0tTfHy8Tp48qYyMDEOP8/f3V6VKldycDp5g7DeGAFBCtGnTRg8++KA++eSTQutSUlLUu3dvrVmzRvXq1StSr0uXLqlPnz46e/asw9pbb71Vt912W5H6eJvx48drypQpysnJcVj7xhtvKD09XW+//baCgoJc0v+tt97Ss88+K7vdbqj+2WefdUlfAAAAAAAAAACA0sBqtSoyMlLnzp0zVG+325WWlqa0tDRZrVYFBwcrMDDwl3/8/PxktVplsVjcnBwAAO/28z4GI/spAAAAUHKUtp/z7Ha7bDabCgoKlJub+8s/2dnZRfpgmcjISEMHQ8D7MVwEoNR55ZVX9NVXX+nKlSuF1sXHx6t9+/aaM2eObr31Vqd6bNmyRXfffbfOnDnjsDY4OFjvvPOOU+t7s+rVq2vixIl66aWXDNV/8MEH2rx5sz766CO1a9euyH1PnTql8ePHa/HixYYf07VrV911111F7gkAAAAAAAAAAFAahYeHKz8/XxcvXnTqcTabTZmZmcrMzHRTMgAASq68vDxJ0smTJ01OAgAAAFfi57zri4yMVHh4uNkx4CKMiAEodSpXrqxZs2YZ+nS0K1euqG/fvrrjjju0fft2h/UHDx7UyJEj1blzZ0ODRZL0zjvvqGHDhoZqS4o///nPio6ONly/e/dutW/fXr169dLixYsNH5WYl5endevWaejQoWrYsKFTg0XBwcH64IMP+JQ8AAAAAAAAAACAa4iIiFDlypXNjgEAAAAAAIASqHLlyoqIiDA7BlyIk4sAlEr9+/fXhAkTNHnyZEP1X331lb766is1atRIXbt2VUxMjCIiImSxWJScnKzDhw9r06ZN2rt3r1M5hg8frocffrgoT8GrBQcH66uvvlL79u2Vmppq+HGrV6/W6tWr5e/vr1atWqlDhw6//HBRvnx5paenKykpSVeuXNHu3bu1efPmIn/y3YcffqiYmJgiPRYAAAAAAAAAAMAXVKxYUTabTVeuXDE7CgAAAAAAAEqIihUrqmLFimbHgIsxXASg1Hr11VcVHx+v+fPnG37M0aNHdfToUZf07927t2bMmOGStbxR48aNtWjRIvXv39/pAaD8/Hxt27ZN27Ztc0u2l19+Wffff79b1gYAAAAAAAAAACgtLBaLKleurKCgIF28eFEFBQVmRwIAAAAAAICX8vPzU2RkpMLDw2WxWMyOAxezmh0AANzFarVq9uzZuuOOOzzeu2vXrvr6668VFBTk8d6e1KtXL3377beqUKGC2VEk/fR3PnnyZD3//PNmRwEAAAAAAAAAACgRLBaLypUrp/r166tcuXJmxwEAoMQ6efKkTp48aXYMAAAAuBg/5/3kt78/YrCodGK4CECp5u/vrwULFmjixIke6zly5Ej98MMPCg0N9VhPM/Xo0UM7duxQ69atTc1RqVIlffvtt5owYYKpOQAAAAAAAAAAAEoiPz8/Va9eXbVr11ZISIjZcQAAAAAAAOAFQkJCVLt2bVWvXl1+fn5mx4EbMVwEoNSzWq169dVX9dVXX6l69epu61OhQgV9/PHHmjFjRqk/seiP6tatqy1btmjy5MkqW7asR3tbLBaNHDlShw4d0s033+zR3gAAAAAAAAAAAKVNaGiooqKi1KBBA1WpUsXn/r0XAAAAAACArwsKClKVKlXUoEEDRUVF+cyBC76O4SIAPmPgwIE6fPiwJkyY4NKbXGBgoB566CEdOXJEo0aNctm6JY2/v78mTJigU6dO6S9/+YsiIiLc2i8gIED33HOP9u3bpxkzZqhSpUpu7QcAAAAAAAAAAOBLAgICVLFiRdWrV0/16tVTtWrVVLFiRYWFhSkoKEgWi8XsiAAAAAAAACgGi8WioKAghYWFqWLFiqpWrdovvwuqWLGiAgICzI4ID/I3OwAAeFJYWJgmT56s5557Th999JHmzJmjAwcOFGmt+vXra9iwYRo7dqyqVavm4qQlV6VKlfT3v/9df/vb37R06VJ98cUXWrlypS5dulTstUNCQtSlSxcNGjRIQ4YMUcWKFV2QGAAAAAAAAAAAAIUJCgr6nxOM7Ha7CgoKZLfbZbPZTEoGAID3GDNmjCRp+fLlJicBAACAK5XGn/OsVqssFov8/Pz4ABn8guEiAD6pQoUKmjhxoiZOnKjTp0/r+++/1549e3Tw4EHFxcUpNTVVaWlpstvtCgsLU1hYmGrVqqWmTZuqefPm6tOnj5o0aWL201BUVJTsdrvZMa4pMDBQgwYN0qBBg2S327Vv3z7t3LlT+/fv17Fjx5SQkKCEhASlpaUpOztbubm58vf3V3BwsEJDQxUZGalq1aqpbt26iomJUWxsrNq3b/8//+IKAAAAAAAAAAAAnmexWOTvz5YDAAB+9vOHrrKvAQAAoHTh5zz4Cn7TB8Dn1alTR6NHjzY7RqlmsVgUGxur2NhYs6MAAAAAAAAAAAAAAAAAAAAAAH7DanYAAAAAAAAAAAAAAAAAAAAAAAAAAOZguAgAAAAAAAAAAAAAAAAAAAAAAADwUQwXAQAAAAAAAAAAAAAAAAAAAAAAAD6K4SIAAAAAAAAAAAAAAAAAAAAAAADARzFcBAAAAAAAAAAAAAAAAAAAAAAAAPgohosAAAAAQFJMTIxiYmLMjgGUeHwvAQC8DfcmwDX4XgIAeBvuTYBr8L0EAPA23JsA1+B7CQDgLIaLAAAAAAAAAAAAAAAAAAAAAAAAAB/FcBEAAAAAAAAAAAAAAAAAAAAAAADgoxguAgAAAAAAAAAAAAAAAAAAAAAAAHwUw0UAAAAAAAAAAAAAAAAAAAAAAACAj2K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRDBcBAAAAAAAAAAAAAAAAAAAAAAAAPorhIgAAAAAAAAAAAAAAAAAAAAAAAMBHMVwEAAAAAAAAAAAAAAAAAAAAAAAA+CiGiwAAAAAAAAAAAAAAAAAAAAAAAAAfxXARAAAAAAAAAAAAAAAAAAAAAAAA4KMYLgIAAAAAAAAAAAAAAAAAAAAAAAB8FMNFAAAAAAAAAAAAAAAAAAAAAAAAgI9iuAgAAAAAAAAAAAAAAAAAAAAAAADwUQwXAQAAAAAAAAAAAAAAAAAAAAAAAD6K4SIAAAAAAAAAAAAAAAAAAAAAAADARzFcBAAAAAAAAAAAAAAAAAAAAAAAAPgohosAAAAAAAAAAAAAAAAAAAAAAAAAH8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCjGC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTDRQAAAAAAAAAAAAAAAAAAAAAAAICPYrgIAAAAAAAAAAAAAAAAAAAAAAAA8FEMFwEAAAAAAAAAAAAAAAAAAAAAAAA+iuEiAAAAAAAAAAAAAAAAAAAAAAAAwEcxXAQAAAAAAAAAAAAAAAAAAAAAAAD4KIaLAAAAAAAAAAAAAAAAAAAAAAAAAB/FcBEAAAAAAAAAAAAAAAAAAAAAAADgoxguAgAAAAAAAAAAAAAAAAAAAAAAAHwUw0UAAAAAAAAAAAAAAAAAAAAAAACAj2K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRDBcBAAAAAAAAAAAAAAAAAAAAAAAAPorhIgAAAAAAAAAAAAAAAAAAAAAAAMBHMVwEAAAAAAAAAAAAAAAAAAAAAAAA+CiGiwAAAAAAAAAAAAAAAAAAAAAAAAAfxXARAAAAAAAAAAAAAAAAAAAAAAAA4KMYLgIAAAAAAAAAAAAAAAAAAAAAAAB8FMNFAAAAAAAAAAAAAAAAAAAAAAAAgI9iuAgAAAAAAAAAAAAAAAAAAAAAAADwUQwXAQAAAAAAAAAAAAAAAAAAAAAAAD7K3+wAAACg6Gw22/987fLlyyYkgVny8/MlSZcuXTI5CVDy8f0EuAbfS4Br8L0EuA7fT4Br8L0EuAbfS4Dr8P0EuAbfS4Dr8P0EuAbfS4Br8L0EuA7fT77lWntwr7VXtzSy2O12u9khAABA0Rw6dEhNmzY1OwYAAAAAAAAAAAAAAAAAAABQ6hw8eFDR0dFmx3A7q9kBAAAAAAAAAAAAAAAAAAAAAAAAAJiD4SIAAAAAAAAAAAAAAAAAAAAAAADARzFcBAAAAAAAAAAAAAAAAAAAAAAAAPgoi91ut5sdAgAAFE1+fr6OHTv2u69FRETIamV+GAAAAAAAAAAAAAAAAAAAADDKZrMpKSnpd19r2LCh/P39TUrkOQwXAQAAAAAAAAAAAAAAAAAAAAAAAD6KYw0AAAAAAAAAAAAAAAAAAAAAAAAAH8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCjGC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTDRQAAAAAAAAAAAAAAAAAAAAAAAICPYrgIAAAAAAAAAAAAAAAAAAAAAAAA8FEMFwEAAAAAAAAAAAAAAAAAAAAAAAA+iuEiAAAAAAAAAAAAAAAAAAAAAAAAwEcxXAQAAAAAAAAAAAAAAAAAAAAAAAD4KIaLAAAAAAAAAAAAAAAAAAAAAAAAAB/FcBEAAAAAAAAAAAAAAAAAAAAAAADgoxguAgAAAAAAAAAAAAAAAAAAAAAAAHwUw0UAAAAAAAAAAAAAAAAAAAAAAACAj2K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRDBcBAAAAAAAAAAAAAAAAAAAAAAAAPorhIgAAAAAAAAAAAAAAAAAAAADA/7N33+FR1Gsbx+8UEkIIJXQEpIYO0nsTRBQQBATEBipNFAuKiliOKBawoKCoCCIWBBuCAgoGkC69Bwi9BEJJ78m+f5zXdiTZ2bAzu5v5fq4r13UO+8z87l2TzbOTeWYAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADbFcBEAAAAAAAAAAAAAAAAAAAAAAABgUwwXAQAAAAAAAAAAAAAAAAAAAAAAADYV6OkAAAAAvubkyZNavny5du3apX379uno0aNKTExUQkKCHA6HwsLCFBYWpipVqqhevXpq2LChbrjhBtWqVcvT0QuEmJgYRUZGas+ePYqKitKhQ4d0+fJlJSYmKikpSYGBgX/+NyhZsqRq1qypiIgIRUREqEmTJqpXr578/Pw8/TQAAIAXos8zR0pKinbv3q3o6GgdO3bsz6+YmBglJSUpOTlZSUlJSktLU1BQkIKDg1W8eHGVL19eFStWVO3atVW/fn21atVKERERnn46AADAYpmZmfrtt9+0bt067du3TwcOHFBsbKwSExOVnJyskJAQFStWTOHh4apdu7bq1aunVq1a6frrr1dISIin4/uU2NhYLV++XNu3b9e+ffsUHR2t+Ph4JSYmKjMzU2FhYSpWrJgqVqyoevXqqX79+rr++uvVuHFjT0cHAAA+il7PHMePH//z+OYfx+JOnDihuLi4P4/FJScny+FwqHDhwgoJCVGZMmVUvnx5Va1aVfXr11ejRo3Upk0bhYaGevrpAAAAH0Sf5zlZWVnavHmzNm3apKioKEVFRenkyZNKSkpSYmKi0tPTVbRo0T//9n3NNdf8eW5d3bp11apVKxUvXtzTTwMe4udwOByeDgEAAODt4uLiNGvWLM2bN0+7du3K1z5q1aqlIUOGaPTo0SpXrpybExZshw8f1scff6wlS5Zoz549V7Wv8PBwtW/fXh07dlSvXr1Uu3ZtN6UEAAC+iD7PvdLT07Vp0yb9/vvv2r59u7Zt26aoqCjl5OS4Zf/ly5dXjx49NGjQIHXr1k2BgVw7CQCAgmrt2rWaMWOGfvrpJyUkJLi8fUhIiLp166bRo0erR48eXGwmF6mpqZo3b55mz56t33//PV99W6VKlXTbbbfpoYceUrVq1UxICQAAChp6Pfc5fvy41q1bp23btmn79u3avn27Ll++7JZ9BwYGqkWLFurfv78GDhyoypUru2W/AACg4KLP84yMjAx9//33+uKLLxQZGZmv1/4P/v7+atSokdq3b69u3bqpe/fuDHzZCMNFAAAAeUhKStKkSZM0Y8YMJScnu2WfQUFBuueeezR58mSVLl3aLfssqJYvX67XX39dkZGRMqttrVu3rvr166e77rqLQSMAAGyEPs89MjIytGnTJq1atUqRkZHasGGD0tLSLFm7UqVKevDBBzV69GgVK1bMkjUBAID51qxZo3HjxmnLli1u22ft2rX16quvqm/fvm7bp6/LzMzUm2++qSlTpujixYtu2ae/v7/69eunKVOmqGrVqm7ZJwAAKFjo9a7eyZMn/zwWt2rVKh09etSSdf39/XXLLbfo8ccfV7t27SxZEwAA+A76PM+4dOmSpk6dqlmzZik2NtaUNYoUKaIePXqoX79+Gjx4sAICAkxZB96B4SIAAIBc/PDDDxozZoxOnTplyv7Dw8M1depUDRs2zJT9+7IdO3boiSee0IoVKyxbc8yYMZo+fbpl6wEAAM+hz3OfZ599Vi+99JJHM5QtW1aTJk3S8OHDuXoZAAA+LC4uTg8//LA+/fRT09bo1auXPvjgA1WsWNG0NXzBunXrNHz4cO3fv9+U/RcpUkTPP/+8nnjiCfozAAAgiV7PXbKzs73iTt59+/bVG2+8oerVq3s6CgAA8DD6PM9IT0/XO++8o8mTJysuLs6ydWNjY21zkU278vd0AAAAAG+Tk5OjiRMnqm/fvqadcCr998oB9957r0aMGKGMjAzT1vEl2dnZmjRpklq0aGHpYBEAALAH+jz384brFp0/f14jR47UDTfcoNOnT3s6DgAAyId9+/apZcuWpp6EIElLlixRs2bNtH79elPX8WbvvfeeunTpYtpgkSSlpKToySefVJ8+fZSQkGDaOgAAwDfQ67mPNxyLk6Tvv/9ejRo10qxZszwdBQAAeBB9nmf88bqPHz/e0sEi2APDRQAAAH+TnZ2twYMH6+WXX7bs4OxHH32k7t27KyUlxZL1vFVMTIw6d+6s5557TllZWZ6OAwAAChj6vIJv5cqVatasmbZu3erpKAAAwAVr165V69atdejQIUvWi4mJUZcuXfTdd99Zsp43eeyxxzRmzBhlZmZast7ixYvVpk0bxcbGWrIeAADwPvR6BVdycrKGDx+u0aNHKzs729NxAACAxejzPGPWrFlq3ry5du3a5ekoKKAYLgIAAPh/OTk5Gjp0qBYuXGj52qtXr9att96q9PR0y9f2BocPH1bbtm21du1aT0cBAAAFEH2efZw7d06dOnXiymUAAPiILVu2qGfPnkpMTLR03YyMDA0ePFjLly+3dF1PmjBhgt566y3L1923b5+6d+/OVVQBALAhej17mDlzpgYPHqycnBxPRwEAABahz/OM5557TsOHD1dqaqqno6AA83N4y/1SAQAAPOzpp5/Wq6++6tI2tWrVUrt27dSgQQOFh4fLz89Ply9f1v79+7Vhwwbt2bPHpf3dddddpt8q1tvs2rVLN9xwg86fP+/RHGPGjNH06dM9mgEAAJiDPs88EydO1Msvv+zpGP9SsmRJrV+/XnXq1PF0FAAAkItTp06pSZMmunDhguFtChcurI4dO6p58+a65pprVKxYMSUlJens2bPatm2bVq1apaSkJMP7K1KkiDZt2qQGDRrk5yn4jA8++ECjRo1yaZtKlSqpY8eOatSokUqXLq1ChQopLi5Ohw4d0qZNm7RlyxaX7gjauXNnrVixQgEBAa7GBwAAPohezxxZWVkqVKiQp2Nc0ahRo/T+++97OgYAADAZfZ5njB49WjNnzvR0DMXGxqp06dKejgETMVwEAAAgaenSperZs6fhP4j36dNHEyZMUMuWLfOs27Nnj6ZMmaLPPvvM8NWaZs2apfvuu89Qra87ceKE2rRpozNnzri0XenSpdW5c2d16NBBderUUfXq1RUeHq7Q0FBJUlxcnOLi4nT58mUdOHBAO3fu1M6dO7V9+/Zcr5LKcBEAAAUTfZ65jAwX+fn5KSIiQrVr1/7zq1atWgoPD1exYsVUrFgxhYWFKSUlRQkJCUpISNDRo0e1fft27dixQytWrMjXle4bNWqkzZs3Kzg4OJ/PDgAAmCUrK0tdunQxfBfrsmXLauLEibr77rtVvHjxXOtSUlK0YMECvfDCCzp+/LihfdepU0dbtmz587hSQbNjxw61adNGaWlphuo7duyo5557Ttdff738/PxyrTt69Kjeeecdvffee8rIyDC074kTJ2rSpEmGagEAgO+i1zOP0eGiEiVKqH79+v84Hle5cmWFhYX9eTwuMDBQ8fHxSkhI0MWLF7V7925t375dGzdu1JYtW/KV78svv9TgwYPztS0AAPB+9HmekZ+LPfr5+alZs2bq1KmTmjdvrho1aqhy5coqWrSoQkJClJSU9Of5dWfPnv3z3LqdO3dq//79uf5tneGigo/hIgAAYHsXL15UnTp1DF1RITw8XPPmzdPNN9/s0hobN27UwIEDdfLkSae1ISEh2rVrl2rWrOnSGr4mLi5O7du31969ew1vc8stt2jEiBG68cYbFRgY6PKaWVlZWrdunRYvXqwff/xRBw4c+PMxhosAACh46PPMd6WD2YUKFVLz5s3VoUMHdejQQe3atVPJkiXzvUZ6eroWLVqkmTNnKjIy0qVtn3/+eb3wwgv5XhsAAJjjxRdf1PPPP2+odtCgQfrwww9VrFgxw/tPT0/XuHHjNGPGDEP1w4cP14cffmh4/74iIyNDjRo1UlRUlNPakJAQvffeexo6dKhLa0RFRWnAgAGG7uzp7++v1atXq3379i6tAQAAfAu9nnlyGy6qWLHin8fiOnTooAYNGsjf3z/f6xw8eFBz587VjBkzFB8fb3i7kiVLKjo6+qqOBQIAAO9Fn2e9jz76SCNGjDBcX758eT300EO66667VLly5XytefbsWS1ZskSLFy/WypUrlZKS8udjDBcVfAwXAQAA2xs1apQ++OADp3WVKlXSqlWrVKNGjXytc/78eXXp0kX79u1zWturVy8tXrw4X+v4iv79++vbb781VNumTRu9++67atasmVszbN26Ve+9957mz5+vYcOGMVwEAEABQ59nvj+Gi0qWLKmbb75Zffr00U033aSiRYuast5XX32lRx99VGfPnjVUHxoaqsOHD6t8+fKm5AEAAK47evSo6tWrZ+hOOk8//bQmT56c77WmT5+uhx56yGmdn5+fNm3apBYtWuR7LW/06quv6umnn3ZaV6xYMf3yyy9O796Zm+TkZPXs2VOrV692Wtu4cWNt3bpVAQEB+VoLAAB4N3o9c/19uKhZs2bq06eP+vbtq4YNG5qy3rlz5/Too4/qyy+/NLzNuHHjNHXqVFPyAAAAz6HPs97WrVvVpk0bZWZmOq0tXLiwnn/+eT388MMKCQlxW4akpCTNmzdP77//vnbv3s1wkQ0wXAQAAGxt+/btat68uXJycvKsK168uDZt2qTatWtf1XoxMTFq0aKFTp065bT2xx9/dPnK+b5i1qxZGj58uNM6f39/vfjii3rqqadMPeEgLi5Ohw8fVvPmzU1bAwAAWIs+zxqRkZHKyclRp06d8nVnyfyIiYnR9ddfr/379xuqf/HFF/Xss8+anAoAABh166236vvvv3daN3LkSM2cOfOq13v55Zc1ceJEp3UtW7bUxo0b5efnd9VreoMzZ84oIiJCycnJedYVKlRIK1euVIcOHa5qvaSkJHXo0EE7duxwWjtjxgw98MADV7UeAADwTvR65srJydH777+vPn36qFKlSpatO23aND3yyCOGaosVK6YzZ84oNDTU3FAAAMBS9HnWSklJUdOmTQ3dkbxBgwZasGCB6tata2qmdevWqWnTpm4dXoL3YbgIAADYWt++fbVo0SKndQsWLNBtt93mljV/++03denSRdnZ2XnWNW/eXL///rtb1vQmR48eVcOGDZ2e2BAcHKzPPvtMAwYMsCgZAAAoSOjzCrbz58+rXbt2Onz4sNPa6tWrKzo62oJUAADAmR07dqhJkyZO65o0aaINGzYoODj4qtd0OBy66aabtHz5cqe1ixcvVq9eva56TW/wyCOPaNq0aU7rXn/9dT3xxBNuWfPgwYNq1qyZkpKS8qyrWLGijh49qqCgILesCwAAvAO9XsH21ltv6bHHHjNU++mnn+quu+4yOREAALAKfZ71xowZo/fee89p3fXXX6/vvvtOxYoVsyAV7MDf0wEAAAA8JSoqSj/88IPTuj59+rjthFNJ6tChg0aOHOm0bsuWLfr111/dtq63ePzxx50OFvn7+zNYBAAA8o0+r+ArW7asPvzwQ0O1R44c0aFDh0xOBAAAjHj99ded1vj7+2vWrFluOQlBkvz8/PThhx8auqKmkXy+4PLly5o1a5bTuiZNmmjcuHFuWzciIkLPPfec07ozZ87os88+c9u6AADAO9DrFWyPPvqoOnXqZKh22bJlJqcBAABWos+z1s6dOw3d/al169ZavHgxg0VwK4aLAACAbb355ptydhPHwMBATZ061e1rv/jii4Ya+zfeeMPta3vS6tWr9e233zqte+mllxgsAgAA+UafZw9dunQxPBz222+/mZwGAAA4c/LkSS1cuNBp3V133aWmTZu6de0qVaoYusr6b7/9ViDuMDlz5kynF/eR/ts3+/u798/FDz/8sKpVq+a0jn4YAICChV7PHmbMmGGojmNxAAAUHPR51nv00UeVk5OTZ03FihW1ePFiFSlSxKJUsAuGiwAAgC2lp6frq6++clrXv39/1axZ0+3rlypVSvfff7/TuuXLl+vcuXNuX99Txo8f77SmQ4cOevLJJy1IAwAACiL6PHu56667DNUdOHDA5CQAAMCZzz//XFlZWXnW+Pn5mXZc6OGHH1bhwoWd1s2dO9eU9a1k5Dm0atVKnTt3dvvaQUFBevTRR53W7du3T1u2bHH7+gAAwDPo9eyhfv36hk4aPnXqlKFhdwAA4P3o86y1dOlSRUZG5lnj5+enOXPmqHTp0halgp0wXAQAAGxpyZIlio+Pd1r3yCOPmJZh7NixTq8Mmp2drfnz55uWwUpr1qzR5s2b86wJCAjQzJkz3X7FVAAAYB/0efZyww03GLoi1/Hjxy1IAwAA8vL55587renevbvq1q1ryvplypTRHXfc4bRuwYIFTk+Y8GZbt25VVFSU0zoz++F7773X0N08jXxPAAAA30CvZx99+/Z1WuNwOHTixAnzwwAAANPR51lrypQpTmsGDRqk7t27W5AGdsRZmwAAwJa+/PJLpzU1a9ZU69atTctw7bXXqkOHDk7rjGT1BW+88YbTmnvuuUf16tWzIA0AACio6PPspXDhwqpVq5bTusTERAvSAACA3OzZs0d79uxxWnfnnXeamsPI/mNjY7VixQpTc5jJSI8ZFhamPn36mJYhNDRUt956q9O6+fPny+FwmJYDAABYg17PXho2bGiojuNxAAD4Pvo8a23fvt3pXYsKFSqkl19+2aJEsCOGiwAAgO1kZ2cb+jAxaNAg07MMHjzYac3vv/+uixcvmp7FTMePH9fixYud1j3xxBMWpAEAAAUVfZ49lS9f3mlNdna2BUkAAEBuli1b5rSmcOHCpg68SFLHjh1VsWJFp3VLly41NYeZjLzWt9xyi0JCQkzNYaQfjomJ0Y4dO0zNAQAAzEevZy9GjsVJHI8DAKAgoM+z1vTp053W9O/fX9WrV7cgDeyK4SIAAGA7mzdvVnx8vNO6m266yfQsRtbIycnRypUrTc9iJiNXIb3++utVp04dixIBAICCiD7PnsLDw91SAwAAzPPLL784rWnfvr3CwsJMzeHv76/u3bs7rTOS1xudPXtWe/fudVpnRT/cuXNnFS5c2Gmdr77WAADgL/R69mL0OBvH4wAA8H30edbJyMjQt99+67TugQcesCAN7IzhIgAAYDtGTuAMCwtTq1atTM9y7bXXqmbNmk7rfPnDj/Tf4SJnhgwZYkESAABQkNHn2dOlS5ec1pQqVcqCJAAA4EoyMjK0du1ap3XdunWzII2xdfbv36/Tp09bkMa9jA6ud+3a1eQk/71qbfv27Z3W0Q8DAODb6PXsx8ixOInjcQAA+Dr6PGstXbpUcXFxedZUrlxZHTp0sCYQbIvhIgAAYDsbNmxwWtOqVSsFBgZakEaGmv5NmzZZkMQc0dHR2rFjR541/v7+6tWrlzWBAABAgUWfZ0/nzp1zWlO7dm0LkgAAgCvZuXOnUlJSnNYZGURxB6N/gPfFPs1IP1yzZk2VL1/egjTGXuvNmzc7veM5AADwXvR69mPkWFypUqUYLgIAwMfR51nr66+/dlrTu3dvC5LA7hguAgAAtrN9+3anNU2bNrUgyX81a9bMac3+/fuVnp5uQRr3W7FihdOa6667TuXKlbMgDQAAKMjo8+wnNTVVBw8edFrHVbwAAPAcIz2av7+/rrvuOvPDSKpSpYpKly7ttM5Ibm/ji/1wQkKCjhw5YkEaAABgBno9+3F2UUnpvycZ+/n5mR8GAACYhj7PWkbuSN6jRw8LksDuGC4CAAC2cu7cOZ09e9Zpnbf9kT0rK0u7d++2II37RUZGOq1p06aNBUkAAEBBRp9nTz///LPTq6aFh4erUaNGFiUCAAD/a9u2bU5rIiIiFBoaakGa/zLSp/naiQg5OTnauXOn0zpv64cl33utAQDAX+j17Of77793WtOlSxfzgwAAAFPR51nnwIEDhv7O3bp1awvSwO4YLgIAALaya9cuQ3V16tQxOclfateubajOaHZvs3r1aqc1rVq1siAJAAAoyOjz7Gn27NlOa4YPHy5/fw6DAgDgKUYGqa3s0SRjfZqv9WjR0dFOh64la1/r8uXLq3jx4k7rfO21BgAAf6HXs5dt27Y5vXNRkSJFdNddd1kTCAAAmIY+zzqrVq1yWlO9enWVKVPG/DCwvUBPBwAAALDSkSNHDNXVrFnT5CR/KVmypMLDw3Xp0qU864xm9yYnT55UTEyM07p69eo5rbl48aKWLl2qjRs3as+ePTp69Kji4+OVlJSkoKAgFSlSRKVKlVK1atVUo0YNtWzZUm3atFFERIQ7ngoAAPBy9Hn2s3TpUv3www951gQGBurBBx+0KBEAALgSI71OrVq1LEjyFyM94enTp5WRkaGgoCALEl09oz2l1a91jRo1nF7pln4YAADfRa9nHw6HQ2PGjHFad/fddys8PNyCRAAAwEz0edb5/fffndYYObfO4XDo999/188//6xdu3Zp3759io2NVUJCgrKyslSkSBEVLVpUlSpVUrVq1dSgQQO1adNGrVu3tvQOVPBuDBcBAABbOXr0qNOa8uXLW94w16xZU5s3b86zxkh2b7N3715Ddbl92MzJydGSJUv0zjvvaNWqVcrOzr5iXWpqqlJTU3Xx4kUdPHhQkvTee+/9ue/bbrtN999/v6pVq5aPZwEAAHwBfZ69HDlyRCNGjHBa9/jjj6tSpUoWJAIAAFeSmppq6MIzNWrUsCDNX4yciJCTk6Pjx49bfpJEfhntKatXr25ykn+qWbOm0+Ei+mEAAHwTvZ69PPvss9q4cWOeNeHh4XruuecsSgQAAMxCn2ctI+fX5fV8Tp8+rRkzZmjOnDl5/ndLSEhQQkKCzpw5o82bN+urr76SJBUuXFg33nijhgwZov79+ysgIMD1J4ECw9/TAQAAAKx07NgxpzUVK1Y0P8j/qFChgtMaX/wju5EPP6VKlVKxYsX+9e8rVqxQgwYN1KdPH61cuTLXwSJnDh06pMmTJ6tWrVoaNGiQDh06lK/9AAAA70afZx9RUVHq3LmzTp06lWddw4YN9Z///MeiVAAA4EqOHz9uqM7qPs1Ijyb5Vp9mpB8ODw9X4cKFzQ/zN/TDAAAUXPR69pCTk6OnnnpKL7/8stPaGTNmGH79AQCA96LPs9a+ffuc1lzpgkHx8fF6+OGHVa1aNb3yyiuGBsKuJC0tTYsWLdKgQYNUs2ZNzZw5M9/n6cH3MVwEAABs5fTp005rypcvb0ES19d0dvKkN9q/f7/TmrJly/7j/ycnJ+vOO+/UDTfcYGh7o7Kzs7VgwQI1aNBAEydOVGZmptv2DQAAPI8+r+BLT0/XpEmTdN111+nkyZN51laoUEHffPONgoKCLEoHAACuxEiPJlnfpxldz5f6NF/uh2NiYjhhAQAAH0SvV/Bt27ZNbdq00Wuvvea0dty4cRo8eLAFqQAAgNno86xz6tQpJSYmOq373/Prli9frtq1a+udd95x6zlwx44d0+jRo9W8eXNt2bLFbfuF72C4CAAA2MrFixed1pQrV86CJP9k5MPPpUuXLEjiXs5O+pSkMmXK/Pm/o6Oj1apVK33++eemZcrIyNDLL7+sjh07GsoHAAB8A31ewbVz50498cQTqlatmp577jmlpaXlWV++fHlFRkaqVq1aFiUEAAC5MdKjSdb3aWXLlpW/v/M/k/pSn+bL/bDD4dDly5ctSAMAANyJXq9gSkxM1Lx589S9e3e1aNFCmzdvdrrNI488oqlTp1qQDgAAWIE+zzpGz137+/l1r7zyim6++WadO3fOrFjasWOH2rVrpxkzZpi2BrxToKcDAAAAWMnIh58SJUqYHyQfayYnJys9PV3BwcHmB3ITI7db/eO5R0dHq1OnToavfnG1Nm7cqNatW2vFihWqW7euJWsCAADz0Od5t127dmnfvn151mRkZCghIUEJCQk6d+6cdu7cqZ07dyouLs7wOtdff73mzp2rSpUqXWViAADgDkZPRLC6T/P391dYWJji4+PzrDOa3xv4cj8s/Td/6dKlzQ0DAADcil7Pe+Xk5GjBggV51jgcDiUlJSkhIUHx8fE6ePCgduzYoUOHDiknJ8fQOqGhoXr77bd1//33uyM2AADwEvR51jFybp3012v99NNP69VXXzUx0V8yMjL04IMPKjo6Wm+++aYla8LzGC4CAAC2YuQKmGFhYRYkyd+aly5dUoUKFUxO4z5nz551WhMUFKRz586pS5culg0W/eHMmTPq2LGj1qxZw4ARAAA+jj7Pu33xxRd67bXXTNt/6dKlNXHiRI0dO1Z+fn6mrQMAAFxj9CqhRYsWNTnJvxk5EcGXrnJqJKu398MAAMC30Ot5r4yMDN1+++2mrnHjjTfq3Xff5e7hAAAUQPR51jFybp303/PrJk+ebNlg0d+99dZbysjI0PTp0y1fG9ZjuAgAANhGamqqMjMzndZ54o/sxYoVM1QXHx/vMyedOhwOQ1eCCAgI0ODBgw3d5rVYsWLq0KGDGjZsqGuvvVZFixZVVlaW4uLidPjwYW3atEnbt29Xdna24ZwXLlxQ7969tWnTJpUqVcrwdgAAwHvQ59lX1apV9eCDD2rUqFEKDQ31dBwAAPA/EhISnNaEhobK39/fgjT/ZKRPc3aigjcx8lp7ez8MAAB8C72e/RQqVEg9e/bUhAkT1KJFC0/HAQAAJqHPs05sbKyhutWrV+vZZ581VFuvXj21a9dOtWrVUqlSpRQcHKyUlBSdOnVKe/fu1Zo1awyv+4cZM2aoZs2aeuSRR1zaDr6H4SIAAGAbGRkZhupCQkJMTvJvhQsXNlRn9Dl4g7S0NOXk5DitW7RokdLS0vKsad26tcaPH69evXqpUKFCedbGxMTo008/1dSpUw1/EIqOjtadd96ppUuXGqoHAADehT7Pfvr166cJEyaoWbNmno4CAADyYKTH8USPJhnr03ypR/PW15p+GACAgstb+w+p4PV6nla2bFlNmjRJgwYNUvHixT0dBwAAmIw+zzopKSmG6saNG5fneXhFixbVmDFjNGLECFWvXj3PfeXk5CgyMlJvvfWWfvzxR8NZx40bpxYtWqhdu3aGt4HvsX5kEAAAwEOMfnAICAgwOcm/BQYam/n2pQ8/zgaGjNSVKFFC8+bN04YNG3Trrbc6HSySpPLly2v8+PGKjo7WiBEjDOddtmyZPvroI8P1AADAe9Dn2c+3336rgQMH6qGHHtKGDRs8HQcAAOTCSI/jiR5NMtan+VKP5q2vNf0wAAAFl7f2H1LB6/U87fz58xo7dqwGDRqkGTNmGLqbAQAA8F30edZxx/l1vXr10sGDB/Xqq686HSySJH9/f3Xt2lVLlizRL7/8osqVKxvKkJOTo2HDhhkeiIJvYrgIAADYhtEPDkb/4O1ORtfMzMw0OYn7pKenX9X21apV08aNG3XnnXfma/uwsDB98MEHmjVrluEPtE899ZRP3RoXAAD8F32ePR05ckTTp09X27Zt1bFjR5eurAUAAKxhpE/zRI9mdF1f6tG89bWmHwYAoODy1v7D6Lr0H65JT0/X8uXL9eCDD6pKlSqaMGGCzp075+lYAADABPR51rna8+smTJigH374QRUqVMjX9t26ddOWLVvUsmVLQ/WHDh3SG2+8ka+14BsYLgIAALaRlZVlqI4/srvH1VwFokKFClq5cqVq16591Tnuu+8+zZo1y1DtpUuXNGXKlKteEwAAWIs+D7/99pt69eqlm2++WTExMZ6OAwAA/p+RPo0TEdzDW19r+mEAAAoub+0/jK5L/5F/8fHxeuWVVxQREaF58+Z5Og4AAHAz+jzrXM35dU8++aRefvll+fn5XVWGsmXL6ueff1bjxo0N1U+dOlUXL168qjXhvRguAgAAtmH0Q012drbJSfK/pqc+mOXH1dz+ds6cOapWrZrbsgwdOlT33HOPodoZM2YoNTXVbWsDAADz0efhD0uXLlXDhg31008/eToKAACQsR7HEz2a0XV9qUfz1teafhgAgILLW/sPo+vSf1y9hIQE3X333Ro4cKCSk5M9HQcAALgJfZ518nt+Xbt27TR58mS35ShevLjmz5+vwoULO61NSEjQhx9+6La14V0YLgIAALYRFBRkqM7ole/dyegVE4w+B2+Q36z333+/brzxRjenkd5++21VrFjRaV1cXJzmz5/v9vUBAIB56PO836uvviqHw5HrV05OjuLj43X8+HHt2rVLy5cv18svv6xbb73VUA/3dxcuXFDfvn31/fffm/NkAACAYUZ6HE/0aJKxPs2XejRvfa3phwEAKLi8tf+QCl6v56rChQvneSzO4XAoPT1d586dU1RUlDZt2qQ5c+ZozJgxat26tcsn5C5cuFA9e/ZUSkqKSc8IAABYiT7POvnJGhISojlz5sjf371jIHXq1NGLL75oqPajjz5STk6OW9eHd2C4CAAA2EahQoUM1Xniw4/RNQv6h5/Q0FBNmTLFhDRSiRIl9Oqrrxqq/eKLL0zJAAAAzEGf5/v8/PxUrFgxValSRQ0bNlT37t01YcIEffvttzp58qSWLVumAQMGGP5vnZmZqYEDB2rJkiUmJwcAAHkx8rvbUyciGFnXl3o0b32t6YcBACi4vLX/MLqu3fuPoKAglS1bVhEREWrZsqWGDh2q6dOna8OGDTp58qQmT56sGjVqGN7f6tWr1atXL6WlpZmYGgAAWIE+zzr5yfrYY4+pVq1aJqQxvu+jR49qw4YNpmSAZzFcBAAAbCM4ONhQnScOeBpd05c+/Bh9vf9uyJAhKlGihPvD/L+BAweqdOnSTuvWrFmjpKQk03IAAAD3os8r2Pz9/XXjjTdq4cKF2rNnjzp27Ghou8zMTN155506deqUyQkBAEBujPRpnjr50Mi6vtSjeetrTT8MAEDB5a39h9F16T9yV758eT399NM6ePCg3nrrLYWGhhraLjIyUs8884zJ6QAAgNno86zj6vl1AQEBGjlypElpXNv/jz/+aFoOeI5r9zAFAABw0dGjR7Vp0yZT1wgNDVXv3r2d1oWEhCgwMNDpFQwSExPdFc0wo2sWK1bM5CTuU7hwYRUqVMjQ7Wj/MGrUKBMT/fcD2dChQzV16tQ86zIyMrR69Wr17NnT1DwAAPgy+jxjCmKf50kRERFatWqV3nvvPT3yyCNO/5vHx8dr2LBh+vnnn+Xn52dRSgAA8IewsDCnNcnJyXI4HJb/rjbSp/lSjxYWFqbz58/nWUM/DAAA3Iler+Dz9/fXI488or59++r222/Xxo0bnW7z9ttvq0+fPoYvEAQAALwPfZ51jLzWf3fzzTercuXKJqX5r6FDh2rixIlOB7l++eUXTZ482dQssB7DRQAAwFSrV6/WsGHDTF3j2muvNXTSqSSVLFlSsbGxedYkJCS4I5ZLjK4ZHh5uchL3KlWqlGJiYgzVVqtWTU2bNjU5kTRgwACnw0WStGXLFoaLAADIA32eMQW1z/MkPz8/jRkzRtdee61uvfVWpwNGK1as0FdffaXBgwdblBAAAPzBSI/jcDiUmJho+R/9jfRpvtSjhYeHKzo6Os8a+mEAAOBO9Hr2UbVqVa1cuVK9e/fWr7/+mmdtTk6ORo4cqX379nGxHwAAfBR9nnVKly7tUv2AAQNMSvKXUqVKqXPnzlq2bFmedbt27VJGRoZP3SkKzvl7OgAAAICVSpUq5bQmPj7egiSur1mkSBEVLlzYgjTuY+T1/kOrVq1MTPKX6667ztCHmm3btlmQBgAAuAt9nv306tVL06ZNM1T71ltvmZwGAABcidFjQ1b3aTk5OUpKSnJa58qxLU/z5X5Y8q3XGgAA/Be9nr0UKVJE3377rWrVquW09sCBA1q6dKkFqQAAgBno86zjalarzq9r2bKl05qMjAzt3bvXgjSwEsNFAADAVow05OfOnbMgyT8ZubuPL33w+YM3DhcFBwercePGTuucXekVAAB4F/o8e3rggQd0ww03OK3bvHmz1q9fb0EiAADwd0b7HKv7tNjYWGVnZzut86U+zZf7YT8/P5UsWdKCNAAAwJ3o9eynePHimjNnjqHat99+29wwAADANPR51nEla4kSJRQREWFimr8YPY+P8+sKHoaLAACArVxzzTVOa4z8wdvdjKxpJLu3cSVzo0aNTEzyT0aGi06dOmVBEgAA4C70efb12muvGar7+uuvTU4CAAD+l9E+x+o+zeh6vtSn+XI/XK5cOQUGBlqQBgAAuBO9nj21a9dOffr0cVq3cuVKxcXFmR8IAAC4HX2edVzJ2rBhQ/n5+ZmY5i9Gzq2TOL+uIGK4CAAA2ErVqlWd1pw5c8b8IP/j7NmzTmuqVatmQRL3ql69uuHa8PBwE5O4vlZ8fLzS09MtSAMAANyBPs++mjRpYujqWb/99psFaQAAwN8Z6dEk6/s0Iz2a5Ft9mpHX+tKlS5Yf76IfBgCg4KLXs69Ro0Y5rcnJydG6dessSAMAANyNPs86VatWlb+/sXEObzu3TvLMndJhLoaLAACArRj58BATE6OUlBQL0vzl8OHDTmt86YPPH1wZLipRooR5QfK5ltXfBwAAIP/o8+zNyNVSt2/frqSkJAvSAACAP4SEhKhcuXJO66Kjoy1I8xcjPZqfn5+uvfZaC9K4h5Ge0uFw6MiRIxak+Qv9MAAABRe9nn117dpVoaGhTuu42A8AAL6JPs86QUFBhu9eZOW5dSEhIQoODnZax7l1BQ/DRQAAwFaMDLs4HA5DH0bcJS4uThcvXnRa58qgjreoUaOG4VqGiwAAwNWgz7O3tm3bOq3Jzs7W0aNHLUgDAAD+zkivc+jQIQuS/MVIT3jNNdcY+gO6tzDaU3rja00/DACA76LXs6dChQqpRYsWTuus/m8PAADchz7POkbPr7Py3DpJKl68uNMazq0reBguAgAApho6dKgcDoepX8eOHTOcp2HDhobqDhw4kM9n7DqjaxnN7k0aNWpkuNbPz8/EJJ5bCwCAgoo+z31r+WKf521q1qxpqM7IsBcAAHAvI72OlT2a0fV8rUerUaOGQkJCnNZZ+VrHxMQoPj7eaZ2vvdYAAOAv9Hr2ZeR4HMfiAADwXfR51mncuLGhOqvPd+P8OntiuAgAANhKhQoVDN22ddu2bRakMb5WYGCgS4M63qJkyZKGrzwaFxdnbpi/uXz5sqG6IkWKmJwEAAC4C32evYWHhxuqu3TpkslJAADA/2rSpInTmqioKEuvcmmkT2vatKkFSdwnICDAUF/pbf2w5HuvNQAA+Au9nn0ZOR7HsTgAAHwXfZ51mjVrZqjOynPrjK7HuXUFD8NFAADAdox8iLDyj+xbt251WlOnTh0VLlzYgjTuZ/QDkNGBH3cw+mErNDTU3CAAAMCt6PPsq1ChQobqUlNTTU4CAAD+l5EeLScnRzt27DA/jKSTJ08qNjbWaZ2REyi8jS/2w2FhYapRo4YFaQAAgBno9ezLyPE4jsUBAOC76POs443n1qWmpio9Pd1pHefWFTwMFwEAANtp06aN05qNGzcqKyvLgjTSmjVrnNa0atXKgiTmaNu2raE6K69cZWStUqVKKSgoyII0AADAXejz7Cs5OdlQHQe4AQCwXuPGjRUSEuK07rfffrMgjbEeTfLNPs1IP3zo0CGdO3fOgjTGXuuWLVvKz8/PgjQAAMAM9Hr2ZeR4HMfiAADwXfR51qlTp45KlizptM7bzq2TpIoVK5qcBFZjuAgAANhO165dndYkJiZq8+bNpmc5ceKEDh8+7LTuhhtuMD2LWbp3726obteuXSYn+cvOnTud1lSpUsWCJAAAwJ3o8+zr1KlThuqKFi1qchIAAPC/goOD1b59e6d1K1eutCCNsXXq1KmjSpUqWZDGvYz0w5I1r3V6errWrVvntI5+GAAA30avZ19GjsdxLA4AAN9Fn2cdf39/devWzWnd7t275XA4LEhk7Nw6ifPrCiKGiwAAgO20bNlSxYoVc1q3dOlS07MYWcPPz8/wiQHeqF69eoY+uG3atMmCNP89scHIB6DatWtbkAYAALgTfZ597du3z1AdB7gBAPAMI38c/+2335SUlGRqjpycHC1fvtxpna8OvFSsWFF169Z1WmdFP7xq1SqlpqY6rfPV1xoAAPyFXs+ejByP41gcAAC+jT7POkYu3h0XF6eDBw9akMb4eXycX1fwMFwEAABsJzAw0NBJnF999ZXpWebPn++0pnnz5ipdurTpWcx08803O63ZuHGjBUmk7du3KyMjw2ldixYtLEgDAADciT7PvlavXu20JiAgQFWrVjU/DAAA+JcePXo4rUlLS9OiRYtMzfHbb7/pzJkzTuuM5PVWRrIvWrRIaWlppuYw0g+XK1dOTZo0MTUHAAAwH72e/cTGxmr//v1O62rUqGFBGgAAYBb6POvcdNNN8vPzc1pn1fl1RoaLihcvroiICAvSwEoMFwEAAFu6/fbbndYcOnTI1LvpnDhxQmvWrHFaZySrt7vjjjuc1hw7dkzbtm0zPcvXX39tqK5NmzYmJwEAAGagz7OfrKwsffPNN07r6tatq6CgIAsSAQCA/9WoUSPVq1fPad1nn31mao558+Y5rSlVqpRPX+XUSI+ZmJho6kkfycnJ+u6775zWDRo0yNBJEwAAwLvR69nPV199JYfD4bTuuuuuMz8MAAAwDX2eda655hp17tzZaZ3R896uxoULF7Rq1Sqnda1ateLYXgHEcBEAALCl3r17q1ixYk7r3n77bdMyvPPOO8rJycmzxt/fX4MHDzYtg1U6dOigatWqOa17//33Tc2RlpamTz75xGld6dKl1bJlS1OzAAAAc9Dn2c9XX32lmJgYp3WdOnWyIA0AAMiNkYvPLF++XAcOHDBl/djYWH3++edO6wYOHKhChQqZksEKLVq0UK1atZzWmdkPz5kzR/Hx8U7rjHxPAAAA30CvZx/Z2dmaMWOG0zo/Pz917NjRgkQAAMBM9HnWufvuu53W/PTTTzpx4oSpOebMmaP09HSndT179jQ1BzyD4SIAAGBLhQsX1sCBA53Wff311zp8+LDb17948aI++ugjp3Xdu3dXhQoV3L6+1fz8/DRs2DCndV9++aUuX75sWo6vvvpKFy9edFrXu3dvBQQEmJYDAACYhz7PXpKSkjRx4kRDtTfeeKPJaQAAQF7uvPNOp8dbHA6HXn31VVPWnzZtmtLS0pzW3XPPPaasbyUjz2Hjxo2GrkDqqoyMDL355ptO6+rUqcPFfQAAKEDo9ezj/fffN3TycJMmTVSmTBkLEgEAADPR51lnwIABTi+imZOTo5kzZ5qWITs7Wx988IGh2j59+piWA57DcBEAALCtxx57zOmtObOysvT444+7fe3nnntOCQkJTuvGjRvn9rU9ZcyYMQoNDc2zJjk52bTnfPnyZT399NOGau+77z5TMgAAAGvQ59nH6NGjdezYMad1ZcqUUY8ePcwPBAAAclWlShUNGDDAad28efO0bds2t6594sQJQwMv7dq1U6tWrdy6tieMGjVKRYoUcVo3btw4p3fcdNW0adN09OhRQ2sDAICCg17PHnbt2qUnn3zSUK2RK+8DAADvR59nnaJFi+qBBx5wWvfWW28pKirKlAxTpkxRdHS007pu3brp2muvNSUDPIvhIgAAYFt169ZVr169nNYtWrRICxcudNu6a9euNTTh37RpU3Xr1s1t60rSsWPH5Ofn5/Src+fObl1XksLDwzVy5EindXPmzNHSpUvdvv7YsWN19uxZp3VNmjRRu3bt3L4+AACwDn2e+X3e4sWLde7cObfsKz8cDofGjRunzz77zFD90KFDVahQIZNTAQAAZ8aPH++0JicnR8OHD1dGRoZb1nQ4HBo5cqRSU1Od1hrJ54qhQ4ca6tHcfQehUqVKGbp4zrZt2wydoGHUoUOH9OKLLzqtq1Chgu666y63rQsAALwDvZ55vd7Fixf13XffXX3oq3DgwAH16NFDKSkpTmuLFCmiO+64w4JUAADACvR51hzTk6RHH31UISEhedakpaVp2LBhbr9o0L59+/TCCy8Yqn3ooYfcuja8B8NFAADA1p5//nn5+ztviYYPH66DBw9e9XoxMTEaMmSIsrOzndYabdZ9yfjx41W8eHGndcOGDdORI0fctu7HH39s+MTTgvi6AwBgR/R55vrmm29Uo0YNTZgwQTExMZauffnyZQ0cONDwibBFixbVE088YXIqAABgRNOmTXXLLbc4rdu2bZsefvhht6z5yiuvaNmyZU7rmjdvrt69e7tlTW8wfvx4Q3cvmjBhgtauXXvV6yUnJ2vQoEFKSkpyWvv0008rODj4qtcEAADehV7PPImJierXr5/atm2rH3/8UQ6Hw9L1Fy9erDZt2hi6kKMkPfjggypdurTJqQAAgFXo86xTtmxZQ6/hhg0b9NRTT7lt3bi4OA0ePFjp6elOa5s1a1agXnP8E8NFAADA1po1a6Z7773XaV18fLy6du16VQMvsbGx6tatm06ePOm09qabbiqQTXi5cuU0adIkp3Xnzp1T165d3XIL11mzZhm6Y5IkderUydCHYQAA4P3o88yXnJysV155Rddee63uvvtu/frrr26/QtbfZWdna86cOWrQoIG+/vprw9s9+eSTKlOmjGm5AACAa958801DgyUzZ87UM888c1Vrvffee4b24efnp3fffVd+fn5XtZ43qVSpkiZMmOC0LjMzU7169dKWLVvyvVZKSop69+6t7du3O61t2LChHnjggXyvBQAAvBu9nrk2bNigXr16qW7dunrrrbdMv+hPdHS0br/9dt1yyy2Ki4sztE2ZMmX05JNPmpoLAABYjz7POhMnTlSVKlWc1k2ZMkXPPPPMVQ+enz9/Xt27d9fu3bsN1U+dOrXAveb4C8NFAADA9iZPnqxSpUo5rTt16pRatmyppUuXurzGpk2b1Lx5c+3du9dpbeHChTVt2jSX1/AVDzzwgJo3b+607tixY2rdurXhOw79r8TERI0cOVLDhw83dAeBIkWK6MMPP8zXWgAAwDvR51kjIyND8+bNU9euXVWlShWNGjVKixYtMnzCgTOHDh3S5MmTVbNmTd177706c+aM4W2bNWvm1qt2AQCAq1ejRg3DJxtOnjxZt99+uxITE11aIz09XWPHjtWYMWMM1Q8bNkytW7d2aQ1f8Pjjj6tWrVpO6+Lj49WpUyfNnTvX5TWioqLUunVrRUZGOq318/PT9OnTFRAQ4PI6AADAN9DrWSMqKkqPPfaYKlWqpK5du+qNN97Q7t273XLhn9TUVC1ZskT9+/dXnTp1NH/+fJe2/+CDDxQeHn7VOQAAgHehz7NOaGio3n33XUO1kydP1i233GL4DpP/a8WKFWrevLl+//13Q/X333+/OnfunK+14BsYLgIAALZXpkwZffLJJ4Ym6i9evKibb75Z/fr1M3Q1z3379mnYsGFq27atTpw4YSjPtGnTDP3R31cFBAToq6++UokSJZzWxsXF6a677lKbNm307bffKjMz0+k2586d02uvvaYaNWq4NCz09ttvKyIiwnA9AADwfvR51jt9+rQ++OAD9e3bV+Hh4apbt67uuusuvfzyy1q4cKE2bNigI0eOKC4uTmlpacrJyVFWVpZSUlJ09uxZ7d69Wz/++KPefvtt3XPPPapZs6YiIiL0zDPP6NixYy5lKVWqlL788ksFBgaa82QBAEC+Pfvss2rTpo2h2vnz56tWrVqaMWOGEhIS8qxNTU3Vp59+qjp16hj+A3xERESBHACXpODgYM2fP9/QVWVTUlI0dOhQdenSRZGRkU6veHrs2DE99thjatSokeGrmj711FPq2LGjoVoAAOC76PWsk52drV9//VWPP/64GjVqpJIlS+qGG27QY489ppkzZ+rnn3/Wrl27FBMTo6SkJGVmZsrhcCg9PV1xcXGKjo7W+vXrNW/ePE2YMEHXX3+9Spcurd69e+vbb79VVlaWS3nGjh2rW2+91aRnCwAAPI0+zzq33HKLHnroIUO1S5YsUa1atfTUU0/pyJEjTusdDod+/fVX9erVSzfccINOnjxpaJ2IiAi9/fbbhmrhu/wcV3svLAAAgAJi/PjxmjJlikvbREREqH379qpfv77Cw8Pl5+eny5cv68CBA9qwYYN27drl0v6GDBmizz//3KVtXHHs2DFVq1bNaV2nTp20atUq03JI0uLFi9WnTx+Xbs1avHhxdejQQY0aNVKVKlVUtGhRZWdn6/Lly4qOjtamTZu0detWQ3cq+ruxY8cW6A+cAADYHX3eX9zV5w0dOjRfV7a3SkhIiFasWKG2bdt6OgoAAMjFyZMn1aRJE128eNHwNiEhIerUqZOaNWumSpUqKSwsTElJSYqJidHWrVu1atUql66IGhISog0bNqhx48b5eQpOGe2ZIiMjTb3i53vvvWf4iq9/qFy5sjp16qRGjRqpVKlSKlSokOLi4nT48GFt2rRJmzdvdum4XocOHRQZGcldiwAAsAl6vb+4o9czeuzPk/r166eFCxfK359rnQMAUJDR5/3F7GN6mZmZ6ty5s9avX294Gz8/P9WvX19t27ZVRESESpUqpaCgIKWkpOj06dPau3ev1qxZo3PnzrmUpXTp0lq/fn2Bv5AmJC7bCQAA8P9effVVnTp1Sl9++aXhbQ4ePKiDBw+6Zf2uXbtq9uzZbtmXL+jdu7c+/PBDjRgxwvCJCPHx8VqyZImWLFnithyDBw/WW2+95bb9AQAA70OfZy/h4eFasmSJ4SunAQAAz6hcubJ++ukndevWzfDJA6mpqVq2bJmWLVt21esXKlRIX3/9tWknIXiTBx54QMePH9frr79ueJuTJ0/qs88+c8v6DRs21Pfff89gEQAANkKvZy933323Pv74YwaLAACwAfo86xQqVEiLFy/W9ddfr507dxraxuFwaM+ePdqzZ4/bchQvXlyLFy9msMgm6OgBAAD+n7+/vz799FP169fP8rXbt2+vRYsWKTg42PK1Pen+++/XBx984LEDzSNHjtTnn3/OgW4AAAo4+jz7aNy4sdavX89gEQAAPqJly5ZasmSJihYtaum6hQoV0pdffqmbb77Z0nU96bXXXtPYsWMtX7dOnTr65ZdfFB4ebvnaAADAs+j1Cr7AwEC99NJL+uSTTxQYyDXOAQCwC/o864SHh2vlypW67rrrPLJ+2bJlFRkZqdatW3tkfViPsygBAAD+JjAwUAsXLtSTTz5p2ZrDhg3TihUrFBoaatma3mT48OFatmyZSpUqZdmawcHBmjFjhmbOnMlgEQAANkGfV7AFBgZq3Lhx2rRpk2rXru3pOAAAwAUdO3bUhg0bVL16dUvWK1u2rH799Vf179/fkvW8ybRp0zRt2jTLTvy8+eabtXHjRpUrV86S9QAAgPeh1yu46tatq7Vr1+qZZ56Rn5+fp+MAAACL0edZp1SpUlq7dq1uv/12S9dt27attmzZoiZNmli6LjyLMykBAAD+h7+/v1599VV99913qlixomnrlCxZUh999JFmz55t+yvZ33DDDdq2bZslV5Zo06aNNm3apAceeMD0tQAAgHehz3Ofjh07qlq1ap6OIT8/P91yyy3avXu3pk6dWmBfbwAACroGDRpoy5YtuuOOO0xd56abbtLWrVvVvn17U9fxZmPHjtWvv/5q6kB2SEiIXn75ZS1evFjFixc3bR0AAOAb6PWuXvHixdWjRw8FBQV5OorKlSun6dOna9euXWrVqpWn4wAAAA+iz7NOaGiovvjiC33wwQem3yG8SJEimjRpklavXq3KlSubuha8D8NFAAAAuejbt68OHDigxx9/3K1Xmw8KCtJ9992nqKgo3X///W7br6+rUqWKfvzxRy1evFgNGzZ0+/7r1aunefPmad26dWrcuLHb9w8AAHwHfd7Vu/fee3XkyBHt2LFDL7zwgq677jpL1y9evLhGjRqlvXv3atGiRapTp46l6wMAAPcrWbKkPvvsM0VGRqpZs2Zu3XdERIS+/vpr/fTTT6pUqZJb9+2LOnTooF27dmny5MluPRnB399f/fv31969ezVhwgTuGA4AAP5Er3d1SpYsqaVLl+rChQuaP3++Bg8ebPkQd/PmzTVnzhwdP35cY8aMsexumAAAwLvR51lrxIgROnjwoMaMGaOQkBC37js4OFj33XefDhw4oIkTJ9Lv2ZSfw+FweDoEAACAt7t8+bI+/PBDzZs3T3v37s3XPmrUqKHbb79dDzzwgCpUqODmhMYcO3bM0BXmO3XqpFWrVpkfKA+rVq3S+++/r2XLlikhISFf+yhevLh69+6tO++8U927d5efn5+bUwIAAF9Hn+c+Z8+e1dq1a7Vu3TqtW7dOO3bsUFZWltv2X6tWLXXq1El9+vRR9+7dveJKrQAAwDyrV6/WjBkztHTpUiUlJbm8feHChdW1a1eNHj1aN998s0eOCw0dOlRz5851WhcZGanOnTubH+gKUlJSNHfuXM2ZM0dbtmxRfv50XLFiRd1222166KGHVKNGDRNSAgCAgoZe7+plZmZq69atfx6LW79+vc6dO+e2/YeGhqpNmzbq3r27+vfvr+rVq7tt3wAAoOCiz7POxYsXNWvWLH3++efavXt3vvfTtGlT3XbbbRo2bJjKlSvnxoTwRQwXAQAAuOj48eP6+eeftXPnTu3bt0/Hjh1TQkKCEhMT5XA4FBYWprCwMFWuXFn16tVTw4YN1a1bN66mnk9ZWVl/HhTft2+foqKiFBMTo8TERCUnJ8vPz0+hoaEqXry4qlSpomrVqqlx48Zq06aNmjVrxkmnAADAMPo890pJSdGePXt0+PDhP7+OHDmiy5cvKykpSUlJSUpMTFR2draCg4MVHBysokWLqmzZsipXrpwqV66s2rVrq06dOmrWrBkHswEAsKmMjAytWbPmz2NDBw4c0IULF5SYmKiUlBQVLlxYYWFhCg8PV+3atVWvXj21atVKXbt2VZEiRTwd36ecO3dOy5cv1/bt27Vv3z4dOXJE8fHxSkxMVFZWlooWLaqwsDBdc801qlu3rurXr6/rr79eTZo08XR0AADgo+j13Ovo0aOKior6x/G4M2fOKDEx8c/jcSkpKQoMDFRQUJAKFy6sUqVKqVy5cipfvrxq1KihOnXqqH79+mrcuDFXqwcAAPlGn2et06dP65dfftHOnTu1f//+fxzXS09PV0hIiEJDQ1W2bFlVq1ZNERERatWqldq2batrrrnG0/HhRRguAgAAAAAAAAAAAAAAAAAAAAAAAGzK39MBAAAAAAAAAAAAAAAAAAAAAAAAAHgGw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATTFcBAAAAAAAAAAAAAAAAAAAAAAAANgUw0UAAAAAAAAAAAAAAAAAAAAAAACATQV6OgAAAAAAAAAAAAAAAAAAAAAAADDu3LlzWrJkidatW6c9e/bo+PHjSkhIUHZ2tkqUKKEKFSqoSZMmat++vfr166fw8HBPRwbgxfwcDofD0yEAAAAAAAAAAAAAAAAAAAAAAEDeVq1apalTp2rp0qXKyckxtE2hQoU0YMAAvfDCC4qIiDA5IQBfxHARAAAAAAAAAAAAAAAAAAAAAABe7OTJk3rggQe0ZMmSfO8jICBAjz/+uCZNmqRChQq5MR0AX8dwEQAAAAAAAAAAAAAAAAAAAAAAXuqHH37Q3Xffrfj4eLfsr1mzZlq8eLEqVKjglv0B8H3+ng4AAAAAAAAAAAAAAAAAAAAAAAD+bebMmbr11lvdNlgkSVu3blXbtm11+PBht+0TgG/jzkUAAAAAAAAAAAAAAAAAAAAAAHiZTz/9VEOHDpVZp/xXq1ZNGzduVNmyZU3ZPwDfwZ2LAAAAAAAAAAAAAAAAAAAAAADwIosWLdK9996b52BRSEiI7r77bn399dc6duyYkpOTlZKSokOHDmnu3Lnq0qVLnmscPXpUvXv3VkZGhrvjA/Ax3LkIAAAAAAAAAAAAAAAAAAAAAAAvcfz4cTVu3Fjx8fG51tx+++168803Vb58+Tz3tXLlSt1///06duxYrjXjxo3T1KlT8xsXQAHAcBEAAAAAAAAAAAAAAAAAAAAAAF4gOztbnTt31tq1a6/4uJ+fn6ZNm6aHHnrI8D5jY2PVs2dP/f7777nuMzIyUp06dcpXZgC+z9/TAQAAAAAAAAAAAAAAAAAAAAAAgDR9+vRcB4sk6a233nJpsEiSypQpo6VLl6pOnTpXfNzhcOjBBx9Udna2S/sFUHBw5yIAAAAAAAAAAAAAAAAAAAAAADwsKSlJ1atXV2xs7BUfv/322/XFF1/ke/979uxRixYtlJaWdsXHZ8yYoQceeCDf+wfgu7hzEQAAAAAAAAAAAAAAAAAAAAAAHvbmm2/mOlhUqlQpzZgx46r236BBA73wwgu5Pv7KK68oIyPjqtYA4JsYLgIAAAAAAAAAAAAAAAAAAAAAwIPS09P19ttv5/r4xIkTVbJkyate59FHH1WNGjWu+NipU6f02WefXfUaAHwPw0UAAAAAAAAAAAAAAAAAAAAAAHjQDz/8oMuXL1/xseLFi2vEiBFuWScoKEgTJkzI9fF33nnHLesA8C0MFwEAAAAA8rRq1Sr5+fkZ/gI8ge9TAPgn3hcBAADgbebOnWuoN50xY4ano17R8ePHtWDBAj377LO67bbb1K5dO1WvXl3h4eEKDQ1VQECA4f77k08+8fTTAQAAAAB4obw+L95xxx0qUqSI29a68847VbFixSs+tnPnTu3cudNta3mbnj17Ov3sHhoaqmPHjnk6KmCpQE8HAAAAAAAAAAAAAAAABdelS5f0+OOPO62rW7euRo4caUEiY7Zt26ZPP/1US5YsUXR0tKfjAAAAAAAKsPj4eC1fvjzXx91116I/BAUFaejQoZo8efIVH//000/1xhtvuHVNbzFlyhQtX75c2dnZudakpKTooYce0uLFiy1MBngWw0UAAAAAAAAAAAAAAMA048eP14ULF5zWTZ06VYGBnj+NYenSpXrhhRe0efNmT0cBCpSYmBjt2bNHUVFRioqK0okTJ3T27FnFxMQoMTFRaWlpSk9PV1BQkEJCQlS4cGGFh4erYsWKuuaaa1S1alU1atRIjRo1UvXq1bkTLwAAAAqUVatW5Trs0rRpUzVu3Njta+Y1XPTDDz8U2OGievXqafjw4Zo5c2aedUuWLNH333+vvn37WhMM8DDPH5UDAAAAAAAAAAAAAAAF0rp16zR79myndd26ddPNN99sQaLcnT59WiNGjNBPP/3k0RxAQZCZmanff/9dq1ev1qZNm7RlyxadPn3a0LZpaWlKS0uTJJ09e1Z79+79V014eLi6dOmibt26qWfPnqpcubJb8wMAAABWW7lyZa6P9ejRw5Q1a9Wqpbp162r//v3/euzw4cM6dOiQatWqZcranvaf//xHn3/+uRITE/OsGzt2rLp3764iRYpYlAzwHIaLAAAAfFDnzp21evVqj61fqFAhBQcHKzg4WEWLFlWZMmVUtmxZlS9fXhEREYqIiFC9evUUERHBVeMA2IpV789BQUF/vg///atYsWIqW7bsv76qVq2qOnXqKDw83PRsAAAAyJ2nP8+72z333KNPPvnE0zEAAF4sJydHY8eOlcPhcFr7yiuvWJAod2vXrlXfvn118eJFj+YAfNnBgwf1008/aenSpVq3bp2Sk5NNW+vSpUv65ptv9M0338jPz0+dO3fWPffco0GDBqlw4cKmretrPvnkEw0bNszTMXxKp06dtGrVKk/HAAAANpRXD9KlSxfT1u3Zs+cVh4sk6Zdffimww0Vly5bVo48+qhdffDHPupMnT+rVV191WgcUBAwXAQAAwGWZmZnKzMxUUlKSLl68qOPHj1+xrmTJkmrdurW6dOmiPn36KCIiwuKkAFAwZWRkKCMjw+kVdP5XmTJlVKdOHdWpU0f16tVTu3bt1KRJEwUGcngAAAAAAAC438cff6xt27Y5revfv7+aN29uQaIr+/nnn3XLLbcoPT3dYxkAX+RwOLR582YtXLhQixYt0uHDhz2WIzIyUpGRkXryySf12GOPafTo0QoLC/NIHgAAAMBVaWlp2rdv3xUfCwoKUrt27Uxbu2PHjpo6deoVH9u0aZMeeOAB09b2tHHjxmnGjBlOLzQydepU3Xfffbr22mstSgZ4hr+nAwAAAKDgunz5spYuXarx48erdu3aql+/vqZMmcKVHwHAQ2JjY/Xbb7/po48+0qOPPqqWLVuqRIkS6tatm1544QVFRkYqKyvL0zEBAAAAAEABEB8fr4kTJzqtCwgI0KRJkyxIdGW7d+/WgAEDGCwCXLBjxw49/vjjqlq1qlq3bq033njDY4NF/+vcuXN68sknVaNGDc2dO9fTcQAAAABD9u/fr+zs7Cs+1qJFC4WEhJi2dl6DS5s3bzZtXW9QrFgxPfnkk07rUlNT9cQTT1iQCPAshosAAABgmX379mn8+PGqVKmSRo4cqdOnT3s6EgDYXnJyslauXKn//Oc/uv7661WhQgWNGDFCv/zyC4NGyLdPPvlEfn5+hr6qVq3q6bjAv/A9DACA7+H3N+B9Xn75ZZ0/f95p3ZAhQ1S3bl0LEv1bZmam7rzzTpfvDg3YUXx8vKZOnapGjRqpSZMmeuONN3TixAlPx8pVbGyshg4dqk6dOunYsWOejgMAAADkaffu3bk+Vr9+fVPXDg8PV+XKla/4WFRUlNLS0kxd39MefPBBlStXzmndwoULtX79egsSAZ7DcBEAAAAsl5aWpg8//FC1atXSs88+q4yMDE9HAgD8vwsXLuijjz5S9+7dVaFCBT388MM6evSop2MBAAAAAAAfcvLkSb377rtO6/z9/fXMM89YkOjK3njjDe3atctj6wO+5Pfff9cTTzyR50mP3mjNmjVq2rSpFi9e7OkoAAAAQK6ioqJyfaxGjRqmr9+gQYMr/rvD4VB0dLTp63tSSEiIxo0bZ6h2/PjxJqcBPCvQ0wEAAABgX6mpqXrppZf0/fffa968ebruuus8HQkA8DcXLlzQO++8oxkzZujWW2/V448/rlatWnk6FgAAAAAA8HLPPvusoSsbDxw4ULVr17Yg0b8lJiZqypQp+d6+RIkSatq0qSpWrKjixYurWLFi8vc3dn3Xxo0b53tdAK67fPmy+vTpo9dee01PPPGEp+MAAAAA/3LmzJlcH6tZs6bp6+e1xqFDh0y/e5KnjR49Wq+99pouXryYZ926deu0aNEi9enTx6JkgLUYLgIAAIDH7dmzR23bttVnn32mfv36eToOAOB/ZGdn6+uvv9bXX3+tLl26aNq0aWrYsKGnYwEAAAAAAC+0e/duzZs3z2mdn5+fJk6caEGiK5s9e7YuXbrk0jYlS5bUvffeq/vuu09169Y1KRkAMzgcDo0fP14JCQmaNGmSp+MAAAAA/5DXcJEVdy6qUqVKro8dP37c9PU9rWjRonr44Yf13HPPOa19+umn1atXLwUEBFiQDLCWscvmAAAAACZLTU3VgAEDNHPmTE9HAQDkITIyUk2bNtUjjzyi+Ph4T8cBAAAAAABe5rnnnlNOTo7TuptuusmjVz6eO3euS/UdO3bUvn37NHXqVAaLAB/20ksv6ZVXXvF0DAAAAOAfzp49m+tjlSpVMn39vNaIjY01fX1vMGbMGIWGhjqt279/v7788ksLEgHWY7gIAAAAXsPhcGjMmDGaP3++p6MAAPKQlZWladOmKSIiQt99952n4wAAAAAAAC+xfft2ff/994Zqn3jiCXPD5CE6Olrbt283XF+/fn39/PPPKl++vImpAHsoXLiwWrdurYceekjvvvuuFi9erD179ujMmTOKj49XVlaW0tLSdOnSJe3du1dLly7VK6+8or59+yosLMwtGZ555hl9/fXXbtkXAAAA/uu9996Tn5+f4a833njD05GvWlZWlpo2bWr4OQcFBWnnzp1X3Nfly5dzXado0aJmPYU/lSxZMtfHLly4YPr63iA8PFzDhg0zVDtp0iRlZ2ebnAiwXqCnAwAAAMB8jRo1Uu/evd2yr6ysLKWnpyspKUmxsbE6ffq0Dh8+rLi4OLfsPycnR/fcc4/q1Kmj6667zi37BABvdbXvz2lpaUpLS1N6errS0tKUkJCgs2fP6uzZszp37pwyMzPdmPbfzp8/r379+mn8+PGaPHkyt/0GAAAAAMDmXnjhBUN1zZo1U+fOnU3NkpcVK1a4VD979mwFBweblAYo2AIDA9WqVSv16NFDN954o5o0aaLAwLxPVwoICFBwcLBKliypevXqqUePHpKkzMxMLVu2TO+9956WLVuW70wOh0NDhw5Vs2bNVK1atXzvBwAAAH9x9c60Bw4cMCmJdV5//XWXLlwxceJENW7c+IqPpaamXvHf/+iNzZbXcNGlS5dMX99bPProo3r//fedDg4dPHhQn3/+ue6++26LkgHWYLgIAADABpo0aaKXXnrJ1DVOnDihjRs3atmyZVq8ePFVXbUiIyNDQ4YM0datWxUSEuLGlADgXcx8f3Y4HDp37pz27Nnz59fWrVu1c+dOORwOt671+uuva/PmzZo/f77KlSvn1n0b1blzZ7c/LwDwZbwvAgXDPffco08++cTTMQAAMGTHjh364YcfDNU+8sgj5oZxYvXq1YZrmzRpopYtW5qYBih4/P391aFDBw0ZMkQDBgxQeHi4W/ZbqFAh9e7dW71799bmzZs1btw4rV27Nl/7Sk5O1r333qtff/1Vfn5+bsnnjYYOHaqhQ4d6NIOrr++cOXM8nhkAALiuQYMGLtVHRUWZlMQaBw4c0Isvvmi4vmnTppowYUKuj6elpV3x34sUKeJytvzIa5309HRLMniD6tWrq3fv3obuyvzSSy/pzjvvlL+/v/nBAIvw3QwAAAC3qFKligYOHKjZs2fr9OnT+vLLL12+Ksnf7d+/X2+99ZYbEwKAvfj5+al8+fLq1q2bHnnkEc2aNUvbt29XbGysFixYoJEjR7p1EGjVqlVq27atTp065bZ9AgAAAAAA3/Haa68ZqitTpoxuu+02k9PkbdeuXYZrBw0aZGISoGCpWLGiXnjhBZ04cUKrVq3SiBEj3DZY9L9atmypNWvW6O2331ahQoXytY9Vq1bp008/dXMyAAAAeypVqpTKly9vuN6X71yUk5Oj++67z/DQTVBQkObOnZvnHTxzGy4KDQ3NV0ZXBQUF5fqYnYaLJOmBBx4wVHfo0CF99913JqcBrMVwEQAAANwuKChIgwcP1q5duzRt2rR8333otdde08WLF92cDgDsrVSpUrrttts0c+ZMnTp1SosXL9aAAQPyPFho1JEjR9SlSxedOXPGDUkBAAAAAICvOHr0qBYuXGiodvjw4QoODjY5Ue6ysrJ08OBBw/VNmzY1MQ1QMLRt21YLFizQ8ePH9fzzz+uaa66xZF0/Pz89/PDDWrlypUqWLJmvffznP/9RZmamm5MBAADYkyt3L4qNjdWlS5dMTGOed999V+vXrzdc//zzzzt9bRwOxxX/Pb+D9K7Ka52MjAxLMniLbt26KSIiwlDt66+/bnIawFoMFwEAAMA0/v7+Gjt2rNasWaOyZcu6vH1CQoJmzZplQjIAgCQFBgaqV69eWrhwoaKjozV69OirHjI6fPiwunTporNnz7opJQAAAAAA8HZTp05Vdna20zp/f3+NHDnSgkS5O3PmjEuDBI0aNTIxDeDbunXrpsjISK1bt0633XZbnldiN1OHDh20YsUKlShRwuVtjx49qnnz5rk/FAAAgA25MlwkSVFRUSYlMc/Ro0f1zDPPGK5v0aKFnnzySad1uQ33pKamGl7rauT1OdkdFyr1JX5+fho1apSh2s2bN2vVqlXmBgIsxHARAAAATNe8eXMtW7ZMRYsWdXnb2bNnm5AIAPC/KlWqpPfee0/R0dEaPHjwVe3r4MGDuvXWW7niJwAAAAAANhAXF6e5c+caqu3WrZuqVKlicqK8xcTEGK4NCAhQuXLlTEwD+Kbrr79eGzdu1C+//KLOnTt7Oo6k/95lbMGCBQoICHB5Wy50BwAA4B7169d3qf7AgQMmJTHPiBEjlJycbKg2ODhYn3zyiaEeNbcBHquGi/K6O5En7z7sKXfeeafhu0a9/fbb5oYBLMRwEQAAACzRpEmTfH2YOnjwoHbv3u3+QACAK6pUqZK+/PJLfffddypfvny+97Np0yaNHz/ejckAAAAAAIA3mj17tuETq4YNG2ZyGucuXLhguDY/F8wCCrLGjRtr6dKlWrlypVq1auXpOP9yww036Omnn3Z5uw0bNujgwYMmJAIAALAXV+9c5GvDRR9//LFWrFhhuP4///mP6tWrZ6g2t8+fVg0Xpaen5/pY4cKFLcngTcqUKaPevXsbql28eLGOHTtmbiDAIgwXAQAAwDL33XefWrZs6fJ2v/76qwlpAAB56du3r/bs2aOOHTvmex9vv/22vv/+e/eFAgAAAAAAXiUnJ0czZswwVFuiRAndeuutJidyLiUlxXAtw0XAX9q0aaNt27apR48eno6Sp4kTJ6pGjRoub/fDDz+YkAYAAMBe6tevLz8/P8P1UVFRJqZxrzNnzmjcuHGG61u1aqXHH3/ccH14ePgV/z0nJyfPwR93iYuLy/WxIkWKmL6+N7rvvvsM1blybATwdgwXAQAAwFJPPfWUy9usXbvWhCQAAGdKlSqln3/+WXfccUe+9zFs2DDFxsa6MRUAAAAAAPAWy5cv15EjRwzVDhgwQMHBwSYncs6Vk7ICAwNNTAL4ltDQUPn7e/9pRsHBwZo4caLL261atcr9YQAAAGwmLCxMVapUMVzvS3cuGj16tOLj4w3VFi5cWHPnzlVAQIDh/ZcuXTrXx2JiYgzvJ7/yustvmTJlTF/fG3Xv3t3wc589e7bS0tJMTgSYz/s/9QMAAKBA6dmzp4oXL+7SNr50pRIAKGiCg4P12Wefafjw4fnaPi4uLl9/zAcAAAAAAN5v1qxZhmtvv/12E5MYl5WV5ekIAEw2ZMgQlSxZ0qVtfvvtNzkcDpMSAQAA2EeDBg0M10ZHRyszM9PENO4xf/58l+50+dJLL6l27dourVGxYsVcHzt58qRL+8qPixcv5vpY+fLlTV/fGwUGBmrAgAGGai9duqTvvvvO5ESA+RguAgAAgKWCgoLUsWNHl7Y5fPiwSWkAAEa9//776tmzZ762nTVrlnbu3OnmRAAAAAAAwJNiY2O1ePFiQ7Xly5dX586dzQ1kEMMDQMEXFBSkfv36ubRNQkKCzpw5Y1IiAAAA+6hfv77h2qysLMN3w/WUCxcuaOzYsYbr27Ztq0cffdTlda699tpcHztx4oTL+3PV8ePHc32sXLlypq/vrQYPHmy49uOPPzYxCWANhosAAABguebNm7tUn5qaqtTUVJPSAACMCAgI0FdffaVGjRq5vG1OTk6+DqACAAAAAADvNW/ePMNXmO7fv7/8/Tk9AYB1unbt6vI2hw4dMiEJAACAvbhy5yJJOnDggElJ3OPhhx9WbGysodqQkBB98skn+fr8W61atVwfs+LORdHR0bk+VqlSJdPX91YdOnTI865Sf/frr7/q6NGjJicCzBXo6QAAAACwn+rVq7u8TVJSkkJCQkxI4z6ZmZnatm2bNm/erOjoaB09elTHjh1TXFyckpOTlZycrMzMTIWGhv75dc0116hatWqqXr26GjRooHbt2qls2bKefipe4+zZs1q7dq327NmjPXv26NChQ4qPj1diYqISExMVGBioIkWKKCwsTJUqVVK1atVUu3ZttW3bVq1atVJoaKinn4LbZWRkaO3atdq8ebP279+v/fv36/z580pISFBiYqIKFSqksLAwhYWFqWTJkqpdu7bq1aun+vXrq0OHDgoPD/f0U4APCw0N1bx589SiRQtlZGS4tG1kZKTWrFnj8t3r7CAnJ0d79+7Vrl27FBUVpUOHDuns2bM6f/68Ll68qLS0NKWnpyszM1PBwcEqUqTIP77+eA+sWrWqrr32WlWtWvXPr6CgIE8/PdujP3C/mJgYrV+/XlFRUTp48KAOHjyoCxcuKCkpSUlJSUpOTlahQoVUunRpValSRREREbruuuvUv39/W//xoyDg58m96LVRUGRmZurAgQPau3evjhw5oiNHjujkyZOKjY3VhQsXlJCQoIyMDKWnpyswMFAhISEqXLiwwsLCVLFiRVWqVEmVK1dWgwYN1LRpU9WuXVsBAQGefloec+jQIW3evFmHDx/WsWPHdPz4cZ0+fVrJyclKSUlRSkqKMjMzFRQUpODgYBUvXlylS5dWuXLl/ny/rVevnq677jpVqFDB00/Htvid6X70oFc2b948w7V9+vQxMQnywnuCe/F+4DtatGjh8jZWXBEeyEtaWpp+//13bd++XUePHtWRI0d07NgxxcfH//menZGRoZCQEBUpUkRFixbVNddco+rVq6t69epq0qSJ2rVrx9+CfADHZZzj5yF3HAsxF/3e1XN1uCgqKsqkJFdvyZIl+uKLLwzXT548WbVq1crXWnm9bvv378/XPl2R13BRvXr1TF/fW/n5+al379764IMPnNY6HA598cUXeuaZZyxIBpiD4SIAAABYrmTJki5v4+pJ7FY5c+aMFixYoB9++EGbNm1SSkqK020SEhKUkJAgSTp8+LBWr179j8dr166trl27avDgwWrfvr38/PxMye6tTpw4oc8++0w//PCDNm/eLIfDkWttVlaW0tLSdOnSJR0/flzr1q3787HAwEB169ZNgwYN0oABA1S0aFEr4psiOztbixcv1ieffKKVK1cqKSkp19qsrCylpqbq/PnzkqQtW7b8+VhAQIDatm2r3r1768477+REL+RLo0aN9Nxzz2nixIkub/vuu+8yXPT/Tp8+rUWLFmnJkiVav3694uPjDW33x938Ll686LQ2KChITZo0UevWrf/8qlq16lUmhxH0B+73+++/a+HChfr555+1c+dOp/XZ2dk6deqUTp06pfXr10uSihcvrqFDh5qcFO7Gz5N70WujIDh+/LjWrl2rdevWacOGDdq3b5/hYwYZGRnKyMhQfHy8zp07p8OHD/+rpkiRIurUqZNuvvlm9ezZM88rhhYEZ86c0XfffaelS5dq48aNhvpM6b8neaWlpSk+Pj7Xk3ArVqyojh07qlOnTurRowe9qMn4nel+9KB5i4qK0o4dOwzVFi9eXJ07dzY1D/6J9wT34v3AN1177bUKCAhQdna24W0SExNNTARc2a5du7RgwQKtXLlS27ZtM/T55o8T3M+fP68jR47ot99++/MxPz8/1a1bV71799aQIUPUqFEjM+PDBRyXcY6fhyvjWIj56Pfcq27dui71Yd5656KEhASNGjXKcH2HDh308MMP53u9vIaLNm/enO/9GpGRkaF9+/Zd8bHSpUurTJkypq7v7fr27WtouEiSvvzyS4aL4NscAAAA8DmdOnVySDL8dc8993g68j+sWLHCpfySHAkJCZ6O/aecnBzH999/7+jSpYvD39/f5efiylelSpUczz77rOPChQueftr/cM8997j9+2/Xrl2Ou+66yxEYGOj21zE8PNzxwgsvOC5fvmzq6+JuaWlpjilTpjgqV67s9tckODjYcd999zn279/vNEdkZKRL+7YzX39/NiorK8sRERHh8vddYGCg4+TJk6Zk8oXv06ysLMd3333n6Natm8PPz8/U3x+5fV1zzTWOBx980LF69WpHdnZ2vp+LK78HPP1lFfoD9/cH6enpjk8//dTRsmVLt7xuc+bMyVdWT3/lly+8L+bG7j9P9NoFm136RXdKS0tz/Pjjj44HH3wwXz3o1X517tzZsWDBAkdGRoanXwq3SU1NdXz44YeONm3aWNqXNmzY0PH88887Dh8+nK/cdvj97Sq7/850OHyrBy1oXnjhBcOvw6BBg0zPc/ToUY//7Hv6+8Hu7wm8H+BKSpYs6dJ/p1dffdXTkQskfl7+7fLly45XXnnFUbduXdN//9SvX9/x8ccfF6jPNGbiuIz1+Hn4N46FXBn9nm9x5Xu3TZs2no57RcOHDzf8HIoUKZLvY15/l9vr5u/v74iPj3fDs7qyrVu35vrcOnXqZNq6viI9Pd0RFhZm+Pth586dno4M5Ju/AAAAAIulpaW5VB8QEKCwsDCT0rhm4cKFaty4sfr27avIyEjl5OSYut6pU6c0adIkXXvttXr88cd14cIFU9fzhLi4OI0YMUKNGzfWvHnzlJWV5fY1Ll26pBdeeEF16tTRwoUL3b5/M3zzzTeqW7eunnjiCZ08edLt+09PT9fHH3+s+vXra9y4cYauXgr8ISAgQM8//7zL22VlZen99983IZH3++6779SgQQPdeuutWrFiRZ5XJDTT6dOnNX36dHXq1EmVKlXSQw89pOPHj3skS0FCf+B+v/zyixo2bKi7777b9Kuxwbvw8+Re9NrwVenp6fr22281ZMgQlSlTRj179tT06dN18OBBy7OsWrVKAwcOVK1atfTZZ595rI9zh4sXL+r5559XlSpVNGLECG3YsMHS57N792795z//Uc2aNdWhQwfNnz9fmZmZlq1f0PA70/3oQV3jyu/9G264wcQkkHhPcDfeDwqO0NBQl+rN+MwE/F1MTIzGjx+vKlWq6Omnn9b+/ftNX3Pv3r267777VKNGDX344Yc+/ZnG13BcJm/8PPwTx0KsRb9nvvr16xuujYqKMjFJ/kRGRmrWrFmG61999VXVqFHjqtdt167dFf89JydHW7Zsuer95yavn4MWLVqYtq6vCAoKUqdOnQzXL1iwwMQ0gLkYLgIAAIDl4uLiXKovXry4OUFccOTIEd1www0aOHCgdu/ebfn6ycnJeuONN1S3bl3NmzfP8vXNsmjRItWrV08fffSRJQclz507p4EDB+ruu+9Wenq66evlR2JiooYMGaIBAwbo6NGjpq+Xk5OjN998U40aNfrzlu2AEYMHD1a9evVc3m7u3LkmpPFep0+fVo8ePdSvXz8dOHDA03H+4ezZs5o+fbo2bNjg6Sg+i/7A/eLi4jRo0CB1797dI380hefw8+R+9NrwRVFRURo1apQqVKig/v3768svv1RiYqKnY0mSjh8/rrvuukvNmzf3yPvU1cjOztb06dNVq1Ytvfjii4qNjfV0JK1du1a33367Syea4L/4nel+9KCui46O1t69ew3Xd+nSxcQ09sZ7gnvxflDwJCUluVTv6jASYFR2drbefvttRUREaMqUKR75nHPy5EmNHDlS7du3d+n3OPKH4zK54+fhnzgWYi36Pes0aNDAcO2lS5e84njVH1JSUjR8+HDD79+dO3fWgw8+6Ja1O3bsmOtjK1eudMsaV7Js2bJcH3NlqKYgc+XYxqJFi0xMApiL4SIAAABYztWBiQoVKpiUxJiZM2eqQYMGWrFihUdzSNKFCxd0991366abbtLFixc9HeeqvPjii7r11lt19uxZy9eeN2+eunTposuXL1u+dl727Nmjpk2b6ssvv7R87ejoaF1//fVcQQWG+fv7a9y4cS5vd/r0aW3bts2ERN5nxYoVatiwoZYvX+7pKDAB/YH7HTx4UK1ateJ3kQ3x8+R+9NrwVQsXLtQHH3zg1d8/27ZtU8uWLTV9+nRPRzFk+/btuu666/TQQw955et6/vx5T0fwKfzOdD960Pxx5SSZKlWqqHr16iamsS/eE9yL94OCJycnRwkJCS5tExYWZlIa2NmuXbvUokULPfroo14xMLB+/Xo1bdpUH3zwgaejFFgcl8kdPw//xrEQ69DvWcuV4SJJXnWRxokTJyo6OtpQbdGiRTV79mz5+fm5Ze0ePXrkuq9vvvnGLWv8r8zMTP36669XfMzf31/t27c3ZV1f48pw0Z49eyy5mDBgBoaLAAAAYDlXb9XbvHlzk5LkLTMzU6NGjdLo0aOVmprqkQy5WbZsmVq2bKk9e/Z4OorLMjIydPvtt+v555/36C3UN2zYoJtvvlnJyckey/B3GzduVMeOHXX48GGPZUhPT9fgwYM1bdo0j2WAbxk4cGC+rua5ePFiE9J4l7lz5+qmm27y6j8GIX/oD8yxZs0atWrViisF2gw/T+5Hrw1YIy0tTQ899JBGjx6tnJwcT8fJ1Xvvvac2bdr43HsZ/o3fmeagB80/Vz7Xd+7c2bwgNsV7gvvxflAwHTlyxOVezdMXu0PBM2/ePLVu3Vrbt2/3dJR/yMjI0KhRozRixAhlZGR4Ok6BwXGZvPHz4Nt85VhIbuj3rOfqcFFUVJRJSVyzceNGl86XeP3111WtWjW3rV++fPlcz5GKiooy5S5iP/zwQ64Dn82bN1eJEiXcvqYvaty4sUqWLGm4/ocffjAxDWAehosAAABgqaysLP32228ubdOyZUuT0uQuJSVFN954o1dftevIkSNq06ZNrlcQ8UbZ2dkaMmSI5s+f7+kokv57YGjgwIEePcAvSatWrVK3bt28YgjB4XDokUce0bx58zwdBT6gaNGiGjBggMvbFfThom+++Ub33nuvsrKyPB0FbkZ/YI6dO3eqd+/eiouL83QUWIifJ/ej1wasN3PmTN1+++3Kzs72dJR/yMzM1B133KExY8YoPT3d03FwlfidaQ560PxLTk7WunXrDNczXORevCe4H+8HBVd+7p5eq1YtE5LAjnJycjR27FjdfffdXjcI+ncfffSRBgwYwECFG3BcJnf8PBQs3nosJC/0e54RERGhoKAgw/XecOeijIwM3XfffYYH6Lp27apRo0a5PUf//v1zfezrr792+3p5fb4cPHiw29fzVf7+/urYsaPh+uXLl5uYBjAPw0UAAACw1LJly3Tp0iWXtrF6uCg1NVW9e/dWZGSkpevmR1JSknr37q01a9Z4OoohI0aMMO1Wzfn1008/aerUqR5bf8+ePerbt6/XXT3s/vvvd3kQEPZ05513urzNtm3bFBMTY0Iaz9u5c6fuuOMOn7xqG/JGf2COY8eO6aabblJCQoKno8BC/DyZg14b8IwFCxbo0Ucf9XSMP6WmpuqWW27RF1984ekocAN+Z5qDHvTqrF69WpmZmYbru3TpYmIae+E9wf14PyjY1q5d61J9oUKF3HrVedhXdna2hg4dqnfffdfTUQxZvHixbrvtNgYqrhLHZa6Mn4eCyduOheSFfs9zAgMDVbt2bcP13jBc9NJLL2nfvn2GasPCwvTxxx/Lz8/P7TnuuOMO+ftf+fT+2bNnu/UCl3v27NGKFSuu+Ji/vz/DRf/DlWMca9as4fcJfFKgpwMAAADAXl5//XWX6qtXr65mzZqZlObfsrOz1a9fP7ddVbFKlSqqW7euKleurLCwMAUFBSkxMVGXL19WVFSUDhw4oJSUlKtaIyUlRT179tTKlSs9cpcnoyZNmqTZs2e7tE2RIkUUERGh6tWrq2zZsgoNDVWhQoWUnJys2NhYHTlyRLt27VJaWtpVZXvmmWfUs2dP1fu/9u4zuoqq/fv4L70QOgkQ6cVQIogC0luQpiBFRYqCglgQRRFULIgNVFBEUVEREJSuKErvRXoTkCq99xIIqed54WO5/5Jk5pyZU3K+n7VY676da8++CGdmdvaZa+9KlVw6j1knT57UXXfdpUuXLrl8rrx586pixYoqX7688ubNq6ioKCUlJeny5cs6cOCAdu7cqVOnThk+X0pKitq3b6/t27e7nBtytnr16ik8PNzUdehwOLRu3Tq1adPGxszcLzk5WV26dLFkdfjQ0FCVLl1aJUqUUHR0tPLnz6/w8HCFhoYqPT1dycnJSkpK0rlz53T69GmdOHFCBw8eZLckmzA+sEdaWpruvfdenThxwlS78PBwlS9fXmXLllXhwoWVK1cuhYaGKjExUVeuXNHBgwe1Y8cOnT171qbM4QquJ3sw1gb+VLBgQRUvXlyFCxdWkSJFlCtXLoWHhyssLEwpKSlKTk7W2bNnderUKf3xxx86fPiwJf1+/PHHio+PV69evSw5n7OuXr2qFi1amH6RNisREREqXbq0ypQpoyJFiigyMlKRkZFKS0tTUlKSLl26pGPHjunYsWPav38/41EL8cy0B2NQ1y1atMhwbMmSJVWqVCn7kvEj3BOsx/0gZ3M4HJo5c6apNtWrV1dwMK9RwTXp6el68MEHNWnSJEvOFxERobi4OBUvXlxFixZVZGSkIiIidP36dV25ckWHDh3S3r17dfDgQZf6+emnn/TEE09ozJgxluTtb5iXuTGuB/fw97mQrDDe87zKlStr27ZthmJ3795tczZZ++233zR06FDD8cOGDVPJkiVtyaVYsWJKSEjQggUL/nPs6NGj+u677/TQQw9Z0teAAQMy3eWuWbNmKlq0qCX95BRmiouuXr2q1atXq2HDhjZmBFiP34oBAADgNpMmTTK9E0qPHj1sWekjMy+++KLmzp3rdPuAgAAlJCSoS5cuat68eba/aKelpWnVqlWaNWuWxo0bp3PnzjnVb2Jiojp06KCNGzcqJibGqXPYadmyZRo8eLCh2EqVKumBBx5Q8+bNVa1aNYWEhGQZn5KSolWrVmnSpEmaOHGikpKSTOeXmpqq5557zqV/e7MyMjLUqVMnlyZwY2Nj1aNHD919992qUaNGttfKrl27NHv2bI0ZM8bQijtnz55V79699dRTTzmdI3K+8PBw1a9f/4aTm1nZuHFjjisu+vjjj7Vjxw6n2oaHh+vOO+9Uy5YtVb9+fVWoUMH0ywypqak6cOCAtm7dqg0bNmjt2rVavXo1KyJZgPGBPd5++21t3LjRUGyZMmXUuXNntWjRQjVq1FBoaGi2bQ4cOKCffvpJU6ZM0erVq11NFxbherIeY234q9KlS6t27dqqXbu2qlatqooVK6pQoUKmznHlyhWtXbtWS5cu1ffff6+dO3c6nU/fvn3VpEkTlStXzulzuCIjI0OdO3d2ubAoMDBQDRo0UNu2bVWvXj3deuutCgoKMtQ2JSVFO3fu1Lp167RixQotXbpUR44ccSkff8Yz0x6MQV23dOlSw7G33XabfYn4Ge4J1uN+kLOtWbPG9DikUaNG9iQDv/Lcc8+5VEgRGBiohg0bqnXr1kpISFClSpUMzROfOHFCixcv1qRJkzRv3jyniv6//vpr3X777XryySedSd1vMS+TOa4H6zEXYg7jPc+Lj483HHvgwAGlpKQY+tlbLT09XY888ojhXXqbNWtme2Fdnz59Mv3+feDAgWrfvr2ioqJc6mP27NmaM2dOpsdffvlll86fE1WuXFlhYWGGFxtdsmQJxUXwPQ4AAAD4nIYNGzokGf7TrVs3T6fs2LlzpyN//vym8g4ODnYcP37cbTlOnz7dVH7/90+HDh0cu3btcrr/pKQkx6hRoxwFCxZ0OofGjRs70tLSLPyp3Fi3bt0M59SqVStHbGxstnEJCQmOxYsXu5TXiRMnHD169HD65zd//nyLfkLZGzp0qNN5xsbGOsaNG+dITU11uv/58+c7qlSpYqi/3r17m8rPn/ni/dkK7733nunP8V133WVpDkuWLPHo5/TKlSuOAgUKmP45FCxY0PHuu+86zp8/b3lODofDcfXqVcfs2bMdTzzxhCMmJuaGOUyaNMnyfseOHWv4Z1CyZEnL+7cS4wPjzIwPbrvtNkdISEi2cTVr1nT88ssvLue2dOlSx5o1awzH54TPsKfvizfC9WQMY+2czV/Hi0a9+eabmf4sgoKCHHfeeafjo48+cuzbt8+W/tevX+944IEHHEFBQU59zhs1auTIyMiwJbfs9O3b16V7bP78+R2vvfaa5fMwmzZtcgwaNMhRrly5G/abN29ey/rKCc/vv/DMNC4njUF9QWJioiM4ONjwz/y1117zdMo35Gv3C+4JxnA/wL898MADpj+nS5Ys8XTaOZbZf4uxY8d6OmWnfPnll07fJ6OiohwvvPCC48CBAy7nsX//fkfPnj0dgYGBpvMICQlxrF+/3vUfhg9jXsYaXA/GMRdiHOM93zNz5kxTn6ft27d7JE8z727kzZvXcfjwYdtzSk9Pz3Q+TZKjV69eLp3/5MmTmX53/NezCzdWrVo1w5+XZs2aeTpdwDT/fusLAADAR/nay0jbt293FCtWzPREVP/+/d2W48mTJx358uVzasKsaNGijgULFliWy7lz5xz333+/U7lIcgwZMsSyXDJjZuLOyM9v+vTpluY3c+ZMR2RkpOlcmjdvbmkemfntt98MTWbe6M8jjzziuHLliiV5pKWlOYYMGZLtZHFAQICpHP2Zr92frbJ06VKnrn0refoleme+KOvYsaNtRUU3kpaW5liwYIHjvvvu+597EMVFmWN8YI6V44M8efI4vvjiC9tzzkxO+Ax7+r74f3E9GcdYO2fz1/GiUTd6oaZq1aqODz/80HHy5Em35bF161ZHvXr1nLrupk6d6rY8//Ldd985fZ8IDg529O/f33H58mXb81y+fLnjwQcf/J+xKMVF/8Uz05ycNAb1BWbHmFaPQ6ziS/cL7gnGcT/AXw4fPmyqEFKSo1ixYo709HRPp55jmb0GfbG4aO3atY7Q0FCn7jk9e/Z0nDp1ypacKlWqZDqfqlWrurS4na9jXsZ1XA/mMBdiHOM937Nv3z5T/y4zZsxwe467d+92hIeHG85xzJgxbsvtm2++yTKX0aNHO3Xea9euORo1apTpeQMDAx1r1661+G+Tc5i5F+XNm5ffM+BzAgUAAADYxOFw6Ouvv1bt2rV19OhRU23Lli1reAt5Kzz77LO6ePGi6XZ16tTR5s2b1bRpU8tyKVCggKZMmaIPPvhAAQEBptu/8cYbOnDggGX52Kl+/fravHmzOnToYOl577nnHs2fP18RERGm2s2fP9+lrd+N6tu3r+Ettf8SGBio0aNHa8yYMS5vb/2XoKAgvfjii1q4cKHy5s2baZzD4bCkP+Rct9xyi+k2J06c0OnTp23IxjPGjx9vKv6FF17Q5MmTlT9/fpsy+q+goCA1bdpUU6dO1ZEjR/Tyyy8rX758buvfFzE+8Iybb75ZGzdu1KOPPurpVGAhrif389exNnKGwMBAtW3bVkuWLNGWLVvUt29fFS5c2G39V6lSRcuWLdPrr79u+j7x5ptvuvV3qBMnTuipp55yqm1cXJzWr1+v9957T7lz57Y4s/+qX7++vvnmGx04cEADBgxQrly5bO/TF/HM9AzGoMasWbPGVHyVKlVsysR/cE9wP+4Hvu/VV19VWlqaqTadOnVSYCCvUME5ycnJ6t69u1JSUky1i46O1pw5c/Tll18qJibG8rxq1qyptWvXql27dqbabd26Ve+//77l+fgbf52X4XpwHnMh7sN4z33KlCmjyMhIw/G7du2yMZv/cjgc6tmzp65fv24ovmXLlnrkkUdszuofXbt21a233prp8SeeeEKff/65qXMmJSWpTZs2Wrp0aaYxzz//vGrWrGnqvP7EzFzHpUuX9Pvvv9uYDWA9fjMGAACA5dLS0vTDDz+oRo0a6tGjh65cuWKqfUhIiMaMGWN6UtRZCxcu1KRJk0y3a9SokebPn2/bpN6zzz6rMWPGmP5CKykpSb1797YlJyu1bt1aCxcutO3nV7duXY0dO9ZUG4fDoW+//daWfP4yc+ZMLV682FSboKAgffPNN+rVq5ctOTVq1EgLFiygyABOK1CggGJjY023O3TokA3ZuN/ly5e1evVqw/Ft27bV0KFDbcwoe4ULF9Zbb72lQ4cOqX79+h7NxVsxPvCMqlWravXq1SpXrpynU4GFuJ7cz1/H2vB9gYGB6tChg3777Tf98MMPatSokUdzGTRokMaNG6egoCDD7bZt26Yff/zRxsz+V8+ePXX+/HnT7Vq2bKm1a9dm+YKCXW666Sa9++672r9/v5555hm39+/NeGZ6BmNQ4zZt2mQ4NjIyUmXLlrUxm5yPe4L7cT/wfRs3btQ333xjqk1wcLCeeOIJmzKCPxg8eLDpoo0KFSpo7dq1atGihU1Z/SkqKkrTp09X165dTbV75513dPbsWZuyyvn8eV6G68E85kLci/GeewUEBKhixYqG43fv3m1jNv/16aefasWKFYZi8+XLpy+//NLmjP5XQECARo8erZCQkBsez8jI0BNPPKGuXbvqzJkz2Z5vxYoVqlatmhYuXJhpTOXKlfXGG284nbM/MLuQipm5FMAbUFwEAAAASxw/flzff/+9Hn/8cRUvXlzt27fXxo0bTZ8nODhYU6dOVcOGDW3I8sYGDhxous0tt9yiWbNm2b7K7sMPP6z33nvPdLs5c+Zo5cqVNmRkjYSEBE2fPl2hoaG29tOxY0d17tzZVJvp06fblM2fE/cvvvii6XbvvvuuunTpYkNG/6hRo4ZmzJih4OBgW/tBzuXM7kVmd7XzVqtWrVJ6erqh2NDQUH3yySc2Z2Rcnjx5dNNNN3k6Da/E+MD9SpUqpblz56pAgQKeTgUW43pyL38dayNn6Nevn6ZPn67KlSt7OpW/PfTQQxoxYoSpNu560eDnn3/W7NmzTbdr27atfvrppyx3sHWHmJgYt+5a7Qt4ZrofY1Bztm7daji2cuXK7ALiIu4J7sX9wPdlZGSoT58+pndO6Ny5s0qXLm1TVsjpdu7caXpXk7i4OC1btsxtn7vAwECNHz9erVq1MtwmMTFRw4YNszGrnMuf52W4HpzDXIj7MN7zjPj4eMOx7ty56NChQ6be3RgxYoRHvlOtWbOm3nzzzSxjvv32W5UsWVKPPfaYfvzxRx09elTJycm6ePGiduzYoa+++koJCQlq2LBhlgVcBQoU0PTp0xUWFmb1XyNHMVtcZGYuBfAGvDUGAADgBzZv3qxXXnnFknOlp6crJSVFiYmJOnPmjI4dO6Z9+/Y5tUru/xUWFqaJEyeqbdu2ridq0Lx587R+/XpTbfLnz6+ffvpJUVFRNmX1v/r166ctW7Zo4sSJptq9+eabmjdvnk1ZOa906dKaOnWq7ZPqfxk6dKi+//57w1tZ7969W7t371ZcXJzlufz000+mV9vp2LGj+vXrZ3kuN9KkSRO99957eu6559zSH3KWEiVKmG5z5MgRGzJxvx07dhiObd++PcU8PoDxgfuFhIRo2rRpKlKkiKdTgcW4ntzLn8faOdX48eM1fvx4T6fxt3vuuUczZ8607fze+sX1U089pV9//dXw7hHz5s3TqVOnbFulWvrz5VlnXjpPSEjQlClTWFjCC/HMdD/GoOZcu3ZN+/btMxzvzCIk+Af3BPfifpAzDB8+3NTu4pIUFBSkl156yaaM4A9ee+01paWlGY6Pjo7WggULFBMTY2NW/xUYGKjvvvtOt99+u/744w9DbUaNGqUBAwbwEr4J/j4vw/XgHOZC3IPxnueYKS5y585Fjz32mBITEw3Ftm7dWt26dbM5o8wNGDBAO3fuzHKeOCkpSV988YW++OILp/qIiIjQrFmzVKFCBWfT9BsxMTEqXLiwTp06ZSh+y5Yt9iYEWIxvDgAAAPzAb7/9pt9++83TaWSpRo0aGjdunCpVquTWft955x3TbUaMGKFSpUpZn0wWRo0apaVLl5ra5WP+/PnasGGDqlevbmNm5gQEBGj8+PFu/SKiePHi6tatm0aPHm24zfLly22ZWDe7qlVMTIw+/fRTy/PISt++ffX999977Qqi8F5FixY13San7Fxk5uWqFi1a2JgJrML4wP1ee+01r8sJ1uB6ch9/H2sDdhs5cqTmzJmjixcvZhubnp6uKVOm6Omnn7Ytn2+//Vbbtm0z1aZ48eKaPHmy2150gzk8M92PMag5u3btUkZGhuH4kiVL2phNzsc9wb24H/i+33//Xa+++qrpdr179+YFSjhty5YtmjFjhuH4wMBATZo0ScWLF7cxq8zlzZtXY8aMUePGjQ3t8JWYmKgJEybomWeecUN2vs/f52W4HnImb5sLcQXjPc8xU1x06dIlnTx50vYisHHjxhle8KBAgQKm7rN2CAgI0JgxY3T9+nVNmTLF8vOHh4dr6tSpqlOnjuXnzqlKlixpuLjo999/tzkbwFrsQw4AAACPuummmzRs2DCtXr3a7YVFu3fv1vLly021adasmR566CGbMspcnjx5nCoycXZVErv07NlT9evXd3u/jz/+uKl4OwprfvvtN9PnHT58uNtXhAsICNCXX37JKtYwzZ+Li86cOWM4tnLlyjZmAiswPnC/UqVKqX///p5OAzbgenIvfx5rA+5QqFAhUy8RLViwwMZs/vx90YyAgAB99913KlSokE0ZwRU8M92PMah5e/fuNRXPrr3O457gXtwPfF9SUpI6deqk5ORkU+1iYmI0ePBgm7KCP3j77bcNFSX85YknnlBCQoKNGWWvYcOG6ty5s+H4sWPH2phNzuLv8zJcDzmTt82FOIvxnmeZKS6S/lzYwk4nT57Uc889Zzh+5MiRTn0PbrWgoCBNmjRJgwYNUkBAgGXnLVy4sBYsWKC7777bsnP6AzNzHidPnjS8SxbgDSguAgAAgNuFhISoSZMmmjZtmg4ePKh+/fopKCjI7Xl88803puIDAgL03nvv2ZRN9lq3bq0GDRqYajN16lRdv37dpozMCQsL06BBgzzS96233qqyZcsajt+wYYPlORjdMv4v8fHxpia0rVShQgWPbusN3xQbG2u6zeXLl23IxP3MTAbmy5fPvkRgCcYH7jd48GCFhYV5Og3YgOvJffx9rA24y+OPP67AQGNfrS1btkxpaWm25LFmzRpt3brVVJsePXqoXr16tuQD1/HMdD/GoOaZLS4qVqyYTZnkfNwT3Iv7ge978skn9dtvv5lu9/777zNXB6edPn1aP/74o+H4QoUK6e2337YxI+MGDRpk+HvZrVu3avPmzTZn5Pv8fV6G6yFn85a5EFcw3vOsYsWKKW/evIbj7S4u6t27ty5cuGAotm3bturSpYut+ZgREBCg119/XfPnz7dk9817771XW7duZc7QCWbnPMzOqQCeRHERAAAA3CIoKEhdu3bVkiVLdOnSJS1atEj33nuvx3ZHcTgcmjhxoqk29957r6pWrWpTRsa89dZbpuIvXbpkajLXTg899JBHVyy96667DMfu27fP8onPyZMnm4p/5ZVXDE/U2uHVV1/1SNEffFeePHlMt0lKSrIhE/czc7+4cuWKjZnAVYwP3K9o0aJ64IEHPJ0GbMD15F7+PtYG3KVIkSJq2LChodgrV65o06ZNtuTx+eefm4qPiorS0KFDbckFruOZ6X6MQZ2zf/9+U/HsXOQc7gnuxf3A940ZM0bjxo0z3a5NmzYe2e0LOce4ceOUmppqOL5fv36mXqy2U/ny5dWqVSvD8T///LON2eQM/j4vw/WQs3nLXIizGO95h8qVKxuO3b17t215TJ8+Xd9//72h2IIFC5qeg3OXpk2batu2bRo1apRuueUWU20DAwN11113afny5Zo2bZoKFy5sU5Y5m9nn/h9//GFTJoD1KC4CAACAW6Snp2vixInq3Lmznn76aS1YsEDp6ekey2fz5s06fPiwqTZ9+vSxKRvj6tevr2rVqplqM3PmTHuSMalnz54e7b927dqGY1NSUky/MJGVjRs36uDBg4bjCxcurPbt21vWvzNKliypli1bejQH+Jbw8HDTbbxlhVpXRUREGI41++yBezE+cL9HHnlEoaGhnk4DNuB6ci9/HmsD7ta4cWPDsWZ3FzIiJSXF8EsQf3n88cdVsGBBy3OBNXhmuh9jUOccPXrUVDzFRc7hnuBe3A982+rVq9W7d2/T7QoVKqQvvvjChozgT77++mvDsVFRUU59Vu3Uo0cPw7Hz5s2zMZOcwd/nZbgecj5Pz4W4gvGed4iPjzcca9fORefPn9dTTz1lOP6TTz7x6sKb4ODgv3fw3Lhxo4YOHar27dsrLi5O0dHRCg0NVWhoqAoWLKhq1aqpa9euGj16tI4dO6aff/5Z9evX9/RfwaeZ3bno2LFjNmUCWI/iIgAAALjViRMn9NVXX6lZs2YqXbq0hgwZoosXL7o9jwULFpiKr1Spktf8cv3EE0+Yil+8eLEcDodN2RhTrlw51axZ06M5VK9e3VT8gQMHLOt74cKFpuK7d++ukJAQy/p3Vq9evTydAnyIM8VFOWXnIjMvav7yyy82ZgJXMT5wv/vvv9/TKcAmXE/u4+9jbcDdatSoYTh2+/btlve/bNkyU7thBgcH67nnnrM8D1iHZ6b7MQZ1jpkXYSIjI5U/f34bs8m5uCe4F/cD33Xw4EG1bdtWycnJptt+8cUXXv2iKLzf3r17Te2qcN999yl37tw2ZmTenXfeqbCwMEOxa9eu1eXLl23OyHf5+7wM14N/8PRciCsY73kHbygu6tu3r06dOmUo9t577/WpHa9uu+02vfDCC5oxY4Z27dql06dPKzk5WcnJyTp79qw2bdqkCRMmqFevXipSpIin080RzC6oQnERfAnFRQAAAPCYI0eOaODAgX8XGTnzJZCzzBZ7eNOkU4cOHRQcHGw4/vTp0/rtt99szCh7LVq08Gj/klS6dGlTBTtGJ5aMWLJkial4T+9a9JdmzZopKirK02nAR/hzcVGJEiUMx06bNk2nT5+2MRu4gvGBe5UuXVpVqlTxaA6wD9eT+/j7WBtwt7JlyxqOteOFmp9//tlUfLNmzVS0aFHL84B1eGa6F2NQ5504ccJwbGxsrI2Z5GzcE9yH+4Hvunz5slq3bu3UHFvfvn3Vrl07G7KCP5k9e7ap+M6dO9uUifMiIyMNF6empaVp48aNNmfku/x9XobrwT94ei7EWYz3vIeZ4qLDhw/r+vXrlvY/d+5cTZgwwVBsdHS0Pv30U0v7R85DcRFyMoqLAAAA4HEXL17UwIEDdeutt+rXX3+1vb/09HStWrXKVBtv+rKpQIECplejXLp0qT3JGGRmq3S7BAUFmSoAsOrl/7S0NK1cudJwfNGiRU2t/mSnsLAwr/hSBL4hNDTUdJuUlBQbMnG/ypUrG469ePGinnzySY+vzIv/Ynzgfg0bNvRo/7AP15N7+fNYG/CEmJgYw7GHDh2yvP958+aZiu/atavlOcA6PDPdjzGoc9LT03XhwgXD8d62Gr2v4J7gXtwPfFNaWpo6duzo1IvLderU0XvvvWdDVvA3c+bMMRybK1cuNWjQwMZsnGdmt5stW7bYl4iP8/d5Ga4H/+DpuRBnMd7zHma+S83IyNCePXss6/vKlSt67LHHDMePGjVK0dHRlvWPnMnsvMfZs2dtygSwHsVFAAAA8Bq7du1Sw4YNNXz4cFv72b17t6ndMmJiYrxuRRuzBR9bt261KRNjqlWr5tH+/2Jm4vPcuXOW9Llnzx5dvXrVcHzjxo0VEBBgSd9WSEhI8HQK8BHO7D7nzG5H3qhWrVqm4mfMmKGHH35Y6enpNmUEZzA+cL969ep5tH/Yh+vJvfx5rA14Qq5cuQzHnjx50tK+L1++bOrlisDAQLVs2dLSHGAtnpnuxxjUOZcuXTIVHxERYVMmORv3BPfifuB7HA6Hevbsqblz55puGx0dralTp5ra2QO4EYfDYWqhxAYNGji1MJc7mJlP8MdiCqP8eV6G68F/eHIuxBWM97xHTEyMqYKdXbt2Wdb3Cy+8oMOHDxuKvf/++3XfffdZ1jdyLrPzHmbnVQBPorgIAADAD3Tr1k0Oh8OyPxkZGUpKStLFixe1f/9+rV69WlOmTNHrr7+utm3bqlChQk7nmpaWpueff169evVSRkaGhT+Ff2zbts1UfJ06dWzJwxVmc/rtt99syiR7UVFRKl26tMf6/7eCBQsajrVqq22zKyjWrl3bkn6t4m35wHs5c83klOKiUqVKqVKlSqbajB8/XrVr19aaNWtsygpmMT5wP297CQ7W4XpyH38fa/sDq3+fd/XPzJkzPf0j8bjg4GDDsVevXtWVK1cs63vz5s2mdsC8/fbblS9fPsv6h/V4ZrofY1DnXLx40VR8Tvl93924J7gX9wPf079/f40fP950u8jISM2aNUs33XSTDVnB3+zdu9fUGN/MbijuVrJkScOxu3fvtjET3+Xv8zJcD/7Dk3MhrmC8513i4+MNx1p1nS1fvlyff/65odiYmBiNGjXKkn6R85ktLjI7rwJ4kvGnPgAAAPD/BQQEKDw8XOHh4cqbN69Kly79n10b1q9fr6lTp2rs2LFOrX705Zdf6vr16xo/frzlu7iY/ZLW7I4U7lCjRg2FhIQoNTXVUPyOHTuUnp6uoKAgmzP7r+LFi7u9z8yY+QXfmV1YbsRscVGNGjUs6dcq8fHxioiIMLVqKvyTM19G5aSVjDt16qRXX33VVJv169erdu3aSkhIUJ8+fdSqVStWT/UgxgfuV6FCBY/0C/txPbmPv4+1gX87ceKEduzYoX379mnv3r06cuSIzp49q7Nnz+rcuXO6fv26kpOTlZKSYvjatsKZM2eUO3duS861ceNGU/ENGza0pF/Yh2em+zEGdU5iYqKp+Jz0+747cU9wL+4HvuWdd97R8OHDTbcLCQnRjBkzdMcdd9iQFfzRpk2bTMXfdtttNmXiOjMFd8eOHbMxE9/l7/MyXA+e5w9zIa5gvOdd4uPjtWTJEkOxVuxclJSUpJ49expeqOfzzz93aSFl+JfQ0FAFBgYaXjTbW4ouASMoLgIAAIAtatSooRo1auiNN97Q6NGjNXjwYNMrMUyYMEFFixbVu+++a2lu+/btMxVvdjcKdwgLC1OZMmUMr9hy/fp1HTt2TCVKlLA5s/+KjY11e5+ZCQsLMxxr1cT6nj17TMV72yRnUFCQypcv7/GVheH9nLlmctLLRr169dJbb73l1M9h0aJFWrRokQoVKqT27durXbt2atSoESs9uxnjA/eKiYnxii8XYQ+uJ/fx97E2/NuBAwf0888/a/ny5Vq7dq2OHDni6ZRuyMqFGsy+WMEKvd6PZ6Z7MQZ1ntlnd076fd+duCe4D/cD3zJq1Ci9/PLLptsFBgZqwoQJatGihQ1ZwV9t3brVVHzZsmVtysR1efLkMRx78uRJZWRkKDAw0MaMfI+/z8twPbj/evDHuRBnMd7zPu7euei1117T3r17DcV27txZ7dq1c7lP+JeIiAhdvXrVUGxKSorN2QDWYcQPAAAAW0VERKhv377avXu3mjVrZrr9e++9p++//97SnI4fP24q3tuKPf4SFxdnKt7s39sqZiZj7WZmBcz09HRL+jTzc4+JiVHevHkt6ddKN998s6dTgA84f/686TY56WWjmJgY9e3b16VznD17Vl988YVatmypggULqmXLlho2bJjWr1+vtLQ0axJFphgfuFfhwoU90i/cg+vJffx9rA3/c/LkSQ0ZMkTx8fEqU6aMnn76aU2fPt1rX6aRnNvhMzNm/55mXtqAZ/DMdC/GoM4zu8p5Tvp93524J7gP9wPf8c0336hPnz5OtR09erQ6duxocUbwdwcOHDAV74mCaqPMPK/T0tJ0+vRpG7PxTf4+L8P14B7+PhfiLMZ73sedxUUbNmzQhx9+aCi2SJEi+vjjj13qD/7JzLOD4iL4EnYuAgAAgFvExMRozpw56t27tz7//HNTbXv27KnatWuraNGiluRi5svKgIAAlSpVypJ+rWZ2dSdPvbjh7y8TnDhxwnCst37WSpcu7ekU4APMfNb/ki9fPusT8aBXXnlF06dP1x9//OHyua5du6a5c+dq7ty5kqTIyEjVrFlTderUUe3atVWrVi0VKlTI5X7wD8YH7sUXezkb15P7+PtYG/5j165dGjx4sKZPn+5zRdeeLC4qX768ZX3DHjwz3YsxqPPM3nvZidc53BPch/uBb5gxY4YeeeQRORwO020/+OAD9ezZ04as4O+OHj1qKj4nzYFfuXJFRYoU8XQaXsXf52W4Huy9HpgLcQ3jPe9TuXJlw7GJiYk6evSoihUrZrqf1NRUPfLII4YLKUePHq0CBQqY7gcwMw4wu2gL4EnsXAQAAAC3CQwM1KeffqrOnTubanfhwgX169fPsjzMvACfL18+hYSEWNa3lWJiYkzFO/PivxW89efnLmZ+7mb/Td0lOjra0ynABzhzj3FmQtibRUVFacqUKYqMjLT83NeuXdPSpUv1zjvvqHXr1oqOjlaFChXUs2dPjR8/3vSXePgvxgfulTt3bo/0C/fgenIfb/3ZAVY5d+6cevToofj4eE2ePNnnXqaRzL+QnxUzY76oqChFRUVZ1jfswTPTvRiDOi8w0NxrBb54v/YG3BPch/uB95s9e7Y6derk1O4agwcP1rPPPmtDVoD5YoqcJCkpydMpeB1vfRa7C9eDPZgLsQbjPe+TN29eU98NO7t70TvvvKNt27YZin3wwQfVpk0bp/oBzBQMmdlhEPA0iosAAADgVgEBAfriiy8UFxdnqt2kSZO0bt06l/tPS0vTtWvXDMd7a7GHZH61nYsXL9qTCDKVlpamq1evGo731s+bt+YF7+LMiyDFixe3IRPPuv322zV9+nSFhYXZ3tfu3bs1ZswYde/eXcWLF1d8fLyef/55rVmzxqkVXf0Z4wP3c8c1As/gegJglR9//FGVK1fW119/7dRLpd7CqnGZw+HQpUuXDMdbtfsz7MMz0/0YgzrP7IuzZj7b+BP3BPfifuDdFi9erA4dOji1unf//v312muv2ZAV8CdPFUl7A4qL8H9xPViPuRDrMN7zTvHx8YZjd+3aZfr827dv1zvvvGMoNjY2ViNHjjTdB/AXM7/Dh4aG2pgJYC2KiwAAAOB2uXLl0kcffWS6ndFJgKyYnejLmzevy33axWxu3rD9uL8x+3nz1hWU8uTJ4+kU4AMOHjxouk1O27noLy1bttSCBQtUsGBBt/a7Y8cODR8+XLVr11bJkiX10ksvad++fW7NwVcxPnA/JtFzLq4nAFYYNGiQ2rZtq1OnTnk6Fa+Rk+6v+FNO+jf1lWcmY1Dnmf3Z8fKxedwT3Iv7gfdauXKl2rRp49Tn4oknntB7771nQ1bAn1JTU5WSkuLpNDyGeQ/8G9eD9dcDcyHWYrznnewsLkpPT1ePHj0M35u+/PJL5cuXz1QfwL+Z+T3e33c7hG+huAgAAAAe0bx5c9WuXdtUm59++kmHDx92qV+zE33evKKN2dyY9He/nPJ589a84F2Mbi//bzm1uEiS6tevr61btyohIcEj/R85ckRDhw7VzTffrObNm2vJkiUeycNX5JT7teQ744OAgACP9Av7cT0BcIXD4dDDDz+sN954w9OpeB2zL52Hh4fblAmswjPT/RiDOi8iIsJUPMVF5nFPcC/uB95p3bp1atWqla5evWq6bbdu3TRq1CgbsgL+4e/PN2/YiQTeg+vBuuuBuRB7MN7zTmaKi3bv3m3q3CNGjNC6desMxT788MNq1aqVqfMD/5aenm5qp9XIyEgbswGsRXERAAAAPKZPnz6m4h0Oh8aPH+9Sn8nJyabi+ZIWrsgpnzdvzQve49SpUzpz5ozpdqVKlbI+GS9y0003aeHChfruu+9UokQJj+TgcDg0f/58NWnSRA0bNtT69es9koe3yyn3a4nxATyP6wmAK5577jmNGzfO02l4JYqLch6emfAlZnei8feXTZ3BPQH+bvPmzWrevLmuXLliuu3999+vMWPG8BIxbMf9CvgH14N1mAuBP6lcubLhWDM7F+3bt0+vvvqqodhixYrpww8/NHxu4EZy0u7DwP8V7OkEAAAA4L/uvvtuhYaGmtoy/ccffzQ8KQD4Gm9d9c1b84L3cGbXolKlSil//vw2ZON9OnXqpA4dOmj8+PH64IMPTE2GW2n58uW644479Pjjj+v9999Xrly5PJIHAADAjXz11VcaMWKEJefKnz+/qlatqjJlyqhs2bIqWrSoChcurJiYGOXOnVtRUVGKiopSSEiIgoODFRISYuplVE+8uMrLsgA8KV++fKbiKS4CYMa2bdt055136uLFi6bbtm7dWhMnTlRQUJD1iQH/h9lCUCAn43qwBnMh8DeVKlVSYGCgMjIyso09evSorl69mu33mQ6HQz179jT8e+hXX31FoQdcZnbew+y8CuBJFBcBAADAY3Lnzq3atWtr2bJlhtts3rxZZ8+eVaFChZzq0+zKvWYKn9zN7KQtqxa7n9lVOr3188YXBMjO2rVrTbe5/fbbbcjEe4WGhurRRx/Vo48+qiVLlmj8+PGaOXOmLl265NY8HA6HPvvsMy1atEg//fST4uLi3Nq/t2J8AFiH6wmAM/744w89++yzTrfPly+f7r77bt15551q0KBBjtwhMyIiwlQ8q0h7P56Z8CUREREKDw83fG+5du2azRnlPNwT4K927dqlpk2b6ty5c6bbNmvWTNOmTVNISIgNmQH/xWcN+AfXg+uYC4E/ioyMVOnSpfXHH39kG+twOLRnzx5Vq1Yty7jRo0cbfueoZ8+eat68uaFYICtmi4v8ZdFV5AyBnk4AAAAA/q169eqm4jMyMrRu3Tqn+zP7RaU3F1XwJa33yymfN2/NC95jwYIFptv4W3HRvzVu3Fjjxo3T6dOnNWfOHD399NOqUKGCW3PYs2ePatWq5dIzNSfJKfdrifEBPI/rCYAznn76aSUmJppuV6VKFU2aNEknT57UhAkT9NBDD9n+Mo2ndnY1e4+huMj78cyErylSpIjh2NOnT9uYSc7EPQH+aN++fWrSpIlT94yGDRtq5syZphf4AlwRGRnp6RQAr8H14DrmQuCv4uPjDcfu2rUry+NHjx7VgAEDDJ2rRIkS+uCDDwz3jZwhLS1NCxYs0NNPP63Nmzdbdt5Tp06Zii9atKhlfQN2Y+ciAAAAeFTlypVNt9myZYtatWrlVH9mv6i8fPmyU/24g9ndLsyucgzXmf2Ze+vnzVvzgne4evWqVq9ebbrdbbfdZkM2viU0NFQtWrRQixYtJElnz57VqlWrtGLFCq1YsUKbNm1SWlqabf1fvHhRLVq00KpVq1SxYkXb+vEFjA8A63A9ATDr119/1ezZs021yZUrl4YNG6bHHntMAQEBNmV2Y54q2jF7f3X3Dpkwj2cmfE1sbKwOHjxoKPbcuXO6fv06RSMmcE+Avzlw4IAaN26sEydOmG5bu3Zt/fzzz3x24HbOfOZSU1MVHMzrech5uB5cw1wI/Fl8fLx+/PFHQ7HZFRc99thjunLliqFzjRkzRrlz5zYU64tOnTqltWvXatu2bfr999915MgRHTt2TBcuXFBSUpJSU1MVGRmpPHnyKE+ePCpbtqwqVqyoSpUqqVGjRjlq97OkpCTNnz9f33//vWbNmqULFy5Ikpo0aZLtTlhGHT161FR8bGysJf0C7sBoDQAAAB5VrFgx02327dvndH/BwcHKlSuXrl69aije7GoT7mR2Nb+8efPalAkyExwcrKioKMOrTp05c8bmjJzjrXnBOyxdulQpKSmm2gQFBalmzZo2ZeS7ChUqpHvuuUf33HOPpH8Kt1auXKlff/1Va9eutfzloQsXLqhDhw5av369cuXKZem5fQnjA8A6XE8AzHr33XdNxUdHR2vOnDke2wkzKSnJI/0GBgYqf/78f38Znh1nXtSFe/HMhK+56aabTMUfO3ZMZcuWtSmbnId7AvzJ4cOH1aRJE9Mv5El/Llg0Z84cRUVF2ZAZkLWQkBCFhoaamg+/fv06n1fkSFwPrmEuBP7MzALEu3fvzvTYxIkTDRfpPfbYY2ratKnhfn1BRkaGVqxYoRkzZmjBggXZFmJJ0pUrV3TlyhUdO3ZMO3fu1M8///z3sbi4OLVq1Uo9evRwapFob9G9e3dNnz79P79bBwQEqEGDBpb1c+zYMVPxZudUAE8K9HQCAAAA8G/R0dGm2zjzhdO/mdlu9sKFC7buGuEKs1/SshKGZ5j5vJn9N3UXiouQlYkTJ5puU7duXeXPn9+GbHKWXLlyqWnTpnr99dc1f/58nT9/XmvXrtXQoUPVuHFjhYSEWNLPzp07NXjwYEvO5csYHwDW4XoCYNTp06dNrdQbGhqqH3/80WMv00ie3RHIzAItiYmJhhe6gOfwzIQvKVmypKl4sy/agHsC/MOxY8fUpEkTwzuh/Vt8fLzmz59PQRo8yuyLodeuXbMpE8DzuB6cw1wI/F18fLzh2MwKZk6fPq2+ffsaOkepUqU0bNgww316uwMHDuill15SbGysGjVqpI8//thQYVF2du/erQ8//FDx8fFq1KiRZs2aZUG27nXs2DGNHz/+hot23HLLLSpQoIClfZmRk3aGQs5HcREAAAA8ypkt08+ePetSn2a+rHQ4HE59yeUO+/fvNxXPl7SeUaRIEcOx3vpZO3DggKdTgJe6ePGiZs6cabpd69atrU/GD/y149MLL7ygxYsX69y5c5o0aZI6dOigsLAwl849YsQIHTp0yKJMfRPjA8A6XE8AjJo6daqpF6MHDhyo2rVr25hR9jz5snzx4sVNxbuy8zPcg2cmfEn58uVNxbu6QJQ/4p6AnO7kyZNq0qSJ/vjjD9Nt4+LitHDhQhUsWNCGzADjSpQoYSrem3eaA1zF9eAc5kLg7+Li4gwvoLh37145HI7//PennnpK586dy7Z9QECAvv766xyxa9qWLVt07733qmzZsho6dKit99Rly5apTZs2atmypU/NLy5btizTYw0bNrS0L7NzHuXKlbO0f8BOFBcBAADAo4KDg023cXXbbbOrKGW11bInmV19hC9pPcPMz/306dNeufKTt14D8LzJkyfr+vXrpttRXGSN3Llz64EHHtD06dN1/PhxDRs2zPQLp39JTU3ViBEjrE3QxzA+AKzD9QTAqMWLFxuOLViwoAYMGGBjNsZ48mV5s2O9bdu22ZQJrMIzE77EbHERLyCaxz0BOdnp06fVpEkT7dmzx3TbMmXKaNGiRSpcuLANmQHmmC2moNgWORnXg3OYC4G/Cw0NNfz75bVr13T48OH/+W8zZ87UtGnTDLV/8skn1bhxY9M5epMDBw7ovvvuU7Vq1TRjxowbFlvZZe7cuYqPj9fkyZPd1qcr3FlcZGbOIyIiwvTv+4AnUVwEAAAAj3KmUCg1NdWlPsuWLWsqfufOnS71Z4eUlBRTq/vxy6rnxMXFmYq3YstqK6Wnp/vUajRwn/T0dH3wwQem25UvX970dYHsFShQQP369dPevXv17rvvKjw83PQ5Jk6cqPT0dBuy8w2MDwDrcD0BMMLhcGjFihWG47t37+7U7sdW27Fjh8f6rlSpkqn43377zaZMYBWemfAlFSpUMBXPC4jmcU9ATnXu3Dk1bdrUqc9siRIltHjxYj4n8BpmV50/cOCATZkAnsf1YB5zIcCf4uPjDcf++/2Jixcv6sknnzTUrkyZMnr33XdN5+YtUlNTNWjQIFWsWFHTp0/3WB7Jycnq3Lmzhg8f7rEcjFq+fHmmxxo0aGBpX2bmPMqXL6+AgABL+wfsRHERAAAAPOry5cum20RGRrrUZ5UqVUzFr1mzxqX+7LBx40ZTRVaVK1dWYCDDf08wMzEmSevWrbMpE+ds27bN5d3CkDNNmDBBe/fuNd2uR48eNmSDv4SFhWnAgAFaunSp8uTJY6rt2bNnTX2pldMwPgCsw/UEwIjjx4/r7NmzhuO9ZffLLVu2eKzv22+/3VR8Vl+owzvwzIQvKVq0qAoWLGg43hsLX7wd9wTkRBcvXtSdd97p1I6KsbGxWrx4sUqWLGlDZoBzqlevbip+06ZNNmUCeB7Xg3nMhQB/qly5suHYf+/Y+txzz+nEiRPZtgkICNDYsWOVK1cup/LztD179qhOnTp64403lJyc7Ol05HA49Pzzz+urr77ydCqZOnXqVKYL+VaqVEnR0dGW9ZWcnGyqYLZq1aqW9Q24A7M0AAAA8ChnVrB0dQLglltuMRW/atUql/qzg9mc+GXVc8xMjEnS6tWrbcrEOd6WD7xDamqq3nzzTdPtwsPD1bNnTxsywv91xx136JdffjH9go4/FxcxPgCsw/UEwAgzuxoEBgbqjjvusDEbYxwOh9auXeux/m+99VZT47uNGzfq0qVLNmYEV/HMhK8x8+/H7mnmcU9ATnP58mU1b95cmzdvNt02JiZGixYtMr2jF2C3mjVrmorfsGGDTZkAnsf1YB5zIcCfnNm5aMGCBRo7dqyhNn369LF8pxp3+fzzz1WtWjVT98zAwEBVr15d/fr105dffqkVK1bowIEDOnv2rFJSUpSSkqJLly7pjz/+0MqVK/XVV1+pT58+qlKliqkddfr06eO1xYZZLbLUsGFDS/v6/ffflZaWZjie33vhayguAgAAgEft37/fdJt8+fK51Gf58uVN7X508uRJbd++3aU+rTZ//nxT8bfeeqs9iSBbN998s6KiogzHL1myRA6Hw8aMzFm0aJGnU4AXevvtt526f3fq1MnUKsdwTb169fToo4+aarNx40ZL+vbFrd0ZH+DffPEz7E24ngAYcfDgQcOxJUqUUHh4uH3JGLRp0yadOXPGY/3nypXL1AIW6enpmjNnjo0ZeRdffH7zzISvMfNCzKlTpzx6z/RF3BOQkyQmJqply5Zat26d6bYFCxbUwoULVaFCBRsyA1xTqFAhlSlTxnD8tm3bdPr0aRszAjyH68E85kKAP5ktLkpMTDT8nWf58uU1ZMgQZ1PzmKSkJLVr105PPPGErl27lm18QECAGjdurIkTJ+rMmTNav369hg0bpp49e6pevXoqVaqUChYsqJCQEIWEhChPnjwqU6aM6tatqx49emjkyJHaunWrDh8+rLfffluFCxfOts/r16+rc+fOSk9Pt+KvbKlly5ZleqxRo0aW9mV2MRV+74WvobgIAAAAHuXMCkVmJilvJCgoSPXr1zfVZubMmS71aaWLFy9q6dKlptpY/csyjAsODla9evUMx588edKpL1ztkJycrHnz5nk6DXiZTZs26e2333aqbZ8+fSzOBtkZMGCAqXgzW7hnJSgoyHCsmZWd7MT4AP/mi59hb8L1BMAIMzvqFCpUyMZMjPv55589nYJatmxpKn7ixIk2ZeJ9fPH5zTMTvsbs6vRbt261KZOciXsCcopr167p7rvv1q+//mq6bb58+TR//nzTO3kB7nTnnXcajs3IyNCsWbNszAbwLK4Hc5gLAf5Urlw5w8Vzu3fv1ksvvaRDhw5lGxsYGKixY8eaWrTBG1y4cEFNmzY19PtdUFCQevTooT179mjx4sXq0qWLChQo4HTfxYoV08CBA7Vv3z699NJL2c6v7dy5U99++63T/dklq+Iiq3exMlNcFBAQoOrVq1vaP2A3iosAAADgMQ6HQ6tWrTLdrly5ci733bRpU1Px06dPd7lPq/zwww9KTU01HF+kSBFTK7/Aeo0bNzYV//3339uUiTnz589XYmKip9OAF0lMTNRDDz3k1It4bdu2VbVq1WzIClkpU6aMqdXtjx8/bkm/YWFhhmPNPNPsxvgAf/HVz7A34XoCkB0jK3D+xRtW6nU4HPrmm288nYbuuusuU/Hz5s3TyZMnbcrGu/jq85tnJnxJ7dq1TcWbXc0X3BPg+5KTk9W2bdssX+7LTO7cuTVnzhzddtttNmQGWKdt27am4idNmmRPIoAX4Howh7kQ4E+BgYGqWLGiodjjx4/r008/NRTbt29f1a1b15XU3O748eNq0KCBocL8Nm3aaMeOHfrqq68seW/q36KiovTOO+9o0aJFiomJyTL2jTfeUEZGhqX9u+LcuXPasWPHDY/FxcWpSJEilvZnZq6jUqVKyps3r6X9A3ajuAgAAAAes27dOqdecLFixTozqyhJf66yuXr1apf7tYLRiZO/JCQk2JQJjDL7bzB+/HiveNHpiy++8HQK8CJpaWm67777Mp2Yy0poaKiGDRtmQ1YwomrVqoZjrSooNPNi5+XLly3p0wqMD/AXX/0MexOuJwDZSUlJMRx78eJF+xIxaNGiRdq/f7+n01CdOnWUP39+w/FpaWn68MMPbczIe/jq85tnJnxJyZIlddNNNxmOp7jIPO4J8GUpKSnq0KGDFixYYLptZGSkfvnlF9WqVcuGzABrNWnSRHny5DEcv2jRIu3atcvGjADP4Xowh7kQ4B9mFhowUshy880366233nIlJbfbt2+f6tSpo+3bt2cZV6BAAU2cOFE//vij4uLibM2pYcOGWr58uYoXL55pTFJSkgIDvaf8YMWKFXI4HDc81rBhQ8v7MzPXUadOHcv7B+zmPVc3AAAA/M5XX31luk1ISIglv3xVrVpVZcqUMdXmk08+cblfV61Zs0YbNmww1aZdu3Y2ZQOjbr/9dpUqVcpw/KlTpzy+e9HBgwc1Z84cj+YA7+FwOPTYY49p7ty5TrXv27evypYta3FWMKpw4cKGY60qbMyXL5/h2OvXryspKcmSfl3F+AB/8dXPsDfhegKQHTMr8J46dcrGTIzxlpcTgoOD1alTJ1NtPvvsM50/f96mjLyHrz6/eWbC19SrV89wLMVF5nFPgK9KS0vTAw88oF9++cV02/DwcM2aNUv169e3ITPAeqGhobr33ntNtXnvvfdsygbwLK4Hc5gLAf5RuXJly84VGBiocePGKSIiwrJz2u3cuXNq2bKlDh06lGXcHXfcoW3btqlLly5uyuzP3X4WLlyY6Y47jRs3dlsuRmS1a6rVxUWnTp3S6dOnDcebmUMBvAXFRQAAAPCIEydO6NtvvzXdrmbNmoqMjLQkh65du5qKnzx5sn7//XdL+nbWq6++aiq+QIECat26tU3ZwIyOHTuain/rrbc8upX0m2++qfT0dI/1D++RnJyszp076+uvv3aqfdGiRfXyyy9bnBXMMPNlVVRUlCV9xsTEmIo/evSoJf1agfEBJN/+DHsTricAWTEz7jh37pxlOyw6Y9GiRVl+Se1ujz32mKn4K1eu6KWXXrIpG+/hy89vnpnwJWZ2m/ntt9905coVG7PJmbgnwNekp6frwQcf1A8//GC6bVhYmGbOnKkmTZrYkBlgn6eeespU/Pjx47V161absgE8i+vBOOZCgH+Y2bkoO/369VPt2rUtO5/dUlJS1L59e+3bty/LuM6dO2vp0qWKjY11U2b/uPnmmzVx4sQbHvPn4qKVK1eaimfHXvgiiosAAADgES+88IJTK8SaXfkoKw8++KCp+IyMDI++jDN//nwtXLjQVJuOHTsqNDTUpoxgRufOnU3Fb9++Xd99951N2WRt165d+uabbzzSN7zLuXPn1LRpU02ePNmp9kFBQfruu++UJ08eizODGWZWT8psBSqzzOyWJEl79uyxpF8rMD6A5NufYW/C9QQgK2a+FM/IyNCCBQtszCZzycnJevLJJz3Sd2aqVKmiWrVqmWrz1VdfafXq1TZl5B18+fnNMxO+pGnTpoZj09PTtWLFChuzyZm4J8CXOBwO9ejRw6n5w5CQEE2bNk3Nmze3ITPAXtWqVTO1En1GRoYef/xxpaWl2ZgV4BlcD8YxFwL8w6rioooVK+rNN9+05Fzu8thjj2n58uVZxjz33HP69ttvTS0iabW7775bbdu2/c9/96biokuXLmVasFquXDnddNNNlva3dOlSw7EVKlSwvH/AHSguAgAAgNtNmzZNEyZMMN0uODjYdIFGVsqVK2d6lYiffvpJ06ZNsywHoxITE02vTCyZX80Y9qlSpYrpLY/79eun8+fP25TRjTkcDj366KN+OaGP//XDDz+ocuXKplff+bfBgwerUaNG1iUFp2zatMlwbNmyZS3pM3/+/MqfP7/h+I0bN1rSrxUYH0Dy7c+wN+F6ApCV0qVLm4r/+eefbcoka6+88opXFaH8ZcCAAabiMzIy1KlTJ7f/julOvvz85pkJX1K6dGlTvzsuWbLExmxyJu4J8CVPPPGExo8fb7pdcHCwJk2axA5W8Gn9+/c3Fb9mzRq99tprNmUDeBbXgzHMhQD/KFmypHLnzu3SOYKCgjR+/HiFhYVZlJX93n//fY0bNy7LmGeffVbDhw93T0LZePfddxUQEPD3/y9RooTKlCnjwYz+14oVK5SRkXHDY1bvWiSZm+MwszgL4E0oLgIAAIBbrVq1So888ohTbTt06KCYmBhL83n55ZdNt+ndu7eOHTtmaR7ZeeaZZ3Tw4EFTbe6++25VrVrVnoTglH79+pmKP336tHr37m1TNjc2YsQIl4pJ4PuOHDmiTp06qX379jp16pTT52nRooUGDhxoYWZwxv79+7V582bD8RUrVrSs77i4OMOxixYtsqxfKzA+gOTbn2FvwvUEIDNxcXGmdiyYPHmyjh8/bmNG//XDDz9o2LBhbu3TqHbt2qlmzZqm2hw6dEidOnVSamqqTVl5ni8/v3lmwpfcddddhmPNrOqLf3BPgC/o27evRo8ebbpdYGCgvvnmG3Xo0MGGrAD3adOmjenFtYYOHZrtC8WAL+J6MIa5EOB/Va5c2aX2AwYMUI0aNSzKxn47duzQK6+8kmXMo48+qg8++MBNGWXv5ptvVv369f/+/960a5EkLVu2LNNjVhcXnTlzRr///rvheDNzJ4A3obgIAAAAbvPTTz+pZcuWSkxMNN02MDBQgwYNsjynxo0bq3bt2qbanDlzRm3btlVSUpLl+dzIxx9/rK+//tp0O2e+gIa92rRpo5tvvtlUm8mTJ7tt8mjJkiWmV79GznHkyBE9+eSTKleunCZPnuzSuapXr65Jkyb9zypGOdWqVavUo0cP7du3z9Op3NDQoUNNxTdo0MCyvs28KLRixQrt37/fsr5dxfgAkm9/hr0J1xOAzISFhalatWqG469du+bW627lypXq2rWr2/pzxjvvvGO6zfz589WpU6ccu1utLz+/eWbCl7Rp08Zw7ObNm3Xp0iUbs8mZuCfA2w0cOFAfffSR6XYBAQEaM2aMOnXqZENWgPsNHz7c1Dy4w+FQz5499e2339qYlTVWrFihzz77zNNpwIdwPWSPuRDgf7lSXFS5cmW9/vrr1iVjs4yMDPXo0UMpKSmZxjRp0kSffvqpG7MypkuXLn//b28rLlq+fHmmx6wuLlq6dKkcDoeh2Ny5c6tJkyaW9g+4C8VFAAAAsN3Fixf11FNPqW3btrpy5YpT5+jWrZuluyn8m9kXryVpw4YN6tChg65fv25DRv/49ttv9eyzz5pud88996hWrVo2ZARXBAYGasiQIabbDRgwQJMmTbIho39s3LhRHTp0yLEvmOHG0tLS9PPPP+v+++9XuXLl9Nlnn2U5oWnEbbfdpvnz5ytfvnzWJOnlUlNT9fXXX6tChQp68MEHtWXLFk+n9Ld58+bpq6++MhwfFBSkZs2aWdZ/3bp1Dcc6HA6vK25kfABf/wx7E64nAJkx+wXrN998o+nTp9uUzT9Wrlypu+66S9euXbO9L1ckJCTo/vvvN91uxowZat++vdNzNFY5c+aM5S+B+Przm2cmfEXDhg0N/96fnp6e5cs+yBz3BHirt99+26l57oCAAH3++efq3r279UkBHnLbbbfpySefNNUmPT1dDz74oN58803DL6i6i8Ph0Lx589SoUSM1aNBAq1at8nRK8CFcD8YwFwL8Iz4+3ql2wcHBGj9+vKmdwDxtxIgRWrt2babHy5Ytq+nTpys4ONiNWRlTr169v/+3NxUXJSYmatOmTTc8VqpUKZUoUcLS/pYsWWI4tnnz5j71+QT+jeIiAAAA2ObkyZN6/fXXVa5cOY0aNcrpCcHY2FgNHz7c4uz+0aBBAz300EOm282ZM0etWrXS+fPnbchK+vTTT/XQQw8pPT3dVLtcuXLp448/tiUnuK59+/Zq1KiRqTZ/Tax/+eWXtuS0bNkyJSQk6MKFC7acH97l/Pnzmj59uh5//HHddNNNat26taZNm+ZyUZEk3XrrrVqwYIHy589vQaa+JT09XRMnTlS1atVUv359TZ06VampqR7LZ8WKFbr//vtNPXtbtWpl6b+d2XvdjBkz9PTTTys5OdmyHFzB+AC+/hn2JlxPADJz3333mYrPyMhQ165dtXjxYpsyksaNG6eEhARdvnzZtj6sNGrUKMXExJhuN2vWLN1xxx3atm2bDVll7eTJkxo4cKDKlCmjESNGWHpuX39+88yErwgODlbr1q0Nx5t5AQf/4J4AbzRixAi98sorTrX96KOP1KtXL4szAjzv/fffV6VKlUy1+++BFAAAK19JREFUcTgceu2119SsWTMdPnzYpsyMu3z5skaOHKkKFSqoRYsWWrZsmadTgo/iesgecyHAP5wtLnrxxRd1++23W5yNffbv369XX3010+NBQUGaOHGi137HXqFCBVWrVk2NGjWyvGAnKSlJs2bN0vPPP69mzZqpdOnSypcvn0JCQhQTE6P4+Hh169ZNEyZM+M+uyKtWrcp08Vyrdy2SzM1ttGvXzvL+AXehuAgAAACWSU5O1vr16zV8+HAlJCSoWLFiGjx4sM6dO+f0OQMDAzVmzBjbf4keNmyYChQoYLrdkiVLVK1aNa1cudKyXC5duqSuXbuqd+/eysjIMN3+jTfeUPHixS3LB9YbMWKEQkJCTLVJT09Xr1691LNnTyUmJlqSR3p6ut599101bdr0PxMx/xYQEGBJf3C/U6dOafHixRo5cqR69eql22+/XdHR0brvvvs0evRonT592rK+2rVrp2XLljl1L81pVq5cqY4dO6po0aJ66qmnslyFymppaWkaMWKE7rzzTtNfAvXp08fSXIoXL66aNWuaavPxxx+rQoUKev/997V3715L83EG4wP/lhM+w96E6wnAjVSrVk1VqlQx1SY5OVl33323Ro0aZWkup0+f1n333aeHH344y8J7b1s9tFChQho9erRTbXfu3Knbb79dAwcOtOz3zKysWbNGDz/8sEqWLKkhQ4bY0mdOeH7zzISv6Nixo+HYX375xcZMcjbuCfAmX3zxhVM7Vkl/vmxu9dwT4C0iIiI0adIkhYWFmW67cOFCVa5cWa+//rrbdxZNTU3VTz/9pAceeEBFihTRM888oz179rg1B+Q8XA/ZYy4E+IczxUVVqlTRa6+9ZkM29nn++eez3BXspZde8uodXgMDA7Vp0yZLFw5Zv369unbtqkKFCqlNmzYaPny4FixYoIMHD+rSpUtKS0vTmTNntGPHDn3zzTd66KGHVKJECb3wwgt/v4OWVfGn2QWIsrN//37t2rXLUGxkZKTuueceS/sH3ImnPgAAgB/YvHmz0yvJ3YjD4VBKSoquX7+u8+fP6/Tp0zp48KAOHDhgerXC7AwfPlwtWrSw9Jw3Eh0drXHjxumee+4xvcPS4cOH1aBBA3Xu3FmDBw9W2bJlncohOTlZ48aN06uvvqozZ844dY5mzZqpb9++TrWF+1StWlWDBw/WwIEDTbcdM2aM5syZoyFDhqhz585OT+YuXLhQ/fr102+//ZZt7JNPPmn5ZDX+5Or9OTk5WcnJybp+/bqSk5N16dIlnTx5UidOnNDJkyct2Y0oO0FBQRoyZIj69+9ve1++5ty5cxo1apRGjRqlEiVK6O6771br1q3VsGFDRUREWNpXenq6vv32W7355pvat2+f6fYNGzbUnXfeaWlOktSlSxetW7fOVJuDBw9qwIABGjBggAoVKqSKFSuqRIkSKlCggCIjI03f99566y1T8f/G+AC+/hn2JlxPADLz3HPPqXv37qbaJCUl6amnntLs2bM1ZMgQ0y/l/Nu5c+c0YsQIffTRR4ZeXho0aFCWK416Qtu2bfXyyy/r7bffNt02NTVVQ4YM0ejRo/X000/rscceU5EiRSzLbfv27Zo5c6a+/fZbw1/Au8rXn988M+ErmjVrpgIFChjaHWfPnj3atWuXKlSo4IbMchbuCfAm77zzjtNt+/fv7zPzh2avNUD680XncePGqXPnzqY/Q4mJiRo8eLA+/vhjPfzww3r00UcVFxdnS56nTp3S3LlzNXv2bM2fP18XL160pR/4N66H7DEXAvypSJEiKliwoOEFi0NCQjR+/HjTC7l60rp16/TDDz9kevzmm2/2uWIpV2zZskXPPfecU4VKly9f1nvvvacJEybo66+/zrK4yOqdi3788UfDsa1bt1auXLks7R9wKwcAAAB8TsOGDR2Scvyf559/3u0/25dfftmlnAMDAx2tWrVyTJgwwXHq1Kls+0tLS3OsXLnSMWDAAEd0dLRLfZcsWdJx9uxZN/yUHI5u3boZzqtbt25uyckIb8o7PT3d0aBBA5f+zW+66SbHoEGDHBs2bHBkZGRk2+fu3bsdH374oSM+Pt5wHx06dHAsWbLEVF7+zF/uz3/9KV26tGPp0qWe/rE7HA6Hxz6nZvuV5AgJCXHUqlXL8fzzzzsmT57s2LZtmyM5Odl030eOHHFMnTrV8eCDDzoKFizo9L9jcHCwY+vWrZb9TP7typUrjvz583v0c2oFxgfGeNNz1iq+/Bn21uc311P2fPVa8tW83c3seNEfflYpKSmOihUrunR9Nm7c2DFx4kTH4cOHDfV54sQJx6RJkxwdOnRwhIaGGu6ndu3ajrS0NFO5LVmyxN4f4P+XkZHh6NChg8vPncDAQEdCQoLj448/dmzevNmRlpZmOIeUlBTHtm3bHGPHjnU8/PDDjtKlS2fbX968eS3/Wfjy8/vfeGYaw/PHs3r16mX45//uu+96Ot2/jR071tTn2RtwT8ge9wP7lSxZ0u3PVE/8gfXM/huMHTvW0yk77cMPP7TkcxgfH+8YMGCAY86cOY6TJ086lcvx48cdS5YscXzyySeOBx980FGuXDnTeXTp0sXin5D389XniTfmzfWQOeZCnOONn3O4zsw7E4MGDfJ0uqa1aNEiy7/TrFmzPJ2iWyQmJjoef/xxR2BgoCXPBkmZnqt48eKW529mXn/mzJmW9w+4EzsXAQAAwCu9/fbbTu3q4qo33nhD27Zt008//eRU+4yMDM2ePVuzZ89WQECASpUqpYoVK6pYsWKKiopSaGioEhMTdeHCBe3Zs0c7d+5UYmKiy3nnyZNH33//vQoWLOjyueAegYGBmjRpku644w4dPXrUqXMcO3ZMgwcP1uDBg5UvXz5VqlRJ5cqVU758+RQZGanr16/r8uXLOnjwoH7//XedPHnS1PkLFSqkUaNGaefOnU7lh5wrPDxcL7zwgl588UWFh4d7Oh2fk5qaqjVr1mjNmjV//7fg4GAVK1ZMN910k2JjY1WgQAGFh4crPDxcDodDV69eVWJiohITE3XgwAHt2bPHkueHJL377rsurXCXlaioKA0YMEAvvfSSLed3F8YH/iunfIa9CdcTgP8rJCREH3/8sZo2ber0OZYsWfL3apfFixfXLbfcogIFCih//vzKlSuXkpKSdOXKFR06dEh79+7V4cOHTfeRJ08eTZgwQUFBQU7naaeAgABNmDBB58+fd2rlz79kZGRo0aJFWrRokSQpMjJSZcqUUZkyZVS4cGFFRkYqMjJSaWlpSkpK0qVLl3T8+HEdO3ZMf/zxh1JTU636Kzktpzy/eWbCF3Tv3l1ffPGFodgZM2ZowIABNmeUc3FPAADf0LdvX124cEFvvPGGS+fZvn27tm/frvfee0+SVLhwYZUsWVLFihVTdHS0IiIi/p47vn79+t/fB508eVKnTp3S0aNHdfnyZSv+SoDTuB4yx1wI8I/4+HgtX74827hq1arp5ZdfdkNG1tm+fbvmzp2b6fEmTZro7rvvdmNGnrF+/Xp16dJFe/futfS8GRkZN/zvVu9adPr0aa1cudJQbHR0tFq1amVp/4C7UVwEAAAAr5I7d259/vnn6ty5s0f6DwwM1NSpU9WmTRvNnz/fpXM5HA4dOHBABw4csCi7G4uKitKcOXN022232doPrBcbG6tffvlF9evXd3lS++LFi/r111/166+/WpJbaGiovv/+exUuXJjiIvyPtm3b6oMPPlDp0qU9nUqOkpaWpoMHD+rgwYNu7bdz58567rnnbO2jX79++u6777Rt2zZb+7ET4wP/lhM+w96E6wnAjSQkJOipp57SJ5984vK5jhw5oiNHjliQ1T/CwsI0c+ZMlS1b1tLzWi0iIkK//PKL2rdvn+WLC2Zcu3bt7xe5fElOeH7zzIQvqF27tipWrGho7mjdunU6cOAA8wlO4p4AAL5j8ODBio6O1jPPPJPpS69mnTp1SqdOndK6dessOR/gLlwPmWMuBPhTfHx8tjGhoaEaN26cQkJC3JCRdT788MMsj/v6wjhGfPfdd3rkkUeUnJzstj6tLi6aNm2a0tPTDcU+9NBDPvc5Bf6vQE8nAAAAAPzljjvu0ObNmz1WWPSXvybKXFkpyF1y586tX375RXXq1PF0KnBSlSpV9P333ysyMtLTqfyPMWPGqH79+p5OA14iNDRU3bt31/bt2/XDDz/wIlAO0b59e40fP972fkJCQvTDDz8oOjra9r7sxPjAf+WUz7A34XoCcCPDhw9XrVq1PJ3GfwQGBmrChAlq3Lixp1MxJCIiQj/++KPuv/9+T6fiUTnl+c0zE77gkUceMRw7efJkGzPJ+bgnAIDveOqppzRlyhSv++4H8ASuh8wxFwIYKy569dVXVaVKFTdkY53ExERNmTIl0+NVqlTxid/tXPHmm2+qS5cuWRYWhYSEqG3btho3bpx27Nihy5cvKyUlRcePH/97jjMw0Fypg9XFRWbmMszMkQDeiuIiAAAAeFzRokU1ZswY/frrr16z8k1ERITmzJmjJ5980tOpZKpcuXJas2aNGjRo4OlU4KKEhATNnz9fefPm9XQqCggI0EcffaSuXbt6OhV4gdjYWL300ks6ePCgxo4dq8qVK3s6JVikd+/emjJlioKD3bOpddmyZbVgwQIVK1bMLf3ZhfGB/8opn2FvwvUE4P8KDQ3V7Nmzdcstt3g6lb+FhYVp/Pjxuu+++zydiimhoaGaMmWKhg8f7rbxnjfKKc9vnpnwdt26dVNYWJihWIqLXMc9AQB8x7333qtNmzaxgxsgrofMMBcCZF9cdPvtt+vFF190UzbWmT59uq5evZrp8d69e7sxG/cbOHCgXnvttUyPBwcH66mnntKBAwf0ww8/qFu3bqpUqZJy586tkJAQFS1aVG3atNGUKVO0evVqFS9e3FC/sbGxKl++vFV/DR09elSrVq0yFFu3bl1VqlTJsr4BT6G4CAAAAB5TsmRJDRs2THv27NEjjzxierUJuwUHB2vUqFH68ssvlStXLk+n8z/uuusurVu3jl9Mc5C6detq+fLlKlOmjMdyCAsL05QpU/T00097LAd4XmxsrPr06aPly5fr6NGjeuedd1S0aFFPpwWL5M6dW19//bU++eQTt79oWrVqVa1fv15t27Z1a79WY3zgv3LKZ9ibcD0B+L/y58+vRYsWqXbt2p5ORdHR0Vq0aJFPL7zw3HPPaenSpSpXrpynU/GYnPL85pkJbxYdHa2OHTsaiv3tt9+0efNmmzPK+bgnAIDviIuL0+rVq/XCCy8oJCTE0+mY5us7gcK7cD3cGHMh8Hf58+fP9Lvo0NBQjRs3zicXz5k6dWqmx4KDg9WhQwc3ZuNeL7/8soYMGZLp8VtuuUUbN27Uxx9/rJtuuinb89WsWVO//vqroVirdy0aP368HA6Hodg+ffpY2jfgKd719iYAAAByvIiICLVv317Tp0/XH3/8oX79+ikqKsrTaWWpZ8+e2r59u5o1a+bpVBQdHa1vv/1WP//8s/Lnz+/pdGCxKlWqaNOmTR5ZCaps2bJavHgxq1D5oTx58qh58+Z6++23tWrVKh05ckQjR45U/fr1FRAQ4On0vF7BggV9pviqZcuW2r59ux5++GGP5VCkSBH98MMPmj9/vhISEjyWhxUYH/innPQZ9iZcTwD+LTo6WosXL1b37t09lkPTpk21fv161a1b12M5WKVu3bravn27Bg8erIiICE+n8x/uWJ05Jz2/eWbCW5l5gWbs2LE2ZuJfuCcAgG8IDQ3V0KFDtWPHDt1zzz2eTidbuXPn1qOPPqr169frww8/9HQ6yGG4Hm6MuRD4u8x2L3r99dez3dnIG129elWLFy/O9HiTJk1UsGBBN2bkPp999pneeeedTI8/+OCDWrdunapUqWLqvMWKFdOUKVOyfX/B6uKicePGGYqLjY1V+/btLe0b8BSKiwAAAGCrwMBAVa1aVU899ZSmT5+uM2fOaMaMGerQoYOCgoI8nZ5hpUqV0rx58zRt2jTTv+RaISoqSs8//7x27typzp07u71/uE/evHk1depUTZkyRSVLlrS9v8DAQD377LPatm2b6tSpY3t/8KyYmBg1aNBAvXr10siRI7Vx40adP39ec+fO1cCBA1WnTh2v20XO291yyy06duyYfv31Vw0YMECVK1f2dEr/UatWLS1atEizZ89WiRIlPJ2OJOnOO+/UwoULtWvXLr311luqWbOmT646xvjAf+WUz7A34XoC8G/h4eEaO3asZs6caWhFSqsUKVJE3377rRYsWOCW38fcJSwsTK+99pp27typJ5980uNFRmFhYbr//vu1fPlyrVixwm395pTnN89MeKPq1aurVq1ahmK/++47paSk2JyR/+CeAAC+o3z58po5c6ZWrlypdu3aedX3pBEREerQoYOmTp2qU6dO6YsvvlD16tU9nRZyMK6H/2IuBP7sRgVENWvW1IABAzyQjesWL16s5OTkTI+3atXKjdm4z9y5c7NcfGTgwIH65ptvFB4e7tT569atm20RppXFRcuXL9e+ffsMxT7++OM+uSsfcCO+N2MOAAAArxAUFKSwsDCFhYUpPDxcBQsWVOHChVW4cGGVKFFCcXFxqlixoipVqqTcuXN7Ol3L3HvvverQoYNmzZqljz76SEuXLlVGRoZt/RUvXlwPP/ywnn766Ry7cglu7P7771ebNm00cuRIjRw5UseOHbP0/KGhoerSpYv69++vihUrWnpu2C8kJOTve/C//+TJk0eFCxdWTEzM338KFy6sUqVKqWLFisqXL5+nU8+RAgICVLt2bdWuXVvvvvuujh07pnnz5mnRokVavny5jh496vaccuXKpXvvvVdPPPGE7rjjDrf3b1RcXJxefvllvfzyy7p27Zo2bNigbdu2ae/evdq/f79Onz6ts2fP6sKFC0pOTlZKSopSU1M9nfZ/MD7wXznlM+xNuJ6Q03Xv3l2NGjUyHH/rrbfalosvuOeee9SsWTONHDlSH374oU6dOmVLPxUqVFCfPn3UrVs35cqVy5Y+vEHJkiU1atQoDR48WJ999pkmTJigvXv3uqXv4OBgNWjQQPfdd586duzo0V0tcsrzm2cmvM3zzz+ve++9N9u4c+fOacaMGerUqZMbsvIf3BMAeLNBgwaZis/pvwfVrVtXdevW1eHDh/XZZ59pypQpOnDggNvzKFmypFq0aKFWrVopISEhR/8uBO/F9fBfzIXAH/3f4qLw8HCNGzfOqwoPzchuMZ169eq5KRP3OXr0qLp06aL09PQbHn/llVf05ptvutxP//79M90RuXDhwqpQoYLLffzlyy+/NBQXGRmpJ554wrJ+AU8LcDgcDk8nAQAAAPiq48ePa/LkyZo1a5bWrl2rpKQkl89Zvnx5JSQkqFOnTqpfv3622/oi50tLS9OPP/6o8ePHa/Hixbp69apT5wkKClLt2rXVunVrde3aVbGxsRZnCuBGDhw4oFWrVmnDhg3auHGjtm7dqitXrljaR0BAgOLi4lS/fn21bt1ad955p9OrPsF1jA8A63A9AfhLamqqfvjhB3333XdasGCBrl275tL5ypcvr+bNm+uee+5RQkKCqXvBhg0bDMfGxcV59aIrmzdv1rRp07Rw4UJt2bLFsiKawMBAVahQQQ0bNlSjRo3UrFkzFjuwGc9MeFpGRoYqVKhgqGixbt26WrlypRuyujGHw5HpC0//V0BAgE++0MY9AQB8y9atWzVz5kwtWrRImzZtcvp7oMxERESocuXKql69uurWrav69euzQwm8FtfDP5gLgb9Yt27d/yyW+N5776l///4ezMg1devW1a+//nrDY7ly5dLFixd9cjftzGRkZCghIUFLly694fFevXpp9OjRlvT166+/qm7dujc8dt9992nq1KmW9HPmzBkVL148yx2o/tKnTx+NHDnSkn4Bb0BxEQAAAGCR1NRUbdiwQRs2bNC+ffu0f/9+HTx4UBcvXtTVq1d17do1paWlKSIiQrly5VJUVJRiY2NVpkwZlSlTRvHx8apXr55iYmI8/VeBF0tOTtbKlSu1du1a7dy5Uzt37tTp06d15coVJSYmKjg4WFFRUcqdO7cKFCigm2++WZUrV1blypVVv359VhIFvMThw4e1c+dO7d27V4cOHdLhw4d18uRJnTt3TufPn9eVK1f+XiH937sF5s2b9+8dqf7aKbBChQq67bbbVKBAAU//tXADjA8A63A9AfjL9evXtWbNGm3YsEFbt27VoUOHdOTIEV28eFFJSUlKTU1VZGTk3/eCAgUKqHz58oqLi1NcXJzuuOMOlSpVytN/Da+TlJSk9evXa/PmzX/fYw8ePKgLFy7o2rVrunbtmq5fv67g4GCFhoYqMjJSBQoUUKFChRQbG6vSpUurTJkyuuWWW1S1alVWPvYgnpnwlC+//FK9evUyFLtlyxZVrVrV5owgcU8AAF+Tnp6u33//XRs2bNAff/yhw4cP6/Dhwzpx4oQSExN17do1JSUlKSUlRSEhIQoLC1N4eLjy5cun6OhoRUdHq1ixYipdurRKly6tihUr6uabb/bJYlmA6+EfzIUAvsHhcCh37tyZFkbefvvtpor1fMEnn3yiPn363PBYw4YNtXDhQsuKqYYOHaqXXnop0zx69+5tST9DhgzRwIEDs40LDg7W3r17ub8iR6G4CAAAAAAAAAAAAAAAuCQ5OVlly5bVsWPHso3t2bOnvvzySzdkBQAAAACAexw6dCjLQhMrd9fxBmfOnNHNN9+sixcv/udY3rx5tW3bNhUvXtyy/lq1aqU5c+bc8Nj27dtVuXJll/tIT09X2bJldejQoWxjH3zwQX3zzTcu9wl4k0BPJwAAAAAAAAAAAAAAAHxbWFhYpisI/18TJ07UmTNnbM4IAAAAAAD32bNnT5bHy5Qp46ZM3OP111+/YWGRJL3zzjuWFhZlZGRo1apVNzxWqFAhVapUyZJ+pk+fbqiwKCgoSK+++qolfQLehOIiAAAAAAAAAAAAAADgsp49e6pYsWLZxl2/fl2ffPKJGzICAAAAAMA9jh8/nuXxggULuikT+508eVJjxoy54bGKFSuqV69elva3ZcsWXb58+YbHGjRooICAAEv6GTZsmKG4Ll26qHz58pb0CXgTiosAAAAAAAAAAAAAAIDLwsLCNHDgQEOxn376qZKSkmzOCAAAAAAA9zhx4kSWx3PlyuWmTOz30UcfKTk5+YbH+vfvr+DgYEv7W7FiRabHGjZsaEkfS5cu1YYNG7KNCw4OZtci5FgUFwEAAAAAAAAAAAAAAEv07NlTZcuWzTbu7Nmz+uqrr9yQEQAAAAAA9rt06VKWx3NKcVF6errGjh17w2MFCxZU586dLe9z+fLlmR6zqrho6NChhuJ69OihcuXKWdIn4G0oLgIAAAAAAAAAAAAAAJYICQnRW2+9ZSj2vffeU0pKis0ZAQAAAABgv+x2583IyHBTJvZatGiRTp06dcNjbdu2VVhYmOV9ZrZzUf78+XXLLbe4fP7169dr3rx52cZFRkbq9ddfd7k/wFtRXAQAAAAAAAAAAAAAACzTsWNH3X777dnGHT16NNPVjgEAAAAA8CXZLZ5x7do1N2Vir+nTp2d67J577rG8v507d+rMmTM3PNagQQMFBrpeDvHmm28ainvuuedUpEgRl/sDvBXFRQAAAAAAAAAAAAAAwDIBAQEaNmyYodghQ4YoNTXV5owAAAAAALBXaGholsePHz/upkzstWTJkhv+94CAANWpU8fy/pYvX57psYYNG7p8/i1btmjWrFnZxhUuXFj9+/d3uT/Am1FcBAAAAAAAAAAAAAAALNWoUSO1b98+27hDhw7piy++cENGAAAAAADYJzIyMsvj+/fvd1Mm9jlx4oT27dt3w2MlS5ZUwYIFLe/T7uKil19+2VDc22+/rTx58rjcH+DNKC4CAAAAAAAAAAAAAACWGzZsmMLDw7ONe+utt3Tt2jU3ZAQAAAAAgD2io6OzPL5x40Y3ZWKfLVu2ZHqsTJkytvS5YsWKG/73vHnz6tZbb3Xp3CtXrtTs2bOzjbvtttv08MMPu9QX4AsoLgIAAAAAAAAAAAAAAJYrXbq0+vXrl23cyZMnNXLkSDdkBAAAAACAPUqWLJnl8b179+ro0aNuysYeme1aJEmxsbGW93fgwAEdOXLkhsfq1aunwEDXSiEGDhxoKO6jjz5yuS/AF/ApBwAAAAAAAAAAAAAAthg4cGC2L1hJ0tChQ3X27Fk3ZAQAAAAAgPXi4uKyjfn+++/dkIk5+/fv15UrVwzFHjhwINNjuXLlsiqlvy1fvjzTYw0bNnTp3LNmzcp0V6R/e+ihh1SvXj2X+gJ8BcVFAAAAAAAAAAAAAADAFpGRkfr444+zjbt06ZJef/11+xMCAAAAAMAGFStWVO7cubOM+fzzz92UjTGLFy9WjRo19NhjjxmKv3DhQqbHgoODrUrrb1kVFzVq1Mjp86alpal///7ZxhUoUEDDhg1zuh/A11BcBAAAAAAAAAAAAAAAbNO6dWu1bds227jRo0dr165d9icEAAAAAIDFAgMDVbt27Sxjdu7cqWnTprkpo6x98sknat68uc6fP69Jkybpiy++yLZNYmJipscuXbpkZXo6d+6cZs2adcNjuXPn1m233eb0uT/77DPt3r0727ihQ4cqOjra6X4AX2N9iSAAAAAAAAAAAAAAAMC/fPzxx6patWq2cQcPHlSFChXckBEAAAAAANZq166d5s+fn2XM888/r+bNmytPnjxuyup/nTt3Tj179tTMmTP/578/88wzqlWrlqpUqZJp27S0tEyPnT171qoUJUlPPvmkzpw5c8NjdevWVVBQkNPnDggI0KBBg7KMiYyMVM+ePZ3uA/BFAQ6Hw+HpJAAAAAAAAAAAAAAAAAAAAAAA8FWnT59W8eLFlZKSkmXcfffdpylTpiggIMBNmf1p3rx5euSRR3T8+PEbHo+Li9OGDRsUFRV1w+Pdu3fX+PHjb3gsOjpap0+ftiTPr776So8++mimx4cMGaIXX3zRkr4A/CPQ0wkAAAAAAAAAAAAAAAAAAAAAAODLYmJi1LFjx2zjpk2bpr59+9qf0P937NgxdezYUS1atMi0sEiSSpUqpcDAzMsLChQokOmxM2fOaOfOnS7lKUkrVqxQ7969s4ypW7euy/0A+C+KiwAAAAAAAAAAAAAAAAAAAAAAcNGAAQMUFBSUbdzIkSP14IMPKikpybZcLl68qMGDB6tChQqaOnVqlrH333+/Zs2apcjIyExjYmNjszzH559/7lSef1m7dq3uvvvuLHd+CgkJUfXq1V3qB8CNUVwEAAAAAAAAAAAAAAAAAAAAAICL4uPj1atXL0OxEydO1K233qrFixdbmsOxY8f06quvqlSpUnr99deVmJiYZfxjjz2mSZMmKSQkJMu4WrVqZXl8zJgx2rNnj+l8JWn+/Plq1qyZLl++nGXcrbfeqoiICKf6AJA1iosAAAAAAAAAAAAAAAAAAAAAALDAO++8o5IlSxqK3bNnjxISEpSQkKDvv/9eqampTvV58eJFTZ06VXfddZdKliypt956S5cuXcqyTWhoqD755BN9/vnnCgzMvqygRo0aCgsLy/T41atXdf/99+vChQuG805PT9fQoUPVqlWrbAuLJLFrEWCjAIfD4fB0EgAAAAAAAAAAAAAAAAAAAAAA5ASrV69Wo0aNlJKSYqpdnjx5lJCQoFq1aqlKlSoqWbKkihQposjISIWEhCgxMVGXL1/WiRMn9Pvvv2vHjh1asWKF1q9fr/T0dMP93HTTTZo+fXq2uxH9X/fee69mzJiRZUxcXJwmTZqkatWqZRm3Zs0a9enTRxs2bDDc/1dffaUePXoYjgdgHMVFAAAAAAAAAAAAAAAAAAAAAABYaNq0aXrggQeUkZHh6VT+R/v27fXZZ58pJibGdNtVq1apXr162cYFBASoXbt26tChg2rVqqXChQsrICBAR44c0ZIlSzRp0iQtX77cdP+bNm3KtmgJgHMoLgIAAAAAAAAAAAAAAAAAAAAAwGLfffedHn74YdM7GNkhNjZWo0aNUtu2bV06z5133qmFCxdak5QJQUFBSkxMVHh4uNv7BvxBoKcTAAAAAAAAAAAAAAAAAAAAAAAgp+ncubMWLFigokWLeiyHyMhIPf/88/r9999dLiySpPHjxys6Otr1xG4gq12JypYtS2ERYCOKiwAAAAAAAAAAAAAAAAAAAAAAsEGDBg20fft2denSxa39hoeH65lnntH+/fv1/vvvK2/evJacNzY2VlOnTlXu3LktOZ8kFSxYUGPHjtXTTz+daczNN99sWX8A/oviIgAAAAAAAAAAAAAAAAAAAAAAbFKgQAFNnDhR69evV6tWrRQQEGBbX/Hx8frggw905MgRjRgxQoULF7a8j0aNGmnFihUqVqyYS+eJiIhQ3759tWfPHnXv3l3r1q3LNLZ8+fIu9QUgawEOh8Ph6SQAAAAAAAAAAAAAAAAAAAAAAPAHBw8e1NixY/Xjjz9q69atLp0rKChI1atXV9OmTdWmTRvVrFnToiyzd+nSJb3//vsaMWKErl69arhdmTJl9PDDD+vRRx/9n+KnGjVqaMOGDX///2LFiqlNmzZq166dGjVqpODgYEvzB/APiosAAAAAAAAAAAAAAAAAAAAAAPCAEydOaPXq1dqyZYt27dqlo0eP6tixY7p8+bKSkpKUmpqqyMhI5c6dW1FRUSpcuLDi4uJUoUIFVapUSXXq1FG+fPk8+nc4f/685s6dq7lz52rr1q06c+aMzp49q8DAQOXJk0fFihVThQoVVLNmTSUkJOiWW2654XmKFy+u3Llzq23btmrXrp2qV69u6y5PAP5BcREAAAAAAAAAAAAAAAAAAAAAAPCo1NRUhYSEeDoNwC9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4qUBPJwAAAAAAAAAAAAAAAAAAAAAAAADAMyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH6K4iIAAAAAAAAAAAAAAAAAAAAAAADAT1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgpiosAAAAAAAAAAAAAAAAAAAAAAAAAP0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCnKC4CAAAAAAAAAAAAAAAAAAAAAAAA/BTFRQAAAAAAAAAAAAAAAAAAAAAAAICforgIAAAAAAAAAAAAAAAAAAAAAAAA8FMUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgpyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH6K4iIAAAAAAAAAAAAAAAAAAAAAAADAT1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgpiosAAAAAAAAAAAAAAAAAAAAAAAAAP0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCnKC4CAAAAAAAAAAAAAAAAAAAAAAAA/BTFRQAAAAAAAAAAAAAAAAAAAAAAAICforgIAAAAAAAAAAAAAAAAAAAAAAAA8FMUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgpyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH7q/wHCP7KD/1pNaAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADRcAAAziCAYAAACpQXt5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdaXiW5Z3/4V8SZIeyIyq4ABWSaF1BcImKWlpRwaVaUatVtFqty2FFO/2rUKtV674gVKRSpy5TddxatYqTCFZRQQQ0yOJeEQWBsi95/i9mpjOOSp48eZYk93keR49p4bru+xunr7Af76JUKpUKAAAAAAAAAAAAAAAAIHGKCz0AAAAAAAAAAAAAAAAAKAxxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAABZsH79+rjvvvvi7bffLvQUAAAAAIC0iYsAAAAAAAAAoB42btwYEyZMiL59+8bJJ58cpaWlMW3atELPAgAAAABIS7NCDwAAAAAAAACAxmjz5s3xhz/8IcaOHRvvvvvul35v48aNBVoFAAAAAFA34iIAAAAAAAAAqIOampp48MEH48orr4x33nmn0HMAAAAAAOpFXAQAAAAAAAAAaUilUvHoo4/GFVdcEXPmzCn0HAAAAACArBAXAQAAAAAAAEAtnnzyybj88stj5syZhZ4CAAAAAJBV4iIAAAAAAAAA+AZ//etf4//9v/8Xr7zySqGnAAAAAADkhLgIAAAAAAAAAP6Pqqqq+OUvfxkvvvhioacAAAAAAORUcaEHAAAAAAAAAEBD8fLLL8ehhx4aFRUVwiIAAAAAIBHERQAAAAAAAAAk3owZM2LYsGExaNCgeO655wo9BwAAAAAgb8RFAAAAAAAAACTW7Nmz4+ijj44999wznnrqqULPAQAAAADIu2aFHgAAAAAAAAAAhXD//ffHyJEjI5VKFXoKAAAAAEDB+HIRAAAAAAAAAIn06aefCosAAAAAgMQTFwEAAAAAAABAGgYMGBCPPvpooWcAAAAAAGRVs0IPAAAAAAAAAICGbPDgwXH55ZfHd7/73UJPAQAAAADIOnERAAAAAAAAAHyNgQMHxpgxY0RFAAAAAECTJi4CAAAAAAAAgP9l9913j7Fjx8awYcMKPQUAAAAAIOfERQAAAAAAAAAQEf3794+xY8fGMcccE0VFRYWeAwAAAACQF+IiAAAAAAAAABJtp512iiuuuCJGjhwZJSUlhZ4DAAAAAJBX4iIAAAAAAAAAEqlHjx4xbty4OP3002OrrbYq9BwAAAAAgIIQFwEAAAAAAACQSMcff3yhJwAAAAAAFFxxoQcAAAAAAAAAAAAAAAAAhSEuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAJAgU6ZMiaKiooz/deGFFxb6R2gQlixZEl26dMn4r+O2224by5cvL/SPAQAAAAAA4iIAAAAAAABIkrKysnrdnzdvXpaWNG4/+9nPYunSpRnfHz9+fHTo0CF7gwAAAAAAIEPiIgAAAAAAAEiQ7t27R5cuXTK+Ly6KeOKJJ+LBBx/M+P7JJ58cw4YNy+IiAAAAAADInLgIAAAAAAAAEqY+Xy967733Yv369Vlc07isXLkyzj777Izv9+jRI2655ZYsLgIAAAAAgPoRFwEAAAAAAEDC1Ccuqqmpifnz52dxTeNyySWXxMcff5zx/fHjx0fHjh2zuAgAAAAAAOpHXAQAAAAAAAAJU15eXq/78+bNy9KSxqWysjImTJiQ8f2TTjopjjjiiCwuAgAAAACA+hMXAQAAAAAAQMLU58tFEcmMi9atWxejRo2KVCqV0f2tt946br311iyvAgAAAACA+hMXAQAAAAAAQMLU98tF1dXVWVrSeFx55ZUxf/78jO/fdddd0bFjxywuAgAAAACA7BAXAQAAAAAAQMJ06tQptt5664zvJ+3LRTNnzowbbrgh4/sjR46Mo446KouLAAAAAAAge8RFAAAAAAAAkEBlZWUZ301SXLRp06Y4/fTTY9OmTRnd33rrrePWW2/N8ioAAAAAAMgecREAAAAAAAAkUHl5ecZ3V6xYEYsXL87imobrt7/9bcycOTPj++PGjYtOnTplcREAAAAAAGSXuAgAAAAAAAASqD5fLopIxteL3nnnnRgzZkzG93/4wx/G8OHDszcIAAAAAAByQFwEAAAAAAAACVSfLxdFNP24KJVKxahRo2LdunUZ3e/evXvcdtttWV4FAAAAAADZ16zQAwAAAAAAAID88+WiLRs/fnxUVVVlfH/cuHHRuXPnLC6KmDx5ckyePDmrz2xszjrrrDjuuOMKPQMAAAAAoEkRFwEAAAAAAEACtW/fPnr27BkffvhhRverq6uzvKjh+Oijj2L06NEZ3z/hhBNixIgRWVz0nxYtWhTPP/981p/bmAwdOrTQEwAAAAAAmpziQg8AAAAAAAAACqM+Xy9qyl8uOvvss2PlypUZ3e3WrVvcfvvtWV4EAAAAAAC5Iy4CAAAAAACAhKpPXPTee+/Fhg0bsrimYXjggQfiySefzPj+nXfeGZ07d87iIgAAAAAAyC1xEQAAAAAAACRUeXl5xnc3b94c8+fPz+Kawlu6dGn87Gc/y/j+8ccfH8ccc0wWFwEAAAAAQO6JiwAAAAAAACCh6vPlooiIefPmZWlJw3DBBRfEZ599ltHdbt26xe23357lRQAAAAAAkHviIgAAAAAAAEio0tLSKCoqyvh+U4qLnn766bjvvvsyvn/HHXdEly5dsrgIAAAAAADyQ1wEAAAAAAAACdWmTZvYYYcdMr7fVOKiVatWxVlnnZXx/eOOOy6OPfbYLC4CAAAAAID8aVboAQAAAAAAAEDhlJeXx7vvvpvR3erq6iyvKYzLLrssPvjgg4zudu3aNe64444sL/p6V155ZVx55ZV5eRcAAAAAAMnhy0UAAAAAAACQYGVlZRnfbQpfLnrppZfizjvvzPj+HXfcEV27ds3iIgAAAAAAyC9xEQAAAAAAACRYfeKi5cuXx5IlS7K4Jr/Wr18fZ5xxRtTU1GR0/9hjj43jjjsuy6sAAAAAACC/xEUAAAAAAACQYOXl5fW635i/XnTVVVfF22+/ndHdLl261OuLRwAAAAAA0FCIiwAAAAAAACDB+vXrFyUlJRnfr66uzuKa/Jk9e3Zce+21Gd+//fbbo2vXrllcBAAAAAAAhSEuAgAAAAAAgARr2bJl9O7dO+P7jfHLRZs3b47TTz89Nm7cmNH9Y445Jo4//vgsrwIAAAAAgMIQFwEAAAAAAEDClZWVZXy3McZFN998c7z66qsZ3e3SpUvceeedWV4EAAAAAACFIy4CAAAAAACAhCsvL8/4bnV1dRaX5N6iRYvi8ssvz/j+bbfdFt26dcviIgAAAAAAKCxxEQAAAAAAACRcfb5c9O6778aGDRuyuCa3Ro0aFWvWrMno7ogRI+KEE07I8iIAAAAAACgscREAAAAAAAAkXH2+XLR58+ZYuHBhFtfkzsSJE2PKlCkZ3e3cuXOMGzcuy4sAAAAAAKDwxEUAAAAAAACQcN/+9rdjq622yvj+vHnzsrgmNz755JO4+OKLM75/2223Rffu3bO4CAAAAAAAGgZxEQAAAAAAACTcVlttFX379s34fnV1dRbX5Ma5554by5cvz+ju8OHD44c//GF2BwEAAAAAQAMhLgIAAAAAAACivLw847sN/ctFDz/8cDzyyCMZ3e3UqVPcddddWV4EAAAAAAANh7gIAAAAAAAAiLKysozvNuS4aPny5XHuuedmfP+2226L7t27Z3ERAAAAAAA0LOIiAAAAAAAAoMl+ueiiiy6KxYsXZ3T3qKOOihNPPDHLiwAAAAAAoGERFwEAAAAAAAD1+nLRsmXL4rPPPsvimux4/vnnY9KkSRnd7dSpU9x1111ZXgQAAAAAAA2PuAgAAAAAAACIPn36RIsWLTK+39C+XrRmzZo488wzM75/yy23xNZbb53FRQAAAAAA0DCJiwAAAAAAAIAoKSmJfv36ZXy/ocVFv/zlL2PRokUZ3T3iiCPipJNOyvIiAAAAAABomMRFAAAAAAAAQERElJWVZXy3uro6i0vqZ/r06XHLLbdkdLdjx44xfvz4LC8CAAAAAICGS1wEAAAAAAAAREREeXl5xncbypeLNm7cGGeccUbU1NRkdP+WW26JHj16ZHkVAAAAAAA0XOIiAAAAAAAAICLq9+WihhIXXXPNNTF79uyM7g4bNixOPvnkLC8CAAAAAICGTVwEAAAAAAAARET9vly0aNGi2LhxYxbX1N1bb70Vv/71rzO626FDhxg/fnyWFwEAAAAAQMMnLgIAAAAAAAAiImLHHXeM1q1bZ3R306ZNsXDhwiwvSl9NTU2cccYZsWHDhozu33LLLbHNNttkeRUAAAAAADR84iIAAAAAAAAgIiKKioqitLQ04/vz5s3L4pq6uf322+Nvf/tbRneHDRsWp5xySpYXAQAAAABA4yAuAgAAAAAAAP6prKws47uFiovef//9+Jd/+ZeM7nbo0CHGjx+f5UUAAAAAANB4iIsAAAAAAACAf6pPXFRdXZ3FJek766yzYtWqVRndvemmm2KbbbbJ8iIAAAAAAGg8mhV6AAAAAAAAANBwlJeXZ3y3EF8umjx5cjzzzDMZ3f3+978fp556anYHkQipVKrQEwAAAAAAsqYo5U89AQAAAAAAgP/ywQcfxPbbb5/R3c6dO8fnn3+e5UXfbMmSJdG/f/9YtmxZne926NAh5syZE9tuu20OlgEAAAAAQONRXOgBAAAAAAAAQMPRq1evaN++fUZ3ly5dGkuXLs3yom923nnnZRQWRUTceOONwiIAAAAAAAhxEQAAAAAAAPB/lJaWZny3uro6i0u+2eOPPx4PPfRQRne/973vxWmnnZblRQAAAAAA0DiJiwAAAAAAAIAvKS8vz/juvHnzsrjk661cuTLOOeecjO5+61vfigkTJmR5EQAAAAAANF7iIgAAAAAAAOBLysrKMr6bj7jo5z//eXz88ccZ3b3xxhtju+22y/IiAAAAAABovMRFAAAAAAAAwJfUJy6qrq7O4pKvqqysjN/97ncZ3R06dGj8+Mc/zvIiAAAAAABo3MRFAAAAAAAAwJeUl5dnfDeXXy5at25djBo1KlKpVJ3vtm/fPiZMmJCDVQAAAAAA0LiJiwAAAAAAAIAv6dGjR3Tq1Cmju4sWLYpNmzZledF/uuKKK2L+/PkZ3b3hhhuiZ8+eWV4EAAAAAACNn7gIAAAAAAAA+IqysrKM7m3cuDEWLVqU5TURM2bMiBtuuCGju4cddlicccYZWV4EAAAAAABNg7gIAAAAAAAA+IpM46KIiOrq6iwuidi0aVOcccYZsXnz5jrfbd++fdx9991Z3QMAAAAAAE2JuAgAAAAAAAD4ivLy8ozvzps3L4tLIq6//vqYOXNmRnd/+9vfRs+ePbO6BwAAAAAAmhJxEQAAAAAAAPAV9flyUTbjonfeeSfGjh2b0d1DDz00Ro0albUtAAAAAADQFImLAAAAAAAAgK9oCF8uSqVSMWrUqFi3bl2d77Zr1y7uvvvurOwAAAAAAICmTFwEAAAAAAAAfEWXLl2iW7duGd2trq7Oyoa77rorqqqqMrr729/+Nnr16pWVHQAAAAAA0JQVpVKpVKFHAAAAAAAAAA3PwQcfHC+88EJGd5cuXRqdOnXK+N0fffRRlJWVxcqVK+t895BDDom//vWvGb8bAAAAAACSxJeLAAAAAAAAgK9VXl6e8d158+bV691nn312RmFRu3bt4u67767XuwEAAAAAIEnERQAAAAAAAMDXKisry/hudXV1xnfvv//+ePLJJzO6e91118X222+f8bsBAAAAACBpxEUAAAAAAADA1yrEl4uWLl0a559/fkZ3hwwZEmeddVZGdwEAAAAAIKnERQAAAAAAAMDXqs+XizKNiy644IL47LPP6nyvbdu2MXHixCgqKsrovQAAAAAAkFTiIgAAAAAAAOBrdejQIbbddtuM7mYSF/3lL3+J++67L6P3XXfddbH99ttndBfyYcmSJbFixYpCzwAAAAAA+ApxEQAAAAAAAPCNMv160cKFC2PTpk1pn1+1alX85Cc/yehdBx10UMZ3IZfef//9uPnmm6OioiJ69OgR+++/f6EnAQAAAAB8RbNCDwAAAAAAAAAarrKysnj22WfrfG/Dhg3x7rvvRt++fdM6f9lll8UHH3xQ5/e0bds27rnnnigqKqrzXciFt99+Ox555JF45JFHYsaMGV/6vT59+hRoFQAAAADANxMXAQAAAAAAAN+ovLw847vz5s1LKy566aWX4s4778zoHddee23ssMMOGd1NohUrVsScOXNizpw58fbbb8fHH38cH3/8cSxevDhWrVoVa9eujXXr1kWzZs2iXbt2//xXt27dol+/ftG/f//o169ffOc734lOnToV+sdpUK6++uqYPHlyzJs37xvPVFRU5HERAAAAAEB6ilKpVKrQIwAAAAAAAICG6ZVXXol99tkno7vXX399XHzxxVs8s379+thtt92iurq6zs8/6KCD4vnnn/fVoi34/PPP47nnnovKysqorKyMt99+OyvPLS4ujj333DOGDh0aQ4cOjYEDB0ZJSUlWnt0YLV++PDp37hw1NTVbPDdz5szYbbfd8jMKAAAAACBNvlwEAAAAAAAAfKOysrIoKiqKTP6ZhVv6gst/u+qqqzIKi9q0aRMTJ04UFn2NJUuWxJ/+9Kd4+OGHo7KyMjZv3pz1d9TU1MSrr74ar776avzqV7+K7bbbLkaNGhWjRo2KHj16ZP19Dd2LL75Ya1jUoUOH2HXXXfO0CAAAAAAgfcWFHgAAAAAAAAA0XG3bto1evXpldLe2uOjNN9+Ma6+9NqNnX3vttbHjjjtmdLcpSqVSMWXKlDj++ONju+22i5/+9KcxZcqUnIRFX+ejjz6KK664Inr16hXHHXdczJo1Ky/vbSiqqqpqPbP//vtHcbG/RQ8AAAAANDz+5BIAAAAAAADYovLy8ozubSku2rx5c5x++umxcePGOj/3wAMPjHPOOSejTU3N5s2b449//GPssssuMWTIkHjooYcy+muaLZs2bYo//elPsccee8Spp54aS5cuLdiWfKqsrKz1zIEHHpj7IQAAAAAAGRAXAQAAAAAAAFtUVlaW0b0lS5bEF1988bW/d/PNN8drr71W52e2adMmJk6cGEVFRRltaipSqVT84Q9/iH79+sXIkSNj7ty5hZ70JTU1NXHvvfdGaWlp/PnPfy70nJxatWpVzJw5s9ZzFRUVeVgDAAAAAFB34iIAAAAAAABgizKNiyK+/utFCxcujMsvvzyj511zzTWx0047ZbynKZg2bVoMHDgwTjnllFiwYEGh52zRkiVL4ogjjojf/OY3hZ6SM9OmTYtNmzZt8Uz79u1jt912y88gAAAAAIA6EhcBAAAAAAAAW1ReXp7x3a+Li84888xYs2ZNnZ91wAEHxLnnnpvxlsZu2bJl8aMf/Sj222+/ePXVVws9J201NTVx2WWXxSWXXFLoKTlRWVlZ65n99tsvSkpK8rAGAAAAAKDuxEUAAAAAAADAFvXv3z+KizP7W4v/Ny6aOHFiTJkypc7Pad26ddxzzz1RVFSU0Y7G7uGHH47S0tKYPHlyoadk7Prrr2+SXzCqqqqq9UxFRUUelgAAAAAAZKZZoQcAAAAAAAAADVurVq1ip512igULFtT5bnV19T///SeffBIXX3xxRhuuueaa6N27d0Z3G7PVq1fHOeeck5WoqEWLFjFgwIAoLS2Nfv36Rf/+/WPbbbeNdu3aRfv27aNdu3ZRU1MT69ati9WrV8fixYvjk08+iQULFsTs2bPjjTfeiJkzZ8bmzZsz3vCLX/widtlllzj88MPr/fM0BGvXrk3rK1LiIgAAAACgIStKpVKpQo8AAAAAAAAAGrbhw4fHY489Vud7paWlMXfu3IiIOProo+PRRx+t8zP233//qKysTNxXi+bMmRM/+MEP4u233874Gb17944jjzwyDjvssKioqIhWrVrVa9OKFSuisrIy7rvvvnj88cdj/fr1dX5G9+7dY/bs2dG1a9d6bWkIpkyZEkOGDNnimbZt28YXX3wRzZr5Z38CAAAAAA1TcaEHAAAAAAAAAA1feXl5RvcWLFgQmzdvjocffjijsKh169Zxzz33JC4sevTRR2PgwIEZhUXNmzePH/zgB/Hcc8/F/Pnz48Ybb4yhQ4fWOyyKiPjWt74VRx55ZDz00EPx97//PUaPHh0tW7as0zM+/fTTGD16dL23NARVVVW1nhk8eLCwCAAAAABo0MRFAAAAAAAAQK3Kysoyurdhw4aYMWNGnHvuuRndv/rqq6NPnz4Z3W2srrvuujjmmGNizZo1dbrXvHnzOPfcc+ODDz6IBx98MIYMGZLTKKtTp07xm9/8JubNmxeHHXZYne7ee++9MWvWrBwty5/Kyspazxx44IG5HwIAAAAAUA/iIgAAAAAAAKBWmcZFEREjR46MxYsX1/nefvvtF+edd17G721sUqlUnHvuuTF69OhIpVJp3ysqKoqRI0dGdXV13HbbbdG9e/ccrvyqXr16xdNPPx2//vWvo6SkJK07NTU1cc011+R4WW5t2LAhXnnllVrPVVRU5GENAAAAAEDmilJ1+VNpAAAAAAAAIJE2bNgQbdq0iU2bNuXlfa1atYo333wzMV8tqqmpiTPPPDMmTpxYp3u9evWKe+65J4YMGZKjZXXzyCOPxA9/+MPYsGFDrWdbt24dq1atyunXlXJp6tSpsf/++2/xTOvWrWP58uWx1VZb5WkVAAAAAEDd+XIRAAAAAAAAUKvmzZvnNfT59a9/nZiwKJVKxWmnnVbnsOi0006L2bNnN5iwKCLi6KOPjieeeCJatmxZ69m999670YZFERGVlZW1nhk0aJCwCAAAAABo8MRFAAAAAAAAQFrKy8vz8p599903zj///Ly8qyG48MILY/LkyWmfb9GiRdx7771xzz33RPv27XO4LDOHHXZY3HXXXbWeO/jgg/OwJneqqqpqPVNRUZGHJQAAAAAA9SMuAgAAAAAAANJSVlaW83e0atUqJk2aFMXFyfhbmddcc03ccsstaZ/v2rVrPP/883HKKafkcFX9/ehHP6o1EDvooIPytCb7Nm3aFC+99FKt58RFAAAAAEBjkIw/kQcAAAAAAADqLR9fLrrqqquib9++OX9PQ/Bv//Zv8Ytf/CLt83379o3p06fHvvvum8NV2XPttdfGDjvs8LW/17p16xg4cGB+B2XR66+/HqtWrdrimZYtWzbqnxEAAAAASA5xEQAAAAAAAJCWXH+5aPDgwXHBBRfk9B0Nxdy5c+O0005L+3yfPn3ihRde+MZYpyFq0aJFXHPNNV/7e/vuu280b948z4uyp6qqqtYzAwcOjBYtWuRhDQAAAABA/YiLAAAAAAAAgLT07ds3Z0FIy5Yt45577oni4qb/tzBXrFgRw4cPj9WrV6d1vnfv3vHCCy/Etttum+Nl2XfCCSfErrvu+pVfP/jggwuwJnsqKytrPXPggQfmfggAAAAAQBY0/T+ZBwAAAAAAALKiWbNmsfPOO+fk2VdddVXOnt3Q/PSnP40FCxakdXabbbaJF154Ibbbbrscr8qdU0899Su/dtBBB+V/SJbU1NTEtGnTaj1XUVGRhzUAAAAAAPUnLgIAAAAAAADSVlZWlvVnDho0KC688MKsP7cheuihh+Jf//Vf0zrbqlWrePzxx6Nnz545XpVbJ554YjRr1uyf/7ldu3ax5557FnBR/cyaNSuWL1++xTPNmzePffbZJz+DAAAAAADqSVwEAAAAAAAApK28vDyrz2vZsmVMmjQpioub/t+6XLx4cZx99tlpnS0qKop77723UUc4/6179+5fCm0OOOCAL8VGjU1lZWWtZwYMGBCtWrXKwxoAAAAAgPprvH9iCwAAAAAAAORdtr9cNHbs2Nh5552z+syG6qKLLoply5aldfaXv/xlHHfccTlelD8DBgyIqVOnRkTEQQcdlPf3v/fee1FVVRWzZs2KN998Mz744INYsWJFLF++PGpqaqJdu3bRs2fPKC0tjcGDB8fhhx8eO+6449c+q6qqqtb3VVRUZPtHAAAAAADImaJUKpUq9AgAAAAAAACgcViwYEH07ds3K8/aZ599YurUqVFSUpKV5zVkU6ZMiSFDhqR1tin+dXnwwQfjhBNOiIiIGTNmxO67757zdy5cuDDuvffeeOyxx+LNN9+s8/199903zj///Dj22GOjqKgoIiJSqVR069YtPv/88y3effbZZ+PQQw/NaDcAAAAAQL6JiwAAAAAAAIC01dTURNu2bWPt2rX1ek7Lli1j5syZ0a9fvywta7g2bdoUu+yyS1RXV9d6tk2bNvHGG29Enz598rAsf9asWRNvvfVWRETsscceUVxcnLN3/cd//EfcdNNN8eSTT0ZNTU29n/ed73wnxo0bF4MGDYq5c+dGeXn5Fs83a9Ysli9fHm3atKn3uwEAAAAA8qFZoQcAAAAAAAAAjUdxcXH0798/ZsyYUa/njBkzJhFhUUTExIkT0wqLIiJuuOGGJhcWRUS0bt069tprr5y+Y+7cuXHRRRfFs88+m9Xnzpo1K/bbb7+45JJLokePHrWe32uvvYRFAAAAAECj4stFAAAAAAAAQJ2ccsop8Yc//CHj+wMHDoxp06ZFSUlJFlc1TGvXro0+ffrE3//+91rPDhgwIF5++eUoKirKw7KmY/Xq1XHppZfGuHHjYvPmzTl911ZbbRUbN27c4plLL700rrnmmpzuAAAAAADIJl8uAgAAAAAAAOqkrKws47stWrSISZMmJSIsioi444470gqLIiJuuukmYVEdTZ8+PU466aSYP39+Xt5XW1gUEVFRUZGHJQAAAAAA2VNc6AEAAAAAAABA41JeXp7x3TFjxkT//v2zuKbh2rhxY9x8881pnf3BD34QgwcPzu2gJub666+PfffdN29hUTpKSkpi3333LfQMAAAAAIA68eUiAAAAAAAAoE4y/XLRgAED4uKLL87ymobr/vvvj48//rjWc8XFxXH11VfnYVHTsHHjxjjzzDPj97//faGnfMUee+wR7dq1K/QMAAAAAIA6ERcBAAAAAAAAdbL99ttH27ZtY9WqVWnfadGiRUyaNClKSkpyuKxhufHGG9M6N2LEiOjdu3eO1zQNX3zxRYwYMSIqKyvrdK9v375x9NFHx8CBA2PXXXeNLl26ROvWrWP58uWxcOHCmDZtWkyePDnefPPNeu2rqKio130AAAAAgEIoSqVSqUKPAAAAAAAAABqXgQMHxvTp09M+f/XVV8dll12Ww0UNy6uvvhoDBgxI6+y0adNi8ODBOV7U+C1btiwOOeSQmDlzZlrni4uLY8SIEfHzn/88Bg4cmNadJ554Is4777x4//33M9r4xBNPxLBhwzK6CwAAAABQKMWFHgAAAAAAAAA0PuXl5Wmf3XvvveOSSy7J4ZqGZ9KkSWmdGzhwoLAoDUuXLo0hQ4akHRYNHjw4Xn/99fjTn/6UdlgUEXHEEUfE66+/ntH/T4qLi2O//far8z0AAAAAgEITFwEAAAAAAAB1VlZWlta55s2bx6RJk6KkpCTHixqO9evXxwMPPJDW2VNPPTW3Y5qAFStWxJAhQ+KNN96o9Wzz5s3jpptuiqlTp8Zuu+2W0fs6d+4czzzzTOy66651uved73wnOnTokNE7AQAAAAAKSVwEAAAAAAAA1Fm6cdEVV1yR9tmmYsqUKfHFF1/Ueq6kpCSOPvroPCxqvDZt2hTHHntszJo1q9azPXv2jL/97W9xwQUXRFFRUb3e27Zt23jssceiTZs2ad858MAD6/VOAAAAAIBCERcBAAAAAAAAdVZeXl7rmT333DMuueSSPKxpWJ544om0zlVUVES3bt1yvKZx+8lPfhLPPfdcred23333ePnll2OPPfbI2rt32GGHGDNmTNrnKyoqsvZuAAAAAIB8EhcBAAAAAAAAdbbttttGhw4dvvH3mzdvHr///e+jWbNm+RvVQDz55JNpnTvmmGNyvKRxu/HGG2PixIm1nttnn32isrIyttlmm6xvOO+889J6blFRUey///5Zfz8AAAAAQD6IiwAAAAAAAICMlJWVfePvXX755Wl93aipefvtt+PDDz9M66wv3Xyz1157LS699NJazw0cODCeeeaZaNeuXU52NG/ePM4888xaz+2yyy7RqVOnnGwAAAAAAMg1cREAAAAAAACQkW+Ki/bcc88YPXp0ntc0DNOmTUvrXMeOHaO0tDTHaxqnVatWxYknnhgbN27c4rk+ffrEU089Fe3bt8/pnnRiMaEYAAAAANCYiYsAAAAAAACAjHzdl4maN28ekyZNimbNmhVgUeFNnTo1rXODBg2KoqKiHK9pnC666KKYP3/+Fs907NgxnnrqqejcuXPO91RVVdV6RlwEAAAAADRm4iIAAAAAAAAgI1/35aJf/vKXscsuuxRgTcPwyiuvpHVuwIABOV7SOE2fPj3uvvvuWs9NnDgxvv3tb+d8z+LFi2sNnSIiDjjggJxvAQAAAADIlWT+48IAAAAAAACAejv44IMjlUoVekaDsWHDhliwYEFaZ3v37p3jNY1PKpWK8847r9b/Tv34xz+OESNG5GVTOl8tKi0tja5du+ZhDQAAAABAbvhyEQAAAAAAAEAWzJ8/PzZt2pTWWXHRV02ePDmmT5++xTNdu3aNm266KU+L0ouLDjzwwNwPAQAAAADIIXERAAAAAAAAQBZUV1enfXannXbK4ZLGp6amJq6++upaz40dOzbat2+fh0X/KZ24qKKiIg9LAAAAAAByR1wEAAAAAAAAkAUffPBBWue22mqr6N69e47XNC6PPvpovPPOO1s806dPnxg1alSeFkUsW7Ys5syZU+u5Aw44IA9rAAAAAAByR1wEAAAAAAAAkAWLFy9O61ybNm1yvKTxue6662o9c/7550dJSUke1vynF198MVKp1BbP7LzzzrH11lvnaREAAAAAQG6IiwAAAAAAAACy4JNPPknrXNu2bXO8pHGZPXt2TJ8+fYtn2rdvH6eeemp+Bv2XqqqqWs9UVFTkYQkAAAAAQG6JiwAAAAAAAACy4IsvvkjrnC8Xfdkf//jHWs8ceeSReY+yxEUAAAAAQFKIiwAAAAAAAACyYO3atWmda968eY6XNB6pVCoeeOCBWs8de+yxeVjzP1atWhUzZ86s9Zy4CAAAAABoCsRFAAAAAAAAAFmwbt26rJ5LglmzZsV77723xTPNmjWLQw89ND+D/su0adNi8+bNWzzTp0+f2HbbbfO0CAAAAAAgd8RFAAAAAAAAAFmwYcOGtM6tWbMmx0saj8rKylrP7LbbbtG6des8rPkfVVVVtZ7x1SIAAAAAoKkQFwEAAAAAAABkQYsWLdI699lnn0UqlcrxmsYhnbhon332ycOSLxMXAQAAAABJIi4CAAAAAAAAyIJWrVqldW7Dhg2xePHiHK9pHKZOnVrrmZ133jkPS/7HunXr4tVXX631nLgIAAAAAGgqxEUAAAAAAAAAWdCmTZu0z86bNy+HSxqHpUuXxmeffVbruR133DEPa/7HK6+8EuvXr9/imR122CF69eqVp0UAAAAAALklLgIAAAAAAADIgh49eqR9Np0v4zR1CxYsSOvcdtttl+MlX1ZZWVnrGV8tAgAAAACaEnERAAAAAAAAQBbssMMOaZ+dNm1a7oY0EvPnz0/rXF2+CJUNVVVVtZ4RFwEAAAAATYm4CAAAAAAAACAL6hIX/fWvf421a9fmbkwj8Pe//z2tc/mMizZu3Bgvv/xyrefERQAAAABAUyIuAgAAAAAAAMiC3XbbLe2za9asiaeeeip3Y/Lkvffeiz//+c8Z3V21alVa52pqajJ6fiZef/31WL169RbP9OzZM3baaac8LQIAAAAAyD1xEQAAAAAAAEAWfPvb345OnTqlff7222/P4Zrcq6qqir333jtOOOGEWLBgQZ3vpxsXLV++vM7PztQf//jHWs/4ahEAAAAA0NSIiwAAAAAAAACyZNCgQWmfraysjOnTp+dwTe787ne/i0MOOSQ+//zz+Mc//hHHH398rF+/vk7PWLNmTVrn8hUXvfjii3HHHXfUek5cBAAAAAA0NeIiAAAAAAAAgCw58sgj63T+oosuytGS3Fi3bl2cc845ceaZZ8bGjRv/+eszZsyIiy++uE7PKioqSuvcokWL6vTcTKxevTpOO+20qKmpqfWsuAgAAAAAaGrERQAAAAAAAABZMnz48CgpKUn7/LRp02L8+PE5XJQ9s2fPjr322ivGjRv3tb9/++23x6OPPpr281q1apXWub/97W9pPzMTqVQqTjnllFi4cGGtZ3v06BF9+/bN6R4AAAAAgHwTFwEAAAAAAABkSbdu3eLQQw+t050LL7ww5syZk6NF9ZdKpeLWW2+NvffeO+bOnbvFs6effnq8//77aT23S5cuaZ2bOnVqWucydeWVV8YjjzyS1tnBgwfndAsAAAAAQCGIiwAAAAAAAACy6Pzzz6/T+bVr18b3v//9+PDDD3O0KHOzZs2K/fbbL84///xYv359ree/+OKLeP7559N69nbbbZfWudmzZ8drr72W1tm6Gj9+fPzqV79K+7y4CAAAAABoisRFAAAAAAAAAFn03e9+N0pLS+t058MPP4xDDjkk3n333RytqpuVK1fGBRdcEHvuuWe89NJLad0pKSmJCRMmxI9//OO0zvfr1y/tPTfffHPaZ9M1fvz4OPvssyOVSqV9R1wEAAAAADRFRam6/EkpAAAAAAAAALV68skn44gjjqjzvW7dusXDDz8c++23Xw5W1W716tUxbty4uP7662PJkiVp32vRokXcf//9MWLEiLTvrF27Ntq3bx+bNm2q9WxxcXE8++yzMWTIkLSf/01SqVSMGTMmxo4dW6ewqHnz5vGPf/wjmjdvXu8NAAAAAAANiS8XAQAAAAAAAGTZsGHDYujQoXW+t2TJkqioqIjRo0fH2rVrc7Ds661cuTKuvfba2GGHHeLnP/95ncKi9u3bxzPPPFOnsCgiolWrVjFo0KC0ztbU1MRJJ50UH3/8cZ3e8X+tWLEiRowYEWPGjKlTWBQRseuuuwqLAAAAAIAmSVwEAAAAAAAAkAN33HFHtG/fvs73ampq4rrrrovevXvHuHHjYt26dTlY95+mTp0ap512WvTo0SMuvfTS+Pzzz+t0v7S0NF5++eWoqKjI6P11+brT4sWLY9CgQfHmm29m9K5///d/j9LS0njssccyur/nnntmdA8AAAAAoKErStX1H8cEAAAAAAAAQFoeeuihOP744+v1jI4dO8bIkSPj2GOPjX333TeaNWuW8bPWrl0bVVVV8cwzz8STTz4Z8+fPz/hZJ554YkyYMCHatGmT8TM++eST6NmzZ2zevDntO23bto3Ro0fHBRdcEG3btq31/IsvvhhXX311PP300xnvjIiYMGFCjBo1ql7PAAAAAABoiMRFAAAAAAAAADl08cUXxw033JCVZ7Vv3z4GDx4cu+++e+yyyy7Rs2fP2G677aJDhw7RsmXLaN68eaxevTpWrlwZK1eujMWLF8dbb70Vc+fOjblz58b06dPr/SWk5s2bx0033RTnnHNOVn6mk08+Oe6777463+vSpUscddRRMXTo0CgvL49u3bpF27Zt47PPPov33nsvnnvuuXj88cdjxowZWdk5ffr02HvvvbPyLAAAAACAhkRcBAAAAAAAAJBDqVQqTjvttLj33nsLPaXe9thjj7j77rtj9913z9ozFy5cGGVlZbF+/fqsPTPbioqKYtWqVdG6detCTwEAAAAAyLriQg8AAAAAAAAAaMqKiopi4sSJcfLJJxd6SsbatGkTN9xwQ0yfPj2rYVFERO/eveOKK67I6jOzbccddxQWAQAAAABNlrgIAAAAAAAAIMdKSkpi8uTJcfnllxd6Sp0NGzYs3nrrrbjooouipKQkJ+8YPXp0HH744Tl59pb85Cc/ie9973u1nistLc3DGgAAAACAwhAXAQAAAAAAAOTJmDFj4rHHHovu3bsXekqtDjrooKisrIwnnngievXqldN3FRcXxwMPPBD77bdfTt/z33r37h1/+ctfYty4cfHWW2/Ver5Pnz55WAUAAAAAUBjiIgAAAAAAAIA8OvLII2Pu3LkxcuTIKCoqKvScr/jvqGjKlClxwAEH5O29bdu2jaeffjqOPvronL2jQ4cOcdVVV8XcuXNj6NChsWTJknj//fdrvde7d++cbQIAAAAAKDRxEQAAAAAAAECede7cOe677754/fXX43vf+16h50THjh3jnHPOiddeey3vUdH/1qZNm3j44Ydj3Lhx0aFDh6w9d5tttomxY8fGe++9F//yL/8SLVq0iIiIV199dYv3evfuHRdddFEcddRRWdsCAAAAANDQFKVSqVShRwAAAAAAAAAk2Zw5c+J3v/td3HfffbFs2bK8vLNFixZx4IEHxqmnnhrDhw+Pli1b5uW96fr888/j1ltvjQkTJsSnn35a5/sdO3aMoUOHxgknnBCHH354lJSUfOXMlVdeGWPGjPnSr+2+++4xfPjwGD58eOy6664Z7wcAAAAAaCzERQAAAAAAAAANxPr166OysjL+8pe/xNNPPx3V1dVZe3ZxcXHstttuccghh8SQIUNi//33j1atWmXt+bmyefPmqKqqiilTpsRrr70WixYtisWLF8eaNWsiIqJ169bRsWPH6NWrV+y0006xxx57xIABA2KvvfaKZs2abfHZv/jFL+L666+P/fff/59BUa9evfLxYwEAAAAANBjiIgAAAAAAAIAGavny5fHGG2/ErFmzYv78+fHxxx/HRx99FJ9++mmsWbMm1q1bF+vWrYvi4uJo165dtGvXLtq2bRvt2rWLnj17Rr9+/WLnnXf+5/9t27ZtoX+kBmfVqlX+ugAAAAAAiSYuAgAAAAAAAAAAAAAAgIQqLvQAAAAAAAAAAAAAAAAAoDDERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUM0KPQAAyNymTZti/vz5X/q1Tp06RXGxfhgAAAAAAAAAAAAA0lVTUxPLli370q/17ds3mjVr+ulN0/8JAaAJmz9/fpSWlhZ6BgAAAAAAAAAAAAA0OW+99Vb079+/0DNyzmcNAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIqGaFHgAAZK5Tp05f+bW33norunTpUoA1AAAAAAAAAAAAANA4ff7551FaWvqlX/u6/61uUyQuAoBGrLj4qx8h7NKlS3Tt2rUAawAAAAAAAAAAAACg6fi6/61uU5SMnxIAAAAAAAAAAAAAAAD4CnERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAQB6kUqlIpVKFngEAAAAAAF8iLgIAAAAAAADIg7+9/068/MH8Qs8AAAAAAIAvaVboAQAAAAAAAABN3dqNG+K+mS9GUUTsts0O0Wqr5oWeBAAAAAAAEeHLRQAAAAAAAAA59/Dsl2P52tXxxdrV8cjsVwo9BwAAAAAA/klcBAAAAAAAAJBDHy7/PJ6e98Y///Nf5s2MD5d/XrhBAAAAAADwv4iLAACA/8/enUbJdZd34n+qWi11dbekbtmWbFk23i3bWLYkr1jyAoZgm8AQcDAxWzgzhyT8gSQTksAwYQ5zICwnCyR4CHMShu2weSYYjLFjwMa7sSRvWJYRtrxvwu6W1N3V3equ+r8wIV7rVrdu3du36vN5h+qn+n11D49LR93ffgAAAABokXq9Hl/acHXU6vXf/Frt179Wf9avAQAAAABAXpSLAAAAAAAAAFrkuvu3xJYnH3nBr2958pG4/v57ckgEAAAAAADPpVwEAAAAAAAA0AKjkxPx9VuvfcnXv37rtTE2OZFhIgAAAAAAeCHlIgAAAAAAAIAWuPiOG2PnePUlX98xPhbfueOmDBMBAAAAAMALKRcBAAAAAAAApOz+oe3xb1vvSDz3b1tvjweGtmeQCAAAAAAAXpxyEQAAAAAAAECKavV6fOmWq6Jeryeerf/6bK2JswAAAAAA0ArKRQAAAAAAAAApuua+zbH1V481ff4Xv3osrt12dwsTAQAAAADAS1MuAgAAAAAAAEjJyMR4fOO262f8+75x63UxMjnegkQAAAAAANCYchEAAAAAAABASr59xw2xa6I649+3c6Ia37n9xhYkAgAAAACAxpSLAAAAAAAAAFJw31NPxI+33jnr3/+jrXfEfU8/kWIiAAAAAABIplwEAAAAAAAAsIdqtVr8yy1XRX0P3qMeEV+65aqo1ffkXQAAAAAAYGaUiwAAAAAAAAD20FX33ZXK1qF7n3oirr73rhQSAQAAAABAc5SLAAAAAAAAAPbAzvFqfOu2G1J7v2/edn3sHK+m9n4AAAAAANCIchEAAAAAAADAHvjW7dfHyOR4au83Mjke37o9vbISAAAAAAA0olwEAAAAAAAAMEtbf/VYXHXvXam/79X3/jx++avHU39fAAAAAAB4PuUiAAAAAAAAgFmo1WrxpVuuasl71yPiX265Kmq1WkveHwAAAAAA/p1yEQAAAAAAAMAs/OiXd8b9Q9tb9v73Dz0ZP/7lnS17fwAAAAAAiFAuAgAAAAAAAJixHdXR+PbtN7T8nm/dfmPsGB9r+T0AAAAAAHQu5SIAAAAAAACAGfrGbdfH2O7Jlt8ztnsivnHbdS2/BwAAAACAzqVcBAAAAAAAADADW558JK7Zdndm911z391xz/ZHM7sPAAAAAIDOolwEAAAAAAAA0KTpWi2+tOGqzO/90i1XxXStlvm9AAAAAAC0P+UiAAAAAAAAgCb92y9uj4eGn8r83geHfxX/9ovbM78XAAAAAID2Ny/vAAB52717d1x77bVx/fXXx+bNm2PLli2xffv22LVrV4yOjkalUolFixbFkiVL4sgjj4yjjz46Tj755HjlK18ZlUol7/iFsn379rjiiivi1ltvjc2bN8e9994bO3bsiF27dsXu3btj4cKFsWjRoli+fHkcffTRccwxx8QrX/nKOO644/KODgAAAAAAMVQdjYvvuCm3+y++86Y45WVHxGClL7cMAAAAAAC0n1K9Xq/nHQIgD9ddd118/vOfj8suuyx27tw5499fqVTi7LPPjj/8wz+M1772tVEqlVqQsviq1Wp89atfjX/5l3+JW265JWq12ozfY8WKFXH++efH+973vjj44INbkLK4tm/fHkuXLn3Orz355JOxzz775JQIAAAAAKB9/eP1l8cND9yTa4bTDjoy3vuK1+aaAQAAAACgHXXy9+WW8w4AkLVrrrkmTjzxxFi/fn1885vfnFWxKOKZ0sz3v//9OPfcc+Ooo46K7373u+kGLbjdu3fHpz71qTjggAPiPe95T9x8882zKhZFRDz88MPxd3/3d3HYYYfF+eefH/fff3+6YQEAAAAAIMHmJx7OvVgUEXH9/ffE3U88nHcMAAAAAADaiHIR0DGGh4fjne98Z5xxxhmxYcOGVN/7nnvuiTe+8Y3x27/92/Hoo4+m+t5FdP3118dxxx0Xf/mXfxlPPfVUau9bq9Xi4osvjmOOOSY+/elPh+V7AAAAAABkYao2HV/acFXeMX7jSxuujqnadN4xAAAAAABoE8pFQEfYvHlznHTSSfGVr3ylpfdceumlsXbt2rjhhhtaes9cdtFFF8VZZ50Vd999d8vuGBsbi7/4i7+IN7zhDbPePAUAAAAAAM364Zbb4pEdT+cd4zce3vFUXH7PbXnHAAAAAACgTSgXAW3vuuuui1NOOSW2bt2ayX2PP/54nHXWWfGv//qvmdw3l/zpn/5pvPe9743du3dnct/3v//9OPXUU2P79u2Z3AcAAAAAQOd5amxX/L+f35x3jBf4v3feHE+N7co7BgAAAAAAbWBe3gEAWmnDhg1x3nnnxa5d2X5xbXJyMi644IL43ve+F7/1W7+V6d15+fCHPxx/93d/l/m9mzdvjte85jVx1VVXxcDAQOb3Q5ZqtVo8unMo7nv6yXh4x1MxOjkeu6enY6o2HfPKXdHd1RV983tixeK94pC9lsbyhYNRLuuSw4sxT5AOswTpMEuQHvME6TBL8Fxf23RtTExl80O1ZmJiand8fdO18f515+YdBVrOZxMAAAAAtJZyEdC2Hn744TjnnHNi586dTf+enp6eOP300+OEE06I/fffPxYtWhQjIyPx2GOPxaZNm+Lqq6+OkZGRpt5rcnIyfud3fiduvvnmePnLXz7bP0Yh/NM//VP89V//9Yx+z4oVK+L000+PVatWxd577x3d3d0xPDwcW7dujZtvvjk2bNgQ9Xq9qfe67bbb4o1vfGP86Ec/iq6urtn8EWBOqtfrcfeTj8TGh++Ne59+Ih54entMTE81/fsXzOuOlw3uHYcuWRZrVxwaRy3dP0qlUgsTw9xlniAdZgnSYZYgPeYJ0mGW4KXd+dgDcfODW/OO8ZJuenBrnPX4g3HsvgfmHQVS5bMJAAAAALJVqjf7ndsABTI1NRVnnXVWXHfddU2dX7p0aXzkIx+Jd7zjHbF48eKXPDc2Nhbf/va343/8j/8RDzzwQFPvvXLlytiwYUP09fU1db5obrvttjj11FNjfHy8qfOnn356/NVf/VW88pWvbPhFnG3btsXnPve5uOiii2JycrKp9/7IRz4S//N//s+mzraL7du3x9KlS5/za08++WTss88+OSUiDaOTE3HttrvjR1vviEd3DqX2vssXDcbZh6+K9QcfFX3zF6T2vjCXmSdIh1mCdJglSI95gnSYJWhs9/RU/OVlX4/Hdg3nHaWh/RYNxifP+b3o7vJzJSk+n00AAAAA5KmTvy9XuQhoSx/72Mfiox/9aFNn3/KWt8QXv/jFWLRoUdPvPzExEf/1v/7X+PznP9/U+f/yX/5LfPGLX2z6/YticnIyVq1aFffcc0/i2UqlEhdddFG8613vmtEd99xzT7z5zW+On//854lny+Vy/PSnP41169bN6I4i6+S/xLSjJ3YNx/c2b4wb7t8yo5/AOFMLuubFKw5aGa8/em0sWzjQsnsgT+YJ0mGWIB1mCdJjniAdZgmac8ldt8S3br8h7xhNueC4V8Trjzkx7xgwaz6bAAAAAJgLOvn7cpWLgLazbdu2OProo5vapPOhD30oPvGJT8z6rn/8x3+M973vfYnnSqVS3HzzzXHiie31hb1PfvKT8aEPfSjx3KJFi+LKK6+Mk046aVb3jI6OxnnnnRc//elPE88ed9xxsXHjxujq6prVXUXTyX+JaSfTtVr8YMum+L933BS7a9OZ3dtd7oo3rzolzlu5Jsrlcmb3QiuZJ0iHWYJ0mCVIj3mCdJglaN720Z3xwUu/GpMtLDmkaUHXvPjM694ee/c1/4PUYC7w2QQAAADAXNLJ35erXAS0nTe+8Y3x3e9+N/Hce97znvjCF76wx/d9/OMfj4985COJ50466aS46aabolQq7fGdc8Gjjz4aRxxxRIyOjjY8193dHT/+8Y9j/fr1e3TfyMhIrF+/Pm677bbEs5///Ofjj/7oj/bovqLo5L/EtItHdjwdX7jp3+Lep57ILcNhe+0b7znl1bH/4iW5ZYA0mCdIh1mCdJglSI95gnSYJZiZv73m0tjw8L15x5iRE1ccGn9y+uvyjgFN89kEAAAAwFzTyd+Xq1wEtJXbbrstVq9enXhu9erVceONN8aCBQv2+M56vR7nnHNOXHHFFYlnv//978frXtceX9j74z/+4/jsZz+beO7Tn/50fPCDH0zlzl/84hexdu3aGBkZaXhu+fLlsW3btpg/f34q985lnfyXmKKr1evxg7s3xcV33JjpT2N8Kc/8lMZT47yj1kS5TUqQdA7zBOkwS5AOswTpMU+QDrMEM3frI9viMz/9Xt4xZuXPz3xDHL/8oLxjQEM+mwAAAACYqzr5+3KVi4C28nu/93vxjW98o+GZcrkct9xyS6xZsya1ex988MFYuXJlVKvVhufWr18f11xzTWr35mVoaCgOOOCAxK1Fq1evjg0bNkS5XE7t7s985jPx53/+54nn/vmf/zne/e53p3bvXNXJf4kpsqnadPzTTVfG9fffk3eUFzjtoCPjPae8OuaVu/KOAk0xT5AOswTpMEuQHvME6TBLMHOT01PxFz/4WjwxsiPvKLOyrH9xfOq8t8X8rnl5R4EX5bMJAAAAgLmsk78vN73v9gbI2UMPPRTf+c53Es+9/e1vT7VYFBFx4IEHxp/+6Z8mnrv22mvjlltuSfXuPHzhC19ILBZFRPzt3/5tqsWiiIgPfOADcfDBByee+5u/+ZtU74W0TE5Pxd9f+4M5+YXTiIjr778n/v7aH8Tk9FTeUSCReYJ0mCVIh1mC9JgnSIdZgtm5dPPGwhaLIiKeGNkRl27emHcMeFE+mwAAAABg7lIuAtrG17/+9ZiaavyP/aVSKf7iL/6iJfd/4AMfiJ6ensRzX/7yl1tyf5aa+TOcfPLJceaZZ6Z+9/z58+NP/uRPEs9t3rw5NmzYkPr9sCematPxuesui02PbMs7SkObHtkW/3DdD2OqNp13FHhJ5gnSYZYgHWYJ0mOeIB1mCWbniZEdccnm4v+AsEs23xJPFrggRXvy2QQAAAAAc5tyEdA2vv71ryeeec1rXhNHHXVUS+7fZ5994sILL0w89+1vfzuxBDWXbdy4Me65J/knyv3xH/9xyzK8+93vjkWLFiWea+b/E5CVWr0e/3TTlXP+C6f/buMj98U/3XRl1Or1vKPAC5gnSIdZgnSYJUiPeYJ0mCWYva9s+Gnsni5+oWD39HR8ZeNP844Bv+GzCQAAAADmPuUioC38/Oc/j5///OeJ5972tre1NEcz7799+/b40Y9+1NIcrfSNb3wj8czChQvjDW94Q8sy9PX1xRvf+MbEc9/85jej7gs/zBE/uHtTXH9/cjFvLrn+/nvisi2b8o4BL2CeIB1mCdJhliA95gnSYZZgdjY+fF/c+mgxig/N2PTIttj48H15x4CI8NkEAAAAAEWgXAS0hcsvvzzxTE9PT0sLLxERp59+eixfvjzx3A9/+MOW5milZp7161//+qhUKi3NccEFFySeefzxx+O2225raQ5oxiM7no6L77gx7xiz8p3bb4xHdjyddwz4DfME6TBLkA6zBOkxT5AOswSzMzG1O7688eq8Y6TuKxt/GpNTU3nHoMP5bAIAAACAYlAuAtrClVdemXhm3bp1sXDhwpbmKJfL8ZrXvCbxXDN556LHHnss7rrrrsRz55xzTsuznHnmmdHT05N4rqjPmvYxXavFF276t9hdm847yqzsrk3HP910ZdRqtbyjgHmClJglSIdZgvSYJ0iHWYLZu+SuDfGr0V15x0jd9tGdccnmW/KOQQfz2QQAAAAAxaFcBBTe5ORkXHfddYnnzj777AzSNHfP3XffHY888kgGadL14x//uKlzr3rVq1qc5JlNVOvWrUs8p1xE3i7bsinufeqJvGPskV8+9Xj8YMumvGOAeYKUmCVIh1mC9JgnSIdZgtl5bOdQXHr3xrxjtMz3N2+Mx3YO5R2DDuWzCQAAAACKQ7kIKLzbb789xsbGEs81U0RJw/r165s6d/PNN7c4SfpuvPHGxDOHHXZY7Lvvvhmkae5Z/+xnP4t6vZ5BGnihJ3YNx8V33JR3jFRcfMdN8cSu4bxj0MHME6TDLEE6zBKkxzxBOswSzE69Xo//s+HqmCroVpVmTNWm48sbf+rfycmczyYAAAAAKBblIqDwbr311sQz5XI5jj/++NaHiYgDDzww9t5778RzzeSea5rJvGbNmgySPGPt2rWJZ3bu3Bn33XdfBmnghb63eWPsbpNvTNhdm47vbW7fn+DK3GeeIB1mCdJhliA95gnSYZZgdm556Jdx5+MP5h2j5e547IG45eF7845Bh/HZBAAAAADFolwEFN6mTZsSzxxxxBHR19eXQZpnNFN6KVq5qFarxe233554bq6ViyKK96xpD6OTE3HD/VvyjpGqG+7fEmOTE3nHoAOZJ0iHWYJ0mCVIj3mCdJglmJ3xqd3xlU3X5B0jM1/d+NMYn9qddww6hM8mAAAAACge5SKg8O68887EMytXrswgyX848sgjE8/ccccdGSRJz7333htjY2OJ57J81vvuu28sXrw48VzRnjXt4dptd8fE9FTeMVI1MT0V1267O+8YdCDzBOkwS5AOswTpMU+QDrMEs/OvP785nh4byTtGZp4aG4nv/vxnecegQ/hsAgAAAIDiUS4CCu++++5LPHP44YdnkOQ/HHbYYYlnHnnkkZicnMwgTTqaec4R2T/rQw89NPFMs9khLfV6Pa7c2p6ltiu33hH1ej3vGHQQ8wTpMEuQDrME6TFPkA6zBLPzyI6n47K7O2/j/Q+2bIpHdjyddwzanM8mAAAAACgm5SKg0KrVajz++OOJ55opoKSpmXJRrVaLBx54IIM06di2bVtT5w455JAWJ3muZp51s9khLXc/+Ug8tnMo7xgt8ejOodjy5CN5x6CDmCdIh1mCdJglSI95gnSYJZi5er0e/2fDVTFdr+UdJXPTtVr8nw1XK0fQUj6bAAAAAKCYlIuAQmu2nLN8+fIWJ3mu/fbbr6lzRSq93H///YlnlixZEj09Pa0P8yzNPOsiPWfaw8aH7807QktteNg2MLJjniAdZgnSYZYgPeYJ0mGWYOZufOAXcdcTD+cdIzd3PfFQ3PTg1rxj0MZ8NgEAAABAMSkXAYX2yCPN/XSwfffdt8VJZnffww8X5wuYzTzrrJ9zs3c+/vjjMT09nUEaeMa9Tz+Rd4SWuq/N/3zMLeYJ0mGWIB1mCdJjniAdZglmprp7Mr5267V5x8jd1zZdE9Xdk3nHoE35bAIAAACAYlIuAgrtqaeeaurcsmXLWpzkuZYuXRrlcvJ/Yp9++ukM0qSjmWed9XOOaK5cVK/XY2hoKIM0EFGr1eKBp7fnHaOl7h/aHrVaLe8YdADzBOkwS5AOswTpMU+QDrMEM/d/77wphqujecfI3VB1NP7fnTfnHYM25LMJAAAAAIpLuQgotGbLRQMDA60N8jzlcjkWLlyYeK7Z/HNBM1mzfs4zubNIz5pie3TnUExMT+Udo6UmpnbHo7sU9mg98wTpMEuQDrME6TFPkA6zBDPz0PCv4vJ7bss7xpzxw3tujYeGf5V3DNqMzyYAAAAAKK55eQcA2BPNbv7p7+9vcZIXWrhwYezYsaPhmSJtLmomazOFqrQ1e2eRnjXFdt/TT+YdIROfvOq70Td/Qd4xaHOjkxN5R8iEeaLVzBKkwyxBeswTpMMsQfPq9XpsH9kZtXo97yhzRq1ej7+64luxT/+iKJVKecehTXTKZ9O2p5+MFYv3yjsGAAAAAKRKuQgotJ07dyae6evri3I5+0VtixYtSjyTVD6aS5p51nmUi5p5zhHFetYU28M7OmNL1tNjI/H02EjeMaAtmCdIh1mCdJglSI95gnSYJWidiempeHiHH8wFM/XwcGd8HQAAAACAzpL9d9sDpGhycjLxTKVSySDJC/X09CSeaSb/XDFXn3UzzzmiWM+aYhudHM87AgAAAAAA0CIjHbKhCQAAAIDOYnMRUGjNFEa6uroySPJC8+Yl/ye2SIWXufqsm3nOEcV61ntq3bp1TT8X0nfA68+KJccenncMAAAAAACgBXZPT+UdAQAAAABSZ3MRUGjNFEbyKlk0c+/u3bszSJKOufqsm72zSM+aYit3+esVAAAAAAC0q6nadN4RAAAAACB11hoAhTY1lfyTwZSL0jFXn7Vy0Qtdd911sc8+++Qdo2NddMMVcd39W/KOAQAAAAAAtMC8clfeEQAAAAAgdX60PlBozRRLpqfz+elhzdybV/FpNubqs272ziI9a4qtu8sXFQEAAAAAoF11d/maEwAAAADtR7kIKLT58+cnnmlm404rNLMpp5n8c8VcfdbNbiQq0rOm2Prm9+QdAQAAAAAAaJH++QvyjgAAAAAAqfMjdYBC6+7uTjyTV7momXuLVHiZq8+62TuL9KwpthWL98o7QibW7H9wHDiwd94xaHMPDv8qNj2yLe8YLWeeaDWzBOkwS5Ae8wTpMEswMzvHx+Kqe++Ket5B5ohSRJx16MtjUU8l7yi0kU75bFox0BlfBwAAAACgsygXAYW2YEHyTwYbHx/PIMns7i1S4WWuPutm7yzSs6bYDlmyNO8Imbjg+NM6pkhFfh4efqojvhnBPNFqZgnSYZYgPeYJ0mGWYOZ6uufHZVtuzTvGnHDuyjVx4Zr1ecegzXTKZ9PBHfJ1AAAAAAA6SznvAAB7YuHChYlnRkdHo17P/mcR7tq1K/HMokWLMkiSjmaedTN/5rQ1e2eRnjXFtnzRYCzoau/+9oJ53bF84WDeMegA5gnSYZYgHWYJ0mOeIB1mCWbuTceeEoOVvrxj5G6w0he/c+zJecegDflsAgAAAIDiUi4CCm3JkiWJZ+r1ei6ll507dyaeaSb/XNFM1mb+zGlr9s4iPWuKrVwux8uW7JN3jJY6aHCfKJf9NZLWM0+QDrME6TBLkB7zBOkwSzBzle75ceFq23retub0qHTPzzsGbchnEwAAAAAUl3/1Agptr732aurcjh07WpzkuWq1WoyMjCSeazb/XNBM1qyf80zuLNKzpvgOXbIs7wgtdUib//mYW8wTpMMsQTrMEqTHPEE6zBLM3KkvOyKOWbYi7xi5efm+B8QpBx6edwzamM8mAAAAACgm5SKg0JotjDzxxBMtTvJc27dvj+np6cRzRSq8NJM16+ccEfH4448nnimVSjE4OJhBGnjG2hWH5h2hpU5YcUjeEegg5gnSYZYgHWYJ0mOeIB1mCWauVCrFu044K7o6cPNIV7kc71x7ZpRKpbyj0MZ8NgEAAABAMXXev5oDbWX//fdv6lwzBZQ0NXtfs/nngmayZv2cm71z2bJlMW/evAzSwDOOWrp/7LeoPQttyxcNxsqlxflvF8VnniAdZgnSYZYgPeYJ0mGWYHb2X7wkzl25Ou8YmTtv5ZrYf/GSvGPQ5nw2AQAAAEAxKRcBhXbQQQc1de7RRx9tbZDneeyxx5o6d/DBB7c4SXqaedZPP/10TExMtD7MszTzrIv0nGkPpVIpXn34qrxjtMSrD1/lJ5uSKfME6TBLkA6zBOkxT5AOswSz98aXnxx79fbnHSMze/X2x396+Ul5x6AD+GwCAAAAgGJSLgIKrVKpxLJlyxLP3XvvvRmk+Q+//OUvE8+USqV42ctelkGadDRT0KnX63HfffdlkOY/NPOslYvIw/qDj4oFXe21MWtB17xYf/BRecegA5knSIdZgnSYJUiPeYJ0mCWYnZ553fH2NafnHSMzb197RvTM6847Bh3CZxMAAAAAFI9yEVB4hxxySOKZrVu3ZpDkPzRTeNl///1jwYIFGaRJRzPPOWJuPutms0Oa+uYviFcctDLvGKl6xUEro3d+cf67RfswT5AOswTpMEuQHvME6TBLMHsnHnBYrNqvOD8EbLaO2+9lceKKQ/OOQQfx2QQAAAAAxaNcBBTesccem3hmy5YtGSSZ2X3N5J5LDj300KhUKonnsnzWjz/+eOzYsSPxXNGeNe3j9Uevje5yV94xUtFd7orXH7027xh0MPME6TBLkA6zBOkxT5AOswSzUyqV4p1rz4h5bTI/L2ZeuSvesfaMKJVKeUehw/hsAgAAAIBiUS4CCm/16tWJZ+65554YGxvLIM0zNm3alHhmzZo1GSRJT1dXV6xatSrxXDN/9rQ0e1fRnjXtY9nCgXjzqlPyjpGKN686JZYtHMg7Bh3MPEE6zBKkwyxBeswTpMMsweztt2gwXndU+5YGfvvotbHfosG8Y9CBfDYBAAAAQLEoFwGF10xxpFarxW233db6MBHx0EMPxfbt2xPPNVOKmmuaedZZlos2btyYeGbhwoVx6KGHZpAGXty5K9fEoXstyzvGHjlsr33jvJVKeuTPPEE6zBKkwyxBeswTpMMswey94ZgTYp++RXnHSN0+fYviDUefmHcMOpjPJgAAAAAoDuUioPCOO+64qFQqieeuvfbaDNJEXHPNNU2dO/nkk1ucJH2nnnpq4pmtW7fGE088kUGa5p71SSedFKVSKYM08OK6yuX4g1NeE93lrryjzEp3uSvec8qro1z210byZ54gHWYJ0mGWID3mCdJhlmD2FszrjnesPSPvGKl7x9ozYv68eXnHoIP5bAIAAACA4vCvYEDhLViwINatW5d47sc//nEGaZq7Z+XKlbFixYoM0qTrVa96VVPnsnjWExMTcf311yeee/WrX93yLJBk/8VL4s2rkst5c9H5x50a+y9ekncM+A3zBOkwS5AOswTpMU+QDrMEs7d2xSGxevnBecdIzZr9D461Kw7JOwb4bAIAAACAglAuAtrC2WefnXjm2muvjZGRkZbmqNVqccUVVySeK2rhZfny5XHUUUclnvvhD3/Y8ixXX311VKvVxHNFfda0n/OOWhOnHXRk3jFm5LSDjoxzV67JOwa8gHmCdJglSIdZgvSYJ0iHWYLZe8cJZ0R3VzE3rDxbd1dXW25iorh8NgEAAADA3KdcBLSF1772tYlnxsfH45JLLmlpjmuvvTYeffTRxHPN5J2rmsl+ySWXxPj4eEtzfPOb30w8s2zZsli9enVLc0CzyqVSvOeUV8ea/Yvx00/X7n9IvOeUV0e5VMo7CryAeYJ0mCVIh1mC9JgnSIdZgtlb1r843nD0iXnH2GNvOPrEWNq/OO8Y8Bs+mwAAAABg7lMuAtrCqlWr4uijj04897Wvfa2lOb761a8mntlrr70KvU3nrW99a+KZXbt2tbTINTo6Gv/6r/+aeO4tb3lLlHzhhzlkXrkr3r/u3Dn/BdS1+x8S71t3TswrF/+ntNK+zBOkwyxBOswSpMc8QTrMEsze645eG8sKXMxZ1r84Xnf02rxjwAv4bAIAAACAuU25CGgbF154YeKZK664IrZs2dKS+7dv3x5f//rXE8/97u/+bnR3d7ckQxZOPPHEOPzwwxPP/f3f/33LMnzpS1+KHTt2JJ5r5v8TkLX5XfPij9efF6cddGTeUV7UaQcdGR9Yf27M75qXdxRIZJ4gHWYJ0mGWID3mCdJhlmB25nfNi3eecGbeMWbtXSecaa6Ys3w2AQAAAMDcpVwEtI23ve1t0dXV+KeI1ev1+OQnP9mS+z/72c/G+Ph44rl3vvOdLbk/S838GW666aa4+uqrU797cnIy/vZv/zbx3MqVK+Okk05K/X5Iw7xyV/zhqb8Vbz1+XXTPkZ9+2F3uit9bvS7+8NTf8hMZKRTzBOkwS5AOswTpMU+QDrMEs3P88oPihBWH5h1jxk5ccWgct/ygvGNAQz6bAAAAAGBuKtXr9XreIQDScsEFF8S3vvWthmfK5XLccsstsWbNmtTuffDBB2PlypVRrVYbnjvttNPiuuuuS+3evDz11FNx4IEHxtjYWMNza9asiVtuuSXK5fS6rJ/5zGfiz//8zxPP/e///b/jP//n/5zavXPV9u3bY+nSpc/5tSeffDL22WefnBIxU4/seDq+cNO/xb1PPZFbhsP22jfec8qrY//FS3LLAGkwT5AOswTpMEuQHvME6TBLMDPbR3fGBy/9akxOT+UdpSkLuubFZ1739ti7b1HeUaBpPpsAAAAAmGs6+ftylYuAtrJp06ZYu3Zt4rk1a9bEjTfeGPPnz9/jO+v1epx77rlx+eWXJ5695JJL4vWvf/0e3/nv3vWud8WXv/zlxHNXXXVVnHnmmandGxHx/ve/P/7hH/4h8dxnPvOZ+LM/+7NU7ty6dWusWbMmRkZGGp7bb7/9Ytu2bbFgwYJU7p3LOvkvMe1kulaLy7ZsiovvuCl216Yzu7e73BVvXnVqnLdydaolQMiTeYJ0mCVIh1mC9JgnSIdZgpm55K5b4lu335B3jKZccNwr4vXHnJh3DJgxn00AAAAAzCWd/H25ykVA23nDG94Q3/ve9xLP/cEf/EH8r//1v/b4vk984hPx3/7bf0s8d8IJJ8TPfvazKJVKe3znv8uzXPTwww/HkUcembi9qLu7O37yk5/EunXr9ui+0dHRWL9+fdx6662JZz/3uc/F+973vj26ryg6+S8x7eiJXcPxvc0b44b7t8REC38i6oKuefGKg1bG649eG8sWDrTsHsiTeYJ0mCVIh1mC9JgnSIdZgubsnp6Kv7zs6/HYruG8ozS036LB+NQ5F8a8rq68o8Cs+WwCAAAAYC7o5O/LVS4C2s69994bxxxzTExMTCSe/fCHPxwf//jHZ33XRRddFO9973sTz5VKpbjhhhvilFNOmfVdLybPclFExMc//vH4yEc+knhu8eLF8aMf/ShOOOGEWd0zNjYWr3vd6+Kqq65KPHvsscfGrbfeGl0d8kXUTv5LTDsbm5yIa7fdHVduvSMe3TmU2vsuXzQYrz58Vaw/+Kjond/+m70gwjxBWswSpMMsQXrME6TDLEGyOx97IP76qu/mHaOhD73yjXHsvgfmHQNS4bMJAAAAgDx18vflKhcBbemjH/1ofOxjH2vq7AUXXBBf/OIXY+HChU2//8TERHzwgx+Mf/iHf2jq/Lvf/e7453/+56bfv1l5l4smJibi2GOPja1btyae7e3tjYsuuije+c53zuiOe+65J84///y48847E8+WSqW4+uqr4/TTT5/RHUXWyX+J6QT1ej22PPlIbHj4vrjv6Sfi/qefnNFPbFwwrzsOGtwnDlmyLE5YcUisXLp/qtvToEjME6TDLEE6zBKkxzxBOswSNPbZ6y6Lmx9M/nfwPJxy4OHx/nXn5h0DUrenn02liDhin+U+mwAAAACYkU7+vlzlIqAtTU1Nxemnnx433nhjU+eXLVsW//2///d4+9vfHosWLXrJc9VqNb7zne/ERz/60bj//vubeu8jjjgiNm7cGP39/U2dn4m8y0UREZs2bYpXvOIVTW2Kiog488wz46/+6q/izDPPbPhFnPvvvz8+97nPxec///mYnJxs6r0/9KEPxSc+8YmmzraLTv5LTCeq1Wrx6K6h2Pb0k/Hw8FMxMjkRu6enYqo2HfPKXdHdNS/65y+IFQN7xcFLlsbyhYNRLpfzjg1zknmCdJglSIdZgvSYJ0iHWYLnempsV/zZpV+NiandeUd5jgXzuuNvXveOWNKb/tcfYK55/mfT5icfjnufeuIlz/fP74kvvvk9GSYEAAAAoB108vflKhcBbeuhhx6K1atXx1NPPdX076lUKnHGGWfE2rVrY8WKFbFw4cIYGRmJxx9/PDZu3BhXX3117Nq1a0bvd+ONN8Zxxx03mz9CorlQLoqIuOiii+K9733vjH7PAQccEGeccUasWrUq9tprr+ju7o7h4eH45S9/GTfffHP87Gc/i5l8RK1fvz6uuuqq6Orqmmn8Quvkv8QAAAAAAGTl+5s3xjduuy7vGM/xe6vXxeuOWpt3DMjFddu2xEU3XtHwzFfe8v/FvA77uhEAAAAAe6aTvy93Xt4BAFrlgAMOiMsuuyzOPvvspgtB1Wo1Lr/88rj88sv3+P7u7u64+OKLW1Ysmkv+6I/+KB544IH49Kc/3fTveeihh+JrX/taKvcfe+yx8d3vfrfjikUAAAAAAGTjnJXHxzXbNscjO57OO0pERKxYvFe89sjj844BuRms9CWeGR4fjb37FmWQBgAAAACKr5x3AIBWOumkk+LSSy+N/v7+TO/t7u6Ob3zjG3Huuedmem+ePvWpT8X73//+zO9duXJlXHnllbFkyZLM7wYAAAAAoDPMK3fF759wVt4xfuP3Tzgz5pX9wC0610AT5aKh6mgGSQAAAACgPSgXAW3v9NNPjxtvvDEOOeSQTO5bunRp/OQnP4k3velNmdw3l3z2s5+Nz372szFvXjaL8c4999y46aabYtmyZZncBwAAAABA5zp62Yp4xcuOzDtGnHbQkXHUshV5x4BcNbW5SLkIAAAAAJqmXAR0hJe//OWxYcOGuPDCC1t6zznnnBMbN26MdevWtfSeuez9739//OQnP4kjj2zdF1grlUp8/OMfj+9///uxePHilt0DAAAAAADPduGa9VGZNz+3+yvd8+PC1etzux/mikr3/Jjf1fiH3dlcBAAAAADNUy4COsbg4GB87Wtfi6uuuirWrl2b6nsfccQRcfHFF8dll10WK1b4aYHr16+PO+64Iz7xiU/EkiVLUnvfcrkcb3rTm+Kuu+6KD3/4w1Eu+xgDAAAAACA7g5W+ePOqU3K7/83HnhIDTWxsgXZXKpUStxcpFwEAAABA83xXNtBxzjzzzNiwYUNcffXVcf7550d/f/+s3qenpyfOO++8uPTSS2PLli3xpje9KeWkxTZ//vz40Ic+FA899FBcdNFFceKJJ0apVJrVey1fvjw+8IEPxC9+8Yu4+OKL4+CDD045LQAAAAAANOc1RxwXBwzslfm9Bw7sHa854rjM74W5KqlcNKxcBAAAAABNK9Xr9XreIQDyNDk5Gddcc01cf/31sXnz5tiyZUv86le/il27dsXY2Fj09PTEwoULY8mSJXHkkUfG0UcfHSeffHK86lWvit7e3rzjF8oTTzwRV1xxRdx6662xefPmuO+++2LHjh2xa9eumJqaiv7+/li4cGHsv//+cdRRR8UxxxwTr3zlK2P16tV5R5+ztm/fHkuXLn3Orz355JOxzz775JQIAAAAAKD9bXnykfjYjy7O9M6Pvvr8OHKf5ZneCXPZ5667LG56cOtLvr5qv5fFX571n7ILBAAAAEDhdfL35c7LOwBA3ubPnx9nn312nH322XlHaXvLli2Ld7zjHfGOd7wj7ygAAAAAADBrK5fuH6cffFRcs+3uTO47/ZCjFIvgeWwuAgAAAID0lPMOAAAAAAAAAFA0bz3+tOjtnt/ye3q7F8Rbj1/X8nugaAYSykVDykUAAAAA0DTlIgAAAAAAAIAZWlzpi9897hUtv+ctx50ai3t6W34PFM1gpb/h67smqjE1PZ1RGgAAAAAoNuUiAAAAAAAAgFk4+7Bj46DBfVr2/gcNLo1XHXZsy94fimygkly6Gx63vQgAAAAAmqFcBAAAAAAAADAL5XI5fv/Es1ry3qWIePeJZ0W57Eu68GKSNhdFRAxXxzJIAgAAAADF51+iAQAAAAAAAGbp8L33i7MOPSb19z3z0JfHYXvvm/r7QrsYqPQlnhmqjmSQBAAAAACKT7kIAAAAAAAAYA+85bjTon9+T2rv1z+/J95y3CtSez9oR73d82N+17yGZ4aqoxmlAQAAAIBiUy4CAAAAAAAA2AOLeirxluPTKwNdcPxpsainktr7QTsqlUoxmLC9aFi5CAAAAACaolwEAAAAAAAAsIfOOuSYOGTJsj1+n0P3WhZnHnpMComg/Q0klItsLgIAAACA5igXAQAAAAAAAOyhcrkc7z7xrCjtwXuUIuL3TzwryqU9eRfoHDYXAQAAAEA6lIsAAAAAAAAAUnDIXsviVYcfO+vff/bhq1LZfgSdwuYiAAAAAEiHchEAAAAAAABASn531Sti4YLKjH/fogWVOP+4U1uQCNqXzUUAAAAAkA7lIgAAAAAAAICU9C/oibcef9qMf99bV6+L/vk9LUgE7Stpc9HOiWpMTU9nlAYAAAAAiku5CAAAAAAAACBFpx9ydBy+935Nnz9i7/1i/cFHtTARtKekzUURETvGxzJIAgAAAADFplwEAAAAAAAAkKJyqRS/f+JZUSqVEs+Wfn223MRZ4LmSNhdFRAxVRzNIAgAAAADFplwEAAAAAAAAkLKDBveJ1xy+KvHcaw4/Ll42uE8GiaD9DFb6E88MVUcySAIAAAAAxaZcBAAAAAAAANACb151aizu6X3J1xf39Mb5q07JMBG0l97u+TG/a17DM8M2FwEAAABAIuUiAAAAAAAAgBbom78gfm/1upd8/cLV66N3/oIME0F7KZVKMVDpa3hmSLkIAAAAABIpFwEAAAAAAAC0yLqDVsbKpfu/4NePWrp/nHbQkTkkgvYymFAusrkIAAAAAJIpFwEAAAAAAAC0SKlUit8/4cwol0q/+bVyqRS/f8JZUXrWrwGzY3MRAAAAAOw55SIAAAAAAACAFjpgYO947ZHH/+Z/n3Pk6lgxsFd+gaCN2FwEAAAAAHtOuQgAAAAAAACgxd507CkxWOmLwUpf/M6xJ+cdB9qGzUUAAAAAsOfm5R0AAAAAAAAAoN1VuufHhavXR6lUikr3/LzjQNtI2ly0c6IaU7XpmFfuyigRAAAAABSPchEAAAAAAABABk592RF5R4C2k7S5KCJiR3Us9upbmEEaAAAAACimct4BAAAAAAAAADpBqVSKUqmUdwxoK0mbiyIihqqjGSQBAAAAgOJSLgIAAAAAAAAACmmw0p94RrkIAAAAABpTLgIAAAAAAAAACqm3e350d3U1PDNcHckoDQAAAAAUk3IRAAAAAAAAAFBIpVIpcXvRUHUsozQAAAAAUEzKRQAAAAAAAABAYQ1Uehu+bnMRAAAAADSmXAQAAAAAAAAAFFby5qLRjJIAAAAAQDEpFwEAAAAAAAAAhTXQ09fw9WHlIgAAAABoSLkIAAAAAAAAACiswd7G5aKhceUiAAAAAGhEuQgAAAAAAAAAKKykzUU7x6sxVZvOKA0AAAAAFI9yEQAAAAAAAABQWEmbiyIidoyPZZAEAAAAAIpJuQgAAAAAAAAAKKzBhM1FERFDY6MZJAEAAACAYlIuAgAAAAAAAAAKa6CJzUVDVeUiAAAAAHgpykUAAAAAAAAAQGH1dS+I7q6uhmeGx5WLAAAAAOClKBcBAAAAAAAAAIVVKpVioKfx9qKhMeUiAAAAAHgpykUAAAAAAAAAQKEN9jYuF9lcBAAAAAAvTbkIAAAAAAAAACi05M1FIxklAQAAAIDiUS4CAAAAAAAAAAptsNLf8PXh8bGMkgAAAABA8SgXAQAAAAAAAACFNljpbfj6UNXmIgAAAAB4KcpFAAAAAAAAAEChDSRsLto1Xo2p2nRGaQAAAACgWJSLAAAAAAAAAIBCS9pcVI+IHeNj2YQBAAAAgIJRLgIAAAAAAAAACm0wYXNRRMTQ2GgGSQAAAACgeJSLAAAAAAAAAIBCG+jtSzwzPK5cBAAAAAAvRrkIAAAAAAAAACi0vu4F0V3uanhmqKpcBAAAAAAvRrkIAAAAAAAAACi0UqkUA5XG24uGlYsAAAAA4EUpFwEAAAAAAAAAhTeYUC6yuQgAAAAAXpxyEQAAAAAAAABQeDYXAQAAAMDsKBcBAAAAAAAAAIVncxEAAAAAzI5yEQAAAAAAAABQeEnlIpuLAAAAAODFKRcBAAAAAAAAAIU3kFAu2jk+FlO16YzSAAAAAEBxKBcBAAAAAAAAAIWXtLmoHhE7xseyCQMAAAAABaJcBAAAAAAAAAAU3mClP/HMcHU0gyQAAAAAUCzKRQAAAAAAAABA4Q0kbC6KiBhSLgIAAACAF1AuAgAAAAAAAAAKr2/+gugudzU8Y3MRAAAAALyQchEAAAAAAAAAUHilUilxe5HNRQAAAADwQspFAAAAAAAAAEBbGEwoF9lcBAAAAAAvpFwEAAAAAAAAALQFm4sAAAAAYOaUiwAAAAAAAACAtmBzEQAAAADMnHIRAAAAAAAAANAWbC4CAAAAgJlTLgIAAAAAAAAA2kLS5qKd42MxXatllAYAAAAAikG5CAAAAAAAAABoC0nlonpE7BgfyyYMAAAAABSEchEAAAAAAAAA0BYGEspFERFD1ZEMkgAAAABAcSgXAQAAAAAAAABtYbDSn3hmuGpzEQAAAAA8m3IRAAAAAAAAANAW+uYviO5yV8MzNhcBAAAAwHMpFwEAAAAAAAAAbaFUKsVApa/hmeHqaEZpAAAAAKAYlIsAAAAAAAAAgLaRVC4aUi4CAAAAgOdQLgIAAAAAAAAA2sagzUUAAAAAMCPKRQAAAAAAAABA27C5CAAAAABmRrkIAAAAAAAAAGgbNhcBAAAAwMwoFwEAAAAAAAAAbSOpXLRjfCyma7WM0gAAAADA3KdcBAAAAAAAAAC0jYGEclE9nikYAQAAAADPUC4CAAAAAAAAANpG0uaiiIjh6mgGSQAAAACgGJSLAAAAAAAAAIC2kbS5KCJiSLkIAAAAAH5DuQgAAAAAAAAAaBv983tiXrmr4RmbiwAAAADgPygXAQAAAAAAAABto1QqxUClt+GZoepIRmkAAAAAYO5TLgIAAAAAAAAA2spgpb/h60PVsYySAAAAAMDcp1wEAAAAAAAAALSVpM1FwzYXAQAAAMBvKBcBAAAAAAAAAG3F5iIAAAAAaJ5yEQAAAAAAAADQVmwuAgAAAIDmKRcBAAAAAAAAAG0laXPRjvGxmK7VMkoDAAAAAHObchEAAAAAAAAA0FYGK30NX69HxM7xsWzCAAAAAMAcp1wEAAAAAAAAALSVgYRyUUTEUHU0gyQAAAAAMPcpFwEAAAAAAAAAbSVpc1GEchEAAAAA/DvlIgAAAAAAAACgrfTP74l55a6GZ4aViwAAAAAgIpSLAAAAAAAAAIA2UyqVYqDS2/CMzUUAAAAA8AzlIgAAAAAAAACg7Qz09DV8XbkIAAAAAJ6hXAQAAAAAAAAAtJ3B3sblomHlIgAAAACICOUiAAAAAAAAAKAN2VwEAAAAAM1RLgIAAAAAAAAA2k7y5qKRjJIAAAAAwNymXAQAAAAAAAAAtJ3BSn/D13dMVGO6VssoDQAAAADMXcpFAAAAAAAAAEDbGehpvLmoXq/HzvGxjNIAAAAAwNylXAQAAAAAAAAAtJ3B3sblooiIofHRDJIAAAAAwNymXAQAAAAAAAAAtJ2kzUUREUNjykUAAAAAoFwEAAAAAAAAALSdhQt6oqvc+Nsihm0uAgAAAADlIgAAAAAAAACg/ZRKpRhM2F5kcxEAAAAAKBcBAAAAAAAAAG1qoNK4XGRzEQAAAAAoFwEAAAAAAAAAbWowoVxkcxEAAAAAKBcBAAAAAAAAAG0qaXPRUFW5CAAAAACUiwAAAAAAAACAtjTY27hcNDyuXAQAAAAAykUAAAAAAAAAQFsa6GlcLtoxPha1Wi2jNAAAAAAwNykXAQAAAAAAAABtabDS3/D1er0eOyaqGaUBAAAAgLlJuQgAAAAAAAAAaEuDld7EM0PVkQySAAAAAMDcpVwEAAAAAAAAALSlgYTNRRERw9XRDJIAAAAAwNylXAQAAAAAAAAAtKWFC3qiq9z4WyOGlIsAAAAA6HDKRQAAAAAAAABAWyqVSjHY09fwjM1FAAAAAHQ65SIAAAAAAAAAoG0NVBqXi2wuAgAAAKDTKRcBAAAAAAAAAG1rMKlcNKZcBAAAAEBnUy4CAAAAAAAAANpW0uai4XHlIgAAAAA6m3IRAAAAAAAAANC2EjcXVZWLAAAAAOhsykUAAAAAAAAAQNtK2ly0Y3wsarVaRmkAAAAAYO5RLgIAAAAAAAAA2lbS5qJ6vR47JqoZpQEAAACAuUe5CAAAAAAAAABoW0nlooiI4epoBkkAAAAAYG5SLgIAAAAAAAAA2tZAE+WioepIBkkAAAAAYG5SLgIAAAAAAAAA2lb/gkp0lRt/e8RwdSyjNAAAAAAw9ygXAQAAAAAAAABtq1wqxUBPb8MzNhcBAAAA0MmUiwAAAAAAAACAtjZY6W/4+nB1NKMkAAAAADD3KBcBAAAAAAAAAG1tsNLX8PUh5SIAAAAAOphyEQAAAAAAAADQ1gaUiwAAAADgJSkXAQAAAAAAAABtLWlz0bByEQAAAAAdTLkIAAAAAAAAAGhrSZuLhsfHolarZZQGAAAAAOYW5SIAAAAAAAAAoK0lbS6q1+uxc6KaURoAAAAAmFuUiwAAAAAAAACAtpa0uSgiYqg6mkESAAAAAJh7lIsAAAAAAAAAgLaWtLkoImJYuQgAAACADqVcBAAAAAAAAAC0tf4FlegqNf4WCZuLAAAAAOhUykUAAAAAAAAAQFsrl0oxUOlteMbmIgAAAAA6lXIRAAAAAAAAAND2Bip9DV8fqo5klAQAAAAA5hblIgAAAAAAAACg7Q1W+hu+PmRzEQAAAAAdSrkIAAAAAAAAAGh7gwmbi4aViwAAAADoUMpFAAAAAAAAAEDbG0goF9lcBAAAAECnUi4CAAAAAAAAANpe0uaiHeNjUavVMkoDAAAAAHOHchEAAAAAAAAA0PaSNhfV6vXYOVHNKA0AAAAAzB3KRQAAAAAAAABA20vaXBQRMVwdzSAJAAAAAMwtykUAAAAAAAAAQNtL2lwUETGkXAQAAABAB1IuAgAAAAAAAADa3sIFlegqNf42CZuLAAAAAOhEykUAAAAAAAAAQNsrl0qxuNLb8IzNRQAAAAB0IuUiAAAAAAAAAKAjDFb6Gr4+VB3JKAkAAAAAzB3KRQAAAAAAAABARxis9Dd8fbg6llESAAAAAJg7lIsAAAAAAAAAgI4wUOlt+LrNRQAAAAB0IuUiAAAAAAAAAKAj2FwEAAAAAC+kXAQAAAAAAAAAdISkzUXD46NRq9UySgMAAAAAc4NyEQAAAAAAAADQEZI2F9Xq9dg1Uc0oDQAAAADMDcpFAAAAAAAAAEBHGKj0JZ4Zqo5mkAQAAAAA5g7lIgAAAAAAAACgIwwqFwEAAADACygXAQAAAAAAAAAdYeGCSnSVGn+rxLByEQAAAAAdRrkIAAAAAAAAAOgI5VIpFld6G56xuQgAAACATqNcBAAAAAAAAAB0jMFKX8PXlYsAAAAA6DTKRQAAAAAAAABAxxhIKBcNKxcBAAAA0GGUiwAAAAAAAACAjmFzEQAAAAA8l3IRAAAAAAAAANAxBnpsLgIAAACAZ1MuAgAAAAAAAAA6xmBvQrlofDRq9XpGaQAAAAAgf8pFAAAAAAAAAEDHSNpcVKvXY9f4WEZpAAAAACB/ykUAAAAAAAAAQMcY7O1PPDOkXAQAAABAB1EuAgAAAAAAAAA6xmBPb+KZobGRDJIAAAAAwNygXAQAAAAAAAAAdIyFPb1RLpUanhmujmaUBgAAAADyp1wEAAAAAAAAAHSMcqkUA5W+hmeGlIsAAAAA6CDKRQAAAAAAAABARxnoUS4CAAAAgH+nXAQAAAAAAAAAdJTB3sblouFx5SIAAAAAOodyEQAAAAAAAADQURI3F40pFwEAAADQOZSLAAAAAAAAAICOMlixuQgAAAAA/p1yEQAAAAAAAADQUZLKRTuqY1Gr1zNKAwAAAAD5Ui4CAAAAAAAAADrKQEK5aLpei10T1YzSAAAAAEC+lIsAAAAAAAAAgI6StLkoImKoOppBEgAAAADIn3IRAAAAAAAAANBRmikXDSsXAQAAANAhlIsAAAAAAAAAgI6ysKc3yqVSwzND1ZGM0gAAAABAvpSLAAAAAAAAAICOUi6VYqCn8faioTGbiwAAAADoDMpFAAAAAAAAAEDHGag0LhcNjysXAQAAANAZlIsAAAAAAAAAgI4zmFAuGqoqFwEAAADQGZSLAAAAAAAAAICOk7i5SLkIAAAAgA6hXAQAAAAAAAAAdBybiwAAAADgGcpFAAAAAAAAAEDHSSoX7aiORa1ezygNAAAAAORHuQgAAAAAAAAA6DgDCeWi6Xotdk1UM0oDAAAAAPlRLgIAAAAAAAAAOk7S5qKIiOHqaAZJAAAAACBfykUAAAAAAAAAQMdJ2lwUETGkXAQAAABAB1AuAgAAAAAAAAA6zqIFlSiXSg3PDFVHMkoDAAAAAPlRLgIAAAAAAAAAOk65XI6Bnsbbi4arYxmlAQAAAID8KBcBAAAAAAAAAB1poNLb8HWbiwAAAADoBMpFAAAAAAAAAEBHGqz0N3zd5iIAAAAAOoFyEQAAAAAAAADQkWwuAgAAAADlIgAAAAAAAACgQyVvLhrNKAkAAAAA5Ee5CAAAAAAAAADoSAOVvoavD1fHolavZ5QGAAAAAPKhXAQAAAAAAAAAdKTBhHLRdL0WIxPVjNIAAAAAQD6UiwAAAAAAAACAjpS0uSgiYqg6mkESAAAAAMiPchEAAAAAAAAA0JGSNhdFKBcBAAAA0P6UiwAAAAAAAACAjrRoQSXKpVLDM8PKRQAAAAC0OeUiAAAAAAAAAKAjlcvlWNzT2/CMzUUAAAAAtDvlIgAAAAAAAACgYw1W+hq+bnMRAAAAAO1OuQgAAAAAAAAA6FgDCeUim4sAAAAAaHfKRQAAAAAAAABAx7K5CAAAAIBOp1wEAAAAAAAAAHSs5M1FIxklAQAAAIB8KBcBAAAAAAAAAB1rsNLf8PXh8bGo1esZpQEAAACA7CkXAQAAAAAAAAAda6DS2/D16VotRiaqGaUBAAAAgOwpFwEAAAAAAAAAHStpc1FExFB1NIMkAAAAAJAP5SIAAAAAAAAAoGMNVvoSzwwrFwEAAADQxpSLAAAAAAAAAICOtWhBJUqlUsMzNhcBAAAA0M6UiwAAAAAAAACAjlUul2Ogp7fhGZuLAAAAAGhnykUAAAAAAAAAQEcbqPQ1fN3mIgAAAADamXIRAAAAAAAAANDRBhPKRTYXAQAAANDOlIsAAAAAAAAAgI5mcxEAAAAAnUy5CAAAAAAAAADoaDYXAQAAANDJlIsAAAAAAAAAgI6WuLlofDRq9XpGaQAAAAAgW8pFAAAAAAAAAEBHS9pcNF2rxchENaM0AAAAAJAt5SIAAAAAAAAAoKMNVvoTzwxXRzNIAgAAAADZUy4CAAAAAAAAADraQMLmooiIIeUiAAAAANqUchEAAAAAAAAA0NEWL6hEqVRqeEa5CAAAAIB2pVwEAAAAAAAAAHS0crkci3t6G54ZVi4CAAAAoE0pFwEAAAAAAAAAHW+w0tfwdZuLAAAAAGhXykUAAAAAAAAAQMcb6GlcLrK5CAAAAIB2pVwEAAAAAAAAAHS8wV6biwAAAADoTMpFAAAAAAAAAEDHs7kIAAAAgE6lXAQAAAAAAAAAdLzEzUXjo1Gv1zNKAwAAAADZUS4CAAAAAAAAADreYKVxuWi6VotdE+MZpQEAAACA7CgXAQAAAAAAAAAdbyChXBQRMVwdySAJAAAAAGRLuQgAAAAAAAAA6HiDlf7EM0PVsQySAAAAAEC2lIsAAAAAAAAAgI63eEElSqVSwzNDNhcBAAAA0IaUiwAAAAAAAACAjlcul2NxT2/DM8PjoxmlAQAAAIDsKBcBAAAAAAAAAETEQE9fw9eHxpSLAAAAAGg/ykUAAAAAAAAAABExWGlcLrK5CAAAAIB2pFwEAAAAAAAAABARAwnlIpuLAAAAAGhHykUAAAAAAAAAAGFzEQAAAACdSbkIAAAAAAAAACCSy0VD1dGo1+sZpQEAAACAbCgXAQAAAAAAAABExEBCuWi6VotdE+MZpQEAAACAbCgXAQAAAAAAAABExGBv43JRRMTw+GgGSQAAAAAgO8pFAAAAAAAAAAARMdiTXC4aGlMuAgAAAKC9KBcBAAAAAAAAAETEop7eKJVKDc/YXAQAAABAu1EuAgAAAAAAAACIiK5yORYvqDQ8M1QdySgNAAAAAGRDuQgAAAAAAAAA4NcGKv0NXx+ujmWUBAAAAACyoVwEAAAAAAAAAPBrg5Xehq/bXAQAAABAu1EuAgAAAAAAAAD4NZuLAAAAAOg0ykUAAAAAAAAAAL9mcxEAAAAAnUa5CAAAAAAAAADg1wab2FxUr9czSgMAAAAAradcBAAAAAAAAADwawOVvoavT9WmY2RyPKM0AAAAANB6ykUAAAAAAAAAAL82mFAuiogYqo5mkAQAAAAAsqFcBAAAAAAAAADwa82Ui4aViwAAAABoI8pFAAAAAAAAAAC/tqinN0oJZ2wuAgAAAKCdKBcBAAAAAAAAAPxaV7kci3t6G56xuQgAAACAdqJcBAAAAAAAAADwLAOVvoav21wEAAAAQDtRLgIAAAAAAAAAeJbBhHKRzUUAAAAAtBPlIgAAAAAAAACAZ7G5CAAAAIBOolwEAAAAAAAAAPAsSZuLhqojGSUBAAAAgNZTLgIAAAAAAAAAeJbBSn/D14erY1Gv1zNKAwAAAACtpVwEAAAAAAAAAPAsAwmbi6Zq0zEyOZ5RGgAAAABoLeUiAAAAAAAAAIBnGUwoF0VEDFdHM0gCAAAAAK2nXAQAAAAAAAAA8CxJm4siIoaUiwAAAABoE8pFAAAAAAAAAADPsrinN0oJZ2wuAgAAAKBdKBcBAAAAAAAAADxLV7kci3p6G56xuQgAAACAdqFcBAAAAAAAAADwPIOVvoav21wEAAAAQLtQLgIAAAAAAAAAeJ6BhHKRzUUAAAAAtAvlIgAAAAAAAACA50naXKRcBAAAAEC7UC4CAAAAAAAAAHiepHLRsHIRAAAAAG1CuQgAAAAAAAAA4HkGmthcVK/XM0oDAAAAAK2jXAQAAAAAAAAA8DyDlf6Gr0/VpmN0ciKjNAAAAADQOspFAAAAAAAAAADPM1DpTTwzVB3JIAkAAAAAtJZyEQAAAAAAAADA8yRtLoqIGK6OZpAEAAAAAFpLuQgAAAAAAAAA4HkW9/RGKeHMkHIRAAAAAG1AuQgAAAAAAAAA4Hm6yuVY1NPb8IzNRQAAAAC0A+UiAAAAAAAAAIAXMVDpa/i6zUUAAAAAtAPlIgAAAAAAAACAFzGoXAQAAABAB1AuAgAAAAAAAAB4EUnlomHlIgAAAADagHIRAAAAAAAAAMCLGLC5CAAAAIAOoFwEAAAAAAAAAPAimtlcVK/XM0oDAAAAAK2hXAQAAAAAAAAA8CKSNhftrk3H6ORERmkAAAAAoDWUiwAAAAAAAAAAXkTS5qKIZ7YXAQAAAECRKRcBAAAAAAAAALyIpM1FERFD1ZEMkgAAAABA6ygXAQAAAAAAAAC8iMU9vVFKODNUHcskCwAAAAC0inIRAAAAAAAAAMCLmFfuioU9lYZnhm0uAgAAAKDglIsAAAAAAAAAAF7CYKW/4es2FwEAAABQdMpFAAAAAAAAAAAvYbDS1/D1IZuLAAAAACg45SIAAAAAAAAAgJcwkFAuGq6OZpQEAAAAAFpDuQgAAAAAAAAA4CUkby5SLgIAAACg2JSLAAAAAAAAAABeQjObi+r1ekZpAAAAACB9ykUAAAAAAAAAAC8haXPR7tp0jO6eyCgNAAAAAKRPuQgAAAAAAAAA4CUM9DQuF0VEDI+NZpAEAAAAAFpDuQgAAAAAAAAA4CUM9iaXi4bGlYsAAAAAKC7lIgAAAAAAAACAl7C4pzdKCWeGbC4CAAAAoMCUiwAAAAAAAAAAXsK8clcs7Kk0PDNscxEAAAAABaZcBAAAAAAAAADQwGBPX8PXbS4CAAAAoMiUiwAAAAAAAAAAGhioJJSLqiMZJQEAAACA9CkXAQAAAAAAAAA0MNjb3/D14XGbiwAAAAAoLuUiAAAAAAAAAIAGBnoSNheNKRcBAAAAUFzKRQAAAAAAAAAADQz2Ni4XDY+PRr1ezygNAAAAAKRLuQgAAAAAAAAAoIGkzUW7p6djdPdERmkAAAAAIF3KRQAAAAAAAAAADQxWGpeLIiKGq6MZJAEAAACA9CkXAQAAAAAAAAA00Ey5aEi5CAAAAICCUi4CAAAAAAAAAGhgcaU38YzNRQAAAAAUlXIRAAAAAAAAAEAD88pdsWhBpeEZm4sAAAAAKCrlIgAAAAAAAACABIOVvoavD40pFwEAAABQTMpFAAAAAAAAAAAJBhLKRcPjykUAAAAAFJNyEQAAAAAAAABAgsTNRdWRjJIAAAAAQLqUiwAAAAAAAAAAEgxU+hu+PlwdyygJAAAAAKRLuQgAAAAAAAAAIMFgpbfh60PVkajX6xmlAQAAAID0KBcBAAAAAAAAACRI2ly0e3o6xnZPZpQGAAAAANKjXAQAAAAAAAAAkGCw0pd4Zqg6kkESAAAAAEiXchEAAAAAAAAAQIJmykXD1dEMkgAAAABAupSLAAAAAAAAAAASLO7pTTwzpFwEAAAAQAEpFwEAAAAAAAAAJJjX1RWLFlQanlEuAgAAAKCIlIsAAAAAAAAAAJowWOlr+PqwchEAAAAABaRcBAAAAAAAAADQhIGEcpHNRQAAAAAUkXIRAAAAAAAAAEATbC4CAAAAoB0pFwEAAAAAAAAANMHmIgAAAADakXIRAAAAAAAAAEATmtlcVK/XM0oDAAAAAOlQLgIAAAAAAAAAaELS5qLJ6akY2z2ZURoAAAAASIdyEQAAAAAAAABAEwYr/YlnhqujGSQBAAAAgPQoFwEAAAAAAAAANGGg0pt4Zqg6kkESAAAAAEiPchEAAAAAAAAAQBMGevoSzwzZXAQAAABAwSgXAQAAAAAAAAA0YV5XVyxaUGl4Zli5CAAAAICCUS4CAAAAAAAAAGjSQKXx9iKbiwAAAAAoGuUiAAAAAAAAAIAmDSaUi2wuAgAAAKBolIsAAAAAAAAAAJpkcxEAAAAA7Ua5CAAAAAAAAACgSTYXAQAAANBulIsAAAAAAAAAAJrUzOaier2eURoAAAAA2HPKRQAAAAAAAAAATUraXDQ5PRXV3ZMZpQEAAACAPadcBAAAAAAAAADQpKTNRRHPbC8CAAAAgKJQLgIAAAAAAAAAaFLS5qKIiGHlIgAAAAAKRLkIAAAAAAAAAKBJAz02FwEAAADQXpSLAAAAAAAAAACaNK+rKxYuqDQ8M1QdySgNAAAAAOw55SIAAAAAAAAAgBkYrDTeXjRscxEAAAAABaJcBAAAAAAAAAAwAwMJ5aIh5SIAAAAACkS5CAAAAAAAAABgBmwuAgAAAKCdKBcBAAAAAAAAAMyAzUUAAAAAtBPlIgAAAAAAAACAGWhmc1G9Xs8oDQAAAADsGeUiAAAAAAAAAIAZSNpcNDE9FdXdkxmlAQAAAIA9o1wEAAAAAAAAADADSZuLIiKGqqMZJAEAAACAPadcBAAAAAAAAAAwA0mbiyIihpWLAAAAACgI5SIAAAAAAAAAgBkY6OlNPGNzEQAAAABFoVwEAAAAAAAAADAD3V3zYuGCSsMzykUAAAAAFIVyEQAAAAAAAADADA1UGm8vGq6OZJQEAAAAAPaMchEAAAAAAAAAwAwNVvobvj5UHcsoCQAAAADsGeUiAAAAAAAAAIAZsrkIAAAAgHahXAQAAAAAAAAAMEPJm4tGM0oCAAAAAHtGuQgAAAAAAAAAYIYGevoavj5cHY16vZ5RGgAAAACYPeUiAAAAAAAAAIAZGuxtXC6amJ6K6tRkRmkAAAAAYPaUiwAAAAAAAAAAZihpc1FExNDYaAZJAAAAAGDPKBcBAAAAAAAAAMxQ0uaiiIjhqnIRAAAAAHOfchEAAAAAAAAAwAwN9PQmnhlSLgIAAACgAJSLAAAAAAAAAABmqLtrXvQv6Gl4RrkIAAAAgCJQLgIAAAAAAAAAmIXBSl/D14eViwAAAAAoAOUiAAAAAAAAAIBZGOhpXC6yuQgAAACAIlAuAgAAAAAAAACYhcHehM1F48pFAAAAAMx9ykUAAAAAAAAAALOQuLlobCSjJAAAAAAwe8pFAAAAAAAAAACzMFjpb/j68PhY1Ov1jNIAAAAAwOwoFwEAAAAAAAAAzMJgpbfh6xNTu6M6NZlRGgAAAACYHeUiAAAAAAAAAIBZGEjYXBQRMTQ2mkESAAAAAJg95SIAAAAAAAAAgFkY7O1LPDM8rlwEAAAAwNymXAQAAAAAAAAAMAsDPb2JZ2wuAgAAAGCuUy4CAAAAAAAAAJiF7q550b+gp+EZm4sAAAAAmOuUiwAAAAAAAAAAZmmwp6/h6zYXAQAAADDXKRcBAAAAAAAAAMzSQKVxucjmIgAAAADmOuUiAAAAAAAAAIBZGkwoFw1VlYsAAAAAmNuUiwAAAAAAAAAAZilxc5FyEQAAAABznHIRAAAAAAAAAMAsNbO5qF6vZ5QGAAAAAGZOuQgAAAAAAAAAYJaSykUTU7ujOjWZURoAAAAAmDnlIuD/Z+9Oo+QsyMRv39Xp7nR1J6EKCCRA2GSXRSICoqCyDoKEERGML0IiKDPMOLgcUJARdQZxAfcVJGEVxL8IsiibwCA7OGTYZI2QsBhCV0J3V3eS7no/aDBAup5Kd9dTVd3XdU4+TJ6beu7KePQckl9uAAAAAAAAAIYol52QOFMo9qSwCQAAAAAMjbgIAAAAAAAAAGCIki4XRUR0FrtS2AQAAAAAhkZcBAAAAAAAAAAwRLlse+JModidwiYAAAAAMDTiIgAAAAAAAACAIWoZ1xwTWtvKznSKiwAAAACoY+IiAAAAAAAAAIBhyGc7yj53uQgAAACAeiYuAgAAAAAAAAAYhlxCXORyEQAAAAD1TFwEAAAAAAAAADAMLhcBAAAA0MjERQAAAAAAAAAAw+ByEQAAAACNTFwEAAAAAAAAADAMLhcBAAAA0MjERQAAAAAAAAAAw5AUF/WuWB7F5ctS2gYAAAAA1oy4CAAAAAAAAABgGHIJcVFERKfrRQAAAADUKXERAAAAAAAAAMAw5LMTEmcK4iIAAAAA6pS4CAAAAAAAAABgGNbKtifOdBa7UtgEAAAAANacuAgAAAAAAAAAYBhaxzXHhNa2sjOFYk9K2wAAAADAmhEXAQAAAAAAAAAMUy7bUfa5y0UAAAAA1CtxEQAAAAAAAADAMOUT4qJCsTulTQAAAABgzYiLAAAAAAAAAACGKflykbgIAAAAgPokLgIAAAAAAAAAGCaXiwAAAABoVOIiAAAAAAAAAIBhcrkIAAAAgEYlLgIAAAAAAAAAGKaky0W9K5ZHcfmylLYBAAAAgMqJiwAAAAAAAAAAhikpLoqIKLheBAAAAEAdEhcBAAAAAAAAAAxTroK4qFNcBAAAAEAdEhcBAAAAAAAAAAxTJXGRy0UAAAAA1CNxEQAAAAAAAADAMLWOa46O1vFlZ1wuAgAAAKAeiYsAAAAAAAAAAEZAPjuh7HOXiwAAAACoR+IiAAAAAAAAAIARkMu2l33eWexKaRMAAAAAqJy4CAAAAAAAAABgBCRfLupJaRMAAAAAqJy4CAAAAAAAAABgBLhcBAAAAEAjEhcBAAAAAAAAAIyApMtFncXulDYBAAAAgMqJiwAAAAAAAAAARkA+21H2ee+K5VFcviylbQAAAACgMuIiAAAAAAAAAIARkEuIiyIiCq4XAQAAAFBnxEUAAAAAAAAAACMg6XJRhLgIAAAAgPojLgIAAAAAAAAAGAGVXC7qFBcBAAAAUGfERQAAAAAAAAAAI6B1XHN0tI4vOyMuAgAAAKDeiIsAAAAAAAAAAEZI0vWigrgIAAAAgDojLgIAAAAAAAAAGCH5hLjI5SIAAAAA6o24CAAAAAAAAABghOTaXC4CAAAAoLGIiwAAAAAAAAAARki+PelyUVdKmwAAAABAZcRFAAAAAAAAAAAjJJ+dUPZ5odiT0iYAAAAAUBlxEQAAAAAAAADACMlly18uKq5YFr3Ll6W0DQAAAAAkExcBAAAAAAAAAIyQfEJcFBHRWexOYRMAAAAAqIy4CAAAAAAAAABghCRdLoqIKIiLAAAAAKgj4iIAAAAAAAAAgBGSb3O5CAAAAIDGIi4CAAAAAAAAABghrc3N0d4yvuyMuAgAAACAetJc6wUAau25556L3//+9zFv3rx45JFH4plnnolXX301li5dGqVSKSZOnBgTJ06MjTfeOLbbbrvYYYcdYr/99ostt9yy1qvXvcWLF8c999wTDz30UDz66KPx9NNPxwsvvBCLFi2KYrEYy5Yti/Hjx0c2m418Ph8bbLBBTJs2LbbffvvYaaedYo899ohcLlfrrwEAAAAAAABrJN/eET1L+gZ9XugVFwEAAABQP8RFwJhUKBTi3HPPjQsvvDDmzZtXdnbx4sWxePHimD9/ftx2222v/fyWW24ZM2fOjH/5l3+J9ddfv9orN4SXXnopbrrpprj55pvjlltuiaeeeirxnykWi1EsFuOVV1550/y4ceNil112iUMOOSSOOuqomDZtWrVWBwAAAAAAgBGTa+uIhUteGfR5Z4+4CAAAAID6kSmVSqVaLwGQlq6urvjqV78aP/zhD6O7e2T+hX1ra2scffTRccYZZ8S66647Ip/ZSJ544on41a9+FVdddVXcc889MTAwUJX3NDU1xfvf//449dRTY/fdd6/KOxrRokWLYr311nvdz/31r3+NyZMn12gjAAAAAAAAfnTH7+P2+Y8N+ny79TaKL+57WIobAQAAAJBkLP+53KZaLwCQlquuuiq23Xbb+MY3vjFiYVFExLJly+Kcc86JrbfeOubMmTNin1vPXnrppTjrrLNil112ia222ipOOeWUuOuuu6oWFkVEDAwMxNVXXx3vfOc749BDD41nn322au8CAAAAAACA4ci3d5R93tnrchEAAAAA9UNcBIx6AwMD8cUvfjEOPfTQWLBgQdXe88orr8Ts2bPjE5/4RCxbtqxq76mlhx9+OA499NDYaKON4nOf+1zcf//9NdnjyiuvjG233TbOO++8mrwfAAAAAAAAysm1lY+LCj3iIgAAAADqh7gIGNX6+/vjyCOPjP/+7/+OUqmUyjvPOeec2H///aOnpyeV96Xpf/7nf+LKK6+MFStW1HqV6OnpiY9//ONx3HHH1cU+AAAAAAAAsFK+fULZ58UVy6J3+ej8CwsBAAAAaDziImDUGhgYiGOOOSYuv/zy1N996623xj//8z9HX19f6u8ea84999w4/PDDR+21KAAAAAAAABpPrq09caaz6HoRAAAAAPWhudYLAFTLqaeeGhdddNEa/TNbbrllvOtd74rtt98+1l577chkMtHZ2RmPPvpo3HnnnfHQQw9V/FnXX399HHfccXHBBRes6eqsod/85jcxa9asuPjii2u9CgAAAAAAACReLoqIKPT2xNRJ+RS2AQAAAIDyxEXAqHTdddfF17/+9YrnZ8yYEaecckrsuuuuZeceeuih+OY3vxkXXXRRDAwMJH7uhRdeGO95z3vi4x//eMW7jDbrr79+7LbbbvGOd7wjtt1229h0001jo402io6Ojshms7FkyZJ4+eWX48UXX4w777wzbrnllrjtttuip6dnjd5zySWXxPbbbx9f+MIXqvRNAAAAAAAAoDL5to7Emc6erhQ2AQAAAIBkmVKpVKr1EgAjafHixbHNNtvEyy+/nDi79tprx4UXXhjvf//71+gdd911V3z4wx+O5557LnE2m83GvHnzYosttlijd9Sjn/zkJ/Ev//IviXO77LJLfOhDH4oDDjgg3va2t63xe1555ZX44Q9/GN///vdj0aJFFf9zLS0tcd9998WOO+64xu9sVIsWLYr11lvvdT/317/+NSZPnlyjjQAAAAAAAIiIOPbyn0TP8r5Bn/9/0/eM928zPcWNAAAAAChnLP+53KZaLwAw0k499dSKwqKNNtoo7rnnnjUOiyIidt9997jvvvtiu+22S5wtFovx6U9/eo3f0WimTJkSp512Wjz++ONx7733xsknnzyksCjib9HXaaedFk8++WQcccQRFf9zy5cvryh+AgAAAAAAgGrLZ8tfL+osdqe0CQAAAACUJy4CRpU//elPcc455yTOrbXWWnHjjTfGW97yliG/a7311oubbropNtpoo8TZq6++Oq699tohv6ue7bLLLnHppZfGs88+G1/5yldiyy23HLHPnjRpUlx66aXxgx/8IDKZTEX/zB133BHXXXfdiO0AAAAAAAAAQ5FLiIsK4iIAAAAA6oS4CBhVvvzlL8fAwEDi3DnnnBNbb731sN83ZcqUuOSSS2LcuHGJs1/60peG/b56sueee8bvf//7uPfee+OII46IlpaWqr3rhBNOiG9961sVz3/3u9+t2i4AAAAAAABQCZeLAAAAAGgU4iJg1Pjzn/8cV111VeLcjBkz4vDDDx+x9+65557xyU9+MnHuvvvui5tvvnnE3lsrO+20U1x77bVx2223xf7775/aez/zmc/EJz7xiYpmb7zxxnjhhReqvBEAAAAAAAAMTlwEAAAAQKMQFwGjxtlnnx2lUqnsTHNz8xpdwKnUV77ylZg0aVLi3FlnnTXi707TYYcdFg888EAceOCBNXn/1772tcjn84lz/f398bvf/S6FjQAAAAAAAGD1cglxUUFcBAAAAECdEBcBo0JfX19cdtlliXOHHXZYbLHFFiP+/nXWWSeOPfbYxLnf//738dJLL434+9MyefLkaGqq3f90rL322nHqqadWNHvLLbdUdxkAAAAAAAAoI+lyUXH5suhdsTylbQAAAABgcOIiYFS4+uqrY8mSJYlzJ554YtV2+NSnPpUY3vT398ell15atR3GgpkzZ0Ymk0mce/DBB1PYBgAAAAAAAFYv6XJRhOtFAAAAANQHcREwKvziF79InNliiy1i9913r9oOm2yySey5556Jc5XsyuCmTp0a06dPT5x76qmnUtgGAAAAAAAAVi/pclFERKe4CAAAAIA6IC4CGl5/f3/ceOONiXNHHHFE1Xc58sgjE2fuvffeWLx4cdV3Gc122223xJmurq7o6upKYRsAAAAAAAB4M5eLAAAAAGgU4iKg4d1zzz2xZMmSxLkDDzyw6rtU8o6BgYG46aabqr7LaLb++utXNNfd7TdjAAAAAAAAqI3xzS3R3tJadqaz6C/LAwAAAKD2xEVAw6sk1Jk4cWJF126Ga5NNNoktttgice6GG26o+i6jWaVx0YoVK6q8CQAAAAAAAAwun51Q9nmh2JPSJgAAAAAwOHER0PDuvPPOxJnddtstmpubU9gmYs8990ycufvuu1PYZPRavnx5RXMdHR1V3gQAAAAAAAAGl8u2l33uchEAAAAA9UBcBDS8P/3pT4kz06dPT2GTv3n729+eOPPoo49GX19fCtuMTosWLUqcaW5ujokTJ6awDQAAAAAAAKxe0uWizmJ3SpsAAAAAwODERUBDe+mll+KFF15InKu3uGjFihXxf//3fylsMzpV8mu32Wabxbhx41LYBgAAAAAAAFYvn+0o+7wgLgIAAACgDoiLgIY2b968iua22WabKm/yD1tvvXVFc5XuzuuVSqW46667Eue23XbbFLYBAAAAAACAweUS4iKXiwAAAACoB+IioKE9/fTTFc1tscUWVd7kH/L5fKy99tqJc5XuzuvdddddFV2r2nPPPVPYBgAAAAAAAAaXdLmouHxZ9K5YntI2AAAAALB64iKgoT3zzDOJM1OmTImOjvL/0n6kVRIzVbI7bzZ37tyK5vbZZ5/qLgIAAAAAAAAJki4XRUQUXC8CAAAAoMbERUBDmz9/fuLMBhtsUP1F3mDq1KmJM+KiNffyyy/HhRdemDi39dZbx84775zCRgAAAAAAADC4pMtFEeIiAAAAAGpPXAQ0tIULFybOTJkyJYVN1vydCxYsSGGT0eWrX/1qFIvFxLljjjmm+ssAAAAAAABAgkouF3WKiwAAAACoMXER0NAWL16cOLP++uunsMnrVRIXvfLKKylsMno89thj8eMf/zhxbtKkSXH88censBEAAAAAAACUN765JdpbWsvOuFwEAAAAQK2Ji4CGVklclMvlqr/IEN7Z3d0dfX191V9mFOjv74/Zs2fH8uXLE2f//d//vSb/PwcAAAAAAIDVSbpe5HIRAAAAALUmLgIaWmdnZ+LMxIkTU9hkaO90vagy3/rWt+LOO+9MnNtggw3i85//fAobAQAAAAAAQGXyiXFRV0qbAAAAAMDqiYuAhlUsFiu6ZFOLuGjSpEkVzS1ZsqTKmzS+O+64I0477bSKZr/xjW/EhAkTqrwRAAAAAAAAVC6fLf/7VwWXiwAAAACoMXER0LCWLVtW0Vw2m63yJm/W1tZW0Vyl32GsWrRoURxxxBEVRWQHH3xwfPSjH01hKwAAAAAAAKhcLvFykbgIAAAAgNpqrvUCAENVaZgzbty4Km/yZs3Nlf3Xq7hocMuXL4/DDz88FixYkDi7zjrrxDnnnJPCVo3h3e9+d8X/GaR6Hn744VqvAAAAAAAA1IF8QlzkchEAAAAAteZyEdCwKg1zahFZVPrOSi7yjFXHH3983HrrrRXN/vznP48pU6ZUeSMAAAAAAABYc0mXi3qWL4u+FX7fEAAAAIDacdYAaFgrVqyoaE5c1Hi+/vWvx3nnnVfR7Oc+97mYMWNGlTdqLLfffntMnjy51msAAAAAAAAQyZeLIv52vWj9ibnqLwMAAAAAq+FyEdCwKg14+vv7q7zJ0N9Zi/Cp3l188cXxhS98oaLZPffcM772ta9VeSMAAAAAAAAYuqTLRRERncXuFDYBAAAAgNUTFwENq7W1taK5Si8cjaRKLxJV+h3GimuvvTZmzZoVpVIpcXabbbaJK664QqAFAAAAAABAXaskLiqIiwAAAACoIXER0LBaWloqmqtFXFTpO8VF/3D77bfHhz70oYrCrI033jhuuOGGWGeddVLYDAAAAAAAAIaurbklsi3lf1/Q5SIAAAAAaklcBDSs8ePHVzTX29tb5U2G/k5x0d/cf//9cdBBB0WxWEycXW+99eKGG26IjTbaKIXNAAAAAAAAYPjyCdeLxEUAAAAA1FJzrRcAGsszzzwTd999d1Xf0dHRER/4wAcS57LZbDQ3NydeCXr11VdHarWKVfrOSZMmVXmT+vfwww/HAQccEEuXLk2czeVycf3118dWW22VwmYAAAAAAAAwMvLZjnh+aeegzwviIgAAAABqSFwErJFbb701Zs2aVdV3bLLJJhXFRRER+Xw+Fi1aVHamkmhlpFX6zrXXXrvKm9S3J554Ivbdd99YvHhx4mxHR0dce+21sdNOO6WwGQAAAAAAAIycXOLloq6UNgEAAACAN2uq9QIAw7HOOuskzixZsiSFTdb8ne3t7dHW1pbCNvXpmWeeib333jtefPHFxNm2tra46qqr4p3vfGcKmwEAAAAAAMDIymcnlH1eKPaktAkAAAAAvJm4CGholcRFL730UgqbvF4lwUwlu49WCxYsiH322ScWLFiQONvS0hKXX3557L333ilsBgAAAAAAACMvl20v+9zlIgAAAABqSVwENLQNN9wwcaaS0GekVfLOSnYfjV588cXYe++945lnnkmcHTduXFx88cVx8MEHp7AZAAAAAAAAVEfS5aKe5cuib8XylLYBAAAAgNcTFwENbdNNN02cef7556u/yBu88MILiTObbbZZCpvUl0WLFsU+++wTTzzxROJsJpOJ8847Lw4//PAUNgMAAAAAAIDqyWU7EmcKxe4UNgEAAACANxMXAQ2tkkDnxRdfjJ6enhS2+Ycnn3wycWasxUWLFy+OfffdNx555JGK5n/0ox/Fxz72sSpvBQAAAAAAANWXryAu6hQXAQAAAFAj4iKgoW2++eaJM6VSqaLYZ6QUCoVYvHhx4lwlu48WhUIh9t9//5g3b15F82eddVYcf/zxVd4KAAAAAAAA0uFyEQAAAAD1TFwErJFjjjkmSqVSVX/Mnz+/4n122GGHiuYee+yxIX7jNVfpuyrdvdEtXbo0DjjggHjggQcqmv/KV74Sn/nMZ6q8FQAAAAAAAKSnrbklsi2tZWdcLgIAAACgVsRFQEObOnVqrL/++olzlYYtI6GSdzU3N8eOO+6Ywja11dXVFQceeGDcc889Fc1//vOfj9NOO63KWwEAAAAAAED68gnXi1wuAgAAAKBWxEVAw5s+fXriTJpx0f333584s80220RbW1sK29ROT09PHHTQQXHHHXdUNP+pT30qvva1r1V5KwAAAAAAAKiNXEJc5HIRAAAAALUiLgIa3jvf+c7EmbvuuitWrFiRwjYRt912W+LMbrvtlsImtdPb2xuHHHJIRb8WERHHHXdcfPe7363yVgAAAAAAAFA7SZeLxEUAAAAA1Iq4CGh4++yzT+LMq6++Gvfcc0/Vd3n22WfjySefTJzbb7/9qr5LrSxbtiz++Z//OW666aaK5o866qj4yU9+UuWtAAAAAAAAoLaSLhcVxEUAAAAA1Ii4CGh4u+66a0yaNClx7rrrrqv6LpW8I5PJVBRENaLly5fH4YcfHr/73e8qmj/88MNjzpw50dTkf44AAAAAAAAY3VwuAgAAAKBe+dPcQMNrbm6uKNa57LLLqr7LpZdemjizyy67xLrrrlv1XdLW398fM2fOjKuuuqqi+Q984ANx8cUXx7hx46q8GQAAAAAAANRerq18XNSzvC+WrViR0jYAAAAA8A/iImBU+MhHPpI488QTT8Tdd99dtR2effbZuO222xLnKtm10QwMDMTHPvax+NWvflXR/AEHHBCXX355tLS0VHkzAAAAAAAAqA/59gmJM529rhcBAAAAkD5xETAqfOADH4hJkyYlzn3nO9+p2g7f+973YmBgoOxMU1NTHHnkkVXboRZKpVIce+yxcckll1Q0/973vjeuuOKKGD9+fJU3AwAAAAAAgPqRa2tPnOns6UphEwAAAAB4PXERMCq0tbXFhz/84cS5X/3qV/Hkk0+O+PsXL14c55xzTuLc/vvvH1OnTh3x99fSCSecEHPmzKlodo899ojf/va3kc1mq7wVAAAAAAAA1Jd8tiNxptDbk8ImAAAAAPB64iJg1PjMZz4TmUym7MyKFSvic5/73Ii/+z//8z9j6dKliXOf/exnR/zdtfSZz3wmfvzjH1c0u8suu8R1110XEyZMqPJWAAAAAAAAUH/aWloj29JadsblIgAAAABqQVwEjBrbbrttHHzwwYlzV155ZVx++eUj9t7bb789fvrTnybOTZ8+Pfbdd98Re29ExPz58yOTyST+eO973zui742IOPXUU+Pb3/52RbM77bRTXH/99TFp0qQR3wMAAAAAAAAaRS7helGh2J3SJgAAAADwD+IiYFT50pe+FE1Nyf/Vdtxxx8Xjjz8+7Pe9+OKLMXPmzOjv70+cPf3004f9vnrx3//933HGGWdUNLvddtvFDTfcEPl8vspbAQAAAAAAQH3LJ8RFneIiAAAAAGpAXASMKm9/+9tj9uzZiXNLliyJffbZJ55++ukhv2vRokWx7777xnPPPZc4e+CBB8YHPvCBIb+rnnznO9+JL37xixXNbrnllnHTTTfF5MmTq7wVAAAAAAAA1L9cm7gIAAAAgPojLgJGnTPOOCPWWWedxLkFCxbErrvuGtddd90av+Puu++OXXbZJR5++OHE2ba2tvjud7+7xu+oRz/72c/i05/+dEWzm266adx8880xZcqUKm8FAAAAAAAAjSHfXj4uKvSKiwAAAABIn7gIGHUmT54cc+fOjUwmkzi7ePHieP/73x8f/OAH47777kucf+SRR2LWrFmxxx57xLPPPlvRPt/97ndjyy23rGi23p1xxhkVz86fPz+mTZsWmUymZj9OP/306v1iAAAAAAAAwBpKvFzUIy4CAAAAIH3NtV4AoBoOPvjg+NznPhff/OY3K5q/4oor4oorroitttoq3v3ud8db3/rWWHvttSOTyURnZ2c89thjceedd8a8efPWaI+ZM2fGJz7xiaF8BQAAAAAAAGCUyWfLx0U9y/ti2YoV0drsj3MAAAAAkB7/NgoYtc4888xYsGBB/OIXv6j4n3n88cfj8ccfH5H377PPPnHeeeeNyGcBAAAAAAAAjS8pLoqI6OztjvUnrJXCNgAAAADwN021XgCgWpqamuKCCy6ID37wg6m/+93vfndceeWVMX78+NTfDQAAAAAAANSnXAVxUaHYncImAAAAAPAP4iJgVGtubo7LL788Tj755NTeOWvWrLjxxhujoyP5NwYAAAAAAACAsaOiy0XiIgAAAABSJi4CRr2mpqY488wz44orrogNNtigau/J5/NxzjnnxHnnnediEQAAAAAAAPAmbS2tkW1uLTvT2dOV0jYAAAAA8DfiImDMOPTQQ+Oxxx6Lz33ucyN6Vai1tTU+/vGPx5///Oc49thjR+xzAQAAAAAAgNEn117+9yoLvS4XAQAAAJAucREwpkycODG++c1vxnPPPRdnnnlmvPWtbx3yZ73lLW+JL37xizF//vw499xzY/LkySO4KQAAAAAAADAa5dvKx0WdPeIiAAAAANLVXOsFAGohn8/HySefHCeffHL85S9/ieuvvz4efPDBeOSRR2L+/PmxdOnSePXVV6NUKsXEiRNj4sSJMW3atNhuu+1ihx12iH333Te22WabWn+N2HTTTaNUKqX2vvnz56f2LgAAAAAAABiNclmXiwAAAACoL+IiYMzbZJNN4rjjjqv1GgAAAAAAAMAYkE+IizqL4iIAAAAA0tVU6wUAAAAAAAAAAMaKxMtF4iIAAAAAUiYuAgAAAAAAAABISdLlou5lfbFsxYqUtgEAAAAAcREAAAAAAAAAQGqS4qKIiEKv60UAAAAApEdcBAAAAAAAAACQklwFcVFnUVwEAAAAQHrERQAAAAAAAAAAKREXAQAAAFBvxEUAAAAAAAAAACnJtrRGtrm17ExBXAQAAABAisRFAAAAAAAAAAApymXbyz7vLHaltAkAAAAAiIsAAAAAAAAAAFKVz04o+7xQ7ElpEwAAAAAQFwEAAAAAAAAApMrlIgAAAADqibgIAAAAAAAAACBFLhcBAAAAUE/ERQAAAAAAAAAAKcplO8o+d7kIAAAAgDSJiwAAAAAAAAAAUpRPiIu6l/XFsv4VKW0DAAAAwFgnLgIAAAAAAAAASFHS5aKIiEKxO4VNAAAAAEBcBAAAAAAAAACQqqTLRRERneIiAAAAAFIiLgIAAAAAAAAASJHLRQAAAADUE3ERAAAAAAAAAECKsi2t0dbcUnbG5SIAAAAA0iIuAgAAAAAAAABIWT7hepHLRQAAAACkRVwEAAAAAAAAAJCyXEJc5HIRAAAAAGkRFwEAAAAAAAAApMzlIgAAAADqhbgIAAAAAAAAACBlLhcBAAAAUC/ERQAAAAAAAAAAKctnJ5R97nIRAAAAAGkRFwEAAAAAAAAApCyXbS/7vGtZbyzrX5HSNgAAAACMZeIiAAAAAAAAAICUJV0uinC9CAAAAIB0iIsAAAAAAAAAAFKWz3YkzoiLAAAAAEiDuAgAAAAAAAAAIGW5CuKiTnERAAAAACkQFwEAAAAAAAAApCzb0hptzS1lZ1wuAgAAACAN4iIAAAAAAAAAgBpIul7kchEAAAAAaRAXAQAAAAAAAADUQD4hLnK5CAAAAIA0iIsAAAAAAAAAAGrA5SIAAAAA6oG4CAAAAAAAAACgBlwuAgAAAKAeiIsAAAAAAAAAAGrA5SIAAAAA6oG4CAAAAAAAAACgBpIuF3Ut643l/StS2gYAAACAsUpcBAAAAAAAAABQA/nshMSZQrEnhU0AAAAAGMvERQAAAAAAAAAANZBLuFwUEdFZ7EphEwAAAADGMnERAAAAAAAAAEAN5CuIiwrF7hQ2AQAAAGAsExcBAAAAAAAAANRAtqU1xje3lJ3pFBcBAAAAUGXiIgAAAAAAAACAGkm6XiQuAgAAAKDaxEUAAAAAAAAAADWSS4iLCuIiAAAAAKpMXAQAAAAAAAAAUCMuFwEAAABQa+IiAAAAAAAAAIAaybW5XAQAAABAbYmLAAAAAAAAAABqJN+ecLmoV1wEAAAAQHWJiwAAAAAAAAAAaiTpclFXX28s71+R0jYAAAAAjEXiIgAAAAAAAACAGkm6XBQRUSj2pLAJAAAAAGOVuAgAAAAAAAAAoEby2QmJM53F7hQ2AQAAAGCsEhcBAAAAAAAAANRILtueOFModqWwCQAAAABjlbgIAAAAAAAAAKBGss2tMb65pexMZ7EnpW0AAAAAGIvERQAAAAAAAAAANZLJZCLXVv56UafLRQAAAABUkbgIAAAAAAAAAKCG8u0Tyj4v9HantAkAAAAAY5G4CAAAAAAAAACghnJtHWWfd/aIiwAAAACoHnERAAAAAAAAAEAN5bPl4yKXiwAAAACoJnERAAAAAAAAAEAN5RLios6iuAgAAACA6hEXAQAAAAAAAADUUNLloq6+3ljevyKlbQAAAAAYa8RFAAAAAAAAAAA1lG8vHxdFRBR6e1LYBAAAAICxSFwEAAAAAAAAAFBDubbkuKizpzuFTQAAAAAYi8RFAAAAAAAAAAA1VNnlInERAAAAANUhLgIAAAAAAAAAqKFsc2uMH9dcdsblIgAAAACqRVwEAAAAAAAAAFBDmUwmctny14tcLgIAAACgWsRFAAAAAAAAAAA1lk+IizqLXSltAgAAAMBYIy4CAAAAAAAAAKixXHZC2eeFYk9KmwAAAAAw1oiLAAAAAAAAAABqLJ9tL/vc5SIAAAAAqkVcBAAAAAAAAABQY0mXizqL3SltAgAAAMBYIy4CAAAAAAAAAKixfLaj7POuvt5Y3r8ipW0AAAAAGEvERQAAAAAAAAAANZYUF0VEFHp7UtgEAAAAgLFGXAQAAAAAAAAAUGO5SuKiYncKmwAAAAAw1oiLAAAAAAAAAABqrJLLRZ3iIgAAAACqQFwEAAAAAAAAAFBj2ZbWGD+uueyMy0UAAAAAVIO4CAAAAAAAAACgxjKZTOQSrhe5XAQAAABANYiLAAAAAAAAAADqQD4hLnK5CAAAAIBqEBcBAAAAAAAAANQBl4sAAAAAqAVxEQAAAAAAAABAHUi6XNRZ7EppEwAAAADGEnERAAAAAAAAAEAdyGUnlH1eKPaktAkAAAAAY4m4CAAAAAAAAACgDiRdLnq1rxgr+vtT2gYAAACAsUJcBAAAAAAAAABQB5LiooiIQm93CpsAAAAAMJaIiwAAAAAAAAAA6kCugriosyguAgAAAGBkiYsAAAAAAAAAAOpARZeLxEUAAAAAjDBxEQAAAAAAAABAHci2tEbruOayMy4XAQAAADDSxEUAAAAAAAAAAHUgk8kkXi9yuQgAAACAkSYuAgAAAAAAAACoE7mEuMjlIgAAAABGmrgIAAAAAAAAAKBOuFwEAAAAQNrERQAAAAAAAAAAdSIpLnK5CAAAAICRJi4CAAAAAAAAAKgTOXERAAAAACkTFwEAAAAAAAAA1Il8dkLZ56/2FWNFf39K2wAAAAAwFoiLAAAAAAAAAADqRC7bnjhT6HW9CAAAAICRIy4CAAAAAAAAAKgTSZeLIiIKxZ4UNgEAAABgrBAXAQAAAAAAAADUiVy2I3Gms9iVwiYAAAAAjBXiIgAAAAAAAACAOtHe0hqt45rLzhSK3SltAwAAAMBYIC4CAAAAAAAAAKgTmUwm8XpRp7gIAAAAgBEkLgIAAAAAAAAAqCP5hLjI5SIAAAAARpK4CAAAAAAAAACgjrhcBAAAAECaxEUAAAAAAAAAAHUk6XKRuAgAAACAkSQuAgAAAAAAAACoI0lxUUFcBAAAAMAIEhcBAAAAAAAAANSRXEJctLSvGCv6+1PaBgAAAIDRTlwEAAAAAAAAAFBHki4XRUQs6e1JYRMAAAAAxgJxEQAAAAAAAABAHUm6XBQR0VnsTmETAAAAAMYCcREAAAAAAAAAQB3JZyckzoiLAAAAABgp4iIAAAAAAAAAgDrS3tIaLePGlZ0pFLtS2gYAAACA0U5cBAAAAAAAAABQRzKZTOL1os5iT0rbAAAAADDaiYsAAAAAAAAAAOpMLtte9rnLRQAAAACMFHERAAAAAAAAAECdSb5c1J3SJgAAAACMduIiAAAAAAAAAIA6k892lH1eEBcBAAAAMELERQAAAAAAAAAAdSaXEBe5XAQAAADASBEXAQAAAAAAAADUmaTLRUv7irFioD+lbQAAAAAYzcRFAAAAAAAAAAB1JulyUUTEkmJPCpsAAAAAMNqJiwAAAAAAAAAA6kzS5aKIiM5idwqbAAAAADDaiYsAAAAAAAAAAOpMJZeLxEUAAAAAjARxEQAAAAAAAABAneloGR8t48aVnSn0iosAAAAAGD5xEQAAAAAAAABAnclkMpFrK3+9qLNHXAQAAADA8ImLAAAAAAAAAADqUL69fFxUKHaltAkAAAAAo5m4CAAAAAAAAACgDuWzE8o+7yy6XAQAAADA8ImLAAAAAAAAAADqUK4t6XKRuAgAAACA4RMXAQAAAAAAAADUoXx7+bios1dcBAAAAMDwiYsAAAAAAAAAAOpQ0uWipb3FWDHQn9I2AAAAAIxW4iIAAAAAAAAAgDqUdLkoImJJb08KmwAAAAAwmomLAAAAAAAAAADqUD7hclFERGdPdwqbAAAAADCaiYsAAAAAAAAAAOpQroLLRYVecREAAAAAwyMuAgAAAAAAAACoQx0t46OlaVzZmc6iuAgAAACA4REXAQAAAAAAAADUoUwmE7ls+etFnT3iIgAAAACGR1wEAAAAAAAAAFCn8u3l46JCr7gIAAAAgOERFwEAAAAAAAAA1KlcW9Lloq6UNgEAAABgtBIXAQAAAAAAAADUqXx2Qtnnhd6elDYBAAAAYLQSFwEAAAAAAAAA1Kl8tr3s886iy0UAAAAADI+4CAAAAAAAAACgTuUSLhe92luMFQP9KW0DAAAAwGgkLgIAAAAAAAAAqFNJl4tKEbGktyedZQAAAAAYlcRFAAAAAAAAAAB1Kp9wuSgiolDsTmETAAAAAEYrcREAAAAAAAAAQJ3KZTsSZzrFRQAAAAAMg7gIAAAAAAAAAKBOdbSOj5amcWVnXC4CAAAAYDjERQAAAAAAAAAAdSqTySReL3K5CAAAAIDhEBcBAAAAAAAAANSxvLgIAAAAgCoSFwEAAAAAAAAA1LGky0UFcREAAAAAwyAuAgAAAAAAAACoYy4XAQAAAFBN4iIAAAAAAAAAgDqWFBe5XAQAAADAcIiLAAAAAAAAAADqWC4hLlra2xP9AwMpbQMAAADAaCMuAgAAAAAAAACoY0mXi0oRsaS3J51lAAAAABh1xEUAAAAAAAAAAHUs6XJRRERnsSuFTQAAAAAYjcRFAAAAAAAAAAB1LJ+dkDhTKLpcBAAAAMDQiIsAAAAAAAAAAOpYR+v4aGkaV3bG5SIAAAAAhkpcBAAAAAAAAABQxzKZTOSyHWVnOovdKW0DAAAAwGgjLgIAAAAAAAAAqHP5hLioIC4CAAAAYIjERQAAAAAAAAAAdc7lIgAAAACqRVwEAAAAAAAAAFDnXC4CAAAAoFrERQAAAAAAAAAAdc7lIgAAAACqRVwEAAAAAAAAAFDnki4XLe3tif6BgZS2AQAAAGA0ERcBAAAAAAAAANS5pMtFpYhY0tuTzjIAAAAAjCriIgAAAAAAAACAOpd0uSgiolDsTmETAAAAAEYbcREAAAAAAAAAQJ1LulwUEdEpLgIAAABgCMRFAAAAAAAAAAB1bkJrWzQ3jSs701nsSmkbAAAAAEYTcREAAAAAAAAAQJ3LZDKRT7heVHC5CAAAAIAhEBcBAAAAAAAAADSAXEJc1CkuAgAAAGAIxEUAAAAAAAAAAA3A5SIAAAAAqkFcBAAAAAAAAADQAFwuAgAAAKAaxEUAAAAAAAAAAA3A5SIAAAAAqkFcBAAAAAAAAADQAJIuFy3p7Yn+gYGUtgEAAABgtBAXAQAAAAAAAAA0gKTLRaWIWNrbk84yAAAAAIwa4iIAAAAAAAAAgAaQdLkoIqKz2J3CJgAAAACMJuIiAAAAAAAAAIAGkHS5KEJcBAAAAMCaExcBAAAAAAAAADSACa1t0dw0ruxMQVwEAAAAwBoSFwEAAAAAAAAANIBMJhO5bHvZmc5iV0rbAAAAADBaiIsAAAAAAAAAABpEPjuh7PPOYk9KmwAAAAAwWoiLAAAAAAAAAAAaRNLlooLLRQAAAACsIXERAAAAAAAAAECDcLkIAAAAgJEmLgIAAAAAAAAAaBAuFwEAAAAw0sRFAAAAAAAAAAANIuly0ZK+YvQPDKS0DQAAAACjgbgIAAAAAAAAAKBB5No6yj4vlUqxtLcnpW0AAAAAGA3ERQAAAAAAAAAADSLfXj4uiojoLHansAkAAAAAo4W4CAAAAAAAAACgQeSz4iIAAAAARpa4CAAAAAAAAACgQUxobYvmpnFlZwriIgAAAADWgLgIAAAAAAAAAKBBZDKZyGXby864XAQAAADAmhAXAQAAAAAAAAA0kFxbR9nn4iIAAAAA1oS4CAAAAAAAAACggeTby8dFBXERAAAAAGtAXAQAAAAAAAAA0EBcLgIAAABgJImLAAAAAAAAAAAaSOLlol5xEQAAAACVExcBAAAAAAAAADSQpMtFS3p7YmBgIKVtAAAAAGh04iIAAAAAAAAAgAaSz04o+7xUKsWSvmJK2wAAAADQ6MRFAAAAAAAAAAANJN9e/nJRRERnsSuFTQAAAAAYDcRFAAAAAAAAAAANJNdWQVzU053CJgAAAACMBuIiAAAAAAAAAIAGMnF8W4xrKv9HPgq94iIAAAAAKiMuAgAAAAAAAABoIJlMJvIJ14tcLgIAAACgUuIiAAAAAAAAAIAGk8uWj4tcLgIAAACgUuIiAAAAAAAAAIAGk0+Ii1wuAgAAAKBS4iIAAAAAAAAAgAbjchEAAAAAI0VcBAAAAAAAAADQYBIvFxXFRQAAAABURlwEAAAAAAAAANBgki4XLentiYGBgZS2AQAAAKCRiYsAAAAAAAAAABpM0uWiUqkUS/qKKW0DAAAAQCMTFwEAAAAAAAAANJikuCgiorPYlcImAAAAADQ6cREAAAAAAAAAQIPJZSckzhSK3SlsAgAAAECjExcBAAAAAAAAADSYiePbYlxT+T/20SkuAgAAAKAC4iIAAAAAAAAAgAaTyWQi39ZRdsblIgAAAAAqIS4CAAAAAAAAAGhAuWz5uMjlIgAAAAAqIS4CAAAAAAAAAGhA+YS4yOUiAAAAACohLgIAAAAAAAAAaEAuFwEAAAAwEsRFAAAAAAAAAAANyOUiAAAAAEaCuAgAAAAAAAAAoAElXS4q9PbEwMBAStsAAAAA0Kiaa70Alent7Y2FCxfGyy+/HEuWLIlCoRCvvvpqLFu2LJYtWxbLly+PcePGRWtra7S0tER7e3ustdZakcvlIp/Px9SpU2Odddap9dcAAAAAAAAAAEZI0uWiUqkUS/qKiXMAAAAAjG3iojrS1dUVDz74YDzyyCPxxBNPxBNPPBFPPfVULFy4MAqFwrA/v7W1NaZOnRqbbrppbLHFFrHlllvGVlttFTvttFNsuummw/58AAAAAAAAACA9lURDhWK3uAgAAACAssRFNbJ8+fJ44IEH4o477og777wzHnjggZg/f36USqXXzb3x/x6Ovr6+mD9/fvzlL3+JW2+99XXPJk2aFDvuuGO84x3viD322CP22GOPmDJlyoi9GwAAAAAAAAAYWbkKoqHOYldsFuulsA0AAAAAjUpclKL77rsvbrzxxrjhhhvizjvvjL6+vteelYuIMpnMiO6xunctWbIkbr/99rj99tvj29/+dkREbLbZZrHPPvvEvvvuG/vss0+svfbaI7oHAAAAAAAAADB0E8ZnY1xTU/QPDAw6Uyj2pLgRAAAAAI1IXFRFPT098fvf/z6uuuqquOaaa2Lx4sWvPXtj4JMUEI3EBaOV7xjsXW98x9NPPx3PPPNMnHvuuZHJZGLXXXeNGTNmxCGHHBLbbrvtsPcBAAAAAAAAAIauKZOJXFt7LO7pGnSmszj4MwAAAACIEBeNuGXLlsXVV18dl1xySVx77bWvXSeqNCYaiYhoMEnXkVa308p/plQqxd133x133313nHLKKbHlllvGzJkz48gjj4ytttqqajsDAAAAAAAAAIPLZyeUjYsKxe4UtwEAAACgETXVeoHR4o477oiPf/zjsd5668Xhhx8eV1xxRfT29kapVIpSqfRavLNqxLPy2ao/amWwXVbdedVnjz/+eHz5y1+ObbfdNt7+9rfHD37wg+js7KzZ/gAAAAAAAAAwFuWyHWWfd4qLAAAAAEggLhqGzs7O+Na3vhXbbbdd7LnnnjF37txYunTpaoOiiDcHPPWuXGi0amz0pz/9Kf7jP/4jNthgg/jIRz4SN998c403BwAAAAAAAICxIZ8QF7lcBAAAAEAScdEQzJs3L4477rjYaKON4uSTT47HHnusoqCokZW7arTyeV9fX/zyl7+M/fbbL7bffvv46U9/Gj09PbVcGwAAAAAAAABGNZeLAAAAABgucdEa+N3vfhd777137LzzznHeeedFsVgc1UFROat+x9VdM3rkkUfiX//1X2PDDTeMU045JV566aVarwwAAAAAAAAAo07i5aLenhgYGEhpGwAAAAAakbgoQalUiksuuSTe9ra3xUEHHRS33nrrm6KalXPVCIpWDXdG6sdIK3fNaMmSJfH1r389Nttss/jkJz8ZTz755Ii/HwAAAAAAAADGqqS4qFQqxdK+YkrbAAAAANCIxEWDKJVKcfHFF8e2224bRx11VMybN69sVDQclYRAq8ZLw/mR9L7hxEflrhn19vbGueeeG9ttt13MmjUrnnrqqWH9mgEAAAAAAAAAEbmEuCgiorPYncImAAAAADSq5lovUI8uu+yyOP300+Pxxx9/XTi0alA0VIPFO4N9ZjabjQ033PC1HxMnToxsNrvaH8uXL4+enp4oFotv+vHSSy/FggULYuHChbF48eKyu61uxzX9zoNdMlqxYkVccMEFcfHFF8dRRx0Vp59+ekybNm2NPhsAAAAAAAAA+Juky0UREQVxEQAAAABliItWcfPNN8fJJ58cDzzwwOvimJWGEhVVEupMmjQpdthhh9hxxx1jxx13jE022SQ23HDD2GijjSKfz6/xO5P09fXFwoULY+HChbFgwYJ49NFHY968eTFv3rz4y1/+8qb9VndFqVLlIqO5c+fGL37xizjhhBPilFNOqcp3BQAAAAAAAIDRbML4bIzLNEV/aWDQGZeLAAAAAChHXBQRDz/8cHz2s5+NG264ISL+Fr8MNaZJionWXnvteM973hPTp09/XUyUpvHjx8fmm28em2+++Zuevfrqq/F///d/r8VGt99+ezz88MOrjYRWquTXZ7DIqLe3N84+++z4+c9/Hqeeemr8x3/8RzQ3+48lAAAAAAAAAFSiKZOJXLY9Fvd0DTrjchEAAAAA5YzpiqOzszNOO+20+NnPfhb9/f1vulZUaVRULrbJ5XKx1157xXvf+9543/veFzvuuONqA6R6MXHixNhjjz1ijz32eO3nFi9eHLfcckvccsst8Yc//CEeeeSR156t6VWjwSKjQqEQJ510Uvz0pz+Ns88+Ow4++OCR/FoAAAAAAAAAMGrlsh1l46LO4uDPAAAAAGBMxkWlUil+/OMfx3/+539GZ2fniERFq37GbrvtFjNmzIj9998/dt5557qOiSqxzjrrxGGHHRaHHXZYREQsWrQo/vCHP8TVV18d1157bbzyyisRsWah0WCR0ZNPPhkzZsyI/fbbL37wgx/EFltsUa2vBQAAAAAAAACjQj47ISJeGvR5odiT3jIAAAAANJwxFxfdf//9cfzxx8cDDzwwpKhodfFMU1NTvPe9740jjjgiDjnkkJgyZUoVNq8fkydPjg9/+MPx4Q9/OAYGBuJ//ud/4te//nVcfvnl8eKLL0ZE5aHRYJHR9ddfHzvssEOcfPLJccopp0Rra2uVvxUAAAAAAAAANKZctr3sc5eLAAAAACinqdYLpOnf/u3fYvfdd38tLHpj0FLOG2dLpVK84x3viO985zuxYMGCuOmmm+ITn/jEqA+L3qipqSne8573xHe/+91YuHBh3HjjjfHxj388Jk6c+NqvU8SbY6M3euNsRERfX1989atfjR122CHuvffe6n8ZAAAAAAAAAGhAf7tcNLjOYndKmwAAAADQiMZUXPSjH/0oBgYGXguLIl4ftbzRyiAmk8m8NrfuuuvGiSeeGPPmzYu77747PvWpT425oGgwmUwm9t577zjnnHPixRdfjPPPPz/e9773RcTqLxStzspf51V/3Z988sm47rrrUvkOAAAAAAAAANBo8tmOss+X9PbEwMBAStsAAAAA0GjGVFy00qqx0GDP3xgf7bHHHnHxxRfHggUL4uyzz47tt98+zZUbTltbWxx11FFx0003xZ///Oc48cQTY6211lqjyAgAAAAAAAAASJZLiIsGSqVY2ldMaRsAAAAAGs2YjIsqjYpaWlpi1qxZ8b//+79x++23x0c+8pFoaWlJc9VRYYsttoizzz47nn/++fjZz34W22677ZsuFAEAAAAAAAAAQ5N0uSgiolDsTmETAAAAABrRmIyL3uiNUdFaa60Vn//852P+/Pnx85//PHbccccabzg6tLW1xbHHHhsPPfRQ/Pa3v4299tpLZAQAAAAAAAAAw5R0uSgiolNcBAAAAMAgxnRc9MaoaN11140zzjgjnn322TjjjDNiypQpNd5w9DrooIPilltuiTvuuCMOPPBAkREAAAAAAAAADNHE8dkYlyn/R0BcLgIAAABgMGMyLnpjVDR58uQ466yzYv78+fH5z38+JkyYUOMNx47dd989rrnmmrjvvvtixowZr4uMAAAAAAAAAIBkTZlMrJVtLzvjchEAAAAAgxmTcVHE36KitdZaK/7rv/4rnn766fj0pz8d2Wy21muNWdOnT48rrrgi7rrrrth7772jVCpFRIiMAAAAAAAAAKAC+WxH2efiIgAAAAAGM+biolKpFK2trXHSSSfF008/Haecckq0t5f/23tIz6677ho33nhj3HjjjTF9+vTXIiMAAAAAAAAAYHC5hLioIC4CAAAAYBBjKi7KZDIxc+bM+POf/xxnnnlm5HK5Wq/EIPbee++499574/zzz48NN9yw1usAAAAAAAAAQF1zuQgAAACAoWqu9QJpuuuuu+Id73hHrddgDRx11FFx+OGHx1NPPVXrVQAAAAAAAACgbuWzE8o+d7kIAAAAgMGMqctFwqLG1NbWFm9961trvQYAAAAAAAAA1K1ctr3s80JvdwwMDKS0DQAAAACNZEzFRQAAAAAAAAAAo1HS5aKBUile7SumtA0AAAAAjURcBAAAAAAAAADQ4HLZjsSZzmJ3CpsAAAAA0GjERQAAAAAAAAAADS4vLgIAAABgiMRFAAAAAAAAAAANbuL4bIzLlP9jIAVxEQAAAACrIS4CAAAAAAAAAGhwTZlMrJVtLzvjchEAAAAAqyMuAgAAAAAAAAAYBXJtHWWfi4sAAAAAWB1xEQAAAAAAAADAKJBvLx8XFXrFRQAAAAC8mbgIAAAAAAAAAGAUSLxc1CMuAgAAAODNxEUAAAAAAAAAAKNAPptwuagoLgIAAADgzcZ0XHTDDTfUegUAAAAAAAAAgBGRb0+Ii3q7Y6BUSmkbAAAAABrFmI6LDjjggNh0003j9NNPj/nz59d6HQAAAAAAAACAIcu1lY+LBkqleLW3J6VtAAAAAGgUYzouioh47rnn4qtf/WpsscUWsffee8fFF18cvb29tV4LAAAAAAAAAGCN5NsnJM50iosAAAAAeIMxHxdFRJRKpRgYGIhbb701Pvaxj8WUKVPi+OOPj7vvvrvWqwEAAAAAAAAAVCTf1p4409nTlcImAAAAADQScVFEZDKZyGQyUSqVolQqxdKlS+Occ86JPfbYI9761rfGWWedFX/9619rvSYAAAAAAAAAwKAmtrVHUyZTdqbQ253SNgAAAAA0CnFR/O1yUcQ/IqNVQ6NHH300TjrppJg2bVoceuihceWVV0Z/f3+NNwYAAAAAAAAAeL2mTCZybR1lZzp7xEUAAAAAvJ646O9WxkRvDI1WPlu+fHn89re/jQ9+8IOx0UYbxUknnRSPPPJILVcGAAAAAAAAAHidXLZ8XORyEQAAAABvJC5ajVVDo9VdM3rppZfirLPOih122CF23333OOecc2Lp0qW1XhsAAAAAAAAAGOPyCXFRZ1FcBAAAAMDriYsSrO6a0aqh0b333hvHH398TJ06NT72sY/FH/7whxpvDAAAAAAAAACMVUmXizp7xEUAAAAAvJ64qEKrXjOKiDdFRsViMS6++OLYd999Y/PNN4+vfvWr8eyzz9Z4awAAAAAAAABgLEm6XFToFRcBAAAA8HrioiFYNTRa3TWj+fPnx+mnnx6bb7557LfffnHppZdGX19frdcGAAAAAAAAAEa5pLhoSbEnBv7+F6sCAAAAQIS4aNhWd81oZWg0MDAQN998c3z0ox+NqVOnxgknnBD33XdfjTcGAAAAAAAAAEarXEJc1F8aiFf7iiltAwAAAEAjEBfF66OgoVr1mtGqn7ny5wqFQvzkJz+J3XbbLXbcccf4zne+Ey+//PJIfQUAAAAAAAAAgMTLRRERncXuFDYBAAAAoFGM6bjopJNOiqlTp642ChqOcteMSqVSPPTQQ/HZz342NtpoozjssMPi6quvjoGBgWF/HwAAAAAAAABgbKskLiqIiwAAAABYxZiOi84888x49tln45prronDDjssWltbXwuAqnnNaOWzZcuWxW9+85uYMWNGTJs2Lb7whS/En//85xH5bgAAAAAAAADA2DOxrT2aEv6sQ2exK6VtAAAAAGgEYzouiohoamqKAw88MC6//PJ4/vnn43vf+15Mnz590OtDQ7VqaLS6a0YvvPBCfOMb34jtttsu3vWud8V5550XXV3+ZR4AAAAAAAAAULmmTCZybeWvFxWKPSltAwAAAEAjGPNx0ary+Xz827/9W9x3330xb968OPHEE2Py5MmDXh8aqsHCpZU/f9ddd8Vxxx0XU6dOjVmzZsVtt9027O8GAAAAAAAAAIwNuWx72ecuFwEAAACwKnHRILbffvs4++yzY+HChfGb3/wmZsyYEePGjVvt9aGhWvWaUUS8KTLq7u6OCy64IN73vvfFlltuGWeccUYsXLhwpL4iAAAAAAAAADAK5bMTyj7vLHantAkAAAAAjUBclGDcuHFxyCGHxBVXXBELFy6Mb33rW7HDDjsMen1oqFYNjVZ3zeipp56K0047LTbddNP4p3/6p7j88stj+fLlI/U1AQAAAAAAAIBRIpftKPu8IC4CAAAAYBXiojUwefLk+MxnPhMPPvhg3HffffGv//qvkc/nVxsaDcdg4VKpVIr+/v644YYb4sgjj4ypU6fGpz71qfjTn/407O8GAAAAAAAAAIwO+YS4yOUiAAAAAFYlLhqi6dOnxw9+8IN4/vnn47LLLosDDzwwmpqaqnbNaNXPXPlzr7zySvzwhz+MXXbZJXbeeef4/ve/H6+88sqIfD8AAAAAAAAAoDElxUVLij0x8Pc/iwAAAAAA4qJham1tjcMPPzyuueaaeO655+JrX/tabL311oNeHxqqcteMSqVSPPjgg3HiiSfGhhtuGEcccURcd911r80DAAAAAAAAAGNHLiEu6i8NxKt9xZS2AQAAAKDeiYtG0JQpU+Lkk0+ORx55JO6444447rjjYtKkSasNg4ZqsGtGK5/19fXFr371qzj44INj4403ji9+8Yvx5JNPDv/LAQAAAAAAAAANIelyUUREodidwiYAAAAANAJxUZXsvvvu8dOf/jReeOGFuPDCC2Pfffd97dJQxMheMyqVSqu9ZrRw4cLXLinttddecf7550dPT89IfUUAAAAAAAAAoA4lXS6KiOgUFwEAAADwd+KiKmtra4uPfvSjcf3118czzzwTX/7yl2PzzTdf7fWhkQiN3vh5K3/+j3/8Y8yePTumTJkSxx57bPzxj38cke8HAAAAAAAAANSXSeOz0ZTwZxBcLgIAAABgJXFRiqZNmxannXZaPPHEE3HrrbfG0UcfHe3t7asNg4Zq1WtGq37eyp/r6uqKOXPmxF577RVbb711fP3rX48XXnhhRL4fAAAAAAAAAFB7TU1NsVZbe9kZl4sAAAAAWElcVCN77rlnzJkzJ1588cU477zzYq+99oqIqMo1o1KptNprRk888USccsopsfHGG8dBBx0Uv/71r2PFihUj8v0AAAAAAAAAgNrJZzvKPu8sdqW0CQAAAAD1TlxUYx0dHXHMMcfELbfcEk8++WR88YtfjGnTpo3oNaOIWO3nrQyN+vv743e/+10cfvjhscEGG8SnP/3pmDdv3rC/GwAAAAAAAABQG/nshLLPC8WelDYBAAAAoN6Ji+rIZpttFl/5ylfimWeeiRtuuCFmzpwZbW1tq70+NFSrXjOKiDddM3r55Zfje9/7Xuy8886xyy67xI9+9KMoFAoj9A0BAAAAAAAAgDTksu1ln7tcBAAAAMBK4qI6lMlkYp999omLLrooXnzxxfjJT34Su++++6DXh4aq3DWjUqkUDzzwQPz7v/97bLDBBjFz5sy4/vrrR+T7AQAAAAAAAADVlXy5qDulTQAAAACod+KiOjdx4sT4xCc+EXfccUc89thjcdJJJ8XUqVNXGwYN1WDXjFY+6+3tjcsuuywOPPDA2GSTTeJLX/pSPP3008P/cgAAAAAAAABAVeSyHWWfF4o9MfD3PycAAAAAwNgmLmogW221VZx55pnx7LPPxrXXXhsf+tCHorW19bUwaCSvGb3x81b+3HPPPRf/9V//FVtuuWW8733vi4suuiiKxeIIfksAAAAAAAAAYLjyCXFRf2kguvr8fj8AAAAA4qKG1NTUFP/0T/8Uv/zlL+P555+P73//+/H2t799tdeHRiI0euPnrfz52267LY4++uiYOnVqfPKTn4y77rprRL4fAAAAAAAAADA8SZeLIiI6i90pbAIAAABAvRMXNbh8Ph8nnHBC3HvvvTFv3rw48cQTY/LkyasNg4Zq1WtGq37eyp9bunRpnHvuufGud70rtttuu/jWt74VL7300oh8PwAAAAAAAABgzSVdLoqIKIiLAAAAAAhx0aiy/fbbx9lnnx0LFy6M3/zmNzFjxoxobm5+LQIayWtGb/y8lT/32GOPxcknnxzTpk2LQw45JK688sro7+8fwW8JAAAAAAAAACSZND6b+OcDXC4CAAAAIEJcNCqNGzcuDjnkkLjiiiti4cKFcdZZZ8WOO+642utDIxEavfHzSqVSrFixIq655pr44Ac/GBtuuOGIfC8AAAAAAAAAoDJNTU2Ra2svO+NyEQAAAAAR4qJRb911141Pf/rT8b//+79x//33xwknnBD5fH61YdBQrXrN6I2fVyqVYtGiRcP/IgAAAAAAAADAGslnO8o+d7kIAAAAgAhx0Ziy8847x/e///144YUX4pe//GW8//3vj6ampqpdMwIAAAAAAAAAaicnLgIAAACgAuKiMailpSU+9KEPxdVXXx3PPfdcfO1rX4utt956tdeHhhoaCYwAAAAAAAAAoLaSLhcVxEUAAAAAhLhozJsyZUqcfPLJ8cgjj8Sdd94Zxx13XEyaNGm1oREAAAAAAAAA0DiSLxd1pbQJAAAAAPVMXMRrdtttt/jpT38aL7zwQlx00UWx7777RiaTeS00EhgBAAAAAAAAQOPIZyeUfV7o7YmBv//FowAAAACMXeIi3qStrS1mzpwZ119/fcyfPz++8pWvxFve8haBEQAAAAAAAAA0kFy2vezz/oGB6OorprQNAAAAAPVKXERZG220UZxyyinx7W9/W2AEAAAAAAAAAA0k6XJRRESh2J3CJgAAAADUs+ZaL0D9evTRR2Pu3Llx0UUXxYsvvvjaz5ecRAcAAAAAAACAupfLdiTOdBa7Y+P85BS2AQAAAKBeiYt4nSVLlsQvfvGLmDNnTtx3330RISYCAAAAAAAAgEa01vhsZDKZsr/v3+lyEQAAAMCYJy4iSqVSXH/99TF37ty48soro6+v73X/YjGTybxuFgAAAAAAAACof01NTbFWW3sUygRE5Z4BAAAAMDaIi8awJ554IubMmRMXXnhhPP/88xERoiIAAAAAAAAAGEXy2Y6yAZHLRQAAAACIi8aYV199NS699NKYO3du3HXXXREhKAIAAAAAAACA0Sqf7Yhnyjx3uQgAAAAAcdEYcdNNN8WcOXPiN7/5TRSLxYj4Rzy0alC06s8P1Rs/DwAAAAAAAACojVy2o+xzl4sAAAAAEBeNYk8//XTMnTs3LrjggnjuuecionpXigYLlN72trfF7Nmzh/XZAAAAAAAAAMDQ5BPiIpeLAAAAABAXjTLd3d3xy1/+MubMmRN//OMfI6J6QdFgn7f22mvHzJkzY/bs2fG2t71t2O8AAAAAAAAAAIYm8XJRb3eUSqU3/aWiAAAAAIwd4qJR4pZbbom5c+fG//t//y96enoi4h+xz2BXhYZqdZ/X1NQU+++/f8yaNSsOPfTQaG1tHdY7AAAAAAAAAIDhS7pc1D8wEK/29caktmxKGwEAAABQb8RFDewvf/lLzJ07Ny644IKYP39+RKR/pegtb3lLHHPMMXHMMcfEhhtuOOx3AAAAAAAAAAAjJ+lyUUREodglLgIAAAAYw8RFDaZYLMbll18ec+fOjdtuuy1KpVLqQVF7e3scdthhMXv27HjPe94z7HcAAAAAAAAAANWRz05InOks9sTG+RSWAQAAAKAuiYsaxO233x5z5syJX/3qV9HV1RUR/4h9Vg2AVv35oRrs83bfffeYPXt2HHHEETFx4sRhvQMAAAAAAAAAqL61xmcjk8mU/bMEncWuFDcCAAAAoN6Ii+rYggUL4vzzz4/zzz8/nnrqqYiI1K8Urb/++nHUUUfF7NmzY5ttthn2OwAAAAAAAACA9DQ1NcVabe1RKHYPOlPuGQAAAACjn7iozvT29savf/3rmDNnTvzhD3+IUqk0aFAUUZ0rRc3NzXHQQQfFrFmz4qCDDopx48YN6x0AAAAAAAAAQO3ksx1lA6JOcREAAADAmCYuqhN33nlnzJ07N375y1/G0qVLI+If4VAaQVFExHbbbRezZs2Ko446KtZbb71hvQMAAAAAAAAAqA+5to6yz10uAgAAABjbxEU19Pzzz8cFF1wQ559/fjz++OMREYNeKRpuUDTY502aNCmOOOKImD17duy2227DfgcAAAAAAAAAUF/y7eXjIpeLAAAAAMY2cVHKli1bFldccUXMnTs3brzxxhgYGBg0KIqozpWiTCYT733ve2P27Nlx2GGHRTabHdY7AAAAAAAAAID65XIRAAAAAOWIi1Jy7733xpw5c+Kyyy6LQqEQEf8Ih0Y6KHrjZ678vGnTpsXRRx8ds2bNis0222zY7wAAAAAAAAAA6l/i5aLe7tf+slIAAAAAxh5xURW99NJLceGFF8bcuXPj0UcfjYgY9EpRtYKi8ePHx6GHHhqzZs2K/fbbz78IBAAAAAAAAIAxJulyUf/AQLza1xuT2rIpbQQAAABAPREXjbDly5fHVVddFXPmzInrr78++vv7Bw2KIoYfFQ32eTvvvHPMnj07PvrRj0YulxvWOwAAAAAAAACAxpV0uSgiotDbLS4CAAAAGKPERSPkgQceiLlz58YvfvGLeOWVVyIi/StF66yzTsycOTNmz54dO+2007DfAQAAAAAAAAA0vnzC5aKIiM6e7tg4t24K2wAAAABQb8RFw7Bo0aK46KKLYu7cufHQQw9FRHpB0crPbGpqigMOOCBmz54dM2bMiJaWlmG/BwAAAAAAAAAYPSa1tUcmkyn7Zxc6i10pbgQAAABAPREXraH+/v747W9/G3Pnzo3rrrsuVqxYMWhQFFG9K0VvectbYtasWXH00UfHhhtuOOx3AAAAAAAAAACj07implirrT0Kxe5BZwq9gz8DAAAAYHQTF1Vo3rx5MWfOnLjkkkvi5Zdfjoj0rhSt/LyOjo740Ic+FLNmzYq99tpr2O8AAAAAAAAAAMaGXFtH2bios0dcBAAAADBWiYvKeOWVV+Liiy+OOXPmxIMPPhgR6QVFq37mO9/5zpg9e3YcccQRMWHChGG/BwAAAAAAAAAYW/LZjpjfOfhzl4sAAAAAxi5x0RsMDAzEtddeG3PmzIlrrrkmli9fPmhQFFG9K0VTpkyJo446KmbPnh1bb731sN8BAAAAAAAAAIxduWxH2ecuFwEAAACMXeKiv3v44Ydj7ty5cdFFF8Vf//rXiEj/SlFLS0scdNBBMXv27DjwwANj3Lhxw34PAAAAAAAAAEA+IS5yuQgAAABg7BrTcVGhUIhLLrkk5s6dG/fff39EpB8URUS89a1vjVmzZsVRRx0VkydPHvZ7AAAAAAAAAABWlRgXFXuiVCq96c82AAAAADD6jem4aMqUKbF8+fJBg6KIkY+KVn7eWmutFUceeWTMmjUrdt1112G/AwAAAAAAAABgMLmEuGjFQH90LeuNieOzKW0EAAAAQL0Y03HRsmXLXgt/0rhSlMlk4n3ve1/Mnj07DjvssGhraxv2ewAAAAAAAAAAkiRdLoqI6Cx2i4sAAAAAxqAxHRetlMlkRiQoWvlZK638zI033jiOPvromDVrVmy66aYj8h4AAAAAAAAAgEpVFBf1dMfGuXVT2AYAAACAeiIuiuFfKlpdUNTW1haHHnpozJ49O/bZZ583XTICAAAAAAAAAEjLpLb2xL98tdDbneJGAAAAANQLcdEQvTEWWvkv36ZPnx6zZ8+OmTNnRi6Xq8FmAAAAAAAAAACvN66pKf5/9u48PO663Bv/PW3abF0SCi1tWRUoFCgIBcomiAKCgMBRNllqWQuyo6jo4QBHfrIpy0GhaNkRBEURRBYVOMhOkdqyt4VSKJQlaZs0S5vO74/zJKYlmZk2M9/J8npdV64H8rlnPu9v6PG5rjTv3ENLy6O2cUmnMzUNdQkmAgAAAKC7UC5aRR1tKVpzzTXjW9/6Vnz729+OcePGFSsaAAAAAAAAAECnqsoHZSwX1TZ0fgYAAABA76VclIOOthT1798/9tprr5g0aVIccMABMWDAgCKlAwAAAAAAAADIrrq8It6u6fzc5iIAAACAvkm5KIOOthRtvPHGMXHixDjmmGNi1KhRxYoGAAAAAAAAALBKqsoHZTy3uQgAAACgb1IuWklHhaLKysr45je/GZMmTYpddtmlWNEAAAAAAAAAAFZbdXlFxnObiwAAAAD6JuWiWLFQFPHvUtFOO+0UkyZNikMPPTQqKyuLEQ0AAAAAAAAAIC+qc9hclE6nP/NzFAAAAAD0bspF/09roWjkyJFx9NFHx7e//e3YZJNNipwKAAAAAAAAACA/qsoz/2LVZctboq65MQaXlieUCAAAAIDuoM+Xi9LpdAwYMCD222+/mDRpUuyzzz7Rr1+/YscCAAAAAAAAAMir6izlooiI2oZ65SIAAACAPqZPl4u22GKL+Pa3vx1HHXVUrLnmmsWOAwAAAAAAAABQMLmUi2oa6mPdKj9DAQAAANCX9Oly0fTp04sdAQAAAAAAAAAgEUPKKiIVEekMMzUN9UnFAQAAAKCb6FfsAAAAAAAAAAAAFF7/fv1iaFlFxpla5SIAAACAPke5CAAAAAAAAACgj6gqr8x4bnMRAAAAQN+jXAQAAAAAAAAA0EdUZykX2VwEAAAA0PcoFwEAAAAAAAAA9BE2FwEAAACwMuUiAAAAAAAAAIA+wuYiAAAAAFamXAQAAAAAAAAA0EfksrkonU4nlAYAAACA7qCk2AFYfS0tLTF//vx4//33Y/HixdHQ0BANDQ3R2NjY4Tf6jj766CKkBAAAAAAAAAC6i+ryQRnPly1vifrmphhUWpZQIgAAAACKTbmoh3jttdfi2WefjX/+85/xz3/+M15//fVYsGDBKv22IOUiAAAAAAAAAOjbqsorss7UNNQpFwEAAAD0IcpF3VRLS0vcf//9cf/998fDDz8c8+bNW+F8VVeQp1KpfMYDAAAAAAAAAHqgbJuLIiJqGupj3ao1E0gDAAAAQHegXNTNvPHGG3H99dfHbbfdFh9//HFEdFwkWpWy0KoWkTK59NJL4/777886N3z48Ljnnnvydi8AAAAAAAAA0HVDyyoiFRGZfpKgtqE+qTgAAAAAdAPKRd3Ea6+9FhdeeGHcfffdsXz58hUKQZmKRNmKQ/neWLT33nvHD37wg4wz6XQ6UqlUPP7447Hbbrvl9X4AAAAAAAAAYPX179cvhpRVxMLGJZ3O1CgXAQAAAPQp/YodoK9bvHhxTJ48Obbccsu46667oqWlpa2c0/oR8X+FnY4+krbVVlvFfvvt13Z3pky/+tWvEs8HAAAAAAAAAGRWXV6Z8dzmIgAAAIC+RbmoiP70pz/F2LFjY8qUKZ8pFUVEUUtEmXz/+99v++f2Jaj2H+l0On73u9/F4sWLi5gUAAAAAAAAAFhZVZZykc1FAAAAAH2LclERpNPp+P73vx8HHnhgvPfee52WirqrHXfcMbbddttOtxe1ampqinvvvbdYMQEAAAAAAACADthcBAAAAEB7ykUJW7x4ceyzzz5x2WWX9bhSUXsnn3xyTnN33XVXgZMAAAAAAAAAAKvC5iIAAAAA2lMuStCiRYti7733jkceeaStWBSx+qWi1mJS6/sk6YgjjoihQ4e25VhZKpWKdDodjz76aCxatCjpeAAAAAAAAABAJ3LZXNRTfjkqAAAAAF2nXJSQxYsXx9577x3PPPNMRPy7fJPrN+PaF4mKVShqr7S0NA4++OAO87f/3LJly+Khhx5KMhoAAAAAAAAAkEG2zUVLl7dEfXNTQmkAAAAAKDblooQceeSR8eyzz66wrSiblYtErWWk1o+SkpKoqqqKkSNHts0n6cgjj8xp7s9//nOBkwAAAAAAAAAAucq2uSgioqahLoEkAAAAAHQHJcUO0Bf813/9V/zpT3/KuVjUviTUOrvuuuvG3nvvHePHj48vfOELsf7668fw4cPb5vr1S74ntvvuu8eIESNiwYIFbZuY2mv9nM1FAAAAAAAAANB9VJcPyjpT21Af61atmUAaAAAAAIpNuajAnnrqqbjoootWuViUTqdj6NChcfTRR8exxx4b48aNK3jWVZVKpeKrX/1q3HzzzZ/ZmpROp9s+9+GHH8abb74ZG2+8cTFiAgAAAAAAAADtDC2riFREZPoJhpqG+qTiAAAAAFBkya+76UOWLl0aJ5xwQluhKFOxKJVKtW36KS0tjfPOOy/mzJkTV111VbcsFrXad999c5p78sknC5wEAAAAAAAAAMhF/379YkhZRcaZWuUiAAAAgD5DuaiAfvazn8Urr7zSVhrqTPttRTvuuGO8/PLLcdFFF0VVVVVCSVffnnvu2ZZ/5e1F7SkXAQAAAAAAAED3UVVemfHc5iIAAACAvkO5qECWLFkSl19+ecbCTUS0FY/S6XScdNJJ8fjjj8fGG2+cUMquq6qqirFjx2acSafTMW3atIQSAQAAAAAAAADZVCsXAQAAAPD/KBcVyPXXXx+ffPJJRESnW4tai0WpVCrOO++8+MUvfhElJSVJxsyLHXfcMeMzRkS8+uqrsWzZsiRjAQAAAAAAAACdyLa5qFa5CAAAAKDPUC4qkGuuuSbj1qL2xaLJkyfHRRddlGC6/Np+++07/Hz7wtHSpUvj1VdfTSoSAAAAAAAAAJCBzUUAAAAAtFIuKoBnnnkm3n777YjoeGtR+2LRzjvvHFdddVXCCfNr7NixOc29/vrrBU4CAAAAAAAAAOQil81FHf3MAwAAAAC9j3JRAdxxxx2dnrXfZlRaWhpTp06N/v37JxGrYMaMGZPT3Jw5cwqcBAAAAAAAAADIRbbNRUuXt0R9c1NCaQAAAAAoJuWiAnjwwQdXKBGtrHVr0WmnnRYbbbRRgskKY9iwYbHGGmtERGR8buUiAAAAAAAAAOgespWLIv5vexEAAAAAvZ9yUZ59+OGHMWvWrIiIz6wHb1+8KS8vj3POOSfRbIU0evTorOvQ33vvvYTSAAAAAAAAAACZVOVQLqppqEsgCQAAAADFplyUZ08++WTG89atRfvvv3+sueaaCaUqvBEjRmSd+eijjxJIAgAAAAAAAABkM7SsIlJZZmoaliSSBQAAAIDiUi7Ks+nTp+c0d+ihhxY4SbLWXnvtTs9SqVSk0+n4+OOPE0wEAAAAAAAAAHSmpF//GFxWnnGm1uYiAAAAgD5BuSjPZs+e3eHnU6nUCv+8++67J5QoGYMGDco6U1tbW/ggAAAAAAAAAEBOqssz/12/zUUAAAAAfYNyUZ51Vi5qb+ONN46qqqrCh0lQWVlZ1pmmpqYEkgAAAAAAAAAAuagqq8h4XmNzEQAAAECfoFyUZ/Pnz19hS1F76XQ6UqlUbLTRRgmnKjzlIgAAAAAAAADoWaorMm8uqm2sTygJAAAAAMWkXJRn9fXZv7G2zjrrJJCk+1m2bFmxIwAAAAAAAAAA/09VWWXG85olykUAAAAAfYFyUZ7lUi4aNCjzb/7piRoaGrLOlJaWJpAEAAAAAAAAAMhFdUXmclFtQ32k0+mE0gAAAABQLMpFedbY2Jh1ZuDAgQkkSdaSJUuyzlRUVCSQBAAAAAAAAADIRXV55nLR0uUtUb+0KaE0AAAAABSLclGelZeXZ53JZctPT7NgwYKsM7l8bQAAAAAAAACAZFSVZS4XRUTULqlPIAkAAAAAxaRclGe5bOepr+9933ibN29ep2etK9IHDx6cVBwAAAAAAAAAIIvqiuzloprG3vczDgAAAACsSLkozyors3/j7f33308gSbLmzJkTqVSq0/NUKhWjR49OMBEAAAAAAAAAkMnQsoro/G/6/0+NzUUAAAAAvZ5yUZ5VV1e3berpSDqdjrlz5yaYqPDmzZsXn376aURExmdfb731kooEAAAAAAAAAGRR0q9/DC4rzzhTa3MRAAAAQK+nXJRnG264YadnrZt93njjjVi6dGlSkQpu2rRpOc0pFwEAAAAAAABA91JdVpnx3OYiAAAAgN5PuSjPPve5z3X4+fYbfZqbm+Pll19OKlLB/fWvf81pbuONNy5wEgAAAAAAAABgVVSVZy4X2VwEAAAA0PspF+VZZ+WilT3yyCMFTpKcP//5z21bmTIZP358AmkAAAAAAAAAgFxVZykX1TTUJZQEAAAAgGJRLsqzbbfdNqe5++67r8BJkjFt2rSYNWtWRKy4nSkiVigcVVVV2VwEAAAAAAAAAN1MVfmgjOe1DUsSSgIAAABAsSgX5dkXvvCFKC8vj4j4zDafdDodqVQq0ul0PPfcc/Hqq68WI2JeTZkyJeN56zPbWgQAAAAAAAAA3U91RfbNRSv/slEAAAAAehflojwrKSmJ7bffPqdvrF177bUJJCqcjz76KG6//fbPlKg6stdeeyWQCAAAAAAAAABYFVVlmctFS1taon5pU0JpAAAAACgG5aICyFakad1e9Otf/zreeeedhFLl38UXXxz19fUREVnLVAcddFASkQAAAAAAAACAVVBdnrlcFBFR21CfQBIAAAAAikW5qAAOPfTQTs/al3Cam5vj7LPPTiJS3s2cOTN++ctfdrq1qLVAFRExduzY+NznPpdkPAAAAAAAAAAgB7mUi2qUiwAAAAB6NeWiAvjc5z4X48ePj3Q63WH5pvXz6XQ67r333rj99tuLkHL1tbS0xDHHHBPNzc0RkXlrUSqVim9961tJRQMAAAAAAAAAVsHQ8oqsMzYXAQAAAPRuykUFcswxx2SdaS0YTZ48OV5++eUEUuXHd77znZg2bdoK24naa1+oKi0tjeOPPz7JeAAAAAAAAABAjkr69Y8hpeUZZ2wuAgAAAOjdlIsK5Nhjj4211lorIqLT7UWtZ3V1dfG1r30tZs2alWjG1XHppZfG9ddf3+Eztde6nemwww6LYcOGJZQOAAAAAAAAAFhV1eWVGc9tLgIAAADo3ZSLCqSsrCxOO+20Djf7tGpfMHr//fdjl112ienTpycVcZVdeOGF8YMf/KCtWJRta1G/fv3i7LPPTiwfAAAAAAAAALDqqrKUi2wuAgAAAOjdlIsK6NRTT43hw4dHRMfbiyJWLBh9+OGHsdNOO8Wtt96aWMZc1NXVxZFHHhkXXHBBW95spalUKhXHHHNMbL755knFBAAAAAAAAABWg81FAAAAAH2bclEBDRkyJC6//PKMRZyIFQtGS5YsiYkTJ8bXv/71mDt3bhIxM3rggQdi6623jt/85jdtpaHOnqd9gaqysjJ+8pOfJBUTAAAAAAAAAFhNNhcBAAAA9G3KRQV25JFHxu67795WzOlM+4JROp2O+++/P8aMGROnnHJKzJkzJ6m4bR555JH4yle+EgcccEDMnj07a7GoVevchRdeGCNGjEgoLQAAAAAAAACwurJtLqppqMv68wIAAAAA9FzKRQm48cYbY9iwYRERq1Qwampqiuuuuy423njj+MpXvhJTp06N+fPnFyzntGnT4vzzz48xY8bEV7/61fj73//eVhbKVixqPU+lUvGVr3wlzjjjjILlBAAAAAAAAADyp6p8UMbzpS0tsWRpc0JpAAAAAEhaSbED9AXrr79+3H777bHvvvtm3QDUvmDU+u/pdDr+/ve/x9///veIiNhss81i/Pjxsc0228TnP//5WG+99XLKMWfOnGhoaIglS5bEhx9+GPPmzYs5c+bEtGnTYtq0aVFTU7NChpVzdKZ9YWrNNdeMm2++Oac8AAAAAAAAAEDxZdtcFPF/24sqB5YmkAYAAACApCkXJWSvvfaKn/zkJ/GDH/wg4/aiVu03BrX+e6tXXnklXn311bj11ls/85qO3qf1/91oo40y3teqfb5sa83b5ysvL4/f/e53sfbaa2d8DQAAAAAAAADQfeRSLqptqI91hg5LIA0AAAAASVMuStC5554bixcvjosvvjinjUDttxitXPjJVvrJ9H4dWbnwlMv7t3+G/v37x+233x677LLLKucCAAAAAAAAAIpnaFlF1pmahvoEkgAAAABQDP2KHaCv+e///u/47ne/u0JxKJvWMlHrR2vZqP1HLjp63crbkXItLrV/Tb9+/eK6666LAw88MKccAAAAAAAAAED3UdK/fwwpLc84U6tcBAAAANBrKRcVwSWXXBJXXHFF9Ov3f1/+XMtBrVYuG+W6xaij163qe7TPm06no7S0NH7729/Gscceu0rPAAAAAAAAAAB0H1XllRnPbS4CAAAA6L2Ui4rkzDPPjPvvvz+GDh26wjai7q59sWjYsGHx0EMPxcEHH1zkVAAAAAAAAABAV1RnKRfZXAQAAADQeykXFdHee+8dL774Yuyxxx5tm4O6a8mofa50Oh177LFHTJ8+Pb74xS8WORkAAAAAAAAA0FU2FwEAAAD0XcpFRbbhhhvGo48+Gtddd10MHjy425WMVi4VlZeXx2WXXRaPPPJIjBw5ssjpAAAAAAAAAIB8yLa5SLkIAAAAoPdSLuomTjjhhJg9e3acffbZUVZW9pmSUdJFo5VLRRERxxxzTLz55ptx9tlnd4viEwAAAAAAAACQH9nKRbUN9W0/PwAAAABA76Jc1I2sscYacdlll7WVjIYNGxbpdLrDolG+yz0dvXc6nY4BAwbEkUceGdOmTYsbb7zRtiIAAAAAAAAA6IWqspSLmluWxZKlzQmlAQAAACBJykXd0IgRI+Kyyy6L9957L+68887Ye++9Y8CAASsUjSI+WwjqykdEtL1/Op2OMWPGxIUXXhhz586NW265JbbaaqtifTkAAAAAAAAAgAKrLh+Udaa2oT6BJAAAAAAkraTYAejcgAED4pBDDolDDjkk6uvr469//Ws80JH8tgABAABJREFU+OCD8b//+7/x+uuvR0tLy2dek8tGo47WlA8ZMiTGjx8fe+65Zxx44IExZsyYvDwDAAAAAAAAAND9VZVXZJ2paaiL0UPXSCANAAAAAElSLuohKisr44ADDogDDjggIiIaGxvj5ZdfjpdffjnmzJkT8+bNi3nz5sX8+fOjrq4uGhoaorGxMZqammLAgAFRUVER5eXlMWjQoBg9enSst956sd5668VGG20U48ePj0033TSnYhIAAAAAAAAA0PtUlVVmnaltWJJAEgAAAACSplzUQ5WVlcUOO+wQO+ywQ7GjAAAAAAAAAAA9XEn//jG4tDwWNzV0OlPTUJdgIgAAAACS0q/YAQAAAAAAAAAAKL7q8szbi2ob6hNKAgAAAECSlIsAAAAAAAAAAIiqLOWiGuUiAAAAgF5JuQgAAAAAAAAAgKybi5SLAAAAAHon5SIAAAAAAAAAALKWi2qViwAAAAB6JeUiAAAAAAAAAACiKofNRel0OqE0AAAAACRFuQgAAAAAAAAAgKybi5pblkXD0uaE0gAAAACQFOUiAAAAAAAAAACybi6K+L/tRQAAAAD0LspFAAAAAAAAAABk3VwUEVGrXAQAAADQ6ygXAQAAAAAAAAAQVWU2FwEAAAD0RSXFDgBQbO+++2489NBDMX369HjllVdizpw5sXjx4li0aFGk0+kYPHhwDB48ONZbb70YO3ZsbLnllrHnnnvGxhtvXOzoAAAAAAAAAHlT0r9/DC4tj8VNDZ3OKBcBAAAA9D7KRUCfVFtbG7/61a/i1ltvjenTp2ec/eSTT+KTTz6Jt99+O5544om2z2+88cZxxBFHxOTJk2PEiBGFjtynzJ49O2655Zac5zfYYIOYOHFi4QIBAAAAAABAH1FVXpGxXFTbUJdgGgAAAACSoFwE9Cl1dXVx0UUXxbXXXhv19V37jVpvvvlmXHDBBfH//X//XxxzzDFx8cUXx5prrpmnpH1XOp2OSZMmxeOPP57za3bbbTflIgAAAAAAAMiD6vJB8W7tJ52e21wEAAAA0Pv0K3YAgKTcd999sdlmm8Wll17a5WJRe83NzXHDDTfEmDFj4sYbb8zb+/ZV119//SoViwAAAAAAAID8qS6vzHheq1wEAAAA0OsoFwG93vLly+NHP/pRHHjggTFv3ryC3fPpp5/GpEmT4oQTTojm5uaC3dObzZs3L84999xixwAAAAAAAIA+qypLucjmIgAAAIDeR7kI6NVaWlrisMMOi5/85CeRTqcTufOGG26IvfbaK5YsWZLIfb3J5MmTY9GiRcWOAQAAAAAAAH1WLpuLkvq7VwAAAACSoVwE9FrLly+PiRMnxt1335343Y8//ngcdNBB0dTUlPjdPdUdd9wR999/f7FjAAAAAAAAQJ+WbXNRU8uyaFjanFAaAAAAAJJQUuwASZowYUJceeWVMWHChGJHIUdLliyJn/70pzFkyJA455xzih2HHua8886L2267bZVes/HGG8fOO+8cW2yxRayxxhqRSqWipqYmXn311Xj66adjxowZOb/Xww8/HMcff3zccsstqxq9z/n444/j9NNPL3YMAAAAAAAA6POybS6KiKhpqI+KgaUJpAEAAAAgCX2qXPTcc8/FzjvvHIccckj89Kc/jfXXX7/Ykchg6tSp8eMf/zg++OCDOP/884sdhx7mwQcfjEsuuSTn+a9//evxwx/+MLbffvuMczNmzIjLLrssbrvttli+fHnW97311ltjt912i2OPPTbnLH3RaaedFh9//HGxYwAAAAAAAECfl21zUUREbUN9jB66RgJpAAAAAEhCv2IHKIbf/va3semmm8YZZ5wRH330UbHjsJI//OEPseWWW8bxxx8f8+fPL3YceqBPPvkkjj766Ein01ln11hjjXjggQfiD3/4Q9ZiUUTEFltsETfffHP84x//iHXXXTenPKeeemq89dZbOc32Rffff3/85je/6fS8X78++f9VAQAAAAAAQFFUlVVknalpqE8gCQAAAABJ6ZM/sZ1Op6OpqSmuueaa+PznPx//+Z//GQsXLix2rD7v0UcfjQkTJsR//Md/xMyZM3MqhkBHzjvvvJy24Kyzzjrx3HPPxb777rvKd0yYMCFeeOGFGDt2bNbZhoaGOPPMM1f5jr5g8eLFMXny5E7PR44cGQcccECCiQAAAAAAAKBvG9C/JAaVlmWcUS4CAAAA6F36ZLkolUpFKpWKdDoddXV18ZOf/CQ22GCD+M///M+oqakpdrw+5y9/+UvsvPPOsffee8fzzz/fVipKpVJFTkZP9NJLL8UNN9yQdW7o0KHx6KOPxuc///nVvmv48OHx17/+NdZZZ52ss/fff3/8+c9/Xu27eqvvfe97MW/evE7Pr7766hg6dGiCiQAAAAAAAIDq8sqM57XKRQAAAAC9Sp8sF7Uvr7SWjBYuXNhWMvrBD34Q8+fPL3LK3i2dTsfvfve72H777eNrX/taPPPMM5FOpyOdTrf9d4HVccEFF8Ty5cuzzt1www0xZsyYLt+39tprxx133BH9+/fPOnv++ed3+b7e5Iknnojrr7++0/P9998/vvGNbySYCAAAAAAAAIiIqC4flPHc5iIAAACA3qVPlosioq3IErFiyWjx4sVx6aWXxoYbbhjHHntszJw5s8hJe5eGhoa49tprY5NNNolDDjkkXnzxxc+Uitr/t4FV8frrr8d9992Xde7rX/96fPOb38zbvbvuumuceOKJWedeeOGF+Nvf/pa3e3uyxsbGOO644zr9v/VBgwbFtddem3AqAAAAAAAAICKiqrwi43ltQ11CSQAAAABIQp8tF7XqrGTU3NwcN910U4wbNy723nvvuO+++xReumDWrFlx9tlnxzrrrBOnnXZazJo1S6mIvPvZz36W9c9QSUlJXH755Xm/+8ILL4whQ4ZknbviiivyfndPdP7558ebb77Z6fl///d/x7rrrptgIgAAAAAAAKCVzUUAAAAAfUufLBelUqnPfK6zklE6nY5HH300DjrooNhwww3jpz/9abz//vtJR+6Rli1bFvfee2/ss88+MWbMmLjyyiujpqZmhUKRUhH50tTUFHfddVfWuf/4j/+IjTbaKO/3Dxs2LI477riscw899FB8+OGHeb+/J5k2bVrGktV2220Xp556aoKJAAAAAAAAgPaqyiozntc21Pt7fgAAAIBepE+Vi4YNG7ZCgagjmUpGc+fOjfPOOy/WX3/92HfffeN3v/tdNDc3J5a/p3j55ZfjzDPPjFGjRsU3vvGNePjhh2P58uUrlIoiImOpqP1/n3Q6HWuuuWYi2em57r///li4cGHWuTPOOKNgGU477bTo1y/z/6y2tLTEnXfeWbAM3d2yZcti0qRJ0dLS0uF5SUlJ3HDDDVm/jgAAAAAAAEDhVFdkLhc1tSyLhmV+XgIAAACgt+hTP739+uuvx8SJE9v+vX3RZWWtxZeOtuy0tLTEQw89FIccckgMHz48Jk6cGH/5y186/WH5vuD111+PCy64IMaOHRvbbLNNXH311fHxxx9/5msYkblUFBErzK233nrxhz/8IU4++eREnoOe6ze/+U3WmY022igmTJhQsAzrr79+7LrrrlnncsnaW11yySXx8ssvd3p+5plnxlZbbZVgIgAAAAAAAGBl2TYXRUTULKlPIAkAAAAASehT5aI11lgjpk6dGo899lhsuummn9lQ1JlM24wWLVoUt956a3zta1+L4cOHx1FHHRX33HNP1NXVJfJMxfTss8/GD3/4w9hiiy1i7NixceGFF8Zrr73WYSkrIrdSUevXtn///nHOOefEK6+8EgcccEBSj0QP1dLSEo8++mjWuUMPPbTgWQ477LCsM88//3x88sknBc/S3bz++utx0UUXdXq+4YYbxn/9138lFwgAAAAAAADoULbNRRERtY3KRQAAAAC9RUmxAxTDrrvuGtOnT49rrrkmLrzwwqitrV2h2NKZzspIrZ+vqamJO+64I+64444YMGBA7LDDDvGlL30pdt9999hpp51i4MCBhX2wAnv11Vfj73//e/z973+Pxx9/vK0c0f5rtnJJK9PXc+XXtM7utddeceWVV8amm26ar+j0cs8991wsXLgw69w+++xT8Cy53LF8+fL461//GoccckjB83QX6XQ6jjvuuGhqaup05pe//GVUVFQkmAoAAAAAAADoSFVZ9r+3s7kIAAAAoPfok+WiiIj+/fvHGWecEUcddVT88Ic/jF//+texfPnyzxRdOrJymaajolFzc3M8+eST8eSTT8ZFF10UpaWlK5SNvvCFL8TgwYML9HRd19LSEq+++mo8+eST8dhjj8Vjjz0WH330Udv5yl+fjr4G2az8mo033jiuuOKK2G+//bqYnr7mr3/9a9aZwYMHxw477FDwLOuvv35stNFG8dZbb2Wce+SRR/pUuejaa6+NJ598stPzI444Ivbee+8EEwEAAAAAAACdGdC/JAaVlkVdU2OnMzYXAQAAAPQefbZc1GrYsGFx/fXXx6mnnhrnnntuPPjggysUhrIVZXIpGkVENDY2xhNPPBFPPPFEXHDBBRERsd5668W4ceNi3LhxseWWW8a4ceNik002iX79+uXzEbP64IMPYvr06St8vPbaa7F06dIOnyVi9TYUdfTadDoda621Vvz4xz+Ok046KUpK+vwfSVbD008/nXVmhx12SOzP16677pq1XPTss88mkqU7mDt3bvzgBz/o9HyNNdaIK6+8MrlAAAAAAAAAQFbVZZUZy0U2FwEAAAD0Hpoc/88WW2wRDzzwQDz22GPxve99L1544YVVKhmtPLNy0aij93jnnXdi7ty5cf/997d9buDAgTF69OgYPXp0rLPOOm3/3PoxePDgKC8vj7KysigvL2/7aNXc3BwNDQ0rfCxZsiQWLFgQ8+bNi/feey/ee++9tn+eN29eLFq0KGPO1ufJ9Ly5WLlUVFlZGWeddVZ897vfjUGDBq3Se0F7L730UtaZbbbZJoEk/2fbbbeNG2+8MePMq6++Gk1NTVFaWppQquI58cQTo66urtPzyy67LNZaa60EEwEAAAAAAADZVJVXxrsLP+n0vKZBuQgAAACgt1AuWsnuu+8ezz33XPzxj3+MCy64IP75z3+ucsmoo7mOykYdzTU1NcXs2bNjzpw5q5R7wIAB0dLSEsuXL8/5NZmeJR9loo7eK51OR0VFRZxyyinx3e9+N9Zcc83Vek9o9eGHH8b8+fOzziVdLspm2bJl8a9//SvGjx+fQKLiueWWW+Ivf/lLp+e77757TJo0KcFEAAAAAAAAQC6qKyozntc2KhcBAAAA9Bb9ih2gu/r6178e06ZNi9/97nex9dZbRzqdjnQ63VYS6qh8k0nr69t/RMQK79f+o6P5TB/Nzc3R0tKySq/JdH9HmVfVyu9VWVkZ55xzTsyZMycuueQSxSLyYvr06TnNbbrppgVO8m9jxozJaS7X7D3VggUL4swzz+z0vLS0NK6//voEEwEAAAAAAAC5qirLXC6qWVKXUBIAAAAACk25KIuDDjooXnzxxXjwwQdj991377CYs7o6K/y0f+9Cf3SWoytbilYuSK255ppx0UUXxdy5c+PSSy+NtdZaa7W/ZrCy2bNn5zS30UYbFTjJv1VXV8caa6yRdS7X7D3Vd77znfj00087PT/vvPNik002STARAAAAAAAAkKvq8kEZz2sbl6z2zxYAAAAA0L0oF+Vo7733jr/97W/x3HPPxeGHHx4lJSUdbv/pqlXdWLRyEagrr+2KjspKW2yxRVx33XXxzjvvxHnnnRdVVVV5uQvamzNnTtaZtddeOyorM/9WrXzLpcyUS/ae6o9//GPcfffdnZ6PHTs2zj333AQTAQAAAAAAAKuiurwi43nTsqXRsKw5oTQAAAAAFJJy0SoaP3583H777TF37tw4//zzY+TIkXndZrS68lkUylVHG5D69+8fBx10UPztb3+L6dOnxwknnBBlZWWJ5qJvefvtt7POjBo1qvBBVjJy5MisM721XLRw4cI4+eSTOz1PpVIxZcqUGDhwYIKpAAAAAAAAgFVRlWVzUUREbcOSBJIAAAAAUGjKRatpxIgRcf7558fcuXPjj3/8YxxwwAHRv3//tpJP++JNMcpGhdJRoSidTscmm2wSl1xySbz77rvxu9/9LnbffffiBqXPeO+997LOrL322gkkWfU7582bl0CS5J1zzjnx/vvvd3p+wgknxM4775xgIgAAAAAAAGBVVZdXZp2paahLIAkAAAAAhVZS7AA9Xb9+/WL//feP/fffPxYsWBC/+c1v4q677opnnnmmbWblglHSG4a6oqNiVGv+ESNGxCGHHBKHH354TJgwIeloEBERn3zySdaZESNGJJBkRbmUiz799NMEkiTr73//e/zqV7/q9HzkyJFxySWXJJgIAAAAAAAAWB1V5RVZZ2ob6hNIAgAAAEChKRfl0fDhw+P000+P008/Pd55552455574o9//GM89dRTsXz58oj4bNEoonuVjTKViSIi1l133TjggAPi4IMPjt122y369bP8iuLKpVxUVVVV+CCrcWd9fX00NTVFaWlp4QMlYMmSJXH88cdnnLn66qtj6NChCSUCAAAAAAAAVteA/iUxaGBZ1DU3djpTo1wEAAAA0CsoFxXI+uuvH2effXacffbZ8cknn8QDDzwQDz30UPztb3+LDz/8sG2uo7JRq0KWjjq7c+V7Bw4cGBMmTIg999wzvva1r8XWW29dsEywOmpqarLODB48OIEkq3fnp59+GiNHjixwmmT8+Mc/jlmzZnV6vt9++8U3vvGNBBMBAAAAAAAAXVFdXpm5XLREuQgAAACgN1AuSsCwYcPi6KOPjqOPPjoiImbMmBGPPfZYPPXUU/H000/HO++885nXZCod5dPKBabKysrYbrvtYqeddopdd901dt1116ioyL7qHIqhoaEhli5dmnWuGOWiIUOG5DS3cOHCXlEuev755+Oqq67q9HzQoEHxi1/8IsFEAAAAAAAAQFdVlVfGuws/6fS8tlG5CAAAAKA3UC4qgi222CK22GKL+M53vhMRER988EG89NJL8fLLL8fLL78cr7zySrz11lvR0NCQ9b06KiDlsvEolUrFuuuuG5tuumlsueWWsdVWW8VWW20Vm2++efTr12/VHwqKoLm5Oae58vLyAif5rLKyspzmcn2G7mzp0qVx7LHHRktLS6czF110Uay77roJpgIAAAAAAAC6qrq8MuN5TYNyEQAAAEBvoFzUDay99tqxzz77xD777LPC5997772YPXt2zJs3L957772YP39+fPTRR7Fw4cKora2Nurq6aGpqiqVLl8ayZcuiX79+MWDAgBg4cGCUl5fH0KFDo6qqKtZYY41Ye+21Y9SoUTF69OhYf/314/Of/3yUlpYW6YkhP3It5vTv37/AST6rpCS3/3ntDeWiiy++OP71r391ej5+/Pg47bTTEkzELrvskvOfQQpn5syZxY4AAAAAAADQJVVZykW1ykUAAAAAvYKfPO7GRo8eHaNHjy52DOi2ci3mFKNkkeudS5cuLXCSwnrllVfi4osv7vS8pKQkbrjhBhvRAAAAAAAAoAeyuQgAAACgb1AuAnqsZcuW5TSnXFQYy5cvj2OPPTZjyeuMM86IrbfeOrlQRETEk08+GWuttVaxYwAAAAAAANDDZSsXNS1bGg1Lm6N8wMCEEgEAAABQCFZJAD1WrgWelpaWAidZ/TuLUXzKl6uvvjqeeeaZTs833HDDuOCCCxJMBAAAAAAAAORTVZZyUYTtRQAAAAC9gXIR0GMNHJjbb7/KdcNRPuW6kSjXZ+hu5syZEz/60Y8yzvzyl7+MioqKhBIBAAAAAAAA+VZdPijrTK1yEQAAAECPp1wE9FgDBgzIaa4Y5aJc7+yp5aITTjgh6us7/0uCww8/PPbee+8EEwEAAAAAAAD5NrQ8+y8TrGmoSyAJAAAAAIWkXAT0WKWlpTnNNTY2FjjJ6t/ZE8tFU6dOjUcffbTT8zXWWCOuvPLK5AIBAAAAAAAABTGwf0kMGliWcabG5iIAAACAHq+k2AGAnmXOnDnx7LPPFvSOysrK2H///bPOlZeXR0lJSdYtQYsXL85XtJzleueQIUMKnCS/Pvjggzj77LMzzlx22WUxfPjwhBIBAAAAAAAAhVRdXhl1zZ3/csVa5SIAAACAHk+5CFgljz/+eHz7298u6B3rr79+TuWiiIjq6ur46KOPMs4sWrQoH7FWSa53rrHGGgVOkl+nnHJK1NbWdnq+2267FfzPBwAAAAAAAJCcqvLKeHfhJ52e21wEAAAA0PP1K3YAgK4YNmxY1pmFCxcmkGTV76yoqIiysrIE0uTHPffcE7///e87PS8tLY0pU6ZEKpVKMBUAAAAAAABQSNXllRnPbS4CAAAA6PmUi4AeLZdy0YcffphAkhV98MEHWWdyyd5d1NTUxKmnnppx5rzzzotNNtkkoUQAAAAAAABAEqqylItsLgIAAADo+ZSLgB5t9OjRWWdyKfrkWy535pK9uzjrrLMyPtPYsWPj3HPPTTARAAAAAAAAkASbiwAAAAB6P+UioEfbYIMNss68//77hQ+ykvnz52ed2XDDDRNI0nVvvfVW3HTTTZ2ep1KpuP7662PgwIHJhQIAAAAAAAASkW1zUeOypdGwtDmhNAAAAAAUQkmxAwB0RS4FnQ8++CCWLFkSFRUVCST6P2+99VbWmZ5SLqqrq8t4vvXWW8e8efPizjvvLMj9c+bMyTqzYMGCnO4fPnx47LHHHvmIBQAAAAAAAH1Cts1FEf+3vah8gF9GCAAAANBTKRcBPdrnPve5rDPpdDreeuutGDduXAKJImpra+OTTz7JOpdL9p7gpZdeisMPP7yoGV599dWcMuy2227KRQAAAAAAALAKsm0uioioaaiPkUOqE0gDAAAAQCH0K3YAoGeZOHFipNPpgn68/fbbOefZcsstc5p77bXXVvOJV12ud+WaHQAAAAAAAKBYcisX1SWQBAAAAIBCUS4CerSRI0fGiBEjss5NmzYtgTS531VSUpLYJiUAAAAAAACA1TWwf0kMGliWcaa2YUlCaQAAAAAoBOUioMfbZpttss4kWS568cUXs85suummUVaW+RvwAAAAAAAAAN1Btu1FNhcBAAAA9GzKRUCPt+OOO2adeeaZZ2LZsmUJpIl44oknss7ssMMOCSQBAAAAAAAA6LrqLOWi2ob6hJIAAAAAUAjKRUCP9+UvfznrzOLFi+O5554reJa5c+fGW2+9lXVuzz33LHgWAAAAAAAAgHzIvrlIuQgAAACgJ1MuAnq87bffPoYMGZJ17sEHHyx4llzuSKVSORWiAAAAAAAAALoDm4sAAAAAejflIqDHKykpyamsc9dddxU8y5133pl1Zvz48bHmmmsWPEu+bL311pFOp4v2ccwxx2TNuNtuu+X0Xo899ljhv2AAAAAAAADQy9hcBAAAANC7KRcBvcLhhx+edebNN9+MZ599tmAZ5s6dG0888UTWuVyyAgAAAAAAAHQX2TYXNS5bGg1LmxNKAwAAAEC+KRcBvcL+++8fQ4YMyTp35ZVXFizD1VdfHcuXL884069fvzjssMMKlgEAAAAAAAAg37JtLoqIqLW9CAAAAKDHUi4CeoWysrI45JBDss7dc8898dZbb+X9/k8++SRuuOGGrHN77bVXjBw5Mu/3AwAAAAAAABRKts1FEcpFAAAAAD2ZchHQa5x11lmRSqUyzixbtizOOeecvN/9n//5n7Fo0aKsc2effXbe7wYAAAAAAAAopFw2F9UoFwEAAAD0WMpFQK+x2WabxX777Zd17o9//GPcfffdebv3ySefjOuvvz7r3DbbbBNf+cpX8nZvRMTbb78dqVQq68fuu++e13sBAAAAAACAvmNg/5KoHFiacUa5CAAAAKDnUi4CepXzzz8/+vXL/j9txx9/fLzxxhtdvu+DDz6II444IlpaWrLO/td//VeX7wMAAAAAAAAohuryQRnPa5WLAAAAAHos5SKgV9l2221j0qRJWecWLlwYX/7yl2P27NmrfddHH30UX/nKV+Ldd9/NOrvPPvvE/vvvv9p3AQAAAAAAABRTVXlFxvOahrqEkgAAAACQb8pFQK9z8cUXx7Bhw7LOzZs3L7bffvt48MEHV/mOZ599NsaPHx8zZ87MOltWVhZXXXXVKt8BAAAAAAAA0F1k31y0JKEkAAAAAOSbchHQ66y11lpx0003RSqVyjr7ySefxL777hsHH3xwvPDCC1nnX3nllfj2t78dO+20U8ydOzenPFdddVVsvPHGOc0CAAAAAAAAdEc2FwEAAAD0XiXFDgBQCPvtt1+cc845cdlll+U0f++998a9994bm2yySeyyyy6x+eabxxprrBGpVCpqamritddei6effjqmT5++SjmOOOKIOOGEE1bnEQAAAAAAAAC6DZuLAAAAAHov5SKg1/rpT38a8+bNi9/85jc5v+aNN96IN954Iy/3f/nLX46pU6fm5b0AAAAAAAAAiqmqvDLjecOy5mhc2hxlAwYmlAgAAACAfOlX7AAAhdKvX7+45ZZb4uCDD0787l122SX++Mc/RmlpaeJ3AwAAAAAAAORbdZZyUURETUN9AkkAAAAAyDflIqBXKykpibvvvjvOPffcxO789re/HY8++mhUVmb/5joAAAAAAABAT5Btc1FERK1yEQAAAECPpFwE9Hr9+vWLn/70p3HvvffGqFGjCnZPdXV13HDDDTF16lQbiwAAAAAAAIBepbrM5iIAAACA3kq5COgzDjzwwHjttdfinHPOyetWoYEDB8axxx4br7/+ehx33HF5e18AAAAAAACA7mJgSUlUDsz8SxaViwAAAAB6ppJiBwBI0uDBg+Oyyy6LH/7whzFlypS49dZbY+bMmav1Xp///Ofj8MMPj5NPPjlGjhyZ56S0OvDAA2ODDTbIOJPtHAAAAAAAAOi6qvLKqG9u6vS8VrkIAAAAoEdKpdPpdLFDABTTO++8Ew8//HC8/PLL8corr8Tbb78dixYtisWLF0c6nY7BgwfH4MGDY911142xY8fGlltuGV/5yldi0003LXZ0iI8++iiGDx++wucWLFgQa621VpESAQAAAAAA0Ftd/Lffx4wP3u30fKf1x8R3dv5qgokAAAAA8qcv/1yuzUVAn7f++uvH8ccfX+wYAAAAAAAAAN1aVVllxnObiwAAAAB6pn7FDgAAAAAAAAAAQPdXXZG5XFTTqFwEAAAA0BMpFwEAAAAAAAAAkFXWzUVLlIsAAAAAeiLlIgAAAAAAAAAAsqquGJTxvGFZczQubU4oDQAAAAD5olwEAAAAAAAAAEBWVWUVWWdqGmwvAgAAAOhplIsAAAAAAAAAAMgq2+aiiIha5SIAAACAHke5CAAAAAAAAACArKrLKrPO2FwEAAAA0PMoFwEAAAAAAAAAkNXAkpKoGFCacUa5CAAAAKDnUS4CAAAAAAAAACAn1RWZtxfVNioXAQAAAPQ0ykUAAAAAAAAAAOSkqixzuahmiXIRAAAAQE+jXAQAAAAAAAAAQE6qy20uAgAAAOhtlIsAAAAAAAAAAMhJtnJRTYNyEQAAAEBPo1wEAAAAAAAAAEBOqrJtLlIuAgAAAOhxlIsAAAAAAAAAAMhJts1FDUubo3Fpc0JpAAAAAMgH5SIAAAAAAAAAAHKSbXNRRESN7UUAAAAAPYpyEQAAAAAAAAAAOamuGJR1prZxSQJJAAAAAMgX5aICuOmmm+JnP/tZfPrpp8WOAgAAAAAAAACQN9VlOWwuWlKXQBIAAAAA8kW5qADeeeed+O53vxujR4+OI488Mp544oliRwIAAAAAAAAA6LKBJSVRMaA040xtY31CaQAAAADIB+WiAkmn09HU1BS/+c1v4ktf+lKMHTs2rrzyStuMAAAAAAAAAIAerbo88/aimgblIgAAAICeRLmogFKpVKTT6Uin0/Haa6/F2WefHeuss04cffTR8eSTTxY7HgAAAAAAAADAKqvKUi6qVS4CAAAA6FGUiwoslUq1faTT6WhsbIzbb789dtttt9h8883j6quvjtra2mLHBAAAAAAAAADIic1FAAAAAL2LclGBtW4uiogVSkbpdDpeffXVOPPMM2P06NExceLEeOqpp4qcFgAAAAAAAAAgs2zlIpuLAAAAAHoW5aKEdFQyav18Q0ND3HrrrbHrrrvGlltuGf/zP/8TCxcuLGZcAAAAAAAAAIAOVdlcBAAAANCrKBclrLVklE6n20pG7bcZzZw5M04//fQYNWpUTJo0KZ5++uliRwYAAAAAAAAAaJNtc1HD0uZoXLY0oTQAAAAAdJVyURFl22Z08803xy677BLjxo2LX/ziF7Fo0aJixgUAAAAAAAAAyLq5KCKi1vYiAAAAgB5DuagbyLbNaMaMGXHqqafGqFGj4thjj41nn3222JEBAAAAAAAAgD4q2+aiiIga5SIAAACAHkO5qJvJtM1oyZIlcdNNN8VOO+0UW2+9dVx33XWxePHiYsYFAAAAAAAAAPoYm4sAAAAAehflogJrv4loVWTbZjR9+vQ45ZRTYtSoUXH88cfH888/X6AnAAAAAAAAAAD4t9KSAVExYGDGmZqGuoTSAAAAANBVykUFcPrpp8fPf/7zGDt2bKebiFZFpm1G9fX1MXXq1JgwYUJss802MWXKlKir8w06AAAAAAAAAKBwqssHZTyvbViSUBIAAAAAukq5qACqqqri9NNPj3/961/x5JNPxpFHHhllZWWfKQjle5vRP//5z5g8eXKMGjUqTjzxxHjxxRcL8XgAAAAAAAAAQB9XVV6R8dzmIgAAAICeQ7mowHbaaae45ZZb4r333osrr7wykW1GdXV18atf/Sq23377GD9+fNxwww1RX1+fv4cCAAAAAAAAAPq07JuL/JwCAAAAQE+hXJSQqqqqOO2009q2GR111FGJbDOaNm1anHTSSTFq1KiYPHlyvPTSS4V4PAAAAAAAAACgD6kqr8x4XqNcBAAAANBjKBcVwU477RQ333xzvP/++3HllVfG5ptvXvBtRosXL44pU6bE+PHjY7vttotf//rXsWTJkvw9FAAAAAAAAADQZ1RnKRfZXAQAAADQcygXFdHQoUPjtNNOi+nTp8c//vGPxLYZvfjii3HCCSfEqFGj4pRTTol//vOfBXg6AAAAAAAAAKC3ylYuWrK0ORqXLU0oDQAAAABdoVzUTey4445t24yuuuqqRLYZLVq0KK677rrYdtttY4cddogbb7wxGhoa8vdQAAAAAAAAAECvVJWlXBRhexEAAABAT6Fc1M0MHTo0Tj311LZtRkcffXTbNqOVNxGtimzbjJ5//vk47rjjYtSoUW33AwAAAAAAAAB0JNvmogjlIgAAAICeQrmoG9txxx3jpptuattmtOWWWxZ8m9HChQvjF7/4RXzhC19o26bU2NiYv4cCAAAAAAAAAHq8XDYX1SgXAQAAAPQIykU9QOs2o5dffjmeeuqpxLYZPffcczFp0qQYNWpUnHbaaTFjxowCPSEAAAAAAAAA0JOUlgyIigEDM87YXAQAAADQMygX9TATJkyIm266KebPnx9XX311QbcZtX6utrY2rr322thqq61i5513jltvvTWampry+lwAAAAAAAAAQM+SbXuRzUUAAAAAPYNyUQ81ZMiQ+M53vtO2zeiYY45JZJvRM888ExMnToyRI0fGGWecEa+88kqBnhAAAAAAAAAA6M6qs5SLbC4CAAAA6BmUi3qBCRMmxI033pj4NqNrrrkmttxyy9h1113jtttus80IAAAAAAAAAPqQ7JuL6hJKAgAAAEBXKBf1Ih1tMyovLy/4NqPWu0aNGhVnnXVWvPbaawV6QgAAAAAAAACgu6guH5TxvLZhSUJJAAAAAOgK5aJeqnWb0fvvvx9XX311jBs3ruDbjGpqauKqq66KzTffPHbbbbe44447orm5Oa/PBQAAAAAAAAB0D1XlFRnPbS4CAAAA6BmUi3q51m1G//znP+Ppp5+OiRMnJrLN6Mknn4yjjjoqRo0aFeecc068/vrrBXpCAAAAAAAAAKAYsm0uWrK0OZqWLU0oDQAAAACrS7moD9lhhx1i6tSp8f7778c111yTyDajTz/9NH7+85/H2LFjY/fdd48777wzli71jUMAAAAAAAAA6OmqyyuzztQ21CeQBAAAAICuUC7qg4YMGRKnnHJK4tuM/vd//ze+9a1vxejRo+N73/tevPnmmwV6QgAAAAAAAACg0KpyKBfVKBcBAAAAdHvKRX3cytuMttpqq4JvM/r444/jiiuuiE033TT22GOPuPvuu2PZsmV5fS4AAAAAAAAAoLByKRfZXAQAAADQ/SkXERH/3mb00ksvxTPPPNPhNqPVkW2b0eOPPx6HHXZYrLPOOvHjH/84Pvjggzw/GQAAAAAAAABQCGUlA6J8wMCMMzYXAQAAAHR/ykV8xvbbbx9Tp06N+fPnx//8z//EuHHjulQwapVpm9GCBQvi4osvjg022CAmTpwYM2fOzMejAAAAAAAAAAAFVJ1le5HNRQAAAADdn3IRnRo8eHCcfPLJ8Y9//CMmTZqUl4JRROZtRs3NzXHrrbfGVlttFd/4xjdi+vTpeXgSAAAAAAAAAKAQqrKUi2wuAgAAAOj+lIvo1EsvvRSTJ0+OUaNGxY033thWAMqnzrYZLV++PO69997YZpttYuLEiTFv3ry83gsAAAAAAAAAdF22zUXKRQAAAADdn3IRK6ivr48bbrghtttuuxg/fnxMmTIlFi9evEIJqBAylYxuvfXW2GyzzeLyyy+P5cuXFywDAAAAAAAAALBqsm0uqlUuAgAAAOj2lIuIiIhp06bFSSedFKNGjYqTTjopXnzxxbbCT2vZJwmdlYzq6+vj3HPPjQkTJsSsWbMSyQIAAAAAAAAAZJZ9c1FdQkkAAAAAWF3KRX1YfX19TJkyJbbbbrvYbrvt4oYbbmjbUhQRK5SKVnVrUetrV/7IVWcloxdeeCG+8IUvxP33379KeQAAAAAAAACA/KsuH5TxfMnS5mhatjShNAAAAACsDuWiPujFF1+ME088MUaNGhWTJ0/ucEtRa5mnfcknFysXklZ+j3yUjOrq6uKggw6KqVOnrsJTAwAAAAAAAAD5VpVlc1FERG1DfQJJAAAAAFhdykV9ROuWovHjx8f2228fv/rVrzJuKVqdQlH7QtIaa6wR55xzTrz++utx3333xf777x/9+vX7zH25Fo1WLhm1tLTEiSeeGA888MCqfBkAAAAAAAAAgDyqzqFcVKNcBAAAANCtlRQ7AIX1wgsvxJQpU+LOO++M+vr6FUpD7Ys9q1ImyvT6CRMmxMknnxzf/OY3o7S0NCIiNt5449hvv/1i/vz5MXXq1Ljxxhtj9uzZbe/RvtSUTfvtSi0tLXHcccfFK6+8EtXV1aucHwAAAAAAAADoGpuLAAAAAHo+m4t6obq6urj++utj2223jR122CF+/etfR11dXd63FLW+vqKiIk444YR46aWX4qmnnoojjzyyrVjU3siRI+O8886Lt956Kx555JH45je/GSUlJR3myqR93gULFsRpp52Wc34AAAAAAAAAIH/KSgZE+YCBGWdsLgIAAADo3pSLepEXXnghjj/++Bg1alScfPLJ8dJLL7WVh9qXglo/tzqlooh/F5I222yzuOaaa+L999+P6667Lrbaaquc3+/LX/5y3HXXXfHOO+/Ej3/841hjjTVWqWTU+kzpdDruuOOOeP3113O+GwAAAAAAAADIn2zbi2wuAgAAAOjelIt6uLq6urjuuuvathRNnTq1oFuKBgwYEIcddlg8/vjjMWPGjDjllFNi8ODBq51/7bXXjgsuuCDmzp0bl19+eay11lorZM/Vddddt9oZAAAAAAAAAIDVV52lXGRzEQAAAED3plzUQz3//PNx3HHHxciRI+OUU04p+Jai9dZbL37yk5/Eu+++G3fccUfsuuuueX2e8vLyOOuss+Ktt96K7373u9G/f/+2LNmyptPpuPnmm6O5uTmvmQAAAAAAAACA7KrKlIsAAAAAejLloh5k8eLF8ctf/jK22WabmDBhQtx4441RX1+fly1FHb0+lUrFvvvuG3/6059i9uzZ8YMf/CDWWmut/D7USgYNGhSXXHJJPP3007H++uu35ehI++dbuHBhPPfccwXNBgAAAAAAAAB8VnVF5nJRrXIRAAAAQLdWUuwAZPfcc8/FlClT4q677oolS5asUKppX7xZ1TJRZ69fa621YtKkSXHiiSfGBhtssPrBu2DbbbeNZ555Jr74xS/Gm2++2bahKJNnnnkmdtlll4QSAgAAAAAAAAAREdXlNhcBAAAA9GTKRd3U4sWL49Zbb40bbrghpk+fHhFR8FLRzjvvHCeffHJ84xvfiAEDBqxu9LwZPnx43HHHHbHjjjvGsmXLshaMnn322QTTAQAAAAAAAAAREVVlmctFS5Y2RfOyZTGwxI+pAAAAAHRHvmvTzTz77LMxZcqU+O1vf5vIlqLBgwfHkUceGZMnT44tttiiC8kLY5tttolvf/vbMWXKlBXyryydTsfs2bMTTAYAAAAAAAAARERUVwzKOlPTWB8jBg1NIA0AAAAAq0q5qBto3VI0ZcqU+Ne//hURhd9SNG7cuJg8eXIceeSRUVmZ+TcIFdvJJ58cU6ZM6fS8daNRbW1tcqEAAAAAAAAAgIiIqCqryDpTs6ROuQgAAACgm1IuKqJnnnmmbUtRQ0NDwQpFre9RWloa3/jGN2Ly5Mmx0047rX7whI0bNy6GDx8eH330UVuRqCPKRQAAAAAAAACQvOry7L/UtLZxSQJJAAAAAFgdykUJW7RoUduWohkzZkRE4bcUbbjhhnHiiSfGscceG8OGDVvd6EW13XbbxQMPPPCZ0lR7ixYtSjARAAAAAAAAABARUTZgYJSXDIyGZc2dztQsqUswEQAAAACrQrkoIU8//XRMmTIl7r777rxvKeroPfr16xf77bdfTJ48Ofbee++MpZyeYNSoUR1+Pp1Otz3b8uXLk4wEAAAAAAAAAPw/VRWV0bCo83JRbWN9gmkAAAAAWBXKRQW0cOHCti1FM2fOjIjCbykaMWJEHHvssXHCCSfEeuutt7rRu52qqqpiRwAAAAAAAAAAOlFdVhnzF9V0el6zRLkIAAAAoLtSLiqAV199NS655JK45557EtlSFBGx2267xeTJk+Pggw+OkpLe95914MCBxY4AAAAAAAAAAHSiqrwy43lNg3IRAAAAQHfV+1oo3cBvf/vbuOWWW1b4XCG2FA0ZMiSOPvromDx5cmy22WarmRYAAAAAAAAAoGuqKzKXi2oblYsAAAAAuivlogIq1JaiL3zhCzF58uQ44ogjoqKiomshAQAAAAAAAAC6qKosy+aiJcpFAAAAAN2VclGBdXVLUet7lJWVxSGHHBKTJ0+OHXbYIV/xAAAAAAAAAAC6rLo8c7loydKmaF62LAaW+FEVAAAAgO7Gd2y6kY62FG200UZx4oknxqRJk6K6urpY0bqVlctXAAAAAAAAAEBxZSsXRUTUNNbHiEFDE0gDAAAAwKpQLuoGVi4V9e/fP/bff/+YPHly7LnnnkVM1v2sziYoAAAAAAAAAKCwqnIoF9U2KBcBAAAAdEfKRUXS0ZaikSNHxnHHHRcnnHBCjB49uljRuqU99tgjSqxGBwAAAAAAAIBuKafNRQ31CSQBAAAAYFVpaySso1LRHnvsEZMnT44DDzww+vfvX6xo3dqXvvSl+NKXvlTsGAAAAAAAAABAB8oGDIzykoHRsKy505la5SIAAACAbkm5KAEdFYqqqqrimGOOiZNOOinGjBlTrGgAAAAAAAAAAHlRVV4RDYs7LxfVNNQlmAYAAACAXCkXFVhrsai1VLTtttvGySefHIcddliUl5cXMxoAAAAAAAAAQN5Ulw+K+YtrOz2vbViSXBgAAAAAcqZcVGDpdDrKy8vjsMMOi8mTJ8f48eOLHQkAAAAAAAAAIO+qyisznttcBAAAANA9KRcV0MYbbxyTJ0+OY445JqqqqoodBwAAAAAAAACgYKqzlovqE0oCAAAAwKpQLiqAHXbYIR599NHYY489ih0FAAAAAAAAACAR2TYX1SoXAQAAAHRLykUF8NWvfrXYEQAAAAAAAAAAEpVtc1F9c1M0L1sWA0v8uAoAAABAd9Kv2AEAAAAAAAAAAOj5spWLIiJqG20vAgAAAOhulIsAAAAAAAAAAOiyqhzKRTUNykUAAAAA3Y1yEQAAAAAAAAAAXZZLuahWuQgAAACg21EuAgAAAAAAAACgy8oHDIyykgEZZ2wuAgAAAOh+lIsAAAAAAAAAAMiL6izbi2wuAgAAAOh+lIsAAAAAAAAAAMiLqizlIpuLAAAAALof5SIAAAAAAAAAAPIi2+aimoa6hJIAAAAAkCvlIgAAAAAAAAAA8qK6fFDG89qGJQklAQAAACBXykUAAAAAAAAAAORFlc1FAAAAAD2OchEAAAAAAAAAAHlRnaVcVN/cFM0tyxJKAwAAAEAulIsAAAAAAAAAAMiLbJuLIiJqG+oTSAIAAABArpSLAAAAAAAAAADIi2ybiyKUiwAAAAC6G+UiAAAAAAAAAADyIpfNRTXKRQAAAADdSkmxA/RGH3/8cbzyyivFjpGYVCoVpaWlUVpaGmVlZVFWVhbDhg2LQYMGFTsaAAAAAAAAAJCg8gEDo6xkQDQuW9rpjM1FAAAAAN2LclEB/PWvf40jjjii2DGKrry8PEaMGBFrr712bLLJJjF27NjYfPPNY6uttorRo0cXOx4AAAAAAAAAUABV5ZXxweLaTs9tLgIAAADoXpSLCiSdThc7QtEtWbIk5syZE2+//XY888wzK5xtsMEGsfvuu8eXvvSl2H///WPo0KFFSgkAAAAAAAAA5FO1chEAAABAj6JcVECpVKrYEbqFjopWraWjm266KQYOHBhf/epX44gjjoiDDjooSkr8sQQAAAAAAACAnqq6vDLjea1yEQAAAEC30q/YAXq7dDrdZz9apVKpDj9a55qamuK+++6Lww47LD7/+c/HNddcEw0NDUX8rwYAAAAAAAAArK6qLOUim4sAAAAAuhflIgomW/Goo6LRu+++G2eccUZsuOGGceuttxb5CQAAAAAAAACAVVVdPijjuc1FAAAAAN2LchFFka1otGDBgpg4cWLsscceMXv27CKnBQAAAAAAAAByVVVekfG8rrkxmluWJZQGAAAAgGyUiyi6zopG6XQ6HnvssRg/fnz85S9/KXJKAAAAAAAAACAX2TYXRUQsbFiSQBIAAAAAcqFcRLeycskoIqK2tjb233//+PnPf17MaAAAAAAAAABADqrKK7PO1DTUJZAEAAAAgFyUFDsAdGTlglFLS0ucc845kUql4owzzihiMgAAAAAAAAAgk+ocykW1DfUJJAEAAAAgF8pFBdZajsmktUiTz/dcFUnev6p3pdPpSKVSkUqlIp1Ox9lnnx2DBw+OY489drUzAAAAAAAAAACFUz5gYJSWDIimZUs7nalRLgIAAADoNvoVO0Bvlk6nc/rIRWvBprXYk+t753L3yu+dr+fKdteq3Nf62nQ6Hd/5znfipZdeyum1AAAAAAAAAEDysm0vUi4CAAAA6D5sLiqAQw89NA499NCMM3V1dfG9730vrr/++rbPrVw0al++aX9WUVER48ePj7Fjx8aYMWPi85//fAwfPjzWWmutqKqqitLS0igtLY1UKhWNjY3R1NQUCxcujI8++igWLFgQs2bNijfeeCNmzpwZL7zwQtTX12e9s32pqV+/fnHiiSfGpZdeGpWVK34zsLGxMRobG6Ouri7mz58f8+fPj9dffz3+9a9/xbRp0+KVV15Z4T3bv28m7TcYNTU1xWGHHRYvvvhiDBo0KOPrAAAAAAAAAIDkVZdXxgeLazs9r1UuAgAAAOg2lIuK4OGHH44TTzwx5s6dGxG5lYq23nrrOOigg2LfffeNrbfeOvr375/TXRUVFVFRURHV1dWxwQYbfOa8paUlXn755fjzn/8cf/jDH2LatGltGVbektT6+XQ6Hdddd138+c9/jilTpsSee+7Z9n5lZWVRVlYWVVVVsc4663zmvg8++CAefvjhuO222+Jvf/tbLF++vO2uXAtGERFvvfVWXHDBBXHZZZfl9HUAAAAAAAAAAJJTZXMRAAAAQI/Rr9gB+pqLL7449t1333jnnXdWKO20al/oqaysjFNOOSVmzJgR06ZNix//+Mex7bbb5lwsykX//v1jm222iR/96EfxwgsvxCuvvBLf+c53YtCgQSsUilq1Zk6n0/HOO+/EPvvsE5deemnO96299tpx9NFHx8MPPxxz5syJk046KQYMGLDCZqJsWotI11xzTcyaNWvVHxoAAAAAAAAAKKjqLOUim4sAAAAAug/looQsW7YsJk2aFD/+8Y9X2NbTWqZpv72npKQkTj311Jg1a1Zcc801MXbs2MRybrrppnH11VfH7Nmz4/TTT48BAwa05WvVPvvy5cvjBz/4QRx33HHR0tKySnetu+668Ytf/CJeffXV+PKXv9xhmWll7ctYS5cujfPOO2+V7gQAAAAAAAAACs/mIgAAAICeQ7koId/61rfi5ptvbtvQE/HvLUDt/32rrbaK559/Pq666qpYa621ipZ32LBh8fOf/zyef/752HrrrTvMHfHvLUI33nhjHH300at114YbbhiPPPJIXH755SuUrTJpvff3v/99zJs3b7XuBQAAAAAAAAAKI9vmorrmxljasiyhNAAAAABkolyUgHPOOSfuvvvuiIgVCjor//sxxxwTzz33XIwbN644QTuw5ZZbxrPPPhuTJk1aoWAUEZ8pGN15553xve99b7XvOuuss+L3v/99h9uS2mu/vailpSV++ctfrvadAAAAAAAAAED+ZdtcFBFR27AkgSQAAAAAZKNcVGBTp06Nn/3sZxm3/kRE/OhHP4obb7yxrVjTnZSUlMSvfvWrOP/88zssGLV+Lp1OxxVXXBE333zzat91wAEHxC233JLTBqPWO6dOnbra9wEAAAAAAAAA+VddPijrTE1DfQJJAAAAAMhGuaiA3nvvvTjrrLM+s60o4t/FmFQqFaeffnpceOGFxYqZs/PPPz/OPPPMzxSMWrU+0xlnnBHvv//+at9zyCGHxPe///0Vvl4ra3+2YMGCePrpp1f7PgAAAAAAAAAgv6rKK7LO1DbUJZAEAAAAgGyUiwropJNOikWLFkVE58WiL37xi3HFFVcUK+Iqu/zyy2O33XbrcINRq0WLFsVJJ53UpXsuuOCC2GabbSIi8/aiVn/605+6dB8AAAAAAAAAkD/lJQOjtGRAxhmbiwAAAAC6B+WiAnn88cfjgQceaCsStWpflKmoqIjbbrstp/JMd5FKpeK2226LysrKtn9v1Vo4SqfT8cADD8QTTzyx2vf0798/fv7zn2fcXtT+3r/85S+rfRcAAAAAAAAAkF+pVCqqyyszzigXAQAAAHQPykUFcumll3Z61lrCOeuss2L06NEJpsqP0aNHx9lnn521+JPpa5CLXXfdNfbaa6/PbElqr/XzM2bMiKampi7dBwAAAAAAAADkT1WWclGtchEAAABAt6BcVAAzZ86MBx98MOvWonPOOacY8fLi7LPPzrq96MEHH4yZM2d26Z5TTjml07P2X9uWlpZ4+eWXu3QXAAAAAAAAAJA/NhcBAAAA9AzKRQXwm9/8ptOz1vLNIYccEoMHD04wVX4NHjw4Dj300Kzbi+64444u3fO1r30tRowYERHR6faiVtOmTevSXQAAAAAAAABA/lSV2VwEAAAA0BMoFxXAfffdl7UIc/DBByeUpnD+4z/+I+N5Op2OP/3pT126o1+/frHvvvtmLTFFRMyaNatLdwEAAAAAAAAA+VNdkWVzUaNyEQAAAEB3oFyUZ2+//XbMmDEjImKFQkz7slFJSUnsvvvuSUfLuy9+8YsxYMCAiFjx+Vq3M0VEzJw5M955550u3fPVr341p7l58+Z16R4AAAAAAAAAIH+ybS6qa2qMpS3LEkoDAAAAQGeUi/Ls2Wef7fSstWy00UYbRWVl5m+g9QSVlZWx8cYbZ517+umnu3TPdtttl9Pcu+++26V7AAAAAAAAAID8yba5KCKitnFJAkkAAAAAyES5KM9mzpyZ8TyVSsWYMWMSSlN4m2yyyQobmjryyiuvdOmODTbYIKqqqiJixQ1JrVKpVKTT6fjwww+7dA8AAAAAAAAAkD/ZNhdFRNQsqU8gCQAAAACZKBflWbZyUUTEiBEjEkiSjLXXXjvrTC5fk2w+97nPZS0x1df7hiMAAAAAAAAAdBe5bS7yd/0AAAAAxaZclGezZ8/OOjN48OAEkiRj0KBBGc/T6XTMmjWry/ess846WWcaGhq6fA8AAAAAAAAAkB/lJQOjtGRAxhmbiwAAAACKT7kozxYuXBipVCrjTElJSUJpCi/Ts7R+HRYtWtTle3LZkKRcBAAAAAAAAADdRyqViqqyiowzNQ11CaUBAAAAoDPKRXm2ePHivMz0FHV12b/Jl4/nLS8vzzrT0tLS5XsAAAAAAAAAgPyprhiU8by20eYiAAAAgGJTLsqzXIo0NTU1CSRJxqeffpp1Jh/lorKysqwzuRSQAAAAAAAAAIDkVJVVZjyvWaJcBAAAAFBsykV5lkqlMp6n0+l44403EkpTeG+++WbWmWxfk1zk8h4VFZlXqQMAAAAAAAAAyaouz1wusrkIAAAAoPiUi/Js8ODBnZ61FmRef/31SKfTSUUqmOXLl8drr72WtfgzaFDmFee5aGxszDqjXAQAAAAAAAAA3UtVlnJRTYNyEQAAAECxKRflWWflovZlorq6unjuueeSilQwL7zwQixevDgiImNZKlPhKldLlizp9Kz1buUiAAAAAAAAAOhesm0uqmtqjKUtyxJKAwAAAEBHlIvybNSoUTltJXrggQcSSFNY2Z4hnU5HKpWKUaNGdfmuBQsWZJ1RLgIAAAAAAACA7iVbuSgiorax8184CgAAAEDhKRfl2ZgxYzKep1KpSKfTceONN8by5csTSpV/y5cvj6lTp0Yqlco6m+1rkov58+dnPE+lUjF8+PAu3wMAAAAAAAAA5E9VLuWihvoEkgAAAADQGeWiPNt00007PWu/0ej999+PO++8M4lIBXHnnXfGe++9FxGRdVPTZptt1uX75syZk7XItMEGG3T5HgAAAAAAAAAgf3LZXFSjXAQAAABQVMpFebbjjjtmnWndXnTeeedFc3NzAqnyq7m5Oc4777ycthZFREyYMKFL99XU1MSCBQsiInORSbkIAAAAAAAAALqX8gEDo7R/ScaZmiXKRQAAAADFpFyUZxMmTIjBgwdHRHRYvmlfjpk7d26cc845iWXLl3PPPTfeeeediOi47NP+uQcNGpRT4SqTGTNm5DSnXAQAAAAAAAAA3UsqlYqqLNuLahuViwAAAACKSbkoz/r37x9f/vKXM27YSafTbduLrr322rj77rsTTNg1v/vd7+Kqq65qy9+Z1mfcY489on///l268+mnn85pTrkIAAAAAAAAALqf6izlopqGuoSSAAAAANAR5aICOProo3Oaay3oHHXUUfHwww8XOFXXPfLII/Gtb32rw41MnTnmmGO6fO8//vGPnOY22mijLt8FAAAAAAAAAORXVfmgjOe1DUsSSgIAAABAR5SLCmD//fePUaNGRUR0WsRp3fqTSqWiubk5vv71r8dtt92WWMZVdccdd8TXv/71aG5ujojodGtR++cdOXJkHHDAAV26d+nSpfHYY491+HVs/7mNNtooqqqqunQXAAAAAAAAAJB/1eUVGc9tLgIAAAAoLuWiAujfv3+ccsopnRZwWqXT6Uin05FKpaKpqSmOOeaYOO2006KhoSGhpNk1NjbGGWecEUcddVQ0Nja2bVvKpPWZTj311OjXr2t/xJ544olYvHhx2/t2dteOO+7YpXsAAAAAAAAAgMKwuQgAAACge1MuKpAzzzwzRo8eHRGdby9qr7W0c+2118a4cePiT3/6U6EjZvXAAw/EVlttFddcc01biSeT9uejRo2K008/vcsZ7r333pzmlIsAAAAAAAAAoHuqLq/MeL64qSGWtbQklAYAAACAlSkXFUhZWVn893//d9YtPxH/3sjTWjCaNWtWHHjggbHLLrvEH//4x1i+fHmh466Q5b777otdd901DjjggHjzzTdXKBblurXooosuirKysi5lWbZsWdx11105lbOUiwAAAAAAAACge8pWLoqIqG2sTyAJAAAAAB1RLiqgY445Jvbdd9+ctv6k0+m2udaS0VNPPRUHH3xwbLDBBvG9730v/vGPfxQs69NPPx3f//73Y8MNN4yDDjoonnrqqc/kyVQsap1JpVKx7777xsSJE7uc6f77749PPvkkIj5bamr/9RwyZEhsueWWXb4PAAAAAAAAAMi/qhzKRTUNykUAAAAAxVJS7AC93U033RTjxo2LDz/8sK2Ak0lHhZ558+bFFVdcEVdccUUMHTo0JkyYEDvuuGNsvvnmsckmm8TnPve5qKioyClPY2NjzJ49O15//fWYOXNmPP300/HMM89EbW1t2/2tct1W1L7oM2LEiLjxxhtzypLNL37xi4zn7ctMuWw3AgAAAAAAAACSl8vmIuUiAAAAgOJRLiqwNddcM+65557Yc889o7GxMeeCUcSKpZ3Wz9XW1sZDDz0UDz300AqvqaioiLXWWiuqqqqitLQ0Bg4cGKlUKpqamqKpqSkWLlwYH330UdTXf/abcR0Vilb+fGfaF5AqKiri97//fay55ppZX5fNzJkz49FHH83p6/WNb3yjy/cBAAAAAAAAAIVRPmBglPYviaaWZZ3O1CoXAQAAABSNclECdtppp7jzzjvj4IMPjuXLl+dUmIlYsWSUrfRTX1/fVhxaeYvPqmweymV+5del0+koKSmJu+66KyZMmJDTa7O57LLLOs3XXkVFReyzzz55uRMAAAAAAAAAyL9UKhVV5ZXxYd3CTmdsLgIAAAAonn7FDtBX7L///nH77bfHgAEDIiJzYWZl6XS67aP1tZ19rDy/Oq/JRfvXDRw4MG677bb42te+lvMzZTJr1qy4/fbbO3yWlXN+9atfjbKysrzcCwAAAAAAAAAURnV5ZcZzm4sAAAAAisfmogQdcsghMXz48DjooINi0aJFOW8waq+z+dayT7bS0qrel+mudDodQ4cOjXvvvTd23333Lr9vq5dffjkmTpyY0+xRRx2Vt3sBAAAAAAAAgMKoylIusrkIAAAAoHiUixK2++67x1NPPRWHHnpozJgxY4WiTlfkozSUi/Z5t9hii7jrrrtis802y+sdBx98cBx88MF5fU8AAAAAAAAAoHhsLgIAAADovvoVO0BftNlmm8Xzzz8fJ598clspKJVKZd06VEyt+dLpdKTT6TjllFPi+eefz3uxCAAAAAAAAADofWwuAgAAAOi+lIuKpLS0NP7nf/4nHn/88Rg3bly3LRm1z5NOp2PrrbeOxx9/PK655pooLS0tcjoAAAAAAAAAoCeoLh+U8XxxU0Msa2lJKA0AAAAA7SkXFdmuu+4a06ZNi+uvvz7WX3/9ts1AraWeYhSN2t/dmme99daLKVOmxIsvvhi77rpr4pkAAAAAAAAAgJ6rqrwi60xto+1FAAAAAMWgXNQNpFKpOP744+PNN9+M22+/Pbbddtu2Uk/reSHLRh29f+v922yzTdx+++3x1ltvxXHHHdettioBAAAAAAAAAD1Dts1FERE1DcpFAAAAAMVQUuwA/Fv//v3j8MMPj8MPPzxmzJgRd9xxR9x1110xZ86ctplCFYxai0wRERtssEEcdthhccQRR8QWW2yR97sAAAAAAAAAgL6lurwy60ytchEAAABAUSgXdVNbbLFFXHzxxXHxxRfHG2+8EX/729/i73//ezz77LMxd+7cjK9duXzUvjjUkXXWWScmTJgQX/rSl2KPPfaIMWPGdDk/AAAAAAAAAECr8gEDY2D/kmhuWdbpjM1FAAAAAMWhXNQDbLLJJrHJJpvESSedFBERixcvjhkzZsSrr74a8+bNi/nz58f8+fPjk08+iYaGhmhqaorGxsaIiCgtLY2ysrIoLy+P6urqGDVqVIwcOTLWWWed2GyzzWKLLbaIIUOGFPPxAAAAAAAAAIBeLpVKRXV5ZXxYt7DTGZuLAAAAAIpDuagHGjx4cOy4446x4447FjsKAAAAAAAAAEBOqrKUi2wuAgAAACiOfsUOAAAAAAAAAABA71ddXpnx3OYiAAAAgOJQLgIAAAAAAAAAoOCqspSLbC4CAAAAKA7lIgAAAAAAAAAACs7mIgAAAIDuqaTYAXqb999/Px599NGcZjfbbLPYbrvtCpwIAAAAAAAAAKD4sm0uWtTUEMtaWqKkf/+EEgEAAAAQoVyUd/fcc0+ceeaZOc0+9thjhQ0DAAAAAAAAANBNZNtcFBFR21gfa1YOSSANAAAAAK36FTtAb/PPf/4z0ul01o8dd9wxdt1112LHBQAAAAAAAABIRHX5oKwztQ1LEkgCAAAAQHs2F+XZG2+8ERERqVSqw/N0Oh2pVCoOPfTQJGMBAAAAAAAAABRVVQ6bi2oa6hJIAgAAAEB7Nhfl2dy5c9uKRStvK2rvgAMOKEY8AAAAAAAAAICiqBgwMAb2z/x7cGsb6hNKAwAAAEAr5aI8+/jjjzv8fPtNRmuuuWasv/76SUUCAAAAAAAAACi6VCqVdXtRjXIRAAAAQOKUi/Js6dKlnZ6l0+lIpVKx+eabJ5gIAAAAAAAAAKB7qM5SLrK5CAAAACB5ykV5VlmZ+ZtgEREbbLBB4YMAAAAAAAAAAHQzNhcBAAAAdD/KRXk2aNCgrDODBw9OIAkAAAAAAAAAQPdicxEAAABA96NclGe5lItymQEAAAAAAAAA6G1sLgIAAADofpSL8mzNNdeMdDqdcaa5uTmhNAAAAAAAAAAA3Ue2zUWLmhpi2fKWhNIAAAAAEKFclHebbLJJ1pn6er9lBwAAAAAAAADoe7KViyIiFjYsSSAJAAAAAK2Ui/Isl3LRhx9+mEASAAAAAAAAAIDupSqHclFNg1/aCgAAAJAk5aI8GzNmTMbzdDods2bNSigNAAAAAAAAAED3UV0+KOuMchEAAABAspSL8mynnXbq9CyVSkVExJtvvhnLli1LKhIAAAAAAAAAQLdQMWBgDOjfP+NMbUNdQmkAAAAAiFAuyrsRI0bEVlttFel0uq1MFPF/G4taNTY2xvPPP1+MeAAAAAAAAAAARZNKpbJuL6ppWJJQGgAAAAAilIsKYq+99so685e//CWBJAAAAAAAAAAA3UtVeUXGc5uLAAAAAJKlXFQA3/zmNzs9S6VSkU6n44477kgwEQAAAAAAAABA95B9c1F9Qkn+f/buPErOukwf/l3dnXRXd5bqBAi4gIEEMIqoZIAgiwqIIgijAyIysgmIznCcwV1fF0BHBB0dx4VNFERhXBBBEUERhZ+EgbAMu0DYIUDoCkl3dZLuft4/NLEDST2VUPXU9vmc00dS37vqe1XrwXM6fdUNAAAAQIRyUU3MnTs3dtxxx0iSJHK53OrHkyRZ/c8PPPBAXHHFFfWIBwAAAAAAAABQN4WevrLnReUiAAAAgEwpF9XIhz70obLnSZLEF77whYzSAAAAAAAAAAA0hv7e8uWigWHlIgAAAIAsKRfVyCGHHBKzZ8+OiHjB9qJVf54/f35873vfq0s+AAAAAAAAAIB6SNtc9NxwKUbGRjNKAwAAAIByUY1MmDAh/vu//zuSJFnreS6XiyRJ4sQTT4yFCxdmnA4AAAAAAAAAoD7SNhdFRCwpDWWQBAAAAIAI5aKa2nvvveOggw5aY1tRRKwuHOVyuViyZEm8/e1vj2KxWKeUAAAAAAAAAADZ6c+nl4sGSoMZJAEAAAAgQrmo5s4888yYPXt2RMRaC0YREXfffXfsueee8dRTT2WeDwAAAAAAAAAgSwXlIgAAAICGolxUY1OnTo1LL700pk6dGhEvLBit+vPNN98cu+yyS9x88811yQkAAAAAAAAAkIW+Cd0xobOz7ExxWLkIAAAAICvKRRnYeuut4xe/+EVMnjw5ItZeMMrlcvHAAw/EvHnz4j/+4z9i5cqV9YoLAAAAAAAAAFAzuVwuCj3ltxcNDCkXAQAAAGRFuSgju+++e1xzzTWx6aabRkSsLhRF/LVgtOqxFStWxGc+85nYdttt44ILLoiRkZG6ZQYAAAAAAAAAqIX+3vLlIpuLAAAAALKjXJSh7bffPq677rp43etet7pQtMr4glGSJLFw4cJ43/veF694xSvic5/7XNx+++31iAwAAAAAAAAAUHXpm4uWZZQEAAAAAOWijL3iFa+I+fPnx+c///no6upa5wajVSWjxx9/PE455ZTYfvvtY9asWXH00UfHueeeGzfddFMMDvqUHgAAAAAAAACg+fTnJ5U9Lw4PZZQEAAAAgK56B2hVRx11VOrMdtttFwsWLFhdLop4YcFo/GMPPPBALFy4ML7//e+vnt9kk01ixowZMWPGjJg8eXJ0d3fHxIkT13jNesvlcnHOOefUOwYAAAAAAAAA0CD6871lzwdKNhcBAAAAZEW5qEa+//3vV1zwWVUeWttj40tGa5tdtGhRLFq0qKHKROMlSaJcBAAAAAAAAACsoZCyuei54VKMjI1GV0dnRokAAAAA2pdyUY2trTi0oc9/ftFo/MyLvQcAAAAAAAAAICv9vX2pM0uGh2J67+QM0gAAAAC0N+WiGkvbKLQ+paC1za6rcNQolJ4AAAAAAAAAgOfr70kvFw0MDSoXAQAAAGRAuajGal2uaeTyTiOXngAAAAAAAACA+ilUsLmoODyYQRIAAAAAOuodAAAAAAAAAACA9tI3oTsmdHSWnRkoKRcBAAAAZEG5CAAAAAAAAACATOVyuSjky28vKioXAQAAAGRCuQgAAAAAAAAAgMz1p5SLbC4CAAAAyIZyEQAAAAAAAAAAmbO5CAAAAKAxdNU7QKvL5XL1jgAAAAAAAAAA0HBsLgIAAABoDMpFNZQkSb0jAAAAAAAAAAA0pPRy0bKMkgAAAAC0N+WiGjn88MPrHQEAAAAAAAAAoGEV8pPKni8dLsXI2Gh0dXRmlAgAAACgPSkX1ci5555b7wgAAAAAAAAAAA2rP99b9jyJiCXDQzG9d3I2gQAAAADaVEe9AwAAAAAAAAAA0H76UzYXRUQUS4MZJAEAAABob8pFAAAAAAAAAABkrpDvS50ZUC4CAAAAqDnlIgAAAAAAAAAAMtc3sTsmdHSWnbG5CAAAAKD2lIsAAAAAAAAAAMhcLpdL3V5kcxEAAABA7SkXAQAAAAAAAABQF/0p5SKbiwAAAABqT7kIAAAAAAAAAIC6sLkIAAAAoP6UiwAAAAAAAAAAqIu0zUXKRQAAAAC1p1wEAAAAAAAAAEBdpJWLispFAAAAADWnXAQAAAAAAAAAQF0UUspFzw0PxejYWEZpAAAAANqTchEAAAAAAAAAAHWRtrkoiYglw0PZhAEAAABoU8pFAAAAAAAAAADURdrmooiIgdKyDJIAAAAAtC/lIgAAAAAAAAAA6qI/Pyl1pliyuQgAAACglpSLAAAAAAAAAACoi76J3TGho7PsjM1FAAAAALWlXAQAAAAAAAAAQF3kcrko5PvKzhRLgxmlAQAAAGhPykUAAAAAAAAAANRNWrloQLkIAAAAoKaUiwAAAAAAAAAAqJt+m4sAAAAA6qqr3gHYcKOjo/HEE0/E448/HkuXLo1SqRSlUimGh4cjSZIXzL/vfe+rQ0oAAAAAAAAAgHVLKxfZXAQAAABQW8pFTeLuu++O+fPnxy233BK33HJL3HPPPfHUU0+ttUS0LspFAAAAAAAAAECjKSgXAQAAANSVclGDGh0djcsuuywuu+yy+O1vfxuPPvroGufrUyqKiMjlctWMBwAAAAAAAABQFWmbi54bHorRsbHo7OjIKBEAAABAe1EuajD33ntvnHHGGfHDH/4wnnnmmYhYe5FofcpC61tEKucrX/lKXHbZZalzm2yySfz0pz+t2r0AAAAAAAAAQGtK21yURMSS4aGY1jspm0AAAAAAbUa5qEHcfffdcdJJJ8VPfvKTGBsbW6MQVK5IlFYcqvbGon322Sc++clPlp1JkiRyuVxcc801sccee1T1fgAAAAAAAACgtaRtLoqIKJYGlYsAAAAAasS+6DpbunRpHH/88bHddtvFRRddFKOjo6vLOau+Iv5a2FnbV9a233772G+//VbfXS7T2WefnXk+AAAAAAAAAKC5pG0uiogYKA1mkAQAAACgPSkX1dGll14ac+bMiTPPPPMFpaKIqGuJqJxPfOITq/95fAlq/FeSJPGzn/0sli5dWsekAAAAAAAAAECjmzSxJ7o6OsvOFJWLAAAAAGpGuagOkiSJT3ziE3HggQfGY489ts5SUaOaN29e7LDDDuvcXrTK8uXL4+KLL65XTAAAAAAAAACgCeRyuSjke8vODJSWZZQGAAAAoP0oF2Vs6dKl8ba3vS1OO+20pisVjffBD36wormLLrqoxkkAAAAAAAAAgGbXn59U9nygNJRREgAAAID2o1yUoeeeey722WefuPLKK1cXiyI2vFS0qpi06nWydOihh8bUqVNX53i+XC4XSZLEVVddFc8991zW8QAAAAAAAACAJpK2uahocxEAAABAzSgXZWTp0qWxzz77xPXXXx8Rfy/fVFoqGl8kqlehaLzu7u545zvfudb84x8bGRmJK664IstoAAAAAAAAAECTSd9cNJhREgAAAID2o1yUkcMOOyzmz5+/xraiNM8vEq0qI6366urqikKhEJttttnq+SwddthhFc39+te/rnESAAAAAAAAAKCZ9ef7yp4XlYsAAAAAaqar3gHawec///m49NJLKy4WjS8JrZp9+ctfHvvss0/MnTs3Xve618UWW2wRm2yyyeq5jo7se2JvfOMbY8aMGfHUU0+t3sQ03qrHbC4CAAAAAAAAAMoppJSLlgwPxejYWHTW4fcjAAAAAFqdclGN/b//9//i5JNPXu9iUZIkMXXq1Hjf+94XRx99dLzmNa+pedb1lcvl4q1vfWv84Ac/eMHWpCRJVj+2aNGi+Mtf/hKzZ8+uR0wAAAAAAAAAoMGlbS5KIuK54aHo752UTSAAAACANuLjXGpo5cqVceyxx64uFJUrFuVyudWbfrq7u+PTn/50LFy4ML7xjW80ZLFolX333beiuWuvvbbGSQAAAAAAAACAZpW2uSgiYqA0mEESAAAAgPajXFRDX/va1+LOO+9cXRpal/HbiubNmxe33nprnHzyyVEoFDJKuuH23nvv1fmfv71oPOUiAAAAAAAAAGBd0jYXRSgXAQAAANSKclGNDA0Nxemnn162cBMRq4tHSZLEBz7wgbjmmmti9uzZGaV88QqFQsyZM6fsTJIksWDBgowSAQAAAAAAAADNZtLEnujq6Cw7U1QuAgAAAKgJ5aIaOeOMM2Lx4sUREevcWrSqWJTL5eLTn/50fPvb346urq4sY1bFvHnzyr7HiIi77rorRkZGsowFAAAAAAAAADSJXC4XhXxv2RmbiwAAAABqQ7moRr75zW+W3Vo0vlh0/PHHx8knn5xhuuracccd1/r4+MLRypUr46677soqEgAAAAAAAADQZAo9fWXPlYsAAAAAakO5qAauv/76ePDBByNi7VuLxheL3vCGN8Q3vvGNjBNW15w5cyqau+eee2qcBAAAAAAAAABoVv295ctFxdKyjJIAAAAAtBflohr40Y9+tM6z8duMuru743vf+150dnZmEatmttlmm4rmFi5cWOMkAAAAAAAAAECz6s9PKns+UBrKKAkAAABAe1EuqoHLL798jRLR863aWnTCCSfErFmzMkxWG9OnT49p06ZFRJR938pFAAAAAAAAAMC6FPK9Zc9tLgIAAACoDeWiKlu0aFHcf//9EfHXEtF444s3+Xw+PvKRj2SarZZe+tKXvuD9Pt9jjz2WURoAAAAAAAAAoNmkbS5asrwUo2NjGaUBAAAAaB/KRVV27bXXlj1ftbVo//33j4022iijVLU3Y8aM1Jmnn346gyQAAAAAAAAAQDMq9PSVPU+SJJ4bHsooDQAAAED7UC6qsttuu62iuXe/+901TpKtTTfddJ1nuVwukiSJZ555JsNEAAAAAAAAAEAz6e8tXy6KiBgYHswgCQAAAEB7US6qsgceeGCtj+dyuTX++Y1vfGNGibIxaVL51eQREcVisfZBAAAAAAAAAICmlLa5KCJiYEi5CAAAAKDalIuqbF3lovFmz54dhUKh9mEy1NPTkzqzfPnyDJIAAAAAAAAAAM1ocndPdHaU/1WWos1FAAAAAFWnXFRlTzzxxBpbisZLkiRyuVzMmjUr41S1p1wEAAAAAAAAALwYuVwu+lO2F9lcBAAAAFB9ykVVNjiY/kOsl73sZRkkaTwjIyP1jgAAAAAAAAAANLBCPqVcVFIuAgAAAKg25aIqq6RcNGnSpAySZKtUKqXOdHd3Z5AEAAAAAAAAAGhW/b3ly0VF5SIAAACAqlMuqrLh4eHUmYkTJ2aQJFtDQ0OpM729vRkkAQAAAAAAAACaVaHH5iIAAACArCkXVVk+n0+dqWTLT7N56qmnUmcq+d4AAAAAAAAAAO0rdXPRsHIRAAAAQLUpF1VZJdt5Bgdb7wddjz766DrPkiSJiIjJkydnFQcAAAAAAAAAaEJpm4uWDA/F2NhYRmkAAAAA2oNyUZX19ZX/IVdExOOPP55BkmwtXLgwcrncOs9zuVy89KUvzTARAAAAAAAAANBs+vOTyp4nSRJLlpcySgMAAADQHpSLqqy/v3/1pp61SZIkHn744QwT1d6jjz4azz77bERE2fe++eabZxUJAAAAAAAAAGhC/fne1JmB0rIMkgAAAAC0D+WiKps5c+Y6z1Zt9rn33ntj5cqVWUWquQULFlQ0p1wEAAAAAAAAAJRTSNlcFBFRLA1mkAQAAACgfSgXVdmWW2651sfHb/RZsWJF3HrrrVlFqrnf/e53Fc3Nnj27xkkAAAAAAAAAgGY2ubsnOjvK/zrLgHIRAAAAQFUpF1XZuspFz3fllVfWOEl2fv3rX6/eylTO3LlzM0gDAAAAAAAAADSrXC4X/T19ZWcGhpSLAAAAAKpJuajKdthhh4rmfvnLX9Y4STYWLFgQ999/f0SsuZ0pItYoHBUKBZuLAAAAAAAAAIBUhXz5clFxWLkIAAAAoJqUi6rsda97XeTz+YiIF2zzSZIkcrlcJEkSN9xwQ9x11131iFhVZ555ZtnzVe/Z1iIAAAAAAAAAoBL9KeUim4sAAAAAqku5qMq6urpixx13fMEWn7X51re+lUGi2nn66afjggsueEGJam3e8pa3ZJAIAAAAAAAAAGh2NhcBAAAAZEu5qAbSijSrthedc8458dBDD2WUqvq+9KUvxeDgX39gl1am+sd//McsIgEAAAAAAAAATS51c1FJuQgAAACgmpSLauDd7373Os/Gl3BWrFgRJ554YhaRqu6OO+6I73znO+vcWrSqQBURMWfOnNhyyy2zjAcAAAAAAAAANKm0zUVLhodibGwsozQAAAAArU+5qAa23HLLmDt3biRJstbyzarHkySJiy++OC644II6pNxwo6Ojcfjhh8eKFSsiovzWolwuF+9973uzigYAAAAAAAAANLm0zUVJksSS5aWM0gAAAAC0PuWiGjn88MNTZ1YVjI4//vi49dZbM0hVHf/yL/8SCxYsWGM70XjjC1Xd3d1xzDHHZBkPAAAAAAAAAGhiaeWiiIhiaTCDJAAAAADtQbmoRo4++ujYeOONIyLWub1o1dmyZcvi7W9/e9x///2ZZtwQX/nKV+KMM85Y63sab9V2pkMOOSSmT5+eUToAAAAAAAAAoNkVKigXDZSWZZAEAAAAoD0oF9VIT09PnHDCCWvd7LPK+ILR448/HrvuumvcdtttWUVcbyeddFJ88pOfXF0sStta1NHRESeeeGJm+QAAAAAAAACA5jepOx+dHeV/paVYGsooDQAAAEDrUy6qoX/913+NTTbZJCLWvr0oYs2C0aJFi2KXXXaJ888/P7OMlVi2bFkcdthh8YUvfGF13rTSVC6Xi8MPPzxe9apXZRUTAAAAAAAAAGgBHblc9PeU315kcxEAAABA9SgX1dCUKVPi9NNPL1vEiVizYDQ0NBRHHHFEHHDAAfHwww9nEbOsX/3qV/Ha1742fvzjH68uDa3r/YwvUPX19cUXv/jFrGICAAAAAAAAAC2kkE8rFw1mlAQAAACg9SkX1dhhhx0Wb3zjG1cXc9ZlfMEoSZK47LLLYptttokPfehDsXDhwqzirnbllVfGXnvtFe94xzvigQceSC0WrbJq7qSTTooZM2ZklBYAAAAAAAAAaCX9KeWionIRAAAAQNUoF2Xg3HPPjenTp0dErFfBaPny5fHd7343Zs+eHXvttVd873vfiyeeeKJmORcsWBCf+9znYptttom3vvWtcfXVV68uC6UVi1ad53K52GuvveLDH/5wzXICAAAAAAAAAK3N5iIAAACA7HTVO0A72GKLLeKCCy6IfffdN3UD0PiC0ao/J0kSV199dVx99dUREfHKV74y5s6dG69//etjq622is0337yiHAsXLoxSqRRDQ0OxaNGiePTRR2PhwoWxYMGCWLBgQQwMDKyR4fk51mV8YWqjjTaKH/zgBxXlAQAAAAAAAABYG5uLAAAAALKjXJSRt7zlLfHFL34xPvnJT5bdXrTK+I1Bq/68yp133hl33XVXnH/++S94ztpeZ9V/zpo1q+x9q4zPV65UNH42SZLI5/Pxs5/9LDbddNOyzwEAAAAAAAAAKCdtc1FxeCjGxsaio6Mjo0QAAAAArctPWDL08Y9/PD71qU+9oDi0Lqu2FkXE6vnnbzQaP5Pm+c8Z/7Wu1y9n/GxnZ2dccMEFseuuu1aUBQAAAAAAAABgXdI2FyVJEs8tL2WUBgAAAKC1KRdl7JRTTomPfvSja5SG0pQrAlVSUlplbc9bV2Gpktda9ZyOjo747ne/GwceeGBFOQAAAAAAAAAAyknbXBQRMVAazCAJAAAAQOtTLqqDU089Nb761a+uXs1daTlolbVtHtrQ563va4zPmyRJdHd3x//8z//E0UcfvV7vAQAAAAAAAABgXdI2F0VEFJWLAAAAAKpCuahO/u3f/i0uu+yymDp16hrbiBrd+GLR9OnT44orroh3vvOddU4FAAAAAAAAALSSSd356MyV/7UWm4sAAAAAqkO5qI722WefuOmmm+LNb37z6s1BjVoyGp8rSZJ485vfHLfddlvsvvvudU4GAAAAAAAAALSajlwuCvnesjMDpWUZpQEAAABobcpFdTZz5sy46qqr4rvf/W5Mnjy54UpGzy8V5fP5OO200+LKK6+MzTbbrM7pAAAAAAAAAIBW1Z+fVPa8aHMRAAAAQFUoFzWIY489Nh544IE48cQTo6en5wUlo6yLRs8vFUVEHH744fGXv/wlTjzxxIYoPgEAAAAAAAAArauQ7yt7PqBcBAAAAFAVykUNZNq0aXHaaaetLhlNnz49kiRZa9Go2uWetb12kiQxYcKEOOyww2LBggVx7rnn2lYEAAAAAAAAAGSiP6VcZHMRAAAAQHUoFzWgGTNmxGmnnRaPPfZYXHjhhbHPPvvEhAkT1igaRbywEPRiviJi9esnSRLbbLNNnHTSSfHwww/HeeedF9tvv329vh0AAAAAAAAAQBuyuQgAAAAgG131DsC6TZgwIQ4++OA4+OCDY3BwMH73u9/F5ZdfHn/605/innvuidHR0Rc8p5KNRuMLSqtMmTIl5s6dG3vvvXcceOCBsc0221TlPQAAAAAAAAAAbIi0zUVLhodibGwsOjp8ti4AAADAi6Fc1CT6+vriHe94R7zjHe+IiIjh4eG49dZb49Zbb42FCxfGo48+Go8++mg88cQTsWzZsiiVSjE8PBzLly+PCRMmRG9vb+Tz+Zg0aVK89KUvjc033zw233zzmDVrVsydOze23XbbiopJAAAAAAAAAABZSNtcNJYk8dzyUuocAAAAAOUpFzWpnp6e2GmnnWKnnXaqdxQAAAAAAAAAgKpL21wUEVEsDSoXAQAAALxI9kIDAAAAAAAAANBwKikNDZQGM0gCAAAA0NqUiwAAAAAAAAAAaDiTu/PRmSv/qy3KRQAAAAAvnnIRAAAAAAAAAAANpyOXi0K+t+xMUbkIAAAA4EVTLgIAAAAAAAAAoCEV8n1lzwdKyzJKAgAAANC6lIsAAAAAAAAAAGhI/flJZc+LpaGMkgAAAAC0LuUiAAAAAAAAAAAaUiHfW/bc5iIAAACAF0+5CAAAAAAAAACAhmRzEQAAAEDtKRcBAAAAAAAAANCQ0jYXFYcHY2xsLKM0AAAAAK1JuQgAAAAAAAAAgIaUtrloLEli6fJSRmkAAAAAWpNyEQAAAAAAAAAADamQ70udGSgNZpAEAAAAoHUpFwEAAAAAAAAA0JD6lYsAAAAAak65CAAAAAAAAACAhjS5Ox+dufK/3lJULgIAAAB4UZSLAAAAAAAAAABoSB25XEzN95adsbkIAAAA4MVRLgIAAAAAAAAAoGH15/vKnisXAQAAALw4ykUAAAAAAAAAADSsQkq5qKhcBAAAAPCiKBcBAAAAAAAAANCwbC4CAAAAqK2uegcg3YoVK+Khhx6KRYsWxVNPPRWLFy+O4eHhWL58eSxfvjxGR0frHTHVZz/72XpHAAAAAAAAAACaUKHH5iIAAACAWlIuajBDQ0Px5z//Oa699tq48cYb46677oqHHnooxsbG6h3tRVEuAgAAAAAAAAA2RH9vSrloeDDGkiQ6crmMEgEAAAC0FuWiBlAsFuPnP/95/OQnP4nf//73MTIysvosSZI6JquOnB/eAQAAAAAAAAAbKG1z0ViSxNLhoZiaLz8HAAAAwNopF9XRvffeG1//+tfjvPPOi1KpFBEvLBM1ezGnFcpRAAAAAAAAAED99PdOSp0ZKA0qFwEAAABsIOWiOli8eHH8f//f/xdnn312jI6OrlHAWVeZqBlLOs1ejAIAAAAAAAAA6q+/gtLQQGkwXlH7KAAAAAAtSbkoYz//+c/jmGOOiWKxuLow9PwSTjMWiQAAAAAAAAAAamFydz46cx0xmoytc6ZYGswwEQAAAEBr6ah3gHaRJEl86EMfioMOOigGBgYiSZLI5XKri0VJkqz+AgAAAAAAAADgrzpyuZia7y07M6BcBAAAALDBbC7KwIoVK+I973lP/OIXv1hdKlpFmQgAAAAAAAAAoLxCT188O7RsnefKRQAAAAAbzuaiGkuSJN797nfHxRdfvEaxyJYiAAAAAAAAAIDK9Pf2lT0vDisXAQAAAGwom4tq7FOf+lRccskla5SKXozxW48AAAAAAAAAANpBoad8uWhgSLkIAAAAYEMpF9XQ1VdfHaeeeuoGF4vKFYlsPQIAAAAAAAAA2kV/3uYiAAAAgFpRLqqR4eHhOO6441b/eX3KQONLRc9/3oQJE2KjjTaK6dOnRz6fj+7u7ujs7HzxgQEAAAAAAAAAGlRauWhJaSjGkiQ6ynyQKwAAAABrp1xUI2eeeWbcd999kcvlKi4WPX/DUV9fX+y5554xb968mDt3bmy99dbx8pe/vGaZAQAAAAAAAAAaUSGlXDSajMXS5aWY2tObUSIAAACA1qFcVAMrV66M0047bY0NROU8v1S0zz77xAc+8IF461vfGt3d3TXLCQAAAAAAAADQDPp7J6XODJQGlYsAAAAANoByUQ1ccskl8dhjj1W0tWh8sWjXXXeNr33tazF37twsYgIAAAAAAAAANIX+CkpDA0PL4hX9G2eQBgAAAKC1dNQ7QCu66KKLUmdyudzq8lEul4tTTz01rrnmGsUiAAAAAAAAAIDnmdzTGx1/+wDXdSkOD2aUBgAAAKC12FxUZStWrIhf//rXqzcSrc34bUVdXV3x4x//ON71rndlFREAAAAAAAAAoKl05HJR6OmLZ0vL1jkzMKRcBAAAALAhbC6qsptuuilKpVJE/LU8tC6rNhb993//t2IRAAAAAAAAAECKQr6v7LnNRQAAAAAbRrmoyq677rqy57lcbnWx6IADDohjjz02o2QAAAAAAAAAAM2rP6VcNFBSLgIAAADYEMpFVXbnnXeu8yyXy63+566urvja176WRSQAAAAAAAAAgKaXurlIuQgAAABggygXVdnChQvLnq/aWnTQQQfFK17ximxCAQAAAAAAAAA0OZuLAAAAAGpDuajKHn744TU2FK3Le9/73gzSAAAAAAAAAAC0hrRy0ZLSUIwlSUZpAAAAAFqHclGVLV26dK2Pjy8cdXV1xZve9KasIgEAAAAAAAAANL1CSrloNBmLpctLGaUBAAAAaB3KRVU2OLjuFdvJ3z4dZ7vttouenp6sIgEAAAAAAAAANL20zUUREQOldf/eBgAAAABrp1xUZStWrCh7nsvlYquttsooDQAAAAAAAABAa6ikXFRULgIAAABYb8pFVTZp0qTUmU033TSDJAAAAAAAAAAArWNyT2905HJlZwZKyzJKAwAAANA6lIuqbMqUKakzfX3pn6QDAAAAAAAAAMDfdeRyUegp/zsXxdJQRmkAAAAAWodyUZVVUi4aHR3NIAkAAAAAAAAAQGsp5HvLnttcBAAAALD+lIuqbObMmZEkSdmZoSGfkgMAAAAAAAAAsL7685PKnttcBAAAALD+lIuq7NWvfnXqzDPPPJNBEgAAAAAAAACA1mJzEQAAAED1KRdVWVq5KEmSeOCBBzJKAwAAAAAAAADQOtI3Fw1mlAQAAACgdSgXVdkuu+yyzrNcLhcREffee29WcQAAAAAAAAAAWkYh31f2vFgairEkySgNAAAAQGtQLqqyV7ziFbHddttFkiSry0QRf91YtMpzzz0X//d//1ePeAAAAAAAAAAATas/pVw0mozF0uWljNIAAAAAtAbloho44IADUmeuuuqqDJIAAAAAAAAAALSOtHJRRESxNJhBEgAAAIDWoVxUA4ceeujqrUXjtxetkiRJXHTRRVnHAgAAAAAAAABoaoUKykUDykUAAAAA60W5qAa23Xbb2G+//SJJkjUeT5Jkddnof//3f+OWW26pQzoAAAAAAAAAgOY0pTsfHWv5oNfxbC4CAAAAWD/KRTXysY99LHXmP/7jPzJIAgAAAAAAAADQGjo6OmJqT2/ZGZuLAAAAANaPclGNvOENb4gDDzxwjW1FEX/fXpQkSfz0pz+NP/3pT3VMCQAAAAAAAADQXPrzfWXPbS4CAAAAWD/KRTX0rW99K6ZMmRIRsUbBaJUkSeK4446LoaGhrKMBAAAAAAAAADSlQkq5yOYiAAAAgPWjXFRDm222WZx22mmRJMkaj4/fZnTPPffEEUccUYd0AAAAAAAAAADNx+YiAAAAgOpSLqqxY445Jo455pg1CkURfy8YJUkSP/vZz+Jf/uVf6pgSAAAAAAAAAKA5pG8uWpZREgAAAIDWoFyUgW9/+9vxpje9qWzB6Dvf+U4cddRRsXLlyjomBQAAAAAAAABobP35SWXPi6WhGEuSjNIAAAAAND/logx0dnbGxRdfHLvsskvZgtEPfvCD2GOPPWLhwoV1TAsAAAAAAAAA0Lj6UzYXjSZjsWx5KaM0AAAAAM1PuSgjU6ZMiSuvvDLe8pa3rC4UrSoZjS8YXX/99bHddtvFqaeeGsPDw3VODQAAAAAAAADQWAop5aKIiIHSYAZJAAAAAFqDclGG8vl8XHrppXHkkUdG8rz12+M3Gg0NDcWnPvWpmDlzZpx66qmxaNGiesQFAAAAAAAAAGg4aZuLIiKKykUAAAAAFVMuytiECRPinHPOifPPPz/6+vrWusFo1RajRYsWxac+9al4+ctfHvvss0/853/+Z9xyyy0xMjJS53cBAAAAAAAAAFAfU7rzq3/XYl1sLgIAAACoXFe9A7Sqk046KXVmv/32iwsvvHCNH3iNLxit+vPIyEhcddVVcdVVV0XEXwtKW2+9dWy++ebxkpe8JKZMmRL5fD4mTJhQmzdTBZ/97GfrHQEAAAAAAAAAaAEdHR1R6OktWyCyuQgAAACgcspFNfL5z38+9VNyVkmSZK1/fn7JaJUVK1bE7bffHnfccUeV0taechEAAAAAAAAAUC2FfF/ZcpHNRQAAAACVUy6qsecXhzbkueNLRuPPXsxrZ6nSkhUAAAAAAAAAQCX6832xsMy5zUUAAAAAlVMuqrG0Yk0lBaHnz6ytbNSomqUABQAAAAAAAAA0j0K+r+y5zUUAAAAAlVMuqrFalGuapbDTLAUoAAAAAAAAAKC59KeWi5ZllAQAAACg+XXUOwAAAAAAAAAAAKyP/vyksufF4aEYa5IPbwUAAACoN+UiAAAAAAAAAACaSiHfW/Z8dGwsli0vZZQGAAAAoLkpFwEAAAAAAAAA0FTSNhdFRBRLgxkkAQAAAGh+ykUAAAAAAAAAADSVQr4vdWZAuQgAAACgIl31DtDqcrlcvSMAAAAAAAAAALSUqd35yOVykSTJOmeUiwAAAAAqo1xUY+V+iAUAAAAAAAAAwPrr6OiIqT29USxTICp3BgAAAMDfKRfVyO67725rEQAAAAAAAABAjfTn+8oWiGwuAgAAAKiMclGN/OEPf6h3BAAAAAAAAACAllXo6St7bnMRAAAAQGU66h0AAAAAAAAAAADWV39v+XKRzUUAAAAAlVEuAgAAAAAAAACg6fTnbS4CAAAAqAblIgAAAAAAAAAAmk4hpVw0MDwYSZJklAYAAACgeSkXAQAAAAAAAADQdNI2F42OjcXS5cMZpQEAAABoXspFAAAAAAAAAAA0nbTNRRERxdKyDJIAAAAANDflIgAAAAAAAAAAmk5/flLqzEBpKIMkAAAAAM1NuQgAAAAAAAAAgKYztTsfuVyu7MyAzUUAAAAAqZSLAAAAAAAAAABoOh0dHTG1p7fsTHF4MKM0AAAAAM1LuQgAAAAAAAAAgKZU6Okrez4wpFwEAAAAkEa5CAAAAAAAAACAptSfL18usrkIAAAAIJ1yEQAAAAAAAAAATamQUi6yuQgAAAAgnXIRAAAAAAAAAABNKXVzUUm5CAAAACCNchEAAAAAAAAAAE2pvzdlc9HwYCRJklEaAAAAgOakXAQAAAAAAAAAQFMq9JQvF42OjcXS5cMZpQEAAABoTspFAAAAAAAAAAA0pbTNRRERxeHBDJIAAAAANC/lIgAAAAAAAAAAmlJ/yuaiiIiBIeUiAAAAgHKUiwAAAAAAAAAAaEpTenojl8uVnbG5CAAAAKA85SIAAAAAAAAAAJpSZ0dHTO3Ol50ZKC3LKA0AAABAc+qqdwCa27Rp01JncrlcLF68OIM0AAAAAAAAAEC7KeQnRXF4aJ3nxdK6zwAAAABo83LRlltumTqTy+Xi/vvvzyBNcyoWi5HL5SJJknXOpK0fBwAAAAAAAADYUP353nhwYN3nNhcBAAAAlNfW5aIHH3xQMaZK1vV9Kve9BQAAAAAAAAB4sQr5SWXPB4YGM0oCAAAA0Jzauly0SiMVYzo7O1NncrlcjIyMZJAGAAAAAAAAAKCx9ef7yp4Xh5WLAAAAAMpRLmowzbrpZ225bX0CAAAAAAAAAGottVxUGookSfweAwAAAMA6dNQ7QCNIkuQFX/WUy+XW+QUAAAAAAAAAwN8VUspFI2OjsWzFcEZpAAAAAJqPclGDarTCEwAAAAAAAABAI0rbXBQRMVAazCAJAAAAQHNSLgIAAAAAAAAAoGlVUi4qKhcBAAAArJNyEQAAAAAAAAAATWtKT2/kUmZsLgIAAABYN+UiAAAAAAAAAACaVmdHR0zt6S07Y3MRAAAAwLopFwEAAAAAAAAA0NQK+b6y5zYXAQAAAKybchEAAAAAAAAAAE2tP7VctCyjJAAAAADNR7kIAAAAAAAAAICmVshPKnteLA1llAQAAACg+SgXAQAAAAAAAADQ1PrzvWXPbS4CAAAAWDflIgAAAAAAAAAAmlp/BZuLkiTJKA0AAABAc1EuAgAAAAAAAACgqRXyfWXPR8ZGY9mK4YzSAAAAADQX5SIAAAAAAAAAAJpaf0q5KCKiWBrMIAkAAABA81EuAgAAAAAAAACgqaVtLoqIGFAuAgAAAFgr5SIAAAAAAAAAAJra1J7eyKXM2FwEAAAAsHZd9Q4AUG+PPPJIXHHFFXHbbbfFnXfeGQsXLoylS5fGc889F0mSxOTJk2Py5Mmx+eabx5w5c2K77baLvffeO2bPnl3v6C3hySefjKuvvjpuv/32uOeee+Ivf/lLDAwMxNKlS2PZsmXR1dW1+r+D/v7+mDVrVmy99dax9dZbx+te97qYM2dO5HJpf00AAAAAAAAAtLLOjo6Y0tMbS4aH1jljcxEAAADA2ikXAW2pWCzG2WefHeeff37cdtttZWcXL14cixcvjgcffDD++Mc/rn589uzZceihh8bxxx8fM2bMqHXklnLffffFOeecE5dddlncfvvtZWdHRkZieHg4nn766YiIuOmmm9Y4nzZtWuy6666x++67x3777RfbbLNNzXIDAAAAAAAAjas/36dcBAAAALABckmSJPUOUS8dHR2Ry+Vibd+CVY/ncrkYHR1t60zlNFteWLZsWZx88snxrW99KwYHq/OD44kTJ8bhhx8eX/rSl2KjjTaqymu2qiuuuCK+8pWvxNVXX73Wf29Uwytf+cp45zvfGf/8z//cFkWjp59+OjbZZJM1Hnvqqadi4403rlMiAAAAAAAAqI/T/nBJ3Pz4g+s83/Hls+LDu709u0AAAABAU2nn38vtqHcAgKz88pe/jFe+8pXxla98pWrFooiIFStWxFlnnRXbbLNNnHvuuVV73VZyyy23xN577x1vfetb4/e//33NikUREXfddVd88YtfjG9+85s1uwMAAAAAAABoPIV8X9lzm4sAAAAA1k65CGh5Y2Nj8ZnPfCYOPPDAePTRR2t2z7PPPhtHHXVUHHvssbFixYqa3dNMRkdH4+STT45/+Id/iKuuuqrecQAAAAAAAIAW1p9SLioqFwEAAACsVVe9AwDU0ujoaLznPe+Jn/zkJ5ndedZZZ8W9994bv/71r6O3tzezexvNk08+GQcddFBce+219Y4CAAAAAAAAtIFKNhclSRK5XC6jRAAAAADNweYioGWNjY3FEUcckWmxaJVrrrkm/vEf/zGWL1+e+d2N4L777otddtlFsQgAAAAAAADITH9+UtnzkbHRGFzRnn+HCwAAAFCOzUVAy/r0pz8dP/zhD9frObNnz443vOEN8epXvzqmTZsWuVwuBgYG4q677oo///nPcfvtt1f8Wr/97W/jmGOOifPOO299oze12267Lfbee+946qmn6h0FAAAAAAAAaCOFfG/qzEBpWUzq7skgDQAAAEDzUC4CWtLll18ep556asXzBxxwQHzqU5+KHXfcsezc7bffHqeddlr88Ic/jLGxsdTXPf/882OPPfaIo48+uuIszezhhx+Ot73tbetdLNpoo43ijW98Y+y2226x7bbbxpZbbhnTpk2Lvr6+iIgoFotRLBZjYGAg7r777rj11lvj1ltvjZtvvjmKxWIN3gkAAAAAAADQbNI2F0VEFEuD8fLCRhmkAQAAAGgeykVAy1m8eHG8733viyRJUmenTZsW559/fuy7774VvfarX/3q+MEPfhDHH398HHzwwfHII4+kPudf//VfY4899ohZs2ZVdEezKhaLse+++8bjjz9e8XPe8Y53xLHHHhv77LNPdHWt+/+SZsyYETNmzIiIiJ133nn14yMjI3HdddfFpZdeGr/61a/i7rvv3vA3AAAAAAAAADS1qT29kYuIcn9TPFAazCoOAAAAQNPoqHcAgGr79Kc/Hc8880zq3Mte9rK44YYbKi4WjbfzzjvHjTfeGHPmzEmdLZVK8W//9m/rfUezOfroo+OOO+6oaHbevHlx4403xiWXXBJvf/vbyxaLyunq6oo99tgjTj/99LjrrrvixhtvjKOOOip6e3s36PUAAAAAAACA5tXZ0RFTesr/XaFyEQAAAMALKRcBLeXmm2+Os846K3Vu6tSpcdVVV8VWW221wXdtsskm8bvf/S5e9rKXpc5edtll8etf/3qD72p0Z599dvz85z9Pnevo6IhTTjkl/vSnP8UOO+xQ9Rw77LBDnHPOOfHYY4/FEUccUfXXBwAAAAAAABpbf76v7HlRuQgAAADgBZSLgJbyhS98IcbGxlLnzjrrrNhmm21e9H2bbrpp/OhHP4rOzs7U2c997nMv+r5GtHDhwvjwhz+cOtfd3R0XXXRRfPrTn67o+/ViFAqFmDt3bk3vAAAAAAAAABpPIaVcZHMRAAAAwAspFwEt45577olf/vKXqXMHHHBAHHTQQVW7d7fddovjjjsude7GG2+M3//+91W7t1F85CMficHB8j+A7+joiB/+8IfxT//0TxmlAgAAAAAAANqRzUUAAAAA60+5CGgZX/va1yJJkrIzXV1dcfrpp1f97pNOOimmTJmSOvfVr3616nfX0zXXXBM///nPU+dOOeUUxSIAAAAAAACg5mwuAgAAAFh/ykVAS1i+fHlcdNFFqXPvete7YtasWVW/f/r06fH+978/de6KK66IRYsWVf3+evnYxz6WOrPbbrvFxz/+8QzSAAAAAAAAAO2uks1FaR9aCQAAANBulIuAlnDZZZfFkiVLUuc+/OEP1yzDCSecEB0d5f+1Ojo6GhdeeGHNMmTpj3/8Y9xwww1lZzo7O+O73/1u6vcFAAAAAAAAoBrSNhetHBuNwRXLM0oDAAAA0Bz8tjfQEn784x+nzsyaNSt23nnnmmXYYostYrfddkudqyRrM/jqV7+aOnP44YfHnDlzMkgDAAAAAAAAkL65KOKv24sAAAAA+DvlIqDpjY6OxlVXXZU69+53v7vmWQ455JDUmf/93/+NxYsX1zxLLT300ENx6aWXps599KMfzSANAAAAAAAAwF+lbS6KiBgoLcsgCQAAAEDzUC4Cmt4NN9wQS5YsSZ1729veVvMsldwxNjYWv/vd72qepZYuvPDCSJKk7Myb3/zm2HbbbTNKBAAAAAAAABAxtac3cikzA6WhTLIAAAAANAvlIqDpVVLUmTx5cuy00041z7LFFlvErFmzUueuvPLKmmeppQsvvDB15tBDD80gCQAAAAAAAMDfdXV0xpSe3rIzRZuLAAAAANagXAQ0vT//+c+pMzvttFN0dXVlkCZit912S52ZP39+Bklq4/77749bbrml7ExHR0fst99+2QQCAAAAAAAAGKeQ7yt7PlAazCgJAAAAQHNQLgKa3s0335w68/rXvz6DJH+1ww47pM7cddddsXz58gzSVN9VV12VOvPa1742ZsyYkUEaAAAAAAAAgDX1KxcBAAAArBflIqCpLVq0KJ544onUuUYrF42MjMT//d//ZZCm+q6++urUmXnz5mWQBAAAAAAAAOCF0jYXFZWLAAAAANagXAQ0tdtuu62iuW233bbGSf5um222qWiu0uyN5pprrkmd2WmnnTJIAgAAAAAAAPBCNhcBAAAArJ+uegcAeDEeeOCBiuZmzZpV4yR/19/fH9OmTYtnn3227Fyl2RvJI488Ek8++WTq3Jw5c1JnFi9eHJdffnlcf/31cfvtt8fChQtjyZIlsWzZspg4cWL09vbG9OnTY+bMmbHVVlvFjjvuGPPmzYutt966Gm8FAAAAAAAAaFGVbC5KkiRyuVxGiQAAAAAam3IR0NQWLlyYOrPppptGX1/5Hx5X26xZs+KGG24oO1NJ9kZzxx13VDQ3e/bstT4+NjYWl112WfzXf/1X/OEPf4jR0dG1zpVKpSiVSrF48eK49957IyLi29/+9urXPuigg+L9739/zJw5cwPeBQAAAAAAANDK0jYXrRwbjcGVy2PSxJ6MEgEAAAA0NuWiChx11FH1jvACjZgJ6uHBBx9MnXnJS15S+yDPs9lmm6XOtGq5aPr06TFlypQXPH7VVVfFCSecEHfdddeLyvCXv/wlvvSlL8Wpp54a73rXu+KUU05ZZ5kJAAAAAAAAaD+FnvQPnywODSoXAQAAAPyNctE6JEmy+j9/8IMf1OXudT1ej0zlrCsvZOGxxx5Lndl0000zSLL+dz766KMZJKmuSopBm2yyyRp/HhwcjOOOOy4uuOCCqmYZHR2N//mf/4lf/OIX8dGPfjQ+97nPxYQJE6p6BwAAAAAAANB8+nvTy0UDw4PxspieQRoAAACAxtdR7wDNIEmSzL4aMVM18kKtLF68OHVmxowZGSRZUyXlomeffTaDJNX1yCOPpM5svPHGq//5/vvvj5122qnqxaLxVqxYEV/84hdj9913rygfAAAAAAAA0Nqm9vRGLmVmYGgwkywAAAAAzUC5qAK5XC6zr0bMVI28UCuVlIsKhULtg2zAnYODg7F8+fLah6miJ598MnVm1Xu///77Y4899og77rijxqn+6vrrr4+dd965ou1KAAAAAAAAQOvq6uiMyT35sjPF0rKM0gAAAAA0PuWiCjTiJqB6byyyuYhGMTAwkDozefLkDJJs2J3Ntr3oiSeeSJ2ZOHFiLFq0KN70pjfFY489lkGqv3v88cdj9913VzACAAAAAACANtefn1T2fKA0lFESAAAAgMbXVe8AABuqVCrFypUrU+fqUS6aMmVKRXNLliyJzTbbrMZpqiNJkoo2RXV2dsYhhxwSjzzySOrslClTYrfddovtttsutthii5g0aVKMjIxEsViM++67L+bPnx8333xzjI6OVpzzmWeeif333z/mz58f06dPr/h5AAAAAAAAQOso9PTGQ2XOB2wuAgAAAFhNuQhoWitWrKhoLp8vv+6+Fnp6eiqaq/Q9NILh4eEYGxtLnbvkkktieHi47MzOO+8cH/vYx2K//faLCRMmlJ198skn47zzzovTTz89nn766Yqy3n///XHYYYfF5ZdfXtE8AAAAAAAA0Fr6e8tvLioOD2aUBAAAAKDxKRcBTavSYk5nZ2eNk7xQV1dl/3pttnLRi50rFArxzW9+Mw477LCK7910003jYx/7WBx//PHxkY98JM4888yKnveb3/wmzjrrrDjmmGMqvqtV7LrrrhX/b5DaueOOO+odAQAAAAAAoG0VevrKng8MKRcBAAAArNJR7wAAG6rSYk49ShaV3rly5coaJ6me5cuXv6jnz5w5M66//vr1KhaNN3ny5DjjjDPi7LPPrrgw9olPfCKWLFmyQfcBAAAAAAAAzau/t3y5qDg8GEmSZJQGAAAAoLFZawA0rZGRkYrmlIuq48VsWdpss83id7/7XcycOfNF5zj66KOjs7MzjjzyyNTZZ599Nk477bQ45ZRTXvS9zeTaa6+NjTfeuN4xAAAAAAAAoG7SNhetHB2NwZXLY9LEnowSAQAAADQum4siIpfL+arBF9RapQWe0dHRGifZ8DvrUXzaUJVuC1qbc889tyrFolWOOOKIOPzwwyua/da3vhWlUqlqdwMAAAAAAACNrz9fvlwUEVEsDWaQBAAAAKDxKRdFRJIkvmr0BbU0ceLEiuYq3XBUTZVuJKr0PTSCDc36/ve/P/bZZ58qp4n4+te/Hi95yUtS54rFYlx44YVVvx8AAAAAAABoXJWUiwaUiwAAAAAiIqJ5VmbUwO67727DDjSxCRMmVDRXj3JRpXe2ermor68vTjvttBqkiSgUCvHlL3853ve+96XO/uhHP4ojjzyyJjkAAAAAAACAxjM135s6MzCkXAQAAAAQ0ebloj/84Q/1jgC8CN3d3RXNDQ8P1zjJht/ZTOWiSr/f4x166KFRKBSqH+ZvDj744Pj3f//3eOaZZ8rO/fGPf4xly5bFpEmTapYFAAAAAAAAaBxdHZ0xpScfzw2X1jlTHFYuAgAAAIho83IRsP4WLlwY8+fPr+kdfX19sf/++6fO5fP56OrqSt0StHTp0mpFq1ild06ZMqXGSaqnp6cnJkyYECtXrqz4OR/4wAdqmOivhacjjjgiTj/99LJzK1asiGuuuSbe/va31zQPAAAAAAAA0Dj6e/rKlotsLgIAAAD4K+UiYL1cc801ceSRR9b0ji222KKiclFERH9/fzz99NNlZ5577rlqxFovld45bdq0GieprunTp8eTTz5Z0ezMmTPj9a9/fY0TRfzTP/1TarkoIuLGG29ULgIAAAAAAIA2Usj3xUPFZ9Z5bnMRAAAAwF911DsAwIsxffr01JklS5ZkkGT97+zt7Y2enp4M0lRPJd/vVXbaaacaJvm71772tTFx4sTUuQULFmSQBgAAAAAAAGgU/fm+sucDpWUZJQEAAABobMpFQFOrpOyyaNGiDJKsqZLtPutT1GkUjVgu6u7uju233z517v77788gDQAAAAAAANAoCvlJZc+LpaGMkgAAAAA0NuUioKm99KUvTZ2ppOhTbZXcWUn2RrM+mV/zmtfUMMmaKikXPfrooxkkAQAAAAAAABpFf7637PlAaVkkSZJRGgAAAIDGpVwENLVXvOIVqTOPP/547YM8zxNPPJE6M3PmzAySVNeWW25Z8ey0adNqmGT971qyZEksX748gzQAAAAAAABAI0jbXLRydDSGVq7IKA0AAABA41IuAppaJQWdJ598MoaGsl1nf99996XOtHq5qFAo1C7IBt6V9f8OAAAAAAAAgPrpz/elzgyUlmWQBAAAAKCxKRcBTa2SskuSJBWVfaqlWCzG4sWLU+fWp6jTKLbaaquKZ5WLAAAAAAAAgHqqrFw0mEESAAAAgMamXASslyOOOCKSJKnp14MPPlhxnu22266iubvvvnsD3/H6q/SuSrM3kte85jUVz+ZyuRomqd9dAAAAAAAAQHOYmu9NnSkqFwEAAAAoFwHNbbPNNosZM2akzi1YsCCDNJXf1dXVtV5FnUbR399f8calYrFY2zDjDAwMVDTX25v+lwcAAAAAAABAa+jq6Iwp3fmyMzYXAQAAACgXAS3g9a9/fepMluWim266KXVm2223jZ6engzSVN8OO+xQ0VylhZ9qqLTI1NfXV9sgAAAAAAAAQEPpz5f/O0KbiwAAAACUi4AWMG/evNSZ66+/PkZGRjJIE/HHP/4xdWannXbKIElt7LLLLhXNPfvsszVOsn53TZ8+PSZOnJhBGgAAAAAAAKBRFFLKRTYXAQAAACgXAS1gzz33TJ1ZunRp3HDDDTXP8vDDD8d9992XOrf33nvXPEutvOUtb6lo7rbbbqtxkr+79dZbU2c233zzDJIAAAAAAAAAjcTmIgAAAIB0ykVA09txxx1jypQpqXOXX355zbNUckcul6uoENWo5syZEy972ctS5+bPn59Bmojly5dXVC7aZpttMkgDAAAAAAAANBKbiwAAAADSKRcBTa+rq6uiss5FF11U8ywXXnhh6szcuXNjo402qnmWWtp3331TZ66//voMkkTcfPPNsWLFitS5f/iHf8ggDQAAAAAAANBIKtlclCRJRmkAAAAAGpNyEdAS3vOe96TO/OUvf6npNp2HH344/vjHP6bOVZK10b33ve9NnXnwwQdjwYIFNc/y05/+tKK5efPm1TgJAAAAAAAA0GjSNhetGB2JoZXpH2YIAAAA0MqUi4CWsP/++8eUKVNS577+9a/XLMN//dd/xdjYWNmZjo6OOOSQQ2qWISu77bZbzJw5M3XuO9/5Tk1zDA8Px/e///3UuY022ih23HHHmmYBAAAAAAAAGk9/flLqzEBpWQZJAAAAABqXchHQEnp6euLggw9OnfvpT38a9913X9XvX7x4cZx11lmpc295y1tis802q/r9WcvlcnHkkUemzv34xz+OgYGBmuW46KKLYvHixalz+++/f3R2dtYsBwAAAAAAANCY+lM2F0VEFEuDGSQBAAAAaFzKRUDL+Pd///fI5XJlZ0ZGRuIjH/lI1e/+7Gc/G88991zq3Iknnlj1u+vlQx/6UPT1lf9B/ODgYM3e88DAQHzyk5+saPboo4+uSQYAAAAAAACgsU3t6U2dGVAuAgAAANqcchHQMl75ylfGfvvtlzp3ySWXxE9+8pOq3XvttdfGGWeckTr3+te/Pvbaa6+q3RsR8eCDD0Yul0v9euMb31jVeyMipk2bFscdd1zq3LnnnhuXX3551e8/4YQT4oknnkide93rXhdveMMbqn4/AAAAAAAA0Pi6OjtjSne+7IzNRQAAAEC7Uy4CWsrnPve56OhI/1fbMcccE/fee++Lvu/JJ5+MQw89NEZHR1NnP//5z7/o+xrNxz72sZg6dWrq3JFHHhkPPPBA1e4955xz4oc//GFFs634fQcAAAAAAAAqV8j3lT23uQgAAABod8pFQEvZYYcd4qijjkqdW7JkSey5554vqvDy9NNPx1577RWPPPJI6uzb3va22H///Tf4rkY1Y8aMOPnkk1PnFi1aFHvuuWfcc889L/rOs88+u6KNSRERe+yxR7zjHe940XcCAAAAAAAAzas/pVxkcxEAAADQ7pSLgJbzpS99KaZPn5469+ijj8aOO+4Yl19++XrfMX/+/Jg7d27ccccdqbM9PT3xjW98Y73vaBYf/OAHY+7cualzDz74YOy8884Vbxx6vqVLl8Zxxx0XxxxzTEWbonp7e+PMM8/coLsAAAAAAACA1mFzEQAAAEB5ykVAy9l4443j+9//fuRyudTZxYsXx7777hvvfOc748Ybb0ydv/POO+PII4+MXXbZJR5++OGK8nzjG9+I2bNnVzTbjDo7O+Oiiy6KQqGQOlssFuOf//mfY968efHzn/88Vq5cmfqcRYsWxamnnhpbbbXVepWFvv71r8fWW29d8TwAAAAAAADQmmwuAgAAACivq94BAGphv/32i4985CNx2mmnVTR/8cUXx8UXXxxbb7117LrrrvGqV70qpk2bFrlcLgYGBuLuu++OP//5z3HbbbetV45DDz00jj322A15C01lyy23jPPOOy8OOOCASJIkdf7666+Pd73rXTF16tTYbbfd4jWveU1svvnmMWnSpBgdHY2BgYG4//77Y/78+XHTTTdVtKlovBNOOCGOOeaYDX07AAAAAAAAQAupZHNRkiQVfYAlAAAAQCtSLgJa1pe//OV49NFH48c//nHFz7n33nvj3nvvrcr9e+65Z3zve9+ryms1g/333z/OPPPMOPbYYysqGEVELFmyJC677LK47LLLqpbjkEMOif/8z/+s2usBAAAAAAAAzS1tc9GK0ZEorVwRvRO7M0oEAAAA0Fg66h0AoFY6OjrivPPOi3e+852Z373rrrvGJZdcEt3d7fXD5/e///1xxhlnREdHff7v5bjjjosLLrigbvcDAAAAAAAAjac/Pyl1ZqA0mEESAAAAgMbkt6+BltbV1RU/+clP4uMf/3hmdx555JFx1VVXRV9f+U+/alXHHHNM/OY3v4np06dndmd3d3d861vfiu9+97uKRQAAAAAAAMAaCvne1JmB0rIMkgAAAAA0Jr+BDbS8jo6O+PKXvxwXX3xxvOQlL6nZPf39/XHWWWfF9773vbbbWPR8e++9dyxYsCD23Xffmt81b968mD9/fnzwgx+s+V0AAAAAAABA8yn0pH8wZLE0lEESAAAAgMakXAS0jQMPPDDuvvvu+MhHPlLVrUITJ06Mo48+Ou655554//vfX7XXbXabb755/OpXv4pLL700tttuu6q//pw5c+L888+P6667Lrbffvuqvz4AAAAAAADQGro6O2Nyd77sjM1FAAAAQDtTLgLayuTJk+O0006LRx55JL785S/Hq171qg1+ra222io+85nPxIMPPhhnn312bLzxxlVM2jr222+/uO222+Lqq6+Ogw8+OKZMmbLBrzV16tQ47LDD4je/+U3cfvvtcdhhh0Uul6tiWgAAAAAAAKAV9efLfwBlsTSYURIAAACAxpNLkiSpdwiAenrooYfit7/9bdx6661x5513xoMPPhjPPfdcLF26NJIkicmTJ8fkyZPj5S9/ecyZMye222672GuvvWLbbbetd/SmNDIyEtddd11cd911ceedd8Y999wTTz75ZCxdujQGBwcjl8tFX19fTJ06NTbffPOYOXNmbL/99jFv3rzYYYcdYuLEifV+Cw3l6aefjk022WSNx5566illNwAAAAAAABjny1f/Im574qF1nu+8+ew4Ydd9M0wEAAAANJp2/r3crnoHAKi3LbbYIo455ph6x2gbXV1dsccee8Qee+xR7ygAAAAAAABAm7C5CAAAAGDdOuodAAAAAAAAAAAAaqmQUi4aUC4CAAAA2phyEQAAAAAAAAAALa2SzUVJkmSUBgAAAKCxKBcBAAAAAAAAANDS0jYXLR8didLKFRmlAQAAAGgsykUAAAAAAAAAALS0tM1FEREDpcEMkgAAAAA0HuUiAAAAAAAAAABaWiXloqJyEQAAANCmlIsAAAAAAAAAAGhphR6biwAAAADWRbkIAAAAAAAAAICW1tXZGZO782VnlIsAAACAdqVcBAAAAAAAAABAyyvke8ueF0vLMkoCAAAA0FiUiwAAAAAAAAAAaHn9+UllzwdKQxklAQAAAGgsykUAAAAAAAAAALQ8m4sAAAAA1k65CAAAAAAAAACAlpe+uWgwoyQAAAAAjUW5CAAAAAAAAACAllfo6St7XiwNRpIkGaUBAAAAaBzKRQAAAAAAAAAAtLz+3vLlouWjI1FauSKjNAAAAACNQ7kIAAAAAAAAAICW158vXy6KiBgoDWaQBAAAAKCxKBcBAAAAAAAAANDyChWUi4rKRQAAAEAbUi4CAAAAAAAAAKDlFXp6U2dsLgIAAADakXIRAAAAAAAAAAAtb0JnV0zq7ik7o1wEAAAAtCPlIgAAAAAAAAAA2kJ/vq/seVG5CAAAAGhDykUAAAAAAAAAALSFQk/5cpHNRQAAAEA7Ui4CAAAAAAAAAKAt9PembC4aVi4CAAAA2o9yEQAAAAAAAAAAbSF1c9HQsoySAAAAADQO5SIAAAAAAAAAANpCf35S2fNiaTCSJMkoDQAAAEBjUC4CAAAAAAAAAKAt9PeW31y0fHQkSiMrMkoDAAAA0BiUiwAAAAAAAAAAaAuFnvLlooiIgaHBDJIAAAAANA7lIgAAAAAAAAAA2kLa5qKIiOKwchEAAADQXpSLAAAAAAAAAABoC4We3tQZm4sAAACAdqNcBAAAAAAAAABAW5jQ2RWTunvKzthcBAAAALQb5SIAAAAAAAAAANpGf09f2XObiwAAAIB2o1wEAAAAAAAAAEDbKOTLl4tsLgIAAADajXIRAAAAAAAAAABtoz+lXDRQUi4CAAAA2otyEQAAAAAAAAAAbSNtc9HA0LKMkgAAAAA0BuUiAAAAAAAAAADaRn9+Utnz4vBQJEmSURoAAACA+lMuAgAAAAAAAACgbfTne8ueLx9ZGaWRFRmlAQAAAKg/5SIAAAAAAAAAANpGIWVzUUREsTSUQRIAAACAxqBcBAAAAAAAAABA2+jP96XODJSWZZAEAAAAoDEoFwEAAAAAAAAA0DYK+d7UmWJpMIMkAAAAAI1BuQgAAAAAAAAAgLYxobMrJk3sKTszoFwEAAAAtBHlIgAAAAAAAAAA2kp/vq/suc1FAAAAQDtRLgIAAAAAAAAAoK0UUspFNhcBAAAA7US5CAAAAAAAAACAtmJzEQAAAMDfKRcBAAAAAAAAANBWbC4CAAAA+DvlIgAAAAAAAAAA2kra5iLlIgAAAKCdKBcBAAAAAAAAANBW0spFy0dWRmnliozSAAAAANSXchEAAAAAAAAAAG2lkFIuirC9CAAAAGgfykUAAAAAAAAAALSV/vyk1JmichEAAADQJpSLAAAAAAAAAABoK1PzvakzA6VlGSQBAAAAqD/lIgAAAAAAAAAA2srEzq6YNLGn7EyxNJRRGgAAAID6Ui4CAAAAAAAAAKDtFPJ9Zc9tLgIAAADahXIRAAAAAAAAAABtpz+lXFQsDWaUBAAAAKC+lIsAAAAAAAAAAGg76ZuLlIsAAACA9qBcBAAAAAAAAABA20nbXKRcBAAAALQL5SIAAAAAAAAAANpOWrmoqFwEAAAAtAnlIgAAAAAAAAAA2k4hpVw0PLIySitXZJQGAAAAoH6UiwAAAAAAAAAAaDtpm4sibC8CAAAA2oNyEQAAAAAAAAAAbSdtc1FExIByEQAAANAGlIsAAAAAAAAAAGg7lZSLbC4CAAAA2oFyEQAAAAAAAAAAbWdiZ1f0TewuO2NzEQAAANAOlIsAAAAAAAAAAGhL/flJZc9tLgIAAADagXIRAAAAAAAAAABtqZDvLXs+UFqWURIAAACA+lEuAgAAAAAAAACgLaVtLhqwuQgAAABoA8pFAAAAAAAAAAC0pf58X9nzonIRAAAA0AaUiwAAAAAAAAAAaEuFlHKRzUUAAABAO1AuAgAAAAAAAACgLaVtLhoeWRmllSsySgMAAABQH8pFAAAAAAAAAAC0pbTNRRERRduLAAAAgBanXAQAAAAAAAAAQFtK21wUoVwEAAAAtD7lIgAAAAAAAAAA2lIlm4sGlIsAAACAFqdcBAAAAAAAAABAW5rY2RV9E7vLzigXAQAAAK1OuQgAAAAAAAAAgLaVtr2oqFwEAAAAtDjlIgAAAAAAAAAA2lZ/SrlooLQsoyQAAAAA9aFcBAAAAAAAAABA2+rPTyp7XiwNZZQEAAAAoD6UiwAAAAAAAAAAaFuFfG/Zc5uLAAAAgFanXAQAAAAAAAAAQNuyuQgAAABod8pFAAAAAAAAAAC0rUK+r+x5aWRFDK9ckVEaAAAAgOwpFwEAAAAAAAAA0Lb6U8pFEREDpcEMkgAAAADUh3IRAAAAAAAAAABtK21zUUREUbkIAAAAaGHKRQAAAAAAAAAAtK3+HpuLAAAAgPamXAQAAAAAAAAAQNua2NUVvRO6y84oFwEAAACtTLkIAAAAAAAAAIC21t9bfntRUbkIAAAAaGHKRQAAAAAAAAAAtLX+fPlykc1FAAAAQCtTLgIAAAAAAAAAoK0VemwuAgAAANqXchEAAAAAAAAAAG2tvzdlc9GwchEAAADQupSLAAAAAAAAAABoa6mbi4aUiwAAAIDWpVwEAAAAAAAAAEBb6++dVPa8NLIihleuyCgNAAAAQLaUiwAAAAAAAAAAaGuFnt7UmYGS7UUAAABAa1IuAgAAAAAAAACgraVtLoqIKA4PZZAEAAAAIHvKRQAAAAAAAAAAtLX+nr7UmYGhZRkkAQAAAMiechEAAAAAAAAAAG1tYldX9E7oLjtTHB7MKA0AAABAtpSLAAAAAAAAAABoe/295bcXDZSUiwAAAIDWpFwEAAAAAAAAAEDbK/SklIuGlIsAAACA1qRcBAAAAAAAAABA2+vPly8XFYeViwAAAIDWpFwEAAAAAAAAAEDbSysXDZSUiwAAAIDWpFwEAAAAAAAAAEDbK6RtLlIuAgAAAFqUchEAAAAAAAAAAG0vbXNRaeWKGB5ZmVEaAAAAgOwoFwEAAAAAAAAA0PbSNhdF2F4EAAAAtCblIgAAAAAAAAAA2l7a5qKIiAHlIgAAAKAFKRcBAAAAAAAAAND2bC4CAAAA2pVyEQAAAAAAAAAAba+7a0L0TphYdmagtCyjNAAAAADZUS4CAAAAAAAAAICI6M9PKns+YHMRAAAA0IKUiwAAAAAAAAAAICIK+b6y50XlIgAAAKAFKRcBAAAAAAAAAEBE9KeUi2wuAgAAAFqRchEAAAAAAAAAAER6ucjmIgAAAKAVKRcBAAAAAAAAAEBEFGwuAgAAANqQchEAAAAAAAAAAET65qLSyhUxPLIyozQAAAAA2VAuAgAAAAAAAACASN9cFBFRtL0IAAAAaDHKRQAAAAAAAAAAEOmbiyKUiwAAAIDWo1wEAAAAAAAAAABR2eaiAeUiAAAAoMUoFwEAAAAAAAAAQER0d02I3gkTy84MlJZllAYAAAAgG8pFAAAAAAAAAADwN/35SWXPi6WhjJIAAAAAZEO5CAAAAAAAAAAA/qaQ7y17bnMRAAAA0GqUiwAAAAAAAAAA4G/SNxcNZpQEAAAAIBvKRQAAAAAAAAAA8DeFfF/Z8wHlIgAAAKDFKBcBAAAAAAAAAMDf9KeUi2wuAgAAAFqNchEAAAAAAAAAAPxN2uaioZUrYvnIyozSAAAAANSechEAAAAAAAAAAPxN2uaiCNuLAAAAgNaiXAQAAAAAAAAAAH+TtrkoImJAuQgAAABoIcpFAAAAAAAAAADwN8pFAAAAQLtRLgIAAAAAAAAAgL/p6ZoQvRMmlp0pKhcBAAAALUS5CAAAAAAAAAAAxknbXmRzEQAAANBKlIsAAAAAAAAAAGCc/pRykc1FAAAAQCtRLgIAAAAAAAAAgHHSNxctyygJAAAAQO0pFwEAAAAAAAAAwDj9+Ullz4uloYySAAAAANSechEAAAAAAAAAAIxTyPeWPbe5CAAAAGglykUAAAAAAAAAADBO2uaioZUrYvnIyozSAAAAANSWchEAAAAAAAAAAIxTyPelzhRLgxkkAQAAAKg95SIAAAAAAAAAABinv4Jy0YByEQAAANAilIsAAAAAAAAAAGAcm4sAAACAdqJcBAAAAAAAAAAA4/R0TYj8hIllZ2wuAgAAAFqFchEAAAAAAAAAADxPf8r2IpuLAAAAgFahXAQAAAAAAAAAAM9TSCkX2VwEAAAAtArlIgAAAAAAAAAAeJ60zUXKRQAAAECrUC4CAAAAAAAAAIDn+f/Z+/Moues6X/x/VXcn6erO0hXCGgiERYIIDMGBaIKALCOKgsyACILsc+XeURT8qqNXwWVGxQVxRnQYNhkBBWVRVheQRcCwi+xLIGACWarT6e7qter3hz+ZiwP1qe6u+lRX9+NxTh/O4f2qej875HRCdT37lbS5qFO5CAAAAJgglIsAAAAAAAAAAOCv2FwEAAAATBbKRQAAAAAAAAAA8Fc6WsuXi3oH+2NgaCilNAAAAAC1o1wEAAAAAAAAAAB/Jdc2PXEm32d7EQAAAND4lIsAAAAAAAAAAOCv5LLlNxdFROR7u1NIAgAAAFBbykUAAAAAAAAAAPBXOiooF3UWbC4CAAAAGp9yEQAAAAAAAAAA/JXWlimRnTK17ExeuQgAAACYAJSLAAAAAAAAAADgdSRtL7K5CAAAAJgIlIsAAAAAAAAAAOB15BLKRTYXAQAAABOBchEAAAAAAAAAALyOjlblIgAAAGDiUy4CAAAAAAAAAIDXkWsrXy7q7FMuAgAAABqfchEAAAAAAAAAALyOxM1FvcpFAAAAQONTLgIAAAAAAAAAgNeRy5YvF/UO9sfA0FBKaQAAAABqQ7kIAAAAAAAAAABeR1K5KCIi32d7EQAAANDYlIsAAAAAAAAAAOB1dFRSLurtTiEJAAAAQO0oFwEAAAAAAAAAwOuoZHNRZ19vCkkAAAAAake5CAAAAAAAAAAAXkfrlKmRbZladsbmIgAAAKDRKRcBAAAAAAAAAMAb6Ggrv72os68npSQAAAAAtaFcBAAAAAAAAAAAbyDXWr5clO9VLgIAAAAam3IRAAAAAAAAAAC8gY6szUUAAADAxKZcBAAAAAAAAAAAbyCXUC7KF5SLAAAAgMamXAQAAAAAAAAAAG8gcXORchEAAADQ4JSLAAAAAAAAAADgDSRtLuoZ6I+BoaGU0gAAAABUn3IRAAAAAAAAAAC8gaRyUUREvs/2IgAAAKBxKRcBAAAAAAAAAMAb6KigXNRZUC4CAAAAGpdyEQAAAAAAAAAAvIGKNhcpFwEAAAANTLkIAAAAAAAAAADeQOuUqZFtmVp2xuYiAAAAoJEpFwEAAAAAAAAAQBkd2bay5/lCd0pJAAAAAKpPuQgAAAAAAAAAAMrIZaeXPe8s9KaUBAAAAKD6lIsAAAAAAAAAAKAMm4sAAACAiUy5CAAAAAAAAAAAyrC5CAAAAJjIlIsAAAAAAAAAAKCMjmx72XObiwAAAIBGplwEAAAAAAAAAABl5BLKRT0D/TEwNJRSGgAAAIDqUi4CAAAAAAAAAIAykspFERGdfT0pJAEAAACoPuUiAAAAAAAAAAAoo6OCclG+oFwEAAAANCblIgAAAAAAAAAAKKOSclGnchEAAADQoJSLAAAAAAAAAACgjOyUqdHaMqXsjM1FAAAAQKNSLgIAAAAAAAAAgAS5hO1FNhcBAAAAjUq5CAAAAAAAAAAAEnQklItsLgIAAAAalXIRAAAAAAAAAAAksLkIAAAAmKiUiwAAAAAAAAAAIIHNRQAAAMBEpVwEAAAAAAAAAAAJctnpZc/zhe6UkgAAAABUl3IRAAAAAAAAAAAkyCVsLuoZ6I+B4aGU0gAAAABUj3IRAAAAAAAAAAAk6EgoF0VEdBZ6UkgCAAAAUF3KRQAAAAAAAAAAkCBpc1GEchEAAADQmJSLAAAAAAAAAAAgQSWbi/LKRQAAAEADUi4CAAAAAAAAAIAE2SlTo7VlStkZm4sAAACARqRcBAAAAAAAAAAAFUjaXmRzEQAAANCIlIsAAAAAAAAAAKACuYRykc1FAAAAQCNSLgIAAAAAAAAAgArYXAQAAABMRMpFAAAAAAAAAABQAZuLAAAAgIlIuQgAAAAAAAAAACqQy04ve25zEQAAANCIlIsAAAAAAAAAAKACHdm2sufdA30xMDyUUhoAAACA6lAuAgAAAAAAAACACiRtLoqIWFfoTSEJAAAAQPUoFwEAAAAAAAAAQAU6su2JM/lCdwpJAAAAAKpHuQgAAAAAAAAAACqQq6Bc1FnoSSEJAAAAQPUoFwEAAAAAAAAAQAWyU6bGtJYpZWfyykUAAABAg1EuAgAAAAAAAACACiVtL1IuAgAAABqNchEAAAAAAAAAAFSoI6Fc1KlcBAAAADQY5SIAAAAAAAAAAKiQzUUAAADARKNcBAAAAAAAAAAAFepotbkIAAAAmFiUiwAAAAAAAAAAoEK5NpuLAAAAgIlFuQgAAAAAAAAAACqUy5YvF3UP9MXg8FBKaQAAAADGTrkIAAAAAAAAAAAq1JFQLoqI6Cz0ppAEAAAAoDqUiwAAAAAAAAAAoEK57PTEmXyhJ4UkAAAAANWhXAQAAAAAAAAAABXqyLYlznQWulNIAgAAAFAdykUAAAAAAAAAAFChbMvUmNYypexMvtCbUhoAAACAsVMuAgAAAAAAAACACmUymehoLb+9KG9zEQAAANBAlIsAAAAAAAAAAGAEcm3Ty5539vWklAQAAABg7JSLAAAAAAAAAABgBDpa28ue53uViwAAAIDGoVwEAAAAAAAAAAAjkMuWLxd1FpSLAAAAgMahXAQAAAAAAAAAACOQa0vYXNSnXAQAAAA0DuUiAAAAAAAAAAAYgY7W8uWi7v6+GBweSikNAAAAwNgoFwEAAAAAAAAAwAgkbS6KiOjs600hCQAAAMDYKRcBAAAAAAAAAMAIJG0uiojI9/akkAQAAABg7JSLAAAAAAAAAABgBCrbXKRcBAAAADQG5SIAAAAAAAAAABiBbMvUmNbcUnbG5iIAAACgUSgXAQAAAAAAAADACGQymejIlt9eZHMRAAAA0CiUiwAAAAAAAAAAYIRyCeWifKE7pSQAAAAAY6NcBAAAAAAAAAAAI9SRnV72PN9rcxEAAADQGJSLAAAAAAAAAABghJI2F3X2KRcBAAAAjUG5CAAAAAAAAAAARqgjoVyULygXAQAAAI1BuQgAAAAAAAAAAEYoaXNRd39fDA4PpZQGAAAAYPSUiwAAAAAAAAAAYISSykUREZ19vSkkAQAAABgb5SIAAAAAAAAAABihjkrKRYWeFJIAAAAAjI1yEQAAAAAAAAAAjFAlm4vyykUAAABAA1AuAgAAAAAAAACAEcpOmRrTmlvKzthcBAAAADQC5SIAAAAAAAAAABihTCYTHQnbi2wuAgAAABqBchEAAAAAAAAAAIxCLrFc1J1SEgAAAIDRUy4CAAAAAAAAAIBR6MhOL3veWehNKQkAAADA6CkXAQAAAAAAAADAKOSybWXPbS4CAAAAGoFyEQAAAAAAAAAAjILNRQAAAMBEoFwEAAAAAAAAAACjkMu2lz1f31+IoeHhlNIAAAAAjI5yEQAAAAAAAAAAjEJSuSgiorOvJ4UkAAAAAKOnXAQAAAAAAAAAAKPQUUG5KF9QLgIAAADGN+UiAAAAAAAAAAAYhYo2FykXAQAAAOOcchEAAAAAAAAAAIxCdsrUmNrcUnbG5iIAAABgvFMuAgAAAAAAAACAUchkMonbi2wuAgAAAMY75SIAAAAAAAAAABilpHKRzUUAAADAeKdcBAAAAAAAAAAAo9ShXAQAAAA0OOUiAAAAAAAAAAAYpaTNRZ3KRQAAAMA4p1wEAAAAAAAAAACjZHMRAAAA0OiUiwAAAAAAAAAAYJRy2ellz9f3F2JoeDilNAAAAAAjp1wEAAAAAAAAAACj1JFtS5zp7LO9CAAAABi/lIsAAAAAAAAAAGCUkjYXRUR0FnpTSAIAAAAwOspFAAAAAAAAAAAwSh3Z9sSZfKE7hSQAAAAAo6NcBAAAAAAAAAAAo9Q2ZWpMbW4pO9NZ6EkpDQAAAMDIKRcBAAAAAAAAAMAoZTKZxO1FeeUiAAAAYBxTLgIAAAAAAAAAgDHIKRcBAAAADUy5CAAAAAAAAAAAxiCpXNSpXAQAAACMY8pFAAAAAAAAAAAwBh02FwEAAAANTLkIAAAAAAAAAADGwOYiAAAAoJEpFwEAAAAAAAAAwBgkbS7q6i/E0PBwSmkAAAAARka5CAAAAAAAAAAAxiBpc1FExLq+3hSSAAAAAIycchEAAAAAAAAAAIxB0uaiiIh8oSeFJAAAAAAjp1wEAAAAAAAAAABjkMtOT5xRLgIAAADGK+UiAAAAAAAAAAAYg7YpU2NKc3PZmc5Cd0ppAAAAAEZGuQgAAAAAAAAAAMYgk8kkbi+yuQgAAAAYr5SLAAAAAAAAAABgjHLZ9rLnncpFAAAAwDilXAQAAAAAAAAAAGPUkVAusrkIAAAAGK+UiwAAAAAAAAAAYIxsLgIAAAAalXIRAAAAAAAAAACMkc1FAAAAQKNSLgIAAAAAAAAAgDFK2lzU1V+IoeJwSmkAAAAAKqdcBAAAAAAAAAAAY5S0uSgiYl2hN4UkAAAAACOjXAQAAAAAAAAAAGOUtLkoIiJf6EkhCQAAAMDIKBcBAAAAAAAAAMAYVbK5SLkIAAAAGI+UiwAAAAAAAAAAYIzap0yLKc3NZWc6C90ppQEAAAConHIRAAAAAAAAAACMUSaTiVx2etmZfKE3pTQAAAAAlVMuAgAAAAAAAACAKujItpU9t7kIAAAAGI+UiwAAAAAAAAAAoAqSNxf1pJQEAAAAoHLKRQAAAAAAAAAAUAUdre1lzzuViwAAAIBxSLkIAAAAAAAAAACqINdWvlyU71MuAgAAAMYf5SIAAAAAAAAAAKiCpM1FXX2FGCoOp5QGAAAAoDLKRQAAAAAAAAAAUAVJm4siItb19aaQBAAAAKByykUAAAAAAAAAAFAFuYTNRRER+d6eFJIAAAAAVE65CAAAAAAAAAAAqqCjgs1F+YJyEQAAADC+KBcBAAAAAAAAAEAVtE+ZFlOam8vOdPYpFwEAAADji3IRAAAAAAAAAABUQSaTiY7W8tuL8r3KRQAAAMD4olwEAAAAAAAAAABVkmsrXy6yuQgAAAAYb5SLAAAAAAAAAACgSpI3F3WnlAQAAACgMspFAAAAAAAAAABQJbns9LLnnX29KSUBAAAAqIxyEQAAAAAAAAAAVEku21b2PF+wuQgAAAAYX5SLAAAAAAAAAACgSjoSNhet7yvEUHE4pTQAAAAAyZSLAAAAAAAAAACgSpI2F5UiYl1fbzphAAAAACqgXAQAAAAAAAAAAFWSS9hcFBHRWehJIQkAAABAZZSLAAAAAAAAAACgSjra2hNn8spFAAAAwDiiXAQAAAAAAAAAAFXSPmVaTGlqLjujXAQAAACMJ8pFAAAAAAAAAABQJZlMJjqy5bcXdSoXAQAAAOOIchEAAAAAAAAAAFRRLqFcZHMRAAAAMJ4oFwEAAAAAAAAAQBXZXAQAAAA0EuUiAAAAAAAAAACoIpuLAAAAgEaiXAQAAAAAAAAAAFWUVC6yuQgAAAAYT5SLAAAAAAAAAACgijoSykVdfb0xXCymlAYAAACgPOUiAAAAAAAAAACooqTNRaWIWNfXm04YAAAAgATKRQAAAAAAAAAAUEVJm4siIvKF7hSSAAAAACRTLgIAAAAAAAAAgCrKZacnzuQLPSkkAQAAAEimXAQAAAAAAAAAAFXUPnVaTGlqLjvTqVwEAAAAjBPKRQAAAAAAAAAAUEWZTCY6su1lZ2wuAgAAAMYL5SIAAAAAAAAAAKiyXEK5yOYiAAAAYLxQLgIAAAAAAAAAgCqzuQgAAABoFMpFAAAAAAAAAABQZTYXAQAAAI1CuQgAAAAAAAAAAKrM5iIAAACgUSgXAQAAAAAAAABAlSVtLurq643hYjGlNAAAAABvTLkIAAAAAAAAAACqLGlzUSki1vX1phMGAAAAoAzlIgAAAAAAAAAAqLKkzUUREflCdwpJAAAAAMpTLgIAAAAAAAAAgCrLZacnznQWbC4CAAAA6k+5CAAAAAAAAAAAqqx96rSY0tRcdsbmIgAAAGA8UC4CAAAAAAAAAIAqy2Qy0ZFtLzvTWehJKQ0AAADAG1MuAgAAAAAAAACAGkgqF+WViwAAAIBxQLkIAAAAAAAAAABqIGdzEQAAANAAlIsAAAAAAAAAAKAGbC4CAAAAGoFyEQAAAAAAAAAA1IDNRQAAAEAjUC4CAAAAAAAAAIAaSNpctK6vN4aLxZTSAAAAALw+5SIAAAAAAAAAAKiBpM1FpfhzwQgAAACgnpSLAAAAAAAAAACgBpLKRRERnYWeFJIAAAAAvDHlIgAAAAAAAAAAqIGOCspFeeUiAAAAoM6UiwAAAAAAAAAAoAamT22NlqbmsjM2FwEAAAD1plwEAAAAAAAAAAA1kMlkoiPbVnYmX+hOKQ0AAADA61MuAgAAAAAAAACAGsllp5c9zxd6U0oCAAAA8PqUiwAAAAAAAAAAoEaSNhd12lwEAAAA1JlyEQAAAAAAAAAA1IjNRQAAAMB4p1wEAAAAAAAAAAA1YnMRAAAAMN4pFwEAAAAAAAAAQI0kbS5a19cbw8ViSmkAAAAA/iflIgAAAAAAAAAAqJFctr3seSkiuvp60wkDAAAA8DqUiwAAAAAAAAAAoEY6EspFERH5Qk8KSQAAAABen3IRAAAAAAAAAADUSNLmogjlIgAAAKC+lIsAAAAAAAAAAKBGpk9tjZam5rIzncpFAAAAQB0pFwEAAAAAAAAAQI1kMpnoyLaVnbG5CAAAAKgn5SIAAAAAAAAAAKihjtb2sufKRQAAAEA9KRcBAAAAAAAAAEAN5drKl4s6lYsAAACAOlIuAgAAAAAAAACAGrK5CAAAABjPlIsAAAAAAAAAAKCGEjcX9SkXAQAAAPWjXAQAAAAAAAAAADWUy04ve76urzeGi8WU0gAAAAC8lnIRAAAAAAAAAADUUEdr+c1FpVIpuvp6U0oDAAAA8FrKRQAAAAAAAAAAUEO5tvLlooiIfF9PCkkAAAAA/iflIgAAAAAAAAAAqKGkzUUREfle5SIAAACgPpSLAAAAAAAAAACghmZMa43mpvJv0+m0uQgAAACoE+UiAAAAAAAAAACooUwmE7mE7UU2FwEAAAD1olwEAAAAAAAAAAA11pEtXy6yuQgAAACoF+UiAAAAAAAAAACosVxCucjmIgAAAKBelIsAAAAAAAAAAKDGbC4CAAAAxivlIgAAAAAAAAAAqLHEzUUF5SIAAACgPpSLAAAAAAAAAACgxpI2F63r641isZhSGgAAAID/plwEAAAAAAAAAAA1lstOL3teKpViXX8hpTQAAAAA/025CAAAAAAAAAAAaiyXbUucyRe6U0gCAAAA8FrKRQAAAAAAAAAAUGMdCZuLIiI6Cz0pJAEAAAB4LeUiAAAAAAAAAACosRnTWqO5qfxbdfLKRQAAAEAdKBcBAAAAAAAAAECNZTKZyLW2l52xuQgAAACoB+UiAAAAAAAAAABIQUe2fLnI5iIAAACgHpSLAAAAAAAAAAAgBbmEcpHNRQAAAEA9KBcBAAAAAAAAAEAKbC4CAAAAxiPlIgAAAAAAAAAASEHS5iLlIgAAAKAelIsAAAAAAAAAACAFSZuL1vX1RrFYTCkNAAAAwJ8pFwEAAAAAAAAAQAqSNheVSqVY119IKQ0AAADAnykXAQAAAAAAAABACpLKRRERnYWeFJIAAAAA/DflIgAAAAAAAAAASEFHBeWifKE7hSQAAAAA/025CAAAAAAAAAAAUjB9Wjaam8q/Xaez0JtSGgAAAIA/Uy4CAAAAAAAAAIAUNGUy0dHaVnbG5iIAAAAgbcpFAAAAAAAAAACQklx2etnzzkJPSkkAAAAA/ky5CAAAAAAAAAAAUtKRbS97nlcuAgAAAFKmXAQAAAAAAAAAACnJKRcBAAAA44xyEQAAAAAAAAAApCSpXNSpXAQAAACkTLkIAAAAAAAAAABS0pFULurrjWKxmFIaAAAAAOUiAAAAAAAAAABITdLmolKpFF39hZTSAAAAACgXAQAAAAAAAABAapI2F0VE5As9KSQBAAAA+DPlIgAAAAAAAAAASEnS5qKIiE7lIgAAACBFykUAAAAAAAAAAJCS6dOy0Zwp/5Ydm4sAAACANCkXAQAAAAAAAABASpoymejItpWdsbkIAAAASJNyEQAAAAAAAAAApKgj2172PF/oTikJAAAAgHIRAAAAAAAAAACkKpedXvY8b3MRAAAAkCLlIgAAAAAAAAAASFEuYXNRp3IRAAAAkCLlIgAAAAAAAAAASFFHQrnI5iIAAAAgTcpFAAAAAAAAAACQoqTNRev6eqNYLKaUBgAAAJjslIsAAAAAAAAAACBFSZuLiqVSdPUXUkoDAAAATHbKRQAAAAAAAAAAkKKkzUUREZ2FnhSSAAAAACgXAQAAAAAAAABAqpI2F0VE5JWLAAAAgJQoFwEAAAAAAAAAQIpmTMtGc6b823ZsLgIAAADSolwEAAAAAAAAAAApaspkYla2reyMzUUAAABAWpSLAAAAAAAAAAAgZblse9lz5SIAAAAgLcpFAAAAAAAAAACQslx2etnzTuUiAAAAICXKRQAAAAAAAAAAkLKObFvZ83yhO6UkAAAAwGSnXAQAAAAAAAAAAClL3lzUm1ISAAAAYLJTLgIAAAAAAAAAgJQlbS7q7OuJYrGYUhoAAABgMlMuAgAAAAAAAACAlCVtLiqWSrG+v5BSGgAAAGAyUy4CAAAAAAAAAICUdWTbE2fyhZ4UkgAAAACTnXIRAAAAAAAAAACkLKdcBAAAAIwTykUAAAAAAAAAAJCyGdOy0Zwp/9adTuUiAAAAIAXKRQAAAAAAAAAAkLKmTCZmZdvKzthcBAAAAKRBuQgAAAAAAAAAAOqgo7W97LlyEQAAAJAG5SIAAAAAAAAAAKiDXFv5clGnchEAAACQAuUiAAAAAAAAAACog1zW5iIAAACg/pSLAAAAAAAAAACgDjpabS4CAAAA6k+5CAAAAAAAAAAA6iDXllAu6uuJYqmUUhoAAABgslIuAgAAAAAAAACAOkjaXFQslWJ9X29KaQAAAIDJSrkIAAAAAAAAAADqINc2PXEmr1wEAAAA1JhyEQAAAAAAAAAA1EGutS1xJt/bnUISAAAAYDJTLgIAAAAAAAAAgDqY0doWTZlM2ZnOvp6U0gAAAACTlXIRAAAAAAAAAADUQVMmEx2t7WVn8r3KRQAAAEBtKRcBAAAAAAAAAECddGQTykUF5SIAAACgtpSLAAAAAAAAAACgTnJt5ctFnX3KRQAAAEBtKRcBAAAAAAAAAECddLQmbC7qVS4CAAAAaku5CAAAAAAAAAAA6iSXtbkIAAAAqC/lIgAAAAAAAAAAqJOkctG6Qm8US6WU0gAAAACTkXIRAAAAAAAAAADUSUdCuWi4VIz1/YWU0gAAAACTkXIRAAAAAAAAAADUSdLmooiIfKEnhSQAAADAZKVcBAAAAAAAAAAAdVJJuahTuQgAAACoIeUiAAAAAAAAAACokxmtbdGUyZSdyRe6U0oDAAAATEYt9Q4AUG/Lly+Pm266KR5++OF49NFH47nnnov169dHV1dXlEqlmDFjRsyYMSPmzZsXb37zm2OnnXaK/fffP7bbbrt6R28or7zyStx5552v/jq/+OKLsWLFisjn89HX1xcDAwMxZcqUaG1tjVmzZsUmm2wSc+fOjR122CF22mmnWLx4cWyxxRb1/jQAAAAAAAAAqqopk4mO1vZYW6ZAlO+1uQgAAACoHeUiYFLq7OyM//zP/4xLLrkkHn744bKza9asiTVr1sSyZcvitttue/Xfb7fddnHkkUfGRz7ykdh4441rHbkhPfnkk3HppZfGT3/603jkkUcS5/v7+6O/vz/WrVsXL7zwQkREXHXVVa+eb7vttnHIIYfEkUceGbvuumvNcgMAAAAAAACkqSNbvlzU2adcBAAAANROU70DAKSpu7s7PvWpT8Xmm28en/zkJxOLReU89dRTceaZZ8a8efPi5JNPjtWrV1cxaWO77bbb4sADD4ztt98+zjzzzIqKRZV4+umn4xvf+EYsXLgwFi9eHD//+c+r8rwAAAAAAAAA9ZTLtpc9zxeUiwAAAIDaUS4CJo1rr702dthhh/j6178ePT3Ve+F1YGAgzjvvvNh+++3jwgsvrNrzNqLly5fHP/zDP8Ree+0VN954Y03v+t3vfhfve9/7Yr/99ovHH3+8pncBAAAAAAAA1FJHQrmoU7kIAAAAqCHlImDCKxaL8bnPfS4OOeSQePHFF2t2z9q1a+P444+Pk08+OQYGBmp2z3h19dVXxy677BI//elPU73317/+dey2225xwQUXpHovAAAAAAAAQLXYXAQAAADUk3IRMKENDw/HEUccEV/5yleiVCqlcud5550XBxxwQPT29qZy33jwrW99Kw499NDI5/N1ub+3tzdOOOGE+NSnPlWX+wEAAAAAAADGIqlctK7QG8WUvucNAAAATD7KRcCEVSwW49hjj40rrrgi9bt/+9vfxvvf//7o7+9P/e60nXXWWXHaaaelVt4q5+tf/3p84hOfqHcMAAAAAAAAgBHpSCgXDZeKsb6/kFIaAAAAYLJpqXcAgFr57Gc/G//1X/81osdst912sXjx4njLW94Ss2fPjkwmE/l8Ph577LG466674pFHHqn4uW6++eY46aST4oc//OFIozeMn/3sZ6PaFtTc3Bw777xzvO1tb4vNNtsscrlczJw5M9avXx/5fD5WrlwZd999dzz44IMxODg4ouf+9re/Hdtuu22ccsopI84FAAAAAAAAUA9Jm4siIjoLPTGrtS2FNAAAAMBko1wETEg33HBDfO1rX6t4/uCDD45//ud/jt13373s3COPPBJnnXVW/Nd//VcUi8XE573kkktir732ihNOOKHiLI1ixYoVcdJJJ41oY9Fb3vKWOPXUU+MDH/hATJ8+PXG+UCjElVdeGWeffXbcf//9Fd9z2mmnxTvf+c5YsGBBxY8BAAAAAAAAqJekzUUREflCT2yZ2zCFNAAAAMBk01TvAADVtmbNmjjmmGMqKr3Mnj07rrvuurj66qsTi0URfy7HXHzxxXHnnXfGFltsUVGef/qnf4qnn366otlG8slPfjLWrl1b0Wx7e3ucf/758Yc//CFOOOGEiopFERHZbDaOPvrouO++++Lyyy+PWbNmVfS4vr6++N//+39XNAsAAAAAAABQbzOnZaMpkyk7ky90p5QGAAAAmGyUi4AJ57Of/WysXr06cW7zzTeP3//+9/Hud797xHcsWrQo7r333njzm9+cOFsoFOLjH//4iO8Yzx599NG47LLLKprdYost4t57743jjz9+THd+4AMfiIceeqjibUS/+c1v4pZbbhnTnQAAAAAAAABpaGpqio7W8tuLOgu9KaUBAAAAJhvlImBCeeCBB+K8885LnJs1a1b86le/im222WbUd2200Ubx61//OjbffPPE2V/84hdx/fXXj/qu8eb73/9+FIvFxLmZM2fGddddV3EhKMmWW24ZN9xwQ2y88cYVzX/ve9+ryr0AAAAAAAAAtdaRbSt7bnMRAAAAUCvKRcCEcuaZZ1ZUejnvvPNi++23H/N9m2yySVx66aXR3NycOPuFL3xhzPeNB8ViseKtRd/97ndjp512qur9W221VVxyySUVzf785z+Prq6uqt4PAAAAAAAAUAu57PSy5zYXAQAAALWiXARMGE888URce+21iXMHH3xwHHbYYVW7d88994x//Md/TJy799574ze/+U3V7q2Xhx56KFavXp04t+OOO8aHPvShmmTYf//9Y999902c6+/vj9tvv70mGQAAAAAAAACqyeYiAAAAoF6Ui4AJ41vf+laUSqWyMy0tLfGNb3yj6nd/8YtfjJkzZybOffOb36z63Wm7++67K5r72Mc+Fk1Ntftj5vTTT69o7ne/+13NMgAAAAAAAABUS/Lmop6UkgAAAACTjXIRMCH09/fHj3/848S5v//7v49tt9226vdvsMEGceKJJybO3XTTTfHyyy9X/f40PfHEExXNvetd76ppjr322itaW1sT55588sma5gAAAAAAAACoho5se9nzzkJvFBN+4CYAAADAaCgXARPCL37xi1i3bl3i3KmnnlqzDB/96EcTN/UMDw/H5ZdfXrMMaXjxxRcTZ7beeuvYYostapojm83G2972tsS5F154oaY5AAAAAAAAAKohl1AuGi4Vo7u/kFIaAAAAYDJRLgImhMsuuyxxZtttt41FixbVLMOWW24Ze+65Z+JcJVnHs+7u7sSZzTffPIUkEXPnzk2cWb9+fQpJAAAAAAAAAMYmaXNRRES+0JNCEgAAAGCyUS4CGt7w8HD86le/Spz7wAc+UPMsRxxxROLM0qVLY82aNTXPUivFYjFxZs6cOSkkidhwww0TZwYHB1NIAgAAAAAAADA2SZuLIiI6lYsAAACAGlAuAhre73//+1i3bl3i3IEHHljzLJXcUSwW49e//nXNs9RKLpdLnJk6dWoKSSKmTZuWODN79uwUkgAAAAAAAACMzcxp2WjKZMrO2FwEAAAA1IJyEdDwKinqzJgxI/bYY4+aZ9lyyy1j2223TZz75S9/WfMstbLBBhskzqxevTqFJBGrVq1KnFEuAgAAAAAAABpBU1NTzGptKzujXAQAAADUgnIR0PDuuuuuxJk99tgjWlpaUkgTseeeeybO3HPPPSkkqY1tttkmcaaS0k81vPLKK4kz8+bNSyEJAAAAAAAAwNjlsu1lzzuViwAAAIAaUC4CGt4DDzyQOLNw4cIUkvzZbrvtljjz2GOPRX9/fwppqm/JkiWJM4899lj09NT2Re1SqRRLly5NnFu8eHFNcwAAAAAAAABUS0dCucjmIgAAAKAWlIuAhvbyyy/HihUrEufGW7loaGgo/vCHP6SQpvoWLlwY7e3lX9AeGBiIW265paY5Hn744Vi5cmXiXCWbpAAAAAAAAADGA5uLAAAAgHpQLgIa2sMPP1zR3IIFC2qc5L9tv/32Fc1Vmn28mTJlSnzwgx9MnPvhD39Y0xwXX3xx4szuu+8e8+fPr2kOAAAAAAAAgGpJ3lzUnVISAAAAYDJRLgIa2rPPPlvR3LbbblvjJP8tl8vF7NmzE+cqzT4effSjH02cufLKK+PBBx+syf3Lly+P733ve4lzH/vYx2pyPwAAAAAAAEAt5LLTy5539vVGsVRKKQ0AAAAwWSgXAQ3tueeeS5zZZJNNor29/E93qrZKykyVZB+vdtpppzj00EPLzpRKpTj55JOjUChU9e6hoaE46aSTor+/v+zctttuG4cddlhV7wYAAAAAAACopY5sW9nz4WIxuvur+z1YAAAAAOUioKEtW7YscWazzTarfZC/summmybONHK5KCLie9/7XmywwQZlZ5YuXRpHHXVUDA8PV+XOUqkUH/nIR+Kmm24qO9fU1BQXXHBBTJkypSr3AgAAAAAAAKQhaXNRRERnoSeFJAAAAMBkolwENLSXXnopcWaTTTZJIcnI73zxxRdTSFI7G2+8cZx//vnR3Nxcdu6qq66Kd77znWP+fF955ZV4z3veE//5n/+ZOHvaaafFnnvuOab7AAAAAAAAANLWkW1PnMkrFwEAAABVplwENLQ1a9Ykzmy88cYpJHmtSspFa9euTSFJbR188MFx/vnnRyaTKTt32223xS677BJf+cpXYvXq1SO6o7OzM84666zYaaed4oYbbkicP/roo+NrX/vaiO4AAAAAAAAAGA9mTcsmfv9VuQgAAACotpZ6BwAYi0rKRR0dHbUPMoo7e3p6or+/P6ZNm1b7QDX04Q9/OJqamuJ//a//Fb29vW84t3bt2vjc5z4XX/nKV+KAAw6IxYsXx6JFi2Lu3LmRy+VixowZ0d3dHfl8PlasWBH33HNP3HnnnXHjjTdGT09lL44fc8wxccEFFyS+2A4AAAAAAAAwHjU1NUVHa1vZAlGnchEAAABQZcpFQEPL5/OJMzNmzEghyejuXLt2bWy66aY1TlN7Rx99dPzt3/5tfPCDH4wHH3yw7GyhUIhrrrkmrrnmmqrd397eHuecc04cf/zxVXtOAAAAAAAAgHroyLaXLRfZXAQAAABUW1O9AwCMVqFQiMHBwcS5epSLZs6cWdHcunXrapwkPQsWLIilS5fG+eefH1tvvXUqdzY3N8eHPvSheOihhxSLAAAAAAAAgAkhl20ve25zEQAAAFBtykVAwxoYGKhoLpvN1jjJ/9Ta2lrRXKWfQ6NoaWmJ448/Pp544om48sor44gjjqi4aDUSc+fOjX/6p3+KRx99NC655JLYZpttqn4HAAAAAAAAQD10JJSLbC4CAAAAqq2l3gEARqvSYk5zc3ONk/xPLS2VfXmdaOWiv2hpaYm/+7u/i1KpFMViMa644ooolUpVee73vOc98S//8i+x8847V+X5JqIlS5ZU/HuQ2vnjH/9Y7wgAAAAAAAA0IJuLAAAAgLTZXAQ0rEqLOfUoWVR65+DgYI2TpO+RRx6Jo446KubMmROHHXZY/OQnP6lasSgi4rrrrotddtkl5s+fH5/5zGdi5cqVVXtuAAAAAAAAgHpL3FzU11PV78ECAAAAWGsANKyhoaGK5pSL0vHss8/GaaedFtdcc00qL2QvW7YsvvrVr8bZZ58dxx13XHzuc5+LzTbbrOb3NoI77rgjNtxww3rHAAAAAAAAAEYhaXPRcLEY6/v7YmZrNqVEAAAAwERncxHQsCot8AwPD9c4yejvrEfxqRZ++MMfxt/8zd/E1VdfnfpPyOrr64tzzz033vKWt8RPfvKTVO8GAAAAAAAAqLakzUUREZ2F7hSSAAAAAJPFxHhXOzApTZ06taK5SjccVVOlG4kq/RzGq2KxGCeddFJccMEFI3pcc3Nz7LrrrrH77rvHRhttFLNnz46Ojo7o7u6OtWvXxtq1a+PBBx+Mu+++O3p7eyt6znw+Hx/4wAfixhtvjP/4j/+YMMUtAAAAAAAAYHLJZacnzuQLPTEvt2EKaQAAAIDJwDuvgYY1ZcqUiubqUS6q9M5GLheVSqU48cQT48ILL6z4MXvttVd8/OMfj3333TemT09+QXxwcDCWLl0a//7v/x4/+clPKvp1vfDCC6OnpycuvfTSaG5urjgbAAAAAAAAwHgwa1o2MplMlEqlN5zJF3pSTAQAAABMdE31DgAwWtOmTatorq+vr8ZJRn9nI5eLPvGJT1RcLNpll13innvuiVtvvTUOPvjgiopFEX8ukL397W+PH/3oR/HMM8/EP/zDP1T0uJ/85CdxzDHHVDQLAAAAAAAAMJ40NTXFrNa2sjOdykUAAABAFdlcBIzIc889F/fcc09N72hvb4/3vve9iXPZbDZaWloSt9msX7++WtEqVumdM2fOrHGS2vjlL38ZZ599dkWzJ598cnznO9+J1tbWMd05b968uOKKK+Lf/u3f4vTTT4/+/v6y85deemnss88+ceKJJ47pXgAAAAAAAIC05bLtZQtENhcBAAAA1aRcBIzIb3/72zjuuONqeseWW25ZUbkoIiKXy8WqVavKznR1dVUj1ohUeufs2bNrnKT61q1bF8cff3xFs6effnqcddZZVb3///yf/xNz586Nv//7v49SqVR29hOf+ETst99+sdVWW1U1AwAAAAAAAEAtdbS2lz23uQgAAACopqZ6BwAYiw022CBxZt26dSkkGfmdbW1tY97mUw/f/e5348UXX0ycO/jgg+NrX/taTTK8//3vr+i5169fH5/+9KdrkgEAAAAAAACgVnJt5ctFNhcBAAAA1aRcBDS0SspFL7/8cgpJXmvlypWJM5VkH28GBwfje9/7XuLcjBkz4vzzz4+mptr9MfPJT34y9thjj8S5n/70p7F8+fKa5QAAAAAAAACoNpuLAAAAgDQpFwENbe7cuYkzlRR9qq2SOyvJPt5ceeWVsWLFisS5U089NZXy1Je//OXEmaGhofi3f/u3mmcBAAAAAAAAqJbEzUV9PVEqlVJKAwAAAEx0ykVAQ9tqq60SZ/70pz/VPshfqaSAM3/+/BSSVNeNN96YONPS0hIf//jHU0gTsd9++8Wuu+6aOHfttdemkAYAAAAAAACgOpI2Fw0Xi7G+vy+lNAAAAMBEp1wENLRKCjorV66M3t7eFNL8t6effjpxphHLRbfffnvizB577BG5XC6FNH/2rne9K3Hm8ccfj1WrVqWQBgAAAAAAAGDskjYXRUR0FrpTSAIAAABMBspFQEPbeuutE2dKpVJFZZ9q6ezsjDVr1iTOVZJ9PFm5cmU899xziXMHHHBACmlGft8dd9xR4yQAAAAAAAAA1ZHLTk+cyRfS/SGbAAAAwMSlXASMyLHHHhulUqmmH8uWLas4z0477VTR3OOPPz7Kz3jkKr2r0uzjxYsvvljR3Fve8pYaJxndfc8//3yNkwAAAAAAAABUx6xp2chkMmVn8jYXAQAAAFWiXAQ0tE033TQ23njjxLn7778/hTSV39XS0hI777xzCmmqp5JtTBERc+bMqXGS15o9e3Y0NSX/cVZpfgAAAAAAAIB6a2pqilmtbWVnOvt6UkoDAAAATHTKRUDDW7hwYeJMmuWi++67L3FmwYIF0dramkKa6lm7dm1Fc2mXi5qammL27NmJc8pFAAAAAAAAQCPpaG0ve57vVS4CAAAAqkO5CGh4b3vb2xJn7r777hgaGkohTcRtt92WOLPHHnukkKS6SqVSRXOZTKbGSUZ3Z1r//QEAAAAAAACqIZctXy6yuQgAAACoFuUioOHtu+++iTPr16+P3//+9zXP8sILL8TTTz+dOLf//vvXPEu1tbW1VTS3evXqGid5rWKxWNFWokrzAwAAAAAAAIwHHQnlIpuLAAAAgGpRLgIa3u677x4zZ85MnLvhhhtqnqWSOzKZTEWFqPFm1qxZFc2tWrWqxklea+3atVEsFhPnKvk9AgAAAAAAADBe2FwEAAAApEW5CGh4LS0tFZV1fvzjH9c8y+WXX54489a3vjXmzJlT8yzVNm/evIrm/vjHP9Y4yWv94Q9/qGiu0vwAAAAAAAAA40FSuShf6IlSqZRSGgAAAGAiUy4CJoQPfvCDiTNPPfVU3HPPPTXL8MILL8Rtt92WOFdJ1vFo3rx50dLSkjh38803p5Dmv910000Vzc2fP7/GSQAAAAAAAACqpyOhXDRcLMb6/r6U0gAAAAATmXIRMCG8973vjZkzZybOnX322TXLcM4550SxWCw709TUFEcccUTNMtTSlClTYqeddkqcu/vuu6Ozs7P2gf7/brzxxsSZTCYTCxcuTCENAAAAAAAAQHXk2sqXiyIiOvt6UkgCAAAATHTKRcCE0NraGocffnji3JVXXhlPP/101e9fs2ZNnHfeeYlzBxxwQGy66aZVvz8tb3vb2xJnhoaG4tvf/nYKaSJuuOGGeOihhxLnFixYELlcLoVEAAAAAAAAANWRa00uF+V7lYsAAACAsVMuAiaMT3ziE5HJZMrODA0Nxemnn171uz//+c9HV1dX4txpp51W9bvT9J73vKeiubPPPjvWrl1b0yylUik+97nPVTR74IEH1jQLAAAAAAAAQLXNbG1L/B64zUUAAABANSgXARPGDjvsEAcddFDi3DXXXBNXXHFF1e6944474gc/+EHi3MKFC2O//far2r0REcuWLYtMJpP4sffee1flvv3337+iDUBdXV1xwgknRLFYrMq9r+dLX/pS3H///RXNVrLVCgAAAAAAAGA8aW5qilnTsmVn8oXulNIAAAAAE5lyETChfOELX4impuQvbSeddFI8+eSTY75v5cqVceSRR8bw8HDi7BlnnDHm++ptypQpceKJJ1Y0e/XVV8enPvWpmuS4/PLLK/713HXXXWOPPfaoSQ4AAAAAAACAWurITi973lnoTSkJAAAAMJEpFwETym677RbHH3984ty6deti3333jWeffXbUd61atSr222+/WL58eeLsgQceGO9973tHfdd4cuqpp8a0adMqmv3GN74RH/nIR6K/v79q93/rW9+KY445JkqlUkXzn/70p6t2NwAAAAAAAECactm2suc2FwEAAADVoFwETDj/8i//EhtssEHi3Isvvhi777573HDDDSO+45577om3vvWt8cc//jFxtrW1Nb7zne+M+I7xarPNNhvRRqLvf//7sWjRoli6dOmY7n3uuefi4IMPjtNOOy0GBwcresySJUvisMMOG9O9AAAAAAAAAPVicxEAAACQBuUiYMLZcMMN46KLLopMJpM4u2bNmnj3u98dhx56aNx7772J848++mgcd9xx8fa3vz1eeOGFivJ85zvfie22266i2Ubxmc98JnbYYYeK5x988MHYfffdY5999olrr702enp6Knrc4OBg3H777XHEEUfEdtttF9dee23Fd7a2tsb3v//9in4fAAAAAAAAAIxHNhcBAAAAaWipdwCAWjjooIPi9NNPj7POOqui+auuuiquuuqqeNOb3hRLliyJHXfcMWbPnh2ZTCby+Xw8/vjjcdddd8XDDz88ohxHHnlknHzyyaP5FMa11tbWuOqqq2L33XePrq6uih936623xq233hotLS2x6667xh577BEbbrhhzJ49Ozo6OqK7uzvWrl0ba9asiQcffDDuvvvu6O0d3U/a+sEPfhA77rjjqB4LAAAAAAAAMB7kKthcVCqV/NBFAAAAYEyUi4AJ66tf/Wq8+OKLcdlll1X8mCeffDKefPLJqty/7777xgUXXFCV5xqPtt9++7j66qvjoIMOGnEBaGhoKJYuXRpLly6tSbYvfelLccwxx9TkuQEAAAAAAADS0pFtL3s+VByO7oG+mDEtm1IiAAAAYCJqqncAgFppamqKH/7wh3HooYemfveSJUvimmuuiWnTpqV+d5r22WefuP766yOXy9U7SkT8+b/5WWedFZ/73OfqHQUAAAAAAABgzHIJ5aKIiHyhJ4UkAAAAwESmXARMaC0tLXHFFVfEpz71qdTuPO644+JXv/pVtLcnv8g7Eey1115x3333xcKFC+uaY86cOXH99dfH6aefXtccAAAAAAAAANVSSbmoU7kIAAAAGCPlImDCa2pqiq9+9atx1VVXxWabbVaze3K5XJx33nlxwQUXTPiNRX9t/vz5cc8998RZZ50V06dPT/XuTCYTxx13XDz22GPxd3/3d6neDQAAAAAAAFBLM1vbIpMwY3MRAAAAMFYt9Q4AkJZDDjkk9t133/jiF78Y5557bvT0VOcF1qlTp8bRRx8d//qv/xobbrhhVZ6zEbW0tMTpp58exx57bJx99tlx7rnnxtq1a2t235QpU+Lwww+Pz3zmM7HjjjvW7B4mjlKpFMPDw1EsFqNUKtU7DgAAAAAVymQy0dTUFM3NzZHJJL21FgBgYmluaopZrW3R2df7hjM2FwEAAABjpVwETCozZsyIs846K/75n/85/uM//iMuueSS+OMf/ziq59pmm23igx/8YJxyyimx6aabVjlp45ozZ058+ctfjs9//vNx3XXXxU9+8pP49a9/HatWrRrzc2ez2Vi8eHG8//3vjw984AOxwQYbVCExE02pVIq+vr4oFAoxODgYAwMDMTAwEIODg0pFAAAAAA0sk8nElClTYurUqTF16tSYMmVKZLPZaG1tVToCACa0jmx72XKRzUUAAADAWGVK3mULTHLPP/983HzzzfHQQw/Fo48+GsuWLYuurq5Yv359lEqlmDFjRsyYMSO22GKLePOb3xw77bRT7LfffrFgwYJ6R28YpVIp/vCHP8T9998fjzzySDz11FOxYsWKWLFiRaxfvz76+vpiYGAgWlpaorW1Ndrb22PjjTeOTTfdNObPnx877rhj7LzzzrH77rvHtGnT6v3pjCurVq2KjTba6DX/7pVXXpl0W7T+Uihav359dHV1xeDgYL0jAQAAAJCSKVOmxMyZM2PGjBmKRgDAhHTWrdfEA39a9obnu2+xbZy653vSCwQAAAAT1GR+X67NRcCkt+WWW8ZJJ51U7xgTWiaTiZ133jl23nnnekdhgimVStHV1RWrVq1SKAIAAACYpAYHB2PNmjWxZs2amDJlSmy44YYxc+ZMJSMAYMLoyLaXPbe5CAAAABgr5SIAoCH19/fHypUro7e3t95RAAAAABgnBgcH409/+lN0dnbGJptsYhM6ADAh5BLKRZ3KRQAAAMAYKRcBAA2lWCzGqlWrYu3atfWOAgAAAMA41dvbG88++2zMnj07Ntxww2hqaqp3JACAUatkc1GpVLK5EQAAABg130kBABpGsViMl156SbEIAAAAgIqsXbs2XnrppSgWi/WOAgAwarns9LLnQ8Xh6B7oSykNAAAAMBEpFwEADeEvxaLu7u56RwEAAACggXR3dysYAQANLZewuSgiorPQk0ISAAAAYKJSLgIAxj3FIgAAAADGQsEIAGhkHRWUi/LKRQAAAMAYtNQ7AABAklWrVo2qWNTc3Bytra0xderUVz+am5sjk8lEJpOpQVIAAAAAqqlUKkWpVIrh4eEYGBh49aOvry+Gh4dH9Fzd3d2xatWq2HjjjWuUFgCgNma1tkUmIkplZmwuAgAAAMZCuQgAGNf6+vpi7dq1Fc83NzfHzJkzY8aMGdHW1qZEBAAAADABlUql6O3tjfXr10dXV1fFRaO1a9dGR0dHTJs2rcYJAQCqp7mpKWa2tsW6vt43nLG5CAAAABgL5SIAYNwqlUrx8ssvVzw/e/bsmDNnTjQ3N9cwFQAAAAD1lslkor29Pdrb22PDDTeM1atXV/wDalauXBnz5s3zQ2kAgIaSy7aXLRfZXAQAAACMRVO9AwAAvJGurq7o7X3jb5L8RUtLS8yfPz823nhjxSIAAACASaa5uTk23njjmD9/frS0JP9cvd7e3ujq6kohGQBA9XRk28ue21wEAAAAjIVyEQAwLpVKpVi1alXiXEtLS8ybNy9aW1tTSAUAAADAeNXa2hrz5s2rqGC0atWqKJVKKaQCAKiOXEK5yOYiAAAAYCyUiwCAcamvry8GBwcT57bYYouYNm1aCokAAAAAGO+mTZsWW2yxReLc4OBg9PX1pZAIAKA6bC4CAAAAakm5CAAYl9avX584M3v2bBuLAAAAAHiN1tbWyOVyiXOVvP4EADBeJG0uyhd6bGYEAAAARk25CAAYd0qlUnR1dZWdaW5ujjlz5qSUCAAAAIBGsuGGG0Zzc3PZma6uLm/ABQAaRi47vez5UHE4egb6U0oDAAAATDTKRQDAuNPX1xeDg4NlZ2bOnJn4BhEAAAAAJqfm5uaYOXNm2ZnBwcHo6+tLKREAwNh0ZNsSZ/KF7hSSAAAAABORchEAMO4UCoXEmRkzZqSQBAAAAIBGVcnrR5W8DgUAMB4kbS6KiOgs9KSQBAAAAJiIlIsAgHEnaWtRc3NztLUl/3Q2AAAAACavtra2xM3XSa9DAQCMF7Na2yKTMJNXLgIAAABGSbkIABh3BgYGyp63trZGJpP07RMAAAAAJrNMJhOtra1lZ5JehwIAGC+am5piZmv5H75ncxEAAAAwWspFAMC4k/SmjqlTp6aUBAAAAIBGlvQ6knIRANBIOrLtZc9tLgIAAABGS7kIABhXSqWSchEAAAAAVZH0OtLg4GCUSqWU0gAAjE1OuQgAAACoEeUiAGBcGR4eTpxRLgIAAACgEkmvI5VKpYpejwIAGA+SNhd1KhcBAAAAo6RcBACMK8ViMXGmubk5hSQAAAAANLpKXkeyuQgAaBQ2FwEAAAC1olwEAIwrlbyZI5PJpJAEAAAAgEZXyetIlfywGwCA8SCpXNRZ6FGcBgAAAEZFuQgAaDjKRQAAAABUwutIAMBE0pFQLhosDkfPQH9KaQAAAICJRLkIAAAAAAAAAADGuaTNRRF/3l4EAAAAMFLKRQAAAAAAAAAAMM4lbS6KiMgXulNIAgAAAEw0ykUAAAAAAAAAADDOzWpti0zCTL7Qm0oWAAAAYGJRLgIAAAAAAAAAgHGupak5ZrRmy8502lwEAAAAjIJyEQAAAAAAAAAANIBcdnrZc5uLAAAAgNFQLgIAAAAAAAAAgAbQ0dpW9jxvcxEAAAAwCspFAAAAAAAAAADQAHJt5TcXdRZ6UkoCAAAATCTKRQAAAAAAAAAA0ABy2fay53nlIgAAAGAUlIsAAAAAAAAAAKABdCSUizoLPVEqlVJKAwAAAEwUykUAAAAAAAAAANAAkjYXDRaHo2ewP6U0AAAAwEShXAQAAAAAAAAAAA2go7V8uSgiorO3J4UkAAAAwESiXAQAAAAAAAAAAA0g15ZcLsr3KRcBAAAAI6NcBAAAAAAAAAAADWBWa1tkEmbyNhcBAAAAI6RcBAAAAAAAAAAADaClqTlmtGbLznTaXAQAAACMkHIRAAAAAAAAAAA0iFxre9lzm4sAAACAkVIuAgAAAAAAAACABtGRLV8usrkIAAAAGCnlIgAAAAAAAAAAaBC5tullz/OF7pSSAAAAABOFchEAAAAAAAAAADSIjtbym4vyvTYXAQAAACOjXAQAAAAAAAAAAA0i11a+XNTZ1xOlUimlNAAAAMBEoFwEAAAAAAAAAAANImlz0eDwcPQM9qeUBgAAAJgIlIsAAAAAAAAAAKBB5LLly0UREZ2FnhSSAAAAABOFchEAAABv6KKLLopMJpP4cdFFF9U7KtDAKvk6s/fee9c7JgAAAMC4UEm5KK9cBAAAAIyAchEAAAAAAAAAADSIWdm2xBmbiwAAAICRUC4CAAAAAAAAAIAG0dLUHDOnZcvO2FwEAAAAjERLvQMAAAAAAMBEUiwW4/HHH4977703nnvuuSiVSomP6ejoiFNPPbX24QAAgAkhl22Prv7CG57bXAQAAACMhHIRAAAw4Vx00UVx3HHH1eS5p06dGq2trTFt2rRXP6ZPnx4bbbTRaz7mzp0b22+/fSxYsCBmzpxZkywAANRfqVSKJ598Mu69995XPx544IHo6RnZG/m23HLLSVkuOuOMM+LMM8+sd4xx4cILL4xjjz223jEAAGgQHdn2eL5z9Rue21wEAAAAjIRyEQAAwAgMDAzEwMDAiB6z6aabxg477BC77rprLFmyJJYsWRJz5sypUUIAAGrpmWeeeU2R6P7774+urq56xwIAACaZXLa97Hm+0J1SEgAAAGAiUC4CAACosRUrVsSKFSviN7/5TXzzm9+MiIgddtgh9t577zj00ENjn332iebm5jqnJE2dnZ1x9tlnJ879zd/8TRxyyCE1z8PEdNFFF8WyZcsS584444yaZwFoVMuWLYt777037rvvvlf/mc/n6x0LAAAgOrLTy553FnpTSgIAAABMBMpFAAAAdfDYY4/FY489Fueee25suOGGceihh8aRRx4Z73jHO+odjRR0dnbGmWeemTj34Q9/WLmIUbvooovit7/9beKcchHA//SP//iP8bOf/SxWr15d7ygAAACvK5dtK3ueL3RHqVSKTCaTUiIAAACgkTXVOwAAAMBkt2rVqvjBD34Qe+21VyxcuDAuvfTSGBoaqncsAIBJ65577lEsAgAAxrWkzUWDw8PROziQUhoAAACg0SkXAQAAjCMPPPBAHHXUUbH11lvHeeedF8Visd6RAAAAAAAYZ3LZ9sSZfKE7hSQAAADARKBcBAAAMA4tX748Tj755Fi0aFH8/ve/r3ccAAAAAADGkUrKRZ2FnhSSAAAAABOBchEAAMA4tnTp0li0aFF89KMfjYGBgXrHAQAAAABgHJjV2pY4k1cuAgAAACrUUu8AAAAA9XTqqafGvvvuO6LHFIvF6Ovri/7+/ujr64vu7u5YsWJFrFy5MlasWBFPPfVUvPDCC1EqlaqSsVQqxXe/+934/e9/H1deeWVsvvnmVXneShx77LFx7LHHpnYfMDlV6+slAAAAwGTR0twcM6dlo6u/8IYzNhcBAAAAlVIuAgAAJrVddtklDjrooKo/b3d3dzzyyCNx//33x29+85u45ZZbYu3atWN6znvuuScWLlwYP/vZz2LJkiVVSgoAQLVtvfXWsdtuu8Vuu+0WP/zhD+PRRx+td6Rx64wzzogzzjgj1fvOPPPMimZvueWW2HvvvWsbCAAAxqAj2162XGRzEQAAAFAp5SIAAIAamD59eixatCgWLVoUp5xyShSLxVi6dGlccsklcfnll8eaNWtG9byrVq2KAw88MG688cZYvHhxlVMDADBS8+fPf7VI9Na3vjV22223yOVyr57fcMMNdUwHAABMZLlse7zQufoNz5WLAAAAgEopFwEAAKSgqakp9thjj9hjjz3iW9/6Vlx55ZXxpS99KR5//PERP1d3d3cceOCBcfPNN8eiRYtqkBYAgNez5ZZbvlog+ss/Z8+eXe9YAADAJJXLtpc971QuAgAAACqkXAQAwKgUi8X4U1c+nl37Sry4bk30DPTF4PBwDBWHo6WpOaY0N0f71NbYfNYGsfUGG8VmM3LR1NRU79gwLkydOjWOPPLIOOKII+LHP/5xfPKTn4yXXnppRM+xfv36ePe73x33339/bLXVVrUJCgAwSWUymZg3b97/KBJtsMEG9Y4GAADwqo6EcpHNRQAAAECllIsAAKhIqVSKx155Ke578Zl4Zu3L8fzaVdE/PFTx46e1TIktc3Nim9kbx26bbxM7bDQ3MplMDRPD+NfU1BQf/OAH48ADD4yPf/zjcdFFF43o8fl8Pg4//PC44447YurUqbUJCQAwCd1+++0xffr0escAAAAoq5LNRaVSyfdjAAAAgETKRQAAlNUz0B+3P/dY/Oqph+NPXflRP0//0GA8uWpFPLlqRdzwxIOx2cxc7LfdzrHn/B2ifeq0KiaGxtPR0REXXnhh7LfffnH88cfHwMBAxY9dunRpnH766XHOOefUMCEAwOSiWAQAADSCpM1FA8ND0Ts44PswAAAAQCLlIgAAXtfL6zvj2kfvi98te3xEG4oq9aeufPzwvt/Gjx+8M96+1YJ435t3i41ndFT9HmgkRx11VGyxxRZx8MEHR2dnZ8WP++53vxuHHXZY7LnnnrULBwAAAADAuJLLJv9ghM5Cj3IRAAAAkKip3gEAABhfhovFuPbRe+P/u+6/4pZnHqlJsej/1T88FLc880j8f9f9V/z80XujWCzW9D4Y797xjnfEtddeG9OmjeybvaeeemqUSqUapQIAAAAAYLzpyLYlzuQL3SkkAQAAABqdchEAAK96ad3aOOOXP4nLH7wzBovDqd49WByOyx68M8745RXx0rq1qd4N482ee+4Zl1xySWQymYofc//998dFF11Uu1AAAAAAAIwrHa3tiTOdhd4UkgAAAACNrqXeAQAAqL9iqRTXPXZ/XPnwXamXiv7a02tWxj/fcGn8w85vi/fssDCaRlCugInksMMOi1tuuSXOPffcih/z+c9/Po4++uhoaZm8/6s3MDAQq1atilWrVsX69eujv78/BgcHY9q0adHW1vbqR3t7e2y00UbR3Nxc78iTSm9vbyxfvjzWr18fPT09USgUYtq0adHe3h7Tp0+PLbbYImbMmFHvmKnq7u6OW2+9NR566KF44okn4sknn4xXXnkluru7o7u7OwYGBqKtrS1mzJgRG220UcydOze+973vxbx58+odnf9HqVSKFStWxKpVq6Knpyd6enqiVCpFe3t7tLe3xwYbbBBz586NpqbJ9XN+Hn300bj11lvjD3/4QzzyyCPx0ksvRVdXV6xfvz4iItra2mLWrFmx5ZZbxtZbbx1vfetbY/HixbHLLruMqGA7XpRKpVi7dm288sorkc/no7+/P/r7+6O5ufnVP3+y2Wy0tbXFBhtsEO3tyW8AAyinr68vli9fHl1dXdHb2xs9PT3R0tLy6t+tNt9888jlcvWOCQBADbU0N8eMadlY3194wxmbiwAAAIBKTN53nAEAEBERQ8Xh+MHdv4w7lz1R7yiv+vMWozvihc5V8Y+L9o+WJm/+Z3I666yz4qabbopnn322ovkXX3wxfvazn8Xhhx9etQwXXXRRHHfccYlzF154YRx77LFVu7cS+Xw+br/99vjd734XDzzwQDzxxBPxwgsvRKlUqujxLS0tMXfu3Nhqq61iq622ivnz58duu+0WixYtijlz5ow536233hr77LPPmJ7j4osvjosvvnjMWf5ir732iltvvbVqz1fOunXr4rbbbos77rgj7rrrrnjqqadi5cqViY+bM2dObLfddrFo0aJYsmRJ7LXXXrHBBhukkLi8M844I84888zEuVtuuSX23nvvsjPd3d1x8cUXx5VXXhl33nlnDA4Olp1fv359rF+/Pv70pz/Fgw8+GGvXrn21XLTVVlvF888/X/Hn8XqqXeJ47rnnYquttqp6hjR//yZ5+OGH4/bbb4877rgjHnrooXjuueeir6+v7GOmTp0aW265Zey8886xZMmS2HPPPWPhwoXjokRTzV//5cuXx7//+7/HT3/603j66afLzg4MDERnZ2c8//zzcdttt726gW/evHlx+OGHxymnnBLz58+v5FNI3fDwcCxdujR+97vfxT333BOPP/54PPnkk4m/D/5fc+bMiS233PLVP4d23HHHWLRoUSxYsGBc/L4Axpc1a9bEnXfeGXfeeWfcfffd8fTTT8eKFSsS/+47a9aseNOb3hRve9vbYvHixbHffvvF7NmzU0oNAEAactn2hHJRT4ppAAAAgEalXAQAMIkNDA/FOXdcH/e/9Fy9o7yuO5c9EYXBgfjoknfH1GZ/dWXyaW9vj29/+9tx8MEHV/yY7373u1UtF403hUIhLrvssrjsssvi1ltvjaGhoVE/19DQUDz//PPx/PPPx29/+9vXnG2zzTaxaNGi2GeffeL973+/N2BWaGhoKK666qq49NJL44Ybboj+/v4RP8fq1atj9erVcdddd8W3v/3taGlpif322y+OPPLIOOyww6K1tbUGydOxZs2a+PKXvxwXXHBBdHV11TsOI/T000/HxRdfHJdddlk888wzI378wMBAPPXUU/HUU0/FT3/604iI2GKLLeKII46ID3/4w7HjjjtWO3Kqli1bFmeccUZceumliYW5JC+88EJ84xvfiLPPPjs+9KEPxb/+67/GJptsUqWkY/O73/0uzj///Lj22mtj9erVY3quv3y9u++++17z7zs6OmL33XePxYsXxyGHHBI777zzmO4BGte6deviyiuvjMsvvzxuueWWGB4e+abhdevWxdKlS2Pp0qVxzjnnxJQpU2L//fePD33oQ3HYYYdN6q2nAAATRS7bHi90vvH/o3YqFwEAAAAVaKp3AAAA6mOoODyui0V/cf9Lz8V377ghhoojfxMVTATve9/74q1vfWvF83/ZojHRdHd3xxe/+MWYO3dunHDCCfGrX/1qTMWiJM8880z86Ec/ihNPPDE23njjeNe73hUXXnhhrFu3rmZ3NrL+/v74/ve/H9ttt10cfvjhcfXVV4+qWPR6hoaG4sYbb4xjjjkmtt566/jWt74Vvb29VXnutJRKpTjvvPPiTW96U5x99tmKRQ3mkUceiSOPPDIWLFgQX/7yl0dVLHojy5cvj7POOit22mmnOOSQQ+Lee++t2nOnpVgsxtlnnx1vectb4uKLLx5zsej/NTQ0FBdddFG8+c1vjh/96EdVe97RuO6662LhwoWxePHiuOCCC8ZcLCqns7Mzbr755vjCF74Qu+yySyxYsCA+//nPx6OPPlqzO4HxZeXKlfGpT30q5s2bFyeeeGL86le/GlWx6PUMDg7G9ddfH0ceeWRst912ce6559b079UAANReR7a97LnNRQAAAEAllIsAACahYqkUP7j7l+O+WPQX9730bPzg7l9GsVSqdxSoizPOOGNE8z/+8Y9rE6ROrr766thuu+3iC1/4QuTz+dTvHxoaiptuuimOP/74OO+881K/f7y79dZbY6eddoqPfOQjsWzZspretWLFijjttNNiwYIF8Ytf/KKmd1VLT09PHHrooXHyySfH2rVr6x2HEeju7o6Pfexjscsuu8Rll11WtTd1v55SqRTXXHNN/O3f/m2ccMIJdflaNxqdnZ1xwAEHxMc//vHo6andG5Xy+Xx86EMfik9/+tNRSvnvgy+88EIccMABcdBBB8UDDzyQ6t1/8cQTT8SXvvSlmm0mzGQyFX/U+us8THYDAwPx5S9/Obbeeuv4+te/XvNC8rJly+KUU06J3XbbLe6+++6a3gUAQO3kEspFNhcBAAAAlVAuAgCYhK577P64c9kT9Y4xIncueyKuf/z+eseAujjwwANj3rx5Fc///Oc/r2Ga9AwNDcVHPvKReP/73x8rV66sdxz+ysDAQJxyyimxzz77xFNPPZXq3cuXL4/3vve9cdRRR43rLUZ/+tOfYsmSJXH11VfXOwojdNddd8Wb3/zmOOecc6JYLKZ69wUXXBALFiyIm2++OdV7R+qZZ56JRYsWxa9//evU7vza174Wp556amr3XX/99bHTTjvFL3/5y9TuBCave+65J3beeef4v//3/0ahUEj17ocffjgWL14cX/rSl1IvcQIAMHaVbC7y9zwAAAAgiXIRAMAk89K6tXHlw3fVO8aoXPHQXfHSOlsfmHyampriwx/+cMXzjzzySMNvFujv74/3vve98f3vf7/eUXgdL7/8crzzne+Mc889t645Lr300nj7298ezz//fF1zvJ6/bHR58MEH6x2FEbrgggti7733juXLl9ctwyuvvBLvfve745vf/GbdMpTz/PPPx1577RVPPJF+Wf2cc86Jr3/96zW/54ILLoj3ve99Nd8aAhARce6558Y73vGOunxd/YtisRif//zn45BDDkm93AQAwNgkbS4aGB6KwuBASmkAAACARqVcBAAwiQwXi/H9u2+OweJwvaOMymBxOH5w9y9T3yAA48HRRx89ovnrrruuRklqr1QqxVFHHRU33nhjvaPwOl566aVYvHhx3HnnnfWOEhERDz30UCxatCiefPLJekd5VX9/f7zvfe+LP/7xj/WOwgh99atfjRNOOCEGBur/hpvh4eE4/fTT4xOf+ES9o7zGK6+8Evvvv3+89NJLdcvw2c9+Nu66q3Zl+auuuipOOumkGB5uzL8zA42jVCrFKaecEqeccsq4+LMnIuLaa6+Ngw76/7F33+FRlen/xz+TSSEJoYQShAgJ0kKHSO+CBelrBVHABQuCWPDrrmsBde0VYbGgoIKgwKq0VRCl9xoEQguhQygJKaRnfn/4U3cVkjPJOXMmk/fruvhjyX3O/ZnxPDND9tzz9PXq3SEBAADwv4rauUj6ZfciAAAAAACAwvjbHQAAAACesyR+mw6dP2N3jBI5eP60FsdvU7/G19odBfCo+vXrKzo6WocPHzZUv27dOj300EMWp7LGm2++qfnz59sdA5dx+vRpXXfddTp06JDdUf7H6dOn1aNHD61cuVL16tWzO47+8Y9/aPXq1YZq69Spo06dOql+/fqqXbu2wsLCFBgYqPT0dF28eFH79+9XXFyc1q5d6zU3Hfuqt956S3//+9/tjvEnb7/9tgICAvTqq6/aHUX5+fm65ZZbdODAgSJrQ0ND1a5dO7Vs2VLR0dEKDw9XaGiocnNzlZKSosOHD2vz5s1au3at2zew5+XlacSIEdq1a5cCAgKK+3Au6/Dhwxo2bBjD7AAsV1BQoJEjR2r69Ol2R/mTH3/8Uf3799d3330nf3/+byQAAABvV9TORZKUkpmhWhXDPZAGAAAAAACUVvy/QgAAAGXEmbQUzYvbYHcMU8yL26C2V9dTRFglu6MAHtWrVy999NFHhmq3bdtmcRprHD58WP/4xz/cPs7pdKpNmzbq1q2b6tevr3r16unqq69WaGioQkNDFRISory8PGVnZys1NVVnzpzRqVOndODAAe3fv1/btm3Tzp07lZWVZdpj6d69u1wu12V/lpiYqOjo6CLPMWzYMM2YMcO0TCWRnZ2tfv36FWuHIIfDoQ4dOuimm27Stddeq0aNGqlKlSoKDQ1VZmamkpOTtX//fm3fvl3fffedVq5cqby8PLd6nDx5UjfffLM2b96sihUrup3RLGvXrtXbb79daE2NGjV0//33a+jQoYaHoVJTU/Xtt9/+acAkMTHxisd0795dK1euLPLcV7pOy5L58+fr8ccfL9ax1apV00033aSePXuqcePGioqKUlhYmJxOp9LS0nT8+HHt2bNHK1as0OLFi3X8+HG3e7z22muqU6eORo8eXayMZnnmmWe0Zs2aK/7cz89Pt9xyi4YPH67rr7/e0OBPRkaG5s6dq5deesnQ0NKv9u3bpylTpuiRRx4xfIwR999/v9LS0tw+rnbt2rr++uvVpEkT1atXT9dcc40qVqz423uQ0+lUVlaWMjMzlZSUpKSkJCUkJOjAgQPatWuXNm/erKSkJFMfCwDv9tBDDxV7sKh+/frq1auXWrdurZiYGEVGRio8PFzBwcEqKChQenq6jh8/rv3792v9+vVasmSJ4uPj3eqxfPlyPfLII5o8eXKxMgIAAMBzKpVj5yIAAAAAAFByDBcBAACUEQv2bFVuQb7dMUyRW5CvBXu2alS7nnZHATyqZ8+ehoeL9u/fr/T0dJUvX97iVOZ69tln3dqdpX79+nriiSd06623qnLlyoXWBgYGKjAwUGFhYapVq9affp6bm6uNGzdq2bJlWrx4sbZu3ep2fl82ZswYbdmyxa1j/P39dd999+mRRx5R/aP6QIQAAQAASURBVPr1L1tTvnx5lS9fXldffbV69uyp8ePH6/jx45o8ebLeffddtwa+Dhw4oHvuuUfffPONHA6HW1nN8vzzz19xx5Pg4GA999xzevjhhxUcHOzWeStUqKC7775bQ4cOVW5urhlR8f/Fx8drxIgRbh8XExOjZ555RrfccosCAwMvWxMeHq7w8HA1b95cd955pwoKCrRo0SK9+OKL2rx5s1v9Hn30UbVu3Vrt27d3O6sZdu/erVWrVl3x571799a77757xbV+JaGhoRo+fLjuuusuPf/88/rnP/9peODt1Vdf1ejRo6/4/Ltr+fLlWrZsmeH6kJAQjRw5Ug888IBiYmKKrP914LVq1apq3Lixunfv/j8/T0hI0LJly7R06VL95z//UWZmprsPAUApMXnyZL3//vtuHVOxYkWNHDlSI0eOVKNGjQqt/e/3n1tvvVVvvvmmtm7dqtdff11fffWV4dfZKVOmqH379ho6dKhbWQEAAOBZ/k6nwoKClZZ95X9HJmemezARAAAAAAAojfzsDgAAAADrZeRka12ie99S7O3WJcbrUk623TEAj2rZsqXh2oKCAm3fvt26MBZISkrSl19+aag2ICBAkyZNUnx8vEaNGlXkYJHRc3bu3FkTJ07Uli1blJCQoBdffFF16tQp8blLu/nz52vatGluHdOmTRvFxcVpypQpbg8bREZG6pVXXtHevXt13XXXuXXsggULNGXKFLeOMdOVhuNiYmK0Y8cOPfnkk24PFv03h8Nh2iAFpPz8fA0ePNitnWoCAgL02muvKS4uToMHD3brv4efn5/69++vjRs36oMPPlBISIjhY3NycnTnnXcqI8Oebxo+d+7cZW9GDwoK0rRp07RkyRK31/p/CwgI0AsvvKCZM2fKz8/YryxPnz6tOXPmFLvnH02aNMlwbZ8+fZSYmKh3333X0GCREXXr1tX999+v+fPn6+zZs5o9e7Z69uxp27AkAGusWrVKjz76qOF6p9Op8ePH6/Dhw3rjjTeKHCy6ktjYWM2ZM0fr1q1T48aNDR83btw4nTlzplg9AQAA4DmVgwvfvSiFnYsAAAAAAEARGC4CAAAoA1Yf3qvs/Dy7Y5gqOz9Pqw/vtTsG4FH169d3ayhh//79FqYx35w5cwztyBIcHKyffvpJY8eONXwDenFER0frH//4hxISErRgwQJ17NjRsl7eLC0tTePGjXPrmL/+9a9as2ZNiW+4j4qK0tKlS/X444+7ddw//vEPnTx5skS9zdShQwetW7dODRo0sDsK/uDdd9/Vjh07DNdXrVpVq1ev1hNPPCF//+JvCO5wOHTfffdp48aNuvrqqw0fd+TIET333HPF7mu2sLAwLV++XH/9619NO+eQIUP0xhtvGK7/5JNPTOl7/vx5LVmyxFDtuHHjtHDhQlWrVs2U3pcTGhqqO++8Uz/88IP279+vBx54QOXKlbOsHwDPuHTpkkaMGKG8PGP/Po+OjtbGjRv1+uuvmzJML0nt27fXpk2bdMsttxiqv3DhgtufBQEAAOB5lYoYLkpmuAgAAAAAABSB4SIAAAAf53K5tOxAnN0xLLHsQNxlv0Ef8FV+fn5ufcv48ePHLUxjvqVLlxqqe/fdd9WpUyeL0/zOz89P/fr109q1a3X//fd7rK+3mDBhgk6cOGG4fuzYsZo2bZppu+s4nU698cYbeuaZZwwfk5qa6vZAklViYmK0ePFiVapUye4o+INTp065NahTvXp1rVy5Uu3atTMtQ9OmTbVy5UrVrl3b8DHvvvuudu/ebVqG4goMDNSSJUsseT1+5JFH1KNHD0O1q1evVlJSUol7/vTTT4Zu9u/atavefPNNj+4mVK9ePU2dOlU//fSTx3oCsMZTTz2lhIQEQ7UdOnTQ5s2bFRsba3qO0NBQffnll7r77rsN1X/11VduDeMCAADA89i5CAAAAAAAlBTDRQAAAD5ub9IJnUpNtjuGJU6mJis+yfgN74AviI6ONlx77NgxC5OYb8OGDUXWxMTEaNSoUR5Ic3lhYWG29bbDmTNnNHXqVMP1AwcO1LvvvmtJlueff97wDbCS9OWXX2rvXnt3uAsODta8efNM22kA5nr99deVnp5uqDYoKEjffPONWwOeRkVHR2vhwoUKDS38JqBf5eXl6YUXXjA9h7umTJmizp07W3Juh8Oht956y9AAT0FBgRYvXlzinkbeg6Rfrhun01nifsVR1t6DAF+zb98+TZ482VDttddeq++++05VqlSxLI/T6dTHH3+s6667rshal8ulZ5991rIsAAAAKDl2LgIAAAAAACXFcBEAAICP23r8kN0RLLXluLFvfQZ8xVVXXWW4tjTtXHThwgWdP3++yLphw4Z5IA1+9eabbyozM9NQbZ06dfTZZ59ZupvHRx99ZHi4w+Vy6Z///KdlWYx4/vnnLRlGQcmdO3dOH3zwgeH6119/XR06dLAsT/Pmzd0a5Js7d6727dtnWZ6i9O7dWyNHjrS0R8uWLdWzZ09DtatXry5xv/379xdZ06hRI7Vt27bEvQCUTc8++6zy8/OLrIuIiNA333yjChUqWJ4pICBAs2bNMjTEtGjRIh065Nu/XwAAACjNjOxc5HK5PJQGAAAAAACURgwXAQAA+LhDF87YHcFSCT7++IA/cme46OTJkxYmMdeJE8Z2IWvVqpXFSfCrrKwsffTRR4brP/74Y8t31QgKCtL06dPl52fs1xlz5szRmTP2vE9cc801evjhh23pjaJNmzZNly5dMlTbtWtXjRkzxuJE0t13362+ffsaqi0oKNB7771ncaLL8/f316RJkzzS69577zVUt3bt2hL3MvI+xHsQgOLas2eP5s6da6j2ww8/VK1atSxO9LsaNWrolVdeKbLO5XLp448/9kAiAAAAFEdROxdl5+cpMzfHQ2kAAAAAAEBpxHARAACADysoKNCRC2ftjmGpxOSzKigosDsG4DE1atQwXJuRkWFhEnOlp6cbqouMjLQ4CX61YMECpaSkGKrt16+f4R1GSqpt27YaOnSoodr8/HzNmjXL4kSXN378eAUGBtrSG0X77LPPDNU5HA699dZblu7I9d/efPNN+fv7G6qdM2eOcnI8f1PQXXfdpXr16nmk180336yAgIAi6w4ePKjs7OwS9TLyPsR7EIDiev/99w19S3y/fv3Uv39/DyT6XyNGjFD9+vWLrPvss8/4tnsAAAAvVdTORZKUnFl6fl8MAAAAAAA8z9jdCgAAAPiTnPw8JaVdtDtGoU6npSg7P8/uGJbKzsvV9hOHFRFWye4oV1Q9rKICnXz0hjmCg4MN12ZmZlqYxB65ubl2RygzPv/8c8O1L7zwgoVJ/uz555/XrFmzlJ+fX2Ttp59+qscee8wDqX5XoUIF3XPPPR7tCeO2bt2qvXv3GqodMGCAYmNjLU70uwYNGmj48OGaNm1akbXnz5/X4sWLNWjQIA8k+92DDz7osV4VK1ZU8+bNtXXr1kLrCgoKtH//fjVr1szSPL76HsSgAGCtrKwszZw501Dt888/b3Gay3M6nRo9erQeffTRQutOnDihnTt3qmXLlp4JBgAAAMOK2rlIklIyM1SrYrgH0gAAAAAAgNKIOxwBAACKKSntov5vibEbhGCtN1cvsjtCoV67eagiK1WxOwZ8RLly5QzXZmVlWZjEXFWqGFsjCQkJatGihcVpkJWVpR9++MFQbZcuXTz+36ROnTrq37+/vv766yJr4+LidPToUdWuXdsDyX7Rr18/hYSEeKwf3LNgwQLDtWPHjrUwyZV7GhkukqSFCxd6dLiofv36ateuncf6SVKbNm2KHC6SpEOHDpVouMjI+1BCQkKxzw+g7FqwYIGSk5OLrOvWrZutQztDhgzRY489VuTA4XfffcdwEQAAgBeqVK7o30WxcxEAAAAAACiMn90BAAAAAADGuTNcVJp2LqpataqhOiPDJCi51atXGx5OGzVqlMVpLu/+++83XGt0UMosAwcO9Gg/uMfo9XDNNdfouuuuszjNnzVv3lzt27c3VOvpa7t3794e7Sf9spuTEWfOnClRHyPvQ8uWLVN6enqJ+gAoexYtMvZlGMOHD7c2SBGqV6+uNm3aFFm3atUqD6QBAACAuwKc/goLKnzXe4aLAAAAAABAYRguAgAAAIBSJDAw0HBtTk6OhUnMVblyZZUvX77Iujlz5mjnzp0eSFS2GR1YCAgIUL9+/SxOc3nXXXedKleubKh22bJlFqf5X926dfNoPxiXlpamTZs2Gar15I5Af3TLLbcYqjt27Jj27dtncZrf2XFtR0dHG6or6XDR1VdfXWRNZmamnn/++RL1AVC2uFwuff/990XW+fn5qU+fPh5IVDgjw63bt2/3QBIAAAAUR6XgwncvSsnkCzMAAAAAAMCVMVwEAAAAAKVIdna24Vp3djmym8PhUJcuXYqsy83N1a233qojR454IFXZtXnzZkN1nTp1UqVKlawNcwUBAQGGd1HZsmWLxWl+V69ePVWrVs1j/eCe7du3Ky8vz1Bt3759LU5zZQMGDDBc68nru2XLlh7r9SujO9tdvHixRH2MDk699dZb+vzzz0vUC0DZsWvXLiUlJRVZ17x5c6/4/NCiRYsia06fPq3Tp097IA0AAADcVTm48C9vSs685KEkAAAAAACgNGK4CAAAAABKkaysLMO1pWm4SJJ69uxpqO7gwYPq0KGDvv76a4sTlV27du0yVGdkIMxKRvsnJCQoIyPD4jS/aNy4sUf6oHji4uIM1QUGBqpdu3YWp7my+vXrKyIiwlCt0cdUUgEBAYZ3ETKT0QFGd4ZvL6dHjx5yOBxF1uXn52vYsGEaP3680tLSStQTgO8zOgDapk0bi5MYU7t2bUN1Bw4csDgJAAAAioOdiwAAAAAAQEkwXAQAAAAApYg7w0XBwcEWJjHfgAED5HQ6DdWeOnVKf/nLX9S2bVvNmjVLmZmZFqcrO06dOqVz584Zqu3QoYPFaczpX1BQoJ9//tniNL9o2LChR/qgeIwOzrVs2dL2AU2j17enhotq1qxpaPjGbEFBQYbqSjpcVK1aNXXt2tVQrcvl0ptvvqno6Gg988wz7KYH4Iq2b99uqM5bhpOrV69uqO748eMWJwEAAEBxFL1zkWe+fAcAAAAAAJRODBcBAAAAQCnizu4rpW24qF69errzzjvdOmbz5s0aOnSoIiIiNHToUM2bN08XL160KGHZcOjQIcO1dt8I26hRI8MDae48rpKoWbOmR/qgeIxeB3Zf25LUpEkTQ3WeurbDw8M90uePAgICDNXl5eWVuNfTTz/tVv358+f14osvKjo6Wp07d9bbb7+t/fv3lzgHAN9hdAA0KirK2iAGGf33A8NFAAAA3qlSudBCf56SmSGXy+WhNAAAAAAAoLRhuAgAAAAASpHTp08brg0LC7MwiTWeeeYZ+fv7u31cWlqaZs2apdtuu01Vq1ZVhw4d9NRTT2nJkiVKTk62IKnvOnnypKG64OBg1a5d2+I0hQsKClJ0dLShWqOPq6QiIiI80gfFY/Q68IYdqGJiYgzVnTp1yuIkv/D2gVUzbo7q1auXOnfuXKzea9eu1WOPPaaGDRsqKipK9957r6ZPn64DBw6UOBeA0svozmaDBg2Sw+Gw/U+DBg0M5b1w4UJJnhYAAABYpHJI4cNF2fl5yszL8VAaAAAAAABQ2rh/xxYAAAAkSdXDKuq1m4faHaNQW48n6Mu4dXbHsNwdLToqtlZdu2NcUfWwinZHgA9x5ybyWrVqWZjEGg0bNtTbb7+tsWPHFvsceXl52rBhgzZs2CBJv90o2b59e3Xo0EGdO3dW48aN5XA4zIrtU4wOX9SsWdMrnsPIyEgdPHiwyDpPDReVxqG+ssTodRAZGWlxEvMypKenKzU1VRUqVLA0j9EdhEq7zz//XG3atNG5c+eKfY4jR45o+vTpmj59uiSpSpUqateunTp06KCOHTuqffv2CgkJMSsyAC/lcrk89vnD0zIzM+2OAAAAgMsoauciSUq+lKGQikEeSAMAAAAAAEobhosAAACKKdDpr8hKVeyOUaSyMFwUG1lXkRW9/78FYAZ3hou84eb44hgzZox27typadOmmXI+l8ulffv2ad++ffr0008lSZUrV1b37t114403qnfv3rbvwONNzp49a6iuevXqFicxxmgOo4+rpIKCuDnDW+Xm5urixYuGar3h+nYnw9mzZy0fLioroqKiNHfuXN1www3Kzc015Zznz5/XkiVLtGTJEkmSv7+/YmNjdeONN+rGG29U+/bt5efHBvOAr0lKSjLtdcTbMFwEAADgnYrauUiSUrIyVKtiuAfSAAAAAACA0ob/1xoAAMCH1axQWUFO354nD/IPUM2wynbHADzm0KFDhmtL63CRJL3//vu67777LDt/cnKyvv76az3wwAOqU6eO2rVrpzfffFNJSUmW9SwtjN4sGh7uHTchVKlibLjUUzfBlpXdXUojd64Bb7i+jV7bEjd5m6179+769ttvVb58eUvOn5eXp40bN+r5559Xp06dFBkZqTFjxmjTpk2W9ANgj5SUFLsjWCYnJ8fuCAAAALiMSuWK3iU3+VKGB5IAAAAAAIDSiOEiAAAAH+bn56c64dXsjmGpqMrV+KZ3lBl5eXmKj483XF+ah4ucTqc++OADffrpp6pYsaLl/TZt2qTx48crMjJSt99+u7Zs2WJ5T2+VlZVlqK5cuXIWJzHGaA6jjwu+y51rwBuub3cycH2br3fv3tq2bZvatm1rea9Tp05pypQpateunZo3b67p06f77G4nQFniy4OfLpfL7ggAAAC4jACnv8oHFf77hORMhosAAAAAAMDlcRcmAACAj7smPMLuCJaq6+OPD/hv+/btc+tbwmNiYixM4xn33HOP9u/fr1GjRnlkR5jc3FzNnTtXbdq0Ud++fbV3717Le3qb7OxsQ3WBgYEWJzEmKCjIUB3DFzB6bUvecX0bvbYlrm+r1K9fX+vXr9dHH32kWrVqeaTnrl27dO+996p+/fqaNWsWN/ADpRivzQAAALBD5eDQQn+ewnARAAAAAAC4AoaLAAAAfFxs5DV2R7DUtZF17Y4AeMz27dsN1/r7+6t58+YWpvGc6tWr68MPP9SBAwf0+OOPq0qVKh7pu3jxYrVo0UITJ05UXl6eR3p6A6O7wRUUFFicxBijOdjlDu5cA95wfbuTgevbOn5+fho5cqQSEhL00UcfqXXr1h7pe+TIEQ0dOlQ9e/ZUYmKiR3oCMBc7kAEAAMAOlcoVPlzEzkUAAAAAAOBKuPMAAADAx8VUr6WrKlS2O4YlalaorEbVPfMt8oA3WL58ueHaJk2aqFy5cham8bw6derojTfe0IkTJ/T1119ryJAhCg8Pt7Rnbm6uJkyYoBtvvFHJycmW9vIWRq8bd3aBsZLRHL62HuA+d64Bb7i+3cnA9W29wMBAjRw5Ulu3btWOHTv097//XY0bN7a8708//aTY2Fj99NNPlvcCYC5emwEAAGCHyiFF7FyUxXARAAAAAAC4PIaLAAAAfJzD4dD19X1j95I/ur5+czkcDrtjAB7jznBRbGyshUnsFRQUpIEDB2rWrFlKSkrS+vXr9eqrr2rAgAGqWrWqJT1//PFH9erVSxcvXrTk/N7E6I2wmZmZFicx5tKlS4bquMEX7lwD3nB9G722Ja5vT2vRooVeeukl7d69W0eOHNGMGTM0atQoNW7c2JLPphcuXFDv3r31ww8/mH5uANYJDg42XLts2TK5XK5S82fGjBnWPXEAAAAokSJ3LrqU7qEkAAAAAACgtPG3OwAAAACs1yU6Rl/uWKvs/Dy7o5gmyOmvLtExdscAPGbPnj06duyY4fqOHTtamMZ7OJ1OtW/fXu3bt//t7+Lj47VmzRqtXbtWa9eu1YEDB0zptW3bNg0ZMkSLFi3y6cHG0NDCb0D41dmzZy1OYozRHOXLl7c4CbxdcHCw/Pz8VFBQUGStN1zf7mTg+rZP7dq1NWzYMA0bNkzSL4NA//0etGXLFlN2wsrOztYtt9yiLVu2qH79+iU+HwDrGf1MJUlZWVkWJgEAAEBZUjm48N8RpGRdksvl8unfbwIAAAAAgOJh5yIAAIAyIDQwSB2jGtkdw1QdoxopJDDI7hiAx3z22WeGax0Oh/r06WNhGu/WqFEjjRw5UtOnT9f+/ft15swZffnll3rggQdUp06dEp17yZIlev/9901K6p1q1KhhqC4pKcniJMYYzWH0ccF3+fn5qVq1aoZqveH6dicD17f3CA8PV//+/fXqq69qzZo1Sk1N1apVqzRx4kR17NhRTqez2OdOTU3VPffcI5fLZWJiAFaJiIgwXJuezrfHAwAAwByVg0MK/Xl2Xq4y83I8lAYAAAAAAJQmDBcBAACUEf0bxyrAr/g3M3qTAD+n+jeOtTsG4DH5+fn6/PPPDddfe+213Gj+X6pXr67bb79dU6dOVWJiouLi4vTcc8+pbt26xTrf008/7dM3gNasWdNQ3alTp5STY/+NCAkJCYbqjD4u+Daj10FiYqK1QQwwem1XqVJFgYGBFqdBcQUGBqpLly569tlntXbtWiUlJemTTz7RDTfcID8/9381u2HDBs2ZM8eCpADMFhISoipVqhiqPXnypMVpAAAAUFZUKmLnIklKybzkgSQAAAAAAKC0YbgIAACgjIgIq6Rbm7e3O4Ypbm3eXhFhleyOAXjMwoUL3brhsF+/fhamKf2aNWumCRMm6ODBg/r+++/Vo0cPt46/cOGCPvnkE4vS2S8yMtJQXX5+vg4ePGhxmsJdvHhRp0+fNlRbq1Yti9OgNDB6fe/bt8/iJEWLj483VMe1XbqEh4drxIgR+v7775WQkKBHH31U5cqVc+scr7/+ukXpAJjN6K6ZR48etTgJAAAAyorKwaFF1iRn+u4XJwEAAAAAgOJjuAgAAKAMublRa11TJcLuGCVSr0oN9WnU2u4YgMe4XC5NnDjRcL3D4dCdd95pYSLf4XA4dMMNN+jHH3/UV199pfLli/5Wz1/NnDnTwmT2atCggRwOh6HauLg4i9OY1z8mJsbCJCgtGjVqZKjO7mvbnQxc26VXnTp19NZbb2nPnj1q166d4eO2b9+uPXv2WJgMgFmMvkb//PPPFicBAABAWVEpOKTImuRLGR5IAgAAAAAAShuGiwAAAMoQp5+fHmh/gwL8nHZHKZYAP6fub3+9/Pz4GIuy49///rd27NhhuP6GG25Q/fr1rQvko2677TYtWbJEwcHBhuo3b96ss2fPWpzKHuXLl1d0dLSh2rVr11qcxpz+wcHBrAtI+mXnMiP27dunc+fOWZzmyvLy8rRx40ZDtc2bN7c4DawWHR2tH374Qe3bG99ldMmSJRYmAmCWNm3aGKrbvn27xUkAAABQVgQ4/VU+qPAdclOyGC4CAAAAAAB/xl2ZAAAAZUytiuG6tXkHu2MUy20tOqhWxXC7YwAek5aWpscee8ytY8aOHWtRGt/XpUsXPfPMM4brjd74fznePiTZokULQ3UrVqywNohJ/Rs3biyns3QO1paEt19ndjB6bUvSypUrLUxSuC1btigjw9iNPgwX+Yby5ctr1qxZKleu8BvAfrVhwwaLEwEwQ9u2bQ3VXbhwwa0vFAAAAAAKU7lcaKE/Z+ciAAAAAABwOdxlAgAAUAb1iWmtTlEN7Y7hlk5RDXVzo9Z2xwA86rHHHtPRo0cN19erV0+9e/e2MJHve+yxx1SxYkVDtfv37y92n4CAAEN1eXl5xe5REp06dTJU9/PPPyshIcHiNJd38eJF/fjjj4ZqO3fubHEa7+Tt15kdmjRpYniNf/vttxanubKvv/7aUJ2fn586duxocRp4St26dTV8+HBDtSV5DwLgObGxsQoLCzNUu2DBAovTAAAAoKyoFFz4cBE7FwEAAAAAgMthuAgAAKAM8nM4dH/769W6VrTdUQyJrVVX97e/Xn4Oh91RAI+ZPXu2pk2b5tYxL7/8MjuVlFBQUJBuuukmQ7UnTpwodp/AwEBDdZmZmcXuURLXX3+94dq5c+damOTKvv76a+Xm5hqqdefx+BJvv87s4HQ6dd111xmqXbRokbKysixO9Gcul8vwumrdurXCw9nV0ZcMGDDAUF1J3oMAeE5gYKDh4f+ZM2fK5XJZnAgAAABlQeUihouSMxkuAgAAAAAAf8ZdZwAAAGWUv59TD3e+2esHjGJr1dXYzr3l7+e0OwrgMStWrDC8c8GvunbtqltvvdWaQGVM06ZNDdWlp6cXu4fRb7BPTk4udo+SaNasmSIiIgzVfvjhhyooKLA40Z9NnTrVUF1AQIC6detmcRrv5O3XmV2MDpslJydrzpw5Fqf5s++++06HDx82VFtWB+d8mSfegwB41qBBgwzVHThwQEuXLrU4DQAAAMqCIncuYrgIAAAAAABcBsNFAAAAZVig01+PdOmjTlEN7Y5yWZ2iGmpcl5sV6PS3OwrgMStWrNDAgQOVk5Nj+Bg/Pz+9/fbbFqYqW6pVq2aoriTfLB8YGKgKFSoUWXfy5Mli9ygJh8NheFgtISFB33zzjbWB/mD16tXatGmTodrevXurfPnyFifyTkavZbuuM7sMGjRITqexoeV33nnH47tIvPnmm4Zrb7vtNguTwA6eeA8C4Fn9+/dXpUqVDNU+99xz1oYBAABAmcDORQAAAAAAoDgYLgIAACjj/P2cerDDjRrcsrMCvGR3oAA/p4a06qwHO9zIjkUoUz7//HPdeOONunjxolvHPfXUU2rdurVFqcqelJQUQ3VGd4W5EiM7AyUmJiovL69EfYrr7rvvNlz7zDPPKD8/38I0/+vvf/+74dphw4ZZmMS7Gd196uDBgxYn8S41atQwvOPPzp07Pbp70Q8//KDly5cbqm3WrJlatWplcSJ4mqfegwB4TkhIiP76178aqt24caM+//xzixMBAADA1xU1XJSdl6vMXONfbgUAAAAAAMoGhosAAAAgP4dD/RrH6qXeQ3RNFWM3IlulXpUaeqn3EPWNiZWfw2FrFsBTUlJSNHz4cN1zzz1u7VgkSd27d9eECROsCVZGJSYmGqozOrhxJddcc02RNdnZ2dq9e3eJ+hRXu3btFBMTY6h2z549evfddy1O9ItPP/1Ua9euNVRbtWpV9e3b1+JE3svINSZJW7dutTiJ9xkxYoTh2ieffFKpqakWpvlFVlaWxo4da7jenceA0sNT70H/zeFwGP5jNB+A/zVmzBj5+xvbkXfs2LE6cuSIxYkAAADgyyoVMVwksXsRAAAAAAD4M4aLAAAA8JtaFcM14frbNbhlJ4/vYhTg59Tglp014frbVKtiuEd7A3YpKCjQrFmz1KRJE3366aduH1+jRg3Nnj1bTic7fJklPz9fCxcuNFRrdPDmSho0aGCo7vvvvy9Rn5L4v//7P8O1Tz/9tOLj4y1MIx09elSPPPKI4fpHH31UgYGB1gXyckavsaVLl1qcxPvccssthoevjh07pnHjxlmcSPrHP/5heA2Fh4dr5MiRFieCHb7++mtDdSV9DwLgWVFRUbrvvvsM1V68eFEDBgxwezdTAAAA4FeVg8sXWZOcme6BJAAAAAAAoDRhuAgAAAD/w+nnp36Nr9VrfYaqxzVNFeQ09u3KxRXk9FePa5rqtT5D1a9xrPz8+IgK35eTk/PbUNHQoUN18uRJt89RtWpVLV26VDVq1LAgoee9+OKLWrRokd0xNH/+fJ04caLIOofDobZt25aoV5s2bQzVTZs2Tfn5+SXqVVxDhw5VVFSUodrMzEwNGDBAKSkplmTJyMhw6/yVKlXSmDFjLMlSWjRt2lTBwcFF1u3Zs0erVq3yQCLv4XQ69be//c1w/YwZMzRlyhTL8syaNUtvvfWW4fpx48YpLCzMsjxlzcqVK/XPf/7T9hv5U1NTDQ8bt2/f3uI0AMw2ceJEVaxY0VDtzp071bdvX8s+V7krJydHH374oZYvX253FAAAABhQKTikyJoUdi4CAAAAAAB/wJ2bAAAAuKyIsEoa1a6npgwaqWGx3VSzQmVTz1+zQmUNi+2mKYNGalS7nooIq2Tq+QFvU1BQoI0bN2rMmDG66qqrNHTo0GLv8hIeHq4ffvhBzZo1MzmlfbZs2aJ+/fqpVatWmjVrlnJycjye4dixYxo9erSh2tjYWEVERJSoX+fOnQ3VHThwQE899VSJehWXv7+/XnzxRcP1+/fvV+/evU2/EfbSpUsaMGCAduzYYfiYv//976pQoYKpOUqbgIAAw0NwDzzwgM6fP29xIu8ybNgwt3Z/GTdunGbNmmV6jgULFujee+81XF+jRg23dvBC0ZKTk/X000+rTp06+sc//qHjx4/bkmPUqFE6ffq0odqbb77Z4jQAzFa1alW9/PLLhuvXrFmjzp0769ChQxamKlxaWpree+891a9fX/fff79OnTplWxYAAAAYF+D0V/nAcoXWJDNcBAAAAAAA/oDhIgAAABQqJDBINzZsqdf73K1net6i3g1bqWG1mm7vaBTkH6CG1Wqqd8NWeqbnLXq9z926sWFLhQQGWZQcsFd6ero2btyoqVOn6tZbb1W1atXUvn17TZkyRRcuXCj2ea+++motX75cLVq0MDGt99ixY4eGDh2q2rVr65lnnvHYzZTx8fHq1auX4eGK4cOHl7hnVFSUmjRpYqj2tdde08CBA7V9+/YS93XXXXfdpeuuu85w/YYNG9StWzcdPHjQlP7Hjx9Xz5493fqm/GbNmumxxx4zpX9p17dvX0N1e/fuVWxsrL744gtbhvvsEBAQoKlTpxquz8/P1z333KPXXntNLpfLlAy/vke485y/8847ZX5wzioXL17USy+9pOjoaN12221atmyZCgoKLO+bk5OjUaNG6auvvjJUf+211xp+/wDgXR588EH169fPcP3u3bvVokULTZ061SOvR7+Ki4vTuHHjFBkZqYcfflhHjx71WG8AAACYo3JwaKE/Z+ciAAAAAADwR+7dEQoAAIAyy+FwKCYiUjERkZJ+2YXlZFqyDl9I0vGU80rPyVZufp7yCvLl7+f8/9+MF6TISlUUHV5dNcMqy8+P2XZ4n507d2rRokVuHeNyuZSVlaXs7GxlZWUpLS1Np0+f1unTp3Xq1CkdOHBAR44cMe3m81/17NlTs2fPVrVq1Uw9rzc6c+aMXnzxRb344ovq0KGDBg8erP79+6tOnTqm9snKytKHH36op59+WmlpaYaOCQ8P1z333GNK/zvuuEPPPvusodpvv/1W3377rerWratOnTqpYcOGqlmzpipWrKiAgAA5HI4iz1GlShV16NDB7ZxTp05V69atlZFh7KaDuLg4xcbG6uWXX9b9998vp9Ppdk+Xy6XPP/9cjz/+uM6dO2f4OH9/f3344Yfy9+dXHpJ022236cknnzR0Q/KRI0d011136YEHHlCXLl3UvHlz1a5dW1WqVFG5cuUMv4/37NlTwcHBJY3uEd26ddPIkSM1bdo0Q/UFBQV68skntXz5cr333ntq0KBBsfoePXpUjz76qP7973+7dVzfvn11xx13FKsnjMvLy9O8efM0b9481axZU4MHD9agQYPUoUMH0z/Prlq1SuPHj9fmzZsNH/Poo4+amgFXtmLFCvXo0cNj/Y4cOWLo/bwoP/30k7p3717yQLDEJ598otatW+vYsWOG6jMyMjR69GhNmTJFEyZM0MCBAy35nLN3714tWLBAX3zxheLi4kw/PwAAADyrUnCojl288hcpsXMRAAAAAAD4I+60AQAAQLH4+fkpsmIVRVasYncUoETeeecdvfPOO3bHKJS/v7+efPJJTZw4sVhDGqXd+vXrtX79ej388MNq1qyZevbsqc6dO6tjx4666qqr3D6fy+XS1q1btWjRIn300Uc6efKkW8e/8MILCgsLc7vv5dx333166aWXlJWVZfiYhIQEJSQkFKtft27dtGLFCrePa9CggT766CMNGTLE8DGpqal66KGHNGnSJI0dO1ZDhgxR5cqVizwuPT1d8+bN07vvvqsdO3a4nfW1115T+/bt3T7OV9WpU0f9+/fXN998Y/iYtLQ0LVmyREuWLClWz8OHDysqKqpYx9ph0qRJ2rJli1vX29KlS9W0aVMNHjxYDz74oNq1a2doICAuLk5Tp07Vp59+qszMTLdyRkdH69NPP3XrGJTcyZMn9eabb+rNN99UlSpVdMMNN6hLly7q1KmTmjRpUqz35dOnT2vx4sWaNWuWfvrpJ7eObdu2rQYPHux2TwDeo2rVqvruu+/UuXNnJScnGz5u9+7duu2221SzZk3ddddd6tu3rzp27FisQSOXy6VDhw5p3bp1WrdunZYtW1bsz5cAAADwTuxcBAAAAAAA3MVwEQAAAAB4se7du2vy5Mlq0qSJ3VG8wq5du7Rr167fBsKqVKmiJk2aqH79+qpZs6Zq1qypsLAwBQcHy9/fXxkZGcrIyFBqaqoOHTqk+Ph4/fzzz0pKSipW/+7du+v+++837fFERERozJgxeuONN0w7p1UGDx6szZs36+2333bruH379mnMmDEaN26c2rZtq9jYWDVs2FBVqlRRSEiIsrKylJKSov3792v79u1au3atcnJyip2RHT3+bMKECVq4cKHy8/PtjuKVgoODNX/+fLVt21bnz1/5G33/KDc3V5999pk+++wzRUREqFu3bmrSpInq1Kmj8uXLy8/PT+np6Tpx4oT27NmjlStX6ujRo8XKGBoaqvnz5ys8PLxYx8Mc58+f1+zZszV79mxJUlBQkBo2bKiYmBhFRkaqZs2aqlq1qsqVK6dy5copJydH6enpysjI0IkTJxQfH//bn+LsbhgSEqKPP/7YlJ1tANircePGWrhwoW688UbDO0P+6uTJk3r99df1+uuvKzg4WC1atFDTpk119dVXq1atWgoNDVVwcPBvu61mZWXp7NmzOnPmjE6ePKl9+/YpPj5ely5dsujRAQAAwBtUKmK4iJ2LAAAAAADAHzFcBAAAAABeqF69enr++efZnaAI58+f16pVq7Rq1SrLe9WuXVtz5swxffeoCRMm6Ouvv9ahQ4dMPa8V3nzzTV24cKFYu6fk5+f/tguVFfr27cuuLlfQokULPfHEE3rllVfsjuK16tatq6VLl6pnz55KSUlx+/gzZ87oq6++Mj+Yfhl+WrBggVq1amXJ+VF82dnZiouLU1xcnOW9HA6HPvroIzVt2tTyXgA8o1OnTvrxxx/Vp08fnTt3rljnyMzM1IYNG7RhwwaT0wEAAKC0Y+ciAAAAAADgLj+7AwAAAAAAftehQwfNnz9f+/btY7DIi9SqVUs//vijIiIiTD93aGioFi1apCpVqph+brM5HA598sknGjp0qN1R/kefPn00b948BQQE2B3Fa7344ovq37+/3TG8WuvWrfXdd9+pcuXKdkf5TUhIiL755htdd911dkeBzaZMmaIhQ4bYHQOAydq2bau1a9eqXr16dkcBAACAjylq56KsvFxl5hZv93AAAAAAAOCbGC4CAAAAAJvVrFlTY8eO1caNG7Vu3Tr95S9/kZ8f/1zzFq1bt9b69et1zTXXWNajUaNG2rBhgxo3bmxZD7P4+fnp888/1wsvvCCHw2F3HD3++OP69ttvFRQUZHcUr+Z0OjV//nw9+OCDdkfxau3atdOmTZsUExNjdxTVqVNH69at0w033GB3FNgoJCREX331FWsX8GENGjTQ9u3bNXz4cLujAAAAwIcUtXORJCWzexEAAAAAAPgv3K0GAAAAAB7mcDjUrFkzPfzww1q5cqWOHTumSZMmqW3btnZHw3/x8/PT2LFjtWbNGl199dWW96tXr562b9+uf/7zn161c8qVPP3001q8eLFq1aplS/+qVatqzpw5euONN+R0Om3JUNr4+/vrX//6l5YvX67WrVvbHcdr1atXTxs2bNCwYcNsy/CXv/xFW7ZsUYsWLWzLAPvFxsZq48aNuu222+yOAsBi5cuX1/Tp0/Xvf/9bUVFRdse5rE6dOvG+BAAAUIpUDi5fZE0Kw0UAAAAAAOC/MFwEAAAAABarWbOmrrvuOj3xxBNasGCBzp8/r7i4OL377rvq2rUruxRJeuKJJ/TAAw94ZIjHiI4dO2r16tWaNGmSgoODPdY3MDBQTz31lI4dO6aPPvpIN9xwgwIDAz3W3129e/fWnj179NBDD8nf398jPf38/DRs2DDFx8frjjvu8EhPX3Pddddp69atWrFihUaNGqWIiAi7I3mdChUqaMaMGVq2bJkaNGjgsb61a9fW119/rfnz56tq1aoe61vWdezYUf/85z/VoUMHr3hPrlatmt5++21t2LBBTZs2tTsOAA8aNGiQ4uPj9corryg8PNzuOIqMjNTjjz+u3bt3a82aNWrWrJndkQAAAGBQxeCQImuSM9M9kAQAAAAAAJQWnrnzBwAAAAB8REBAgIKCgv7nT1hYmKpXr67q1asrIiJC1atXV2RkpBo2bKhGjRopLCzM7ther1OnTurUqZMkKS4uTosWLdLixYu1adMm5eXleSSDn5+fbrrpJj388MO68cYbPdLzSkJDQzVy5EiNHDlSmZmZ2rx5s7Zu3ar9+/fr0KFDOnPmjM6ePav09HRlZ2crNzdXLpfLlqwVKlTQ5MmTNX78eL366quaMWOGsrKyTO/j7++vwYMH66mnnlKjRo1MP39Z1K1bN3Xr1k0ffPCB9u3bpw0bNmjv3r06cOCATpw4obNnzyo5OVlZWVnKyclRQUGB3ZE9rlevXtqzZ4++/PJLvfzyy/r5558t6VOvXj09+eSTGjZsmAICAizpgSurXr26nnrqKT311FM6d+6clixZosWLF2vZsmVKTk72WI769evrgQce0H333afy5Yv+hmkAvikoKEhPPvmkHn74Yc2cOVOTJ09WXFycx/o3bNhQN998swYNGqTOnTvL4XB4rDcAAADME+j0V/nAckrPufLv6VIyL3kwEQAAAAAA8HYOl113HwEAgBI7e/asqlev/j9/l5SUpGrVqtmUqOSys7OVkJBQaE3dunUVFBTkoUQAADtdunRJmzdv1vr167VhwwZt2LBBZ86cMe38wcHB6tixo/r3769BgwZ5zc5JpVlKSormz5+v2bNna/Xq1crJySn2ufz9/dW+fXvdeeeduv3220v1Zxz4hk2bNmnWrFn6+uuvdezYsRKdKyIiQgMHDtSQIUPUpUsXbt72Qi6XS/Hx8Vq/fv1vf/bu3WvaoJ3D4VCjRo1+u4m/Y8eOXAeAB6xYsUIrVqwwVDt8+HBFRUVZmseIPXv26JtvvtGCBQu0detW04bv/fz8VK9ePXXs2FFdu3ZV9+7dFR0dbcq5vQm/awIAAGXV/y2eqeMXz1/x5zc3aqWhrbt6MBEAAAAAAN7PF+/LNYrhIgAASjFf/BDDDR8AgKKcPHlSBw4c0KFDh3Tw4EEdOnRIx44dU2pqqtLT05Wenq60tDTl5eUpMDBQQUFBqlSpkqpXr66rrrpK9erVU8OGDdWyZUu1atWKXUIslJWVpU2bNmn9+vXav3+/EhISdPToUaWlpSkjI0NZWVkKCgpSaGioypcvr8jISNWtW1f169dX+/bt1aFDB4WGhtr9MIDLSkxM1Jo1a7Rz504dOnRIhw8fVlJSkjIyMnTp0iW5XC6FhIQoNDRUVapUUXR0tOrWrasWLVqoU6dOatCggd0PAcWQnp7+2y5yv74HJSQkKDk5+bf3n/T0dF26dOm33Q5DQ0NVrVo1RUREqE6dOmrYsKGaNGmi9u3bKzw83O6HBKCUycrK0vbt27V582YdOHBAR48e1ZEjR3T+/HldunRJly5dUnZ2tvz9/RUUFKSQkBBVqVJF1apVU82aNX97P2rcuLFatGhRJj5r8bsmAABQVr3849fadfroFX/esU4DjenU24OJAAAAAADwfr54X65RDBcBAFCK+eKHGG74AAAAAAAAgFn4XRMAACirpq5fqtWH917x5zHVa+mZXrd6MBEAAAAAAN7PF+/LNcrP7gAAAAAAAAAAAAAAAAAAzFM5uPBdKlMyMzyUBAAAAAAAlAYMFwEAAAAAAAAAAAAAAAA+pFIRw0XJDBcBAAAAAID/wnARAAAAAAAAAAAAAAAA4EOK2rkoKy9Xmbk5HkoDAAAAAAC8HcNFAAAAAAAAAAAAAAAAgA8parhIklLYvQgAAAAAAPx/DBcBAAAAAAAAAAAAAAAAPqSSgeGiZIaLAAAAAADA/8dwEQAAAAAAAAAAAAAAAOBDjAwXsXMRAAAAAAD4FcNFAAAAAAAAAAAAAAAAgA8JdPorNDCo0Bp2LgIAAAAAAL9iuAgAAAAAAAAAAAAAAADwMZWDyxf6c3YuAgAAAAAAv2K4CAAAAAAAAAAAAAAAAPAxlYJDCv15cma6h5IAAAAAAABvx3ARAAAAAAAAAAAAAAAA4GOK3rnokoeSAAAAAAAAb8dwEQAAAAAAAAAAAAAAAOBj2LkIAAAAAAAYxXARAAAAAAAAAAAAAAAA4GPYuQgAAAAAABjFcBEAAAAAAAAAAAAAAADgYyoFhxb688y8HGXm5ngoDQAAAAAA8GYMFwEAAAAAAAAAAAAAAAA+pnIRw0WSlJKZ4YEkAAAAAADA2zFcBAAAAAAAAAAAAAAAAPgYhosAAAAAAIBRDBcBAAAAAAAAAAAAAAAAPqaSgeGiZIaLAAAAAACAGC4CAAAAAAAAAAAAAAAAfE6g01+hgUGF1jBcBAAAAAAAJIaLAAAAAAAAAAAAAAAAAJ9U1O5FKQwXAQAAAAAAMVwEAAAAAAAAAAAAAAAA+KTKRQwXsXMRAAAAAACQGC4CAAAAAAAAAAAAAAAAfFKlcuxcBAAAAAAAisZwEQAAAAAAAAAAAAAAAOCDKocUsXNRFsNFAAAAAACA4SIAAAAAAAAAAAAAAADAJxW5c9ElhosAAAAAAADDRQAAAAAAAAAAAAAAAIBPqhxSvtCfZ+blKCs3x0NpAAAAAACAt2K4CAAAAAAAAAAAAAAAAPBBlYML37lIkpIz2b0IAAAAAICyjuEiAAAAAAAAAAAAAAAAwAdVMjBclMJwEQAAAAAAZR7DRQAAAAAAAAAAAAAAAIAPqlyOnYsAAAAAAEDRGC4CAAAAAAAAAAAAAAAAfFCgv79CAoIKrWG4CAAAAAAAMFwEAAAAAAAAAAAAAAAA+KjKIYXvXpSSxXARAAAAAABlHcNFAAAAAAAAAAAAAAAAgI+qVK7w4aLkSwwXAQAAAABQ1jFcBAAAAAAAAAAAAAAAAPioysHsXAQAAAAAAArHcBEAAAAAAAAAAAAAAADgo4oaLkrOZLgIAAAAAICyjuEiAAAAAAAAAAAAAAAAwEdVKmrnoksMFwEAAAAAUNYxXAQAAAAAAAAAAAAAAAD4qMoh5Qv9eWZejrJyczyUBgAAAAAAeCOGiwAAAAAAAAAAAAAAAAAfValcSJE1yZnsXgQAAAAAQFnGcBEAAAAAAAAAAAAAAADgo4rauUiSUrIueSAJAAAAAADwVgwXAQAAAAAAAAAAAAAAAD6qcrnQImuSL6V7IAkAAAAAAPBWDBcBAAAAAAAAAAAAAAAAPirQ318hAUGF1qRkZXgoDQAAAAAA8Eb+dgcAAAAAAAAAAAAAAAAAYJ3KwaG6lJt9xZ//dHC3Tly8oNDAcoqsWEV1q1RXzbDK8vPje4uByykoKNDJ1GQlXEjS8YvnlZGTpdz8fOUV5Mvfz6kAp5P1BBjAWgLMwVoCzMN6QlnGcBEAAAAAAAAAAAAAAADgY1wul/YmndDW44eUnJleaO2J1As6kXrhf/4uyD9AdSpX1TXhEYqNvEYx1WvJ4XBYGRnwWv+9ng5dOKMjF84qOz/P8PGsJ+AXrCXAHKwlwDysJ+B3DpfL5bI7BAAAKJ6zZ8+qevXq//N3SUlJqlatmk2JSi47O1sJCQmF1tStW1dBQUEeSgQAAAAAAIDSit81AQCAsigjJ1urD+/VDwfidDI12bTz1qxQWb3qN1eX6BiFBvL5CWUD6wkwB2sJMAdrCTAP6wlX4ov35RrFcBEAAKWYL36I4YYPAAAAAAAAmIXfNQEAgLLkTFqKFuzZqnWJ8W5907a7gpz+6hjVSP0bxyoirJJlfQA7sZ4Ac7CWAHOwlgDzsJ5QFF+8L9cohosAACjFfPFDDDd8AAAAAAAAwCz8rgkAAJQF+QUFWhy/TfPjNii3IN9jfQP8nLq1eXv1adRafn5+HusLWIn1BJiDtQSYg7UEmIf1BKN88b5coxguAgCgFPPFDzHc8AEAAAAAAACz8LsmAADg605cvKD3NyzVofNnbMtQr0oN3d/+etWqGG5bBsAMrCfAHKwlwBysJcA8rCe4wxfvyzWK4SIAAEoxX/wQww0fAAAAAAAAMAu/awIAAL6qwOXS4r3bNC9uvUe/dftKfvk27g7qE9Nafg6H3XEAt7CeAHOwlgBzsJYA87CeUBy+eF+uUf52BwAAAAAAAAAAAAAAAABgTF5Bvj7YsExrE/fZHeU3uQX5mr1jjY6mnNX97a+Xv5/T7kiAIawnwBysJcAcrCXAPKwnwH0MFwEAAAAAAAAAAAAAAAClQE5+niatWaJtJw7bHeWy1ibuU2Zujh7ufLMCndyWBO/GegLMwVoCzMFaAszDegKKx8/uAAAAAAAAAAAAAAAAAAAKl1eQ79U3yP1q24nDem/Nf5RXkG93FOCKWE+AOVhLgDlYS4B5WE9A8TFcBAAAAAAAAAAAAAAAAHixApdLH2xY5vU3yP1q64kEfbBhmQpcLrujAH/CegLMwVoCzMFaAszDegJKhuEiAAAAAAAAAAAAAAAAwIst3rtNaxP32R3DLWsT92lJ/Da7YwB/wnoCzMFaAszBWgLMw3oCSobhIgAAAAAAAAAAAAAAAMBLnbh4QfPi1tsdo1jm7lyvExcv2B0D+A3rCTAHawkwB2sJMA/rCSg5hosAAAAAAAAAAAAAAAAAL5RfUKD3NyxVbkG+3VGKJbcgXx9sWKaCggK7owCsJ8AkrCXAHKwlwDysJ8AcDBcBAAAAAAAAAAAAAAAAXmhJ/DYdOn/G7hglcvD8aS2O32Z3DID1BJiEtQSYg7UEmIf1BJiD4SIAAAAAAAAAAAAAAADAy5xJS9G8uA12xzDFvLgNOpOWYncMlGGsJ8AcrCXAHKwlwDysJ8A8DBcBAAAAAAAAAAAAAAAAXmbBnq3KLci3O4YpcgvytWDPVrtjoAxjPQHmYC0B5mAtAeZhPQHmYbgIAAAAAAAAAAAAAAAA8CIZOdlalxhvdwxTrUuM16WcbLtjoAxiPQHmYC0B5mAtAeZhPQHmYrgIAAAAAAAAAAAAAAAA8CKrD+9Vdn6e3TFMlZ2fp9WH99odA2UQ6wkwB2sJMAdrCTAP6wkwF8NFAAAAAAAAAAAAAAAAgJdwuVxadiDO7hiWWHYgTi6Xy+4YKENYT4A5WEuAOVhLgHlYT4D5GC4CAACAaVwuF/+wAQAAAAAAAAAAKIG9SSd0KjXZ7hiWOJmarPikE3bHQBnCegLMwVoCzMFaAszDegLMx3ARAAAATLP+yH5tOHrA7hgAAAAAAAAAAACl1tbjh+yOYKktxxPsjoAyhPUEmIO1BJiDtQSYh/UEmM/f7gAAAADwDZm5OZq5fbUcklrWjFJwQKDdkQAAAAAAAAAAAEqdQxfO2B3BUgk+/vjgXVhPgDlYS4A5WEuAeVhPgPnYuQgAAACmmL9rg1IyM5ScmaF/79podxwAAAAAAAAAAIBSp6CgQEcunLU7hqUSk8+qoKDA7hgoA1hPgDlYS4A5WEuAeVhPgDXYuQgAAAAldizlnL7bt+O3//2ffdvVtW6Mrq5U1b5QAAAAAAAAAAAApczJ1GRl5+fZHcNS2Xm5+n7/TlUJDbM7Cnzc+Yw01hNgAtYSYA7WEmCesrKeTqYlK7JiFbujoAxhuAgAAAAl4nK5NH3LChW4XL/9XcH//7tnet4ih8NhYzoAAAAAAAAAAIDSI+FCkt0RPOLzbavsjgD4DNYTYA7WEmAO1hJgnsMXkhgugkf52R0AAAAApduaxHjFJ53409/HJ53Q2sR9NiQCAAAAAAAAAAAonY5fPG93BAAAAACAFziewr8P4VkMFwEAAKDYMnKyNWv76iv+fNb21bqUk+3BRAAAAAAAAAAAAKVXRk6W3REAAAAAAF4gnfvu4GEMFwEAAKDY5sWtV2pW5hV/fjHrkubGbfBgIgAAAAAAAAAAgNIrNz/f7ggAAAAAAC+Qm59ndwSUMQwXAQAAoFgSk89q6YG4IuuWHtipI8lnPZAIAAAAAAAAAACgdMsrYLgIAAAAAMC/D+F5DBcBAADAbQUul6Zv/kkul6vIWtf/ry0wUAsAAAAAAAAAAFCW+fs57Y4AAAAAAPAC/PsQnsZwEQAAANy2KmGPDpw7Zbh+/7lTWn14r4WJAAAAAAAAAAAASr8AJzePAQAAAACkAKe/3RFQxjBcBAAAALekZ2dp9o61bh83e/sapedkWZAIAAAAAAAAAADAN4QGlrM7AgAAAADAC5QPDLI7AsoYxtkAAADglq/i1iktO9Pt41KzMzV353qNaNPDglQAAAAAAAAAAAClX2TFKnZH8Ij7212vztGN7I4BH7fm8F59sPEHu2NYjvUEq7GWAHOwlgDzlJX1FFmpbPz7EN6D4SIAAAAYlnD+jJYf2FXs4384EKdu1zRW3fAIE1MBAAAAAAAAAAD4hrrh1e2O4BHXVI2Q08/P7hjwcddUqWF3BI9gPcFqrCXAHKwlwDxlZT1Fl5F/H8J78OoNAAAAQwoKCvTJ5p/kKsE5XJKmb/5JBa6SnAUAAAAAAAAAAMA31axQWUFO3/6u4CD/ANUMq2x3DJQBrCfAHKwlwBysJcA8rCfAGgwXAQAAwJCfEnYr4cKZEp/n0PkzWnFotwmJAAAAAAAAAAAAfIufn5/qhFezO4aloipXkx/fZg8PYD0B5mAtAeZgLQHmYT0B1uCKAwAAQJFSszL15Y51pp1vzo61Ss3KNO18AAAAAAAAAAAAvuKa8Ai7I1iqro8/PngX1hNgDtYSYA7WEmAe1hNgPoaLAAAAUKQvd65Vek6WaedLz8nSlzvNG1YCAACA91ixYoUcDkeRfyZMmGB3VOB/TJgwwdC1u2LFCrujAgAAAPBxsZHX2B3BUtdG1rU7AsoQ1hNgDtYSYA7WEmAe1hNgPoaLAAAAUKgD507pp0O7TT/vikM/6+C506afFwAAAAAAAAAAoDSLqV5LV1WobHcMS9SsUFmNqteyOwbKENYTYA7WEmAO1hJgHtYTYD6GiwAAAHBFBQUFmr75J0vO7ZL0yeafVFBQYMn5AQAAAAAAAAAASiOHw6Hr6ze3O4Ylrq/fXA6Hw+4YKENYT4A5WEuAOVhLgHlYT4D5GC4CAADAFf1wcJcSk89adv7E5CQtP7jLsvMDAAAAAAAAAACURl2iYxTk9Lc7hqmCnP7qEh1jdwyUQawnwBysJcAcrCXAPKwnwFwMFwEAAOCyLmZm6Kud6yzv8+XO9bqYdcnyPig7hg8fLofDYehPYmKi3XGvKCoqytBjiIqKsjsqAAAAAAAAAMBkoYFB6hjVyO4YpuoY1UghgUF2x0AZxHoCzMFaAszBWgLMw3oCzMVwEQAAAC5r9o61upSbY3mfS7nZmr1jjeV9AAAAAAAAAAAASpP+jWMV4Oe0O4YpAvyc6t841u4YKMNYT4A5WEuAOVhLgHlYT4B5fGsfMAAAAJgiPumEVh3e67F+qxL2qsc1TdWwWk2P9QQAoKyZMGFCkTVRUVEaPny45VkAAAAAAABQtIiwSrq1eXvN3rHW7igldmvz9ooIq2R3DJRhrCfAHKwlwBysJcA8rCfAPAwXAQAA4H/kFxRo+pafPN53+uaf9M+bBsvpx+aaAABYYeLEiUXWdOvWjeEiAAAAAAAAL3Jzo9badOygDp0/Y3eUYqtXpYb6NGptdwyA9QSYhLUEmIO1BJiH9QSYgzs3AQAA8D+W7t+pYynnPd73aMo5Ld2/0+N9AQAAAAAAAAAAvJXTz08PtL9BAX5Ou6MUS4CfU/e3v15+fLkcvADrCTAHawkwB2sJMA/rCTAHVyAAAAB+k5yZoXlxG2zrP2/XBiVnZtjWHwAAAAAAAAAAwNvUqhiuW5t3sDtGsdzWooNqVQy3OwbwG9YTYA7WEmAO1hJgHtYTUHIMFwEAAOA3s7atVmZejm39M3Nz9MX21bb1BwAAAAAAAAAA8EZ9YlqrU1RDu2O4pVNUQ93cqLXdMYA/YT0B5mAtAeZgLQHmYT0BJcNwEQAAACRJe84c17oj++yOobWJ+7T3zHG7YwAAAAAAAAAAAHgNP4dD97e/Xq1rRdsdxZDYWnV1f/vr5edw2B0F+BPWE2AO1hJgDtYSYB7WE1AyDBcBAABAeQX5mr7lJ7tj/Gb6lhXKK8i3OwYAAAAAAAAAAIDX8Pdz6uHON3v9jXKxtepqbOfe8vdz2h0FuCLWE2AO1hJgDtYSYB7WE1B8DBcBAABA/4nfoRMXL9gd4zfHL57Xd/t22B0DAAAAAAAAAADAqwQ6/fVIlz7qFNXQ7iiX1SmqocZ1uVmBTn+7owBFYj0B5mAtAeZgLQHmYT0BxcMVCQAAUMadv5Smf/+80e4YfzJ/10Z1qNNAVULC7I4CAAAAAAAAAADgNfz9nHqww42qXama5sWtV25Bvt2RFODn1G0tOujmRq3l53DYHQcwjPUEmIO1BJiDtQSYh/UEuI/hIgAAgDJu5rbVys7LtTvGn2Tn5WrWttV6uPPNdkcBAAAAAAAAAADwKn4Oh/o1jlXrWtF6f8NSHTp/xrYs9arU0P3tr1etiuG2ZQBKgvUEmIO1BJiDtQSYh/UEuIfhIgAAgDJs16kj2nj0gN0xrmjD0QPqcfqomtWobXcUAAAAAAAAAAAAr1OrYrgmXH+7lsRv07y4DR79Nu4AP6dubd5BfRq1kp+fn8f6AlZhPQHmYC0B5mAtAeZhPQHGMFwEAABQRuXm52nGlhV2xyjSjC0r9ErvIQpw8tEVAAAAAAAAAADgj5x+furX+Fq1vbqeFuzZqnWJ8crOz7OsX5DTXx2jGql/41hFhFWyrA9gB9YTYA7WEmAO1hJgHtYTUDTu0AQAACijlsRv16m0FLtjFOlUarL+E79d/Zu0sTsKAAAAAAAAAACA14oIq6RR7XrqrladtfrwXi07EKeTqcmmnb9mhcq6vn5zdYmOUUhgkGnnBbwR6wkwB2sJMAdrCTAP6wm4MoaLAAAAyqCzGan6+udNdscw7OufN6ljVENVDa1gdxQAAAAAAAAAAACvFhIYpBsbttQNDVooPumEthxPUMKFM0q8kOTWN3MH+QcoqnI11Q2P0LWRddWoei05HA4LkwPeh/UEmIO1BJiDtQSYh/UE/BnDRQAAAGXQ51tXKcfCbV3Nlp2fp8+3rtKjXfvaHQUAAAAAAAAAAKBUcDgciomIVExEpCSpoKBAJ9OSdfhCko6nnFd6TrZy8/OUV5Avfz+nApz+Kh8YpMhKVRQdXl01wyrLz8/P5kcBeAfWE2AO1hJgDtYSYB7WE/A7hosAAADKmO0nDmvL8UN2x3Db5uOHtONkolrWjLI7CgAAAAAAAAAAQKnj5+enyIpVFFmxit1RgFKP9QSYg7UEmIO1BJiH9YSyjOEiAACAMiQnP0+fbV1pd4xi+3TLCjXuM1SBTj7GAqXJ4cOHtXz5cu3atUu7du3S0aNHlZqaqtTUVBUUFCgkJERhYWGqXbu2oqOj1bp1a3Xq1EmxsbHy9/e99X7x4kX98MMP2rlzp3bv3q39+/crJSVFqampysjIUHBwsMLCwlS9enXFxMSoSZMm6tGjh9q3by+n02l3fNNlZWXp2LFjSk1N1aVLl5SRkSF/f3+FhoaqfPnyioyMVOXKle2O6TGnTp3STz/99Nu1ceDAASUnJys9PV3p6elyuVwKDQ1VhQoVVKNGDTVs2FCfffaZ3bFRSh0+fFgrVqxQfHy89u3bp0OHDiklJeW3683pdCokJESVKlVSjRo11KlTJ73++uu25T179qyWLVumXbt2affu3Tp48KAuXryotLQ0Xbp0SaGhoQoLC9NVV1312+tnz549FRsbK4fDYVtuq2RkZOj48eNKS0tTRkaGMjMzFRgY+D/vq2FhYXbHNEVBQYG2bNmiH3/8Ubt379bevXt16tSp3/7b//qYK1asqHr16qlJkyZq3ry5evXqpWrVqtkdHwAAAAAAAAAAAAC8nu/dpQUAAIArWrRnq86kX7Q7RrGdSb+oRXu26i/N2tkdBfBJUVFROnLkSKE1derUUWJiYpHnOn/+vKZOnaq5c+cqLi6u0NqLFy/q4sWLOn78uNatW6dZs2ZJkqpVq6Zbb71VDzzwgJo3b274cXij3NxcffHFF5o5c6ZWrlyp3NzcK9b+elP/qVOntHPnzt/+vlKlSrr11lv10EMPqWXLlh5Ibb7z589r7dq1Wrt2rTZs2KCDBw/q1KlTcrlchR5XsWJFNWjQQB06dFCnTp3Uq1cvhYeHeyj15XXv3l0rVxY9sFvUY5OkY8eO6cMPP9SCBQuKXC+SlJKSopSUFB09elT79u377e8TExMVHR1d5PGFWblypalDGEZfM1A4M1+f4+Pj9cEHH2jx4sU6cOBAobV5eXnKzs5WcnKyDh8+rEuXLrkT2xQZGRn65JNPNGfOHG3YsEEFBQVXrP11cPXEiRPasmXLb39frVo13XnnnRo9erQaNWrkidimO3XqlFavXq21a9dq06ZNSkhIUFJSUpHHVa1aVQ0bNlTHjh3VuXNnXXfddSpfvrwHEptjz549+te//qUvv/xS586du2JdWlqa0tLSdPLkSe3du1cLFy6U9Ms3y3Xo0EF33nmnRowYodDQUE9FBwAAAAAAAAAAAIBSxc/uAAAAAPCMM+kX9e2ezXbHKLFv92xWUikekAJ83blz5zRu3DjVrl1bzzzzjKFBiSs5e/aspk6dqpYtW2rgwIE6ePCgiUmLlpiYKIfDUeSf4cOHX/Ec+fn5evfdd1W3bl0NHz5cP/zwQ6GDRYVJSUnRtGnT1KpVK/Xq1et/Bo+82cWLF/Xxxx/r+uuvV0REhAYMGKDXXntNq1at0smTJw0N31y8eFGbN2/WpEmTdMcdd6hGjRrq06ePZs+erby8PA88Cmv8/PPPuvXWWxUdHa0XX3yxROvFV6xYscLQupswYYIt+WbMmGEo34wZM2zJV5g1a9bohhtuUOPGjfXOO+8UOVhkt8zMTE2YMEG1a9fWww8/rHXr1hU6WFSYs2fP6r333lNMTIz69++v/fv3m5zWGklJSZo0aZI6deqkWrVq6Y477tCkSZO0YcMGQ4NF0i/vy2vXrtXrr7+uAQMGqHr16rr99tu1aNEiQ6+/domPj1ffvn3VpEkTTZkypdDBosIUFBRo7dq1Gjt2rOrUqaOJEycqMzPT5LQAAAAAAAAAAAAAUPoxXAQAAFBGfLZlpXLz8+2OUWK5+fn6bGvRO0UA8LxZs2YpJiZGkyZNMnV3C5fLpW+//VbNmzfXW2+9Zdp5rfbzzz+rXbt2euSRR3T8+HFTz718+XK1bt1aY8eOVVZWlqnnNsvp06f15JNPqnbt2ho5cqR++OEH5Zv0PpSbm6slS5ZoyJAhql+/vqZOnVqqhozS09M1fvx4tWrVSvPnzzfteQEu5+zZsxoxYoS6du2qZcuWefVAya9WrVql5s2ba+LEibpw4YKp5164cKGaNm2qv//978Ue9rTaoUOH9MADD6h27doaN26c1q1bZ9p/t8zMTM2dO1f9+vVT8+bNNWfOHFPOa5bc3Fw9+eSTatasmRYvXmzquc+fP68JEyaoefPmWrVqlannBgAAAAAAAAAAAIDSjuEiAACAMmDr8QRtP3nY7him2XbisLYeT7A7BoD/Lzs7W3fddZeGDh1a7J0FjMjMzNTjjz+uu+++Wzk5OZb1McOcOXMUGxurrVu3WtajoKBAkydPVrt27bRv3z7L+rgrJydHL774ourWravXXntNqamplvZLTEzU6NGjFRsbqw0bNljaywwHDx5UmzZt9Oabb5aqgSiUTps3b1bLli01Y8aMUjFUJEmvvfaaunfvbuludbm5uXrllVfUpUsXJSYmWtbHXWlpaXr00UfVsGFDffDBB8rOzra0388//6zBgwere/fu2rt3r6W9jEhMTFSnTp302muvWfr6ePDgQXXv3l2vvvqqZT0AAAAAAAAAAAAAoLRhuAgAAMDHZefl6tOtK+yOYbrPtq5UDjdlA7Y7e/asevTooS+++MJjPWfOnKk777zTa3d7eeuttzRkyBCPDUDFxcWpY8eO2rRpk0f6FWbjxo1q3ry5nnnmGWVmZnq0d1xcnDp16qQXXnjBa4coVq9erXbt2ik+Pt7uKCgD5s2bp27duunkyZN2RzHE5XLp4Ycf1pNPPumxNbxx40Z16NBBu3bt8ki/wixevFiNGjXSO++84/H3t5UrV6pVq1aaNm2aR/v+t7i4OLVv316bN2/2SD+Xy6W//e1vGjt2rAoKCjzSEwAAAAAAAAAAAAC8GcNFAAAAPu7b3Vt0LiPN7himO5uRqm/3eObmQwCXl5ycrJ49e2r9+vUe7/31119r7NixHu9blA8//FCPP/64x4dbLly4oJ49e2rVqlUe7fvfpk6dqq5du9q6i1JBQYGeffZZDRw40OPDTUXZtm2b+vTpowsXLtgdBWXAf/7zHw0ePNjr1kFhnnzySb333nse73v69Gl169ZNW7Zs8Xhv6ffXrX79+tk6CJadna1Ro0bpwQcf9PiwzebNm9WtWzedOXPGo30lafLkyXryySc93hcAAAAAAAAAAAAAvA3DRQAAAD7sVGqyFu3dancMyyzcs1WnUpPtjgGUSRkZGerTp4+tuz1MnTpVc+fOta3/Hy1fvlwPPfSQbf3T09M1YMAA7d2716N9XS6XRo8erdGjR3tst6aiLFiwQH379tWlS5fsjiJJOnz4sG6++WalpfnesC+8z+bNm3XbbbcprxTt8Dht2jS9/vrrtvVPTk5Wnz59dPjwYY/2zc7O1qBBg7xqx7X3339f99xzj8d2T0pISFCfPn2UkpLikX6X88Ybb9i6axMAAAAAAAAAAAAAeAN/uwMAAADAGi6XSzO2rFBegWduDLRDXkG+Pt26Uk92HyCHw2F3HKBMGTlypKEdi4KCgnTttdeqdevWqlu3rqpVq6bQ0FDl5+crNTVVR44c0bZt27R69epi3Vj84IMPqlevXqpcuXIxHoV5kpKSdMcddxi6mT80NFTdunVT8+bNVa9ePVWoUEEBAQFKTU3VqVOntGfPHq1atUqJiYlu50hJSdHNN9+sTZs2qVq1asV4JO4pKCjQyJEjNX36dMt7uevHH39U//799d1338nf375ff+Tn52vw4MGGduTw8/NTs2bN1LZtW11zzTW66qqrFBoaKj8/P6Wlpen8+fPas2ePtm3bpm3btnkgPUqb9PR03XHHHcrIyCiy1t/fX61bt1ZsbKyuueYaRUREKDQ0VAUFBUpLS1NSUpL27NmjTZs2WTq0+PPPPxsezAwPD1ePHj3UpEkTRUVFKSws7Lf1cezYMe3Zs0crVqzQqVOn3M6RlJSk3r17a9OmTapQoYLbx7srKytLgwYN0nfffWd5L3fNmjVLTqdTn376qaV9Ll68qJtvvllnz54t1vFRUVHq2rWrYmJiVLNmTYWFhSkvL0+pqalKSEjQzz//rBUrVig1NbXIc40ePVrt2rUrVg4AAAAAAAAAAAAA8AUMFwEAAPiozccOatfpo3bHsFzcqSPafPyQ2l5dz+4oQJnx4Ycfas6cOYXW3HjjjfrrX/+qvn37Kjg4uMhz5uTkaNGiRXrppZe0davxHdfOnz+viRMn6p133jF8jBXGjBmj8+fPF1rTpUsXjRs3Tn379lVQUFCR54yLi9PUqVP16aefKjMz03CWxMREjRo1St98843hY4rroYceKvZgUf369dWrVy+1bt1aMTExioyMVHh4uIKDg1VQUKD09HQdP35c+/fv1/r167VkyRLFx8e71WP58uV65JFHNHny5GJlNMNrr72mjRs3FlrTsmVL3Xfffbr99ttVpUoVQ+c9fvy4Pv/88/95/qOiogrd/cTIIG63bt20YsUKQxngfR5//PEid9/p0qWLRo0apUGDBql8+fKGznvgwAF9/PHHWrdunRkxf5Ofn68RI0YUuuuZw+HQwIEDNWbMGHXv3l1+fkVvxL5p0yZNnTpVs2bNUm5uruE8+/bt0+jRozVz5kzDxxRHQUGBbr311mIPFjVv3lw9evRQ69at1aBBA1199dWqWLGigoODlZubq/T0dB09elTx8fFau3atFi1apKNH3ft3wWeffaZmzZpp/PjxxcpoxOjRo7Vv3z63jgkJCdGIESP0wAMPqGnTpkXW5+XlaenSpZoyZYqWLFlyxbrc3Fzde++9uummm9zKAwAAAAAAAAAAAAC+wuEq7K4TAADg1c6ePavq1av/z98lJSV5ZKcCq2RnZyshIaHQmrp16xq6Kbssy8rL1fhFn+nCpXS7o3hElZDyer3vPSrnH2B3FHiB4cOHG/6m/cOHDysqKsraQMUUFRWlI0eOFFlXp06dYu1wU9ye5cuXV35+/hWHXdq1a6fJkyfr2muvLVYGl8ulyZMna/z48YXebP7fgoKCdOzYMdPf/xITExUdHV1k3dVXX61jx44V+vP33ntPAwYMKFaOI0eOaOzYsVq4cKFbx3300UcaOXJksXoaMXnyZI0dO9atYypWrKiRI0dq5MiRatSokds9t27dqtdff11fffVVoUM0f/T5559r6NChbvcrTPfu3bVy5coi6wIDA694LUdGRuqdd97RX/7yl2LvwJednW34c1FpGC5asWKFevToUWTdc889pwkTJlgf6A9mzJihESNGFFk3ffp0DR8+3LS+Rl6fAwICCh2kady4sSZPnmzo+b0So9eb0f+ONWvW1MmTJ6/481atWun9999X27Zt3cr5q1+HhX788Ue3jvviiy80ePDgYvU0Yvz48XrzzTfdOqZGjRq6//77de+996p27dpuHetyubRixQq9+uqr+v777w0f53Q6tXz5cnXr1s2tfkbMnj1bQ4YMceuYW265Re+8844iIyOL1XPVqlV68MEHtWfPnivWFHVN/uqnn35S9+7di5UDgOfxuyYAAAAAAAAAAGCUL96Xa1TRX/UJAACAUufrnzeWmcEiSTp/KV3f/LzJ7hhAmZCenn7ZwSI/Pz+98MILWrduXbEHi6Rfhh/Gjh2r7777ztCOR9IvNwtOnTq12D1LqrDBop49e2rbtm3FHiySfhkgW7Bggd544w1DO3b86oknntC5c+eK3bcwq1at0qOPPmq43ul0avz48Tp8+LDeeOONYg0WSVJsbKzmzJmjdevWqXHjxoaPGzdunM6cOVOsniV1pcGiQYMG6eeff9Ytt9xS7MEiSdwEi98UNlg0evRobdu2rUSDRZL511thQxyjRo3S+vXriz1YJEkNGzbUsmXL9Nxzz7l13COPPKLU1NRi9y3MF1984dZgUXBwsF5++WUdOnRIEyZMcHuwSPrlvbVHjx767rvvtHjxYtWqVcvQcfn5+Ro5cqRbu+cZkZqaqkceecRwvb+/v6ZOnap58+YVe7BIkrp27arNmzcXOtRkZLAIAAAAAAAAAAAAAHwRw0UAAAA+5sTFC1qyd7vdMTxucfw2nbh4we4YQJkUEBCgr776Sk8//bRbwy+F6dGjh2bOnGm4fvr06ab0NVPfvn21ZMkSVa1a1ZTzPf7445oxY4bh5zglJcXtG+qNuHTpkkaMGKG8vDxD9dHR0dq4caNef/11Va5c2ZQM7du316ZNm3TLLbcYqr9w4YLGjRtnSm8zjB49WvPmzVPFihXtjoIy4JVXXtGUKVNK1SDa//3f/+nDDz80JbOfn58mTJigyZMnGx7kS0pK0osvvlji3n906tQpjRkzxnB969atFRcXp7/97W8KCQkxJcPNN9+s7du3q0uXLobqDx48qIkTJ5rS+1cvvPCCkpKSDNX++hnjgQceMKV3SEiIZs6cqdGjR5tyPgAAAAAAAAAAAADwFQwXAQAA+BCXy6UZW35SvqvA7igel19QoBlbVsjlctkdBShTHA6HZs6caXjIwx1/+ctfNHz4cEO1iYmJ2rJli+kZiqtt27aaN2+eAgMDTT3v3Xffrddff91w/QcffKCDBw+amuGpp55SQkKCodoOHTpo8+bNio2NNTWDJIWGhurLL7/U3Xffbaj+q6++0o4dO0zP4a7Bgwdr8uTJpg3iAYX529/+pieffNLuGG6555579Oqrr5p+3oceekj/+Mc/DNe/++67OnXqlKkZHnzwQSUnJxuqHTBggNasWaN69eqZmkGSqlWrpu+//169evUyVD9p0iTTnouTJ09q0qRJhuvff/99DRo0yJTev3I4HJo8ebJuvfVWU88LAAAAAAAAAAAAAKUZd7IAAAD4kPVH9mv3meN2x7DN7jPHtOHoAbtjAGXKU089pdtvv92y87/00kuGd2tYuHChZTncUblyZc2fP9+yXUIee+wxwzdE5+fn6+233zat9759+zR58mRDtddee62+++47ValSxbT+f+R0OvXxxx/ruuuuK7LW5XLp2WeftSyLETExMZo2bZrh3VOAkujRo4f++c9/2h3DLc2bN9cHH3xg2fmff/553XjjjYZqc3Jy3BqCKcoPP/ygb7/91lBtnz59NHfuXAUHB5vW/4+Cg4M1f/58NWnSpMjazMxMvfzyy6b0nTRpknJycgzV3nfffbr33ntN6ftHDodDn376qRo1amTJ+QEAAAAAAAAAAACgtGG4CAAAwEdk5uZo5vbVdsew3cxtq5SZa+yGRQAl07x5c02YMMHSHldddZWGDBliqHb1au94DXzjjTcUGRlpaY8pU6YoPDzcUO2MGTN04cIFU/o+++yzys/PL7IuIiJC33zzjSpUqGBK38IEBARo1qxZhoaYFi1apEOHDlme6XIcDodmzJhheFgOKIng4GDNmDGjVO2Q5XQ69cknn6hcuXKW9XA4HPrwww8VFhZmqP6DDz5QRkaGKb2ffvppQ3UxMTGaPXu2AgICTOlbmAoVKmjOnDmGhmE/+eQTpaWllahfRkaG4eGxq6++Wm+88UaJ+hUlJCREH3/8calaJwAAAAAAAAAAAABgFf6fUwAAAB8xf9cGpWSac/NjaZacmaF/79podwygTHj33Xfl7+9veR+juxZs3LjR0OCLldq0aWPZLgv/rXr16oYHuy5duqQvvviixD337NmjuXPnGqr98MMPVatWrRL3NKpGjRp65ZVXiqxzuVz6+OOPPZDoz+666y61bdvWlt4oex5//HHVrl3b7hhuGTFihGJjYy3vU7t2bT3xxBOGapOTk/XNN9+UuOd//vMfbdxY9OdTp9OpmTNnGh5+MkPTpk01fvz4IusyMjI0e/bsEvX6+uuvlZKSYqj25Zdf9sjz0LFjR8NDzAAAAAAAAAAAAADgyxguAgAA8AHHUs7pu3077I7hNf6zb7uOpZyzOwbg07p166bu3bt7pFf79u0VERFRZN2lS5eUkJDggURXNnHiRI/1uu+++wzvkDRnzpwS93v//fflcrmKrOvXr5/69+9f4n7uGjFihOrXr19k3WeffWbocZjJ4XDoqaee8mhPlF0hISF69NFH7Y7hloCAAD3zzDMe6/fII48Y2u1MUokHaiRp6tSphupGjx6t1q1bl7ifu/7v//5PlSpVKrLu008/LVEfo89l48aNNXjw4BL1csfEiRPldDo91g8AAAAAAAAAAAAAvBHDRQAAAKWcy+XS9C0rVODhG6W9WcH/f048ffM4UJY8+OCDHuvlcDjUuXNnQ7Xx8fEWp7myhg0bqnfv3h7rFxQUpAceeMBQ7bp163T8+PFi98rKytLMmTMN1T7//PPF7lMSTqdTo0ePLrLuxIkT2rlzpwcS/a5nz56KiYnxaE+UXUOGDFF4eLjdMdwyaNAgj+60FBYWphEjRhiqXbp0qeHddi7nxIkTWrJkSZF1wcHBtg0hVqhQQcOGDSuybsOGDbpw4UKxeqSkpGjZsmWGaseMGSM/P8/92rpu3brq16+fx/oBAAAAAAAAAAAAgDdiuAgAAKCUW5u4T/FJJ+yO4XXik05obeI+u2MAPql8+fIaOHCgR3u2adPGUN2hQ4csTnJlo0aN8njPe++919BuCy6Xy/BN3ZezYMECJScnF1nXrVs3tWzZsth9SmrIkCFyOBxF1n333XceSPO7O+64w6P9ULaVxuvtvvvu83hPo6/Zubm5WrlyZbH7zJo1S/n5+UXW3X777apRo0ax+5TU0KFDi6wpKCjQ0qVLi3X+FStWKDc3t8i64OBgQ1nMZsc1CAAAAAAAAAAAAADehOEiAACAUiwjJ1uztq+2O4bXmrV9tS7lZNsdA/A51113nYKCgjzas0GDBobqzpw5Y3GSK7v11ls93vOqq65Sx44dDdX+9NNPxe6zaNEiQ3XDhw8vdg8zVK9e3dAg2qpVqzyQ5hcOh0MDBgzwWD+UbRUrVlT37t3tjuGW8PBwWzI3aNBATZs2NVRbFl4/Y2NjFRERUWRdcV8/jT6H119/vcLCworVoyR69eqlihUrerwvAAAAAAAAAAAAAHgLhosAAABKsXlxG3Qx65LdMbzWxaxLmhu3we4YgM/p1q2bx3tGR0cbqrNruKhp06aqU6eOLb2NDq4Ud+cNl8ul77//vsg6Pz8/9enTp1g9zNS+ffsia7Zv3+6BJL+IiYlRtWrVPNYPZVunTp3k7+9vdwy39O7d29AObFbo37+/obriDtRcvHhR69evL7KucuXK6tKlS7F6mMXhcKhdu3ZF1hX39XP1amNfiNCvX79inb+kAgIC1Lt3b1t6AwAAAAAAAAAAAIA3YLgIAAAAAOCWli1berxn1apVDdVdvHjR4iSXZ+dOIV27djVUd/ToUSUnJ7t9/l27dikpKanIuubNm3vFEE2LFi2KrDl9+rROnz7tgTQyvLMUYIbSeL3ZOVTTuXNnQ3V79uxRfn6+2+dfuXKl8vLyiqzr1q2bbQNW/83I62dcXJwKCgrcOm9eXp727NljqNbO68HuAS8AAAAAAAAAAAAAsBPDRQAAAKXYbc3bq2K5ELtjeK1K5UJ0W/Oid7AA4J6GDRt6vGelSpUM1WVnZ1sb5Ao6dOhgS1/pl2GvcuXKGardvXu32+ffsmWLobo2bdq4fW4r1K5d21DdgQMHLE7yi8aNG3ukDyCVzuvNztdPIzudSb+8txTnNcMXXz8vXbqkEydOuHXeAwcOGHp/Dg8Pt+Uzxq/svBYBAAAAAAAAAAAAwG4MFwEAAJRiIYFBuqsV37B9JUNadVFIYJDdMQCf4nQ6VaNGDY/3DQoytpbtGi4ystuDVQICAgwPFBRnuGj79u2G6rxlqKF69eqG6o4fP25xkl/YeaM8yp7Sdr05nU7FxMTY1r9y5cqqVauWodq9e/e6fX5eP39h9Llr0qSJW+c1W0xMjPz8+HU5AAAAAAAAAAAAgLKJ/7cUAACglOsU1VCNqhu7KbIsialeS52iStcNtkBpUKFCBTmdTo/3DQgIMFSXl5dncZI/8/PzU7169Tze97/Vr1/fUN3Ro0fdPndcXJyhuqioKLfPbYXg4GBDdZ4aLqpZs6ZH+gBS6bveoqKiDL++W6VBgwaG6tzdrUfi9fNXRp87o/8trFKuXDnDu98BAAAAAAAAAAAAgK/xtzsAAAAASsbhcGjEtd319/98oQKXy+44XsHP4dCIa3vI4XDYHQXwOUZvPLaLy4bXwZo1axreWckq11xzjaG6U6dOuX3uI0eOGKobNGiQ2+e204ULFzzSJyIiwiN9gMDAQFWqVMnuGG7xhqEaoxncff3Mz883PFTTqlUrt85tN3dfP40+d95yPSQmJtodAwAAAAAAAAAAAAA8jp2LAAAAfMDVlarqpoYt7Y7hNXo3bKXISlXsjgH4JLt3mPBG1atXtzuC4Qzu3hzvcrl08uTJ4kTyepmZmR7pExYW5pE+QGm81qpVq2Z3BMMZ3H39PHXqlPLz84sTyeu5+/p5+vRpQ3XecD14w3s6AAAAAAAAAAAAANiB4SIAAAAfcUuz9qocHGp3DNtVDg7VX5q1szsGgDKkNN0MnZyc7NZ5k5KSlJubW5xIXs9Tw0V272qFsqM0XmtVq1a1O4Lh1/C0tDS3zmt016LSyN3Xz9TUVEN1pel6AAAAAAAAAAAAAABfw3ARAACAjwgOCNRdrbrYHcN2Q1t3VXBAoN0xAJQh5cuXtzuCQkONDZdmZWW5dd6UlJRipCkdcnJyPNKH3b7gKaXxWgsODrY7guEM2dnZbp2X18/fGX3uStP1AAAAAAAAAAAAAAC+huEiAAAAH9KhTgM1iYi0O4Ztmta4Wu1r17c7BoAyJjDQ/oFGozuWuDtc5KndfezgcrnsjgCUed6w2xKvn+5z9/XT6HNXmq4HAAAAAAAAAAAAAPA1DBcBAAD4EIfDoeHX9pDTr+x9zHP6+WlYbHc5HA67o8Bm7lwDubm5FiYpGaO7AnDN288bdgsxmsHda97dm+kBwB3e8B7mZ/Bzc0FBgVvn5fXzd0afu9J0PQAAAAAAAAAAAACAr+H/LQUAAPAxtSqG6+ZGreyO4XF9GrVWrYrhdseAF3BnFxmjAzx2MJqNb9i3nzcMqRnN4O4uS97w2AD4Lm94H87OzjZU5+77La+fvzP63JWm6wEAAAAAAAAAAAAAfA3DRQAAAD5oUNN2qhJS3u4YHlMlpLwGNm1rdwx4iXLlyhmu9YabWK/EaDZ3Hi+s4Q3XkVU3x3N9AbCSNwxyGM3g7ushr5+/M/pclKbrAQAAAAAAAAAAAAB8jb/dAQAAAGC+cv4Burt1V72zZondUTzi7thuKucfYHcMeAl3buZNSUmxLkgJ5OXlKS0tzVBtcHCwxWlQlPT0dLsjGM7g7s3u7lxfy5YtU69evdw6P4Cy7cKFC3ZH0Pnz5w3VhYSEuHVed14/Dxw4oHr16rl1/tIkNDTUUF1puh4AAAAAAAAAAAAAwNewcxEAAICPanN1PTW/qo7dMSzX4qo6ahN5jd0x4EXKlze+a5e33kDqzs217jxeWOPs2bN2RzCcITw83K3zGr0hXJKysrLcOjcAlKbXz4iICLfOy+vn76pXr26ozhuuh6SkJLsjAAAAAAAAAAAAAIAtGC4CAADwUQ6HQ8Niu8nfz2l3FMv4+zl1T2w3ORwOu6PAi9SoUcNwrTfcxHo57uRy5/HCGmfOnLE7guGbod29Xty5md4bdnACrJaTk2N3BJ9y4sQJuyMYznDVVVe5dV5eP39n9LkrTdcDAAAAAAAAAAAAAPgahosAAAB82FUVKqtvTKzdMSzTr3GsrqpQ2e4Y8DI1a9Y0XHv48GELkxSfO7ncebywxsmTJ23fdeLgwYOG6ty9OT4kJERVqlQxVHvy5Em3zg2URpmZmXZH8CkHDx6Uy+WyNcP+/fsN1bn7+lm7dm3Dtb7++mn0uTP638IqBQUFOnTokK0ZAAAAAAAAAAAAAMAuDBcBAAD4uAFNrlW10Ap2xzBdtdAKGtC4jd0x4IVq1apluDYhIcHCJMXnzo2t7jxeWMPlctl+M/KBAwcM1blzs/uv6tSpY6ju6NGjbp8b+CN/f39DdXl5eRYnubzz58/b0tdXXbp0ydbXjpycHMOfBerXr+/WucuXL6/w8HBDtb7++mn0uYuPj7c4SeESExNtHxYGAAAAAAAAAAAAALswXAQAAODjgvwDdE9sN7tjmO6e2G4KNHgDMsqW+vXry+FwGKrdu3evxWmKx52baxs0aGBhEhi1Y8cO23rn5uYavpabNGni9vljYmIM1f38889unxv4o6CgIEN1OTk5Fie5vBMnTtjS15dt3LjRtt7btm0zNKjmcDh4/SyBJk2aGPpslpiYqKSkJA8kurwNGzbY1hsAAAAAAAAAAAAA7MZwEQAAQBkQG1lXrWpG2x3DNK1rRSs2sq7dMeClQkNDVbeusesjPj5e6enpFidy3+bNmw3XtmjRwsIkMGr9+vW29d6+fbvhnRaaNm3q9vnbtDG2S9z27dvdPjfwR0aHi1JSUqwNcgX79u2zpa8vW7t2rW29161bZ6guOjpaISEhbp/f6Ovntm3b3D53aRIaGqroaGP/FikN1wMAAAAAAAAAAAAA+CKGiwAAAMqIe67tpgCn0+4YJRbgdPrkTkwwV/PmzQ3VFRQUuDXI4wmZmZmKi4szVFu1alVdddVVFieCEStWrLCt96pVqwzV1a5dW5UqVXL7/G3btjVUd+HCBVt3cELRjO7qZqeKFSsaqjt79qzFSf7M5XIZfn2Gcd99951tvZcsWWKormPHjsU6v9HXz7i4OJ0/f75YPUqLDh06GKr7z3/+Y3GSKzN6PQAAAAAAAAAAAACAL2K4CAAAoIyIKF9RAxob+/Z0bzagcRtVL2/sxmOUXe3btzdc+/3331uYxH0//vijcnNzDdW2a9fO4jQwavfu3UpMTLSl94IFCwzVde/evVjnj42NVVhYmKlZYI+AgIAia/Ly8jyQ5MqqV69uqM6O9bZt2zalpaV5vK+v279/v/bu3evxvsnJyYaHM3v06FGsHt26dTM01Jefn6/FixcXq0dpYfQ5XLhwoQoKCixO82dxcXE6fPiwx/sCAAAAAAAAAAAAgLdguAgAAKAM6ds4VhGleDAnonxF9W0ca3cMlALXX3+94dpFixZZmMR97uRx53HCevPmzfN4z1OnTmndunWGaos7XBQYGKjevXsbqp05c6ZcLlex+sB6gYGBRdZkZmZ6IMmVBQcHq0KFCkXWHTx40OMDCHbusOPrpk+f7vGeM2fONDzMW9zhopo1a6pNG2PD/Z999lmxepQW1113naG606dP27LWPv74Y4/3BAAAAAAAAAAAAABvwnARAABAGRLo9Newa7vbHaPYhl/bXYFOf7tjoBRo2bKl4d0vdu/erR07dlgbyKDs7Gx99dVXhutvvPFGC9PAXdOmTfN4z08++UT5+flF1jkcjhINow0aNMhQ3YEDB7R06dJi94G1jOxAlZyc7IEkhbvmmmuKrElPT/f4bjeff/65R/uVJdOnT/foYJvL5dL7779vqLZly5aKjo4udi+jr58//vij9u3bV+w+3i46OlotWrQwVPuvf/3L4jT/Kz093eeHuwAAAAAAAAAAAACgKAwXAQAAlDEta0bp2siib9r1Nm0ir1GLmlF2x0Ap4XA41L9/f8P1Rm8wttq8efN04cIFQ7X169dXo0aNLE4Ed+zbt0//+c9/PNYvOzvb8LXbsWNHRUZGFrtX//79ValSJUO1zz33XLH7wFrVqlUrsubUqVMeSFI4o69tK1eutDjJ75YvX+7Tgx92O3funKZMmeKxfnPnztWePXsM1d55550l6nXXXXfJ6XQWWedyufTMM8+UqJe3M/pcLl68WFu2bLE4ze/eeecdpaSkeKwfAAAAAAAAAAAAAHgjhosAAADKoLtju5aqHYCCnP66O7ar3TFQygwfPtxw7YwZM3Ts2DHrwhiQn5+vf/7zn4brR4wYYWEaFJcnB2s+/PBDHT9+3FBtSW+ODwkJ0V//+ldDtRs3bmSHFy8VERFRZE1WVpbh68oqzZo1M1S3cOFCi5P8bsKECR7rVVa98sorOnfunOV9srOzDQ/xOJ1ODR48uET9rr76ag0cONBQ7dy5c7Vq1aoS9fNmQ4YMkZ+fsV9HP/HEExan+cXp06f1xhtveKQXAAAAAAAAAAAAAHgzhosAAADKoGqhFTSoaVu7Yxg2qGlbVQ2tYHcMlDKdOnVS/fr1DdVmZ2frqaeesjhR4aZNm6a9e/caqnU6nRo2bJjFiVAcmzdv1ieffGJ5n6SkJMPDDiEhISW+OV6SxowZI39/Y4OpY8eO1ZEjR0rcE+a65hpjOxdu3brV4iSF69y5s6G6ZcuW6cSJExankWbNmqU1a9ZY3qesO3/+vMaNG2d5n4kTJ2r//v2GagcNGqTatWuXuOcjjzxiuHbYsGG6ePFiiXt6o9q1a2vQoEGGalesWKGPPvrI4kTS6NGjffb5BgAAAAAAAAAAAAB3MFwEAABQRt3cqJWuCqtkd4wiXVWhsm5u1NruGCilHn30UcO1M2fO1Ndff21hmis7dOiQxo8fb7j+jjvuUM2aNS1MhJIYP3685Tu/PPTQQ7pw4YKh2mHDhqlKlSol7hkVFaX77rvPUO3Fixc1YMAAbtj2Mg0aNDBU9/3331ucpHBt27ZVuXLliqzLz8/XW2+9ZWmWY8eOuTUYgpL54osv9PHHH1t2/u+//16vvfaa4Xp33psL07lzZ918882GahMTE3X77bcrNzfXlN7exp3n9NFHH9XOnTstyzJp0iTbPvsBAAAAAAAAAAAAgLdhuAgAAKCMCnD6a/i13e2OUaTh13aXv9NpdwyUUn/9619Vp04dw/UjRozQjh07rAt0GcnJyRo4cKDS09MN1TudTj333HMWp0JJJCcn65ZbblF2drYl53/rrbc0b948Q7VOp9OtIbuiTJw4URUrVjRUu3PnTvXt21cpKSmm9S+JnJwcffjhh1q+fLndUWzTpk0bQ3Vz5syxdTAsKChI119/vaHaf/3rXzp48KAlOdLT0zVw4ECdO3fOkvPj8kaPHq0ffvjB9PPu2LFDd955p/Lz8w3V33TTTWrXrp1p/d944w3Du78tXbpUgwcPtux9xF3p6el67bXXFBcXV+JztW/fXjfddJOh2oyMDA0YMEBHjx4tcd8/WrBggR5//HHTzwsAAAAAAAAAAAAApRXDRQAAAGVYs6vqqF3t+nbHuKL2teurWY3adsdAKRYYGOjWIM7Fixd14403avPmzRam+t2ZM2d044036ueffzZ8zLBhwwzvPgL7bNq0SbfffrtycnJMPe/MmTP1xBNPGK4fOXKk6tc373W+atWqevnllw3Xr1mzRp07d9ahQ4dMy+CutLQ0vffee6pfv77uv/9+nTp1yrYsdmvTpo2CgoKKrEtOTtaDDz6ogoICD6S6vNtuu81QXVZWloYOHWr6EEZqaqpuuukmbdu2zdTzomg5OTnq16+fFixYYNo5169fr549exoedvT39zd9V6yYmBg99thjhuvnz5+vG264QUlJSabmcMfZs2f14osvKjo6Wk8++aRSU1NNOe+bb75peNDqyJEj6tq1q+Lj403pLUmzZ8/Wrbfeqry8PNPOCQAAAAAAAAAAAAClHcNFAAAAZdzQ1l0U5B9gd4w/CfIP0NDWXe2OAR8wfPhw9ejRw3B9UlKSunbtqvfff18ul8uyXCtWrNC1117r1iBTRESEXn/9dcsywVwLFixQnz59dP78eVPO9/bbb2vYsGGGBz4qVKig559/3pTe/+3BBx9Uv379DNfv3r1bLVq00NSpUz06rBIXF6dx48YpMjJSDz/8sCU7X5Q2QUFB6tWrl6Ha2bNnq1u3blq9erXFqS7vL3/5iypVqmSoduPGjRoyZIhpw3zx8fFq37691q5da8r5cGUBAZf/DJqVlaWBAwfqb3/7m7Kysop9/vz8fL399tvq1q2bLly4YPi4sWPHKiYmpth9r+SFF15Q69atDdevWrVKTZs21dy5c03PUpj169drxIgRuvrqq/XMM8+YvntX48aNNWbMGMP1R44cUZs2bfTZZ5+VqG9GRoYefvhhDRkyRLm5uZetudI1CQAAAAAAAAAAAAC+juEiAACAMq5KSJj+0rSd3TH+5JZm7RQeUt7uGPABDodDH3/8sUJDQw0fk5WVpQcffFAdO3bU8uXLTc0THx+voUOHqkePHjp+/Lhbx06dOlXh4eGm5kHJXX311Vf82Q8//KDWrVtr4cKFxT7/0aNHNXDgQD322GNuDee8+uqrql69erH7FuaTTz4p9HH/UUZGhkaPHq3mzZtr3rx5lu0WsXfvXr366qtq0aKFWrRooUmTJpm204avuOOOOwzXrlmzRl27dlVkZKTuvPNOTZw4UdOmTdO8efO0cOFCLVq0qMg/P/74Y7FyhoaG6r777jNc/+9//1u9evXSkSNHitVPki5duqQXXnhBrVq10t69ey9bY9WaKqtGjRqlqlWrXvZnLpdLr776qmJiYjRjxgy3dqfKz8/Xv//9b7Vu3VqPPfbYFQdJLqdJkyZ66aWXDNe7IzAwULNnz1bFihUNH3P27Fndfvvt6tSpk5YuXWrJ4LPL5dK2bdv03HPPqV69eurYsaPbz7m7XnrpJTVu3NhwfXp6uoYNG6bOnTu7/TxkZGTo/fffV4MGDfTee+9dsa5q1apuve4AAAAAAAAAAAAAgC/xtzsAAAAA7Ne7UUv9P/buO8yqwtof9zoDAzOUQYYqIop0EFBBBREFUWzYjaLRRBKNLRpLotGY8tOrMbHFxB4TE7HrNRowSCxYURREURFUioAKItI7M/P7I99okhs5e+CUmTnv+zw8z726zl6fc3TiOnv22vuFOdPj4+XJ7+ieTe2btYiDuu2S7xjUIR07dow///nP8Y1vfKNaF6O++uqrsf/++0fv3r3jxBNPjKOOOiq6detW7f6fffZZjB07Nh566KEtvjD4ggsuiKOOOqraryP79ttvv1i9enU88sgj//Xvz5s3Lw4//PDYZ5994rzzzotDDz00GjRokPa477zzTtx6661x1113xdq1a6uVacSIEXHGGWdU6zXV0bJly3jyySdj7733jqVLlyZ+3bvvvhvf+MY3ol27dvHNb34zRowYEXvttVfUr1/90xNVVVUxa9asmDhxYkycODGeeuqpmD17drWPU2iOO+64uOiii2LhwoWJX/Pxxx/Hgw8+uEX9dthhh5g7d+4WvfaCCy6IW2+9NVauXJmo/sUXX4xevXrF2WefHWeeeWbsuOOOiV733nvvxb333hu33377Zp/Q0q1btzjnnHOq9cQVNq9Vq1Zx4403xje/+c2vrZk7d26MGjUqfvjDH8YhhxwSw4YNi5133jl22GGHKCsri1QqFatWrYr58+fHu+++G88991w88cQT8fHHH1c7T0lJSdx3331RUlKyNW9rs7p27RqPPfZYHHTQQdVa3pk4cWIceOCB0blz5zjxxBNjxIgR0b9//0ilUtXOUFFRETNmzPjyfz/Hjx8fn376abWPszVKS0vjvvvuiwEDBlTr6VQvv/xyHHjggbHTTjvFiBEjYvDgwdGzZ89o165dNGnSJCoqKmLFihUxe/bsePvtt+Ppp5+OJ598MpYvX5722DfeeGO8//77W/O2AAAAAAAAAGoty0UAAET9onoxqv/Q+J9n/jffUSIiYlT/IVG/qF6+Y1DHHHPMMfHLX/4yfvzjH1f7tW+//XZccsklcckll0TLli2jX79+0bVr19h+++2jTZs2UVpaGg0bNoyNGzfGunXrYunSpTFv3ryYM2dOvPHGG1u98HDEEUfENddcs1XHILtuuummePbZZ+OLL75+SfOFF16IF154IZo0aRJDhgyJPn36RKdOnaKsrCzq168fq1atik8//TSmT58ezz//fMyZM2eLsnTo0CH+8Ic/bOlbSaxnz54xZsyYOPDAA2P16tXVeu0nn3wS11xzTVxzzTVRWloaffv2jZ133jm233772G677aJx48ZRWloaVVVVsW7duli3bl0sXrw4Fi1aFJ988knMnDkzZsyYEWvWrMnSu6u7GjZsGJdddlmtWJBp06ZNXHbZZXHxxRcnfs3q1avj17/+dVxzzTWxyy67xKBBg6Jr167RunXrKC0tjfXr18fKlStj3rx5MXPmzJg4cWLMmzcv7XFLSkrioYceijfeeGNr3hL/xYknnhhPPPFE3HfffZutW7JkSYwePTpGjx6dlRypVCruueee6NOnT1aO/6+GDBkS99xzT4wcOTIqKiqq9doPP/wwLr/88rj88sujadOmseuuu0avXr2iffv2se2220bjxo2jpKQkKioqYt26dbF27dr47LPPYtGiRbFgwYKYOXNmvP/++1l9KlFSffv2jdGjR8dxxx1X7cXr2bNnx29/+9v47W9/m5EsJ554Ypx44onxi1/8IiPHAwAAAAAAAKhtLBcBABARET3btI+9dugWEz+amdccg3bsFj3atM9rBuquiy++OFavXh1XXHHFFh/j888/j/Hjx8f48eMzmOzrHXrooXH//fdHUVFRTvqxZdq0aRP3339/HHroobFp06bN1q5atSrGjh0bY8eOzXiOsrKy+Nvf/hatW7fO+LH/m0GDBsWzzz4bhx566Gaf+LI5a9eujVdffTVeffXVDKfj65x55plx3333xcSJE/MdJa0LLrgg/vKXv1T734+qqqqYOnVqTJ06daszFBUVxejRo6NPnz6Wi7Lkj3/8Y8ydOzev/05ef/31ccwxx+Ss37HHHhuPPfZYHH/88Vu8KLly5covF1drq2OPPTauu+66uOCCC/KWYeDAgTlZygUAAAAAAACoyVydBgDAl7652+Aord8gb/1LixvEN3cdnLf+FIbLL788fvvb30Yqlcp3lLROPvnkeOyxx6K0tDTfUUhg+PDhGXuCwpZo3LhxPPbYY9GrV6+c9t1jjz3i5Zdfjs6dO+e0L1uuqKgoHn300dhpp53yHSWt+vXrx/333x8tWrTIW4bbbrstjj322Lz1LwQNGzaMxx57LHr37p3z3qlUKn73u9/Feeedl/PeI0aMiGeeeSbatGmT8941yfnnnx833nhjXmaznXfeOR5//PEoKSnJeW8AAAAAAACAmsRyEQAAX2pe2jiO7TMgb/2P7T0gtiltnLf+FI5zzjknnnrqqdhuu+3yHeW/KikpiZtuuinuvvvuqF/fA2drkzPPPDN+/etf5/wC6W222SaeeuqpGDp0aE77/lPXrl1j6tSpccopp+SlP9XXpk2beOWVV2LvvffOd5S0dtxxx3jyySejadOmOe1bv379+P3vfx+nnXZaTvsWqlatWsWLL74Y++67b856Nm7cOO677774/ve/n7Oe/2nAgAExbdq0OOSQQ/KWoSY499xz4957741GjRrlrOe+++4bL730UrRq1SpnPQEAAAAAAABqKstFAAD8m+Fd+8b22+T+6QAdtmkZw7v2zXlfCtewYcNi2rRpcdJJJ9WopxgNHDgwJk+eHGeffXa+o7CFfvSjH8Xdd98dxcXFOem38847x8SJE2PgwIE56fd1mjRpEnfddVc8+uijseOOO+Y1y9cZNGhQ9O3rvzX/1Lp163j++efj1ltvrbHLlv/Uv3//ePrpp6Nt27Y56bfNNtvEk08+GaeeempO+vEPzZo1i/Hjx8f5558fRUXZPW3Zt2/fmDx5cowcOTKrfZJo3bp1PPHEE3HHHXfUyEWXoqKiOOigg7L+v+0nnHBCTJ48OetPsCoqKorzzz8/xo8fH82aNctqLwAAAAAAAIDawnIRAAD/pl5RUYzqn/snX4zafWjUy/JFpPCfysvLY/To0fH666/n7Ykv/9S5c+d4+OGHY+LEidGrV6+8ZmHrnXTSSfHaa6/FLrvskrUeRUVFceaZZ8Zrr70WPXr0yFqf6jrqqKNixowZcfXVV0d5eXm+40T79u3jwgsvjHfffTdeeumlrF+0XtsUFRXFGWecEXPmzIn7778/jjzyyJw+OaQ69thjj5z87/Whhx4ab7/9dgwbNiyrffjvGjZsGNdff3289NJLWfnf0ObNm8cNN9wQr7/+enTv3j3jx98ap512Wnz44Ydx8cUXR+PG+X+aZ9euXePnP/95zJ49O8aNGxft27fPes8ePXrE5MmT47rrrottttkm48ffZZdd4uWXX47rr78+GjZsmPHjAwAAAAAAANRWrt4EAOD/6N56u9inY+4uVN9npx7RrVW7nPWD/9SvX7949tlnY8qUKXHqqafm7ILeoqKiOPjgg2PMmDExc+bMOPbYY3PSl9zYZZdd4vXXX49rr702tt1224wee+jQoTFlypS45ZZborS0NKPHzoSGDRvGxRdfHAsWLIg77rgj+vTpk9P+3bp1i/PPPz9eeOGFmDdvXlx77bXRs2fPnGaobYqLi2PkyJHxl7/8JZYtWxavvvpq/O53v4tzzjknDj744Nhll12iffv20bRp02jYsGHWnyrzddq3bx/PPvts/PGPf4wOHTpk9Ni9evWKBx98MMaOHZuTJQo2b+DAgTF16tQYN25c7Lffflv971zHjh3jV7/6VcyaNSvOO++8nD1drrrKysri6quvjgULFsR1110XnTp1ylnvVCoVu+yyS/zkJz+JKVOmxMyZM+MXv/hF7LDDDjnLEBHRoEGDuOCCC2LWrFnxy1/+cqv7FxUVxbBhw2LcuHExderUGDBgQIaSAgAAAAAAANQdqaqqqqp8hwAAtszixYujdevW//bXPvvss2jVqlWeEm299evXx+zZszdbs9NOO7nLdA4sX7s6Lhx7d6zZuCGrfRoVN4zrDvtWNCupmU9JoDCtXr06nnrqqRg7dmyMHz8+FixYkLFjl5WVxdChQ2PEiBFx6KGHZnzphMyZO3dudOzYMW3dt7/97fjTn/602Zr169fHPffcE/fcc0+89NJLsWnTpmrnadasWRx99NHx/e9/P3bbbbdqvz7fpk+fHo899lj89a9/jSlTpmzRZ/DfFBUVRefOnWOvvfaKffbZJ4YMGZLonxu138aNG+P++++Pu+++O5577rmoqKio9jFKS0vjgAMOiNNOOy0OPfTQSKVSm63/05/+FKNGjUp73LvuuitOOeWUaufh63322WfxxBNPxN///veYNm1afPDBB7Fx48avrd9mm22iV69eMXTo0Dj44INjwIABeVuK21qTJ0+Oxx57LMaMGRPvvPNOVFZWZuS49evXjx49esSgQYNi8ODBMXTo0Bo5l1RWVsbEiRPjySefjGeffTbefffdWLFixdfWFxcXR5cuXaJPnz5x4IEHxqGHHlqrvyMDW8+5JgAAAAAAIKm6eF1uUpaLAKAWq4tDjAs+apa/v/9W/Gnyc1ntMar/kDiga9+s9oCttWjRopgyZUq89dZbMWfOnFiwYEHMnz8/vvjii1i7dm2sW7cu1q1bF8XFxVFaWholJSVRVlYW2223XWy//fbRoUOH6N27d+y2227RuXPntBevUzNkcrnoXy1btiyefvrpePPNN+Pdd9+N999/P5YtWxYrV66MNWvWRElJSTRt2jRat24d3bt3j169esWQIUNir732ivr162/FO6o51q1bF1OnTo3XX389Pvjgg5g3b1589NFHsWTJklizZk2sWbMm1q9fH/Xr14+GDRtGo0aNokWLFtGqVato165ddOzYMXbaaafo2bNn9O3bN2dPG6PmWrx4cbz44ovxyiuvxIwZM2L27Nnx2WefxerVq2P9+vXRqFGjKCsri+bNm0e3bt2id+/e0b9//xg2bFiNfPoX6W3cuDE++uijWL58eaxcuTLWrVsXpaWl0bRp09h2221r5JJMJqxcuTKmTJkSU6ZMiQ8//DDmzZsX8+bNiy+++CLWrFkTa9eujQ0bNkRxcXE0aNAgmjRpEi1btoxWrVrFdtttFx07doxOnTpFr169Yuedd46SkpJ8v6Ut8sknn8TChQu//G9no0aNomnTptGsWbPo0KFDjX0yFZAfzjUBAAAAAABJ1cXrcpOyXAQAtVhdHGJc8FGzVFZWxmXjH4i5Sxdn5fg7Nm8d/3Pg8bX2LvJA3Zat5SIAACB3nGsCAAAAAACSqovX5SblKk4AAL5WUVFRjNp9aFaOnYqI7+w+1GIRAAAAAAAAAAAAQB65khMAgM3q0nLbGNqpV8aPO6TTztG5ZduMHxcAAAAAAAAAAACA5CwXAQCQ1vF9B0WTBiUZO16TBiVxfN+9MnY8AAAAAAAAAAAAALaM5SIAANIqKymN43fJ3DLQyF0GRVlJacaOBwAAAAAAAAAAAMCWsVwEAEAiQ3fqFTuVt9nq43Rq0SaGdOqVgUQAAAAAAAAAAAAAbC3LRQAAJFJUVBTf2X1opLbiGKmIGLX70ChKbc1RAAAAAAAAAAAAAMgUy0UAACS2U4s2MaxL7y1+/f5d+mTk6UcAAAAAAAAAAAAAZIblIgAAquW4PntF04al1X5dWcPS+EbfgVlIBAAAAAAAAAAAAMCWslwEAEC1NGlYEifsMqjarzth172jSYOSLCQCAAAAAAAAAAAAYEtZLgIAoNr22alndGm5beL6ri23jcEde2QxEQAAAAAAAAAAAABbwnIRAADVVpRKxajdh0YqlUpbm/p/tUUJagEAAAAAAAAAAADILctFAABskR2bt4rhXfqkrRvepW/s0LxVDhIBAAAAAAAAAAAAUF2WiwAA2GLH9hkYzUoafe3fb1bSKL7RZ0AOEwEAAAAAAAAAAABQHZaLAADYYo0bNIwTd937a//+N3cdHI0aNMxhIgAAAAAAAAAAAACqw3IRAABbZe8du0f31tv9n7/eo/V2MWjHbnlIBAAAAAAAAAAAAEBSlosAANgqqVQqRvUfEkWp1Jd/rSiVilH9h0bqX/4aAAAAAAAAAAAAADWP5SIAALba9tu0jIO67fLl/39wt12j/TYt8hcIAAAAAAAAAAAAgEQsFwEA1GLvvPNOvPPOO/mOERERx/QeEM1LG0fz0sZxdO898x0HAKBWq0lzHgAAmdOrV6/o1atXvmMAAJAFZj0AgLrJnEehqJ/vAAAA1A2lxQ3im7sOjlQqFaXFDfIdBwAAAAAAAAAAAIAELBcBAJAxA3fomu8IAAAAAAAAAAAAAFSD5SIAADImlUrlOwJAxuy4445RVVWV7xgAAAAAAAAAAABZVZTvAAAAAAAAAAAAAAAAAEB+WC4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAgFqnqqoq3xEAAAAAqAWcRwIAAAAAAEjPchEAUKOkUqm0NS4KAQAAACCJJOeRior8ugwAAAAAAChsflsCANQoSS7mqKioyEESAAAAAGq7JOeRktzsBgAAAAAAoC6zXAQA1Cj16tVLW7Nhw4YcJAEAAACgtkt3HimVSiU6HwUAAAAAAFCXWS4CAGqUVCoVDRo02GyN5SIAAAAAkkh3Hqm4uNiTiwAAAAAAgIJnuQgAqHEsFwEAAACQCenOI6U7DwUAAAAAAFAILBcBADVOuos61q1bF1VVVTlKAwAAAEBtVFVVFevWrdtsjeUiAAAAAAAAy0UAQA1UXFy82b9fUVERa9asyVEaAAAAAGqjNWvWREVFxWZr0p2HAgAAAAAAKASWiwCAGqe0tDRtzcqVK3OQBAAAAIDaKsn5oyTnoQAAAAAAAOo6y0UAQI1TUlKS9q6xK1asSHvnWQAAAAAKU0VFRaxYsWKzNcXFxVFSUpKjRAAAAAAAADWX5SIAoMZJpVJRVla22ZqKior4/PPPc5QIAAAAgNpk8eLFaW9MU1ZWFqlUKkeJAAAAAAAAai7LRQBAjdS0adO0NV988UWsW7cuB2kAAAAAqC3WrVsXS5cuTVuX5PwTAAAAAABAIbBcBADUSCUlJVFcXJy2bv78+bF+/focJAIAAACgplu/fn3Mnz8/bV1xcXGUlJTkIBEAAAAAAEDNZ7kIAKiRUqlUtGrVKm3dpk2bYt68eZ5gBAAAAFDg1q1bF/PmzYtNmzalrW3VqlWkUqkcpAIAAAAAAKj5LBcBADVWWVlZNGrUKG3dpk2bYs6cObFw4cKoqKjIQTIAAAAAaoqKiopYuHBhzJkzJ9FiUaNGjaKsrCwHyQAAAAAAAGqH+vkOAADwdVKpVLRt2zZmz56dqH7p0qWxYsWKKCsri6ZNm0ajRo3cgRYAAACgDqqqqoo1a9bEypUrY8WKFdW64Uzbtm2dMwIAAAAAAPgXlosAgBqtYcOGUV5eHl988UWi+oqKili6dGksXbo06tWrFyUlJdGgQYMv/9SrVy9SqVSduYCkqqoqIiLWr1+f5yQAAGSSOQ8A/qGqqiqqqqqioqIiNmzY8OWfdevWbdETrMvLy6Nhw4ZZSAoAAAAAAFB7WS4CAGq8Vq1axYYNG2LVqlXVel1FRUWsXr06Vq9enaVk+bdx48aIiMRPdwIAoHYw5wFA5jVp0iRatWqV7xgAAAAAAAA1TlG+AwAApFNUVBTbbbddNGnSJN9RAAAAAKiFmjRpEtttt10UFfnVGAAAAAAAwH/yGxQAoFawYAQAAADAlrBYBAAAAAAAsHl+iwIA1Br/XDAqLy/PdxQAAAAAaoHy8nKLRQAAAAAAAGnUz3cAAIDqKCoqijZt2sQ222wTCxcujDVr1uQ7Ul7Nnj07IiJ69eqV5yQAAGSSOQ8Atk6jRo2ibdu20bBhw3xHAQAAAAAAqPEsFwEAtVLDhg2jQ4cOsWLFili8eHFs3Lgx35EAAAAAyLPi4uJo1apVlJWVRSqVynccAAAAAACAWsFyEQBQa6VSqWjWrFmUlZXFunXrYuXKlbFixQqLRgAAAAAFpLi4OMrKyqJp06ZRUlJiqQgAAAAAAKCaLBcBALVeKpWK0tLSKC0tjVatWsW6deti7dq1sXHjxtiwYUNs2LAhNm7cGFVVVfmOCgAAAMAWSqVSUVxcHA0aNIgGDRpEcXFxlJaWWigCAAAAAADYSpaLAIA65V8Xjf5VVVVVVFRURFVVVVRWVuYpXeadeeaZERExfvz4PCcBACCTzHkA8JWioqJIpVJRr149S0QAAAAAAABZYLkIACgIqVQq6teve6PP4sWLIyKiYcOGeU4CAEAmmfMAAAAAAAAAgFwpyncAAAAAAAAAAAAAAAAAID8sFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAABARPTq1St69eqV7xhQ6/lZAqCm8d8myAw/SwDUNP7bBJnhZwmAmsZ/myAz/CwBUF2WiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAmW5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUJaLAAAAAAAAAAAAAAAAoEBZLgIAAAAAAAAAAAAAAIACZbkIAAAAAAAAAAAAAAAACpTlIgAAAAAAAAAAAAAAAChQlosAAAAAAAAAAAAAAACgQFkuAgAAAAAAAAAAAAAAgAJluQgAAAAAAAAAAAAAAAAKlOUiAAAAAAAAAAAAAAAAKFCWiwAAAAAAAAAAAAAAAKBAWS4CAAAAAAAAAAAAAACAAlU/3wEAgC1XWVn5f/7a559/nock5MumTZsiImLx4sV5TgK1n58nyAw/S5AZfpYgc/w8QWb4WYLM8LMEmePnCTLDzxJkjp8nyAw/S5AZfpYgc/w8FZb/dg3uf7tWty5KVVVVVeU7BACwZd57773o2bNnvmMAAAAAAAAAAAAAQJ0zffr06NGjR75jZF1RvgMAAAAAAAAAAAAAAAAA+WG5CAAAAAAAAAAAAAAAAAqU5SIAAAAAAAAAAAAAAAAoUKmqqqqqfIcAALbMpk2b4oMPPvi3v1ZeXh5FRfaHAQAAAAAAAAAAACCpysrK+OKLL/7tr3Xp0iXq16+fp0S5Y7kIAAAAAAAAAAAAAAAACpTHGgAAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUqPr5DgAAUNvMnz8/xo8fH9OmTYvp06fHnDlzYuXKlbFixYqoqqqKpk2bRtOmTaNDhw7Rs2fP6N27dxxwwAHRpUuXfEevExYuXBgTJkyId955J2bOnBkffPBBLF26NFauXBmrVq2K+vXrf/nPoHnz5tG5c+fo2rVrdO3aNXbdddfo2bNnpFKpfL8NAKAGMudlx5o1a+Ltt9+OWbNmxdy5c7/8s3Dhwli1alWsXr06Vq1aFevWrYsGDRpEw4YNo1mzZtG2bdto165ddOvWLXr16hV77rlndO3aNd9vBwDIsY0bN8aLL74YL7/8ckyfPj1mzJgRixcvjpUrV8bq1aujtLQ0ysrKory8PLp16xY9e/aMPffcM/bbb78oLS3Nd/xaZfHixTF+/PiYOnVqTJ8+PWbNmhXLly+PlStXxsaNG6Np06ZRVlYW7dq1i549e0avXr1iv/32i759++Y7OgBQS5n1suOjjz768vzmP8/FzZs3L5YtW/blubjVq1dHVVVVlJSURGlpabRq1Sratm0bO+64Y/Tq1Sv69OkTAwcOjMaNG+f77QAAtZA5L382bdoUr732WkyaNClmzpwZM2fOjPnz58eqVati5cqVsX79+mjSpMmXv/vebrvtvry2rkePHrHnnntGs2bN8v02yJNUVVVVVb5DAADUdMuWLYs777wzRo8eHdOmTduiY3Tp0iVOPPHEOPPMM6NNmzYZTli3ffjhh/GHP/whxo4dG++8885WHau8vDz23nvv2GeffWLEiBHRrVu3DKUEAGojc15mrV+/PiZNmhSvv/56TJ06Nd54442YOXNmVFZWZuT4bdu2jYMOOiiOP/742H///aN+ffdOAoC66qWXXoqbb745/va3v8WKFSuq/frS0tLYf//948wzz4yDDjrIzWa+xtq1a2P06NHxxz/+MV5//fUtmtvat28f3/jGN+Kcc86Jjh07ZiElAFDXmPUy56OPPoqXX3453njjjZg6dWpMnTo1li5dmpFj169fP3bfffc45phj4rjjjovtt98+I8cFAOouc15+bNiwIR577LG47777YsKECVv02f9TUVFR9OnTJ/bee+/Yf//9Y/jw4Ra+CojlIgCAzVi1alVcccUVcfPNN8fq1aszcswGDRrEt7/97bjqqquiZcuWGTlmXTV+/Pj49a9/HRMmTIhsja09evSIo48+Ok4++WSLRgBQQMx5mbFhw4aYNGlSPPfcczFhwoR45ZVXYt26dTnp3b59+/j+978fZ555ZpSVleWkJwCQfS+88EJceOGFMXny5Iwds1u3bnH11VfHkUcembFj1nYbN26M66+/Pq655ppYsmRJRo5ZVFQURx99dFxzzTWx4447ZuSYAEDdYtbbevPnz//yXNxzzz0Xc+bMyUnfoqKiOPzww+OHP/xhDBo0KCc9AYDaw5yXH1988UVce+21ceedd8bixYuz0qNRo0Zx0EEHxdFHHx0jR46MevXqZaUPNYPlIgCAr/HXv/41zj777FiwYEFWjl9eXh7XXnttjBo1KivHr83efPPN+NGPfhRPP/10znqeffbZcdNNN+WsHwCQP+a8zPnpT38a//M//5PXDK1bt44rrrgiTjvtNHcvA4BabNmyZfGDH/wg7r777qz1GDFiRNx+++3Rrl27rPWoDV5++eU47bTT4r333svK8Rs1ahQ///nP40c/+pH5DACICLNeplRUVNSIJ3kfeeSRcd1118VOO+2U7ygAQJ6Z8/Jj/fr18dvf/jauuuqqWLZsWc76Ll68uGBuslmoivIdAACgpqmsrIzLLrssjjzyyKxdcBrxjzsHfOc734nvfe97sWHDhqz1qU0qKiriiiuuiN133z2ni0UAQGEw52VeTbhv0WeffRann356HHDAAfHxxx/nOw4AsAWmT58ee+yxR1YvQoiIGDt2bPTr1y8mTpyY1T412S233BJDhw7N2mJRRMSaNWvi4osvjiOOOCJWrFiRtT4AQO1g1sucmnAuLiLiscceiz59+sSdd96Z7ygAQB6Z8/Ljn5/7RRddlNPFIgqD5SIAgH9RUVERI0eOjCuvvDJnJ2d///vfx/Dhw2PNmjU56VdTLVy4MIYMGRI/+9nPYtOmTfmOAwDUMea8uu+ZZ56Jfv36xZQpU/IdBQCohpdeeikGDBgQH3zwQU76LVy4MIYOHRp/+ctfctKvJrngggvi7LPPjo0bN+ak35gxY2LgwIGxePHinPQDAGoes17dtXr16jjttNPizDPPjIqKinzHAQByzJyXH3feeWf0798/pk2blu8o1FGWiwAA/p/Kyso45ZRT4uGHH8557+effz6OOuqoWL9+fc571wQffvhh7LXXXvHSSy/lOwoAUAeZ8wrHokWLYt9993XnMgCoJSZPnhyHHnporFy5Mqd9N2zYECNHjozx48fntG8+XXrppXHDDTfkvO/06dNj+PDh7qIKAAXIrFcYbrvtthg5cmRUVlbmOwoAkCPmvPz42c9+FqeddlqsXbs231Gow1JVNeV5qQAAeXbJJZfE1VdfXa3XdOnSJQYNGhQ777xzlJeXRyqViqVLl8Z7770Xr7zySrzzzjvVOt7JJ5+c9UfF1jTTpk2LAw44ID777LO85jj77LPjpptuymsGACA7zHnZc9lll8WVV16Z7xj/R/PmzWPixInRvXv3fEcBAL7GggULYtddd43PP/888WtKSkpin332if79+8d2220XZWVlsWrVqvj000/jjTfeiOeeey5WrVqV+HiNGjWKSZMmxc4777wlb6HWuP322+OMM86o1mvat28f++yzT/Tp0ydatmwZxcXFsWzZsvjggw9i0qRJMXny5Go9EXTIkCHx9NNPR7169aobHwCohcx62bFp06YoLi7Od4z/6owzzohbb7013zEAgCwz5+XHmWeeGbfddlu+Y8TixYujZcuW+Y5BFlkuAgCIiHHjxsWhhx6a+BfiRxxxRFx66aWxxx57bLbunXfeiWuuuSbuueeexHdruvPOO+O73/1uotrabt68eTFw4MD45JNPqvW6li1bxpAhQ2Lw4MHRvXv32GmnnaK8vDwaN24cERHLli2LZcuWxdKlS2PGjBnx1ltvxVtvvRVTp0792rukWi4CgLrJnJddSZaLUqlUdO3aNbp16/blny5dukR5eXmUlZVFWVlZNG3aNNasWRMrVqyIFStWxJw5c2Lq1Knx5ptvxtNPP71Fd7rv06dPvPbaa9GwYcMtfHcAQLZs2rQphg4dmvgp1q1bt47LLrssvvWtb0WzZs2+tm7NmjXx0EMPxS9+8Yv46KOPEh27e/fuMXny5C/PK9U1b775ZgwcODDWrVuXqH6fffaJn/3sZ7HffvtFKpX62ro5c+bEb3/727jllltiw4YNiY592WWXxRVXXJGoFgCovcx62ZN0uWibbbaJXr16/dv5uO233z6aNm365fm4+vXrx/Lly2PFihWxZMmSePvtt2Pq1Knx6quvxuTJk7co3/333x8jR47cotcCADWfOS8/tuRmj6lUKvr16xf77rtv9O/fPzp16hTbb799NGnSJEpLS2PVqlVfXl/36aeffnlt3VtvvRXvvffe1/5u3XJR3We5CAAoeEuWLInu3bsnuqNCeXl5jB49Og455JBq9Xj11VfjuOOOi/nz56etLS0tjWnTpkXnzp2r1aO2WbZsWey9997x7rvvJn7N4YcfHt/73vfiwAMPjPr161e756ZNm+Lll1+OMWPGxBNPPBEzZsz48u9ZLgKAusecl33/7WR2cXFx9O/fPwYPHhyDBw+OQYMGRfPmzbe4x/r16+Pxxx+P2267LSZMmFCt1/785z+PX/ziF1vcGwDIjssvvzx+/vOfJ6o9/vjj44477oiysrLEx1+/fn1ceOGFcfPNNyeqP+200+KOO+5IfPzaYsOGDdGnT5+YOXNm2trS0tK45ZZb4pRTTqlWj5kzZ8axxx6b6MmeRUVF8fzzz8fee+9drR4AQO1i1suer1suateu3Zfn4gYPHhw777xzFBUVbXGf999/P/785z/HzTffHMuXL0/8uubNm8esWbO26lwgAFBzmfNy7/e//31873vfS1zftm3bOOecc+Lkk0+O7bfffot6fvrppzF27NgYM2ZMPPPMM7FmzZov/57lorrPchEAUPDOOOOMuP3229PWtW/fPp577rno1KnTFvX57LPPYujQoTF9+vS0tSNGjIgxY8ZsUZ/a4phjjolHH300Ue3AgQPjd7/7XfTr1y+jGaZMmRK33HJLPPDAAzFq1CjLRQBQx5jzsu+fy0XNmzePQw45JI444og4+OCDo0mTJlnp9+CDD8b5558fn376aaL6xo0bx4cffhht27bNSh4AoPrmzJkTPXv2TPQknUsuuSSuuuqqLe510003xTnnnJO2LpVKxaRJk2L33Xff4l410dVXXx2XXHJJ2rqysrJ46qmn0j698+usXr06Dj300Hj++efT1vbt2zemTJkS9erV26JeAEDNZtbLrn9dLurXr18cccQRceSRR0bv3r2z0m/RokVx/vnnx/3335/4NRdeeGFce+21WckDAOSPOS/3pkyZEgMHDoyNGzemrS0pKYmf//zn8YMf/CBKS0szlmHVqlUxevTouPXWW+Ptt9+2XFQALBcBAAVt6tSp0b9//6isrNxsXbNmzWLSpEnRrVu3req3cOHC2H333WPBggVpa5944olq3zm/trjzzjvjtNNOS1tXVFQUl19+efz4xz/O6gUHy5Ytiw8//DD69++ftR4AQG6Z83JjwoQJUVlZGfvuu+8WPVlySyxcuDD222+/eO+99xLVX3755fHTn/40y6kAgKSOOuqoeOyxx9LWnX766XHbbbdtdb8rr7wyLrvssrR1e+yxR7z66quRSqW2umdN8Mknn0TXrl1j9erVm60rLi6OZ555JgYPHrxV/VatWhWDBw+ON998M23tzTffHGedddZW9QMAaiazXnZVVlbGrbfeGkcccUS0b98+Z31vvPHGOO+88xLVlpWVxSeffBKNGzfObigAIKfMebm1Zs2a2G233RI9kXznnXeOhx56KHr06JHVTC+//HLstttuGV1eouaxXAQAFLQjjzwyHn/88bR1Dz30UHzjG9/ISM8XX3wxhg4dGhUVFZut69+/f7z++usZ6VmTzJkzJ3r37p32woaGDRvGPffcE8cee2yOkgEAdYk5r2777LPPYtCgQfHhhx+mrd1pp51i1qxZOUgFAKTz5ptvxq677pq2btddd41XXnklGjZsuNU9q6qq4uCDD47x48enrR0zZkyMGDFiq3vWBOedd17ceOONaet+/etfx49+9KOM9Hz//fejX79+sWrVqs3WtWvXLubMmRMNGjTISF8AoGYw69VtN9xwQ1xwwQWJau++++44+eSTs5wIAMgVc17unX322XHLLbekrdtvv/3iL3/5S5SVleUgFYWgKN8BAADyZebMmfHXv/41bd0RRxyRsQtOIyIGDx4cp59+etq6yZMnx7PPPpuxvjXFD3/4w7SLRUVFRRaLAIAtZs6r+1q3bh133HFHotrZs2fHBx98kOVEAEASv/71r9PWFBUVxZ133pmRixAiIlKpVNxxxx2J7qiZJF9tsHTp0rjzzjvT1u26665x4YUXZqxv165d42c/+1nauk8++STuueeejPUFAGoGs17ddv7558e+++6bqPbJJ5/MchoAIJfMebn11ltvJXr604ABA2LMmDEWi8goy0UAQMG6/vrrI91DHOvXrx/XXnttxntffvnliQb76667LuO98+n555+PRx99NG3d//zP/1gsAgC2mDmvMAwdOjTxctiLL76Y5TQAQDrz58+Phx9+OG3dySefHLvttltGe3fo0CHRXdZffPHFOvGEydtuuy3tzX0i/jE3FxVl9tfFP/jBD6Jjx45p68zDAFC3mPUKw80335yozrk4AKg7zHm5d/7550dlZeVma9q1axdjxoyJRo0a5SgVhcJyEQBQkNavXx8PPvhg2rpjjjkmOnfunPH+LVq0iFNPPTVt3fjx42PRokUZ758vF110UdqawYMHx8UXX5yDNABAXWTOKywnn3xyoroZM2ZkOQkAkM69994bmzZt2mxNKpXK2nmhH/zgB1FSUpK27s9//nNW+udSkvew5557xpAhQzLeu0GDBnH++eenrZs+fXpMnjw54/0BgPww6xWGXr16JbpoeMGCBYmW3QGAms+cl1vjxo2LCRMmbLYmlUrFXXfdFS1btsxRKgqJ5SIAoCCNHTs2li9fnrbuvPPOy1qGc889N+2dQSsqKuKBBx7IWoZceuGFF+K1117bbE29evXitttuy/gdUwGAwmHOKywHHHBAojtyffTRRzlIAwBszr333pu2Zvjw4dGjR4+s9G/VqlV885vfTFv30EMPpb1goiabMmVKzJw5M21dNufh73znO4me5pnk3wkAoHYw6xWOI488Mm1NVVVVzJs3L/thAICsM+fl1jXXXJO25vjjj4/hw4fnIA2FyFWbAEBBuv/++9PWdO7cOQYMGJC1DDvssEMMHjw4bV2SrLXBddddl7bm29/+dvTs2TMHaQCAusqcV1hKSkqiS5cuaetWrlyZgzQAwNd555134p133klbd9JJJ2U1R5LjL168OJ5++ums5simJDNm06ZN44gjjshahsaNG8dRRx2Vtu6BBx6IqqqqrOUAAHLDrFdYevfunajO+TgAqP3Mebk1derUtE8tKi4ujiuvvDJHiShElosAgIJTUVGR6MvE8ccfn/UsI0eOTFvz+uuvx5IlS7KeJZs++uijGDNmTNq6H/3oRzlIAwDUVea8wtS2bdu0NRUVFTlIAgB8nSeffDJtTUlJSVYXXiIi9tlnn2jXrl3aunHjxmU1RzYl+awPP/zwKC0tzWqOJPPwwoUL480338xqDgAg+8x6hSXJubgI5+MAoC4w5+XWTTfdlLbmmGOOiZ122ikHaShUlosAgILz2muvxfLly9PWHXzwwVnPkqRHZWVlPPPMM1nPkk1J7kK63377Rffu3XOUCACoi8x5ham8vDwjNQBA9jz11FNpa/bee+9o2rRpVnMUFRXF8OHD09YlyVsTffrpp/Huu++mrcvFPDxkyJAoKSlJW1dbP2sA4CtmvcKS9Dyb83EAUPuZ83Jnw4YN8eijj6atO+uss3KQhkJmuQgAKDhJLuBs2rRp7LnnnlnPssMOO0Tnzp3T1tXmLz8R/1guSufEE0/MQRIAoC4z5xWmL774Im1NixYtcpAEAPhvNmzYEC+99FLauv333z8HaZL1ee+99+Ljjz/OQZrMSrq4PmzYsCwn+cdda/fee++0deZhAKjdzHqFJ8m5uAjn4wCgtjPn5da4ceNi2bJlm63ZfvvtY/DgwbkJRMGyXAQAFJxXXnklbc2ee+4Z9evXz0GaSDT0T5o0KQdJsmPWrFnx5ptvbramqKgoRowYkZtAAECdZc4rTIsWLUpb061btxwkAQD+m7feeivWrFmTti7JIkomJP0FfG2c05LMw507d462bdvmIE2yz/q1115L+8RzAKDmMusVniTn4lq0aGG5CABqOXNebj3yyCNpaw477LAcJKHQWS4CAArO1KlT09bstttuOUjyD/369Utb895778X69etzkCbznn766bQ1u+yyS7Rp0yYHaQCAusycV3jWrl0b77//fto6d/ECgPxJMqMVFRXFLrvskv0wEdGhQ4do2bJl2rokuWua2jgPr1ixImbPnp2DNABANpj1Ck+6m0pG/OMi41Qqlf0wAEDWmPNyK8kTyQ866KAcJKHQWS4CAArKokWL4tNPP01bV9N+yb5p06Z4++23c5Am8yZMmJC2ZuDAgTlIAgDUZea8wvT3v/897V3TysvLo0+fPjlKBAD8pzfeeCNtTdeuXaNx48Y5SPMPSea02nYhQmVlZbz11ltp62raPBxR+z5rAOArZr3C89hjj6WtGTp0aPaDAABZZc7LnRkzZiT6PfeAAQNykIZCZ7kIACgo06ZNS1TXvXv3LCf5Srdu3RLVJc1e0zz//PNpa/bcc88cJAEA6jJzXmH64x//mLbmtNNOi6Iip0EBIF+SLFLnckaLSDan1bYZbdasWWmXriNy+1m3bds2mjVrlrautn3WAMBXzHqF5Y033kj75KJGjRrFySefnJtAAEDWmPNy57nnnktbs9NOO0WrVq2yH4aCVz/fAQAAcmn27NmJ6jp37pzlJF9p3rx5lJeXxxdffLHZuqTZa5L58+fHwoUL09b17Nkzbc2SJUti3Lhx8eqrr8Y777wTc+bMieXLl8eqVauiQYMG0ahRo2jRokV07NgxOnXqFHvssUcMHDgwunbtmom3AgDUcOa8wjNu3Lj461//utma+vXrx/e///0cJQIA/psks06XLl1ykOQrSWbCjz/+ODZs2BANGjTIQaKtl3SmzPVn3alTp7R3ujUPA0DtZdYrHFVVVXH22WenrfvWt74V5eXlOUgEAGSTOS93Xn/99bQ1Sa6tq6qqitdffz3+/ve/x7Rp02L69OmxePHiWLFiRWzatCkaNWoUTZo0ifbt20fHjh1j5513joEDB8aAAQNy+gQqajbLRQBAQZkzZ07amrZt2+Z8YO7cuXO89tprm61Jkr2meffddxPVfd2XzcrKyhg7dmz89re/jeeeey4qKir+a93atWtj7dq1sWTJknj//fcjIuKWW2758tjf+MY34tRTT42OHTtuwbsAAGoDc15hmT17dnzve99LW/fDH/4w2rdvn4NEAMB/s3bt2kQ3nunUqVMO0nwlyYUIlZWV8dFHH+X8IoktlXSm3GmnnbKc5N917tw57XKReRgAaiezXmH56U9/Gq+++upma8rLy+NnP/tZjhIBANlizsutJNfXbe79fPzxx3HzzTfHXXfdtdl/bitWrIgVK1bEJ598Eq+99lo8+OCDERFRUlISBx54YJx44olxzDHHRL169ar/JqgzivIdAAAgl+bOnZu2pl27dtkP8h+23XbbtDW18ZfsSb78tGjRIsrKyv7PX3/66adj5513jiOOOCKeeeaZr10sSueDDz6Iq666Krp06RLHH398fPDBB1t0HACgZjPnFY6ZM2fGkCFDYsGCBZut6927d/x//9//l6NUAMB/89FHHyWqy/WclmRGi6hdc1qSebi8vDxKSkqyH+ZfmIcBoO4y6xWGysrK+PGPfxxXXnll2tqbb7458ecPANRc5rzcmj59etqa/3bDoOXLl8cPfvCD6NixY/zyl79MtBD236xbty4ef/zxOP7446Nz585x2223bfF1etR+losAgILy8ccfp61p27ZtDpJUv2e6iydrovfeey9tTevWrf/t/1+9enWcdNJJccABByR6fVIVFRXx0EMPxc477xyXXXZZbNy4MWPHBgDyz5xX961fvz6uuOKK2GWXXWL+/Pmbrd12223jf//3f6NBgwY5SgcA/DdJZrSI3M9pSfvVpjmtNs/DCxcudMECANRCZr2674033oiBAwfGr371q7S1F154YYwcOTIHqQCAbDPn5c6CBQti5cqVaev+8/q68ePHR7du3eK3v/1tRq+Bmzt3bpx55pnRv3//mDx5csaOS+1huQgAKChLlixJW9OmTZscJPl3Sb78fPHFFzlIklnpLvqMiGjVqtWX//esWbNizz33jHvvvTdrmTZs2BBXXnll7LPPPonyAQC1gzmv7nrrrbfiRz/6UXTs2DF+9rOfxbp16zZb37Zt25gwYUJ06dIlRwkBgK+TZEaLyP2c1rp16ygqSv9r0to0p9XmebiqqiqWLl2agzQAQCaZ9eqmlStXxujRo2P48OGx++67x2uvvZb2Needd15ce+21OUgHAOSCOS93kl679q/X1/3yl7+MQw45JBYtWpStWPHmm2/GoEGD4uabb85aD2qm+vkOAACQS0m+/GyzzTbZD7IFPVevXh3r16+Phg0bZj9QhiR53Oo/3/usWbNi3333TXz3i6316quvxoABA+Lpp5+OHj165KQnAJA95ryabdq0aTF9+vTN1mzYsCFWrFgRK1asiEWLFsVbb70Vb731Vixbtixxn/322y/+/Oc/R/v27bcyMQCQCUkvRMj1nFZUVBRNmzaN5cuXb7Yuaf6aoDbPwxH/yN+yZcvshgEAMsqsV3NVVlbGQw89tNmaqqqqWLVqVaxYsSKWL18e77//frz55pvxwQcfRGVlZaI+jRs3jt/85jdx6qmnZiI2AFBDmPNyJ8m1dRFffdaXXHJJXH311VlM9JUNGzbE97///Zg1a1Zcf/31OelJ/lkuAgAKSpI7YDZt2jQHSbas5xdffBHbbrttltNkzqeffpq2pkGDBrFo0aIYOnRozhaL/umTTz6JffbZJ1544QULRgBQy5nzarb77rsvfvWrX2Xt+C1btozLLrsszj333EilUlnrAwBUT9K7hDZp0iTLSf6vJBci1Ka7nCbJWtPnYQCgdjHr1VwbNmyIE044Ias9DjzwwPjd737n6eEAUAeZ83InybV1Ef+4vu6qq67K2WLRv7rhhhtiw4YNcdNNN+W8N7lnuQgAKBhr166NjRs3pq3Lxy/Zy8rKEtUtX7681lx0WlVVlehOEPXq1YuRI0cmesxrWVlZDB48OHr37h077LBDNGnSJDZt2hTLli2LDz/8MCZNmhRTp06NioqKxDk///zzOOyww2LSpEnRokWLxK8DAGoOc17h2nHHHeP73/9+nHHGGdG4ceN8xwEA/sOKFSvS1jRu3DiKiopykObfJZnT0l2oUJMk+axr+jwMANQuZr3CU1xcHIceemhceumlsfvuu+c7DgCQJea83Fm8eHGiuueffz5++tOfJqrt2bNnDBo0KLp06RItWrSIhg0bxpo1a2LBggXx7rvvxgsvvJC47z/dfPPN0blz5zjvvPOq9TpqH8tFAEDB2LBhQ6K60tLSLCf5v0pKShLVJX0PNcG6deuisrIybd3jjz8e69at22zNgAED4qKLLooRI0ZEcXHxZmsXLlwYd999d1x77bWJvwjNmjUrTjrppBg3blyiegCgZjHnFZ6jjz46Lr300ujXr1++owAAm5FkxsnHjBaRbE6rTTNaTf2szcMAUHfV1Pkjou7NevnWunXruOKKK+L444+PZs2a5TsOAJBl5rzcWbNmTaK6Cy+8cLPX4TVp0iTOPvvs+N73vhc77bTTZo9VWVkZEyZMiBtuuCGeeOKJxFkvvPDC2H333WPQoEGJX0Ptk/uVQQCAPEn6xaFevXpZTvJ/1a+fbOe7Nn35SbcwlKRum222idGjR8crr7wSRx11VNrFooiItm3bxkUXXRSzZs2K733ve4nzPvnkk/H73/8+cT0AUHOY8wrPo48+Gscdd1ycc8458corr+Q7DgDwNZLMOPmY0SKSzWm1aUarqZ+1eRgA6q6aOn9E1L1ZL98+++yzOPfcc+P444+Pm2++OdHTDACA2suclzuZuL5uxIgR8f7778fVV1+ddrEoIqKoqCiGDRsWY8eOjaeeeiq23377RBkqKytj1KhRiReiqJ0sFwEABSPpF4ekv/DOpKQ9N27cmOUkmbN+/fqten3Hjh3j1VdfjZNOOmmLXt+0adO4/fbb484770z8hfbHP/5xrXo0LgDwD+a8wjR79uy46aabYq+99op99tmnWnfWAgByI8mclo8ZLWnf2jSj1dTP2jwMAHVXTZ0/kvY1f1TP+vXrY/z48fH9738/OnToEJdeemksWrQo37EAgCww5+XO1l5fd+mll8Zf//rX2Hbbbbfo9fvvv39Mnjw59thjj0T1H3zwQVx33XVb1IvawXIRAFAwNm3alKjOL9kzY2vuArHtttvGM888E926ddvqHN/97nfjzjvvTFT7xRdfxDXXXLPVPQGA3DLn8eKLL8aIESPikEMOiYULF+Y7DgDw/ySZ01yIkBk19bM2DwNA3VVT54+kfc0fW2758uXxy1/+Mrp27RqjR4/OdxwAIMPMebmzNdfXXXzxxXHllVdGKpXaqgytW7eOv//979G3b99E9ddee20sWbJkq3pSc1kuAgAKRtIvNRUVFVlOsuU98/XFbEtszeNv77rrrujYsWPGspxyyinx7W9/O1HtzTffHGvXrs1YbwAg+8x5/NO4ceOid+/e8be//S3fUQCASDbj5GNGS9q3Ns1oNfWzNg8DQN1VU+ePpH3NH1tvxYoV8a1vfSuOO+64WL16db7jAAAZYs7LnS29vm7QoEFx1VVXZSxHs2bN4oEHHoiSkpK0tStWrIg77rgjY72pWSwXAQAFo0GDBonqkt75PpOS3jEh6XuoCbY066mnnhoHHnhghtNE/OY3v4l27dqlrVu2bFk88MADGe8PAGSPOa/mu/rqq6Oqqupr/1RWVsby5cvjo48+imnTpsX48ePjyiuvjKOOOirRDPevPv/88zjyyCPjsccey86bAQASSzLj5GNGi0g2p9WmGa2mftbmYQCou2rq/BFR92a96iopKdnsubiqqqpYv359LFq0KGbOnBmTJk2Ku+66K84+++wYMGBAtS/Iffjhh+PQQw+NNWvWZOkdAQC5ZM7LnS3JWlpaGnfddVcUFWV2DaR79+5x+eWXJ6r9/e9/H5WVlRntT81guQgAKBjFxcWJ6vLx5Sdpz7r+5adx48ZxzTXXZCFNxDbbbBNXX311otr77rsvKxkAgOww59V+qVQqysrKokOHDtG7d+8YPnx4XHrppfHoo4/G/Pnz48knn4xjjz028T/rjRs3xnHHHRdjx47NcnIAYHOS/Lc7XxciJOlbm2a0mvpZm4cBoO6qqfNH0r6FPn80aNAgWrduHV27do099tgjTjnllLjpppvilVdeifnz58dVV10VnTp1Sny8559/PkaMGBHr1q3LYmoAIBfMebmzJVkvuOCC6NKlSxbSJD/2nDlz4pVXXslKBvLLchEAUDAaNmyYqC4fJzyT9qxNX36Sft7/6sQTT4xtttkm82H+n+OOOy5atmyZtu6FF16IVatWZS0HAJBZ5ry6raioKA488MB4+OGH45133ol99tkn0es2btwYJ510UixYsCDLCQGAr5NkTsvXxYdJ+tamGa2mftbmYQCou2rq/JG0r/nj67Vt2zYuueSSeP/99+OGG26Ixo0bJ3rdhAkT4ic/+UmW0wEA2WbOy53qXl9Xr169OP3007OUpnrHf+KJJ7KWg/yp3jNMAQCqac6cOTFp0qSs9mjcuHEcdthhaetKS0ujfv36ae9gsHLlykxFSyxpz7KysiwnyZySkpIoLi5O9DjafzrjjDOymOgfX8hOOeWUuPbaazdbt2HDhnj++efj0EMPzWoeAKjNzHnJ1MU5L5+6du0azz33XNxyyy1x3nnnpf1nvnz58hg1alT8/e9/j1QqlaOUAMA/NW3aNG3N6tWro6qqKuf/rU4yp9WmGa1p06bx2WefbbbGPAwAZJJZr+4rKiqK8847L4488sg44YQT4tVXX037mt/85jdxxBFHJL5BEABQ85jzcifJZ/2vDjnkkNh+++2zlOYfTjnllLjsssvSLnI99dRTcdVVV2U1C7lnuQgAyKrnn38+Ro0aldUeO+ywQ6KLTiMimjdvHosXL95szYoVKzIRq1qS9iwvL89yksxq0aJFLFy4MFFtx44dY7fddstyoohjjz027XJRRMTkyZMtFwHAZpjzkqmrc14+pVKpOPvss2OHHXaIo446Ku2C0dNPPx0PPvhgjBw5MkcJAYB/SjLjVFVVxcqVK3P+S/8kc1ptmtHKy8tj1qxZm60xDwMAmWTWKxw77rhjPPPMM3HYYYfFs88+u9naysrKOP3002P69Olu9gMAtZQ5L3datmxZrfpjjz02S0m+0qJFixgyZEg8+eSTm62bNm1abNiwoVY9KYr0ivIdAAAgl1q0aJG2Zvny5TlIUv2ejRo1ipKSkhykyZwkn/c/7bnnnllM8pVddtkl0ZeaN954IwdpAIBMMecVnhEjRsSNN96YqPaGG27IchoA4L9Jem4o13NaZWVlrFq1Km1ddc5t5VttnocjatdnDQD8g1mvsDRq1CgeffTR6NKlS9raGTNmxLhx43KQCgDIBnNe7lQ3a66ur9tjjz3S1mzYsCHefffdHKQhlywXAQAFJclAvmjRohwk+XdJnu5Tm774/FNNXC5q2LBh9O3bN21duju9AgA1izmvMJ111llxwAEHpK177bXXYuLEiTlIBAD8q6RzTq7ntMWLF0dFRUXauto0p9XmeTiVSkXz5s1zkAYAyCSzXuFp1qxZ3HXXXYlqf/Ob32Q3DACQNea83KlO1m222Sa6du2axTRfSXodn+vr6h7LRQBAQdluu+3S1iT5hXemJemZJHtNU53Mffr0yWKSf5dkuWjBggU5SAIAZIo5r3D96le/SlT3yCOPZDkJAPCfks45uZ7TkvarTXNabZ6H27RpE/Xr189BGgAgk8x6hWnQoEFxxBFHpK175plnYtmyZdkPBABknDkvd6qTtXfv3pFKpbKY5itJrq2LcH1dXWS5CAAoKDvuuGPamk8++ST7Qf7Dp59+mramY8eOOUiSWTvttFPi2vLy8iwmqX6v5cuXx/r163OQBgDIBHNe4dp1110T3T3rxRdfzEEaAOBfJZnRInI/pyWZ0SJq15yW5LP+4osvcn6+yzwMAHWXWa9wnXHGGWlrKisr4+WXX85BGgAg08x5ubPjjjtGUVGydY6adm1dRH6elE52WS4CAApKki8PCxcujDVr1uQgzVc+/PDDtDW16YvPP1VnuWibbbbJXpAt7JXrfw8AgC1nzitsSe6WOnXq1Fi1alUO0gAA/1RaWhpt2rRJWzdr1qwcpPlKkhktlUrFDjvskIM0mZFkpqyqqorZs2fnIM1XzMMAUHeZ9QrXsGHDonHjxmnr3OwHAGonc17uNGjQIPHTi3J5bV1paWk0bNgwbZ1r6+oey0UAQEFJsuxSVVWV6MtIpixbtiyWLFmStq46izo1RadOnRLXWi4CALaGOa+w7bXXXmlrKioqYs6cOTlIAwD8qySzzgcffJCDJF9JMhNut912iX6BXlMknSlr4mdtHgaA2susV5iKi4tj9913T1uX63/2AEDmmPNyJ+n1dbm8ti4iolmzZmlrXFtX91guAgCy6pRTTomqqqqs/pk7d27iPL17905UN2PGjC18x9WXtFfS7DVJnz59EtemUqksJslfLwCoq8x5metVG+e8mqZz586J6pIsewEAmZVk1snljJa0X22b0Tp16hSlpaVp63L5WS9cuDCWL1+etq62fdYAwFfMeoUryfk45+IAoPYy5+VO3759E9Xl+no319cVJstFAEBB2XbbbRM9tvWNN97IQZrkverXr1+tRZ2aonnz5onvPLps2bLshvkXS5cuTVTXqFGjLCcBADLFnFfYysvLE9V98cUXWU4CAPynXXfdNW3NzJkzc3qXyyRz2m677ZaDJJlTr169RHNlTZuHI2rfZw0AfMWsV7iSnI9zLg4Aai9zXu7069cvUV0ur61L2s+1dXWP5SIAoOAk+RKRy1+yT5kyJW1N9+7do6SkJAdpMi/pF6CkCz+ZkPTLVuPGjbMbBADIKHNe4SouLk5Ut3bt2iwnAQD+U5IZrbKyMt58883sh4mI+fPnx+LFi9PWJbmAoqapjfNw06ZNo1OnTjlIAwBkg1mvcCU5H+dcHADUXua83KmJ19atXbs21q9fn7bOtXV1j+UiAKDgDBw4MG3Nq6++Gps2bcpBmogXXnghbc2ee+6ZgyTZsddeeyWqy+Wdq5L0atGiRTRo0CAHaQCATDHnFa7Vq1cnqnOCGwByr2/fvlFaWpq27sUXX8xBmmQzWkTtnNOSzMMffPBBLFq0KAdpkn3We+yxR6RSqRykAQCywaxXuJKcj3MuDgBqL3Ne7nTv3j2aN2+etq6mXVsXEdGuXbssJyHXLBcBAAVn2LBhaWtWrlwZr732WtazzJs3Lz788MO0dQcccEDWs2TL8OHDE9VNmzYty0m+8tZbb6Wt6dChQw6SAACZZM4rXAsWLEhU16RJkywnAQD+U8OGDWPvvfdOW/fMM8/kIE2yPt27d4/27dvnIE1mJZmHI3LzWa9fvz5efvnltHXmYQCo3cx6hSvJ+Tjn4gCg9jLn5U5RUVHsv//+aevefvvtqKqqykGiZNfWRbi+ri6yXAQAFJw99tgjysrK0taNGzcu61mS9EilUokvDKiJevbsmeiL26RJk3KQ5h8XNiT5AtStW7ccpAEAMsmcV7imT5+eqM4JbgDIjyS/HH/xxRdj1apVWc1RWVkZ48ePT1tXWxde2rVrFz169Ehbl4t5+Lnnnou1a9emrautnzUA8BWzXmFKcj7OuTgAqN3MebmT5Obdy5Yti/fffz8HaZJfx+f6urrHchEAUHDq16+f6CLOBx98MOtZHnjggbQ1/fv3j5YtW2Y9SzYdcsghaWteffXVHCSJmDp1amzYsCFt3e67756DNABAJpnzCtfzzz+ftqZevXqx4447Zj8MAPB/HHTQQWlr1q1bF48//nhWc7z44ovxySefpK1LkremSpL98ccfj3Xr1mU1R5J5uE2bNrHrrrtmNQcAkH1mvcKzePHieO+999LWderUKQdpAIBsMeflzsEHHxypVCptXa6ur0uyXNSsWbPo2rVrDtKQS5aLAICCdMIJJ6St+eCDD7L6NJ158+bFCy+8kLYuSdaa7pvf/Gbamrlz58Ybb7yR9SyPPPJIorqBAwdmOQkAkA3mvMKzadOm+N///d+0dT169IgGDRrkIBEA8J/69OkTPXv2TFt3zz33ZDXH6NGj09a0aNGiVt/lNMmMuXLlyqxe9LF69er4y1/+krbu+OOPT3TRBABQs5n1Cs+DDz4YVVVVaet22WWX7IcBALLGnJc72223XQwZMiRtXdLr3rbG559/Hs8991zauj333NO5vTrIchEAUJAOO+ywKCsrS1v3m9/8JmsZfvvb30ZlZeVma4qKimLkyJFZy5ArgwcPjo4dO6atu/XWW7OaY926dfGnP/0pbV3Lli1jjz32yGoWACA7zHmF58EHH4yFCxemrdt3331zkAYA+DpJbj4zfvz4mDFjRlb6L168OO699960dccdd1wUFxdnJUMu7L777tGlS5e0ddmch++6665Yvnx52rok/04AALWDWa9wVFRUxM0335y2LpVKxT777JODRABANpnzcudb3/pW2pq//e1vMW/evKzmuOuuu2L9+vVp6w499NCs5iA/LBcBAAWppKQkjjvuuLR1jzzySHz44YcZ779kyZL4/e9/n7Zu+PDhse2222a8f66lUqkYNWpU2rr7778/li5dmrUcDz74YCxZsiRt3WGHHRb16tXLWg4AIHvMeYVl1apVcdlllyWqPfDAA7OcBgDYnJNOOint+Zaqqqq4+uqrs9L/xhtvjHXr1qWt+/a3v52V/rmU5D28+uqrie5AWl0bNmyI66+/Pm1d9+7d3dwHAOoQs17huPXWWxNdPLzrrrtGq1atcpAIAMgmc17uHHvssWlvollZWRm33XZb1jJUVFTE7bffnqj2iCOOyFoO8sdyEQBQsC644IK0j+bctGlT/PCHP8x475/97GexYsWKtHUXXnhhxnvny9lnnx2NGzfebM3q1auz9p6XLl0al1xySaLa7373u1nJAADkhjmvcJx55pkxd+7ctHWtWrWKgw46KPuBAICv1aFDhzj22GPT1o0ePTreeOONjPaeN29eooWXQYMGxZ577pnR3vlwxhlnRKNGjdLWXXjhhWmfuFldN954Y8yZMydRbwCg7jDrFYZp06bFxRdfnKg2yZ33AYCaz5yXO02aNImzzjorbd0NN9wQM2fOzEqGa665JmbNmpW2bv/9948ddtghKxnIL8tFAEDB6tGjR4wYMSJt3eOPPx4PP/xwxvq+9NJLiTb8d9ttt9h///0z1jciYu7cuZFKpdL+GTJkSEb7RkSUl5fH6aefnrburrvuinHjxmW8/7nnnhuffvpp2rpdd901Bg0alPH+AEDumPOyP+eNGTMmFi1alJFjbYmqqqq48MIL45577klUf8opp0RxcXGWUwEA6Vx00UVpayorK+O0006LDRs2ZKRnVVVVnH766bF27dq0tUnyVccpp5ySaEbL9BOEWrRokejmOW+88UaiCzSS+uCDD+Lyyy9PW7ftttvGySefnLG+AEDNYNbL3qy3ZMmS+Mtf/rL1obfCjBkz4qCDDoo1a9akrW3UqFF885vfzEEqACAXzHm5OacXEXH++edHaWnpZmvWrVsXo0aNyvhNg6ZPnx6/+MUvEtWec845Ge1NzWG5CAAoaD//+c+jqCj9SHTaaafF+++/v9X9Fi5cGCeeeGJUVFSkrU06rNcmF110UTRr1ixt3ahRo2L27NkZ6/uHP/wh8YWndfFzB4BCZM7Lrv/93/+NTp06xaWXXhoLFy7Mae+lS5fGcccdl/hC2CZNmsSPfvSjLKcCAJLYbbfd4vDDD09b98Ybb8QPfvCDjPT85S9/GU8++WTauv79+8dhhx2WkZ41wUUXXZTo6UWXXnppvPTSS1vdb/Xq1XH88cfHqlWr0tZecskl0bBhw63uCQDULGa97Fm5cmUcffTRsddee8UTTzwRVVVVOe0/ZsyYGDhwYKIbOUZEfP/734+WLVtmORUAkCvmvNxp3bp1os/wlVdeiR//+McZ67ts2bIYOXJkrF+/Pm1tv3796tRnzr+zXAQAFLR+/frFd77znbR1y5cvj2HDhm3VwsvixYtj//33j/nz56etPfjgg+vkEN6mTZu44oor0tYtWrQohg0blpFHuN55552JnpgUEbHvvvsm+jIMANR85rzsW716dfzyl7+MHXbYIb71rW/Fs88+m/E7ZP2rioqKuOuuu2LnnXeORx55JPHrLr744mjVqlXWcgEA1XP99dcnWiy57bbb4ic/+clW9brlllsSHSOVSsXvfve7SKVSW9WvJmnfvn1ceumlaes2btwYI0aMiMmTJ29xrzVr1sRhhx0WU6dOTVvbu3fvOOuss7a4FwBQs5n1suuVV16JESNGRI8ePeKGG27I+k1/Zs2aFSeccEIcfvjhsWzZskSvadWqVVx88cVZzQUA5J45L3cuu+yy6NChQ9q6a665Jn7yk59s9eL5Z599FsOHD4+33347Uf21115b5z5zvmK5CAAoeFdddVW0aNEibd2CBQtijz32iHHjxlW7x6RJk6J///7x7rvvpq0tKSmJG2+8sdo9aouzzjor+vfvn7Zu7ty5MWDAgMRPHPpPK1eujNNPPz1OO+20RE8QaNSoUdxxxx1b1AsAqJnMebmxYcOGGD16dAwbNiw6dOgQZ5xxRjz++OOJLzhI54MPPoirrroqOnfuHN/5znfik08+Sfzafv36ZfSuXQDA1uvUqVPiiw2vuuqqOOGEE2LlypXV6rF+/fo499xz4+yzz05UP2rUqBgwYEC1etQGP/zhD6NLly5p65YvXx777rtv/PnPf652j5kzZ8aAAQNiwoQJaWtTqVTcdNNNUa9evWr3AQBqB7NebsycOTMuuOCCaN++fQwbNiyuu+66ePvttzNy45+1a9fG2LFj45hjjonu3bvHAw88UK3X33777VFeXr7VOQCAmsWclzuNGzeO3/3ud4lqr7rqqjj88MMTP2HyPz399NPRv3//eP311xPVn3rqqTFkyJAt6kXtYLkIACh4rVq1ij/96U+JNuqXLFkShxxySBx99NGJ7uY5ffr0GDVqVOy1114xb968RHluvPHGRL/0r63q1asXDz74YGyzzTZpa5ctWxYnn3xyDBw4MB599NHYuHFj2tcsWrQofvWrX0WnTp2qtSz0m9/8Jrp27Zq4HgCo+cx5uffxxx/H7bffHkceeWSUl5dHjx494uSTT44rr7wyHn744XjllVdi9uzZsWzZsli3bl1UVlbGpk2bYs2aNfHpp5/G22+/HU888UT85je/iW9/+9vRuXPn6Nq1a/zkJz+JuXPnVitLixYt4v7774/69etn580CAFvspz/9aQwcODBR7QMPPBBdunSJm2++OVasWLHZ2rVr18bdd98d3bt3T/wL+K5du9bJBfCIiIYNG8YDDzyQ6K6ya9asiVNOOSWGDh0aEyZMSHvH07lz58YFF1wQffr0SXxX0x//+Mexzz77JKoFAGovs17uVFRUxLPPPhs//OEPo0+fPtG8efM44IAD4oILLojbbrst/v73v8e0adNi4cKFsWrVqti4cWNUVVXF+vXrY9myZTFr1qyYOHFijB49Oi699NLYb7/9omXLlnHYYYfFo48+Gps2bapWnnPPPTeOOuqoLL1bACDfzHm5c/jhh8c555yTqHbs2LHRpUuX+PGPfxyzZ89OW19VVRXPPvtsjBgxIg444ICYP39+oj5du3aN3/zmN4lqqb1SVVv7LCwAgDrioosuimuuuaZar+natWvsvffe0atXrygvL49UKhVLly6NGTNmxCuvvBLTpk2r1vFOPPHEuPfee6v1muqYO3dudOzYMW3dvvvuG88991zWckREjBkzJo444ohqPZq1WbNmMXjw4OjTp0906NAhmjRpEhUVFbF06dKYNWtWTJo0KaZMmZLoSUX/6txzz63TXzgBoNCZ876SqTnvlFNO2aI72+dKaWlpPP3007HXXnvlOwoA8DXmz58fu+66ayxZsiTxa0pLS2PfffeNfv36Rfv27aNp06axatWqWLhwYUyZMiWee+65at0RtbS0NF555ZXo27fvlryFtJLOTBMmTMjqHT9vueWWxHd8/aftt98+9t133+jTp0+0aNEiiouLY9myZfHhhx/GpEmT4rXXXqvWeb3BgwfHhAkTPLUIAAqEWe8rmZj1kp77y6ejjz46Hn744Sgqcq9zAKjLzHlfyfY5vY0bN8aQIUNi4sSJiV+TSqWiV69esddee0XXrl2jRYsW0aBBg1izZk18/PHH8e6778YLL7wQixYtqlaWli1bxsSJE+v8jTSJcNtOAID/5+qrr44FCxbE/fffn/g177//frz//vsZ6T9s2LD44x//mJFj1QaHHXZY3HHHHfG9730v8YUIy5cvj7Fjx8bYsWMzlmPkyJFxww03ZOx4AEDNY84rLOXl5TF27NjEd04DAPJj++23j7/97W+x//77J754YO3atfHkk0/Gk08+udX9i4uL45FHHsnaRQg1yVlnnRUfffRR/PrXv078mvnz58c999yTkf69e/eOxx57zGIRABQQs15h+da3vhV/+MMfLBYBQAEw5+VOcXFxjBkzJvbbb7946623Er2mqqoq3nnnnXjnnXcylqNZs2YxZswYi0UFwkQPAPD/FBUVxd133x1HH310znvvvffe8fjjj0fDhg1z3jufTj311Lj99tvzdqL59NNPj3vvvdeJbgCo48x5haNv374xceJEi0UAUEvsscceMXbs2GjSpElO+xYXF8f9998fhxxySE775tOvfvWrOPfcc3Pet3v37vHUU09FeXl5znsDAPll1qv76tevH//zP/8Tf/rTn6J+ffc4B4BCYc7LnfLy8njmmWdil112yUv/1q1bx4QJE2LAgAF56U/uuYoSAOBf1K9fPx5++OG4+OKLc9Zz1KhR8fTTT0fjxo1z1rMmOe200+LJJ5+MFi1a5Kxnw4YN4+abb47bbrvNYhEAFAhzXt1Wv379uPDCC2PSpEnRrVu3fMcBAKphn332iVdeeSV22mmnnPRr3bp1PPvss3HMMcfkpF9NcuONN8aNN96Ysws/DznkkHj11VejTZs2OekHANQ8Zr26q0ePHvHSSy/FT37yk0ilUvmOAwDkmDkvd1q0aBEvvfRSnHDCCTntu9dee8XkyZNj1113zWlf8suVlAAA/6GoqCiuvvrq+Mtf/hLt2rXLWp/mzZvH73//+/jjH/9Y8HeyP+CAA+KNN97IyZ0lBg4cGJMmTYqzzjor670AgJrFnJc5++yzT3Ts2DHfMSKVSsXhhx8eb7/9dlx77bV19vMGgLpu5513jsmTJ8c3v/nNrPY5+OCDY8qUKbH33ntntU9Ndu6558azzz6b1YXs0tLSuPLKK2PMmDHRrFmzrPUBAGoHs97Wa9asWRx00EHRoEGDfEeJNm3axE033RTTpk2LPffcM99xAIA8MuflTuPGjeO+++6L22+/PetPCG/UqFFcccUV8fzzz8f222+f1V7UPJaLAAC+xpFHHhkzZsyIH/7whxm923yDBg3iu9/9bsycOTNOPfXUjB23tuvQoUM88cQTMWbMmOjdu3fGj9+zZ88YPXp0vPzyy9G3b9+MHx8AqD3MeVvvO9/5TsyePTvefPPN+MUvfhG77LJLTvs3a9YszjjjjHj33Xfj8ccfj+7du+e0PwCQec2bN4977rknJkyYEP369cvosbt27RqPPPJI/O1vf4v27dtn9Ni10eDBg2PatGlx1VVXZfRihKKiojjmmGPi3XffjUsvvdQTwwGAL5n1tk7z5s1j3Lhx8fnnn8cDDzwQI0eOzPkSd//+/eOuu+6Kjz76KM4+++ycPQ0TAKjZzHm59b3vfS/ef//9OPvss6O0tDSjx27YsGF897vfjRkzZsRll11m3itQqaqqqqp8hwAAqOmWLl0ad9xxR4wePTrefffdLTpGp06d4oQTToizzjortt122wwnTGbu3LmJ7jC/7777xnPPPZf9QJvx3HPPxa233hpPPvlkrFixYouO0axZszjssMPipJNOiuHDh0cqlcpwSgCgtjPnZc6nn34aL730Urz88svx8ssvx5tvvhmbNm3K2PG7dOkS++67bxxxxBExfPjwGnGnVgAge55//vm4+eabY9y4cbFq1apqv76kpCSGDRsWZ555ZhxyyCF5OS90yimnxJ///Oe0dRMmTIghQ4ZkP9B/sWbNmvjzn/8cd911V0yePDm25FfH7dq1i2984xtxzjnnRKdOnbKQEgCoa8x6W2/jxo0xZcqUL8/FTZw4MRYtWpSx4zdu3DgGDhwYw4cPj2OOOSZ22mmnjB0bAKi7zHm5s2TJkrjzzjvj3nvvjbfffnuLj7PbbrvFN77xjRg1alS0adMmgwmpjSwXAQBU00cffRR///vf46233orp06fH3LlzY8WKFbFy5cqoqqqKpk2bRtOmTWP77bePnj17Ru/evWP//fd3N/UttGnTpi9Pik+fPj1mzpwZCxcujJUrV8bq1asjlUpF48aNo1mzZtGhQ4fo2LFj9O3bNwYOHBj9+vVz0SkAkJg5L7PWrFkT77zzTnz44Ydf/pk9e3YsXbo0Vq1aFatWrYqVK1dGRUVFNGzYMBo2bBhNmjSJ1q1bR5s2bWL77bePbt26Rffu3aNfv35OZgNAgdqwYUO88MILX54bmjFjRnz++eexcuXKWLNmTZSUlETTpk2jvLw8unXrFj179ow999wzhg0bFo0aNcp3/Fpl0aJFMX78+Jg6dWpMnz49Zs+eHcuXL4+VK1fGpk2bokmTJtG0adPYbrvtokePHtGrV6/Yb7/9Ytddd813dACgljLrZdacOXNi5syZ/3Y+7pNPPomVK1d+eT5uzZo1Ub9+/WjQoEGUlJREixYtok2bNtG2bdvo1KlTdO/ePXr16hV9+/Z1t3oAYIuZ83Lr448/jqeeeireeuuteO+99/7tvN769eujtLQ0GjduHK1bt46OHTtG165dY88994y99tortttuu3zHpwaxXAQAAAAAAAAAAAAAAAAFqijfAQAAAAAAAAAAAAAAAID8sFwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAABQoCwXAQAAAAAAAAAAAAAAQIGyXAQAAAAAAAAAAAAAAAAFynIRAAAAAAAAAAAAAAAAFCjLRQAAAAAAAAAAAAAAAFCgLBcBAAAAAAAAAAAAAABAgbJcBAAAAAAAAAAAAAAAAAXKchEAAAAAAAAAAAAAAAAUKMtFAAAAAAAAAAAAAAAAUKAsFwEAAAAAAAAAAAAAAECBslwEAAAAAAAAAAAAAAAABcpyEQAAAAAAAAAAAAAAABQoy0UAAAAAAAAAAAAAAADw/7N33+FRVH0bx+90EkLvvfcIAor0IoiConQVVFAQC6AoigoqICio2ECsVEGpCgKK9N57k957b4H07PuHr+2RJDO7Mzu7yfdzXbmu53F/M+fOsjNzcnbOnAyKyUUAAAAAAAAAAAAAAAAAAAAAAABABsXkIgAAAAAAAAAAAAAAAAAAAAAAACCDYnIRAAAAAAAAAAAAAAAAAAAAAAAAkEExuQgAAAAAAAAAAAAAAAAAAAAAAADIoJhcBAAAAAAAAAAAAAAAAAAAAAAAAGRQTC4CAAAAAAAAAAAAAAAAAAAAAAAAMigmFwEAAAAAAAAAAAAAAAAAAAAAAAAZFJOLAAAAAAAAAAAAAAAAAAAAAAAAgAyKyUUAAAAAAAAAAAAAAAAAAAAAAABABsXkIgAAAAAAAAAAAAAAAAAAAAAAACCDYnIRAAAAAAAAAAAAAAAAAAAAAAAAkEExuQgAAAAAAAAAAAAAAAAAAAAAAADIoJhcBAAAAAAAAAAAAAAAAAAAAAAAAGRQTC4CAAAAAAAAAAAAAAAAAAAAAAAAMigmFwEAAAAAAAAAAAAAAAAAAAAAAAAZFJOLAAAAAAAAAAAAAAAAAAAAAAAAgAyKyUUAAAAAAAAAAAAAAAAAAAAAAABABsXkIgAAAAAAAAAAAAAAAAAAAAAAACCDYnIRAAAAAAAAAAAAAAAAAAAAAAAAkEExuQgAAAAAAAAAAAAAAAAAAAAAAADIoJhcBAAAAAAAAAAAAAAAAAAAAAAAAGRQTC4CAAAAAAAAAAAAAAAAAAAAAAAAMigmFwEAAAAAAAAAAAAAAAAAAAAAAAAZFJOLAAAAAAAAAAAAAAAAAAAAAAAAgAyKyUUAAAAAAAAAAAAAAAAAAAAAAABABsXkIgAAAAAAAAAAAAAAAAAAAAAAACCDYnIRAAAAAAAAAAAAAAAAAAAAAAAAkEExuQgAAAAAAAAAAAAAAAAAAAAAAADIoJhcBAAAAAAAAAAAAAAAAAAAAAAAAGRQTC4CAAAAAAAAAAAAAAAAAAAAAAAAMigmFwEAAAAAAAAAAAAAAAAAAAAAAAAZFJOLAAAAAAAAAAAAAAAAAAAAAAAAgAyKyUUAAAAAAAAAAAAAAAAAAAAAAABABsXkIgAAAAAAAAAAAAAAAAAAAAAAACCDYnIRAAAAAAAAAAAAAAAAAAAAAAAAkEExuQgAAAAAAAAAAAAAAAAAAAAAAADIoJhcBAAAAAAAAAAAAAAAAAAAAAAAAGRQTC4CAAAAAAAAAAAAAAAAAAAAAAA+4+rVq9qyZYvTMYAMg8lFAAAAAAAAAAAAAAAAAAAAAADAcTdv3tT777+vkiVLqlq1avr++++djgRkCMFOBwAAAAAAAAAAAAAAAAAAAAAAABlXfHy8vvnmG7377rs6c+bMX/89ISHBwVRAxsHkIgAAAAAAAAAAAAAAAAAAAAAA4HVJSUn67rvvNHDgQB09etTpOECGxeQiAAAAAAAAAAAAAAAAAAAAAADgNS6XS1OnTlX//v21d+9ep+MAGR6TiwAAAAAAAAAAAAAAAAAAAAAAgFfMmTNHb775prZt2+Z0FAD/j8lFAAAAAAAAAAAAAAAAAAAAAADAVkuWLFG/fv20Zs0ap6MA+B9MLgIAAAAAAAAAAAAAAAAAAAAAALZYt26d+vXrp0WLFjkdBUAKmFwEAAAAAAAAAAAAAAAAAAAAAAAstXv3br3++uuaNWuW01EApCHQ6QAAAAAAAAAAAAAAAAAAAAAAACB9+frrr5lYBPgJJhcBAAAAAAAAAAAAAAAAAAAAAACvCggIUKtWrdS+fXunowAZHpOLAAAAAAAAAAAAAAAAAAAAAACA17Rs2VJbt27VTz/9pAoVKjgdB8jwgp0OAAAAAAAAAAAAAAAAAAAAAAAA0r+mTZvqvffeU/Xq1Z2OAuAfWLkIAAAAADKYpUuXKiAgwPAP4AQ+pwDwb5wXAQAA4GvGjx9vqG86cuRIp6Pe0tGjRzV16lS99dZbateunerUqaOSJUsqZ86cypw5s4KCggz3v8eNG+f0rwMAAAAAgM+rVauWlixZonnz5vnNxKL7778/zXGBzJkz68iRI05HBTzGykUAAAAAAAAAAAAAAMCwS5cu6ZVXXkmzrkKFCnrmmWe8kMiYzZs367vvvtOcOXN08OBBp+MAAAAAAJAhVK5cWYMGDdKDDz7odBTTPvzwQ82bN09JSUkp1ty8eVM9e/bU7NmzvZgMsB4rFwEAAAAAAAAAAAAAAMP69OmjCxcupFk3bNgwBQc7/8zTuXPn6q677lL16tX12WefMbEIAAAAAAAvefHFF7V161a/nFgkSRUrVtTTTz+dZt2cOXM0c+ZM+wMBNmJyEQAAAAAAAAAAAAAAMGTVqlUaM2ZMmnVNmjRR8+bNvZAoZSdPntT999+v5s2ba/369Y5mAQAAAAAgIypRooQCAgKcjuGRgQMHKkuWLGnWvfDCC7p586YXEgH2cP4RQQAAAFDDhg21bNkyx9oPCQlRWFiYwsLCFBkZqTx58ihv3rzKnz+/ypYtq7Jly6pixYoqW7as3/+xBwBmeOv8HBoa+td5+J8/WbNmVd68ef/zU7x4cZUvX145c+a0PRsAAABS5vTf81br1KmTxo0b53QMAIAPS05O1gsvvCCXy5Vm7ZAhQ7yQKGUrV65Uy5YtdfHiRUdzABlJYmKidu7cqY0bN/71s2PHDsXHxxveR7FixXTkyBH7Qvq5cePG6cknn3Q6hl9p0KCBli5d6nQMAAAA+LG8efPqpZde0jvvvJNq3fHjxzV06NA06wBfxeQiAAAAKCEhQQkJCYqOjtbFixd19OjRW9blyJFDNWvWVKNGjfTQQw+pbNmyXk4KAOlTfHy84uPjdf36dVPb5cmTR+XLl1f58uVVsWJF1alTR1WrVlVwMH/uAwAAAAAA640ePVqbN29Os65Nmza64447vJDo1ubPn68HH3xQcXFxjmUA0rukpCT9/vvv2rhxozZt2qSNGzdq27Ztio2NdToaAAAAAFiud+/eGjlyZJoPMRk2bJi6dOmiYsWKeSkZYB3uNgIAAIBhly9f1ty5czV37lz16dNHFStWVOfOnfXUU08pV65cTscDgAzn/PnzOn/+vFasWPHXf8ucObNq1qypunXrqkGDBqpXrx6TjQAAAAAAgMeuXr2qN998M826oKAgDRo0yAuJbm3Hjh1q27YtE4sACyUnJ2vv3r3/WpFo69atunnzptPRAAAAAMArsmbNqtdee019+vRJtS4mJkavvvqqpk6d6qVkgHUCnQ4AAAAA//X777+rT58+Kly4sJ555hmdPHnS6UgAkOHduHFDixYt0sCBA3X33XerQIEC6tatmxYsWKDExESn48FPjRs3TgEBAYZ+ihcv7nRc4D/4DAMA4H+4fgO+591339W5c+fSrOvQoYMqVKjghUT/lZCQoMcee8z06tAA/uZyubRv3z798MMPevnll1W/fn1ly5ZNFStW1BNPPKHhw4dr9erVTCwCAAAAkOH06NFD+fLlS7Nu2rRpWr16tRcSAdZichEAAAA8Fhsbq2+++UZlypTRW2+9pfj4eKcjAQD+34ULF/Ttt9+qadOmKlCggF588UUdPnzY6VgAAAAAAMCPHD9+XCNGjEizLjAwUP369fNColv76KOPtH37dsfaB/zZ3r17dffddytHjhwqV66cOnbsqE8++UQrVqxQdHS00/EAAAAAwHHh4eHq3bu3odq0VjgCfFGw0wEAAACQfsTExGjw4MGaOXOmJkyYoNtvv93pSACAf7hw4YKGDx+ukSNHqlWrVnrllVd01113OR0LAAAAAAD4uLfeekuxsbFp1rVv317lypXzQqL/un79uj788EO3t8+ePbuqVaumggULKlu2bMqaNasCA409r7VKlSputwv4itOnT2vJkiVOxwAAAAAAn/bcc8/p/fff18WLF1OtW7VqlX7++Wc99NBDXkoGeI7JRQAAALDczp07Vbt2bU2cOFGtW7d2Og4A4H8kJSVp+vTpmj59uho1aqTPPvtMt912m9OxAAAAAACAD9qxY4cmTJiQZl1AQIDefPNNLyS6tTFjxujSpUumtsmRI4eeeuopdenSRRUqVLApGQAAAAAASC8iIyP14osv6u23306z9o033tADDzygoKAgLyQDPGfsMTsAAACASTExMWrbtq2++uorp6MAAFKxZMkSVatWTb169dLVq1edjgMAAAAAAHzM22+/reTk5DTrmjVrpkqVKnkh0a2NHz/eVH39+vX1+++/a9iwYUwsAgAAAAAAhnXv3l2ZM2dOs2737t2aNGmSFxIB1mByEQAAAGzjcrnUvXt3TZ482ekoAIBUJCYm6rPPPlPZsmU1Y8YMp+MAAAAAAAAfsWXLFs2cOdNQ7auvvmpvmFQcPHhQW7ZsMVxfqVIlzZ8/X/nz57cxFQAAAAD4ry+++EIBAQGGfz766COnI3ssMTFR1apVM/w7h4aGatu2bU7HhgNy5sypJ5980lDtoEGDlJSUZHMiwBrBTgcAAACAeZUrV1aLFi0s2VdiYqLi4uIUHR2t8+fP6+TJkzpw4ICuXLliyf6Tk5PVqVMnlS9fXrfffrsl+wQAX+Xp+Tk2NlaxsbGKi4tTbGysrl27ptOnT+v06dM6e/asEhISLEz7X+fOnVPr1q3Vp08fvffeeyzNDQAAAABABjdgwABDddWrV1fDhg1tzZKahQsXmqofM2aMwsLCbEoDAAAAAP7P7Mq0e/bssSmJ93zwwQemHlzx5ptvqkqVKjYmgi976aWX9OWXX6Y5cWjfvn36/vvv9cQTT3gpGeA+JhcBAAD4oapVq2rw4MG2tnHs2DGtXbtWv/32m2bPnq0LFy64va/4+Hh16NBBmzZtUnh4uIUpAcC32Hl+drlcOnv2rHbu3PnXz6ZNm7Rt2za5XC5L2/rggw+0fv16TZ48Wfny5bN030Y1bNjQ8t8LAPwZ50UgfejUqZPGjRvndAwAAAzZunWrZs2aZai2V69e9oZJw7JlywzXVq1aVTVq1LAxDQDYp3PnzurcubOjGQICAkzVjx071vHMAADAvKioKFP1e/futSmJd+zZs0fvvPOO4fpq1aqpb9++NiaCrytZsqRatGhhaMXnwYMH67HHHlNgYKD9wQAP8AkFAADALRUtWlTt27fXmDFjdPLkSU2aNMn0U0n+affu3frkk08sTAgAGUtAQIDy58+vJk2aqFevXho1apS2bNmi8+fPa+rUqXrmmWcsnQi0dOlS1a5dWydOnLBsnwAAAAAAwH+8//77hury5Mmjdu3a2Zwmddu3bzdc+/DDD9uYBIAkFSxYUC1atNDAgQPVvXt3p+MAAADADbly5VL+/PkN1/vzykXJycnq0qWL4uLiDNWHhoZq/PjxCg5mjY+M7vnnnzdUt3//fs2YMcPmNIDnmFwEAACANIWGhuqRRx7R9u3b9dlnn7m9+tD777+vixcvWpwOADK2XLlyqV27dvrqq6904sQJzZ49W23btlVoaKjH+z506JAaNWqkU6dOWZAUAAAAAAD4i8OHD2vatGmGap9++mmFhYXZnChliYmJ2rdvn+H6atWq2ZgGyHjy58+v+++/X/3799fs2bN1+vRpnTx5UrNmzdLbb7+tO+64w+mIAAAAcJOZ1YvOnz+vS5cu2ZjGPiNGjNDq1asN1/fv39/0yk5In5o0aaKyZcsaqv3ggw9sTgN4jslFAAAAMCwwMFAvvPCCli9frrx585re/tq1axo1apQNyQAAkhQcHKwHHnhA06ZN08GDB/Xcc895PMnowIEDatSokU6fPm1RSgAAAAAA4OuGDRumpKSkNOsCAwP1zDPPeCFRyk6dOqWEhATD9ZUrV7YxDZC+5cuXT82bN9dbb72ln3/+WSdOnNDp06c1Z84cDRgwQA888ICpp9sDAADAt5mdQLN3716bktjn8OHD6tevn+H6O++8U6+99pqNieBPAgIC9OyzzxqqXb9+vZYuXWpvIMBDTC4CAACAaXfccYd+++03RUZGmt52zJgxNiQCAPyvwoUL64svvtDBgwf1yCOPeLSvffv2qVWrVqZu1AEAAAAAAP7pypUrGj9+vKHaJk2aqGjRojYnSt2ZM2cM1wYFBSlfvnw2pgHSjzx58ui+++5Tv379NGPGDB0/flxnzpzRL7/8onfeeUcPPvigChUq5HRMAAAA2KhSpUqm6vfs2WNTEvt069ZNN27cMFQbFhamcePGKSgoyOZU8CePPfaYQkJCDNV++umn9oYBPMTkIgAAALilatWqbv3Bs2/fPu3YscP6QACAWypcuLAmTZqkGTNmePTU0HXr1qlPnz4WJgMAAAAAAL5ozJgxhm+sevLJJ21Ok7YLFy4YrnXngVlARpEvXz698cYb+vHHH3X06FGdO3dOc+fO1eDBg9WyZUsVLlzY6YgAAADwMrMrF/nb5KLRo0dr4cKFhusHDhyoihUr2pgI/ihPnjxq0aKFodrZs2fryJEj9gYCPMDkIgAAALitS5cuqlGjhuntFi9ebEMaAEBqWrZsqZ07d6p+/fpu7+PTTz/VzJkzrQsFAAAAAAB8SnJyskaOHGmoNnv27GrVqpXNidJ28+ZNw7VMLgJSVqFCBb333ntq3bq14yuSAQAAwDdUqlRJAQEBhuv37t1rYxprnTp1Sr179zZcf9ddd+mVV16xMRH8WZcuXQzVmRl3AZzA5CIAAAB45PXXXze9zcqVK21IAgBIS65cuTR//nx17NjR7X08+eSTOn/+vIWpAAAAAACAr5g3b54OHTpkqLZt27YKCwuzOVHa4uLiDNcGBwfbmAQAAAAA0pcsWbKYmnjuTysXPffcc7p69aqh2kyZMmn8+PEKCgqyORX8VdOmTZUnTx5DtWPGjFFsbKzNiQD3MLkIAAAAHrn//vuVLVs2U9v405NKACC9CQsL08SJE/X000+7tf2VK1f05ptvWpwKAAAAAAD4glGjRhmuffTRR21MYlxiYqLTEQAAAAAg3YqKijJce/DgQSUkJNiYxhqTJ0/WrFmzDNcPHjxY5cqVszER/F1wcLDatm1rqPbSpUuaMWOGzYkA9zC5CAAAAB4JDQ1V/fr1TW1z4MABm9IAAIz68ssvdf/997u17ahRo7Rt2zaLEwEAAAAAACedP39es2fPNlSbP39+NWzY0N5ABrlcLqcjAAAAAEC6ValSJcO1iYmJhlfDdcqFCxf0wgsvGK6vXbu2XnrpJY/aHDdunAICAvz6Z+LEiR69BxnBI488Yrh29OjRNiYB3MfkIgAAAHjsjjvuMFUfExOjmJgYm9IAAIwICgrSlClTVLlyZdPbJicnezyACgAAAAAAfMuECRMMP2G6TZs2CgzkdgMAAAAASO/MrFwkSXv27LEpiTVefPFFnT9/3lBteHi4xo0bx9+/MKRevXoqWLCgodrFixfr8OHDNicCzAt2OgAAAAD8X8mSJU1vEx0drfDwcBvSWCchIUGbN2/W+vXrdfDgQR0+fFhHjhzRlStXdOPGDd24cUMJCQnKnDnzXz+FChVSiRIlVLJkSUVFRalOnTrKmzev07+Kzzh9+rRWrlypnTt3aufOndq/f7+uXr2q69ev6/r16woODlZERISyZMmiwoULq0SJEipXrpxq166tu+66S5kzZ3b6V7BcfHy8Vq5cqfXr12v37t3avXu3zp07p2vXrun69esKCQlRlixZlCVLFuXIkUPlypVTxYoVValSJdWrV085c+Z0+leAH8ucObMmTJigO++8U/Hx8aa2XbJkiZYvX2569bqMIDk5Wbt27dL27du1d+9e7d+/X6dPn9a5c+d08eJFxcbGKi4uTgkJCQoLC1NERMS/fv48BxYvXlzFihVT8eLF//oJDQ11+tfL8OgfWO/MmTNavXq19u7dq3379mnfvn26cOGCoqOjFR0drRs3bigkJES5c+dW0aJFVbZsWd1+++1q06aNChcu7HR8eIDjyVr0tZFeJCQkaM+ePdq1a5cOHTqkQ4cO6fjx4zp//rwuXLiga9euKT4+XnFxcQoODlZ4eLgyZcqkLFmyqGDBgipcuLCKFCmiqKgoVatWTeXKlVNQUJDTv5Zj9u/fr/Xr1+vAgQM6cuSIjh49qpMnT+rGjRu6efOmbt68qYSEBIWGhiosLEzZsmVT7ty5lS9fvr/OtxUrVtTtt9+uAgUKOP3rZFhcM61HH/TWJkyYYLj2oYcesjEJUsM5wVqcDwDYKTY2Vhs2bNCWLVt0+PBhHTp0SEeOHNHVq1f/OmfHx8crPDxcERERioyMVKFChVSyZEmVLFlSVatWVZ06dfguyA8wLpM2joeUMRZiL/p7njM7uWjv3r02JfHcnDlz9MMPPxiuf++991SmTBkbEyE9CQgIUIsWLfT111+nWetyufTDDz+oX79+XkgGGMfkIgAAAHgsR44cprcxexO7t5w6dUpTp07VrFmztG7dOt28eTPNba5du6Zr165Jkg4cOKBly5b96/Vy5cqpcePGeuSRR1S3bl0FBATYkt1XHTt2TBMnTtSsWbO0fv16uVyuFGsTExMVGxurS5cu6ejRo1q1atVfrwUHB6tJkyZ6+OGH1bZtW0VGRnojvi2SkpI0e/ZsjRs3TosWLVJ0dHQGTROvAAB3+ElEQVSKtYmJiYqJidG5c+ckSRs3bvzrtaCgINWuXVstWrTQY489xo1ecEvlypX19ttv68033zS97YgRI5hc9P9Onjypn3/+WXPmzNHq1at19epVQ9v9uZrfxYsX06wNDQ1V1apVVbNmzb9+ihcv7mFyGEH/wHobNmzQtGnTNH/+fG3bti3N+qSkJJ04cUInTpzQ6tWrJUnZsmVT586dbU4Kq3E8WYu+NtKDo0ePauXKlVq1apXWrFmj33//3fCYQXx8vOLj43X16lWdPXtWBw4c+E9NRESEGjRooObNm+v+++9XiRIlrP4VfMqpU6c0Y8YMzZ07V2vXrjXUz5T+uMkrNjZWV69e1bFjx25ZU7BgQdWvX18NGjTQfffdR1/UZlwzrUcfNHV79+7V1q1bDdVmy5ZNDRs2tDUP/o1zgrU4HwCw0/bt2zV16lQtWrRImzdvNvT3zZ83uJ87d06HDh3SihUr/notICBAFSpUUIsWLdShQwdVrlzZzvgwgXGZtHE83BpjIfajv2etChUqKCgoSElJSYbqfXXlomvXrunZZ581XF+vXj29+OKLNiZCetSyZUtDk4skadKkSUwugu9xAQAAwHENGjRwSTL806lTJ6cj/8vChQtN5ZfkunbtmtOx/5KcnOyaOXOmq1GjRq7AwEDTv4uZn8KFC7veeust14ULF5z+tf+lU6dOln/+tm/f7nr88cddwcHBlr+POXPmdA0YMMB1+fJlW98Xq8XGxro+/PBDV5EiRSx/T8LCwlxdunRx7d69O80cS5YsMbXvjMzfz89GJSYmusqWLWv6cxccHOw6fvy4LZn84XOamJjomjFjhqtJkyaugIAAW68fKf0UKlTI1aNHD9eyZctcSUlJbv8uZq4DTv94C/0D6/sHcXFxru+++85Vo0YNS963sWPHupXV6R93+cN5MSUZ/Xiir52+ZZT+opViY2Ndv/zyi6tHjx5u9UE9/WnYsKFr6tSprvj4eKffCsvExMS4vvnmG1etWrW82i+97bbbXP3793cdOHDArdwZ4fptVka/Zrpc/tUHTW8GDBhg+H14+OGHbc9z+PBhx499pz8PGf2cwPkg/Rg7dqyp97ZYsWJOR0YaOF7+6/Lly64hQ4a4KlSoYPv1p1KlSq7Ro0enq79p7MS4jPdxPPwXYyG3Rn/Pv5j57NaqVcvpuLf09NNPG/4dIiIi3B7zuhWzfWJf/JkwYYJl70dK+vfv7/fHZFxcnCtLliyG39dt27Y5HRn4F1YuAgAAgMdiY2NN1QcFBSlLliw2pTFn2rRpGjRokHbs2OGV9k6cOKFBgwbp448/1rPPPqvXX39duXPn9krb3nLlyhX16dNHo0aNSvUJXZ64dOmSBgwYoC+//FIjRoxQu3btbGnHSj/++KNeffVVHT582Jb9x8XFafTo0Ro7dqx69eqlQYMGKSIiwpa2kP4EBQWpf//+6tixo6ntEhMT9eWXX+rdd9+1KZnvmjFjhvr27ev4k7dOnjypzz//XJ9//rkKFCigNm3a6JVXXlGxYsUczeXv6B9Yb8GCBerRo4f27dvndBR4GceTtehrw1/FxcXpl19+0fTp0zVnzhxdv37dsSxLly7V0qVLVaxYMQ0ePFgdO3b025UaLl68qOHDh+vLL7/U+fPnvd7+jh07tGPHDg0cOFB169ZV9+7d1aZNG4WEhHg9S3rANdN69EHNmTZtmuHae+65x8YkkDgnWI3zAQC7nDlzRh9//LG++uorr/2ds2vXLnXp0kUDBgzQm2++qaefftpv/6bxN4zLpI7j4d8YC/Eu+nv2q1SpkuH3d+/evTanMW/JkiUaNWqU4fqhQ4eqVKlSlrWfM2dOValSxbL9OSFnzpxOR/ALoaGhatCggebMmWOofurUqX67Eh/SKYcnNwEAAMDl/086njhxoqn8OXPmdDqy6+DBg64mTZo4/mSP3Llzu7777jun3w7Lngo0c+ZMV4ECBbz+Pj7++OOu2NhY771hJly7ds316KOPev09KVWqlGvVqlW3zOTPKx94m7+fn81ISkpyVaxY0fRnrVChQrbk8dXP6YkTJ1z33nuv149pMz+TJk0y/Xvx1Pg/0D/4Nyv6B5cvX3a1b9/elveJlYucO1aM4Hj6G33t9C0j9RfdsWfPHtczzzzjypEjh+Png5R+qlWr5tq+fbvTb5UpiYmJrhEjRvjk+1qmTBnDv0dGuH4bwTXz3/ypD5qeHDhwwNT7cPDgQdszZdSVizgn/I3zQfrBykXpD8fLH33yTz75xNRT6e36qV27tmvnzp1OvyU+i3EZ+3E8/BtjIcbR3/Mvb731lqn379y5c05H/suNGzdcpUqVMpy9YcOGruTkZKdjZ0jpYeUil8vl+uijjwx/3qKiopyOC/xLoAAAAAAPmV2JpUCBAjYlMearr75SVFSUFi5c6GgOSbpw4YKeeOIJNWvWTBcvXnQ6jkfeeecdtWrVSqdPn/Z62xMmTFCjRo10+fJlr7edmp07d6patWqaNGmS19s+ePCg7r77bk2dOtXrbcM/BQYGqnfv3qa3O3nypDZv3mxDIt+zcOFC3XbbbZo3b57TUWAD+gfW27dvn+666y6uRRkQx5P16GvDX02bNk1ff/21T39+Nm/erBo1aujzzz93OoohW7Zs0e23366ePXv65Pt67tw5pyP4Fa6Z1qMP6p6ff/7ZcG3RokVVsmRJG9NkXJwTrMX5AIBdtm/frjvvvFMvvfSSoyuR/Gn16tWqVq2avv76a6ejpFuMy6SM4+G/GAvxHvp73hUVFWWqfs+ePTYlMe/NN9/UwYMHDdVGRkZqzJgx6W51L3hXo0aNDNfu3LnT9H13gJ2YXAQAAACPbdy40VT9HXfcYVOS1CUkJOjZZ5/Vc889p5iYGEcypOS3335TjRo1tHPnTqejmBYfH69HH31U/fv3l8vlcizHmjVr1Lx5c924ccOxDP+0du1a1a9fXwcOHHAsQ1xcnB555BF99tlnjmWAf2nfvr0yZ85servZs2fbkMa3jB8/Xs2aNfPpL4PgHvoH9li+fLnuuusu7du3z+ko8CKOJ+vR1wa8IzY2Vj179tRzzz2n5ORkp+Ok6IsvvlCtWrX87lyG/+KaaQ/6oO4z83d9w4YN7QuSQXFOsB7nAwB2mTBhgmrWrKktW7Y4HeVf4uPj9eyzz6pbt26Kj493Ok66wbhM6jge/Ju/jIWkhP6e95mdXLR3716bkpizdu1aU/dLfPDBBypRooSNiZARVKlSRTly5DBcP2vWLBvTAOYwuQgAAAAeSUxM1IoVK0xtU6NGDZvSpOzmzZu69957ffqpXYcOHVKtWrW0ePFip6MYlpSUpA4dOmjy5MlOR5H0x8BQ+/btHR3gl6SlS5eqSZMmPjEJweVyqVevXpowYYLTUeAHIiMj1bZtW9PbpffJRT/++KOeeuopJSYmOh0FFqN/YI9t27apRYsWunLlitNR4EUcT9ajrw1431dffaVHH31USUlJTkf5l4SEBHXs2FHdu3dXXFyc03HgIa6Z9qAP6r4bN25o1apVhuuZXGQtzgnW43wAwA7Jycl64YUX9MQTT/jcRNB/+vbbb9W2bVsmVFiAcZmUcTykL746FpIa+nvOKFu2rEJDQw3X+8LKRfHx8erSpYvhCXSNGzfWs88+a3MqZASBgYGqX7++4fp58+bZmAYwh8lFAAAA8Mhvv/2mS5cumdrG25OLYmJi1KJFCy1ZssSr7bojOjpaLVq00PLly52OYki3bt30448/Oh3jX3799VcNGzbMsfZ37typli1b+tzTw7p27Wp6IiAypscee8z0Nps3b9aZM2dsSOO8bdu2qWPHjn751Dakjv6BPY4cOaJmzZrp2rVrTkeBF3E82YO+NuCMqVOn6qWXXnI6xl9iYmL04IMP6ocffnA6CizANdMe9EE9s2zZMiUkJBiub9SokY1pMhbOCdbjfADADklJSercubNGjBjhdBRDZs+erXbt2jGhwkOMy9wax0P65GtjIamhv+ec4OBglStXznC9L0wuGjx4sH7//XdDtVmyZNHo0aMVEBBgcypkFGbGT5YvX861Cj4j2OkAAAAA8G8ffPCBqfqSJUuqevXqNqX5r6SkJLVu3dqypyoWLVpUFSpUUJEiRZQlSxaFhobq+vXrunz5svbu3as9e/bo5s2bHrVx8+ZN3X///Vq0aJEjqzwZNWjQII0ZM8bUNhERESpbtqxKliypvHnzKnPmzAoJCdGNGzd0/vx5HTp0SNu3b1dsbKxH2fr166f7779fFStW9Gg/Zp05c0b333+/rl696vG+smXLpgoVKqhMmTLKli2bIiMjFRMTo2vXrunw4cPavXu3zp49a3h/8fHxat26tXbu3OlxNqRvdevWVaZMmUwdhy6XS+vXr9eDDz5oYzLvi4uLU8eOHS15OnxoaKhKlCihokWLKk+ePMqRI4cyZcqk0NBQJSUlKS4uTjExMbp48aLOnTun06dP68iRI6yWZBP6B/ZITExU27Ztdfr0aVPbZcqUSWXKlFGpUqWUL18+Zc6cWaGhoYqOjtb169d15MgR7dq1SxcuXLApOTzB8WQP+trAH3LlyqUiRYooX758yp8/vzJnzqxMmTIpLCxM8fHxiouL04ULF3T27FkdPHhQx44ds6TdESNGKCoqSt26dbNkf+66ceOG7rvvPq1cudKyfYaHh6tEiRIqWbKk8ufPr4iICEVERCgxMVExMTG6evWqTp48qZMnT+rQoUP0Ry3ENdMe9EE9t2jRIsO1xYoVU/Hixe0Lk4FwTrAe5wMAdkhKStLjjz+uSZMmWbK/8PBwlStXTkWKFFGBAgUUERGh8PBwxcbG6vr16zp69Kj279+vI0eOeNTOrFmz9Nxzz2n06NGW5M5oGJe5NY4H78joYyGpob/nvEqVKmnHjh2Gavfu3WtzmtRt375dQ4cONVw/bNgwFStWzMZEyGjMTC66ceOG1qxZowYNGtiYCDCGyUUAAABw26RJk0yvhNKlSxevPunj9ddf12+//eb29gEBAWrcuLE6duyoe++9VwUKFEi1PjExUatWrdLs2bM1btw4Xbx40a12o6Oj1aZNG23atEl58+Z1ax92WrZsmQYOHGiotmLFinrkkUd07733qmrVqgoJCUm1Pj4+XqtWrdKkSZM0ceJExcTEmM6XkJCgl19+2aN/e7OSk5P16KOPejSAW7BgQXXp0kUPPPCA7rzzzjSPlT179ujXX3/V6NGjDT1x58KFC+revbt69Ojhdkakf5kyZVK9evW0YMECU9tt2rQp3U0uGjFihHbt2uXWtpkyZdI999yjZs2aqV69eipfvryCg80NwyQkJOjw4cPatm2bNm7cqHXr1mnNmjU8tcgC9A/s8e6772rTpk2GakuWLKkOHTrovvvu05133qnQ0NA0tzl8+LBmzZqlKVOmaM2aNZ7GhUU4nqxHXxsZVYkSJVSrVi3VqlVLVapUUYUKFZQ7d25T+7h+/brWrVunpUuX6qefftLu3bvdztOrVy/dfffdKl26tNv78ERycrI6dOjg8cSiwMBA1a9fXy1btlTdunV1++23KygoyNC28fHx2r17t9avX68VK1Zo6dKlOn78uEd5MjKumfagD+q5pUuXGq6tVq2afUEyGM4J1uN8AMAOL7/8skcTKQIDA9WgQQO1aNFCjRs3VsWKFQ2NE58+fVqLFy/WpEmTNG/ePLcm/Y8ZM0bVq1fX888/7070DItxmZRxPFiPsRBz6O85LyoqynDt4cOHFR8fb+i9t1pSUpKeeuopw6v0Nm3a1Kcn1sE/VapUSWFhYYYfZLpkyRImF8E3uAAAAOC4Bg0auCQZ/unUqZPTkV27d+925ciRw1Tu4OBg16lTp7yWcfr06aby/e9PmzZtXHv27HG7/ZiYGNfIkSNduXLlcjtDo0aNXImJiRa+K7fWqVMnw5maN2/uKliwYJp1jRs3di1evNijXKdPn3Z16dLF7fdv/vz5Fr1DaRs6dKjbOQsWLOgaN26cKyEhwe3258+f76pcubKh9rp3724qX0bmj+dnK3zwwQemP8f333+/pRmWLFni6Of0+vXrrpw5c5p+H3LlyuV6//33XZcuXbI8k8vlct24ccP166+/up577jlX3rx5b5lh0qRJlrc7duxYw+9BsWLFLG/fSvQPjDPTP6hWrZorJCQkzboaNWq4fvnlF4+zLV261LV27VrD9enhM+z0efFWOJ6Moa+dvmXU/qJRgwYNSvG9CAoKct1zzz2uzz77zHXgwAFb2t+wYYPrkUcecQUFBbn1OW/YsKErOTnZlmxp6dWrl0fn2Bw5crjefvtty8dhNm/e7Orfv7+rdOnSt2w3W7ZslrWVHq7ff+KaaVx66oP6g+joaFdwcLDh9/ztt992OvIt+dv5gnOCMZwP0g8zx6ivHKdIndlzxtixY52O7JZvv/3W7fNkZGSk67XXXnMdPnzY4xyHDh1yde3a1RUYGGg6R0hIiGvDhg2evxl+jHEZa3A8GMdYiHH09/zPzJkzTX2edu7c6UhOM/duZMuWzXXs2DFHcuK/+vfvn+K/lT/2KatWrWr4s9i0aVOn4wIul8vlyth3iQEAAPgIf7sZaefOna7ChQubHoh69dVXvZbxzJkzruzZs7s1YFagQAHXggULLMty8eJFV/v27d3KIsk1ZMgQy7KkxMzAnZH3b/r06ZbmmzlzpisiIsJ0lnvvvdfSHCnZvn27ocHMW/089dRTruvXr1uSIzEx0TVkyJA0B4sDAgJMZczI/O38bJWlS5e6dexbyemb6N35ouzhhx+2bVLRrSQmJroWLFjgateu3b/OQUwuShn9A3Os7B9kzZrV9c0339ieOSXp4TPs9Hnxf3E8GUdfO33LqP1Fo251Q02VKlVcn3zyievMmTNey7Ft2zZX3bp13Trupk6d6rWcf/rhhx/cPk8EBwe7Xn31Vde1a9dsz7l8+XLX448//q++KJOL/otrpjnpqQ/qD8z2Ma3uh1jFn84XnBOM43yQfjC5KP0xewz6442g69atc4WGhrp1zunatavr7NmztmSqWLGi6TxVqlTx6OF2/o5xGc9xPJjDWIhx9Pf8z4EDB0z9u/z4449ez7h3715XpkyZDGccPXq01zMiZeltcpGZ81y2bNlcSUlJTkcGXIECAAAADHK5XBozZoxq1aqlEydOmNq2VKlShpeQt8JLL72kK1eumN6udu3a2rJli5o0aWJZlpw5c2rKlCn6+OOPFRAQYHr7d955R4cPH7Ysj53q1aunLVu2qE2bNpbu96GHHtL8+fMVHh5uarv58+d7tPS7Ub169TK8pPafAgMD9fXXX2v06NGKjIy0JEdQUJBef/11LVy4UNmyZUuxzuVyWdIe0q/bbrvN9DanT5/WuXPnbEjjjPHjx5uqf+211zR58mTlyJHDpkT/FRQUpCZNmmjq1Kk6fvy4+vXrp+zZs3utfX9E/8AZZcuW1aZNm/T00087HQUW4njyvoza10b6EBgYqJYtW2rJkiXaunWrevXqpXz58nmt/cqVK2vZsmUaMGCA6fPEoEGDvPo31OnTp9WjRw+3ti1Xrpw2bNigDz74QFmyZLE42X/Vq1dP3333nQ4fPqw+ffooc+bMtrfpj7hmOoM+qDFr1641VV+5cmWbkmQcnBO8j/MBALPi4uLUuXNnxcfHm9ouT548mjt3rr799lvlzZvX8lw1atTQunXr1KpVK1Pbbdu2TR9++KHleTKajDouw/HgPsZCvIf+nveULFlSERERhuv37NljY5r/crlc6tq1q2JjYw3VN2vWTE899ZTNqZCRmRlHuXr1qn7//Xcb0wDGMLkIAAAAaUpMTNSMGTN05513qkuXLrp+/bqp7UNCQjR69GjTg6LuWrhwoSZNmmR6u4YNG2r+/Pm2Deq99NJLGj16tAIDzXXDY2Ji1L17d1syWalFixZauHChbe9fnTp1NHbsWFPbuFwuff/997bk+dPMmTO1ePFiU9sEBQXpu+++U7du3WzJ1LBhQy1YsIBJBnBbzpw5VbBgQdPbHT161IY03nft2jWtWbPGcH3Lli01dOhQGxOlLV++fBo8eLCOHj2qevXqOZrFV9E/cEaVKlW0Zs0alS5d2ukosBDHk/dl1L42/F9gYKDatGmj7du3a8aMGWrYsKGjWfr3769x48YpKCjI8HY7duzQzz//bGOyf+vatasuXbpkertmzZpp3bp1uv32260PlYZChQrp/fff16FDh/Tiiy96vX1fxjXTGfRBjdu8ebPh2oiICJUqVcrGNOkf5wTv43wAwB0DBw40PWmjfPnyWrdune677z6bUv0hMjJS06dP12OPPWZqu/fee08XLlywKVX6l5HHZTgezGMsxLvo73lXQECAKlSoYLh+7969Nqb5ry+++EIrVqwwVJs9e3Z9++23NidCRmf2IS1mxmkAuzC5CAAAALd06tQp/fTTT3r22WdVpEgRtW7dWps2bTK9n+DgYE2dOlUNGjSwIeWt9e3b1/Q2t912m2bPnm37U3affPJJffDBB6a3mzt3rlauXGlDIms0btxY06dPV2hoqK3tPPzww+rQoYOpbaZPn25Tmj8G7l9//XXT273//vvq2LGjDYn+duedd+rHH39UcHCwre0g/XJn9SKzq9r5qlWrVikpKclQbWhoqD7//HObExmXNWtWFSpUyOkYPon+gfcVL15cv/32m3LmzOl0FFiM48m7MmpfG+lD7969NX36dFWqVMnpKH954okn9Omnn5raxls3GsyZM0e//vqr6e1atmypWbNmpbqCrTfkzZvXq6tW+wOumd5HH9Scbdu2Ga6tVKmS6ckn+DfOCd7F+QCAO3bv3m16VZNy5cpp2bJlKlGihE2p/i0wMFDjx49X8+bNDW8THR2tYcOG2Zgq/crI4zIcD+5hLMR76O85IyoqynCtN1cuOnr0qKl7Nz799FO+U4XtzE4uMjNOA9iFu8wAAAD80JYtW/Tmm29asq+kpCTFx8crOjpa58+f18mTJ3XgwAG3npL7v8LCwjRx4kS1bNnS86AGzZs3Txs2bDC1TY4cOTRr1ixFRkbalOrfevfura1bt2rixImmths0aJDmzZtnUyr3lShRQlOnTrV9UP1PQ4cO1U8//WR4Keu9e/dq7969KleunOVZZs2aZfppOw8//LB69+5teZZbufvuu/XBBx/o5Zdf9kp7SF+KFi1qepvjx4/bkMT7du3aZbi2devWDDz7AfoH3hcSEqJp06Ypf/78TkeBxTievCsj97XTq/Hjx2v8+PFOx/jLQw89pJkzZ9q2/7CwMNv27YkePXpo9erVhlePmDdvns6ePWvbU6olKTk52a2bzhs3bqwpU6bwYAkfxDXT++iDmnPz5k0dOHDAcL07DyHB3zgneBfnAwDuevvtt5WYmGi4Pk+ePFqwYIHy5s1rY6r/CgwM1A8//KDq1avr4MGDhrYZOXKk+vTpw034JmT0cRmOB/cwFuId9PecY2ZykTdXLnrmmWcUHR1tqLZFixbq1KmTzYmAPx7GlC9fPp09e9ZQ/datW+0NBBjANw0AAAB+aPv27dq+fbvTMVJ15513aty4capYsaJX233vvfdMb/Ppp5+qePHi1odJxciRI7V06VJTq3zMnz9fGzdu1B133GFjMnMCAgI0fvx4r34RUaRIEXXq1Elff/214W2WL19uy8C62ada5c2bV1988YXlOVLTq1cv/fTTTz77BFH4rgIFCpjeJr2sXGTm5qr77rvPxiSwCv0D73v77bd9LhOswfHkPRm9rw3Ybfjw4Zo7d66uXLmSZm1SUpKmTJmiF154wbY833//vXbs2GFqmyJFimjy5Mleu9EN5nDN9D76oObs2bNHycnJhuuLFStmY5r0j3OCd3E+AOCOrVu36scffzRcHxgYqEmTJqlIkSI2pkpZtmzZNHr0aDVq1EgulyvN+ujoaE2YMEEvvviiF9L5v4w+LsPxkD752liIJ+jvOcfM5KKrV6/qzJkztk8CGzdunOEHHuTMmdPUeRbwVLFixQxPLvr9999tTgOkjXXLAQAAYKlChQpp2LBhWrNmjdcnFu3du1fLly83tU3Tpk31xBNP2JQoZVmzZnVrksk333xjQxr3de3aVfXq1fN6u88++6ypejsm1mzfvt30fj/66COvPxEuICBA3377LU+xhmkZeXLR+fPnDddWqlTJxiSwAv0D7ytevLheffVVp2PABhxP3pWR+9qAN+TOndvUTUQLFiywMc0ffy+aERAQoB9++EG5c+e2KRE8wTXT++iDmrd//35T9aza6z7OCd7F+QCAu959911DkxL+9Nxzz6lx48Y2JkpbgwYN1KFDB8P1Y8eOtTFN+pLRx2U4HtInXxsLcRf9PWeZmVwk/fFgCzudOXNGL7/8suH64cOHu/U9OOAuM+MpZ86cMbwCF2AXJhcBAADAYyEhIbr77rs1bdo0HTlyRL1791ZQUJDXc3z33Xem6gMCAvTBBx/YlCZtLVq0UP369U1tM3XqVMXGxtqUyJywsDD179/fkbZvv/12lSpVynD9xo0bLc9gdMn4P0VFRZka0LZS+fLlWdYbphUsWND0NteuXbMhifeZGbDLnj27fUFgCfoH3jdw4ECFhYU5HQM24Hjynoze1wa85dlnn1VgoLGvypYtW6bExERbcqxdu1bbtm0ztU2XLl1Ut25dW/LAc1wzvY8+qHlmJxcVLlzYpiTpH+cE7+J8AMAd586d088//2y4Pnfu3Hr33XdtTGRc//79DX8vu23bNm3ZssXmRP4vo4/LcDykb74yFuIJ+nvOKly4sLJly2a43u7JRd27d9fly5cN1bZs2VIdO3a0NQ/wv8yOp5gdrwGsxuQiAAAAuCUoKEiPPfaYlixZoqtXr2rRokVq27atY6ujuFwuTZw40dQ2bdu2VZUqVWxKZMzgwYNN1V+9etXUYK6dnnjiCUefWHr//fcbrj1w4IDlA5+TJ082Vf/mm28aHqi1w1tvveXIpD/4r6xZs5reJiYmxoYk3mfmfHH9+nUbk8BT9A+8r0CBAnrkkUecjgEbcDx5V0bvawPekj9/fjVo0MBQ7fXr17V582Zbcnz11Vem6iMjIzV06FBbssBzXDO9jz6oew4dOmSqnpWL3MM5wbs4HwBw17hx45SQkGC4vnfv3qZurLZTmTJl1Lx5c8P1c+bMsTFN+pDRx2U4HtI3XxkLcRf9Pd9QqVIlw7V79+61Lcf06dP1008/GarNlSuX6TE4wApm+xQHDx60KQlgDJOLAAAA4JakpCRNnDhRHTp00AsvvKAFCxYoKSnJsTxbtmzRsWPHTG3Ts2dPm9IYV69ePVWtWtXUNjNnzrQnjEldu3Z1tP1atWoZro2Pjzd9w0RqNm3apCNHjhiuz5cvn1q3bm1Z++4oVqyYmjVr5mgG+JdMmTKZ3sZXnlDrqfDwcMO1Zq898C76B9731FNPKTQ01OkYsAHHk3dl5L424G2NGjUyXGt2dSEj4uPjDd8E8adnn31WuXLlsjwLrME10/vog7rnxIkTpuqZXOQezgnexfkAgLvGjBljuDYyMlLdu3e3MY15Xbp0MVw7b948G5OkDxl9XIbjIf1zeizEE/T3fENUVJThWrtWLrp06ZJ69OhhuP7zzz9Xvnz5bMkCpMbsykUnT560KQlgDJOLAAAA4JHTp09r1KhRatq0qUqUKKEhQ4boypUrXs+xYMECU/UVK1ZUvXr1bEpjznPPPWeqfvHixXK5XDalMaZ06dKqUaOGoxnuuOMOU/WHDx+2rO2FCxeaqu/cubNCQkIsa99d3bp1czoC/Ig7k4vSy8pFZm7U/OWXX2xMAk/RP/C+9u3bOx0BNuF48p6M3tcGvO3OO+80XLtz507L21+2bJmp1TCDg4P18ssvW54D1uGa6X30Qd1j5maViIgI5ciRw8Y06RfnBO/ifADAHfv37ze1qkK7du2UJUsWGxOZd8899ygsLMxQ7bp163Tt2jWbE/mvjD4uw/GQMTg9FuIJ+nu+wRcmF/Xq1Utnz541VNu2bVtWvIJjzD6shclFcBqTiwAAAGCZ48ePq2/fvn9NMoqLi/Na22Yne/jSoFObNm0UHBxsuP7cuXPavn27jYnSdt999znaviSVKFHC1IQdowNLRixZssRUvdOrFv2padOmioyMdDoG/ERGnlxUtGhRw7XTpk3TuXPnbEwDT9A/8K4SJUqocuXKjmaAfTievCej97UBbytVqpThWjtuqJkzZ46p+qZNm6pAgQKW54B1uGZ6F31Q950+fdpwbcGCBW1Mkr5xTvAezgcA3PXrr7+aqu/QoYNNSdwXERFheHJqYmKiNm3aZHMi/5XRx2U4HjIGp8dC3EV/z3eYmVx07NgxxcbGWtr+b7/9pgkTJhiqzZMnj7744gtL24d9BgwYIJfLdcufzp07Ox3PLUwugr9hchEAAAAsd+XKFfXt21e33367Vq9ebXt7SUlJWrVqlaltWrVqZVMa83LmzGn6aZRLly61J4xBZpZKt0tQUJCpCQBW3fyfmJiolStXGq4vUKCAqac/2SksLMwnvhSBfwgNDTW9TXx8vA1JvK9SpUqGa69cuaLnn3/e8Sfz4r/oH3hfgwYNHG0f9uF48q6M3NcGnJA3b17DtUePHrW8/Xnz5pmqf+yxxyzPAOtwzfQ++qDuSUpK0uXLlw3X+9rT6P0F5wTv4nwAwF1z5841XJs5c2bVr1/fxjTuM7PazdatW+0L4ucy+rgMx0PG4PRYiLvo7/kOM9+lJicna9++fZa1ff36dT3zzDOG60eOHKk8efJY1j5gltkxlQsXLtiUBDCGyUUAAACwzZ49e9SgQQN99NFHtrazd+9eU6tl5M2b1+eeaGN2wse2bdtsSmJM1apVHW3/T2YGPi9evGhJm/v27dONGzcM1zdq1EgBAQGWtG2Fxo0bOx0BfsKd1efcWe3IF9WsWdNU/Y8//qgnn3xSSUlJNiWCO+gfeF/dunUdbR/24Xjyrozc1wackDlzZsO1Z86csbTta9eumbq5IjAwUM2aNbM0A6zFNdP76IO65+rVq6bqw8PDbUqSvnFO8C7OBwDc4XK5TD0osX79+m49mMsbzIwnZMTJFEZl5HEZjoeMw8mxEE/Q3/MdefPmNTVhZ8+ePZa1/dprr+nYsWOGatu3b6927dpZ1jbgDrNjKmbHbACrMbkIAADAD3Xq1CnFZWDd+UlOTlZMTIyuXLmiQ4cOac2aNZoyZYoGDBigli1bKnfu3G5nTUxM1CuvvKJu3bopOTnZwnfhbzt27DBVX7t2bVtyeMJspu3bt9uUJG2RkZEqUaKEY+3/U65cuQzXWrXUttml32vVqmVJu1bxtTzwXe4cM+llclHx4sVVsWJFU9uMHz9etWrV0tq1a21KBbPoH3ifr90EB+twPHlPRu9rZwRW/z3v6c/MmTOdfkscFxwcbLj2xo0bun79umVtb9myxdQKmNWrV1f27Nktax/W45rpffRB3XPlyhVT9enl731v45zgXZwPALhj//79pvr4ZlZD8bZixYoZrt27d6+NSfxXRh+X4XjIOJwcC/EE/T3fEhUVZbjWquNs+fLl+uqrrwzV5s2bVyNHjrSkXcATZicXmR2zAaxmvJcAAACAdCsgIECZMmVSpkyZlC1bNpUoUeI/qzZs2LBBU6dO1dixY916+tG3336r2NhYjR8/3vJVXMx+SWt2RQpvuPPOOxUSEqKEhARD9bt27VJSUpKCgoJsTvZfRYoU8XqbKTHzR7g7q7DcitnJRXfeeacl7VolKipK4eHhpp6aiozJnS+j0tOTjB999FG99dZbprbZsGGDatWqpcaNG6tnz55q3ry5QkJCbEqItNA/8L7y5cs70i7sx/HkPRm9rw380+nTp7Vr1y4dOHBA+/fv1/Hjx3XhwgVduHBBFy9eVGxsrOLi4hQfH2/42LbC+fPnlSVLFkv2tWnTJlP1DRo0sKRd2IdrpvfRB3VPdHS0qfr09Pe+N3FO8C7OBwDcsXnzZlP11apVsymJ5woVKmS49uTJkzYm8V8ZfVyG48F5GWEsxBP093xLVFSUlixZYqjWipWLYmJi1LVrV8MP6vnqq688epAyYJXQ0FAFBgYafiC3r0zoRMbF5CIAAAAYcuedd+rOO+/UO++8o6+//loDBw40/bSECRMmqECBAnr//fctzXbgwAFT9WZXo/CGsLAwlSxZ0vATW2JjY3Xy5EkVLVrU5mT/VbBgQa+3mZKwsDDDtVYNrO/bt89Uva8NcgYFBalMmTKOP1kYvs+dYyY93WzUrVs3DR482K33YdGiRVq0aJFy586t1q1bq1WrVmrYsCFPevYy+gfelTdvXp/4chH24Hjynoze10bGdvjwYc2ZM0fLly/XunXrdPz4cacj3ZKVD2owe2MFT+j1fVwzvYs+qPvMXrvT09/73sQ5wXs4HwBw17Zt20zVlypVyqYknsuaNavh2jNnzig5OVmBgYE2JvI/GX1chuPB+8dDRhwLcRf9Pd/j7ZWL3n77be3fv99QbYcOHdSqVSuP2wSsEh4erhs3bhiqjY+PtzkNkDr+QgAAAIAp4eHh6tWrl/bu3aumTZua3v6DDz7QTz/9ZGmmU6dOmar3tckefypXrpyperO/t1XMDMbazcwTMJOSkixp08z7njdvXmXLls2Sdq1UtmxZpyPAD1y6dMn0NunpZqO8efOqV69eHu3jwoUL+uabb9SsWTPlypVLzZo107Bhw7RhwwYlJiZaExQpon/gXfny5XOkXXgHx5P3ZPS+NjKeM2fOaMiQIYqKilLJkiX1wgsvaPr06T57M43k3gqfKTH7e5q5aQPO4JrpXfRB3Wf2Kefp6e99b+Kc4D2cDwC46/Dhw6bqnZhQbZSZ63ViYqLOnTtnYxr/lNHHZTgevCOjj4W4i/6e7/Hm5KKNGzfqk08+MVSbP39+jRgxwqP2AKuZuS4xuQhOY+UiAAAAuCVv3ryaO3euunfvrq+++srUtl27dlWtWrVUoEABS7KY+bIyICBAxYsXt6Rdq5l9upNTN25k9JsJTp8+bbjWVz9rJUqUcDoC/ICZz/qfsmfPbn0QB7355puaPn26Dh486PG+bt68qd9++02//fabJCkiIkI1atRQ7dq1VatWLdWsWVO5c+f2uB38jf6Bd/HFXvrG8eQ9Gb2vjYxjz549GjhwoKZPn+53k66dnFxUpkwZy9qGPbhmehd9UPeZPfeyEq97OCd4D+cDAO46ceKEqfr0NAZ+/fp15c+f3+kYPiWjj8twPNh7PDAW4hn6e76nUqVKhmujo6N14sQJFS5c2HQ7CQkJeuqppwxPpPz666+VM2dO0+0AdjLTxzD7QBjAaqxcBAAAALcFBgbqiy++UIcOHUxtd/nyZfXu3duyHGZugM+ePbtCQkIsa9tKefPmNVXvzo3/VvDV989bzLzvZv9NvSVPnjxOR4AfcOcc486AsC+LjIzUlClTFBERYfm+b968qaVLl+q9995TixYtlCdPHpUvX15du3bV+PHjTX+Jh/+if+BdWbJkcaRdeAfHk/f46nsHWOXixYvq0qWLoqKiNHnyZL+7mUYyf0N+asz0+SIjIxUZGWlZ27AH10zvog/qvsBAc7cJ+OP52hdwTvAezgcA3JWRx2FjYmKcjuBzfPVa7C0cD/ZgLMQa9Pd8T7Zs2Ux9N+zu6kXvvfeeduzYYaj28ccf14MPPuhWO4CdzEwYMrN6IWAHJhcBAADAIwEBAfrmm29Urlw5U9tNmjRJ69ev97j9xMRE3bx503C9r072kMw/befKlSv2BEGKEhMTdePGDcP1vvp589Vc8C3u3AhSpEgRG5I4q3r16po+fbrCwsJsb2vv3r0aPXq0OnfurCJFiigqKkqvvPKK1q5dK5fLZXv76Qn9A+/zxjECZ3A8AbDKzz//rEqVKmnMmDGGnzTqi6zql7lcLl29etVwvVWrP8M+XDO9jz6o+8zeOGvms40/cE7wLs4HANzl1CRpX8DkIvwvjgfrMRZiHfp7vikqKspw7Z49e0zvf+fOnXrvvfcM1RYsWFDDhw833QbgDWbGB0JDQ21MAqSNyUUAAADwWObMmfXZZ5+Z3s7oIEBqzA70ZcuWzeM27WI2my8sP57RmP28+eoTlLJmzep0BPiBI0eOmN4mva1c9KdmzZppwYIFypUrl1fb3bVrlz766CPVqlVLxYoV0xtvvKEDBw54NYO/on/gfQx0p18cTwCs0L9/f7Vs2VJnz551OorPSE/nV/whPf2b+ss1kz6o+8y+d9x8bB7nBO/ifADAHQkJCYqPj3c6hmMY98A/cTxYfzwwFmIt+nu+yc7JRUlJSerSpYvhc9O3336r7Nmzm2oD8BYzYwQZfSVFOI/JRQAAALDEvffeq1q1apnaZtasWTp27JhH7Zod6PPlJ9qYzcagv/ell8+br+aCbzG6vPw/pdfJRZJUr149bdu2TY0bN3ak/ePHj2vo0KEqW7as7r33Xi1ZssSRHP4ivZyvJf/pHwQEBDjSLuzH8QTAEy6XS08++aTeeecdp6P4HLM3nWfKlMmmJLAK10zvow/qvvDwcFP1TC4yj3OCd3E+AOCOjH5984WVSOA7OB6sOx4YC7EH/T3fZGZy0d69e03t+9NPP9X69esN1T755JNq3ry5qf0D3pKUlKSEhATD9RERETamAdLG5CIAAABYpmfPnqbqXS6Xxo8f71GbcXFxpur5khaeSC+fN1/NBd9x9uxZnT9/3vR2xYsXtz6MDylUqJAWLlyoH374QUWLFnUkg8vl0vz583X33XerQYMG2rBhgyM5fF16OV9L9A/gPI4nAJ54+eWXNW7cOKdj+CQmF6U/XDPhT8yuRJPRbzZ1B+cEAPB9nK+Av3E8WIexEGQklSpVMlxrZuWiAwcO6K233jJUW7hwYX3yySeG9w14W3pa2RgZQ7DTAQAAAJB+PPDAAwoNDTW1ZPrPP/9seFAA8De++tQ3X80F3+HOqkXFixdXjhw5bEjjex599FG1adNG48eP18cff2xqMNxKy5cv11133aVnn31WH374oTJnzuxIDgAAgFsZNWqUPv30U0v2lSNHDlWpUkUlS5ZUqVKlVKBAAeXLl0958+ZVlixZFBkZqcjISIWEhCg4OFghISGmnmjrxNNveeIuACdlz57dVD2TiwAA6ZHZiaBAesbxYA3GQpDRVKxYUYGBgUpOTk6z9sSJE7px40aa32e6XC517drV8N+ho0aNYjIGfJrZMRWzYzaA1ZhcBAAAAMtkyZJFtWrV0rJlywxvs2XLFl24cEG5c+d2q02zT+41M/HJ28wO2vLUYu8z+5ROX/288QUB0rJu3TrT21SvXt2GJL4rNDRUTz/9tJ5++mktWbJE48eP18yZM3X16lWv5nC5XPryyy+1aNEizZo1S+XKlfNq+76K/gFgHY4nAO44ePCgXnrpJbe3z549ux544AHdc889ql+/frpcITM8PNxUPU+R9n1cM+FPwsPDlSlTJsPnlps3b9qcKP3hnAAAvi8kJMTpCIDP4HjwHGMhyIgiIiJUokQJHTx4MM1al8ulffv2qWrVqqnWff3114bvOeratavuvfdeQ7WAU8xOLsooD3SF7wp0OgAAAADSlzvuuMNUfXJystavX+92e2a/qPTlSRV8Sev70svnzVdzwXcsWLDA9DYZbXLRPzVq1Ejjxo3TuXPnNHfuXL3wwgsqX768VzPs27dPNWvW9Oiamp6kl/O1RP8AzuN4AuCOF154QdHR0aa3q1y5siZNmqQzZ85owoQJeuKJJ2y/mcaplV3NnmOYXOT7uGbC3+TPn99w7blz52xMkj5xTgAA3xcREeF0BMBncDx4jrEQZFRRUVGGa/fs2ZPq6ydOnFCfPn0M7ato0aL6+OOPDbeN9CExMVELFizQCy+8oC1btjgdx5CzZ8+aqi9QoIBNSQBjWLkIAAAAlqpUqZLpbbZu3armzZu71Z7ZLyqvXbvmVjveYHa1C7NPOYbnzL7nvvp589Vc8A03btzQmjVrTG9XrVo1G9L4l9DQUN1333267777JEkXLlzQqlWrtGLFCq1YsUKbN29WYmKibe1fuXJF9913n1atWqUKFSrY1o4/oH8AWIfjCYBZq1ev1q+//mpqm8yZM2vYsGF65plnFBAQYFOyW3Nq0o7Z86u3V8iEeVwz4W8KFiyoI0eOGKq9ePGiYmNjmTRiAucEAPB97pyvEhISFBzM7XZIfzgePMNYCDKyqKgo/fzzz4Zq05pc9Mwzz+j69euG9jV69GhlyZLFUK0/Onv2rNatW6cdO3bo999/1/Hjx3Xy5EldvnxZMTExSkhIUEREhLJmzaqsWbOqVKlSqlChgipWrKiGDRumq9XPYmJiNH/+fP3000+aPXu2Ll++LEm6++6701wJyxecOHHCVH3BggVtSgIYQ+8OAAAAlipcuLDpbQ4cOOB2e8HBwcqcObNu3LhhqN7sEyG8yewTQLNly2ZTEqQkODhYkZGRhp86df78eZsTucdXc8E3LF26VPHx8aa2CQoKUo0aNWxK5L9y586thx56SA899JCkvydurVy5UqtXr9a6dessv3no8uXLatOmjTZs2KDMmTNbum9/Qv8AsA7HEwCz3n//fVP1efLk0dy5cx1bCTMmJsaRdgMDA5UjR46/vgxPy+nTp21OBE9xzYS/KVSokKn6kydPqlSpUjalSX84JwCA7wsJCVFoaKip8fDY2FhFRkbamApwBseDZxgLQUZm5gHEe/fuTfG1iRMnGp6k98wzz6hJkyaG2/UHycnJWrFihX788UctWLAgzYlYknT9+nVdv35dJ0+e1O7duzVnzpy/XitXrpyaN2+uLl26uPWQaF/RuXNnTZ8+/T9/WwcEBKh+/foOpTLn5MmTpurNjtcAVgt0OgAAAADSlzx58pjexuxTGv6XmSVhL1++bOuqEZ4w+yUtT6twhpnPm9l/U29hchFSM3HiRNPb1KlTRzly5LAhTfqSOXNmNWnSRAMGDND8+fN16dIlrVu3TkOHDlWjRo0UEhJiSTu7d+/WwIEDLdmXP6N/AFiH4wmAUefOnTP1pN7Q0FD9/PPPjt1MIzm7IpCZB7RER0cbftAFnMM1E/6kWLFipurN3gwDzgkA4A/M3rx58+ZNm5IAzuN4cA9jIcjooqKiDNemNGHm3Llz6tWrl6F9FC9eXMOGDTPcpq87fPiw3njjDRUsWFANGzbUiBEjDE0sSsvevXv1ySefKCoqSg0bNtTs2bMtSOtdJ0+e1Pjx42/50I7bbrtNOXPmdCCVeWbHU9LTqlPwT0wuAgAAgKXcWTL9woULHrVp5stKl8ulI0eOeNSeXQ4dOmSqni9pnZE/f37Dtb76WTt8+LDTEeCjrly5opkzZ5rerkWLFtaHyQD+XPHptdde0+LFi3Xx4kVNmjRJbdq0UVhYmEf7/vTTT3X06FGLkvon+geAdTieABg1depUUzdG9+3bV7Vq1bIxUdqcvFm+SJEipuo9WfkZ3sE1E/6kTJkypuo9fUBURsQ5AQB8X9GiRU3V+/JKc4CnOB7cw1gIMrpy5coZfoDi/v375XK5/vPfe/TooYsXL6a5fUBAgMaMGZMuVk3bunWr2rZtq1KlSmno0KG2nlOXLVumBx98UM2aNfOr8cVly5al+FqDBg28mMQzZsdTSpcubVMSwBgmFwEAAMBSwcHBprfxdNlts09RSm2pZSeZffoIX9I6w8z7fu7cOZ988pOvHgNw3uTJkxUbG2t6OyYXWSNLlix65JFHNH36dJ06dUrDhg0zfcPpnxISEvTpp59aG9DP0D8ArMPxBMCoxYsXG67NlSuX+vTpY2MaY5y8Wd5sX2/Hjh02JYFVuGbCn5idXMQNiOZxTgAA32d2MgWTbZGecTy4h7EQZHShoaGG/768efOmjh079q//NnPmTE2bNs3Q9s8//7waNWpkOqMvOXz4sNq1a6eqVavqxx9/vOVkK7v89ttvioqK0uTJk73WpifSy+QiM+Mp4eHhpscSAKsxuQgAAACWcmeiUEJCgkdtlipVylT97t27PWrPDvHx8Tp48KDhev6gdE65cuVM1VuxZLWVkpKS/OppNPCepKQkffzxx6a3K1OmjOnjAmnLmTOnevfurf379+v9999XpkyZTO9j4sSJSkpKsiGdf6B/AFiH4wmAES6XSytWrDBc37lzZ7dWP7barl27HGu7YsWKpuq3b99uUxJYhWsm/En58uVN1XMDonmcEwDA95l9Mvzhw4dtSgI4j+PBPMZCgD9ERUUZrv3n/RNXrlzR888/b2i7kiVL6v333zedzVckJCSof//+qlChgqZPn+5Yjri4OHXo0EEfffSRYxmMWr58eYqv1a9f34tJPGNmPKVMmTIKCAiwMQ2QNiYXAQAAwFLXrl0zvU1ERIRHbVauXNlU/dq1az1qzw6bNm0yNcmqUqVKCgykO+8EMwNjkrR+/Xqbkrhnx44dHq8WhvRpwoQJ2r9/v+ntunTpYkMa/CksLEx9+vTR0qVLlTVrVlPbXrhwwdSXWukN/QPAOhxPAIw4deqULly4YLjeV1a/3Lp1q2NtV69e3VR9al+owzdwzYQ/KVCggHLlymW43hcnvvg6zgkA4PvuuOMOU/WbN2+2KQngPI4H8xgLAf5QqVIlw7X/XLH15Zdf1unTp9PcJiAgQGPHjlXmzJndyue0ffv2qXbt2nrnnXcUFxfndBy5XC698sorGjVqlNNRUnT27NkUH+RbsWJF5cmTx8uJ3BMXF2dqMm6VKlVsTAMYw6gOAAAALOXOEyw9HQC47bbbTNWvWrXKo/bsYDYTf1A6x8zAmCStWbPGpiTu8bU88A0JCQkaNGiQ6e0yZcqkrl272pAI/+uuu+7SL7/8YvoGnYw8uYj+AWAdjicARphZ1SAwMFB33XWXjWmMcblcWrdunWPt33777ab6d5s2bdLVq1dtTARPcc2EvzHz78fqaeZxTgAA31ejRg1T9Rs3brQpCeA8jgfzGAsB/uDOykULFizQ2LFjDW3Ts2dPv1qp5p+++uorVa1a1dQ5MzAwUHfccYd69+6tb7/9VitWrNDhw4d14cIFxcfHKz4+XlevXtXBgwe1cuVKjRo1Sj179lTlypVNrXrTs2dPn51smNpDlho0aODFJJ75/ffflZiYaLiev6nhC5hcBAAAAEsdOnTI9DbZs2f3qM0yZcqYWv3ozJkz2rlzp0dtWm3+/Pmm6m+//XZ7giBNZcuWVWRkpOH6JUuWyOVy2ZjInEWLFjkdAT7o3Xffdev8/eijj5p6yjE8U7duXT399NOmttm0aZMlbfvj8uv0D/BP/vgZ9iUcTwCMOHLkiOHaokWLKlOmTPaFMWjz5s06f/68Y+1nzpzZ1AMskpKSNHfuXBsT+RZ/vH5zzYS/MXPTytmzZx09Z/ojzgkA4Pty586tkiVLGq7fsWOHzp07Z2MiwDkcD+YxFgL8wezkoujoaMPfeZYpU0ZDhgxxN5pjYmJi1KpVKz333HO6efNmmvUBAQFq1KiRJk6cqPPnz2vDhg0aNmyYunbtqrp166p48eLKlSuXQkJCFBISoqxZs6pkyZKqU6eOunTpouHDh2vbtm06duyY3n33XeXLly/NNmNjY9WhQwclJSVZ8StbatmyZSm+1rBhQ+8F8ZDZB7XwNzV8AZOLAAAAYCl3nlBkZpDyVoKCglSvXj1T28ycOdOjNq105coVLV261NQ2/vTHcnoTHBysunXrGq4/c+aM1q9fb2Mi4+Li4jRv3jynY8DHbN68We+++65b2/bs2dPiNEhLnz59TNWbWWY9NUFBQYZrzTx9yU70D/BP/vgZ9iUcTwCMMLOiTu7cuW1MYtycOXOcjqBmzZqZqp84caJNSXyPP16/uWbC35h9Ov22bdtsSpI+cU4AAP9wzz33GK5NTk7W7NmzbUwDOIvjwRzGQoA/lC5d2vDkub179+qNN97Q0aNH06wNDAzU2LFjTT20wRdcvnxZTZo0MfT3XVBQkLp06aJ9+/Zp8eLF6tixo3LmzOl224ULF1bfvn114MABvfHGG2mOr+3evVvff/+92+3ZJbXJRf60ipWZyUUBAQG64447bEwDGMPkIgAAAFjG5XJp1apVprcrXbq0x203adLEVP306dM9btMqM2bMUEJCguH6/Pnzm3ryC6zXqFEjU/U//fSTTUnMmT9/vqKjo52OAR8SHR2tJ554wq0b8Vq2bKmqVavakAqpKVmypKmn2586dcqSdsPCwgzXmrmm2Y3+Af7kr59hX8LxBCAtRp7A+SdfeFKvy+XSd99953QM3X///abq582bpzNnztiUxrf46/Wbayb8Sa1atUzVm33iLjgnAIA/aNmypan6SZMm2RME8AEcD+YwFgL8ITAwUBUqVDBUe+rUKX3xxReGanv16qU6dep4Es3rTp06pfr162v16tVp1j744IPatWuXRo0aZcl9U/8UGRmp9957T4sWLVLevHlTrX3nnXeUnJxsafueuHjxonbt2nXL18qVK6f8+fN7OZH7zIyjVKxYUdmyZbMxDWAMk4sAAABgmfXr17t1g8ttt93mcdtmnqIk/fGUzTVr1njcrhWMDpz8qXHjxjYlgVFm/w3Gjx/vEzc6ffPNN05HgA9JTExUu3btUhyYS01oaKiGDRtmQyoYUaVKFcO1Vk0oNHNj57Vr1yxp0wr0D/Anf/0M+xKOJwBpiY+PN1x75coV+4IYtGjRIh06dMjpGKpdu7Zy5MhhuD4xMVGffPKJjYl8h79ev7lmwp8UK1ZMhQoVMlzP5CLzOCcAgO+7++67lTVrVsP1ixYt0p49e2xMBDiH48EcxkKAv5l50ICRiSxly5bV4MGDPYnkdQcOHFDt2rW1c+fOVOty5sypiRMn6ueff1a5cuVszdSgQQMtX75cRYoUSbEmJiZGgYG+M51gxYoVcrlct3ytQYMGXk7jGTPjKLVr17YxCWCc75wNAAAA4PdGjRplepuQkBBL/kCqUqWKSpYsaWqbzz//3ON2PbV27Vpt3LjR1DatWrWyKQ2Mql69uooXL264/uzZs46vXnTkyBHNnTvX0QzwHS6XS88884x+++03t7bv1auXSpUqZXEqGJUvXz7DtVZNbMyePbvh2tjYWMXExFjSrqfoH+BP/voZ9iUcTwDSYuYJvGfPnrUxiTG+cnNCcHCwHn30UVPbfPnll7p06ZJNiXyHv16/uWbC39StW9dwLZOLzOOcAAC+LzQ0VG3btjW1zQcffGBTGsBZHA/mMBYC/K1SpUqW7SswMFDjxo1TeHi4Zfu028WLF9WsWTMdPXo01bq77rpLO3bsUMeOHb2U7I/VfhYuXJjiqjiNGjXyWhYjli1bluJr/jS56OzZszp37pzhejPjM4CdmFwEAAAAS5w+fVrff/+96e1q1KihiIgISzI89thjpuonT56s33//3ZK23fXWW2+Zqs+ZM6datGhhUxqY8fDDD5uqHzx4sKNLSQ8aNEhJSUmOtQ/fERcXpw4dOmjMmDFubV+gQAH169fP4lQww8yXVZGRkZa0mTdvXlP1J06csKRdK9A/gOTfn2FfwvEEIDVm+h0XL160bIVFdyxatCjVL6m97ZlnnjFVf/36db3xxhs2pfEd/nz95poJf2JmtZnt27fr+vXrNqZJnzgnAIDv69Gjh6n68ePHa9u2bTalAZzF8WAcYyHA38ysXJSW3r17q1atWpbtz27x8fFq3bq1Dhw4kGpdhw4dtHTpUhUsWNBLyf5WtmxZTZw48ZavMbnIHitXrjRVz2rA8BVMLgIAAIAlXnvtNbeeEGv2yUepefzxx03VJycnO3ozzvz587Vw4UJT2zz88MMKDQ21KRHM6NChg6n6nTt36ocffrApTer27Nmj7777zpG24VsuXryoJk2aaPLkyW5tHxQUpB9++EFZs2a1OBnMMPOEo5SeQGWWmdWSJGnfvn2WtGsF+geQ/Psz7Es4ngCkxsyX4snJyVqwYIGNaVIWFxen559/3pG2U1K5cmXVrFnT1DajRo3SmjVrbErkG/z5+s01E/6kSZMmhmuTkpK0YsUKG9OkT5wTAMD3Va1a1dTT4pOTk/Xss88qMTHRxlSAMzgejGMsBPibVZOLKlSooEGDBlmyL2955plntHz58lRrXn75ZX3//femHiJptQceeEAtW7b8z3/3pclFV69eTXHCaunSpVWoUCEvJ3Lf0qVLDdeWL1/er343pG9MLgIAAIDHpk2bpgkTJpjeLjg42PQEjdSULl3a9JMcZs2apWnTplmWwajo6GjTTyaWzD/NGPapXLmy6WWJe/furUuXLtmU6NZcLpeefvrpDDmgj3+bMWOGKlWqZPoJOf80cOBANWzY0LpQcMvmzZsN15YqVcqSNnPkyKEcOXIYrt+0aZMl7VqB/gEk//4M+xKOJwCpKVGihKn6OXPm2JQkdW+++aZPTUL5U58+fUzVJycn69FHH/X635je5M/Xb66Z8CclSpQw9bfjkiVLbEyTPnFOAAD/8Oqrr5qqX7t2rd5++22b0gDO4ngwhrEQ4G/FihVTlixZPNpHUFCQxo8fr7CwMItS2e/DDz/UuHHjUq156aWX9NFHH3knUBref/99BQQE/PX/ixYtqpIlSzqY6N9WrFih5OTkW77mT6sWSebGT8w8+AWwG5OLAAAA4JFVq1bpqaeecmvbNm3aKG/evJbm6devn+ltunfvrpMnT1qaIy0vvviijhw5YmqbBx54QFWqVLEnENzSu3dvU/Xnzp1T9+7dbUpza59++qlHk0ng/44fP65HH31UrVu31tmzZ93ez3333ae+fftamAzuOHTokLZs2WK4vkKFCpa1Xa5cOcO1ixYtsqxdK9A/gOTfn2FfwvEEICXlypUztWLB5MmTderUKRsT/deMGTM0bNgwr7ZpVKtWrVSjRg1T2xw9elSPPvqoEhISbErlPH++fnPNhD+5//77DdeaefIu/sY5AQB834MPPmj64VpDhw5N84ZiwB9xPBjDWAjwb5UqVfJo+z59+ujOO++0KI39du3apTfffDPVmqeffloff/yxlxKlrWzZsqpXr95f/9+XVi2SpGXLlqX4mj9NLjp//rx+//13w/VmxmUAuzG5CAAAAG6bNWuWmjVrpujoaNPbBgYGqn///pZnatSokWrVqmVqm/Pnz6tly5aKiYmxPM+tjBgxQmPGjDG9nTtfQMNeDz74oMqWLWtqm8mTJ3tt8GjJkiWmn36N9OP48eN6/vnnVbp0aU2ePNmjfd1xxx2aNGnSv55ilF6tWrVKXbp00YEDB5yOcktDhw41VV+/fn3L2jZzo9CKFSt06NAhy9r2FP0DSP79GfYlHE8AUhIWFqaqVasarr9586ZXj7uVK1fqscce81p77njvvfdMbzN//nw9+uij6Xa1Wn++fnPNhD958MEHDddu2bJFV69etTFN+sQ5AQD8w0cffWRqHNzlcqlr1676/vvvbUxljRUrVujLL790Ogb8CMdD2hgLAf7Nk8lFlSpV0oABA6wLY7Pk5GR16dJF8fHxKdbcfffd+uKLL7yYypiOHTv+9b99bXLR8uXLU3zNnyYXLV26VC6Xy1BtlixZdPfdd9ucCDCOyUUAAAAw7cqVK+rRo4datmyp69evu7WPTp06Wbqawj+ZvfFakjZu3Kg2bdooNjbWhkR/+/777/XSSy+Z3u6hhx5SzZo1bUgETwQGBmrIkCGmt+vTp48mTZpkQ6K/bdq0SW3atEm3N5jh1hITEzVnzhy1b99epUuX1pdffpnqgKYR1apV0/z585U9e3ZrQvq4hIQEjRkzRuXLl9fjjz+urVu3Oh3pL/PmzdOoUaMM1wcFBalp06aWtV+nTh3DtS6Xy+cmN9I/gL9/hn0JxxOAlJj9EvS7777T9OnTbUrzt5UrV+r+++/XzZs3bW/LE40bN1b79u1Nb/fjjz+qdevWbo/RWOX8+fOW3wTi79dvrpnwFw0aNDD8d39SUlKqN/sgZZwTAMD3VatWTc8//7ypbZKSkvT4449r0KBBhm8i9RaXy6V58+apYcOGql+/vlatWuV0JPgRjgdjGAsB/hYVFeXWdsHBwRo/fryplcCc9umnn2rdunUpvl6qVClNnz5dwcHBXkxlTN26df/63740uSg6OlqbN2++5WvFixdX0aJFvZzIfUuWLDFce++99/rVZx/pH5OLAAAAYNiZM2c0YMAAlS5dWiNHjnR7QLBgwYL66KOPLE73t/r16+uJJ54wvd3cuXPVvHlzXbp0yYZU0hdffKEnnnhCSUlJprbLnDmzRowYYUsmeK5169Zq2LChqW3+HFj/9ttvbcm0bNkyNW7cWJcvX7Zl//Atly5d0vTp0/Xss8+qUKFCatGihaZNm+bxpCJJuv3227VgwQLlyJHDgqT+JSkpSRMnTlTVqlVVr149TZ06VQkJCY7lWbFihdq3b2/q2tu8eXNL/+3Mnut+/PFHvfDCC4qLi7MsgyfoH8DfP8O+hOMJQEratWtnqj45OVmPPfaYFi9ebFMiady4cWrcuLGuXbtmWxtWGjlypPLmzWt6u9mzZ+uuu+7Sjh07bEiVujNnzqhv374qWbKkPv30U0v37e/Xb66Z8BfBwcFq0aKF4XozN8ngb5wTAMA/fPjhh6pYsaKpbVwul95++201bdpUx44dsymZcdeuXdPw4cNVvnx53XfffVq2bJnTkeCnOB7SxlgI8Dd3Jxe9/vrrql69usVp7HPo0CG99dZbKb4eFBSkiRMn+ux37OXLl1fVqlXVsGFDyyfsxMTEaPbs2XrllVfUtGlTlShRQtmzZ1dISIjy5s2rqKgoderUSRMmTPjPqsirVq1K8eG5/rRqkWRu3KRVq1Y2JgHMY3IRAAAAUhQXF6cNGzboo48+UuPGjVW4cGENHDhQFy9edHufgYGBGj16tO1/RA8bNkw5c+Y0vd2SJUtUtWpVrVy50rIsV69e1WOPPabu3bsrOTnZ9PbvvPOOihQpYlkeWO/TTz9VSEiIqW2SkpLUrVs3de3aVdHR0ZbkSEpK0vvvv68mTZr8ZyDmnwICAixpD9539uxZLV68WMOHD1e3bt1UvXp15cmTR+3atdPXX3+tc+fOWdZWq1attGzZMrfOpenNypUr9fDDD6tAgQLq0aNHqk+hslpiYqI+/fRT3XPPPaa/BOrZs6elWYoUKaIaNWqY2mbEiBEqX768PvzwQ+3fv9/SPO6gf5CxpYfPsC/heAJwK1WrVlXlypVNbRMXF6cHHnhAI0eOtDTLuXPn1K5dOz355JOpTrz3taeH5s6dW19//bVb2+7evVvVq1dX3759Lfs7MzVr167Vk08+qWLFimnIkCG2tJkert9cM+EvHn74YcO1v/zyi41J0jfOCQDg+8LDwzVp0iSFhYWZ3nbhwoWqVKmSBgwY4PWVRRMSEjRr1iw98sgjyp8/v1588UXt27fPqxmQ/nA8pI2xEOBv7kwuqly5st5++20b0tjnlVdeSXVVsDfeeMOnV3gNDAzU5s2bLX1wyIYNG/TYY48pd+7cevDBB/XRRx9pwYIFOnLkiK5evarExESdP39eu3bt0nfffacnnnhCRYsW1WuvvfbXPWipTf40+wAiJx06dEh79uwxVBsREaGHHnrI5kSAOfQSAAAA/NCWLVv05ptvWrY/l8ul+Ph4xcbG6tKlSzp37pyOHDmiw4cPm35aYVo++ugj3XfffZbu81by5MmjcePG6aGHHjK9wtKxY8dUv359dejQQQMHDlSpUqXcyhAXF6dx48bprbfe0vnz593aR9OmTdWrVy+3toX3VKlSRQMHDlTfvn1Nbzt69GjNnTtXQ4YMUYcOHdwezF24cKF69+6t7du3p1n7/PPPWz5YjT94en6Oi4tTXFycYmNjFRcXp6tXr+rMmTM6ffq0zpw5Y8lqRGkJCgrSkCFD9Oqrr9relr+5ePGiRo4cqZEjR6po0aJ64IEH1KJFCzVo0EDh4eGWtpWUlKTvv/9egwYN0oEDB0xv36BBA91zzz2WZpKkjh07av369aa2OXLkiPr06aM+ffood+7cqlChgooWLaqcOXMqIiLC9Hlv8ODBpur/if4B/P0z7Es4ngCk5OWXX1bnzp1NbRMTE6MePXro119/1ZAhQ0zflPNPFy9e1KeffqrPPvvM0M1L/fv3T/VJo05o2bKl+vXrp3fffdf0tgkJCRoyZIi+/vprvfDCC3rmmWeUP39+y7Lt3LlTM2fO1Pfff2/4S3JP+fv1m2sm/EXTpk2VM2dOQ6vj7Nu3T3v27FH58uW9kCx94ZwAfzBgwAANHDjQsfaPHj1q+QOyzB5vQOXKlTVu3Dh16NDB9OcnOjpaAwcO1IgRI/Tkk0/q6aefVrly5WzJefbsWf3222/69ddfNX/+fF25csWWdpCxcTykjbEQ4A/58+dXrly5DD+wOCQkROPHjzf9IFcnrV+/XjNmzEjx9bJly/rdZClPbN26VS+//LJbE5WuXbumDz74QBMmTNCYMWNSnVzkTysX/fzzz4ZrW7RoocyZM9uYBnCDCwAAAI5r0KCBS1K6/3nllVe8/t7269fPo8yBgYGu5s2buyZMmOA6e/Zsmu0lJia6Vq5c6erTp48rT548HrVdrFgx14ULF7zwLrlcnTp1MpyrU6dOXslkhC/lTkpKctWvX9+jf/NChQq5+vfv79q4caMrOTk5zTb37t3r+uSTT1xRUVGG22jTpo1ryZIlpnJlZBnl/PznT4kSJVxLly51+m13uVwuxz6nZtuV5AoJCXHVrFnT9corr7gmT57s2rFjhysuLs5028ePH3dNnTrV9fjjj7ty5crl9r9jcHCwa9u2bZa9J/90/fp1V44cORz9nFqB/oExvnSdtYo/f4Z99frN8ZQ2fz2W/DW3t5ntL2aE9yo+Pt5VoUIFj47PRo0auSZOnOg6duyYoTZPnz7tmjRpkqtNmzau0NBQw+3UqlXLlZiYaCrbkiVL7H0D/19ycrKrTZs2Hl93AgMDXY0bN3aNGDHCtWXLFldiYqLhDPHx8a4dO3a4xo4d63ryySddJUqUSLO9bNmyWf5e+PP1+5+4ZhrD9cdZ3bp1M/z+v//++07H/cvYsWNNfZ59AeeEtHE+cE7//v29fq21+wfWMvv+jx071unIbvvkk08s+QxGRUW5+vTp45o7d67rzJkzbmU5deqUa8mSJa7PP//c9fjjj7tKly5tOkfHjh0tfod8n79eT3wxN8dDyhgLcY8vfs7hOTP3TPTv39/puKbdd999qf5Os2fPdjqiV0RHR7ueffZZV2BgoCXXBkkp7qtIkSJO/7qmmPnOYObMmU7HBf6DlYsAAADgFe+++65bq7p46p133tGOHTs0a9Yst7ZPTk7Wr7/+ql9//VUBAQEqXry4KlSooMKFCysyMlKhoaGKjo7W5cuXtW/fPu3evVvR0dEe586aNat++ukn5cqVy+N9wTsCAwM1adIk3XXXXTpx4oRb+zh58qQGDhyogQMHKnv27KpYsaJKly6t7NmzKyIiQrGxsbp27ZqOHDmi33//XWfOnDG1/9y5c2vkyJHavXu3W/mQfmXKlEmvvfaaXn/9dWXKlMnpOH4nISFBa9eu1dq1a//6b8HBwSpcuLAKFSqkggULKmfOnMqUKZMyZcokl8ulGzduKDo6WtHR0Tp8+LD27dtnyfVDkt5//32PnnCXmsjISPXp00dvvPGGLfv3FvoHGVd6+Qz7Eo4nAP8rJCREI0aMUJMmTdzex5IlS/562mWRIkV02223KWfOnMqRI4cyZ86smJgYXb9+XUePHtX+/ft17Ngx021kzZpVEyZMUFBQkNs57RQQEKAJEybo0qVLbj3580/JyclatGiRFi1aJEmKiIhQyZIlVbJkSeXLl08RERGKiIhQYmKiYmJidPXqVZ06dUonT57UwYMHlZCQYNWv5Lb0cv3mmgl/0LlzZ33zzTeGan/88Uf16dPH5kTpF+cEAPAPvXr10uXLl/XOO+94tJ+dO3dq586d+uCDDyRJ+fLlU7FixVS4cGHlyZNH4eHhf40dx8bG/vV90JkzZ3T27FmdOHFC165ds+JXAtzG8ZAyxkKAv0VFRWn58uVp1lWtWlX9+vXzQiLr7Ny5U7/99luKr99999164IEHvJjIGRs2bFDHjh21f/9+S/ebnJx8y//uT6sWnTt3TitXrjRUmydPHjVv3tzmRIB5TC4CAACArbJkyaKvvvpKHTp0cKT9wMBATZ06VQ8++KDmz5/v0b5cLpcOHz6sw4cPW5Tu1iIjIzV37lxVq1bN1nZgvYIFC+qXX35RvXr1PB7UvnLlilavXq3Vq1dbki00NFQ//fST8uXLx+Qi/EvLli318ccfq0SJEk5HSVcSExN15MgRHTlyxKvtdujQQS+//LKtbfTu3Vs//PCDduzYYWs7dqJ/kLGlh8+wL+F4AnArjRs3Vo8ePfT55597vK/jx4/r+PHjFqT6W1hYmGbOnKlSpUpZul+rhYeH65dfflHr1q1TvXHBjJs3b/51I5c/SQ/Xb66Z8Ae1atVShQoVDI0drV+/XocPH2Y8wU2cEwDAfwwcOFB58uTRiy++mOJNr2adPXtWZ8+e1fr16y3ZH+AtHA8pYywE+ENUVFSaNaGhoRo3bpxCQkK8kMg6n3zySaqv+/uDcYz44Ycf9NRTTykuLs5rbfrT5KJp06YpKSnJUO0TTzzhd8cAMoZApwMAAAAg/brrrru0ZcsWxyYW/enPgTJPnhTkLVmyZNEvv/yi2rVrOx0FbqpcubJ++uknRUREOB3lX0aPHq169eo5HQM+IjQ0VJ07d9bOnTs1Y8YMbgRKJ1q3bq3x48fb3k5ISIhmzJihPHny2N6WnegfZFzp5TPsSzieANzKRx99pJo1azod4z8CAwM1YcIENWrUyOkohoSHh+vnn39W+/btnY7iqPRy/eaaCX/w1FNPGa6dPHmyjUnSP84JAOA/evTooSlTpvjcdz+AEzgeUsZYCGBsctFbb72lypUreyGNdaKjozVlypQUX69cubJf/G3niUGDBqljx46pTiwKCQlRy5YtNW7cOO3atUvXrl1TfHy8Tp069dcYZ2CguakL/jS5yMw4iZnxF8CbmFwEAAAAyxUoUECjR4/W6tWrfebJN+Hh4Zo7d66ef/55p6OkqHTp0lq7dq3q16/vdBR4qHHjxpo/f76yZcvmdBQFBATos88+02OPPeZ0FPiAggUL6o033tCRI0c0duxYVapUyelIsEj37t01ZcoUBQd7Z5HqUqVKacGCBSpcuLBX2rML/YOMK718hn0JxxOA/xUaGqpff/1Vt912m9NR/hIWFqbx48erXbt2TkcxJTQ0VFOmTNFHH33ktf6eL0ov12+umfB1nTp1UlhYmKFaJhd5jnMCAPiPtm3bavPmzazgBojjISWMhQBpTy6qXr26Xn/9dS+lsc706dN148aNFF/v3r27F9N4X9++ffX222+n+HpwcLB69Oihw4cPa8aMGerUqZMqVqyoLFmyKCQkRAUKFNCDDz6oKVOmaM2aNSpSpIihdgsWLKgyZcpY9WvY6sSJE1q1apWh2jp16qhixYo2JwLcw+QiAAAAWKZYsWIaNmyY9u3bp6eeesr00ybsFhwcrJEjR+rbb79V5syZnY7zL/fff7/Wr1/PH4/pSJ06dbR8+XKVLFnSsQxhYWGaMmWKXnjhBccywHkFCxZUz549tXz5cp04cULvvfeeChQo4HQsWCRLliwaM2aMPv/8c6/faFqlShVt2LBBLVu29Gq7VqN/kHGll8+wL+F4AvC/cuTIoUWLFqlWrVpOR1GePHm0aNEiv37wwssvv6ylS5eqdOnSTkdxTHq5fnPNhC/LkyePHn74YUO127dv15YtW2xOlP5xTgAA/1GuXDmtWbNGr732mkJCQpyOY5q/rwQK38LxcGuMhSCjy5EjR4rfRYeGhmrcuHF++fCcqVOnpvhacHCw2rRp48U03tWvXz8NGTIkxddvu+02bdq0SSNGjFChQoXS3F+NGjW0evVqQ7X+tGrR+PHj5XK5DNX27NnT5jSA+3zrbk8AAAD4nfDwcLVu3VrTp0/XwYMH1bt3b0VGRjodK1Vdu3bVzp071bRpU6ejKE+ePPr+++81Z84c5ciRw+k4sFjlypW1efNmR54EVapUKS1evJinUGVAWbNm1b333qt3331Xq1at0vHjxzV8+HDVq1dPAQEBTsfzebly5fKbyVfNmjXTzp079eSTTzqWIX/+/JoxY4bmz5+vxo0bO5bDCvQPMqb09Bn2JRxPAP4pT548Wrx4sTp37uxYhiZNmmjDhg2qU6eOYxmsUqdOHe3cuVMDBw5UeHi403H+wxtPZ05P12+umfBVZm5yGTt2rI1JMhbOCQDgH0JDQzV06FDt2rVLDz30kNNx0pQlSxY9/fTT2rBhgz755BOn4yCd4Xi4NcZCkNGltHrRgAED0lzZyBfduHFDixcvTvH1u+++W7ly5fJiIu/58ssv9d5776X4+uOPP67169ercuXKpvZbuHBhTZkyJc37F/xpctG4ceMM1RUsWFCtW7e2NwzgASYXAQAAwJTAwEBVqVJFPXr00PTp03X+/Hn9+OOPatOmjYKCgpyOZ1jx4sU1b948TZs2zfQfuVaIjIzUK6+8ot27d6tDhw5ebx/eky1bNk2dOlVTpkxRsWLFbG8vMDBQL730knbs2KHatWvb3h6clTdvXtWvX1/dunXT8OHDtWnTJl26dEm//fab+vbtq9q1a/vcKnK+7rbbbtPJkye1evVq9enTR5UqVXI60n/UrFlTixYt0q+//qqiRYs6HUeSdM8992jhwoXas2ePBg8erBo1avjlU8foH2Rc6eUz7Es4ngD8U6ZMmTR27FjNnDnT0BMprZI/f359//33WrBggVf+HvOWsLAwvf3229q9e7eef/55xycZhYWFqX379lq+fLlWrFjhtXbTy/WbayZ80R133KGaNWsaqv3hhx8UHx9vc6KMg3MCAPiPMmXKaObMmVq5cqVatWrlU9+ThoeHq02bNpo6darOnj2rb775RnfccYfTsZCOcTz8F2MhyMhuNYGoRo0a6tOnjwNpPLd48WLFxcWl+Hrz5s29mMZ7fvvtt1QfPtK3b1999913ypQpk1v7r1OnTpqTMP1lctHy5ct14MABQ7XPPvusX674h4zD/0bYAQAAYIugoCCFhYUpLCxMmTJlUq5cuZQvXz7ly5dPRYsWVbly5VShQgVVrFhRWbJkcTquZdq2bas2bdpo9uzZ+uyzz7R06VIlJyfb1l6RIkX05JNP6oUXXki3Ty7BrbVv314PPvighg8fruHDh+vkyZOW7j80NFQdO3bUq6++qgoVKli6b9gvJCTkr3PwP3+yZs2qfPnyKW/evH/95MuXT8WLF1eFChWUPXt2p6OnSwEBAapVq5Zq1aql999/XydPntS8efO0aNEiLV++XCdOnPB6psyZM6tt27Z67rnndNddd3m9faPKlSunfv36qV+/frp586Y2btyoHTt2aP/+/Tp06JDOnTunCxcu6PLly4qLi1N8fLwSEhKcjv0f9A8yrvTyGfYlHE9I7zp37qyGDRsarr/99ttty+IPHnroITVt2lTDhw/XJ598orNnz9rSTvny5dWzZ0916tRJmTNntqUNX1CsWDGNHDlSAwcO1JdffqkJEyZo//79Xmk7ODhY9evXV7t27fTwww87uqpFerl+c82Er3nllVfUtm3bNOsuXryoH3/8UY8++qgXUmUcnBMA+LL+/fubqk/vfwfVqVNHderU0bFjx/Tll19qypQpOnz4sNdzFCtWTPfdd5+aN2+uxo0bp+u/heC7OB7+i7EQZET/O7koU6ZMGjdunE9NPDQjrYfp1K1b10tJvOfEiRPq2LGjkpKSbvn6m2++qUGDBnnczquvvpriisj58uVT+fLlPW7DG7799ltDdREREXruuedsTgN4JsDlcrmcDgEAAAD4ilOnTmny5MmaPXu21q1bp5iYGI/3WaZMGTVu3FiPPvqo6tWrl+ayvkj/EhMT9fPPP2v8+PFavHixbty44dZ+goKCVKtWLbVo0UKPPfaYChYsaHFSALdy+PBhrVq1Shs3btSmTZu0bds2Xb9+3dI2AgICVK5cOdWrV08tWrTQPffc4/ZTn+A5+geAdTieAPwpISFBM2bM0A8//KAFCxbo5s2bHu2vTJkyuvfee/XQQw+pcePGps4FGzduNFxbrlw5n37oypYtWzRt2jQtXLhQW7dutWwSTWBgoMqXL68GDRqoYcOGatq0KQ87sBnXTDgtOTlZ5cuXNzRpsU6dOlq5cqUXUt2ay+VK8Yan/xUQEOCXN7RxTgAA/7Jt2zbNnDlTixYt0ubNm93+Higl4eHhqlSpku644w7VqVNH9erVY4US+CyOh78xFoKMYv369f96WOIHH3ygV1991cFEnqlTp45Wr159y9cyZ86sK1eu+OVq2ilJTk5W48aNtXTp0lu+3q1bN3399deWtLV69WrVqVPnlq+1a9dOU6dOtaQdO50/f15FihRJdXWrP/Xs2VPDhw/3QirAfUwuAgAAAFKQkJCgjRs3auPGjTpw4IAOHTqkI0eO6MqVK7px44Zu3rypxMREhYeHK3PmzIqMjFTBggVVsmRJlSxZUlFRUapbt67y5s3r9K8CHxYXF6eVK1dq3bp12r17t3bv3q1z587p+vXrio6OVnBwsCIjI5UlSxblzJlTZcuWVaVKlVSpUiXVq1ePJ4kCPuLYsWPavXu39u/fr6NHj+rYsWM6c+aMLl68qEuXLun69et/PSH9n6sFZsuW7a8Vqf5cKbB8+fKqVq2acubM6fSvhVugfwBYh+MJwJ9iY2O1du1abdy4Udu2bdPRo0d1/PhxXblyRTExMUpISFBERMRf54KcOXOqTJkyKleunMqVK6e77rpLxYsXd/rX8DkxMTHasGGDtmzZ8tc59siRI7p8+bJu3rypmzdvKjY2VsHBwQoNDVVERIRy5syp3Llzq2DBgipRooRKliyp2267TVWqVOHJxw7imgmnfPvtt+rWrZuh2q1bt6pKlSo2J4LEOQEA/E1SUpJ+//13bdy4UQcPHtSxY8d07NgxnT59WtHR0bp586ZiYmIUHx+vkJAQhYWFKVOmTMqePbvy5MmjPHnyqHDhwipRooRKlCihChUqqGzZsn45WRbgePgbYyGAf3C5XMqSJUuKEyOrV69uarKeP/j888/Vs2fPW77WoEEDLVy40LLJVEOHDtUbb7yRYo7u3btb0o6dhgwZor59+6ZZFxwcrP3793Puhs9jchEAAAAAAAAAAAAAAPiXuLg4lSpVSidPnkyztmvXrvr222+9kAoAAAAAAO84evRoqpNB/GV1HaPOnz+vsmXL6sqVK/95LVu2bNqxY4eKFCliWXvNmzfX3Llzb/nazp07ValSJcvaskNSUpJKlSqlo0ePpln7+OOP67vvvvNCKsAzgU4HAAAAAAAAAAAAAAAAviUsLCzFJwj/r4kTJ+r8+fM2JwIAAAAAwHv27duX6uslS5b0UhLvGDBgwC0nFknSe++9Z+nEouTkZK1ateqWr+XOnVsVK1a0rC27TJ8+3dDEoqCgIL311lteSAR4jslFAAAAAAAAAAAAAADgP7p27arChQunWRcbG6vPP//cC4kAAAAAAPCOU6dOpfp6rly5vJTEfmfOnNHo0aNv+VqFChXUrVs3S9vbunWrrl27dsvX6tevr4CAAEvbs8OwYcMM1XXs2FFlypSxOQ1gDSYXAQAAAAAAAAAAAACA/wgLC1Pfvn0N1X7xxReKiYmxOREAAAAAAN5x+vTpVF/PnDmzl5LY77PPPlNcXNwtX3v11VcVHBxsaXsrVqxI8bUGDRpY2pYdli5dqo0bN6ZZFxwczKpF8CtMLgIAAAAAAAAAAAAAALfUtWtXlSpVKs26CxcuaNSoUV5IBAAAAACA/a5evZrq6+llclFSUpLGjh17y9dy5cqlDh06WN7m8uXLU3zNHyYXDR061FBdly5dVLp0aZvTANZhchEAAAAAAAAAAAAAALilkJAQDR482FDtBx98oPj4eJsTAQAAAABgv7RW501OTvZSEnstWrRIZ8+eveVrLVu2VFhYmOVtprRyUY4cOXTbbbdZ3p6VNmzYoHnz5qVZFxERoQEDBtgfCLAQk4sAAAAAAAAAAAAAAECKHn74YVWvXj3NuhMnTqT4tGMAAAAAAPxJWg/PuHnzppeS2Gv69OkpvvbQQw9Z3t7u3bt1/vz5W75Wv359BQb69vSGQYMGGap7+eWXlT9/fpvTANby7aMPAAAAAAAAAAAAAAA4KiAgQMOGDTNUO2TIECUkJNicCAAAAAAAe4WGhqb6+qlTp7yUxF5Lliy55X8PCAhQ7dq1LW9v+fLlKb7WoEEDy9uz0tatWzV79uw06/Lly6dXX33VC4kAazG5CAAAAAAAAAAAAAAApKphw4Zq3bp1mnVHjx7VN99844VEAAAAAADYJyIiItXXDx065KUk9jl9+rQOHDhwy9eKFSumXLlyWd6mP08u6tevn6G6d999V1mzZrU5DWA9JhcBAAAAAAAAAAAAAIA0DRs2TJkyZUqzbvDgwbp586YXEgEAAAAAYI88efKk+vqmTZu8lMQ+W7duTfG1kiVL2tLmihUrbvnfs2XLpttvv92WNq2wcuVK/frrr2nWVatWTU8++aQXEgHWY3IRAAAAAAAAAAAAAABIU4kSJdS7d+80686cOaPhw4d7IREAAAAAAPYoVqxYqq/v379fJ06c8FIae6S0apEkFSxY0PL2Dh8+rOPHj9/ytbp16yow0HenNvTt29dQ3WeffebTvweQGj65AAAAAAAAAAAAAADAkL59+6Z5g5UkDR06VBcuXPBCIgAAAAAArFeuXLk0a3766ScvJDHn0KFDun79uqHaw4cPp/ha5syZrYr0l+XLl6f4WoMGDSxvzyqzZ89OccWlf3riiSdUt25dLyQC7MHkIgAAAAAAAAAAAAAAYEhERIRGjBiRZt3Vq1c1YMAA+wMBAAAAAGCDChUqKEuWLKnWfPXVV15KY8zixYt155136plnnjFUf/ny5RRfCw4OtirWX1KbXNSwYUPL27NCYmKiXn311TTrcubMqWHDhnkhEWAfJhcBAAAAAAAAAAAAAADDWrRooZYtW6ZZ9/XXX2vPnj32BwIAAAAAwGKBgYGqVatWqjW7d+/WtGnTvJQodZ9//rnuvfdeXbp0SZMmTdI333yT5jbR0dEpvnb16lUr4+nixYuaPXv2LV/LkiWLqlWrZml7Vvnyyy+1d+/eNOuGDh2qPHnyeCERYB/rpxQCAAAAAAAAAAAAAIB0bcSIEapSpUqadUeOHFH58uW9kAgAAAAAAGu1atVK8+fPT7XmlVde0b333qusWbN6KdW/Xbx4UV27dtXMmTP/9d9ffPFF1axZU5UrV05x28TExBRfu3DhglURJUnPP/+8zp8/f8vX6tSpo6CgIEvbs0pAQID69++fak1ERIS6du3qpUSAfQJcLpfL6RAAAAAAAAAAAAAAAAAAAAAAAPiKc+fOqUiRIoqPj0+1rl27dpoyZYoCAgK8lOwP8+bN01NPPaVTp07d8vVy5cpp48aNioyMvOXrnTt31vjx42/5Wp48eXTu3DlLco4aNUpPP/10iq8PGTJEr7/+uiVtAXBfoNMBAAAAAAAAAAAAAAAAAAAAAADwJXnz5tXDDz+cZt20adPUq1cv+wP9v5MnT+rhhx/Wfffdl+LEIkkqXry4AgNTni6QM2fOFF87f/68du/e7VFOSVqxYoW6d++eak2dOnU8bgeA55hcBAAAAAAAAAAAAAAAAAAAAADA/+jTp4+CgoLSrBs+fLgef/xxxcTE2JblypUrGjhwoMqXL6+pU6emWtu+fXvNnj1bERERKdYULFgw1X189dVXbuX807p16/TAAw+kuvJTSEiI7rjjDo/aAWANJhcBAAAAAAAAAAAAAAAAAAAAAPA/oqKi1K1bN0O1EydO1O23367FixdbmuHkyZN66623VLx4cQ0YMEDR0dGp1j/zzDOaNGmSQkJCUq2rWbNmqq+PHj1a+/btM51XkubPn6+mTZvq2rVrqdbdfvvtCg8Pd6sNANZichEAAAAAAAAAAAAAAAAAAAAAALfw3nvvqVixYoZq9+3bp8aNG6tx48b66aeflJCQ4FabV65c0dSpU3X//ferWLFiGjx4sK5evZrqNqGhofr888/11VdfKTAw7WkCd955p8LCwlJ8/caNG2rfvr0uX75sOHdSUpKGDh2q5s2bpzmxSBKrFgE+JMDlcrmcDgEAAAAAAAAAAAAAAAAAAAAAgC9as2aNGjZsqPj4eFPbZc2aVY0bN1bNmjVVuXJlFStWTPnz51dERIRCQkIUHR2ta9eu6fTp0/r999+1a9curVixQhs2bFBSUpLhdgoVKqTp06enuRrR/2rbtq1+/PHHVGvKlSunSZMmqWrVqqnWrV27Vj179tTGjRsNtz9q1Ch16dLFcD0A+zC5CAAAAAAAAAAAAAAAAAAAAACAVEybNk2PPPKIkpOTnY7yL61bt9aXX36pvHnzmt521apVqlu3bpp1AQEBatWqldq0aaOaNWsqX758CggI0PHjx7VkyRJNmjRJy5cvN93+5s2b05y0BMA7mFwEAAAAAAAAAAAAAAAAAAAAAEAafvjhBz355JOmVzCyQ8GCBTVy5Ei1bNnSo/3cc889WrhwoTWhTAgKClJ0dLQyZcrk9bYB/Feg0wEAAAAAAAAAAAAAAAAAAAAAAPB1HTp00IIFC1SgQAHHMkREROiVV17R77//7vHEIkkaP3688uTJ43mwW0htVaJSpUoxsQjwIUwuAgAAAAAAAAAAAAAAAAAAAADAgPr162vnzp3q2LGjV9vNlCmTXnzxRR06dEgffvihsmXLZsl+CxYsqKlTpypLliyW7E+ScuXKpbFjx+qFF15IsaZs2bKWtQfAc0wuAgAAAAAAAAAAAAAAAAAAAADAoJw5c2rixInasGGDmjdvroCAANvaioqK0scff6zjx4/r008/Vb58+Sxvo2HDhlqxYoUKFy7s0X7Cw8PVq1cv7du3T507d9b69etTrC1T5v/au2OUxsIwCsPfRG2CETub2AiDQbCLKVIJWgezhBSuxsYduAa77MDGwnSWFoqFIkQQixSZbmBgYEQjYTjP093i/vfcBbz8P7/0LWCxfszn8/myRwAAAAAAAAAAAAAAwP/o7u6uLi4u6vLysiaTyZfOWllZqW63W8fHxzUYDKrX6y1o5b9Np9M6Ozur8/Pzent7+/B7Ozs7NRqN6vT09I/46eDgoK6vr38/t9vtGgwGNRwO6/DwsFZXVxe6H/g8cREAAAAAAAAAAAAAACzA4+NjXV1d1c3NTd3e3tb9/X09PDzU6+trvb+/12w2q2azWa1Wq9bX12tra6t2d3er0+nU3t5e9fv92tzcXOo/vLy81Hg8rvF4XJPJpJ6enur5+bkajUZtbGxUu92uTqdTvV6vjo6Oan9//6/nbG9vV6vVqpOTkxoOh9Xtdr/1lifg88RFAAAAAAAAAAAAAADAQs1ms1pbW1v2DOADxEUAAAAAAAAAAAAAAAAQqrHsAQAAAAAAAAAAAAAAAMByiIsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABCiYsAAAAAAAAAAAAAAAAglLgIAAAAAAAAAAAAAAAAQomLAAAAAAAAAAAAAAAAIJS4CAAAAAAAAAAAAAAAAEKJiwAAAAAAAAAAAAAAACCUuAgAAAAAAAAAAAAAAABC/QJhSfaXezJlJAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2327,52 +2223,6 @@ "figs = plotting.plot_all_defects(defect_charges_dict)" ] }, - { - "cell_type": "code", - "execution_count": 23, - "id": "0ccc6446", - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": "\n \n \n \n \n 2022-11-07T12:43:04.441026\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", - "text/plain": [ - "" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Show plots\n", - "from IPython.core.display import SVG\n", - "SVG(filename=\"./v_Cd_-1/v_Cd_-1.svg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "ffd20d2d", - "metadata": {}, - "outputs": [ - { - "data": { - "image/svg+xml": "\n \n \n \n \n 2022-11-07T12:43:04.667093\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", - "text/plain": [ - "" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "SVG(filename=\"./v_Cd_0/v_Cd_0.svg\")" - ] - }, { "cell_type": "markdown", "id": "10d1951b-e433-4890-9495-e04b1d38a0e0", @@ -2406,7 +2256,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 34, "id": "8c4ab021-6a67-4429-86d7-7606edbf4992", "metadata": { "pycharm": { @@ -2418,51 +2268,45 @@ "name": "stdout", "output_type": "stream", "text": [ - "Energy lowering distortion found for v_Cd with charge -1. Generating distortion plot...\n", + "Energy lowering distortion found for v_Cd_s0 with charge 0. Generating distortion plot...\n", "Comparing structures to Unperturbed...\n", - "Previous version of v_Cd_-1.svg found in output_path: 'v_Cd_-1/'. Will rename old plot to v_Cd_-1_2022-11-07-12-43.svg.\n", - "Plot saved to v_Cd_-1/v_Cd_-1.svg\n", - "Energy lowering distortion found for v_Cd with charge 0. Generating distortion plot...\n", + "Plot saved to v_Cd_s0_0/v_Cd_s0_0.png\n", + "Energy lowering distortion found for v_Cd_s0 with charge -1. Generating distortion plot...\n", "Comparing structures to Unperturbed...\n", - "Previous version of v_Cd_0.svg found in output_path: 'v_Cd_0/'. Will rename old plot to v_Cd_0_2022-11-07-12-43.svg.\n", - "Plot saved to v_Cd_0/v_Cd_0.svg\n" + "Plot saved to v_Cd_s0_-1/v_Cd_s0_-1.png\n" ] - } - ], - "source": [ - "figs = plotting.plot_all_defects(\n", - " defect_charges_dict,\n", - " add_colorbar=True\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "9fd087df", - "metadata": {}, - "outputs": [ + }, { "data": { - "image/svg+xml": "\n \n \n \n \n 2022-11-07T12:43:21.296065\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADfgAAAv+CAYAAADeG9HrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdd5TV9Zk/8GcKvQSQqoKFIjKjwQaKIiCatfeosUWNGDUqaozYNlFj7C2WYEOj0USNJYqxRnQQRFFERBAcCxYigjRDZ5j7+yO/Ncuq3Dt37r3fGeb1Oidnd773eT7f97i753j28uZTlEqlUgEAAAAAAAAAAAAAAAAAFFRx0gEAAAAAAAAAAAAAAAAAoCFS8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAGlSQcAAAAAAACA+mr16tUxYcKEmDBhQrz11lvx8ccfx2effRZLliyJ5cuXR8uWLaNNmzbRqVOn2GabbWK77baLoUOHxuabb550dAAAAAAAAKAOKEqlUqmkQwAAAAAAAEB98tprr8Vtt90WTz75ZCxcuLDG+zvuuGMcc8wxccIJJ0TTpk3zkBAAAAAAAACoDxT8AAAAAAAAIENjx46N8847LyZMmJCT8zbccMO48MIL46STTorS0tKcnAkAAAAAAADUHwp+AAAAAAAAkMZXX30Vv/jFL+Lhhx/Oy/k77LBD3H///dGrV6+8nA8AAAAAAADUTQp+AAAAAAAAsA4vvfRS/OQnP4kvv/wyr+9p3rx53HnnnXHkkUfm9T0AAAAAAABA3VGcdAAAAAAAAACoq+6888740Y9+lPdyX0TEsmXL4uijj47rr78+7+8CAAAAAAAA6gYFPwAAAAAAAPgOt912W5x00klRVVVVsHemUqn45S9/GRdffHHB3gkAAAAAAAAkpyiVSqWSDgEAAAAAAAB1yX333RfHHXdcJPlV2h133BHDhg1L7P0AAAAAAABA/in4AQAAAAAAwP/y6KOPxuGHHx5r1qzJeKdr165x+OGHx4ABA+KHP/xhtGvXLlq0aBELFiyIjz/+OF555ZV46KGHYtKkSRmfWVpaGk899VT813/9Vza/BgAAAAAAAFAPKPgBAAAAAADA/zdz5szYdtttY9myZRnN9+rVK66++urYb7/9ori4OO38uHHj4owzzojJkydndH6HDh3inXfeic6dO2c0DwAAAAAAANQv6b9lBAAAAAAAgAZg1apV8ZOf/CTjct+5554bU6dOjQMOOCCjcl9ExC677BJvvPFGXHTRRRnNz5s3L4477rjwd3YCAAAAAADA+knBDwAAAAAAACLi/PPPz+hmvZKSkrjvvvviqquuisaNG9f4PSUlJfHb3/427r777igqKko7/9xzz8Vtt91W4/cAAAAAAAAAdV9Ryl/3CQAAAAAAQAP32muvxYABAzK6Ke/OO++ME088MSfv/f3vfx9nnnlm2rl27dpFZWVltGvXLifvBQAAAAAAAOoGN/gBAAAAAADQ4J133nkZlfvOOuusnJX7IiKGDx+e0XkLFiyIX//61zl7LwAAAAAAAFA3uMEPAAAAAACABu2ZZ56JvffeO+1ceXl5vPnmm9GkSZOcvn/p0qWx7bbbxvvvv7/OuZKSknjvvfeiZ8+eOX0/AAAAAAAAkBw3+AEAAAAAANBgpVKpuOCCCzKaveOOO3Je7ouIaNGiRYwcOTLt3Jo1a+Lqq6/O+fsBAAAAAACA5Cj4AQAAAAAA0GA9//zz8fbbb6edO/jgg2OnnXbKW47ddtstDjrooLRz9913X8yePTtvOQAAAAAAAIDCUvADAAAAAACgwbrnnnsymrv00kvznCTiiiuuiOLidX99t2rVqrjpppvyngUAAAAAAAAojKJUKpVKOgQAAAAAAAAU2uLFi6Nz586xYsWKdc7tscce8fzzzxck08EHHxyPP/74Omc6d+4cn332WZSWlhYkEwAAAAAAAJA/bvADAAAAAACgQXrwwQfTlvsiIoYPH16ANP927rnnpp2ZM2dOPPfccwVIAwAAAAAAAOSbgh8AAAAAAAAN0oMPPph2plOnTrHnnnsWIM2/7bjjjtGnT5+0c/fee28B0gAAAAAAAAD5puAHAAAAAABAg7N8+fJ49dVX084dfvjhUVJSUoBE/3H88cennXn66adj1apVBUgDAAAAAAAA5JOCHwAAAAAAAA3OuHHjMirIHXrooQVIs7bDDjss7czSpUujoqKiAGkAAAAAAACAfFLwAwAAAAAAoMF58cUX0860adMmBgwYUIA0a+vWrVtsvfXWaeeefvrpAqQBAAAAAAAA8knBDwAAAAAAgAZnzJgxaWf22GOPKCkpKUCab9t3333TzrzwwgsFSAIAAAAAAADkk4IfAAAAAAAADUpVVVVMmTIl7dzAgQMLkOa7DRo0KO3Me++9F19//XUB0gAAAAAAAAD5ouAHAAAAAABAgzJz5sxYtWpV2rkdd9yxAGm+20477ZT29sDq6up48803C5QIAAAAAAAAyAcFPwAAAAAAABqUqVOnpp1p0qRJ9O3bN/9hvkerVq2ivLw87dwbb7xRgDQAAAAAAABAvij4AQAAAAAA0KBkUvDbYostolGjRgVI8/222mqrtDNTpkwpQBIAAAAAAAAgXxT8AAAAAAAAaFCmTZuWdqZPnz4FSLJuZWVlaWcqKysLkAQAAAAAAADIFwU/AAAAAAAAGpTPPvss7cyWW25ZgCTrpuAHAAAAAAAA6z8FPwAAAAAAABqUL774Iu1Mt27dCpBk3TbZZJO0M4sXL4558+YVIA0AAAAAAACQDwp+AAAAAAAANBhr1qyJuXPnpp3r2rVrAdLkJsOnn36a5yQAAAAAAABAvij4AQAAAAAA5MCYMWOiqKgo6/+cddZZSf8KdcLcuXOjffv2Wf9z3GijjWLRokXrPH/NmjVpc2y00UY5/K2y07Zt22jZsmXaOTf4AQAAAAAAQP2l4AcAAAAAAJADZWVltdqfOXNmjpLUb2eccUbMnz8/6/3bb7892rRp872fz5kzJ6Nz2rVrl3WGXGrfvn3aGQU/AAAAAAAAqL8U/AAAAAAAAHKgU6dOGZWxvo+CX8To0aPjoYceynr/mGOOiX333XedM0uWLMnorLZt22adI5cyyaHgBwAAAAAAAPWXgh8AAAAAAECO1OYWv1mzZsXKlStzmKZ++frrr+OUU07Jer9Lly7x+9//Pu3cihUr0s40b948GjVqlHWWXMqk4Ldw4cICJAEAAAAAAADyQcEPAAAAAAAgR2pT8Kuuro7Kysocpqlfzj333Jg9e3bW+7fffntGZbhMCn7NmjXLOkeutWzZMu1MQy6GAgAAAAAAQH2n4AcAAAAAAJAj5eXltdqfOXNmjpLULxUVFXHHHXdkvX/00UfHfvvtl9FsJgW/unJ7X0RmWRT8AAAAAAAAoP5S8AMAAAAAAMiR2tzgF9EwC34rVqyIYcOGRSqVymq/c+fOcdNNN2U8n0kZri4V/Bo3bpx2ZtWqVQVIAgAAAAAAAOSDgh8AAAAAAECO1PYGvxkzZuQoSf1x8cUXR2VlZdb7t912W7Rt2zbj+UyKhNmWDfMhk7Khgh8AAAAAAADUXwp+AAAAAAAAOdKuXbvo3Llz1vsN7Qa/yZMnx3XXXZf1/lFHHRUHHHBAjXYyuRFv+fLl2UbKudWrV6edKS0tLUASAAAAAAAAIB8U/AAAAAAAAHKorKws692GVPCrqqqKn/3sZ1FVVZXVfufOneOmm26q8V4mN+LVpYJfJrfzNW3atABJAAAAAAAAgHxQ8AMAAAAAAMih8vLyrHcXL14cc+bMyWGauuvaa6+NyZMnZ70/cuTIaNeuXY33mjRpknZmxYoV2UTKi5UrV6adUfADAAAAAACA+kvBDwAAAAAAIIdqc4NfRMO4xe/999+PSy65JOv9n/zkJ3HggQdmtdu6deu0M9XV1XWm5OcGPwAAAAAAAFi/KfgBAAAAAADkUG1u8ItY/wt+qVQqhg0blnWBrlOnTnHzzTdn/f5Mb/1bvnx51u/IpUWLFqWdUfADAAAAAACA+kvBDwAAAAAAIIfc4Ldut99+e4wdOzbr/ZEjR8YGG2yQ9X6muwsXLsz6Hbn01VdfpZ1p27ZtAZIAAAAAAAAA+aDgBwAAAAAAkEOtW7eOrl27Zr0/Y8aMHKapWz7//PMYMWJE1vtHHHFEHHTQQbXKsMEGG0RRUVHauc8++6xW78mV+fPnp53p3LlzAZIAAAAAAAAA+aDgBwAAAAAAkGO1ucVvfb7B75RTTomvv/46q92OHTvGLbfcUusMjRo1yqgQ9+mnn9b6XbVVVVUVixcvTjun4AcAAAAAAAD1l4IfAAAAAABAjtWm4Ddr1qxYtWpVDtPUDQ8++GA89dRTWe//4Q9/iA022CAnWbp165Z2pi7c4JdpyVDBDwAAAAAAAOovBT8AAAAAAIAcKy8vz3p3zZo1UVlZmcM0yZs/f36cccYZWe8ffvjhccghh+QszyabbJJ2pi7c4Pfhhx9mNKfgBwAAAAAAAPWXgh8AAAAAAECO1eYGv4iImTNn5ihJ3XDmmWfGvHnzstrt2LFj3HLLLTnN06tXr7QzdaHg99FHH6Wd2XDDDaNp06YFSAMAAAAAAADkg4IfAAAAAABAjvXp0yeKioqy3l+fCn7PPvts3H///Vnv33rrrdG+ffscJsrshsX33nsvp+/MxgcffJB2pk+fPgVIAgAAAAAAAOSLgh8AAAAAAECOtWjRIjbddNOs99eXgt+SJUvi5z//edb7P/7xj+PQQw/NYaJ/22qrrdLOzJo1KxYvXpzzd9fE22+/nXamtrdFAgAAAAAAAMlS8AMAAAAAAMiDTG6J+z4zZszIYZLknH/++fHpp59mtduhQ4e49dZbc5zo33r16hVNmzZNOzdlypS8vD9Tb731VtoZN/gBAAAAAABA/abgBwAAAAAAkAe1uVltfbjB79VXX40//OEPWe/feuut0aFDhxwm+o/S0tLYYYcd0s6NGzcuL+/PxKxZs2LBggVp52pTJAUAAAAAAACSp+AHAAAAAACQB7Up+C1atCjmzp2bwzSFtXLlyjjxxBOjuro6q/1DDz00fvzjH+c41dp22WWXtDOvvPJKXjOsy4QJE9LONGnSJLbddtsCpAEAAAAAAADyRcEPAAAAAAAgD2p7s1p9vsXvsssui/feey+r3fbt29fq5r9MDRw4MO3MuHHjYtWqVXnP8l2effbZtDP9+vWLpk2bFiANAAAAAAAAkC8KfgAAAAAAAHnQu3fvKCkpyXp/xowZOUxTOFOnTo2rrroq6/1bbrklOnTokMNE323XXXeNJk2arHNmyZIlUVFRkfcs/1cqlYrnnnsu7dyuu+5agDQAAAAAAABAPin4AQAAAAAA5EHTpk2je/fuWe/Xxxv81qxZEz/72c9i9erVWe0fcsghcfjhh+c41Xdr0aJFDBkyJO3cU089VYA0a3vzzTfjyy+/TDs3aNCgAqQBAAAAAAAA8knBDwAAAAAAIE/Kysqy3q2PBb8bb7wx3njjjax227dvH3/4wx9ynGjd9ttvv7Qzf/3rX6O6uroAaf7j7rvvTjvTsmXL2HnnnQuQBgAAAAAAAMgnBT8AAAAAAIA8KS8vz3p3xowZOUySfx999FH8+te/znr/5ptvjo4dO+YwUXoHHnhgFBev++uyL774Il588cUCJYpYsmRJPPDAA2nnDjjggGjevHkBEgEAAAAAAAD5pOAHAAAAAACQJ7W5we/jjz+OVatW5TBNfg0bNiyWLVuW1e5BBx0URxxxRI4TpbfhhhvGbrvtlnYukxv1cuWBBx6If/3rX2nnjjrqqAKkAQAAAAAAAPJNwQ8AAAAAACBPanOD35o1a+LDDz/MYZr8GTVqVIwZMyar3Q022CBGjhyZ40SZO+aYY9LOPPLII/HJJ5/kPcuKFSvid7/7Xdq5Dh06xB577JH3PAAAAAAAAED+KfgBAAAAAADkSa9evaJRo0ZZ78+cOTOHafLjiy++iHPOOSfr/Ztvvjk6deqUw0Q1c8ghh0Tr1q3XOVNVVRXXXXdd3rPceOON8dlnn6WdO+aYY6K0tDTveQAAAAAAAID8U/ADAAAAAADIk0aNGkXPnj2z3p8xY0YO0+THaaedFosWLcpq98ADD4yf/OQnuQ1UQy1atIgTTjgh7dxtt90W06dPz1uOOXPmxJVXXpl2rlmzZvGrX/0qbzkAAAAAAACAwlLwAwAAAAAAyKPy8vKsd+v6DX6PPvpoPPbYY1nttmvXLm677bYcJ8rOGWecEcXF6/7abPXq1XHqqadGdXV1zt+fSqXipz/9aSxevDjt7MknnxydO3fOeQYAAAAAAAAgGQp+AAAAAAAAeVRWVpb1bl0u+C1atChOO+20rPdvvvnm6NSpUw4TZW+zzTaLgw46KO1cRUVFXHzxxTl//7XXXhvPP/982rlmzZrFiBEjcv5+AAAAAAAAIDkKfgAAAAAAAHm0vt7gd/bZZ8ecOXOy2j3ggAPiyCOPzHGi2rnsssuitLQ0o7mHH344Z+994YUX4sILL8xo9txzz60zpUgAAAAAAAAgN4pSqVQq6RAAAAAAAADrq5kzZ0bv3r2z3p87d2506NAhh4lq78UXX4zdd989q9127drFtGnTonPnzjlOVXunnHJK3HbbbWnnSkpK4t57742jjjqqVu976aWXYv/9948lS5aknd12223jtddei0aNGtXqnQAAAAAAAEDd4gY/AAAAAACAPOrRo0c0adIk6/26dovfsmXL4qSTTsp6//e//32dLPdFRFxyySXRrl27tHNr1qyJY489Ns4777xYtWpVVu+6/fbbY6+99sqo3NekSZO49957lfsAAAAAAABgPaTgBwAAAAAAkEclJSW1usGvrhX8Lrroovjoo4+y2t1vv/3i6KOPznGi3OnYsWPcc889Gc1WV1fHVVddFf369YvRo0dHKpXKaG/y5Mmxxx57xMknnxwrV67MaOeyyy6L8vLyjGYBAAAAAACA+qUolem3jQAAAAAAAGTlqKOOij//+c9Z7Z5zzjlxzTXX5DhRdiZOnBg77bRTVFdX13i3bdu2MW3atOjSpUsekuXWGWecETfffHONdrbYYos48MADY7fddotevXpF+/bto2nTprFo0aKorKyMCRMmxGOPPRbjx4+v0bnHH3983H333TXaAQAAAAAAAOoPBT8AAAAAAIA8u+KKK+KCCy7Iane//faLJ598MseJam716tWx3XbbxdSpU7Pav+++++KYY47Jcar8WLVqVRxwwAHx7LPPJppjn332ib/97W9RWlqaaA4AAAAAAAAgf4qTDgAAAAAAALC+Kysry3p35syZOUySvSuuuCLrct++++5bb8p9ERGNGzeOxx57LIYMGZJYhn79+sXDDz+s3AcAAAAAAADrOTf4AQAAAAAA5NlHH30U3bt3z2q3tLQ0li1bFo0aNcpxqsxNnz49ttlmm1i1alWNd9u0aRPTpk2LDTfcMA/J8mvJkiVx2GGHxTPPPFPQ9w4ePDj+9re/xQ9+8IOCvhcAAAAAAAAoPDf4AQAAAAAA5Nlmm20WzZs3z2q3qqoqPvzwwxwnylx1dXWceOKJWZX7IiJ+//vf18tyX0REy5Yt46mnnoqLLrooioqKCvLOn/3sZ/Hss88q9wEAAAAAAEADoeAHAAAAAACQZ0VFRdGnT5+s92fOnJnDNDVzyy23xIQJE7La3XfffePYY4/NcaLCKi4ujt/+9rfx97//PTbffPO8vadDhw7x4IMPxl133RVNmjTJ23sAAAAAAACAukXBDwAAAAAAoADKysqy3k2q4PfJJ5/EhRdemNVumzZt4vbbb89xouTstddeMX369LjyyiujVatWOTu3efPmcdZZZ8X7778fhx9+eM7OBQAAAAAAAOoHBT8AAAAAAIACqE3Bb8aMGTlMkrmf//znsWTJkqx2b7jhhthwww1znChZTZo0iREjRsTs2bPjrrvuip133jnrs8rKyuLyyy+PTz/9NK6//vpo06ZN7oICAAAAAAAA9UZRKpVKJR0CAAAAAABgfffMM8/E3nvvndXugAEDYvz48TlOtG733Xdf/PSnP81qd++9946///3vOU5UN82ePTsmTJgQEydOjEmTJsWcOXNi0aJFsXDhwli9enU0b9482rRpE5tsskn06tUr+vfvH4MGDYpevXolHR0AAAAAAACoAxT8AAAAAAAACuDTTz+NTTbZJKvdDTbYIL766qscJ/p+c+fOjS233DIWLFhQ4902bdrEu+++GxtttFEekgEAAAAAAACsX4qTDgAAAAAAANAQdOvWLVq3bp3V7vz582P+/Pk5TvT9Tj/99KzKfRER119/vXIfAAAAAAAAQIYU/AAAAAAAAAqkT58+We/OmDEjh0m+35NPPhkPP/xwVrt77bVXHH/88TlOBAAAAAAAALD+UvADAAAAAAAokPLy8qx3Z86cmcMk3+3rr7+OU089NavdH/zgB3HHHXfkOBEAAAAAAADA+k3BDwAAAAAAoEDKysqy3i1Ewe9Xv/pVzJ49O6vd66+/PjbeeOMcJwIAAAAAAABYvyn4AQAAAAAAFEhtCn4zZszIYZJvq6ioiDvvvDOr3T333DNOOOGEHCcCAAAAAAAAWP8p+AEAAAAAABRIeXl51rv5vMFvxYoVMWzYsEilUjXebd26ddxxxx15SAUAAAAAAACw/lPwAwAAAAAAKJAuXbpEu3btstr96KOPoqqqKseJ/u03v/lNVFZWZrV73XXXRdeuXXOcCAAAAAAAAKBhUPADAAAAAAAooLKysqz2Vq9eHR999FGO00S89dZbcd1112W1+6Mf/ShOPPHEHCcCAAAAAAAAaDgU/AAAAAAAAAoo24JfRMSMGTNymCSiqqoqTjzxxFizZk2Nd1u3bh133XVXTvMAAAAAAAAANDQKfgAAAAAAAAVUXl6e9e7MmTNzmCTimmuuicmTJ2e1e+2110bXrl1zmgcAAAAAAACgoVHwAwAAAAAAKKDa3OCXy4Lf+++/H5deemlWu3vssUcMGzYsZ1kAAAAAAAAAGioFPwAAAAAAgAKqCzf4pVKpGDZsWKxYsaLGu61atYq77rorJzkAAAAAAAAAGjoFPwAAAAAAgAJq3759dOzYMavdGTNm5CTDbbfdFmPHjs1q99prr41u3brlJAcAAAAAAABAQ1eUSqVSSYcAAAAAAABoSHbbbbd46aWXstqdP39+tGvXLut3f/7551FWVhZff/11jXd33333eOGFF7J+NwAAAAAAAABrc4MfAAAAAABAgZWXl2e9O3PmzFq9+5RTTsmq3NeqVau46667avVuAAAAAAAAANam4AcAAAAAAFBgZWVlWe/OmDEj692//OUv8dRTT2W1e/XVV8cmm2yS9bsBAAAAAAAA+DYFPwAAAAAAgAJL4ga/+fPnx/Dhw7PaHTp0aPz85z/PahcAAAAAAACA76fgBwAAAAAAUGC1ucEv24LfmWeeGfPmzavxXsuWLWPUqFFRVFSU1XsBAAAAAAAA+H4KfgAAAAAAAAXWpk2b2GijjbLazabg98wzz8T999+f1fuuvvrq2GSTTbLahUKYO3duLF68OOkYAAAAAAAAkBUFPwAAAAAAgARke4vfhx9+GFVVVRnPL1myJE4++eSs3jVkyJCsdyGfPvnkk7jxxhtj0KBB0aVLlxg4cGDSkQAAAAAAACArpUkHAAAAAAAAaIjKysri+eefr/HeqlWr4uOPP46ePXtmNH/++efHp59+WuP3tGzZMu6+++4oKiqq8S7kw3vvvRePPfZYPPbYY/HWW2+t9VmPHj0SSgUAAAAAAAC1o+AHAAAAAACQgPLy8qx3Z86cmVHB79VXX40//OEPWb3jqquuik033TSr3YZo8eLF8e6778a7774b7733XsyePTtmz54dc+bMiSVLlsTy5ctjxYoVUVpaGq1atfrmPx07dozevXvHlltuGb17944f/vCH0a5du6R/nTrl8ssvj/vuuy9mzpz5vTODBg0qYCIAAAAAAADInaJUKpVKOgQAAAAAAEBD8/rrr8eOO+6Y1e4111wT55xzzjpnVq5cGX379o0ZM2bU+PwhQ4bEiy++6Pa+dfjqq6/iH//4R1RUVERFRUW89957OTm3uLg4tttuu9hzzz1jzz33jP79+0dJSUlOzq6PFi1aFBtssEFUV1evc27y5MnRt2/fwoQCAAAAAACAHHKDHwAAAAAAQALKysqiqKgosvm7GNd1k9n/uOyyy7Iq97Vo0SJGjRql3Pcd5s6dG4888kg8+uijUVFREWvWrMn5O6qrq+ONN96IN954I37729/GxhtvHMOGDYthw4ZFly5dcv6+uu6VV15JW+5r06ZNbL311gVKBAAAAAAAALlVnHQAAAAAAACAhqhly5bRrVu3rHbTFfzeeeeduOqqq7I6+6qrrorNNtssq931USqVijFjxsThhx8eG2+8cfziF7+IMWPG5KXc910+//zz+M1vfhPdunWLH//4xzFlypSCvLeuGDt2bNqZgQMHRnGxrz0BAAAAAACon3zTBQAAAAAAkJDy8vKs9tZV8FuzZk387Gc/i9WrV9f43MGDB8epp56aVab1zZo1a+LPf/5zbLXVVjF06NB4+OGHs/pnmitVVVXxyCOPxLbbbhvHHXdczJ8/P7EshVRRUZF2ZvDgwfkPAgAAAAAAAHmi4AcAAAAAAJCQsrKyrPbmzp0bCxcu/M7PbrzxxnjzzTdrfGaLFi1i1KhRUVRUlFWm9UUqlYo//elP0bt37zjqqKNi2rRpSUdaS3V1ddx7773Rp0+fePrpp5OOk1dLliyJyZMnp50bNGhQAdIAAAAAAABAfij4AQAAAAAAJCTbgl/Ed9/i9+GHH8avf/3rrM674oorYvPNN886z/pg/Pjx0b9//zj22GPjgw8+SDrOOs2dOzf222+/uPLKK5OOkjfjx4+Pqqqqdc60bt06+vbtW5hAAAAAAAAAkAcKfgAAAAAAAAkpLy/Peve7Cn4nnXRSLFu2rMZn7brrrnHaaadlnaW+W7BgQfz0pz+NXXbZJd54442k42Ssuro6zj///Dj33HOTjpIXFRUVaWd22WWXKCkpKUAaAAAAAAAAyA8FPwAAAAAAgIRsueWWUVyc3dc1/7fgN2rUqBgzZkyNz2nevHncfffdUVRUlFWO+u7RRx+NPn36xH333Zd0lKxdc8016+VNfmPHjk07M2jQoAIkAQAAAAAAgPwpTToAAAAAAABAQ9WsWbPYfPPN44MPPqjx7owZM77577/44os455xzsspwxRVXRPfu3bParc+WLl0ap556ak6KfU2aNIl+/fpFnz59onfv3rHlllvGRhttFK1atYrWrVtHq1atorq6OlasWBFLly6NOXPmxBdffBEffPBBTJ06Nd5+++2YPHlyrFmzJusMF1xwQWy11Vaxzz771Pr3qQuWL1+e0W2KCn4AAAAAAADUd0WpVCqVdAgAAAAAAICG6sADD4wnnniixnt9+vSJadOmRUTEwQcfHI8//niNzxg4cGBUVFQ0uNv73n333TjssMPivffey/qM7t27x/777x8/+tGPYtCgQdGsWbNaZVq8eHFUVFTE/fffH08++WSsXLmyxmd06tQppk6dGh06dKhVlrpgzJgxMXTo0HXOtGzZMhYuXBilpf5OUwAAAAAAAOqv4qQDAAAAAAAANGTl5eVZ7X3wwQexZs2aePTRR7Mq9zVv3jzuvvvuBlfue/zxx6N///5ZlfsaN24chx12WPzjH/+IysrKuP7662PPPfesdbkvIuIHP/hB7L///vHwww/HP//5zxgxYkQ0bdq0Rmd8+eWXMWLEiFpnqQvGjh2bdmbAgAHKfQAAAAAAANR7Cn4AAAAAAAAJKisry2pv1apV8dZbb8Vpp52W1f7ll18ePXr0yGq3vrr66qvjkEMOiWXLltVor3HjxnHaaafFp59+Gg899FAMHTo0r8XIdu3axZVXXhkzZ86MH/3oRzXavffee2PKlCl5SlY4FRUVaWcGDx6c/yAAAAAAAACQZwp+AAAAAAAACcq24BcRcdRRR8WcOXNqvLfLLrvE6aefnvV765tUKhWnnXZajBgxIlKpVMZ7RUVFcdRRR8WMGTPi5ptvjk6dOuUx5bd169Ytnn322fjd734XJSUlGe1UV1fHFVdckedk+bVq1ap4/fXX084NGjSoAGkAAAAAAAAgv4pSNfkWEwAAAAAAgJxatWpVtGjRIqqqqgryvmbNmsU777zTYG7vq66ujpNOOilGjRpVo71u3brF3XffHUOHDs1Tspp57LHH4ic/+UmsWrUq7Wzz5s1jyZIleb1lMJ/GjRsXAwcOXOdM8+bNY9GiRdGoUaMCpQIAAAAAAID8cIMfAAAAAABAgho3blzQst3vfve7BlPuS6VScfzxx9e43Hf88cfH1KlT60y5LyLi4IMPjtGjR0fTpk3Tzu6www71ttwXEVFRUZF2ZqeddlLuAwAAAAAAYL2g4AcAAAAAAJCw8vLygrxn5513juHDhxfkXXXBWWedFffdd1/G802aNIl777037r777mjdunUek2XnRz/6Udx2221p53bbbbcCpMmfsWPHpp0ZNGhQAZIAAAAAAABA/in4AQAAAAAAJKysrCzv72jWrFncc889UVzcML4euuKKK+L3v/99xvMdOnSIF198MY499tg8pqq9n/70p2lLmkOGDClQmtyrqqqKV199Ne2cgh8AAAAAAADri4bxDS4AAAAAAEAdVogb/C677LLo2bNn3t9TF/z1r3+NCy64IOP5nj17xsSJE2PnnXfOY6rcueqqq2LTTTf9zs+aN28e/fv3L2ygHJo0aVIsWbJknTNNmzat178jAAAAAAAA/G8KfgAAAAAAAAnL9w1+AwYMiDPPPDOv76grpk2bFscff3zG8z169IiXXnrpewtzdVGTJk3iiiuu+M7Pdt5552jcuHGBE+XO2LFj0870798/mjRpUoA0AAAAAAAAkH8KfgAAAAAAAAnr2bNn3kpZTZs2jbvvvjuKi9f/r4UWL14cBx54YCxdujSj+e7du8dLL70UG220UZ6T5d4RRxwRW2+99bee77bbbgmkyZ2Kioq0M4MHD85/EAAAAAAAACiQ9f+bXAAAAAAAgDqutLQ0tthii7ycfdlll+Xt7LrmF7/4RXzwwQcZzW644Ybx0ksvxcYbb5znVPlz3HHHfevZkCFDCh8kR6qrq2P8+PFp5wYNGlSANAAAAAAAAFAYCn4AAAAAAAB1QFlZWc7P3GmnneKss87K+bl10cMPPxwPPPBARrPNmjWLJ598Mrp27ZrnVPl15JFHRmlp6Tc/t2rVKrbbbrsEE9XOlClTYtGiReucady4cey4446FCQQAAAAAAAAFoOAHAAAAAABQB5SXl+f0vKZNm8Y999wTxcXr/9dBc+bMiVNOOSWj2aKiorj33nvrdRHuf3Tq1Gmtstuuu+66VuGvvqmoqEg7069fv2jWrFkB0gAAAAAAAEBh1N9v+AAAAAAAANYjub7B79JLL40tttgip2fWVWeffXYsWLAgo9mLLroofvzjH+c5UeH069cvxo0bFxERQ4YMKfj7Z82aFWPHjo0pU6bEO++8E59++mksXrw4Fi1aFNXV1dGqVavo2rVr9OnTJwYMGBD77LNPbLbZZt951tixY9O+b9CgQbn+FQAAAAAAACBRRalUKpV0CAAAAAAAgIbugw8+iJ49e+bkrB133DHGjRsXJSUlOTmvLhszZkwMHTo0o9n18Z/LQw89FEcccURERLz11luxzTbb5P2dH374Ydx7773xxBNPxDvvvFPj/Z133jmGDx8ehx56aBQVFUVERCqVio4dO8ZXX321zt3nn38+9thjj6xyAwAAAAAAQF2k4AcAAAAAAFAHVFdXR8uWLWP58uW1Oqdp06YxefLk6N27d46S1V1VVVWx1VZbxYwZM9LOtmjRIt5+++3o0aNHAZIVzrJly2L69OkREbHttttGcXFx3t718ssvxw033BBPPfVUVFdX1/q8H/7whzFy5MjYaaedYtq0aVFeXr7O+dLS0li0aFG0aNGi1u8GAAAAAACAuqI06QAAAAAAAABEFBcXx5ZbbhlvvfVWrc655JJLGkS5LyJi1KhRGZX7IiKuu+669a7cFxHRvHnz2H777fP6jmnTpsXZZ58dzz//fE7PnTJlSuyyyy5x7rnnRpcuXdLOb7/99sp9AAAAAAAArHfc4AcAAAAAAFBHHHvssfGnP/0p6/3+/fvH+PHjo6SkJIep6qbly5dHjx494p///Gfa2X79+sVrr70WRUVFBUi2/li6dGmcd955MXLkyFizZk1e39WoUaNYvXr1OmfOO++8uOKKK/KaAwAAAAAAAArNDX4AAAAAAAB1RFlZWda7TZo0iXvuuadBlPsiIm699daMyn0RETfccINyXw1NnDgxjj766KisrCzI+9KV+yIiBg0aVIAkAAAAAAAAUFjFSQcAAAAAAADg38rLy7PeveSSS2LLLbfMYZq6a/Xq1XHjjTdmNHvYYYfFgAED8htoPXPNNdfEzjvvXLByXyZKSkpi5513TjoGAAAAAAAA5Jwb/AAAAAAAAOqIbG/w69evX5xzzjk5TlN3/eUvf4nZs2ennSsuLo7LL7+8AInWD6tXr46TTjop/vjHPyYd5Vu23XbbaNWqVdIxAAAAAAAAIOcU/AAAAAAAAOqITTbZJFq2bBlLlizJeKdJkyZxzz33RElJSR6T1S3XX399RnMHHXRQdO/ePc9p1g8LFy6Mgw46KCoqKmq017Nnzzj44IOjf//+sfXWW0f79u2jefPmsWjRovjwww9j/Pjxcd9998U777xTq3yDBg2q1T4AAAAAAADUVUWpVCqVdAgAAAAAAAD+rX///jFx4sSM5y+//PI4//zz85iobnnjjTeiX79+Gc2OHz8+BgwYkOdE9d+CBQti9913j8mTJ2c0X1xcHAcddFD86le/iv79+2e0M3r06Dj99NPjk08+ySrj6NGjY999981qFwAAAAAAAOqy4qQDAAAAAAAA8B/l5eUZz+6www5x7rnn5jFN3XPPPfdkNNe/f3/lvgzMnz8/hg4dmnG5b8CAATFp0qR45JFHMi73RUTst99+MWnSpKz+Z1JcXBy77LJLjfcAAAAAAACgPlDwAwAAAAAAqEPKysoymmvcuHHcc889UVJSkudEdcfKlSvjwQcfzGj2uOOOy2+Y9cDixYtj6NCh8fbbb6edbdy4cdxwww0xbty46Nu3b1bv22CDDeK5556LrbfeukZ7P/zhD6NNmzZZvRMAAAAAAADqOgU/AAAAAACAOiTTgt9vfvObjGfXF2PGjImFCxemnSspKYmDDz64AInqr6qqqjj00ENjypQpaWe7du0aEyZMiDPPPDOKiopq9d6WLVvGE088ES1atMh4Z/DgwbV6JwAAAAAAANRlCn4AAAAAAAB1SHl5edqZ7bbbLs4999wCpKlbRo8endHcoEGDomPHjnlOU7+dfPLJ8Y9//CPt3DbbbBOvvfZabLvttjl796abbhqXXHJJxvODBg3K2bsBAAAAAACgrlHwAwAAAAAAqEM22mijaNOmzfd+3rhx4/jjH/8YpaWlhQtVRzz11FMZzR1yyCF5TlK/XX/99TFq1Ki0czvuuGNUVFTEhhtumPMMp59+ekbnFhUVxcCBA3P+fgAAAAAAAKgrFPwAAAAAAADqmLKysu/97Ne//nVGt/ytb95777347LPPMpp149v3e/PNN+O8885LO9e/f/947rnnolWrVnnJ0bhx4zjppJPSzm211VbRrl27vGQAAAAAAACAukDBDwAAAAAAoI75voLfdtttFyNGjChwmrph/PjxGc21bds2+vTpk+c09dOSJUviyCOPjNWrV69zrkePHvH3v/89Wrdundc8mRQ2lTUBAAAAAABY3yn4AQAAAAAA1DHfdUNf48aN45577onS0tIEEiVv3LhxGc3ttNNOUVRUlOc09dPZZ58dlZWV65xp27Zt/P3vf48NNtgg73nGjh2bdkbBDwAAAAAAgPWdgh8AAAAAAEAd8103+F100UWx1VZbJZCmbnj99dczmuvXr1+ek9RPEydOjLvuuivt3KhRo6JXr155zzNnzpy0ZcOIiF133TXvWQAAAAAAACBJDfOveAUAAAAAAKjDdtttt0ilUknHqDNWrVoVH3zwQUaz3bt3z3Oa+ieVSsXpp5+e9n+nTjjhhDjooIMKkimT2/v69OkTHTp0KEAaAAAAAAAASI4b/AAAAAAAAKjTKisro6qqKqNZBb9vu++++2LixInrnOnQoUPccMMNBUqUWcFv8ODB+Q8CAAAAAAAACVPwAwAAAAAAoE6bMWNGxrObb755HpPUP9XV1XH55Zennbv00kujdevWBUj0b5kU/AYNGlSAJAAAAAAAAJAsBT8AAAAAAADqtE8//TSjuUaNGkWnTp3ynKZ+efzxx+P9999f50yPHj1i2LBhBUoUsWDBgnj33XfTzu26664FSAMAAAAAAADJUvADAAAAAACgTpszZ05Gcy1atMhzkvrn6quvTjszfPjwKCkpKUCaf3vllVcilUqtc2aLLbaIzp07FygRAAAAAAAAJEfBDwAAAAAAgDrtiy++yGiuZcuWeU5Sv0ydOjUmTpy4zpnWrVvHcccdV5hA/9/YsWPTzgwaNKgASQAAAAAAACB5Cn4AAAAAAADUaQsXLsxozg1+a/vzn/+cdmb//fcveDFSwQ8AAAAAAAD+Q8EPAAAAAACAOm358uUZzTVu3DjPSeqPVCoVDz74YNq5Qw89tABp/mPJkiUxefLktHMKfgAAAAAAADQUCn4AAAAAAADUaStWrMjpXEMwZcqUmDVr1jpnSktLY4899ihMoP9v/PjxsWbNmnXO9OjRIzbaaKMCJQIAAAAAAIBkKfgBAAAAAABQp61atSqjuWXLluU5Sf1RUVGRdqZv377RvHnzAqT5j7Fjx6adcXsfAAAAAAAADYmCHwAAAAAAAHVakyZNMpqbN29epFKpPKepHzIp+O24444FSLI2BT8AAAAAAABYm4IfAAAAAAAAdVqzZs0ymlu1alXMmTMnz2nqh3HjxqWd2WKLLQqQ5D9WrFgRb7zxRto5BT8AAAAAAAAaEgU/AAAAAAAA6rQWLVpkPDtz5sw8Jqkf5s+fH/PmzUs7t9lmmxUgzX+8/vrrsXLlynXObLrpptGtW7cCJQIAAAAAAIDkKfgBAAAAAABQp3Xp0iXj2UxuiFvfffDBBxnNbbzxxnlOsraKioq0M27vAwAAAAAAoKFR8AMAAAAAAKBO23TTTTOeHT9+fP6C1BOVlZUZzdXkZsRcGDt2bNoZBT8AAAAAAAAaGgU/AAAAAAAA6rSaFPxeeOGFWL58ef7C1AP//Oc/M5orZMFv9erV8dprr6WdU/ADAAAAAACgoVHwAwAAAAAAoE7r27dvxrPLli2Lv//97/kLUyCzZs2Kp59+OqvdJUuWZDRXXV2d1fnZmDRpUixdunSdM127do3NN9+8QIkAAAAAAACgblDwAwAAAAAAoE7r1atXtGvXLuP5W265JY9p8m/s2LGxww47xBFHHBEffPBBjfczLfgtWrSoxmdn689//nPaGbf3AQAAAAAA0BAp+AEAAAAAAFDn7bTTThnPVlRUxMSJE/OYJn/uvPPO2H333eOrr76Kf/3rX3H44YfHypUra3TGsmXLMporVMHvlVdeiVtvvTXtnIIfAAAAAAAADZGCHwAAAAAAAHXe/vvvX6P5s88+O09J8mPFihVx6qmnxkknnRSrV6/+5vlbb70V55xzTo3OKioqymjuo48+qtG52Vi6dGkcf/zxUV1dnXZWwQ8AAAAAAICGSMEPAAAAAACAOu/AAw+MkpKSjOfHjx8ft99+ex4T5c7UqVNj++23j5EjR37n57fccks8/vjjGZ/XrFmzjOYmTJiQ8ZnZSKVSceyxx8aHH36YdrZLly7Rs2fPvOYBAAAAAACAukjBDwAAAAAAgDqvY8eOsccee9Ro56yzzop33303T4lqL5VKxU033RQ77LBDTJs2bZ2zP/vZz+KTTz7J6Nz27dtnNDdu3LiM5rJ18cUXx2OPPZbR7IABA/KaBQAAAAAAAOoqBT8AAAAAAADqheHDh9dofvny5bH33nvHZ599lqdE2ZsyZUrssssuMXz48Fi5cmXa+YULF8aLL76Y0dkbb7xxRnNTp06NN998M6PZmrr99tvjt7/9bcbzCn4AAAAAAAA0VAp+AAAAAAAA1Av/9V//FX369KnRzmeffRa77757fPzxx3lKVTNff/11nHnmmbHddtvFq6++mtFOSUlJ3HHHHXHCCSdkNN+7d++M89x4440Zz2bq9ttvj1NOOSVSqVTGOwp+AAAAAAAANFRFqZp8swYAAAAAAAAJeuqpp2K//far8V7Hjh3j0UcfjV122SUPqdJbunRpjBw5Mq655pqYO3duxntNmjSJv/zlL3HQQQdlvLN8+fJo3bp1VFVVpZ0tLi6O559/PoYOHZrx+d8nlUrFJZdcEpdeemmNyn2NGzeOf/3rX9G4ceNaZwAAAAAAAID6xg1+AAAAAAAA1Bv77rtv7LnnnjXemzt3bgwaNChGjBgRy5cvz0Oy7/b111/HVVddFZtuumn86le/qlG5r3Xr1vHcc8/VqNwXEdGsWbPYaaedMpqtrq6Oo48+OmbPnl2jd/xfixcvjoMOOiguueSSGpX7IiK23npr5T4AAAAAAAAaLAU/AAAAAAAA6pVbb701WrduXeO96urquPrqq6N79+4xcuTIWLFiRR7S/du4cePi+OOPjy5dusR5550XX331VY32+/TpE6+99loMGjQoq/fX5JbDOXPmxE477RTvvPNOVu/629/+Fn369Iknnngiq/3tttsuqz0AAAAAAABYHxSlavpXaAIAAAAAAEDCHn744Tj88MNrdUbbtm3jqKOOikMPPTR23nnnKC0tzfqs5cuXx9ixY+O5556Lp556KiorK7M+68gjj4w77rgjWrRokfUZX3zxRXTt2jXWrFmT8U7Lli1jxIgRceaZZ0bLli3Tzr/yyitx+eWXx7PPPpt1zoiIO+64I4YNG1arMwAAAAAAAKC+UvADAAAAAACgXjrnnHPiuuuuy8lZrVu3jgEDBsQ222wTW221VXTt2jU23njjaNOmTTRt2jQaN24cS5cuja+//jq+/vrrmDNnTkyfPj2mTZsW06ZNi4kTJ9b6RsDGjRvHDTfcEKeeempOfqdjjjkm7r///hrvtW/fPg444IDYc889o7y8PDp27BgtW7aMefPmxaxZs+If//hHPPnkk/HWW2/lJOfEiRNjhx12yMlZAAAAAAAAUN8o+AEAAAAAAFAvpVKpOP744+Pee+9NOkqtbbvttnHXXXfFNttsk7MzP/zwwygrK4uVK1fm7MxcKyoqiiVLlkTz5s2TjgIAAAAAAACJKE46AAAAAAAAAGSjqKgoRo0aFcccc0zSUbLWokWLuO6662LixIk5LfdFRHTv3j1+85vf5PTMXNtss82U+wAAAAAAAGjQFPwAAAAAAACot0pKSuK+++6LX//610lHqbF99903pk+fHmeffXaUlJTk5R0jRoyIffbZJy9nr8vJJ58ce+21V9q5Pn36FCANAAAAAAAA1F0KfgAAAAAAANR7l1xySTzxxBPRqVOnpKOkNWTIkKioqIjRo0dHt27d8vqu4uLiePDBB2OXXXbJ63v+R/fu3eOZZ56JkSNHxvTp09PO9+jRowCpAAAAAAAAoO5S8AMAAAAAAGC9sP/++8e0adPiqKOOiqKioqTjfMv/FPvGjBkTu+66a8He27Jly3j22Wfj4IMPzts72rRpE5dddllMmzYt9txzz5g7d2588sknafe6d++et0wAAAAAAABQHyj4AQAAAAAAsN7YYIMN4v77749JkybFXnvtlXScaNu2bZx66qnx5ptvFrzY97+1aNEiHn300Rg5cmS0adMmZ+duuOGGcemll8asWbPiwgsvjCZNmkRExBtvvLHOve7du8fZZ58dBxxwQM6yAAAAAAAAQH1UlEqlUkmHAAAAAAAAgHx49913484774z7778/FixYUJB3NmnSJAYPHhzHHXdcHHjggdG0adOCvDdTX331Vdx0001xxx13xJdfflnj/bZt28aee+4ZRxxxROyzzz5RUlLyrZmLL744LrnkkrWebbPNNnHggQfGgQceGFtvvXXW+QEAAAAAAGB9ouAHAAAAAADAem/lypVRUVERzzzzTDz77LMxY8aMnJ1dXFwcffv2jd133z2GDh0aAwcOjGbNmuXs/HxZs2ZNjB07NsaMGRNvvvlmfPTRRzFnzpxYtmxZREQ0b9482rZtG926dYvNN988tt122+jXr19sv/32UVpaus6zL7jggrjmmmti4MCB35T6unXrVohfCwAAAAAAAOoVBT8AAAAAAAAanEWLFsXbb78dU6ZMicrKypg9e3Z8/vnn8eWXX8ayZctixYoVsWLFiiguLo5WrVpFq1atomXLltGqVavo2rVr9O7dO7bYYotv/mvLli2T/pXqnCVLlvjnAgAAAAAAAGko+AEAAAAAAAAAAAAAAABAAoqTDgAAAAAAAAAAAAAAAAAADZGCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASEBp0gEAAAAAAAAAAAAAAAAAcmH16tUxZsyYeOKJJ+L111+PL774IubPnx9t27aNzp07R9++fWPfffeNPffcM1q2bJl0XIiiVCqVSjoEAAAAAAAAAAAAAAAAQG08/PDDcf7558dHH32UdrZdu3ZxwQUXxGmnnRZNmjQpQDr4bgp+AAAAAAAAAAAAAAAAQL31r3/9K4488sh46qmnarzbu3fvePLJJ6Nnz555SAbpKfgBAAAAAAAAAAAAAAAA9dLs2bNjr732iqlTp2Z9Rrt27eLxxx+PXXfdNYfJIDPFSQcAAAAAAAAAAAAAAAAAqKmlS5fGvvvu+61yX3FxcRx55JExevTo+Pzzz2PlypXxxRdfxJgxY+Kss86KVq1arTW/YMGC2H///WPGjBmFjA8R4QY/AAAAAAAAAAAAAAAAoB467LDD4q9//etaz3r06BEPP/xwbLPNNt+7N3fu3Dj55JPj8ccf/9buW2+99a0CIOSTG/wAAAAAAAAAAAAAAACAeuX555//Vrlvm222iQkTJqyz3BcR0bFjx3j00Ufj9NNPX+v5Bx98ENdcc03Os8K6uMEPAAAAAAAAAAAAAAAAqFf69u0bU6ZM+ebnDh06xKRJk6Jr164Zn1FdXR377LNPPPvss988a9GiRXz44YfRqVOnnOaF7+MGPwAAAAAAAAAAAAAAAKDeePvtt9cq90VE/O53v6tRuS8iori4OG699dZo1KjRN8+WLl0ajzzySE5yQiZKkw4AAGSvqqoqKisr13rWrl27KC7W4QcAAAAAAAAAAFjfVVdXx4IFC9Z61rNnzygt9cfEAVi/Pfnkk2v93KlTpzj++OOzOmvzzTePgw46KB5++OFvno0ePTp+8Ytf1CojZMq/uQFAPVZZWRl9+vRJOgYAAAAAAAAAAAB1xPTp02PLLbdMOgYA5NWkSZPW+nmvvfaqVcF97733XqvgN3HixKzPgppyvQ8AAAAAAAAAAAAAAABQb3zxxRdr/VzbcvsWW2yx1s8LFy6MVatW1epMyJSCHwAAAAAAAAAAAAAAAFBvLFq0aK2f27ZtW6vzNthgg289mz9/fq3OhEwp+AEAAAAAAAAAAAAAAAD1Rrt27db6eeHChbU67/8WBiMi2rRpU6szIVOlSQcAALL3f//FNCJi+vTp0b59+wTSAAAAAAAAAAAAUEhfffVV9OnTZ61n3/XnygBgfdOpU6e1fq6srKzVeR9//PFaP7du3TqaNWtWqzMhUwp+AFCPFRd/+zLe9u3bR4cOHRJIAwAAAAAAAAAAQNK+68+VAcD6pm/fvvHkk09+8/MLL7xQq/Oef/75b50PheLf3gAAAAAAAAAAAAAAAIB6Y++9917r508++WStwl9NzJs3Lx566KG1nu23335ZZ4OaUvADAAAAAAAAAAAAAAAA6o0ddtghNt9887WenXfeebF06dIan3XeeefFkiVLvvm5UaNG8eMf/7jWGSFTCn4AAAAAAAAAAAAAAABAvVFcXBwXX3zxWs/ee++9OO6446Kqqirjc2644Ya4++6713p2yimnxCabbJKLmJARBT8AAAAAAAAAAAAAAACgXjnqqKOif//+az175JFHYp999okvvvhinbtLly6NM844I84+++y1nm+44Ybx3//93znPCutSmnQAAAAAAAAAAAAAAAAAgJooLi6ORx99NLbffvuYM2fON8+ff/756NmzZwwbNiwOOOCA6NOnT7Rt2zYWLVoUlZWV8eyzz8btt98ec+fOXeu85s2bx5NPPhnt27cv9K9CA1eUSqVSSYcAALIzb9686Nix41rP5s6dGx06dEgoEQAAAAAAAAAAAIXiz5ABQMSbb74Ze++9d8ybNy/rM1q2bBkPPfRQ7L333jlMBpkpTjoAAAAAAAAAAAAAAAAAQDa23377eP3116OsrCyr/U033TTGjx+v3EdiFPwAAAAAAAAAAAAAAACAemuzzTaLSZMmxXXXXRcbbLBBRjutWrWKSy65JKZOnRpbb711nhPC9ytKpVKppEMAANmZN29edOzYca1nc+fOjQ4dOiSUCAAAAAAAAAAAgELxZ8gA4NuWLFkSzz33XDz99NMxadKk+PLLL2P+/PnRunXr6Ny5c2y11Vax7777xj777BNt2rRJOi4o+AFAfeb/OQMAAAAAAAAAANBw+TNkAAD1X3HSAQAAAAAAAAAAAAAAAACgIVLwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAACoF/71r3/FQw89FJMmTUo6CqxXvv7666QjrLcWL16cdATqOAU/AAAAAAAAAAAAAACgzpo7d27cddddsc8++0SHDh3iiCOOiAMPPDDpWLDeeOCBB6J79+7x7LPPJh1lvXPLLbdEr1694qGHHko6CnWYgh8AAAAAAAAAAAAAAFCnfPzxx3H99dfHrrvuGl26dIlhw4bF008/HStXroyIiF122SXhhFD/zZo1K/bcc884+uij46uvvooLL7ww6UjrlcrKyjjnnHNi7ty5ccQRR8T+++8fs2fPTjoWdZCCHwAAAAAAAAAAAAAAUCc89thj0bdv39h8883jl7/8ZbzyyitRXV39rbnBgwcXPhysR+68884oLy+P5557LiIifvCDH8S1116bcKrcePrpp6OoqOib//z1r39NJEePHj3il7/85Tc/jx49OsrLy+Pxxx9PJA91l4IfAAAAAAAAAAAAAABQJ9x0000xZcqUtHNDhgwpQBpY/yxYsCAOOeSQOOmkk2Lp0qUREdGlS5cYO3bsevF/V6tXr46zzz57rWfTp09PJEtRUVH87ne/iwceeCCaNm0aERGLFi2Kgw8+OE4//fRvbiQFBT8AAAAAAAAAAAAAACBxK1eujNdffz3t3IYbbhi9evUqQCJYv4wdOzZ++MMfxmOPPfbNs549e8aECRNi6623TjBZ7tx8880xc+bMtZ5NmzYtoTT/duSRR8ZLL70U7dq1++bZLbfcEjvttFN8+umnCSajrlDwAwAAAAAAAAAAAAAAEvfaa6/FihUr0s4NGjSoAGlg/XLLLbfE0KFD4/PPP//mWe/evaOioiI22WSTBJPlzrx58+LSSy/91vOkC34RETvuuGOMHTs2Ntxww2+eTZ48Ofr16xcTJ05MMBl1gYIfAAAAAAAAAAAAAACQuJdffjmjuSFDhuQ3CKxHVq1aFSeeeGKcfvrpUVVV9c3zsrKyePnll6NLly4Jpsutiy66KBYvXvyt55WVlbF69eoEEq2trKwsxo0bF927d//m2ZdffhmDBw+Ov/71rwkmI2kKfgAAAAAAAAAAAAAAQOIqKioymhs8eHB+g8B6YuHChbHbbrvFqFGj1nq+5ZZbxksvvRSdOnVKKFnuTZkyJe66667v/Gz16tVRWVlZ4ETfbbPNNouXX345Nttss2+eLV++PA4//PD4wx/+kGAykqTgBwAAAAAAAAAAAAAAJGrlypXx2muvpZ3baKONomfPngVIBPXbP//5zxg4cGCMHz9+refdunWL559/Pjp06JBQsvwYPnx4VFdXf+/n06ZNK2Caddt4443jxRdfjI022uibZ6lUKn7xi1/EDTfckGAykqLgBwAAAAAAAAAAAAAAJGrixImxfPnytHNu74P0KisrY8CAAd8qtXXo0CFeeOGF2HjjjRNKlh+PPPJI2htA61LBL+LfN/n94x//iPbt26/1/Oyzz44rrrgioVQkRcEPAAAAAAAAAAAAAABI1Msvv5zRnIIfrNv7778fAwcOjE8++WSt502bNo3Ro0dHr169EkqWHytWrIhf/epXaefqWsEvIqJ3797x2GOPRePGjdd6fsEFF8Qtt9ySUCqSoOAHAAAAAAAAAAAAAAAkSsEPam/WrFkxdOjQ+PLLL7/12ahRo6J///4JpMqva6+9NmbNmpV2bvr06fkPk4WBAwfGHXfc8a3nw4cPj0ceeSSBRCRBwQ8AAAAAAAAAAAAAAEjMqlWrYsKECWnnNt544+jRo0cBEkH9M3v27Bg6dGh8/vnn3/rsggsuiCOPPDKBVPk1e/bsuPLKKzOaraysjNWrV+c5UXZ++tOfxtlnn73Ws+rq6jj66KOjoqIioVQUkoIfAAAAAAAAAAAAAACQmIkTJ8by5cvTzrm9D77bkiVLYq+99oqPPvroW58NGjQoLr300gRS5d95550XS5cuzWh29erV8f777+c5UfauvPLK2G677dZ6tnLlyjjkkEMyuqGQ+k3BDwAAAAAAAAAAAAAASEymN1Qp+MG3VVdXx5FHHhlTp0791mft27ePBx54IEpKShJIll+vvfZaPPDAAzXamTZtWp7S1F6jRo3iL3/5S7Rs2XKt5/Pnz4+DDz44VqxYkVAyCkHBDwAAAAAAAAAAAAAASMzLL7+c0ZyCH3zbiBEjYvTo0d/52ahRo2KjjTYqcKL8S6VSMXz48EilUjXamz59ep4S5UbPnj3j6quv/tbzyZMnx8knn5xAIgpFwQ8AAAAAAAAAAAAAAEjE6tWr49VXX00717Vr1+jevXsBEkH98cgjj8S11177nZ8dfvjhsf/++xc4UWH86U9/iokTJ9Z4ry7f4Pc/fv7zn8eOO+74ref33ntv3HvvvQkkohAU/AAAAAAAAAAAAAAAgES88cYbsWzZsrRzbu+DtX366acxbNiw7/ysXbt2cdNNNxU4UWEsWbIkzj///Kx260PBr7i4OG6//fYoLS391mfDhw+Pzz77LIFU5JuCHwAAAAAAAAAAAAAAkIiXX345ozkFP/iPNWvWxJFHHhmLFi36zs9/+9vfRseOHQsbqkAuv/zy+Oc//5nVbmVlZaxevTrHiXJv6623jmOPPfZbzxcvXhzHHXdcpFKpBFKRTwp+AAAAAAAAAAAAAABAIioqKjKaGzJkSJ6TQP1xzTXXxPjx47/zs169esVJJ51U4ESF8fHHH8f111+f9X5VVVW8//77OUyUP//93/8djRs3/tbzMWPGxMiRIxNIRD4p+AEAAAAAAAAAAAAAAAVXVVX1vSWl/22TTTaJzTbbrACJoO776KOP4tJLL/3ezy+//PIoLS0tYKLCOeecc2LlypXf/FxUVBTHH398jc6YNm1armPlxaabbhonnHDCd3524YUXxrx58wqciHxS8AMAAAAAAAAAAAAAAAruzTffjKVLl6adGzRoUAHSQP1w6qmnxvLly7/zsy222CIOPvjgAicqjJdeeikee+yxtZ4dffTRcdxxx9XonPpS8IuIGD58+Hc+X7RoUYwYMaLAacgnBT8AAAAAAAAAAAAAAKDgXn755YzmBg8enNccUF888sgj8dxzz33v52eddVYUFRUVMFFhrFmzJs4888y1njVv3jwuv/zyKC8vr9FZ9ang17t37xgyZMh3fvbHP/4xJkyYUOBE5IuCHwAAAAAAAAAAAAAAUHCZFvy+r+ACDUlVVVVccMEF3/t5mzZt4thjjy1gosK544474p133lnr2S9/+cvYeOONo127dtGlS5eMz6pPBb+IiJNPPvk7n6dSqTjnnHMKnIZ8UfADAAAAAAAAAAAAAAAKqqqqKsaPH592bpNNNolNN900/4Ggjhs1alRUVlZ+7+f/j737jq+yvP8//j4nOxAgk733UkABByK4cI/WXa36a61tXa1W/dJaO92tqBW11lpXtaLWgQPqYO8hKyEhkAGBTLJ3zvj9gShIknMnOfd9n/F6Pr5+S+77c1/X+9w5HE5O7s99XX755YqLi7MwkTUqKyv1wAMPHLWtb9++uu+++775evz48YbH2717t5qbm/2Wz2wXXnih4uPjW923evVqffLJJxYnghlo8AMAAAAAAAAAAAAAAAAAAAAAAJbatGmTamtrfdbNmjXL/DBAgGtoaNAf//jHdmt+8IMfWJTGWr///e9VVlZ21LYHH3xQ3bp1++brCRMmGB7P5XJp165dfstntvj4eJ133nlt7v/tb39rYRqYhQY/AAAAAAAAAAAAAAAAAAAAAABgqWXLlhmqmz17tslJgMD36quv6sCBA23uT0tL08yZMy1MZI3MzEzNnz//qG2TJ0/WDTfccNS2jqzgJ0np6eldzmal73//+23u27x5s9577z0L08AMkXYHAAAAAAAAAAAAAAAAAAAAAAAAgcvr9WrTpk3atGmTtm/fru3bt6uoqEhVVVWqrKyUx+NRQkKCBgwYoNGjR+uUU07RueeeqzFjxrQ55tKlSw3NzQp+CHder1dPPvlkuzVz5syR0xl6a4D98pe/lMvlOmrbE088ccxj7cgKflLwNfidddZZcjgc8nq9re5//PHHddlll1mcCv5Egx8AAAAAAAAAAAAAAAAAAAAAADiKx+PRokWL9N577+mjjz5SUVFRu/Xl5eUqLy/Xtm3b9Pbbb+uXv/yljj/+eN1+++26/vrrFR0d/U2t2+3WypUrfWYYMmSIBg8e3OXHAgSzTz/9VJmZme3WnHfeeRalsc7HH3+sRYsWHbXtkksuabXpt6Mr+GVkZHQlmuVSU1M1ceJEbdu2rdX9a9as0bp16zR9+nSLk8FfQq89FwAAAAAAAAAAAAAAAAAAAAAAdEpFRYX+8pe/aPjw4brgggv04osv+mzua8vWrVv14x//WGPGjNG77777zfbNmzerpqbG5/GzZ8/u1LxAKPnb3/7ms+bMM8+0IIl1WlpadNdddx21LSoqSo8//nir9QkJCRo0aJDh8YNtBT/J9/f4iSeesCgJzECDHwAAAAAAAAAAAAAAAAAAAAAAYa6hoUEPPvigBg0apHvuuUd5eXl+Gzs3N1eXX365rrzySlVVVWnp0qWGjmttpS4gnBQVFemzzz5rt2b48OFKS0uzKJE1nn76ae3ateuobbfeeqtGjhzZ5jETJkwwPP7u3bvV3Nzc6Xx2OPnkk9vd/+677+rAgQMWpYG/0eAHAAAAAAAAAAAAAAAAAAAAAEAYe/PNNzV69Gjdf//9qq2tNW2et99+W9OmTdOCBQsM1dPgh3D3xhtvyO12t1vjq/Er2JSWlupPf/rTUduSkpL0wAMPtHvc+PHjDc/hcrmUlZXVqXx2mTp1arv73W63Xn/9dYvSwN9o8AMAAAAAAAAAAAAAAAAAAAAAIAyVlZXpe9/7nq699lrt27fPkjl37dqljRs3+qwbNmyYBg0aZEEiIHC99tprPmumT59uQRLr/OY3v1FVVdVR2373u98pMTGx3eM6soKfJGVkZHQ4m52GDBmilJSUdmteffVVi9LA32jwAwAAAAAAAAAAAAAAAAAAAAAgzHz88ceaMGGC3nvvPbujtIrV+xDucnNztWXLFp91EydOND+MRbZs2aJ//vOfR20bNWqUfvazn/k8tqMNfunp6R2qDwRTpkxpd396ero2bdpkURr4Ew1+AAAAAAAAAAAAAAAAAAAAAACEkQcffFAXXXSRiouL7Y7SJhr8EO4++eQTQ3Xjx483OYl17rzzTnk8nqO2Pf7444qKivJ57NixY+V0Gm+TCsYGvzFjxvis+c9//mNBEvgbDX4AAAAAAAAAAAAAAAAAAAAAAISBxsZG/eAHP9D9998vr9drd5x20eCHcPfpp5/6rElLS1NKSooFacz39ttva/ny5UdtO+OMM3TxxRcbOj4uLk7Dhg0zPF8wNviNHTvWZ83ChQstSAJ/i7Q7AAAAAAAAAAAAAAAAAAAAAAAAMFd1dbXOP/98rVq1qsPHRkZGatasWZozZ44mTZqk0aNHq1evXoqNjVVFRYXy8vK0du1aLViwoFPjf9fw4cM1cODALo8DBKumpiYtWbLEZ92oUaMsSGO+xsZG3XPPPUdtczqdeuKJJzo0zvjx47V7925DtXv27FFzc7Oio6M7NIedjDT4ZWVlaffu3RoxYoQFieAvrOAHAAAAAAAAAAAAAAAAAAAAAEAIq6ys1FlnndXh5rvBgwfrL3/5i0pKSvTZZ5/pV7/6lc466ywNHDhQCQkJioqKUlpamqZNm6Y77rhDK1eu1ObNmzVjxowu5WX1PoS7TZs2qb6+3mfdkCFDzA9jgccff1z5+flHbbvxxht1/PHHd2icCRMmGK51uVzKysrq0Ph2M7pCIav4BR8a/AAAAAAAAAAAAAAAAAAAAAAACFHl5eU688wztWHDBsPHJCUl6emnn9bu3bt19913KzEx0fCxkydP1vLly/V///d/nYkriQY/YN26dYbqBg8ebHIS8+3fv1+PPvroUdu6d++uP//5zx0eqyMNfpKUnp7e4Tns1K9fP0VERPis++KLLyxIA3+iwQ8AAAAAAAAAAAAAAAAAAAAAgBBUV1enOXPmaPPmzYaPufLKK5Wdna3bb79dkZGRnZrX4XDo4Ycf7lSDjiTNnj27U8cBoWLt2rWG6kKhwe++++5TXV3dMdv69u3b4bHGjx/fofpga/CLiIhQv379fNatWbNGXq/XgkTwFxr8AAAAAAAAAAAAAAAAAAAAAAAIMW63W1dddZU2btxoqD4+Pl6vvvqq3nrrLSUlJfklw29+8xtde+21HTpmxIgR6t+/v1/mB4LV+vXrDdV1pgkukKxdu1ZvvPHGUdsGDhyou+++u1PjjR49ukONycHW4CdJgwYN8llTXl6uzMxMC9LAX2jwAwAAAAAAAAAAAAAAAAAAAAAgxNx22236+OOPDdX2799fK1as0PXXX+/3HM8884z69OljuH7WrFl+zwAEk7q6OuXn5xuqTU1NNTmNebxer+64445jVpp7+OGHFRcX16kxo6OjNXLkSMP1GRkZnZrHTkZfT1evXm1yEvgTDX4AAAAAAAAAAAAAAAAAAAAAAISQZ555Rs8//7yh2nHjxmn9+vWaMmWKKVkSExP1hz/8wXD97NmzTckBBIvs7Oxjmt7aEswNfq+++qo2bNhw1LZp06Z1eNXP75owYYLh2t27d6upqalL81ktJSXFUN2WLVvMDQK/osEPAAAAAAAAAAAAAAAAAAAAAIAQsWXLFv3qV78yVHv88cdr6dKl6tevn6mZbrrpJvXv399QLSv4Idzt2rXLcG2wNvjV1tZq7ty5x2x/4okn5HA4ujR2Rxr83G63srKyujSf1Yw2+AXj6oThjAY/AAAAAAAAAAAAAAAAAAAAAABCQF1dna6++mpDK1KNHj1aX3zxhSUNQpGRkWpsbPRZN3LkSNObDYFAl52dbaguIiJCCQkJJqcxx4MPPqjCwsKjtl1xxRU69dRTuzz2+PHjO1Sfnp7e5TmtZLTBb+fOnSYngT/R4AcAAAAAAAAAAAAAAAAAAAAAQAi4++67Da1G1adPHy1atEjJyckWpJK2bdumgwcP+qybPXu2BWmAwLZ//35Ddd26dTM5iTlycnI0b968o7bFxMTo0Ucf9cv4HVnBTwq+le4SExMN1RUWFqqystLcMPAbGvwAAAAAAAAAAAAAAAAAAAAAAAhy69ev1wsvvOCzLioqSh988IGGDBlifqivLVmyxFDdrFmzzA0CBIGSkhJDdd27dzc5iTl+9atfHbPK6B133KGhQ4f6ZfwRI0YoJibGcH2wreDXkcbOvXv3mpgE/kSDHwAAAAAAAAAAAAAAAAAAAAAAQczj8ejnP/+5vF6vz9qHHnpI06ZNsyDVt2jwA4wrLi42VBeMK/h9+eWXeu+9947alpqaqt/85jd+myMiIkJjxowxXB9sDX4daewsKioyMQn8iQY/AAAAAAAAAAAAAAAAAAAAAACC2D//+U9t2rTJZ92sWbN09913W5DoWx6PRytWrPBZN2rUKPXt29eCREBgKy0tNVQXHx9vchL/crvd+sUvfnHM9j/84Q/q2bOnX+eaMGGC4do9e/Ycs6JgIOtIYycNfsGDBj8AAAAAAAAAAAAAAAAAAAAAAIJUS0uL/vznP/usi4yM1DPPPCOHw2FBqm9t2bJFFRUVPutmz55tQRog8FVXVxuqi4yMNDmJf/3973/X9u3bj9o2btw4/eQnP/H7XOPHjzdc63a7lZWV5fcMZqHBLzTR4AcAAAAAAAAAAAAAAAAAAAAAQJD697//rb179/qsu/XWWzvU9OIvS5YsMVQ3a9Ysc4MAQcLoanLB1OBXUVGhBx544Jjtf/3rXxUREeH3+Tqygp8kpaen+z2DWTryfTfaLAr70eAHAAAAAAAAAAAAAAAAAAAAAEAQ8ng8evTRR33WRUdH67777rMg0bFo8AM6JhQb/H7/+9/r4MGDR22bM2eOzj33XFPm62gzc6g2+DU2NpqYBP5Egx8AAAAAAAAAAAAAAAAAAAAAAEHo888/V2Zmps+66667Tn379rUg0dHcbrdWrFjhs27MmDHq06ePBYmAwGe0wc+Mle/MsHPnTj377LNHbYuIiNBf//pX0+YcOnSounXrZrg+mBr8OvJ9p8EveARPuy4AAAAAAAAAAAAAAAAAAAAAAPjGa6+9Zqju5z//uclJWrdp0yZVV1f7rGP1PuBbHo/HUJ3X6zU5iX/88pe/lMvlOmqb2+3WhAkTbEp0rIyMDLsjGMYKfqGJFfwAAAAAAAAAAAAAAAAAAAAAAAgy9fX1ev/9933WjRw5UieccIL5gVqxZMkSQ3U0+AHfiomJMVT33aa5QPTRRx9p8eLFdsfwac+ePYZXTrSb02m8FawjtbAX3ykAAAAAAAAAAAAAAAAAAAAAAILMwoULVVtb67PuiiuusCBN62jwAzrOaIOf2+02OUnXtLS06O6777Y7hiFut1uZmZl2xzCkI42dRp9LsB8NfgAAAAAAAAAAAAAAAAAAAAAABJnPPvvMUN3s2bNNTtK6lpYWrVy50mfd2LFj1bt3bwsSAcEhNjbWUF2gr+D31FNPadeuXXbHMCw9Pd3uCIbQ4BeaaPADAAAAAAAAAAAAAAAAAAAAACDILFu2zGdNRESETjrpJAvSHGvDhg2qq6vzWcfqfcDRunfvbqiupaXF5CSdV1JSoj/96U9HbUtKSlJlZaW8Xq8l/23fvr1DmTMyMvx5CkzTkZUbafALHjT4AQAAAAAAAAAAAAAAAAAAAAAQRPbv36/du3f7rBszZozhZiF/W7JkiaE6u1YYBAKV0RUta2trTU7Seb/5zW9UXV191La5c+eqZ8+elmUYMWKEnE7jbVPBsoJfRxr8evToYWIS+BMNfgAAAAAAAAAAAAAAAAAAAAAABJH169cbqhsxYoTJSdpmtMGPFfyAowV7g99XX32ll1566aht/fv312233WZpjtjYWA0ePNhwfbA0+DU0NBiuTUtLMzEJ/IkGPwAAAAAAAAAAAAAAAAAAAAAAgsiuXbsM1Q0fPtzkJK1rbm7W6tWrfdaNGzdOqamppmRoaWkxZVzAbH369DFUF6gNfnfeeac8Hs9R2373u98pNjbW8iyjR482XLtnzx41NjaamMY/OvJ9N9osCvtF2h0AAAAAAAAAAAAAAAAAAAAAAAAYl52dbajOrOY5X9auXWtolSl/r9534MABvf3223rrrbeUkZGh/fv3q1u3bsfUpaen68svv9TatWuVnZ2tvXv3qqamRk1NTYqPj1dKSopGjx6tU089VZdeeqkmTJjQ4Rz/+9//tHLlSmVkZCg3N1dVVVVyuVxKTEzUgAEDdPLJJ+uSSy7R2Wef7a+H3yaPx6PVq1dr9erV+uqrr5Senq7y8nJVVlaqublZPXr0UM+ePTVy5EhNnjxZZ555ps444ww5nawpZYcBAwYYqmtoaJDb7VZERITJiYxbsGCBVqxYcdS2UaNG6aabbrIlz5gxY7Ro0SJDtR6PR5mZmZo0aZK5obqorq7OcC0r+AUPGvwAAAAAAAAAAAAAAAAAAAAAAAgiRhv8Wmtus8KSJUsM1c2ePbvLcxUXF+udd97RggULtHLlym9WDhszZsxRj7+yslIvvviiXnzxRWVlZbU5Xk1NjWpqapSbm6tFixbpt7/9rc466yw9/fTTGjt2bJvHud1u/fe//9Vzzz2nZcuWHbOC2WElJSUqKSnR5s2bNX/+fE2cOFH/+Mc/NH369E6egbbt3LlT8+fP17vvvquioqI26w4ePKiDBw8qJydHixcv1iOPPKIBAwbonnvu0a233tqlBrIPPvhAl156aZv7+/btq7y8PEVHR3d6juzsbJ1yyikqKytrdX+PHj20dOlSTZ48udNzWGnUqFGGa8vLy21r5P2uhoYG3Xvvvcds/9Of/qTISHvalzqygp8kZWRkBHyDX0dW8DPaLAr70U4NAAAAAAAAAAAAAAAAAAAAAEAQaa9Z60jx8fEmJ2mdkQY/h8Oh008/vctzTZ48WbfddpuWL19+VFPd4ebBpqYmPfbYYxoyZIjuueeedpv72vL5559r8uTJeuedd1rd/84772j06NG68sortWTJkjab+1qzfft2zZgxQ//61786nKu9Mb///e9r/Pjxmj9/vuHny5EKCgp05513atq0aSosLOx0losuukgjRoxoc39hYaHefPPNTo9fWlqq8847r83mvpiYGH3wwQdB09wnHWpONaq0tNTEJB3zl7/8Rfn5+UdtmzJliq644gqbEnW8wS89Pd2kJP5TU1NjqC4hIUF9+vQxOQ38hQY/AAAAAAAAAAAAAAAAAAAAAACCiNEVnBoaGkxOcqzGxkatXbvWZ924ceO6vPLYrl272mw+O+OMM7R161adeOKJuu+++1RVVdWluZqamnT11Vdr6dKl32zLz8/XWWedpSuuuEJ79uzp9Ngul0s333yzPv/88y5ldLvd+vOf/6wTTjhB//3vf+X1ers0niRt3rxZp59+uoqLizt1vNPp1J133tluzbx58zo1dn19vS688MI2z31ERITeeOMNzZo1q1Pj22XkyJGGV00MlAa/goICPfLII8dsf+ihh+RwOGxIdEgoNvgZ/Z539LHDXjT4AQAAAAAAAAAAAAAAAAAAAAAQRIw2+FVUVJic5FiPP/64mpqafNYdXmGvK45stjuSw+FQYWGhTjrpJO3YsaPL8xzmdrt1/fXXq7GxUe+8844mTpyoL774wm9j33nnnXK73Z06vqqqSqeffrp++9vfqqWlxS+ZDsvOztYdd9zR6eNvuukmJSYmtrl/69atHW5udLvduuaaa7R+/fo2a5577jl973vf69C4gSA6OlqjRo0yVFtSUmJyGmN+9atfqb6+/qhtp59+uubMmWNTokP69eunhIQEw/U0+MEuNPgBAAAAAAAAAAAAAAAAAAAAABBE6urqDNWVl5ebnORo69ev1x//+EdDtf5YVW3ZsmWtbnc4HLrjjjvU2NjY5Tm+q6CgQLNnz9YVV1yhmpoav46dkZGhL7/8ssPHlZeX68wzz9SqVav8mudICxYs0JYtWzp1bLdu3fSTn/yk3ZonnniiQ2Pecccd+vDDD9vc/+c//1k333xzh8YMJCeddJKhuoKCApOT+LZixQq99dZbx2x/+OGHbUhzrI40uuXk5JjyuuFPZWVlhurGjx9vchL4Ew1+AAAAAAAAAAAAAAAAAAAAAAAEEafTWCvA9u3bTU7yrerqal133XVyuVw+ax0Oh04//fQuz9lWg5/H42nzmPj4eN1000167733tH//fjU3N6u4uFgff/yxzjvvPEPzrl27ts19CQkJuuWWW/Txxx+ruLhYzc3NKiws1Icffqhzzz3X59j/+9//DGU4rLm5Weedd542bdrUbt24ceP06KOPat26dSotLVVLS4sqKiq0fv16PfjggxowYIDPud55550OZTvS7bffrqioqDb3L1q0SDt37jQ01mOPPaZnn322zf133HGHfvOb33Q4YyA5+eSTDdXl5+ebnKR9brdbt9122zHbL774YsOPwWwdafDzeDzKzMw0MU3XGV21cfr06SYngT/R4AcAAAAAAAAAAAAAAAAAAAAAQBCJjY01VLdu3Tq53W6T00gul0tXXHGFsrOzDdWPHz9eKSkpXZpz9+7d2r9/v+H6pKQkPfTQQzpw4IBeeuklXXrpperXr5+ioqKUlpam888/X5988onuvffeTuVJSkrSY489pv379+v555/X+eefr7S0NEVFRalPnz666KKL9Omnn+r+++9vd5ysrKwOzTt37lytX7++zf2DBw/W+++/r/T0dN17772aNm2aUlJSFBkZqV69emnq1Kn69a9/raysLF111VXtzuWribA9/fv315VXXtnmfq/Xa2gVv//85z/6v//7vzb3X3vttXryySc7EzGgGG2Oy8vLMzeID88995y2bdt21Dan06kHH3zQpkTH6kiDnySlp6eblMQ/9u7d67PG6XRq6tSpFqSBv9DgBwAAAAAAAAAAAAAAAAAAAABAEElOTjZUV1tbq3Xr1pmcRrr11ls7tPLczJkzuzxnW6v3fVdERIR+8YtfKC8vT3PnzlXPnj3brf/zn/+sgQMHGs7hdDp1++23KycnR/fcc48SEhLarf/DH/6gUaNGtbm/tLTU8NyfffaZ5s2b1+b+iy++WNu3b9cll1zic6z4+Hi99tprGj9+fJs1hYWFhrO15q677mp3/+uvv97u41+2bJluuOEGeb3eVvfPmTNHL7/8shwOR5dyBoJx48YZ+ntuZ4NfaWmpHnjggWO2/+AHP9CECRNsSNS6MWPGdKg+kBv8vF6v9u3b57Nu3LhxPl+LEFho8AMAAAAAAAAAAAAAAAAAAAAAIIj079/fcO3f/vY303J4vV7deeedeuGFFzp03KmnntrluZcuXeqzZsiQIVqzZo3mzZtnuNklKipKF154oaHaAQMGaMWKFXr66ad9Ng4e5nQ6ddlll7W73wiPx6O77767zWa3H/3oR3r//fc71OQTFRWlG2+8sc39bc1l1JQpU3T66ae3ub+xsVHPPvtsq/syMjJ06aWXqrm5udX906dP17vvvquoqKguZQwUTqdTc+bM8VmXnZ3d5e9LZ91zzz2qqKg4altUVJT+8Ic/2JKnLR1dwS8jI8OkJF1XUlKixsZGn3Xt/T1DYKLBDwAAAAAAAAAAAAAAAAAAAACAIDJy5EjDte+8845yc3P9nsHj8eiWW27R008/3eFj/dHg52sFv1NPPVXr16/X1KlTOzz2kCFDfNaceOKJ2rBhg0455ZQOjz9s2LA29yUlJRka480339T27dtb3Xf55ZfrhRde6NRKdoMGDWpzX9++fTs83nf5WsXv2WefPaaBqbCwUOeff74qKytbPWbs2LH6+OOP1a1bty7nCyQXXHCBz5r6+npT/n77smLFCr366qvHbL/ppps0dOhQy/O0Z+TIkYYbZyVpx44dJqbpmpycHEN1559/vslJ4G80+AEAAAAAAAAAAAAAAAAAAAAAEEQmT55suNblcun6669XS0uL3+Y/ePCgzj//fP3jH//o8LH9+/fX4MGDuzR/Tk6O9u3b1+b+qVOn6tNPP1VqamqnxvfVDDRx4kR99tln6tOnT6fGb6/xbtSoUYbG2LNnT6vbx40bp5dffrlDDU1HKiwsbHPfxIkTOzXmkS666KJ2G1RLSkr0+uuvf/N1bW2tLrjgAuXn57daP3DgQC1evFjJycldzhZo5syZY+j7mJ6ebkGab7W0tOinP/3pMSsHRkZGau7cuZZmMSIuLq7dxtXvysnJUV1dnYmJOs/I9zouLk6zZ8+2IA38iQY/AAAAAAAAAAAAAAAAAAAAAACCyIwZMzpUv2rVKt15553HNOR0xpo1azRlyhQtXry4U8dPnz69yxnaW72vb9+++vjjj5WQkNDp8ffu3dvmvuTkZH366afq1atXp8cvLS1tc5/R5s0HHnhAr776quLi4r7ZFh0drQULFnRpJbt169a1ua8zqyF+l8Ph0C9+8Yt2a+bNmyev1yuXy6XLL79cX331Vat1ycnJWrx4sQYOHNjlXIEoOTlZp59+us+6tlZyNMtjjz2mjIyMY7Zfc801hla/tMOIESMM13q9Xm3ZssW8MF3Q2nn/rlmzZh31uoDgQIMfAAAAAAAAAAAAAAAAAAAAAABBZPLkyR1ePe65557TFVdc0emVqSoqKvSzn/1MM2bMaLcBzhd/NIm11+D30ksvdXrlvsPaWyXr2WefVf/+/bs0/o4dO9rcd9JJJxke5/rrr9fq1as1bNgwSdJ9992n8ePHdynbihUr2txnpNnMiBtvvFGJiYlt7s/IyNCiRYt0yy23tNlI2q1bN3388ccaO3asXzIFquuuu85nTXtNmf6WlZWlP/3pT63uu/nmmy3L0VH9+vXrUP2GDRtMStI1Rhr8rrzySguSwN9o8AMAAAAAAAAAAAAAAAAAAAAAIIg4HA5dc801HT7u3Xff1aRJk/T666/L7XYbOqakpER/+MMfNGrUKD3//PPyeDwdnvdIJ554YpeOl6SlS5e2un3MmDE699xzuzx+WyvG9e3b1y/NMxs3bmx1e//+/Tu00pgkTZo0SVu3btXOnTv129/+ttOZPB6PVqxYoYKCglb3jxkzRr179+70+EeKj4/XLbfc0m7Nddddp5deeqnVfVFRUXr33Xf9shpkoLv88ssVGxvbbo1VDX4ej0c/+tGP1NTUdMy+ESNG6LTTTrMkR2ekpaV1qH7lypUmJemaTZs2tbs/Li5O3//+9y1KA3+iwQ8AAAAAAAAAAAAAAAAAAAAAgCDzk5/8RA6Ho8PH7d69W9dff71Gjhyp2267TR988IEyMzNVVlamlpYWFRcXa8uWLZo/f74uueQSDRo0SL///e9VVlbml9wnnHBCl47Pz89Xfn5+q/tmzZrVpbElaefOnaqoqGh1nz9WsCsuLlZ2drZfx+/evbvGjBmjqKgow8dUVVXp448/1n333afZs2erV69emjlzZpv1/lq977Dbb7+93bzl5eWtbnc4HHr55Zc1Z84cv+YJVD169NDFF1/cbk1xcbFyc3NNzzJv3jytWrWq1X3nnXee6fN3ha8mye9asmRJl5uZ/W3Pnj0+X4cvvfRSJSQkWJQI/hRpdwAAAAAAAAAAAAAAAAAAAAAAANAxY8aM0dVXX60333yzU8fn5uZq/vz5mj9/vp+TtW3gwIFKTEzs0hhtrd4n+acJbdmyZUE9fls8Ho/WrVunjz/+WIsWLdKWLVsMr+Io+ad58kj9+vXTVVddpddff71Dx82bN0/XXnutX7MEultuuUULFixot2bJkiUaOnSoaRm2bdum+++/v839/n5++FtbTbttKS8v1+rVqzVjxgyTEnXc2rVrfdbceOON5geBKVjBDwAAAAAAAAAAAAAAAAAAAACAIPTwww8H1WpNxx13XJfHMLtBbvny5aaO316Dor+bpNxut7788kv95Cc/Ue/evXXKKafowQcf1KZNmzrU3CeZ03x41113daj+17/+te68806/5wh0Z5xxhiZMmNBuzf/+9z/T5q+urtaVV16pxsbGNmsGDx5s2vz+sGvXrg4f8+9//9uEJJ23YsWKdvePGzdOZ599tkVp4G80+AEAAAAAAAAAAAAAAAAAAAAAEIQGDx6sefPm2Zph9OjROuOMMwzVTpw4scvztdXgN3LkSPXt27fL47fV4JeWlqaxY8d2efy28vfp00ejRo3q8viStHfvXj3wwAMaNGiQzjzzTP3jH/9QWVlZp8cbNWqUX87td02ePNlwU+PNN9+sBx980O8ZgoWvxsYvvvhCHo/H7/M2NDToe9/7nrKystqti4uL8/vc/lJeXu6zOa41r7/+epf+3vjbokWL2t3/i1/8Qg6Hw6I08Dca/AAAAAAAAAAAAAAAAAAAAAAACFI/+tGPdPvtt9sy94033qhNmzapqanJUP2YMWO6NN++ffuUk5PT6j5/rDC3Z88e7d+/v9V9M2fO7PL4paWlysjIaHWfP/Jv3rxZV155pYYOHao//elPOnDgQJfHlMxZve+wX/7ylz5rLrvsMj333HOmZQgGP/jBD5SSktLm/rKyMq1Zs8avcx48eFDnn3++vvjiC5+1n3/+uV/n9qe5c+e2u/pgW2pra3XnnXfK6/WakKpjsrKylJ+f3+b+1NRUXX/99RYmgr/R4AcAAAAAAAAAAAAAAAAAAAAAQBB78skndfPNN1s23/Dhw7V48WL961//UlxcnLZs2WLouBEjRnRp3rZWv5NkeCW49rS1ep+/xm8vf1ea6DIzM3XxxRfrhBNO0Ntvv+33ldz88dhb4/F49Nprr/msu/XWWxUREWFKhmARFxenX/3qV+3WvPXWW36b7/3339eECRO0dOlSQ/Vz587VwoUL/Ta/P1RXV+uOO+7QCy+80Okx3njjDV111VUqKSnxY7KO+/DDD9vdf/fddys2NtaiNDADDX4AAAAAAAAAAAAAAAAAAAAAAAQxp9OpF154QY888ogiIyNNmyc5OVmPPvqoduzYoXPOOUfSoZWl6urqDB0/cuTILs3fXrORP1aZM6sBz8j4nWmiq6+v11133aWJEyd2qrkqLS1N55xzju655x717t27zTqzVvC79dZb9c477/ise/LJJ02ZP9jcdtttSktLa3N/V5s7i4qK9NJLL2ny5Mm67LLLVFRUZPjY+vp6XXzxxTrllFP017/+VcuXL9fevXtVV1cnt9vd6UxGtLS0qLq6Wvv379eqVav08ssv64c//KGGDh2qv/3tb10e/+2339aQIUP04x//WO+8844KCwstX9XvjTfeaHNfv379dMcdd1iYBmZweANhrUgAANAppaWlx7xRLykpUWpqqk2JAAAAAAAAAAAAAAAAAABW4RoytGbDhg36+c9/ro0bN/ptzGHDhumnP/2pfvrTnyohIeGoff/+97913XXXtXls//79dfHFF+uSSy7RnDlzupRj5MiR2r17d6v59uzZ06WxD4+Tm5t7zPbk5GSVlpbK4XB0afyJEydqx44dx2xPS0tTcXFxh8Zat26drrvuulbPR1tGjRql2bNn6/TTT9fJJ5+sIUOGSJJqamqUmJjYaiPWiBEjlJ2d3aFsRvzud7/TH//4R0O1DodD6enpGjt2rN9zBJsnnnhCd999d5v7P/74Y51//vkdHnfBggW6+uqrTWlcGzx4sPLy8vw+riTl5eVp6NChpozdntjYWD388MP6xS9+YfpcmZmZ7T73n3/+ed1yyy2m54C5zGvNBwAAAAAAAAAAAAAAAAAAAAAAlpo6darWr1+vDz/8UE899ZSWLVvWqVW90tLSdPHFF+vyyy/X2WefLafT2Wrdpk2bjtl23HHHfdPUd8IJJ3S5MU6SDhw40GYzmz9WmCsoKGi1uU+SZs6c2eXHcPDgQaWnp7c5fke89NJL+vnPf66mpiaftdOnT9dVV12liy++WMOHD2+1ZuXKlW2usmbG6n3z58833NwnSV6vV3/961/14osv+j1LsPnZz36mJ598Uvv27Wt1/zPPPNOpBr/6+nrLV6ULZo2NjaqsrLRkrueff77NfWPHjtWPfvQjS3LAXDT4AQAAAAAAAAAAAAAAAAAAAAAQQhwOhy655BJdcsklKioq0qJFi7RmzRqlp6crPz9fFRUVamhoUFRUlLp166bExEQNGTJEw4cP15QpU3TyySdrwoQJbTb1HSkmJkaRkZE67bTTvpnz8Mpw/rR06dI2982aNavL4y9btsz08dtqoOpIE90jjzyiuXPntluTkJCgH/3oR7rllls0ZswYQ9na4o/HfqQFCxbojjvu6PBxr7/+uh588EH17t3br3mCTVxcnP7yl7/oqquuanX/okWLtHv3bo0YMaJD444YMUI33HCDPyIeIyUlxZRxJal79+6m5fZl0qRJps9RVVWll156qdV9DodDzz//vCIjaQ0LBXwXAQAAAAAAAAAAAAAAAAAAAAAIUX369NGNN96oG2+80ZTxH374YT3wwAOKi4szZfzD2mtC88cqc8uXLzd1fH800T311FPtNvfFxMTozjvv1Ny5c9WrVy+/ZPPnCn6ff/65rr/++jZXlBw2bJhycnJa3dfU1KS//e1v+vOf/+y3PMHqyiuv1HPPPddq06vX69Wjjz6qf/zjHx0ac8aMGZoxY4afElonJSVFL7/8st0xTPPCCy+opqam1X033XRTh1f/ROByeFlDEwCAoFVaWqq0tLSjtpWUlCg1NdWmRAAAAAAAAAAAAAAAAAAAq3ANGcLJ6NGjtWvXrmO2Dx48WHl5eV0ef+zYscrMzDxme2JiosrKygytZtieSZMmaevWrcdsT05OVmlpqRwOR7vHf/bZZzrvvPPkdrtb3X/CCSfo9ddfN7Ri35Hq6urUq1cvuVyuY/YNGzZMe/bs6dB4bdm4caNmz56t2traVvffcccduvnmmzVx4sQ2x0hKStK+ffsUHx/vl0zBbMeOHZo8eXKr37fIyEhlZmZq+PDhNiSDv1RVVWn48OE6ePDgMfvS0tK0c+dOJSUl2ZAMZujavzAAAAAAAAAAAAAAAAAAAAAAAAAmKioqarW5T/LPCnMlJSWtNvdJ0mmnndbl5r7y8nJt27at1X0zZ8702dxXXV2tm266qc3mvu9973tauXJlh5v7JGnVqlWtNolJ/lu9b9euXTr//PPbbO677LLLNG/ePE2YMEFz5sxpc5zy8nK99NJLfskU7CZMmKD/+7//a3Wfy+XS7373O4sTwd8efvjhVpv7JOlf//oXzX0hhgY/AAAAAAAAAAAAAAAAAAAAAAAQsJYtW9bmPn80oS1fvtzU8VesWCGv19vqvlmzZvk8/s9//rP279/f6r7Zs2frrbfeUmxsbKeytXdujWTz5cCBA5ozZ45KS0tb3X/SSSfp3//+9zdNlHfddVe7482bN08ej6fLuULBAw88oMmTJ7e674033tDq1astTgR/2bNnj5566qlW99155506//zzLU4Es9HgBwAAAAAAAAAAAAAAAAAAAAAAAtbSpUvb3OePJrT2Gvz8MX57+X01EFZUVOi5555rdV98fLxeffVVRUZGdipXY2OjPvroo05n86WyslLnnnuu8vLyWt0/YsQILVy4UHFxcd9sO+ecczRx4sQ2x8zJydF///vfLuUKFVFRUXrttdcUExNzzD6v16uf//znba76iMDl9Xp18803q7Gx8Zh9kyZN0qOPPmpDKpiNBj8AAAAAAAAAAAAAAAAAAAAAABCw2lplbsCAARo2bJhp4/fs2VOTJk0ybfzExMR2m9kkacGCBaqtrW113w9/+EMNGDCgU5kOHjyoM888U9u2bWt1/5AhQzR48OBOjS1JDQ0Nuuiii7R9+/ZW96empmrRokVKSUk5Zp+vVfz++te/djpXqBk/frwef/zxVvdt3bpVTz75pLWB0GUvvviilixZcsz21NRUvffee602dCL40eAHAAAAAAAAAAAAAAAAAAAAAAACUklJiXbu3Nnqvq6uMCcdWmVux44dre6bMWOGnM6utV1UVVVp69atre477bTTfI7/wQcftLnvvPPO61SmrVu3avr06Vq9enWbNV05t263W1dddZVWrlzZ6v64uDgtXLhQw4cPb3X/tddeqz59+rQ5/tq1a9scOxzdfvvtuu6661rdd//997f5/Ebg2bVrV6sNrtHR0frvf/+rIUOGWB8KlqDBDwAAAAAAAAAAAAAAAAAAAAAABKS2Vr+T/NPgt2LFCnk8HtPGX758eZvjz5o1y+fx69evb3NfZ5p9/v73v+vkk0/Wnj172q0zkq0tN998sxYuXNjqPqfTqTfeeEPTp09v8/jo6Gjddttt7c7R1qp14eqFF15odbXJxsZGXXvttWpqarI+FDqksbFRV1xxRasrdv7973/XjBkzbEgFq9DgBwAAAAAAAAAAAAAAAAAAAAAAApLZDX6BPH5ZWZkOHjzY5v6amhrDOTIzM3X22Wfrpz/9qRoaGnzWd/ax33ffffrXv/7V5v6nnnpKl156qc9xfvaznyk+Pr7N/QsXLtSuXbs6EzEkxcXF6b333lPv3r2P2bd9+3bdfffdNqRCR9x+++3atm3bMdsfeugh3XjjjdYHgqVo8AMAAAAAAAAAAAAAAAAAAAAAAAFp6dKlrW7v27evRo0a1eXxly9f3ur2hIQEnXDCCV0ev638PXv2bHXFtSOVl5e3u/+VV17xOf+uXbt0yy23aOLEifr888991kvSgAEDNHToUEO1R3riiSf02GOPtbn/7rvv9rky32FJSUm64YYb2tzv9Xr117/+tcMZQ9mQIUO0aNEi9ejR45h98+fP18svv2x9KBjy5JNP6sUXXzxm+9y5czV37lwbEsFqNPgBAAAAAAAAAAAAAAAAAAAAAICAU1ZWpoyMjFb3+WN1vdraWm3evLnVfaeeeqoiIiK6NH51dbW2bNnS6r4ZM2bI6Wy/pcPj8bS7/x//+IduuOEGrV27VrW1tXK73Tp48KDWrFmjefPm6fTTT9eYMWP0wgsvyOVyGc590kknGa497LXXXtOvfvWrNvdfeeWVevzxxzs05i9/+ct2z9Grr76q0tLSDo0Z6iZNmqQPPvhAMTExx+z76U9/qnXr1tmQCu356KOPWl1h8fbbb9dDDz1kQyLYgQY/AAAAAAAAAAAAAAAAAAAAAAAQcJYtWyav19vqPn80+K1atUput9u08VesWNHm+LNmzfJ5fO/evX3WvPrqqzr55JOVkJCgyMhIpaSk6JRTTtFdd92l5cuXt3n+2jN27NgO1X/yySf6f//v/7U514wZM/Tqq6/K4XB0aNyRI0fqoosuanN/Y2OjnnnmmQ6NGQ5mzZqlBQsWKDo6+qjtTU1Nuuyyy5SXl2dPMBxjw4YNuuaaa45p5r333nv19NNP25QKdqDBDwAAAAAAAAAAAAAAAAAAAAAABJxly5a1uc8fDXjLly83dfyu5k9MTNSECRO6nOO7hg4dqrS0tDb3DxkyxPBYa9as0RVXXNHmCoFjxoxpc0U5I+6666529z/77LNqaGjo1Nih7OKLL9aHH36ouLi4o7YXFhbqnHPOUUlJiU3JcNj27dt17rnnqra29qjtjzzyiB599FGbUsEuNPgBAAAAAAAAAAAAAAAAAAAAAICA01aDXFpaWodXmevI+N26ddOJJ55o2vgJCQmaMmWKoTF+/vOfdznHYVFRUbrzzju1bdu2dlfTS05ONjReRkaGLrzwQtXX17e6v3fv3vrkk0+UlJTUqbySNHPmzHa/F2VlZXr55Zc7PX4omzNnjhYtWqSEhISjtmdnZ+u8885TTU2NTcmwa9cunX322SovL/9mW2RkpP7xj3/ovvvuszEZ7EKDHwAAAAAAAAAAAAAAAAAAAAAACCjl5eXavn17q/v8sbpeY2OjNmzY0Oq+U045RVFRUV0av6amRps3b25134wZMxQREWFonJ/85Cc6//zzu5QlMjJS1157rXbs2KEnn3xSkZGR7a7g1qNHD59j7t27V3PmzDmqQelI3bp100cffaShQ4d2Ovdhd999d7v7582bJ4/H0+V5QtHMmTO1dOlSDRgw4Kjtmzdv1rnnnqvq6mqbkoWvjIwMzZ49W8XFxd9sS0pK0uLFi/XjH//YxmSwU6TdAQAAAAAAAAAAAAAAAAAAAAAAAI5UXV2tBx54oNV9Z555ZpfHr6ys1Ny5c1vdd+qpp3Z5/KqqKv3mN79pdd9pp51meJyIiAj997//1T333KP58+d3qJFt5MiRuvbaa3XTTTdp8ODB32zft2+fvF5vm8dFR0e3O+7Bgwc1Z84cFRQUtJn5rbfe8ssqiJJ0+eWX67777tPevXtb3Z+dna0PPvhAl112mV/mCzVTpkzRhg0bdNlll2nt2rXfbF+9erXOOeccLV68WD179rQxYfj46quvdM4556isrOybbePGjdOHH36o4cOH25gMdnN423tVBgAAAa20tFRpaWlHbSspKVFqaqpNiQAAAAAAAAB7tLQ0yuVqUmRkjKKiYu2OAwAAAAAAAFiCa8iA8LJnzx698sorWrFihTIzM1VRUSGXy6X4+HglJydr0KBBGjt2rKZMmaIzzjhDI0aMaHWcxsZG5eXltTnPkCFDFBvLZ+2hpqmpSbfccoteeeWVo7afeOKJWrRokZKTk21KFh5WrlypCy+8UFVVVd9su/zyy/XPf/7T0KqZCG00+AEAEMT4cAYAAAAAAADhzuVqUlb2MhUVZ8nr9cjhcKpP79EaPfJ0RUbG2B0PAAAAAAAAMBXXkAEAOurVV1/Vbbfdppqamm+2jR49WosWLdKQIUPsCxbCFixYoBtuuEGNjY2SpLi4OM2bN0+33HKLzckQKJx2BwAAAAAAAAAAAAA6w+12acu2D1VYtFNer0eS5PV6VFi0U1u2fSi322VzQgAAAAAAAAAAgMDywx/+UFu2bNFJJ530zbasrCydfPLJ2rx5s43JQtNjjz2mq6+++pvmvvHjx2v9+vU09+EoNPgBAAAAAAAAAAAgKOXv3aTKqgOt7qusOqD8fZssTgQAAAAAAAAAABD4hg0bphUrVujRRx9VfHy8JKmoqEh33HGHzclCy5YtW3TffffJ6/UqMjJSv/71r7Vp0yZNmDDB7mgIMDT4AQAAAAAAAAAAIOjUN1Qpb++Gdmvy8jeooaHKokQAAAAAAAAAAADBIzIyUvfee68yMjJ00UUXqXv37vrnP/9pd6yQMmnSJF1wwQWaPHmyNmzYoAcffFAxMTF2x0IAcni9Xq/dIQAAQOeUlpYqLS3tqG0lJSVKTU21KREAAAAAAABgjS3bPlTZwVyfdSkpwzRp4kUWJAIAAAAAAACsxzVkAAB/2bdvnwYOHGh3jJBTWlqqxMRERUZG2h0FAYwV/AAAAAAAAAAAABBUSstyDDX3SVJZWY7KyozVAgAAAAAAAAAAhCua+8yRmppKcx98osEPAAAAAAAAAAAAQcPtdmlX9vIOHZOVvUxut8ukRAAAAAAAAAAAAADQeTT4AQAAAAAAAAAAIGjk792khsaqDh3T0Fil/H2bTEoEAAAAAAAAAAAAAJ1Hgx8AAAAAAAAAAACCQn1DlfL2bujUsXn5G9TQ0LHGQAAAAAAAAAAAAAAwGw1+AAAAAAAAAAAACAq7spfJ43F36liPx62s3cv9nAgAAAAAAAAAAAAAuoYGPwAAAAAAAAAAAAS80rIclR3M7dIYZWU5Kivr2hgAAAAAAAAAAAAA4E80+AEAAAAAAAAAACCgud0u7cr2z+p7WdnL5Ha7/DIWAAAAAAAAAAAAAHQVDX4AAAAAAAAAAAAIaPl7N6mhscovYzU0Vil/3ya/jAUAAAAAAAAAAAAAXUWDHwAAAAAAAAAAAAJWfUOV8vZu8OuYefkb1NDgn4ZBAAAAAAAAAAAAAOgKGvwAAAAAAAAAAAAQsHZlL5PH4/brmB6PW1m7l/t1TAAAAAAAAAAAAADoDBr8AAAAAAAAAAAAEJBKy3JUdjDXlLHLynJUVmbO2AAAAAAAAAAAAABgFA1+AAAAAAAAAAAACDhut0u7ss1dZS8re5ncbpepcwAAAAAAAAAAAABAe2jwAwAAAAAAAAAAQMDJ37tJDY1Vps7R0Fil/H2bTJ0DAAAAAAAAAAAAANpDgx8AAAAAAAAAAAACSkNDlfL2brBkrrz8DWpoMLeREAAAAAAAAAAAAADaQoMfAAAAAAAAAAAAAkrW7uXyeNyWzOXxuLVr93JL5gIAAAAAAAAAAACA76LBDwAAAAAAAAAAAAGjtCxHZWU5NsyZa+mcAAAAAAAAAAAAACDR4AcAAAAAAAAAAIAA4Xa7tCvbntX0srKXye122TI3AAAAAAAAAAAAgPBFgx8AAAAAAAAAAAACQv7eTWporLJl7obGKuXv22TL3AAAAAAAAAAAAADCFw1+AAAAAAAAAAAAsF1DQ5Xy9m6wNUNe/gY1NNjTYAgAAAAAAAAAAAAgPNHgBwAAAAAAAAAAANtl7V4uj8dtawaPx61du5fbmgEAAAAAAAAAAABAeKHBDwAAAAAAAAAAALYqLctRWVmO3TEkHc6Sa3cMAAAAAAAAAAAAAGGCBj8AAAAAAAAAAADYxu12aVd2YK2al5W9TG63y+4YAAAAAAAAAAAAAMIADX4AAAAAAAAAAACwTf7eTWporLI7xlEaGquUv2+T3TEAAAAAAAAAAAAAhAEa/AAAAAAAAAAAAGCLhoYq5e3dYHeMVuXlb1BDQ2A1HgIAAAAAAAAAAAAIPTT4AQAAAAAAAAAAwBZZu5fL43HbHaNVHo9bu3YvtzsGAAAAAAAAAAAAgBBHgx8AAAAAAAAAAAAsV1aWq7KyHLtjtKu0LEdlB3PtjgEAAAAAAAAAAAAghNHgBwAAAAAAAAAAAEu53S5lZS+zO4YhWdnL5Ha77I4BAAAAAAAAAAAAIERF2h0AAOzW0tKiFStWaNWqVcrIyFBmZqZKS0tVU1Ojuro6xcXFqUePHkpKStLo0aM1btw4TZ8+XWeccYbi4uLsjh9USktLtXjxYn311VfKyMjQnj17VFVVpZqaGrW0tCghIUE9evRQv379NG7cOI0fP15nnHGGjj/+eLujAwAAAAAAAPCj/L2b1NBYZXcMQxoaqpS/b5OGDZludxQAAAAAAAAAAAAAIcjh9Xq9docAADusXLlS8+fP1yeffKLq6uoOHx8XF6ezzjpLP/vZz3TuuefK4XCYkDL4NTQ06LXXXtNLL72kDRs2yOPxdHiMAQMG6IorrtDtt9+uoUOHmpAyeJWWliotLe2obSUlJUpNTbUpEQAAAAAAANC+hoYqrVn/mjwet91RDHM6I3TytOsVF9fT7igAAAAAAADAUbiGDAAAIPg57Q4AAFZbvny5pk6dqtNOO03/+c9/OtXcJx1qXFu4cKHOP/98jR07Vu+//75/gwa5lpYWPfrooxo4cKBuueUWrVu3rlPNfZJUUFCgefPmacSIEbriiiuUl5fn37AAAAAAAAAALJO1e3lQNfdJksfj1q7dy+2OAQAAAAAAAAAAACAE0eAHIGxUVlbqhhtu0Omnn66NGzf6deysrCxddtlluuiii3TgwAG/jh2MVq1apeOPP17/93//p4MHD/ptXI/Ho3feeUfjx4/XY489JhahBQAAAAAAAIJLWVmuyspy7I7RKaVlOSo7mGt3DAAAAAAAAAAAAAAhhgY/AGEhIyND06ZN06uvvmrqPB999JFOOOEErV692tR5Atmzzz6r2bNna+fOnabNUV9fr/vuu0+XXHJJp1dgBAAAAAAAAGAtt9ulrOxldsfokqzsZXK7XXbHAAAAAAAAAAAAABBCaPADEPJWrlypk046SdnZ2ZbMV1RUpNmzZ+u9996zZL5Actddd+nWW29VS0uLJfMtXLhQJ598skpLSy2ZDwAAAAAAAEDn5e/dpIbGKrtjdElDQ5Xy922yOwYAAAAAAAAAAACAEEKDH4CQtnHjRl1wwQWqqamxdN7m5mZdffXVWrx4saXz2unXv/615s2bZ/m8GRkZOuecc1RZWWn53AAAAAAAAACMaWioUt7eDXbH8Iu8/A1qaAjuRkUAAAAAAAAAAAAAgSPS7gAAYJaCggKdd955qq6uNnxMbGysZs6cqRNPPFH9+/dXjx49VFtbq8LCQm3evFlLly5VbW2tobGam5v1ve99T+vWrdOECRM6+zCCwt///nc9/PDDHTpmwIABmjlzpo477jilpKQoKipKlZWVys7O1rp167Rx40Z5vV5DY23ZskWXXXaZPv/8c0VERHTmIQAAAAAAAAAwUdbu5fJ43HbH8AuPx61du5fr+IkX2R0FAAAAAAAAAAAAQAigwQ9ASHK5XLrmmmtUVlZmqD4tLU3333+/fvjDH6pnz55t1tXX12vBggX6/e9/r/z8fJ/j1tfX64orrtDGjRvVrVs3w/mDyZYtW/SLX/zCcP3MmTP1wAMP6IwzzpDD4WizLjc3V08//bSeffZZNTc3+xx36dKl+v3vf68//elPhrMAAAAAAAAAMF9ZWa7KynLsjuFXpWU5KjuYq5TkoXZHAQAAAAAAAAAAABDknHYHAAAzPPTQQ1q5cqWh2quuukrZ2dm6/fbb223uk6T4+HjdeOONysrK0q233mpo/MzMTP3yl780VBtsmpubdfXVV6uxsdFnbVxcnP71r39p2bJlOvPMM9tt7pOkoUOHat68edq2bZvhFRA78n0HAAAAAAAAYD6326Ws7GV2xzBFVvYyud0uu2MAAAAAAAAAAAAACHIOr9frtTsEAPhTbm6uxo0bZ6jpbO7cuXrooYc6Pdczzzyj22+/3Wedw+HQunXrNHXq1E7PFYgeeeQRzZ0712ddjx499Nlnn2natGmdmqeurk4XXHCBli3zfSHQ8ccfr02bNikiIqJTcwWb0tJSpaWlHbWtpKREqampNiUCAAAAAACBwOVqVk1dqZqa6+XxuL9uQvLK6YxURESkoiJjldAtWdHR8XZHRYjLyV2nnLy1dscwzbChJ2nYkOl2x0CIamxpVFFVkeqb69TibpHL7ZJXXkVFRCnSGan46Hj17tlH8byWAwAAAAAQ1riGDAAAIPjR4Acg5Fx22WV6//33fdbdcsstev7557s834MPPqj777/fZ920adO0du1anyvXBYsDBw5o1KhRqqura7cuKipKX3zxhU477bQuzVdbW6vTTjtNW7Zs8Vk7f/58/fznP+/SfMGCD2cAAAAAwDiv16uGxipVVherqqZIdfWVcrub5fa45fG45HRGyOmMUIQzSnGxCeqR0Fu9Enqre7cUOZ1Ou+MDbXK5m1VVXayqmkPP7arqYtXWlxs6Ni62h3om9D70X48+6pXQm6Y/+E1DQ5XWrH9NHo/b7iimcTojdPK0HyourofdURDkGlsatb+iQPsr9mt/5aH/PVhbZujYxG5J6t+rv/onDlD/xP4akDhAcbyWI4B5vB4drC079HyvKFBFXYWa3c1yuVvk8rgV6YxQZESUoiOi1atb4tfP7/5KSUiV08H7cgSHhuYGHag89Bw/1KxdL5fbpRZ3ixwOKdIZpciISMXHdFOfHn3UP/HQ8zw2Ks7u6IAhHq9HpTWl37x/qayvUIu7RS3uFrmPfC2PjFZSfJL6JR56r5LcPZnXcgSN+ub6b57jxdVFamhu+ObGGw6HFPn1jTe6x3RXn5591D9xgPr16qeYqFi7owOGuD1uldaUfP1z6H5V1Veq2dUsl8f19Wt5pCIjIhUTGaOkbslfv18ZoKRuSSFz/Vso4RoyAACA4EeDH4CQsmXLFk2ePNln3eTJk7VmzRrFxMR0eU6v16vzzjtPixcv9lm7cOFCXXjhhV2eMxD84he/0FNPPeWz7rHHHtM999zjlzl37dqlE044QbW1te3W9evXT7m5uYqOjvbLvIGMD2cAAAAAoG1er1fllQUqOZj7TdNTi6uxw+M4nZHq0T1VPRN6KzlxkHqnDFdERKQJiQHjvF6vDlbsU/7+r1Rcukcer/8aqJJ7DdTgAZPUJ3WknM4Iv42L8LNl+0KVleXYHcN0qSnDdPzEi+yOgSDk8Xq0uzhba/esUVZRpjxej1/GdcihEb1HavqwkzSm71hF8FoOm7k9bu0uztbukmztryjQgcoDanI1dXic6Mho9evVX/179deI3iM1svcont8IGBV1FUrfv117y/dqf8V+ldcd7NQ4yd1T1D+xvwYlDdb4/hPUK76Xf4MCneT2uJVVlKk9JXu0v6JAhZUH1Oxu7vA4MZGx6p/YT/17DdCI3qM0ovcIGv4QMMpqy5Sxf4f2le87dBOC+ooOj+GQQykJqUe9lvfghjAIEC63S5lFO5VTskcFFQUqqipUi7ulw+PERsV9c3OZkb1HaWjqMF7LAwDXkAEAAAQ/GvwAhJRrr71Wb775Zrs1TqdTGzZs0JQpU/w27969ezVmzBg1NDS0W3faaadp+fLlfpvXLhUVFRo4cKDP1fsmT56sjRs3+nWVg8cff1z33nuvz7p//vOf+n//7//5bd5AxYczAAAAAHCslpZG7StMV/7+LaozuIpZR0RFxWlg3wkaPGCSusX18vv4QHtaXE0qKExXfsFXhlfp66yY6G4a1O84Dep/vOJiE0ydC6GnrCxXW7Z/aHcMy0w67mKlJA+1OwaCRH1zvTblbdDaPWs73QBiVM+4npo27CRNHTpNCbyWw2I1jTXamLte63LWqaqh0u/j94jrqWlDp2nq0OlcOA9beLweZRft0tqcNcoqzJRX/r38xiGHxvYbp+nDTqYJCrapqq/U+tz12pC7TjWNNX4fv1d8oqYPO0knDp2q7jHd/T4+4Mvh5tW1e9You3iX38d3Opwa33+CThp+soamDGPVM9iioq5c63LWaWPuetU1t3+tV2ckd0/W9GEn64QhJyqe1eRtwzVkAAAAwY8GPwAhY9++fRo2bJhcLle7dTfccINefvllv89///3368EHH/RZt379ek2dOtXv81vp4Ycf1q9//WufdUuWLNGsWbP8Ondzc7PGjBmj3NzcduvGjRun9PR0v84diPhwBgAAAAC+VVVTrLyCLdpflCGPp/3PB/wlNXmohgyYrLTkoXJwsSVM1NRcr+zc1dp3YIfcno7fWbsrHA6HeqeM1JjhM9S9W7KlcyM4ud0urV3/uhoaq+yOYpm4uJ46aep1rPCKdlU3VOnzjM/0Vf5muSx6r3KY0+HUxAHH6Zzxc5TUnddymMfr9SqvLE9rc1YrvWCH3H5cZbgt31w4P+xkDU3lwnmYr66pTpvyNmhdzlqV15l7043DuHAeVvJ6vdpTsltrc9Zo54EMv60y3J4IZ4QmDjhOJw07WYOSB/NaDtOZfSOC1qT16K3pw07SlMEnKDYq1pI5Eb7MvhFBayKdkTp+0CSdNOxkDUgaaPp8OBrXkAEAAAQ/GvwAhIxHHnlEc+fObbfG4XAoPT1dY8eO9fv8paWlGjRokBobG9utu/XWW/XMM8/4fX4rjRkzRllZWe3WTJ8+XWvXrjVl/r/97W+64447fNZt2LBBJ554oikZAgUfzgAIFF6vR3X1FaqqLlZVTbGqa0vU1Fwnt9slj8clr9crpzNSERGRioyIVrduSeqZ0Fs9E3qrR0KaoiJj7H4IAAAgiDU01mhH1ucqLtttW4aEbimaOOYcJfXqb1sGhK4DxVnakfWZmlsabM3hdEZo1NBTNWzQVDmdNLSibTm565STZ85ng4Fs2NCTNGzIdLtjIAB5vV5tzt+kj7YuVKPNr+VREVE6d+L5Omn4yawEBb8rqS7R+5vfVW5Z+zdpNNPg5MG6bMr31btnH9syIHS5PW6t2LVMS3Z+qWZ3sy0ZoiOjdda4s3XqyNN4HYcpCisP6L+b3lVBxT7bMgxPHaFLT/ieUrqn2JYBocvlcWnJzi+1PGup5TfdOCw2Kk7nTJij6cNO4rUcpthXvlfvbXpXhVWFtmUY3WeMLp1ymXrFJ9qWIdxwDRkAAEDwo8EPQMiYOHGiduzY0W7NnDlztGjRItMy/PjHP9Y///nPdmtSU1N14MABRUYG552cN23aZKhp7s0339TVV19tSoa6ujr169dP1dXV7db94he/0Lx580zJECj4cAaAnWpqy7S/eKcqKverurZEbnfnVxHpFp+ongl91Dt1uHqnjJDTGeHHpAAAIFR5vV4VFO5QevYSuVxNdseRJA0bdKJGD5uhiIgou6MgBDQ112lH1ucqLNlld5Sj9OrRV8ePO08JrOaHVjQ0VGnN+tfk8Zi/YlOgcTojdPK0HyourofdURBAqhuq9N9N7yqrKNPuKEcZmjJU3z/xSiWzmh/8wOP1aOWuFfosfbFtF8ofKcIZobPGna3TRp2uCD5nhJ8UVxXp7Y0LtL+iwO4okqSBSYN0+YlXKq1Hmu9iwAC3x62lmV/qy51fWLJiny9REVGaM+E8nTziFBqg4Df7Kwr0zsYFKqoqsjuKJGlY6jB9/8QrldQtye4oCBEt7hZ9kfG5lmcttWTFPl9iImN0/nEXaurQaazMagGuIQMAAAh+NPgBCAk7duzQxIkTfda99tpruu6660zLsXTpUs2ePdtn3aeffqpzzz3XtBxm+tWvfqW//vWv7dYkJCSouLhYcXFxpuW48cYb9corr7Rb06dPHx04cCCkPyTiwxkAVvN43Cou3a38/VtUXmnOhQzR0fEa1O84Dew3UXGxXBQJAABa19BYo+2Z/1PJwRy7oxyjW3yijh97Hqv5oUsCZdW+trCaH9qyZftClZUF3muzVVJThun4iRfZHQMBIJBW7WsLq/nBH0qqS/TOxgXaV77X7ijHGJA4UJefeAWr+aFLDq/a93nGZ3IH2A0MIp2ROnv8HM0YxWp+6JrCygN6e+MCFVYesDvKMYYkD9H3p17Jan7oEpfHpS8zvtCyrCUB0cB6pOiIaJ078XxNH85qfuiafeV79c7Gt1VSXWx3lGOMSBup7594Oav5mYxryAAAAIIfDX4AQsJf/vIX3XPPPe3WxMbGqqSkRAkJCabl8Hg8GjhwoA4caP+D7zvuuENPPfWUaTnMNGHCBKWnp7db84Mf/ECvv/66qTkWLVqk8847z2fd5s2bNXnyZFOz2IkPZwBYpbGpVnv3b9W+A9vV1Fxn0awO9U4ZrsEDJik5cVBIN2wDAICOKSjK0I6szwNm1b62DBs0VWOGn8bqxOgQr9er9F1fKq9gs91RDElNGqITJl6iyMhou6MgAJSV5WrL9g/tjmG7ScddrJTkoXbHgI3cHrfe2/yuNuVttDuKIeP6jdfV069VFCsQowO8Xq9W7V6pxds/DYhV+9oS4YzQ2ePnaOao0/l8ER1WVlOq/6x/M2BW7WvLwKRBunr6tawAhQ7zeD1alrlEn2d8FnBNT0eKiojSeRMv0EnDT+a1HB1WVFWkt9a/ETCr9rVlWOowXTntGvWM62l3FAQZt8etzzM+07LMJQGxal9bYiJjdNGkS3TCkBPtjhKyuIYMAAAg+HHbFwAh4bPPPvNZM2PGDFOb+yTJ6XTqnHPO8VlnJG8gKiws9NncJ8lQ411XzZo1S7GxsT7rgvVcA0Cg8Hg82pO/XkvX/FO789Za2NwnSV4Vl+3W+i3vaP2Wd1TfUGXh3AAAIBB5vV7tyl2tLekfB3xznyTl7N2gjdvel9vdYncUBAmPx62v0j8OmuY+SSotz9ParxYE7EqDsI7b7VJW9jK7YwSErOxlcrsDt9kF5mpxt+iNta8HTXOfJGUcSNfLK/+pppZGu6MgSHi8Hn3w1Xv6eOvCgG7ukw5d8Lxo+yd6d9PbAbf6GgLbvvJ9enbJ/IBv7pMOrdjz3JfP6EAArr6GwOX2uPX2hrf0v/TFAd3cJx16f/Xhlvf10dYPAz4rAktuaY6eXzI/4Jv7JCmnNEfPffmMSqpL7I6CIHL458+lmV8GdHOfJDW5mvTOxgX6347FYk0SAAAAoHU0+AEIes3NzVq5cqXPurPOOsuCNMbm2blzp/bv329BGv/64osvDNWdeeaZJic5tCLjjBkzfNbR4AcAnVdTd1BrNr+prD0r5LH5Qp2DFXu1Yv0ryi/Ywgf+AACEKa/Xq527l2pXziq7o3RIycEcrdvyjlqCoCER9vJ43Nq0/UMdKN5pd5QOq6wu1JpN/1FTc73dUWCj/L2b1NDIjVkkqaGhSvn7NtkdAzZocbfo1VUvK+OA7xvlBZqc0hy9uPwfaqRhGz64PW4tWP8frctZa3eUDtmUt1H/WfeGXDRgw4A9Jbv14vK/qyGI3t/WNtXqH8ueV15Znt1REARa3C3695pXtWXvV3ZH6ZDVu1fp3Y00bMOYzMKdemnFi2oKos/kqhqq9MLS54KiuRz2a3I16ZWV/wq6nz+XZH6hhVs+oGEbAAAAaAUNfgCC3tatW1Vf7/uXK0aawfzhtNNOM1S3bt06k5P435o1a3zWjBgxQn369LEgjbFzvX79ehpBAKCDDq/at2r9a6qqDpw7WrrdLUrf9YXWf/U2q/kBABBmvF6v0nd9qZy9wbMSzpHKKwu07qu35XI12x0FAcrr9WhLxicqLtttd5ROq6kr03qaWcNWQ0OV8vZusDtGQMnL36CGhmq7Y8BCbo9bb6x9XbtLsu2O0mkFFfv0ysp/qZn3LGiDx+vRf9a9oa37ttgdpVN27N+uN9a+TmMI2pVTukcvr3wpKF8LG1sa9dKKfyj/YL7dURDAXB6XXl/9qnYWBt/NZSRpc/4mvb3hLRpD0K7Mwp16bfUrAb/ScGvqmuv04vIXWJUV7Wp2NevllS9pT2lwfpa4Zs9qffjV+1zPBQAAAHwHDX4Agt5XX/m+q5zT6dSkSZPMDyNp0KBBSklJ8VlnJHegMZJ5ypQpFiQ55IQTTvBZU11drZycHAvSAEBoaGio1trN/zm0ap83MC90OVi5TyvWv6KCwh12RwEAABbZlbtaeQWb7Y7RJZXVhdq4/X25g/DCIpjL6/VqR9YXOlCcaXeULquqKdaGrf+Vm5Vxwk7W7uXy0CxxFI/HrV27l9kdAxbxer16Z+MCZQbphfJHyjuYp3+vfY0GKBzD6/XqvU3vasf+7XZH6ZKdhRl6Z+PbNIagVQXl+/TqqpeDsiHksBZ3i15e+ZIKKwvtjoIA5PF6tGD9f7SrOMvuKF2ydd8WLdzyAY0haFVuaa7+vea1oP63vrGlUf9a8aJKa0rtjoIA5PK49O+1rymvLNfuKF2yLmet/rdjkd0xAAAAgIBCgx+AoLd5s+8L/EaNGqVu3bpZkOYQI41nwdbg5/F4tHXrVp91gdbgJwXfuQYAu9TUHdTqTW+qsjrwf/Hvdrdo287F2p23jl/gAgAQ4vILtig7d7XdMfyirDxfWzM+5f0LjlJQmK78/VvsjuE35ZUF2klTU1gpK8tVWRk32GpNaVmOyg4G9wV3MGb17lXasjd0PofeVZSlLzI+szsGAsxn6f/TxrzQWK11y97NWrz9U7tjIMBU1JXr5ZUvqSkEVqRubGnQSyv+oar6SrujIMB8tHWhthdsszuGX6zds0ZLMr+0OwYCTEl1sV5Z9a+gbtQ+rLapVi+teFG1TbV2R0EAOXzTjV1Fwd2ofdjSrCVavXuV3TEAAACAgEGDH4Cgt3277zuFjhkzxoIk3xo9erTPmm3bguuD8z179qi+vt5nnZXnuk+fPurZs6fPumA71wBgh8rqIq3d/B81NQfXL4l25axU5p7lXCQPAECIqq0rV3r2Ertj+NWB4kwVFKXbHQMBoqGxRum7vrA7ht/lFWxWWcVeu2PAAm63S1nZNHS2Jyt7GatahriymlIt3hF6jULLspaqoHyf3TEQIHJLc7U0xJoolu9apj0lu+2OgQDh8Xr09oa3VNdcZ3cUv6ltqtU7G9/ms3N8I7Nwp9aEWBPF5+n/096D/OyJQ9wet95a/x81uRrtjuI3lfUV+mDze7yW4xvbCrZqc/4mu2P41SfbPlJRVZHdMQAAAICAQIMfgKCXk+P77tAjR460IMm3RowY4bNm//79am5utiCNfxg5z5L153r48OE+a4xmB4BwVV1TovVb3lFLS3D+wit370Zl0eQHAEDI8Xo92rrzU3lC4I7b35W+60s1NNbYHQM283q92pa5WC538Hw+1BHbMhaF7GPDt/L3blJDY5XdMQJaQ0OV8veF1sV3+JbH69G7G99Wi7vF7ih+5/F69M7GBXLRoBr2ml3NemfjAnkVep+9vbPxbTUF6Wei8K+1e9Yotyz0Vt3dXZKtDbnr7Y6BANDQ3KD3Nr1rdwy/88qrdzYuCMn3Yui45VlLdaByv90x/G7H/u3aXrDV7hgIADWNNfrwq/ftjuF3bo9b72xcILfHbXcUAAAAwHY0+AEIag0NDSoq8n0XHyNNYP5kpMHP4/EoPz/fgjT+kZtr7Jdaw4YNMznJ0Yyca6PZASAc1dVXaP2Wd+VyNdkdpUty9m7UnnwuVAAAIJTk7N2kiqoDdscwhcvVpO2Z/+MGBWFuX+EOlR4M3c8s6hurlLl7ud0xYKKGhirl7d1gd4ygkJe/QQ0N1XbHgAlW716lvIN5dscwTXF1sb7Y+bndMWCzxTsWqbzuoN0xTFFZX6FPt39idwzY7GDtQS0K4efBJ9s+UmV9hd0xYLOPty5UdWNovh8trSnRFxmf2R0DNiuqKtQXGaH7vvWDr95XbWOt3TFgI6/Xqw82v6f65nq7o5hif0WBlmctszsGAAAAYDsa/AAENaMNcv369TM5ydH69u1rqC6YGs/y8vJ81iQlJSk2Ntb8MEcwcq6D6TwDgJVaWhq1fsu7am4JjV8E7MpZqf1FO+2OAQAA/KC2rlxZOSvtjmGqkoM5KihKtzsGbNLQWKOMXV/aHcN0eQVfqaxir90xYJKs3cvl4e7qhng8bu3azYVqoaasplT/27HI7himW561VAXl++yOAZvkluZqze5Vdscw1bqctdpdnG13DNjk0Eqsob36V5OrSe9ufIcbzISxzMKd2pS/0e4YplqetUx7D/KzZ7hye9x6e8MCub2h+/NpfXO9PvjqPV7Lw9jWfVuUfmCH3TFM9UXGZyqq8n2TfwAAACCU0eAHIKjt37/fUF2fPn1MTtK5+QoKCkxO4j9GzrXV59nonEVFRXK7Q/fDXADorIzsJWporLI7hl+lZ32uhhC9Cy0AAOHC6/Vq685P5fG47I5iuvRdX6qxibtvh6Odu5fJ5W62O4YldmR+Lq/XY3cM+FlZWa7KynLsjhFUSstyVBbCq3aGo4+2LgzphpDDPF6PPvjqfS4mDkMt7ha9s3GBvAr97/27m95Rsys83pvhaOv2rFVuWej/+7y7JFsb81h5ORw1tjTqvU3v2h3DdF559e7GBXKFwWdJONaKXct0oNLYtUPBbMf+7dqxf7vdMWCD2qZafbjlA7tjmM7tdeudjW/Jw+eIAAAACGM0+AEIagcPHjRU17t3b5OTHC0tLU1Op++X2PLycgvS+IeRc231eZaMNfh5vV5VVFRYkAYAgkdx2R7tL8qwO4bfudzN2p75GRedAQAQxIrLdqui6oDdMSzhcjVpd946u2PAYg2N1TpQnGl3DMvU1h9UycE8u2PAj9xul7KyWY2uM7Kyl8nt5qLjUFBSXaysovB5LS+o2Kd8XsvDzobc9SqvM/Z7uGBXWV+htXvW2B0DFmtxt+jzjP/ZHcMyn6UvpvkpDK3ZvUrVYXJTxJKaEm3O22R3DFisoblBSzK/tDuGZRZt/5TmpzC0ImuZGprr7Y5hif0V+7WjYJvdMQAAAADb0OAHIKgZbfDr1auXuUG+w+l0KiEhwWed0fyBwEhWq89zR+YMpnMNAGZraWnUjszP7I5hmrLyPBUU7rA7BgAA6KS8gq/sjmCpgsIdcrFaSFjZu3+bFAYr4RwpP8z+Xoe6/L2bQm41eKs0NFQpfx8XHYeCdTlr7Y5gOZqfwovX69XaPavtjmGptTlruGA+zGzbt1X1YXKxvCTVNNYoYz+fm4cTt8ettWH2nmXNntXcADLMbM7fFFar8JbXHVR20S67Y8BCLe4Wbchdb3cMS63hZ08AAACEMRr8AAQ1oyvgde/e3eQkxzLS4BdMK/gZyWrkMfub0TmD6VwDgNkyspeoqbnO7him2pm9VA1hcldaAABCSW1ducrK8+2OYSmXu1n7i3faHQMW8Xjc2ntgq90xLFdyMEf1DZV2x4AfNDRUKW/vBrtjBLW8/A1qaODn1WDW7GrWpjBcHWZHwXbVNNbYHQMWySndo9KaUrtjWKqirpwL5sNMODYuh+NjDmeZhTtV3RBeN+YoqirU3oPh9blSOPN6vVqXE36va2vD8DGHs237tqqhpcHuGJbKK8tVUVWh3TEAAAAAW9DgByCoVVf7vhCiW7ducjqtf7nr0aOHz5qqquD5QN3Iubajwc/IeZaC61wDgJlKD+Zqf1GG3TFM53I3a0fWF3bHAAAAHZS/f4vdEWyRV/AVd5gPE0Wl2WoKo1VCjpS/P/waG0NR1u7l8njcdscIah6PW7t2L7M7Brpgy96v1ORqtDuG5dxetzbm0uAbLsK1CYgL5sPHvvJ9KqjYZ3cMy+WW5aqoqsjuGLAIr+UIdeF4QwJJyirMVEUdN7gOF2H7Wr4nvFagBQAAAA6jwQ9AUGtubvZZExcXZ0GSY8XGxvqsMZI/UATquTZynqXgOtcAYKZdOavsjmCZ0oM5quTufgAABA2Xu1n7CnfYHcMWNbWlqqg6YHcMWCCvYIvdEWyz78B2ud0uu2OgC8rKclVWlmN3jJBQWpajsoO5dsdAJ3i93rC+aHx97lp5vB67Y8BkVfWVyjiQbncMW3DBfPgIxxWfDgvXRoFwU1pTot0l2XbHsMX2gm2qbay1OwYssGbParsj2MIrr9blrLM7BiwQrjckkKSv9m5SY0v43VgHAAAAoMEPQFAz0rQVERFhQZJjRUZG+qwJpqazQD3XRs6zFFznGgDMUlldpKqaYrtjWCpcVwECACAYHSjOksvVZHcM2/C+JfQ1NFarvDI8L8qRpOaWBpUcpDksWHm9Xu3as8LuGCFl1+4VrN4ahIqri1VYGb5N+ZX1lcot5bU81G3I2xC2jZxeebWeC+ZDXkNzg7bu3WJ3DNt8tXeTmsL4Z+9wEc7NP26PW5vyWHU41FU3VGnngQy7Y9hmY+56uTzcRCnUrc8J31Xsml3N2rL3K7tjAAAAAJYz1hUBAAHKSNOW0QYwfzMyb0tLiwVJ/CNQz7XROYPpXHfVjBkzbHve41vp6eF5h2MEtvwwXC2ksCRLY0ecrujoeLujAAAAH4pLw/PO8ocVl+6W1+uVw+GwOwpMUl5ZYHcE21VU7VfftFF2x0AnVFUXqb6+wu4YIaW+vkJV1UXq1bOv3VHQAXllrLyYV5ar4Wkj7I4BE4Xr6n2HZRRmaM7E8+yOARNlF+8K66aIZlez9pTs1rh+4+2OAhOF+2t5+oF0nT5mtt0xYKLMwsywvSGBJNU112lvWb6GpQ23OwpM4vV6w7qJVTr0b9lJw0+2OwYAAABgKa7+BxDUXC7fv3yhwc8/AvVc0+AHAMY0tzSosCTL7hiW83jcKihM17DBU+2OAgAA2uH1elVZXWh3DFu53M2qqy9X927JdkeBSSqriyyf0+uVyloc2tvkVHmLQ81eKdohJUV5NSjGo5Qor6zsKa2sDq8VxUNJU1Ot3RHa5PVKpS1SToNU1iK1eKUoh5QSJQ2Lk1KjZOnzvCMC+byidfsrrG/W9nqlZm+06jxxavZGySOnnPIo2tGibs4GRTuaLX2O76/Yb91ksFyLu0XFVda/ZwkkpdUlamppVExUrN1RYJKC8vBdVfuwgvJ9NPiFsLqmOlXUldsdw1aFlQfk9rgV4YywOwpMUlDBa/m+in00+IWwirpy1TXX2R3DVgXl+7ghHgAAAMIODX4AgpqR5i63221Bks7NG0yrrEVGRvps8rPjXBudM5jOdVetXLlSqampdscAEGAKCtPlCdO7Eufv36qhg07kw38AAAJYY1OtmprrLZ834Jqfaopp8AthVTXWNrdVtDi0oSZCZS3OY/aVtkhZ9RFKifJoaoJbiVFeSzJV1xRzYU6QionpbneEVh1skdZUSSWt3NurpEXKqJfSoqSTe0rJUdbn8yVQzyvaZnWDX7MnUuXuXmryxhyzr8kboxpPd8U4mpQUUalopzWf+9jR5AjrFFYesGU1nEBqZPXKqwOVBzQ0dZg1E8Jy+21YWTuQnuMSzdqhjhsSSC6PS8XVxerXq591k8JSPM95Xx7q9lda/291oD3HG1oaVFFfoaRuSdZNCgAAANgsfLodAISk6OhonzVGVp4zg5EV44zkDxTR0dE+z6Ud59roynzBdK4BwN+8Xq/27t9mdwzbNDRWqaw8X6nJQ+yOAgAA2mB145MUmM1PVdVFGtBnnCVzwVper1fVNSWWzbe/yaGVlZFyq/2rbspanPpfuUMzernUP8b857nL3ay6hgp1j+fCnGDTs0cfxccnqr6+wu4o39jbKC2pkHzd/qukRfqoTJqdKA0KoMWY4uMT1bNHH7tjoANa3C0qtnAl0npPrMpcSfL6eC1v8saoyJWmlMhyxTsbTc9V3VitmsYaJcQmmD4XrGdH00+gNrLS4BeaPF6P9lccsHTOgHyOVxZw440QZvVreSA+x6VDr+U0+IUml9ul4iprP0sMxOc5zdqhjZvLHLK/ooAGPwAAAIQVGvwABLWoKN+3Xbarwc/IvMHUdBao59ronMF0rgHA3+obKlXfEDgXYdqh9GAODX4AAASwqpoiS+cL1OYnOxodYY26+gq53M2WzFXRYuz5fZhbh+rPSXJZ0sxaVV1Mg18QcjgcGjX8NG3Z/qHdUSQdWrnPSHPfYW4dqr8wJXBW8hs1YiYX1QeZoqpCy1Y2a/ZEGmruO8wrh8pcSeoTWWLJxZb7Kwo0pu9Y0+eB9axe2SxQG1kLWBEnZJXXHlSTy/zn0GGB+hyva6pTVUOlesUnmj4XrGfla3mgPselQ+9Xpg6dZslcsFZRVaHcXqM/DXZdoD7Py+sOqqG5QXHRcabPBetZ2cAZqM9x6dBr+cQBx1kyFwAACEwtLS1asWKFVq1apYyMDGVmZqq0tFQ1NTWqq6tTXFycevTooaSkJI0ePVrjxo3T9OnTdcYZZygujvfKRrjdbm3evFkbN25Uenq6srOzVVhYqJKSEtXV1amxsVFer1exsbGKi4tTWlqa+vTpo2HDhmnChAmaMmWKpk+fznX6fkKDH4CgFhNz7J2Dvqux0bpf0nR03mD6xyxQz7XROYPpXAOAv1VVW3vBfCDiYnkAAAJblYWr4XSm+WlFZaQmdnOrW4R0ZPvTd1uhjvna286+VrY7GopVlfnV19u93zn+8Nfeb4/xHvqzV159/X9fb/a2MsbXtd8Z48jao8b45utv5z38/48cw3tEyNYyHvW119vK+O2PcWz+o2u/GeOI8MeOceQx33nMx2Q8Ynsr57i1MXydY3m9anY1qqEx8ps5vj3i6Odha8+Lb7O0s+9rHq/U7D12XF/ccmhReaSiJJndb/T+wS8VGbGi9Z2dnNvRiQM7NVUnTk5nT2dnHpMVhzS3RMjj6dyFlP56anm9UoNH6miblVvSwjIpzumf53mn2mG/PsgZEaEPVnxh+jwdP6zjB3Yun0XzqHOPqa1DWtwtanKZv+rioX93nOro3xqvHCp0pckpzxFHtv5g2h756HpHG8XPrFmuhNjN3/xlOvz/HY5v/yzp668P//mIPV9vdxwu+nq749COdsc4Ms63Xzu++Xv97RiOo/IfO8aR4x+Z33Hs+Edm+PqgDo9xVMbv1B6R8bvztTbGEXs6fI5bz/jt15v271e1u9sRM3xX23+nWn9etfKc+prLG6FKT482jzx2JIdKXUlKjKhSpMPci/rTiw9o/b7dps4Be+SV5qreY82Svi5vhCrcPRWIz3FJ+mLXVxqYPMj0eWC99OJCS57ngf4c31ZYoH68loek7KIsXsu/9tmujerTs6/p88BiXq8yS4vVHKCv5dbeXIaVKgEACFcrV67U/Pnz9cknn6i6urrNutraWtXW1urAgQPasWOH3n33XUlSXFyczjrrLP3sZz/Tueeeyw0Xv6OpqUkfffSR3nzzTX322WftnuPD6urqVFdXp7KyMmVkZOjLL7/8Zl9cXJxmzZqlq6++WpdddpkSEhLMjB/SaPADENSM/ANQV1cnr9dr+T/ONTU1Pmt69OhhQRL/SEhIUElJSbs1Rh6zvxmdM5jONQD4mx3NbV6vVNYi5Tc6dbDFoRavFOWQkqO8GhzrUUqU+RcOH6mqpkQej0dOp9O6SQEAgGG1dQctmcfrlTbURBhu7jvMI4e21lnzUerGzcstmQd2COz3ol451HzoD+ZyuQ79B9jAI6nOmgXY2udxSy21dqdAp0TYHcAHhzz+ztjKvwvljY0qt+nmijCbU1Ivu0O0w6EKdy/TZymtlZ5c8bHp88AuyXYHaIc1z3FJejdju6TtlswFq8V+/V8gsu45XlrlVSav5SGM13JJ+s+2zZbMAzsE7gXRXjlU7u6l3o4y03/fX2LhjQEBAEBgWL58ue6++25t3LixS+M0NDRo4cKFWrhwoUaPHq1HHnlEl156qX9CBrHq6mo9/fTT+tvf/uazJ6AjGhoa9Omnn+rTTz/V7bffrltuuUV33323evfu7bc5wkVgX1EAAD4kJSX5rPF6vbY0nhnpZjeSP1AYyWrkMfub0TmD6VwDgL9Z3eBX0SItLo/Q4vJIZdY7VdriUKXLodIWhzLrnVpcHqnF5RGqaLEuk8fjUl19uXUTAgCADmlxNVkyT1mLQ2UtfCQKAAAAAAAAAEBnNHlj1OyNMn2exhZuLAMAQLiorKzUDTfcoNNPP73LzX3flZWVpcsuu0wXXXSRDhw44Nexg8nLL7+skSNH6re//a1fm/u+q7q6Wo8//rhGjRqlefPmyeMJhDtvBg+uZgEQ1JKTjd2Vq6qqyuQkR/N4PKqt9X0HZqP5A4GRrFaf547MGUznGgD8yev1qrrGvB/Ivqug0aFFByNU1tL+7frKWg7VFTRat4yfHSsZAgAAY9wea1bz2tvEx6EAAAAAAAAAAHRFnSfe9DlcFv3eAAAA2CsjI0PTpk3Tq6++auo8H330kU444QStXr3a1HkCTWVlpb73ve/ppptuMrWx77uqq6t111136cwzz1RhYaFl8wY7rmgBENSMNm0VF1t7QX9paancbrfPumBqOjOS1erzLElFRUU+axwOhxITEy1IAwCBp66hQi53syVzVbRIKyqdcstY055bDq2odFq2kh8NfgAABCav1yuPRb+oL/dxEwIAAAAAAAAAANA+K1bw83g9cnt8X38HAACC18qVK3XSSScpOzvbkvmKioo0e/Zsvffee5bMZ7eCggKdeuqptj7epUuXavr06crMzLQtQzChwQ9AUOvfv7+hOiNNYP5kdD6j+QOBkaxWn2ejc/bu3VuRkZEWpAGAwFNXX2HJPF6vtK46wnBz32FuObSuOkJer0nBjlBXX27+JAAAoMMcDoccDmsa75oteM8BAAAAAAAAAEAo81h06bFVvzsAAADW27hxoy644ALV1NRYOm9zc7OuvvpqLV682NJ5rVZcXKyZM2cqIyPD7ijat2+fZs6cqd27d9sdJeDR7QAgqA0ZMsRQ3YEDB8wN8h1Gl5IdOnSoyUn8x8i5Li8vV1NTk2JiYswP9DUj5zqYzjMA+JvbZc3qfWUtUlknV8Qpa3GorEVKjfZzqO9wuy1aKhAAAHSY0xlpyb/V0VwLAAAAAAAAAABAlzjlMX2OCEeEnA7WMAEAIBQVFBTovPPOU3V1teFjYmNjNXPmTJ144onq37+/evToodraWhUWFmrz5s1aunSpamtrDY3V3Nys733ve1q3bp0mTJjQ2YcRsJqbm3XRRRcpNze3w8empqbqlFNO0YQJE5SYmKjExEQ5nU6Vl5eroqJCO3fu1KpVqzq8KFBpaanOP/98bdiwQT179uxwrnBBgx+AoBYXF6fevXuruLi43bo9e/ZYlOgQIx3mDodDgwcPtiCNfxhpkvN6vcrJydHYsWMtSHSIkXNNgx+AcOb2uCyZJ7+xax+s5zc6lRpt7i8B3G5rzgUAAOi4CIsa/JKivCql5x8AAAAAAAAAgE6Ldpj/QXtkBJc3AwAQilwul6655hqVlZUZqk9LS9P999+vH/7wh+02htXX12vBggX6/e9/r/z8fJ/j1tfX64orrtDGjRvVrVs3w/mDwQMPPKANGzYYro+NjdUPfvAD3X777Tr++OMNHZORkaH58+frlVdeUV1dnaFjsrOzdeedd+rll182nC3c8A4YQNAbNmyYzwa/7Oxsi9IcYqTprH///paudNdVw4YNM1SXnZ0dcA1+RrMDQCjyeNyWzHOwk6v3+et4IzwWNTsCAICOi4nupuaWBtPnGRTjUVZ9RBdG8Moh6bvvXI782uFoZ5+BY2Ki4+VwOL+ex/FN8TdfO47YrkM3EHIc8edvxv56++Fj9PWfHd+Md8Qo34zhkMNxZLbDXztaGb/1Mb7NaGCMo/If3n/04/x2/KPHOHb8b/98+LEeVXvMOWht3mPzfjfjt+N/p7aNc3xYY1O19hftPOqxf/sIvN/5+vC8361r/c9Hfu2VtKs+QnWejr+/7ub0amy8+5h5va2Xd1qf1JFKSTr2plfeTk/U8QM7M5W38wE7PldnHpNF8b6bzePxaO++zWppaTRhrja2e6XMeqmuE/eI6eaUxsS3//fL36KiYjVo4BQ5nc6v57JmOdnvPkbDx1mWr+PzdD5ZJ+Zq5ZCiqkKtz1nX6RRGeb1Sjae7XJ34NW6EXEpw1n6d/9sHYeQlwtvaeWrlQK+kMX3Hqk/Pvkds8+rr//v2dcJ76M+HXp+83xx7+OtDf/YeNcaR+/SdWnmP2H7kfO2M8e2uo+c7OuOR43mPmffo8Y8e47vjHzXGEZkPj29kjO+eg++Ocew5+Pb8HDv+sefnqGOOyHx4jJrG2nb+HerYc+rYdzltjwcAAAAguHRz1ps+R/fY7qbPAQAArPfQQw9p5cqVhmqvuuoqvfDCC+rRo4fP2vj4eN1444265pprdPfdd2v+/Pk+j8nMzNQvf/lLvfDCC4byBIPMzEz95S9/MVx/xhln6LXXXlO/fv06NM+4ceM0f/58/f73v9ePfvQjLVy40NBxr7zyiv7f//t/mjlzZofmCxc0+AEIehMnTtSaNWvarcnMzLQojfH5Jk6caEES/xk+fLji4uLU0ND+BZeZmZm6+OKLLclUVFSkqqoqn3XBdq4BwJ8cjq6trGdUSxcvJu3q8UY4nF25mB8AAJgpoXuqauqM3aGvK1KivEqJ8qispePvkVKiPDo70dXphgkjYmK66+wZPzFvAtimxdWkxct2WDJXn2iv/lceKXcHLpqPkFcze7mUGGX+G/OTR09WcuJA0+eBdcp6p2jL9g8tnXNArPRRmdSRW9pESDorSUqOMitV6yYdN0cpyUOsnRSmqKofrJ35X1oyV6ynSUWutNab7trgkFdpkQcV7TT/BkdXHn+K+vXq2C/7ERz+vvQ55ZXlmj6P1ysVu1LU5O34jTCjHU3qHVFm6vvygUkD9bPZt5o3AWyTVZSlV1b9y/R5vF6p2J2i5gB9jkvSj2berOGpw82dBLZ4+vOnVFRVaOocwfAcH5E2Qv/vtB+bOwlssbVgq95a96bp8wTD8/zWM29X/179zZ0Etnj800dVUV9h6hxdeY7HOJosWcGvb09+7gQAINTk5ubq4YcfNlQ7d+5cPfTQQx2eIyYmRs8884zGjBmj22+/3Wf9iy++qJtvvllTp07t8FyB6Pe//73cbmO/Qbvvvvv00EMPfXOTys5ITU3Vhx9+qMcee0z33XefoWN++9vfatmyZZ2eM5TR4Acg6E2ePNlnTVZWlurr6xUfH29BImnz5s0+a6ZMmWJBEv+JiIjQcccdp3Xr2r9DsZHH7i9G5wq2cw0A/hQRYc1b/qgu/oKqq8cbEeHkxx8AAAJVrx69daB4p+nzOBzS1AS3Fpc75Olg89PUhGNXNvO3Xgm9zZ0AtomKjFG3uETVNZh7YY4kJUZ5NaOXSysrjTX5RehQvRXNfZLUIyHNknlgnZSUoUpJGaayshzL5kyOkmYnSksqjDX5RehQvdXNfakpw2juCyE94nqqe0x31TbVmj5XtNOllMhylbmSDDX5OeRVSmS5Jc19kc5I9e7Be5ZQ1b9Xf0sa/BwOKSmislONrMkRlerC9SaGDEga0KWLWhC4BiYNNP3nOunQczxZgfscl6SBPM9D1oCk/iquNrfBLxie4wOSBvIcD1EDEwfwWi4pwhmhvr368jwPUQOSBqjS5M8Ru/IcT4qotOTvYf/EAeZPAgAALHXXXXepsbHRZ90tt9zSqea+I912222qqqrS/fff326d1+vVbbfdprVr18phxZscExUXF+vdd981VHvTTTfpkUce8dvc9957rw4ePKjHHnvMZ+3y5cuVnp6u8ePH+23+UMFPeACCnpHmLY/Hoy1btpgfRtK+fftUWlrqs85IY2KgMXKurWzw27Rpk8+ahIQEDR/O3ScBhC+nRU1tyV28GLirxxvhZAU/AAACVs+EPpbNlRjl1fHdja/5ZGXzU08a/EJaTwubIfrHeHVOkkspUZ5261KiPDonyaX+MdY093WLT1RUZMfvCo7AN3rETDkc1v7MNShWujBFSvPRtJcWdahuUKw1uQ5zOiM0asTp1k4KUzkcDvVLtG51jHhno/pElijG0dRuXYyjSX0iSxTv9H1RhD/06dlXEXzGErL6J1l3Ae3hRlaHjL0PsbKRtX8vLiQOVd1ju6tnXC9L5grk53hy92TFRsWZPg/sYVUzRCA/xyWpv4Xv22CtpO7Jio2y5ge8QH6e9+nZR5Hc3DRk8Vp+CK/lAACEli1btuj999/3WTd58mQ99dRTfpnz17/+tebMmeOzbv369fr444/9MqedFixYIJfL93u1UaNG6e9//7vf53/kkUd06qmnGqp9/fXX/T5/KKDBD0DQO/744xUX5/sXECtWrLAgzaGuciOmT59uchL/O/nkk33WZGdnq7i42II0xs71tGnTgv6OCgDQFbEx3S2ZZ3Bs+xcOm328EVadCwAA0HFWN7YlRBi7YMHq5qeePaxrdIT1rGxklQ41s56d6NI5iS0aHe9WapRHPSM9So3yaHS8W+cktujsROtW7pOsPwewTlxcTw0ZdILl8yZHSRckSxcmS+O7HWrmS4w89L/jux3afkGy9Sv3SdKQwVMVF9fD+olhqgEWrx4Q7XSpd2SZ+kSWKMFZqxhHk6IcLYpxNCnBWas+kSXqHVlm2cWVEhdYhjqrG9sCtZGVlUJCm5WvYzzHYQcrX8sD9TkuWf++DdZxOpzq14vXcm5IENp4v3II71kAAAgtRlZ2czqdevHFFxUT458bhjocDr3wwguG+gyM5At0n3/+uaG6P/7xj4qK8v8vzxwOh+FVAY1mDTc0+AEIejExMZoxY4bPui+++MKCNMbmGTNmjAYMCL4PIc4880xDdVac66amJq1atcpn3dlnn216FgAIZAndUyWZ3+icEiWldPLC4JQor1IsuNiyByviAAAQsCIjo9UtPsmy+Ro8vt4feXW2Lc1PvF8JZb1saOB0OKSUaK9OSHDr7CSXLkh26ewkl05IcCsl2iur74lkxzmAdYYMnio5rP+1k8MhpUVL03scWqnvstRD/zu9x6Htdtz7Ky6upwYPtL7hEeYbkDjQ8jkdDinG2aKkyCr1iSpTv6gS9YkqU1JklWKcLZY/x7nAMrSlJKQoOjLa0jkDrZE10hmptB5plswFe1j9OhZoz3GJppBQ17dXXzktfF8eiM/xuOh49YpPtGw+WM/qm04E4vOcG2+ENiubWKXAfI4ndktSfHS8ZfMBAABz7du3T2+//bbPuuuvv15Tpkzx69yDBg3SXXfd5bNuxYoV2rBhg1/nttratWt91gwYMEBXXnmlaRlmzJhhaBGkr776So2N1t08IljQ4AcgJJx11lk+a1asWKHa2lpTc3g8Hi1evNhnXbA2nfXr109jx471Wffpp5+anmXp0qVqaGjwWRes5xoA/CUyIkrdu5l/sbzDIU3v4VaEOnYBfIS8mt7DbcnFaFwwDwBAYEvqad1FC40+Fg+Od0qpFjc/xcf2ZMXhEJfYs5+ionzfHTKUpaUMtzsCTBQREalUvseSpNEjT1dERKTdMWCCYWnDFR1hbfNTIHE6nBrdZ7TdMWAip8OpQUmDLZ83kBpZByYNVIQzwroJYbnByeH9HJfsOQewTlRElOWNIYH2HB+SPFgOO+70AcsMTh5i+ZyB9jy34xzAOt1iuik1wdqbTgTec5z3KwAAhJJ///vfcrnav1mAw+HQfffdZ8r8d955p2JjY33WvfLKK6bMb4XKykqVlJT4rDvnnHNM/5n53HPP9Vnjdru1Z88eU3MEIxr8AIQEI/8QNDY26oMPPjA1x4oVK3TgwAGfdUbyBioj2T/44APTu+r/85//+Kzp3bu3Jk+ebGoOAAgGVjW2JUZJp/XyyGGwyS9CXp3Wy6NEC1bvk6QeFv8SBAAAdEz/Pr5vKOMvvlbwi4uwbtW+w/pZ+PhhD6czQgP7TrA7hm1SEgepOysohLxRI06T2+ujizrEpaYMU0ryULtjwCQxkTGaNDh8P3Me22+cesT1tDsGTDZpUPg+xyXp+DB//OFgSMrQsH4tS+yWpIHJg+yOAZPxWh7ejz8cjOozWnFhfBOlPj37Kq0HNzYNdccPnGR3BFuF++MHACDU/Pvf//ZZc8455xhahKYzUlNT9YMf/MBn3YIFC3w2IgaqgoICQ3WzZs0yN4ikM844w1Dd3r17TU4SfGjwAxASjjvuOI0bN85n3euvv25qjtdee81nTXJyclCvKnfNNdf4rKmpqTG1mbKurk7vvfeez7qrrrqKO/MBgKxduW5ArFdJkcYuiD+1l1sDYq25eD4+LlFRkTGWzAUAADonOXGQusWbv/KwZKDBz/JPTR0a3P94qyeFDcL5+zx4ABdYhoO42AT1Shwgr9f6RulA4HRGaNSI0+2OAZOdNOxkuyPYJpwfezg5buDxYXvBfExkbNg3xYSDCGeEpg2dbncM25w07CQ5HVwqFOqmDD5BUREW3V0xwHSP6a7x/cP35jrhIioiSicOmWp3DNucPPxkroUJA1OHTgvbf7MTuyVpFKvHAwAQMnbs2KEdO3b4rLvuuutMzWFk/NLSUn3++eem5jBLbW2toboBAwaYnETq37+/obqamhqTkwSf8PwJAEBIMtJZv3jxYmVmZpoyf2lpqaE7DFx55ZWKigreD9OnTp2qkSNH+qx78sknTcvwr3/9S1VVVT7rjDwnACAc9LCwwU+SXDL2C6VoC3/x1JPV+wAACHgOh0OD+0+yZK4Gd/v745zWNqb0Th2uuNgels4Je3SLT1RqGK7sFRvTXb1TRtgdAxYZPniaXF4fL7QhasjgqYqL4/U81PXt1U+Dk4fYHcNyqQmpGp7Ga3k4COcL5qcMOUEx3CQsLITrBfORzkidEKZ/v8NNXHRc2DYsTx06XZHOSLtjwALThp9kdwRbxETGskplmOgR1yNsG5a5IQEAAKFl0aJFPmtiY2N1ySWXmJpj5syZ6tevn8+6Tz/91NQcZvF4PIbqUlJSTE5yaMVEI1paWkxOEnx4FwwgZFx33XWKiIhot8br9eqRRx4xZf6nnnpKjY2NPutuuOEGU+a3kpHHsHbtWi1dutTvczc3N+uJJ57wWTdmzBhNmzbN7/MDQDDqmdBbERbeqdXXBfPf1Bn7mdIvknqZf+cZAADQdQP7jleE0/z3LY0+VvCLtbjBb0h/LsoJJ0PCcCW7Qf2Pl9PJryPCRXLiIMXE9ZQnzFbxi43tocEDT7A7Bixy0vDwW8lu+jBWCQkn08PwOS4dupAY4SFcL5g/buDx6hbTze4YsMhJw0+xO4LlHHJo2rDwXaEz3KR0T9Go3uG3whc3JAgv4fizJzckAAAg9Hz22Wc+a2bMmKGEhARTczidTp1zzjk+64zkDUSJiYmG6qKjo01OIsXEGPuZJSkpyeQkwYffqAMIGYMGDdLll1/us+61117T5s2b/Tr33r17DTWdnXrqqZo+Pfg/UP7pT3+q+Ph4n3V333234TsCGPXUU08pNzfX0NwAgEMiIiLVN82aX3C5vVKz19jFXlY1+Dmdkeobhr/gAwAgGEVFxap/n7GmzuH1So0+3ofEWfipabe4RKUkDbZuQtguLXmo4mJ72h3DMg6HU4P6HWd3DFjI4XBoyIDJcnlddkex1JhRsxQRwUoh4WJC/4nqHtPd7hiWiYqI0pTBNLCGk+TuyWF3wfyw1OFK69Hb7hiwUDheMB+Ojzmc9evVT4PC7POGsf3GqVd8L7tjwELh+LrGDQnCy9CUYWH3HnUiNyQAACCkNDc3a+XKlT7rzjrrLAvSGJtn586d2r9/vwVp/Cs5OdlQXVlZmclJpNLSUkN1NPgdiwY/ACHl3nvv9Vnj8Xh08803q7m52S9zer1e3XLLLWpoaPBZayRfR9x4441yOBw+//P3SnrJycn60Y9+5LNu8+bNhhofjcrOztYf//hHn3V9+/bV9ddf77d5ASAUDO4/yZJ5OtK01+C25q7vfdNGKzoqzpK5AABA1w0ZOMXU8Zu8kkftvw+Ji7Bu1amhA6ewGk6YcTicGj3sVLtjWGbowCmKDaMmGBwyuP9xio7pLrfXwqXbbZSUOEgpyUPtjgELRUZE6oxx1lxwEAhmjp6luGg+Wwk3p448ze4Iljp15Ay7I8BiQ1OGqV+vfnbHsMygpMEakDjQ7hiw2IxRvJYjtI3uO0bJ3VPsjmGZkb1HhV2zV7hzOByaEWavbaeOCJ/PTQEACAdbt25VfX29z7oZM6x5z3PaacZ+Tl63bp3JSfwvJSVFPXr08FlntPmuK0pKSgzVDRo0yOQkwYcGPwAhZcqUKbr44ot91m3evFl33nmnX+Z8+OGHtWjRIp91J554oi666CK/zBkI7r33XkOr+P361782dPcFX+rq6nTVVVeptrbWZ+3cuXMNL+8LAOGiZ4/e6tmjj+nzNLg7UGvRdZ6DB0yyZiIAAOAXPbqnasiAyaaN32jgJgNWreDXo3uqBvU/3prJEFD69xmntORhdscwXXxcL40Ko2ZGfCsiIkrHj50jl9clr9e6pmk7OBxOjR19pt0xYIPpw07S0JTQb+zs07OPZo2ZbXcM2GBk75Ea12+83TEsMar3aI3tO87uGLCYw+HQxZMulcPHDWBCgdPh1EWTLubmMmFofP8JGpY63O4Ylpg44Liweaz4ltPh1MWTLrE7hiUinBG64PjQueYIxk0ZfGLYNOlPHTpN/RMH2B0DAAD40VdffeWzxul0atKkSeaH0aGGspQU3zcJMZI70DidTp1yyik+69avX296FiMNkkOHDlXfvn1NzxJsaPADEHKeeOIJQ81dzz//vH7zm990aa5nn33W0BgOh0N/+9vfQuqXJgMGDNCvf/1rn3UtLS268MILtXHjxk7PVV9fr4suusjQG6aJEyfq5z//eafnAoBQZsUqfg0e4//WNVrQ4Nczobd6WdDYCAAA/GvMiJmKj+tpythGbjIQ6zS/GcXhcOr4cefJ6YwwfS4EHofDoYljzlFkZGjfoOj4secpMiLa7hiwSWryUA3sd5xc3g7cCSYIDR08TXFxvu+IitDjdDj1/ROvVFRElN1RTON0OHX5iVcq0hlpdxTYwOFw6NIp31NcVGiv3hgbFavvnfD9kPodHowbnDIkLFb8mjl6lgYkhUdjAI526P3KFYoO8Z/LusV008WTL7U7Bmwyqs9oTR06ze4Ypjt73Dnqzep9/5+9O4+SvazvxP+pql6q+i5dfVfgrlzuwo5wWS7rBcUImmgiuBuXSTImasyZ7DMxnjNjlsksRn9MPJksZ5zEHJcwGeN4DCYqKBrUIK5BRAXZQZau5l66qtf6/YEgILeeb3fXXq/XOfxDP/19PtXnnq6nuz/v5zOQCvlCXHnWy6PQ579HLo+V44Wn/mSnywAAmuymm25Krtm7d2+sWrWqDdU8bv/+/ck1vRjwi4i46KKLkmv+8R//seV1ZNkj6zTFQSPgB/Sd4447Ln7rt34r09o/+IM/iFe96lVx6NChJe0xMzMTb3vb2+Itb3lLpvVvfOMb48CBA0vaoxf8+q//euzZsye5bmpqKg4ePBj/+3//7yXv8e1vfzsOHDgQ1157bXJtLpeL//E//kcUCv39Sy2A5Tp6094YHiq2dI+lhPaqGabnrNT2NoQaAYDmGyqMxKknXNaSZ6cvJKhHsQ2/Nd2z80CMr9GUM8hKxTVx0t7ndrqMljl22/5Y78btgXfCnotjeGQsFvt0il9xdE3s2J7+QzD9a/3q9XHZKS/sdBktc/Hxl5ieMODWFNfET53e31NxXnTaT8X4WLnTZdBBzz/pBbF+dfrm9l61ee1R8bwTLu10GXTQulXr4rJT+/e8EhHx06e/NFaPru50GXTQC099UYy36LKwbrB1YltcsDfdqEv/2rx2c1x64k90uoyWeun+K6M43NpeBgCg/b7xjW8k1xx//PFtqORH9u3bl1zz9a9/vQ2VNN+rX/3qZA/9TTfdFP/6r//ashruv//+TAG/V77ylS2roZcJ+AF96Xd/93fj3HPPzbT2gx/8YOzZsyf+5E/+JB599NGGa6vVavzVX/1VHH/88XHVVVdlev7evXvjPe95T6a1vWZ0dDQ++MEPZpqYOD09HW94wxvikksuiWuvvTbqiaae73//+/Grv/qrceqpp2Y64EVE/PZv/3am2wcABlWhMBw7tj6npXssJbSXZXrOSoyOrI5jNqd/IAcAutOGie2xc+vpTX9u6kKCYj4i3+J7CNau3hS7d/bfRUAs3dajTopN63d1uoymGyuVY99x/T8JhbThodE47cTLYr4+3+lSWuL4fZdEoWCy2aA7cNy5ceyGYztdRtMdNX5UXHLC8zpdBl3gOdtOjxOPOanTZbTE3qP2xf4dZ3a6DDpsZGgkrjzz5ZGL/pvi+Pgk1pfFkPPKwDtn14HYtfG4TpfREqduPS1O3npKp8ugw4rDpXjp/is7XUZLDOWH4mUDML2NtAv3XhRbJ/pzIu9Zx54dezbv7XQZAEAL3Hbbbck1WQbNNNPu3buTa+65556YnZ1tQzXNtWPHjnjJSxpf2Fav1+Ptb397y2r4T//pP8X09HTDNXv37o3LLmvNhc+9zm/xgL40NDQUH/rQh+L000+Phx9+OLn+gQceiLe+9a3xG7/xG3Hw4MHYv39/bN26NdasWROHDx+O+++/P7785S/Hddddt6Rpf6VSKT784Q/H6tX9e1vcGWecEe9617syTzO87rrr4rrrrott27bFwYMH49RTT43169fH8PBwVCqV+O53vxtf/OIX40tf+lIyBPhUF154Ybzzne9c7ssAGBjH7Tg77n3glpiuVlry/KWE9mbruVioRxRa1Ddx0r7nRqEw3JqHAwBtcfzui+IHD98W09Wppj0zNcGvmG/tlKlcLh+nnXhZ5DXlEBG5XC5OPeEFcf2X/ipmZh/rdDlNkcvl4/STXhhDhZFOl0KX2Lj+2Ni+9fS4556vRyHXP/dObli/Kzas779QF0uXz+XjyrNeEf/jU/9fVGcb/9G6VwwXhuPlZ70yhvL+lMzj55WfPuOlcftDt/fNv/GIiOJwMV56xhWRy/VfqIul27lhZ5y/54L43Heu73QpTXXRvotj67r+DAKwNPlcPq4482Xxnn98V8wu9F6D4pGsGl3V95NmyW7vUfvirGPPjn+5/UudLqWpLj3x+bFp7eZOl0EXKOQLceVZL4//8cn3xPxi/1ykVB4rxwtP/clOlwEAtEC1Wo37778/ue6449p7IU2WgN/i4mLccccdbQ8fNsPb3/72+OhHPxrz80c+M37kIx+Jv/3bv42XvexlTd372muvjb/4i79Irvvt3/5tv5c9An+VAfrWtm3b4uMf/3hceumlmUN51Wo1rrnmmrjmmmtWvP/w8HBcffXVcdppp634Wd3uzW9+c9xxxx3xX/7Lf8n8OXfddVe8//3vb8r+p5xySnzkIx9JjhUG4PEpfqee8IL4wk0fasnzlzqVr7oQsboFP5UcvWlfHLWx937ABgCebqgwEvtPeUnc8OUPxnyTGtCqC40/Xmpx9uSUfc+P8TWacviR4ujqOOc5V8YNN30w5uZnOl3OCuXijJN/KibGt3S6ELrMiXsuicemH4lHJ+/piz/Y5fOF2LfnYKfLoIusW7Uu3nD+v4m//Oyf9XzTfCFXiNee+7o4unxMp0uhi6wprolXnfPq+N+f+1+xUE8cqHtAPpePV5z9qhgfK3e6FLrIC06+PO6ZvDtuf+j2TpfSFLs37YlLT3x+p8ugi6xbtS5efvYr429u+OuoR2svN2qHofxQvPrAa2P1aP9etszS/eRpL457K/fGPZN3d7qUpjjpmJPjwn1+9uRHNq/dHD+z/4r4239pzd/6222kMBKvPvCzURwudroUAKAF7rjjjkzrjjmmvb+LPvroozOtu/3223sy4Hf66afHb//2b8fv/d7vNVz3ute9LrZs2RLnnXdeU/b95je/GT/zMz8Tc3NzDdc9//nPjze+8Y1N2bMf9c9VqQDP4uyzz46PfexjbZ+gNzw8HB/4wAfihS98YVv37aQ/+qM/ire97W1t3/f444+Pf/qnf4p169a1fW+AXrWuvDV2bj2jJc+uLiytUXOpgcAsRobH4qS9z23+gwGAjhhfsznOOu2lkW/SBJnUBL9SCyf4Hb/7oti+5dSWPZ/etXbNpjj7OVdEId/bE6hPO+GyOHrT3k6XQRfK5/Nx5mk/E6OlNZ0upSl27jgrSqW1nS6DLrN9/fb42fNeH4UentKbi1y84pxXxd6j9nW6FLrQns174xXnvCpy0dtB7Vzk4sqzXh7HH31Cp0uhywwVhuJ1578xtkz0/mUV29ft6Pn3JFrjpC0nx0v3X9npMlYsn8vHqw68JnZtbO+UB7rfyNBIvPGCn+uLiXfHbdodrzjnVZHPae/k6c7YsT9+8rQXd7qMFSvkC/Gz570+tpk2DAB965577sm07qijjmpxJcvb7+67e/fikHe84x1x7rnnNlxTq9Xi0ksvjT/7sz9b8X5/8zd/E+edd15MTU01XLd+/fr4y7/8yxXv18/8BAj0vYsuuihuuOGG2LVrV1v227RpU3z605+OK664oi37dZP3vOc98Z73vCeGhtozIPaFL3xhfOELX4jNm3v/l7MA7bbvuAtirFRu+nOXPMEv0WC/HCcff2mMjIw1/bkAQOesn9gW+095SeRzK29OTAb8WtT/uHvngdi945zWPJy+MDG+Jc45/coYKox0upRlyMWpJ1wW2445udOF0MUK+aE458xXRa7HG81LpfHYsW1/p8ugS+3evCded94bY7jQe4HtQq4Qrzzn1XHKVpcRcGSnbD01Xrr/yp4O+b349J+O07e35vIzel9xuBhvvODnY3MPB0OOLh8Tb7jgjTEy1Is/V9AOZx57VrzotJ/qdBnLlotcXHnmy+PEY07qdCl0qVWjq+LfXPjzsW7V+k6XsmxPBLV78ecK2uP8PRfEpSf+RKfLWLZCrhCvOuc1sXtz703EAQCye/jhhzOta3cP+KZNmyKfT8eoHnnkkTZU0xrDw8Px8Y9/PM44o/HvQavVarzpTW+KF7zgBfGpT31qyft87nOfi5e85CXx2te+Ng4dOtRw7fj4eHziE5+Ibdtc8NCIgB8wEE4++eS48cYb4zWveU1L97n88svjy1/+clxwwQUt3aebve1tb4tPf/rTsW9f6274LZVK8fu///vx//7f/4vx8fGW7QPQzwqF4Tj1hBdENLEZZ7EeUVtqwG+hadtHRMQxm4+Pozb6QwAA9KPNG3bFWc956YonnKXOK8UWTPA7/rgLY9+uwf1dAdmtK2+Nc894ZYwMlzpdSma5XD72n/JTsf2YUzpdCj1gdHgsTj7xsk6XsSL79hyMQqE9F5zRm/YetTd+7sJfiOJwsdOlZDZcGI6fPe/1ceq20zpdCj3gzGPPiped/YqemybzRCDkwHGNb66GVaOr4hcO/mJsmdja6VKWbMf6HfELF70pSi7AI+GCPRfGT5/x0p4LbBdyhXjVgdfE6TsEtWlsvDQeb7r4l2Lz2vZOAmmG4zbtjn9z0c/H6NBop0uhyz3vxEvj8lNe1OkyluyJnz9P2uKiMADod1kDfuVyubWFPEM+n481a9Yk12Wtv1uVy+X4x3/8x7j44ouTa//xH/8xLr300jjxxBPjbW97W3zoQx+Kb37zm3HvvfdGtVqNmZmZuO++++Lmm2+O//N//k/86q/+apx22mlx4YUXxkc/+tHk8zds2BD/8A//EPv3u0Azpbd+6w6wAhMTE/H+978/rr322qa/Qezduzeuvvrq+PjHPx5bt/beH3ua7cILL4yvf/3r8Qd/8Aexbt26pj03n8/HFVdcEf/6r/8a/+E//IdMNygAcGTrylvjxL2XNO15M4sR9SX+MbiZE/zWrtkcJ+97ftOeBwB0n43rdsaBM14Ww0PLa5ifW4yYrycm+DU14JeLk/ddGrt3Hohcrrea5uic8bWb4/wzXxPja7p/akhxdE0cOP3lcfSm1l30RP/ZvHF3bFh/bKfLWJaNG3b1bO20144NO+MXL35zT0yAmli1Ln7+ojfFvqOP73Qp9JDTt58Rrz33dT0zVWYoPxSvPvDa2L/zzE6XQo9YNboqfv6ifxvHbdzd6VIy27t5X/ybC38hSiO9c1kInXXOrgPx8rNfGYUembA9UhiJnz3/DaYNk9na0tr4txf/Ymxbt73TpWR20paT4/Xnv1G4j8wu2ncwXrr/ip65fKM4XIo3XvDzfv4EgAGRdQLe6tWrW1zJj8sS8OvlCX5PWL9+fXzqU5+K3/u934uhofTlld/61rfiqquuile+8pVxyimnxJYtW2JsbCyKxWIcc8wxcdJJJ8WVV14Zf/zHfxxf//rXM9Xw3Oc+N77+9a/Huee6eC2L3jjZAzTRxRdfHDfeeGNcd9118bKXvWzZB4NisRgvetGL4mMf+1jccsstccUVVzS50t42MjIS//7f//u466674r3vfW+cddZZy25mPOaYY+JXfuVX4tZbb42rr746jj1WEw1As+zcenrsOfa8pjyrusTpfcv9nGezemxdnH3aS2NoaKQ5DwQAutbE+Ja46JzXx4Z1O5b8uVnOHqUm/cZ0rDQe557xiti59fTmPJCBsmpsIs4/8zWxb9cFkevSBp1tR58SBw+8MdZPbOt0KfSgfXsORr5HGomfkM8XYu/ug50ugx6yefyoeOvzfiUuPv65Xdtsee5x58WvPP/fxfb1vdP0TPc44ZgT4y3Pe1vXTzk7pnxMvPm5vxwnbzVtmKUpDhfjjRf+XFx64vO79vt4REQhX4gXnHxZvO78N8SI34+zRM/Zfnr80iVviaPGu3vK2bZ12+Otl74t9h3lchmWZmxkLP7twV+Mg/su6eqJlcOF4fjJ014crz7w2p65QIHucdax58S/vfiXYsPqDZ0upaFdG3fFL1/6K3HsRj1fADAoHn300eSaVatWdWTYy9q1a5Nrpqam2lBJ6+Xz+fid3/mduPnmm+Nnf/Zno1Boz9/njj322PjLv/zL+Kd/+qc4+uij27JnP8jV6/VmXkkN0HNmZ2fjs5/9bHz+85+Pm2++OW655ZZ46KGH4tChQzE9PR3FYjHWrFkT69ati3379sWJJ54Y55xzTjzvec+LsbGxTpffUx544IH4xCc+EV/5ylfi5ptvjttuuy2mpqbi0KFDMT8/H6tXr441a9bEli1b4oQTToiTTjopnvvc58bpp2uGPJIHH3wwNm3a9LT/94Mf/CA2btzYoYqAXlSv1+Pb37s+brvzX1b0nHtmcnHt5NJ+ADxmdDGeO7GylN9YaSIOnPGyKI6mb9YBAPpHvV6PO+/9enzrO9fF/MJsps/5wWwuPjnZuEnmxetnY3X68rqGdm49I47ffWEMFTRXsnKPHn4wvnbzP8TUoQc6XUpEPD6179QTXhCbTDFjhW67/Ytx2/e/0OkyMtt17IHYtfOcTpdBj7r7kbvi6hs/HA882h3fyydWrYsr978sdm06rtOl0AcWFhfi+ls/E5+8+Z9iYXGh0+U8qZArxCUnPC8uPv6SnplORfe6r3Jv/O2NH477Kvd2upSn2TKxNV525stjc5eHs+h+84vz8embPxWf+fa1sVhv0s2MTTCUH4rnn/SCuGDvhV0dtKU33PXInXH1v3w4fnDoB50u5Wl2rt8ZV5z5stiwRo8HKzO3MBf/9M1PxOe+c33Uo3tagkcKI3HZqS+Mc3Yd8L28xfSQAdBt/t2/+3fx7ne/u+GaDRs2xIMPPtiegp5i//79cdNNNzVc8zM/8zPxd3/3d22qqH2+973vxd/8zd/E3/3d38XXvva1pj57aGgoDh48GK997Wvjta99baapgTydgB8A9DC/nAGapV6vx/fu+FLcetvnlv2M707n4guPLq1ZZmKoHi/asPzGnzWrN8bZz7kiRkdWLfsZAEBvq9Yeja9965p46JE7kmvvqOXj81ONf4n88k2zMbTMC73HSuNx2gmXm2hG0y0uLsT37vhSfOf7X4jFxfmO1bHtmFPjxD0Xx/DQaMdqoH8sLMzHF770/qjWuv8G1FJpPA6c9dooFPwhkuWbX5iPT33rk3H9tz8TC/XOhKBykYsDx50bLzjl8hj1vZwme2Dq/vjbGz8c90ze3elS4pjyMXHlma+Io8tuhqZ5FhYX4rpbPh2f/tanOh6AKuQLcemJz48L9x4UYKWp7pm8O66+8cNx/9T9nS4ltq3bHlee+fLYtHZTejFkNLcwF5+6+ZPx2W9f1/EA1HBhOF5w8uVx7u7zhJ5oqjse+n5cfeOH46HDD3W6lNi1cVdccebLY92qdZ0uZSDoIQOg27zlLW+J9773vQ3XbN68Oe6/v/0/g55zzjnxpS99qeGaF73oRfGxj32sTRW11ze/+c34+7//+/jzP//zuOOOdJ9FFhMTE/GHf/iH8epXvzrWrDGoYbkE/ACgh/nlDNBsd9z91bj5O5+O5fyY8I3Dufja4aU1ExTz9bhy0/Ka2taVt8b+U14Sw8PFZX0+ANA/6vV63H3fv8att/9zw6DILdP5uOnQkcMZw7l6vGzT3JL3HyqMxM6tp8fuYw+Y2kdL1WYOx533fD3uuPdrMTNzuC17DhVGYuvRJ8WOrafHmlXr27Ing+Ohh26Pr37jo50uI+k5p744NphaSZNUpivxpdu+EP9y+5ficJu+l5eGS7F/55lxznHnxobVG9qyJ4NpYXEhbvju5+Mz376ubf++n2rV6Kq4aO/BOH/PhUJPtMx9lfvimm98PG594Nsd2X/fUcfH5ae80NQ+WmZ+cT4+d+tn4/pbPxvTs9Nt339tcW0cPP6SOHDcuUJPtMxdj9wV13zj43Hbg99r+965yMVJW06OF5xyubM5LTO3MBfX3XJt/PN3Px+1uWrb9y+PleO5Jzwv9u88y/fyNtJDBjTDgct+udMlDJQvXHNVp0toqV/4hV+Iv/iLv2i4ZsuWLXH33e2/MOz888+Pf/7nf2645id+4ifiE5/4RJsqar2ZmZl43/veF//9v//3+M53vtOyfUZGRuKSSy6Jt771rfGiF70ocrll3q48oAT8AKCH+eUM0AqVR++Lr998TRyefmRJn/cvj+bj29NL+wV9Lurxqs0LkV/Cz3G5XD72HHte7Np+VuTz/iAAAPxIvb4YP3j49rjj7q/GDx6+7cc+/tVDhbh5+siNvmsL9fjJDdkDfmtXb4wdW0+PLUedINhHWy0uLsQDD30v7rj7K/HQ5J0t2WPN6o2xc8tzYstRJ8bQkH/ftM5Xv/H/4qGHfvx7drfYuGFXnHbKT3W6DPrQ/OJ8/Os934wvfO+G+P5Dt7dkjy0TW+Pc486LU7edFsOF4ZbsAc9mfnE+bv7hv+/bW/Tv+6l2rt8Z5xx3bpy85ZQYMm2VNnnw0IPxxdu+EF/+/o0tb5wvjYzFmTvPjLN3HRAGoW3mFubim3d/I77wvRvizkeac5t/I8dt3B0Hjjs3TjjmRCFt2ub+qfvji7fdEDfd8eWYnZ9t6V6rRlfFWceeE2cfe05MrJpo6V7whNn52fjaXV+NL3zvn+Peyr0t32/v5n1x4LhzY9/Rxwv2dYAeMqAZBPzaq98Dfm984xvjfe97X8M1O3bsiO9///ttqeepDh48GJ/97Gcbrrnkkkvi05/+dJsqap16vR7/83/+z3jnO98Z997b+jPhU51yyinx9re/PV7+8pe3dd9e5rfbAADA05TXHh3nn/Wz8Z3v3xC33fEvEZHtTpDqMgbx1SMXtcWIsYx/q127ZnOcdsJlsUYTAwDwLHK5fGzecFxs3nBcPFatxJ33fC3uvPcbMffDZsvqYuPPL+bT5558rhBHb94bO7eeHuW1x7hxjo7I5wtx9Ka9cfSmvXH4sYfjngduicrUvVE59MCT/96XqlAYjvHVm6I8fnQctXFPTIxv8e+btti3+6J45JE7YnFxedPdWymfL8Te3Qc7XQZ9aig/FKdte06ctu05cf/UffH1u74edz5yR9wzec+ygyKjQ6NxTHlLbFu3PU7eekpsW7etyVVDNkP5oTh123Pi1G3PebJx/it33BQz8zNN22OkMBLP2XF6HNh1XhxdPrppz4WsNq7ZGD952k/FT5z0gh82zt8Q91buaeoeWye2xYHjzhXUpiOGC8Nx+o4z4vQdZ8Q9k3fHF2/7Qnz1zq/E3EL2i5FSRoeKccbO/XFg14HYtHZz054LWR01flS85PSfictOvjy+cudX4gvfuyEeePT+pu6xY/3OOOAiAjpkZGgkzjr27Dhz51lx1yN3xRduuyG+cdfXYn5xvml7lEbG4swdZ8bZx7mIAAB4uqGh9Pl3YaEzfxvKsm+W+rvd/fffH294wxs6NonwG9/4RrziFa+ID3zgA/Hnf/7nsWGD82KKCX4A0MPcvgS02lKm+X3i4UI8OLf0BuAXrp+PdYneBFP7AIDlWlxcjKlD98fUo/fHn331y/H9Q9NHXLujuBDnjz/9l/ml4niU126O8TVHxfiazTExfoxpZnSter0e1dqjP/w3/0A8evjBmJmbjsXF+VhYmI+IehTyw5HPD8Xw0EisWb0xxtdsjvE1m2P1qnWRc7M2HXLb7V+M277/hU6X8WN2HXsgdu08p9NlMGDq9XpMPvZI3D15d9wzeU/cP3VfTM9Ox9zCXMwvzkW9/njD/VBhKErDpThq/KjYMrE1tkxsifWrN5iSQNeaW5iLux+5K+6ZvDvuqdwT90zeEw8dejDqGS8X27B6ww//rT/+733buu0CT3SdRw4/HHc+cmfcO3lP3FO5O+6ZvDdm5muZPrc4XIxjyltiy8SW2DqxNbat2x4Tq9a1uGJYmtn52bjrkTvjnif/jd8TDx9+KNPn5iIXG9dsjGMmtsbWH34v3zqxTeCJrlKv1+Phww/FXU85s9xbuSfzdL/ScOnJs8qWia2xfd32GB8rt7ZoWKKZ+Zm46+E7n3IuvzseeSzdCxDx+PfyTWs3P/lvfMsPv6ebvNod9JABzWCCX3v1+wS/t7zlLfHe97634Zqjjjoq7rvvvjZV9CPnnHNOfOlLX2q45kUvelF87GMfa1NFzXfjjTfG5ZdfHg89lO3n9ids2rQpLrjggtizZ0+sW7cu1q1bF8PDw/Hwww/HI488EnfffXd87nOfi+9973tLeu5RRx0VV199dZx//vlL+rxB47ckAADAET0xze/7d98Ud9z9lajNHD7i2tREnCN/Xi6ONCUwl8vHURt3x55jz4vVq9YvbwMAYKDl8/mYGD8mJsaPiYWv3xwRRw74bV23NU7evScK+aEoFtfE+JrNMTJcal+xsEK5XC7GSuMxVhqPozft63Q5kNmO7fvjvvu/FdXaVKdLeVKpNB47tu3vdBkMoFwuF+tWr491q9fHqdtO63Q50DTDheE4duOuOHbjrif/38xcLe6t3BuT05MxOz8b8wtzMb+4EEP5QgwVhmO4MBwTqybimPKWKA4XO1g9ZPPE9+/nbD89IiIW64vx8OGH44Gp+2N6djrmF+djbmEuchE//Dc+FKWRsThq/OhYt2qdkDZdb2RoJI7btDuO27T7yf9Xm6vGvZOPfy+fW5iLuYW5WPjh9/LhwnAMD43EulXr4ujyMTE6NNrB6iEtl8vFhjUbY8OajXH6jjMi4vHv5Q8dejAeePSBqM5WH794Y2Eucrnck9/Lx0ZWxdHlY2JibCJyuaVfhgrtNDo0Grs374ndm/c8+f+mZ6fj3sl7Yqo6FbMLszG/MP/49/LCUAz/8KKw9as3xNHjR8eIy+8AgIyGh9OXc83PN2+y8FJk2XdkpHfPPV/5ylfiJ37iJ2JycjLT+omJifjFX/zFeP3rXx/79mX7G/N9990X//f//t9417velSnsd//998dll10Wn/jEJ+K8887LtMcgEvADAAAaKhSG4rgdZ8ex286MHzz8vbjj7q/Gw5N3Pm1NvR5RTU+uf1bP9nmjI6tj+5ZTY9sxp0RxdPXyHgwA8AyV2pHDfRER2zcdFzu3nt6magB4QqEwFPv2HIyvfuOjnS7lSft2H4yCaSIALTU6XHw89NfpQqBF8rl8bFyzMTauMTWF/lUcLsWuTcd1ugxomXwuH5vWbo5Nazd3uhRombGRsacF/gAAmmF0NH3JS61Wa0Mly9u3VwN+t912Wzz/+c/PFO4bGhqK3/3d341f/dVfjdWrl9ajefTRR8eb3/zmeNOb3hQf+tCH4pd/+ZfjkUcaT4Y+fPhwXHbZZXHttdfG/v0u2Xw2/jIJAABkks/n46iNe+KojXvi8GOPxJ33fi3uvf9bMTtXjbl6xEIs70bKJyb/5XK5WFfeFju2PCc2bdgV+XyhidUDAINufmEhDs1UG66ZKK1qUzUAPNOGDcfGhg274qGHbut0KbFxw67YsEHcBAAAAAAAYDnWrFmTXPPYY49FvV5v+yTsQ4cOJdesXbu2DZU01+LiYrzhDW+Ihx9+OLl2y5Yt8cEPfjAuuOCCFe1ZKBTi1a9+dVxwwQXxyle+Mm644YaG6w8dOhSvfvWr4ytf+UqMjY2taO9+JOAHAAAs2epV6+LEPZfECbsvjsemH4nv3H97xA8+v6xnFddsjQPPOS/WrtkUQ0O9efMNAND9phLT+yIiyiW/QAbopH27L4pHHrkjFheXOSK+CfL5QuzdfbBj+wMAAAAAAPS6devWJdfU6/U4dOhQ28N0jz76aHJNlvq7zbvf/e64/vrrk+s2btwY119/fRx7bPMuu9y+fXt8+tOfjksuuSS+8IUvNFx76623xm/91m/FVVdd1bT9+0W+0wUAAAC9K5fLxepV62Nk9eZlP2OxMBbrJrYK9wEALTVZfSy5pmyCH0BHlUrjsXP7WR2tYeeOs6JU6r1bWQEAAAAAALrF+vXrM62bmppqcSVPt7i4GIcPH06uy1p/t3jsscfine98Z3Ld6OhofOQjH2lquO8JxWIx/v7v/z527tyZXPsnf/In8a1vfavpNfQ6AT8AAGDFKhka5o/4uRmm6QAArFSlJuAH0At2bN8fpeJ4R/YulcZjx7b9HdkbAAAAAACgX2QNyD3wwAMtruTpHnzwwVhYWEiu67WA3//6X/8rKpVKct2v/dqvxXnnndeyOjZt2hTvfe97k+vq9Xq8+93vblkdvUrADwAAWLFKdfkhvZWEAwEAsppKnFeG84VYNTzapmoAOJJCYSj27TnYkb337T4YhcJQR/YGAAAAAADoF1u2bMm07v77729xJcvbL2v93eKqq65KrhkfH49f//Vfb3ktl19+eZx//vnJdX/9138dDz/8cMvr6SUCfgAAwIqtaIJf9bGo1+tNrAYA4MdNJs4r46WxyOVybaoGgEY2bDg2NmzY1dY9N27YFRs2HNvWPQEAAAAAAPrRzp07M6279957W1vIM9x3332Z1h17bO/8zej222+PW2+9Nbnu53/+52NiYqINFUX85m/+ZnJNtVqNT37yk22opncI+AEAACuWaphvZG5xIR6bm2liNQAAP65Sa3xeKRdXtakSALLYt/uiyOcLbdkrny/E3t2dmRoIAAAAAADQb0qlUmzevDm57nvf+14bqvmR7373u8k1uVwuduzY0YZqmuP666/PtO6yyy5rcSU/8tznPjdGRkaS6z772c+2oZreIeAHAACs2FSiYT5lJRMAAQCySJ03JkoCfgDdpFQaj53bz2rLXjt3nBWl0tq27AUAAAAAADAIdu3alVzzne98pw2V/EiWgN+WLVtidHS0DdU0xz//8z8n15RKpbjwwgvbUM3jVq9eHeeee25y3ec+97k2VNM7BPwAAIAVq1SnV/j5An4AQGulzitlAT+ArrNj+/4osgNP+QABAABJREFUFcdbukepNB47tu1v6R4AAAAAAACD5pRTTkmuueWWW9pQydL2y1J3N7n77ruTa3bv3t320OLJJ5+cXHPHHXe0oZLeIeAHAACs2OQKA3orDQgCAKRUEhOHx4tjbaoEgKwKhaHYt+dgS/fYt/tgFApDLd0DAAAAAAC6Xi7nv3b+NwBOP/305Jpvf/vbMT3dvt7Bm266KbnmjDPOaEMlzfPwww8n12zYsKENlTzdxo0bk2umpqZifn6+DdX0BgE/AABgRWbn52N6bmZFz0g13AMArMRivR5TiQsFJkzwA+hKGzYcGxvWH9uiZ++KDRta82wAAAAAAIBBliUot7i4GF/96ldbX0xE3HXXXfHggw8m12UJJnaTRx55JLmmEwG/rHtmqX9QCPgBAAAr0oxwXmWFEwABABo5PFONhfpiwzVlAT+ArrVvz8HI5wtNfWY+X4h9uy9q6jMBAAAAAAB43GmnnRalUim57vrrr29DNRGf/exnM60755xzWlxJc9Xr9eSaXAemRmbd0wS/HxHwAwAAViRLOG/DqjUrfgYAwHJlOWsI+AF0r1JpPHZuP6upz9y546wolcab+kwAAAAAAAAeNzo6GhdccEFy3ac+9ak2VJNtn+OPPz62bt3ahmqaZ2xsLLnmoYceakMlT5dlWmJEtvoHhYAfAACwIpXadHLNsRObGj+jmn4GAMByZTmvCPgBdLcd2/dHqdicQF6pNB47tu1vyrMAAAAAAAB4dpdeemlyzfXXXx+HDx9uaR2Li4vxiU98Irnu+c9/fkvraIXx8fTfz7KG7Zopy575fD5Wr17dhmp6g4AfAACwIqmJOKOFoThqbbnhmsmaCX4AQOukziu5iFg7WmpPMQAsS6EwFPv2HGzKs/btPhiFwlBTngUAAAAAAMCzu+yyy5JrarVa/P3f/31L67j++uvj3nvvTa7LUm+32b59e3LNd7/73ZiZmWlDNT/yjW98I7nm6KOPjqEhf7N7goAfAACwIqmG+XJpVZSLjSfipJ4BALASqbPG2uJYFPJ+VQrQ7TZsODY2rD92hc/YFRs2rOwZAAAAAAAApJ166qlx4oknJte9//3vb2kdf/3Xf51cs379+p6c4Ldr167kmmq1Gp/73OfaUM3jDh06FDfccENy3bHH+pvdU+laAQAAViRLwG+i1DjgV52bjZn5uWaWBQDwpMnqdMOPlxNnFQC6x749ByOfLyzrc/P5QuzbfVGTKwIAAAAAAOBIXvOa1yTXfOITn4hbbrmlJfs/+OCD8Td/8zfJdS9/+ctjeHi4JTW00v79+zOt+4d/+IcWV/Ijn/zkJ2NuLt0PmrX2QSHgBwAArMhklgl+GZrmK7XGjfcAAMtVqSXOK8WxNlUCwEqVSuOxc/tZy/rcnTvOilJpvMkVAQAAAAAAcCSvfe1ro1BofHljvV6P//yf/3NL9n/Pe94TtVotue71r399S/ZvtQMHDmRa95d/+ZdRqVRaW8wP/dEf/VGmdeedd16LK+ktAn4AAMCKpIJ55eJYjGdomk9NAgQAWK6pxDkjNW0YgO6yY/v+KBWXFtQrlcZjxza3gAIAAAAAALTT9u3b48orr0yu++u//uu46aabmrr3nXfeGe9617uS684///w455xzmrp3u2zatCnOOit9OWalUon/+l//a8vr+ehHPxpf/OIXk+uGh4fj0ksvbXk9vUTADwAAWJFUw3y5tCpT07yAHwDQKqmJw+MCfgA9pVAYin17Di7pc/btPhiFwlCLKgIAAAAAAOBIfvM3fzO5ZnFxMX7hF34hZmdnm7JnvV6PN73pTVGtVpNrs9S3FG94wxsil8sl/7vuuuuast8rXvGKTOve9a53xQ033NCUPZ/NvffeG295y1syrX3e854X69ata1ktvUjADwAAWLbFxcWYmmn8A3C5tCqKwyNRHBpuuE7ADwBolfTEYQE/gF6zYcOxsWH9sRnX7ooNG7KtBQAAAAAAoLnOOOOMePGLX5xcd9NNN8Wv/MqvNGXPP/zDP4xrrrkmue7MM8+Mn/qpn2rKnp3y+te/PsbGxpLrarVa/PRP/3R8//vfb3oN09PT8eIXvzjuvvvuTOt/6Zd+qek19DoBPwAAYNmmZqpRr9cbrnmiYb6cmIyTmqwDALAc1bnZmJmfa7hmopT+RTcA3WffnoORzxcarsnnC7Fv90VtqggAAAAAAIBn8653vStGR0eT6/70T/80fud3fmdFe733ve/N9IxcLhdXXXVV5HK5Fe3XaRs2bIif+7mfy7T2Bz/4QVxwwQXx+c9/vmn733777XHw4MH48pe/nGn9iSee2POhylYQ8AMAAJYty9S9JxrmUwG/qcRkHQCA5chyXkmdUwDoTqXSeOzcflbDNTt3nBWl0nibKgIAAAAAAODZHHfccfFbv/Vbmdb+wR/8QbzqVa+KQ4cOLWmPmZmZeNvb3hZvectbMq1/4xvfGAcOHFjSHt3qHe94R6xbty7T2nvuuScuvvjieOc73xmPPbb8wQwLCwvxV3/1V3HGGWfEjTfemPnz3v3ud/d8qLIVBPwAAIBlW0rD/BOT/FbyLACApapkuERAwA+gd+3Yvj/K48c868fK48fEjm3721wRAAAAAAD0oHzOf+38b0D97u/+bpx77rmZ1n7wgx+MPXv2xJ/8yZ/Eo48+2nBttVqNv/qrv4rjjz8+rrrqqkzP37t3b7znPe/JtLYXbNiwIf74j/848/r5+fl4xzveEdu2bYu3v/3tceutt2b+3HvvvTeuuuqq2L17d7z+9a+PSqWS+XNf+9rXxvOf//zM6wfJUKcLAAAAelcqlFfI5WP1aCkiIso/nOS33GcBACxHpgsJEhcRANC9CoWheM6pL45vf+czcf8Dt0a9vhC5XCGO2rw39u05GIWCP4UBAAAAAAB0g6GhofjQhz4Up59+ejz88MPJ9Q888EC89a1vjd/4jd+IgwcPxv79+2Pr1q2xZs2aOHz4cNx///3x5S9/Oa677rolTfsrlUrx4Q9/OFavXr2Sl9N1Xve618XnP//5+LM/+7PMnzM5ORm///u/H7//+78fmzdvjgsvvDB2794d69ati/Xr10ehUIhHHnkkHnnkkbjrrrvic5/7XHzve99bVn2nnHJK/Omf/umyPncQ+KsmAACwbKmJOOPFscj/cJR6ajLOZE3ADwBovlTAb2x4JEaG/JoUoJcNDY3GSSf8ROzdfVHMz8/E0NBoDA8XO10WAAAAAAAAz7Bt27b4+Mc/HpdeemnmUF61Wo1rrrkmrrnmmhXvPzw8HFdffXWcdtppK35WN7rqqqvi/vvvj49+9KNL/twHHnggrr766hZUFbFr16742Mc+FqtWuYD5SPKdLgAAAOhdqYb5p07tS03GOVSrxsLiYlPqAgB4Qvq84pfHAP1ieLgYpdK4cB8AAAAAAEAXO/vss+NjH/tY2yfoDQ8Pxwc+8IF44Qtf2NZ922lkZCSuvvrqeOUrX9npUp500kknxWc+85nYvn17p0vpagJ+AADAsi2lYX7iKWG/Z1OPiKnEREAAgKWaFPADAAAAAAAAgK5y0UUXxQ033BC7du1qy36bNm2KT3/603HFFVe0Zb9OeiLI+N/+23+L4eHhjtbyyle+Mr74xS/G1q1bO1pHLxDwAwAAlm0pDfNZmudTgUEAgKVKXSCQmjIMAAAAAAAAADTfySefHDfeeGO85jWvaek+l19+eXz5y1+OCy64oKX7dJtf+7Vfi6985Stx0UUXtX3v7du3x0c+8pH4wAc+EKtW6cvIQsAPAABYtkotEfArLjHgl3geAMBSpScON54yDAAAAAAAAAC0xsTERLz//e+Pa6+9Nvbv39/UZ+/duzeuvvrq+PjHPz6wE+ROOumk+MxnPhPXXHNNXHzxxS3fb/fu3fGnf/qnceutt8ZLXvKSlu/XTwT8AACAZanX61GpJibiPKVhfvVIMQr5xj+CpJ4HALBUk6kLCTJcQgAAAAAAAAAAtM7FF18cN954Y1x33XXxspe9LFavXr2s5xSLxXjRi14UH/vYx+KWW26JK664osmV9qYXvOAFce2118Z3v/vd+I//8T/GmWeeGflEP2dWu3btije/+c1x/fXXx6233hpvetObYnR0tCnPHiRDnS4AAADoTY/NzcT84kLDNU9tmM/lclEujsXD04ePuD41YQcAYCnmFxbi8Eyt4ZqnThwGAAAAAAAAADrn4MGDcfDgwZidnY3Pfvaz8fnPfz5uvvnmuOWWW+Khhx6KQ4cOxfT0dBSLxVizZk2sW7cu9u3bFyeeeGKcc8458bznPS/GxsbSG7XQ+973vnjf+97X0RqO5Ljjjot3vOMd8Y53vCMqlUrccMMN8Y1vfCNuvvnmuPPOO+O+++6Lhx56KKrVatRqtajX6zE6OhrFYjEmJibi6KOPji1btsTxxx8fJ598cpx99tmxY8eOTr+sviDgBwAALEuWMN4zG+bLpVUNA36TAn4AQBNVEtP7IiImTPADAAAAAAAAgK4yMjISl156aVx66aWdLqVvlcvluPzyy+Pyyy/vdClERHPmKQIAAAMnS8DvmQ3z5UQDfZYmfACArCrV6eSa1PkEAAAAAAAAAABaScAPAABYliwN8+PFp4+6f+ZEvx9/poAfANA8WS4PGC+NJdcAAAAAAAAAAECrCPgBAADLMpkI460ZLcVQofC0//fMiX7PNJUhNAgAkFXq8oDhfCFWDY+2qRoAAAAAAAAAAPhxAn4AAMCypBrmy8Ufn4ZTTgT8KrXpqNfrK6oLAOAJyfNKaVXkcrk2VQMAAAAAAAAAAD9uqNMFAAAAvWmqlm6Yf6bxZwn9PdX84kIcnq3FmtHSimoDAIiImExMB05dPgAAAAAAAAAwENyLCtBRJvgBAADLUllGw/xEhib61KQdAICs0hcSNL58AAAAAAAAAAAAWk3ADwAAWJbJZTTMZ5mSI+AHADRL6lxRLprgBwAAAAAAAABAZwn4AQAAy7Kchvnx4ljkEs+dTEwGBADIajkThwEAAAAAAAAAoJ0E/AAAgCWbmZ+L6txswzUTz9IwX8jnY02x1PDzphKTAQEAslis12Oqlgr4/fjEYQAAAAAAAAAAaCcBPwAAYMlS0/siIsaPMBFn4lkm+y312QAAKYdmqrFQX2y45tkmDgMAAAAAAAAAQDsJ+AEAAEtWSUzDiYgoF599Ik75CMG/J0xW088GAEiZynBpwLNNHAYAAAAAAAAAgHYS8AMAAJYsy5S9IzXMj5eePfj35LNrJvgBACuX5dKAI00cBgAAAAAAAACAdhHwAwAAliwV8CsODUdxeORZP1YuNm6kzxIeBABISV0akMvlYny01KZqAAAAAAAAAADg2Qn4AQAASzaZCOGVG0zDOdJkvycI+AEAzZA6U4yPliKf9+tRAAAAAAAAAAA6SwcLAACwZKmJOI0Cfo0+FhFRm5+L2tzssuoCAHhCKuCXOpMAAAAAAAAAAEA7CPgBAABLVqlON/x4uTh25I9laKav1Bo/HwAgJXWeEPADAAAAAAAAAKAbCPgBAABLNrWCiTiZAn6J5wMApCQn+DW4kAAAAAAAAAAAANpFwA8AAFiyydoKAn4ZmukF/ACAlUoG/EzwAwAAAAAAAACgCwj4AQAAS7KwuBiHatWGa8rFIzfMjw4NR2l4pOHnTwr4AQArUK/XBfwAAAAAAAAAAOgJQ50uAAAA6C1TtemoJ9ZMlBpP6SuXVkV1bvaIH68kJgQCADRSnZ+NmYX5hmsE/AAAAAAAAAB+KJ/rdAUAA80EPwAAYElS03Ai0g3zEw0m/D2+x/SSagIAeKqpDGeJRhOHAQAAAAAAAACgXQT8AACAJZnMEPAbTzTMlxMT/rKECAEAjiTbhQSNzyMAAAAAAAAAANAOAn4AAMCSTNUaT8Qp5POxZrTYcE1qwl+lJuAHACxflgsJUucRAAAAAAAAAABoBwE/AABgSVITccrFscjlcg3XpCb8VaqNQ4QAAI2kLgsYGx6NkcJQm6oBAAAAAAAAAIAjE/ADAACWJDURJ8s0nInEmkMz1ZhfWFhSXQAAT0hdFpA6iwAAAAAAAAAAQLsI+AEAAEuSmoiTJeBXLo0l10zVTPEDAJYnOXE4w1kEAAAAAAAAAADaQcAPAABYkmTDfDFLwC+9JjUpEADgSFIXEoxnOK8AAAAAAAAAAEA7CPgBAABL0oyJOFkCfqnGfACAI6lUG08CnshwFgEAAAAAAAAAgHYQ8AMAADKr1+tRqTVumM8S3ls1PBrD+ULDNVOJxnwAgCNJX0gg4AcAAAAAAAAAQHcQ8AMAADI7PFuLhcXFhmvKxXTDfC6XSzbWTyYa8wEAns3cwnwcnq01XJNl4jAAAAAAAAAAALSDgB8AAJBZahpORMRExok448XGjfWVmoAfALB0U4lpwxEm+AEAAAAAAAAA0D0E/AAAgMyyBPyyNsyngoBZ9gIAeKZKNUPAL8PEYQAAAAAAAAAAaAcBPwAAILPJRMN8LiLWFkuZnpUKAgr4AQDLMdnECwkAAAAAAAAAAKDVBPwAAIDMKrXGDfNrRksxlC9kelY64JeevgMA8Eyp88pwoRBjwyNtqgYAAAAAAAAAABoT8AMAADJLTdVbyjSccmms4cenatOxWK9nfh4AQESG80pxVeRyuTZVAwAAAAAAAAAAjQn4AQAAmaWm6i0p4FdsvHahvhiHZ6qZnwcAEJE+r0ws4bwCAAAAAAAAAACtJuAHAABkVqmlJvg1nsr39LXp5vrUBB4AgGdKnR/Gl3BeAQAAAAAAAACAVhPwAwAAMks1zKem8j1tbYaA32RiAg8AwDMlLyRYwnkFAAAAAAAAAABaTcAPAADILBXwm8gQ2nvC+Ggpcrlc4/0SDfoAAM/UzPMKAAAAAAAAAAC0moAfAACQSW1uNmrzcw3XjC+hYT6fz8f4aKnhmlSDPgDAUy0uLsZUrfEE4CxThAEAAAAAAAAAoF0E/AAAgEwmM4TtysWxJT0z1WBfqTZu0AcAeKpDs7VYrNcbrhHwAwAAAAAAAACgmwx1ugAAAKA3pKbhRERMLLFhvlxaFTH54BE/XqmZ4AcAZJdl+u9SLyQAAAAAAAAA6Hu5XKcrABhoJvgBAACZZGqYX2rAL9Fgn2VPAIAntOK8AgAAAAAAAAAArSTgBwAAZDKZaJgvDY/E6NDwkp6ZarAX8AMAliJ1XsnlcrF2tNSmagAAAAAAAAAAIE3ADwAAyKRSa9wwv5xpOFkCfvV6fcnPBQAGU+q8Ml4ci3zer0QBAAAAAAAAAOgeulkAAIBMKtXphh8vF8eW/MxUwG9mYT6q87NLfi4AMJimkueVpV9IAAAAAAAAAAAArSTgBwAAZFKptmCCX4Ym+1SwEADgCZPJ88rSLyQAAAAAAAAAAIBWEvADAAAyqdQSDfPLmIgzkSEUOJVo1AcAeELyvLKMCwkAAAAAAAAAAKCVBPwAAIBMUpP0ltMwP55hik5qEg8AwBOS55VlXEgAAAAAAAAAAACtJOAHAAAkzS8sxKGZasM1WabxPdNIYSjGhkcbrklN4gEAiIio1+tRSVwMMJHhcgEAAAAAAAAAAGgnAT8AACBpqtZ4Gk5ERHmZDfOpYGBqEg8AQEREdX42ZhfmG65ZzsRhAAAAAAAAAABoJQE/AAAgaTIxDSciolxcXsN8KhiYmsQDABCR7VKA8WWeVwAAAAAAAAAAoFUE/AAAgKRKLUPAb5kTcVKflyVcCACQ5VKA1ORgAAAAAAAAAABoNwE/AAAgaSoxEWc4X4hVI6PLenYq4DdVS0/jAQDIEvAbT0wOBgAAAAAAAACAdhPwAwAAklJT9MZLY5HL5Zb17HKxccAvS7M+AEDqvLJqZDRGCkNtqgYAAAAAAAAAALLR0QIAACRVao0b5lMhvYafm5ikc3i2FnML8zGsIR8AaCA19Xcl5xUAAAAAAACAvpZf3uXuADSHCX4AAEBSaoreRGklAb/051YSDfsAAKnzSupSAQAAAAAAAAAA6AQBPwAAICnVMD++gob5LNN0UvsDAEwmA34m+AEAAAAAAAAA0H0E/AAAgKRKtfEEvSwhvSPJMv1PwA8ASKnUBPwAAAAAAAAAAOg9An4AAEBDi/V6TNUaB/yyhPSOpDQ8EiOFoYZrKon9AQBSFwKs5EICAAAAAAAAAABoFQE/AACgocMz1VioLzZcs5KJOLlcLvn5JvgBAI3MLczHY7MzDdeUS2NtqgYAAAAAAAAAALIT8AMAABrKEq5bScAvIqJcbNxwL+AHADSSZdrvSs8rAAAAAAAAAADQCgJ+AABAQ5PV1jfMm+AHAKxEpgsJigJ+AAAAAAAAAAB0HwE/AACgoUqtccN8LiLWjpZWtEcq4JclZAgADK4sAb8JE/wAAAAAAAAAAOhCAn4AAEBDqYb5tcWxKORX9qNFuTTWuIZEyBAAGGyp88pIYShKwyNtqgYAAAAAAAAAALIT8AMAABqqJKbnpabvZVEuNn7GVG06FhcXV7wPANCfKrXG55Xx4ljkcrk2VQMAAAAAAAAAANkJ+AEAAA2lpueVi42n72UxkQgJ1uv1ODRTXfE+AEB/Sk3wS501AAAAAAAAAACgUwT8AACAhtrRMJ9lCuBkYjIPADC4UueVZkwcBgAAAAAAAACAVhDwAwAAGmpHw3yWKYCpOgCAwTVZbXwRgIAfAAAAAAAAAADdaqjTBQAAAN2rXq8ng3XjxZU3zK8pjkU+l4vFev2IawT8AIAjqdRSFxKkLxMAAAAAAAAAGFi5XKcrABhoJvgBAABHVJ2fjZmF+YZrJprQMJ/P5WI8McVPwA8AeDaLi4vxaC0xwa8JFxIAAAAAAAAAAEArCPgBAABHNFVt3CwfEVEuNadhPvWcSQE/AOBZHJqpNpwCHNG88woAAAAAAAAAADSbgB8AAHBEWabmNS3gl5isM5WYzAMADKbJDGcEAT8AAAAAAAAAALqVgB8AAHBEWabmtWuCX5awIQAweLKcESaKY22oBAAAAAAAAAAAlk7ADwAAOKJKrXHD/NjwaIwUhpqyV7nUuPE+S9gQABg8qYBfPpeLNaOlNlUDAAAAAAAAAABLI+AHAAAcUaU63fDjqVDeUiQn+NUei3q93rT9AID+kLqQYG1xLPJ5vwYFAAAAAAAAAKA76WwBAACOKDURJxXKW4pysfGz5hYWYnputmn7AQD9IXkhQeKMAQAAAAAAAAAAnSTgBwAAHFFqIk4zG+YnMoQFU4FDAGDwpM4HE02cOAwAAAAAAAAAAM0m4AcAABxRaiJOllBeVuUMzfepwCEAMHjaOXEYAAAAAAAAAACaTcAPAAA4onY2zGeZBmiCHwDwTJMCfgAAAAAAAAAA9DABPwAA4FnNLczH4dlawzVZpu5lNVQoxOrRYsM1qYmCAMBgqdfrMVVrfD4oF5t3XgEAAAAAAAAAgGYT8AMAAJ5VJdEsH5Ft6t5SpJ5ngh8A8FTVudmYXZhvuMYEPwAAAAAAAAAAupmAHwAA8KyyhOma3TCfmgg4KeAHADxFlrOBgB8AAAAAAAAAAN1MwA8AAHhWlWqGCX7NDvilJvjVBPwAgB/JcjYQ8AMAAAAAAAAAoJsNdboAAACgO6Ua5ocLhRgbHmnqnhOJBvwsUwUBgMGRaeJwsfGEYAAAAAAAAICBl891ugKAgWaCHwAA8KxSDfPl4qrI5Zr7i53UhJ0sUwUBgMGROhusGhmN4YI7zgAAAAAAAAAA6F4CfgAAwLNKBfxS0/aWIxXwm56bidn5+abvCwD0ptTE4dTZAgAAAAAAAAAAOk3ADwAAeFapgN94aazpe5aL6WemGvkBgMGRZeIwAAAAAAAAAAB0MwE/AADgWU1Wpxt+vBUN81mm7KQa+QGAwdGJicMAAAAAAAAAANBMAn4AAMCzmkpMymtFw7yAHwCwFJXUhQQCfgAAAAAAAAAAdDkBPwAA4McsLi7GVK39DfOl4ZEYHRpuuCY1WRAAGByVxIUE48WxNlUCAAAAAAAAAADLI+AHAAD8mEMz1Vis1xuuadVEnHKiET81WRAAGAyzC/Px2OxMwzWtmDgMAAAAAAAAAADNJOAHAAD8mMnE9L6I1gX8Uo34laqAHwAQMZVhqm+rzisAAAAAAAAAANAsAn4AAMCPyRKiS03aW67xRCP+pIAfABDZzgQCfgAAAAAAAAAAdDsBPwAA4MekAn65XC7WjpZasne5mJjgl2G6IADQ/yq1LAG/1lxIAAAAAAAAAAAAzSLgBwAA/JhUw/x4cSzy+db8ODGRaMTPMl0QAOh/U4kzwUhhKEpDI22qBgAAAAAAAAAAlkfADwAA+DGVauMpeakpeytRLjV+9qO16VhYXGzZ/gBAb5hMnVdKqyKXy7WpGgAAAAAAAAAAWB4BPwAA4MekpuSlpuytRCrgV4/HQ34AwGBLTRwut/C8AgAAAAAAAAAAzTLU6QIAAIDukwr4pUJ4K5Hl2ZXadEyMrW5ZDQBA90ueV1o4cRgAAAAAAACgr+Q6XQDAYDPBDwAA+DGTiYb58RY2zGdpxk819AMA/S89cVjADwAAAAAAAACA7ifgBwAAPE29Xo9KLdUwP9ay/VePFqOQa/yjioAfAFCpTTf8+HgLzysAAAAAAAAAANAsAn4AAMDTVOdmY25hoeGacgsn4uRzuWRDfmrCIADQ3xYXF2MqEfDLMhUYAAAAAAAAAAA6TcAPAAB4mizhuVYG/CLSDfmpCYMAQH97dKYa9Xq94ZqJFp9XAAAAAAAAAACgGQT8AACAp8kSnmt1wC/VkF+pNp7YAwD0t0oXXEgAAAAAAAAAAADNIOAHAAA8TaaG+eJYS2solxo/P0uNAED/6oaJwwAAAAAAAAAA0AwCfgAAwNOkpuOtGhmN4cJQS2tINeRnmTIIAPSvqVrj80o+l4s1o6U2VQMAAAAAAAAAAMsn4AcAADxNajpeO6bhlIuJgF91Our1esvrAAC6U+q8Ml4ci3wu16ZqAAAAAAAAAABg+QT8AACAp0lNx0uF75ohFSKcX1yIx2ZnWl4HANCdJrvgQgIAAAAAAAAAAGgGAT8AAOBpUhNxJtoxwa80llyTqhMA6F/dcCEBAAAAAAAAAAA0g4AfAADwNJXqdMOPt2MiTpY9JhON/QBA/+qG8woAAAAAAAAAADSDgB8AAPA0k4nJeFmm663UeHEscok1U4nGfgCgf6Um+bbjvAIAAAAAAAAAAM0g4AcAADxpdn4+pudmGq4pF1s/EWcoX4g1o6WGa1JBRACgP9Xr9agkJvma4AcAAAAAAAAAQK8Q8AMAAJ6UapaPaF/D/Hhi8k5qcg8A0J+m52ZjbmGh4Zp2XEgAAAAAAAAAAADNIOAHAAA8qVKdTq5pV8Av1ZifJYwIAPSfLCH/CRP8AAAAAAAAAADoEQJ+AADAk7JN8Gs8Wa9ZUo35JvgBwGDKcgZo13kFAAAAAAAAAABWSsAPAAB4UqphfrQwFKWhkbbUkpoUKOAHAIMpy4UE40UBPwAAAAAAAAAAeoOAHwAA8KRUaK5cWhW5XK4ttaQDftNtqQMA6C6pM8DqkWIMF4baVA0AAAAAAAAAAKyMgB8AAPCkVMBvvNS+aTipgF91fjZq83NtqgYA6BZZLiQAAAAAAAAAAIBeIeAHAAA8aTLVMF9sX8N8uZgOE04l6gUA+k/yvNLGCwkAAAAAAAAAAGClBPwAAIAnTdWmG358oo0TcbJM30k1+AMA/adS654LCQAAAAAAAAAAYKWGOl0AAADQPSrJiTjdFfCrJAKJAED/mao2fv9v53kFAAAAAAAAoC/kc52uAGCgmeAHAABERMTi4mJMzVQbrmlnw3xxaDhKQyMN16QCiQBA/0lN8C2XxtpUCQAAAAAAAAAArJyAHwAAEBERUzPVqNfrDdeUi+2diJNq0BfwA4DBMjs/H9NzMw3XtPu8AgAAAAAAAAAAKyHgBwAARES2sFy7J+KkJgZWagJ+ADBIsrz3T7Rx4jAAAAAAAAAAAKyUgB8AABARWQN+7Z7glwj4VafbVAkA0A268bwCAAAAAAAAAAArIeAHAABERHoiTiGXjzWjpTZV87hysfHEwCxN/gBA/6jU0uH+8TZPHAYAAAAAAAAAgJUQ8AMAACIiPQ1vvDgW+VyuTdU8Lj3BT8APAAZJ6r1/tDAUpaGRNlUDAAAAAAAAAAArJ+AHAABERLphvtyBaTipgN+jM9WYX1xoUzUAQKelzyurItfmCwkAAAAAAAAAAGAlBPwAAICIyNYw325Z9pyqNZ48CAD0j248rwAAAAAAAAAAwEoI+AEAABERMZlomB8vtr9hfiLDnlNVAT8AGBSp84qAHwAAAAAAAAAAvUbADwAAiIiISq1xw/xEaaxNlfxIlib9VKM/ANA/UpN7y8X2n1cAAAAAAAAAAGAlBPwAAICo1+vJSXidmIizamQ0hvKFhmtSwUQAoH9UTPADAAAAAAAAAKDPCPgBAADx2NxMzC0uNFzTiYb5XC6XnMSTavQHAPrD4uJiTM1UG64R8AMAAAAAAAAAoNcI+AEAAJlCcuViZxrmU436An4AMBimZqpRr9cbrunUeQUAAAAAAAAAAJZrqNMFAAAAnZclJDfRoYk46YDfdJsqAQA6Kdt5pfHkXwAAAAAAAACeRS7X6QoABpoJfgAAQKaQ3HixMw3z5USj/qQJfgAwELIE/MY7dCEBAAAAAAAAAAAsl4AfAACQDMmtHi3GUKHQpmqerlxs3Kg/VRPwA4BBUEm85xdy+VgzWmpTNQAAAAAAAAAA0BwCfgAAQDIkN5EI2bXSRGIST6U2HfV6vU3VAACdkpo4PF4ci3wu16ZqAAAAAAAAAACgOQT8AACAqCQm+JUTIbtWGi+NNfz4wuJiHJqptakaAKBT0ueVxmcGAAAAAAAAAADoRgJ+AABAciJOJwN+WfauJCYQAgC9r5svJAAAAAAAAAAAgOUS8AMAAGIyEZDr5ESciWKGgF+i4R8A6H2VWuMLCcYznBkAAAAAAAAAAKDbCPgBAADpiTgdbJhfWxyLXGKNgB8A9L/U+/1EBy8kAAAAAAAAAACA5RLwAwCAATczPxfVudmGa8qlzgX8Cvl8rC02bthPTfQBAHpbvV5PX0jQwfMKAAAAAAAAAAAsl4AfAAAMuCzhuE43zKf2N8EPAPrbY3MzMbe40HBNp88rAAAAAAAAAACwHAJ+AAAw4LKE48qJCXqtltpfwA8A+ttUNcOFBEUBPwAAAAAAAAAAeo+AHwAADLgs4bgJE/wAgA7KdCFBqbMXEgAAAAAAAAAAwHII+AEAwIBLNcwXh4ajODzSpmqeXSrgNyngBwB9Lct7vQl+AAAAAAAAAAD0IgE/AAAYcKmG+fFi56fhpBr2K7XpNlUCAHRCpdb4vLJ6tBhDhUKbqgEAAAAAAAAAgOYR8AMAgAGXapifSEzPa4eJUuOQ4cz8XNTmZttUDQDQbqmJwxOm9wEAAAAAAAAA0KOGOl0AAADQWVPVxtPvyl0Q8MtSw2T1sTh6eKQN1QAA7VbpgfMKAAAAAAAAQK/KGR0F0FG+DQMAwIBLTcTphob5LDVUao0b/wGA3pWaODxebDztFwAAAAAAAAAAupWAHwAADLjJRMN8VwT8ihkCfomgIgDQu1Lv8xNdcF4BAAAAAAAAAIDlEPADAIABtrC4GIdq1YZrsoTrWm1kaCjGhkcarhHwA4D+1QsThwEAAAAAAAAAYDkE/AAAYIBN1aajnlhTLo21pZaUVOO+gB8A9KfZ+fmYnpttuEbADwAAAAAAAACAXiXgBwAAAyxLKK5bGuZTdUwK+AFAX6rUeue8AgAAAAAAAAAASyXgBwAAAyxTw3yxOxrmU3VM1abbVAkA0E6ZLiQodsfEYQAAAAAAAAAAWCoBPwAAGGCVauNQXCGfjzWjxTZV09hEYjJPluZ/AKD39NLEYQAAAAAAAAAAWCoBPwAAGGCphvlycSxyuVybqmlsvNR4Ms9khmmEAEDvmUxcSDA6NByl4ZE2VQMAAAAAAAAAAM0l4AcAAANsMhXw66JpOOVi41oOz9RifmGhTdUAAO1SSYT4y8XGlwAAAAAAAAAAAEA3E/ADAIABlm6Y756A30SGsGHq9QAAvWcqcSFBljMCAAAAAAAAAAB0KwE/AAAYYJXkBL/umYiTZZpgpTrdhkoAgHZKTRweF/ADAAAAAAAAAKCHCfgBAMAAm0oE4rKE6tolU8DPBD8A6DuVWuK80kUThwEAAAAAAAAAYKkE/AAAYEDV6/V0w3wXBfzGhkdiuFBouCY1kRAA6D2p9/eJLpo4DAAAAAAAAAAASzXU6QIAAIDOODxbi/nFhYZrumkiTi6Xi3JxVTz42KNHXCPgBwD9ZWFxMR7toQsJAAAAAAAAAHpSLtfpCgAGmgl+AAAwoLKE4Sa6rGE+1cA/WW0cAAAAesujM9WoJ9YI+AEAAAAAAAAA0MsE/AAAYEBlCfh1W8N8uTTW8OMm+AFAf8l0Xik2Ph8AAAAAAAAAAEA3E/ADAIABlZp2l4uItcVSe4rJqFxsHDis1AT8AKCf9OKFBAAAAAAAAAAAsBQCfgAAMKCmEmG4NaOlGMoX2lRNNhOJBn4T/ACgv6Te2wu5fKwe7a4LCQAAAAAAAAAAYCkE/AAAYEClGua7cRpOqqap2nQs1uttqgYAaLXJxHllvDQW+VyuTdUAAAAAAAAAAEDzCfgBAMCAmqxON/x4Lwb8Fuv1ODRTbVM1AECrTdUS55XiWJsqAQAAAAAAAACA1hDwAwCAAVWppSb4dV/DfJYm/tRkQgCgd/TixGEAAAAAAAAAAFgKAT8AABhQyYb5Yvc1zGdp4hfwA4D+MSngBwAAAAAAAABAnxPwAwCAAdWLE3HWjpYil8s1XJMKAgAAvSM5cbgLLyQAAAAAAAAAAIClEPADAIABVJubjdr8XMM13Rjwy+fzMV4ca7gmFQQAAHpDvV6PSnW64ZqJLjyvAAAAAAAAAADAUgj4AQDAAKrUGjfLR0SUE0G6TklN6plKBAEAgN7w2NxMzC8uNFwzXurO8woAAAAAAAAAAGQl4AcAAAOoUk1PuevWiTgTiUb+yQyvDQDoflnOK6ngPwAAAAAAAAAAdDsBPwAAGECZGua7NOA3nqirUhPwA4B+0MsXEgAAAAAAAAAAQFYCfgAAMIBSU+5KwyMxOjTcpmqWJjWpp1KdblMlAEArZXlPHy82nuwLAAAAAAAAAADdTsAPAAAGUGrKXbmLm+UnSo1rq1Qfi3q93qZqAIBWSV1IsGa0FEOFQpuqAQAAAAAAAACA1hDwAwCAATSVmIhTLjWektdJqdpmF+ajOjfbpmoAgFaZ6uELCQAAAAAAAAAAICsBPwAAGECpiTi9HPCLiKjUGgcYAYDuV+nh8woAAAAAAAAAAGQl4AcAAAOokpyI070N85kCfolAAADQ/So9PHEYAAAAAAAAAACyEvADAIAB1MsN8+PFseQaAT8A6H2TqQsJSukzAQAAAAAAAAAAdDsBPwAAGDDzCwtxaKbacM1EFwf8RgpDsWpktOGaSQE/AOh5qcB+N08cBgAAAAAAAACArAT8AABgwEzVGk/vi4gY7/KJOKkJg5XExB8AoLvNzM9FdW624ZpunjgMAAAAAAAAAABZDXW6AAAAoL2yhN8munwiTrm4Ku6ZeuSIH09N/AEAulslw4UEAn4AAAAAAAAATWJ0FEBH+TYMAAADplLt/Yb5idQEPwE/AOhpWd7Ly8XunjgMAAAAAAAAAABZCPgBAMCASTXMD+cLsWpktE3VLE8qgJhl6g8A0L2yBPxSgX8AAAAAAAAAAOgFAn4AADBgJhMN8+Olscjlcm2qZnnKpcYTe0zwA4DelnovLw4NR3F4pE3VAAAAAAAAAABA6wj4AQDAgKnUGjfMl4vdPw0nVeNjszMxuzDfpmoAgGZLTeMdLzYO+wMAAAAAAAAAQK8Q8AMAgAGTmohTLvVAwC9DjVPVxsEAAKB7pc4rEz1wXgEAAAAAAAAAgCwE/AAAYMBUEsG3cqn7J+JkCfhNJoIBAED36ocLCQAAAAAAAAAAIAsBPwAAGDCVWqJhvtj9DfNZQoip1wkAdC8BPwAAAAAAAAAABoWAHwAADJDFej2mEhP8JnqgYb40NBKjhaGGa6ZM8AOAnjWZupCgB84rAAAAAAAAAACQhYAfAAAMkMMz1VioLzZc0wsN87lcLlnnZCLICAB0p4XFxThUqzZcUy6mp/kCAAAAAAAAAEAvEPADAIABUskw1a4XAn4REeOlxo39lcTkHwCgOz1am456Yk2vnFcAAAAAAAAAACBFwA8AAAZIlql2vTIRp1xs3NifJcwIAHSfyQwhfQE/AAAAAAAAAAD6hYAfAAAMkKlEw3wuItb2SMBvItHYL+AHAL0p08ThRNAfAAAAAAAAAAB6hYAfAAAMkFTD/NriWBTyvfFjQmpyj4AfAPSmSmLicCGfj9WjxTZVAwAAAAAAAAAArTXU6QIAAID2mUw0zKdCc90kVevUTDUWFxcj3yOBRQDgcamQ/nhxLPK5XJuqAQAAAAAAABgA/gYL0FE6XQEAYIBUao0b5svFsTZVsnLlYuOAX71ej0dnqm2qBgBolvR5pXcuJAAAAAAAAAAAgBQBPwAAGCCpiTgTPTXBLx1GTL1eAKD7VBITh3vpvAIAAAAAAAAAACkCfgAAMEBSgbfxHmqYL2eodVLADwB6Tuq8kiXkDwAAAAAAAAAAvULADwAABkil1ngiTrnYOwG/NaOlKOQa/0hTqQn4AUCvSQf8eue8AgAAAAAAAAAAKQJ+AAAwIKpzszEzP9dwzUQPTcTJ53IxXmxcb6XaONAIAHSXer3eVxcSAAAAAAAAAABAioAfAAAMiNQ0nIjem4hTTgQSs7xmAKB7PDY7E/OLCw3X9Np5BQAAAAAAAAAAGhHwAwCAAdGfAb/G9VZqAn4A0EuynVd6Z+IwAAAAAAAAAACkCPgBAMCAmMzSMF/ss4BfdbpNlQAAzTCZIZzfaxcSAAAAAAAAAABAIwJ+AAAwIFLT7MaGR2JkaKhN1TRHudh4gk+WKUAAQPfI8t49nnj/BwAAAAAAAACAXiLgBwAAA2IqMc2uF6fhpCf4PRb1er1N1QAAK5WavrtmtBRD+UKbqgEAAAAAAAAAgNYT8AMAgAExmZiI048Bv7nFhXhsbqZN1QAAK5Wa4Fcumd4HAAAAAAAAAEB/EfADAIABUaklGuaLPRjwy1BzKigAAHSPfjyvAAAAAAAAAABAIwJ+AAAwICrV6YYfn+jBCX5Zap5KvG4AoHukgvm9eF4BAAAAAAAAAIBGBPwAAGBApBrmyz3YMD9eHEuumTTBDwB6Rj+eVwAAAAAAAAAAoJGhThcAAAC03tzCfByerTVckyUs122GCoVYPVqMwzNHfm2VmoAfAPSKSq3x5N1ePK8AAAAAAAAAdD2jowA6yrdhAAAYAFOJZvmIiIkenYgzUWxcd2oSEADQHWbm56I6N9twTa+eVwAAAAAAAAAA4EgE/AAAYABUqumAX7lHG+ZTdQv4AUBvyPKe3avnFQAAAAAAAAAAOBIBPwAAGACTfdwwnw74pcONAEDn9fN5BQAAAAAAAAAAjkTADwAABkCl1rhhfrhQiLHhkTZV01zl0ljDj6deOwDQHSq1DBOHi43f9wEAAAAAAAAAoNcI+AEAwACoJCbilIurIpfLtama5ioXUxP8BPwAoBdMJd6zi0PDUezRCwkAAAAAAAAAAOBIBPwAAGAAJAN+pcYhuW42kah9em42Zufn21QNALBck318XgEAAAAAAAAAgCMR8AMAgAFQqU43/Hi5NNamSppvPEOz/2TNFD8A6HaVxPu1gB8AAAAAAAAAAP1IwA8AAAZAsmG+2LsN8+ViOpyYmmAIAHRe8kKCHj6vAAAAAAAAAADAkQj4AQDAAEgF3CZ6eCJOltoF/ACg+6XPK707cRgAAAAAAAAAAI5EwA8AAPrc4uJiTNUSE3F6OOBXHB6J4tBwwzUCfgDQ/VITh8d7+LwCAAAAAAAAAABHIuAHAAB97tBMNRbr9YZrejngF5Guv5IIOAIAnbWwuBiHatWGa8rF3j6vAAAAAAAAAADAsxHwAwCAPjeZIdxWLo61oZLWSQb8TPADgK42VZuOxtcRREyUevu8AgAAAAAAAAAAz0bADwAA+txUhnBbz0/wSwQUBfwAoLtlea/u9fMKAAAAAAAAAAA8m6FOFwAAALTWZKJhPpfLxdrRUpuqaQ0T/ACgt6XOKxECfgAAAAAAAAAtk891ugKAgWaCHwAA9LlKrXHD/HhxLPL53v7RINXwP5n4GgAAnTVVm2748UI+H6tHim2qBgAAAAAAAAAA2qe3u3gBAICkSrVxw3y52PvTcFKv4VCtGguLi22qBgBYqtS03XJxLHI5N0YCAAAAAAAAANB/BPwAAKDPpRrmJ0pjbaqkdVKvoR4RjyYmAwEAnTOZCvglpvUCAAAAAAAAAECvEvADAIA+lwr4jfdBw3yWpv/JWuOvAwDQOZXE+7SAHwAAAAAAAAAA/UrADwAA+lwlMbmuXOz9hvnxDK8hFXQEADon9T7dD+cVAAAAAAAAAAB4NgJ+AADQx+r1erJhfqI01qZqWmfNaDEK+cY/3lSqjYOOAEDnTCXep8t9cF4BAAAAAAAAAIBnI+AHAAB9rDo3G7ML8w3XlEu9PxEnl8tFudi48d8EPwDoTvV6PT1xuA/OKwAAAAAAAAAA8GwE/AAAoI9NZgi19UvDfOp1ZPlaAADtd3i2FvOLCw3XlIv9cV4BAAAAAAAAAIBnEvADAIA+VqkJ+D1hKjEZCADojCxTdif65LwCAAAAAAAAAADPJOAHAAB9LEvD/HhxrA2VtF5qsk+WrwUA0H5Z3qP75UICAAAAAAAAAAB4JgE/AADoY5Vq46l1q0ZGY6Qw1KZqWis12UfADwC6UyUxZTcXEWuLpfYUAwAAAAAAAAAAbSbgBwAAfaxSaxxq66dpOOOlxpMIK7XpqNfrbaoGAMgqFcJfM1qKoXyhTdUAAAAAAAAAAEB7CfgBAEAfSzXMl4v9E/BLvZb5xYU4PFtrUzUAQFbJ80ofXUgAAAAAAAAAAADPJOAHAAB9LNUwP9FHDfNZXkvq6wEAtN9kdbrhxwX8AAAAAAAAAADoZwJ+AADQxyoD1DCf5bUI+AFA96nUUhP8xtpUCQAAAAAAAAAAtJ+AHwAA9LHJRKBtvNg/DfPjxbHIJdZUao0DjwBA+00lzivlYv9cSAAAAAAAAAAAAM8k4AcAAH1qdmE+pudmGq6Z6KMJfoV8PtYUSw3XmOAHAN1nkCYOAwAAAAAAAADAMwn4AQBAn5pKNMtH9F/DfGrCj4AfAHSX2vxcVOdnG67pt/MKAAAAAAAAAAA8lYAfAAD0qckMYbZ+a5hPvZ7JDKFHAKB9soTvy8WxNlQCAAAAAAAAAACdIeAHAAB9qlLLEvDrr4b51OvJ8jUBANonS8Bvos8uJAAAAAAAAAAAgKcS8AMAgD6VapgfLQxFaWikTdW0R7nYOACQJUQAALRPpZaerjsu4AcAAAAAAAAAQB8b6nQBAABAa6TCbOOlVZHL5dpUTXukJvxMVdMhAgCgfVLnldLQSBSHhttUDQAAAAAAAMCA6q82MoCeY4IfAAD0qdREnHJprE2VtE85EfCrzs9GbX6uTdUAACmpgF8/nlcAAAAAAAAAAOCpBPwAAKBPJRvmi43DcL1ovJgOAaS+LgBA+6QDfv13XgEAAAAAAAAAgKcS8AMAgD6Vapif6MOG+SyvScAPALrHpIAfAAAAAAAAAAADTsAPAAD61CBOxMnymgT8AKB7TNWmG368nGE6LwAAAAAAAAAA9DIBPwAA6EOLi4sxNVNtuKYfA36jQ8NRGh5puCY1KQgAaJ9BvJAAAAAAAAAAAACeSsAPAAD60NRMNer1esM1/ToRJxUEqNQE/ACgG8wvLsSjA3ghAQAAAAAAAAAAPJWAHwAA9KGpDFPq+rVhfqLY+HVNVafbVAkA0MhULf2e3K/nFQAAAAAAAAAAeIKAHwAA9KHJAQ74lUuNJxNm+doAAK1XyfCenAruAwAAAAAAAABArxPwAwCAPlSpNW6YL+TysWa01KZq2ms8EQRIfW0AgPaoZJiqO54I7gMAAAAAAAAAQK8T8AMAgD6UapgfL45FPpdrUzXtlZpMmCVMAAC0Xip0P5QvxOqRYpuqAQAAAAAAAACAzhDwAwCAPlSpNm6YL/fxNJyJRMDv0Ew15hcW2lQNAHAkyfNKcSxyfXohAQAAAAAAAAAAPEHADwAA+lCqYX682DgE18uyhBenaqb4AUCnpS8k6N/zCgAAAAAAAAAAPEHADwAA+lAlEWDr54b5LK+tUmscKAAAWq9SHdzzCgAAAAAAAAAAPGGo0wUAAADNl5qIM5Fhyl2vyhTwSwQKAIDWSwXux4v9e14BAAAAAAAA6CY5o6MAOsq3YQAA6DP1ej0Z8OvniTirhkdjOF9ouCb19QEAWi99IUH/nlcAAAAAAAAAAOAJAn4AANBnHpubibnFhYZr+jngl8vlYjwxoXBSwA8AOqper0el1niibj+fVwAAAAAAAAAA4AkCfgAA0GeyTKcrF/u7YT71+io1AT8A6KRDM7VYWFxsuKacCOwDAAAAAAAAAEA/EPADAIA+kyng1+cN8xOJiT9ZvkYAQOtkCdub4AcAAAAAAAAAwCAQ8AMAgD5TqU4n1/T9BL9kwC/9NQIAWmfKxGEAAAAAAAAAAIgIAT8AAOg7qYk4q0eLMVQotKmazkgG/DJMDQIAWmcyEbbPRcR4sb8nDgMAAAAAAAAAQISAHwAA9J1KYiLOxABMwyknAgFT1elYrNfbVA0A8EypsP2aYikKeb+6BAAAAAAAAACg/+mSAQCAPpMK+KWm2/WD1GtcqC/G4Zlqm6oBAJ7JhQQAAAAAAAAAAPA4AT8AAOgzlep0w48L+D0uFSwAAFrHhQQAAAAAAAAAAPA4AT8AAOgzk7VEw3xxrE2VdE6WUMBkIggJALROpdb4fXi81P/nFQAAAAAAAAAAiBDwAwCAvjNlIk6Mj5Yil8s1XFNJBCEBgNZJTvAr9v95BQAAAAAAAAAAIgT8AACgr8zOz8f03GzDNYMQ8Mvn8zE+Wmq4JhWEBABaJxXwmxiA8woAAAAAAAAAAEQI+AEAQF+ZzDCVbhACfhHp1zlZnW5TJQDAU9XmZqM2P9dwzaCcVwAAAAAAAAAAQMAPAAD6SGoaTkREuTjWhko6bzzxOisZwpAAQPNNZjmvCPgBAAAAAAAAADAghjpdAAAA0DxZAn4TA9Iwn3qdWb5WAEDzTdXSU3QH5UICAAAAAAAAgK6Qy3W6AoCBZoIfAAD0kVRobXRoOIrDI22qprNSk38E/ACgMzJNHB6QCwkAAAAAAAAAAEDADwAA+kglMRFnkKbhZAn41ev1NlUDADxhMhHwKw2PxOjQcJuqAQAAAAAAAACAzhLwAwCAPpKaiDMxQNNwUgG/mYX5qM3PtakaAOAJlVrj84rpfQAAAAAAAAAADBIBPwAA6COpgN8gNcyXi+nXmvp6AQDNV6k2njg8keE9HAAAAAAAAAAA+oWAHwAA9BEBvx8pl8aSawT8AKD9Uu+/4xnewwEAAAAAAAAAoF8I+AEAQB+ZrAn4PSHLa50U8AOAtqukzism+AEAAAAAAAAAMEAE/AAAoE8sLC7GoVq14ZpycXAm4owUhmJseLThmlTAAABovkp1uuHHB+lCAgAAAAAAAAAAEPADAIA+8WhtOuqJNYPWMD+ReL2pgAEA0FzzCwtxaKbxhQSp928AAAAAAAAAAOgnAn4AANAnJjNMoxu0gF+51HhiYaVqgh8AtNNULR2uH0+8fwMAAAAAAAAAQD8R8AMAgD6RJaxWLg5awC8xwS9DKBIAaJ4s770TA3ZeAQAAAAAAAABgsAn4AQBAn6hUG0/EKeTzsWa02KZqukMy4Jf4mgEAzZXlvXfQJg4DAAAAAAAAADDYBPwAAKBPpCb4lYtjkcvl2lRNd0hNLMwy9RAAaJ7Ue+9wvhCrRkbbVA0AAAAAAAAAAHSegB8AAPSJyUTD/Hgi7NaPyqWxhh8/PFuLuYX5NlUDACTPK6XBu5AAAAAAAAAAAIDBNtTpAgAAgOaYqk03/PhEaRADfunXXKlNx8ZVa9tQDQBQqaUmDg/eeQUAAAAAAACg44yOAugo34YBAKBPVBITcVLT7PpRlpBA6usGADTPVLXxhQRZwvkAAAAAAAAAANBPBPwAAKBPpAN+g9cwn2VqYSURNAAAmmfShQQAAAAAAAAAAPA0An4AANAH6vV6VGom4jxTaXgkRgpDDddUaib4AUC7pN53s0zfBQCA/5+9Ow2TrKzvxv+r3qa6h5muBtEZFkVlEQQUREEiLoAYAgIREYMXyoxiTEyMGv9iUB63xCURotEsBmWG1QWfIIqgLAqEsAhinMgi68hOYOjqYeiqXuv/gmdggJm6z0x3neqq+nyuq19k6qbPr6rm4tyY+3u+AAAAAAAA7UTADwAA2sCa8WpMTk/VXdOJB+YLhUIMFus3AaWaDwGA2TFdq8VIojk3S/suAAAAAAAAAAC0EwE/AABoA1lCaqX++kG3dpUKCgj4AUA+1oxVYqo2XXfNYIfuVwAAAAAAAAAA6FwCfgAA0AbK1fptOBERpQ5txEm9bwE/AMiH/QoAAAAAAAAAADyXgB8AALSBVEitEBGDxc5sxEkFBYYr6bABADBzWUL1Q0UBPwAAAAAAAAAAOouAHwAAtIHUgfkF8/qjp6s7p2nmllJ//WDjSFWDHwDkIcsDCRZ26AMJAAAAAAAAAADoXAJ+AADQBlIH5lMtdu2slGgCGqmOxvT0dE7TAEDnSu1XFhYHorvL/1wJAAAAAAAAAEBncWIGAADawHBltO7rHR3wS7z36VotHh+r5DQNAHSu5H5Fex8AAAAAAAAAAB1IwA8AANpAuZpo8OvgA/NZwo3D1fqBAwBg5kZS+5UOfiABAAAAAAAAAACdS8APAADawEjFgfkNGcoQbiwnPj8AYOZS99tO3q8AAAAAAAAAANC5BPwAAKANlCv1G+g6+cD8guJAdBUKddcI+AFA4w0L+AEAAAAAAAAAwHMI+AEAQIurTk5EZXK87ppOPjDfVSjEYKLFr1wV8AOARitXEw8kKHbufgUAAAAAAAAAgM4l4AcAAC0uS/tcKRFwa3epgGOqAREAmJnKxHiMTU7UXVPq7+z9CgAAAAAAAAAAnUnADwAAWlyWgN9QBzf4RaQbgbJ8hgDApsv0QIIO368AAAAAAAAAANCZBPwAAKDFZTkwP9jhB+ZTjUACfgDQWOVqui1XwA8AAAAAAAAAgE4k4AcAAC0udWC+v6cvij29OU0zN6UCA8MCfgDQUJkahxONuwAAAAAAAAAA0I4E/AAAoMWlDsyn2us6QSrgV64+EbVaLadpAKDzpPYrA7190dfTk9M0AAAAAAAAAAAwdwj4AQBAi0sH/LThlBKNQBNTUzE6MZ7TNADQecrV+vuVQfsVAAAAAAAAAAA6lIAfAAC0uGEBv6ShDJ9BKigJAGy6cmW07utDiTA+AAAAAAAAAAC0q55mDwAAAMxMqhEn1V7XCUr9A8k15eoTsfXg5jlMAwCdJ904nL5XAwAAAAAAANAghWYPANDZNPgBAECLSzXiODAfMVjMEPDT4AcADZMO+HkgAQAAAAAAAAAAnUnADwAAWtjk9FQ8Plapu8aB+Yje7p7YrK9Yd00qKAkAbLrhVOOw/QoAAAAAAAAAAB1KwA8AAFrYSDUdSnNg/kmpz0GDHwA0xuTUVKwZq9ZdUyrarwAAAAAAAAAA0JkE/AAAoIVlCaUNOTAfERGl/oG6rw8L+AFAQ2R7IEH9+zQAAAAAAAAAALQrAT8AAGhh5YoGv6xSzUAjVQE/AGiELCF6+xUAAAAAAAAAADqVgB8AALSwVINfT1d3zO+bl9M0c9tQIjiQJSwJAGy8coYQvYAfAAAAAAAAAACdSsAPAABaWKoRp1QciEKhkNM0c9tg/0Dd17O0CwEAGy/1QILeru6Y3+uBBAAAAAAAAAAAdCYBPwAAaGEjiUYcbThPKxXrfxajE2MxPjmZ0zQA0DlSLbmD/R5IAAAAAAAAAABA5xLwAwCAFpY6MC/g97ShDJ9FORGYBAA2Xur+mgrhAwAAAAAAAABAOxPwAwCAFjZcSTX4DeQ0ydyXJexYTnyeAMDGS91fs4TwAQAAAAAAAACgXQn4AQBAC9OIk52AHwA0R+r+qnEYAAAAAAAAAIBOJuAHAAAtarpWi5HKaN01GnGe1t/bF/N6euuuKVfrf54AwMYrJ/YrAn4AAAAAAAAAAHQyAT8AAGhRa8YqMVWbrrtmsH8gp2laQ6lY//PQ4AcAs2u6VouRRIA+dX8GAAAAAAAAAIB21tPsAQAAgE2TpW1OI84zlfrnx8NrRjb4uoAfAMyuLA8ksF8BAAAAAAAAaK5CV6HZIwB0NA1+AADQorKE0YaKDsyvKxUgGBbwA4BZlWW/IuAHAAAAAAAAAEAnE/ADAIAWlTowX4iIhcWBfIZpEaVE4DFLKyIAkN1wReMwAAAAAAAAAADUI+AHAAAtKhXwW1gciO4uW/51DfXXDzxmaRkCALIrVxMPJCgUYnBef07TAAAAAAAAAADA3OO0LwAAtKhUI442nOdKfSarxyoxPT2d0zQA0P5GUg8kmNcfXR5IAAAAAAAAAABAB3N6BgAAWlSqEadUrN9W14lSAb9arRYjY5WcpgGA9ueBBAAAAAAAAAAAUJ+AHwAAtKhUI44D88+VJfRYTnyuAEB2HkgAAAAAAAAAAAD1CfgBAECLGhbw22hZPhMBPwCYPan76pD9CgAAAAAAAAAAHU7ADwAAWlS5Olr39VLRgfln22xef3QX6v9nkIAfAMye1H3VAwkAAAAAAAAAAOh0An4AANCCKhPjMTY5UXfNUP9ATtO0jq5CIQYTn0uqGREAyC71QIJBDyQAAAAAAAAAAKDDCfgBAEALytIypxFn/VLNhiOJIAIAkI0HEgAAAAAAAAAAQJqAHwAAtKAsAb9BAb/1Gkp8Llk+WwAgzQMJAAAAAAAAAAAgTcAPAABaUDlDy9xQoqmuU5USTUHDAn4AMCsE/AAAAAAAAAAAIE3ADwAAWlDqwPxAb1/09fTkNE1rGUwEH8tVAT8AmA1ZQvMlDyQAAAAAAAAAAKDDCfgBAEALSgX8tOFs2FDisylXRqNWq+U0DQC0r5FE47AHEgAAAAAAAAAAQIQTNAAA0IJSjTgCfhuW+mwmp6fiifGx2GxeMaeJAKA9eSABAAAAAAAAQIsoNHsAgM6mwQ8AAFpQuZo4MF90YH5DSv0DyTWpQAIAkOaBBAAAAAAAAAAAkCbgBwAALahcGa37epYQW6fKEiZIBSgBgDQPJAAAAAAAAAAAgDQBPwAAaEHJA/MacTZosJilwa9+gBIASEvdT4fsVwAAAAAAAAAAQMAPAABazeTUVKwZq9ZdoxFnw3q6umPBvP66a4YrGvwAYKZSDyQY1DgMAAAAAAAAAAACfgAA0GpSh+UjNOKklBKBgrKAHwDMiAcSAAAAAAAAAABANgJ+AADQYsqV0eSakoBfXalAQZYQJQCwYR5IAAAAAAAAAAAA2Qj4AQBAixnO0C4n4FdfKlCgwQ8AZsYDCQAAAAAAAAAAIBsBPwAAaDGpRpzeru4Y6O3LaZrWlAoUlKvpUAIAsGEeSAAAAAAAAAAAANkI+AEAQIsZSRyYL/XPj0KhkNM0rSkZ8NPgBwAzMuKBBAAAAAAAAAAAkImAHwAAtJjhSv12OW04aaXiQN3XKxPjMTY5kdM0ANB+UmF5DyQAAAAAAAAAAIAnCfgBAECLSR+Yrx9eI1sIUosfAGw6DyQAAAAAAAAAAIBsBPwAAKDFlKuJgF/RgfmULKGCYQE/ANhkHkgAAAAAAAAAAADZCPgBAECLSR2YH9KIk5Spwa9av3kIANgwDyQAAAAAAAAAAIBsepo9AAAAkN309HSMJIJngxpxkoo9vdHf0xeVyfENrhnR4AcAm2ykUn+/kiVsDwAAAAAAAEBOVEcBNJV/DQMAQAt5fLwa07Va3TUacbIpJYKQwwJ+ALBJpmu15AMJUvdhAAAAAAAAAADoFAJ+AADQQsoZQmdDGnEySTUHlasCfgCwKR4fq8RUbbruGg8kAAAAAAAAAACAJwn4AQBAC8kS8EsF13jSYCJYUK7Ubx4CANbPAwkAAAAAAAAAACA7AT8AAGghw4kD84VCIRbO689pmtY21D9Q9/Us4QQA4Lk8kAAAAAAAAAAAALIT8AMAgBZSrtY/MD9YHIiuLtv8LFLBAgE/ANg05Wr9FlwPJAAAAAAAAAAAgKc5+QsAAC2kXKl/YL5UrN9Kx9NSAb/VY5WYnJ7KaRoAaB+pkPzgvH4PJAAAAAAAAAAAgP/HSRoAAGghqQPzqdAaT8vyWa2uVnKYBADai/0KAAAAAAAAAABkJ+AHAAAtpFx1YH62DBXTn1UqoAAAPNewgB8AAAAAAAAAAGQm4AcAAC2kXBmt+3opQ2iNJw32DyTXpAIKAMBzeSABAAAAAAAAAABkJ+AHAAAtolarJRvlhjKE1njSZn3F6OnqrrsmFVAAAJ5rJPlAAvsVAAAAAAAAAABYS8APAABaRGViPManJuuu0YiTXaFQSAYMUoFKAOCZsjyQwH4FAAAAAAAAAACeJuAHAAAtYjhD2Gyw6MD8xkgFDAT8AGDjVCbHY8wDCQAAAAAAAAAAIDMBPwAAaBEj1dHkmiEH5jdKMuCX4TMHAJ5WrqTvnSUPJAAAAAAAAAAAgKcI+AEAQIvI0iY32D+QwyTto5T4vDT4AcDGyXLv9EACAAAAAAAAAAB4moAfAAC0iOHEgfn5ffOir7snp2naQ6pBSMAPADaOBxIAAAAAAAAAAMDGEfADAIAWUa7WPzBf0oaz0VKfWbk6GrVaLadpAKD1pfYrA70eSAAAAAAAAAAAAOsS8AMAgBaRasRJtdHxXKVEg9DU9HQ8PlbNaRoAaH3lymjd14c8kAAAAAAAAAAAAJ5BwA8AAFpEMuCXCKvxXFlaD1NNRADA0+xXAAAAAAAAAABg4wj4AQBAiyhX6zfiZAmr8UxDGVoPRxJBBQDgacPJgJ/9CgAAAAAAAAAArEvADwAAWkSyESdDWI1nWlgciEJizXClfrASAHjaSOqBBPYrAAAAAAAAAADwDAJ+AADQAsanJuOJ8bG6a4Y04my07q6uWFgcqLumXNXgBwBZJR9IYL8CAAAAAAAAAADP0NPsAQAAgLSRDC1yDsxvmlJxoG7bUCqoAAA8aWJqMtaMV+uuKfXXD9YDAAAAAAAA0ASFZg8A0Nk0+AEAQAsYzhAyE/DbNKnPTcAPALIp1wnMr2W/AgAAAAAAAAAAzyTgBwAALaBczRDwK2rE2RQCfgAwO7LcM0tFAT8AAAAAAAAAAFiXgB8AALSAkcSB+b7unujv7ctpmvaSCvhlaU8EACLKFQ1+AAAAAAAAAACwsQT8AACgBQwnDsyX+udHoVDIaZr2kmoSGqmmwwoAQLpxuLe7OwY8kAAAAAAAAAAAAJ5BwA8AAFpA6sB8qX8gp0naz1Dis6tOTkR1YjynaQCgdZUTrbelogcSAAAAAAAAAADAswn4AQBAC8hyYJ5NM9if/uyGE58/AJDerwxluOcCAAAAAAAAAECnEfADAIAW4MB845QyfHbl6mgOkwBAa0s+kMB+BQAAAAAAAAAAnkPADwAAWkDqwPxg/0BOk7SfoQzth6nPHwBIB+IHi/YrAAAAAAAAAADwbAJ+AAAwx01PT8fIWKXumlKGkBrr19fTEwO9fXXXCPgBQJrGYQAAAAAAAAAA2HgCfgAAMMetHqtErVaru8aB+ZkpJT6/clXADwDqmZ6ejpFEg1/qfgsAAAAAAAAAAJ1IwA8AAOa4LO1xDszPTDLgV6kfWACATvf4WCWmEw8ksF8BAAAAAAAAAIDnEvADAIA5bljAr+FKxYG6r2cJWQJAJxtOtPdF2K8AAAAAAAAAAMD6CPgBAMAcV67WD5d1FQqxYF5/TtO0p3SDn4AfANQzkuWBBIlAPQAAAAAAAAAAdKKeZg8AAADUV67Ub8QZLA5EV6GQ0zTtKRXwG06ELAGg06UahwuFQiz0QAIAAAAAAACAOamgOgqgqfxrGAAA5rhUe1wqnEZaqVj/M1wzVo3JqamcpgGA1pNqHB4sDkRXl/8pEgAAAAAAAAAAns2pGgAAmONSB+ZT4TTShjKEJFPfAwB0slTjsP0KAAAAAAAAAACsX0+zBwBotnvvvTd+9rOfxYoVK+Lmm2+Ou+++Ox5//PFYvXp11Gq1WLBgQSxYsCBe+MIXxi677BK77bZbvPnNb44ddtih2aPPeatWrYpf/vKX8dvf/jZuueWWuOuuu+LBBx+MRx55JCqVSoyPj8e8efOiv78/hoaGYquttoptt902dt1113jFK14R++67b5RKpWa/DYCmSx6Y1+A3Y1k+w3JlNJ43f2EO0wBA60k1Dg/1D+Q0CQAAAAAAAAAAtBYBP6Ajlcvl+Na3vhVnnnlmrFixou7aVatWxapVq2LlypVx5ZVXPvXnO+ywQxxzzDHxZ3/2Z/GCF7yg0SO3hIcffjguu+yy+PnPfx6XX3553Hnnncl/plKpRKVSiccee+w567u7u2OvvfaKww47LI499tjYdtttGzU6wJzmwHzjZQr4afADgA1K3ScHPZAAAAAAAAAAAADWq6vZAwDkac2aNXHCCSfENttsE//f//f/JcN99dx+++3x2c9+Nl74whfG+9///nj00UdncdLWcfvtt8cXv/jFeO1rXxtbbbVVvOtd74pvf/vbmcJ9KVNTU3HdddfFJz/5ydhuu+3irW99a1x77bWzMDVA66jVasmAnwa/mRvo7Yveru66a1LfAwB0smTjcNF+BQAAAAAAAAAA1kfAD+gYP/rRj2LnnXeOv//7v48nnpi9A/rj4+Nx6qmnxk477RTLli2btd87lz388MNx8sknx1577RU77rhjnHjiiXHttdfG9PR0w645PT0dF1xwQbz2ta+NI444Iu65556GXQtgLnliYiwmpqfqrhl0YH7GCoVCMigp4AcA65flgQQahwEAAAAAAAAAYP0E/IC2Nz09HZ/61KfiiCOOiPvuu69h13nsscdi6dKl8f73vz/Gx8cbdp1muummm+KII46IbbbZJj72sY/Fr371q6bMcf7558fOO+8cp512WlOuD5CnkUQbTkTEkAa/WZEK+A1n+C4AoBNVJsZjfGqy7hqNwwAAAAAAAAAAsH4CfkBbm5qaine+853xd3/3d1Gr1XK55qmnnhoHHXRQjI62XwjgP//zP+P888+Pycn6BzfzMDo6Gu9973vj+OOPnxPzADRKlta4kkacWZH6HDX4AcD6DWe4R2ocBgAAAAAAAACA9RPwA9rW9PR0HHfccXHuuefmfu0rrrgi/viP/zjGxsZyv3an+da3vhVHHXVU27YmAmQ5MF9yYH5WpD7HkaqAHwCsz0hV4zAAAAAAAAAAAGyqnmYPANAon/zkJ+Oss87aqH9mhx12iD/4gz+IXXfdNTbffPMoFAoxPDwct9xyS1xzzTXx29/+NvPvuvjii+P444+PM844Y2NHZyP98Ic/jCVLlsTZZ5/d7FEAZl05ESrbbF4xerq7c5qmvaWCB+VK+7XzAsBsyNJyO6hxGAAAAAAAAAAA1kvAD2hLF110UXz5y1/OvP7www+PE088MV7zmtfUXffb3/42/uEf/iHOOuusmJ6eTv7eM888M97whjfEe9/73syztJsXvOAFsffee8erX/3q2HnnnWO77baLbbbZJubPnx/9/f0xMjISjz76aDz00ENxzTXXxOWXXx5XXnlljI5uXIjinHPOiV133TX+5m/+pkHvBKA5Ugfmh7T3zZpU8GCkOhrTtVp0FQo5TQQArSHVODy/b170dfufIQEAAAAAAAAAYH2crAHazqpVq+Ld73531Gq15NrNN988zjzzzPijP/qjTL971113jdNPPz3+7M/+LN7xjnfEvffem/xn/vIv/zLe8IY3xPbbb5/pGu1gr732ire//e3xlre8JV75ylfWXbv55pvH5ptvHjvuuGO8/vWvjxNOOCEee+yx+Od//uf4+te/Ho888kjm637605+OQw45JHbfffcZvgOAuSMV8NOGM3tKibDkVG06Hh+rxGDRZw4A60o1DpcSLbkAAAAAAAAAANDJupo9AMBs++QnPxmPPvpoct0222wTv/zlLzOH+9a1zz77xA033BC77LJLcm2lUomPfOQjG32NVrNo0aI46aST4rbbbovrr78+TjjhhGS4b0M233zzOOmkk+KOO+6Io48+OvM/NzExEX/2Z3+2SdcEmKvK1fqNpqlQGtkNZQgfpAKXANCJUvfHknA8AAAAAAAAAABskIAf0FZ+/etfx6mnnppcNzg4GJdeemm89KUv3eRrPf/5z4/LLrssttlmm+TaCy64IC688MJNvtZcttdee8V3v/vduOeee+Jzn/tc7LDDDrP2uxcuXBjf/e534xvf+EYUCoVM/8zVV18dF1100azNANBsqQPzWUJpZJOlXUjADwCeq1xJPJDAfgUAAAAAAAAAADZIwA9oK5/97Gdjeno6ue7UU0+NnXbaacbXW7RoUZxzzjnR3d2dXPvpT396xtebS/bbb7/42c9+Ftdff30cffTR0dvb27BrffCDH4yvfOUrmdd/7Wtfa9gsAHlLNuI4MD9rFs7rTwbKU42KANCJylX7FQAAAAAAAICWVvCT6w/Aswj4AW3jd7/7XfzoRz9Krjv88MPjqKOOmrXr7rfffvGnf/qnyXU33HBD/PznP5+16zbLK17xirjwwgvjyiuvjIMOOii36370ox+N97///ZnWXnrppfHggw82eCKAxhufnIzRifG6axyYnz1dXV0xWByou0aDHwA8V/KBBEX7FQAAAAAAAAAA2BABP6BtnHLKKVGr1equ6enp2agmuKw+97nPxcKFC5PrTj755Fm/dp6OPPLIuPHGG+Pggw9uyvW/+MUvxtDQUHLd1NRU/PSnP81hIoDGGk604UQI+M22VABBwA8Anml8ajKeGB+ru2bIfgUAAAAAAAAAADZIwA9oC2NjY/G9730vue7II4+M7bffftavv8UWW8T73ve+5Lqf/exn8fDDD8/69fOy5ZZbRldX824dm2++eXzyk5/MtPbyyy9v7DAAOcgSJislGufYOKX++p/nsIAfADzDSGU0uWYwcX8FAAAAAAAAAIBOJuAHtIULLrggRkZGkus+/OEPN2yGD33oQ8nw29TUVHz3u99t2Ayd4JhjjolCoZBc95vf/CaHaQAaayRLwE8jzqxKfZ7lDK2KANBJstwbUw25AAAAAAAAAADQyQT8gLbwne98J7lm++23j3322adhM7zoRS+K/fbbL7kuy6xs2OLFi2PPPfdMrrvzzjtzmAagsYYTjTjzenqjv7cvp2k6QyqAUM7QUgQAnSRL4/CQBxIAAAAAAAAAAMAGCfgBLW9qaiouvfTS5Lqjjz664bO8853vTK65/vrrY9WqVQ2fpZ3tvffeyTVr1qyJNWvW5DANQOOkGnFKxYGcJukcQ/31P9Ny5Ymo1Wo5TQMAc18q4NfX3eOBBAAAAAAAAAAAUIeAH9DyfvnLX8bIyEhy3cEHH9zwWbJcY3p6Oi677LKGz9LOXvCCF2Ra98QT6SYJgLksdWBeG87sKyU+0/GpyahMjuc0DQDMfanG4VL//CgUCjlNAwAAAAAAAAAArUfAD2h5WcJyCxYsyNT6NlMvetGLYvvtt0+uu+SSSxo+SzvLGvCbnJxs8CQAjZUK+KXCaGy8LJ9pORFkAIBOonEYAAAAAAAAAABmRsAPaHnXXHNNcs3ee+8dPT09OUwTsd9++yXXXHfddTlM0r4mJiYyrZs/X/AFaG0CfvkrFbME/DTEAsBaI/YrAAAAAAAAAAAwIwJ+QMv79a9/nVyz55575jDJk171qlcl19xyyy0xNjaWwzTt6ZFHHkmu6enpiQULFuQwDUDjlKv1m+I04sy+wf70ZyrgBwBPG0402wr4AQAAAAAAAABAfQJ+QEt7+OGH48EHH0yum2sBv8nJyfif//mfHKZpT1k+uxe/+MXR3d2dwzQAjTE1PR2rUwE/B+ZnXV93T8zvm1d3zbCAHwA8pVxNNfh5IAEAAAAAAAAAANQj4Ae0tBUrVmRa97KXvazBkzxtp512yrQu6+w8U61Wi2uvvTa5buedd85hGoDGWV0djVpijYBfY6Q+11SQAQA6xfT0dIwkG4ftVwAAAAAAAAAAoB4BP6Cl3XXXXZnWbb/99g2e5GlDQ0Ox+eabJ9dlnZ1nuvbaazO1Nu633345TAPQOMMZQmQCfo2RCiKMVOoHGQCgU6weq0StVv+RBPYrAAAAAAAAAABQX0+zBwCYibvvvju5ZtGiRTF/fr4HCrfffvv45S9/WXdNltl5ruXLl2dad8ABBzR2EIAGK1cyBPw04jTEUCKIMJzhuwGATlBOtPdFCPgBAAAAAAAAtIKC6iiApvKvYaClrVy5Mrlmq622avwgz7J48eLkGgG/jffoo4/GmWeemVy30047xR577JHDRACNU060xHV3dcVm84o5TdNZBvsH6r5eztCuCACdIMsDCYaK9e+rAAAAAAAAAADQ6QT8gJZ2//33J9csWrQoh0k2/pr33XdfDpO0l89//vNRqVSS64477rjGDwPQYKkD84PFgegqFHKaprOkmhGzhBkAoBOk7oldhUIsEPADAAAAAAAAAIC6BPyAlrZq1arkmhe84AU5TPJMWQJ+jz32WA6TtI9bb701/vVf/zW5buHChfGBD3wgh4kAGivVEpcKobHphvrrf7ZPjI/F+NRkTtMAwNzlgQQAAAAAAAAAADBzAn5AS8sS8CuVSo0fZBOu+cQTT8TY2Fjjh2kDU1NTsXTp0piYmEiu/cu//MumfOcAs61cGa37eiqExqYrZfhsRxLfDwB0guFkwM9+BQAAAAAAAAAAUgT8gJY2PDycXLNgwYIcJtm0a2rxy+YrX/lKXHPNNcl1W221VXziE5/IYSKAxks14pT6B3KapPNkCfilGhYBoBOMVFMPJLBfAQAAAAAAAACAFAE/oGVVKpVMjW7NCPgtXLgw07qRkZEGT9L6rr766jjppJMyrf37v//72GyzzRo8EUA+0gE/jTiNkiU8mfp+AKAT2K8AAAAAAAAAAMDMCfgBLWt8fDzTuv7+/gZP8lzFYjHTuqzvoVM98sgjcfTRR2cKch566KHxrne9K4epABqvVqtFOdGI48B84/T39MW87p66awT8ACBiWMAPAAAAAAAAAABmTMAPaFlZw3Hd3d0NnuS5enrqhwLWEvDbsImJiTjqqKPivvvuS67dYost4tRTT81hKoB8rBmvxuT0VN01paID841SKBRiMBFIGK7UD2ACQLt78oEEAn4AAAAAAAAAADBT2RIoAHNQ1nBc1rDdbMp6zSzNdJ3qAx/4QFxxxRWZ1n7729+ORYsWNXii1vG6172uKX/veaabbrqp2SPQwkYyhMdK/QM5TNK5Sv0D8b9rRjb4eirQAADtbnRiPCamUg8ksF8BAAAAAAAAAIAUDX5Ay5qcnMy0TsCv9Xz5y1+O0047LdPaj33sY3H44Yc3eCKAfA1nCI9pxGmsVENiuSLgB0Bny3IvtF8BAAAAAAAAAIA09T5Ay8oaoptKNAo0QtZrall7rrPPPjv+5m/+JtPa/fbbL774xS82eKLWc9VVV8WWW27Z7DGAGUgdmC9ExKBGnIYaSgQSBPwA6HRZ2mwF/AAAAAAAAAAAIE2DH9Cy+vr6Mq3L2vQ3m7I282V9D53iwgsvjCVLlkStVkuufdnLXhbnnXeekCTQllLhsQXz+qOnqzunaTpTKpBQro7mNAkAzE2ZGvw8kAAAAAAAAAAAAJIE/ICW1dvbm2ldMwJ+Wa8p4Pe0q666Kt7+9rdnCke+8IUvjEsuuSS22GKLHCYDyF/qwLw2nMZLfcYj1dGYnp7OaRoAmHvKlfph9836itHb7YEsAAAAAAAAAACQIuAHtKx58+ZlWletVhs8yaZfU8DvSb/61a/ikEMOiUqlklz7/Oc/Py655JLYZpttcpgMoDmGEwfmB7XhNFyqcahWq8XqsfR9CwDaVeqBBIP99isAAAAAAAAAAJCFx2gDG+Xuu++O6667rqHXmD9/frz1rW9Nruvv74+enp5kW97jjz8+W6NllvWaCxcubPAkc99NN90Ub3nLW2L16tXJtaVSKS6++OLYcccdc5gMoHlGqvUPzA9p8Gu4LC2J5coT2hQB6FjlxH6lVHSPBAAAAAAAAGgZhWYPANDZBPyAjXLFFVfEkiVLGnqNF73oRZkCfhERQ0ND8cgjj9RdkyU4NtuyXnPzzTdv8CRz2+233x4HHnhgrFq1Krl2/vz5ceGFF8YrXvGKHCYDaK5UI45QWeNl+YyHK0/Edo0fBQDmpNR+xQMJAAAAAAAAAAAgm65mDwAwE1tssUVyzcjISA6TbPw1BwYGolgs5jDN3HT33XfH/vvvHw899FBybbFYjB/96Efx2te+NofJAJqvXBmt+7qAX+MtmNcf3YX6/7mUai4CgHZmvwIAAAAAAAAAALNDwA9oaVkCfg8//HAOkzxTltBaltnb1X333RcHHHBA3Hfffcm1vb29ce6558b++++fw2QAzVednIjK5HjdNQ7MN15XoRCDxYG6a0YSwQYAaGfDycbh+vdRAAAAAAAAAADgSQJ+QEvbeuutk2uyhO1mW5ZrZpm9HT300EOx//77x913351c293dHWeffXYceuihOUwGMDeUE4flIyJKieAZsyMVTEgFGwCgXY1PTsboxFjdNaWiBxIAAAAAAAAAAEAWAn5AS9tuu+2Sax544IHGD/IsDz74YHLNi1/84hwmmVseeeSROOCAA+L2229Pri0UCnHaaafFUUcdlcNkAHNHpoCfBr9cDCaCCeWqgB8AnWmkmm6xtV8BAAAAAAAAAIBsBPyAlpYlJPfQQw/F6Gj68OFsuuOOO5JrOi3gt2rVqjjwwAPj5ptvzrT+X/7lX+Ld7353g6cCmHvKDszPGanPuVzJd38BAHNFlhZb+xUAAAAAAAAAAMhGwA9oaS95yUuSa2q1WqbA3Wwpl8uxatWq5Loss7eLcrkcBx10UKxYsSLT+pNPPjk+8IEPNHgqgLkp1eDX39MXxZ7enKbpbEP9A3Vfz9K2CADtKEuLbSlxHwUAAAAAAAAAAJ4k4AdslOOOOy5qtVpDf1auXJl5nt122y3TultvvXUT3/HGy3qtrLO3utWrV8db3vKWuPHGGzOt/9znPhcf/ehHGzwVwNyVCo05LJ+fdIPfE1Gr1XKaBgDmjtR+ZV53T/T39OU0DQAAAAAAAAAAtDYBP6ClLV68OF7wghck12UNl82GLNfq6emJ3XffPYdpmmvNmjVx8MEHxy9/+ctM6z/xiU/ESSed1OCpAOa2dMCvfuiM2ZP6rCemp2J0YjynaQBg7kjtVwb750ehUMhpGgAAAAAAAAAAaG0CfkDL23PPPZNr8gz4/epXv0quednLXhbFYjGHaZpndHQ0DjnkkLj66qszrf/Qhz4UX/ziFxs8FcDcNyzgN2eUiunPOhVwAIB2VK6O1n1d4zAAAAAAAAAAAGQn4Ae0vNe+9rXJNddee21MTk7mME3ElVdemVyz99575zBJ81Sr1TjssMMyfRYREccff3x87Wtfa/BUAK2hXE0E/IoOzOdlKEOYUsAPgE6UbBzOEJIHAAAAAAAAAACeJOAHtLwDDjgguebxxx+PX/7ylw2f5Z577ok77rgjue7Nb35zw2dplvHx8fjjP/7juOyyyzKtP/bYY+Pf/u3fGjwVQOsYqaQacRyYz8tghjBlqnERANpRKuCXJSQPAAAAAAAAAAA8ScAPaHmvec1rYuHChcl1F110UcNnyXKNQqGQKZTYiiYmJuKoo46Kn/70p5nWH3XUUbFs2bLo6nI7AoiImJyeitVjlbprBPzy09PdHZvNK9Zdk2pcBIB2lGzws18BAAAAAAAAAIDMJCqAltfT05MpMPe9732v4bN897vfTa7Za6+94nnPe17DZ8nb1NRUHHPMMfGjH/0o0/q3vvWtcfbZZ0d3d3eDJwNoHSPV+u19EQ7M522oWP/zTgUcAKDdTE9Px0jigQRZWnABAAAAAAAAAIAnCfgBbeFP/uRPkmtuv/32uO666xo2wz333BNXXnllcl2WWVvN9PR0vPvd744f/OAHmda/5S1viXPPPTd6e3sbPBlAa8kSFksFzphdqUClgB8AnWb1WCVqtVrdNUMeSAAAAAAAAAAAAJkJ+AFt4a1vfWssXLgwue6rX/1qw2b4p3/6p5ienq67pqurK975znc2bIZmqNVq8b73vS/OOeecTOvf+MY3xnnnnRfz5s1r8GQAradc0eA31yQDfhlaFwGgnWQJt9uvAAAAAAAAAABAdgJ+QFsoFovxjne8I7nuBz/4Qdxxxx2zfv1Vq1bFqaeemlx30EEHxeLFi2f9+s30wQ9+MJYtW5Zp7b777hs//vGPo7+/v8FTAbSm1IH5nq7umN8nIJ2nUv9A3dc1+AHQaYYF/AAAAAAAAAAAYFYJ+AFt46Mf/WgUCoW6ayYnJ+NjH/vYrF/7//yf/xOrV69Orvvrv/7rWb92M330ox+Nf/3Xf820dq+99oqLLrooNttsswZPBdC6ytX6B+ZLxYHkvY7ZVSomGvwE/ADoMKn9SlehEAvmeagLAAAAAAAAAABkJeAHtI2dd945Dj300OS6888/P84999xZu+5VV10V3/zmN5Pr9txzzzjwwANn7boREStXroxCoZD8eeMb3zir142I+OQnPxn/+I//mGntK17xirj44otj4cKFsz4HQDtJhcW04eQv9ZmPTozH+ORkTtMAQPOVK6N1Xx8sDkSXBxIAAAAAAAAAAEBmAn5AW/n0pz8dXV3pf7Udf/zxcdttt834eg899FAcc8wxMTU1lVz7mc98ZsbXmyv+7u/+Lr7whS9kWrvLLrvEJZdcEkNDQw2eCqD1pQ7MC/jlL8tnPpxoMgKAduKBBAAAAAAAAAAAMLsE/IC28qpXvSqWLl2aXDcyMhIHHHBA3HXXXZt8rUceeSQOPPDAuPfee5NrDz744HjrW9+6ydeaS7761a/Gpz71qUxrd9hhh7jssstiyy23bPBUAO1hOHlgfiCnSVirVEx/5qmgAwC0k3Ii2F4qCvgBAAAAAAAAtJyugp88fwCeRcAPaDtf+MIXYosttkiuu+++++I1r3lNXHTRRRt9jeuuuy722muvuOmmm5Jri8VifO1rX9voa8xF//7v/x4f+chHMq3dbrvt4uc//3ksWrSowVMBtA8H5ueeoQwtRCMCfgB0EI3DAAAAAAAAAAAwuwT8gLaz5ZZbxvLly6NQSD/dYNWqVfFHf/RH8ba3vS1uuOGG5Pqbb745lixZEvvuu2/cc889meb52te+FjvssEOmtXPdF77whcxrV65cGdtuu20UCoWm/XzmM59p3IcBMMuma7UYcWB+zin29kWxp7fumuHE9wYA7STVXDukcRgAAAAAAAAAADZKT7MHAGiEQw89ND72sY/FP/zDP2Raf95558V5550XO+64Y7zuda+Ll7/85bH55ptHoVCI4eHhuPXWW+Oaa66JFStWbNQcxxxzTLz//e/flLcAQIdZM1aNqdp03TUlB+abYrA4ENU1Ixt8PdW8CADtolarJQN+gx5IAAAAAAAAAAAAG0XAD2hbX/rSl+K+++6L73znO5n/mdtuuy1uu+22Wbn+AQccEKeddtqs/C4A2l+WkJgGv+YY6p8fD9cL+CWCDgDQLkYnxmNieqrumlLRfgUAAAAAAAAAADZGV7MHAGiUrq6uOOOMM+Jtb3tb7td+3eteF+eff37Mmzcv92sD0JqyhMSGHJhvilSwUsAPgE6Rab/igQQAAAAAAAAAALBRBPyAttbT0xPnnntunHDCCbldc8mSJXHppZfG/PkONQKQXerAfCEiFhYH8hmGZxDwA4AnZbnnlfrtVwAAAAAAAAAAYGMI+AFtr6urK770pS/FeeedF1tttVXDrjM0NBSnnnpqnHbaaZr7ANhoqQPzC4sD0d1l+94MqYDfcFXAD4DOMJwh4DfogQQAAAAAAAAAALBRnBAGOsYRRxwRt956a3zsYx+b1Xa9vr6+eO973xu/+93v4n3ve9+s/V4AOstwZbTu6yWH5ZumVKy/b3i8Womp6emcpgGA5iknQu2b9RWjt7snp2kAAAAAAAAAAKA9CPgBHWXBggXxD//wD3HvvffGl770pXj5y1++yb/rpS99aXzqU5+KlStXxre+9a3YcsstZ3FSADrNSOLAfKpFjsYZ6q8frqxFxOpq/YAmALSDkdQDCexXAAAAAAAAAABgo3mkNtCRhoaG4oQTTogTTjghfv/738fFF18cv/nNb+Lmm2+OlStXxurVq+Pxxx+PWq0WCxYsiAULFsS2224bu+yyS+y2225x4IEHxste9rJmv43Ybrvtolar5Xa9lStX5nYtgE5Trgj4zVWDGT774eoTMTSwWQ7TAEDzDCf3KxqHAQAAAAAAAABgYwn4AR3vRS96URx//PHNHgOADpc+MC/g1yylYvqzTwU0AaAdlFONwxnumQAAAAAAAAAAwDN1NXsAAAAgolwdrfu6A/PNs2BeMbq76v+nU7lS//sDgHaQCrQPeSABAAAAAAAAAABsNAE/AABossrEeIxNTtRdM9Q/kNM0PFuhUIhSsf7nr8EPgE6Qut8N2q8AAAAAAAAAAMBGE/ADAIAmyxIOG9SI01SlxOdfrgr4AdDexicnY3RivO4ajcMAAAAAAAAAALDxepo9AAAAdLpydTS5JhUwo7GSAb9K+jsEgFaWJcw+ZL8CAAAAAAAA0JIKhWZPANDZNPgBAECTZWnwG9KI01Sl4kDd17N8hwDQyrLc6zyQAAAAAAAAAAAANp6AHwAANFnqwPxAb1/09SjfbqZ0g5+AHwDtTcAPAAAAAAAAAAAaQ8APAACaLHVg3mH55ksG/KqjUavVcpoGAPI3XBmt+/q87p4o9vTmNA0AAAAAAAAAALQPAT8AAGiyYQG/Oa9UrP8dTE5PxZrxak7TAED+Rqrp/UqhUMhpGgAAAAAAAAAAaB8CfgAA0GTl1IH54kBOk7AhQxlCliOJZiMAaGUahwEAAAAAAAAAoDEE/AAAoMlSwTAH5psvy3cwnAhqAkAr0zgMAAAAAAAAAACNIeAHAABNlgqGOTDffAuL/VFIrEk1GwFAKytXEw8kKNqvAAAAAAAAAADAphDwAwCAJpqcmoo1Y9W6axyYb76eru5YMK+/7hoBPwDa2UiywW8gp0kAAAAAAAAAAKC9CPgBAEATlRPtfRERQxr85oRUk6KAHwDtanp6OkbGKnXXaBwGAAAAAAAAAIBNI+AHAABNVK6MJtc4MD83pL6H4QzfJQC0opGxStRqtbprNA4DAAAAAAAAAMCmEfADAIAmGs7Q+jbYP5DDJKSUEt9DljZGAGhFWVpqh+xXAAAAAAAAAABgkwj4AQBAE40kQmG9Xd0xv3deTtNQT6qZaCRD+AEAWlGWgJ/GYQAAAAAAAAAA2DQCfgAA0ESpA/Ol/vlRKBRymoZ6hhLBhXJlNKdJACBfqZba7kJXbDavP6dpAAAAAAAAAACgvfQ0ewAAAOhkw4lQmDacuWMw8V1UJsejOjkRxZ7enCYCgHykQuyDxYHo8kACAAAAAAAAgNbl/+UL0FQa/AAAoInSDX4DOU1CSqmY/i5S3ycAtCL7FQAAAAAAAAAAaBwBPwAAaKJyNXFgvqjBb64YytCmKOAHQDtKB/zsVwAAAAAAAAAAYFMJ+AEAQBM5MN86snwXAn4AtKNh+xUAAAAAAAAAAGgYAT8AAGiS6VotRqqjddeU+gdymoaUeT290d/bV3dNOfF9AkArSu5XivYrAAAAAAAAAACwqQT8AACgSR4fq8R0rVZ3TamoEWcuSTUUafADoN3UajWNwwAAAAAAAAAA0EACfgAA0CRZwmBDDszPKamGIgE/ANrNExNjMTE9VXeNgB8AAAAAAAAAAGw6AT8AAGiSLGEwB+bnltT3MSzgB0CbybRf0TgMAAAAAAAAAACbTMAPAACaJBUGKxQKsXBef07TkEUqwFCuCvgB0F40DgMAAAAAAAAAQGMJ+AEAQJOkwmCD8/qjq8uWfS5JNfiVK6M5TQIA+chybxssDuQwCQAAAAAAAAAAtCenhQEAoElGEgfmU2Ey8pdqKHp8rBKT01M5TQMAjZd6IMFm84rR092d0zQAAAAAAAAAANB+BPwAAKBJhiv1D8wL+M09pf50Q9FIVYsfAO2jnNivDBXtVwAAAAAAAAAAYCYE/AAAoElSjTgCfnNPlu8kFYQAgFaSuq/ZrwAAAAAAAAAAwMwI+AEAQJOUK/Wb3koaceacLN9J6nsFgFaS3K8I+AEAAAAAAAAAwIwI+AEAQBPUarVkI85Q/0BO05DV/L550dvVXXeNBj8A2kmycbhovwIAAAAAAAAAADPR0+wBAACgE1UmxmN8arLumkGNOHNOoVCIwf6BePSJxze4ZljAD4A2kgqua/ADAAAAAAAAaH2FrlqzRwDoaBr8AACgCcrV0eSaUtGB+bko9b2kmo4AoFWMT07G6MR43TUCfgAAAAAAAAAAMDMCfgAA0ASpNpyIiCEH5uek1PcyUkmHNwGgFQxnCK0L+AEAAAAAAAAAwMwI+AEAQBNkCfgN9g/kMAkbKxVkGM7w3QJAK8iyXykV7VcAAAAAAAAAAGAmBPwAAKAJUiGw+X3zoq+7J6dp2BiDiSBDOUPbEQC0gpEsAT8NfgAAAAAAAAAAMCMCfgAA0ASpEJjD8nPXUOK7GamMxnStltM0ANA4w5XRuq/P6+mN/t6+nKYBAAAAAAAAAID2JOAHAABNUE404pQSLXE0Typ8OVWbjjVjlZymAYDGST6QwH4FAAAAAAAAAABmTMAPAACaoJxoxNHgN3dl+W5SAU4AaAWp+1mq1RYAAAAAAAAAAEgT8AMAgCZINuI4MD9nZQr4VesHOAGgFSQbh+1XAAAAAAAAAABgxgT8AACgCZIH5osOzM9Vg/P6o1Ao1F2jwQ+AdpAKrA/arwAAAAAAAAAAwIwJ+AEAQM7GpybjifGxumuGNOLMWV1dXbFwXn/dNQJ+ALSD1P1sqH8gp0kAAAAAAAAAAKB9CfgBAEDORir123AiIkoCfnNa6vsZzvAdA8BcNjU9HasTDX72KwAAAAAAAAAAMHMCfgAAkLPhDO1ug0WNOHNZKfH9lKsa/ABobauro1FLrBHwAwAAAAAAAACAmRPwAwCAnI1kCH8NOTA/p6W+n3KGECcAzGXDGfYrAn4AAAAAAAAAADBzAn4AAJCzVPirr7sn+nv7cpqGTZEKNAj4AdDqRiqjyTWpRlsAAAAAAAAAACBNwA8AAHI2nDgwX+qfH4VCIadp2BTJgF81HYoAgLksFVbvLnTFZvP6c5oGAAAAAAAAAADal4AfAADkrFytf2C+1K8NZ65LBfzGJieiMjGe0zQAMPuGEwG/wf6B6PJAAgAAAAAAAAAAmDEBPwAAyFmqEadUrB8eo/lKxXQIM/U9A8Bclnwggf0KAAAAAAAAAADMCgE/AADIWTLgl2iHo/myfEcCfgC0snJltO7rGocBAAAAAAAAAGB2CPgBAEDOylUH5ltdloDfsIAfAC3MAwkAAAAAAAAAACAfAn4AAJCj6enpGEkF/IoOzM91fd09MdA7r+6aclXAD4DWlbqP2a8AAAAAAAAAAMDs6Gn2AAAA0ElWj1WiVqvVXTOkEaclDPXPj9GJsQ2+PlKpH+QEgLmqVqtFOXEfs18BAAAAAAAAaB+FQrMnAOhsGvwAACBH5Uq61a3kwHxLKPUP1H19OMN3DQBz0RPjYzE5PVV3jf0KAAAAAAAAAADMDgE/AADIUZbQlwPzrWGwWP97KlcF/ABoTVkeSDBYrB90BwAAAAAAAAAAshHwAwCAHKVCX12FQiyY15/TNMzEUCKIWa6M5jQJAMyuLCH11H0QAAAAAAAAAADIpqfZA5BNtVqN+++/Px599NEYGRmJcrkcjz/+eIyPj8f4+HhMTExEd3d39PX1RW9vbwwMDMTg4GCUSqUYGhqKxYsXxxZbbNHstwEA0PFGEqGvweJAdBUKOU3DTKSaFrO0HwHAXJQlpK7BDwAAAAAAAAAAZoeA3xyyZs2a+M1vfhM333xz3H777XH77bfHnXfeGffff3+Uy+UZ//6+vr5YvHhxbLfddrH99tvHDjvsEDvuuGO84hWviO22227Gvx8AgLThROgrFRpj7ij11w82rBmvxsTUZPR2+88uAFpLar+yYF5/9HR35zQNAAAAAAAAAAC0NydNm2RiYiJuvPHGuPrqq+Oaa66JG2+8MVauXBm1Wu0Z6579f8/E2NhYrFy5Mn7/+9/HFVdc8YzXFi5cGLvvvnu8+tWvjn333Tf23XffWLRo0axdGwCAJ5WriYBfUcCvVWQJY45UR+N58xfmMA0AzJ5UC20q5A4AAAAAAAAAAGQn4JejG264IS699NK45JJL4pprromxsbGnXqsX5CsUCrM6x/quNTIyEldddVVcddVV8Y//+I8REfHiF784DjjggDjwwAPjgAMOiM0333xW5wAA6ETlymjd1zX4tY4sYcxyRcAPgNbjgQQAAAAAAAAAAJAfAb8GGh0djZ/97Gfxox/9KH7yk5/EqlWrnnrt2SG7VIhvNpr81l5jQ9d69jXuuuuuuPvuu+Nb3/pWFAqFeM1rXhOHH354HHbYYbHzzjvPeB4AgE6UasQZ0ojTMrKEMYcT3zcAzEUjHkgAAAAAAAAAAAC5EfCbZePj43HBBRfEOeecExdeeOFTLX1ZA32zEeTbkFRL4PpmWvvP1Gq1uO666+K6666LE088MXbYYYc45phj4p3vfGfsuOOODZsZAKCd1Gq1ZMBv0IH5ljHQ2xe93d0xMTW1wTWpBiQAmIuGUw1+HkgAAAAAAAAAAACzpqvZA7SLq6++Ot773vfG85///DjqqKPivPPOi2q1GrVaLWq12lMBunWDdGtfW/enWTY0y7ozr/vabbfdFp/97Gdj5513jle96lXxjW98I4aHh5s2PwBAKxidGI+J6Q2HwSIiSkUBv1ZRKBSS31cq0AkAc1Hq/mW/AgAAAAAAAAAAs0fAbwaGh4fjK1/5Suyyyy6x3377xfLly2P16tXrDfVFPDdEN9fVC/utG/j79a9/HX/1V38VW221VfzJn/xJ/PznP2/y5AAAc1OWsNeQBr+Wkvq+BPwAaDVjkxNRmRivu8Z+BQAAAAAAAAAAZo+A3yZYsWJFHH/88bHNNtvECSecELfeemumUF8rq9fut/b1sbGx+P73vx9vfvObY9ddd41vfvObMTo62syxAQDmlCxhr1L/QA6TMFtKAn4AtJks965BAT8AAAAAAAAAAJg1An4b4ac//Wnsv//+sccee8Rpp50WlUqlrUN99az7HtfX6nfzzTfHn//5n8fWW28dJ554Yjz88MPNHhkAoOmGswT8ig7Mt5JkwK/qgRcAtJYs965S0QMJAAAAAAAAAABgtgj4JdRqtTjnnHPila98ZRxyyCFxxRVXPCfYtnZdI0J964bnZutnttVr9RsZGYkvf/nL8eIXvzj+9E//NO64445Zvz4AQKsoV+sH/DabV4ye7u6cpmE2pBoXNfgB0Gqy3LuGNPgBAAAAAAAAAMCsEfDbgFqtFmeffXbsvPPOceyxx8aKFSvqBvtmIksYb90A4Ux+UtebSQCwXqtftVqNb33rW7HLLrvEkiVL4s4775zRZwYA0IpSB+a197We1Hc2Uh2N6enpnKYBgJlL7VeKPb1R7O3LaRoAAAAAAAAActHlJ9cfgGfpafYAc9H3vve9+MxnPhO33XbbM8J764b6NtWGAnQb+p39/f2x9dZbP/WzYMGC6O/vX+/PxMREjI6ORqVSec7Pww8/HPfdd1/cf//9sWrVqrqzrW/GjX3PG2r0m5ycjDPOOCPOPvvsOPbYY+Mzn/lMbLvtthv1uwEAWlW5Mlr39VQbHHNPKdFgNF2rxeNjlRjUdARAixhOPZDAPQ0AAAAAAAAAAGaVgN86fv7zn8cJJ5wQN9544zMCamttSrAvS1hu4cKFsdtuu8Xuu+8eu+++e7zoRS+KrbfeOrbZZpsYGhra6GumjI2Nxf333x/3339/3HfffXHLLbfEihUrYsWKFfH73//+OfOtr00wq3pBv+XLl8d3vvOd+OAHPxgnnnhiQ94rAMBcUq5q8Gs3WUIOw9VRAT8AWkZ6v+KBBAAAAAAAAAAAMJsE/CLipptuir/+67+OSy65JCKeDKBtaqAtFejbfPPN4w1veEPsueeezwj05WnevHnxkpe8JF7ykpc857XHH388/ud//uepwN9VV10VN91003qDemtl+Xw2FPSrVqtxyimnxLe//e345Cc/GX/1V38VPT3+WgIA7amcaMQZEgJrOUMZQg7lyhMRQ1vmMA0AzNxIsnHYfgUAAAAAAAAAAGZTRyephoeH46STTop///d/j6mpqee09mUN9tULvJVKpXj9618fb3zjG+NNb3pT7L777usNAc4VCxYsiH333Tf23Xffp/5s1apVcfnll8fll18ev/jFL+Lmm29+6rWNbffbUNCvXC7Hxz/+8fjmN78Zp5xyShx66KGz+bYAAOaEVMDPgfnWs6A4EF2FQkzX2QenvncAmEvsVwAAAAAAAAAAIF8dGfCr1Wrxr//6r/F//s//ieHh4VkJ9q37O/bee+84/PDD46CDDoo99thjTgf6sthiiy3iyCOPjCOPPDIiIh555JH4xS9+ERdccEFceOGF8dhjj0XExoX9NhT0u+OOO+Lwww+PN7/5zfGNb3wjtt9++0a9LQCAXI1PTsboxHjdNQ7Mt56uQiEGiwMxXCcMUa4K+AHQOoYT9y37FQAAAAAAAAAAmF0dF/D71a9+FR/4wAfixhtv3KRg3/oCbF1dXfHGN74xjj766DjssMNi0aJFDZh87thyyy3jHe94R7zjHe+I6enp+M///M/4j//4jzj33HPjoYceiojsYb8NBf0uvvji2G233eKEE06IE088Mfr6+hr8rgAAGit1WD4iolQcyGESZttgcX79gF9lNMdpAGDTTU1Px+PVSt01paKAHwAAAAAAAAAAzKauZg+Qp7/4i7+IffbZ56lw37NDZfU8e22tVotXv/rV8dWvfjXuu+++uOyyy+L9739/24f7nq2rqyve8IY3xNe+9rW4//7749JLL433vve9sWDBgqc+p4jnBv6e7dlrIyLGxsbi85//fOy2225x/fXXN/7NAAA00EidANhaGnFa01B//WBmOcN3DwBzwUh1NFKPvyol7nsAAAAAAAAAAMDG6aiA37/8y7/E9PT0U+G+iGcGy55tbSitUCg8te55z3tefPjDH44VK1bEddddFx/60Ic6LtS3IYVCIfbff/849dRT46GHHorTTz893vSmN0XE+pv61mft57zu537HHXfERRddlMt7AABolCwhLwG/1pT63gT8AGgV5SyNw/YrAAAAAAAAAAAwqzoq4LfWuoG9Db3+7ADgvvvuG2effXbcd999ccopp8Suu+6a58gtp1gsxrHHHhuXXXZZ/O53v4sPf/jDMTg4uFFBPwCAdjJcGa37+rye3ujv7ctpGmZTKugwLOAHQIvI9ECCooAfAAAAAAAAAADMpo4M+GUN9vX29saSJUviv//7v+Oqq66KP/mTP4ne3t48R20L22+/fZxyyinxwAMPxL//+7/Hzjvv/JymPgCAdpdqxCkVB3KahNmWCviNVEc9wAKAllBOPJCgu6srFswr5jQNAAAAAAAAAAB0ho4M+D3bs4N9g4OD8YlPfCJWrlwZ3/72t2P33Xdv8oTtoVgsxvve97747W9/Gz/+8Y/j9a9/vaAfANAxUo04Q4mQGHNXqslofGoyKhPjOU0DAJsutV8pFQf87zcAAAAAAAAAADDLOjrg9+xg3/Oe97z4whe+EPfcc0984QtfiEWLFjV5wvZ1yCGHxOWXXx5XX311HHzwwYJ+AEDbSx2YHxTwa1lZwpnDie8fAOaC1P1qMBFqBwAAAAAAAAAANl5HBvyeHezbcsst4+STT46VK1fGJz7xidhss82aPGHn2GeffeInP/lJ3HDDDXH44Yc/I+gHANBOytXRuq+nWuCYuwb7B5JrylUBPwDmvpHEfkXjMAAAAAAAAAAAzL6ODPhFPBnsGxwcjL/927+Nu+66Kz7ykY9Ef39/s8fqWHvuuWecd955ce2118b+++8ftVotIkLQDwBoG6kGv6EMITHmplIxQ8BPgx8ALSB1vyrZrwAAAAAAAAC0pULBT54/AM/WcQG/Wq0WfX198fGPfzzuuuuuOPHEE2NgwOGkueI1r3lNXHrppXHppZfGnnvu+VTQDwCglU1NT8fqVIOfRpyW1dvdE5v1FeuuKVfqf/8AMBekA372KwAAAAAAAAAAMNs6KuBXKBTimGOOid/97nfxpS99KUqlUrNHYgP233//uP766+P000+PrbfeutnjAADMyOrqaKQeW+DAfGtLfX8a/ACY62q1WpQ9kAAAAAAAAAAAAHLX0+wB8nTttdfGq1/96maPwUY49thj46ijjoo777yz2aMAAGyy4Wo63OXAfGsr9Q/EfSOrNvh6OcPfAQBopjXj1Zicnqq7plS0XwEAAAAAAAAAgNnWUQ1+wn2tqVgsxstf/vJmjwEAsMmytLeVigM5TEKjpAIPGvwAmOtGKvXb+yKeDLQDAAAAAAAAAACzq6MCfgAA0AypA/Pdha7YbF5/TtPQCKkGxnKG0AQANJPGYQAAAAAAAAAAaA4BPwAAaLDhRHvbYP9AdBUKOU1DI6QajVJ/BwCg2VJts4WIGNQ4DAAAAAAAAAAAs07ADwAAGqycaMQpFbXhtLrUdzg6MRbjk5M5TQMAGy8V8Fswrz96urpzmgYAAAAAAAAAADqHgB8AADRYuTJa9/WhfgG/VpflO0wFPQGgmVIBv8FEWy0AAAAAAAAAALBpBPwAAKDBUgfmSw7Mt7xSloBfIugJAM1Urta/T2kcBgAAAAAAAACAxhDwAwCABks24jgw3/IyBfw0+AEwh6X2KxqHAQAAAAAAAACgMQT8AACggWq1WrIRx4H51lfs6Y153T1116SCEwDQTOnGYfsVAAAAAAAAAABoBAE/AABooCfGx2JyeqruGgfmW1+hUEh+jwJ+AMxl5Ur9BxLYrwAAAAAAAAAAQGMI+AEAQANlCXWV+gdymIRGE/ADoFVVJyeiMjled02paL8CAAAAAAAAAACN0NEBv0suuaTZIwAA0OaGq1kCfhpx2kHqexwW8ANgjhrJ9EAC+xUAAAAAAAAAAGiEjg74veUtb4ntttsuPvOZz8TKlSubPQ4AAG0oS2vboEactlAq1g8+jFRHc5oEADZOlhC6gB8AAAAAAABAG+vyk+sPwLN0/L8a7r333vj85z8f22+/fey///5x9tlnR7VabfZYAAC0iVTAb8G8/ujp6s5pGhppqL9+UDNL2BMAmqGcIYQu4AcAAAAAAAAAAI3R8QG/iIharRbT09NxxRVXxLvf/e5YtGhRfOADH4jrrruu2aMBANDiypX6B+ZLiVAYrSMVfBgZq8T09HRO0wBAdqkQen9PXxR7enOaBgAAAAAAAAAAOouAX0QUCoUoFApRq9WiVqvF6tWr49RTT4199903Xv7yl8fJJ58c//u//9vsMQEAaEHlav0D86WiNpx2MZj4Lmu1WoyMVXKaBgCySwX8Bj2QAAAAAAAAAAAAGkbAL548aBvxdNBv3bDfLbfcEh//+Mdj2223jSOOOCLOP//8mJqaavLEAAC0itSB+aFE6xutYyhD+CH19wEAmiH5QAL7FQAAAAAAAAAAaBgBv/9nbaDv2WG/ta9NTEzEj3/843jb294W22yzTXz84x+Pm2++uZkjAwDQAlKBLgfm20eW71LAD4C5qFwZrfu6xmEAAAAAAAAAAGgcAb/1WDfst75Wv4cffjhOPvnk2G233WKfffaJU089NVavXt3ssQEAmIOSB+YF/NrGZvP6o7tQ/z+xBPwAmIvSjcPplloAAAAAAAAAAGDTCPglrK/Vb92w3/XXXx8f+MAHYvHixfHud787fvGLXzR5YgAA5orq5ERUJsfrrikVHZhvF12FQgwmAhDlav3AJwA0g8ZhAAAAAAAAAABoHgG/jNZt9YuI5wT9KpVKnH322XHggQfGS17ykvj85z8f99xzT5OnBgCgmUYytLU5MN9eSsX636cGPwDmmsnpqVg9Vqm7ZjBxfwMAAAAAAAAAADadgN8mWDfst75Wv5UrV8ZnPvOZeMlLXhJvfvOb47vf/W6MjY01e2wAAHI2LODXcUqpBj8BPwDmmNXV+uG+iIihxP0NAAAAAAAAAADYdAJ+M7S+Vr+1Yb/p6en4+c9/Hu9617ti8eLF8cEPfjBuuOGGJk8MAEBeytXR5BoBv/aS+j6zhD4BIE9Zwuf2KwAAAAAAAAAA0DgCfvHMYN6mWrfVb93fufbPyuVy/Nu//Vvsvffesfvuu8dXv/rVePTRR2frLQAAMAelDsz39/RFsac3p2nIQ6lYPwBRrgr4ATC3aBwGAAAAAAAAAIDm6uiA38c//vFYvHjxeoN5M1Gv1a9Wq8Vvf/vb+Ou//uvYZptt4sgjj4wLLrggpqenZ/x+AACYW1IBv1L/QE6TkJehRACiXBl96r8VAGAuSIXPu7u6YrO+Yk7TAAAAAAAAAABA5+nogN+XvvSluOeee+InP/lJHHnkkdHX1/dUCK+RrX5rXxsfH48f/vCHcfjhh8e2224bf/M3fxO/+93vZuW9AQDQfKmA36A2nLaTajianJ6KJybGcpoGANKSDyQoDsz4YVgAAAAAAAAAAMCGdXTALyKiq6srDj744Dj33HPjgQceiH/6p3+KPffcc4MtfJtq3bDf+lr9Hnzwwfj7v//72GWXXeIP/uAP4rTTTos1a9bM1tsEAKAJytXRuq+XigJ+7SZLK2MqSAEAeSpXEvsVDyQAAAAAAAAAAICG6viA37qGhobiL/7iL+KGG26IFStWxIc//OHYcsstN9jCt6k2FB5c++fXXnttHH/88bF48eJYsmRJXHnllTN+bwAA5C8V5BrKEAajtWQJbQr4ATCXlKuJBj8BPwAAAAAAAAAAaCgBvw3Ydddd45RTTon7778/fvjDH8bhhx8e3d3d623h21TrtvpFxHOCfk888UScccYZ8aY3vSl22GGH+MIXvhD333//bL1FAAAaLBXkcmC+/QwWszT41W9KAoA8JfcrGocBAAAAAAAAAKChBPwSuru747DDDovzzjsv7r///vjKV74Su+222wZb+DbVumG/9bX63XnnnXHSSSfFdtttF3/4h38Y5557bkxMTMzW2wQAYJZNTk/F6rFK3TUCfu2np7s7Fszrr7tmWIMfAHNIunHYfgUAAAAAAAAAABpJwG8jbLnllvHRj340fvOb38QNN9wQf/7nfx5DQ0PrDfvNxIbCg7VaLaampuKSSy6Jd77znbF48eL40Ic+FL/+9a9n/N4AAJhdI9V0S5uAX3sq9ddv8UsFKQAgL7VaLcqJPctg4r4GAAAAAAAAAADMjIDfJtpzzz3jG9/4RjzwwAPxve99Lw4++ODo6upqWKvfur9z7Z899thj8c///M+x1157xR577BFf//rX47HHHpuV9wcAwMxkCXGVig7Mt6NSsX5wc6Qq4AfA3LBmvBpT09N116TuawAAAAAAAAAAwMwI+M1QX19fHHXUUfGTn/wk7r333vjiF78YO+200wZb+DZVvVa/Wq0Wv/nNb+LDH/5wbL311nH00UfHRRdd9NR6AADyV65o8OtUQ4nvNcvfDQDIQ5YHEqTuawAAAAAAAAAAwMwI+M2iRYsWxQknnBA333xzXH311XH88cfHwoUL1xvO21QbavVb+9rY2Fj84Ac/iEMPPTRe+MIXxqc+9am44447Zv7mAADYKOVES1tPV3ds1lfMaRrylApuDmvwA2COyNQ4LOAHAAAAAAAA0PYKBT95/gA8m4Bfg+yzzz7xzW9+Mx588ME488wz48ADD3yqcS9idlv9arXaelv97r///qcaBV//+tfH6aefHqOj2kIAAPKQOjBfKg7MaC/I3DVYHKj7epYwBQDkYTjRKluIiIXF/nyGAQAAAAAAAACADiXg12DFYjHe9a53xcUXXxx33313fPazn42XvOQl623hm42w37N/39o//6//+q9YunRpLFq0KN73vvfFf/3Xf83K+wMAYP2SAT9tOG1rKPHdVibGY2xyIqdpAGDDUo3DC+b1R09Xd07TAAAAAAAAAABAZxLwy9G2224bJ510Utx+++1xxRVXxHve854YGBhYbzhvU63b6rfu71v7Z2vWrIlly5bF61//+thpp53iy1/+cjz44IOz8v4AAHhaOdGII+DXvrJ8t1r8AJgLRjyQAAAAAAAAAAAAmk7Ar0n222+/WLZsWTz00ENx2mmnxetf//qIiIa0+tVqtfW2+t1+++1x4oknxgtf+MI45JBD4j/+4z9icnJyVt4fAECnG04cmB8sDuQ0CXnLEoZI/f0AgDwMeyABAAAAAAAAAAA0nYBfk82fPz+OO+64uPzyy+OOO+6IT33qU7HtttvOaqtfRKz3960N+01NTcVPf/rTOOqoo2KrrbaKj3zkI7FixYoZvzcAgE42Uq0f4BpyYL5tZQlDjFTrByoAIA/lxH6l1O+BBAAAAAAAAAAA0GgCfnPIi1/84vjc5z4Xd999d1xyySVxzDHHRLFYXG8L36Zat9UvIp7T6vfoo4/GP/3TP8Uee+wRe+21V/zLv/xLlMvlWXqHAACdoVarRTkR4NKI076KPb3R39NXd01Zgx8Ac0DqflQq2q8AAAAAAAAAAECjCfjNQYVCIQ444IA466yz4qGHHop/+7d/i3322WeDLXybql6rX61WixtvvDH+8i//Mrbaaqs45phj4uKLL56V9wcA0O4eH6vG1PR03TUacdrbYOL7HRbwA2AOSAb8PJAAAAAAAAAAAAAaTsBvjluwYEG8//3vj6uvvjpuvfXW+PjHPx6LFy9ebzhvU22o1W/ta9VqNb73ve/FwQcfHC960Yvi05/+dNx1110zf3MAAG2qXE2HtxyYb2+p7zfL3xEAaKTqxHhUJyfqrrFfAQAAAAAAAACAxhPwayE77rhjfOlLX4p77rknLrzwwnj7298efX19T4XzZrPV79m/b+2f3XvvvfG3f/u3scMOO8Sb3vSmOOuss6JSqcziuwQAaH2pNpyIiKGiA/PtrJT4fsuV0ZwmAYD1K1fT96JSUeMwAAAAAAAAAAA0moBfC+rq6oo//MM/jO9///vxwAMPxNe//vV41atetd4WvtkI+z3796398yuvvDLe8573xOLFi+NP//RP49prr52V9wcA0OpSAb9CRCx0YL6tDfXX/36zhEABoJEyPZBAgx8AAAAAAAAAADScgF+LGxoaig9+8INx/fXXx4oVK+LDH/5wbLnllusN522qdVv91v19a/9s9erV8a1vfSv+4A/+IHbZZZf4yle+Eg8//PCsvD8AgFaUasRZUOyP7i5b8XZWSgQiylUBPwCaK0vAb1DADwAAAAAAAAAAGs6p4jay6667ximnnBL3339//PCHP4zDDz88enp6ngrizWar37N/39o/u/XWW+OEE06IbbfdNg477LA4//zzY2pqahbfJQDA3Jc6MD9UdFi+3aUCfo9XKzE1PZ3TNADwXMOJ/Up/T18Ue3pzmgYAAAAAAAAAADqXgF8b6u7ujsMOOyzOO++8uP/+++Pkk0+O3Xfffb0tfLMR9nv276vVajE5ORk/+clP4m1ve1tsvfXWs/K+AABaRSrglwp/0fpKxYG6r9ciYiTR9AgAjZS6D5X669/LAAAAAAAAAACA2SHg1+ae97znxUc+8pH47//+7/jVr34VH/zgB2NoaGi94bxNtW6r37N/X61Wi0ceeWTmbwQAoIUI+JHlO079PQGARrJfAQAAAAAAAACAuUHAr4Psscce8fWvfz0efPDB+P73vx9/9Ed/FF1dXQ1r9QMA6FTDDsx3vCzfcervCQA0kv0KAAAAAAAAAGsVCn7y/AF4NgG/DtTb2xtvf/vb44ILLoh77703vvjFL8ZOO+203ha+TQ37CfkBAJ2sXB2t+3qpOJDTJDTLZn3F6OnqrrumXBXwA6B5UvehUlHADwAAAAAAAAAA8iDg1+EWLVoUJ5xwQtx8881xzTXXxPHHHx8LFy5cb9gPAIC06sR4jE1O1F2jEaf9FQqFZJBzpFI/CAoAjVRO3IdK/R5IAAAAAAAAAAAAeRDw4yl77713fPOb34wHH3wwzjrrrDjwwAOjUCg8FfYT8gMASBuupFvZBPw6Q+p7zvJ3BQAaYXJ6Kh4fq9RdY78CAAAAAAAAAAD5EPDjOYrFYhxzzDFx8cUXx8qVK+Nzn/tcvPSlLxXyAwDIoFxNt7I5MN8ZUt9zuSrgB0BzjNivAAAAAAAAAADAnCHgR13bbLNNnHjiifGP//iPQn4AABmUM7SyDRUdmO8Eg8WBuq9n+bsCAI1gvwIAAAAAAAAAAHNHT7MHYO665ZZbYvny5XHWWWfFQw899NSf12q1Jk4FADC3pQ7MD/T2RV+PbXgnGEo1+An4AdAk5YoGPwAAAAAAAAAAmCucLOYZRkZG4jvf+U4sW7YsbrjhhogQ6AMA2Bip0Nagw/IdIxWMKFdHNWQD0BSp/UpPV3fM75uX0zQAAAAAAAAAANDZBPyIWq0WF198cSxfvjzOP//8GBsbe0aob90Dx8J+AAD1lav1G3GGigJ+naLUP1D39anp6Xh8rBoLi/05TQQATypX6wf8SsUBAXQAAAAAAAAAAMiJgF8Hu/3222PZsmVx5plnxgMPPBARIdgHADBDqUacVOiL9pFq8IuIGKk+IeAHQO7S+xUPJAAAAAAAAAAAgLwI+HWYxx9/PL773e/G8uXL49prr40IoT4AgNnkwDxrZWlrLFeeiG1Lz8thGgB4WrlSv3HYfgUAAAAAAAAAAPIj4NchLrvssli2bFn88Ic/jEqlEhFPB/jWDfWt++eb6tm/DwCgkwxXBfx40sLiQBQiot7uejgRsACARhjWOAwAAAAAAAAAAHOGgF8bu+uuu2L58uVxxhlnxL333hsRjWvr21BI8JWvfGUsXbp0Rr8bAKBVTE5NxZqxat01pQytbrSH7q6uWFDsj9XVygbXlBOBUABohNT9x34FAAAAAAAAAADyI+DXZp544on4/ve/H8uWLYv/+q//iojGhfo29Ps233zzOOaYY2Lp0qXxyle+csbXAABoFVnCWhpxOstQcX79gF+iQQkAZtt0rRYj1foNshqHAQAAAAAAAAAgPwJ+beLyyy+P5cuXx//9v/83RkefPKS1NnC3oXa9TbW+39fV1RUHHXRQLFmyJI444ojo6+ub0TUAAFpRuVL/sHyEA/OdptQ/P35ffnSDrwv4AZC3NWPVmJqerrvGAwkAAAAAAAAAOkuhq9kTAHQ2Ab8W9vvf/z6WL18eZ5xxRqxcuTIi8m/re+lLXxrHHXdcHHfccbH11lvP+BoAAK0sW4OfgF8nSX3f5USDEgDMNvsVAAAAAAAAAACYWwT8WkylUolzzz03li9fHldeeWXUarXcQ30DAwNx5JFHxtKlS+MNb3jDjK8BANAuUm1svV3dMb93Xk7TMBckA34a/ADIWZZ7z1BRwA8AAAAAAAAAAPIi4Ncirrrqqli2bFn84Ac/iDVr1kTE04G7dUN46/75ptrQ79tnn31i6dKlcfTRR8eCBQtmdA0AgHaUOjBf6p//nL0W7a2UCEgI+AGQt9S9pxARC4sD+QwDAAAAAAAAAAAI+M1l9913X5x++ulx+umnx5133hkRkXtb3wte8II49thjY+nSpfGyl71sxtcAAGhnw5XRuq+n2txoP6X++gGJ6uREVCfGo9jbl9NEAHS6crX+fmVBsT+6u7pymgYAAAAAAAAAABDwm2Oq1Wr8x3/8Ryxbtix+8YtfRK1W22CoL6IxbX09PT1xyCGHxJIlS+KQQw6J7u7uGV0DAKBTJBv8tOF0nCyhzuHKE7FYwA+AnKT2K0OJ9lkAAAAAAAAAAGB2CfjNEddcc00sX748vv/978fq1asj4unwXh6hvoiIXXbZJZYsWRLHHntsPP/5z5/RNQAAOtFINRHw0+DXcbJ85+XqaCxeOJTDNACQ4YEE9isAAAAAAAAAAJArAb8meuCBB+KMM86I008/PW677baIiA229c001Leh37dw4cI4+uijY+nSpbH33nvP+BoAAJ2sXBmt+7oD850nSwtSKmgBALNJwA8AAAAAAAAAAOYWAb+cjY+Px3nnnRfLly+PSy+9NKanpzcY6otoTFtfoVCIN77xjbF06dI48sgjo7+/f0bXAAAgYrpWi5FqKuA3kNM0zBV9PT0x0NsXoxPjG1wj4AdAnoYT953Bov0KAAAAAAAAAADkScAvJ9dff30sW7Ysvve970W5XI6Ip8N7sx3qe/bvXPv7tt1223jPe94TS5YsiRe/+MUzvgYAAE97fKwSU7XpumtKGdrcaD+l/vn1A35VAT8A8pN6IMGQBj8AAAAAAAAAAMiVgF8DPfzww3HmmWfG8uXL45ZbbomI2GBbX6NCffPmzYsjjjgilixZEm9+85ufEyYEAGB2ZGlhc2C+M5WK8+OB1cMbfL1cqR+0AIDZUp0Yj+rkRN01JfsVAAAAAAAAAADIlYDfLJuYmIgf/ehHsWzZsrj44otjampqg6G+iJkH+zb0+/bYY49YunRpvOtd74pSqTSjawAAkJYl4DfowHxHKvUP1H09y98dAJgNwxnuOQJ+AAAAAAAAAACQLwG/WXLjjTfG8uXL4zvf+U489thjEZF/W98WW2wRxxxzTCxdujRe8YpXzPgaAABkV67Wb2ErFAoxOK8/p2mYS1JBCQE/APKS2q9ECPgBAAAAAAAAAEDeBPxm4JFHHomzzjorli9fHr/97W8jIr9Q39rf2dXVFW95y1ti6dKlcfjhh0dvb++MrwMAwMZLhbQG5/VHV1dXTtMwl6SCEsNVAT8A8pElVF4q1m+eBQAAAAAAAAAAZpeA30aampqKH//4x7F8+fK46KKLYnJycoOhvojGtfW99KUvjSVLlsR73vOe2HrrrWd8DQAAZiZ1YF4bTucqFet/92vGqjE5NRU93d05TQRAp0rtV/p7+2Jej4dHAQAAAAAAAHScQnoJAI0j4JfRihUrYtmyZXHOOefEo48+GhH5tfWt/X3z58+Pt7/97bFkyZJ4/etfP+NrAAAwe4YF/NiAoQzf/Uh1NLaYvyCHaQDoZOVEa6z9CgAAAAAAAAAA5E/Ar47HHnsszj777Fi2bFn85je/iYj8Qn3r/s7Xvva1sXTp0jj66KNjs802m/F1AACYfQ7MsyGD/QPJNcOVJwT8AGi4cmW07utDidZZAAAAAAAAAABg9gn4Pcv09HRceOGFsWzZsvjJT34SExMTGwz1RTSurW/RokVx7LHHxtKlS2OnnXaa8TUAAGis1IH5UjEd8qI9ZQl3pgKiADAbyonG4SyhdAAAAAAAAAAAYHYJ+P0/N910UyxfvjzOOuus+N///d+IyL+tr7e3Nw455JBYunRpHHzwwdHd3T3j6wAA0Hi1Wi1GEgfmNfh1rvm986K3qzsmpqc2uCYVuACA2ZC635Q0+AEAAAAAAAAAQO46OuBXLpfjnHPOieXLl8evfvWriMg/1BcR8fKXvzyWLFkSxx57bGy55ZYzvg4AAPmqTI7H2NRk3TUCfp2rUChEqX9+PPLE6g2uEfADIA/laqJx2H4FAAAAAAAAAABy19EBv0WLFsXExMQGQ30Rsx/sW/v7BgcH453vfGcsWbIkXvOa18z4GgAANE+5Uv+wfIRGnE6XDPglAhcAMFOTU1Px+Fil7pohAT8AAAAAAAAAAMhdRwf8xsfHnwrf5dHWVygU4k1velMsXbo0jjzyyCgWizO+DgAAzZelfc2B+c5W6h+o+7oGPwAabSRDmDx1vwIAAAAAAAAAAGZfRwf81ioUCrMS6lv7u9Za+ztf+MIXxnve855YsmRJbLfddrNyHQAA5o4s4axBB+Y7WqrBUcAPgEYbznCv0TgMAAAAAAAAAAD5E/CLmTf2rS/UVywW44gjjoilS5fGAQcc8JxGPwAA2kfqwPxA77zo67b17mSlRINjuZJuVQKAmShXMwT8NA4DAAAAAAAAAEDunDLeRM8O7K0N9u25556xdOnSOOaYY6JUKjVhMgAA8jZSrR/OGnJYvuOVEg2OI9XRmK7VosuDQQBokJFEmLy3qzvm983LaRoAAAAAAAAAAGAtAb+NtL62vuc973nxrne9K5YsWRK77757s0YDAKBJyokGv1S4i/ZXKtYPeU7VpuPxsUoMFv1dAaAxUo3Dg/0Dz3mgFQAAAAAAAAAA0HgCfhmsr62vu7s7DjrooFi6dGkcdthh0dvb26TpAABottSB+ZIGv46XpcWxXHlCwA+AhilXE/uVRBgdAAAAAAAAAABoDAG/OtbX1rfDDjvEcccdF+95z3tiq622atZoAADMIckD8wJ+HS/L34FyZTReNJTDMAB0pHTjsP0KAAAAAAAAAAA0g4Dfs6wv1Dd//vw46qijYunSpfG6172uWaMBADBHJQ/Ma8TpeAvn9UehUHjqvzHWJxUUBYCZKFdG675e6tciCwAAAAAAAAAAzSDgF88M9UU8Hezbd999Y+nSpXH00UfH/PkOZQMA8FzjU5PxxPhY3TUOzNPV1RWD8/qjXN1wuCIVFAWAmUg2DnsgAQAAAAAAAAAANIWA3/+zNtS3ePHiePe73x1LliyJHXfcsclTAQAw143UCWytVep3YJ4n/x4I+AHQDNO1WowkGvyG7FcAAAAAAAAAAKApOj7gV6vVore3Nw499NBYunRpHHzwwdHV1dXssQAAaBFZQlkacYj4f0HP4Uc2+PqwgB8ADbJmrBJTtem6azyQAID/n707D6+rrvMH/rlZmpu0JQk7LbLIKrKDgCCCDoobKMogKgLDXtkUEH4MKgMojoAoMCAUZF8UdFzYBdlkZC/QYRUBgQKyJumS3KRJ7u8PTSctyT23be65S16v58kzkvPNPZ8bTpND5/s+bwAAAAAAAADKY1wH/DbccMP4t3/7t/j6178eyy+/fLnHAQCgChUT8NOIQ0RycKIzJ+AHQGkUc7/S2tySwiQAAAAAAAAAAMCixnXAb+bMmeUeAQCAKpe0YX5CfUM0N05IaRoqWVKTY1dPd0qTADDedOaSf8e0axwGAAAAAAAAAICyqCv3AAAAUM06EkJZbc0TI5PJpDQNlaw9oRmps2de5PP5lKYBYDxJeiBBJiKWyWrwAwAAAAAAAACAchDwAwCApdCZK7xhvs1mef6ptblwM1LvQH/09PelNA0A40lSwG+ZbEvU1/lrQgAAAAAAAAAAKIeGcg8AAADVrCthw3xbQqiL8aMtm3wtdPZ0R0tjUwrTADCeFNM4DAAAAAAAAMD4lcnkyz0CwLjm0dwAALAUbJinWO1FXAtJDUsAsCQ0DgMAAAAAAAAAQOUS8AMAgKWQuGG+2YZ5/qG1iGtBwA+AUtA4DAAAAAAAAAAAlUvADwAAltDg4GB05RIa/LI2zPMPE+obYuKEpoJrkgKjALAkOgT8AAAAAAAAAACgYjWUewCW3MDAQLz++uvx2muvxZw5c6Knpyd6enoil8tFPp9/z/q99967DFMCANSu2b09I953DdduwzzDtDVPjHl9vaMe7+wpHBgFgCXR6YEEAAAAAAAAAABQsQT8qsQzzzwTDzzwQDz22GPx2GOPxbPPPhtvvvlm4oby4QT8AADGVmdCG05ERKuAH8O0ZSfGq13vjnq8mGsKABZHz/y+6O2fX3BNe3NLStMAAAAAAAAAAACLEvCrUAMDA3HDDTfEDTfcEH/4wx9i1qxZCx1fnGBfREQmkxnL8QAAiOQ2nIiI9qwN8/yftoQARYeAHwBjzAMJAAAAAAAAAACgsgn4VZi//OUvccEFF8SVV14Zb7/9dkSMHOZbnMDe4oYBCznttNPihhtuSFy34oorxq9+9asxOy8AQCVK2jBfl8nEZAE/hmlLCFB05gT8ABhbxTyQIOn3EwAAAAAAAAAAUDoCfhXimWeeiZNPPjmuu+66GBwcXCiUVyjMlxTeG+vmvp133jmOP/74gmvy+XxkMpm4++67Y4cddhjT8wMAVJKkgF9rtiXqNCkzTFs2IeCnwQ+AMVbM75b2hN9PAAAAAAAAAABA6dSVe4Dxbs6cOTFt2rTYaKON4pe//GUMDAwsCMgNfUT8IzQ30kfaNtlkk/jc5z634NyFZrroootSnw8AIE0dCRvmteGwqPaEa2JeX2/0DfSnNA0A40FSwK+lcUJMaPAMMAAAAAAAAAAAKBcBvzK6/vrrY4MNNojp06e/J9gXEWUN8hXy//7f/1vwv4cHEYd/5PP5+PWvfx1z5swp46QAAKXVmUsI+GnDYRHFhD67ct0pTALAeJEU8PNAAgAAAAAAAAAAKC8BvzLI5/Px//7f/4svfOEL8eqrr44a7KtUH/7wh2OLLbYYtcVvSG9vb/zmN78p15gAACXX2VM4iGXDPIsq5ppICmIAwOJIbBz2QAIAAAAAAAAAACgrAb+UzZkzJz796U/H6aefXnXBvuG+8Y1vFLXul7/8ZYknAQAon+RGnJaUJqFatGWTrwkBPwDGUlIzrPsVAAAAAAAAAAAoLwG/FM2ePTt23nnnuO222xaE+yKWPNg3FA4cep00ffWrX43W1tYFcywqk8lEPp+P22+/PWbPnp32eAAAJZfP56MzlxTw04jDwpobJ8SE+oaCawT8ABhLyQ8kcL8CAAAAAAAAAADlJOCXkjlz5sTOO+8c999/f0T8XwCu2GDf8DBfuUJ9wzU1NcUXv/jFEecf/rn+/v649dZb0xwNACAV3fP7Yv7AQME1bVkb5llYJpNJDFJ09BRuWgKAxdHhgQQAAAAAAAAAAFDRBPxSstdee8UDDzywUGtfkkXDfEOBwKGPhoaGaGtri1VWWWXB+jTttddeRa276aabSjwJAED6imlZa7dhnhG0NbcUPJ7UDAkAxeofGIi5vbmCazyQAAAAAAAAAIBMnY80PwAW1VDuAcaD//iP/4jrr7++6HDf8KDe0Nr3ve99sfPOO8eWW24Zm222Way++uqx4oorLlhXV5f+T/kdd9wxVlpppXjzzTcXNBION/Q5DX4AQC0qJuCXFORifEoKUnQVcW0BQDGKCY27XwEAAAAAAAAAgPIS8CuxP//5z3HKKacsdrgvn89Ha2tr7L333rH//vvHxhtvXPJZF1cmk4lPfepTcdlll72nPTCfzy/43BtvvBHPPfdcrLPOOuUYEwCgJDqKCGG1Zm2Y572Smh07erpTmgSAWtdZxO+UNo3DAAAAAAAAAABQVso9S2j+/Plx0EEHLQj1FQr3ZTKZBY13TU1NccIJJ8SLL74YZ511VkWG+4Z85jOfKWrdvffeW+JJAADS1ZUrvGF+0oRsNNZ7ngbv1ZrQlFRM2xIAFKO4Bj8BPwAAAAAAAAAAKCcBvxI688wz46mnnloQ3BvN8Na+D3/4w/H444/HKaecEm1tbSlNuuQ+8YlPLJh/0Ra/4QT8AIBa05nQ4GezPKNpyxa+Nrpy3TE4OJjSNADUsqT7lca6+pjY2JTSNAAAAAAAAAAAwEgE/Eqku7s7zjjjjIKht4hYEP7L5/NxyCGHxN133x3rrLNOSlMuvba2tthggw0Krsnn8zFjxoyUJgIASEdHYsCvcEsb41d7Qvgzn8/H7N6elKYBoJYV80CCpL+7AgAAAAAAAAAASkvAr0QuuOCCeOeddyIiRm3vGwr3ZTKZOOGEE+K8886LhoaGNMccEx/+8IcLvseIiKeffjr6+/vTHAsAoKQ6cwkb5hNa2hi/iml3TApkAEAxOnq6Cx5vzXogAQAAAAAAAAAAlJuAX4mcc845BZ+APjzcN23atDjllFNSnG5sbbXVViN+fnjob/78+fH000+nNRIAQMklBbCSWtoYv4oK+OUKBzIAoBhdCQ8kcL8CAAAAAAAAAADlJ+BXAvfff3/87W9/i4iR2/uGh/u22267OOuss1KecGxtsMEGRa179tlnSzwJAEB6kgJ+xYS4GJ8mNzVHfabwf4pp8ANgLLhfAQAAAAAAAACAyifgVwJXX331qMeGt/o1NTXFxRdfHPX19WmMVTLrrbdeUetefPHFEk8CAJCOvv7+6J7fV3BNa7YlpWmoNnWZTOL1IeAHwFjo7CncCCvgBwAAAAAAAAAA5SfgVwI333zzQkG+RQ219x1xxBGx9tprpzhZaSy33HKx7LLLRkQUfN8CfgBArejMJYev2m2Yp4DW5sIBvw4BPwCW0mA+H125pICfBxIAAAAAAAAAAEC5CfiNsTfeeCOef/75iPhHkG+44eG35ubmOOaYY1KdrZSmTp36nve7qFdffTWlaQAASquYdjWNOBTSli18fRQTIgWAQub09sRAfrDgmqTfRwAAAAAAAAAAQOkJ+I2xe++9t+Dxofa+XXbZJZZffvmUpiq9lVZaKXHNW2+9lcIkAAClJ+DH0kq6Pjp7CjcuAUCSLvcrAAAAAAAAAABQFQT8xtjMmTOLWvflL3+5xJOka+WVVx71WCaTiXw+H2+//XaKEwEAlE5HQviqqaExmhsnpDQN1ai9uaXg8WJCpABQSNL9SoSAHwAAAAAAAAAAVIKGcg9Qa1544YURP5/JZBb63zvuuGNKE6Vj0qRJiWs6OztLPwgAQAo6c4XDV23ZwuEtSGzwy81b0P4NAEsi6X4lk8lEa1NzStMAAAAAAAAAUMlsUwIoLw1+Y2y0gN9w66yzTrS1tZV+mBRls9nENb29vSlMAgBQel0J7WracEiSdI3MHxiI7vl9KU0DQC1KaoNtbWqOujp/NQgAAAAAAAAAAOVmF88Ye/3110dt2Rhq4Fh77bVTnqr0BPwAgPGkQ8CPpdSWTb5GkoIZAFBIYsDP/QoAAAAAAAAAAFQEAb8xNm9e8ibcVVddNYVJKk9/f3+5RwAAGBOdue6Cx4sJbzG+tTW3JK4R8ANgaSTfryT/LgIAAAAAAAAAAEpPwG+MFRPwmzRpUgqTpKunpydxTVNTUwqTAACUXlLwqr2I8BbjWzEh0KSmSAAoJPl+xQMJAAAAAAAAAACgEgj4jbFcLpe4ZsKECSlMkq7u7sJPhY+IaGmx0R0AqH4Dg4MxO6kRx4Z5EjTU18ekpmzBNZ05AT8AllxSwM/9CgAAAAAAAAAAVAYBvzHW3NycuKaYtrtq8+abbyauKeZ7AwBQ6WbnuiOfsMaGeYrRntDi19WT/BANABhJPp8X8AMAAAAAAAAAgCoh4DfGimmpmzev9po4Zs2aNeqxfP4fW+AnT56c1jgAACXTmdDeFxHRltVcTLKkYEVHQjADAEbT098XvQP9Bde4XwEAAAAAAAAAgMog4DfGJk5Mfvr5a6+9lsIk6XrxxRcjk8mMejyTycTUqVNTnAgAoDSS2nAiNOJQnKTrpDMn4AfAkimmBdb9CgAAAAAAAAAAVAYBvzHW3t6+oLFuJPl8Pl5++eUUJyq9WbNmxbvvvhsRUfC9r7baammNBABQMkkBv/pMXUxqak5pGqpZUnNSMWFSABiJBxIAAAAAAAAAAED1EPAbY2uuueaox4Ya7v7yl7/E/Pnz0xqp5GbMmFHUOgE/AKAWdCRsmG9tbom6As3GMCSxwU/AD4AllHS/EiHgBwAAAAAAAAAAlULAb4y9//3vH/Hzw5vt+vr64vHHH09rpJL74x//WNS6ddZZp8STAACUXmeu8Ib5tqzN8hQnKVjRPb8v+vr7U5oGgFqSdL/S0tgUE+obUpoGAAAAAAAAAAAoRMBvjI0W8FvUbbfdVuJJ0nPTTTctaCcsZMstt0xhGgCA0urs6S54vF0bDkUqpjmpIyGgAQAjSbpfaWtuSWkSAAAAAAAAAAAgiYDfGNtiiy2KWvf73/++xJOkY8aMGfH8889HxMIthRGxUOivra1Ngx8AUBM6ewoHrlptmKdIbdnka6Ur4XoDgJEk3a8UEzIHAAAAAAAAAADS0VDuAWrNZpttFs3NzZHL5SKTySwUesvn8ws+9+CDD8bTTz8dH/jAB8o47dKbPn16weND71l7HwBQKzoTGtXasjbMU5xi2h6TAhoAMBL3KwAAAAAAAAAsjmHdPgCUgQa/MdbQ0BBbbbXVe9rsRnLuueemMFHpvPXWW3HVVVct1NQ3mk9+8pMpTAQAUFr5fD46e7oLrikmtAUREdnGCdHU0FhwTUfC9QYAI3G/AgAAAAAAAAAA1UPArwSSwmxDLX4///nP46WXXkppqrF36qmnxrx5/3gifFKgcbfddktjJACAkprX1xv9gwMF17TZMM9iaMu2FDye1MAEACNJaoB1vwIAAAAAAAAAAJVDwK8EvvzlL496bHgQrq+vL44++ug0RhpzTz75ZPzsZz8btb1vKMQYEbHBBhvE+9///jTHAwAoiaTN8hERbc2FA1swXFKDUjHXHAAMN3+gP+b25QquaU0ImAMAAAAAAAAAAOkR8CuB97///bHllltGPp8fMQA39Pl8Ph+/+c1v4qqrrirDlEtuYGAg9tlnn+jr64uIwu19mUwmvva1r6U1GgBASXUU0aamEYfFkXS9CPgBsLi6ct2Ja5IC5gAAAAAAAAAAQHoE/Epkn332SVwzFPKbNm1aPP744ylMNTYOO+ywmDFjxkItfcMNDzU2NTXFgQcemOZ4AAAl09WTvGG+tUkjDsVLDPgVEdIAgOE6i7hf8UACAAAAAAAAAACoHAJ+JbL//vvHCiusEBExaovf0LG5c+fGZz/72Xj++edTnXFJnHbaaXHBBReM+J6GG2op3HPPPWO55ZZLaToAgNLqSGhTm9zUHA319SlNQy3Q4AfAWEu6X4kQ8AMAAAAAAAAAgEoi4Fci2Ww2jjjiiBEb7oYMD/m99tpr8ZGPfCRmzpyZ1oiL7eSTT47jjz9+Qbgvqb2vrq4ujj766NTmAwAotaSwVVuz9j4WT1u28DUzO9cdA4ODKU0DQC3ozBW+X2msr4+WxgkpTQMAAAAAAAAAACQR8Cuhww8/PFZcccWIGLnFL2LhkN8bb7wR2267bVxxxRWpzViMuXPnxl577RUnnXTSgnmTgouZTCb22Wef+OAHP5jWmAAAJZe0Yb4tqw2HxZPUoJSPf4T8AKBYiQ8kyE4c9e+pAAAAAAAAAACA9An4ldAyyywTZ5xxRsEwXMTCIb/u7u7Yd9994/Of/3y8/PLLaYxZ0I033hibbrppXHPNNQuCe6O9n+GbwyZOnBg/+MEP0hoTACAVSRvm2xPCWrCopIBfRERHQrAUAIbr7CkcDC/mdw8AAAAAAAAAAJAeAb8S22uvvWLHHXdcEI4bzfCQXz6fjxtuuCHWW2+9OPTQQ+PFF19Ma9wFbrvttthpp51i1113jRdeeCEx3DdkaN3JJ58cK620UkrTAgCkI7ERx4Z5FlMxrY9J1x0ADJd8v9KS0iQAAAAAAAAAAEAxBPxScMkll8Ryyy0XEbFYIb/e3t44//zzY5111omddtopLr744nj99ddLNueMGTPixBNPjPXWWy8+9alPxZ133rkgsJcU7hs6nslkYqeddopvfvObJZsTAKBcOnOFG3FaszbMs3gmN2Wjvq7wf5Z1JTQxAcBwnQnNr8WEywEAAAAAAAAAgPQ0lHuA8WD11VePq666Kj7zmc8kNuEND/kN/XM+n48777wz7rzzzoiI+MAHPhBbbrllbL755rHWWmvFaqutVtQcL774YvT09ER3d3e88cYbMWvWrHjxxRdjxowZMWPGjOjo6FhohkXnGM3w0OLyyy8fl112WVHzAABUk97++dEzv6/gmnYNfiymTCYTbdmWeKd77qhrOjT4AbAYkhr83K8AAAAAAAAAAEBlEfBLySc/+cn4wQ9+EMcff3zBFr8hw5vzhv55yFNPPRVPP/10XHHFFe/5mpFeZ+j/rr322gXPN2T4fIWCfcPX5vP5aG5ujl//+tex8sorF/waAIBqlLRZPiKizYZ5lkBb88SCAb+kJiYAGDI4OBhdSY3DzRqHAQAAAAAAAACgkgj4pei4446LOXPmxKmnnlpUM97wNr9FQ3dJwbtCrzeSRUOHxbz+8PdQX18fV111VXzkIx9Z7LkAAKpBMS1qAn4sibZs4eums6dwUAMAhszpy8Vgwt/pJP3eAQAAAAAAAAAA0iXgl7Lvf//7MX/+/Dj99NMXBPeSwnSLHh+pAXBxAnnFnqeY18rn81FXVxfnn39+fOELXyj66wEAqk1nQhtOhIAfS6YtoUmpmPZIAIgo7ndGu/sVAAAAAAAAAACoKHXlHmA8+tGPfhQ//vGPo67uH9/+pODdooYa/IZ/LOnXLe5rDJ83n89HU1NTXHvttbH//vsv1nsAAKg2SRvmmxsmRLahMaVpqCVJwVABPwCKVczvDA8kAAAAAAAAAACAyiLgVybf+ta34oYbbojW1tbI5/ML2vwq3fBw33LLLRe33nprfPGLXyzzVAAApZe0Yb41oYUNRpMY8Mt1L9YDOQAYvzoS7lcymUws09Sc0jQAAAAAAAAAAEAxBPzKaOedd45HHnkkPv7xjy/YsFupQb/hc+Xz+fj4xz8eM2fOjI9+9KNlngwAIB2ducIb5rXhsKTasoWvnf7BgZjX15vSNABUs6T7ldam5qir89eBAAAAAAAAAABQSezoKbM111wzbr/99jj//PNj8uTJFRf0WzTY19zcHKeffnrcdtttscoqq5R5OgCA9HT2dBc8nhTSgtG0FxEOTWqQBICIiK6k+xUPJAAAAAAAAAAAgIoj4FchDjrooHjhhRfi6KOPjmw2+56gX9phv0WDfRER++yzTzz33HNx9NFHV0T4EAAgTUkBq/bmlpQmoda0FnHtdCQ0MgFARERHwv2KgB8AAAAAAAAAAFQeAb8Ksuyyy8bpp5++IOi33HLLRT6fHzHsN9YBu5FeO5/PR2NjY+y1114xY8aMuOSSS7T2AQDjVlLAz4Z5llRrtiWS7u41+AFQjM6EQLj7FQAAAAAAAAAAqDwCfhVopZVWitNPPz1effXV+MUvfhE777xzNDY2LhT2i3hvKG9pPiJiwevn8/lYb7314uSTT46XX345Lr/88thkk03K9e0AACi7/sGBmN3bU3CNDfMsqYa6+pjc1FxwjYAfAMXo7OkueLwt634FAAAAAAAAgPfKZHyk+QGwqIZyD8DoGhsbY4899og99tgj5s2bF3/84x/j5ptvjj/96U/x7LPPxsDAwHu+pphmv+EhwSHLLLNMbLnllvGJT3wivvCFL8R66603Ju8BAKAWzM4VDvdFRLRlW1KYhFrV1jyxYIhUwA+AJPl8vojGYfcrAAAAAAAAAABQaQT8qsTEiRNj1113jV133TUiInK5XDz++OPx+OOPx4svvhizZs2KWbNmxeuvvx5z586Nnp6eyOVy0dvbG42NjdHS0hLNzc0xadKkmDp1aqy22mqx2mqrxdprrx1bbrllrL/++kWFAwEAxqNiwlUa/Fgabc0T4+XOt0c93pkr3MgEAD39fdE30F9wjfsVAAAAAAAAAACoPAJ+VSqbzcbWW28dW2+9dblHAQCoeR0CfpRYUqOSBj8AknT2JIfB27LuVwAAAAAAAAAAoNLUlXsAAACodJ25wuGqhrr6mDQhm9I01KKkwIWAHwBJivld0e6BBAAAAAAAAAAAUHEE/AAAIEHShvm2bEtkMpmUpqEWJTVAFtPKBMD4VkzArzWhMRYAAAAAAAAAAEifgB8AACRIDPhpw2EpJV1DPf19keufn9I0AFSjjoT7lZbGpphQ35DSNAAAAAAAAAAAQLEE/AAAIEFnrnB7mjYcllZbNvkaKqaZCYDxqyvhfqXdAwkAAAAAAAAAAKAiCfgBAECCxAa/rA3zLJ1iQhcCfgAUktw47IEEAAAAAAAAAABQiQT8AAAgQdKGeY04LK22YgJ+Cc1MAIxvHYkBP/crAAAAAAAAAABQiQT8AACggHw+nxissmGepdXU0BjNjRMKrtHgB0AhnTkBPwAAAAAAAAAAqEYCfgAAUMCc3lwMDA4WXNPW3JLSNNSytmzh60jAD4BCkn5PtGUF/AAAAAAAAAAAoBIJ+AEAQAFJbTgRGnEYG0nXkYAfAKOZP9Af8/p6C67xQAIAAAAAAAAAAKhMAn4AAFBAVxGhKo04jIWkgF+HgB8Ao+jMdSeu8UACAAAAAAAAAACoTAJ+AABQQEdP4Q3zmYhozWrEYeklBUWLaZMEYHwqpuXVAwkAAAAAAAAAAKAyNZR7AAAAqGRJoarJ2eaor/PcDJZeUrNSV0LYFIDxq5iAX7sGPwAAAAAAAABGkanLl3sEgHHNTmQAACggacN8uzYcxkhS8GJ2b0/0Dw6kNA0A1STpfqWxvj6aGyekNA0AAAAAAAAAALA4BPwAAKCApA3zSa1rUKzW5pbENV05LX4AvFdnwu+HtuzEyGQyKU0DAAAAAAAAAAAsDgE/AAAoQMCPtBTTBpl0PQIwPiU2DrtfAQAAAAAAAACAiiXgBwAABSQ14rRmk1vXoBjFhEU7ezT4AfBeHkgAAAAAAAAAAADVa1wF/LbZZpu4//77yz0Gi6G7uzu+973vxRlnnFHuUQCAcUojDmmZOKEpGuvqC67R4AfASDoSAuACfgAAAAAAAAAAULnGVcDvwQcfjO222y6+8pWvxEsvvVTucUhw8cUXxzrrrBM/+MEPortbUwkAkL7c/L7I9c8vuMaGecZKJpOJ1ubCjZCdOQE/AN4r6fdDm8ZhAAAAAAAAAACoWOMq4Dfk2muvjfXXXz+++c1vxltvvVXucVjEb3/729hoo43iwAMPjNdff73c4wAA41hHEW1pAn6MpbZs4etJgx8AixocHIzZOQ1+AAAAAAAAAABQrcZlwC+fz0dvb2+cc845sdZaa8X3vve96OrqKvdY497tt98e22yzTXzpS1+KJ598MvL5fLlHAgDGuc6EzfIRNswztpKup84ezdYALGxOb08MJvwdivsVAAAAAAAAAACoXOMy4JfJZCKTyUQ+n4+5c+fGD37wg1hjjTXie9/7XnR0dJR7vHHnlltuie222y523nnneOihhxYE+zKZTJknAwDGu2La0tqyLSlMwnjR1lz4eiqmVRKA8aXDAwkAAAAAAAAAAKCqjcuA3/AA2VDQr6ura0HQ7/jjj4/XX3+9zFPWtnw+H7/+9a9jq622is9+9rNx//33Rz6fj3w+v+DfCwBAuSUF/JobJ0RTQ2NK0zAetGUTGvxyAn4ALKyYBxK0eyABAAAAAAAAAABUrHEZ8IuIBWGyiIWDfnPmzInTTjst1lxzzdh///3jySefLPOktaWnpyfOPffcWHfddWOPPfaIRx555D3BvuH/bgAAyikpTKUNh7HWnnBNdfV0x6B7ZQCGSQr4ZTKZmNzUnNI0AAAAAAAAAADA4hq3Ab8howX9+vr64tJLL42NN944dt555/j9738vdLYUnn/++Tj66KNj1VVXjSOOOCKef/55wT4AoOJ19nQXPN6e0LYGiyspNDqQH4y5vbmUpgGgGiQ9kKA12xJ1deP+rwABAAAAAAAAAKBiNZR7gHIYCpMNt2jIb/jnbr/99rj99tvjfe97XxxyyCGx9957x5QpU9Idugr19/fH9ddfH9OnT4/bbrvtPWHKIUJ9AEClSmrEaWtuSWkSxotiWiE7c/NimawmJgD+IemBBG0eSAAAAAAAAAAAABVtXD2+e7nllhsxYDbcaI1++Xw+Xn755TjhhBNi9dVXj8985jPx61//Ovr6+lKbv1o8/vjj8a1vfSumTJkSu+++e/zhD3+IwcHBhdr6IqJgY9+iAcDll18+ldkBAIZLDvjZMM/YKirgl3BdAjC+JP1eaPdAAgAAAAAAAAASZDI+0vwAWNS4Cvg9++yzse+++y745+Fhs0UNhc+Gh9KGwn4DAwNx6623xh577BErrrhi7LvvvnHLLbfEwMBASu+k8jz77LNx0kknxQYbbBCbb755nH322fH222+/53sYUTjYFxELrVtttdXit7/9bXzjG99I5X0AAAzXkRPwI13LNDVH0t/fCPgBMJwHEgAAAAAAAAAAQHUbVwG/ZZddNi6++OK46667Yv31139PU99oCrX6zZ49O6644or47Gc/GyuuuGJ8/etfj1/96lcxd+7cVN5TOT3wwAPx7//+77HhhhvGBhtsECeffHI888wzIwYjI4oL9g19b+vr6+OYY46Jp556Knbddde03hIAwAL9AwMxtzdXcE1b1oZ5xlZ9XV0sky3ctCTgB8BwHQm/F1rdrwAAAAAAAAAAQEVrKPcA5bD99tvHzJkz45xzzomTTz45Ojs7FwqXjWa0QODQ5zs6OuLqq6+Oq6++OhobG2PrrbeOj33sY7HjjjvGtttuGxMmTCjtGyuxp59+Ou68886488474+6774533nknImKh79miQclC389Fv2Zo7Sc/+cn46U9/Guuvv/5YjQ4AsNi6ct2Ja9qaCwexYEm0NU8seP119CRfmwCMD/l8PvGepd39CgAAAAAAAAAAVLRxGfCLiKivr49vfvOb8fWvfz3+/d//PX7+85/H4ODge8JmI1k00DZS2K+vry/uvffeuPfee+OUU06JpqamhQJ/m222WUyePLlE727pDQwMxNNPPx333ntv3HXXXXHXXXfFW2+9teD4ot+fkb4HSRb9mnXWWSd+/OMfx+c+97mlnB4AYOklteFE/COIBWOtLdsSLxU43pnT4AfAP/TM74u+gf6Ca9yvAAAAAAAAAABAZRu3Ab8hyy23XFxwwQVx+OGHx3HHHRc333zzQqG9pLBaMWG/iIhcLhf33HNP3HPPPXHSSSdFRMRqq60WG2+8cWy88cax0UYbxcYbbxzrrrtu1NXVjeVbTPT3v/89Zs6cudDHM888E/Pnzx/xvUQsWVPfSF+bz+djhRVWiO9+97txyCGHREPDuL8kAYAKUUyIyoZ5SqE94brqKiJ8CsD44IEEAAAAAAAAAABQ/aSp/mnDDTeMG2+8Me6666449thj4+GHH16soN+iaxYN+430Gi+99FK8/PLLccMNNyz43IQJE2Lq1KkxderUWHXVVRf876GPyZMnR3Nzc2Sz2Whubl7wMaSvry96enoW+uju7o4333wzZs2aFa+++mq8+uqrC/73rFmzYvbs2QXnHHo/hd5vMRYN9k2cODGOOuqo+Pa3vx2TJk1arNcCACi1zoQN84119TGxsSmlaRhPkoIYxYQ5ABgfinogQVbADwAAAAAAAAAAKpmA3yJ23HHHePDBB+N3v/tdnHTSSfHYY48tdtBvpHUjBf5GWtfb2xsvvPBCvPjii4s1d2NjYwwMDMTg4GDRX1PovYxFoG+k18rn89HS0hKHHnpofPvb347ll19+iV4TAKDUkgJ+bc0TR7xngqXVmhDE6Mx1pzQJAJUu6X4lIqK1uSWFSQAAAAAAAAAAgCVVV+4BKtXnP//5mDFjRvz617+OTTfdNPL5fOTz+QVBvcXdzD309cM/ImKh1xv+MdL6Qh99fX0xMDCwWF9T6Pwjzby4Fn2tiRMnxjHHHBMvvvhi/OhHPxLuAwAqWlKIqjVrszyl0Z4QxOjtnx898/tSmgaAStbZU/h+ZeKEpphQ7/leAAAAAAAAAABQyQT8Euy2227xyCOPxM033xw77rjjiOG4JTVa6G74a5f6Y7Q5lqatb9GQ4vLLLx+nnHJKvPzyy3HaaafFCiussMTfMwCAtCQ14rQ3F25ZgyXVVsS1VUxjEwC1rzOX3DgMAAAAAAAAAABUNgG/Iu28885xxx13xIMPPhhf+cpXoqGhYcQWvKW1uM19i4bxluZrl8ZIgcENN9wwzj///HjppZfihBNOiLa2tjE5FwBAGpICVDbMUyoCfgAUK/F+Jet+BQAAAAAAAAAAKp2A32Lacsst46qrroqXX345TjzxxFhllVXGtNVvSY1lWK9YIzUB1tfXx2677RZ33HFHzJw5Mw466KDIZrOpzgUAMBY6e7oLHhfwo1SKCvjlCl+fAIwPyQ8kaElpEgAAAAAAAAAAYEkJ+C2hlVZaKU488cR4+eWX43e/+13suuuuUV9fvyBoNzz8Vo7AX6mMFOrL5/Ox7rrrxo9+9KN45ZVX4te//nXsuOOO5R0UAGApDObz0ZUQoLJhnlKZUN8QLY1NBddo8AMgwgMJAAAAAAAAAACgFjSUe4BqV1dXF7vsskvssssu8eabb8Y111wTv/zlL+P+++9fsGbRkF/aTXtLY6Rw4tD8K620Uuyxxx7xla98JbbZZpu0RwMAKJk5vT0xkB8suKYta8M8pdPePDG65/eOelzAD4CIiM5cQoOf+xUAAAAAAAAAAKh4An5jaMUVV4wjjzwyjjzyyHjppZfiV7/6Vfzud7+LP//5zzE4+I8N4iM1+lVS4K9QoC8i4n3ve1/suuuu8cUvfjF22GGHqKtTAgkA1J6uIsJTGnEopdbmlnh19rujHu8Q8AMY9/oG+mNe3+hh8Ih/BMYBAAAAAAAAIMkIMQIAUiTgVyKrr756HH300XH00UfHO++8EzfeeGPceuutcccdd8Qbb7yxYN1Igb8hpQz+jXbORc87YcKE2GabbeITn/hEfPazn41NN920ZDMBAFSKjp7uxDUCfpRSUuNSUmMTALWvy/0KAAAAAAAAAADUBAG/FCy33HKx9957x9577x0REU888UTcdddd8ec//znuu+++eOmll97zNYWCf2Np0RDhxIkT40Mf+lBsu+22sf3228f2228fLS0tJZ8DAKCSJIWnMplMtDY1pzQN41FS41JnEaEOAGpbMW2urVl/pwMAAAAAAAAAAJVOwK8MNtxww9hwww3jsMMOi4iIv//97/Hoo4/G448/Ho8//ng89dRT8de//jV6enoSX2ukEGAxzX+ZTCbe9773xfrrrx8bbbRRbLLJJrHJJpvEBz/4wairq1v8NwUAUEM6EzbMtzY1u2eipJIal5KuUQBqXzFtrkmBcQAAAAAAAAAAoPwE/CrAyiuvHJ/+9Kfj05/+9EKff/XVV+OFF16IWbNmxauvvhqvv/56vPXWW9HV1RWdnZ0xd+7c6O3tjfnz50d/f3/U1dVFY2NjTJgwIZqbm6O1tTXa2tpi2WWXjZVXXjmmTJkSU6dOjdVXXz3WWmutaGpqKtM7BgCobEnhqaTwFSyttubCjUtz+3Ixf6A/Guv9Jx3AeNWVcL8yob4hmhsnpDQNAAAAAAAAAACwpOwGrWBTp06NqVOnlnsMAIBxp0PAjzIr5hrrynXH8hOXSWEaACpRR093weNtzRMjk8mkNA0AAAAAAAAAALCk6so9AAAAVJquXMKG+WzhdjVYWm3Z5IBfZ0KwA4Da1plLeiCB+xUAAAAAAAAAAKgGAn4AALCITg1+lFkx11hS0yQAtS3xfqWIsDgAAAAAAAAAAFB+An4AADBMPp8X8KPsWhonRGN9fcE1Sc1NANQ29ysAAAAAAAAAAFAbBPwAAGCYnv6+6B3oL7jGhnlKLZPJJDYvJQU7AKhtnbnugsfbmltSmgQAAAAAAAAAAFgaAn4AADBMZ0/hzfIRkRi8grHQnhAkLeZaBaA2DQ4ORldSwM/9CgAAAAAAAAAAVAUBPwAAGKaYVrSk4BWMhaSmSA1+AOPX7N6eyOfzBde4XwEAAAAAAAAAgOog4AcAAMMUE5pqbW5JYRLGu9Zs4eusMyfgBzBeFXe/IuAHAAAAAAAAAADVQMAPAACGSQpNtTQ2xYT6hpSmYTxLal7S4AcwfnUU0zicEBQHAAAAAAAAAAAqg4AfAAAM09nTXfB4UugKxkpbwrXWleuOwcHBlKYBoJJ05Qrfr9RlMjFZwA8AAAAAAAAAAKqC6hEAABgmqRWtrdlmedKRFPAbzOdjTm9PtAqdAow7SfcrrdmWqMtkUpoGAAAAAAAAgGrn/8UMUF4a/AAAYJiOxICfMBXpKOZa60xocAKgNrlfAQAAAAAAAACA2iHgBwAAw3TmbJinMrRnk9sikxqcAKhNifcrRfwOAQAAAAAAAAAAKoOAHwAADNPVU7gRrS0r4Ec6Jjc1R10mU3BNUoMTALWpM+l+xQMJAAAAAAAAAACgagj4AQDAP80f6I+5fbmCa9qaNeKQjrq6ulgmoYEpqcEJgNqU1OAq4AcAAAAAAAAAANVDwA8AAP6pM1e4DSfChnnSldQYmdTgBEDtyefziQFv9ysAAAAAAAAAAFA9BPwAAOCfktpwIpIDVzCW2hMaI4u5ZgGoLd3z+2L+wEDBNe5XAAAAAAAAAACgegj4AQDAPxUTlmrXiEOKkhqYBPwAxp+iHkiQEBAHAAAAAAAAAAAqh4AfAAD8U9KG+Qn1DdHcOCGlaaCIgF+uO6VJAKgUxQX8PJAAAAAAAAAAAACqhYAfAAD8U1JYqjXbEplMJqVpoLgGv3w+n9I0AFSCzlwRAb+sBj8AAAAAAAAAAKgWAn4AAPBPSY047dpwSFlSQKNvoD965velNA0AlaCzp/ADCSZNyEZjfUNK0wAAAAAAAAAAAEtLwA8AAP4pKeCX1KYGY62Ya64j4boFoLa4XwEAAAAAAAAAgNoi4AcAAP/UkdCIY8M8aSvmmuvMCfgBjCdJwe7WhPZXAAAAAAAAAACgsgj4AQDAPyUFpdqabZgnXW1FhDSSmpwAqC1J9yvtHkgAAAAAAAAAAABVRcAPAAAiYnBwMLpyCQ1+WRvmSVdjfUNMmpAtuKYzoXkSgNrSpXEYAAAAAAAAAABqioAfAABExJzensjn8wXX2DBPOSRdd0lNTgDUlo6E5laNwwAAAAAAAAAAUF0E/AAAICI6Etr7IgT8KI/WbOGgRmdC0AOA2tHX3x/d83sLrtE4DAAAAAAAAAAA1UXADwAAoriQVHtC0ApKoT2pwU/AD2DcKKa11QMJAAAAAAAAAACgugj4AQBAJIek6jKZmCzgRxkkBTU6e5LbJwGoDcWEugX8AAAAAAAAAACgugj4AQBAJG+Yb822RF0mk9I08H/amgsHSzs0+AGMG5255FB30u8NAAAAAAAAAACgsgj4AQBAJIektOFQLm3Zwtde9/ze6BvoT2kaAMop6YEETfUN0dwwIaVpAAAAAAAAAACAsSDgBwAAEdGV0IjTltWGQ3m0FxEu7epJbnQCoPolBfzamidGRuMwAAAAAAAAAABUlYZyDwAAAJWgmA3zUA7FXHsdPfNihUnLpDANAOWUdL/S2uyBBAAAAAAAAAAsvkwmX+4RAMY1DX4AABD/CEgVIuBHuRQT1ujMFb5+AagNifcrWfcrAAAAAAAAAABQbQT8AAAY9/L5fGJASsCPcmlumBBN9YXL15ManQCoDV257oLH292vAAAAAAAAAABA1RHwAwBg3Oue3xfzBwYKrtGIQ7lkMpnEgKmAH8D4kPTz3gMJAAAAAAAAAACg+gj4AQAw7hUTjtKIQzkJ+AEwODgYXb09BdcI+AEAAAAAAAAAQPUR8AMAYNzrzCWHo1qbW1KYBEaWGPDLdac0CQDl0tXbE/l8vuCatqz7FQAAAAAAAAAAqDYCfgAAjHvFtJ/ZME85tWU1+AGMd0Xdr2jwAwAAAAAAAACAqiPgBwDAuNfZU7j9bNKEbDTWN6Q0DbxXW0KDpIAfQO0T8AMAAAAAAAAAgNok4AcAwLiXtGHeZnnKLeka7OrticHBwZSmAaAcOnOF71fqM3Uxuak5pWkAAAAAAAAAAICxIuAHAMC415EY8Cvcngal1pYtHPDL5/PR1duT0jQAlENS43BrtiXqMpmUpgEAAAAAAAAAAMaKgB8AAONeUiNOUrgKSq29iJBpUhMlANUt6ed8qwcSAAAAAAAAAABAVRLwAwBg3OtKaMRpaxbwo7yKuQYF/ABqW9LPeQ8kAAAAAAAAAACA6iTgBwDAuNeRtGFeIw5lNqmpOeozhf/zLamJEoDq1pnzQAIAAAAAAAAAAKhFAn4AAIxrff390T2/t+AajTiUW10mE63ZwkHTzoQmSgCqW1KDX7sHEgAAAAAAAAAAQFVqKPcAAABQTsW0nrVrxKECtDW3xLs9c0c9nhT8AKB65fP5xJ/zGvwAAAAAAAAAWFIZ1VEAZeXHMAAA41oxoSgb5qkESdehgB9A7Zo3vzfmDw4UXNOqcRgAAAAAAAAAAKqSgB8AAOOagB/VIuk67BDwA6hZXT3diWs0DgMAAAAAAAAAQHUS8AMAYFzrSNgw31TfENmGxpSmgdG1JTQzdeWSwx8AVKfiHkjQksIkAAAAAAAAAADAWBPwAwBgXOvKFd4w39Y8MTKZTErTwOiSmpk6e+ZFPp9PaRoA0lRMS2tSEBwAAAAAAAAAAKhMAn4AAIxrSY04bQmhKkhL0rU4f3Ag5s3vTWkaANLUmfBAgklN2Wior09pGgAAAAAAAAAAYCwJ+AEAMK4lNeII+FEpWrMtiWuSAqsAVKfEBxJo7wMAAAAAAAAAgKol4AcAwLjWmesueNyGeSpFexFhUwE/gNrU2ZNwv9KcHAIHAAAAAAAAAAAqk4BfCVx66aVx5plnxrvvvlvuUQAASJAUiGq3YZ4KUVyDX+EACADVqTOnwQ8AAAAAAAAAAGqVgF8JvPTSS/Htb387pk6dGnvttVfcc8895R4JAIARDAwOxuyEBr/WIlrTIA0N9fUxuam54JoODX4ANSn5gQTuVwAAAAAAAAAAoFoJ+JVIPp+P3t7euOaaa+JjH/tYbLDBBvHTn/5Uqx8AQAWZ3dsT+YQ1GnGoJG0JjZJdCQ1PAFSnpIBfm4AfAAAAAAAAAABULQG/EspkMpHP5yOfz8czzzwTRx99dKy66qqx9957x7333lvu8QAAxr2kzfIREe0JgSpIU1LgtJhrGoDq0tffH93z+wquac26XwEAAAAAAAAAgGol4FdimUxmwUc+n49cLhdXXXVV7LDDDvHBD34wzj777Ojs7Cz3mAAA41IxYSiNOFSSpOuxs6c7pUkASEtnEe2s7e5XAAAAAAAAAACgagn4ldhQg19ELBT0y+fz8fTTT8e3vvWtmDp1auy7777x5z//uczTAgCML0kBv/pMXUxqak5pGkjWltAo2VFECASA6uKBBAAAAAAAAAAAUNsE/FIyUtBv6PM9PT1xxRVXxPbbbx8bbbRR/Nd//Vd0dXWVc1wAgHGhI2HDfGtzS9T9874NKkFbNqnBT8APoNYI+AEAAAAAAABQapmMjzQ/ABYl4JeyoaBfPp9fEPQb3ur35JNPxpFHHhlTpkyJ/fbbL+67775yjwwAULM6E9rO2rKF29Igbe0JAY6e+X3R2z8/pWkASENHT3fB400NjdHcOCGlaQAAAAAAAAAAgLEm4FdGSa1+l112WXzkIx+JjTfeOM4777yYPXt2OccFAKg5XQkb5rXhUGmKuSY7c4WvawCqiwcSAAAAAAAAAABAbRPwqwBJrX5PPPFEHH744TFlypTYf//944EHHij3yAAANaGjJ2HDvIAfFaaogF/CdQ1AdelyvwIAAAAAAAAAADVNwK/CFGr16+7ujksvvTS23Xbb2HTTTeP888+POXPmlHNcAICqltyIY8M8laWYliYBP4Da4oEEAAAAAAAAAABQ2wT8Smx4I9/iSGr1mzlzZhx66KExZcqUOPDAA+Ohhx4q0TsAAKhN+Xw+Onu6C65pt2GeCpNtnBDZhsaCawT8AGpLZ67w/YoHEgAAAAAAAAAAQHUT8CuBI488Mn7yk5/EBhtsMGoj3+Io1Oo3b968uPjii2ObbbaJzTffPKZPnx5z584duzcDAFCj5vX1Rv/gQME1GnGoREnXZVLTEwDVJSm43d6c3O4KAAAAAAAAAABULgG/Emhra4sjjzwy/vd//zfuvffe2GuvvSKbzb4npDfWrX6PPfZYTJs2LaZMmRIHH3xwPPLII6V4ewAANaGYlrPWrA3zVJ6kgF9nTsAPoFYMDA7G7IQGv1YPJAAAAAAAAAAAgKom4Fdi2267bVx++eXx6quvxk9/+tNUWv3mzp0bF110UWy11Vax5ZZbxoUXXhjz5tnkCwAwXDEhqHYb5qlAbdmEgF9P4SAIANVjdm9P5BPWJP1eAAAAAAAAAAAAKpuAX0ra2triiCOOWNDq9/Wvfz2VVr8ZM2bEIYccElOmTIlp06bFo48+Woq3BwBQdYoJQWnwoxK1Nxe+LruKaKcEoDoU0zic9HsBAAAAAAAAAACobAJ+ZbDtttvGZZddFq+99lr89Kc/jQ9+8IMlb/WbM2dOTJ8+Pbbccsv40Ic+FD//+c+ju1uzBwAwfnUkbJif3NQcDfX1KU0DxWtLaJbsKKKdEoDqUEzAL+n3AgAAAAAAAAAAUNkE/MqotbU1jjjiiJg5c2b8z//8T2qtfo888kgcdNBBMWXKlDj00EPjscceK8G7AwCobEkb5tu04VChWrOFgxxzcj0xMDiY0jQAlFLS/Up9pi4mNTWnNA0AAAAAAAAAAFAKAn4V4sMf/vCCVr+zzjorlVa/2bNnx/nnnx9bbLFFbL311nHJJZdET0/P2L0pAIAK1pnQctaWEKKCcmlPCJ/mI6Irp60boBYkNQ63Zluibgn+vggAAAAAAAAAAKgcAn4VprW1NQ4//PAFrX577733gla/RRv5FkdSq99DDz0UBxxwQEyZMmXB+QEAallyg5+AH5WpmGsz6foGoDokBbY1DgMAAAAAAAAAQPUT8KtgH/7wh+PSSy9d0Oq30UYblbzVr6urK84777zYbLPNFrQK5nK5sXtTAAAVotOGeapUMQG/pMYnAKqDBxIAAAAAAAAAAEDtE/CrAkOtfo8//nj8+c9/Tq3V78EHH4z99tsvpkyZEkcccUQ88cQTJXqHAADpS9wwn7Vhnso0aUI2GurqC65JanwCoDokBbYF/AAAAAAAAAAYC5mMjzQ/ABYl4Fdlttlmm7j00kvj9ddfj7PPPrukrX5Dn+vs7Ixzzz03Ntlkk9huu+3iiiuuiN7e3jF9XwAAaertnx898/sKrmm3YZ4Klclkoi1buGEyKcAKQHXozHkgAQAAAAAAAAAA1DoBvyq1zDLLxGGHHbag1W+fffZJpdXv/vvvj3333TdWWWWV+OY3vxlPPfVUid4hAEDpFBN+0ohDJWttLhzwS2p8AqDy5fP56Owp3MjalvD7AAAAAAAAAAAAqHwCfjVgm222iUsuuST1Vr9zzjknNtpoo9h+++3jyiuv1OoHAFSNYsJPAn5UsqTrM6nxCYDKN29+b/QPDhRc434FAAAAAAAAAACqn4BfDRmp1a+5ubnkrX5D55oyZUocddRR8cwzz5ToHQIAjI3OXOE2nIiItqxGHCpXWzYh4KfBD6DqFdU4nPD7AAAAAAAAAAAAqHwCfjVqqNXvtddei7PPPjs23njjkrf6dXR0xFlnnRUf/OAHY4cddoirr746+vr6xvR9AQCMha6EDfPZhsbINk5IaRpYfO1JDX4CfgBVr5if5Um/DwAAAAAAAAAAgMon4Ffjhlr9Hnvssbjvvvti3333TaXV7957742vf/3rMWXKlDjmmGPi2WefLdE7BABYfB0JG+bbbJanwiVdo5257gUP5gCgOnX2JDcOt2ocBgAAAAAAAACAqifgN45svfXWcfHFF8drr70W55xzTiqtfu+++2785Cc/iQ022CB23HHH+MUvfhHz588f0/cFALC4OnMCflS3tubCgY6BwcGY25dLaRoASiHpgQSTmrLRUF+f0jQAAAAAAAAAAECpCPiNQ8sss0wceuihqbf6/elPf4qvfe1rMXXq1Dj22GPjueeeK9E7BAAoLKkRpy0r4EdlKyaE2pkQDAGgsnUlPJCg3f0KAAAAAAAAAFCj5s+fH3fccUeccsop8ZWvfCU222yzWHXVVaO1tTUaGhpi8uTJMXXq1Nhoo41i9913j+9973tx4403Rk9PT7lHhyXSUO4BKK+tt946tt566/jpT38aV1xxRVx00UXx+OOPR8TCjX5DDX3FGqkVcOhzb7/9dvz4xz+OH//4x7HDDjvEtGnTYrfddouGBpcjAJCOpOBTe0I7GpRbMSHUzp558b625VOYBoBSSLpf0TgMAAAAAAAAANSae++9N84999y46aabYvbs2aOumzt3bsydOzdee+21eOKJJ+LXv/51REQ0NzfHTjvtFNOmTYtPfepTi118xeguvvjiePnll4tev++++8Yaa6xRuoFqjEQVEfF/rX6HHnpoPPjgg3H++efHtddeG93d/2i3GWriW1zDv2b4D8ahz999991x9913xworrBAHHnhgHHroobHyyisv5bsBACgsacN8qw3zVLjWbEtkIqLQHXpHQlMlAJUtsXHY/QoAAAAAAAAAUCPuueeeOProo+Phhx9eqtfp6emJ66+/Pq6//vpYb7314j//8z/jC1/4wtgMOY7dcccdsf/++y/W1+y4444CfouhrtwDUHm22mqruPjii+P111+P//qv/4qNN9448vn8UieX8/n8e5r9hj735ptvxqmnnhprrLFG7LvvvvHkk0+OxVsBAHiP/sGBmNNbuIK9mHY0KKf6urqYnG0uuKYzVzjICkBl60j4Od6mcRgAAAAAAAAAqHKdnZ2xzz77xA477LDU4b5FPfvss7HbbrvFLrvsEq+99tqYvvZ40t3dHQceeGC5x6h5An6MavLkyfGNb3wj/ud//if222+/MQn5Rfxf0G/o9YaH/fr6+uKKK66ITTbZJHbfffeYOXPmGLwTAID/MzvXU7D1LCKi3YZ5qkB7QhA1qakSgMqW9HPcAwkAAAAAAAAAgGr21FNPxVZbbRWXX355Sc9zww03xBZbbBF//vOfS3qeWvWd73wnXnjhhXKPUfME/BjVo48+GtOmTYspU6bEJZdcsiCEN5ZGa/UbHByM3/zmN7H55pvHvvvuG7NmzRrT8wIA41cxoae2ZhvmqXxJ12lnT3dKkwAw1nr750fP/L6Ca9yvAAAAAAAAAADV6t57741tttkmnnvuuVTO9/e//z0+9rGPxW9+85tUzlcrHnzwwTjrrLPKPca4IODHQubNmxcXXnhhfOhDH4ott9wypk+fHnPmzFkoiFcKhYJ+V1xxRXzgAx+IM844IwYHB0s2AwAwPnQI+FEjEgN+OQ1+ANWqM5cc0na/AgAAAAAAAABUo4cffjg++9nPxpw5c1I9b19fX+y5555x6623pnreatXX1xf777+/HE9KGso9AJVhxowZMX369Ljmmmti7ty5C4X5MplMRERJA35DFg35DX1u3rx5cdxxx8W1114b11xzTay11lolnwUAqE1Joaf6urqYNCGb0jSw5FqzLQWPF9NWCUBlKqpxOOH3AAAAAAAAAABApZk1a1Z8+tOfjtmzZxf9NdlsNj760Y/GlltuGVOnTo1lllkm5s6dG6+//nrMmDEj7rrrrpg7d25Rr9XX1xdf/OIX44EHHogNN9xwSd/GuHDqqafGE088Ue4xxg0Bv3Fs3rx5cdVVV8WFF14YM2bMiIgYMdi36OeLMfxrhyv2dUYL+j388MOx2WabxdVXXx2f+9znFmsmAICI5A3zbdmWUe9loJK0JzX4CfgBVK1ifoYn/R4AAAAAAAAAAKgk/f398ZWvfCXefvvtotavuOKK8Z3vfCf23nvvaG1tHXVdd3d3XHvttfEf//Ef8dJLLyW+bnd3d/zrv/5rPPzwwzFxov0XI3nyySfjhz/8YbnHGFfqyj0A6XvkkUfi4IMPjilTpsS0adPikUceiXw+H/l8fkGgLpPJLPjc4oT7Fg3kLfoaw48XY6SvnTt3buy2225x8cUXL8a7BgD4h86e7oLH22yWp0okXau5/vmRm9+X0jQAjKWkgF9TQ2NkGyekNA0AAAAAAAAAwNI79dRT49577y1q7Ze//OV47rnn4vDDDy8Y7ouIaGlpiX333TeeffbZOPTQQ4t6/WeeeSa+9a1vFbV2vBkcHIz9998/+vpG3n9YVyeKVgq+q+PEvHnzYvr06bHlllvGVlttFRdddFHMmTNn1Ka8JQn1DQ8FLrvssnHMMcfEs88+G7///e9jl112ibq6uvecr9iw36JBv4GBgTj44IPjxhtvXJxvAwBAdOYSGvwE/KgSxVyrHVr8AKpSZy7hgQTZlpQmAQAAAAAAAABYei+++GLRjXDHH398/OIXv4hllllmsc7R1NQU//Vf/xXnnHNOUesvuuiieOihhxbrHOPBWWedFQ888MCoxw855JAUpxk/BPxq3MMPPxwHHXRQrLLKKjFt2rSYMWNGSdv6ttlmm7j88stj1qxZcdppp8U666wTn/vc5+J3v/tdvPzyy3HKKafEmmuuucStfouG/A444IDo6OhYzO8KADCeJTXitGUF/KgOxQT8uhICIgBUpqT7lXYPJAAAAAAAAAAAqshRRx0VuVwucd3BBx8cp5566lKd67DDDovvf//7ievy+Xwcdthhi5WjqXUvvvhifOc73xn1+Kabbqr5sEQE/GrQ3Llz44ILLogtttgitt566/j5z38ec+fOHfO2vqGvb2lpiYMOOigeffTR+POf/xx77bVXNDU1vedrV1lllTjhhBPir3/9a9x2223xr//6r9HQ0LDYQb/h87755ptxxBFHFD0/AIAN89SKYtqbkq53ACpT4gMJ3K8AAAAAAAAAAFXisccei9/+9reJ6zbbbLM466yzxuSc//7v/x4777xz4roHH3wwbrzxxjE5Zy048MADo7t75GKBurq6mD59ejQ0NKQ81fgg4FdDHn744TjwwANjypQp8Y1vfCMeffTRkrb1feADH4hzzjknXnvttTj//PNjk002Kfr1/uVf/iV++ctfxksvvRTf/e53Y9lll12soN/Qe8rn83H11VfHs88+W/S5AYDxK5/PR2dCo5kN81SLpobGaG6cUHBNh4AfQFUS8AMAAAAAAAAgTXUZH2l+jDennXZa4pq6urq46KKLRiybWhKZTCamT58ezc3NiWuLmW88+PnPfx5//OMfRz1++OGHx4c+9KEUJxpfBPyq3Ny5c+P8889f0NZ38cUXl7Str7GxMfbcc8+4++6744knnohDDz00Jk+evMTzr7zyynHSSSfFyy+/HGeccUassMIKC81erPPPP3+JZwAAxo85vbkYGBwsuKa1iFY0qBRJAY/OnIAfQDXqSPj5XUyLKwAAAAAAAABAub3yyitx3XXXJa77+te/HptvvvmYnnu11VaLo446KnHdn/70p3jooYfG9NzV5vXXX49jjjlm1OPve9/74vvf/36KE40/An5V6qGHHooDDjggVllllTj00ENL3ta32mqrxQ9+8IN45ZVX4uqrr47tt99+TN9Pc3NzHHXUUfHXv/41vv3tb0d9ff2CWZJmzefzcdlll0VfX9+YzgQA1J6uIsJO7RpxqCLt2YSAX0/hxkoAKs/A4GDMyfUUXKPBDwAAAAAAAACoBldddVX09/cXXJPJZOK4444ryfmPPPLIyGaziesuu+yykpy/Whx66KHR2dk56vFzzz03Jk2alN5A45CAXxWZM2dO/OxnP4vNN988ttlmm7jkkkti3rx5Y9LWN9LXZzKZ+MxnPhPXX399vPDCC3H88cfHCiusMLZvahGTJk2KH/3oR3HffffF6quvvmCOkQx/f11dXfHggw+WdDYAoPp19iQH/GyYp5q0NRducCrmmgegsszOdUfS3+i4XwEAAAAAAAAAqsFVV12VuOaTn/xkfOADHyjJ+VdYYYX42te+lrju2muvTQwi1qrrrrsufvOb34x6fPfdd49ddtklxYnGJwG/KvDggw/GAQccEFOmTInDDjssHnvssTFv6xv+9csvv3wcd9xx8de//jVuuOGG+OxnP5vYpDfWtthii7j//vtj3XXXXTBnkvvvv7/UYwEAVa4joc0sExGt2cKBKagkSQGPziJaKwGoLB1F/OwW8AMAAAAAAAAAKt0TTzwRTzzxROK6vfbaq6RzFPP6b731Vtx+++0lnaMSvfvuu3H44YePery1tTXOPvvsFCcavxrKPQAjmzNnTlxxxRVx4YUXxsyZMyNi4ca64YG3xW3qG+3rt9tuu/jGN74Ru+++ezQ2Ni7p6GNmxRVXjKuvvjo+/OEPR39//4IQ4mgeeOCBFKcDAKpRUthpcrY56us8A4PqkRjwSwi1AlB5imoc9kACAAAAAAAAAKDC3XLLLYlrstlsfP7zny/pHB/96EdjypQp8dprrxVcd/PNN8enPvWpks5SaY466qh44403Rj3+n//5n7HKKqukONH4ZfdyhXnggQdi//33jylTpsThhx8ejz/+eEnb+iZNmhTTpk2LmTNnxp/+9Kf4yle+UhHhviGbb755/Nu//Vvi+8zn8/HCCy+kNBUAUK2SNsy3Z7XhUF3aEq7ZOb090T8wkNI0AIyFpHB2faYuJjU1pzQNAAAAAAAAAMCSue222xLXfOQjH4nJkyeXdI66urr45Cc/mbiumHlryR/+8Ie47LLLRj2+3XbbxcEHH5ziROObgF8FmDNnTpx33nmx6aabxrbbbhuXXnppzJs3b0GobSiUFxGLHeob7es33njj+NnPfhavvfZanHvuubHhhhuO7ZsaQ9/4xjcKHh96b52dnSlMAwBUs6SAX2tCGxpUmrbm5AanrpwWP4Bqkny/0hJ1//y7EAAAAAAAAACAStTX1xf33ntv4rqddtophWmKO8/TTz8dr776agrTlN+8efPioIMOGvV4Y2NjXHDBBQvyOpReQ7kHGM/uv//+mD59elx77bXR09OzUHBv+B+CxQ30Lfr1Q6/R1NQUu+++e0ybNi223XbbJR88ZRtvvHGsuOKK8dZbby1oHxyJgB8AkKQzIehUTFgKKklbEaHUjp55sdzE0j7hCICx05krHPBLam8FAAAAAAAAACi3xx9/PLq7kx9O/5GPfCSFaSK23377otY98MAD8cUvfrHE05Tf8ccfHy+99NKox4877rj44Ac/mOJEaPBL2ezZs+Pcc8+NTTbZJLbbbru47LLLoru7u6RtfWussUb853/+Z8yaNSuuuOKKqgr3DfnQhz6U+L2YPXt2StMAANUqqRHHhnmqTTEBv6SgCACVpbOn8F9ut2scBgAAAAAAAAAq3KOPPpq4pq6uLjbddNPSDxMRq622Wiy//PKJ64qZu9r9+c9/jnPPPXfU4+uss06ccMIJKU5EhAa/1Nx3330xffr0uO6668a8rW+k16irq4vPfe5zMW3atNh5552rvhZzypQpI34+n88veG+Dg4NpjgQAVKGkgJ8N81SbiY1N0VhXH/MHB0Zdk3TdA1BZkn5ut2ocBgAAAAAAAAAq3IwZMxLXrLvuujFxYnr7NrfYYou49dZbC66p9YBfb29vHHDAAQXzNxdccEFks9kUpyJCwK+kurq64oorrojp06fHk08+GRExpsG+kb5+pZVWiv333z8OOuigWG211ZZ09IrT1tZW7hEAgCqXm98Xuf75BdcU04YGlSSTyURb88R4a97obdZJTVAAVBaNwwAAAAAAAABAtfvf//3fxDXrr79+CpP8n/XWWy8x4Ddz5syUpimPU045JZ5++ulRj//bv/1bfOxjH0txIoYI+JXA008/HT/60Y/iV7/6VSptfRERO+ywQ0ybNi2++MUvRkND7f1rnTBhQrlHAACqXEcRLWYCflSjxIBfToMfQLXI5/PRmSsczNY4DAAAAAAAAABUuhdeeCFxzTrrrJPCJP9n7bXXTlzz6quvRl9fX01mWGbOnBmnnXbaqMdXWGGFOOOMM1KciOFqLwlWAa699tq4/PLLF/pcKdr6lllmmdh7771j2rRp8YEPfGAJpwUAGB+SNstHRLRlW1KYBMZW0nWb1AQFQOWY19cb/YMDBdd4IAEAAAAAAAAAUMl6enri73//e+K6tdZaK4Vp/k8xAb/BwcF46aWXUg8fltrAwEDst99+MX/+/FHX/OQnP4lll102xakYTsCvhErV1rfZZpvFtGnT4qtf/Wq0tNiEDgBQjC4NftSopOtWwA+gehTzM7ut2d8FAQAAAAAAAACV66WXXipq3ZQpU0o8ycJWWWWVota9+OKLNRfwO/PMM+ORRx4Z9fgnP/nJ+NrXvpbiRCxKwK/Elratb+g1stls7LHHHjFt2rTYeuutx2o8AIBxoyNhw3xz44RoamhMaRoYO8kBv+T2SgAqQ0euiIBf1gMJAAAAAAAAABhbmcySFRrBSF599dWi1q288solnmTJzjdr1qwST5Kuv/71r3HiiSeOerylpSV+9rOfpTgRIxHwqyAjtfWtvfbacfDBB8d+++0X7e3t5RqtoiwagAQAKEZnwoZ57X1Uq6Qmp65cdwzm81HnPhqg4hXT4Nea1eAHAAAAAAAAAFSud955p6h1K620UoknWdiKK64YdXV1MTg4WHDdu+++m9JEpZfP5+PAAw+Mnp6eUdeceOKJ8f73vz/FqRiJgF8FWDTYV19fH7vssktMmzYtPvGJT5RxssqzJI2IAAARyS1m7dpwqFJJTU4D+cGY29sTywiEAFS8pPuVyU3N0VBfn9I0AAAAAAAAAACLr9iAX1tbW2kHWURdXV1Mnjw5urq6Cq4rdv5qMH369LjrrrtGPb7JJpvEUUcdld5AjErAr0xGautbZZVV4oADDoiDDjoopk6dWq7RKtLHP/7xaGhwuQIASy6pESepBQ0qVXsR7ZOdPfME/ACqgPsVAAAAAAAAAKDaFduAN2nSpBJP8l7FBPxqpcHv1VdfjWOPPXbU43V1dXHhhRfK6lQI/xZSNlKw7+Mf/3hMmzYtvvCFL0S9p7CP6GMf+1h87GMfK/cYAEAVS9ow36rBjyrVWkTAr6OnO1ZrT2EYAJZKZy4h4Od+BQAAAAAAAACocLNnz05cM3HixKirq0thmoUts8wyiWuSAoDVYtq0aQX/XRx22GHxoQ99KMWJKETALwUjhfra2tpin332iUMOOSTWW2+9co0GADBudOa6Cx5vKyIkBZWotak5MpnMgv/WGElSYASAypDc4Od+BQAAAAAAAACobH19fYlrmpubU5jkvbLZbOKaYuavdNdcc01cf/31ox5fddVV4/vf/36KE5FEwK/EhsJ9Q5ttt9hii/jGN74Re+65Z9l+IAEAjDf9AwMxp7en4Jp2G+apUnV1ddHa1FwwxJoUGAGgMiQH/FpSmgQAAAAAAAAAYMkUE5Crr69PYZL3amhIjlFVe8Dv7bffjiOPPLLgmnPPPTcmT56c0kQUQ8CvxPL5fDQ3N8eee+4Z06ZNiy233LLcIwEAjDtdCe19ETbMU93amicK+AHUgMTG4awHEgAAAAAAAAAAla2YgFwxQbtSKOa88+fPT2GS0vnmN78Zb7311qjHv/SlL8Wuu+6a4kQUQ8CvhNZZZ52YNm1a7LPPPtHW1lbucQAAxq2OIsJNbRr8qGJtzRMjOkb/D/KkwAgA5dfbPz965hf+C26NwwAAAAAAAABApevv709cI+BXGjfddFNcddVVox5vbW2Ns88+O8WJKJaAXwlsvfXWcfvtt8fHP/7xco8CAEBEdOYE/KhtSdevBj+AylfMz2r3KwAAAAAAAABApSsmRDcwMJDCJEt23nKFD5fWnDlz4pBDDim45oc//GFMmTIlpYlYHNV51VW4T33qU+UeAQCAYZI2zDfW1cfExqaUpoGx15YV8AOodsU0DrdmW1KYBAAAAAAAAABgyU2YMCFxTTEtf6VQTDtfMfNXouOOOy5eeeWVUY9vu+22iQFAyqeu3AMAAECpdfZ0Fzze2twSmUwmpWlg7LU1Fw58dPbMi3w+n9I0ACyJzlzh+5WIiHYNfgAAAAAAAABAhWtsbExcU66AXzHnrcaA35/+9Kc4//zzRz3e2NgY06dPt1e2ggn4AQBQ8zpzhRtxktrPoNK1JQQ+egf6o6e/L6VpAFgSXQkNftmGxsg2Vt9fIAMAAAAAAAAA40tTU1Pimlwul8IkS3beagv45XK5OOCAAwqWABx77LHxwQ9+MMWpWFwCfgAA1LzOhA3z2nCodsWEVJOaLAEor46E+5WkMDcAAAAAAAAAQCWYPHly4pp58+YVDKSVypw5cxLXLLPMMilMMnb+4z/+I/7yl7+MenydddaJ73znOylOxJJoKPcAAABQakkBPxvmqXbFhFQ7e+bFlGXaU5gGgCWR2DjsfgUAAAAAAACAEslkyj0BtWTZZZdNXJPP52POnDmph+lmz56duKaY+SvFo48+Gj/+8Y8Lrrngggsim82mNBFLSoMfAAA1L6m5zIZ5ql1rc0vimqSgKwDllXi/kk3+WQ8AAAAAAAAAUG7LLbdcUeu6urpKPMnCBgcHY+7cuYnrip2/3Pr7+2O//faL/v7+Udfsu+++8bGPfSzFqVhSAn4AANS0wXw+unI2zFPbJtQ3xMQJTQXXJDVDAVBeGocBAAAAAAAAgFpQbEDujTfeKPEkC3vrrbdiYGAgcV21BPxOP/30eOyxx0Y9vsIKK8QZZ5yR3kAsFQE/AABq2tzenhjIDxZcY8M8taAtW/g6TmqGAqC8koLY7lcAAAAAAAAAgGowderUotb9/e9/L/EkS3a+Yucvp7/85S9x8sknF1xz5plnVk1YEQE/AABqXFIbToQN89SGtubCTZTF/FkAoDwGBgdjTq6n4JqkIDcAAAAAAAAAQCVYY401ilr32muvlXaQRbz++utFrVtzzTVLPMnSO/nkkyOXy416/BOf+ETstddeKU7E0moo9wAAAFBKHUW0lgn4UQuSruMOAT+AitWV6458wpr2hCA3AAAAAAAAAEAlaG5ujpVWWineeOONguuef/75lCb6h7/+9a+JazKZTKy++uopTLN05s6dW/D4jjvuGL/4xS9Kcu633nqrqHV33HFHUa2JH//4x2PFFVdc2rGqnoAfAAA1rTNXONSUyWSitak5pWmgdJICfkl/FgAon2JaVls9kAAAAAAAAAAAqBLvf//7EwN+zz33XErT/EMxAb+pU6dGU1NTCtOU1gknnFDuEeKUU04pat2dd94p4BcRdeUeAAAASilpw3xrU3PU1bktpvq1ZQsHP7qKaLMEoDyKaVlN+v1IIxoAAQAASURBVDkPAAAAAAAAAFApNtpoo8Q1zzzzTAqTLN75ipkbSsFOZgAAalpiwE8bDjWiPeFantuXi/kD/SlNA8Di6MoVDmHX19XF5KZsStMAAAAAAAAAACydzTbbLHHNs88+G93d6T24fsaMGYlrNt988xQmgfcS8AMAoKZ1JmyYb8u2pDQJlFZbEWHVpD8PAJRH0gMJ2rItkclkUpoGAAAAAAAAAGDpFBOUGxwcjMcee6z0w0TEK6+8Em+99VbiumKCiVAKDeUeoBa9/fbb8dRTT5V7jNRkMploamqKpqamyGazkc1mY7nllotJkyaVezQAgMQN80mtZ1AtWosIq3b2zIsVJi6TwjQALI6OpICf+xUAAAAAAAAAoIpssskm0dzcHD09PQXX/elPf4ptt9225PPcc889Ra3beuutSzwJjEzArwT++Mc/xle/+tVyj1F2zc3NsdJKK8XKK68c6667bmywwQbxwQ9+MDbZZJOYOnVquccDAMaJxEYcG+apEcWEVZP+PABQHp25pAY/9ysAAAAAAAAAQPVoamqKj3zkI3HbbbcVXPfHP/4xjjvuuJLP88c//jFxzfrrrx+rrrpqyWeBkQj4lUg+ny/3CGXX3d0dL774Yvztb3+L+++/f6Fja6yxRuy4447xsY99LHbZZZdobW0t05QAQC3L5/MCfowbzY0TYkJ9Q/QN9I+6RsAPoDIl368kt7QCAAAAAAAAAFSSnXbaKTHg96c//Snmzp0bkyZNKtkcg4ODceuttyau+8QnPlGyGSBJXbkHqGWZTMZHJhP5fP49Hy+++GJceumlsc8++8TKK68cu+22W1x33XXR3z/6ZmQAgMXV098XvQXCThECftSOTCaTeD139HSnNA0Ai6Mr4eez+xUAAAAAAAAAoNp86lOfSlyTy+Xid7/7XUnn+NOf/hSvvfZa4rpi5q0Uv/3tb0fM6qTx8eKLLxY145133lnU6+24446l/WZVCQG/EivXH5hK+BiSFPzr7e2N3//+97HnnnvGWmutFeecc0709PSU8d8aAFArOosIM7VlNeJQO5IanrpyGvwAKk0+n4/OnIAfAAAAAAAAAFBbNt5449hggw0S11155ZUlneOKK65IXLPccstp8KOsBPwomaTw30hhv1deeSW++c1vxpprrlnUD1EYC6+88kpcdNFFccQRR8ROO+0Ua621Vqy44oqRzWajqakpll9++VhzzTVjhx12iGnTpsV5550Xzz33XLnHBqAIXT3JYSYb5qklbdnC13NnEX8mAEjX3L5c9A8OFFyT9PMdAAAAAAAAAJZGJuMjzY/x5Gtf+1rimltvvTWeeeaZkpz/rbfeiquuuipx3R577BGNjY0lmQGK0VDuARifRmr4G37szTffjH333TcuueSSuOiii+L9739/OcakhnV2dsZFF10UV1xxRcycObPg2nfeeSfeeeed+Nvf/hb33HPPgs+vs8468dWvfjWmTZsWK620UqlHHldeeOGFuPzyy4tev8Yaa8S+++5buoGAqtUh4Mc4k3Q9dxTRaglAuooJXyc1tAIAAAAAAAAAVKK99torvve978XAwOgPP87n8/Gf//mfcemll475+c8666zI5XKJ6/bZZ58xPzcsDgE/ym60sF8+n4+77rorttxyy7j66qvjU5/6VLlGpIbMnTs3TjnllDj33HNj3ryla7B57rnn4qSTToof/vCHsc8++8Spp54ayy+//BhNOn7l8/nYb7/94u677y76a3bYYQcBP2BEnbnCP+tbGptiQr1bYmpHUgAk6c8EAOkrLuDngQQAAAAAAAAAQPVZbbXVYvfdd49f/vKXBdddccUVccQRR8Tmm28+Zud++eWX48wzz0xct91228XWW289ZueFJVFX7gFguHw+vyDwNxT06+zsjF122SV+8pOflHM0asDvf//7+MAHPhCnnXbaUof7huvr64sLL7ww1ltvvbjkkkvG7HXHqwsuuGCxwn0AhXQmtJW12yxPjWnLFr6mu3LdMTg4mNI0ABSjM1f4fiUTEa1ZDX4AAAAAAAAAQHU69thjE9cMDg7GgQceGH19fWNyznw+HwcffHD09PQkri1mvsWx7777Lii/KvRx1113jel5qW4CflSkoaDf0A+ugYGBOOaYY+KnP/1puUejCg0ODsZ3vvOd+MIXvhCzZs0q2Xnefffd2G+//eKggw4asxuL8WbWrFlx3HHHlXsMoIYkNeIktZ1BtUkKrebz+Zjdm/wXFgCkJ+l+ZXJTczTU1ac0DQAAAAAAAADA2Np8881j1113TVw3Y8aMOPLII8fknD/84Q/jlltuSVy35ZZbxi677DIm54SlIeBXYsWkbkvxmovzkeb5F9fwNr98Ph9HH310/PznP1/s12H8GhgYiD333DN+8IMfLLieSu3CCy+MT37yk9HdXbiFgfeaNm1azJ49u9xjADWkI2HDfGtC2xlUm7YiWimTmqIASFfyAwncrwAAAAAAAAAA1e3MM8+MpqamxHXnn39+nHDCCUt1rvPOO6+o18hkMnHOOecsUdYFxpqAXwkNtdAlfRRj0ZBcsa9dzLkXN4A3VudanPMNfW0+n4/DDjssHn300aK+lvFtcHAw9t1337juuutSP/fdd98du+22W/T29qZ+7mp19dVXxw033FDuMYAa05UQZEpqO4NqU1TALyFIAkC6OnoK36+0ZjUOAwAAAAAAAADVba211orjjjuuqLWnnnpqfOUrX4k5c+Ys1jl6e3vjiCOOiEMPPbSo9f/2b/8W22yzzWKdA0qlodwD1KIvf/nL8eUvf7ngmrlz58axxx4bF1xwwYLPLRr2Gx6AG36spaUlttxyy9hggw1ivfXWi7XWWitWXHHFWGGFFaKtrS2ampqiqakpMplM5HK56O3tja6urnjrrbfizTffjOeffz7+8pe/xJNPPhkPP/xwzJs3L/Gcw4OFdXV1cfDBB8dpp50WEycuvIE4l8tFLpeLuXPnxuuvvx6vv/56PPvss/G///u/MWPGjHjqqacWes3hr1tIPp9fsL63tzf23HPPeOSRR2LSpEkFv47x7YQTTogrr7xysb5mnXXWie222y423HDDWHbZZSOTyURHR0c8/fTTcd9998UTTzxR9Gv94Q9/iAMPPDAuv/zyxR193Hn77bfHrE4ZYDiNOIw3k5uaoy6TicEC99cCfgCVpTNX+OeyBxIAAAAAAAAAALXgu9/9btx2221x3333Ja79xS9+EXfeeWd897vfja9//euxzDLLjLq2p6cnrrvuujjxxBPjb3/7W1GzrLvuunHWWWcVOzqUnIBfGfzhD3+Igw8+OF5++eWIKC7Yt+mmm8Zuu+0Wn/nMZ2LTTTeN+vr6os7V0tISLS0t0d7eHmusscZ7jg8MDMTjjz8eN910U/z2t7+NGTNmLJhh0bbAoc/n8/k4//zz46abborp06fHJz7xiQWvl81mI5vNRltbW6y66qrvOd/f//73+MMf/hBXXnll3HHHHTE4OLjgXMWG/CIi/vrXv8ZJJ50Up59+elHfB8afm2++OX70ox8Vvf7zn/98/Pu//3tstdVWBdc98cQTcfrpp8eVV14Zg4ODia97xRVXxA477BD7779/0bOMR0cccUS8/fbb5R4DqDHzB/pjbl+u4Jq2Zo041Ja6TCZasy3RUSDEJ+AHUFm6PJAAAAAAAAAAABgHGhoa4pe//GVsttlm8c477ySuf+ONN+Kwww6Lb3/727HDDjvEFltsEauuumpMnjw55s6dG3//+9/jkUceibvuumux2v6am5vj2muvVThFRRHwS9mpp54a3/ve90YNBg0P1U2aNCn22WefmDZtWmywwQYlmae+vj4233zz2HzzzeM73/lOPPPMM3HeeefFZZddFnPmzHlP+G54CO+ll16KT3/603HqqafGscceW9T5Vl555dh7771j7733jldeeSV++MMfxsUXXxx9fX1Ft/kNzXPOOefEIYccEmuttdYSvntq1TvvvBN777134rUUEbHsssvGFVdcEZ/5zGeKeu0NN9wwLrvsspg2bVrsscce8corryR+zeGHHx477LBDrL322kWdY7y54YYb4pprrhn1eF1dXVFhSoBFdea6E9fYME8tamueWDDgV+gYAOnr7Cl8z+J+BQAAAAAAAACoFe973/vipptuip122qnoUF5PT0/ccsstccsttyz1+RsbG+NXv/pVbLLJJkv9WjCW6so9wHjR398f++23X3z3u99dqLVuKNQ2PEjX0NAQhx9+eDz//PNxzjnnlCzcN5L1118/zj777HjhhRfiyCOPjMbGxgXzDRk+++DgYBx//PFxwAEHxMDAwGKd633ve1+cd9558fTTT8e//Mu/LNQSOJrhga358+fHCSecsFjnZHw44YQTimqDW3XVVePBBx8sOtw33DbbbBMPP/xwUX8+e3p64lvf+tZin2M8mDNnTkybNm3U46usskrsuuuuKU4E1JJiWsrasjbMU3uSruvOnIAfQKXI9c+Pnv6+gmsE/AAAAAAAAACAWrLVVlvFDTfckHqDXmNjY1xzzTVLlB+AUhPwS8nXvva1uOyyyyKfzy/UVLfoP2+yySbx0EMPxVlnnRUrrLBC2eZdbrnl4ic/+Uk89NBDsemmm444d8T/teldcsklsffeey/RudZcc8247bbb4owzzlgo8FjI0Hn/+7//O2bNmrVE56U2Pfroo3HhhRcmrmttbY3bb799qRogV1xxxfjjH/8Yq666auLaG264IW666aYlPletOvbYYwv+GT777LOjtbU1xYmAWlJMwK/dhnlqUFIQpCuhKQqA9BT3QIKWFCYBAAAAAAAAAEjPRz/60bjvvvvi/e9/fyrnW3HFFeOOO+6IL33pS6mcDxaXgF8KjjnmmLjuuusiIhYKyS36z/vss088+OCDsfHGG5dn0BFstNFG8cADD8R+++23UMgvIt4T8vvFL34Rxx577BKf66ijjor//u//HrE1cLjhLX4DAwPxs5/9bInPSe056aSTYnBwMHHdhRdeGOutt95Sn2/llVeOq6++Ourr6xPXnnjiiUt9vlpyzz33xAUXXDDq8V122SV23333FCcCak1nrnCIqbG+PpobJ6Q0DaSnvblwEKSjiDAJAOkoKuDngQQAAAAAAAAAQA3acMMN4+GHH46vfe1rJT3Ppz/96XjkkUfiIx/5SEnPA0tDwK/ELr744jjzzDMLtt9FRHznO9+JSy65ZEG4rZI0NDTERRddFCeeeOKIIb+hz+Xz+fjxj38cl1122RKfa9ddd43LL7+8qCa/oXNefPHFS3w+asuzzz4bv//97xPXff7zn49//dd/HbPzbr/99nHwwQcnrnv44YfjjjvuGLPzVrNcLhcHHHDAQoHd4SZNmhTnnntuylMBtSZpw3xbdmJiazBUo6QgSGdu3qi/gwFIV9IDCSIE/AAAAAAAAACA2tXe3h5XXnll3HnnnbHFFluM6Wuvu+668atf/SpuuummWHXVVcf0tWGsNZR7gFr26quvxlFHHfWe1r6I/wunZTKZOPLII+Pkk08u15hFO/HEE2P27Nnxk5/8ZKFw4pChz33zm9+MT3ziEzFlypQlOs8ee+wRM2fOjFNPPbVgi9/QsTfffDPuu++++PCHP7xE56N2nHnmmYmb1RsaGuKMM84Y83OffPLJceWVV8bs2bMLrvvxj38cH//4x8f8/NXmxBNPjOeee27U49///vfjfe97X4oTAbUoKeDXbrM8Nao1W/janj8wEN3z+2LihKaUJgJgNEn3K80NEyLbUHkPgwIAAAAAAAAAGEs77rhjPPzww3H33XfHueeeGzfffHPMnTt3sV8nm83Gv/zLv8S0adPiM5/5jCKIEmhra4sTTzwxcd0aa6xR+mFqiIBfCR1yyCExe/bs94Thhof7PvrRj8aPf/zjMk65eM4444yYMWNG3H333Qu9r+GBu9mzZ8chhxxSVJPaaE466aS45ZZb4tFHHx0xTLio66+/XsBvnOvt7Y1f/vKXieu+9KUvxdprrz3m519uueXigAMOiDPPPLPgultvvTXeeOONWGmllcZ8hmoxY8aMgj/3PvShD8Xhhx+e4kRArUps8BPwo0YVE17t7Jkn4AdQAZLvV1pSmgQAAAAAAAAAoPx22GGH2GGHHaKvry/uueee+J//+Z946qmn4plnnom333475syZE93d3ZHNZmPy5Mmx7LLLxnrrrRcbbLBBbL311vEv//Iv0dJS3v0Wl156aVx66aVlnaGU2tra4j/+4z/KPUbNEfArkbvvvjtuvPHGEcN9Q1paWuLKK6+sqkRwJpOJK6+8MtZff/3o7u4eMeSXz+fjxhtvjHvuuSc++tGPLtF56uvr4yc/+UnssMMOid+ffD4ft9xyS5x66qlLdC5qww033BBdXV2J6775zW+WbIYjjjgifvrTn8bg4OCoawYGBuIXv/hFHHnkkSWbo5L19/fHfvvtFwMDAyMeb2hoiAsvvDDq6upSngyoRR093QWPC/hRq4oJg3T2zIuprcumMA0AhSQF/FrdrwAAAAAAAAAA49CECRNip512ip122qnco0AqJChK5LTTThv12FAQ7qijjoqpU6emONXYmDp1ahx99NGJrXqFvgfF2H777eOTn/zkQu2Aixr6/BNPPBG9vb1LdT6q2zXXXJO4Zu21145tttmmZDOsvvrqsf322yeuK2bWWvWjH/0oHn/88VGPf+tb34pNNtkkxYmAWtaZ04jD+NSWTQ6DdCQESgBIR9LP42J+pgMAAAAAAAAAANVNwK8Ennzyybj55psT2/uOOeaYcow3Jo4++uiYOPEfm8yGv6/hLX4333xzPPnkk0t1nkMPPXTUY8O/twMDAwVDQ9S2gYGBuP322xPXffnLXy75LHvuuWfimoceeijeeeedks9SaZ599tk45ZRTRj2+5pprquoFxszg4GDMziU0+NkwT41qqK+PSU3Zgmu6Ev58AJCOpJ/H7R5IAAAAAAAAAAAANU/ArwQKtXMNBeD22GOPmDx5copTja3JkyfHl7/85cQWv6uvvnqpzvPZz342VlpppYiIUVv8hsyYMWOpzkX1evDBB6Orqytx3ac//emSz1LMOQYHB+OPf/xjyWepJPl8Pg444ICCTZs/+9nPoqXF5lVgbMzp7YnBhPuUtmYBP2pXe0KAtVODH0BFSPp57H4FAAAAAAAAAABqn4BfCfz+979PDKN98YtfTGma0vnSl75U8Hg+n4/rr79+qc5RV1cXn/nMZxKDhBERzz///FKdi+pVTFhu8uTJsfXWW5d8ltVXXz3WXnvtxHW33XZbyWepJOeee27ce++9ox7/6le/GjvvvHOKEwG1rqOIdjIb5qllrQmNTx0CfgBl1z84ELN7ewqucb8CAAAAAAAAAAC1T8BvjP3tb3+LJ554IiJioVDa8MBfQ0ND7LjjjmmPNuY++tGPRmNjY0Qs/P6GWgojIp588sl46aWXluo8n/rUp4paN2vWrKU6D9XrvvvuS1yz9dZbR0NDQwrTRGy//faJax544IEUJqkML7/8chx//PGjHl922WXjpz/9aXoDAeNCMe1k7VmtodSutqQGv5yAH0C5dRXzQAL3KwAAAAAAAACkoC7jI80PgEUJ+I2xQqGdocDf2muvHRMnVv8T2CdOnBjrrLNO4rpiwleFfOhDHypq3SuvvLJU56F6Pfroo4lrNt988xQm+Yctttgicc3TTz8dvb29KUxTfgcffHDMnTt31OOnn356rLDCCilOBIwHSQG/ukwmJtswTw1rT2h8KiYEC0BpFfOzWIMfAAAAAAAAAADUPgG/Mfbkk08WPJ7JZGK99dZLaZrSW3fddRdqKhzJU089tVTnWGONNaKtrS0iFm4KHJLJZCKfz8cbb7yxVOehOr3xxhvx+uuvJ66rtIBff39//O///m8K05TX5ZdfHrfccsuox3fcccfYb7/9UpwIGC+SNsy3ZluiboT7CqgVSYEQAT+A8uvsKaLBT8APAAAAAAAAAABqnoDfGEsK+EVErLTSSilMko6VV145cU0x35Mk73//+xODhPPm2aQ8Hs2cObOodeuvv36JJ/k/xYZ4i529Wr355pvxrW99a9TjTU1NccEFF6Q4ETCedOYKb5hvzdosT21LCoR0z++Lvv7+lKYBYCSducJ/j9FQVx+TJmRTmgYAAAAAAAAAACgXAb8x9sILLySumTx5cgqTpGPSpEkFj+fz+Xj++eeX+jyrrrpq4pqenp6lPg/Vp5g/cxERa6+9dokn+T/t7e2x7LLLJq4rdvZqddhhh8W777476vETTjgh1l133RQnAsaTpHay9uaWlCaB8iim8SkpWAJAaSXdr7RlWyKjcRgAAAAAAAAAAGqegN8Y6+rqStx81dDQkNI0pVfovQx9H2bPnr3U5ymmKVDAb3x68cUXE9esvPLKMXFiuk1NxQQKi5m9Wv3ud7+L6667btTjG2ywQRx33HEpTgSMN4kb5osIP0E1a8smh1iT/pwAUFpJP4dbPZAAAAAAAAAAAADGBQG/MTZnzpwxWVMt5s6dm7hmLN5vc3Nz4pqBgYGlPg/V529/+1vimilTppR+kEWsssoqiWtqNeDX1dUV3/jGN0Y9nslkYvr06TFhwoQUpwLGmw4BP8a5ohr8BPwAyqqzp7vgcfcrAAAAAAAAAAAwPgj4jbFiwmwdHR0pTJKOd999N3HNWAT8stls4ppiQoDUnldffTVxTTENkGOtmHPOmjUrhUnSd8wxx8Rrr7026vGDDjootttuuxQnAsabfD4fnTkBP8a35sYJ0dTQWHBNR0KwBIDSSrxfybpfAQAAAAAAAACA8UDAb4xlMpmCx/P5fPzlL39JaZrSe+655xLXJH1PilHMa7S0tCz1eag+77zzTuKalVZaKYVJFlZMwK+YgGy1ufPOO+Oiiy4a9fgqq6wSP/rRj1KcCBiPuuf3xfyEZl8b5hkP2rKF74+TgiUAlFZSk2q7BxIAAAAAAAAAAMC4IOA3xiZPnjzqsaGQ2rPPPhv5fD6tkUpmcHAwnnnmmcTw3aRJk5b6XLlcLnGNgN/4VEzAr62trfSDLME5582bF729vaUfJiXd3d1x4IEHFlxz9tlnR2tra0oTAeNV0mb5iIi2ZvcN1L6kYEhXEX9WACiNfzQOF25S1TgMAAAAAAAAAADjg4DfGBst4Dc80Dd37tx48MEH0xqpZB5++OGYM2dORETBwGKh0GOxurtH3/Q2dG4Bv/Gpo6Mjcc1YXIOLq9hz1lKL33e/+914/vnnRz3+uc99LnbfffcUJwLGq2JayWyYZzxIus47BPwAymZOby4GBgcLrmlNaGIFAAAAAAAAAABqg4DfGJsyZUpR7Xw33nhjCtOUVtJ7yOfzkclkYsqUKUt9rjfffDNxjYDf+NPT0xPz589PXFeOgN8yyyxT1Lqurq4ST5KOhx56KM4666xRj0+aNCnOO++8FCcCxrOiGvxsmGccSAr4JTVHAVA6xTyQIKmJFQAAAAAAgP/P3r2H21bX9eL/zHWdc+3LmgsQRFMuAYKKmnLUTabmDTNR4qSGmaiEXSxPhaVpp0yLMsqTlZZUoBkpxwt5tDwmHaW8kUliIojAVg6CoJw1176sOdd1/P7gt7Zrb/Ya37H3mnPM2+v1POsJ1vjuPT9rP4zhF/q+xxsAAAaDgF+bPexhD8u9XqlUIsuyuPzyy2M18ab2Xra6uhqXXXZZVCqV5NrUn0kRd911V+71SqUSRx999KY/h/6yuLhYaF2tVuvwJPdXrVYLrSv6M/SypaWluOCCC2JlZWXDNW9+85vjIQ95SIlTAcOs0cwPLW2dqMb46FhJ00D3pIKsRcKwAHTGXJEXEgj4AQAAAAAAAADAUHCyuc1OPfXUDa+tNdpFRNx5553xvve9L1784heXNVpbve9974tvfetb+wKLeU477bRNf97OnTuTYcLjjz9+059DfykajhsdHe3wJPc3Nlbs8ToIAb+LL744/vM//3PD62eccUa8+tWvLnEinvSkJxX+Z5DOueGGG7o9wtBKhZYclmdYpP5Z39Waj5XV1Rgd8d4XgLLNJl5IUImIaY3DAAAAAAAAAAAwFJzkbLMdO3Yk16yF4t7whjf0ZbhncXEx3vCGNxRq74uIeOITn7ipz5udnY177rknIiI3TCjgN3yK3j/dCDoV/cylpaUOT9JZX/3qV+Piiy/e8PrY2Fj85V/+ZYwIDgAlmk0G/ByWZzikAn5Z3BfyA6B8jVb+fmVbtSaADQAAAAAAAAAAQ0K9T5s98YlPjG3btsWePXsO2m63vsXv9ttvj9e85jXxJ3/yJ90Y9bC99rWvjW9+85sbtvetD/5t3bq1UOgxz1e+8pVC6wT8hs/y8nKhdQJ+nbG6uhoXXHBBbtDyl37pl+Ixj3lMeUMRERGf/vSn4wEPeEC3x4CumUscmK9XNfgxHIq0Vc629sbM1NYSpgFgvWTjsP0KAAAAAAAAACUq2P0DQId4FXibjY6OxtOf/vTcprm1kF+WZfH2t7893v/+95c44eZ88IMfjLe97W0bhvvWrP2MT3va02J0dHRTn/m5z32u0DoBv+FTNES3srLS4UkO/zO7ET5slz/5kz+Jz3/+8xteP+GEE+K3f/u3S5wI4D6NZn4jWZHQEwyCIuGQucT9AkBnJAN+9isAAAAAAAAAADA0BPw64KUvfWmhdWshuZ/6qZ+Kf/qnf+rwVJv3iU98In7yJ39yv4a+lPPPP3/Tn/uZz3ym0LqTTjpp059Ff5mYmCi0rmjTXzsVbeYr+jP0mp07d8Zv/MZv5K758z//85iamippIoDvmU0emPdsYjhsnazG6Ej+v/KlAiYAdEajlXohgf0KAAAAAAAAAAAMCwG/Djj77LPjQQ96UETEhmG4tfa7SqUSi4uL8fznPz/+9m//trQZD9Xf/d3fxfOf//xYXFyMiNiwvW/9z3vsscfG8573vE197tLSUnzqU5866J/j+u+ddNJJUa/XN/VZ9J/x8fFC67oR8Cv6mf0a8HvlK18Ze/duHAg477zz4qyzzipxIoD7LC4vx/zSQu6aIq1mMAhGKpWYruYHRFKBWAA6I9ngZ78CAAAAAAAAAABDQ8CvA0ZHR+NVr3rVhiG4NVmWRZZlUalUYmFhIc4///x49atfHc1ms6RJ01qtVvzSL/1S/NRP/VS0Wq19rYN51n6mX/zFX4yRRGNIyr/8y7/E7t279/2+G33Wjh07NvU59KfJyclC61qtVocnOfzP7MeA32WXXRZXX331htePOOKI+OM//uPyBgJYp9FKh5Vmag7MMzxSAZEi9wwA7ZcK+NmvAAAAAAAAAADA8Bjr9gCD6pd/+ZfjHe94R9x5552FQnFra97+9rfHxz72sXjrW98aZ599dknTHtw//MM/xK/8yq/ELbfcsi9Il2f99Qc96EHx3/7bf9v0DFdddVWhdQJ+5dm5c2dce+21Hf2MLVu2FPrnv1arxdjYWLItby0kWqain7l9+/YOT9Je3/72t+Oiiy7KXXPJJZfE0UcfXdJEAPtLHZaPiKg7MM8QSQVEGs35kiYBYE1raTFay0u5a6btVwAAAAAAAAAAYGgI+HVItVqN3/md34mXv/zlyWDcWnhuLeR36623xjnnnBM7duyIX/3VX42zzz570014RWVZFh/5yEfikksuic9+9rP7golrP0PR9r43v/nNUa1WNzXL8vJyXHnllck/vwgBvzJdc8018fKXv7yjn3HccccVDrjOzMzEd77zndw1u3btasdYh6ToZx5xxBEdnqS9XvWqV0Wj0djw+lOe8pSO//MBkKfRSoeVpmtTJUwCvaGe+Oe9SCgWgPaaLfJCgqr9CgAAAAAAAAAADItyUmND6vzzz4/nPOc5hdrvsiy7X9Dvs5/9bJx77rlx/PHHx6/92q/FZz7zmY7N+rnPfS5e97rXxQknnBA/9mM/ti/ct36evHDf2ppKpRLPec5z4mUve9mmZ/roRz8a9957b0TcP1i4/s9z+/btcfrpp2/68+hPRx55ZHLN3NxcCZMc+mdOTU1tOghbpg984APxoQ99aMPrk5OTcemllxYK5QJ0SiqsNDk6FrWxiZKmge5LNVY2WgJ+AGWbK/BCglQDKwAAAAAAAAAAMDg0+HXYu971rnjUox4Vd999974QXJ6DheruuOOO+KM/+qP4oz/6o5ieno4nPvGJsWPHjnjEIx4Rp5xySpx44okxNVXsze6tVituu+22+NrXvhY33HBDfO5zn4vPf/7z+xq51s9XtLVvfZjnmGOOicsvv7zQLCnveMc7cq+vDxQKFA2vIgG/u+++u4RJ9vftb387uabI7L1idnY2fvEXfzF3zRve8IY45ZRTSpoI4OBSAb96bYt9A0MlGfBrzhd6IQkA7VOkPTX1/AYAAAAAAAAAAAaHgF+HHXXUUfGBD3wgnvnMZ0ar1Soc8ovYPzi39r1GoxEf//jH4+Mf//h+v2Zqaioe8IAHRL1ej8nJyZiYmIhKpRILCwuxsLAQc3Nz8Z3vfCf27r3/IbKDhfoO/P5G1ocAp6am4kMf+lAcddRRyV+XcsMNN8TVV19d6M/rx3/8xzf9efSvBz/4wck1RcJ27VbkM4vM3it+5Vd+JfdnevjDHx6vfe1rS5wI4OCKBPxgmNSr+f/ML6+uxN7Fhdg62T+twgD9bjaxX6mNT8Tk2HhJ0wAAAAAAAAAAAN0m4FeCM888M973vvfFueeeG6urq4VCaxH7B/1Swbu9e/fuC+8d2L5xKA18RdYf+OuyLIuxsbG48sor44lPfGKhX5tyySWXbDjfelNTU/EjP/IjbflM+tPxxx+fXHPnnXd2fpAD3HXXXck1J5xwQgmTbN4tt9wS73rXuza8XqlU4p3vfGdMTEyUNxTABlIH5gX8GDb1Wrrpu9HcK+AHUKJGK7Ffqaaf3QAAAAAAAAAAwOAQ8CvJ2WefHVdccUW89KUvjaWlpcIhv4j7N+zlBd6yLDvo75v3aw78jCLWh/smJibib/7mb+JHf/RHD+n32Mitt94aV1xxRaG5nv3sZ0e16jDyMCsSkvv2t78d8/PzMTVV3iHJW265JbmmXwJ+e/bsyb3+mMc8Ju6444543/ve15HP37lzZ3LNPffcU+jzjz766Hja057WjrGAHtVozedeT7WZwaApEmqdbe2N74sjS5gGgIiIRjOxX/FCAgAAAAAAAAAAGCoCfiV64QtfGEcffXT82I/9WOzateuQQn5rNlq/Frhrd5Av77OyLIvp6em46qqr4qlPfeqmf981119/fbzsZS8rtPanfuqn2va59KcTTzwxuSbLsrjlllviUY96VAkTRTQajbj33nuT64rM3g/+4z/+I84777yuznDjjTcWmuEpT3mKgB8MuLlkg59GHIbLdHUqKhGR928BjcR9A0B7pZ67An4AAAAAAAAAADBcBPxK9tSnPjU++9nPxote9KL4yle+sl9YbjPaEdwrYv28j3zkI+PKK6+M0047ra2fce6558a5557b1t+T9nnZy15WOIBZhtNPP73Quptuuqm0gN9NN91UaF3R2QEoZnV1NeYWmrlrHJhn2IyNjMa2yVrsyrk3Uk1SALRXo5UI+GkcBgAAAAAAAACAoTLS7QGG0WmnnRZf+MIX4ud//uf3BfMqlUqyfa+b1ubLsiyyLItXvepV8YUvfKHt4T44VMcee2wcc8wxyXXXXXddCdMU/6yxsbHSAocAw2JuoZl86YED8wyjVLBVgx9AuVLBai8kAAAAAAAAAKBsI5XMV4lfAAcS8OuSycnJ+LM/+7O45ppr4lGPelTPBv3Wz5NlWTzmMY+Ja665Jv70T/80Jicnuzwd3Oexj31sck2ZAb8vfvGLyTWnnnpqVKvVEqYBGB5FQkoztakSJoHekgz4JZqkAGif5ZWV2J1sHLZfAQAAAAAAAACAYSLg12U/9EM/FNddd128853vjOOOO25fQ95asK4bYb/1n702z0Mf+tC49NJL44tf/GL80A/9UOkzQZ4dO3Yk13z+85+P5eXlEqaJ+Jd/+Zfkmic84QklTAIwXIoE/DTiMIzq1fygiAY/gPLMtfLb+yLsVwAAAAAAAAAAYNgI+PWASqUSF154YXz961+PK664Ih73uMftC9atXe9k4O9gv//a5z/2sY+NK664Im655Zb46Z/+6Z5qF4Q1T3/605Nrdu/eHf/2b//W8Vluv/32uOWWW5LrnvnMZ3Z8FoBhkwopjVZGYutkraRpoHckG/wE/ABKU6Q1daYq4AcAAAAAAAAAAMNEwK+HjI6OxnnnnRdf+MIX4stf/nK87nWvi+OPP35f2G6jwN9mvyJiv8847rjj4nWve118+ctfjn//93+P8847L0ZHR7v5RwO5Hv/4x8f27duT6z72sY91fJYin1GpVAqFEgE4NI1EI850dSpGvKyAIZQO+KXbpABojyLPXA1+AAAAAAAAAAAwXAT8etQjH/nIuPjii+PWW2+Nm266Kd7xjnfEC17wgnjIQx6yXxjvYF8HSq1/8IMfHD/+4z8eb3/72+PGG2+M2267LS6++OJ45CMf2YWfHA7d2NhYocDclVde2fFZ3ve+9yXXnHHGGXHUUUd1fJZ2ecxjHpN8jnTy6/zzz0/O+JSnPKXQ7/WpT32q839gQNekWsjqtamSJoHekgqKNJcXo7W8VNI0AMMttV8ZGxmNLROTJU0DAAAAAAAAAAD0grFuD0DaKaecEqecckr87M/+bERE7N69O77yla/EjTfeGHfccUfcddddcdddd8W9994bzWYzFhYWotVqRUTE5ORkVKvVqNVqMTMzEw960IPi2GOPje/7vu+L0047LR75yEcWaj6DXnfeeefFVVddlbvm61//elx77bXxhCc8oSMz3H777fEv//IvyXXnnXdeRz4fYNilA37acBhO9Wo63DrX3BvVbfXODwMw5GZT+5XqVFQ0DgMAAAAAAAAAwFAR8OtD27Ztix07dsSOHTu6PQr0jLPPPju2b98eu3btyl33x3/8x/He9763IzP8yZ/8SayuruauGRkZiZ/4iZ/oyOcDDLvkgXkBP4bUTIF/9mebe+MYAT+Ajmu07FcAAAAAAAAAAID9jXR7AIB2qFar8cIXvjC57gMf+EDccsstbf/8e++9N/7yL/8yue5Zz3pWHHvssW3/fAAKHJivOjDPcJouEBZptOZLmASAuWb+81bADwAAAAAAAAAAho+AHzAwfuVXfiUqlUrumuXl5XjNa17T9s/+zd/8zWR7YETERRdd1PbPBiAiy7JoJA7MF2kxg0FUHRuP2thE7ppGogETgPZINw5PlTQJAAAAAAAAAADQKwT8gIFx2mmnxXOf+9zkug9/+MPx/ve/v22f++lPfzre+c53Jtc99rGPjWc84xlt+9yIiG984xtRqVSSX0996lPb+rkAvWbv0kIsr67krpl2YJ4hlgqMCPgBlEPjMAAAAAAAAAAAcKCxbg8waO688864+uqrC6097bTT4r/8l//S4YlguPzWb/1W/MM//EOsrq7mrrvwwgvj0Y9+dJxyyimb+rxvf/vb8eIXvzhWVvJDJRERb3zjGzf1WQBsrEg4yYF5hlm9tiXu2t3Y8LqAH0DnrWZZzCUah+sahwEAAAAAAAAAYOgI+LXZBz7wgfjlX/7lQms/9alPdXYYGEKPe9zj4hWveEX81V/9Ve66ubm5ePrTnx7XXHNNnHjiiYf1Wd/5znfiGc94Rvzf//t/k2t/5Ed+JM4+++zD+hwA0oqEk2YcmGeIpQIjjVZ+4ASAzduz0IyVLP9lNKnGVQAAAAAAAAAAYPCMdHuAQfOlL30psixLfu3YsSN+6Id+qNvjwkC6+OKL48gjj0yuu+OOO+Lxj398fOxjHzvkz7j22mvjjDPOiBtuuCG5tlqtxtve9rZD/gwAimsk2nAiIqarDswzvFINlhr8ADqvSJhagx8AAAAAAAAAAAwfAb82u/nmmyMiolKpHPRr7dqLXvSibo4JA+0BD3hAvOtd79p3z+W599574znPeU6ce+658e///u/J9V/96lfj5S9/eZx55plx++23F5rnbW97W5x88smF1gJweGYT4aRtk7UYGx0taRroPckGPwE/gI4r1DicCGQDAAAAAAAAAACDZ6zbAwya22+/fV+oKMuy/a6tDxs973nPK3UuGDbPfe5z4zWveU1ccsklhdZfddVVcdVVV8Upp5wST3rSk+IRj3hEHHHEEVGpVGJ2djZuuumm+NznPhdf/vKXD2mOF7/4xfHKV77ycH4EAA5B6sB8vaa9j+GWugd2LTRjeXUlxkYEYQE6JbVfqUTEdo3DAAAAAAAAAHRBgV4VADpIwK/Nvvvd7x70++vDfUcddVQcd9xxZY0EQ+v3f//344477oj3vve9hX/NzTffvK+Jc7Oe/vSnx2WXXdaW3wuAfHOtRMBPGw5DLtXgFxEx15qPI6e2lTANwHBKBfy2VWsxOjJS0jQAAAAAAAAAAECvcGqozZaWlja8lmVZVCqVeMQjHlHiRDC8RkZG4m/+5m/i3HPPLf2zn/SkJ8WHP/zhmJycLP2zAYZRozmfe71IuAkG2UyBkGsqeALA5swm9itFntUAAAAAAAAAAMDgEfBrsy1b0oexjj/++M4PAkRExNjYWLz//e+P1772taV95stf/vK4+uqrCz0PAGiP2VSDX22qpEmgNxUJuaaCsgBsTrJx2AsJAAAAAAAAAABgKAn4tdnWrVuTa7Zt21bCJMCakZGR+P3f//246qqr4kEPelDHPmdmZib+8i//Mi677DLNfQAlSzWP1TXiMOS2TEzG+Mho7ppGIngCwOYk9ysCfgAAAAAAAAAAMJQE/NqsSMCvyBqg/c4555y46aab4jWveU1b2/UmJibiggsuiK997Wvx0z/90237fQEoZmF5KZpLi7lrZhyYZ8hVKpWYTjRZpoInAGzOrIAfAAAAAAAAAABwEGPdHmDQHHXUUXHzzTdHpVLZcM3iYv4BdKBztm3bFpdcckm8/vWvj0svvTTe8573xA033HBYv9f3f//3x3nnnRc///M/H8cee2ybJ2XNOeecE8cff3zumtR1YLAVCSU5MA/3NVl+d+/uDa8L+AF0VqM1n3u9Xs0PYgMAAAAAAAAAAINJwK/NTjnllPjsZz+bu2bvXgdnodtmZmbita99bbz2ta+Nb37zm/FP//RPcf3118dXv/rV+MY3vhG7du2K3bt3R5ZlsW3btti2bVs85CEPiYc//OFx+umnxzOe8Yw49dRTu/1jxPHHHx9ZlnV7jI4655xz4pxzzun2GEAPSx2Wj4iYdmAekkHXRjN9LwFweJpLi7GwvJS7xgsJAAAAAAAAAABgOAn4tdkpp5ySXHP33XeXMAlQ1HHHHRcXXnhht8cA4DAVaR2bcWAeol7LD7rOavAD6BiNwwAAAAAAAAAAwEZGuj3AoHnYwx6Wez3Lsrj11ltLmgYAYPClDsxXx8ajOj5R0jTQu+rVRINfS8APoFOKNA4L+AEAAAAAAAAAwHAS8GuzM888c8NrlUolIiK+/vWvx/LyclkjAQAMtFTrmMPycJ9Uk+Vcaz5Ws6ykaQCGS6EGv2p+0yoAAAAAAAAAADCYBPza7JhjjolHP/rRkWXZvkBfxH3NfWtarVZ84Qtf6MZ4AAADJ9U6JuAH90ndCyurq7FnoVXSNADDJRXwq41PxOTYeEnTAAAAAAAAAAAAvUTArwOe9axnJdf87//9v0uYBABg8DWa87nX61UBP4iImK6lm6FSgVkADo8XEgAAAAAAAAAAABsR8OuAF7zgBRteq1QqkWVZ/N3f/V2JEwEADK65RCNOvUCoCYbBTIGwa6phCoDDk3ohQZFnNAAAAAAAAAAAMJgE/DrgjDPOiMc//vGRZVlUKpV938+ybN9f33bbbfHxj3+8G+MBAAyUWY04UMj26lRUEmsE/AA6I/V89UICAAAAAAAAAAAYXgJ+HfKqV70q93qWZfHbv/3bJU0DADCYVlZXY3ermbumrhEHIiJidGQktlfzAyQCfgCdkXq+TtuvAAAAAAAAAADA0BLw65Cf+ImfiJNPPjki4n4tfmt/f+2118Zll13WlfkAAAbBXGs+ssSaGY04sE+q0bLRmi9pEoDhonEYAAAAAAAAAADYiIBfh4yPj8ef/dmfRZYd/Mh5pVKJLMvioosuip07d5Y8HQDAYCjSNubAPHxPXYMfQOmWV1Ziz0Ird82M/QoAAAAAAAAAAAwtAb8OeuYznxkveMEL9mvti4h9ob9KpRJzc3Pxoz/6o9FoNLo0JQBA/5oV8INDkgqQCPgBtN9cgXbUusZhAAAAAAAAAAAYWgJ+HXbppZfGySefHBFx0JBfRMRNN90UT3/60+Oee+4pfT4AgH6WOjA/OjISWyeqJU0DvW86EfArEpoF4NB4IQEAAAAAAAAAAJBHwK/Dpqen4yMf+UhMT09HxP1Dfmt//x//8R9x5plnxn/8x390ZU4AgH6UahurV6f223/BsKtXEw1+BVqmADg0jVaBgF/i+QwAAAAAAAAAAAwuAb8SnHLKKfH3f//3sW3btog4eMivUqnEbbfdFjt27Ijf+73fi6WlpW6NCwDQN1KNONpwYH8ztanc6wvLS9FcWixpGoDhkHohwfjIaGyZmCxpGgAAAAAAAAC4v5GKrzK/AA4k4FeSJz/5yXHNNdfEAx/4wIiIfaG+iPtCfmvfW1xcjN/4jd+IU089Na644opYXl7u2swAAL0u1Ygj4Af7K3JPpIIoAByaRjO/HXW6pnEYAAAAAAAAAACGmYBfiR796EfHZz7zmfiBH/iBfaG+NetDflmWxc6dO+OlL31pHH/88fFbv/Vb8ZWvfKUbIwMA9LRUEKleFfCD9QoF/Fr5QRQADk3yhQT2KwAAAAAAAAAAMNQE/Ep2/PHHx7XXXhtvfOMbY2xsbMMmv7Wg35133hm/8zu/E49+9KPjpJNOigsuuCAuv/zy+OIXvxh792rWAACGWyrgN6PBD/ZTJESiwQ+gvexXAAAAAAAAAACAPGPdHmBQveIVr0iuOf300+O6667bF/CLuH/Ib/33brvttti5c2e8613v2rf+6KOPjmOOOSaOOeaY2LZtW0xOTsbExMR+v2e3VSqV+Ou//utujwEADJgsy5JNY9O1qZKmgf4wMTYWU+MTMb+0uOEaAT+A9ko9V+1XAAAAAAAAAABguAn4dci73vWuwiG7tQDfwb63Puh3sLV333133H333T0V6FsvyzIBPwCgI/YstmJldTV3TZG2Mhg29doWAT+AEjWa+S8ksF8BAAAAAAAAAIDhJuDXYQcL7x3urz8w7Ld+zWY/BwCg3xQJIc3UHJiHA9VrW+LOXbMbXp8V8ANom9Usi7lE47D9CgAAAAAAAAAADDcBvw5LNesdSjDvYGs3Cv31CsFDAKBTigT86g7Mw/2kmqIaLQE/gHbZs9CMlSzROGy/AgAAAAAAAAAAQ03Ar8M6HXDr5QBdLwcPAYD+N9vMb8OpRMR0daqcYaCPpJqi5hL3FgDFeSEBAAAAAAAAAACQMtLtAQAA4HCkWsa2VWsxOmK7CwdKBUlmNfgBtE3qhQQREXUvJAAAAAAAAAAAgKHmxDMAAH1pLtGIU69qw4GDSTVb7lloxfLKSknTAAy21AsJKhGxXcAPAAAAAAAAAACGmoAfAAB9KdWIk2opg2E1U+DeSAVSACgm9UKC7dUpjcMAAAAAAAAAADDknCACAKAvpQJI9Zo2HDiYIuHXRiJAC0AxXkgAAAAAAAAAAACkjHV7gEFXqVS6PQIAwEBqJBpx6lUH5uFgioRJZhP3FwDFJF9IUPVCAgAAAAAAAAAAGHYCfh2UZVm3RwAAGFipgN+MRhw4qKnxiRgfHY2llZUN18wlAikAFJN8IYH9CgAAAAAAAAAADD0Bvw45//zzuz0CAMDAai0tRmt5KXeNA/NwcJVKJerVLfGdvbs2XJMKpABQjIAfAAAAAAAAAP2gUun2BADDTcCvQy6//PJujwAAMLAarfnkmunqVAmTQH+aqeUH/Gab6XsMgLTUnqVeFfADAAAAAAAAAIBhN9LtAQAA4FAVaReb0YgDG5qu5QdgNfgBbF5zaTEWEo3DM4nnMQAAAAAAAAAAMPgE/AAA6DtFwkd1AT/YUKoxqtES8APYLPsVAAAAAAAAAACgCAE/AAD6zmziwHxtfCImx8ZLmgb6T6rhUoMfwOYVeZZOC/gBAAAAAAAAAMDQE/ADAKDvpNrFtOFAvtQ9Mteaj9XV1ZKmARhMqRcSRETMJBpVAQAAAAAAAACAwSfgBwBA32k053OvOywP+VIBv9Usi92LrZKmARhMc638/crU+ERMjI2VNA0AAAAAAAAAANCrBPwAAOg7jUQjznRtqqRJoD8VablM3WcA5Es9RzUOAwAAAAAAAAAAEQJ+AAD0oUYrcWBegx/kqlfTIVgBP4DNmRXwAwAAAAAAAAAAChDwAwCg7zSa87nXHZiHfNsna1GpVHLXpIIpAORLv5BA4zAAAAAAAAAAACDgBwBAn1leWYndC83cNTMCfpBrZGQkphPBklQwBYB8XkgAAAAAAAAAAAAUIeAHAEBfmWvlH5aPiKjXNOJASr2aHyxJBVMAyJds8BPwAwAAAAAAAAAAQsAPAIA+M9tMt4o5MA9pM4kgbKPAvQbAwS2vrMSehVbumlTQGgAAAAAAAAAAGA4CfgAA9JVCDX4OzENSKgibap4CYGNFnqEzXkgAAAAAAAAAAABExFi3BwAAgEORahUbHxmNLROTJU0D/Ws6EYRtNNNhWgAOrsgzdDrRpAoAAAAAAAAAZRmpdHsCgOGmwQ8AgL4ymwj4TdemolLxXxsgZSYRLGk090aWZSVNAzBYUvuViHSTKgAAAAAAAAAAMBwE/AAA6CuNVv6B+XqilQy4TypYsriyHM2lxZKmARgsc4n9yvjIaGwZ1zgMAAAAAAAAAAAI+AEA0GcaiUacGW04UEiR5qgiDVQA3F9qv1KvbdE4DAAAAAAAAAAARETEWLcH4PCtrKzEXXfdFXfeeWfs3r07ms1mNJvNaLVakWXZ/da/9KUv7cKUAADtVeTAPJBW5F6Za83Hg6ePKGEagMEy25zPvW6/AgAAAAAAAAAArBHw6xM33XRTXHvttfGlL30pvvSlL8XXvva1uOeeew4a5NuIgB8AMAgarfwD89PVqZImgf5WL3CvpAK1ABxc8oUE9isAAAAAAAAAAMD/T8CvR62srMRHP/rR+OhHPxr/9E//FHfcccd+1w8l2BcRUalU2jkeAEBXrGZZzCUacWY04kAh46NjsXWiGnsWWxuumRXwAzgsjZbGYQAAAAAAAAAAoBgBvx5z8803xzvf+c7427/92/jud78bEQcP8x1KYO9Qw4B5/uAP/iA++tGPJtcdffTR8YEPfKBtnwsAEBGxZ6EZK9lq7hoH5qG46dpUbsAvFVAB4OBSLySwXwEAAAAAAAAAANYI+PWIm266Kd70pjfF+9///lhdXd0vlJcX5kuF99rd3HfWWWfFr//6r+euybIsKpVKXHPNNfGUpzylrZ8PAAy3RoE2MQfmobh6dUt8a+7/bXi9yD0HwP5WsyzmWqmA31RJ0wAAAAAAAAAAAL1upNsDDLvdu3fHz/3cz8Xpp58eV155ZaysrOwLyK19RdwXmjvYV9ke/ehHx3Of+9x9n50301/91V+VPh8AMNhmE204EQJ+cChmEveLgB/AodtdpHG4ar8CAAAAAAAAAADcR8Cviz7ykY/Ewx/+8Lj00kvvF+yLiK4G+fK87nWv2/fX64OI67+yLIsPfvCDsXv37i5OCgAMmkYrP2xUqVRierJW0jTQ/1KB2EaBUC0A+9M4DAAAAAAAAAAAHAoBvy7Isixe97rXxTnnnBPf+ta3Ngz29aodO3bE4x73uA1b/NYsLCzEVVdd1a0xAYABNJc4ML99shYjI7a4UFS9NpV7PRWqBeD+BPwAAAAAAAAAAIBD4fRzyXbv3h0/8iM/EpdccknfBfvW+/mf//lC66688soOTwIADJPZRJuYw/JwaOrV/Htm7+JCLK4slzQNwGBotPL3KxqHAQAAAAAAAACA9QT8SrRr164466yz4hOf+MS+cF/E4Qf71sKBa79PmV784hfH9PT0vjkOVKlUIsuyuPrqq2PXrl1ljwcADKhUm1i9mt9GBuyvSCh2LhGsBWB/qQa/aY3DAAAAAAAAAADAOk4TlWT37t1x1llnxec///mI+F4Armiwb32Yr1uhvvUmJyfj3HPPPej867+3vLwcH//4x8scDQAYYKkD8zMa/OCQFAn4zSbuOwD2l9qvaBwGAAAAAAAAAADWE/AryUte8pK49tpr92vtSzkwzLcWCFz7Ghsbi3q9Hscee+y+9WV6yUteUmjdP/7jP3Z4EgBgWDgwD+1Vr6VbL1PNmQDsLxWMntY4DAAAAAAAAECPqVR8lfkFcKCxbg8wDN74xjfGRz7ykcLhvvVBvbW1D3nIQ+Kss86KM844I37gB34gjjvuuDj66KP3rRsZKT+r+dSnPjWOOeaYuOeee/Y1Eq639j0NfgBAO2RZJuAHbVYbm4jJ0bFYWFnecE3qvgNgf6lgtMZhAAAAAAAAAABgPQG/DvvsZz8bb37zmw853JdlWUxPT8dLX/rSuOCCC+JRj3pUx2c9VJVKJZ797GfHu9/97vu1B2ZZtu97d999d3z961+Pk08+uRtjAgADorW8lBtCioioa8SBQ1KpVKJe2xJ375nbcE2jOV/iRAD9by7x3PRCAgAAAAAAAAAAYL3ya9+GyNLSUrzyla/cF+rLC/dVKpV9jXeTk5Pxhje8IXbu3Blve9vbejLct+Y5z3lOoXWf/vSnOzwJADDoirSIOTAPhy5136SaqAD4Ho3DAAAAAAAAAADAoRLw66C3vvWt8dWvfnVfcG8j61v7duzYEddff328+c1vjnq9XtKkh++Zz3zmvvkPbPFbT8APANgsAT/ojGTAr8C9B8B9msuL6cZh+xUAAAAAAAAAAGAdAb8OmZ+fjz/8wz/MDb1FxL7wX5Zl8bM/+7NxzTXXxMknn1zSlJtXr9fj4Q9/eO6aLMviuuuuK2kiAGBQzQr4QUfUq1O51wX8AIprNOeTa1LPXQAAAAAAAAAAYLgI+HXIO9/5zrj33nsjIjZs71sL91UqlXjDG94Q73jHO2JsbKzMMdtix44duT9jRMSNN94Yy8v5b7AHAMjTaOWHjKbGJ2NitP/2UtBtGvwA2kfjMAAAAAAAAAAAcKgE/DrkT//0T3Pb+9aH+37u534u3vzmN5c4XXs9/vGPP+j314f+lpaW4sYbbyxrJABgAKUacWYclofDkgqazC00Y3V1taRpAPqbgB8AAAAAAAAAAHCoBPw64POf/3x84xvfiIiDt/etD/f94A/+YLztbW8recL2evjDH15o3de+9rUOTwIADLLUgfnp2lRJk8BgqVfzgyZZlsWuhWZJ0wD0N43DAAAAAAAAAADAoRLw64C/+7u/2/Da+la/ycnJuOyyy2J0dLSMsTrmYQ97WKF1O3fu7PAkAMAgSx2YT4WUgIObKRCOLdJIBYDGYQAAAAAAAAAA4NAJ+HXAxz72sf2CfAdaa+979atfHSeddFKJk3XGkUceGUcccURERO7PLeAHAGyGA/PQGfUC986sgB9AIRqHAQAAAAAAAACAQyXg12Z333133HrrrRFxX5BvvfXht1qtFq95zWtKna2THvzgB9/v5z3Qt771rZKmAQAGUerAfJGQEnB/WydrMVrJ/1fDVIMmAPdJBaI1DgMAAAAAAAAAAAcS8GuzT3/607nX19r7zj777DjqqKNKmqrzjjnmmOSa73znOyVMAgAMoqWV5diz2MpdU9eIA4dlpFKJ6Wr+/ZNq0ATgPnMtjcMAAAAAAAAAAMChEfBrsy9/+cuF1r3oRS/q8CTleuADH7jhtUqlElmWxXe/+90SJwIABkkjcVg+QoMfbEYqIJtq0ATgPhqHAQAAAAAAAACAQyXg12a33XbbQb9fqVT2++unPvWpJU1Ujq1btybXNBqNzg8CAAykuQLtYfWqA/NwuFKBEwE/gDSNwwAAAAAAAAAAwOEQ8GuzjQJ+65188slRr9c7P0yJqtVqcs3CwkIJkwAAg2i2QLhIIw4cvmTAr0CLJsCwK9Q47IUEAAAAAAAAAADAAQT82uyuu+7ar61vvSzLolKpxEknnVTyVJ0n4AcAdFKjlR/wGx8djanxiZKmgcGTCpxo8ANIK/Ks9EICAAAAAAAAAADgQAJ+bbZ3b/ow1/d93/eVMEnvWV5e7vYIAECfSh2Yr1e3bPiSBSCtXpvKvd5o7o0sy0qaBqA/NZoFGvwE/AAAAAAAAAAAgAMI+LVZkYDf1q1bS5ikXM1mM7lmcnKyhEkAgEGUCvjNOCwPm5IKnCytrsTeJY3cAHk0DgMAAAAAAAAAAIdDwK/NWq1Wcs3ExOAd5pqfT7+lfmoqvxUEAGAjyQY/AT/YlHo1fQ+l7kOAYadxGAAAAAAAAAAAOBwCfm1Wq9WSa4q03fWbe+65J7mmyJ8NAMDBNFr5LxOYrnqRAGxGkRZMAT+AfF5IAAAAAAAAAAAAHI6xbg8waKamppJtdnv3Dt7B2DvuuGPDa1mWRUTEtm3byhoHABgwqQPzRcJJwMaKhGQbzXRrN8AwSwf8vJAAAAAAAAAAgN40Uun2BADDTYNfm23Zkj5cfuedd5YwSbl27twZlcrG/6teqVTiwQ9+cIkTAQCDYnV1NeYSDX4acWBzxkZHY9tkfuN2ozV4LyoBaKdU43C9ar8CAAAAAAAAAADcn4Bfm83MzOxrrDuYLMvi9ttvL3Gizrvjjjvi//2//xcRkfuzP/ShDy1rJABggOxeaMZqzh4jQsAP2iHVLJVqpgIYdhqHAQAAAAAAAACAwyHg12YnnHDChtfWGu5uvvnmWFpaKmukjrvuuusKrRPwAwAOx2yiDSdCwA/aIdUsJeAHsDGNwwAAAAAAAAAAwOES8GuzE0888aDfX99st7i4GNdff31ZI3XcP//zPxdad/LJJ3d4EgBgEBUJFc1U85vHgLRU8KTRTIdtAYZVkcbhafsVAAAAAAAAAADgIAT82myjgN+BPvGJT3R4kvL84z/+4752wjxnnHFGCdMAAIMmFfCrVCqxbbJW0jQwuOq1/ODJbEuDH8BGijQOz2jwAwAAAAAAAAAADkLAr80e97jHFVr3v/7X/+rwJOW47rrr4tZbb42I/VsKI2K/0F+9XtfgBwAclkYiVDRdnYqREdta2Kx6NdXgJ+AHsJG5As/IVFMqAAAAAAAAAAAwnJyEbrMf+IEfiFrtvgaZA1vtsiyLSqUSWZbFv/3bv8WNN97YjRHb6tJLL829vvYza+8DAA5Xo5nfiJMKJQHFpJqlmkuLsbC8VNI0AP1ltkDj8HaNwwAAAAAAAAAAwEEI+LXZ2NhYPP7xj79fm93BvP3tby9hos75zne+E1dcccX9gowH86xnPauEiQCAQZRqDZupTZU0CQy2Is1SjVZ+4BZgWGkcBgAAAAAAAAAADpeTRR2QCrOttfj99V//dXzzm98saar2u/jii2Pv3vsOsKUCjT/2Yz9WxkgAwABKBfyKhJKAtOlqOiybuh8BhlW6cdgLCQAAAAAAAAAAgIMT8OuAF73oRRteWx+EW1xcjIsuuqiMkdruhhtuiD//8z/fsL1vLcQYEfHwhz88TjzxxDLHAwAGyKyAH5RipkiDn4AfwEF5IQEAAAAAAAAAAHC4BPw64MQTT4wzzjgjsiw7aABu7ftZlsVVV10VV1xxRRemPHwrKytx/vnnx+LiYkTkt/dVKpX4yZ/8ybJGAwAGTJZlMdfSiANlqI5PRHVsPHeNgB/AwTVaAn4AAAAAAAAAAMDhEfDrkPPPPz+5Zi3k93M/93Nx/fXXlzBVe/zCL/xCXHfddfu19K23PtQ4OTkZF154YZnjAQADpLm0GIsry7lrHJiH9kndT6lGTYBh1WimXkhgvwIAAAAAAAAAABycgF+HXHDBBfGABzwgImLDFr+1a3v27Ikf/dEfjVtvvbXUGQ/HH/zBH8Q73/nOg/5M6621FP7ET/xEHHnkkSVNBwAMmiJhIgE/aJ/U/ZRq1AQYRlmWJRtOZ2oahwEAAAAAAAAAgIMT8OuQarUar371qw/acLdmfcjvzjvvjCc96Unx5S9/uawRD9mb3vSm+PVf//V94b5Ue9/IyEhcdNFFpc0HAAyeRkvAD8qUaphKBVgAhlGRxuFp+xUAAAAAAAAAAGADAn4d9Iu/+Itx9NFHR8TBW/wi9g/53X333XHmmWfGe97zntJmLGLPnj3xkpe8JH77t39737yp4GKlUonzzz8/HvGIR5Q1JgAwgIqEiepVjTjQLvVEw5SAH8D9FWocTgSoAQAAAAAAAKCbKhVfZX4BHEjAr4O2b98ef/iHf5gbhovYP+Q3Pz8fL3vZy+L5z39+3H777WWMmesf/uEf4jGPeUy8973v3Rfc2+jnWR9i3LJlS/zu7/5uWWMCAAOq0ZzPvb51ohrjo2MlTQODL9WIOVugVRNg2My18vcrEREzGvwAAAAAAAAAAIANCPh12Ete8pJ46lOfui8ct5H1Ib8sy+KjH/1oPOxhD4tXvepVsXPnzrLG3ecTn/hEPOMZz4jnPe95cdtttyXDfWvW1r3pTW+KY445pqRpAYBB1UiEiaYTbWPAoUk1TO1uNWNldbWkaQD6Q5F2U3sWAAAAAAAAAABgIwJ+Jbj88svjyCOPjIg4pJDfwsJC/MVf/EWcfPLJ8YxnPCMuu+yyuOuuuzo253XXXRe/9Vu/FQ972MPi2c9+dnzyk5/cF9hLhfvWrlcqlXjGM54Rv/RLv9SxOQGA4ZE6MJ8KIwGHZiYRQMmiWFMVwDCZTexXtkxMxoTGYQAAAAAAAAAAYANOF5XguOOOiyuuuCKe85znJJvw1of81v4+y7L45Cc/GZ/85CcjIuK0006LM844Ix772MfG93//98dDH/rQQnPs3Lkzms1mzM/Px9133x133HFH7Ny5M6677rq47rrrYnZ2dr8ZDpxjI+tDi0cddVS8+93vLjQPAEBKKuA3UxPwg3aqF7inGq29ccTU1hKmAegPqcZhLyQAAAAAAAAAAADyCPiV5FnPelb87u/+bvz6r/96bovfmvXNeWt/v+arX/1q3HjjjfGe97znfr/mYL/P2v896aSTcj9vzfr58oJ969dmWRa1Wi0++MEPxgMf+MDcXwMAUFSjmd8UViSMBBRXKOCXCN4CDJtk43CiHRUAAAAAAAAAABhuI90eYJi89rWvjde//vX3C+9tZK29LyL2rT+w2W/9mpQDf836r41+/zzr146OjsYVV1wRT3rSkwrNAgBQxKwD81CqrRPVGB3J/9fEVPAWYNh4IQEAAAAAAAAAALAZAn4l+53f+Z341V/91f2Ceyl5YbwiQcE1B/t1G4UGi/xea79mZGQk/uIv/iLOOeecQnMAABSxuLwc80sLuWvqVQfmoZ0qlUrUq/nBWQ1+APtrtFIvJLBfAQAAAAAAAAAANibg1wVvectb4o/+6I9i5P9vxiga0FtzsAa+w/11h/p7rJ83y7KYnJyM//k//2dccMEFh/QzAACkzLXSLWEOzEP7pe6rVLMmwLBJBZ+9kAAAAAAAAAAAAMgj4Nclv/zLvxwf/ehHY3p6er9Wvl63Ptx35JFHxsc//vE499xzuzwVADCIioSIBPyg/VL3VaqpCmCYLK4sx97FRONwLb8ZFQAAAAAAAAAAGG4Cfl101llnxRe/+MV42tOetq9Br1eDfuvnyrIsnva0p8WXv/zlePKTn9zlyQCAQVUkROTAPLRfqmkq1VQFMEzmmhqHAQAAAAAAAACAzRHw67ITTjghrr766viLv/iL2LZtW88F/Q4M9tVqtbjkkkviE5/4RBx77LFdng4AGGSpENHk6FjUxiZKmgaGx0wiiFIkzAIwLAq9kCARnAYAAAAAAAAAAIabgF+PeOUrXxm33XZbXHTRRVGtVu8X9Cs77HdgsC8i4vzzz4+vf/3rcdFFF/VE+BAAGGypgF+9tsWeBDog1TTVaM3v+3cEgGFXpNU0FZwGAAAAAAAAAACGm4BfDzniiCPikksu2Rf0O/LIIyPLsoOG/dp9mP1gv3eWZTE+Ph4veclL4rrrrovLL79cax8AUJoiAT+g/aarU7nXl1dXYs9iq6RpAHpbar8yMToWtXGNwwAAAAAAAAAAwMbGuj0A93fMMcfEJZdcEhdffHFcddVVcfnll8cnP/nJWFxcjIjYF8Brd8hvfQvHqaeeGi9+8Yvjla98ZRx99NFt/RwAgCIarfnc66kQEnB4ijRNNZp7Y9tkrYRpAHrbbDO9X9E4DAAAAAAAAECvG/H/2gboKgG/HjY+Ph4vfOEL44UvfGHs3bs3/vmf/zk+9rGPxb/+67/G1772tVhZWbnfrylyaGx9kG/N9u3b44wzzohnPvOZcc4558TDHvawtvwMAACHK9WIUySEBBy6Iu2YjebeeEj9qBKmAehtjZb9CgAAAAAAAAAAsDkCfn1iy5Yt8bznPS+e97znRUREq9WK66+/Pq6//vrYuXNn3HHHHXHHHXfEXXfdFXv27IlmsxmtVisWFhZifHw8pqamolarxdatW+PBD35wPPShD42HPvShcdJJJ8UZZ5wRp556qjfKAwA9JRXwKxJCAg7ddHUqKhFx/9eCfE+qsQpgWMzZrwAAAAAAAAAAAJsk4NenqtVqPOEJT4gnPOEJ3R4FAKDtVldXY26hmbvGgXnojNGRkdhWrcWu1sb34FyisQpgWKQCz/YrAAAAAAAAAABAyki3BwAAgAPNLTQjy/L6wyLqVQfmoVNmEvdXqmETYFg0EoHnem2qpEkAAAAAAAAAAIB+JeAHAEDPKRIemnFgHjpmOtE4lWqsAhgGq6urMddKNPh5IQEAAAAAAAAAAJAg4AcAQM8pEvBLBZCAw5dqnEo1VgEMg11FGoftVwAAAAAAAAAAgAQBPwAAek4qPDRaGYltk7WSpoHhk2qcKhLCBRh0jUR7X4SAHwAAAAAAAAAAkCbgBwBAz2k08w/MT1enYqRSKWkaGD4ziUCKgB9AsWfhTDW/ERUAAAAAAAAAAEDADwCAnpM6MF+vOSwPnZRqnGotL0VrabGkaQB6U2q/MlKpaBwGAAAAAAAAAACSBPwAAOg56YBffvgI2Jwi91ijld+0CTDoUvuV7dWpGBnxn94AAAAAAAAAAIB8ThkBANBzZgX8oKsKBfwS9ynAoEvuV6r2KwAAAAAAAAAAQJqAHwAAPWcu0QxWr06VNAkMpyL3mIAfMOxS+5WZmv0KAAAAAAAAAACQJuAHAEBPybIsGRzS4AedNTk2HrXxidw1qeYqgEFnvwIAAAAAAAAAALSDgB8AAD1l79JCLK2u5K5xYB46L3WfNVoCfsBwSwWdp6v2KwAAAAAAAAAAQNpYtwcAAID1Um04ERF1B+ah42aqW+KuXbMbXm8050ucBqC3ZFmWDDrP1KZKmgYAAAAAAAAANmek0u0JAIabBj8AAHpKkYDfjAY/6Lh6IphS5F4FGFTzS4uxtKJxGAAAAAAAAAAA2DwBPwAAekqRVrDpqkYc6LRUMCXVXAUwyAo1Dgv4AQAAAAAAAAAABQj4AQDQU1Khoa2T1RgbHS1pGhhe09VEwK9AGBdgUBUJOQv4AQAAAAAAAAAARQj4AQDQU1KNODOJ0BHQHjOJYMruhWYsr6yUNA1AbynS4KdxGAAAAAAAAAAAKGKs2wOQtri4GN/85jfj7rvvjnvuuSfuvffeaLVasbCwEAsLC7HSB4dqf/M3f7PbIwAAfSJ1YF4bDpSjXksHU+Za83Hklm0lTAPQW1ItplsmJmNi1H92AwAAAAAAAAAA0pw06jHz8/Pxuc99Lj796U/Hv//7v8eNN94Y3/zmN2N1dbXbo22KgB8AUFTqwLyAH5SjyL0229wr4AcMJS8kAAAAAAAAAAAA2kXArwc0Go340Ic+FO9///vj//yf/xPLy8v7rmVZ1sXJ2qNSqXR7BACgj8y2Ugfm061iwOYVCafMtfIDuQCDqpHar1QF/AAAAAAAAAAAgGIE/Lro5ptvjj/+4z+Ov/mbv4lmsxkR9w/09Xs4bhACigBAuZKNOA7MQym2jE/G+MhoLK2ubLgmdb8CDKrU829Ggx8AAAAAAAAAAFCQgF8X3HvvvfHf//t/j7/6q7+KlZWV/UJwGwX6+jEo1+/hRACgfAvLS9FcWsxdU6RVDNi8SqUS9dqW+M7eXRuumRXwA4ZUo5nfYDqtcRgAAAAAAAAAAChIwK9kH/rQh+LCCy+MRqOxL7R3YBCuH8N8AADt0GjlH5aPEPCDMk1Xp3IDfo2WgB8wnFIBZ43DAAAAAAAAAABAUSPdHmBYZFkWr3rVq+IFL3hBzM7ORpZlUalU9oX7sizb9wUAMKwaBdrA6lWNOFCWmUSgtsg9CzBoFpeXY35pIXdN6vkJAAAAAAAAAACwRoNfCRYXF+O8886Lv//7v98X7Fsj0AcA8D1FwkIOzEN5Uo2ZAn7AMJrTOAwAAAAAAAAAALSRgF+HZVkWL3rRi+LDH/5wRMR+jX0AAOwvFRaqjo1HdXyipGmAZMCvQMgFYNDMFmkcFvADAAAAAAAAAAAKEvDrsNe//vXx4Q9/uG3BvvXtfwAAgyZ1YN5heShXvTaVe32uOR+rWRYj/j0FGCKNVoGAXzX/+QkAAAAAAAAAvcTpH4DuEvDroE9+8pPxlre85bDDfXlhPg2AAMAgmku0gTksD+WqV/NDtSvZauxZaMZ29yYwRFKNwxOjY1HTOAwAAAAAAAAAABQk4NchrVYrfuZnfmbf3x9KIG99sO/AXzc+Ph5HHXVUHHnkkVGr1WJycjJGR0c3PzAAQA9IHZjX4AflKnLPNZp7BfyAoVJkv5L30iYAAAAAAAAAAID1BPw65NJLL41bbrklKpVK4XDfgU1/W7Zsiac//emxY8eOOOOMM+KUU06JhzzkIR2bGQCg2wT8oLcUuedmm/Px0JkShgHoEY1U43BN6BkAAAAAAAAAAChOwK8DlpaW4pJLLin8tvYDg31nnXVW/OzP/mw8+9nPjsnJyY7NCQDQa2ZbAn7QS6Yna8mXljQS9y3AoEm+kKBqvwIAAAAAAAAAABQn4NcBH/7wh+Nb3/pWofa+9eG+Jz3pSfHWt741zjjjjDLGBADoKSurq7G71cxd48A8lGtkZCSmJ2u5bVWpoAvAoNE4DAAAAAAAAAAAtNNItwcYRFdeeWVyTaVS2RcArFQq8Za3vCWuueYa4T4AYGjNteYj/9UIETO1qVJmAb4nFVRpNDcO/wEMonTAz34FAAAAAAAAAAAoToNfmy0uLsY//uM/7mvmO5j1rX1jY2Px3ve+N/7rf/2vZY0IANCTGq10C9i0RhwoXb22JWL2OxteL3LvAgyK1dXVmFvQOAwAAAAAAAAAALSPBr82++IXvxjN5n0HvbJs4w6atea+P/uzPxPuAwCIdBtOhAPz0A31an4TVZF7F2BQ7Fpo5v73noiIGS8kAAAAAAAAAAAADoGAX5t95jOfyb1eqVT2hfue//znxytf+cqSJgMA6G2N5nzu9dGRkdg2WS1pGmBNPRFUEfADhkmhFxII+AEAAAAAAAAAAIdAwK/NvvrVr254rVKp7PvrsbGxeOtb31rGSAAAfSF1YL5endpvPwWUo0jAL9VmBTAoZgs1Duc3nwIAAAAAAAAAAKwn4NdmO3fuzL2+1t73ghe8II4//vhyhgIA6AOpA/PacKA7UvfewspyNJcXS5oGoLsarfz9ykilEtsE/AAAAAAAAAAAgEMg4Ndmt99+e6FmmZ/8yZ8sYRoAgP6ROjAv4AfdUa+m77255nwJkwB0XyPxvJuuTsWIxmEAAAAAAAAAAOAQCPi12e7duw/6/fWhv7GxsfjhH/7hskYCAOgLqYBQXRsOdMVMgXBtI9HACTAoUs87LyQAAAAAAAAAAAAOlYBfm+3du/FBryzLIiLi9NNPj2q1WtZIAAB9wYF56E3TtXS4dlbADxgSycbhAq2nAAAAAAAAAAAA6wn4tdni4mLu9UqlEt///d9f0jQAAP0hy7JotBINfgJ+0BUTo2MxNT6ZuyYVeAEYFI1U43CBUDQAAAAAAAAAAMB6An5ttnXr1uSaBz7wgSVMAgDQP/YstmJ5dSV3jUYc6J6ZRMA2FXgBGBQahwEAAAAAAAAAgHYT8Guz7du3J9ds2eKwFwDAeqnD8hHpgBHQOalGqiL3MEC/y7JMwA8AAAAAAAAAAGg7Ab82KxLwW1nJb6cBABg2RcJBDsxD96Tuv1kBP2AIzC8txpLGYQAAAAAAAAAAoM0E/NrshBNOiCzLctfMz8+XNA0AQH9otPL3R5WI2F6tlTMMcD+pgN9c4h4GGAQahwEAAAAAAAAAgE4Q8GuzRz7ykck13/3ud0uYBACgf6QOzG+brMXYyGhJ0wAHSjVSFQm9APS7Is+66dpUCZMAAAAAAAAAAACDRMCvzVIBvyzL4rbbbitpGgCA/pA6MJ9qDwM6q54IrOxZbMXSynJJ0wB0x2yBgF+9KuAHAAAAAAAAAAAcmrFuDzBozjzzzA2vVSqVyLIsbr755hInAgDofbPN+dzrAn7QXUXuwUZrPh6wZXsJ0wB0R6OVH/DbOlGN8VH/qQ0AAAAAAACA/jNS6fYEAMNNg1+bHX/88XH66adHlmVRqXzvf+WyLNv317t27Yr//M//7MZ4AAA9KXVgPtUeBnRWvVog4Feg2Qqgn815IQEAAAAAAAAAANABAn4d8PznPz+55uqrry5hEgCA/pAKBhUJFwGdM1OkwU/ADxhws6n9ihcSAAAAAAAAAAAAh0HArwNe/OIX72vvW9/itybLsrjyyivLHgsAoGdpxIHeVhufiInRsdw1jVb+fQzQ75KNw15IAAAAAAAAAAAAHAYBvw449dRT47nPfW5kWbbf97Ms2xf4+8IXvhBf+tKXujAdAEBvaS0vRXN5MXeNgB90V6VSSd6HGvyAQZdsHLZfAQAAAAAAAAAADoOAX4f82q/9WnLN7/3e75UwCQBAbysSCqpXp0qYBMiTug8F/IBBlw742a8AAAAAAAAAAACHTsCvQ37wB38wzjnnnP1a+yK+1+KXZVl84AMfiH/913/t4pQAAN1XJBQ0oxEHuk6DHzDMFpeXY34p0ThctV8BAAAAAAAAAAAOnYBfB7397W+P7du3R0TsF/Jbk2VZ/MzP/EzMz8+XPRoAQM8o1OAn4Addl7oPZ5v+vQYYXI2WFxIAAAAAAAAAAACdIeDXQccee2xccsklkWXZft9f3+r3ta99LV72spd1YToAgN4wmwj41cYnYnJsvKRpgI3Ua1O514uEXwD6VZEXEkwL+AEAAAAAAAAAAIdBwK/DLrzwwrjwwgv3C/VFfC/kl2VZfPCDH4xf+IVf6OKUAADdM9fKb/2qV/NDRUA56tX84Mqu1nysrq6WNA1AuYo1DtuzAAAAAAAAAAAAh07ArwTveMc74od/+IdzQ35//ud/Hq94xStiaWmpi5MCAJQvdWC+rg0HesJM4l5czbLYvdAsaRqAcjUSLySYHB2L2thESdMAAAAAAAAAAACDRMCvBKOjo3HVVVfFmWeemRvye/e73x1PecpTYufOnV2cFgCgXLMCftAXityLs4kADEC/KvJCgvX/vQcAAAAAAAAAAKAoAb+SbN++PT7xiU/Es571rH2hvrWDX+tDfp///Ofj9NNPj7e85S3RarW6PDUAQOc1WokD81UBP+gF9epUck0qAAPQrzQOAwAAAAAAAAAAnSLgV6JarRYf+chH4uUvf3lkWbbftfXNfvPz8/H6178+TjjhhHjLW94Sd999dzfGBQAoRaOZ3/jlwDz0hm3VqRhJtFMJ+AGDKtU4PF0gBA0AAAAAAAAAAHAwAn4lGx8fj7/+67+O97znPbFly5aDNvmttfndfffd8frXvz4e8pCHxFlnnRX/43/8j/jSl74Uy8vLXf4pAADaY3llJXYvNHPXzAj4QU8YqVSSARYBP2BQNVr5LySwXwEAAAAAAACgn41UfJX5BXCgsW4PMKje9KY3Jdc897nPjfe97337An4R+4f81v5+eXk5rr766rj66qsj4r6Q4CmnnBIPfehD40EPelBs3749arVajI+Pd+aHaYPf/M3f7PYIAEAPmlvIPywfETFd04gDvaJe25LbYpVquALoV3OJ55vGYQAAAAAAAAAA4HAJ+HXIG9/4xv2Ce3myLDvo3x8Y9FuzuLgYX/nKV+KGG25o07SdJ+AHABxMkbavmaoD89Ar6on7cS7RcAXQj1ZXV2Mu0Tgs4AcAAAAAAAAAABwuAb8OOzC8dzi/dn3Qb/21zfzeZSoadAQAhk+jmQ4DOTAPvSN1PxYJ7QL0m7mFZvK/waQC0AAAAAAAAAAAABsR8OuwVLitSEjvwDUHC/z1qn4JIQIA3ZEKA42PjMaWicmSpgFS6rWp3OuzAn7AACoSXk49HwEAAAAAAAAAADYi4NdhnQi49Utorl9CiABA96TCQNO1KXsK6CHJBr/W3siyzH0LDJRiAT8NfgAAAAAAAAAAwOEZ6fYAAAAMr0Yr/8B8veqwPPSS1D25tLIS80uLJU0DUI7UfmW0MhLbJmslTQMAAAAAAAAAAAwaAT8AALpmrjmfe10bDvSWmQL3ZJGmK4B+0kjsV6arUzGiuRQAAAAAAAAAADhMAn4AAHTNbCIIVK9NlTQJUESRezLVdAXQb1LBZfsVAAAAAAAAAABgMwT8AADomlQQqF7V4Ae9ZLpaIOCnwQ8YMKnn2rT9CgAAAAAAAAAAsAlj3R5g0FUqlW6PAADQk1azLOaa87lrZmoOzEMvGR8di60T1diz2NpwTSNxXwP0m3TjsP0KAAAAAAAAAABw+AT8OizLsm6PAADQk/YsNGMlW81d48A89J56bUsi4KfBDxgsc63UCwnS7aYAAAAAAAAAAAAbEfDrkCc/+cna+wAAchQJAQn4Qe+p16bijrl7N7yearoC6CdZliX3LPYrAAAAAAAAAADAZgj4dcinPvWpbo8AANDTGok2nAgH5qEX1av592WjJeAHDI69SwuxtLqSu8Z+BQAAAAAAAAAA2IyRbg8AAMBwSrXhVCJi+2StnGGAwmYSQZa5Zjq8C9AvCjUOJ4LPAAAAAAAAAAAAeTT4AQDQFakD89urUzE64n0U0GtSTVWzBcIwAP2iUMCvNlXCJAAAAAAAAADQOSOVbk8AMNycmAYAoCtmEy1fqRAR0B2pe3N+aSEWl5dLmgagsxoFWkk1+AEAAAAAAAAAAJsh4AcAQFc0WvmNOPWqNhzoRUXuzdT9DdAvUs+zrZPVGBsdLWkaAAAAAAAAAABgEAn4AQDQFY1m/oH5GQ1+0JOKtGum7m+AfpHcr2jvAwAAAAAAAAAANknADwCArkgdmC8SIgLKJ+AHDJPU82y6pnEYAAAAAAAAAADYHAE/AAC6otGaz70+rREHelJtfCImx8Zz18w28+9vgH7RSDzP6vYrAAAAAAAAAADAJgn4AQBQuubSYiwsL+WumdGIAz2rXs2/P+daGvyAwdBIPM9mNA4DAAAAAAAAAACbJOAHAEDpGs10+KfuwDz0rFSgpcg9DtAPUs8z+xUAAAAAAAAAAGCzBPwAACidgB/0t+nE/Tkr4AcMgMXl5ZhfWsxdY78CAAAAAAAAAABsloAfAAClKxL+cWAeele9mmjwa82XNAlA58y2CuxXqlMlTAIAAAAAAAAAAAwyAT8AAEo3lwj/TI1PxsToWEnTAIdqppYfaCnS0gnQ6zQOAwAAAAAAAAAAZRDwAwCgdKkD8/VEeAjorlSgZVdrPlZWV0uaBqAz5gT8AAAAAAAAAACAEgj4AQBQutlkwM9heehlqXs0i4hdC81yhgHokNlmfuPw5Nh41MYnSpoGAAAAAAAAAAAYVAJ+AACUrtFKBPyqAn7Qy4qEcFNNnQC9Lr1f0TgMAAAAAAAAAABs3li3BwAAYPg0Eo04Mxr8oKcVCeEK+AH9LvUc0zgMAAAAAAAAwKCoVLo9AcBw0+AHAEDpHJiH/rZ1shqjlfx/nRTwA/qd/QoAAAAAAAAAAFAGAT8AAEq1tLIcexZbuWvqtamSpgEOx0ilEtOJ+3RWwA/oc41WfuNwkTZTAAAAAAAAAACAlLFuD0B/O+KII5JrKpVK3HvvvSVMAwD0g7nEYfkIB+ahH9SrW+L/ze/Z8HqjJeAH9LdUg9+MFxIAAAAAAAAAAABtMNQBvxNPPDG5plKpxK233lrCNP2p0WhEpVKJLMs2XFOpVEqcCADodY1mgYBfTcAPet1M4j6dK3CvA/SqldXV2JVq8LNfAQAAAAAAAAAA2mCoA37f+MY3hNPaZKM/p7w/WwBgOM0m2nAiHJiHflBPNFcVudcBetWu1nyk/ovGtMZhAAAAAAAAAACgDYY64Leml8Jpo6OjyTWVSiWWl5dLmAYAoP0arfzQz/joaEyNT5Q0DXC4UkHc1L0O0MtmCzzDZhJBZwAAAAAAAAAAgCIE/HpMvzbeHWxu7YcAwME0Eq1e9eoW+wjoA/VEc1WjOR9Zlrmfgb4015xPrtE4DAAAAAAAAAAAtMNItwfoBVmW3e+rmyqVyoZfAAD9rpE4MD/jsDz0hVSwZXl1JfYuLpQ0DUB7pV5IMFoZia2TtZKmAQAAAAAAAAAABpmAX4/qtdAhAEC7pA7MT9emSpoE2Ix6gXs1db8D9KrZAvuVES9iAgAAAAAAAAAA2kDADwCAUjVa+Qfm61UNftAPUg1+ERGzifsdoFel9yteSAAAAAAAAAAAALSHgB8AAKVKNXrNFAgNAd03XZ2KVHfVXHO+lFkA2q2ReH4VCTkDAAAAAAAAAAAUIeAHAEBpVldXY67lwDwMgrGR0dg2WctdM5sI9AL0qtQLCexXAAAAAAAAAACAdhHwAwCgNLsXmrGaZblrHJiH/jFdm8q9ngrIAPSqRisR8KvarwAAAAAAAAAAAO0h4AcAQGkaifa+CAE/6CepgEsqIAPQi7Isi0Yzf88yY78CAAAAAAAAAAC0iYAfAAClKdLmVa/mN4IBvSMVcNHgB/SjvYsLsby6krsm1WAKAAAAAAAAAABQlIAfAAClmU2EfSqVSmyfrJU0DbBZqcZNAT+gHxV7IYEGPwAAAAAAAAAAoD0E/AAAKE2jlX9gfro6FSMjtqjQL5IBv9Z8SZMAtE9qvxKRbjAFAAAAAAAAAAAoyulpAABK02jmh3204UB/SQX8mkuLsbC8VNI0AO2R2q9E3PdSAgAAAAAAAAAAgHYQ8AMAoDSNZn4jzkzNYXnoJ/UCAZfUfQ/Qa2YTz61tk7UYGx0taRoAAAAAAAAAAGDQCfgBAFCaRiv/wHyqDQzoLUXu2VRQBqDXpILJRcLNAAAAAAAAAAAARQn4AQBQmkZzPvf6dFXAD/pJkYBfo5V/3wP0Gi8kAAAAAAAAAAAAyjTW7QEAABgOWZYlG3FmahpxoJ9Ux8ajNjYRzeXFDdek7nuAXjOXeCGBgB8AAAAAAAAAg0ZzFEB3eQ4DAFCK5tJiLK4s565xYB76Tz0RzBXwA/rNbLLBzwsJAAAAAAAAAACA9hHwAwCgFLMFQj4CftB/UvdtIxGUAeg1qWByvWq/AgAAAAAAAAAAtI+AHwAApSgS8hHwg/6TDPg150uaBGDzFpaXorm0mLvGfgUAAAAAAAAAAGgnAT8AAEoxVyDkU69OlTAJ0E6p+zbVhAXQS4o8swT8AAAAAAAAAACAdhLwAwCgFLOJA/NbJiZjfHSspGmAdkk3+An4Af2j0fJCAgAAAAAAAAAAoFwCfgAAlKLRyg/5aMOB/pS6d3ctNGN5daWkaQA2p0goecaeBQAAAAAAAAAAaCMBPwAASpE6MF+vOiwP/ahIOHeuQCMWQC9I7VeqY+NRHZ8oaRoAAAAAAAAAAGAYCPgBAFCK1IF5bTjQn2YKhHPnmgJ+QH+YTexXpqtTJU0CAAAAAAAAAAAMCwE/AABK0UgEfIq0gAG9p8i9mwrMAPSKRssLCQAAAAAAAAAAgHIJ+AEAUIpUwKde04gD/WjLxGSMjYzmrkkFZgB6Rapx1AsJAAAAAAAAAACAdhPwAwCg4xZXlmN+aSF3Tb3qwDz0o0qlEvVqfkC3ocEP6BOp55WAHwAAAAAAAAAA0G4CfgAAdFyqDSfCgXnoZ6n7V8AP6BezicZR+xUAAAAAAAAAAKDdBPwAAOi42QLhHgfmoX+lA37pkC9At62srsbuVjN3TaqxFAAAAAAAAAAA4FCNdXsAAAAGXyPRhhMRUa85MA/9KnX/FnkGAHTbXGs+ssQaLyQAAAAAAAAAYBCNVLo9AcBw0+AHAEDHNRINfpOjY1EbmyhpGqDd6tVUg5+AH9D7ir2QQMAPAAAAAAAAAABoLwE/AAA6LhXuqde2RKXiFUDQr2YSgZdGaz6yLNWLBdBdRcLIqUAzAAAAAAAAAADAoRLwAwCg4xqt+dzr07WpkiYBOiF1D6+srsbuhVZJ0wAcnkYzf78yWhmJrZPVkqYBAAAAAAAAAACGhYAfAAAdl2zw04YDfa2eaPCLiGi00s1YAN2U2q9M16ZiROMwAAAAAAAAAADQZgJ+AAB0XOrA/EyBcBDQu2YKhHRTzwGAbpv1QgIAAAAAAAAAAKALBPwAAOi4ZIOfgB/0te3VqUh1Wgn4Ab1urjWfe90LCQAAAAAAAAAAgE4Q8AMAoKNWV1djbqGZu0bAD/rb6MhIbK9O5a5pJIIzAN2WfiFB/nMOAAAAAAAAAADgcAj4AQDQUXMLzciyLHdNvSrgB/0uFdTV4Af0utRzatp+BQAAAAAAAAAA6AABPwAAOmquQKhHIw70v3qqwU/AD+hhWZYlm0ZnNA4DAAAAAAAAAAAdIOAHAEBHzRYK+DkwD/1Ogx/Qz/YstmJ5dSV3jf0KAAAAAAAAAADQCQJ+AAB0VKOVH+oZrYzEtslaSdMAnZIKvhQJ+wJ0y1wzv70vQuMwAAAAAAAAAADQGQJ+AAB0VCNxYH66OhUjlUpJ0wCdUq8mGvxa6fAMQLfMJl5IEKHBDwAAAAAAAAAA6Iyxbg/QD17xild0e4T76cWZAAAOppFo7dKGA4NhJnEvLywvRWtpMarjEyVNBFBcar8SETE9ac8CAAAAAAAAAAC0n4DfBrIs2/d/3/3ud3flszf6fjdmyrPRvAAAEUUCftpwYBAUuZdnm3vjWAE/oAel9ivbJmsxNjpa0jQAAAAAAAAAAMAwEfAroBcDbL04EwDAwTRa87nXp6sCfjAIpgsE/Bqt+Th2+0wJ0wAcGo3DAAAAAAAAAAyzkUq3JwAYbgJ+BVQq5f2vVdHgXpkz5RE0BABSUgfmZxyYh4EwUyCsm3oeAHRL6oUEdS8kAAAAAAAAAAAAOkTAr4BeDLH14kwAAAfKsqxAI44D8zAIJsbGYmp8IuaXFjdcI+AH9Kr0CwnsVwAAAAAAAAAAgM4Y6fYAAAAMrr1LC7G0upK7RsAPBkfqfhbwA3pV6vk0rXEYAAAAAAAAAADoEAE/AAA6pkiYp14V8INBkQz4teZLmgTg0DSa+c8n+xUAAAAAAAAAAKBTBPwAAOiYIgG/GQ1+MDBSARgNfkAvai0vRXN5MXeN/QoAAAAAAAAAANApAn4AAHRMqg0nImK6OlXCJEAZUgEYAT+gF80VaRwW8AMAAAAAAAAAADpEwA8AgI5ptPIPzG+drMbY6GhJ0wCdNl3LD+zOJp4JAN0wK+AHAAAAAAAAAAB00Vi3B+gFlUql2yMAAAykVFvXTNVheRgk9cQ9vWehFcsrK4K9QE9ptNKNw3WNwwAAAAAAAAAAQIcI+EVElmXdHgEAYCClAn7acGCwzBS4pxutvXHUlu0lTANQTGq/Uh0bj+r4REnTAAAAAAAAAAAAw2aoA35PfvKTtfcBAHRQo5nfiCPgB4OlyD3daM4L+AE9xQsJAAAAAAAAAACAbhrqgN+nPvWpbo8AADDQZlupA/NTJU0ClKFQwC/xXAAoW+q5JOAHAAAAAAAAAAB00ki3BwAAYHDNpRpxqg7MwyCZGp+I8dHR3DWppiyAsiUbh+1XAAAAAAAAAACADhLwAwCgIxaXl2N+aTF3jUYcGCyVSiUZhBHwA3pN6rmkcRgAAAAAAAAAAOiksW4PAADAYJptpUM8An4weOq1LfGdvbs2vD6baMoCKFs64Ge/AgAAAAAAAMBg0xwF0F2ewwAAdESRlq56VSMODJpU05UGP6CXLK+uxK6FZu6aVDMpAAAAAAAAAADAZgj4AQDQEUVCPDMacWDgpIIwjQLtngBl2dXKD/dFRMwkgssAAAAAAAAAAACbIeAHAEBHpAJ+1bHxqI5PlDQNUJZUcHeuOV/SJABphRqHvZAAAAAAAAAAAADoIAE/AAA6otHKD/FMV7XhwCBKBWHmWvOxmmUlTQOQb7ZAwG860UwKAAAAAAAAAACwGQJ+AAB0RKoRJ9XyBfSnVMBvJVuN3QvNkqYByNdo5e9XRkdGYttktaRpAAAAAAAAAACAYSTgBwBAR6QCfqkQENCf6gXaOVPPB4CyJPcr1amoVColTQMAAAAAAAAAAAwjAT8AADpCwA+GU5F7W8AP6BWN5nzudfsVAAAAAAAAAACg0wT8AADoiNmWgB8Mo+2TtWTb1ayAH9AjGvYrAAAAAAAAAABAlwn4AQDQdiurq7G71cxdU686MA+DaGRkJKarU7lr5lr5jVkAZUk2DieeZwAAAAAAAAAAAJsl4AcAQNvtas1HllhTrzkwD4MqFeBNBWoAypIM+GnwAwAAAAAAAAAAOkzADwCAtpttpcM7DszD4JpJBHhnBfyAHpBlWTQSjaL2KwAAAAAAAAAAQKcJ+AEA0HZF2rlSDV9A/5pOBGIaBULAAJ22Z7EVK6uruWvsVwAAAAAAAAAAgE4T8AMAoO0azfw2nNGRkdg2WS1pGqBsqUBM6hkBUIYiLySY0eAHAAAAAAAAAAB0mIAfAABtlzowX69ORaVSKWkaoGwztanc643m3siyrKRpAA6uSMBvOvE8AwAAAAAAAAAA2CwBPwAA2m42FfDThgMDLXWPL64sR3NpsaRpAA5uNtEmWomI6aqAHwAAAAAAAAAA0FkCfgAAtN1cK//AfL0q4AeDrEiIt5F4TgB0WqOV/0KCbZO1GBsZLWkaAAAAAAAAAABgWAn4AQDQdo1kg582HBhkhQJ+iecEQKfNaRwGAAAAAAAAAAB6gIAfAABtlw74OTAPg2y6mg7xCvgB3TbbTDQO268AAAAAAAAAAAAlEPADAKCtsiyLRsuBeRhmE6NjsWViMnfNrIAf0GWNVuKFBAXCygAAAAAAAAAAAJsl4AcAQFvtWWzF8upK7pp6VcAPBl0qyJsK1gB0msZhAAAAAAAAAACgFwj4AQDQVqnD8hERMw7Mw8BLBXmLPCsAOknADwAAAAAAAAAA6AVj3R4AAIDB0mjNJ9dM16ZKmAToplSQt9FMPysAOqW1tBit5aXcNQJ+AAAAAAAAAAyLkUql2yMADDUNfgAAtFWqDacSEdNVAT8YdKlgTKOlwQ/oniIvJKjbrwAAAAAAAAAAACUQ8AMAoK1SAb9tk7UYGxktaRqgW+qJps7UswKgk4o8gzT4AQAAAAAAAAAAZRDwAwCgrVIH5h2Wh+FQr+bf63sXF2JxZbmkaQD2J+AHAAAAAAAAAAD0CgE/AADaarY5n3vdYXkYDkXu9bnE8wKgU2YTAb/a2ERUx8ZLmgYAAAAAAAAAABhmAn4AALRVo5Vq8JsqaRKgm4oE/FIBG4BOmWulXkhgvwIAAAAAAAAAAJRDwA8AgLaaSwR26lUNfjAMioRjUoFggE5ppPYrGocBAAAAAAAAAICSCPgBANBWjWaqEceBeRgGtbGJmBwdy12TCgQDdEqqQXTaCwkAAAAAAAAAAICSCPgBANA2reWlaC4v5q4R8IPhUKlUkvf7bCIQDNApqQbRmQItpAAAAAAAAAAAAO0g4AcAQNs0CrRx1asOzMOwmE4EZFIBG4BO0TgMAAAAAAAAAAD0CgE/AADapkjAb8aBeRga9Wr+/V7kmQHQbsurK7F7oZm7RsAPAAAAAAAAAAAoi4AfAABtUySsM+3APAyNVKBXwA/ohrlWfntfhIAfAAAAAAAAAABQHgE/AADappE4MF8bm4jq2HhJ0wDdlgrICPgB3VDk2VOvTpUwCQAAAAAAAAAAgIAfAABtlDowX685LA/DJBXwm1toxurqaknTANyn0dTgBwAAAAAAAAAA9I6xbg8AAMDgSAf8HJaHYVKv5t/zWZbFroWmZwNQqtR+ZWxkNLZOVEuaBgAAAAAAAAC6b6TS7QkAhpsGPwAA2mZWwA9Yp0hrZypoA9BujVZiv1KdikrF/+cCAAAAAAAAAAAoh4AfAABtkz4wL+AHw6RIqDcVDAZoN43DAAAAAAAAAABALxHwAwCgbRrN+dzrDszDcNk2WYvRSv6/dqaCwQDtltqvTBdoHwUAAAAAAAAAAGgXAT8AANpieXUldi80c9fUHZiHoTJSqcR0Nf++TwVtANot1RyqcRgAAAAAAAAAACiTgB8AAG0x10qHdDT4wfBJBXsbiaANQLulmkNn7FcAAAAAAAAAAIASCfgBANAWRUI6MxpxYOikgr2poA1AO61mWfKlBF5IAAAAAAAAAAAAlEnADwCAtmg0NfgB95cM+BV4dgC0y56FVqysruauSTWPAgAAAAAAAAAAtJOAHwAAbZFq8BsfGY0tE5MlTQP0ino1PyhTpP0ToF2KtIbWNQ4DAAAAAAAAAAAlEvADAKAtZhMhnenaVFQqlZKmAXpFusFvb2RZVtI0wLArEirWOAwAAAAAAAAAAJRJwA8AgLaYSzTiaMOB4ZQKyiytrsTepYWSpgGGXSrgV4mI6UTzKAAAAAAAAAAAQDsJ+AEA0BaN5nzudW04MJyKhHuLNGoBtEOjlb9f2VatxeiI/1wGAAAAAAAAAACUx4klAADaYjYR0KnXtOHAMJopEO6dSwSEAdolFSie0TgMAAAAAAAAAACUTMAPAIC2aLQSAT8H5mEoTVfT4d5UQBigXVIBv2mNwwAAAAAAAAAAQMkE/AAA2LTVLEs2cBVp8QIGz9joaGydrOauSQWEAdolFfDTOAwAAAAAAAAAAJRtrNsDAADQ//YsNGMlW81dUxfwg6E1U90SexZaG15PBW4A2iXVGKpxGAAAAAAAAIBhVKl0ewKA4abBDwCATWu08tv7IiKmNeLA0EoFfAX8gLLMJfYsGocBAAAAAAAAAICyCfgBALBpRcI5MxpxYGilA37pkDDAZrWWFqO1vJS7RuMwAAAAAAAAAABQNgE/AAA2LRXwq0TE9qoGPxhW9USDZ6OlwQ/ovNkCLySYtl8BAAAAAAAAAABKJuAHAMCmpQJ+26tTMTpi6wnDqp5o8CzSAgqwWY1Wui10RoMfAAAAAAAAAABQMqesAQDYtNlm/oH5usPyMNRSz4D5pcVYXF4uaRpgWBUJE9uzAAAAAAAAAAAAZRPwAwBg0xqt/APz9epUSZMAvahIYGY28RwB2KxUwK82PhGTY+MlTQMAAAAAAAAAAHAfAT8AADZtLnFgXhsODLciId8izVoAm5F8IYH9CgAAAAAAAAAA0AUCfgAAbNqsgB+QY6bAM0DAD+i0RnM+97rGYQAAAAAAAAAAoBsE/AAA2LRGK3VgXsAPhll1fCKqY+O5a1LBG4DNSgWJvZAAAAAAAAAAAADoBgE/AAA2pbm0GAvLS7lrZmoacWDYpYIzjZYGP6CzkgE/LyQAAAAAAAAAAAC6QMAPAIBNSR2Wj9CIAxQI+BV4lgBsRrJx2H4FAAAAAAAAAADoAgE/AAA2RcAPKKJezW/yFPADOml5ZSV2LzRz18zYrwAAAADw/7F379GSVuWd+J+qc6s6fTl1uDUYBVFu4h1UwICQIHEkEI2JRokzggqOmRnHmTE6E11jnGiWGXU0cTlR0UjUKEaXLoUEdVAHRyMQlEhQ7toRhUZoTlVfTtW5VNXvD39eQPrd7zl96q3b57NWr5VQu/t92qS2m+79fb8AAAAA0AcCfgAA7JdUG05ERK3iwjyMOw1+QD81cpxX5qrZQWQAAAAAAAAAAIBemOz3AAAADLdUKGd2ajqmJx07YdylAn4LLQE/oHcWcoSI572QAAAAAAAAAIAxpTkKoL/swwAA7JdUwC8V6gHGQ6rJc3erGe1Op6BpgHFTzxEidmYBAAAAAAAAAAD6QcAPAID9kmrEcVkeiIiYr85mft6NiF2txWKGAcZOo5m9v0yVJ2LT9ExB0wAAAAAAAAAAAPycgB8AAPsl1YiTau0CxkOesO9CjoYtgPVIvZBgrjobpVKpoGkAAAAAAAAAAAB+TsAPAID9Uk804sxr8AMiYi5H2LeeCOAArJcXEgAAAAAAAAAAAINKwA8AgP2SujA/V50taBJgkG2ZqcREOftfQVOBYYD1SgWI87SMAgAAAAAAAAAA9IKAHwAA67babseepVbmGo04QEREqVSKWiU78KvBD+iVVIC45oUEAAAAAAAAAABAnwj4AQCwbqn2voiIeY04wP8v1ZC1IOAH9EjqzOKFBAAAAAAAAAAAQL8I+AEAsG6pNpyIdKAHGB+p/aDRSu8pAGvV6XajkTizeCEBAAAAAAAAAADQLwJ+AACsW562LQE/4KdSDVl1DX5AD+xZaka728lcM1edLWgaAAAAAAAAAACABxLwAwBg3eqt7DDO1MREzE5NFzQNMOhSDVkCfkAv5NlbvJAAAAAAAAAAAADoFwE/AADWrZG4MF+rbIpSqVTQNMCgSzVk1VuL0e12C5oGGBf11mJyzXyiYRQAAAAAAAAAAKBXBPwAAFi3hWb2hXltOMAvqiUCNKudduxZbhU0DTAuUg1+pYjYWskOIAMAAAAAAAAAAPSKgB8AAOuWujBfS7R1AeNlPkfoN7WvAKxVal/ZWpmNibI/IgMAAAAAAAAAAPrD7SUAANat3koE/BJtXcB4ydPqWW9lN4MCrFWycVh7HwAAAAAAAAAA0EcCfgAArFuqESdPWxcwPuYqs1FKrNHgB2y05AsJnFcAAAAAAAAAAIA+EvADAGBdOp1ONBJNWy7MA79oolyOLZVq5hoBP2CjNRL7ivMKAAAAAAAAAADQTwJ+AACsy+7lVnS63cw1c5XZgqYBhkWtkh2kEfADNtqCgB8AAAAAAAAAADDABPwAAFiXPCGceRfmgQdJBWkWmtnNoABrVU81DieCxwAAAAAAAAAAAL0k4AcAwLrkCfhpxAEerFbNbvastzT4ARunubIcS6srmWtS+xIAAAAAAAAAAEAvCfgBALAuC4mAX6lUiq0z1YKmAYZFqikrT3gYIC8vJAAAAAAAAAAAAAadgB8AAOuSatmaq8xGuey4CTzQfCJI02guFjQJMA7qrfSeIuAHAAAAAAAAAAD002S/BwAAYDjVEyGcVEsXMJ5SQZrm6nK0VleiMjlV0ETAKMvV4FeZLWASAAAAAAAAABhc5VKp3yMAjDWVKgAArEvqwnyt6rI88MvmcgRp8gRyAPJI7SfVqemYESgGAAAAAAAAAAD6SMAPAIB1qbdSAT8NfsAvm8+xNwj4ARsl/UIC5xUAAAAAAAAAAKC/BPwAAFiXenMx8/NaxYV54JflCdMI+AEbZSGxn8w7rwAAAAAAAAAAAH0m4AcAwJp1u91kAGe+OlvQNMAwmZmciurUdOaaVCAHIK9GK/FCAucVAAAAAAAAAACgzwT8AABYs+bKciy3VzPX5GnpAsZTan9IBXIA8kq9kMB5BQAAAAAAAAAA6DcBPwAA1ixPu5YL88C+zFey94dUIAcgr4VW9n4yl9iPAAAAAAAAAAAAek3ADwCANcvTrlVzYR7Yh1p1NvPzPCFigJTVdjv2LLUy18x7IQEAAAAAAAAAANBnAn4AAKxZnnatuUSABxhfqcaseqJxCyCPPHtJKnAMAAAAAAAAAADQawJ+AACsWapda9P0TExPTBY0DTBsaonGrHoz3RIKkJJnL0ntRwAAAAAAAAAAAL0m4AcAwJqlGnFclgeyzCf2iN1LzVhttwuaBhhV+Rr8nFkAAAAAAAAAAID+EvADAGDN6okGv1rFZXlg32rV2eSaRkuLH7B/UueVqfJEbJqaKWgaAAAAAAAAAACAhybgBwDAmqUuzKfauYDxlqcxK0/zFkCW1HllrjobpVKpoGkAAAAAAAAAAAAemoAfAABrVk80a83laOcCxleugF9Tgx+wfxYS+4jGYQAAAAAAAAAAYBBM9nsAAACGT6oRx4V5IMumqZmYKk/ESqe9zzWpfQYgpZFoAtU4DAAAAAAAAAA/oTkKoL/swwAArMlyezX2Li9lrnFhHshSKpWSTZ8LAn7Afkq+kMB5BQAAAAAAAAAAGAACfgAArEmjuZhc48I8kJJq+qwnmrcAUuqJM8tcJTtoDAAAAAAAAAAAUAQBPwAA1iRPq5aAH5CSavpMNW8BZOl0u9FoZQf8NA4DAAAAAAAAAACDQMAPAIA1ydOqVatqxAGypYLAqeYtgCy7l5rR7nYy13ghAQAAAAAAAAAAMAgE/AAAWJNGolVremIyqpPTBU0DDKtkwC9HmBhgX1LnlQgBPwAAAAAAAAAAYDAI+AEAsCYLiVatWnVTlEqlgqYBhlWtkt302WguRqfbLWgaYNSkzisRAn4AAAAAAAAAAMBgEPADAGBNUq1atWp2aAcgIh2saXc7sWepWdA0wKhJnVdKEbF1plrMMAAAAAAAAAAAABkE/AAAWJN6MxHwq2jDAdLyNGel9huAfUntH1srszFR9sdiAAAAAAAAAABA/7nJBADAmqQuzM/nCO0A5An4LTQXC5gEGEXJFxI4rwAAAAAAAAAAAANCwA8AgDVxYR7YCHMz1SiVSplrGi0NfsD61FvZAeFaZbagSQAAAAAAAAAAALIJ+AEAkFun04nGUjNzzZwL80AO5XI55maqmWtSgWKAfdE4DAAAAAAAAAAADAsBPwAActu11Ixut5u5xoV5IK9U4+dCM7uBC2BfUgG/OecVAAAAAAAAAABgQAj4AQCQW542rVRgB+CnUo2f9ZYGP2Dtut1u8sxSqzivAAAAAAAAAAAAg0HADwCA3BYE/IANlGr8zBMqBniw5upyLLVXM9fMV7MDxgAAAAAAAAAAAEWZ7PcAAAAMj1Sb1kSpHFtmqgVNAwy7VCBYwA9Yj0ZzMbnGCwkAAAAAAAAA4OfKpVK/RwAYaxr8AADIrZ64MD9XmfUv+kBueQJ+3W63oGmAUZEnHCzgBwAAAAAAAAAADAoBPwAAcktdmJ+rzhY0CTAKUgGbpfZqtFZXCpoGGBULeQJ+FQE/AAAAAAAAAABgMAj4AQCQW72VfWHeZXlgLfLsGXmauAB+Ueq8Mjs1HdOTkwVNAwAAAAAAAAAAkE3ADwCA3OrNxczPU21cAL+olqP1U8APWCvnFQAAAAAAAAAAYJgI+AEAkFsqaDOfI6wD8FN5QjYLAn7AGqXOKwJ+AAAAAAAAAADAIBHwAwAgl26368I8sKGmJyZjdmomc029JeAHrE1q36hVnFcAAAAAAAAAAIDBIeAHAEAue1eWYqXTzlwj4Aes1Xxi36g3FwuaBBgVqX2jpnEYAAAAAAAAAAAYIAJ+AADk0sgRstGIA6xVKmiTag4FeDCNwwAAAAAAAAAAwDAR8AMAIJc8IRuNOMBapYI29ZaAH5DfSns19iy3Mtd4IQEAAAAAAAAAADBIBPwAAMhlIU/Az4V5YI1S+0Y9R3sowE81Wuk9Y16DHwAAAAAAAAAAMEAE/AAAyCXVorV5phKTExMFTQOMimSDX45wMcBP5QkFp/YdAAAAAAAAAACAIgn4AQCQSypkM6+9D1iHWnU28/M9y61Yaa8WNA0w7PI0Ds8l9h0AAAAAAAAAAIAiCfgBAJBLKuCnDQdYjzx7R72VbuQCiEg3Dk+VJ2LT1ExB0wAAAAAAAAAAAKRN9nsAAACGQypgM1fRhgOsXS1H+2ejuRgHb9pawDTAsMvzQoJSqVTQNAAAAAAAAAAwHMr+Kh2grzT4AQCQS+rC/LwGP2Ad8uwdC4n9B+Cn6s3sFxJoHAYAAAAAAAAAAAaNgB8AALnkacQBWKvq1HRMT2SXy9dbAn5APunzisZhAAAAAAAAAABgsAj4AQCQtLy6Gosry5lrBPyA9SiVSjFXyQ7cpAI7AD+VCgTXKs4rAAAAAAAAAADAYBHwAwAgaSFHe5aAH7Be84n9Q8APyEvjMAAAAAAAAAAAMGwE/AAASMoTrqklGrgA9iUVuBHwA/LodDrRaC1mrqlVnVcAAAAAAAAAAIDBIuAHAEBSI0/ATyMOsE6p/WOhmR3YAYiI2L3cik63m7mmVnFeAQAAAAAAAAAABouAHwAASalwzczkVFSnpguaBhg1qUatRkuDH5CWp+1z3gsJAAAAAAAAAACAASPgBwBAUj0RrqlVssM5AFlSjVqN1mJ0Op2CpgGGVZ6A35yAHwAAAAAAAAAAMGAE/AAASEpdmNeGA+yPWmIP6XS7sXupWdA0wLBaSJxXSqVSzM1UC5oGAAAAAAAAAAAgHwE/AACSUgG/VDgHIEuePWShtVjAJMAwSzUOz81Uo1z2R2EAAAAAAAAAAMBgcasJAIAkAT+gl+Yrs8k1qX0IoNHMDgI7rwAAAAAAAAAAAINIwA8AgKR6ojmrliOcA7AvWyqzUS6VMtcI+AEpC15IAAAAAAAAAAAADCEBPwAAMrU7ndiVCvi5MA/sh3KpFHOJoHC9JeAHZEvtE15IAAAAAAAAAAAADCIBPwAAMu1qLUY3sUbAD9hfqX2k3swOGgOk9gnnFQAAAAAAAAAAYBAJ+AEAkGkhR2uWC/PA/qpVUgE/DX7AvnW73eQ+4bwCAAAAAAAAAAAMIgE/AAAy5QnVpII5ACm16mzm5wJ+QJbm6nIst1cz1wj4AQAAAAAAAAAAg0jADwCATPXmYubnE+VybJ6pFDQNMKpSwZsFAT8gQ+q8EuGFBAAAAAAAAAAAwGAS8AMAIFOqNWuuMhvlUqmgaYBRlQr41Vt7o9vtFjQNMGxyNQ4nmkIBAAAAAAAAAAD6QcAPAIBM9Vb2hXltOMBGSO0lK+12NFeWC5oGGDb5An7OLAAAAAAAAAAAwOAR8AMAIFO9uZj5+bzL8sAGyLOXLOQI8ADjKbU/zE7NxPTEZEHTAAAAAAAAAAAA5CfgBwBAplQjTq06W9AkwCjLs5ekGkWB8dVoeSEBAAAAAAAAAAAwnLy6HACATOmAnwvzwP6bq+QI+GnwA/bBCwkAAAAAAAAAYP00RwH0l30YAIB96na7UU804gj4ARthamIyNk9XMtfUm9n7ETC+FhIBv7mK8woAAAAAAAAAADCYBPwAANinvctLsdppZ66puTAPbJBUYFiDH7Av9Vb2/jDvhQQAAAAAAAAAAMCAEvADAGCf8oRpatXZAiYBxkFqP0k1dAHjK3Vm0TgMAAAAAAAAAAAMKgE/AAD2aSHRhhPhwjywcVKNoI0cexIwflbaq7F3eSlzjRcSAAAAAAAAAAAAg0rADwCAfUq14ZQiYq7iwjywMeYTgeF6c7GgSYBhUm+l9wYvJAAAAAAAAAAAAAaVgB8AAPuUCvhtmanGZHmioGmAUTeXaNhaSOxJwHhKnVci0g2hAAAAAAAAAAAA/SLgBwDAPqUuzGvDATZSKoCzuLIUy6urBU0DDItcAT9nFgAAAAAAAAAAYEAJ+AEAsE/11mLm53OV7LYtgLWYzxHAqbe0+AEPlAr4TU1MxOzUdEHTAAAAAAAAAAAArI2AHwAA+5S6MJ8njAOQV56GrTxNXcB4Sb2QoFbZFKVSqaBpAAAAAAAAAAAA1kbADwCAfUoFafKEcQDyyhXwSwR5gPHjhQQAAAAAAAAAAMAwE/ADAGCf6s1EI44L88AGqk5Nx8zkVOYaDX7Ag6X2hbnqbEGTAAAAAAAAAAAArJ2AHwAAD6m1uhLN1eXMNQJ+wEarVbKDOAJ+wIMtpF5IUHFeAQAAAAAAAAAABpeAHwAADylPiCYVxAFYq1RwWMAPeLB6K3tfmPdCAgAAAAAAAAAAYIBN9nsAAAAGU66AnwvzwAZL7SsLAn7AL+h0OrGrlWjwc14BAAAAAAAAgEzlUqnfIwCMNQ1+AAA8pHrisnyEC/PAxqtVEg1+OfYmYHzsXmpGp9vNXOO8AgAAAAAAAAAADDIBPwAAHlKqwa86OR2VyamCpgHGxXx1NvPzhgY/4Bcs5HkhQSV7XwEAAAAAAAAAAOgnAT8AAB5SKuBXS4RwANYj1bTVWGpGp9MpaBpg0KXOKxEa/AAAAAAAAAAAgMEm4AcAwENKB/xclgc2Xmpv6Xa70VhqFjQNMOhS55VSqRRbZ6oFTQMAAAAAAAAAALB2k/0eAKDf7rzzzvjCF74QN9xwQ3z3u9+N73//+7F79+7YtWtXdLvd2LJlS2zZsiUOP/zwOP744+Pxj398nHXWWXH00Uf3e/SRsGPHjvjKV74SN954Y9xyyy1x2223xcLCQuzevTv27NkTk5OTP/u/wfz8fBx11FFxzDHHxDHHHBNPfvKT4/jjj49SqdTv3waMpAUBP6APapV0O2i9uTfm7UFARNRb2eeVucpslMvebwUAAAAAAAAAAAwuAT9gLNXr9fjABz4QH/nIR+KGG27IXLtz587YuXNnbN++Pb761a/+7J8fffTRcd5558UrX/nK2LZtW69HHim33357fPCDH4zLL788brzxxsy1q6ur0Wq14t57742IiG9+85sP+PyAAw6IU089NZ7xjGfEOeecE8cee2zP5oZx02gtZn5eqwjXABsvT3g41dgFjI9603kFAAAAAAAAAAAYbl5hDoyVPXv2xOte97p4+MMfHn/4h3+YDPdlue222+JNb3pTHH744XHRRRfFfffdt4GTjqYvfOELceaZZ8YxxxwTb33rW5Phvjzuv//++NznPhevec1r4rjjjovjjz8+3vCGN8Qtt9yyARPDeEsFaGrVdMsWwFptnqnGRCn7X1UF/ICfcl4BAAAAAAAAAACGnYAfMDY+97nPxWMe85j4n//zf8bevRt3KXx5eTkuvvjiOPbYY+NDH/rQhv26o+Sf/umf4qyzzop/9a/+VXz5y1+Obrfbs2fddNNN8Za3vCXe/e539+wZMA5WO+3YtdTMXJOnZQtgrcqlUswlAjkLAn7A/y8d8HNeAQAAAAAAAAAABpuAHzDyOp1OvOENb4jnPve58cMf/rBnz7n//vvjpS99aVx00UWxvLzcs+cMk3a7HX/yJ38ST33qU+PKK6/s9zjAGjRai8k1LswDvVKrZO8vefYoYDykAr+p/QQAAAAAAAAAAKDfJvs9AEAvtdvteNGLXhSf/OQnC3vmxRdfHLfeemv8/d//fczOZrfPjLIdO3bE85///Pja177W71GAdUi14UREzLswD/TIfCJAnGePAkZft9tNBn7nE42gAAAAAAAAAAAA/abBDxhZnU4nzj///ELDfT911VVXxW//9m/H0tJS4c8eBLfffns8/elPF+6DIVZvavAD+mcuEchJNXYB46G5shzL7dXMNc4rAAAAAAAAAADAoNPgB4ys17/+9fHRj350TT/n6KOPjl/91V+Nxz3ucXHAAQdEqVSKhYWFuOmmm+Ib3/hG3Hjjjbl/rS9+8Ytx4YUXxoc//OG1jj7UbrjhhjjrrLPixz/+cb9HAfZDvZUdnpksT8Sm6ZmCpgHGTS3REJrao4DxkCfsO6dxGAAAAAAAAAAAGHACfsBIuuKKK+LP/uzPcq9/znOeE3/0R38UT3va0zLX3XjjjfG2t70tPvrRj0an00n+uh/5yEfi9NNPj5e97GW5ZxlmP/jBD+LZz372msN9Bx10UJxxxhlx2mmnxXHHHRePetSj4oADDohNm35yGbder0e9Xo+FhYW4+eab49vf/nZ8+9vfjuuvvz7q9XoPfidAPXFhvlaZjVKpVNA0wLiZTzRu1ZuL0e127UMw5vKEfVP7CQAAAAAAAAAAQL8J+AEjZ+fOnfFv/s2/iW63m1x7wAEHxEc+8pE4++yzc/3aj3vc4+Kv//qv45WvfGW84AUviDvvvDP5c/7Df/gPcfrpp8dRRx2V6xnDql6vx9lnnx133XVX7p/zW7/1W3HRRRfFs571rJic3Pd/JW3bti22bdsWEREnn3zyz/756upqfP3rX4/LLrss/u7v/i5uvvnm9f8GgAdIBvxclgd6KLXHrHbasXd5KTbPVAqaCBhEqfNKRMRcdbaASQAAAAAAAAAAANav3O8BADba61//+rjvvvuS6x7+8IfHtddemzvc94tOPvnkuO666+L4449Prm02m/Gf/tN/WvMzhs3LXvay+M53vpNr7SmnnBLXXXddfPazn43f/M3fzAz3ZZmcnIzTTz893v72t8dNN90U1113Xbz0pS+N2VmXeGF/1ZuLmZ8L+AG9VMsRyMnT3AWMttR5ZdP0TExPeLcVAAAAAAAAAKSUo+RHgT8AHkzADxgp119/fVx88cXJdXNzc3HllVfGox/96HU/65BDDokvfelL8fCHPzy59vLLL4+///u/X/ezBt0HPvCB+PSnP51cVy6X481vfnP8v//3/+LEE0/c8DlOPPHE+OAHPxg/+tGP4vzzz9/wXx/GyUKywU+QFuidPCHiPM1dwGhLBX29kAAAAAAAAAAAABgGAn7ASHnTm94UnU4nue7iiy+OY489dr+fd+ihh8bHPvaxmJiYSK594xvfuN/PG0Tf//7349WvfnVy3czMTHziE5+I17/+9bn+89oftVotnvKUp/T0GTDqkhfmKy7MA70zV8nR4Jdo7gJGXyroW8uxlwAAAAAAAAAAAPSbgB8wMm655Zb43Oc+l1z3nOc8J57//Odv2HNPO+20eMUrXpFcd91118WXv/zlDXvuoHjNa14Te/dmX6wtl8vx0Y9+NH73d3+3oKmA/dHpdqPRyg7OzGvEAXposjwRW2aqmWtSTaPA6EsG/JxXAAAAAAAAAACAISDgB4yM//W//ld0u93MNZOTk/H2t799w5/9P/7H/4itW7cm173jHe/Y8Gf301VXXRWf/vSnk+ve/OY3C/fBENmz1Ip2og11rqoRB+itWmKfSQV7gNGXavIU8AMAAAAAAAAAAIaBgB8wEpaWluITn/hEct3v/M7vxFFHHbXhzz/wwAPj5S9/eXLdF77whbjnnns2/Pn98trXvja55rTTTovXve51BUwDbJR6Kx2acWEe6LVaJXufybNXAaMttQ+k9hEAAAAAAAAAAIBBIOAHjITLL788Go1Gct2rX/3qns3wqle9Ksrl7G213W7HpZde2rMZivTVr341rr322sw1ExMT8d73vjf5nwswWPK0Ys27MA/02HwiSKzBD8bbcns19i4vZa5J7SMAAAAAAAAAAACDQOICGAkf//jHk2uOOuqoOPnkk3s2wxFHHBGnnXZacl2eWYfBO97xjuSal7zkJXH88ccXMA2wkVKhmVJEbK3MFjMMMLZSTaH11mJBkwCDqNFM7wFzVecVAAAAAAAAAABg8An4AUOv3W7HlVdemVz3e7/3ez2f5YUvfGFyzT/+4z/Gzp07ez5LL/3Lv/xLXHbZZcl1f/iHf1jANMBGSwX8tlZmY0IzJ9BjyYCfBj8Yaws59oCaxmEAAAAAAAAAAGAIuJkNDL1rr702Go1Gct2zn/3sns+S5xmdTie+9KUv9XyWXrr00kuj2+1mrvn1X//1OO644wqaCNhIqVasVOgGYCPUEk2hzZXlWFpdKWgaYNDUW+mA37wzCwAAAAAAAAAAMAQE/IChlycst2XLljjppJN6PssRRxwRRx11VHLd//k//6fns/TSpZdemlxz3nnnFTAJ0AupVqxU6AZgI+QJE2vxg/HVSHz/pycmozo1XdA0AAAAAAAAAAAA6yfgBwy9b3zjG8k1J510UkxOThYwTcRpp52WXHPNNdcUMElv3HHHHfFP//RPmWvK5XKcc845xQwEbLhkwE8bDlCAPHvNgoAfjK2FZrpxuFQqFTQNAAAAAAAAAADA+gn4AUPv+uuvT6454YQTCpjkJ0488cTkmptuuimWlpYKmGbjXXnllck1T3rSk2Lbtm0FTAP0QiowI+AHFCFXg18rO+ADjK56S+MwAAAAAAAAAAAwGgT8gKF2zz33xN13351cN2gBv9XV1fjnf/7nAqbZeF/5yleSa0455ZQCJgF6JRWYqVUE/IDeq0xORXVyOnNNQ4MfjC2NwwAAAAAAAAAAwKiY7PcAAPvjhhtuyLXuuOOO6/EkP3fsscfmWnfDDTfEU57ylB5Ps/Guuuqq5JqTTjqpgEmAXmiuLMfS6krmmvmqRhygGLXqbDR3L+/z81TjKDC6BPwAAAAAAAAAYOOUS/2eAGC8CfgBQ+173/ternVHHXVUjyf5ufn5+TjggAPi/vvvz1yXd/ZBcuedd8aOHTuS644//vjkmp07d8YVV1wRV199ddx4443x/e9/PxqNRuzZsyemp6djdnY2DjzwwDjyyCPj0Y9+dDztaU+LU045JY455piN+K0A+5C6LB/hwjxQnFp1U9y9u77Pz+stAT8YV8nGYS8kAAAAAAAAAAAAhoSAHzDUvv/97yfXHHroobFpU7FhlKOOOiquvfbazDV5Zh803/nOd3KtO/roox/yn3c6nbj88svjL/7iL+L//t//G+12+yHXNZvNaDabsXPnzrj11lsjIuJ//+///bNf+/nPf368/OUvjyOPPHIdvwsgS+qyfETEnIAfUJC5SvZ+U2+m9yxg9HQ6nWikAn6J/QMAAAAAAAAAAGBQlPs9AMD+2L59e3LNwx72sN4P8iCHHXZYcs2oBvwOPPDA2Lp16y/98yuvvDIe97jHxXOe85z40pe+tM9wX8ptt90Wf/qnfxpHH310/N7v/V7cdttt6/p1gIeWp8Fv3oV5oCDziQauPHsWMHp2LTWj2+1mrtE4DAAAAAAAAAAADAsBP2Co/ehHP0quOfTQQwuYZO3P/OEPf1jAJBvrpptuSq455JBDHvC/7927N1784hfHWWedlevn59Vut+Nv//Zv43GPe1y84Q1viJWVlQ37tWGcpcIys1PTMT2pBBooRiqgI+AH4ynPd1/ADwAAAAAAAAAAGBYCfsBQ27lzZ3LNtm3bCpjkgfIE/O6///4CJtlYd955Z3LNwQcf/LP/+Y477oiTTjop/uZv/qZnMy0vL8db3vKWeMYznpFrPiBb6sK8y/JAkVJ7zu6lZqx21tcKDAyvhVyNw9kNoAAAAAAAAAAAAINCwA8YankCfrVarfeDrOOZe/fujaWlpd4Ps4F27NiRXPPT3/sdd9wRp59+enznO9/p8VQ/cfXVV8fJJ5+8oS2BMI5SF+YF/IAipfacbkTsajWLGQYYGI3WYubn5VIptgj4AQAAAAAAAAAAQ0LADxhqCwsLyTVbtmwpYJL1PXPYWvzuvvvu5Jrp6em455574td+7dfiRz/6UQFT/dxdd90Vz3jGM4T8YD+kLszXKgJ+QHHmc+w5qeZRYPSkvvdzldkol0oFTQMAAAAAAAAAALB/Jvs9AMB6NZvNWFlZSa7rR8Bv69atudY1Go047LDDejzNxuh2u7kaEycmJuKFL3xh3Hnnncm1W7dujdNOOy0e//jHxxFHHBGbN2+O1dXVqNfrcfvtt8c111wT119/fbTb7dxz3nfffXHuuefGNddcEwceeGDunwf8ROrCfK2qDQcozlyOPSfVPAqMntT3fs4LCQAAAAAAAAAAgCEi4AcMreXl5VzrqtVqjyf5ZZVKJde6vL+HQdBqtaLT6STXffazn41Wq5W55uSTT47Xvva1cc4558TU1FTm2h07dsSHP/zhePvb3x733ntvrlnvuOOOePGLXxxXXHFFrvXAzy20UgE/F+aB4myersRkeSJWO/sO+9cT+xYwelLf+3kvJAAAAAAAAAAAAIaIgB8wtPKG4yYmJno8yS+bnMy3vQ5bwG9/19VqtXj3u98dL37xi3M/99BDD43Xvva18cpXvjJe85rXxPvf//5cP+/zn/98XHzxxXHhhRfmftaoOPXUU3P//yC9853vfKffI6zZarsde5ayv+s1jThAgUqlUtQqs3Hf4u59rkk1jwKjp95czPzcCwkAAAAAAAAAAIBhUu73AADrlTcc14+gU95nrqys9HiSjbO0tLRfP//II4+Mq6++ek3hvl+0ZcuWeN/73hcf+MAHcoc2/+t//a/RaDTW9TwYR3lasOZdmAcKlgrqCPjB+El97wX8AAAAAAAAAACAYaLeBxhaq6urudYJ+G2M/WkbPOyww+JLX/pSHHnkkfs9x8te9rKYmJiICy64ILn2/vvvj7e97W3x5je/eb+fO0y+9rWvxcEHH9zvMRhCqTacCBfmgeIlA36t9N4FjI5ut5t8KUGtMlvQNAAAAAAAAAAAAPtPgx8wtPKG6Nrtdo8nWf8z+xE+XK+8rXkP5UMf+tCGhPt+6vzzz4+XvOQluda+5z3viWazuWHPhlGWp8FPwA8oWq2aHdTR4AfjZXFlOVYS/77lvAIAAAAAAAAAAAwTAT9gaE1PT+dal7fpbyPlbebL+3sYBOud9eUvf3k861nP2uBpIt71rnfFwx72sOS6er0el1566YY/H0ZRKiQzVZ6I2anh2beA0VCrJBr8BPxgrOT5zgv4AQAAAAAAAMDalEslPwr8AfBgAn7A0Jqamsq1rh8Bv7zPHPWA36ZNm+Jtb3tbD6aJqNVq8da3vjXX2o997GM9mQFGTerCfK26KUr+xRIoWCqoU28tRrfbLWgaoN8E/AAAAAAAAAAAgFEj4AcMrZmZmVzrWq1WjydZ/zOHKeCX9z/vX3TeeedFrVbb+GH+fy94wQvioIMOSq776le/Gnv27OnZHDAqFpqLmZ+7LA/0Q606m/l5u9OJ3UvFn/eA/qi3cgT8Ktn7BgAAAAAAAAAAwCCZ7PcAwHD5/ve/H9dcc01Pn7Fp06Y499xzk+uq1WpMTk4m2/J27969UaPllveZW7du7fEkG6dSqcTU1FSsrKzk/jn/9t/+2x5O9JPQ4fnnnx9vf/vbM9ctLy/HVVddFb/5m7/Z03lg2KUb/FyWB4qXJ1xcb+2NrZVqAdMA/VZPvJBg0/RMTE344y4AAAAAAAAAAGB4uPEErMlVV10VF1xwQU+fccQRR+QK+EVEzM/Px7333pu5ZteuXRsx1prkfeYBBxzQ40k21oEHHhg7duzItfbII4+ME044occTRfzu7/5uMuAXEXHdddcJ+EFCqhGnVtHgBxRvPsfe02jujailW32B4Zd+IYHzCgAAAAAAAAAAMFzK/R4AYH8ceOCByTWNRqOASdb+zNnZ2ahUKgVMs3Hy/Of9UyeddFIPJ/m5Jz3pSTE9PZ1c961vfauAaWC4NRKNOPMuzAN9sLUyG6XEmoXE/gWMjoVUwM8LCQAAAAAAAAAAgCEj4AcMtTyBs3vuuaeASR4oT8vdWsJyg2IQA34zMzPxxCc+MbnujjvuKGAaGF6dbjcareyAzFx1tqBpAH5uolyOrZXs/SfVQAqMjtT33QsJAAAAAAAAAACAYSPgBwy1X/mVX0muyRO222h5npln9kGzlpmf8IQn9HCSB8oT8PvhD39YwCQwvHYvNaPd7WSu0YgD9EstFfBLNHoBoyPVOFwT8AMAAAAAAAAAAIaMgB8w1B75yEcm19x11129H+RB7r777uSaI488soBJNtajHvWo3GsPOOCAHk6y9mc1Go1YWloqYBoYTnnCMRpxgH5JBXYE/GB8LCS+73OJQDAAAAAAAAAAAMCgEfADhlqekNyOHTticTG75WGj3X777ck1ox7wq9VqvRtknc8q+v8PYJjkCcdoxAH6RcAPiIhYXl2NxZXsl3Z4IQEAAAAAAAAAADBsBPyAoZYncNbtdnMF7jZKvV6PnTt3JtetJSw3KB796EfnXivgB8Ml1YZTKpVi60y1oGkAHigZ8Gv573gYB/WWFxIAAAAAAAAAAACjR8APWJPzzz8/ut1uT39s37499zyPf/zjc627+eab1/k7Xru8z8o7+yB5whOekHttqVTq4ST9exaMqkYiHDNXmY1y2dER6I9aRYMfoHEYAAAAAAAAAAAYTW5pA0PtsMMOi23btiXXfetb3ypgmvzPmpycXFNYblDMz8/nbh6s1+u9HeYXLCws5Fo3Ozvb40lgeKUuzNcqvj9A/8xXs/eg1upKtFaWC5oG6Jc8bZ21xH4BAAAAAAAAAAAwaAT8gKF3wgknJNcUGfD75je/mVxz3HHHRaVSKWCajXfiiSfmWpc3dLcR8oYJN23S5gH7spAK+GnDAfpoLscelNrHgOGXeiHB9MRkVCenC5oGAAAAAAAAAABgYwj4AUPvlFNOSa65+uqrY3V1tYBpIr761a8m15x00kkFTNIbT3/603Otu//++3s8ydqedeCBB8b0tMu+sC/1loAfMLjy7EF5mr2A4ZZsHK5uilKpVNA0AAAAAAAAAAAAG0PADxh6Z555ZnLN7t2749prr+35LD/4wQ/i9ttvT64766yzej5Lr/zGb/xGrnU33HBDjyf5uW9/+9vJNYcffngBk8DwqjezgzG1ioAf0D/zOfagVPAHGH7pgN9sQZMAAAAAAAAAAABsHAE/YOg97WlPi61btybXXXHFFT2fJc8zSqVSrlDioDr++OPj4Q9/eHLdNddcU8A0EUtLS7kCfscee2wB08Bw6na7yQvz8y7MA300PTkZs1PZTbwCfjD6FlIBPy8kAAAAAAAAAAAAhpCAHzD0JicncwXmPvGJT/R8lksvvTS55ilPeUocdNBBPZ+ll84+++zkmquvvrqASSKuv/76WF5eTq576lOfWsA0MJyaq8ux3F7NXFOrujAP9FdqH6q3BPxg1DVa2Y3D884rAAAAAAAAAADAEBLwA0bCi170ouSa2267raetcj/4wQ/iq1/9anJdnlkH3e///u8n12zfvj2+9a1v9XyWT33qU7nWnXLKKT2eBIZXvZl9WT4iYk4jDtBnyYBfjr0MGG6pps45jcMAAAAAAAAAAMAQEvADRsK5554bW7duTa5717ve1bMZ/uIv/iI6nU7mmnK5HC984Qt7NkNRTjvttDjyyCOT6/7yL/+yp3O0Wq245JJLkusOOuigeNrTntbTWWCYpS7LR2jEAfqvVskO7uTZy4Dh1el0orHUzFxT80ICAAAAAAAAAABgCAn4ASOhUqnEC17wguS6T33qU3H77bdv+PN37twZF198cXLdb/zGb8Rhhx224c8vWqlUigsuuCC57uMf/3gsLCz0bI5PfOITsXPnzuS6c889NyYmJno2Bwy7PKEYjThAv6Ub/AT8YJQ1lprR7XYz13ghAQAAAAAAAAAAMIwE/ICR8Z//83+OUqmUuWZ1dTVe85rXbPiz//t//++xa9eu5Lr/8l/+y4Y/u1/+3b/7d7FpU/YF2r179/bs97ywsBD/7b/9t1xrX/ayl/VkBhgVC4lQzKbpmZiemCxoGoCHlgr4LbQE/GCU5QnxpvYJAAAAAAAAAACAQSTgB4yMxzzmMXHOOeck1332s5+NT37ykxv23K997Wvxvve9L7nuhBNOiGc+85kb9tyIiO3bt0epVEr+OOOMMzb0uRERBxxwQLziFa9IrvvQhz4UV1xxxYY//1WvelXcfffdyXVPfvKT41d/9Vc3/PkwSuqJUIzL8sAgqFWy96I9S61YbbcLmgYomoAfAAAAAAAAAPRO2Y9CfwA8mL0BGClvfOMbo1xOb20XXnhh3Hrrrfv9vB07dsR5550X7RyXyf/4j/94v583aF772tfG3Nxcct0FF1wQ3/ve9zbsuR/84Afjox/9aK61o/ifO2y0RnMx8/NUqAagCPM5gjuNVvZ+Bgyv1AsJyqVSbJmpFjQNAAAAAAAAAADAxhHwA0bKiSeeGC996UuT6xqNRpx55pn7FTq7995745nPfGbceeedybXPfvaz49xzz133swbVtm3b4k/+5E+S6+65554488wz45ZbbtnvZ37gAx/I1RwYEXH66afHb/3Wb+33M2HULSQacWrV2YImAdi3PM1cqf0MGF71xAsJ5iqzUS6VCpoGAAAAAAAAAABg4wj4ASPnT//0T+PAAw9MrvvhD38YT3va0+KKK65Y8zOuueaaeMpTnhLf+c53kmsrlUr8+Z//+ZqfMSz+4A/+IJ7ylKck123fvj1OPvnk3M17D7Z79+54xSteERdeeGGuxsTZ2dl4//vfv65nwbhJNeLkCdUA9FqevSi1nwHDq558IYHzCgAAAAAAAAAAMJwE/ICRc/DBB8cll1wSpRztDTt37oyzzz47nve858V1112XXP/d7343Lrjggnj6058eP/jBD3LN8+d//udx9NFH51o7jCYmJuITn/hE1Gq15Np6vR7/+l//6zjllFPi05/+dKysrCR/zj333BN/9md/Fo9+9KPXFNh717veFcccc0zu9TDOkhfmKy7MA/03OzUdU+WJzDWp/QwYXs4rAAAAAAAAAADAqJrs9wAAvXDOOefEa17zmnjb296Wa/1nPvOZ+MxnPhPHHHNMnHrqqfHYxz42DjjggCiVSrGwsBA333xzfOMb34gbbrhhTXOcd955cdFFF63ntzBUHvWoR8WHP/zheM5znhPdbje5/uqrr47f+Z3fibm5uTjttNPiCU94Qhx++OGxefPmaLfbsbCwEHfccUdcc8018c1vfjNXY98vetWrXhUXXnjhen87MFaW26uxd3kpc828RhxgAJRKpahVN8W9e3ftc42AH4yuemsx83MNfgAAAAAAAAAAwLAS8ANG1lvf+tb44Q9/GB//+Mdz/5xbb701br311g15/plnnhl/9Vd/tSG/1jA499xz4/3vf39cdNFFuUJ+ERGNRiMuv/zyuPzyyzdsjhe+8IXxzne+c8N+PRh1jWb2ZfkIF+aBwZEK+C3k2NOA4ZRs8KvOFjQJAAAAAAAAAADAxir3ewCAXimXy/HhD384nve85xX+7FNPPTU++9nPxszMTOHP7qeXv/zl8b73vS/K5f7818srXvGK+Ju/+Zu+PR+GUb2VbrsS8AMGRSrA08ixpwHDp9vt5gj4Oa8AAAAAAAAAAADDSQICGGmTk5PxyU9+Ml73utcV9swLLrggrrzyyti0aTwvmF544YXx+c9/Pg488MDCnjkzMxPvec974r3vfa9wH6xR6rJ8REStohEHGAy1Svb5Ks+eBgyfvStLsdJpZ65J7Q8AAAAAAAAAAACDSgoCGHnlcjne+ta3xmc+85l42MMe1rPnzM/Px8UXXxx/9Vd/NXbNfQ921llnxbe+9a04++yze/6sU045Ja655pr4gz/4g54/C0ZRKgwzPTEZ1anpgqYByDafaOiqNxcLmgQoUiPHdzu1PwAAAAAAAAAAAAwqAT9gbDz3uc+Nm2++OV7zmtdsaLve9PR0vOxlL4tbbrklXv7yl2/YrzvsDj/88Pi7v/u7uOyyy+Lxj3/8hv/6xx9/fHzkIx+Jr3/96/HEJz5xw399GBcLiQvzteqmKJVKBU0DkG2umt0o2mgtRqfbLWgaoCi5GocT+wMAAAAAAAAAAMCgEvADxsqWLVvibW97W9x5553x1re+NR772Meu+9d69KMfHW94wxti+/bt8YEPfCAOPvjgDZx0dJxzzjlxww03xFe+8pV4wQteEFu3bl33rzU3NxcvfvGL4/Of/3zceOON8eIXv1jwCPZTvZV9Yd5leWCQ1CrZL2lodzuxe6lZ0DRAURZyBPzmKs4sAAAAAAAAAADAcJrs9wAA/TA/Px+ve93r4nWve138y7/8S3zxi1+Mb3/72/Hd7343tm/fHrt27Yrdu3dHt9uNLVu2xJYtW+IRj3hEHH/88fH4xz8+nvnMZ8Zxxx3X799GPPKRj4zukLTUnHHGGXHGGWfE6upqfP3rX4+vf/3r8d3vfjduueWW2LFjR+zevTv27t0bpVIpNm3aFHNzc3H44YfHkUceGU984hPjlFNOiRNPPDGmp6f7/VuBkZJqxEmFaQCKNF9N70n15l5BHxgxqRcSbJ6uxNSEP+ICAAAAAAAAAACGk9tPwNg74ogj4sILL+z3GGNjcnIyTj/99Dj99NP7PQoQEfXmYubnecI0AEWp5Qz4HTGvWRlGSfKFBM4rAAAAAAAAAADAECv3ewAAAPon1YgzV9WCBQyOrTPVKJVKmWvqrezgMjB8Ui8kqDmvAAAAAAAAAAAAQ0yDHwDAmOp0OtFIBGFqFY04wOAol8sxV5nNbPNKNX0Bwyf1QgLnFQAAAAAAAADYP+XES7cB6C0NfgAAY2rXUjO63W7mmvmqC/PAYKlVspu6BPxg9KS+1zXnFQAAAAAAAAAAYIgJ+AEAjKk8IRgX5oFBk9qXFgT8YOSkA37ZwV8AAAAAAAAAAIBBJuAHADCm8oRgBPyAQZPal+otAT8YJcurq7G4spy5plZxXgEAAAAAAAAAAIaXgB8AwJhqtBYzPy+XSrFlplrQNAD5pII89Wb23gYMlzyh3XkvJAAAAAAAAAAAAIaYgB8AwJiqJxr85iqzUS6VCpoGIJ/56mzm543m3uh2uwVNA/Ra6rwSoXEYAAAAAAAAAAAYbgJ+AABjaiFxYd5leWAQpfampfZqNFeXC5oG6LU8Ab+5RPAXAAAAAAAAAABgkAn4AQCMqXorEfCrCPgBgydP+LjeXCxgEqAIC4nv88zEZFQnpwuaBgAAAAAAAAAAYOMJ+AEAjKlUAEaDHzCI8oSP8zR+AcMh+UKC6qYolUoFTQMAAAAAAAAAALDxBPwAAMZUKgAzX50taBKA/OZy7E0CfjA6GonvsxcSAAAAAAAAAAAAw07ADwBgDHW73VyNOACDZnpiMjZNz2SuWRDwg5GR+j47rwAAAAAAAAAAAMNOwA8AYAwtrizHSruduWau4sI8MJhSgZ5UgBkYHvXWYubntYrGYQAAAAAAAAAAYLgJ+AEAjKF6jnareY04wICqJQLIjWZ2IAgYHqkziwY/AAAAAAAAAABg2An4AQCMoTwBv1pVIw4wmFIB5IUcexww+NqdTuxKNfgJ+AEAAAAAAAAAAENust8DAABQvDzhl1RDFkC/zCUCyPWWgB+Mgl1Lzegm1jivAAAAAAAAAMD+K0ep3yMAjDUNfgAAYygVftk8U4nJiYmCpgFYm1SgJ09LKTD48nyX5zUOAwAAAAAAAAAAQ07ADwBgDDWai5mfz2vDAQbYfDV7j9q7vBTL7dWCpgF6JU/Aby6xHwAAAAAAAAAAAAw6AT8AgDG0kLgwP6cNBxhgtRyBnlSQGRh8qYDfRKkcW2aqBU0DAAAAAAAAAADQGwJ+AABjqN7KvjBf0+AHDLA8Ab/UPgcMvuQLCSqzUS6VCpoGAAAAAAAAAACgNwT8AADGUKoRZz5HeAagX2o5WkZT+xww+Bqt7CbOPHsBAAAAAAAAAADAoBPwAwAYQ6ngS552LIB+qU5Ox8zEZOYaAT8Yfs4rAAAAAAAAAADAOBDwAwAYM8urq7G4spy5xoV5YJCVSqWYS+xTC83s5i9g8C0kAn5zFecVAAAAAAAAAABg+An4AQCMmXor3Wol4AcMulp1NvPzPHsdMNhS3+P5xD4AAAAAAAAAAAAwDAT8AADGTD3RhhMRUau4MA8MtlqiuSvPXgcMrm63G/VEE6cXEgAAAAAAAAAAAKNAwA8AYMzkCvi5MA8MuPnEPpUKBgGDbe/KUqx22plrnFcAAAAAAAAAAIBRIOAHADBmFhKhl5nJqahOTRc0DcD6pII99ZYGPxhm+RqHBfwAAAAAAAAAAIDhJ+AHADBmUqGXWmW2oEkA1i8V8Gu0FqPT6RQ0DbDR8jUOO7MAAAAAAAAAAADDT8APAGDMpC7MzydCMwCDIBVG7na7sWupWdA0wEarJxqHIzT4AQAAAAAAAAAAo2Gy3wMAAFCsVMAv1YoFMAjy7FX15l57GgyphcR5ZfNMJSYnJgqaBgAAAAAAAABGW7nU7wkAxpsGPwCAMVNvZTfizGnDAYZAnuBeKiAEDK5GK9E47LwCAAAAAAAAAACMCAE/AIAxk2rwm6/OFjQJwPptmanGRCn7X2nriYAQMLg0DgMAAAAAAAAAAONCwA8AYIy0O53YlWjwc2EeGAblUinmKtmB5EYze78DBlc98f1Nff8BAAAAAAAAAACGhYAfAMAY2dVajG5ijYAfMCxqicbRhUQDGDC4FhINnPPOKwAAAAAAAAAAwIgQ8AMAGCOpy/IRAn7A8JirZO9X9Rx7HjCY6omArvMKAAAAAAAAAAAwKgT8AADGSKO5mFxTSwRmAAZFKuBTz7HnAYNnaXUlmivLmWsE/AAAAAAAAAAAgFEh4AcAMEZSbTgTpXJsnqkUNA3A/pmvzmZ+ntrzgMFUb+V4IYGAHwAAAAAAAAAAMCIE/AAAxshCIuwyV52NcqlU0DQA+yfd4Lc3ut1uQdMAGyVPOLdWyQ74AgAAAAAAAAAADAsBPwCAMVJvZV+Yr1W04QDDIxXwW+m0Y3FluaBpgI2SK+CnwQ8AAAAAAAAAABgRAn4AAGOk3lzM/HzeZXlgiOQJJecJCgGDJfW9nZmciurUdEHTAAAAAAAAAAAA9JaAHwDAGEldmK9VZwuaBGD/5QklC/jB8Km3sl9IUKs4rwAAAAAAAAAAAKNDwA8AYIzUW6mAnwY/YHjM5Qj5LAj4wdBJBXM1DgMAAAAAAAAAAKNEwA8AYEx0u92oN1ONOC7MA8NjcmIiNs9UMtekgs3A4EkF/OYE/AAAAAAAAAAAgBEi4AcAMCb2Li/FaqeduUaDHzBs5hPB5FRQCBg8qe+tFxIAAAAAAAAAAACjRMAPAGBM5Am51KqzBUwCsHFSweRUcykweBYSzZvzzisAAAAAAAAAAMAIEfADABgTqcvyERr8gOGTDPjl2PuAwdHudGJ3q5m5xnkFAAAAAAAAAAAYJQJ+AABjItXgV4qIuYpGHGC4pJpH87SXAoNjV2sxuok1An4AAAAAAAAAAMAoEfADABgT9eZi5udbZqoxWZ4oaBqAjVGrJBr8BPxgqORqHPZCAgAAAAAAAAAAYIQI+AEAjIlUyGUu0YIFMIhSTV6LK8uxvLpa0DTA/soTytXgBwAAAAAAAAAAjBIBPwCAMVFPNOKkWrAABlGeoE+eRjBgMKQahydK5dg8Uy1oGgAAAAAAAAAAgN4T8AMAGBOpRpx5bTjAEKpV0u2jeRrBgMGQp3G4XCoVNA0AAAAAAAAAAEDvTfZ7AAAAipG6MJ+nBQtg0OQJJzcE/GBoaBwGAAAAAAAAgOKVw8t2AfpJgx8AwJioNxczPxfwA4ZRZWo6KpNTmWsWEvsfMDjS55V0aycAAAAAAAAAAMAwEfADABgDrdWVaK4uZ64R8AOG1VwlO/CTagQDBofGYQAAAAAAAAAAYNwI+AEAjIFG4rJ8REQtEZABGFTzicBPKjAEDI5kwK8i4AcAAAAAAAAAAIwWAT8AgDGwkCfgpxEHGFKp/UvAD4ZDt9uNemsxc00q0AsAAAAAAAAAADBsBPwAAMZA6rJ8hIAfMLwE/GA07F1eitVOO3ON8woAAAAAAAAAADBqBPwAAMZAKtxSnZyOyuRUQdMAbKxkwC9HyBnovzxh3LnKbAGTAAAAAAAAAAAAFEfADwBgDKQuzNeqLssDw6tWyQ747WotRrvTKWgaYL0WWumA37wGPwAAAAAAAAAAYMQI+AEAjIF64sJ8qv0KYJDNJ0LK3fhJyA8YbBr8AAAAAAAAAACAcSTgBwAwBurN7GDLXKL9CmCQzeUIKedpBgP6K3Ve2TJTjcmJiYKmAQAAAAAAAAAAKIaAHwDAGEg14qTarwAGWS1HSDlPMxjQX6nvac15BQAAAAAAAAAAGEECfgAAYyB9YV6DHzC8tsxUYqKc/a+3qWYwoP/qiabNPGFeAAAAAAAAAACAYSPgBwAw4lY77di11MxcI+AHDLNSqRS1SnazlwY/GHxeSAAAAAAAAAAAAIwjAT8AgBHXaKVbq1yYB4Zdah9LNYMB/ZcO+GUHeQEAAAAAAAAAAIbRZL8HAACgtxrNdMBvviLgBwy3ZMAvx14I9Fc98VKCmvMKAAAAAAAAAPREuVTq9wgAY02DHwDAiFtItOFERMxpxAGGXK2SvY+lmsGA/lpaXYnmynLmmnmNwwAAAAAAAAAAwAgS8AMAGHH1VnaoZbI8EZunKwVNA9Ab6QY/AT8YZHm+o3MCfgAAAAAAAAAAwAgS8AMAGHGpC/O1ymyUSqWCpgHojWTAr7UY3W63oGmAtcrTOJxq6gQAAAAAAAAAABhGAn4AACMuGfDThgOMgFoley9b7bRjz3KroGmAtaq3FpNr5p1ZAAAAAAAAAACAESTgBwAw4urN7AvzAn7AKMgT/Gkk9kOgfxqJFxJUJqeiMjVd0DQAAAAAAAAAAADFEfADABhx9VaqwW+2oEkAeidPWHkhsR8C/bOgcRgAAAAAAAAAABhTAn4AACOunrowX3FhHhh+WyvVKCXWpPZDoH+SLySoeCEBAAAAAAAAAAAwmgT8AABGWLfbjXprMXONRhxgFEyWJ2LLTDVzjYAfDK5603kFAAAAAAAAAAAYTwJ+AAAjbPdSK9qdTuaaWlUjDjAaUgEgAT8YXMnGYQE/AAAAAAAAAABgRAn4AQCMsHorHWZxYR4YFan9bCHREAb0T+rM4rwCAAAAAAAAAACMKgE/AIARlqetar7iwjwwGlKNpI0coWegeO1OJ3a3mplrahWNwwAAAAAAAAAAwGgS8AMAGGH1RFtVKSK2ujAPjIhaIrCcJ/QMFK/RWoxuYo0GPwAAAAAAAAAAYFQJ+AEAjLB6oq1qS6UaE2VHQmA0zCcCQKnQM9AfecK3An4AAAAAAAAAAMCocpsbAGCEpS7MzyfargCGyVwiANRcXY7W6kpB0wB5LeQJ+DmzAAAAAAAAAAAAI2qy3wMAANA7qYCfNhxglNQqs8k19ebeOHRLrffDALk1WtntmhPlcmyeqRQ0DQAAAAAAAACMn3KU+j0CwFjT4AcAMMIE/IBxMp9jT0vti0DxUt/LucpslEv+IgEAAAAAAAAAABhNAn4AACNsQcAPGCN59jQBPxg8yfNKxXkFAAAAAAAAAAAYXQJ+AAAjrNFazPzchXlglMxMTkV1ajpzTT2xLwLFq7eyA3552jkBAAAAAAAAAACGlYAfAMCIaq0sR2t1JXNNrTpb0DQAxUi1+Gnwg8GT+l46rwAAAAAAAAAAAKNMwA8AYEQt5AixpIIwAMOmVskOAgn4weBpNBONw84rAAAAAAAAAADACBPwAwAYUfVW9mX5CBfmgdGT2tfyhJ+B4nS73eSZpVZxXgEAAAAAAAAAAEaXgB8AwIjK01I178I8MGJSQaB6S8APBsme5VasdtqZa7yQAAAAAAAAAAAAGGUCfgAAIyoV8Judmo7pycmCpgEoRioIVG+m202B4uR5IUGtOlvAJAAAAAAAAAAAAP0h4AcAMKJSLVXacIBRNJ/Y23YvNZNtYUBx8gX8nFkAAAAAAAAAAIDRJeAHADCiUi1VtYrL8sDoydP01Whp8YNBUc/xfZyraPADAAAAAAAAAABGl4AfAMCISjXi5AnBAAybPE1feRrDgGKkvo9bZqoxWZ4oaBoAAAAAAAAAAIDiCfgBAIyodMBPgx8wevK0k6YaToHieCEBAAAAAAAAAAAw7gT8AABG1EJLwA8YP5umZ2Iq0falwQ8Gx0IicJsntAsAAAAAAAAAADDMJvs9AAAAG2+13Y49S63MNS7MA6OoVCrFXHU27tu7e59rFgT8YGDUEy8kmPdCAgAAAAAAAADouXKp1O8RAMaaBj8AgBHUaGW34US4MA+MrlSAuZEIFAHFaSQCtxqHAQAAAAAAAACAUSfgBwAwgvK0U81VZwuYBKB4qQBzvZkOQQPFSH0f5yrOKwAAAAAAAAAAwGgT8AMAGEH1HO1UGnGAUZXa3/KEoIHea62uRHN1OXONxmEAAAAAAAAAAGDUCfgBAIygeiK8MlWeiE1TMwVNA1CsVONXnhA00Hup80qEFxIAAAAAAAAAAACjT8APAGAEpS7M16qbolQqFTQNQLFSjV+N5mJ0ut2CpgH2RcAPAAAAAAAAAABAwA8AYCQtNBczP3dZHhhlqT2u3e3EnqVmQdMA+1JvZZ9XIiJqiUZOAAAAAAAAAACAYSfgBwAwghqtVIOfy/LA6MoTYs7THAb0Vup7WJmcisrUdEHTAAAAAAAAAAAA9IeAHwDACEpdmK9VNPgBoytXwC9HcxjQW8nzisZhAAAAAAAAAABgDAj4AQCMoHozO7jiwjwwyuZmqlEqlTLXaPCD/hPwAwAAAAAAAAAAEPADABg5nW43Golmqlp1tqBpAIpXLpdj60w1c42AH/TfgsZhAAAAAAAAAAAAAT8AgFGze6kZ7W4nc40L88CoSzV/LSSaToHeS72QYN4LCQAAAAAAAAAAgDEg4AcAMGLytFLNJ4IvAMOuVskOBtVbGvyg31JnljnnFQAAAAAAAAAAYAwI+AEAjJh6jlaqVLMVwLBLBZnzhKGB3lnttGPXUjNzjcZhAAAAAAAAAABgHAj4AQCMmFQrValUiq0z1YKmAeiPVJBZwA/6q9FKv5BgvprdxAkAAAAAAAAAADAKBPwAAEZMKrQyN1ONctkxEBhtyYBfjnAR0Dt5QrYahwEAAAAAAAAAgHHgZjcAwIhJXZh3WR4YB6m9bml1JZorywVNAzxYvZkO2TqzAAAAAAAAAAAA40DADwBgxCwI+AFErTKbXJOnQQzojXor+/s3US7H5ulKQdMAAAAAAAAAAAD0j4AfAMCISV2YF/ADxkGevU7AD/on2ThcmY1SqVTQNAAAAAAAAAAAAP0j4AcAMGLqzcXMz2sVAT9g9OUJ+KUaT4HeSQb8vJAAAAAAAAAAAAAYEwJ+AAAjpNvtRiN5YX62oGkA+md6YjJmp2Yy1zRa2YFooHeSLyQQ8AMAAAAAAAAAAMaEgB8AwAhpri7HUns1c40L88C4mE/sd6kGMaB36q3ECwk0DgMAAAAAAAAAAGNist8DAACwcVJtOBEuzAPjo1adjR/tun+fny8I+EHfpAK2GocBAAAAAAAAoDjlKPV7BICxpsEPAGCE5GmjSjVaAYyKuUSgOdUgBvRGt9uNeiv7pQQahwEAAAAAAAAAgHEh4AcAMELyBPzmNOIAYyIVaM7TegpsvN1LrWh3OplrNA4DAAAAAAAAAADjQsAPAGCELCQCfpumZ2J6YrKgaQD6K9UAlicUDWy8PO2ZGocBAAAAAAAAAIBxIeAHADBCGq3sNiptOMA4qSUaS/cst2KlvVrQNMBPNXKEa1MBXQAAAAAAAAAAgFEh4AcAMEJSbVSpsAvAKMkTEEoFo4GNt9DM/t6VImJrpVrMMAAAAAAAAAAAAH0m4AcAMEIWkgE/bTjA+MjTWlpPBI2AjVdvZZ9XtsxUY7I8UdA0AAAAAAAAAAAA/SXgBwAwQlIX5gX8gHGSZ89LBaOBjZduHHZeAQAAAAAAAAAAxoeAHwDACElemM/RZgUwKmanpmNqIrsFLBWMBjaegB8AAAAAAAAAAMDPCfgBAIyI5fZq7F1eylwz78I8MEZKpVIy2JwKGgEbr95azPy8Vp0taBIAAAAAAAAAAID+E/ADABgRjcRl+YiIORfmgTGTCjYL+EHxNA4DAAAAAAAAAAD8nIAfAMCIyBNScWEeGDe1ZMAvHY4GNlYy4KdxGAAAAAAAAAAAGCMCfgAAIyJPwC/VZAUwapIBv5YGPyhSa2U5WqsrmWsE/AAAAAAAAAAAgHEi4AcAMCJSAb/picmoTk0XNA3AYKhVZzM/zxOOBjbOQq7G4ezvLQAAAAAAAAAAwCiZ7PcAAABsjIXmYubnteqmKJVKBU0DMBhqlewmsEZrMTqdTpTL3n8DRWi0ss8rERqHAQAAAAAAAKBoZXcLAfrKDUYAgBFRb2U34qRarABGUS0RFOp0u7F7qVnQNECe1sw5AT8AAAAAAAAAAGCMCPgBAIyIRuLCfKrFCmAUpQJ+ERELORrFgI2xkDivVCenozI5VdA0AAAAAAAAAAAA/SfgBwAwIhaa2QGVPCEXgFEzX0m3l6YC0sDG0TgMAAAAAAAAAADwQAJ+AAAjwoV5gF+2pTIb5VIpc02qUQzYOHUvJAAAAAAAAAAAAHgAAT8AgBHQ6XSi0UpcmK+4MA+Mn3KpFHOJFr9UQBrYOPVEoFbADwAAAAAAAAAAGDcCfgAAI2DXUjO63W7mmnkX5oExNZcIOKcaxYCNk2wcTgRyAQAAAAAAAAAARs1kvwcAAGD/pdpwIjTiAONrvjob2xf2/XmePRTYGKlArfMKANBr3W432u12dDqd5MuSAAAAABgMpVIpyuVyTExMRKlU6vc4AACw4QT8AABGQL2Vbp/SiAOMq1RgSMAPirHabsfupWbmGgE/AGCjdLvdWFxcjKWlpVheXv7Zj5WVlX6PBgAAAMB+mJqaiunp6Z/9mJmZidnZWcE/AACGmoAfAMAISIVTyqVSbBHwA8ZUKjC0IOAHhWjkeSGBgB8AsB+63W7s3bs3du3aFXv27Il2u93vkQAAAADYYCsrK7GyshJ79/7873knJiZi8+bNsXXr1ti0aZOwHwAAQ0fADwBgBKQCfnOV2Sj7w0tgTKUCQ43WYnS7XX/JAz1Wb6XDtPMVAT8AYO3a7Xbcd9990Wg0hPoAAAAAxlC73Y5GoxGNRiMmJiZibm4uDjrooJiYmOj3aAAAkIuAHwDACEi1T2nDAcZZLREYWm6vRnNlOWanZwqaCMZTvZlu8JurahwGAPLrdrvRaDTixz/+sWAfAAAAABHxk7Df/fffH41GIw455JCYm5vzslcAAAaegB8AwAhINeKkwi0Ao6yWIzC00Nwr4Ac9lmocnixPxObpSkHTAADDrtVqxY4dO6LZbPZ7FAAAAAAGULvdjrvvvjvq9XoceuihUan4eygAAAZXud8DAACw/1KNOBr8gHGWZw9MBaWB/ZdsHK7MensqAJDL3r17Y/v27cJ9AAAAACQ1m83Yvn177N3r74QBABhcAn4AACMg1YiTp70KYFTVKuk9MLWPAvsv2TjshQQAQA579+6NO++8M7rdbr9HAQAAAGBIdLvduPPOO4X8AAAYWJP9HgAAgP3T7XZdmAfIMDUxGZunK7FnubXPNakmVGD/NTQOAwD7SbgPAAAAgPX6acjvEY94RGza5O+lAB6sHKV+jwAw1gT8AACG3OLKcqy025lrahV/MAmMt1p1U3bALxGUBvbfQqIpcy5H2yYAML5arda6w31TU1MxMzMT09PTMT09HVNTUzExMRGlUilKJRcWAAAAAAZZt9uNbrcb7XY7VlZWYnl5OZaXl2NpaSlWVlbW/Gvdeeed8chHPjIqlUqPJgYAgLUT8AMAGHL1xGX5iIh5jTjAmKtVZ+OHjZ37/DzPXgrsn1SQ1nkFANiXbrcbO3bsWFO4b3p6OrZu3Rpbt26N6elpQT4AAACAEdPtdmN5eTl27doVu3btiuXl5dw/b8eOHXHEEUf4MyMAAAaGgB8AwJDLE0qpVTXiAOMt1WQq4Ae91el2o9FczFxTE/ADAPah0WhEs9nMtXZycjK2bdsWW7ZscUELAAAAYISVSqWYmZmJgw8+OA466KDYvXt33HPPPbG6upr8uc1mMxqNRtRqtd4PCgAAOQj4AQAMuYUcoZS5ioAfMN5SwaF6IngE7J89S81odzuZa7yQAAB4KO12O3784x/nWlur1WLbtm1RLpd7PBUAAAAAg6RUKsXWrVtj8+bNcc8990S9Xk/+nB//+MexZcuWmJiY6P2AAACQ4G84AQCGXKOVHUrZPF2JqQnvdQDGWyo4lCcsDaxfPXFeidDgBwA8tPvuuy/a7XZy3QEHHBCHHnqocB8AAADAGCuXy3HooYfGAQcckFzbbrfjvvvuK2AqAABI87ecAABDrp4IpbgsDxBRq2TvhYsrS7G8ulrQNDB+UueViPT3FAAYP91uNxqNRnJdrVaLQw45JEqlUgFTAQAAADDISqVSHHLIIVGr1ZJrG41GdLvd3g8FAAAJAn4AAEMu1TqVaq0CGAfzOcLO9ZYWP+iVVMCvFBFzFWcWAOCB9u7dm2zvm5ycjG3btgn3AQAAAPAzpVIptm3bFpOTk5nr2u127N3r74kBAOg/AT8AgCGXCqRowwHI12Zaby4WMAmMp1TAb0ulGhNlf0wFADzQrl27kmu2bdsWZecIAAAAAB6kXC7HIYcckly3e/fuAqYBAIBs/sYTAGDIpS7M52mtAhh1uQJ+GvygZxYSAdp5LyQAAB6k2+3Gnj17MtdMT0/Hli1bCpoIAAAAgGGzdevWmJ6ezlyze/fu6Ha7BU0EAAAPTcAPAGDIpQJ+eUItAKOuMjkVMxOTmWtS+ymwfo1U47DzCgDwIIuLi9FutzPXbN26NUqlUkETAQAAADBsSqVSbN26NXNNu92OxcXsl1UCAECvCfgBAAyx5dXVWFxZzlwzV5ktaBqAwVUqlZIBIgE/6J3U92uu6rwCADzQ0tJSck3qchYAAAAAbNmyJbkmz59FAQBALwn4AQAMsXqiDSciYl4jDkBEpBvCBPygdxZSjcMV5xUA4IGWl7NfaDQ1NRXT09MFTQMAAADAsJqZmYmpqanMNak/iwIAgF4T8AMAGGJ5wiipQAvAuEjth6kAErB+9dZi5udeSAAAPFjqUtXMzEyUSqWCpgEAAABgWJVKpZiZmclcI+AHAEC/TfZ7AAAA1k/ADyC/VENYIxFAAtanubIcS6srmWucVwCAB0tdqtLeBwAAAEBeqT9LEvADiCh7qR5AX2nwAwAYYgvN7DDKzORUVKdceAOIiJivzmZ+nic0DaydFxIAAGvV7XZjZSX7BQECfgAAAADkNTU1lfn5yspKdLvdgqYBAIBfJuAHADDE6q3sC/O1SnaYBWCcpAJEjaVmdDqdgqaB8VHP0Y7pzAIA/KJ2u51ck7qUBQAAAAA/ledlUXn+TAoAAHpFwA8AYIg1Eo042nAAfm6ukr0ndrvdaCw1C5oGxocGPwBgrfK8eGNiYqKASQAAAAAYBXn+LEmDHwAA/STgBwAwxBYE/ABym6+mG8LyBJGAtUl9r6pT0zEzqYEHAPi5PJepSqVSAZMAAAAAMAry/FlSnpdOAQBArwj4AQAMsXprMfPzWqKtCmCc5Ak9C/jBxqu3vJAAANh4An4AAAAA5OXPkgAAGHQCfgAAQywVRMnTVgUwLjbPVGOilP2vwakgErB29Wb2CwnmvZAAAAAAAAAAAAAYYwJ+AABDqt3pxK5Ug59GHICfKZdKMZcIPqeCSMDapV5IkPpeAgAAAAAAAAAAjDIBPwCAIbWrtRjdxBoBP4AHqiWawlJBJGDtUt+r1PcSAAAAAAAAAABglAn4AQAMqXqivS8iolbRiAPwi2rJBj8BP9hoC61EwM8LCQAAAAAAAAAAgDEm4AcAMKTyhFBcmAd4oNS+uCDgBxtqtd2OPUutzDXzzisAAAAAAAAAAMAYE/ADABhSqYDfRKkcm2eqBU0DMBxqlewgUT3RNAasTSNP43CiWRMAAAAAAAAAAGCUCfgBAAypVMvUXHU2yqVSQdMADIdUU1i9uRjdbregaWD05WnFTAVvAQAAAAAAAAAARpmAHwDAkEq1TLksD/DLaomA32qnHXtXlgqaBkZfnlbM1PcSAAAAAAAAAABglAn4AQAMqXpzMfPzVEsVwDiqVWeTa+o5GseAfFLfp6nyRGyaniloGgAAAAAAAAAAgMEj4AcAMKRSF+bncoRYAMZNnnZTAT/YOKkXEsxVZ6NUKhU0DQAAAAAAAAAAwOAR8AMAGFL1VnYAJU+IBWDczFXyNPhlB5KA/JxXAAAAAAAAAAAAsgn4AQAMoW63mwygzFddmAd4sMmJidgyU81cs6DBDzZMqhGz5rwCAAAAAAAAAACMOQE/AIAhtHd5KVY77cw1LswDPLRaNbvFLxVIAvJLB/zSrZoAAAAAAAAAAACjTMAPAGAI5QmfuDAP8NBqlewAdKMl4AcbJdU4nPo+AgAAAAAAAAAAjDoBPwCAIbSQI3yiwQ/goc0n9sdUIAnIp9PtRqOV/X1KfR8BAAAAAAAAAABGnYAfAMAQauQIn8xVNPgBPJRUADpPiBpI27PUjHa3k7nGCwkAAAAAAAAAAIBxN9nvAQAAWLuFZnb4ZMtMNSbLEwVNAzBcUgHoemKPBfLJ812aq3ohAQAAAAAAAAD0WzlK/R4BYKxp8AMAGEKpC/M1l+UB9mk+0RjWXFmOpdWVgqaB0bWQo3F4vqLBDwAAAAAAAAAAGG8CfgAAQ6jeSgT8XJYH2KdaIuAXocUPNkLqvFKKiK2JRk0AAAAAAAAAAIBRJ+AHADCEUsGTVDsVwDjLFfBrpZvHgGyNxHlla2U2Jsr+aAoAAAAAAAAAABhvblEBAAyhVMAvT3gFYFxp8INiLDSzg7LOKwAAAAAAAAAAAAJ+AABDKdUs5cI8wL5VJqeiOjmduUbAD/ZfvZV4IUFltqBJAAAA2B+XXHJJlEql5I9LLrmk36MCQyzPPnPGGWf0e0wAAAAA6AkBPwCAIbO0uhLNleXMNS7MA2Sbq2bvkwsCfrDfNA4DAAAAAAAAAACkTfZ7AAAA1iZPq5QL8wDZatVNsWN3fZ+fp5rHgDQBPwAAAAAARt2uXbvi+uuvj+9+97tx0003xfe+97246667YseOHbF3795YXFyMiIhKpRLVajXm5+fjYQ97WPzKr/xKHHvssfHEJz4xnvzkJ8cjHvGIPv9OAAAA6CcBPwCAIZOnVcqFeYBstUr2PllvLhY0CYyueiv7e5T6HgIAAAAAwKC5++6748tf/nJ85StfiX/4h3+IW265JTqdTvLn7dmzJ/bs2RP33ntv3Hrrrb/0+VFHHRXPfOYz47d/+7fjmc98ZpTL5V6MDwAAwIAS8AMAGDKpy/IRAn4AKfPV2czP87SlAvvWXFmOpdWVzDWp7yEAAMD+uOSSS+KCCy7oya89PT0dlUolZmZmfvZj8+bNccghhzzgx09bWY477rjYunVrT2YBAKC3ut1uXHPNNXHZZZfFZZddFv/8z//ck+fcfvvtcfvtt8d73/veeNjDHhYXXHBB/Mf/+B/j4IMP7snzBsn5558ff/3Xf93vMQbCV77ylTjjjDP6PQYAANAHAn4AAEMmFTqpTk5HZXKqoGkAhlMqCF1vCfjB/sgTkp3zQgIAAGBILS8vx/Ly8pp+zmGHHRaPecxj4slPfnKceuqpceqpp8ZBBx3UowkBANhf1157bVx66aXxt3/7t/GjH/2o0Gffdddd8Za3vCXe+c53xite8Yp44xvfGHNzc4XOAAAAQLEE/AAAhkzqwnxNGw5AUirgt7vVjHanExPlckETwWjJE/DTOAwAAIyTu+++O+6+++748pe/HO94xzsiIuIxj3lMnHHGGfG85z0vfu3Xfi0mJib6PCVFqtfr8a53vSu57klPelI897nP7fk8jKZLLrkktm/fnlz3x3/8xz2fBWAY3HXXXfHhD384PvShD8Wtt97a73FicXEx3vnOd8bHPvaxeNe73hUvfOEL+z0SAAAAPSLgBwAwZFKtUtpwANJqlewwdDciGq3FOGB2czEDwYhZyBHwm684swAAAOPtpptuiptuuin+8i//Mg4++OB43vOeF+edd1484xnP6PdoFKBer8eb3vSm5LqXvOQlAn6s2yWXXBJXXXVVcp2AH0DEFVdcEeeee2602+1+j/JL7rnnnnjRi14UX/ziF+M973lPVKvVfo8EAADABlNFAAAwZOrNxczPay7LAyTlaQ7L00AGPLRGK/u8Mjs1HdOT3jsFAADwU/fee2+8733vi9NPPz1OOOGE+NjHPharq6v9HgsAYGw0Go2BDPf9og996ENx6qmnxr333tvvUQAAANhgAn4AAEMmFTiZr2a3UgGQL+CXp4EMeGip84rGYQAAgH27/vrr4/d///fjUY96VFx88cXR6XT6PRIAAAPiW9/6VjzjGc+IH/3oR/0eBQAYMeVSyY8CfwA8mIAfAMCQSV2YzxNaARh3m6crMVmeyFxTbwn4wXqlArLzGocBAEZSp9OJVms59u5txsrKanS73X6PBEPtzjvvjIsuuihOPvnkuPbaa/s9DgAAA+Lmm2+Os88+O3bv3t3vUQAAANggk/0eAACA/FY77di11MxcI+AHkFYqlaJWmY37Fvf9F5+N5mKBE8FoSQVkaxqHAQCGWr2xJ26+7c64+fYfxM233Rm33vHDuHdnI1ZWVh+wrlQqxabZShz+8EPiuKMfEccddXg85phHxJGHHxaTk9kvXQF+7h//8R/j5JNPjn//7/99vP3tb4/p6el+jwQAwC/YtGlTnHDCCfHUpz41HvvYx8YjH/nIOOKII2Jubi42b94c5XI5du7cGTt37owf//jHcfXVV8dVV10V//AP/xB79uxZ1zNvuOGGOO+88+Kyyy7b4N8NAAAA/SDgBwAwRHa1ssN9EQJ+AHnVqpsyA36pBjJg3+qJgKzzCgDAcOl0OvGP/3RrXHHltfFPN94eO368kOvndbvd2LO3Gd+95V/iu7f8y8/++fTUZBz96IfHqSc9Ls79jZPjoAPnejU65PLqV786zjzzzDX9nJ80VrZiaWkpWq1W7NmzJ+6+++7YsWNH3H333XHbbbfFD37wgw1rsux2u/Hud787rr322vjUpz4VD3/4wzfk183j/PPPj/PPP7+w5wHjSfMvMGxOPPHEOPvss+NZz3pWnHzyyTExkf0Sk8MOOywOO+ywiIj49V//9fijP/qjaLVacckll8Q73vGOuP3229c8w+WXXx7vf//746KLLlrX7wEAAIDBIeAHADBE6jnCJrWKRhyAPFIBo1QDGbBv6QY/AT8AgGGwa/di/N3/uTo+/Xdfizt/dO+G/brLK6vxnZu3x3du3h4f+OjfxxlPf2L8zv/H3n3HR1Gvexz/7qYnBBK6dJTQi6BSpAqKoqBiR1E4HnvDgseu2Csq9nZUVAQLB1RAEJHeBAQRgSQQCJ0QSELKbsru3j+8WCEzm+zM7iaf933lXCXPzO/ZdbI7bOY7z7C+6tqplRwOR8DWAczq0qWLhg4dGvD9FhQUaMOGDfrpp5/0ww8/aP78+Tp06FCl9rly5Up169ZN//vf/9SnT58AdQoAAAAzUlJSNHLkSI0YMUIpKSmV3l9sbKxuuOEGXXfddfrggw80ZswYFRb69/upsWPH6txzz1XDhg0r3U+wfPjhh/rwww9tW2/06NGaOHGiqdpt27apRYsW1jYEAAAAACLgBwAAEFbMTJPignkAMKeWQSDaTKgawD+VeTwqKHaXW5MUy/kKAABAKNuybY8+mzZf3y1co+LiUkvX8ni8mrd4reYtXquWzRrqwqF9NeysXoqJjrJ0XcAONWrUUM+ePdWzZ0/ddNNNv03DXLVKH3/8saZMmaKDBw9WaL8HDhzQkCFDNHv2bPXu3TvAXQMAAODPIiIiNHToUN10000644wzLLkpidPp1L///W/17t1bl156qdavX2962/z8fD355JN69dVXA94XAAAAAMA+zmA3AAAAAPOMpuFEOiNUIzrWpm4AILwlG03wI+AHVIiZ6ZdJcUwcBgAACEVud4lefnuqrrzpGX3z3QrLw31/t23HPr3wxhcacd2TWvNzmq1rA3ZwOp3q0aOHXnvtNe3Zs0eTJk1S27ZtK7SvgoICDRkyRCtWrAhwlwAAAJCkmJgYXXfddUpLS9P06dM1ePBgyyeOt23bVsuWLVO/fv382u6dd97R/v37LeoKAAAAAGAHAn4AAABhxChskhQbb/kvFQCgqjCaeJrrLpLP57OpG6DqyHUVGdYwcRgAACD0rNuwVSNvekZTpi0I+t+F9uw7qJvveVXPv/a5ilzFQe0FsEp0dLQuv/xy/frrr/r000/VuHFjv/eRn5+vs88+W9u3bw98gwAAANVUdHS0br31VmVkZOjtt9/W8ccfb+v6CQkJmjFjhtq3b296m5KSEn3yyScWdgUAAAAAsBoBPwAAgDBiGPDjYnkAMM1ogpjH61VBidumboCqI8fE9EvOWQAAAELHkal9N949Qbv2HAh2O38xdcZijbzxaab5oUpzOp0aMWKENmzYoNGjR/u9fU5Oji655BKVlJQEvjkAAIBqxOl06oorrtDmzZv1yiuvqFGjRkHrJTExUV988YWio6NNb/Pxxx9b2BEAAAAAwGoE/AAAAMJIrrv8iThcLA8A5pl5zTQKVgP4pzx3+T83Uc4IJUTF2NQNAAAAypOxfa+uvDk0pvYdy5Fpfq++O10ejzfY7QCWSUpK0gcffKBPPvnErwu5JWnVqlUaO3asRZ0BAABUDxdddJE++eQTtWzZMtitSJLat2+vO+64w3T9zz//rKysLAs7AgAAAABYiYAfAABAGDEKmtSKLX8aFQDgD8mxBPwAKxier8TFy+Fw2NQNAAAAjmXD5u26YezL2rk7tKb2HcukqfM07rmJKivzBLsVwFJXXHGF5s6dq6SkJL+2e/XVV7V48WJrmgIAAKgGnM7Qu5Ty7rvvVlxcnOn6BQsWWNcMAAAAAMBSofe3UgAAAByT0QXzyUzwAwDTasbGyyhilOMqf3IqgH8y+rlJMhGuBQAAgLVWr0vVrfe+qsMF4fV3nrkLf9J/Hn1H7uKSYLcCWKpfv376+uuvFRPj3/Tz22+/PWSncQIAAMB/derU0XnnnWe6/pdffrGwGwAAAACAlQj4AQAAhAmfz6dct8EF8wT8AMC0CKdTibHl3/U0180EP8Bf3JAAAAAgtK3fmKGxj7wjlzs8Q3LLVm3Ug099wCQ/VHl9+/bVxx9/7NcE9J9++kkffvihdU0BAADAduecc47p2vT0dAs7AQAAAABYKTLYDQAAAMCc/GK3PF5vuTVJcfE2dQMAVUNybIIOu13H/L5RUAnAPxkFY7khAQAAQPCkZ+zSnQ+9FfYT8Jas3KDHxn+icXdfKaeT+5mi6rr44os1f/58vfnmm6a3efjhh3XllVcqMrL6XgpQUlKiAwcO6MCBA8rPz1dxcbFKS0sVExOj+Pj4378SEhJUv359RUREBLvlaqWoqEg7d+5Ufn6+CgsL5XK5FBMTo4SEBNWoUUNNmzZVYmJisNu0VUFBgRYsWKCff/5ZqampSktLU1ZWlgoKClRQUKCSkhLFx8crMTFR9evXV+PGjfXGG2+oWbNmwW4df+Lz+bR3714dOHBAhYWFKiwslM/nU0JCghISElSnTh01bty42p27bNy4UQsWLNAvv/yiDRs2aPfu3Tp8+LDy8/MlSfHx8apVq5aaN2+u448/XieffLJ69+6tLl26+BVyDxU+n0+HDh1SVlaWcnJyVFxcrOLiYkVERPz+/hMXF6f4+HjVqVNHCQl8VgpjvXr1Ml27a9cuCztBKCosLNSuXbv+cm4VHR39+7lDs2bNqt25FQAAABCuqu+n+gAAAGHGzBQpLpgHAP8kxSUoMzf7mN8n4Af4L8/FxGEAAIBQlJObrzsfeksFhce+yUk4+W7+ajU5rq6uu8r8NAsgHD3//POaM2eOMjIyTNXv2rVL//vf/3TJJZcErIcPP/xQ//rXvwzrPvjgA40ePTpg65qRk5OjxYsXa9myZVq7dq1SU1O1Y8cO+Xw+U9tHRkaqcePGatGihVq0aKGWLVvqpJNOUs+ePVW3bt1K97dgwQKddtppldrHxIkTNXHixEr3ckT//v21YMGCgO2vPHl5eVq0aJGWLFmi5cuXKz09Xfv27TPcrm7dukpJSVHPnj3Vp08f9e/fX3Xq1LGh4/KNGzdOjz76qGHd/PnzNWDAgHJrCgoKNHHiRH355ZdaunSpSktLy63Pz89Xfn6+9uzZo3Xr1unQoUO/B/xatGihzMxM04/jaAIdpNq2bZtatGgR8B7sPH6NrF+/XosXL9aSJUv0888/a9u2bXK73eVuEx0drebNm6tz587q06eP+vbtq27duoVEkC2Qz//OnTv1+uuva+rUqdqyZUu5tSUlJcrNzVVmZqYWLVr0+yTaZs2a6ZJLLtFNN92kli1bmnkItvN4PFq1apWWLVumlStXavPmzUpLSzM8Dv6sbt26at68+e/vQx06dFDPnj3Vtm3bkDguEBpatGihqKgow/cKSb+HZ1E17d27V4sXL9bSpUv1448/KiMjQ1lZWYbb1a1bV23atNGpp56qPn36aODAgapRo4YNHQMAAADwBwE/AACAMJFnImSSHMsF8wDgD6OgUa67/KASgL/y+nzKM/i5SYpl4jAAAEAwvPDGFzpwMC/YbQTUh1PmqE+PjmrfpnmwWwEsk5CQoJdeeknnnXee6W1effXVgAb8Qo3L5dLkyZM1efJkLViwQGVlZRXeV1lZmTIzM5WZmamFCxf+5XsnnHCCevbsqdNOO03Dhw9X7dq1K9t6tVBWVqZp06bp008/1bfffqvi4mK/95Gdna3s7GwtX75cL730kiIjI3X66afr8ssv18UXX6zY2FgLOrfHwYMH9cQTT+j999/X4cOHg90O/LRlyxZNnDhRkydP1tatW/3evqSkROnp6UpPT9fUqVMlSU2bNtVll12mUaNGqUOHDoFu2Vbbt2/XuHHj9Omnn5oKIpVnx44deuGFF/Tyyy9r5MiRevrpp9WwYcMAdVo5y5Yt03//+199/fXXys4+9g0EzTjyerdmzZq//HlSUpK6d++u3r176/zzz1fnzp0rtQ7CW0REhJKSknTgwAHD2sJCblxZ1WRlZWnKlCn67LPPtHz5ctM3svizI681S5cu1fPPP6+4uDgNHTpUV111lc455xwCxQCA3znFewIABJMz2A0AAADAnByDaTgOSTW5YB4A/GIY8GOCH+CX/GKXPD5vuTVM8AMAALDfD4vXat6itcFuI+C8Xp8eH/+JSkoqdwE5EOrOPfdcnXzyyabrj0yTqmoKCgr02GOPqXHjxvr3v/+t77//vlLhPiNbt27VpEmTdM0116hBgwY666yz9MEHHygvr2qFpQOluLhYb731llJSUnTJJZdo+vTpFQr3HU1ZWZlmz56tq666Sscff7xefPFFFRWF1425fD6f3n33XbVu3Vovv/wy4b4ws2HDBl1++eVq27atnnjiiQqF+45l586dev7559WpUyedf/75Wr16dcD2bRev16uXX35ZHTt21MSJEysd7vuzsrIyffjhh2rfvr0mTZoUsP1WxMyZM9WtWzf17t1b77//fqXDfeXJzc3Vd999p0ceeURdunRR27Zt9fDDD2vjxo2WrYnQFh0dHdA6hL6tW7fqhhtuULNmzTRmzBgtW7asQuG+o3G5XPriiy80bNgwde7cWVOmTAnIfgEAAABUDgE/AACAMJHrLj9kkhgbpwgnp3cA4A+jSWIE/AD/mPmZIeAHAABgr5zcfD3/2ufBbsMy23bs038nfRvsNgDLjRs3zq/6zz77zJpGgmT69OlKSUnRI488opycHNvXLysr05w5c3T11Vfr3XfftX39ULdgwQJ16tRJN954o7Zv327pWnv37tVdd92ltm3basaMGZauFSiFhYW64IILdN111+nQoUPBbgd+KCgo0JgxY9SlSxdNnjxZHo/HsrV8Pp+++uornXLKKfr3v/8dlNe6isjNzdXgwYN1xx13WDo5LCcnRyNHjtS9994bsICLWTt27NDgwYM1dOhQrV0bnJtmpKam6vHHH7dsQq/D4TD9ZfXrPI7O7A0GEhMTLe4EVsvPz9cdd9yhNm3a6O233w7YDROOZcOGDRoxYoQGDBigTZs2WboWAAAAgPJxBTgAAECYMLpgPjmWi+UBwF9GQSN3WancpSU2dQOEPwJ+AAAAoeeFN75QTl5BsNuw1MdffK+NqZnBbgOw1JAhQ9SsWTPT9d98842F3dinrKxMN954o4YPH659+/YFux38TUlJiW666SaddtppSk9Pt3XtnTt3atiwYbriiitCeprfnj171KdPH02fPj3YrcBPy5cvV/v27fXKK6/I6/Xauvb777+vtm3b6rvvvrN1XX9t3bpVPXv21Lx582xb89lnn9Xtt99u23qzZs1Sp06dNHfuXNvWBP6uoKBABQXm/k5Xr149i7uBlWbOnKm2bdvq5ZdftjRUfjQLFy5U165d9d5779m6LgAAAIA/EPADAAAIE0YXzHOxPAD4z8xrZw5T/ADTct3lX1DncDhUKybOpm4AAACweMUvmrcoOFNG7OT1+vTkS5/K47H34nvATk6nU6NGjTJdv2HDhrCfsFNcXKxhw4bprbfeCnYrOIr9+/dr4MCBevPNN4Pax6effqpTTz1VmZmhF/Q+Mtls3bp1wW4Ffnr//fc1YMAA7dy5M2g9ZGVl6eyzz9b48eOD1kN5MjMz1b9/f6Wmptq+9iuvvKLnnnvO8nXef/99nXvuuTp8+LDlawHl8ed9JCUlxbpGYBmv16uHH35Yw4YN0549e4LWR3Fxsa699lrdeOONtofbAQAAABDwAwAACBsE/AAg8My8dhoFlgD8weh8pWZMnJxOPo4CAACwy/uTZge7Bdts3b5HC5evD3YbgKWuvPJKv+pnzpxpUSfW8/l8uuKKKzR7dvV5HQsnu3fvVu/evbV06dJgtyJJ+vnnn9WzZ0+lpaUFu5XfFRcX69xzz9Wvv/4a7Fbgp2eeeUb//ve/VVJSEuxW5PF4NHbsWN15553BbuUvsrKydMYZZ2j37t1B6+GBBx7Q8uXLLdv/tGnTdO2119o+QQs4Gn+O9bZt21rYCaxQXFys4cOH6/HHH5fP5wt2O5Kkt956S1dddRWvgQAAAIDNIoPdAAAAAMwxCpgQ8AMA/yXHGr925jHBDzCNGxIAAACEjo2pmdqUviPYbdjqfzMWa2CfE4PdBmCZlJQUtWzZUtu2bTNVv2zZMt18880Wd2WN8ePHa+rUqcFuA0exb98+DRw4UFu3bg12K3+xb98+nXbaaVq4cKFatWoV7Hb0wAMPaPHixaZqmzdvrt69eyslJUXNmjVTYmKioqOjVVBQoLy8PKWlpWn9+vVaunRpSITOqrIXX3xR9913X7Db+IeXXnpJUVFRevbZZ4Pdijwejy688EKlp6cb1iYkJKhHjx468cQT1bJlS9WuXVsJCQkqLS1Vbm6utm3bplWrVmnp0qUqKvLvRntlZWX617/+pV9++UVRUVEVfThHtW3bNo0aNYrpVQgZ06ZNM13bp08fCztBoLndbg0fPjwkb2oxadIkRUREaOLEicFuBQAAAKg2CPgBAACECcML5mPjbeoEAKqO6MhIxUdFq6j02BfG5BDwA0wz+nnhfAUAAMA+U2eYCxVUJavXpWn7zn1q0bRhsFsBLHP66afr3XffNVX7008/WdyNNbZt26YHHnjA7+0iIiJ0yimnqH///kpJSVGrVq3UtGlTJSQkKCEhQfHx8SorK1NxcbEOHz6s/fv3a+/evUpPT1daWpp++ukn/fzzz3K73QF7LAMGDDjmJJbt27erZcuWhvsYNWqUPvzww4D1VBnFxcUaNmxYhSblORwO9erVS2eddZZOPvlktW3bVnXq1FFCQoJcLpdycnKUlpamtWvXavbs2Vq4cKHKysr8WmPPnj06++yztWrVKtWqVcvvHgNl6dKleumll8qtadiwoa6//nqNHDnSdCDx8OHD+uqrr/4R8tq+ffsxtxkwYIAWLlxouO9QmRgUTFOnTtVdd91VoW3r1auns846S4MGDVL79u3VokULJSYmKiIiQvn5+dq1a5c2btyoBQsWaObMmdq1a5ffazz33HNq3ry5brrppgr1GCgPPfSQlixZcszvO51OXXjhhRo9erTOOOMMU+G7wsJCffHFF3rqqadMBQePSE1N1euvv67bb7/d9DZmXH/99crPz/d7u2bNmumMM85Qhw4d1KpVK51wwgmqVavW7+9BERERcrvdcrlcysrKUlZWljIyMpSenq5ffvlFq1atUlZWVkAfC8Lftm3btGLFClO19evXV4cOHSzuCIHi9Xp10UUXVTjc17lzZ5122mnq1q2bWrduraZNm6pWrVqKi4tTaWmpCgoKtGPHDm3evFlLly7VjBkztGOHfzcB+uijj9SpUyeNHTu2Qj0CAAAA8A8BPwAAgDDgLi2Ru6y03Bom4gBAxSTFJZQb8Mt1E/ADzDL6eUnmfAUAAMAWeYcL9f3C8Az2VNa0mUt1xw0XBrsNwDKDBg0yHfBLS0tTQUGBatSoYXFXgfXwww/7NaUsJSVFd999ty666CIlJyeXWxsdHa3o6GglJiaqcePG//h+aWmpVq5cqblz52rmzJlas2aN3/1XZbfccotWr17t1zaRkZG67rrrdPvttyslJeWoNTVq1FCNGjXUtGlTDRo0SGPHjtWuXbv02muvacKECX6FLtPT03XVVVdp+vTpcjgcfvUaKI899tgxJ3/FxcXpkUce0W233aa4uDi/9luzZk1deeWVGjlypEpLy/+dEfyzefNm/etf//J7u3bt2umhhx7ShRdeqOjo6KPW1K5dW7Vr11bnzp112WWXyev1asaMGXriiSe0atUqv9a744471K1bN/Xs2dPvXgPh119/1aJFi475/SFDhmjChAnH/Fk/loSEBI0ePVpXXHGFHnvsMT355JOmQ6fPPvusbrrppmM+//6aN2+e5s6da7o+Pj5e11xzjW644Qa1a9fOsP5I6Lxu3bpq3769BgwY8JfvZ2RkaO7cufruu+/07bffyuVy+fsQUMW8/PLLpn8eLrjgAou7QSD95z//0cyZM/3a5sgNAq6++mo1a9bsmHURERGKjY1V3bp11a1bN11++eV67bXXtGDBAj377LOaM2eO6TXvvffe32+iAQAAAMBazmA3AAAAAGNmpkcR8AOAikmKLf/1M9dVZFMnQPjLM/h54XwFAADAHjPmrlBxSfW88H/m3JVyuYuD3QZgmRNPPNF0rdfr1dq1a61rxgJZWVn67LPPTNVGRUXplVde0ebNm3XttdcahvvM7rNPnz569NFHtXr1amVkZOiJJ55Q8+bNK73vcDd16lS99957fm1zyimnaP369Xr99df9Dvw0adJEzzzzjDZt2qSBAwf6te3XX3+t119/3a9tAulYAdV27dpp3bp1uueee/wO9/2Zw+EIWJgJksfj0YgRI/ya2BYVFaXnnntO69ev14gRI/z67+F0OnXuuedq5cqVevvttxUfH29625KSEl122WUqLAzOTemys7OPGjSKiYnRe++9p1mzZvn9s/5nUVFRevzxx/XJJ5/I6TR3Sdu+ffs0ZcqUCq/5d6+88orp2nPOOUfbt2/XhAkTTIX7zDj++ON1/fXXa+rUqTpw4IAmT56sQYMGBS2wjODav3+/3n//fdP1V1xxhYXdIJA+/fRTjR8/3nR9XFycnn76aW3dulXjxo0rN9x3LA6HQ6eddppmz56tmTNnHvVmF0fj8Xh0zTXXEDgGAAAAbEDADwAAIAzkuo3DJVwwDwAVkxRX/gUUuSZC1gAkn89n+PNSyyBQCwAAgMrz+Xz6+ttlwW4jaAoKXZq3KLwCTYA/UlJS/AoGpaWlWdhN4E2ZMsXUZLK4uDjNnz9ft956q+kQSEW0bNlSDzzwgDIyMvT111/r1FNPtWytUJafn68xY8b4tc2///1vLVmypNKhlxYtWui7777TXXfd5dd2DzzwgPbs2VOptQOpV69eWrZsmVq3bh3sVvA3EyZM0Lp160zX161bV4sXL9bdd9+tyMjICq/rcDh03XXXaeXKlWratKnp7TIzM/XII49UeN1AS0xM1Lx58/Tvf/87YPu8/PLL9cILL5iu9ycAVZ6DBw9q1qxZpmrHjBmjb775RvXq1QvI2keTkJCgyy67TN9//73S0tJ0ww03KDY21rL1EHoefPBBFRQUmKrt3LmzevfubXFHCIS9e/fqlltuMV3frVs3rV+/Xvfee69fofDynH322Vq7dq369u1rqn7Lli169NFHA7I2AAAAgGMj4AcAABAGzIRLkrlgHgAqxCggTcAPMMdVVqJiT1m5NckGgVoAAABU3r6sHGXuygp2G0G1cs2mYLcAWMbpdKp9+/am63ft2mVhN4H33XffmaqbMGGCrRexO51ODRs2TEuXLtX1119v27qhYty4cdq9e7fp+ltvvVXvvfdewKbMRURE6IUXXtBDDz1kepvDhw/7HQq0Srt27TRz5kwlJSUFuxX8zd69e/0Ky9WvX18LFy5Ujx49AtZDx44dtXDhQr+mMU2YMEG//vprwHqoqOjoaM2aNcuS1+Pbb79dp512mqnaxYsXKyur8ue/8+fPV1lZ+Z9vSlK/fv00fvx4W6fqtWrVSm+++abmz59v25oIrtWrV/sVXr3//vuZ9BgmbrzxRuXk5JiqPe+887RkyRK1atUq4H3Uq1dPc+bM0emnn26q/pVXXtHevXsD3gcAAACAPxDwAwAACANG4ZL4qGhFV+IuoQBQnRkF/HLcBPwAM3JdTBwGAAAIBZvSdwS7haDbvGVnsFsALNWyZUvTtTt3htfPw4oVKwxr2rVrp2uvvdaGbo4uMTExaGsHw/79+/Xmm2+arj///PM1YcIES3p57LHHdOWVV5qu/+yzz7RpU3BD33Fxcfryyy+VnJwc1D5wdM8//7zp6VgxMTGaPn26XyFrs1q2bKlvvvlGCQnmPjsrKyvT448/HvA+/PX666+rT58+luzb4XDoxRdfNBVY8nq9mjlzZqXXNPMeJP123ERERFR6vYqobu9B1VVxcbFGjRolr9drqr5Dhw66+OKLLe4KgfD999/rq6++MlV7zjnn6IsvvvBrere/4uLiNHXqVHXo0MGw1uVy6emnn7asFwAAAAAE/AAAAMJCrkG4pBYXywNAhSUZTEAtKHarzOOxqRsgfJmZdknADwAAwHqpQQr4xdSNVZ2T66rRWY3VZFhTNTqrseqcXFcxdWNt72Xn7gMqKHTZvi5gl+OOO850bThN8Dt06JAOHjxoWDdq1CgbusER48ePl8tl7jW1efPm+uijjyydIPTuu++aDlj5fD49+eSTlvVixmOPPWZJIAyVl52drbffftt0/fPPP69evXpZ1k/nzp39CtN+8cUXSk1NtawfI0OGDNE111xj6RonnniiBg0aZKp28eLFlV4vLS3NsKZt27bq3r17pdcCyvPggw9q48aNputfeeUVOZ1cBhoOHnzwQVN17dq10+TJkxUVFWVxR1LNmjU1ZcqbG4x1AAEAAElEQVQUxcTEGNa+//77ys/Pt7wnAAAAoLrib3YAAABhwGgiTrJBOAUAcGzJJgJHeW7jyWRAdWcq4Mc5CwAAgOU2p9s7rSs6OVqNzmqsxmc3Ua32SYqtH6fo5BjF1o9TrfZJanx2EzU6q7Gik6Nt7St1S/iEmgB/+RPw27Nnj4WdBNbu3btN1XXt2tXiTnCE2+3Wu+++a7r+v//9r+XTpWJiYvTBBx+YDjJMmTJF+/fvt7SnYznhhBN02223BWVtGHvvvfdUVGTuc99+/frplltusbgj6corr9TQoUNN1Xq9Xr366qsWd3R0kZGReuWVV2xZ6+qrrzZVt3Tp0kqvZeZ9iPcgWG3mzJkaP3686fqLL75YAwcOtLAjBMq3336rlStXGtZFRETok08+sXViZ8eOHTV27FjDusLCQk2ePNmGjgAAweJ0OPiy8QsA/o6AHwAAQBgwumA+KS7epk4AoOqpZeI1NMdEcAmo7owmDsdHRSs6MtKmbgAAAKonn8+nzVvsC/jFN45XoyFNFFs/rty62PpxajSkieIb2/cZ1uYgTTIE7NCwYUPTtYWF4fOZRkFBgam6Jk2aWNwJjvj666+Vm5trqnbYsGGmJ21VVvfu3TVy5EhTtR6PR5MmTbK4o6MbO3asoqPtDbjDvI8++shUncPh0IsvvmjpZMo/Gz9+vCJNfoY2ZcoUlZSUWNzRP11xxRVq1aqVLWudffbZpiZYbdmyRcXFxZVay8z7EO9BsNL27dt15ZVXyufzmaqvW7du0IK+8J/ZKa033XSTunXrZnE3//Sf//xHSUlJhnUTJ060vhkAAACgmuKqKgAAgDBgHPBjGg4AVJSZ11Cj4BIA44nDnK8AAICqqMRTpqz8vGC38bvsQ3kqcpQqqpb1YYKomlGq36+BnBHm7ifqjHSq/oCGylq0X6WHSy3uTlq/fZv65x60fB2z6ifWUnQEv5pFYMTFlR+q/TOXy2VhJ8FRWmr9awh+8/HHH5uuffzxxy3s5J8ee+wxTZo0SR6Px7B24sSJuvPOO23o6g81a9bUVVddZeuaMG/NmjXatGmTqdrzzjtPJ510ksUd/aF169YaPXq03nvvPcPagwcPaubMmRo+fLgNnf3hxhtvtG2tWrVqqXPnzlqzZk25dV6vV2lpaerUqZOl/VTV9yCzgTJYp6ioSBdeeKFycnJMb/PWW2+pQYMGFnaFQNm9e7dmzZplWBcXF6f777/fho7+qWbNmho1apQmTJhQbt2KFSt06NAh1a5d26bOAAAAgOqD3yIBAACEgRyDYAkXzANAxSVExSjKGaFS77EvBjIKWgPghgQAAKB6ysrP039mfRLsNv6i6XnNgt3CMTkjnGp42nG2rLVThSH13+a5s0eqSVKdYLeBKiI2NtZ0rdvttrCTwKpTx9zPSEZGhrp06WJxN3C73fr+++9N1fbt29f2/ybNmzfXueeeq2nTphnWrl+/Xjt27FCzZva9Rw4bNkzx8fZNroV/vv76a9O1t956q4WdHHtNMwE/Sfrmm29sDfilpKSoR48etq0nSaeccophwE+Stm7dWqmAn5n3oYyMjArvHzgWn8+nkSNH6qeffjK9zahRo3ThhRda2BUCyexNCS655BK/pnUH2siRIw0Dfl6vV999950uu+wym7oCAAAAqg9zt9QEAABA0JR5PCooLv8ijKRYLpgHgIpyOByGwSMCfoCxHKOAH+crAAAAABAQ/gT8wmmCX926dU3VmQl0ofIWL15sOiB67bXXWtzN0V1//fWma82GFQPl/PPPt3U9+Mfs8XDCCSdo4MCBFnfzT507d1bPnj1N1dp9bA8ZMsTW9aTfphqasX///kqtY+Z9aO7cuSooKKjUOsDf3XvvvX6d33Ts2FFvvPGGhR0h0GbMmGGqbvTo0dY2YuCkk04yNRVy0aJFNnQDAAAAVD8E/AAAAEJcnrvIsCYpjrvAAkBlGAb8TLwWA9Wd0TlLMhP8AAAAACAgoqOjTdeWlJRY2ElgJScnq0aNGoZ1U6ZM0c8//2xDR9Wb2dBQVFSUhg0bZnE3Rzdw4EAlJyebqp07d67F3fxV//79bV0P5uXn5+vHH380VWvnZLy/MzuZa+fOnUpNTbW4mz8E49hu2bKlqbrKBvyaNm1qWONyufTYY49Vah3gz9555x0999xzpusTExP15ZdfMiU2jOTl5Wn58uWGdcnJyerbt68NHR2bw+EwNaV17dq1NnQDAAAAVD8E/AAAAEKc0TQcyTiYAgAon1FQmgl+gDGjn5Na3JAAAAAAAAKiuLjYdK0/0/6CzeFwmLqoubS0VBdddJEyMzNt6Kr6WrVqlam63r17KykpydpmjiEqKsr0NLHVq1db3M0fWrVqpXr16tm2Hvyzdu1alZWVmaodOnSoxd0c23nnnWe61s7j+8QTT7RtrSPMTnjNy8ur1Dpmw4svvviiPv7440qtBUi/TSW+6aabTNc7nU59+OGHatOmjYVdIdAWLlxo6n2nf//+ioiIsKGj8nXp0sWwZv369fJ6vTZ0AwAAAFQvBPwAAABCXK6bgB8AWC0p1mCCHwE/oFylnjIVlLjLrTH6OQMAAAAAmON2l//3rz8Lp4CfJA0aNMhU3ZYtW9SrVy9NmzbN4o6qr19++cVUXbAnzZhdPyMjQ4WF9nzG1759e1vWQcWsX7/eVF10dLSpKUZWSUlJUYMGDUzVmn1MlRUVFWV6ml4gmQ0R+xOAP5rTTjtNDofDsM7j8WjUqFEaO3as8vPzK7Umqq958+ZpxIgR8ng8prd55ZVXdMEFF1jYFaxgNoR9yimnWNyJOc2aNTOsKSoq0u7du23oBgAAAKheCPgBAACEOKNQSZQzQglRMTZ1AwBVk1FQOtdVZFMnQHjKdRv/jCRzQwIAAAAACAh/An5xcXEWdhJ45513nunJJXv37tUFF1yg7t27a9KkSXK5XBZ3V33s3btX2dnZpmp79eplcTeBWd/r9WrDhg0Wd/MbJiuFNrPh1RNPPDHoIWmzx7ddAb9GjRqZCsAFWkyMud+DVjbgV69ePfXr189Urc/n0/jx49WyZUs99NBDTJWFX1asWKHzzz/fr2P2scce080332xhV7DK2rVrTdWFyg0C6tevb6pu165dFncCAAAAVD8E/AAAAEKcUcAvKS4hKL9MA4CqJCkuvtzv57mL5PX5bOoGCD9mplwycRgAAAAAAsOfKWThFvBr1aqVLrvsMr+2WbVqlUaOHKkGDRpo5MiR+vLLL5WXl2dRh9XD1q1bTdcG+2L0tm3bmg6F+vO4KqNRo0a2rIOKMXscBPvYlqQOHTqYqrPr2K5du7Yt6/xdVFSUqbqysrJKr/Xggw/6VX/w4EE98cQTatmypfr06aOXXnpJaWlple4DVde6des0ZMgQFRQUmN7mzjvv1EMPPWRhV7CS2RB2ixYtrG3EJLN/fyDgBwAAAAQeAT8AAIAQZzQRh4vlAaDykmLLfy31+LzKL+Yu8MCxmJlyyTkLAAAAAATGvn37TNcmJiZa2Ik1HnroIUVGRvq9XX5+viZNmqSLL75YdevWVa9evXT//fdr1qxZysnJsaDTqmvPnj2m6uLi4tSsWTOLuylfTEyMWrZsaarW7OOqrAYNGtiyDirG7HEQCpMY27VrZ6pu7969Fnfym1APjfsCcJO+008/XX369KnQ2kuXLtWdd96pNm3aqEWLFrr66qv1wQcfKD09vdJ9oWrYtGmTBg8erNzcXNPbXHPNNRo/frx1TcFSHo9Hu3fvNlXbtWtXORyOoH8NHjzYVL+HDh2qzFMDAAAA4Cj8/1QcAAAAtjKc4Bdb/tQpAICxZBPBozxXoWrxmgscVa67/POVKGeE4qOibeoGAADAPvUTa+m5s0cGu43feX1eXXPHi3K5Sixfq37fBoqpHeP3dsWHipW1eL8FHf3VJef11/Cze1u+jln1E2sFuwVUIf4EORo3bmxhJ9Zo06aNXnrpJd16660V3kdZWZlWrFihFStWSJIcDodat26tnj17qlevXurTp4/at28vh8MRqLarFLMBqEaNGoXEc9ikSRNt2bLFsM6ugF84BmurE7PHQZMmTSzuJHA9FBQU6PDhw6pZs6al/ZidpBfuPv74Y51yyinKzs6u8D4yMzP1wQcf6IMPPpAk1alTRz169FCvXr106qmnqmfPnoqP5/cN1cmWLVs0aNAgHThwwPQ2l19+ud5++20Lu4LV9u7dK4/HE+w2LOFycWNUAAAAINAI+AEAAIQ4w4Af03AAoNLMvJbmuIrULNmGZoAwZOZ8JRQu+AMAAAi06IhINUmqE+w2/uKEeg219hfjkENlHVi6X42GNJEz0ml6G2+ZVweW7ldpnvUBxJNbtwq5/zZAoPgT8AuFgEpF3HLLLfr555/13nvvBWR/Pp9PqampSk1N1cSJEyVJycnJGjBggM4880wNGTIk6JPoQonZ8EH9+vUt7sQcs334E6qojJgY/wPwsEdpaany8vJM1YbC8e1PDwcOHLA84FddtGjRQl988YUGDx6s0tLSgOzz4MGDmjVrlmbNmiVJioyM1EknnaQzzzxTZ555pnr27Cmn0/x5NcJLZmamBg0a5Nc53Pnnn6+JEydyXIQ5s9P7whEBPwAAACDw+BsgAABAiMt1FZX7fQJ+AFB5NWPiDMNHRhPKgOqMGxIAAACEjrYpTW1ZpySnRFkL98lb5jVV7y3zKmvhPpXkWB/uk6S2rex5HoBg2Lp1q+nacA34SdJbb72l6667zrL95+TkaNq0abrhhhvUvHlz9ejRQ+PHj1dWVpZla4YLsxds165d2+JOzKlTx1yg264L0avLlLNw5M8xEArHt9ljWyJoEWgDBgzQV199pRo1aliy/7KyMq1cuVKPPfaYevfurSZNmuiWW27Rjz/+aMl6CJ7du3dr4MCB2rFjh+ltzjzzTH322WeKjGR2Q7jLzc0NdguWKSmx5+/2AAAAQHVCwA8AACCEeX0+5bmNAn7xNnUDAFWX0+lUrZi4cmuMAkxAdWYc8ON8BQAAwC5tU+ybQFW0u0h7vt0ld1b5F5S7s1za8+0uFe0u/3OuQGlYP1nJSYm2rAXYraysTJs3bzZdH84Bv4iICL399tuaOHGiatWqZfl6P/74o8aOHasmTZrokksu0erVqy1fM1S53W5TdbGxsRZ3Yo7ZPsw+LlRd/hwDoXB8+9MDx3fgDRkyRD/99JO6d+9u+Vp79+7V66+/rh49eqhz58764IMPAjY9EMGzb98+DRw4UBkZGaa36devn6ZNm6bo6GgLO4NdqnL42ufzBbsFAAAAoMoh4AcAABDC8otd8vjKvwt6UiwTcQAgEIwmjBHwA44t1+iGBJyvAAAA2MbuyXUlOSXaM3u3ds/aqbyNuXJnuVSSUyx3lkt5G3O1e9ZO7Zm927bJfZLUhul9qMJSU1P9mpbRrl07C7uxx1VXXaW0tDRde+21tkxGKy0t1RdffKFTTjlFQ4cO1aZNmyxfM9QUFxebqguV8EFMTIypOgJQMHtsS6FxfJs9tiWOb6ukpKRo+fLlevfdd9W4cWNb1vzll1909dVXKyUlRZMmTSJEE6YOHDigQYMGKS0tzfQ2PXr00IwZMxQXV/4NKRE+eG0GAAAA4A8CfgAAACEsz0SYJNkgkAIAMMco4JdDwA84JuMJfpyvAAAA2KVZk/qqXzfJ9nWLs4t1cHW29szerV3f/BbqO7g6W8XZ5i+kD5STT2xt+5qAXdauXWu6NjIyUp07d7awG/vUr19f77zzjtLT03XXXXepTp06tqw7c+ZMdenSRY8++qjKyspsWTMUOJ3mLiXxesu/QaFdzPZh9nGh6vLnGAiF49ufHji+reN0OnXNNdcoIyND7777rrp162bLupmZmRo5cqQGDRqk7du327ImAuPgwYMaNGiQNm7caHqbE088UbNnz1ZiIpPIqxImcQIAAADwB5/uAAAAhLAcV/nTcCSpFhfMA0BAGE7wcxPwA47G6/Uqz2iCX1y8Td0AAADA4XBo6OCewW4jaKKjIjV4wMnBbgOwzLx580zXdujQQbGxsRZ2Y7/mzZvrhRde0O7duzVt2jRdfvnlql27tqVrlpaWaty4cTrzzDOVk5Nj6Vqhwuxx4880NCuZ7aOq/TzAf/4cA6FwfPvTA8e39aKjo3XNNddozZo1Wrdune677z61b9/e8nXnz5+vk046SfPnz7d8LVReTk6OzjjjDP3yyy+mt2nfvr3mzp2rpKQk6xpDUPDaDAAAAMAfBPwAAABCmFGYxOFwqFZMnE3dAEDVlhRbfsAvz0ToGqiO8otd8vp85dYY/XwBAAAgsM4fcqoiqukUl9P7d1Otmpx/ouryJ+B30kknWdhJcMXExOj888/XpEmTlJWVpeXLl+vZZ5/Veeedp7p161qy5g8//KDTTz9deXl5luw/lJi9GN3lclnciTlFReY+t+Mie/hzDITC8W322JY4vu3WpUsXPfXUU/r111+VmZmpDz/8UNdee63at28vh8MR8PUOHTqkIUOG6Pvvvw/4vhE4eXl5Gjx4sF8Tl1NSUjRv3jzLzl8QXHFx5q/lSE9Pl8/nC5uvcePGWffEAQAAANVUZLAbAAAAwLHlusoP+NWKiZOzml6sBQCBlmwwYSzXVSifz2fJL+eBcJZjML1PkpKZOAwAAGCr+vWS1adnRy1ctj7YrdjuomH9gt0CYJmNGzdq586dputPPfVUC7sJHREREerZs6d69vxjeunmzZu1ZMkSLV26VEuXLlV6enpA1vrpp590+eWXa8aMGVX6M6KEBHN/jz9w4IDFnZhjto8aNWpY3AlCXVzcb79X83q9hrWhcHz70wPHd/A0a9ZMo0aN0qhRoyT9Fsb783vQ6tWrAzIRsri4WBdeeKFWr16tlJSUSu8PgZWfn6+zzjpLq1evNr1NixYtNG/ePDVs2NDCzhBMZs+pJMntdlvYCQAAAIBwwNXgAAAAIcwo4JfExfIAEDC1DF5Tiz1lcpWV2NQNED7yDM5XJM5ZAAAAguHCoX2D3YLt2qU0U/s2zYPdBmCZjz76yHStw+HQOeecY2E3oa1t27a65ppr9MEHHygtLU379+/XZ599phtuuEHNm1fudWLWrFl66623AtRpaDIbNMjKyrK4E3PM9kGAAk6nU/Xq1TNVGwrHtz89cHyHjtq1a+vcc8/Vs88+qyVLlujw4cNatGiRHn30UZ166qmKiIio8L4PHz6sq666Sj6fL4Ado7IKCgo0ZMgQrVixwvQ2TZo00Q8//KCmTZta2BmCrUGDBqZrCwoKLOwEAAAAQDgg4AcAABDCcgj4AYBtkmKNX1NzXcaTyoDqxuh8xeFwqGZMnE3dAAAA4IiTT2ytZo3rB7sNW104rPqFGlF9eDweffzxx6brTz75ZMIef1K/fn1dcsklevPNN7V9+3atX79ejzzyiI4//vgK7e/BBx+s0hdhN2rUyFTd3r17VVIS/BtiZWRkmKoz+7hQtZk9DrZv325tIyaYPbbr1Kmj6Ohoi7tBRUVHR6tv3756+OGHtXTpUmVlZen999/X4MGD5XT6f+neihUrNGXKFAs6RUUUFRVp6NChWrp0qeltGjRooHnz5qlly5YWdoZQ0KxZM9O1e/bssbATAAAAAOGAgB8AAEAIy3OXHyQh4AcAgZNs4jXVaLIqUB3lusv/uagVE1ehC1UAAABQOU6nU1ddekaw27BNg3rJOmPAScFuA7DMN99849dFv8OGDbOwm/DXqVMnjRs3Tlu2bNGcOXN02mmn+bX9oUOH9P7771vUXfA1adLEVJ3H49GWLVss7qZ8eXl52rdvn6naxo0bW9wNwoHZ4zs1NdXiToxt3rzZVB3HdnipXbu2/vWvf2nOnDnKyMjQHXfcodjYWL/28fzzz1vUHfzhdrt17rnnauHChaa3qVu3rubNm6fWrVtb2BlCRY0aNVS7dm1TtTt27LC4GwAAjDnl4MvGLwD4O66uAgAACGFGQZKk2HibOgGAqq9WnPFrKgE/4J+MJltyQwIAAIDgOfv07uraqVWw27DFPbddqpjoqGC3AVjC5/Pp0UcfNV3vcDh02WWXWdhR1eFwODR48GD98MMP+vzzz1WjRg3T237yyScWdhZcrVu3lsNh7kKz9evXW9xN4NZv166dhZ0gXLRt29ZUXbCPbX964NgOX82bN9eLL76ojRs3qkePHqa3W7t2rTZu3GhhZzBSXFys888/X/PmzTO9TXJysubOnasOHTpY2BlCjdnX6A0bNljcCQAAAIBQR8APAAAgRPl8PuOAHxfMA0DAREdEKiE6ptwao0llQHXE+QoAAEDocjqdevDOKxQbEx3sViw1dHBPnXoKF8mi6vrf//6ndevWma4fPHiwUlJSrGuoirr44os1a9YsxcXFmapftWqVDhw4YHFXwVGjRg21bNnSVO3SpUst7iYw68fFxfFzAUm/TfA0IzU1VdnZ2RZ3c2xlZWVauXKlqdrOnTtb3A2s1rJlS33//ffq2bOn6W1mzZplYUcoT0lJiS688ELNmTPH9DY1a9bU7NmzdeKJJ1rXGELSKaecYqrup59+srgTAAAAAKGOgB8AAECIcpWVqNhTVm4NF8wDQGAZva4aTSoDqiOj4CvnKwAAAMHV+Li6uvnf5wa7DcvUq5ukMdcND3YbgGXy8/N15513+rXNrbfealE3VV/fvn310EMPma43G745GqcztC/X6NKli6m6BQsWWNtIgNZv3769IiIirG0mBIX6cRYMZo9tSVq4cKGFnZRv9erVKiw0d8M5An5VQ40aNTRp0iTFxsaaql+xYoXFHeFoysrKdOmll2rmzJmmt0lISNCsWbPUvXt3CztDqDL73339+vU6ePCgxd0AAAAACGV8kgcAABCizIRIkmK5YB4AAsnoddVoUhlQHRmdsyTFxtvUCQAAAI7lwqF91bVTq2C3YYn7xlymxBqcc6LquvPOO7Vjxw7T9a1atdKQIUMs7Kjqu/POO1WrVi1TtWlpaRVeJyoqylRdWVn5NwK0Su/evU3VbdiwQRkZGRZ3c3R5eXn64YcfTNX26dPH4m5CU6gfZ8HQoUMH0z/jX331lcXdHNu0adNM1TmdTp166qkWdwO7HH/88Ro9erSp2sq8B6FiPB6PLr/8ck2fPt30NnFxcfrmm29Mv6+i6unfv78cDodhncfj8Ss4CgAAAKDqIeAHAAAQosyESJKZiAMAAZUUV/5FoTkE/IC/8Pl8hucsTPADAAAIPqfTqQfvvELx8eamgYSLYWf20qmndAh2G4BlJk+erPfee8+vbZ5++mkmdlVSTEyMzjrrLFO1u3fvrvA60dHRpupcLleF16iMM844w3TtF198YWEnxzZt2jSVlpaaqvXn8VQloX6cBUNERIQGDhxoqnbGjBlyu90Wd/RPPp/P9M9Vt27dVLt2bYs7gp3OO+88U3WVeQ+C/7xer0aNGuXXe15MTIymT5+u0047zcLOEOoaNWqkU045xVTtRx99ZHE3AAAAAEIZn+wDAACEKDMBv1oGQRQAgH+Mgki5bgJ+wJ+5SktU4in/Du8E/AAAAEJD4+Pq6ukHrlZkZESwWwmIrp1a6a6bLgp2G4BlFixYYHqCzxH9+vXTRRfxcxEIHTt2NFVXUFBQ4TUSExNN1eXk5FR4jcro1KmTGjRoYKr2nXfekdfrtbijf3rzzTdN1UVFRal///4WdxOaQv04Cxazgc+cnBxNmTLF4m7+afbs2dq2bZup2uoaXq3K7HgPgn98Pp+uueYaTZo0yfQ2UVFR+vLLLzV48GALO0O4GD58uKm6H374QampqRZ3AwAAACBUEfADAAAIUUYhkvioGEVHRNrUDQBUD0mxBgE/JvgBf2FmqqXRzxUAAADs0+OkdnrsnlFyOh3BbqVS2qU00wvjrlNsjLmpREC4WbBggc4//3yVlJSY3sbpdOqll16ysKvqpV69eqbqfD5fhdeIjo5WzZo1Dev27NlT4TUqw+FwmA6MZmRkaPr06dY29DeLFy/Wjz/+aKp2yJAhqlGjhsUdhSazx3KwjrNgGT58uCIizN304OWXX67Uz3pFjB8/3nTtxRdfbGEnCAY73oPgnxtvvFEffPCB6frIyEhNmTJFQ4cOtbArhJMrrrjC1PuOz+fTQw89ZENHAAAAAEIRAT8AAIAQlesqKvf7yUzDAYCAM3ptLSwpVqnBtDKgOslzl3++InHOAgAAEGoG9u2qB++8ImxDfq1PaKKXnrhRCQlxwW4FsMTHH3+sM888U3l5eX5td//996tbt24WdVX95ObmmqozOx3tWMxMyNu+fbvKyoLzedSVV15puvahhx6Sx+OxsJu/uu+++0zXjho1ysJOQpvZKYxbtmyxuJPQ0rBhQ9OT737++Wdbp/h9//33mjdvnqnaTp06qWvXrhZ3BLvZ9R4Ec8aMGaO3337bdH1ERIQ+/vhjXXDBBRZ2hXDTtGlTnX/++aZqv/jiCy1atMjahgAAAACEJAJ+AAAAIcpoSlRSXLxNnQBA9ZFkIoiUayLQBFQXZqZa1uKcBQAAIOScfXoPPXn/1YqKigx2K37p0uF4vfHcbUqqVT2nMKFqy83N1ejRo3XVVVf5NblPkgYMGKBx48ZZ01g1tX37dlN1ZsNTx3LCCScY1hQXF+vXX3+t1DoV1aNHD7Vr185U7caNGzVhwgSLO/rNxIkTtXTpUlO1devWrdYTlMwcY5K0Zs0aizsJPf/6179M195zzz06fPiwhd38xu1269ZbbzVd789jQPiw6z3ozxwOh+kvs/1VBffcc49eeeUV0/UOh0Pvv/++LrvsMgu7Qri6/fbbTdeOGjXK7xt+AAAAAAh/BPwAAABCVI5hwI9pOAAQaKYCfiYCTUB1YXS+Eh8Vo+iI8LpoHAAAoLo4rc+JevGxG1SzRnjckKH/qZ014cmbVYPJfahivF6vJk2apA4dOmjixIl+b9+wYUNNnjxZERERFnRXPXk8Hn3zzTemas2G346ldevWpurmzJlTqXUq4z//+Y/p2gcffFCbN2+2sBtpx44dfl0gf8cddyg6Otq6hkKc2WPsu+++s7iT0HPhhReaDkDu3LlTY8aMsbgj6YEHHjD9M1S7dm1dc801FneEYJg2bZqpusq+B6F8jzzyiJ577jnT9Q6HQ2+//bauuuoqC7tCOOvTp4/OPvtsU7Xbt2/XJZdcotLSUou7AgAAABBKCPgBAACEqFw3AT8AsFtSrPGFrQT8gD8Yna8kc74CAAAQ0k7p2kaT3r5fvXt0DHYrx5QQH6v7b79czzx0jWJjq29AA1VPSUnJ78G+kSNHas+ePX7vo27duvruu+/UsGFDCzq03xNPPKEZM2YEuw1NnTpVu3fvNqxzOBzq3r17pdY65ZRTTNW999578ng8lVqrokaOHKkWLVqYqnW5XDrvvPOUm5trSS+FhYV+7T8pKUm33HKLJb2Ei44dOyouzjgcv3HjRi1atMiGjkJHRESE7r33XtP1H374oV5//XXL+pk0aZJefPFF0/VjxoxRYmKiZf1UNwsXLtSTTz4Z9IlZhw8fNh3479mzp8XdVF/PPPOMHnvsMb+2efXVV3Xttdda1BGqihdeeEGRkeZuivjdd99pxIgRKi4utrgrcwoKCvTcc89p/fr1wW4FAAAAqLII+AEAAISoPFdRud9PiuWCeQAItLioaMNpYwT8gD8Y/TwkxYXHNBgAAIDqrF6dWnph3HV6ZOyVSqwRWtPxep7UTp++fb/OPauXHA5HsNsBKs3r9WrlypW65ZZbdNxxx2nkyJEVnnZWu3Ztff/99+rUqVOAuwye1atXa9iwYeratasmTZqkkpIS23vYuXOnbrrpJlO1J510kho0aFCp9fr06WOqLj09Xffff3+l1qqoyMhIPfHEE6br09LSNGTIkICH/IqKinTeeedp3bp1pre57777VLNmzYD2EW6ioqJMB1FvuOEGHTx40OKOQsuoUaP8moI2ZswYTZo0KeB9fP3117r66qtN1zds2NCvSZYwlpOTowcffFDNmzfXAw88oF27dgWlj2uvvVb79u0zVWt2Ehj8M2HCBN13331+bfPiiy/q5ptvtqgjVCXt2rXTnXfeabp+6tSpGjx4sLKysizsqnwHDhzQE088oZYtW+qee+7R4cOHg9YLAAAAUNUR8AMAAAhBpZ4yFZS4y63hgnkACDyHw2E4ITXHIIANVCe5RjckYIIfAABAWHA4HBpyend9+vYDITHN78jUvpeeuFEN6iUHux2gwgoKCrRy5Uq9+eabuuiii1SvXj317NlTr7/+ug4dOlTh/TZt2lTz5s1Tly5dAtht6Fi3bp1GjhypZs2a6aGHHtLWrVttWXfz5s06/fTTTQecRo8eXek1W7RooQ4dOpiqfe6553T++edr7dq1lV7XX1dccYUGDhxoun7FihXq37+/tmzZEpD1d+3apUGDBmnevHmmt+nUqZNfF9BXZUOHDjVVt2nTJp100kn69NNPgxKwDYaoqCi9+eabpus9Ho+uuuoqPffcc/L5fAHp4ch7hD/P+csvv1ztw6tWycvL01NPPaWWLVvq4osv1ty5c+X1ei1ft6SkRNdee60+//xzU/Unn3yy6fcPmPfOO+/4HZ59+umndccdd1jTEKqkxx9/XN26dTNdv2jRInXs2FFffPGFhV390/Lly/Wvf/1LTZs21UMPPaTs7Gxb1wcAAACqI3PzvgEAAGCrXLdxeIQL5gHAGklx8coqyDvm93PdTPADjjD6eWDiMAAAQHg5Ms1v8YoNmvy/H7T2l8AEM8yqkRCnoYN7aORFp6tunVq2ro3q7eeff9aMGTP82sbn88ntdqu4uFhut1v5+fnat2+f9u3bp7179yo9PV2ZmZkBC4AcMWjQIE2ePFn16tUL6H5D0f79+/XEE0/oiSeeUK9evTRixAide+65at68eUDXcbvdeuedd/Tggw8qPz/f1Da1a9fWVVddFZD1L730Uj388MOmar/66it99dVXOv7449W7d2+1adNGjRo1Uq1atRQVFWVq2mmdOnXUq1cvv/t888031a1bNxUWmvtsbP369TrppJP09NNP6/rrr1dERITfa/p8Pn388ce66667/LqoPDIyUu+8844iI7kkRpIuvvhi3XPPPaZCSpmZmbriiit0ww03qG/fvurcubOaNWumOnXqKDY2Vk6nufuIDxo0SHFxoTUZ+Fj69++va665Ru+9956peq/Xq3vuuUfz5s3Tq6++qtatW1do3R07duiOO+7Q//73P7+2Gzp0qC699NIKrQnzysrK9OWXX+rLL79Uo0aNNGLECA0fPly9evUy/XNg1qJFizR27FitWrXK9DYEyqzx1FNP+b3Nfffd5/fEP6vNnz9fAwYMCHYbOIbo6GhNnjxZ3bt3V17esX8f+WcHDhzQJZdcolNPPVWPPPKIzjjjjIBPuff5fFq7dq2++uorTZo0ybabbAAAQovTwewoAAgmPs0EAAAIQbku41+Qc8E8AFjD6PU1z8RrNFBdGJ2zcEMCAACA8ONwONSvVyf169VJGdv36n8zF2vWvFUqKnJbtmbrE5roomH9NHjASYqNjbZsHeBYXn75Zb388svBbqNckZGRuueee/Too49WKCgV7pYvX67ly5frtttuU6dOnTRo0CD16dNHp556qo477ji/9+fz+bRmzRrNmDFD7777rvbs2ePX9o8//rgSExP9XvdorrvuOj311FNyu82/zmZkZCgjI6NC6/Xv318LFizwe7vWrVvr3Xff1eWXX256m8OHD+vmm2/WK6+8oltvvVWXX365kpONJ7MWFBToyy+/1IQJE7Ru3Tq/e33uuefUs2dPv7erqpo3b65zzz1X06dPN71Nfn6+Zs2apVmzZlVozW3btqlFixYV2jYYXnnlFa1evdqv4+27775Tx44dNWLECN14443q0aOHqbDF+vXr9eabb2rixIlyuVx+9dmyZUtNnDjRr21QeXv27NH48eM1fvx41alTR4MHD1bfvn3Vu3dvdejQoULvy/v27dPMmTM1adIkzZ8/369tu3fvrhEjRvi9JoDQ0bp1a02fPl1nnXWWiouLTW+3bNkynXnmmWrVqpUuv/xyDR06VCeffHKFwn4ej0ebN2/WsmXLtGzZMs2ZM0d79+71ez8AAAAAAoeAHwAAQAgyE/BL5oJ5ALCE0etrjst4yipQHZR4ylRYUv4vnpPi4m3qBgAAAFY4vsVxGnvzJbrxX+dqzvzVmjV3pTal7ZDHxAQgI0m1aqh39w4afk4fdWjTPODTB4CqZMCAAXrttdfUoUOHYLcSEn755Rf98ssvv4cy69Spow4dOiglJUWNGjVSo0aNlJiYqLi4OEVGRqqwsFCFhYU6fPiwtm7dqs2bN2vDhg3Kysqq0PoDBgzQ9ddfH7DH06BBA91yyy164YUXArZPq4wYMUKrVq3SSy+95Nd2qampuuWWWzRmzBh1795dJ510ktq0aaM6deooPj5ebrdbubm5SktL09q1a7V06VKVlJRUuEcmW/3TuHHj9M0338jj8QS7lZAUFxenqVOnqnv37jp48KDp7UpLS/XRRx/po48+UoMGDdS/f3916NBBzZs3V40aNeR0OlVQUKDdu3dr48aNWrhwoXbs2FGhHhMSEjR16lTVrl27QtsjMA4ePKjJkydr8uTJkqSYmBi1adNG7dq1U5MmTdSoUSPVrVtXsbGxio2NVUlJiQoKClRYWKjdu3dr8+bNv39VZMpvfHy8/vvf/3LuDFQBAwYM0CeffKLLLrvM7/fnLVu26LHHHtNjjz2mxMREde3aVR06dFCTJk103HHHKSEhQbGxsfJ4PHK73XK5XMrKytL+/fu1a9cupaamKi0tza9wIQAAAADrEfADAAAIQUYBv+iISMVFcTdzALBCLYNAUq6bCX6AJOWZCLsywQ8AAKBqSIiP1QXn9NEF5/SRu7hEWzJ2a3P6Tm3eslOb03doW+a+ckN/NRPj1S6lmdqmNFWblGZq26qpjmtQmwuTAQOtWrXSY489xpQeAwcPHtSiRYu0aNEiy9dq1qyZpkyZEvApiuPGjdO0adO0devWgO7XCuPHj9ehQ4cqNEXM4/H8Po3RCkOHDmW62TF06dJFd999t5555plgtxKyjj/+eH333XcaNGiQcnNz/d5+//79+vzzzwPfmH4LIH799dfq2rWrJftHxRUXF2v9+vVav3695Ws5HA69++676tixo+VrAbDHRRddpOnTp+vSSy9VUVHFbjCan59v27kwAAAAAGsR8AMAAAhBue7yP7xNikvgAigAsEhSbPmBpDx3kbxer5xOp00dAaHJTNjV6OcJAAAA4Sc2Jlod27VUx3Ytf/+zkpJS5eYVyF1SqpKSMpWVeRQTE6WY6EjFx8WqVk0+ywL80atXL40dO1bnn38+nz+EkMaNG+uHH35QgwYNAr7vhIQEzZgxQ3369PFrelgwOBwOvf/++/J4PPrkk0+C3c7vzjnnHH355ZeKiooKdish64knntDGjRv19ddfB7uVkNWtWzfNnj1bQ4YMUU5OTrDbkfTbxLZp06Zp4MCBwW4FQfb666/r8ssvD3YbAAJs6NChmjdvns4//3zt378/2O0AAAAACCJ+GwAAABCCjCb4JcWWP10KAFBxyQYTx3w+nw4Xu2zqBghdRucrEhP8AAAAqovo6CjVr5esZo3rq1XLRmqb0lQtmzVUo4Z1lVSrBuE+wIRGjRrp1ltv1cqVK7Vs2TJdcMEFhPtCSLdu3bR8+XKdcMIJlq3Rtm1brVixQu3bt7dsjUBxOp36+OOP9fjjj4fEa/xdd92lr776SjExMcFuJaRFRERo6tSpuvHGG4PdSkjr0aOHfvzxR7Vr1y7Yrah58+ZatmyZBg8eHOxWEETx8fH6/PPP+dkFqrCePXtq/fr1Ovvss4PdCgAAAIAg4jcCAAAAIcgw4MfF8gBgGTOvsWaCTUBVZ/RzEBURofioaJu6AQAAAIDw4nA41KlTJ912221auHChdu7cqVdeeUXdu3cPdmv4E6fTqVtvvVVLlixR06ZNLV+vVatWWrt2rZ588kklJydbvl5lPfjgg5o5c6YaN24clPXr1q2rKVOm6IUXXlBERERQegg3kZGReuONNzRv3jx169Yt2O2ErFatWmnFihUaNWpU0Hq44IILtHr1anXp0iVoPSD4TjrpJK1cuVIXX3xxsFsBYLH69etr5syZeuedd1SvXr1gt/MPTqdTZ511llq0aBHsVgAAAIAqi4AfAABACMpxFZX7fQJ+AGAdUwE/d/mv00B1YHi+EpsQEnfxBwAAAIBQ0KhRIw0cOFB33323vv76ax08eFDr16/XhAkT1K9fP6b1Sbr77rt1ww032BKkM+PUU0/V4sWL9corryguLs62daOjo3X//fdr586devfddzV48GBFR4fuDXSGDBmijRs36uabb1ZkZKQtazqdTo0aNUqbN2/WpZdeasuaVc3AgQO1Zs0aLViwQNdee60aNGgQ7JZCTs2aNfXhhx9q7ty5at26tW3rNmvWTNOmTdPUqVNVt25d29at7k499VQ9+eST6tWrV0i8J9erV08vvfSSVqxYoY4dOwa7HQA2uvbaa7Vlyxbdc889SkgI/nUhrVu31iOPPKKMjAx9++23atKkSbBbAgAAAKosez5dBQAAgF9y3UYT/OJt6gQAqp/EmDhFOJzy+LzHrGGCH2B8vpLMDQkAAAAAVFFRUVGKiYn5y1diYqLq16+v+vXrq0GDBqpfv76aNGmiNm3aqG3btkpMTAx22yGvd+/e6t27tyRp/fr1mjFjhmbOnKkff/xRZWVltvRwZDLJbbfdpjPPPNOWNY8lISFB11xzja655hq5XC6tWrVKa9asUVpamrZu3ar9+/frwIEDKigoUHFxsUpLS+Xz+YLSa82aNfXaa69p7NixevbZZ/Xhhx/K7XYHfJ3IyEiNGDFC999/v9q2bRvw/VdH/fv3V//+/fX2228rNTVVK1as0KZNm5Senq7du3frwIEDysnJkdvtVklJibzeY39mWlWdfvrp2rhxoz777DM9/fTT2rBhgyXrtGrVSvfcc49GjRqlqKgoS9bAsdWvX1/333+/7r//fmVnZ2vWrFmaOXOm5s6dq5ycHNv6SElJ0Q033KDrrrtONWrUsG1dAKGlZs2aeuaZZ3Tvvffq/fff1xtvvKGtW7fasrbD4VCXLl10zjnn6IILLmDiLwAAAGAjhy9Yn/ACAIBKO3DggOrXr/+XP8vKylK9evWC1BECwev16srPXiv3F/HX9ThdA07oYGNXAFC93DLtvzrkKjjm9y/p3Evnd+xuY0dA6Hl+wVdau2f7Mb/fvWkr3d73HPsaAgAAVUZxcbEyMjLKrTn++OMVExNjU0cAgGAqKirSqlWrtHz5cq1YsUIrVqzQ/v37A7b/uLg4nXrqqTr33HM1fPjwkJkgGM5yc3M1depUTZ48WYsXL1ZJSUmF9xUZGamePXvqsssu0yWXXMLvwBB0P/74oyZNmqRp06Zp586dldpXgwYNdP755+vyyy9X37595XA4AtQlAsXn82nz5s1avnz571+bNm0KWNjV4XCobdu2OvvsszV8+HCdeuqpHAeADaZPn65169aZqr399tuVlJRkaT9mrF69WtOnT9c333yjDRs2BOx1KDIyUu3atVPv3r3Vt29fnXbaaTruuOMCsu9QU9U/b+IaMgCBMOuH8cFuoVo5e+BdwW4BQIgh4AcAQBjjw5mqKc9VqBunvVduzT0DzlOXRi3saQgAqqEHZk/WtkNZx/z+GSmd9a9TTrOxIyD03P/tZG3P4ecEAAAEXlW/4AoAUHl79uxRenq6tm7dqi1btmjr1q3auXOnDh8+rIKCAhUUFCg/P19lZWWKjo5WTEyMkpKSVL9+fR133HFq1aqV2rRpoxNPPFFdu3ZlWpaF3G63fvzxRy1fvlxpaWnKyMjQjh07lJ+fr8LCQrndbsXExCghIUE1atRQkyZNdPzxxyslJUU9e/ZUr169lJCQEOyHARzV9u3btWTJEv3888/aunWrtm3bpqysLBUWFqqoqEg+n0/x8fFKSEhQnTp11LJlSx1//PHq0qWLevfurdatWwf7IaACCgoKfp+meuQ9KCMjQzk5Ob+//xQUFKioqOj3qb8JCQmqV6+eGjRooObNm6tNmzbq0KGDevbsqdq1awf7IQEIM/n5+VqzZo3WrFmjLVu2aMeOHdqxY4cOHTqkoqIiuVwulZSUKCoqStHR0apRo4bq1q2revXqqXHjxmrZsqVOOOEEdejQQR07dlRsbGywH5ItqvrnTVxDBiAQCPjZi4AfgL+LDHYDAAAA+Kscd5FhTa04fpkNAFZKii3/dTbXXWhTJ0DoMvo5SOZ8BQAAAABgkUaNGqlRo0bq379/sFuBgdjYWPXr10/9+vULditAwLVo0UItWrTQyJEjg90KbFSjRg1169ZN3bp1C3YrAKqpxMREDRgwQAMGDAh2KwAAAAACyBnsBgAAAPBXuS7j0EhybLwNnQBA9ZVkEEzKdRmHsYGqzOv1Ks/gpgRGP0cAAAAAAAAAAAAAAAAAAAJ+AAAAIcco4Od0OJRIwA8ALJUcV/7rrJkwNlCVHS52yefzlVtDwA8AAAAAAAAAAAAAAAAAjBHwAwAACDFGoZFasfFyOhw2dQMA1ZPhBD93oWG4CajKcg2m90kE/AAAAAAAAAAAAAAAAADAjMhgNwAAAIC/yjEI+HGxPABYz+i1ttTjUVFpiRKiY2zqCAgtZqZYJjFxGAAAAAAAAAAAAACAsOAUQwcAIJiY4AcAABBi8gwm4iTFEvADAKuZea01E3ACqiqj49/hcKhmTJxN3QAAAAAAAAAAAAAAAABA+CLgBwAAEGKMLphPimMaDgBYzcxrLQE/VGdGx3+t2Hg5nXzsBAAAAAAAAAAAAAAAAABGuNIKAAAgxOQYBvyY4AcAVjMzwc/o9RqoygzPV5g4DAAAAAAAAAAAAAAAAACmEPADAAAIIT6fT7luAn4AEGyRERGqERNbbo3R6zVQleW5i8r9fjIThwEAAAAAAAAAAAAAAADAFAJ+AAAAIaSotESlHk+5NUzEAQB7JBu83ua5yg84AVVZrsEEv1rckAAAAAAAAAAAAAAAAAAATCHgBwAAEEKMLpaXpGQumAcAWxhNTM0x8ZoNVFVGxz83JAAAAAAAAAAAAAAAAAAAcwj4AQAAhJBct3FYJCku3oZOAAC1Yst/vTXzmg1URT6fz/D4T+Z8BQAAAAAAAAAAAAAAAABMiQx2AwAAAPiDmQl+RoETAEBgGE1MNfOaDVRFRaUlKvV4yq0xmoAJAAAAAAAAAAAAAAAAHEtpaakWL16spUuXauPGjdq8ebMOHDig/Px8FRYWKi4uTjVr1lTt2rXVpk0btW/fXj169NDAgQMVFxcX7PbDyoEDBzRnzhytXbtWGzdu1NatW5WXl6f8/HyVlpYqMTFRNWvWVKNGjdS+fXt16NBBAwcOVJcuXYLdepVCwA8AACCE5LqKyv1+jehYRUVwCgcAdjAKKBHwQ3Vl5tgn4AcAAAAAAAAAAAAAAAB/LVmyRK+//rpmzZqlw4cPH7OuoKBABQUF2rNnjzZs2KCpU6dKkuLi4nT66afrxhtv1FlnnSWHw2FX62HF5XLp448/1vvvv69Vq1bJ6/UeszYnJ0c5OTnKzMzU8uXLf//zJk2a6OKLL9att96qli1b2tF2leYMdgMAAAD4g9EF81wsDwD2MXrNLSotUUlZmU3dAKEj120i4BfLOQsAAAAAAAAAAAAAAADMWbRokU455RT17dtXU6ZMKTfcVx6Xy6VvvvlGZ599ttq1a6fp06cHttEwV1paqmeffVZNmzbV9ddfr5UrV5Yb7ivPrl279NJLL6lVq1a6+OKLtX379sA2W80Q8AMAAAghOYYBv3ibOgEAmAlVmwk6AVWNmQl+tThnAQAAAAAAAAAAAAAAgIHc3FyNGjVK/fv31+rVqwO679TUVA0fPlzDhg3Tnj17ArrvcLR06VJ16dJF9957rw4ePBiw/Xq9Xn355Zfq0KGDnnvuOfl8voDtuzoh4AcAABBCjIIiTMMBAPskxRoHlMwEnYCqJtdVVO73E6JjFB0RaVM3AAAAAAAAAAAAAAAACEcbN25U9+7d9dFHH1m6zowZM3TSSSdp2bJllq4Tyt544w2ddtpp2rRpk2VrFBUV6Z577tF5551X4QmM1RkBPwAAgBCSZ3DBfLKJaVIAgMAw85pLwA/VkdFxb2b6JQAAAAAAAAAAAAAAAKqvJUuWqGfPnkpPT7dlvX379um0007TtGnTbFkvlNx55526+eabVVpaast633zzjXr16qUDBw7Ysl5VQcAPAAAghOQYXDBfK854mhQAIDBio6IVExlVbk2OQTAbqIqYOAwAAAAAAAAAAAAAQNXidDj4svGrulu9erXOOecc5efn27puSUmJLrvsMs2ZM8fWdYPp/vvv10svvWT7uhs3btTgwYOVm5tr+9rhKjLYDQAAAOA3JWVlKiotLreGC+YBwF5JsfHaX5B3zO8bBZ2Aqsh4gh83JAAAAAAAAAAAAAAAAMA/7dq1S0OGDNHhw4dNbxMbG6t+/frp5JNPVuPGjVWzZk0VFBRo7969+umnn7RgwQIVFBSY2ldJSYkuuOACrVy5Uh07dqzowwgLb7/9tp5++mm/tmnSpIn69eunzp07q27duoqKilJubq7S09O1cuVKrV69Wj6fz9S+1q1bp+HDh+v7779XRERERR5CtULADwAAIESYCYkkxxHwAwA7JccllB/wMwg6AVVRrsHkyiTOVwAAAAAAAAAAAAAAAPA3ZWVlGjFihLKzs03V169fXw8++KCuuuoq1apV65h1RUVF+vzzzzVu3DhlZmYa7reoqEgXX3yxVq9erYSEqnmdy7p163T77bebru/Xr58efvhhDRw4UI5ypkxu27ZNr7zyit544w2VlJQY7nfBggUaN26cHn/8cdO9VFfOYDcAAACA35gJiXDBPADYy+h1l4AfqqMcowl+TBwGAAAAAAAAAAAAAADA3zz11FNasmSJqdpLL71U6enpuvXWW8sN90lSfHy8Ro8erdTUVN18882m9r9582bdcccdpmrDTUlJiS677DK53W7D2ri4OH3wwQdauHChBg0aVG64T5Jatmypl156SevXrzc9AdGf/+7VGQE/AACAEEHADwBCj2HAz13+JDOgqikpK1NRaXG5NUwcBgAAAAAAAAAAAAAAwJ9t27ZNTz/9tKna++67T1OmTFHNmjX9WiMmJkavvfaaXn31VVP17733nlatWuXXGuHgxRdfVGpqqmFdzZo1tWDBAo0ePdrvNdq0aaMVK1aof//+hrVer1e33HKLPB6P3+tUJwT8AAAAQoRRSCQmMkpxUdE2dQMAkJjgB/xdnolQKzckAAAAAAAAAAAAAAAAwJ/deeedpibKXX/99XrqqacqtdYtt9yiJ554wrDO5/Pplltukc/nq9R6oWTPnj2mHntUVJRmzJih7t27V3ithIQEzZgxQyeeeKJh7c8//6y33367wmtVBwT8AAAAQoRRSCQpNt6mTgAARxi99h52F8nj9drUDRB8OSZCrbU4ZwEAAAAAAAAAAAAAAMD/W7dunaZPn25Y17VrV02YMCEga95///0688wzDet+/PFHzZw5MyBrhoLnnntOhYXG1/c8+eST6tu3b6XXq1Gjhj777DPVqFHD1JolJSWVXrOqIuAHAAAQIgwDfkzDAQDbGb32+vRbyA+oLnLdxh8AJnPOAgAAAAAAAAAAAAAAgP/33HPPGdY4nU699957iomJCciaDodD77zzjuLi4gxrzfQXDnJycvTee+8Z1nXt2lV33XVXwNZt3bq1Hn74YcO6PXv26JNPPgnYulUNAT8AAIAQYTQRh4AfANjPzGtvjonAE1BVGN2QIDoiUnFR0TZ1AwAAAAAAAAAAAAAAgFC2c+dOffHFF4Z1V155pbp16xbQtZs1a6Y777zTsG7x4sVatWpVQNcOhrfeesvU9L4XX3xRTmdg42RjxoxRy5YtDevGjx8f0HWrEgJ+AAAAISLXYAJUUiwBPwCwm5nXXqPAE1CVmJk47HA4bOoGAAAAAAAAAAAAAAAAoWzSpEkqKysrt8bhcOiee+6xZP0xY8YoNjbWsG7ixImWrG8nM4+hR48eGjBgQMDXjo6O1h133GFYt3HjRq1evTrg61cFBPwAAABChNEF88lx8TZ1AgA4IjEmVhEGdyvKc5Uf0AaqEsMbEnC+AgAAAAAAAAAAAAAAgP83adIkw5rBgwerXbt2lqxfr149XXHFFYZ1n3/+uWEQMZStWbNGqamphnW33367ZT1cffXVqlmzpmGdmWOiOiLgBwAAEAK8Xq8OF7vKrUmKY4IfANjN4XAoKbb8wFIOE/xQjRhO8GPiMAAAAAAAAAAAAAAAACRt2LBBGzZsMKwbOXKkpX2Y2f+BAwf0/fffW9qHlSZPnmxYk5iYqPPOO8+yHhISEjR8+HDDuilTpsjn81nWR7gi4AcAABAC8opdhiertbhgHgCCwihgnesm4IfqwzDgxw0JAAAAAAAAAAAAAAAAIGn27NmGNbGxsZaGziSpX79+atSokWHdt99+a2kfVjLzXJ977rmKi4uztI/LLrvMsGbfvn1at26dpX2EIwJ+AAAAIcDoYnlJSo4rf4IUAMAaRhPJcl1FNnUCBJ9xwI/zFQAAAAAAAAAAAAAAAEhz5841rOnTp48SExMt7cPpdGrw4MGGdWb6DUV79+7Vr7/+alg3ZMgQy3sZMGCAYmNjDevC9bm2EgE/AACAEGAm4MdEHAAIDqPAkpnXcKAq8Hq9yit2lVtjFIgFAAAAAAAAAAAAAABA1VdSUqIlS5YY1p1++uk2dGNunU2bNmn37t02dBNY8+bNM1U3aNAgizv5bSJjnz59DOsI+P0TAT8AAIAQYBQOiXA4VSPG2rHYAICjMwpYE/BDdXG42CWfz1duTTI3JAAAAAAAAAAAAAAAIOw4+T9b/686+Pnnn1VUVGRYZyYMFgh9+/Y1Vbdy5UqLOwm85cuXG9a0atVKDRs2tKEbc8/1jz/+aHgdUnVTPV4ZAAAAQlyOQTikVly8nA6HTd0AAP7MMODnLuLDBlQLZsKstQj4AQAAAAAAAAAAAAAAVHtr1641rHE6nTrxxBOtb0ZSs2bNVLduXcM6M32HGjM9d+vWzYZOfnPSSScZ1hw+fFgZGRk2dBM+CPgBAACEgDx3+XcpSYrlYnkACBaj1+Ayr0eFJcU2dQMEj9ENCSQpOTbehk4AAAAAAAAAAAAAAAAQyn766SfDmtatWyshwb7rY80Ez8It4Of1evXzzz8b1oVawE8Kv+faagT8AAAAQoDRRJykOC6WB4BgSTYxkczMZDMg3OW6yz/OnQ6HEgn4AQAAAAAAAAAAAAAAVHu//PKLYU3btm1t6OQPbdq0MaxZv369DZ0EztatW1VUVP6QEcne57phw4aqVauWYV24PddWI+AHAAAQAowm4iSZCJcAAKxRy0TIOscg+ARUBbmu8j8MrBUbL6fDYVM3AAAAAAAAAAAAAAAACFUZGRmGNSkpKTZ08odWrVoZ1uzevVslJSU2dBMYZp5nyf7n+oQTTjCsMdt7dUHADwAAIAQYTcRJiiXgBwDBUis2XkaRJSb4oTowOs5rcb4CAAAAAAAAAAAAAABQ7blcLu3bt8+wzkwILJDMBPy8Xq8yMzNt6CYwtm3bZqru+OOPt7iTvzLzXJvtvbog4AcAABBkPp/PcCJOMhP8ACBoIp0RSoyJK7eGgB+qA6MbEiSbmHYJAAAAAAAAAAAAAACAqs1sQK5Ro0YWd/JXxx13nKm6cAqebd++3bCmdu3aio2Ntb6ZPzHzXIfT82wHAn4AAABBVlhSrDKvp9yaJAJ+ABBURq/DBPxQHRjdkIDzFQAAAAAAAAAAAAAAAOzevdtUXcOGDS3upGLr7dq1y+JOAsfMc23382x2zX379snjKf/66eqEgB8AAECQGU3DkaQkJuIAQFAZBvzc5QefgKrAKMhKwA8AAAAAAAAAAAAAAAAHDx40VdegQQOLO/mr+vXry+k0jlEdOnTIhm4Cw8xzbffzLJkL+Pl8PuXk5NjQTXgg4AcAABBkZqY+JcVywTwABJNR0JoJfqjqfD4fAT8AAAAAAAAAAAAAAAAYMhvwS0pKsraRv3E6nUpMTDSsM9t/KDDTq93Psz9rhtNzbTUCfgAAAEGW6zKe+lQrlgl+ABBMRkFrAn6o6opKS1Tq9ZRbk8T5CgAAAAAAAAAAAAAAQLVndgJejRo1LO7kn8wE/MJpgp+ZXs085kAzu2Y4PddWI+AHAAAQZDkGoZDEmDhFRkTY1A0A4GiMJpOZCWsD4czUxGEm+AEAAAAAAAAAAAAAAFR7hw8fNqxJSEiQ02l/pKlmzZqGNXl5eTZ0EhhmnutgBPzMPM9SeD3XViPgBwAAEGRGF8wnxTENBwCCzSi45Corkbus1KZuAPsR8AMAAAAAAAAAAAAAAIAZJSUlhjVxcXE2dPJPsbGxhjVm+g8Vofpcm3mepfB6rq1GwA8AACDIct0GAb9YLpYHgGBLijUOW5sJQAHhymjisGTu5wQAAAAAAAAAAAAAAABVm5nQVkREhA2d/FNkZKRhTTiFzkL1uTbzPEvh9VxbzdwzBgAAAMvkuYrK/X4y03AAIOjMvBbnugrVMDHJ+maAIDC6IUGN6FhFRfAxEwAAAAAAAAAAAAAA4ej008YEuwVUIWZCW2YDYIFmZt3S0lIbOgmMUH2uza4ZTs+11ZjgBwAAEGQ5BhfM14pjGg4ABFuSmYCfu/zANhDOjG5IwPkKAAAAAAAAAAAAAAAAJKmsrMywhoBfYITqc03Az38E/AAAAIIs11V+wC8plgl+ABBsMZFRiouKLrfG6PUcCGc5nK8AAAAAAAAAAAAAAADABDPhLo/HY0MnFVs3WOHDigjV59rsmuH0XFuNgB8AAEAQFZeVylVa/njsZBNTowAA1kuKLX9CGQE/VDU+n0+FRW4dys1X1uHccms5XwEAAAAAAAAAAAAAAIAkRUeXfyN1ydzkOSuYmRhnpv9QEarPtdnJfOH0XFuNqCMAAEAQmQmDJHHBPACEhKS4BO3Nzz3m93/4cZ3Svs9QTEy06tWppTYnNFHblGaqU7umfU0CFVTm8Wj7jv3anL7j/792asu2PXIX/3YjgibnNlN00rE/UCspLFGRq1jxcTF2tQwAAIAQVVrqVllZsSIjYxQVFRvsdgAAAAAAAAAAgM2ioqIMa4IV8DOzbjiFzkL1uTa7Zjg911Yj4AcAAGCDAwfzfr9YfvOWndqxa78Ki9zyJTqVPKBeudvWiOJCeQAIlj37srXsx43alL5DmyL2S/WP/dforMOHtf77zf/483p1aqlNq6Zqm9JUXTul6MSOJygiwmll24ApLnexvpu/RnPmr9avqdtVXHzsO2dFxEeUu69vZ63UZy/OVctmDdWvV2edf/apali/dqBbBgAAQAgrKytWavpC7dufKp/PK4fDqYYN2qhNSn9FRvL5FgAAAAAAAAAA1UVMjPHvBdxutw2dVGzdcAqdhepzbXbNcHqurUbADwAAwAKFRW7NXbhGS1f+qk1pmco+dPiodQmJxtP5Lr/6KR3fpKFO7NhKQwadojatmga6XQDAn5R5PFr246+a+s1irfzpj8Be7ZPrKql+0jG3i4g9egDqwME8HTiYpyUrN0j6Vo0a1tHwc/po2OCeSqpVI8DdA8Yyd+7X/2Yu0cy5K1VQ6DKsd0Q4FBFdfsCvzOWRz+dTRuZeZWTu1Ueff6fe3TvqwqF91b1bGzmdhFoBAACqMo+nTOvWf63cvD2//5nP59XefZvkcuWpa5fhiojg15IAAAAAAAAAAFQHiYmJhjWFhYXy+XxyOBw2dPSH/Px8w5qaNWva0ElgJCYmKisrq9waM4850MyuGU7PtdX4TRoAAEAAZWzfq//NXKxZ81apqMj47hMR8eWfjnlLvSpxlf42+S99p6ZMm6+ObVvowqF9NbBfV8VEG4/WBgCYczDnsL6evVzTZy3V/gM5//i+x1VW7vaRceUHoI7Ys++gXv/vV3r3o5ka1K+rLhzaVx3atrD9wypULz6fT8t+/FWTp83X6nVpfm0bYeLY9rg8f/l3r9enxSt+0eIVv6jJcXV14bC+Gn52H8XGctctAACAqihzx5q/hPv+LDdvjzJ3rtHxLXrY3BUAAAAAAAAAAAiG2rVrG9b4fD7l5+fbHvA6fPjoAzv+zEz/oaJ27draunVruTVmHnOgmV0znJ5rqxHwAwAAqCSPx6sFS3/Wl98s0tpftvi1rdEF82VHCZNs2LxdGzZv18vv/E/Dzuyli4b1VcP6nOACQEW53MV6e+JMffnNIpWVeY5Z5ykqP+AXERcpOST5zK1bUlqmb+et0rfzVqlLh+N19y2XqlXLRn50DpiTlZ2rZyZM1rJVGyu0fUSc8cdH5QVgd+3N1oR3pumLrxfpgTsu10ldWleoDwAAAISmIleetu9YVW7N9sxVOq5BW8XF1bKpKwAAAAAAAAAAECx16tQxVZeXl2drwM/r9aqgoMCwzmz/ocBMr3l5eTZ0UrE1w+m5tpoz2A0AAACEs/SMXfrXbc/rgafe9zvcJ0mRBhfMe4qOHTTJO1yoT774Xhf/+3G9/+nsckMpAICj+2l9ukbe+IymTJtv+DrqcRu/zpqZdHY0P/+aodG3PsfrOQLK5/NpxncrdPn1T1U43CeZm055tJsS/N2efQd18z2v6vnXPleRq7jC/QAAACC0pKUvlNdb/t9jvF6PUrcssqkjAAAAAAAAAAAQTGZDW/v377e4k786cOCAPB7ja7PCKXRmple7n2dJ2rdvn2GNw+FQcnKyDd2EByb4AQAAVEBZmUcfTpmjDybPkcfjrfB+jIIg5U3DOaK0tEzvfDRTC5et18NjR+qEFkx/AgAjLnexXn//a335tfkLTMvKCV0fERkXWW44u9z9l3l+fz1/6K6RTPNDpVR2at+fGU3w85Z65Ss1ObpS0tQZi7V89Uam+QEAAFQBB7IzlH1wm6na7OwMZWdvU926LS3uCgAAAAAAAAAABFPjxo1N1ZkJgQWS2fXM9h8KzPRq9/Nsds0GDRooMpJY2xFM8AMAAPBTesYuXT3mBb33ybeVCvdJxhfMe1zmQyKpW3Zq1C3P6YPJc1Rm4g4jAFBd/fxrhkbe+Ixf4T7JXOi6ohP8/ix1y06NvvU5fThljrzeyr3PoHpatupXXXFD5ab2/ZnhDQlMTLf8uyPT/F5//yuOcwAAgDDl8ZQpLd2/v1elpi+Ux2P8dysAAAAAAAAAABC+WrRoYapuz5491jbyN3v37jVV17Jl+Nys0MxzfejQIRUXF1vfzJ+Yea7D6Xm2AwE/AAAAk3w+nyZ9OU+jb31eaVt3BWSfRhfMl5kIk/ylvsyjtyfO0LW3v6g9+w5WpjUAqJLmLlijm/4zQbv3Zvu9rbfEK69BsNsouG1WWZlHb304Qw89/aFKS7n4FebNmb9ad497R/kFroDt0/iGBBU/Rj/+/Hs98eIkbk4AAAAQhjJ3rJHLnefXNi53njJ3rrGoIwAAAAAAAAAAEAri4uLUoEEDw7qtW7fa0M0ftmzZYljjcDjUvHlzG7oJDDMhOZ/Pp4yMDBu6+YOZ55qA318R8AMAADDB6/XqxTen6tX3pld6at/vHFJErMFEHD8m+P3ZpvQduv6ul7Qt09zdRgCgOpg2c4kefnZipV7HjV6XAzHB78/mLV6ru8e9I5fb3jsoITxNm7lE4577KHDnKv8v0uiGBEWVC+fN+v5HPfDk+4RZAQAAwkiRK0/bd6yq0LbbM1fJ5fIvGAgAAAAAAAAAAMLL8ccfb1iTnp5uQyd/MBM6a9y4sWJiYmzoJjDMPM9SaD7XZnuvLgj4AQAAGCjzePT4+E/0xdcLA7rfiNgIORyOcmsqMxHnwME8XT/2ZW1MzazwPgCgqvjy60V69tXP5PP5KrUfo4BfZIAm+P3ZijWbdNfDb8tdXBLwfaPqmDl3ZUCO8aOJiLdugt8RC5ettyScCAAAAGukpS+U11uxGz14vR6lblkU4I4AAAAAAAAAAEAo6dSpk2HN5s2bbejEv/XM9B1KTjjhBMXFxRnW2flc79u3T3l5xjd7DLfn2moE/AAAAMrh9Xr11Euf6tt5FbsjeXmMLpaXpLIKTvA74nB+kcY88LrSM3ZXaj8AEM6+nbdKL7zxRUD2ZRRkiogP7AS/I35an64HnvpAZWWVe19A1bRw2c966qVPLdu/VROH/27e4rV69tUploQUAQAAEDgHsjOUfXBbpfaRnZ2h7OzK7QMAAAAAAAAAAISurl27GtakpqaqqKjIhm5+89NPPxnWdOvWzYZOAiciIkKdO3c2rDPz2APF7Frh9lxbjYAfAADAMfh8Pk14Z5pmff+jJfuPjDMOgQRiIk5+gUtjHnhdO/ccqPS+ACDcrFi9SU+M/yRg+zMKXkdYMMHviKUrN+iplz8l/IS/2LJtjx5+ZqI8Xosm3zmMA35lAThfOeLr2cv16f9+CNj+AAAAEFgeT5nS0gMzfS81faE8nsCdSwIAAAAAAAAAgNBhJrzl9Xq1bt0665uRtHPnTh04YHwdrZlgYqgx81zbGfBbs2aNYU1iYqJOOOEEG7oJHwT8AAAAjuHzrxbqs+kLLNu/UQjE5/HJWxyYi/UP5eTrjgfeUEGhKyD7A4BwkJObr0ef/yigwSdPUfkXn5oJb1fGrO9/1OwfVlu6BsJHWZlHj73wsYpLSi1bIyI2Qg6no9yaQE3wO+KtD2doW+begO4TAAAAgZG5Y41c7ryA7MvlzlPmTuNf8AIAAAAAAAAAgPDTpUsXxcXFGdYtXrzYhm6kRYvM3cCwR48eFncSeL169TKsSU9P1/79+23oxtxz3b17dzkc5V+TVN0Q8AMAADiKbTv26fX/fmXpGhEGIZBATsORpF17szXhnWkB3ScAhLIX3vhCOXkFAd2nUZDJygl+R7z05pfKPhiYC2oR3j76bK7Stu6ydA0zx3QgJg7/WWlpmR5/cZLKPIENDgIAAKByilx52r5jVUD3uT1zlVwu/n4DAAAAAAAAAEBVExMToz59+hjWzZs3z4ZuzK3Ttm1bNWnSxIZuAmvQoEGm6ux4rouLi7V06VLDujPOOMPyXsINAT8AAIC/KfN49Pj4T1RSGtiL1f8u0uCC+UBPw5Gkb+Ys1/LVGwO+XwAINT8sXqt5i9YGfL9G4WuH0yFnjLV/1T5cUKRnX/1MPp/P0nUQ2tIzduv9ybMtX8fohgSSVGbBOcvG1Ex9OvWHgO8XAAAAFZeWvlBeb2DP/bxej1K3mLtjLgAAAAAAAAAACC+nn366Yc3ixYtVUBDYm7j/ndfr1Zw5cwzrwjV01qhRI7Vr186w7ttvv7W8lwULFsjlchnWhetzbSUCfgAAAH8z+X/ztTE10/J1jC6YD/Q0nCOefnmyCgqNT54BIFzl5Obr+dc+t2TfZsLXdkzxW7ziF83+YbXl6yA0lZX9djOCsjLrJ9xFGpyv+Lw+ed3W9PHux7O0LXOvJfsGAACAfw5kZyj74DZL9p2dnaHsbGv2DQAAAAAAAAAAguess84yrHG73frqq68s7WPx4sXas2ePYZ2ZfkOVmd6/+uorud1uS/uYMmWKYU2DBg3UtWtXS/sIRwT8AAAA/mTbjn1696OZtqxlFACxYoKfJGVl52rCO9Ms2TcAhILxb36pnDxr7upkJnxtFIgKlJfe/FIHDx22ZS2Els+mL1Da1l22rGV4vmJRuE+SSkvL9MwrU5hWCQAAEGQeT5nS0q2dspeavlAejzU3uwIAAAAAAAAAAMHRuXNntW/f3rDuk08+sbSPjz/+2LCmTp06YT1VbsSIEYY1+fn5loYpCwsLNW2a8fXJl156qRwOh2V9hCsCfgAAAP/P5/PpqZc+VUmpPRcTRcaXHwAps2iCnyR9M2e5Vq1NtWz/ABAsv6Zu1/cLf7Js/x63xzBsZMcEP0k6XFCkD6bMsWUthI6SklJ98uU829YznDhcZO1508+/ZmjtL1ssXQMAAADly9yxRi53nqVruNx5yty5xtI1AAAAAAAAAACA/a644grDmjlz5mjz5s2WrH/gwAFNmjTJsO6SSy5RVFSUJT3Y4ZRTTlFKSoph3csvv2xZDx988IHy8ox/p2TmmKiOCPgBAAD8vxVrNumXTdtsWy8iNjgT/I5475NZlu4fAILhy6+tnSohn/HEsgiDAHcgzZq7UoVFbtvWQ/AtWPqzcnLzbVsv0iCwWmbx+Yok/W/mEsvXAAAAwNG5XHnavmOVLWttz1wll8vaICEAAAAAAAAAALDXyJEjFRFR/vVUPp9PzzzzjCXrT5gwQW638fVVo0aNsmR9O5l5DCtWrNCCBQsCvnZJSYlefPFFw7q2bduqe/fuAV+/KiDgBwAA8P+mfrPYtrWcMU45IsofL23HRJz0jN2WrgEAdsrNK9D3i9Zavo5RANsoEBVIRa5izf7BnottERqmzrDvfEWSIuKNbkhg/eTj+UvW6eChw5avAwAAgH9K3bJIXq/1N3WQJK/Xo7QtFt+0BQAAAAAAAAAA2KpZs2a66KKLDOs+/vhj/fTTTwFde8eOHaZCZ71791aPHj0CunYw3HDDDYqPjzesu+uuu+T1egO69oQJE7Rtm/GQlbvuuiug61YlBPwAAAAk7dl3UEt//NW29SJMhD/KDCZEBQITcQBUJd98t0KlpdaHjYwC2BFx9k3wk34LqPt8PlvXRHCkZ+zWz79m2LpmRGz5x7PVE4clyePx6qvZyyxfBwAAAH91IDtD2dn2nn/+tqbxL38BAAAAAAAAAED4+M9//mNY4/V6de2116qkpCQga/p8Pl1//fVyuVyGtWb688fo0aPlcDgMvwI9Sa9OnTr697//bVj3008/mQo+mpWenq7HHnvMsO64447TlVdeGbB1qxoCfgAAAJKmz1pqazgi0kT4w+oJfpI0e96PKiw0/ssLAIQ6j8eraTaFlssMAk1mQtyBlJG5V+s2bLV1TQRHMIL5EfHln7OU2TDBT/rtXK3MY8/kGAAAAEgeT5nS0oMzTS81faE8HnvOMwEAAAAAAAAAgPW6deumc88917Dup59+0pgxYwKy5tNPP63Zs2cb1p188skaNmxYQNYMBf/5z39MTfG7//77tWRJ5a9FKiws1KWXXqqCggLD2vvuu08xMTGVXrOqIuAHAACqvZKSUn09Z7mtaxqFP3w+nzw2TPBzuUv07bxVlq8DAFZbuWaT9uw7aMtaHoNAk5kQd6BNnbHY9jVhr+KSUs35wd73bGe0U86I8j86smOCnyRlZefqxzWbbVkLAAAAUuaONXK584Kytsudp8yda4KyNgAAAAAAAAAAsMaLL75oKtz11ltv6YEHHqjUWm+88YapfTgcDr366qtyOByVWi+UNGnSRPfff79hXWlpqYYOHarVq1dXeK2ioiINGzZMa9euNazt1KmTbrrppgqvVR0Q8AMAANXewuXrlZtnfOeIQIowCH943B7JpoGC02YttWchALDQ/CXrbFvLKNBk9wQ/SVqyYoNKS5lwUZX9unm7ilzFtq5pdL4iGQdeA+nHtQT8AAAA7OBy5Wn7juDeEGp75iq5XMEJGAIAAKDyFixYIIfDYfg1bty4YLcK/MW4ceNMHbsLFiwIdqsAAABA2DnhhBN0zz33mKp96qmnNGLECOXn5/u1RnFxsW677TbdfPPNpur/9a9/qWfPnn6tEQ7Gjh2rlJQUw7q8vDz1799fEydO9HuN1NRU9ezZU/PnzzesdTgceu211xQRYf+N88MJAT8AAFDtLV+10fY1Iw3CH3ZNw5Gkrdv3KOtAjm3rAYAVNmzebttaRoEmZ5RTjkh77+rkLi7R1u17bV0T9tqUvsP2Nc2EVctsPGfZnL7TtrUAAACqs9Qti+T12needzRer0dpWxYFtQcAAAAAAAAAABBYDz30kHr16mWqdsqUKUpJSdHrr7+uw4cPl1vrcrn00UcfqW3btnr11VdN7b9169aaMGGCqdpwExMToylTppiamFhUVKTRo0frtNNO0/z58+XzlT+dZPv27brzzjvVuXNn/fLLL6b6uffee9WvXz9TtdWZ/WMFAAAAQsymtGBcMG8wwc/GaTjSb6GB+vWSbV0TAALF5S5W5q79tq1nJtAU3zhehZmFNnTzh81bdqhtSlNb14R9Um0Ot0UnR6tez3qGdRExTnlsOtTTtu6S1+uV08n9qgAAAKxyIDtD2dkZwW5D0pFetqlu3ZbBbgUAAAAAAAAAAARAZGSkPvvsM3Xt2lUHDx40rN+/f79uueUW3X333erfv79OOukkNWnSRImJiSooKNC+ffu0Zs0aLViwwK9pf3Fxcfr8889Vo0aNyjyckNatWze9+OKLpqcZLliwQAsWLFDTpk3Vv39/de7cWXXq1FFUVJRyc3O1ZcsWrVy5Uj/++KNhCPDP+vbtq8cff7yiD6NaIeAHAACqNbtDIUcYTcSxc4Kf9NtEnP6ndrF1TQAIlLStu+X1mv/QoLLMhLAb9D9O7iyXslceUElOiQ1d/X8AbIgtSyEI7JxeF984XvX7N5Qz0jhI1+isJspauE9Fu4ss76vIVawdu7PUomlDy9cCAACojjyeMqWlh9bUvNT0hUpObqqICH6lCQAAAAAAAABAVdC0aVPNmjVLp59+uulQnsvl0uzZszV79uxKrx8VFaUvv/xSXbpU/Wtmb7rpJmVmZuq5554zvc3OnTv1ySefBGT9Tp06afr06YqIKH8oCn7DLc8BAEC1ZncoRPptIk5M3fLHXscdF6fo5GibOpI2b7F3KhAABNLmdHsnsUYnl/8afkRs/Tg1GtJE8Y3jLe7oN3YGwGCvwkKXduzOsmWt6ORo0+E+SXJGOlW/f0Pbzls2pXGcAwAAWCVzxxq53HnBbuMvXO48Ze5cE+w2EIZGjx4th8Nh6mv79u3BbveYWrRoYeoxtGjRItitAgAAAAAAAIBp3bt314wZM2yfoBcVFaXJkyfr7LPPtnXdYHr22Wd122232b5u27ZtNXfuXNWuXdv2tcMVt7sEAADVmt2hELMTcSITotRoiH0TcTan75TP55PD4bB8LQAItFQbQ8rRydGq37eB6XpnpFMNBhynAyuyVFZQKulvr7N/+tejvgQf7Q8df/vH///3XaU5WpmZrogIp3y/Z9d9f/yv749//uPbf/qzPzaS78h2f8rA//PPfL/v52jbyvfHOn/9s6P39Me/Hr2nI/v52x/97c98R39sR+up3MfrO2ZPR932j90f5c/+vO8/P7Y/9mD0eLMP5aluj3r/OHz++u+OYxxDR/szx9H+UZIUd1y86XDfEc5Ip+r2qKc9s3f7tV1FpG7ZoSGDTrF8HQAAgOrG5crT9h2rgt3GUW3PXKXjGrRVXFytYLcCAAAAAAAAAAACpF+/flq+fLnOO+88ZWRkWL5e/fr1NXXqVPXp08fytULNhAkTdMIJJ+iuu+5SWVmZ5eudffbZ+vTTT1WrFr/b8QcBPwAAUK3ZHgqpwEScPd/uUklOiaW95eTm60B2rurXS7Z0HQCwwtbte21bq26Pen6HnxwRDtXvbT4UWBkTls6yZR3Yr2ab0P7AK7Z+nGLqxqg4u9jSdfbuP2Tp/gEAAKqr1C2L5PV6gt3GUXm9HqVtWaQunYYFuxUAAMLeuHHjDGtatGih0aNHW94LAAAAAABAx44dtXr1at16662aNGmSZesMGTJE77zzjpo0aWLZGqHutttuU9euXXXttdcqNTXVkjXi4uL04IMP6t5775XT6d81diDgBwAAqrmduw/YtlZFQiF2TsTZuecAAT8AYSm/wPpJp5IUUzdWsfXjbFkLCEc1WiRaHvBzu6296QEAAEB1lJ29TdnZ1t8ZtzIOZGco++A21a3TMtitAAAQ1h599FHDmv79+xPwAwAAAAAAtklOTtYnn3yia665RmPHjtWaNWsCtu/WrVvrqaee0oUXXhiwfYazvn37av369Ro/frxeeOEFHToUmBttO51ODR8+XM8//7xatuR3ORVFJBIAAFRrRS5rL0I/ojKhkCMTcazm4oJ5AGGquLjUlnVqtKhhyzpAuLLjfKWktMzyNQAAAKoTj6dMqekLg92GKanpC+XxcD4IAAAAAAAAAEBVNGDAAK1evVoLFizQxRdfrBo1KnatVmxsrM455xzNmDFDmzdvJtz3N9HR0brvvvu0c+dOvfHGGzrllFPkcDgqtK9GjRppzJgxSktL05dffkm4r5KY4AcAAKq14pLwCIXYMRHHroAMAASaXa/ldoSXgHDmjLL+PlIE/AAAAAIrc8caudx5wW7DFJcrT5k71+j4Fj2C3QoAAAAAAAAAALBI//791b9/f5WUlGjRokVaunSpNm7cqM2bNys7O1v5+fkqKipSbGysEhMTVbt2bbVp00bt27dXjx49NGjQIMXHxwf1MXz44Yf68MMPg9qDkfj4eN1444268cYbtX//fs2ZM0dr167Vxo0blZGRoby8POXn56usrEw1atRQYmKiGjdurHbt2qlDhw4aOHCgunbtGuyHUaUQ8AMAANVaSZiEQmyZiGPTcwEAgVbBGwj5zY7wEhDOvKVey9eIjuKjLAAAgEBxufK0fceqYLfhl+2Zq3Rcg7aKi6sV7FYAAAAAAAAAAICFoqOjdfrpp+v0008PditVXoMGDXTVVVfpqquuCnYr1RpXJwIAgGotMjLClnUqGwqxI1Ri13MBAIEWEx1lyzp2hJeAcGb1tGGJgB8AAEAgpW5ZJK/XE+w2/OL1epS2ZVGw2wAAAAAAAAAAAAACioAfAACo1sIlFGJHqCQmxp7nAgACLSYm2pZ17AgvAeGsYHu+5WvExtrz8w4AAFDVZWdvU3Z2RrDbqJAD2RnKPrgt2G0AAAAAAAAAAAAAAcNtzwEAQLVmV6itOLtYsfXjKrW91ewKOwJAoNWqmaDde7MtX6dge4FqtU+yfJ1gckiSw/H7Pzt++xP98f9+/xPJ8cf3//izP77/521//74cR3b/t+//aT9/+/7fe/r9e39q7Wh9/tHSn//tKH92zJ7//tjK7+mvj+1P/3uMno72eP/c058fW35hkdK27Pp9e98//uHIv//tD3xH+Uff3wr+tkls/ThFxPo/1ded5bLlfOW4BnUsXwMAAKCq83jKlJq+MNhtVEpq+kIlJzVVRAS/6gQAAAAAAAAAAED447deAACgWmtQL1mb03davk5lQyF2TMSpXzfJ8jUAwAqtWjbSxtRMy9cpznbLneWqUGDbne3W/h/2Svr/PNXfg1i/f+Ov/+47+r8cdZvo6Eh9+9nTior4LZz11xDc0YNpR4JmCG2FhS4NevM/tqwVnRytRkOayBnpNL2Nt8yr7JUHLOzqD21TmtqyDgAAQFWWuWONXO68YLdRKS5XnjJ3rtHxLXoEuxUAAAAAAAAAAACg0sxfrQUAAFAFtT6hiS3rHAmFVIQdE3FiY6LVrEkDS9cAAKu0TWlm21rZKw/IW+b1axtvmVfZy7PkcXvkcXvkdXvkLfb+86vkb1+lXvl+//LJV3aUL88fX61bNFF8dIyiIiIVFRGpyIgIRTp/+4pwOhXhdMrpdMrpcMjpcBDuCyMJCXFq1ri+LWuV5JQoa+E+08e5t8yrrIX7VJJTYnFnvyHgBwAAUDkuV56271gV7DYCYnvmKrlc4R1UBAAAAAAAAAAAACQCfgAAoJpr28q+i8QrHAqxYSJOygmNFRHBqSGA8GTna3koh5/aEHyq0uwMthXtLtKeb3cZ3pzAneXSnm93qWh3kS19xcfF2BZ0BAAAqKpStyyS1+sJdhsB4fV6lLZlUbDbAAAAAAAAAAAAACqNq7gBAEC1ZufUp1AOhbRtZd/zAACBdkLLRraGlEM1/GRn0BH2s/OcRfrtvGXP7N3aPWun8jbmyp3lUklOsdxZLuVtzNXuWTu1Z/Zu2yb3SVKbVk3ldPJRFgAAQEVlZ29TdnZGsNsIqAPZGco+uC3YbQDA/7F33+FRlen/xz8zkzaEJBBCJw0SAgRCk14CggUBAUUpVhT8CorSXKyrqLurgq4iig1EQHAFVwRUsAIK0kF6JwSkhkASID3z+8OfuutC5kwyMyeTvF/X5T/hPs/9mcnJyTg59zwAAAAAAAAAAJSKn9kBAAAAzFQtPFTVI6roTNp5r/T7bSgkol11BdWwX7Eu53S20tad8dpN897cFQgA3C0wwF8NYupo38FjXuv52/BTYESgKseEKDAiUFZ/q4ryi5SblqsLKVnKTcv1Wh5JatyQYe3yzKzf1blpuV4/l68kgSFWAACAEissLNDe/SvNjuERe/evVNUqkbLZ+LMnAAAAAAAAAAAAfBN/6QIAABVeo7hIrw34SWVzKIQBPwC+rmnjGK8O+P2mrAw/VQ62Kzqyptkx4EGJjWJUqVKQLl3KMTuKadq2SjA7AgAAgM86krpJ2TkZZsfwiOzsDB05ukn1Y9qZHQUAAAAAAAAAAAAoEavZAQAAAMzWslmcKX1z03J1dmOaji/7RceWHNXxZb/o7MY0rw+KVAmrrJjIWl7tCQDu1rNrK7MjmKp7p+bys9nMjgEPCgzw1/VXX2V2DNPUrF5VbVs1MjsGAACAT8rOzlBK6gazY3hUypENys7ONDsGAAAAAAAAAAAAUCIM+AEAgArvuu5XyWaruC+LbujZtkI/fgDlQ8tmcYqNqrjDyjf37WJ2BHjBTb0r7ve5/w2dGGIFAAAoob0HVqmoqNDsGB5VVFSofQdWmh0DAAAAAAAAAAAAKBE/swMAAACYrVp4qLp3bqFvVm42O4opBvTubHYEACg1i8Wim/t00ZQ3F5gdxesSG8WoUXyU2THgBXGxddSiaQNt3XHQ7Che5edn043XdTA7BgAAgE9KSzustLRDZsfwijNph5R29rAiqsWaHQXAZRw+fFjffvuttm/fru3btys1NVWZmZnKzMxUUVGRKlWqpJCQEEVFRSk2NlatWrVSp06d1Lp1a/n5lb/bGjIyMvTNN9/o559/1s6dO7Vv3z6dP39emZmZunjxoux2u0JCQlSjRg01btxYiYmJ6t69u9q3by9bOfwAnJycHB09elSZmZm6dOmSLl68KD8/PwUHB6ty5cqqV6+eqlatanZMrzlx4oS+//7738+N/fv369y5c7pw4YIuXLggh8Oh4OBghYaGqlatWkpISNDs2bPNjg0fdfjwYa1YsUJ79uzR3r17dfDgQZ0/f/73881ms6lSpUqqUqWKatWqpU6dOmny5Mmm5T1z5oy+/vprbd++XTt37tSBAweUkZGhrKwsXbp0ScHBwQoJCVHt2rV/v3726NFDrVu3lsViMS23p1y8eFHHjh1TVlaWLl68qOzsbAUEBPzX79WQkBCzY7pFUVGRNm7cqO+++047d+7U7t27deLEid+/97895rCwMMXFxSkxMVFJSUnq2bOnqlevbnZ8AAAAAACcKn/vhAMAAJTAwL5dKuSAX/vWjRVZhz9oACgfevVoozdmfqbsnDyzo3jVzX0Y1K5Ibu7TpcIN+HXv1FzVwkPNjgEAAOBzCgsLtHd/xdrVbu/+lapaJVI2G38CBUoqJiZGR44cKbYmOjpaKSkpTtc6e/aspk+frgULFmjbtm3F1mZkZCgjI0PHjh3TmjVr9OGHH0qSqlevroEDB+r+++9XUlKS4cdRFuXn52vevHmaO3euVq5cqfz8/CvW/jZYc+LECf3888+/f71KlSoaOHCgHnjgAbVo0cILqd3v7NmzWr16tVavXq21a9fqwIEDOnHihBwOR7HHhYWFqWHDhurQoYM6deqknj17Kjw83EupL69bt25audL571pnj02Sjh49qnfeeUeLFy92+vMiSefPn9f58+eVmpqqvXv3/v71lJQUxcaWbth95cqVbh2EMnrNQPHceX3es2eP3n77bX3++efav39/sbUFBQXKzc3VuXPndPjwYV26dMmV2G5x8eJFzZw5Ux999JHWrl2roqKiK9b+Njz+yy+/aOPGjb9/vXr16ho8eLBGjRqlRo0aeSO22504cUI//PCDVq9erfXr1+vQoUM6ffq00+MiIiKUkJCgjh07qnPnzrr66qtVuXJlLyR2j127dunNN9/Uv/71L6WlpV2xLisrS1lZWTp+/Lh2796tJUuWSJKsVqs6dOigwYMHa9iwYQoODvZWdAAAAAAAXGI1OwAAAEBZ0DyxgRrE1DY7htfd1KeL2REAwG2Cg+26vkdbs2N4VWhIJfXo2srsGPCibp2aK7xq+fjEZaN4vQIAAFAyR1I3KTsnw+wYXpWdnaEjRzeZHQOo8NLS0vTwww8rKipKTz31lKFhpSs5c+aMpk+frhYtWqh///46cOCAG5M6l5KSIovF4vS/u++++4prFBYW6rXXXlP9+vV1991365tvvil2uK8458+f13vvvaeWLVuqZ8+e/zX8V5ZlZGRoxowZuuaaa1SzZk3169dPL730klatWqXjx48bGoDLyMjQhg0bNHXqVA0aNEi1atVS7969NX/+fBUUFHjhUXjGjh07NHDgQMXGxur5558v1c9LebFixQpDP3fPPPOMKflmzZplKN+sWbNMyVecH3/8Uddee62aNGmiV1991elwn9mys7P1zDPPKCoqSg899JDWrFlT7HBfcc6cOaPXX39djRs31o033qh9+/a5Oa1nnD59WlOnTlWnTp1Ut25dDRo0SFOnTtXatWsNDfdJv/5eXr16tSZPnqx+/fqpRo0auvXWW7V06VJD11+z7NmzR3369FFiYqLeeOONYof7ilNUVKTVq1dr9OjRio6O1qRJk5Sdne3mtAAAAAAAlB4DfgAAAJIsFkuFu3m8Vo2q6tQ20ewYAOBWt/Tt6tZPly7rBtzQSYEB/mbHgBf5+/vptoE9zI7hNS2aNlCLpg3MjgEAAOBzsrMzlJK6wewYpkg5skHZ2ZlmxwAqrA8//FCNGzfW1KlT3brLk8Ph0GeffaakpCS98sorblvX03bs2KF27dppzJgxOnbsmFvX/vbbb9WqVSuNHj1aOTk5bl3bXU6ePKmJEycqKipKw4cP1zfffKPCwkK3rJ2fn68vvvhCQ4cOVXx8vKZPn+5Tg34XLlzQhAkT1LJlS33yySdue16Ayzlz5oyGDRumrl276uuvvy7TQ12/WbVqlZKSkjRp0iSlp6e7de0lS5aoadOmeuyxx0o8cO1pBw8e1P3336+oqCg9/PDDWrNmjdu+b9nZ2VqwYIH69u2rpKQkffTRR25Z113y8/M1ceJENWvWTJ9//rlb1z579qyeeeYZJSUladWqVW5dGwAAAACA0mLADwAA4P/r1aNthdoRZ8hNV8tm4+UggPKlfkxtDejdyewYXlE9oopuv6Wn2TFggkH9uikhLtLsGB4X4O+nRx8eXKGGdgEAANxl74FVKiqqmIMCRUWF2ndgpdkxgAonNzdXt912m26//fYS77BjRHZ2tsaPH6877rhDeXl5HuvjDh999JFat26tTZs8t7NoUVGRpk2bpnbt2mnv3r0e6+OqvLw8Pf/886pfv75eeuklZWZ6dvA6JSVFo0aNUuvWrbV27VqP9nKHAwcOqE2bNnr55Zd9aigRvmnDhg1q0aKFZs2a5RODfZL00ksvqVu3bh7dtTU/P18vvPCCunTpopSUFI/1cVVWVpbGjh2rhIQEvf3228rNzfVovx07dmjIkCHq1q2bdu/e7dFeRqSkpKhTp0566aWXPHp9PHDggLp166YXX3zRYz0AAAAAAHAVd3QDAAD8f5XsgRo/8hazY3hFQlykbq5gOxYCqDgeuKefatUINzuGxz328GCFVK5kdgyYwM/PpqfG3y4/P5vZUTzqvjt7KyayltkxAAAAfE5a2mGlpR0yO4apzqQdUtrZw2bHACqMM2fOqHv37po3b57Xes6dO1eDBw8us7uevfLKKxo6dKjXhhC3bdumjh07av369V7pV5x169YpKSlJTz31lLKzs73ae9u2berUqZOee+65MjvI9MMPP6hdu3bas2eP2VFQASxcuFDJyck6fvy42VEMcTgceuihhzRx4kSv/QyvW7dOHTp00Pbt273Srziff/65GjVqpFdffdXrv99Wrlypli1b6r333vNq3/+0bds2tW/fXhs2eGcncofDoUcffVSjR49WUVGRV3oCAAAAAFAcBvwAAAD+Q4+uLXV15xZmx/CoijIUAKDiCq4UpCfHDTU7hkf1uba9OrZJNDsGTBQXW0f33tbL7Bgek9goRkNuutrsGAAAAD6nsLBAe/eze50k7d2/UoWF7IoEeNq5c+fUo0cP/fTTT17v/emnn2r06NFe7+vMO++8o/Hjx3t9wCw9PV09evTQqlWrvNr3P02fPl1du3Y1dTfBoqIi/fWvf1X//v29PmDozObNm9W7d2+lp6ebHQUVwJdffqkhQ4aUuZ+D4kycOFGvv/661/uePHlSycnJ2rhxo9d7S39ct/r27WvqMGZubq5GjBihkSNHen3gbcOGDUpOTtapU6e82leSpk2bpokTJ3q9LwAAAAAAf8aAHwAAwJ9MePBWVQmrbHYMj7n3tl6Ki61jdgwA8KirWiTopj6dzY7hEdUjqujh+waYHQNlwB239FRCXKTZMdwuwN9PT42/TTYbb1sBAAC46kjqJmXnZJgdo0zIzs7QkaObzI4BlGsXL15U7969Td31aPr06VqwYIFp/f/s22+/1QMPPGBa/wsXLqhfv37avXu3V/s6HA6NGjVKo0aN8tquhc4sXrxYffr00aVLl8yOIkk6fPiwbrjhBmVlZZkdBRXAhg0bdMstt6igwHc+7OC9997T5MmTTet/7tw59e7dW4cPe3cX6NzcXA0YMKBM7Tz61ltv6c477/TaLoKHDh1S7969df78ea/0u5wpU6aYunshAAAAAACS5Gd2AAAAgLImvEqIHnngVj3x95lmR3G7hLhI3XFLT7NjAIBXPHBPP/20YZdOnCpfn4j92EODFVK5ktkxUAb4+dn01wm3656Hpyg3N9/sOG4zclhfxUTWMjsGAACAz8nOzlBK6gazY5QpKUc2qHbNxrLbQ82OApRLw4cPN7RzX2BgoK666iq1atVK9evXV/Xq1RUcHKzCwkJlZmbqyJEj2rx5s3744YcS3dw/cuRI9ezZU1WrVi3Bo3Cf06dPa9CgQYYGaoKDg5WcnKykpCTFxcUpNDRU/v7+yszM1IkTJ7Rr1y6tWrVKKSkpLuc4f/68brjhBq1fv17Vq1cvwSNxTVFRkYYPH67333/f471c9d133+nGG2/UsmXL5Odn3u0xhYWFGjJkiKGdqaxWq5o1a6a2bduqQYMGql27toKDg2W1WpWVlaWzZ89q165d2rx5szZv3uyF9PA1Fy5c0KBBg3Tx4kWntX5+fmrVqpVat26tBg0aqGbNmgoODlZRUZGysrJ0+vRp7dq1S+vXr/fo4PCOHTsMD0eHh4ere/fuSkxMVExMjEJCQn7/+Th69Kh27dqlFStW6MSJEy7nOH36tHr16qX169crNNTzrx9zcnI0YMAALVu2zOO9XPXhhx/KZrPpgw8+8GifjIwM3XDDDTpz5kyJjo+JiVHXrl3VuHFj1alTRyEhISooKFBmZqYOHTqkHTt2aMWKFcrMzHS61qhRo9SuXbsS5QAAAAAAwB0Y8AMAALiMHl1b6rsfW+rbVVvMjuI2v+6Gc7v8/GxmRwEArwiuFKTnHx+mB/7yunJyy8Ynh5fWHbf2VMe2iWbHQBnSIKaOnnt0mB577j0VFhWZHafU+vfqpMEDupsdAwAAwCftPbBKRUXe2WXDVxQVFWrfgZVq3qyv2VGAcuedd97RRx99VGzNddddp3vvvVd9+vSR3W53umZeXp6WLl2qv//979q0yfgOnGfPntWkSZP06quvGj7GEx588EGdPXu22JouXbro4YcfVp8+fRQYGOh0zW3btmn69On64IMPlJ2dbThLSkqKRowYoUWLFhk+pqQeeOCBEg/3xcfHq2fPnmrVqpUaN26sevXqKTw8XHa7XUVFRbpw4YKOHTumffv26aefftIXX3yhPXv2uNTj22+/1ZgxYzRt2rQSZXSHl156SevWrSu2pkWLFrrvvvt06623qlq1aobWPXbsmObMmfNfz39MTEyxu4BZLBan6yYnJ2vFihWGMqDsGT9+vNNd6Lp06aIRI0ZowIABqly5sqF19+/frxkzZmjNmjXuiPm7wsJCDRs2rNjdPy0Wi/r3768HH3xQ3bp1k9Vqdbru+vXrNX36dH344YfKzzf+4Wh79+7VqFGjNHfuXMPHlERRUZEGDhxY4uG+pKQkde/eXa1atVLDhg0VGRmpsLAw2e125efn68KFC0pNTdWePXu0evVqLV26VKmpqS71mD17tpo1a6YJEyaUKKMRo0aN0t69e106plKlSho2bJjuv/9+NW3a1Gl9QUGBvvrqK73xxhv64osvrliXn5+ve+65R9dff71LeQAAAAAAcBeLo7h39gAAQJl25swZ1ahR47++dvr0aa98ImtFcPFSjh6YOFV79h81O0qpWSwWPfvoXbomubXZUQDA69Zt2q3xT7+tggLfvtG173Ud9PiYIYZuwkHF8+W3GzRp8myzY5RKz+RWmvSXu2SzOb9BBwAAlG+5ubk6dOhQsTX169c3NBhRUaSlHdbW7YvNjlFmtUi6URHVYs2OAS+6++67De84c/jwYcXExHg2UAnFxMToyJEjTuuio6NLtNNbSXtWrlxZhYWFVxw4a9eunaZNm6arrrqqRBkcDoemTZumCRMmFDvw8Z8CAwN19OhRt/99JCUlRbGxzq8fkZGROnr0yn9LiIyM1Ouvv65+/fqVKMeRI0c0evRoLVmyxKXj3n33XQ0fPrxEPY2YNm2aRo8e7dIxYWFhGj58uIYPH65GjRq53HPTpk2aPHmyPv7442IH2f5szpw5uv32213uV5xu3bpp5cqVTusCAgKueC7Xq1dPr776qm666aYSv++Xm5tr+HWRLwz4rVixQt27O/8AqKefflrPPPOM5wP9yaxZszRs2DCnde+//77uvvtut/U1cn329/cvdpitSZMmmjZtmqHn90qMnm9Gv4916tTR8ePHr/jvLVu21FtvvaW2bdu6lPM3vw3sfffddy4dN2/ePA0ZMqREPY2YMGGCXn75ZZeOqVWrlv7v//5P99xzj6Kiolw61uFwaMWKFXrxxRe1fPlyw8fZbDZ9++23Sk5OdqmfEfPnz9fQoUNdOubmm2/Wq6++qnr16pWo56pVqzRy5Ejt2rXrijXOzsnffP/99+rWrVuJcgAwR3l/v4l7yAAAAHwfd0wBAABcQXClIL36/CjFRNUyO0qpTRw9iOE+ABVWu9aN9eyjd8tm4FN9y6oeXVvq0YcGM9yHK+rVo40efdh3z5FunZrr6Ql3MNwHAABQAoWFBdq73/lwQUW2d/9KFRYWmB0DKDcuXLhw2eE+q9Wq5557TmvWrCnxcJ/06wDS6NGjtWzZMkM7/0m/3qw7ffr0EvcsreKG+3r06KHNmzeXeLhP+nWIc/HixZoyZYqhnat+88gjjygtLa3EfYuzatUqjR071nC9zWbThAkTdPjwYU2ZMqVEw32S1Lp1a3300Udas2aNmjRpYvi4hx9+WKdOnSpRz9K60nDfgAEDtGPHDt18882lek/HV29Ch/sVN9w3atQobd68uVTDfZL7z7fiBqlGjBihn376qcTDfZKUkJCgr7/+Wk8//bRLx40ZM0aZmZkl7lucefPmuTTcZ7fb9Y9//EMHDx7UM8884/Jwn/Tr79bu3btr2bJl+vzzz1W3bl1DxxUWFmr48OEu7SJrRGZmpsaMGWO43s/PT9OnT9fChQtLPNwnSV27dtWGDRuKHSw0MtwHAAAAAIAncNcUAABAMaqEVdbUv41SZF3f/USrh0YMUP8bOpkdAwBMdXXnFvrHU/cqwN/P7Cguu6FnW02ayK5mcK5/r0561gfPlT7Xttfzjw+Tvw/+fAIAAJQFR1I3KTsnw+wYZVp2doaOHN1kdgygXPP399fHH3+sJ5980qUBtOJ0795dc+fONVz//vvvu6WvO/Xp00dffPGFIiIi3LLe+PHjNWvWLMPP8fnz510eajHi0qVLGjZsmAoKjA1Px8bGat26dZo8ebKqVq3qlgzt27fX+vXrdfPNNxuqT09P18MPP+yW3u4watQoLVy4UGFhYWZHQQXwwgsv6I033vCpYdC//OUveuedd9yS2Wq16plnntG0adMMD9OePn1azz//fKl7/9mJEyf04IMPGq5v1aqVtm3bpkcffVSVKlVyS4YbbrhBW7ZsUZcuXQzVHzhwQJMmTXJL798899xzOn36tKHa315j3H///W7pXalSJc2dO1ejRo1yy3oAAAAAALiLb93xBQAAYIIa1avqrSljFBdbx+woLrFYLHr04cEaevPVZkcBgDKha4ck/fP5kapUKcjsKIYN6t9NT467TX42m9lR4COu6dZaL0+6X6GV3XOzh6fdNegaPT5mCOc4AABACWVnZygldYPZMXxCypENys72zC4sQEVnsVg0d+5cw4NWrrjpppt09913G6pNSUnRxo0b3Z6hpNq2bauFCxcqICDArevecccdmjx5suH6t99+WwcOHHBrhscff1yHDh0yVNuhQwdt2LBBrVu3dmsGSQoODta//vUv3XHHHYbqP/74Y23dutXtOVw1ZMgQTZs2zW3DsEBxHn30UU2cONHsGC6588479eKLL7p93QceeEBPPPGE4frXXntNJ06ccGuGkSNH6ty5c4Zq+/Xrpx9//FFxcXFuzSBJ1atX1/Lly9WzZ09D9VOnTnXbc3H8+HFNnTrVcP1bb72lAQMGuKX3bywWi6ZNm6aBAwe6dV0AAAAAAEqDdwsBAAAMqFY1VG++9LBaNnP/H1A8ITDAX889drf692LnPgD4T62bN9T7r01Qk4Ros6MUq3KwXX+dcLvG3n8zN/rAZe2vaqwP335cndo1NTvKFdWtHaE3X3pII4fdyDkOAABQCnsPrFJRUaHZMXxCUVGh9h1YaXYMoFx6/PHHdeutt3ps/b///e+Gdy1asmSJx3K4omrVqvrkk088tlvWuHHjDA8lFBYW6p///Kfbeu/du1fTpk0zVHvVVVdp2bJlqlatmtv6/5nNZtOMGTN09dXOP+zQ4XDor3/9q8eyGNG4cWO99957hncRA0qje/fu+tvf/mZ2DJckJSXp7bff9tj6zz77rK677jpDtXl5eS4NojnzzTff6LPPPjNU27t3by1YsEB2u91t/f/Mbrfrk08+UWJiotPa7Oxs/eMf/3BL36lTpyovL89Q7X333ad77rnHLX3/zGKx6IMPPlCjRo08sj4AAAAAAK7iDioAAACDQkMq6fUXHtSoe26Uv7+f2XGuqFnjWM1+Y6J6dm1ldhQAKJOiI2vqnVfG6oF7+ymgDF7PO7ZponlvP64berYzOwp8WPVqYZryzH16esIdCqnsuZtASuKWG5M1d/qjapUUb3YUAAAAn5aWdlhpacZ2T8KvzqQdUtrZw2bHAMqVpKQkPfPMMx7tUbt2bQ0dOtRQ7Q8//ODRLEZNmTJF9erV82iPN954Q+Hh4YZqZ82apfT0dLf0/etf/6rCQufD5TVr1tSiRYsUGhrqlr7F8ff314cffmhokHDp0qU6ePCgxzNdjsVi0axZswwPrAKlYbfbNWvWLJ/6cC2bzaaZM2cqKCjIYz0sFoveeecdhYSEGKp/++23dfHiRbf0fvLJJw3VNW7cWPPnz5e/v79b+hYnNDRUH330kaGB9JkzZyorK6tU/S5evGh4gDMyMlJTpkwpVT9nKlWqpBkzZvjUzwkAAAAAoPzi/04BAABc4Gez6c5br9HsaX8pc7s/Bfj7afTw/npryhhFR9Y0Ow4AlGl+NpvuuKWnPnhjYpm5nlcOtuup8bfr5WfvV42IKmbHQTlgsVjUq2dbzXv7iTKxm99vu/aNHzVQ9iDP7GAAAABQURQWFmjvfnajK4m9+1eqsLDA7BhAufHaa6/Jz8/zH6BkdPeedevWGRo+86Q2bdp4bLeh/1SjRg3Dw5WXLl3SvHnzSt1z165dWrBggaHad955R3Xr1i11T6Nq1aqlF154wWmdw+HQjBkzvJDof912221q27atKb1R8YwfP15RUVFmx3DJsGHD1Lp1a4/3iYqK0iOPPGKo9ty5c1q0aFGpe3755Zdat26d0zqbzaa5c+caHkB0h6ZNm2rChAlO6y5evKj58+eXqtenn36q8+fPG6r9xz/+4ZXnoWPHjoY/SAAAAAAAAE9iwA8AAKAEYqNr651XxpaZ3fyaNorR7Dcn6raBPWSz8RIPAIyKjaqld14Zq4dGDFBYaLApGaxWi65JbqV5bz+u3te0k8ViMSUHyq/fdvN75bn71a5VI6/3j6pbQ2Pvv1kfvvUYu/YBAAC4yZHUTcrOyTA7hk/Kzs7QkaObzI4BlAvJycnq1q2bV3q1b99eNWs6/2C7S5cu6dAhc3c3nTRpktd63XfffYZ3Cvzoo49K3e+tt96Sw+FwWte3b1/deOONpe7nqmHDhik+3vl7D7Nnzzb0ONzJYrHo8ccf92pPVFyVKlXS2LFjzY7hEn9/fz311FNe6zdmzBhDu35KKvVQmyRNnz7dUN2oUaPUqlWrUvdz1V/+8hdVqVLFad0HH3xQqj5Gn8smTZpoyJAhperlikmTJslms3mtHwAAAAAAl8Pd3wAAACX0225+H05/TNd1v8qUQb/oyJp69OHBevvlsYqJrOX1/gBQHvjZbBp689X6bM6z+uuE25XYKMYrfauGVdZdg6/VJ+8/o+ceG8auffAoi8Wijm0S9drfH9DHM57SkJu6K6Sy3WP9rFaLkjsm6fV/PKh/vfekBvXvpqDAAI/1AwAAqEiyszOUkrrB7Bg+LeXIBmVnZ5odA/B5I0eO9Fovi8Wizp07G6rds2ePh9NcWUJCgnr16uW1foGBgbr//vsN1a5Zs0bHjh0rca+cnBzNnTvXUO2zzz5b4j6lYbPZNGrUKKd1v/zyi37++WcvJPpDjx491LhxY6/2RMU1dOhQhYeHmx3DJQMGDPDqjoMhISEaNmyYodqvvvrK8K5zl/PLL7/oiy++cFpnt9tNGwQODQ3VXXfd5bRu7dq1Sk9PL1GP8+fP6+uvvzZU++CDD8pq9d5tjfXr11ffvn291g8AAAAAgMthwA8AAKCUourV0KSJd+mzOc9q1LC+qlXDs38ws1mturpzC73x4mh99M4T6t+rE7v2AYAbBAUG6Iae7TTj1fGa9foj6nttewUG+Lu9T1KT+r//3hh5d1/VrulbN1rA90XVraGH77tJS+Y+ryfGDtVVLRq6ZfjOarUoLraO7r3tei36YJJe/OsItWmZwK6UAAAAbrb3wCoVFRWaHcOnFRUVat+BlWbHAHxa5cqV1b9/f6/2bNOmjaG6gwcPejjJlY0YMcLrPe+55x5Duw45HA7DgxWXs3jxYp07d85pXXJyslq0aFHiPqU1dOhQQ+9FLFu2zAtp/jBo0CCv9kPF5ovn23333ef1nkav2fn5+Vq5suSvHT/88EMVFjp//X7rrbeqVi3zPtD19ttvd1pTVFSkr776qkTrr1ixQvn5+U7r7Ha7oSzuZsY5CAAAAADAf/L+NjMAAADlVHiVEN056FrdNrCnftq4S59+/qPWb9mr/PwCt6xft3aEevVoo369Oql6tTC3rAkAuLxG8VF6YtxtGvN/N2nTtgPasz9Ve/anavf+ozp3PsvwOgH+fopvUE+N4iLVKD5SLZrFKbJOdQ8mB4wLCgpQ3+s6qO91HVRYWKTUY6e0e3+q9uw/qj37j2r/oWPKzsm77LE2q1XRkTXVKD5SjeKj1Cg+UvH168oeFOjlRwEAAFCxpKUdVlraIbNjlAtn0g4p7exhRVSLNTsK4JOuvvpqBQZ69/8BGzZsaKju1KlTHk5yZQMHDvR6z9q1a6tjx4764YcfnNZ+//33hnes+rOlS5caqrv77rtLtL671KhRQ23atNH69euLrVu1apUeffRRr2SyWCzq16+fV3oBYWFh6tatm9kxXBIeHm5K5oYNG6pp06basWOH09rvv/++xD/HvnL9bN26tWrWrOn09+iqVas0ePBgl9f//vvvDdVdc801CgkJcXn90urZs6fCwsKUkZHh9d4AAAAAAEgM+AEAALidzWZV53ZN1bldU+Xl5etgyon/f7P8rzfMH0w5rsLComLXqFY1VI0aRv0+ENIoPoqhPgAwQXCwXV07NFPXDs0k/fpJ52fSzmvPgaNKPXZa2Tm5ysnNV15egfz8rAoMCFBAgJ9qRFRRQlw9xUbVlp+f809QB8xms1kVG11bsdG1dUPPdpJ+Pd9zcvOUl1eg3Lx8FRUVKTDAXwEB/goKDGAHYQAAAC9zOBzad9D58AaM23fgB1ULj2HXaaAEkpOTvd4zNtbYQK5ZA35NmzZVdHS0Kb379etnaMCvpDtQORwOLV++3Gmd1WpV7969S9TDndq3b+90wG/Lli1eSiM1btxY1avzoV/wjk6dOsnPz7duB+vVq5ehnUg94cYbbzQ04Ldq1aoSrZ+RkaGffvrJaV3VqlXVpUuXEvVwF4vFonbt2mnx4sXF1pX0+mnk95Qk9e3bt0Trl5a/v7969eqljz76yJT+AAAAAAD41js6AAAAPiYgwF+NG0apccOo37+Wl5evX06e1aXsnF9vmM/Nl5+fVQEB/goM8FdEeJiqhYeamBoAcCUWi0U1qldVjepVzY4CeJzFYpE9KJBd+QAAAMqIjMyTunTpnNkxypVLl84pI/OkqoTVNjsK4HNatGjh9Z4RERGG6szaecfMHbO6du1qqC41NVXnzp1T1aquvbe1fft2nT592mldUlJSmRhka968udOakydP6uTJk6pVq5bH83Ts2NHjPYDf+OL5ZuZgW+fOnQ3V7dq1S4WFhS4PIq5cuVIFBQVO65KTk00bcvxPzZs3dzrgt23bNhUVFclqNf4BcAUFBdq1a5ehWjPPhy5dujDgBwAAAAAwDQN+AAAAXhYQ4K/YKM//wRgAAAAAAADlR27uBbMjlEs8r0DJJCQkeL1nlSpVDNXl5uZ6NsgVdOjQwZS+0q8Dl0FBQcrJyXFau3PnTsMDLb/ZuHGjobo2bdq4tK6nREVFOS+StH//fq8M+DVp0sTjPYDf+OL5Zub1s3379obqcnNztX//fjVq1Mil9cvj9fPSpUv65ZdfFBkZaXjd/fv3G/r9HB4ebsprjN+YeS4CAAAAAGD8o3QAAAAAAAAAAAAAmCIwsLLZEcolnlfAdTabzStDUX8WGGhsh3mzBvyM7BrnKf7+/oaHenbu3Ony+lu2bDFUV1YGi2rUqGGo7tixYx5O8iszh1VQ8fja+Waz2dS4cWPT+letWlV169Y1VLt7926X1+f6+Sujz11iYqJL67pb48aNXdqZEAAAAAAAd+L/SAEAAAAAAAAAAIAyLiy0lipVqmp2jHKlUqWqCgv1/pAS4OtCQ0Nls9m83tff399QXUFBgYeT/C+r1aq4uDiv9/1P8fHxhupSU1NdXnvbtm2G6mJiYlxe2xPsdruhOm8N+NWpU8crfQDJ9863mJgYw9d3T2nYsKGhul9++cXltbl+/sroc2f0e+EpQUFBhneBBQAAAADA3fzMDgAAAAAAAAAAAACgeBaLRQ0bdNHW7YvNjlJuNIzrKovFYnYMwOcYvfnfLA6Hw+s969SpY3iHQU9p0KCBoboTJ064vPaRI0cM1Q0YMMDltc2Unp7ulT41a9b0Sh8gICBAVapUMTuGS8rCYJvRDK5ePwsLCw0PtrVs2dKltc3m6vXT6HNXVs6HlJQUs2MAAAAAACogdvADAAAAAAAAAAAAfEBERKwiIuqbHaNcqB5RXxHVYsyOAfgks3daKotq1KhhdgTDGVwdUHE4HDp+/HhJIpV52dnZXukTEhLilT6AL55r1atXNzuC4QyuXj9PnDihwsLCkkQq81y9fp48edJQXVk4H8rC73QAAAAAQMXEgB8AAAAAAAAAAADgIxLiuspqtZkdw6dZrTY1jEs2OwaAcsSXBhLOnTvn0rqnT59Wfn5+SSKVed4a8DN7d0dUHL54rkVERJgdwfA1PCsry6V1je7e54tcvX5mZmYaqvOl8wEAAAAAAHdjwA8AAAAAAAAAAADwEXZ7mGKi2pgdw6fFRLeR3R5qdgwA5UjlypXNjqDg4GBDdTk5OS6te/78+RKk8Q15eXle6cOul/AWXzzX7Ha72REMZ8jNzXVpXa6ffzD63PnS+QAAAAAAgLsx4AcAAAAAAAAAAAD4kOio1rIHhZkdwyfZ7WGKjmxtdgwA5UxAQIDZEQzv3OXqgJ+3drkzg8PhMDsCUOGVhV0HuX66ztXrp9HnzpfOBwAAAAAA3I0BPwAAAAAAAAAAAMCH2Gx+SohPNjuGT0qI7yabzc/sGPAwi8ViuDY/P9+DSUrH6O44rjxeeEZZ2DXLaAZXz3lXB1oAwBVl4XeY1Wrs9rmioiKX1uX6+Qejz50vnQ8AAAAAALgb/0cKAAAAAAAAAAAA+JiIiFhFRNQ3O4ZPqR5RXxHVYsyOAS9wZTc1o0N0ZjCajZ1mzFcWBkWNZnB1t8Gy8NgAlF9l4fdwbm6uoTpXf99y/fyD0efOl84HAAAAAADcjQE/AAAAAAAAAAAAwAclxHWV1WozO4ZPsFptahjHrocVRVBQkOHasnAj+ZUYzebK44VnlIXzyFMDKpxfADypLAxTGc3g6vWQ6+cfjD4XvnQ+AAAAAADgbn5mBwAAAAAAAAAAAADgOrs9TDFRbXQoZa3ZUcq8mOg2sttDzY4BL3Hlhvrz5897LkgpFBQUKCsry1Ct3W73cBo4c+HCBbMjGM7g6sCJK+fX119/rZ49e7q0PoCKLT093ewIOnv2rKG6SpUqubSuK9fP/fv3Ky4uzqX1fUlwcLChOl86HwAAAAAAcDd28AMAAAAAAAAAAAB8VHRUa9mDwsyOUabZ7WGKjmxtdgx4UeXKlQ3XltWbuF25wd2VxwvPOHPmjNkRDGcIDw93aV2jQxmSlJOT49LaAOBL18+aNWu6tC7Xzz/UqFHDUF1ZOB9Onz5tdgQAAAAAQAXFgB8AAAAAAAAAAADgo2w2PyXEJ5sdo0xLiO8mm83P7Bjwolq1ahmuLQs3kl+OK7lcebzwjFOnTpkdwfBAgqvniysDLWVhJ0PA0/Ly8syOUK788ssvZkcwnKF27dourcv18w9GnztfOh8AAAAAAHA3BvwAAAAAAAAAAAAAHxYREauIiPpmxyiTqkfUV0S1GLNjwMvq1KljuPbw4cMeTFJyruRy5fHCM44fP2767ksHDhwwVOfqgEqlSpVUrVo1Q7XHjx93aW3AF2VnZ5sdoVw5cOCAHA6HqRn27dtnqM7V62dUVJTh2vJ+/TT63Bn9XnhKUVGRDh48aGoGAAAAAEDFxYAfAAAAAAAAAAAA4OMS4rrKarWZHaNMsVptahjH7oYVUd26dQ3XHjp0yINJSs6Vm8tdebzwDIfDYfpAwP79+w3VuTJw8pvo6GhDdampqS6vDfyZn5+xXXcLCgo8nOTyzp49a0rf8urSpUumXjvy8vIMvxaIj493ae3KlSsrPDzcUG15v34afe727Nnj4STFS0lJMX1gHwAAAABQcTHgBwAAAAAAAAAAAPg4uz1MMVFtzI5RpsREt5HdHmp2DJggPj5eFovFUO3u3bs9nKZkXLnBvWHDhh5MAqO2bt1qWu/8/HzD53JiYqLL6zdu3NhQ3Y4dO1xeG/izwMBAQ3V5eXkeTnJ5v/zyiyl9y7N169aZ1nvz5s2GhkUtFgvXz1JITEw09NosJSVFp0+f9kKiy1u7dq1pvQEAAAAAYMAPAAAAAAAAAAAAKAeio1rLHhRmdowywW4PU3Rka7NjwCTBwcGqX7++odo9e/bowoULHk7kug0bNhiubd68uQeTwKiffvrJtN5btmwxvONQ06ZNXV6/TRtjA+RbtmxxeW3gz4wO+J0/f96zQa5g7969pvQtz1avXm1a7zVr1hiqi42NVaVKlVxe3+j1c/PmzS6v7UuCg4MVGxtrqNYXzgcAAAAAADyBAT8AAAAAAAAAAACgHLDZ/JQQn2x2jDIhIT5ZNpuf2TFgoqSkJEN1RUVFLg3TeUN2dra2bdtmqDYiIkK1a9f2cCIYsWLFCtN6r1q1ylBdVFSUqlSp4vL6bdu2NVSXnp5u6k6GcM7o7qZmCgsz9mEFZ86c8XCS/+VwOAxfn2HcsmXLTOv9xRdfGKrr2LFjidY3ev3ctm2bzp49W6IevqJDhw6G6r788ksPJ7kyo+cDAAAAAACewIAfAAAAAAAAAAAAUE5ERMQqIsLYzmXlVfWI+oqoZmyHEJRf7du3N1y7fPlyDyZx3Xfffaf8/HxDte3atfNwGhi1c+dOpaSkmNJ78eLFhuq6detWovVbt26tkJAQt2aBOfz9/Z3WFBQUeCHJldWoUcNQnRk/b5s3b1ZWVpbX+5Z3+/bt0+7du73e99y5c4YHpLt3716iHsnJyYYGawsLC/X555+XqIevMPocLlmyREVFRR5O87+2bdumw4cPe70vAAAAAAC/YcAPAAAAAAAAAAAAKEcS4rrKarWZHcMUVqtNDePYxRDSNddcY7h26dKlHkziOlfyuPI44XkLFy70es8TJ05ozZo1hmpLOuAXEBCgXr16GaqdO3euHA5HifrA8wICApzWZGdneyHJldntdoWGhjqtO3DggNeHgMzcaa68e//9973ec+7cuYYH6ks64FenTh21adPGUO3s2bNL1MNXXH311YbqTp48acrP2owZM7zeEwAAAACA/8SAHwAAAAAAAAAAAFCO2O1hiokydiNxeRMT3UZ2u/OhAJR/LVq0MLwL1M6dO7V161bPBjIoNzdXH3/8seH66667zoNp4Kr33nvP6z1nzpypwsJCp3UWi6VUA6EDBgwwVLd//3599dVXJe4DzzKyE+O5c+e8kKR4DRo0cFpz4cIFr+/6NmfOHK/2q0jef/99rw6XOhwOvfXWW4ZqW7RoodjYku8ObfT6+d1332nv3r0l7lPWxcbGqnnz5oZq33zzTQ+n+W8XLlwo9wOWAAAAAICyjwE/AAAAAAAAAAAAoJyJjmote1CY2TG8ym4PU3Rka7NjoIywWCy68cYbDdcbvcnf0xYuXKj09HRDtfHx8WrUqJGHE8EVe/fu1Zdffum1frm5uYbP3Y4dO6pevXol7nXjjTeqSpUqhmqffvrpEveBZ1WvXt1pzYkTJ7yQpHhGr20rV670cJI/fPvtt+V6+MpsaWlpeuONN7zWb8GCBdq1a5eh2sGDB5eq12233Sabzfnu2g6HQ0899VSpepV1Rp/Lzz//XBs3bvRwmj+8+uqrOn/+vNf6AQAAAABwOQz4AQAAAAAAAAAAAOWMzeanhPhks2N4VUJ8smw2P7NjoAy5++67DdfOmjVLR48e9VwYAwoLC/W3v/3NcP2wYcM8mAYl5c3htnfeeUfHjh0zVFvaAZVKlSrp3nvvNVS7bt06djoro2rWrOm0Jicnx/B55SnNmjUzVLdkyRIPJ/nDM88847VeFdULL7ygtLQ0j/fJzc01PEhns9k0ZMiQUvWLjIxU//79DdUuWLBAq1atKlW/smzo0KGyWo3drvjII494OM2vTp48qSlTpnilFwAAAAAAxWHADwAAAAAAAAAAACiHIiJiFRFR3+wYXlE9or4iqsWaHQNlTKdOnRQfH2+oNjc3V48//riHExXvvffe0+7duw3V2mw23XXXXR5OhJLYsGGDZs6c6fE+p0+fNjxwVKlSpVIPqEjSgw8+KD8/Y4PUo0eP1pEjR0rdE+7VoEEDQ3WbNm3ycJLide7c2VDd119/rV9++cXDaaQPP/xQP/74o8f7VHRnz57Vww8/7PE+kyZN0r59+wzVDhgwQFFRUaXuOWbMGMO1d911lzIyMkrdsyyKiorSgAEDDNWuWLFC7777rocTSaNGjSq3zzcAAAAAwLcw4AcAAAAAAAAAAACUUwlxXWW12syO4VFWq00N4yrWboUwbuzYsYZr586dq08//dSDaa7s4MGDmjBhguH6QYMGqU6dOh5MhNKYMGGCx3dAe+CBB5Senm6o9q677lK1atVK3TMmJkb33XefodqMjAz169ePoYkypmHDhobqli9f7uEkxWvbtq2CgoKc1hUWFuqVV17xaJajR4+6NJyF0pk3b55mzJjhsfWXL1+ul156yXC9K7+bi9O5c2fdcMMNhmpTUlJ06623Kj8/3y29yxpXntOxY8fq559/9liWqVOnmvbaDwAAAACAP2PADwAAAAAAAAAAACin7PYwxUS1MTuGR8VEt5HdHmp2DJRR9957r6Kjow3XDxs2TFu3bvVcoMs4d+6c+vfvrwsXLhiqt9lsevrppz2cCqVx7tw53XzzzcrNzfXI+q+88ooWLlxoqNZms7k06OrMpEmTFBYWZqj2559/Vp8+fXT+/Hm39S+NvLw8vfPOO/r222/NjmKaNm2MvSb46KOPTB3ODAwM1DXXXGOo9s0339SBAwc8kuPChQvq37+/0tLSPLI+Lm/UqFH65ptv3L7u1q1bNXjwYBUWFhqqv/7669WuXTu39Z8yZYrhXVC/+uorDRkyxGO/R1x14cIFvfTSS9q2bVup12rfvr2uv/56Q7UXL15Uv379lJqaWuq+f7Z48WKNHz/e7esCAAAAAFBSDPgBAAAAAAAAAAAA5Vh0VGvZg4wNY/gauz1M0ZGtzY6BMiwgIMClYbiMjAxdd9112rBhgwdT/eHUqVO67rrrtGPHDsPH3HXXXYZ34YJ51q9fr1tvvVV5eXluXXfu3Ll65JFHDNcPHz5c8fHxbusfERGhf/zjH4brf/zxR3Xu3FkHDx50WwZXZWVl6fXXX1d8fLz+7//+TydOnDAti9natGmjwMBAp3Xnzp3TyJEjVVRU5IVUl3fLLbcYqsvJydHtt9/u9kGozMxMXX/99dq8ebNb14VzeXl56tu3rxYvXuy2NX/66Sf16NHD8MCxn5+f23eHbNy4scaNG2e4/pNPPtG1116r06dPuzWHK86cOaPnn39esbGxmjhxojIzM92y7ssvv2x42PHIkSPq2rWr9uzZ45bekjR//nwNHDhQBQUFblsTAAAAAIDSYsAPAAAAAAAAAAAAKMdsNj8lxCebHcMjEuKTZbMZuzkYFdfdd9+t7t27G64/ffq0unbtqrfeeksOh8NjuVasWKGrrrrKpWHCmjVravLkyR7LBPdavHixevfurbNnz7plvX/+85+66667DA9dhYaG6tlnn3VL7/80cuRI9e3b13D9zp071bx5c02fPt2rA2Pbtm3Tww8/rHr16umhhx7yyA5QviYwMFA9e/Y0VDt//nwlJyfrhx9+8HCqy7vppptUpUoVQ7Xr1q3T0KFD3TZQu2fPHrVv316rV692y3q4Mn9//8t+PScnR/3799ejjz6qnJycEq9fWFiof/7zn0pOTlZ6errh40aPHq3GjRuXuO+VPPfcc2rVqpXh+lWrVqlp06ZasGCB27MU56efftKwYcMUGRmpp556yu27WDZp0kQPPvig4fojR46oTZs2mj17dqn6Xrx4UQ899JCGDh2q/Pz8y9Zc6ZwEAAAAAMDTGPADAAAAAAAAAAAAyrmIiFhFRNQ3O4ZbVY+or4hqsWbHgA+wWCyaMWOGgoODDR+Tk5OjkSNHqmPHjvr222/dmmfPnj26/fbb1b17dx07dsylY6dPn67w8HC35kHpRUZGXvHfvvnmG7Vq1UpLliwp8fqpqanq37+/xo0b59KA3IsvvqgaNWqUuG9xZs6cWezj/rOLFy9q1KhRSkpK0sKFCz22a9Lu3bv14osvqnnz5mrevLmmTp3qth2nyotBgwYZrv3xxx/VtWtX1atXT4MHD9akSZP03nvvaeHChVqyZImWLl3q9L/vvvuuRDmDg4N13333Ga7/97//rZ49e+rIkSMl6idJly5d0nPPPaeWLVtq9+7dl63x1M9URTVixAhFRERc9t8cDodefPFFNW7cWLNmzXJpl8bCwkL9+9//VqtWrTRu3LgrDnNdTmJiov7+978brndFQECA5s+fr7Aw47trnzlzRrfeeqs6deqkr776yiMfPuBwOLR582Y9/fTTiouLU8eOHV1+zl3197//XU2aNDFcf+HCBd11113q3Lmzy8/DxYsX9dZbb6lhw4Z6/fXXr1gXERHh0nUHAAAAAAB34uMsAQAAAAAAAAAAgAogIa6r0tOPqKio0OwopWa12tQwrnzuSgjPiI2N1QcffKBbbrnFpRvC165dq549e6pZs2YaOnSoBgwYoISEBJf7nz59WkuXLtXHH39c4pvzx40bpwEDBrh8HDzv6quv1sWLF7Vw4cLL/ntqaqpuvPFGde3aVWPGjFHv3r0VEBDgdN0dO3Zo+vTpev/995Wdne1Spj59+uj+++936RhXREREaNmyZercubPOnTtn+LidO3fqlltuUZ06dXTbbbepT58+6tixo/z8XL99xeFw6ODBg1qzZo3WrFmjr7/+WocOHXJ5nYrm1ltv1V/+8hedPHnS8DG//PKL/vWvf5WoX3R0tFJSUkp07Lhx4zR9+nRlZWUZqv/hhx+UmJioBx54QCNHjlRMTIyh43bv3q0PP/xQb7/9drE7lSUkJGj06NEu7TyG4lWvXl2vvfaabrvttivWpKSkaNiwYZowYYJuuOEG9ejRQ02bNlV0dLRCQ0NlsVh04cIFHT16VDt37tSKFSv0+eef65dffnE5T1BQkObNm6egoKDSPKxiNWzYUIsWLdL111/v0gDdmjVrdN111ykuLk5Dhw5Vnz59dNVVV8lisbicobCwUHv27Pn9+rl8+XKdOHHC5XVKw263a968eWrfvr1LuzSuXr1a1113nerXr68+ffqoS5cuatKkierUqaPKlSursLBQmZmZOnTokLZv365vvvlGy5YtU0ZGhtO1X3vtNe3bt680DwsAAAAAgBJjwA8AAAAAAAAAAACoAOz2MMVEtdGhlLVmRym1mOg2sttDzY4BH3PzzTfrH//4hx599FGXj92+fbsee+wxPfbYY4qIiFDr1q3VsGFDRUZGqmbNmrLb7QoMDFR+fr5ycnJ07tw5paam6vDhw9q8eXOph4769eunyZMnl2oNeNa0adP03XffKT09/Yo1q1at0qpVq1S5cmV169ZNSUlJatCggUJDQ+Xn56cLFy7oxIkT2rVrl1auXKnDhw+XKEtUVJRmzJhR0odiWJMmTbRkyRJdd911unjxokvHHj9+XJMnT9bkyZNlt9vVvHlzNW3aVJGRkapbt66Cg4Nlt9vlcDiUk5OjnJwcnTlzRqdOndLx48e1d+9e7dmzR5cuXfLQoyu/AgMD9eSTT/rEkFrNmjX15JNPauLEiYaPuXjxol566SVNnjxZLVq0UKdOndSwYUPVqFFDdrtdubm5ysrKUmpqqvbu3as1a9YoNTXV6bpBQUH6+OOPtXnz5tI8JFzG0KFD9fnnn2vevHnF1p09e1Zz5szRnDlzPJLDYrFo7ty5SkpK8sj6/6lbt26aO3euBg8erMJC1z5848CBA3r22Wf17LPPKiQkRC1btlRiYqLq1aun2rVrKzg4WEFBQSosLFROTo6ys7N1+vRpnTp1SseOHdPevXu1b98+j+7OZ1Tz5s01Z84c3XrrrS5/+MGhQ4c0depUTZ061S1Zhg4dqqFDh+qZZ55xy3oAAAAAALiKAT8AAAAAAAAAAACggoiOaq0TJ3crO8f5DhZlld0epujI1mbHgI+aOHGiLl68qOeee67Ea6SlpWn58uVavny5G5NdWe/evTV//nxZrVav9EPJ1KxZU/Pnz1fv3r1VUFBQbO2FCxe0dOlSLV261O05QkND9cUXX6hGjRpuX/tyOnXqpO+++069e/cuduez4mRnZ2vt2rVau9b3B9B9xciRIzVv3jytWbPG7ChOjRs3Tp9++qnL54fD4dCWLVu0ZcuWUmewWq2aM2eOkpKSGPDzkJkzZyolJcXUc/KVV17RzTff7LV+AwcO1KJFizRo0KASDytnZWX9PjzuqwYOHKiXX35Z48aNMy1Dhw4dvDIYDwAAAABAcfgLAAAAAAAAAAAAAFBB2Gx+SohPNjtGqSTEJ8tm43NMUXLPPvuspk6dKovFYnYUp+644w4tWrRIdrvd7Cgw4Nprr3XbTkIlERwcrEWLFikxMdGrfdu2bavVq1crLi7Oq31RclarVf/+979Vv359s6M45efnp/nz56tatWqmZXjrrbc0cOBA0/pXBIGBgVq0aJGaNWvm9d4Wi0Wvv/66xowZ4/Xeffr00bfffquaNWt6vXdZMnbsWL322mumvDZr2rSpPvvsMwUFBXm9NwAAAAAA/4kBPwAAAAAAAAAAAKACiYiIVURE2b+h/3KqR9RXRLVYs2OgHBg9erS+/vpr1a1b1+wolxUUFKRp06Zp9uzZ8vNjoNWXjBw5Ui+99JLXhxSqVKmir7/+Wt27d/dq3980bNhQW7Zs0d13321Kf7iuZs2a+umnn9S5c2ezozgVExOjZcuWKSQkxKt9/fz89O6772rEiBFe7VtRVa9eXT/88IOSk733YRTBwcGaN2+eHnzwQa/1/LP27dtr27ZtuuGGG0zLUBY89NBD+vDDD1WpUiWv9UxOTtaPP/6o6tWre60nAAAAAABXwoAfAAAAAAAAAAAAUMEkxHWV1WozO4ZLrFabGsb59u6DKFt69Oihbdu26fbbby9Tu/l16NBBGzdu1AMPPGB2FJTQI488otmzZ8vf398r/Zo2bao1a9aoQ4cOXul3JZUrV9b777+vf//734qJiTE1y5V06tRJzZs3NztGmVGjRg2tXLlS06dPL7MDz7+56qqr9M0336hWrVpe6VelShUtW7ZMw4cP90o//CosLEzLly/X2LFjZbV69ra25s2ba+PGjRo8eLBH+xhRo0YNff7553rnnXfK5LCZ1WrV9ddf7/Fr+5AhQ7Rx40aP7+RotVo1duxYLV++XGFhYR7tBQAAAACAUQz4AQAAAAAAAAAAABWM3R6mmKg2ZsdwSUx0G9ntoWbHQDkTHh6uOXPmaMOGDabtfPabuLg4LViwQGvWrFFiYqKpWVB6t99+u9avX68WLVp4rIfVatXIkSO1fv16NW7c2GN9XDVgwADt2bNHL7zwgsLDw82Oo3r16mn8+PHauXOnfvzxR48Pjvgaq9Wq+++/X4cPH9b8+fPVv39/r+6g5Yq2bdt65Xrdu3dvbd++XT169PBoH1xeYGCgXnnlFf34448euYZWrVpV//znP7VhwwY1atTI7euXxogRI3TgwAFNnDhRwcHBZsdRw4YN9fTTT+vQoUP68ssvVa9ePY/3bNy4sTZu3KiXX35ZVapUcfv6LVq00OrVq/XKK68oMDDQ7esDAAAAAFBSDPgBAAAAAAAAAAAAFVB0VGvZg3xjxwq7PUzRka3NjoFyrHXr1vruu++0adMmDR8+3Gs31VutVvXq1UtLlizR3r17NXDgQK/0hXe0aNFCGzZs0JQpU1S7dm23rt29e3dt2rRJb775pux2u1vXdofAwEBNnDhRx44d0zvvvKOkpCSv9k9ISNDYsWO1atUqpaamasqUKWrSpIlXM/gaf39/DR48WJ9++qnOnz+vtWvX6vXXX9fo0aPVq1cvtWjRQvXq1VNISIgCAwM9vrvaldSrV0/fffedZs6cqaioKLeunZiYqH/9619aunSpVwaZULwOHTpoy5Yt+vLLL3X11VeX+pyLjY3Viy++qIMHD2rMmDFe22XVVaGhoXrhhRd07Ngxvfzyy2rQoIHXelssFrVo0UJPPPGENm3apL179+qZZ55RdHS01zJIUkBAgMaNG6eDBw/qH//4R6n7W61W9ejRQ19++aW2bNmi9u3buykpAAAAAADuY3E4HA6zQwAAgJI5c+aMatSo8V9fO336tKpXr25SIgAAAAAAAKB0cnNzdejQoWJr6tevz24LbpKWdlhbty82O4ZTLZJuVES1WLNjoAK5ePGivv76ay1dulTLly/XsWPH3LZ2aGiounfvrj59+qh3795uH/yC+6SkpCg21vm156677tKsWbOKrcnNzdXcuXM1d+5c/fjjjyooKHA5T1hYmG666SY9+OCDatWqlcvHm23Xrl1atGiRFi9erE2bNpXoObgcq9WquLg4dezYUV27dlW3bt0Mfd/g+/Lz8zV//nzNnj1bK1asUGFhoctr2O12XXPNNRoxYoR69+4ti8VSbP2sWbM0bNgwp+u+//77uvvuu13Ogys7ffq0Pv/8c3311Vfatm2b9u/fr/z8/CvWV6lSRYmJierevbt69eql9u3bmzaYWlobN27UokWLtGTJEu3YsUNFRUVuWdfPz0+NGzdWp06d1KVLF3Xv3r1Mvi4pKirSmjVrtGzZMn333XfauXOnMjMzr1jv7++v+Ph4JSUl6brrrlPv3r25hwJAuX+/iXvIAAAAfB8DfgAA+DDenAEAAAAAAEB5U95vuCqLtm5forS04p9zM1WPqK/mzfqaHQMV3KlTp7Rp0yb9/PPPOnz4sI4dO6ajR48qPT1d2dnZysnJUU5Ojvz9/WW32xUUFKTQ0FDVrVtXkZGRioqKUrNmzdSqVSvFxcU5HSBB2eDOAb//dP78eX3zzTfaunWrdu7cqX379un8+fPKysrSpUuXFBQUpJCQENWoUUONGjVSYmKiunXrpo4dO8rPz68Uj6jsyMnJ0ZYtW7Rhwwbt379fqampOnLkiM6ePatLly7p0qVLys3NlZ+fnwIDA1WpUiVVq1ZN1atXV506dRQbG6v69eurSZMmat68udd23UTZdebMGf3www/66aeftGfPHh06dEinT5/WxYsXlZubq0qVKik0NFRVq1ZVQkKCmjVrpquuuko9evQok7tgwrn8/HwdOXJEGRkZysrKUk5Ojux2u0JCQlS7du0yOajmDllZWdq0aZM2bdqkAwcOKDU1VampqUpPT9elS5eUnZ2tvLw8+fv7KyAgQJUrV1ZERISqV6+uunXrKjY2Vg0aNFBiYqKaNm2qoKAgsx9SiRw/flwnT578/XdnpUqVFBISorCwMEVFRZXZHRoBmKe8v9/EPWQAAAC+jwE/AAB8GG/OAAAAAAAAoLwp7zdclUXZ2Rn6af0cFRW5vuuNp1mtNnVoe6fs9lCzowCogDw14AcAAADAu8r7+03cQwYAAOD7rGYHAAAAAAAAAAAAAGAeuz1MMVFtzI5xWTHRbRjuAwAAAAAAAAAAQLnGgB8AAAAAAAAAAABQwUVHtZY9KMzsGP/Fbg9TdGRrs2MAAAAAAAAAAAAAHsWAHwAAAAAAAAAAAFDB2Wx+SohPNjvGf0mIS5bN5md2DAAAAAAAAAAAAMCjGPADAAAAAAAAAAAAoIiIWEVE1Dc7hiSpekR9RUTEmh0DAAAAAAAAAAAA8Dg+8hJAhXf06FEtX75c27Zt065du3T48GFlZWUpMzNTDodDISEhCgkJUVRUlJo0aaJmzZrpmmuuUXx8vNnRfcrp06e1evXq35/nY8eO6cSJEzp37pxycnKUl5cnf39/BQUFKSwsTLVq1VLdunXVuHFjNWvWTJ06dVJkZKTZDwMAAAAAAAAAyrWEuK5KTz+ioqJC0zJYrTY1jCtbuwkCAAAAAAAAAAAAnsKAH4AK6fz583rvvfc0Z84cbdu2rdjas2fP6uzZs0pJSdGqVat+/3p8fLyGDh2qkSNHqmbNmp6O7JP27dunefPm6ZNPPtGOHTuc1ufm5io3N1cZGRlKTU2VJH366ae//3tcXJz69++voUOHqmXLlh7LDQAAAAAAAAAVld0eppioNjqUsta0DDHRbWS3h5rWHwAAAAAAAAAAAPAmq9kBAMCbLly4oIkTJ6pevXp65JFHnA73FWf//v2aNGmSoqKidN999yktLc2NSX3bqlWr1KtXLyUkJGjSpEmGhvuMOHDggKZMmaJWrVqpU6dOWrJkiVvWBQAAAAAAAAD8ITqqtexBYab0ttvDFB3Z2pTeAAAAAAAAAAAAgBkY8ANQYSxevFiNGzfWSy+9pIsXL7pt3by8PL377rtKSEjQ+++/77Z1fdHRo0c1cOBAJScna9myZR7ttWbNGt14443q2bOn9uzZ49FeAAAAAAAAAFCR2Gx+SohPNqV3QlyybDY/U3oDAAAAAAAAAAAAZmDAD0C5V1RUpCeffFL9+/fXsWPHPNYnPT1d99xzj+677z7l5eV5rE9ZtWjRIjVv3lyffPKJV/t+++23at26tWbOnOnVvgAAAAAAAABQnkVExCoior5Xe1aPqK+IiFiv9gQAAAAAAAAAAADMxoAfgHKtsLBQgwcP1t/+9jc5HA6v9Hz33Xd17bXX6tKlS17pVxa88soruummm3Tu3DlT+l+6dEn33nuvJk6caEp/AAAAAAAAACiPEuK6ymq1eaWX1WpTwzhzdg0EAAAAAAAAAAAAzMSAH4Byq6ioSHfffbcWLFjg9d4rV67UgAEDlJub6/Xe3jZ58mSNHz/eawOUxXnppZc0btw4s2MAAAAAAAAAQLlgt4cpJqqNV3rFRLeR3R7qlV4AAAAAAAAAAABAWeJndgAA8JQnnnhCc+fOdemY+Ph4derUSU2bNlV4eLgsFovOnTun3bt366efftKOHTsMr/XVV19pxIgRmj17tqvRfca///3vEu2aZ7PZlJSUpA4dOqhOnTqqWrWqQkNDlZWVpXPnzunkyZNau3attm7dqvz8fJfW/uc//6m4uDiNGjXK5VwAAAAAAAAAgP8WHdVaJ07uVnZOhsd62O1hio5s7bH1AQAAAAAAAAAAgLKMAT8A5dKXX36pF1980XB9v3799Pjjj6tt27bF1u3YsUOTJ0/W3LlzVVRU5HTdOXPmKDk5Wffee6/hLL7ixIkTGjFihEs79zVt2lRjxozRoEGDVLlyZaf12dnZWrhwoV599VVt3rzZcJ/x48fr6quvVqNGjQwfAwAAAAAAAAD4XzabnxLik7V1+2KP9UiIS5bNxp8tAQAAAAAAAAAAUDFZzQ4AAO529uxZ3XnnnYYGz8LDw/X5559r0aJFTof7pF8H1D744AOtXr1akZGRhvKMHj1aBw4cMFTrSx555BGlp6cbqg0ODtaMGTO0fft23XvvvYaG+yTJbrfrjjvu0KZNm/TRRx8pLCzM0HE5OTl64IEHDNUCAAAAAAAAAIoXERGriGqxHlq7viIiPLM2AAAAAAAAAAAA4AsY8ANQ7jzxxBNKS0tzWlevXj2tX79eN9xwg8s92rdvr40bN6pJkyZOa7OzszV27FiXe5Rlu3bt0vz58w3VRkZGauPGjbrnnntK1XPQoEH6+eefDe/K99133+n7778vVU8AAAAAAAAAwK8S4pNltdrcuqbValNCXFe3rgkAAAAAAAAAAAD4Ggb8AJQrW7Zs0bvvvuu0LiwsTN98840aNGhQ4l41atTQt99+q3r16jmtXbp0qb744osS9ypr3nrrLRUVFTmtCw0N1eeff254KM+Z6Ohoffnll6pZs6ah+jfffNMtfQEAAAAAAACgorPbwxQT1cata8ZEt5HdHubWNQEAAAAAAAAAAABfw4AfgHJl0qRJhgbP3n33XSUkJJS6X61atTRv3jzZbM4/tfjpp58udb+yoKioyPDufa+//rqaNWvm1v4xMTGaM2eOodolS5YoMzPTrf0BAAAAAAAAoKKKjmote5B7BvLs9jBFR7Z2y1oAAAAAAAAAAACAL2PAD0C5sXfvXi1evNhpXb9+/XTLLbe4rW+XLl30f//3f07rNm7cqO+++85tfc3y888/Ky0tzWldYmKibr/9do9kuOaaa9SjRw+ndbm5ufrhhx88kgFwp8TERCUmJpodAwAA4Ip4vQIAAHzBjh07tGPHDrNjlGs2m58S4pPdslZCXLJsNj+3rAUAgK/g9QoAACjreL0CAAAAmIMBPwDlxiuvvCKHw1FsjZ+fn6ZMmeL23s8++6xCQ0Od1r388stu7+1ta9euNVT38MMPy2r13K+ZCRMmGKpbs2aNxzIAAAAAAAAAQEUTERGriGqxpVyjviIiSrcGAAAAAAAAAAAAUF4w4AegXMjNzdW//vUvp3U333yz4uLi3N6/WrVqGj58uNO65cuX69SpU27v70179+41VHf99dd7NEdycrKCgoKc1u3bt8+jOQAAAAAAAACgokmIT5bVaivRsVarTQlxXd2cCAAAAAAAAAAAAPBdDPgBKBeWLl2qjIwMp3VjxozxWIaHHnrI6Y51hYWF+uijjzyWwRuOHTvmtKZ+/fqKjIz0aA673a4OHTo4rUtNTfVoDgAAAAAAAACoaOz2MMVEtSnRsTHRbWS3h7k5EQB4RkxMjBwOh9P/Zs2aZXZUAAAAAAAAAIAPY8APQLkwf/58pzVxcXFq3769xzJER0erS5cuTuuMZC3LLly44LSmXr16Xkgi1a1b12lNVlaWF5IAAAAAAAAAQMUSHdVa9iDXBvXs9jBFR7b2UCIAAAAAAAAAAADANzHgB8DnFRYW6ptvvnFaN2jQII9nGTx4sNOaDRs26OzZsx7P4ilFRUVOayIiIryQRKpevbrTmvz8fC8kAQAAAAAAAICKxWbzU0J8skvHJMQly2bz81AiAAAAAAAAAAAAwDcx4AfA561fv14ZGRlO63r16uXxLEZ6FBUV6dtvv/V4Fk+pWrWq05qAgAAvJJECAwOd1oSHh3shCQAAAAAAAABUPBERsYqoFmuwtr4iIozVAgAAAAAAAAAAABUJA34AfJ6RYbmQkBC1a9fO41mio6MVFxfntO7rr7/2eBZPqVatmtOatLQ0LySRzpw547SGAT8AAAAAAAAA8JyE+GRZrbZia6xWmxLiunopEQAAAAAAAAAAAOBbGPAD4PN++uknpzXt2rWTn5+fF9JIXbp0cVqzbt06LyTxjAYNGjitMTJ45w6nT592WhMVFeWFJAAAAAAAAABQMdntYYqJalNsTUx0G9ntYV5KBAAAAAAAAAAAAPgWBvwA+LwtW7Y4rWnVqpUXkvyqdevWTmt2796t3NxcL6Rxv86dOzut2b17ty5evOjRHA6HQxs2bHBa16lTJ4/mAAAAAAAAAICKLjqqtaqE1bnsv1UJq6PoSOfvmwMAAAAAAAAAAAAVFQN+AHzaqVOndOLECad1ZW3Ar6CgQNu3b/dCGvdr1aqVgoODi63Jy8vT999/79Ec27Zt08mTJ53WGdlREQAAAAAAAABQcjabn1ok3ajatRrLYrFJkiwWm2rXaqwWSTfKZvMzOSEAAAAAAAAAAABQdjHgB8Cnbdu2zVBdo0aNPJzkDwkJCYbqjGYva/z9/TVkyBCndbNnz/Zojg8++MBpTdu2bRUbG+vRHAAAAAAAAAAAyc8vUImNr1XXTsPVqf3d6tppuBIbXys/v0CzowEAAAAAAAAAAABlGgN+AHzaoUOHDNXFxcV5OMkfqlatqvDwcKd1RrOXRQ899JDTmoULF2rr1q0e6X/06FG9+eabTusefvhhj/QHAAAAAAAAAFyev3+Q7PYw+fsHmR0FAAAAAAAAAAAA8AkM+AHwaYcPH3ZaU6tWLQUHB3shzR+MDBQayV5WNWvWTDfddFOxNQ6HQ/fdd5+ys7Pd2rugoEAjRoxQbm5usXVxcXG65ZZb3NobAAAAAAAAAAAAAAAAAAAAAADAnRjwA+DTUlJSnNbUqVPH80H+pHbt2k5rfHnAT5LefPNNVatWrdiaDRs26LbbblNhYaFbejocDo0cOVLLly8vts5qtWrmzJny9/d3S18AAAAAAAAAAAAAAAAAAAAAAABPYMAPgE/75ZdfnNbUqlXLC0lc73ns2DEvJPGcmjVrasaMGbLZbMXWffrpp7r66qtL/XhPnz6t3r1767333nNaO378eHXp0qVU/QAAAAAAAAAAAAAAAAAAAAAAADyNAT8APu3s2bNOa2rWrOmFJP/NyIBfenq6F5J4Vr9+/TRjxgxZLJZi61atWqXmzZvrb3/7m9LS0lzqcf78eU2ePFnNmjXTl19+6bT+jjvu0IsvvuhSDwAAAAAAAAAAAAAAAAAAAAAAADP4mR0AAErDyIBflSpVPB+kBD0vXryo3NxcBQYGej6QB911112yWq26//77denSpSvWpaen68knn9Tf/vY3XXvtterUqZPat2+vunXrqmrVqgoJCdGFCxd07tw5nThxQuvWrdPq1au1bNkyXbx40VCWO++8UzNnznQ6cAgAAAAAAAAAAAAAAAAAAAAAAFAWMOAHwKedO3fOaU1ISIgXkpSsZ3p6umrXru3hNJ53xx13qE2bNhoyZIi2bt1abG12drY+++wzffbZZ27rHxwcrKlTp+qee+5x25oAAAAAAAAAAAAAAAAAAAAAAACeZjU7AACUVHZ2tvLz853WmTHgFxoaaqguIyPDw0m8p1GjRtqwYYNmzJih+vXre6WnzWbT7bffrp9//pnhPgAAAAAAAAAAAAAAAAAAAAAA4HMY8APgs/Ly8gzV2e12Dyf5X0FBQYbqjD4GX+Hn56d77rlHe/fu1cKFCzV48GDDw46uqFu3rkaPHq1du3Zpzpw5atCggdt7AAAAAAAAAAAAAAAAAAAAAAAAeJqf2QEAoKSMDsfZbDYPJ/lffn7GLq/lbcDvN35+frruuuvkcDhUVFSkBQsWyOFwuGXt3r176+9//7uSkpLcsl551LlzZ8PnIDxn586dZkcAAAAAAAAAAAAAAAAAAAAAAJRx7OAHwGcZHY4zY9DJaM/8/HwPJ/G+HTt26LbbblNERIRuueUWffzxx24b7pOkzz//XM2bN1dsbKwee+wxnTx50m1rAwAAAAAAAAAAAAAAAAAAAAAAeBPb+wDwWQUFBYbqGPDzjkOHDmn8+PH67LPP3DrQdyUpKSl64YUX9Oqrr2rYsGF68sknVadOHY/39QU//vijqlevbnYMAAAAAAAAAAAAAAAAAAAAAADgBDv4AfBZRofoCgsLPZyk5D3NGD70hNmzZ6tFixZatGiRV4b7/lNOTo6mT5+upk2b6uOPP/ZqbwAAAAAAAADm8Pb7kAAAAAAAAPBdvJcEAACAsq58TJYAqJACAgIM1Rnd6c+djO7MZ/QxlFVFRUUaMWKEZs6c6dJxNptNLVu2VNu2bVWjRg2Fh4erSpUqunDhgtLT05Wenq6tW7dq7dq1unTpkqE1z507p0GDBmnZsmV65513ys3wJAAAAAAAAFDRWCwWpzXclAUAAAAAAACjjLyXZLWyZwoAAADMw/QDAJ/l7+9vqM6MAT+jPX15wM/hcGj48OF6//33DR+TnJyssWPHqkePHqpcubLT+vz8fG3YsEFvvPGGPv74Y0PP6/vvv6+LFy9q3rx5stlshrMBAAAAAAAAKBuM3ExVWFjohSQAAAAAAAAoD4y8l2TkQ6cAAAAAT+HjJgD4rMDAQEN1OTk5Hk5S8p6+POA3btw4w8N9zZs317p167RixQr169fP0HCf9OsQZ8eOHfXhhx/q4MGDGjhwoKHjPv74Y915552GagEAAAAAAACULUY+uCs/P98LSQAAAAAAAFAe5OXlOa3hw+QBAABgJnbwA+CSw4cPa926dR7tERwcrL59+zqts9vt8vPzc7qrW1ZWlruiGWa0Z2hoqIeTeMbXX3+tV1991VDtfffdp9dee01BQUGl6hkVFaUFCxZo2rRpmjBhgnJzc4utnzdvnrp3767hw4eXqi8AAAAAAAAA77JYLPL39y92iM/ITVkAAAAAAACA5PzDovz9/dnBDwAAAKZiwA+AS1auXKlhw4Z5tEd0dLShAT9Jqlq1qs6cOVNsTWZmpjtiucRoz/DwcA8ncb+MjAzdc889hmonTJigyZMnu7X/gw8+qLp16+rmm2+Ww+EotnbcuHHq2bOnYmJi3JoBAAAAAAAAgGcFBAQw4AcAAAAAAAC3cPZeUkBAgJeSAAAAAJdnNTsAAJRGtWrVnNZkZGR4IYnrPStVqlTqXe3M8Prrr+vYsWNO6/r166cXX3zRIxkGDBhgaO2srCw9+uijHskAAAAAAAAAwHOc3VSVm5vr9APAAAAAAAAAAIfDodzc3GJrGPADAACA2RjwA+DTjAz4nTp1ygtJ/tvJkyed1hjJXtbk5+frzTffdFoXEhKiGTNmyGr13K+ZRx55RO3atXNa98knn+jo0aMeywEAAAAAAADA/ZzdVJWfn88ufgAAAAAAAHAqNzdX+fn5xdYw4AcAAACzMeAHwKfVrVvXaY2RYTt3M9LTSPayZuHChTpx4oTTujFjxnhlgPH55593WlNQUKBp06Z5PAsAAAAAAAAA9wkMDHRak5mZ6YUkAAAAAAAA8GVZWVlOa4y8FwUAAAB4EgN+AHxaTEyM05rjx497PsifGBmCi42N9UIS91q2bJnTGj8/P40dO9YLaaSePXuqZcuWTusWL17shTQAAAAAAAAA3KVSpUqy2WzF1mRmZsrhcHgpEQAAAAAAAHyNw+Fw+iFRNptNlSpV8lIiAAAA4PIY8APg04wMyZ08eVKXLl3yQpo/HDhwwGmNLw74/fDDD05r2rVrp6pVq3ohza+uv/56pzV79uzRmTNnvJAGAAAAAAAAgDtYLBZVrly52Jq8vDxDn8AOAAAAAACAiikzM1N5eXnF1oSEhMhisXgpEQAAAHB5DPgB8Gn169d3WuNwOAwN3LnL+fPndfbsWad1RrKXJSdPntThw4ed1l177bVeSON6vx9//NHDSQAAAAAAAAC4U2hoqNOaU6dOqaioyAtpAAAAAAAA4EsKCwt1+vRpp3UhISFeSAMAAAAUjwE/AC65++675XA4PPpfSkqK4TzNmjUzVLdnz54SPmLXGe1lNHtZcezYMUN1TZs29XCSkvU7cuSIh5MAAAAAAAAAcKfg4GDZbLZiawoKCnTq1Ck5HA4vpQIAAAAAAEBZ53A4dPr0aRUUFBRbZ7PZFBwc7KVUAAAAwJUx4AfAp9WuXVs1a9Z0Wrd582YvpDHey8/PT0lJSV5I4z5GdiWUpIiICA8n+W/h4eGyWp3/OjOaHwAAAAAAAEDZYLFYFBYW5rTu/PnzOn36NEN+AAAAAAAA+H247/z5805rw8LCZLFYPB8KAAAAcIIBPwA+r1WrVk5rvDngt2nTJqc1jRo1UlBQkBfSuE96erqhOm8P+FmtVoWHhzutY8APAAAAAAAA8D0RERFOd/GTfn3/srCwkCE/AAAAAACACqyoqEgnT540dK+bzWbz+r1uAAAAwJUw4AfA53Xo0MFpzdq1a1VQUOCFNNKqVauc1rRr184LSdzL6I0xZnyikZGe3vr+AwAAAAAAAHAfm82mGjVqGKotKipSfn6+MjIyGPQDAAAAAACoQBwOhzIyMnTw4EFDO/dJUo0aNQx9sBQAAADgDQz4AfB5PXr0cFqTlZWl9evXezxLamqqDhw44LTummuu8XgWd6tUqZKhurS0NA8n+W9FRUWGduczmh8AAAAAAABA2RIWFia73W64/vjx4zp06JDOnDmjnJwchv0AAAAAAADKIYfDoZycHJ05c0aHDh3S8ePHDX8IvN1uV1hYmIcTAgAAAMb5mR0AAEqrbdu2Cg0NVWZmZrF1X375pTp27OjRLF9++aXTGovFYmgosawx+obGmTNnPJzkv6Wnp6uoqMhpXWhoqBfSAAAAAAAAAHA3i8WiWrVqKSUlxfCwXl5entLS0pSWliZ/f38FBgYqICBA/v7+CggIkM1mk8VikcVi8XB6AACAP/z2WiY3N9fkJAAAAJdXFl+vOBwOORwOFRYWKi8vT/n5+crLy1Nubq7y8/NdXu+395p4XwgAAABlCQN+AHyen5+fevTooU8//bTYun/961967rnnPJrlo48+clpz1VVXKSIiwqM5PCEqKspQ3c6dO3XTTTd5OM0ftm/fbqjOaH4AAAAAAAAAZU9QUJAiIyN19OhRl3fky8/PL9HNXgAAAO7222uSQ4cOmZwEAADg8sr76xWLxaLIyEgFBQWZHQUAAAD4L1azAwCAOwwZMsRpzf79+7Vu3TqPZUhNTdWqVauc1hnJWhZFRUXJz8/5XPhXX33lhTR/WL58uaG62NhYDycBAAAAAAAA4EnBwcGKjIy84qernzx5kkE+AAAAAAAAXNZvw33BwcFmRwEAAAD+BwN+AMqFvn37KjQ01Gndq6++6rEMU6dOVVFRUbE1VqtVgwcP9lgGT/L391ezZs2c1q1du1bnz5/3fKD/b9myZU5rLBaLWrVq5YU0AAAAAAAAADypuCG/S5cu6ejRoyakAgAAAAAAQFnGcB8AAADKOgb8AJQLQUFBuvXWW53WLVy4UAcOHHB7/7Nnz+rdd991Wnfttdeqdu3abu/vLR06dHBaU1BQoH/+859eSCN9+eWX+vnnn53WNWrUSFWrVvVCIgAAAAAAAACeFhwcrJiYGNntdrOjAAAAAAAAoIyz2+2KiYlhuA8AAABlGgN+AMqNcePGXfZTm/9TQUGBJkyY4Pbef/3rX5WZmem0bvz48W7v7U29e/c2VPfqq68qPT3do1kcDoeefPJJQ7W9evXyaBYAAAAAAAAA3hUUFKTo6GjVrl1bNpvN7DgAAACGHDp0SIcOHTI7BgAAwBWVp9crNptNderUUXR0tIKCgsyOAwAAABSLAT8A5Ubjxo3Vp08fp3WfffaZFixY4La+P/74o95++22nda1atVLPnj3d1leSUlJSZLFYnP7XrVs3t/S75pprDO2El5mZqXvvvVdFRUVu6Xs5zz33nDZv3myo1sjujgAAAAAAAAB8i8ViUZUqVdSgQQOFh4crOzvb7EgAAAAAAAAwmc1mU3h4uBo0aKCwsDCnmwYAAAAAZQEDfgDKlaefflpWq/NL24gRI7Rv375S9zt58qSGDh2qwsJCp7XPPPNMqfuZzd/fX8OHDzdUu2jRIk2cONEjOT766CPDz2fLli3Vrl07j+QAAAAAAAAAYD6bzaaaNWvqpZde0pw5c1SlShV29QMAAAAAAKhAbDabqlSposjISMXHx6tmzZq8PwQAAACfwoAfgHKldevWuueee5zWZWRkqEePHjp06FCJe505c0Y9e/bU0aNHndb26tVLffv2LXGvsmTMmDEKDAw0VDtlyhSNHDlSubm5buv/yiuv6M4775TD4TBU/+ijj7qtNwAAAAAAAICyq6ioSAcOHFDt2rUVHx+vqKgo1axZU1WrVlVwcLD8/f3NjggAAAAAAIBS8vf3V3BwsKpWraqaNWsqKipK8fHxql27tipXrsyOfQAAAPBJfmYHAAB3+/vf/65PP/1UZ8+eLbbu2LFjatu2rebMmaNevXq51GPdunW69dZblZqa6rQ2KChIr732mkvrl2V16tTRxIkT9eyzzxqqf+utt7R27Vq98847atOmTYn7Hj58WGPGjNHixYsNH9O5c2fdcsstJe4JAAAAAAAAwDdZLBYFBwcrODj4v77ucDhUWFgoh8OhoqIik9IBAICKauTIkZKk5cuXm5wEAADg8srq6xWr1SqLxSKbzcYAHwAAAMolBvwAlDvVq1fXrFmzdOONNzrd5e3s2bO64YYbNGDAAD3++OO66qqriq3ftWuXJk+erNmzZxu++eO1115TfHy84fy+4LHHHtOCBQu0e/duQ/Vbt25V27Zt1a1bN40dO1Y9evT4nxtrLic/P19r167VG2+8oYULF6qwsNBwxqCgIL311lu8oQMAAAAAAADgdxaLRX5+/HkMAACY48yZM5KkwMBAk5MAAABcHq9XAAAAAHPwF0wA5VKfPn00YcIETZ482VD9p59+qk8//VQNGzZU586dlZiYqPDwcFksFp07d0579uzRTz/9pG3btrmUY+jQobrvvvtK8hDKtKCgIH366adq27atMjMzDR+3YsUKrVixQn5+fmrZsqXatWun6tWrKzw8XFWqVNGFCxeUnp6us2fPauvWrVq7dq0uXbpUooxvv/22EhMTS3QsAAAAAAAAAAAAAAAAAAAAAACANzDgB6DceuGFF3Ts2DHNnz/f8DH79u3Tvn373NK/R48emjlzplvWKosSEhK0aNEi9enTx+UhvIKCAm3YsEEbNmzwSLbnnntOd955p0fWBgAAAAAAAAAAAAAAAAAAAAAAcBer2QEAwFOsVqtmz56tm266yeu9O3furM8++0yBgYFe7+1N3bt31xdffKGqVauaHUXSr9/zyZMn68knnzQ7CgAAAAAAAAAAAAAAAAAAAAAAgFMM+AEo1/z8/LRgwQJNnDjRaz2HDRumb775RsHBwV7raabk5GRt2rRJrVq1MjVHRESEvvjiC02YMMHUHAAAAAAAAAAAAAAAAAAAAAAAAEYx4Aeg3LNarXrhhRf06aefqk6dOh7rU7VqVb377ruaOXNmud+5789iY2O1bt06TZ48WZUrV/Zqb4vFomHDhmn37t267rrrvNobAAAAAAAAAAAAAAAAAAAAAACgNBjwA1Bh9O/fX3v27NGECRPcurteQECA7r33Xu3du1fDhw9327q+xs/PTxMmTNDhw4f1xBNPKDw83KP9/P39ddttt2n79u2aOXOmIiIiPNoPAAAAAAAAAAAAAAAAAAAAAADA3RjwA1ChhISEaPLkyTp69KheeOEFJSYmlnitBg0a6Mknn1RKSoree+89Va9e3Y1JfVdERISef/55nThxQv/+9781ePBgtz03drtdPXv21BtvvKETJ05o7ty5pfoeAgC8IzExkes1yj3OcwDwfVzLUd5xjgOA7+NajoqA8xwAfBvXcVQEnOcAAAAAAE/wMzsAAJihatWqmjhxoiZOnKgjR47oq6++0s8//6xdu3YpJSVFmZmZysrKksPhUEhIiEJCQhQZGakmTZqoWbNm6tmzpxo1amT2w1BMTIwcDofZMS4rICBAAwYM0IABA+RwOLR9+3Zt3rxZO3bs0P79+3XixAmdOHFCWVlZysnJUV5envz8/BQUFKTg4GDVrFlTtWvXVmxsrBITE5WUlKS2bdsqMDDQ7IcGAAAAAAAAAAAAAAAAAAAAAADgFgz4AajwoqOjNWLECLNjlGsWi0VJSUlKSkoyOwoAAAAAAAAAAAAAAAAAAAAAAECZYTU7AAAAAAAAAAAAAAAAAAAAAAAAAAAAFREDfgAAAAAAAAAAAAAAAAAAAAAAAAAAmIABPwAAAAAAAAAAAAAAAAAAAAAAAAAATMCAHwAAAAAAAAAAAAAAAAAAAAAAAAAAJmDADwAAAAAAAAAAAAAAAAAAAAAAAAAAEzDgBwAAAAAAAAAAAAAAAAAAAAAAAACACRjwAwAAAAAAAAAAAAAAAAAAAAAAAADABAz4AQAAAAAAAAAAAAAAAAAAAAAAAABgAgb8AAAAAAAAAAAAAAAAAAAAAAAAAAAwAQN+AAAAAAAAAAAAAAAAAAAAAAAAAACYgAE/AAAAAAAAAAAAAAAAAAAAAAAAAABMwIAfAAAAAAAAAAAAAAAAAAAAAAAAAAAmYMAPAAAAAAAAAAAAAAAAAAAAAAAAAAATMOAHAAAAAAAAAAAAAAAAAAAAAAAAAIAJGPADAAAAAAAAAAAAAAAAAAAAAAAAAMAEDPgBAAAAAAAAAAAAAAAAAAAAAAAAAGACBvwAAAAAAAAAAAAAAAAAAAAAAAAAADABA34AAAAAAAAAAAAAAAAAAAAAAAAAAJiAAT8AAAAAAAAAAAAAAAAAAAAAAAAAAEzAgB8AAAAAAAAAAAAAAAAAAAAAAAAAACZgwA8AAAAAAAAAAAAAAAAAAAAAAAAAABMw4AcAAAAAAAAAAAAAAAAAAAAAAAAAgAkY8AMAAAAAAAAAAAAAAAAAAAAAAAAAwAQM+AEAAAAAAAAAAAAAAAAAAAAAAAAAYAIG/AAAAAAAAAAAAAAAAAAAAAAAAAAAMAEDfgAAAAAAAAAAAAAAAAAAAAAAAAAAmIABPwAAAAAAAAAAAAAAAAAAAAAAAAAATMCAHwAAAAAAAAAAAAAAAAAAAAAAAAAAJmDADwAAAAAAAAAAAAAAAAAAAAAAAAAAEzDgBwAAAAAAAAAAAAAAAAAAAAAAAACACRjwAwAAAAAAAAAAAAAAAAAAAAAAAADABAz4AQAAAAAAAAAAAAAAAAAAAAAAAABgAgb8AAAAAAAAAAAAAAAAAAAAAAAAAAAwAQN+AAAAAAAAAAAAAAAAAAAAAAAAAACYgAE/AAAAAAAAAAAAAAAAAAAAAAAAAABMwIAfAAAAAAAAAAAAAAAAAAAAAAAAAAAm8DM7AAAAKLmioqL/+VpaWpoJSVAaBQUFkqQzZ86YnATwDM5xVASc5yjvOMdREXCeo7zjHEdFwHmO8o5zHBUB5znKO85xlHec46gIOM9R3nGO+6bL3S92ufvKAAAAUHZZHA6Hw+wQAACgZHbv3q0mTZqYHQMAAAAAAAAAAAAAAAAAUEbs2rVLjRs3NjsGAAAADLKaHQAAAAAAAAAAAAAAAAAAAAAAAAAAgIqIAT8AAAAAAAAAAAAAAAAAAAAAAAAAAEzAgB8AAAAAAAAAAAAAAAAAAAAAAAAAACawOBwOh9khAABAyRQUFGj//v3/9bXw8HBZrczwAwAAAAAAAAAAAAAAAEB5V1RUpPT09P/6Wnx8vPz8/ExKBAAAAFcx4AcAAAAAAAAAAAAAAAAAAAAAAAAAgAnY3gcAAAAAAAAAAAAAAAAAAAAAAAAAABMw4AcAAAAAAAAAAAAAAAAAAAAAAAAAgAkY8AMAAAAAAAAAAAAAAAAAAAAAAAAAwAQM+AEAAAAAAAAAAAAAAAAAAAAAAAAAYAIG/AAAAAAAAAAAAAAAAAAAAAAAAAAAMAEDfgAAAAAAAAAAAAAAAAAAAAAAAAAAmIABPwAAAAAAAAAAAAAAAAAAAAAAAAAATMCAHwAAAAAAAAAAAAAAAAAAAAAAAAAAJmDADwAAAAAAAAAAAAAAAAAAAAAAAAAAEzDgBwAAAAAAAAAAAAAAAAAAAAAAAACACRjwAwAAAAAAAAAAAAAAAAAAAAAAAADABAz4AQAAAAAAAAAAAAAAAAAAAAAAAABgAgb8AAAAAAAAAAAAAAAAAAAAAAAAAAAwAQN+AAAAAAAAAAAAAAAAAAAAAAAAAACYgAE/AAAAAAAAAAAAAAAAAAAAAAAAAABMwIAfAAAAAAAAAAAAAAAAAAAAAAAAAAAmYMAPAAAAAAAAAAAAAAAAAAAAAAAAAAATMOAHAAAAAAAAAAAAAAAAAAAAAAAAAIAJGPADAAAAAAAAAAAAAAAAAAAAAAAAAMAEDPgBAAAAAAAAAAAAAAAAAAAAAAAAAGACBvwAAAAAAAAAAAAAAAAAAAAAAAAAADABA34AAAAAAAAAAAAAAAAAAAAAAAAAAJiAAT8AAAAAAAAAAAAAAAAAAAAAAAAAAEzAgB8AAAAAAAAAAAAAAAAAAAAAAAAAACZgwA8AAAAAAAAAAAAAAAAAAAAAAAAAABMw4AcAAAAAAAAAAAAAAAAAAAAAAAAAgAkY8AMAAAAAAAAAAAAAAAAAAAAAAAAAwAQM+AEAAAAAAAAAAAAAAAAAAAAAAAAAYAIG/AAAAAAAAAAAAAAAAAAAAAAAAAAAMAEDfgAAAAAAAAAAAAAAAAAAAAAAAAAAmIABPwAAAAAAAAAAAAAAAAAAAAAAAAAATMCAHwAAAAAAAAAAAAAAAAAAAAAAAAAAJmDADwAAAAAAAAAAAAAAAAAAAAAAAAAAEzDgBwAAAAAAAAAAAAAAAAAAAAAAAACACRjwAwAAAAAAAAAAAAAAAAAAAAAAAADABAz4AQAAAAAAAAAAAAAAAAAAAAAAAABgAgb8AAAAAAAAAAAAAAAAAAAAAAAAAAAwAQN+AAAAAAAAAAAAAAAAAAAAAAAAAACYgAE/AAAAAAAAAAAAAAAAAAAAAAAAAABMwIAfAAAAAAAAAAAAAAAAAAAAAAAAAAAmYMAPAAAAAAAAAAAAAAAAAAAAAAAAAAATMOAHAAAAAAAAAAAAAAAAAAAAAAAAAIAJGPADAAAAAAAAAAAAAAAAAAAAAAAAAMAEDPgBAAAAAAAAAID/x959h0dRr+8fvxNCCiGU0JFeQgfpvQkiCggCAqIiqDRRLCgqYjmiiIIFBUVFEFFBsFEUUDCAdOk9QOglEEp6T/b3x/np0a8kOxt2ZnaT9+u6cl3nsM/M59412X0ymWcGAAAAAAAAAAAAAADYgAE/AAAAAAAAAAAAAAAAAAAAAAAAAABswIAfAAAAAAAAAAAAAAAAAAAAAAAAAAA2YMAPAAAAAAAAAAAAAAAAAAAAAAAAAAAb+NkdAAAAwA5nzpzRqlWrtHfvXh08eFAnTpxQfHy84uLi5HA4FBISopCQEFWqVEl169ZVgwYNdOutt6pmzZp2R88ToqKiFB4erv379ysiIkJHjx7VtWvXFB8fr4SEBPn5+f3136B48eKqUaOGwsLCFBYWpsaNG6tu3bry8fGx+2kAAGAq+hVzJCUlad++fYqMjNTJkyf/+oqKilJCQoISExOVkJCglJQU+fv7KyAgQEWLFlXZsmVVvnx51apVS/Xq1VPLli0VFhZm99MBAOCGpKen6/fff9fGjRt18OBBHT58WNHR0YqPj1diYqKCgoJUpEgRhYaGqlatWqpbt65atmypW265RUFBQXbH9yrR0dFatWqVdu3apYMHDyoyMlKxsbGKj49Xenq6QkJCVKRIEZUvX15169ZVvXr1dMstt6hRo0Z2RwcAwFb0K+Y4derUX8eb/jw2cvr0acXExPx1bCQxMVEOh0OBgYEKCgpSqVKlVLZsWVWpUkX16tVTw4YN1bp1awUHB9v9dAAAsBX9in0yMjK0bds2bd26VREREYqIiNCZM2eUkJCg+Ph4paamqnDhwn/9Te2mm27669yTOnXqqGXLlipatKjdTwMAAACQJPk4HA6H3SEAAACsEBMTo9mzZ2v+/Pnau3dvrvZRs2ZNDR48WKNHj1aZMmXcnDBvO3bsmD777DMtX75c+/fvv6F9hYaGql27durQoYN69uypWrVquSklAAD2ol9xr9TUVG3dulV//PGHdu3apZ07dyoiIkJZWVlu2X/ZsmXVvXt3DRw4UF27dpWfH9fSAgB4hw0bNmjmzJn6+eefFRcX5/L2QUFB6tq1q0aPHq3u3btzEZ5sJCcna/78+ZozZ47++OOPXPUgFSpU0N13363HHntMVatWNSElAACeiX7FfU6dOqWNGzdq586d2rVrl3bt2qVr1665Zd9+fn5q3ry5+vXrpwEDBqhixYpu2S8AAN6AfsUeaWlp+vHHH/X1118rPDw8V6/9n3x9fdWwYUO1a9dOXbt2Vbdu3Ri6BAAAgG0Y8AMAAHleQkKCJk2apJkzZyoxMdEt+/T399cDDzygyZMnq2TJkm7ZZ161atUqvfXWWwoPD5dZrWedOnXUt29f3X///Qz7AQC8Ev2Ke6SlpWnr1q1au3atwsPDtXnzZqWkpFiydoUKFfToo49q9OjRKlKkiCVrAgDgqvXr12vcuHHavn272/ZZq1YtTZkyRX369HHbPr1denq63nnnHU2dOlVXrlxxyz59fX3Vt29fTZ06VVWqVHHLPgEA8ET0KzfuzJkzfx0bWbt2rU6cOGHJur6+vrrzzjv19NNPq23btpasCQCAHehX7HH16lVNmzZNs2fPVnR0tClrFCpUSN27d1ffvn01aNAgFShQwJR1AAAAgOthwA8AAORpS5cu1ZgxY3T27FlT9h8aGqpp06Zp2LBhpuzfm+3evVvPPPOMVq9ebdmaY8aM0YwZMyxbDwAAd6BfcZ8XX3xRr732mq0ZSpcurUmTJmn48OFcbRcA4DFiYmL0+OOP64svvjBtjZ49e+rjjz9W+fLlTVvDG2zcuFHDhw/XoUOHTNl/oUKF9PLLL+uZZ56h1wAA5Cn0K+6RmZkpPz8/u2OoT58+evvtt1WtWjW7owAA4Db0K/ZITU3V+++/r8mTJysmJsaydaOjo/PNBTQBAADgGXztDgAAAGCGrKwsTZw4UX369DHtZHnpv1cIe/DBBzVixAilpaWZto43yczM1KRJk9S8eXNLh/sAAPA29Cvu5wnXsbp06ZJGjhypW2+9VefOnbM7DgAAOnjwoFq0aGHqyWeStHz5cjVt2lSbNm0ydR1P9uGHH6pz586mDfdJUlJSkp599ln17t1bcXFxpq0DAICV6FfcxxOOjUjSjz/+qIYNG2r27Nl2RwEAwC3oV+zx5+s+fvx4S4f7AAAAADsw4AcAAPKczMxMDRo0SK+//rplf8j89NNP1a1bNyUlJVmynqeKiopSp06d9NJLLykjI8PuOAAAeCz6lbxvzZo1atq0qXbs2GF3FABAPrZhwwa1atVKR48etWS9qKgode7cWT/88IMl63mSp556SmPGjFF6erol6y1btkytW7dWdHS0JesBAGAW+pW8KzExUcOHD9fo0aOVmZlpdxwAAHKNfsUes2fPVrNmzbR37167owAAAACWYMAPAADkKVlZWRo6dKgWL15s+drr1q3TXXfdpdTUVMvX9gTHjh1TmzZttGHDBrujAADg0ehX8o+LFy+qY8eOXGkXAGCL7du3q0ePHoqPj7d03bS0NA0aNEirVq2ydF07TZgwQe+++67l6x48eFDdunXjCvYAAK9Fv5I/zJo1S4MGDVJWVpbdUQAAcBn9ij1eeuklDR8+XMnJyXZHAQAAACzj47DqMvEAAAAWeP755zVlyhSXtqlZs6batm2r+vXrKzQ0VD4+Prp27ZoOHTqkzZs3a//+/S7t7/7779cXX3zh0jbebu/evbr11lt16dIlW3OMGTNGM2bMsDUDAADO0K+YZ+LEiXr99dftjvEvxYsX16ZNm1S7dm27owAA8omzZ8+qcePGunz5suFtAgMD1aFDBzVr1kw33XSTihQpooSEBF24cEE7d+7U2rVrlZCQYHh/hQoV0tatW1W/fv3cPAWv8fHHH2vUqFEubVOhQgV16NBBDRs2VMmSJVWwYEHFxMTo6NGj2rp1q7Zv3+7SXZ47deqk1atXq0CBAq7GBwDANvQr5sjIyFDBggXtjnFdo0aN0kcffWR3DAAADKNfscfo0aM1a9Ysu2MoOjpaJUuWtDsGAAAA8hEG/AAAQJ6xYsUK9ejRw/AJUL1799aECRPUokWLHOv279+vqVOn6ssvvzR8ddHZs2froYceMlTr7U6fPq3WrVvr/PnzLm1XsmRJderUSe3bt1ft2rVVrVo1hYaGKjg4WJIUExOjmJgYXbt2TYcPH9aePXu0Z88e7dq1K9sr0zPgBwDwdPQr5jIy4Ofj46OwsDDVqlXrr6+aNWsqNDRURYoUUZEiRRQSEqKkpCTFxcUpLi5OJ06c0K5du7R7926tXr06V3fJadiwobZt26aAgIBcPjsAAIzJyMhQ586dtWHDBkP1pUuX1sSJEzVkyBAVLVo027qkpCQtWrRIr7zyik6dOmVo37Vr19b27dv/+l0/r9m9e7dat26tlJQUQ/UdOnTQSy+9pFtuuUU+Pj7Z1p04cULvv/++PvzwQ6WlpRna98SJEzVp0iRDtQAA2I1+xTxGB/yKFSumevXq/eP4SMWKFRUSEvLX8RE/Pz/FxsYqLi5OV65c0b59+7Rr1y5t2bJF27dvz1W+BQsWaNCgQbnaFgAAK9Gv2CM3F3L08fFR06ZN1bFjRzVr1kzVq1dXxYoVVbhwYQUFBSkhIeGv808uXLjw17kne/bs0aFDh7L9mx0DfgAAALAaA34AACBPuHLlimrXrm3oymmhoaGaP3++7rjjDpfW2LJliwYMGKAzZ844rQ0KCtLevXtVo0YNl9bwNjExMWrXrp0OHDhgeJs777xTI0aM0G233SY/Pz+X18zIyNDGjRu1bNky/fTTTzp8+PBfjzHgBwDwZPQr5rveH34LFiyoZs2aqX379mrfvr3atm2r4sWL53qN1NRULVmyRLNmzVJ4eLhL27788st65ZVXcr02AABGvPrqq3r55ZcN1Q4cOFCffPKJihQpYnj/qampGjdunGbOnGmofvjw4frkk08M799bpKWlqWHDhoqIiHBaGxQUpA8//FBDhw51aY2IiAj179/f0N2afX19tW7dOrVr186lNQAAsAP9inmyG/ArX778X8dG2rdvr/r168vX1zfX6xw5ckTz5s3TzJkzFRsba3i74sWLKzIy8oaOzQAAYAX6Fet9+umnGjFihOH6smXL6rHHHtP999+vihUr5mrNCxcuaPny5Vq2bJnWrFmjpKSkvx5jwA8AAABWY8APAADkCaNGjdLHH3/stK5ChQpau3atqlevnqt1Ll26pM6dO+vgwYNOa3v27Klly5blah1v0a9fP33//feGalu3bq0PPvhATZs2dWuGHTt26MMPP9TChQs1bNgwBvwAAB6LfsV8fw74FS9eXHfccYd69+6t22+/XYULFzZlvW+++UZPPvmkLly4YKg+ODhYx44dU9myZU3JAwDAiRMnVLduXUN3lHv++ec1efLkXK81Y8YMPfbYY07rfHx8tHXrVjVv3jzXa3miKVOm6Pnnn3daV6RIEf36669O78icncTERPXo0UPr1q1zWtuoUSPt2LFDBQoUyNVaAABYgX7FXH8f8GvatKl69+6tPn36qEGDBqasd/HiRT355JNasGCB4W3GjRunadOmmZIHAAB3oF+x3o4dO9S6dWulp6c7rQ0MDNTLL7+sxx9/XEFBQW7LkJCQoPnz5+ujjz7Svn37GPADAACA5RjwAwAAXm/Xrl1q1qyZsrKycqwrWrSotm7dqlq1at3QelFRUWrevLnOnj3rtPann35y+c473mL27NkaPny40zpfX1+9+uqreu6550w9wSwmJkbHjh1Ts2bNTFsDAIDcol+xRnh4uLKystSxY8dc3Sk4N6KionTLLbfo0KFDhupfffVVvfjiiyanAgDkV3fddZd+/PFHp3UjR47UrFmzbni9119/XRMnTnRa16JFC23ZskU+Pj43vKYnOH/+vMLCwpSYmJhjXcGCBbVmzRq1b9/+htZLSEhQ+/bttXv3bqe1M2fO1COPPHJD6wEAYCb6FXNlZWXpo48+Uu/evVWhQgXL1p0+fbqeeOIJQ7VFihTR+fPnFRwcbG4oAAByiX7FWklJSWrSpIkiIiKc1tavX1+LFi1SnTp1TM20ceNGNWnSxK0DhAAAAIAzDPgBAACv16dPHy1ZssRp3aJFi3T33Xe7Zc3ff/9dnTt3VmZmZo51zZo10x9//OGWNT3JiRMn1KBBA6cnsgUEBOjLL79U//79LUoGAIBnol/J2y5duqS2bdvq2LFjTmurVaumyMhIC1IBAPKb3bt3q3Hjxk7rGjdurM2bNysgIOCG13Q4HLr99tu1atUqp7XLli1Tz549b3hNT/DEE09o+vTpTuveeustPfPMM25Z88iRI2ratKkSEhJyrCtfvrxOnDghf39/t6wLAIA70a/kbe+++66eeuopQ7VffPGF7r//fpMTAQDgOvoV640ZM0Yffvih07pbbrlFP/zwg4oUKWJBKgAAAMB6vnYHAAAAuBERERFaunSp07revXu77WR5SWrfvr1GjhzptG779u367bff3Laup3j66aedDvf5+voy3AcAgOhX8oPSpUvrk08+MVR7/PhxHT161OREAID86K233nJa4+vrq9mzZ7vl5DNJ8vHx0SeffGLoauZG8nmDa9euafbs2U7rGjdurHHjxrlt3bCwML300ktO686fP68vv/zSbesCAOBO9Ct525NPPqmOHTsaql25cqXJaQAAyB36FWvt2bPH0F0QW7VqpWXLljHcBwAAgDyNAT8AAODV3nnnHTm7IbGfn5+mTZvm9rVfffVVQwcP3377bbevbad169bp+++/d1r32muvMdwHAIDoV/KLzp07Gx7Q/P33301OAwDIb86cOaPFixc7rbv//vvVpEkTt65dqVIlQ3dq+f333/PEXYNnzZrl9KJH0n97QF9f9/4Z7vHHH1fVqlWd1tHbAQA8Ef1K/jBz5kxDdRwbAQB4IvoV6z355JPKysrKsaZ8+fJatmyZChUqZFEqAAAAwB4M+AEAAK+Vmpqqb775xmldv379VKNGDbevX6JECT388MNO61atWqWLFy+6fX27jB8/3mlN+/bt9eyzz1qQBgAAz0a/kr/cf//9huoOHz5schIAQH7z1VdfKSMjI8caHx8f035Xf/zxxxUYGOi0bt68eaasbyUjz6Fly5bq1KmT29f29/fXk08+6bTu4MGD2r59u9vXBwDgRtCv5A/16tUzNPBw9uxZQxdNAADASvQr1lqxYoXCw8NzrPHx8dHcuXNVsmRJi1IBAAAA9mHADwAAeK3ly5crNjbWad0TTzxhWoaxY8c6vRp7ZmamFi5caFoGK61fv17btm3LsaZAgQKaNWuW269SDwCAN6JfyV9uvfVWQ1eQPXXqlAVpAAD5yVdffeW0plu3bqpTp44p65cqVUr33nuv07pFixY5PVHOk+3YsUMRERFO68zs7R588EFDd2g28j0BAICV6Ffyjz59+jitcTgcOn36tPlhAABwAf2KtaZOneq0ZuDAgerWrZsFaQAAAAD7cdY1AADwWgsWLHBaU6NGDbVq1cq0DJUrV1b79u2d1hnJ6g3efvttpzUPPPCA6tata0EaAAA8H/1K/hIYGKiaNWs6rYuPj7cgDQAgv9i/f7/279/vtO6+++4zNYeR/UdHR2v16tWm5jCTkX4pJCREvXv3Ni1DcHCw7rrrLqd1CxculMPhMC0HAACuoF/JXxo0aGCojuMjAABPQr9irV27djm9e1/BggX1+uuvW5QIAAAAsB8DfgAAwCtlZmYaOmA5cOBA07MMGjTIac0ff/yhK1eumJ7FTKdOndKyZcuc1j3zzDMWpAEAwPPRr+RPZcuWdVqTmZlpQRIAQH6xcuVKpzWBgYGmDp1JUocOHVS+fHmndStWrDA1h5mMvNZ33nmngoKCTM1hpLeLiorS7t27Tc0BAIBR9Cv5i5FjIxLHRwAAnoV+xVozZsxwWtOvXz9Vq1bNgjQAAACAZ2DADwAAeKVt27YpNjbWad3tt99uehYja2RlZWnNmjWmZzGTkSu/33LLLapdu7ZFiQAA8Gz0K/lTaGioW2oAADDq119/dVrTrl07hYSEmJrD19dX3bp1c1pnJK8nunDhgg4cOOC0zorerlOnTgoMDHRa562vNQAg76FfyV+MHvfg+AgAwJPQr1gnLS1N33//vdO6Rx55xII0AAAAgOdgwA8AAHglIyefh4SEqGXLlqZnqVy5smrUqOG0zpsPsEr/HfBzZvDgwRYkAQDAO9Cv5E9Xr151WlOiRAkLkgAA8oO0tDRt2LDBaV3Xrl0tSGNsnUOHDuncuXMWpHEvoxdC6NKli8lJ/nvHgHbt2jmto7cDAHgC+pX8x8ixEYnjIwAAz0G/Yq0VK1YoJiYmx5qKFSuqffv21gQCAAAAPAQDfgAAwCtt3rzZaU3Lli3l5+dnQRoZOrC4detWC5KYIzIyUrt3786xxtfXVz179rQmEAAAXoB+JX+6ePGi05patWpZkAQAkB/s2bNHSUlJTuuMDIO5g9ETr7yx5zDS29WoUUNly5a1II2x13rbtm1yOBwWpAEAIHv0K/mPkWMjJUqUYMAPAOAx6Fes9e233zqt6dWrlwVJAAAAAM/CgB8AAPBKu3btclrTpEkTC5L8V9OmTZ3WHDp0SKmpqRakcb/Vq1c7rbn55ptVpkwZC9IAAOAd6Ffyn+TkZB05csRpHVedBQC4i5F+w9fXVzfffLP5YSRVqlRJJUuWdFpnJLen8cbeLi4uTsePH7cgDQAA2aNfyX+cXTBS+u+AhI+Pj/lhAAAwgH7FWmvWrHFa0717dwuSAAAAAJ6FAT8AAOB1Ll68qAsXLjit87STqjIyMrRv3z4L0rhfeHi405rWrVtbkAQAAO9Av5I//fLLL06v8hsaGqqGDRtalAgAkNft3LnTaU1YWJiCg4MtSPNfRnoObzsBLSsrS3v27HFa52m9neR9rzUAIO+hX8l/fvzxR6c1nTt3Nj8IAAAG0a9Y5/Dhw4b+ftaqVSsL0gAAAACehQE/AADgdfbu3Wuornbt2iYn+Z9atWoZqjOa3dOsW7fOaU3Lli0tSAIAgHegX8mf5syZ47Rm+PDh8vXlkBwAwD2MDOZb2W9IxnoOb+s3IiMjnQ7xS9a+1mXLllXRokWd1nnbaw0AyHvoV/KXnTt3Or2DX6FChXT//fdbEwgAAAPoV6yzdu1apzXVqlVTqVKlzA8DAAAAeBg/uwMAAAC46vjx44bqatSoYXKS/ylevLhCQ0N19erVHOuMZvckZ86cUVRUlNO6unXrOq25cuWKVqxYoS1btmj//v06ceKEYmNjlZCQIH9/fxUqVEglSpRQ1apVVb16dbVo0UKtW7dWWFiYO54KAACWoV/Jf1asWKGlS5fmWOPn56dHH33UokQAgPzAyOd2zZo1LUjyP0b6m3PnziktLU3+/v4WJLpxRvsjq1/r6tWrO73LAL0dAMBu9Cv5h8Ph0JgxY5zWDRkyRKGhoRYkAgDAGPoV6/zxxx9Oa4yce+JwOPTHH3/ol19+0d69e3Xw4EFFR0crLi5OGRkZKlSokAoXLqwKFSqoatWqql+/vlq3bq1WrVpZeidGAAAAwBUM+AEAAK9z4sQJpzVly5a1/KBcjRo1tG3bthxrjGT3NAcOHDBUl90B7aysLC1fvlzvv/++1q5dq8zMzOvWJScnKzk5WVeuXNGRI0ckSR9++OFf+7777rv18MMPq2rVqrl4FgAAWIt+JX85fvy4RowY4bTu6aefVoUKFSxIBADID5KTkw1dkKd69eoWpPkfIyegZWVl6dSpU5afHJdbRvujatWqmZzkn2rUqOF0wI/eDgBgJ/qV/OXFF1/Uli1bcqwJDQ3VSy+9ZFEiAACco1+xlpHzT3J6PufOndPMmTM1d+7cHP+7xcXFKS4uTufPn9e2bdv0zTffSJICAwN12223afDgwerXr58KFCjg+pMAAAAATOJrdwAAAABXnTx50mlN+fLlzQ/yf5QrV85pjTeeVGXkAGuJEiVUpEiRf/376tWrVb9+ffXu3Vtr1qzJdrjPmaNHj2ry5MmqWbOmBg4cqKNHj+ZqPwAAWIV+Jf+IiIhQp06ddPbs2RzrGjRooP/85z8WpQIA5AenTp0yVGd1z2Gk35C8q+cw0tuFhoYqMDDQ/DB/Q28HAPB09Cv5Q1ZWlp577jm9/vrrTmtnzpxp+PUHAMAK9CvWOnjwoNOa611AKTY2Vo8//riqVq2qN954w9BQ5vWkpKRoyZIlGjhwoGrUqKFZs2bl+jwWAAAAwN0Y8AMAAF7n3LlzTmvKli1rQRLX13R24rcnOnTokNOa0qVL/+P/JyYm6r777tOtt95qaHujMjMztWjRItWvX18TJ05Uenq62/YNAIA70a/kfampqZo0aZJuvvlmnTlzJsfacuXK6bvvvpO/v79F6QAA+YGRfkOyvucwup439Rze3NtFRUVxohoAwDb0K3nfzp071bp1a7355ptOa8eNG6dBgwZZkAoAAOPoV6xz9uxZxcfHO637v+efrFq1SrVq1dL777/v1nNETp48qdGjR6tZs2bavn272/YLAAAA5BYDfgAAwOtcuXLFaU2ZMmUsSPJPRg6wXr161YIk7uXshHVJKlWq1F//OzIyUi1bttRXX31lWqa0tDS9/vrr6tChg6F8AABYjX4l79qzZ4+eeeYZVa1aVS+99JJSUlJyrC9btqzCw8NVs2ZNixICAPILI/2GZH3PUbp0afn6Ov/zkzf1HN7c2zkcDl27ds2CNAAA/Bv9St4UHx+v+fPnq1u3bmrevLm2bdvmdJsnnnhC06ZNsyAdAACuoV+xjtFzO/5+/skbb7yhO+64QxcvXjQrlnbv3q22bdtq5syZpq0BAAAAGOFndwAAAABXGTnAWqxYMfOD5GLNxMREpaamKiAgwPxAbhIVFeW05s/nHhkZqY4dOxq+yt2N2rJli1q1aqXVq1erTp06lqwJAIAR9Cuebe/evTp48GCONWlpaYqLi1NcXJwuXryoPXv2aM+ePYqJiTG8zi233KJ58+apQoUKN5gYAIB/M3oCmtU9h6+vr0JCQhQbG5tjndH8nsCbezvpv/lLlixpbhgAAK6DfsVzZWVladGiRTnWOBwOJSQkKC4uTrGxsTpy5Ih2796to0ePKisry9A6wcHBeu+99/Twww+7IzYAAG5Hv2IdI+eeSP97rZ9//nlNmTLFxET/k5aWpkcffVSRkZF65513LFkTAAAA+L8Y8AMAAF7HyFXHQ0JCLEiSuzWvXr2qcuXKmZzGfS5cuOC0xt/fXxcvXlTnzp0tG+770/nz59WhQwetX7+eIT8AgMegX/FsX3/9td58803T9l+yZElNnDhRY8eOlY+Pj2nrAADyN6NXaC9cuLDJSf7NyAlo3nSFeSNZPb23AwDADvQrnistLU333HOPqWvcdttt+uCDD1SzZk1T1wEA4EbQr1jHyLkn0n/PP5k8ebJlw31/9+677yotLU0zZsywfG0AAACAAT8AAOBVkpOTlZ6e7rTOjpOqihQpYqguNjbWa06Ydzgchq74VqBAAQ0aNEhnzpxxWlukSBG1b99eDRo0UOXKlVW4cGFlZGQoJiZGx44d09atW7Vr1y5lZmYaznn58mX16tVLW7duVYkSJQxvBwCAGehX8q8qVaro0Ucf1ahRoxQcHGx3HABAHhcXF+e0Jjg4WL6+vhak+ScjPYezE9Q8iZHX2tN7OwAA7EC/kv8ULFhQPXr00IQJE9S8eXO74wAA4BT9inWio6MN1a1bt04vvviiodq6deuqbdu2qlmzpkqUKKGAgAAlJSXp7NmzOnDggNavX2943T/NnDlTNWrU0BNPPOHSdgAAAMCNYsAPAAB4lbS0NEN1QUFBJif5t8DAQEN1Rp+DJ0hJSVFWVpbTuiVLliglJSXHmlatWmn8+PHq2bOnChYsmGNtVFSUvvjiC02bNs3wwdbIyEjdd999WrFihaF6AADMQr+S//Tt21cTJkxQ06ZN7Y4CAMhHjHxe29FvSMZ6Dm/qNzz1taa3AwB4Ok/9DJXyXr9it9KlS2vSpEkaOHCgihYtanccAAAMo1+xTlJSkqG6cePG5XieSuHChTVmzBiNGDFC1apVy3FfrJjn7gAAy61JREFUWVlZCg8P17vvvquffvrJcNZx48apefPmatu2reFtAAAAgBtl/WVFAAAAboDRg5MFChQwOcm/+fkZu3aCNx1gdTa0Z6SuWLFimj9/vjZv3qy77rrL6XCfJJUtW1bjx49XZGSkRowYYTjvypUr9emnnxquBwDADPQr+c/333+vAQMG6LHHHtPmzZvtjgMAyCeMfF7b0W9IxnoOb+o3PPW1prcDAHg6T/0MlfJev2K3S5cuaezYsRo4cKBmzpxp6G5IAAB4AvoV67jj/JOePXvqyJEjmjJlitPhPkny9fVVly5dtHz5cv3666+qWLGioQxZWVkaNmyY4aFEAAAAwB0Y8AMAAF7F6MFJoyc4uZPRNdPT001O4j6pqak3tH3VqlW1ZcsW3XfffbnaPiQkRB9//LFmz55t+KD5c889p9jY2FytBwCAO9Cv5E/Hjx/XjBkz1KZNG3Xo0MGlK8ECAJAbRnoOO/oNo+t6U7/hqa81vR0AwNN56meo0XX5DHVNamqqVq1apUcffVSVKlXShAkTdPHiRbtjAQCQI/oV69zo+ScTJkzQ0qVLVa5cuVxt37VrV23fvl0tWrQwVH/06FG9/fbbuVoLAAAAyA0G/AAAgFfJyMgwVMdJVe5xI1d7K1eunNasWaNatWrdcI6HHnpIs2fPNlR79epVTZ069YbXBAAgt+hX8Pvvv6tnz5664447FBUVZXccAEAeZaTn4AQ09/DU15reDgDg6Tz1M9TounyG5l5sbKzeeOMNhYWFaf78+XbHAQAgW/Qr1rmR80+effZZvf766/Lx8bmhDKVLl9Yvv/yiRo0aGaqfNm2arly5ckNrAgAAAEYx4AcAALyK0QOnmZmZJifJ/Zp2HfzNDaN3zbueuXPnqmrVqm7LMnToUD3wwAOGamfOnKnk5GS3rQ0AgCvoV/CnFStWqEGDBvr555/tjgIAyIOMfF7b0W8YXdeb+g1Pfa3p7QAAns5TP0ONrstn6I2Li4vTkCFDNGDAACUmJtodBwCAf6FfsU5uzz9p27atJk+e7LYcRYsW1cKFCxUYGOi0Ni4uTp988onb1gYAAABywoAfAADwKv7+/obqjN45x52MXhnN6HPwBLnN+vDDD+u2225zcxrpvffeU/ny5Z3WxcTEaOHChW5fHwAAI+hXPN+UKVPkcDiy/crKylJsbKxOnTqlvXv3atWqVXr99dd11113GepF/u7y5cvq06ePfvzxR3OeDAAg3zLyeW1HvyEZ6zm8qd/w1Nea3g4A4Ok89TNUynv9iqsCAwNzPDbicDiUmpqqixcvKiIiQlu3btXcuXM1ZswYtWrVyuVhgsWLF6tHjx5KSkoy6RkBAJA79CvWyU3WoKAgzZ07V76+7j3VuXbt2nr11VcN1X766afKyspy6/oAAADA9TDgBwAAvErBggUN1dlxgNXomnn9AGtwcLCmTp1qQhqpWLFimjJliqHar7/+2pQMAAA4Q7/i/Xx8fFSkSBFVqlRJDRo0ULdu3TRhwgR9//33OnPmjFauXKn+/fsb/m+dnp6uAQMGaPny5SYnBwDkJ0Y+h+w6Ac3Iut7Ub3jqa01vBwDwdJ76GWp03fz+Gerv76/SpUsrLCxMLVq00NChQzVjxgxt3rxZZ86c0eTJk1W9enXD+1u3bp169uyplJQUE1MDAOAa+hXr5CbrU089pZo1a5qQxvi+T5w4oc2bN5uSAQAAAPg7BvwAAIBXCQgIMFRnxx8Hja7pTQdYjb7efzd48GAVK1bM/WH+vwEDBqhkyZJO69avX6+EhATTcgAAkB36lbzN19dXt912mxYvXqz9+/erQ4cOhrZLT0/Xfffdp7Nnz5qcEACQXxjpOew6edrIut7Ub3jqa01vBwDwdJ76GWp0XT5Ds1e2bFk9//zzOnLkiN59910FBwcb2i48PFwvvPCCyekAADCOfsU6rp5/UqBAAY0cOdKkNK7t/6effjItBwAAAPAnP7sDAAAAz3fixAlt3brV1DWCg4PVq1cvp3VBQUHy8/NzeqWy+Ph4d0UzzOiaRYoUMTmJ+wQGBqpgwYJKT083vM2oUaNMTPTfg75Dhw7VtGnTcqxLS0vTunXr1KNHD1PzAAA8A/2KMXmxX7FTWFiY1q5dqw8//FBPPPGE0//msbGxGjZsmH755Rf5+PhYlBIAkFeFhIQ4rUlMTJTD4bD8c8dIz+FN/UZISIguXbqUYw29HQAA/0a/kvf5+vrqiSeeUJ8+fXTPPfdoy5YtTrd577331Lt3b8MXTQIAwEz0K9Yx8lr/3R133KGKFSualOa/hg4dqokTJzodpvz11181efJkU7MAAAAADPgBAACn1q1bp2HDhpm6RuXKlQ2dMC9JxYsXV3R0dI41cXFx7ojlEqNrhoaGmpzEvUqUKKGoqChDtVWrVlWTJk1MTiT179/f6YCfJG3fvp0BPwDIJ+hXjMmr/YqdfHx8NGbMGFWuXFl33XWX0yG/1atX65tvvtGgQYMsSggAyKuMfF47HA7Fx8dbfrKXkZ7Dm/qN0NBQRUZG5lhDbwcAwL/Rr+QfVapU0Zo1a9SrVy/99ttvOdZmZWVp5MiROnjwIBdAAgDYjn7FOiVLlnSpvn///iYl+Z8SJUqoU6dOWrlyZY51e/fuVVpamlfdMREAAADex9fuAAAAAK4qUaKE05rY2FgLkri+ZqFChRQYGGhBGvcx8nr/qWXLliYm+Z+bb77Z0IHTnTt3WpAGAIB/o1/Jf3r27Knp06cbqn333XdNTgMAyA+M/r5udc+RlZWlhIQEp3WuHG+wmzf3dpJ3vdYAgLyFfiV/KVSokL7//nvVrFnTae3hw4e1YsUKC1IBAJAz+hXruJrVqvNPWrRo4bQmLS1NBw4csCANAAAA8jMG/AAAgNcxctDv4sWLFiT5JyN3ufOmg6t/8sQBv4CAADVq1MhpnbOr6wMAYBb6lfzpkUce0a233uq0btu2bdq0aZMFiQAAeZnRz2yre47o6GhlZmY6rfOmnsObezsfHx8VL17cgjQAAPwb/Ur+U7RoUc2dO9dQ7XvvvWduGAAADKBfsY4rWYsVK6awsDAT0/yP0fNcOP8EAAAAZmPADwAAeJ2bbrrJaY2RE5zczciaRrJ7GlcyN2zY0MQk/2RkwO/s2bMWJAEA4N/oV/KvN99801Ddt99+a3ISAEBeZ/Qz2+qew+h63tRzeHNvV6ZMGfn5+VmQBgCAf6NfyZ/atm2r3r17O61bs2aNYmJizA8EAEAO6Fes40rWBg0ayMfHx8Q0/2Pk3BOJ808AAABgPgb8AACA16lSpYrTmvPnz5sf5P+4cOGC05qqVatakMS9qlWrZrg2NDTUxCSurxUbG6vU1FQL0gAA8E/0K/lX48aNDV3t9ffff7cgDQAgLzPSb0jW9xxG+g3Ju3oOI6/11atXLT8GQW8HAPB09Cv516hRo5zWZGVlaePGjRakAQAge/Qr1qlSpYp8fY2dsuxp555I1t/FEQAAAPkPA34AAMDrGDlAGRUVpaSkJAvS/M+xY8ec1njTwdU/uTLgV6xYMfOC5HItq78PAACQ6FfyOyNXqd+1a5cSEhIsSAMAyKuCgoJUpkwZp3WRkZEWpPkfI/2Gj4+PKleubEEa9zDSHzkcDh0/ftyCNP9DbwcA8HT0K/lXly5dFBwc7LSOCyABAOxGv2Idf39/w3fxs/Lck6CgIAUEBDit49wTAAAAmI0BPwAA4HWMDJw5HA5DBzzdJSYmRleuXHFa58qwnKeoXr264VoG/AAA+C/6lfytTZs2TmsyMzN14sQJC9IAAPIyI5/bR48etSDJ/xjpb2666SZDJ055CqP9kSe+1vR2AAC70a/kTwULFlTz5s2d1ln93x4AgOuhX7GO0fNPrDz3RJKKFi3qtIZzTwAAAGA2BvwAAIBTQ4cOlcPhMPXr5MmThvM0aNDAUN3hw4dz+YxdZ3Qto9k9ScOGDQ3X+vj4mJjEvrUAAJ6PfsV9a3ljv+JpatSoYajOyMAlAAA5MfK5bWW/YXQ9b+s3qlevrqCgIKd1Vr7WUVFRio2NdVrnba81ACDvoV/Jv4wcH+HYCADAE9CvWKdRo0aG6qw+H4TzTwAAAOAJGPADAABep1y5cipTpozTup07d1qQxvhafn5+Lg3LeYrixYsbvtp7TEyMuWH+5tq1a4bqChUqZHISAAD+jX4lfwsNDTVUd/XqVZOTAADyusaNGzutiYiIsPQK40Z6jiZNmliQxH0KFChgqEfytN5O8r7XGgCQ99Cv5F9Gjo9wbAQA4AnoV6zTtGlTQ3VWnntidD3OPQEAAIDZGPADAABeyciBSitPqtqxY4fTmtq1ayswMNCCNO5n9CCr0aE7dzB6QDc4ONjcIAAAZIN+Jf8qWLCgobrk5GSTkwAA8joj/UZWVpZ2795tfhhJZ86cUXR0tNM6IyfOeRpv7O1CQkJUvXp1C9IAAJA9+pX8y8jxEY6NAAA8Af2KdTzx3JPk5GSlpqY6rePcEwAAAJiNAT8AAOCVWrdu7bRmy5YtysjIsCCNtH79eqc1LVu2tCCJOdq0aWOozsorrRpZq0SJEvL397cgDQAA/0a/kn8lJiYaquOPwQCAG9WoUSMFBQU5rfv9998tSGOs35C8s+cw0tsdPXpUFy9etCCNsde6RYsW8vHxsSANAADZo1/Jv4wcH+HYCADAE9CvWKd27doqXry40zpPO/dEksqXL29yEgAAAOR3DPgBAACv1KVLF6c18fHx2rZtm+lZTp8+rWPHjjmtu/XWW03PYpZu3boZqtu7d6/JSf5nz549TmsqVapkQRIAAK6PfiX/Onv2rKG6woULm5wEAJDXBQQEqF27dk7r1qxZY0EaY+vUrl1bFSpUsCCNexnp7SRrXuvU1FRt3LjRaR29HQDAE9Cv5F9Gjo9wbAQA4AnoV6zj6+urrl27Oq3bt2+fHA6HBYmMnXsicf4JAAAAzMeAHwAA8EotWrRQkSJFnNatWLHC9CxG1vDx8TF8Ipgnqlu3rqGDw1u3brUgzX9PZDNykLVWrVoWpAEA4ProV/KvgwcPGqrjj8EAAHcwclLU77//roSEBFNzZGVladWqVU7rvHXorHz58qpTp47TOit6u7Vr1yo5Odlpnbe+1gCAvId+JX8ycnyEYyMAAE9Bv2IdIxeYjomJ0ZEjRyxIY/w8F84/AQAAgNkY8AMAAF7Jz8/P0Ano33zzjelZFi5c6LSmWbNmKlmypOlZzHTHHXc4rdmyZYsFSaRdu3YpLS3NaV3z5s0tSAMAwPXRr+Rf69atc1pToEABValSxfwwAIA8r3v37k5rUlJStGTJElNz/P777zp//rzTOiN5PZWR7EuWLFFKSoqpOYz0dmXKlFHjxo1NzQEAgFH0K/lPdHS0Dh065LSuevXqFqQBAMA5+hXr3H777fLx8XFaZ9X5J0YG/IoWLaqwsDAL0gAAACA/Y8APAAB4rXvuucdpzdGjR029q9zp06e1fv16p3VGsnq6e++912nNyZMntXPnTtOzfPvtt4bqWrdubXISAAByRr+S/2RkZOi7775zWlenTh35+/tbkAgAkNc1bNhQdevWdVr35Zdfmppj/vz5TmtKlCjh1VeYN9IvxcfHm3qyX2Jion744QendQMHDjR0shwAAFagX8l/vvnmGzkcDqd1N998s/lhAAAwgH7FOjfddJM6derktM7oeSE34vLly1q7dq3TupYtW3KcBQAAAKZjwA8AAHitXr16qUiRIk7r3nvvPdMyvP/++8rKysqxxtfXV4MGDTItg1Xat2+vqlWrOq376KOPTM2RkpKizz//3GldyZIl1aJFC1OzAADgDP1K/vPNN98oKirKaV3Hjh0tSAMAyC+MXJRn1apVOnz4sCnrR0dH66uvvnJaN2DAABUsWNCUDFZo3ry5atas6bTOzN5u7ty5io2NdVpn5HsCAAAr0a/kH5mZmZo5c6bTOh8fH3Xo0MGCRAAAGEO/Yp0hQ4Y4rfn55591+vRpU3PMnTtXqampTut69Ohhag4AAABAYsAPAAB4scDAQA0YMMBp3bfffqtjx465ff0rV67o008/dVrXrVs3lStXzu3rW83Hx0fDhg1zWrdgwQJdu3bNtBzffPONrly54rSuV69eKlCggGk5AAAwgn4lf0lISNDEiRMN1d52220mpwEA5Cf33Xef09+BHQ6HpkyZYsr606dPV0pKitO6Bx54wJT1rWTkOWzZssXQ1d9dlZaWpnfeecdpXe3atbnoEQDA49Cv5B8fffSRocGHxo0bq1SpUhYkAgDAGPoV6/Tv39/pBTKzsrI0a9Ys0zJkZmbq448/NlTbu3dv03IAAAAAf2LADwAAeLWnnnpKPj4+OdZkZGTo6aefdvvaL730kuLi4pzWjRs3zu1r22XMmDEKDg7OsSYxMdG053zt2jU9//zzhmofeughUzIAAOAq+pX8Y/To0Tp58qTTulKlSql79+7mBwIA5BuVKlVS//79ndbNnz9fO3fudOvap0+fNjR01rZtW7Vs2dKta9th1KhRKlSokNO6cePGOb2LsqumT5+uEydOGFobAABPQ7+SP+zdu1fPPvusoVojd+4BAMBK9CvWKVy4sB555BGnde+++64iIiJMyTB16lRFRkY6revatasqV65sSgYAAADg7xjwAwAAXq1OnTrq2bOn07olS5Zo8eLFblt3w4YNhq7k1aRJE3Xt2tVt60rSyZMn5ePj4/SrU6dObl1XkkJDQzVy5EindXPnztWKFSvcvv7YsWN14cIFp3WNGzdW27Zt3b4+AAC5Qb9ifr+ybNkyXbx40S37yg2Hw6Fx48bpyy+/NFQ/dOhQFSxY0ORUAID8Zvz48U5rsrKyNHz4cKWlpbllTYfDoZEjRyo5OdlprZF8rhg6dKihfsPdd9IrUaKEoYsK7dy509CJeUYdPXpUr776qtO6cuXK6f7773fbugAAuBP9inn9ypUrV/TDDz/ceOgbcPjwYXXv3l1JSUlOawsVKqR7773XglQAALiGfsWa4yuS9OSTTyooKCjHmpSUFA0bNsztF1E6ePCgXnnlFUO1jz32mFvXBgAAALLDgB8AAPB6L7/8snx9nbc1w4cP15EjR254vaioKA0ePFiZmZlOa40eEPQm48ePV9GiRZ3WDRs2TMePH3fbup999pnhk+bz4usOAPBu9Cvm+u6771S9enVNmDBBUVFRlq597do1DRgwwPAJ/IULF9YzzzxjcioAQH7UpEkT3XnnnU7rdu7cqccff9wta77xxhtauXKl07pmzZqpV69eblnTE4wfP97QXfwmTJigDRs23PB6iYmJGjhwoBISEpzWPv/88woICLjhNQEAMAP9inni4+PVt29ftWnTRj/99JMcDoel6y9btkytW7c2dJFGSXr00UdVsmRJk1MBAOA6+hXrlC5d2tBruHnzZj333HNuWzcmJkaDBg1Samqq09qmTZvmqdccAAAAno0BPwAA4PWaNm2qBx980GldbGysunTpckNDZ9HR0eratavOnDnjtPb222/Pkwf6ypQpo0mTJjmtu3jxorp06aKIiIgbXnP27NmG7hwoSR07djR0wB0AACvRr5gvMTFRb7zxhipXrqwhQ4bot99+c/sVXf8uMzNTc+fOVf369fXtt98a3u7ZZ59VqVKlTMsFAMjf3nnnHUPDXbNmzdILL7xwQ2t9+OGHhvbh4+OjDz74QD4+Pje0niepUKGCJkyY4LQuPT1dPXv21Pbt23O9VlJSknr16qVdu3Y5rW3QoIEeeeSRXK8FAIAV6FfMtXnzZvXs2VN16tTRu+++a/qFkCIjI3XPPffozjvvVExMjKFtSpUqpWeffdbUXAAA3Aj6FetMnDhRlSpVclo3depUvfDCCzd8EYNLly6pW7du2rdvn6H6adOm5bnXHAAAAJ6LAT8AAJAnTJ48WSVKlHBad/bsWbVo0UIrVqxweY2tW7eqWbNmOnDggNPawMBATZ8+3eU1vMUjjzyiZs2aOa07efKkWrVqZfjOe/9XfHy8Ro4cqeHDhxu6A1GhQoX0ySef5GotAADMRr9ijbS0NM2fP19dunRRpUqVNGrUKC1ZssTwSWbOHD16VJMnT1aNGjX04IMP6vz584a3bdq0qVuvMgsAwP9VvXp1wydLT548Wffcc4/i4+NdWiM1NVVjx47VmDFjDNUPGzZMrVq1cmkNb/D000+rZs2aTutiY2PVsWNHzZs3z+U1IiIi1KpVK4WHhzut9fHx0YwZM1SgQAGX1wEAwEr0K9aIiIjQU089pQoVKqhLly56++23tW/fPrdcDCk5OVnLly9Xv379VLt2bS1cuNCl7T/++GOFhobecA4AAMxCv2Kd4OBgffDBB4ZqJ0+erDvvvNPwHYP/r9WrV6tZs2b6448/DNU//PDD6tSpU67WAgAAAHKDAT8AAJAnlCpVSp9//rmhK2dduXJFd9xxh/r27WvoCuoHDx7UsGHD1KZNG50+fdpQnunTpxs6yctbFShQQN98842KFSvmtDYmJkb333+/Wrdure+//17p6elOt7l48aLefPNNVa9e3aWBvffee09hYWGG6wEAsBL9ivXOnTunjz/+WH369FFoaKjq1Kmj+++/X6+//roWL16szZs36/jx44qJiVFKSoqysrKUkZGhpKQkXbhwQfv27dNPP/2k9957Tw888IBq1KihsLAwvfDCCzp58qRLWUqUKKEFCxbIz8/PnCcLAMD/9+KLL6p169aGahcuXKiaNWtq5syZiouLy7E2OTlZX3zxhWrXrm34xKuwsLA8eUEBSQoICNDChQsNXdE/KSlJQ4cOVefOnRUeHu70avMnT57UU089pYYNGxq+ovxzzz2nDh06GKoFAMBu9CvWyczM1G+//aann35aDRs2VPHixXXrrbfqqaee0qxZs/TLL79o7969ioqKUkJCgtLT0+VwOJSamqqYmBhFRkZq06ZNmj9/viZMmKBbbrlFJUuWVK9evfT9998rIyPDpTxjx47VXXfdZdKzBQDAfehXrHPnnXfqscceM1S7fPly1axZU88995yOHz/utN7hcOi3335Tz549deutt+rMmTOG1gkLC9N7771nqBYAAABwFx/Hjd6zGgAAwIOMHz9eU6dOdWmbsLAwtWvXTvXq1VNoaKh8fHx07do1HT58WJs3b9bevXtd2t/gwYP11VdfubSNK06ePKmqVas6revYsaPWrl1rWg5JWrZsmXr37u30xLS/K1q0qNq3b6+GDRuqUqVKKly4sDIzM3Xt2jVFRkZq69at2rFjh6E79v3d2LFj8/RBbQBA3kG/8j/u6leGDh2aq7viWCUoKEirV69WmzZt7I4CAMgnzpw5o8aNG+vKlSuGtwkKClLHjh3VtGlTVahQQSEhIUpISFBUVJR27NihtWvXunQ1+qCgIG3evFmNGjXKzVNwyujnf3h4uKlXW//www8NX23/TxUrVlTHjh3VsGFDlShRQgULFlRMTIyOHTumrVu3atu2bS4da2nfvr3Cw8O5ex8AwKvQr/yPO/oVo8di7NS3b18tXrxYvr5cixwA4B3oV/7H7OMr6enp6tSpkzZt2mR4Gx8fH9WrV09t2rRRWFiYSpQoIX9/fyUlJencuXM6cOCA1q9fr4sXL7qUpWTJktq0aVOev0gmAAAAPA+XDAcAAHnKlClTdPbsWS1YsMDwNkeOHNGRI0fcsn6XLl00Z84ct+zLG/Tq1UuffPKJRowYYfjEs9jYWC1fvlzLly93W45Bgwbp3Xffddv+AAAwE/1K/hIaGqrly5cbvtIvAADuULFiRf3888/q2rWr4ZPGkpOTtXLlSq1cufKG1y9YsKC+/fZb004+8ySPPPKITp06pbfeesvwNmfOnNGXX37plvUbNGigH3/8keE+AIDXoV/JX4YMGaLPPvuM4T4AgFehX7FOwYIFtWzZMt1yyy3as2ePoW0cDof279+v/fv3uy1H0aJFtWzZMob7AAAAYAuOnAEAgDzF19dXX3zxhfr27Wv52u3atdOSJUsUEBBg+dp2evjhh/Xxxx/b9kfZkSNH6quvvuKPwgAAr0G/kn80atRImzZtYrgPAGCLFi1aaPny5SpcuLCl6xYsWFALFizQHXfcYem6dnrzzTc1duxYy9etXbu2fv31V4WGhlq+NgAA7kC/kvf5+fnptdde0+effy4/P65BDgDwPvQr1gkNDdWaNWt0880327J+6dKlFR4erlatWtmyPgAAAMBZ0AAAIM/x8/PT4sWL9eyzz1q25rBhw7R69WoFBwdbtqYnGT58uFauXKkSJUpYtmZAQIBmzpypWbNmMdwHAPA69Ct5m5+fn8aNG6etW7eqVq1adscBAORjHTp00ObNm1WtWjVL1itdurR+++039evXz5L1PMn06dM1ffp0y05cv+OOO7RlyxaVKVPGkvUAADAL/UreVadOHW3YsEEvvPCCfHx87I4DAECu0a9Yp0SJEtqwYYPuueceS9dt06aNtm/frsaNG1u6LgAAAPB3nAkNAADyJF9fX02ZMkU//PCDypcvb9o6xYsX16effqo5c+bk+zvh3Hrrrdq5c6clV5Br3bq1tm7dqkceecT0tQAAMAv9ivt06NBBVatWtTuGfHx8dOedd2rfvn2aNm1ann29AQDepX79+tq+fbvuvfdeU9e5/fbbtWPHDrVr187UdTzZ2LFj9dtvv5k64B8UFKTXX39dy5YtU9GiRU1bBwAAK9Gv3LiiRYuqe/fu8vf3tzuKypQpoxkzZmjv3r1q2bKl3XEAAHAL+hXrBAcH6+uvv9bHH3+s0NBQU9cqVKiQJk2apHXr1qlixYqmrgUAAAA4w4AfAADI0/r06aPDhw/r6aefduvdavz9/fXQQw8pIiJCDz/8sNv26+0qVaqkn376ScuWLVODBg3cvv+6detq/vz52rhxoxo1auT2/QMAYAf6lRv34IMP6vjx49q9e7deeeUV3XzzzZauX7RoUY0aNUoHDhzQkiVLVLt2bUvXBwDAmeLFi+vLL79UeHi4mjZt6tZ9h4WF6dtvv9XPP/+sChUquHXf3qh9+/bau3evJk+e7NaT0Hx9fdWvXz8dOHBAEyZMkK8vf+IDAOQt9Cs3pnjx4lqxYoUuX76shQsXatCgQZZfDKBZs2aaO3euTp06pTFjxlh2Z2MAAKxCv2KtESNG6MiRIxozZoyCgoLcuu+AgAA99NBDOnz4sCZOnEjfAgAAAI/g43A4HHaHAAAAsMK1a9f0ySefaP78+Tpw4ECu9lG9enXdc889euSRR1SuXDk3JzTm5MmThu5Q07FjR61du9b8QDlYu3atPvroI61cuVJxcXG52kfRokXVq1cv3XffferWrZt8fHzcnBIAAM9Bv+I+Fy5c0IYNG7Rx40Zt3LhRu3fvVkZGhtv2X7NmTXXs2FG9e/dWt27dPOIK+QAAGLVu3TrNnDlTK1asUEJCgsvbBwYGqkuXLho9erTuuOMOW35XHzp0qObNm+e0Ljw8XJ06dTI/0HUkJSVp3rx5mjt3rrZv367c/EmufPnyuvvuu/XYY4+pevXqJqQEAMAz0a/cuPT0dO3YseOvYyObNm3SxYsX3bb/4OBgtW7dWt26dVO/fv1UrVo1t+0bAABvQL9inStXrmj27Nn66quvtG/fvlzvp0mTJrr77rs1bNgwlSlTxo0JAQAAgBvHgB8AAMiXTp06pV9++UV79uzRwYMHdfLkScXFxSk+Pl4Oh0MhISEKCQlRxYoVVbduXTVo0EBdu3blbiy5lJGR8dcfkA8ePKiIiAhFRUUpPj5eiYmJ8vHxUXBwsIoWLapKlSqpatWqatSokVq3bq2mTZtywjwAIF+iX3GvpKQk7d+/X8eOHfvr6/jx47p27ZoSEhKUkJCg+Ph4ZWZmKiAgQAEBASpcuLBKly6tMmXKqGLFiqpVq5Zq166tpk2b8odfAECekJaWpvXr1//1+/rhw4d1+fJlxcfHKykpSYGBgQoJCVFoaKhq1aqlunXrqmXLlurSpYsKFSpkd3yvcvHiRa1atUq7du3SwYMHdfz4ccXGxio+Pl4ZGRkqXLiwQkJCdNNNN6lOnTqqV6+ebrnlFjVu3Nju6AAA2Ip+xb1OnDihiIiIfxwfOX/+vOLj4/86PpKUlCQ/Pz/5+/srMDBQJUqUUJkyZVS2bFlVr15dtWvXVr169dSoUSPudgMAgOhXrHbu3Dn9+uuv2rNnjw4dOvSPYyypqakKCgpScHCwSpcurapVqyosLEwtW7ZUmzZtdNNNN9kdHwAAAMgWA34AAAAAAAAAAAAAAAAAAAAAAAAAANjA1+4AAAAAAAAAAAAAAAAAAAAAAAAAAADkRwz4AQAAAAAAAAAAAAAAAAAAAAAAAABgAwb8AAAAAAAAAAAAAAAAAAAAAAAAAACwAQN+AAAAAAAAAAAAAAAAAAAAAAAAAADYgAE/AAAAAAAAAAAAAAAAAAAAAAAAAABswIAfAAAAAAAAAAAAAAAAAAAAAAAAAAA2YMAPAAAAAAAAAAAAAAAAAAAAAAAAAAAbMOAHAAAAAAAAAAAAAAAAAAAAAAAAAIANGPADAAAAAAAAAAAAAAAAAAAAAAAAAMAGDPgBAAAAAAAAAAAAAAAAAAAAAAAAAGADBvwAAAAAAAAAAAAAAAAAAAAAAAAAALABA34AAAAAAAAAAAAAAAAAAAAAAAAAANiAAT8AAAAAAAAAAAAAAAAAAAAAAAAAAGzAgB8AAAAAAAAAAAAAAAAAAAAAAAAAADZgwA8AAAAAAAAAAAAAAAAAAAAAAAAAABsw4AcAAAAAAAAAAAAAAAAAAAAAAAAAgA0Y8AMAAAAAAAAAAAAAAAAAAAAAAAAAwAYM+AEAAAAAAAAAAAAAAAAAAAAAAAAAYAMG/AAAAAAAAAAAAAAAAAAAAAAAAAAAsAEDfgAAAAAAAAAAAAAAAAAAAAAAAAAA2IABPwAAAAAAAAAAAAAAAAAAAAAAAAAAbMCAHwAAAAAAAAAAAAAAAAAAAAAAAAAANmDADwAAAAAAAAAAAAAAAAAAAAAAAAAAGzDgBwAAAAAAAAAAAAAAAAAAAAAAAACADRjwAwAAAAAAAAAAAAAAAAAAAAAAAADABgz4AQAAAAAAAAAAAAAAAAAAAAAAAABgAwb8AAAAAAAAAAAAAAAAAAAAAAAAAACwAQN+AAAAAAAAAAAAAAAAAAAAAAAAAADYgAE/AAAAAAAAAAAAAAAAAAAAAAAAAABswIAfAAAAAAAAAAAAAAAAAAAAAAAAAAA2YMAPAAAAAAAAAAAAAAAAAAAAAAAAAAAbMOAHAAAAAAAAAAAAAAAAAAAAAAAAAIANGPADAAAAAAAAAAAAAAAAAAAAAAAAAMAGDPgBAAAAAAAAAAAAAAAAAAAAAAAAAGADBvwAAAAAAAAAAAAAAAAAAAAAAAAAALABA34AAAAAAAAAAAAAAAAAAAAAAAAAANiAAT8AAAAAAAAAAAAAAAAAAAAAAAAAAGzAgB8AAAAAAAAAAAAAAAAAAAAAAAAAADZgwA8AAAAAAAAAAAAAAAAAAAAAAAAAABsw4AcAAAAAAAAAAAAAAAAAAAAAAAAAgA0Y8AMAAAAAAAAAAAAAAAAAAAAAAAAAwAYM+AEAAAAAAAAAAAAAAAAAAAAAAAAAYAMG/AAAAAAAAAAAAAAAAAAAAAAAAAAAsAEDfgAAAAAAAAAAAAAAAAAAAAAAAAAA2IABPwAAAAAAAAAAAAAAAAAAAAAAAAAAbMCAHwAAAAAAAAAAAAAAAAAAAAAAAAAANmDADwAAAAAAAAAAAAAAAAAAAAAAAAAAGzDgBwAAAAAAAAAAAAAAAAAAAAAAAACADRjwAwAAAAAAAAAAAAAAAAAAAAAAAADABgz4AQAAAAAAAAAAAAAAAAAAAAAAAABgAwb8AAAAAAAAAAAAAAAAAAAAAAAAAACwAQN+AAAAAAAAAAAAAAAAAAAAAAAAAADYgAE/AAAAAAAAAAAAAAAAAAAAAAAAAABswIAfAAAAAAAAAAAAAAAAAAAAAAAAAAA2YMAPAAAAAAAAAAAAAAAAAAAAAAAAAAAbMOAHAAAAAAAAAAAAAAAAAAAAAAAAAIANGPADAAAAAAAAAAAAAAAAAAAAAAAAAMAGDPgBAAAAAAAAAAAAAAAAAAAAAAAAAGADBvwAAAAAAAAAAAAAAAAAAAAAAAAAALABA34AAAAAAAAAAAAAAAAAAAAAAAAAANiAAT8AAAAAAAAAAAAAAAAAAAAAAAAAAGzAgB8AAAAAAAAAAAAAAAAAAAAAAAAAADZgwA8AAAAAAAAAAAAAAAAAAAAAAAAAABsw4AcAAAAAAAAAAAAAAAAAAAAAAAAAgA0Y8AMAAAAAAAAAAAAAAAAAAAAAAAAAwAYM+AEAAAAAAAAAAAAAAAAAAAAAAAAAYAMG/AAAAAAAAAAAAAAAAAAAAAAAAAAAsAEDfgAAAAAAAAAAAAAAAAAAAAAAAAAA2IABPwAAAAAAAAAAAAAAAAAAAAAAAAAAbMCAHwAAAAAAAAAAAAAAAAAAAAAAAAAANmDADwAAAAAAAAAAAAAAAAAAAAAAAAAAGzDgBwAAAAAAAAAAAAAAAAAAAAAAAACADRjwAwAAAAAAAAAAAAAAAAAAAAAAAADABgz4AQAAAAAAAAAAAAAAAAAAAAAAAABgAwb8AAAAAAAAAAAAAAAAAAAAAAAAAACwAQN+AAAAAAAAAAAAAAAAAAAAAAAAAADYgAE/AAAAAAAAAAAAAAAAAAAAAAAAAABswIAfAAAAAAAAAAAAAAAAAAAAAAAAAAA2YMAPAAAAAAAAAAAAAAAAAAAAAAAAAAAbMOAHAAAAAAAAAAAAAAAAAAAAAAAAAIANGPADAAAAAAAAAAAAAAAAAAAAAAAAAMAGDPgBAAAAAAAAAAAAAAAAAAAAAAAAAGADBvwAAAAAAAAAAAAAAAAAAAAAAAAAALABA34AAAAAAAAAAAAAAAAAAAAAAAAAANiAAT8AAAAAAAAAAAAAAAAAAAAAAAAAAGzAgB8AAAAAAAAAAAAAAAAAAAAAAAAAADZgwA8AAAAAAAAAAAAAAAAAAAAAAAAAABsw4AcAAAAAAAAAAAAAAAAAAAAAAAAAgA0Y8AMAAAAAAAAAAAAAAAAAAAAAAAAAwAYM+AEAAAAAAAAAAAAAAAAAAAAAAAAAYAMG/AAAAAAAAAAAAAAAAAAAAAAAAAAAsAEDfgAAAAAAAAAAAAAAAAAAAAAAAAAA2IABPwAAAAAAAAAAAAAAAAAAAAAAAAAAbMCAHwAAAAAAAAAAAAAAAAAAAAAAAAAANmDADwAAAAAAAAAAAAAAAAAAAAAAAAAAGzDgBwAAAAAAAAAAAAAAAAAAAAAAAACADRjwAwAAAAAAAAAAAAAAAAAAAAAAAADABgz4AQAAAAAAAAAAAAAAAAAAAAAAAABgAwb8AAAAAAAAAAAAAAAAAAAAAAAAAACwAQN+AAAAAAAAAAAAAAAAAAAAAAAAAADYgAE/AAAAAAAAAAAAAAAAAAAAAAAAAABswIAfAAAAAAAAAAAAAAAAAAAAAAAAAAA28LM7AAAAAAAAAAAAAAAAAAAAAAB4gosXL2r58uXauHGj9u/fr1OnTikuLk6ZmZkqVqyYypUrp8aNG6tdu3bq27evQkND7Y4MAAAAL+fjcDgcdocAAAAAAAAAAAAAAAAAAAAAALusXbtW06ZN04oVK5SVlWVom4IFC6p///565ZVXFBYWZnJCAAAA5FUM+AEAAAAAAAAAAAAAAAAAAADIl86cOaNHHnlEy5cvz/U+ChQooKefflqTJk1SwYIF3ZgOAAAA+QEDfgAAAAAAAAAAAAAAAAAAAADynaVLl2rIkCGKjY11y/6aNm2qZcuWqVy5cm7ZHwAAAPIHX7sDAAAAAAAAAAAAAAAAAAAAAICVZs2apbvuusttw32StGPHDrVp00bHjh1z2z4BAACQ93EHPwAAAAAAAAAAAAAAAAAAAAD5xhdffKGhQ4fKrNOoq1atqi1btqh06dKm7B8AAAB5C3fwAwAAAAAAAAAAAAAAAAAAAJAvLFmyRA8++GCOw31BQUEaMmSIvv32W508eVKJiYlKSkrS0aNHNW/ePHXu3DnHNU6cOKFevXopLS3N3fEBAACQB3EHPwAAAAAAAAAAAAAAAAAAAAB53qlTp9SoUSPFxsZmW3PPPffonXfeUdmyZXPc15o1a/Twww/r5MmT2daMGzdO06ZNy21cAAAA5BMM+AEAAAAAAAAAAAAAAAAAAADI0zIzM9WpUydt2LDhuo/7+Pho+vTpeuyxxwzvMzo6Wj169NAff/yR7T7Dw8PVsWPHXGUGAABA/uBrdwAAAAAAAAAAAAAAAAAAAAAAMNOMGTOyHe6TpHfffdel4T5JKlWqlFasWKHatWtf93GHw6FHH31UmZmZLu0XAAAA+Qt38AMAAAAAAAAAAAAAAAAAAACQZyUkJKhatWqKjo6+7uP33HOPvv7661zvf//+/WrevLlSUlKu+/jMmTP1yCOP5Hr/AAAAyNu4gx8AAAAAAAAAAAAAAAAAAACAPOudd97JdrivRIkSmjlz5g3tv379+nrllVeyffyNN95QWlraDa0BAACAvIsBPwAAAAAAAAAAAAAAAAAAAAB5Umpqqt57771sH584caKKFy9+w+s8+eSTql69+nUfO3v2rL788ssbXgMAAAB5EwN+AAAAAAAAAAAAAAAAAAAAAPKkpUuX6tq1a9d9rGjRohoxYoRb1vH399eECROyffz99993yzoAAADIexjwAwAAAGyydu1a+fj4GP4C7MD3KQD8E++LAAAA8DTz5s0z1JvOnDnT7qjXderUKS1atEgvvvii7r77brVt21bVqlVTaGiogoODVaBAAcP99+eff2730wEAAAAAeKCcfl+89957VahQIbetdd9996l8+fLXfWzPnj3as2eP29byND169HD6u3twcLBOnjxpd1QAAACP42d3AAAAAAAAAAAAAACA665evaqnn37aaV2dOnU0cuRICxIZs3PnTn3xxRdavny5IiMj7Y4DAAAAAMjDYmNjtWrVqmwfd9fd+/7k7++voUOHavLkydd9/IsvvtDbb7/t1jU9xdSpU7Vq1SplZmZmW5OUlKTHHntMy5YtszAZAACA52PADwAAAAAAAAAAAAC80Pjx43X58mWnddOmTZOfn/1/Gl6xYoVeeeUVbdu2ze4oQJ4SFRWl/fv3KyIiQhERETp9+rQuXLigqKgoxcfHKyUlRampqfL391dQUJACAwMVGhqq8uXL66abblKVKlXUsGFDNWzYUNWqVeOO9AAAAMhT1q5dm+3AWZMmTdSoUSO3r5nTgN/SpUvz7IBf3bp1NXz4cM2aNSvHuuXLl+vHH39Unz59rAkGAADgBez/Kw4AAAAAAAAAAAAAwCUbN27UnDlznNZ17dpVd9xxhwWJsnfu3DmNGDFCP//8s605gLwgPT1df/zxh9atW6etW7dq+/btOnfunKFtU1JSlJKSIkm6cOGCDhw48K+a0NBQde7cWV27dlWPHj1UsWJFt+YHAAAArLZmzZpsH+vevbspa9asWVN16tTRoUOH/vXYsWPHdPToUdWsWdOUte32n//8R1999ZXi4+NzrBs7dqy6deumQoUKWZQMAADAszHgBwDA33Tq1Enr1q2zbf2CBQsqICBAAQEBKly4sEqVKqXSpUurbNmyCgsLU1hYmOrWrauwsDCungogX7Hq/dnf3/+v9+G/fxUpUkSlS5f+11eVKlVUu3ZthYaGmp4NAAAA2bP793l3e+CBB/T555/bHQMA4MGysrI0duxYORwOp7VvvPGGBYmyt2HDBvXp00dXrlyxNQfgzY4cOaKff/5ZK1as0MaNG5WYmGjaWlevXtV3332n7777Tj4+PurUqZMeeOABDRw4UIGBgaat620+//xzDRs2zO4YXqVjx45au3at3TEAAEA+lFMP0rlzZ9PW7dGjx3UH/CTp119/zbMDfqVLl9aTTz6pV199Nce6M2fOaMqUKU7rAAAA8gsG/AAA8CDp6elKT09XQkKCrly5olOnTl23rnjx4mrVqpU6d+6s3r17KywszOKkAJA3paWlKS0tzemV5P6vUqVKqXbt2qpdu7bq1q2rtm3bqnHjxvLz41cuAAAAAADgfp999pl27tzptK5fv35q1qyZBYmu75dfftGdd96p1NRU2zIA3sjhcGjbtm1avHixlixZomPHjtmWIzw8XOHh4Xr22Wf11FNPafTo0QoJCbElDwAAAOCqlJQUHTx48LqP+fv7q23btqat3aFDB02bNu26j23dulWPPPKIaWvbbdy4cZo5c6bTi/1MmzZNDz30kCpXrmxRMgAAAM/la3cAAADgumvXrmnFihUaP368atWqpXr16mnq1KlcARkAbBIdHa3ff/9dn376qZ588km1aNFCxYoVU9euXfXKK68oPDxcGRkZdscEAAAAAAB5QGxsrCZOnOi0rkCBApo0aZIFia5v37596t+/P8N9gAt2796tp59+WlWqVFGrVq309ttv2zbc939dvHhRzz77rKpXr6558+bZHQcAAAAw5NChQ8rMzLzuY82bN1dQUJBpa+c0PLht2zbT1vUERYoU0bPPPuu0Ljk5Wc8884wFiQAAADwfA34AAOQBBw8e1Pjx41WhQgWNHDlS586dszsSAOR7iYmJWrNmjf7zn//olltuUbly5TRixAj9+uuvDPsh1z7//HP5+PgY+qpSpYrdcYF/4XsYAADvw+c34Hlef/11Xbp0yWnd4MGDVadOHQsS/Vt6erruu+8+xcfH27I+4E1iY2M1bdo0NWzYUI0bN9bbb7+t06dP2x0rW9HR0Ro6dKg6duyokydP2h0HAAAAyNG+ffuyfaxevXqmrh0aGqqKFSte97GIiAilpKSYur7dHn30UZUpU8Zp3eLFi7Vp0yYLEgEAAHg2BvwAAMhDUlJS9Mknn6hmzZp68cUXlZaWZnckAMD/d/nyZX366afq1q2bypUrp8cff1wnTpywOxYAAAAAAPAiZ86c0QcffOC0ztfXVy+88IIFia7v7bff1t69e21bH/Amf/zxh5555pkcTzz2ROvXr1eTJk20bNkyu6MAAAAA2YqIiMj2serVq5u+fv369a/77w6HQ5GRkaavb6egoCCNGzfOUO348eNNTgMAAOD5/OwOAAAA3C85OVmvvfaafvzxR82fP18333yz3ZEAAH9z+fJlvf/++5o5c6buuusuPf3002rZsqXdsQAAAAAAgId78cUXDV3hf8CAAapVq5YFif4tPj5eU6dOzfX2xYoVU5MmTVS+fHkVLVpURYoUka+vsevWNmrUKNfrAnDdtWvX1Lt3b7355pt65pln7I4DAAAA/Mv58+ezfaxGjRqmr5/TGkePHjX9LoJ2Gz16tN58801duXIlx7qNGzdqyZIl6t27t0XJAAAAPA8DfgAA5GH79+9XmzZt9OWXX6pv3752xwEA/B+ZmZn69ttv9e2336pz586aPn26GjRoYHcsAAAAAADggfbt26f58+c7rfPx8dHEiRMtSHR9c+bM0dWrV13apnjx4nrwwQf10EMPqU6dOiYlA2AGh8Oh8ePHKy4uTpMmTbI7DgAAAPAPOQ34WXEHv0qVKmX72KlTp0xf326FCxfW448/rpdeeslp7fPPP6+ePXuqQIECFiQDAADwPMYudQgAALxWcnKy+vfvr1mzZtkdBQCQg/DwcDVp0kRPPPGEYmNj7Y4DAAAAAAA8zEsvvaSsrCyndbfffrutdwCYN2+eS/UdOnTQwYMHNW3aNIb7AC/22muv6Y033rA7BgAAAPAPFy5cyPaxChUqmL5+TmtER0ebvr4nGDNmjIKDg53WHTp0SAsWLLAgEQAAgGdiwA8AgHzA4XBozJgxWrhwod1RAAA5yMjI0PTp0xUWFqYffvjB7jgAAAAAAMBD7Nq1Sz/++KOh2meeecbcMDmIjIzUrl27DNfXq1dPv/zyi8qWLWtiKiB/CAwMVKtWrfTYY4/pgw8+0LJly7R//36dP39esbGxysjIUEpKiq5evaoDBw5oxYoVeuONN9SnTx+FhIS4JcMLL7ygb7/91i37AgAAwH99+OGH8vHxMfz19ttv2x35hmVkZKhJkyaGn7O/v7/27Nlz3X1du3Yt23UKFy5s1lP4S/HixbN97PLly6av7wlCQ0M1bNgwQ7WTJk1SZmamyYkAAAA8k5/dAQAA8GYNGzZUr1693LKvjIwMpaamKiEhQdHR0Tp37pyOHTummJgYt+w/KytLDzzwgGrXrq2bb77ZLfsEAE91o+/PKSkpSklJUWpqqlJSUhQXF6cLFy7owoULunjxotLT092Y9t8uXbqkvn37avz48Zo8ebIKFChg6noAAAAAAMCzvfLKK4bqmjZtqk6dOpmaJSerV692qX7OnDkKCAgwKQ2Qt/n5+ally5bq3r27brvtNjVu3Fh+fjmfAlKgQAEFBASoePHiqlu3rrp37y5JSk9P18qVK/Xhhx9q5cqVuc7kcDg0dOhQNW3aVFWrVs31fgAAAPA/rt6h/fDhwyYlsc5bb73l0sVjJk6cqEaNGl33seTk5Ov++5+9sdlyGvC7evWq6et7iieffFIfffSR0+G9I0eO6KuvvtKQIUMsSgYAAOA5GPADAOAGNG7cWK+99pqpa5w+fVpbtmzRypUrtWzZshu6elNaWpoGDx6sHTt2KCgoyI0pAcCzmPn+7HA4dPHiRe3fv/+vrx07dmjPnj1yOBxuXeutt97Stm3btHDhQpUpU8at+zaqU6dObn9eAODNeF8E8oYHHnhAn3/+ud0xAAAwZPfu3Vq6dKmh2ieeeMLcME6sW7fOcG3jxo3VokULE9MAeY+vr6/at2+vwYMHq3///goNDXXLfgsWLKhevXqpV69e2rZtm8aNG6cNGzbkal+JiYl68MEH9dtvv8nHx8ct+TzR0KFDNXToUFszuPr6zp071/bMAADAdfXr13epPiIiwqQk1jh8+LBeffVVw/VNmjTRhAkTsn08JSXluv9eqFAhl7PlRk7rpKamWpLBE1SrVk29evXSjz/+6LT2tdde03333SdfX1/zgwEAAHgQuh8AADxcpUqVNGDAAM2ZM0fnzp3TggULXL46198dOnRI7777rhsTAkD+4uPjo7Jly6pr16564oknNHv2bO3atUvR0dFatGiRRo4c6dZhvLVr16pNmzY6e/as2/YJAAAAAAC8x5tvvmmorlSpUrr77rtNTpOzvXv3Gq4dOHCgiUmAvKV8+fJ65ZVXdPr0aa1du1YjRoxw23Df/9WiRQutX79e7733ngoWLJirfaxdu1ZffPGFm5MBAADkTyVKlFDZsmUN13vzHfyysrL00EMPGR588/f317x583K8k3V2A37BwcG5yugqf3//bB/LTwN+kvTII48Yqjt69Kh++OEHk9MAAAB4Hgb8AADwIv7+/ho0aJD27t2r6dOn5/oufG+++aauXLni5nQAkL+VKFFCd999t2bNmqWzZ89q2bJl6t+/f44H7I06fvy4OnfurPPnz7shKQAAAAAA8BYnTpzQ4sWLDdUOHz5cAQEBJifKXkZGho4cOWK4vkmTJiamAfKGNm3aaNGiRTp16pRefvll3XTTTZas6+Pjo8cff1xr1qxR8eLFc7WP//znP0pPT3dzMgAAgPzJlbv4RUdH6+rVqyamMc8HH3ygTZs2Ga5/+eWXnb42Dofjuv+e24tZuCqnddLS0izJ4Cm6du2qsLAwQ7VvvfWWyWkAAAA8DwN+AAB4IV9fX40dO1br169X6dKlXd4+Li5Os2fPNiEZAECS/Pz81LNnTy1evFiRkZEaPXr0DQ/6HTt2TJ07d9aFCxfclBIAAAAAAHi6adOmKTMz02mdr6+vRo4caUGi7J0/f96lYZ6GDRuamAbwbl27dlV4eLg2btyou+++O8c7kpipffv2Wr16tYoVK+bytidOnND8+fPdHwoAACAfcmXAT5IiIiJMSmKeEydO6IUXXjBc37x5cz377LNO67IbsEtOTja81o3I6fdkd1ws2Jv4+Pho1KhRhmq3bdumtWvXmhsIAADAwzDgBwCAF2vWrJlWrlypwoULu7ztnDlzTEgEAPi/KlSooA8//FCRkZEaNGjQDe3ryJEjuuuuu7jyNQAAAAAA+UBMTIzmzZtnqLZr166qVKmSyYlyFhUVZbi2QIECKlOmjIlpAO90yy23aMuWLfr111/VqVMnu+NI+u/dNhctWqQCBQq4vC0XmwQAAHCPevXquVR/+PBhk5KYZ8SIEUpMTDRUGxAQoM8//9xQj5rdEJ1VA3453aUvICDAkgye5L777jN898T33nvP3DAAAAAehgE/AAC8XOPGjXN1QOPIkSPat2+f+wMBAK6rQoUKWrBggX744QeVLVs21/vZunWrxo8f78ZkAAAAAADAE82ZM8fwyY3Dhg0zOY1zly9fNlybm4vWAXlZo0aNtGLFCq1Zs0YtW7a0O86/3HrrrXr++edd3m7z5s06cuSICYkAAADyF1fv4OdtA36fffaZVq9ebbj+P//5j+rWrWuoNrvfP60a8EtNTc32scDAQEsyeJJSpUqpV69ehmqXLVumkydPmhsIAADAgzDgBwBAHvDQQw+pRYsWLm/322+/mZAGAJCTPn36aP/+/erQoUOu9/Hee+/pxx9/dF8oAAAAAADgUbKysjRz5kxDtcWKFdNdd91lciLnkpKSDNcy4Af8T+vWrbVz5051797d7ig5mjhxoqpXr+7ydkuXLjUhDQAAQP5Sr149+fj4GK6PiIgwMY17nT9/XuPGjTNc37JlSz399NOG60NDQ6/771lZWTkO37lLTExMto8VKlTI9PU90UMPPWSozpVjIwAAAHkBA34AAOQRzz33nMvbbNiwwYQkAABnSpQooV9++UX33ntvrvcxbNgwRUdHuzEVAAAAAADwFKtWrdLx48cN1fbv318BAQEmJ3LOlRMj/fz8TEwCeJfg4GD5+nr+qRsBAQGaOHGiy9utXbvW/WEAAADymZCQEFWqVMlwvTfdwW/06NGKjY01VBsYGKh58+apQIEChvdfsmTJbB+LiooyvJ/cyulu96VKlTJ9fU/UrVs3w899zpw5SklJMTkRAACAZ/D8o8QAAMCQHj16qGjRoi5t401X7AKAvCYgIEBffvmlhg8fnqvtY2JicnVCDQAAAAAA8HyzZ882XHvPPfeYmMS4jIwMuyMAMNngwYNVvHhxl7b5/fff5XA4TEoEAACQf9SvX99wbWRkpNLT001M4x4LFy506Y7Pr732mmrVquXSGuXLl8/2sTNnzri0r9y4cuVKto+VLVvW9PU9kZ+fn/r372+o9urVq/rhhx9MTgQAAOAZGPADACCP8Pf3V4cOHVza5tixYyalAQAY9dFHH6lHjx652nb27Nnas2ePmxMBAAAAAAA7RUdHa9myZYZqy5Ytq06dOpkbyCAGeIC8z9/fX3379nVpm7i4OJ0/f96kRAAAAPlHvXr1DNdmZGQYviu8XS5fvqyxY8carm/Tpo2efPJJl9epXLlyto+dPn3a5f256tSpU9k+VqZMGdPX91SDBg0yXPvZZ5+ZmAQAAMBzMOAHAEAe0qxZM5fqk5OTlZycbFIaAIARBQoU0DfffKOGDRu6vG1WVlau/ogBAAAAAAA81/z58w3faaFfv37y9eVPvgCs06VLF5e3OXr0qAlJAAAA8hdX7uAnSYcPHzYpiXs8/vjjio6ONlQbFBSkzz//PFe//1atWjXbx6y4g19kZGS2j1WoUMH09T1V+/btc7y74t/99ttvOnHihMmJAAAA7OdndwAAAOA+1apVc3mbhIQEBQUFmZDGfdLT07Vz505t27ZNkZGROnHihE6ePKmYmBglJiYqMTFR6enpCg4O/uvrpptuUtWqVVWtWjXVr19fbdu2VenSpe1+Kh7jwoUL2rBhg/bv36/9+/fr6NGjio2NVXx8vOLj4+Xn56dChQopJCREFSpUUNWqVVWrVi21adNGLVu2VHBwsN1Pwe3S0tK0YcMGbdu2TYcOHdKhQ4d06dIlxcXFKT4+XgULFlRISIhCQkJUvHhx1apVS3Xr1lW9evXUvn17hYaG2v0U4MWCg4M1f/58NW/eXGlpaS5tGx4ervXr17t8F9f8ICsrSwcOHNDevXsVERGho0eP6sKFC7p06ZKuXLmilJQUpaamKj09XQEBASpUqNA/vv58D6xSpYoqV66sKlWq/PXl7+9v99PL9+gP3C8qKkqbNm1SRESEjhw5oiNHjujy5ctKSEhQQkKCEhMTVbBgQZUsWVKVKlVSWFiYbr75ZvXr1y9f/wEyL+Dnyb3otZFXpKen6/Dhwzpw4ICOHz+u48eP68yZM4qOjtbly5cVFxentLQ0paamys/PT0FBQQoMDFRISIjKly+vChUqqGLFiqpfv76aNGmiWrVqqUCBAnY/LdscPXpU27Zt07Fjx3Ty5EmdOnVK586dU2JiopKSkpSUlKT09HT5+/srICBARYsWVcmSJVWmTJm/3m/r1q2rm2++WeXKlbP76eRbfGa6Hz3o9c2fP99wbe/evU1MgpzwnuBevB94j+bNm7u8jRV3RgFykpKSoj/++EO7du3SiRMndPz4cZ08eVKxsbF/vWenpaUpKChIhQoVUuHChXXTTTepWrVqqlatmho3bqy2bdvytyAvwHEZ5/h5yB7HQsxFv3fjXB3wi4iIMCnJjVu+fLm+/vprw/WTJ09WzZo1c7VWTq/boUOHcrVPV+Q04Fe3bl3T1/dUPj4+6tWrlz7++GOntQ6HQ19//bVeeOEFC5IBAADYhwE/AADykOLFi7u8jauDJFY5f/68Fi1apKVLl2rr1q1KSkpyuk1cXJzi4uIkSceOHdO6dev+8XitWrXUpUsXDRo0SO3atZOPj48p2T3V6dOn9eWXX2rp0qXatm2bHA5HtrUZGRlKSUnR1atXderUKW3cuPGvx/z8/NS1a1cNHDhQ/fv3V+HCha2Ib4rMzEwtW7ZMn3/+udasWaOEhIRsazMyMpScnKxLly5JkrZv3/7XYwUKFFCbNm3Uq1cv3XfffZxsiVxp2LChXnrpJU2cONHlbT/44AMG/P6/c+fOacmSJVq+fLk2bdqk2NhYQ9v9eVfbK1euOK319/dX48aN1apVq7++qlSpcoPJYQT9gfv98ccfWrx4sX755Rft2bPHaX1mZqbOnj2rs2fPatOmTZKkokWLaujQoSYnhbvx8+Re9NrIC06dOqUNGzZo48aN2rx5sw4ePGj4mEFaWprS0tIUGxurixcv6tixY/+qKVSokDp27Kg77rhDPXr0yPHK2XnB+fPn9cMPP2jFihXasmWLoT5T+u+JlikpKYqNjc32RPjy5curQ4cO6tixo7p3704vajI+M92PHjRnERER2r17t6HaokWLqlOnTqbmwT/xnuBevB94p8qVK6tAgQLKzMw0vE18fLyJiYDr27t3rxYtWqQ1a9Zo586dhn6/+XPI5NKlSzp+/Lh+//33vx7z8fFRnTp11KtXLw0ePFgNGzY0Mz5cwHEZ5/h5uD6OhZiPfs+96tSp41If5ql38IuLi9OoUaMM17dv316PP/54rtfLacBv27Ztud6vEWlpaTp48OB1HytZsqRKlSpl6vqerk+fPoYG/CRpwYIFDPgBAIC8zwEAAP7SsWNHhyTDXw888IDdkf9h9erVLuWX5IiLi7M79l+ysrIcP/74o6Nz584OX19fl5+LK18VKlRwvPjii47Lly/b/bT/4YEHHnD799/evXsd999/v8PPz8/tr2NoaKjjlVdecVy7ds3U18XdUlJSHFOnTnVUrFjR7a9JQECA46GHHnIcOnTIaY7w8HCX9p2fefv7s1EZGRmOsLAwl7/v/Pz8HGfOnDElkzd8n2ZkZDh++OEHR9euXR0+Pj6mfn5k93XTTTc5Hn30Uce6descmZmZuX4urnwO2P1lFfoD9/cHqampji+++MLRokULt7xuc+fOzVVWu79yyxveF7OT33+e6LXztvzSL7pTSkqK46effnI8+uijuepBb/SrU6dOjkWLFjnS0tLsfincJjk52fHJJ584WrdubWlf2qBBA8fLL7/sOHbsWK5y54fPb1fl989Mh8O7etC85pVXXjH8OgwcOND0PCdOnLD9Z9/u74f8/p7A+wGup3jx4i79d5oyZYrdkfMkfl7+7dq1a4433njDUadOHdM/f+rVq+f47LPP8tTvNGbiuIz1+Hn4N46FXB/9nndx5Xu3devWdse9ruHDhxt+DoUKFcr1Ma+/y+518/X1dcTGxrrhWV3fjh07sn1uHTt2NG1db5GamuoICQkx/P2wZ88euyMDAACYylcAACDPSElJcam+QIECCgkJMSmNaxYvXqxGjRqpT58+Cg8PV1ZWlqnrnT17VpMmTVLlypX19NNP6/Lly6auZ4eYmBiNGDFCjRo10vz585WRkeH2Na5evapXXnlFtWvX1uLFi92+fzN89913qlOnjp555hmdOXPG7ftPTU3VZ599pnr16mncuHGGruIN/KlAgQJ6+eWXXd4uIyNDH330kQmJPN8PP/yg+vXr66677tLq1atzvDKvmc6dO6cZM2aoY8eOqlChgh577DGdOnXKlix5Cf2B+/36669q0KCBhgwZYvpVSeFZ+HlyL3pteKvU1FR9//33Gjx4sEqVKqUePXpoxowZOnLkiOVZ1q5dqwEDBqhmzZr68ssvbevj3OHKlSt6+eWXValSJY0YMUKbN2+29Pns27dP//nPf1SjRg21b99eCxcuVHp6umXr5zV8ZrofPahrXPncv/XWW01MAon3BHfj/SDvCA4OdqnejN+ZgL+LiorS+PHjValSJT3//PM6dOiQ6WseOHBADz30kKpXr65PPvnEq3+n8TYcl8kZPw//xLEQa9Hvma9evXqGayMiIkxMkjvh4eGaPXu24fopU6aoevXqN7xu27Ztr/vvWVlZ2r59+w3vPzs5/Rw0b97ctHW9hb+/vzp27Gi4ftGiRSamAQAAsB8DfgAA5CExMTEu1RctWtScIC44fvy4br31Vg0YMED79u2zfP3ExES9/fbbqlOnjubPn2/5+mZZsmSJ6tatq08//dSSPwxcvHhRAwYM0JAhQ5Sammr6erkRHx+vwYMHq3///jpx4oTp62VlZemdd95Rw4YNtWnTJtPXQ94xaNAg1a1b1+Xt5s2bZ0Iaz3Xu3Dl1795dffv21eHDh+2O8w8XLlzQjBkztHnzZrujeC36A/eLiYnRwIED1a1bN1tOXIB9+HlyP3pteKOIiAiNGjVK5cqVU79+/bRgwQLFx8fbHUuSdOrUKd1///1q1qyZLe9TNyIzM1MzZsxQzZo19eqrryo6OtruSNqwYYPuuecel072wn/xmel+9KCui4yM1IEDBwzXd+7c2cQ0+RvvCe7F+0Hek5CQ4FK9qwOBgFGZmZl67733FBYWpqlTp9rye86ZM2c0cuRItWvXzqXPceQOx2Wyx8/DP3EsxFr0e9apX7++4dqrV696xPGqPyUlJWn48OGG3787deqkRx991C1rd+jQIdvH1qxZ45Y1rmflypXZPubKYFte5sqxjSVLlpiYBAAAwH4M+AEAkIe4OrRUrlw5k5IYM2vWLNWvX1+rV6+2NYckXb58WUOGDNHtt9+uK1eu2B3nhrz66qu66667dOHCBcvXnj9/vjp37qxr165ZvnZO9u/fryZNmmjBggWWrx0ZGalbbrmFK4nBMF9fX40bN87l7c6dO6edO3eakMjzrF69Wg0aNNCqVavsjgIT0B+435EjR9SyZUs+i/Ihfp7cj14b3mrx4sX6+OOPPfr7Z+fOnWrRooVmzJhhdxRDdu3apZtvvlmPPfaYR76uly5dsjuCV+Ez0/3oQXPHlRPVKlWqpGrVqpmYJv/iPcG9eD/Ie7KyshQXF+fSNiEhISalQX62d+9eNW/eXE8++aRHDO1s2rRJTZo00ccff2x3lDyL4zLZ4+fh3zgWYh36PWu5MuAnyaMulDpx4kRFRkYaqi1cuLDmzJkjHx8ft6zdvXv3bPf13XffuWWN/ys9PV2//fbbdR/z9fVVu3btTFnX27gy4Ld//35LLugNAABgFwb8AADIQ7Zv3+5SfbNmzUxKkrP09HSNGjVKo0ePVnJysi0ZsrNy5Uq1aNFC+/fvtzuKy9LS0nTPPffo5ZdftuSKldnZvHmz7rjjDiUmJtqW4e+2bNmiDh066NixY7ZlSE1N1aBBgzR9+nTbMsC7DBgwIFdXtV62bJkJaTzLvHnzdPvtt3v0H2SRO/QH5li/fr1atmzJFXPzGX6e3I9eG7BGSkqKHnvsMY0ePVpZWVl2x8nWhx9+qNatW3vdexn+jc9Mc9CD5p4rv9d36tTJvCD5FO8J7sf7Qd50/Phxl3s1uy84ibxn/vz5atWqlXbt2mV3lH9IS0vTqFGjNGLECKWlpdkdJ8/guEzO+Hnwbt5yLCQ79HvWc3XALyIiwqQkrtmyZYtL50u89dZbqlq1qtvWL1u2bLbnSEVERJhyN82lS5dmO3TdrFkzFStWzO1reqNGjRqpePHihuuXLl1qYhoAAAB7MeAHAEAekZGRod9//92lbVq0aGFSmuwlJSXptttu8+irVx4/flytW7fO9kpanigzM1ODBw/WwoUL7Y4i6b8HZwcMGGDrH9kkae3ateratatHDAI5HA498cQTmj9/vt1R4AUKFy6s/v37u7xdXh/w++677/Tggw8qIyPD7ihwM/oDc+zZs0e9evVSTEyM3VFgIX6e3I9eG7DerFmzdM899ygzM9PuKP+Qnp6ue++9V2PGjFFqaqrdcXCD+Mw0Bz1o7iUmJmrjxo2G6xnwcy/eE9yP94O8a+fOnS5vU7NmTROSID/KysrS2LFjNWTIEI8bxv67Tz/9VP3792eoyQ04LpM9fh7yFk89FpIT+j17hIWFyd/f33C9J9zBLy0tTQ899JDhIdYuXbpo1KhRbs/Rr1+/bB/79ttv3b5eTr9fDho0yO3reStfX1916NDBcP2qVatMTAMAAGAvBvwAAMgjVq5cqatXr7q0jdUDfsnJyerVq5fCw8MtXTc3EhIS1KtXL61fv97uKIaMGDFC3333nd0x/uHnn3/WtGnTbFt///796tOnj8ddRfPhhx92eRgX+dN9993n8jY7d+5UVFSUCWnst2fPHt17771eefVS5Iz+wBwnT57U7bffrri4OLujwEL8PJmDXhuwx6JFi/Tkk0/aHeMvycnJuvPOO/X111/bHQVuwGemOehBb8y6deuUnp5uuL5z584mpslfeE9wP94P8rYNGza4VF+wYEG33n0F+VdmZqaGDh2qDz74wO4ohixbtkx33303Q003iOMy18fPQ97kacdCckK/Zx8/Pz/VqlXLcL0nDPi99tprOnjwoKHakJAQffbZZ/Lx8XF7jnvvvVe+vtc/ZXrOnDluvcjs/v37tXr16us+5uvry4Df/+HKMY7169fzeQIAAPIsP7sDAAAA93jrrbdcqq9WrZqaNm1qUpp/y8zMVN++fd12deFKlSqpTp06qlixokJCQuTv76/4+Hhdu3ZNEREROnz4sJKSkm5ojaSkJPXo0UNr1qyx5W6HRk2aNElz5sxxaZtChQopLCxM1apVU+nSpRUcHKyCBQsqMTFR0dHROn78uPbu3auUlJQbyvbCCy+oR48eqlu37g3tx1VRUVHq0aOHYmNjb3hfRYsWVZ06dVSzZk0VLVpUhQsXVnJysuLi4nTixAkdOnRIFy9eNLy/tLQ09e3bV/v377/hbMjb2rVrp8DAQJd+Dh0Oh7Zt26Y777zTxGTWS01N1b333uuWu6T4+/uratWqqlSpkkqVKqXixYsrMDBQ/v7+yszMVGpqqpKTk3XlyhVdunRJFy5c0MmTJ7lroEnoD8yRkZGh/v3768KFCy5tFxgYqJo1a6p69eoqU6aMgoOD5e/vr4SEBMXHx+vkyZM6cOCALl++bFJy3Ah+nsxBrw38V4kSJVSxYkWVKVNGZcuWVXBwsAIDAxUQEKC0tDSlpqbq8uXLunjxoiIjI3X69Gm3rPvBBx+ofv36GjFihFv2l1uJiYnq3r27yyez5yQoKEhVq1ZVtWrVVLZsWRUqVEiFChVSRkaGkpOTFRsbq3PnzuncuXM6fvw4/agb8ZlpDnrQG7dmzRrDtZUrV1aVKlXMC5OP8J7gfrwf5G0Oh0M//vijS9s0a9ZMfn6cmoIbk5mZqfvvv18LFixwy/6CgoJUq1YtVaxYUeXKlVOhQoUUFBSklJQUxcfH69SpUzp69KhOnjx5Q+ssXbpUo0eP1meffeaW3PkNx2Wuj58Ha+T3YyE5od+zX7169bRv3z5DtRERESanydnevXs1ZcoUw/XTpk1T5cqVTclSoUIFdenSRb/++uu/Hjt79qy+/vprDRkyxC1rjR8/Ptu7vXbr1k3lypVzyzp5hSsDfomJidq8+f+1d9/hUVRtH8d/6SSETkKRXgwlgqggvQVpClJUBFRUEAuiKIKKFRuooIiioiIgKF1RlN6kSG8CUqX3XgIhdd8/fG2PJJnZndnZ3Xw/18V1PY9znzk3YWfm5Ozc56xQo0aNbMwIAADAGcyiAgAQACZMmGB6R7Du3bvbsuJVZp577jnNnj3b7fZBQUFKSEhQ165d1aJFi2wnu9LS0rR8+XLNmDFDY8aM0enTp93qNzExUR07dtS6desUGxvr1jns9PPPP2vgwIGGYqtUqaK7775bLVq0UI0aNRQWFpZlfEpKipYvX64JEyZo/PjxSkpKMp1famqqnn76aY/+7c3KyMhQ586dPfoSpXjx4urevbtuu+021axZM9trZfv27Zo5c6ZGjRplaOW5U6dOqVevXnr88cfdzhGBL1euXGrQoMFVv2DIyrp16wKuwO/DDz/U1q1b3WqbK1cu3XLLLWrVqpUaNGigSpUqmX6hKDU1VXv37tWmTZu0du1arVq1SitWrGBlQAswPrDHm2++qXXr1hmKLVeunLp06aKWLVuqZs2aCg8Pz7bN3r179cMPP2jSpElasWKFp+nCIlxP1mOsjZyqbNmyqlOnjurUqaPq1aurcuXKKly4sKlzXLx4UatWrdLixYv17bffatu2bW7n06dPHzVt2lQVKlRw+xyeyMjIUJcuXTwu7gsODlbDhg3Vrl071a9fX9dff71CQkIMtU1JSdG2bdu0evVqLV26VIsXL9bBgwc9yicn45lpD8agnlu8eLHh2BtuuMG+RHIY7gnW434Q2FauXGl6HNK4cWN7kkGO8vTTT3tUzBQcHKxGjRqpTZs2SkhIUJUqVQzNEx89elQLFy7UhAkTNGfOHLcW3vjyyy9144036rHHHnMn9RyLeZnMcT1Yj7kQcxjvOS8+Pt5w7N69e5WSkmLoZ2+19PR0Pfjgg4Z3q2/evLntxa29e/fO9Pv3AQMGqEOHDoqOjvaoj5kzZ2rWrFmZHn/hhRc8On8gqlq1qiIiIgwv+Lto0SIK/AAAQGByAQCAvzRq1MglyfCfbt26OZ2ya9u2ba4CBQqYyjs0NNR15MgRr+U4depUU/n975+OHTu6tm/f7nb/SUlJrhEjRrgKFSrkdg5NmjRxpaWlWfhTubpu3boZzql169au4sWLZxuXkJDgWrhwoUd5HT161NW9e3e3f35z58616CeUvcGDB7udZ/HixV1jxoxxpaamut3/3LlzXdWqVTPUX69evUzll5P54/3ZCu+8847pz/Gtt95qaQ6LFi1y9HN68eJFV8GCBU3/HAoVKuR6++23XWfOnLE8J5fL5bp06ZJr5syZrkcffdQVGxt71RwmTJhgeb+jR482/DMoXbq05f1bifGBcWbGBzfccIMrLCws27hatWq5fvrpJ49zW7x4sWvlypWG4wPhM+z0ffFquJ6MYawd2HLqeNGo119/PdOfRUhIiOuWW25xffDBB67du3fb0v+aNWtcd999tyskJMStz3njxo1dGRkZtuSWnT59+nh0jy1QoIDr5ZdftnweZv369a5XXnnFVaFChav2my9fPsv6CoTn9594ZhoXSGNQf5CYmOgKDQ01/DN/+eWXnU75qvztfsE9wRjuB/inu+++2/TndNGiRU6nHbDM/luMHj3a6ZTd8vnnn7t9n4yOjnY9++yzrr1793qcx549e1w9evRwBQcHm84jLCzMtWbNGs9/GH6MeRlrcD0Yx1yIcYz3/M/06dNNfZ62bNniSJ5m3t3Ily+f68CBA7bnlJ6enul8miRXz549PTr/sWPHMv3u+M9nF66uRo0ahj8vzZs3dzpdAAAAW+Tst4QBAPgf/vZC4JYtW1wlSpQwPRncr18/r+V47NgxV/78+d2atC5WrJhr3rx5luVy+vRp11133eVWLpJcgwYNsiyXzJiZPDfy85s6daql+U2fPt0VFRVlOpcWLVpYmkdmfv31V0NfKFztz4MPPui6ePGiJXmkpaW5Bg0alO0XNkFBQaZyzMn87f5slcWLF7t17VvJ6UIWd76s7tSpk22FfVeTlpbmmjdvnuvOO+/81z2IAr/MMT4wx8rxQd68eV2fffaZ7TlnJhA+w07fF/8X15NxjLUDW04dLxp1tZfaqlev7nr//fddx44d81oemzZtctWvX9+t627y5Mley/NP33zzjdv3idDQUFe/fv1cFy5csD3PJUuWuO69995/jUUp8PsvnpnmBNIY1B+YHWNaPQ6xij/dL7gnGMf9AH86cOCAqWJkSa4SJUq40tPTnU49YJm9Bv2xwG/VqlWu8PBwt+45PXr0cB0/ftyWnKpUqWI6n+rVq3u0wKS/Y17Gc1wP5jAXYhzjPf+ze/duU/8u06ZN83qOO3bscOXKlctwjqNGjfJabl999VWWuYwcOdKt816+fNnVuHHjTM8bHBzsWrVqlcV/m8Bh5l6UL18+fs8AAAABKVgAAMDvuFwuffnll6pTp44OHTpkqm358uU1cOBAmzL7r6eeekrnzp0z3a5u3brasGGDmjVrZlkuBQsW1KRJk/Tee+8pKCjIdPvXXntNe/futSwfOzVo0EAbNmxQx44dLT3v7bffrrlz5yoyMtJUu7lz52rbtm2W5nI1ffr0UWpqqqk2wcHBGjlypEaNGqXo6GhL8ggJCdFzzz2n+fPnK1++fJnGuVwuS/pD4LruuutMtzl69KhOnDhhQzbOGDt2rKn4Z599VhMnTlSBAgVsyui/QkJC1KxZM02ePFkHDx7UCy+8oPz583utf3/E+MAZ1157rdatW6eHHnrI6VRgIa4n78upY20EhuDgYLVr106LFi3Sxo0b1adPHxUpUsRr/VerVk0///yzXn31VdP3iddff92rv0MdPXpUjz/+uFtt4+LitGbNGr3zzjvKkyePxZn9V4MGDfTVV19p79696t+/v3Lnzm17n/6IZ6YzGIMas3LlSlPx1apVsymTnIN7gvdxP/B/L730ktLS0ky16dy5s4KDeS0F7klOTtb999+vlJQUU+1iYmI0a9Ysff7554qNjbU8r1q1amnVqlVq3769qXabNm3Su+++a3k+OU1OnZfhenAfcyHew3jPe8qVK6eoqCjD8du3b7cxm/9yuVzq0aOHrly5Yii+VatWevDBB23O6m/33HOPrr/++kyPP/roo/r0009NnTMpKUlt27bV4sWLM4155plnVKtWLVPnzUnMzHWcP39ev/32m43ZAAAAOIOZVAAA/EhaWpq+++471axZU927d9fFixdNtQ8LC9OoUaNMfzHhrvnz52vChAmm2zVu3Fhz5861bWL9qaee0qhRo0x/qZyUlKRevXrZkpOV2rRpo/nz59v286tXr55Gjx5tqo3L5dLXX39tSz5/mj59uhYuXGiqTUhIiL766iv17NnTlpwaN26sefPmUegDtxUsWFDFixc33W7//v02ZON9Fy5c0IoVKwzHt2vXToMHD7Yxo+wVKVJEb7zxhvbv368GDRo4mouvYnzgjOrVq2vFihWqUKGC06nAQlxP3pdTx9rwf8HBwerYsaN+/fVXfffdd2rcuLGjubzyyisaM2aMQkJCDLfbvHmzvv/+exsz+7cePXrozJkzptu1atVKq1atyvIlIbtcc801evvtt7Vnzx49+eSTXu/fl/HMdAZjUOPWr19vODYqKkrly5e3MZvAxz3B+7gf+L9169bpq6++MtUmNDRUjz76qE0ZIScYOHCg6cKpSpUqadWqVWrZsqVNWf0hOjpaU6dO1T333GOq3VtvvaVTp07ZlFXgy8nzMlwP5jEX4l2M97wrKChIlStXNhy/Y8cOG7P5r48//lhLly41FJs/f359/vnnNmf0b0FBQRo5cqTCwsKuejwjI0OPPvqo7rnnHp08eTLb8y1dulQ1atTQ/PnzM42pWrWqXnvtNbdzzgnMLmZkZi4FAADAX1DgBwCAjzty5Ii+/fZbPfLIIypZsqQ6dOigdevWmT5PaGioJk+erEaNGtmQ5dUNGDDAdJvrrrtOM2bMsH21+QceeEDvvPOO6XazZs3SsmXLbMjIGgkJCZo6darCw8Nt7adTp07q0qWLqTZTp061KZs/vjx77rnnTLd7++231bVrVxsy+lvNmjU1bdo0hYaG2toPApc7u/iZ3d3VVy1fvlzp6emGYsPDw/XRRx/ZnJFxefPm1TXXXON0Gj6J8YH3lSlTRrNnz1bBggWdTgUW43ryrpw61kZg6Nu3r6ZOnaqqVas6ncpf7rvvPg0bNsxUG2+97PPjjz9q5syZptu1a9dOP/zwQ5Y7uXtDbGysBg4c6GgOvoZnpvcxBjVn06ZNhmOrVq3Kblge4p7gXdwP/F9GRoZ69+5tegehLl26qGzZsjZlhUC3bds207t7xcXF6eeff/ba5y44OFhjx45V69atDbdJTEzUkCFDbMwqcOXkeRmuB/cwF+I9jPecER8fbzjWmzv47d+/39S7G8OGDXPkO9VatWrp9ddfzzLm66+/VunSpfXwww/r+++/16FDh5ScnKxz585p69at+uKLL5SQkKBGjRplWURZsGBBTZ06VREREVb/NQKK2QI/M3MpAAAA/oK3jAEA8MCGDRv04osvWnKu9PR0paSkKDExUSdPntThw4e1e/dut1aL/18REREaP3682rVr53miBs2ZM0dr1qwx1aZAgQL64YcfFB0dbVNW/9a3b19t3LhR48ePN9Xu9ddf15w5c2zKyn1ly5bV5MmTbf9i60+DBw/Wt99+qytXrhiK37Fjh3bs2KG4uDjLc/nhhx9MrzrXqVMn9e3b1/JcrqZp06Z655139PTTT3ulPwSWUqVKmW5z8OBBGzLxvq1btxqO7dChAwV1foDxgfeFhYVpypQpKlq0qNOpwGJcT96Vk8fagWrs2LEaO3as02n85fbbb9f06dNtO7+vvjzy+OOP65dffjG8i9KcOXN0/Phx23ZrkP54gd2dwo+EhARNmjSJxV18EM9M72MMas7ly5e1e/duw/HuLASEv3FP8C7uB4Fh6NChWrFihak2ISEhev75523KCDnByy+/rLS0NMPxMTExmjdvnmJjY23M6r+Cg4P1zTff6MYbb9Tvv/9uqM2IESPUv39/CmFMyOnzMlwP7mEuxDsY7znHTIGfN3fwe/jhh5WYmGgotk2bNurWrZvNGWWuf//+2rZtW5bzxElJSfrss8/02WefudVHZGSkZsyYoUqVKrmbZo4RGxurIkWK6Pjx44biN27caG9CAAAADuCbZgAAPPDrr7/q119/dTqNLNWsWVNjxoxRlSpVvNrvW2+9ZbrNsGHDVKZMGeuTycKIESO0ePFiU7tdzZ07V2vXrtVNN91kY2bmBAUFaezYsV79MrBkyZLq1q2bRo4cabjNkiVLbPlyy+zqjrGxsfr4448tzyMrffr00bfffuuzK2nDdxUrVsx0m0DZwc/MC44tW7a0MRNYhfGB97388ss+lxOswfXkPTl9rA3Ybfjw4Zo1a5bOnTuXbWx6eromTZqkJ554wrZ8vv76a23evNlUm5IlS2rixIlee9kU5vDM9D7GoOZs375dGRkZhuNLly5tYzaBj3uCd3E/8H+//fabXnrpJdPtevXqxUvMcNvGjRs1bdo0w/HBwcGaMGGCSpYsaWNWmcuXL59GjRqlJk2aGNrpMjExUePGjdOTTz7phez8X06fl+F6CEy+NhfiCcZ7zjFT4Hf+/HkdO3bM9kLMMWPGGF50pGDBgqbus3YICgrSqFGjdOXKFU2aNMny8+fKlUuTJ09W3bp1LT93oCpdurThAr/ffvvN5mwAAAC8L9jpBAAAgD2uueYaDRkyRCtWrPB6cd+OHTu0ZMkSU22aN2+u++67z6aMMpc3b163Cr3cXZ3LLj169FCDBg283u8jjzxiKt6O4rZff/3V9HmHDh3q9ZVRg4KC9Pnnn7ObA0zLyQV+J0+eNBxbtWpVGzOBFRgfeF+ZMmXUr18/p9OADbievCsnj7UBbyhcuLCpF/nmzZtnYzZ//L5oRlBQkL755hsVLlzYpozgCZ6Z3scY1Lxdu3aZimf3evdxT/Au7gf+LykpSZ07d1ZycrKpdrGxsRo4cKBNWSEnePPNNw0VBv3p0UcfVUJCgo0ZZa9Ro0bq0qWL4fjRo0fbmE1gyenzMlwPgcnX5kLcxXjPWWYK/KQ/Fpex07Fjx/T0008bjh8+fLhb34NbLSQkRBMmTNArr7yioKAgy85bpEgRzZs3T7fddptl58wJzMx5HDt2zPBukQAAAP6CAj8AAAJIWFiYmjZtqilTpmjfvn3q27evQkJCvJ7HV199ZSo+KChI77zzjk3ZZK9NmzZq2LChqTaTJ0/WlStXbMrInIiICL3yyiuO9H399derfPnyhuPXrl1reQ4TJkwwFR8fH2/qSyUrVapUSd26dXOkb/iv4sWLm25z4cIFGzLxPjMT8vnz57cvEViC8YH3DRw4UBEREU6nARtwPXlPTh9rA97yyCOPKDjY2NcVP//8s9LS0mzJY+XKldq0aZOpNt27d1f9+vVtyQee45npfYxBzTNb4FeiRAmbMgl83BO8i/uB/3vsscf066+/mm737rvvMlcHt504cULff/+94fjChQvrzTfftDEj41555RXD38tu2rRJGzZssDkj/5fT52W4HgKbr8yFeILxnrNKlCihfPnyGY63u8CvV69eOnv2rKHYdu3aqWvXrrbmY0ZQUJBeffVVzZ0715JdqO+44w5t2rSJOUM3mJ3zMDunAgAA4Oso8AMAwM+FhITonnvu0aJFi3T+/HktWLBAd9xxh2O7hLlcLo0fP95UmzvuuEPVq1e3KSNj3njjDVPx58+fN/WFip3uu+8+R1fuvvXWWw3H7t692/IvHyZOnGgq/sUXXzT8ZYkdXnrpJUcKb+G/8ubNa7pNUlKSDZl4n5n7xcWLF23MBJ5ifOB9xYoV09133+10GrAB15N35fSxNuAtRYsWVaNGjQzFXrx4UevXr7clj08//dRUfHR0tAYPHmxLLvAcz0zvYwzqnj179piKZwc/93BP8C7uB/5v1KhRGjNmjOl2bdu2dWTXSwSOMWPGKDU11XB83759TRU32KlixYpq3bq14fgff/zRxmwCQ06fl+F6CGy+MhfiLsZ7vqFq1aqGY3fs2GFbHlOnTtW3335rKLZQoUKm5+C8pVmzZtq8ebNGjBih6667zlTb4OBg3XrrrVqyZImmTJmiIkWK2JRlYDP73P/9999tygQAAMAZFPgBAODn0tPTNX78eHXp0kVPPPGE5s2bp/T0dMfy2bBhgw4cOGCqTe/evW3KxrgGDRqoRo0aptpMnz7dnmRM6tGjh6P916lTx3BsSkqK6ZeWsrJu3Trt27fPcHyRIkXUoUMHy/p3R+nSpdWqVStHc4B/yZUrl+k2vrJSu6ciIyMNx5p99sC7GB9434MPPqjw8HCn04ANuJ68KyePtQFva9KkieFYs7vsGZGSkmL4RaQ/PfLIIypUqJDlucAaPDO9jzGoew4dOmQqngI/93BP8C7uB/5txYoV6tWrl+l2hQsX1meffWZDRshJvvzyS8Ox0dHRbn1W7dS9e3fDsXPmzLExk8CQ0+dluB4Cn9NzIZ5gvOcb4uPjDcfatYPfmTNn9PjjjxuO/+ijj3y6+C00NPSvnazXrVunwYMHq0OHDoqLi1NMTIzCw8MVHh6uQoUKqUaNGrrnnns0cuRIHT58WD/++KMaNGjg9F/Br5ndwe/w4cM2ZQIAAOAMCvwAAAgQR48e1RdffKHmzZurbNmyGjRokM6dO+f1PObNm2cqvkqVKj4zwfXoo4+ail+4cKFcLpdN2RhToUIF1apVy9EcbrrpJlPxe/futazv+fPnm4q///77FRYWZln/7urZs6fTKcCPuFPgFyg7+Jl5Wfqnn36yMRN4ivGB9911111OpwCbcD15T04fawPeVrNmTcOxW7Zssbz/n3/+2dSu0KGhoXr66actzwPW4ZnpfYxB3WPmZbSoqCgVKFDAxmwCF/cE7+J+4L/27dundu3aKTk52XTbzz77zKdf1obv27Vrl6ndhe68807lyZPHxozMu+WWWxQREWEodtWqVbpw4YLNGfmvnD4vw/WQMzg9F+IJxnu+wRcK/Pr06aPjx48bir3jjjv8aufHG264Qc8++6ymTZum7du368SJE0pOTlZycrJOnTql9evXa9y4cerZs6eKFi3qdLoBweyiRhT4AQCAQEOBHwAAAejgwYMaMGDAX4V+7nwR6y6zBVe+NPHbsWNHhYaGGo4/ceKEfv31Vxszyl7Lli0d7V+SypYta6pozujkrhGLFi0yFe/07n1/at68uaKjo51OA34iJxf4lSpVynDslClTdOLECRuzgScYH3hX2bJlVa1aNUdzgH24nrwnp4+1AW8rX7684Vg7Xmr78ccfTcU3b95cxYoVszwPWIdnpncxBnXf0aNHDccWL17cxkwCG/cE7+F+4L8uXLigNm3auDXH1qdPH7Vv396GrJCTzJw501R8ly5dbMrEfVFRUYYLxNPS0rRu3TqbM/JfOX1ehushZ3B6LsRdjPd8h5kCvwMHDujKlSuW9j979myNGzfOUGxMTIw+/vhjS/tH4KHADwAA5HQU+AEAEMDOnTunAQMG6Prrr9cvv/xie3/p6elavny5qTa+9IVvwYIFTa/KvHjxYnuSMahJkyaO9i9JISEhpopwrCrASUtL07JlywzHFytWzNQqiHaKiIjwiS8m4R/Cw8NNt0lJSbEhE++rWrWq4dhz587psccec3yFevwX4wPva9SokaP9wz5cT96Vk8fagBNiY2MNx+7fv9/y/ufMmWMq/p577rE8B1iHZ6b3MQZ1T3p6us6ePWs43td2ZfEX3BO8i/uBf0pLS1OnTp3cKh6oW7eu3nnnHRuyQk4za9Ysw7G5c+dWw4YNbczGfWZ2fdu4caN9ifi5nD4vw/WQMzg9F+Iuxnu+w8x3qRkZGdq5c6dlfV+8eFEPP/yw4fgRI0YoJibGsv4RmMzOe5w6dcqmTAAAAJxBgR8AADnA9u3b1ahRIw0dOtTWfnbs2GFq16jY2FifW9nNbNHVpk2bbMrEmBo1ajja/5/MfPlw+vRpS/rcuXOnLl26ZDi+SZMmCgoKsqRvKyQkJDidAvyEO7uwurPrny+qXbu2qfhp06bpgQceUHp6uk0ZwR2MD7yvfv36jvYP+3A9eVdOHmsDTsidO7fh2GPHjlna94ULF0y94BQcHKxWrVpZmgOsxTPT+xiDuuf8+fOm4iMjI23KJLBxT/Au7gf+x+VyqUePHpo9e7bptjExMZo8ebKpHa6Aq3G5XKYWK23YsKFbi+N5g5n5hJxY0GRUTp6X4XrIOZycC/EE4z3fERsba6pobvv27Zb1/eyzz+rAgQOGYu+66y7deeedlvWNwGV23sPsvAoAAICvo8APAAAPdOvWTS6Xy7I/GRkZSkpK0rlz57Rnzx6tWLFCkyZN0quvvqp27dqpcOHCbuealpamZ555Rj179lRGRoaFP4W/bd682VR83bp1bcnDE2Zz+vXXX23KJHvR0dEqW7asY/3/U6FChQzHXrlyxZI+za4kXKdOHUv6tYqv5QPf5c41EygFfmXKlFGVKlVMtRk7dqzq1KmjlStX2pQVzGJ84H2+9iIqrMP15D05faydE1j9+7ynf6ZPn+70j8RxoaGhhmMvXbqkixcvWtb3hg0bTO0EfeONNyp//vyW9Q/r8cz0Psag7jl37pyp+ED5fd/buCd4F/cD/9OvXz+NHTvWdLuoqCjNmDFD11xzjQ1ZIafZtWuXqTG+mV3BvK106dKGY3fs2GFjJv4rp8/LcD3kHE7OhXiC8Z5viY+PNxxr1XW2ZMkSffrpp4ZiY2NjNWLECEv6ReAzW+Bndl4FAADA1xn/LREAANguKChIuXLlUq5cuZQvXz6VLVv2P7sXrVmzRpMnT9bo0aPdWgXw888/15UrVzR27FjLdzMz+6KE2Z2ZvKFmzZoKCwtTamqqofitW7cqPT1dISEhNmf2XyVLlvR6n5kxM8nmzm5kV2O2wK9mzZqW9GuV+Ph4RUZGmlo9HDmTO18IB9KK/p07d9ZLL71kqs2aNWtUp04dJSQkqHfv3mrdujWriDuI8YH3VapUyZF+YT+uJ+/J6WNt4J+OHj2qrVu3avfu3dq1a5cOHjyoU6dO6dSpUzp9+rSuXLmi5ORkpaSkGL62rXDy5EnlyZPHknOtW7fOVHyjRo0s6Rf24ZnpfYxB3ZOYmGgqPpB+3/cm7gnexf3Av7z11lsaOnSo6XZhYWGaNm2abr75ZhuyQk60fv16U/E33HCDTZl4zkzR6+HDh23MxH/l9HkZrgfn5YS5EE8w3vMt8fHxWrRokaFYK3bwS0pKUo8ePQwvlvXpp596tJg5cpbw8HAFBwcbXrjeVwqfAQAArEKBHwAAfqZmzZqqWbOmXnvtNY0cOVIDBw40vSLRuHHjVKxYMb399tuW5rZ7925T8WZ3ZfKGiIgIlStXzvDKZVeuXNHhw4dVqlQpmzP7r+LFi3u9z8xEREQYjrXqy62dO3eaive1LxpCQkJUsWJFx1fYh+9z55oJpBf+evbsqTfeeMOtn8OCBQu0YMECFS5cWB06dFD79u3VuHFjdjzwMsYH3hUbG+sTX/DDHlxP3pPTx9rI2fbu3asff/xRS5Ys0apVq3Tw4EGnU7oqKxdLMftyEyvV+z6emd7FGNR9Zp/dgfT7vjdxT/Ae7gf+ZcSIEXrhhRdMtwsODta4cePUsmVLG7JCTrVp0yZT8eXLl7cpE8/lzZvXcOyxY8eUkZGh4OBgGzPyPzl9XobrwfvXQ06cC3EX4z3f4+0d/F5++WXt2rXLUGyXLl3Uvn17j/tEzhIZGalLly4Zik1JSbE5GwAAAO9ihggAAD8VGRmpPn36aMeOHWrevLnp9u+8846+/fZbS3M6cuSIqXhfK7j6U1xcnKl4s39vq5j5QsRuZlaCTk9Pt6RPMz/32NhY5cuXz5J+rXTttdc6nQL8wJkzZ0y3CaQX/mJjY9WnTx+PznHq1Cl99tlnatWqlQoVKqRWrVppyJAhWrNmjdLS0qxJFJlifOBdRYoUcaRfeAfXk/fk9LE2cp5jx45p0KBBio+PV7ly5fTEE09o6tSpPvtCm+TeTteZMfv3NPPiFJzBM9O7GIO6z+xuH4H0+743cU/wHu4H/uOrr75S79693Wo7cuRIderUyeKMkNPt3bvXVLwTixoYZeZ5nZaWphMnTtiYjX/K6fMyXA/ekdPnQtzFeM/3eLPAb+3atXr//fcNxRYtWlQffvihR/0hZzLz7KDADwAABBp28AMAwM/FxsZq1qxZ6tWrlz799FNTbXv06KE6deqoWLFiluRi5oWBoKAglSlTxpJ+rWZ2lUOnXp7K6S/0HD161HCsr37WypYt63QK8ANmPut/yp8/v/WJOOjFF1/U1KlT9fvvv3t8rsuXL2v27NmaPXu2JCkqKkq1atVS3bp1VadOHdWuXVuFCxf2uB/8jfGBd/HlemDjevKenD7WRs6xfft2DRw4UFOnTvW7hQ+cLPCrWLGiZX3DHjwzvYsxqPvM3nvZkd493BO8h/uBf5g2bZoefPBBuVwu023fe+899ejRw4askNMdOnTIVHwgzYFfvHhRRYsWdToNn5LT52W4Huy9HpgL8QzjPd9TtWpVw7GJiYk6dOiQSpQoYbqf1NRUPfjgg4aLmUeOHKmCBQua7gcwMw4wu3ASAACAr2MHPwAAAkBwcLA+/vhjdenSxVS7s2fPqm/fvpblYaYIJX/+/AoLC7OsbyvFxsaainen+MYKvvrz8xYzP3ez/6beEhMT43QK8APu3GPc+VLGl0VHR2vSpEmKioqy/NyXL1/W4sWL9dZbb6lNmzaKiYlRpUqV1KNHD40dO9b0F+n4L8YH3pUnTx5H+oV3cD15j6/+7ACrnD59Wt27d1d8fLwmTpzody+0SeaLYrJiZswXHR2t6Ohoy/qGPXhmehdjUPcFB5v7qtYf79e+gHuC93A/8H0zZ85U586d3dplauDAgXrqqadsyAowX9AUSJKSkpxOwef46rPYW7ge7MFciDUY7/mefPnymfpu2N1d/N566y1t3rzZUOy9996rtm3butUPYKZoz8xOuwAAAP6AAj8AAAJEUFCQPvvsM8XFxZlqN2HCBK1evdrj/tPS0nT58mXD8b5acCWZX3Xu3Llz9iSCTKWlpenSpUuG43318+arecG3uPMyVsmSJW3IxFk33nijpk6dqoiICNv72rFjh0aNGqX7779fJUuWVHx8vJ555hmtXLnSrZXNczLGB97njWsEzuB6AmCV77//XlWrVtWXX37p1ovdvsKqcZnL5dL58+cNxxcrVsySfmEfnpnexxjUfWZfXjfz2cYfuCd4F/cD37Zw4UJ17NjRrV0u+vXrp5dfftmGrIA/OLVQgS+gwA//i+vBesyFWIfxnm+Kj483HLt9+3bT59+yZYveeustQ7HFixfX8OHDTfcB/MnM7/Dh4eE2ZgIAAOB9FPgBABBAcufOrQ8++MB0O6MTcVkxO9meL18+j/u0i9ncrly5YlMmyIzZz5uvriSYN29ep1OAH9i3b5/pNoG2g9+fWrVqpXnz5qlQoUJe7Xfr1q0aOnSo6tSpo9KlS+v555/X7t27vZqDv2J84H18kRW4uJ4AWOGVV15Ru3btdPz4cadT8RmBdH/FHwLp39RfnpmMQd1n9mdHAYB53BO8i/uB71q2bJnatm3r1ufi0Ucf1TvvvGNDVsAfUlNTlZKS4nQajmHeA//E9WD99cBciLUY7/kmOwv80tPT1b17d8P3ps8//1z58+c31QfwT2Z+j8/pu/4CAIDAQ4EfAAABpkWLFqpTp46pNj/88IMOHDjgUb9mJ9t9eWU3s7nxxZv3BcrnzVfzgm/ZvHmz6TaBWuAnSQ0aNNCmTZuUkJDgSP8HDx7U4MGDde2116pFixZatGiRI3n4i0C5X0v+Mz4ICgpypF/Yj+sJgCdcLpceeOABvfbaa06n4nPMFn7kypXLpkxgFZ6Z3scY1H2RkZGm4inwM497gndxP/BNq1evVuvWrXXp0iXTbbt166YRI0bYkBXwt5z+fPOFHbngO7gerLsemAuxB+M932SmwG/Hjh2mzj1s2DCtXr3aUOwDDzyg1q1bmzo/8E/p6emmdhyPioqyMRsAAADvo8APAIAA1Lt3b1PxLpdLY8eO9ajP5ORkU/G8KAFPBMrnzVfzgu84fvy4Tp48abpdmTJlrE/Gh1xzzTWaP3++vvnmG5UqVcqRHFwul+bOnaumTZuqUaNGWrNmjSN5+LpAuV9LjA/gPK4nAJ54+umnNWbMGKfT8EkU+AUenpnwJ2Z3ZMvpL3y7g3sCcroNGzaoRYsWunjxoum2d911l0aNGsWL/LAd9yvgb1wP1mEuBDlJ1apVDcea2cFv9+7deumllwzFlihRQu+//77hcwNXY3bew+y8CgAAgK8LdToBAABgvdtuu03h4eFKSUkx3Ob77783PDEH+BtfXf3UV/OC73Bn974yZcqoQIECNmTjezp37qyOHTtq7Nixeu+990x9IWWlJUuW6Oabb9Yjjzyid999V7lz53YkDwAAgKv54osvNGzYMEvOVaBAAVWvXl3lypVT+fLlVaxYMRUpUkSxsbHKkyePoqOjFR0drbCwMIWGhiosLMzUC+FOvDzOC+sAnJQ/f35T8RT4ATBj8+bNuuWWW3Tu3DnTbdu0aaPx48crJCTE+sSA/2G2GBsIZFwP1mAuBDlNlSpVFBwcrIyMjGxjDx06pEuXLmX7fabL5VKPHj0M/x76xRdfUGwFj5md9zA7rwIAAODrKPADACAA5cmTR3Xq1NHPP/9suM2GDRt06tQpFS5c2K0+za5gb6b40NvMfnHC6v3eZ3a1al/9vPElHbKzatUq021uvPFGGzLxXeHh4XrooYf00EMPadGiRRo7dqymT5+u8+fPezUPl8ulTz75RAsWLNAPP/yguLg4r/bvqxgfANbhegLgjt9//11PPfWU2+3z58+v2267TbfccosaNmwYkDtFR0ZGmopnNwXfxzMT/iQyMlK5cuUyfG+5fPmyzRkFHu4JyKm2b9+uZs2a6fTp06bbNm/eXFOmTFFYWJgNmQH/xWcN+BvXg+eYC0FOFBUVpbJly+r333/PNtblcmnnzp2qUaNGlnEjR440/M5Rjx491KJFC0OxQFbMFvjllIWPAQBAzhHsdAIAAMAeN910k6n4jIwMrV692u3+zL4s4MuFTbwo4fsC5fPmq3nBd8ybN890m5xW4PdPTZo00ZgxY3TixAnNmjVLTzzxhCpVquTVHHbu3KnatWt79EwNJIFyv5YYH8B5XE8A3PHEE08oMTHRdLtq1appwoQJOnbsmMaNG6f77rvP9hfanNrh3Ow9hgI/38czE/6maNGihmNPnDhhYyaBiXsCcqLdu3eradOmbt0zGjVqpOnTp5teZA/wRFRUlNMpAD6D68FzzIUgp4qPjzccu3379iyPHzp0SP379zd0rlKlSum9994z3DcCQ1pamubNm6cnnnhCGzZssOy8x48fNxVfrFgxy/oGAADwBezgBwBAgKpatarpNhs3blTr1q3d6s/sywIXLlxwqx9vMLvrk9nV/uE5sz9zX/28+Wpe8A2XLl3SihUrTLe74YYbbMjGv4SHh6tly5Zq2bKlJOnUqVNavny5li5dqqVLl2r9+vVKS0uzrf9z586pZcuWWr58uSpXrmxbP/6A8QFgHa4nAGb98ssvmjlzpqk2uXPn1pAhQ/Twww8rKCjIpsyuzqnCObP3V2/vFA3zeGbC3xQvXlz79u0zFHv69GlduXKFwi0TuCcgp9m7d6+aNGmio0ePmm5bp04d/fjjj3x24HXufOZSU1MVGsorTwg8XA+eYS4EOVl8fLy+//57Q7HZFfg9/PDDunjxoqFzjRo1Snny5DEU64+OHz+uVatWafPmzfrtt9908OBBHT58WGfPnlVSUpJSU1MVFRWlvHnzKm/evCpfvrwqV66sKlWqqHHjxgG1C2hSUpLmzp2rb7/9VjNmzNDZs2clSU2bNs12R0ijDh06ZCq+ePHilvQLAADgK/jtHgCAAFWiRAnTbXbv3u12f6GhocqdO7cuXbpkKN7sqkveZHZV23z58tmUCTITGhqq6Ohow6svnjx50uaM3OOrecE3LF68WCkpKabahISEqFatWjZl5L8KFy6s22+/Xbfffrukv4snly1bpl9++UWrVq2y/AW+s2fPqmPHjlqzZo1y585t6bn9CeMDwDpcTwDMevvtt03Fx8TEaNasWY7tCJ2UlORIv8HBwSpQoMBfL6Rkx52X5eFdPDPhb6655hpT8YcPH1b58uVtyibwcE9ATnLgwAE1bdrU9Eux0h+Lhs2aNUvR0dE2ZAZkLSwsTOHh4abmw69cucLnFQGJ68EzzIUgJzOzCPiOHTsyPTZ+/HjDhbIPP/ywmjVrZrhff5CRkaGlS5dq2rRpmjdvXrbFkJJ08eJFXbx4UYcPH9a2bdv0448//nUsLi5OrVu3Vvfu3d1aqN1X3H///Zo6dep/frcOCgpSw4YNLevn8OHDpuLNzqkAAAD4umCnEwAAAPaIiYkx3cadL33/qVixYoZjz549a+vuSZ4w+6IEK0I5w8znzey/qbdQ4IesjB8/3nSbevXqqUCBAjZkE1hy586tZs2a6dVXX9XcuXN15swZrVq1SoMHD1aTJk0UFhZmST/btm3TwIEDLTmXP2N8AFiH6wmAUSdOnDC1Yn14eLi+//57x15ok5zdGc/MIkmJiYmGF5uBc3hmwp+ULl3aVLzZl93APQE5w+HDh9W0aVPDO4L+U3x8vObOnUtRKBxl9uXsy5cv25QJ4DyuB/cwF4KcLj4+3nBsZkVrJ06cUJ8+fQydo0yZMhoyZIjhPn3d3r179fzzz6t48eJq3LixPvzwQ0PFfdnZsWOH3n//fcXHx6tx48aaMWOGBdl61+HDhzV27NirLpxz3XXXqWDBgpb2ZUYg7ZAIAAAgUeAHAEDAioyMNN3m1KlTHvVp5oUBl8vl1hfN3rBnzx5T8bwo4YyiRYsajvXVz9revXudTgE+6ty5c5o+fbrpdm3atLE+mRzgz50Pn332WS1cuFCnT5/WhAkT1LFjR0VERHh07mHDhmn//v0WZeqfGB8A1uF6AmDU5MmTTRUnDBgwQHXq1LExo+w5WbBSsmRJU/G7d++2KRNYhWcm/EnFihVNxXu6SFtOxD0Bge7YsWNq2rSpfv/9d9Nt4+LiNH/+fBUqVMiGzADjSpUqZSrel3dcBTzF9eAe5kKQ08XFxRlexHTXrl1yuVz/+e+PP/64Tp8+nW37oKAgffnllwGxe+jGjRt1xx13qHz58ho8eLCt99Sff/5Zbdu2VatWrfxqfvHnn3/O9FijRo0s7cvsnEeFChUs7R8AAMBpFPgBABCgQkNDTbdJSkryqE+zqwnu2LHDo/7sYnYVLl6UcIaZn/uJEyd8cgVEX70G4LyJEyfqypUrpttR4GeNPHny6O6779bUqVN15MgRDRkyxPRL339KTU3VsGHDrE3QzzA+AKzD9QTAqIULFxqOLVSokPr3729jNsY4WbBidqy3efNmmzKBVXhmwp+YLfDjJWDzuCcgkJ04cUJNmzbVzp07TbctV66cFixYoCJFitiQGWCO2YImCt4RyLge3MNcCHK68PBww79fXr58WQcOHPjXf5s+fbqmTJliqP1jjz2mJk2amM7Rl+zdu1d33nmnatSooWnTpl214NEus2fPVnx8vCZOnOi1Pj3hzQI/M3MekZGRpn/fBwAA8HUU+AEAEKDcKdZLTU31qM/y5cubit+2bZtH/dkhJSXF1Cq3TBg5Jy4uzlS82Rdg7Jaenu5Xq7LBe9LT0/Xee++ZblexYkXT1wWyV7BgQfXt21e7du3S22+/rVy5cpk+x/jx45Wenm5Ddv6B8QFgHa4nAEa4XC4tXbrUcPz999+vyMhIGzMyZuvWrY71XaVKFVPxv/76q02ZwCo8M+FPKlWqZCqel4DN456AQHX69Gk1a9bMrc9sqVKltHDhQj4n8Blmd1/Zu3evTZkAzuN6MI+5EOAP8fHxhmP/+f7EuXPn9NhjjxlqV65cOb399tumc/MVqampeuWVV1S5cmVNnTrVsTySk5PVpUsXDR061LEcjFqyZEmmxxo2bGhpX2bmPCpWrKigoCBL+wcAAHAaBX4AAASoCxcumG4TFRXlUZ/VqlUzFb9y5UqP+rPDunXrTBU6Vq1aVcHBDKmcYGZyWpJWr15tUybu2bx5s8e7ZiIwjRs3Trt27TLdrnv37jZkgz9FRESof//+Wrx4sfLmzWuq7alTp0x9sRxoGB8A1uF6AmDEkSNHdOrUKcPxvrIL9MaNGx3r+8YbbzQVn9VLLfANPDPhT4oVK6ZChQoZjvfF4jNfxz0BgejcuXO65ZZb3NpZuHjx4lq4cKFKly5tQ2aAe2666SZT8evXr7cpE8B5XA/mMRcC/KFq1aqGY/+5c/nTTz+to0ePZtsmKChIo0ePVu7cud3Kz2k7d+5U3bp19dprryk5OdnpdORyufTMM8/oiy++cDqVTB0/fjzTxbSrVKmimJgYy/pKTk42VbRevXp1y/oGAADwFczqAwAQoNxZydnTSbjrrrvOVPzy5cs96s8OZnNiwsg5ZianJWnFihU2ZeIeX8sHviE1NVWvv/666Xa5cuVSjx49bMgI/+vmm2/WTz/9ZPoluZxc4Mf4ALAO1xMAI8zs7hMcHKybb77ZxmyMcblcWrVqlWP9X3/99abGd+vWrdP58+dtzAie4pkJf2Pm349dRM3jnoBAc+HCBbVo0UIbNmww3TY2NlYLFiwwvbMlYLdatWqZil+7dq1NmQDO43owj7kQ4A/u7OA3b948jR492lCb3r17W75jm7d8+umnqlGjhql7ZnBwsG666Sb17dtXn3/+uZYuXaq9e/fq1KlTSklJUUpKis6fP6/ff/9dy5Yt0xdffKHevXurWrVqpnaW6927t88W/Ga10FmjRo0s7eu3335TWlqa4Xh+7wUAAIGIAj8AAALUnj17TLfJnz+/R31WrFjR1C6Ax44d05YtWzzq02pz5841FX/99dfbkwiyde211yo6Otpw/KJFi+RyuWzMyJwFCxY4nQJ80JtvvunW/btz586mVvuHZ+rXr6+HHnrIVJt169ZZ0reZL4N8BeMD/JM/foZ9CdcTACP27dtnOLZUqVLKlSuXfckYtH79ep08edKx/nPnzm1qEZn09HTNmjXLxox8iz8+v3lmwt+YeSnt+PHjjt4z/RH3BASSxMREtWrVSqtXrzbdtlChQpo/f74qVapkQ2aAZwoXLqxy5coZjt+8ebNOnDhhY0aAc7gezGMuBPiD2QK/xMREw995VqxYUYMGDXI3NcckJSWpffv2evTRR3X58uVs44OCgtSkSRONHz9eJ0+e1Jo1azRkyBD16NFD9evXV5kyZVSoUCGFhYUpLCxMefPmVbly5VSvXj11795dw4cP16ZNm3TgwAG9+eabKlKkSLZ9XrlyRV26dFF6eroVf2VL/fzzz5kea9y4saV9mV3QiN97AQBAIKLADwCAAOXOSn1mvii4mpCQEDVo0MBUm+nTp3vUp5XOnTunxYsXm2pj9YQVjAsNDVX9+vUNxx87dsytlx7skJycrDlz5jidBnzM+vXr9eabb7rVtnfv3hZng+z079/fVPzevXst6TckJMRwrJkVDu3E+AD/5I+fYV/C9QTACDM7yxUuXNjGTIz78ccfnU5BrVq1MhU/fvx4mzLxPf74/OaZCX9jdpeWTZs22ZRJYOKegEBx+fJl3Xbbbfrll19Mt82fP7/mzp1rekdLwJtuueUWw7EZGRmaMWOGjdkAzuJ6MIe5EOAPFSpUMFzAumPHDj3//PPav39/trHBwcEaPXq0qYVTfMHZs2fVrFkzQ7/fhYSEqHv37tq5c6cWLlyorl27qmDBgm73XaJECQ0YMEC7d+/W888/n+382rZt2/T111+73Z9dsirws3o3RzMFfkFBQbrpppss7R8AAMAXUOAHAEAAcrlcWr58uel2FSpU8LjvZs2amYqfOnWqx31a5bvvvlNqaqrh+KJFi5paAQ3Wa9Kkian4b7/91qZMzJk7d64SExOdTgM+JDExUffdd59bL8O2a9dONWrUsCErZKVcuXKmdnk5cuSIJf1GREQYjjXzTLMb4wP8yV8/w76E6wlAdoysRP0nX1ix3uVy6auvvnI6Dd16662m4ufMmaNjx47ZlI1v8dfnN89M+JM6deqYije7qj24J8D/JScnq127dlm+YJuZPHnyaNasWbrhhhtsyAywTrt27UzFT5gwwZ5EAB/A9WAOcyHAH4KDg1W5cmVDsUeOHNHHH39sKLZPnz6qV6+eJ6l53ZEjR9SwYUNDi2O0bdtWW7du1RdffGHJe1P/FB0drbfeeksLFixQbGxslrGvvfaaMjIyLO3fE6dPn9bWrVuveiwuLk5Fixa1tD8zcx1VqlRRvnz5LO0fAADAF1DgBwBAAFq9erVbL5lZsXKrmdUEpT9Wm16xYoXH/VrB6OTlnxISEmzKBEaZ/TcYO3asT7xs+NlnnzmdAnxIWlqa7rzzzkwnx7MSHh6uIUOG2JAVjKhevbrhWKuKes28XH3hwgVL+rQC4wP8yV8/w76E6wlAdlJSUgzHnjt3zr5EDFqwYIH27NnjdBqqW7euChQoYDg+LS1N77//vo0Z+Q5/fX7zzIQ/KV26tK655hrD8RT4mcc9Af4sJSVFHTt21Lx580y3jYqK0k8//aTatWvbkBlgraZNmypv3ryG4xcsWKDt27fbmBHgHK4Hc5gLAf5mZrEPI8Vk1157rd544w1PUvK63bt3q27dutqyZUuWcQULFtT48eP1/fffKy4uztacGjVqpCVLlqhkyZKZxiQlJSk42Hde6V66dKlcLtdVjzVq1Mjy/szMddStW9fy/gEAAHyB74wGAQCAZb744gvTbcLCwiyZAKlevbrKlStnqs1HH33kcb+eWrlypdauXWuqTfv27W3KBkbdeOONKlOmjOH448ePO76L3759+zRr1ixHc4DvcLlcevjhhzV79my32vfp00fly5e3OCsYVaRIEcOxVhUX58+f33DslStXlJSUZEm/nmJ8gD/562fYl3A9AciOmZXojx8/bmMmxvjKC0KhoaHq3LmzqTaffPKJzpw5Y1NGvsNfn988M+Fv6tevbziWAj/zuCfAX6Wlpenuu+/WTz/9ZLptrly5NGPGDDVo0MCGzADrhYeH64477jDV5p133rEpG8BZXA/mMBcC/K1q1aqWnSs4OFhjxoxRZGSkZee02+nTp9WqVSvt378/y7ibb75ZmzdvVteuXb2U2R+73s2fPz/TneeaNGnitVyMyGr3cKsL/I4fP64TJ04YjjczhwIAAOBPKPADACDAHD16VF9//bXpdrVq1VJUVJQlOdxzzz2m4idOnKjffvvNkr7d9dJLL5mKL1iwoNq0aWNTNjCjU6dOpuLfeOMNQyvR2eX1119Xenq6Y/3DdyQnJ6tLly768ssv3WpfrFgxvfDCCxZnBTPMfGEcHR1tSZ+xsbGm4g8dOmRJv1ZgfADJvz/DvoTrCUBWzIw7Tp8+bdlOw+5YsGBBli+KeNvDDz9sKv7ixYt6/vnnbcrGd/jz85tnJvyJmV3Xfv31V128eNHGbAIT9wT4m/T0dN1777367rvvTLeNiIjQ9OnT1bRpUxsyA+zz+OOPm4ofO3asNm3aZFM2gLO4HoxjLgT4m5kd/LLTt29f1alTx7Lz2S0lJUUdOnTQ7t27s4zr0qWLFi9erOLFi3sps79de+21Gj9+/FWP5eQCv2XLlpmKZ+d6AAAQqCjwAwAgwDz77LNurZRudgXArNx7772m4jMyMhx9IW7u3LmaP3++qTadOnVSeHi4TRnBjC5dupiK37Jli7755hubssna9u3b9dVXXznSN3zL6dOn1axZM02cONGt9iEhIfrmm2+UN29eizODGWZWEcxsJUazzOwaKEk7d+60pF8rMD6A5N+fYV/C9QQgK2ZeTMnIyNC8efNszCZzycnJeuyxxxzpOzPVqlVT7dq1TbX54osvtGLFCpsy8g3+/PzmmQl/0qxZM8Ox6enpWrp0qY3ZBCbuCfAnLpdL3bt3d2v+MCwsTFOmTFGLFi1syAywV40aNUztyJKRkaFHHnlEaWlpNmYFOIPrwTjmQoC/WVXgV7lyZb3++uuWnMtbHn74YS1ZsiTLmKefflpff/21qYVcrXbbbbepXbt2//nvvlTgd/78+UyLxitUqKBrrrnG0v4WL15sOLZSpUqW9w8AAOArKPADACCATJkyRePGjTPdLjQ01HSRVFYqVKhgerWkH374QVOmTLEsB6MSExNNr9AvmV/VH/apVq2aqS+3pD9Wmjtz5oxNGV2dy+XSQw89lCO/VMO/fffdd6patarpVej+aeDAgWrcuLF1ScEt69evNxxbvnx5S/osUKCAChQoYDh+3bp1lvRrBcYHkPz7M+xLuJ4AZKVs2bKm4n/88UebMsnaiy++6FOFYH/q37+/qfiMjAx17tzZ679jepM/P795ZsKflC1b1tTvjosWLbIxm8DEPQH+5NFHH9XYsWNNtwsNDdWECRPYyRF+rV+/fqbiV65cqZdfftmmbABncT0Yw1wI8LfSpUsrT548Hp0jJCREY8eOVUREhEVZ2e/dd9/VmDFjsox56qmnNHToUO8klI23335bQUFBf/3/UqVKqVy5cg5m9G9Lly5VRkbGVY9ZvXufZG6Ow8wCSQAAAP6GAj8AAALE8uXL9eCDD7rVtmPHjoqNjbU0nxdeeMF0m169eunw4cOW5pGdJ598Uvv27TPV5rbbblP16tXtSQhu6du3r6n4EydOqFevXjZlc3XDhg3zqKAL/u/gwYPq3LmzOnTooOPHj7t9npYtW2rAgAEWZgZ37NmzRxs2bDAcX7lyZcv6jouLMxy7YMECy/q1AuMDSP79GfYlXE8AMhMXF2dq556JEyfqyJEjNmb0X999952GDBni1T6Nat++vWrVqmWqzf79+9W5c2elpqbalJXz/Pn5zTMT/uTWW281HGtmdXv8jXsC/EGfPn00cuRI0+2Cg4P11VdfqWPHjjZkBXhP27ZtTS9wN3jw4Gxf6gf8EdeDMcyFAP9WtWpVj9r3799fNWvWtCgb+23dulUvvvhiljEPPfSQ3nvvPS9llL1rr71WDRo0+Ov/+9LufZL0888/Z3rM6gK/kydP6rfffjMcb2buBAAAwN9Q4AcAQAD44Ycf1KpVKyUmJppuGxwcrFdeecXynJo0aaI6deqYanPy5Em1a9dOSUlJludzNR9++KG+/PJL0+3ceQkE9mrbtq2uvfZaU20mTpzotQncRYsWmd4FAoHj4MGDeuyxx1ShQgVNnDjRo3PddNNNmjBhwr9W8wtUy5cvV/fu3bV7926nU7mqwYMHm4pv2LChZX2beVlv6dKl2rNnj2V9e4rxAST//gz7Eq4nAJmJiIhQjRo1DMdfvnzZq9fdsmXLdM8993itP3e89dZbptvMnTtXnTt3Dthd2/35+c0zE/6kbdu2hmM3bNig8+fP25hNYOKeAF83YMAAffDBB6bbBQUFadSoUercubMNWQHeN3ToUFPz4C6XSz169NDXX39tY1bWWLp0qT755BOn04Af4XrIHnMhwL95UuBXtWpVvfrqq9YlY7OMjAx1795dKSkpmcY0bdpUH3/8sRezMqZr165//W9fK/BbsmRJpsesLvBbvHixXC6Xodg8efKoadOmlvYPAADgSyjwAwDAj507d06PP/642rVrp4sXL7p1jm7dulm6q9A/mS1+kKS1a9eqY8eOunLlig0Z/e3rr7/WU089Zbrd7bffrtq1a9uQETwRHBysQYMGmW7Xv39/TZgwwYaM/rZu3Tp17NgxYF/yxNWlpaXpxx9/1F133aUKFSrok08+yfJLBSNuuOEGzZ07V/nz57cmSR+XmpqqL7/8UpUqVdK9996rjRs3Op3SX+bMmaMvvvjCcHxISIiaN29uWf/16tUzHOtyuXyuwJjxAfz9M+xLuJ4AZMbsSw5fffWVpk6dalM2f1u2bJluvfVWXb582fa+PJGQkKC77rrLdLtp06apQ4cObs/RWOXkyZOWv4jl789vnpnwF40aNTL8e396enqWL9whc9wT4KvefPNNt+a5g4KC9Omnn+r++++3PinAITfccIMee+wxU23S09N177336vXXXzf8kri3uFwuzZkzR40bN1bDhg21fPlyp1OCH+F6MIa5EOBv8fHxbrULDQ3V2LFjTe2I6bRhw4Zp1apVmR4vX768pk6dqtDQUC9mZUz9+vX/+t++VOCXmJio9evXX/VYmTJlVKpUKUv7W7RokeHYFi1a+NXnEwAAwCwK/AAA8EPHjh3Tq6++qgoVKmjEiBFuT8oXL15cQ4cOtTi7vzVs2FD33Xef6XazZs1S69atdebMGRuykj7++GPdd999Sk9PN9Uud+7c+vDDD23JCZ7r0KGDGjdubKrNn19uff7557bk9PPPPyshIUFnz5615fzwLWfOnNHUqVP1yCOP6JprrlGbNm00ZcoUjwv7JOn666/XvHnzVKBAAQsy9S/p6ekaP368atSooQYNGmjy5MlKTU11LJ+lS5fqrrvuMvXsbd26taX/dmbvddOmTdMTTzyh5ORky3LwBOMD+Ptn2JdwPQHIzJ133mkqPiMjQ/fcc48WLlxoU0bSmDFjlJCQoAsXLtjWh5VGjBih2NhY0+1mzJihm2++WZs3b7Yhq6wdO3ZMAwYMULly5TRs2DBLz+3vz2+emfAXoaGhatOmjeF4My/B4W/cE+CLhg0bphdffNGtth988IF69uxpcUaA8959911VqVLFVBuXy6WXX35ZzZs314EDB2zKzLgLFy5o+PDhqlSpklq2bKmff/7Z6ZTgp7gessdcCPA3dwv8nnvuOd14440WZ2OfPXv26KWXXsr0eEhIiMaPH++z37FXqlRJNWrUUOPGjS0vmktKStKMGTP0zDPPqHnz5ipbtqzy58+vsLAwxcbGKj4+Xt26ddO4ceN0/vz5f7Vdvnx5pgtYW717n2RubqN9+/aW9w8AAOBLKPADAMAPJCcna82aNRo6dKgSEhJUokQJDRw4UKdPn3b7nMHBwRo1apTtE1lDhgxRwYIFTbdbtGiRatSooWXLllmWy/nz53XPPfeoV69eysjIMN3+tddeU8mSJS3LB9YbNmyYwsLCTLVJT09Xz5491aNHDyUmJlqSR3p6ut5++201a9bsP5Oh/xQUFGRJf/C+48ePa+HChRo+fLh69uypG2+8UTExMbrzzjs1cuRInThxwrK+2rdvr59//tmte2mgWbZsmTp16qRixYrp8ccfz3I1RqulpaVp2LBhuuWWW0x/Edu7d29LcylZsqRq1aplqs2HH36oSpUq6d1339WuXbsszccdjA9ytkD4DPsSricAV1OjRg1Vq1bNVJvk5GTddtttGjFihKW5nDhxQnfeeaceeOCBLBe/8LVVtAsXLqyRI0e61Xbbtm268cYbNWDAAMt+z8zKypUr9cADD6h06dIaNGiQLX0GwvObZyb8RadOnQzH/vTTTzZmEti4J8CXfPbZZ27t3Cj9UfBh9dwT4CsiIyM1YcIERUREmG47f/58Va1aVa+++qrXd9hOTU3VDz/8oLvvvltFixbVk08+qZ07d3o1BwQerofsMRcC/M2dAr9q1arp5ZdftiEb+zzzzDNZ7o75/PPP+/RO58HBwVq/fr2li/esWbNG99xzjwoXLqy2bdtq6NChmjdvnvbt26fz588rLS1NJ0+e1NatW/XVV1/pvvvuU6lSpfTss8/+9Q5aVgXYZhcBy86ePXu0fft2Q7FRUVG6/fbbLe0fAADA1/BbIgAAHtiwYYPbK6pejcvlUkpKiq5cuaIzZ87oxIkT2rdvn/bu3Wt61d7sDB06VC1btrT0nFcTExOjMWPG6Pbbbze90+CBAwfUsGFDdenSRQMHDlT58uXdyiE5OVljxozRSy+9pJMnT7p1jubNm6tPnz5utYX3VK9eXQMHDtSAAQNMtx01apRmzZqlQYMGqUuXLm5/oTJ//nz17dtXv/76a7axjz32mOVfGOEPnt6fk5OTlZycrCtXrig5OVnnz5/XsWPHdPToUR07dsySXfmyExISokGDBqlfv3629+VvTp8+rREjRmjEiBEqVaqUbrvtNrVp00aNGjVSZGSkpX2lp6fr66+/1uuvv67du3ebbt+oUSPdcsstluYkSV27dtXq1atNtdm3b5/69++v/v37q3DhwqpcubJKlSqlggULKioqyvR974033jAV/0+MD+Dvn2FfwvUEIDNPP/207r//flNtkpKS9Pjjj2vmzJkaNGiQ6Rfj/un06dMaNmyYPvjgA0MvEL7yyitZrrjthHbt2umFF17Qm2++abptamqqBg0apJEjR+qJJ57Qww8/rKJFi1qW25YtWzR9+nR9/fXXhl+C8ZS/P795ZsJfNG/eXAULFjS0S9zOnTu1fft2VapUyQuZBRbuCfAlb731lttt+/Xr5zfzh2avNUD6o9hgzJgx6tKli+nPUGJiogYOHKgPP/xQDzzwgB566CHFxcXZkufx48c1e/ZszZw5U3PnztW5c+ds6Qc5G9dD9pgLAf5QtGhRFSpUyPCi4WFhYRo7dqzpxZSdtHr1an333XeZHr/22mv9rmDRExs3btTTTz/tVrHghQsX9M4772jcuHH68ssvsyzws3oHv++//95wbJs2bZQ7d25L+wcAAPA5LgAA8JdGjRq5JAX8n2eeecbrP9sXXnjBo5yDg4NdrVu3do0bN851/PjxbPtLS0tzLVu2zNW/f39XTEyMR32XLl3aderUKS/8lFyubt26Gc6rW7duXsnJCF/KOz093dWwYUOP/s2vueYa1yuvvOJau3atKyMjI9s+d+zY4Xr//fdd8fHxhvvo2LGja9GiRabyyslyyv35zz9ly5Z1LV682Okfu8vlcjn2OTXbryRXWFiYq3bt2q5nnnnGNXHiRNfmzZtdycnJpvs+ePCga/Lkya57773XVahQIbf/HUNDQ12bNm2y7GfyTxcvXnQVKFDA0c+pFRgfGONLz1mr+PNn2Fef31xP2fPXa8lf8/Y2s+PFnPCzSklJcVWuXNmj67NJkyau8ePHuw4cOGCoz6NHj7omTJjg6tixoys8PNxwP3Xq1HGlpaWZym3RokX2/gD/X0ZGhqtjx44eP3eCg4NdCQkJrg8//NC1YcMGV1pamuEcUlJSXJs3b3aNHj3a9cADD7jKli2bbX/58uWz/Gfhz8/vf+KZaQzPH2f17NnT8M//7bffdjrdv4wePdrU59kXcE/IHvcD+5UuXdrrz1Qn/sB6Zv8NRo8e7XTKbnv//fct+RzGx8e7+vfv75o1a5br2LFjbuVy5MgR16JFi1wfffSR695773VVqFDBdB5du3a1+Cfk+/z1eeKLeXM9ZI65EPf44uccnjPzzsQrr7zidLqmtWzZMsu/04wZM5xO0SsSExNdjzzyiCs4ONiSZ4OkTM9VsmRJy/M3M68/ffp0y/sHAADwNezgBwBADvPmm2+6tbuZp1577TVt3rxZP/zwg1vtMzIyNHPmTM2cOVNBQUEqU6aMKleurBIlSig6Olrh4eFKTEzU2bNntXPnTm3btk2JiYke5503b159++23KlSokMfngncEBwdrwoQJuvnmm3Xo0CG3znH48GENHDhQAwcOVP78+VWlShVVqFBB+fPnV1RUlK5cuaILFy5o3759+u2333Ts2DFT5y9cuLBGjBihbdu2uZUfAleuXLn07LPP6rnnnlOuXLmcTsfvpKamauXKlVq5cuVf/y00NFQlSpTQNddco+LFi6tgwYLKlSuXcuXKJZfLpUuXLikxMVGJiYnau3evdu7cacnzQ5Lefvttj1Z6zUp0dLT69++v559/3pbzewvjg5wrUD7DvoTrCcD/CgsL04cffqhmzZq5fY5Fixb9tepzyZIldd1116lgwYIqUKCAcufOraSkJF28eFH79+/Xrl27dODAAdN95M2bV+PGjVNISIjbedopKChI48aN05kzZ9xaAftPGRkZWrBggRYsWCBJioqKUrly5VSuXDkVKVJEUVFRioqKUlpampKSknT+/HkdOXJEhw8f1u+//67U1FSr/kpuC5TnN89M+IP7779fn332maHYadOmqX///jZnFLi4JwCAf+jTp4/Onj2r1157zaPzbNmyRVu2bNE777wjSSpSpIhKly6tEiVKKCYmRpGRkX/NHV+5cuWv74OOHTum48eP69ChQ7pw4YIVfyXAbVwPmWMuBPhbfHy8lixZkm1cjRo19MILL3ghI+ts2bJFs2fPzvR406ZNddttt3kxI2esWbNGXbt21a5duyw9b0ZGxlX/u9W79504cULLli0zFBsTE6PWrVtb2j8AAIAvosAPAIAcIk+ePPr000/VpUsXR/oPDg7W5MmT1bZtW82dO9ejc7lcLu3du1d79+61KLuri46O1qxZs3TDDTfY2g+sV7x4cf30009q0KCBx18snTt3Tr/88ot++eUXS3ILDw/Xt99+qyJFilDgh39p166d3nvvPZUtW9bpVAJKWlqa9u3bp3379nm13y5duujpp5+2tY++ffvqm2++0ebNm23tx06MD3K2QPgM+xKuJwBXk5CQoMcff1wfffSRx+c6ePCgDh48aEFWf4uIiND06dNVvnx5S89rtcjISP3000/q0KFDli8PmXH58uW/Xqb0J4Hw/OaZCX9Qp04dVa5c2dDc0erVq7V3717mE9zEPQEA/MfAgQMVExOjJ598MtMXz806fvy4jh8/rtWrV1tyPsBbuB4yx1wI8If4+PhsY8LDwzVmzBiFhYV5ISPrvP/++1ke9/fFqYz45ptv9OCDDyo5OdlrfVpd4DdlyhSlp6cbir3vvvv87nMKAADgjmCnEwAAAPa7+eabtWHDBseK+/7052S1JyvmeUuePHn0008/qW7duk6nAjdVq1ZN3377raKiopxO5V9GjRqlBg0aOJ0GfER4eLjuv/9+bdmyRd999x0v4wWIDh06aOzYsbb3ExYWpu+++04xMTG292Unxgc5V6B8hn0J1xOAqxk6dKhq167tdBr/ERwcrHHjxqlJkyZOp2JIZGSkvv/+e911111Op+KoQHl+88yEP3jwwQcNx06cONHGTAIf9wQA8B+PP/64Jk2a5HPf/QBO4HrIHHMhgLECv5deeknVqlXzQjbWSUxM1KRJkzI9Xq1aNb/43c4Tr7/+urp27ZplcV9YWJjatWunMWPGaOvWrbpw4YJSUlJ05MiRv+Y4g4PNvT5udYGfmbkMM3MkAAAA/owCPwAAAlixYsU0atQo/fLLLz6zAlxkZKRmzZqlxx57zOlUMlWhQgWtXLlSDRs2dDoVeCghIUFz585Vvnz5nE5FQUFB+uCDD3TPPfc4nQp8QPHixfX8889r3759Gj16tKpWrep0SrBIr169NGnSJIWGhnqlv/Lly2vevHkqUaKEV/qzC+ODnCtQPsO+hOsJwP8KDw/XzJkzdd111zmdyl8iIiI0duxY3XnnnU6nYkp4eLgmTZqkoUOHem2854sC5fnNMxO+rlu3boqIiDAUS4Gf57gnAID/uOOOO7R+/Xp2MgXE9ZAZ5kKA7Av8brzxRj333HNeysY6U6dO1aVLlzI93qtXLy9m430DBgzQyy+/nOnx0NBQPf7449q7d6++++47devWTVWqVFGePHkUFhamYsWKqW3btpo0aZJWrFihkiVLGuq3ePHiqlixolV/DR06dEjLly83FFuvXj1VqVLFsr4BAAB8GQV+AAAEoNKlS2vIkCHauXOnHnzwQdOrLtktNDRUI0aM0Oeff67cuXM7nc6/3HrrrVq9ejWTQwGkXr16WrJkicqVK+dYDhEREZo0aZKeeOIJx3KA84oXL67evXtryZIlOnTokN566y0VK1bM6bRgkTx58ujLL7/URx995PWXvatXr641a9aoXbt2Xu3XaowPcq5A+Qz7Eq4nAP+rQIECWrBggerUqeN0KoqJidGCBQv8evGTp59+WosXL1aFChWcTsUxgfL85pkJXxYTE6NOnToZiv3111+1YcMGmzMKfNwTAMB/xMXFacWKFXr22WcVFhbmdDqm+fuO2PAtXA9Xx1wIcroCBQpk+l10eHi4xowZ45cLWE2ePDnTY6GhoerYsaMXs/GuF154QYMGDcr0+HXXXad169bpww8/1DXXXJPt+WrVqqVffvnFUKzVu/eNHTtWLpfLUGzv3r0t7RsAAMCX+dbb/gAAwG2RkZHq0KGDpk6dqt9//119+/ZVdHS002llqUePHtqyZYuaN2/udCqKiYnR119/rR9//FEFChRwOh1YrFq1alq/fr0jKyKWL19eCxcuZDXGHChv3rxq0aKF3nzzTS1fvlwHDx7U8OHD1aBBAwUFBTmdns8rVKiQ3xRAtmrVSlu2bNEDDzzgWA5FixbVd999p7lz5yohIcGxPKzA+CBnCqTPsC/hegLwTzExMVq4cKHuv/9+x3Jo1qyZ1qxZo3r16jmWg1Xq1aunLVu2aODAgYqMjHQ6nf/wxi4FgfT85pkJX2XmJbbRo0fbmEnOwj0BAPxDeHi4Bg8erK1bt+r22293Op1s5cmTRw899JDWrFmj999/3+l0EGC4Hq6OuRDkdJnt4vfqq69mu8OfL7p06ZIWLlyY6fGmTZuqUKFCXszIez755BO99dZbmR6/9957tXr1alWrVs3UeUuUKKFJkyZl+/6C1QV+Y8aMMRRXvHhxdejQwdK+AQAAfBkFfgAA+Kng4GBVr15djz/+uKZOnaqTJ09q2rRp6tixo0JCQpxOz7AyZcpozpw5mjJliumJJitER0frmWee0bZt29SlSxev9w/vyZcvnyZPnqxJkyapdOnStvcXHBysp556Sps3b1bdunVt7w/Oio2NVcOGDdWzZ08NHz5c69at05kzZzR79mwNGDBAdevW9bndVH3dddddp8OHD+uXX35R//79VbVqVadT+o/atWtrwYIFmjlzpkqVKuV0OpKkW265RfPnz9f27dv1xhtvqFatWn65+ibjg5wrUD7DvoTrCcA/5cqVS6NHj9b06dMNrcxslaJFi+rrr7/WvHnzvPL7mLdERETo5Zdf1rZt2/TYY485XugXERGhu+66S0uWLNHSpUu91m+gPL95ZsIX3XTTTapdu7ah2G+++UYpKSk2Z5RzcE8AAP9RsWJFTZ8+XcuWLVP79u196nvSyMhIdezYUZMnT9bx48f12Wef6aabbnI6LQQwrof/Yi4EOdnVivhq1aql/v37O5CN5xYuXKjk5ORMj7du3dqL2XjP7Nmzs1wAaMCAAfrqq6+UK1cut85fr169bAuhrSzwW7JkiXbv3m0o9pFHHvHL3WkBAADc5X/fsAIAEOBCQkIUERGhiIgI5cqVS4UKFVKRIkVUpEgRlSpVSnFxcapcubKqVKmiPHnyOJ2uZe644w517NhRM2bM0AcffKDFixcrIyPDtv5KliypBx54QE888UTAruCFq7vrrrvUtm1bDR8+XMOHD9fhw4ctPX94eLi6du2qfv36qXLlypaeG/YLCwv76x78zz958+ZVkSJFFBsb+9efIkWKqEyZMqpcubLy58/vdOoBKSgoSHXq1FGdOnX09ttv6/Dhw5ozZ44WLFigJUuW6NChQ17PKXfu3Lrjjjv06KOP6uabb/Z6/0bFxcXphRde0AsvvKDLly9r7dq12rx5s3bt2qU9e/boxIkTOnXqlM6ePavk5GSlpKQoNTXV6bT/g/FBzhUon2FfwvWEQHf//fercePGhuOvv/5623LxB7fffruaN2+u4cOH6/3339fx48dt6adSpUrq3bu3unXrpty5c9vShy8oXbq0RowYoYEDB+qTTz7RuHHjtGvXLq/0HRoaqoYNG+rOO+9Up06dHN3dKVCe3zwz4WueeeYZ3XHHHdnGnT59WtOmTVPnzp29kFXOwT0BgC975ZVXTMUH+u9B9erVU7169XTgwAF98sknmjRpkvbu3ev1PEqXLq2WLVuqdevWSkhICOjfheC7uB7+i7kQ5ET/W+CXK1cujRkzxqeKf83IbkGr+vXreykT7zl06JC6du2q9PT0qx5/8cUX9frrr3vcT79+/TR69OirHitSpIgqVarkcR9/+vzzzw3FRUVF6dFHH7WsXwAAAH8Q5HK5XE4nAQAA8L+OHDmiiRMnasaMGVq1apWSkpI8PmfFihWVkJCgzp07q0GDBgoKCrIgU/iztLQ0ff/99xo7dqwWLlyoS5cuuXWekJAQ1alTR23atNE999yj4sWLW5wpgKvZu3evli9frrVr12rdunXatGmTLl68aGkfQUFBiouLU4MGDdSmTRvdcsstbq9+CM8xPgCsw/UE4E+pqan67rvv9M0332jevHm6fPmyR+erWLGiWrRoodtvv10JCQmm7gVr1641HBsXF+fTCx9t2LBBU6ZM0fz587Vx40bLCtmCg4NVqVIlNWrUSI0bN1bz5s1ZcMRmPDPhtIyMDFWqVMlQ4XC9evW0bNkyL2R1dS6XK9OXDv9XUFCQX75Uyj0BAPzLpk2bNH36dC1YsEDr1693+3ugzERGRqpq1aq66aabVK9ePTVo0ICduuCzuB7+xlwIcorVq1f/a8HSd955R/369XMwI8/Uq1dPv/zyy1WP5c6dW+fOnVNoaODseZKRkaGEhAQtXrz4qsd79uypkSNHWtLXL7/8onr16l312J133qnJkydb0s/JkydVsmTJLHdi/FPv3r01fPhwS/oFAADwFxT4AQAAn5eamqq1a9dq7dq12r17t/bs2aN9+/bp3LlzunTpki5fvqy0tDRFRkYqd+7cio6OVvHixVWuXDmVK1dO8fHxql+/vmJjY53+q8CHJScna9myZVq1apW2bdumbdu26cSJE7p48aISExMVGhqq6Oho5cmTRwULFtS1116rqlWrqmrVqmrQoAEragM+4sCBA9q2bZt27dql/fv368CBAzp27JhOnz6tM2fO6OLFi3/tFPLPXXPz5cv3186Mf+6YW6lSJd1www0qWLCg038tXAXjA8A6XE8A/nTlyhWtXLlSa9eu1aZNm7R//34dPHhQ586dU1JSklJTUxUVFfXXvaBgwYKqWLGi4uLiFBcXp5tvvlllypRx+q/hc5KSkrRmzRpt2LDhr3vsvn37dPbsWV2+fFmXL1/WlStXFBoaqvDwcEVFRalgwYIqXLiwihcvrrJly6pcuXK67rrrVL16dXYAcBDPTDjl888/V8+ePQ3Fbty4UdWrV7c5I0jcEwDA36Snp+u3337T2rVr9fvvv+vAgQM6cOCAjh49qsTERF2+fFlJSUlKSUlRWFiYIiIilCtXLuXPn18xMTGKiYlRiRIlVLZsWZUtW1aVK1fWtdde65cF6wDXw9+YCwH8g8vlUp48eTItTr7xxhtNFcz6g48++ki9e/e+6rFGjRpp/vz5lhU0Dh48WM8//3ymefTq1cuSfgYNGqQBAwZkGxcaGqpdu3ZxfwUAADkOBX4AAAAAAAAAAAAA4KOSk5NVvnx5HT58ONvYHj166PPPP/dCVgAAAAAAeMf+/fuzLPaycpc5X3Dy5Elde+21Onfu3H+O5cuXT5s3b1bJkiUt669169aaNWvWVY9t2bJFVatW9biP9PR0lS9fXvv378829t5779VXX33lcZ8AAAD+JtjpBAAAAAAAAAAAAAAAVxcREZHpSvr/a/z48Tp58qTNGQEAAAAA4D07d+7M8ni5cuW8lIl3vPrqq1ct7pOkt956y9LivoyMDC1fvvyqxwoXLqwqVapY0s/UqVMNFfeFhITopZdesqRPAAAAf0OBHwAAAAAAAAAAAAD4sB49eqhEiRLZxl25ckUfffSRFzICAAAAAMA7jhw5kuXxQoUKeSkT+x07dkyjRo266rHKlSurZ8+elva3ceNGXbhw4arHGjZsqKCgIEv6GTJkiKG4rl27qmLFipb0CQAA4G8o8AMAAAAAAAAAAAAAHxYREaEBAwYYiv3444+VlJRkc0YAAAAAAHjH0aNHszyeO3duL2Vivw8++EDJyclXPdavXz+FhoZa2t/SpUszPdaoUSNL+li8eLHWrl2bbVxoaCi79wEAgByNAj8AAAAAAAAAAAAA8HE9evRQ+fLls407deqUvvjiCy9kBAAAAACA/c6fP5/l8UAp8EtPT9fo0aOveqxQoULq0qWL5X0uWbIk02NWFfgNHjzYUFz37t1VoUIFS/oEAADwRxT4AQAAAAAAAAAAAICPCwsL0xtvvGEo9p133lFKSorNGQEAAAAAYL/sdqnPyMjwUib2WrBggY4fP37VY+3atVNERITlfWa2g1+BAgV03XXXeXz+NWvWaM6cOdnGRUVF6dVXX/W4PwAAAH9GgR8AAAAAAAAAAAAA+IFOnTrpxhtvzDbu0KFDma76DwAAAACAP8luAZvLly97KRN7TZ06NdNjt99+u+X9bdu2TSdPnrzqsYYNGyo42PNXzF9//XVDcU8//bSKFi3qcX8AAAD+jAI/AAAAAAAAAAAAAPADQUFBGjJkiKHYQYMGKTU11eaMAAAAAACwV3h4eJbHjxw54qVM7LVo0aKr/vegoCDVrVvX8v6WLFmS6bFGjRp5fP6NGzdqxowZ2cYVKVJE/fr187g/AAAAf0eBHwAAAAAAAAAAAAD4icaNG6tDhw7Zxu3fv1+fffaZFzICAAAAAMA+UVFRWR7fs2ePlzKxz9GjR7V79+6rHitdurQKFSpkeZ92F/i98MILhuLefPNN5c2b1+P+AAAA/B0FfgAAAAAAAAAAAADgR4YMGaJcuXJlG/fGG2/o8uXLXsgIAAAAAAB7xMTEZHl83bp1XsrEPhs3bsz0WLly5Wzpc+nSpVf97/ny5dP111/v0bmXLVummTNnZht3ww036IEHHvCoLwAAgEBBgR8AAAAAAAAAAAAA+JGyZcuqb9++2cYdO3ZMw4cP90JGAAAAAADYo3Tp0lke37Vrlw4dOuSlbOyR2e59klS8eHHL+9u7d68OHjx41WP169dXcLBnr5cPGDDAUNwHH3zgcV8AAACBglERAAAAAAAAAAAAAPiZAQMGZPuSoyQNHjxYp06d8kJGAAAAAABYLy4uLtuYb7/91guZmLNnzx5dvHjRUOzevXszPZY7d26rUvrLkiVLMj3WqFEjj849Y8aMTHcH/Kf77rtP9evX96gvAACAQEKBHwAAAAAAAAAAAAD4maioKH344YfZxp0/f16vvvqq/QkBAAAAAGCDypUrK0+ePFnGfPrpp17KxpiFCxeqZs2aevjhhw3Fnz17NtNjoaGhVqX1l6wK/Bo3buz2edPS0tSvX79s4woWLKghQ4a43Q8AAEAgosAPAAAAAAAAAAAAAPxQmzZt1K5du2zjRo4cqe3bt9ufEAAAAAAAFgsODladOnWyjNm2bZumTJnipYyy9tFHH6lFixY6c+aMJkyYoM8++yzbNomJiZkeO3/+vJXp6fTp05oxY8ZVj+XJk0c33HCD2+f+5JNPtGPHjmzjBg8erJiYGLf7AQAACETWL+sAAAAAAAAAAAAAAPCKDz/8UNWrV882bt++fapUqZIXMgIAAAAAwFrt27fX3Llzs4x55pln1KJFC+XNm9dLWf3b6dOn1aNHD02fPv1f//3JJ59U7dq1Va1atUzbpqWlZXrs1KlTVqUoSXrsscd08uTJqx6rV6+eQkJC3D53UFCQXnnllSxjoqKi1KNHD7f7AAAACFRBLpfL5XQSAAAAAAAAAAAAAAAAAAAAAPC/Tpw4oZIlSyolJSXLuDvvvFOTJk1SUFCQlzL7w5w5c/Tggw/qyJEjVz0eFxentWvXKjo6+qrH77//fo0dO/aqx2JiYnTixAlL8vziiy/00EMPZXp80KBBeu655yzpCwAAAOYEO50AAAAAAAAAAAAAAAAAAAAAAFxNbGysOnXqlG3clClT1KdPH/sT+n+HDx9Wp06d1LJly0yL+ySpTJkyCg7O/JXtggULZnrs5MmT2rZtm0d5StLSpUvVq1evLGPq1avncT8AAABwDwV+AAAAAAAAAAAAAAAAAAAAAHxW//79FRISkm3c8OHDde+99yopKcm2XM6dO6eBAweqUqVKmjx5cpaxd911l2bMmKGoqKhMY4oXL57lOT799FO38vzTqlWrdNttt2W5A2JYWJhuuukmj/oBAACA+yjwAwAAAAAAAAAAAAAAAAAAAOCz4uPj1bNnT0Ox48eP1/XXX6+FCxdamsPhw4f10ksvqUyZMnr11VeVmJiYZfzDDz+sCRMmKCwsLMu42rVrZ3l81KhR2rlzp+l8JWnu3Llq3ry5Lly4kGXc9ddfr8jISLf6AAAAgOco8AMAAAAAAAAAAAAAAAAAAADg09566y2VLl3aUOzOnTuVkJCghIQEffvtt0pNTXWrz3Pnzmny5Mm69dZbVbp0ab3xxhs6f/58lm3Cw8P10Ucf6dNPP1VwcPavatesWVMRERGZHr906ZLuuusunT171nDe6enpGjx4sFq3bp1tcZ8kdu8DAABwWJDL5XI5nQQAAAAAAAAAAAAAAAAAAAAAZGXFihVq3LixUlJSTLXLmzevEhISVLt2bVWrVk2lS5dW0aJFFRUVpbCwMCUmJurChQs6evSofvvtN23dulVLly7VmjVrlJ6ebrifa665RlOnTs12V77/dccdd2jatGlZxsTFxWnChAmqUaNGlnErV65U7969tXbtWsP9f/HFF+revbvheAAAAFiLAj8AAAAAAAAAAAAAAAAAAAAAfmHKlCm6++67lZGR4XQq/9KhQwd98sknio2NNd12+fLlql+/frZxQUFBat++vTp27KjatWurSJEiCgoK0sGDB7Vo0SJNmDBBS5YsMd3/+vXrsy0cBAAAgH0o8AMAAAAAAAAAAAAAAAAAAADgN7755hs98MADpnfys0Px4sU1YsQItWvXzqPz3HLLLZo/f741SZkQEhKixMRE5cqVy+t9AwAA4A/BTicAAAAAAAAAAAAAAAAAAAAAAEZ16dJF8+bNU7FixRzLISoqSs8884x+++03j4v7JGns2LGKiYnxPLGryGp3vvLly1PcBwAA4DAK/AAAAAAAAAAAAAAAAAAAAAD4lYYNG2rLli3q2rWrV/vNlSuXnnzySe3Zs0fvvvuu8uXLZ8l5ixcvrsmTJytPnjyWnE+SChUqpNGjR+uJJ57INObaa6+1rD8AAAC4hwI/AAAAAAAAAAAAAAAAAAAAAH6nYMGCGj9+vNasWaPWrVsrKCjItr7i4+P13nvv6eDBgxo2bJiKFClieR+NGzfW0qVLVaJECY/OExkZqT59+mjnzp26//77tXr16kxjK1as6FFfAAAA8FyQy+VyOZ0EAAAAAAAAAAAAAAAAAAAAAHhi3759Gj16tL7//ntt2rTJo3OFhITopptuUrNmzdS2bVvVqlXLoiyzd/78eb377rsaNmyYLl26ZLhduXLl9MADD+ihhx76VwFizZo1tXbt2r/+f4kSJdS2bVu1b99ejRs3VmhoqKX5AwAAwBwK/AAAAAAAAAAAAAAAAAAAAAAElKNHj2rFihXauHGjtm/frkOHDunw4cO6cOGCkpKSlJqaqqioKOXJk0fR0dEqUqSI4uLiVKlSJVWpUkV169ZV/vz5Hf07nDlzRrNnz9bs2bO1adMmnTx5UqdOnVJwcLDy5s2rEiVKqFKlSqpVq5YSEhJ03XXXXfU8JUuWVJ48edSuXTu1b99eN910k627HQIAAMAcCvwAAAAAAAAAAAAAAAAAAAAAIEClpqYqLCzM6TQAAACQCQr8AAAAAAAAAAAAAAAAAAAAAAAAAABwQLDTCQAAAAAAAAAAAAAAAAAAAAAAAAAAkBNR4AcAAAAAAAAAAAAAAAAAAAAAAAAAgAMo8AMAAAAAAAAAAAAAAAAAAAAAAAAAwAEU+AEAAAAAAAAAAAAAAAAAAAAAAAAA4AAK/AAAAAAAAAAAAAAAAAAAAAAAAAAAcAAFfgAAAAAAAAAAAAAAAAAAAAAAAAAAOIACPwAAAAAAAAAAAAAAAAAAAAAAAAAAHECBHwAAAAAAAAAAAAAAAAAAAAAAAAAADqDADwAAAAAAAAAAAAAAAAAAAAAAAAAAB1DgBwAAAAAAAAAAAAAAAAAAAAAAAACAAyjwAwAAAAAAAAAAAAAAAAAAAAAAAADAART4AQAAAAAAAAAAAAAAAAAAAAAAAADgAAr8AAAAAAAAAAAAAAAAAAAAAAAAAABwAAV+AAAAAAAAAAAAAAAAAAAAAAAAAAA4gAI/AAAAAAAAAAAAAAAAAAAAAAAAAAAcQIEfAAAAAAAAAAAAAAAAAAAAAAAAAAAOoMAPAAAAAAAAAAAAAAAAAAAAAAAAAAAHUOAHAAAAAAAAAAAAAAAAAAAAAAAAAIADKPADAAAAAAAAAAAAAAAAAAAAAAAAAMABFPgBAAAAAAAAAAAAAAAAAAAAAAAAAOAACvwAAAAAAAAAAAAAAAAAAAAAAAAAAHAABX4AAAAAAAAAAAAAAAAAAAAAAAAAADiAAj8AAAAAAAAAAAAAAAAAAAAAAAAAABxAgR8AAAAAAAAAAAAAAAAAAAAAAAAAAA6gwA8AAAAAAAAAAAAAAAAAAAAAAAAAAAdQ4AcAAAAAAAAAAAAAAAAAAAAAAAAAgAMo8AMAAAAAAAAAAAAAAAAAAAAAAAAAwAEU+AEAAAAAAAAAAAAAAAAAAAAAAAAA4AAK/AAAAAAAAAAAAAAAAAAAAAAAAAAAcAAFfgAAAAAAAAAAAAAAAAAAAAAAAAAAOIACPwAAAAAAAAAAAAAAAAAAAAAAAAAAHECBHwAAAAAAAAAAAAAAAAAAAAAAAAAADqDADwAAAAAAAAAAAAAAAAAAAAAAAAAAB1DgBwAAAAAAAAAAAAAAAAAAAAAAAACAAyjwAwAAAAAAAAAAAAAAAAAAAAAAAADAART4AQAAAAAAAAAAAAAAAAAAAAAAAADgAAr8AAAAAAAAAAAAAAAAAAAAAAAAAABwAAV+AAAAAAAAAAAAAAAAAAAAAAAAAAA4gAI/AAAAAAAAAAAAAAAAAAAAAAAAAAAcQIEfAAAAAAAAAAAAAAAAAAAAAAAAAAAOoMAPAAAAAAAAAAAAAAAAAAAAAAAAAAAHUOAHAAAAAAAAAAAAAAAAAAAAAAAAAIADKPADAAAAAAAAAAAAAAAAAAAAAAAAAMABFPgBAAAAAAAAAAAAAAAAAAAAAAAAAOAACvwAAAAAAAAAAAAAAAAAAAAAAAAAAHAABX4AAAAAAAAAAAAAAAAAAAAAAAAAADiAAj8AAAAAAAAAAAAAAAAAAAAAAAAAABxAgR8AAAAAAAAAAAAAAAAAAAAAAAAAAA6gwA8AAAAAAAAAAAAAAAAAAAAAAAAAAAdQ4AcAAAAAAAAAAAAAAAAAAAAAAAAAgAMo8AMAAAAAAAAAAAAAAAAAAAAAAAAAwAEU+AEAAAAAAAAAAAAAAAAAAAAAAAAA4AAK/AAAAAAAAAAAAAAAAAAAAAAAAAAAcAAFfgAAAAAAAAAAAAAAAAAAAAAAAAAAOIACPwAAAAAAAAAAAAAAAAAAAAAAAAAAHECBHwAAAAAAAAAAAAAAAAAAAAAAAAAADqDADwAAAAAAAAAAAAAAAAAAAAAAAAAAB1DgBwAAAAAAAAAAAAAAAAAAAAAAAACAAyjwAwAAAAAAAAAAAAAAAAAAAAAAAADAART4AQAAAAAAAAAAAAAAAAAAAAAAAADgAAr8AAAAAAAAAAAAAAAAAAAAAAAAAABwwP8BPD7e1DKWSKUAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 26, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAADfgAAAv7CAYAAACO1kBYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdeZSU5Zk34LubfQ0giyggCijSrcEN3AExCSruGo1bNBGjRoMSjUuMC4kaxX0J0YhGY2Jc+RQ1rmijuKCAiCAIKu4IgmDYabq+PzLjTA9IV1dX1VvdfV3neGbqrft+3l+bzDmeaX4+RalUKhUAAAAAAAAAAAAAAAAAQF4VJx0AAAAAAAAAAAAAAAAAAOojBT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAAAAABKg4AcAAAAAAAAAAAAAAAAACVDwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAKGirV6+Oe++9N959992kowAAAAAAAEBWKfgBAAAAAAAABWnt2rVx++23R69eveL444+PPn36xMSJE5OOBQAAAAAAAFnTMOkAAAAAAAAAAP/bunXr4m9/+1uMHDkyPvzww0rfrV27NqFUAAAAAAAAkH0KfgAAAAAAAEBBqKioiPvvvz8uvfTSeO+995KOAwAAAAAAADmn4AcAAAAAAAAkKpVKxdixY+OSSy6Jd955J+k4AAAAAAAAkDcKfgAAAAAAAEBiHn/88bj44otj6tSpSUcBAAAAAACAvFPwAwAAAAAAAPLu2Wefjd/97nfx+uuvJx0FAAAAAAAAEqPgBwAAAAAAAOTNhAkT4qKLLoqXXnop6SgAAAAAAACQuOKkAwAAAAAAAAB132uvvRY/+MEPYsCAAcp9AAAAAAAA8F8U/AAAAAAAAICcmTJlSgwdOjR22223eO6555KOAwAAAAAAAAVFwQ8AAAAAAADIuunTp8dhhx0WO+20UzzxxBNJxwEAAAAAAICC1DDpAAAAAAAAAEDdct9998Wxxx4bqVQq6SgAAAAAAABQ0NzgBwAAAAAAAGTVl19+qdwHAAAAAAAAaVDwAwAAAAAAABLVr1+/GDt2bNIxAAAAAAAAIO8aJh0AAAAAAAAAqJ923333uPjii+NHP/pR0lEAAAAAAAAgEQp+AAAAAAAAQF71798/LrvsMsU+AAAAAAAA6j0FPwAAAAAAACAvdthhhxg5cmQMHTo06SgAAAAAAABQEBT8AAAAAAAAgJzadtttY+TIkXH44YdHUVFR0nEAAAAAAACgYCj4AQAAAAAAADmx1VZbxSWXXBLHHntsNGjQIOk4AAAAAAAAUHAU/AAAAAAAAICs6ty5c4wePTp+/vOfR6NGjZKOAwAAAAAAAAVLwQ8AAAAAAADIqqOOOirpCAAAAAAAAFArFCcdAAAAAAAAAAAAAAAAAADqIwU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAACQBePHj4+ioqKM/zr77LOT/hEKwoIFC6J9+/YZ/33cfPPNY8mSJUn/GAAAAAAAAABpUfADAAAAAADIgpKSkhrtz549O0tJardf/epXsWjRooz3b7vttmjTpk32AgEAAAAAAADkkIIfAAAAAABAFnTq1Cnat2+f8b6CX8S4cePi/vvvz3j/+OOPj6FDh2YxEQAAAAAAAEBuKfgBAAAAAABkSU1u8Zs3b16sXr06i2lql2+++SZOO+20jPc7d+4cN954YxYTAQAAAAAAAOSegh8AAAAAAECW1KTgV1FREXPmzMlimtrlN7/5TXz22WcZ7992223Rtm3bLCYCAAAAAAAAyD0FPwAAAAAAgCwpLS2t0f7s2bOzlKR2KSsri9tvvz3j/eOOOy4OPPDALCYCAAAAAAAAyA8FPwAAAAAAgCypyQ1+EfWz4Ldq1aoYNmxYpFKpjPY33XTTuOmmm7KcCgAAAAAAACA/FPwAAAAAAACypKY3+M2aNStLSWqPSy+9NObMmZPx/p///Odo27ZtFhMBAAAAAAAA5I+CHwAAAAAAQJa0a9cuNt1004z369sNflOnTo1rr7024/1jjz02Dj744CwmAgAAAAAAAMgvBT8AAAAAAIAsKikpyXi3PhX8ysvL4+c//3mUl5dntL/pppvGTTfdlOVUAAAAAAAAAPml4AcAAAAAAJBFpaWlGe8uXbo05s+fn8U0heuaa66JqVOnZrw/evToaNeuXRYTAQAAAAAAAOSfgh8AAAAAAEAW1eQGv4j6cYvfe++9F5dddlnG+z/5yU/ikEMOyV4gAAAAAAAAgIQo+AEAAAAAAGRRTW7wi6j7Bb9UKhXDhg2LVatWZbTfqVOnuPnmm7OcCgAAAAAAACAZDZMOAAAAAAAAUJe4wW/jbrvttpgwYULG+6NHj45NNtkki4ki7rnnnrjnnnuyemZt84tf/CKOPPLIpGMAAAAAAABAvaPgBwAAAAAAkEWtW7eOrl27xieffJLR/qxZs7KcqHB8+umncd5552W8f/TRR8ehhx6axUT/8cEHH8Tzzz+f9XNrkyFDhiQdAQAAAAAAAOql4qQDAAAAAAAA1DU1ucWvLt/gd9ppp8U333yT0W7Hjh3jlltuyXIiAAAAAAAAgGQp+AEAAAAAAGRZTQp+8+bNizVr1mQxTWH45z//GY8//njG+3/6059ik002yWIiAAAAAAAAgOQp+AEAAAAAAGRZaWlpxrvr1q2LOXPmZDFN8hYtWhS/+tWvMt4/6qij4vDDD89iIgAAAAAAAIDCoOAHAAAAAACQZTW5wS8iYvbs2VlKUhjOOuusWLhwYUa7HTt2jFtuuSXLiQAAAAAAAAAKg4IfAAAAAABAlvXp0yeKiooy3q9LBb+nnnoq7r333oz3b7311mjfvn0WEwEAAAAAAAAUDgU/AAAAAACALGvRokV079494/26UvBbtmxZ/OIXv8h4/8gjj4wjjjgii4kAAAAAAAAACkvDpAMAAAAAAADURaWlpfHhhx9mtDtr1qwsp0nGBRdcEB9//HFGux06dIhbb701y4k27NJLL41LL700L+8CAAAAAAAA+N/c4AcAAAAAAJADJSUlGe/WhRv8XnnllfjTn/6U8f6tt94aHTp0yGIiAAAAAAAAgMKj4AcAAAAAAJADNSn4LVmyJBYsWJDFNPm1evXqOPnkk6OioiKj/SOOOCKOPPLILKcCAAAAAAAAKDwKfgAAAAAAADlQWlpao/3afIvfH/7wh3j33Xcz2m3fvn2Nbv4DAAAAAAAAqE0U/AAAAAAAAHKgd+/e0aBBg4z3Z82alcU0+TN9+vS46qqrMt6/5ZZbokOHDllMBAAAAAAAAFC4FPwAAAAAAAByoGnTptGjR4+M92vjDX7r1q2Ln//857F27dqM9g8//PA46qijspwKAAAAAAAAoHAp+AEAAAAAAORISUlJxru1seB3ww03xBtvvJHRbvv27eNPf/pTlhMBAAAAAAAAFDYFPwAAAAAAgBwpLS3NeHfWrFlZTJJ7H3zwQVx88cUZ7998883RsWPHLCYCAAAAAAAAKHwKfgAAAAAAADlSkxv8Pvzww1izZk0W0+TWsGHDYsWKFRntHnrooXH00UdnOREAAAAAAABA4VPwAwAAAAAAyJGa3OC3bt26eP/997OYJnfGjBkT48ePz2h3k002idGjR2c5EQAAAAAAAEDtoOAHAAAAAACQI1tvvXU0atQo4/3Zs2dnMU1ufPHFF3HOOedkvH/zzTdHp06dspgIAAAAAAAAoPZQ8AMAAAAAAMiRRo0aRa9evTLenzVrVhbT5MYZZ5wRS5YsyWj3kEMOiZ/85CfZDQQAAAAAAABQiyj4AQAAAAAA5FBpaWnGu4V+g9/DDz8cjzzySEa77dq1iz//+c9ZTgQAAAAAAABQuyj4AQAAAAAA5FBJSUnGu4Vc8FuyZEmcccYZGe/ffPPN0alTpywmAgAAAAAAAKh9FPwAAAAAAAByqK7e4DdixIiYP39+RrsHH3xwHHPMMVlOBAAAAAAAAFD7KPgBAAAAAADkUE1u8Fu8eHEsXLgwi2my4/nnn4+77roro9127drFn//85ywnAgAAAAAAAKidFPwAAAAAAAByqGfPntGkSZOM9wvtFr8VK1bEKaeckvH+jTfeGJtuumkWEwEAAAAAAADUXgp+AAAAAAAAOdSgQYPo3bt3xvuFVvC76KKL4oMPPsho98ADD4zjjjsuy4kAAAAAAAAAai8FPwAAAAAAgBwrKSnJeHfWrFlZTFIzkyZNihtvvDGj3bZt28Ztt92W5UQAAAAAAAAAtZuCHwAAAAAAQI6VlpZmvFsoN/itXbs2Tj755KioqMho/8Ybb4zOnTtnORUAAAAAAABA7abgBwAAAAAAkGM1ucGvUAp+V155ZUyfPj2j3aFDh8bxxx+f5UQAAAAAAAAAtZ+CHwAAAAAAQI7V5Aa/Dz74INauXZvFNNU3c+bMuPzyyzPabdOmTdx2221ZTgQAAAAAAABQNyj4AQAAAAAA5NiWW24ZzZs3z2i3vLw83n///SwnSl9FRUWcfPLJsWbNmoz2b7zxxthss82ynAoAAAAAAACgblDwAwAAAAAAyLGioqLo06dPxvuzZ8/OYprqueWWW+LVV1/NaHfo0KFxwgknZDkRAAAAAAAAQN2h4AcAAAAAAJAHJSUlGe8mVfD76KOP4re//W1Gu23atInbbrsty4kAAAAAAAAA6hYFPwAAAAAAgDyoScFv1qxZWUySvl/84hexbNmyjHavv/762GyzzbKcCAAAAAAAAKBuaZh0AAAAAAAAgPqgtLQ0490kbvC755574umnn85od//9948TTzwxu4GoF1KpVNIRAAAAAAAAIK+KUn5LBgAAAAAAkHMff/xxbLHFFhntbrLJJvHVV19lOdF3W7BgQWy77baxePHiau+2adMm3nnnndh8881zkAwAAAAAAACgbilOOgAAAAAAAEB90K1bt2jdunVGu4sWLYpFixZlOdF3O/PMMzMq90VEXHfddcp9AAAAAAAAAGlS8AMAAAAAAMiTPn36ZLw7a9asLCb5bo899lg88MADGe3ut99+cdJJJ2U5EQAAAAAAAEDdpeAHAAAAAACQJ6WlpRnvzp49O4tJNuybb76J008/PaPd733ve3H77bdnOREAAAAAAABA3abgBwAAAAAAkCclJSUZ7+aj4HfuuefGZ599ltHuddddF126dMlyIgAAAAAAAIC6TcEPAAAAAAAgT2pS8Js1a1YWk6yvrKws/vKXv2S0O2TIkPjZz36W5UQAAAAAAAAAdZ+CHwAAAAAAQJ6UlpZmvJvLG/xWrVoVw4YNi1QqVe3d1q1bx+23356DVAAAAAAAAAB1n4IfAAAAAABAnnTu3DnatWuX0e4HH3wQ5eXlWU70H5dccknMmTMno91rr702unbtmuVEAAAAAAAAAPWDgh8AAAAAAEAelZSUZLS3du3a+OCDD7KcJmLKlClx7bXXZrT7wx/+ME4++eQsJwIAAAAAAACoPxT8AAAAAAAA8ijTgl9ExKxZs7KYJKK8vDxOPvnkWLduXbV3W7duHXfccUdW8wAAAAAAAADUNwp+AAAAAAAAeVRaWprx7uzZs7OYJGLUqFExderUjHavueaa6Nq1a1bzAAAAAAAAANQ3Cn4AAAAAAAB5VJMb/LJZ8Hvvvfdi5MiRGe3+4Ac/iGHDhmUtCwAAAAAAAEB9peAHAAAAAACQR4Vwg18qlYphw4bFqlWrqr3bqlWruOOOO7KSAwAAAAAAAKC+U/ADAAAAAADIo/bt20fHjh0z2p01a1ZWMvz5z3+OCRMmZLR7zTXXRLdu3bKSAwAAAAAAAKC+K0qlUqmkQwAAAAAAANQn++yzT7zwwgsZ7S5atCjatWuX8bs//fTTKCkpiW+++abau/vuu288++yzGb8bAAAAAAAAgMrc4AcAAAAAAJBnpaWlGe/Onj27Ru8+7bTTMir3tWrVKu64444avRsAAAAAAACAyhT8AAAAAAAA8qykpCTj3VmzZmW8e99998Xjjz+e0e7VV18dW2yxRcbvBgAAAAAAAGB9Cn4AAAAAAAB5lsQNfosWLYrhw4dntDt48OD4xS9+kdEuAAAAAAAAAN9NwQ8AAAAAACDPanKDX6YFv7POOisWLlxY7b2WLVvGmDFjoqioKKP3AgAAAAAAAPDdFPwAAAAAAADyrE2bNrH55ptntJtJwe9f//pX3HvvvRm97+qrr44tttgio13IhwULFsTSpUuTjgEAAAAAAAAZUfADAAAAAABIQKa3+L3//vtRXl6e9vyyZcvi1FNPzehdgwYNyngXcumjjz6KG264IQYMGBCdO3eOvfbaK+lIAAAAAAAAkJGGSQcAAAAAAACoj0pKSuKZZ56p9t6aNWviww8/jF69eqU1f8EFF8THH39c7fe0bNky7rzzzigqKqr2LuTCu+++G4888kg88sgjMWXKlErf9ezZM6FUAAAAAAAAUDMKfgAAAAAAAAkoLS3NeHf27NlpFfxeeeWV+NOf/pTRO6666qro3r17Rrv10dKlS+Odd96Jd955J95999347LPP4rPPPov58+fHsmXLYuXKlbFq1apo2LBhtGrV6tu/OnbsGL17945tt902evfuHd///vejXbt2Sf84BeWKK66Ie+65J2bPnv2dMwMGDMhjIgAAAAAAAMieolQqlUo6BAAAAAAAQH3z+uuvx6677prR7qhRo+Kcc87Z6Mzq1aujb9++MWvWrGqfP2jQoHj++efd3rcRX331VTz33HNRVlYWZWVl8e6772bl3OLi4thpp51iyJAhMWTIkOjfv380aNAgK2fXRkuWLIlNNtkkKioqNjo3derU6Nu3b35CAQAAAAAAQBa5wQ8AAAAAACABJSUlUVRUFJn8uxg3dpPZf/vDH/6QUbmvRYsWMWbMGOW+DViwYEE89NBD8fDDD0dZWVmsW7cu6++oqKiIN954I9544434/e9/H126dIlhw4bFsGHDonPnzll/X6F76aWXqiz3tWnTJrbffvs8JQIAAAAAAIDsKk46AAAAAAAAQH3UsmXL6NatW0a7VRX83n777bjqqqsyOvuqq66KLbfcMqPduiiVSsX48ePjqKOOii5dusQvf/nLGD9+fE7KfRvy6aefxiWXXBLdunWLI488MqZNm5aX9xaKCRMmVDmz1157RXGxX3sCAAAAAABQO/lNFwAAAAAAQEJKS0sz2ttYwW/dunXx85//PNauXVvtcwcOHBinn356RpnqmnXr1sU//vGP2G677WLw4MHxwAMPZPT3NFvKy8vjoYceih133DFOPPHEWLRoUWJZ8qmsrKzKmYEDB+Y+CAAAAAAAAOSIgh8AAAAAAEBCSkpKMtpbsGBBfP311xv87oYbbog333yz2me2aNEixowZE0VFRRllqitSqVT87W9/i969e8exxx4bM2bMSDpSJRUVFXH33XdHnz594sknn0w6Tk4tW7Yspk6dWuXcgAED8pAGAAAAAAAAckPBDwAAAAAAICGZFvwiNnyL3/vvvx8XX3xxRuddeeWVsdVWW2Wcpy6YOHFi9O/fP0444YSYO3du0nE2asGCBXHggQfGH//4x6Sj5MzEiROjvLx8ozOtW7eOvn375icQAAAAAAAA5ICCHwAAAAAAQEJKS0sz3t1Qwe+UU06JFStWVPusvffeO84444yMs9R2ixcvjp/+9Kex5557xhtvvJF0nLRVVFTEBRdcEL/5zW+SjpITZWVlVc7sueee0aBBgzykAQAAAAAAgNxQ8AMAAAAAAEjItttuG8XFmf265v8W/MaMGRPjx4+v9jnNmzePO++8M4qKijLKUds9/PDD0adPn7jnnnuSjpKxUaNG1cmb/CZMmFDlzIABA/KQBAAAAAAAAHKnYdIBAAAAAAAA6qtmzZrFVlttFXPnzq327qxZs77937/44os455xzMspw5ZVXRo8ePTLarc2WL18ep59+elaKfU2aNIl+/fpFnz59onfv3rHtttvG5ptvHq1atYrWrVtHq1atoqKiIlatWhXLly+P+fPnxxdffBFz586N6dOnx1tvvRVTp06NdevWZZzhwgsvjO222y4OOOCAGv88hWDlypVp3aao4AcAAAAAAEBtV5RKpVJJhwAAAAAAAKivDjnkkHj00UervdenT5+YMWNGREQcdthhMXbs2Gqfsddee0VZWVm9u73vnXfeiR//+Mfx7rvvZnxGjx494qCDDoof/vCHMWDAgGjWrFmNMi1dujTKysri3nvvjcceeyxWr15d7TM6deoU06dPjw4dOtQoSyEYP358DB48eKMzLVu2jK+//joaNvTvNAUAAAAAAKD2Kk46AAAAAAAAQH1WWlqa0d7cuXNj3bp18fDDD2dU7mvevHnceeed9a7cN3bs2Ojfv39G5b7GjRvHj3/843juuedizpw5cd1118WQIUNqXO6LiPje974XBx10UDzwwAPx+eefx3nnnRdNmzat1hlffvllnHfeeTXOUggmTJhQ5czuu++u3AcAAAAAAECtp+AHAAAAAACQoJKSkoz21qxZE1OmTIkzzjgjo/0rrrgievbsmdFubXX11VfH4YcfHitWrKjWXuPGjeOMM86Ijz/+OO6///4YPHhwTouR7dq1iz/+8Y8xe/bs+OEPf1it3bvvvjumTZuWo2T5U1ZWVuXMwIEDcx8EAAAAAAAAckzBDwAAAAAAIEGZFvwiIo499tiYP39+tff23HPPOPPMMzN+b22TSqXijDPOiPPOOy9SqVTae0VFRXHsscfGrFmz4uabb45OnTrlMOX6unXrFk899VRcfvnl0aBBg7R2Kioq4sorr8xxstxas2ZNvP7661XODRgwIA9pAAAAAAAAILeKUtX5LSYAAAAAAABZtWbNmmjRokWUl5fn5X3NmjWLt99+u97c3ldRURGnnHJKjBkzplp73bp1izvvvDMGDx6co2TV88gjj8RPfvKTWLNmTZWzzZs3j2XLluX0lsFcevnll2Ovvfba6Ezz5s1jyZIl0ahRozylAgAAAAAAgNxwgx8AAAAAAECCGjdunNey3eWXX15vyn2pVCpOOumkapf7TjrppJg+fXrBlPsiIg477LAYN25cNG3atMrZXXbZpdaW+yIiysrKqpzZbbfdlPsAAAAAAACoExT8AAAAAAAAElZaWpqX9+yxxx4xfPjwvLyrEJx99tlxzz33pD3fpEmTuPvuu+POO++M1q1b5zBZZn74wx/Gn//85yrn9tlnnzykyZ0JEyZUOTNgwIA8JAEAAAAAAIDcU/ADAAAAAABIWElJSc7f0axZs7jrrruiuLh+/HroyiuvjBtvvDHt+Q4dOsTzzz8fJ5xwQg5T1dxPf/rTKkuagwYNylOa7CsvL49XXnmlyjkFPwAAAAAAAOqK+vEbXAAAAAAAgAKWjxv8/vCHP0SvXr1y/p5C8OCDD8aFF16Y9nyvXr1i0qRJsccee+QwVfZcddVV0b179w1+17x58+jfv39+A2XR5MmTY9myZRudadq0aa3+GQEAAAAAAOB/U/ADAAAAAABIWK5v8Nt9993jrLPOyuk7CsWMGTPipJNOSnu+Z8+e8cILL3xnYa4QNWnSJK688soNfrfHHntE48aN85woeyZMmFDlTP/+/aNJkyZ5SAMAAAAAAAC5p+AHAAAAAACQsF69euWslNW0adO48847o7i47v9aaOnSpXHIIYfE8uXL05rv0aNHvPDCC7H55pvnOFn2HX300bH99tuv93yfffZJIE32lJWVVTkzcODA3AcBAAAAAACAPKn7v8kFAAAAAAAocA0bNoxtttkmJ2f/4Q9/yNnZheaXv/xlzJ07N63ZzTbbLF544YXo0qVLjlPlzoknnrjes0GDBuU/SJZUVFTExIkTq5wbMGBAHtIAAAAAAABAfij4AQAAAAAAFICSkpKsn7nbbrvF2WefnfVzC9EDDzwQf//739OabdasWTz22GPRtWvXHKfKrWOOOSYaNmz47edWrVrFTjvtlGCimpk2bVosWbJkozONGzeOXXfdNT+BAAAAAAAAIA8U/AAAAAAAAApAaWlpVs9r2rRp3HXXXVFcXPd/HTR//vw47bTT0potKiqKu+++u1YX4f5bp06dKpXd9t5770qFv9qmrKysypl+/fpFs2bN8pAGAAAAAAAA8qP2/oYPAAAAAACgDsn2DX4jR46MbbbZJqtnFqoRI0bE4sWL05q96KKL4sgjj8xxovzp169fvPzyyxERMWjQoLy/f968eTFhwoSYNm1avP322/Hxxx/H0qVLY8mSJVFRURGtWrWKrl27Rp8+fWL33XePAw44ILbccssNnjVhwoQq3zdgwIBs/wgAAAAAAACQqKJUKpVKOgQAAAAAAEB9N3fu3OjVq1dWztp1113j5ZdfjgYNGmTlvEI2fvz4GDx4cFqzdfHvy/333x9HH310RERMmTIldthhh5y/8/3334+77747Hn300Xj77bervb/HHnvE8OHD44gjjoiioqKIiEilUtGxY8f46quvNrr7zDPPxA9+8IOMcgMAAAAAAEAhUvADAAAAAAAoABUVFdGyZctYuXJljc5p2rRpTJ06NXr37p2lZIWrvLw8tttuu5g1a1aVsy1atIi33norevbsmYdk+bNixYqYOXNmRETsuOOOUVxcnLN3vfjii3H99dfH448/HhUVFTU+7/vf/36MHj06dtttt5gxY0aUlpZudL5hw4axZMmSaNGiRY3fDQAAAAAAAIWiYdIBAAAAAAAAiCguLo5tt902pkyZUqNzLrvssnpR7ouIGDNmTFrlvoiIa6+9ts6V+yIimjdvHjvvvHNO3zFjxowYMWJEPPPMM1k9d9q0abHnnnvGb37zm+jcuXOV8zvvvLNyHwAAAAAAAHWOG/wAAAAAAAAKxAknnBB/+9vfMt7v379/TJw4MRo0aJDFVIVp5cqV0bNnz/j888+rnO3Xr1+89tprUVRUlIdkdcfy5cvj/PPPj9GjR8e6dety+q5GjRrF2rVrNzpz/vnnx5VXXpnTHAAAAAAAAJBvbvADAAAAAAAoECUlJRnvNmnSJO666656Ue6LiLj11lvTKvdFRFx//fXKfdU0adKkOO6442LOnDl5eV9V5b6IiAEDBuQhCQAAAAAAAORXcdIBAAAAAAAA+I/S0tKMdy+77LLYdttts5imcK1duzZuuOGGtGZ//OMfx+67757bQHXMqFGjYo899shbuS8dDRo0iD322CPpGAAAAAAAAJB1bvADAAAAAAAoEJne4NevX78455xzspymcN13333x2WefVTlXXFwcV1xxRR4S1Q1r166NU045Jf76178mHWU9O+64Y7Rq1SrpGAAAAAAAAJB1Cn4AAAAAAAAFYosttoiWLVvGsmXL0t5p0qRJ3HXXXdGgQYMcJiss1113XVpzhx56aPTo0SPHaeqGr7/+Og499NAoKyur1l6vXr3isMMOi/79+8f2228f7du3j+bNm8eSJUvi/fffj4kTJ8Y999wTb7/9do3yDRgwoEb7AAAAAAAAUKiKUqlUKukQAAAAAAAA/Ef//v1j0qRJac9fccUVccEFF+QwUWF54403ol+/fmnNTpw4MXbfffccJ6r9Fi9eHPvuu29MnTo1rfni4uI49NBD49xzz43+/funtTNu3Lg488wz46OPPsoo47hx42Lo0KEZ7QIAAAAAAEAhK046AAAAAAAAAP+jtLQ07dlddtklfvOb3+QwTeG566670prr37+/cl8aFi1aFIMHD0673Lf77rvH5MmT46GHHkq73BcRceCBB8bkyZMz+s+kuLg49txzz2rvAQAAAAAAQG2g4AcAAAAAAFBASkpK0ppr3Lhx3HXXXdGgQYMcJyocq1evjn/+859pzZ544om5DVMHLF26NAYPHhxvvfVWlbONGzeO66+/Pl5++eXo27dvRu/bZJNN4umnn47tt9++Wnvf//73o02bNhm9EwAAAAAAAAqdgh8AAAAAAEABSbfgd8kll6Q9W1eMHz8+vv766yrnGjRoEIcddlgeEtVe5eXlccQRR8S0adOqnO3atWu8+uqrcdZZZ0VRUVGN3tuyZct49NFHo0WLFmnvDBw4sEbvBAAAAAAAgEKm4AcAAAAAAFBASktLq5zZaaed4je/+U0e0hSWcePGpTU3YMCA6NixY47T1G6nnnpqPPfcc1XO7bDDDvHaa6/FjjvumLV3d+/ePS677LK05wcMGJC1dwMAAAAAAEChUfADAAAAAAAoIJtvvnm0adPmO79v3Lhx/PWvf42GDRvmL1SBePzxx9OaO/zww3OcpHa77rrrYsyYMVXO7brrrlFWVhabbbZZ1jOceeaZaZ1bVFQUe+21V9bfDwAAAAAAAIVCwQ8AAAAAAKDAlJSUfOd3F198cVq3/NU17777bnzyySdpzbrx7bu9+eabcf7551c5179//3j66aejVatWOcnRuHHjOOWUU6qc22677aJdu3Y5yQAAAAAAAACFQMEPAAAAAACgwHxXwW+nnXaK8847L89pCsPEiRPTmmvbtm306dMnx2lqp2XLlsUxxxwTa9eu3ehcz54944knnojWrVvnNE86hU1lTQAAAAAAAOo6BT8AAAAAAIACs6Eb+ho3bhx33XVXNGzYMIFEyXv55ZfTmtttt92iqKgox2lqpxEjRsScOXM2OtO2bdt44oknYpNNNsl5ngkTJlQ5o+AHAAAAAABAXafgBwAAAAAAUGA2dIPfRRddFNttt10CaQrD66+/ntZcv379cpykdpo0aVLccccdVc6NGTMmtt5665znmT9/fpVlw4iIvffeO+dZAAAAAAAAIEn181/xCgAAAAAAUMD22WefSKVSSccoGGvWrIm5c+emNdujR48cp6l9UqlUnHnmmVX+d+pnP/tZHHrooXnJlM7tfX369IkOHTrkIQ0AAAAAAAAkxw1+AAAAAAAAFLQ5c+ZEeXl5WrMKfuu75557YtKkSRud6dChQ1x//fV5SpRewW/gwIG5DwIAAAAAAAAJU/ADAAAAAACgoM2aNSvt2a222iqHSWqfioqKuOKKK6qcGzlyZLRu3ToPif4jnYLfgAED8pAEAAAAAAAAkqXgBwAAAAAAQEH7+OOP05pr1KhRdOrUKcdpapexY8fGe++9t9GZnj17xrBhw/KUKGLx4sXxzjvvVDm399575yENAAAAAAAAJEvBDwAAAAAAgII2f/78tOZatGiR4yS1z9VXX13lzPDhw6NBgwZ5SPMfL730UqRSqY3ObLPNNrHpppvmKREAAAAAAAAkR8EPAAAAAACAgvbFF1+kNdeyZcscJ6ldpk+fHpMmTdroTOvWrePEE0/MT6D/MmHChCpnBgwYkIckAAAAAAAAkDwFPwAAAAAAAAra119/ndacG/wq+8c//lHlzEEHHZT3YqSCHwAAAAAAAPwPBT8AAAAAAAAK2sqVK9Oaa9y4cY6T1B6pVCr++c9/Vjl3xBFH5CHN/1i2bFlMnTq1yjkFPwAAAAAAAOoLBT8AAAAAAAAK2qpVq7I6Vx9MmzYt5s2bt9GZhg0bxg9+8IP8BPovEydOjHXr1m10pmfPnrH55pvnKREAAAAAAAAkS8EPAAAAAACAgrZmzZq05lasWJHjJLVHWVlZlTN9+/aN5s2b5yHN/5gwYUKVM27vAwAAAAAAoD5R8AMAAAAAAKCgNWnSJK25hQsXRiqVynGa2iGdgt+uu+6ahySVKfgBAAAAAABAZQp+AAAAAAAAFLRmzZqlNbdmzZqYP39+jtPUDi+//HKVM9tss00ekvyPVatWxRtvvFHlnIIfAAAAAAAA9YmCHwAAAAAAAAWtRYsWac/Onj07h0lqh0WLFsXChQurnNtyyy3zkOZ/vP7667F69eqNznTv3j26deuWp0QAAAAAAACQPAU/AAAAAAAAClrnzp3Tnk3nhri6bu7cuWnNdenSJcdJKisrK6tyxu19AAAAAAAA1DcKfgAAAAAAABS07t27pz07ceLE3AWpJebMmZPWXHVuRsyGCRMmVDmj4AcAAAAAAEB9o+AHAAAAAABAQatOwe/ZZ5+NlStX5i5MLfD555+nNZfPgt/atWvjtddeq3JOwQ8AAAAAAID6RsEPAAAAAACAgta3b9+0Z1esWBFPPPFE7sLkybx58+LJJ5/MaHfZsmVpzVVUVGR0fiYmT54cy5cv3+hM165dY6uttspTIgAAAAAAACgMCn4AAAAAAAAUtK233jratWuX9vwtt9ySwzS5N2HChNhll13i6KOPjrlz51Z7P92C35IlS6p9dqb+8Y9/VDnj9j4AAAAAAADqIwU/AAAAAAAACt5uu+2W9mxZWVlMmjQph2ly5y9/+Uvsu+++8dVXX8W///3vOOqoo2L16tXVOmPFihVpzeWr4PfSSy/FrbfeWuWcgh8AAAAAAAD1kYIfAAAAAAAABe+ggw6q1vyIESNylCQ3Vq1aFaeffnqccsopsXbt2m+fT5kyJc4555xqnVVUVJTW3AcffFCtczOxfPnyOOmkk6KioqLKWQU/AAAAAAAA6iMFPwAAAAAAAAreIYccEg0aNEh7fuLEiXHbbbflMFH2TJ8+PXbeeecYPXr0Br+/5ZZbYuzYsWmf16xZs7TmXn311bTPzEQqlYoTTjgh3n///SpnO3fuHL169cppHgAAAAAAAChECn4AAAAAAAAUvI4dO8YPfvCDau2cffbZ8c477+QoUc2lUqm46aabYpdddokZM2ZsdPbnP/95fPTRR2md2759+7TmXn755bTmMnXppZfGI488ktbs7rvvntMsAAAAAAAAUKgU/AAAAAAAAKgVhg8fXq35lStXxv777x+ffPJJjhJlbtq0abHnnnvG8OHDY/Xq1VXOf/311/H888+ndXaXLl3Smps+fXq8+eabac1W12233Ra///3v055X8AMAAAAAAKC+UvADAAAAAACgVvjRj34Uffr0qdbOJ598Evvuu298+OGHOUpVPd98802cddZZsdNOO8Urr7yS1k6DBg3i9ttvj5/97Gdpzffu3TvtPDfccEPas+m67bbb4rTTTotUKpX2joIfAAAAAAAA9VVRqjq/WQMAAAAAAIAEPf7443HggQdWe69jx47x8MMPx5577pmDVFVbvnx5jB49OkaNGhULFixIe69JkyZx3333xaGHHpr2zsqVK6N169ZRXl5e5WxxcXE888wzMXjw4LTP/y6pVCouu+yyGDlyZLXKfY0bN45///vf0bhx4xpnAAAAAAAAgNrGDX4AAAAAAADUGkOHDo0hQ4ZUe2/BggUxYMCAOO+882LlypU5SLZh33zzTVx11VXRvXv3OPfcc6tV7mvdunU8/fTT1Sr3RUQ0a9Ysdtttt7RmKyoq4rjjjovPPvusWu/4v5YuXRqHHnpoXHbZZdUq90VEbL/99sp9AAAAAAAA1FsKfgAAAAAAANQqt956a7Ru3braexUVFXH11VdHjx49YvTo0bFq1aocpPuPl19+OU466aTo3LlznH/++fHVV19Va79Pnz7x2muvxYABAzJ6f3VuOZw/f37stttu8fbbb2f0rv/3//5f9OnTJx599NGM9nfaaaeM9gAAAAAAAKAuKEpV91+hCQAAAAAAAAl74IEH4qijjqrRGW3bto1jjz02jjjiiNhjjz2iYcOGGZ+1cuXKmDBhQjz99NPx+OOPx5w5czI+65hjjonbb789WrRokfEZX3zxRXTt2jXWrVuX9k7Lli3jvPPOi7POOitatmxZ5fxLL70UV1xxRTz11FMZ54yIuP3222PYsGE1OgMAAAAAAABqKwU/AAAAAAAAaqVzzjknrr322qyc1bp169h9991jhx12iO222y66du0aXbp0iTZt2kTTpk2jcePGsXz58vjmm2/im2++ifnz58fMmTNjxowZMWPGjJg0aVKNbwRs3LhxXH/99XH66adn5Wc6/vjj49577632Xvv27ePggw+OIUOGRGlpaXTs2DFatmwZCxcujHnz5sVzzz0Xjz32WEyZMiUrOSdNmhS77LJLVs4CAAAAAACA2kbBDwAAAAAAgFoplUrFSSedFHfffXfSUWpsxx13jDvuuCN22GGHrJ35/vvvR0lJSaxevTprZ2ZbUVFRLFu2LJo3b550FAAAAAAAAEhEcdIBAAAAAAAAIBNFRUUxZsyYOP7445OOkrEWLVrEtddeG5MmTcpquS8iokePHnHJJZdk9cxs23LLLZX7AAAAAAAAqNcU/AAAAAAAAKi1GjRoEPfcc09cfPHFSUeptqFDh8bMmTNjxIgR0aBBg5y847zzzosDDjggJ2dvzKmnnhr77bdflXN9+vTJQxoAAAAAAAAoXAp+AAAAAAAA1HqXXXZZPProo9GpU6eko1Rp0KBBUVZWFuPGjYtu3brl9F3FxcXxz3/+M/bcc8+cvue/9ejRI/71r3/F6NGjY+bMmVXO9+zZMw+pAAAAAAAAoHAp+AEAAAAAAFAnHHTQQTFjxow49thjo6ioKOk46/nvYt/48eNj7733ztt7W7ZsGU899VQcdthhOXtHmzZt4g9/+EPMmDEjhgwZEgsWLIiPPvqoyr0ePXrkLBMAAAAAAADUBgp+AAAAAAAA1BmbbLJJ3HvvvTF58uTYb7/9ko4Tbdu2jdNPPz3efPPNvBf7/rcWLVrEww8/HKNHj442bdpk7dzNNtssRo4cGfPmzYvf/va30aRJk4iIeOONNza616NHjxgxYkQcfPDBWcsCAAAAAAAAtVFRKpVKJR0CAAAAAAAAcuGdd96Jv/zlL3HvvffG4sWL8/LOJk2axMCBA+PEE0+MQw45JJo2bZqX96brq6++iptuuiluv/32+PLLL6u937Zt2xgyZEgcffTRccABB0SDBg3Wm7n00kvjsssuq/Rshx12iEMOOSQOOeSQ2H777TPODwAAAAAAAHWJgh8AAAAAAAB13urVq6OsrCz+9a9/xVNPPRWzZs3K2tnFxcXRt2/f2HfffWPw4MGx1157RbNmzbJ2fq6sW7cuJkyYEOPHj48333wzPvjgg5g/f36sWLEiIiKaN28ebdu2jW7dusVWW20VO+64Y/Tr1y923nnnaNiw4UbPvvDCC2PUqFGx1157fVvq69atWz5+LAAAAAAAAKhVFPwAAAAAAACod5YsWRJvvfVWTJs2LebMmROfffZZfPrpp/Hll1/GihUrYtWqVbFq1aooLi6OVq1aRatWraJly5bRqlWr6Nq1a/Tu3Tu22Wabb/9ny5Ytk/6RCs6yZcv8fQEAAAAAAIAqKPgBAAAAAAAAAAAAAAAAQAKKkw4AAAAAAAAAAAAAAAAAAPWRgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEiAgh8AAAAAAAAAAAAAAAAAJEDBDwAAAAAAAAAAAAAAAAASoOAHAAAAAAAAAAAAAAAAAAlQ8AMAAAAAAAAAAAAAAACABCj4AQAAAAAAAAAAAAAAAEACFPwAAAAAAAAAAAAAAAAAIAEKfgAAAAAAAAAAAAAAAACQAAU/AAAAAAAAAAAAAAAAAEhAw6QDAAAAAAAAAAAAAAAAAGTD2rVrY/z48fHoo4/G66+/Hl988UUsWrQo2rZtG5tuumn07ds3hg4dGkOGDImWLVsmHReiKJVKpZIOAQAAAAAAAAAAAAAAAFATDzzwQFxwwQXxwQcfVDnbrl27uPDCC+OMM86IJk2a5CEdbJiCHwAAAAAAAAAAAAAAAFBr/fvf/45jjjkmHn/88Wrv9u7dOx577LHo1atXDpJB1RT8AAAAAAAAAAAAAAAAgFrps88+i/322y+mT5+e8Rnt2rWLsWPHxt57753FZJCe4qQDAAAAAAAAAAAAAAAAAFTX8uXLY+jQoeuV+4qLi+OYY46JcePGxaeffhqrV6+OL774IsaPHx9nn312tGrVqtL84sWL46CDDopZs2blMz5EhBv8AAAAAAAAAAAAAAAAgFroxz/+cTz44IOVnvXs2TMeeOCB2GGHHb5zb8GCBXHqqafG2LFj19udMmXKegVAyCU3+AEAAAAAAAAAAAAAAAC1yjPPPLNeuW+HHXaIV199daPlvoiIjh07xsMPPxxnnnlmpedz586NUaNGZT0rbIwb/AAAAAAAAAAAAAAAAIBapW/fvjFt2rRvP3fo0CEmT54cXbt2TfuMioqKOOCAA+Kpp5769lmLFi3i/fffj06dOmU1L3wXN/gBAAAAAAAAAAAAAAAAtcZbb71VqdwXEXH55ZdXq9wXEVFcXBy33nprNGrU6Ntny5cvj4ceeigrOSEdDZMOAABkrry8PObMmVPpWbt27aK4WIcfAAAAAAAAAACgrquoqIjFixdXetarV69o2NAfEwegbnvssccqfe7UqVOcdNJJGZ211VZbxaGHHhoPPPDAt8/GjRsXv/zlL2uUEdLln9wAoBabM2dO9OnTJ+kYAAAAAAAAAAAAFIiZM2fGtttum3QMAMipyZMnV/q833771ajgvv/++1cq+E2aNCnjs6C6XO8DAAAAAAAAAAAAAAAA1BpffPFFpc81Lbdvs802lT5//fXXsWbNmhqdCelS8AMAAAAAAAAAAAAAAABqjSVLllT63LZt2xqdt8kmm6z3bNGiRTU6E9Kl4AcAAAAAAAAAAAAAAADUGu3atav0+euvv67Ref+3MBgR0aZNmxqdCelqmHQAACBz//cfTCMiZs6cGe3bt08gDQAAAAAAAAAAAPn01VdfRZ8+fSo929CfKwOAuqZTp06VPs+ZM6dG53344YeVPrdu3TqaNWtWozMhXQp+AFCLFRevfxlv+/bto0OHDgmkAQAAAAAAAAAAIGkb+nNlAFDX9O3bNx577LFvPz/77LM1Ou+ZZ55Z73zIF//0BgAAAAAAAAAAAAAAANQa+++/f6XPH330UaXCX3UsXLgw7r///krPDjzwwIyzQXUp+AEAAAAAAAAAAAAAAAC1xi677BJbbbVVpWfnn39+LF++vNpnnX/++bFs2bJvPzdq1CiOPPLIGmeEdCn4AQAAAAAAAAAAAAAAALVGcXFxXHrppZWevfvuu3HiiSdGeXl52udcf/31ceedd1Z6dtppp8UWW2yRjZiQFgU/AAAAAAAAAAAAAAAAoFY59thjo3///pWePfTQQ3HAAQfEF198sdHd5cuXx69+9asYMWJEpeebbbZZ/O53v8t6VtiYhkkHAAAAAAAAAAAAAAAAAKiO4uLiePjhh2PnnXeO+fPnf/v8mWeeiV69esWwYcPi4IMPjj59+kTbtm1jyZIlMWfOnHjqqafitttuiwULFlQ6r3nz5vHYY49F+/bt8/2jUM8VpVKpVNIhAIDMLFy4MDp27Fjp2YIFC6JDhw4JJQIAAAAAAAAAACBf/BkyAIh48803Y//994+FCxdmfEbLli3j/vvvj/333z+LySA9xUkHAAAAAAAAAAAAAAAAAMjEzjvvHK+//nqUlJRktN+9e/eYOHGich+JUfADAAAAAAAAAAAAAAAAaq0tt9wyJk+eHNdee21ssskmae20atUqLrvsspg+fXpsv/32OU4I360olUqlkg4BAGRm4cKF0bFjx0rPFixYEB06dEgoEQAAAAAAAAAAAPniz5ABwPqWLVsWTz/9dDz55JMxefLk+PLLL2PRokXRunXr2HTTTWO77baLoUOHxgEHHBBt2rRJOi4o+AFAbeb/OQMAAAAAAAAAAFB/+TNkAAC1X3HSAQAAAAAAAAAAAAAAAACgPlLwAwAAAAAAAAAAAAAAAIAEKPgBAAAAAAAAAAAAAAAAQAIU/AAAAAAAAAAAAAAAAAAgAQp+AAAAAAAAAAAAAAAAAJAABT8AAAAAAAAAAAAAAAAASICCHwAAAAAAAAAAAAAAAAAkQMEPAAAAAAAAAAAAAACoFf7973/H/fffH5MnT046CtQp33zzTdIR6qylS5cmHYECp+AHAAAAAAAAAAAAAAAUrAULFsQdd9wRBxxwQHTo0CGOPvroOOSQQ5KOBXXG3//+9+jRo0c89dRTSUepc2655ZbYeuut4/777086CgVMwQ8AAAAAAAAAAAAAACgoH374YVx33XWx9957R+fOnWPYsGHx5JNPxurVqyMiYs8990w4IdR+8+bNiyFDhsRxxx0XX331Vfz2t79NOlKdMmfOnDjnnHNiwYIFcfTRR8dBBx0Un332WdKxKEAKfgAAAAAAAAAAAAAAQEF45JFHom/fvrHVVlvFr3/963jppZeioqJivbmBAwfmPxzUIX/5y1+itLQ0nn766YiI+N73vhfXXHNNwqmy48knn4yioqJv/3rwwQcTydGzZ8/49a9//e3ncePGRWlpaYwdOzaRPBQuBT8AAAAAAAAAAAAAAKAg3HTTTTFt2rQq5wYNGpSHNFD3LF68OA4//PA45ZRTYvny5RER0blz55gwYUKd+L+rtWvXxogRIyo9mzlzZiJZioqK4vLLL4+///3v0bRp04iIWLJkSRx22GFx5plnfnsjKSj4AQAAAAAAAAAAAAAAiVu9enW8/vrrVc5tttlmsfXWW+chEdQtEyZMiO9///vxyCOPfPusV69e8eqrr8b222+fYLLsufnmm2P27NmVns2YMSOhNP9xzDHHxAsvvBDt2rX79tktt9wSu+22W3z88ccJJqNQKPgBAAAAAAAAAAAAAACJe+2112LVqlVVzg0YMCAPaaBuueWWW2Lw4MHx6aeffvusd+/eUVZWFltssUWCybJn4cKFMXLkyPWeJ13wi4jYddddY8KECbHZZpt9+2zq1KnRr1+/mDRpUoLJKAQKfgAAAAAAAAAAAAAAQOJefPHFtOYGDRqU2yBQh6xZsyZOPvnkOPPMM6O8vPzb5yUlJfHiiy9G586dE0yXXRdddFEsXbp0vedz5syJtWvXJpCospKSknj55ZejR48e3z778ssvY+DAgfHggw8mmIykKfgBAAAAAAAAAAAAAACJKysrS2tu4MCBuQ0CdcTXX38d++yzT4wZM6bS82233TZeeOGF6NSpU0LJsm/atGlxxx13bPC7tWvXxpw5c/KcaMO23HLLePHFF2PLLbf89tnKlSvjqKOOij/96U8JJiNJCn4AAAAAAAAAAAAAAECiVq9eHa+99lqVc5tvvnn06tUrD4mgdvv8889jr732iokTJ1Z63q1bt3jmmWeiQ4cOCSXLjeHDh0dFRcV3fj9jxow8ptm4Ll26xPPPPx+bb775t89SqVT88pe/jOuvvz7BZCRFwQ8AAAAAAAAAAAAAAEjUpEmTYuXKlVXOub0PqjZnzpzYfffd1yu1dejQIZ599tno0qVLQsly46GHHqryBtBCKvhF/Ocmv+eeey7at29f6fmIESPiyiuvTCgVSVHwAwAAAAAAAAAAAAAAEvXiiy+mNafgBxv33nvvxV577RUfffRRpedNmzaNcePGxdZbb51QstxYtWpVnHvuuVXOFVrBLyKid+/e8cgjj0Tjxo0rPb/wwgvjlltuSSgVSVDwAwAAAAAAAAAAAAAAEqXgBzU3b968GDx4cHz55ZfrfTdmzJjo379/Aqly65prrol58+ZVOTdz5szch8nAXnvtFbfffvt6z4cPHx4PPfRQAolIgoIfAAAAAAAAAAAAAACQmDVr1sSrr75a5VyXLl2iZ8+eeUgEtc9nn30WgwcPjk8//XS97y688MI45phjEkiVW5999ln88Y9/TGt2zpw5sXbt2hwnysxPf/rTGDFiRKVnFRUVcdxxx0VZWVlCqcgnBT8AAAAAAAAAAAAAACAxkyZNipUrV1Y55/Y+2LBly5bFfvvtFx988MF63w0YMCBGjhyZQKrcO//882P58uVpza5duzbee++9HCfK3B//+MfYaaedKj1bvXp1HH744WndUEjtpuAHAAAAAAAAAAAAAAAkJt0bqhT8YH0VFRVxzDHHxPTp09f7rn379vH3v/89GjRokECy3Hrttdfi73//e7V2ZsyYkaM0NdeoUaO47777omXLlpWeL1q0KA477LBYtWpVQsnIBwU/AAAAAAAAAAAAAAAgMS+++GJacwp+sL7zzjsvxo0bt8HvxowZE5tvvnmeE+VeKpWK4cOHRyqVqtbezJkzc5QoO3r16hVXX331es+nTp0ap556agKJyBcFPwAAAAAAAAAAAAAAIBFr166NV155pcq5rl27Ro8ePfKQCGqPhx56KK655poNfnfUUUfFQQcdlOdE+fG3v/0tJk2aVO29Qr7B77/94he/iF133XW953fffXfcfffdCSQiHxT8AAAAAAAAAAAAAACARLzxxhuxYsWKKufc3geVffzxxzFs2LANfteuXbu46aab8pwoP5YtWxYXXHBBRru1oeBXXFwct912WzRs2HC974YPHx6ffPJJAqnINQU/AAAAAAAAAAAAAAAgES+++GJacwp+8D/WrVsXxxxzTCxZsmSD3//+97+Pjh075jdUnlxxxRXx+eefZ7Q7Z86cWLt2bZYTZd/2228fJ5xwwnrPly5dGieeeGKkUqkEUpFLCn4AAAAAAAAAAAAAAEAiysrK0pobNGhQjpNA7TFq1KiYOHHiBr/beuut45RTTslzovz48MMP47rrrst4v7y8PN57770sJsqd3/3ud9G4ceP1no8fPz5Gjx6dQCJyScEPAAAAAAAAAAAAAADIu/Ly8u8sKf1vW2yxRWy55ZZ5SASF74MPPoiRI0d+5/dXXHFFNGzYMI+J8uecc86J1atXf/u5qKgoTjrppGqdMWPGjGzHyonu3bvHz372sw1+99vf/jYWLlyY50TkkoIfAAAAAAAAAAAAAACQd2+++WYsX768yrkBAwbkIQ3UDqeffnqsXLlyg99ts802cdhhh+U5UX688MIL8cgjj1R6dtxxx8WJJ55YrXNqS8EvImL48OEbfL5kyZI477zz8pyGXFLwAwAAAAAAAAAAAAAA8u7FF19Ma27gwIE5zQG1xUMPPRRPP/30d35/9tlnR1FRUR4T5ce6devirLPOqvSsefPmccUVV0RpaWm1zqpNBb/evXvHoEGDNvjdX//613j11VfznIhcUfADAAAAAAAAAAAAAADyLt2C33cVXKA+KS8vjwsvvPA7v2/Tpk2ccMIJeUyUP7fffnu8/fbblZ79+te/ji5dukS7du2ic+fOaZ9Vmwp+ERGnnnrqBp+nUqk455xz8pyGXFHwAwAAAAAAAAAAAAAA8qq8vDwmTpxY5dwWW2wR3bt3z30gKHBjxoyJOXPmfOf3RxxxRDRr1iyPifJjyZIlcfHFF1d61rlz5zjvvPO+/VxSUpL2eXPnzo01a9ZkLV+uDR06NJo3b77B71555ZV48skn85yIXFDwAwAAAAAAAAAAAAAA8mry5MmxbNmyKucGDhyY+zBQ4FauXBkjR47c6Myxxx6bpzT5demll8ZXX31V6dnll18eLVq0+PZzaWlp2ueVl5fHe++9l7V8uda8efPYb7/9vvP73/3ud3lMQ64o+AEAAAAAAAAAAAAAAHlVVlaW1tygQYNynAQK3z333BOff/75d37fsWPH2HvvvfOYKD9mzZoVt956a6VnO+ywQ/z0pz+t9Kw6N/hFRMyYMaPG2fLp8MMP/87vpkyZEmPHjs1jGnKhYdIBAAAAAAAAAAAAAACAwpVKpWLy5MkxefLkmD59ekyfPj3mz58fS5cujSVLlkRFRUW0atUqunTpEttss03svvvuMWTIkOjdu/d3nvniiy+m9W43+FHfpVKpuOGGGzY686Mf/SiKi+veHWBnn312lJeXV3p23XXXrfezVucGv4jaV/Dbd999o6ioKFKp1Aa/HzVqVBx66KF5TkU2KfgBAAAAAAAAAAAAAACVVFRUxFNPPRVjx46Nxx9/PObPn7/R+cWLF8fixYvj7bffjgcffDDOPvvs+P73vx9nnnlmHH/88dG4ceNvZ9etWxcvv/xylRm6d+8eW2yxRY1/FqjN/vWvf8WsWbM2OrPffvvlKU3+PPHEE/HUU09VenbwwQdvsPRb3Rv8Zs6cWZNoedehQ4fYbrvt4u23397g96+++mq8/vrr0b9//zwnI1vqXj0XAAAAAAAAAAAAAADIyNdffx3XXHNN9OjRIw444IC44447qiz3fZdp06bFySefHL17946HH3742+dTpkyJf//731XuDxo0KKP3Ql1y8803VzkzePDgPCTJn7Vr18aIESMqPWvUqFGMGjVqg/OtWrWKbt26pX1+bbvBL6Lq/4yvu+66PCUhFxT8AAAAAAAAAAAAAACgnlu5cmVcfvnl0a1btzj33HNj3rx5WTv7ww8/jCOOOCJ+/OMfx9KlS+PFF19Ma29DN3VBfTJ//vx49tlnNzrTo0eP6NixY54S5cdNN90U7733XqVnv/zlL6NXr17fuVNaWpr2+XPnzo01a9ZknC8Ju+2220a/f/jhh+Pzzz/PUxqyTcEPAAAAAAAAAAAAAADqsfvuuy+22WabuOiii2LZsmU5e8+DDz4Y/fr1iwceeCCteQU/6rt//OMfsW7duo3OVFX8qm0WLlwYv//97ys9a9euXVx88cUb3SspKUn7HeXl5TF79uyM8iVll1122ej369ati3vvvTdPacg2BT8AAAAAAAAAAAAAAKiHvvrqqzjssMPimGOOiU8++SQv73zvvffizTffrHJuq622im7duuUhERSuv/3tb1XO9O/fPw9J8ue3v/1tLF26tNKzSy65JNq2bbvRverc4BcRMXPmzGpnS1L37t2jffv2G52555578pSGbFPwAwAAAAAAAAAAAACAeuaJJ56I0tLSGDt2bNJRNsjtfdR3H374Ybz11ltVzm233Xa5D5Mnb731VowZM6bSs6233jpOO+20KnerW/CbMWNGteYLwY477rjR72fMmBGTJ0/OUxqyScEPAAAAAAAAAAAAAADqkcsvvzwOPPDA+PLLL5OO8p0U/KjvnnzyybTmSkpKcpwkf4YPHx4VFRWVno0aNSoaNWpU5e62224bxcXp16RqY8Gvd+/eVc7885//zEMSsk3BDwAAAAAAAAAAAAAA6oFVq1bFscceGxdddFGkUqmk42yUgh/13b/+9a8qZzp27Bjt27fPQ5rce/DBB2PChAmVnu2zzz5x0EEHpbXfrFmz2GqrrdJ+X20s+G277bZVzowbNy4PSci2hkkHAAAAAAAAAAAAAAAAcuubb76J/fffPyZOnFjt3YYNG8bAgQPjRz/6UfTt2ze22WabaNOmTTRt2jS+/vrrmDdvXrz22mvxwAMPZHT+/9WjR4/o2rVrjc+B2mr16tXxwgsvVDm39dZb5yFN7q1atSrOPffcSs+Ki4vjuuuuq9Y5JSUlMXfu3LRm33///VizZk00bty4Wu9IUjoFv9mzZ8fcuXOjZ8+eeUhEtrjBDwAAAAAAAAAAAAAA6rAlS5bEvvvuW+3y3RZbbBHXXHNNLFiwIJ599tk455xzYt99942uXbtGq1atolGjRtGxY8fo169f/OpXv4qXX345pkyZEnvuuWeN8rq9j/pu8uTJsWLF/2fvvsPbqs/+j38keckz3omd5cROnEkGIQRCBisQdssuUHj6o7QUCIUCDaV0sfuUVVYpD1BWKYWyIZSRCWST6dhx4sRJnOGRxFNekn5/pFBCbOvY1tHReL+uq9dVdG59vx/Lyokjn/vcTT7rBg8ebH6YAPjjH/+o8vLywx678sorddRRR3VrndGjRxuubW9vV0lJSbfWt5rRCYVM8Qs9NPgBAAAAAAAAAAAAAAAAAAAAABCm9u/fr5NOOkkrVqww/Jy0tDQ9+uij2rJli26++WalpqYafu748eO1aNEi/fKXv+xJXEk0+AHLli0zVDdo0CCTk5ivoqJC999//2GPJSYm6q677ur2Wt1p8JOkjRs3dnsPK+Xk5MjhcPis+/TTTwOQBv5Egx8AAAAAAAAAAAAAAAAAAAAAAGGosbFRs2bN0urVqw0/58ILL1Rpaamuv/56RUVF9Whfm82me++9t0cNOpI0c+bMHj0PCBdLly41VBcODX633XabGhsbj3isX79+3V5r1KhR3aoPtQY/h8OhnJwcn3VffvmlvF5vABLBX2jwAwAAAAAAAAAAAAAAAAAAAAAgzLjdbl100UVauXKlofr4+Hi98MIL+sc//qG0tDS/ZPjVr36lSy+9tFvPyc/PV25url/2B0LV8uXLDdX1pAkumCxdulSvvPLKYY8NGDBAN998c4/WGz58eLcak0OtwU+SBg4c6LNm//79Ki4uDkAa+AsNfgAAAAAAAAAAAAAAAAAAAAAAhJnrrrtO77//vqHa3NxcLV68WJdffrnfczz22GPq27ev4foZM2b4PQMQShobG1VeXm6oNjMz0+Q05vF6vbrhhhuOmDR37733yul09mjNmJgYFRQUGK4vKirq0T5WMno+/eKLL0xOAn+iwQ8AAAAAAAAAAAAAAAAAAAAAgDDy2GOP6amnnjJUO3LkSC1fvlwTJkwwJUtqaqp+97vfGa6fOXOmKTmAUFFaWnpE01tnQrnB74UXXtCKFSsOe+yYY47p9tTP7xo9erTh2i1btqilpaVX+wVaRkaGobo1a9aYGwR+RYMfAAAAAAAAAAAAAAAAAAAAAABhYs2aNfrFL35hqPaoo47SggULlJOTY2qmq666Srm5uYZqmeCHSLd582bDtaHa4NfQ0KC5c+ce8fiDDz4om83Wq7W70+DndrtVUlLSq/0CzWiDXyhOJ4xkNPgBAAAAAAAAAAAAAAAAAAAAABAGGhsbdfHFFxuaSDV8+HB9+umnAWkQioqKUnNzs8+6goIC05sNgWBXWlpqqM7hcCgpKcnkNOa4++67tWfPnsMeu+CCC3T88cf3eu1Ro0Z1q37jxo293jOQjDb4bdq0yeQk8Cca/AAAAAAAAAAAAAAAAAAAAAAACAM333yzoWlUffv21bx585Senh6AVNK6detUU1Pjs27mzJkBSAMEt4qKCkN1CQkJJicxR1lZmR566KHDHouNjdX999/vl/W7M8FPCr1Jd6mpqYbq9uzZo4MHD5obBn5Dgx8AAAAAAAAAAAAAAAAAAAAAACFu+fLlevrpp33WRUdH6+2339bgwYPND/Uf8+fPN1Q3Y8YMc4MAIaCystJQXWJioslJzPGLX/ziiCmjN9xwg/Ly8vyyfn5+vmJjYw3Xh9oEv+40du7YscPEJPAnGvwAAAAAAAAAAAAAAAAAAAAAAAhhHo9H1157rbxer8/ae+65R8ccc0wAUv0XDX6Acfv27TNUF4oT/D777DO9+eabhz2WmZmpX/3qV37bw+FwqLCw0HB9qDX4daexc+/evSYmgT/R4AcAAAAAAAAAAAAAAAAAAAAAQAj7v//7P61atcpn3YwZM3TzzTcHINF/eTweLV682GfdsGHD1K9fvwAkAoJbVVWVobr4+HiTk/iX2+3WjTfeeMTjv/vd75SSkuLXvUaPHm24duvWrUdMFAxm3WnspMEvdNDgBwAAAAAAAAAAAAAAAAAAAABAiGpra9Ndd93lsy4qKkqPPfaYbDZbAFL915o1a3TgwAGfdTNnzgxAGiD41dXVGaqLiooyOYl//eUvf9H69esPe2zkyJH68Y9/7Pe9Ro0aZbjW7XarpKTE7xnMQoNfeKLBDwAAAAAAAAAAAAAAAAAAAACAEPXyyy9rx44dPut+9rOfdavpxV/mz59vqG7GjBnmBgFChNFpcqHU4HfgwAHdeeedRzz+pz/9SQ6Hw+/7dWeCnyRt3LjR7xnM0p3vu9FmUViPBj8AAAAAAAAAAAAAAAAAAAAAAEKQx+PR/fff77MuJiZGt912WwASHYkGP6B7wrHB77e//a1qamoOe2zWrFk67bTTTNmvu83M4drg19zcbGIS+BMNfgAAAAAAAAAAAAAAAAAAAAAAhKBPPvlExcXFPusuu+wy9evXLwCJDud2u7V48WKfdYWFherbt28AEgHBz2iDnxmT78ywadMmPfHEE4c95nA49Kc//cm0PfPy8pSQkGC4PpQa/LrzfafBL3SETrsuAAAAAAAAAAAAAAAAAAAAAAD4xosvvmio7tprrzU5ScdWrVqluro6n3VM7wP+y+PxGKrzer0mJ/GPn//852pvbz/sMbfbrdGjR1uU6EhFRUVWRzCMCX7hiQl+AAAAAAAAAAAAAAAAAAAAAACEmKamJr311ls+6woKCjRx4kTzA3Vg/vz5hupo8AP+KzY21lDdd5vmgtF7772njz76yOoYPm3dutXw5ESr2e3GW8G6Uwtr8Z0CAAAAAAAAAAAAAAAAAAAAACDEvPvuu2poaPBZd8EFFwQgTcdo8AO6z2iDn9vtNjlJ77S1tenmm2+2OoYhbrdbxcXFVscwpDuNnUbfS7AeDX4AAAAAAAAAAAAAAAAAAAAAAISYjz/+2FDdzJkzTU7Ssba2Ni1ZssRn3YgRI5SdnR2AREBoiIuLM1QX7BP8HnnkEW3evNnqGIZt3LjR6giG0OAXnmjwAwAAAAAAAAAAAAAAAAAAAAAgxCxcuNBnjcPh0LHHHhuANEdasWKFGhsbfdYxvQ84XGJioqG6trY2k5P0XGVlpf7whz8c9lhaWpoOHjwor9cbkP+tX7++W5mLior8+RKYpjuTG2nwCx00+AEAAAAAAAAAAAAAAAAAAAAAEEIqKiq0ZcsWn3WFhYWGm4X8bf78+YbqrJowCAQroxMtGxoaTE7Sc7/61a9UV1d32GNz585VSkpKwDLk5+fLbjfeNhUqE/y60+CXnJxsYhL4Ew1+AAAAAAAAAAAAAAAAAAAAAACEkOXLlxuqy8/PNzlJ54w2+DHBDzhcqDf4ffXVV3r22WcPeyw3N1fXXXddQHPExcVp0KBBhutDpcHP5XIZrs3KyjIxCfyJBj8AAAAAAAAAAAAAAAAAAAAAAELI5s2bDdUNHTrU5CQda21t1RdffOGzbuTIkcrMzDQlQ1tbmynrAmbr27evobpgbfCbM2eOPB7PYY/95je/UVxcXMCzDB8+3HDt1q1b1dzcbGIa/+jO991osyisF2V1AAAAAAAAAAAAAAAAAAAAAAAAYFxpaamhOrOa53xZunSpoSlT/p7et3v3bv3zn//UP/7xDxUVFamiokIJCQlH1G3cuFGfffaZli5dqtLSUu3YsUP19fVqaWlRfHy8MjIyNHz4cB1//PE699xzNXr06G7n+Pe//60lS5aoqKhI27ZtU21trdrb25Wamqr+/ftrypQpOuecc3TKKaf468vvlMfj0RdffKEvvvhCX331lTZu3Kj9+/fr4MGDam1tVXJyslJSUlRQUKDx48frpJNO0oknnii7nZlSVujfv7+hOpfLJbfbLYfDYXIi41577TUtXrz4sMeGDRumq666ypI8hYWFmjdvnqFaj8ej4uJijRs3ztxQvdTY2Gi4lgl+oYMGPwAAAAAAAAAAAAAAAAAAAAAAQojRBr+OmtsCYf78+YbqZs6c2eu99u3bp9dff12vvfaalixZ8s3ksMLCwsO+/oMHD+qZZ57RM888o5KSkk7Xq6+vV319vbZt26Z58+bp17/+tU4++WQ9+uijGjFiRKfPc7vd+te//qUnn3xSCxcuPGKC2dcqKytVWVmp1atX6/HHH9eYMWP017/+VZMnT+7hK9C5TZs26fHHH9cbb7yhvXv3dlpXU1OjmpoalZWV6aOPPtJ9992n/v3765ZbbtHPfvazXjWQvf322zr33HM7Pd6vXz9t375dMTExPd6jtLRUxx13nKqrqzs8npycrAULFmj8+PE93iOQhg0bZrh2//79ljXyfpfL5dKtt956xON/+MMfFBVlTftSdyb4SVJRUVHQN/h1Z4Kf0WZRWI92agAAAAAAAAAAAAAAAAAAAAAAQkhXzVrfFh8fb3KSjhlp8LPZbJo+fXqv9xo/fryuu+46LVq06LCmuq+bB1taWvTAAw9o8ODBuuWWW7ps7uvMJ598ovHjx+v111/v8Pjrr7+u4cOH68ILL9T8+fM7be7ryPr16zV16lQ999xz3c7V1Zrf//73NWrUKD3++OOG3y/ftmvXLs2ZM0fHHHOM9uzZ0+MsZ511lvLz8zs9vmfPHv3973/v8fpVVVU6/fTTO23ui42N1dtvvx0yzX3SoeZUo6qqqkxM0j3/+7//q/Ly8sMemzBhgi644AKLEnW/wW/jxo0mJfGf+vp6Q3VJSUnq27evyWngLzT4AQAAAAAAAAAAAAAAAAAAAAAQQoxOcHK5XCYnOVJzc7OWLl3qs27kyJG9njy2efPmTpvPTjzxRK1du1ZHH320brvtNtXW1vZqr5aWFl188cVasGDBN4+Vl5fr5JNP1gUXXKCtW7f2eO329nZdffXV+uSTT3qV0e1266677tLEiRP1r3/9S16vt1frSdLq1as1ffp07du3r0fPt9vtmjNnTpc1Dz30UI/Wbmpq0plnntnpa+9wOPTKK69oxowZPVrfKgUFBYanJgZLg9+uXbt03333HfH4PffcI5vNZkGiQ8Kxwc/o97y7XzusRYMfAAAAAAAAAAAAAAAAAAAAAAAhxGiD34EDB0xOcqQ//vGPamlp8Vn39YS93vh2s9232Ww27dmzR8cee6w2bNjQ632+5na7dfnll6u5uVmvv/66xowZo08//dRva8+ZM0dut7tHz6+trdX06dP161//Wm1tbX7J9LXS0lLdcMMNPX7+VVddpdTU1E6Pr127ttvNjW63W5dccomWL1/eac2TTz6p733ve91aNxjExMRo2LBhhmorKytNTmPML37xCzU1NR322PTp0zVr1iyLEh2Sk5OjpKQkw/U0+MEqNPgBAAAAAAAAAAAAAAAAAAAAABBCGhsbDdXt37/f5CSHW758uX7/+98bqvXHVLWFCxd2+LjNZtMNN9yg5ubmXu/xXbt27dLMmTN1wQUXqL6+3q9rFxUV6bPPPuv28/bv36+TTjpJn3/+uV/zfNtrr72mNWvW9Oi5CQkJ+vGPf9xlzYMPPtitNW+44Qa98847nR6/6667dPXVV3drzWBy7LHHGqrbtWuXyUl8W7x4sf7xj38c8fi9995rQZojdafRrayszJTzhj9VV1cbqhs1apTJSeBPNPgBAAAAAAAAAAAAAAAAAAAAABBC7HZjrQDr1683Ocl/1dXV6bLLLlN7e7vPWpvNpunTp/d6z84a/DweT6fPiY+P11VXXaU333xTFRUVam1t1b59+/T+++/r9NNPN7Tv0qVLOz2WlJSka665Ru+//7727dun1tZW7dmzR++8845OO+00n2v/+9//NpTha62trTr99NO1atWqLutGjhyp+++/X8uWLVNVVZXa2tp04MABLV++XHfffbf69+/vc6/XX3+9W9m+7frrr1d0dHSnx+fNm6dNmzYZWuuBBx7QE0880enxG264Qb/61a+6nTGYTJkyxVBdeXm5yUm65na7dd111x3x+Nlnn234azBbdxr8PB6PiouLTUzTe0anNk6ePNnkJPAnGvwAAAAAAAAAAAAAAAAAAAAAAAghcXFxhuqWLVsmt9ttchqpvb1dF1xwgUpLSw3Vjxo1ShkZGb3ac8uWLaqoqDBcn5aWpnvuuUe7d+/Ws88+q3PPPVc5OTmKjo5WVlaWZs+erQ8++EC33nprj/KkpaXpgQceUEVFhZ566inNnj1bWVlZio6OVt++fXXWWWfpww8/1B133NHlOiUlJd3ad+7cuVq+fHmnxwcNGqS33npLGzdu1K233qpjjjlGGRkZioqKUp8+fTRp0iTdfvvtKikp0UUXXdTlXr6aCLuSm5urCy+8sNPjXq/X0BS/V199Vb/85S87PX7ppZfq4Ycf7knEoGK0OW779u3mBvHhySef1Lp16w57zG636+6777Yo0ZG60+AnSRs3bjQpiX/s2LHDZ43dbtekSZMCkAb+QoMfAAAAAAAAAAAAAAAAAAAAAAAhJD093VBdQ0ODli1bZnIa6Wc/+1m3Js9Nmzat13t2Nr3vuxwOh2688UZt375dc+fOVUpKSpf1d911lwYMGGA4h91u1/XXX6+ysjLdcsstSkpK6rL+d7/7nYYNG9bp8aqqKsN7f/zxx3rooYc6PX722Wdr/fr1Ouecc3yuFR8frxdffFGjRo3qtGbPnj2Gs3Xkpptu6vL4Sy+91OXXv3DhQv3whz+U1+vt8PisWbP0/PPPy2az9SpnMBg5cqShP+dWNvhVVVXpzjvvPOLxH/zgBxo9erQFiTpWWFjYrfpgbvDzer3auXOnz7qRI0f6PBchuNDgBwAAAAAAAAAAAAAAAAAAAABACMnNzTVc++c//9m0HF6vV3PmzNHTTz/drecdf/zxvd57wYIFPmsGDx6sL7/8Ug899JDhZpfo6GideeaZhmr79++vxYsX69FHH/XZOPg1u92u8847r8vjRng8Ht18882dNrv96Ec/0ltvvdWtJp/o6GhdeeWVnR7vbC+jJkyYoOnTp3d6vLm5WU888USHx4qKinTuueeqtbW1w+OTJ0/WG2+8oejo6F5lDBZ2u12zZs3yWVdaWtrr70tP3XLLLTpw4MBhj0VHR+t3v/udJXk6090JfkVFRSYl6b3Kyko1Nzf7rOvqzxmCEw1+AAAAAAAAAAAAAAAAAAAAAACEkIKCAsO1r7/+urZt2+b3DB6PR9dcc40effTRbj/XHw1+vib4HX/88Vq+fLkmTZrU7bUHDx7ss+boo4/WihUrdNxxx3V7/SFDhnR6LC0tzdAaf//737V+/foOj51//vl6+umnezTJbuDAgZ0e69evX7fX+y5fU/yeeOKJIxqY9uzZo9mzZ+vgwYMdPmfEiBF6//33lZCQ0Ot8weSMM87wWdPU1GTKn29fFi9erBdeeOGIx6+66irl5eUFPE9XCgoKDDfOStKGDRtMTNM7ZWVlhupmz55tchL4Gw1+AAAAAAAAAAAAAAAAAAAAAACEkPHjxxuubW9v1+WXX662tja/7V9TU6PZs2frr3/9a7efm5ubq0GDBvVq/7KyMu3cubPT45MmTdKHH36ozMzMHq3vqxlozJgx+vjjj9W3b98erd9V492wYcMMrbF169YOHx85cqSef/75bjU0fduePXs6PTZmzJgerfltZ511VpcNqpWVlXrppZe++e+GhgadccYZKi8v77B+wIAB+uijj5Sent7rbMFm1qxZhr6PGzduDECa/2pra9NPfvKTIyYHRkVFae7cuQHNYoTT6eyycfW7ysrK1NjYaGKinjPyvXY6nZo5c2YA0sCfaPADAAAAAAAAAAAAAAAAAAAAACCETJ06tVv1n3/+uebMmXNEQ05PfPnll5owYYI++uijHj1/8uTJvc7Q1fS+fv366f3331dSUlKP19+xY0enx9LT0/Xhhx+qT58+PV6/qqqq02NGmzfvvPNOvfDCC3I6nd88FhMTo9dee61Xk+yWLVvW6bGeTEP8LpvNphtvvLHLmoceekher1ft7e06//zz9dVXX3VYl56ero8++kgDBgzoda5glJ6erunTp/us62ySo1keeOABFRUVHfH4JZdcYmj6pRXy8/MN13q9Xq1Zs8a8ML3Q0ev+XTNmzDjsvIDQQIMfAAAAAAAAAAAAAAAAAAAAAAAhZPz48d2eHvfkk0/qggsu6PFkqgMHDuinP/2ppk6d2mUDnC/+aBLrqsHv2Wef7fHkvq91NSXriSeeUG5ubq/W37BhQ6fHjj32WMPrXH755friiy80ZMgQSdJtt92mUaNG9Srb4sWLOz1mpNnMiCuvvFKpqamdHi8qKtK8efN0zTXXdNpImpCQoPfff18jRozwS6Zgddlll/ms6aop099KSkr0hz/8ocNjV199dcBydFdOTk636lesWGFSkt4x0uB34YUXBiAJ/I0GPwAAAAAAAAAAAAAAAAAAAAAAQojNZtMll1zS7ee98cYbGjdunF566SW53W5Dz6msrNTvfvc7DRs2TE899ZQ8Hk+39/22o48+ulfPl6QFCxZ0+HhhYaFOO+20Xq/f2cS4fv36+aV5ZuXKlR0+npub261JY5I0btw4rV27Vps2bdKvf/3rHmfyeDxavHixdu3a1eHxwsJCZWdn93j9b4uPj9c111zTZc1ll12mZ599tsNj0dHReuONN/wyDTLYnX/++YqLi+uyJlANfh6PRz/60Y/U0tJyxLH8/HydcMIJAcnRE1lZWd2qX7JkiUlJemfVqlVdHnc6nfr+978foDTwJxr8AAAAAAAAAAAAAAAAAAAAAAAIMT/+8Y9ls9m6/bwtW7bo8ssvV0FBga677jq9/fbbKi4uVnV1tdra2rRv3z6tWbNGjz/+uM455xwNHDhQv/3tb1VdXe2X3BMnTuzV88vLy1VeXt7hsRkzZvRqbUnatGmTDhw40OExf0yw27dvn0pLS/26fmJiogoLCxUdHW34ObW1tXr//fd12223aebMmerTp4+mTZvWab2/pvd97frrr+8y7/79+zt83Gaz6fnnn9esWbP8midYJScn6+yzz+6yZt++fdq2bZvpWR566CF9/vnnHR47/fTTTd+/N3w1SX7X/Pnze93M7G9bt271eR4+99xzlZSUFKBE8KcoqwMAAAAAAAAAAAAAAAAAAAAAAIDuKSws1MUXX6y///3vPXr+tm3b9Pjjj+vxxx/3c7LODRgwQKmpqb1ao7PpfZJ/mtAWLlwY0ut3xuPxaNmyZXr//fc1b948rVmzxvAUR8k/zZPflpOTo4suukgvvfRSt5730EMP6dJLL/VrlmB3zTXX6LXXXuuyZv78+crLyzMtw7p163THHXd0etzf7w9/66xptzP79+/XF198oalTp5qUqPuWLl3qs+bKK680PwhMwQQ/AAAAAAAAAAAAAAAAAAAAAABC0L333htS05rGjh3b6zXMbpBbtGiRqet31aDo7yYpt9utzz77TD/+8Y+VnZ2t4447TnfffbdWrVrVreY+yZzmw5tuuqlb9bfffrvmzJnj9xzB7sQTT9To0aO7rPn3v/9t2v51dXW68MIL1dzc3GnNoEGDTNvfHzZv3tzt57z88ssmJOm5xYsXd3l85MiROuWUUwKUBv5Ggx8AAAAAAAAAAAAAAAAAAAAAACFo0KBBeuihhyzNMHz4cJ144omGaseMGdPr/Tpr8CsoKFC/fv16vX5nDX5ZWVkaMWJEr9fvLH/fvn01bNiwXq8vSTt27NCdd96pgQMH6qSTTtJf//pXVVdX93i9YcOG+eW1/a7x48cbbmq8+uqrdffdd/s9Q6jw1dj46aefyuPx+H1fl8ul733veyopKemyzul0+n1vf9m/f7/P5riOvPTSS736c+Nv8+bN6/L4jTfeKJvNFqA08Dca/AAAAAAAAAAAAAAAAAAAAAAACFE/+tGPdP3111uy95VXXqlVq1appaXFUH1hYWGv9tu5c6fKyso6POaPCXNbt25VRUVFh8emTZvW6/WrqqpUVFTU4TF/5F+9erUuvPBC5eXl6Q9/+IN2797d6zUlc6b3fe3nP/+5z5rzzjtPTz75pGkZQsEPfvADZWRkdHq8urpaX375pV/3rKmp0ezZs/Xpp5/6rP3kk0/8urc/zZ07t8vpg51paGjQnDlz5PV6TUjVPSUlJSovL+/0eGZmpi6//PIAJoK/0eAHAAAAAAAAAAAAAAAAAAAAAEAIe/jhh3X11VcHbL+hQ4fqo48+0nPPPSen06k1a9YYel5+fn6v9u1s+p0kw5PgutLZ9D5/rd9V/t400RUXF+vss8/WxIkT9c9//tPvk9z88bV3xOPx6MUXX/RZ97Of/UwOh8OUDKHC6XTqF7/4RZc1//jHP/y231tvvaXRo0drwYIFhurnzp2rd99912/7+0NdXZ1uuOEGPf300z1e45VXXtFFF12kyspKPybrvnfeeafL4zfffLPi4uIClAZmoMEPAAAAAAAAAAAAAAAAAAAAAIAQZrfb9fTTT+u+++5TVFSUafukp6fr/vvv14YNG3TqqadKOjRZqrGx0dDzCwoKerV/V81G/pgyZ1YDnpH1e9JE19TUpJtuukljxozpUXNVVlaWTj31VN1yyy3Kzs7utM6sCX4/+9nP9Prrr/use/jhh03ZP9Rcd911ysrK6vR4b5s79+7dq2effVbjx4/Xeeedp7179xp+blNTk84++2wdd9xx+tOf/qRFixZpx44damxslNvt7nEmI9ra2lRXV6eKigp9/vnnev7553XFFVcoLy9Pf/7zn3u9/j//+U8NHjxY/+///T+9/vrr2rNnT8Cn+r3yyiudHsvJydENN9wQwDQwg80bDLMiAQBAj1RVVR3xg3plZaUyMzMtSgQAAAAAAAAAAAAAAAAACBSuIUNHVqxYoWuvvVYrV67025pDhgzRT37yE/3kJz9RUlLSYcdefvllXXbZZZ0+Nzc3V2effbbOOecczZo1q1c5CgoKtGXLlg7zbd26tVdrf73Otm3bjng8PT1dVVVVstlsvVp/zJgx2rBhwxGPZ2Vlad++fd1aa9myZbrssss6fD06M2zYMM2cOVPTp0/XlClTNHjwYElSfX29UlNTO2zEys/PV2lpabeyGfGb3/xGv//97w3V2mw2bdy4USNGjPB7jlDz4IMP6uabb+70+Pvvv6/Zs2d3e93XXntNF198sSmNa4MGDdL27dv9vq4kbd++XXl5eaas3ZW4uDjde++9uvHGG03fq7i4uMv3/lNPPaVrrrnG9Bwwl3mt+QAAAAAAAAAAAAAAAAAAAAAAIKAmTZqk5cuX65133tEjjzyihQsX9miqV1ZWls4++2ydf/75OuWUU2S32zusW7Vq1RGPjR079pumvokTJ/a6MU6Sdu/e3Wkzmz8mzO3atavD5j5JmjZtWq+/hpqaGm3cuLHT9bvj2Wef1bXXXquWlhaftZMnT9ZFF12ks88+W0OHDu2wZsmSJZ1OWTNjet/jjz9uuLlPkrxer/70pz/pmWee8XuWUPPTn/5UDz/8sHbu3Nnh8ccee6xHDX5NTU0Bn0oXypqbm3Xw4MGA7PXUU091emzEiBH60Y9+FJAcMBcNfgAAAAAAAAAAAAAAAAAAAAAAhBGbzaZzzjlH55xzjvbu3at58+bpyy+/1MaNG1VeXq4DBw7I5XIpOjpaCQkJSk1N1eDBgzV06FBNmDBBU6ZM0ejRoztt6vu22NhYRUVF6YQTTvhmz68nw/nTggULOj02Y8aMXq+/cOFC09fvrIGqO0109913n+bOndtlTVJSkn70ox/pmmuuUWFhoaFsnfHH1/5tr732mm644YZuP++ll17S3XffrezsbL/mCTVOp1P/+7//q4suuqjD4/PmzdOWLVuUn5/frXXz8/P1wx/+0B8Rj5CRkWHKupKUmJhoWm5fxo0bZ/oetbW1evbZZzs8ZrPZ9NRTTykqitawcMB3EQAAAAAAAAAAAAAAAAAAAACAMNW3b19deeWVuvLKK01Z/95779Wdd94pp9Npyvpf66oJzR9T5hYtWmTq+v5oonvkkUe6bO6LjY3VnDlzNHfuXPXp08cv2fw5we+TTz7R5Zdf3ulEySFDhqisrKzDYy0tLfrzn/+su+66y295QtWFF16oJ598ssOmV6/Xq/vvv19//etfu7Xm1KlTNXXqVD8lDJyMjAw9//zzVscwzdNPP636+voOj1111VXdnv6J4GXzMkMTAICQVVVVpaysrMMeq6ysVGZmpkWJAAAAAAAAAAAAAAAAAACBwjVkiCTDhw/X5s2bj3h80KBB2r59e6/XHzFihIqLi494PDU1VdXV1YamGXZl3LhxWrt27RGPp6enq6qqSjabrcvnf/zxxzr99NPldrs7PD5x4kS99NJLhib2fVtjY6P69Omj9vb2I44NGTJEW7du7dZ6nVm5cqVmzpyphoaGDo/fcMMNuvrqqzVmzJhO10hLS9POnTsVHx/vl0yhbMOGDRo/fnyH37eoqCgVFxdr6NChFiSDv9TW1mro0KGqqak54lhWVpY2bdqktLQ0C5LBDL37GwYAAAAAAAAAAAAAAAAAAAAAAMBEe/fu7bC5T/LPhLnKysoOm/sk6YQTTuh1c9/+/fu1bt26Do9NmzbNZ3NfXV2drrrqqk6b+773ve9pyZIl3W7uk6TPP/+8wyYxyX/T+zZv3qzZs2d32tx33nnn6aGHHtLo0aM1a9asTtfZv3+/nn32Wb9kCnWjR4/WL3/5yw6Ptbe36ze/+U2AE8Hf7r333g6b+yTpueeeo7kvzNDgBwAAAAAAAAAAAAAAAAAAAAAAgtbChQs7PeaPJrRFixaZuv7ixYvl9Xo7PDZjxgyfz7/rrrtUUVHR4bGZM2fqH//4h+Li4nqUravX1kg2X3bv3q1Zs2apqqqqw+PHHnusXn755W+aKG+66aYu13vooYfk8Xh6nSsc3HnnnRo/fnyHx1555RV98cUXAU4Ef9m6daseeeSRDo/NmTNHs2fPDnAimI0GPwAAAAAAAAAAAAAAAAAAAAAAELQWLFjQ6TF/NKF11eDnj/W7yu+rgfDAgQN68sknOzwWHx+vF154QVFRUT3K1dzcrPfee6/H2Xw5ePCgTjvtNG3fvr3D4/n5+Xr33XfldDq/eezUU0/VmDFjOl2zrKxM//rXv3qVK1xER0frxRdfVGxs7BHHvF6vrr322k6nPiJ4eb1eXX311Wpubj7i2Lhx43T//fdbkApmo8EPAAAAAAAAAAAAAAAAAAAAAAAErc6mzPXv319Dhgwxbf2UlBSNGzfOtPVTU1O7bGaTpNdee00NDQ0dHrviiivUv3//HmWqqanRSSedpHXr1nV4fPDgwRo0aFCP1pYkl8uls846S+vXr+/weGZmpubNm6eMjIwjjvma4venP/2px7nCzahRo/THP/6xw2Nr167Vww8/HNhA6LVnnnlG8+fPP+LxzMxMvfnmmx02dCL00eAHAAAAAAAAAAAAAAAAAAAAAACCUmVlpTZt2tThsd5OmJMOTZnbsGFDh8emTp0qu713bRe1tbVau3Zth8dOOOEEn+u//fbbnR47/fTTe5Rp7dq1mjx5sr744otOa3rz2rrdbl100UVasmRJh8edTqfeffddDR06tMPjl156qfr27dvp+kuXLu107Uh0/fXX67LLLuvw2B133NHp+xvBZ/PmzR02uMbExOhf//qXBg8eHPhQCAga/AAAAAAAAAAAAAAAAAAAAAAAQFDqbPqd5J8Gv8WLF8vj8Zi2/qJFizpdf8aMGT6fv3z58k6P9aTZ5y9/+YumTJmirVu3dllnJFtnrr76ar377rsdHrPb7XrllVc0efLkTp8fExOj6667rss9OptaF6mefvrpDqdNNjc369JLL1VLS0vgQ6FbmpubdcEFF3Q4sfMvf/mLpk6dakEqBAoNfgAAAAAAAAAAAAAAAAAAAAAAICiZ3eAXzOtXV1erpqam0+P19fWGcxQXF+uUU07RT37yE7lcLp/1Pf3ab7vtNj333HOdHn/kkUd07rnn+lznpz/9qeLj4zs9/u6772rz5s09iRiWnE6n3nzzTWVnZx9xbP369br55pstSIXuuP7667Vu3bojHr/nnnt05ZVXBj4QAooGPwAAAAAAAAAAAAAAAAAAAAAAEJQWLFjQ4eP9+vXTsGHDer3+okWLOnw8KSlJEydO7PX6neVPSUnpcOLat+3fv7/L43/729987r9582Zdc801GjNmjD755BOf9ZLUv39/5eXlGar9tgcffFAPPPBAp8dvvvlmn5P5vpaWlqYf/vCHnR73er3605/+1O2M4Wzw4MGaN2+ekpOTjzj2+OOP6/nnnw98KBjy8MMP65lnnjni8blz52ru3LkWJEKg0eAHAAAAAAAAAAAAAAAAAAAAAACCTnV1tYqKijo85o/peg0NDVq9enWHx44//ng5HI5erV9XV6c1a9Z0eGzq1Kmy27tu6fB4PF0e/+tf/6of/vCHWrp0qRoaGuR2u1VTU6Mvv/xSDz30kKZPn67CwkI9/fTTam9vN5z72GOPNVz7tRdffFG/+MUvOj1+4YUX6o9//GO31vz5z3/e5Wv0wgsvqKqqqltrhrtx48bp7bffVmxs7BHHfvKTn2jZsmUWpEJX3nvvvQ4nLF5//fW65557LEgEK9DgBwAAAAAAAAAAAAAAAAAAAAAAgs7ChQvl9Xo7POaPBr/PP/9cbrfbtPUXL17c6fozZszw+fzs7GyfNS+88IKmTJmipKQkRUVFKSMjQ8cdd5xuuukmLVq0qNPXrysjRozoVv0HH3yg//mf/+l0r6lTp+qFF16QzWbr1roFBQU666yzOj3e3Nysxx57rFtrRoIZM2botddeU0xMzGGPt7S06LzzztP27dutCYYjrFixQpdccskRzby33nqrHn30UYtSwQo0+AEAAAAAAAAAAAAAAAAAAAAAgKCzcOHCTo/5owFv0aJFpq7f2/ypqakaPXp0r3N8V15enrKysjo9PnjwYMNrffnll7rgggs6nRBYWFjY6UQ5I2666aYujz/xxBNyuVw9WjucnX322XrnnXfkdDoPe3zPnj069dRTVVlZaVEyfG39+vU67bTT1NDQcNjj9913n+6//36LUsEqNPgBAAAAAAAAAAAAAAAAAAAAAICg01mDXFZWVrenzHVn/YSEBB199NGmrZ+UlKQJEyYYWuPaa6/tdY6vRUdHa86cOVq3bl2X0/TS09MNrVdUVKQzzzxTTU1NHR7Pzs7WBx98oLS0tB7llaRp06Z1+b2orq7W888/3+P1w9msWbM0b948JSUlHfZ4aWmpTj/9dNXX11uUDJs3b9Ypp5yi/fv3f/NYVFSU/vrXv+q2226zMBmsQoMfAAAAAAAAAAAAAAAAAAAAAAAIKvv379f69es7POaP6XrNzc1asWJFh8eOO+44RUdH92r9+vp6rV69usNjU6dOlcPhMLTOj3/8Y82ePbtXWaKionTppZdqw4YNevjhhxUVFdXlBLfk5GSfa+7YsUOzZs06rEHp2xISEvTee+8pLy+vx7m/dvPNN3d5/KGHHpLH4+n1PuFo2rRpWrBggfr373/Y46tXr9Zpp52muro6i5JFrqKiIs2cOVP79u375rG0tDR99NFH+n//7/9ZmAxWirI6AAAAAAAAAAAAANBbbW3Nam9vUVRUrKKj46yOAwAAAAAAAADopbq6Ot15550dHjvppJN6vf7Bgwc1d+7cDo8df/zxvV6/trZWv/rVrzo8dsIJJxhex+Fw6F//+pduueUWPf74491qZCsoKNCll16qq666SoMGDfrm8Z07d8rr9Xb6vJiYmC7Xramp0axZs7Rr165OM//jH//wyxRESTr//PN12223aceOHR0eLy0t1dtvv63zzjvPL/uFmwkTJmjFihU677zztHTp0m8e/+KLL3Tqqafqo48+UkpKioUJI8dXX32lU089VdXV1d88NnLkSL3zzjsaOnSohclgNZu3q7MyAAAIalVVVcrKyjrsscrKSmVmZlqUCAAAAAAAAAis9vYWlZQu1N59JfJ6PbLZ7OqbPVzDC6YrKirW6ngAAAAAAACAqbiGDIgsW7du1d/+9jctXrxYxcXFOnDggNrb2xUfH6/09HQNHDhQI0aM0IQJE3TiiScqPz+/w3Wam5u1ffv2TvcZPHiw4uK4mV64aWlp0TXXXKO//e1vhz1+9NFHa968eUpPT7coWWRYsmSJzjzzTNXW1n7z2Pnnn6//+7//MzQ1E+GNBj8AAEIYH84AAAAAAAAgkrnd7fpq7Zs6WLv7iGN9UnI0/qjz5HBEWZAMAAAAAAAACAyuIQMAdNcLL7yg6667TvX19d88Nnz4cM2bN0+DBw+2LlgYe+211/TDH/5Qzc3NkiSn06mHHnpI11xzjcXJECzsVgcAAAAAAAAAAAAAeqJ8x6oOm/sk6WDtbpXvXBXgRAAAAAAAAAAAAMHtiiuu0Jo1a3Tsscd+81hJSYmmTJmi1atXW5gsPD3wwAO6+OKLv2nuGzVqlJYvX05zHw5Dgx8AAAAAAAAAAABCTpOrVtt3rOiyZnv5CrlctQFKBAAAAAAAAAAAEBqGDBmixYsX6/7771d8fLwkae/evbrhhhssThZe1qxZo9tuu01er1dRUVG6/fbbtWrVKo0ePdrqaAgyNPgBAAAAAAAAAAAg5GwuXSiPx91ljcfjVsmWRQFKBAAAAAAAAAAAEDqioqJ06623qqioSGeddZYSExP1f//3f1bHCivjxo3TGWecofHjx2vFihW6++67FRsba3UsBKEoqwMAAAAAAAAAAAAA3VFVXabqmm2Gaqury1RdvU0ZGXkmpwIAAAAAAAAAAAg9gwYN0jvvvKOdO3dqwIABVscJO88995xSU1MVFUULFzrHBD8AAAAAAAAAAACEDLe7XZtLuzeVr6R0odzudpMSAQAAAAAAAAAAhD6a+8yRmZlJcx98osEPAAAAAAAAAAAAIaN8xyq5mmu79RxXc63Kd64yKREAAAAAAAAAAAAA9BwNfgAAAAAAAAAAAAgJTa5abd+xokfP3V6+Qi5X9xoDAQAAAAAAAAAAAMBsNPgBAAAAAAAAAAAgJGwuXSiPx92j53o8bpVsWeTnRAAAAAAAAAAAAADQOzT4AQAAAAAAAAAAIOhVVZepumZbr9aori5TdXXv1gAAAAAAAAAAAAAAf6LBDwAAAAAAAAAAAEHN7W7X5lL/TN8rKV0ot7vdL2sBAAAAAAAAAAAAQG/R4AcAAAAAAAAAAICgVr5jlVzNtX5Zy9Vcq/Kdq/yyFgAAAAAAAAAAAAD0Fg1+AAAAAAAAAAAACFpNrlpt37HCr2tuL18hl8s/DYMAAAAAAAAAAAAA0Bs0+AEAAAAAAAAAACBobS5dKI/H7dc1PR63SrYs8uuaAAAAAAAAAAAAANATNPgBAAAAAAAAAAAgKFVVl6m6Zpspa1dXl6m62py1AQAAAAAAAAAAAMAoGvwAAAAAAAAAAAAQdNzudm0uNXfKXknpQrnd7abuAQAAAAAAAAAAAABdocEPAAAAAAAAAAAAQad8xyq5mmtN3cPVXKvynatM3QMAAAAAAAAAAAAAukKDHwAAAAAAAAAAAIKKy1Wr7TtWBGSv7eUr5HKZ20gIAAAAAAAAAAAAAJ2hwQ8AAAAAAAAAAABBpWTLInk87oDs5fG4tXnLooDsBQAAAAAAAAAAAADfRYMfAAAAAAAAAAAAgkZVdZmqq8ss2HNbQPcEAAAAAAAAAAAAAIkGPwAAAAAAAAAAAAQJt7tdm0utmaZXUrpQbne7JXsDAAAAAAAAAAAAiFw0+AEAAAAAAAAAACAolO9YJVdzrSV7u5prVb5zlSV7AwAAAAAAAAAAAIhcNPgBAAAAAAAAAADAci5XrbbvWGFphu3lK+RyWdNgCAAAAAAAAAAAACAy0eAHAAAAAAAAAAAAy5VsWSSPx21pBo/Hrc1bFlmaAQAAAAAAAAAAAEBkocEPAAAAAAAAAAAAlqqqLlN1dZnVMSR9nWWb1TEAAAAAAAAAAAAARAga/AAAAAAAAAAAAGAZt7tdm0uDa2peSelCud3tVscAAAAAAAAAAAAAEAFo8AMAAAAAAAAAAIBlyneskqu51uoYh3E116p85yqrYwAAAAAAAAAAAACIADT4AQAAAAAAAAAAwBIuV62271hhdYwObS9fIZcruBoPAQAAAAAAAAAAAIQfGvwAAAAAAAAAAABgiZIti+TxuK2O0SGPx63NWxZZHQMAAAAAAAAAAABAmKPBDwAAAAAAAAAAAAFXXb1N1dVlVsfoUlV1maprtlkdAwAAAAAAAAAAAEAYo8EPAAAAAAAAAAAAAeV2t6ukdKHVMQwpKV0ot7vd6hgAAAAAAAAAAAAAwhQNfgAAAAAAAAAAAAio8h2r5GqutTqGIS5Xrcp3rrI6BgAAAAAAAAAAAIAwFWV1AACwWltbmxYvXqzPP/9cRUVFKi4uVlVVlerr69XY2Cin06nk5GSlpaVp+PDhGjlypCZPnqwTTzxRTqfT6vghpaqqSh999JG++uorFRUVaevWraqtrVV9fb3a2tqUlJSk5ORk5eTkaOTIkRo1apROPPFEHXXUUVZHBwAAAAAAAOAnLlettu9YYXWMbtlevkL9sgvldKZYHQUAAAAAAAAAAABAmLF5vV6v1SEAwApLlizR448/rg8++EB1dXXdfr7T6dTJJ5+sn/70pzrttNNks9lMSBn6XC6XXnzxRT377LNasWKFPB5Pt9fo37+/LrjgAl1//fXKy8szIWXoqqqqUlZW1mGPVVZWKjMz06JE8KWtrUX1DZVqajqg9vZWeTzt8njcstnsstsdstujFBuboKSkLMU7+3BuQcjxej1qbDqghoYqtbQ0yeNpl9vTLnm937zHo6JiFB+fpuSkTEVFxVodGei2trZm1dXvU1PTQbndbXJ72uX99rncEaW42EQlJWbKybkcIcjj8aipab/qG6rV2tokt6ddnm/O5VGy2x2KiopVQkKakhIzFRUVY3VkoNtaW5tUV18pl6tWbner3B73YedyhyNasbGJSkrKkjMumXM5Qo7H41Zj437VN1arrbVJbo/78HO5I0rR3zqXOxzRVkdGhFmz/l1VV5dZHaPbMjOG6KgxZ1kdAxHC43GrobFaDQ01amtz/efncvehc7kjSnb7oXN5YkKGEhMz5HBwX1cAAAAAACIV15ABAACEPhr8AEScRYsW6eabb9bKlSv9tubw4cN133336dxzz/XbmqGura1NDz74oP74xz+qpqbGL2va7XZ973vf0x//+EcNHjzYL2uGOj6cCW4ej1sHa/eorn6f6usrVVe/Ty5XreHnOxwxSkrMVHJSlpKSspTaJ0dxcckmJga6z+Wq1cHa3aqrr1R9faXqG6rkdrcZfn68s4+SkrKUnJSt5ORspST3ld3uMDEx0D1ud7sO1u5Wff2+b97nrmbjN4eIiopRUmLWt87luYqNTTQxMdB9TU0H/vMzy3/P5R5Pu+HnJ8Sn/edcnqXk5GwlJ/WV3W43MTHQPW53mw4e3K26b53Lm1vqDT8/Kir2m/N4clK2+vTJUWxMgomJge7xer3/OZfv/s+/PSvV0Fh9qAnEEJsSEtK+eZ+nJPdVclKWbDbO5TBHdfU2rVn/jtUxemzc2LOVkc5NyOBfXq9XjY01Oli357/n8oYaeb3GzuU2m00JCenfOpf3U1JiJjcpAAAAAAAgQnANGQAAQOijwQ9AxDh48KDmzJmjF154wbQ9zjzzTP3lL39RTk6OaXuEgs8//1xXX321Nm3aZMr68fHx+s1vfqNbbrkl4i9Q4MOZ4NTUdFC7dq/X7j0b1d7e4te1U/v0V//cscrMGEITFCzj8bSrsmqLdlasU23tHr+uHR3tVG6/UcrNGSOnk4ZWWKexcb92VazT7r2b5Ha3+nXttNSB6p87VhnpeTRBwTJud7v2VW7Wrop1qqvf59e1Y2ISlJtz6FweR0MrLFTfUKVdFeu0d19Jt25AYERGep76545VetqgiP93KazT3t6qvZUl2lWxTg0N1X5dOzY2Uf1zxignZxQNrfArt7tdS5e/JFez8RsgBRunM0XHTrqMaWnwi/b2Fu3ZW6xdFevU2LTfr2s741KUmztGOf1GKiba6de1AQAAAABAcOEaMgAAgNBHgx+AiFBUVKRzzz1XpaWlpu/Vt29fvfHGGzruuONM3ysYPfHEE7rxxhvV1ubfiyc7ctZZZ+mll15ScnLkNoDw4Uzw8Ho9qq7Zrl0V61Szv9z0/b65cL7faMXFJZm+HyBJruY6VVSsV8WejWprc5m+HxfOI9A8Hreqqsu0q2KdDhzcZfp+XDgPK5h5I4LvstlsysgYogE5Y5WaOoBzOQLCzBsRdOSbC+f7jlRMDBfOIzDMvBHBd9lsdmVl5qt/7lj1ScnhXI5eK9u2TGXbl1odo9eG5B2rIYMnWx0DIczMGxF8l93uUHbWMPXPGavk5GzO5QAAAAAAhCGuIQMAAAh9NPgBCHtLlizR7NmzVV9fH7A9Y2Ji9Oqrr+q8884L2J7B4KabbtJDDz0U0D1HjhypBQsWROyHEXw4Yz2v16s9+4pVtu1LNTcH7jzzNZvNpuysYcofOpUJOTCNq7lOpVuWqLLK/Eb5jjidKRqad5yyswq4CA2m8Hq9qti9Qdu2L1NLa2PA97fZ7OrXd4TyhxynmJj4gO+PyNDUdECbty5RdXWZJfsnxKcpf+jxyswYYsn+CH9er0c7d63VtvIVAbkRwXfZ7Q7l9BuloXlTFB0dF/D9ERkaGmtUumVxQG4q05HExAwVDJ2q9LRBluyP0Ody1erL5S/K43FbHaXX7HaHphxzuZzOFKujIMTU1VeqdMvigNxUpiPJSdkqyD9BqX1yLdkfAAAAAACYg2vIAAAAQh8NfgDC2sqVK3XSSSeprq4u4HvHxMTonXfe0axZswK+txVuv/123XvvvZbsPW7cOM2fP199+vSxZH8r8eGMtZqb67Wp5FPLLq78tqioWA3Ln6Z+fUfQAAW/+brpqXTrYtPvJm9EZsZQFQ6bqdhYJp3Bf5pctSoq/lgHD1ZYHUXR0U4VDpup7KwCq6MgjHi9Hu3YtUZby74Iiovp+2YP17CC6YqJZtIZ/Kexcb82Fn+surq9VkdRbEyCRgw/SRkZeVZHQRjxeDwq37FSZduXy+u1/lye02+UhuWfoKioWKujIMSsWf+uZTcbMENmxhAdNeYsq2MgRHg87SrbvlzlO1YqGH41OyD3KOUPPV4OR7TVUQAAAAAAgB9wDRkAAEDoo8EPQNjatWuXxo8fr+rqasPPiYuL07Rp03T00UcrNzdXycnJamho0J49e7R69WotWLBADQ0NhteLj4/XsmXLNHr06J58CSHjL3/5i37yk5906zn9+/fXtGnTNHbsWGVkZCg6OloHDx5UaWmpli1bppUru3ehw4wZM/TJJ5/I4XB0N35I48MZa3i9Xu3eW6TNpYvkdrdaHecwGemDNWL4SYplmh96ydVcp03Fn2j/gZ1WRzlMdFSchg+boeysYTSzole8Xq92VaxT6dYl8njarY5zmKzMAhUOm8E0P/RaU9MBbSz+WLW1e6yOcpiYmHgVDjtRWZlDrY6CEOf1elS+8yuVbfsyKBpYv61f3xEalj+NaX7otYaGam0s/lj19ZVWRzlMbGyiRg4/WenpTPODMdXV27Rm/TtWx/C7cWPPVkY6Td3oWl39Pm3c9LEaG2usjnIYZ1yKRhaerNTU/lZHAQAAAAAAvcQ1ZAAAAKGPBj8AYam9vV0zZ87UkiVLDNVnZWXpjjvu0BVXXKGUlJRO65qamvTaa6/pt7/9rcrLjU3sKiws1MqVK5WQEJ7ThtasWaMpU6aoubnZUP20adN055136sQTT+yyMWPbtm169NFH9cQTT6i11VgD1R133KE//OEPhmrDBR/OBF5zS4M2FX8SFFP7OhMVFathBdPVL7uQBih0m9frVcWeDSrdEhxT+zqTmTFUI4afSAMUesTlqtXGIJna1xmm+aE3vF6vdu5aoy1lnwdd09O3ZWcNU+GwmTRAoUcamw5o46Z/B8XUvs7ExCRoJNP80ENer0fby1eqbPsyeb0eq+N06tA0v2mKioqxOgqCmNvdrqXLX5KrudbqKH7ndKbo2EmXyeGIsjoKgpDH41bZ9mVBM7WvM0zzAwAAAAAg9HENGQAAQOijwQ9AWPr973+v3/zmN4ZqL7roIj399NNKTk42vH5LS4tuvvlmPf7444bqr776aj399NOG1w8Vra2tGjt2rEpKSnzWOp1OPfHEE7ryyiu7tUdJSYnOP/98bdiwwWet3W7XwoULNXXq1G7tEcr4cCaw6uortWbtW2ptc1kdxZD+uUdpeMF0mvxgmMfjUfHmz7R7z0aroxgSG5uoCUedp4SENKujIIQcrN2tNeveUXt7i9VRDBk8aJKG5k3hXA7DPB63Nm76SPsqS62OYojTmaLxR52neGfnN1oBvmv//h1au+G9oL4ZwbflDzlOgwdNsjoGQojb3ab1Gz9Qdc12q6MYkhCfpvHjzlMck+TRibJty1S2fanVMUwzJO9YDRk82eoYCDLt7S1au/49HTi4y+oohiQlZWn82HO4kRIAAAAAACGKa8gAAABCn93qAADgb9u2bdO9995rqHbu3Ll69dVXu9XcJ0mxsbF67LHH9Oc//9lQ/TPPPKMVK1Z0a49Q8OCDDxpq7ktOTtaCBQu63dwnScOHD9fSpUs1ffp0n7Uej0fXXXed3O7gnVKC0HXwYIVWffVGyDT3SdKuirXauOnfQT25B8HD42nX+qIPQqa5T5JaWhq08qt/qq5un9VRECJq9pdr9Zo3Q6a5T5K2l69Qyeb5QT3tAcHD7W7T2vXvhkxzn3RooubK1f9UQ2ON1VEQIiqrtuirde+ETHOfJG0p+0KlW5dwLoch7e0t+mrtWyHT3CdJjU37tXL1P9XkOmh1FAQhl6tW23eE3+ei37a9fIVcrjqrYyCItLa6tHrNv0KmuU+S6usrtfKr19XcXG91FAAAAAAAAAAAgIhEgx+AsHPTTTepubnZZ90111yje+65p1d7XXfddbrrrrt81nm9Xl133XVhdTHf7t27DX3t0dHReu+993TMMcf0eK+EhAS99957GjdunM/atWvX6i9/+UuP9wI6sv/ALq1e+5bc7laro3Tb3n3FWl/0oTwej9VREMQ8HrfWrn9PVVVbrY7SbW1tzVq15l+qrd1rdRQEuerqbVqz7h15PO1WR+m2XbvXq6j447D6WRL+53a36au1b6tmf7nVUbqttbVRq1a/rvqGKqujIMjtq9ys9Rs/kNcbejewKN+xSiWlCzmXo0vt7S1ateZfOli72+oo3dbcXHeoya/pgNVREGRKtiwK+xsPeTxubd6y0OoYCBKtrS6tWvOG6uorrY7SbU1NB7Tyq3+quZmGVQAAAAAAAAAAgECjwQ9AWFmzZo3eeustn3Xjx4/XI4884pc9b7/9ds2aNctn3fLly/X+++/7Zc9g8MADD6ixsdFn3d13360TTjih1/slJibqH//4hxITEw3t2doaeo1YCE61dXu1dn1oNoR8rapqqzaVfMLFxOiQ1+vRhqJ5IdkQ8jW3u1VfrXtLDQ3VVkdBkDpwYJfWbXxfXm/oNjvv2btJm2kMQSc8HrfWbXhfB2srrI7SY23tzfpq7VtqajpodRQEqeqabdpQ9FFInwd3VazV1m1fWh0DQcrtbtOade+oPgQbQr7W2tqk1WveZPoTvlFdvU3V1WVWxwiIquoyVddsszoGLNbe3qKv1r2lxhCeTt3cXK/Va95Ua2uT1VEAAAAAAAAAAAAiCg1+AMLKAw884LPGbrfrmWeeUWxsrF/2tNlsevrpp+V0On3WGskXCg4cOKBnnnnGZ9348eN18803+23fYcOG6c477/RZt3v3br300kt+2xeRq7HpgNase1tud5vVUXptz95NKt2y2OoYCDJer1fFJfNVWbXF6ii91t7eotVr35TLxV3mcbj6+iqtWf9uWEwN2VmxVtu2L7M6BoKM1+vVxk3/DulG7a+1tjZp9dp/qaXF941EEFkO1u7Wug2h3aj9te3lK1S+c7XVMRBkvF6P1m/8ICQn931Xc0u9Vq99U21tzVZHgcXc7naVlEbWVLuS0oVyu0P3BlHoHY/HrbXr3wvpRu2vNbkOavXat9Tezk30AAAAAAAAAAAAAoUGPwBhY+fOnfrnP//ps+7yyy/XhAkT/Lr3wIEDddNNN/msW7x4sVasWOHXva3w1FNPGZre9+CDD8pu9+9fNXPmzFFeXp7Puj/96U9+3ReRx+Nxa/3GD8LqosQdu74Ki0Yu+M/efcWq2LPB6hh+09rapA1F88Li4n/4h9vdpnUb35fbHT4XJZZtX6b9+3dYHQNBZFfFOu2r3Gx1DL9pbq7Xxk3/DukpbfCv9vYWrd/4YVg0an+tdMsS1dbusToGgsj28pWqrtludQy/aWo6oE0ln3Iuj3DlO1bJ1VxrdYyAcrlqVb5zldUxYJGt277UgYO7rI7hNw0NVRHXpAsAAAAAAAAAAGAlGvwAhI2XX35Z7e1d3yHZZrPptttuM2X/OXPmKC4uzmfd3/72N1P2DyQjX8PkyZM1Y8YMv+8dExOjn//85z7rioqKtHLlSr/vj8ixrXyFGhqqrY7hd8Uln6m1zWV1DASBlpaGsLxQq7Zuj3bs/MrqGAgSW8q+kMsVfhcVF5V8wiQFSJKaXLUq3brE6hh+t//ADu3es9HqGAgSm7csUktLg9Ux/MyrjcUfM+UJkqSGhmqVheGE3sqqLaqsKrU6BizictVq+47Qv8lZT2wvX8Fk+QhUW7tX5TvCb0Lvnr1FYdWADgAAAAAAAAAAEMxo8AMQNl5++WWfNaeeeqpGjBhhyv6ZmZn6wQ9+4LPutdde89mIGMxWrVqlkpISn3U33nijaRn+53/+R8nJyT7rjLwngI7U11dpe3l4XojW2uZSyeYFVseAxbxerzaVfKb29haro5hi67Yv1di43+oYsNiBgxXauWuN1TFM0dxcH5ZNXeger9erouKP5fGE7r8turJ5y2I1N3NxfKSrrtmu3XuKrI5hiqamAyrbvtTqGLCYx+PRxuKPw3YCdfHmBWptbbI6BixQsmVRWE1e7Q6Px63NW8LvZjronNvdro3F/5YUnlNLN5V8qra28Pz8CAAAAAAAAAAAIJjQ4AcgLGzYsEEbNmzwWXfZZZeZmsPI+lVVVfrkk09MzWGmv//97z5rkpKSdM4555iWISEhQeedd57PuldffVVeb3heWAHzeDxubSz+d9heYClJ+yo3q7Jqi9UxYKG9+4pVXbPN6him8XjcKir+JKz/HKNrbnebioo/tjqGqSp2r9f+/TusjgEL7apYp4MHK6yOYRq3u1VFxZ/y83wEa29v0aaST62OYaryHatVW7vH6hiwUPmOlaqvr7Q6hmna2lwq3jyfc3mEqa7epurqMqtjWKqquiys/82Nw5VtX6qmpgNWxzBNS0uDNm9ZZHUMAAAAAAAAAACAsEeDH4CwMG/ePJ81cXFxpjadSdK0adOUk5Pjs+7DDz80NYeZjLzWZ599tpxOp6k5Lr74Yp81e/fu1Zo1a0zNgfCzrXyFGhqqrY5huuKSz9Ta5rI6BizQ0tKoktLwnyZQW7dHO3Z+ZXUMWGRL2RdyuWqtjmG6opJP1N7eanUMWKDJVastZZ9bHcN0+w/sUMUe3zdyQXjavGWRWloarI5hMq82Fn8stzs8J3Giaw0N1SrbvszqGKarrNqifZWlVsdAgLjd7RHx700jSkoXcn6PALV1e1W+Y7XVMUy3Z2+Rqmu2Wx0DAAAAAAAAAAAgrNHgByAsfPyx7wktU6dOVVJSkqk57Ha7Tj31VJ91RvIGoz179mjjxo0+604//XTTs8yYMUNxcXE+60L1tYY1mpvrVb5jpdUxAqK1zaVt25dbHQMW2LrtS7W3t1gdIyDKti9Ta2uT1TEQYI1NB7Rz11qrYwREc3O9yneG/8WkONLWss/ldrdZHSMgtm79gkbWCFRXX6nde4qsjhEQTU0HtKtindUxYIHSrUsiZuJ06dbF8nhodIoE5TtWydUc/jfaMMLlqlX5zlVWx4CJvF6vNpcukhQZU0o3ly6MmL+3AAAAAAAAAAAArECDH4CQ19raqiVLlvisO/nkkwOQxtg+mzZtUkVFRQDS+Nenn35qqO6kk04yOcmhiYxTp071WUeDH7qjYvcGeTxuq2MEzO49RVwwH2FaW13au6/Y6hgB43a3RUxzAP5r1661ipQLLCWpomIdF8xHmObmeu2r3GJ1jIBpa2+OqL+7cMjOXWusjhBQOyvWcsF8hGls3K+a/eVWxwiYlpYGVVZttToGTOZy1Wr7jhVWxwgq28tXyOWqszoGTFJXv0+1dXusjhEwTa6DqqmJnL+7AAAAAAAAAAAAAo0GPwAhb+3atWpq8j2dx0gzmD+ccMIJhuqWLVtmchL/+/LLL33W5Ofnq2/fvgFIY+y1Xr58ubzeyLnIHz3n8bhVsWeD1TECyu1u5YL5CLN7b1FENbFK0q7d67lgPoK0t7dq995NVscIqNY2FxfMR5iK3RsUSU2skrSrYh0/00eQ1jaX9lVutjpGQDU313HBfISJxKmNkfg1R5qSLYsi7t+bvng8bm3estDqGDBJJJ7Xdkbg1wwAAAAAAAAAABAoNPgBCHlfffWVzxq73a5x48aZH0bSwIEDlZGR4bPOSO5gYyTzhAkTApDkkIkTJ/qsqaurU1lZWQDSINRVVm1Va6vvZuFwwwXzkcPr9aoiAi/E4oL5yLK3skRud+RNJo3EC0sjVSTekECSGhprVFu72+oYCJA9eyLvhgQSF8xHkki8IYEkHazdrfqGKqtjwCTV1dtUXc3nbx2pqi5Tdc02q2PAzyLxhgSSVLN/u5pctVbHAAAAAAAAAAAACEs0+AEIeatXr/ZZM2zYMCUkJAQgzSFGGs9CrcHP4/Fo7dq1PuuCrcFPCr3XGtbYVeH7/R2OuGA+ctTsL5eruc7qGJbggvnI4PV6tWtXZH6vuWA+ckTqDQkkzuWRwuv1alfFeqtjWIIL5iNHpN6QQOKmBOHK7W5XSSlT6rpSUrpQbne71THgR5F6QwJJqtgdmT+rAQAAAAAAAAAAmI0GPwAhb/16379QLiwsDECS/xo+fLjPmnXrQuuipq1bt6qpyffFxIF8rfv27auUlBSfdaH2WiPwGhqqdTCCm9y4YD4yRPLFtFwwHxlq6/aoobHa6hiWieQ/45Ekkr/PlVVb1NLaaHUMmOzQDQki9+/sightbowkh5pYI/dcvndfidrbW6yOAT8r37Eqos/dRrhctSrfucrqGPCTSL4hgSTt3rORhlUAAAAAAAAAAAAT0OAHIOSVlZX5rCkoKAhAkv/Kz8/3WVNRUaHW1tC5Y7uR11kK/Gs9dOhQnzVGsyNy7a3cbHUES1VVb+XCnDDX1taimv3brY5hqcoI/3MeCfbui+zv8b7KUnm9HqtjwETNLQ06WFthdQzLeL0eVVZtsToGTLYvwv++3ltZIq/Xa3UMmKip6YAaGiL3hgRud5uqqrdZHQN+5HLVavuOFVbHCAnby1fI5aqzOgb8oK5uX0Q3tba1NWv/gR1WxwAAAAAAAAAAAAg7NPgBCGkul0t79+71WWekCcyfjDT4eTwelZeXByCNf2zbZuwCrCFDhpic5HBGXmuj2RG5amv3WB3BUh6PW/UNVVbHgInq6vdG/MXiB+t8/7yA0Bbp5/L29hY1Nh2wOgZMFOnvcUmqreVcHu4ieaq2JLW0NDCpMswdrONcXstrEFZKtiySx+O2OkZI8Hjc2rxlodUx4AcH6yL75xWJf5sAAAAAAAAAAACYIcrqAADQG0Yb5HJyckxOcrh+/foZqtu2bVvAJ9711Pbt233WpKWlKS4uzvww32LktabBD13xer2qb6i0YF+pqk0qc0nVbVKbV4q2SRnR0hCnlBkt2WyBy1NfX6k+KcbOXQg99fW8x614DRA4Hk+7GhoDPw0nGN/niQnpgdsQAcW5nHN5uGtvb5HLFfhpOMH4Po+LTQzchggozuWcy8NJdfU2VVeXWR1DUvC9zztTVV2m6pptykjPszoKeoFzuVTHuRwAAAAAAAAAAMDvaPADENIqKioM1fXt29fkJD3bb9euXSYn8R8jr3WgX2eje+7du1dut1sOhyMAiRBqXK5atbe3BnTPmjbpy1qpsu3IY5VtUlGTlBUtTUmR0qMDk6mufl9gNoIlAn3hVTC+x1taGtTS0qjY2ITAbIiAamiskdfrCeiewfg+r6uvVL++IwKzGQKOc7nU2LRf7e2tioqKCcyGCCgrLhQPxvd5Xf0+ZWYMCcxmCDjO5VJ9Q5U8Ho/sdntgNoQp3O52lZQGxzS6YHyfd6WkdKFS+wyQw8Gv50IV53KpvqFSXq9XtmDonAUAAAAAAAAAAAgT/BYdQEirqakxVJednW1yksNlZWUZulBp//79AUjjH0Ze60C/zpKxBj+v16sDBw4EIA1CUaAb23Y0S+9Vd3xRzrdVth2q29EcmFxMUQhvgbz4LFjf4xLv83AW6Assg/V9TrN2+PJ6vQH9/gbre1w61BiC8MS5/JC6On5eCVcej1sNATyHBet73ONxq7HJ2Od5CF7lO1bJ1Rz4qavfFazv8664XLUq37nK6hjoofb2VjU1Be5z5mB9j7e1Nau5pT4wmwEAAAAAAAAAAEQIbhEKIKQZbfDr06ePuUG+w263KykpSbW1XV/oYjR/MDCSNdCvc3f2rKmpUUZGhrlhEJIC2fBT0ybNPyC5Dda7dah+VpqUavIduFsbalTb1MAd5MNQa7tLtU11AdnrQBC/xyVp7/7dikvqZ/5GCLjKA7vVEqABfsH8Pq+qrVR9c5NsNu7lE25czXVqbG0JyF7B/B6XpH37KxTtTDd/IwRc5YE9nMslVdXuU32zi4k4YaihsVqudqPvut4J5ve4dOhcbotOMn8jmMLVXKfi7csV4AHaRwj293lXirctV1LqEDnj+HMQag7WBv/PK2dmBGaSX319pZxxyeZvBAAAAAAAAAAAECG4ghtASDM6AS8xMdHkJEcy0uAXShP8jGRNSgr8RSlG9wyl1xqBVd9QHZB9vF7py1rjF+V8zS3pgwC9fV966/8CsxHwLYF8j2vfSmnlygBtBvxX4N7nbr30r78GYiPgMIE9l38p6csAbQb8V+De5y49v+vpQGwEHCaw5/KFkhYGaDPgvwL6Pu+SRy+9/4rVIRCG3Dr0+eMZ6ZLZ9wqob6hSVma+uZsAAAAAAAAAAABEEG7rDyCk1dX5nkiUkJAguz3wp7vkZN93r/XVABhMjLzWVjT4GXmdpdB6rRFYrW2ugOxT1SZVtgVkKwAAAAAAAAARqLLt0OeQZmttDcxnqgAAAAAAAAAAAJGCBj8AIa21tdVnjdPpDECSI8XFxfmsMZI/WATra23kdZZC67VGYHk87QHZp4xrXgAAAAAAAACYbFuz+XsE6jNVAAAAAAAAAACASBFldQAA6A0jTVsOhyMASY4UFeX7FBtKTWfB+lobeZ2l0Hqte2vq1KmGXxdITa6D8no8fl/3med+edh/VzO9DwAAAAAAAIDJqgLwUbjH4zZ/EwAAAAAAAAAAgAjCBD8AIc1I05ZVjU5G9m1rC52On2B9rY3uGUqvNQLMG5ht2gK0DwAAAAAAAIDIFYjPIb1ePuwEAAAAAAAAAADwJ8b7AAhp7e3tPmto8POPYH2tafA70pIlS5SZmWl1jJDxxdK/qcl10PR9om2mbwEAAAAAAAAgwgXic0iHg18xAwAAAAAAAAAA+BMT/ACENCPNXW63OwBJeravVc2HPRGsr7XRPUPptUZg2QN0MUpGdEC2AQAAAAAAABDBMmPM38Nud5i/CQAAAAAAAAAAQAShwQ9ASIuJ8f2baiOT58xgZGKckfzBIlhfa6OT+ULptUZgRUXFBmSfIc6AbAMAAAAAAAAgguXFmb9HoD5TBQAAAAAAAAAAiBSMMwIQ0qKjfY/EsqrBz8i+odR0FqyvtdE9Q+m1RmAlJqTr4MEK0/fJjJayoqVKYz2ph+kTJR2TJNls/s/1bUeNPlOOKEYNhpvW1iZtKPrI9H28Xml5vXSwB38VBOo9np1VoNyc0eZuAktsL1+p/Qd2mr5PsL/PbTabxo05SzYmKYQdl6tOm0o+NX2fYH+PS1JO3xHq27fQ3E1gia1lX6q2bq/p+wT7+9xhj9JRY840/w8TAq6xcb9KSheavk+wv8claUDuWGVmDjV3E5hm67YvVVtr/vm6K6HwPveZI6WvhuRNsTYEuq2ubq+2lH1p+j69eY9nRR/6HNJsiQkZ5m8CAAAAAAAAAIhobW1tWrx4sT7//HMVFRWpuLhYVVVVqq+vV2Njo5xOp5KTk5WWlqbhw4dr5MiRmjx5sk488UQ5nUzl6Izb7dbGjRu1evVqbdq0ScXFxdq1a5f27Nmj+vp6uVwu2e12xcXFKSEhQX379lVubq7y8/M1duxYTZw4UWPHjpXN6l+4hSEa/ACEtNhY33eJbW5uDkCSnu0bSk1nwfpaG90zlF5rBFZSUlZA9rHZpCkp0nvVkrsbz3NImt5HSjf5whynM0Xj+nOBZTjyer1q3LFIrW0u0/dyOoL3PS5JY/oXKDtroPkbIeBS2mq0ucn8Bj8puN/nSYkZGpuTZ+4msITX61HDjoXyeMy/oUYwv8clafyA4UpP51wejhJcu1XWEpiGkWB+n6f26asx/QaZuwks4Xb3U8OORZK8pu8VzO9xSZo4sFApKf3M3wimyE9J0ZfLX5TH0513mP8F+/u8K3a7Q1PGnS6nM9naIOi21rQMuSrMb/CTev4en5ISmAbW5AB9pgoAAAAAAAAAiDxLlizR448/rg8++EB1dXWd1jU0NKihoUG7d+/Whg0b9MYbb0iSnE6nTj75ZP30pz/VaaedFvGNaB6PR8uXL9enn36qzz77TMuWLVNjY2OXz3G73Wpra1N9fb327t2rNWvWHHY8MzNTp556qi699FLNmjVLDgc3pPcHu9UBAKA3kpKSfNY0NjbK6zX/4qnvqq+v91mTnBw6F3EYea2NfM3+ZnTPUHqtEViBvBglPVqamXroYhsjHDpUH4gLz7goJ3zZbDYlJWUHZK9gfo9LgWvoReAF8nsbzO9z3uPhy2azKykpMyB7BfN7XOJ9Hs6SA/TzihTc73Pe4+HL4YhWYkJaQPYK5ve4zWZTYmJg/k6DOZzOFA0eOMnqGEH9Pvdl8KBJNPeFqJiYeMXF+v6c3B+C+T3ucEQrPr6P+RsBAAAAAAAAACLKokWLNGnSJJ1wwgl69dVXu2zu64rL5dK7776r2bNna8SIEXrrrbf8GzQEtLS06K233tKVV16p7OxsTZkyRXfccYc+++wzn819RlRVVenll1/WGWecoQEDBuiBBx5QQ0ODH5JHNhr8AIS0tDTfF0Z5vV5LGs+M/FBhJH+wMJK1pz9I9YbRPUPptUZgJcSny24P3J0jBsZJZ2ZIWT4utsmKPlQ3MC4wuZISuZA4nAWygTNY3+NRUbFyxnEBZbhKCvBF4sH6Pg9kcwwCL5Df32B9j8fFJSkmxhmYzRBwgW5sC9b3OTfeCG+BfJ8H63s8IT5dDkdUYDaDaQYNnChnXIrVMYL2fd4VpzNFgwZMtDoGesGKc3mij48ubQr054iZstn4FTMAAAAAAAAAwD8OHjyoH/7wh5o+fbpWrlzp17VLSkp03nnn6ayzztLu3bv9unaw8Xq9+uSTT75p6jvvvPP0t7/9TdXV1abuu2fPHt12223Ky8vTs88+a8lgpnDBb9IBhLT09HRDdbW1tQGd4ObxeAx1oRvNHwyMZK2trQ1Akp7tGUqvNQLLbrcrMTFTdXV7A7ZnerR0RrpU1SZta5aqWqU2rxRtkzJjpLw4KTNaCuRUcC4kDm+BvmA+WN/jtkBuiICKiopRfHyqmpoOBGzPYH2fI3xxLmeyWbiLjU1QbEyCWlp7f6c4o4Lxfc65PLwlJ2Vrz95NAdsvGN/jnMvDg8MRpeEF07Vm/TtWRwnK93lXhhfMoMk1xCUnZamqemvA9kuPliYmSgu7+BjcKyklgG8rzuUAAAAAAAAAAH8pKirSueeeq9LSUlP3ee+99zRx4kS98cYbOu6440zdywr33XefnnrqKZWXl1uWobq6Wj/60Y/00ksv6ZVXXlHfvn0tyxKq+C0igJBmtGlr3759GjBggMlp/quqqkput9tnXSg1nRnJum/fvgAkOdzevb6bsmw2m1JTUwOQBqEqJblvQBv8pEMXlmXFHPqf9WxKYupTWEtJDvw/lILrPS4lW/AaILBSkvsGtMFPCq73ud3uUGJi6Pxsie7jXC6lJHEuD3fJyX0DesG8FFzv86ioWDmdfayOARMlJwf+313B9B6XpBQLXgOYIyMjTxkZQ1RdXWZ1lKB7n3cmM2OIMtIHWx0DvWTF5wsJPib4SVKTW0oO0G99OZcDAAAAAAAAAPxhyZIlmj17turr6wOy3969ezVz5ky9+uqrOu+88wKyZ6A8/PDDllzH35H58+dr/PjxevPNN3XsscdaHSek2K0OAAC9kZuba6jOSBOYPxndz2j+YGAka6BfZ6N7ZmdnKyqKnnZ0LjNjqNURLJWW2l/R0bFWx4CJYmMTLGkMCSZZEf7nPBJkZeZbHcFS6emDZbfz8044i3f2UUJ8mtUxLJWZybk83GVF+Pc4M2MoE4fDXHJSlmJjE62OYRmbzaaMjCFWx4AfDc+fJrvdQOcRZLc7NCx/utUx4AepfXIUHR0X0D2dBv6YuTzm55AOvZfT0wYHZjMAAAAAAAAAQNhauXKlzjjjjIA1932ttbVVF198sT766KOA7htp9u7dq1NOOUWfffaZ1VFCClf/AQhpgwcPNlS3e/duc4N8x549ewzV5eXlmZzEf4y81vv371dLS4tiYwPXKGTktQ6l1xnWSO2Tq4T4NDU27bc6iiX65461OgICIDd3rGoDPKkyWCQnZVsyLQWBlZ42WLGxiWppabA6iiUG5HAuD3c2m039c8eqpHSB1VEskZY6QAnxTOUOd1mZBdq8ZZHa2pqtjmKJAfxcHvZsNrv654zR1m1fWh3FEhkZQxQXwQ2O4cjpTNHggZNUtn2p1VGC3uBBk+R0JlsdA35gt0cpp98ole9YFbA94w3crrXJbX4OScrOGh7wBkcAAAAAAAAAQHjZtWuXTj/9dNXV1Rl+TlxcnKZNm6ajjz5aubm5Sk5OVkNDg/bs2aPVq1drwYIFamgwdt1Ya2urvve972nZsmUaPXp0T78M+NDQ0KCzzz5bixcv1vjx462OExJo8AMQ0pxOp7Kzs32OlN26dWuAEh2yZcsWnzU2m02DBg0KQBr/MNIk5/V6VVZWphEjRgQg0SFGXmsa/OBLJF8wHxubqIx0JihEguzMApWWLlJbe+RdME8Ta2Sw2yP3gvn4+FSlpg6wOgYCoF/fQm0p+1xud5vVUQKOc3lkcDgCf8F8sOCGBJEjp98olW1fJq83QKOWgsiA3KOsjgATDBo4UXv2bpKrudbqKEHL6UzRoAETrY4BP8rNGRPQn1ei7VKUTWr3dl4TqAl+3JAAAAAAAAAAANAb7e3tuuSSS1RdXW2oPisrS3fccYeuuOIKpaSkdFrX1NSk1157Tb/97W9VXl7uc92mpiZdcMEFWrlypRISEgznDxdRUVE66qijNGnSJE2YMEFDhgxRXl6eUlNTlZCQILfbrZqaGtXU1Ki4uFgLFizQ/PnzVVJS0q19GhsbddZZZ2nNmjXKyMgw6asJHwbu+QgAwW3IEN+NKaWlpQFI8l9Gms5yc3MDOumut4y8zlJwvtZGsyOy9etbKIcj2uoYAZebM1p2Oz8SRoKvL5iPNFFRscrOGmZ1DARITr9Rstki75zWP3esbDab1TEQAFFRseqbPdzqGAHHDQkiS27OGKsjWIIm1sgRG5ugrMx8q2MEXHx8qlL79Lc6BkzgcERpeMF0q2MEteEFM+RwcL/NcBLvTFF62uDA7unjn7qBmODHDQkAAAAAAAAAAL11zz33aMmSJYZqL7roIpWWlur666/vsrlPkuLj43XllVeqpKREP/vZzwytX1xcrJ///OeGasNBSkqKrrzySv3zn/9UdXW1Vq5cqSeffFJXX321TjrpJA0ZMkSpqamKiYmR0+lU//79ddRRR+miiy7Sk08+qeLiYn322WeaNWtWt/atqKgw/D2JdJF35SOAsDNmjO+L/4qLiwOQpHv7GckdTIYOHSqn0+mzLpCv9d69e1Vb6/vu4KH2WsMakXjBvM1mV24/xotHktzcyPt+5/QbxYWUESQSL5i326PULztw05NhvUhsAuKGBJHFigvmrcYNCSJPJJ7LuSFBeMvIyFNGBs34HcnMGKKM9MFWx4AJAj3Jzuno+nggJvhF4t9fAAAAAAAAAAD/2bZtm+69915DtXPnztWrr76q5OTkbu0RGxurxx57TH/+858N1T/zzDNasWJFt/YIJTabTaeddpreeOMN7du3T88995zOP/98nw2TnZk5c6bmzZun9957T+np6Yaf99prr+njjz/u0Z6RhKujAIS88ePH+6wpKSlRU1NTANIcsnr1ap81EyZMCEAS/3E4HBo71vcv8I187f5idK9Qe61hnQG5R1kdIaCyMvMVGxt5o8UjWbyzjzLS86yOEUA29Y/QKUCRbED/yDqX9+tbqOjo0JkKjd5LSsxUn5Rcq2MEjN3u4IYEESjSzuW5/UZzQ4II0yclR4mJGVbHCBiHI5obEkSA4fnTZLf76ECKMHa7Q8PymW4YrtLTB8np7Nkvv3vC6WuCn8kNftHRTm5IAAAAAAAAAADolZtuuknNzc0+66655hrdc889vdrruuuu01133eWzzuv16rrrrpPX6+3VfsEmISFBN954o0pLS/Xhhx/qe9/7nmJj/XeN2RlnnKG1a9d26xr9O+64w2/7hysa/ACEPCN/MXg8Hq1Zs8b8MJJ27typqqoqn3VGGhODjZHXOpANfqtWrfJZk5SUpKFDhwYgDcJBYmKG+vWNjIsO7XaHhuYda3UMWCB/yHGy2SLjnwH9c8coPr6P1TEQYH1ScpSZERl/9zscMcobPNnqGLBAwdDjrY4QMAMHTOCGBBEoPW2QUvv0tzpGQERHOzVo4ESrYyDAbDabCoZOtTpGwOQNOoYbEkQApzNFgwdOsjpGUBk8aJKczu7dVRahw2azK39I4H4uj/fxUY7Lbe7+Q/OO5YYEAAAAAAAAAIAeW7Nmjd566y2fdePHj9cjjzzilz1vv/12zZo1y2fd8uXL9f777/tlT6ulpKToV7/6lbZv366HHnrI1Gvoc3Nz9eGHHxreY/ny5Vq6dKlpecJBZFzZCyCsHXXUUXI6nT7rFi9eHIA00qJFiwzVTZ4cehdjT5kyxWdNaWmp9u3bF4A0xl7rY445RjabLQBpEC6G5U9TTEz4X0Q+NO84xcenWh0DFkhMzFDeoPC/6DIuLjmgF9ohuBQOm6moqPC/iHxY/gmKi020OgYskJLSTwMHhN4NQ7orIT5NQwYfY3UMWMBms2lk4clyOKKtjmK6wmEzFRPj+zMNhJ/0tEHK6TfK6himS07K1sABxu/aiNA2aOBEOeMCN9EsmDmdKRo0gAbucJedVaCszIKA7OX0MSDTZeIEv9Q+/ZWbM8a8DQAAAAAAAAAAYe+BBx7wWWO32/XMM8/4bdKczWbT008/bajPwEi+YBYXF6ef//zn2rp1q+666y5lZGQEZN+srCzNmzdP8fHxhupfeOEFkxOFNhr8AIS82NhYTZ3q+67nn376aQDSGNunsLBQ/fuH3jSCk046yVBdIF7rlpYWff755z7rTjnlFNOzILxER8dpxPATrY5hqpTkfho4YJzVMWChwYMmKTEx0+oYphpZeLKiomKsjgGLxMYmaHjBDKtjmCpSmgLQuaF5xyne2cfqGCayaeSIU2S3MyUkUjmdKWE/4Swrs0DZWYFpCkBwGpZ/gmLDuFnfZnP851zOryEihcMRpeEF062OERSGF0xn2lmEKBw2Q9HR5jfr+5zg55E8Xv/v63BEa2ThydxEDwAAAAAAAADQYzt37tQ///lPn3WXX365Jkzw781DBw4cqJtuusln3eLFi7VixQq/7h1Iy5Yt04MPPqj09PSA752fn69bbrnFUO0HH3xgcprQxm/WAYSFk08+2WfN4sWL1dDQYGoOj8ejjz76yGddqDad5eTkaMSIET7rPvzwQ9OzLFiwQC6Xy2ddqL7WsFZmxhD16+v7vR6K7PZDF1jabPwYGMnsdodGhfH7oH/uWKWlDrA6BizWN3u4MjOGWB3DFA5HjEYMP4kLLCOcwxGlkSPC92fdwQMnKiW5r9UxYLHcnDFK7RN6N8cxIjraqcJhM6yOAYtFRcVq5HDfn2mFqqF5k5WYEPhfIMFaGRl5ygjTn8ONyswYooz0PKtjIEBiYuJVOGym6fv4muAnSc0mTPHLH3q8nE4mcwIAAAAAAAAAeu7ll19We3t7lzU2m0233XabKfvPmTNHcXFxPuv+9re/mbJ/IGRnZ1u6/6233mooQ3l5ubZt2xaARKEpPK/oBRBxTjvtNJ81zc3Nevvtt03NsXjxYu3evdtnnZG8wcpI9rffflvNzc2m5nj11Vd91mRnZ2v8+PGm5kD4GpY/TTExCVbH8LuheccpIT7V6hgIAkmJmcobdIzVMfzOGZes/CHHWx0DQcBms6lw2ImKioq1OorfDcs/QXFxSVbHQBDok5KjgQPC7+fdhPg0DcmbbHUMBAGbzaaRhSfL4Yi2OorfFQ6bqZiYeKtjIAikp4fnVN7kpGwNHDDR6hiwyPD8abLbDXQjhSG73aFh+UwxjDTZWQXKyjR3Kq+vCX6S1OTnBr/UPv3VP2esfxcFAAAAAAAAAEScl19+2WfNqaeeamgITU9kZmbqBz/4gc+61157zWcjIjoWHx+vc88911Dt2rVrzQ0TwmjwAxAWxo4dq5EjR/qse+mll0zN8eKLL/qsSU9PD+mpcpdcconPmvr6elObKRsbG/Xmm2/6rLvooouYbIMei46O0+iRs8Jqwll62iANHDDO6hgIIoMHHa0+fXKtjuE3drtDo0aepqioGKujIEjExiZo1IhTrY7hV9lZBWHZBICeG5p3nJKTrL0Llz85HNEaPeo02e1RVkdBkHA6U1Q47ESrY/hVTr9Rys4ytwkAoWVY/jQlhNGku6ioWI0aOUt2e/j8exrd43SmaPDASVbHsMTgQZPkdCZbHQMWKBw+U8448ybdOQ2cUl1u/+0XExOvUSNO4fN1AAAAAAAAAECvbNiwQRs2bPBZd9lll5maw8j6VVVV+uSTT0zNEc7OPPNMQ3VbtmwxOUno4jfsAMKGkc76jz76SMXFxabsX1VVZegOAxdeeKGio0N3+sCkSZNUUOD7QsSHH37YtAzPPfecamtrfdYZeU8AXUlLHaBRI2ZZHcMvUpL7aezoM8KqYRG9Z7c7NG7MWUpKzLQ6Sq/ZbDaNGTVbfVL6WR0FQSYzY4hGDD/J6hh+kZY6UKNGnMoFljiMwxGlcWPPUXwYTOi12x06Kkz+XoJ/9etbqIKhJ1gdwy8yM4aGXcMiei8qKkbjjzpXcXGh3xTkcERr/NhzmBwPDRo40dRmp2DkdKZoEJMrI1ZMtFPjx52nmJgEU9aPs0u+/iXo8tMEv6io2LD5ewkAAAAAAAAAYK158+b5rImLi9M555xjao5p06YpJyfHZ92HH35oao5wNnnyZEN1e/fuNTlJ6OIKbwBh47LLLpPD4eiyxuv16r777jNl/0ceeUTNzc0+6374wx+asn8gGfkali5dqgULFvh979bWVj344IM+6woLC3XMMcf4fX9Enr7Zw1Q4PLQvwE1MzNC4sWfL4Qjd5mKY5+uLtkK9MWRk4anKzBhidQwEqdyc0SoYOtXqGL2SktxXY0efwVQzdCgmxqkJR52nuLgkq6P0mM1m0+iRpystdYDVURCkBg2coLxBof1vvLTUARo98jSmmqFDcbGJmnDUeYqJibc6So/ZbA4dNfpMpXDTDejQTQiGF0y3OkZADS+YLoeDn9cjWbwzRROOOlfRUXF+X9tm8z3Fr8kPE/zs9kM3EOGmGwAAAAAAAAAAf/j444991kydOlVJSeZe82K323Xqqaf6rDOSFx1LT09XVJTv35U1NjYGIE1o4moSAGFj4MCBOv/8833Wvfjii1q9erVf996xY4ehprPjjz/ecHd6MPvJT36i+HjfF5zdfPPN8nj8dNvg/3jkkUe0bds2Q3sD/tI/Z0zITn9KTsrWhHHfU3S0/y8sQviIiYnXxPHfV2JChtVRus1ms2v0yNPUr2+h1VEQ5AYNnKiC/NCc/tSnT67GH3WuoqJirI6CIBYXl6Sjx5+veGcfq6N0m93u0NjRZyorc6jVURDkhuQdqyF5x1odo0fS0wbpqDFn0fiBLsXH99HR489XXGzoNWwfmtx3ttLSBlodBUEkIyNPGRFyI5bMjCHKSM+zOgaCQGJihiaO/74pDdvOru9vqKZefhQfFRWrCePOUx8atQEAAAAAAAAAftDa2qolS5b4rDv55JMDkMbYPps2bVJFRUUA0oQfu92ujAzf16C2t7cHIE1oosEPQFi59dZbfdZ4PB5dffXVam1t9cueXq9X11xzjVwul89aI/m648orr5TNZvP5P39P0ktPT9ePfvQjn3WrV6821PhoVGlpqX7/+9/7rOvXr58uv/xyv+0LSIemP40ZNVs2W+j8+JTap78mjPueYqKdVkdBCIiNSdDE8d9XSnLoXMRltx+aENI3e7jVURAiBg2YoBGFJ0uyWR3FsIz0PI0fe66iomKtjoIQEBeXrKMnXKDEEJq24XBEa9zYc5jCCkNsNpuGDJ6sYSE2ESo7a9h/mvuYqA3f4uNTdfSEC0JqwnZUVKwmHHUezX3o0PD8abLbfXQlhTi73aFh+aH1dxPMlZiYoaPHX6C4uGS/rhvv42NJVy8a/GKinZo4/vvqk5LT80UAAAAAAAAAAPiWtWvXqqmpyWfd1KlTA5BGOuEEYzeHX7ZsmclJwldbW5vPmoSEhAAkCU2hc4U6ABgwYcIEnX322T7rVq9erTlz5vhlz3vvvVfz5s3zWXf00UfrrLPO8sueweDWW281NMXv9ttvN3T3BV8aGxt10UUXqaGhwWft3LlzFRvLRfDwv+ysAk0c9305/XxxjhkG9B+n8Uedw7QndEt0dJwmjPuecnPGWB3Fp/j4VB09/gJlZDAhAd2T22+Uxh91rmJjE62O4oNNgwdN0tjRZzLtCd0SExOvo8efr77ZwT/ZNDEhQ5MmXKi01AFWR0GIGdh/nI4ac1bQ38jCZrNraN4UjR55Wtg3t8C/4uKSNGnChcrKzLc6ik/JSdk6ZuJFSmHaEzrhdKZo8MBJVscw1eBBk+R0Bv9nRQis+Pg+OmbiRUpPG+y3NZ2+GvzcPVu3T0qOJh19sZJC6EYhAAAAAAAAAIDg99VXX/mssdvtGjdunPlhJA0cONDQhDkjuXGk9vZ2HTx40GddWlqa+WFCFA1+AMLOgw8+aKi566mnntKvfvWrXu31xBNPGFrDZrPpz3/+s2y20JkW40v//v11++23+6xra2vTmWeeqZUrV/Z4r6amJp111lmGfmAaM2aMrr322h7vBfjSp0+OJk/6gfrnHmV1lA45nSmaOP58DS+YLrudhhB0n8MRpRHDT9T4o85TXGyS1XE6YNOgARM0+ehLlZycbXUYhKj0tIE6dtJlyuk30uooHUqIT9OkiRcqf8hxstv5Zzu6LyoqRqNHzjrUABXj+6YcgWaz2ZU3+Bgdc/TFSkz0/cEp0JHMjCE69pjLlZ01zOooHUpKzNQxR1+svMHHhNVnAQic6Og4jRk1W2NGna7oIGxmtdkcyh9yvI6ecGFITRuENQYNnChnXIrVMUzhdKZo0ICJVsdAkIqJide4sWdrZOEpfrkJV7yP+wU0dXOCn90epWEF0zVx/PkhcUMzAAAAAAAAAEBoWb16tc+aYcOGBXSi28SJvn+vQ4NfzxQVFcnt9n03wvz84L/RrVW4UhBA2Bk6dKhuu+02Q7X33HOPLrnkEtXX13drj5aWFt1www362c9+Zqj+qquu0rHHHtutPULBL37xCxUUFPisq62t1fTp0/W3v/2t23uUlJTo2GOP1fz5833W2mw2PfbYY3I4mIwAc0VFxahw2AxNCLJpfgP6j9Oxk36g1D65VkdBGEhPG6hjj7lMuTmjrY7yjfj4VB094QIV5J/ARDP0WnR0rEYWnqJxY88Joml+Ng0eeLQmT7pEKcl9rQ6DMJCZMURTjrk8qKb5JSZkaNLEizQ0bwoTzdBrMTFOjRl1usaOPiNopvnZbHYNyTtWkyZexBQc9JrNZlN21jBNOeayoJrml5yUrcmTLtHgQUdzMwIY4nBEaXjBdKtjmGJ4wXT+fYou2Ww25fQbqWOPubzX0/yMTPDzeo2t1SclR8dO+oEG9h/HzQgAAAAAAAAAAKZYv369z5rCwsBe0zJ8+HCfNevWrQtAkvDzxRdfGKobMWKEyUlCF799BxCWfv3rX2vKlCmGal999VUVFBTo8ccfV11dXZe1LpdLL7zwggoLC/XnP//Z0PrDhg3TI488Yqg21MTGxurVV181NDGxqalJV155pWbOnKn58+fL6+NKg+3bt+umm27S2LFjDf2AJ0m//OUvNW3aNEO1gD+kpfbX5Ek/0ID+42SzWfdjVUJC+jdT+xyOaMtyIPxERcVoxPCTNP6o8xTv7GNZDpvNoUEDJ2ry0ZeqT0o/y3IgPGWkD9aUb5pZrbuoMSkx69DUvqHHM4EVfhUdHffNND8rb0xgt0cpb/BkHXP0xUpOyrIsB8JTVma+jj3mcvXra+2HwCnJ/XTM0RdryODJNLDCr2Ji4jV29BkaM+p0S29M4HBEfzO1LzEh3bIcCE0ZGXnKyBhidQy/yswYooz0PKtjIETExSZ+M82vpzcm8DXBzy2p1UeDX1RU7DdT++Lj+/QoBwAAAAAAAAAARpSVlfmsMTJoxp+MTI+rqKhQa2trANKElzfffNNnTXJyssaOHRuANKHJ5vXVYQEAIWrnzp0aP368ampqDD/H6XRq+vTpmjhxovr376+kpCQ1NDRo7969WrVqlRYsWNCtaX9Op1NffvmljjrqqJ58CT5deeWVhqbizZ8/XzNmzDAlgyQ98cQThqcZfm3AgAGaPn26xo4dq/T0dEVHR+vgwYPasmWLli1bpuXLl/tsAvy2E044QfPnz4+46X1VVVXKyjr8AunKykplZjIpItCaWxq0e/cGVezeoJbWxoDsmZGep/65Y5WeNog7bcN0Xq9H1TXbtatinWr2lwdkz9jYRPXPGaOcnFGKjUkIyJ6IbK7mOlX851ze1uYyfT+bzabMjKHqnztWqX36cy6H6Twet6qqy7SrYp0OHNwVkD2dcSnqnztG/fqNDJoJawhvTU0HVbF7vXbvKVJbe7Pp+9lsdmVl5mtA7lilpORwLofpPJ52VVZt1a6KdTpYuzsge8bHp6p/7lj1yx6h6GjfN3kCOuNy1erL5S/K43FbHaXX7HaHphxzhZxO626ggNDldrdrX+Vm7apYp7r6fYafV9kqvefj1x3fy5D6dHD/r8SEdPXPPUp9s4crKiqmm4kBAAAAAECw4xoyAECwcblcio+P91n31FNP6ZprrglAokM+/PBDzZ4922fd5s2bA958GMp27typIUOGqL29vcu6s88+W2+//XaAUoUexgIACFsDBgzQBx98oJNPPtlwU57L5dK8efM0b968Xu8fHR2t119/3bTmvmBy7bXXqry8XA888IDh5+zcuVMvvfSSX/YfM2aM3nrrrYhr7kNwiYtN1JC8YzV40CRTL5yPjnYqt98o5eaM4SIyBJTNZldmxhBlZgwx/cL59LRB6p87Vhnpgy2djonI44xLVv6Q4zRk8DGmXjgfE5Og3JzRys0ZrTgLp/Ag8tjtDmVnFSg7q0CNjfu16z/ncrfb/3cd40YEsEp8fB8V5J+gIXlTenThvFHciABWsduj1Dd7uPpmD1d9Q5V2VazX3n3Fcrvb/LoPNyKAGZzOFA0eOEll25daHaXXBg+axOcy6DGHI0o5/UYqp99I1dXt067d67R3X4nP5td4Ax+RuDxSn//8f25EAAAAAAAAAACwSnm5sSECOTk5Jic5XL9+/QzVbdu2jQa/bnj00Ud9NvdJ0iWXXBKANKGLBj8AYe2YY47Re++9pzPOOEMNDQ0B2zc6Olp///vfDXX4h4v7779fzc3NevTRRwO6b2FhoT7++GOlpaUFdF+gM4ddON90QNXV21RXv0/19ZVqch3s9noOR4ySk7KUlJSlPik5ykgfJLudH+FgrW9fOF+zf7sOHtytuvpK1TdU9ujC4vj4VCUnZSk5KVsZGUMU70wxITVg3LcvnG9orFF1zXbV1+9TXX2lXK7abq8XFRX7zbk8NSVXaWkDZbdzYwJYKyEhTcMLpmvo1+fy2j3/+ZmlSh6P7w/cDmdTQkLaN+fyzIw8xcVxwTus9e0L5+vrq1S9f7vq6ytVV1+p5ua6bq8XHR2npMQsJSdlKTW1v9JSB3AjAlguKTFTI4afqIKhx6uqeptq6/aovr5S9Q1V3Z6QZrPZlBCfrqSkLKUkZyszY4hiuREBTDBo4ETt2btJrubu/1wdLJzOFA0aMNHqGAgTycnZGpl8igqGnqCqmm2qrf36XF4tr/fwc7nTwD8jPdFJyuk3UCnJfZWZMUQxMb7vjgwAAAAAAAAAgL9VVFQYquvbt6/JSXq2365d/h/wEa4qKir0xBNP+KxLTU3V2WefHYBEoYurwwGEvWnTpunLL7/UOeeco7KyMtP3y8rK0htvvKGpU6eavleweeSRRzR06FDdfPPNhrrwe2v27Nl65ZVXlJJCIwiCU0J8qhIGpn7z3+3tLaqrr1J9faUam/bL7W6Tx9Mut7tddrtddnuU7PYoxcYkKCkpU8lJWXI6+3B3bQQthyNKWZn5ysrMlyR5vV41NR1QXX2lGhqq1NLaKI/HLbe7XV6vRw7Hofd4lCNG8QmpSk7KVlJipqKiYiz+SoDOJSakKzEh/Zv/bmtr/qZBpMl1UG53m9yednm+cy6Pi01UUlKmkpKy5IxL4VyOoBUVFaPsrGHKzhomSfJ6PWr8+lxeX6XWtqb/vMfdkrz/eY87FBUVo4SEdCUnZikpKVMOR7S1XwjQhUPn48xv/ru1zfXNudz1zbnc/Z9zueM//4tSXFySkhIzlZyUrbi4JM7lCFpRUbHq17dQ/foWSpI8Ho8am2q+aRBpa3N98/OKpG+dy2OVmJCu5KQsJSZmyuHg1wUwn8MRpeEF07Vm/TtWR+mx4QXT+fMCv4uOjlNO3xHK6TtCkuTxuNXQeOhc3tBQrbb2Zrnd7Yqr2qZmt6fTdTJyxmlk4YRAxQYAAAAAAAAAoEM1NTWG6rKzs01OcrisrCzZ7XZ5PJ1/1i5J+/fvD1Ci0PfLX/5STU1NPuuuu+46xcdzY8Ku8BtIABFh9OjRWrlypa6//nq9/PLLpu1z+umn6+mnn1b//v1N2yPY3XDDDRo/fryuvvpqlZSUmLKH0+nUHXfcoV/+8pey25mYgNARFRWrtNT+SkuN3HMEwpvNdmiCU0JCmqRCq+MApoiOjlNa2kClpQ20OgpgCpvN/t/G1v9cXAyEm5hop9LTBik9bZDVUQBT2O12JSVmKikx03cxYIGMjDxlZAxRdbX5N2Pzt8yMIcpIz7M6BiKA3e74z4TsrMMeT9/xoipqO7+o4GBzo9nRAAAAAAAAAADwyWiDX58+fcwN8h12u11JSUmqra3tss5o/kj3wQcf6KWXXvJZl5ycrDlz5gQgUWijKwJAxEhNTdVLL72k+fPna+LEiX5de9iwYXr99df1wQcfRHRz39dOOOEErVu3Tvfcc4/S0tL8tq7dbtf3v/99bdy4UbfffjvNfQAAAAAAAEAIGp4/TXa7w+oY3WK3OzQsf7rVMRDh+sQldHn8oIsGPwAAAAAAAACA9YxOwEtMTDQ5yZGSkpJ81jDBz7cDBw7o6quvNlT7m9/8Runp6SYnCn10RgCIODNmzNDKlSu1YMECXXDBBT3+wSAuLk5nnHGG3nvvPRUXF+v73/++n5OGtpiYGM2dO1c7d+7UE088oUmTJslms/VorZycHM2ZM0ebN2/W66+/rrw87pINAAAAAAAAhCqnM0WDB06yOka3DB40SU5nstUxEOH6OOO7PE6DHwAAAAAAAAAgGNTV1fmsSUhIsGTYS3Ky79/3+JrwF+m8Xq+uuOIK7d6922ftiBEjdP311wcgVeiLsjoAAFhl+vTpmj59ulpbW7Vo0SJ9/vnnKioqUnFxsaqrq1VfX6+mpibFxcUpKSlJaWlpGj58uEaOHKnJkyfrpJNOUnx8179MN9vzzz+v559/3tIMvsTHx+unP/2pfvrTn2rfvn366KOP9NVXX6moqEhlZWWqra1VfX292tvblZiYqKSkJOXm5mrEiBEaNWqUTjzxRI0fP97qLwMAAAAAAACAHw0aOFF79m6Sqzn4f0HqdKZo0ICJVscA1MfpY4Jfc1OAkgAAAAAAAAAA0LnW1lafNU6nMwBJjhQXF+ezxkj+SHbffffpvffe81nncDj03HPPKTo6OgCpQh8NfgAiXkxMjE4++WSdfPLJVkcJe9nZ2briiit0xRVXWB0FAAAAAAAAgIUcjigNL5iuNevfsTqKT8MLpsvh4FdqsF6fOB8NfkzwAwAAAAAAAAAEASMNcg6HIwBJjhQV5ft3PjT4de7DDz/Ur3/9a0O1t912myZPnmxyovDBbyMBAAAAAAAAAAAQcBkZecrIGKLq6jKro3QqM2OIMtLzrI4BSJL6OOO7PN7Y2qJWd7tiaEgFAAAAAAAA0E3Hnna91REiytJ5f7Y6gqmMNMgZabQzg5F929raApAk9GzYsEEXX3yx3G63z9rJkyfrt7/9rfmhwojd6gAAAAAAAAAAAACITMPzp8lut+YOrb7Y7Q4Ny59udQzgG32cXU/wk6Ta5qYAJAEAAAAAAAAAoHPt7e0+a2jwCy379u3TmWeeqbq6Op+1aWlpeu211xQdHR2AZOGDBj8AAAAAAAAAAABYwulM0eCBk6yO0aHBgybJ6Uy2OgbwjT5xvhv8DroaA5AEAAAAAAAAAIDOGWmiMzIF7v+zd/dhctflvfjv2YfsfGeT7GwS5EEgARMCCFIBRSwYL4hYRJAWEYutB1R8qNXTKj20BWq1R7FVOaUeW1sscgQUC9eFUA7PcBCtPAh4SgURUFKgAr8QdjbJzkyS3Z3fHz2lAsn3O5vsfGdn5vW6rv2n9535vIO94nU5vHO3QjPvtqt8OFdt2LAhjjvuuPjXf/3XzN2+vr649NJLY88998whWXdR8AMAAAAAAKBtlu55SCTFkXbHeJEkGYmlexzS7hjwIs1c8FPwAwAAAACg3ebNm5e508yVv1Zo5jpfM/l7xaZNm+LEE0+M++67r6n9L3/5y3Hssce2OFV3UvADAAAAAACgbfr7B2LlilXtjvEiK5eviv5+fzsrc0tpcF4M9ven7lTq1ZzSAAAAAADA1g0ODmbutKvg18y7Cn7/bmpqKt797nfHbbfd1tT+pz/96fid3/mdFqfqXgp+AAAAAAAAtNWSJXvFkiV7tztGRETstGTvWLJkr3bHgJcpFApRLqZf8XPBDwAAAACAdhsaGsrcqdfrOSTZvncV/CIajUacdtpp8Z3vfKep/d/7vd+LP/mTP2ltqC6n4AcAAAAAAEDbrVz+pujrS79O1mp9ff2xz/K5dU0Qflk5UfADAAAAAGBuW7BgQebOxMRENBqNHNK82IYNGzJ3Fi5cmEOSue13fud34tJLL21q933ve1+cf/75LU7U/RT8AAAAAAAAaLskGYlle76urRmWLX1dJIkvbZm7ykkpdV6pVXNKAgAAAAAAW7do0aLMnUaj0VTZbratX78+c6eZ/N3sk5/8ZHz1q19tavfkk0+Ov/u7v4tCodDiVN1PwQ8AAAAAAIA5Yemeh0RSHGnL20kyEkv3OKQtb0OzysWMC351F/wAAAAAAGivxYsXN7U3Pj7e4iQvNj09HRs3bszcazZ/NzrnnHOavsZ33HHHxWWXXRb9/f0tTtUbFPwAAAAAAACYE/r7B2LlilVteXvl8lXR3z/QlrehWeUkveA37oIfAAAAAABt1mxB7tlnn21xkhdbu3ZtTE1NZe71asHvs5/9bHz2s59taveoo46KK6+8MgYHB1ucqnco+AEAAAAAADBnLFmyVyxZsneub+60ZO9YsmSvXN+E7VFOSqnz8Xo1phuNnNIAAAAAAMDLvfKVr2xq75lnnmlxku17r9n83eT888+Pc845p6ndww8/PK655pooFostTtVbFPwAAAAAAACYU1Yuf1P09fXn8lZfX3/ss7w9VwNhpsrF9At+U43p2LCpllMaAAAAAAB4uWXLljW194tf/KK1QV7i6aefbmpvr7166y+F/MpXvhKf/OQnm9o9+OCD4/rrr4/h4fTvK5g5BT8AAAAAAADmlCQZiWV7vi6Xt5YtfV0kycJc3oIdVU6yvzAfr03kkAQAAAAAALYuSZLYeeedM/d+9rOf5ZDmPz322GOZO4VCIZYuXZpDmrnhwgsvjI997GNN7b761a+Om266KUZGRlqcqjcp+AEAAAAAADDnLN3zkEiKrf2CMElGYukeh7T0DZhNzRT8xmrVHJIAAAAAAMC27b333pk7jz76aA5J/lMzBb9XvvKVMTQ0lEOa9rv44ovjQx/6UDQajczdFStWxC233BKLFy/OIVlvUvADAAAAAABgzunvH4iVK1a19I2Vy1dFf/9AS9+A2TQylEShUEjdqdRd8AMAAAAAZqhQ8JPnTw848MADM3cefvjhHJLM7L1mcneDb37zm/H+97+/qXLf0qVL49Zbb41ddtklh2S9S8EPAAAAAACAOWnJkr1iyeK9WvTZe8eSJa35bGiVvr6+WDiUpO6M1xT8AAAAAABor9e+9rWZOz/96U+jWq3mkObf3X///Zk7Bx98cA5J2uuKK66I9773vTE9PZ25+8pXvjJuu+222GOPPXJI1tsU/AAAAAAAAJizVq5YFX19/bP6mX19/bFy+Ztm9TMhL+VkOHU+VsvvX4YAAAAAAICtaaYoNz09Hf/3//7f1oeJiCeffDLWrl2buddMMbGTfec734lTTz01pqamMndf8YpXxC233BJ77713DslQ8AMAAAAAAGDOSpKRWLbn62b1M5ctfV0kycisfibkpVwspc4rdRf8AAAAAABor4MOOiiSJMnc+973vpdDmog77rijqb3DDjusxUna53//7/8dp5xySkxOTmbuLlq0KG655ZbYd999c0hGhIIfAAAAAAAAc9zSPQ+JpDg7hbwkGYmlexwyK58F7ZB1wW+8puAHAAAAAEB7DQ0NxRFHHJG5d+utt+aQprl39t1339h9991zSJO/m2++OU466aTYvHlz5u7IyEjceOONceCBB+aQjP+g4AcAAAAAAMCc1t8/ECtXrJqVz1q5fFX09w/MymdBO2QV/MYU/AAAAAAAmANWr16dufO9730vNm7c2NIc09PTceONN2buveUtb2lpjna5/fbb4x3veEds2rQpc3f+/Plx3XXXxaGHHppDMn6Zgh8AAAAAAABz3pIle8WSxXvt4GfsHUuW7NhnQLuVi+kFv0q9mlMSAAAAAADYtl/7tV/L3KnX63H11Ve3NMf3vve9+MUvfpG510zeTvNP//RPcfzxx0etVsvcTZIk/vEf/zHe+MY35pCMl1LwAwAAAAAAoCOsXLEq+vr6t+vX9vX1x8rlb5rlRJC/clJKnW+a3BL1LZtzSgMAAAAAAFv3mte8Jvbff//MvUsvvbSlOS655JLMncWLF3fdBb977rkn3va2tzV1IXFoaCi+853vxJvf/ObWB2OrFPwAAAAAAADoCEkyEsv2fN12/dplS18XSTIyy4kgf+Uk/YJfRMRYbSKHJAAAAAAAkO4973lP5s6NN94YDz/8cEveX7t2bVx22WWZe+9617ticHCwJRna4Uc/+lH82q/9Wqxfvz5zd3BwMP7hH/4hjjnmmBySsS0KfgAAAAAAAHSMpXseEklxZkW9JBmJpXsc0qJEkK9mCn6VejWHJAAAAAAAkO63fuu3or+/P3Wn0WjE5z//+Za8f8EFF0S9Xs/c+y//5b+05P12ePDBB+OYY46JsbGxzN3+/v647LLL4oQTTsghGWkU/AAAAAAAAOgY/f0DsXLFqhn9mpXLV0V//0CLEkG+ysVS5s64C34AAAAAAMwBe+65Z7zzne/M3Lvkkkvi/vvvn9W3n3jiiTj//PMz9371V381DjvssFl9u10eeeSRWL16dTz33HOZu319fXHxxRfHySefnEMysij4AQAAAAAA0FGWLNkrlizeq8ndvWPJkuZ2oRMMDQxGMjgvdWdMwQ8AAAAAgDniv/23/5a5Mz09HWeccUZs3rx5Vt5sNBrxoQ99KGq1WuZuM/lm4rTTTotCoZD5c/vtt8/qu48//ngcffTR8cwzz2TuFgqF+Nu//dv4rd/6rVnNwPZT8AMAAAAAAKDjrFyxKvr6+lN3+vr6Y+XyN+WUCPJTToZT55W6gh8AAAAAAHPDwQcfHCeccELm3v333x//9b/+11l587zzzosbbrghc+/QQw+N448/flbebKennnoqjjrqqHjqqaea2v+rv/qr+MAHPtDiVMyEgh8AAAAAAAAdJ0lGYtmer0vdWbb0dZEkIzklgvyUi6XU+XitmlMSAAAAAADIdv7558fQ0FDm3le/+tU4++yzd+itv/7rv27qMwqFQnz5y1+OQqGwQ++127PPPhurV6+ONWvWNLX/xS9+MX73d3+3taGYMQU/AAAAAAAAOtLSPQ+J8shuW52VR3aLpXscknMiyEfWBb+xmgt+AAAAAMAM9BX85PnTg171qlfFWWed1dTu5z73ufjN3/zN2LBhw4ze2LRpU3z84x+Pj370o03tn3766fGGN7xhRm/MNc8//3y85S1viZ/+9KdN7f/3//7f45Of/GSLU7E9FPwAAAAAAADoSP39A/Errzkhdt1lvygU+iMiolDoj1132S9+5TUnRH//QJsTQmuUi+kFv0pdwQ8AAAAAgLnl3HPPjcMPP7yp3csvvzxWrFgRX/nKV2L9+vWpu7VaLb7xjW/EvvvuG1/+8peb+vx99tknLrjggqZ257Jrrrkm/uVf/qXp/XPOOScKhUJbf9g632oCAAAAAADQsQYGhuLV+x0T+yx/U0xOboqBgaEYHCy2Oxa0VDkppc7Ha9WckgAAAAAAQHMGBgbi29/+drz2ta+NdevWZe4/++yz8bu/+7vxB3/wB7Fq1ao45JBDYvfdd48FCxbExo0b45lnnon77rsvbr/99hld+0uSJP7hH/4h5s+fvyO/HZhVCn4AAAAAAAB0vMHBomIfPaOcpF/wW7+pFpPTUzHQ159TIgAAAAAAyLbHHnvEddddF6tXr266lFer1eKGG26IG264YYffHxwcjCuvvDIOOuigHf4smE197Q4AAAAAAAAAQPOyCn4REeN1V/wAAAAAAJh7Xv/618e1116b+wW9wcHB+Na3vhVve9vbcn0XmqHgBwAAAAAAANBBysVS5s54TcEPAAAAAIC56U1velPceeedsffee+fy3ite8Yq47bbb4qSTTsrlPZgpBT8AAAAAAACADtLMBb+x2kQOSQAAAAAAYPsccMABce+998Z73vOelr5z7LHHxn333RdHHHFES9+BHaHgBwAAAAAAANBB5s8rRn9f+le9lbqCHwAAAAAAc9vo6Ghceuml8X/+z/+JQw45ZFY/e5999okrr7wyrrvuuth9991n9bNhtin4AQAAAAAAAHSQQqEQ5WIpdWe8Vs0pDQAAAAAA7Jg3v/nNce+998btt98eJ598csyfP3+7PqdYLMZxxx0X1157bTz88MNx0kknzXJSaI2BdgcAAAAAAAAAYGbKyXCsq27c5nys5oIfAAAAAACdZdWqVbFq1arYvHlz3HHHHfFP//RP8dBDD8XDDz8czz33XGzYsCGq1WoUi8VYsGBBLFq0KFauXBn7779/HHbYYXH00UdHqZT+F+S12sUXXxwXX3xxLm+ddtppcdppp+XyFq2l4AcAAAAAAADQYcrJcOq8UlfwAwAAAACgM82bNy9Wr14dq1evbncUyEVfuwMAAAAAAAAAMDPlYvrfQDxeq+aUBAAAAAAAgB2h4AcAAAAAAADQYTIv+NVc8AMAAAAAAOgECn4AAAAAAAAAHSaz4FevRqPRyCkNAAAAAAAA20vBDwAAAAAAAKDDlIvpBb/J6amY2LwppzQAAAAAAABsr4F2BwAAAAAAAABgZspJKXOnUpuI+UPFHNIAAAAAAB2t0O4AAL3NBT8AAAAAAACADlNO0i/4RUSM1SdySAIAAAAAAMCOUPADAAAAAAAA6DAjQ9kX/MZr1RySAAAAAAAAsCMU/AAAAAAAAAA6zEB/fywYSlJ3xmou+AEAAAAAAMx1Cn4AAAAAAAAAHaicpF/xqyj4AQAAAAAAzHkKfgAAAAAAAAAdqFwcTp2P1xX8AAAAAAAA5joFPwAAAAAAAIAOVE7SC36VWjWnJAAAAAAAAGwvBT8AAAAAAACADlROSqnzMRf8AAAAAAAA5jwFPwAAAAAAAIAOVC6mX/Abryn4AQAAAAAAzHUKfgAAAAAAAAAdqJykF/yqWzbH5snJnNIAAAAAAACwPRT8AAAAAAAAADpQVsEvImKs7oofAAAAAADAXKbgBwAAAAAAANCBysVS5s54TcEPAAAAAABgLlPwAwAAAAAAAOhAzVzwqyj4AQAAAAAAzGkKfgAAAAAAAAAdKBmcF0MDg6k7Y7VqTmkAAAAAAADYHgPtDgAAAAAAAADA9ikXS/HsxvFtzsfrLvgBAAAAABn6Cu1OANDTXPADAAAAAAAA6FDlZDh1Xqkp+AEAAAAAAMxlCn4AAAAAAAAAHWqkWEqdjyn4AQAAAAAAzGkKfgAAAAAAAAAdajTjgt94vZpTEgAAAAAAALaHgh8AAAAAAABAhypnFPwqLvgBAAAAAADMaQp+AAAAAAAAAB1qpFhKnY9vqsX09HROaQAAAAAAAJgpBT8AAAAAAACADjWaccGv0WjE+k21nNIAAAAAAAAwUwp+AAAAAAAAAB2qnFHwi4io1CZySAIAAAAAAMD2UPADAAAAAAAA6FDlYilzZ0zBDwAAAAAAYM5S8AMAAAAAAADoUAuKpegrFFJ3xuvVnNIAAAAAAAAwUwp+AAAAAAAAAB2qr1CIkYwrfhUX/AAAAAAAAOYsBT8AAAAAAACADjZSHE6djyn4AQAAAAAAzFkKfgAAAAAAAAAdbDRJv+A3Xq/mlAQAAAAAAICZUvADAAAAAAAA6GDlJP2CX8UFPwAAAAAAgDlLwQ8AAAAAAACgg40U0wt+Ywp+AAAAAAAAc5aCHwAAAAAAAEAHG01KqfPxejUajUZOaQAAAAAAAJgJBT8AAAAAAACADlZO0i/4bZ6ajNqWzTmlAQAAAAAAYCYU/AAAAAAAAAA62EgxveAXETFWm8ghCQAAAAAAADOl4AcAAAAAAADQwUYzLvhFRIzXqzkkAQAAAAAAYKYU/AAAAAAAAAA62EhSytypuOAHAAAAAAAwJyn4AQAAAAAAAHSwef0DURocSt0ZU/ADAAAAAACYkxT8AAAAAAAAADrcaDKcOh+vV3NKAgAAAAAAwEwMtDsAAAAAAAAAADumnJTi39Y/v815xQU/AAAAAGBbCoV2JwDoaS74AQAAAAAAAHS4kWL6Bb8xBT8AAAAAAIA5ScEPAAAAAAAAoMONJukFv/F6NackAAAAAAAAzISCHwAAAAAAAECHK2cU/Cou+AEAAAAAAMxJCn4AAAAAAAAAHW6kWEqdb9xcjy1TkzmlAQAAAAAAoFkKfgAAAAAAAAAdbjTjgl9ExHi9mkMSAAAAAAAAZkLBDwAAAAAAAKDDlZso+FVqCn4AAAAAAABzjYIfAAAAAAAAQIcbSUqZO2O1iRySAAAAAAAAMBMKfgAAAAAAAAAdbnhwKAb7+lN3xusKfgAAAAAAAHONgh8AAAAAAABAhysUClFOhlN3Ki74AQAAAAAAzDkKfgAAAAAAAABdYKRYSp2P1ao5JQEAAAAAAKBZCn4AAAAAAAAAXWA044LfeN0FPwAAAAAAgLlGwQ8AAAAAAACgC5QzCn6VmoIfAAAAAADAXKPgBwAAAAAAANAFRoql1HmlVs0pCQAAAAAAAM0aaHcAAAAAAAAAAHbcaMYFv/F6NaYbjegrFHJKBAAAAAB0hD7/myFAO7ngBwAAAAAAANAFyhkFv6nGdGzcVMspDQAAAAAAAM1Q8AMAAAAAAADoAiNJKXOnUpvIIQkAAAAAAADNUvADAAAAAAAA6AKjxfQLfhERlXo1hyQAAAAAAAA0S8EPAAAAAAAAoAssLJaikLHjgh8AAAAAAMDcouAHAAAAAAAA0AX6+/piQTFJ3VHwAwAAAAAAmFsU/AAAAAAAAAC6xGhxOHVeqVdzSgIAAAAAAEAzFPwAAAAAAAAAukQ5ySj4ueAHAAAAAAAwpyj4AQAAAAAAAHSJkaSUOlfwAwAAAAAAmFsU/AAAAAAAAAC6RLmYccGvXs0pCQAAAAAAAM1Q8AMAAAAAAADoEqNJRsHPBT8AAAAAAIA5RcEPAAAAAAAAoEuMZBT86pNbor5lc05pAAAAAAAAyKLgBwAAAAAAANAlysVS5k6lXs0hCQAAAAAAAM1Q8AMAAAAAAADoEqMZF/wiIiq1iRySAAAAAAAA0AwFPwAAAAAAAIAuMaLgBwAAAAAA0FEG2h0AAAAAAAAAgNlRHBiMZGBe1CY3b3OnUq/mmAgAAAAAmPMKhXYnAOhpLvgBAAAAAAAAdJFyUkqdu+AHAAAAAAAwdyj4AQAAAAAAAHSRkWQ4da7gBwAAAAAAMHco+AEAAAAAAAB0kXIxo+BXr+aUBAAAAAAAgCwKfgAAAAAAAABdZDQppc5d8AMAAAAAAJg7FPwAAAAAAAAAushIknHBT8EPAAAAAABgzlDwAwAAAAAAAOgi5WJ6wW/DplpMTk/llAYAAAAAAIA0Cn4AAAAAAAAAXWQ0KaXOGxGxvl7LJwwAAAAAAACpFPwAAAAAAAAAushIkn7BLyKiUpvIIQkAAAAAAABZFPwAAAAAAAAAuki52ETBr67gBwAAAAAAMBco+AEAAAAAAAB0kflDxejvS/8quFKr5pQGAAAAAACANAp+AAAAAAAAAF2kr1CIkWIpdadSc8EPAAAAAABgLlDwAwAAAAAAAOgy5eJw6rxSV/ADAAAAAACYCxT8AAAAAAAAALrMaJJR8KtVc0oCAAAAAABAmoF2BwAAAAAAAABgdo0kpdR5peaCHwAAAADw//QV2p0AoKe54AcAAAAAAADQZcrFjAt+dQU/AAAAAACAuUDBDwAAAAAAAKDLjCYZBb9aNRqNRk5pAAAAAAAA2BYFPwAAAAAAAIAuM5KUUueT01MxsXlTTmkAAAAAAADYFgU/AAAAAAAAgC5TLqZf8IuIqNQnckgCAAAAAABAGgU/AAAAAAAAgC4zmjRR8Ksp+AEAAAAAALSbgh8AAAAAAABAlxkpljJ3KrVqDkkAAAAAAABIo+AHAAAAAAAA0GUG+vtj/lAxdadSd8EPAAAAAACg3RT8AAAAAAAAALrQaHE4dV6pKfgBAAAAAAC0m4IfAAAAAAAAQBcaSUqpcwU/AAAAAACA9lPwAwAAAAAAAOhC5awLfvVqTkkAAAAAAADYFgU/AAAAAAAAgC40mmQU/FzwAwAAAAAAaDsFPwAAAAAAAIAuNJKUUucKfgAAAAAAAO2n4AcAAAAAAADQhcrF9At+1S2bY/PkZE5pAAAAAAAA2BoFPwAAAAAAAIAuNJqkF/wiIip1V/wAAAAAAADaaaDdAQAAAAAAAACYfSPNFPxqE/GK+SM5pAEAAAAA5qxCuwMA9DYX/AAAAAAAAAC6UDkpZe5U6tUckgAAAAAAALAtCn4AAAAAAAAAXSgZmBdD/QOpO5XaRE5pAAAAAAAA2BoFPwAAAAAAAIAuVCgUYiQZTt1R8AMAAAAAAGgvBT8AAAAAAACALlVOSqnzSr2aUxIAAAAAAAC2RsEPAAAAAAAAoEuViy74AQAAAAAAzGUKfgAAAAAAAABdqpwo+AEAAAAAAMxlCn4AAAAAAAAAXaqclFLnlXo1pyQAAAAAAABsjYIfAAAAAAAAQJcqF9Mv+I3XqzE9PZ1TGgAAAAAAAF5KwQ8AAAAAAACgS5WT9IJfo9GI9ZtqOaUBAAAAAADgpRT8AAAAAAAAALpUVsEvIqJSr+aQBAAAAAAAgK1R8AMAAAAAAADoUqPFUuZOpTaRQxIAAAAAAAC2RsEPAAAAAAAAoEstGEqiUCik7ij4AQAAAAAAtI+CHwAAAAAAAECX6uvri5GMK36VuoIfAAAAAABAuyj4AQAAAAAAAHSxcnE4dV6pVXNKAgAAAAAAwEsp+AEAAAAAAAB0sXKSccGv5oIfAAAAAABAuyj4AQAAAAAAAHSxcpJxwa+u4AcAAAAAANAuCn4AAAAAAAAAXaxczCj41ao5JQEAAAAAAOClFPwAAAAAAAAAulg5KaXOK7WJaDQaOaUBAAAAAADglyn4AQAAAAAAAHSxcpJ+wW/z1GTUJjfnlAYAAAAAAIBfpuAHAAAAAAAA0MXKxfSCX0REpVbNIQkAAAAAAAAvNdDuAAAAAAAAAAC0TjkpZe5UahOx28LRHNIAAAAAAHNOX6HdCQB6mgt+AAAAAAAAAF2snDRzwW8ihyQAAAAAAAC8lIIfAAAAAAAAQBeb1z8QpcGh1J1KXcEPAAAAAACgHRT8AAAAAAAAALpcOSmlziu1ak5JAAAAAAAA+GUKfgAAAAAAAABdrpwMp84rNRf8AAAAAAAA2kHBDwAAAAAAAKDLlYsZBb+6gh8AAAAAAEA7KPgBAAAAAAAAdLlyUkqdV2rVnJIAAAAAAADwyxT8AAAAAAAAALpcOXHBDwAAAAAAYC5S8AMAAAAAAADocuViesFv46Z6TE5N5ZQGAAAAAACA/6DgBwAAAAAAANDlykkpc8cVPwAAAAAAgPwp+AEAAAAAAAB0uXKSfsEvIqJSq+aQBAAAAAAAgF+m4AcAAAAAAADQ5Zoq+LngBwAAAAAAkDsFPwAAAAAAAIAuNzw4FIN9/ak7lZqCHwAAAAAAQN4U/AAAAAAAAAC6XKFQiJGklLpTqVVzSgMAAAAAAMB/UPADAAAAAAAA6AHl4nDqvFJ3wQ8AAAAAACBvA+0OAAAAAAAAAEDrlZOMgl9NwQ8AAAAAelKh0O4EAD3NBT8AAAAAAACAHlBOSqnzSq2aUxIAAAAAAAD+g4IfAAAAAAAAQA8oFzMu+NVd8AMAAAAAAMibgh8AAAAAAABADygn6QW/8Vo1phuNnNIAAAAAAAAQoeAHAAAAAAAA0BPKSSl1PtWYjo2b6jmlAQAAAAAAIELBDwAAAAAAAKAnZF3wi4io1CdySAIAAAAAAMB/UPADAAAAAAAA6AHlYhMFv5qCHwAAAAAAQJ4U/AAAAAAAAAB6wEixFIWMnUqtmksWAAAAAAAA/p2CHwAAAAAAAEAP6O/riwXFJHWnUnfBDwAAAAAAIE8KfgAAAAAAAAA9olwcTp1Xagp+AAAAAAAAeVLwAwAAAAAAAOgR5SSr4FfNKQkAAAAAAAARCn4AAAAAAAAAPaOclFLnlboLfgAAAAAAAHlS8AMAAAAAAADoEeVi1gU/BT8AAAAAAIA8KfgBAAAAAAAA9Ihykl7wG69Vc0oCAAAAAABARMRAuwMAAAAAAAAAkI+sgl9tcnPUJ7dEcWAwp0QAAAAAQLsVnI4CaCt/DAMAAAAAAAD0iHKxlLlTqU3kkAQAAAAAAIAIBT8AAAAAAACAnpF1wS9CwQ8AAAAAACBPCn4AAAAAAAAAPaKpC371ag5JAAAAAAAAiFDwAwAAAAAAAOgZxcF5URwYTN1xwQ8AAAAAACA/Cn4AAAAAAAAAPaScDKfOFfwAAAAAAADyo+AHAAAAAAAA0EMyC351BT8AAAAAAIC8KPgBAAAAAAAA9JBysZQ6r9SqOSUBAAAAAABAwQ8AAAAAAACgh2Rd8BuvueAHAAAAAACQFwU/AAAAAAAAgB6SVfAbqyv4AQAAAAAA5EXBDwAAAAAAAKCHlIul1PmGei2mpqdzSgMAAAAAANDbFPwAAAAAAAAAekjWBb9GRKyvV/MJAwAAAAAA0OMU/AAAAAAAAAB6SFbBLyJirD6RQxIAAAAAAAAU/AAAAAAAAAB6SLlYytyp1BT8AAAAAAAA8qDgBwAAAAAAANBD5g8l0V9I/6p4vFbNKQ0AAAAAAEBvG2h3AAAAAAAAAADy01coxEhSiuerG7e5M+aCHwAAAAD0jkKh3QkAepoLfgAAAAAAAAA9plwspc7H6y74AQAAAAAA5EHBDwAAAAAAAKDHlJPh1HnFBT8AAAAAAIBcKPgBAAAAAAAA9Jisgt+Ygh8AAAAAAEAuFPwAAAAAAAAAeky5WEqdj9erOSUBAAAAAADobQp+AAAAAAAAAD0m64JfpTYRjUYjpzQAAAAAAAC9S8EPAAAAAAAAoMdkFfy2TE/FxJZNOaUBAAAAAADoXQp+AAAAAAAAAD2mXEwv+EVEjNeqOSQBAAAAAADobQp+AAAAAAAAAD2mnJQydyq1iRySAAAAAAAA9DYFPwAAAAAAAIAeM1LMLviNKfgBAAAAAAC0nIIfAAAAAAAAQI8Z7B+I+fOKqTvj9WpOaQAAAAAAAHqXgh8AAAAAAABADyonw6nzigt+AAAAAAAALafgBwAAAAAAANCDykkpdT6m4AcAAAAAANByCn4AAAAAAAAAPahcTL/gN15X8AMAAAAAAGg1BT8AAAAAAACAHlRO0gt+lVo1pyQAAAAAAAC9S8EPAAAAAAAAoAeVk1LqfKzmgh8AAAAAAECrKfgBAAAAAAAA9KByMf2CX3XLptg8NZlTGgAAAAAAgN6k4AcAAAAAAADQg8pJesEvImK8Vs0hCQAAAAAAQO9S8AMAAAAAAADoQc0U/MZqEzkkAQAAAAAA6F0KfgAAAAAAAAA9qFwsZe6M1xX8AAAAAAAAWknBDwAAAAAAAKAHJYPzYl7/QOpOxQU/AAAAAACAlkr/tgYAAAAAAACArlQoFKKcDMf/t3F8mztjtWqOiQAAAACAtnA6CqCt/DEMAAAAAAAA0KPKxVLqfLzugh8AAAAAAEArKfgBAAAAAAAA9KhyMpw6r9QU/AAAAAAAAFpJwQ8AAAAAAACgR2UV/MZq1ZySAAAAAAAA9CYFPwAAAAAAAIAeVS6WUufjdRf8AAAAAAAAWknBDwAAAAAAAKBHZV3wG69XY3p6Oqc0AAAAAAAAvUfBDwAAAAAAAKBHZRX8phuN2LCpllMaAAAAAACA3qPgBwAAAAAAANCjysVS5k6lXs0hCQAAAAAAQG9S8AMAAAAAAADoUVkX/CIiKrWJHJIAAAAAAAD0JgU/AAAAAAAAgB61cCiJQqGQujOm4AcAAAAAANAyCn4AAAAAAAAAPaqvry9GhpLUnfF6Nac0AAAAAAAAvUfBDwAAAAAAAKCHlZPh1HnFBT8AAAAAAICWUfADAAAAAAAA6GFZBb8xBT8AAAAAAICWUfADAAAAAAAA6GHlYil1Pl6v5pQEAAAAAACg9yj4AQAAAAAAAPSwrAt+FRf8AAAAAAAAWmag3QEAAAAAAAAAaJ9mCn6NRiMKhUJOiQAAAACAXPnf/gDaygU/AAAAAAAAgB5WLpZS55umJqM+uSWnNAAAAAAAAL1FwQ8AAAAAAACgh2Vd8Iv49yt+AAAAAAAAzD4FPwAAAAAAAIAepuAHAAAAAADQPgp+AAAAAAAAAD2sXGyi4Fev5pAEAAAAAACg9yj4AQAAAAAAAPSweQMDURqcl7rjgh8AAAAAAEBrKPgBAAAAAAAA9Lhykn7FT8EPAAAAAACgNRT8AAAAAAAAAHpcuZhR8KtXc0oCAAAAAADQWxT8AAAAAAAAAHpcOSmlzl3wAwAAAAAAaA0FPwAAAAAAAIAeV04yLvgp+AEAAAAAALSEgh8AAAAAAABAjxspZhT86tWckgAAAAAAAPQWBT8AAAAAAACAHjeaccFvw6ZaTE5N5ZQGAAAAAACgdyj4AQAAAAAAAPS4clLK3Bl3xQ8AAAAAAGDWKfgBAAAAAAAA9LhyMf2CX0REpT6RQxIAAAAAAIDeMtDuAAAAAAAAAAC0VzlpouBXc8EPAAAAALqS01EAbeWPYQAAAAAAAIAeNzxvKAb6+lN3KjUX/AAAAAAAAGabgh8AAAAAAABAjysUClEullJ3KnUFPwAAAAAAgNmm4AcAAAAAAABAlJPh1LkLfgAAAAAAALNPwQ8AAAAAAACAJgp+1ZySAAAAAAAA9A4FPwAAAAAAAABipFhKnVfqLvgBAAAAAADMNgU/AAAAAAAAAGI084Kfgh8AAAAAAMBsU/ADAAAAAAAAIMpZBb96NRqNRk5pAAAAAAAAeoOCHwAAAAAAAAAxUiylzqemp2Pj5npOaQAAAAAAAHqDgh8AAAAAAAAAMZpxwS8iolKbyCEJAAAAAABA71DwAwAAAAAAACDKCn4AAAAAAAC5U/ADAAAAAAAAIBYWkyhk7FTq1VyyAAAAAAAA9AoFPwAAAAAAAABioK8/FgwlqTsu+AEAAAAAAMwuBT8AAAAAAAAAIiKinAynzhX8AAAAAAAAZpeCHwAAAAAAAAARETFSLKXOK/VqTkkAAAAAAAB6w0C7AwAAAAAAAAAwN4y64AcAAAAAvaev0O4EAD3NBT8AAAAAAAAAIiKirOAHAAAAAACQKwU/AAAAAAAAACIiYqRYSp1X6tWckgAAAAAAAPQGBT8AAAAAAAAAIiJiNOOCX23L5tg0uSWnNAAAAAAAAN1PwQ8AAAAAAACAiIgoZxT8IiIqtYkckgAAAAAAAPQGBT8AAAAAAAAAIiJipFjK3KnUqzkkAQAAAAAA6A0KfgAAAAAAAABERMSoC34AAAAAAAC5UvADAAAAAAAAICIiioPzojgwmLqj4AcAAAAAuJ4ucQABAABJREFUADB7FPwAAAAAAAAAeMFIsZQ6r9SrOSUBAAAAAADofgp+AAAAAAAAALxgNBlOnbvgBwAAAAAAMHsU/AAAAAAAAAB4QVnBDwAAAAAAIDcKfgAAAAAAAAC8YKSYUfCrV3NKAgAAAAAA0P0U/AAAAAAAAAB4wWhSSp274AcAAAAAADB7FPwAAAAAAAAAeEE5Sb/gt75ejanp6ZzSAAAAAAAAdDcFPwAAAAAAAABeMFJML/g1ImL9plo+YQAAAAAAALqcgh8AAAAAAAAALxhNSpk7ldpEDkkAAAAAAAC6n4IfAAAAAAAAAC8oJ+kX/CIU/AAAAAAAAGaLgh8AAAAAAAAAL5g/lER/If2r5EpdwQ8AAAAAAGA2KPgBAAAAAAAA8IK+QiFGiqXUnUqtmlMaAAAAAACA7qbgBwAAAAAAAMCLlJOsgp8LfgAAAAAAALNBwQ8AAAAAAACAFxkpDqfOK3UFPwAAAAAAgNkw0O4AAAAAAAAAAMwt5SSj4Fer5pQEAAAAAGi5QrsDAPQ2F/wAAAAAAAAAeJHRpJQ6r9Rc8AMAAAAAAJgNCn4AAAAAAAAAvMhI1gW/+kQ0Go2c0gAAAAAAAHQvBT8AAAAAAAAAXqRcTC/4bZmaiuqWzTmlAQAAAAAA6F4KfgAAAAAAAAC8yGjGBb+IiEptIockAAAAAAAA3U3BDwAAAAAAAIAXGUlKmTuVuoIfAAAAAADAjlLwAwAAAAAAAOBFysUmCn4u+AEAAAAAAOwwBT8AAAAAAAAAXmSwfyDmzyum7lRq1ZzSAAAAAAAAdC8FPwAAAAAAAABeZiRJv+JXqbvgBwAAAAAAsKMU/AAAAAAAAAB4mXJxOHVeqSn4AQAAAAAA7CgFPwAAAAAAAABeZjRR8AMAAAAAAGg1BT8AAAAAAAAAXmYkKaXOK/VqTkkAAAAAAAC6l4IfAAAAAAAAAC9TLrrgBwAAAAAA0GoKfgAAAAAAAAC8zGiSXvCb2LwpNk9N5pQGAAAAAACgOyn4AQAAAAAAAPAyI0kpc2e8Xs0hCQAAAAAAQPcaaHcAAAAAAAAAAOaecjH9gl9ERKU2ETsNL8whDQAAAADQKgWnowDayh/DAAAAAAAAALzMaNJcwQ8AAAAAAIDtp+AHAAAAAAAAwMskg/NisL8/dadSr+aUBgAAAAAAoDsp+AEAAAAAAADwMoVCIcrF9Ct+LvgBAAAAAADsGAU/AAAAAAAAALZqNFHwAwAAAAAAaCUFPwAAAAAAAAC2aiQppc4rtWpOSQAAAAAAALqTgh8AAAAAAAAAW1UuZlzwq7vgBwAAAAAAsCMU/AAAAAAAAADYqtEko+BXU/ADAAAAAADYEQp+AAAAAAAAAGzVSFJKnY/XqzHdaOSUBgAAAAAAoPso+AEAAAAAAACwVeVi+gW/6UYjNmyq5ZQGAAAAAACg+yj4AQAAAAAAALBVo0l6wS8iolKbyCEJAAAAAABAd1LwAwAAAAAAAGCrRpoq+FVzSAIAAAAAANCdFPwAAAAAAAAA2KqRoSQKhULqTqXugh8AAAAAAMD2UvADAAAAAAAAYKv6+vpiZChJ3anUFPwAAAAAAAC210C7AwAAAAAAAAAwd40kw1GpV7c5r9S2PQMAAAAAOkCh0O4EAD3NBT8AAAAAAAAAtqlcLKXOK3UX/AAAAAAAALaXgh8AAAAAAAAA2zSaDKfOKzUFPwAAAAAAgO2l4AcAAAAAAADANo0o+AEAAAAAALSMgh8AAAAAAAAA21QuZhT86tWckgAAAAAAAHQfBT8AAAAAAAAAtmk0KaXON01uidqWzTmlAQAAAAAA6C4KfgAAAAAAAABs00iSfsEvIqJSm8ghCQAAAAAAQPdR8AMAAAAAAABgm8rNFPzq1RySAAAAAAAAdB8FPwAAAAAAAAC2qVwsZe644AcAAAAAALB9FPwAAAAAAAAA2KahgcFIBuel7ij4AQAAAAAAbB8FPwAAAAAAAABSlZPh1HmlruAHAAAAAACwPRT8AAAAAAAAAEg1Wswo+NWqOSUBAAAAAADoLgp+AAAAAAAAAKQaSUqp80rNBT8AAAAAAIDtoeAHAAAAAAAAQKpy1gW/uoIfAAAAAADA9lDwAwAAAAAAACBVOcko+NWqOSUBAAAAAADoLgPtDgAAAAAAAADA3FZOSqnzDZtqMTk9FQN9/TklAgAAAABmjdNRAG3lj2EAAAAAAAAAUmVd8IuIGK+74gcAAAAAADBTCn4AAAAAAAAApCoX0y/4RURUahM5JAEAAAAAAOguCn4AAAAAAAAApGrmgl+l5oIfAAAAAADATCn4AQAAAAAAAJBq/rxi9Pelf71cqbvgBwAAAAAAMFMKfgAAAAAAAACkKhQKUS6WUncqNQU/AAAAAACAmVLwAwAAAAAAACBTORlOnVdq1ZySAAAAAAAAdA8FPwAAAAAAAAAyZRb86i74AQAAAAAAzJSCHwAAAAAAAACZysVS6rxSU/ADAAAAAACYKQU/AAAAAAAAADJlXfAbr1VzSgIAAAAAANA9FPwAAAAAAAAAyJRV8KvUq9FoNHJKAwAAAAAA0B0U/AAAAAAAAADIVC6mF/wmp6di4+Z6TmkAAAAAAAC6g4IfAAAAAAAAAJnKSSlzZ7xWzSEJAAAAAABA91DwAwAAAAAAACBTOUm/4BcRMVafyCEJAAAAAABA91DwAwAAAAAAACDTyFD2Bb9KTcEPAAAAAABgJhT8AAAAAAAAAMg00N8fC4aS1J1KrZpTGgAAAAAAgO6g4AcAAAAAAABAU8pJ+hU/F/wAAAAAAABmRsEPAAAAAAAAgKaUi8Op80pdwQ8AAAAAAGAmFPwAAAAAAAAAaEo5SS/4jdeqOSUBAAAAAADoDgp+AAAAAAAAADSlnJRS52Mu+AEAAAAAAMyIgh8AAAAAAAAATSkX0y/4VWoKfgAAAAAAADMx0O4AAAAAAAAAAHSGcpJe8Ktt2RybJrfE0MBgTokAAAAAgB1WaHcAgN6m4Af0vCeffDJuvPHGeOCBB+Khhx6Kxx9/PDZs2BDr16+PRqMRCxYsiAULFsSee+4Z+++/fxx44IHxlre8JVasWNHu6HPeunXr4p577okf//jH8ZOf/CR+/vOfx9NPPx1r166NWq0WmzdvjqGhoUiSJEZHR2O33XaLPfbYIw444IA46KCD4o1vfGOUy+V2/zYAAAAAAID/J6vgFxFRqVdj5/kjOaQBAAAAAADofAp+QE+qVCrxta99LS655JJ44IEHUnfXrVsX69atizVr1sQdd9zxwv99xYoVceqpp8ZHPvKR2HnnnVsduSM8++yzceutt8Ztt90Wt99+e/zsZz/L/DW1Wi1qtVo8//zzL9vv7++PQw89NE444YT47d/+7dhjjz1aFR0AAAAAAGhCuVjK3KnUJhT8AAAAAAAAmtTX7gAAedq4cWOcddZZsfvuu8cf/MEfZJb70jz66KPx6U9/Ovbcc8/44Ac/GM8999wsJu0cjz76aJx33nlx+OGHx2677Rbvec974u///u+bKvdlmZqairvvvjvOPvvsWLZsWRx//PFx1113zUJqAAAAAABgezRzwW+8NpFDEgAAAAAAgO6g4Af0jGuuuSb222+/+Iu/+IuYmJi9L5Y3b94cF154YaxcuTK+/vWvz9rnzmXPPvtsfOlLX4pDDz009tlnn/jjP/7juOuuu2J6erplb05PT8e1114bhx9+eJx44onxxBNPtOwtAAAAAABg65LBeTE0MJi6M1ar5pQGAAAAAACg8yn4AV1veno6zjnnnDjxxBPjqaeeatk7zz//fLzvfe+LD37wg7F58+aWvdNODz74YJx44omx++67x5lnnhn33XdfW3JcffXVsd9++8VFF13UlvcBAAAAAKCXlYul1Hml7oIfAAAAAABAsxT8gK42NTUV7373u+Ozn/1sNBqNXN688MIL45hjjolqtfv+dtrvfe97cfXVV8fk5GS7o0S1Wo33v//9ccYZZ8yJPAAAAAAA0CvKyXDqfLym4AcAAAAAANAsBT+ga01PT8dpp50WV1xxRe5vf/e7341f//Vfj02bNuX+dq/52te+FieffHLXXk0EAAAAAIC5JqvgN6bgBwAAAAAA0LSBdgcAaJWzzz47Lr300hn9mhUrVsSv/uqvxgEHHBCLFi2KQqEQY2Nj8ZOf/CTuvPPO+PGPf9z0Z910001xxhlnxDe+8Y2ZRmeGvvOd78Tpp58el112WbujAAAAAABA1ysXS6nzSr2aUxIAAAAAAIDOp+AHdKXrr78+/vzP/7zp/Xe84x3xx3/8x/H6178+de/HP/5xfOELX4hLL700pqenMz/3kksuiVWrVsX73//+prN0m5133jkOO+yweN3rXhf77bdfLFu2LHbfffcYHh6OJElifHw8nnvuuXjmmWfizjvvjNtvvz3uuOOOqFZn9uX/N7/5zTjggAPij/7oj1r0OwEAAAAAACKyL/iNu+AHAAAAAADQNAU/oOusW7cu3vve90aj0cjcXbRoUVxyySXxtre9ranPPuCAA+J//a//FR/5yEfiXe96Vzz55JOZv+ZjH/tYrFq1KpYvX97UG93g0EMPjXe+853x1re+NX7lV34ldXfRokWxaNGi2GeffeJNb3pTnHXWWfH888/HV77ylfjyl78ca9eubfrdT33qU3HcccfFa17zmh38HQAAAAAAANuSWfDbVIvp6eno6+vLKREAAAAAAEDn8o0K0HXOPvvseO655zL3dt9997jnnnuaLvf9sje84Q1x7733xv7775+5W6vV4vd///dn/Ean2WWXXeLcc8+NRx55JH74wx/GWWedlVnu25ZFixbFueeeG4899liccsopTf+6LVu2xEc+8pHtehMAAAAAAGhOuVhKnTcajRjfVMspDQAAAAAAQGdT8AO6yo9+9KO48MILM/dGRkbilltuiVe96lXb/dYrXvGKuPXWW2P33XfP3L322mvjuuuu2+635rJDDz00Lr/88njiiSfiM5/5TKxYsWLWPnvhwoVx+eWXx//8n/8zCoVCU7/mBz/4QVx//fWzlgEAAAAAAHixrAt+ERHjtYkckgAAAAAAAHQ+BT+gq3z605+O6enpzL0LL7wwVq5cucPv7bLLLvHNb34z+vv7M3c/9alP7fB7c8mRRx4ZN954Y/zwhz+MU045JQYHB1v21kc/+tH44he/2PT+BRdc0LIsAAAAAADQ65op+I0p+AEAAAAAADRFwQ/oGj/96U/jmmuuydx7xzveESeffPKsvXvkkUfGhz70ocy9e++9N2677bZZe7ddDjrooLjuuuvijjvuiGOOOSa3dz/xiU/EBz/4waZ2b7nllnj66adbnAgAAAAAAHrTgqEk+gqF1J1KXcEPAAAAAACgGQp+QNc4//zzo9FopO4MDAzM6BJcsz7zmc/EwoULM/e+9KUvzfrbeTrppJPi/vvvj2OPPbYt75933nkxOjqauTc1NRU33HBDDokAAAAAAKD39BUKMVIspe6M16o5pQEAAAAAdlShr+Anxx+Al1LwA7rCpk2b4tvf/nbm3kknnRTLly+f9fcXL14cH/jABzL3brzxxnj22Wdn/f287LTTTtHX177/6li0aFGcffbZTe3efvvtrQ0DAAAAAAA9rJwMp87Hai74AQAAAAAANEPBD+gK1157bYyPj2fu/d7v/V7LMnz84x/PLL9NTU3F5Zdf3rIMveDUU0+NQiH7b67453/+5xzSAAAAAABAbypnXPCr1BX8AAAAAAAAmqHgB3SFb33rW5k7y5cvjze84Q0ty7B06dI48sgjM/eaycq27brrrnHwwQdn7v3sZz/LIQ0AAAAAAPSmrAt+47VqTkkAAAAAAAA6m4If0PGmpqbilltuydw75ZRTWp7l3e9+d+bOD3/4w1i3bl3Ls3Szww47LHNn48aNsXHjxhzSAAAAAABA78kq+I3VXPADAAAAAABohoIf0PHuueeeGB8fz9w79thjW56lmTemp6fj1ltvbXmWbrbzzjs3tTcx4V8eAAAAAACAVigXS6nzSn0iGo1GTmkAAAAAAAA6l4If0PGaKcstWLCgqatvO2rp0qWxfPnyzL2bb7655Vm6WbMFv8nJyRYnAQAAAACA3pR1wW/L1FTUtmzOKQ0AAAAAAEDnUvADOt6dd96ZuXPYYYfFwMBADmkijjzyyMydu+++O4ck3WvLli1N7Q0Pp//LBQAAAAAAwPbJKvhFRIzVJnJIAgAAAAAA0NkU/ICO96Mf/Shz5+CDD84hyb875JBDMnd+8pOfxKZNm3JI053Wrl2buTMwMBALFizIIQ0AAAAAAPSecjG74FepK/gBAAAAAABkUfADOtqzzz4bTz/9dObeXCv4TU5Oxr/8y7/kkKY7NfPPbq+99or+/v4c0gAAAAAAQO8ZSUqZO+O1ag5JAAAAAAAAOpuCH9DRHnjggab29t133xYn+U8rV65saq/Z7LxYo9GIu+66K3Nvv/32yyENAAAAAAD0pnn9AzE8byh1Z6zmgh8AAAAAAEAWBT+go/385z9vam/58uUtTvKfRkdHY9GiRZl7zWbnxe66666mrjYeeeSROaQBAAAAAIDeVS4Op84rdQU/AAAAAACALAp+QEd7/PHHM3d22WWXGB5O/4J5tjVTKGwmOy938cUXN7V39NFHtzYIAAAAAAD0uHJSSp2P16o5JQEAAAAAAOhcCn5AR1uzZk3mzm677db6IC+x6667Zu4o+M3cc889F5dccknm3sqVK+O1r31tDokAAAAAAKB3lZP0v2BxrOaCHwAAAAAAQJaBdgcA2BH/9m//lrmzyy675JBk5m8+9dRTOSTpLn/2Z38WtVotc++0005rfRgAAAAAAOhx5WJ6wa9SV/ADAAAAgI5QaHcAgN7mgh/Q0datW5e5s/POO+eQ5MWaKfg9//zzOSTpHg8//HD8zd/8TebewoUL48Mf/nAOiQAAAAAAoLdlXfAbr1VzSgIAAAAAANC5FPyAjtZMwa9cLrc+yHa8OTExEZs2bWp9mC4wNTUV73vf+2LLli2Zux/72Mfa8p85AAAAAAD0mnJSSp1v3FyPLVOTOaUBAAAAAADoTAp+QEcbGxvL3FmwYEEOSbbvTVf8mvPFL34x7rzzzsy93XbbLf7wD/8wh0QAAAAAAEC5mH7BLyKiUnfFDwAAAAAAII2CH9CxarVaUxfd2lHwW7hwYVN74+PjLU7S+X7wgx/Eueee29TuX/zFX8T8+fNbnAgAAAAAAIiIKCfZBb/xmoIfAAAAAABAGgU/oGNt3ry5qb0kSVqc5OWKxWJTe83+HnrV2rVr45RTTmmqyPn2t7893vOe9+SQCgAAAAAAiGiu4DdWm8ghCQAAAAAAQOcaaHcAgO3VbDmuv7+/xUlebmCguT9eFfy2bcuWLXHyySfHU089lbm7ePHiuPDCC3NI1RmOOOKIpv9/kNZ58MEH2x0BAAAAAKClSoPzYrCvP7ZMT21zp1JX8AMAAAAAAEjjgh/QsZotx7Wj6NTsm81cputVH/7wh+O73/1uU7t///d/H7vsskuLEwEAAAAAAL+sUChkXvEbd8EPAAAAAAAglfM+QMeanJxsak/Br/P8+Z//eVx00UVN7Z555pnxjne8o8WJOsv3v//92GmnndodAwAAAACAHlBOhmPtxPptzsdq1RzTAAAAAAAAdB4X/ICO1WyJbmpqqsVJtv/NdpQP57rLLrss/uiP/qip3SOPPDLOO++8FicCAAAAAAC2pVwspc4rLvgBAAAAAACkUvADOta8efOa2mv20t9savYyX7O/h15x3XXXxemnnx6NRiNzd999942rrrpKSRIAAAAAANqonAynzsfrCn4AAAAAAABpFPyAjjU4ONjUXjsKfs2+qeD3n77//e/HO9/5zqbKkXvuuWfcfPPNsXjx4hySAQAAAAAA25JV8KvUqjklAQAAAAAA6EwKfkDHGhoaamqvXq+3OMn2v6ng9+/uu+++OO6446JWq2XuvuIVr4ibb745dt999xySAQAAAAAAacrFUup8vF6N6UYjpzQAAAAAAACdZ6DdAYDO8vjjj8fdd9/d0jeGh4fj+OOPz9xLkiQGBgYyr+Vt2LBhtqI1rdk3Fy5c2OIkc9+DDz4Yb33rW2P9+vWZu+VyOW666abYZ599ckgGAAAAAABkybrgN9WYjo2barEwowgIAAAAAADQqxT8gBn57ne/G6effnpL31i6dGlTBb+IiNHR0Vi7dm3qTjPFsdnW7JuLFi1qcZK57dFHH43Vq1fHunXrMneHh4fjuuuui4MOOiiHZAAAAAAAQDOyCn4REZXahIIfAAAAAADANij4AR1t8eLFmQW/8fHxnNLM7M1SqRTFYjGHNHPT448/HkcddVQ888wzmbvFYjGuueaaOPzww3NIBgAAAAAANKvcRHGvUq/GnjlkAQAAAAC2U1+7AwD0Nn8MAx1t8eLFmTvPPvtsDklerJnSWjPZu9VTTz0VRx99dDz11FOZu4ODg3HFFVfEUUcdlUMyAAAAAABgJhYWS1HI2KnUJnLJAgAAAAAA0IkU/ICO9spXvjJzp5my3Wxr5s1msnejZ555Jo466qh4/PHHM3f7+/vjsssui7e//e05JAMAAAAAAGaqv68vFmZc8VPwAwAAAAAA2DYFP6CjLVu2LHPnF7/4ReuDvMTTTz+dubPXXnvlkGRuWbt2bRx99NHx6KOPZu4WCoW46KKL4uSTT84hGQAAAAAAsL3KWQW/ejWnJAAAAAAAAJ1HwQ/oaM2U5J555pmoVvP94vixxx7L3Om1gt+6deti9erV8dBDDzW1/9d//dfx3ve+t8WpAAAAAACAHVVOhlPnLvgBAAAAAABsm4If0NH23nvvzJ1Go9FU4W62VCqVWLduXeZeM9m7RaVSiWOOOSYeeOCBpva/9KUvxYc//OEWpwIAAAAAAGaDgh8AAAAAAMD2U/ADZuS0006LRqPR0p81a9Y0nefAAw9sau/hhx/ezt/xzDX7VrPZO9369evjrW99a9x///1N7X/mM5+JT3ziEy1OBQAAAAAAzJaRYil1XqlXc0oCAAAAAADQeRT8gI626667xs4775y512y5bDY089bAwEC85jWvySFNe23cuDGOPfbYuOeee5ra/8M//MM499xzW5wKAAAAAACYTaMu+AEAAAAAAGw3BT+g4x188MGZO3kW/O67777MnX333TeKxWIOadqnWq3GcccdFz/4wQ+a2v/4xz8e5513XotTAQAAAAAAs62cUfCrT26J+pbNOaUBAAAAAADoLAp+QMc7/PDDM3fuuuuumJyczCFNxB133JG5c9hhh+WQpH3q9XqccMIJTf2ziIg444wz4oILLmhxKgAAAAAAoBVGiqXMnUq9mkMSAAAAAACAzqPgB3S8o48+OnNnw4YNcc8997Q8yxNPPBGPPfZY5t5b3vKWlmdpl82bN8ev//qvx6233trU/m//9m/HV7/61RanAgAAAAAAWmU044JfRESlNpFDEgAAAAAAgM6j4Ad0vNe//vWxcOHCzL3rr7++5VmaeaNQKDRVSuxEW7ZsiZNPPjluuOGGpvZPPvnk+PrXvx59ff7rCAAAAAAAOtWIgh8AAAAAAMB206gAOt7AwEBThblvf/vbLc9y+eWXZ+4ceuihsWTJkpZnydvU1FSceuqpcc011zS1f/zxx8dll10W/f39LU4GAAAAAAC0UnFgMJKBeak7lXo1pzQAAAAAAACdRcEP6Aq/+Zu/mbnz6KOPxt13392yDE888UTccccdmXvNZO0009PT8d73vjeuvPLKpvbf+ta3xhVXXBGDg4MtTgYAAAAAAOShnJRS5y74AQAAAAAAbJ2CH9AVjj/++Fi4cGHm3l/+5V+2LMNf/dVfxfT0dOpOX19fvPvd725ZhnZoNBrxgQ98IL75zW82tf/mN785rrrqqhgaGmpxMgAAAAAAIC/lZDh1ruAHAAAAAACwdQp+QFcoFovxrne9K3PvyiuvjMcee2zW31+3bl1ceOGFmXvHHHNM7LrrrrP+fjt99KMfja9//etN7b7xjW+Mf/zHf4wkSVqcCgAAAAAAyNNIMaPgV6/mlAQAAAAAAKCzKPgBXeMTn/hEFAqF1J3Jyck488wzZ/3tP/mTP4n169dn7n3yk5+c9bfb6ROf+ET8zd/8TVO7hx56aFx//fUxf/78FqcCAAAAAADyNpqUUucu+AEAAAAAAGydgh/QNfbbb794+9vfnrl39dVXxxVXXDFr737/+9+Pv/3bv83cO/jgg2P16tWz9m5ExJo1a6JQKGT+vPnNb57VdyMizj777Pgf/+N/NLV70EEHxU033RQLFy6c9RwAAAAAAED7lZOMC34KfgAAAAAAAFul4Ad0lU996lPR15f9R9sZZ5wRjzzyyA6/98wzz8Spp54aU1NTmbt/+qd/usPvzRWf/exn43Of+1xTu/vvv3/cfPPNMTo62uJUAAAAAABAu4wU0wt+GzbVYnI6+/sUAAAAAACAXqPgB3SVQw45JN73vvdl7o2Pj8fRRx8dP//5z7f7rbVr18bq1avjySefzNw99thj4/jjj9/ut+aSv/zLv4xzzjmnqd0VK1bErbfeGjvttFOLUwEAAAAAAO00mpRS542IWF+v5RMGAAAAAACggyj4AV3nc5/7XCxevDhz76mnnorXv/71cf3118/4jbvvvjsOPfTQePDBBzN3i8ViXHDBBTN+Yy76u7/7u/j93//9pnaXLVsWt912W+yyyy4tTgUAAAAAALRbOUm/4BcRUalN5JAEAAAAAACgsyj4AV1np512iosvvjgKhULm7rp16+Jtb3tb/MZv/Ebce++9mfsPPfRQnH766fHGN74xnnjiiabyXHDBBbFixYqmdue6z33uc03vrlmzJvbYY48oFApt+/nTP/3T1v3DAAAAAAAAXjBSbKLgV1fwAwAAAIA5qeAn1x+AlxhodwCAVnj7298eZ555ZnzhC19oav+qq66Kq666KvbZZ5844ogj4tWvfnUsWrQoCoVCjI2NxcMPPxx33nlnPPDAAzPKceqpp8YHP/jB7fktAAAAAAAAdIwFQ8Xo7+uLqenpbe5UatUcEwEAAAAAAHQGBT+ga33+85+Pp556Kr71rW81/WseeeSReOSRR2bl/aOPPjouuuiiWfksAAAAAACAuaxQKES5WIp11Y3b3KnUXPADAAAAAAB4qb52BwBolb6+vvjGN74Rv/Ebv5H720cccURcffXVMTQ0lPvbAAAAAAAA7TBSHE6dV+oKfgAAAAAAAC+l4Ad0tYGBgbjiiivirLPOyu3N008/PW655ZYYHk7/EhsAAAAAAKCbjCYZBb9aNackAAAAAAAAnUPBD+h6fX198fnPfz6uuuqq2G233Vr2zujoaFx44YVx0UUXudwHAAAAAAD0nHJSSp1Xai74AQAAAAAAvJSCH9AzTjzxxHj44YfjzDPPnNXrevPmzYv3v//98dOf/jQ+8IEPzNrnAgAAAAAAdJKRYsYFv7qCHwAAAAAAwEsp+AE9ZcGCBfGFL3whnnzyyfj85z8fr371q7f7s171qlfFOeecE2vWrImvfe1rsdNOO81iUgAAAAAAgM4ymmQU/GrVaDQaOaUBAAAAAADoDAPtDgDQDqOjo3HWWWfFWWedFf/6r/8aN910U/zzP/9zPPTQQ7FmzZpYv359bNiwIRqNRixYsCAWLFgQe+yxR+y///5x4IEHxurVq2Pfffdt928jli1blusX4WvWrMntLQAAAAAAoLOUMwp+k9NTMbF5U8wfKuaUCAAAAAAAYO5T8AN63tKlS+OMM85odwwAAAAAAICONlIsZe5U6hMKfgAAAAAAAL+kr90BAAAAAAAAAOh8oxkX/CIiKrWJHJIAAAAAAAB0DgU/AAAAAAAAAHZYUxf8atUckgAAAAAAAHQOBT8AAAAAAAAAdthAf3/MHyqm7lTqLvgBAAAAAAD8MgU/AAAAAAAAAGbFaHE4dV6pKfgBAAAAAAD8MgU/AAAAAAAAAGZFOVHwAwAAAAAAmImBdgcAAOD/Z+/Ow+Osy4WP35Om7UxCyZS1texQEYQqiICobLIIKEVRUBShVRA3BDmCwlE2QVldUI+I0rIquLAVUBZZDiIoVumrVEQolJYdOukyM2mbzPuHJzUtyUzazDyTZD6f65rrSH6/zHNPDqfnj/jtDQAAAAAwPLSlW8qe54r5hCYBAAAAAPorZXUUQF35YxgAAAAAAACAqhhrgx8AAAAAAMBqEfgBAAAAAAAAUBVZgR8AAAAAAMBqEfgBAAAAAAAAUBVt6Zay5/llS2Pp8uUJTQMAAAAAADD4CfwAAAAAAAAAqIqxFTb4RUTkirb4AQAAAAAAdBP4AQAAAAAAAFAV2f4EfgWBHwAAAAAAQDeBHwAAAAAAAABV0ZZpqXgnV8wnMAkAAAAAAMDQIPADAAAAAAAAoCoyzaNi9Ijmsnds8AMAAAAAAPgPgR8AAAAAAAAAVZFKpSKbaS17R+AHAAAAAADwHwI/AAAAAAAAAKqmLdNS9jxXzCc0CQAAAAAAwOAn8AMAAAAAAACgarJpG/wAAAAAAAD6S+AHAAAAAAAAQNWMzQj8AAAAAAAA+kvgBwAAAAAAAEDVtGVayp7nivmEJgEAAAAAABj8BH4AAAAAAAAAVE02XX6DX3sxH11dXQlNAwAAAAAAMLg113sAAAAAAAAAAIaPsZnygV+pVIqFHYXIVrgHAAAAACQkVe8BABqbDX4AAAAAAAAAVE1bP8K9XDGfwCQAAAAAAACDn8APAAAAAAAAgKoZm26peCdXWJLAJAAAAAAAAIOfwA8AAAAAAACAqhkzOhNNqVTZOwI/AAAAAACAfxP4AQAAAAAAAFA1TU1NsXaFLX65osAPAAAAAAAgQuAHAAAAAAAAQJVl061lz3OFfEKTAAAAAAAADG4CPwAAAAAAAACqamymwga/gg1+AAAAAAAAEQI/AAAAAAAAAKqsLVNhg19R4AcAAAAAABAh8AMAAAAAAACgyrLpCoFfIZ/QJAAAAAAAAIObwA8AAAAAAACAqhqbaSl7nissiVKplNA0AAAAAAAAg5fADwAAAAAAAICqasuU3+C3tHN5FJYvTWgaAAAAAACAwUvgBwAAAAAAAEBVZdPlA7+IiFwhn8AkAAAAAAAAg5vADwAAAAAAAICqGlthg19ERK6wJIFJAAAAAAAABjeBHwAAAAAAAABV1ZZpqXhH4AcAAAAAACDwAwAAAAAAAKDKRo1ojpaRo8veyRUFfgAAAAAAAM31HgAAAAAAAACA4WdspjXyyzr6PM8V8glOAwAAAAD0JWV1FEBd+WMYAAAAAAAAgKpry7SUPc8VbPADAAAAAAAQ+AEAAAAAAABQddl0a9nzXFHgBwAAAAAAIPADAAAAAAAAoOrGZioEfoV8QpMAAAAAAAAMXgI/AAAAAAAAAKquLdNS9twGPwAAAAAAAIEfAAAAAAAAADWQTZff4Le4oxjLOzsTmgYAAAAAAGBwEvgBAAAAAAAAUHVjM+UDvwhb/AAAAAAAAAR+AAAAAAAAAFRdW6al4p1cIZ/AJAAAAAAAAIOXwA8AAAAAAACAqsva4AcAAAAAAFCRwA8AAAAAAACAqmsdOTpGNo0oeydXEPgBAAAAAACNTeAHAAAAAAAAQNWlUqloy7SUvZMr5BOaBgAAAAAAYHAS+AEAAAAAAABQE9l0a9nzXNEGPwAAAAAAoLEJ/AAAAAAAAACoibGZCoFfQeAHAAAAAAA0NoEfAAAAAAAAADXRlmkpe54r5BOaBAAAAAAAYHBqrvcAAAAAAAAAAAxP2XSFDX5FG/wAAAAAoO5S9R4AoLHZ4AcAAAAAAABATYzNlA/82gv56CqVEpoGAAAAAABg8BH4AQAAAAAAAFATbZmWsuedpa5Y3FFMaBoAAAAAAIDBR+AHAAAAAAAAQE1kK2zwi4jIFZckMAkAAAAAAMDgJPADAAAAAAAAoCbGpvsR+BUEfgAAAAAAQOMS+AEAAAAAAABQE2unWyJV4U6ukE9kFgAAAAAAgMFI4AcAAAAAAABATYxoaoox6UzZO7miDX4AAAAAAEDjEvgBAAAAAAAAUDNj061lz3MFgR8AAAAAANC4BH4AAAAAAAAA1ExbplLgl09oEgAAAAAAgMFH4AcAAAAAAABAzWQzLWXPc0Ub/AAAAAAAgMYl8AMAAAAAAACgZrLpShv8BH4AAAAAAEDjEvgBAAAAAAAAUDPZTPnAr72QT2gSAAAAAACAwUfgBwAAAAAAAEDNVAr8CsuXRnH5soSmAQAAAAAAGFwEfgAAAAAAAADUTDbdUvFOrrAkgUkAAAAAAAAGH4EfAAAAAAAAADVTaYNfhMAPAAAAAABoXAI/AAAAAAAAAGqmX4FfMZ/AJAAAAAAAAIOPwA8AAAAAAACAmkk3j4xM86iyd2zwAwAAAAAAGpXADwAAAAAAAICaasu0lD0X+AEAAAAAAI1K4AcAAAAAAABATWUzrWXPc0WBHwAAAAAA0JgEfgAAAAAAAADUVDZdIfAr5BOaBAAAAAAAYHAR+AEAAAAAAABQU9lMS9nz9oINfgAAAAAAQGMS+AEAAAAAAABQU9lM+Q1+C4oCPwAAAAAAoDE113sAAAAAAAAAAIa3bLp84LeoWIjOrq4Y0eTvqAUAAACAxDWl6j0BQEPz2xEAAAAAAAAAaiqbaSl7XoqIhcV8MsMAAAAAAAAMIgI/AAAAAAAAAGoqmym/wS8iYkFxSQKTAAAAAAAADC4CPwAAAAAAAABqKpuuHPjlCgI/AAAAAACg8Qj8AAAAAAAAAKiptUanY0Sq/K+n2wv5hKYBAAAAAAAYPAR+AAAAAAAAANRUUyoVbZmWsncW2OAHAAAAAAA0IIEfAAAAAAAAADWXTbeWPc8VBX4AAAAAAEDjEfgBAAAAAAAAUHPZChv82gv5hCYBAAAAAAAYPAR+AAAAAAAAANRcNlN+g9+Cgg1+AAAAAABA4xH4AQAAAAAAAFBz2XT5wC9XFPgBAAAAAACNR+AHAAAAAAAAQM1lMy1lz9sL+SiVSglNAwAAAAAAMDgI/AAAAAAAAACouWym/Aa/ZV2dsWRZR0LTAAAAAAAADA4CPwAAAAAAAABqLpsuH/hFROQKSxKYBAAAAAAAYPAQ+AEAAAAAAABQc9lMS8U77YV8ApMAAAAAAAAMHs31HgAAAAAAAACA4a8/G/wW2OAHAAAAAIlLpeo9AUBjs8EPAAAAAAAAgJprHjEi1hqdLnsnVxT4AQAAAAAAjUXgBwAAAAAAAEAiKm3xay/kE5oEAAAAAABgcBD4AQAAAAAAAJCIbKal7PmCgg1+AAAAAABAYxH4AQAAAAAAAJCIShv8ckWBHwAAAAAA0FgEfgAAAAAAAAAkIpspH/i1F/IJTQIAAAAAADA4CPwAAAAAAAAASEQ201L2fEHBBj8AAAAAAKCxCPwAAAAAAAAASEQ2XX6DX35ZRyxdvjyhaQAAAAAAAOpP4AcAAAAAAABAIrKZ8oFfRER7MZ/AJAAAAAAAAIODwA8AAAAAAACARPQn8FtQWJLAJAAAAAAAAIODwA8AAAAAAACARGQzLRXv5IoCPwAAAAAAoHEI/AAAAAAAAABIRKZ5VIwa0Vz2TrsNfgAAAAAAQAMR+AEAAAAAAACQiFQqFdlMa9k7Cwr5hKYBAAAAAACoP4EfAAAAAAAAAInJZlrKnueKNvgBAAAAAACNQ+AHAAAAAAAAQGKy6fIb/NoLAj8AAAAAAKBxNNd7AAAAAAAAAAAaRzZTPvBbUMgnNAkAAAAAEBERqXoPANDYbPADAAAAAAAAIDHZTEvZ81zRBj8AAAAAAKBxCPwAAAAAAAAASEw2XX6D38JiPrq6uhKaBgAAAAAAoL4EfgAAAAAAAAAkJpspH/h1lUqxqKOQ0DQAAAAAAAD1JfADAAAAAAAAIDGVAr+IiAXFfAKTAAAAAAAA1J/ADwAAAAAAAIDEZNMtFe+0F5YkMAkAAAAAAED9CfwAAAAAAAAASMzaozORSqXK3lkg8AMAAAAAABqEwA8AAAAAAACAxDQ1NUVbhS1+uaLADwAAAAAAaAwCPwAAAAAAAAASla0Q+LUX8glNAgAAAAAAUF8CPwAAAAAAAAASlc20lj1fULDBDwAAAAAAaAwCPwAAAAAAAAASVSnwyxUFfgAAAAAAQGMQ+AEAAAAAAACQqGy6pex5eyGf0CQAAAAAAAD1JfADAAAAAAAAIFEVN/gVlkSpVEpoGgAAAAAAgPoR+AEAAAAAAACQqEqBX0fn8igsX5rQNAAAAAAAAPXTXO8BAAAAAAAAAGgs2XRLxTvthXy0jBydwDQAAAAA0NhSTaV6jwDQ0GzwAwAAAAAAACBRlTb4RUTkCksSmAQAAAAAAKC+BH4AAAAAAAAAJCqbrhz4LRD4AQAAAAAADUDgBwAAAAAAAECiRjU3R8vIUWXvtBfzCU0DAAAAAABQPwI/AAAAAAAAABKXzZTf4pezwQ8AAAAAAGgAAj8AAAAAAAAAElcp8Fsg8AMAAAAAABqAwA8AAAAAAACAxGXTLWXP24v5hCYBAAAAAACoH4EfAAAAAAAAAImrtMEvZ4MfAAAAAADQAAR+AAAAAAAAACSuUuC3oCjwAwAAAAAAhj+BHwAAAAAAAACJy6bLB36LO4qxvLMzoWkAAAAAAADqQ+AHAAAAAAAAQOKymZaKd9qL+QQmAQAAAAAAqB+BHwAAAAAAAACJy2bKb/CLiFhQWJLAJAAAAAAAAPUj8AMAAAAAAAAgcdl05cDPBj8AAAAAAGC4E/gBAAAAAAAAkLjWUaNjZNOIsndyNvgBAAAAAADDnMAPAAAAAAAAgMSlUqloy7SUvbNA4AcAAAAAAAxzAj8AAAAAAAAA6iKbbi173l4U+AEAAAAAAMObwA8AAAAAAACAushmygd+uUI+oUkAAAAAAADqQ+AHAAAAAAAAQF1kMy1lzxcUbPADAAAAAACGN4EfAAAAAAAAAHWRTZff4NdeFPgBAAAAAADDm8APAAAAAAAAgLrIZsoHfrliPkqlUkLTAAAAAAAAJE/gBwAAAAAAAEBdZDMtZc87u7piUUcxoWkAAAAAAACSJ/ADAAAAAAAAoC6y6fIb/CIi2otLEpgEAAAAAACgPprrPQAAAAAAAAAAjSmbqRz45QpLYuPseglMAwAAAACNKZWq9wQAjc0GPwAAAAAAAADqYu10Jir9d4cWFPKJzAIAAAAAAFAPAj8AAAAAAAAA6qK5aUSMGZ0pe6e9uCShaQAAAAAAAJIn8AMAAAAAAACgbrKZ1rLnuYLADwAAAAAAGL6a6z0A/VMsFmP+/PnxyiuvRHt7e+RyuVi0aFEsXbo0li5dGsuWLYsRI0bEqFGjYuTIkdHS0hJtbW2RzWZj7NixMX78+Fh33XXr/TEAAAAAAAAAVpLNtMbc3Ct9ni8o5BOcBgAAAAAAIFkCv0Fk8eLF8eijj8Zjjz0WTzzxRDzxxBPx5JNPxvz58yOXyw34/UeNGhXjx4+PzTbbLLbaaquYOHFivPGNb4y3vOUtsdlmmw34/QEAAAAAAABWVzbdUva8vWiDHwAAAAAAMHwJ/Opk2bJlMXPmzHjwwQfjD3/4Q8ycOTOefvrpKJVKK91b9Z8HoqOjI55++ul45pln4r777lvpbO21145JkybF29/+9thtt91it912i3HjxlXt2QAAAAAAAAC9yWZay57nCgI/AAAAAABg+BL4JeiRRx6Ju+66K+688874wx/+EB0dHSvOyoV8qVSqqnP09qz29vZ44IEH4oEHHohvf/vbERGx+eabx3ve857YZ5994j3veU+ss846VZ0DAAAAAAAAoHLgl09oEgAAAAAAgOQJ/Goon8/Hb3/727j55pvj1ltvjVdffXXF2aqRXaWIrxqb/Lqf0dezVn3GU089FXPmzImf/OQnkUqlYuedd47JkyfHwQcfHNtss82A5wEAAAAAAADIplvKnheWL43i8mWRbh6Z0EQAAAAAAADJEfhV2dKlS2PGjBlx7bXXxm233bZiS19/g75qhHx9qbQlsLeZur+nVCrFww8/HA8//HCceuqpMXHixDjiiCPiIx/5SLzxjW+s2cwAAAAAAADA8FZpg19ERHthSaTHZGs/DAAAAAAAQMKa6j3AcPHggw/GJz/5ydhggw3iwx/+cNxwww1RLBajVCpFqVRaEdD1DOm6z3q+6qWvWXrO3PPsn//8Z5x55pmxzTbbxNve9rb4/ve/HwsWLKjb/AAAAAAAAMDQ1J/Ab0FhSQKTAAAAAAAAJE/gNwALFiyICy+8MLbddtt497vfHdOnT4+FCxf2GvVFvD6iG+zKxX49g7+//OUv8cUvfjHe8IY3xEc/+tH43e9+V+fJAQAAAAAAgKEim26peKe9mE9gEgAAAAAAgOQJ/NbArFmz4phjjomNNtooTjnllPjHP/7Rr6hvKCu33a/7vKOjI66//vrYd999Y7vttotLL7008nm/aAMAAAAAAAD6lh45KtLNI8veydngBwAAAAAADFMCv9Xwm9/8Jvbee+/YYYcd4vLLL49CoTCso75yen7G3rb6PfbYY/HZz342JkyYEKeeemq8+OKL9R4ZAAAAAAAAGKSymday5wsEfgAAAAAAwDAl8KugVCrFtddeG29961vjoIMOivvuu+91YVv3vVpEfT3juWq9qq3cVr/29vY477zzYvPNN49Pf/rT8a9//avqzwcAAAAAAACGtmy6pex5ezGf0CQAAAAA0ICavBJ9AazCHw19KJVKcc0118Q222wTRx55ZMyaNats2DcQ/YnxegaEA3lVet5AAsByW/2KxWL85Cc/iW233TamTJkSTz755IB+ZgAAAAAAAMDwUWmDX84GPwAAAAAAYJhqrvcAg9F1110XZ5xxRvzzn/9cKd7rGfWtqb4Cur7eM5PJxIQJE1a8xowZE5lMptfXsmXLIp/PR6FQeN3rxRdfjHnz5sX8+fPj1VdfLTtbbzOu7mfua6Pf8uXL48orr4xrrrkmjjzyyDjjjDNi4403Xq33BgAAAAAAAIYXgR8AAAAAANCoBH49/O53v4tTTjklZs6cuVKg1m1Nwr7+xHJrr712bL/99jFp0qSYNGlSbLrppjFhwoTYaKONYuzYsav9zEo6Ojpi/vz5MX/+/Jg3b17Mnj07Zs2aFbNmzYpnnnnmdfP1tk2wv8qFftOnT4+f/exn8bnPfS5OPfXUmnxWAAAAAAAAYPDLplvKnueK+YQmAQAAAAAASJbALyL+/ve/x0knnRR33nlnRPw7QFvToK1S0LfOOuvEHnvsETvuuONKQV+SRo8eHVtssUVsscUWrztbtGhR/L//9/9WBH8PPPBA/P3vf+811OvWn59PX6FfsViMiy++OH7605/GaaedFl/84hejudm/lgAAAAAAANBIKm3wW1jMR2dXV4xoakpoIgAAAAAAgGQ0dEm1YMGC+NrXvhY//vGPo7Oz83Vb+/ob9pUL3rLZbOy+++6x5557xl577RWTJk3qNQIcLMaMGRO77bZb7Lbbbiu+9uqrr8a9994b9957b9xzzz3x2GOPrThb3e1+fYV+uVwuTj755Lj00kvj4osvjve9733V/FgAAAAAAADAIFYp8CvFvyO/sS1rJTMQAAAAAABAQhoy8CuVSvE///M/8fWvfz0WLFhQlbCv53vssssuMXny5Nhvv/1ihx12GNRBX3+su+66ceihh8ahhx4aEREvv/xy3HPPPTFjxoy47bbb4rXXXouI1Yv9+gr9/vWvf8XkyZNj3333je9///ux1VZb1epjAQAAAAAAAINENt1S8U5O4AcAAAAAAAxDDRf4/fnPf47jjjsuZs6cuUZhX28BW1NTU+y5555x+OGHx8EHHxzjxo2rweSDx/rrrx+HHXZYHHbYYdHV1RX/+7//G7/+9a/jF7/4RbzwwgsR0f/Yr6/Q74477ojtt98+TjnllDj11FNj1KhRNf5UAAAAAAAAQL1U2uAXEZErLElgEgAAAAAAgGQ11XuAJH3+85+PXXfddUXct2pUVs6qd0ulUrz97W+P73znOzFv3ry4++6749hjjx32cd+qmpqaYo899ojvfve7MX/+/Ljrrrvik5/8ZIwZM2bFzyni9cHfqla9GxHR0dERZ599dmy//fbxpz/9qfYfBgAAAAAAAKiLtUZnYkSq/K+vc0WBHwAAAAAAMPw0VOD3wx/+MLq6ulbEfRErh2Wr6o7SUqnUinvrrbdenHDCCTFr1qx4+OGH4/jjj2+4qK8vqVQq9t5777jsssvihRdeiCuuuCL22muviOh9U19vun/OPX/u//rXv+L2229P5DMAAAAAAAAAyWtKpaIt3VL2Tq6QT2gaAAAAAACA5DRU4NetZ7DX1/mqAeBuu+0W11xzTcybNy8uvvji2G677ZIcechJp9Nx5JFHxt133x2PP/54nHDCCdHW1rZaoR8AAAAAAADQOLKZSoGfDX4AAAAAAMDw05CBX3/DvpEjR8aUKVPir3/9azzwwAPx0Y9+NEaOHJnkqMPCVlttFRdffHE899xz8eMf/zi22Wab123qAwAAAAAAABpbNtNa9jxXFPgBAAAAAADDT0MGfqtaNexra2uLr3zlK/H000/HT3/605g0aVKdJxwe0ul0fOpTn4q//e1vccstt8Tuu+8u9AMAAAAAAAAiIqItXSHwK+QTmgQAAAAAACA5DR34rRr2rbfeenHuuefG3Llz49xzz41x48bVecLh66CDDop77703HnzwwTjggAOEfgAAAAAAANDgxmZayp7nCjb4AQAAAAAAw09DBn6rhn3rr79+XHTRRfH000/HV77ylVhrrbXqPGHj2HXXXePWW2+NRx55JCZPnrxS6AcAAAAAAAA0jmymwga/4pIolUoJTQMAAAAAAJCMhgz8Iv4d9rW1tcU3vvGNeOqpp+LEE0+MTCZT77Ea1o477hg33HBDPPTQQ7H33nuv+MWc0A8AAAAAAAAaQ1u6fOC3rLMz8suWJjQNAAAAADSOVMoryRfAqhou8CuVSjFq1Kg4+eST46mnnopTTz01Wlpa6j0W/2fnnXeOu+66K+66667Ycccd/Q2cAAAAAAAA0CDGVtjgFxGRKyxJYBIAAAAAAIDkNFTgl0ql4ogjjojHH388vvWtb0U2m633SPRh7733jj/96U9xxRVXxIQJE+o9DgAAAAAAAFBj2Uzlv5g1VxT4AQAAAAAAw0tzvQdI0kMPPRRvf/vb6z0Gq+HII4+MD3/4w/Hkk0/WexQAAAAAAACghtrS/Qj8bPADAAAAAACGmYba4CfuG5rS6XS8+c1vrvcYAAAAAAAAQA2NHNEca41Kl72TK+QTmgYAAAAAACAZDRX4AQAAAAAAADB4ZTOtZc9zRRv8AAAAAACA4UXgBwAAAAAAAMCg0JZuKXueKwj8AAAAAACA4UXgBwAAAAAAAMCgMLbSBj+BHwAAAAAAMMwI/AAAAAAAAAAYFLKVAr9iPqFJAAAAAAAAkiHwAwAAAAAAAGBQaEu3lD23wQ8AAAAAABhuBH4AAAAAAAAADApjK2zwW7K0I5Z2Lk9oGgAAAAAAgNoT+AEAAAAAAAAwKGQrBH4REe3FfAKTAAAAAAAAJEPgBwAAAAAAAMCg0JZuqXgnV1iSwCQAAAAAAADJEPgBAAAAAAAAMCiM7ccGP4EfAAAAAAAwnDR04HfnnXfWewQAAAAAAAAA/k9m5KgYOWJE2Tu5Yj6haQAAAACgQTR5JfoCWEVD/9Gw//77x2abbRZnnHFGPP300/UeBwAAAAAAAKChpVKpyKbLb/GzwQ8AAAAAABhOGjrwi4h49tln4+yzz46tttoq9t5777jmmmuiWCzWeywAAAAAAACAhjQ2I/ADAAAAAAAaR8MHfhERpVIpurq64r777otPfOITMW7cuDjuuOPi4YcfrvdoAAAAAAAAAA2lLdNS9jxXyCc0CQAAAAAAQO0J/CIilUpFKpWKUqkUpVIpFi5cGJdddlnstttu8eY3vzkuuuiieOmll+o9JgAAAAAAAMCwl01X2OBXtMEPAAAAAAAYPgR+8e8NfhH/Cf16xn6zZ8+Ok08+OTbeeOM45JBD4qabborOzs46TwwAAAAAAAAwPI3NVAj8CgI/AAAAAABg+BD4/Z/uoG/V2K/7bNmyZXHLLbfEBz/4wdhoo43i5JNPjscee6yeIwMAAAAAAAAMO22ZlrLn7cV8dP3f73UBAAAAAACGOoFfL3rGfr1t9XvxxRfjoosuiu233z523XXXuOyyy2LhwoX1HhsAAAAAAABgyMumy2/w6yqVYlFHIaFpAAAAAAAAakvgV0FvW/16xn5/+tOf4rjjjovx48fHJz7xibjnnnvqPDEAAAAAAADA0DU2Uz7wi4jIFZYkMAkAAAAAAEDtCfz6qedWv4h4XehXKBTimmuuiX322Se22GKLOPvss2Pu3Ll1nhoAAAAAAABgaGnrV+CXT2ASAAAAAACA2hP4rYGesV9vW/2efvrpOOOMM2KLLbaIfffdN37+859HR0dHvccGAAAAAAAAGPTaRmcilUqVvZMr2uAHAAAAAAAMDwK/Aeptq1937NfV1RW/+93v4mMf+1iMHz8+Pve5z8UjjzxS54kBAAAAAAAABq+mpqZoG50peydXEPgBAAAAAADDg8AvVg7z1lTPrX4937P7a7lcLn70ox/FLrvsEpMmTYrvfOc78corr1TrIwAAAAAAAAAMG22Z1rLnuUI+oUkAAAAAAABqq6EDv5NPPjnGjx/fa5g3EOW2+pVKpfjb3/4WJ510Umy00UZx6KGHxowZM6Krq2vAnwcAAAAAAABgOMimW8qe54o2+AEAAAAAAMNDQwd+3/rWt2Lu3Llx6623xqGHHhqjRo1aEeHVcqtf99nSpUvjxhtvjMmTJ8fGG28cX/3qV+Pxxx+vymcDAAAAAAAAGKrGVtzgJ/ADAAAAAACGh4YO/CIimpqa4oADDohf/OIX8dxzz8X3vve92HHHHfvcwremesZ+vW31e/755+P888+PbbfdNt75znfG5ZdfHosXL67WxwQAAAAAAAAYMtoEfgAAAAAAQINo+MCvp7Fjx8bnP//5eOSRR2LWrFlxwgknxPrrr9/nFr411Vc82P31hx56KI455pgYP358TJkyJe6///4BfzYAAAAAAACAoSKbrhD4FfMJTQIAAAAAAFBbAr8+bLfddnHxxRfH/Pnz48Ybb4zJkyfHiBEjet3Ct6Z6bvWLiNeFfkuWLIkrr7wy9tprr5g4cWKce+65MX/+/Gp9RAAAAAAAAIBBaWympex5x/JlUVi2NKFpAAAAAAAAakfgV8GIESPi4IMPjhtuuCHmz58fF154YWy//fZ9buFbUz1jv962+j355JPxta99LTbbbLN473vfG7/4xS9i2bJl1fqYAAAAAAAAAINGW6b8Br+IiFxhSQKTAAAAAAAA1JbAbzWsv/768aUvfSkeffTReOSRR+Kzn/1sjB07ttfYbyD6igdLpVJ0dnbGnXfeGR/5yEdi/Pjxcfzxx8df/vKXAX82AAAAAAAAgMEi25/Ar5hPYBIAAAAAAIDaEvitoR133DG+//3vx3PPPRfXXXddHHDAAdHU1FSzrX4937P7a6+99lr84Ac/iJ122il22GGHuOSSS+K1116ryucDAAAAAAAAqJdsuqXiHRv8AAAAAACA4UDgN0CjRo2KD3/4w3HrrbfGs88+G9/85jdj66237nML35oqt9WvVCrFo48+GieccEJMmDAhDj/88Lj99ttX3AcAAAAAAAAYSkY3j4zMyFFl7wj8AAAAAACA4UDgV0Xjxo2LU045JR577LF48MEH45hjjom111671zhvTfW11a/7rKOjI375y1/G+973vthkk03iv//7v+Nf//rXwD8cAAAAAAAAQIKymday57miwA8AAAAAqiGV8kryBbAqgV+N7LrrrnHppZfG888/H1dddVXss88+KzbuRVR3q1+pVOp1q9/8+fNXbBTcfffd44orroh8Pl+tjwgAAAAAAABQM2PTFQK/gt99AgAAAAAAQ5/Ar8bS6XR87GMfizvuuCPmzJkTZ555ZmyxxRa9buGrRuy36vt1f/33v/99TJ06NcaNGxef+tSn4ve//31VPh8AAAAAAABALbRlWsqe5wo2+AEAAAAAAEOfwC9BG2+8cXzta1+LJ554Iu6777446qijoqWlpdc4b0313OrX8/26v7Z48eKYNm1a7L777rH11lvHeeedF88//3xVPh8AAAAAAABAtWQrbfArCvwAAAAAAIChT+BXJ+9+97tj2rRp8cILL8Tll18eu+++e0RETbb6lUqlXrf6PfHEE3HqqafGJptsEgcddFD8+te/juXLl1fl8wEAAAAAAAAMRDZTIfAr5BOaBAAAAAAAoHYEfnXW2toaRx99dNx7773xr3/9K/77v/87Nt5446pu9YuIXt+vO/br7OyM3/zmN/HhD3843vCGN8SJJ54Ys2bNGvBnAwAAAAAAAFhT2UxL2fNFHYVY3tWZ0DQAAAAAAAC1IfAbRDbffPM466yzYs6cOXHnnXfGEUccEel0utctfGuq51a/iHjdVr9XXnklvve978UOO+wQO+20U/zwhz+MXC5XpU8IAAAAAAAA0D+VNvhFRLQXbfEDAAAAAACGNoHfIJRKpeI973lPXH311fHCCy/Ej370o9h111373MK3pspt9SuVSjFz5sz4whe+EG94wxviiCOOiDvuuKMqnw8AAAAAAACgkrHpyoFfrrAkgUkAAAAAAABqR+A3yI0ZMyaOPfbYePDBB+Mf//hHnHzyyTF+/Phe47w11ddWv+6zYrEY1113XRxwwAGx6aabxumnnx5PPfXUwD8cAAAAAAAAQB/aMi0V7+QKNvgBAAAAAABDm8BvCHnjG98Y3/rWt2Lu3Llx2223xYc+9KEYNWrUijivmlv9Vn2/7q89++yz8Y1vfCMmTpwYe+21V1x99dVRKBSq+CkBAAAAAAAAItYalY7mphFl7+SKNvgBAAAAAABDm8BvCGpqaor3vve9cf3118dzzz0Xl1xySbztbW/rdQtfNWK/Vd+v++v3339/HHXUUTF+/Pj49Kc/HQ899FBVPh8AAAAAAABAKpWKbLr8Fr9cQeAHAAAAAAAMbQK/IW7s2LHxuc99Lv70pz/FrFmz4oQTToj111+/1zhvTfXc6tfz/bq/tnDhwvjJT34S73znO2PbbbeNCy+8MF588cWqfD4AAAAAAACgcbVlKgV++YQmAQAAAAAAqA2B3zCy3XbbxcUXXxzz58+PG2+8MSZPnhzNzc0rQrxqbvVb9f26v/aPf/wjTjnllNh4443j4IMPjptuuik6Ozur+CkBAAAAAACARpHNtJY9zxVt8AMAAAAAAIY2gd8wNGLEiDj44IPjhhtuiPnz58dFF10UkyZN6nULXzViv1Xfr1QqxfLly+PWW2+ND37wgzFhwoSqfC4AAAAAAACgsWTTFQK/gsAPAAAAAAAY2gR+w9x6660XJ554Yvz1r3+NP//5z/G5z30uxo4d22uct6Z6bvVb9f1KpVK8/PLLA/8gAAAAAAAAQMPJZlrKnrcX8glNAgAAAADDVyrlleQLYFUCvwayww47xCWXXBLPP/98XH/99XHggQdGU1NTzbb6AQAAAAAAAAxENlNhg18x7/eTAAAAAADAkCbwa0AjR46MD33oQzFjxox49tln45vf/GZsvfXWvW7hW9PYzy/RAAAAAAAAgIHKpssHfsu7OmPx0mJC0wAAAAAAAFSfwK/BjRs3Lk455ZR47LHH4g9/+EMcc8wxsfbaa/ca+wEAAAAAAAAkKZtpqXinvZBPYBIAAAAAAIDaEPixwi677BKXXnppPP/883H11VfHPvvsE6lUakXsJ/IDAAAAAAAAkpTNlN/gFxGxoLgkgUkAAAAAAABqQ+DH66TT6TjiiCPijjvuiKeffjrOOuus2HLLLUV+AAAAAAAAQKLa0pU3+OUKAj8AAAAAAGDoEvhR1kYbbRSnnnpqfPvb3xb5AQAAAAAAAIlqbhoRY0Znyt7JFfIJTQMAAAAAAFB9zfUegMFr9uzZMX369Lj66qvjhRdeWPH1UqlUx6kAAAAAAACARpLNtMSijkKf5zb4AQAAAAAAQ5nAj5W0t7fHz372s5g2bVo88sgjESHoAwAAAAAAAOonm26NZ+PVPs9zRYEfAAAAAAAwdAn8iFKpFHfccUdMnz49brrppujo6Fgp6kulUivdBQAAAAAAAEhKNtNa9ry9kE9oEgAAAAAAgOoT+DWwJ554IqZNmxZXXXVVPPfccxERwj4AAAAAAABgUMlmWsqeL7DBDwAAAAAAGMIEfg1m0aJF8fOf/zymT58eDz30UESI+gAAAAAAAIDBK5suv8EvVxD4AQAAAAAAQ5fAr0HcfffdMW3atLjxxhujUChExH8Cvp5RX8+vr6lV3w8AAAAAAABgTWUz5QO/wrKl0bF8WYxuHpnQRAAAAAAAANUj8BvGnnrqqZg+fXpceeWV8eyzz0ZE7bb19RUJvvWtb42pU6cO6L0BAAAAAACAxlUp8IuIyBXzseFabQlMAwAAAAAAUF0Cv2FmyZIlcf3118e0adPi97//fUTULurr6/3WWWedOOKII2Lq1Knx1re+dcDPAAAAAAAAABpXNt1S8U6usETgBwAAAAAADEkCv2Hi3nvvjenTp8evfvWryOfzEfGf4K6v7Xprqrf3a2pqiv322y+mTJkShxxySIwaNWpAzwAAAAAAAACI6N8Gv/bCkgQmAQAAAIDhKdVU7wkAGpvAbwh75plnYvr06XHllVfG008/HRHJb+vbcsst4+ijj46jjz46JkyYMOBnAAAAAAAAAPSUGTkqRjePjI7ly/q8s6CQT3AiAAAAAACA6hH4DTGFQiF+8YtfxPTp0+P++++PUqmUeNTX0tIShx56aEydOjX22GOPAT8DAAAAAAAAoJxsuiVeXNze53muaIMfAAAAAAAwNAn8hogHHnggpk2bFr/85S9j8eLFEfGf4K5nhNfz62uqr/fbddddY+rUqXH44YfHmDFjBvQMAAAAAAAAgP7KZlrLBn7tBYEfAAAAAAAwNAn8BrF58+bFFVdcEVdccUU8+eSTERGJb+vbcMMN48gjj4ypU6fGm970pgE/AwAAAAAAAGB1ZTOtZc8XCPwAAAAAAIAhSuA3yBSLxfj1r38d06ZNi3vuuSdKpVKfUV9Ebbb1NTc3x0EHHRRTpkyJgw46KEaMGDGgZwAAAAAAAAAMRDZdPvDLFfMJTQIAAAAAAFBdAr9B4g9/+ENMnz49rr/++li4cGFE/CfeSyLqi4jYdtttY8qUKXHkkUfGBhtsMKBnAAAAAAAAAFRLNtNS9rzdBj8AAAAAAGCIEvjV0XPPPRdXXnllXHHFFfHPf/4zIqLPbX0Djfr6er+11147Dj/88Jg6dWrssssuA34GAAAAAAAAQLVlM+U3+LV3FKKrqyuampoSmggAAAAAAKA6BH4JW7p0adxwww0xffr0uOuuu6Krq6vPqC+iNtv6UqlU7LnnnjF16tQ49NBDI5PJDOgZAAAAAAAAALWUTZcP/EqlUrR3FGJshRAQAAAAAABgsBH4JeRPf/pTTJs2La677rrI5XIR8Z94r9pR36rv2f1+G2+8cRx11FExZcqU2HzzzQf8DAAAAAAAAIAkZDMtFe+0F5YI/AAAAAAAgCFH4FdDL774Ylx11VUxffr0mD17dkREn9v6ahX1jR49Og455JCYMmVK7Lvvvq+LCQEAAAAAAAAGu2w/wr0FhSWxWe1HAQAAAAAAqCqBX5UtW7Ysbr755pg2bVrccccd0dnZ2WfUFzHwsK+v99thhx1i6tSp8bGPfSyy2eyAngEAAAAAAABQT2NGZ6IplYquMr9fzRWXJDgRAAAAAABAdQj8qmTmzJkxffr0+NnPfhavvfZaRCS/rW/dddeNI444IqZOnRpvectbBvwMAAAAAAAAgMGgKZWKtnRLLCj0HfG1F/IJTgQAAAAAAFAdAr8BePnll+Pqq6+O6dOnx9/+9reISC7q637Ppqam2H///WPq1KkxefLkGDly5ICfAwAAAAAAADDYZDOtZQO/cmcAAAAAAACDlcBvNXV2dsYtt9wS06dPj9tvvz2WL1/eZ9QXUbttfVtuuWVMmTIljjrqqJgwYcKAnwEAAAAAAAAwmGXTrWXPc0WBHwAAAACskVTlKwDUjsCvn2bNmhXTpk2La6+9Nl555ZWISG5bX/f7tba2xoc+9KGYMmVK7L777gN+BgAAAAAAAMBQkc20lD1vL+QTmgQAAAAAAKB6BH5lvPbaa3HNNdfEtGnT4tFHH42I5KK+nu/5jne8I6ZOnRqHH354rLXWWgN+DgAAAAAAAMBQk82U3+C3oGCDHwAAAAAAMPQI/FbR1dUVt912W0ybNi1uvfXWWLZsWZ9RX0TttvWNGzcujjzyyJg6dWpsvfXWA34GAAAAAAAAwFBWKfDLFZdEqVR63e90AQAAAAAABjOB3//5+9//HtOnT4+rr746XnrppYhIflvfyJEj46CDDoqpU6fGAQccECNGjBjwcwAAAAAAAACGg2y6pez5ss7OKCxbGi2jRic0EQAAAAAAwMA1dOCXy+Xi2muvjenTp8ef//zniEg+6ouIePOb3xxTpkyJI488MtZff/0BPwcAAAAAAABguKm0wS8iYkFhicAPAAAAAAAYUho68Bs3blwsW7asz6gvovphX/f7tbW1xUc+8pGYMmVK7LzzzgN+BgAAAAAAAMBw1p/AL1dcEhPa1klgGgAAAAAAgOpo6MBv6dKlK+K7JLb1pVKp2GuvvWLq1Klx6KGHRjqdHvBzAAAAAAAAABpBW7ql4p32Qj6BSQAAAAAAAKqnoQO/bqlUqipRX/d7det+z0022SSOOuqomDJlSmy22WZVeQ4AAAAAAABAIxk1ojlaR42OJUs7+ryzoLAkwYkAAAAAAAAGTuAXA9/Y11vUl06n45BDDompU6fGe97zntdt9AMAAAAAAABg9WQzrWUDv1xR4AcAAAAAAAwtAr81tGqw1x327bjjjjF16tQ44ogjIpvN1mEyAAAAAAAAgOEpm26J+e2v9XneXsgnOA0AAAAAAMDACfxWU2/b+tZbb7342Mc+FlOmTIlJkybVazQAAAAAAACAYS2baS17vqBggx8AAAAAADC0CPz6obdtfSNGjIj99tsvpk6dGgcffHCMHDmyTtMBAAAAAAAANIZKgV+uKPADAAAAAACGFoFfGb1t65s4cWIcffTRcdRRR8Ub3vCGeo0GAAAAAAAA0HCy6fKBX3shn9AkAAAAAAAA1SHwW0VvUV9ra2t8+MMfjqlTp8a73vWueo0GAAAAAAAA0NCymZay54uXFmNZ5/IYOcKvwgEAAAAAgKHBbzVi5agv4j9h32677RZTp06Nww8/PFpby/9NkAAAAAAAAADUVjZT+fe2uWI+1m9dO4FpAAAAAAAABk7g93+6o77x48fHJz7xiZgyZUq88Y1vrPNUAAAAAAAAAHTLpisHfu0FgR8AAAAAADB0NHzgVyqVYuTIkfG+970vpk6dGgcccEA0NTXVeywAAAAAAAAAVtGfDX4LCksSmAQAAAAAAKA6Gjrw22677WLKlClx5JFHxnrrrVfvcQAAAAAAAAAoo2XkqBg5YkQs6+zs806uKPADAAAAAACGjoYO/GbNmlXvEQAAAAAAAADop1QqFdl0a7y8ZGGfd9pt8AMAAAAAAIaQpnoPAAAAAAAAAAD9lc20lj1fUMgnNAkAAAAAAMDACfwAAAAAAAAAGDKymZay5zkb/AAAAAAAgCGkud4DAAAAAAAAAEB/ZdPlN/i1FwV+AAAAALA6UqlSvUcAaGg2+AEAAAAAAAAwZGQz5QO/XCGf0CQAAAAAAAADJ/ADAAAAAAAAYMjIZlrKnrcX89FV8jeOAwAAAAAAQ4PADwAAAAAAAIAhI5suv8Gvs9QVizsKCU0DAAAAAAAwMM31HoA119nZGc8//3w899xzsWjRoigUClEoFKJYLEapl7+R8hOf+EQdpgQAAAAAAAConmymfOAXEZErLIm10+U3/QEAAAAAAAwGAr8h4h//+Ec8/PDD8de//jX++te/xuOPPx4vvfRSryFfXwR+AAAAAAAAwFDXn8BvQSEfm4xNYBgAAAAAAIABEvgNUp2dnTFjxoyYMWNG3HHHHTFv3ryVzlcn7IuISKVS1RwPAAAAAAAAoC7WHp2JVESU+41pe3FJUuMAAAAAAAAMiMBvkPnnP/8Zl156aVx99dXxyiuvRETvMd/qBHurGwOWc/7558eMGTMq3ttggw3il7/8ZdWeCwAAAAAAABARMaKpKdZOt0R7Md/nnVxB4AcAAAAAAAwNAr9B4h//+EecddZZ8Ytf/CK6urpWivLKxXyV4r1qb+7bf//946tf/WrZO6VSKVKpVNx3332xxx57VPX5AAAAAAAAANlMa9nAb0Gh7zMAAAAAAIDBpKneAzS6RYsWxWc+85nYfvvt47rrrovOzs4VgVz3K+Lf0Vxvr6S95S1vife9730rnl1upp/85CeJzwcAAAAAAAAMf9l0S9nz9qINfgAAAAAAwNAg8KujW265Jbbddtv48Y9//LqwLyLqGvKV85WvfGXFf+4ZIvZ8lUql+NWvfhWLFi2q46QAAAAAAADAcJTNtJY9zxUEfgAAAAAAwNAg8KuDUqkUX/nKV+KQQw6J+fPn9xn2DVbveMc74m1ve1ufW/y6dXR0xA033FCvMQEAAAAAAIBhqlLgt0DgBwAAAAAADBECv4QtWrQoDjjggLjggguGXNjX02c/+9l+3bvuuutqPAkAAAAAAADQaLLplrLn7cV8QpMAAAAAAAAMjMAvQQsXLoz9998/7rzzzhVxX8Sah33dcWD3+yTpiCOOiLa2thVzrCqVSkWpVIq77rorFi5cmPR4AAAAAAAAwDBWaYNfcfmyKC5bmtA0AAAAAAAAa07gl5BFixbF/vvvHw899FBE/CeA62/Y1zPmq1fU19Po0aPjgx/8YK/z9/za8uXL47e//W2SowEAAAAAAADDXKXALyJiQWFJApMAAAAAwNCXavJK8gWwKn80JOTjH/94PPzwwytt7atk1ZivOwjsfjU3N0c2m43x48evuJ+kj3/84/26d9ttt9V4EgAAAAAAAKCRZNMtFe+0F/MJTAIAAAAAADAwzfUeoBGcccYZccstt/Q77usZ6nXf3XjjjWP//fePnXbaKXbYYYfYdNNNY4MNNlhxr6kp+VZzzz33jA033DBeeumlFRsJe+r+mg1+AAAAAAAAQDX1Z4NfzgY/AAAAAABgCBD41diDDz4YZ5999mrHfaVSKdra2uITn/hEfPKTn4xJkybVfNbVlUql4r3vfW9cccUVr9seWCqVVnztxRdfjCeeeCImTpxYjzEBAAAAAACAYWZ088jIjBwVhWVL+7yzQOAHAAAAAAAMAcmvfWsgy5Yti2OPPXZF1Fcu7kulUis23o0ePTpOO+20mDNnTnz3u98dlHFftwMPPLBf9x544IEaTwIAAAAAAAA0kmy6pex5ezGf0CQAAAAAAABrTuBXQxdffHE89thjK8K9vvTc2veOd7wjHn300Tj77LMjm80mNOma23fffVfMv+oWv54EfgAAAAAAAEA1ZTOtZc9zNvgBAAAAAABDgMCvRvL5fFx44YVlo7eIWBH/lUqlOO644+K+++6LiRMnJjTlwGWz2dh2223L3imVSjFz5syEJgIAAAAAAAAaQaXAb4HADwAAAAAAGAIEfjVy6aWXxquvvhoR0ef2vu64L5VKxWmnnRY//OEPo7m5Ockxq+Id73hH2c8YETF79uxYvnx5kmMBAAAAAAAAw1g23VL2vL2YT2gSAAAAAACANSfwq5FLLrmk7Pa+nnHfZz7zmTj77LMTnK66dt55516/3jP6W7ZsWcyePTupkQAAAAAAAIBhrtIGv5wNfgAAAAAAwBAg8KuBhx56KJ5++umI6H17X8+4753vfGd897vfTXjC6tp22237de/xxx+v8SQAAAAAAABAo6gU+C3sKMTyrs6EpgEAAAAAAFgzAr8auPbaa/s867nVb/To0XH55ZfHiBEjkhirZrbeeut+3ZszZ06NJwEAAAAAAAAaRTbdUvHOwmIhgUkAAAAAAADWnMCvBm6//faVQr5VdW/vO/7442OrrbZKcLLaWHfddWOdddaJiCj7uQV+AAAAAAAAQLVU2uAXEZErLElgEgAAAAAAgDUn8KuyF198MZ588smI+HfI11PP+C2TycR//dd/JTpbLU2YMOF1n3dV8+fPT2gaAAAAAAAAYLjrT+C3QOAHAAAAAAAMcgK/KnvggQfKnndv73v/+98f6623XkJT1d6GG25Y8c7LL7+cwCQAAAAAAABAI1hrVDpGNJX/lXd7MZ/QNAAAAAAAAGumud4DDDezZs3q173DDz+8xpMka9y4cX2epVKpKJVK8corryQ4EQAAAAAAADCcpVKpyKZb4tX84j7v5GzwAwAAAICKUql6TwDQ2Gzwq7Knnnqq16+nevx/vFQqFXvuuWdCEyVjrbXWqngnl8vVfhAAAAAAAACgYWQzrWXPFwj8AAAAAACAQU7gV2V9BX49TZw4MbLZbO2HSVA6na54p6OjI4FJAAAAAAAAgEaRTZcP/NqL+YQmAQAAAAAAWDMCvyp7/vnnV9rW11OpVIpUKhVbbbVVwlPVnsAPAAAAAAAASFo201L2PGeDHwAAAAAAMMgJ/KpsyZLKvyDaaKONEphk8Fm+fHm9RwAAAAAAAACGkWym/AY/gR8AAAAAADDYCfyqrD+B31prrZXAJMkqFAoV74wePTqBSQAAAAAAAIBGkU1XCPyK+SiVSglNAwAAAAAAsPoEflVWLBYr3hk1alQCkyQrn89XvNPS0pLAJAAAAAAAAECjqLTBb3lXZyxZ2pHQNAAAAAAAAKtP4FdlmUym4p3+bLsbal566aWKd/rzswEAAAAAAADor2ym8l8ymissSWASAAAAAACANSPwq7L+bKlbsmT4/QJp3rx5fZ6VSqWIiBgzZkxS4wAAAAAAAAANIJsuv8EvIiJXHH6/nwUAAAAAAIYPgV+VtbZW/gXSc889l8AkyZozZ06kUqk+z1OpVEyYMCHBiQAAAAAAAIDhri3dnw1++QQmAQAAAAAAWDMCvyobO3bsio11vSmVSjF37twEJ6q9efPmxWuvvRYRUfazb7LJJkmNBAAAAAAAADSA5hEjYszoTNk7Cwo2+AEAAAAAAIOXwK/KNt988z7Pujfc/fOf/4xly5YlNVLNzZw5s1/3BH4AAAAAAABAtWUrbPFrLwr8AAAAAACAwUvgV2VbbLFFr1/vudlu6dKl8eijjyY1Us3dfffd/bo3ceLEGk8CAAAAAAAANJpsprXsec4GPwAAAAAAYBAT+FVZX4Hfqu68884aT5Kc2267bcV2wnJ22mmnBKYBAAAAAAAAGknlwC+f0CQAAAAAAACrT+BXZW9729v6de/mm2+u8STJmDlzZjz55JMRsfKWwohYKfrLZrM2+AEAAAAAAABVl023lD3PFW3wAwAAAAAABq/meg8w3Oywww6RyWSiWCxGKpVaKXorlUorvvbHP/4xZs+eHdtss00dpx24H//4x2XPuz+z7X0AAAAAAABALVTe4CfwAwAAAIByeuz2AaAObPCrsubm5th5551ft82uNz/4wQ8SmKh2Xn755bjmmmtW2tTXl/322y+BiQAAAAAAAIBGUynwyy9bGkuXL09oGgAAAAAAgNUj8KuBSjFb9xa/n/70p/HMM88kNFX1nXvuubFkyb//tstKQeMHPvCBJEYCAAAAAAAAGkw23VLxTq5oix8AAAAAADA4Cfxq4PDDD+/zrGcIt3Tp0jjppJOSGKnq/v73v8f//M//9Lm9rztijIjYdtttY4sttkhyPAAAAAAAAKBBVNrgFxGRKwj8AAAAAACAwUngVwNbbLFF7LTTTlEqlXoN4Lq/XiqV4oYbbohrrrmmDlOuuc7OzjjqqKNi6dKlEVF+e18qlYqPfexjSY0GAAAAAAAANBiBHwAAAAAAMJQJ/GrkqKOOqninO/L7zGc+E48++mgCU1XH5z//+Zg5c+ZKW/p66hk1jh49Oo455pgkxwMAAAAAAAAaSLp5ZIwe0Vz2Tq6YT2gaAAAAAACA1SPwq5FPfvKTsf7660dE9LnFr/ts8eLFcdBBB8WTTz6Z6Ixr4vzzz49LL72018/UU/eWwo985COx7rrrJjQdAAAAAAAA0GhSqVTFLX42+AEAAAAAAIOVwK9G0ul0HH/88b1uuOvWM/J77rnn4l3velfMmjUrqRFX21lnnRVf/epXV8R9lbb3NTU1xUknnZTYfAAAAAAAAEBjEvgBAAAAAABDlcCvhr7whS/EBhtsEBG9b/GLWDnye/HFF2O33XaLq666KrEZ+2Px4sXx8Y9/PM4888wV81YKF1OpVBx11FHx5je/OakxAQAAAAAAgAbVlm4pe54r5hOaBAAAAAAAYPUI/Gpo7bXXjgsvvLBsDBexcuSXz+fj6KOPjsmTJ8fcuXOTGLOsW2+9Nd761rfGz372sxXhXl+fp2fE2NraGuecc05SYwIAAAAAAAANbKwNfgAAAAAAwBAl8Kuxj3/847HnnnuuiOP60jPyK5VKMWPGjNh6663jc5/7XMyZMyepcVe48847Y5999omDDz44nnrqqYpxX7fue2eddVZsuOGGCU0LAAAAAAAANLKswA8AAAAAABiiBH4JmDZtWqy77roREasV+XV0dMSPfvSjmDhxYuyzzz5x+eWXx/PPP1+zOWfOnBmnn356bL311vHe97437rnnnhXBXqW4r/s8lUrFPvvsEyeccELN5gQAAAAAAADoqS3dUva8vaMQXV1dCU0DAAAAAADQf831HqARbLrppnHNNdfEgQceWHETXs/Ir/ufS6VS3HPPPXHPPfdERMQ222wTO+20U+y4446x5ZZbxiabbNKvOebMmROFQiHy+Xy8+OKLMW/evJgzZ07MnDkzZs6cGQsWLFhphlXn6EvPaHG99daLK664ol/zAAAAAAAAAFTD2Aob/EqlUizsKFTc9AcAAAAAAJA0gV9C9ttvvzjnnHPiq1/9atktft16bs7r/udujz32WMyePTuuuuqq131Pb+/T/T+32mqrss/r1nO+cmFfz7ulUikymUz86le/inHjxpX9HgAAAAAAAIBq6k+4lyssEfgBAAAAAACDjsAvQaecckosWrQozj333H5txuu5zW/V6K5SeFfu/XqzanTYn/fv+RlGjBgR11xzTbzrXe9a7bkAAAAAAAAABiKbbql4J1fMJzAJAAAAAADA6hH4Jewb3/hGLFu2LC644IIV4V6lmG7V8942AK5OkNff5/TnvUqlUjQ1NcWPfvSjOOSQQ/r9/QAAAAAAAADVMibdEk2pVHSV+Z1nrrAkwYkAAAAAAAD6p6neAzSi8847Ly666KJoavr3j79SeLeq7g1+PV9r+n2r+x495y2VSjF69Oi4/vrr45Of/ORqfQYAAAAAAACAamlKpaKtwhY/gR8AAAAAADAYCfzq5MQTT4wZM2ZEW1tblEqlFdv8Bruecd+6664bv/3tb+ODH/xgnacCAAAAAAAAGl1burXsea6YT2gSAAAAAACA/hP41dH+++8ff/7zn2PvvfdesUFvsIZ+PecqlUqx9957x6xZs2L33Xev82QAAAAAAAAAEWMzNvgBAAAAAABDj8CvzjbffPO466674kc/+lGMGTNm0IV+q4Z9mUwmLrjggrjzzjtj/PjxdZ4OAAAAAAAA4N+ymQob/AR+AAAAAADAICTwGySOPfbYeOqpp+Kkk06KdDr9utAv6dhv1bAvIuKoo46KJ554Ik466aRBER8CAAAAAAAAdGtLVwj8ivmEJgEAAAAAAOg/gd8gss4668QFF1ywIvRbd911o1Qq9Rr7VTuw6+29S6VSjBw5Mj7+8Y/HzJkzY9q0abb2AQAAAAAAAIPS2ExL2fNcYcmK370CAAAAAAAMFgK/QWjDDTeMCy64IObPnx8///nPY//994+RI0euFPtFvD7KG8grIla8f6lUiq233jrOOuusmDt3blx55ZXxlre8pV4/DgAAAAAAAICKspnyG/yWdi6PwrKlCU0DAAAAAENHKuWV5AtgVc31HoC+jRw5Mg477LA47LDDYsmSJXH33XfH7bffHv/7v/8bjz/+eHR2dr7ue/qz2a+3v5Vy7bXXjp122in23XffOOSQQ2LrrbeuymcAAAAAAAAASEJbunzgFxGRK+ajZdToBKYBAAAAAADoH4HfENHa2hoHH3xwHHzwwRERUSwW49FHH41HH3005syZE/PmzYt58+bF888/H4sXL45CoRDFYjE6Ojpi5MiR0dLSEplMJtZaa62YMGFCbLLJJrHJJpvEVlttFTvttFO86U1v6lccCAAAAAAAADAYja2wwS8iIldYEm9Ye2wC0wAAAAAAAPSPwG+ISqfTscsuu8Quu+xS71EAAAAAAAAA6q4t01LxTq6wJIFJAAAAAAAA+q+p3gMAAAAAAAAAwECNGtEcLSNHl72TKwr8AAAAAACAwUXgBwAAAAAAAMCwMDbTWvY8V8gnNAkAAAAAAED/CPwAAAAAAAAAGBaymZay57mCDX4AAAAAAMDgIvADAAAAAAAAYFhoS1fY4FcU+AEAAAAAAIOLwA8AAAAAAACAYWFspkLgV8gnNAkAAAAAAED/CPwAAAAAAAAAGBayFQM/G/wAAAAAAIDBReAHAAAAAAAAwLDQlm4pe754aTGWdS5PaBoAAAAAAIDKBH4AAAAAAAAADAtjK2zwi4hoL+YTmAQAAAAAAKB/BH4AAAAAAAAADAvZfgR+uYLADwAAAAAAGDwEfgAAAAAAAAAMC22Zlop3csUlCUwCAAAAAADQP831HgAAAAAAAAAAqqF15OgY2TQilnV19nknVxD4AQAAAEBPqaZSvUcAaGg2+AEAAAAAAAAwLKRSqchmWsveEfgBAAAAAACDicAPAAAAAAAAgGGjLd1S9jxXzCc0CQAAAAAAQGUCPwAAAAAAAACGjbE2+AEAAAAAAEOIwA8AAAAAAACAYSNbMfCzwQ8AAAAAABg8BH4AAAAAAAAADBtt6Zay57miDX4AAAAAAMDg0VCB36677hoPPfRQvcdgNeTz+fj6178eF154Yb1HAQAAAAAAAIaAsRU2+LUX8tFVKiU0DQAAAAAAQHkNFfj98Y9/jHe+853x0Y9+NJ555pl6j0MFl19+eUycODHOOeecyOfz9R4HAAAAAAAAGAKyFQK/zlJXLO4oJjQNAAAAAABAeQ0V+HW7/vrr401velOccMIJ8fLLL9d7HFZx4403xvbbbx/HHHNMPP/88/UeBwAAAAAAABhC2jItFe/kiksSmAQAAAAAAKCyhgz8SqVSdHR0xCWXXBJbbrllfP3rX4/29vZ6j9Xw7rrrrth1113j0EMPjb///e9RKpXqPRIAAAAAAAAwxIxNl9/gFxGRKwj8AAAAAACAwaG53gPUQyqVioh/h36LFy+Oc845Jy655JL4whe+ECeeeGKMHTu2zhM2lt/85jdx9tlnx0MPPRQRsSLsS6VSIj8S8eyzz8Zvf/vbmDVrVjz22GMxZ86cWLRoUSxcuDBKpVKMGTMmxowZE5tssklsu+22sf3228e+++4bEydOrPfoAAAAAAAArGLtdEukIqLcbxpzhXxS4wAAAAAAAJTVkIFfqVSKVCq1UujX3t4e55xzTnz3u9+Nz372s3H88cfH+PHj6zzp8FUqleLXv/51nHfeefHnP/95xdci/hNgQi3lcrn4yU9+EldddVXMmjWr7N1XX301Xn311Xj66afj/vvvX/H1iRMnxhFHHBGf+cxnYsMNN6z1yA3lqaeeiiuvvLLf9zfbbLM4+uijazcQAAAAAAAwZIxoaoox6UwsLBb6vJMr2uAHAAAAAAAMDg0Z+EWsHJP1DP0WLVoU559/fnz729+Oj33sY/GlL30p3vzmN9dz1GGlUCjE5ZdfHt/5znfiqaeeiojXh31CP2pp8eLFcfbZZ8cPfvCDWLJkYL+4feKJJ+LMM8+Mb37zm3HUUUfFueeeG+utt16VJm1cpVIppk6dGvfdd1+/v2ePPfYQ+AEAAAAAACuMTbeWD/wKAj8AAAAAAGBwaKr3APVWKpVeF/uVSqVYunRpTJ8+PSZNmhT7779/3HzzzSvusfqefPLJOOmkk2KjjTaK448/Pp588skVP/ueP3c/Y2rp5ptvjm222SbOP//8Acd9PS1dujQuu+yy2HrrrWPatGlVe99Gdemll65W3AcAAAAAALCqbKa17HmukE9oEgAAAAAAgPIaMvDrbTNcX6FfqVSKu+66Kz7wgQ/E5ptvHt/61rfiueeeS3rkIWn58uVxww03xAEHHBBbb711fOc734kFCxasFPUJ+0hCV1dX/Pd//3cccsghMW/evJo957XXXoupU6fGscceG0uXLq3Zc4azefPmxSmnnFLvMQAAAAAAgCGuLdNS9jxXtMEPAAAAALqlUl5JvgBW1VCB37rrrrtSxNebcqHf3Llz47TTTotNN900DjzwwPjVr34l4unFo48+GieeeGK84Q1viA996ENxxx13RFdX10phX0SUDft6/u+nVCrFeuutl8jsDD+dnZ3xkY98JM4555zEQtLLLrss9ttvv8jn/c2vq+szn/lMLFy4sN5jAAAAAAAAQ1w2XWmDn8APAAAAAAAYHBoq8Hv88cfj6KOPXvHPPWOzVXXHZ71tm+vs7Izf/va3cdhhh8UGG2wQRx99dPzmN7+Jzs7OhD7J4PP444/HmWeeGdtuu23suOOO8b3vfS9eeeWV1/0MI8qHfRGx0r1NNtkkbrzxxvjsZz+byOdgeOnq6oqjjz46fvGLXyT+7Pvuuy8+8IEPREdHR+LPHqquvfbamDFjRr3HAAAAAAAAhoGxmfKBX3vBX9QIAAAAAAAMDs31HiBJ66yzTlx++eUxZcqUOO6442L27NmvC896s+pGv55fW7hwYVx11VVx1VVXRTabjQMPPDAmT54c733ve2OttdZK4FPVz8MPPxw33XRT3HzzzTF79uyIWPlnuGo8WWl7Ws+fbXNzc5xwwglxxhlnREtLS5Unp1GcdtppcfXVV6/W90ycODHe+c53xnbbbRfrrLNOpFKpWLBgQcyePTv+8Ic/xN/+9rd+v9cdd9wRxxxzTFx55ZWrO3rDeeWVV+KLX/xivccAAAAAAACGibYKgV9h+dIoLl8W6eaRCU0EAAAAAADQu4YK/Lq9+93vjlmzZsUll1wSZ511VuRyuZU29PWlt9Cv59cXLFgQ1157bVx77bUxcuTI2GWXXWKvvfaKPffcM3bbbbcYNWpUbT9Yjc2ePTvuueeeuOeee+K+++6LV199NSIGFvX1/J7uu/vtt1985zvfiTe96U3VGp0GdPvtt8d5553X7/uTJ0+OU089NXbeeeey9/72t7/FBRdcEFdffXV0dXVVfN+rrroq9thjj/jkJz/Z71ka0fHHHx+vvPJKvccAAAAAAACGiWy68l8imissiXFjsrUfBgAAAAAAoIxUqT8F1jD26quvxqmnnho//elPo6urq+I2v1WVC9p6no0ePXql4G+HHXaIMWPGVOET1EZnZ2fMnj07Hnjggbj33nvj3nvvjZdffnnF+ao/n96Cx0pW/Z6JEyfGRRddFO973/sGOD2N7tVXX403velN/QrG1llnnbjqqqviwAMPXK1nPPTQQ3HYYYfFs88+W/FuJpOJWbNmxVZbbbVaz2gUM2bMiPe///19njc1NVWMKffYY4+49957qzzZ0PDyyy/HBhtssNLXXnrppVh//fXrNBEAAAAAANTfi4tyceItV5S98/V9PhRv2mBCQhMBAABAbfjvkAHVcNC3v1rvERrKrSd+s94jAINMQ27w62ndddeNSy+9NL7whS/EKaecErfffvtKG/oqxWqrBn19hW7FYjHuv//+uP/+++PMM8+MiIhNNtkkJk2aFJMmTYrtt98+Jk2aFG984xujqampmh+xohdeeCFmzZq10usf//hHLFu2rNfPErFmm/p6+95SqRTrr79+fO1rX4vjjjsumpsb/l9JquC0007rV9y30UYbxb333htbbrnlaj9j1113jUceeST22muveOyxx8reLRQKceKJJ8Ytt9yy2s8Z7hYtWhSf+cxn+jwfP3587LLLLnHjjTcmNxQAAAAAADDktWVaK97JFfMJTAIAAAAAAFCemur/bLfddnHrrbfGvffeGyeffHI88sgjqxX6rXpn1divt/d45plnYu7cuTFjxowVXxs1alRMmDAhJkyYEBtttNGK/9z9GjNmTGQymUin05HJZFa8ui1dujQKhcJKr3w+Hy+99FLMmzcv5s+fH/Pnz1/xn+fNmxcLFy4sO2f35yn3eftj1bCvtbU1vvSlL8WXv/zlWGuttVbrvaAvf/nLX+Kyyy6reK+trS3uuuuuNYr7um2wwQZx9913x9vf/vaYN29e2bszZsyI2267bbU3BQ53J598ctmf3fe+972V/owEAAAAAADoj3TzyMg0j4rC8qV93skVliQ4EQAAAAAAQO8EfqvYc889449//GPcdNNNceaZZ8Zf//rX1Q79ervXW/DX272Ojo546qmnYs6cOas198iRI6OzszO6urr6/T3lPks1gr7e3qtUKkVLS0t87nOfiy9/+cux3nrrrdF7Ql/OPPPMfv3fwWWXXRZbb731gJ83bty4uPbaa2OvvfaKzs7OsndPP/10gV8P999/f1x66aV9nr///e+PD33oQwI/AAAAAABgjWQzLVFYJPADAAAAAAAGt6Z6DzBYTZ48OWbOnBm/+tWv4q1vfWuUSqUolUorQr3eArhyur+/5ysiVnq/nq/e7pd7LV26NDo7O1fre8o9v7eZV9eq79Xa2hr/9V//FXPmzInzzjtP3EfVPf7443HzzTdXvDd58uT48Ic/XLXnvvvd745Pf/rTFe898sgj8bvf/a5qzx3KisVifOpTn+rzz5a11lorfvCDHyQ8FQAAAAAAMJy0ZVrLnueKAj8AAAAAAKD+BH4VfOADH4g///nPcfvtt8eee+7Zaxy3pvqK7nq+d61ffc0xkG19q0aK6623Xpx99tkxd+7cOP/882P99ddf458ZlHPxxRdX/He3ubk5Lrzwwqo/+6yzzoq111674r2LLrqo6s8eik4//fR44okn+jz/xje+ERtvvHGCEwEAAAAAAMNNNl0h8CvkE5oEAAAAAACgbwK/ftp///3jd7/7Xfzxj3+Mj370o9Hc3NzrFryBWt3NfavGeAP53oHoLRjcbrvt4kc/+lE888wzcdppp0U2m63Ks6A3HR0dcd1111W8d+ihh8ZWW21V9eevu+668alPfarivd/+9rfx4osvVv35Q8nMmTPLho5vf/vb4wtf+EKCEwEAAAAAAMPR2ExL2fP2gg1+AAAAAABA/Qn8VtNOO+0U11xzTcydOzdOP/30GD9+fFW3+q2pasZ6/dXbJsARI0bEBz7wgfjd734Xs2bNimOPPTbS6XSic9GYZsyYEe3t7RXvnXDCCTWb4fjjj4+mpvJ/rHZ2dsbPf/7zms0w2C1fvjymTp0anZ2dvZ43NzfHZZddVvHnCAAAAAAAUElbpvwGvwVFgR8AAAAAAFB/Coo1tOGGG8bpp58ec+fOjZtuuikOPvjgGDFixIrQrmf8Vo/gr1Z6i/pKpVK88Y1vjPPOOy+effbZ+NWvfhV77rlnfQel4fzsZz+reGerrbaKXXfdtWYzbLrppvHud7+74r3+zDpcnXfeefHoo4/2eX7iiSfGW97ylgQnAgAAAAAAhqtsunzgt6hYiM6uroSmAQAAAAAA6J3Ab4Campri/e9/f9x4440xb968+Pa3vx277rrrivBt1c1+Qy326y1U7P5cG2ywQXzhC1+IBx98MGbPnh1f/vKXY8MNN6zzxDSizs7OuOuuuyreO/zww2s+y0c+8pGKd/70pz/Fq6++WvNZBpvHH388zj777D7PN9988zjjjDOSGwgAAAAAABjWxmZayp6XImJhMZ/MMAAAAAAAAH1orvcAw8kGG2wQX/ziF+OLX/xiPPPMM/HLX/4ybrrppnjwwQej6//+5sfeIr/uCHAw6C1A7DnfxhtvHAcffHB88IMfjD322COamjSi1N8f//jHaG9vr3jvgAMOqPks/XlGV1dX3H333XHYYYfVfJ7BolQqxac+9ano6Ojo887//H/27jw66vreH/9rQiAzYcngAghWqbu4oEJVrFvd6tqqt4tWK9YdcWnVW9uvvbfrtYu9rdZqFS1qFet2a1u11dpFrVVxwaUuuEFVRMUqCZBMCJD5/eEvGJbMTGDmMyQ8HufMuTXvV+b9/EQvPafjM69f/CLq6wt/0A4AAAAAAFCqhkzhDX4REXNbm2Nw/YAE0gAAAADAmquH7TEC6HUU/Cpk4403jnPPPTfOPffceO+99+Kuu+6Ke+65J/7617/GO++8s3Su0Fa/Shb/Cm0S7Hxvv379Ytddd439998/DjnkkNhhhx0qlglW1V/+8peiMwMHDoxddtml4lk23njj2GyzzeKVV14pOHfvvfeuVQW/yy67LB588MEuz7/whS/EJz/5yQQTAQAAAAAAvV02Xbzg15hrTiAJAAAAAABA1xT8ErDuuuvGcccdF8cdd1xERDz77LNx3333xUMPPRQPP/xwvPbaayt8T6HiXzktXyLs379/fOxjH4vddtst9thjj9hjjz1s1GKN9/DDDxed2WWXXaK2Npk/8vbYY4+iBb+pU6cmkmVN8Prrr8fXv/71Ls/XWWeduPjii5MLBAAAAAAArBUG1KWjT01NLGlv73KmKdeSYCIAAAAAAIAVKfhVwbbbbhvbbrttnHHGGRER8fbbb8eTTz4ZTz/9dDz99NPx/PPPxyuvvBK5XK7oe62sBFjK5r9UKhUf+chHYquttortttsuRo8eHaNHj45tttkmampquv9QUEVPPvlk0ZmddtopgSQfGDNmTFxzzTUFZ1544YVYuHBh1NXVJZSqek499dRYsGBBl+cXXXRRrL/++gkmAgAAAAAA1gY1qVQ0pOvj/ZauP6eYa4MfAAAAAABQZQp+a4Bhw4bFQQcdFAcddNAyX3/zzTdjxowZMWvWrHjzzTfjrbfeinfffTeampqisbExFixYEAsXLoxFixbF4sWLo6amJvr27Rv9+vWLTCYTDQ0Nkc1mY5111olhw4bF8OHDY8SIEbHxxhvHpptuulYUi+j93nnnnXjrrbeKziVd8Ctm8eLF8c9//jPGjh2bQKLq+dWvfhV33313l+d77713nHDCCQkmAgAAAAAA1ibZdP+CBb/GVgU/AAAAAACguhT81mAjRoyIESNGVDsGrNGeeeaZkua22mqrCif50JZbblnS3DPPPNOrC35z5syJr3zlK12e19XVxZVXXplgIgAAAAAAYG0zONO/4HlTriWhJAAAAAAAACtXU+0AAKtjxowZJc1tttlmFU7yocGDB8c666xTdK7U7D3VGWecEe+//36X5xdccEFsscUWCSYCAAAAAADWNg2Z+oLnc3M2+AEAAAAAANWl4Af0aDNnziw6M2zYsOjfv/BvZy23UgqFpWTvqX73u9/Frbfe2uX5qFGj4vzzz08wEQAAAAAAsDbKpgt/RtTYquAHAAAAAABUl4If0KP961//KjozfPjwygdZzgYbbFB0prcW/JqamuL000/v8jyVSsWkSZOiX79+CaYCAAAAAADWRoMzhQt+TbmWyOfzCaUBAAAAAABYkYIf0KO9+eabRWeGDRuWQJLu3zlr1qwEkiTvvPPOi9mzZ3d5fsopp8THP/7xBBMBAAAAAABrq4ZMfcHzRe1LonnRwoTSAAAAAAAArEjBD+jR3nvvvaIzQ4cOTSDJskop+L3//vsJJEnW3/72t7j66qu7PN9ggw3ihz/8YYKJAAAAAACAtVk2XXiDX0REY645gSQAAAAAAAArp+AH9GilFPyy2Wzlg6zCnc3NzbFwYe/5jbAtLS1x8sknF5z52c9+Fg0NDQklAgAAAAAA1naDM8ULfk25lgSSAAAAAAAArJyCH9CjzZ07t+jMwIEDE0iyanf2pi1+//Vf/xWvvvpql+eHHnpofOYzn0kwEQAAAAAAsLZrSNcXnZlrgx8AAAAAAFBFCn5Aj5XL5WLRokVF56pR8Bs0aFBJc01NTRVOkozHHnssLrnkki7PBwwYEJdffnmCiQAAAAAAACJq+/SJAXXpgjONrQp+AAAAAABA9dRWOwDAqmpraytpLpPJVDjJitLpwh8Udyj1GdZkixYtihNPPDGWLFnS5cx3v/vd+MhHPpJgKgAAAAAAgA8MTvePBQtbuzxvyrUkmAYAAAAA1jypVLUTAKzdFPyAHqvUclyfPn0qnGRFtbWl/fHaGwp+F154Yfzzn//s8nzs2LFx1llnJZiI3XffveR/Bqmc5557rtoRAAAAAACIiIZMfbzR9F6X53NzNvgBAAAAAADVU1PtAACrqtRyXDWKTqXeuWjRogonqaznn38+Lrzwwi7Pa2tr46qrroqaGv91AwAAAAAAVEc23b/geWOrgh8AAAAAAFA91vsAPdbixYtLmlPwq4z29vY48cQTCxYtv/zlL8cOO+yQXCgiIuLBBx+M9ddfv9oxAAAAAABgjTA4U7jg15RrSSgJAAAAAADAiqxUAnqsUkt0S5YsqXCSVb+zGuXDcvnZz34WjzzySJfnH/3oR+Pb3/52gokAAAAAAABW1JCpL3g+N2eDHwAAAAAAUD0KfkCP1a9fv5LmSt30V06lbuYr9RnWNDNnzoxvfOMbBWd+8YtfRH194Q/MAQAAAAAAKi2bLrzBr2XRwmirwudJAAAAAAAAEQp+QA/Wt2/fkuaqUfAr9c6eWvA75ZRTorm5699me/TRR8cnP/nJBBMBAAAAAACs3OBM4YJfRERTa0sCSQAAAAAAAFak4Af0WHV1dSXNtba2VjjJqt/ZEwt+kydPjj//+c9dnq+zzjpx8cUXJxcIAAAAAACggIYSCn5zc13/YkMAAAAAAIBKqq12AKBnmTlzZkydOrWid/Tv3z8OO+ywonOZTCZqa2uLbsubP39+uaKVrNQ7Bw0aVOEk5fX222/HueeeW3DmoosuiiFDhiSUCAAAAAAAoLBspr7oTGOrgh8AAAAAAFAdCn5At9x///3xpS99qaJ3bLzxxiUV/CIiBg8eHO+++27BmXnz5pUjVreUeuc666xT4STlNXHixGhsbOzyfK+99qr4Px8AAAAAAADdkantF3V9amPhkq5/aWSTDX4AAAAAAECV1FQ7AMDqWHfddYvONDU1JZCk+3fW19dHOp1OIE153HbbbfGb3/ymy/O6urqYNGlSpFKpBFMBAAAAAAAUlkqloiHTv+DM3FxLQmkAAAAAAACWpeAH9GilFPzeeeedBJIs6+233y46U0r2NcXcuXPjzDPPLDhzwQUXxBZbbJFQIgAAAAAAgNJlM/UFzxtbbfADAAAAAACqQ8EP6NFGjBhRdKaUsl25lXJnKdnXFOecc07BZxo1alScf/75CSYCAAAAAAAoXTZdeINfU07BDwAAAAAAqA4FP6BHGzlyZNGZ2bNnVz7Ict56662iMx/96EcTSLL6Xnnllbj22mu7PE+lUnHllVdGv379kgsFAAAAAADQDdlM4YLf3FxLQkkAAAAAAACWVVvtAACro5SS3Ntvvx0tLS1RX1+fQKIPvPLKK0VnekrBb8GCBQXPd9hhh5g1a1bcdNNNFbl/5syZRWfmzJlT0v1DhgyJffbZpxyxAAAAAACAHiSbKfw5UWOrDX4AAAAAAEB1KPgBPdomm2xSdCafz8crr7wS22+/fQKJIhobG+O9994rOldK9p7gySefjKOPPrqqGV544YWSMuy1114KfgAAAAAAsBbKpgtv8JvX2hLt7e1RU1OTUCIAAAAAAIAP+HQC6Jbjjz8+8vl8RV//+te/Ss6z3XbblTQ3ffr0VXzi7iv1rlKzAwAAAAAAsHqymcIFv/Z8PuYvzCWUBgAAAAAA4EMKfkCPtsEGG8TQoUOLzk2bNi2BNKXfVVtbm9hGQQAAAAAAgLVdsYJfRMTc1pYEkgAAAAAAACxLwQ/o8XbaaaeiM0kW/J544omiM1tttVWk0+kE0gAAAAAAADA4XV90pinXnEASAAAAAACAZSn4AT3euHHjis488sgjsXjx4gTSRDzwwANFZ3bZZZcEkgAAAAAAABARMbAuE6lUquDMXAU/AAAAAACgChT8gB5v3333LTozf/78ePTRRyue5fXXX49XXnml6Nz+++9f8SwAAAAAAAB8oKamJhqKbPFrbFXwAwAAAAAAkqfgB/R4O++8cwwaNKjo3B//+MeKZynljlQqVVIpEQAAAAAAgPLJpvsXPG/KtSSUBAAAAAAA4EMKfkCPV1tbW1Jh7uabb654lptuuqnozNixY2O99dareJZy2WGHHSKfz1ftNX78+KIZ99prr5Le67777qv8DwwAAAAAAFgjZTOFN/jNzdngBwAAAMDaKZXKeyX4Aliegh/QKxx99NFFZ15++eWYOnVqxTK8/vrr8cADDxSdKyUrAAAAAAAA5ZXNFN7g19iq4AcAAAAAACRPwQ/oFQ477LAYNGhQ0bmLL764Yhl+9rOfRXt7e8GZmpqaOOqooyqWAQAAAAAAgJXLpgsX/JpyLQklAQAAAAAA+JCCH9ArpNPp+NznPld07rbbbotXXnml7Pe/9957cdVVVxWdO+CAA2KDDTYo+/0AAAAAAAAUls3UFzxvzDVHPp9PKA0AAAAAAMAHFPyAXuOcc86JVCpVcGbx4sVx3nnnlf3u//7v/4558+YVnTv33HPLfjcAAAAAAADFZTOFN/gtXLI4covbEkoDAAAAAADwAQU/oNfYeuut49BDDy0697vf/S5uvfXWst374IMPxpVXXll0bqeddor99tuvbPdGRPzrX/+KVCpV9LX33nuX9V4AAAAAAICeJpsuXPCLiGjKtSSQBAAAAAAA4EMKfkCv8s1vfjNqaor/0XbyySfHSy+9tNr3vf322/GFL3whlixZUnT2W9/61mrfBwAAAAAAwKrJZuqLzjTmmhNIAgAAAAAA8CEFP6BXGTNmTJxwwglF55qammLfffeNGTNmrPJd7777buy3337xxhtvFJ096KCD4rDDDlvluwAAAAAAAFg92UzxDX5zFfwAAAAAAICEKfgBvc6FF14Y6667btG5WbNmxc477xx//OMfu33H1KlTY+zYsfHcc88VnU2n03HJJZd0+w4AAAAAAADKp1+f2qjvW1dwpqm1JaE0AAAAAAAAH1DwA3qd9ddfP6699tpIpVJFZ9977704+OCD48gjj4zHH3+86Pzzzz8fX/rSl2K33XaL119/vaQ8l1xySWy++eYlzQIAAAAAAFA52Ux9wfNGG/wAAAAAAICE1VY7AEAlHHrooXHeeefFRRddVNL87bffHrfffntsscUWsfvuu8c222wT66yzTqRSqZg7d25Mnz49Hn744XjmmWe6leMLX/hCnHLKKavyCAAAAAAAAJRZNtM/Zs+b2+X5XAU/AAAAAAAgYQp+QK/1gx/8IGbNmhW//vWvS/6el156KV566aWy3L/vvvvG5MmTy/JeAAAAAAAArL5sun/B86bWloSSAAAAAAAAfKCm2gEAKqWmpiZ+9atfxZFHHpn43bvvvnv87ne/i7q6usTvBgAAAAAAYOWymfqC5402+AEAAAAAAAlT8AN6tdra2rj11lvj/PPPT+zOL33pS/HnP/85+vcv/BtgAQAAAAAASFY2U/jzm7mtCn4AAAAAAECyFPyAXq+mpiZ+8IMfxO233x7Dhw+v2D2DBw+Oq666KiZPnmxzHwAAAAAAwBoomy5c8FuwsDUWL1mSUBoAAAAAWDOkarySfAEszx8NwFrj8MMPj+nTp8d5551X1u16/fr1ixNPPDFefPHFOOmkk8r2vgAAAAAAAJRXNlNfdKaptSWBJAAAAAAAAB+orXYAgCQNHDgwLrroovh//+//xaRJk+L666+P5557bpXea9NNN42jjz46Tj/99Nhggw3KnJQOhx9+eIwcObLgTLFzAAAAAACAiIhspvgvgZyba451+w9MIA0AAAAAAICCH7CWGjx4cJx//vlx/vnnx2uvvRZ/+tOf4umnn47nn38+/vWvf8W8efNi/vz5kc/nY+DAgTFw4MD4yEc+EqNGjYrtttsu9ttvv9hqq62q/RgxcuTIyOfz1Y5RUYcffngcfvjh1Y4BAAAAAAD0AqUU/GzwAwAAAAAAkqTgB6z1Nt544zj55JOrHQMAAAAAAIAK69+3LvrW9IlF7Uu6nGnMNSeYCAAAAAAAWNvVVDsAAAAAAAAAACQhlUpFQ6a+4MxcBT8AAAAAACBBCn4AAAAAAAAArDWy6f4Fz5taFfwAAAAAAIDkKPgBAAAAAAAAsNbIZgoX/BpzLQklAQAAAAAAUPADAAAAAAAAYC2SzdQXPJ+bs8EPAAAAAABIjoJfBVx77bXxk5/8JN5///1qRwEAAAAAAACgk2y68Aa/plYFPwAAAAAAIDkKfhXw2muvxX/+53/GiBEj4thjj40HHnig2pEAAAAAAAAAiIhspnDBr7G1JfL5fEJpAAAAAACAtZ2CX4Xk8/lYuHBh/PrXv45PfOITMWrUqLj44ott9QMAAAAAAACoomymvuD5kvb2mL+wNaE0AAAAAADA2k7Br4JSqVTk8/nI5/Mxffr0OPfcc2PDDTeM4447Lh588MFqxwMAAAAAAABY6xTb4BcR0dTanEASAAAAAAAABb+KS6VSS1/5fD5aW1tjypQpsddee8U222wTP/vZz6KxsbHaMQEAAAAAAADWCtl08YJfY07BDwAAAAAASIaCX4V1bPCLiGWKfvl8Pl544YX4yle+EiNGjIjjjz8+HnrooSqnBQAAAAAAAOjdGtL1kSoyMzfXkkgWAAAAAAAABb+ErKzo1/H1XC4X119/feyxxx6x3Xbbxc9//vNoamqqZlwAAAAAAACAXqlPTU0MTGcKzjS12uAHAAAAwNojlfJK8gWwPAW/hHUU/fL5/NKiX+etfs8991ycffbZMXz48DjhhBPi4YcfrnZkAAAAAAAAgF4lm+5f8Lwxp+AHAAAAAAAkQ8Gviopt9bvuuuti9913j+233z4uv/zymDdvXjXjAgAAAAAAAPQK2Uzhgt/cXEtCSQAAAAAAgLWdgt8aoNhWv2effTbOPPPMGD58eJx44okxderUakcGAAAAAAAA6LGymfqC502tNvgBAAAAAADJUPBbwxTa6tfS0hLXXntt7LbbbrHDDjvEFVdcEfPnz69mXAAAAAAAAIAeJ5suvMGvMafgBwAAAAAAJEPBr8I6b+TrjmJb/Z555pmYOHFiDB8+PE4++eR47LHHKvQEAAAAAAAAAL1LNlOs4NeSUBIAAAAAAGBtp+BXAWeffXb89Kc/jVGjRnW5ka87Cm31a25ujsmTJ8euu+4aO+20U0yaNCkWLFhQvocBAAAAAAAA6GWKFfxyi9uidfGihNIAAAAAAABrMwW/Cshms3H22WfHP//5z3jwwQfj2GOPjXQ6vUJJr9xb/Z566qmYMGFCDB8+PE499dR44oknKvF4AAAAAAAAAD1aNl1fdKYp15xAEgAAAAAAYG2n4Fdhu+22W/zqV7+KN998My6++OJEtvotWLAgrr766th5551j7NixcdVVV0Vzsw+fAAAAAAAAACKKb/CLiJir4AcAAAAAACRAwS8h2Ww2zjrrrKVb/b74xS8mstVv2rRpcdppp8Xw4cNjwoQJ8eSTT1bi8QAAAAAAAAB6jJI2+LW2JJAEAAAAAABY2yn4VcFuu+0W1113XcyePTsuvvji2GabbSq+1W/+/PkxadKkGDt2bHzsYx+LX/7yl9HS4gMpAAAAAAAAYO2T7tsv0rV9C8402uAHAAAAAAAkQMGvihoaGuKss86KZ555Jv7xj38kttXviSeeiFNOOSWGDx8eEydOjKeeeqoCTwcAAAAAAACw5spm+hc8n6vgBwAAAAAAJEDBbw0xbty4pVv9LrnkkkS2+s2bNy+uuOKKGDNmTOyyyy5xzTXXRC6XK99DAQAAAAAAAKyhsun6gudNrS0JJQEAAAAAANZmCn5rmIaGhjjzzDOXbvU77rjjlm71W34jX3cU2+r32GOPxUknnRTDhw9fej8AAAAAAABAb1Vsg1+jDX4AAAAAAEACFPzWYOPGjYtrr7126Va/7bbbruJb/ZqamuLyyy+PHXfccelWwdbW1vI9FAAAAAAAAMAaQMEPAAAAAD6QSnkl+QJYnoJfD9Cx1e/pp5+Ohx56KLGtfo8++miccMIJMXz48DjrrLPi2WefrdATAgAAAAAAACQrm64veN7Y2pJQEgAAAAAAYG2m4NfD7LrrrnHttdfGW2+9FT/72c8qutWv42uNjY1x2WWXxejRo+PjH/94XH/99bFw4cKyPhcAAAAAAABAkopt8JvX2hJL2tsTSgMAAAAAAKytFPx6qEGDBsUZZ5yxdKvf+PHjE9nq98gjj8Txxx8fG2ywQXz5y1+O559/vkJPCAAAAAAAAFA5xQp++fig5AcAAAAAAFBJCn69wK677hrXXHNN4lv9Lr300thuu+1ijz32iBtuuMFWPwAAAAAAAKDHyKbri840KvgBAAAAAAAVpuDXi6xsq18mk6n4Vr+Ou4YPHx7nnHNOTJ8+vUJPCAAAAAAAAFAexTb4RUQ05poTSAIAAAAAAKzNFPx6qY6tfrNnz46f/exnsf3221d8q9/cuXPjkksuiW222Sb22muvuPHGG6Otra2szwUAAAAAAABQDgPqMtEnVfgjcwU/AAAAAACg0hT8ermOrX5PPfVUPPzww3H88ccnstXvwQcfjC9+8YsxfPjwOO+88+LFF1+s0BMCAAAAAAAAdF9NKhUN6fqCM42tLQmlAQAAAAAA1lYKfmuRXXbZJSZPnhyzZ8+OSy+9NJGtfu+//3789Kc/jVGjRsXee+8dN910UyxatKiszwUAAAAAAACwKrKZIgU/G/wAAAAAAIAKU/BbCw0aNCgmTpyY+Fa/v//973HMMcfEiBEj4qtf/Wq8/PLLFXpCAAAAAAAAgOKymf4FzxX8AAAAAACSt2jRovjrX/8a3/3ud+Poo4+OHXfcMTbccMNoaGiI2traGDhwYIwYMSK22267+MxnPhP//d//HXfddVfkcrlqR4dVksp3rF5jrTZv3ry4/vrr4+qrr46nn346ImKZgt+q/mPS1Xt0fH2vvfaKCRMmxBFHHBG1tbWrdAfA2uzdd9+NIUOGLPO1OXPmxPrrr1+lRAAAAAAA0HNcNfUv8bdXn+3yfPP1NohvH/C5BBMBAABA9/h3yIByOOLyr1U7wlrl9tN/UO0Ia6wHH3wwLrvssvjDH/4Q8+bN6/b3ZzKZ2G+//WLChAlx4IEHdnvx1dqqtbU1nnnmmXj88cdjzpw5RecPP/zw2GGHHSofbC2iUUVEfLjVb+LEifHoo4/GFVdcEbfccku0tLRERCzdxNddKyv1df76/fffH/fff3+sv/76cfLJJ8fEiRNj2LBhq/k0AAAAAAAAAMUNztQXPLfBDwAAAACg8h544IE499xz4/HHH1+t98nlcnHHHXfEHXfcEVtuuWX84Ac/iMMPP7w8IXuJtra2+Oc//xmPP/740tdzzz0XixYtKvk9Ro4cqeBXZjXVDsCaZ+edd47JkyfHW2+9FT//+c9j++23j3w+v9rN5Xw+v7TYl0qllpYG8/l8zJkzJy688MIYOXJkHH/88fHcc8+V41EAAAAAAAAAupTN9C943phrXqVfhAoAAAAAQHGNjY0xfvz42GuvvVa73Le8F198MY444og47LDDYvbs2WV9755i8eLF8fTTT8cvf/nLmDBhQnzsYx+LgQMHxtixY+O0006Lq6++Op566qlulfuoDAU/ujRw4MA4/fTT4x//+EeccMIJZSn5RXxY9Ot4v85lv7a2trj++utj9OjR8ZnPfCaeeeaZMjwJAAAAAAAAwIoa0oULfoval0TLoraE0gAAAAAArD2ef/752HnnneNXv/pVRe+58847Y8yYMfHQQw9V9J41wfTp0+O6666LM888M8aNGxeDBg2KHXbYIU466aS44oor4vHHH4+2Nv+b95qottoBWHM9+eSTMWnSpLjxxhtjwYIFS0t45bT8Rr+Or+Xz+bj99tvjt7/9bRx77LHxve99LzbccMOy3g0AAAAAAACs3QYX2eAX8cEWv/796hJIAwAAAACwdnjwwQfj4IMPjvnz5ydy39tvvx2f+MQn4qabboojjjgikTur4cADD4zXXnut2jFYBTb4sYzm5ua46qqr4mMf+1iMHTs2Jk2aFPPnz19auquUzu/feaNfe3t7XH/99bH11lvHj3/842hvb69YBgAAAAAAAGDtks3UF51pzDUnkAQAAAAAYO3w+OOPxyGHHJJYua9DW1tbHHXUUXHPPfckei+UwgY/IiJi2rRpMWnSpPj1r38dCxYsWKbM13mzXqV1tdGvubk5zj///Ljlllvi17/+dWy66aYVzwIAAAAAAAD0bg3pEgp+rQp+AAAAAADlMGvWrDjooINi3rx5JX9POp2OPffcM8aOHRsjRoyIQYMGxYIFC+Ktt96KadOmxX333RcLFiwo6b3a2triyCOPjKlTp8a22267qo8BZafgtxZrbm6OKVOmxFVXXRXTpk2LiFhpsW/5r5ei8/d2Vur7dFX0e/zxx2PHHXeMG2+8MQ499NBuZQIAAAAAAADorG+f2hjQLx0L2lq7nGnMtSSYCAAAAACgd1q8eHEcffTR8e9//7uk+SFDhsQ3vvGNOO6446KhoaHLuZaWlrjlllviW9/6Vrz22mtF37elpSU++9nPxuOPPx79+/cvOT9UUk21A5C8J554Ik499dQYPnx4TJgwIZ544onI5/ORz+eXFupSqdTSr3Wn3Ld8IW/59+h8XoqVfe+CBQviiCOOiMmTJ3fjqQEAAAAAAABWlM0U/hc4GnM2+AEAAAAArK4LL7wwHnzwwZJmP//5z8fLL78cZ555ZsFyX0REfX19HH/88fHiiy/GxIkTS3r/6dOnx1e+8pWSZiEJCn5riebm5pg0aVKMHTs2dt5557j66qtj/vz5XW7KW5VSX+dS4DrrrBPnnXdevPjii/H73/8+DjvssKipqVnhvlLLfssX/ZYsWRKnnnpq3HXXXd35MQAAAAAAAAAsoyFdX/C8sVXBDwAAAABgdcycOTO+//3vlzT79a9/PW666aYYNGhQt+6oq6uLn//853HppZeWNH/11VfHY4891q07eqPhw4fHpz71qfj2t7+to1NFtdUOQGU9/vjjMWnSpLjpppuiubl5meJe53Jddwp9hb5/1113jdNPPz0++9nPRl1dXUREbL755nHooYfGW2+9FZMnT45rrrkmZsyYsfQ9OhcLi+m8ZXDJkiVx0kknxfPPPx+DBw/udn4AAAAAAACAwTb4AQAAAABU1DnnnBOtra1F50499dS48MILV+uuM844I5qamuIb3/hGwbl8Ph9nnHFGPPLIIyUvr+rphg0bFmPGjImxY8cufQ0bNqzasQgFv15pwYIFMWXKlJg0aVI89dRTERFlK/Yt/4dWPp+P/v37xzHHHBMTJkyI0aNHd/m9G2ywQVxwwQVxwQUXxF/+8peYNGlS/Pa3v41FixZ1q+jXUfKLiJgzZ06cddZZcf3113frOQAAAAAAAAAiIrJFC34tCSUBAAAAAOh9nnrqqfjtb39bdG7HHXeMSy65pCx3/r//9//i73//e9xzzz0F5x599NG466674tBDDy3LvWuSIUOGxJgxY5Yp9I0YMaLaseiCgl8v8vjjj8eVV14ZN998cyLb+kaNGhUTJkyI4447LgYOHNit99t3331j3333jbfffjt+8YtfxOWXXx7vvfdeyUW/jpJfPp+PG2+8Mb7xjW/Elltu2e3nAgAAAAAAANZuDen6gueNrTb4AQAAANC71awdy8uokh/96EdFZ2pqauLqq6+Ourq6styZSqVi0qRJsdVWW0Uulyuar7cU/M4+++wYOXJkjBkzJjbaaKNqx6EbaqodgNWzYMGCuOKKK2LMmDGxyy67xOTJk2PBggVLy3HLF+a6U+7r+N7O39+3b9846qij4v77749nn302Jk6c2O1yX2fDhg2Lb3/72/H666/Hj3/841h//fWXyV6qK664YpUzAAAAAAAAAGuvwUU2+DW3LYy2JYsTSgMAAAAA0Hu88cYbceuttxad++IXvxg77bRTWe/eaKON4pxzzik69/e//z0ee+yxst5dLV/5ylfiiCOOUO7rgRT8eqjHHnssTjrppNhggw1i4sSJ8eSTTy4t8HUu5nV8bVWKfREflgI32mij+J//+Z9444034sYbb4w99tijrM+TyWTinHPOiVdeeSX+8z//M/r06bM0S7Gs+Xw+rrvuumhraytrJgAAAAAAAKD3yxYp+EVENOVaEkgCAAAAANC7TJkyJRYvLvwL1FKpVJx//vkVuf/ss8+OdDpddO66666ryP1QKgW/HmT+/Pnxi1/8InbaaafYdddd45prronm5uaybOtb2fenUqk4+OCD44477ogZM2bE17/+9Vh//fXL+1DLGTBgQPzwhz+Mhx9+ODbeeOOlOVam8/M1NTXFo48+WtFsAAAAAAAAQO/TkK4vOtPY2pxAEgAAAACA3mXKlClFZw444IDYeuutK3L/+uuvH8ccc0zRuVtuuaVoEREqScGvB3j00UfjpJNOiuHDh8cZZ5wRTz31VNm39XX+/vXWWy/OP//8eOWVV+LOO++MQw45pOgmvXIbM2ZMPPLII7HFFlsszVnMI488UulYAAAAAAAAQC8zuIQNfo05BT8AAAAAgO549tln49lnny06d+yxx1Y0Rynv/+6778af//zniuaAQmqrHYCVmz9/flx//fVx1VVXxTPPPBMRy26s61x46+6mvq6+/+Mf/3icfvrp8ZnPfCb69u27qtHLZsiQIXHjjTfGuHHjYvHixUtLiF2ZOnVqgukAAAAAAACA3iDTt1/061MbbUu6/u3MCn4AAAAAAN1z9913F51Jp9Px6U9/uqI59txzzxg+fHjMnj274Nwf//jHOPDAAyuaBbpig98aZurUqXHiiSfG8OHD48wzz4ynn366otv6BgwYEBMmTIhnnnkm/v73v8fRRx+9RpT7Ouy0007xpS99qehz5vP5mDFjRkKpAAAAAAAAgN4ilUpFQ7q+4Exja0tCaQAAAAAAeod777236Mzuu+8eAwcOrGiOmpqaOOCAA4rOlZIXKkXBbw0wf/78uPzyy2OHHXaI3XbbLa699tpobm5eWmrrKOVFRLdLfV19//bbbx+/+MUvYvbs2XHZZZfFtttuW96HKqPTTz+94HnHszU2NiaQBgAAAAAAAOhtBmf6Fzy3wQ8AAAAAoHRtbW3x4IMPFp3bb7/9EkhT2j0vvPBCvPnmmwmkgRXVVjvA2uyRRx6JSZMmxS233BK5XG6Z4l5HaS0iul3oW/77O96jrq4uPvOZz8SECRNit912W/XgCdt+++1jyJAh8e677y7dPrgyCn4AAAAAAADAqsgq+AEAAAAAlM3TTz8dLS0tRed23333BNJE7LHHHiXNTZ06NY488sgKp4EV2eCXsHnz5sVll10Wo0ePjo9//ONx3XXXRUtLS0W39Y0cOTJ+8IMfxKxZs+L666/vUeW+Dh/72MeK/izmzZuXUBoAAAAAAACgN2lI1xc8b2wt/i+iAAAAAADwgSeffLLoTE1NTeywww6VDxMRG220Uay33npF50rJDZVgg19CHn744Zg0aVLceuutZd/Wt7L3qKmpiUMPPTQmTJgQn/zkJ1fY6NfTDB8+fKVfz+fzS5+tvb09yUgAAAAAAABALzHYBj8AAAAAgLKZNm1a0Zktttgi+vcv/L/NltOYMWPinnvuKTij4Ee1KPhVUFNTU1x//fUxadKkeO655yIiylrsW9n3Dx06NE488cQ45ZRTYqONNlrV6GucbDZb7QgAAAAAAABAL5UtUvBram2J9vb2qKmpSSgRAAAAAEDP9c9//rPozFZbbZVAkg9tueWWRQt+zzzzTEJpYFkKfhXwwgsvxA9/+MO47bbbEtnWFxGx1157xYQJE+LII4+M2tre97e1X79+1Y4AAAAAAAAA9FIN6fqC5+35fMxvay06BwAAAABAxIwZM4rObL755gkk+dBmm21WdObNN9+MtrY2HRYS1/uaYGuAW265JX71q18t87VKbOsbNGhQHHfccTFhwoTYeuutVzEtAAAAAAAAwNptcJENfhERjblmBT8AAAAAgCJyuVy8/fbbRec23XTTBNJ8qJSCX3t7e7z22muJlw9Bwa+CKrWtb8cdd4wJEybEF77whaiv9wESAAAAAAAAwOrIlljw23jw+gmkAQAAAIBkpVKr1neAlXnttddKmhs+fHiFkyxrgw02KGlu5syZCn4kTsGvwlZ3W1/He6TT6fjc5z4XEyZMiF122aVc8QAAAAAAAADWeoPqMpFKpQp+vtvY2pJgIgAAAACAnunNN98saW7YsGEVTrJq982aNavCSWBFCn5rkJVt69tss83i1FNPjRNOOCEGDx5crWhrlOULkAAAAAAAAACro6amJhrqMgVLfI255gQTAQAAAAD0TO+9915Jc0OHDq1wkmUNGTIkampqor29veDc+++/n1Ai+JCC3xpg+WJfnz594rDDDosJEybE/vvvX8Vka55V2YgIAAAAAAAAUEw201/BDwAAAABgNZVa8Mtms5UNspyampoYOHBgNDU1FZwrNT+Uk4JflaxsW98GG2wQJ510UpxyyikxYsSIakVbI+2zzz5RW+sfVwAAAAAAAKAyGtL1Bc8Llf8AAAAAAPhAqRvwBgwYUOEkKyql4GeDH9WgMZWwlRX79tlnn5gwYUIcfvjh0adPn2pFW6N94hOfiE984hPVjgEAAAAAAAD0UoMz/Que2+AHAAAAAFDcvHnzis70798/ampqEkizrEGDBhWdKVYAhEpQ8EvAykp92Ww2xo8fH6eddlpsueWW1YoGAAAAAAAAQERkFfwAAAAAAFZbW1tb0ZlMJpNAkhWl0+miM6Xkh3JT8KuwjnJfR7FvzJgxcfrpp8dRRx1VtT+QAAAAAAAAAFhWQ7pIwa+1JaEkAAAAAAA9VykFuT59+iSQZEW1tcVrVAp+VIOCX4Xl8/nIZDJx1FFHxYQJE2Ls2LHVjgQAAAAAAADAcgZn6gueL1y8KHKL2iLTt19CiQAAAAAAep5SCnKlFO0qoZR7Fy1alEASWJaCXwVtvvnmMWHChBg/fnxks9lqxwEAAAAAAACgC9lM4Q1+ERGNuWYFPwAAAACAAhYvXlx0RsEPlqXgVwG77LJL/PnPf4599tmn2lEAAAAAAAAAKEFDKQW/1pbYYNDgBNIAAAAAAPRMpZTolixZkkCSVbu3WuVD1m7+qauAAw88sNoRAAAAAAAAAOiGwenSNvgBAAAAANC1fv36FZ0pZctfJZSyna+U/FBuNdUOAAAAAAAAAADV1q+2Nur7Fv4XNxT8AAAAAAAK69u3b9GZahX8SrlXwY9qUPADAAAAAAAAgIhoyBTe4tfYquAHAAAAAFBIXV1d0ZnW1tYEkqzavQp+VIOCHwAAAAAAAABExOB0kYJfriWhJAAAAAAAPdPAgQOLzjQ3N0c+n08gzbLmz59fdGbQoEEJJIFl1VY7AAAAAAAAAACsCbKZ+oLnjTkb/AAAAADofVKpaiegN1lnnXWKzuTz+Zg/f37iZbp58+YVnSklP5SbDX4AAAAAAAAAEBENxTb4tSr4AQAAAAAUsu6665Y019TUVOEky2pvb48FCxYUnSs1P5STgh8AAAAAAAAAREQ2U6Tgl2tJKAkAAAAAQM9UakHunXfeqXCSZb377ruxZMmSonMKflSDgh8AAAAAAAAARMTgIgW/+QtzsbiEfwEEAAAAAGBtNWLEiJLm3n777QonWbX7Ss0P5aTgBwAAAAAAAAAR0ZCpLzrTtNAWPwAAAACArowcObKkudmzZ1c2yHLeeuutkuY++tGPVjgJrEjBDwAAAAAAAAAiYnC68Aa/iIjGXHMCSQAAAAAAeqZMJhNDhw4tOvfqq68mkOZDr7zyStGZVCoVG2+8cQJpYFkKfgAAAAAAAAAQEdlMKQU/G/wAAAAAAArZZJNNis68/PLLCST5UCkFvxEjRkRdXV0CaWBZCn4AAAAAAAAAEBH9+9VFbU2fgjONrTb4AQAAAAAUst122xWdmT59egJJundfKbmhEhT8AAAAAAAAACAiUqlUZNP1BWcacwp+AAAAAACF7LjjjkVnXnzxxWhpaUkgzQemTZtWdGannXZKIAmsSMEPAAAAAAAAAP5/2Uz/gucKfgAAAAAAhZVSlGtvb4+nnnqq8mEi4o033oh333236FwpxUSohNpqB+iN/v3vf8fzzz9f7RiJSaVSUVdXF3V1dZFOpyOdTse6664bAwYMqHY0AAAAAAAAgG5pyBTZ4Nea3G+UBgAAAADoiUaPHh2ZTCZyuVzBub///e+x2267VTzPAw88UNLcLrvsUuEksHIKfhXwl7/8Jb7whS9UO0bVZTKZGDp0aAwbNiy22GKLGDVqVGyzzTYxevToGDFiRLXjAQAAAAAAAKwgm7bBDwAAAABgddTV1cXuu+8e9957b8G5v/zlL3H++edXPM9f/vKXojNbbbVVbLjhhhXPAiuj4Fch+Xy+2hGqrqWlJWbOnBn/+te/4pFHHlnmbOTIkbH33nvHJz7xiTjssMOioaGhSikBAAAAAAAAPjQ4o+AHAAAAALC69ttvv6IFv7///e+xYMGCGDBgQMVytLe3xz333FN0bv/9969YBiimptoBerNUKuWVSkU+n1/hNXPmzLj22mtj/PjxMWzYsDjiiCPi1ltvjcWLF1f7bxsAAAAAAACwFmvI1Bc8b2xt8QtfAQAAAACKOPDAA4vOtLa2xu9+97uK5vj73/8es2fPLjpXSl6oFAW/CltZuW1teXUoVvxbuHBh/P73v4+jjjoqNt1007j00ksjl8tV8e8aAAAAAAAAsLbKpgtv8FvS3h4L2loTSgMAAAAAlZdKeSX5Wltsv/32MWrUqKJzN9xwQ0VzXH/99UVn1l13XRv8qCoFPyqmWPlvZWW/N954I7785S/HRz/60ZL+EAUAAAAAAAAop8GZwgW/iIjGXHMCSQAAAAAAerZjjjmm6Mw999wT06dPr8j97777bkyZMqXo3Oc+97no27dvRTJAKRT8qIpiZb85c+bE8ccfH/vss0/MmDGjymkBAAAAAACAtUVDpr7oTGNrSwJJAAAAAAB6tmOPPTb69OlTcCafz8cPfvCDitx/ySWXRGtra9G58ePHV+R+KJWCH1XXVdkvn8/HfffdF2PHjo277767yikBAAAAAACAtUFDuj5SRWZs8AMAAAAAKG6jjTaKz3zmM0Xnrr/++pg2bVpZ73799dfjJz/5SdG5j3/847HLLruU9W7oLgU/1ijLF/0iIhobG+Owww6Ln/70p9WMBgAAAAAAAKwFamv6xMC6TMEZBT8AAAAAgNJ89atfLTrT3t4eJ598crS1tZXlznw+H6eeemrkcrmis6Xk647jjz9+6eKrQq/77ruvrPfSsyn4sUbqKPp1/MG1ZMmSOO+88+Liiy+udjQAAAAAAACgl2vI1Bc8b8y1JJQEAAAAAKBn22mnneJTn/pU0blp06bF2WefXZY7v//978fdd99ddG7s2LFx2GGHleVOWB0KfhVWSuu2Eu/ZnVeS93dX521++Xw+zj333PjlL3/Z7fcBAAAAAAAAKFU23b/geWOrDX4AAAAAAKX6yU9+EnV1dUXnrrjiirjgggtW667LL7+8pPdIpVJx6aWXrlLXBcpNwa+COrbQFXuVYvmSXKnvXcrd3S3gleuu7tzX8b35fD7OOOOMePLJJ0v6XgAAAAAAAIDuGpwpUvDLKfgBAAAAAJRq0003jfPPP7+k2QsvvDCOPvromD9/frfuWLhwYZx11lkxceLEkua/9KUvxa677tqtO6BSFPwq4POf/3y0t7cXfM2bNy9OO+20gmW3zmedi3KZTCb23HPPOO200+KnP/1p/P73v49HHnkkXn311XjvvfdiwYIFsWjRoli8eHEsWLAg3nvvvZgxY0ZMnTo17rjjjrj44ovj9NNPj7322ivq6+uXee+u8nT+Wk1NTUyYMCHmz5+/wnO1tLTE+++/H6+//npMnTo1fvvb38YPf/jDOPbYY2PrrbfusvBXTOf5hQsXxlFHHRULFixY3b9VAAAAAAAAACtoyNQXPG9sbUkoCQAAAABA7/Bf//VfMW7cuJJmb7rppth8883jsssui3nz5hWczeVy8atf/Sq22mqruPTSS0t6/y222CIuueSSkmZ7mm9961srLOfqzqsUX/rSl1b5/ffee+/K/gB6qNpqB1gb/elPf4pTTz01Xn/99Yj4sLzWofP/Q3Sc7bDDDnHEEUfEwQcfHDvssEP06dOnpLvq6+ujvr4+Bg8eHCNHjlzhfMmSJfH000/HH/7wh/jtb38b06ZNW5ph+W2BHV/P5/NxxRVXxB/+8IeYNGlS7L///kvfL51ORzqdjmw2GxtuuOEK97399tvxpz/9KW644Yb461//Gu3t7cuUGAvpKCBGRLzyyivx7W9/Oy666KKSfg4AAAAAAAAApcqmbfADAAAAACin2trauPnmm2PHHXeM9957r+j8O++8E2eccUb853/+Z+y1114xZsyY2HDDDWPgwIGxYMGCePvtt+OJJ56I++67r1vb/jKZTNxyyy0xYMCA1XkcKCsFv4RdeOGF8d///d/R3t6+0vPOpboBAwbE+PHjY8KECTFq1KiK5OnTp0/stNNOsdNOO8U3vvGNmD59elx++eVx3XXXxfz581co33Uu4b322mtx0EEHxYUXXhhf/epXS7pv2LBhcdxxx8Vxxx0Xb7zxRnz/+9+PyZMnR1tb2zLPXkhHnksvvTROO+202HTTTVfx6QEAAAAAAABWNDhTuOCXW9QWCxcvirravgklAgAAAADo+T7ykY/EH/7wh9hvv/1KLuXlcrm4++674+67717t+/v27Ru33XZbjB49erXfC8qpptoB1haLFy+OE044If7rv/5rma11HaW2zkW62traOPPMM+PVV1+NSy+9tGLlvpXZaqut4mc/+1nMmDEjzj777Ojbt+/SfB06Z29vb4+vf/3rcdJJJ8WSJUu6dddHPvKRuPzyy+OFF16Ifffdd5ktgV3pXP5btGhRXHDBBd26EwAAAAAAAKCYhiIFv4iIxtaWBJIAAAAAAPQuO++8c9x5552Jb9Dr27dv/PrXv46DDz440XuhFAp+CTnmmGPiuuuui3w+v8ymuuX/evTo0fHYY4/FJZdcEuuvv37V8q677rrx05/+NB577LHYYYcdVpo74sNtetdcc00cd9xxq3TXRz/60bj33nvjxz/+8TKFx0I67v3Nb34Ts2bNWqV7AQAAAAAAAFYmm64vOtOYa04gCQAAAABA77PnnnvGww8/HJtsskki9w0ZMiT++te/xn/8x38kch90l4JfAs4777y49dZbIyKWKckt/9fjx4+PRx99NLbffvvqBF2J7bbbLqZOnRonnHDCMiW/iFih5HfTTTfFV7/61VW+65xzzonf/OY3K90a2FnnLX5LliyJX/ziF6t8JwAAAAAAAMDyBpeywU/BDwAAAABglW277bbx+OOPxzHHHFPRew466KB44oknYvfdd6/oPbA6FPwqbPLkyfGTn/yk4Pa7iIhvfOMbcc011ywtt61Jamtr4+qrr45vfvObKy35dXwtn8/H//7v/8Z11123ynd96lOfil/96lclbfLruHPy5MmrfB8AAAAAAADA8tJ9+0VdbeHPbhtzLQmlAQAAAADonQYPHhw33HBD/O1vf4sxY8aU9b232GKLuO222+IPf/hDbLjhhmV9byg3Bb8KevPNN+Occ85ZYWtfxIfltFQqFWeffXZ85zvfqVbMkn3zm9+Mr3zlKyuU/Dp0PNOXv/zlmD179irf87nPfS6+9rWvLfPzWl7nszlz5sTDDz+8yvcBAAAAAAAALC+bri943thqgx8AAAAAQDnsvffe8fjjj8d9990Xn/3sZ2PAgAGr9D7pdDoOOeSQuPPOO2P69OnxH//xH2VOCpWRyhdqUbFaDjvssLjrrruW2dQXsWy5b88994y//vWvBTfVrUny+Xzss88+cf/99xd8rkMOOSR+//vfr/I9S5YsiV122SWefPLJpfcur/N9559/flx44YWrfB9AT/Xuu+/GkCFDlvnanDlzYv31169SIgAAAAAA6B2+c++tMf3drn+x6V6bjIpTd90/wUQAAACwIv8OGVAOn5t0frUjrFVuOeWH1Y6wxmtra4sHHngg/vGPf8Tzzz8f06dPj3//+98xf/78aGlpiXQ6HQMHDox11lknttxyyxg1alTssssuse+++0Z9feFf3gZrotpqB+it7r///i7LfR3q6+vjhhtu6DHlvogP8t9www2x1VZbRUtLyzLP11G2y+fzcdddd8UDDzwQe+655yrd06dPn/jpT38ae+21V9GfTz6fj7vvvlvBDwAAAAAAACibhkz/gueNORv8AAAAAAAqoV+/frHffvvFfvvtV+0okIiaagforX70ox91edZRhDvnnHNixIgRCaYqjxEjRsS555670q16nRX6GZRijz32iAMOOGDpz2tlOr7+7LPPxsKFC1frPgAAAAAAAIAO2XSRgl9rS0JJAAAAAACA3kzBrwKee+65+OMf/1h0e995551XjXhlce6550b//h98oNX5uTpv8fvjH/8Yzz333GrdM3HixC7POv9slyxZEk8//fRq3QUAAAAAAADQYXCmvuC5DX4AAAAAAEA5KPhVwK9//esuzzoKcJ/73Odi4MCBCaYqr4EDB8bnP//5olv8brzxxtW655BDDomhQ4dGRHS5xa/DtGnTVusuAAAAAAAAgA4NmcIb/OYtzEV7e3tCaQAAAAAAgN5Kwa8Cfv/73xctox155JEJpamc//iP/yh4ns/n44477litO2pqauLggw8uWiSMiHj11VdX6y4AAAAAAACADtl04YJfPp+PpoW5hNIAAAAAAAC9lYJfmf3rX/+KZ599NiJimVJa58JfbW1t7L333klHK7s999wz+vbtGxHLPl/HlsKIiOeeey5ee+211brnwAMPLGlu1qxZq3UPAAAAAAAAQIfBmfqiM0255gSSAAAAAEBl1aS8knwBLE/Br8ymTp3a5VlH4W+zzTaL/v0L/7bHnqB///6x+eabF517+OGHV+uej33sYyXNvfHGG6t1DwAAAAAAAECHhkzxz3TnKvgBAAAAAACrScGvzJ577rmC56lUKrbccsuE0lTeFltsscymwpV5/vnnV+uOkSNHRjabjYhlNwV2SKVSkc/n45133lmtewAAAAAAAAA6DKzLRJ9U4Y/UG1sV/AAAAAAAgNWj4FdmxQp+ERFDhw5NIEkyhg0bVnSmlJ9JMZtssknRImFzsw/PAAAAAAAAgPKoSaWiIV1fcKYp15JQGgAAAAAAoLdS8CuzGTNmFJ0ZOHBgAkmSMWDAgILn+Xw+Xn311dW+Z8MNNyw6k8vlVvseAAAAAAAAgA4NmcIFv7k5v4QUAAAAAABYPQp+ZdbU1BSpVKrgTG1tbUJpKq/Qs3T8HObNm7fa95SyKVDBDwAAAAAAACinbLp/wfPGVgU/AAAAAABg9Sj4ldn8+fPLMtNTLFiwoOhMOZ43k8kUnVmyZMlq3wMAAAAAAADQIZspXPBryrUklAQAAAAAAOitFPzKrJQy29y5cxNIkoz333+/6Ew5Cn7pdLroTCklQAAAAAAAAIBSZTP1Bc/n5mzwAwAAAAAAVo+CX5mlUqmC5/l8Pl566aWE0lTeyy+/XHSm2M+kFKW8R3194Q/XAAAAAAAAALqj2Aa/xtbmyOfzCaUBAAAAAAB6IwW/Mhs4cGCXZx0ltRdffLFXfMjT3t4e06dPL1q+GzBgwGrf1draWnRGwQ8AAAAAAAAop2y6cMFv0ZIlkVvUllAaAAAAAACgN1LwK7OuCn6dC30LFiyIRx99NKlIFfP444/H/PnzIyIKFhYLlR5L1dLS0uVZx90KfgAAAAAAAEA5ZTPFP4Ocm2tOIAkAAAAAANBbKfiV2fDhw0vaznfXXXclkKayij1DPp+PVCoVw4cPX+275syZU3RGwQ8AAAAAAAAop2ym8Aa/iIjGVgU/AAAAAABg1Sn4ldmWW25Z8DyVSkU+n49rrrkm2tvbE0pVfu3t7TF58uRIpVJFZ4v9TErx1ltvFTxPpVIxZMiQ1b4HAAAAAAAAoEM2XfyXjDblWhJIAgAAAAAA9FYKfmW21VZbdXnWebPf7Nmz46abbkoiUkXcdNNN8eabb0ZEFN1YuPXWW6/2fTNnzixaJhw5cuRq3wMAAAAAAADQoW+f2ujfr67gzNycDX4AAAAAAMCqU/Ars3HjxhWd6djid8EFF0RbW1sCqcqrra0tLrjggpK290VE7Lrrrqt139y5c2POnDkRUbhMqOAHAAAAAAAAlFs207/geWOrgh8AAAAAPVsq5ZXkC2B5Cn5ltuuuu8bAgQMjIlZagOtcUHv99dfjvPPOSyxbuZx//vnx2muvRcTKC3edn3vAgAEllR4LefbZZ0uaU/ADAAAAAAAAyi2bLlzwa8q1JJQEAAAAAADojRT8yqxPnz6x7777Ftw0l8/nl27xu+yyy+LWW29NMOHq+b//+7+45JJLlubvSscz7rPPPtGnT5/VuvPhhx8uaU7BDwAAAAAAACi3bKa+4PncnA1+AAAAAADAqlPwq4DjjjuupLmOktwXv/jF+NOf/lThVKvv3nvvjWOOOWalmwm7Mn78+NW+9x//+EdJc5ttttlq3wUAAAAAAADQWTZTeINfY6uCHwAAAAAAsOoU/CrgsMMOi+HDh0dEdFmG69h+l0qloq2tLT796U/HDTfckFjG7rrxxhvj05/+dLS1tUVEdLm9r/PzbrDBBvGpT31qte5dtGhR3HfffSv9OXb+2mabbRbZbHa17gIAAAAAAABYXjZduODXlGtJKAkAAAAAANAbKfhVQJ8+fWLixIldluA65PP5yOfzkUqlYuHChTF+/Pg466yzIpfLJZS0uNbW1vjyl78cX/ziF6O1tXXp1sFCOp7pzDPPjJqa1ftH7IEHHoj58+cvfd+u7ho3btxq3QMAAAAAAACwMtlMfcHzBW2tsWjJ4oTSAAAAAAAAvY2CX4V85StfiREjRkRE11v8Ousozl122WWx/fbbxx133FHpiEXdddddMXr06Lj00kuXFukK6Xw+fPjwOPvss1c7w+23317SnIIfAAAAAAAAUAnZTOENfhERja22+AEAAAAAAKtGwa9C0ul0fO973yu67S7iw810HSW/V199NQ4//PDYfffd43e/+120t7dXOu4yWX7/+9/HHnvsEZ/61Kfi5ZdfXqbcV+r2vu9+97uRTqdXK8vixYvj5ptvLqkgqeAHAAAAAAAAVEI2Xbzg15RT8AMAAAAAAFaNgl8FjR8/Pg4++OCStt/l8/mlcx1Fv4ceeiiOPPLIGDlyZHz1q1+Nf/zjHxXL+vDDD8fXvva1+OhHPxpHHHFEPPTQQyvkKVTu65hJpVJx8MEHx/HHH7/ame6888547733ImLFYmHnn+egQYNiu+22W+37AAAAAAAAAJZXyga/ubnmBJIAAAAAAAC9UW21A/R21157bWy//fbxzjvvLC3BFbKyUt2sWbPif//3f+N///d/o6GhIXbdddcYN25cbLPNNrHFFlvEJptsEvX19SXlaW1tjRkzZsSLL74Yzz33XDz88MPxyCOPRGNj49L7O5S6ta9z2W7o0KFxzTXXlJSlmMsvv7zgeedCYSlb/gAAAAAAAAC6q75vv+jbp08sWrKky5nGVgU/AAAAAABg1Sj4Vdh6660Xt912W+y///7R2tpacskvYtniXMfXGhsb45577ol77rlnme+pr6+P9ddfP7LZbNTV1UW/fv0ilUrFwoULY+HChdHU1BTvvvtuNDev+MHSykp9y3+9K51LgPX19fGb3/wm1ltvvaLfV8xzzz0Xf/7zn0v6eX3mM59Z7fsAAAAAAAAAViaVSkU23T/ebZ7X5UyTDX4AAAAAAMAqUvBLwG677RY33XRTHHnkkdHe3l5SaS1i2aJfseJdc3Pz0vLe8tvsurOBr5T55b8vn89HbW1t3HzzzbHrrruW9L3FXHTRRV3m66y+vj4OOuigstwJAAAAAAAAsDLZTOGC39xcS4JpAAAAAACA3qSm2gHWFocddlhMmTIl+vbtGxGFS2vLy+fzS18d39vVa/n5VfmeUnT+vn79+sUNN9wQhxxySMnPVMirr74aU6ZMWemzLJ/zwAMPjHQ6XZZ7AQAAAAAAAFYmm6kveN5ogx8AAAAAALCKbPBL0Oc+97kYMmRIHHHEETFv3rySN/l11tV8R+GuWHGwu/cVuiufz0dDQ0Pcfvvtsffee6/2+3Z4+umn4/jjjy9p9otf/GLZ7gUAAAAAAABYmWy6f8HzplYFPwAAAAAAYNUo+CVs7733joceeig+//nPx7PPPrtMWW51lKO4V4rOebfddtu4+eabY+utty7rHUceeWQceeSRZX1PAAAAAAAAgFWVzRQu+DXmWhJKAgAAAAAA9DY11Q6wNtp6663jsccei9NPP31pMS+VShXdvldNHfny+Xzk8/mYOHFiPPbYY2Uv9wEAAAAAAACsabKZ+oLnTa0t0Z7QL2UFAAAAgHKrSeW9EnwBLE/Br0rq6uri5z//edx///2x/fbbr7FFv8558vl87LDDDnH//ffHpZdeGnV1dVVOBwAAAAAAAFB52XThDX5L8u2xYGEuoTQAAAAAAEBvouBXZXvssUdMmzYtrrzyyth4442XbsjrKNZVo+zX+e6OPBtttFFMmjQpnnjiidhjjz0SzwQAAAAAAABQLdlM4YJfRERjrjmBJAAAAAAAQG+j4LcGSKVScfLJJ8fLL78cU6ZMiTFjxiwt1nWcV7Lwt7L377h/p512iilTpsQrr7wSJ5100hq1XRAAAAAAAAAgCaUU/ObmWhJIAgAAAAAA9Da11Q7Ah/r06RNHH310HH300fHss8/GjTfeGDfffHPMnDlz6UylSn4dZcKIiJEjR8ZRRx0VX/jCF2Lbbbct+10AAAAAAAAAPUlDXSZSqdQyn6sur6nVBj8AAAAAAKD7FPzWUNtuu21ceOGFceGFF8ZLL70Uf/3rX+Nvf/tbTJ06NV5//fWC37t8AbDQh0wRERtuuGHsuuuu8YlPfCL22Wef2HLLLVc7PwAAAAAAAEBvUVNTE4PqMtHU2vWWvsacgh8AAAAAANB9Cn49wBZbbBFbbLFFnHbaaRERMX/+/Hj22WfjhRdeiFmzZsVbb70Vb731Vrz33nuRy+Vi4cKF0draGhERdXV1kU6nI5PJxODBg2P48OGxwQYbxIYbbhhbb711bLvttjFo0KBqPh4AAAAAAADAGi+b6V+w4Dc31/UZAAAAAABAVxT8eqCBAwfGuHHjYty4cdWOAgAAAAAAALBWyKbr47UC502tNvgBAAAAAADdV1PtAAAAAAAAAACwpstm+hc8b8wp+AEAAAAAAN2n4AcAAAAAAAAARRQr+M1V8AMAAAAAAFaBgh8AAAAAAAAAFJFNFy74NbW2JJQEAAAAAADoTWqrHaC3mT17dvz5z38uaXbrrbeOj33sYxVOBAAAAAAAAMDqymbqC563Ll4UrYvaIt23X0KJAAAAAACA3kDBr8xuu+22+MpXvlLS7H333VfZMAAAAAAAAACURTZTeINfRMTcXHNsoOAHAAAAAAB0Q021A/Q2Tz31VOTz+aKvcePGxR577FHtuAAAAAAAAACUoJSCX1NrSwJJAAAAAACA3sQGvzJ76aWXIiIilUqt9Dyfz0cqlYrPf/7zScYCAAAAAAAAYDVk0/VFZxpzzQkkAQAAAIDy6qL+AEBCbPArs9dff31puW/5rX2dfepTn6pGPAAAAAAAAABWQV1t38j07VdwZq6CHwAAAAAA0E0KfmX273//e6Vf77zRb7311ouNN944qUgAAAAAAAAAlEE207/geVNrS0JJAAAAAACA3kLBr8wWLVrU5Vk+n49UKhXbbLNNgokAAAAAAAAAKIdsur7geaMNfgAAAAAAQDcp+JVZ//6Ff2NjRMTIkSMrHwQAAAAAAACAsiq2wW+ugh8AAAAAANBNCn5lNmDAgKIzAwcOTCAJAAAAAAAAAOWUTRcu+DW1tiSUBAAAAAAA6C0U/MqslIJfKTMAAAAAAAAArFmymfqC5402+AEAAAAAAN2k4Fdm6623XuTz+YIzbW1tCaUBAAAAAAAAoFyymcIb/OYtzMXi9iUJpQEAAAAAAHoDBb8y22KLLYrONDf7rY0AAAAAAAAAPU2xgl9ExLzWXAJJAAAAAACA3kLBr8xKKfi98847CSQBAAAAAAAAoJyy6fqiM405v/AVAAAAAAAonYJfmW255ZYFz/P5fLz66qsJpQEAAAAAAACgXErZ4DdXwQ8AAAAAAOgGBb8y22233bo8S6VSERHx8ssvx+LFi5OKBAAAAAAAAEAZDOiXjj41hT9mb2ptSSgNAAAAAADQGyj4ldnQoUNj9OjRkc/nlxb6Ij7Y3NehtbU1HnvssWrEAwAAAAAAAGAVpVKpyKbrC8402uAHAAAAAAB0g4JfBRxwwAFFZ+6+++4EkgAAAAAAAABQTtlM/4LncxX8AAAAAACAblDwq4DPfvazXZ6lUqnI5/Nx4403JpgIAAAAAAAAgHIoVvBram1JKAkAAAAAANAbKPhVwNixY2PnnXeOfD4fqVRq6dfz+fzS/zxjxoy45557qhEPAAAAAAAAgFWUTdcXPG+0wQ8AAAAAAOgGBb8KmThxYsHzfD4f3/72txNKAwAAAAAAAEA5FNvgp+AHAAAAAAB0h4JfhRx11FGx+eabR0SssMWv46+nTp0akydPrko+AAAAAAAAALqvaMGvtSXy+XxCaQAAAAAAgJ5Owa9C+vbtGz//+c+7/OAmlUpFPp+Pc889N2bOnJlwOgAAAAAAAABWRTZduOC3uH1JNLctTCgNAAAAAADQ0yn4VdD+++8fn/3sZ5fZ2hcRS0t/qVQqmpqa4pBDDonGxsYqpQQAAAAAAACgVNlMfdGZxlxzAkkAAAAAAIDeQMGvwiZNmhSbb755RMRKS34REdOnT49999035syZk3g+AAAAAAAAAEqXzRTe4BcR0diq4AcAAAAAAJRGwa/CGhoa4o477oiGhoaIWLHk1/HXTz75ZOy2227x5JNPViUnAAAAAAAAAMU11JWywa8lgSQAAAAAAEBvoOCXgC222CJ++9vfxsCBAyNi5SW/VCoVM2bMiHHjxsX3v//9WLRoUbXiAgAAAAAAANCF2j59YmBdpuDM3JwNfgAAAAD0HDUpryRfAMtT8EvInnvuGffff38MGzYsImJpqS/ig5Jfx9fa2triG9/4Rmy11VYxZcqUWLx4cdUyAwAAAAAAALCibKbwFr+mVgU/AAAAAACgNAp+CRo9enT84x//iB133HFpqa9D55JfPp+PmTNnxnHHHRcjR46Mb37zm/Hss89WIzIAAAAAAAAAy8mm+xc8b7TBDwAAAAAAKJGCX8JGjhwZU6dOjW9961tRW1vb5Sa/jqLf7Nmz43vf+16MHj06NttsszjxxBPjmmuuiSeeeCKam30oBAAAAAAAAJC0bKZYwa8loSQAAAAAAEBPV1vtAL3VCSecUHRmu+22i2nTpi0t+EWsWPLr/LUZM2bEzJkz49prr106P2TIkBg6dGgMHTo0Bg4cGHV1ddGvX79l3rPaUqlU/PKXv6x2DAAAAAAAAICyyGbqC543tvplrQAAAAAAQGkU/Crk2muvLblk11HgW9nXOhf9Vjb7zjvvxDvvvLNGFfo6y+fzCn4AAAAAAABAr5JNF9vgp+AHAAAAAACURsGvwlZW3lvV71++7Nd5ZnXvAQAAAAAAAKA02Uzhgl/LorZoW7w4+tX6SB4AAAAAACjMpwkVVmyzXneKeSub7ar0t6ZQPAQAAAAAAAB6m2IFv4iIxtbmGDKgIYE0AAAAAABAT6bgV2GVLrityQW6Nbl4CAAAAAAAALCqsun6ojONOQU/AAAAAACguJpqBwAAAAAAAACAnqSkDX655gSSAAAAAAAAPZ2CHwAAAAAAAAB0Q6Zvv6ir7VtwprG1JaE0AAAAAABAT6bgBwAAAAAAAADdlE3XFzy3wQ8AAAAAACiFgh8AAAAAAAAAdFM207/guYIfAAAAAABQitpqB+jtUqlUtSMAAAAAAAAAUGZFC36tLQklAQAAAAAAejIFvwrK5/PVjgAAAAAAAABABWTT9QXPbfADAAAAoKew1wiguhT8KmT8+PHVjgAAAAAAAABAhRTd4KfgBwAAAAAAlEDBr0KuueaaakcAAAAAAAAAoEKKFfyaFuaivb09ampqEkoEAAAAAAD0RD5JAAAAAAAAAIBuyqbrC57n8/mYtzCXUBoAAAAAAKCnUvADAAAAAAAAgG4qtsEvIqIx15xAEgAAAAAAoCdT8AMAAAAAAACAbiqp4NfakkASAAAAAACgJ1PwAwAAAAAAAIBuGliXiZpUquCMDX4AAAAAAEAxCn4AAAAAAAAA0E01qVQ0pOsLzij4AQAAAAAAxSj4AQAAAAAAAMAqyGb6FzxvbG1JKAkAAAAAANBTKfgBAAAAAAAAwCrI2uAHAAAAAACsJgU/AAAAAAAAAFgFRTf4KfgBAAAAAABFKPgBAAAAAAAAwCooWvBrbUkoCQAAAAAA0FMp+AEAAAAAAADAKsim6wueN+aaI5/PJ5QGAAAAAADoiRT8AAAAAAAAAGAVFNvg17ZkceQWtSWUBgAAAAAA6IkU/AAAAAAAAABgFRQr+EVENLa2JJAEAAAAAADoqWqrHQAAAAAAAAAAeqJsuoSCX645hg8anEAaAAAAAFg1NalqJwBYu9ngBwAAAAAAAACroCFTX3SmMdecQBIAAAAAAKCnUvADAAAAAAAAgFXQr09t9O9XV3CmsVXBDwAAAAAA6JqCHwAAAAAAAACsomy6f8HzxlxLQkkAAAAAAICeqLbaAVh1S5Ysibfeeitmz54d8+fPj1wuF7lcLlpbWyOfz68wf9xxx1UhJQAAAAAAAEDvlc3Ux5vz3u/yvDFngx8AAAAAANA1Bb8eYvr06TF16tR46qmn4qmnnooXX3wx5syZs9IiX1cU/AAAAAAAAADKK5spssGvVcEPAAAAAADomoLfGmrJkiVx5513xp133hl/+tOfYtasWcucd6fYFxGRSqXKGQ8AAAAAAACAiMimixT8ci0JJQEAAAAAAHoiBb81zEsvvRRXXnll3HDDDfHvf/87IlZe5utOYa+7ZcBCfvSjH8Wdd95ZdG7IkCFx2223le1eAAAAAAAAgDVR0Q1+ORv8AAAAAACArin4rSGmT58e3/nOd+LWW2+N9vb2ZUp5hcp8xcp75d7c98lPfjK+/vWvF5zJ5/ORSqXi/vvvj7322qus9wMAAAAAAACsSbKZ+oLnC9paY9GSxdG3j4/nAQAAAACAFdVUO8Dabv78+TFhwoTYbrvt4uabb44lS5YsLch1vCI+KM2t7JW00aNHx6GHHrr07kKZrr766sTzAQAAAAAAACQpmy68wS8ioqm1JYEkAAAAAABAT6TgV0V33HFHjBo1KiZNmrRCsS8iqlrkK+RrX/va0v/cuYjY+ZXP5+P//u//Yv78+VVMCgAAAAAAAFBZ2Uzxgl9jTsEPAAAAAABYOQW/Ksjn8/G1r30tDj/88HjzzTe7LPatqcaNGxdjxozpcotfh4ULF8btt99erZgAAAAAAAAAFVdSwa+1OYEkAAAAAABAT6Tgl7D58+fHQQcdFBdddFGPK/Z1dvrpp5c0d/PNN1c4CQAAAAAAAED11PftF31r+hScacwp+AEAAAAAACun4JegefPmxSc/+cm49957l5b7Ila92NdRDux4nyR94QtfiIaGhqU5lpdKpSKfz8ef//znmDdvXtLxAAAAAAAAABKRSqWKbvFT8AMAAAAAALqi4JeQ+fPnxyc/+cl45JFHIuLDAlypxb7OZb5qlfo6q6uriyOPPHKl+Tt/bfHixXHPPfckGQ0AAAAAAAAgUUULfq0tCSUBAAAAgO5LpbySfAEsT8EvIccee2xMnTp1ma19xSxf5usoBHa8amtrI5vNxgYbbLB0PknHHntsSXN/+MMfKpwEAAAAAAAAoHqy6fqC5zb4AQAAAAAAXamtdoC1wbe+9a244447Si73dS7qdcx+5CMfiU9+8pMxduzY2HHHHWPjjTeOIUOGLJ2rqUm+q7n33nvH0KFDY86cOUs3EnbW8TUb/AAAAAAAAIDerOgGPwU/AAAAAACgCwp+FfbQQw/Fd7/73W6X+/L5fDQ0NMRxxx0XJ554Ymy//fYVz9pdqVQqDjzwwLjuuutW2B6Yz+eXfu2dd96Jl19+OTbffPNqxAQAAAAAAACoqKIFv9aWhJIAAAAAAAA9TfJr39YiixYtilNOOWVpqa9QuS+VSi3deFdXVxcXXHBBzJw5My655JI1stzX4eCDDy5p7sEHH6xwEgAAAAAAAIDqyKbrC5435VqivcgvgwUAAAAAANZOCn4V9JOf/CSef/75pcW9rnTe2jdu3Lh4+umn47vf/W5ks9mEkq66/ffff2n+5bf4dabgBwAAAAAAAPRWxTb4Lcm3x4KFuYTSAAAAAAAAPYmCX4W0tLTEj3/844Klt4hYWv7L5/Nx2mmnxf333x+bb755QilXXzabjVGjRhWcyefzMW3atIQSAQAAAAAAACSrWMEvIqKxtSWBJAAAAAAAQE+j4FchV155Zbz33nsREV1u7+so96VSqbjgggvi8ssvj9ra2iRjlsW4ceMKPmNExAsvvBCLFy9OMhYAAAAAAABAIrLp+qIzjbnmBJIAAAAAAAA9jYJfhVx66aUFt/d1LvdNmDAhvvvd7yaYrrx23nnnlX69c+lv0aJF8cILLyQVCQAAAAAAACAxg9L10fWnwx9Q8AMAAAAAAFZGwa8CHnnkkfjXv/4VESvf3te53Pfxj388LrnkkoQTlteoUaNKmnvxxRcrnAQAAAAAAAAgeX1qamJQkS1+ja0tCaUBAAAAAAB6EgW/Crjxxhu7POu81a+uri4mT54cffr0SSJWxWy55ZYlzc2cObPCSQAAAAAAAACqI1us4GeDHwAAAAAAsBIKfhXwxz/+cZki3/I6tvedddZZsdlmmyWYrDLWXXfdWGeddSIiCj63gh8AAAAAAADQW2Uz/QueK/gBAAAAAAAro+BXZu+88068+uqrEfFBka+zzuW3TCYT5513XqLZKmnEiBErPO/y3nzzzYTSAAAAAAAAACSraMGvtSWhJAAAAAAAQE+i4FdmDz74YMHzju19hx12WKy33noJpaq8oUOHFp159913E0gCAAAAAAAAkLyGdH3Bcxv8AAAAAACAlVHwK7NnnnmmpLnPf/7zFU6SrGHDhnV5lkqlIp/Px7///e8EEwEAAAAAAAAkZ3CxDX4KfgAAAAAAwEoo+JXZjBkzVvr1VCq1zH/ee++9E0qUjAEDBhSdaWxsrHwQAAAAAAAAgCrIFin4tS5eFK2L2hJKAwAAAAAA9BQKfmXWVcGvs8033zyy2WzlwyQonU4XnVm4cGECSQAAAAAAAACS15CuLzrT2NqSQBIAAAAAAKAnUfArs7feemuZbX2d5fP5SKVSsdlmmyWcqvIU/AAAAAAAAIC12eAiG/wiIhpzzQkkAQAAAAAAehIFvzJrbi7+gcyGG26YQJI1z+LFi6sdAQAAAAAAAKAiGkop+NngBwAAAAAALEfBr8xKKfgNGDAggSTJyuVyRWfq6uoSSAIAAAAAAACQvHRt38jU9is4Y4MfAAAAAACwPAW/MmttbS06069f4Q91eqKWluK/abK+vj6BJAAAAAAAAADVkc0U/kxUwQ8AAAAAAFiegl+ZZTKZojOlbLvraebMmVN0ppSfDQAAAAAAAEBPlc30L3je2KrgBwAAAAAALKu22gF6m/r6+qLb7Jqbe9+HNrNmzeryLJ/PR0TEwIEDk4oDAAAAAAAAkLiGdJGCX67wZ8kAAAAAUA01qWonAFi72eBXZv37F/7AJiJi9uzZCSRJ1syZMyOV6vq/1VOpVIwYMSLBRAAAAAAAAADJGpypL3jemOt9vwwWAAAAAABYPQp+ZTZ48OClG+tWJp/Px+uvv55gosqbNWtWvP/++xERBZ99o402SioSAAAAAAAAQOKymSIb/FoV/AAAAAAAgGUp+JXZRz/60S7POjbcvfTSS7Fo0aKkIlXctGnTSppT8AMAAAAAAAB6s4Z04YLf/NZcLGlvTygNAAAAAADQEyj4ldkmm2yy0q933mzX1tYWTz/9dFKRKu4vf/lLSXObb755hZMAAAAAAAAAVM/gTH3B83xENLW2JBMGAAAAAADoERT8yqyrgt/y7r333gonSc4f/vCHpdsJCxk7dmwCaQAAAAAAAACqI5spvMEvIqKxtTmBJAAAAAAAQE+h4FdmY8aMKWnu97//fYWTJGPatGnx6quvRsSyWwojYpnSXzabtcEPAAAAAAAA6NUa0iUU/HIKfgAAAAAAwIcU/Mpsxx13jEwmExGxwla7fD4fqVQq8vl8PProo/HCCy9UI2JZTZo0qeB5xzPb3gcAAAAAAAD0dgPr0tGnpvDH8I25loTSAAAAAAAAPYGCX5nV1tbGzjvvvMI2u5W57LLLEkhUOe+++25MmTJlhSLjyhxwwAEJJAIAAAAAAAConlQqFdl0fcEZG/wAAAAAAIDOFPwqoFiZrWOL3y9/+ct47bXXEkpVfhdeeGE0N3/w4VOxQuMRRxyRRCQAAAAAAACAqmpI9y943tiq4AcAAAAAAHxIwa8CPv/5z3d51rkI19bWFueee24Skcruueeei1/84hddbu/rKDFGRIwaNSo22WSTJOMBAAAAAAAAVMXgTJGCX64loSQAAAAAAEBPoOBXAZtsskmMHTs28vn8SgtwHV/P5/Nx++23x5QpU6qQctUtWbIkxo8fH21tbRFReHtfKpWKY445JqloAAAAAAAAAFWVzdQXPG/M2eAHAAAAAAB8SMGvQsaPH190pqPkN2HChHj66acTSFUeZ5xxRkybNm2ZLX2ddS411tXVxcknn5xkPAAAAAAAAICqaUgX2eDXquAHAAAAAAB8SMGvQk488cRYf/31IyK63OLXcbZgwYI45JBD4tVXX00046r40Y9+FFdeeeVKn6mzji2FRx11VKy77roJpQMAAAAAAACorsGZIgW/XMtKf5EqAAAAAACwdlLwq5B0Oh1nnXVWwQ9mOpf8Zs+eHbvvvns888wzSUXstu985zvx9a9/fWm5r9j2vpqamjj33HMTywcAAAAAAABQbdkiBb/F7UuiedHChNIAAAAAQHGplFeSL4DlKfhV0JlnnhlDhgyJiJVv8YtYtuT3zjvvxG677RbXX399YhlLsWDBgjj22GPj29/+9tK8xYqLqVQqxo8fH9tss01SMQEAAAAAAACqriFdX3SmMdecQBIAAAAAAKAnUPCroEGDBsWPf/zjgmW4iGVLfi0tLXH88cfHpz/96Xj99deTiFnQXXfdFTvssEP8+te/Xlrc6+p5OpcY+/fvH//zP/+TVEwAAAAAAACANcLgIhv8IhT8AAAAAACADyn4Vdixxx4be++999JyXFc6l/zy+XzceeedseWWW8bEiRNj5syZScVd6t5774399tsvPvWpT8WMGTOKlvs6dMx95zvfiaFDhyaUFgAAAAAAAGDNUNoGv5YEkgAAAAAAAD2Bgl8Crrnmmlh33XUjIrpV8lu4cGFcccUVsfnmm8d+++0XkydPjrfeeqtiOadNmxbf/OY3Y8stt4wDDzww/va3vy0t7BUr93Wcp1Kp2G+//eLLX/5yxXICAAAAAAAArKlq+/SJAXXpgjONrTb4AQAAAAAAH6itdoC1wcYbbxxTpkyJgw8+uOgmvM4lv46/zufz8be//S3+9re/RUTE1ltvHWPHjo2ddtopNt1009hoo41KyjFz5szI5XLR0tIS77zzTsyaNStmzpwZ06ZNi2nTpsXcuXOXybB8jq50Li2ut956cd1115WUBwAAAAAAAKA3GpzuHwsWtnZ53phT8AMAAAAAAD6g4JeQAw44IP7nf/4nvv71rxfc4teh8+a8jr/u8Pzzz8cLL7wQ119//Qrfs7L36fi/m222WcH7OnTOV6jY13k2n89HJpOJ//u//4thw4YV/B4AAAAAAACA3iyb6R9vNL3X5XljriXBNAAAAAAAwJpMwS9B559/fsyfPz8uvPDCkjbjdd7mt3zprljxrtD7rczypcNS3r/zM/Tp0yemTJkSu+++e7dzAQAAAAAAAPQmDen6gueNrTb4AQAAAAAAH1DwS9j3vve9WLRoUVx00UVLi3vFynTLn69sA2B3Cnml3lPKe+Xz+aipqYkrrrgiDj/88JK/HwAAAAAAAKC3GpzpX/C8MafgBwAAAAD/H3v3HiVpXd+J/1N9ma6qZqafnsEAXsDhHgKSCOEmFxWRSEBcDaiEXUEYiMmum6wEdtU1iTEJ7CghyZqoQIxgIkQXFkHROKigrEC4COF+EeQiEB26mqGrqnu6u35/8AMBmeepmal66vZ6nVNHpr+fqu+7Wk7POZbv/gDwrKFOBxhEZ511VnzqU5+KoaFnv/1ZxbuXem6D3wsfm/q8jX2NF+ZtNBoxNjYW//zP/xwnnXTSRr0HAAAAAAAAgH6VZBb8qjklAQAAAAAAup2CX4f8wR/8QVxxxRUxMTERjUbj+W1+3e6F5b4VK1bEN7/5zXjnO9/Z4VQAAAAAAAAA3WOiWE49r66fjbn5+ZzSAAAAAAAA3UzBr4MOP/zwuOmmm+LNb37z8xv0urXo98JcjUYj3vzmN8dtt90WBx98cIeTAQAAAAAAAHSXyYwNfhERlfpMDkkAAAAAAIBup+DXYStXrow1a9bEZz7zmVi6dGnXFf1eWuwrlUqxevXq+Na3vhXbbLNNh9MBAAAAAAAAdJ+kmYJfrZpDEgAAAAAAoNsp+HWJU045JX70ox/Fhz70oSgWi79Q9Mu77PfSYl9ExPve976477774kMf+lBXlA8BAAAAAAAAutFEqZw5Y4MfAAAAAAAQoeDXVZYvXx6rV69+vui3YsWKaDQaL1v2a3XB7uVeu9FoxOjoaBx//PFx8803x+c//3lb+wAAAAAAAAAylEaWxNjwSOpMpabgBwAAAAAAKPh1pa222ipWr14djz32WFx00UVx+OGHx+jo6IvKfhG/WMrbnEdEPP/6jUYjdtlll/j4xz8eDz/8cFxwwQWx5557durbAQAAAAAAANBTCoVCJKXx1JlKrZpTGgAAAABIN1TwyPMB8FLpvzKQjhodHY1jjz02jj322JiZmYmrrroqrrzyyvje974X99xzTywsLPzCc5rZ7PfCkuBzli1bFnvvvXccdthh8Y53vCN22WWXlrwHAAAAAAAAgEE0USrHk89Mb/C8UrfBDwAAAAAAUPDrGePj4/H2t7893v72t0dERL1ej1tvvTVuvfXWePDBB+PRRx+NRx99NB5//PF45plnolarRb1ej9nZ2RgdHY1yuRylUim22GKLeNWrXhXbbrttbLvttrHjjjvG3nvvHbvuumtT5UAAAAAAAAAAsiXFrA1+Cn4AAAAAAICCX88qFoux7777xr777tvpKAAAAAAAAAC8xGQpq+BXzSkJAAAAAADQzYY6HQAAAAAAAAAA+s1EqZx6Xqnb4AcAAAAAACj4AQAAAAAAAEDLJcX0DX7T9WosLi7mlAYAAAAAAOhWCn4AAAAAAAAA0GKTpfSCX6PRiHWztZzSAAAAAAAA3UrBDwAAAAAAAABabCKj4BcRMVWv5pAEAAAAAADoZgp+AAAAAAAAANBik8Vy5kylNpNDEgAAAAAAoJsp+AEAAAAAAABAiy0dK8VQoZA6o+AHAAAAAAAo+AEAAAAAAABAiw0NDcWyjC1+lbqCHwAAAAAADDoFPwAAAAAAAABog6Q4nnpeqVVzSgIAAAAAAHQrBT8AAAAAAAAAaIPJUsYGv5oNfgAAAAAAMOgU/AAAAAAAAACgDSZKGRv86gp+AAAAAAAw6EY6HQAAAAAAAAAA+lFSzCj41ao5JQEAAACADRsqdDoBwGCzwQ8AAAAAAAAA2mCyVE49n67NRKPRyCkNAAAAAADQjRT8AAAAAAAAAKANJkrpG/xmF+ajNj+XUxoAAAAAAKAbKfgBAAAAAAAAQBskxfSCX0REpVbNIQkAAAAAANCtFPwAAAAAAAAAoA0mMzb4RURM12ZySAIAAAAAAHQrBT8AAAAAAAAAaIOJUjlzZkrBDwAAAAAABtpIpwOQbW5uLn784x/Hk08+Gf/+7/8ea9eujXq9HrOzszE7OxsLCwudjpjpYx/7WKcjAAAAAAAAAORqyfBIlEfHorp+doMzlbqCHwAAAAAADDIFvy5TrVbjBz/4QXz/+9+PG2+8Me6666748Y9/HIuLi52OtlkU/AAAAAAAAIBBNFkaTy34TdeqOaYBAAAAAAC6jYJfF6hUKnHJJZfEl7/85fj2t78d8/Pzz581Go0OJmuNQqHQ6QgAAAAAAAAAHTFRKsdjTz+1wfOpmg1+AAAAAAAwyBT8Oujee++Nc845Jy644IKo1WoR8YuFvl4vx/VDQREAAAAAAABgUyXF8dTzSl3BDwAAAAAABpmCXwesXbs2/uf//J9x3nnnxcLCwotKcBsq9PViUa7Xy4kAAAAAAAAAmysplVPPp2vVnJIAAAAAAADdSMEvZ5dcckmsWrUqKpXK86W9lxbherHMBwAAAAAAAMAvSkrpG/ymbPADAAAAAICBNtTpAIOi0WjE7/3e78UxxxwTU1NT0Wg0olAoPF/uazQazz8AAAAAAAAA6A9JMb3g98xsPeYXFnJKAwAAAAAAdBsb/HIwNzcX733ve+P//t//+3yx7zkKfQAAAAAAAAD9KymVM2em69VYMb40hzQAAAAAAEC3scGvzRqNRrz73e+OSy+99EXlPtv6AAAAAAAAAPpfUkrf4BcRMVWbySEJAAAAAADQjWzwa7MPf/jDcdlll72o2Lc5Xrj9DwAAAAAAAIDu1kzBr1JX8AMAAACgc7QUADpLwa+NvvOd78RZZ521yeW+tDKf7X8AAAAAAAAA3W98dCxGh4Zj/eLCBmema9UcEwEAAAAAAN1Ewa9N6vV6nHrqqc//eWMKeS8s9r30eaOjo7HlllvGihUrolQqxdjYWAwPD29+YAAAAAAAAABarlAoxESpHD+bWbfBmamaDX4AAAAAADCoFPza5HOf+1zcf//9USgUmi73vXTT3/j4eBx66KGx//77x9577x0777xzvOY1r2lbZgAAAAAAAABaLymOpxb8pusKfgAAAAAAMKgU/Npg/fr1sXr16hdt4kvz0mLf4YcfHr/zO78Tv/EbvxFjY2NtywkAAAAAAABA+yWl8dTzSq2aUxIAAAAAAKDbKPi1wWWXXRaPPfZYU9v7XljuO/DAA+Pss8+OvffeO4+YAAAAAAAAAOQgKZVTz6dqNvgBAAAAAMCgGup0gH508cUXZ84UCoXnC4CFQiHOOuusuPrqq5X7AAAAAAAAAPpMUkzf4DddV/ADAAAAAIBBZYNfi83NzcXXv/715zfzvZwXbu0bGRmJL33pS/Gud70rr4gAAAAAAAAA5CgppRf8KvXq878cFgAAAAAAGCw2+LXYTTfdFLVaLSKeLfBtyHMfzvzv//2/lfsAAAAAAAAA+lhSKqeeLywuxrrZek5pAAAAAACAbqLg12LXXntt6nmhUHi+3Hf00UfHKaecklMyAAAAAAAAADoha4NfRMR0fSaHJAAAAAAAQLdR8GuxO++8c4NnhULh+X8eGRmJs88+O49IAAAAAAAAAHRQUswu+FVqCn4AAAAAADCIFPxa7MEHH0w9f2573zHHHBOvfe1r8wkFAAAAAAAAQMdMFMtRyJiZqlVzyQIAAAAAAHQXBb8We/jhh1+0qW9Dfvu3fzuHNAAAAAAAAAB02vDQUCwtllJnpus2+AEAAAAAwCBS8GuxdevWvezXX1j6GxkZiTe96U15RQIAAAAAAACgw5LieOp5pabgBwAAAAAAg0jBr8VmZjb8oUuj0YiIiD322COKxWJekQAAAAAAAADosKSUXvCbqlVzSgIAAAAAAHQTBb8Wm5ubSz0vFAqxww475JQGAAAAAAAAgG6QlMqp59N1G/wAAAAAAGAQKfi12BZbbJE5s/XWW+eQBAAAAAAAAIBukRTTN/hVagp+AAAAAAAwiBT8WmzZsmWZM+Pj6R/cAAAAAAAAANBfklJWwa+aUxIAAAAAAKCbKPi1WDMFv4WFhRySAAAAAAAAANAtsgp+tfm5qM+vzykNAAAAAADQLRT8WmzlypXRaDRSZ6pVv3kRAAAAAAAAYJAkxXLmzHRtJockAAAAAABAN1Hwa7Hdd989c+ZnP/tZDkkAAAAAAAAA6BZZG/wiIqYU/AAAAAAAYOCMdDpAv8kq+DUajfjRj36UUxoAAAAAAAAAukFTG/zq1RySAAAAAMCLDRU6nQBgsNng12IHHHDABs8KhWf/1rv33nvzigMAAAAAAABAFyiOLoniyGjqTMUGPwAAAAAAGDgKfi322te+NvbYY49oNBrPF/oint3c95ynn346/u3f/q0T8QAAAAAAAADokKQ0nno+peAHAAAAAAADR8GvDY4++ujMmTVr1uSQBAAAAAAAAIBukVXwm65Xc0oCAAAAAAB0CwW/NjjuuOOe3973wi1+z2k0GnHxxRfnHQsAAAAAAACADkqK5dTzig1+AAAAAAAwcBT82mDXXXeNI488MhqNxou+3mg0ni/8/eu//mv88Ic/7EA6AAAAAAAAADoha4Ofgh8AAAAAAAweBb82Of300zNn/uIv/iKHJAAAAAAAAAB0g8yCX72aUxIAAAAAAKBbKPi1yRve8IZ4xzve8aKtfRE/3+LXaDTiK1/5Snzve9/rYEoAAAAAAAAA8pIUy6nnT9ersbC4mFMaAAAAAACgGyj4tdGnP/3pWLZsWUTEi0p+z2k0GnHqqadGteq3MAIAAAAAAAD0u6wNfo14tuQHAAAAAAAMDgW/Ntpmm21i9erV0Wg0XvT1F271u+eee+KEE07oQDoAAAAAAAAA8pRV8IuIqCj4AQAAAADAQFHwa7NVq1bFqlWrXlTqi/h5ya/RaMT/+T//J/7zf/7PHUwJAAAAAAAAQLslxXLmTKU2k0MSAAAAAACgWyj45eBv//Zv401velNqye/v/u7v4v3vf3+sX7++g0kBAAAAAAAAaJctxkoxXEj/mF7BDwAAAAAABouCXw6Gh4fj0ksvjQMOOCC15PeFL3whDjnkkHjwwQc7mBYAAAAAAACAdhgqFGKilL7Fr1Kv5pQGAAAAAADoBgp+OVm2bFl861vfire+9a3Pl/qeK/q9sOR33XXXxR577BFnnXVW1Ov1DqcGAAAAAAAAoJWSYkbBzwY/AAAAAAAYKAp+OSqVSnH55ZfHiSeeGI1G40VnL9zsV61W48Mf/nCsXLkyzjrrrHjyySc7ERcAAAAAAACAFktK46nnCn4AAAAAADBYFPxyNjo6Gueff35ceOGFMT4+/rKb/J7b5vfkk0/Ghz/84XjNa14Thx9+ePzlX/5l/PCHP4z5+fkOvwsAAAAAAAAANkVmwa9ezSkJAAAAADxrqOCR5wPgpUY6HaBfffzjH8+cOfLII+Oiiy56vuAX8eKS33N/np+fjzVr1sSaNWsi4tmS4M477xzbbrttvPKVr4xly5ZFqVSK0dHR9ryZFvjYxz7W6QgAAAAAAAAAHZcUy6nnNvgBAAAAAMBgUfBrkz/+4z9+UXEvTaPReNk/v7To95y5ubm4/fbb44477mhR2vZT8AMAAAAAAABoYoNfbeb5XwwLAAAAAAD0PwW/NntpeW9TnvvCot8LzzbntfPkgycAAAAAAACAZ2UV/NYvLkR1/VyMLxnLKREAAAAAANBJCn5tllVua6ak99KZlyv8dateKSECAAAAAAAA5CEpphf8Ip7d4qfgBwAAAAAAg0HBr83aUXDrldJcr5QQAQAAAAAAAPKSlMqZM5XaTLxqYnkOaQAAAAAAgE4b6nQAAAAAAAAAABgUE8UmCn71mRySAAAAAAAA3UDBDwAAAAAAAAByMjo8ElssKabOVGrVnNIAAAAAAACdpuAHAAAAAAAAADlKSuOp55WaDX4AAAAAADAoFPwAAAAAAAAAIEdJqZx6Xqkr+AEAAAAAwKAY6XSAflcoFDodAQAAAAAAAIAukhRt8AMAAAAAAJ6l4NdmjUaj0xEAAAAAAAAA6CJJKavgV80pCQAAAAAA0GkKfm1y8MEH294HAAAAAAAAwC9ISuXU80rdBj8AAAAAABgUCn5t8t3vfrfTEQAAAAAAAADoQkkxfYPfzNxszC3Mx5JhH+kDAAAAAEC/82kAAAAAAAAAAOQoKaUX/CIipmvVeMUWy3JIAwAAAMCgGyp0OgHAYBvqdAAAAAAAAAAAGCTNFPwq9ZkckgAAAAAAAJ2m4AcAAAAAAAAAOUqK5cyZSk3BDwAAAAAABoGCHwAAAAAAAADkqDS6JJYMj6TOKPgBAAAAAMBgSP/EAGAAPPLII/HNb34zbrvttrjzzjvjwQcfjHXr1sXTTz8djUYjli5dGkuXLo1tt902dtttt9hjjz3isMMOi5122qnT0fvCE088Ed/5znfi9ttvj3vuuSfuu+++mJqainXr1sUzzzwTIyMjz/93MDk5GTvuuGPsvPPOsfPOO8ev/dqvxW677RaFQqHTbwMAAAAAAKBphUIhktJ4/Psz0xucqdSrOSYCAAAAAAA6RcEPGEiVSiXOO++8uPDCC+O2225LnV27dm2sXbs2Hnroobjmmmue//pOO+0Uxx13XHzgAx+Irbbaqt2R+8r9998f559/flxxxRVx++23p87Oz89HvV6Pn/70pxERcdNNN73ofPny5XHggQfGwQcfHEceeWTssssubcsNAAAAAADQKkmxnF7ws8EPAAAAAAAGwlCnAwDk6ZlnnokzzjgjXv3qV8cf/uEfZpb70tx3333xJ3/yJ7HtttvGKaecEj/72c9amLQ/ffOb34xDDz00dt555zjzzDMzy33NeOqpp+KrX/1qnHbaabHrrrvGbrvtFh/96EfjnnvuaUFiAAAAAACA9khK46nnCn4AAAAAADAYFPyAgfHVr341fvmXfzn+1//6XzEz07oPROfm5uLcc8+NXXbZJT7/+c+37HX7yQ9/+MM47LDD4jd+4zfi29/+djQajbbdddddd8Wf/dmfxd/8zd+07Q4AAAAAAIDNlVnwq1dzSgIAAAAAAHSSgh/Q9xYXF+OjH/1ovOMd74hHH320bfc89dRT8f73vz9OOeWUmJuba9s9vWRhYSH+9E//NH7913891qxZ0+k4AAAAAAAAXSMpllPPbfADAAAAAIDBMNLpAADttLCwEO9973vjy1/+cm53nnvuuXHvvffG17/+9SiX0z+Y7WdPPPFEHHPMMfH973+/01EAAAAAAAC6TtYGv+l6NRYXF2NoyO/tBQAAAACAfuaTAKBvLS4uxgknnJBrue85V199dfyH//AfYnZ2Nve7u8H9998fBxxwgHIfAAAAAADABmQV/BYbjVg3V88pDQAAAAAA0Ck2+AF96yMf+Uh88Ytf3Kjn7LTTTvGGN7whdt9991i+fHkUCoWYmpqKu+66K37wgx/E7bff3vRr/cu//EusWrUqLrjggo2N3tNuu+22OOyww+Lf//3fOx0FAAAAAACgayXFcuZMpTYTE03MAQAAAAAAvUvBD+hLV155ZZx11llNzx999NHx4Q9/OPbZZ5/Uudtvvz1Wr14dX/ziF2NxcTHzdS+88MI45JBD4qSTTmo6Sy97+OGH421ve9tGl/u23HLLeOMb3xgHHXRQ7LrrrrH99tvH8uXLY3z82d9cW6lUolKpxNTUVNx9991x6623xq233hq33HJLVCqVNrwTAAAAAACA9sra4BfxbMFvu8lX5JAGAAAAAADoFAU/oO+sXbs2/tN/+k/RaDQyZ5cvXx4XXnhhHHHEEU299u677x5f+MIX4gMf+EAce+yx8cgjj2Q+57/8l/8ShxxySOy4445N3dGrKpVKHHHEEfGTn/yk6ee8/e1vj1NOOSUOP/zwGBnZ8F9JW221VWy11VYREbHffvs9//X5+fm49tpr4/LLL4+vfe1rcffdd2/6GwAAAAAAAMjRsrFSFAqF1M+0KvVqjokAAAAAAIBOGOp0AIBW+8hHPhI/+9nPMude/epXxw033NB0ue+F9ttvv7jxxhtjt912y5yt1WrxB3/wBxt9R6856aST4o477mhqdv/9948bb7wxLrvssvjN3/zN1HJfmpGRkTjkkEPik5/8ZNx1111x4403xvvf//4ol8ub9HoAAAAAAAB5GRoaiomxUupMpTaTUxoAAAAAAKBTFPyAvnLLLbfEueeemzk3MTERa9asiR122GGT7/qlX/qluOqqq+LVr3515uwVV1wRX//61zf5rm533nnnxSWXXJI5NzQ0FJ/4xCfie9/7Xuy1114tz7HXXnvF+eefH4899liccMIJLX99AAAAAACAVkpK46nnCn4AAAAA5KFQ8MjzAfBSCn5AX/mTP/mTWFxczJw799xzY5dddtns+7beeuv4p3/6pxgeHs6c/aM/+qPNvq8bPfjgg/H7v//7mXNjY2Nx8cUXx0c+8pGmvl+bI0mS2Hvvvdt6BwAAAAAAwObKLPjVqzklAQAAAAAAOkXBD+gb99xzT3z1q1/NnDv66KPjmGOOadm9Bx10UJx66qmZczfeeGN8+9vfbtm93eK0006LmZn03x47NDQUX/ziF+O3fuu3ckoFAAAAAADQ/ZJiOfXcBj8AAAAAAOh/Cn5sluXLl2c+VqxY0emYDIizzz47Go1G6szIyEh88pOfbPndH//4x2PZsmWZc5/61KdafncnXX311XHJJZdkzn3iE59Q7gMAAAAAAHiJzA1+Cn4AAAAAAND3RjodoJO23377zJlCoRAPPPBADml6U6VSiUKhkFqqKhQKOSZiUM3OzsbFF1+cOfeud70rdtxxx5bfv2LFijj55JPj7LPPTp375je/GU8++WRstdVWLc/QCaeffnrmzEEHHRRnnHFGDmkAAAAAAAB6S2bBr17NKQkAAAAAANApA13we+ihh5TTWmRD36esbWrQKldccUVMT09nzv3+7/9+2zJ88IMfjHPOOScWFxc3OLOwsBAXXXRR/Nf/+l/bliMv11xzTdxwww2pM8PDw/GZz3wmhoYsjAUAAAAAAHippFhOPZ+dXx+19XNRGl2SUyIAAAAAACBvGhfxbDnt5R6dMDw8nPkYGRnoXia8rC996UuZMzvuuGPst99+bcuw3XbbxUEHHZQ510zWXvCpT30qc+Z973tf7LbbbjmkAQAAAAAA6D1ZG/wiIiq1mRySAAAAAAAAnaLg12UajUZTj27TCxnpXwsLC7FmzZrMuXe/+91tz/Ke97wnc+Zf//VfY+3atW3P0k4//vGP4/LLL8+c+8M//MMc0gAAAAAAAPSmpgp+9WoOSQAAAAAAgE5R8IvuK6dtaKNgp7YKQre74YYbYnp6OnPubW97W9uzNHPH4uJiXHXVVW3P0k4XXXRR5s/KN7/5zbHrrrvmlAgAAAAAAKD3JEUb/AAAAAAAYNAp+HWpbisdQjdrpiy3dOnS2HfffdueZbvttosdd9wxc+5b3/pW27O000UXXZQ5c9xxx+WQBAAAAAAAoHctGRmJ8uiS1BkFPwAAAAAA6G8KfkDP+8EPfpA5s++++8bIyEgOaSIOOuigzJnrr78+hyTt8cADD8QPf/jD1JmhoaE48sgj8wkEAAAAAADQw5JS+ha/Sl3BDwAAAAAA+pmCH9DzbrnllsyZ17/+9TkkedZee+2VOXPXXXfF7OxsDmlab82aNZkzv/qrvxpbbbVVDmkAAAAAAAB6W1LMKPjVqjklAQAAAAAAOkHBD+hpTz75ZDz++OOZc91W8Jufn49/+7d/yyFN633nO9/JnNl///1zSAIAAAAAAND7klI59bxSs8EPAAAAAAD6mYIf0NNuu+22puZ23XXXNif5uV122aWpuWazd5urr746c2bffffNIQkAAAAAAEDvS0oZG/zqCn4AAAAAANDPRjodAGBz/OhHP2pqbscdd2xzkp+bnJyM5cuXx1NPPZU612z2bvLII4/EE088kTm32267Zc6sXbs2rrzyyrjuuuvi9ttvjwcffDCmp6fjmWeeiSVLlkS5XI4VK1bEypUrY4cddoh99tkn9t9//9h5551b8VYAAAAAAAC6wkQxo+BXq+aUBAAAAAAA6AQFP6CnPfjgg5kzW2+9dYyPp38w2mo77rhj3HDDDakzzWTvNnfccUdTczvttNPLfn1xcTGuuOKK+Ou//uv47ne/GwsLCy87V6vVolarxdq1a+Pee++NiIi//du/ff61jznmmDj55JNj5cqVm/AuAAAAAAAAusdkxga/dbO1mF9YiJHh4ZwSAQAAAAAAeRrqdACAzfHQQw9lzrzyla9sf5CX2GabbTJn+rXgt2LFili2bNkvfH3NmjWx++67x9FHHx1XXXXVBst9We6777748z//89hpp53i3e9+d9x3332b9DoAAAAAAADdICmVM2emZ23xAwAAAACAfqXgB/S0xx57LHNm6623ziHJxt/56KOP5pCkte66667MmV/6pV960Z9nZmbi+OOPj8MOO6yp5zdrYWEh/vmf/zl23333+OhHPxrr169v2WsDAAAAAADkJSmmb/CLiKjUZnJIAgAAAAAAdIKCH9DT1q5dmzmz1VZb5ZDkxZop+D311FM5JGmtRx55JHPmFa94xfP//MADD8S+++4b//iP/9i2THNzc/Fnf/ZncfDBB+LnpFMAAQAASURBVDeVDwAAAAAAoJskpWYKfjb4AQAAAABAv1LwA3paMwW/JEnaH2QT7pyZmYnZ2dn2h2mhJ554InPmuff+wAMPxCGHHBJ33HFHm1M967rrrov99tuvpVsCAQAAAAAA2m18yViMDA2nzlTqNvgBAAAAAEC/UvADetrU1FTmzNKlS3NIsml39toWv8cffzxzZsmSJfHkk0/Gm970pnjsscdySPVzP/nJT+Lggw9W8gMAAAAAAHpGoVCIpFhOnanUFPwAAAAAAKBfjXQ6AMCmqtVqsX79+sy5ThT8li1b1tTc9PR0bLPNNm1O0xqNRqOpjYnDw8Pxnve8Jx555JHM2WXLlsVBBx0Ue+yxR2y33XaxxRZbxPz8fFQqlbj//vvj+uuvj1tuuSUWFhaazvmzn/0sjjrqqLj++utjxYoVTT8PAAAAAACgU5LSePysum6D5wp+AAAAALSTzVEAnaXgB/Ssubm5puZKpVKbk/yiYrHY1Fyz76Eb1Ov1WFxczJy77LLLol6vp87st99+cfrpp8eRRx4Zo6OjqbNPPPFEXHDBBfHJT34yfvrTnzaV9YEHHojjjz8+rrzyyqbmAQAAAAAAOikpjaeeV+rVnJIAAAAAAAB5U/ADelaz5bjh4eE2J/lFIyPN/XjttYLf5s4lSRJ/8zd/E8cff3zT92699dZx+umnxwc+8IE47bTT4nOf+1xTz/vGN74R5557bqxatarpu/rFgQce2PS/g7TPHXfc0ekIAAAAAAD0iIliOfXcBj8AAAAAAOhfNqkCPavZclwnik7N3rl+/fo2J2md2dnZzXr+ypUr47rrrtuoct8LLV26ND772c/Geeed13Rp87//9/8e09PTm3QfAAAAAABAXiazNvgp+AEAAAAAQN+y3gfoWfPz803NKfi1xuZsG9xmm23iqquuipUrV252jpNOOimGh4fjxBNPzJx96qmnYvXq1fGJT3xis+/tJd///vfjFa94RadjAAAAAAAATUqyCn71ajQajSgUCjklAgAAAAAA8mKDH9Czmi3RLSwstDnJpt/ZifLhpmp2a97L+fznP9+Sct9zTjjhhHjf+97X1OynP/3pqNVqLbsbAAAAAACg1SaK5dTzhcXFeGaunlMaAAAAAAAgTwp+QM9asmRJU3PNbvprpWY38zX7HrrBpmY9+eST4/DDD29xmohzzjknXvnKV2bOVSqVuOiii1p+PwAAAAAAQKtMZmzwi4io1GZySAIAAAAAAORNwQ/oWaOjo03NdaLg1+yd/V7wGx8fj9WrV7chTUSSJHHmmWc2NftP//RPbckAAAAAAADQCkkzBb96NYckAAAAAABA3hT8gJ41NjbW1Fy9Xm9zkk2/s5cKfs1+v1/ouOOOiyRJWh/m/3fsscfGlltumTl3zTXXxDPPPNO2HAAAAAAAAJtjWbEUhYwZG/wAAAAAAKA/jXQ6ANBbHnzwwbj++uvbesf4+HgcddRRmXOlUilGRkYyt+WtW7euVdGa1uydy5Yta3OS1ikWizE6Ohrr169v+jm/8zu/08ZEz5YOTzjhhPjkJz+ZOjc3NxdXX311/OZv/mZb8wAAAAAAAGyKkaHhWDpWiqdnaxucUfADAAAAAID+pOAHbJSrr746TjzxxLbesd122zVV8IuImJycjJ/+9KepM08//XQrYm2UZu9cvnx5m5O01ooVK+KJJ55oanblypXx+te/vs2JIn7rt34rs+AXEXHjjTcq+AEAAAAAAF0rKY1nFPyqOaYBAAAAAADyMtTpAACbY8WKFZkz09PTOSTZ+DvL5XIUi8Uc0rROM9/v5+y7775tTPJzv/qrvxpLlizJnLv55ptzSAMAAAAAALBpJorl1PNK3QY/AAAAAADoRwp+QE9rpnD25JNP5pDkxZrZcrcxZblu0Y0Fv7Gxsdhzzz0z5x544IEc0gAAAAAAAGyaydJ46nmlpuAHAAAAAAD9SMEP6GmvetWrMmeaKdu1WjN3NpO922xM5te97nVtTPJizRT8Hn300RySAAAAAAAAbJokq+BXr+aUBAAAAAAAyJOCH9DTXvva12bO/OQnP2l/kJd4/PHHM2dWrlyZQ5LW2n777ZueXb58eRuTbPxd09PTMTs7m0MaAAAAAACAjTdRLKee2+AHAAAAAAD9aaTTAQA2RzMluSeeeCKq1WqUy+kfirbS/fffnznT7wW/JEnaF2QT76pWqzE2NtbeMAAAAAAAAJtgMmODX239XMzOr4+xkdGcEgEAAAAwKIYKnU4AMNhs8AN6WjOFs0aj0VThrlUqlUqsXbs2c25jynLdYocddmh6tlsLfgAAAAAAAN0oySj4RURU6j7rAAAAAACAfqPgB2yUE044IRqNRlsfDz30UNN59thjj6bm7r777k18xxuv2buazd5NXve61zU9Wyjk96s88rwLAAAAAACgHSaK5cyZSm0mhyQAAAAAAECeFPyAnrbNNtvEVlttlTl3880355Cm+btGRkY2qizXLSYnJ5vePFipVNob5gWmpqaamiuXsz8YBwAAAAAA6ITJZjb4KfgBAAAAAEDfUfADet7rX//6zJk8C3433XRT5syuu+4axWIxhzStt9deezU112zprhWaLROOj2d/MA4AAAAAANAJxdElURwZTZ2p1Ko5pQEAAAAAAPKi4Af0vP333z9z5rrrrov5+fkc0kRcc801mTP77rtvDkna44ADDmhq7qmnnmpzko27a8WKFbFkyZIc0gAAAAAAAGyaiWI59bxSt8EPAAAAAAD6jYIf0PMOPfTQzJl169bFDTfc0PYsDz/8cNx///2Zc4cddljbs7TLW9/61qbmbrvttjYn+blbb701c2bbbbfNIQkAAAAAAMCmmyyNp55Xagp+AAAAAADQbxT8gJ63zz77xLJlyzLnrrzyyrZnaeaOQqHQVCmxW+22227x6le/OnPu+uuvzyFNxOzsbFMFv1122SWHNAAAAAAAAJsuUfADAAAAAICBo+AH9LyRkZGmCnMXX3xx27NcdNFFmTN77713bLnllm3P0k5HHHFE5sx1112XQ5KIW265Jebm5jLnfv3Xfz2HNAAAAAAAAJtuophR8KtXc0oCAAAAAADkRcEP6Avvfe97M2fuu+++tm6Ve/jhh+Oaa67JnGsma7f77d/+7cyZhx56KG6++ea2Z/nKV77S1Nz+++/f5iQAAAAAAACbZ7JUTj23wQ8AAAAAAPqPgh/QF4466qhYtmxZ5tw555zTtgx//dd/HYuLi6kzQ0ND8Z73vKdtGfJy0EEHxcqVKzPn/u7v/q6tOer1evzDP/xD5tyWW24Z++yzT1uzAAAAAAAAbK6klL7B7+nZWubnUQAAAAAAQG9R8AP6QrFYjGOPPTZz7itf+Urcf//9Lb9/7dq1ce6552bOvfWtb41tttmm5ffnrVAoxIknnpg596UvfSmmpqbaluPiiy+OtWvXZs4dddRRMTw83LYcAAAAAAAArTBRTC/4NRqNmJ6t5ZQGAAAAAADIg4If0Df+23/7b1EoFFJn5ufn47TTTmv53R/72Mfi6aefzpz70Ic+1PK7O+X3fu/3Ynw8/UPmmZmZtr3nqamp+B//4380NXvSSSe1JQMAAAAAAEArTZbKmTOV2kwOSQAAAAAAgLyMdDpAL3j/+9/f6Qi/oBszQaf98i//chx55JFx+eWXp85ddtll8eUvfzmOOeaYltz7/e9/Pz772c9mzr3+9a+Pt7zlLS258zkPPfRQrFy5MnPukEMOie9+97stvXv58uVx6qmnxtlnn5069/nPfz6OOeaYeNvb3tbS+z/4wQ/G448/njn3a7/2a/GGN7yhpXcDAAAAAAC0Q1JK/+WKEQp+AAAAAADQbxT8NqDRaDz/n1/4whc6cveGvt6JTGk2lBc64Y/+6I/ia1/7WiwuLqbOrVq1Kvbcc8/YeeedN+u+J554Io477rhYWFjInP3jP/7jzbqrG51++ulx/vnnx/T0dOrciSeeGP/v//2/2H777Vty7/nnnx9f/OIXm5rtx+87AAAAAADQn7YYK8VwYSgWGhv+rKtSV/ADAAAAoLWGCp1OADDYhjodoBc0Go3cHt2YqRV5IS977bVXUxsup6en49BDD40f/ehHm3zXT3/603jLW94SjzzySObs2972tjjqqKM2+a5utdVWW8Wf/umfZs49+eSTceihh8Y999yz2Xeed955ceqppzY1e8ghh8Tb3/72zb4TAAAAAAAgD0OFQkwUy6kzlVo1pzQAAAAAAEAeFPyaUCgUcnt0Y6ZW5IU8/fmf/3msWLEic+7RRx+NffbZJ6688sqNvuP666+PvffeO+64447M2WKxGH/1V3+10Xf0it/93d+NvffeO3PuoYceiv3226/pzXsvtW7dujj11FNj1apVTW1MLJfL8bnPfW6T7gIAAAAAAOiUpJRV8LPBDwAAAAAA+omCXxO6cSNepzf32eBHN3vFK14R//AP/9BUCXXt2rVxxBFHxDvf+c648cYbM+fvvPPOOPHEE+OAAw6Ihx9+uKk8f/VXfxU77bRTU7O9aHh4OC6++OJIkiRztlKpxH/8j/8x9t9//7jkkkti/fr1mc958skn46yzzooddthhowp755xzTuy8885NzwMAAAAAAHSDieJ46nmlruAHAAAAAAD9ZKTTAQDa4cgjj4zTTjstVq9e3dT8pZdeGpdeemnsvPPOceCBB8av/MqvxPLly6NQKMTU1FTcfffd8YMf/CBuu+22jcpx3HHHxSmnnLIpb6GnbL/99nHBBRfE0Ucf3VT597rrrot3vetdMTExEQcddFC87nWvi2233Ta22GKLWFhYiKmpqXjggQfi+uuvj5tuuqmpjX0v9MEPfjBWrVq1qW8HAAAAAACgY5JSRsGvVs0pCQAAAAAAkAcFP6BvnXnmmfHoo4/Gl770paafc++998a9997bkvsPPfTQ+Pu///uWvFYvOOqoo+Jzn/tcnHLKKU1v+Jyeno4rrrgirrjiipbleM973hN/+Zd/2bLXAwAAAAAAyNNkqZx6XqnZ4AcAAAAAAP1kqNMBANplaGgoLrjggnjnO9+Z+90HHnhgXHbZZTE2Npb73Z108sknx2c/+9kYGurMXy+nnnpq/OM//mPH7gcAAAAAANhcE1kb/OozTf+yRQAAAAAAoPtpQAB9bWRkJL785S/HGWeckdudJ554YqxZsybGx9M/fO1Xq1atim984xuxYsWK3O4cGxuLT3/60/GZz3xGuQ8AAAAAAOhpSTH9M6b1CwtRXT+XUxoAAAAAAKDdtCCAvjc0NBRnnnlmXHrppfHKV76ybfdMTk7GueeeG3//938/cJv7Xuqwww6Lm2++OY444oi237X//vvH9ddfH7/7u7/b9rsAAAAAAADabTJjg19ERKU2k0MSAAAAAAAgDwp+EVEoFDza8IBu8453vCPuvvvuOO2001q6XW/JkiVx0kknxT333BMnn3xyy16312277bbxta99LS6//PLYY489Wv76u+22W1x44YVx7bXXxp577tny1wcAAAAAAOiEiVI5c6ZSV/ADAAAAAIB+oeAXEY1Gw6NND+g2S5cujdWrV8cjjzwSZ555ZvzKr/zKJr/WDjvsEB/96EfjoYceivPOOy9e8YpXtDBp/zjyyCPjtttui+985ztx7LHHxrJlyzb5tSYmJuL444+Pb3zjG3H77bfH8ccfr1AMAAAAAAD0laTYRMHPBj8AAAAAAOgbI50O0EkHH3ywYggMqMnJyTjjjDPijDPOiB//+MfxL//yL3HrrbfGnXfeGQ899FA8/fTTsW7dumg0GrF06dJYunRpvOY1r4nddtst9thjj3jLW94Su+66a6ffRrz2ta/tmTLtG9/4xnjjG98Y8/Pzce2118a1114bd955Z9xzzz3xxBNPxLp162JmZiYKhUKMj4/HxMREbLvttrFy5crYc889Y//994+99torlixZ0um3AgAAAAAA0DajwyOxxZJiPDNX3+BMpVbNMREAAAAAANBOA13w++53v9vpCEAX2G677WLVqlWdjjEwRkZG4pBDDolDDjmk01EAAAAAAAC60kSpnF7wq9vgBwAAAAAA/WKo0wEAAAAAAAAAgJ9LiuOp55Wagh8AAAAAAPQLBT8AAAAAAAAA6CKTpayCXzWnJAAAAAAAQLuNdDoAAAAAAAAAAPBzE6Vy6nmlboMfAAAAAK1jcxRAZ/k5DAAAAAAAAABdJClmbfBT8AMAAAAAgH6h4AcAAAAAAAAAXWSylF7wm5mbjfUL8zmlAQAAAAAA2knBDwAAAAAAAAC6yESpnDlTqVdzSAIAAAAAALSbgh8AAAAAAAAAdJGkmL7BLyKiUpvJIQkAAAAAANBuCn4AAAAAAAAA0EUmS80U/GzwAwAAAACAfqDgBwAAAAAAAABdpDS6JEaHh1NnKnUb/AAAAAAAoB8o+AEAAAAAAABAFykUCpEU07f4VWoKfgAAAAAA0A8U/AAAAAAAAACgy0yWsgp+1ZySAAAAAAAA7aTgBwAAAAAAAABdZqJUTj23wQ8AAAAAAPqDgh8AAAAAAAAAdJmkmLHBr67gBwAAAAAA/UDBDwAAAAAAAAC6zGQpveA3XavmlAQAAAAAAGgnBT8AAAAAAAAA6DITpXLq+XS9GouNRk5pAAAAAACAdlHwAwAAAAAAAIAukxTTN/gtNBZj3WwtpzQAAAAAAEC7KPgBAAAAAAAAQJeZLKUX/CIipmszOSQBAAAAAADaScEPAAAAAAAAALrMRBMFv6laNYckAAAAAABAOyn4AQAAAAAAAECXmRgrRaFQSJ2p1G3wAwAAAACAXqfgBwAAAAAAAABdZmhoKCbGSqkz0zUFPwAAAAAA6HUKfgAAAAAAAADQhSZK46nnU7VqTkkAAAAAAIB2UfADAAAAAAAAgC6UFMup55W6DX4AAAAAANDrFPwAAAAAAAAAoAtNZmzwm64p+AEAAAAAQK8b6XQAAAAAAAAAAOAXTWQU/KYU/AAAAABogaFCodMRAAaaDX4AAAAAAAAA0IWSYnrBr1Kv5pQEAAAAAABoFwU/AAAAAAAAAOhCk6Vy6vns/Pqor5/LKQ0AAAAAANAOCn4AAAAAAAAA0IUmSukb/CIipmozOSQBAAAAAADaRcEPAAAAAAAAALpQ0kTBr1Kv5pAEAAAAAABoFwU/AAAAAAAAAOhCSbGcOTNtgx8AAAAAAPQ0BT8AAAAAAAAA6EJjI6NRGl2SOjOl4AcAAAAAAD1NwQ8AAAAAAAAAulRSGk89r9QV/AAAAAAAoJcp+AEAAAAAAABAl5osphf8pmvVnJIAAAAAAADtoOAHAAAAAAAAAF1qolROPZ+q2eAHAAAAAAC9TMEPAAAAAAAAALpUkrHBr1JX8AMAAAAAgF6m4AcAAAAAAAAAXSoppRf8pmvVnJIAAAAAAADtoOAHAAAAAAAAAF0qKZVTz5+ercX84kJOaQAAAAAAgFZT8AMAAAAAAACALpW1wS8iYrpuix8AAAAAAPQqBT8AAAAAAAAA6FKTxSYKfjUFPwAAAAAA6FUjnQ4AAAAAAAAAALy8iVI5c2aqNpNDEgAAAAD61VCh0wkABpsNfgAAAAAAAADQpbZYUoyRoeHUmUpdwQ8AAAAAAHqVgh8AAAAAAAAAdKlCoRBJMX2L33StmlMaAAAAAACg1RT8AAAAAAAAAKCLTZTSC35TNRv8AAAAAACgVyn4AQAAAAAAAEAXS0rjqeeVuoIfAAAAAAD0KgU/AAAAAAAAAOhiSTG94Dddq+aUBAAAAAAAaDUFPwAAAAAAAADoYkmpnHpeqdngBwAAAAAAvUrBDwAAAAAAAAC6WFJK3+BXqVej0WjklAYAAAAAAGglBT8AAAAAAAAA6GJJMb3gN7+4EDNzszmlAQAAAAAAWknBDwAAAAAAAAC6WFIqZ85UajM5JAEAAAAAAFpNwQ8AAAAAAAAAulhSSt/gFxExVVfwAwAAAACAXqTgBwAAAAAAAABdbKKYvcFvulbNIQkAAAAAANBqCn4AAAAAAAAA0MVGhoZj6VgpdWaqZoMfAAAAAAD0IgU/AAAAAAAAAOhySSl9i19FwQ8AAAAAAHrSSKcDAAAAAAAAAADpkuJ4PBJrN3g+XVfwAwAAAGDTFAqdTgAw2GzwAwAAAAAAAIAul5TGU88rtWpOSQAAAAAAgFZS8AMAAAAAAACALpeUyqnnUzb4AQAAAABAT1LwAwAAAAAAAIAulxTTN/hN1xT8AAAAAACgFyn4AQAAAAAAAECXS0rpBb/q+rmYm5/PKQ0AAAAAANAqCn4AAAAAAAAA0OWyCn4REVN1W/wAAAAAAKDXKPgBAAAAAAAAQJdLiuXMmemagh8AAAAAAPQaBT8AAAAAAAAA6HLNbPCrKPgBAAAAAEDPUfADAAAAAAAAgC5XGl0SYyOjqTNTtWpOaQAAAAAAgFZR8AMAAAAAAACAHpAUy6nn03Ub/AAAAAAAoNco+AEAAAAAAABAD0hK46nnlZqCHwAAAAAA9BoFPwAAAAAAAADoAVkFvykFPwAAAAAA6DkKfgAAAAAAAADQA5JiesFvul7NKQkAAAAAANAqCn4AAAAAAAAA0AOSUjn1vGKDHwAAAAAA9BwFPwAAAAAAAADoAUkpY4PfbC0WFxdzSgMAAAAAALTCSKcDAAAAAAAAAADZkmJ6wa/RaMTTs7XMIiAAAAAAvJDNUQCd5ecwAAAAAAAAAPSApFTOnKnUZnJIAgAAAAAAtIqCHwAAAAAAAAD0gGY281Xq1RySAAAAAAAAraLgBwAAAAAAAAA9YOlYKYYKhdQZG/wAAAAAAKC3KPgBAAAAAAAAQA8YKhRiolhOnVHwAwAAAACA3qLgBwAAAAAAAAA9IimNp55X6tWckgAAAAAAAK2g4AcAAAAAAAAAPSIpZhT8bPADAAAAAICeouAHAAAAAAAAAD0iKZVTzxX8AAAAAACgtyj4AQAAAAAAAECPSEoZG/zq1ZySAAAAAAAAraDgBwAAAAAAAAA9IrPgV5uJRqORUxoAAAAAAGBzKfgBAAAAAAAAQI9IiuXU87mF+aitn8spDQAAAAAAsLkU/AAAAAAAAACgR2Rt8IuIqNSrOSQBAAAAAABaQcEPAAAAAAAAAHpEUwW/2kwOSQAAAAAAgFZQ8AMAAAAAAACAHjFRLGfOKPgBAAAAAEDvUPADAAAAAAAAgB6xZHgkxpeMpc5U6gp+AAAAAADQKxT8AAAAAAAAAKCHJKXx1PNKrZpTEgAAAAAAYHMp+AEAAAAAAABAD0mK5dTzSs0GPwAAAAAA6BUKfgAAAAAAAADQQzI3+NUV/AAAAAAAoFco+AEAAAAAAABAD8ks+NWqOSUBAAAAAAA2l4IfAAAAAAAAAPSQpJhV8LPBDwAAAAAAeoWCHwAAAAAAAAD0kKRUTj1/Zq4e6xfmc0oDAAAAAABsjpFOBwAAAAAAAAAAmpeU0jf4RURM16ux5fiyHNIAAAAA0OuGCoVORwAYaDb4AQAAAAAAAEAPSYrZBb9KrZpDEgAAAAAAYHMp+AEAAAAAAABAD2lmg1+lPpNDEgAAAAAAYHMp+AEAAAAAAABADymPLonR4eHUmUpNwQ8AAAAAAHqBgh8AAAAAAAAA9JBCoRBJMX2Ln4IfAAAAAAD0BgU/AAAAAAAAAOgxSSmj4Fev5pQEAAAAAADYHAp+AAAAAAAAANBjklI59dwGPwAAAAAA6A0KfgAAAAAAAADQY5JixgY/BT8AAAAAAOgJCn4AAAAAAAAA0GOSUkbBr17NKQkAAAAAALA5FPwAAAAAAAAAoMckpXLq+XStGouNRk5pAAAAAACATaXgBwAAAAAAAAA9Jimmb/BbaCzGM7O1nNIAAAAAAACbSsEPAAAAAAAAAHpMUkov+EVEVOrVHJIAAAAAAACbQ8EPAAAAAAAAAHpMUwW/2kwOSQAAAAAAgM2h4AcAAAAAAAAAPWbZWCkKGTMKfgAAAAAA0P0U/AAAAAAAAACgxwwPDcWyYjl1plKv5pQGAAAAAADYVCOdDgAAAAAAAAAAbLykNB7TKSU+G/wAAAAAaIbNUQCd5ecwAAAAAAAAAPSgJGuDn4IfAAAAAAB0PQU/AAAAAAAAAOhBSWk89bySst0PAAAAAADoDgp+AAAAAAAAANCDMgt+NvgBAAAAAEDXU/ADAAAAAAAAgB6UFMup5wp+AAAAAADQ/RT8AAAAAAAAAKAHZW3wq8+vj/r6uZzSAAAAAAAAm0LBDwAAAAAAAAB6UFbBLyKiUq/mkAQAAAAAANhUCn4AAAAAAAAA0IOSYjlzplKbySEJAAAAAACwqRT8AAAAAAAAAKAH2eAHAAAAAAC9T8EPAAAAAAAAAHrQ2MholEaXpM7Y4AcAAAAAAN1NwQ8AAAAAAAAAelRSLKeeK/gBAAAAAEB3U/ADAAAAAAAAgB6VlMZTzyt1BT8AAAAAAOhmCn4AAAAAAAAA0KMyC361ak5JAAAAAACATaHgBwAAAAAAAAA9KimWU88rNRv8AAAAAACgm410OgAAAAAAAAAAsGkyN/jVFfwAAAAASDdUKHQ6AsBAs8EPAAAAAAAAAHpUVsFvXb0WC4uLOaUBAAAAAAA2loIfAAAAAAAAAPSopFhOPW9ExHS9mk8YAAAAAABgoyn4AQAAAAAAAECPytrgFxFRqc/kkAQAAAAAANgUCn4AAAAAAAAA0KOaKvjVFPwAAAAAAKBbKfgBAAAAAAAAQI/aYkkxhofSP/qv1Ko5pQEAAAAAADaWgh8AAAAAAAAA9KhCoRBJsZw6Y4MfAAAAAAB0LwU/AAAAAAAAAOhhSWk89bxSV/ADAAAAAIBupeAHAAAAAAAAAD0sKWYU/GrVnJIAAAAAAAAbS8EPAAAAAAAAAHpYUiqnnldqNvgBAAAAAEC3UvADAAAAAAAAgB6WlDI2+NUV/AAAAAAAoFsp+AEAAAAAAABAD0uKGQW/WjUajUZOaQAAAAAAgI2h4AcAAAAAAAAAPSxrg9/84kLMrJ/NKQ0AAAAAALAxFPwAAAAAAAAAoIclpXLmTKU2k0MSAAAAAABgY410OgAAAAAAAAAAsOmSYvoGv4hnC36vnliRQxoAAAAAes1QodMJAAabDX4AAAAAAAAA0MMmis1s8KvmkAQAAAAAANhYCn4AAAAAAAAA0MNGhodj6VgpdaZSn8kpDQAAAAAAsDEU/AAAAAAAAACgxyUZW/wqNQU/AAAAAADoRgp+AAAAAAAAANDjktJ46nmlVs0pCQAAAAAAsDEU/AAAAAAAAACgx2UW/Oo2+AEAAAAAQDdS8AMAAAAAAACAHpcUy6nnlZqCHwAAAAAAdCMFPwAAAAAAAADocZkb/GrVnJIAAAAAAAAbQ8EPAAAAAAAAAHrcRMYGv+r62Zibn88pDQAAAAAA0CwFPwAAAAAAAADocZMZG/wiIir1mRySAAAAAAAAG0PBDwAAAAAAAAB6XNJMwa9WzSEJAAAAAACwMRT8AAAAAAAAAKDHTZTKmTM2+AEAAAAAQPdR8AMAAAAAAACAHlcaWRJjwyOpM5Wagh8AAAAAAHQbBT8AAAAAAAAA6HGFQiGS0njqTKVWzSkNAAAAAADQLAU/AAAAAAAAAOgDE6Vy6nmlboMfAAAAAAB0GwU/AAAAAAAAAOgDSTFrg5+CHwAAAAAAdBsFPwAAAAAAAADoA5OlrIJfNackAAAAAABAsxT8AAAAAAAAAKAPTJTKqeeVug1+AAAAAADQbRT8AAAAAAAAAKAPJMX0DX7T9WosLi7mlAYAAAAAAGiGgh8AAAAAAAAA9IHJUnrBr9FoxLrZWk5pAAAAAACAZij4AQAAAAAAAEAfmMgo+EVETNWrOSQBAAAAAACapeAHAAAAAAAAAH1gsljOnKnUZnJIAgAAAAAANGuk0wEAAAAAAAAAgM23dKwUQ4VCLDYaG5xR8AMAAADgpWyOAugsP4cBAAAAAAAAoA8MDQ3FsowtfpW6gh8AAAAAAHQTBT8AAAAAAAAA6BNJcTz1vFKr5pQEAAAAAABohoIfAAAAAAAAAPSJyVLGBr+aDX4AAAAAANBNFPwAAAAAAAAAoE9MlDI2+NUV/AAAAAAAoJso+AEAAAAAAABAn0iKGQW/WjWnJAAAAAAAQDMU/AAAAAAAAACgT0yWyqnn07WZaDQaOaUBAAAAAACyKPgBAAAAAAAAQJ+YKKVv8JtdmI/a/FxOaQAAAAAAgCwKfgAAAAAAAADQJ5JiesEvIqJSq+aQBAAAAAAAaIaCHwAAAAAAAAD0icmMDX4REdO1mRySAAAAAAAAzVDwAwAAAAAAAIA+MVEqZ85MKfgBAAAAAEDXUPADAAAAAAAAgD6xZHgkyqNjqTOVuoIfAAAAAAB0CwU/AAAAAAAAAOgjk6Xx1PPpWjWnJAAAAAAAQBYFPwAAAAAAAADoIxOlcur5VM0GPwAAAAAA6BYKfgAAAAAAAADQR5Ji+ga/Sl3BDwAAAAAAusVIpwMAAAAAAAAAAK0zWUov+E3XqjklAQAAAKAXDBUKnY4AMNBs8AMAAAAAAACAPjJRKqeeT9ngBwAAAAAAXUPBDwAAAAAAAAD6SFJM3+D3zGw95hcWckoDAAAAAACkUfADAAAAAAAAgD4yWUov+EVETNerOSQBAAAAAACyKPgBAAAAAAAAQB+ZKJUzZ6ZqMzkkAQAAAAAAsij4AQAAAAAAAEAfSZrY4FepK/gBAAAAAEA3UPADAAAAAAAAgD4yPjoWo0PDqTPTtWpOaQAAAAAAgDQKfgAAAAAAAADQRwqFQkyUyqkzUzUb/AAAAAAAoBso+AEAAAAAAABAn0mK46nnlbqCHwAAAAAAdAMFPwAAAAAAAADoM5Ol9ILfdK2aUxIAAAAAACCNgh8AAAAAAAAA9JmJUjn1fKpmgx8AAAAAAHQDBT8AAAAAAAAA6DNJMX2DX6Wu4AcAAAAAAN1AwQ8AAAAAAAAA+sxkKb3gN12vxmKjkVMaAAAAAABgQxT8AAAAAAAAAKDPTJTKqecLi4vxzGw9pzQAAAAAAMCGjHQ6AAAAAAAAAADQWknGBr+IiEp9JpYVSzmkAQAAAKCbDUWh0xEABpoNfgAAAAAAAADQZyaL2QW/6dpMDkkAAAAAAIA0Cn4AAAAAAAAA0GeWFcuZv3d9qlbNJQsAAAAAALBhCn4AAAAAAAAA0GeGh4ZiabGUOlOp2+AHAAAAAACdpuAHAAAAAAAAAH1osjieej5dU/ADAAAAAIBOU/ADAAAAAAAAgD40UUov+E3VqjklAQAAAAAANkTBDwAAAAAAAAD6UFIqp55X6jb4AQAAAABApyn4AQAAAAAAAEAfSorpG/ymawp+AAAAAADQaQp+AAAAAAAAANCHklJ6wa9Sq+aUBAAAAAAA2BAFPwAAAAAAAADoQ1kFv9r8XNTn1+eUBgAAAAAAeDkKfgAAAAAAAADQh5JiOXNmujaTQxIAAAAAAGBDFPwAAAAAAAAAoA9lbfCLiJhS8AMAAAAAgI5S8AMAAAAAAACAPtRMwa9Sr+aQBAAAAAAA2BAFPwAAAAAAAADoQ8WR0SiNLEmdmbbBDwAAAAAAOmqk0wEAAAAAAAAAgPaYKJWjtm5ug+dTCn4AAAAAA2+o0OkEAIPNBj8AAAAAAAAA6FNJaTz1vFJX8AMAAAAAgE5S8AMAAAAAAACAPpUU0wt+07VqTkkAAAAAAICXo+AHAAAAAAAAAH0qKZVTzys1G/wAAAAAAKCTFPwAAAAAAAAAoE8lpfQNflN1BT8AAAAAAOgkBT8AAAAAAAAA6FNJMb3gt65ei4XFxZzSAAAAAAAAL6XgBwAAAAAAAAB9KimVU88bEfF0vZpPGAAAAAAA4Bco+AEAAAAAAABAn0pK6Rv8IiKm6jM5JAEAAAAAAF6Ogh8AAAAAAAAA9KmkmF3wm67Z4AcAAAAAAJ2i4AcAAAAAAAAAfWqLsWIMF9L/rwGVmg1+AAAAAADQKQp+AAAAAAAAANCnhgqFmCiVU2emFPwAAAAAAKBjFPwAAAAAAAAAoI8lxfHU8+l6NackAAAAAADASyn4AQAAAAAAAEAfSzI2+FVs8AMAAAAAgI5R8AMAAAAAAACAPpaU0jf4TSn4AQAAAABAxyj4AQAAAAAAAEAfS4rpBb/pejWnJAAAAAAAwEuNdDoAAAAAAAAAANA+Samcel6pzUSj0YhCoZBTIgAAAAC6yZD/XQigo2zwAwAAAAAAAIA+lpTSN/itX1yImfWzOaUBAAAAAABeSMEPAAAAAAAAAPpYUkwv+EVETNeqOSQBAAAAAABeSsEPAAAAAAAAAPpYUipnzlRqMzkkAQAAAAAAXkrBDwAAAAAAAAD6WDMb/KYU/AAAAAAAoCMU/AAAAAAAAACgj40MD8cWY8XUmel6Nac0AAAAAADACyn4AQAAAAAAAECfy9riV7HBDwAAAAAAOkLBDwAAAAAAAAD6XFIqp55PKfgBAAAAAEBHKPgBAAAAAAAAQJ/L2uA3XVfwAwAAAACATlDwAwAAAAAAAIA+l5TSC36VWjWnJAAAAAAAwAsp+AEAAAAAAABAn0tK5dTzqZoNfgAAAAAA0AkKfgAAAAAAAADQ55Ji+ga/6vrZmFuYzykNAAAAAADwHAU/AAAAAAAAAOhzSSm94BcRMV2r5pAEAAAAAAB4IQU/AAAAAAAAAOhzzRT8pmozOSQBAAAAAABeSMEPAAAAAAAAAPpcUipnzkzXFfwAAAAAACBvCn4AAAAAAAAA0OdKI0tiyfBI6kzFBj8AAAAAAMidgh8AAAAAAAAA9LlCoRBJaTx1ZqpWzSkNAAAAAADwHAU/AAAAAAAAABgASamcej5dt8EPAAAAAADypuAHAAAAAAAAAAMgKaZv8KvUFPwAAAAAACBvCn4AAAAAAAAAMACSUnrBb6pWzSkJAAAAAADwHAU/AAAAAAAAABgASamcej5dt8EPAAAAAADypuAHAAAAAAAAAAMgKaZv8JuuV2NxcTGnNAAAAAAAQETESKcDAAAAAAAAAADtl5TSC36LjUasm63FRMYcAAAAAP3F5iiAzvJzGAAAAAAAAAAGQFbBLyKiUq/mkAQAAAAAAHiOgh8AAAAAAAAADICkWM6cqdRmckgCAAAAAAA8R8EPAAAAAAAAAAbAsrFSFAqF1JkpBT8AAAAAAMiVgh8AAAAAAAAADIChoaGYyNjiN12v5pQGAAAAAACIUPADAAAAAAAAgIGRZBT8Kjb4AQAAAABArhT8AAAAAAAAAGBAJKXx1PMpBT8AAAAAAMiVgh8AAAAAAAAADIisgt90vZpTEgAAAAAAIELBDwAAAAAAAAAGRlIsp55XbPADAAAAAIBcKfgBAAAAAAAAwIDI2uBXqc1Eo9HIKQ0AAAAAAKDgBwAAAAAAAAADIqvgN7swH/X59TmlAQAAAAAAFPwAAAAAAAAAYEAkxXLmTKU2k0MSAAAAAAAgQsEPAAAAAAAAAAZG1ga/CAU/AAAAAADIk4IfAAAAAAAAAAyIpNhEwa9ezSEJAAAAAAAQETHS6QAAAAAAAAAAQD6WjIxEeXRJVNfPbXDGBj8AAACAwTJUKHQ6AsBAs8EPAAAAAAAAAAZIUkrf4qfgBwAAAAAA+VHwAwAAAAAAAIABklnwq1dzSgIAAAAAACj4AQAAAAAAAMAASYrl1HMb/AAAAAAAID8KfgAAAAAAAAAwQDI3+Cn4AQAAAABAbhT8AAAAAAAAAGCAZBb86tWckgAAAAAAAAp+AAAAAAAAADBAkmJ6wW/dbC3mFxZySgMAAAAAAINNwQ8AAAAAAAAABkhSKmfOTNviBwAAAAAAuVDwAwAAAAAAAIABkpTSN/hFRFTqMzkkAQAAAAAAFPwAAAAAAAAAYIAkxSYKfjUb/AAAAAAAIA8KfgAAAAAAAAAwQMaXjMXo0HDqjA1+AAAAAACQDwU/AAAAAAAAABgghUIhJkrl1JlKTcEPAAAAAADyoOAHAAAAAAAAAAMmKY6nniv4AQAAAABAPhT8AAAAAAAAAGDAJKWMgl+9mlMSAAAAAAAYbCOdDgAAAAAAAAAA5CsplVPPbfADAAAAGBxDUeh0BICBZoMfAAAAAAAAAAyYpJixwU/BDwAAAAAAcqHgBwAAAAAAAAADJillFPzq1Wg0Gjml+f/Yu+8oq+qzffj3VKYAMzRRUIqKoihGUEDB2E1M7ImJLfaS+JhY8/rk0SRqTLNrYkyiscaSqLEba6yoiBWNUhRRQJA2M5TpzHn/8KeJic7ZA3POmfL5rDXLtdj33t9rcDNnGPZ1vgAAAAAA0H0p+AEAAAAAAABAN1NZWtbq8dUtLbGysT5LaQAAAAAAoPtS8AMAAAAAAACAbqaypPUd/CIiqutWZSEJAAAAAAB0bwp+AAAAAAAAANDNVJYmKPjV12YhCQAAAAAAdG8KfgAAAAAAAADQzfQuKY28NDN28AMAAAAAgMxT8AMAAAAAAACAbqYwvyB69ShtdUbBDwAAAAAAMk/BDwAAAAAAAAC6ocrS8laPV9fVZikJAAAAAAB0Xwp+AAAAAAAAANANpS341dvBDwAAAAAAMk3BDwAAAAAAAAC6ocqSslaPV9cp+AEAAAAAQKYp+AEAAAAAAABAN5R+B7/aLCUBAAAAAIDuS8EPAAAAAAAAALqhtAU/O/gBAAAAAEDGKfgBAAAAAAAAQDdUWVLW6vG6psZoaG7KUhoAAAAAAOieFPwAAAAAAAAAoBtKt4NfRER1fW0WkgAAAAAAQPdVmOsAAAAAAAAAAED2JSr41a2KgT0rspAGAAAAgFzJz8t1AoDuzQ5+AAAAAAAAANANVZaUpZ2prluVhSQAAAAAANB9KfgBAAAAAAAAQDdUUlQcJYVFrc5U19VmKQ0AAAAAAHRPCn4AAAAAAAAA0E1Vlpa3ery63g5+AAAAAACQSQp+AAAAAAAAANBNVZaUtXq8uk7BDwAAAAAAMknBDwAAAAAAAAC6qbQ7+Cn4AQAAAABARin4AQAAAAAAAEA3lbbgV1+bpSQAAAAAANA9KfgBAAAAAAAAQDdVWVLW6nE7+AEAAAAAQGYp+AEAAAAAAABAN5VuB7/lDXXR0tKSpTQAAAAAAND9KPgBAAAAAAAAQDeVruCXSqWipqEuS2kAAAAAAKD7UfADAAAAAAAAgG6qsqQs7Ux13aosJAEAAAAAgO5JwQ8AAAAAAAAAuql0O/hFKPgBAAAAAEAmKfgBAAAAAAAAQDfVs0dpFOS1/uhAdb2CHwAAAAAAZIqCHwAAAAAAAAB0U/l5eVFRUtbqTHVdbZbSAAAAAABA96PgBwAAAAAAAADdWGVpuoKfHfwAAAAAACBTFPwAAAAAAAAAoBurLC1v9Xh1vYIfAAAAAABkioIfAAAAAAAAAHRjFSVpCn51tVlKAgAAAAAA3Y+CHwAAAAAAAAB0Y31Ky1o9Xl1nBz8AAAAAAMgUBT8AAAAAAAAA6MYqS9Ps4Fe/KlKpVJbSAAAAAABA96LgBwAAAAAAAADdWEVJ6wW/ptWro7apMUtpAAAAAACge1HwAwAAAAAAAIBurE+aHfwiIqrrVmUhCQAAAAAAdD8KfgAAAAAAAADQjVWWlqWdqa5X8AMAAAAAgEwozHUAAAAAAAAAACB3KkoSFPzs4AcAAADQZeVHXq4jAHRrdvADAAAAAAAAgG6sqKAwehaXtDpTXVebpTQAAAAAANC9KPgBAAAAAAAAQDdXWVre6vHqejv4AQAAAABAJij4AQAAAAAAAEA3V1FS1urx6joFPwAAAAAAyAQFPwAAAAAAAADo5vqk28GvrjZLSQAAAAAAoHtR8AMAAAAAAACAbq4yXcGv3g5+AAAAAACQCQp+AAAAAAAAANDNVZSUtXq8uk7BDwAAAAAAMkHBDwAAAAAAAAC6uT5pdvBb1dgQTaubs5QGAAAAAAC6DwU/AAAAAAAAAOjmKtMU/CIiqutrs5AEAAAAAAC6FwU/AAAAAAAAAOjmKkrK0s5U163KQhIAAAAAAOheFPwAAAAAAAAAoJvrk2QHvzo7+AEAAAAAQHtT8AMAAAAAAACAbq60qDiKCwpbnamut4MfAAAAAAC0NwU/AAAAAAAAAOjm8vLyoqKkrNWZ6joFPwAAAAAAaG8KfgAAAAAAAABA9Cktb/V4dV1tlpIAAAAAAED3UZjrAAAAAAAAAABA7lWmLfjZwQ8AAACgK8rPy8t1BIBuzQ5+AAAAAAAAAEBUlJS1ery6XsEPAAAAAADam4IfAAAAAAAAABB90uzgV1NXm6UkAAAAAADQfSj4AQAAAAAAAABRma7gV18bLalUltIAAAAAAED3oOAHAAAAAAAAAERFSVmrx1enWmJFQ12W0gAAAAAAQPeg4AcAAAAAAAAARJ80O/hFRNTUrcpCEgAAAAAA6D4U/AAAAAAAAACAqExQ8Kuqq81CEgAAAAAA6D4U/AAAAAAAAACA6N2jNPLy8lqdqa63gx8AAAAAALQnBT8AAAAAAAAAIPLz86OiR2mrMzV1Cn4AAAAAANCeFPwAAAAAAAAAgIiIqCwtb/V4VV1tlpIAAAAAAED3oOAHAAAAAAAAAEREREVJWavHq+vt4AcAAAAAAO1JwQ8AAAAAAAAAiIiIPml28KupU/ADAAAAAID2pOAHAAAAAAAAAERERGWagl+Vgh8AAAAAALQrBT8AAAAAAAAAICIiKkpaL/hV19dmKQkAAAAAAHQPhbkOAAAAAAAAAAB0DH1Ky1o93tDcFPVNjVFSVJylRAAAAABkWn7k5ToCQLdmBz8AAAAAAAAAICIiKktb38EvIqKqblUWkgAAAAAAQPeg4AcAAAAAAAAARERERYKCX3V9bRaSAAAAAABA96DgBwAAAAAAAABERESfkvQFvxo7+AEAAAAAQLtR8AMAAAAAAAAAIiKiuLAwyoqKW52pUvADAAAAAIB2o+AHAAAAAAAAAHyqorT1Xfyq6xX8AAAAAACgvSj4AQAAAAAAAACf6lPSesGvpq42S0kAAAAAAKDrU/ADAAAAAAAAAD5VWVrW6vGqOjv4AQAAAABAe1HwAwAAAAAAAAA+VZFmB7/qegU/AAAAAABoLwp+AAAAAAAAAMCnKktbL/jV1NVmKQkAAAAAAHR9Cn4AAAAAAAAAwKf6pCn4LW+oi+aW1VlKAwAAAAAAXZuCHwAAAAAAAADwqYrSsrQzNfV28QMAAAAAgPag4AcAAAAAAAAAfKpPSes7+EVE1NQp+AEAAAAAQHtQ8AMAAAAAAAAAPlVZmr7gV1W3KgtJAAAAAACg61PwAwAAAAAAAAA+VV7cIwrzC1qdqa5X8AMAAAAAgPZQmOsAAAAAAAAAAEDHkZeXF5UlZbGkdsUXztTU1WYxEQAAAACZlJ+Xl+sIAN2aHfwAAAAAAAAAgM+oLC1v9XhVnR38AAAAAACgPSj4AQAAAAAAAACfUVFa1urx6noFPwAAAAAAaA8KfgAAAAAAAADAZ1SWtL6DX01dbZaSAAAAAABA16bgBwAAAAAAAAB8Rp/S1gt+1XV28AMAAAAAgPag4AcAAAAAAAAAfEZFaVmrx6vrayOVSmUpDQAAAAAAdF0KfgAAAAAAAADAZ1SWtL6DX3PL6ljV2JClNAAAAAAA0HUp+AEAAAAAAAAAn9GntPWCX0REdd2qLCQBAAAAAICuTcEPAAAAAAAAAPiMitKytDNV9Qp+AAAAAACwthT8AAAAAAAAAIDPqCgpi7w0MzV1tVnJAgAAAAAAXZmCHwAAAAAAAADwGYX5BdGrR2mrM1V1dvADAAAAAIC1peAHAAAAAAAAAPyXitKyVo9XK/gBAAAAAMBaU/ADAAAAAAAAAP5LZUl5q8dr6hX8AAAAAABgbRXmOgBArs2dOzcefvjhmDZtWrz11lvx3nvvxYoVK2L58uWRSqWiV69e0atXrxgyZEhsvvnmseWWW8buu+8eI0aMyHX0TmXRokUxefLkT3+f582bFwsWLIiqqqqor6+PxsbGKCoqipKSkqioqIh11103Bg8eHJtttllsueWWMXHixNhggw1y/WkAAAAAAAB0G31KWy/4VdfVZikJAAAAAAB0XQp+QLdUXV0d11xzTdx0000xbdq0VmeXLl0aS5cujTlz5sTTTz/96a+PGDEiDjnkkPje974XAwcOzHTkTmnmzJlxyy23xJ133hlvvvlm2vmGhoZoaGiImpqa+OCDDyIi4q677vr0+MYbbxz77bdfHHLIIbH11ltnLDcAAAAAAAARFaVlrR6vsoMfAAAAAACstfxcBwDIppUrV8aZZ54Z66+/fvzwhz9MW+5rzaxZs+Lcc8+NIUOGxPHHHx9Llixpx6Sd29NPPx177rlnbLrppnHuuecmKvcl8c4778RFF10UY8aMiYkTJ8Z9993XLtcFAAAAAADgv1WWtL6DX02dgh8AAAAAAKwtBT+g27j33ntjs802iwsuuCBWrWq/f2xsbGyMq6++OjbddNO47rrr2u26ndHcuXPjm9/8Zuy4447x0EMPZXSt5557LvbZZ5/YbbfdYvr06RldCwAAAAAAoDvqU9p6wa+2qTEam5uzlAYAAAAAALomBT+gy2tpaYmzzz479ttvv5g3b17G1lm2bFkcffTRcfzxx0djY2PG1umo7r777thqq63izjvvzOq6jz/+eIwdOzauvfbarK4LAAAAAADQ1VWkKfhFRFTV28UPAAAAAADWhoIf0KWtXr06DjrooPj5z38eqVQqK2teffXVsccee0RtbW1W1usILrnkkjjggAOiqqoqJ+vX1tbGMcccE2eeeWZO1gcAAAAAAOiKKkvK0s7U1Cn4AQAAAADA2lDwA7qslpaWOPLII+P222/P+tpPPfVU7L///tHQ0JD1tbPtwgsvjNNPPz1rBcrWXHDBBXHaaaflOgYAAAAAAECX0CfBDn7VCn4AAAAAALBWCnMdACBTzjrrrPjzn//cpnNGjBgREydOjC222CL69u0beXl5UVVVFW+//XY8//zz8eabbya+1iOPPBLHHXdc3HjjjW2N3mn87W9/W6Nd8woKCmL06NGx3XbbxaBBg6JPnz7Ru3fvWLFiRVRVVcXChQvjhRdeiNdeey2ampradO1LL700Nt544zjxxBPbnAsAAAAAAIB/KSkqjh6FRdHQ/MX/XlNVV5vFRAAAAAAA0PUo+AFd0t///vf49a9/nXh+3333jf/7v/+LcePGtTr35ptvxoUXXhh//vOfo6WlJe11b7rppthxxx3jmGOOSZyls1iwYEEcd9xxbdq5b4sttohTTjklvv3tb0fPnj3TztfV1cUdd9wRl112WbzyyiuJ1zn99NNjl112iZEjRyY+BwAAAAAAgP9WWVIWH62s+cLjNfV28AMAAADo7PIjL9cRALq1/FwHAGhvS5cujcMPPzxR8axv377xwAMPxN1335223BfxcUHthhtuiMmTJ8cGG2yQKM/3v//9eOeddxLNdiY//OEPY9myZYlmy8vL409/+lO88cYbccwxxyQq90VElJaWxne+8514+eWX47bbbouKiopE59XX18f//M//JJoFAAAAAADgi/UpLW/1eHWdgh8AAAAAAKwNBT+gyznrrLNiyZIlaefWX3/9ePHFF+NrX/tam9eYMGFCvPTSS7H55punna2rq4tTTz21zWt0ZG+99VbceuutiWY32GCDeOmll+Loo49eqzW//e1vx+uvv554V75//OMf8cQTT6zVmgAAAAAAAN1dRZqCX5WCHwAAAAAArBUFP6BLefXVV+Pqq69OO1dRURGPPfZYbLTRRmu81jrrrBOPP/54rL/++mln77///njwwQfXeK2O5ve//320tLSknevdu3c88MADiUt56QwdOjT+/ve/x8CBAxPN/+53v2uXdQEAAAAAALqrypLWC3419bVZSgIAAAAAAF2Tgh/QpZx77rmJimdXX311bLrppmu93rrrrhu33HJLFBQUpJ396U9/utbrdQQtLS2Jd+/7zW9+E1tuuWW7rj9s2LC46aabEs3ed999sXz58nZdHwAAAAAAoDvpU1rW6vFqO/gBAAAAAMBaUfADuowZM2bEvffem3Zu3333jQMPPLDd1t1hhx3ihBNOSDv30ksvxT/+8Y92WzdXXn/99ViyZEnauVGjRsVhhx2WkQy777577LrrrmnnGhoa4plnnslIBgAAAAAAgO6gojTNDn4NdYnegBMAAAAAAPh8Cn5Al3HJJZdEKpVqdaawsDAuuuiidl/7vPPOi969e6edu/jii9t97Wx74YUXEs2dfPLJkZ+fuZeZM844I9Hcc889l7EMAAAAAAAAXV1lSesFv1QqFcsb6rKUBgAAAAAAuh4FP6BLaGhoiL/85S9p577xjW/Exhtv3O7r9+vXL4499ti0cw8//HB89NFH7b5+Ns2YMSPR3Fe/+tWM5thxxx2jpKQk7dzMmTMzmgMAAAAAAKAr61Nalnamum5VFpIAAAAAAEDXpOAHdAn3339/1NTUpJ075ZRTMpbhBz/4Qdod61avXh233XZbxjJkw7x589LObLjhhrHBBhtkNEdpaWlst912aec++OCDjOYAAAAAAADoyipKW9/BLyKiSsEPAAAAAADWmIIf0CXceuutaWc23njjmDBhQsYyDB06NHbYYYe0c0mydmQrV65MO7P++utnIUnE4MGD086sWLEiC0kAAAAAAAC6pl49SqMgr/VHC2rqa7OUBgAAAAAAuh4FP6DTW716dTz22GNp57797W9nPMtBBx2Udmbq1KmxdOnSjGfJlJaWlrQz/fv3z0KSiAEDBqSdaWpqykISAAAAAACArik/Ly8qSspanam2gx8AAAAAAKwxBT+g03vxxRejpqYm7dyee+6Z8SxJ1mhpaYnHH38841kypU+fPmlniouLs5AkokePHmln+vbtm4UkAAAAAAAAXVdFaesFvyoFPwAAAAAAWGMKfkCnl6Qs16tXrxg/fnzGswwdOjQ23njjtHOPPvpoxrNkSr9+/dLOLFmyJAtJIhYvXpx2RsEPAAAAAABg7VSWlLd6vKa+NktJAAAAAACg61HwAzq9559/Pu3M+PHjo7CwMAtpInbYYYe0M1OmTMlCkszYaKON0s4kKd61h0WLFqWdGTJkSBaSAAAAAAAAdF2Vpa0X/Krt4AcAAAAAAGtMwQ/o9F599dW0M2PGjMlCko+NHTs27czbb78dDQ0NWUjT/iZNmpR25u23345VqzL7D7mpVCqmTp2adm7ixIkZzQEAAAAAANDVVZaWtXq8SsEPAAAAAADWmIIf0Kl99NFHsWDBgrRzHa3g19zcHG+88UYW0rS/MWPGRHl56+/S2tjYGE888URGc0ybNi0WLlyYdi7JjooAAAAAAAB8sXQ7+NXU10YqlcpSGgAAAADaW35eno8sfgD8JwU/oFObNm1aormRI0dmOMm/bLrpponmkmbvaIqKiuLggw9OO3fjjTdmNMcNN9yQdmbcuHExfPjwjOYAAAAAAADo6ipL0rz54+rmqGtqzFIaAAAAAADoWhT8gE5t9uzZieY23njjDCf5lz59+kTfvn3TziXN3hH94Ac/SDtzxx13xGuvvZaR9efOnRu/+93v0s6dfPLJGVkfAAAAAACgO6ksLUs7U1W3KgtJAAAAAACg61HwAzq19957L+3MuuuuG+Xlrb+raHtLUihMkr2j2nLLLeOAAw5odSaVSsXxxx8fdXV17bp2c3NzHHfccdHQ0NDq3MYbbxwHHnhgu64NAAAAAADQHVWWpv+3tpr62iwkAQAAAACArkfBD+jU5syZk3Zm0KBBmQ/yH9Zbb720M5254BcR8bvf/S769evX6szUqVPj0EMPjdWrV7fLmqlUKr73ve/Fww8/3Opcfn5+XHvttVFUVNQu6wIAAAAAAHRnlSXpd/CrtoMfAAAAAACsEQU/oFObP39+2pl11103C0navua8efOykCRzBg4cGH/605+ioKCg1bm77rordtlll7X+fBctWhRf//rX45prrkk7e/rpp8cOO+ywVusBAAAAAADwsaKCwigv7tHqTJWCHwAAAAAArBEFP6BTW7p0adqZgQMHZiHJZyUp+C1btiwLSTJr3333jT/96U+Rl5fX6tzTTz8dW221Vfz85z+PJUuWtGmN6urquPDCC2PLLbeMv//972nnv/Od78Svf/3rNq0BAAAAAABA6ypLy1s9XlNfm6UkAAAAAADQtRTmOgDA2khS8KusrMx8kDVYc9WqVdHQ0BA9erT+bqcd3RFHHBH5+fnx3e9+N2prv/gfbpctWxZnn312/PznP4899tgjJk6cGBMmTIjBgwdHnz59olevXrFy5cqoqqqKBQsWxJQpU2Ly5Mnx0EMPxapVyd7x9fDDD49rr702beGQ7imVSsXq1aujpaUlUqlUruMAAAAAkFBeXl7k5+dHQUGBn/0B5FBlSXnMr/niN7CstoMfAAAAAACsEQU/oFOrqqpKO9OrV68sJFmzNZctWxbrrbdehtNk3ne+853Ydttt4+CDD47XXnut1dm6urq455574p577mm39cvLy+OKK66Io48+ut2uSeeVSqWivr4+6urqoqmpKRobG6OxsTGampoU+wAAAAA6sby8vCgqKori4uIoLi6OoqKiKC0tjZKSEsU/gCyoLC1r9XiVgh8AAAAAAKwRBT+g0/qkvJNOLgp+vXv3TjRXU1PTJQp+EREjR46MqVOnxo033hg///nPY/bs2Rlfs6CgIA4++OA455xzYqONNsr4enRcn5T6VqxYEcuXL0/0tQEAAACAziWVSn36Zk7/rqioKHr37h29evVS9gPIoMrS8laP19TXZikJAAAAAAB0LQp+QKf1nw9xfJHS0tIMJ/lvJSUlieaSfg6dRWFhYRx99NFx+OGHxz333BN33HFHPPjgg7F8+fJ2XWfw4MFxwAEHxEknnRSbbLJJu16bziWVSsXy5ctj8eLFSn0AAAAA3VRTU1MsXbo0li5dGkVFRTFgwIDo3bu3oh9AO6ssab3gV20HPwAAAAAAWCMKfkCnlbQcV1BQkOEk/62wMNmX165W8PtEYWFhfOUrX4lUKhUtLS1x++23RyqVapdrf/3rX49f/OIXMXr06Ha5Xlc0adKkxPdgZ7bOOuvE17/+9Rg2bFiuo3yuUaNG5ToCAAAAQLfT1NQUH374YVRXV8e6664bPXr0yHUkgC6jsrSs1eMrG+ujaXVzFBV0/X+jAAAAAACA9uQn60CnlbQcl4uiU9I1u+KOY2+++Wb88pe/jDvvvDMaGhra/foPPPBAPPDAAzFs2LA46KCD4uSTT45111233deh4yooKIjdd989xo8fH/n5+V84V1hYGCUlJVFUVPTpR2FhYeTn53v3dgAAAIAurra2NmbPnh19+/aNAQMGtPpzJACSqSxtfQe/iIia+troX947C2kAAAAAAKDrUPADOq3m5uZEcwp+2TF79uw4/fTT45577mm33fpaM2fOnPjVr34Vl112WRx11FFx9tlnx6BBgzK+bmfw7LPPxoABA3IdIyNaWlpi/vz5sXLlylxHAQAAAKATWLZsWTQ2NsbgwYOV/ADWUmVJ+oJfdZ2CHwAAAAAAtJV/yQQ6raQlutWrV2c4yZqvmYvyYSbceOON8aUvfSnuvvvurJT7/l19fX1cddVVscUWW8Rf//rXrK5Ndin3AQAAALAmVq5cGfPnz4+WlpZcRwHo1JLs4FdVtyoLSQAAAABob/mR5yOLHwD/qWs0S4Buqbi4ONFc0p3+2lPSnfmSfg4dVUtLSxx33HFx7bXXtum8goKC2HrrrWPcuHGxzjrrRN++faOysjJWrlwZy5Yti2XLlsVrr70WL7zwQtTW1ia6ZlVVVXz729+Ohx56KP74xz92mfIkH1PuAwAAAGBtfFLys5MfwJorKyqOooKCaGrljS5r6hX8AAAAAACgrbQfgE6rqKgo0VwuCn5J1+zMBb9UKhXHHntsXHfddYnP2XHHHePUU0+NXXfdNXr27Jl2vqmpKaZOnRpXXnll/PWvf030+3rdddfFqlWr4pZbbomCgoLE2ejYFi9evEblvoKCgigpKYni4uJPPwoKCiIvLy/y8rwDCgAAAEBHl0qlIpVKxerVq6OxsfHTj/r6+ljdSsHk86xcuTIWL14cAwcOzFBagK4tLy8vKkvKY/Gq5V84U20HPwAAAAAAaDMFP6DT6tGjR6K5+vr6DCdZ8zU7c8HvtNNOS1zu22qrreKPf/xjjBs3rk1rFBUVxfbbbx/bb799/PKXv4zTTz897rjjjrTn/fWvf43CwsK4+eab27QeHVN9fX0sW7Ys8XxBQUH07t07evXqFWVlZYp8AAAAAF1QKpWK2traWLFiRSxfvjxx2W/ZsmVRWVmZ+OfLAHxWZWnrBb+qutospgEAAAAAgK5BwQ9ok/feey+mTJmS0TXKy8tj7733TjtXWloahYWFaXd1W7FiRXtFSyzpmr17985wksx49NFH47LLLks0e/zxx8fll18eJSUla7XmkCFD4vbbb4/f/va3ccYZZ0RDQ0Or87fcckvsvPPOceyxx67VuuRWKpWKjz76KPF83759o3///nZvBAAAAOji8vLyory8PMrLy2PAgAGxZMmSxG8StXDhwhgyZIg3hgJYA5WlZa0er6m3gx8AAAAAALSVgh/QJk899VQcddRRGV1j6NChiQp+ERF9+vSJxYsXtzqzfPkXv4topiRds2/fvhlO0v5qamri6KOPTjR7xhlnxIUXXtiu65900kkxePDg+MY3vhGpVKrV2dNOOy122223GDZsWLtmIHuWL18etbXp3+23sLAwNthgg7UukgIAAADQ+RQUFMTAgQOjoqIi5s6dm/ZN4Wpra2P58uVRUVGRpYQAXUdlSXmrx6vrFPwAAAAAAKCt8nMdAGBt9OvXL+1MTU1NFpK0fc2ysrJOWUb6zW9+E/PmzUs7t++++8avf/3rjGTYf//9E117xYoV8b//+78ZyUDmpVKptAXeiI/LfUOGDOmUf54AAAAAaD8lJSUxZMiQKCxM//6WixcvTvsGYgD8t8rSdAW/9G/aBwAAAAAAfJaCH9CpJSn4ffTRR1lI8lkLFy5MO5Mke0fT1NQUv/vd79LO9erVK/70pz9Ffn7mXmZ++MMfxvjx49PO3XnnnTF37tyM5SBz6uvro6mpKe3cBhtsED169MhCIgAAAAA6uh49esQGG2yQdq6pqSnq6+uzkAiga6ksLWv1eE19bbQoUAMAAAAAQJso+AGd2uDBg9POJCnbtbckaybJ3tHccccdsWDBgrRzp5xySlYKjOeff37amebm5vjtb3+b8Sy0vxUrVqSd6du3r537AAAAAPiMkpKS6NOnT9q5JD9/AuCzKkta38FvdaolVjbUZSkNAAAAAAB0DQp+QKc2bNiwtDMffvhh5oP8hyQluOHDh2chSft66KGH0s4UFhbGqaeemoU0EbvttltsvfXWaefuvffeLKShPaVSqVi+fHmrMwUFBdG/f/8sJQIAAACgMxkwYEAUFBS0OrN8+fJI2WUKoE0qS1sv+EVEVNetykISAAAAAADoOhT8gE4tSUlu4cKFUVtbm4U0//LOO++knemMBb9nnnkm7cz48eMTvTt2e/nqV7+admb69OmxePHiLKShvdTX10dTU1OrM7179077kBYAAAAA3VNBQUH07t271Zmmpqaor6/PUiKAriFRwa8+u/8uBwAAAAAAnZ2CH9CpbbjhhmlnUqlUosJde6muro6lS5emnUuSvSNZuHBhvPfee2nn9thjjyykaft6zz77bIaT0J7q6urSzvTq1SsLSQAAAADorJL8/CjJz6EA+JeKHqWRl5fX6owd/AAAAAAAoG0U/IA2OfLIIyOVSmX0Y86cOYnzbLnllonmpk+fvoafcdslXStp9o5i3rx5iea22GKLDCdZs/Xef//9DCehPaXbva+goCDKysqylAYAAACAzqisrCwKCgpanUn3cygAPis/Pz969yhtdUbBDwAAAAAA2kbBD+jU1ltvvRg4cGDauVdeeSULaZKvVVhYGKNHj85CmvaTZFfCiIj+/ftnOMln9e3bN/Lz07+cJc1Px9DY2Njq8ZKSkrTvEAwAAABA95aXlxclJSWtzqT7ORQA/62ytLzV49X1tVlKAgAAAAAAXYOCH9DpjRkzJu1MNgt+L7/8ctqZkSNHpn2wpKNZtmxZorlsF/zy8/Ojb9++aecU/DqXdA9WFRcXZykJAAAAAJ1Zup8jKfgBtF1lSVmrx+3gBwAAAAAAbVOY6wAAa2u77baLv//9763OvPDCC9Hc3ByFhZn/svf000+nnRk/fnzGc7S3VCqVaC4Xu6olWbO5uTkLSWgPqVRKwQ8AAACAdpHu50hNTU2RSqVy8nNNgM4q7Q5+Cn4AAAAAnU6+n5MD5JQd/IBOb9ddd007s2LFinjxxRcznuWDDz6Id955J+3c7rvvnvEs7a2srPV3Y/3EkiVLMpzks1paWhLtzpc0P7m3evXqtDMKfgAAAAAkke7nSKlUKtHPowD4l7QFv/raLCUBAAAAAICuQcEP6PTGjRsXvXv3TjuXbpe/9pBkjby8vESlxI6moqIi0dzixYsznOSzli1bFi0tLWnnktwjdAxJ/n8WFBRkIQkAAAAAnV2SnyOlUqksJAHoOipL7OAHAAAAAADtScEP6PQKCwsTFeb+8pe/ZDzLbbfdlnZmm222if79+2c8S3sbMmRIorl//vOfGU7yWW+88UaiuaT5yb0kD1Tl2QoeAAAAgASS/BwpyRtOAfAvlaVlrR6vb26K+qbGLKUBAAAAAIDOT8EP6BIOPvjgtDOzZs2KKVOmZCzDBx98EE8//XTauSRZO6IhQ4ZEYWFh2rlHHnkkC2n+5eGHH040N3z48AwnIZsU/AAAAABIws+RANpfZWnrO/hFRFTX12YhCQAAAAAAdA0KfkCXsPfee0fv3r3Tzl122WUZy3DFFVekfafn/Pz8OOiggzKWIZOKiopiyy23TDv3wgsvRHV1deYD/T8PPfRQ2pm8vLwYM2ZMFtIAAAAAAAB0bZUlre/gFxFRXbcqC0kAAAAAAKBrUPADuoSSkpL41re+lXbujjvuiHfeeafd11+6dGlcffXVaef22GOPWG+99dp9/WzZbrvt0s40NzfHpZdemoU0EX//+9/j9ddfTzs3cuTI6NOnTxYSAQAAAAAAdG2JdvBT8AMAAAAAgMQU/IAu47TTTou8vLxWZ5qbm+OMM85o97V/8pOfxPLly9POnX766e2+djZ9/etfTzR32WWXxbJlyzKaJZVKxdlnn51ods8998xoFgAAAAAAgO6iR2FRlBYVtzpTXV+bpTQAAAAAAND5KfgBXcZmm20We+21V9q5e+65J26//fZ2W/fZZ5+NP/zhD2nnxowZE7vttlu7rRsRMWfOnMjLy0v7sdNOO7XLervvvnuinfCWL18exxxzTLS0tLTLup/nZz/7WbzyyiuJZpPs7ggAAAAAAEAylSVlrR63gx8AAAAAACSn4Ad0KT/96U8jPz/9l7bjjjsuZs6cudbrLVy4MA455JBYvXp12tlzzjlnrdfLtaKiojj22GMTzd59991x5plnZiTHbbfdlvj3c+utt47x48dnJAcAAAAAAEB3VFla3upxBT8AAAAAAEhOwQ/oUsaOHRtHH3102rmamprYddddY/bs2Wu81uLFi2O33XaLuXPnpp3dc889Y++9917jtTqSU045JXr06JFo9qKLLorvfe970dDQ0G7rX3LJJXH44YdHKpVKNP+///u/7bY2AAAAAAAACQp+9bVZSgIAAAAAAJ2fgh/Q5fziF7+Ifv36pZ2bN29ejBs3Lv7+97+3eY0pU6bENttsE//85z/TzpaUlMTll1/e5jU6qkGDBrVpZ77f//73MWHChJg6deparfvee+/FvvvuG6effno0NTUlOmfSpElx4IEHrtW6AAAAAAAAfFZlSVmrx+3gBwAAAAAAySn4AV3OgAED4vrrr4+8vLy0s0uXLo2vfe1rccABB8RLL72Udv6tt96Ko446Krbffvv44IMPEuW5/PLLY8SIEYlmO4sf/ehHsdlmmyWef+2112LcuHGx8847x7333hurViX7R92mpqZ45pln4qCDDooRI0bEvffem3jNkpKS+P3vf5/oPgAAAAAAACC5tDv4KfgBAAAAAEBihbkOAJAJe+21V5xxxhlx4YUXJpq/66674q677opNNtkkJk2aFKNGjYq+fftGXl5eVFVVxfTp0+P555+PadOmtSnHIYccEscff/yafAodWklJSdx1110xbty4WL58eeLznnzyyXjyySejsLAwtt566xg/fnwMGDAg+vbtG5WVlbFy5cpYtmxZLF26NF577bV44YUXora2do0y/uEPf4hRo0at0bkAAAAAAAB8sXQFvxUNddHcsjoK8wuylAgAAAAAADovBT+gy/rVr34V8+bNi1tvvTXxOTNnzoyZM2e2y/q77rprXHvtte1yrY5o0003jbvvvjv22muvNpfwmpubY+rUqTF16tSMZPvZz34Whx9+eEauDQAAAAAA0N1VlpS1ejwVEcvr66JvWc/sBAIAAAAAgE4sP9cBADIlPz8/brzxxjjggAOyvvakSZPinnvuiR49emR97Wzaeeed48EHH4w+ffrkOkpEfPz//MILL4yzzz4711EAAAAAAAC6rHQ7+EVEVNetykISAAAAAADo/BT8gC6tsLAwbr/99jjzzDOztuZRRx0Vjz32WJSXp/+Hza5gxx13jJdffjnGjBmT0xz9+/ePBx98MM4444yc5gAAAAAAAOjqEhX86hX8AAAAAAAgCQU/oMvLz8+PX/3qV3HXXXfFoEGDMrZOnz594uqrr45rr722y+/c95+GDx8eU6ZMiQsvvDB69uyZ1bXz8vLiqKOOirfffju+8pWvZHVtAAAAAACA7qhncUkU5Lf+uEF1XW2W0gAAAAAAQOem4Ad0G/vtt19Mnz49zjjjjHbdXa+4uDiOOeaYmDFjRhx77LHtdt3OprCwMM4444x477334qyzzoq+fftmdL2ioqI49NBD44033ohrr702+vfvn9H1AAAAAAAA+FheXl5UlpS1OlNdZwc/AAAAAABIQsEP6FZ69eoVF154YcydOzd+9atfxahRo9b4WhtttFGcffbZMWfOnLjmmmtiwIAB7Zi08+rfv3+cf/75sWDBgvjb3/4WBx10ULv93pSWlsZuu+0WV155ZSxYsCD+/Oc/r9X/QwAAAAAAANZMZWnrb6hZXa/gBwAAAAAASRTmOgBALvTp0yfOPPPMOPPMM+P999+PRx55JF5//fV46623Ys6cObF8+fJYsWJFpFKp6NWrV/Tq1Ss22GCD2HzzzWPLLbeM3XbbLUaOHJnrTyOGDRsWqVQq1zE+V3Fxcey///6x//77RyqVijfeeCNeeeWVePPNN2PWrFmxYMGCWLBgQaxYsSLq6+ujsbExCgsLo6SkJMrLy2PgwIGx3nrrxfDhw2PUqFExevToGDduXPTo0SPXnxoAAAAAAEC3V1mSpuBXV5ulJAAAAAAA0Lkp+AHd3tChQ+O4447LdYwuLS8vL0aPHh2jR4/OdRQAAAAAAADaQWVpWavHq+vs4AcAAADQWeRHXq4jAHRr+bkOAAAAAAAAAAB0LpWlaXbwq1fwAwAAAACAJBT8AAAAAAAAAIA2qSxJU/Crq41UKpWlNAAAAAAA0Hkp+AEAAAAAAAAAbZJuB7/mltWxqrEhS2kAAAAAAKDzUvADAAAAAAAAANqksrQs7Ux1/aosJAEAAAAAgM5NwQ8AAIAvdP3110deXl7aj+uvvz7XUYFOLMnXmZ122inXMQEAAPg3lSWt7+AXEVFdp+AHAAAAAADpKPgBAAAAAAAAAG1SUZJgB7+62iwkAQAAAACAzk3BDwAAAAAAAABok8KCgujVo7TVmep6O/gBAAAAAEA6hbkOAAAAAAAAXUlLS0tMnz49XnrppXjvvfcilUqlPaeysjJOOeWUzIcDAGhHlSVlsaKh7guPV9cp+AEAAAAAQDoKfgAAQJdz/fXXx1FHHZWRaxcXF0dJSUn06NHj04+ePXvGOuus85mPwYMHx6abbhojR46M3r17ZyQLAAC5l0qlYubMmfHSSy99+vHqq6/GqlVte5h96NCh3bLgd84558S5556b6xgdwnXXXRdHHnlkrmMAQJtUlpbH3JqlX3hcwQ8AAAAAANJT8AMAAGiDxsbGaGxsbNM56623Xmy22Wax9dZbx6RJk2LSpEnRv3//DCUEACCT3n333c+U+V555ZVYvnx5rmMBAOREZWl5q8er62uzlAQAAAAAADovBT8AAIAMW7BgQSxYsCD+8Y9/xMUXXxwREZtttlnstNNOccABB8TOO+8cBQUFOU5JNlVXV8dll12Wdu5LX/pS7LfffhnPQ9d0/fXXx5w5c9LOnXPOORnPAtBZzZkzJ1566aV4+eWXP/1vVVVVrmMBAHQYlSVlrR63gx8AAAAAAKSn4AcAAJADb7/9drz99ttx1VVXxYABA+KAAw6IQw45JL785S/nOhpZUF1dHeeee27auSOOOELBjzV2/fXXx1NPPZV2TsEP4L+dcMIJ8be//S2WLFmS6ygAAB1a2h38FPwAAAAAACCt/FwHAAAA6O4WL14cf/jDH2LHHXeMMWPGxC233BLNzc25jgUA0G1NmTJFuQ8AIIF0Bb/apsZo9HMuAAAAAABolYIfAABAB/Lqq6/GoYceGhtuuGFcffXV0dLSkutIAAAAAPC5KkvK0s5U19vFDwAAAAAAWqPgBwAA0AHNnTs3jj/++JgwYUK8+OKLuY4DAAAAAP8l3Q5+ERHVdQp+AAAAAB1dfl6ejyx+APynwlwHAACgc2poWBXLV3wUq1YtjaamhmhpaY7VLc2RF3mRn18Q+QWFUVRUGj3L+0XvXutEcXH6d3IG/tvUqVNjwoQJcdJJJ8VFF10UxcXFuY4EAAAAABGRsOBXX5uFJAAAAAAA0Hkp+AEAkNbq1c1RVT0vli9fGMtXLIoVKxZFQ2Pb3nW5pEev6NVrnejda52oqFgvKisGRX5+QYYSQ3KnnHJK7Lrrrm06p6WlJerr66OhoSHq6+tj5cqVsWDBgli4cGEsWLAgZs2aFR988EGkUql2yZhKpeI3v/lNvPjii3HHHXfE+uuv3y7XTeLII4+MI488MmvrAd1Te329BAAAILtKCouiR0FhNKxu/sIZO/gBAAAAAEDrFPwAAPhCtXXVMX/+G/Hhgreiqbl+ra5V37Ai6htWxOIl70ZERHFxWQxeb4sYPGiLKCnp1R5xYY1stdVWsddee7X7dVeuXBlvvvlmvPLKK/GPf/wjnnjiiVi2bNlaXXPKlCkxZsyY+Nvf/haTJk1qp6QAALS3DTfcMMaOHRtjx46NG2+8Md56661cR+qwzjnnnDjnnHOyut65556baPaJJ56InXbaKbOBAKCTy8vLi8rS8vhoZc0Xzij4AQAAAABA6xT8AAD4jFSqJZYsnRPz5k+Lpcvez9g6jY218d77L8acD6ZG//4bxgaDRkefPhtEXl5extaEbOrZs2dMmDAhJkyYECeeeGK0tLTE1KlT46abborbbrstli5dukbXXbx4cey5557x0EMPxcSJE9s5NQAAbTV8+PBPy3zbbLNNjB07Nvr06fPp8b///e85TAcAkHlpC371tVlMAwAAAAAAnY+CHwAAn1q0+J2Y9e6zUVf3xQ9jtLdUKhWLF78bixe/G+Xl/WKTjb8c/foOydr6kC35+fkxfvz4GD9+fFxyySVxxx13xM9+9rOYPn16m6+1cuXK2HPPPeORRx6JCRMmZCAtAACfZ+jQoZ+W+D75b9++fXMdCwAgpypKylo9bgc/AAAAAABonYIfAADR2FgXM2Y9GR8tmpnTHKtWLY1XX78rBg/aIkZsNCkKC3vkNA9kSnFxcRxyyCFx0EEHxV/+8pf44Q9/GPPnz2/TNVasWBFf+9rX4pVXXolhw4ZlJigAQDeVl5cXQ4YM+a8yX79+/XIdDQCgw+lTWt7q8eo6O/gBAAAAAEBrFPwAALq5RYvfiekz/hGNTXW5jvKp+R++GUuXvh+bjdzNbn50afn5+XHwwQfHnnvuGaeeempcf/31bTq/qqoqvvWtb8Wzzz4bxcXFmQkJANANPfPMM9GzZ89cxwAA6BQq0xX86u3gBwAAAAAArcnPdQAAAHKjqak+3vjn32Pamw90qHLfJ+obVsSrr98Vb894PFavbsp1HMioysrKuO666+LPf/5zm4t6U6dOjTPOOCNDyQAAuiflPgCA5CpKylo9XlNfGy0tLVlKAwAAAAAAnY+CHwBAN1RXvzymvvyX+GjRzFxHSWv+h2/GS6/cHo2NtbmOAhl36KGHxqOPPhqVlZVtOu83v/lNPPPMM5kJBQAAAACt6JNmB79UKhUrGjrem8wBAAAAAEBHoeAHANDNrFq1LF565faoravOdZTEVqxcHC+9ekfU16/IdRTIuC9/+ctx7733Ro8ePdp03imnnBKpVCpDqQAAAADg81WmKfhFRFTVewM3AAAAAAD4Igp+AADdyKpVy+KlV++IhoaVuY7SZrW1VfHSq7cr+dEt7LDDDnHTTTdFXl5e4nNeeeWVuP766zMXCgAAAAA+R2VJWdqZ6rpVWUgCAAAAAACdU2GuAwAAkB11dcvjldfviqamulxHWWP19Svildfvim22/mYUF6d/aAQ6swMPPDCeeOKJuOqqqxKf85Of/CS+853vRGFh9/2rXmNjYyxevDgWL14cK1asiIaGhmhqaooePXpEWVnZpx/l5eWxzjrrREFBQa4jdyu1tbUxd+7cWLFiRaxatSrq6uqiR48eUV5eHj179owNNtggevXqleuYWbVy5cp48skn4/XXX48ZM2bEzJkzY9GiRbFy5cpYuXJlNDY2RllZWfTq1SvWWWedGDx4cPzud7+LIUOG5Do6/yaVSsWCBQti8eLFsWrVqli1alWkUqkoLy+P8vLy6NevXwwePDjy87vXe2299dZb8eSTT8Ybb7wRb775ZsyfPz+WL18eK1Z8/IYNZWVlUVFREUOHDo0NN9wwttlmm5g4cWJstdVWbSq5dxSpVCqWLVsWixYtiqqqqmhoaIiGhoYoKCj49PWntLQ0ysrKol+/flFenn6XE4DW1NfXx9y5c2P58uVRW1sbq1atisLCwk+/t1p//fWjT58+uY4JQDfQq6Qs8vPyoiWV+sIZBT8AAAAAAPhi3fepTwCAbqSxqS5eef1vnXLnvv9UW1sVr75+T2wz5ptRUFCU6ziQURdeeGE8/PDDMXv27ETz8+bNi7/97W/xrW99q90yXH/99XHUUUelnbvuuuviyCOPbLd1k6iqqopnnnkmnnvuuXj11VdjxowZ8cEHH0SqlYfJ/l1hYWEMHjw4hg0bFsOGDYvhw4fH2LFjY8KECdG/f/+1zvfkk0/GzjvvvFbXuOGGG+KGG25Y6yyf2HHHHePJJ59st+u1pqamJp5++ul49tln4/nnn49Zs2bFwoUL057Xv3//GDFiREyYMCEmTZoUO+64Y/Tr1y8LiVt3zjnnxLnnnpt27oknnoiddtqp1ZmVK1fGDTfcEHfccUdMnjw5mpqaWp1fsWJFrFixIj788MN47bXXYtmyZZ8W/IYNGxbvv/9+4s/j87R3keq9996LYcOGtXuGbN6/6UybNi2eeeaZePbZZ+P111+P9957L+rr61s9p7i4OIYOHRqjR4+OSZMmxQ477BBjxozpEEW29vz9nzt3blx55ZVx5513xjvvvNPqbGNjY1RXV8f7778fTz/99Kc70Q4ZMiS+9a1vxYknnhjDhw9P8ilk3erVq2Pq1Knx3HPPxZQpU2L69Okxc+bMtPfBv+vfv38MHTr009ehUaNGxYQJE2LkyJEd4r4AOpalS5fG5MmTY/LkyfHCCy/EO++8EwsWLEj7vW9FRUVssskmsd1228XEiRNjt912i759+2YpNQDdRX5eXlSUlEVVKyW+6noFPwAAAAAA+CIKfgAAXVwqlYrpM/4RdXU1uY7SblasXBSz3nkmRm66S66jQEaVl5fHpZdeGvvuu2/ic37zm9+0a8Gvo6mrq4tbb701br311njyySejubl5ja/V3Nwc77//frz//vvx1FNPfebYRhttFBMmTIidd9459t9/fw9BJ9Tc3Bx33XVX3HLLLfH3v/89Ghoa2nyNJUuWxJIlS+L555+PSy+9NAoLC2O33XaLQw45JA488MAoKSnJQPLsWLp0aZx//vlx7bXXxvLly3MdhzZ655134oYbbohbb7013n333Taf39jYGLNmzYpZs2bFnXfeGRERG2ywQRx00EFxxBFHxKhRo9o7clbNmTMnzjnnnLjlllvSllbT+eCDD+Kiiy6Kyy67LA477LD45S9/Geuuu247JV07zz33XPzpT3+Ke++9N5YsWbJW1/rk693LL7/8mV+vrKyMcePGxcSJE2O//faL0aNHr9U6QOdVU1MTd9xxR9x2223xxBNPxOrVq9foGlOnTo2pU6fGFVdcEUVFRbH77rvHYYcdFgceeGC33v0bgPZVUVLeesGvrjaLaQAAAABoq/zwJqQAuZSf6wAAAGTWR4tmxaLFre+e0hnN+/CNWFY1N9cxIOP22Wef2GabbRLPf7KbVFezcuXKOO+882Lw4MFxzDHHxGOPPbZW5b503n333bj55pvj2GOPjYEDB8ZXv/rVuO6666KmpuuUpdtTQ0ND/P73v48RI0bEt771rbj77rvXqNz3eZqbm+Ohhx6Kww8/PDbccMO45JJLora2cz0UmEql4uqrr45NNtkkLrvsMuW+TubNN9+MQw45JEaOHBnnn3/+GpX7vsjcuXPjwgsvjC233DL222+/eOmll9rt2tnS0tISl112WWyxxRZxww03rHW57981NzfH9ddfH5tvvnncfPPN7XbdNfHAAw/EmDFjYuLEiXHttdeudbmvNdXV1fHII4/ET3/609hqq61i5MiR8ZOf/CTeeuutjK0JdCwLFy6MM888M4YMGRLHHntsPPbYY2tU7vs8TU1N8eCDD8YhhxwSI0aMiKuuuiqj31cD0H30KS1r9Xh1K+U/AAAAAADo7hT8AAC6sIbGVTFj1hO5jpExb01/LJqbG3MdAzLunHPOadP8X/7yl8wEyZG77747RowYET/96U+jqqoq6+s3NzfHww8/HEcffXRcffXVWV+/o3vyySdjyy23jO9973sxZ86cjK61YMGCOP3002PkyJFx//33Z3St9rJq1ao44IAD4vjjj49ly5blOg5tsHLlyjj55JNjq622iltvvbXdihWfJ5VKxT333BPbbrttHHPMMTn5WrcmqqurY4899ohTTz01Vq3K3MO6VVVVcdhhh8X//u//RiqVytg6n+eDDz6IPfbYI/baa6949dVXs7r2J2bMmBE/+9nPMrZDb15eXuKPTH+dh+6usbExzj///Nhwww3jggsuyPibAsyZMydOPPHEGDt2bLzwwgsZXQuArq+ytLzV49X1Cn4AAAAAAPBFFPwAALqoVCoV02c+EU1N9bmOkjH19cvjnXefzXUMyLg999wzhgwZknj+vvvuy2Ca7Glubo7vfe97sf/++8fChQtzHYf/0NjYGCeeeGLsvPPOMWvWrKyuPXfu3Nh7773j0EMP7dC7+X344YcxadKkuPvuu3MdhTZ6/vnnY/PNN48rrrgiWlpasrr2tddeGyNHjoxHHnkkq+u21bvvvhsTJkyIxx9/PGtr/vrXv45TTjkla+s9+OCDseWWW8ajjz6atTWB7mvKlCkxevTo+PGPfxx1dXVZXXvatGkxceLE+NnPfpb1IjUAXUdFSZqCX13H/fs7AAAAAADkmoIfAEAXtWjxrFi8+N1cx8i4eR++Ecuq5uY6BmRUfn5+HHHEEYnn33zzzU6/w05DQ0Psvffe8fvf/z7XUfgcH330Ueyyyy5x1VVX5TTHLbfcEttvv328//77Oc3xeT7Z2ey1117LdRTa6Nprr42ddtop5s7N3fcXixYtiq997Wtx8cUX5yxDa95///3YcccdY8aMGVlf+4orrogLLrgg4+tce+21sc8++2R89yyAiIirrroqvvzlL+fk6+onWlpa4ic/+Unst99+WS8YAtA19Ckta/V4Td0qRXIAAAAAAPgCCn4AAF1QS8vqmPnOM7mOkTUz33nawyF0ed/5znfaNP/AAw9kKEnmpVKpOPTQQ+Ohhx7KdRQ+x/z582PixIkxefLkXEeJiIjXX389JkyYEDNnzsx1lE81NDTEPvvsE//85z9zHYU2+tWvfhXHHHNMNDY25jpKrF69Os4444w47bTTch3lMxYtWhS77757zJ8/P2cZzjrrrHj++eczdv277rorjjvuuFi9enXG1gCI+Pj73hNPPDFOPPHEDvHaExFx7733xl577dWhd0kGoGOqLG19B7+G1c1R19wxXu8AAAAAAKCjKcx1AAAA2t/iJbOjoWFlrmNkzcqVS6K65sPoUzk411EgY0aMGBHDhw+P9957L9H8c889F//zP/+T4VSZcfHFF8edd96Z6xh8joULF8Yuu+wS777bsXaIXbhwYey8887x1FNPxcYbb5zrOHHWWWfFM88kK9oPHTo0Jk6cGCNGjIghQ4ZEr169ori4OFauXBk1NTUxc+bMmDZtWkyePLnDPPjfVV1yySXxox/9KNcx/sull14aRUVF8etf/zrXUWL16tXxjW98I2bNmpV2try8PMaPHx9f+tKXYvjw4dG3b98oLy+PpqamqK6ujvfeey+mTp0akydPbnOJpLm5OY466qh44403oqioaE0/nc/13nvvxRFHHBEtLS3tel2A/9TS0hLHHntsXHfddbmO8l/+8Y9/xD777BMPPfRQFBb6ZyQAkqkoab3gFxFRXVcbZUU9spAGAAAAAAA6F/8yCwDQBc2bPy3XEbJu3vxpCn50ebvttltcffXViWZfeeWVDKfJjPfeey/OOuusNp9XUFAQ2267bey4444xYsSI2HjjjWODDTaI8vLyKC8vj7Kysmhubo6GhoZYvnx5fPTRR7FgwYKYNWtWzJw5M1555ZV4/fXXo76+vt0+l5122ukLdxedM2dODB8+PO01jjjiiLj++uvbLdPaaGhoiL333nuNdsrLy8uL7bbbLr761a/GNttsEyNHjox+/fpFeXl51NXVRVVVVcycOTNeffXVeOihh+Kpp56K5ubmNq3x4Ycfxte+9rWYOnVqVFRUtDlje5k8eXJceumlrc6su+66ccIJJ8Rhhx2WuJC4fPnyuOeee/6r5DVnzpwvPGennXaKp556Ku217YIbceedd8bpp5++RucOGDAgvvrVr8auu+4am2++eQwbNix69eoVBQUFsWLFipg3b1689dZb8eSTT8YDDzwQ8+bNa/MaF1xwQQwdOjROPPHENcrYXn784x/Hs88++4XH8/Pz4xvf+EYceeSRsfvuuycq361atSpuv/32+MUvfpGoOPiJGTNmxJVXXhmnnHJK4nOSOOGEE2LFihVtPm/IkCGx++67x6hRo2LjjTeOjTbaKCoqKj59DSooKIj6+vqoq6uLRYsWxaJFi2L27Nkxa9aseOONN2Lq1KmxaNGidv1cgI7tf/7nf9a43DdixIjYbbfdYsyYMbHZZpvF+uuvH3379o3S0tJoaWmJlStXxrx582LmzJnx/PPPx4MPPhjTp09v0xqPP/54nHLKKfHb3/52jTIC0P30SbODX0RETd2qGNS7TxbSAAAAAABA56LgBwDQxaxctTSqqtv+4Hhnt2jxO9HQsCp69Ej/IAl0Vrvuumvigt/MmTNj5cqV0bNnzwynal8/+clP2rRL2YgRI+KHP/xhfPOb34w+fVp/QKy4uDiKi4ujV69eMXjwfxeCm5qaYsqUKfHoo4/GAw88EC+//HKb83dlJ510Urz00kttOqewsDCOP/74OOWUU2LEiBGfO9OzZ8/o2bNnbLDBBrHrrrvGGWecEfPmzYvf/va3cfnll7epdDlr1qw4/PDD4+677468vLw2ZW0v55133hfu/FVaWho//elP4wc/+EGUlpa26bq9e/eO73znO3HYYYdFU1NTe0Tl/5k+fXocddRRbT5vs802ix//+MfxjW98I4qLiz93pm/fvtG3b98YPXp0HHTQQdHS0hL3339/nH/++TF16tQ2rXfqqafGmDFjYsKECW3O2h7++c9/xtNPP/2Fx/fcc8+4/PLLv/DP+hcpLy+PI488Mg499NA477zz4uc//3ni0umvf/3rOPHEE7/w97+tHn/88Xj00UcTz5eVlcWxxx4b3/3ud2OzzTZLO/9J6bx///6x+eabx0477fSZ47Nnz45HH300Hnnkkfj73/8edXV1bf0UgE7it7/9bfz+979v0zkVFRVx7LHHxrHHHhsjR45sdfbfX3+++c1vxsUXXxwvv/xyXHjhhfHXv/418dfZK6+8MiZMmBCHHXZYm7IC0D1VlJalnamqW5WFJAAAAAAA0Pnk5zoAAADta978N3IdISdSqZaYv+DNXMeAjPrSl76UeLalpSVeffXVzIXJgEWLFsVf/vKXRLNFRUVxxRVXxPTp0+O4445LW+5Les1JkybFueeeGy+99FLMnj07zj///Bg6dOhaX7uzu/POO+Oaa65p0znbbrttTJs2La688so2F37WX3/9+NWvfhVvv/127LLLLm069957740rr7yyTee0py8qqG622Wbx2muvxZlnntnmct+/y8vLa7cyExGrV6+Ogw8+uE07thUVFcUFF1wQ06ZNi4MPPrhN/z/y8/Njn332iSlTpsQf/vCHKCtL/wDsJxobG+Oggw6KVaty80DskiVLPrcQ0qNHj7jmmmviwQcfbPOf9X9XVFQUP/vZz+LPf/5z5Ocn+5HlwoUL47bbblvjNf/TFVdckXj261//esyZMycuv/zyROW+JDbccMM44YQT4s4774zFixfHrbfeGrvuumvOCstAZjz99NNx6qmnJp4vKCiIM844I95777246KKL0pb7vsjYsWPjtttui+eeey4233zzxOedfPLJ8dFHH63RmgB0L8UFhVFW1KPVmep6BT8AAAAAAPg8Cn4AAF1Ic3NjLFj4dq5j5Mz8D9/8wl2ToCsYMWJEm4pBM2fOzGCa9nfbbbcl2pmstLQ0nnjiifj+97+fuASyJoYPHx5nnXVWzJ49O+69997YfvvtM7ZWR7ZixYo4+eST23TOMcccE88+++xal16GDRsWjzzySJx++ultOu+ss86KDz/8cK3Wbk/bbbddPPfcc7HJJpvkOgr/4fLLL4/XXnst8Xz//v3jmWeeiR/+8IdRWFi4xuvm5eXF8ccfH1OmTIkNNtgg8Xnvv/9+/PSnP13jddtbr1694vHHH49jjjmm3a55yCGHxEUXXZR4/tprr22XdZcuXRoPPvhgotmTTz457rvvvhgwYEC7rP15ysvL46CDDorHHnssZs6cGd/97nejpKQkY+sB2VFbWxtHHXVUNDc3J5ofPnx4TJkyJS688MJ2eUOLiIgJEybEiy++GN/4xjcSzS9btqzN3wsC0H31KS1v9XhNXW2WkgAAAAAAQOei4AcA0IUsq/ogVq/+/J2DuoOGhpWxfPmCXMeAjMnPz2/Tbhvz5s3LYJr298gjjySau/zyy2PixIkZTvMv+fn5sffee8fkyZPjhBNOyNq6HcU555wT8+fPTzz//e9/P6655pp222WuoKAgLrroovjxj3+c+Jzly5e3uRSYKZtttlk88MADUVlZmeso/IcFCxa0qSy3zjrrxFNPPRXjx49vtwxbbLFFPPXUUzFkyJDE51x++eXxz3/+s90yrKni4uJ48MEHM/L1+JRTTomdd9450ewzzzwTixYtWus1n3jiiUSFmy9/+ctx8cUXZ3VXvY033jiuuuqqeOKJJ7K2JpAZ//d//xezZ89ONLvddtvF1KlTY+zYse2eo7y8PP7yl7/Ed77znUTzf/3rX9tUiAeg+6osbX2X8qo6O/gBAAAAAMDnUfADAOhCamoW5jpCztUs93tA1zZ8+PDEs3Pnzs1gkvb3wgsvpJ3ZbLPN4rjjjstCms/Xq1evnK2dCx999FFcddVVief322+/uPzyyzOS5bzzzkv8EHpExF/+8pd4++3c7mpbWload9xxR7vtuEP7uvDCC2PlypWJZnv06BF33313m0rWSQ0fPjzuu+++KC9vfaeLTzQ3N8fPfvazds/RVldeeWVMmjQpI9fOy8uLSy65JFGJrqWlJR544IG1XjPJa1DEx/dNQUHBWq+3JrrbaxB0NTNmzIjf/va3iWa32WabeOihh6Jfv34Zy1NQUBB/+tOfYpdddkk7m0ql4ic/+UnGsgDQdVSUtP73mup6BT8AAAAAAPg8Cn4AAF3I8hUfZX3NVCpiUWPECzUR9y+JuGvxx/99oebjX0+lsptn+Yq138EFOrL11lsv8Wxn2sFv2bJlsXTp0rRzRxxxRBbS8ImLL7446urqEs0OHTo0brzxxozuanX11VcnLlilUqn4+c9/nrEsSZx33nkZKYSx9pYsWRJ/+MMfEs9feOGFsd1222Usz+jRo9tUpr399ttjxowZGcuTzp577hnHHntsRtf40pe+FLvuumui2WeeeWat15s5c2bamZEjR8a4cePWei2ge/rJT34Sq1evTjs3cODAuPvuu6N3794Zz1RUVBQ333xzoiLh/fffH++++27GMwHQufUpbb3gV1NXm6UkAAAAAADQuSj4AQB0EalUKlaszG65bWlTxANLI+5fGvFWbcSipoiq5o//+1btx7/+wNKP57IlFyVHyKa2FPw+/PDDDCZpX/Pnz080t/XWW2c4CZ+or6+Pq6++OvH8n/70p4zvLtWjR4+47rrrIj8/2Y8zbrvttvjoo9y8Lmy00Ubxgx/8ICdrk94111wTtbXJHiz98pe/HCeddFKGE0V85zvfib322ivRbEtLS/zmN7/JcKLPV1hYGFdccUVW1jr66KMTzU2ePHmt10ryOuQ1CFhTb731Vtx+++2JZv/4xz/G4MGDM5zoX9Zdd9341a9+lXYulUrFn/70pywkAqAzq0xT8Kuygx8AAAAAAHwuBT8AgC6irq4mmpsbs7beB/Uf79S3KE15b1HTx3Mf1Gcn18e/Dw3ZWQxyYN111008u2pV53loauXKlYnm1l9//Qwn4RP33ntvVFdXJ5rde++9E++0tbbGjRsXhx12WKLZ1atXx80335zhRJ/vjDPOiOLi4pysTXo33nhjorm8vLy45JJLMroz5b+7+OKLo7CwMNHsbbfdFo2N2fve7xOHHnpobLzxxllZ62tf+1oUFRWlnXvnnXeioWHtvv9L8jrkNQhYU7///e8jlWB7+7333jv22WefLCT6rKOOOipGjBiRdu7GG29M9HkA0H1VlJS1enxlQ300J9jRFgAAAIDsy8/L85HFD4D/lOyJIQAA/kvj6uZYtKIm1zE+tWTpnKjK0k55Nc0RT1ZHtCScXx0R/6iK2KkyoiIL34HO+PCdqOidvASVaev0qojiAt960z5KS0sTz9bV1WUwSW40NWVxS9Bu7qabbko8+7Of/SyDSf7beeedFzfffHOsTvBQ4A033BCnnXZaFlL9S+/evePwww/P6pok9/LLL8fbb7+daHbfffeNsWPHZjjRv2yyySZx5JFHxjXXXJN2dunSpfHAAw/E/vvvn4Vk//K9730va2tVVFTE6NGj4+WXX251rqWlJWbOnBlbbrllRvN01dcgZR3IrPr6+vjzn/+caPa8887LcJrPV1BQECeeeGKceuqprc7Nnz8/Xn/99fjSl76UnWAAdDp90uzgFxFRU18b/cp7ZSENAAAAAAB0Hp4yBgBYQ4tW1MT/92Cyh/T4uAz4j+rsrHXXs49lZ6GELvjaYbF+Zb9cx6CLKCkpSTxbX5+lrTPbQb9+yf6MzJ49O7baaqsMp6G+vj4eeyzZ19Iddtgh6/9Phg4dGvvss0/cddddaWenTZsWH3zwQQwZMiQLyT629957R1lZ67sWkDv33ntv4tnvf//7GUzyxWsmKfhFRNx3331ZLfiNGDEixo8fn7X1IiK23XbbtAW/iIh33313rQp+SV6HZs+evcbXB7qve++9N6qqqtLO7bjjjjktzh1yyCFx2mmnpS39PvTQQwp+AHyhygQFv6q6VQp+AAAAAADwH/JzHQAAAIDk2lLw60w7+PXv3z/RXJJCF2vvmWeeSVwQPe644zKc5vOdcMIJiWeTlhXby3777ZfV9WibpPfDRhttFLvsskuG0/y30aNHx4QJExLNZvve3nPPPbO6XsTHuxom8dFHH63VOklehx599NFYuXLlWq0DdD/3339/orkjjzwys0HSWGeddWLbbbdNO/f0009nIQ0AnVVFafo3u6muX5WFJAAAAAAA0Lko+AEAAHQixcXFiWcbGxszmKR99enTJ3r27Jl27rbbbovXX389C4m6t6SloaKioth7770znObz7bLLLtGnT59Es48++miG03zWjjvumNX1SG7FihXx4osvJprN5s54/+kb3/hGorm5c+fGjBkzMpzmX3Jxbw8fPjzR3NoW/DbYYIO0M3V1dXHeeeet1TpA95JKpeLhhx9OO5efnx9f//rXs5CodUkK5q+++moWkgDQWZUX9Yii/IJWZ2rqarOUBgAAAAAAOg8FPwAAgE6koaEh8WxbdvvLtby8vNhhhx3SzjU1NcU3v/nNeP/997OQqvuaOnVqormJEydGZWVlZsN8gaKiosS7ib300ksZTvMvG2+8cQwYMCBr69E2r776ajQ3Nyea3WuvvTKc5ovtu+++iWezeX9/6Utfytpan0i6w2tNTc1arZO0vHjJJZfETTfdtFZrAd3HG2+8EYsWLUo7N3r06A7x/cNWW22VdmbhwoWxcOHCLKQBoDPKy8uLytLyVmeq6uzgBwAAAAAA/0nBDwAAoBOpr69PPNuZCn4REbvuumuiuXfeeSe22267uOuuuzKcqPt64403Es0lKWVmUtL1Z8+eHatWZecBws033zwr67Bmpk2blmiuuLg4xo8fn+E0X2zEiBExcODARLNJP6e1VVRUlHg3vfaUtETclgL859l5550jLy8v7dzq1avjiCOOiDPOOCNWrFixVmsCXV/SEva2226b4STJDBkyJNHcrFmzMpwEgM6soqSs1ePV9Qp+AAAAAADwnxT8AAAAOpG2FPxKS0szmKT97bvvvlFQUJBodsGCBXHAAQfEuHHj4uabb466uroMp+s+FixYEEuWLEk0u91222U4Tfus39LSEm+++WaG03xs0003zco6rJmk5dUvfelLOS9JJ72/s1XwGzRoUKICXHvr0aNHorm1LfgNGDAgvvzlLyeaTaVScfHFF8fw4cPjxz/+sV1lgS/06quvJprrKG8QsM466ySamzdvXoaTANCZ9Umzg19NXW2WkgAAAAAAQOeh4AcAANCJtGUXss5W8Nt4443joIMOatM5U6dOjcMOOywGDhwYhx12WNxxxx1RU1OToYTdw7vvvpt4NtcPo48cOTJxKbQtn9faGDRoUFbWYc0kvQ9yfW9HRIwaNSrRXLbu7b59+2Zlnf9UVFSUaK65uXmt1zr77LPbNL906dI4//zzY/jw4TFp0qS49NJLY+bMmWudA+g6kpawhw0bltkgCSX9+4OCHwCtqUxT8Kuqs4MfAAAAAAD8JwU/AACATmThwoWJZ3v16pXBJJnx4x//OAoLC9t83ooVK+Lmm2+OAw88MPr37x/bbbdd/N///V88+OCDUVVVlYGkXdeHH36YaK60tDSGDBmS4TSt69GjRwwfPjzRbNLPa20NHDgwK+uwZpLeBx1hJ8bNNtss0dyCBQsynORjHb00nkql1voau+22W0yaNGmN1p48eXKcdtppsemmm8awYcPi6KOPjuuuuy5mzZq11rmAzivpDp/7779/5OXl5fxjk002SZR32bJla/PbAkAXV1FS1urx6noFPwAAAAAA+E9tf2oSAICIiFinV0Vc8LXDch3jU0uWvhez3p2c8XVSqYinayKWrcEmKX0LI75cEZGX1/65/t3mm+4aFRXrZXaRNlinV0WuI9CFtKXIMXjw4AwmyYxNN900Lr300vj+97+/xtdobm6OF154IV544YWIiE8fVp4wYUJst912MWnSpNh8880jL9NfjDqppAWoQYMGdYjfw/XXXz/eeeedtHPZKvh1xmJtd5L0Plh//fUznKT9MqxcuTKWL18evXv3zmiepDvpdXY33XRTbLvttrFkyZI1vsb7778f1113XVx33XUREdGvX78YP358bLfddrH99tvHhAkToqys9Yeegc4vlUpl7fuPbKurq8t1BAA6sD5pdvCrqa+NllQq8jvAzxQAAAAAAKCjUPADAFhDxQWFsX5lv1zH+FTf4vxY8kHmC34RETtURty/JGJ1G84p+H/n9c3Cs+GbDNo4iopKMr8Q5EBbCn4doaCyJk466aR4/fXX45prrmmX66VSqZgxY0bMmDEjbrjhhoiI6NOnT+y0007xla98Jfbcc8+c70TXkSxevDjR3DrrrJPhJMkkzZH081pbPXr0yMo6tF1TU1PU1NQkmu0I93dbMixevDjjBb/uYtiwYXH77bfHHnvsEU1NTe1yzaVLl8aDDz4YDz74YEREFBYWxtixY+MrX/lKfOUrX4kJEyZEfn5+u6wFdByLFi1qt68jHY2CHwCtqUxT8Fvd0hIrG+qjd0nH3iUcAAAAAACyyZMjAABdRGlpZRQUFGdlrX5FETv3+bi0l0RBfDzfLwvlvtLSCuU+urR333038WxnLfhFRPz+97+P448/PmPXr6qqirvuuiu++93vxtChQ2P8+PFx8cUXx6JFizK2ZmeR9IHtvn37ZjhJMv36JSvbZ+tB9O6yy1ln1JZ7oCPc30nv7QhFi/a20047xT333BM9e/bMyPWbm5tjypQpcd5558XEiRNj/fXXj5NOOilefPHFjKwH5EZ1dXWuI2RMY2NjriMA0IFVlKbfrbq6flUWkgAAAAAAQOeh4AcA0EXk5eVF717Z221mSEnEXv0j1knTY1in6OO5IVnq3GXz9wCyrbm5OaZPn554vjMX/AoKCuIPf/hD3HDDDVFRUZHx9V588cU444wzYv31149vfetb8dJLL2V8zY6qvr4+0VxJSccoUyfNkfTzoutqyz3QEe7vtmRwf7e/PffcM1555ZUYN25cxtdasGBBXHnllTF+/PgYPXp0XHfddV121y/oTrpy+TqVSuU6AgAdWJ+S1nfwi4ioqVPwAwAAAACAf6fgBwDQhfTKcrmtX1HE1/tF7NUvYlT5x2W+PoUf/3dU+ce//vV+2dm57xO9eir40XXNmDGjTbtlbLbZZhlMkx2HH354zJw5M4477ris7IzW1NQUt99+e2y77bax1157xdtvv53xNTuahoaGRHPFxdnZNTadHj16JJpTgCLpvR3RMe7vpPd2hPs7U0aMGBHPP/98XH311TF48OCsrPnGG2/E0UcfHSNGjIibb75ZiQY6MV+bAeiuepeURV6amaq62qxkAQAAAACAzkLBDwCgC6novW7W18zLi1inOGJ874936tt/wMf/Hd/741/PS/c0RzurqFgvuwtCFr366quJZwsLC2P06NEZTJM966yzTvzxj3+MWbNmxemnnx79+vXLyroPPPBAbLXVVnHuuedGc3NzVtbsCPLzk/2ooKWlJcNJkkmaI+nnRdfVlnugI9zfbcng/s6c/Pz8OPbYY2P27Nlx9dVXx5gxY7Ky7vvvvx+HHXZY7LrrrjFnzpysrAm0LztxAtBdFeTnR6+S0lZnquvt4AcAAAAAAP/O0z8AAF1Iv75Do6Agi9vldTDFxeU5KTlCtjz++OOJZ0eNGhUlJSUZTJN9Q4cOjYsuuijmz58fd911VxxyyCHRt2/fjK7Z1NQU55xzTnzlK1+JqqqqjK7VUSS9b9qyG1omJc3R1f480HZtuQc6wv3dlgzu78wrLi6OY489Nl5++eV47bXX4kc/+lFsvvnmGV/3iSeeiLFjx8YTTzyR8bWA9uVrMwDdWZ+S8laP19Qp+AEAAAAAwL9T8AMA6EIKC4tjvYEjcx0jZwYP2iLy8wtyHQMypi0Fv7Fjx2YwSW716NEj9ttvv7j55ptj0aJF8fzzz8evf/3r2HfffaN///4ZWfMf//hH7LbbblFTU5OR63ckSR9Gr6ury3CSZGpraxPNeciettwDHeH+TnpvR7i/s22rrbaKX/ziF/HPf/4z3n///bj++uvjuOOOi8033zzyMrB99bJly2LPPfeMxx57rN2vDWROaWnrOxf9u0cffTRSqVSn+bj++usz9xsHQJdQWdp6wa+qLvnfdwAAAAAAoDsozHUAAADa1/qDR8e8D9/IdYysy8vLi/UHbZHrGJAxb731VsydOzfx/Pbbb5/BNB1HQUFBTJgwISZMmPDpr02fPj2effbZmDx5ckyePDlmzZrVLmu98sorccghh8T999+fkQJHR1Fe3vpDeJ9YvHhxhpMkkzRHz549M5yEjq60tDTy8/OjpaUl7WxHuL/bksH9nTtDhgyJI444Io444oiI+LiM9++vQS+99FK77AjZ0NAQ3/jGN+Kll16KESNGrPX1gMxL+j1VRER9fX0GkwBA9lWUlrV6vLreDn4AAAAAAPDv7OAHANDF9OzZPyorBuU6RtYN6L9R9Ojh4Xa6rhtvvDHxbF5eXnz961/PYJqObeTIkXHsscfGddddFzNnzoyPPvoo/vKXv8R3v/vdGDp06Fpd+8EHH4zf//737ZS0Y1p33XUTzS1atCjDSZJJmiPp50XXlZ+fHwMGDEg02xHu77ZkcH93HH379o199tknfv3rX8ezzz4by5cvj6effjrOPffc2H777aOgYM13m16+fHkcfvjhkUql2jExkCkDBw5MPLty5coMJgGA7Kssab3oXlOn4AcAAAAAAP9OwQ8AoAtaf/DoXEfIuu74OdN9rF69Om666abE89tss42yx79ZZ5114lvf+lZcddVVMWfOnJg2bVr89Kc/jQ033HCNrnf22Wd36YewBw1KVhJfsGBBNDY2ZjhNerNnz040l/TzomtLeh/MmTMns0ESSHpv9+vXL4qLizOchjVVXFwcO+ywQ/zkJz+JyZMnx6JFi+Laa6+NPfbYI/Lz2/6j2RdeeCFuu+22DCQF2ltZWVn069cv0eyHH36Y4TQAkF19Slsv+FXX1WYpCQAAAAAAdA4KfgAAXdA6AzaOHsWtP0TRlZSX94s+levnOgZkzH333demh3733nvvDKbp/Lbccss455xz4p133omHH344dt555zadv2zZsrj22mszlC731l8/2dfT1atXxzvvvJPhNK2rqamJhQsXJpodPHhwhtPQGSS9v2fMmJHhJOlNnz490Zx7u3Pp27dvHHXUUfHwww/H7Nmz49RTT42SkpI2XePCCy/MUDqgvSXdPfqDDz7IcBIAyK6KNAW/uubGqG9uylIaAAAAAJLIjzwfWfwA+E8KfgAAXVB+fkFsvNGkXMfImk023iHy8vyll64plUrFueeem3g+Ly8vDjrooAwm6jry8vJijz32iH/84x/x17/+NXr27Jn43D//+c8ZTJZbm2yySeKvqdOmTctwmvZbf7PNNstgEjqLkSNHJprL9b3dlgzu7c5r6NChcckll8Rbb70V48ePT3zeq6++Gm+99VYGkwHtJenX6DfffDPDSQAguypLytLO1NStykISAAAAAADoHBT8AAC6qHUHbhr9+w3PdYyMG7TeqOjXN9muCNAZ/e1vf4vXXnst8fwee+wRI0aMyFygLurAAw+MBx98MEpLSxPNT506NRYvXpzhVLnRs2fPGD482evH5MmTM5ymfdYvLS3154KI+HgHzyRmzJgRS5YsyXCaL9bc3BxTpkxJNDt69OgMpyHThg8fHo899lhMmDAh8TkPPvhgBhMB7WXbbbdNNPfqq69mOAkAZFefNDv4RURUKfgBAAAAAMCnFPwAALqovLy82GzTXaOwsEeuo2RMjx49Y5ONd8h1DMiYFStWxGmnndamc77//e9nKE3Xt8MOO8SPf/zjxPNJyzefJz+/Y/91fKuttko09+STT2Y2SDutv/nmm0dBQUFmw3RAHf0+y4Wk93ZExFNPPZXBJK176aWXYtWqZA+7Kvh1DT179oybb745SkpKEs2/8MILGU4EtIdx48Ylmlu2bFmb3tQDADq6igQFv+r62iwkAQAAAACAzsGTXgAAXViPHuWx6Yidch0jYzbfdLcuXWCE0047LT744IPE8xtvvHHsueeeGUzU9Z122mlRUVGRaHbmzJlrvE5RUVGiuebm5jVeY21MnDgx0dybb74Zs2fPznCaz1dTUxP/+Mc/Es1OmjQpw2k6po5+n+XCqFGjEv8Zv+eeezKc5ovdddddieby8/Nj++23z3AasmXDDTeMI488MtHs2rwGAdkzduzY6NWrV6LZe++9N8NpACB7SgqLorSwuNWZGjv4AQAAAADApxT8AAC6uHUHbhr9+w3PdYx2N2i9UdGv39Bcx4CMufXWW+Oaa65p0zm//OUv7di1lnr06BFf/epXE83Onz9/jdcpLm79IbdP1NXVrfEaa2P33XdPPHv77bdnMMkXu+uuu6KpqSnRbFs+n66ko99nuVBQUBC77LJLotn7778/6uvrM5zov6VSqcR/rsaMGRN9+/bNcCKyad999000tzavQUD2FBcXJ34Djj//+c+RSqUynAgAsqeytKzV41UKfgAAAAAA8ClPfgIAdHF5eXmx+cjdoqSkd66jtJue5f1ik42/nOsYkDFPPvlk4h18PvHlL385vvnNb2YmUDezxRZbJJpbuXLlGq+RdCeXqqqqNV5jbWy55ZYxcODARLN//OMfo6WlJcOJ/ttVV12VaK6oqCh23HHHDKfpmDr6fZYrSQufVVVVcdttt2U4zX976KGH4r333ks0213Lq11ZNl6DgOzaf//9E83NmjUrHnnkkQynAYDsqSgtb/V4db2CHwAAAAAAfELBDwCgGyguLosxW+0fxcWtv2tyZ1BaWhFbb7V/FBYm25UIOpsnn3wy9ttvv2hsbEx8Tn5+flx66aUZTNW9DBgwINHc2uywUlxcHL17py9ef/jhh2u8xtrIy8tLXBidPXt23H333ZkN9B+eeeaZePHFFxPN7rnnntGzZ88MJ+qYkt7LubrPcmX//fePgoKCRLOXXXZZ1ndTuvjiixPPHnjggRlMQi5k4zUIyK599tknKisrE83+9Kc/zWwYAMiiypLWC341dbVZSgIAAAAAAB2fgh8AQDdRVlYZY7baP4oKS3IdZY316NEzxmx1QPTo0frDIdBZ3XTTTfGVr3wlampq2nTe//3f/8WYMWMylKr7qa6uTjSXdHe0L5Jkh7w5c+ZEc3PzWq2zpr7zne8knv3xj38cq1evzmCaz/rRj36UePaII47IYJKOLekujO+8806Gk3Qs6667buKd715//fWs7uL32GOPxeOPP55odsstt4ytt946w4nItmy9BgHZU1ZWFsccc0yi2SlTpsRNN92U4UQAkB19Slt/s7nqOjv4AQAAAADAJxT8AAC6kZ49+8fYrb/RKXfyKy2tiG22/maUlqbf8Qo6m+rq6jjyyCPj8MMPb9POfRERO+20U5xzzjmZCdZNzZkzJ9Fc0vLUF9loo43SzjQ0NMQ///nPtVpnTY0fPz4222yzRLNvvfVWXH755RlO9LEbbrghJk+enGi2f//+sddee2U4UceV5B6LiHj55ZcznKTjOeqooxLPnnnmmbF8+fIMpvlYfX19fP/7308835bPgc4jW69B/y4vLy/xR9J8wGeddNJJUVhYmGj2+9//frz//vsZTgQAmVdR2vqbtFXVK/gBAAAAAMAnFPwAALqZnj37xzZjDozSks5TlOtZ3i+22frAKC2tyHUUaFctLS1x8803x6hRo+KGG25o8/nrrrtu3HrrrVFQUJCBdN3T6tWr47777ks0m7T89kU22WSTRHMPP/zwWq2zNv6//+//Szx79tlnx/Tp0zOYJuKDDz6IU045JfH8qaeeGsXFxZkL1MElvcceeeSRDCfpeL7xjW8kLkDOnTs3Tj755AwnijjrrLMS/xnq27dvHHvssRlORC7cddddiebW9jUIyK5hw4bF8ccfn2i2pqYm9t133zbv6g0AHU1lSesFvxX1dbG6pSVLaQAAAAAAoGNT8AMA6IbKSitj27HfjgH9kz3YnkvrrbtZbDPmwOjRo/UHQqAzaWxs/LTYd9hhh8WHH37Y5mv0798/HnnkkVh33XUzkDD7zj///Lj//vtzHSPuvPPOmD9/ftq5vLy8GDdu3Fqtte222yaau+aaa2L16tVrtdaaOuyww2LYsGGJZuvq6mLfffeN6urqjGRZtWpVm65fWVkZJ510UkaydBZbbLFFlJaWpp1766234umnn85Coo6joKAg/vd//zfx/PXXXx9XXnllxvLcfPPNcckllySeP/nkk6NXr14Zy9PdPPXUU/Hzn/8852Wa5cuXJy78T5gwIcNpgPZ27rnnRkVFsjetef3112OvvfbK2PdVbdXY2Bh//OMf4/HHH891FAA6kT6lZa0eT0XE8vra7IQBAAAAAIAOTsEPAKCbKi4ui9FbfD222PyrUVRYkus4/6VHcXl8act9YtRme0RhYY9cx4G11tLSElOmTImTTjop1ltvvTjssMPWeLezvn37xmOPPRZbbrllO6fMnZdeein23nvv2HrrrePmm2+OxsbGrGeYO3dunHjiiYlmx44dGwMHDlyr9SZNmpRobtasWfF///d/a7XWmiosLIzzzz8/8fzMmTNjzz33bPeH0Wtra2PfffeN1157LfE5P/rRj6J3786zW20mFBUVJS6ifve7342lS5dmOFHHcsQRR7RpF7STTz45br755nbPce+998bRRx+deH7ddddt006WpFdVVRVnn312DB06NM4666yYN29eTnIcd9xxsXDhwkSzX/va1zKcBmhv/fv3j1/+8peJ55999tmYNGlSvPvuuxlM1boVK1bEb37zmxgxYkSccMIJsWDBgpxlAaDzqShN/4ZtVfWrspAEAAAAAAA6PgU/AIBuLC8vL9YduGlMGHdYh9rNb711N4sJ4w6L/v2H5zoKrLGVK1fGlClT4qqrropvfvObMWDAgJgwYUJceeWVsWzZsjW+7gYbbBCPP/54bLXVVu2YtuN47bXX4rDDDoshQ4bEj3/846w90Dx9+vTYbbfdEhecjjzyyLVec9iwYTFq1KhEsxdccEHst99+8eqrr671um116KGHxi677JJ4/oUXXogdd9wx3nnnnXZZf968ebHrrru2aceYLbfcMk477bR2Wb+z22uvvRLNvf322zF27Ni45ZZbclKwzYWioqK46qqrEs+vXr06Dj/88LjgggsilUq1S4ZPXiPa8nt+2WWXdfvyaqbU1NTEL37xixg+fHgceOCB8eijj0ZLS0vG121sbIzjjjsu/vrXvyaa32abbRK/fgAdy/e+973Ye++9E8//85//jK222iquuuqqrHw9+sS0adPi5JNPjvXXXz9+8IMfxAcffJC1tQHoOipL0hf8aurs4AcAAAAAABERhbkOAABA7vXoUR6jt/h6fLRoZsx699loaFiZkxxlpZWxycZfVuwjq15//fW4//7723ROKpWK+vr6aGhoiPr6+lixYkUsXLgwFi5cGAsWLIhZs2bF+++/324FkE/suuuuceutt8aAAQPa9bod0UcffRTnn39+nH/++bHddtvFwQcfHPvss08MHTq0Xdepr6+PP/7xj3H22WfHihUrEp3Tt2/fOPzww9tl/W9/+9vxk5/8JNHsPffcE/fcc09suOGGMXHixNh0001j0KBBUVFREUVFRZGXl5f2Gv369YvtttuuzTmvuuqqGDNmTKxaleyd9adNmxZjx46NX/7yl3HCCSdEQUFBm9dMpVJx0003xemnnx5LlixJfF5hYWH88Y9/jMJCP/KIiDjwwAPjzDPPTFQKeP/99+PQQw+N7373u7HDDjvE6NGjY8iQIdGvX78oKSmJ/Pxk7xO16667Rmlp6dpGz4odd9wxjj322LjmmmsSzbe0tMSZZ54Zjz/+ePzmN7+JTTbZZI3W/eCDD+LUU0+Nv/3tb206b6+99opvf/vba7QmyTU3N8cdd9wRd9xxRwwaNCgOPvjg2H///WO77bZL/OcgqaeffjrOOOOMmDp1auJzTj311HbNwBd78sknY+edd87aeu+//36i1/N0nnjiidhpp53WPhAZce2118aYMWNi7ty5ieZXrVoVJ554Ylx55ZVxzjnnxH777ZeR73PefvvtuPfee+OWW26JadOmtfv1Aeh+evYoiYL8/Fjdyt9Hq+vs4AcAAAAAABEKfgAA/D+f7Oa3zoCNY/GS2TFv/rSoqp6XlbX79xsW6w8eHf36Do28PJtMk12XXXZZXHbZZbmO0arCwsI488wz49xzz12jolRn9/zzz8fzzz8fP/jBD2LLLbeMXXfdNSZNmhTbb799rLfeem2+XiqVipdffjnuv//+uPrqq+PDDz9s0/k/+9nPolevXm1e9/Mcf/zx8Ytf/CLq6+sTnzN79uyYPXv2Gq234447xpNPPtnm8zbZZJO4+uqr45BDDkl8zvLly+N//ud/4oorrojvf//7ccghh0SfPn3Snrdy5cq444474vLLL4/XXnutzVkvuOCCmDBhQpvP66qGDh0a++yzT9x9992Jz1mxYkU8+OCD8eCDD67Rmu+9914MGzZsjc7NhSuuuCJeeumlNt1vjzzySGyxxRZx8MEHx/e+970YP358olLOtGnT4qqrroobbrgh6urq2pRz+PDhccMNN7TpHNbehx9+GBdffHFcfPHF0a9fv9hjjz1ihx12iIkTJ8aoUaPW6HV54cKF8cADD8TNN98cTzzxRJvOHTduXBx88MFtXhPoOPr37x8PPfRQTJo0KaqqqhKf989//jMOPPDAGDRoUBx66KGx1157xfbbb79GZb9UKhXvvvtuPPfcc/Hcc8/Fo48+usbfXwLAF8nPy4uKkrJYVvvFbyZXpeAHAAAA0GHke24PIKcU/AAA+Iz8/IIYuM6IGLjOiFi1alnM+/CN+HDBW7F6dWO7rlNUVBqD1ts81h+0ZZSWVrTrtaEr2WmnneK3v/1tjBo1KtdROoQ33ngj3njjjU9Lmf369YtRo0bFiBEjYtCgQTFo0KDo1atXlJaWRmFhYaxatSpWrVoVy5cvj3fffTemT58eb775ZixatGiN1t9pp53ihBNOaLfPZ+DAgXHSSSfFRRdd1G7XzJSDDz44pk6dGpdeemmbzpsxY0acdNJJcfLJJ8e4ceNi7Nixsemmm0a/fv2irKws6uvro7q6OmbOnBmvvvpqTJ48ORob1+w15+CDD7az1ec455xz4r777ovVq1fnOkqHVFpaGnfeeWeMGzculi5dmvi8pqamuPHGG+PGG2+MgQMHxo477hijRo2KoUOHRs+ePSM/Pz9WrlwZ8+fPj7feeiueeuqp+OCDD9YoY3l5edx5553Rt2/fNTqf9rF06dK49dZb49Zbb42IiB49esSmm24am222Way//voxaNCg6N+/f5SUlERJSUk0NjbGypUrY9WqVTF//vyYPn36px9rsstvWVlZ/OlPf2qXHd6A3Np8883jvvvui6985SuJd0j+xIcffhgXXnhhXHjhhVFaWhpbbbVVbLHFFrHBBhvE4MGDo7y8PEpLSz/ddby+vj4WL14cH330UXz44YcxY8aMmD59etTW/v/s3Xd8VHX2//H3pE9CqCH0EHoTEBDpVdYGiNjFhrvqKgooqKhf3cWy9ooo6FpQQbEjooKV3osCQkJCCAk9gRBSJm1mfn/4U3ddydwJc++dSV7PffgPOfM577l7uRmSe+6n2KR3BwDA7+rGxFU64JdfwvcjAAAAAAAAAAAkBvwAAABQibi4+urQbojatu6vo8eydOLEIZ0oOKKCwiMqLze+25QkRUXFKr5WomrHJ6pOnSaqV7e5wsP5OAqcTNu2bfXQQw+xS48PR48e1fLly7V8+XLTeyUlJWn+/PkB30Vx+vTp+vTTT7V79+6ArmuGZ555RseOHavSLmJut/u33RjNMGrUKHY3O4nu3bvrrrvu0uOPP253lKDVunVrff311zrrrLN0/Phxv19/+PBhffDBB4EPpl8GEBcuXKgePXqYsj6qrrS0VFu3btXWrVtN7+VwOPTvf/9bp512mum9AFhjwIAB+v777zVy5Ejl5uZWaQ2Xy6W1a9dq7dq1AU4HAEBg1HPGVfr14+zgBwAAAAAAAACAJAb8AAAAYEB4eKQSG7ZRYsM2kvTLTgClBSooOKLCwlyVV5TK46mQx/PLzkBhYeEKC4tQZKRT8bUSFB+fqOioOHYbAQzo16+f7rzzTl144YUKCwuzOw7+v2bNmun7779Xo0aNAr52XFycFi1apIEDB/q1e5gdHA6H3njjDbndbs2dO9fuOL8ZOXKkPvroI0VGRtodJWg98sgj2rFjhxYuXGh3lKDVs2dPLV68WOedd57y8vLsjiPplx3bPv30Uw0fPtzuKLDZSy+9pHHjxtkdA0CAnXnmmVq1apVGjhyp9PR0u+MAABBwdZyxlX49jwE/AAAAAAAAAAAkMeAHAACAKnA4HHLG1JYzprYSG7a1Ow4Q8po2baqLL75YV199tc4880y74+APevbsqQULFqhFixam9ejYsaPWrl2rMWPGaMeOHab1CYSwsDC988476tChg/7xj3/I6/Xammfq1Kl64oknAr6zYnUTHh6ujz/+WJMmTdKsWbPsjhO0+vTpo/Xr1+uCCy7Qzp07bc3SsmVLffbZZ+revbutOWCv2NhYzZkzR5deeqndUQCYpH379tqyZYsmTpyoOXPm2B0HAICAqhtT+Q5++SXFFiUBAAAAAAAAACC4sR0EAAAAAFjM4XCoa9eumjRpkpYtW6bs7GzNmDGD4b4gExYWpokTJ2rlypWmDvf9qm3bttqyZYv+9a9/qV69eqb3O1X333+/vvjiCzVr1syW/gkJCZo/f76efvpphvsMioiI0Msvv6zvvvtOPXv2tDtO0Grbtq3Wrl2r6667zrYMF110kTZu3MhwXw3Xq1cvrVu3juE+oAaoVauW3nzzTX3yySdKTk62O86fGjBgAN+XAAB+q+esfMDvuKvI9gcHAQAAAAAAAAAQDBjwAwAAAACTNW3aVMOHD9ddd92lhQsX6ujRo9q6dateeOEFDR48WGFh/NPsrrvu0s0332zJIJ0R/fv314oVKzRjxgw5nU7L+kZFRem+++5Tdna2/v3vf+vss89WVFSUZf39dd5552nHjh269dZbFRERYUnPsLAwXXfddUpJSdHll19uSc/qZvjw4dq0aZOWLl2qG2+8UY0aNbI7UtCpXbu25syZo2+++Ubt27e3rG9SUpI+/fRTffzxx0pISLCsb03Xv39//etf/1K/fv2C4ntyw4YN9dxzz2nt2rU67bTT7I4DwEJjx45VSkqKHn/8cdWvX9/uOGrevLmmTp2qn3/+WStXrlTXrl3tjgQACDF1nLGVfr3c41ZRealFaQAAAAAAAAAACF7W3H0HAAAAANVEZGSkoqOj/+u/+Ph4JSYmKjExUY0aNVJiYqKaN2+uDh06qGPHjoqPj7c7dtAbMGCABgwYIEnaunWrFi1apC+++ELr169XRUWFJRnCwsJ07rnnatKkSTrnnHMs6XkycXFxuuGGG3TDDTfI5XJpw4YN2rRpk3bt2qXdu3fr8OHDysnJUWFhoUpLS1VeXm7bE+9r166tmTNn6s4779QTTzyhOXPmqKSkJOB9IiIidOWVV+q+++5Tx44dA75+TTRkyBANGTJEr7zyilJTU7V27Vrt3LlTaWlp2r9/v3JycpSXl6eSkhKVlZXJ4/HYHdlyI0aM0I4dO/T+++/rscce0/bt203p07ZtW02bNk3XXXedIiMjTemBk0tMTNR9992n++67T7m5ufryyy/1xRdf6JtvvlFeXp5lOdq1a6ebb75ZN910k2rVqmVZXwDBJTo6WtOmTdOkSZM0d+5czZw5U1u3brWsf4cOHXT++edr7NixGjhwoBwOh2W9AQDVT92Yynfwk6R8V7FqRcVYkAYAAAAAAAAAgODl8Np1ByAAADhlOTk5SkxM/K8/O3LkiBo2bGhTolNXWlqqjIyMSmtat26t6OhoixIBAOxUXFysDRs2aM2aNVq7dq3Wrl2rw4cPB2x9p9Op/v3764ILLtDYsWODZgfBUHb8+HF9/PHHeu+997RixQqVlZVVea2IiAj17dtXV1xxhS677LKQ/oyD6mH9+vWaN2+ePv30U2VnZ5/SWo0aNdKFF16ocePGadCgQQxQBCGv16uUlBStWbPmt/927twZsGFXh8Ohjh07/jZI079/f84DwAJLly7V0qVLDdWOHz9eycnJpuYxYseOHVqwYIEWLlyoTZs2BewBGGFhYWrbtq369++vwYMHa+jQoWrVqlVA1g4m/KwJAOxztKhAEz97o9Ka/xt+kbo05ucxAAAAAHAqquM9ZACs9+X3z9gdoUY5f/hUuyMACDIM+AEAEMKq4w9nuOkKAODLgQMHlJaWpt27dys9PV27d+9Wdna2Tpw4ocLCQhUWFqqgoEAVFRWKiopSdHS06tatq8TERDVp0kRt27ZVhw4ddPrpp6tHjx7slmWikpISrV+/XmvWrNGuXbuUkZGhrKwsFRQUqKioSCUlJYqOjlZcXJxq1aql5s2bq3Xr1mrXrp369u2rfv36KS7O99P+ATtkZmZq5cqV+umnn7R7927t2bNHR44cUVFRkYqLi+X1ehUbG6u4uDg1aNBArVq1UuvWrdW9e3cNGDBA7du3t/stoAoKCwt/20311+9BGRkZysvL++37T2FhoYqLi3/b9TcuLk4NGzZUo0aN1LJlS3Xo0EFdunRR3759Vb9+fbvfEoAQU1JSoi1btmjDhg1KS0tTVlaW9u7dq6NHj6q4uFjFxcUqLS1VRESEoqOjFRsbqwYNGqhhw4Zq2rTpb9+POnfurO7du9eIz1r8rAkA7FPhduva92dWWjOh3zka2KqjRYkAAAAAoHqqjveQAbAeA37WYsAPwB9F2B0AAAAAAAB/NG3aVE2bNtWQIUPsjgIfYmJiNHjwYA0ePNjuKEDAJScnKzk5WVdffbXdUWChWrVqqWfPnurZs6fdUQDUUDExMerXr5/69etndxQAAHyKCA9XregYFZaWnLQmv6TYwkQAAAAAAAAAAASnMLsDAAAAAAAAAAAAAACA6qdeTOW7xR53FVmUBAAAAAAAAACA4MWAHwAAAAAAAAAAAAAACLg6zthKv57HgB8AAAAAAAAAAAz4AQAAAAAAAAAAAACAwKvrYwe//BIG/AAAAAAAAAAAiLA7AAAAAAAAAAAAAAAAqH7qOSsf8DvuKrYoCQAAAAAAACoTJofdEQCgRmMHPwAAAAAAAAAAAAAAEHB1nLGVfj3PxQ5+AAAAAAAAAAAw4AcAAAAAAAAAAAAAAAKubkzlO/gVl5eqzF1hURoAAAAAAAAAAIITA34AAAAAAAAAAAAAACDg6jkrH/CTpHxXsQVJAAAAAAAAAAAIXgz4AQAAAAAAAAAAAACAgKtjYMAvz1VkQRIAAAAAAAAAAIIXA34AAAAAAAAAAAAAACDg6jpjfdbklzDgBwAAAAAAAACo2RjwAwAAAAAAAAAAAAAAAeeMiFJ0eESlNcfZwQ8AAAAAAAAAUMMx4AcAAAAAAAAAAAAAAALO4XCojjOu0po8V7FFaQAAAAAAAAAACE4M+AEAAAAAAAAAAAAAAFPUdcZW+vX8EnbwAwAAAAAAAADUbBF2BwAAAAAAAAAAAAAAANVT3ZjKd/A77mLADwAAAAAAAMB/Ky8v14oVK7Rq1Srt2LFDKSkpysnJUUFBgYqKiuR0OlW7dm3Vr19fHTp0UOfOndWnTx8NHz5cTqfT7vghJScnR0uWLNGWLVu0Y8cO7d69W/n5+SooKFB5ebni4+NVu3ZtNW3aVJ07d1aXLl00fPhwde/e3e7o1QoDfgAAAAAAAAAAAAAAwBR1nZUP+OW5ii1KAgAAAAAAACDYrVy5Ui+99JK+/PJLnThx4qR1hYWFKiws1IEDB7R9+3Z9/PHHkiSn06kRI0bolltu0bnnniuHw2FV9JDicrn0zjvv6I033tCGDRvk8XhOWpuXl6e8vDzt3btXa9as+e3PmzdvrksvvVQTJ05Uq1atrIhdrYXZHQAAAAAAAAAAAAAAAFRPdZ2xlX49v4Qd/AAAAAAAAICabvny5erdu7cGDRqk+fPnVzrcVxmXy6XPP/9c559/vjp16qQFCxYENmiIKy8v1xNPPKEWLVro73//u9atW1fpcF9l9u3bp+eee05t27bVpZdeqszMzMCGrWEY8AMAAAAAAAAAAAAAAKaoG1P5Dn75JcVVvoEEAAAAAAAAQGg7fvy4rrvuOg0ZMkQbN24M6NqpqakaO3asRo8erQMHDgR07VC0atUqde/eXffcc4+OHj0asHU9Ho8++ugjdenSRU8++aS8Xm/A1q5JGPADAAAAAAAAAAAAAACmqOusfMDP4/WqoNRlURoAAAAAAAAAwWLHjh0688wz9fbbb5vaZ9GiRerVq5dWr15tap9g9vLLL2vYsGHauXOnaT2Ki4s1bdo0jRkzpso7MNZkDPgBAAAAAAAAAAAAAABT+Brwk6TjJcUWJAEAAAAAAAAQLFauXKm+ffsqLS3Nkn6HDh3SsGHD9Omnn1rSL5hMmTJFt956q8rLyy3p9/nnn6tfv37KycmxpF91wYAfAAAAAAAAAAAAAAAwRb2YWJ81x11FFiQBAAAAAADAyYQ5HPxn4X813caNGzVy5EgVFBRY2resrExXXHGFlixZYmlfO91333167rnnLO+7Y8cOnX322Tp+/LjlvUNVhN0BAAAAAAAAAAAAAABA9RQf7ZTD4ZDX6z1pTR4DfgAAAAAAAECNsG/fPp133nk6ceKE4dfExMRo8ODBOuOMM9SsWTPVrl1bhYWFOnjwoDZv3qylS5eqsLDQ0FplZWW66KKLtG7dOp122mlVfRsh4ZVXXtFjjz3m12uaN2+uwYMHq1u3bkpISFBkZKSOHz+utLQ0rVu3Ths3bqz0Z73/6ccff9TYsWP17bffKjw8vCpvoUZhwA8AAAAAAAAAAAAAAJgiLCxMdWJiK92lL7+k2MJEAAAAAAAAAOxQUVGhK6+8Urm5uYbqExMTdf/99+vaa69VnTp1TlpXXFysDz74QNOnT9fevXt9rltcXKxLL71UGzduVFxcnOH8oeTHH3/U7bffbrh+8ODB+sc//qHhw4fLUckuk3v27NGMGTP08ssvq6yszOe6S5cu1fTp0/Xwww8bzlJThdkdAAAAAAAAAAAAAAAAVF91Yyq/Saay4T8AAAAAAAAA1cOjjz6qlStXGqq9/PLLlZaWpokTJ1Y63CdJsbGxGj9+vFJTU3XrrbcaWj8lJUV33HGHodpQU1ZWpiuuuEIlJSU+a51Op958800tW7ZMZ511VqXDfZLUqlUrPffcc9q6davhHRD9+f+9JmPADwAAAAAAAAAAAAAAmKauM7bSr+cx4AcAAAAAAABUa3v27NFjjz1mqPbee+/V/PnzVbt2bb96REdHa+bMmXrxxRcN1b/22mvasGGDXz1CwbPPPqvU1FSfdbVr19bSpUs1fvx4v3t06NBBa9eu1ZAhQ3zWejwe3XbbbXK73X73qUkY8AMAAAAAAAAAAAAAAKap66x8B7/8kmKLkgAAAAAAAACww5QpUwztKPf3v/9djz766Cn1uu222/TII4/4rPN6vbrtttvk9XpPqV8wOXDggKH3HhkZqUWLFunMM8+scq+4uDgtWrRIp59+us/an376Sa+88kqVe9UEDPgBAAAAAAAAAAAAAADT1I2pfMDvODv4AQAAAAAAANXWjz/+qAULFvis69Gjh1544YWA9Lzvvvt0zjnn+Kxbv369vvjii4D0DAZPPvmkiop8/7z1X//6lwYNGnTK/WrVqqX3339ftWrVMtSzrKzslHtWVwz4AQAAAAAAAAAAAAAA09R1xlb69eOuomr1lGwAAAAAAAAAv3vyySd91oSFhem1115TdHR0QHo6HA69+uqrcjqdPmuN5AsFeXl5eu2113zW9ejRQ1OnTg1Y3/bt2+sf//iHz7oDBw5o7ty5Aetb3TDgBwAAAAAAAAAAAAAATFPXWfkOfqXuCpVUlFuUBgAAAAAAAIBVsrOz9eGHH/qsu+aaa9SzZ8+A9k5KStKUKVN81q1YsUIbNmwIaG87zJ4929Dufc8++6zCwgI7TjZ58mS1atXKZ90zzzwT0L7VCQN+AAAAAAAAAAAAAADANHVjKh/wk37ZxQ8AAAAAAABA9TJv3jxVVFRUWuNwODRt2jRT+k+ePFkxMTE+69566y1T+lvJyHvo06ePhg4dGvDeUVFRuuOOO3zW7dixQxs3bgx4/+qAAT8AAAAAAAAAAAAAAGCaus5YnzUM+AEAAAAAAADVz7x583zWnH322erUqZMp/Rs2bKirrrrKZ90HH3zgcxAxmG3atEmpqak+626//XbTMvz1r39V7dq1fdYZOSdqIgb8AAAAAAAAAAAAAACAaeo6DezgV1JsQRIAAAAAAAAAVtm+fbu2b9/us+7qq682NYeR9XNycvTtt9+amsNM7733ns+a+Ph4jRkzxrQMcXFxGjt2rM+6+fPny+v1mpYjVDHgBwAAAAAAAAAAAAAATBMVHqHYyOhKa9jBDwAAAAAAAKheFi9e7LMmJibG1KEzSRo8eLCaNm3qs+6rr74yNYeZjBzrCy64QE6n09QcV1xxhc+aQ4cO6ccffzQ1RyhiwA8AAAAAAAAAAAAAAJiqrjO20q8z4AcAAAAAAABUL998843PmoEDByo+Pt7UHGFhYTr77LN91hnJG4wOHjyon3/+2WfdeeedZ3qWoUOHKiYmxmddqB5rMzHgBwAAAAAAAAAAAAAATFXXGVfp14+XFFuUBAAAAAAAAH8Uxv8s/V9NUFZWppUrV/qsGzFihAVpjPXZuXOn9u/fb0GawPruu+8M1Z111lkmJ/llR8aBAwf6rGPA73/VjCsDAAAAAAAAAAAAAACwTd0YHwN+7OAHAAAAAAAAVBs//fSTiot9P9TLyDBYIAwaNMhQ3bp160xOEnhr1qzxWdO2bVs1btzYgjTGjvX69evl9XotSBM6GPADAAAAAAAAAAAAAACmquuMrfTrDPgBAAAAAAAA1ceWLVt81oSFhen00083P4ykpKQkJSQk+KwzkjvYGMncs2dPC5L8olevXj5rTpw4oYyMDAvShA4G/AAAAAAAAAAAAAAAgKnqOn3s4Ffi+2neAAAAAAAAAELD5s2bfda0b99ecXGV/9wwkIwMnoXagJ/H49FPP/3ksy7YBvyk0DvWZmPADwAAAAAAAAAAAAAAmKpuTOU36hSUulThdluUBgAAAAAAAICZtm3b5rOmY8eOFiT5XYcOHXzWbN261YIkgbN7924VF/t+eJqVx7px48aqU6eOz7pQO9ZmY8APAAAAAAAAAAAAAACYqq4z1mdNPrv4AQAAAAAAANVCRkaGz5p27dpZkOR3bdu29Vmzf/9+lZWVWZAmMIwcZ8n6Y92mTRufNUaz1xQM+AEAAAAAAAAAAAAAAFPVdVa+g58kHS8psiAJAAAAAAAAADO5XC4dOnTIZ52RIbBAMjLg5/F4tHfvXgvSBMaePXsM1bVu3drkJP/NyLE2mr2mYMAPAAAAAAAAAAAAAACYytCAn4sd/AAAAAAAAIBQZ3RArmnTpiYn+W9NmjQxVBdKg2eZmZk+a+rXr6+YmBjzw/wHI8c6lI6zFRjwAwAAAAAAAAAAAAAApoqLjFZkWHilNcdd7OAHAAAAAAAAhLr9+/cbqmvcuLHJSarWb9++fSYnCRwjx9rq42y056FDh+R2uy1IExoY8AMAAAAAAAAAAAAAAKZyOByq44yttOZ4CQN+AAAAAAAAQKg7evSoobpGjRqZnOS/JSYmKizM9xjVsWPHLEgTGEaOtdXHWTI24Of1epWXl2dBmtDAgB8AAAAAAAAAAAAAADBd3Zi4Sr/ODn4AAAAAAABA6DM64Fe3bl1zg/xBWFiY4uPjfdYZzR8MjGS1+jj70zOUjrXZGPADAAAAAAAAAAAAAACmq+v0NeBXbFESAAAAAAAAAGYxugNerVq1TE7yv4wM+IXSDn5Gshp5z4FmtGcoHWuzMeAHAAAAAAAAAAAAAABMV9cZW+nXj5ewgx8AAAAAAAAQ6k6cOOGzJi4uTmFh1o801a5d22dNfn6+BUkCw8ixtmPAz8hxlkLrWJuNAT8AAAAAAAAAAAAAAGC6ujG+dvBjwA8AAAAAAAAIdWVlZT5rnE6nBUn+V0xMjM8aI/mDRbAeayPHWQqtY202BvwAAAAAAAAAAAAAAIDp6jp9DPiVFMvr9VqUBgAAAAAAAIAZjAxthYeHW5Dkf0VERPisCaWhs2A91kaOsxRax9psxo4YAAAAAAAAAAAAAADAKajrjK30626PR4VlJYqPtufp3QAAAAAAADXViGGT7Y6AasTI0JbRAbBAM9K3vLzcgiSBEazH2mjPUDrWZmMHPwAAAAAAAAAAAAAAYDpfO/hJ0nFXkQVJAAAAAAAAAJiloqLCZw0DfoERrMeaAT//MeAHAAAAAAAAAAAAAABMVzeGAT8AAAAAAACgujMy3OV2uy1IUrW+dg0fVkWwHmujPUPpWJuNAT8AAAAETHl5iVyufJWXl9gdBQAAAAAAAAAQZOrExMrho+Z4SbElWQAAAAAAAACYIyoqymeNkZ3nzGBkxzgj+YNFsB5rozvzhdKxNhujjgAAADhlFRWlSk1bpkOHU+X1euRwhKlxow7q0G6IIiKi7Y4HAAAAAAAAAAgC4WFhio9x6kSJ66Q1S1ZtUsa6bMXERKlJowbq2La5GibUlcPhazQQCC6lZeXaveeAdmceUP6JIpWVVai0rExyOBQdGano6EjVqR2nNslN1Sa5iaKiIu2ODPjF6/XqSO5xpaRl6dCRPJWUlKm0rFzlFRWKioxQdFSkYmKi1bRxA3Vs20IJDerYHRnwW0lpmdIz9mt35kEVFBartKxcZWXlv1zLoyIVHRWpunVqqW2rpmrdsokiI7kdE6HF6/Xq4OFjSk3P1uGcPJWUlqmsrEIVFW5FRkYoOipCTme0mjVJUMd2SapfN97uyAAAIERERvr+OYddA35G+obS0FmwHmujPUPpWJuNf1ECAADglLjdFfpx60Idzz/w2595vR4dPLRTLle+enQfq/BwPnYCAAAAAAAAQE1VUFisH7fvVkpalorLS6SYk9duSdmtbzeu+68/q1c3Xp3atVDHdknq2K6FTj+trWrHx5qcGjDO6/Vq1+592p6SqZS0bKWmZ2t35gG53R5Dr4+ICFfrlk3UqX2SOrZtodM6Jattq2YMtiKo5BcU6cdt6dq5K1sp6VlKTctWXn6h4dcn1K/923W8Y7sk9TitjeLinCYmBvzj8XiUkpatn1N/uZanpGUrM+uQ3B5j1/LIyAi1TW6qjv//Wt61Uyu1atmYazmCSt7xAm3Zvlspu7KUkp6tlLQsnSgwvoN2YkLd367jndon6fTT2sgZw0OfAQDA/4qO9v0ZoaSkxIIkVesbSkNnwXqsjfYMpWNtNu60BgAAwCnZm7Xpv4b7/tPx/APam71JrZP7WJwKAAAAAAAAAGAnr9erbTv36OPPV+j7lT+qvPyXJzY3PquJYpvFnfR14c7w//mzvOMFWr1hh1Zv2CHpl2GoYQO66+LRg9S9SxtunIdt8guK9MXX6/TJFyu170BOldepqHBr1+592rV7nz77/3/WsnmiLho1SOePOFPxtRhohT28Xq82b03XJ4tWaOnqnwwPrf6Z3GMntHLddq1ct12SFBUZoRFDeuqiUYPUpUNLruWwzbHjBVq0ZI0++WKVDh05VuV1yssrtDMtSzvTsn77szbJTXTRqEE6d3hvxcVW8oQDwEQej0cbtqTq40UrtHLddnk83iqvdST3uI7kHtfyNdskSTHRUTp7WC9dPGqQOrRtEajIAACgGoiP973zb1FRkbxer+X/HiwoKPBZU7t2bQuSBEZ8fLyOHDlSaY2R9xxoRnuG0rE2GwN+AAAAqLJiV74yszZUWpO5d4OaNOoop7OORakAAAAAAAAAAHYpdpXq6x826uNFK5SWsf9/vu52uSt9fbjT920MFRVufbNss75Ztpkb52GLnbuy9PGiFfpm6SaVlpWb0mPvviN6bvbHmvXm59w4D8sVFrn01Xfr9fGilcrMOmRKj7LyCn357Xp9+e16dWjbQhePGqSzh/ZSTAxP7of5TvYggkDbnXlQT838QC+9sVDnDe+ti0YNVJvkpqb0Av4oUA8iqExJaZkWLl6jhYvX6LSOybp41CANH9xD0VGRpvQDAACho379+j5rvF6vCgoKLB/wOnHihM8aI/mDRf369bV79+5Ka4y850Az2jOUjrXZGPADAABAle1KWyaPp/KbMTwet1LTl+v0rqMtSgUAAAAAAAAAsFppWbnefv8bzf/0BxUVl5y0rsLngN//7uBXmd9unH/9M102ZqjGX3m2YqIZDoE5tu7I0Iv/XqBtO/dY1vM/b5zv3qW1Jt00Vl06JFvWHzWLq6RUr89brI8/Xy5XSZllfVPTs/Xo8+/qxdc+1ZUXDdfVl5ylKIZDYJKNP6bqxdc+U2p6tmU9i4tL9PGiFfp40QqdcXp7Tb5prNq1bm5Zf9QshUUuvfr2F/rsq9WmPYjgz2xPydT2lEy98O9Pdc2lI3T52KGKCPfvsz0AAKg+GjRoYKguPz/f0gE/j8ejwsJCn3VG8wcDI1nz8/MtSFK1nqF0rM0WZncAAAAAhKac3AzlHjX2C+zc3Azl5lr3y24AAAAAAAAAgHW2p2Tqutue1Ovzvqp0uE+S3K7Kd8iJ8HPA71fFrlLNmb9E1054Qlt3ZFRpDeBkSkrK9Pwrn+jvU5+3dLjvj376OUM33vGsXnrjM0tv2EfNsHlrmq6+5XHN/fBbS4f7/lNB4S9DKddPekopaVm2ZED1VVRcoidefF+33TPT0uG+P9r44y6Nn/iUXpv7pSoqKn/wAeCvtRt3atzfH9UHny2z7bPC8fxCvfjaAt14+7PKyDxoSwYAAGA/o0Nbhw8fNjnJf8vJyZHb7ftzeCgNnRnJavVxlqRDhw75rHE4HKpXr54FaUIDA34AAADwm9tdoV1py/16TWraMrndld+4AQAAAAAAAAAIHaVl5Zr5+me6acqzyszyfcOG5HvALywqXI5wR5UzZe0/or9PfV4vvPqJSmwaUEH18tPPGbrm1sc1/9Mf5PV67Y4jj8erdz74Vtfd9qR+Ts20Ow6qAVdJqZ5++UNNuHuG9h/MtTuOpF92Z/3b5Gf0yluLVMYwKwJgw5ZUXXXzY/r0i5V2R5Ekud0evTb3K/118tNKy9hndxxUA4VFLv3ruXd1+/0v60jucbvjSJJ2pmXpuolP6q35X6vCwE30AACgemnWrJmhOiNDYIFktJ/R/MHASFarj7PRno0aNVJERIQFaUIDA34AAADw296sTXKV+Ldlt6skX3uzN5mUCAAAAAAAAABgpR2pe3XdbU9q7offyuMxPvTkdvm+uTe8irv4/crr9eq9T37QNbc+rm077NttDaGttKxcz7/yiW6+83ll78+xO87/yMw69NtufgxAoaq2bEvX1bc8ro8W+vdgTyu4PR69+d6S/7+bn327rSG0FbtK9cSL72vivTN16Mgxu+P8j1279/2+mx8DUKiidZt+2bXv8yVr7I7yP8rLKzRrzue68fZntWcvu/kBAFCTJCcnG6o7cOCAuUH+4OBBY59JWrVqZXKSwDFyrI8dO6bS0lLzw/wHI8c6lI6zFRjwAwAAgF+KXfnKzNpQpddm7t0gl8u/wUAAAAAAAAAAQHD5+oeNumnqc4Z37ftPFYYG/ALz1Obs/Tm6+a7n9cU36wKyHmqO/BNFmnD3jKDZte9kft3Nb+K9M1VQWGx3HISYBV+t0q3TgmfXvpPZnXlQN015Vt+v/NHuKAgxR4+d0E1Tng2aXftO5tfd/KY+MFuuEmtvuEXoe++T7zX5/4Jn176T2ZmWpesnPa01G3fYHQUAAFjE6XSqUaNGPut2795tQZrfpaen+6xxOBxq2bKlBWkCw8iQnNfrVUZGhgVpfmfkWDPg998Y8AMAAIBfdqUtk8dTtacHejxupaYH3xNAAQAAAAAAAADGfPLFSv3zybdVUVG1nxO7XRU+ayJOcQe//+rn9ujhZ+bq/QVLA7Ymqreco/m65a4X9HNKpt1RDPvp5wzdOu1FHTteYHcUhIh3PvxWj78w368dWO1UVl6h+x99Q4u+Xmt3FISIA4eO6u9Tn1P6Hmt3AzkV6zanaNK9L+lEAQPb8M3r9eqVtxbphVc/tTuKYSWlZbpr+qv6bvkWu6MAAACLtG7d2mdNWlqaBUl+Z2TorFmzZoqOjrYgTWAYOc5ScB5ro9lrCgb8AAAAYFhOboZyj+45pTVyczOUm3tqawAAAAAAAAAArDf/0x/05Ivvn9KOZt4KrzzlnkprwmMDs4Pff3pu9sd6+4NvAr4uqpcjucd1853PK2PvQbuj+G3X7n265c7ndTTvhN1REORen/eVXnr9M7tj+M3j8eqRZ+fp40Ur7I6CILf/YK7+fufz2hfku1P+mW079+jWaTMY8kOlvF6vXnxtgd58b4ndUfxWUeHWA4+/qa++22B3FAAAYIGuXbv6rElJSbEgiX/9jOQOJm3atJHT6fRZZ+WxPnTokPLz833WhdqxNhsDfgAAADDE7a7QrrTA7L6XmrZMbrfvpzQDAAAAAAAAAILD50vW6PlXPgnIWhU+dvELjwncDn7/6eU3FuqTL1aasjZC3/H8Qk2+7yXtD8GBkF/t3XdEt//fyyooZDAEf27+pz/o3+98aXeMU/L0Sx9q8fcMhuDP5RzN16T7XlJO7nG7o1RZWsZ+Tf3HbBW7Su2OgiD15rtL9O7H39sdo8o8Hq8eeWaulq/ZZncUAABgsh49evisSU1NVXGxdT/H2Lx5s8+anj17WpAkcMLDw9WtWzefdUbee6AY7RVqx9psDPgBAADAkL1Zm+Qq8f1EDSNcJfnam70pIGsBAAAAAAAAAMy1bPVPeuyF9wK2nrvYXenXI0zYwe9XT838QN8ut+5mFoSGkpIyTXlglvZkHbI7yilLy9ivKf+YrdKycrujIMh89e36gA1q28nr9erhp+dq9Yaf7Y6CIFNY5Ar5Qe1fbdu5R/c8/Joq3JV/ZkLN89Hny/XqO1/YHeOUuT0e3f/oG9qyLd3uKAAAwERGhrc8Ho9+/PFH88NIys7OVk5Ojs86I4OJwcbIsbZywG/TJt/3B8fHx6tNmzYWpAkdDPgBAADAp2JXvjKzAvskzMy9G+RyBWZgEAAAAAAAAABgjkNHjunBp+fK4/EGbE13iY8d/Jzm7OAn/TIY8sgz86rFzf8InBf+/al27MqyO0bAbNuxR7PeXGh3DASRvdmH9fiM+XbHCBi3x6N/PvGWco7yu0b87smZHyhj70G7YwTM+s0pevPdxXbHQBBJScvWc7M/tjtGwJSVV+j+R99UfkGR3VEAAIBJunfvLqfT6bNuxYoVFqSRli9fbqiuT58+JicJvH79+vmsSUtL0+HDhy1IY+xYn3nmmXI4HBakCR0M+AEAAMCnXWnL5PEE9umAHo9bqenG/sEEAAAAAAAAALCe1+vVo8+/p+LikoCu62sHv3CneTv4SVJJaZkeeXaePB6PqX0QGjZsSdWnX6y0O0bAvb9gmX7cvtvuGAgCbrdHjzw7r9rt6lhQ6NLjM+bL6w3cADpC17LVP+nrHzbaHSPg5sz/Wqnp2XbHQBAoL6/Qw8/MldtdvT6/Hs07oWdf/sjuGAAAwCTR0dEaOHCgz7rvvvvOgjTG+nTs2FHNmze3IE1gnXXWWYbqrDjWpaWlWrVqlc+6v/zlL6ZnCTUM+AEAAKBSObkZyj26x5S1c3MzlJtrztoAAAAAAAAAgFPz2eLVWr85JeDrVrjs28HvV1u2peuTRdVvqAv+KSou0b+ee9fuGKbwer165Nl5KikpszsKbDb/0x+0bWf1/H3cqnXbtfi7DXbHgM3yTxTpiRfftzuGKdxujx5+Zq7Kyyv/7ITq7833lmh35gG7Y5hiyQ8btXzNVrtjAAAAk4wYMcJnzYoVK1RYWGhqDo/HoyVLlvisC9Whs6ZNm6pTp04+67766ivTsyxdulQul8tnXageazMx4AcAAICTcrsrtCvN3F32UtOWye3mFxIAAAAAAAAAEEwOHTmmGf9eYMrabpePHfxiwiWHKa3/y8zXP9P+g7nmN0LQmvn6Zzp05JjdMUyz70COZr/1ud0xYKPM7EN65a1Fdscw1bOzP1LO0Xy7Y8BGz8z6SMfyCuyOYZr0PQc0Z77vG5FRfaWkZeut+V/bHcNUT8x4X/kFRXbHAAAAJjj33HN91pSUlOizzz4zNceKFSt04IDvByYYyRusjGT/7LPPVFJSYmqO+fPn+6xp1KiRevToYWqOUMSAHwAAAE5qb9YmuUrM/YWYqyRfe7M3mdoDAAAAAAAAAGCc1+vVY8+/p+Jic272cPvYwc/hcPwy5GeyktIyPfLsPHk8HtN7Ifhs2JKqT7+o/rs4vr9gmX7cvtvuGLCB2+3Rv559V2XVfOevgkKXHp8xX16v1+4osMGy1T/p6x822h3DdHPmf63U9Gy7Y8AG5eUVeviZuXJX88+rR/NO6NmXP7I7BgAAMEG3bt3UuXNnn3Vz5841Ncc777zjs6ZBgwYhvavclVde6bOmoKDA1GHKoqIiffrppz7rLr/8cjkcFjzhLcQw4AcAAIA/5XLlKzNrgyW9MvdukMvFkzUBAAAAAAAAIBisXLdd6zanmLZ+hY8d/CQp3BlhWv//tGVbun5Y+ZMlvRA8PB6Pnpv9sd0xLOH1evXc7I8ZfqqBvl66Sdt27rE7hiVWrduu9SZ+30Jwqqhw6/lXPrE7hiXcbo9eeNX3TbKofj77arV2Z/reaaY6WPLDRm2vId+3AACoaa666iqfNUuWLFFKijn/rsvJydG8efN81l122WWKjIw0JYMVevfurXbt2vmse/75503L8Oabbyo/3/e9wEbOiZqIAT8AAAD8qdT05fJ4fN9kEQgej1u70pdb0gsAAAAAAAAAULn3Fyw1dX1fO/hJUrjT/B38fmX2+0Xw2fDjLmXsPWh3DMukpmfrp58z7I4BC3m9Xs3/9Ae7Y1iKa3nNs3ztNh08fMzuGJbZvDVNaRn77I4BC3k8Hr3/2VK7Y1iKazkAANXT1VdfrfDwyn/W5/V69fjjj5vS/4UXXlBJSYnPuuuuu86U/lYy8h7Wrl2rpUuXBrx3WVmZnn32WZ91HTt21Jlnnhnw/tUBA34AAAD4Hzm5GcrNtfYXvb/05GlsAAAAAAAAAGCnPVmHtPHHXab28JR65PVUvptYhIUDflt3ZHDDfA3zyaIVdkewXE18zzXZjl17lZqebXcMS63ZuFP7D+baHQMWqonXtU8WrbQ7Aiy04cddyt6fY3cMS/2w6icdPXbC7hgAACDAkpKSdMkll/ise+edd7R58+aA9s7KyjI0dDZgwAD16dMnoL3tcPPNNys2NtZn3dSpU+XxeALa+4UXXtCePb7vAZ46dWpA+1YnDPgBAADgv7jdFdqVZs9ueqlpy+R2+35yMwAAAAAAAADAHJ9+Yc2N47528Qt3RliS41fcMF9zHM7J04q12+yOYbnvV/6oo3ncMF9TfPx5zRt88nq9+vTLVXbHgEWseCBBMFr8/QYVFrnsjgGL1MQh1ooKtxYuWWN3DAAAYIK7777bZ43H49GNN96osrKygPT0er36+9//LpfL92doI/n8MX78eDkcDp//BXonvQYNGuhvf/ubz7rNmzcbGnw0Ki0tTQ899JDPuiZNmuiaa64JWN/qhgE/AAAA/Je9WZvkKsm3pberJF97szfZ0hsAAAAAAAAAarpiV6m++GadJb0qXO5Kvx5u4Q5+EjfM1yQLvlwlj48dJKujigq3Fi7mhvmaIP9Ekb5dFtgdD0LF50vWqLSs3O4YsEBNHcx3lZTpq+/W2x0DFqipDySQfvmsVuGu/N8KAAAg9PTs2VMXXHCBz7rNmzdr8uTJAen52GOPafHixT7rzjjjDI0ePTogPYPB3XffbWgXv/vuu08rV576v62Kiop0+eWXq7Cw0Gftvffeq+jo6FPuWV0x4AcAAIDfuFz5yszaYGuGzL0b5HLZM2AIAAAAAAAAADXZ1z9sVFFxiSW93D4G/CIs3sHPVVKmL7/lhvnqrry8Qp8tXm13DNtww3zNsOjrtSorr3yX1Ooq/0SRvlteM4cba5JiV6m+/NaaBxIEo48XrZTXW/MG1WuamvpAAumX4cZV67bbHQMAAJjg2WefNTTcNXv2bP3f//3fKfV6+eWXDa3hcDj04osvyuFwnFK/YNK8eXPdd999PuvKy8s1atQobdy4scq9iouLNXr0aG3ZssVnbdeuXTVhwoQq96oJGPADAADAb1LTl8vjsfcXux6PW7vSl9uaAQAAAFW3dOlSORwOn/9Nnz7d7qjAf5k+fbqhc3fp0qV2RwUAADDNN8s2WdbL7ap8+MTqHfwka98/7LF5W7qO5RXYHcM2h3PytG3HHrtjwGRfL63Z17Ka/v5rgrUbd1j2QIJglJl1SGkZ++2OAZN9U0N3Yv1VTX//AABUV23atNG0adMM1T766KO68sorVVDg389xSktLNWnSJN16662G6q+//nr17dvXrx6h4M4771S7du181uXn52vIkCF66623/O6Rmpqqvn376ocffvBZ63A4NHPmTIWHW/8z31DCgB8AAAAkSTm5GcrNzbA7hqRfs/ALZgAAAAAAAACwitvt0c8pe63r52MHv3CLd/CTpJS0bJXX0F2vaoptO4Lj9yB22raT379UZ66SUqVl7LM7hq1+Tslkd7NqbiuDylzLq7m84wXadyDH7hi22s45DgBAtfXAAw+oX79+hmrnz5+vdu3a6aWXXtKJEycqrXW5XHr77bfVsWNHvfjii4bWb9++vV544QVDtaEmOjpa8+fPN7RjYnFxscaPH69hw4bphx9+8Plv6szMTE2ZMkXdunXTtm3bDOW55557NHjwYEO1NZn1PxEHAABA0HG7K7QrLbh2zUtNW6Z69VooPJyPrAAAAAAAAABgtr3Zh1VSWmZZvwofO/hFxEUoOiFGpbnW7dBTXl6hjL0H1aFtC8t6wlopadm29I1OiFGt5FqKTohWWGSYPOUeleaWqjCz0NJzXJJSbToGsEZaxn55PNYPtwXTOV5Q6NL+g7lq3rShpX1hndR0ruV2fT+DNVI4x3XoSJ6O5xeqbp1alvYFAADmi4iI0Pvvv68ePXro6NGjPusPHz6s2267TXfddZeGDBmiXr16qXnz5oqPj1dhYaEOHTqkTZs2aenSpX7t9ud0OvXBBx+oVq3q+3mjZ8+eevbZZw3vZrh06VItXbpULVq00JAhQ9StWzc1aNBAkZGROn78uNLT07Vu3TqtX7/erwfrDBo0SA8//HBV30aNwt3SAAAA0N6sTXKV5Nsd47+4SvK1N3uTWif3sTsKAAAAAAAAAFR7KelZlvbztYOfI8yhZuc3V8kRl3LX5agsz5rhw5S0bAb8qjGrh0Ki6kUpoU9DxSQ6/+drMYlO1elc1/pz3KahAVjD6qGfYDzHpV/Ocwb8qiePx8O1XPYNOcIaXMt/kZKWrb5ndLKsHwAAsE6LFi305ZdfasSIEYaH8lwulxYvXqzFixefcv/IyEh99NFH6t69+ymvFewmTJigvXv36sknnzT8muzsbM2dOzcg/bt27aoFCxYoPDw8IOtVd2F2BwAAAIC9XK58ZWZtsDvGn8rcu0EuV3ANHiL4jR8/Xg6Hw9B/mZmZdsc9qeTkZEPvITk52e6oAAAAAAAAqAZ27rL2RuLIeGPPI45JdKrpec0V2yzW5ES/SEmzdtAR1sk9mq+co9b9ziG2Wayantf8T2+W/09Wn+P7D+Yqv6DIkl6wnpXXsGA9xyVp5y6u5dVV1v4jKnaVWtYvWM/z3ZkHVFpWbkkvWI9r+S928rkcAIBq7cwzz9SiRYss30EvMjJS7733ns4//3xL+9rpiSee0KRJkyzv27FjR33zzTeqX7++5b1DFTv4AQAA1HCp6cvl8VT+pGS7eDxu7Upfru5dR9sdBQAAAAAAAACqNSt38IuqF6V6PRoYrg+LCFPikMY6+O0BlR83d9eQnXuyVVhaYmoP2OPH1AyFRVnzHOzIulFKHNJYYRHG+ll5jkvSTym71bNbe9P7wHope7ItOc+D/RzfuSeLa3k19RPXckmSV9L2tEx2Ha6mUjL3BfW1/MBX+yzZyY8HbwAAUP0NHjxYa9as0ZgxY5SRkWF6v8TERH388ccaOHCg6b2CzQsvvKA2bdpo6tSpqqioML3f+eefr3fffVd16tQxvVd1woAfAABADZabu0e5ueb/w+hU5ORmKPfoHiU0aGV3FAAAQtr06dN91iQnJ2v8+PGmZwEAAAAABBev16vdew5Y1i+hT0OFhft303JYRJiandvcpES/K5N008evmN4H9ki+orXdEU7KqnNckman/SCl/WBJL1hsQJySFZznuZXn+HF5uZZXY1zLf/HMT19KP1nSChaLG1FfcQrOXU7CIsKU0KehDizeb3qvdAv/fQIAAOxz2mmnaePGjZo4caLmzZtnWp/zzjtPr776qpo3t+bzejCaNGmSevTooRtvvFGpqamm9HA6nbr//vt1zz33KCzMmoezVCcM+AEAANRQbneFUtOW2R3DkNS0ZapXt4XCw/n4CgBAVT344IM+a4YMGcKAHwAAAADUQKVl5Sp2lVrSKzohRjGJTkt6AQAAAAismESnohOiVZpr7r8f8vILTV0fAAAEj3r16mnu3Lm64YYbdOedd2rTpk0BW7t9+/Z69NFHdfHFFwdszVA2aNAgbd26Vc8884yefvppHTt2LCDrhoWFaezYsXrqqafUqhWbeVQVI5EAAAA11N6sTXKV5NsdwxCXK197swP3jzYAAAAAAAAAwO/Kyios61UruZZlvQAAAAAEXq3keNN7lJWVm94DAAAEl6FDh2rjxo1aunSpLr30UtWqVbWfI8bExGjkyJFatGiRUlJSGO77g6ioKN17773Kzs7Wyy+/rN69e8vhcFRpraZNm2ry5MnatWuXPvroI4b7ThFboAAAANRALle+MrM22B3DL5l7N6hJo45yOuvYHQUAAAAAAAAAqpVSC2+ejU6ItqwXAAAAgMCz4jN9RYVbbrdH4eHsYwIAQE0zZMgQDRkyRGVlZVq+fLlWrVqlHTt2KCUlRbm5uSooKFBxcbFiYmIUHx+v+vXrq0OHDurcubP69Omjs846S7Gxsba+hzlz5mjOnDm2ZvAlNjZWt9xyi2655RYdPnxYS5Ys0ZYtW7Rjxw5lZGQoPz9fBQUFqqioUK1atRQfH69mzZqpU6dO6tKli4YPH64ePXrY/TaqFQb8AAAAaqDU9OXyeNx2x/CLx+PWrvTl6t51tN1RAAAAAAAAAKBa8Xq9lvUKi+QGXQAAACCUWfWZ3sp/pwAAgOATFRWlESNGaMSIEXZHqfYaNWqka6+9Vtdee63dUWo0fnIOAABQw+Tm7lFubobdMaokJzdDuUf32B0DAAAAAAAAAKqV6KhIy3p5yj2W9QIAAAAQeFZ8pg8PC1NERLjpfQAAAIBgwYAfAABADeJ2Vyg1bZndMU5Jatoyud0VdscAAAAAAAAAgGrDygG/0txSy3oBAAAACDwrPtNHR1v3bxQAAAAgGDDgBwAAUIPszdokV0m+3TFOicuVr73Zm+yOAQAAAAAAAADVRlRUhCIjIyzpVZhZaEkfAAAAAOYozCwwvUdcnNP0HgAAAEAwseYn9AAAALCdy5WvzKwNdscIiMy9G9SkUUc5nXXsjgIAAAAAAAAAIS8sLEytkhpr1+59pvcqzS1RyRGXYhL9v2G37Hipjm7INSHV7xon1td9d4wztQfssXlrmua8t8SSXg16JyiqbrTfr7PiHJekG68Zqa6dW5neB9Z78Mm3dTTvhOl9gv0cT27RWFMmXGJ6H1hv9fqfNf/THyzpFezn+aQbx6pt62am94HFvF7d+8jrKiouMb1VVc/xkiMuS3bwa9Oyiek9AAAAgGDCgB8AAEANkZq+XB6P2+4YAeHxuLUrfbm6dx1tdxQAAAAAAAAAqBY6tG1hyYCfJOWuy1HT85orLCLM8Gs8FR4dWXFYZXllJiaTOnZuqq6Nk0ztAXvU8zg16+ACS3odWXE4aM9xSRrRrbsSE+qa3gfWa1+/ib7fcdj0PsF+jnc5oznX8moqspNDb778pSW9gv08P7v76exwVk21qdNI63anmN6nqud47rocE1P9rkO7Fpb0AQAAAIKF8U/mAAAACFm5uXuUm5thd4yAysnNUO7RPXbHAAAAAAAAAIBqoVN76wYhyvLKdGTZIXkqPIbqPRUeHVl2yJKb5Tu2YyCkumrWJEHxtawZhAjmc7x+vXg1bFDH9D6wR0eLruXBfI5LXMurszbJTRQZac2eBsF8nic1S2S4rxrjWv6Ljm0Z8AMAAEDNwoAfAABANed2Vyg1bZndMUyRmrZMbneF3TEAAAAAAAAAIORZfQNt8f5iHfhqn0qOuCqtKzni0oGv9ql4f7EluRgKqb4cDoc6WHieB+s53qldkhwOhyW9YD0rr+XBeo5LXMurs8jICLVNbmpZv2A9zzuys1m1xrX8F1Y+gAQAAAAIBtY8zgYAAAC22Zu1Sa6SfLtjmMLlytfe7E1qndzH7igAAAAAAAAAENLatGqq8PAwud3GdvAIhLK8Mh1YvF/RCdGqlRyv6IRohUWGyVPuUWluqQozC1SaW2pZnrAwh9q3aWZZP1ivY7skbfxxl2X9gu0clxgKqe46WPz/bzCe49HRkUpOamRpT1irY7sW2pmWZVm/YDzPrf67DmtZPaQcjOd43Tq11KhhPUt7AgAAAHZjwA8AAKAac7nylZm1we4Ypsrcu0FNGnWS01nb7igAAAAAAAAAELKioyLVvnVzS2+Y/1VpbqnlNw3/mVZJTeSMibY7BkzUpUNLW/oGyzkuSZ3b23MMYI068XFq0ayhsvfnWNo3mM7xDm1aKCI83O4YMFGXjsn69MtVlvcNpvPcru9nsEbjxHqqXy9ex/IKLO0bTOd45/bsOAwAAICaJ8zuAAAAADBPavpyeTxuu2OYyuNxa1f6MrtjAAAAAAAAAEDIGzKgm90RbDW0hr//muDMnh3ljImyO4ZtasU51at7e7tjwGRDB3S3O4Ktavr7rwn6n9lFERE1d4izQb3aOq1TK7tjwEQOh0ND+tfsa1lNf/8AAAComRjwAwAAqKZyc/coNzfD7hiWyMnNUO7RPXbHAAAAAAAAAICQNvqcfjX2hvnwsDCNObe/3TFgsrjYGJ07vLfdMWwz8i99FFODBxxrigvPG1Bjdz2KjorUyLP72B0DJqtfN17DavAg54Xn92eXyhrgopED7I5gm1pxTp09rJfdMQAAAADLRdgdAAAAAIHndlcoNa1m7WqXmrZM9eq2UHg4H3GBYLNnzx5999132rZtm7Zt26asrCydOHFCJ06ckMfjUWxsrOLj45WUlKRWrVqpZ8+eGjBggHr16qWIiOr3dzo/P1/ffvutfvrpJ/3888/atWuXjh8/rhMnTqioqEhOp1Px8fFKTExUp06d1KVLFw0bNkx9+/ZVeDX8hW1JSYmys7N14sQJFRcXq6ioSBEREYqLi1OtWrXUvHlz1atXz+6Yljl48KB++OGH386NtLQ05eXlqbCwUIWFhfJ6vYqLi1Pt2rXVuHFjdejQQW+//bbdsRGi9uzZo6VLlyolJUWpqanavXu3jh8//tv5Fh4ertjYWNWtW1eNGzfWgAED9NRTT9mWNycnR9988422bdumn3/+Wenp6crPz1dBQYGKi4sVFxen+Ph4NWnS5Lfr51lnnaVevXpVy5vaioqKtG/fPhUUFKioqEgul0tRUVH/9X01Pj7e7pgB4fF4tHHjRn3//ff6+eeftXPnTh08ePC3/+9/fc916tRR27Zt1aVLF3Xr1k0jRoxQw4YN7Y4PAAAQUhrUq63hA0/X10s32R3FcoP6dVViw5rzM4ia7KJRA/Xpl6vsjmGLi0YOtDsCLNCsSYL6ndFJqzfssDuK5f4ytJfqxMfZHQMWuHj0YH2zbLPdMSzHAwlqjnatm6tb59bauqNmPNT5P438Sx85Y6LtjgEAAABYrvrdKQkAAADtzdokV0m+3TEs5XLla2/2JrVO5qmcQFUlJydr7969lda0bNlSmZmZPtc6evSoZs2apQ8//FBbt26ttDY/P1/5+fnat2+fVq9erXnz5kmSGjZsqEsuuUQ333yzunXrZvh9BKPy8nK9++67mjt3rpYtW6by8vKT1v46WHPw4EH99NNPv/153bp1dckll+jWW2/V6aefbkHqwDt69KhWrVqlVatWae3atUpPT9fBgwfl9XorfV2dOnXUvn179evXTwMGDNCIESNUv359i1L/uaFDh2rZMt/D9L7emyRlZ2fr1Vdf1cKFC33+fZGk48eP6/jx48rKylJqaupvf56ZmalWrVr5fH1lli1bFtBBKKPXDFQukNfnlJQUvfLKK/riiy+UlpZWaW1FRYVKS0uVl5enPXv2qLi42J/YAVFUVKQ33nhD8+fP19q1a+XxeE5a++vw+P79+7Vx48bf/rxhw4a64oorNGHCBHXs2NGK2AF38OBBrVixQqtWrdL69euVkZGhI0eO+HxdQkKCOnTooP79+2vgwIEaPny4atWqZUHiwNixY4defvllvf/++8rNzT1pXUFBgQoKCnTgwAHt3LlTn3/+uSQpLCxM/fr10xVXXKHrr79ecXHc4AcAAGDERaMG1cgBv4tHDbI7AixSU2+Y792jg1q2aGR3DFjk4lGDauSAH9fymqN7l9Zqk9xUuzMP2B3FUjyQoGa5ePSgGvd5ReKBBAAAAKi5wuwOAAAAgMByufKVmbXB7hi2yNy7QS7XCbtjADVabm6uJk+erKSkJD3wwAOGhpVOJicnR7NmzdLpp5+uCy+8UOnp6QFM6ltmZqYcDofP/8aPH3/SNdxut1544QW1bt1a48eP17ffflvpcF9ljh8/rtdee009evTQiBEj/mv4L5jl5+fr9ddf11/+8hc1atRIY8aM0ZNPPqnly5frwIEDhgbg8vPztWHDBs2YMUOXX365GjdurJEjR+q9995TRUWFBe/CHNu3b9cll1yiVq1a6ZFHHjmlvy/VxdKlSw39vZs+fbot+ebMmWMo35w5c2zJV5mVK1fq7LPPVufOnfX888/7HO6zm8vl0vTp05WUlKRJkyZp9erVlQ73VSYnJ0cvvviiOnXqpAsuuEC7du0KcFpzHDlyRDNmzNCAAQPUrFkzXX755ZoxY4bWrl1raLhP+uX78qpVq/TUU09pzJgxSkxM1GWXXaZFixYZuv7aJSUlRaNGjVKXLl300ksvVTrcVxmPx6NVq1Zp4sSJatmypR588EG5XK4ApwUAAKh+fr1hviZp2TxRZ5ze3u4YsNDFo2veEBCDTzVL3zM6q0kjex+SZrXO7ZPUqX2S3TFgEYfDwbUc1d6wAd1Vr07oPLAtEM44vT0PJAAAAECNxYAfAABANZOavlwej9vuGLbweNzale57NyUA5pg3b546deqkGTNmBHSXJ6/Xq88++0zdunXTs88+G7B1zbZ9+3b16dNHt99+u/bt2xfQtb/77jv17NlTEydOVElJSUDXDpRDhw5p2rRpSkpK0g033KBvv/1Wbndgvj+Vl5fryy+/1Lhx49SuXTvNmjUrpAb9CgsLdeedd6pHjx76+OOPA3ZcgD+Tk5Oj66+/XoMHD9Y333wT1ENdv1q+fLm6deumBx98UMeOHQvo2p9//rlOO+003XvvvVUeuDbb7t27dfPNNyspKUmTJ0/W6tWrA/b/m8vl0ocffqjRo0erW7dumj9/fkDWDZTy8nJNmzZNXbt21RdffBHQtY8eParp06erW7duWr58eUDXBgAAqG4cDocuHTPY7hiWunj04IDuaI/gN2xAdzWoV9vuGJZpnFhPA/ueZncMWCg8PEyXjK5Z1/JLLqhZ7xfSOcPOUHwtp90xLJOc1JgHEtQwUVGRuvD8AXbHsNSlXMsBAABQgzHgBwAAUI3k5u5Rbm6G3TFslZObodyje+yOAdQopaWluuqqq3T11VdXeYcdI1wul6ZOnaprrrlGZWVlpvUJhPnz56tXr17atGmTaT08Ho9mzpypPn36KDU11bQ+/iorK9Mjjzyi1q1b68knn9SJE+burJqZmakJEyaoV69eWrt2ram9AiE9PV29e/fWM888E1JDiQhNGzZs0Omnn645c+aExGCfJD355JMaOnSoqbu2lpeX6/HHH9egQYOUmZlpWh9/FRQU6I477lCHDh30yiuvqLS01NR+27dv15VXXqmhQ4dq586dpvYyIjMzUwMGDNCTTz5p6vUxPT1dQ4cO1RNPPGFaDwAAgOpg5Ig+apXU2O4YlmjRrKHGnNff7hiwWFRUpG4eP8ruGJaZcP0FiggPtzsGLHbRqIE1Zhe/9m2a6+xhZ9gdAxaLi43R3646z+4Ylpn4tzE8kKAGuvKi4apfL97uGJbo3qW1BvfrZncMAAAAwDYM+AEAAFQTbneFUtPYvU6SUtOWye1maAKwQk5OjoYNG6Z3333Xsp5z587VFVdcEbS7nj377LMaN26cZUOIW7duVf/+/bV+/XpL+lVm3bp16tatmx544AG5XC5Le2/dulUDBgzQww8/HLSDTCtWrFCfPn2UkpJidxTUAB999JGGDBmiAwcO2B3FEK/Xq0mTJmnatGmW/R1et26d+vXrp23btlnSrzJffPGFOnbsqOeff97y72/Lli1Tjx499Nprr1na9z9t3bpVffv21YYNGyzp5/V6dc8992jixInyeDyW9AQAAAg1kZERemDq1QoPq963FDgcDt0/5WpFR0XaHQU2GHV2X/Xt1cnuGKYb3K+r/jK0l90xYANnTLTun3KV3TFMFx4epgemXsUQaw116QVD1K1za7tjmO68s3prQB92Yq2JasfH6p5JV9gdw3TR0ZH6vylXMcQKAACAGq16/zQeAACgBtmbtUmukny7YwQFlytfe7PN2zULwC/y8vJ01llnac2aNZb3/vTTTzVx4kTL+/ry6quvaurUqZYPmB07dkxnnXWWli9fbmnf/zRr1iwNHjzY1t0EPR6P/vGPf+jCCy+0fMDQl82bN2vkyJE6duyY3VFQA3z11Ve68sorg+7vQWWmTZumF1980fK+hw4d0pAhQ7Rx40bLe0u/X7dGjx5t6zBmaWmpbrzxRt1yyy2WD7xt2LBBQ4YM0eHDhy3tK0kzZ87UtGnTLO8LAAAQKjp3aKmrLz3L7himumLsUHXvUv2HAvDnHA6H7r39SsXFxtgdxTS1a8Vq2sQruFm+BuvVvb0uHjXI7him+uu4c9WudXO7Y8Am4eFhun/KVdV6WD+hfm3dcfMldseAjQb366ZzqvkupbeMH62kZol2xwAAAABsxYAfAABANeBy5Sszy5rdLkJF5t4NcrlO2B0DqLaKioo0cuRIW3c9mjVrlj788EPb+v/Rd999p1tvvdW2/oWFhRozZox27txpaV+v16sJEyZowoQJlu1a6MvChQs1atQoFRcX2x1FkrRnzx6df/75KigosDsKaoANGzbo0ksvVUVF6Oxm/Nprr+mpp56yrX9eXp5GjhypPXv2WNq3tLRUY8eODaqdR2fPnq1rr73Wsl0EMzIyNHLkSB0/ftySfn/m6aeftnX3QgAAgGD3t6vOU6ukxnbHMEVSs0T9/bpRdseAzRo1rKfJN11kdwzTTJlwiRrUr213DNjs1r+NUZNG9e2OYYr2bZrrusvPtjsGbJbUPFE3j6++39OnTbpCteNj7Y4Bm02ZcIka1Kue39O7d2mty8YMsTsGAAAAYLsIuwMAAADg1KWmL5fHY81NuKHC43FrV/oyde862u4oQLV0ww03GNq5Lzo6WmeccYZ69uyp1q1bq2HDhoqLi5Pb7daJEye0d+9ebd68WStWrKjSzf233HKLRowYoXr16lXhXQTOkSNHdPnllxsaqImLi9OQIUPUrVs3tW3bVrVr11ZkZKROnDihgwcPaseOHVq+fLkyMzP9znH8+HGdf/75Wr9+vRo2bFiFd+Ifj8ejG264QW+++abpvfz1/fff64ILLtDixYsVEWHfjz/cbreuvPJKQztThYWFqWvXrjrzzDPVpk0bNWnSRHFxcQoLC1NBQYGOHj2qHTt2aPPmzdq8ebMF6RFqCgsLdfnll6uoqMhnbUREhHr27KlevXqpTZs2atSokeLi4uTxeFRQUKAjR45ox44dWr9+vamDw9u3bzc8HF2/fn0NGzZMXbp0UXJysuLj43/7+5Gdna0dO3Zo6dKlOnjwoN85jhw5ovPOO0/r169X7drm3yRRUlKisWPHavHixab38te8efMUHh6ut956y9Q++fn5Ov/885WTk1Ol1ycnJ2vw4MHq1KmTmjZtqvj4eFVUVOjEiRPKyMjQ9u3btXTpUp044fuhHxMmTFCfPn2qlAMAAKC6i4qK1ANTr9aNdzwrt8W7PZvJ4XDo/qlXKSY6yu4oCAKjz+mr71ds0dpN1j44y2yD+3Wt9rv9wJhYZ7Tun3KVbp32ot1RAio8PEwPTL1KERHhdkdBELhszFD9sPInbd2RYXeUgDrvrN4a1Ler3TEQBOrEx2napCt094Ov2h0loKKjI3X/1KsVFsZeJQAAAAADfgAAACEuN3ePcnOr1y8qAiUnN0O5R/cooUEru6MA1cqrr76q+fPnV1pzzjnn6G9/+5tGjRolp9Ppc82ysjItWrRIjz76qDZt2mQ4y9GjR/Xggw/q+eefN/waM9x22206evRopTWDBg3S5MmTNWrUKEVHR/tcc+vWrZo1a5beeustuVwuw1kyMzN14403asGCBYZfU1W33nprlYf72rVrpxEjRqhnz57q1KmTmjdvrvr168vpdMrj8aiwsFD79u3Trl27tGbNGn355ZdKSUnxq8d3332n22+/XTNnzqxSxkB48skntW7dukprTj/9dN1000267LLL1KBBA0Pr7tu3T++8885/Hf/k5ORKdwFzOBw+1x0yZIiWLl1qKAOCz9SpU33uQjdo0CDdeOONGjt2rGrVqmVo3bS0NL3++utavXp1IGL+xu126/rrr69090+Hw6ELL7xQt912m4YOHWrol/zr16/XrFmzNG/ePJWXlxvOk5qaqgkTJmju3LmGX1MVHo9Hl1xySZWH+7p166Zhw4apZ8+eat++vVq0aKE6derI6XSqvLxchYWFysrKUkpKilatWqVFixYpKyvLrx5vv/22unbtqjvvvLNKGY2YMGGCUlNT/XpNbGysrr/+et1888067bTTfNZXVFTo66+/1ksvvaQvv/zypHXl5eX661//qnPPPdevPAAAADVF5w4t9ffxo/TyGwvtjhIwN1x9nrp1bm13DAQJh8Oh/5tylf466SnlHM23O05ANE6sp3smX2no50GoGXp1b6/rLv+L3nr/G7ujBMykG8eqXevmdsdAkAgPD9P0u6/R9ZOeVv4J3w9ACwVJzRI15ZZL7I6BIDK4X1ddMnqQPvp8hd1RAuauWy9Ti6bmP7QUAAAACAUOb2V3fgEAgKCWk5OjxMTE//qzI0eOWLJjj1lKS0uVkVH5sFrr1q0NDUbUBG53hdaunytXSfX4hbMZnM466tv7aoWH82yLmmL8+PGGd5zZs2ePkpOTzQ1URcnJydq7d6/PupYtW1Zpp7eq9qxVq5bcbvdJB8769OmjmTNn6owzqvZkaK/Xq5kzZ+rOO++sdODjP0VHRys7Ozvg3/8yMzPVqpXvAeEWLVooOzu70q+/+OKLGjNmTJVy7N27VxMnTtTnn3/u1+v+/e9/64YbbqhSTyNmzpypiRMn+vWaOnXq6IYbbtANN9ygjh07+t1z06ZNeuqpp/TBBx9UOsj2R++8846uvvpqv/tVZujQoVq2bJnPuqioqJOey82bN9fzzz+viy66qMo3W5WWlhr+XBQKA35Lly7VsGHDfNb985//1PTp080P9Adz5szR9ddf77PuzTff1Pjx4wPW18j1OTIystJhts6dO2vmzJmGju/JGD3fjP7/2LRpUx04cOCkX+/Ro4dmz56tM88806+cv/p1YO/777/363Xvvvuurrzyyir1NOLOO+/UM88849drGjdurL///e/661//qqSkJL9e6/V6tXTpUj3xxBNasmSJ4deFh4fru+++05AhQ/zqZ8R7772ncePG+fWaiy++WM8//7yaN6/ajXvLly/XLbfcoh07dpy0xtc5+asffvhBQ4cOrVIOANbjZ00AEBher1cvvPqJ5n+61O4op+ziUYN0562XMviE/5GReVA33/W8ThQU2x3llNSrG69Xnr5dSc0TfRejRvF6vXr0uXf1+ddr7Y5yyq697C+a8NcL7I6BIJSSlqUJ015UcXGJ3VFOSaOG9fTKM7ercWJ9u6MgyLjdHv3j8Tn6bsUWu6OcsgnXj9a1l59td4xqozreQwYAAFDTsK81AABACNubtYnhPh9crnztzTa+GxiAyhUWFv7pcF9YWJgefvhhrV69usrDfdIvA0gTJ07U4sWLDe38J/1yw+6sWbOq3PNUVTbcd9ZZZ2nz5s1VHu6TfhniXLhwoZ5++mlDO1f96q677lJubm6V+1Zm+fLluuOOOwzXh4eH684779SePXv09NNPV2m4T5J69eql+fPna/Xq1ercubPh102ePFmHDx+uUs9TdbLhvrFjx2r79u26+OKLT+mGQm5Ex68qG+6bMGGCNm/efErDfVLgz7fKBqluvPFGrVmzpsrDfZLUoUMHffPNN/rnP//p1+tuv/12nThxosp9K/Puu+/6NdzndDr12GOPaffu3Zo+fbrfw33SL99bhw0bpsWLF+uLL75Qs2bNDL3O7Xbrhhtu8GsXWSNOnDih22+/3XB9RESEZs2apY8++qjKw32SNHjwYG3YsKHSwUIjw30AAAA1lcPh0KQbx2rU2X3tjnJKzh52hqZOuIThPvyp1slN9PwjExTrDN2ft9SKc2rGoxMY7sOfcjgcumfylRo+8HS7o5ySsSMH6pbrR9sdA0GqY7skPT39JkVHRdodpcrq1amlGY/eynAf/tQvu1Veq369jf+eLBhdfekIhvsAAACAP2DADwAAIES5XPnKzNpgd4yQkLl3g1wuc27SBvDLrlEffPCB7r//fr8G0CozbNgwzZ0713D9m2++GZC+gTRq1Ch9+eWXSkhICMh6U6dO1Zw5cwwf4+PHj/s91GJEcXGxrr/+elVUVBiqb9WqldatW6ennnpK9erVC0iGvn37av369br44osN1R87dkyTJ08OSO9AmDBhgj766CPVqVPH7iioAR5//HG99NJLITUMevfdd+vVV18NSOawsDBNnz5dM2fONHwD75EjR/TII4+ccu8/OnjwoG677TbD9T179tTWrVt1zz33KDY2NiAZzj//fG3ZskWDBg0yVJ+enq4HH3wwIL1/9fDDD+vIkSOGan/9jHHzzTcHpHdsbKzmzp2rCRMmBGQ9AACAmiYsLEz3Tr5SY88fYHeUKhn5lz76x51XB+znV6ieOndoqRcfv0214wPz7zAr1atTSy8/OUntWlf94Sio/sLDw/TQPeN19rCqP6jPTpdeMER3sQsrfOjZrZ2ee+QWxcbG2B3Fbw0T6mrW05PVskUju6MgiEVGRujxB27Q4H5d7Y5SJddfeY5uZRdWAAAA4H/wk2sAAIAQlZq+XB6P2+4YIcHjcWtX+jK7YwDVksPh0Ny5cw0PWvnjoosu0vjx4w3VZmZmauPGjQHPUFVnnnmmPvroI0VFRQV03WuuuUZPPfWU4fpXXnlF6enpAc1w3333KSMjw1Btv379tGHDBvXq1SugGSQpLi5O77//vq655hpD9R988IF+/PHHgOfw15VXXqmZM2dyMyEscc8992jatGl2x/DLtddeqyeeeCLg69566636v//7P8P1L7zwgg4ePBjQDLfccovy8vIM1Y4ZM0YrV65U27ZtA5pBkho2bKglS5ZoxIgRhupnzJgRsGNx4MABzZgxw3D97NmzNXbs2ID0/pXD4dDMmTN1ySWXBHRdAACAmiI8PEx3T7xc11xm7PNksLhi7FD93x3jFBEebncUhIAuHZI166nJSqhf2+4ohjVqWE+zn75d7dsw3AffIiLCNf2ua3TRqIF2R/HL3646V1NuuZifrcKQnt3a6aXHJ6pO7Ti7oxjWvGlDvfL07Upu0djuKAgB0VGRevT+v+m8s3rbHcUvE2+8UH+/bhSD2gAAAMCf4CceAAAAISg3d49yc40NV+AXObkZyj26x+4YQLVz33336bLLLjNt/UcffdTwrkWff/65aTn8Ua9ePX388cem7ZY1ZcoUw0MJbrdbzz33XMB6p6amaubMmYZqzzjjDC1evFgNGjQIWP8/Cg8P1+uvv67hw4f7rPV6vfrHP/5hWhYjOnXqpNdee41fWsISw4YN07/+9S+7Y/ilW7dueuWVV0xb/6GHHtI555xjqLasrMyvQTRfvv32W3322WeGakeOHKkPP/xQTqczYP3/yOl06uOPP1aXLl181rpcLj322GMB6TtjxgyVlZUZqr3pppv017/+NSB9/8jhcOitt95Sx44dTVkfAACgunM4HLr1r2N0/5Srgn5nHGdMlO6ZdIUm33QRAyHwS5vkpnrjhTvVq3s7u6P41KdnR73+/FR2e4JfwsLCdNetl+nOCZcqOjrS7jiVqhXn1PS7r9WN14zkZ6vwS6f2SXrjhTvVtVMru6P4NLhfV7323BQ1bWze71RQ/USEh+uBqVfr1r+NUWRkhN1xKlW3Ti09/sANuuris+yOAgAAAAQtfoINAAAQYtzuCqWmsRtdVaSmLZPbXWF3DKDa6Natm6ZPn25qjyZNmmjcuHGGalesWGFqFqOefvppNW9u7pOyX3rpJdWvX99Q7Zw5c3Ts2LEcon4PAAEAAElEQVSA9P3HP/4ht9v37rGNGjXSggULVLu2+U85j4yM1Lx58wwNEi5atEi7d+82PdOfcTgcmjNnjuGBVeBUOJ1OzZkzJ6RuXg0PD9cbb7yhmBjzbg52OBx69dVXFR8fb6j+lVdeUVFRUUB633///YbqOnXqpPfee0+RkebfWFe7dm3Nnz/f0ED6G2+8oYKCglPqV1RUZHiAs0WLFnr66adPqZ8vsbGxev3110Pq7wkAAECwGXV2X707+16d2TM4H5zQq3s7zZt9ry48fwADIaiSxIb19OJjt+nOWy+VMybK7jj/IzY2RvdOvlLP/2uCEhrUsTsOQpDD4dAlFwzW3Fn36vTT2tgd50/1791Z775yn84dHlo7VCF4NGuSoNlP366JN16o6KjgG2atXStW0+++Vk/840bVrVPL7jgIQWFhYbrm0hF668W71bl9kt1x/tTwgafr3Vfu09AB3e2OAgAAAAQ17l4AAAAIMXuzNslVkm93jJDkcuVrb/Ymu2MA1cYLL7ygiAjznwZpdPeedevWGRo+M1Pv3r1N223oPyUmJhoeriwuLta77757yj137NihDz/80FDtq6++qmbNmp1yT6MaN26sxx9/3Ged1+vV66+/bkGi/3XVVVfpzDPPtKU3ap6pU6cqKSk4f5F/Mtdff7169eplep+kpCTdddddhmrz8vK0YMGCU+751Vdfad26dT7rwsPDNXfuXMMDiIFw2mmn6c477/RZV1RUpPfee++Uen366ac6fvy4odrHHnvMkuPQv39/ww8SAAAAwJ9rnFhfL/xrgu6ZfEXQ7ObnjInSXbddphcfu01NGyfYHQchLiwsTJeMHqx5s+9Vz27Bs5tfn54d9e7sezXmvP4MsOKUtWjaUC8/OUl33Hxx0OzmVyvOqQemXq1nHrpZiQl17Y6DEBceHqarLj5Lb780Lah28xvcr6vee/X/dO7w3lzLccpaJzfRq89N0YTrRwfNbn5169TSv+77qx69/2+qX9e6n3sDAAAAoYoBPwAAgBDicuUrM2uD3TFCWubeDXK5TtgdAwh5Q4YM0dChQy3p1bdvXzVq1MhnXXFxsTIyMixIdHIPPvigZb1uuukmwzsFzp8//5T7zZ49W16v12fd6NGjdcEFF5xyP39df/31atfO901Wb7/9tqH3EUgOh0P33XefpT1Rc8XGxuqOO+6wO4ZfIiMj9cADD1jW7/bbbze066ekUx5qk6RZs2YZqpswYYJ69ux5yv38dffdd6tu3bo+6956661T6mP0WHbu3FlXXnnlKfXyx4MPPqjw8HDL+gEAAFRHDodDF543QO/OvlcD+5xma5Z+vTtr3uz7dPGoQezWjIBq2jhBMx+/TXfddplqx8falqNunVq/7drXOLG+bTlQ/YSFhenyC4dq7iz7d2Yd0r+b3n3lPo38Sx+GnhBQLVs00uynb9ekG8cqzsYHEyTUr/3brn0N6te2LQeqn4jwcF17+dl6e+bdtu/MevawM/TuK/fprME9bM0BAAAAhBJ+og0AABBCUtOXy+Oxd3eqUOfxuLUrfZndMYCQd8stt1jWy+FwaODAgYZqU1JSTE5zch06dNB5551nWb/o6GjdfPPNhmpXr16tffv2VblXSUmJ5s6da6j2oYceqnKfUxEeHq4JEyb4rNu/f79++uknCxL97qyzzlKnTp0s7Ymaa9y4capfP7Ru8Bs7dqylOw7Gx8fr+uuvN1T79ddfG9517s/s379fX375pc86p9Np2yBw7dq1dd111/msW7t2rY4dO1alHsePH9c333xjqPa2226z9Ebs1q1ba/To0Zb1AwAAqM4aJ9bX0w/+Xe+8fI/GjhwoZ0yUJX1joqM05rz+emvm3Xru4VvUtLGxB3oA/goLC9PFowbps3ce0j2Tr1C71s0s692hbQv93x3jtOCtB9m1D6Zq0bShZjx6q96ccZdGn91X0VHW7OgXGxujSy4YrHdn36cn/nEju/bBNOHhYRp38XAtfOch3TnhUrVKamxZ766dWmn63dfqkznT2bUPpmrVsolmPTVZ/352is4d3tuyHf3iazl1xdhh+uC1B/TQtOvYtQ8AAADwEwN+AAAAISI3d49yc+3dmaq6yMnNUO7RPXbHAEJWrVq1dOGFF1ras3fv3obqdu/ebXKSk7vxxhst7/nXv/7V0K5DXq/X8GDFn1m4cKHy8vJ81g0ZMkSnn356lfucqnHjxhn6hfjixYstSPO7yy+/3NJ+qNlC8Xy76aabLO9p9JpdXl6uZcuq/nCIefPmye32/YCOyy67TI0bW3cz0R9dffXVPms8Ho++/vrrKq2/dOlSlZeX+6xzOp2GsgSaHecgAABAddaudTNNm3i5Fs17xNQb51s2T9QdN1+sz+c9rHsnX6kObVuY0gf4I2dMtC48b4DefmmaqTfOR0VG6PwRZ+r1F6Zqzot3afQ5/RRj0eAs0Kl9kv5vylVaOO9hTb5prJo3bWhKnzbJTXX3xMv1+dyHdeeES9U6uYkpfYA/iotz/jJU+sp9evnJSTprcA+Fhwf+Vsr/fBDBv5/75XtGlEWDs6jZHA6Hunb+Zah04TsPacJfLzBt999fH0Tw+dxHdPvfL1JS80RT+gAAAADVnTWP5gAAAMAp8Xq92rV7hd0xqpVd6SvUoH4yT0YEqmD48OGKjo62tGf79u0N1R0+fNjkJCd3ySWXWN6zSZMm6t+/v1as8P094ocffjC8Y9UfLVq0yFDd+PHjq7R+oCQmJqp3795av359pXXLly/XPffcY0kmh8OhMWPGWNILqFOnjoYOHWp3DL/Ur1/flszt27fXaaedpu3bt/us/eGHH6r89zhUrp+9evVSo0aNfH4fXb58ua644gq/1//hhx8M1f3lL39RfLz1T3UeMWKE6tSpo/z8fMt7AwAAVGe/3jh/8ehB2rZzj9ZvTlFKWrZS07OVc9T/z14N6tVWx/ZJ6ti2hXr36KDuXVrz813Y6tcb57t2bqXJN43VynXbtT0lUylp2dqdeUAVFb4f+PKfIiMj1Ca5iTq1S1KXjska1Ler6tSOMyk9YEyd+DhdedFwXX7hUP30c4Y2bElVSlqWUtKzdSyvwO/1GibUVad2LdSxbZLO7NVRXTq05FoOWzkcDvXs1k49u7XT0WMntGLtNv2ckqmU9Gxl7D0ot9vj13pRkRFq27qZOrVL0mmdWmlgny6KrxVrUnrAmHp143XtZX/RVRefpU0/7dKmrWlKTctWSnq2jucX+r1e48R66tC2hTq1T1LfXp3VoW1zruUAAABAADDgBwAAEALyTxxScbHvnZNgXHFxnvJPHFLdOjwJFPDXkCFDLO/ZqlUrQ3V2DfiddtppatmypS29x4wZY2jAr6o7UHm9Xi1ZssRnXVhYmEaOHFmlHoHUt29fnwN+W7ZssSiN1KlTJzVsaM7TrYE/GjBggCIiQuvHfeedd56hnUjNcMEFFxga8Fu+fHmV1s/Pz9eaNWt81tWrV0+DBg2qUo9AcTgc6tOnjxYuXFhpXVWvn0a+T0nS6NGjq7T+qYqMjNR5552n+fPn29IfAACgunM4HOrWubW6dW7925/lHs1XSnq2UtKydPDwMZWUlKm0rFzl5RWKjIxQdFSkoqMj1aRRA3Vs10Id2yWpYYM6Nr4LoHL16sZr9Dn9NPqcfpKksrJyZew9qJ27srQ784BOFBSrtKxcpWXlcjgcioqMUHR0lGrHx6ptq6bq2DZJbZKbmLITIBAIYWFh6tG1rXp0bSvpl58b5xzNV0pallLTs3Xw8DGVlparpKxcFb9ey6MjFRMdpWaNE9SxXQt1aNdCDerVtvmdACfXoH5tXXj+AF14/gBJUmlZudL37NfOXVnK2HtQhYWuX67lpeVyhDkUHRWpqKhI1a0dp3atm6ljuxZqldREERH2/LwT8CU8PExn9uyoM3t2lPTLtfxwTp5S0rKVkpatI7l5v3wuL69QRXmFoqIiFRUVIWdMtJo3TVDHtknq0La56tW1/iFtAAAAQE3ATwYBAABCQGmp/09Ng28cV6BqTj/9dMt7JiQkGKqza+cdO3fMGjx4sKG6rKws5eXlqV69en6tv23bNh05csRnXbdu3YJikK179+4+aw4dOqRDhw6pcePGpufp37+/6T2AX4Xi+WbnYNvAgQMN1e3YsUNut9vvQcRly5apoqLCZ92QIUNsG3L8T927d/c54Ld161Z5PB6FhYUZXreiokI7duwwVGvn+TBo0CAG/AAAACyU0KCOBjaoo4F9TrM7CmCKqKhIdWyXpI7tkuyOApjC4XAoMaGuEhPqanC/bnbHAUwRHRWpLh2S1aVDst1RAFM4HA41Tqyvxon1NXSA79+vAQAAADCX8TsxAAAAYJvo6Fp2R6iWOK5A1XTo0MHynnXr1jVUV1paam6Qk+jXr58tfaVfBi5jYmIM1f78889+r79x40ZDdb179/Z7bTMkJRm7aSotLc3kJL/o3LmzJX0AKTTPNzuvn3379jVUV1paWqVrRnW8fhYXF2v//v1+rZuWlmbo+3P9+vVt+YzxKzvPRQAAAAAAAAAAAAAAULMx4AcAABAC6tRurNhY/3ZcQuViY+upTm3zd24Cqpvw8HBLdj37o+joaEN1dg34Gdk1ziyRkZGGh3qqMuC3ZcsWQ3XBMliUmJhoqG7fvn0mJ/mFncMqqHlC7XwLDw9Xp06dbOtfr149NWvWzFDtzp07/V6f6+cvjB67Ll26+LVuoHXq1MmvnQkBAAAAAAAAAAAAAAAChTsWAAAAQoDD4VD7NoPsjlGttG87WA6Hw+4YQMipXbu2wsPDLe8bGRlpqK6iosLkJP8rLCxMbdu2tbzvf2rXrp2huqysLL/X3rp1q6G65ORkv9c2g9PpNFRn1YBf06ZNLekDSKF3viUnJxu+vpulffv2hur83bVO4vr5K6PHzuj/F2aJiYkxvAssAAAAAAAAAAAAAABAIEXYHQAAAADGJCS0UkJCa+XmZtgdJeQ1TGithAbJdscAQpLRm//t4vV6Le/ZtGlTwzsMmqVNmzaG6g4ePOj32nv37jVUN3bsWL/XttOxY8cs6dOoUSNL+gBRUVGqW7eu3TH8EgyDbUYz+Hv9dLvdhgfbevTo4dfadvP3+mn02AXL+ZCZmWl3DAAAAAAAAAAAAAAAUMOwgx8AAEAI6dB2sMLCrN85qzoJCwtX+7ZD7I4BhCy7d1oKRomJiXZHMJzB3wEVr9erAwcOVCVS0HO5XJb0iY+Pt6QPEIrnWsOGDe2OYDiDv9fPgwcPyu12VyVS0PP3+nno0CFDdcFwPgTD93QAAAAAAAAAAAAAAFDzMOAHAAAQQpzOOkpO6m13jJCW3LK3nM7adscAUI2E0kBCXl6eX+seOXJE5eXlVYkU9Kwa8LN7d0fUHKF4riUkJNgdwfA1vKCgwK91je7eF4r8vX6eOHHCUF0onQ8AAAAAAAAAAAAAAACBxIAfAABAiGmZ1EvOmDp2xwhJTmcdtWzRy+4YAKqZWrVq2R1BcXFxhupKSkr8Wvf48eNVSBMaysrKLOnDrpewSiiea06n0+4IhjOUlpb6tS7Xz98ZPXahdD4AAAAAAAAAAAAAAAAEEgN+AAAAISY8PEId2g2xO0ZI6tBuqMLDI+yOAaCaiYqKsjuC4Z27/B3ws2qXOzt4vV67IwA1XjDsOsj103/+Xj+NHrtQOh8AAAAAAAAAAAAAAAACiQE/AACAEJSQ0EoJCa3tjhFSGia0VkKDZLtjwAIOh8NwbXl5uYlJTo3R3XH8eb8wRzDsmmU0g7/nvL8DLQDgj2D4HhYWZuzHox6Px691uX7+zuixC6XzAQAAAAAAAAAAAAAAIJC4YwEAACBEdWg7WGFh4XbHCAlhYeFq35ZdD2sKf3ZTMzpEZwej2dhpxn7BMChqNIO/uw0Gw3sDUH0Fw/fh0tJSQ3X+fr/l+vk7o8culM4HAAAAAAAAAAAAAACAQGLADwAAIEQ5nXWUnNTb7hghIbllbzmdte2OAYvExMQYrg2GG8lPxmg2f94vzBEM55FZAyqcXwDMFAzDVEYz+Hs95Pr5O6PHIpTOBwAAAAAAAAAAAAAAgECKsDsAAAAAqq5lUi8dPLRTrpJ8u6MELaezjlq26GV3DFjInxvqjx8/bl6QU1BRUaGCggJDtU6n0+Q08KWwsNDuCIYz+Dtw4s/59c0332jEiBF+rQ+gZjt27JjdEXT06FFDdbGxsX6t68/1My0tTW3btvVr/VASFxdnqC6UzgcAAAAAAAAAAAAAAIBAYgc/AACAEBYeHqEO7YbYHSOodWg3VOHhPNeiJqlVq5bh2mC9idufG9z9eb8wR05Ojt0RDGeoX7++X+saHcqQpJKSEr/WBoBQun42atTIr3W5fv4uMTHRUF0wnA9HjhyxOwIAAAAAAAAAAAAAAKiBGPADAAAIcQkJrZSQ0NruGEGpYUJrJTRItjsGLNa4cWPDtcFwI/mf8SeXP+8X5jh8+LDdEQwPJPh7vvgz0BIMOxkCZisrK7M7QrWyf/9+uyMYztCkSRO/1uX6+Tujxy6UzgcAAAAAAAAAAAAAAIBAYsAPAACgGujQdrDCwsLtjhFUwsLC1b4tuxvWRE2bNjVcu2fPHhOTVJ0/ufx5vzDHgQMHbN99KT093VCdvwMqsbGxatCggaHaAwcO+LU2EIpcLpfdEaqV9PR0eb1eWzPs2rXLUJ2/18+kpCTDtdX9+mn02Bn9/8IsHo9Hu3fvtjUDAAAAAAAAAAAAAAComRjwAwAAqAaczjpKTuptd4ygktyyt5zO2nbHgA2aNWtmuDYjI8PEJFXnz83l/rxfmMPr9do+EJCWlmaozp+Bk1+1bNnSUF1WVpbfawN/FBERYaiuoqLC5CR/7ujRo7b0ra6Ki4ttvXaUlZUZ/izQrl07v9auVauW6tevb6i2ul8/jR67lJQUk5NULjMz0/aBfQAAAAAAAAAAAAAAUDMx4AcAAFBNtEzqJWdMHbtjBAWns45atuhldwzYpF27dnI4HIZqd+7caXKaqvHnBvf27dubmARG/fjjj7b1Li8vN3wud+nSxe/1O3XqZKhu+/btfq8N/FF0dLShurKyMpOT/Ln9+/fb0rc6W7dunW29N2/ebGhY1OFwcP08BV26dDH02SwzM1NHjhyxINGfW7t2rW29AQAAAAAAAAAAAABAzcaAHwAAQDURHh6hDu2G2B0jKHRoN0Th4cZ2AEL1ExcXp9atWxuqTUlJUWFhocmJ/LdhwwbDtd27dzcxCYxas2aNbb23bNlieMeh0047ze/1e/c2tkPsli1b/F4b+COjA37Hjx83N8hJpKam2tK3Olu1apVtvVevXm2orlWrVoqNjfV7faPXz82bN/u9diiJi4tTq1atDNWGwvkAAAAAAAAAAAAAAAAQaAz4AQAAVCMJCa2UkGBssKm6apjQWgkNjN1AjOqrW7duhuo8Ho9fw3RWcLlc2rp1q6HahIQENWnSxOREMGLp0qW29V6+fLmhuqSkJNWtW9fv9c8880xDdceOHbN1J0P4ZnR3UzvVqWNsN+KcnByTk/wvr9dr+PoM4xYvXmxb7y+//NJQXf/+/au0vtHr59atW3X06NEq9QgV/fr1M1T31VdfmZzk5IyeDwAAAAAAAAAAAAAAAIHGgB8AAEA106HtYIWFhdsdwxZhYeFq35ZdDCH17dvXcO2SJUtMTOK/77//XuXl5YZq+/TpY3IaGPXzzz8rMzPTlt4LFy40VDd06NAqrd+rVy/Fx8cHNAvsERkZ6bOmoqLCgiQnl5iYaKjOjr9vmzdvVkFBgeV9q7tdu3Zp586dlvfNy8szPCA9bNiwKvUYMmSIocFat9utL774oko9QoXRY/j555/L4/GYnOZ/bd26VXv27LG8LwAAAAAAAAAAAAAAgMSAHwAAQLXjdNZRclJvu2PYIrllbzmdte2OgSDwl7/8xXDtokWLTEziP3/y+PM+Yb6PPvrI8p4HDx7U6tWrDdVWdcAvKipK5513nqHauXPnyuv1VqkPzBcVFeWzxuVyWZDk5JxOp2rX9v29PD093fIhIDt3mqvu3nzzTct7zp071/BAfVUH/Jo2barevY19Ln/77ber1CNUDB8+3FDdoUOHbPm79vrrr1veEwAAAAAAAAAAAAAA4FcM+AEAAFRDLZN6yRlTx+4YlnI666hli152x0CQOP300w3vAvXzzz/rxx9/NDeQQaWlpfrggw8M159zzjkmpoG/XnvtNct7vvHGG3K73T7rHA7HKQ2Ejh071lBdWlqavv766yr3gbmM7MSYl5dnQZLKtWnTxmdNYWGh5bu+vfPOO5b2q0nefPNNS4dLvV6vZs+ebaj29NNPV6tWrarcy+j18/vvv1dqamqV+wS7Vq1aqXv37oZqX375ZZPT/LfCwsJqP2AJAAAAAAAAAAAAAACCGwN+AAAA1VB4eIQ6tBtidwxLdWg3ROHhEXbHQJBwOBy64IILDNcbvcnfbB999JGOHTtmqLZdu3bq2LGjyYngj9TUVH311VeW9SstLTV87vbv31/Nmzevcq8LLrhAdevWNVT7z3/+s8p9YK6GDRv6rDl48KAFSSpn9Nq2bNkyk5P87rvvvqvWw1d2y83N1UsvvWRZvw8//FA7duwwVHvFFVecUq+rrrpK4eHhPuu8Xq8eeOCBU+oV7Iweyy+++EIbN240Oc3vnn/+eR0/ftyyfgAAAAAAAAAAAAAAAH/EgB8AAEA1lZDQSgkJre2OYYmGCa2V0KDqO6ugeho/frzh2jlz5ig7O9u8MAa43W7961//Mlx//fXXm5gGVWXlcNurr76qffv2Gao91QGV2NhY/e1vfzNUu27dOnY6C1KNGjXyWVNSUmL4vDJL165dDdV9/vnnJif53fTp0y3rVVM9/vjjys3NNb1PaWmp4UG68PBwXXnllafUr0WLFrrwwgsN1X744Ydavnz5KfULZuPGjVNYmLEfR991110mp/nFoUOH9PTTT1vSCwAAAAAAAAAAAAAA4GQY8AMAAKjGOrQdrLAw3zuGhLKwsHC1b1uzdiuEMQMGDFC7du0M1ZaWluq+++4zOVHlXnvtNe3cudNQbXh4uK677jqTE6EqNmzYoDfeeMP0PkeOHDE8cBQbG3vKAyqSdNtttykiwthOqRMnTtTevXtPuScCq02bNobqNm3aZHKSyg0cONBQ3TfffKP9+/ebnEaaN2+eVq5caXqfmu7o0aOaPHmy6X0efPBB7dq1y1Dt2LFjlZSUdMo9b7/9dsO11113nfLz80+5ZzBKSkrS2LFjDdUuXbpU//73v01OJE2YMKHaHm8AAAAAAAAAAAAAABA6GPADAACoxpzOOkpO6m13DFMlt+wtp7O23TEQpO644w7DtXPnztWnn35qYpqT2717t+68807D9ZdffrmaNm1qYiKcijvvvNP0HdBuvfVWHTt2zFDtddddpwYNGpxyz+TkZN10002GavPz8zVmzBiGJoJM+/btDdUtWbLE5CSVO/PMMxUTE+Ozzu1269lnnzU1S3Z2tl/DWTg17777rl5//XXT1l+yZImefPJJw/X+fG+uzMCBA3X++ecbqs3MzNRll12m8vLygPQONv4c0zvuuEM//fSTaVlmzJhh22c/AAAAAAAAAAAAAACA/8SAHwAAQDXXMqmXnDF17I5hCqezjlq26GV3DASxv/3tb2rZsqXh+uuvv14//vijeYH+RF5eni688EIVFhYaqg8PD9c///lPk1PhVOTl5eniiy9WaWmpKes/++yz+uijjwzVhoeH+zXo6suDDz6oOnWMfU/56aefNGrUKB0/fjxg/U9FWVmZXn31VX333Xd2R7FN797Ghv7nz59v63BmdHS0/vKXvxiqffnll5Wenm5KjsLCQl144YXKzc01ZX38uQkTJujbb78N+Lo//vijrrjiCrndbkP15557rvr06ROw/k8//bThXVC//vprXXnllaZ9H/FXYWGhnnzySW3duvWU1+rbt6/OPfdcQ7VFRUUaM2aMsrKyTrnvHy1cuFBTp04N+LoAAAAAAAAAAAAAAABVwYAfAABANRceHqEO7YbYHcMUHdoNUXi4sRulUTNFRUX5NQyXn5+vc845Rxs2bDAx1e8OHz6sc845R9u3bzf8muuuu87wLlywz/r163XZZZeprKwsoOvOnTtXd911l+H6G264Qe3atQtY/4SEBD322GOG61euXKmBAwdq9+7dAcvgr4KCAr344otq166d/v73v+vgwYO2ZbFb7969FR0d7bMuLy9Pt9xyizwejwWp/tyll15qqK6kpERXX311wAehTpw4oXPPPVebN28O6LrwraysTKNHj9bChQsDtuaaNWt01llnGR44joiICPjukJ06ddKUKVMM13/88cc6++yzdeTIkYDm8EdOTo4eeeQRtWrVStOmTdOJEycCsu4zzzxjeNhx7969Gjx4sFJSUgLSW5Lee+89XXLJJaqoqAjYmgAAAAAAAAAAAAAAAKeCAT8AAIAaICGhlRISWtsdI6AaJrRWQoNWdsdACBg/fryGDRtmuP7IkSMaPHiwZs+eLa/Xa1qupUuX6owzzvBrmLBRo0Z66qmnTMuEwFq4cKFGjhypo0ePBmS95557Ttddd53hoavatWvroYceCkjv/3TLLbdo9OjRhut//vlnde/eXbNmzbJ0YGzr1q2aPHmymjdvrkmTJpmyA1SoiY6O1ogRIwzVvvfeexoyZIhWrFhhcqo/d9FFF6lu3bqGatetW6dx48YFbKA2JSVFffv21apVqwKyHk4uMjLyT/+8pKREF154oe655x6VlJRUeX23263nnntOQ4YM0bFjxwy/buLEierUqVOV+57Mww8/rJ49exquX758uU477TR9+OGHAc9SmTVr1uj6669XixYt9MADDwR8F8vOnTvrtttuM1y/d+9e9e7dW2+//fYp9S0qKtKkSZM0btw4lZeX/2nNyc5JAAAAAAAAAAAAAAAAMzHgBwAAUEN0aDtYYWHhdscIiLCwcLVvWz13JUTgORwOvf7664qLizP8mpKSEt1yyy3q37+/vvvuu4DmSUlJ0dVXX61hw4Zp3759fr121qxZql+/fkDz4NS1aNHipF/79ttv1bNnT33++edVXj8rK0sXXnihpkyZ4teA3BNPPKHExMQq963MG2+8Uen7/qOioiJNmDBB3bp100cffWTarkk7d+7UE088oe7du6t79+6aMWNGwHacqi4uv/xyw7UrV67U4MGD1bx5c11xxRV68MEH9dprr+mjjz7S559/rkWLFvn87/vvv69Szri4ON10002G6z/55BONGDFCe/furVI/SSouLtbDDz+sHj16aOfOnX9aY9bfqZrqxhtvVEJCwp9+zev16oknnlCnTp00Z84cv3ZpdLvd+uSTT9SzZ09NmTLlpMNcf6ZLly569NFHDdf7IyoqSu+9957q1Klj+DU5OTm67LLLNGDAAH399demPHzA6/Vq8+bN+uc//6m2bduqf//+fh9zfz366KPq3Lmz4frCwkJdd911GjhwoN/HoaioSLNnz1b79u314osvnrQuISHBr+sOAAAAAAAAAAAAAABAoETYHQAAAADWcDrrKDmptzIy19od5ZQlt+wtp7O23TEQQlq1aqW33npLl156qV83hK9du1YjRoxQ165dNW7cOI0dO1YdOnTwu/+RI0e0aNEiffDBB1W+OX/KlCkaO3as36+D+YYPH66ioiJ99NFHf/r1rKwsXXDBBRo8eLBuv/12jRw5UlFRUT7X3b59u2bNmqU333xTLpfLr0yjRo3SzTff7Ndr/JGQkKDFixdr4MCBysvLM/y6n3/+WZdeeqmaNm2qq666SqNGjVL//v0VEeH/jye8Xq92796t1atXa/Xq1frmm2+UkZHh9zo1zWWXXaa7775bhw4dMvya/fv36/33369Sv5YtWyozM7NKr50yZYpmzZqlgoICQ/UrVqxQly5ddOutt+qWW25RcnKyodft3LlT8+bN0yuvvFLpTmUdOnTQxIkT/dp5DJVr2LChXnjhBV111VUnrcnMzNT111+vO++8U+eff77OOussnXbaaWrZsqVq164th8OhwsJCZWdn6+eff9bSpUv1xRdfaP/+/X7niYmJ0bvvvquYmJhTeVuVat++vRYsWKBzzz3XrwG61atX65xzzlHbtm01btw4jRo1SmeccYYcDoffGdxut1JSUn67fi5ZskQHDx70e51T4XQ69e6776pv375+7dK4atUqnXPOOWrdurVGjRqlQYMGqXPnzmratKlq1aolt9utEydOKCMjQ9u2bdO3336rxYsXKz8/3+faL7zwgnbt2nUqbwsAAAAAAAAAAAAAAKBKGPADAACoQVom9dLBQzvlKvF9g2uwcjrrqGWLXnbHQAi6+OKL9dhjj+mee+7x+7Xbtm3Tvffeq3vvvVcJCQnq1auX2rdvrxYtWqhRo0ZyOp2Kjo5WeXm5SkpKlJeXp6ysLO3Zs0ebN28+5aGjMWPG6KmnnjqlNWCumTNn6vvvv9exY8dOWrN8+XItX75ctWrV0tChQ9WtWze1adNGtWvXVkREhAoLC3Xw4EHt2LFDy5Yt0549e6qUJSkpSa+//npV34phnTt31ueff65zzjlHRUVFfr32wIEDeuqpp/TUU0/J6XSqe/fuOu2009SiRQs1a9ZMcXFxcjqd8nq9KikpUUlJiXJycnT48GEdOHBAqampSklJUXFxsUnvrvqKjo7W/fffHxJDao0aNdL999+vadOmGX5NUVGRnnzyST311FM6/fTTNWDAALVv316JiYlyOp0qLS1VQUGBsrKylJqaqtWrVysrK8vnujExMfrggw+0efPmU3lL+BPjxo3TF198oXfffbfSuqNHj+qdd97RO++8Y0oOh8OhuXPnqlu3bqas/5+GDh2quXPn6oorrpDb7fbrtenp6XrooYf00EMPKT4+Xj169FCXLl3UvHlzNWnSRHFxcYqJiZHb7VZJSYlcLpeOHDmiw4cPa9++fUpNTdWuXbtM3Z3PqO7du+udd97RZZdd5vfDDzIyMjRjxgzNmDEjIFnGjRuncePGafr06QFZDwAAAAAAAAAAAAAAwB8M+AEAANQg4eER6tBuiH7cttDuKFXWod0QhYfzMRZVM23aNBUVFenhhx+u8hq5ublasmSJlixZEsBkJzdy5Ei99957CgsLs6QfqqZRo0Z67733NHLkSFVUVFRaW1hYqEWLFmnRokUBz1G7dm19+eWXSkxMDPjaf2bAgAH6/vvvNXLkyEp3PquMy+XS2rVrtXZt6O8wGypuueUWvfvuu1q9erXdUXyaMmWKPv30U7/PD6/Xqy1btmjLli2nnCEsLEzvvPOOunXrxoCfSd544w1lZmbaek4+++yzuvjiiy3rd8kll2jBggW6/PLLqzysXFBQ8NvweKi65JJL9Mwzz2jKlCm2ZejXr58lg/EAAAAAAAAAAAAAAAAnwx2iAAAANUxCQislJLS2O0aVNExorYQGreyOgRD30EMPacaMGXI4HHZH8emaa67RggUL5HQ67Y4CA84+++yA7SRUFXFxcVqwYIG6dOliad8zzzxTq1atUtu2bS3ti6oLCwvTJ598otatg//zQEREhN577z01aNDAtgyzZ8/WJZdcYlv/miA6OloLFixQ165dLe/tcDj04osv6vbb/x97dx5nZV3+j/+aDWZYBhlWkUX2TXABBVRARc0Fd1Pso6XlvuVSWmbLNz+apaWWmJqfLJfU7GMaGpIL7oiCKCqCCKiggojswzozvz/6ZfVJOffAOeee5fl8PHg8Sq9zX685zsO5vOd93eeCvPceO3ZsPPHEE9GhQ4e8965LLrzwwrjhhhtSmc122mmneOihh6K0tDTvvQEAAAAAAAAA/sGCHwBAI9S316goLCxKO0atFBYWRZ9eo9OOQQNx3nnnxWOPPRY77LBD2lE+V2lpadx4441xxx13RHGxT6ysT84666z42c9+lvclhe222y4ee+yx2HffffPa9x/69OkTM2bMiJNPPjmV/tRehw4dYsqUKbH33nunHSWjHXfcMR599NFo2bJlXvsWFxfHb37zmzjttNPy2rexateuXTz77LMxenT+5r3mzZvHH/7whzj33HPz1vP/Gj58eMycOTMOOeSQ1DLUBeeff37cfffd0axZs7z1HD16dDz33HPRrl27vPUEAAAAAAAAAPg8FvwAABqhsrJWsWPX3dOOUSs7dts9ysrK045BAzJmzJiYOXNmnHjiiXXq0/xGjBgR06ZNi3POOSftKGylb3/723HHHXdESUlJXvrttNNO8cILL8SIESPy0u+LtGjRIm6//fZ44IEHYscdd0w1yxfZa6+9Yuedd047Rp3Rvn37ePrpp+PXv/51nV14/oehQ4fG448/Hh07dsxLv+222y4effTROPXUU/PSj79r1apVTJo0KS688MIoLMztbcudd945pk2bFuPGjctpnyTat28fjzzySNx66611ctmssLAwDjrooJz/u/2EE06IadOm5fyTHAsLC+PCCy+MSZMmRatWrXLaCwAAAAAAAAAgCQt+AACNVLeuQ6KstH4caC0raxXdugxJOwYNUEVFRdx5553x8ssvp/bJZ//Qq1evuP/+++OFF16IgQMHppqFbXfiiSfGSy+9FLvsskvOehQWFsZZZ50VL730UvTv3z9nfWrrqKOOitmzZ8fVV18dFRUVaceJzp07x8UXXxxvvvlmPPfcczlfHKlvCgsL48wzz4wFCxbEPffcE0ceeWReP0GrNvbYY4+8/Pv60EMPjddffz3GjBmT0z58vqZNm8YvfvGLeO6553Ly79DWrVvHddddFy+//HL069cv69ffFqeddlq88847cemll0bz5s3TjhN9+vSJH/7whzF//vyYOHFidO7cOec9+/fvH9OmTYuf//znsd1222X9+rvssks8//zz8Ytf/CKaNm2a9esDAAAAAAAAAGwNC34AAI1UUVFx9O09Ou0YifTtPTqKiorTjkEDNmTIkHjyySdj+vTpceqpp+btUH1hYWEcfPDBMWHChJgzZ04ce+yxeelLfuyyyy7x8ssvx7XXXhvbb799Vq+97777xvTp0+Omm26KsrKyrF47G5o2bRqXXnppLFq0KG699dYYPHhwXvv37ds3LrzwwnjmmWfi/fffj2uvvTYGDBiQ1wz1TUlJSYwbNy7+/Oc/x4oVK+LFF1+MX/3qV3HeeefFwQcfHLvsskt07tw5WrZsGU2bNs35p6t9kc6dO8eTTz4Zv/3tb6Nr165ZvfbAgQPjvvvui4cffjgvi0xs2YgRI2LGjBkxceLE2G+//bb5e6579+7x05/+NObNmxcXXHBB3j5ltbbKy8vj6quvjkWLFsXPf/7z6NmzZ956FxQUxC677BLf+973Yvr06TFnzpz40Y9+FN26dctbhoiIJk2axEUXXRTz5s2Ln/zkJ9vcv7CwMMaMGRMTJ06MGTNmxPDhw7OUFAAAAAAAAAAgOwpqampq0g4BAGydpUuXRvv27f/tr3388cfRrl27lBJtuw0bNsT8+fO3WNOjRw+ftpBFr74+IT75ZMvveZrate0ROw86LO0YNDJr166Nxx57LB5++OGYNGlSLFq0KGvXLi8vj3333TfGjh0bhx56aNYXv8ied999N7p3756x7mtf+1r87ne/22LNhg0b4q677oq77rornnvuudi8eXOt87Rq1SqOPvroOPfcc2O33Xar9evTNmvWrHjwwQfjL3/5S0yfPn2r3oPPU1hYGL169Yo999wzRo0aFfvss0+if27Uf5s2bYp77rkn7rjjjnjqqaeiqqqq1tcoKyuLAw44IE477bQ49NBDo6CgYIv1v/vd7+KUU07JeN3bb789Tj755Frn4Yt9/PHH8cgjj8Tf/va3mDlzZsydOzc2bdr0hfXbbbddDBw4MPbdd984+OCDY/jw4aktpm6radOmxYMPPhgTJkyIN954I6qrq7Ny3eLi4ujfv3/stddeMXLkyNh3333r5FxSXV0dL7zwQjz66KPx5JNPxptvvhmrVq36wvqSkpLo3bt3DB48OL70pS/FoYceWq//GxnYdu41AQAAANDQNcQzZAAAjY0FPwCoxxrizRmHrvJv3bqVMeWlO6O6uvaH4nOtsLAoRuzx1SgrK087Co3ckiVLYvr06fHaa6/FggULYtGiRbFw4cL49NNPY926dbF+/fpYv359lJSURFlZWZSWlkZ5eXnssMMO0aVLl+jatWsMGjQodtttt+jVq1fGBRLqhmwu+P2rFStWxOOPPx6vvvpqvPnmm/H222/HihUrYvXq1VFZWRmlpaXRsmXLaN++ffTr1y8GDhwY++yzT+y5555RXNwwPs10/fr1MWPGjHj55Zdj7ty58f7778d7770Xy5Yti8rKyqisrIwNGzZEcXFxNG3aNJo1axZt2rSJdu3aRadOnaJ79+7Ro0ePGDBgQOy88855+9RN6q6lS5fGs88+G1OmTInZs2fH/Pnz4+OPP461a9fGhg0bolmzZlFeXh6tW7eOvn37xqBBg2Lo0KExZsyYOvkpmGS2adOmeO+992LlypWxevXqWL9+fZSVlUXLli1j++23r5OLatmwevXqmD59ekyfPj3eeeedeP/99+P999+PTz/9NCorK2PdunWxcePGKCkpiSZNmkSLFi2ibdu20a5du9hhhx2ie/fu0bNnzxg4cGDstNNOUVpamvaXtFU+/PDDWLx48Wc/O5s1axYtW7aMVq1aRdeuXevsJzQC6XCvCQAAAICGriGeIQMAaGws+AFAPdYQb844dJWO+Qumxvx3X0w7xn/o0X149NhxWNoxgEYqVwt+AABA/rjXBAAAAEBD1xDPkAEANDaFaQcAACB93boOibLSVmnH+DdlZa2iW5chaccAAAAAAAAAAAAAAMgZC34AAERRUXH07T067Rj/pm+v0VFUVJx2DAAAAAAAAAAAAACAnLHgBwBARES0bds92rbtkXaMiIho17ZHtG3bPe0YAAAAAAAAAAAAAAA5ZcEPAIDP9O01KgoLi1LNUFhYFH161a1PEwQAAAAAAAAAAAAAyAULfgAAfKasrFXs2HX3VDPs2G33KCsrTzUDAAAAAAAAAAAAAEA+WPADAODfdOs6JMpKW6XSu6ysVXTrMiSV3gAAAAAAAAAAAAAA+WbBDwCAf1NUVBx9e49OpXffXqOjqKg4ld4AAAAAAAAAAAAAAPlmwQ8AgP/Qtm33aNu2R157tmvbI9q27Z7XngAAAAAAAAAAAAAAabLgBwDA5+rba1QUFhblpVdhYVH06ZXOpwYCAAAAAAAAAAAAAKTFgh8AAJ+rrKxV7Nh197z02rHb7lFWVp6XXgAAAAAAAAAAAAAAdYUFPwAAvlC3rkOirLRVTnuUlbWKbl2G5LQHAAAAAAAAAAAAAEBdZMEPAIAvVFRUHH17j85pj769RkdRUXFOewAAAAAAAAAAAAAA1EUW/AAA2KK2bbtH2zbdc3TtHtG2bW6uDQAAAAAAAAAAAABQ11nwAwAgo769R0dhYVFWr1lYWBR9e43K6jUBAAAAAAAAAAAAAOoTC34AAGRUVtYqduy6e1avuWO33aOsrFVWrwkAAAAAAAAAAAAAUJ9Y8AMAIJFuXYdEWWl2FvLKylpFty5DsnItAAAAAAAAAAAAAID6yoIfAACJFBUVR9/eo7Nyrb69RkdRUXFWrgUAAAAAAAAAAAAAUF9Z8AMASNkbb7wRb7zxRtoxEmnbtnu0bdN9G6/RI9q23bZrAAD5VZ/mFQCg8TKzAAB13cCBA2PgwIFpxwAA+ELmFQAASIcFPwAAaqVv79FRWFi0Va8tLCyKvr1GZTkRAAAAAAAAAAAAAED9ZMEPAIBaKStrFTt23X2rXrtjt92jrKxVlhMBAAAAAAAAAAAAANRPxWkHAACg/unWdUh8tPitWLd+ZeLXlJW1im5dhuQwFUB27bjjjlFTU5N2DAAAAAAAAAAAAKAB8wl+AADUWlFRcfTtPbpWr+nba3QUFXm+BAAAAAAAAAAAAADAP1jwAwBgq7Rt2z3atumesLZHtG2brBYAAAAAAAAAAAAAoLGw4AcAwFbr23t0FBYWbbGmsLAo+vYaladEAAAAAAAAAAAAAAD1hwU/AAC2WllZq9ix6+5brNmx2+5RVtYqT4kAAAAAAAAAAAAAAOoPC34AAGyTbl2HxHatOn3u39uuVafo1mVInhMBAAAAAAAAAAAAANQPFvwAANgmRUXFscvgw2P7jv2joKAoIiIKCopi+479Y5fBh0dRUXHKCQEAAAAAAAAAAAAA6ianrQEA2GbFxU1jYP8Do0+vUbF584YoLm4aJSWlaccCAAAAAAAAAAAAAKjTLPgBAJA1JSWlFvsAAAAAAAAAAAAAABIqTDsAAAAAAAAAAAAAAAAAADRGFvwAAAAAAAAAAAAAAAAAIAUW/AAAAAAAAAAAAAAAAAAgBRb8AAAAAAAAAAAAAAAAACAFFvwAAAAAAAAAAAAAAAAAIAUW/AAAAAAAAAAAAAAAAAAgBRb8AAAAAAAAAAAAAAAAACAFFvwAAAAAAAAAAAAAAAAAIAUW/AAAAAAAAAAAAAAAAAAgBRb8AAAAAAAAAAAAAAAAACAFFvwAAAAAAAAAAAAAAAAAIAUW/AAAAAAAAAAAAAAAAAAgBRb8AIB6p6amJu0IAAAAANQD7iMBAAAAAAAAdZ0FPwCgTikoKMhY42AWAAAAAEkkuY9UWOjXZQAAAAAAAEB6/MYSAKhTkhyoqqqqykMSAAAAAOq7JPeRkjxwCgAAAAAAACBXLPgBAHVKUVFRxpqNGzfmIQkAAAAA9V2m+0gFBQWJ7kcBAAAAAAAA5IoFPwCgTikoKIgmTZpsscaCHwAAAABJZLqPVFJS4hP8AAAAAAAAgFRZ8AMA6hwLfgAAAABkQ6b7SJnuQwEAAAAAAADkmgU/AKDOyXSwav369VFTU5OnNAAAAADURzU1NbF+/fot1ljwAwAAAAAAANJmwQ8AqHNKSkq2+PerqqqisrIyT2kAAAAAqI8qKyujqqpqizWZ7kMBAAAAAAAA5JoFPwCgzikrK8tYs3r16jwkAQAAAKC+SnL/KMl9KAAAAAAAAIBcsuAHANQ5paWlGZ+evmrVqoxPYAcAAACgcaqqqopVq1ZtsaakpCRKS0vzlAgAAAAAAADg81nwAwDqnIKCgigvL99iTVVVVXzyySd5SgQAAABAfbJ06dKMD4cqLy+PgoKCPCUCAAAAAAAA+HwW/ACAOqlly5YZaz799NNYv359HtIAAAAAUF+sX78+li9fnrEuyf0nAAAAAAAAgFyz4AcA1EmlpaVRUlKSsW7hwoWxYcOGPCQCAAAAoK6rqamJhQsXZqwrKSmJ0tLSPCQCAAAAAAAA2DILfgBAnVRQUBDt2rXLWLd58+Z4//33fZIfAAAAQCNXXV0dmzZtis2bN2esbdeuXRQUFOQhFQAAAAAAAMCWWfADAOqs8vLyaNasWca6zZs3x4IFC2Lx4sVRVVWVh2QAAAAA1BVVVVWxePHiRIt9ERHNmjWL8vLyHKcCAAAAAAAASKY47QAAAF+koKAgOnbsGPPnz09Uv3z58li1alWUl5dHy5Yto1mzZp7EDgAAANAA1dTURGVlZaxevTpWrVpVq4c+dezY0T0jAAAAAAAAoM6w4AcA1GlNmzaNioqK+PTTTxPVV1VVxfLly2P58uVRVFQUpaWl0aRJk8/+FBUVRUFBQZ06xFVTUxMRERs2bEg5CQDA5zOvAABpqampiZqamqiqqoqNGzd+9mf9+vW1Wur7h4qKimjatGkOkgIAAAAAAABsHQt+AECd165du9i4cWOsWbOmVq+rqqqKtWvXxtq1a3OULDs2bdoUEZH4kwoBAPLNvAIA1Bf/eDDB52nRokW0a9cuj2kAAAAAAAAAMitMOwAAQCaFhYWxww47RIsWLdKOAgAAAEAdVVlZGQsXLvzcv9eiRYvYYYcdorDQr8YAAAAAAACAusVvMQGAesGSHwAAAABbsnjx4ti8efN//HXLfQAAAAAAAEBd5jeZAEC98Y8lv4qKirSjAAAAAFAPVFRUWO4DAAAAAAAA6rTitAMAANRGYWFhdOjQIbbbbrtYvHhxVFZWph1pm82fPz8iIgYOHJhyEgCAz2deAQDqm2bNmkXHjh2jadOmaUcBAAAAAAAA2CILfgBAvdS0adPo2rVrrFq1KpYuXRqbNm1KOxIAAAAAKfv000+jU6dOUV5eHgUFBWnHAQAAAAAAAMjIgh8AUG8VFBREq1atory8PNavXx+rV6+OVatWWfYDAAAAaERKSkqivLw8brnllvjwww/j9NNPTzsSAAAAAAAAQGIW/ACAeq+goCDKysqirKws2rVrF+vXr49169bFpk2bYuPGjbFx48bYtGlT1NTUpB0VAAAAgK1UUFAQJSUl0aRJk2jSpEmUlJREWVlZlJaWRkFBQXz44YdpRwQAAAAAAACoNQt+AECD8q/Lfv+qpqYmqqqqoqamJqqrq1NK9/nOOuusiIiYNGlSykkAAD6feQUASFNhYWEUFBREUVFRFBQUpB0HAAAAAAAAIKss+AEAjUJBQUEUF9fN0Wfp0qUREdG0adOUkwAAfD7zCgAAAAAAAAAAQG4Uph0AAAAAAAAAAAAAAAAAABojC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAEBODRw4MAYOHJh2DMgp3+cA9Z9/l9PQ+R4HqP/8u5zGwPc5QP3m3+M0Br7PAQAAyAULfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJACC34AAAAAAAAAAAAAAAAAkAILfgAAAAAAAAAAAAAAAACQAgt+AAAAAAAAAAAAAAAAAJCC4rQDAABbr7q6+j/+2ieffJJCErbF5s2bIyJi6dKlKSeB3PA9TmPg+5yGzvc4jYHvcxo63+M0Br7Paeh8j9MY+D6nofM9TkPne5zGwPc5DZ3v8frp886Lfd65MgAA6q6CmpqamrRDAABb56233ooBAwakHQMAAAAAAAAAAIA6YtasWdG/f/+0YwAAkFBh2gEAAAAAAAAAAAAAAAAAoDGy4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApKKipqalJOwQAsHU2b94cc+fO/be/VlFREYWFdvgBAAAAAAAAAAAauurq6vj000//7a/17t07iouLU0oEAEBtWfADAAAAAAAAAAAAAAAAgBT4eB8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIgQU/AAAAAAAAAAAAAAAAAEiBBT8AAAAAAAAAAAAAAAAASIEFPwAAAAAAAAAAAAAAAABIQXHaAQAA0rBw4cKYNGlSzJw5M2bNmhULFiyI1atXx6pVq6KmpiZatmwZLVu2jK5du8aAAQNi0KBBccABB0Tv3r3Tjt4gLF68OCZPnhxvvPFGzJkzJ+bOnRvLly+P1atXx5o1a6K4uPizfwatW7eOXr16RZ8+faJPnz6x6667xoABA6KgoCDtLwMAcsq8khuVlZXx+uuvx7x58+Ldd9/97M/ixYtjzZo1sXbt2lizZk2sX78+mjRpEk2bNo1WrVpFx44do1OnTtG3b98YOHBgDBs2LPr06ZP2lwMA22TTpk3x7LPPxvPPPx+zZs2K2bNnx9KlS2P16tWxdu3aKCsri/Ly8qioqIi+ffvGgAEDYtiwYbHffvtFWVlZ2vHrlaVLl8akSZNixowZMWvWrJg3b16sXLkyVq9eHZs2bYqWLVtGeXl5dOrUKQYMGBADBw6M/fbbL3beeee0owNAqswrufHee+99dr/pH/dG3n///VixYsVn90bWrl0bNTU1UVpaGmVlZdGuXbvo2LFj7LjjjjFw4MAYPHhwjBgxIpo3b572lwMAqTKvpGfz5s3x0ksvxdSpU2POnDkxZ86cWLhwYaxZsyZWr14dGzZsiBYtWnz2O7Uddtjhs7Mn/fv3j2HDhkWrVq3S/jIAACAiIgpqampq0g4BAJAPK1asiNtuuy3uvPPOmDlz5lZdo3fv3vGVr3wlzjrrrOjQoUOWEzZs77zzTvzP//xPPPzww/HGG29s07UqKipi7733jlGjRsXYsWOjb9++WUoJAOkyr2TXhg0bYurUqfHyyy/HjBkz4pVXXok5c+ZEdXV1Vq7fsWPHOOigg+L444+P/fffP4qLPUsLgPrhueeei/Hjx8df//rXWLVqVa1fX1ZWFvvvv3+cddZZcdBBB3kIzxdYt25d3HnnnfHb3/42Xn755a2aQTp37hxf/vKX47zzzovu3bvnICUA1E3mlex577334vnnn49XXnklZsyYETNmzIjly5dn5drFxcWx++67xzHHHBPHHXdcdOnSJSvXBYD6wLySjo0bN8aDDz4Yf/jDH2Ly5Mlb9d7/Q2FhYQwePDj23nvv2H///ePAAw+0dAkAQGos+AEADd6aNWviiiuuiPHjx8fatWuzcs0mTZrE1772tbjqqquibdu2WblmQzVp0qT42c9+FpMnT45cjZ79+/ePo48+Ok466STLfgDUS+aV7Ni4cWNMnTo1nnrqqZg8eXJMmTIl1q9fn5fenTt3jnPPPTfOOuusKC8vz0tPAKitZ555Ji6++OKYNm1a1q7Zt2/fuPrqq+PII4/M2jXru02bNsUvfvGLuOaaa2LZsmVZuWZhYWEcffTRcc0118SOO+6YlWsCQF1kXtl2Cxcu/OzeyFNPPRULFizIS9/CwsI4/PDD41vf+lbstddeeekJAGkwr6Tj008/jWuvvTZuu+22WLp0aU56NGvWLA466KA4+uijY9y4cVFUVJSTPgAA8Hks+AEADdpf/vKXOOecc2LRokU5uX5FRUVce+21ccopp+Tk+vXZq6++Gt/+9rfj8ccfz1vPc845J2688ca89QOAbDCvZM/3v//9+O///u9UM7Rv3z6uuOKKOO200zxtF4A6Y8WKFfHNb34z7rjjjpz1GDt2bNxyyy3RqVOnnPWoD55//vk47bTT4q233srJ9Zs1axY//OEP49vf/rZZA4AGxbySHVVVVVFcXJx2jDjyyCPj5z//efTo0SPtKACQNeaVdGzYsCF++ctfxlVXXRUrVqzIW9+lS5c2mgdoAgBQNxSmHQAAIBeqq6vj8ssvjyOPPDJnh+Uj/v6EsK9//etx+umnx8aNG3PWpz6pqqqKK664Inbfffe8LvcBQH1jXsm+uvAcq48//jjOOOOMOOCAA+KDDz5IOw4AxKxZs2KPPfbI6eGziIiHH344hgwZEi+88EJO+9RlN910U+y77745W+6LiKisrIxLL700jjjiiFi1alXO+gBAPplXsqcu3BuJiHjwwQdj8ODBcdttt6UdBQCywrySjn+875dccklel/sAACANFvwAgAanqqoqxo0bF1deeWXefpH5m9/8Jg488MCorKzMS7+6avHixbHPPvvED37wg9i8eXPacQCgzjKvNHxPPPFEDBkyJKZPn552FAAaseeeey6GDx8ec+fOzUu/xYsXx7777ht//vOf89KvLrnooovinHPOiU2bNuWl34QJE2LEiBGxdOnSvPQDgFwxrzRca9eujdNOOy3OOuusqKqqSjsOAGw180o6brvtthg6dGjMnDkz7SgAAJAXFvwAgAaluro6Tj755Lj//vvz3vvpp5+Oo446KjZs2JD33nXBO++8E3vuuWc899xzaUcBgDrNvNJ4LFmyJEaPHu1JuwCkYtq0aXHooYfG6tWr89p348aNMW7cuJg0aVJe+6bpsssui+uuuy7vfWfNmhUHHnigJ9gDUG+ZVxqHm2++OcaNGxfV1dVpRwGAWjOvpOMHP/hBnHbaabFu3bq0owAAQN4U1OTrMfEAAHnw3e9+N66++upavaZ3796x1157xU477RQVFRVRUFAQy5cvj7feeiumTJkSb7zxRq2ud9JJJ8Udd9xRq9fUdzNnzowDDjggPv7441RznHPOOXHjjTemmgEAMjGv5M7ll18eV155Zdox/kPr1q3jhRdeiH79+qUdBYBGYtGiRbHrrrvGJ598kvg1paWlMWrUqBg6dGjssMMOUV5eHmvWrImPPvooXnnllXjqqadizZo1ia/XrFmzmDp1auy0005b8yXUG7fcckuceeaZtXpN586dY9SoUTF48OBo27ZtlJSUxIoVK2Lu3LkxderUmDZtWq0+5XmfffaJxx9/PIqKimobHwBSY17Jjc2bN0dJSUnaMT7XmWeeGb/+9a/TjgEAiZlX0nHWWWfFzTffnHaMWLp0abRt2zbtGAAANCIW/ACABmPixIlx6KGHJj4AdcQRR8Rll10We+yxxxbr3njjjbjmmmvirrvuSvx00dtuuy2+8Y1vJKqt795///0YMWJEfPjhh7V6Xdu2bWOfffaJkSNHRr9+/aJHjx5RUVERzZs3j4iIFStWxIoVK2L58uUxe/bseO211+K1116LGTNmfOGT6S34AVDXmVdyK8mCX0FBQfTp0yf69u372Z/evXtHRUVFlJeXR3l5ebRs2TIqKytj1apVsWrVqliwYEHMmDEjXn311Xj88ce36lNyBg8eHC+99FI0bdp0K786AEhm8+bNse+++8Zzzz2XqL59+/Zx+eWXx1e/+tVo1arVF9ZVVlbGH//4x/jRj34U7733XqJr9+vXL6ZNm/bZf+s3NK+++mqMGDEi1q9fn6h+1KhR8YMf/CD222+/KCgo+MK6BQsWxC9/+cu46aabYuPGjYmuffnll8cVV1yRqBYA0mZeyZ2kC37bbbddDBw48N/uj3Tp0iVatmz52f2R4uLiWLlyZaxatSqWLVsWr7/+esyYMSNefPHFmDZt2lblu+eee2LcuHFb9VoAyCfzSjq25kGOBQUFMWTIkBg9enQMHTo0evbsGV26dIkWLVpEWVlZrFmz5rPzJx999NFnZ09ee+21eOutt77wd3YW/AAAyDcLfgBAg7Bs2bLo169foienVVRUxJ133hmHHHJIrXq8+OKLcdxxx8XChQsz1paVlcXMmTOjV69etepR36xYsSL23nvvePPNNxO/5vDDD4/TTz89vvSlL0VxcXGte27evDmef/75mDBhQjzyyCMxe/bsz/6eBT8A6jLzSu593i9+S0pKYujQoTFy5MgYOXJk7LXXXtG6deut7rFhw4Z46KGH4uabb47JkyfX6rU//OEP40c/+tFW9waAJH784x/HD3/4w0S1xx9/fNx6661RXl6e+PobNmyIiy++OMaPH5+o/rTTTotbb7018fXri40bN8bgwYNjzpw5GWvLysripptuipNPPrlWPebMmRPHHntsok9rLiwsjKeffjr23nvvWvUAgDSYV3Lnixb8OnXq9Nm9kZEjR8ZOO+0UhYWFW93n7bffjt///vcxfvz4WLlyZeLXtW7dOubNm7dN92YAIB/MK/n3m9/8Jk4//fTE9R07dozzzjsvTjrppOjSpctW9fzoo4/i4YcfjgkTJsQTTzwRlZWVn/09C34AAOSbBT8AoEE488wz45ZbbslY17lz53jqqaeiZ8+eW9Xn448/jn333TdmzZqVsXbs2LExYcKErepTXxxzzDHxwAMPJKodMWJE/OpXv4ohQ4ZkNcP06dPjpptuinvvvTdOOeUUC34A1Fnmldz7x4Jf69at45BDDokjjjgiDj744GjRokVO+t13331x4YUXxkcffZSovnnz5vHOO+9Ex44dc5IHABYsWBADBgxI9Ily3/3ud+Oqq67a6l433nhjnHfeeRnrCgoKYurUqbH77rtvda+66Oqrr47vfve7GevKy8vjsccey/iJzF9k7dq1ceihh8bTTz+dsXbnnXeO6dOnR1FR0Vb1AoB8MK/k1r8u+A0ZMiSOOOKIOPLII2PQoEE56bdkyZK48MIL45577kn8mosvvjiuvfbanOQBgGwwr+Tf9OnTY8SIEbFp06aMtaWlpfHDH/4wvvnNb0ZZWVnWMqxZsybuvPPO+PWvfx2vv/66BT8AAPLOgh8AUO/NmDEjhg4dGtXV1Vusa9WqVUydOjX69u27Tf0WL14cu+++eyxatChj7SOPPFLrT96pL2677bY47bTTMtYVFhbGj3/84/jOd76T0wNmK1asiHfeeSeGDh2asx4AsLXMK/kxefLkqK6ujtGjR2/VJwVvjcWLF8d+++0Xb731VqL6H//4x/H9738/x6kAaKyOOuqoePDBBzPWnXHGGXHzzTdvc78rr7wyLr/88ox1e+yxR7z44otRUFCwzT3rgg8//DD69OkTa9eu3WJdSUlJPPHEEzFy5Mht6rdmzZoYOXJkvPrqqxlrx48fH2efffY29QOAXDKv5FZ1dXX8+te/jiOOOCI6d+6ct7433HBDXHDBBYlqy8vL48MPP4zmzZvnNhQAbCXzSn5VVlbGbrvtFnPmzMlYu9NOO8Uf//jH6N+/f04zPf/887HbbrtldYEQAAAyseAHANR7Rx55ZDz00EMZ6/74xz/Gl7/85az0fPbZZ2PfffeNqqqqLdYNHTo0Xn755az0rEsWLFgQgwYNyniQrWnTpnHXXXfFsccem6dkAFA3mVcato8//jj22muveOeddzLW9ujRI+bNm5eHVAA0Nq+++mrsuuuuGet23XXXmDJlSjRt2nSbe9bU1MTBBx8ckyZNylg7YcKEGDt27Db3rAsuuOCCuOGGGzLW/exnP4tvf/vbWen59ttvx5AhQ2LNmjVbrOvUqVMsWLAgmjRpkpW+AJBN5pWG7brrrouLLrooUe0dd9wRJ510Uo4TAUDtmVfy75xzzombbropY91+++0Xf/7zn6O8vDwPqQAAIP8K0w4AALAt5syZE3/5y18y1h1xxBFZOywfETFy5Mg444wzMtZNmzYtnnzyyaz1rSu+9a1vZVzuKywstNwHAGFeaQzat28ft956a6La+fPnx9y5c3OcCIDG6Gc/+1nGmsLCwrjtttuycvgsIqKgoCBuvfXWRE8zT5KvPli+fHncdtttGet23XXXuPjii7PWt0+fPvGDH/wgY92HH34Yd911V9b6AkA2mVcatgsvvDBGjx6dqPbRRx/NcRoA2Drmlfx67bXXEn0K4vDhw2PChAmW+wAAaNAs+AEA9dovfvGLyPSBxMXFxXHttddmvfePf/zjRDcPf/7zn2e9d5qefvrpeOCBBzLW/fd//7flPgAI80pjse+++yZe0Hz22WdznAaAxmbhwoVx//33Z6w76aSTYrfddstq765duyb6pJZnn322QXxq8M0335zxoUcRf58BCwuz+2u4b37zm9G9e/eMdWY7AOoi80rjMH78+ER17o0AUBeZV/LvwgsvjOrq6i3WdOrUKSZMmBDNmjXLUyoAAEiHBT8AoN7asGFD3HfffRnrjjnmmOjVq1fW+7dp0yZOPfXUjHWTJk2KJUuWZL1/Wi655JKMNSNHjoxLL700D2kAoG4zrzQuJ510UqK62bNn5zgJAI3N3XffHZs3b95iTUFBQc7+W/2b3/xmlJaWZqz7/e9/n5P++ZTkaxg2bFjss88+We/dpEmTuPDCCzPWzZo1K6ZNm5b1/gCwLcwrjcPAgQMTLTwsWrQo0UMTACCfzCv5NXHixJg8efIWawoKCuL222+Ptm3b5ikVAACkx4IfAFBvPfzww7Fy5cqMdRdccEHOMpx//vkZn8ZeVVUV9957b84y5NMzzzwTL7300hZrioqK4uabb876U+oBoD4yrzQuBxxwQKInyL733nt5SANAY3L33XdnrDnwwAOjf//+Oenfrl27+K//+q+MdX/84x8zHpSry6ZPnx5z5szJWJfL2e7rX/96ok9oTvI9AQD5ZF5pPI488siMNTU1NfH+++/nPgwA1IJ5Jb+uueaajDXHH398HHjggXlIAwAA6XPqGgCot+65556MNb169Yrhw4fnLEO3bt1i5MiRGeuSZK0Pfv7zn2es+drXvhYDBgzIQxoAqPvMK41LaWlp9O7dO2Pd6tWr85AGgMbijTfeiDfeeCNj3YknnpjTHEmuv3Tp0nj88cdzmiOXksxLLVu2jCOOOCJnGZo3bx5HHXVUxrp77703ampqcpYDAGrDvNK4DBo0KFGd+yMA1CXmlfyaMWNGxk/vKykpiSuvvDJPiQAAIH0W/ACAeqmqqirRDcvjjz8+51nGjRuXsebll1+OZcuW5TxLLr333nsxYcKEjHXf/va385AGAOo+80rj1LFjx4w1VVVVeUgCQGPx6KOPZqwpLS3N6dJZRMSoUaOiU6dOGesmTpyY0xy5lOS9Pvzww6OsrCynOZLMdosXL45XX301pzkAICnzSuOS5N5IhPsjANQt5pX8uvHGGzPWHHPMMdGjR488pAEAgLrBgh8AUC+99NJLsXLlyox1Bx98cM6zJOlRXV0dTzzxRM6z5FKSJ7/vt99+0a9fvzwlAoC6zbzSOFVUVGSlBgCSeuyxxzLW7L333tGyZcuc5igsLIwDDzwwY12SvHXRRx99FG+++WbGunzMdvvss0+UlpZmrKuv7zUADY95pXFJet/D/REA6hLzSv5s3LgxHnjggYx1Z599dh7SAABA3WHBDwCol5IcPm/ZsmUMGzYs51m6desWvXr1ylhXn2+wRvx9wS+Tr3zlK3lIAgD1g3mlcfr0008z1rRp0yYPSQBoDDZu3BjPPfdcxrr9998/D2mS9Xnrrbfigw8+yEOa7Er6IIQxY8bkOMnfPzFg7733zlhntgOgLjCvND5J7o1EuD8CQN1hXsmviRMnxooVK7ZY06VLlxg5cmR+AgEAQB1hwQ8AqJemTJmSsWbYsGFRXFychzSR6Mbi1KlT85AkN+bNmxevvvrqFmsKCwtj7Nix+QkEAPWAeaVxWrJkScaavn375iEJAI3Ba6+9FpWVlRnrkiyDZUPSg1f1ceZIMtv16tUrOnbsmIc0yd7rl156KWpqavKQBgC+mHml8Ulyb6RNmzYW/ACoM8wr+fWnP/0pY81hhx2WhyQAAFC3WPADAOqlGTNmZKzZbbfd8pDk74YMGZKx5q233ooNGzbkIU32Pf744xlrdtlll+jQoUMe0gBA/WBeaXzWrVsXb7/9dsY6T50FIFuSzBuFhYWxyy675D5MRHTt2jXatm2bsS5J7rqmPs52q1ativnz5+chDQB8MfNK45PpgZERf1+QKCgoyH0YAEjAvJJfTzzxRMaagw46KA9JAACgbrHgBwDUO0uWLImPPvooY11dO1S1efPmeP311/OQJvsmT56csWbEiBF5SAIA9YN5pXH629/+lvEpvxUVFTF48OA8JQKgoXvllVcy1vTp0yeaN2+ehzR/l2TmqG8H0Kqrq+O1117LWFfXZruI+vdeA9DwmFcanwcffDBjzb777pv7IACQkHklf2bPnp3o92fDhw/PQxoAAKhbLPgBAPXOzJkzE9X169cvx0n+qW/fvonqkmava55++umMNcOGDctDEgCoH8wrjdNvf/vbjDWnnXZaFBa6JQdAdiRZzM/nvBGRbOaob/PGvHnzMi7xR+T3ve7YsWO0atUqY119e68BaHjMK43LK6+8kvET/Jo1axYnnXRSfgIBQALmlfx56qmnMtb06NEj2rVrl/swAABQxxSnHQAAoLbmz5+fqK5Xr145TvJPrVu3joqKivj000+3WJc0e12ycOHCWLx4cca6AQMGZKxZtmxZTJw4MV588cV44403YsGCBbFy5cpYs2ZNNGnSJJo1axZt2rSJ7t27R8+ePWOPPfaIESNGRJ8+fbLxpQBA3phXGp+JEyfGX/7yly3WFBcXx7nnnpunRAA0Bkl+bvfu3TsPSf4pyXzzwQcfxMaNG6NJkyZ5SLTtks5H+X6ve/bsmfFTBsx2AKTNvNJ41NTUxDnnnJOx7qtf/WpUVFTkIREAJGNeyZ+XX345Y02Ssyc1NTXx8ssvx9/+9reYOXNmzJo1K5YuXRqrVq2KzZs3R7NmzaJFixbRuXPn6N69e+y0004xYsSIGD58eF4/iREAAGrDgh8AUO8sWLAgY03Hjh3zflOuV69e8dJLL22xJkn2uubNN99MVPdFN7Srq6vj4Ycfjl/+8pfx1FNPRVVV1efWrVu3LtatWxfLli2Lt99+OyIibrrpps+u/eUvfzlOPfXU6N69+1Z8FQCQX+aVxmX+/Plx+umnZ6z71re+FZ07d85DIgAag3Xr1iV6IE/Pnj3zkOafkhxAq66ujvfeey/vh+O2VtL5qEePHjlO8u969eqVccHPbAdAmswrjcv3v//9ePHFF7dYU1FRET/4wQ/ylAgAMjOv5FeS8ydb+no++OCDGD9+fNx+++1b/Oe2atWqWLVqVXz44Yfx0ksvxX333RcREaWlpfGlL30pvvKVr8QxxxwTRUVFtf8iAAAgRwrTDgAAUFvvvvtuxppOnTrlPsj/sf3222esqY+HqpLcYG3Tpk2Ul5f/x19//PHHY6eddoojjjginnjiiS9c7stk7ty5cdVVV0Xv3r3j+OOPj7lz527VdQAgX8wrjcecOXNin332iUWLFm2xbtCgQfH//t//y1MqABqD9957L1FdvmeOJPNGRP2aOZLMdhUVFVFaWpr7MP/CbAdAXWdeaRyqq6vjO9/5Tlx55ZUZa8ePH5/4/QeAfDCv5NesWbMy1nzeA5RWrlwZ3/zmN6N79+7xk5/8JNFS5udZv359PPTQQ3H88cdHr1694uabb97qcywAAJBtFvwAgHrngw8+yFjTsWPHPCSpfc9MB7/rorfeeitjTfv27f/t/69duzZOPPHEOOCAAxK9Pqmqqqr44x//GDvttFNcfvnlsWnTpqxdGwCyybzS8G3YsCGuuOKK2GWXXWLhwoVbrN1+++3jf//3f6NJkyZ5SgdAY5Bk3ojI/8yRtF99mjnq82y3ePFiB9UASI15peF75ZVXYsSIEfHTn/40Y+3FF18c48aNy0MqAEjOvJI/ixYtitWrV2es+7/nTyZNmhR9+/aNX/7yl1k9I/Luu+/GWWedFUOHDo1p06Zl7boAALC1LPgBAPXOsmXLMtZ06NAhD0n+XZIbrJ9++mkekmRXpgPrERHt2rX77H/Pmzcvhg0bFnfffXfOMm3cuDGuvPLKGDVqVKJ8AJBv5pWG67XXXotvf/vb0b179/jBD34Q69ev32J9x44dY/LkydG7d+88JQSgsUgyb0Tkf+Zo3759FBZm/vVTfZo56vNsV1NTE8uXL89DGgD4T+aVhmn16tVx5513xoEHHhi77757vPTSSxlfc8EFF8S1116bh3QAUDvmlfxJerbjX8+f/OQnP4lDDjkklixZkqtY8eqrr8Zee+0V48ePz1kPAABIojjtAAAAtZXkBut2222X+yBb0XPt2rWxYcOGaNq0ae4DZcnixYsz1vzja583b16MHj068VPuttWLL74Yw4cPj8cffzz69++fl54AkIR5pW6bOXNmzJo1a4s1GzdujFWrVsWqVatiyZIl8dprr8Vrr70WK1asSNxnv/32i9///vfRuXPnbUwMAP8p6QG0fM8chYWF0bJly1i5cuUW65Lmrwvq82wX8ff8bdu2zW0YAPgc5pW6q7q6Ov74xz9usaampibWrFkTq1atipUrV8bbb78dr776asydOzeqq6sT9WnevHlcf/31ceqpp2YjNgBknXklf5KcPYn453v93e9+N66++uocJvqnjRs3xrnnnhvz5s2LX/ziF3npCQAA/5cFPwCg3kny1PGWLVvmIcnW9fz0009j++23z3Ga7Pnoo48y1jRp0iSWLFkS++67b96W+/7hww8/jFGjRsUzzzxjyQ+AOsO8Urf94Q9/iJ/+9Kc5u37btm3j8ssvj/PPPz8KCgpy1geAxi3pE9pbtGiR4yT/KckBtPr0hPkkWev6bAcAaTCv1F0bN26ME044Iac9vvSlL8WvfvWr6N27d077AMC2MK/kT5KzJxF/P39y1VVX5W25719dd911sXHjxrjxxhvz3hsAACz4AQD1yrp162LTpk0Z69I4VFVeXp6obuXKlfXmwHxNTU2iJ74VFRXFuHHjYuHChRlry8vLY+TIkTFo0KDo1q1btGjRIjZv3hwrVqyId955J6ZOnRozZsyIqqqqxDk/+eSTOOyww2Lq1KnRpk2bxK8DgFwwrzReO+64Y5x77rlx5plnRvPmzdOOA0ADt2rVqow1zZs3j8LCwjyk+XdJZo5MB9TqkiTvdV2f7QAgDeaVxqekpCQOPfTQuOyyy2L33XdPOw4AZGReyZ+lS5cmqnv66afj+9//fqLaAQMGxF577RW9e/eONm3aRNOmTaOysjIWLVoUb775ZjzzzDOJ+/7D+PHjo1evXnHBBRfU6nUAALCtLPgBAPXKxo0bE9WVlZXlOMl/Ki0tTVSX9GuoC9avXx/V1dUZ6x566KFYv379FmuGDx8el1xySYwdOzZKSkq2WLt48eK444474tprr018s3XevHlx4oknxsSJExPVA0CumFcan6OPPjouu+yyGDJkSNpRAGhEkvy8TmPeiEg2c9SneaOuvtdmOwDqurr6MzSi4c0raWvfvn1cccUVcfzxx0erVq3SjgMAiZlX8qeysjJR3cUXX7zFcyotWrSIc845J04//fTo0aPHFq9VXV0dkydPjuuuuy4eeeSRxFkvvvji2H333WOvvfZK/BoAANhW+X+sCADANkh6c7KoqCjHSf5TcXGyZyfUpxusmZb2ktRtt912ceedd8aUKVPiqKOOyrjcFxHRsWPHuOSSS2LevHlx+umnJ8776KOPxm9+85vE9QCQC+aVxueBBx6I4447Ls4777yYMmVK2nEAaCSS/LxOY96ISDZz1Kd5o66+12Y7AOq6uvozNKLhzStp+/jjj+P888+P448/PsaPH5/o05AAoC4wr+RPNs6fjB07Nt5+++24+uqrMy73RUQUFhbGmDFj4uGHH47HHnssunTpkihDdXV1nHLKKYmXEgEAIBss+AEA9UrSm5NJDzhlU9KemzZtynGS7NmwYcM2vb579+7x4osvxoknnrhVr2/ZsmXccsstcdtttyW+af6d73wnVq5cuVX9ACAbzCuN0/z58+PGG2+MPffcM0aNGlWrJ8ECwNZIMnOkMW8k7Vuf5o26+l6b7QCo6+rqz9Ckff0MrZ0NGzbEpEmT4txzz42uXbvGZZddFkuWLEk7FgBskXklf7b1/Mlll10Wf/nLX2L77bffqtfvv//+MW3atNhjjz0S1c+dOzd+/vOfb1UvAADYGhb8AIB6ZfPmzYnqHKrKjm152tv2228fTzzxRPTt23ebc3zjG9+I2267LVHtp59+Gtdcc8029wSArWVe4dlnn42xY8fGIYccEosXL047DgANVJKZwwG07Kir77XZDoC6rq7+DE3a18/Qrbdy5cr4yU9+En369Ik777wz7TgA8IXMK/mzLedPLr300rjyyiujoKBgmzK0b98+/va3v8XOO++cqP7aa6+NZcuWbVNPAABIyoIfAFCvJL1xWlVVleMkW98zrZu/WyPpp+Z9nttvvz26d++etSwnn3xyfO1rX0tUO378+Fi3bl3WegNAbZhX+IeJEyfGoEGD4q9//WvaUQBogJL8vE5j3kjatz7NG3X1vTbbAVDX1dWfoUn7+hm67VatWhVf/epX47jjjou1a9emHQcA/oN5JX+29vzJXnvtFVdddVXWcrRq1SruvffeKC0tzVi7atWquPXWW7PWGwAAtsSCHwBQrzRp0iRRXdJPzsmmpE9GS/o11AVbm/XUU0+NL33pS1lOE3H99ddHp06dMtatWLEi7r333qz3B4AkzCt139VXXx01NTVf+Ke6ujpWrlwZ7733XsycOTMmTZoUV155ZRx11FGJZpF/9cknn8SRRx4ZDz74YG6+GAAarSQ/r9OYNyKSzRz1ad6oq++12Q6Auq6u/gyNaHjzSm2VlpZu8d5ITU1NbNiwIZYsWRJz5syJqVOnxu233x7nnHNODB8+vNbLBPfff38ceuihUVlZmaOvCAC2jnklf7Yma1lZWdx+++1RWJjdo879+vWLH//4x4lqf/Ob30R1dXVW+wMAwOex4AcA1CslJSWJ6tK4wZq0Z0O/wdq8efO45pprcpAmYrvttourr746Ue0f/vCHnGQAgEzMK/VfQUFBlJeXR9euXWPQoEFx4IEHxmWXXRYPPPBALFy4MB599NE49thjE/+z3rRpUxx33HHx8MMP5zg5AI1Jkp9DaR1AS9K3Ps0bdfW9NtsBUNfV1Z+hSfs29p+hTZo0ifbt20efPn1ijz32iJNPPjluvPHGmDJlSixcuDCuuuqq6NmzZ+LrPf300zF27NhYv359DlMDQO2YV/Jna7JedNFF0bt37xykSX7tBQsWxJQpU3KSAQAA/pUFPwCgXmnatGmiujR+OZi0Z326wZr0/f5XX/nKV2K77bbLfpj/33HHHRdt27bNWPfMM8/EmjVrcpYDAL6IeaVhKywsjC996Utx//33xxtvvBGjRo1K9LpNmzbFiSeeGIsWLcpxQgAaiyQzR1qHp5P0rU/zRl19r812ANR1dfVnaNK+foZ+sY4dO8Z3v/vdePvtt+O6666L5s2bJ3rd5MmT43vf+16O0wFAcuaV/Knt+ZOioqI444wzcpSmdtd/5JFHcpYDAAD+oTjtAABA3bdgwYKYOnVqTns0b948DjvssIx1ZWVlUVxcnPFJZatXr85WtMSS9iwvL89xkuwpLS2NkpKS2LRpU+LXnHnmmTlM9PebvieffHJce+21W6zbuHFjPP3003HooYfmNA8AdYN5JZmGOK+kqU+fPvHUU0/FTTfdFBdccEHGf+YrV66MU045Jf72t79FQUFBnlIC0FC1bNkyY83atWujpqYm7z93kswc9WneaNmyZXz88cdbrDHbAcB/Mq80fIWFhXHBBRfEkUceGSeccEK8+OKLGV9z/fXXxxFHHJH4oUkAkEvmlfxJ8l7/q0MOOSS6dOmSozR/d/LJJ8fll1+ecZnysccei6uuuiqnWQAAwIIfAJDR008/HaecckpOe3Tr1i3RgfmIiNatW8fSpUu3WLNq1apsxKqVpD0rKipynCS72rRpE4sXL05U271799htt91ynCji2GOPzbjgFxExbdo0C34AjYR5JZmGOq+kqaCgIM4555zo1q1bHHXUURmX/B5//PG47777Yty4cXlKCEBDleTndU1NTaxevTrvh72SzBz1ad6oqKiIefPmbbHGbAcA/8m80njsuOOO8cQTT8Rhhx0WTz755BZrq6ur44wzzohZs2Z5ABIAqTOv5E/btm1rVX/sscfmKMk/tWnTJvbZZ5949NFHt1g3c+bM2LhxY736xEQAAOqfwrQDAADUVps2bTLWrFy5Mg9Jat+zWbNmUVpamoc02ZPk/f6HYcOG5TDJP+2yyy6Jbpy+8soreUgDAP/JvNL4jB07Nm644YZEtdddd12O0wDQGCT97/V8zxzV1dWxZs2ajHW1ud+Qtvo820XUr/cagIbFvNK4NGvWLB544IHo3bt3xtrZs2fHxIkT85AKALbMvJI/tc2ar/Mne+yxR8aajRs3xptvvpmHNAAANGYW/ACAeifJTb8lS5bkIcm/S/Ipd/Xp5uo/1MUFv6ZNm8bOO++csS7T0/UBIFfMK43T2WefHQcccEDGupdeeileeOGFPCQCoCFL+jM73zPH0qVLo6qqKmNdfZo56vNsV1BQEK1bt85DGgD4T+aVxqdVq1Zx++23J6q9/vrrcxsGABIwr+RPbbJut9120adPnxym+aek51ycPwEAINcs+AEA9c4OO+yQsSbJAadsS9IzSfa6pjaZBw8enMMk/y7Jgt+iRYvykAQA/pN5pfH66U9/mqjuT3/6U46TANDQJf2Zne+ZI2m/+jRz1OfZrkOHDlFcXJyHNADwn8wrjdNee+0VRxxxRMa6J554IlasWJH7QACwBeaV/KlN1kGDBkVBQUEO0/xTkrMnEc6fAACQexb8AIB6Z8cdd8xY8+GHH+Y+yP/x0UcfZazp3r17HpJkV48ePRLXVlRU5DBJ7XutXLkyNmzYkIc0APDvzCuN16677proaa/PPvtsHtIA0JAlmTci8j9zJJk3IurXzJHkvf7000/zfg/CbAdAXWdeabzOPPPMjDXV1dXx/PPP5yENAHwx80r+7LjjjlFYmOzIcl07exKR/09xBACg8bHgBwDUO0luUC5evDgqKyvzkOaf3nnnnYw19enm6j/UZsFvu+22y12QreyV7+8DAIgwrzR2SZ5SP2PGjFizZk0e0gDQUJWVlUWHDh0y1s2bNy8Paf4pybxRUFAQ3bp1y0Oa7EgyH9XU1MT8+fPzkOafzHYA1HXmlcZrzJgx0bx584x1HoAEQNrMK/nTpEmTxJ/il8+zJ2VlZdG0adOMdc6eAACQaxb8AIB6J8nCWU1NTaIbntmyYsWKWLZsWca62izL1RU9e/ZMXGvBDwD+zrzSuO25554Za6qqqmLBggV5SANAQ5bk5/bcuXPzkOSfksw3O+ywQ6KDU3VF0vmoLr7XZjsA0mZeaZxKSkpi9913z1iX73/2APB5zCv5k/T8ST7PnkREtGrVKmONsycAAOSaBT8AIKOTTz45ampqcvrn3XffTZxn0KBBiepmz569lV9x7SXtlTR7XTJ48ODEtQUFBTlMkl4vAOo+80r2etXHeaWu6dWrV6K6JAuXALAlSX5u53PeSNqvvs0bPXv2jLKysox1+XyvFy9eHCtXrsxYV9/eawAaHvNK45Xk/oh7IwDUBeaV/Nl5550T1eX7PIjzJwAA1AUW/ACAemf77bePDh06ZKx75ZVX8pAmea/i4uJaLcvVFa1bt078tPcVK1bkNsy/WL58eaK6Zs2a5TgJAPwn80rjVlFRkaju008/zXESABq6XXfdNWPNnDlz8vqE8SQzx2677ZaHJNlTVFSUaEaqa7NdRP17rwFoeMwrjVeS+yPujQBQF5hX8mfIkCGJ6vJ59iRpP2dPAADINQt+AEC9lORGZT4PVU2fPj1jTb9+/aK0tDQPabIv6U3WpEt32ZD0hm7z5s1zGwQAvoB5pfEqKSlJVLdu3bocJwGgoUsyb1RXV8err76a+zARsXDhwli6dGnGuiQH5+qa+jjbtWzZMnr27JmHNADwxcwrjVeS+yPujQBQF5hX8qcunj1Zt25dbNiwIWOdsycAAOSaBT8AoF4aMWJExpoXX3wxNm/enIc0Ec8880zGmmHDhuUhSW7sueeeiery+aTVJL3atGkTTZo0yUMaAPhP5pXGa+3atYnq/DIYgG218847R1lZWca6Z599Ng9pks0bEfVz5kgy282dOzeWLFmShzTJ3us99tgjCgoK8pAGAL6YeaXxSnJ/xL0RAOoC80r+9OvXL1q3bp2xrq6dPYmI6NSpU46TAADQ2FnwAwDqpTFjxmSsWb16dbz00ks5z/L+++/HO++8k7HugAMOyHmWXDnwwAMT1c2cOTPHSf7ptddey1jTtWvXPCQBgM9nXmm8Fi1alKiuRYsWOU4CQEPXtGnT2HvvvTPWPfHEE3lIk6xPv379onPnznlIk11JZruI/LzXGzZsiOeffz5jndkOgLrAvNJ4Jbk/4t4IAHWBeSV/CgsLY//9989Y9/rrr0dNTU0eEiU7exLh/AkAALlnwQ8AqJf22GOPKC8vz1g3ceLEnGdJ0qOgoCDxQbC6aMCAAYluDk+dOjUPaf5+kC3JTda+ffvmIQ0AfD7zSuM1a9asRHV+GQxANiQ5FPXss8/GmjVrcpqjuro6Jk2alLGuvi6dderUKfr375+xLh+z3VNPPRXr1q3LWFdf32sAGh7zSuOU5P6IeyMA1BXmlfxJ8oDpFStWxNtvv52HNMnPuTh/AgBArlnwAwDqpeLi4kQH0O+7776cZ7n33nsz1gwdOjTatm2b8yy5dMghh2SsefHFF/OQJGLGjBmxcePGjHW77757HtIAwOczrzReTz/9dMaaoqKi2HHHHXMfBoAG76CDDspYs379+njooYdymuPZZ5+NDz/8MGNdkrx1VZLsDz30UKxfvz6nOZLMdh06dIhdd901pzkAICnzSuOzdOnSeOuttzLW9ezZMw9pACAz80r+HHzwwVFQUJCxLl/nT5Is+LVq1Sr69OmThzQAADRmFvwAgHrrhBNOyFgzd+7cnH6q3Pvvvx/PPPNMxrokWeu6//qv/8pY8+6778Yrr7yS8yx/+tOfEtWNGDEix0kAYMvMK43P5s2b43//938z1vXv3z+aNGmSh0QANHSDBw+OAQMGZKy76667cprjzjvvzFjTpk2bev2E+STz0urVq3N62G/t2rXx5z//OWPd8ccfn+iwHADkg3ml8bnvvvuipqYmY90uu+yS+zAAkIB5JX922GGH2GeffTLWJT0Xsi0++eSTeOqppzLWDRs2zH0WAAByzoIfAFBvHXbYYVFeXp6x7vrrr89Zhl/+8pdRXV29xZrCwsIYN25czjLky8iRI6N79+4Z637961/nNMf69evjd7/7Xca6tm3bxh577JHTLACQiXml8bnvvvti8eLFGetGjx6dhzQANBZJHsozadKkmD17dk76L126NO6+++6Mdccdd1yUlJTkJEM+7L777tG7d++Mdbmc7W6//fZYuXJlxrok3xMAkE/mlcajqqoqxo8fn7GuoKAgRo0alYdEAJCMeSV/vvrVr2as+etf/xrvv/9+TnPcfvvtsWHDhox1hx56aE5zAABAhAU/AKAeKy0tjeOOOy5j3Z/+9Kd45513st5/2bJl8Zvf/CZj3YEHHhjbb7991vvnW0FBQZxyyikZ6+65555Yvnx5znLcd999sWzZsox1hx12WBQVFeUsBwAkYV5pXNasWROXX355otovfelLOU4DQGNy4oknZvxv4Jqamrj66qtz0v+GG26I9evXZ6z72te+lpP++ZTka3jxxRcTPf29tjZu3Bi/+MUvMtb169fPQ48AqHPMK43Hr3/960SLD7vuumu0a9cuD4kAIBnzSv4ce+yxGR+QWV1dHTfffHPOMlRVVcUtt9ySqPaII47IWQ4AAPgHC34AQL120UUXRUFBwRZrNm/eHN/61rey3vsHP/hBrFq1KmPdxRdfnPXeaTnnnHOiefPmW6xZu3Ztzr7m5cuXx3e/+91Etd/4xjdykgEAasu80nicddZZ8e6772asa9euXRx00EG5DwRAo9G1a9c49thjM9bdeeed8corr2S19/vvv59o6WyvvfaKYcOGZbV3Gs4888xo1qxZxrqLL74446co19YNN9wQCxYsSNQbAOoa80rjMHPmzLj00ksT1Sb55B4AyCfzSv60aNEizj777Ix11113XcyZMycnGa655pqYN29exrr9998/unXrlpMMAADwryz4AQD1Wv/+/WPs2LEZ6x566KG4//77s9b3ueeeS/Qkr9122y3233//rPWNiHj33XejoKAg45999tknq30jIioqKuKMM87IWHf77bfHxIkTs97//PPPj48++ihj3a677hp77bVX1vsDwNYwr+R+XpkwYUIsWbIkK9faGjU1NXHxxRfHXXfdlaj+5JNPjpKSkhynAqCxueSSSzLWVFdXx2mnnRYbN27MSs+ampo444wzYt26dRlrk+SrjZNPPjnRvJHtT9Jr06ZNoocKvfLKK4kO5iU1d+7c+PGPf5yxbvvtt4+TTjopa30BIJvMK7mbV5YtWxZ//vOftz30Npg9e3YcdNBBUVlZmbG2WbNm8V//9V95SAUAtWNeyc/9lYiICy+8MMrKyrZYs379+jjllFOy/hClWbNmxY9+9KNEteedd15WewMAwBex4AcA1Hs//OEPo7Aw81hz2mmnxdtvv73N/RYvXhxf+cpXoqqqKmNt0huC9ckll1wSrVq1ylh3yimnxPz587PW93/+538SH5pviO87APWbeSW3/vd//zd69uwZl112WSxevDivvZcvXx7HHXdc4gP8LVq0iG9/+9s5TgVAY7TbbrvF4YcfnrHulVdeiW9+85tZ6fmTn/wkHn300Yx1Q4cOjcMOOywrPeuCSy65JNGn+F122WXx3HPPbXO/tWvXxvHHHx9r1qzJWPvd7343mjZtus09ASAXzCu5s3r16jj66KNjzz33jEceeSRqamry2n/ChAkxYsSIRA9pjIg499xzo23btjlOBQC1Z17Jn/bt2yd6D6dMmRLf+c53stZ3xYoVMW7cuNiwYUPG2iFDhjSo9xwAgLrNgh8AUO8NGTIkvv71r2esW7lyZYwZM2abls6WLl0a+++/fyxcuDBj7cEHH9wgb/R16NAhrrjiiox1S5YsiTFjxsScOXO2uedtt92W6JMDIyJGjx6d6IY7AOSTeSX31q5dGz/5yU+iW7du8dWvfjWefPLJrD/R9V9VVVXF7bffHjvttFP86U9/Svy6Sy+9NNq1a5ezXAA0br/4xS8SLXfdfPPN8b3vfW+bet10002JrlFQUBC/+tWvoqCgYJv61SWdO3eOyy67LGPdpk2bYuzYsTFt2rSt7lVZWRmHHXZYzJgxI2PtoEGD4uyzz97qXgCQD+aV3JoyZUqMHTs2+vfvH9ddd13OH4Q0b968OOGEE+Lwww+PFStWJHpNu3bt4tJLL81pLgDYFuaV/Ln88suja9euGeuuueaa+N73vrfNDzH4+OOP48ADD4zXX389Uf21117b4N5zAADqLgt+AECDcNVVV0WbNm0y1i1atCj22GOPmDhxYq17TJ06NYYOHRpvvvlmxtrS0tK44YYbat2jvjj77LNj6NChGevefffdGD58eOJP3vu/Vq9eHWeccUacdtppiT6BqFmzZnHrrbduVS8AyDXzSn5s3Lgx7rzzzhgzZkx07do1zjzzzHjooYcSHzLLZO7cuXHVVVdFr1694utf/3p8+OGHiV87ZMiQrD5lFgD+r549eyY+LH3VVVfFCSecEKtXr65Vjw0bNsT5558f55xzTqL6U045JYYPH16rHvXBt771rejdu3fGupUrV8bo0aPj97//fa17zJkzJ4YPHx6TJ0/OWFtQUBA33nhjFBUV1boPAOSTeSU/5syZExdddFF07tw5xowZEz//+c/j9ddfz8rDkNatWxcPP/xwHHPMMdGvX7+49957a/X6W265JSoqKrY5BwDkinklf5o3bx6/+tWvEtVeddVVcfjhhyf+xOD/6/HHH4+hQ4fGyy+/nKj+1FNPjX322WeregEAwNaw4AcANAjt2rWL3/3ud4menLVs2bI45JBD4uijj070BPVZs2bFKaecEnvuuWe8//77ifLccMMNiQ551VdFRUVx3333xXbbbZexdsWKFXHSSSfFiBEj4oEHHohNmzZlfM2SJUvipz/9afTs2bNWC3vXX3999OnTJ3E9AOSTeSX/Pvjgg7jlllviyCOPjIqKiujfv3+cdNJJceWVV8b9998fU6ZMifnz58eKFSti/fr1UV1dHZs3b47Kysr46KOP4vXXX49HHnkkrr/++vja174WvXr1ij59+sT3vve9ePfdd2uVpU2bNnHPPfdEcXFxbr5YAPj/ff/7348RI0Ykqr333nujd+/eMX78+Fi1atUWa9etWxd33HFH9OvXL/HBqz59+jTIBwpERDRt2jTuvffeRE/0r6ysjJNPPjn23XffmDx5csanzb/77rtx0UUXxeDBgxM/Uf473/lOjBo1KlEtAKTNvJI/VVVV8eSTT8a3vvWtGDx4cLRu3ToOOOCAuOiii+Lmm2+Ov/3tbzFz5sxYvHhxrFmzJjZt2hQ1NTWxYcOGWLFiRcybNy9eeOGFuPPOO+Oyyy6L/fbbL9q2bRuHHXZYPPDAA7F58+Za5Tn//PPjqKOOytFXCwDZY17Jn8MPPzzOO++8RLUPP/xw9O7dO77zne/E/PnzM9bX1NTEk08+GWPHjo0DDjggFi5cmKhPnz594vrrr09UCwAA2VJQs62fWQ0AUIdccsklcc0119TqNX369Im99947Bg4cGBUVFVFQUBDLly+P2bNnx5QpU2LmzJm1ut5XvvKVuPvuu2v1mtp49913o3v37hnrRo8eHU899VTOckRETJgwIY444oiMB9P+VatWrWLkyJExePDg6Nq1a7Ro0SKqqqpi+fLlMW/evJg6dWpMnz490Sf2/avzzz+/Qd/UBqDhMK/8U7bmlZNPPnmrPhUnX8rKyuLxxx+PPffcM+0oADQSCxcujF133TWWLVuW+DVlZWUxevToGDJkSHTu3DlatmwZa9asicWLF8f06dPjqaeeqtXT6MvKymLKlCmx8847b82XkFHSn/+TJ0/O6dPWb7rppsRP2/+HLl26xOjRo2Pw4MHRpk2bKCkpiRUrVsQ777wTU6dOjZdeeqlW91pGjhwZkydP9ul9ANQr5pV/ysa8kvReTJqOPvrouP/++6Ow0LPIAagfzCv/lOv7K5s2bYp99tknXnjhhcSvKSgoiIEDB8aee+4Zffr0iTZt2kSTJk2isrIyPvjgg3jzzTfjmWeeiSVLltQqS9u2beOFF15o8A/JBACg7vHIcACgQbn66qtj0aJFcc899yR+zdtvvx1vv/12VvqPGTMmfvvb32blWvXBYYcdFrfeemucfvrpiQ+erVy5Mh5++OF4+OGHs5Zj3Lhxcd1112XtegCQS+aVxqWioiIefvjhxE/6BYBs6NKlS/z1r3+N/fffP/GhsXXr1sWjjz4ajz766Db3LykpiT/96U85O3xWl5x99tnx3nvvxc9+9rPEr1m4cGHcddddWek/aNCgePDBBy33AVDvmFcal69+9avxP//zP5b7AKhXzCv5U1JSEhMmTIj99tsvXnvttUSvqampiTfeeCPeeOONrOVo1apVTJgwwXIfAACpcOcMAGhQCgsL44477oijjz4677333nvveOihh6Jp06Z5752mU089NW655ZbUfil7xhlnxN133+2XwgDUG+aVxmPnnXeOF154wXIfAKnYY4894uGHH44WLVrktW9JSUncc889ccghh+S1b5p++tOfxvnnn5/3vv369YvHHnssKioq8t4bALLBvNLwFRcXx3//93/H7373uygu9gxyAOof80r+VFRUxBNPPBG77LJLKv3bt28fkydPjuHDh6fSHwAAnIIGABqc4uLiuP/+++PSSy/NW89TTjklHn/88WjevHneetYlp512Wjz66KPRpk2bvPVs2rRpjB8/Pm6++WbLfQDUO+aVhq24uDguvvjimDp1avTt2zftOAA0YqNGjYopU6ZEjx498tKvffv28eSTT8YxxxyTl351yQ033BA33HBD3g6uH3LIIfHiiy9Ghw4d8tIPAHLFvNJw9e/fP5577rn43ve+FwUFBWnHAYCtZl7JnzZt2sRzzz0XJ5xwQl777rnnnjFt2rTYdddd89oXAAD+lZPQAECDVFhYGFdffXX8+c9/jk6dOuWsT+vWreM3v/lN/Pa3v230n4RzwAEHxCuvvJKXJ8iNGDEipk6dGmeffXbOewFArphXsmfUqFHRvXv3tGNEQUFBHH744fH666/Htdde22DfbwDql5122immTZsW//Vf/5XTPgcffHBMnz499t5775z2qcvOP//8ePLJJ3O64F9WVhZXXnllTJgwIVq1apWzPgCQT+aVbdeqVas46KCDokmTJmlHiQ4dOsSNN94YM2fOjGHDhqUdBwCywrySP82bN48//OEPccstt0RFRUVOezVr1iyuuOKKePrpp6NLly457QUAAJlY8AMAGrQjjzwyZs+eHd/61rey+mk1TZo0iW984xsxZ86cOPXUU7N23fqua9eu8cgjj8SECRNi0KBBWb/+gAED4s4774znn38+dt5556xfHwDSYF7Zdl//+tdj/vz58eqrr8aPfvSj2GWXXfLav1WrVnHmmWfGm2++GQ899FD069cvr/0BIJPWrVvHXXfdFZMnT44hQ4Zk9dp9+vSJP/3pT/HXv/41OnfunNVr10cjR46MmTNnxlVXXZXVQ2iFhYVxzDHHxJtvvhmXXXZZFBb6FR8ADYt5Zdu0bt06Jk6cGJ988knce++9MW7cuLw/DGDo0KFx++23x3vvvRfnnHNO3j7ZGADyxbySX6effnq8/fbbcc4550RZWVlWr920adP4xje+EbNnz47LL7/c3AIAQJ1QUFNTU5N2CACAfFi+fHnceuutceedd8abb765Vdfo2bNnnHDCCXH22WfH9ttvn+WEybz77ruJPqFm9OjR8dRTT+U+0BY89dRT8etf/zoeffTRWLVq1VZdo1WrVnHYYYfFiSeeGAceeGAUFBRkOSUA1B3mlez56KOP4rnnnovnn38+nn/++Xj11Vdj8+bNWbt+7969Y/To0XHEEUfEgQceWCeekA8AST399NMxfvz4mDhxYqxZs6bWry8tLY0xY8bEWWedFYccckgq/61+8sknx+9///uMdZMnT4599tkn94E+R2VlZfz+97+P22+/PaZNmxZb8yu5Tp06xZe//OU477zzomfPnjlICQB1k3ll223atCmmT5/+2b2RF154IZYsWZK16zdv3jxGjBgRBx54YBxzzDHRo0ePrF0bAOoD80r+LFu2LG677ba4++674/XXX9/q6+y2227x5S9/OU455ZTo0KFDFhMCAMC2s+AHADRK7733Xvztb3+L1157LWbNmhXvvvturFq1KlavXh01NTXRsmXLaNmyZXTp0iUGDBgQgwYNiv3339+nsWylzZs3f/YL5FmzZsWcOXNi8eLFsXr16li7dm0UFBRE8+bNo1WrVtG1a9fo3r177LzzzjFixIgYMmSIA/MANErmleyqrKyMN954I955553P/syfPz+WL18ea9asiTVr1sTq1aujqqoqmjZtGk2bNo0WLVpE+/bto0OHDtGlS5fo27dv9OvXL4YMGeIXvwA0CBs3boxnnnnms/9enz17dnzyySexevXqqKysjNLS0mjZsmVUVFRE3759Y8CAATFs2LAYM2ZMNGvWLO349cqSJUti0qRJMWPGjJg1a1bMnz8/Vq5cGatXr47NmzdHixYtomXLlrHDDjtE//79Y+DAgbHffvvFrrvumnZ0AEiVeSW7FixYEHPmzPm3+yMffvhhrF69+rP7I5WVlVFcXBxNmjSJ0tLSaNOmTXTo0CE6duwYPXv2jH79+sXAgQNj55139mk3ABDmlXz74IMP4rHHHovXXnst3nrrrX+7x7Jhw4YoKyuL5s2bR/v27aN79+7Rp0+fGDZsWOy5556xww47pB0fAAC+kAU/AAAAAAAAAAAAAAAAAEhBYdoBAAAAAAAAAAAAAAAAAKAxsuAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACmw4AcAAAAAAAAAAAAAAAAAKbDgBwAAAAAAAAAAAAAAAAApsOAHAAAAAAAAAAAAAAAAACn4/9i77/Aoqv7943c6CaETmvQOiSCgKB0EUVAQaSqooCCooKIoKqiAoIBiA7FSBaUqVZHekd6RTui9E0jP/v54fravJJnZzOzsJu/XdeW6nsf9nDl3lp2Zk7NzZljgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAAAAAACAA1jgBwAAAAAAAAAAAAAAAAAAAABZwNWrV7V161anYwAAAOAfWOAHAAAAAAAAAAAAAAAAAAAAAJnYzZs3NWzYMJUuXVrVq1fXDz/84HQkAAAA/H+BTgcAAAAAAAAAAAAAAAAAAAAAAFgvISFB3377rd5//32dOXPmr/+emJjoYCoAAAD8Ewv8AAAAAAAAAAAAAAAAAAAAACATSU5O1vfff6+BAwfq6NGjTscBAABAGljgBwAAAAAAAAAAAAAAAAAAAACZgMvl0rRp09S/f3/t27fP6TgAAAAwgAV+AAAAAAAAAAAAAAAAAAAAAODj5s2bp7ffflvbt293OgoAAABMYIEfAAAAAAAAAAAAAAAAAAAAAPioZcuWqV+/fvr999+djgIAAAA3sMAPAAAAAAAAAAAAAAAAAAAAAHzM+vXr1a9fPy1ZssTpKAAAAMgAFvgBAAAAAAAAAAAAAAAAAAAAgI/Ys2eP3nzzTc2ZM8fpKAAAALCAv9MBAAAAAAAAAAAAAAAAAAAAAADGfPPNNyzuAwAAyERY4AcAAAAAAAAAAAAAAAAAAAAAmYSfn58eeeQRtW/f3ukoAAAAMIAFfgAAAAAAAAAAAAAAAAAAAACQCbRq1Urbtm3Tzz//rEqVKjkdBwAAAAYEOh0AAAAAAAAAAAAAAAAAAAAAAOC+pk2b6oMPPlCNGjWcjgIAAACTeIIfAAAAYJHly5fLz8/P8A/gBD6nAPBvHBcBAADgbSZMmGBobDpq1Cino97S0aNHNW3aNL3zzjtq166d6tSpo9KlSytv3rzKnj27AgICDI+/x48f7/SvAwAAAACA16tVq5aWLVumBQsW+MzivgcffDDdeYHs2bPryJEjTkcFAADwCJ7gBwAAAAAAAAAAAABe4NKlS3rttdfSratUqZK6d+/ugUTGbNmyRd9//73mzZunQ4cOOR0HAAAAAIAsoUqVKho0aJBatmzpdBTTPvroIy1YsEDJycmp1ty8eVMvvvii5s6d68FkAAAAzuAJfgAAAAAAAAAAAADgBfr06aMLFy6kWzd8+HAFBjp/L9f58+fr7rvvVo0aNfT555+zuA8AAAAAAA95+eWXtW3bNp9c3CdJlStX1rPPPptu3bx58zRr1iz7AwEAADiMBX4AAAAAAAAAAAAA4LA1a9Zo7Nix6dY1adJEzZs390Ci1J08eVIPPvigmjdvrg0bNjiaBQAAAACArKhUqVLy8/NzOkaGDBw4UDly5Ei37qWXXtLNmzc9kAgAAMA5zt/WEQAAGzVs2FArVqxwrP+goCCFhIQoJCRE4eHhioiIUIECBVSoUCGVL19e5cuXV+XKlVW+fHmfn3ABADM8dXwODg7+6zj8z5+cOXOqQIEC//kpWbKkKlasqLx589qeDQAAAKlz+u95q3Xq1Enjx493OgYAwIulpKTopZdeksvlSrd2yJAhHkiUutWrV6tVq1a6ePGiozmArCQpKUm7du3Spk2b/vrZuXOnEhISDG+jRIkSOnLkiH0hfdz48eP19NNPOx3DpzRo0EDLly93OgYAAAB8WIECBfTKK6/ovffeS7Pu+PHjGjp0aLp1AAAAvowFfgAA2CgxMVGJiYmKiYnRxYsXdfTo0VvW5cmTR/fcc48aNWqkhx9+WOXLl/dwUgDInBISEpSQkKDr16+bahcREaGKFSuqYsWKqly5surUqaNq1aopMJA/oQAAAAAAgPXGjBmjLVu2pFvXpk0b3XnnnR5IdGsLFy5Uy5YtFR8f71gGILNLTk7WH3/8oU2bNmnz5s3atGmTtm/frri4OKejAQAAAIDlevfurVGjRqV7I6Hhw4erS5cuKlGihIeSAQAAeBZXpwIA4AUuX76s+fPna/78+erTp48qV66szp0765lnnlG+fPmcjgcAWc758+d1/vx5rVq16q//lj17dt1zzz2qW7euGjRooHr16rHgDwAAAAAAZNjVq1f19ttvp1sXEBCgQYMGeSDRre3cuVNt27ZlcR9goZSUFO3bt+9fT+bbtm2bbt686XQ0AAAAAPCInDlz6o033lCfPn3SrIuNjdXrr7+uadOmeSgZAACAZ/k7HQAAAPzXH3/8oT59+qho0aLq3r27Tp486XQkAMjybty4oSVLlmjgwIG69957VbhwYXXr1k2LFi1SUlKS0/Hgo8aPHy8/Pz9DPyVLlnQ6LvAffIYBAPA9nL8B7/P+++/r3Llz6dZ16NBBlSpV8kCi/0pMTNQTTzyh69evO9I/kBm4XC7t379fP/74o1599VXVr19fuXLlUuXKlfXUU09pxIgRWrt2LYv7AAAAAGQ5PXv2VMGCBdOtmz59utauXeuBRAAAAJ7HAj8AALxYXFycvv32W5UrV07vvPOOEhISnI4EAPj/Lly4oO+++05NmzZV4cKF9fLLLys6OtrpWAAAAAAAwIccP35cI0eOTLfO399f/fr180CiW/v444+1Y8cOx/oHfNm+fft07733Kk+ePKpQoYI6duyoTz/9VKtWrVJMTIzT8QAAAADAcaGhoerdu7eh2vSe9AcAAOCrAp0OAAAA0hcbG6vBgwdr1qxZmjhxou644w6nIwEA/uHChQsaMWKERo0apUceeUSvvfaa7r77bqdjAQAAAAAAL/fOO+8oLi4u3br27durQoUKHkj0X9evX9dHH33kdvvcuXOrevXqKlKkiHLlyqWcOXPK39/YfWirVq3qdr+Atzh9+rSWLVvmdAwAAAAA8GrPP/+8hg0bposXL6ZZt2bNGs2ePVsPP/ywh5IBAAB4Bgv8AADwIbt27VLt2rU1adIktW7d2uk4AID/Izk5WTNmzNCMGTPUqFEjff7557r99tudjgUAAAAAALzQzp07NXHixHTr/Pz89Pbbb3sg0a2NHTtWly5dMtUmT548euaZZ9SlSxdVqlTJpmQAAAAAACCzCA8P18svv6x333033dq33npLDz30kAICAjyQDAAAwDOM3RoRAAB4jdjYWLVt21Zff/2101EAAGlYtmyZqlevrl69eunq1atOxwEAAAAAAF7m3XffVUpKSrp1zZo1U2RkpAcS3dqECRNM1devX19//PGHhg8fzuI+AAAAAABgWI8ePZQ9e/Z06/bs2aPJkyd7IBEAAIDnsMAPAAAf5HK51KNHD02ZMsXpKACANCQlJenzzz9X+fLlNXPmTKfjAAAAAAAAL7F161bNmjXLUO3rr79ub5g0HDp0SFu3bjVcHxkZqYULF6pQoUI2pgIAAAAA3/Xll1/Kz8/P8M/HH3/sdOQMS0pKUvXq1Q3/zsHBwdq+fbvTseGAvHnz6umnnzZUO2jQICUnJ9ucCAAAwHMCnQ4AAIA3qVKlilq0aGHJtpKSkhQfH6+YmBidP39eJ0+e1MGDB3XlyhVLtp+SkqJOnTqpYsWKuuOOOyzZJgB4q4wen+Pi4hQXF6f4+HjFxcXp2rVrOn36tE6fPq2zZ88qMTHRwrT/de7cObVu3Vp9+vTRBx98oICAAFv7AwAAAAAA3m3AgAGG6mrUqKGGDRvamiUtixcvNlU/duxYhYSE2JQGAAAAAHyf2Se0792716YknvPhhx+aunnM22+/rapVq9qYCN7slVde0VdffZXu4r39+/frhx9+0FNPPeWhZAAAAPZigR8AAP9QrVo1DR482NY+jh07pnXr1um3337T3LlzdeHCBbe3lZCQoA4dOmjz5s0KDQ21MCUAeBc7j88ul0tnz57Vrl27/vrZvHmztm/fLpfLZWlfH374oTZs2KApU6aoYMGClm7bqIYNG1r+ewGAL+O4CGQOnTp10vjx452OAQCAIdu2bdOcOXMM1fbq1cveMOlYsWKF4dpq1aqpZs2aNqYBAPt07txZnTt3djSDn5+fqfpx48Y5nhkAAJgXFRVlqn7fvn02JfGMvXv36r333jNcX716dfXt29fGRPB2pUuXVosWLTRr1qx0awcPHqwnnnhC/v7+9gcDAACwGSMaAAA8rHjx4mrfvr3Gjh2rkydPavLkyabvzvVPe/bs0aeffmphQgDIWvz8/FSoUCE1adJEvXr10ujRo7V161adP39e06ZNU/fu3S1djLd8+XLVrl1bJ06csGybAAAAAADAdwwbNsxQXUREhNq1a2dzmrTt2LHDcO2jjz5qYxIAklSkSBG1aNFCAwcOVI8ePZyOAwAAADfky5dPhQoVMlzvy0/wS0lJUZcuXRQfH2+oPjg4WBMmTFBgIM8uyepeeOEFQ3UHDhzQzJkzbU4DAADgGSzwAwDAQcHBwXrssce0Y8cOff75524/hW/YsGG6ePGixekAIGvLly+f2rVrp6+//lonTpzQ3Llz1bZtWwUHB2d424cPH1ajRo106tQpC5ICAAAAAABfER0drenTpxuqffbZZxUSEmJzotQlJSVp//79huurV69uYxog6ylUqJAefPBB9e/fX3PnztXp06d18uRJzZkzR++++67uvPNOpyMCAADATWae4nf+/HldunTJxjT2GTlypNauXWu4vn///qafcIjMqUmTJipfvryh2g8//NDmNAAAAJ7BAj8AALyAv7+/XnrpJa1cuVIFChQw3f7atWsaPXq0DckAAJIUGBiohx56SNOnT9ehQ4f0/PPPZ3ih38GDB9WoUSOdPn3aopQAAAAAAMDbDR8+XMnJyenW+fv7q3v37h5IlLpTp04pMTHRcH2VKlVsTANkbgULFlTz5s31zjvvaPbs2Tpx4oROnz6tefPmacCAAXrooYdMPeUFAAAA3s3sIrZ9+/bZlMQ+0dHR6tevn+H6u+66S2+88YaNieBL/Pz89Nxzzxmq3bBhg5YvX25vIAAAAA9ggR8AAF7kzjvv1G+//abw8HDTbceOHWtDIgDA/1W0aFF9+eWXOnTokB577LEMbWv//v165JFHTF0sBwAAAAAAfNOVK1c0YcIEQ7VNmjRR8eLFbU6UtjNnzhiuDQgIUMGCBW1MA2QeEREReuCBB9SvXz/NnDlTx48f15kzZ/TLL7/ovffeU8uWLXXbbbc5HRMAAAA2ioyMNFW/d+9em5LYp1u3brpx44ah2pCQEI0fP14BAQE2p4IveeKJJxQUFGSo9rPPPrM3DAAAgAewwA8AAC9TrVo1tyYd9u/fr507d1ofCABwS0WLFtXkyZM1c+bMDN09e/369erTp4+FyQAAAAAAgDcaO3as4Ysbn376aZvTpO/ChQuGa925aR2QVRQsWFBvvfWWfvrpJx09elTnzp3T/PnzNXjwYLVq1UpFixZ1OiIAAAA8zOwT/Hxtgd+YMWO0ePFiw/UDBw5U5cqVbUwEXxQREaEWLVoYqp07d66OHDlibyAAAACbscAPAAAv1KVLF9WsWdN0u6VLl9qQBgCQllatWmnXrl2qX7++29v47LPPNGvWLOtCAQAAAAAAr5KSkqJRo0YZqs2dO7ceeeQRmxOl7+bNm4ZrWeAHpK5SpUr64IMP1Lp1a8efzAkAAADvEBkZKT8/P8P1+/btszGNtU6dOqXevXsbrr/77rv12muv2ZgIvqxLly6G6szMuwAAAHgrFvgBAOCl3nzzTdNtVq9ebUMSAEB68uXLp4ULF6pjx45ub+Ppp5/W+fPnLUwFAAAAAAC8xYIFC3T48GFDtW3btlVISIjNidIXHx9vuDYwMNDGJAAAAACQueTIkcPUzR986Ql+zz//vK5evWqoNlu2bJowYYICAgJsTgVf1bRpU0VERBiqHTt2rOLi4mxOBAAAYB8W+AEA4KUefPBB5cqVy1QbX7pjFwBkNiEhIZo0aZKeffZZt9pfuXJFb7/9tsWpAAAAAACANxg9erTh2scff9zGJMYlJSU5HQEAAAAAMq2oqCjDtYcOHVJiYqKNaawxZcoUzZkzx3D94MGDVaFCBRsTwdcFBgaqbdu2hmovXbqkmTNn2pwIAADAPizwAwDASwUHB6t+/fqm2hw8eNCmNAAAo7766is9+OCDbrUdPXq0tm/fbnEiAAAAAADgpPPnz2vu3LmGagsVKqSGDRvaG8ggl8vldAQAAAAAyLQiIyMN1yYlJRl+KrxTLly4oJdeeslwfe3atfXKK69kqM/x48fLz8/Pp38mTZqUofcgK3jssccM144ZM8bGJAAAAPZigR8AAF7szjvvNFUfGxur2NhYm9IAAIwICAjQ1KlTVaVKFdNtU1JSMvwlBgAAAAAA8C4TJ040/KSFNm3ayN+fr3ABAAAAILMz8wQ/Sdq7d69NSazx8ssv6/z584ZqQ0NDNX78eP7+hSH16tVTkSJFDNUuXbpU0dHRNicCAACwR6DTAQAAQOpKly5tuk1MTIxCQ0NtSGOdxMREbdmyRRs2bNChQ4cUHR2tI0eO6MqVK7px44Zu3LihxMREZc+e/a+f2267TaVKlVLp0qUVFRWlOnXqqECBAk7/Kl7j9OnTWr16tXbt2qVdu3bpwIEDunr1qq5fv67r168rMDBQYWFhypEjh4oWLapSpUqpQoUKql27tu6++25lz57d6V/BcgkJCVq9erU2bNigPXv2aM+ePTp37pyuXbum69evKygoSDly5FCOHDmUJ08eVahQQZUrV1ZkZKTq1aunvHnzOv0rwIdlz55dEydO1F133aWEhARTbZctW6aVK1eafoprVpCSkqLdu3drx44d2rdvnw4cOKDTp0/r3LlzunjxouLi4hQfH6/ExESFhIQoLCzsXz9/HgNLliypEiVKqGTJkn/9BAcHO/3rZXmMD6x35swZrV27Vvv27dP+/fu1f/9+XbhwQTExMYqJidGNGzcUFBSk/Pnzq3jx4ipfvrzuuOMOtWnTRkWLFnU6PjKA/clajLWRWSQmJmrv3r3avXu3Dh8+rMOHD+v48eM6f/68Lly4oGvXrikhIUHx8fEKDAxUaGiosmXLphw5cqhIkSIqWrSoihUrpqioKFWvXl0VKlRQQECA07+WYw4cOKANGzbo4MGDOnLkiI4ePaqTJ0/qxo0bunnzpm7evKnExEQFBwcrJCREuXLlUv78+VWwYMG/jreVK1fWHXfcocKFCzv962RZnDOtxxj01iZOnGi49uGHH7YxCdLCMcFaHA8A2CkuLk4bN27U1q1bFR0drcOHD+vIkSO6evXqX8fshIQEhYaGKiwsTOHh4brttttUunRplS5dWtWqVVOdOnX4LsgHMC+TPvaH1DEXYi/GexlndoHfvn37bEqScfPmzdOPP/5ouP6DDz5QuXLlbEyEzMTPz08tWrTQN998k26ty+XSjz/+qH79+nkgGQAAgLVY4AcAgBfLkyeP6TZmF5J4yqlTpzRt2jTNmTNH69ev182bN9Ntc+3aNV27dk2SdPDgQa1YseJfr1eoUEGNGzfWY489prp168rPz8+W7N7q2LFjmjRpkubMmaMNGzbI5XKlWpuUlKS4uDhdunRJR48e1Zo1a/56LTAwUE2aNNGjjz6qtm3bKjw83BPxbZGcnKy5c+dq/PjxWrJkiWJiYlKtTUpKUmxsrM6dOydJ2rRp01+vBQQEqHbt2mrRooWeeOIJLraEW6pUqaJ3331Xb7/9tum2I0eOZIHf/3fy5EnNnj1b8+bN09q1a3X16lVD7f58qu3FixfTrQ0ODla1atV0zz33/PVTsmTJDCaHEYwPrLdx40ZNnz5dCxcu1Pbt29OtT05O1okTJ3TixAmtXbtWkpQrVy517tzZ5qSwGvuTtRhrIzM4evSoVq9erTVr1uj333/XH3/8YXjOICEhQQkJCbp69arOnj2rgwcP/qcmLCxMDRo0UPPmzfXggw+qVKlSVv8KXuXUqVOaOXOm5s+fr3Xr1hkaZ0r/u9AyLi5OV69e1bFjx25ZU6RIEdWvX18NGjTQAw88wFjUZpwzrccYNG379u3Ttm3bDNXmypVLDRs2tDUP/o1jgrU4HgCw044dOzRt2jQtWbJEW7ZsMfT3zZ+LTM6dO6fDhw9r1apVf73m5+enSpUqqUWLFurQoYOqVKliZ3yYwLxM+tgfbo25EPsx3rNWpUqVFBAQoOTkZEP13voEv2vXrum5554zXF+vXj29/PLLNiZCZtSqVStDC/wkafLkySzwAwAAvskFAEAm1qBBA5ckwz+dOnVyOvK/LF682FR+Sa5r1645HfsvKSkprlmzZrkaNWrk8vf3N/27mPkpWrSo65133nFduHDB6V/7Xzp16mT552/Hjh2uJ5980hUYGGj5+5g3b17XgAEDXJcvX7b1fbFaXFyc66OPPnIVK1bM8vckJCTE1aVLF9eePXvSzbFs2TJT287KfP34bFRSUpKrfPnypj93gYGBruPHj9uSyRc+p0lJSa6ZM2e6mjRp4vLz87P1/JHaz2233ebq2bOna8WKFa7k5GS3fxcz5wGnfzyF8YH144P4+HjX999/76pZs6Yl79u4cePcyur0j7t84biYmqy+PzHWztyyynjRSnFxca5ffvnF1bNnT7fGoBn9adiwoWvatGmuhIQEp98Ky8TGxrq+/fZbV61atTw6Lr399ttd/fv3dx08eNCt3Fnh/G1WVj9nuly+NQbNbAYMGGD4fXj00UdtzxMdHe34vu/05yGrHxM4HmQe48aNM/XelihRwunISAf7y39dvnzZNWTIEFelSpVsP/9ERka6xowZk6n+prET8zKex/7wX8yF3BrjPd9i5rNbq1Ytp+Pe0rPPPmv4dwgLC3N7zutWzI6JvfFn4sSJlr0fqenfv7/P75Px8fGuHDlyGH5ft2/f7nRkAAAA03iCHwAAXiwuLs5UfUBAgHLkyGFTGnOmT5+uQYMGaefOnR7p78SJExo0aJA++eQTPffcc3rzzTeVP39+j/TtKVeuXFGfPn00evToNO9UmRGXLl3SgAED9NVXX2nkyJFq166dLf1Y6aefftLrr7+u6OhoW7YfHx+vMWPGaNy4cerVq5cGDRqksLAwW/pC5hMQEKD+/furY8eOptolJSXpq6++0vvvv29TMu81c+ZM9e3b1/E7UJ48eVJffPGFvvjiCxUuXFht2rTRa6+9phIlSjiay9cxPrDeokWL1LNnT+3fv9/pKPAw9idrMdaGr4qPj9cvv/yiGTNmaN68ebp+/bpjWZYvX67ly5erRIkSGjx4sDp27OizTyy6ePGiRowYoa+++krnz5/3eP87d+7Uzp07NXDgQNWtW1c9evRQmzZtFBQU5PEsmQHnTOsxBjVn+vTphmvvu+8+G5NA4phgNY4HAOxy5swZffLJJ/r666899nfO7t271aVLFw0YMEBvv/22nn32WZ/9m8bXMC+TNvaHf2MuxLMY79kvMjLS8Pu7b98+m9OYt2zZMo0ePdpw/dChQ1WmTBnL+s+bN6+qVq1q2fackDdvXqcj+ITg4GA1aNBA8+bNM1Q/bdo0n30iLQAAyLpY4AcAgBe7cuWKqfpcuXLZE8SEw4cPq3v37lq8eLEj/d+4cUMff/yxJkyYoE8++URPPvmkIzmsNnv2bD3//PM6ffq0R/o7e/as2rdvryeffFLfffedQkJCPNKvGdevX1f37t01efJkj/SXkpKiTz75RLNnz9b333+v2rVre6Rf+L7HHntM77//vv744w9T7SZMmJClFvidPHlSXbp00YIFC5yO8h+nT5/WF198oTp16rDAz02MD6x35coVde/eXdOmTXM6CjyM/cl6jLXhi/bt26dPP/1U06ZN0+XLl52O8y9Hjx7Vk08+qU8//VTjx4/X7bff7nQkw5KTk/XVV1/p3Xff9Zr3dfXq1Vq9erXKlSvHxXQmcc60HmNQ8w4dOqTdu3cbrm/UqJGNabI2jgnW4ngAwC7JyckaOXKk3n33XccW7Rw/flzdu3fXhAkT9O233yoyMtKRHFkF8zKpY3/4N+ZCPIvxnudERUVp5syZhmovXbqk8+fPKyIiwuZUxty8eVPPPvus4cXZDRs2VM+ePS3N0LJlS7Vs2dLSbcJ7NWrUyPACv9mzZ2vw4ME2JwIAALCWv9MBAABA6sw+kaxw4cI2JTHm66+/VlRUlGMXSfzThQsX9NRTT6lZs2a6ePGi03Ey5L333tMjjzzisS+2/mnixIlq1KiR131JsmvXLlWvXt1ji/v+6dChQ7r33nv5MgOG+fv7q3fv3qbbnTx5Ulu2bLEhkfdZvHixbr/9dq9c3IeMY3xgvf379+vuu+/mXJQFsT9Zj7E2fNX06dP1zTffePXnZ8uWLapZs6a++OILp6MYsnXrVt1xxx168cUXvfJ9PXfunNMRfArnTOsxBnXP7NmzDdcWL15cpUuXtjFN1sUxwVocDwDYZceOHbrrrrv0yiuvOPpErj+tXbtW1atX1zfffON0lEyLeZnUsT/8F3MhnsN4z7OioqJM1e/du9emJOa9/fbbOnTokKHa8PBwjR07NtM95RKeZebGSLt27TJ93R0AAIDTWOAHAIAX27Rpk6n6O++806YkaUtMTNRzzz2n559/XrGxsY5kSM1vv/2mmjVrateuXU5HMS0hIUGPP/64+vfvb/iOZ3b4/fff1bx5c924ccOxDP+0bt061a9fXwcPHnQsQ3x8vB577DF9/vnnjmWAb2nfvr2yZ89uut3cuXNtSONdJkyYoGbNmnn1F7JwD+MDe6xcuVJ33303T/DJYtifrMdYG/CMuLg4vfjii3r++eeVkpLidJxUffnll6pVq5bPHcvwX5wz7cEY1H1m/q5v2LChfUGyKI4J1uN4AMAuEydO1D333KOtW7c6HeVfEhIS9Nxzz6lbt25KSEhwOk6mwbxM2tgffJuvzIWkhvGe55ld4Ldv3z6bkpizbt06U9dLfPjhhypVqpSNiZAVVK1aVXny5DFcP2fOHBvTAAAAWI8FfgAAeKmkpCStWrXKVJuaNWvalCZ1N2/e1P333+/Vd688fPiwatWqpaVLlzodxbDk5GR16NBBU6ZMcTqKpP9NzrZv397RL9kkafny5WrSpIlXLARyuVzq1auXJk6c6HQU+IDw8HC1bdvWdLvMvsDvp59+0jPPPKOkpCSno8BijA/ssX37drVo0UJXrlxxOgo8iP3Jeoy1Ac/7+uuv9fjjjys5OdnpKP+SmJiojh07qkePHoqPj3c6DjKIc6Y9GIO678aNG1qzZo3hehb4WYtjgvU4HgCwQ0pKil566SU99dRTXrcY+5++++47tW3blkVNFmBeJnXsD5mLt86FpIXxnjPKly+v4OBgw/Xe8AS/hIQEdenSxfAi1saNG+u5556zORWyAn9/f9WvX99w/YIFC2xMAwAAYD0W+AEA4KV+++03Xbp0yVQbTy/wi42NVYsWLbRs2TKP9uuOmJgYtWjRQitXrnQ6iiHdunXTTz/95HSMf/n11181fPhwx/rftWuXWrVq5XV30ezatavpxbjImp544gnTbbZs2aIzZ87YkMZ527dvV8eOHX3y7qVIG+MDexw5ckTNmjXTtWvXnI4CD2J/sgdjbcAZ06ZN0yuvvOJ0jL/ExsaqZcuW+vHHH52OAgtwzrQHY9CMWbFihRITEw3XN2rUyMY0WQvHBOtxPABgh+TkZHXu3FkjR450Ooohc+fOVbt27VjUlEHMy9wa+0Pm5G1zIWlhvOecwMBAVahQwXC9NyzwGzx4sP744w9DtTly5NCYMWPk5+dncypkFWbmT1auXMm5CgAA+JRApwMAAIBb+/DDD03Vly5dWjVq1LApzX8lJyerdevWlt1duHjx4qpUqZKKFSumHDlyKDg4WNevX9fly5e1b98+7d27Vzdv3sxQHzdv3tSDDz6oJUuWOPK0Q6MGDRqksWPHmmoTFham8uXLq3Tp0ipQoICyZ8+uoKAg3bhxQ+fPn9fhw4e1Y8cOxcXFZShbv3799OCDD6py5coZ2o5ZZ86c0YMPPqirV69meFu5cuVSpUqVVK5cOeXKlUvh4eGKjY3VtWvXFB0drT179ujs2bOGt5eQkKDWrVtr165dGc6GzK1u3brKli2bqf3Q5XJpw4YNatmypY3JPC8+Pl4dO3a05CkpwcHBKlWqlIoXL66IiAjlyZNH2bJlU3BwsJKTkxUfH6/Y2FhdvHhR586d0+nTp3XkyBGeGmgTxgf2SEpKUtu2bXX69GlT7bJly6Zy5cqpTJkyKliwoLJnz67g4GDFxMTo+vXrOnLkiHbv3q0LFy7YlBwZwf5kD8bawP/ky5dPxYoVU8GCBVWoUCFlz55d2bJlU0hIiBISEhQfH68LFy7o7NmzOnTokI4dO2ZJvyNHjlRUVJS6detmyfbcdePGDT3wwANavXq1ZdsMDQ1VqVKlVLp0aRUqVEhhYWEKCwtTUlKSYmNjdfXqVZ08eVInT57U4cOHGY9aiHOmPRiDZtySJUsM15YoUUIlS5a0L0wWwjHBehwPANghOTlZTz75pCZPnmzJ9kJDQ1WhQgUVK1ZMhQsXVlhYmEJDQxUXF6fr16/r6NGjOnDggI4cOZKhfubMmaPnn39eY8aMsSR3VsO8zK2xP3hGVp8LSQvjPedFRkZq586dhmr37dtnc5q07dixQ0OHDjVcP3z4cJUoUcLGRMhqzCzwu3Hjhn7//Xc1aNDAxkQAAADWYYEfAABeaPLkyaafCNalSxeP3vHqzTff1G+//eZ2ez8/PzVu3FgdO3bU/fffr8KFC6dZn5SUpDVr1mju3LkaP368Ll686Fa/MTExatOmjTZv3qwCBQq4tQ07rVixQgMHDjRUW7lyZT322GO6//77Va1aNQUFBaVZn5CQoDVr1mjy5MmaNGmSYmNjTedLTEzUq6++mqF/e7NSUlL0+OOPZ+hLlCJFiqhLly566KGHdNddd6W7r+zdu1e//vqrxowZY+jOcxcuXFCPHj3Us2dPtzMi88uWLZvq1aunRYsWmWq3efPmTLfAb+TIkdq9e7dbbbNly6b77rtPzZo1U7169VSxYkUFBpr70zYxMVHR0dHavn27Nm3apPXr1+v333/n7n0WYHxgj/fff1+bN282VFu6dGl16NBBDzzwgO666y4FBwen2yY6Olpz5szR1KlT9fvvv2c0LizC/mQ9xtrIqkqVKqVatWqpVq1aqlq1qipVqqT8+fOb2sb169e1fv16LV++XD///LP27Nnjdp5evXrp3nvvVdmyZd3eRkakpKSoQ4cOGV7c5+/vr/r166tVq1aqW7eu7rjjDgUEBBhqm5CQoD179mjDhg1atWqVli9fruPHj2coT1bGOdMejEEzbvny5YZrq1evbl+QLIZjgvU4HgCww6uvvpqhxUz+/v5q0KCBWrRoocaNG6ty5cqG5olPnz6tpUuXavLkyVqwYIFbN94YO3asatSooRdeeMGd6FkW8zKpY3+wHnMh5jDec15UVJTh2ujoaCUkJBh6762WnJysZ555xvDT6ps2berVi1vhmyIjIxUSEmL4ZsLLli1jgR8AAPAdLgAAMrEGDRq4JBn+6dSpk9ORXXv27HHlyZPHVO7AwEDXqVOnPJZxxowZpvL93582bdq49u7d63b/sbGxrlGjRrny5cvndoZGjRq5kpKSLHxXbq1Tp06GMzVv3txVpEiRdOsaN27sWrp0aYZynT592tWlSxe337+FCxda9A6lb+jQoW7nLFKkiGv8+PGuxMREt/tfuHChq0qVKob669Gjh6l8WZkvHp+t8OGHH5r+HD/44IOWZli2bJmjn9Pr16+78ubNa/p9yJcvn2vYsGGuS5cuWZ7J5XK5bty44fr1119dzz//vKtAgQK3zDB58mTL+x03bpzh96BEiRKW928lxgfGmRkfVK9e3RUUFJRuXc2aNV2//PJLhrMtX77ctW7dOsP1meEz7PRx8VbYn4xhrJ25ZdXxolGDBg1K9b0ICAhw3Xfffa7PP//cdfDgQVv637hxo+uxxx5zBQQEuPU5b9iwoSslJcWWbOnp1atXho6xefLkcb377ruWz8Ns2bLF1b9/f1fZsmVv2W+uXLks6ysznL//xDnTuMw0BvUFMTExrsDAQMPv+bvvvut05FvyteMFxwRjOB5kHmb2UW/ZT5E2s8eMcePGOR3ZLd99953bx8nw8HDXG2+84YqOjs5wjsOHD7u6du3q8vf3N50jKCjItXHjxoy/GT6MeRlrsD8Yx1yIcYz3fM+sWbNMfZ527drlSE4z127kypXLdezYMUdy4r/69++f6r+VL44pq1WrZviz2LRpU6fjAgAAGJa1ryoGAGR6vnZB4K5du1xFixY1PRn8+uuveyzjmTNnXLlz53Zr0rpw4cKuRYsWWZbl4sWLrvbt27uVRZJryJAhlmVJjZnJcyPv34wZMyzNN2vWLFdYWJjpLPfff7+lOVKzY8cOQ18o3OrnmWeecV2/ft2SHElJSa4hQ4ak+4WNn5+fqYxZma8dn62yfPlyt/Z9Kzm9kMWdL6sfffRR2xb23UpSUpJr0aJFrnbt2v3rGMQCv9QxPjDHyvFBzpw5Xd9++63tmVOTGT7DTh8X/y/2J+MYa2duWXW8aNStLmqrWrWq69NPP3WdOXPGYzm2b9/uqlu3rlv73bRp0zyW808//vij28eJwMBA1+uvv+66du2a7TlXrlzpevLJJ/81FmWB339xzjQnM41BfYHZMabV4xCr+NLxgmOCcRwPMg8W+GU+ZvdBX7wYe/369a7g4GC3jjldu3Z1nT171pZMlStXNp2natWqGbrBpK9jXibj2B/MYS7EOMZ7vufgwYOm/l1++uknj2fct2+fK1u2bIYzjhkzxuMZkbrMtsDPzHEuV65cruTkZKcjAwAAGOIvAADgOJfLpbFjx6pWrVo6ceKEqbZlypTRwIEDbUr2X6+88oquXLliul3t2rW1detWNWnSxLIsefPm1dSpU/XJJ5/Iz8/PdPv33ntP0dHRluWxU7169bR161a1adPG0u0+/PDDWrhwoUJDQ021W7hwofbs2WNpllvp1auXEhMTTbXx9/fXN998ozFjxig8PNySHAEBAXrzzTe1ePFi5cqVK9U6l8tlSX/IvG6//XbTbU6fPq1z587ZkMYZEyZMMFX/xhtvaMqUKcqTJ49Nif4rICBATZo00bRp03T8+HH169dPuXPn9lj/vojxgTPKly+vzZs369lnn3U6CizE/uR5WXWsjczB399frVq10rJly7Rt2zb16tVLBQsW9Fj/VapU0YoVKzRgwADTx4lBgwZ59G+o06dPq2fPnm61rVChgjZu3KgPP/xQOXLksDjZf9WrV0/ff/+9oqOj1adPH2XPnt32Pn0R50xnMAY1Zt26dabqq1SpYlOSrINjgudxPABgVnx8vDp37qyEhART7SIiIjR//nx99913KlCggOW5atasqfXr1+uRRx4x1W779u366KOPLM+T1WTVeRn2B/cxF+I5jPc8p3Tp0goLCzNcv3fvXhvT/JfL5VLXrl0VFxdnqL5Zs2Z65plnbE6FrMzMPMrVq1f1xx9/2JgGAADAOizwAwDAQUlJSZo5c6buuusudenSRdevXzfVPigoSGPGjDH9xYS7Fi9erMmTJ5tu17BhQy1cuNC2ifVXXnlFY8aMkb+/uaFNbGysevToYUsmK7Vo0UKLFy+27f2rU6eOxo0bZ6qNy+XSDz/8YEueP82aNUtLly411SYgIEDff/+9unXrZkumhg0batGiRSz0gdvy5s2rIkWKmG539OhRG9J43rVr1/T7778brm/VqpWGDh1qY6L0FSxYUIMHD9bRo0dVr149R7N4K8YHzqhatap+//13lS1b1ukosBD7k+dl1bE2fJ+/v7/atGmjHTt2aObMmWrYsKGjWfr376/x48crICDAcLudO3dq9uzZNib7t65du+rSpUum2zVr1kzr16/XHXfcYX2odNx2220aNmyYDh8+rJdfftnj/XszzpnOYAxq3JYtWwzXhoWFqUyZMjamyfw4JngexwMA7hg4cKDphVMVK1bU+vXr9cADD9iU6n/Cw8M1Y8YMPfHEE6baffDBB7pw4YJNqTK/rDwvw/5gHnMhnsV4z7P8/PxUqVIlw/X79u2zMc1/ffnll1q1apWh2ty5c+u7776zORGyOrM3SjIzTwMAAOAkFvgBAOBhp06d0s8//6znnntOxYoVU+vWrbV582bT2wkMDNS0adPUoEEDG1LeWt++fU23uf322zV37lzb7zb/9NNP68MPPzTdbv78+Vq9erUNiazRuHFjzZgxQ8HBwbb28+ijj6pDhw6m2syYMcOmNP/78uzNN9803W7YsGHq2LGjDYn+dtddd+mnn35SYGCgrf0g83LnKX5mn+7qrdasWaPk5GRDtcHBwfriiy9sTmRczpw5ddtttzkdwysxPvC8kiVL6rffflPevHmdjgKLsT95VlYdayNz6N27t2bMmKHIyEino/zlqaee0meffWaqjacu9pk3b55+/fVX0+1atWqlOXPmpPkkd08oUKCABg4c6GgGb8M50/MYg5qzfft2w7WRkZGmF4Dh3zgmeBbHAwDu2LNnj+mne1WoUEErVqxQqVKlbEr1b/7+/powYYKaN29uuE1MTIyGDx9uY6rMKyvPy7A/uIe5EM9hvOeMqKgow7WefILf0aNHTV278dlnn/GdKmxndoGfmXkaAAAAJ3FVMgAA/7B161a9/fbblmwrOTlZCQkJiomJ0fnz53Xy5EkdPHjQrbvF/18hISGaNGmSWrVqlfGgBi1YsEAbN2401SZPnjyaM2eOwsPDbUr1b71799a2bds0adIkU+0GDRqkBQsW2JTKfaVKldK0adNs/2LrT0OHDtXPP/+suLg4Q/X79u3Tvn37VKFCBcuzzJkzx/Rd5x599FH17t3b8iy3cu+99+rDDz/Uq6++6pH+kLkUL17cdJvjx4/bkMTzdu/ebbi2devWfPnjAxgfeF5QUJCmT5+uQoUKOR0FFmN/8qysPNbOrCZMmKAJEyY4HeMvDz/8sGbNmmXb9kNCQmzbdkb07NlTa9euNfwUpQULFujs2bO2Pa1BklJSUtxa+NG4cWNNnTqVm7t4Ic6ZnscY1JybN2/q4MGDhuvduREQ/sYxwbM4HgBw17vvvqukpCTD9REREVq0aJEKFChgY6r/8vf3148//qgaNWro0KFDhtqMGjVKffr0YSGMCVl9Xob9wT3MhXgG4z3nmFng58kn+HXv3l0xMTGGalu0aKFOnTrZnAj43w3RChYsqLNnzxqq37Ztm72BAAAALMI30wAA/MOOHTu0Y8cOp2Ok6a677tL48eNVuXJlj/b7wQcfmG7z2WefqWTJktaHScOoUaO0fPlyU0+7WrhwoTZt2qQ777zTxmTm+Pn5acKECR79MrBYsWLq1KmTvvnmG8NtVq5cacuXW2bv7ligQAF9+eWXludIS69evfTzzz977Z204b0KFy5suk1meYKfmQscH3jgARuTwCqMDzzv3Xff9bpMsAb7k+dk9bE2YLcRI0Zo/vz5unLlSrq1ycnJmjp1ql566SXb8vzwww/auXOnqTbFihXTlClTPHaxKczhnOl5jEHN2bt3r1JSUgzXlyhRwsY0mR/HBM/ieADAHdu2bdNPP/1kuN7f31+TJ09WsWLFbEyVuly5cmnMmDFq1KiRXC5XuvUxMTGaOHGiXn75ZQ+k831ZfV6G/SFz8ra5kIxgvOccMwv8rl69qjNnzti+EHP8+PGGbzqSN29eU8dZIKNKlChheIHfH3/8YXMaAAAAa/g7HQAAABhz2223afjw4fr99989vrhv3759Wrlypak2TZs21VNPPWVTotTlzJnTrYVe3377rQ1p3Ne1a1fVq1fP4/0+99xzpurtWNy2Y8cO09v9+OOPPX5nVD8/P3333Xc8zQGmZeUFfufPnzdcGxkZaWMSWIHxgeeVLFlSr7/+utMxYAP2J8/KymNtwBPy589v6kK+RYsW2Zjmf38vmuHn56cff/xR+fPntykRMoJzpucxBjXvwIEDpup5er37OCZ4FscDAO56//33DS0M+tPzzz+vxo0b25gofQ0aNFCHDh0M148bN87GNJlLVp+XYX/InLxtLsRdjPecZWaBn/S/m8vY6cyZM3r11VcN148YMcKt78EBd5mZTzlz5ozhJ1ECAAA4iQV+AAB4saCgIN17772aPn26jhw5ot69eysgIMDjOb7//ntT9X5+fvrwww9tSpO+Fi1aqH79+qbaTJs2TXFxcTYlMickJET9+/d3pO877rhDZcqUMVy/adMmyzNMnjzZVH1UVJSpL5WsVLFiRXXq1MmRvuG7ihQpYrrNtWvXbEjieWYmzXPnzm1fEFiC8YHnDRw4UCEhIU7HgA3Ynzwnq4+1AU957rnn5O9v7OuHFStWKCkpyZYc69at0/bt20216dKli+rWrWtLHmQc50zPYwxqntkFfkWLFrUpSebHMcGzOB4AcMe5c+c0e/Zsw/X58+fX+++/b2Mi4/r372/4e9nt27dr69atNifyfVl9Xob9IXPzlrmQjGC856yiRYsqV65chuvtXuDXo0cPXb582VBtq1at1LFjR1vzAP+X2fkUs/M1AAAATmCBHwAAXiYgIEBPPPGEli1bpqtXr2rJkiVq27atY08Jc7lcmjRpkqk2bdu2VdWqVW1KZMzgwYNN1V+9etXUFyp2euqppxy9c/eDDz5ouPbgwYOWf/kwZcoUU/Vvv/224S9L7PDOO+84svAWvitnzpym28TGxtqQxPPMHC+uX79uYxJkFOMDzytcuLAee+wxp2PABuxPnpXVx9qApxQqVEgNGjQwVHv9+nVt2bLFlhxff/21qfrw8HANHTrUlizIOM6ZnscY1D2HDx82Vc8T/NzDMcGzOB4AcNf48eOVmJhouL53796mFjfYqVy5cmrevLnh+nnz5tmYJnPI6vMy7A+Zm7fMhbiL8Z53iIyMNFy7b98+23LMmDFDP//8s6HafPnymZ6DA6xgdkxx6NAhm5IAAABYhwV+AAB4meTkZE2aNEkdOnTQSy+9pEWLFik5OdmxPFu3btWxY8dMtXnxxRdtSmNcvXr1VK1aNVNtZs2aZU8Yk7p27epo/7Vq1TJcm5CQYPqipbRs3rxZR44cMVxfsGBBtW7d2rL+3VGiRAk1a9bM0QzwLdmyZTPdxlvu1J5RoaGhhmvNnnvgWYwPPO+ZZ55RcHCw0zFgA/Ynz8rKY23A0xo1amS41uxT9oxISEgwfCHSn5577jnly5fP8iywBudMz2MM6p4TJ06YqmeBn3s4JngWxwMA7ho7dqzh2vDwcPXo0cPGNOZ16dLFcO2CBQtsTJI5ZPV5GfaHzM/puZCMYLznHaKiogzX2vUEv0uXLqlnz56G67/44gsVLFjQlixAWsw+we/kyZM2JQEAALAOC/wAAPBSp0+f1ujRo9W0aVOVKlVKQ4YM0ZUrVzyeY9GiRabqK1eurHr16tmUxpznn3/eVP3SpUvlcrlsSmNM2bJlVbNmTUcz3Hnnnabqo6OjLet78eLFpuo7d+6soKAgy/p3V7du3ZyOAB/izgK/zPIEPzMXS//yyy82JkFGMT7wvPbt2zsdATZhf/KcrD7WBjztrrvuMly7a9cuy/tfsWKFqadCBwYG6tVXX7U8B6zDOdPzGIO6x8wFY2FhYcqTJ4+NaTIvjgmexfEAgDsOHDhg6ulC7dq1U44cOWxMZN59992nkJAQQ7Xr16/XtWvXbE7ku7L6vAz7Q9bg9FxIRjDe8w7esMCvV69eOnv2rKHatm3b8uRHOMbsDZNY4AcAAHwBC/wAAPABx48fV9++ff9a6BcfH++xvs0uuPKmid82bdooMDDQcP25c+e0Y8cOGxOl74EHHnC0f0kqVaqUqUVzRid3jVi2bJmpeqef3venpk2bKjw83OkY8BFZeYFf8eLFDddOnz5d586dszENMoLxgWeVKlVKVapUcTQD7MP+5DlZfawNeFqZMmUM19pxUdu8efNM1Tdt2lSFCxe2PAeswznTsxiDuu/06dOGa4sUKWJjksyNY4LncDwA4K5ff/3VVH2HDh1sSuK+sLAwwwvEk5KStHnzZpsT+a6sPi/D/pA1OD0X4i7Ge97DzAK/Y8eOKS4uztL+f/vtN02cONFQbUREhL788ktL+4d9BgwYIJfLdcufzp07Ox3PLSzwAwAAmREL/AAA8CFXrlxR3759dccdd2jt2rW295ecnKw1a9aYavPII4/YlMa8vHnzmr4r8/Lly+0JY1CjRo0c7V+SAgICTC3CsWoBTlJSklavXm24vnDhwqbugminkJAQr/hiEr4hODjYdJuEhAQbknheZGSk4dorV67ohRdecPwO9fgvxgee16BBA0f7h33YnzwrK4+1AScUKFDAcO3Ro0ct73/BggWm6p944gnLM8A6nDM9jzGoe5KTk3X58mXD9d72VBZfwTHBszgeAHDX/PnzDddmz55d9evXtzGN+8w89W3btm32BfFxWX1ehv0ha3B6LsRdjPe8h5nvUlNSUrR//37L+r5+/bq6d+9uuH7UqFGKiIiwrH/ALLNzKhcuXLApCQAAgHVY4AcAgA/au3evGjRooI8//tjWfvbt22fqqVEFChTwuju7mV10tX37dpuSGFOtWjVH+/+TmS8fLl68aEmf+/fv140bNwzXN2rUSH5+fpb0bYXGjRs7HQE+wp2nsLrz1D9vdM8995iq/+mnn/T0008rOTnZpkRwB+MDz6tbt66j/cM+7E+elZXH2oATsmfPbrj2zJkzlvZ97do1Uxc4+fv7q1mzZpZmgLU4Z3oeY1D3XL161VR9aGioTUkyN44JnsXxAIA7XC6XqZuV1q9f362b43mCmfmErLigyaisPC/D/pB1ODkXkhGM97xHgQIFTC2a27t3r2V9v/HGGzp27Jih2vbt26tdu3aW9Q24w+ycitk5GwAAACewwA8AgH/o1KmTXC6XZT8pKSmKjY3VlStXdPjwYf3++++aOnWqBgwYoFatWil//vxuZ01KStJrr72mbt26KSUlxcJ34W87d+40VV+7dm1bcmSE2Uw7duywKUn6wsPDVapUKcf6/6d8+fIZro2Li7Okz127dpmqr1WrliX9WsXb8sB7ubPPZJYFfiVLllTlypVNtZkwYYJq1aqldevW2ZQKZjE+8DxvuxAV1mF/8pysPtbOCqz+ez6jP7NmzXL6LXFcYGCg4dobN27o+vXrlvW9detWU0+CrlGjhnLnzm1Z/7Ae50zPYwzqnitXrpiqzyx/73saxwTP4ngAwB0HDhwwNcY381QwTytRooTh2n379tmYxHdl9XkZ9oesw8m5kIxgvOddoqKiDNdatZ+tXLlSX3/9taHaAgUKaNSoUZb0C2SE2QV+ZudsAAAAnGD8r0oAAGCan5+fsmXLpmzZsilXrlwqVarUf55etHHjRk2bNk3jxo1z6y6A3333neLi4jRhwgTLn2Zm9kIJs09m8oS77rpLQUFBSkxMNFS/e/duJScnKyAgwOZk/1WsWDGP95kaMxNh7jyN7FbMLvC76667LOnXKlFRUQoNDTV193BkTe58IZyZ7uj/+OOP65133jHVZuPGjapVq5YaN26sF198Uc2bN1dQUJBNCZEexgeeV7FiRUf6hf3Ynzwnq4+1gX86ffq0du/erYMHD+rAgQM6fvy4Lly4oAsXLujixYuKi4tTfHy8EhISDO/bVjh//rxy5MhhybY2b95sqr5BgwaW9Av7cM70PMag7omJiTFVn5n+3vckjgmexfEAgDu2bNliqr569eo2Jcm42267zXDtyZMnbUziu7L6vAz7g/OywlxIRjDe8y5RUVFatmyZoVornuAXGxurrl27Gr5Z1tdff52hm5kDVgkODpa/v7/hm+J7y6JqAACAtLDADwAAh911112666679N577+mbb77RwIEDTd81aOLEiSpcuLCGDRtmabaDBw+aqjf7VCZPCAkJUenSpQ3fuSwuLk4nT55U8eLFbU72X0WKFPF4n6kJCQkxXGvVl1v79+83Ve9tXzQEBASoXLlyjt9hH97PnX0mM13w161bNw0ePNit92HJkiVasmSJ8ufPr9atW+uRRx5Rw4YNeeKBhzE+8KwCBQp4xRf8sAf7k+dk9bE2srbo6GjNmzdPK1eu1Pr163X8+HGnI92SlTdLMXtxE3eq936cMz2LMaj7zJ67M9Pf+57EMcFzOB4AcNf27dtN1ZcpU8amJBmXM2dOw7VnzpxRSkqK/P39bUzke7L6vAz7g+f3h6w4F+Iuxnvex9NP8Hv33Xd14MABQ7UdOnTQI488kuE+AauEhobqxo0bhmoTEhJsTgMAAJBxzCgBAOAlQkND1atXL+3bt09NmzY13f7DDz/Uzz//bGmmU6dOmar3tgVXf6pQoYKperO/t1XMfCFiNzN3gk5OTrakTzPve4ECBZQrVy5L+rVS+fLlnY4AH3Dp0iXTbTLTBX8FChRQr169MrSNCxcu6Ntvv1WzZs2UL18+NWvWTMOHD9fGjRuVlJRkTVCkivGBZxUsWNCRfuEZ7E+ek9XH2sh6zpw5oyFDhigqKkqlS5fWSy+9pBkzZnjtBW2Se0+6To3Z39PMhVNwBudMz2IM6j6zT/vITH/vexLHBM/heADAXdHR0abqnbipgVFmztdJSUk6d+6cjWl8U1afl2F/8IysPhfiLsZ73seTC/w2bdqkTz/91FBtoUKFNHLkyAz1B1jNzHmJBX4AAMAX8AQ/AAC8TIECBTR//nz16NFDX3/9tam2Xbt2Va1atVS4cGFLspi5YMDPz08lS5a0pF+rmb3LoVMXT2X1C3pOnz5tuNZbP2ulSpVyOgJ8gJnP+p9y585tfRAHvf3225oxY4YOHTqU4W3dvHlTv/32m3777TdJUlhYmGrWrKnatWurVq1auueee5Q/f/4M94O/MT7wLL5cz9zYnzwnq4+1kXXs3btXAwcO1IwZM3zuxgdOLvArV66cZX3DHpwzPYsxqPvMHnt5Ir17OCZ4DscDAO46ceKEqfrMNAd+/fp1FSpUyOkYXiWrz8uwP9i7PzAXkjGM97xPZGSk4dqYmBidOHFCRYsWNd1PYmKinnnmGcOLmb/55hvlzZvXdD+AncyMMczelAkAAMAJPMEPAAAv5O/vry+//FIdOnQw1e7y5cvq3bu3ZTnMLELJnTu3goKCLOvbSgUKFDBV787iGyt46/vnKWbed7P/pp4SERHhdAT4AHeOMe58KePNwsPDNXXqVIWFhVm+7Zs3b2r58uX64IMP1KJFC0VERKhixYrq2rWrJkyYYPqLdPwX4wPPypEjhyP9wjPYnzzHW987wCoXL15Uly5dFBUVpSlTpvjcBW2S+UUxaTEz5gsPD1d4eLhlfcMenDM9izGo+/z9zX316ovHa2/AMcFzOB4AcFdWnoeNjY11OoLX8dZzsaewP9iDuRBrMN7zPrly5TL13bC7T/H74IMPtHPnTkO1Tz75pFq2bOlWP4CdzCzaM/MUXwAAAKewwA8AAC/l5+enb7/9VhUqVDDVbvLkydqwYUOG+09KStLNmzcN13vrgivJ/F3nrly5Yk8QpCopKUk3btwwXO+tnzdvzQXv4s7FWMWKFbMhibNq1KihGTNmKCQkxPa+9u3bpzFjxqhz584qVqyYoqKi9Nprr2ndunVyuVy295+ZMD7wPE/sI3AG+xMAq8yePVuRkZEaO3as4TtueyOrxmUul0tXr141XF+4cGFL+oV9OGd6HmNQ95m9eN3MZxv/wzHBszgeAHCXUzcq8AYs8MP/xf5gPeZCrMN4zztFRUUZrt27d6/p7e/atUsffPCBodoiRYpoxIgRpvsAPMHM/EBwcLCNSQAAAKzBAj8AALxY9uzZ9fnnn5tuZ3QiLi1mJ9tz5cqV4T7tYjZbXFycTUmQGrOfN2+9k2DOnDmdjgAfcOTIEdNtMtsT/P7UrFkzLVq0SPny5fNov7t379bHH3+sWrVqqUSJEnrrrbd08OBBj2bwVYwPPI8vmzIv9icAVujfv79atWqls2fPOh3Fa2Sm4yv+JzP9m/rKOZMxqPvMvncsADCPY4JncTwA4I7ExEQlJCQ4HcMxzHvgn9gfrN8fmAuxFuM972TnAr/k5GR16dLF8LHpu+++U+7cuU31AXiKmTmCrP5EYQAA4BtY4AcAgJe7//77VatWLVNt5syZo2PHjmWoX7OT7d58Zzez2fjizfMyy+fNW3PBu+zcudN0m8y6wE+S6tWrp+3bt6tx48aO9H/8+HENHTpU5cuX1/33369ly5Y5ksNXZJbjteQ74wM/Pz9H+oX92J8AZITL5dLTTz+t9957z+koXsfswo9s2bLZlARW4ZzpeYxB3RcaGmqqngV+5nFM8CyOBwDckdXPb97wRC54D/YH6/YH5kLswXjPO5lZ4Ldv3z5T2/7ss8+0YcMGQ7VPP/20mjdvbmr7gKckJycrMTHRcH1YWJiNaQAAAKzBAj8AAHzAiy++aKre5XJpwoQJGeozPj7eVD0XSiAjMsvnzVtzwXucPXtW58+fN92uZMmS1ofxIrfddpsWL16sH3/8UcWLF3ckg8vl0sKFC3XvvfeqQYMG2rhxoyM5vF1mOV5LjA/gPPYnABnx6quvavz48U7H8Eos8Mt8OGfCl5h9IltWv+DbHRwTAMD7cbwC/sb+YB3mQpCVREZGGq418wS/gwcP6p133jFUW7RoUX366aeGtw14mtk5FbNzNgAAAE4IdDoAAABI30MPPaTg4GAlJCQYbjN79mzDE3OAr/HWu596ay54D3ee3leyZEnlyZPHhjTe5/HHH1ebNm00YcIEffLJJ6a+kLLSypUrdffdd+u5557TRx99pOzZszuSAwAA4FZGjx6tzz77zJJt5cmTR1WrVlXp0qVVpkwZFS5cWAULFlSBAgWUI0cOhYeHKzw8XEFBQQoMDFRQUJCpO7s7cRd47jwPwEm5c+c2Vc8CPwBAZmR2MTaQmbE/WIO5EGQ1lStXlr+/v1JSUtKtPXHihG7cuJHu95kul0tdu3Y1/Hfo6NGjWRAFr2Z2TsXsnA0AAIATWOAHAIAPyJEjh2rVqqUVK1YYbrN161ZduHBB+fPnd6tPs3ewN7P40NPMfnHC3fs9z+zdqr3188aXdEjP+vXrTbepUaOGDUm8V3BwsJ599lk9++yzWrZsmSZMmKBZs2bp6tWrHs3hcrn01VdfacmSJZozZ44qVKjg0f69FeMDwDrsTwDccejQIb3yyitut8+dO7ceeugh3Xfffapfv36mfFJ0aGioqXqepuD9OGfCl4SGhipbtmyGjy03b960OVHmwzEBALxfUFCQ0xEAr8H+kHHMhSArCgsLU6lSpXTo0KF0a10ul/bv369q1aqlWffNN98Yvuaoa9euuv/++w3VAk4xu8Avq9xUGQAA+DZ/pwMAAABj7rzzTlP1KSkp2rBhg9v9mb1YwJsXNnGhhPfLLJ83b80F77Fo0SLTbbLaAr9/atSokcaPH69z585p/vz5eumll1SxYkWPZti/f7/uueeeDJ1TM5PMcryWGB/AeexPANzx0ksvKSYmxnS7KlWqaPLkyTpz5owmTpyop556yvYL2px6wrnZYwwL/Lwf50z4mkKFChmuPXfunI1JMieOCQDg/cLCwpyOAHgN9oeMYy4EWVVUVJTh2r1796b5+okTJ9SnTx9D2ypevLg++eQTw30jc0hKStKiRYv00ksvaevWrU7HMeTs2bOm6gsXLmxTEgAAAOvwBD8AAHxEZGSk6Tbbtm1T8+bN3erP7MUC165dc6sfTzD71Cezd/tHxpl9z7318+atueAdbty4od9//910u+rVq9uQxrcEBwfrgQce0AMPPCBJunDhgtasWaNVq1Zp1apV2rJli5KSkmzr/8qVK3rggQe0Zs0aVapUybZ+fAHjA8A67E8AzFq7dq1+/fVXU22yZ8+u4cOHq3v37vLz87Mp2a05tXDO7PHV00+KhnmcM+FrihQpoiNHjhiqvXjxouLi4li4ZQLHBADwfu4crxITExUYyCVMyHzYHzKGuRBkZVFRUZo9e7ah2vQW+HXv3l3Xr183tK0xY8YoR44chmp90dmzZ7V+/Xrt3LlTf/zxh44fP66TJ0/q8uXLio2NVWJiosLCwpQzZ07lzJlTZcqUUaVKlVS5cmU1bNgwUz0FNDY2VgsXLtTPP/+suXPn6vLly5Kke++9N90nQnqDEydOmKovUqSITUkAAACsw2wAAAA+omjRoqbbHDx40O3+AgMDlT17dt24ccNQvdk7I3mS2Tth58qVy6YkSE1gYKDCw8MN333x/PnzNidyj7fmgndYvny5EhISTLUJCAhQzZo1bUrku/Lnz6+HH35YDz/8sKS/F0+uXr1aa9eu1fr16y2/gO/y5ctq06aNNm7cqOzZs1u6bV/C+ACwDvsTALOGDRtmqj4iIkLz58937InQsbGxjvTr7++vPHny/HVBSnpOnz5tcyJkFOdM+JrbbrvNVP3JkydVpkwZm9JkPhwTAMD7BQUFKTg42NR8eFxcnMLDw21MBTiD/SFjmAtBVmbmJuD79u1L9bVJkyYZXijbvXt3NWnSxHC/viAlJUWrVq3STz/9pEWLFqW7GFKSrl+/ruvXr+vkyZPas2eP5s2b99drFSpUUPPmzdWlSxe3btTuLTp37qwZM2b8529rPz8/1a9f36FU5pw8edJUvdn5GgAAACf4Ox0AAAAYExERYbqN2bsV/V+FCxc2XHv58mVbn56UEWYvlOCuTc4w83kz+2/qKSzwQ1omTZpkuk2dOnWUJ08eG9JkLtmzZ1eTJk00YMAALVy4UJcuXdL69es1dOhQNWrUSEFBQZb0s2fPHg0cONCSbfkyxgeAddifABh17tw5U3esDw4O1uzZsx27oE1y9sl4Zm6SFBMTY/hmM3AO50z4khIlSpiqN3tBGjgmAIAvMHsB9c2bN21KAjiP/cE9zIUgq4uKijJcm9qitXPnzqlXr16GtlGyZEkNHz7ccJ/eLjo6Wm+99ZaKFCmihg0bauTIkYYW96Vn3759+vTTTxUVFaWGDRtq7ty5FqT1rJMnT2rChAm3vHHO7bffrrx58zqQyjyz8ymZ6emLAAAg82KBHwAAPiI0NNR0mwsXLmSoTzMXDLhcLh05ciRD/dnl8OHDpuq5UMIZhQoVMlzrrZ+16OhopyPAS125ckWzZs0y3a5FixbWh8kC/nzy4RtvvKGlS5fq4sWLmjx5stq0aaOQkJAMbfuzzz7T0aNHLUrqmxgfANZhfwJg1LRp00wtTujbt69q1aplY6L0OblgpVixYqbqDx48aFMSWIVzJnxJuXLlTNVn9CZtWRHHBADwfsWLFzdV781PXAUyiv3BPcyFIKurUKGC4ZuYHjhwQC6X6z//vWfPnrp48WK67f38/DR27NhM8fTQbdu2qW3btipTpoyGDh1q6zF1xYoVatmypZo1a+ZT84srVqxI9bUGDRp4MEnGmJ1PKVu2rE1JAAAArMMCPwAAfERgYKDpNrGxsRnq0+zdBPft25eh/uxi9i5cXCjhDDPv+7lz57zyDojeug/AeVOmTFFcXJzpdizws0aOHDn02GOPacaMGTp16pSGDx9u+qLvPyUmJuqzzz6zNqCPYXwAWIf9CYBRS5cuNVybL18+9enTx8Y0xji5YMXsWG/nzp02JYFVOGfCl5hd4MdFwOZxTAAA72d2QRML3pGZsT+4h7kQZHXBwcGG/768efOmjh079q//NmvWLE2fPt1Q+xdeeEGNGjUyndGbREdHq127dqpWrZp++umnWy54tMtvv/2mqKgoTZkyxWN9ZkRmWeBnZj4lNDTU9FwCAACAE1jgBwCAj3BnsV5iYmKG+ixTpoyp+j179mSoPzskJCTo0KFDhuuZ1HFOhQoVTNWbvQDGbsnJyT51VzZ4TnJysj755BPT7cqVK2d6v0D68ubNq969e+vAgQMaNmyYsmXLZnobkyZNUnJysg3pfAPjA8A67E8AjHC5XFq1apXh+s6dOys0NNTGRMbs3r3bsb4rV65sqn7Hjh02JYFVOGfCl1SsWNFUPRcBm8cxAQC8n9knpERHR9uUBHAe+4N5zIUA/xMVFWW49p/XT1y5ckUvvPCCoXalS5fWsGHDTGfzFomJierfv78qVaqkGTNmOJYjPj5eHTp00Mcff+xYBqNWrlyZ6mv169f3YJKMMTOfUq5cOfn5+dmYBgAAwBos8AMAwEdcu3bNdJuwsLAM9VmlShVT9evWrctQf3bYvHmzqYWOkZGR8vdniOQEM5PTkrRhwwabkrhn586dGX5qJjKniRMn6sCBA6bbdenSxYY0+FNISIj69Omj5cuXK2fOnKbaXrhwwdQXy5kN4wPAOuxPAIw4deqULly4YLjeW54CvW3bNsf6rlGjhqn6tC5qgXfgnAlfUrhwYeXLl89wvTcuPvN2HBMAwPvdeeedpuq3bNliUxLAeewP5jEXAvxPZGSk4dp/Prn81Vdf1enTp9Nt4+fnp3Hjxil79uxu5XPa/v37Vbt2bb333nuKj493Oo5cLpdee+01jR492ukoqTp79myqN9OuXLmyIiIiPJzIPfHx8aYWxFetWtXGNAAAANbhWwAAAHyEO3dyzugk3O23326qfs2aNRnqzw5mMzGp4xwzk9OS9Pvvv9uUxD3elgfeITExUYMGDTLdLlu2bOratasNifB/3X333frll19MXySXlRf4MT4ArMP+BMAIM0/38ff31913321jGmNcLpfWr1/vWP933HGHqfHd5s2bdfXqVRsTIaM4Z8LXmPn34ymi5nFMAADvV7NmTVP1mzZtsikJ4Dz2B/OYCwH+x50n+C1atEjjxo0z1ObFF1/0qSe2/dPXX3+tatWqmTpm+vv7684771Tv3r313XffadWqVYqOjtaFCxeUkJCghIQEXb16VYcOHdLq1as1evRovfjii6pSpYqpp7+9+OKLXrvgN60bnTVo0MCDSTLmjz/+UFJSkuF6/qYGAAC+ggV+AAD4iMOHD5tukzt37gz1Wa5cOVNPATxz5ox27dqVoT6ttnDhQlP1d9xxhz1BkK7y5csrPDzccP2yZcvkcrlsTGTOkiVLnI4AL/T++++7dfx+/PHHTd3tHxlTt25dPfvss6babN682ZK+zXwZ5C0YH+CffPEz7E3YnwAYceTIEcO1xYsXV7Zs2ewLY9CWLVt0/vx5x/rPnj27qZvIJCcna/78+TYm8i6+eP7mnAlfY+bCsbNnzzp6zPRFHBMAwPvlz59fpUuXNly/c+dOnTt3zsZEgHPYH8xjLgT4H7ML/GJiYgx/51muXDkNGTLE3WiOiY2N1SOPPKLnn39eN2/eTLfez89PjRo10qRJk3T+/Hlt3LhRw4cPV9euXVW3bl2VLFlS+fLlU1BQkIKCgpQzZ06VLl1aderUUZcuXTRixAht375dx44d0/vvv6+CBQum22dcXJw6dOig5ORkK35lS61YsSLV1xo2bOi5IBlk9mZJ/E0NAAB8BQv8AADwEe7cqc/MFwW3EhAQoHr16plqM2vWrAz1aaUrV65o+fLlptr40oRVZhMYGKi6desarj9z5ow2bNhgYyLj4uPjtWDBAqdjwMts2bJF77//vlttX3zxRYvTID19+vQxVR8dHW1JvwEBAYZrzdyF0E6MD/BPvvgZ9ibsTwCMMPNkufz589uYxLh58+Y5HUHNmjUzVT9p0iSbkngfXzx/c86ErzH7lJbt27fblCRz4pgAAL7hvvvuM1ybkpKiuXPn2pgGcBb7gznMhQD/U7ZsWcMLWPft26e33npLR48eTbfW399f48aNM3XjFG9w+fJlNWnSxNDfdwEBAerSpYv279+vpUuXqmPHjsqbN6/bfRctWlR9+/bVwYMH9dZbb6U7v7Znzx798MMPbvdnl7QW+PnS0xzNLPDz8/PTnXfeaWMaAAAA67DADwAAH+ByubRmzRrT7cqWLZvhvps0aWKqfsaMGRnu0yozZ85UYmKi4fpChQqZugMarNeoUSNT9T///LNNScxZuHChYmJinI4BLxITE6OnnnrKrYthW7VqpWrVqtmQCmkpXbq0qae8nDp1ypJ+Q0JCDNeaOafZjfEB/uSrn2Fvwv4EID1G7kT9J2+4Y73L5dL333/vdAw9+OCDpuoXLFigM2fO2JTGu/jq+ZtzJnxJrVq1TNWbvfM8OCYAgC9o1aqVqfrJkyfbEwTwAuwP5jAXAvyPv7+/KlWqZKj21KlT+vLLLw3V9urVS3Xq1MlINI87deqU6tevr7Vr16Zb27JlS+3evVujR4+25LqpfwoPD9cHH3ygJUuWqECBAmnWvvfee0pJSbG0/4y4ePGidu/efcvXKlSooEKFCnk4kfvMzKNUrlxZuXLlsjENAACAdVjgBwCAD9iwYYNbF5ndfvvtGe7bzN0Epf/dbfr333/PcL9WMDp5+afGjRvblARGmf03mDBhgldcbPjtt986HQFeJCkpSe3atUt1cjwtwcHBGj58uA2pYETVqlUN11q1qNfMxdXXrl2zpE8rMD7An3z1M+xN2J8ApCchIcFw7ZUrV+wLYtCSJUt0+PBhp2Oodu3aypMnj+H6pKQkffrppzYm8h6+ev7mnAlfUqJECd12222G61ngZx7HBADwfvfee69y5sxpuH7JkiXau3evjYkA57A/mMNcCPA3Mzf7MLKYrHz58ho8eHBGInncwYMHVbt2be3atSvNurx582rSpEmaPXu2KlSoYGumBg0aaOXKlSpWrFiqNbGxsfL3955LtFetWiWXy3XL1xo0aODhNBljZh6ldu3aNiYBAACwlveMHgEAQKpGjx5tuk1QUJAlkxRVq1ZV6dKlTbX54osvMtxvRq1bt06bNm0y1eaRRx6xKQ2MqlGjhkqWLGm4/uzZs44/xe/IkSOaP3++oxngPVwul7p3767ffvvNrfa9evVSmTJlLE4FowoWLGi41qrFxblz5zZcGxcXp9jYWEv6zSjGB/iTr36GvQn7E4D0mLkT/dmzZ21MYoy3XCAUGBioxx9/3FSbr776SpcuXbIpkffw1fM350z4mrp16xquZYGfeRwTAMD7BQcHq23btqbafPjhhzalAZzF/mAOcyHA3yIjIy3blr+/v8aPH6/Q0FDLtmm3ixcvqlmzZjp69GiadXfffbd27typjh07eijZ/556t3jx4lSfDteoUSOPZTFixYoVqb7mSwv8zp49q3PnzhmuNzM/AwAA4DQW+AEA4OVOnz6tH374wXS7mjVrKiwszJIMTzzxhKn6KVOm6I8//rCkb3e98847purz5s2rFi1a2JQGZjz66KOm6gcPHmzoTnR2GTRokJKTkx3rH94jPj5eHTp00NixY91qX7hwYfXr18/iVDDDzBfG4eHhlvRZoEABU/UnTpywpF8rMD6A5NufYW/C/gQgLWbGHRcvXrTsScPuWLJkSZoXinha9+7dTdVfv35db731lk1pvIcvn785Z8KXmHnq2o4dO3T9+nUb02ROHBMAwPv17NnTVP2ECRO0fft2m9IAzmJ/MI65EOBvZp7gl57evXurVq1alm3PbgkJCWrdurUOHjyYZl2HDh20fPlyFSlSxEPJ/la+fHlNmjTplq+xwM8eq1evNlVvZn4GAADAaSzwAwDAy73xxhtu3Snd7B0A0/Lkk0+aqk9JSXH0griFCxdq8eLFpto8+uijCg4OtikRzOjQoYOp+l27dunHH3+0KU3a9u7dq++//96RvuFdLl68qCZNmmjKlClutQ8ICNCPP/6onDlzWpwMZpi5019qd2I0y8xTAyVp//79lvRrBcYHkHz7M+xN2J8ApMXMhSkpKSlatGiRjWlSFx8frxdeeMGRvlNTpUoV3XPPPabajB49Wr///rtNibyDL5+/OWfClzRp0sRwbXJyslatWmVjmsyJYwIAeL9q1aqZempKSkqKnnvuOSUlJdmYCnAG+4NxzIUAf7NqgV+lSpU0aNAgS7blKd27d9fKlSvTrHn11Vf1ww8/mLqRq9UeeughtWrV6j//3ZsW+F29ejXVReNly5bVbbfd5uFE7lu+fLnh2ooVK/rU7wYAAMACPwAAvNj06dM1ceJE0+0CAwNNL5JKS9myZU3f0WjOnDmaPn26ZRmMiomJMX2Hfsn8Xf1hnypVqpj6ckv6353mLl26ZFOiW3O5XHr22Wez5Jdq+LeZM2cqMjLS9J3i/mngwIFq2LChdaHgli1bthiuLVOmjCV95smTR3ny5DFcv3nzZkv6tQLjA0i+/Rn2JuxPANJSqlQpU/Xz5s2zKUna3n77ba9aCPanPn36mKpPSUnR448/7vG/MT3Jl8/fnDPhS0qVKmXqb8dly5bZmCZz4pgAAL7h9ddfN1W/bt06vfvuuzalAZzF/mAMcyHA30qUKKEcOXJkaBsBAQGaMGGCQkJCLEplv48++kjjx49Ps+aVV17Rxx9/7JlA6Rg2bJj8/Pz++v/FixdX6dKlHUz0b6tWrVJKSsotX/Olp/dJ5uZPzNx8CQAAwBuwwA8AAC+1Zs0aPfPMM261bdOmjQoUKGBpnn79+plu06NHD508edLSHOl5+eWXdeTIEVNtHnroIVWtWtWeQHBL7969TdWfO3dOPXr0sCnNrX322WcZWtAF33f8+HE9/vjjat26tc6ePev2dh544AH17dvXwmRwx+HDh7V161bD9ZUqVbKs7woVKhiuXbJkiWX9WoHxASTf/gx7E/YnAKmpUKGCqSf3TJkyRadOnbIx0X/NnDlTw4cP92ifRj3yyCOqWbOmqTZHjx7V448/rsTERJtSOc+Xz9+cM+FLHnzwQcO1Zu5Aj79xTAAA79eyZUvTN7gbOnRouhf1A76I/cEY5kKAf4uMjMxQ+z59+uiuu+6yKI39du/erbfffjvNmmeffVaffPKJhxKlr3z58qpXr95f/9+bnt4nSStWrEj1NV9a4Hf+/Hn98ccfhuvNzMsAAAB4Axb4AQDghebMmaNmzZopJibGdFt/f3/179/f8kyNGjVSrVq1TLU5f/68WrVqpdjYWMvz3MrIkSM1duxY0+3cuQgE9mrZsqXKly9vqs2UKVM8NoG7bNky00+BQOZx/PhxvfDCCypbtqymTJmSoW3deeedmjx58r/u5pdZrVmzRl26dNHBgwedjnJLQ4cONVVfv359y/o2c7HeqlWrdPjwYcv6zijGB5B8+zPsTdifAKQmJCRE1apVM1x/8+ZNj+53q1ev1hNPPOGx/tzxwQcfmG6zcOFCPf7445n2qe2+fP7mnAlf0rJlS8O1W7du1dWrV21MkzlxTAAA3/Dxxx+bmgd3uVzq2rWrfvjhBxtTWWPVqlX66quvnI4BH8L+kD7mQoB/y8gCv8jISA0YMMC6MDZLSUlRly5dlJCQkGrNvffeqy+//NKDqYzp2LHjX//b2xb4rVy5MtXXfGmB3/Lly+VyuQzV5siRQ/fee6/NiQAAAKzFAj8AALzIlStX1LNnT7Vq1UrXr193axudOnWy9KlC/2R28YMkbdq0SW3atFFcXJwNif72ww8/6JVXXjHd7uGHH9Y999xjQyJkhL+/v4YMGWK6XZ8+fTR58mQbEv1t8+bNatOmTaa9yBO3lpSUpHnz5ql9+/YqW7asvvrqqzS/VDCievXqWrhwoXLnzm1NSC+XmJiosWPHqmLFinryySe1bds2pyP9ZcGCBRo9erTh+oCAADVt2tSy/uvUqWO41uVyed0CY8YH8PXPsDdhfwKQGrMXInz//feaMWOGTWn+tnr1aj344IO6efOm7X1lROPGjdW+fXvT7X766Se1bt3a7Tkaq5w/f97yC7F8/fzNORO+okGDBob/7k9OTk7zgjukjmMCAHi/6tWr64UXXjDVJjk5WU8++aQGDRpk+EJuT3G5XFqwYIEaNmyo+vXra82aNU5Hgg9hfzCGuRDgb1FRUW61CwwM1IQJE0w9EdNpn332mdavX5/q62XKlNGMGTMUGBjowVTG1K1b96//7U0L/GJiYrRly5ZbvlayZEkVL17cw4nct2zZMsO1999/v0999gEAACQW+AEA4BXOnDmjAQMGqGzZsho1apTbk/JFihTRxx9/bHG6v9WvX19PPfWU6Xbz589X8+bNdenSJRtSSV9++aWeeuopJScnm2qXPXt2jRw50pZMyLjWrVurYcOGptr8+eXWd999Z0umFStWqHHjxrp8+bIt24d3uXTpkmbMmKHnnntOt912m1q0aKHp06dneGGfJN1xxx1atGiR8uTJY0FS35KcnKxJkyapWrVqqlevnqZNm6bExETH8qxatUrt27c3de5t3ry5pf92Zo91P/30k1566SXFx8dbliEjGB/A1z/D3oT9CUBq2rVrZ6o+JSVFTzzxhJYuXWpTImn8+PFq3Lixrl27ZlsfVho1apQKFChgut3cuXN19913a+fOnTakStuZM2fUt29flS5dWp999pml2/b18zfnTPiKwMBAtWjRwnC9mQvV8DeOCQDgGz766CNVrlzZVBuXy6V3331XTZs21bFjx2xKZty1a9c0YsQIVaxYUQ888IBWrFjhdCT4KPaH9DEXAvzN3QV+b775pmrUqGFxGvscPnxY77zzTqqvBwQEaNKkSV77HXvFihVVrVo1NWzY0PJFc7GxsZo7d65ee+01NW3aVKVKlVLu3LkVFBSkAgUKKCoqSp06ddLEiRN19erVf7Vds2ZNqjew9qWn90nm5k0eeeQRG5MAAADYgwV+AAA4ID4+Xhs3btTHH3+sxo0bq2jRoho4cKAuXrzo9jb9/f01ZswY2yeyhg8frrx585put2zZMlWrVk2rV6+2LMvVq1f1xBNPqEePHkpJSTHd/r333lOxYsUsywPrffbZZwoKCjLVJjk5Wd26dVPXrl0VExNjSY7k5GQNGzZMTZo0+c9k6D/5+flZ0h887+zZs1q6dKlGjBihbt26qUaNGoqIiFC7du30zTff6Ny5c5b19cgjj2jFihVuHUszm9WrV+vRRx9V4cKF1bNnzzTvxmi1pKQkffbZZ7rvvvtMfxH74osvWpqlWLFiqlmzpqk2I0eOVMWKFfXRRx/pwIEDluZxB+ODrC0zfIa9CfsTgFupVq2aqlSpYqpNfHy8HnroIY0aNcrSLOfOnVO7du309NNPp3nzC2+7i3b+/Pn1zTffuNV2z549qlGjhvr27WvZ35lpWbdunZ5++mmVKFFCQ4YMsaXPzHD+5pwJX/Hoo48arv3ll19sTJK5cUwAAO8XGhqqyZMnKyQkxHTbxYsXKzIyUgMGDPD4E7YTExM1Z84cPfbYYypUqJBefvll7d+/36MZkPmwP6SPuRDgb+4s8KtSpYreffddG9LY57XXXkvz6ZhvvfWWVz/p3N/fX1u2bLH05j0bN27UE088ofz586tly5b6+OOPtWjRIh05ckRXr15VUlKSzp8/r927d+v777/XU089peLFi+uNN9746xq0tBZgm70JmJMOHz6svXv3GqoNCwvTww8/bHMiAAAA6/FXJQAA/7B161a9/fbblm3P5XIpISFBcXFxunTpks6dO6cjR44oOjra9F170/Pxxx/rgQcesHSbtxIREaHx48fr4YcfNv2kwWPHjql+/frq0KGDBg4cqDJlyriVIT4+XuPHj9c777yj8+fPu7WNpk2bqlevXm61hedUrVpVAwcOVN++fU23HTNmjObPn68hQ4aoQ4cObn+hsnjxYvXu3Vs7duxIt/aFF16w/Asj/E9Gj8/x8fGKj49XXFyc4uPjdfXqVZ05c0anT5/WmTNnLHkqX3oCAgI0ZMgQvf7667b35WsuXryoUaNGadSoUSpevLgeeughtWjRQg0aNFBoaKilfSUnJ+uHH37QoEGDdPDgQdPtGzRooPvuu8/STJLUsWNHbdiwwVSbI0eOqE+fPurTp4/y58+vSpUqqXjx4sqbN6/CwsJMH/cGDx5sqv6fGB/A1z/D3oT9CUBqXn31VXXu3NlUm9jYWPXs2VO//vqrhgwZYvrCuH+6ePGiPvvsM33++eeGLiDs379/mnfcdkKrVq3Ur18/vf/++6bbJiYmasiQIfrmm2/00ksvqXv37ipUqJBl2Xbt2qVZs2bphx9+MHyhSkb5+vmbcyZ8RdOmTZU3b15DT4nbv3+/9u7dq4oVK3ogWebCMQG+YMCAARo4cKBj/R89etTym9SZ3d+AKlWqaPz48erQoYPpz09MTIwGDhyokSNH6umnn9azzz6rChUq2JLz7Nmz+u233/Trr79q4cKFunLlii39IGtjf0gfcyHA/xQqVEj58uUzfNPwoKAgTZgwwfTNlJ20YcMGzZw5M9XXy5cv73MLFjNi27ZtevXVV91aLHjt2jV9+OGHmjhxosaOHZvmAj9feoLf7NmzDde2aNFC2bNntzENAACATVwAAGRiDRo0cEnK9D+vvfaax9/bfv36ZSizv7+/q3nz5q6JEye6zp49m25/SUlJrtWrV7v69OnjioiIyFDfJUqUcF24cMED75LL1alTJ8O5OnXq5JFMRnhT7uTkZFf9+vUz9G9+2223ufr37+/atGmTKyUlJd0+9+3b5/r0009dUVFRhvto06aNa9myZaZyZWVZ5fj850+pUqVcy5cvd/ptd7lcLsc+p2b7leQKCgpy3XPPPa7XXnvNNWXKFNfOnTtd8fHxpvs+fvy4a9q0aa4nn3zSlS9fPrf/HQMDA13bt2+37D35p+vXr7vy5Mnj6OfUCowPjPGm86xVfPkz7K3nb/an9PnqvuSruT3N7HgxK7xXCQkJrkqVKmVo/2zUqJFr0qRJrmPHjhnq8/Tp067Jkye72rRp4woODjbcT61atVxJSUmmsi1btszeN/D/S0lJcbVp0ybD5x1/f39X48aNXSNHjnRt3brVlZSUZDhDQkKCa+fOna5x48a5nn76aVepUqXS7S9XrlyWvxe+fP7+J86ZxnD+cVa3bt0Mv//Dhg1zOu5fxo0bZ+rz7A04JqSP44Fz+vfv7/Fzrd0/sJbZ93/cuHFOR3bbp59+aslnMCoqytWnTx/X/PnzXWfOnHEry6lTp1zLli1zffHFF64nn3zSVbZsWdM5OnbsaPE75P189XzijbnZH1LHXIh7vPFzjowzc81E//79nY5r2gMPPJDm7zR37lynI3pETEyM67nnnnP5+/tbcm6QlOq2ihUr5vSva4qZ7wxmzZrldFwAAAC38AQ/AAB83Pvvv+/W080y6r333tPOnTs1Z84ct9qnpKTo119/1a+//io/Pz+VLFlSlSpVUtGiRRUeHq7g4GDFxMTo8uXL2r9/v/bs2aOYmJgM586ZM6d+/vln5cuXL8Pbgmf4+/tr8uTJuvvuu3XixAm3tnHy5EkNHDhQAwcOVO7cuVW5cmWVLVtWuXPnVlhYmOLi4nTt2jUdOXJEf/zxh86cOWNq+/nz59eoUaO0Z88et/Ih88qWLZveeOMNvfnmm8qWLZvTcXxOYmKi1q1bp3Xr1v313wIDA1W0aFHddtttKlKkiPLmzats2bIpW7ZscrlcunHjhmJiYhQTE6Po6Gjt37/fkvOHJA0bNixDd3pNS3h4uPr06aO33nrLlu17CuODrCuzfIa9CfsTgP8rKChII0eOVJMmTdzexrJly/6663OxYsV0++23K2/evMqTJ4+yZ8+u1JsuxAAAIQlJREFU2NhYXb9+XUePHtWBAwd07Ngx033kzJlTEydOVEBAgNs57eTn56eJEyfq0qVLbt0B+08pKSlasmSJlixZIkkKCwtT6dKlVbp0aRUsWFBhYWEKCwtTUlKSYmNjdfXqVZ06dUonT57UoUOHlJiYaNWv5LbMcv7mnAlf0LlzZ3377beGan/66Sf16dPH5kSZF8cEAPANvXr10uXLl/Xee+9laDu7du3Srl279OGHH0qSChYsqBIlSqho0aKKiIhQaGjoX3PHcXFxf30fdObMGZ09e1YnTpzQtWvXrPiVALexP6SOuRDgb1FRUVq5cmW6ddWqVVO/fv08kMg6u3bt0m+//Zbq6/fee68eeughDyZyxsaNG9WxY0cdOHDA0u2mpKTc8r/70tP7zp07p9WrVxuqjYiIUPPmzW1OBAAAYA8W+AEA4KNy5Mihr7/+Wh06dHCkf39/f02bNk0tW7bUwoULM7Qtl8ul6OhoRUdHW5Tu1sLDwzV//nxVr17d1n5gvSJFiuiXX35RvXr1MvzF0pUrV7R27VqtXbvWkmzBwcH6+eefVbBgQRb44V9atWqlTz75RKVKlXI6SqaSlJSkI0eO6MiRIx7tt0OHDnr11Vdt7aN379768ccftXPnTlv7sRPjg6wtM3yGvQn7E4Bbady4sXr27Kkvvvgiw9s6fvy4jh8/bkGqv4WEhGjWrFkqU6aMpdu1WmhoqH755Re1bt06zYuHzLh58+ZfF1P6ksxw/uacCV9Qq1YtVapUydDc0YYNGxQdHc18gps4JgCA7xg4cKAiIiL08ssvp3rhuVlnz57V2bNntWHDBku2B3gK+0PqmAsB/icqKirdmuDgYI0fP15BQUEeSGSdTz/9NM3Xff3mVEb8+OOPeuaZZxQfH++xPn1pgd/06dOVnJxsqPapp57yuX0AAADgT/5OBwAAAObdfffd2rp1q2OL+/7052R1Ru6Y5yk5cuTQL7/8otq1azsdBW6qUqWKfv75Z4WFhTkd5V/GjBmjevXqOR0DXiI4OFidO3fWrl27NHPmTC7GyyRat26tCRMm2N5PUFCQZs6cqYiICNv7shPjg6wrs3yGvQn7E4Bb+fjjj3XPPfc4HeM//P39NXHiRDVq1MjpKIaEhoZq9uzZat++vdNRHJVZzt+cM+ELnnnmGcO1U6ZMsTFJ5scxAQB8R8+ePTV16lSv++4HcAL7Q+qYCwGMLfB75513VKVKFQ+ksU5MTIymTp2a6utVqlTxib/tMmLQoEHq2LFjmov7goKC1KpVK40fP167d+/WtWvXlJCQoFOnTv01x+nvb+5ycF9a4GdmnsTM/AsAAIC3YYEfAAA+pHDhwhozZozWrl3rNXeACw0N1fz58/XCCy84HSVVZcuW1bp161S/fn2noyCDGjdurIULFypXrlxOR5Gfn58+//xzPfHEE05HgRcoUqSI3nrrLR05ckTjxo1TZGSk05FgkR49emjq1KkKDAz0SH9lypTRokWLVLRoUY/0ZxfGB1lXZvkMexP2JwD/V3BwsH799VfdfvvtTkf5S0hIiCZMmKB27do5HcWU4OBgTZ06VR9//LHHxnveKLOcvzlnwtt16tRJISEhhmpZ4JdxHBMAwHe0bdtWW7Zs4UmmgNgfUsNcCJD+Ar8aNWrozTff9FAa68yYMUM3btxI9fUePXp4MI3n9e3bV++++26qrwcGBqpnz56Kjo7WzJkz1alTJ1WuXFk5cuRQUFCQChcurJYtW2rq1Kn6/fffVaxYMUP9FilSROXKlbPq17DViRMntGbNGkO1derUUeXKlW1OBAAAYB8W+AEA4ANKlCih4cOHa//+/XrmmWdM33XJboGBgRo1apS+++47Zc+e3ek4//Lggw9qw4YNTOBkInXq1NHKlStVunRpxzKEhIRo6tSpeumllxzLAOcVKVJEL774olauXKkTJ07ogw8+UOHChZ2OBYvkyJFDY8eO1RdffOHxi72rVq2qjRs3qlWrVh7t12qMD7KuzPIZ9ibsTwD+rzx58mjJkiWqVauW01EUERGhJUuW+PTNT1599VUtX75cZcuWdTqKYzLL+ZtzJrxZRESEHn30UUO1O3bs0NatW21OlPlxTAAA31GhQgX9/vvveuONNxQUFOR0HNN8/YnY8C7sD7fGXAiyujx58qT6XXRwcLDGjx/vkzewmjZtWqqvBQYGqk2bNh5M41n9+vXTkCFDUn399ttv1+bNmzVy5Ejddttt6W6vZs2aWrt2raFaX3p634QJE+RyuQzVvvjiizanAQAAsJd3rQ4AAAB/CQ0NVevWrTVjxgwdOnRIvXv3Vnh4uNOx0tS1a1ft2rVLTZs2dTqKIiIi9MMPP2jevHnKkyeP03FgsSpVqmjLli2O3BGxTJkyWrp0KXdjzIJy5syp+++/X++//77WrFmj48ePa8SIEapXr578/Pycjuf18uXL5zMLIJs1a6Zdu3bp6aefdixDoUKFNHPmTC1cuFCNGzd2LIcVGB9kTZnpM+xN2J8A/FNERISWLl2qzp07O5ahSZMm2rhxo+rUqeNYBqvUqVNHu3bt0sCBAxUaGup0nP/wxFMKMtP5m3MmvJWZC83GjRtnY5KshWMCAPiG4OBgDR06VLt379bDDz/sdJx05ciRQ88++6w2btyoTz/91Ok4yGTYH26NuRBkdak9xW/AgAHpPuHPG924cUNLly5N9fV7771X+fLl82Aiz/nqq6/0wQcfpPr6k08+qQ0bNqhKlSqmtlu0aFFNnTo13esXfGmB3/jx4w3VFSlSRK1bt7Y3DAAAgM1Y4AcAgJfw9/dX1apV1bNnT82YMUPnz5/XTz/9pDZt2iggIMDpeIaVLFlSCxYs0PTp001PNFkhPDxcr732mvbs2aMOHTp4vH94Tq5cuTRt2jRNnTpVJUqUsL0/f39/vfLKK9q5c6dq165te39wVoECBVS/fn1169ZNI0aM0ObNm3Xp0iX99ttv6tu3r2rXru11T1P1drfffrtOnjyptWvXqk+fPoqMjHQ60n/cc889WrJkiX799VcVL17c6TiSpPvuu0+LFy/W3r17NXjwYNWsWdMn777J+CDryiyfYW/C/gTgn7Jly6Zx48Zp1qxZhu7MbJVChQrphx9+0KJFizzy95inhISE6N1339WePXv0wgsvOL7QLyQkRO3bt9fKlSu1atUqj/WbWc7fnDPhje68807dc889hmp//PFHJSQk2Jwo6+CYAAC+o1y5cpo1a5ZWr16tRx55xKu+Jw0NDVWbNm00bdo0nT17Vt9++63uvPNOp2MhE2N/+C/mQpCV3WoRX82aNdWnTx8H0mTc0qVLFR8fn+rrzZs392Aaz/ntt9/SvAFQ37599f333ytbtmxubb9OnTrpLoT2lQV+K1eu1MGDBw3VPvfccz755FsAAIB/8r1vZAEA8DEBAQEKCQlRSEiIsmXLpnz58qlgwYIqWLCgihcvrgoVKqhSpUqqXLmycuTI4XRcy7Rt21Zt2rTR3Llz9fnnn2v58uVKSUmxrb9ixYrp6aef1ksvvZRp7+CFW2vfvr1atmypESNGaMSIETp58qSl2w8ODlbHjh31+uuvq1KlSpZuG/YLCgr66xj8z5+cOXOqYMGCKlCgwF8/BQsWVMmSJVWpUiXlzp3b6eiZkp+fn2rVqqVatWpp2LBhOnnypBYsWKAlS5Zo5cqVOnHihMczZc+eXW3bttXzzz+vu+++2+P9G1WhQgX169dP/fr1082bN7Vp0ybt3LlTBw4c0OHDh3Xu3DlduHBBly9fVnx8vBISEpSYmOh07P9gfJB1ZZbPsDdhf0Jm17lzZzVs2NBw/R133GFbFl/w8MMPq2nTphoxYoQ+/fRTnT171pZ+KlasqBdffFGdOnVS9uzZbenDG5QoUUKjRo3SwIED9dVXX2nixIk6cOCAR/oODAxU/fr11a5dOz366KOOPt0ps5y/OWfC27z22mtq27ZtunUXL17UTz/9pMcff9wDqbIOjgkAvFn//v1N1Wf2v4Pq1KmjOnXq6NixY/rqq680depURUdHezxHiRIl9MADD6h58+Zq3Lhxpv5bCN6L/eG/mAtBVvR/F/hly5ZN48eP96rFv2akd0OrunXreiiJ55w4cUIdO3ZUcnLyLV9/++23NWjQoAz38/rrr2vcuHG3fK1gwYKqWLFihvvwhO+++85QXVhYmJ5//nmb0wAAANjPz+VyuZwOAQAAMr9Tp05pypQpmjt3rtavX6/Y2NgMb7NcuXJq3LixHn/8cdWrV09+fn4WJIUvS0pK0uzZszVhwgQtXbpUN27ccGs7AQEBqlWrllq0aKEnnnhCRYoUsTgpgFuJjo7WmjVrtGnTJm3evFnbt2/X9evXLe3Dz89PFSpUUL169dSiRQvdd999bt/9EBnH+ACwDvsTgD8lJiZq5syZ+vHHH7Vo0SLdvHkzQ9srV66c7r//fj388MNq3LixqWPBpk2bDNdWqFDBq298tHXrVk2fPl2LFy/Wtm3bLFvI5u/vr4oVK6pBgwZq2LChmjZtyg1HbMY5E05LSUlRxYoVDS0crlOnjlavXu2BVLfmcrlSvejw//Lz8/PJi0o5JgCAb9m+fbtmzZqlJUuWaMuWLW5/D5Sa0NBQRUZG6s4771SdOnVUr149ntQFr8X+8DfmQpBVbNiw4V83LP3www/1+uuvO5goY+rUqaO1a9fe8rXs2bPrypUrCgzMPM8wSUlJUePGjbV8+fJbvt6tWzd98803lvS1du1a1alT55avtWvXTtOmTbOkHzudP39exYoVS/Mpj3968cUXNWLECA+kAgAAsBcL/AAAgMclJiZq06ZN2rRpkw4ePKjDhw/ryJEjunLlim7cuKGbN28qKSlJoaGhyp49u8LDw1WkSBGVLl1apUuXVlRUlOrWrasCBQo4/avAi8XHx2v16tVav3699uzZoz179ujcuXO6fv26YmJiFBgYqPDwcOXIkUN58+ZV+fLlFRkZqcjISNWrV487agNe4tixY9qzZ48OHDigo0eP6tixYzpz5owuXryoS5cu6fr16389KeSfT83NlSvXX09m/POJuRUrVlT16tWVN29ep38t3ALjA8A67E8A/hQXF6d169Zp06ZN2r59u44eParjx4/rypUrio2NVWJiosLCwv46FuTNm1flypVThQoVVKFCBd19990qWbKk07+G14mNjdXGjRu1devWv46xR44c0eXLl3Xz5k3dvHlTcXFxCgwMVHBwsMLCwpQ3b17lz59fRYoUUalSpVS6dGndfvvtqlq1Kk8AcBDnTDjlu+++U7du3QzVbtu2TVWrVrU5ESSOCQDga5KTk/XHH39o06ZNOnTokI4dO6Zjx47p9OnTiomJ0c2bNxUbG6uEhAQFBQUpJCRE2bJlU+7cuRUREaGIiAgVLVpUpUqVUqlSpVSpUiWVL1/eJxesA+wPf2MuBPANLpdLOXLkSHVxco0aNUwtmPUFX3zxhV588cVbvtagQQMtXrzYsgWNQ4cO1VtvvZVqjh49eljSj52GDBmivn37plsXGBioAwcOcOwGAACZAgv8AAAAAAAAAAAAAMBD4uPjVaZMGZ08eTLd2q5du+q7777zQCoAAAAAADzj6NGjaS7I8pWnzBl1/vx5lS9fXleuXPnPa7ly5dLOnTtVrFgxy/pr3ry55s+ff8vXdu3apcjISMv6skNycrLKlCmjo0ePplv75JNP6vvvv/dAKgAAAPv5Ox0AAAAAAAAAAAAAALKKkJCQVO+k/39NmjRJ58+ftzkRAAAAAACes3///jRfL126tIeSeMaAAQNuubhPkj744ANLF/elpKRozZo1t3wtf/78qly5smV92WXGjBmGFvcFBATonXfe8UAiAAAAz2CBHwAAAAAAAAAAAAB4UNeuXVW0aNF06+Li4vTFF194IBEAAAAAAJ5x6tSpNF/Ply+fh5LY78yZMxozZswtX6tUqZK6detmaX/btm3TtWvXbvla/fr15efnZ2l/dhg+fLihuo4dO6pcuXI2pwEAAPAcFvgBAAAAAAAAAAAAgAeFhISob9++hmq//PJLxcbG2pwIAAAAAADPOH36dJqvZ8+e3UNJ7Pf5558rPj7+lq+9/vrrCgwMtLS/VatWpfpagwYNLO3LDsuXL9emTZvSrQsMDOTpfQAAINNhgR8AAAAAAAAAAAAAeFjXrl1VpkyZdOsuXLig0aNHeyARAAAAAAD2u3r1apqvZ5YFfsnJyRo3btwtX8uXL586dOhgeZ8rV65M9TVfWOA3dOhQQ3VdunRR2bJlbU4DAADgWSzwAwAAAAAAAAAAAAAPCwoK0uDBgw3Vfvjhh0pISLA5EQAAAAAA9kvvKfUpKSkeSmKvJUuW6OzZs7d8rVWrVgoJCbG8z9Se4JcnTx7dfvvtlvdnpY0bN2rBggXp1oWFhWnAgAH2BwIAAPAwFvgBAAAAAAAAAAAAgAMeffRR1ahRI926EydOpHrXfwAAAAAAfEl6N7C5efOmh5LYa8aMGam+9vDDD1ve3549e3T+/Plbvla/fn35+3v3JeODBg0yVPfqq6+qUKFCNqcBAADwPO8erQEAAAAAAAAAAABAJuXn56fhw4cbqh0yZIgSExNtTgQAAAAAgL2Cg4PTfP3UqVMeSmKvZcuW3fK/+/n5qXbt2pb3t3LlylRfa9CggeX9WWnbtm2aO3duunUFCxbU66+/7oFEAAAAnscCPwAAAAAAAAAAAABwSMOGDdW6det0644ePapvv/3WA4kAAAAAALBPWFhYmq8fPnzYQ0nsc/r0aR08ePCWr5UoUUL58uWzvE9fXuDXr18/Q3Xvv/++cubMaXMaAAAAZ7DADwAAAAAAAAAAAAAcNHz4cGXLli3dusGDB+vmzZseSAQAAAAAgD0iIiLSfH3z5s0eSmKfbdu2pfpa6dKlbelz1apVt/zvuXLl0h133GFLn1ZYvXq1fv3113TrqlevrqefftoDiQAAAJzBAj8AAAAAAAAAAAAAcFCpUqXUu3fvdOvOnDmjESNGeCARAAAAAAD2KFGiRJqvHzhwQCdOnPBQGnuk9vQ+SSpSpIjl/UVHR+v48eO3fK1u3bry9/fey8X79u1rqO7zzz/36t8DAAAgoxjpAAAAAAAAAAAAAIDD+vbtm+5FjpI0dOhQXbhwwQOJAAAAAACwXoUKFdKt+fnnnz2QxJzDhw/r+vXrhmqjo6NTfS179uxWRfrLypUrU32tQYMGlvdnlblz56b65MF/euqpp1S3bl0PJAIAAHAOC/wAAAAAAAAAAAAAwGFhYWEaOXJkunVXr17VgAED7A8EAAAAAIANKlWqpBw5cqRZ8/XXX3sojTFLly7VXXfdpe7duxuqv3z5cqqvBQYGWhXrL2kt8GvYsKHl/VkhKSlJr7/+erp1efPm1fDhwz2QCAAAwFks8AMAAAAAAAAAAAAAL9CiRQu1atUq3bpvvvlGe/futT8QAAAAAAAW8/f3V61atdKs2bNnj6ZPn+6hRGn74osvdP/99+vSpUuaPHmyvv3223TbxMTEpPra1atXrYynixcvau7cubd8LUeOHKpevbql/Vnlq6++0r59+9KtGzp0qCIiIjyQCAAAwFnW3wYCAAAAAAAAAAAAAOCWkSNHqmrVqunWHTlyRBUrVvRAIgAAAAAArPXII49o4cKFada89tpruv/++5UzZ04Ppfq3ixcvqmvXrpo1a9a//vvLL7+se+65R1WqVEm1bVJSUqqvXbhwwaqIkqQXXnhB58+fv+VrderUUUBAgKX9WcXPz0/9+/dPsyYsLExdu3b1UCIAAABn+blcLpfTIQAAAAAAAAAAAAAAAAAAAABkfufOnVOxYsWUkJCQZl27du00depU+fn5eSjZ/yxYsEDPPPOMTp06dcvXK1SooE2bNik8PPyWr3fu3FkTJky45WsRERE6d+6cJTlHjx6tZ599NtXXhwwZojfffNOSvgAAAGAvf6cDAAAAAAAAAAAAAAAAAAAAAMgaChQooEcffTTduunTp6tXr172B/r/Tp48qUcffVQPPPBAqov7JKlkyZLy90/9Euy8efOm+tr58+e1Z8+eDOWUpFWrVqlHjx5p1tSpUyfD/QAAAMAzWOAHAAAAAAAAAAAAAAAAAAAAwGP69OmjgICAdOtGjBihJ598UrGxsbZluXLligYOHKiKFStq2rRpada2b99ec+fOVVhYWKo1RYoUSXMbX3/9tVs5/7R+/Xo99NBDaT4BMSgoSHfeeWeG+gEAAIDnsMAPAAAAAAAAAAAAAAAAAAAAgMdERUWpW7duhmonTZqkO+64Q0uXLrU0w8mTJ/XOO++oZMmSGjBggGJiYtKs7969uyZPnqygoKA06+655540Xx8zZoz2799vOq8kLVy4UE2bNtW1a9fSrLvjjjsUGhrqVh8AAADwPBb4AQAAAAAAAAAAAAAAAAAAAPCoDz74QCVKlDBUu3//fjVu3FiNGzfWzz//rMTERLf6vHLliqZNm6YHH3xQJUqU0ODBg3X16tU02wQHB+uLL77Q119/LX//9C+9vuuuuxQSEpLq6zdu3FD79u11+fJlw7mTk5M1dOhQNW/ePN3FfZJ4eh8AAICP8XO5XC6nQwAAAAAAAAAA8P/au7/Xmv84gOOvs1nNyRkRhzlSxJZQataSdGrcuFg7uBA3llz6ceG/WGk3cqOWkpUfF+5WlLI02ZIVSy6kRrsgZU3Kwvfu2/f77fvFvtu8yONxd+r9eb9e5w949gYAAAAA4PcyPDwc1Wo1Pn78OKvvmpqaorOzMzo6OmL79u2xfv36WL16dRSLxWhoaIjp6emYmpqKycnJGB8fjydPnsTQ0FCMjIzEp0+fvnvO2rVr4/r16998le+fDh06FDdu3PjqmZaWlhgYGIgdO3Z89dz9+/fj5MmTMTo6+t3zL168GMePH//u8wAA5BL4AQAAAAAAAAAAAAAprl27FocPH47Pnz9nr/I3Bw4ciAsXLsSqVatm/e29e/di9+7d3zxXKBSiVqvFwYMHo6OjI8rlchQKhZiYmIg7d+7EwMBA3L17d9bzHz58+M1wEACAn4fADwAAAAAAAAAAAABIc+XKlejp6Zn1S34Lobm5Oc6fPx/d3d1zumffvn1x+/bt+VlqFurr62N6ejoaGxt/+GwAAP6fuuwFAAAAAAAAAAAAAIDf15EjR+LWrVuxZs2atB2KxWKcPXs2xsfH5xz3RURcunQpVq5cOffF/sXXXufbuHGjuA8A4Bcj8AMAAAAAAAAAAAAAUu3ZsyceP34cR48e/aFzGxsb4/Tp0/H8+fPo7e2NpUuXzsu9zc3NcfXq1SiVSvNyX0TEihUror+/P06dOvWfZzZv3jxv8wAA+DEEfgAAAAAAAAAAAABAuuXLl8fly5djZGQk9u/fH4VCYcFmbd26Nc6dOxcTExPR19cX5XJ53mdUq9UYGhqKSqUyp3sWL14cZ86ciWfPnsWxY8fiwYMH/3l206ZNc5oFAMCPV/jy5cuX7CUAAAAAAAAAAAAAAP7qxYsX0d/fHzdv3oyxsbE53VVfXx9tbW2xd+/e6Orqivb29nna8tvevXsXvb290dfXF+/fv//u7zZs2BA9PT1x4sSJvwWIO3fujNHR0T9/VyqV6OrqilqtFtVqNRYtWjSv+wMAsLAEfgAAAAAAAAAAAADAT21ycjKGh4fj0aNH8fTp03j58mW8evUqpqam4sOHDzEzMxPFYjFKpVIsWbIkyuVytLS0RGtra2zZsiV27doVy5YtS/0Pb9++jcHBwRgcHIyxsbF4/fp1vHnzJurq6qKpqSkqlUq0trZGe3t7dHZ2xrZt2/71nnXr1kWpVIru7u6o1WrR1ta2oK8dAgCwsAR+AAAAAAAAAAAAAAC/iJmZmWhoaMheAwCAeSLwAwAAAAAAAAAAAAAAAIAEddkLAAAAAAAAAAAAAAAAAMDvSOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQQOAHAAAAAAAAAAAAAAAAAAkEfgAAAAAAAAAAAAAAAACQ4A/M2aZ+csK25wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "# Show plots\n", - "from IPython.core.display import SVG\n", - "SVG(filename=\"./v_Cd_0/v_Cd_0.svg\")" + "figs = plotting.plot_all_defects(\n", + " defect_charges_dict,\n", + " add_colorbar=True\n", + ")" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 35, "id": "6a7bd7f6-b558-4640-b613-226b3e625494", "metadata": { "pycharm": { @@ -2474,47 +2318,41 @@ "name": "stdout", "output_type": "stream", "text": [ - "Energy lowering distortion found for v_Cd with charge -1. Generating distortion plot...\n", + "Energy lowering distortion found for v_Cd_s0 with charge 0. Generating distortion plot...\n", "Comparing structures to Unperturbed...\n", - "Previous version of v_Cd_-1.svg found in output_path: 'v_Cd_-1/'. Will rename old plot to v_Cd_-1_2022-11-07-12-43.svg.\n", - "Plot saved to v_Cd_-1/v_Cd_-1.svg\n", - "Energy lowering distortion found for v_Cd with charge 0. Generating distortion plot...\n", + "Plot saved to v_Cd_s0_0/v_Cd_s0_0.png\n", + "Energy lowering distortion found for v_Cd_s0 with charge -1. Generating distortion plot...\n", "Comparing structures to Unperturbed...\n", - "Previous version of v_Cd_0.svg found in output_path: 'v_Cd_0/'. Will rename old plot to v_Cd_0_2022-11-07-12-43.svg.\n", - "Plot saved to v_Cd_0/v_Cd_0.svg\n" + "Plot saved to v_Cd_s0_-1/v_Cd_s0_-1.png\n" ] - } - ], - "source": [ - "figs = plotting.plot_all_defects(\n", - " defect_charges_dict,\n", - " add_colorbar=True,\n", - " metric=\"disp\"\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "6e1c3320", - "metadata": {}, - "outputs": [ + }, { "data": { - "image/svg+xml": "\n \n \n \n \n 2022-11-07T12:43:36.044437\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADiYAAAv+CAYAAAAGIQgQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdd5TV5bk+7mcKDD10sICFIjKjsYKiOCjqsSv22KJRjBr7Mbb4S9TYe8eGRqNRscUSRY2YQYiKBRFREFAsBKRj6GX274+crx4Oyv7Mnl1m4LrWYp0ze57nfW9MVnSt8eYtSqVSqQAAAAAAAAAAAAAAAAAASKC40AEAAAAAAAAAAAAAAAAAgPpDMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABIrLTQAQAAAAAAAKC+Wr58ebz11lvx1ltvxQcffBBffPFFfP3117FgwYJYvHhxNGvWLFq2bBkdOnSIrbfeOrbddtvo379/bLrppoWODgAAAAAAAJCxolQqlSp0CAAAAAAAAKhP3n777bj77rvj+eefj7lz59Z4f4cddohjjz02fvWrX0WjRo1ykBAAAAAAAAAgdxQTAQAAAAAAIKHhw4fHhRdeGG+99VZWzlt//fXjd7/7XZx88slRWlqalTMBAAAAAAAAck0xEQAAAAAAANKYNWtW/OY3v4khQ4bk5Pztt98+HnnkkejevXtOzgcAAAAAAADIJsVEAAAAAAAAWIM33ngjfvGLX8S3336b03uaNGkS9913Xxx11FE5vQcAAAAAAACgtooLHQAAAAAAAADqqvvuuy/23HPPnJcSIyIWLVoUxxxzTNx00005vwsAAAAAAACgNhQTAQAAAAAA4EfcfffdcfLJJ8eKFSvydmcqlYr//u//jksvvTRvdwIAAAAAAADUVFEqlUoVOgQAAAAAAADUJQ8//HAcf/zxUcgfpd17770xcODAgt0PAAAAAAAA8FMUEwEAAAAAAOB/efrpp+OII46IlStXJt7p1KlTHHHEEdGnT5/4+c9/Hq1bt46mTZvGnDlz4osvvog333wznnjiiXj//fcTn1laWhovvvhi/Nd//Vcmvw0AAAAAAACAnFFMBAAAAAAAgP8xYcKE2GabbWLRokWJ5rt37x7XXXdd7L///lFcXJx2fsSIEXHmmWfG6NGjE53frl27+Oijj6Jjx46J5gEAAAAAAADyIf1PRwEAAAAAAGAdsGzZsvjFL36RuJR4/vnnx9ixY+PAAw9MVEqMiNh5553j3XffjUsuuSTR/MyZM+P4448Pf9YoAAAAAAAAUJcoJgIAAAAAAEBEXHTRRYleMiwpKYmHH344rr322mjYsGGN7ykpKYk//vGP8cADD0RRUVHa+VdeeSXuvvvuGt8DAAAAAAAAkCtFKX+8KgAAAAAAAOu4t99+O/r06ZPoZcL77rsvTjrppKzce+utt8bZZ5+ddq5169YxceLEaN26dVbuBQAAAAAAAKgNLyYCAAAAAACwzrvwwgsTlRLPOeecrJUSIyLOOuusROfNmTMnfv/732ftXgAAAAAAAIDa8GIiAAAAAAAA67SXX3459tlnn7RzFRUV8d5770VZWVlW71+4cGFss8028dlnn61xrqSkJD799NPo1q1bVu8HAAAAAAAAqCkvJgIAAAAAALDOSqVScfHFFyeavffee7NeSoyIaNq0aQwaNCjt3MqVK+O6667L+v0AAAAAAAAANaWYCAAAAAAAwDrr1VdfjQ8//DDt3MEHHxw77rhjznLstttuMWDAgLRzDz/8cEydOjVnOQAAAAAAAACSUEwEAAAAAABgnfXggw8mmrv88stznCTi6quvjuLiNf/4btmyZXHbbbflPAsAAAAAAADAmhSlUqlUoUMAAAAAAABAvs2fPz86duwYS5YsWePcHnvsEa+++mpeMh188MHx7LPPrnGmY8eO8fXXX0dpaWleMgEAAAAAAAD8X15MBAAAAAAAYJ30+OOPpy0lRkScddZZeUjzH+eff37amenTp8crr7yShzQAAAAAAAAAP04xEQAAAAAAgHXS448/nnamQ4cOsddee+UhzX/ssMMO0bNnz7RzDz30UB7SAAAAAAAAAPw4xUQAAAAAAADWOYsXL45//vOfaeeOOOKIKCkpyUOiH5xwwglpZ1566aVYtmxZHtIAAAAAAAAArE4xEQAAAAAAgHXOiBEjEhX7Dj300DykWdXhhx+edmbhwoVRVVWVhzQAAAAAAAAAq1NMBAAAAAAAYJ3z+uuvp51p2bJl9OnTJw9pVtW5c+fYcsst08699NJLeUgDAAAAAAAAsDrFRAAAAAAAANY5w4YNSzuzxx57RElJSR7SrG6//fZLO/Paa6/lIQkAAAAAAADA6hQTAQAAAAAAWKesWLEixowZk3aub9++eUjz4yorK9POfPrpp/Hdd9/lIQ0AAAAAAADAqhQTAQAAAAAAWKdMmDAhli1blnZuhx12yEOaH7fjjjumfa2xuro63nvvvTwlAgAAAAAAAPiBYiIAAAAAAADrlLFjx6adKSsri6222ir3YX5C8+bNo6KiIu3cu+++m4c0AAAAAAAAAKtSTAQAAAAAAGCdkqSYuNlmm0WDBg3ykOanbbHFFmlnxowZk4ckAAAAAAAAAKtSTAQAAAAAAGCdMm7cuLQzPXv2zEOSNSsvL087M3HixDwkAQAAAAAAAFiVYiIAAAAAAADrlK+//jrtzOabb56HJGummAgAAAAAAADUVYqJAAAAAAAArFOmTZuWdqZz5855SLJmG220UdqZ+fPnx8yZM/OQBgAAAAAAAOAHiokAAAAAAACsM1auXBkzZsxIO9epU6c8pMlOhq+++irHSQAAAAAAAABWpZgIAAAAAACQBcOGDYuioqKMf51zzjmF/i3UCTNmzIi2bdtm/Ndxgw02iHnz5q3x/JUrV6bNscEGG2Txd5WZVq1aRbNmzdLOeTERAAAAAAAAyDfFRAAAAAAAgCwoLy+v1f6ECROylKR+O/PMM2P27NkZ799zzz3RsmXLn/z+9OnTE53TunXrjDNkU9u2bdPOKCYCAAAAAAAA+aaYCAAAAAAAkAUdOnRIVCL7KYqJES+88EI88cQTGe8fe+yxsd9++61xZsGCBYnOatWqVcY5silJDsVEAAAAAAAAIN8UEwEAAAAAALKkNq8mTpkyJZYuXZrFNPXLd999F6eeemrG++utt17ceuutaeeWLFmSdqZJkybRoEGDjLNkU5Ji4ty5c/OQBAAAAAAAAOAHiokAAAAAAABZUptiYnV1dUycODGLaeqX888/P6ZOnZrx/j333JOoxJekmNi4ceOMc2Rbs2bN0s6sy4VWAAAAAAAAoDAUEwEAAAAAALKkoqKiVvsTJkzIUpL6paqqKu69996M94855pjYf//9E80mKSbWldcSI5JlUUwEAAAAAAAA8k0xEQAAAAAAIEtq82JixLpZTFyyZEkMHDgwUqlURvsdO3aM2267LfF8khJfXSomNmzYMO3MsmXL8pAEAAAAAAAA4AeKiQAAAAAAAFlS2xcTx48fn6Uk9cell14aEydOzHj/7rvvjlatWiWeT1KAzLQkmQtJSpKKiQAAAAAAAEC+KSYCAAAAAABkSevWraNjx44Z769rLyaOHj06brzxxoz3jz766DjwwANrtJPkBcLFixdnGinrli9fnnamtLQ0D0kAAAAAAAAAfqCYCAAAAAAAkEXl5eUZ765LxcQVK1bEiSeeGCtWrMhov2PHjnHbbbfVeC/JC4R1qZiY5DXERo0a5SEJAAAAAAAAwA8UEwEAAAAAALKooqIi49358+fH9OnTs5im7rrhhhti9OjRGe8PGjQoWrduXeO9srKytDNLlizJJFJOLF26NO2MYiIAAAAAAACQb4qJAAAAAAAAWVSbFxMj1o1XEz/77LO47LLLMt7/xS9+EQcddFBGuy1atEg7U11dXWfKiV5MBAAAAAAAAOoixUQAAAAAAIAsqs2LiRFrfzExlUrFwIEDMy7+dejQIW6//faM70/6yuLixYszviOb5s2bl3ZGMREAAAAAAADIN8VEAAAAAACALPJi4prdc889MXz48Iz3Bw0aFG3atMl4P+nu3LlzM74jm2bNmpV2plWrVnlIAgAAAAAAAPADxUQAAAAAAIAsatGiRXTq1Cnj/fHjx2cxTd3yzTffxAUXXJDx/pFHHhkDBgyoVYY2bdpEUVFR2rmvv/66Vvdky+zZs9POdOzYMQ9JAAAAAAAAAH6gmAgAAAAAAJBltXk1cW1+MfHUU0+N7777LqPd9u3bxx133FHrDA0aNEhU5Pvqq69qfVdtrVixIubPn592TjERAAAAAAAAyDfFRAAAAAAAgCyrTTFxypQpsWzZsiymqRsef/zxePHFFzPev+uuu6JNmzZZydK5c+e0M3XhxcSk5UjFRAAAAAAAACDfFBMBAAAAAACyrKKiIuPdlStXxsSJE7OYpvBmz54dZ555Zsb7RxxxRBxyyCFZy7PRRhulnakLLyZOnjw50ZxiIgAAAAAAAJBviokAAAAAAABZVpsXEyMiJkyYkKUkdcPZZ58dM2fOzGi3ffv2cccdd2Q1T/fu3dPO1IVi4ueff552Zv31149GjRrlIQ0AAAAAAADADxQTAQAAAAAAsqxnz55RVFSU8f7aVEwcOnRoPPLIIxnv33nnndG2bdssJkr2ouWnn36a1TszMWnSpLQzPXv2zEMSAAAAAAAAgFUpJgIAAAAAAGRZ06ZNY+ONN854f20pJi5YsCB+/etfZ7x/2GGHxaGHHprFRP+xxRZbpJ2ZMmVKzJ8/P+t318SHH36Ydqa2r3MCAAAAAAAAZEIxEQAAAAAAIAeSvMr3U8aPH5/FJIVz0UUXxVdffZXRbrt27eLOO+/McqL/6N69ezRq1Cjt3JgxY3Jyf1IffPBB2hkvJgIAAAAAAACFoJgIAAAAAACQA7V5yW5teDHxn//8Z9x1110Z7995553Rrl27LCb6QWlpaWy//fZp50aMGJGT+5OYMmVKzJkzJ+1cbQqwAAAAAAAAAJlSTAQAAAAAAMiB2hQT582bFzNmzMhimvxaunRpnHTSSVFdXZ3R/qGHHhqHHXZYllOtauedd0478+abb+Y0w5q89dZbaWfKyspim222yUMaAAAAAAAAgFUpJgIAAAAAAORAbV+yq8+vJl5xxRXx6aefZrTbtm3bWr20mFTfvn3TzowYMSKWLVuW8yw/ZujQoWlnevXqFY0aNcpDGgAAAAAAAIBVKSYCAAAAAADkQI8ePaKkpCTj/fHjx2cxTf6MHTs2rr322oz377jjjmjXrl0WE/24XXbZJcrKytY4s2DBgqiqqsp5lv8rlUrFK6+8knZul112yUMaAAAAAAAAgNUpJgIAAAAAAORAo0aNokuXLhnv18cXE1euXBknnnhiLF++PKP9Qw45JI444ogsp/pxTZs2jV133TXt3IsvvpiHNKt677334ttvv007V1lZmYc0AAAAAAAAAKtTTAQAAAAAAMiR8vLyjHfrYzHxlltuiXfffTej3bZt28Zdd92V5URrtv/++6edefLJJ6O6ujoPaX7wwAMPpJ1p1qxZ7LTTTnlIAwAAAAAAALA6xUQAAAAAAIAcqaioyHh3/PjxWUySe59//nn8/ve/z3j/9ttvj/bt22cxUXoHHXRQFBev+cdl06ZNi9dffz1PiSIWLFgQjz76aNq5Aw88MJo0aZKHRAAAAAAAAACrU0wEAAAAAADIkdq8mPjFF1/EsmXLspgmtwYOHBiLFi3KaHfAgAFx5JFHZjlReuuvv37stttuaeeSvGCYLY8++mj8+9//Tjt39NFH5yENAAAAAAAAwI9TTAQAAAAAAMiR2ryYuHLlypg8eXIW0+TO4MGDY9iwYRnttmnTJgYNGpTlRMkde+yxaWeeeuqp+PLLL3OeZcmSJXHllVemnWvXrl3sscceOc8DAAAAAAAA8FMUEwEAAAAAAHKke/fu0aBBg4z3J0yYkMU0uTFt2rQ477zzMt6//fbbo0OHDllMVDOHHHJItGjRYo0zK1asiBtvvDHnWW655Zb4+uuv084de+yxUVpamvM8AAAAAAAAAD9FMREAAAAAACBHGjRoEN26dct4f/z48VlMkxunn356zJs3L6Pdgw46KH7xi19kN1ANNW3aNH71q1+lnbv77rvjk08+yVmO6dOnxzXXXJN2rnHjxvHb3/42ZzkAAAAAAAAAklBMBAAAAAAAyKGKioqMd+v6i4lPP/10PPPMMxnttm7dOu6+++4sJ8rMmWeeGcXFa/6x2fLly+O0006L6urqrN+fSqXil7/8ZcyfPz/t7CmnnBIdO3bMegYAAAAAAACAmlBMBAAAAAAAyKHy8vKMd+tyMXHevHlx+umnZ7x/++23R4cOHbKYKHObbLJJDBgwIO1cVVVVXHrppVm//4YbbohXX3017Vzjxo3jggsuyPr9AAAAAAAAADWlmAgAAAAAAJBDa+uLieeee25Mnz49o90DDzwwjjrqqCwnqp0rrrgiSktLE80NGTIka/e+9tpr8bvf/S7R7Pnnn19nypwAAAAAAADAuq0olUqlCh0CAAAAAABgbTVhwoTo0aNHxvszZsyIdu3aZTFR7b3++uux++67Z7TbunXrGDduXHTs2DHLqWrv1FNPjbvvvjvtXElJSTz00ENx9NFH1+q+N954Iw444IBYsGBB2tltttkm3n777WjQoEGt7gQAAAAAAADIBi8mAgAAAAAA5FDXrl2jrKws4/269mriokWL4uSTT854/9Zbb62TpcSIiMsuuyxat26ddm7lypVx3HHHxYUXXhjLli3L6K577rkn9t5770SlxLKysnjooYeUEgEAAAAAAIA6QzERAAAAAAAgh0pKSmr1YmJdKyZecskl8fnnn2e0u//++8cxxxyT5UTZ0759+3jwwQcTzVZXV8e1114bvXr1ihdeeCFSqVSivdGjR8cee+wRp5xySixdujTRzhVXXBEVFRWJZgEAAAAAAADyoSiV9KekAAAAAAAAZOToo4+Ov/zlLxntnnfeeXH99ddnOVFmRo0aFTvuuGNUV1fXeLdVq1Yxbty4WG+99XKQLLvOPPPMuP3222u0s9lmm8VBBx0Uu+22W3Tv3j3atm0bjRo1innz5sXEiRPjrbfeimeeeSZGjhxZo3NPOOGEeOCBB2q0AwAAAAAAAJBriokAAAAAAAA5dvXVV8fFF1+c0e7+++8fzz//fJYT1dzy5ctj2223jbFjx2a0//DDD8exxx6b5VS5sWzZsjjwwANj6NChBc2x7777xl//+tcoLS0taA4AAAAAAACA/6u40AEAAAAAAADWduXl5RnvTpgwIYtJMnf11VdnXErcb7/96k0pMSKiYcOG8cwzz8Suu+5asAy9evWKIUOGKCUCAAAAAAAAdZIXEwEAAAAAAHLs888/jy5dumS0W1paGosWLYoGDRpkOVVyn3zySWy99daxbNmyGu+2bNkyxo0bF+uvv34OkuXWggUL4vDDD4+XX345r/f269cv/vrXv8bPfvazvN4LAAAAAAAAkJQXEwEAAAAAAHJsk002iSZNmmS0u2LFipg8eXKWEyVXXV0dJ510UkalxIiIW2+9tV6WEiMimjVrFi+++GJccsklUVRUlJc7TzzxxBg6dKhSIgAAAAAAAFCnKSYCAAAAAADkWFFRUfTs2TPj/QkTJmQxTc3ccccd8dZbb2W0u99++8Vxxx2X5UT5VVxcHH/84x/jb3/7W2y66aY5u6ddu3bx+OOPx/333x9lZWU5uwcAAAAAAAAgGxQTAQAAAAAA8qC8vDzj3UIVE7/88sv43e9+l9Fuy5Yt45577slyosLZe++945NPPolrrrkmmjdvnrVzmzRpEuecc0589tlnccQRR2TtXAAAAAAAAIBcUkwEAAAAAADIg9oUE8ePH5/FJMn9+te/jgULFmS0e/PNN8f666+f5USFVVZWFhdccEFMnTo17r///thpp50yPqu8vDyuuuqq+Oqrr+Kmm26Kli1bZi8oAAAAAAAAQI4VpVKpVKFDAAAAAAAArO1efvnl2GeffTLa7dOnT4wcOTLLidbs4Ycfjl/+8pcZ7e6zzz7xt7/9LcuJ6qapU6fGW2+9FaNGjYr3338/pk+fHvPmzYu5c+fG8uXLo0mTJtGyZcvYaKONonv37tG7d++orKyM7t27Fzo6AAAAAAAAQMYUEwEAAAAAAPLgq6++io022iij3TZt2sSsWbOynOinzZgxIzbffPOYM2dOjXdbtmwZH3/8cWywwQY5SAYAAAAAAABAXVBc6AAAAAAAAADrgs6dO0eLFi0y2p09e3bMnj07y4l+2hlnnJFRKTEi4qabblJKBAAAAAAAAFjLKSYCAAAAAADkSc+ePTPeHT9+fBaT/LTnn38+hgwZktHu3nvvHSeccEKWEwEAAAAAAABQ1ygmAgAAAAAA5ElFRUXGuxMmTMhikh/33XffxWmnnZbR7s9+9rO49957s5wIAAAAAAAAgLpIMREAAAAAACBPysvLM97NRzHxt7/9bUydOjWj3Ztuuik23HDDLCcCAAAAAAAAoC5STAQAAAAAAMiT2hQTx48fn8Ukq6uqqor77rsvo9299torfvWrX2U5EQAAAAAAAAB1lWIiAAAAAABAnlRUVGS8m8sXE5csWRIDBw6MVCpV490WLVrEvffem4NUAAAAAAAAANRViokAAAAAAAB5st5660Xr1q0z2v38889jxYoVWU70H3/4wx9i4sSJGe3eeOON0alTpywnAgAAAAAAAKAuU0wEAAAAAADIo/Ly8oz2li9fHp9//nmW00R88MEHceONN2a0u+eee8ZJJ52U5UQAAAAAAAAA1HWKiQAAAAAAAHmUaTExImL8+PFZTBKxYsWKOOmkk2LlypU13m3RokXcf//9Wc0DAAAAAAAAQP2gmAgAAAAAAJBHFRUVGe9OmDAhi0kirr/++hg9enRGuzfccEN06tQpq3kAAAAAAAAAqB8UEwEAAAAAAPKoNi8mZrOY+Nlnn8Xll1+e0e4ee+wRAwcOzFoWAAAAAAAAAOoXxUQAAAAAAIA8qgsvJqZSqRg4cGAsWbKkxrvNmzeP+++/Pys5AAAAAAAAAKifFBMBAAAAAADyqG3bttG+ffuMdsePH5+VDHfffXcMHz48o90bbrghOnfunJUcAAAAAAAAANRPRalUKlXoEAAAAAAAAOuS3XbbLd54442MdmfPnh2tW7fO+O5vvvkmysvL47vvvqvx7u677x6vvfZaxncDAAAAAAAAsHbwYiIAAAAAAECeVVRUZLw7YcKEWt196qmnZlRKbN68edx///21uhsAAAAAAACAtYNiIgAAAAAAQJ6Vl5dnvDt+/PiMdx977LF48cUXM9q97rrrYqONNsr4bgAAAAAAAADWHoqJAAAAAAAAeVaIFxNnz54dZ511Vka7/fv3j1//+tcZ7QIAAAAAAACw9lFMBAAAAAAAyLPavJiYaTHx7LPPjpkzZ9Z4r1mzZjF48OAoKirK6F4AAAAAAAAA1j6KiQAAAAAAAHnWsmXL2GCDDTLazaSY+PLLL8cjjzyS0X3XXXddbLTRRhntQj7MmDEj5s+fX+gYAAAAAAAAsE5RTAQAAAAAACiATF9NnDx5cqxYsSLx/IIFC+KUU07J6K5dd901413IpS+//DJuueWWqKysjPXWWy/69u1b6EgAAAAAAACwTiktdAAAAAAAAIB1UXl5ebz66qs13lu2bFl88cUX0a1bt0TzF110UXz11Vc1vqdZs2bxwAMPRFFRUY13IRc+/fTTeOaZZ+KZZ56JDz74YJXvde3atUCpAAAAAAAAYN2kmAgAAAAAAFAAFRUVGe9OmDAhUTHxn//8Z9x1110Z3XHttdfGxhtvnNHuumj+/Pnx8ccfx8cffxyffvppTJ06NaZOnRrTp0+PBQsWxOLFi2PJkiVRWloazZs3//5X+/bto0ePHrH55ptHjx494uc//3m0bt260L+dOuWqq66Khx9+OCZMmPCTM5WVlXlMBAAAAAAAABSlUqlUoUMAAAAAAACsa955553YYYcdMtq9/vrr47zzzlvjzNKlS2OrrbaK8ePH1/j8XXfdNV5//XWvJa7BrFmz4u9//3tUVVVFVVVVfPrpp1k5t7i4OLbddtvYa6+9Yq+99orevXtHSUlJVs6uj+bNmxdt2rSJ6urqNc6NHj06ttpqq/yEAgAAAAAAALyYCAAAAAAAUAjl5eVRVFQUmfwZkmt6Oe7/ueKKKzIqJTZt2jQGDx6slPgjZsyYEU899VQ8/fTTUVVVFStXrsz6HdXV1fHuu+/Gu+++G3/84x9jww03jIEDB8bAgQNjvfXWy/p9dd2bb76ZtpTYsmXL2HLLLfOUCAAAAAAAAIiIKC50AAAAAAAAgHVRs2bNonPnzhntpismfvTRR3HttddmdPa1114bm2yySUa7a6NUKhXDhg2LI444IjbccMP4zW9+E8OGDctJKfHHfPPNN/GHP/whOnfuHIcddliMGTMmL/fWFcOHD08707dv3ygu9mNPAAAAAAAAyCc/oQMAAAAAACiQioqKjPbWVExcuXJlnHjiibF8+fIan9uvX7847bTTMsq0tlm5cmX85S9/iS222CL69+8fQ4YMyeivabasWLEinnrqqdhmm23i+OOPj9mzZxcsSz5VVVWlnenXr1/ugwAAAAAAAACrUEwEAAAAAAAokPLy8oz2ZsyYEXPnzv3R791yyy3x3nvv1fjMpk2bxuDBg6OoqCijTGuLVCoVf/7zn6NHjx5x9NFHx7hx4wodaRXV1dXx0EMPRc+ePeOll14qdJycWrBgQYwePTrtXGVlZR7SAAAAAAAAAP+bYiIAAAAAAECBZFpMjPjxVxMnT54cv//97zM67+qrr45NN9004zxrg5EjR0bv3r3juOOOi0mTJhU6zhrNmDEj9t9//7jmmmsKHSVnRo4cGStWrFjjTIsWLWKrrbbKTyAAAAAAAADge4qJAAAAAAAABVJRUZHx7o8VE08++eRYtGhRjc/aZZdd4vTTT884S303Z86c+OUvfxk777xzvPvuu4WOk1h1dXVcdNFFcf755xc6Sk5UVVWlndl5552jpKQkD2kAAAAAAACA/00xEQAAAAAAoEA233zzKC7O7Mc1/7eYOHjw4Bg2bFiNz2nSpEk88MADUVRUlFGO+u7pp5+Onj17xsMPP1zoKBm7/vrr18qXE4cPH552prKyMg9JAAAAAAAAgP+rtNABAAAAAAAA1lWNGzeOTTfdNCZNmlTj3fHjx3///0+bNi3OO++8jDJcffXV0aVLl4x267OFCxfGaaedlpVCYllZWfTq1St69uwZPXr0iM033zw22GCDaN68ebRo0SKaN28e1dXVsWTJkli4cGFMnz49pk2bFpMmTYqxY8fGhx9+GKNHj46VK1dmnOHiiy+OLbbYIvbdd99a/37qgsWLFyd6vVIxEQAAAAAAAAqjKJVKpQodAgAAAAAAYF110EEHxXPPPVfjvZ49e8a4ceMiIuLggw+OZ599tsZn9O3bN6qqqta51xI//vjjOPzww+PTTz/N+IwuXbrEAQccEHvuuWdUVlZG48aNa5Vp/vz5UVVVFY888kg8//zzsXTp0hqf0aFDhxg7dmy0a9euVlnqgmHDhkX//v3XONOsWbOYO3dulJb6s1gBAAAAAAAg34oLHQAAAAAAAGBdVlFRkdHepEmTYuXKlfH0009nVEps0qRJPPDAA+tcKfHZZ5+N3r17Z1RKbNiwYRx++OHx97//PSZOnBg33XRT7LXXXrUuJUZE/OxnP4sDDjgghgwZEv/617/iggsuiEaNGtXojG+//TYuuOCCWmepC4YPH552pk+fPkqJAAAAAAAAUCCKiQAAAAAAAAVUXl6e0d6yZcvigw8+iNNPPz2j/auuuiq6du2a0W59dd1118UhhxwSixYtqtFew4YN4/TTT4+vvvoqnnjiiejfv39OC52tW7eOa665JiZMmBB77rlnjXYfeuihGDNmTI6S5U9VVVXamX79+uU+CAAAAAAAAPCjFBMBAAAAAAAKKNNiYkTE0UcfHdOnT6/x3s477xxnnHFGxvfWN6lUKk4//fS44IILIpVKJd4rKiqKo48+OsaPHx+33357dOjQIYcpV9e5c+cYOnRoXHnllVFSUpJop7q6Oq6++uocJ8utZcuWxTvvvJN2rrKyMg9pAAAAAAAAgB9TlKrJT18BAAAAAADIqmXLlkXTpk1jxYoVebmvcePG8dFHH60zryVWV1fHySefHIMHD67RXufOneOBBx6I/v375yhZzTzzzDPxi1/8IpYtW5Z2tkmTJrFgwYKcvuqYSyNGjIi+ffuucaZJkyYxb968aNCgQZ5SAQAAAAAAAP+bFxMBAAAAAAAKqGHDhnktCV555ZXrTCkxlUrFCSecUONS4gknnBBjx46tM6XEiIiDDz44XnjhhWjUqFHa2e23377elhIjIqqqqtLO7LjjjkqJAAAAAAAAUECKiQAAAAAAAAVWUVGRl3t22mmnOOuss/JyV11wzjnnxMMPP5x4vqysLB566KF44IEHokWLFjlMlpk999wz7r777rRzu+22Wx7S5M7w4cPTzlRWVuYhCQAAAAAAAPBTFBMBAAAAAAAKrLy8POd3NG7cOB588MEoLl43fjx09dVXx6233pp4vl27dvH666/Hcccdl8NUtffLX/4ybbl01113zVOa7FuxYkX885//TDunmAgAAAAAAACFtW785BkAAAAAAKAOy8eLiVdccUV069Yt5/fUBU8++WRcfPHFiee7desWo0aNip122imHqbLn2muvjY033vhHv9ekSZPo3bt3fgNl0fvvvx8LFixY40yjRo3q9e8RAAAAAAAA1gaKiQAAAAAAAAWW6xcT+/TpE2effXZO76grxo0bFyeccELi+a5du8Ybb7zxk0W/uqisrCyuvvrqH/3eTjvtFA0bNsxzouwZPnx42pnevXtHWVlZHtIAAAAAAAAAP0UxEQAAAAAAoMC6deuWszJZo0aN4oEHHoji4rX/x0Lz58+Pgw46KBYuXJhovkuXLvHGG2/EBhtskONk2XfkkUfGlltuudrnu+22WwHSZE9VVVXamX79+uU+CAAAAAAAALBGa/9PoAEAAAAAAOq40tLS2GyzzXJy9hVXXJGzs+ua3/zmNzFp0qREs+uvv3688cYbseGGG+Y4Ve4cf/zxq32266675j9IllRXV8fIkSPTzlVWVuYhDQAAAAAAALAmiokAAAAAAAB1QHl5edbP3HHHHeOcc87J+rl10ZAhQ+LRRx9NNNu4ceN4/vnno1OnTjlOlVtHHXVUlJaWfv918+bNY9ttty1gotoZM2ZMzJs3b40zDRs2jB122CE/gQAAAAAAAICfpJgIAAAAAABQB1RUVGT1vEaNGsWDDz4YxcVr/4+Dpk+fHqeeemqi2aKionjooYfqdYHv/+nQocMqJb1ddtlllaJifVNVVZV2plevXtG4ceM8pAEAAAAAAADWpP7+ZBIAAAAAAGAtku0XEy+//PLYbLPNsnpmXXXuuefGnDlzEs1ecsklcdhhh+U4Uf706tUrRowYERERu+66a97vnzJlSgwfPjzGjBkTH330UXz11Vcxf/78mDdvXlRXV0fz5s2jU6dO0bNnz+jTp0/su+++sckmm/zoWcOHD097X2VlZbZ/CwAAAAAAAEAGilKpVKrQIQAAAAAAANZ1kyZNim7dumXlrB122CFGjBgRJSUlWTmvLhs2bFj0798/0eza+NfliSeeiCOPPDIiIj744IPYeuutc37n5MmT46GHHornnnsuPvrooxrv77TTTnHWWWfFoYceGkVFRRERkUqlon379jFr1qw17r766quxxx57ZJQbAAAAAAAAyB7FRAAAAAAAgDqguro6mjVrFosXL67VOY0aNYrRo0dHjx49spSs7lqxYkVsscUWMX78+LSzTZs2jQ8//DC6du2ah2T5s2jRovjkk08iImKbbbaJ4uLinN31j3/8I26++eZ48cUXo7q6utbn/fznP49BgwbFjjvuGOPGjYuKioo1zpeWlsa8efOiadOmtb4bAAAAAAAAqJ3SQgcAAAAAAAAgori4ODbffPP44IMPanXOZZddtk6UEiMiBg8enKiUGBFx4403rnWlxIiIJk2axHbbbZfTO8aNGxfnnntuvPrqq1k9d8yYMbHzzjvH+eefH+utt17a+e22204pEQAAAAAAAOoILyYCAAAAAADUEccdd1z8+c9/zni/d+/eMXLkyCgpKcliqrpp8eLF0bVr1/jXv/6VdrZXr17x9ttvR1FRUR6SrT0WLlwYF154YQwaNChWrlyZ07saNGgQy5cvX+PMhRdeGFdffXVOcwAAAAAAAADJeDERAAAAAACgjigvL894t6ysLB588MF1opQYEXHnnXcmKiVGRNx8881KiTU0atSoOOaYY2LixIl5uS9dKTEiorKyMg9JAAAAAAAAgCSKCx0AAAAAAACA/6ioqMh497LLLovNN988i2nqruXLl8ctt9ySaPbwww+PPn365DbQWub666+PnXbaKW+lxCRKSkpip512KnQMAAAAAAAA4H94MREAAAAAAKCOyPTFxF69esV5552X5TR112OPPRZTp05NO1dcXBxXXXVVHhKtHZYvXx4nn3xy/OlPfyp0lNVss8020bx580LHAAAAAAAAAP6HYiIAAAAAAEAdsdFGG0WzZs1iwYIFiXfKysriwQcfjJKSkhwmq1tuuummRHMDBgyILl265DjN2mHu3LkxYMCAqKqqqtFet27d4uCDD47evXvHlltuGW3bto0mTZrEvHnzYvLkyTFy5Mh4+OGH46OPPqpVvsrKylrtAwAAAAAAANlVlEqlUoUOAQAAAAAAwH/07t07Ro0alXj+qquuiosuuiiHieqWd999N3r16pVoduTIkdGnT58cJ6r/5syZE7vvvnuMHj060XxxcXEMGDAgfvvb30bv3r0T7bzwwgtxxhlnxJdffplRxhdeeCH222+/jHYBAAAAAACA7CsudAAAAAAAAAB+UFFRkXh2++23j/PPPz+HaeqeBx98MNFc7969lRITmD17dvTv3z9xKbFPnz7x/vvvx1NPPZW4lBgRsf/++8f777+f0X8mxcXFsfPOO9d4DwAAAAAAAMgdxUQAAAAAAIA6pLy8PNFcw4YN48EHH4ySkpIcJ6o7li5dGo8//nii2eOPPz63YdYC8+fPj/79+8eHH36YdrZhw4Zx8803x4gRI2KrrbbK6L42bdrEK6+8EltuuWWN9n7+859Hy5YtM7oTAAAAAAAAyA3FRAAAAAAAgDokaTHxD3/4Q+LZtcWwYcNi7ty5aedKSkri4IMPzkOi+mvFihVx6KGHxpgxY9LOdurUKd566604++yzo6ioqFb3NmvWLJ577rlo2rRp4p1+/frV6k4AAAAAAAAg+xQTAQAAAAAA6pCKioq0M9tuu22cf/75eUhTt7zwwguJ5iorK6N9+/Y5TlO/nXLKKfH3v/897dzWW28db7/9dmyzzTZZu3vjjTeOyy67LPF8ZWVl1u4GAAAAAAAAskMxEQAAAAAAoA7ZYIMNomXLlj/5/YYNG8af/vSnKC0tzV+oOuLFF19MNHfIIYfkOEn9dtNNN8XgwYPTzu2www5RVVUV66+/ftYznHHGGYnOLSoqir59+2b9fgAAAAAAAKB2FBMBAAAAAADqmPLy8p/83u9///tEryqubT799NP4+uuvE816Ye+nvffee3HhhRemnevdu3e88sor0bx585zkaNiwYZx88slp57bYYoto3bp1TjIAAAAAAAAAmVNMBAAAAAAAqGN+qpi47bbbxgUXXJDnNHXDyJEjE821atUqevbsmeM09dOCBQviqKOOiuXLl69xrmvXrvG3v/0tWrRokdM8SYqmSqYAAAAAAABQNykmAgAAAAAA1DE/9iJiw4YN48EHH4zS0tICJCq8ESNGJJrbcccdo6ioKMdp6qdzzz03Jk6cuMaZVq1axd/+9rdo06ZNzvMMHz487YxiIgAAAAAAANRNiokAAAAAAAB1zI+9mHjJJZfEFltsUYA0dcM777yTaK5Xr145TlI/jRo1Ku6///60c4MHD47u3bvnPM/06dPTliQjInbZZZecZwEAAAAAAABqbt38I3UBAAAAAADqsN122y1SqVShY9QZy5Yti0mTJiWa7dKlS47T1D+pVCrOOOOMtP+d+tWvfhUDBgzIS6YkryX27Nkz2rVrl4c0AAAAAAAAQE15MREAAAAAAIA6beLEibFixYpEs4qJq3v44Ydj1KhRa5xp165d3HzzzXlKlKyY2K9fv9wHAQAAAAAAADKimAgAAAAAAECdNn78+MSzm266aQ6T1D/V1dVx1VVXpZ27/PLLo0WLFnlI9B9JiomVlZV5SAIAAAAAAABkQjERAAAAAACAOu2rr75KNNegQYPo0KFDjtPUL88++2x89tlna5zp2rVrDBw4ME+JIubMmRMff/xx2rlddtklD2kAAAAAAACATCgmAgAAAAAAUKdNnz490VzTpk1znKT+ue6669LOnHXWWVFSUpKHNP/x5ptvRiqVWuPMZpttFh07dsxTIgAAAAAAAKCmFBMBAAAAAACo06ZNm5ZorlmzZjlOUr+MHTs2Ro0atcaZFi1axPHHH5+fQP9j+PDhaWcqKyvzkAQAAAAAAADIlGIiAAAAAAAAddrcuXMTzXkxcVV/+ctf0s4ccMABeS90KiYCAAAAAABA/aeYCAAAAAAAQJ22ePHiRHMNGzbMcZL6I5VKxeOPP5527tBDD81Dmh8sWLAgRo8enXZOMREAAAAAAADqNsVEAAAAAAAA6rQlS5ZkdW5dMGbMmJgyZcoaZ0pLS2OPPfbIT6D/MXLkyFi5cuUaZ7p27RobbLBBnhIBAAAAAAAAmVBMBAAAAAAAoE5btmxZorlFixblOEn9UVVVlXZmq622iiZNmuQhzQ+GDx+edsZriQAAAAAAAFD3KSYCAAAAAABQp5WVlSWamzlzZqRSqRynqR+SFBN32GGHPCRZlWIiAAAAAAAArB0UEwEAAAAAAKjTGjdunGhu2bJlMX369BynqR9GjBiRdmazzTbLQ5IfLFmyJN599920c4qJAAAAAAAAUPcpJgIAAAAAAFCnNW3aNPHshAkTcpikfpg9e3bMnDkz7dwmm2yShzQ/eOedd2Lp0qVrnNl4442jc+fOeUoEAAAAAAAAZEoxEQAAAAAAgDptvfXWSzyb5EW+td2kSZMSzW244YY5TrKqqqqqtDNeSwQAAAAAAID6QTERAAAAAACAOm3jjTdOPDty5MjcBaknJk6cmGiuJi9RZsPw4cPTzigmAgAAAAAAQP2gmAgAAAAAAECdVpNi4muvvRaLFy/OXZh64F//+leiuXwWE5cvXx5vv/122jnFRAAAAAAAAKgfFBMBAAAAAACo07baaqvEs4sWLYq//e1vuQuTJ1OmTImXXnopo90FCxYkmquurs7o/Ey8//77sXDhwjXOdOrUKTbddNM8JQIAAAAAAABqQzERAAAAAACAOq179+7RunXrxPN33HFHDtPk3vDhw2P77bePI488MiZNmlTj/aTFxHnz5tX47Ez95S9/STvjtUQAAAAAAACoPxQTAQAAAAAAqPN23HHHxLNVVVUxatSoHKbJnfvuuy923333mDVrVvz73/+OI444IpYuXVqjMxYtWpRoLl/FxDfffDPuvPPOtHOKiQAAAAAAAFB/KCYCAAAAAABQ5x1wwAE1mj/33HNzlCQ3lixZEqeddlqcfPLJsXz58u8//+CDD+K8886r0VlFRUWJ5j7//PManZuJhQsXxgknnBDV1dVpZxUTAQAAAAAAoP5QTAQAAAAAAKDOO+igg6KkpCTx/MiRI+Oee+7JYaLsGTt2bGy33XYxaNCgH/3+HXfcEc8++2zi8xo3bpxo7q233kp8ZiZSqVQcd9xxMXny5LSz6623XnTr1i2neQAAAAAAAIDsUUwEAAAAAACgzmvfvn3sscceNdo555xz4uOPP85RotpLpVJx2223xfbbbx/jxo1b4+yJJ54YX375ZaJz27Ztm2huxIgRieYydemll8YzzzyTaLZPnz45zQIAAAAAAABkl2IiAAAAAAAA9cJZZ51Vo/nFixfHPvvsE19//XWOEmVuzJgxsfPOO8dZZ50VS5cuTTs/d+7ceP311xOdveGGGyaaGzt2bLz33nuJZmvqnnvuiT/+8Y+J5xUTAQAAAAAAoH5RTAQAAAAAAKBe+K//+q/o2bNnjXa+/vrr2H333eOLL77IUaqa+e677+Lss8+ObbfdNv75z38m2ikpKYl77703fvWrXyWa79GjR+I8t9xyS+LZpO6555449dRTI5VKJd5RTAQAAAAAAID6pShVk58IAgAAAAAAQAG9+OKLsf/++9d4r3379vH000/HzjvvnINU6S1cuDAGDRoU119/fcyYMSPxXllZWTz22GMxYMCAxDuLFy+OFi1axIoVK9LOFhcXx6uvvhr9+/dPfP5PSaVScdlll8Xll19eo1Jiw4YN49///nc0bNiw1hkAAAAAAACA/PBiIgAAAAAAAPXGfvvtF3vttVeN92bMmBGVlZVxwQUXxOLFi3OQ7Md99913ce2118bGG28cv/3tb2tUSmzRokW88sorNSolRkQ0btw4dtxxx0Sz1dXVccwxx8TUqVNrdMf/NX/+/BgwYEBcdtllNSolRkRsueWWSokAAAAAAABQzygmAgAAAAAAUK/ceeed0aJFixrvVVdXx3XXXRddunSJQYMGxZIlS3KQ7j9GjBgRJ5xwQqy33npx4YUXxqxZs2q037Nnz3j77bejsrIyo/tr8qrk9OnTY8cdd4yPPvooo7v++te/Rs+ePeO5557LaH/bbbfNaA8AAAAAAAAonKJUTf/IUgAAAAAAACiwIUOGxBFHHFGrM1q1ahVHH310HHroobHTTjtFaWlpxmctXrw4hg8fHq+88kq8+OKLMXHixIzPOuqoo+Lee++Npk2bZnzGtGnTolOnTrFy5crEO82aNYsLLrggzj777GjWrFna+TfffDOuuuqqGDp0aMY5IyLuvffeGDhwYK3OAAAAAAAAAPJLMREAAAAAAIB66bzzzosbb7wxK2e1aNEi+vTpE1tvvXVsscUW0alTp9hwww2jZcuW0ahRo2jYsGEsXLgwvvvuu/juu+9i+vTp8cknn8S4ceNi3LhxMWrUqFq/wNiwYcO4+eab47TTTsvK7+nYY4+NRx55pMZ7bdu2jQMPPDD22muvqKioiPbt20ezZs1i5syZMWXKlPj73/8ezz//fHzwwQdZyTlq1KjYfvvts3IWAAAAAAAAkB+KiQAAAAAAANRLqVQqTjjhhHjooYcKHaXWttlmm7j//vtj6623ztqZkydPjvLy8li6dGnWzsy2oqKiWLBgQTRp0qTQUQAAAAAAAIAaKC50AAAAAAAAAMhEUVFRDB48OI499thCR8lY06ZN48Ybb4xRo0ZltZQYEdGlS5f4wx/+kNUzs22TTTZRSgQAAAAAAIB6SDERAAAAAACAequkpCQefvjh+P3vf1/oKDW23377xSeffBLnnntulJSU5OSOCy64IPbdd9+cnL0mp5xySuy9995p53r27JmHNAAAAAAAAEC2KSYCAAAAAABQ71122WXx3HPPRYcOHQodJa1dd901qqqq4oUXXojOnTvn9K7i4uJ4/PHHY+edd87pPf9Ply5d4uWXX45BgwbFJ598kna+a9eueUgFAAAAAAAAZJtiIgAAAAAAAGuFAw44IMaNGxdHH310FBUVFTrOav5fIXHYsGGxyy675O3eZs2axdChQ+Pggw/O2R0tW7aMK664IsaNGxd77bVXzJgxI7788su0e126dMlZJgAAAAAAACB3FBMBAAAAAABYa7Rp0yYeeeSReP/992PvvfcudJxo1apVnHbaafHee+/lvZD4vzVt2jSefvrpGDRoULRs2TJr566//vpx+eWXx5QpU+J3v/tdlJWVRUTEu+++u8a9Ll26xLnnnhsHHnhg1rIAAAAAAAAA+VOUSqVShQ4BAAAAAAAAufDxxx/HfffdF4888kjMmTMnL3eWlZVFv3794vjjj4+DDjooGjVqlJd7k5o1a1bcdtttce+998a3335b4/1WrVrFXnvtFUceeWTsu+++UVJSstrMpZdeGpdddtkqn2299dZx0EEHxUEHHRRbbrllxvkBAAAAAACAwlNMBAAAAAAAYK23dOnSqKqqipdffjmGDh0a48ePz9rZxcXFsdVWW8Xuu+8e/fv3j759+0bjxo2zdn6urFy5MoYPHx7Dhg2L9957Lz7//POYPn16LFq0KCIimjRpEq1atYrOnTvHpptuGttss0306tUrtttuuygtLV3j2RdffHFcf/310bdv3+/LiJ07d87HbwsAAAAAAADIA8VEAAAAAAAA1jnz5s2LDz/8MMaMGRMTJ06MqVOnxjfffBPffvttLFq0KJYsWRJLliyJ4uLiaN68eTRv3jyaNWsWzZs3j06dOkWPHj1is802+/7/NmvWrNC/pTpnwYIF/roAAAAAAADAWkoxEQAAAAAAAAAAAAAAAABIrLjQAQAAAAAAAAAAAAAAAACA+kMxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASEwxEQAAAAAAAAAAAAAAAABITDERAAAAAAAAAAAAAAAAAEhMMREAAAAAAAAAAAAAAAAASKy00AEAAAAAAAAAAAAAAAAAqF+WL18ew4YNi+eeey7eeeedmDZtWsyePTtatWoVHTt2jK222ir222+/2GuvvaJZs2aFjkuWFaVSqVShQwAAAAAAAAAAAAAAAABQPwwZMiQuuuii+Pzzz9POtm7dOi6++OI4/fTTo6ysLA/pyAfFRAAAAAAAAAAAAAAAAADS+ve//x1HHXVUvPjiizXe7dGjRzz//PPRrVu3HCQj3xQTAQAAAAAAAAAAAAAAAFijqVOnxt577x1jx47N+IzWrVvHs88+G7vssksWk1EIxYUOAAAAAAAAAAAAAAAAAEDdtXDhwthvv/1WKyUWFxfHUUcdFS+88EJ88803sXTp0pg2bVoMGzYszjnnnGjevPkq83PmzIkDDjggxo8fn8/45IAXEwEAAAAAAAAAAAAAAAD4SYcffng8+eSTq3zWtWvXGDJkSGy99dY/uTdjxow45ZRT4tlnn11t94MPPlituEj94cVEAAAAAAAAAAAAAAAAAH7Uq6++ulopceutt4633nprjaXEiIj27dvH008/HWecccYqn0+aNCmuv/76rGclf7yYCAAAAAAAAAAAAAAAAMCP2mqrrWLMmDHff92uXbt4//33o1OnTonPqK6ujn333TeGDh36/WdNmzaNyZMnR4cOHbKal/zwYiIAAAAAAAAAAAAAAAAAq/nwww9XKSVGRFx55ZU1KiVGRBQXF8edd94ZDRo0+P6zhQsXxlNPPZWVnORfaaEDAACZW7FiRUycOHGVz1q3bh3Fxf7sAQAAAAAAAAAAgLVddXV1zJkzZ5XPunXrFqWl/jVxACA7nn/++VW+7tChQ5xwwgkZnbXpppvGgAEDYsiQId9/9sILL8RvfvObWmWkMPwTJwDUYxMnToyePXsWOgYAAAAAAAAAAAB1xCeffBKbb755oWMAAGuJ999/f5Wv995771r9IQj77LPPKsXEUaNGZXwWheU5JQAAAAAAAAAAAAAAAABWM23atFW+ru0fgLDZZput8vXcuXNj2bJltTqTwlBMBAAAAAAAAAAAAAAAAGA18+bNW+XrVq1a1eq8Nm3arPbZ7Nmza3UmhaGYCAAAAAAAAAAAAAAAAMBqWrduvcrXc+fOrdV5/7foGBHRsmXLWp1JYZQWOgAAkLn/+w95ERGffPJJtG3btgBpAAAAAAAAAAAAyKdZs2ZFz549V/nsx/69MgCATHXo0GGVrydOnFir87744otVvm7RokU0bty4VmdSGIqJAFCPFRev/vhx27Zto127dgVIAwAAAAAAAAAAQKH92L9XBgCQqa222iqef/75779+7bXXanXeq6++utr51E/+qRMAAAAAAAAAAAAAAACA1eyzzz6rfP3ll1+uUlSsiZkzZ8YTTzyxymf7779/xtkoLMVEAAAAAAAAAAAAAAAAAFaz/fbbx6abbrrKZxdeeGEsXLiwxmddeOGFsWDBgu+/btCgQRx22GG1zkhhKCYCAAAAAAAAAAAAAAAAsJri4uK49NJLV/ns008/jeOPPz5WrFiR+Jybb745HnjggVU+O/XUU2OjjTbKRkwKQDERAAAAAAAAAAAAAAAAgB919NFHR+/evVf57Kmnnop99903pk2btsbdhQsXxplnnhnnnnvuKp+vv/768f/9f/9f1rOSP6WFDgAAAAAAAAAAAAAAAABA3VRcXBxPP/10bLfddjF9+vTvP3/11VejW7duMXDgwDjwwAOjZ8+e0apVq5g3b15MnDgxhg4dGvfcc0/MmDFjlfOaNGkSzz//fLRt2zbfvxWyqCiVSqUKHQIAyMzMmTOjffv2q3w2Y8aMaNeuXYESAQAAAAAAAAAAkC/+HTIAIJ/ee++92GeffWLmzJkZn9GsWbN44oknYp999sliMgqhuNABAAAAAAAAAAAAAAAAAKjbtttuu3jnnXeivLw8o/2NN944Ro4cqZS4llBMBAAAAAAAAAAAAAAAACCtTTbZJN5///248cYbo02bNol2mjdvHpdddlmMHTs2ttxyyxwnJF+KUqlUqtAhAIDMzJw5M9q3b7/KZzNmzIh27doVKBEAAAAAAAAAAAD54t8hg3XHP/7xj9h1110Tz6uKAPmwYMGCeOWVV+Kll16K999/P7799tuYPXt2tGjRIjp27BhbbLFF7LfffrHvvvtGy5YtCx2XLCstdAAAAAAAAAAAAAAAAAAA6pdmzZrFIYccEoccckiho1AAxYUOAAAAAAAAAAAAAAAAAADUH4qJAAAAAAAAAAAAAAAAAEBipYUOAAAAAAAAAAAAAAAA1H39+vWLqqqqnN/TsGHDKCsrW+1XixYton379qv92njjjaNHjx7RunXrnGcDAP5DMREAAAAAAAAAAAAAAKgzli1bFsuWLYt///vfNdpr165d9OjRI3r06BE9e/aMnXbaKbbeeusoLVWdAIBs83dXAAAAAAAAAAAAAACg3ps5c2bMnDkz3nzzze8/a9q0aeywww6x8847R2VlZfTt21dREQCywN9NAQAAAAAAAAAAAACAtdLChQvj9ddfj9dffz0iItq2bRsDBgyIww47LHbddVclRQDIUHGhAwAAAAAAAAAAAAAAAOTDrFmz4r777os999wz1ltvvTjrrLPiiy++KHQsAKh3FBMBAAAAAAAAAAAAAIB1zqxZs+K2226Lbt26xWGHHRbvvPNOoSMB64Dvvvuu0BHWWvPnzy90hHWKYiIAAAAAAAAAAAAAALDOWrlyZTz11FOxww47xG677RZjx44tdCRgLfXoo49Gly5dYujQoYWOsta54447onv37vHEE08UOso6QzERAAAAAAAAAAAAAAAgIt54443YZptt4uyzz/byFpA1U6ZMib322iuOOeaYmDVrVvzud78rdKS1ysSJE+O8886LGTNmxJFHHhkHHHBATJ06tdCx1nqKiQAAAAAAAAAAAAAA1Ei/fv2iqKhonf71pz/9qdD/MZAjK1asiFtvvTW6d+8ezz77bKHjAPXcfffdFxUVFfHKK69ERMTPfvazuOGGGwqcKjteeumlVf7e+OSTTxYkR9euXeO///u/v//6hRdeiIqKCv8bnmOlhQ4AAAAAAAAAAAAAAACsfbbccsvYf//9M95fsmRJLFmyJJYuXRpLliyJ7777LqZNmxbTpk2Lb7/9NpYvX57FtKubMWNGHHzwwXH++efHVVddFSUlJTm9D1i7zJkzJwYOHBjPPPPM95+tt956MXTo0Nhyyy0LmCw7li9fHueee+4qn33yyScFyVJUVBRXXnlllJeXx4knnhhLliyJefPmxcEHHxynn3563HDDDVFWVlaQbGszxUQAAAAAAAAAAAAAAGqkUaNGhY5APbD11lvHFVdckZOzU6lUfPvtt/Hxxx9//+v999+PMWPGRCqVyupd1113XYwaNSoef/zx6NChQ1bPTqpfv35Z/30BuTN8+PA4+uij45tvvvn+s27dusVrr70WG220UQGTZc/tt98eEyZMWOWzcePGFSjNfxx11FGx6aabxr777htz5syJiIg77rgjRo4cGX/961+jc+fOBc23tikudAAAAAAAAAAAAAAAAOqX2267Ldq1a1foGKzDioqKomPHjrH77rvH2WefHffff3+MHj06Zs6cGUOGDIlf//rXWS0R/uMf/4g+ffqsUjIC+DF33HFH9O/ff5X/vejRo0dUVVWtNaXEmTNnxuWXX77a54UuJkZE7LDDDjF8+PBYf/31v/9s9OjR0atXrxg1alQBk619FBMBAAAAAAAAAAAAAKiR7t27x9ChQ6N58+aFjgKraNOmTRx22GFx9913xzfffBMvvPBCHHroodGwYcNan/3555/HrrvuGv/617+ykBRY2yxbtixOOumkOOOMM2LFihXff15eXh7/+Mc/Yr311itguuy65JJLYv78+at9PnHixFi+fHkBEq2qvLw8RowYEV26dPn+s2+//Tb69esXTz75ZAGTrV0UEwEAAAAAAAAAAAAAqLFtttkmnn/++SgrKyt0FPhRpaWlsd9++8WTTz4ZkydPjlNPPbXWBcVJkybFrrvuGtOmTctSSmBtMHfu3Nhtt91i8ODBq3y++eabxxtvvJHVF1wLbcyYMXH//ff/6PeWL18eEydOzHOiH7fJJpvEP/7xj9hkk02+/2zx4sVxxBFHxF133VXAZGsPxUQAAAAAAAAAAAAAADLSr1+/eOyxx6KkpKTQUWCNNtxww7jrrrti8uTJceSRR9bqrM8++ywGDBhQJ14FAwrvX//6V/Tt2zdGjhy5yuedO3eOV199Ndq1a1egZLlx1llnRXV19U9+f9y4cXlMs2YbbrhhvP7667HBBht8/1kqlYrf/OY3cfPNNxcw2dpBMREAAAAAAAAAAAAAgIwNGDAg7rnnnkLHgEQ23HDDeOyxx+LZZ5+Njh07ZnzOO++8E+eff34WkwH10cSJE6NPnz6rlfHatWsXr732Wmy44YYFSpYbTz31VFRVVa1xpi4VEyP+83Li3//+92jbtu0qn5977rlx9dVXFyjV2kExEQAAAAAAAAAAAACAWjnxxBPj2muvLXQMSOyggw6Kjz/+OHbZZZeMz7jlllvir3/9a/ZCAfXKZ599Fn379o0vv/xylc8bNWoUL7zwQnTv3r1AyXJjyZIl8dvf/jbtXF0rJkZE9OjRI5555plo2LDhKp9ffPHFcccddxQoVf1XWugAAAAAAAAAAAAAAADUf+eff37MnDkzbrjhhhrt9erVq16WGnv06FHoCNRSmzZt4tVXX40TTzwxHn300YzOOOGEE2KnnXaKdu3aZTkdUJdNmTIl+vfvH99+++1q3xs8eHD07t27AKly64YbbogpU6aknfvkk09yHyYDffv2jXvvvTeOP/74VT4/66yzomPHjnHooYcWJlg9ppgIAAAAAAAAAAAAAEBWXH/99TF79ux48MEHE++MGjUqXnvttbjyyitzmAx+XFlZWTzyyCPRpEmTuO+++2q8P2/evLjkkkvinnvuyUE6oC6aOnVq9O/fP7755pvVvnfxxRfHUUcdVYBUuTV16tS45pprEs1OnDgxli9fHg0aNMhxqpr75S9/GR999FHcdNNN339WXV0dxxxzTLRr1y4qKysLmK7+KS50AAAAAAAAAAAAAAAA1h733XdfHHjggTXaueqqq+KWW27JTSBIYNCgQbHvvvtmtHv//ffHmDFjspwIqIsWLFgQe++9d3z++eerfa+ysjIuv/zyAqTKvQsvvDAWLlyYaHb58uXx2Wef5ThR5q655prYdtttV/ls6dKlccghhyR6EZIfKCYCAAAAAAAAAAAAAJA1JSUl8fjjj9f41aFzzz03HnnkkRylgjUrKSmJJ554Irbccssa71ZXV8c555yTg1RAXVJdXR1HHXVUjB07drXvtW3bNh599NEoKSkpQLLcevvtt+PRRx+t0c64ceNylKb2GjRoEI899lg0a9Zslc9nz54dBx98cCxZsqRAyeqf0kIHAAAAAAAAAAAAAABg7dKoUaN4/vnno7KyMj788MNEO6lUKk444YRo1apVxi/XQW00bdo0/vznP8f2228fy5Ytq9HuG2+8EcOHD49ddtklR+nqr+rq6hg3blx89NFHMWHChJg4cWJMmzYtZsyYEbNnz44lS5bE0qVLY/ny5VH2/7N33/FR1Pkfx9+bnkAChBB670URLMAJIlY4xXZ2PfUsZzu7p4fned7Ps50Ne7nzBLuoBwoqWJAqvdcUSCMhpJG+KVt+fyBIBLK7YWdmy+v5OA6Z/Xzn+95h2Gw285lvbKwSEhKa/EpMTFS3bt3Uq1cv9ezZU7169TrwKyYmxuqnZxiHw6Hly5drw4YN2rJli7Zu3arCwkJVVVWpqqpKtbW1B45Pu3bt1L9/fw0ePFjHHnuszjjjDKWkpFj9FELOgw8+qNmzZx/2sbfffltdu3Y1OZHx3G637rrrLrndbp/Gbd261aBE/tG/f3/961//0m233dZk+7p163TLLbdo2rRp1gQLMjQmAgAAAAAAAAAAAAAAAAAAAAD8LikpSfPmzdPJJ5+szMxMr8Y4HA5dcskl+vbbbzV27FiDEwKHOvbYY/XII4/o4Ycf9nnsyy+/TGPiz/Lz8/XFF19ozpw5+umnn1RRUeHVOLvdLrvdrtLSUo+1MTExGjFihEaPHn3gV69evY4yubUaGxs1c+ZMzZo1S998843Ky8ubrd/fpFhQUKAtW7Zo1qxZkqSIiAidcMIJuvjii3X99derffv2xocPcZ999pmeffbZwz522WWX6bzzzjM5kTnee+89rVy50udxgbxi4n4333yz3n33XS1fvrzJ9unTp2vChAm69tprLUoWPGxuX1tWAQBAwCguLlZqamqTbUVFRerQoYNFiQAAAAAAAAAAAAAAAAAAZgmWa8iys7N18sknq6CgwOsxbdu21aJFi3TMMccYmAy+OvXUU7Vw4UKv66+99tqgXHXK6XRqyJAhSk9P92lcVFSUsrKy1K1bN79nWrBggSZMmOB1vRWtIk6nU7Nnz9arr76qH374wZIMXbt21YUXXqhLLrlEY8eOVUREhCHzXHfddZo+fbpXtd78O6iurtZbb72lqVOnKi8vzw8JfxEXF6fLLrtMf//739W7d2+/7jtc5Obmavjw4YdtFE1OTta2bdsO+XocCqqrqzVw4ECfvn7vN3jw4IBfNVGSNm7cqOOPP14Oh6PJ9jZt2mjTpk3q3r27RcmCgzGvsAAAAAAAAAAAAAAAAAAAAAAASOrVq5fmzZundu3aeT2mvLxcZ599trKysgxMBhxeZGSk/v73v/s8zuFw6PXXXzcgUeCbOXOmhg0bpgsvvFDff/+9JU2J0r6VGl955RWNHz9e3bp10x133KGcnBxLsnjrf//7n/r376/77rvP702JklRXV6fp06dr8ODB+stf/qKqqiq/zxHKnE6nrrzyyiOuXvnYY4+FZFOiJD3xxBMtakqUpIyMDDU2Nvo5kf8de+yxuuaaaw7ZXlFRoeuuu86y17JgQWMiAAAAAAAAAAAAAAAAAAAAAMBQw4YN05w5c5SQkOD1mN27d+uss87Snj17DEwGHN7ll1+uIUOG+DzO21X0QkV+fr4mTpyoiy66SNu3b7c6ThO7d+/WK6+8omXLllkd5bDKy8t16aWX6ne/+50KCwsNn6++vl5PP/20RowYoTVr1hg+X6h45plntHTp0sM+NmDAAP3xj380OZE5srKy9Pzzz7d4vMPh8HnVWav87W9/U0xMzCHb58+fH7bN5t6iMREAAAAAAAAAAAAAAAAAAAAAYLjf/OY3+uyzzxQdHe31mMzMTE2cOFEVFRUGJgMOFRERofvuu8/ncfn5+Vq7dq0BiQLP999/r2OOOUbz5s2zOkrQycvL09ixY/Xpp5+aPveOHTv0m9/8Rq+++qrpcwebnTt36v/+7/+O+PgTTzyhqKgoExOZ5/7771d9ff2BP9tsNv3hD3/waR9btmzxdyxD9OrVS9dff/1hH/vrX/+q4uJikxMFDxoTAQAAAAAAAAAAAAAAAAAAAACmmDRpkqZNmyabzeb1mPXr1+u8885TXV2dgcmAQ1166aVq1aqVz+Nmz55tQJrAMn36dE2aNEl79+61OkrQ2bJli8aMGWNp01ZDQ4P+9Kc/6eGHH7YsQzC47bbbZLfbD/vYwIEDddFFF5mcyBw//vij/ve//zXZdvXVV+u6667zaT/B0pgoSXfddddht5eXl+vBBx80OU3woDERAAAAAAAAAAAAAAAAAAAAAGCaK6+8Ui+++KJPYxYtWqTLLrtMTqfToFTAoVq3bq2LL77Y53Gh3pj4+eef6/rrr5fD4bA6StApKCjQ2Wefrfz8fKujSJIef/xx3XHHHVbHCEifffZZs6uB3nPPPT412QcLp9Opu+++u8m2hIQEPfHEExo2bJhP+wqmxsRBgwZpwoQJh31s2rRpWrZsmcmJggONiQAAAAAAAAAAAAAAAAAAAAAAU91xxx3629/+5tOYL7/8UjfeeKNBiYDDu/rqq30es3btWhUWFhqQxnobNmzQVVddJZfLZXWUoFNTU6PJkycHTFPifq+88ooef/xxq2MEFIfDoYceeuiIj7dt21bXXHONiYnM89Zbb2njxo1Ntt13333q1q2bkpOT1blzZ6/3FUyNiZJ0yy23HHa72+3W/fffb3Ka4BBldQAAAAAAAAAAAAAAAAAAAAAAQPj5v//7P5WUlOj111/3esy0adOUkpKiZ555xsBkwC/Gjh2ruLg41dXVeT3G7XZr5cqVOu+88wxMZr76+npdddVVqq+vP+p9xcTEqHfv3urRo4c6dOigdu3aKS4uTjExMXI6naqvr5fdbldpaamKioq0e/duZWdnB/UqjTfffLPWrl3r05iEhAQNGjRIAwcOVLt27ZSYmKiGhgZVVVUpNzdX27ZtU15e3lFn+9vf/qbevXvryiuvPOp9hYK3335bGRkZR3z84osvVnx8vImJzFFeXq5HHnmkybbOnTvrwQcfPPDnoUOHavfu3V7tLzMzUw0NDYqJifFrTqOce+65SkhIUG1t7SGP/fTTT/r666/129/+1oJkgYvGRAAAAAAAAAAAAAAAAAAAAACAJV555RWVlZXpk08+8XrMs88+q5SUlCaNEoBR4uLiNG7cOH333Xc+jVuzZk3INSa+/PLLLV4BLS4uTmeeeaYmTZqkcePGadCgQYqK8q2lpbGxUVlZWdqwYYNWr16tFStWaNmyZWpoaGhRJjPNnj1bH3zwgVe1bdu21bXXXqvzzz9fY8eOVXR0dLP1u3bt0jfffKPp06dr6dKlLcrndrt14403asSIERo8eHCL9hEq7Ha7/u///q/ZmquuusqkNOZ69NFHVVJS0mTb448/rlatWh3487Bhw/T99997tT+Hw6H09HQNGzbMrzmNkpCQoEmTJunzzz8/7ON/+9vfaEz8lQirAwAAAAAAAAAAAAAAAAAAAAAAwlNERITeffddnXXWWT6N+8tf/qK3337boFRAU2eeeabPY9asWWNAEutUV1frySef9Hlc+/bt9fTTT6ugoEBffvmlbr31Vg0bNsznpkRJio6O1oABA3TJJZfo6aef1oIFC7R37159/fXXuvXWW5WamurzPs1QUVGhW265xWNdmzZt9Nxzzyk/P19Tp07VhAkTPDYlSlK3bt100003acmSJVq7dq1OO+20FuW02+266qqrgqLR00jvvvuuCgoKjvh4amqqTjnlFBMTmWP79u169dVXm2wbMWKErr322ibbhg4d6tN+W9rMbJXf/e53R3xs7dq1mjlzpolpAh+NiQAAAAAAAAAAAAAAAAAAAAAAy8TExOh///ufRo0a5dO4m2++WbNmzTImFHCQk046yecxa9euNSCJdT7++GOVlZX5NOayyy5TRkaGHnjgAbVr186QXPtXOHvttddUUFCg7777TpdccolXDX1m+eKLL5ptdJOkSZMmKT09Xffee68SEhJaPNeIESP0ww8/6L333lPr1q19Hr9u3To9+uijLZ4/2Lndbk2dOrXZmrPPPlsREaHXjnXPPffI4XA02fb8888f8lx9Xf0w2BoTzzjjDNlstiM+/swzz5iYJvCF3r8EAAAAAAAAAAAAAAAAAAAAAEBQadWqlb7++msNGTLE6zFOp1OXX365FixYYFwwQNIxxxzj85jdu3erqKjIgDTWmD59uk/1Dz74oD7++GPDGhIPJzIyUmeccYZmzJihvLw8/fWvf1Xbtm1Nm/9I3G53s4//9a9/1VdffeXXFR+vvvpqrVy5Uj179vR57HPPPaedO3f6LUsw+eabb7R9+/ZmayZNmmRSGvN89dVXmjt3bpNt559/vk499dRDan1dMXHr1q1HE810HTp0aPY1f9myZVqxYoWJiQIbjYkAAAAAAAAAAAAAAAAAAAAAAMslJydr3rx56tGjh9dj6uvrdf7552vdunUGJkO4S05OVpcuXXwel5OTY0Aa81VWVmrZsmVe119wwQV66qmnDEzkWceOHfXPf/5TOTk5GjdunKVZmvPEE0/on//8Z7MrtLXU4MGDtXDhQvXu3duncQ0NDbr//vv9nicYvPzyyx5rTj/9dBOSmKexsVH33ntvk23R0dFHXBkwMTHRp6/TwbZiouT57/j55583KUngozERAAAAAAAAAAAAAAAAAAAAABAQunXrpm+//VYdOnTwekxlZaUmTpyozMxMA5Mh3LVk1cRdu3YZkMR8S5culdPp9Ko2JiZGr7zyisGJvJeUlKSuXbtaHeOwbr/9dk2ZMsXQOXr27Kmvv/5aSUlJPo2bOXOmli9fblCqwFRYWKjvvvuu2Zq+ffv6dWXLQPDSSy8pPT29ybbbb79d/fv3P+KYYcOGeb3/zMxMNTQ0tDifFcaMGdPs459//rkKCgpMShPYaEwEAAAAAAAAAAAAAAAAAAAAAASMgQMH6ptvvlFiYqLXY4qKinTmmWfSKADD+LJC2H55eXkGJDGfLyueXXTRRQHbCBhITj75ZE2dOtWUuQYNGqT333/f53FHWjEvVH344YceG3A9NawFm+LiYj322GNNtiUnJ+uRRx5pdtzQoUO9nsPhcCgtLa1F+axy4oknNvu40+ls0b+pUERjIgAAAAAAAAAAAAAAAAAAAAAgoBx//PGaNWuWYmNjvR6TnZ2ts88+W3v37jUwGcJV586dfR4TKism+rIa6cSJEw1MEhri4+P1zjvvKCoqyrQ5J0+erGuuucanMbNmzdKOHTsMShR43nvvPY81o0aNMiGJef7617+qoqKiyba///3vateuXbPjfFkxUZK2bt3qczYr9erVSykpKc3WvPvuuyalCWw0JgIAAAAAAAAAAAAAAAAAAAAAAs5pp52mDz/8UJGRkV6P2bx5s84991zV1tYamAzhKJwbE4uLi72u9WUltXD10EMPqX///qbP+8ILL3hsODuYy+XS66+/bmCiwJGVlaX169d7rDvmmGOMD2OS9evX6+23326ybcCAAbr11ls9jvW1MdGXVVcDxciRI5t9fMuWLVqzZo1JaQIXjYkAAAAAAAAAAAAAAAAAAAAAgIB00UUX6Y033vBpzE8//aSLL75YjY2NBqVCOOrSpYvPYyorKw1IYr7q6mqva9u2bWtckBDQoUMH3XPPPZbMnZycrPvvv9+nMZ988oncbrdBiQLH119/7VVdKDXe3nXXXXK5XE22PfPMM4qOjvY4dvDgwYqI8L4lLRgbEwcNGuSx5uOPPzYhSWCjMREAAAAAAAAAAAAAAAAAAAAAELBuvPFGPfnkkz6N+eabb/SHP/whLBpqYI6kpCSfx9jtdgOSmM/hcHhdW1VVZWCS4HffffepVatWls1/1113+bRq4q5du7R48WIDEwWGb775xmNNamqqUlJSTEhjvE8//VSLFi1qsu20007Teeed59X4+Ph49enTx+v5grExcfDgwR5rZs+ebUKSwEZjIgAAAAAAAAAAAAAAAAAAAAAgoP3lL3/Rvffe69OYDz74QHfffbcxgRB24uLifB5TV1dnQBLzxcfHe12bm5trYJLgFhMToxtuuMHSDK1atdLvf/97n8Z8+umnBqUJDPX19frxxx891g0YMMCENMarq6vTn//85ybbIiIi9Pzzz/u0H19Wj9yxY4caGhp82r/VvGlMTEtLU2ZmpglpAheNiQAAAAAAAAAAAAAAAAAAAACAgPfss8/q2muv9WnMSy+9pMcee8ygRAgnLWlMDJUVE9u3b+917VdffWVgkuB24YUXBsSKezfddJNP9fPnzzcoSWBYs2aNamtrPdb16tXL+DAmeOaZZ5STk9Nk23XXXafhw4f7tJ9hw4Z5XetwOJSWlubT/q3m7YqQ4b5qIo2JAAAAAAAAAAAAAAAAAAAAAICAZ7PZ9J///EeTJ0/2adwjjzyiN954w6BUCBfh3JjYo0cPr2s//fRTFRUVGZgmeF100UVWR5C0r6HMl9X/tm7dGtJ/pytWrPCqrmfPngYnMV5+fr6efvrpJttat26tf/7znz7vy5fGREnasmWLz3NYqUuXLoqMjPRY98MPP5iQJnDRmAgAAAAAAAAAAAAAAAAAAAAACApRUVGaMWOGTjnlFJ/G3X777fr0008NSoVwEBMT4/OYhoYGA5KYb+jQoV7XlpeX67bbbpPb7TYwUfCJjo7WxIkTrY5xwPnnn+9T/YIFC4wJEgCWL1/uVV0oNCY++OCDqqmpOWRb586dfd6XL68LUvA1JkZGRqpLly4e65YtWxbWr3c0JgIAAAAAAAAAAAAAAAAAAAAAgkZcXJy+/PJLHXfccV6Pcblcuvrqq/X9998bFwwhrb6+3ucxLVllMRCNHj3ap/rPP/9cf/jDH+R0Og1KFHxOPPFEJSUlWR3jgNNOO82n+rVr1xqUxHorV670qq4lzXuBZPny5frwww+bbOvevbvuu+++Fu1v4MCBioqK8ro+2BoTJe9Wiy0rK9P27dtNSBOYaEwEAAAAAAAAAAAAAAAAAAAAAASVNm3aaO7cuerbt6/XYxoaGnThhRd63YQCHKyurs7nMaHSmNirVy8NGTLEpzHTp0/XmDFjvF6NLtSNGTPG6ghNjBo1Sjabzev6zZs3G5jGOjU1NcrJyfGqtkOHDganMY7b7dadd955yMp+Tz75pOLj41u0z5iYGPXv39/r+q1bt7ZoHit16tTJq7qffvrJ4CSBi8ZEAAAAAAAAAAAAAAAAAAAAAEDQ6dChgwYPHuzTGIfDIYfDYVAihLKWNCa2tOEnEF1xxRU+j1m1apXGjBmjM844Q1988YUaGxsNSBYcTjzxRKsjNNGuXTufmsqCcbU7b2RkZBzSrHckwdyY+O6772rVqlVNtp100km68sorj2q/w4YN87o2MzOzRSvPWiklJcWruvXr1xsbJIDRmAgAAAAAAAAAAAAAAAAAAAAACDr33Xef5syZ43W9zWbTtGnT9Jvf/MbAVAhVLWmoCaXGxD/+8Y+KjY1t0dgffvhBF1xwgbp06aKbb75Zc+fObVGjZzAbNGiQ1REO4UumnJyckPw7S09P97o2WBsTq6urNWXKlEO2P//88z6tmnk4vjQmOp1OpaWlHdV8ZvO2MTEYV4P0FxoTAQAAAAAAAAAAAAAAAAAAAABB5bXXXtPUqVN9GvPPf/5Tl112mTGBEPLKysp8HhNKjYmpqam6++67j2ofJSUleuuttzRp0iS1b99ekyZN0rPPPqtVq1aF9EqmNpvNp9UJzTJgwACva91utwoLCw1MY42MjAyv6iIjI5WYmGhwGmM8/vjj2r17d5Ntl1xyiU4++eSj3vfQoUN9qg+2lTe9bUzctm2bwUkCV5TVAQAAAAAAAAAAAAAAAAAAAAAA8NbXX3+tO++806cx119/vR566CGDEiEc/Lqxxxtt27b1fxALPfzww/rss8+0Y8eOo95XbW2t5s6dq7lz50qSEhISdNJJJ+k3v/mNxowZo9GjR3vdFBToOnTooISEBKtjHKJ3794+1e/evVu9evUyJoxF8vPzvapr1aqVwUmMsXPnTr3wwgtNtsXGxurpp5/2y/59WTFRCr6VBdu1a+dV3e7du1VeXh5yr/neoDERAAAAAAAAAAAAAAAAAAAAABAUNmzYoMsuu0xOp9PrMaeffrreeOMNA1MhHLSkMbFbt24GJLFO69at9cknn+iUU05RbW2tX/ddW1urBQsWaMGCBQe2DRw4UGPHjtW4ceN0+umnB+3xTE1NtTrCYXXo0MGn+pb8Gwh0RUVFXtW1bt3a4CTGuP/++1VfX99k25133ulzU+qR9OvXT7GxsYfMcSTBtmKiLw2pubm5YdmYGGF1AAAAAAAAAAAAAAAAAAAAAAAAPCkoKNC5556r6upqr8cMHjxYn332maKjow1MhnDQkqas7t27G5DEWscff7w+++wzxcbGGj5XWlqa3n77bV133XXq3r27hg0bpvvvv1/Lly+X2+02fH5/CdTGRF9z7d2716Ak1tmzZ49XdcG4YuL8+fM1c+bMJts6dOigv/71r36bIzIyUoMGDfK6PtgaE31pSC0sLDQwSeCiMREAAAAAAAAAAAAAAAAAAAAAENBqamp07rnnateuXV6PSU1N1ddffx2WKxjB/7Kzs30eE6wr/HkyadIkfffdd2rfvr2p827ZskXPPfecxowZo549e2rKlCnKzMw0NUNLJCYmWh3hsJKSknyqr6urMyiJdYqLi72qS0hIMDiJfzmdTt19992HbP/HP/6hNm3a+HWuYcOGeV27Y8cOr1dXDAS+NKTSmAgAAAAAAAAAAAAAAAAAAAAAQIBxOp26/PLLtW7dOq/HxMfH68svv1SvXr2MC4awsmnTJp/HhGpjoiSNGzdOGzZs0Omnn27J/Hl5eXrqqac0YMAAnX322frxxx8tyeENM1aXbAlfc4ViY2JlZaVXdVFRUQYn8a8333zzkNesIUOG6I9//KPf5xo6dKjXtU6nU2lpaX7PYBQaEz2jMREAAAAAAAAAAAAAAAAAAAAAELDuuecezZkzx+t6m82md999V6NGjTIwFcLJnj17vF5Z7WCh3hjbtWtXff/99/rwww/Vo0cPSzK43W59++23Ou200zR+/HitWrXKkhzNCZXGRLvdblAS63i7el8wNSbu3btXjzzyyCHbn3vuOUVGRvp9Pl9WTJT2rXwaLHz5e/e2yTXU0JgIAAAAAAAAAAAAAAAAAAAAAAhIL774ol5++WWfxjz11FO6+OKLDUqEcNSS1RJ79eqldu3aGZAm8FxxxRXKyMjQW2+9pUGDBlmWY9GiRRo1apRuu+021dTUWJbj19xut9URDsvXXDabzaAk1gnFxsRHH31UpaWlTbadffbZmjhxoiHz+bJiohS6jYmhuKKoN2hMBAAAAAAAAAAAAAAAAAAAAAAEnNmzZ+vee+/1acxNN92kBx54wKBECFcrVqzweczxxx9vQJLAFRMTo5tuuknbtm3T/Pnzde2116pNmzam53C73Xr99dc1cuRIpaWlmT7/4TQ0NFgd4bC8bcrbLy4uzqAk1vH2GBix0qARtm3bptdee63JtsjISD333HOGzdm7d2+1atXK6/pgakz05e+dxkQAAAAAAAAAAAAAAAAAAAAAAALA2rVrdcUVV8jlcnk95qyzzjqkIQPwh++++87nMeHWmHiwCRMmaNq0aSoqKtI333yjO++80/SVFNPT0zV69GitXLnS1HkPx9cGQLPQmCivv8YE6qqXv3bPPffI4XA02eZ0OjVs2DDZbDZDfkVERPi0QunWrVv9/bQNw4qJngXPWqIAAAAAAAAAAAAAAAAAAAAAgJC3a9cuTZ482adGh2HDhunTTz/1qYkA8EZNTY2WLVvm87iRI0cakCa4xMTEaOLEiZo4caIkqaSkREuXLtXixYu1ePFirV279pAmKn8qLy/XxIkTtXTpUg0ePNiweTyprKy0bO7m+JorFBsTY2NjZbfbPdYZeZ76y5w5czRv3jyrY3i0Y8cO1dfXKzY21uooHkVEeL8eoC+1oYR3XQAAAAAAAAAAAAAAAAAAAACAgFBVVaVzzjlHBQUFXo/p1KmTvvrqKyUlJRmYDOFqwYIFamho8GlMZGSkTjrpJIMSBa+UlBSdf/75Ov/88yX90vS5ZMkS/fTTT1qxYoXfm/j27t2r3/3ud1q1apVatWrl1317q7i42JJ5PfE1V3JyskFJrONtY6LT6TQhTcs1NjbqvvvuszqGV5xOp7Zv367hw4dbHcUjXxpSg6HR0gjh2Y4JAAAAAAAAAAAAAAAAAAAAAAgoTqdTl112mTZu3Oj1mISEBM2ePVs9evQwMBnC2fvvv+/zmJNPPlnt2rUzIE1oadWqlc444ww9+uij+vbbb1VWVqYVK1boqaee0oQJExQdHe2XebZt26Z//OMfftlXSxQVFVk2d3N8bUzs3LmzQUms4+0qkIG+YuKLL76o9PR0q2N4bcuWLVZH8AqNiZ7RmAgAAAAAAAAAAAAAAAAAAAAAsNwdd9yhb775xuv6iIgIffDBBzrhhBMMTIVwVl5erlmzZvk8bvLkyf4PEwb2rzT54IMPav78+SotLdVHH32k3/3ud0fd9DN16lTl5OT4KalviouLVVtba8nczcnKyvKpvlOnTgYlsU7r1q29qmtsbDQ4ScsVFRXpsccea7ItOTlZ5eXlcrvdpvzatGmTT5m3bt3qz0NgGF9WyqQxEQAAAAAAAAAAAAAAAAAAAAAACzz33HN6/fXXfRrzzDPP6IILLjAmECDp448/Vl1dnc/jaEz0j8TERF1++eX67LPPVFBQoGeffVbdu3dv0b4aGxs1depU/wb0ktvtVkZGhiVzNyctLc3rWpvNFpKNiR07dvSqrrq62uAkLffXv/5VlZWVTbZNmTJFbdq0MS1Dv379FBHhfYtasKyY6EtjYlJSkoFJAheNiQAAAAAAAAAAAAAAAAAAAAAAy8yaNUsPPPCAT2NuvfVW3XvvvQYlAvY1pDz//PM+j+vfv78GDhxoQKLwlpycrPvuu08ZGRl6+umnFRcX5/M+3n//fZ8ajfxp+/btlszbHF8y9ezZs0XHPNAFe2PiunXr9N///rfJtq5du+pPf/qTqTni4uLUs2dPr+uDpTHRbrd7XZuammpgksBFYyIAAAAAAAAAAAAAAAAAAAAAwBKrVq3SVVddJZfL5fWYSZMm6eWXXzYwFSC99957LVrl7oYbbjAgDfaLjY3VAw88oAULFvi8QllJSYkWL15sULLmrVy50pJ5j2Tv3r3KzMz0un7YsGEGprGOt6tABmpj4l133XXI18+///3vljSR+tKQvWPHjhatRms2X/7evW1yDTU0JgIAAAAAAAAAAAAAAAAAAAAATJeTk6PzzjtPtbW1Xo859thj9cknnygyMtLAZAh3jY2Neuyxx3weFxcXpxtvvNGARPi1UaNG6auvvlJEhG9tMVY1Ji5btsySeY9k+fLlcrvdXteHamNit27dvKqz2+2WrbZ5JDNmzDjkfB4wYID+8Ic/WJJn0KBBXte6XK6AXEX012pqaryuZcVEAAAAAAAAAAAAAAAAAAAAAABMUFlZqXPOOUeFhYVej+nSpYu++uorJSYmGpgMkB5//HHt3LnT53FXXHGF2rdvb0AiHM7YsWN10003+TRmzZo1BqVp3urVq1VZWWnJ3Iczf/58n+pHjhxpUBJrDRgwwOvasrIyA5P4xm6364EHHjhk+2OPPaaoqCgLEvm2YqIkbd261aAk/uPLioneNrmGGhoTAQAAAAAAAAAAAAAAAAAAAACmcTgcuvjii7Vlyxavx7Rq1UqzZ88O2wv/YZ61a9fq8ccfb9HYO+64w89p4MnhmrOak5WVZVCS5jU2Nuqbb76xZO7D+fLLL32qHz9+vEFJrOXLKn/FxcUGJvHNs88+q5ycnCbbRo4cqUsuucSiRL43JvryHsAqVVVVXtUlJiaqU6dOBqcJTDQmAgAAAAAAAAAAAAAAAAAAAABMc9ttt+m7777zuj4iIkIfffRRyK7YhcBRXV2ta665Rg6Hw+exF1xwgUaMGGFAKjSnT58+Gjp0qNf1BQUFBqZp3v/+9z/L5j7Y5s2blZ6e7nX9kCFDlJqaamAi6/Tv31+RkZFe1QZKY+KuXbv01FNPHbL9iSeekM1msyDRPqHYmOjt37mvzz2U0JgIAAAAAAAAAAAAAAAAAAAAADDF008/rX//+98+jXnhhRc0efJkgxIB+zgcDl1yySUtapaJiYnRs88+a0AqeGP48OFe11ZXVxuYpHmzZs1SSUmJZfPv99Zbb/lUf/rppxuUxHoxMTEaMGCAV7VFRUUGp/HO/fffr9ra2ibbxo8fr7PPPtuiRPt06dJFiYmJXtfTmBgaaEwEAAAAAAAAAAAAAAAAAAAAABjus88+05QpU3wac8cdd+jOO+80KBGwj9vt1s0336y5c+e2aPzdd9+tvn37+jkVvNWxY0evaxsbGw1M0ryGhga9/fbbls0v7WvMfO+993wac/HFFxuUJjCMHj3aq7pdu3YZnMSzxYsX65NPPjlk+5NPPmlBmkP50qC3c+dO1dXVGZjm6HnbSOzLqq2hhsZEAAAAAAAAAAAAAAAAAAAAAIChVqxYoWuuuUZut9vrMeeee66mTp1qXChAUn19va688kr997//bdH4zp07669//aufU8EXcXFxXte2bt3awCSePffcc6qpqbFs/hdffFHl5eVe13fr1k3jxo0zLlAAGDNmjFd1OTk5BidpntPp1J/+9KdDtp933nlePwej+dKY6HK5tH37dgPTHD1vV8kcNWqUwUkCF42JAAAAAAAAAAAAAAAAAAAAAADDZGVl6bzzzpPdbvd6zIgRI/Txxx8rIoJL3mGc0tJSnXHGGfr4449bND4yMlIffvihkpKS/JwMvvC2eUiS2rRpY2ASz4qLi/XCCy9YMndZWZmee+45n8ZcdtllstlsBiUKDN429WVnZxsbxIPXX39dGzdubLItIiJCjz/+uEWJDuVLY6IkbdmyxaAk/pGbm+uxJiIiQieeeKIJaQIT79IAAAAAAAAAAAAAAAAAAAAAAIYoLy/XOeec41PjULdu3TRnzhy1atXKwGQIdzNnztTQoUO1ZMmSFu/jH//4h0499VT/hUKLrF271uvavn37GpjEO0888YQyMjJMn/eee+7R3r17va6PiIjQrbfeamCiwDBkyBC1b9/eY52VjYnFxcV65JFHDtl+1VVXadiwYRYkOrxBgwb5VB/IjYlut1t5eXke64YMGaLExEQTEgUmGhMBAAAAAAAAAAAAAAAAAAAAAH7X2Nio3/3ud9q2bZvXYxITEzVnzhx16dLFwGQIZ3l5ebriiit00UUXac+ePS3ez8SJE/XQQw/5MRlaYufOnVq3bp3X9YMHDzYwjXfsdruuv/56ORwO0+acPXu23n33XZ/GXHDBBQHRyGm0iIgInX322R7rMjIy5Ha7TUh0qD//+c+HNJVGR0frH//4hyV5jsTXFRO3bt1qUJKjV1RUpLq6Oo9148ePNyFN4KIxEQAAAAAAAAAAAAAAAAAAAADgdzfffLPmz5/vdX1kZKQ++eQTDR8+3MBUCFd5eXm67bbb1K9fP3388cdHta8TTjhBH330kWw2m5/SBa6lS5fqhhtuUGZmptVRDuupp57yqf6UU04xKIlvlixZonvuuceUudLT0/X73//e53H333+/AWkC0znnnOOxpra2VllZWSakaWrx4sWHbSr9wx/+oN69e5uepzn9+/dXRIT3rWqbN282MM3R2blzp1d1v/3tbw1OEthoTAQAAAAAAAAAAAAAAAAAAAAA+NXjjz+ud955x6cxL730kiZNmmRQIoQjh8OhOXPm6NJLL1W/fv30+uuvq6Gh4aj2OXLkSH377bdq27atf0IGuMbGRv33v//VoEGD9Pvf/17r16+3OtIB8+bN03/+8x+v6yMjI3XWWWcZmMg3r7zyis+Nlb7Kzc3VpEmTVFFR4dO4888/X2PGjDEoVeA5++yzvWqo27JliwlpftHY2KhbbrnlkJUao6KiNGXKFFOzeCM+Pl49evTwun7nzp2qqakxMFHLefN3HR8frwkTJpiQJnDRmAgAAAAAAAAAAAAAAAAAAAAA8JuPP/5Yf/vb33wac8899+i2224zKBHCSVlZmT777DPdcsst6tq1qyZPnqxPP/30qBsSJem4447Td999p3bt2vkhaXBxOp16//33NWLECI0bN04zZsxQY2OjZXkWL16sSy+99JCGreb89re/Dbi/uylTpuhvf/ubT8/DW9u3b9f48eO9Xvltv5iYGD377LN+zxPI2rdvr/Hjx3us27RpkwlpfvGvf/1LW7duPWT7FVdcoV69epmaxVv9+vXzutbtdgdUs/PBDnfcf+3UU09VfHy8CWkCF42JAAAAAAAAAAAAAAAAAAAAAAC/+Omnn3Tdddf51GRzwQUXhF0TDPxjz549mj9/vl566SX98Y9/1PHHH68OHTrokksu0ZtvvqmioiK/zXXhhRdq4cKFSk5O9ts+g9WSJUt02WWXqXPnzvrTn/6kFStWmDa3w+HQ1KlTdeaZZ6qystKnsXfccYdBqZpns9maffyf//ynzj33XBUXF/ttzg8//FAnnniisrOzfR57zz33+NRcFiquvvpqjzVmnutpaWl67LHHDvvYTTfdZFoOX3Xp0sWn+lWrVhmU5Oh405h46aWXmpAksEVZHQAAAAAAAAAAAAAAAAAAAAAAEPx27Nih888/X/X19V6PSUlJ0U033aRFixYZmMxcI0eOVFJSktUxAsK6dev08MMPt3h8fX296uvrVVdXp/r6elVUVKiwsFC7d+9WYWGhX1ZB9CQyMlJPPvmk/vznPxs+V7ApLS3Vq6++qldffVU9evTQueeeq8mTJ2v8+PF+X0XM6XTqgw8+0GOPPabMzEyfx48fP15nnnmmXzN56/zzz9fKlStVUFBwxJqvv/5a/fv319///nfdfPPNSkhIaNFc69at05///Gf98MMPLRo/fPhw/eMf/2jR2GB38cUX6/bbb1ddXd0Ra8xqTHS5XLrhhhsO+/W0X79+GjdunCk5WiI1NdWn+iVLlujuu+82JsxRWLNmTbOPx8fH63e/+51JaQIXjYkAAAAAAAAAAAAAAAAAAAAAgKOyd+9enXPOOSopKfFpXElJic455xyDUlkjMzOTxsSfbdy4URs3brQ6Rov17t1b77zzjsaPH291lICXm5ur1157Ta+99pqio6N1/PHHa+zYsTrhhBM0dOhQDRgwQDExMT7tc9euXVq2bJlmz56tr7/+WqWlpS3KFhUVpZdeeqlFY/2hTZs2euONN3Teeec1W1dRUaF7771Xjz32mP7whz/o/PPP129+8xtFRTXf+pOfn6+5c+dq+vTpWrx4cYtzxsXF6YMPPlBsbGyL9xHMkpKSdN5552nGjBlHrNmzZ4+ysrLUu3dvQ7O88MILWrp06WEfmzRpkqFzH624uDif6n/88Ue5XC5FREQYlMh3O3bs8Ph+5oILLlBiYqJJiQIXjYkAAAAAAAAAAAAAAAAAAAAAgBZraGjQhRdeqLS0NKujWC4mJka9evWyOgaOUlxcnB588EH95S9/8bnJBlJjY6OWL1+u5cuXH9gWFRWlbt26qWvXrurSpYuSk5MVFxenuLg4ud1u1dTUqLq6WtXV1crKylJ6erqqq6v9kufpp5/Wscce65d9tdTkyZN11VVX6YMPPvBYu3fvXj3//PN6/vnn1apVKw0ePFgDBgxQcnKyWrdurYaGBlVVVSkvL0/btm1TTk6OXzK++eabGjp0qF/2FaxuvvnmZhsTpX2NdEY2Jm7cuLHZlWZPPfVUw+b2h7179/pUX1ZWpp9++kljx441KJHvDn7tOpLrrrvO+CBBgMZEAAAAAAAAAAAAAAAAAAAAAECL3XjjjVq4cKHVMQJCnz59FBkZaXUMHIULLrhAzz//vOErooUbh8Oh7OxsZWdnmzrvlVdeqXvvvdfUOY/kzTff1LZt27R27Vqvx9TU1Gj16tVavXq1gcmkf/zjH7rmmmsMnSMYnHbaaRo2bJg2b958xJpvv/1W119/vSHzV1ZW6tJLL1VdXd0Ra3r27GnI3P6Snp7u85gPPvggoBoTPa08OmTIEJ155pkmpQlsgbPOJQAAAAAAAAAAAAAAAAAAAAAgqPzjH//Qe++9Z3WMgDFgwACrI6AFYmJidN1112nz5s2aOXMmTYkh4qKLLtL06dOtjnFAq1atNHv2bHXr1s3qKE3ceuuteuSRR6yOETDuuuuuZh//4Ycf5HK5/D6v3W7XRRdd5HH14fj4eL/P7S9lZWUem/oO5/3331dJSYkBiVpm7ty5zT5+9913y2azmZQmsNGYCAAAAAAAAAAAAAAAAAAAAADw2QcffKBHH33U6hgBhcbE4NKlSxdNmTJF2dnZeueddzR06FCrI8FPbr/9dn3yySeKioqyOkoTXbp00bx58wKmOfHBBx/Ua6+9ZnWMgHLVVVcpJSXliI+XlJRo2bJlfp2ztLRUv/3tb/XDDz94rP3+++/9Orc/TZkypdnVHo+kurpad911l9xutwGpfJOWlqacnJwjPt6hQwf9/ve/NzFRYKMxEQAAAAAAAAAAAAAAAAAAAADgk8WLF+v666+3OkbAoTEx8HXp0kV33HGHFi1apF27dumJJ55Q586drY4FP0lMTNR///tfvfLKKwHXlLjfkCFDtGzZMksbYaOjozV16lQ99dRTlmUIVPHx8br//vubrfnkk0/8Nt+sWbM0bNgwLViwwKv6KVOmaPbs2X6b3x8qKyt155136q233mrxPj788ENddtllKioq8mMy33355ZfNPn7fffcpLi7OpDSBLzBfZQEAAAAAAAAAAAAAAAAAAAAAAeuxxx5TQ0OD1TECDo2JgScpKUljxozRKaecolNPPVWjR49WRARrPHmrffv26ty5s3bv3m11FI8mTZqkN954Qz169LA6ikfdunXTkiVL9Mc//lGffvqpqXP37t1bH3/8sU466SRT5w0mf/rTn/T8888fsUnu008/1dSpU1v8WlJYWKivv/5aL7/8stavX+/T2NraWp133nkaM2aMfve73+nEE09Ur1691L59e8XFxSkyMrJFmbzR2Ngou92uqqoqZWdnKyMjQ/Pnz9dXX32lsrKyo97/p59+qjlz5ujKK6/UxIkTdfLJJ6tTp06y2Wx+SO+dDz/88IiPdenSRXfeeadpWYIBjYkAAAAAAAAAAAAAAAAAAAAAAJ/Ex8dbHSEg0ZhordTUVA0aNEiDBg3SsGHDdPLJJ2v48OGGNuqEumOOOUb5+flavny5Zs2apa+++kpbtmyxOlYTo0eP1uOPP67TTjvN6ig+adu2rWbMmKGZM2fqtttuU2FhoaHzxcTE6M4779Tf/vY3JSUlGTpXsGvVqpUefPBB3XfffYd9vLCwUHPnztVvf/tbn/c9Y8YMXX755XK73UeVcdmyZVq2bFmTbT179lR2dvZR7fdIsrOz1bt3b0P2fTC73a63335bb7/9tiQpLi5OTz75pO6++27D596+fXuzjaKPPPII739+hcZEAAAAAAAAAAAAAAAAAAAAAIBPWrVqZXWEgJOYmKjOnTtbHSMkREdHKzY29pBfSUlJ6tixo1JTUw/86tixo3r16qXBgwerbdu2VkcPSTabTWPGjNGYMWP09NNPKz8/X/PmzdMPP/ygRYsWadeuXaZnatWqlS6++GLdeuutGjVqlOnz+9OFF16oM844Q2+99ZamTp3q9+MZGxurSy+9VI8++qj69Onj132HsltvvVVTp05VXl7eYR9/5ZVXWtSYWFtbe9RNieGkrq5O5eXlpsz1xhtvHPGxwYMH64YbbjAlRzCxuTmbAQAIWsXFxUpNTW2yraioSB06dLAoEQAAAAAAAAAAAAAAAADALFxDBiAQZGVlaenSpVq9erXWrFmjDRs2qKqqyq9z2Gw2DRw4UOPGjdPkyZN15plnKi4uzq9z+OK6667T9OnTvaq99tprNW3aNK9qGxsb9fnnn2vWrFmaO3euKioqWpTPZrNp5MiRuuSSS3TDDTcoJSWlRfsJdzNmzNBll1122MdsNpvS09PVr18/n/a5ZMkS/ec///FHvEOkpKTo2WefNWTfJSUluv/++w3ZtycXXHCBLrjgAkPnqKioUPfu3Q/72mWz2bRgwQKdcsophmYIRjQmAgAQxPhQCQAAAAAAAAAAAAAAAADCF9eQAQhUubm52rZtmzIyMpSTk6Pc3FwVFhaqtLRUZWVlqqqqUkNDgxobGxUZGXlgVcw2bdocWAmzR48eGjhwoAYNGqSRI0cqOTnZ6qd1gFGNiQdzOBxatmyZNmzYoC1btmjr1q0qLCxUVVWVqqqqVFtbq4SEBCUmJqpt27bq37+/Bg8erOHDh+uMM87ga4GfTJgwQQsWLDjsYzfeeKP+/e9/mxsIhnjmmWf0wAMPHPax66+/Xm+//bbJiYIDjYkAAAQxPlQCAAAAAAAAAAAAAAAAgPDFNWQAYA0zGhMRGDZv3qwRI0bI4XAc8lhUVJS2b9+uvn37WpAM/lJRUaG+ffuqtLT0kMdSU1O1bdu2gGqMDiQRVgcAAAAAAAAAAAAAAAAAAAAAAAAAgEAzbNgw/eUvfznsYw6HQ3//+99NTgR/e/LJJw/blChJ77zzDk2JzaAxEQAAAAAAAAAAAAAAAAAAAAAAAAAO45FHHtGIESMO+9iHH36on376yeRE8JcdO3boxRdfPOxjd911l37729+anCi40JgIAAAAAAAAAAAAAAAAAAAAAAAAAIcRHR2t9957T7GxsYc85na7ddttt8npdFqQDEfD7XbrpptuUl1d3SGPHXfccXr66actSBVcaEwEAAAAAAAAAAAAAAAAAAAAAAAAgCMYOnSonnnmmcM+tmHDBk2dOtXcQDhq//nPf/Tjjz8esr1Dhw6aOXPmYRtR0RSNiQAAAAAAAAAAAAAAAAAAAAAAAADQjDvuuENXX331YR97+OGHtXnzZpMToaXS09N17733HrI9JiZG//vf/9SrVy/zQwUhGhMBAAAAAAAAAAAAAAAAAAAAAAAAwIO33npLxx133CHb6+rqdOWVV6q+vt78UPBJXV2dLrnkElVXVx/y2JtvvqmxY8dakCo40ZgIAAAAAAAAAAAAAAAAAAAAAAAAAB7Ex8dr5syZ6tix4yGPbdq0Sffdd58FqeCLO+64Qxs3bjxk+xNPPKHrrrvO/EBBjMZEAAAAAAAAAAAAAAAAAAAAAAAAAPBCr169NHfuXCUlJR3y2Kuvvqpp06aZHwpemTp1qv7zn/8csn3KlCmaMmWKBYmCG42JAAAAAAAAAAAAAAAAAAAAAAAAAOCl4447Tl988YViY2MPeeyWW27RihUrLEiF5syZM+ewK1recccdeuKJJyxIFPxoTAQAAAAAAAAAAAAAAAAAAAAAAAAAH5x66qmaMWOGYmJimmyvr6/XhRdeqOzsbGuC4RCrVq3SFVdcIZfL1WT7Aw88oJdeesmiVMGPxkQAAAAAAAAAAAAAAAAAAAAAAAAA8NF5552nL7/8UvHx8U227969W2eddZaKioosSob9Nm3apIkTJ6q6urrJ9qeeekpPP/20RalCA42JAAAAAAAAAAAAAAAAAAAAAAAAANACZ599tubOnavExMQm2zMyMjRp0iRVVVVZlAzp6ek688wzVVZWdmBbVFSU/v3vf+vBBx+0MFlooDERAAAAAAAAAAAAAAAAAAAAAAAAAFrolFNO0YIFC9StW7cm29euXauJEyeqsrLSomTha+vWrZowYYL27NlzYFtycrLmzZunG2+80cJkoYPGRAAAAAAAAAAAAAAAAAAAAAAAAAA4CiNHjtSqVas0evToJtt/+uknnXXWWaqoqLAoWfhZt26dxo8fr4KCggPbhgwZopUrV+q0006zMFlooTERAAAAAAAAAAAAQa+xsU52e4UaG+usjgIAAAAAAAAAAIAw1alTJy1YsEDXXnttk+0rVqzQGWecodLSUouShY8lS5ZowoQJKikpObDt4osv1rJly9S3b18Lk4UeGhMBAAAAAAAAAAAQtByOem3Z9q0WLf23li6fpkVL/60t276Vw1FvdTQAAAAAAAAAAACEodjYWE2bNk3Tp09XYmLige2rV6/WySefrOzsbOvChbgZM2bozDPPPLA6ZXx8vN544w19+umnSkpKsjhd6KExEQAAAAAAAAAAAEHJ6XRo/cYvtbtwm9xulyTJ7XZpd+E2rd/4pZxOh8UJAQAAAAAAAAAAEK6uueYarV+/XqNHjz6wLS0tTWPGjNHatWstTBaa/vWvf+nyyy9XXV2dJGno0KFauXKlbr75ZouThS4aEwEAAAAAAAAAABCUcnLXqLyi4LCPlVcUKCdvjcmJAAAAAAAAAAAAgF/06dNHixcv1tNPP62EhARJUmFhoe68806Lk4WW9evX68EHH5Tb7VZUVJQeeughrVmzRsOGDbM6WkijMREAAAAAAAAAAABBp9ZeoezcVc3WZOeskt1eYVIiAAAAAAAAAAAA4FBRUVF64IEHtHXrVk2ePFmtW7fW22+/bXWskHLcccfpnHPO0YgRI7Rq1So9/vjjio2NtTpWyIuyOgAAAAAAAAAAAADgq/SMhXK5nM3WuFxOpWUu0nHHTDYpFQAAAAAAAAAAAHB4PXv21Jdffqm8vDx1797d6jgh55133lG7du0UFUW7nFlYMREAAAAAAAAAAABBpbhkp0pKs7yqLSnZqZIS72oBAAAAAAAAAAAAo9GUaIwOHTrQlGgyGhMBAAAAAAAAAAAQNJxOh9IzFvk0Ji1joZxOh0GJAAAAAAAAAAAAACD80JgIAAAAAAAAAACAoJGTu0b2ugqfxtjrKpSTt8agRAAAAAAAAAAAAAAQfmhMBAAAAAAAAAAAQFCotVcoO3dVi8Zm56yS3e5bQyMAAAAAAAAAAMDhTJs2TW6326tf06ZNszouABiCxkQAAAAAAAAAAAAEhfSMhXK5nC0a63I5lZa5yM+JAAAAAAAAAAAAACA80ZgIAAAAAAAAAACAgFdcslMlpVlHtY+Skp0qKTm6fQAAAAAAAAAAAAAAaEwEAAAAAAAAAABAgHM6HUrP8M9qh2kZC+V0OvyyLwAAAAAAAAAAAAAIVzQmAgAAAAAAAAAAIKDl5K6Rva7CL/uy11UoJ2+NX/YFAAAAAAAAAAAAAOGKxkQAAAAAAAAAAAAErFp7hbJzV/l1n9k5q2S3+6fREQAAAAAAAAAAAADCEY2JAAAAAAAAAAAACFjpGQvlcjn9uk+Xy6m0zEV+3ScAAAAAAAAAAAAAhBMaEwEAAAAAAAAAABCQikt2qqQ0y5B9l5TsVEmJMfsGAAAAAAAAAAAAgFBHYyIAAAAAAAAAAAACjtPpUHqGsasapmUslNPpMHQOAAAAAAAAAAAAAAhFNCYCAAAAAAAAAAAg4OTkrpG9rsLQOex1FcrJW2PoHAAAAAAAAAAAAAAQimhMBAAAAAAAAAAAQECx2yuUnbvKlLmyc1bJbje2ARIAAAAAAAAAAAAAQg2NiQAAAAAAAAAAAAgoaZmL5HI5TZnL5XIqPXORKXMBAAAAAAAAAAAAQKigMREAAAAAAAAAAAABo7hkp0pKdlowZ5apcwIAAAAAAAAAAABAMKMxEQAAAAAAAAAAAAHB6XQoPcOa1QvTMhbK6XRYMjcAAAAAAAAAAAAABBsaEwEAAAAAAAAAABAQcnLXyF5XYcnc9roK5eStsWRuAAAAAAAAAAAAAAg2NCYCAAAAAAAAAADAcnZ7hbJzV1maITtnlex2axojAQAAAAAAAAAAACCY0JgIAAAAAAAAAAAAy6VlLpLL5bQ0g8vlVHrmIkszAAAAAAAAAAAAAEAwoDERAAAAAAAAAAAAliou2amSkp1Wx5C0P0uW1TEAAAAAAAAAAAAAIKDRmAgAAAAAAAAAAADLOJ0OpWcE1iqFaRkL5XQ6rI4BAAAAAAAAAAAAAAGLxkQAAAAAAAAAAABYJid3jex1FVbHaMJeV6GcvDVWxwAAAAAAAAAAAACAgEVjIgAAAAAAAAAAACxht1coO3eV1TEOKztnlez2wGqYBAAAAAAAAAAAAIBAQWMiAAAAAAAAAAAALJGWuUgul9PqGIflcjmVnrnI6hgAAAAAAAAAAAAAEJBoTAQAAAAAAAAAAIDpSkqyVFKy0+oYzSou2amS0iyrYwAAAAAAAAAAAABAwKExEQAAAAAAAAAAAKZyOh1Ky1hodQyvpGUslNPpsDoGAAAAAAAAAAAAAASUKKsDAIDVGhsbtXjxYi1dulRbt27V9u3bVVxcrKqqKtXU1Cg+Pl5JSUlKTk7WwIEDNWTIEI0aNUqnnXaa4uPjrY4fVIqLizVv3jytW7dOW7du1Y4dO1RRUaGqqio1NjYqMTFRSUlJ6tKli4YMGaKhQ4fqtNNO0/Dhw62ODgAAAAAAAMCPcnLXyF5XYXUMr9jtFcrJW6M+vUZZHQUAAAAAAAAAAAAAAobN7Xa7rQ4BAFZYsmSJXn31VX399deqrKz0eXx8fLzOOOMM3XrrrZo4caJsNpsBKYOf3W7Xe++9p//+979atWqVXC6Xz/vo1q2bLrnkEt1xxx3q3bu3ASmDV3FxsVJTU5tsKyoqUocOHSxKBAAAAAAAADTPbq/QspXvyeVyWh3FaxERkRpz0u8VH9/G6igAAAAAAABAE1xDBgAAAKtEWB0AAMy2aNEinXjiiRo3bpw+/vjjFjUlSvsa7mbPnq3f/va3Gjx4sGbNmuXfoEGusbFRTz/9tLp3766bb75ZK1asaFFToiTt2rVLL7zwgvr166dLLrlE2dnZ/g0LAAAAAAAAwDRpmYuCqilRklwup9IzF1kdAwAAAAAAAAAAAAACBo2JAMJGeXm5rr32Wo0fP16rV6/2677T0tJ04YUXavLkySooKPDrvoPR0qVLNXz4cP3lL39RaWmp3/brcrn02WefaejQofrXv/4lFv0FAAAAAAAAgktJSZZKSnZaHaNFikt2qqQ0y+oYAAAAAAAAAAAAABAQaEwEEBa2bt2qk046Se+++66h88yZM0fHH3+8fvrpJ0PnCWSvvfaaJkyYoG3bthk2R21trR588EGdf/75LV7xEgAAAAAAAIC5nE6H0jIWWh3jqKRlLJTT6bA6BgAAAAAAAAAAAABYjsZEACFvyZIlGj16tDIyMkyZr7CwUBMmTNDMmTNNmS+Q3Hvvvbr99tvV2NhoynyzZ8/WmDFjVFxcbMp8AAAAAAAAAFouJ3eN7HUVVsc4KnZ7hXLy1lgdAwAAAAAAAAAAAAAsR2MigJC2evVqnXPOOaqqqjJ13oaGBl1++eWaN2+eqfNa6aGHHtILL7xg+rxbt27VWWedpfLyctPnBgAAAAAAAOAdu71C2bmrrI7hF9k5q2S3B3eDJQAAAAAAAAAAAAAcrSirAwCAUXbt2qVJkyapsrLS6zFxcXE65ZRTdMIJJ6hr165KSkpSdXW1du/erbVr12rBggWqrq72al8NDQ266KKLtGLFCg0bNqylTyMovPnmm3ryySd9GtOtWzedcsopOvbYY5WSkqLo6GiVl5crIyNDK1as0OrVq+V2u73a1/r163XhhRfq+++/V2RkZEueAgAAAAAAAAADpWUuksvltDqGX7hcTqVnLtLwYyZbHQUAAAAAAAAAAAAALENjIoCQ5HA4dMUVV6ikpMSr+tTUVD388MO65ppr1KZNmyPW1dbWasaMGXr00UeVk5Pjcb+1tbW65JJLtHr1arVq1crr/MFk/fr1uvvuu72uP+WUU/TII4/otNNOk81mO2JdVlaWXnrpJb322mtqaGjwuN8FCxbo0Ucf1WOPPeZ1FgAAAAAAAADGKynJUknJTqtj+FVxyU6VlGYppX1vq6MAAAAAAAAAAAAAgCUirA4AAEZ44okntGTJEq9qL7vsMmVkZOiOO+5otilRkhISEnTdddcpLS1Nt99+u1f73759u+655x6vaoNNQ0ODLr/8ctXV1XmsjY+P1zvvvKOFCxfq9NNPb7YpUZJ69+6tF154QRs3bvR6xUlf/t4BAAAAAAAAGM/pdCgtY6HVMQyRlrFQTqfD6hgAAAAAAAAAAAAAYAmb2+12Wx0CAPwpKytLQ4YM8apZbsqUKXriiSdaPNcrr7yiO+64w2OdzWbTihUrdOKJJ7Z4rkD01FNPacqUKR7rkpKS9N133+mkk05q0Tw1NTU655xztHCh5wuYhg8frjVr1igyMrJFcwWb4uJipaamNtlWVFSkDh06WJQIAAAAAAAEAoejQdU1pWpoqJXL5ZTL5ZDkVkRElCIiohQdFatWrdorJibe6qgIcTuzVmhn9nKrYximT+/R6tNrlNUxEKLsjXXK31uo6voaNTob1eh0yC23YiKjFR0ZpYSYBHVt20mtYhOsjgoAAAAAACzENWQAAACwCo2JAELOhRdeqFmzZnmsu/nmm/XGG28c9XyPP/64Hn74YY91J510kpYvX+5xpcBgUVBQoAEDBqimpqbZuujoaP3www8aN27cUc1XXV2tcePGaf369R5rX331Vd12221HNV+w4EMlAAAAAPCe2+1WXV2lKquKVFm1R3Z7hZzORjldDrldTtlsEYqIiFJkZJRiYxOVmNhBSYmpapXQXhEREVbHB47I6Ww8cF5XVRWpsqpItbV7vRobF5uoxMRUJSWm/vx7R5oV4Td2e4WWrXxPLpfT6iiGiYiI1JiTrlF8fJLVURDk7I11yi3dpZyyfOWW7fu9qKrEq7EprZPVI7mreiZ3O/A7zYoIZC63S0VVJcotzVdO2S6V1OxVg6NBjc5GOVxORUVEKjoyWjFRMWrfqt3P53VXdUzswPtyBI3aBrtyy/ad4wXlhaqur1Wj06FGZ6NskqIioxUTGaVWsa3UtW0n9Uzuqh7JXRXPe3EECZfLpcKq4gPvX8pq9qrB2agGR6OcLqeiIve9lsdGxTR5r9Ihsb0ibLyWIzjU1Ncqp2yXcsvylV9eqNoG+4EbhtgkRUdFKzoiSq3jWqtb207qkdxNPZK7KC46zurogFecLqcKK4r2fR+6N19lNeU/vy93yOl2KjoiSlGRUYqLilVKYnv1/Pm1PKV1cshc/xZKuIYMAAAAVqExEUBIWb9+vUaMGOGxbsSIEVq2bJliY2OPek63261JkyZp3rx5Hmtnz56tc88996jnDAR33323XnzxRY91//rXv/TnP//ZL3Omp6fr+OOPV3V1dbN1Xbp0UVZWlmJiYvwybyDjQyUAAAAAODK3263y8nyVluWosmqPKquK5HDU+7yfiIhItW69r0mxXdtuSmnfW5GRUQYkBrzndru1t3yXduVvVHFJltxu/zV+tWvbTd26HqMOKX0VERHpt/0i/KzfNFslJTutjmG4Dil9NPyYyVbHQBByuV3atjtDCzOWaVP+drncLr/s12azaXCn/hrff7SO6TpYkbyWw2JOl1PbdmdoW2GGcsp2Ka+sQHUteF8eGxWj7u26qmf7rhrcqb+GdB7A+Y2AUVq9V+vyNmlnSa5yy/JVXF3aov2kJqaoZ3JX9U7pqRHdhym5VVv/BgVayOlyanPBdm0v3KGcsl3atbdA9Y4Gn/cTFx2nHsld1DO5m4Z0HqBBHfvRdI6AUVRVonV5m5Vdkqecsl0qrfHupk8Hs8mmjkkd1CO5q/qk9NTIHsPUhhvZIEA0Oh3alL9NaXv2v5bvVqOz0ef9JMTEH2g4H9p5gPp37EPTeQDgGjIAAABYhcZEACHlyiuv1EcffdRsTUREhFatWqWRI0f6bd7c3FwNGjRIdru92bpx48Zp0aJFfpvXKnv37lX37t09rpY4YsQIrV692q8/SHjmmWf0wAMPeKx7++23df311/tt3kDFh0oAAAAAcKjGxnrtLtyqXQWbvF41zhfR0XHq0mmounY9Rgnxbfy+f6A5Dke9Cgq3aVf+RkPO74PFxCSoa+dh6tplmOLiEg2dC6GnpCRL6zd9aXUM0xx37HlKad/b6hgIEjX1tfpp5yotTF/e4sYVb7VLaKNx/UZrbL+T1Cae13KYq9JepSU7VmpRxgrtrS33+/7bxrfRuP4naVy/UVzwD0u43C5tLUjXgoxl2py/XW759/Ibm82mY7sO0akDxmhQp35c8A9L7K0t1+LMlVqSuUIV9iq/7799q3Y6pf9ondz3RCXGtfb7/gFPnC6nNuVv18KMZdq6O93v+4+wRWhE92E6dcAY9U/twypzsERJdZkWZ6zQkh0rVV3f/LVeLZGa2F6n9B+j3/Q5Qa1iE/y+f3iHa8gAAABgFRoTAYSMvLw89enTRw6Ho9m6a6+9VtOmTfP7/A8//LAef/xxj3UrV67UiSee6Pf5zfTkk0/qoYce8lj3448/6tRTT/Xr3A0NDRo0aJCysrKarRsyZIi2bNni17kDER8qAQAAAMAvKquKtCt/owr3pMnlav7zAX9pn9xT3boeq5T2vWTjIlEYqKGhVjuzV6pg9xbTzu/9bDabOqT0Vd/eY9SqVbKpcyM4OZ0OLV/5vux1FVZHMU18fBuNPvFqVtRFs8prKzR703dakbVWjU5zX8sjbBE6oeexOu/Ys9Uhsb2pcyO8uN1uZRZna2H6T1qbt1lOl/9WdT6S/Rf8jx8wRgO44B8mqK6r0dKdq7QoY7lKqstMmZML/mEmt9ut7XsytTB9mTbs2uq3VZ2bExURqZE9jtWpA8aoT0pPXsthOKNvoHA4ndt01Pj+ozW6z/GKj44zZU6EL6NvoHA40ZFROrHncRo/YIx6te9u+HxoimvIAAAAYBUaEwGEjKeeekpTpkxptsZms2nLli0aPHiw3+cvLi5Wjx49VFdX12zd7bffrldeecXv85tp0KBBSktLa7Zm1KhRWr58uSHzv/zyy7rzzjs91q1atUonnHCCIRkCBR8qAQgUbrdLtbXlqqzao8qqIlVVF6uhvkYul1NOl0NyuxUREamIyChFRcYoIaGdkhI7KikxVYmJHRQVFWv1UwAAAEGsrr5aaek/qrhkp2UZWrVqr8EDT1PbNl0sy4DQtacoQ9vTf1Rjo93SHBERkerTa7R6dB+piAgacXFkO7NWaGe2MZ8NBrI+vUerT69RVsdAAHK73VqetUYz1sxWbYO1r+UxkdG6cMRvdeqAMay8Bb8rrCjS+ys/V0ZR8zeXNFLflJ66etTv1KVtJ8syIHQ5XU59u3WhvtkyX/WOBksyxEbFaPKxZ+r0geN4Tw5D5O0t0PsrPld2aZ5lGQZ27KerR12k1MQUyzIgdDmcDn29Zb7mbVkgh8k3ftovISZe5w8/W6f0H817chgiqyRX76/8XLv27rYswzFdBunKky5Ucqt2lmUIN1xDBgAAAKvQmAggZBxzzDHavHlzszVnn3225s6da1iGG2+8UW+//XazNR06dFBBQYGiooLzztlr1qzxqtnvo48+0uWXX25IhpqaGnXp0kWVlZXN1t1999164YUXDMkQKPhQCYCVqmtKVVi4XeUVBaqqLpbT2djifSXEt1VSUkd1SOmrDil9FBER6cekAAAgVLndbu0u3Kr0zEVyWHRR6K/16D5CfXv/hhWz4BcNDbXanv6jioozrY7SRFJiRw0dfBarJ+Kw7PYKLVv5nlwmrJAVaCIiIjXmpGsUH59kdRQEkPLaCr2/4nNtKthudZQm+qf21rWjL2X1RPiFy+XS99sX64sN8yy7wP9gURGROveYM3XWkPGK5HNG+ElBeaGmLZuhnLJdVkeRJPVO6aHrRl+qTm1SPRcDXnC6nPpmy3x9tekHU1ZI9CQ6MloXHjdJEwb+hsYt+E1u2S5NWzZD+eWFVkeRJA3o2EfXjr5UKa35fAX+0ehs1JyN32vetgUKhMuC46JidfHx52ps35NYCdcEXEMGAAAAq9CYCCAkbN68Wcccc4zHuvfee09XX321YTkWLFigCRMmeKz75ptvNHHiRMNyGOn+++/Xc88912xNYmKi9uzZo/j4eMNyXHfddZo+fXqzNZ06dVJBQUFIf7jFh0oAzOZyOVVcskN5+RtVXp5vyBwxMQnq2nmYunYZpri4REPmAAAAwa+uvlrbtv+g0rJsq6McIiG+rYYMPpPVE3FUAmWVxCNh9UQcyfpNs1Vi4Qq2VuuQ0kfDj5lsdQwEgEBaJfFIWD0R/lBYUaRpy2coqyTX6iiH6NW+u64dfQmrJ+Ko7F8lcc6m7+QIsBsvREVE6fzhZ+uMQayeiKOTt7dA05fNUN7eAqujHKJfh166dsylrJ6Io+JwOvTV5h80d8uPAdF4e7DYqBhdeNxvNX4Aqyfi6GSV5Gr68k+1u2KP1VEOMbhTf10z+mJWTzQY15ABAADAKjQmAggJzz77rP785z83WxMXF6eioiIlJhrX4OByudS9e3cVFDT/gf2dd96pF1980bAcRho2bJi2bNnSbM1VV12l999/39Acc+fO1aRJkzzWrV27ViNGjDA0i5X4UAmAWerrq7Urf5Pyd29WQ0OtSbPa1CGlj7p1PVbJ7bqHdKM5AADwze7C7UrL+DFgVkk8kp7dR6pvn9+wGjR84na7lZ6xUHn5G6yO4pXkdj107LBzFBUVY3UUBICSkiyt3/Sl1TEsd9yx5ymlfW+rY8BCTpdT76/4XD/tXG11FK8c122objj5SsVERVsdBUHE7Xbrh7Qlmrnum4BYJfFIoiIidd6xZ+usIeP5fBE+21NZrLeXfhQwqyQeSe+UHrrx5CtZcQs+c7ldmrvlR83e+F3ANWsdLDoyWr8bcY5OHTCG13L4LL+8UG8v/TBgVkk8kgEd++j631yhdgltrI6CION0OTV743eau/XHgFgl8UjiomJ1+Ynna0yfE6yOErK4hgwAAABW4TY7AELCd99957Fm7NixhjYlSlJERITOOussj3Xe5A1Eu3fv9tiUKMmrhsGjdeqppyouLs5jXbAeawAIFC6XS9k5q7V0+TRl5aw0sSlRktwqLtmhdRtmat2GmbLbK0ycGwAABCK3262d2Su0Zdu8gG9KlKScvLXasGmOnM5Gq6MgSLhcTm3ZNi9omhIlqWxvrtZumKnGxjqro8BiTqdDaRkLrY4RENIyFsrpDNwmHRir0dmoNxe/HzRNiZK0ftcWvbzgbdXxWg4vuVwufbhqpj5dMzugmxIlyeFy6n/rv9a7yz+VM8BWu0Ngyy7N09PzXg34pkRp3wpJT817RXllgbfaHQKX0+XUOz99oi82zAvopkRp3/urj1fP0ow1XwZ8VgSW9D079a95rwZ8U6K0L+vT815RYUWR1VEQRBqdjXpr8fv6Zsv8gG5KlKQ6R72mLZuhLzbMC/isAAAAAHxDYyKAoNfQ0KAlS5Z4rDvjjDNMSOPdPNu2bVN+fr4Jafzrhx9+8Kru9NNPNzjJvhUwx44d67GOxkQAaLnqmlKtXjtDmTuXymXxRTtle/O0fNUHysvfwA8qAAAIU263Wxk7Fmtn1nKro/iktCxb6zZ8IYej3uooCHAul1Mbt3ytwj1pVkfxWWVloVav+8zkG5kg0OTkrpG9jhvKSJLdXqGcvDVWx4AFGhyNenXBNG3Y5fkGf4Emfc9OvfDDv2VvsFsdBQHO6XLqvz99rEUZwfW+/Kedq/WfJR+qkcZxeCGtMFPPf/+maoLo/W1VXbWe+/4NZRZlWx0FQaDR2ag3Fr2rldnrrI7ik/lpS2k0h9c25W/TSz/+R3VB9Jnc3toKPfPd68oNgqZ4WK+usV4v//iO1gfZ959fb/5BH6/+gkZzAAAAIITQmAgg6G3YsEG1tZ5/KORNE5s/jBs3zqu6FStWGJzE/5YtW+axpl+/furUqZMJabw71itXrqSBBQB8tH+VxBWrPlJl1R6r4xzgdDYqLX2B1q7/H6snAgAQZtxut9IzFyk3L7gumNuvvCJf6zbMCopVHmENt9ulLdu+VUnJTqujtFhNTSlNuGHMbq9Qdu4qq2MElOycVbLbK62OARM5XU69teR9bSvMsDpKi2WX5umVBe+ogfcsOAKXy6X/LP1Qq3LWWx2lRdbmbdK/l7xPQwualb5nh15e8F/VB+Frob2xTi/O/7d2FOdYHQUBzOF06PWF72pj/jaro7TIsp1rNG3ZJzS0oFmb8rfptYXTg/KGBNX1NXr++7dYBRfNanA06OUf/6u0PZlWR2mRBek/6aNVs7ieCwAAAAgRNCYCCHrr1nm+KDEiIkLHHXec8WEk9ejRQykpKR7rvMkdaLzJPHLkSBOS7HP88cd7rKmsrNTOncF7UR8AmM1eV6nV6z5V5s6lcrsD8wKdveW7tHzVByrYvdXqKAAAwCQ7s1cob9d6q2MclYrKQm3c/JVcruC7IArGcrvdSktfoD1F6VZHOWpV1UVav3G2nEF44R+OTlrmIrlo8mjC5XIqPXOh1TFgErfbrWnLZmhTkF7gf7DM4my9ufg9GrdwCLfbrfdXfq61uZusjnJUNuzaqunLPqWhBYeVXZqnVxdMC8pGlv0anI16ZcF/tWvvbqujIAC5XC7996ePtWV3mtVRjsrK7PX6eNUXNLTgsDKKsvTm4veC+mu9vbFOL/74H+2pLLY6CgKQw+nQm4vfU2ZxltVRjsqijOWatWGu1TEAAAAA+AGNiQCC3tq1az3WDBgwQK1atTIhzT7eNMwFW2Oiy+XShg0bPNYFWmOiFHzHGgCsUl1TqtVrZqiystDqKB45nY3auv07ZWWzMi4AAKFuV/4mZWWvsDqGX5TtzdWWbd/x/gVN7C7cpl0FwX2B/8HKK/KVuWOJ1TFgopKSrKBe7dNIxSU7VVIa3BcKwjvz05ZqZXbofA69uSBNszd+Z3UMBJgvN36rpTtCY3XcFdlrNXPdN1bHQIApqS7Tyz/+V3UhsAJ4bYNdL87/t/bWllsdBQFmxtrZWpO70eoYfrEwY5m+3jzf6hgIMLsr9uiVBe8EdYP5flV11Xpx/n9UVVdtdRQEkP03C9lcENwN5vvN3fKj5qcttToGAAAAgKNEYyKAoLdpk+cLtwYNGmRCkl8MHDjQY83GjcH1gf+OHTtUW1vrsc7MY92pUye1adPGY12wHWsAsEJl5R6tWfeZ6htqrI7ikx1Zy5S5YwkX9wMAEKJqaveG3GpTe4rStbsw+FdTgn/U1VUpLSO0znFJysvfoLK9u6yOARM4nY6QPIf9KS1jIauIhrg9lcWauT70GpzmbV2g7NI8q2MgQGQUZembEGv++HbbQm0vzLQ6BgKEy+3StGWfqLo+uD4fb05lXbWmL/uUz85xwKb8bfoxxJo/Zm/6VlkluVbHQIBwupz6708fq66xzuooflNas1cfrpzJazkOWJ2zQct2rrE6hl99vnaO8ssD/8bJAAAAAI6MxkQAQW/nTs934+7fv78JSX7Rr18/jzX5+flqaGgwIY1/eHOcJfOPdd++fT3WeJsdAMJVVXWx1m6YqcYg/UFdTt5aZe5Yyg/lAAAIMW63S1u3fSeXy2l1FL9Lz1younrudh7u3G63tqX9IKczeD4f8sW27d/J6Wy0OgYMlpO7Rva6CqtjBDS7vUI5eaF10SB+4XK79O7yT9UYgq93LrdL05fNCInVZnB0GhwNmr5shtwKvc/e3l3+aUg1L6DlFqQvU0ZR6K1yvK0wQ0t2rLQ6BgJAbYNd76/43OoYfud2uzVt2YyQfC8G383bukC5ZflWx/C7tXmbtDpng9UxEAAq7VX6aPUsq2P4ncPl1PRlM+QMwZ8DAAAAAOGCxkQAQc1ut6uw0PNdk7xpXvMnbxoTXS6XcnJyTEjjH1lZ3v0wrk+fPgYnacqbY+1tdgAIR7W1e7Vu/Uw5HPVWRzkqOXlrlJ272uoYAADAj3Lz1quicrfVMQzhcDRoe9oP3FghzBUUblVpWfB8NuQre12lMnaE1mocaMpur1B27iqrYwSF7JxVstsrrY4BA8xPW6rM4myrYximoGKPvtr0vdUxYLGZ6+equLrU6hiGKK3Zq8/XfW11DFisuKpUM0P4PPhszRyV1ey1OgYsNmPNbJWH6PvRwsoizd74ndUxYLH8vbs1J4Tft360epYq67jJWThzu936YNVM1dTXWh3FEDlluzRv60KrYwAAAABoIRoTAQQ1bxv7unTpYnCSpjp37uxVXTA1zGVnZ3usSU5OVlxcnPFhDuLNsQ6m4wwAZmpsrNO6DbPU0Gi3Oopf7Nj5k3YXbrc6BgAA8IOa2r3akfWT1TEMVVKard2F26yOAYvU1VUpPWOR1TEMtyt/g8r27rI6BgySlrkoJFe1NYLL5VR6JhfYhZo9lcWatX6u1TEMN2/rAmWX5lkdAxbJKMrSj2mhfaOBRRnLta0ww+oYsIjL7dL05TPUEMKrrdU56vXu8s+4MU4Y25S/Tct2hvaNHb/dtlBZJblWx4BFnC6npi0P7dXWaupr9dHKmbyWh7FVOeu1Pm+z1TEMNWfTd8ov97w4AQAAAIDAQ2MigKCWn5/vVV2nTp0MTtKy+XbtCp4Ls7w51mYfZ2/nLCwslNMZuh9CA0BLpWcukr0utO6Quz39R9XVVVkdAwAAHAW3262t274Li2aX9MyFqq+vsToGLJCxY4mczgarY5giLf1Hud0uq2PAz0pKslRSstPqGEGluGSnSkq5gVoo+XTNbDWGcCPLfi63Sx+tmsVF0GGo0dmo6ctmyK3Q/7t/b/lnqneEx3szNLUwfbkyikL/6/O2wgwt3cFK1+HI3lin91d8bnUMw7ndbk1fNkMOp8PqKLDAt1sXKrfMu2uHgtnavE1am7vJ6hiwQFVdtT5e9YXVMQzndDk1bdkncrn4HBEAAAAINjQmAghqpaWlXtV17NjR4CRNpaamKiLC80tsWVmZCWn8w5tjbfZxlrxrTHS73dq7d68JaQAgeBSX7AzJFXqczgZtS/uBi+UAAAhixSU7VVG52+oYpnA4GpSdG9qrFuBQdXVV2lMUPqvy1NSWqbQsx+oY8COn06G0DFb/a4m0jIVycrF0SNhdsUebCrZbHcM02aV52lGcbXUMmGxJ5koVV3v3c7hgV1qzVwvTl1kdAyZrcDRq9qZvrY5hmi83zqNpKwz9mLZU5fbQukHlkeyuLNKyrDVWx4DJahvs+mbLfKtjmGbm+m/k4uZPYefbrQtV01BrdQxT5Jbla03uRqtjAAAAAPARjYkAgpq3jYlt27Y1NsivREREKDEx0WOdt/kDgTdZzT7OvswZTMcaAIzW2FinbWmh+0O60rIcFezeYnUMAADQQrvyN1gdwVQFu7fKweosYSW/YLMUBisPHWxXPhcUhZKc3DWy11VYHSMo2e0VysnjYulQsChjudURTLeApq2w4na79WP6T1bHMNXCjGVc6B9mVudsUE19eFzkL0kV9iqty9tsdQyYyOlyamF6eL1nWZD2EzeuDDPLd64Jq1WPi6tLtbUg3eoYMFGDo1FLdqy0Ooap+N4TAAAACD40JgIIat6uONi6dWuDkxzKm8bEYFox0Zus3jxnf/N2zmA61gBgtPTMRWpoqLE6hqHSMxerrq7K6hgAAMBHNbV7VbY3z+oYpnI6G1RYlGZ1DJjE5XIqf3f4XQxcUpotu51GtlBgt1coO3eV1TGCWnbOKtnDZNWaUFXvaNBPO8OvwXRt3iZV2vmsJVyk7dmhPZXFVscwVUl1GRf6h5mFGeF30Xs4PudwtjF/m8rD7PuwXeW7tbMkx+oYMInb7daCMHxdC8fnHM5W52xQbYPd6himyizOUv7e3VbHAAAAAOADGhMBBLXKSs8XcLRq1UoREea/3CUlJXmsqagInh8EeHOsrWhM9OY4S8F1rAHASCWl2dpduM3qGIZzOhu0PT10V4UEACBUheuqart2beSO/mGiqHiHGhrCZ1WWg+0q2GR1BPhBWuYiuVxOq2MENZfLqfTMhVbHwFFYmb1OdY11VscwndPl1JIdNCaHi4VhukoJF/qHj+zSPGWXhtdNcSQpoyhL+eWFVseAScL2tTxMn3c4CscbKUjS5vztKqnmxtzhIlxvKrAwI7xW/AUAAACCHY2JAIJaQ0ODx5r4+HgTkhwqLi7OY403+QNFoB5rb46zFFzHGgCMtDMrfH54UVKarYoKLrIAACBYOJ2N2l241eoYlqiuKVFFJXeBDge7CsKz+VaSCnZvldPpsDoGjkJJSZZKSnZaHSMkFJfsVElpltUx0AJutztsL/KXpMUZy+VyuayOAYPtrS3X+l1brI5hCS70Dx/h/Foezs89nBRWFmlbYYbVMSyxNnejKuuqrY4BEyxI/8nqCJZwy63FGSusjgEThOuNFCRpedYa2cPwhkAAAABAsKIxEUBQ86bZLDIy0oQkh4qKivJYE0zNcoF6rL05zlJwHWsAMEpFZaEqq4qsjmGqcL7wGwCAYFNYlC6HI3y/d9uVz2pyoa6urlLl5flWx7BMY6NdpWXZVsdAC7ndbqXvWGx1jJCSnrmY1XKDUEHFHuXtLbA6hmXKasuVXkSDcqhbkrlKLnd4NqC65dbiTC70D3W1DXatyllvdQzLLM9ao7rGeqtjwGCLwrhpyeFy6idWeQ555bUV2rArPG9wJklLdqyUg5s/hbxFYbxqYL2jQSuz1lkdAwAAAICXvOvmAIAA5U2zmbeNa/7mzbyNjY0mJPGPQD3W3s4ZTMf6aI0dO9ay8x6/2LIlPO8ojcC2Kz/8mvT2FKWrf99xiomxZgVlAADgveLiHVZHsFRxyU653W7ZbDaro8Ag5RXh28iyX3lFgVI79LM6BlqgorJQtbV7rY4RUmpr96qislBt23S2Ogp8kFnESpeZxVka1InX8lC2IUxXS9xvw66tuvC4SVbHgIG27k5XYxg3c9Q7GpS2J1PDuw21OgoMFO6v5et3bdHEoROsjgEDbSrYHrY3UpCk6voa7SjJ0cCOfa2OAoO43e6wbr6V9r2Wjx8wxuoYAAAAALxA1wKAoOZweP6hEY2J/hGox5rGRADwTkOjXXuK0q2OYTqXy6mCwq3q1eN4q6MAAIBmuN1uVVbtsTqGpZzOBtXW7lWrVslWR4FBKivNX73c7ZaKG6WddqmkUWp0S9E2KSVa6hMvdYiWzOyFDbcV3ENJfX211RGOKNDOc18E8nHF4eWU7TJ9Trckl2LUqHi5FC23ImSTSxFqVLTsilCDzDzFc8vCd/XfcNDgaFR+eaHVMSxVWFGkusY6xUXHWR0FBskuzbM6guWySvJoTAxh1XU1KqkuszqGpfLKCuR0ORUZEWl1FBgku4TX8uySPBoTQ1hJdZmq62usjmGp7NI8buQHAAAABAkaEwEENW+a0pxOpwlJWjZvMK1qFxUV5bE50Ypj7e2cwXSsj9aSJUvUoUMHq2MACDC7d2+Ty2XN10Sr5edvVM/uI/mhBQAAAay+oUYNDbWmzxtozSyVVUU0JoYws5vyShulZRVS0WHu1VTUKG2tlVKjpTFtpPbR5mSqqirmgqIgFRvb2uoIhxWI57kvAvW44sjMbkx0Kkp1aiuXLfYwj8WqUa0V4a5XnMoVKXNW/8opNb85E+bZVV5gyepDgdSA65ZbuWUFGtCxj0kzwmw0mdNkHuo4xyWHy6GC8j3qntzFxFlhJs5za44BzGPF1+pAO8drG+wqrdmrlNZ8Xg4AAAAEuvDp0gAQkmJiYjzWeLPSnxG8WaHPm/yBIiYmxuOxtOJYe7sSYjAdawDwN7fbrfyCTVbHsIy9rlJlZblq376n1VEAAMARVFmwilogNrNUVRWpc6dB5kwGU7ndblVVF5s2X26d9ONeydOtSYoapTkl0oR2Ug8TFgVyOhtUay9Xq4R2xk8Gv2qT1EkJCe1UW7vX6igHBOp57q2EhHZqk9TJ6hjwQaOzUQXl5q3w7FCc7Er2eJcEly1Wte5UxatMUaozPFe5vVIV9iq1iU80fC6YL6fU/AugA7EBN7dsF42JIcrldim3rMDUOQP1HOeGIaErx+RmlkA8x6V9TVs0JoamRqdDBRXmvS+XAvM8p8k8tHFTnH1yynbRmAgAAAAEgQirAwDA0YiO9nxloFWNid7MG0zNcoF6rL2dM5iONQD4m91erlp7udUxLFVSlm11BAAA0IzKKnMvJsqt29ekcrimxIPtb2bJNf4af0nmHweYp9ZeLqezwZS5Shu9a9baz6l99aXe3fvpqFnRiIyjZ7PZNKDvOKtjHBDo57k3BvQ7hWaAILNr727TVpJzKsqrpsQDbDbZlSynSfekzWV1lpBl9t+tQ3GqVephL4A+mMsWq1qlyiFzOsxZgSh0FVeVqq7RpG/wFLjneFV9jfbWlpsyF8xn5mt5oJ7jEq/loSy/fLecLm+/Gzx6gXqeF1eXqrbBbspcMJ+ZjaeBeo5LUk4pr+UAAABmKC0t1Zw5c/Twww/r4osv1gknnKAuXbqoTZs2ioqKUkJCgjp27Kh+/frpjDPO0B133KE333xTO3bssDo6AgQrJgIIarGxzX8oIkl1deb9cMnXeYOpWS5Qj7W3cwbTsQYAf6vkwl9VVnKRPwAAgayy0rz3Ky1pZpm/VxqRKLWO3LfN7f7591/VHunP7l896P7V7/vZagtVvH3dz4+5D8zT9M/uX8a59/23W279/L+fN7sPs4+fa3+1j4Nrm+zjwJ9/mXf//x+8D/dBIQ+Xscmf3e7D7L/5fRyav2ntgX0cFP7QfRw85lfP+ZCMB20/zDE+3D48HWO53Wpw1Gv/RxiHnCeHOTc8/vcRzie3W2pwS762zTglfVkiRevwPTD+7J2KLP5ekZELD/9gC+extWBgi6ZqwYFo6aFryXMyY0hDY6RcLbwA1F+nkdst2V0tO89nl0jxEf45p3/9b9mXQRGRkfpi8Q+Gz+P7MN8HtiyfSfOoZc/pSEManI2ql/GrXO6bvgUnqs2mWneqJNdB/958ff776j3N/PqKRWoTt/ZAxv3/b7P98t8/RzrwemY7uPbn7bb9RT9vt+17oNl9HJztlz/bDhyuX/ZhOzDXge2/GvPL/g/Obzt0/wdn+HmQz/tokvFXtQdl/PV8h9vHQY/4fIwPn/GXP6/bna8GtdKRHfmcOvx5c+R6lyLVoCTfGnDdyYpRhSK8fjffMlv2FGhlXqahc8AamUVZajTpYvp953ibgDzHJem79HXqndLD8Hlgvm1Fu005zwP9HN9UuIvX8hC1pSCN1/Kfzdu+Wl3bdTZ8HpjM7VZayZ6Afi1PUJEpKyeyMigAAKHnuuuu0/Tp062O0cQzzzyj+++/3+oYpquqqtJ7772nTz/9VIsWLZLLdeSfvNntdtntdhUVFWnHjh364YdffsbVv39/XXrppbrlllvUrVs3M6IjANGYCCCoJSYmeqypqamR2+02/e7TVVVVHmuSkpJMSOIfiYmJKipq/kJRb56zv3k7ZzAdawDwNytW3nG7peJGaaddKmmUGt1StE1KiZb6xEsdov17cbMnVdXFcrlciohg0XgAAAJRbW2ZKfO43dKyCu+bEvdzSVpjyre8Li1bu8iMiYBDuCU17P+Pwz3oLy6H5DD+wiXgcFySasxZ8K55LqfUWG11CrSELdLqBM2z2SRFHvXLtqfx5XV1KrfoppAwWoRka2t1iCOz2dSgtoZPU1gnTV38leHzwCK29lYnODKTznFJ+mLbJkmbTJkLZouTbOatZuUTE8/x3Go3r+WhjNdySdKnm9eaMg+skOi/Ozz5m82mOndbJajE8Ii7K7j5MAAAgL/t3btXTz75pN58801VVlYe9f4yMjL0+OOP6+mnn9bFF1+sp556Sj179vRDUgQTrsoFENSSk5M91rjdbksa5rz5Yu1N/kDhTVZ/vEHxlbdzBtOxBgB/M3vFxNJG6atSaU6ptLVWKmqU9jr2/b61dt/2r0r31ZnF5XKY1vAAAAB81+ioN2We4sZ970kAAAAAAAAAAIDvXLZYuRRt+Dz2Rm6IAwAA4E//+c9/1L9/fz3zzDN+v+bf4XDo448/1uDBg/X444/L6TR+FXkEDhoTAQS19u29uwtaRUWFwUmacrlcqq72fMdrb/MHAm+ymn2cfZkzmI41APjTvgb9YtPmy62T5pR4vuC/qHFfXa6JP0swu0ETAAB4z+Uy50PpnXZTpgEAAAAAAAAAIGQ1KsH4OZwOw+cAAAAIB+Xl5brwwgt10003qbS01NC57Ha7Hn74YZ111lkqLjbvulVYi8ZEAEHN22azPXv2GJykqeLiYq86/YOpWc6brGYfZ0kqLCz0WGOz2dSuXTsT0gBA4Km1l8vpbDBlrtJG6ce9krdtBU7tqzdr5cQqGhMBAAhIbrdbLpc5FxiUsFoiAAAAAAAAAABHxYwVE11ul5wm3dQQAAAgVOXm5mrUqFGaNWuWqfPOnz9fxx9/vHbs2GHqvLAGjYkAglrXrl29qvOmec2fvJ3P2/yBwJusZh9nb+fs2LGjoqKiTEgDAIGntnavKfO43dKyCu+bEvdzat84t9uIVE3VmHQsAACAb2w2m2w2mylzNZrwngMAAAAAAAAAgFDmNunSY5vM+dkBAABAKNqxY4fGjh2r9PR0S+bPy8vThAkTlJ2dbcn8MA9dGgCCWq9evbyqKygoMDbIr+zevdurut69exucxH+8OdZlZWWqr69XbGys8YF+5s2xDqbjDAD+5nSasyxQcaNU1MKpihr3jU+N8W+mXzPrWAAAAN9FRESZ8rU6mmsYAAAAAAAAAAA4Kja5DJ8jMiJSERGsvQIAANASpaWlmjRpkvLy8nwal5iYqHHjxunYY49Vz5491bp1azkcDpWXl2vHjh1auXKl1qxZI6fTuyUs8vLydOaZZ2r16tVq06ZNS54KggCNiQCCWnx8vDp27Kg9e/Y0W2f2MsCZmZkea2w2m3r27GlCGv/wprnP7XZr586dGjx4sAmJ9vHmWNOYCCCcOV0OU+bZaT+68Vl1xjcmukw6FgAAwHdmNSamRLf8ZgoAAAAAAAAAAECKkAk3Gozg8mYAAICWcLlcuvjii5WRkeH1mJNOOkkPPPCAJk+erJiY5i/kLCoq0vTp0/Xss8+qqKjI474zMzN17bXXatasWV7nQXDhnTuAoNenTx+PjYm+fGH1B2+a5bp27WrqyoJHq0+fPl7VZWRkBFxjorfZASAUuV3e3ZnmaJUc5c8dihv8k6M5LpOOBQAA8F1MTIIaG4/yTgde6BMvba09un3Yfv6lg34/8Jjt0NrD1jVTHxMTL5st4ud5bAceOPBn20Hbte/GR7aD/vvA/n/evn+Mfv5v24H9HbSXA/uwyWY7OO/+P9sOs//D7+OXjF7so0n+/Y83fZ6/7L/pPg7d/y//vf+5Nqk95Bgcbt5D8/464y/7/1XtEY7xfnX1VdqzJ63Jcz/oqR1+ewvOJ7d73zle3YK3vq0jpWEJh87bEu5mHktN6avk5O6HjmluUItn89eIfTfkMou7Jc/JpHi/zuZyuZSbt1aNjXUGzHWE7W5pe61U04Ib87eKkAYd5jw3ckHd6Og49eg+8sAd/m2GzvaLlv5bNi+f7/O0PFkL5jrMkF17d2tx5ooWp/CWW1KjWstt8/3HuDa3Q9GqbvI17tf7bma01/MM6zJY3dp1Pmi/bv38v19eJ9z7/nvf65P7wPz7/7zvv91N9nHwY/pVrdwHbT94vmb28ctDTedrmvHg/bkPmbfp/pvu49f7b7KPgzLv3783+/j1Mfj1Pg49Br8cn0P3f+jxaTLmoMz791FRV33ELypun/8teaj3x5sOAAAAAJaI1lF+0O6FpPjWhs8BAAACj5k/kwtV//rXv7RgwQKvatu0aaMXX3xR1157rdf7T01N1Z///GfdeuuteuCBB/T66697HPPFF1/opZde0p133un1PAgeNCYCCHrHHHOMli1b1mzN9u3bTUrj/XzHHHOMCUn8p2/fvoqPj5fd3vyFotu3b9d5551nSqbCwkJVVFR4rAu2Yw0A/mSzRZgyT+NRfh5wtOO9YdaxAAAAvktsnaKamlLD5+kQLaW2cNXE1GjpnPbGXj8dG9NK406+0bgJYBmHo14LFqeZMlfnWGlOieRLb2KkpNPbSe2jjUr1i+MHHqd27boZPxFMU9IxRes3fWnqnN3iWnaen5Fsznl+sOOOPVsp7XuZOykMsbe2p1ZkzjdlrijVq9ad6tsbD7db8SpVpBzGBfvZZcN/o+7JXQyfB+Z75tvXlVmcZfg8bkm17hS5bL7fwDPCXa94lRjaRt07ubsePPt2A2eAVTYXpOmVhe8YPo9bkl2Be45L0j2n3aSBHfsaPAus8M+vX9Suit2GzhEM5/jgjv1012l8xhKKVuVs0Ns/fWT4PMFwnj808Q71aNfV4Flghb9+8bRKa/caOsfRnuNmrJjYrR3fdwIAAPhqx44d+vvf/+5Vbc+ePfXNN9+0eEGi1q1b67XXXtOoUaN04403yuFo/ucTDz/8sC6++GJ16cL7vFBDYyKAoDdixAiPNWlpaaqtrVVCQoIJiaS1a9d6rBk5cqQJSfwnMjJSxx57rFasaP6O0N48d3/xdq5gO9YA4E8REea85Y8+yp+sHe14b0RE8u0PAACBKrF1qgr3GN+0ZbNJY9q0rJllTBvjF3VJTEw1dgJYJioqVgnxbVVrLzd8rvbR0oR20o97vTvPI7Wv3qxmrcTEDuZMBNOkpPRWSkoflZTsNG3OQD/P9+uQ0oemxBDSNr6NEuNaq6qu2vC5IuVQvMpkdyd79wbE7Va8ykxpSoyKiFKXth0NnwfW6Nm+qymNiTZJcSpvUQNunMpl9O3HerbvdmClW4SWXindTVkbONDPcUnqxXkesnq276p8gxsTg+Mc7845HqJ6te/Ga7mkqIhIdWvbmfM8RPVq301lBjcmHu05bsa/w57J3NwMAADAV3/5y1/U0NDgsa5jx46aP3+++vTpc9RzXnvttYqMjNTvf//7Zuuqqqp033336aOPjL/ZDMzFd6YAgp43TWcul0vr1683PoykvLw8FRcXe6zzpqEy0HhzrM1sTFyzZo3HmsTERPXty90+AYSviIhIU+ZJOcqLOzvE+CdHc8w6FgAAwHdJSeZd3N4+Wjo+0ft6M5tZkmhMDGlmNp72iJPOTdm30mdzUqP31fWIMydXQnxbRUX5fhd2BL6B/U6RzWbu91yBep7vFxERqQH9xps7KQxls9nUM9m81UiiVKcEFSnCXd9sXYS7XgkqUpTqTMnVrV1nRfIZS8gy88Lf/Q24cru9G2BiA27P9lwAHaqS4lqrXUJbU+YK5HM8NbG94mPiDZ8H1jDrNSyQz3FJ6tGeVeRCVYfE9oqPNucbvEA+z7u07aQobsoasngt36eHid+DAwAAhILNmzfrs88+86p22rRpfmlK3O/qq6/WH//4R491n3zyiTZt2uS3eREYaEwEEPSGDx+u+HjPPzhZvHixCWmkRYsWeVU3atQog5P435gxYzzWZGRkaM+ePSak8e5Yn3TSSbIZvaQFAASwuNjWpszT5yivYehtws8PzToWAADAd4mtzV1BLcnLa3bMbmZJSmT1oVBm9t9v+2jpnPbSue2loa32nc/tovb9PrTVvu3ntDd3BTlWBQ1d8fFt1KvH8abPG4jn+X69ep6o+Pgk8yeGocxerSFSDiWoRAnuIkW7qxXprleEu1GR7npFu6uV4C5SgkpMuyhU4sLQUGf2OR6oDbiszBLaaDLnHA91Zv79Buo5LnGeh7IIW4Sp70kD9TznHA9tnOP7cJ4DAAD45uWXX/aq7oYbbtDEiRP9Pv+zzz6rnj17Nlvjdrv11FNP+X1uWIvGRABBLzY2VmPHjvVY98MPP5iQxrt5Bg0apG7dgu/Dk9NPP92rOjOOdX19vZYuXeqx7swzzzQ8CwAEstatUyQZ36DdIdrzKhVHkhq9b7zREltzETQAAIEqKipGCQntTJuv1um55pxkmrbgX2auDLqfzSalxkijkvY12V7YYd/vo5L2bTf7Xk5WHAOYp1fPE01fNVEKvPNc2teo2bO7+Y2aMF7P9t1Nn9MmKVKNilOFElSiVtrXjBinCkWq0YRPfZriwtDQlpqUotioGFPnDLQG3OjIKHVuw/vyUNaDJnPTjwHM1bVtZ0XYzLscLBDP8VYxCWrfyrzPmWA+s2+WEYjnOTcMCW2c41JK62S1ik0wbT4AAIBgV1dXpw8//NBjXevWrfXcc88ZkiExMdGrfX/yySfKyckxJAOsQWMigJBwxhlneKxZvHixqqurDc3hcrk0b948j3XB2izXpUsXDR482GPdN998Y3iWBQsWyG63e6wL1mMNAP4SGRmtVq2SDZ/HZpPGtJF8vQQ1UvvGmXGhKBf6AwAQ2Nq26WzaXHZX84+3ipQ6xprbzBIfl6TY2FbmTQjTtUnqpOhok5bfDFAd2ve2OgIMFBkZpY4d+lkdIyAM7D9ekZFeLs+LoDKwY1/Tm7YCSYQtQsO6DLQ6BgwUYYtQn5Tm72hthEBqwO3VvrsiI8xvtId5+nUI73NckvpacAxgnpioaNMbWgLxHLdZcYcSmKZfh16mzxlo57kVxwDmaR3bSp2SzP3ZdqCd41Z8XwIAABDMvv/+e6/6JK6++mq1adPGsBznn3++unZt/nMJp9Op6dOnG5YB5qMxEUBI8GY54bq6On3xxReG5li8eLEKCgo81hmx/LFZvMn+xRdfqK6uztAcH3/8sceajh07asSIEYbmAIBgkGRSQ177aGlCO+/XZ4zUvnqzViFKSuxgzkQAAKBFOqWad5F7rYfGxAQLPjXt2JGL/ENdRESkunQaanUMyyS3627qyqiwRr++J1sdwXIdUvoohSbckBUXHatRvcL3M+fh3YaobYJxFywgMJwUxue4xPMPB/1Se6ttfPi+lqW0TlbvlB5Wx4DBwvn9isRreTgY0nmgEmLirY5hmW5tO6tzm45Wx4DBTup1nNURLBXuzx8AAMBXc+bM8aru1ltvNTRHVFSUbrrpJo917733nqE5YC4aEwGEhGOPPVZDhgzxWPf+++8bmsObL5Lt27cP6lX8rrjiCo81VVVVhjaB1tTUaObMmR7rLrvsMu6ECAAyd6XAHnFSey8XhRjfbl+9GRLi2yoqKtacyQAAQIu0M7Fpye5s/vF40z81talbl2PMnhQW6Np1mNURLNOt67FWR4AJ4uISlZwcvhe6R0REakC/8VbHgMFOGTDG6giWGR/Gzz2cnNBzeNhe6B8XHUczSxiIjIjUKf1HWR3DMqf0H60IG5cKhbrRfY5XTKRJd4UMMElxrTWie/h+7x0uYqKidXLfE62OYZnxA8ZwLUwYGNvvpLD9mp3SOllDu3AjPwAAAF8sW7bMY82AAQN07LHG/8z20ksv9ViTmZmpFStWGJ4F5gjP71wAhKSrrrrKY828efO0fft2Q+YvLi7WBx984LHu0ksvVXR08P4Q4MQTT1T//v091k2dOtWwDO+8844qKio81nlzTgBAOEhqbV5joiQ5vKyLNfHnZWY2ZwIAgJax2cxrzvO4YmKkKTEO6JDSR3FxieZOCkskxLdV++SeVscwXWxsa6W072N1DJikV/fjrY5gmV49T1R8fJLVMWCw7u26qG+HXlbHMF3HpA4a1LGf1TFggnC+0H9Mn+MVF83NzcJBuF7oHxURpZP7hOe/73CTEBOvk3qHZ6P12H6jFBXp5R00EdRO6T/a6giW4EYK4aNNfFLYNlpzIwUAAADf1NbWasuWLR7rRo825/uoQYMGqU2bNh7rvv76axPSwAy8ewcQMq6++mpFRjZ/5aDb7dZTTz1lyPwvvvii6urqPNZde+21hsxvJm+ew/Lly7VgwQK/z93Q0KDnn3/eY92gQYN00kkn+X1+AAhGiYmpijTxzrieViDaz1NDgD+1a9vVvMkAAECLde40RBERxl885un9SoLJn5p268pqieEkHFcO7NplmCIi+HFEuGjXrrvi49taHcN0cXFJ6hnGTZnh5tT+4bdy4Pj+rMoSTsaH4TkuSePDtMEhHIXrhf4n9hqu1nGtrI4Bk5za/zdWRzCdzWbTuH7huyJquElNTNHQzuG3oho3Uggvp4bhqvXcSAEAAMB3mZmZcjo9X7Q5apQ53zPbbDadeKLn93Tz5s0zIQ3MwJUAAEJGjx49dPHFF3use++997R27Vq/zp2bm+tVs9zJJ59s2hd1I91yyy1KSEjwWHfffffJ5fJv18mLL76orKwsr+YGAOwTGRmljqmeV7v1B6dbqnd7V+ttA+PRioiIVKpJzx8AAByd6OhYde44yNA53G7J7uFb1XgTV0xMiG+r5HY9zJsQlktp30txceGzoprNFqGuncPvou9wZrPZ1D0MG3AHDThVkazMEjZG9DhGiXGtrY5hmpjIaI3pQ+NtOOmQ2D7sLvQf2LGvOrfpaHUMmCgcL/QP16bjcNU9uYv6pPS0OoaphncdouRWba2OAROND8vXcm6kEE76p/YJu/eoJ/TkRgoAAAC+ys3N9aruuOOOMzbIQYYPH+6xZtWqVSorKzMhDYxGYyKAkPLAAw94rHG5XLrpppvU0NDglzndbrduvvlm2e12j7Xe5PPFddddJ5vN5vGXv1cubN++vW644QaPdWvXrvWqYdNbGRkZ+r//+z+PdZ07d9bvf/97v80LAKHArFVZfGk2NGvFxI6pAxQTHW/OZAAA4Kh17+b5A+qjUe+WPL0NiTfxU9Pu3Y5j9aEwY7NFqG/v8Llwrnu34YqN5WKicNO1yzDFxoZP01Zyux5Kad/b6hgwUXRklM495gyrY5jmrCGnKiGGz1bCzRmDx1kdwVSnDxprdQSYrH9qH3Vv18XqGKbpk9JTvdp3tzoGTHbGIF7LEdqO6TJIqYkpVscwzZDOA8KuSS3c2Ww2nRFmr22nDzrZ6ggAAABBp6CgwKu65ORkg5P4NpfL5dLKlStNSAOj0ZgIIKSMHDlS5513nse6tWvX6q677vLLnE8++aTmzp3rse6EE07Q5MmT/TJnIHjggQe8WjXxoYce0pIlS456vpqaGl122WWqrq72WDtlyhTFxsYe9ZwAEEqSEjsqKdH4H1T50mxo1oqJZjVlAgAA/2jdOkXduhrXnFjrxXuQBJNWTGzdOkVdu7CSXDjq1HGgUtr3sjqG4eLj24RVEyZ+ERkZrSGDwqNpy2aL0OCBp1sdAxY4pf9o9U8N/YbUrm07adLQCVbHgAUGd+qv4d2GWh3DFEM7D9SxXYdYHQMms9lsuuLEC2RT6N8oJsIWoctOOI+b4oShET2GaWDH/2fvzqMsL+s78X/uUlX3Vnd13epumqW76W7optkXAVlEGkVEFI2K4IqQSWJM3H5JzJhxJjkzv8zknGzOcTQeJXMm0Xgm6tHfSSJxdJgAGg1ocNwiIEZWQUGgbtF03Vvr/f1BMLL0fb5Vdff7ep2TPyb11Pf7qQ7T9VT1837eR3d7jI44/ciT45gh+Vr5V/l8Pl53xs91e4yOKOYLcfnpg3PmiOzOOeqMoblc4Lzdz40jN27r9hgAAH3nwIEDmdZVKpX2DvIzpqamMq37+te/3uZJ6ATBRGDgvO9978sUSvvwhz8c//7f//s1vetDH/pQpmfkcrn4wAc+MFD/2LNt27Z473vfm1y3sLAQl156adxyyy2rftfs7Gy8/OUvj2984xvJtSeddFL86q/+6qrfBTDIOhHQW0kwsRONiRsmtsTkhsPa/yIAoKX2HP28KJcm2/LsWoY9yHgHfmuay+XjhGNfHPl8h1KQ9JRcLhfH7r0wisXRbo/SVscfe1EUCiPdHoMu2bRxR2w9fPDD17t2PDfK5Q3dHoMuyOfycdXZV8ToAP89l8/l4+pzrohiodjtUeiCXC4Xb3zuqwe+LbM8Uoorz75soP4Nj+yOPmTnUDSsXXz8BUMTaOCp8rl8vPnsy2NswH/2nBhbF68/85XdHoMuOeGIvXHe0c/t9hht9/KTXxxHaEscSoV8Ia4654ooDvjvkTeOV+I1z7m022MAAPSl2dnZTOs6GUzM+q7/+3//b3sHoSMEE4GBc/TRR8d73vOeTGt/7/d+L17/+tfH/v37V/SOubm5eOc73xlve9vbMq3/+Z//+Tj77LNX9I5+8O53vzv27NmTXDczMxP79u2Lj370oyt+x/e+9704++yz44YbbkiuzeVy8cEPfjAKhcH+ZRzAah265ZgYKZba+o6VtCBmCQWslbZEAOhPhcJIHNempq0sjYmlDvzWdNeOM2Ni4pD2v4ieVRpbH8fs3tftMdpm+7ZTY6qytdtj0GV7dp8Xo6Pruj1G25TGJmLHkad3ewy66JCJTfGq017a7THa5pITXqCtYshNlicGvoXo8tNfHlPjlW6PQRf93CkXx5aJzd0eo22OmDwsXnbScDRZ8+w2r98Yrx7g/UpExBue++qYKK3v9hh00Wue87KYGm/PJWe9YOem7XHRced3ewy66IjJQ+PlJ7+422O01ZVnvybKI+09ywAAMKgajUamdZ28nC3ru771rW+1eRI6QTARGEi//du/Heecc06mtZ/4xCdiz5498Sd/8ifx2GOPNV1bq9XiYx/7WBx77LHxgQ98INPzjznmmHj/+9+faW2/GRsbi0984hOZGipnZ2fj6quvjhe84AVxww03JDdBd999d/z6r/96nHzyyfGd73wn0zy/9Vu/Feef75exAAdTKBRj27b2BvVWEjbMEgpYi7HRdXHolr3tfQkA0DYbp7bFtq2ntPy5qf1KKR+Rb/Pv49evPyR27jizvS+hLxx+2HGxedPObo/RcuXyZOw+6txuj0EPKBbH4oTjLur2GG1z7N4XREGT3NC74JhzYs+WXd0eo+W2Vg6Ll554YbfHoAc8d+dpccq2E7o9RluceMTeOPeoM7o9Bl02WhyNq86+InIxeK2Z+Vw+rjrn8hixXxl65+85O/YeenS3x2iLM3acEs858qRuj0GXlUfLceVZr+n2GG1RzBfj6nOuiMKAt+WRdtFx5w9sA/J5u58bxx9+TLfHAAB6yMzMTFx77bXxO7/zO/HKV74yTjnllNi8eXOUy+UoFAqxfv36OOSQQ2Lv3r1x4YUXxtVXXx1//Md/HDfeeOOKy4oGQblczrSuWq22d5CfMT09nWndPffcE0tLbT5IStv57SMwkIrFYnzyk5+M0047LR555JHk+gcffDDe/va3x2/+5m/Gvn374vTTT49t27bFxMREPP744/HjH/84vv71r694w1Iul+NTn/pUrF8/uLfzPec5z4n3ve99mdsjb7zxxrjxxhtj+/btsW/fvjj55JNj06ZNMTIyEtVqNf75n/85vvrVr8bXvva1zDc4REQ8//nPj9/93d9d7ZcBMDR2HnlG/PjB70WtNtOW568kbDjfiFhsRBTbdN5j7zEXOCAKAH1uz9HPi0ceuTtq9dbtXVL7lfE2X+WWy+XjhGMvirzDRMQTN0Uet/dF8dVb/mfMz892e5yWyOXyccJxF0ehMNLtUegRmzbuiO1bT4n77h+sG083bzoqNm8avDAaK5fP5ePqc14bv/e//lscGJC/y0cLI/Hz574uin6vQjyxX3njc18d//zQXQPz33hERHmkFG8667KO3hJO79q9ZWdceOx58X9u//tuj9JSFx9/wcAGGFiZfC4fbz778vh///Z9Mbc43+1xWmZibN3AN/uS3QlH7I3zjn5ufPkHX+v2KC318pMvisMnD+32GPSAQr4QV51zRfyXz70/FpcXuz1Oy2wcr8RrnnNpt8cAAHrIC1/4wvjyl78cCwsLB11z4MCBOHDgQDz88MNxxx13POVjIyMj8fznPz8uvfTSeOMb3xhbtmxp98hdt5Jg4qGHdubni6whyMXFxbj33ntj1y7/5tbP/GsSMLC2b98en/vc5+JFL3pR5jBhrVaLz3/+8/H5z39+ze8fGRmJT3/603HKKa1vd+g1v/qrvxr33HNP/MEf/EHmz7nvvvvi4x//eEvef9JJJ8Vf/dVfRaHgUCdASqEwEscfe1F8/RufbsvzV9KYGBFRW4qYaMNPJYduOSa2HLK79Q8GADqqUBiJk058aXz9G5+JpaXWHJxL7VfKbf7R8thjXhATE4e09yX0lbGxdXHaKa+Mr3/jM7G4ONftcdYoFyedcElUJg/v9iD0mD27z48Ds9Px6PS93R6lJfL5Quzds6/bY9BDNq/fGO94wb+J//p31/T9Yf9CvhBvPf/NsX3qiG6PQg+ZLE/EL573hvjgjX8WS8v9f3t1PpePX3je62NqvNLtUeghrzz1krjn0R/G9x+6q9ujtMRxh+2Jl588uM3VrNzm9Rvj5899XXzk7/9iRRcE96pivhhvef6bYqI0uJdEs3JXnPGKuG/6gbjn0R92e5SWOHX7ifHi4/3syb86YvLQeNNZl8Wf3/TJbo/SEmPF0fjl86+M8kip26MAAD3khhtuWNPnLywsxPXXXx/XX399/NZv/Va86lWvit/6rd+KU089tTUD9qCsYcNHH320zZOs7l133XWXYGKfa/P93wDd9dznPjeuvfbajjcWjoyMxF/+5V/GS1/60o6+t5t+//d/P975znd2/L3HHntsXHfddbFx48aOvxugX01Vtsb2bae25dkraUyMWHmQMYvRkXLs3XNB6x8MAHTFhoktcepJL29Zw+BsYv/RzsbE3Uc9L7YecWL7XkDfmlh/SJx68s9FPt/fdwkef+yLXBDCs8rn83HqyS+PcmlDt0dpiZ07zoxyeTC+Flpn1+Yj41f2XRXFPm5FzuVy8QvPe32ccMTebo9CDzr+8GPiF859fd83DOYiF1efc0WctPW4bo9CjxkpFONtF/x8HLlxa7dHWbOjNu+IX9l3VRT6+HsS7XHa9hPjyrNe0+0x1iyfy8cvnffGOObQo7s9Cj1mrDga73zBLwxEw+Cxh+2OX3ze6yOfc7yTpzrnqNPjitNf0e0x1qyYL8Sv7LtKuzMA0Fbz8/PxyU9+Mp7znOfEG97whvjhDwfjEpOn27ZtW6Z13/72t9s8yeredd9997VxEjrBT67AwDv//PPjpptuiqOOOqoj79uyZUtcf/31cdlll3Xkfb3k/e9/f7z//e+PYrEzh+he+tKXxs0339yxWmmAQbL7qHOjXJ5s+XNTB/2fsb4NF6wfu/eFMTpabv2DAYCumZraFief+LLI5dZ+qLKW2H+U2/Qb0507zoydO85oz8MZCJXJw+M5p7wyCoXRbo+yCrk47tgXxRGHH9/tQehh+XwxzjzjdX0fwC2XJ2PH9tO7PQY96rjD9sTbLvj5GC2MdHuUFSvkC/GLz3tDnH7kyd0ehR52+o6T48qzXhO56N9w4uvPfGWctes53R6DHlUeKcW7XvCLcUQfB1q2Tx0Rb7/g52Os2I8/V9AJzzv6zLj89Jd3e4xVy+VycdU5V8Sp20/o9ij0qPWldfGuF/5iHLJ+U7dHWbWjNu+IXzn/qhjpw58r6IwLjz0vXnHyi7s9xqoV8oX4pfPeGMcdtqfbowAAQ6LRaMRf/uVfxoknnhgf+9jHuj1Oy2XNSHz1q19t8yRPaDQa8bWvfS3z+kceeaSN09AJgonAUDjxxBPjlltuiTe+8Y1tfc8ll1wSX//61+O8885r63t62Tvf+c64/vrrY+/e9t2oXC6X47/8l/8Sn/3sZ2NysvWhGoBhUCiMxAnHXhTRwkNEy42I+kqDiS1uTDzs0L0aWgBgQG3etCtOPfkVaw60JBsT21AocfRR58bRu85p/YMZOJXK1jj9tMtiZKR/LtrI5fJx0gmXxNbDHQolbXSkHCcef3G3x1iTvXv2RaHQ3+FK2uv4w4+J/+fCX4rySKnbo2Q2UhiJXz3/qjhjxyndHoU+8Lyjz4yfP/e1fdfek8vl4qqzr4h9x9iX09z60rr4jYveGjs2ZrtpvpccvXlH/PqLfjnWjY13exR63IuOfX688bmv7rug+ZNBlrMFzEmYGp+M33zxr8QRk4d1e5QVO/aw3fGuF/5ilEbGuj0KPe5lJ70oLjvtZd0eY8We/Pnz1O0ndnsUAGAIzczMxFVXXRW//Mu/HIuLi90ep2UOOeSQOOKII5Lrbr755g5ME3HHHXdEtVrNvF4wsf/1178WAKzB1NRUfPzjH48bbrghTj+9tTdaH3PMMfHpT386Pve5z2WuQx5kz3/+8+Pb3/52/N7v/V5s3LixZc/N5/Nx2WWXxXe/+91473vfG/m8b2MAa1GpbI29e/a17HlzyxGNFX5OrYXBxImJLXHsMS9s3QMBgJ6zaeOR8ZxTXx0jxdUd9F9YjlhMbFha25iYi73HXBC7dpwZuVx/HfajezZMbIkzn3NFTKzf0u1RksbG1sdzTnlVHLrF7eZkt+WQ3bF5065uj7Eqh2w+qm9np7OOPmRn/NsX/2pfNG5tXr8xfuNFvxwnbj2226PQR87a9Zx46/lv7psWn2K+GG85701x7tEazMlm/di6+LUXvSX2Hto/l+CdcPjeeNeFvxTjo/1zyQnddf6es+PfPO91Ucy34YamNhgrjsav7rtauzOZTZY3xLsvemvs2nxkt0fJ7LTtJ8bbL/h5oUQye/Hx++LKsy7rm0tDxkfL8a4X/qKfPwGArrvmmmvipS99adRqtW6P0jJnnJH+3edtt90Wt912W9tn+cxnPrOi9YKJ/a8/fiIBaKELLrggbrnllrjxxhvj8ssvj/Xr16/qOaVSKV72spfFtddeG7fffntcdtllLZ60v42Ojsa/+3f/Lu6777740Ic+FGeeufpDmEcccUS8613vijvuuCM+/elPx65dDv8AtMr2bafEUbvObsmzVtN+WFtqyatj3fjGOO3kV0axONqaBwIAPasyeXicdebrY+PUyg8VZdmvtKoxsVyajNNPuyy2b9U8xMqNj1fizNOviKN3nRO5Hj1YdMThx8c5z31TTE25pIuV27tnX+T75AD0k/L5Qhyzu3WX+zD4jqgcFu+95F1xyQkv7NlDohccc2789kt/ra8Oa9M7Ttl2fLz3knf2fKvc9qkj4t+95B3xnCNP6vYo9JnySCne9cJfiJeffFHP/j0eEVHMF+KVp7wk3nbB1THm9+Os0HN3nhbvufhtsbXS261yuzYfGe+95J1x4hF7uz0KfWbd2Hj8xoveGi85/gU9fWnYSGEkrjj9FfGW57+pby5+oHect/usePdFvxKHTmzu9ihNHXPoUfHvL3lX7NnizBcA0Buuu+66uOyyy2J+fr7bo7TEi170okzrPvzhD7d1juXl5bjmmmtW9DkzMzNtmoZOyTUajZWWmgAMlPn5+fjSl74UX/nKV+LWW2+N22+/PR5++OHYv39/zM7ORqlUiomJidi4cWPs3bs3jj/++DjrrLPiwgsvjPHx8W6P31cefPDB+MIXvhDf+MY34tZbb40777wzZmZmYv/+/bG4uBjr16+PiYmJ2Lp1axx33HFxwgknxAtf+MI47bTTuj16z/rJT34SW7Y8tUHhoYceikMOOaRLEwH9qNFoxD/f+ZW4596vr+k599Ujrpte2edsG4t48RrLdcfLlXjOaZdFaWx1lw0AAP2p0WjEAz/6btzxz38fS0vZ/rHgx3MRn3u0+ZrXHBKxobi22bZvOzV2H3VuFBwkogUef/zh+O5t18X+xx/q9igR8URL4nF7L4zNm3Z2exT63J13fTXuvPvmbo+R2VG7zo6jdp7V7THoU3c/cl989KZPxQMzD3Z7lIh4oiXxzWdfHnsPPbrbozAAlpaX4n/f+sW49jvXxeJyi24ha4FCvhAvO/HCeMkJL4hCn4Xh6T33TT8QH73pU3Hf9APdHuUpdmzcFlefc0Uc0eOhMnrf4tJi/O0//V18/rs3xHJjFbdQtkkxX4yfO+XieNGxz498vncDwvSHux6+Nz5606fiR4/1xu9XnrT7kJ3x5rMvj0M3OOPB2swvLsTffPsL8X9u+/toRO8cCR4rjsarT3tpnL/n7J6+7GEQOEMGQD+4+uqr46Mf/eizfmx0dDROO+20OOGEE+KEE06IE088MQ4//PDYsGFDTE5OxsTERCwsLMSBAwfiRz/6Udx7773xzW9+M26++ea4/vrr48CBA6ue6c/+7M/W8mX1hDvvvDOOPjr9O/9KpRL33XffqoudUj772c/GK17xihV9zqtf/eoVtyzSWwQTAaCP+aUS0CqNRiPuvucf4wd33bTqZ9wxG/HlFV5es6kY8XNr+Ctr/frNcdopr4yx0XWrfwgA0Nfq9cfi1tv/Lh6dvje59s5axI3V5mvefFhEcZUXqJdLk3H8cRfFVGXr6h4AB7G8vBT33Pv1uOuer8VyFw/8H3H4CXHM7udHsTjWtRkYHEtLi3Hz1z4etXrv34JaLk/G2We+KQqFNSbXGWoLS4vxt9/5P/G/b/tiLHXp7/JcLhf79pwTrzr1kiiN+Luc1nqg+uP485s+Ffc8+sNujxLbp46Iq895bWybOrzbozBAlpaX4n999/r42+/8XdeDW8V8IS496aJ48fH7BG9pqXsf/WH8+U2fivurP+72KLFr85Fx9dlXxGGTW9KLIaOFpYW49tv/J75w243R7SOTI4WReNWpl8QL9p4rrEVL/eAnd8dHb/pUPLj/4W6PEsccelRcdfYVsXn9Gm8qJhNnyADoB08PJu7cuTNe8pKXxCWXXBIXXnhhrFu3ujOAc3Nz8dd//dfxoQ99KL74xS+u+PP/+3//7/ELv/ALq3p3LznrrLPia1/7WnLd29/+9vjABz7Q8vfPzs7GqaeeGt///vdX9HmXXnppfPazn235PHSOYCIA9DG/VAJa7Yf3fzu+9/3V/WPcN/dH/N/HV/Y55XzE6w9d8asiIqIyuTVOOenlMeIgHQAMvUajET/68W1x591fjXr9sYOu++6BiK8e/MMxkou4chVFE4XCaGzfenLs2vlcLYm01dzcgbj/gX+K+x/4TszNr+7Wz5UqFEbj8MOOi+1bT4516xwiorUefviu+OZ3/qbbYySdevIrYvOmXd0egwHx6IFqfOn7N8eXf/C12F9f4S9SVml8tBznHnVG7DvmnNgysbkj72Q4LS0vxQ3f+0p84dYb47EO/ff9sybG1sVFx++LFx37fGEt2uaH0z+K/+8bn4vv/uh7XXn/SUccG68+7aVaEmmbxaXFuO62L8V1t38pDszNdvz9lfKGuPiEF8QFe87Rkkjb3P3IffH/feNz8b0Hf9Dxd+dyuTht24nxqtMusTenbeYXF+Lzt94QN3zvKzE7X+v4+zeOV+JlJ10Y5x59puBtBzlDBrTC2S95R7dHGCo3f771wbBed/XVV8cnPvGJuOyyy+Itb3lL7Nu3r+XvuOGGG+Ltb3973HrrrZk/Z926dXH77bfHtm3bWj5PJ/2P//E/MgUsc7lcXH/99XHBBRe09P3vete74r/9t/+24s978YtfHF/4whdaOgudJZgIAH3ML5WAdph57Mdx623XxYHZR1f0eTfNRNy2wn+jzkXEVYdF5FfQSpTL5eOonWfFjiPP8I/SAMBTNBrL8cgj98R99387Hnn07md8/B8fi/hOkyzXZCHishVcxL9+/ebYvvWUOOzQvQKJdNTy8lI8/Mhd8cP7vx2PTt/XlnesX7c5tm09OQ47dG8Ui6NteQdERHzzO5+Nhx++s9tjHNQhm4+KU056ebfHYAAtLi3GN+77p7jxjpvin39yV1vesWPjtrjgmHPjjB2nxGjRXoXOefK/7y9+/6b4/kPt+e/7Z+0+ZGfsO+acOG37STGi3ZYOefCxn8QXv39z3HTnLW0/8L9udDzOPfqMOH/P2UIsdMzC0kJ8/d7vxBfvuCnufPietr9v76G744JjzolTth0vXE7H3F/9cXzxjpvi5ru+HnOL821918TYujhv91nx/N1nxab1U219FzxpfnE+vnb3N+PGO/4h7pt+oO3vO+HwvbHvmHPipCOO9e/4XeAMGdAKgomdNYzBxC9/+ctx3HHHxaZNm9r6nrm5uXj3u98dH/zgBzN/zhVXXBGf/OQn2zhV+9Vqtdi9e3c88EB677dt27b4h3/4h9i+fXtL3v2Zz3wmLr/88lUVYrzgBS+I66+/viVz0B2CiQDQx/xSCWiXpaXFuOvur8bd9349IrL9yHD9dMTd9ZW/63VbIsYz/hvzxMSWOOHYi2L9eocvAIDmZmszcf8D34kHfvTdWFh4YpPypWrEPzc5L3rYaMRLE/8GkssV4tAtu2Pb1lNicsNhkcut4IYFaIMDBx6NHz90R8zM/Cj2P/7QT/97X6lCYSQm1h8SGzYcGls2747JycP9901H1GozcdPX/iKWl5e6Pcoz5POFOOe5b45yeUO3R2HA3T/9o7jl3m/HnQ/fE/c+ev+qAy6l4lgcuXFr7Nx8ZJx+5Emxc1NrDhTAWjx54P+rd/3fqC/Otey5Y8XROGvnabHvmHNj29ThLXsurNSTB/6/+P2b4t5H72/ps3du2h779pwjYE7X3fvoD+OLd9wcX7v7GzG/tNCy55ZGSnHOUafHvj1nx+GTh7bsubBS9YV6fPWub8SNd9wUD8z8uKXPPvqQnXGBCxToskajEXc/cl/ceMdNccs934rF5cWWPdsFCr3DGTKgFQQTO2sYg4md9oEPfCDe+c53Zl7/rW99K04++eQ2TtR+H/nIR+Ktb31rprV79uyJ//W//lccffTRa3rnpz71qbjyyitjfn51F75cfPHF8fnPf35NM9BdgokA0Mf8Uglot5W0J177cMRDq/j36J/bHLEpcaZCSyIAsFrLy8uxf/+D8dj+h+LD3/jHuGv/wSsTjypFXPC0C8tLpQ2xYWJLbJjYEhMTW2Jyw+Ha4+hZjUYj6nP747HHHoz9+x+K/Y8/HAsLtVheXoyl5cWIRkS+UIxCvhDF4lisW7fpp/9trxufilzOXpvuuPOur8add9/c7TGe4ahdZ8dRO8/q9hgMmUajEQ8//mjc8+gP455H74/7p38UB+ZnY35xIRaXF6LRiBgpjMRIoRjjo+XYWjksdmzcFkdu2hpbJjZH3t/l9KiFpYW46+H74t5/+W/73kfvjwcf+0k0Ml6KdujE5jhy47bYsWlb7Ni4NXZtPjJGtJbTY36y/5G465F7495H7497Hv1h3PvoA1HPeHFIeaQUR27cGkdu3Bo7Nm6LXZuPjM3rN7Z5YliZ+cX5uOvhe//l7/En/j5/aP/DmT43F7k4bMMhT/m7fMem7YJa9JRGoxEP7X847nrkX/Ysj9wf903fn7lNcXy0/MTefOPW2LFpWxy1+ciYGq+0d2hYofrC3L/8Xf7Dn+5ZHn48fRYgIiKXy8XhGw6NHZu2PvH3+cZtsXPTNk23PcIZMqAVBBM7SzCxM/7gD/4g3vOe92Ra+6Y3vSn+4i/+os0Ttdfi4mKcffbZ8fWvfz3T+o0bN8af/MmfxOte97oVv6tWq8V73/veeP/737+qpsQn/dzP/Vz81V/91ao/n+4TTASAPuaXSkAnLC0txn0//Gbcd/+3Ym7u8YOu+9RDEY+vouDioqmI7aVn/1gul48thxwdR+08O9atcwgDAFib9/ztx+O+mUcO+vHzjtgaL9+zJwr5YoyNTcTExCExOlLu4IQAw2lpaTFu/trHo1af6fYoP1UuT8bZZ74pCg5KA7RNfaEe9z76QDxyYDrmF+djYWkhFpeXopgvxEhhJEaLI7Fp3VRs37g1yiMH+QUi9LDlxnL8ZP8jcX/1x3FgfjYWlhZjYXEhIvdEyHy0UIzx0fHYNnV4bF6/UbicvlSbr8W90w/EI49Px8LSQswvLcTSU/4uH41D1m+MbVNHRGlkrNvjwootLy/Hg/t/Eg9UH4zZhVosLD7x33kul4vRf7kwZP3Yutg2dURsWjcVuVyu2yPDih2Ym417p++P6QMzMb80HwtLi0/8XV4oxki+GGPF0ThkYnNsnzo8Rl3a17OcIQNaQTCxswQTO+fyyy+PT3/608l1IyMj8eCDD8bU1FRybS/77ne/G6effnrMzc1l/pznPe958e53vzte9rKXxchI8wvhHn744fiLv/iL+KM/+qN44IEHDrquVCpFvZ6+tOu1r31tfOITn8g8K73Hv6YCAABNFQrF2LnjjDhy+3Pi4UfujB/e/+14dPq+p6xpNCJqqwglRkTUlp/5vxsbXRdbjzgpth5xQoyNrV/dgwEAnqZan2368e1bdsX2rad0aBoAnlQoFGPvnn3xze/8TbdH+am9u/cJJQK0WWmkFMccelS3x4C2yefyceiGQ+LQDQ6DM7jKo+XYe+jREYd2exJoj3w+H4dPHhqHT/qPnMG1bmw8jjtsT7fHAABomz/5kz+Jv/u7v4vp6emm6xYWFuKv//qv4+qrr+7MYG1ywgknxDXXXBNXXXVV5s/5yle+El/5yleiUqnEeeedFyeffHIceeSRsX79+lhaWopqtRo/+MEP4mtf+1rccsstsbi4mHzmH//xH8fb3va25Lrx8fHMc9Kb/IsqAACQST6fjy2H7I4th+yOA7PT8cP7vx0/fvB7sbBQi/lGxCpziTH7L5+Yy+ViqrIttm09OTZv2hX5fKFlswMALC4txf65WtM1U+V1HZoGgKfbvHlXbN58VDz88J3dHiUO2XxUbN68q9tjAAAAAAAAsEZbtmyJ3/iN34j/8B/+Q3Lt3/zN3/R9MDEi4s1vfnPceeed8Z/+039a0edVq9W49tpr49prr13T+//Nv/k38eY3vzlTMFHDc/8TTAQAAFZs3fhU7N2zL47ZfX7Mzk7H9398Z8SDX1nVs0YnDo/TT3teTKw/JIrF0RZPCgDwhJlEW2JERKXsJj6Abtq7+/x49NF7Ynl5tVffrF0+X4hjdu/r2vsBAAAAAABorbe97W3xn//zf456vd503Ve+srozkL3oP/7H/xiFQiF+53d+p6Pvvfzyy+Oaa66JmZmZTOsPO+ywNk9Eu+W7PQAAANC/crlcrFu3MUbWH7rqZywVxmOqslUoEQBoq+nageSaisZEgK4qlydj55FndnWGnTvOjHJ5Q1dnAAAAAAAAoHUqlUpccsklyXUPPfRQ3HXXXR2YqDN++7d/Oz72sY/F+HhnLmn+pV/6pfif//N/RqFQiOnp6Uyfc/jhh7d5KtpNMBEAAFizaoaD/gf93AztRQAAa1WtCyYC9IMdR54e5dJkV95dLk/Gju2nd+XdAAAAAAAAtM+LX/ziTOtuv/32Nk/SWVdeeWX84z/+Y5x77rlte8f69evjT//0T+Oaa66JYrEYERE/+clPMn3u1q1b2zYXnSGYCAAArFm1tvpw4VpCjQAAWc0k9isj+UKsGxnr0DQAHEyhUIy9e/Z15d17d++LQqHYlXcDAAAAAADQPmeffXamdXfffXd7B+mC448/Pr785S/Hxz72sdi7d2/LnpvL5eKKK66I22+/PX7xF3/xKR/LGkw8/vjjWzYP3SGYCAAArNmaGhNrB6LRaLRwGgCAZ5pO7Fcmy+ORy+U6NA0AzWzevCs2bz6qo+88ZPNRsXnzro6+EwAAAAAAgM7Ys2dPpnX3339/myfpjlwuF1deeWXcdttt8dnPfjauuOKKWLdu3aqeNTk5GW95y1viu9/9bnzyk5981tbDO++8M/mcQw89NDZt2rSqGegdrn0FAADWLHXQv5mF5aU4sDAX60dLLZwIAOCpqvXm+5VKaXW/cAegPfbuPj8effSeWF5eavu78vlCHLO7Oy2NAAAAAAAAtN+6deticnIyZmZmmq57/PHHOzRRd+Ryubj00kvj0ksvjVqtFl/96lfj5ptvjm9/+9tx1113xX333Rf79++P2dnZyOfzMTExEZs2bYq9e/fGSSedFC984Qvj/PPPj5GRkabv+f73v5+c5YQTTmjVl0UXCSYCAABrNpM46J9SrR0QTAQA2irV8DxVFkwE6CXl8mTsPPLMuPPum9v+rp07zoxyeUPb3wMAAAAAAED3jI+PJ4OJs7OzHZqm+8rlclxwwQVxwQUXtPzZt912W3LNGWec0fL30nn5bg8AAAD0v2ptbT+Mp4ICAABrldqvVAQTAXrOjiNPj3Jpsq3vKJcnY8f209v6DgAAAAAAALovl8t1e4ShsLy8HLfccktyXTsCkXSexkQAAGDNptcYLFxrsBEAIKWaaHieLI13aBIAsioUirF3z7745nf+pm3v2Lt7XxQK/rkMAAAAAIAhJ7DFEDhwIH3OcXzc2YG1+u53vxuPPfZY0zXFYjHOO++8Dk1EO2lMBAAA1mR+cTFmF+bW9IxUUAAAYC2WG42YSVyEMKUxEaAnbd68KzZv2tWmZx8Vmze359kAAAAAAAD0jgMHDsTMzExy3bp1zg6s1Re+8IXkmjPPPDMmJiY6MA3tJpgIAACsSStChdU1Ni4CADTz+FwtlhrLTddUBBMBetbePfsiny+09Jn5fCH27j6/pc8EAAAAAACgN/3gBz/ItO6II45o8ySD76//+q+Tay6//PIOTEInCCYCAABrkiVUT7Ci3AABAABJREFUuHld85ttBBMBgHbKstcQTAToXeXyZOw88syWPnPnjjOjXJ5s6TMBAAAAAADoTTfddFOmdTt37mzvIAPu3nvvjX/4h39ouiafz8cVV1zRoYloN8FEAABgTar12eSaXVNbmj+jln4GAMBqZdmvCCYC9LYdR54e5VJrgoTl8mTs2H56S54FAAAAAABA77vuuusyrduzZ0+bJxlsH/7wh2N5ebnpmuc///mxdevWDk1EuwkmAgAAa5JqIBorFOOwDZWma6brGhMBgPZJ7VdyEbFhrNyZYQBYlUKhGHv37GvJs/bu3heFQrElzwIAAAAAAKC3PfbYY/G5z30uuW7jxo2CiWvw2GOPxTXXXJNc9453vKMD09ApgokAAMCapA76V8rrolJq3kCUegYAwFqk9hobSuNRyPtVKUCv27x5V2zetGuNzzgqNm9e2zMAAAAAAADoHx/60IeiVqsl15199tmRy+U6MNFg+v3f//145JFHmq7ZtWtXvOpVr+rQRHSC0zYAAMCaZAkmTpWbBxNrC/Mxt7jQyrEAAH5qujbb9OOVxF4FgN6xd8++yOcLq/rcfL4Qe3ef3+KJAAAAAAAA6FUPP/xw/OEf/mGmtZdeemmbpxlct956a7zvfe9Lrvu1X/u1yLs4eqD4vyYAALAm01kaEzMc9q/WmwcGAABWq1pP7FdK4x2aBIC1KpcnY+eRZ67qc3fuODPK5ckWTwQAAAAAAECvesc73hGPPvpocl2hUIjLLrusAxMNnnq9Hm984xujXq83XXf00UfHL//yL3doKjpFMBEAAFiTVKCwUhqPyQyH/VPNiwAAqzWT2Gek2p0B6C07jjw9yqWVBQzL5cnYsf30Nk0EAAAAAABAr3nf+94Xn/jEJzKtfdnLXhZbtmxp80SDZ3l5Od70pjfFN7/5zeTaP/zDP4zR0dH2D0VHCSYCAABrkjroXymvy3TYXzARAGiXVMPzpGAiQF8pFIqxd8++FX3O3t37olAotmkiAAAAAAAAnu7GG2+Mhx56qCvv/vCHPxzvfve7M69/z3ve09L3X3DBBZHL5ZL/c/fdd7f0vZ00Pz8fV111VXzmM59Jrn3Ri14Ur3rVqzowFZ0mmAgAAKza8vJyzMzVmq6plNdFaWQ0SsWRpusEEwGAdkk3PAsmAvSbzZt3xeZNuzKuPSo2b862FgAAAAAAgNb4q7/6qzjqqKPi3/7bfxv3339/R965sLAQv/7rvx6/8iu/Eo1GI9PnvPjFL45zzz23zZN1zhe/+MW2v+P++++Piy++OD7+8Y8n105NTcWf/dmftX0mukMwEQAAWLWZuVryh/cnD/pXEk1EqSYjAIDVqC3Mx9ziQtM1U+XxDk0DQCvt3bMv8vlC0zX5fCH27j6/QxMBAAAAAADwsw4cOBB/+Id/GDt37ozXve518b//9/+OpaWltrzrS1/6Upx++unxX//rf838OWNjY/HBD36wLfN0ywUXXBAnnHBCfPCDH4zHHnuspc9eXFyMP/3TP40TTzwxbrzxxkyfc80118S2bdtaOge9QzARAABYtSwth08e9E8FE2cSTUYAAKuRZb+S2qcA0JvK5cnYeeSZTdfs3HFmlMuTHZoIAAAAAACAZ7O4uBif/OQn4+KLL47t27fHW9/61vibv/mb2L9//5qeOz8/H5/+9KfjwgsvjH379sV3vvOdFX3+7/7u78aePXvWNEMvuvXWW+Md73hHHHbYYfHyl788PvKRj6yptfLhhx+OD3zgA3HsscfGW97ylqhWq5k+793vfne85jWvWfV76X3Fbg8AAAD0r5Uc9H+yOXEtzwIAWKlqhssPBBMB+teOI0+PR6fvjerMA8/4WGXyiNix/fQuTAUAAAAAAH0mn+v2BAyRH/3oR/GRj3wkPvKRj0Q+n4/jjz8+zjjjjDj22GPjmGOOia1bt8aWLVtiamoqSqVSjI6Oxvz8fMzOzsaPfvSjuPfee+Nb3/pW3HTTTfF3f/d38fjjj69qjssuuyx+8zd/s8VfXW+p1Wpx7bXXxrXXXhsREccee2yccsopcfLJJ8fJJ58c27dvj0qlEpVKJdavXx9zc3Nx4MCBeOCBB+IHP/hBfOMb34gvfelLcdNNN8XCwsKK3v3a1742/uAP/qAdXxY9RDARAABYtVSYsJDLx/qxckREVP6lOXG1zwIAWI1MFykkLlAAoHcVCsU49eRXxPe+/8X48YN3RKOxFLlcIQ479JjYu2dfFAr+KQwAAAAAAKBXLS8vxz/90z/FP/3TP3X0veeff3589KMf7eg7e8Htt98et99+e3zyk59s63suvvji+OhHPxq5nNDzoPOvsQAAwKqlGogmS+OR/5cfLFNNRNN1wUQAoPVSwcTxkdEYLfo1KUA/KxbH4oTjXhzH7D4/Fhfnolgci5GRUrfHAgAAAAAAoAft27cvrr322li3ziXG7fCGN7wh/vzP/zxGRka6PQodkO/2AAAAQP9KHfT/2ZbEVBPR/notlpaXWzIXAMCT0vsV/9AAMChGRkpRLk8KJQIAAAAAAPCs3vrWt8Z1110X69ev7/YoAyefz8d73/ve+PjHPy6UOERcBQ4AAKzaSg76T/1MSPHZNCJipj4bG8f9wA8AtM60YCIAAAAAAAAADLUtW7bE+9///njd617X7VEG0rZt2+JjH/tYvOAFL+j2KHSYxkQAAGDVVnLQP8uh/1TQEQBgpWbqs00/nmp1BgAAAAAAAABWLpfLdXuEKJVK8fa3vz1uu+02ocQ2GBsbi9/4jd+I73znO0KJQ0owEQAAWLVqPRFMLK0wmJh4HgDASqUbnpu3OgMAAAAAAAAAK/d7v/d78fnPfz5+7dd+LY4//viOvvvQQw+Nd7/73XHnnXfGBz7wgdi4cWNH399Nn/rUp+K1r31tTExMtO0d69evj7e85S1xxx13xB/90R9FpVJp27vobcVuDwAAAPSnRqMR1VqigehnDvqvHy1FIZ+PpeXlg65PPQ8AYKWmUxcpZLg8AQAAAAAAAABYmXK5HBdffHFcfPHFERHxwx/+MG644Yb4x3/8x7jlllvim9/8ZtRqtZa9b+fOnXHRRRfFK17xinjJS14SxeJwRqYuv/zyuPzyy2Nubi6uu+66uO666+Lv//7v49vf/nYsLS2t+rljY2PxvOc9L6644op4wxve0NbgI/1jOP9/GQAAsGYHFuZicbn5D6k/e9A/l8tFpTQej8w+ftD1qUYjAICVWFxaisfn6k3X/GzDMwAAAAAAAADQHtu2bYsrr7wyrrzyyoiIWFpailtvvTVuv/32uPvuu+Oee+6Ju+++O+6///7Yv39/HDhwIA4cOBCzs7ORy+WiVCpFuVyOqampOOKII2Lr1q2xZ8+eOPnkk+O0006LnTt3dvcL/Bk33nhjt0eIsbGxuPTSS+PSSy+NiIj9+/fHzTffHLfddlt8//vfjzvuuCPuu+++2L9//0//vAuFQqxfvz7Wr18fhx9+eOzduzf27t0bZ5xxRpx33nlRLpe7/FXRawQTAQCAVckSInz6Qf9KeV3TYOK0YCIA0ELVRFtiRMSUxkQAAAAAAAAA6LhCoRAnnXRSnHTSSd0eZShMTEzERRddFBdddFG3R2GA5Ls9AAAA0J+yBBOfftC/kjj4nyU8AACQVbU2m1yT2p8AAAAAAAAAAADPJJgIAACsSpaD/pOl8af8v5/eoPjMZwomAgCtk+XSg8nyeHINAAAAAAAAAADwVIKJAADAqkwnQoQTY+UoFgpP+d89vUHx6WYyhB0BALJKXXowki/EupGxDk0DAAAAAAAAAACDQzARAABYldRB/0rpme1DlUQwsVqfjUajsaa5AACelNyvlNdFLpfr0DQAAAAAAAAAADA4it0eAAAA6E8z9fRB/6ebfJaw4s9aXF6Kx+frMTFWXtNsAAAREdOJNubUpQkAAAAAAAAAQ8F9rgCsgsZEAABgVaqrOOg/leHwf6rZCAAgq/RFCs0vTQAAAAAAAAAAAJ6dYCIAALAq06s46J+llUgwEQBoldS+olLSmAgAAAAAAAAAAKshmAgAAKzKag76T5bGI5d47nSiiREAIKvVNDwDAAAAAAAAAABpgokAAMCKzS0uRG1hvumaqWc56F/I52OiVG76eTOJJkYAgCyWG42YqaeCic9seAYAAAAAAAAAANIEEwEAgBVLtSVGREwepIFo6lmaFFf6bACAlP1ztVhqLDdd82wNzwAAAAAAAAAAQJpgIgAAsGLVRPtQRESl9OwNRJWDBBafNF1LPxsAIGUmw2UHz9bwDAAAAAAAAAAApAkmAgAAK5al1fBgB/0ny88eWPzps+saEwGAtcty2cHBGp4BAAAAAAAAAIDmBBMBAIAVSwUTS8WRKI2MPuvHKqXmAYAsoUcAgJTUZQe5XC4mx8odmgYAAAAAAAAAAAaLYCIAALBi04nwYKVJ+9DBmhSfJJgIALRCak8xOVaOfN6vRwEAAAAAAAAAYDWcvAEAAFYs1UDULJjY7GMREfXFhagvzK9qLgCAJ6WCiak9CQAAAAAAAAAAcHCCiQAAwIpVa7NNP14pjR/8YxlCANV68+cDAKSk9hOCiQAAAAAAAAAAsHqCiQAAwIrNrKGBKFMwMfF8AICUZGNik4sUAAAAAAAAAACA5gQTAQCAFZuuryGYmCEEIJgIAKxVMpioMREAAAAAAAAAAFZNMBEAAFiRpeXl2F+vNV1TKR38oP9YcSTKI6NNP39aMBEAWINGoyGYCAAAAAAAAAAAbVTs9gAAAEB/manPRiOxZqrcvBWxUl4XtYX5g368mmhkBABoprY4H3NLi03XCCYCAAAAAAAA/It8rtsTANCHNCYCAAArkmofikgf9J9q0qj4xDtmVzQTAMDPmsmwl2jW8AwAAAAAAAAAADQnmAgAAKzIdIZg4mTioH8l0aiYJfwIAHAw2S5SaL4fAQAAAAAAAAAADk4wEQAAWJGZevMGokI+HxNjpaZrUo2K1bpgIgCwelkuUkjtRwAAAAAAAAAAgIMTTAQAAFYk1UBUKY1HLpdruibVqFitNQ8/AgA0k7rkYHxkLEYLxQ5NAwAAAAAAAAAAg0cwEQAAWJFUA1GW9qGpxJr9c7VYXFpa0VwAAE9KXXKQ2osAAAAAAAAAAADNCSYCAAArkmogyhJMrJTHk2tm6loTAYDVSTY8Z9iLAAAAAAAAAAAAByeYCAAArEjyoH8pSzAxvSbVzAgAcDCpixQmM+xXAAAAAAAAAACAgxNMBAAAVqQVDURZgompQAEAwMFUa82bl6cy7EUAAAAAAAAAAICDE0wEAAAyazQaUa03P+ifJXS4bmQsRvKFpmtmEoECAICDSV+kIJgIAAAAAAAAAABrIZgIAABk9vh8PZaWl5uuqZTSB/1zuVwyEDCdCBQAADybhaXFeHy+3nRNloZnAAAAAAAAAADg4AQTAQCAzFLtQxERUxkbiCZLzQMB1bpgIgCwcjOJducIjYkAAAAAAAAAALBWgokAAEBmWYKJWQ/6pwKMWd4FAPB01VqGYGKGhmcAAAAAAAAAAODgBBMBAIDMphMH/XMRsaFUzvSsVIBRMBEAWI3pFl6kAAAAAAAAAAAAPDvBRAAAILNqvflB/4mxchTzhUzPSgcT021HAABPl9qvjBQKMT4y2qFpAAAAAAAAAABgMAkmAgAAmaVaDFfSPlQpjzf9+Ex9NpYbjczPAwCIyLBfKa2LXC7XoWkAAAAAAAAAAGAwCSYCAACZpVoMVxRMLDVfu9RYjsfnapmfBwAQkd6vTK1gvwIAAAAAAAAAADw7wUQAACCzaj3VmNi8BfGpa9OhgFTjEQDA06X2D5Mr2K8AAAAAAAAAAADPTjARAADILHXQP9WC+JS1GYKJ04nGIwCAp0tepLCC/QoAAAAAAAAAAPDsBBMBAIDMUsHEqQxhwydNjpUjl8s1f18iWAAA8HSt3K8AAAAAAAAAAADPTjARAADIpL4wH/XFhaZrJldw0D+fz8fkWLnpmlSwAADgZy0vL8dMvXnjcpbWZgAAAAAAAAAAoDnBRAAAIJPpDCHBSml8Rc9MBQOqtebBAgCAn7V/vh7LjUbTNYKJAAAAAAAAAACwdsVuDwAAAPSHVPtQRMTUCg/6V8rrIqZ/ctCPV+saEwGA7LK0La/0IgUAAAAAAACAgZfLdXsCAPqQxkQAACCTTAf9VxpMTAQDsrwTAOBJ7divAAAAAAAAAAAAzySYCAAAZDKdOOhfHhmNseLIip6ZCgYIJgIAK5Har+RyudgwVu7QNAAAAAAAAAAAMLgEEwEAgEyq9eYH/VfTPpQlmNhoNFb8XABgOKX2K5Ol8cjn/UoUAAAAAAAAAADWyikcAAAgk2pttunHK6XxFT8zFUycW1qM2uL8ip8LAAynmeR+ZeUXKQAAAAAAAAAAAM8kmAgAAGRSrbWhMTFDOCAViAQAeNJ0cr+y8osUAAAAAAAAAACAZxJMBAAAMqnWEwf9V9FANJUhzDiTCBgAADwpuV9ZxUUKAAAAAAAAAADAMwkmAgAAmaSaC1dz0H8yQ2tRqvkIAOBJyf3KKi5SAAAAAAAAAAAAnkkwEQAASFpcWor9c7Wma7K0Hz7daKEY4yNjTdekmo8AACIiGo1GVBMXGkxluBQBAAAAAAAAAABIE0wEAACSZurN24ciIiqrPOifCjSmmo8AACIiaovzMb+02HTNahqeAQAAAAAAAACAZxJMBAAAkqYT7UMREZXS6g76pwKNqeYjAICIbJcZTK5yvwIAAAAAAAAAADyVYCIAAJBUrWcIJq6ygSj1eVlCkQAAWS4zSDU1AwAAAAAAAAAA2QgmAgAASTOJBqKRfCHWjY6t6tmpYOJMPd1+BACQJZg4mWhqBgAAAAAAAAAAshFMBAAAklKthZPl8cjlcqt6dqXUPJiYJWQAAJDar6wbHYvRQrFD0wAAAAAAAAAAwGBzEgcAAEiq1psf9E+FC5t+bqK56PH5eiwsLcaIIAEA0ESqZXkt+xUAAAAAAACAgZZf3aX0AAw3jYkAAEBSqrVwqryWYGL6c6uJoAEAQGq/kroMAQAAAAAAAAAAyE4wEQAASEod9J9cw0H/LO1FqfcDAEwng4kaEwEAAAAAAAAAoFUEEwEAgKRqrXljYZZw4cFkaVsUTAQAUqp1wUQAAAAAAAAAAOgUwUQAAKCp5UYjZurNg4lZwoUHUx4ZjdFCsemaauL9AACpiwzWcpECAAAAAAAAAADwVIKJAABAU4/P1WKpsdx0zVoaiHK5XPLzNSYCAM0sLC3Ggfm5pmsq5fEOTQMAAAAAAAAAAINPMBEAAGgqSyhwLcHEiIhKqXlQQDARAGgmS7vyWvcrAAAAAAAAAADAvxJMBAAAmpqutf+gv8ZEAGAtMl2kUBJMBAAAAAAAAACAVhFMBAAAmqrWmx/0z0XEhrHymt6RCiZmCUcCAMMrSzBxSmMiAAAAAAAAAAC0jGAiAADQVOqg/4bSeBTya/vRolIebz5DIhwJAAy31H5ltFCM8shoh6YBAAAAAAAAAIDBJ5gIAAA0VU20FabaDrOolJo/Y6Y+G8vLy2t+DwAwmKr15vuVydJ45HK5Dk0DAAAAAAAAAACDTzARAABoKtVWWCk1bzvMYioRbmw0GrF/rrbm9wAAgynVmJjaawAAAAAAAAAAACsjmAgAADTViYP+WVoXpxNNSADA8ErtV1rR8AwAAAAAAAAAAPwrwUQAAKCpThz0z9K6mJoDABhe07XmFxgIJgIAAAAAAAAAQGsVuz0AAADQuxqNRjIQOFla+0H/idJ45HO5WG40DrpGMBEAOJhqPXWRQvoSBAAAAAAAAIChlct1ewIA+pDGRAAA4KBqi/Mxt7TYdM1UCw7653O5mEy0JgomAgDPZnl5OR6rJxoTW3CRAgAAAAAAAAAA8K8EEwEAgIOaqTU/5B8RUSm35qB/6jnTgokAwLPYP1dr2roc0br9CgAAAAAAAAAA8ATBRAAA4KCytBS2LJiYaDKaSTQhAQDDaTrDHkEwEQAAAAAAAAAAWkswEQAAOKgsLYWdakzMEpIEAIZPlj3CVGm8A5MAAAAAAAAAAMDwEEwEAAAOqlpvftB/fGQsRgvFlryrUm4eGMgSkgQAhk8qmJjP5WJirNyhaQAAAAAAAAAAYDgIJgIAAAdVrc02/XgqTLgSycbE+oFoNBotex8AMBhSFylsKI1HPu/XoAAAAAAAAAAA0EpO5AAAAAeVaiBKhQlXolJq/qyFpaWYXZhv2fsAgMGQvEghsccAAAAAAAAAAABWTjARAAA4qFQDUSsP+k9lCDmmgpIAwPBJ7Q+mWtjwDAAAAAAAAAAAPEEwEQAAOKhUA1GWMGFWlQyhgVRQEgAYPp1seAYAAAAAAAAAAJ4gmAgAABxUJw/6Z2lf1JgIADzdtGAiAAAAAAAAAAB0nGAiAADwrBaWFuPx+XrTNVlaDrMqFgqxfqzUdE2qwREAGC6NRiNm6s33B5VS6/YrAAAAAAAAAADAEwQTAQCAZ1VNHPKPyNZyuBKp52lMBAB+Vm1hPuaXFpuu0ZgIAAAAAAAAAACtJ5gIAAA8qywhwFYf9E81ME4LJgIAPyPL3kAwEQAAAAAAAAAAWk8wEQAAeFbVWobGxFYHE1ONiXXBRADgX2XZGwgmAgAAAAAAAABA6xW7PQAAANCbUgf9RwqFGB8Zbek7pxLBgSwtjgDA8MjU8Fxq3sgMAAAAAAAAMPTyuW5PAEAf0pgIAAA8q9RB/0ppXeRyrf2FVKrRKEuLIwAwPFJ7g3WjYzFScDcbAAAAAAAAAAC0mmAiAADwrFLBxFS74WqkgomzC3Mxv7jY8vcCAP0p1fCc2lsAAAAAAAAAAACrI5gIAAA8q1QwcbI83vJ3VkrpZ6YCCADA8MjS8AwAAAAAAAAAALSeYCIAAPCspmuzTT/ejoP+WVqNUgEEAGB4dKPhGQAAAAAAAAAAEEwEAAAOYibRTNiOg/6CiQDASlRTFykIJgIAAAAAAAAAQFsIJgIAAM+wvLwcM/XOH/Qvj4zGWHGk6ZpUkyMAMDyqiYsUJkvjHZoEAAAAAAAAAACGi2AiAADwDPvnarHcaDRd064GokoiQJBqcgQAhsP80mIcmJ9ruqYdDc8AAAAAAAAAAIBgIgAA8CymE22JEe0LJqYCBNWaYCIAEDGToUW5XfsVAAAAAAAAAAAYdoKJAADAM2QJ/6WaDVdrMhEgmBZMBAAi255AMBEAAAAAAAAAANpDMBEAAHiGVDAxl8vFhrFyW95dKSUaEzO0OQIAg69azxJMbM9FCgAAAAAAAAAAMOwEEwEAgGdIHfSfLI1HPt+eHyemEgGCLG2OAMDgm0nsCUYLxSgXRzs0DQAAAAAAAAAADBfBRAAA4BmqteathKlWw7WolJs/+7H6bCwtL7ft/QBAf5hO7VfK6yKXy3VoGgAAAAAAAAAAGC6CiQAAwDOkWglTrYZrkQomNuKJcCIAMNxSDc+VNu5XAAAAAAAAAABg2BW7PQAAANB7UsHEVHhwLbI8u1qfjanx9W2bAQDofcn9ShsbngEAAAAAAAAGSq7bAwDQjzQmAgAAzzCdOOg/2caD/llCBKkgAgAw+NINz4KJAAAAAAAAAADQLoKJAADAUzQajajWUwf9x9v2/vVjpSjkmv+oIpgIAFTrs00/PtnG/QoAAAAAAAAAAAw7wUQAAOApagvzsbC01HRNpY0NRPlcLhkkSDU6AgCDbXl5OWYSwcQsLcwAAAAAAAAAAMDqCCYCAABPkSX0185gYkQ6SJBqdAQABttjc7VoNBpN10y1eb8CAAAAAAAAAADDTDARAAB4iiyhv3YHE1NBgmqteUMSADDYqj1wkQIAAAAAAAAAAAwzwUQAAOApMh30L423dYZKufnzs8wIAAyuXmh4BgAAAAAAAACAYSaYCAAAPEWqjXDd6FiMFIptnSEVJMjS6ggADK6ZevP9Sj6Xi4mxcoemAQAAAAAAAACA4SOYCAAAPEWqjbAT7UOVUiKYWJuNRqPR9jkAgN6U2q9MlsYjn8t1aBoAAAAAAAAAABg+gokAAMBTpNoIU6HBVkiFHxeXl+LA/Fzb5wAAetN0D1ykAAAAAAAAAAAAw0wwEQAAeIpUA9FUJxoTy+PJNak5AYDB1QsXKQAAAAAAAAAAwDATTAQAAJ6iWptt+vFONBBlecd0IpAAAAyuXtivAAAAAAAAAADAMBNMBAAAnmI60USYpc1wrSZL45FLrJlJBBIAgMGVak7uxH4FAAAAAAAAAACGmWAiAADwU/OLizG7MNd0TaXU/gaiYr4QE2PlpmtSAUoAYDA1Go2oJpqTNSYCAAAAAAAAAEB7CSYCAAA/lTrkH9G5g/6TiaajVFMSADCYZhfmY2FpqemaTlykAAAAAAAAAAAAw0wwEQAA+KlqbTa5plPBxFSgIEuIEgAYPFkuJ5jSmAgAAAAAAAAAAG0lmAgAAPxUtsbE5k2GrZIKFGhMBIDhlGUP0Kn9CgAAAAAAAAAADCvBRAAA4KdSB/3HCsUoF0c7MkuqmVEwEQCGU5aLFCZLgokAAAAAAAAAANBOgokAAMBPpcJ+lfK6yOVyHZklHUyc7cgcAEBvSe0B1o+WYqRQ7NA0AAAAAAAAAAAwnAQTAQCAn0oFEyfLnWsfSgUTa4vzUV9c6NA0AECvyHKRAgAAAAAAAAAA0F6CiQAAwE9Npw76lzp30L9SSocgZxLzAgCDJ7lf6eBFCgAAAAAAAAAAMKwEEwEAgJ+aqc82/fhUBxuIsrQdpYIJAMDgqdZ75yIFAAAAAAAAAAAYVsVuDwAAAPSOarKBqLeCidVEkBIAGDwztebf/zu5XwEAAAAAAAAYCPlctycAoA9pTAQAACIiYnl5OWbmak3XdPKgf6k4EuXiaNM1qSAlADB4Uo3JlfJ4hyYBAAAAAAAAAIDhJZgIAABERMTMXC0ajUbTNZVSZxuIUsECwUQAGC7zi4sxuzDXdE2n9ysAAAAAAAAAADCMBBMBAICIyBby63QDUaqhsVoXTASAYZLle/9UBxueAQAAAAAAAABgWAkmAgAAEZE1mNjpxsREMLE226FJAIBe0Iv7FQAAAAAAAAAAGEaCiQAAQESkG4gKuXxMjJU7NM0TKqXmDY1ZwgkAwOCo1tOXEkx2uOEZAAAAAAAAAACGkWAiAAAQEen2wcnSeORzuQ5N84R0Y6JgIgAMk9T3/rFCMcrF0Q5NAwAAAAAAAAAAw0swEQAAiIj0Qf9KF9qHUsHEx+Zqsbi81KFpAIBuS+9X1kWuwxcpAAAAAAAAAADAMBJMBAAAIiLbQf9Oy/LOmXrzpkcAYHD04n4FAAAAAAAAAACGkWAiAAAQERHTiYP+k6XOH/SfyvDOmZpgIgAMi9R+RTARAAAAAAAAAAA6QzARAACIiIhqvflB/6nyeIcm+VdZwgWpgAIAMDhSTcmVUuf3KwAAAAAAAAAAMIwEEwEAgGg0GsnmwW40EK0bHYtivtB0TSpQCQAMjqrGRAAAAAAAAAAA6AmCiQAAQBxYmIuF5aWma7px0D+XyyWbj1IBBQBgMCwvL8fMXK3pGsFEAAAAAAAAAADoDMFEAAAgU7ivUurOQf9UwEAwEQCGw8xcLRqNRtM13dqvAAAAAAAAAADAsCl2ewAAAKD7soT7prrUQJQOJs52aBIAoJuy7VeaNy0DAAAAAAAA8CxyuW5PAEAf0pgIAABkCvdNlrpz0L+SCBhMa0wEgKGQJZg42aWLFAAAAAAAAAAAYNgIJgIAAMlw3/qxUhQLhQ5N81SVUvOAwUxdMBEAhkE18T2/kMvHxFi5Q9MAAAAAAAAAAMBwE0wEAACS4b6pRDiwnaYSzUfV+mw0Go0OTQMAdEuq4XmyNB75XK5D0wAAAAAAAAAAwHATTAQAAKKaaEysJMKB7TRZHm/68aXl5dg/V+/QNABAt6T3K833DAAAAAAAAAAAQOsIJgIAAMkGom4GE7O8u5pofAQA+l8vX6QAAAAAAAAAAADDRjARAACI6USwr5sNRFOlDMHERFABAOh/1XrzixQmM+wZAAAAAAAAAACA1hBMBAAA0g1EXTzov6E0HrnEGsFEABh8qe/3U128SAEAAAAAAAAAAIaNYCIAAAy5ucWFqC3MN11TKXcvmFjI52NDqXnQINWgBAD0t0ajkb5IoYv7FQAAAAAAAAAAGDaCiQAAMOSyhPq6fdA/9X6NiQAw2A4szMXC8lLTNd3erwAAAAAAAAAAwDARTAQAgCGXJdRXSTQWtlvq/YKJADDYZmoZLlIoCSYCAAAAAAAAAECnCCYCAMCQyxLqm9KYCAB0UaaLFMrdvUgBAAAAAAAAAACGiWAiAAAMudRB/1JxJEojox2a5tmlgonTgokAMNCyfK/XmAgAAAAAAAAAAJ0jmAgAAEMuddB/stT99qFU0KBan+3QJABAN1Trzfcr68dKUSwUOjQNAAAAAAAAAAAgmAgAAEMuddB/KtFW2AlT5ebhyLnFhagvzHdoGgCg01INz1PaEgEAAAAAAAAAoKOK3R4AAADorpla87bBSg8EE7PMMF07EIePjHZgGgCg06p9sF8BAAAAAAAA6Fc5lVcArIJvHwAAMORSDUS9cNA/ywzVevPAAgDQv1INz5Ol5u3KAAAAAAAAAABAawkmAgDAkJtOHPTviWBiKUMwMRGwBAD6V+r7/FQP7FcAAAAAAAAAAGCYCCYCAMAQW1pejv31WtM1WUKB7TZaLMb4yGjTNYKJADC4+qHhGQAAAAAAAAAAholgIgAADLGZ+mw0Emsq5fGOzJKSChwIJgLAYJpfXIzZhfmmawQTAQAAAAAAAACgswQTAQBgiGUJ8/XKQf/UHNOCiQAwkKr1/tmvAAAAAAAAAADAsBBMBACAIZbpoH+pNw76p+aYqc92aBIAoJMyXaRQ6o2GZwAAAAAAAAAAGBaCiQAAMMSqteZhvkI+HxNjpQ5N09xUogkpS2gBAOg//dTwDAAAAAAAAAAAw0IwEQAAhljqoH+lNB65XK5D0zQ3WW7ehDSdof0RAOg/04mLFMaKI1EeGe3QNAAAAAAAAAAAQIRgIgAADLXpVDCxh9qHKqXmszw+V4/FpaUOTQMAdEo1cflApdT88gIAAAAAAAAAAKD1BBMBAGCIpQ/6904wcSpDSDL19QAA/WcmcZFClj0CAAAAAAAAAADQWoKJAAAwxKrJxsTeaSDK0t5Yrc12YBIAoJNSDc+TgokAAAAAAAAAANBxgokAADDEZhJBvixhwE7JFEzUmAgAA6daT+xXeqjhGQAAAAAAAAAAhoVgIgAADKlGo5E+6N9DwcTxkdEYKRSarkk1QAIA/Sf1/X2qhxqeAQAAAAAAAABgWBS7PQAAANAdj8/XY3F5qemaXmogyuVyUSmti58ceOygawQTAWCwLC0vx2N9dJECAAAAAAAAQF/K5bo9AQB9SGMiAAAMqSwhvqkeO+ifCh5M15oHFwCA/vLYXC0aiTWCiQAAAAAAAAAA0HmCiQAAMKSyBBN77aB/pTze9OMaEwFgsGTar5Sa7w8AAAAAAAAAAIDWE0wEAIAhlWoXzEXEhlK5M8NkVCk1D0pW64KJADBI+vEiBQAAAAAAAAAAGAaCiQAAMKRmEiG+ibFyFPOFDk2TzVQieKAxEQAGS+p7eyGXj/VjvXWRAgAAAAAAAAAADAPBRAAAGFKpg/692D6UmmmmPhvLjUaHpgEA2m06sV+ZLI9HPpfr0DQAAAAAAAAAAMCTBBMBAGBITddmm368H4OJy41G7J+rdWgaAKDdZuqJ/UppvEOTAAAAAAAAAAAAP0swEQAAhlS1nmpM7L2D/lnCB6kmSACgf/RjwzMAAAAAAAAAAAwDwUQAABhSyYP+pd476J8lfCCYCACDY1owEQAAAAAAAAAAepJgIgAADKl+bCDaMFaOXC7XdE0qwAAA9I9kw3MPXqQAAAAAAAAAAADDQDARAACGUH1hPuqLC03X9GIwMZ/Px2RpvOmaVIABAOgPjUYjqrXZpmumenC/AgAAAAAAAAAAw0AwEQAAhlC13vyQf0REJREA7JZUM9JMIsAAAPSHAwtzsbi81HTNZLk39ysAAAAAAAAAADDoBBMBAGAIVWvpVsFebSCaSgQQpjN8bQBA78uyX0ldWAAAAAAAAAAAALSHYCIAAAyhTAf9ezSYOJmYq1oXTASAQdDPFykAAAAAAAAAAMCgE0wEAIAhlGoVLI+MxlhxpEPTrEyqGalam+3QJABAO2X5nj5Zat6kDAAAAAAAAAAAtIdgIgAADKFUq2Clhw/5T5Wbz1atHYhGo9GhaQCAdkldpDAxVo5iodChaQAAAAAAAAAAgJ8lmAgAAENoJtFAVCk3byXsptRs80uLUVuY79A0AEC7zPTxRQoAAAAAAAAAADDoBBMBAGAIpRqI+jmYGBFRrTcPXgIAva/ax/sVAAAAAAAAAAAYdIKJAAAwhKrJBqLePeifKZiYCDIAAL2v2scNzwAAAAAAAAAAMOgEEwEAYAj180H/ydJ4co1gIgD0v+nURQrl9J4AAAAAAAAAAABoD8FEAAAYMotLS7F/rtZ0zVQPBxNHC8VYNzrWdM20YCIA9L3URQO93PAMAAAAAAAAAACDTjARAACGzEy9eVtiRMRkjzcQpRodq4mGJQCgt80tLkRtYb7pml5ueAYAAAAAAAAAgEFX7PYAAABAZ2UJ7U31eANRpbQu7p959KAfTzUsAQC9rZrhIgXBRAAAAAAAAIAWUXkFwCr49gEAAEOmWuv/g/5TqcZEwUQA6GtZvpdXSr3d8AwAAAAAAAAAAINMMBEAAIZM6qD/SL4Q60bHOjTN6qSCk1lalgCA3pUlmJi6qAAAAAAAAAAAAGgfwUQAABgy04mD/pPl8cjlch2aZnUq5eYNSRoTAaC/pb6Xl4ojURoZ7dA0AAAAAAAAAADA0wkmAgDAkKnWmx/0r5R6v30oNeOB+bmYX1rs0DQAQKul2o8nS80vKQAAAAAAAAAAANpLMBEAAIZMqoGoUu6DYGKGGWdqzQMNAEDvSu1XpvpgvwIAAAAAAAAAAINMMBEAAIZMNRHYq5R7v4EoSzBxOhFoAAB61yBcpAAAAAAAAAAAAINMMBEAAIZMtZ446F/q/YP+WcKTqa8TAOhdgokAAAAAAAAAANDbBBMBAGCILDcaMZNoTJzqg4P+5eJojBWKTdfMaEwEgL41nbpIoQ/2KwAAAAAAAAAAMMgEEwEAYIg8PleLpcZy0zX9cNA/l8sl55xOBDABgN60tLwc++u1pmsqpXR7MgAAAAAAAAAA0D6CiQAAMESqGVoE+yGYGBExWW4eSKgmmpYAgN70WH02Gok1/bJfAQAAAAAAAACAQSWYCAAAQyRLi2C/NBBVSs0DCVlCmABA75nOcLmAYCIAAAAAAAAAAHSXYCIAAAyRmcRB/1xEbOiTYOJUIpAgmAgA/SlTw3PiggIAAAAAAAAAAKC9BBMBAGCIpA76byiNRyHfHz8mpJqSBBMBoD9VEw3PhXw+1o+VOjQNAAAAAAAAAADwbIrdHgAAAOic6cRB/1TYr5ekZp2Zq8Xy8nLk+yRoCQA8IXW5wGRpPPK5XIemAQAAAAAAABgC/g0WgFVwQhcAAIZItd78oH+lNN6hSdauUmoeTGw0GvHYXK1D0wAArZLer/TPRQoAAAAAAAAAADCoBBMBAGCIpBqIpvqqMTEdokx9vQBA76kmGp77ab8CAAAAAAAAAACDSjARAACGSCqoN9lHB/0rGWadFkwEgL6T2q9kuZwAAAAAAAAAAABoL8FEAAAYItV68waiSql/gokTY+Uo5Jr/SFOtCyYCQL9JBxP7Z78CAAAAAAAAAACDSjARAACGRG1hPuYWF5qumeqjBqJ8LheTpebzVmvNg5gAQG9pNBoDdZECAAAAAAAAAAAMKsFEAAAYEqn2oYj+ayCqJIKUWb5mAKB3HJifi8XlpaZr+m2/AgAAAAAAAAAAg0gwEQAAhsRgBhObz1utCyYCQD/Jtl/pn4ZnAAAAAAAAAAAYVIKJAAAwJKazHPQvDVgwsTbboUkAgFaYznCpQL9dpAAAAAAAAAAAAINIMBEAAIZEqj1wfGQ0RovFDk3TGpVS88akLK1LAEDvyPK9ezLx/R8AAAAAAAAAAGg/wUQAABgSM4n2wH5sH0o3Jh6IRqPRoWkAgLVKtR1PjJWjmC90aBoAAAAAAAAAAOBgBBMBAGBITCcaiAYxmLiwvBQHFuY6NA0AsFapxsRKWVsiAAAAAAAAAAD0AsFEAAAYEtV64qB/qQ+DiRlmTgUcAIDeMYj7FQAAAAAAAAAAGESCiQAAMCSqtdmmH5/qw8bELDPPJL5uAKB3pC4U6Mf9CgAAAAAAAAAADCLBRAAAGBKpg/6VPjzoP1kaT66Z1pgIAH1jEPcrAAAAAAAAAAAwiIrdHgAAAGi/haXFeHy+3nRNlpBfrykWCrF+rBSPzx38a6vWBRMBoF9U682bjvtxvwIAAAAAAADQ81ReAbAKvn0AAMAQmEkc8o+ImOrTBqKpUvO5U81LAEBvmFtciNrCfNM1/bpfAQAAAAAAAACAQSOYCAAAQ6BaSwcTK3160D81t2AiAPSHLN+z+3W/AgAAAAAAAAAAg0YwEQAAhsD0AB/0TwcT06FMAKD7Bnm/AgAAAAAAAAAAg0YwEQAAhkC13vyg/0ihEOMjox2aprUq5fGmH0997QBAb6jWMzQ8l5p/3wcAAAAAAAAAADpDMBEAAIZANdFAVCmti1wu16FpWqtSSjUmCiYCQD+YSXzPLhVHotSnFykAAAAAAAAAAMCgEUwEAIAhkAwmlpuH+3rZVGL22YX5mF9c7NA0AMBqTQ/wfgUAAAAAAAAAAAaNYCIAAAyBam226ccr5fEOTdJ6kxlCCtN1rYkA0Ouqie/XgokAAAAAAAAAANA7BBMBAGAIJA/6l/r3oH+llA5VphojAYDuS16k0Mf7FQAAAAAAAAAAGDSCiQAAMARSwbypPm4gyjK7YCIA9L70fqV/G54BAAAAAAAAAGDQCCYCAMCAW15ejpl6ooGoj4OJpZHRKBVHmq4RTASA3pdqeJ7s4/0KAAAAAAAAAAAMGsFEAAAYcPvnarHcaDRd08/BxIj0/NVEMBMA6K6l5eXYX681XVMp9fd+BQAAAAAAAAAABolgIgAADLjpDKG8Smm8A5O0TzKYqDERAHraTH02ml+jEDFV7u/9CgAAAAAAAAAADBLBRAAAGHAzGUJ5fd+YmAhWCiYCQG/L8r263/crAAAAAAAAAAAwSIrdHgAAAGiv6cRB/1wuFxvGyh2apj00JgJAf0vtVyIEEwEAAAAAAADaJp/r9gQA9CGNiQAAMOCq9eYH/SdL45HP9/ePBqmgwnTizwAA6K6Z+mzTjxfy+Vg/WurQNAAAAAAAAAAAQEp/nz4GAACSqrXmB/0rpf5vH0p9DfvrtVhaXu7QNADASqXajSul8cjl3NAJAAAAAAAAAAC9QjARAAAGXOqg/1R5vEOTtE/qa2hExGOJJiYAoHumU8HERDsyAAAAAAAAAADQWYKJAAAw4FLBxMkBOOifJawwXW/+5wAAdE818X1aMBEAAAAAAAAAAHqLYCIAAAy4aqIpsFLq/4P+kxm+hlRAEwDontT36UHYrwAAAAAAAAAAwCARTAQAgAHWaDSSB/2nyuMdmqZ9JsZKUcg3//GmWmse0AQAumcm8X26MgD7FQAAAAAAAAAAGCSCiQAAMMBqC/Mxv7TYdE2l3P8NRLlcLiql5oEFjYkA0JsajUa64XkA9isAAAAAAAAAADBIBBMBAGCATWcI4w3KQf/U15HlzwIA6LzH5+uxuLzUdE2lNBj7FQAAAAAAAAAAGBSCiQAAMMCqdcHEJ80kmpgAgO7I0mo8NSD7FQAAAAAAAAAAGBSCiQAAMMCyHPSfLI13YJL2SzUpZfmzAAA6L8v36EG5SAEAAAAAAAAAAAaFYCIAAAywaq15S+C60bEYLRQ7NE17pZqUBBMBoDdVE63GuYjYUCp3ZhgAAAAAAAAAACATwUQAABhg1XrzMN4gtQ9Nlps3P1brs9FoNDo0DQCQVerygImxchTzhQ5NAwAAAAAAAAAAZCGYCAAAAyx10L9SGpxgYuprWVxeisfn6x2aBgDIKrlfGaCLFAAAAAAAAAAAYFAIJgIAwABLHfSfGqCD/lm+ltSfBwDQedO12aYfF0wEAAAAAAAAAIDeI5gIAAADrDpEB/2zfC2CiQDQe6r1VGPieIcmAQAAAAAAAAAAshJMBACAATadCOJNlgbnoP9kaTxyiTXVevOgJgDQeTOJ/UqlNDgXKQAAAAAAAAAAwKAQTAQAgAE1v7QYswtzTddMDVBjYiGfj4lSuekajYkA0HuGqeEZAAAAAAAAAAAGhWAiAAAMqJnEIf+IwTvon2pUEkwEgN5SX1yI2uJ80zWDtl8BAAAAAAAAAIBBIJgIAAADajpDCG/QDvqnvp7pDGFNAKBzslwaUCmNd2ASAAAAAAAAAABgJQQTAQBgQFXrWYKJg3XQP/X1ZPkzAQA6J0swcWrALlIAAAAAAAAAAIBBIJgIAAADKnXQf6xQjHJxtEPTdEal1Dy4kCX8AAB0TrWebjOeFEwEAAAAAAAAAICeU+z2AAAAQHukQniT5XWRy+U6NE1npBqVZmrp8AMA0Dmp/Uq5OBql4kiHpgEAAAAAAAAYUoN1jAyADtGYCAAAAyrVQFQpj3doks6pJIKJtcX5qC8udGgaACAlFUwcxP0KAAAAAAAAAAAMAsFEAAAYUMmD/qXmIb5+NFlKhxdSfy4AQOekg4mDt18BAAAAAAAAAIBBIJgIAAADKnXQf2oAD/pn+ZoEEwGgd0wLJgIAAAAAAAAAQF8STAQAgAE1jA1EWb4mwUQA6B0z9dmmH69kaEMGAAAAAAAAAAA6TzARAAAG0PLycszM1ZquGcRg4lhxJMojo03XpJqZAIDOGcaLFAAAAAAAAAAAYBAIJgIAwACamatFo9FoumZQG4hSAYZqXTARAHrB4vJSPDaEFykAAAAAAAAAAMAgEEwEAIABNJOhFXBQD/pPlZp/XTO12Q5NAgA0M1NPf08e1P0KAAAAAAAAAAD0O8FEAAAYQNNDHEyslJs3QWb5swEA2q+a4Xty6sIBAAAAAAAAAACgOwQTAQBgAFXrzQ/6F3L5mBgrd2iazppMBBhSfzYAQGdUM7QYTyYuHAAAAAAAAAAAALpDMBEAAAZQ6qD/ZGk88rlch6bprFQTZJYQBADQfqnLAor5QqwfLXVoGgAAAAAAAAAAYCUEEwEAYABVa80P+lcGuH1oKhFM3D9Xi8WlpQ5NAwAcTHK/UhqP3IBepAAAAAAAAAAAAP1OMBEAAAZQ6qD/ZKl5eK+fZQldztS1JgJAt6UvUhjc/QoAAAAAAAAAAPQ7wUQAABhA1UTwbpAP+mf52qr15kEIAKD9qrXh3a8AAAAAAAAAAEC/K3Z7AAAAoPVSDURTGVoF+1WmYGIiCAEAtF/qooDJ0uDuVwAAAAAAAAB6SU7lFQCr4NsHAAAMmEajkQwmDnID0bqRsRjJF5quSf35AADtl75IYXD3KwAAAAAAAAAA0O8EEwEAYMAcWJiLheWlpmsGOZiYy+ViMtEIOS2YCABd1Wg0olpv3mA8yPsVAAAAAAAAAADod4KJAAAwYLK0AVZKg33QP/X1VeuCiQDQTfvn6rG0vNx0TSVx0QAAAAAAAAAAANA9gokAADBgMgUTB/yg/1SiYSnLnxEA0D5ZLgnQmAgAAAAAAAAAAL1LMBEAAAZMtTabXDPwjYnJYGL6zwgAaJ8ZDc8AAAAAAAAAANDXBBMBAGDApBqI1o+VolgodGia7kgGEzO0NAEA7TOduCQgFxGTpcFueAYAAAAAAAAAgH4mmAgAAAOmmmggmhqC9qFKIsgwU5uN5UajQ9MAAE+XuiRgolSOQt6vLgEAAAAAAAAAoFc53QMAAAMmFUxMtQkOgtTXuNRYjsfnah2aBgB4OhcpAAAAAAAAAABAfxNMBACAAVOtzTb9uGDiE1KBCACgfVykAAAAAAAAAAAA/U0wEQAABsx0PXHQvzTeoUm6J0uYYToR4AQA2qdab/59eLI8+PsVAAAAAAAAAADoZ4KJAAAwYGY0EMXkWDlyuVzTNdVEgBMAaJ9kY2Jp8PcrAAAAAAAAAADQzwQTAQBggMwvLsbswnzTNcMQTMzn8zE5Vm66JhXgBADaJxVMnBqC/QoAAAAAAAAAAPQzwUQAABgg0xlaAIchmBiR/jqna7MdmgQA+Fn1hfmoLy40XTMs+xUAAAAAAAAAAOhXgokAADBAUu1DERGV0ngHJum+ycTXWc0Q4gQAWm86y35FMBEAAAAAAAAAAHpasdsDAAAArZMlmDg1JAf9U19nlj8rAKD1Zurp1uJhuUgBAAAAAAAAoCfkct2eAIA+pDERAAAGSCpsN1YcidLIaIem6a5U05JgIgB0R6aG5yG5SAEAAAAAAAAAAPqVYCIAAAyQaqKBaJjah7IEExuNRoemAQCeNJ0IJpZHRmOsONKhaQAAAAAAAAAAgNUQTAQAgAGSaiCaGqL2oVQwcW5pMeqLCx2aBgB4UrXefL+iLREAAAAAAAAAAHqfYCIAAAyQVDBxmA76V0rprzX15wUAtF611rzheSrD93AAAAAAAAAAAKC7BBMBAGCACCb+q0p5PLlGMBEAOi/1/Xcyw/dwAAAAAAAAAACguwQTAQBggEzXBROflOVrnRZMBICOq6b2KxoTAQAAAAAAAACg5wkmAgDAgFhaXo799VrTNZXS8DQQjRaKMT4y1nRNKhgBALRetTbb9OPDdJECAAAAAAAAAAD0K8FEAAAYEI/VZ6ORWDNsB/2nEl9vKhgBALTW4tJS7J9rfpFC6vs3AAAAAAAAAADQfYKJAAAwIKYztP8NWzCxUm7eEFmtaUwEgE6aqacvBZhMfP8GAAAAAAAAAAC6TzARAAAGRJaQXaU0bMHERGNihjAnANA6Wb73Tg3ZfgUAAAAAAAAAAPqRYCIAAAyIaq15A1Ehn4+JsVKHpukNyWBi4s8MAGitLN97h63hGQAAAAAAAAAA+pFgIgAADIhUY2KlNB65XK5D0/SGVENklpZJAKB1Ut97R/KFWDc61qFpAAAAAAAAAACA1RJMBACAATGdOOg/mQjpDaJKebzpxx+fr8fC0mKHpgEAkvuV8vBdpAAAAAAAAAAAAP2o2O0BAACA1pipzzb9+FR5GIOJ6a+5Wp+NQ9Zt6MA0AEC1nmp4Hr79CgAAAAAAAEDXqbwCYBV8+wAAgAFRTTQQpdoDB1GWcEPqzw0AaJ2ZWvOLFLJcKgAAAAAAAAAAAHSfYCIAAAyIdDBx+A76Z2mJrCYCEgBA60y7SAEAAOD/Z+/Ow+ws6/vxf86sZyYkcwZEExZBZREEFERBKqiAWIoCFRGLF0qiWFtbq9avWJSvW+vSCtVqF4uSsLrgt4giKIsCpSyCWFNZZI1AWAphziRhzpn1/P7wFwiQnPtJZs7+el3X/NGcm3k+55xcPjf0fj9vAAAAAABoC4KJAADQBiqVShTLGoiebaC3L/q6e6quKZY1JgJAvaTuu1najgEAAAAAAAAAgMYTTAQAgDawdqIcUzPTVdd04kH/XC4XQ/nqzUuppkkAYG7MVCoxmmgqztJ2DAAAAAAAAAAANJ5gIgAAtIEs4brCQPWAXrtKBRwEEwGgPtaOl2K6MlN1zVCH7lcAAAAAAAAAAKDVCCYCAEAbKJartw9FRBQ6tIEo9b4FEwGgPuxXAAAAAAAAAACgfQgmAgBAG0iF63IRMZTvzAaiVMBhpJQOSQAAs5flYQDDecFEAAAAAAAAAABoBYKJAADQBlIH/ef3D0RPV3edpmkuhYHqgczRssZEAKiHLA9SWNChD1IAAAAAAAAAAIBWI5gIAABtIHXQP9Ua2M4Kieal0fJYzMzM1GkaAOhcqf3KgvxgdHf5z5UAAAAAAAAAANAKnPQBAIA2MFIaq/p6RwcTE+99plKJNeOlOk0DAJ0ruV/RlggAAAAAAAAAAC1DMBEAANpAsZxoTOzgg/5ZQpkj5epBCQBg9kZT+5UOfpACAAAAAAAAAAC0GsFEAABoA6MlB/03ZjhDKLOY+PwAgNlL3W87eb8CAAAAAAAAAACtRjARAADaQLFUvfGvkw/6z88PRlcuV3WNYCIA1N6IYCIAAAAAAAAAALQNwUQAAGhx5anJKE1NVF3TyQf9u3K5GEq0JhbLgokAUGvFcuJBCvnO3a8AAAAAAAAAAECrEUwEAIAWl6Xtr5AI5rW7VDAz1TgJAMxOaXIixqcmq64pDHT2fgUAAAAAAAAAAFqJYCIAALS4LMHE4Q5uTIxINzBl+QwBgM2X6UEKHb5fAQAAAAAAAACAViKYCAAALS7LQf+hDj/on2pgEkwEgNoqltPtxIKJAAAAAAAAAADQOgQTAQCgxaUO+g/09EW+p7dO0zSnVNBhRDARAGoqU8NzouEYAAAAAAAAAABoHoKJAADQ4lIH/VNtgZ0gFUwslp+MSqVSp2kAoPOk9iuDvX3R19NTp2kAAAAAAAAAAIDZEkwEAIAWlw4mah8qJBqYJqenY2xyok7TAEDnKZar71eG7FcAAAAAAAAAAKClCCYCAECLGxFMTBrO8BmkAp4AwOYrlsaqvj6ceIgAAAAAAAAAAADQXHoaPQAAADA7qQaiVFtgJygMDCbXFMtPxrZDW9ZhGgDoPOmG5/S9GgAAAAAAAIAayTV6AABakcZEAABocakGIgf9I4byGYKJGhMBoGbSwUQPUgAAAAAAAAAAgFYimAgAAC1samY61oyXqq5x0D+it7sntujLV12TCngCAJtvJNXwbL8CAAAAAAAAAAAtRTARAABa2Gg5HaZz0P/3Up+DxkQAqI2p6elYO16uuqaQt18BAAAAAAAAAIBWIpgIAAAtLEuYbthB/4iIKAwMVn19RDARAGoi24MUqt+nAQAAAAAAAACA5iKYCAAALaxY0piYVaqJabQsmAgAtZAl/G+/AgAAAAAAAAAArUUwEQAAWliqMbGnqzvm9fXXaZrmNpwIPGQJeQIAm66YIfwvmAgAAAAAAAAAAK1FMBEAAFpYqoGokB+MXC5Xp2ma29DAYNXXs7Q5AQCbLvUghd6u7pjX60EKAAAAAAAAAADQSgQTAQCghY0mGoi0Dz2tkK/+WYxNjsfE1FSdpgGAzpFqJR4a8CAFAAAAAAAAAABoNYKJAADQwlIH/QUTnzac4bMoJoKeAMCmS91fUw8PAAAAAAAAAAAAmo9gIgAAtLCRUqoxcbBOkzS/LCHNYuLzBAA2Xer+muXhAQAAAAAAAAAAQHMRTAQAgBamgSg7wUQAaIzU/VXDMwAAAAAAAAAAtB7BRAAAaFEzlUqMlsaqrtFA9LSB3r7o7+mtuqZYrv55AgCbrpjYrwgmAgAAAAAAAABA6xFMBACAFrV2vBTTlZmqa4YGBus0TWso5Kt/HhoTAWBuzVQqMZoI/qfuzwAAAAAAAAAAQPPpafQAAADA5snS7qeB6JkKA/Pi0bWjG31dMBEA5laWBynYrwAAAAAAAAA0Vq4r1+gRAGhBGhMBAKBFZQnRDecd9F9fKvgwIpgIAHMqy35FMBEAAAAAAAAAAFqPYCIAALSo1EH/XEQsyA/WZ5gWUUgENbO0UAIA2Y2UNDwDAAAAAAAAAEA7EkwEAIAWlQomLsgPRneXLf/6hgeqBzWztDoBANkVy4kHKeRyMdQ/UKdpAAAAAAAAAACAueKUMgAAtKhUA5H2oedKfSarx0sxMzNTp2kAoP2Nph6k0D8QXR6kAAAAAAAAAAAALcepHwAAaFGpBqJCvno7YCdKBRMrlUqMjpfqNA0AtD8PUgAAAAAAAAAAgPYkmAgAAC0q1UDkoP9zZQlrFhOfKwCQnQcpAAAAAAAAAABAexJMBACAFjUimLjJsnwmgokAMHdS99Vh+xUAAAAAAAAAAGhJgokAANCiiuWxqq8X8g76P9sW/QPRnav+r0GCiQAwd1L3VQ9SAAAAAAAAAACA1iSYCAAALag0ORHjU5NV1wwPDNZpmtbRlcvFUOJzSTVRAgDZpR6kMORBCgAAAAAAAAAA0JIEEwEAoAVlafXTQLRhqSbJ0USAAgDIxoMUAAAAAAAAAACgfQkmAgBAC8oSTBwSTNyg4cTnkuWzBQDSPEgBAAAAAAAAAADal2AiAAC0oGKGVr/hRDNgpyokmplGBBMBYE4IJgIAAAAAAAAAQPsSTAQAgBaUOug/2NsXfT09dZqmtQwlApvFsmAiAMyFLGH/ggcpAAAAAAAAAABASxJMBACAFpQKJmof2rjhxGdTLI1FpVKp0zQA0L5GEw3PHqQAAAAAAAAAAACty8kfAABoQakGIsHEjUt9NlMz0/HkxHhs0Z+v00QA0J48SAEAAAAAAACgReQaPQAArUhjIgAAtKBiOXHQP++g/8YUBgaTa1JBCgAgzYMUAAAAAAAAAACgfQkmAgBACyqWxqq+niV816myhCBSwU8AIM2DFAAAAAAAAAAAoH0JJgIAQAtKHvTXQLRRQ/ksjYnVg58AQFrqfjpsvwIAAAAAAAAAAC1LMBEAAFrM1PR0rB0vV12jgWjjerq6Y37/QNU1IyWNiQAwW6kHKQxpeAYAAAAAAAAAgJYlmAgAAC0mdcg/QgNRSiERhCgKJgLArHiQAgAAAAAAAAAAtDfBRAAAaDHF0lhyTUEwsapUECJL+BMA2DgPUgAAAAAAAAAAgPYmmAgAAC1mJEObn2BidakghMZEAJgdD1IAAAAAAAAAAID2JpgIAAAtJtVA1NvVHYO9fXWapjWlghDFcjpMAQBsnAcpAAAAAAAAAABAexNMBACAFjOaOOhfGJgXuVyuTtO0pmQwUWMiAMzKqAcpAAAAAAAAAABAWxNMBACAFjNSqt7mp30orZAfrPp6aXIixqcm6zQNALSfVMjfgxQAAAAAAAAAAKC1CSYCAECLSR/0rx66I1t4U2siAGw+D1IAAAAAAAAAAID2JpgIAAAtplhOBBPzDvqnZAlDjAgmAsBm8yAFAAAAAAAAAABob4KJAADQYlIH/Yc1ECVlakwsV296AgA2zoMUAAAAAAAAAACgvfU0egAAACC7mZmZGE0E5oY0ECXle3pjoKcvSlMTG10zqjERADbbaKn6fiXLQwIAAAAAAAAAqBOVVwBsBrcPAABoIWsmyjFTqVRdo4Eom0IiwDkimAgAm2WmUkk+SCF1HwYAAAAAAAAAAJqbYCIAALSQYoaw3LAGokxSTU3FsmAiAGyONeOlmK7MVF3jQQoAAAAAAAAAANDaBBMBAKCFZAkmpgJ3/N5QIhBRLFVvegIANsyDFAAAAAAAAAAAoP0JJgIAQAsZSRz0z+VysaB/oE7TtLbhgcGqr2cJVQAAz+VBCgAAAAAAAAAA0P4EEwEAoIUUy9UP+g/lB6OryzY/i1QgQjARADZPsVy9ddiDFAAAAAAAAAAAoPU5sQwAAC2kWKp+0L+Qr94CyNNSwcTV46WYmpmu0zQA0D5S4f6h/gEPUgAAAAAAAAAAgBbnBBAAALSQ1EH/VNiOp2X5rFaXS3WYBADai/0KAAAAAAAAAAC0P8FEAABoIcWyg/5zZTif/qxSwQoA4LlGBBMBAAAAAAAAAKDtCSYCAEALKZbGqr5eyBC24/eGBgaTa1LBCgDguTxIAQAAAAAAAAAA2p9gIgAAtIhKpZJs8BvOELbj97boy0dPV3fVNalgBQDwXKPJBynYrwAAAAAAAAAAQKsTTAQAgBZRmpyIiempqms0EGWXy+WSwYhUEBQAeKYsD1KwXwEAAAAAAAAAgNYnmAgAAC1iJENIbijvoP+mSAUjBBMBYNOUpiZi3IMUAAAAAAAAAACg7QkmAgBAixgtjyXXDDvov0mSwcQMnzkA8LRiKX3vLHiQAgAAAAAAAAAAtDzBRAAAaBFZ2vuGBgbrMEn7KCQ+L42JALBpstw7PUgBAAAAAAAAAABan2AiAAC0iJHEQf95ff3R191Tp2naQ6qxSTARADaNBykAAAAAAAAAAEBnEEwEAIAWUSxXP+hf0D60yVKfWbE8FpVKpU7TAEDrS+1XBns9SAEAAAAAAAAAANqBYCIAALSIVANRqv2P5yokGpumZ2ZizXi5TtMAQOsrlsaqvj7sQQoAAAAAAAAAANAWBBMBAKBFJIOJiZAdz5WlZTLV/AQAPM1+BQAAAAAAAAAAOoNgIgAAtIhiuXoDUZaQHc80nKFlcjQRsAAAnjaSDCbarwAAAAAAAAAAQDsQTAQAgBaRbCDKELLjmRbkByOXWDNSqh4IBQCeNpp6kIL9CgAAAAAAAAAAtAXBRAAAaAET01Px5MR41TXDGog2WXdXVyzID1ZdUyxrTASArJIPUrBfAQAAAAAAAACAttDT6AEAAIC00QytfQ76b55CfrBqu1MqYAEA/N7k9FSsnShXXVMYqP5AAAAAAAAAAAAaINfoAQBoRRoTAQCgBYxkCMcJJm6e1OcmmAgA2RSrBP3XsV8BAAAAAAAAAID2IJgIAAAtoFjOEEzMayDaHIKJADA3stwzC3nBRAAAAAAAAAAAaAeCiQAA0AJGEwf9+7p7YqC3r07TtJdUMDFLWyUAEFEsaUwEAAAAAAAAAIBOIZgIAAAtYCRx0L8wMC9yuVydpmkvqeam0XI6ZAEApBuee7u7Y9CDFAAAAAAAAAAAoC0IJgIAQAtIHfQvDAzWaZL2M5z47MpTk1GenKjTNADQuoqJluFC3oMUAAAAAAAAAACgXQgmAgBAC8hy0J/NMzSQ/uxGEp8/AJDerwxnuOcCAAAAAAAAAACtQTARAABagIP+tVPI8NkVy2N1mAQAWlvyQQr2KwAAAAAAAAAA0DYEEwEAoAWkDvoPDQzWaZL2M5yhbTL1+QMA6SD/UN5+BQAAAAAAAAAA2oVgIgAANLmZmZkYHS9VXVPIEK5jw/p6emKwt6/qGsFEAEjT8AwAAAAAAAAAAJ1DMBEAAJrc6vFSVCqVqmsc9J+dQuLzK5YFEwGgmpmZmRhNNCam7rcAAAAAAAAAAEDrEEwEAIAml6Wtz0H/2UkGE0vVgxYA0OnWjJdiJvEgBfsVAAAAAAAAAABoH4KJAADQ5EYEE2uukB+s+nqWcCgAdLKRRFtihP0KAAAAAAAAAAC0E8FEAABocsVy9VBcVy4X8/sH6jRNe0o3JgomAkA1o1kepJB4EAAAAAAAAAAAANA6eho9AAAAUF2xVL2BaCg/GF25XJ2maU+pYOJIIhwKAJ0u1fCcy+VigQcpAAAAAAAAADSlnMorADaD2wcAADS5VFtfKlRHWiFf/TNcO16OqenpOk0DAK0n1fA8lB+Mri7/KRIAAAAAAAAAANqF00AAANDkUgf9U6E60oYzhDtT3wMAdLJUw7P9CgAAAAAAAAAAtJeeRg8A0GgPPPBA/PSnP43ly5fHbbfdFvfdd1+sWbMmVq9eHZVKJebPnx/z58+PF77whbH77rvHnnvuGW984xtj5513bvToTW/VqlXxi1/8In7zm9/E7bffHvfee288/PDD8dhjj0WpVIqJiYno7++PgYGBGB4ejm222Sa233772GOPPeLlL395HHDAAVEoFBr9NgAaLnnQX2PirGX5DIulsXjevAV1mAYAWk+q4Xl4YLBOkwAAAAAAAAAAAPUgmAh0pGKxGN/85jfjnHPOieXLl1ddu2rVqli1alWsWLEirrnmmqf+fOedd47jjz8+/uzP/ixe8IIX1HrklvDoo4/GlVdeGT/72c/iqquuinvuuSf5z5RKpSiVSvHEE088Z313d3fsu+++ceSRR8YJJ5wQ22+/fa1GB2hqDvrXXqZgosZEANio1H1yyIMUAAAAAAAAAACgrXQ1egCAelq7dm2cfPLJsd1228X/+T//JxlKrOauu+6Kz3zmM/HCF74w3ve+98Xjjz8+h5O2jrvuuiu+8IUvxGte85rYZptt4p3vfGd861vfyhRKTJmeno4bb7wxPvGJT8SOO+4Yb3nLW+KGG26Yg6kBWkelUkkGEzUmzt5gb1/0dnVXXZP6HgCgkyUbnvP2KwAAAAAAAAAA0E4EE4GO8cMf/jB22223+Pu///t48sm5CxZMTEzEGWecEbvuumssXbp0zn5vM3v00UfjtNNOi3333Td22WWXOOWUU+KGG26ImZmZml1zZmYmLr744njNa14TRx99dNx///01uxZAM3lycjwmZ6arrhly0H/WcrlcMuApmAgAG5blQQoangEAAAAAAAAAoL0IJgJtb2ZmJj75yU/G0UcfHQ8++GDNrvPEE0/EkiVL4n3ve19MTEzU7DqNdOutt8bRRx8d2223XXz0ox+NX/7ylw2Z46KLLorddtstzjzzzIZcH6CeRhPtQxERwxoT50QqmDiS4bsAgE5UmpyIiempqms0PAMAAAAAAAAAQHsRTATa2vT0dLzjHe+Iv/u7v4tKpVKXa55xxhlx2GGHxdhY+4UX/vM//zMuuuiimJqqfuC0HsbGxuI973lPnHTSSU0xD0CtZGnpK2ggmhOpz1FjIgBs2EiGe6SGZwAAAAAAAAAAaC+CiUDbmpmZiRNPPDEuuOCCul/76quvjj/+4z+O8fHxul+703zzm9+MY489tm1bKgGyHPQvOOg/J1Kf42hZMBEANmS0rOEZAAAAAAAAAAA6TU+jBwColU984hNx7rnnbtI/s/POO8cf/MEfxB577BFbbrll5HK5GBkZidtvvz2uv/76+M1vfpP5d1122WVx0kknxdlnn72po7OJfvCDH8TixYvjvPPOa/QoAHOumAjDbdGfj57u7jpN095SgYliqf3akAFgLmRpFR7S8AwAAAAAAAAAAG1FMBFoS5deeml86Utfyrz+qKOOilNOOSVe/epXV133m9/8Jv7hH/4hzj333JiZmUn+3nPOOSde97rXxXve857Ms7SbF7zgBbHffvvFq171qthtt91ixx13jO222y7mzZsXAwMDMTo6Go8//ng88sgjcf3118dVV10V11xzTYyNbVr44/zzz4899tgj/uZv/qZG7wSgMVIH/Ye1Jc6ZVGBitDwWM5VKdOVydZoIAFpDquF5Xl9/9HX7z5AAAAAAAAAAANBOnAgC2s6qVaviXe96V1QqleTaLbfcMs4555z4oz/6o0y/e4899oizzjor/uzP/ize/va3xwMPPJD8Z/7yL/8yXve618VOO+2U6RrtYN999423ve1t8aY3vSle8YpXVF275ZZbxpZbbhm77LJLHHTQQXHyySfHE088Ef/8z/8cX/va1+Kxxx7LfN1PfepTccQRR8Ree+01y3cA0DxSwUTtQ3OnkAh5TldmYs14KYbyPnMAWF+q4bmQaCUGAAAAAAAAAABaT1ejBwCYa5/4xCfi8ccfT67bbrvt4he/+EXmUOL69t9//7j55ptj9913T64tlUrx4Q9/eJOv0WoWLlwYp556atx5551x0003xcknn5wMJW7MlltuGaeeemrcfffdcdxxx2X+5yYnJ+PP/uzPNuuaAM2qWK7eIJsK05HdcIbQRCooCgCdKHV/LAj1AwAAAAAAAABA2xFMBNrKr371qzjjjDOS64aGhuKKK66Il7zkJZt9rec///lx5ZVXxnbbbZdce/HFF8cll1yy2ddqZvvuu2985zvfifvvvz8++9nPxs477zxnv3vBggXxne98J77+9a9HLpfL9M9cd911cemll87ZDACNljronyVMRzZZ2pwEEwHguYqlxIMU7FcAAAAAAAAAAKDtCCYCbeUzn/lMzMzMJNedccYZseuuu876egsXLozzzz8/uru7k2s/9alPzfp6zeTAAw+Mn/70p3HTTTfFcccdF729vTW71gc+8IH48pe/nHn9V7/61ZrNAlBvyQYiB/3nzIL+gWQQPtVgCQCdqFi2XwEAAAAAAABoaTk/df0BaBOCiUDb+O1vfxs//OEPk+uOOuqoOPbYY+fsugceeGD86Z/+aXLdzTffHD/72c/m7LqN8vKXvzwuueSSuOaaa+Kwww6r23U/8pGPxPve975Ma6+44op4+OGHazwRQO1NTE3F2ORE1TUO+s+drq6uGMoPVl2jMREAniv5IIW8/QoAAAAAAAAAALQbwUSgbZx++ulRqVSqrunp6dmk5r2sPvvZz8aCBQuS60477bQ5v3Y9HXPMMXHLLbfE4Ycf3pDrf+ELX4jh4eHkuunp6fjJT35Sh4kAamsk0T4UIZg411LBCcFEAHimiempeHJivOqaYfsVAAAAAAAAAABoO4KJQFsYHx+P7373u8l1xxxzTOy0005zfv2tttoq3vve9ybX/fSnP41HH310zq9fL1tvvXV0dTXu1rHlllvGJz7xiUxrr7rqqtoOA1AHWUJwhUTDH5umMFD98xwRTASAZxgtjSXXDCXurwAAAAAAAAAAQOsRTATawsUXXxyjo6PJdR/60IdqNsMHP/jBZGhveno6vvOd79Rshk5w/PHHRy6XS6779a9/XYdpAGprNEswUQPRnEp9nsUMLZYA0Emy3BtTjcQAAAAAAAAAAEDrEUwE2sK3v/3t5Jqddtop9t9//5rNsMMOO8SBBx6YXJdlVjZu0aJFsc8++yTX3XPPPXWYBqC2RhINRP09vTHQ21enaTpDKjhRzNAKBQCdJEvD87AHKQAAAAAAAAAAQNsRTARa3vT0dFxxxRXJdccdd1zNZ3nHO96RXHPTTTfFqlWraj5LO9tvv/2Sa9auXRtr166twzQAtZNqICrkB+s0SecYHqj+mRZLT0alUqnTNADQ/FLBxL7uHg9SAAAAAAAAAACANiSYCLS8X/ziFzE6Oppcd/jhh9d8lizXmJmZiSuvvLLms7SzF7zgBZnWPflkurkDoJmlDvprH5p7hcRnOjE9FaWpiTpNAwDNL9XwXBiYF7lcrk7TAAAAAAAAAAAA9SKYCLS8LCG/+fPnZ2rZm60ddtghdtppp+S6yy+/vOaztLOswcSpqakaTwJQW6lgYipEx6bL8pkWEwEMAOgkGp4BAAAAAAAAAKAzCSYCLe/6669Prtlvv/2ip6enDtNEHHjggck1N954Yx0maV+Tk5OZ1s2bJ7ADtDbBxPor5LMEEzXyAsA6o/YrAAAAAAAAAADQkQQTgZb3q1/9Krlmn332qcMkv/fKV74yueb222+P8fHxOkzTnh577LHkmp6enpg/f34dpgGonWK5ejOfBqK5NzSQ/kwFEwHgaSOJJmHBRAAAAAAAAAAAaE+CiUBLe/TRR+Phhx9Ormu2YOLU1FT8z//8Tx2maU9ZPrsXvehF0d3dXYdpAGpjemYmVqeCiQ76z7m+7p6Y19dfdc2IYCIAPKVYTjUmepACAAAAAAAAAAC0I8FEoKUtX74807qXvvSlNZ7kabvuumumdVln55kqlUrccMMNyXW77bZbHaYBqJ3V5bGoJNYIJtZG6nNNBTAAoFPMzMzEaLLh2X4FAAAAAAAAAADakWAi0NLuvffeTOt22mmnGk/ytOHh4dhyyy2T67LOzjPdcMMNmVoyDzzwwDpMA1A7IxnCb4KJtZEKUIyWqgcwAKBTrB4vRaVS/VEK9isAAAAAAAAAANCeeho9AMBs3Hfffck1CxcujHnz6nsQcqeddopf/OIXVddkmZ3nWrZsWaZ1hxxySG0HAaixYilDMFEDUU0MJwIUIxm+GwDoBMVEW2KEYCIAAAAAAABAK8ipvAJgM7h9AC1txYoVyTXbbLNN7Qd5lkWLFiXXCCZuuscffzzOOeec5Lpdd9019t577zpMBFA7xUQrX3dXV2zRn6/TNJ1laGCw6uvFDG2WANAJsjxIYThf/b4KAAAAAAAAAAC0JsFEoKWtXLkyuWbhwoV1mGTTr/nggw/WYZL28rnPfS5KpVJy3Yknnlj7YQBqLHXQfyg/GF25XJ2m6SypJsosIQwA6ASpe2JXLhfzBRMBAAAAAAAAAKAtCSYCLW3VqlXJNS94wQvqMMkzZQkmPvHEE3WYpH3ccccd8a//+q/JdQsWLIj3v//9dZgIoLZSrXyp8Bybb3ig+mf75MR4TExP1WkaAGheHqQAAAAAAAAAAACdSzARaGlZgomFQqH2g2zGNZ988skYHx+v/TBtYHp6OpYsWRKTk5PJtX/5l3/ZkO8cYK4VS2NVX0+F59h8hQyf7Wji+wGATjCSDCbarwAAAAAAAAAAQLsSTARa2sjISHLN/Pnz6zDJ5l1Ta2I2X/7yl+P6669Prttmm23i4x//eB0mAqi9VANRYWCwTpN0nizBxFSjJQB0gtFy6kEK9isAAAAAAAAAANCuBBOBllUqlTI16DUimLhgwYJM60ZHR2s8Seu77rrr4tRTT8209u///u9jiy22qPFEAPWRDiZqIKqVLKHP1PcDAJ3AfgUAAAAAAAAAADqXYCLQsiYmJjKtGxgYqPEkz5XP5zOty/oeOtVjjz0Wxx13XKYA6pvf/OZ45zvfWYepAGqvUqlEMdFA5KB/7Qz09EV/d0/VNYKJABAxIpgIAAAAAAAAAAAdSzARaFlZQ33d3d01nuS5enqqhxnWEUzcuMnJyTj22GPjwQcfTK7daqut4owzzqjDVAD1sXaiHFMz01XXFPIO+tdKLpeLoUSQYqRUPTgKAO3u9w9SEEwEAAAAAAAAAIBOlS05A9CEsob6soYE51LWa2ZpAuxU73//++Pqq6/OtPZb3/pWLFy4sMYTtY7Xvva1Dfl7zzPdeuutjR6BFjaaIfRWGBiswySdqzAwGP+7dnSjr6eCGADQ7sYmJ2JyOvUgBfsVAAAAAAAAAABoVxoTgZY1NTWVaZ1gYuv50pe+FGeeeWamtR/96EfjqKOOqvFEAPU1kiH0poGotlKNlMWSYCIAnS3LvdB+BQAAAAAAAAAA2pc6JaBlZQ3/TScaHGoh6zW12j3XeeedF3/zN3+Tae2BBx4YX/jCF2o8Ueu59tprY+utt270GMAspA765yJiSANRTQ0nghSCiQB0uiztwYKJAAAAAAAAAADQvjQmAi2rr68v07qszYpzKWsTYtb30CkuueSSWLx4cVQqleTal770pXHhhRcKdwJtKRV6m98/ED1d3XWapjOlghTF8lidJgGA5pSpMdGDFAAAAAAAAAAAoG0JJgItq7e3N9O6RgQTs15TMPFp1157bbztbW/LFOp84QtfGJdffnlstdVWdZgMoP5SB/21D9Ve6jMeLY/FzMxMnaYBgOZTLFUP6W/Rl4/ebg+SAQAAAAAAAACAdiWYCLSs/v7+TOvK5XKNJ9n8awom/t4vf/nLOOKII6JUKiXXPv/5z4/LL788tttuuzpMBtAYI4mD/kPah2ou1fBUqVRi9Xj6vgUA7Sr1IIWhAfsVAAAAAAAAAABoZx5bDmyS++67L2688caaXmPevHnxlre8JbluYGAgenp6ku2Ea9asmavRMst6zQULFtR4kuZ36623xpve9KZYvXp1cm2hUIjLLrssdtlllzpMBtA4o+XqB/2HNSbWXJZWymLpSe2VAHSsYmK/Usi7RwIAAAAAAAC0jFyjBwCgFQkmApvk6quvjsWLF9f0GjvssEOmYGJExPDwcDz22GNV12QJvM21rNfccsstazxJc7vrrrvi0EMPjVWrViXXzps3Ly655JJ4+ctfXofJABor1UAkDFd7WT7jkdKTsWPtRwGAppTar3iQAgAAAAAAAAAAtLeuRg8AMBtbbbVVcs3o6GgdJtn0aw4ODkY+n6/DNM3pvvvui4MPPjgeeeSR5Np8Ph8//OEP4zWveU0dJgNovGJprOrrgom1N79/ILpz1f91KdUUBQDtzH4FAAAAAAAAAAA6m2Ai0NKyBBMfffTROkzyTFnCdllmb1cPPvhgHHLIIfHggw8m1/b29sYFF1wQBx98cB0mA2i88tRklKYmqq5x0L/2unK5GMoPVl0zmghkAEA7G0k2PFe/jwIAAAAAAAAAAK1NMBFoadtuu21yTZaQ4FzLcs0ss7ejRx55JA4++OC47777kmu7u7vjvPPOize/+c11mAygORQTh/wjIgqJwBxzIxWoSAUyAKBdTUxNxdjkeNU1hbwHKQAAAAAAAAAAQDsTTARa2o477phc89BDD9V+kGd5+OGHk2te9KIX1WGS5vLYY4/FIYccEnfddVdybS6XizPPPDOOPfbYOkwG0DwyBRM1JtbFUCJQUSwLJgLQmUbL6dZg+xUAAAAAAAAAAGhvgolAS8sS7nvkkUdibCx9aHIu3X333ck1nRZMXLVqVRx66KFx2223ZVr/L//yL/Gud72rxlMBNJ+ig/5NI/U5F0v13V8AQLPI0hpsvwIAAAAAAAAAAO1NMBFoaS9+8YuTayqVSqag4FwpFouxatWq5Loss7eLYrEYhx12WCxfvjzT+tNOOy3e//7313gqgOaUakwc6OmLfE9vnabpbMMDg1Vfz9JuCQDtKEtrcCFxHwUAAAAAAAAAAFqbYCKwSU488cSoVCo1/VmxYkXmefbcc89M6+64447NfMebLuu1ss7e6lavXh1vetOb4pZbbsm0/rOf/Wx85CMfqfFUAM0rFXZzyL9+0o2JT0alUqnTNADQPFL7lf7unhjo6avTNAAAAAAAAAAAQCMIJgItbdGiRfGCF7wguS5rKG4uZLlWT09P7LXXXnWYprHWrl0bhx9+ePziF7/ItP7jH/94nHrqqTWeCqC5pYOJ1cNyzJ3UZz05Mx1jkxN1mgYAmkdqvzI0MC9yuVydpgEAAAAAAAAAABpBMBFoefvss09yTT2Dib/85S+Ta1760pdGPp+vwzSNMzY2FkcccURcd911mdZ/8IMfjC984Qs1ngqg+Y0IJjaNQj79WaeCGQDQjorlsaqva3gGAAAAAAAAAID2J5gItLzXvOY1yTU33HBDTE1N1WGaiGuuuSa5Zr/99qvDJI1TLpfjyCOPzPRZREScdNJJ8dWvfrXGUwG0hmI5EUzMO+hfL8MZQqCCiQB0omTDc4ZwPwAAAAAAAAAA0NoEE4GWd8ghhyTXrFmzJn7xi1/UfJb7778/7r777uS6N77xjTWfpVEmJibij//4j+PKK6/MtP6EE06If/u3f6vxVACtY7SUaiBy0L9ehjKEQFMNlwDQjlLBxCzhfgAAAAAAAAAAoLUJJgIt79WvfnUsWLAgue7SSy+t+SxZrpHL5TKFKVvR5ORkHHvssfGTn/wk0/pjjz02li5dGl1dbkcAERFTM9OxerxUdY1gYv30dHfHFv35qmtSDZcA0I6SjYn2KwAAAAAAAAAA0PYkQYCW19PTkyno993vfrfms3znO99Jrtl3333jec97Xs1nqbfp6ek4/vjj44c//GGm9W95y1vivPPOi+7u7hpPBtA6RsvV2xIjHPSvt+F89c87FcwAgHYzMzMTo4kHKWRpHQYAAAAAAAAAAFqbYCLQFv7kT/4kueauu+6KG2+8sWYz3H///XHNNdck12WZtdXMzMzEu971rvj+97+faf2b3vSmuOCCC6K3t7fGkwG0liwht1RQjrmVCoIKJgLQaVaPl6JSqVRdM+xBCgAAAAAAAAAA0PYEE4G28Ja3vCUWLFiQXPeVr3ylZjP80z/9U8zMzFRd09XVFe94xztqNkMjVCqVeO973xvnn39+pvWvf/3r48ILL4z+/v4aTwbQeooljYnNJhlMzNByCQDtJEso334FAAAAAAAAAADan2Ai0Bby+Xy8/e1vT677/ve/H3ffffecX3/VqlVxxhlnJNcddthhsWjRojm/fiN94AMfiKVLl2Zae8ABB8SPfvSjGBgYqPFUAK0pddC/p6s75vUJdtdTYWCw6usaEwHoNCOCiQAAAAAAAAAAQAgmAm3kIx/5SORyuaprpqam4qMf/eicX/v//t//G6tXr06u++u//us5v3YjfeQjH4l//dd/zbR23333jUsvvTS22GKLGk8F0LqK5eoH/Qv5weS9jrlVyCcaEwUTAegwqf1KVy4X8/s9jAYAAAAAAAAAANqdYCLQNnbbbbd485vfnFx30UUXxQUXXDBn17322mvjG9/4RnLdPvvsE4ceeuicXTciYsWKFZHL5ZI/r3/96+f0uhERn/jEJ+If//EfM619+ctfHpdddlksWLBgzucAaCepkJv2ofpLfeZjkxMxMTVVp2kAoPGKpbGqrw/lB6PLgxQAAAAAAAAAAKDtCSYCbeVTn/pUdHWl/6ftpJNOijvvvHPW13vkkUfi+OOPj+np6eTaT3/607O+XrP4u7/7u/j85z+fae3uu+8el19+eQwPD9d4KoDWlzroL5hYf1k+85FEcxQAtBMPUgAAAAAAAAAAACIEE4E288pXvjKWLFmSXDc6OhqHHHJI3HvvvZt9rcceeywOPfTQeOCBB5JrDz/88HjLW96y2ddqJl/5ylfik5/8ZKa1O++8c1x55ZWx9dZb13gqgPYwkjzoP1inSVinkE9/5qmABgC0k2IikF/ICyYCAAAAAAAAtJyunJ96/gC0CcFEoO18/vOfj6222iq57sEHH4xXv/rVcemll27yNW688cbYd99949Zbb02uzefz8dWvfnWTr9GM/v3f/z0+/OEPZ1q74447xs9+9rNYuHBhjacCaB8O+jef4QytT6OCiQB0EA3PAAAAAAAAAABAhGAi0Ia23nrrWLZsWeRy6adJrFq1Kv7oj/4o3vrWt8bNN9+cXH/bbbfF4sWL44ADDoj7778/0zxf/epXY+edd860ttl9/vOfz7x2xYoVsf3220cul2vYz6c//enafRgAc2ymUolRB/2bTr63L/I9vVXXjCS+NwBoJ6mm4GENzwAAAAAAAAAA0BF6Gj0AQC28+c1vjo9+9KPxD//wD5nWX3jhhXHhhRfGLrvsEq997WvjZS97WWy55ZaRy+ViZGQk7rjjjrj++utj+fLlmzTH8ccfH+973/s25y0A0GHWjpdjujJTdU3BQf+GGMoPRnnt6EZfTzVdAkC7qFQqyWDikAcpAAAAAAAAAABARxBMBNrWF7/4xXjwwQfj29/+duZ/5s4774w777xzTq5/yCGHxJlnnjknvwuA9pcl3KYxsTGGB+bFo9WCiYmABgC0i7HJiZicma66ppC3XwEAAAAAAAAAgE7Q1egBAGqlq6srzj777HjrW99a92u/9rWvjYsuuij6+/vrfm0AWlOWcNuwg/4NkQqECiYC0Cky7Vc8SAEAAAAAAAAAADqCYCLQ1np6euKCCy6Ik08+uW7XXLx4cVxxxRUxb57DmABklzron4uIBfnB+gzDMwgmAsDvZbnnFQbsVwAAAAAAAAAAoBMIJgJtr6urK774xS/GhRdeGNtss03NrjM8PBxnnHFGnHnmmZoSAdhkqYP+C/KD0d1l+94IqWDiSFkwEYDOMJIhmDjkQQoAAAAAAAAAANARnGwGOsbRRx8dd9xxR3z0ox+d0zbDvr6+eM973hO//e1v473vfe+c/V4AOstIaazq6wWH/BumkK++b1hTLsX0zEydpgGAxikmwvhb9OWjt7unTtMAAAAAAAAAAACNJJgIdJT58+fHP/zDP8QDDzwQX/ziF+NlL3vZZv+ul7zkJfHJT34yVqxYEd/85jdj6623nsNJAeg0o4mD/qnWPmpneKB6KLQSEavL1YOlANAORlMPUrBfAQAAAAAAAACAjuER5kBHGh4ejpNPPjlOPvnk+N3vfheXXXZZ/PrXv47bbrstVqxYEatXr441a9ZEpVKJ+fPnx/z582P77beP3XffPfbcc8849NBD46UvfWmj30bsuOOOUalU6na9FStW1O1aAJ2mWBJMbFZDGT77kfKTMTy4RR2mAYDGGUnuVzQ8AwAAAAAAAABApxBMBDreDjvsECeddFKjxwCgw6UP+gsmNkohn/7sU8FSAGgHxVTDc4Z7JgAAAAAAAAAA0B66Gj0AAAAQUSyPVX3dQf/Gmd+fj+6u6v/qVCxV//4AoB2kgvjDHqQAAAAAAAAAAAAdQzARAAAarDQ5EeNTk1XXDA8M1mkani2Xy0UhX/3z15gIQCdI3e+G7FcAAAAAAAAAAKBjCCYCAECDZQm1DWkgaqhC4vMvlgUTAWhvE1NTMTY5UXWNhmcAAAAAAAAAAOgcPY0eAAAAOl2xPJZckwrGUVvJYGIp/R0CQCvLEsIftl8BAAAAAAAAaEm5XKMnAKAVaUwEAIAGy9KYOKyBqKEK+cGqr2f5DgGglWW513mQAgAAAAAAAAAAdA7BRAAAaLDUQf/B3r7o61F23kjpxkTBRADam2AiAAAAAAAAAACwPsFEAABosNRBf4f8Gy8ZTCyPRaVSqdM0AFB/I6Wxqq/3d/dEvqe3TtMAAAAAAAAAAACNJpgIAAANNiKY2PQK+erfwdTMdKydKNdpGgCov9Fyer+Sy+XqNA0AAAAAAAAAANBogokAANBgxdRB//xgnSZhY4YzhENHE01SANDKNDwDAAAAAAAAAADrE0wEAIAGSwXaHPRvvCzfwUgiYAoArUzDMwAAAAAAAAAAsD7BRAAAaLBUoM1B/8ZbkB+IXGJNqkkKAFpZsZx4kELefgUAAAAAAAAAADqJYCIAADTQ1PR0rB0vV13joH/j9XR1x/z+gaprBBMBaGejycbEwTpNAgAAAAAAAAAANAPBRAAAaKBioi0xImJYY2JTSDVXCiYC0K5mZmZidLxUdY2GZwAAAAAAAAAA6CyCiQAA0EDF0lhyjYP+zSH1PYxk+C4BoBWNjpeiUqlUXaPhGQAAAAAAAAAAOotgIgAANNBIhpa9oYHBOkxCSiHxPWRpvwSAVpSlFXjYfgUAAAAAAAAAADqKYCIAADTQaCLM1tvVHfN6++s0DdWkmqBGM4Q2AKAVZQkmangGAAAAAAAAAIDOIpgIAAANlDroXxiYF7lcrk7TUM1wInBRLI3VaRIAqK9UK3B3riu26B+o0zQAAAAAAAAAAEAz6Gn0AAAA0MlGEmE27UPNYyjxXZSmJqI8NRn5nt46TQQA9ZEK3w/lB6PLgxQAAAAAAAAAWpf/ly8Am0FjIgAANFC6MXGwTpOQUsinv4vU9wkArch+BQAAAAAAAAAAeDbBRAAAaKBiOXHQP68xsVkMZ2ivFEwEoB2lg4n2KwAAAAAAAAAA0GkEEwEAoIEc9G8dWb4LwUQA2tGI/QoAAAAAAAAAAPAsgokAANAgM5VKjJbHqq4pDAzWaRpS+nt6Y6C3r+qaYuL7BIBWlNyv5O1XAAAAAAAAAACg0wgmAgBAg6wZL8VMpVJ1TSGvgaiZpBqhNCYC0G4qlYqGZwAAAAAAAAAA4DkEEwEAoEGyhNiGHfRvKqlGKMFEANrNk5PjMTkzXXWNYCIAAAAAAAAAAHQewUQAAGiQLCE2B/2bS+r7GBFMBKDNZNqvaHgGAAAAAAAAAICOI5gIAAANkgqx5XK5WNA/UKdpyCIVvCiWBRMBaC8angEAAAAAAAAAgA0RTAQAgAZJhdiG+geiq8uWvZmkGhOLpbE6TQIA9ZHl3jaUH6zDJAAAAAAAAAAAQDNxyhkAABpkNHHQPxWCo/5SjVBrxksxNTNdp2kAoPZSD1LYoj8fPd3ddZoGAAAAAAAAAABoFoKJAADQICOl6gf9BRObT2Eg3Qg1WtaaCED7KCb2K8N5+xUAAAAAAAAAAOhEgokAANAgqQYiwcTmk+U7SQU4AKCVpO5r9isAAAAAAAAAANCZBBMBAKBBiqXqzXoFDURNJ8t3kvpeAaCVJPcrgokAAAAAAAAAANCRBBMBAKABKpVKsoFoeGCwTtOQ1by+/ujt6q66RmMiAO0k2fCct18BAAAAAAAAAIBO1NPoAQAAoBOVJidiYnqq6pohDURNJ5fLxdDAYDz+5JqNrhkRTASgjaQC9xoTAQAAAAAAAFpfrqvS6BEAaEEaEwEAoAGK5bHkmkLeQf9mlPpeUs1SANAqJqamYmxyouoawUQAAAAAAAAAAOhMgokAANAAqfahiIhhB/2bUup7GS2lQ6cA0ApGMoTtBRMBAAAAAAAAAKAzCSYCAEADZAkmDg0M1mESNlUqgDGS4bsFgFaQZb9SyNuvAAAAAAAAAABAJxJMBACABkiF1+b19Udfd0+dpmFTDCUCGMUM7VIA0ApGswQTNSYCAAAAAAAAAEBHEkwEAIAGSIXXHPJvXsOJ72a0NBYzlUqdpgGA2hkpjVV9vb+nNwZ6++o0DQAAAAAAAAAA0EwEEwEAoAGKiQaiQqKVj8ZJhUanKzOxdrxUp2kAoHaSD1KwXwEAAAAAAAAAgI4lmAgAAA1QTDQQaUxsXlm+m1TwFABaQep+lmoRBgAAAAAAAAAA2pdgIgAANECygchB/6aVKZhYrh48BYBWkGx4tl8BAAAAAAAAAICOJZgIAAANkDzon3fQv1kN9Q9ELperukZjIgDtIBW0H7JfAQAAAAAAAACAjiWYCAAAdTYxPRVPToxXXTOsgahpdXV1xYL+gaprBBMBaAep+9nwwGCdJgEAAAAAAAAAAJqNYCIAANTZaKl6+1BEREEwsamlvp+RDN8xADSz6ZmZWJ1oTLRfAQAAAAAAAACAziWYCAAAdTaSoU1vKK+BqJkVEt9PsawxEYDWtro8FpXEGsFEAAAAAAAAAADoXIKJAABQZ6MZQmvDDvo3tdT3U8wQPgWAZjaSYb8imAgAAAAAAAAAAJ1LMBEAAOosFVrr6+6Jgd6+Ok3D5kgFMQQTAWh1o6Wx5JpUgzAAAAAAAAAAANC+BBMBAKDORhIH/QsD8yKXy9VpGjZHMphYToc5AKCZpUL23bmu2KJ/oE7TAAAAAAAAAAAAzUYwEQAA6qxYrn7QvzCgfajZpYKJ41OTUZqcqNM0ADD3RhLBxKGBwejyIAUAAAAAAAAAAOhYgokAAFBnqQaiQr566I3GK+TT4dHU9wwAzSz5IAX7FQAAAAAAAAAA6GiCiQAAUGfJYGKijY/Gy/IdCSYC0MqKpbGqr2t4BgAAAAAAAACAziaYCAAAdVYsO+jf6rIEE0cEEwFoYR6kAAAAAAAAAAAAVCOYCAAAdTQzMxOjqWBi3kH/ZtfX3RODvf1V1xTLgokAtK7Ufcx+BQAAAAAAAAAAOltPowcAAIBOsnq8FJVKpeqaYQ1ELWF4YF6MTY5v9PXRUvUAKgA0q0qlEsXEfcx+BQAAAAAAAKB95HKNngCAVqQxEQAA6qhYSrfoFRz0bwmFgcGqr49k+K4BoBk9OTEeUzPTVdfYrwAAAAAAAAAAQGcTTAQAgDrKElZz0L81DOWrf0/FsmAiAK0py4MUhvLVA/oAAAAAAAAAAEB7E0wEAIA6SoXVunK5mN8/UKdpmI3hRIC0WBqr0yQAMLeyhOtT90EAAAAAAAAAAKC99TR6ALIpl8uxcuXKePzxx2N0dDSKxWKsWbMmJiYmYmJiIiYnJ6O7uzv6+vqit7c3BgcHY2hoKAqFQgwPD8eiRYtiq622avTbAADoeKOJsNpQfjC6crk6TcNspJots7RNAUAzyhKu15gIAAAAAAAAAACdTTCxiaxduzZ+/etfx2233RZ33XVX3HXXXXHPPffEypUro1gszvr39/X1xaJFi2LHHXeMnXbaKXbeeefYZZdd4uUvf3nsuOOOs/79AACkjSTCaqmwG82jMFA9kLF2ohyT01PR2+1fuwBoLan9yvz+gejp7q7TNAAAAAAAAAAAQDNyQrZBJicn45Zbbonrrrsurr/++rjllltixYoVUalUnrHu2f/3bIyPj8eKFSvid7/7XVx99dXPeG3BggWx1157xate9ao44IAD4oADDoiFCxfO2bUBAPi9YjkRTMwLJraKLCHS0fJYPG/egjpMAwBzJ9X6mwrnAwAAAAAAAAAA7U8wsY5uvvnmuOKKK+Lyyy+P66+/PsbHx596rVoAMZfLzekcG7rW6OhoXHvttXHttdfGP/7jP0ZExIte9KI45JBD4tBDD41DDjkkttxyyzmdAwCgExVLY1Vf15jYOrKESIslwUQAWo8HKQAAAAAAAAAAACmCiTU0NjYWP/3pT+OHP/xh/PjHP45Vq1Y99dqzw4Gp8OFcNCeuu8bGrvXsa9x7771x3333xTe/+c3I5XLx6le/Oo466qg48sgjY7fddpv1PAAAnSjVQDSsgahlZAmRjiS+bwBoRqMepAAAAAAAAAAAACQIJs6xiYmJuPjii+P888+PSy655KlWxKxBxLkIIG5MqpVxQzOt+2cqlUrceOONceONN8Ypp5wSO++8cxx//PHxjne8I3bZZZeazQwA0E4qlUoymDjkoH/LGOzti97u7picnt7omlTjFAA0o5FUY6IHKQAAAAAAAAAAQMfravQA7eK6666L97znPfH85z8/jj322LjwwgujXC5HpVKJSqXyVPBv/QDgutfW/2mUjc2y/szrv3bnnXfGZz7zmdhtt93ila98ZXz961+PkZGRhs0PANAKxiYnYnJm4yG2iIhCXjCxVeRyueT3lQqiAkAzSt2/7FcAAAAAAAAAAADBxFkYGRmJL3/5y7H77rvHgQceGMuWLYvVq1dvMIwY8dzwX7OrFlJcP6j4q1/9Kv7qr/4qttlmm/iTP/mT+NnPftbgyQEAmlOWkNqwxsSWkvq+BBMBaDXjU5NRmpyousZ+BQAAAAAAAAAAEEzcDMuXL4+TTjoptttuuzj55JPjjjvuyBRGbGXV2hTXvT4+Ph7f+9734o1vfGPsscce8Y1vfCPGxsYaOTYAQFPJElIrDAzWYRLmSkEwEYA2k+XeNSSYCAAAAAAAAAAAHU8wcRP85Cc/iYMPPjj23nvvOPPMM6NUKrV1GLGa9d/jhloUb7vttvjzP//z2HbbbeOUU06JRx99tNEjAwA03EiWYGLeQf9Wkgwmlj2oA4DWkuXeVch7kAIAAAAAAAAAAHQ6wcSESqUS559/frziFa+II444Iq6++urnBPLWratFGHH90N9c/cy1ai2Ko6Oj8aUvfSle9KIXxZ/+6Z/G3XffPefXBwBoFcVy9WDiFv356OnurtM0zIVUw6XGRABaTZZ717DGRAAAAAAAAAAA6HiCiRtRqVTivPPOi9122y1OOOGEWL58edVA4mxkCRGuH3yczU/qerMJLlZrUSyXy/HNb34zdt9991i8eHHcc889s/rMAABaUeqgv7bE1pP6zkbLYzEzM1OnaQBg9lL7lXxPb+R7++o0DQAAAAAAAAB10eWnrj8AbaKn0QM0o+9+97vx6U9/Ou68885nhA7XDyNuro0F/zb2OwcGBmLbbbd96mf+/PkxMDCwwZ/JyckYGxuLUqn0nJ9HH300HnzwwVi5cmWsWrWq6mwbmnFT3/PGGhSnpqbi7LPPjvPOOy9OOOGE+PSnPx3bb7/9Jv1uAIBWVSyNVX091b5H8ykkGqNmKpVYM16KIc1SALSIkdSDFNzTAAAAAAAAAACAEEx8hp/97Gdx8sknxy233PKMYN06mxNIzBLyW7BgQey5556x1157xV577RU77LBDbLvttrHddtvF8PDwJl8zZXx8PFauXBkrV66MBx98MG6//fZYvnx5LF++PH73u989Z74NtTdmVS2guGzZsvj2t78dH/jAB+KUU06pyXsFAGgmxbLGxHaTJZwxUh4TTASgZaT3Kx6kAAAAAAAAAAAACCZGRMStt94af/3Xfx2XX355RPw+OLe5QbxUEHHLLbeM173udbHPPvs8I4hYT/39/fHiF784XvziFz/ntTVr1sT//M//PBVUvPbaa+PWW2/dYMBwnSyfz8YCiuVyOU4//fT41re+FZ/4xCfir/7qr6Knx19LAKA9FRMNRMPCay1nOEM4o1h6MmJ46zpMAwCzN5pseLZfAQAAAAAAAAAAOjyYODIyEqeeemr8+7//e0xPTz+nJTFrILFaUK9QKMRBBx0Ur3/96+MNb3hD7LXXXhsMLzaL+fPnxwEHHBAHHHDAU3+2atWquOqqq+Kqq66Kn//853Hbbbc99dqmtiluLKBYLBbjYx/7WHzjG9+I008/Pd785jfP5dsCAGgKqWCig/6tZ35+MLpyuZipsg9Ofe8A0EzsVwAAAAAAAAAAgCw6MphYqVTiX//1X+P//t//GyMjI3MSSFz/d+y3335x1FFHxWGHHRZ77713UwcRs9hqq63imGOOiWOOOSYiIh577LH4+c9/HhdffHFccskl8cQTT0TEpoUUNxZQvPvuu+Ooo46KN77xjfH1r389dtppp1q9LQCAupqYmoqxyYmqaxz0bz1duVwM5QdjpEqIo1gWTASgdYwk7lv2KwAAAAAAAAAAQEQHBhN/+ctfxvvf//645ZZbNiuQuKHgXVdXV7z+9a+P4447Lo488shYuHBhDSZvHltvvXW8/e1vj7e//e0xMzMT//mf/xn/8R//ERdccEE88sgjEZE9pLixgOJll10We+65Z5x88slxyimnRF9fX43fFQBAbaUO+UdEFPKDdZiEuTaUn1c9mFgaq+M0ALD5pmdmYk25VHVNIS+YCAAAAAAAAAAARHQ1eoB6+ou/+IvYf//9nwolPjsMV82z11YqlXjVq14VX/nKV+LBBx+MK6+8Mt73vve1fSjx2bq6uuJ1r3tdfPWrX42VK1fGFVdcEe95z3ti/vz5T31OEc8NKj7bs9dGRIyPj8fnPve52HPPPeOmm26q/ZsBAKih0SrBtXU0ELWm4YHqgdJihu8eAJrBaHksUo/tKiTuewAAAAAAAAAAQGfoqGDiv/zLv8TMzMxTocSIZwbinm1dmC6Xyz217nnPe1586EMfiuXLl8eNN94YH/zgBzsujLgxuVwuDj744DjjjDPikUceibPOOive8IY3RMSGmxE3ZN3nvP7nfvfdd8ell15al/cAAFArWcJpgomtKfW9CSYC0CqKWRqe7VcAAAAAAAAAAIDosGDiOusHDTf2+rODiwcccECcd9558eCDD8bpp58ee+yxRz1Hbjn5fD5OOOGEuPLKK+O3v/1tfOhDH4qhoaFNCigCALSTkdJY1df7e3pjoLevTtMwl1IBjRHBRABaRKYHKeQFEwEAAAAAAAAAgA4NJmYNJPb29sbixYvjv//7v+Paa6+NP/mTP4ne3t56jtoWdtpppzj99NPjoYcein//93+P3Xbb7TnNiAAA7S7VQFTID9ZpEuZaKpg4Wh7z4A0AWkIx8SCF7q6umN+fr9M0AAAAAAAAAABAM+vIYOKzPTuQODQ0FB//+MdjxYoV8a1vfSv22muvBk/YHvL5fLz3ve+N3/zmN/GjH/0oDjroIAFFAKBjpBqIhhPhNppXqjlqYnoqSpMTdZoGADZfar9SyA/67zcAAAAAAAAAAEBEdHgw8dmBxOc973nx+c9/Pu6///74/Oc/HwsXLmzwhO3riCOOiKuuuiquu+66OPzwwwUUAYC2lzroPySY2LKyhEpHEt8/ADSD1P1qKBHGBwAAAAAAAAAAOkdHBhOfHUjceuut47TTTosVK1bExz/+8dhiiy0aPGHn2H///ePHP/5x3HzzzXHUUUc9I6AIANBOiuWxqq+nWvdoXkMDg8k1xbJgIgDNbzSxX9HwDAAAAAAAAAAArNORwcSI3wcSh4aG4m//9m/j3nvvjQ9/+MMxMDDQ6LE61j777BMXXnhh3HDDDXHwwQdHpVKJiBBQBADaRqoxcThDuI3mVMhnCCZqTASgBaTuVwX7FQAAAAAAAIC2lMv5qecPQLvouGBipVKJvr6++NjHPhb33ntvnHLKKTE46FBVs3j1q18dV1xxRVxxxRWxzz77PBVQBABoZdMzM7E61Ziogahl9Xb3xBZ9+apriqXq3z8ANIN0MNF+BQAAAAAAAAAA+L2OCibmcrk4/vjj47e//W188YtfjEKh0OiR2IiDDz44brrppjjrrLNi2223bfQ4AACzsro8FqnHLTjo39pS35/GRACaXaVSiaIHKQAAAAAAAAAAABn1NHqAerrhhhviVa96VaPHYBOccMIJceyxx8Y999zT6FEAADbbSDkdSnPQv7UVBgbjwdFVG329mOHvAAA00tqJckzNTFddU8jbrwAAAAAAAAAAAL/XUY2JQomtKZ/Px8te9rJGjwEAsNmytOUV8oN1mIRaSQU1NCYC0OxGS9XbEiN+H8QHAAAAAAAAAACI6LBgIgAANELqoH93riu26B+o0zTUQqrxspgh7AEAjaThGQAAAAAAAAAA2BSCiQAAUGMjiba8oYHB6Mrl6jQNtZBqkEr9HQCARku1++YiYkjDMwAAAAAAAAAA8P8TTAQAgBorJhqICnntQ60u9R2OTY7HxNRUnaYBgE2XCibO7x+Inq7uOk0DAAAAAAAAAAA0O8FEAACosWJprOrrwwOCia0uy3eYCqgCQCOlgolDiXZgAAAAAAAAAACgswgmAgBAjaUO+hcc9G95hSzBxERAFQAaqViufp/S8AwAAAAAAAAAAKxPMBEAAGos2UDkoH/LyxRM1JgIQBNL7Vc0PAMAAAAAAAAAAOsTTAQAgBqqVCrJBiIH/Vtfvqc3+rt7qq5JBT4AoJHSDc/2KwAAAAAAAAAAwNMEEwEAoIaenBiPqZnpqmsc9G99uVwu+T0KJgLQzIql6g9SsF8BAAAAAAAAAADWJ5gIAAA1lCWMVhgYrMMk1JpgIgCtqjw1GaWpiaprCnn7FQAAAAAAAAAA4GkdHUy8/PLLGz0CAABtbqScJZiogagdpL7HEcFEAJrUaKYHKdivAAAAAAAAAAAAT+voYOKb3vSm2HHHHePTn/50rFixotHjAADQhrK05A1pIGoLhXz1wMZoeaxOkwDApskSnhdMBAAAAAAAAGhjXX7q+gPQJjr+f9IeeOCB+NznPhc77bRTHHzwwXHeeedFuVxu9FgAALSJVDBxfv9A9HR112kaaml4oHrANEtIFQAaoZghPC+YCAAAAAAAAAAArK/jg4kREZVKJWZmZuLqq6+Od73rXbFw4cJ4//vfHzfeeGOjRwMAoMUVS9UP+hcSYTZaRyqwMTpeipmZmTpNAwDZpcLzAz19ke/prdM0AAAAAAAAAABAKxBMjIhcLhe5XC4qlUpUKpVYvXp1nHHGGXHAAQfEy172sjjttNPif//3fxs9JgAALahYrn7Qv5DXPtQuhhLfZaVSidHxUp2mAYDsUsHEIQ9SAAAAAAAAAAAAnkUwMX5/QDji6YDi+iHF22+/PT72sY/F9ttvH0cffXRcdNFFMT093eCJAQBoFamD/sOJlj1ax3CG0Ebq7wMANELyQQr2KwAAAAAAAAAAwLMIJv7/1gURnx1SXPfa5ORk/OhHP4q3vvWtsd1228XHPvaxuO222xo5MgAALSAVRHPQv31k+S4FEwFoRsXSWNXXNTwDAAAAAAAAAADPJpi4AeuHFDfUovjoo4/GaaedFnvuuWfsv//+ccYZZ8Tq1asbPTYAAE0oedBfMLFtbNE/EN256v+KJZgIQDNKNzynW4EBAAAAAAAAAIDOIpiYsKEWxfVDijfddFO8//3vj0WLFsW73vWu+PnPf97giQEAaBblqckoTU1UXVPIO+jfLrpyuRhKBDeK5epBVQBoBA3PAAAAAAAAAADAphJMzGj9FsWIeE5AsVQqxXnnnReHHnpovPjFL47Pfe5zcf/99zd4agAAGmk0Qzueg/7tpZCv/n1qTASg2UzNTMfq8VLVNUOJ+xsAAAAAAAAAANB5BBM3w/ohxQ21KK5YsSI+/elPx4tf/OJ44xvfGN/5zndifHy80WMDAFBnI4KJHaeQakwUTASgyawuVw8lRkQMJ+5vAAAAAAAAAABA5xFMnKUNtSiuCynOzMzEz372s3jnO98ZixYtig984ANx8803N3hiAADqpVgeS64RTGwvqe8zS1gVAOopS2jefgUAAAAAAAAAAHg2wcR4ZqBwc63forj+71z3Z8ViMf7t3/4t9ttvv9hrr73iK1/5Sjz++ONz9RYAAGhCqYP+Az19ke/prdM01EMhXz24USwLJgLQXDQ8AwAAAAAAAAAAm6Ojg4kf+9jHYtGiRRsMFM5GtRbFSqUSv/nNb+Kv//qvY7vttotjjjkmLr744piZmZn1+wEAoLmkgomFgcE6TUK9DCeCG8XS2FP/rgAAzSAVmu/u6oot+vJ1mgYAAAAAAAAAAGgVHR1M/OIXvxj3339//PjHP45jjjkm+vr6ngoP1rJFcd1rExMT8YMf/CCOOuqo2H777eNv/uZv4re//e2cvDcAABovFUwc0j7UdlKNUlMz0/Hk5HidpgGAtOSDFPKDs36IFwAAAAAAAAAA0H46OpgYEdHV1RWHH354XHDBBfHQQw/FP/3TP8U+++yz0dbDzbV+SHFDLYoPP/xw/P3f/33svvvu8Qd/8Adx5plnxtq1a+fqbQIA0ADF8ljV1wt5wcR2k6UFMxUAAYB6KpYS+xUPUgAAAAAAAAAAADag44OJ6xseHo6/+Iu/iJtvvjmWL18eH/rQh2LrrbfeaOvh5tpY6HHdn99www1x0kknxaJFi2Lx4sVxzTXXzPq9AQBQf6kA2nCGEButJUvYVDARgGZSLCcaEwUTAQAAAAAAAACADRBM3Ig99tgjTj/99Fi5cmX84Ac/iKOOOiq6u7s32Hq4udZvUYyI5wQUn3zyyTj77LPjDW94Q+y8887x+c9/PlauXDlXbxEAgBpLBdAc9G8/Q/ksjYnVm6kAoJ6S+xUNzwAAAAAAAAAAwAYIJiZ0d3fHkUceGRdeeGGsXLkyvvzlL8eee+650dbDzbV+SHFDLYr33HNPnHrqqbHjjjvGH/7hH8YFF1wQk5OTc/U2AQCYY1Mz07F6vFR1jWBi++np7o75/QNV14xoTASgiaQbnu1XAAAAAAAAAACA5xJM3ARbb711fOQjH4lf//rXcfPNN8ef//mfx/Dw8AZDirOxsdBjpVKJ6enpuPzyy+Md73hHLFq0KD74wQ/Gr371q1m/NwAA5tZoOd2KJ5jYngoD1VsTUwEQAKiXSqUSxcSeZShxXwMAAAAAAAAAADqTYOJm2meffeLrX/96PPTQQ/Hd7343Dj/88Ojq6qpZi+L6v3Pdnz3xxBPxz//8z7HvvvvG3nvvHV/72tfiiSeemJP3BwDA7GQJnxXyDvq3o0K+euB0tCyYCEBzWDtRjumZmaprUvc1AAAAAAAAAACgMwkmzlJfX18ce+yx8eMf/zgeeOCB+MIXvhC77rrrRlsPN1e1FsVKpRK//vWv40Mf+lBsu+22cdxxx8Wll1761HoAAOqvWNKY2KmGE99rlr8bAFAPWR6kkLqvAQAAAAAAAAAAnUkwcQ4tXLgwTj755Ljtttviuuuui5NOOikWLFiwwVDh5tpYi+K618bHx+P73/9+vPnNb44XvvCF8clPfjLuvvvu2b85AAA2STHRitfT1R1b9OXrNA31lAqcjmhMBKBJZGp4FkwEAAAAAAAAaHu5nJ96/gC0C8HEGtl///3jG9/4Rjz88MNxzjnnxKGHHvpUw2HE3LYoViqVDbYorly58qkGx4MOOijOOuusGBvTzgIAUA+pg/6F/OCs9oI0r6H8YNXXs4RAAKAeRhItvrmIWJAfqM8wAAAAAAAAAABASxFMrLF8Ph/vfOc747LLLov77rsvPvOZz8SLX/ziDbYezkVI8dm/b92f/9d//VcsWbIkFi5cGO9973vjv/7rv+bk/QEAsGHJYKL2obY1nPhuS5MTMT41WadpAGDjUg3P8/sHoqeru07TAAAAAAAAAAAArUQwsY623377OPXUU+Ouu+6Kq6++Ot797nfH4ODgBkOFm2v9FsX1f9+6P1u7dm0sXbo0DjrooNh1113jS1/6Ujz88MNz8v4AAHhaMdFAJJjYvrJ8t1oTAWgGox6kAAAAAAAAAAAAbCbBxAY58MADY+nSpfHII4/EmWeeGQcddFBERE1aFCuVygZbFO+666445ZRT4oUvfGEcccQR8R//8R8xNTU1J+8PAKDTjSQO+g/lB+s0CfWWJcSR+vsBAPUw4kEKAAAAAAAAAADAZhJMbLB58+bFiSeeGFdddVXcfffd8clPfjK23377OW1RjIgN/r51IcXp6en4yU9+Escee2xss8028eEPfziWL18+6/cGANDJRsvVg2fDDvq3rSwhjtFy9SAIANRDMbFfKQx4kAIAAAAAAAAAALBhgolN5EUvelF89rOfjfvuuy8uv/zyOP744yOfz2+w9XBzrd+iGBHPaVF8/PHH45/+6Z9i7733jn333Tf+5V/+JYrF4hy9QwCAzlCpVKKYCJ5pIGpf+Z7eGOjpq7qmqDERgCaQuh8V8vYrAAAAAAAAAADAhgkmNqFcLheHHHJInHvuufHII4/Ev/3bv8X++++/0dbDzVWtRbFSqcQtt9wSf/mXfxnbbLNNHH/88XHZZZfNyfsDAGh3a8bLMT0zU3WNBqL2NpT4fkcEEwFoAslgogcpAAAAAAAAAAAAGyGY2OTmz58f73vf++K6666LO+64Iz72sY/FokWLNhgq3Fwba1Fc91q5XI7vfve7cfjhh8cOO+wQn/rUp+Lee++d/ZsDAGhTxXI6dOagf3tLfb9Z/o4AQC2VJyeiPDVZdY39CgAAAAAAAAAAsDGCiS1kl112iS9+8Ytx//33xyWXXBJve9vboq+v76lQ4Vy2KD779637swceeCD+9m//Nnbeeed4wxveEOeee26USqU5fJcAAK0v1T4UETGcd9C/nRUS32+xNFanSQBgw4rl9L2okNfwDAAAAAAAAAAAbJhgYgvq6uqKP/zDP4zvfe978dBDD8XXvva1eOUrX7nB1sO5CCk++/et+/Nrrrkm3v3ud8eiRYviT//0T+OGG26Yk/cHANDqUsHEXEQscNC/rQ0PVP9+s4RXAaCWMj1IQWMiAAAAAAAAAACwEYKJLW54eDg+8IEPxE033RTLly+PD33oQ7H11ltvMFS4udZvUVz/9637s9WrV8c3v/nN+IM/+IPYfffd48tf/nI8+uijc/L+AABaUaqBaH5+ILq7bMXbWSER5CiWBRMBaKwswcQhwUQAAAAAAAAAAGAjnIZuI3vssUecfvrpsXLlyvjBD34QRx11VPT09DwVIJzLFsVn/751f3bHHXfEySefHNtvv30ceeSRcdFFF8X09PQcvksAgOaXOug/nHfIv92lgolryqWYnpmp0zQA8Fwjif3KQE9f5Ht66zQNAAAAAAAAAADQagQT21B3d3cceeSRceGFF8bKlSvjtNNOi7322muDrYdzEVJ89u+rVCoxNTUVP/7xj+Otb31rbLvttnPyvgAAWkUqmJgKrdH6CvnBqq9XImI00awJALWUug8VBqrfywAAAAAAAAAAgM4mmNjmnve858WHP/zh+O///u/45S9/GR/4wAdieHh4g6HCzbV+i+Kzf1+lUonHHnts9m8EAKCFCCaS5TtO/T0BgFqyXwEAAAAAAAAAAGZDMLGD7L333vG1r30tHn744fje974Xf/RHfxRdXV01a1EEAOhUIw76d7ws33Hq7wkA1JL9CgAAAAAAAADr5HJ+6vkD0C4EEztQb29vvO1tb4uLL744HnjggfjCF74Qu+666wZbDzc3pCicCAB0smJ5rOrrhfxgnSahUbboy0dPV3fVNcWyYCIAjZO6DxXygokAAAAAAAAAAMDGCSZ2uIULF8bJJ58ct912W1x//fVx0kknxYIFCzYYUgQAIK08ORHjU5NV12ggan+5XC4ZQB0tVQ+wAkAtFRP3ocKABykAAAAAAAAAAAAbJ5jIU/bbb7/4xje+EQ8//HCce+65ceihh0Yul3sqpCicCACQNlJKt+AJJnaG1Pec5e8KANTC1Mx0rBkvVV1jvwIAAAAAAAAAAFQjmMhz5PP5OP744+Oyyy6LFStWxGc/+9l4yUteIpwIAJBBsZxuwXPQvzOkvudiWTARgMYYtV8BAAAAAAAAAABmSTCRqrbbbrs45ZRT4h//8R+FEwEAMihmaMEbzjvo3wmG8oNVX8/ydwUAasF+BQAAAAAAAAAAmK2eRg9A87r99ttj2bJlce6558Yjjzzy1J9XKpUGTgUA0NxSB/0He/uir8c2vBMMpxoTBRMBaJBiSWMiAAAAAAAAAAAwO05E8wyjo6Px7W9/O5YuXRo333xzRAgiAgBsilTYbMgh/46RCnQUy2MayQFoiNR+paerO+b19ddpGgAAAAAAAAAAoBUJJhKVSiUuu+yyWLZsWVx00UUxPj7+jDDi+gelhRQBAKorlqs3EA3nBRM7RWFgsOrr0zMzsWa8HAvyA3WaCAB+r1iuHkws5AcF5wEAAAAAAAAAgKoEEzvYXXfdFUuXLo1zzjknHnrooYgIgUQAgFlKNRClwmq0j1RjYkTEaPlJwUQA6i69X/EgBQAAAAAAAAAAoDrBxA6zZs2a+M53vhPLli2LG264ISKEEQEA5pKD/qyTpR2zWHoyti88rw7TAMDTiqXqDc/2KwAAAAAAAAAAQIpgYoe48sorY+nSpfGDH/wgSqVSRDwdPFw/jLj+n2+uZ/8+AIBOMlIWTOT3FuQHIxcR1XbXI4lgCADUwoiGZwAAAAAAAAAAYJYEE9vYvffeG8uWLYuzzz47HnjggYioXTvixsKNr3jFK2LJkiWz+t0AAK1iano61o6Xq64pZGjRoz10d3XF/PxArC6XNrqmmAiyAkAtpO4/9isAAAAAAAAAAECKYGKbefLJJ+N73/teLF26NP7rv/4rImoXRtzY79tyyy3j+OOPjyVLlsQrXvGKWV8DAKBVZAmZaSDqLMP5edWDiYnGKgCYazOVSoyWqzf2angGAAAAAAAAAABSBBPbxFVXXRXLli2L//f//l+Mjf3+cNm6oODG2gw314Z+X1dXVxx22GGxePHiOProo6Ovr29W1wAAaEXFUvVD/hEO+neawsC8+F3x8Y2+LpgIQL2tHS/H9MxM1TUepAAAAAAAAADQWXJdjZ4AgFYkmNjCfve738WyZcvi7LPPjhUrVkRE/dsRX/KSl8SJJ54YJ554Ymy77bazvgYAQCvL1pgomNhJUt93MdFYBQBzzX4FAAAAAAAAAACYC4KJLaZUKsUFF1wQy5Yti2uuuSYqlUrdw4iDg4NxzDHHxJIlS+J1r3vdrK8BANAuUu13vV3dMa+3v07T0AySwUSNiQDUWZZ7z3BeMBEAAAAAAAAAAKhOMLFFXHvttbF06dL4/ve/H2vXro2Ip4OC64cH1//zzbWx37f//vvHkiVL4rjjjov58+fP6hoAAO0oddC/MDDvOXst2lshEewQTASg3lL3nlxELMgP1mcYAAAAAAAAAACgZQkmNrEHH3wwzjrrrDjrrLPinnvuiYioezviC17wgjjhhBNiyZIl8dKXvnTW1wAAaGcjpbGqr6fa82g/hYHqwY7y1GSUJyci39tXp4kA6HTFcvX9yvz8QHR3ddVpGgAAAAAAAAAAoFUJJjaZcrkc//Ef/xFLly6Nn//851GpVDYaRoyoTTtiT09PHHHEEbF48eI44ogjoru7e1bXAADoFMnGRO1DHSdLGHWk9GQsEkwEoE5S+5XhRNsvAAAAAAAAAABAhGBi07j++utj2bJl8b3vfS9Wr14dEU+HDusRRoyI2H333WPx4sVxwgknxPOf//xZXQMAoBONlhPBRI2JHSfLd14sj8WiBcN1mAYAMjxIwX4FAAAAAAAAAADIQDCxgR566KE4++yz46yzzoo777wzImKj7YizDSNu7PctWLAgjjvuuFiyZEnst99+s74GAEAnK5bGqr7uoH/nydI6lQqIAMBcEkwEAAAAAAAAAADmgmBinU1MTMSFF14Yy5YtiyuuuCJmZmY2GkaMqE07Yi6Xi9e//vWxZMmSOOaYY2JgYGBW1wAAIGKmUonRciqYOFinaWgWfT09MdjbF2OTExtdI5gIQD2NJO47Q3n7FQAAAAAAAAAAIE0wsU5uuummWLp0aXz3u9+NYrEYEU+HDuc6jPjs37nu922//fbx7ne/OxYvXhwvetGLZn0NAACetma8FNOVmaprChna82g/hYF51YOJZcFEAOon9SCFYY2JAAAAAAAAAABABoKJNfToo4/GOeecE8uWLYvbb789ImKj7Yi1CiP29/fH0UcfHYsXL443vvGNzwlBAgAwN7K03jno35kK+Xnx0OqRjb5eLFUPiADAXClPTkR5arLqmoL9CgAAAAAAAAAAkIFg4hybnJyMH/7wh7F06dK47LLLYnp6eqNhxIjZBxI39vv23nvvWLJkSbzzne+MQqEwq2sAAJCWJZg45KB/RyoMDFZ9PcvfHQCYCyMZ7jmCiQAAAAAAAAAAQBaCiXPklltuiWXLlsW3v/3teOKJJyKi/u2IW221VRx//PGxZMmSePnLXz7rawAAkF2xXL31LpfLxVD/QJ2moZmkAh6CiQDUS2q/EiGYCAAAAAAAAAAAZCOYOAuPPfZYnHvuubFs2bL4zW9+ExH1CyOu+51dXV3xpje9KZYsWRJHHXVU9Pb2zvo6AABsulS4bKh/ILq6uuo0Dc0kFfAYKQsmAlAfWcLwhXz1pl8AAAAAAAAAAIAIwcRNNj09HT/60Y9i2bJlcemll8bU1NRGw4gRtWtHfMlLXhKLFy+Od7/73bHtttvO+hoAAMxO6qC/9qHOVchX/+7Xjpdjano6erq76zQRAJ0qtV8Z6O2L/h4PvQIAAAAAAADoOLn0EgB4NsHEjJYvXx5Lly6N888/Px5//PGIqF874rrfN2/evHjb294WixcvjoMOOmjW1wAAYO6MCCayEcMZvvvR8lhsNW9+HaYBoJMVEy299isAAAAAAAAAAEBWgolVPPHEE3HeeefF0qVL49e//nVE1C+MuP7vfM1rXhNLliyJ4447LrbYYotZXwcAgLnnoD8bMzQwmFwzUnpSMBGAmiuWxqq+Ppxo+QUAAAAAAAAAAFhHMPFZZmZm4pJLLomlS5fGj3/845icnNxoGDGidu2ICxcujBNOOCGWLFkSu+6666yvAQBAbaUO+hfy6XAa7SlLKDUVbAWAuVBMNDxnCdMDAAAAAAAAAABECCY+5dZbb41ly5bFueeeG//7v/8bEfVvR+zt7Y0jjjgilixZEocffnh0d3fP+joAANRepVKJ0cRBf42JnWteb3/0dnXH5Mz0RtekgiIAMBdS95uCxkQAAAAAAAAAACCjjg4mFovFOP/882PZsmXxy1/+MiLqH0aMiHjZy14WixcvjhNOOCG23nrrWV8HAID6Kk1NxPj0VNU1gomdK5fLRWFgXjz25OqNrhFMBKAeiuVEw7P9CgAAAAAAAAAAkFFHBxMXLlwYk5OTGw0jRsx9IHHd7xsaGop3vOMdsXjx4nj1q18962sAANA4xVL1Q/4RGog6XTKYmAiKAMBsTU1Px5rxUtU1w4KJAAAAAAAAAABARh0dTJyYmHgqNFiPdsRcLhdveMMbYsmSJXHMMcdEPp+f9XUAAGi8LG13Dvp3tsLAYNXXNSYCUGujGULwqfsVAAAAAAAAAADAOh0dTFwnl8vNSRhx3e9aZ93vfOELXxjvfve7Y/HixbHjjjvOyXUAAGgeWUJlQw76d7RUY6ZgIgC1NpLhXqPhGQAAAAAAAAAAyEowMWbfkLihMGI+n4+jjz46lixZEocccshzGhQBAGgfqYP+g7390ddt693JConGzGIp3WIFALNRLGcIJmp4BgAAAAAAAAAAMnI6ejM9O2i4LpC4zz77xJIlS+L444+PQqHQgMkAAKi30XL1UNmwQ/4dr5BozBwtj8VMpRJdHmgCQI2MJkLwvV3dMa+vv07TAAAAAAAAAAAArU4wcRNtqB3xec97Xrzzne+MxYsXx1577dWo0QAAaJBiojExFUqj/RXy1cOp05WZWDNeiqG8vysA1Eaq4XloYPA5D+ICAAAAAAAAAADYGMHEDDbUjtjd3R2HHXZYLFmyJI488sjo7e1t0HQAADRa6qB/QWNix8vSmlksPSmYCEDNFMuJ/UoiRA8AAAAAAAAAALA+wcQqNtSOuPPOO8eJJ54Y7373u2ObbbZp1GgAADSR5EF/wcSOl+XvQLE0FjsM12EYADpSuuHZfgUAAAAAAAAAAMhOMPFZNhRGnDdvXhx77LGxZMmSeO1rX9uo0QAAaFLJg/4aiDregv6ByOVyT/07xoakAq4AMBvF0ljV1wsDWnsBAAAAAACA/4+9+w6Tq673B/6ZLdnZTcLOUgIkVAUSIk1qCCJYEERA9CqI0gQEIiJSLNiQIr8HUFGU3gSUItdrCyBNRRFCCxDpAgEMIKHsbMq27O78/sCNm5DMmU12zmx5vZ5nnis735nzmeVk95D7fZ83AEDpBBNjyTBixH8DiVOnTo3DDjss9t9//xg92mZyAADeqbO7KxZ2dhRdY6M/VVVV0VhXH/n25YdCkgKuALAyEhue3UgBAAAAAAAAAADoB8HE/+gNI6699tpx8MEHx+c///nYZJNNKjwVAACDXUuRoFmvXL2N/rx9HggmAlAJPYVCtCQ0Jja5XgEAAAAAAAAAAPphxAcTC4VC1NbWxl577RWHHXZYfPSjH42qqqpKjwUAwBBRSphMAxER/wmoNr++3OebBRMBKJMFHW3RXegpusaNFAAAAAAAAAAAgP4Y0cHEzTbbLD7/+c/HQQcdFKuvvnqlxwEAYAgqJZiogYiI5MBHvl0wEYDyKOV6pbG+IYVJAAAAAAAAAACA4WJEBxNnzZpV6REAABjikjb6j6quifraUSlNw2CW1JzZ0taa0iQAjDT59uTfMU0angEAAAAAAAAAgH6oqvQAAAAwlDUnhMly9aMjk8mkNA2DWVNCE1W+bWEUCoWUpgFgJEm6kUImIlbJakwEAAAAAAAAAABKJ5gIAAArId9efKN/ziZ//qOxvngTVUd3V7R1daY0DQAjSVIwcZVsQ1RX+WtCAAAAAAAAAACgdDWVHgAAAIayloSN/rmEMBojRy6bfC7k21qjobYuhWkAGElKaXgGAAAAAAAAYOTKZAqVHgGAIcit0AEAYCXY6E+pmko4F5IarQBgRWh4BgAAAAAAAAAABppgIgAArITEjf71NvrztsYSzgXBRADKQcMzAAAAAAAAAAAw0AQTAQBgBfX09ERLe0JjYtZGf942qromRo+qK7omKegKACuiWTARAAAAAAAAAAAYYDWVHoAV193dHa+++mq88sorMX/+/Ghra4u2trZob2+PQqHwjvUHH3xwBaYEABi+5nW0LfO6q68mG/3pI1c/OhZ2diz3+Xxb8aArAKyIvBspAAAAAAAAAAAAA0wwcYh46qmn4r777otHHnkkHnnkkXj66adj7ty5iRvh+xJMBAAYWPmE9qGIiEbBRPrIZUfHyy1vLff5Us4pAOiPtkWd0dG1qOiapvqGlKYBAAAAAAAAAACGC8HEQaq7uzumT58e06dPj9tuuy3mzJmzxPP9CSRGRGQymYEcDwCASG4fiohoytroz3/lEoIfzYKJAAwwN1IAAAAAAAAAAADKQTBxkHnmmWfi4osvjl/84hfxxhtvRMSyQ4j9CRr2N8RYzNlnnx3Tp09PXDdu3Lj43//93wE7LgDAYJS00b8qk4mxgon0kUsIfuTbBRMBGFil3Egh6fcTAAAAAAAAAADA0gQTB4mnnnoqTjvttLjxxhujp6dniTBhsRBiUuhwoJsSd9999zj55JOLrikUCpHJZOKuu+6KXXbZZUCPDwAwmCQFExuzDVGluZo+ctmEYKLGRAAGWCm/W5oSfj8BAAAAAAAAAAAsrarSA4x08+fPj2nTpsXmm28eN9xwQ3R3dy8O9vU+It4O+y3rkbYtt9wy9tprr8XHLjbTZZddlvp8AABpak7Y6K99iKU1JZwTCzs7orO7K6VpABgJkoKJDbWjYlSNe5cBAAAAAAAAAAD9I5hYQX/4wx9i8uTJcckll7wjkBgRFQ0gFvONb3xj8f/uG6Ds+ygUCvHrX/865s+fX8FJAQDKK9+eEEzUPsRSSgmrtrS3pjAJACNFUjDRjRQAAAAAAAAAAIAVIZhYAYVCIb7xjW/EvvvuGy+//PJyA4mD1Y477hjbbLPNclsTe3V0dMRvfvObSo0JAFB2+bbiATIb/VlaKedEUoAEAPojseHZjRQAAAAAAAAAAIAVIJiYsvnz58dHP/rROOecc4ZcILGvL37xiyWtu+GGG8o8CQBA5SQ3EDWkNAlDRS6bfE4IJgIwkJKaeF2vAAAAAAAAAAAAK0IwMUXz5s2L3XffPW6//fbFocSIFQ8k9oYae98nTZ/97GejsbFx8RxLy2QyUSgU4o477oh58+alPR4AQNkVCoXItycFEzUQsaT62lExqrqm6BrBRAAGUvKNFFyvAAAAAAAAAAAA/SeYmJL58+fH7rvvHjNmzIiI/wb3Sg0k9g0hViqM2FddXV188pOfXOb8fb/W1dUVt956a5qjAQCkonVRZyzq7i66Jpe10Z8lZTKZxABIc1vxZisA6I9mN1IAAAAAAAAAAADKQDAxJQceeGDcd999S7QkJlk6hNgbZOx91NTURC6Xi7XXXnvx+jQdeOCBJa27+eabyzwJAED6Smm1a7LRn2XI1TcUfT6piRMAStXV3R0LOtqLrnEjBQAAAAAAAAAyVR5pPgCGi5pKDzASfO9734s//OEPJYcS+wYMe9euu+66sfvuu8e2224b733ve2P99dePcePGLV5XVZX+b6ddd9011lxzzZg7d+7iBsi+er+mMREAGI5KCSYmBdAYmZICIC0lnFsAUIpSwu6uVwAAAAAAAAAAgBUhmFhm99xzT5x++un9DiUWCoVobGyMgw8+OA4//PDYYostyj5rf2Uymdhjjz3iqquuekdbY6FQWPy11157Lf75z3/GxhtvXIkxAQDKormE8Fhj1kZ/3impSbO5rTWlSQAY7vIl/E7JaXgGAAAAAAAAAABWgBLYMlq0aFEceeSRi8OIxUKJmUxmccNgXV1dfOtb34rZs2fHT37yk0EZSuy15557lrTu7rvvLvMkAADpamkvvtF/zKhs1Fa7Dwjv1JjQTFVKuxUAlKK0xkTBRAAAAAAAAAAAoP8EE8voRz/6UTzxxBOLA4fL07clcccdd4xHH300Tj/99MjlcilNuuJ22223xfMv3ZrYl2AiADDc5BMaE23yZ3ly2eLnRkt7a/T09KQ0DQDDWdL1Sm1VdYyurUtpGgAAAAAAAAAAYDgRTCyT1tbW+MEPflA0rBcRi0OLhUIhjj766Ljrrrti4403TmnKlZfL5WLy5MlF1xQKhZg5c2ZKEwEApKM5MZhYvBWPkaspIbRaKBRiXkdbStMAMJyVciOFpL+7AgAAAAAAAAAAWBbBxDK5+OKL480334yIWG5bYm8oMZPJxLe+9a244IILoqamJs0xB8SOO+5Y9DNGRDz55JPR1dWV5lgAAGWVb0/Y6J/QisfIVUqbZlKQBABK0dzWWvT5xqwbKQAAAAAAAAAAACtGMLFMfvrTnxa943zfUOK0adPi9NNPT3G6gbX99tsv8+t9w4qLFi2KJ598Mq2RAADKLik4ltSKx8hVUjCxvXiQBABK0ZJwIwXXKwAAAAAAAAAAwIoSTCyDGTNmxAsvvBARy25L7BtK3GmnneInP/lJyhMOrMmTJ5e07umnny7zJAAA6UkKJpYSPmNkGltXH9WZ4v8ppjERgIHgegUAAAAAAAAAACgXwcQyuPbaa5f7XN8Wxbq6urjiiiuiuro6jbHKZuLEiSWtmz17dpknAQBIR2dXV7Qu6iy6pjHbkNI0DDVVmUzi+SGYCMBAyLcVb+AVTAQAAAAAAAAAAFaUYGIZ3HLLLUsEEJfW25b45S9/OTbaaKMUJyuP1VZbLVZdddWIiKKfWzARABgu8u3JobEmG/0porG+eDCxWTARgJXUUyhES3tSMNGNFAAAAAAAAAAAgBUjmDjAXnvttXjuueci4u0AYl99Q3v19fVx0kknpTpbOU2YMOEdn3dpL7/8ckrTAACUVyltdhqIKCaXLX5+lBJ+BYBi5ne0RXehp+iapN9HAAAAAAAAAAAAyyOYOMDuvvvuos/3tiXuvffesfrqq6c0VfmtueaaiWtef/31FCYBACg/wURWVtL5kW8r3nAFAElaXK8AAAAAAAAAAABlJJg4wGbNmlXSuv3337/Mk6RrrbXWWu5zmUwmCoVCvPHGGylOBABQPs0JobG6mtqorx2V0jQMRU31DUWfLyX8CgDFJF2vRAgmAgAAAAAAAAAAK66m0gMMN88///wyv57JZJb437vuumtKE6VjzJgxiWvy+Xz5BwEASEG+vXhoLJctHjqDxMbE9oWL29YBYEUkXa9kMplorKtPaRoAAAAAAAAABjPblABYERoTB9jygol9bbzxxpHL5co/TIqy2Wzimo6OjhQmAQAov5aENjvtQyRJOkcWdXdH66LOlKYBYDhKat9trKuPqip/NQgAAAAAAAAAAKwYu48G2KuvvrrcVpPexpONNtoo5anKTzARABhJmgUTWUm5bPI5khQoAYBiEoOJrlcAAAAAAAAAAICVIJg4wBYuTN48vM4666QwyeDT1dVV6REAAAZEvr216POlhM4Y2XL1DYlrBBMBWBnJ1yvJv4sAAAAAAAAAAACWRzBxgJUSTBwzZkwKk6Srra0tcU1dXV0KkwAAlF9SYKyphNAZI1sp4dWkZk4AKCb5esWNFAAAAAAAAAAAgBUnmDjA2tvbE9eMGjUqhUnS1dpa/C78ERENDTboAwBDX3dPT8xLaiCy0Z8ENdXVMaYuW3RNvl0wEYAVlxRMdL0CAAAAAAAAAACsDMHEAVZfX5+4ppR2waFm7ty5iWtK+d4AAAx289pbo5CwxkZ/StGU0JrY0pZ88w8AWJZCoSCYCAAAAAAAAAAAlJVg4gArpRVw4cLh13wyZ86c5T5XKLy9dX/s2LFpjQMAUDb5hLbEiIhcVlM0yZICIc0JgRIAWJ62rs7o6O4qusb1CgAAAAAAAAAAsDIEEwfY6NHJd5t/5ZVXUpgkXbNnz45MJrPc5zOZTEyYMCHFiQAAyiOpfShCAxGlSTpP8u2CiQCsmFJad12vAAAAAAAAAAAAK0MwcYA1NTUtbghclkKhEC+99FKKE5XfnDlz4q233oqIKPrZ11tvvbRGAgAom6RgYnWmKsbU1ac0DUNZUlNVKSFYAFgWN1IAAAAAAAAAAADKTTBxgG244YbLfa63UfCZZ56JRYsWpTVS2c2cObOkdYKJAMBw0Jyw0b+xviGqijRJQ6/ExkTBRABWUNL1SoRgIgAAAAAAAAAAsHIEEwfYu971rmV+vW+TYGdnZzz66KNpjVR2d955Z0nrNt544zJPAgBQfvn24hv9c1mb/ClNUiCkdVFndHZ1pTQNAMNJ0vVKQ21djKquSWkaAAAAAAAAAABgOBJMHGDLCyYu7fbbby/zJOm5+eabF7dBFrPtttumMA0AQHnl21qLPt+kfYgSldJU1ZwQLAGAZUm6XsnVN6Q0CQAAAAAAAAAAMFwJJg6wbbbZpqR1v//978s8STpmzpwZzz33XEQs2QoZEUuEFXO5nMZEAGBYyLcVD4o12uhPiXLZ5HOlJeF8A4BlSbpeKSUcDwAAAAAAAAAAUExNpQcYbt773vdGfX19tLe3RyaTWSKsVygUFn/t/vvvjyeffDI23XTTCk678i655JKiz/d+Zm2JAMBwkU9osMtlbfSnNKW0ayYFSwBgWVyvAAAAAAAAANAffTqJAKBkGhMHWE1NTWy//fbvaA9clvPPPz+Ficrn9ddfj1/+8pdLNCMuz0c+8pEUJgIAKK9CoRD5ttaia0oJm0FERLZ2VNTV1BZd05xwvgHAsrheAQAAAAAAAAAAyk0wsQySQni9rYmXX355vPjiiylNNfDOPPPMWLjw7TvwJwUxP/GJT6QxEgBAWS3s7Iiunu6ia3I2+tMPuWxD0eeTGq8AYFmSGnddrwAAAAAAAAAAACtLMLEM9t9//+U+1zfA19nZGSeeeGIaIw24xx9/PC688MLltiX2hi8jIiZPnhzvete70hwPAKAskjb5R0Tk6osHzaCvpMaqUs45AOhrUXdXLOhsL7qmMSEYDwAAAAAAAAAAkEQwsQze9a53xbbbbhuFQmGZwb3erxcKhfjNb34Tv/zlLysw5Yrr7u6OQw45JDo7OyOieFtiJpOJz33uc2mNBgBQVs0ltNdpIKI/ks4XwUQA+qulvTVxTVIwHgAAAAAAAAAAIIlgYpkccsghiWt6w4nTpk2LRx99NIWpBsaXvvSlmDlz5hKtiH31DWPW1dXFF77whTTHAwAom5a25I3+jXUaiChdYjCxhHAJAPSVL+F6xY0UAAAAAAAAAACAlSWYWCaHH354rLHGGhERy21N7H1uwYIF8bGPfSyee+65VGdcEWeffXZcfPHFy/xMffW2Qn7mM5+J1VZbLaXpAADKqzmhvW5sXX3UVFenNA3DgcZEAAZa0vVKhGAiAAAAAAAAAACw8gQTyySbzcaXv/zlZTYK9uobTnzllVfife97X8yaNSutEfvttNNOi5NPPnlxKDGpLbGqqipOPPHE1OYDACi3pJBYrl5bIv2TyxY/Z+a1t0Z3T09K0wAwHOTbi1+v1FZXR0PtqJSmAQAAAAAAAAAAhivBxDI69thjY9y4cRGx7NbEiCXDia+99lpMnTo1rrnmmtRmLMWCBQviwAMPjFNPPXXxvEmBy0wmE4cccki85z3vSWtMAICyS9ron8tqH6J/khqrCvF2OBEASpV4I4Xs6OX+PRUAAAAAAAAAAECpBBPLaJVVVokf/OAHRUN8EUuGE1tbW+PQQw+Nj3/84/HSSy+lMWZRN910U2y11VZx3XXXLQ4cLu/z9N3UNnr06Pj+97+f1pgAAKlI2ujflBAyg6UlBRMjIpoTArEA0Fe+rXigvZTfPQAAAAAAAAAAAEkEE8vswAMPjF133XVxqG95+oYTC4VCTJ8+PSZOnBjHHHNMzJ49O61xF7v99tvjwx/+cOyzzz7x/PPPJ4YSe/WuO+2002LNNddMaVoAgHQkNhDZ6E8/ldKymXTeAUBfydcrDSlNAgAAAAAAAAAADGeCiSm48sorY7XVVouI6Fc4saOjIy666KLYeOON48Mf/nBcccUV8eqrr5ZtzpkzZ8Ypp5wSEydOjD322CP+/Oc/Lw4aJoUSe5/PZDLx4Q9/OL7yla+UbU4AgErJtxdvIGrM2uhP/4yty0Z1VfH/LGtJaL4CgL7yCU27pYTiAQAAAAAAAAAAktRUeoCRYP31149f/vKXseeeeyY2D/YNJ/b+c6FQiD//+c/x5z//OSIiNt1009h2221j6623jne/+92x3nrrlTTH7Nmzo62tLVpbW+O1116LOXPmxOzZs2PmzJkxc+bMaG5uXmKGpedYnr5hy9VXXz2uuuqqkuYBABhKOroWRduizqJrmjQm0k+ZTCZy2YZ4s3XBctc0a0wEoB+SGhNdrwAAAAAAAAAAAANBMDElH/nIR+L73/9+nHzyyUVbE3v1bSrs/edeTzzxRDz55JNxzTXXvOM1y3qf3v+70UYbFT1er77zFQsk9l1bKBSivr4+fv3rX8daa61V9DUAAENR0ib/iIicjf6sgFz96KLBxKTmKwDo1dPTEy1JDc/1Gp4BAAAAAAAAAICVJ5iYoq9//esxf/78OPPMM0tqIuzbnrh0WDApMFjs/ZZl6bBkKe/f9zNUV1fHL3/5y3jf+97X77kAAIaCUlrrBBNZEbls8fMm31Y8YAIAveZ3tkdPwt/pJP3eAQAAAAAAAAAAKIVgYsrOOOOMWLRoUZxzzjmLA4dJIcCln19W42J/goSlHqeU9yoUClFVVRUXXXRR7LvvviW/HgBgqMkntA9FCCayYnIJzVWltHUCQERpvzOaXK8AAAAAAAAAAAADoKrSA4xEZ511Vvzwhz+Mqqq3v/1JgcGl9TYm9n2s6Ov6+x595y0UClFXVxe/+tWv4vDDD+/XZwAAGGqSNvrX14yKbE1tStMwnCQFWgUTAShVKb8z3EgBAAAAAAAAAAAYCIKJFXL88cfH9OnTo7GxMQqFwuL2xMGubyhxtdVWi1tvvTU++clPVngqAIDyS9ro35jQegfLkxhMbG/t141EABi5mhOuVzKZTKxSV5/SNAAAAAAAAAAAwHAmmFhBu+++ezz00EPxwQ9+cPFG48EaUOw7V6FQiA9+8IMxa9aseP/731/hyQAA0pFvL77RX/sQKyqXLX7udPV0x8LOjpSmAWAoS7peaayrj6oqfx0IAAAAAAAAAACsPDuRKmzDDTeMO+64Iy666KIYO3bsoAsoLh1IrK+vj3POOSduv/32WHvttSs8HQBAevJtrUWfTwqXwfI0lRBqTWrsBICIiJak6xU3UgAAAAAAAAAAAAaIYOIgceSRR8bzzz8fJ554YmSz2XcEFNMOKS4dSIyIOOSQQ+Kf//xnnHjiiYMiNAkAkKakYFhTfUNKkzDcNJZw7jQnNGABQEREc8L1imAiAAAAAAAAAAAwUAQTB5FVV101zjnnnMUBxdVWWy0KhcIyQ4oDHQxc1nsXCoWora2NAw88MGbOnBlXXnmllkQAYMRKCiba6M+Kasw2RNLVvcZEAEqRTwiyu14BAAAAAAAAAAAGimDiILTmmmvGOeecEy+//HJcf/31sfvuu0dtbe0SIcWId4YJV+YREYvfv1AoxMSJE+O0006Ll156Ka6++urYcsstK/XtAACouK6e7pjX0VZ0jY3+rKiaquoYW1dfdI1gIgClyLe1Fn0+l3W9AgAAAAAAAMA7ZTIeaT4AhouaSg/A8tXW1sZ+++0X++23XyxcuDDuvPPOuOWWW+Jvf/tbPP3009Hd3f2O15TSpNg33NhrlVVWiW233TZ222232HfffWPixIkD8hkAAIaDee3FQ4kREblsQwqTMFzl6kcXDb8KJgKQpFAolNDw7HoFAAAAAAAAAAAYGIKJQ8To0aNjn332iX322SciItrb2+PRRx+NRx99NGbPnh1z5syJOXPmxKuvvhoLFiyItra2aG9vj46OjqitrY2Ghoaor6+PMWPGxIQJE2K99daL9dZbLzbaaKPYdtttY9KkSSWFGgEARqJSQmEaE1kZufrR8VL+jeU+n28v3oAFAG1dndHZ3VV0jesVAAAAAAAAAABgoAgmDlHZbDZ22GGH2GGHHSo9CgDAsNcsmEiZJTVYaUwEIEm+LTnEnsu6XgEAAAAAAAAAAAZGVaUHAACAwS7fXjwUVlNVHWNGZVOahuEoKSgimAhAklJ+VzS5kQIAAAAAAAAAADBABBMBACBB0kb/XLYhMplMStMwHCU1bpbSggXAyFZKMLExoaEXAAAAAAAAAACgVIKJAACQIDGYqH2IlZR0DrV1dUZ716KUpgFgKGpOuF5pqK2LUdU1KU0DAAAAAAAAAAAMd4KJAACQIN9evK1O+xArK5dNPodKacICYORqSbheaXIjBQAAAAAAAAAAYAAJJgIAQILExsSsjf6snFLCIoKJABST3PDsRgoAAAAAAAAAAMDAEUwEAIAESRv9NRCxsnKlBBMTmrAAGNmaE4OJrlcAAAAAAAAAAICBI5gIAABFFAqFxECYjf6srLqa2qivHVV0jcZEAIrJtwsmAgAAAAAAAAAA6RFMBACAIuZ3tEd3T0/RNbn6hpSmYTjLZYufR4KJABST9HsilxVMBAAAAAAAAAAABo5gIgAAFJHUPhShgYiBkXQeCSYCsDyLurtiYWdH0TVupAAAAAAAAAAAAAwkwUQAACiipYQwmAYiBkJSMLFZMBGA5ci3tyaucSMFAAAAAAAAAABgIAkmAgBAEc1txTf6ZyKiMauBiJWXFHAtpb0TgJGplFZdN1IAAAAAAAAAAAAGUk2lBwAAgMEsKQw2Nlsf1VXu98HKS2qyakkIyQIwcpUSTGzSmAgAAAAAAADAcmSqCpUeAYAhyA5qAAAoImmjf5P2IQZIUmBkXkdbdPV0pzQNAENJ0vVKbXV11NeOSmkaAAAAAAAAAABgJBBMBACAIpI2+ie13EGpGusbEte0tGtNBOCd8gm/H3LZ0ZHJZFKaBgAAAAAAAAAAGAkEEwEAoAjBRNJSSvtm0vkIwMiU2PDsegUAAAAAAAAAABhggokAAFBEUgNRYza55Q5KUUrINd+mMRGAd3IjBQAAAAAAAAAAIG0jKpg4ZcqUmDFjRqXHoB9aW1vju9/9bvzgBz+o9CgAwAilgYi0jB5VF7VV1UXXaEwEYFmaE4LrgokAAAAAAAAAAMBAG1HBxPvvvz922mmnOOCAA+LFF1+s9DgkuOKKK2LjjTeO73//+9HaqhkGAEhf+6LOaO9aVHSNjf4MlEwmE431xRs48+2CiQC8U9Lvh5yGZwAAAAAAAAAAYICNqGBir1/96lcxadKk+MpXvhKvv/56pcdhKb/97W9j8803jy984Qvx6quvVnocAGAEay6hnU4wkYGUyxY/nzQmArC0np6emNeuMREAAAAAAAAAAEjXiAwmFgqF6OjoiJ/+9Kfx7ne/O7773e9GS0tLpcca8e64446YMmVK/M///E88/vjjUSgUKj0SADDC5RM2+UfY6M/ASjqf8m2axAFY0vyOtuhJ+DsU1ysAAAAAAAAAAMBAG5HBxEwmE5lMJgqFQixYsCC+//3vxwYbbBDf/e53o7m5udLjjTh//OMfY6eddordd989HnjggcWBxEwmU+HJAICRrpR2uly2IYVJGCly9cXPp1JaPAEYWZrdSAEAAAAAAAAAAKiAERlM7Bt86w0otrS0LA4onnzyyfHqq69WeMrhrVAoxK9//evYfvvt42Mf+1jMmDEjCoVCFAqFxf9eAAAqLSmYWF87KupqalOahpEgl01oTGwXTARgSaXcSKHJjRQAAAAAAAAAAIABNiKDiRGxOAQXsWRAcf78+XH22WfHhhtuGIcffng8/vjjFZ50eGlra4vzzz8/Ntlkk9hvv/3ioYceekcgse+/GwCASkoKgWkfYqA1JZxTLW2t0eNaGYA+koKJmUwmxtbVpzQNAAAAAAAAAAAwUozYYGKv5QUUOzs74+c//3lsscUWsfvuu8fvf/97YbmV8Nxzz8WJJ54Y66yzTnz5y1+O5557TiARABj08m2tRZ9vSmi3g/5KCrt2F3piQUd7StMAMBQk3UihMdsQVVUj/q8AAQAAAAAAAACAAVZT6QEqoTcE19fS4cS+X7vjjjvijjvuiHXXXTeOPvroOPjgg2P8+PHpDj0EdXV1xR/+8Ie45JJL4vbbb39HCLSXMCIAMFglNRDl6htSmoSRopQWznz7wlglq/kKgLcl3Ugh50YKAAAAAAAAAABAGYyo26WvttpqywzG9bW8BsVCoRAvvfRSfOtb34r1118/9txzz/j1r38dnZ2dqc0/VDz66KNx/PHHx/jx4+NTn/pU3HbbbdHT07NEO2JEFG1IXDq4uPrqq6cyOwBAX8nBRBv9GVglBRMTzksARpak3wtNbqQAAAAAAAAAQIJMxiPNB8BwMaKCiU8//XQceuihi/+5b0huab2hub5hut6QYnd3d9x6662x3377xbhx4+LQQw+NP/7xj9Hd3Z3SJxl8nn766Tj11FNj8uTJsfXWW8d5550Xb7zxxju+hxHFA4kRscS69dZbL37729/GF7/4xVQ+BwBAX83tgomka5W6+kj6eyfBRAD6ciMFAAAAAAAAAACgEkZUMHHVVVeNK664Iv7yl7/EpEmT3tGMuDzFWhTnzZsX11xzTXzsYx+LcePGxUEHHRT/+7//GwsWLEjlM1XSfffdF9/85jdjs802i8mTJ8dpp50WTz311DIDnRGlBRJ7v7fV1dVx0kknxRNPPBH77LNPWh8JAGCxru7uWNDRXnRNLmujPwOruqoqVskWb7YSTASgr+aE3wuNrlcAAAAAAAAAAIAyqKn0AJWw8847x6xZs+KnP/1pnHbaaZHP55cIxS3P8oKMvV9vbm6Oa6+9Nq699tqora2NHXbYIT7wgQ/ErrvuGlOnTo1Ro0aV94OV2ZNPPhl//vOf489//nPcdddd8eabb0ZELPE9WzrgWez7ufRretd+5CMfiR//+McxadKkgRodAKDfWtpbE9fk6osHyGBF5OpHFz3/mtuSz00ARoZCoZB4zdLkegUAAAAAAAAAACiDERlMjIiorq6Or3zlK3HQQQfFN7/5zbj88sujp6fnHSG5ZVk6iLeskGJnZ2fcfffdcffdd8fpp58edXV1SwQV3/ve98bYsWPL9OlWXnd3dzz55JNx9913x1/+8pf4y1/+Eq+//vri55f+/izre5Bk6ddsvPHG8cMf/jD22muvlZweAGDlJbUPRbwdIIOBlss2xItFns+3a0wE4G1tizqjs7ur6BrXKwAAAAAAAAAAQDmM2GBir9VWWy0uvvjiOPbYY+PrX/963HLLLUuEDZNCdqWEFCMi2tvb469//Wv89a9/jVNPPTUiItZbb73YYostYosttojNN988tthii9hkk02iqqpqID9ion//+98xa9asJR5PPfVULFq0aJmfJWLFmhGX9dpCoRBrrLFGfOc734mjjz46ampG/CkJAAwSpYS/bPSnHJoSzquWEkKzAIwMbqQAAAAAAAAAAABUihTYf2y22WZx0003xV/+8pf42te+Fg8++GC/AopLr1k6pLis93jxxRfjpZdeiunTpy/+2qhRo2LChAkxYcKEWGeddRb/797H2LFjo76+PrLZbNTX1y9+9Ors7Iy2trYlHq2trTF37tyYM2dOvPzyy/Hyyy8v/t9z5syJefPmFZ2z9/MU+7ylWDqQOHr06DjhhBPiq1/9aowZM6Zf7wUAUG75hI3+tVXVMbq2LqVpGEmSAiSlhFAAGBlKupFCVjARAAAAAAAAAAAYeIKJS9l1113j/vvvj9/97ndx6qmnxiOPPNLvgOKy1i0rqLisdR0dHfH888/H7Nmz+zV3bW1tdHd3R09PT8mvKfZZBiKIuKz3KhQK0dDQEMccc0x89atfjdVXX32F3hMAoNySgom5+tHLvGaCldWYECDJt7emNAkAg13S9UpERGN9QwqTAAAAAAAAAAAAI01VpQcYrD7+8Y/HzJkz49e//nVstdVWUSgUolAoLA4Y9ncTeu/r+z4iYon36/tY1vpij87Ozuju7u7Xa4odf1kz99fS7zV69Og46aSTYvbs2XHWWWcJJQIAg1pS+Ksxa5M/5dGUECDp6FoUbYs6U5oGgMEs31b8emX0qLoYVe2+ZAAAAAAAAAAAwMATTEzwiU98Ih566KG45ZZbYtddd11mqG9FLS8s2Pe9y/1Y3hwr0464dLhy9dVXj9NPPz1eeumlOPvss2ONNdZY4e8ZAEBakhqImuqLt9rBisqVcG6V0pAFwPCXb09ueAYAAAAAAAAAACgHwcQS7b777vGnP/0p7r///jjggAOipqZmma2DK6u/TYlLhwhX5rUrY1lBx8022ywuuuiiePHFF+Nb3/pW5HK5ATkWAEAakoJfNvpTLoKJAJQq8Xol63oFAAAAAAAAAAAoD8HEftp2223jl7/8Zbz00ktxyimnxNprrz2gLYoraiBDhqVaVvNidXV1fOITn4g//elPMWvWrDjyyCMjm82mOhcAwEDIt7UWfV4wkXIpKZjYXvz8BGBkSL6RQkNKkwAAAAAAAAAAACONYOIKWnPNNeOUU06Jl156KX73u9/FPvvsE9XV1YsDgn1De5UIKpbLssKIhUIhNtlkkzjrrLPiX//6V/z617+OXXfdtbKDAgCshJ5CIVoSgl82+lMuo6proqG2rugajYkARLiRAgAAAAAAAAAAUDk1lR5gqKuqqoq999479t5775g7d25cd911ccMNN8SMGTMWr1k6nJh2s+HKWFaosnf+NddcM/bbb7844IADYsqUKWmPBgBQNvM72qK70FN0TS5roz/l01Q/OloXdSz3ecFEACIi8u0JjYmuVwAAAAAAAAAAgDIRTBxA48aNi+OOOy6OO+64ePHFF+N///d/43e/+13cc8890dPz9sb2ZTUoDqagYrEgYkTEuuuuG/vss0988pOfjF122SWqqpRuAgDDT0sJoS8NRJRTY31DvDzvreU+3yyYCDDidXZ3xcLO5YfYI94OugMAAAAAAABAkmXECAAgkWBimay//vpx4oknxoknnhhvvvlm3HTTTXHrrbfGn/70p3jttdcWr1tWULFXOQOLyzvm0scdNWpUTJkyJXbbbbf42Mc+FltttVXZZgIAGCya21oT1wgmUk5JDVdJDVkADH8trlcAAAAAAAAAAIAKEkxMwWqrrRYHH3xwHHzwwRER8dhjj8Vf/vKXuOeee+Lee++NF1988R2vKRZYHEhLhx9Hjx4d2223XUydOjV23nnn2HnnnaOhoaHscwAADCZJoa9MJhONdfUpTcNIlNRwlS8hjALA8FZKe25j1t/pAAAAAAAAAAAA5SGYWAGbbbZZbLbZZvGlL30pIiL+/e9/x8MPPxyPPvpoPProo/HEE0/Es88+G21tbYnvtazwYilNi5lMJtZdd92YNGlSbL755rHlllvGlltuGe95z3uiqqqq/x8KAGAYySds9G+sq3fNRFklNVwlnaMADH+ltOcmBd0BAAAAAAAAAABWlGDiILDWWmvFRz/60fjoRz+6xNdffvnleP7552POnDnx8ssvx6uvvhqvv/56tLS0RD6fjwULFkRHR0csWrQourq6oqqqKmpra2PUqFFRX18fjY2NkcvlYtVVV4211lorxo8fHxMmTIj1118/3v3ud0ddXV2FPjEAwOCWFPpKCo3BysrVF2+4WtDZHou6u6K22n/SAYxULQnXK6Oqa6K+dlRK0wAAAAAAAAAAACONXayD2IQJE2LChAmVHgMAYMRpFkykwko5x1raW2P10aukMA0Ag1FzW2vR53P1oyOTyaQ0DQAAAAAAAAAAMNJUVXoAAAAYbFraEzb6Z4u32cHKymWTg4n5hEAKAMNbvj3pRgquVwAAAAAAAAAAgPIRTAQAgKXkNSZSYaWcY0nNngAMb4nXKyWE3AEAAAAAAAAAAFaUYCIAAPRRKBQEE6m4htpRUVtdXXRNUlMWAMOb6xUAAAAAAAAAAKCSBBMBAKCPtq7O6OjuKrrGRn/KLZPJJDZdJQVSABje8u2tRZ/P1TekNAkAAAAAAAAAADASCSYCAEAf+bbim/wjIjEwBgOhKSEAW8q5CsDw1NPTEy1JwUTXKwAAAAAAAAAAQBkJJgIAQB+ltNAlBcZgICQ1c2pMBBi55nW0RaFQKLrG9QoAAAAAAAAAAFBOgokAANBHKWGvxvqGFCZhpGvMFj/P8u2CiQAjVWnXK4KJAAAAAAAAAABA+QgmAgBAH0lhr4bauhhVXZPSNIxkSU1XGhMBRq7mUhqeEwLuAAAAAAAAAAAAK0MwEQAA+si3tRZ9PiksBgMll3CutbS3Rk9PT0rTADCYtLQXv16pymRirGAiAAAAAAAAAABQRqpeAACgj6QWuly9Tf6kIymY2FMoxPyOtmgUlgUYcZKuVxqzDVGVyaQ0DQAAAAAAAABDnf8XMwArQmMiAAD00ZwYTBQCIx2lnGv5hMYsAIYn1ysAAAAAAAAAAEClCSYCAEAf+XYb/RkcmrLJ7ZxJjVkADE+J1ysl/A4BAAAAAAAAAABYGYKJAADQR0tb8Qa6XFYwkXSMrauPqkym6JqkxiwAhqd80vWKGykAAAAAAAAAAABlJpgIAAD/sai7KxZ0thddk6vXQEQ6qqqqYpWExqukxiwAhqekxlzBRAAAAAAAAAAAoNwEEwEA4D/y7cXbhyJs9CddSQ2dSY1ZAAw/hUIhMZjuegUAAAAAAAAAACg3wUQAAPiPpPahiOSgGAykpoSGzlLOWQCGl9ZFnbGou7voGtcrAAAAAAAAAABAuQkmAgDAf5QS8mrSQESKkhqvBBMBRp6SbqSQEGwHAAAAAAAAAABYWYKJAADwH0kb/UdV10R97aiUpoESgontrSlNAsBgUVow0Y0UAAAAAAAAAACA8hJMBACA/0gKeTVmGyKTyaQ0DZTWmFgoFFKaBoDBIN9eQjAxqzERAAAAAAAAAAAoL8FEAAD4j6QGoibtQ6QsKVjS2d0VbYs6U5oGgMEg31b8RgpjRmWjtrompWkAAAAAAAAAAICRSjARAAD+IymYmNReBwOtlHOuOeG8BWB4cb0CAAAAAAAAAAAMBoKJAADwH80JDUQ2+pO2Us65fLtgIsBIkhRIb0xo2wUAAAAAAAAAABgIgokAAPAfSQGvXL2N/qQrV0K4JKk5C4DhJel6pcmNFAAAAAAAAAAAgBQIJgIAQET09PRES3tCY2LWRn/SVVtdE2NGZYuuySc0fQIwvLRoeAYAAAAAAAAAAAYBwUQAAIiI+R1tUSgUiq6x0Z9KSDrvkpqzABhemhOacjU8AwAAAAAAAAAAaRBMBACAiGhOaEuMEEykMhqzxQMm+YSACgDDR2dXV7Qu6ii6RsMzAAAAAAAAAACQBsFEAACI0sJdTQkBMSiHpqTGRMFEgBGjlJZcN1IAAAAAAAAAAADSIJgIAACRHO6qymRirGAiFZAUMMm3Jbd9AjA8lBJGF0wEAAAAAAAAAADSIJgIAACRvNG/MdsQVZlMStPAf+XqiwdimzUmAowY+fbkMHrS7w0AAAAAAAAAAICBIJgIAACRHO7SPkSl5LLFz73WRR3R2d2V0jQAVFLSjRTqqmuivmZUStMAAAAAAAAAAAAjmWAiAABEREtCA1Euq32IymgqIRTb0pbcoAXA0JcUTMzVj46MhmcAAAAAAAAAACAFNZUeAAAABoNSNvpDJZRy7jW3LYw1xqySwjQAVFLS9UpjvRspAAAAAAAAANB/mUyh0iMAMARpTAQAgHg72FWMYCKVUkrIJN9e/PwFYHhIvF7Jul4BAAAAAAAAAADSIZgIAMCIVygUEoNdgolUSn3NqKirLl52n9SgBcDw0NLeWvT5JtcrAAAAAAAAAABASgQTAQAY8VoXdcai7u6iazQQUSmZTCYxGCuYCDAyJP28dyMFAAAAAAAAAAAgLYKJAACMeKWEujQQUUmCiQD09PRES0db0TWCiQAAAAAAAAAAQFoEEwEAGPHy7cmhrsb6hhQmgWVLDCa2t6Y0CQCV0tLRFoVCoeiaXNb1CgAAAAAAAAAAkA7BRAAARrxS2uZs9KeSclmNiQAjXUnXKxoTAQAAAAAAAACAlAgmAgAw4uXbirfNjRmVjdrqmpSmgXfKJTR2CiYCDH+CiQAAAAAAAAAAwGAimAgAwIiXtNHfJn8qLekcbOloi56enpSmAaAS8u3Fr1eqM1Uxtq4+pWkAAAAAAAAAAICRTjARAIARrzkxmFi8rQ7KLZctHkwsFArR0tGW0jQAVEJSw3NjtiGqMpmUpgEAAAAAAAAAAEY6wUQAAEa8pAaipFAYlFtTCeHYpOZPAIa2pJ/zjW6kAAAAAAAAAAAApEgwEQCAEa8loYEoVy+YSGWVcg4KJgIMb0k/591IAQAAAAAAAAAASJNgIgAAI15z0kZ/DURU2Ji6+qjOFP/Pt6TmTwCGtny7GykAAAAAAAAAAACDh2AiAAAjWmdXV7Qu6ii6RgMRlVaVyURjtnhANp/Q/AnA0JbUmNjkRgoAAAAAAAAAAECKaio9AAAAVFIpLXNNGogYBHL1DfFW24LlPp8UWAFg6CoUCok/5zUmAgAAAAAAALCiMiqvAFgBfn0AADCilRLmstGfwSDpPBRMBBi+Fi7qiEU93UXXNGp4BgAAAAAAAAAAUiSYCADAiCaYyFCRdB42CyYCDFstba2JazQ8AwAAAAAAAAAAaRJMBABgRGtO2OhfV10T2ZralKaB5cslNGG1tCeHVgAYmkq7kUJDCpMAAAAAAAAAAAC8TTARAIARraW9+Eb/XP3oyGQyKU0Dy5fUhJVvWxiFQiGlaQBIUymtuEkBdgAAAAAAAAAAgIEkmAgAwIiW1ECUSwiDQVqSzsVFPd2xcFFHStMAkKZ8wo0UxtRlo6a6OqVpAAAAAAAAAAAABBMBABjhkhqIBBMZLBqzDYlrkoK2AAxNiTdS0JYIAAAAAAAAAACkTDARAIARLd/eWvR5G/0ZLJpKCMkKJgIMT/m2hOuV+uTwOgAAAAAAAAAAwEASTCyDn//85/GjH/0o3nrrrUqPAgBAgqQgV5ON/gwSpTUmFg+uADA05ds1JgIAAAAAAAAAAIOLYGIZvPjii/HVr341JkyYEAceeGD89a9/rfRIAAAsQ3dPT8xLaExsLKGlDtJQU10dY+vqi65p1pgIMCwl30jB9QoAAAAAAAAAAJAuwcQyKRQK0dHREdddd1184AMfiMmTJ8ePf/xjLYoAAIPIvI62KCSs0UDEYJJLaPBsSWjUAmBoSgom5gQTAQAAAAAAAACAlAkmllEmk4lCoRCFQiGeeuqpOPHEE2OdddaJgw8+OO6+++5KjwcAMOIlbfKPiGhKCIJBmpKCsqWc0wAMLZ1dXdG6qLPomsas6xUAAAAAAAAAACBdgolllslkFj8KhUK0t7fHL3/5y9hll13iPe95T5x33nmRz+crPSYAwIhUSohLAxGDSdL5mG9rTWkSANKSL6ENt8n1CgAAAAAAAAAAkDLBxDLrbUyMiCUCioVCIZ588sk4/vjjY8KECXHooYfGPffcU+FpAQBGlqRgYnWmKsbU1ac0DSTLJTR4NpcQXgFgaHEjBQAAAAAAAAAAYDASTEzJsgKKvV9va2uLa665JnbeeefYfPPN42c/+1m0tLRUclwAgBGhOWGjf2N9Q1T957oNBoNcNqkxUTARYLgRTAQAAAAAAACg3DIZjzQfAMOFYGLKegOKhUJhcUCxb4vi448/Hscdd1yMHz8+DjvssLj33nsrPTIAwLCVT2iXy2WLt9NB2poSgidtizqjo2tRStMAkIbmttaiz9fV1EZ97aiUpgEAAAAAAAAAAHibYGIFJbUoXnXVVfG+970vtthii7jgggti3rx5lRwXAGDYaUnY6K99iMGmlHMy3178vAZgaHEjBQAAAAAAAAAAYDASTBwEkloUH3vssTj22GNj/Pjxcfjhh8d9991X6ZEBAIaF5raEjf6CiQwyJQUTE85rAIaWFtcrAAAAAAAAAADAICSYOMgUa1FsbW2Nn//85zF16tTYaqut4qKLLor58+dXclwAgCEtuYHIRn8Gl1JasQQTAYYXN1IAAAAAAAAAAAAGI8HEMuvbgNgfSS2Ks2bNimOOOSbGjx8fX/jCF+KBBx4o0ycAABieCoVC5Ntai65pstGfQSZbOyqyNbVF1wgmAgwv+fbi1ytupAAAAAAAAAAAAFSCYGIZHHfccXHuuefG5MmTl9uA2B/FWhQXLlwYV1xxRUyZMiW23nrruOSSS2LBggUD92EAAIaphZ0d0dXTXXSNBiIGo6TzMqlZC4ChJSlw3lSf3KYLAAAAAAAAAAAw0GoqPcBwlMvl4rjjjovjjjsu7rnnnrjooovi17/+dbS1tb0jnNgbOCxF37XLeo9HHnkkpk2bFieddFIccMABceSRR8Y222wzAJ8IAGD4KaVVrjFroz+DT65+dPx7fn65z+fbBRMBhovunp6Yl9CY2OhGCgAAAAAAAADAEDZv3ryYNWtWPP/88/HCCy8sfsydOzcWLlwYCxYsiIULF0ZHR0fU1dVFXV1dNDU1xVprrRUTJkyITTfdNN7znvfEjjvuGOutt16lP86Q88wzz8Ttt98ejz32WDzxxBPx0ksvxfz582P+/PmRyWRilVVWiVVWWSU22GCDmDx5cmy55ZbxkY98JNZdd91Kj84gIJhYZlOnTo2pU6fGeeedF1dffXVceuml8fjjj0fEO9sP+2N5DYqFQiEWLFgQl112WVx22WXx3ve+N4466qj47Gc/G6NH26gGANCrlPBWk43+DEK5bPHzMt9WPMACwNAxr6Mtkv7GKOn3AgAAAAAAAADAYLFw4cL4+9//Hg899FA8/PDDMXPmzHj++edLztS0tbVFW1tb5PP5mD179jueX3/99WOvvfaK/fffP973vvctUQrGf/373/+OCy+8MK699tp49tlni659/fXX4/XXX4/nnnsu7rzzzsVf32KLLeLggw+OI444IhobG8s9MoNUVaUHGClyuVx8+ctfjn/84x9x9913x0EHHRTZbPYdAcP+/tDrDSMWCoUl3qP3azNnzoyjjz46xo8fH9OmTYuHH364HB8PAGDIKSW8pTGRwaipvvh52VJCGygAQ0MpDc9JvxcAAAAAAAAAACqltbU1br/99vjmN78ZU6dOjVwuF7vvvnt885vfjBtvvDGee+65fhd9FfPiiy/G+eefH+9///tj0003jYsuuig6OjoG7P2Hutdffz2+8IUvxPrrrx+nnXZaYiixmFmzZsVJJ50U66yzTnz961+PhQvtXRyJBBMrYOrUqXHVVVfFK6+8Ej/+8Y/jPe95z+IgYUSsUEAxIpb7HoVCIebPnx+XXHJJbLvttrHddtvF5ZdfHq2tmlQAgJGrOWGj/9i6+qiprk5pGihdLqHJs7mENlAAhoZSgolJvxcAAAAAAAAAACrlqKOOio985CPx//7f/4t77703urq6Ujv2008/HdOmTYtNN900fv3rX6d23MHq8ssvj4kTJ8Zll10WnZ2dA/a+CxYsiLPPPjs23XTTmD59+oC9L0ODYGIFNTY2xpe//OWYNWtW/P3vf0+tRfGhhx6KI488MsaPHx/HHHNMPPLII2X4dAAAg1vSRv+c9iEGqcZs8QDK/Pa26O7pSWkaAMop6XqlOlMVY+rqU5oGAAAAAAAAAKB/BrINcUXNnj07PvWpT8UBBxwQ+Xy+0uOkrqOjIw4//PA44ogjorm5uWzH+de//hX77LNPfO973xsU/95Jh2DiILHjjjsublH8yU9+kkqL4rx58+Kiiy6KbbbZJnbYYYe48soro62tbeA+FADAIJZPaJXLJYS/oFKaEkKzhYhoadeODjAcJDU8N2YbomoF/r4IAAAAAAAAAGCkuf7662OHHXaI559/vtKjpGbhwoXx4Q9/OK644opUjlcoFOLUU0+Nz372s9Hd3Z3KMakswcRBprGxMY499tjFLYoHH3zw4hbFpRsQ+yOpRfGBBx6II444IsaPH7/4+AAAw1lyY6JgIoNTKedm0vkNwNCQFDTX8AwAAAAAAAAAULpnnnkmpk6dGv/85z8rPUrZtbe3xz777BN333136se+/vrr44gjjtCcOALUVHoAlm/HHXeMHXfcMX7yk5/E1VdfHZdddln84x//iIh3th/2x/IaFAuFQrS0tMQFF1wQF1xwQWy//fZx9NFHx/777x/ZbHYAPxkAQOXlbfRniColmJjUsAXA0OBGCgAAAAAAAAAAA+u1116Lj3zkIzFjxoxYc801Kz1O2Rx22GHxpz/9qV+v2WKLLWLHHXeMSZMmRVNTU3R3d8dbb70Vjz32WNx9993x3HPPlfxeP//5z2PdddeN0047rb+jM4QIJg4BvS2Kxx57bMyYMSMuuuiiuPHGG6OtrS0iYon2xP6EFPuuXdZ73H///XH//ffH8ccfHwceeGAceeSRsdlmm63sxwEAGBQSN/pnbfRncBozKhs1VdXR1dO93DVJDVsADA1JQXPBRAAAAAAAAAAGQp84AaSupqYmJk2aFBMnTlz82GijjSKXy8Uqq6wSq6yySowePToWLFgQ8+bNi3nz5sU///nPePjhh+Phhx+OO++8M1pb+7dn7oUXXohDDz00br755iXyNMPFRRddFNddd11Ja6uqquKQQw6Jk046KSZPnlx07YwZM+L73/9+TJ8+vaT3/v73vx8777xz7LbbbiWtZ+gRTBxipkyZElOmTInzzjsvrr766rj00kvL2qIYEZHP5+P888+P888/P6ZMmRJHH3107LffflFXVzdQHwsAIFUdXYuibVFn0TVNNvozSGUymchlG+KN1vnLXZMUvAVgaMi3u5ECAAAAAAAAADC81NfXxw477BA777xz7LzzzrHjjjvGmDFjEl/X2NgYjY2NERHxnve8J/bdd9+IiJg/f37ceOONcf7558fMmTNLnuOPf/xjXHXVVXHooYeuyMcYtJ5++uk4/vjjS1q7/vrrx69+9avYfvvtS1o/ZcqU+MMf/hDTp0+Pgw8+OJqbm4uu7+npiQMPPDCeeuqpaGpqKukYDC1VlR6AFbPKKqvEl770pXj00UfjnnvuiUMOOSSy2WwUCoUoFAqLA4b9TW73vn7p9+j92owZM+LQQw+NtddeO77yla/EE088UaZPCABQPqWEtjQQMZg11jcUfT6pYQuAwa9QKES+rfjd/HIJvw8AAAAAAAAAAAaDtdZaK77whS/E9OnTo7m5Of785z/HaaedFrvttltJocRixo4dG4cddlg88MAD8bOf/WxxeLEU3/72t6O9vX2ljj/YHHfccSV9ps033zwefPDBkkOJfe21115x3333xdprr524du7cufHd736338dgaBBMHAamTJkSV155Zbz66qtx3nnnxeabb744SBgRKxRQjIhlvkfv1/L5fPz0pz+NzTffPHbeeef4xS9+ER0dHQP6uQAAyqWU0JZgIoNZ0vmZ1LAFwOC3cFFHdPV0F13jegUAAAAAAAAAGMz222+/+Pvf/x6vvPJKXHLJJfGxj30s6urqynKsqqqqOOaYY2LGjBklBeYiIl5++eW48cYbyzJPJfzud7+LW2+9NXHdeuutF3fccUesvvrqK3ysjTfeOO68884YO3Zs4toLL7wwZs2atcLHYvASTBxGltWiWF9fX/YWxd5jjR8/Pk444YR46qmnyvQJAQAGRr69ePtQREQuq4GIwSuXTQgmakwEGPJKanhO+H0AAAAAAAAAAFBJ++yzT0ydOnWFyrZW1KRJk+Ivf/lLyaG7n//85+UdKEXf+973EtfU1NTEddddF+PGjVvp42266aZx8cUXJ67r7u6O0047baWPx+AjmDhM9bYovvLKK3HeeefFFltsUfYWxebm5vjJT34S73nPe2KXXXaJa6+9Njo7Owf0cwEADISWhI3+2ZrayNaOSmka6L+mpMZEwUSAIa+Un+VJvw8AAAAAAAAAAEaiTTbZJM4+++yS1t59992xcOHQ33N32223xSOPPJK47phjjompU6cO2HEPOOCA2HPPPRPX/eY3v4lnn312wI7L4CCYOMz1tig+8sgjce+998ahhx6aSovi3XffHQcddFCMHz8+TjrppHj66afL9AkBAPqvOWGjf84mfwa5pHM03966+IYiAAxN+bbkhudGDc8AAAAAAAAAAMt06KGHxvbbb5+4rrOzM+67774UJiqvH/7wh4lrcrlcnHLKKQN+7B/96EdRVVU8otbT0xPnnnvugB+byhJMHEF22GGHuOKKK+KVV16Jn/70p6m0KL711ltx7rnnxuTJk2PXXXeN66+/PhYtWjSgnwsAoL/y7YKJDG25+uJBlO6enljQ2Z7SNACUQ9KNFMbUZaOmujqlaQAAAAAAAAAAhpZMJhMHHnhgSWufeuqpMk9TXq+88krccccdieuOOuqoaGpqGvDjT5w4Mfbdd9/Eddddd110dnYO+PGpHMHEEWiVVVaJY445JvUWxb/97W/xuc99LiZMmBBf+9rX4p///GeZPiEAQHFJDUS5rGAig1sp4dl8QqAFgMGtJeFGCk2uVwAAAAAAAAAAivr4xz9e0roXX3yxzJOU13XXXRc9PT1F11RXV8exxx5bthmOP/74xDXNzc1xyy23lG0G0ieYOMIt3aK45ZZblr1F8Y033ogf/vCHMWnSpPjgBz8YN954Y3R1dQ3o5wIAKCYpsNWU0EYHlVZKeFYwEWBoS/o5ruEZAAAAAAAAAKC49dZbLxobGxPXzZ8/P4Vpyue6665LXLPrrrvGhAkTyjbD+973vthggw0S15UyK0OHYCIR8d8WxYcffjhmzJixzBbFFZHUonjXXXfFZz7zmVhnnXXiO9/5Tvz73/8e4E8GAPBOSRv9G230Z5BrzDZE0hV6c0IzKACDW2LDs+sVAAAAAAAAAIBEa621VuKa7u7uFCYpj9dffz1mzpyZuO4zn/lM2WfZf//9E9fcdtttie2ODB2CibzD9ttvH1dccUW8+uqr8bOf/Sy22GKLlQon9irWojh37tw488wzY4MNNohDDz00Hn/88YH4KAAA79DV0x3zO9qKrimljQ4qqbqqKsZm64uuybdrTAQYypoTfo7nNDwDAAAAAAAAACRaddVVB2TNYHXHHXcszuoU89GPfrTss5RyjObm5njwwQfLPgvpEExkucaOHRtf/OIX4+9//3scdthhAxJOjCjeotjZ2RnXXHNNbLnllvGpT30qZs2aNQCfBADgv+a1t0XSf3412ejPENCUEKBNagYFYHBL+jnuRgoAAAAAAAAAAMneeuutxDWrrbZaCpOUx5133pm4ZtKkSTFhwoSyz7LjjjtGQ0PyHtzbb7+97LOQDsFEluvhhx+OadOmxfjx4+PKK69cHB4cSMtrUezp6Ynf/OY3sfXWW8ehhx4ac+bMGdDjAgAjVylhrVy9jf4Mfknnab6tNaVJABhoHV2Lom1RZ9E1rlcAAAAAAAAAAJK99tpriWsmTpyYwiTlce+99yaued/73pfCJBGjRo2KHXbYIXHdfffdl8I0pEEwkSUsXLgwLr300thuu+1i2223jUsuuSTmz5+/RICwHIoFFK+55prYdNNN4wc/+EH09PSUbQYAYGRoFkxkmEgMJrZrTAQYqvLtyeFy1ysAAAAAAAAAAMW98MILkc/ni67JZDKx0047pTPQAGtra4unn346cd3WW2+dwjRv22abbRLXPPzwwylMQhoEE4mIiJkzZ8bRRx8d48ePj6OPPjoeeuihxWHB3qBgGpYXUFy4cGF8/etfjylTpsRzzz2XyiwAwPCUFNaqrqqKMaOyKU0DK64x21D0+VLaQQEYnEpqeE74PQAAAAAAAAAAMNL97ne/S1yz5ZZbxqqrrprCNAPv0Ucfje7u7sR1gy2YOGfOnHjjjTdSmIZyE0wcwRYuXBiXXHJJbLfddrHddtvFpZdeurgdMSKWCCT2ty2x97VLP0q1vIDigw8+GO9973tj+vTp/ZoHAKBX0kb/XLYhtZsywMpoSmpMFEwEGLJK+Rme9HsAAAAAAAAAAGAk6+npiauuuipx3VFHHZXCNOXxj3/8o6R1kyZNKvMk/zVx4sSS1s2aNavMk5AGwcQR6KGHHoqjjjoqxo8fH9OmTVtmO2JvELBvQLAUS4cZl36PgQgoLliwID7xiU/EFVdc0Y9PDQDwtnxba9Hnczb5M0QknavtXYuifVFnStMAMJCSgol1NbWRrR2V0jQAAAAAAAAAAEPPxRdfHA8//HDRNauuumocfPDBKU008J5//vnENWussUY0NjamMM3bNtpoo5LWlTI7g59g4gjR24647bbbxvbbbx+XXXZZ0XbEFQkj9g0zrrrqqnHSSSfF008/Hb///e9j7733jqqqqnccr9SQ4tIBxe7u7jjqqKPipptu6s+3AQAg8u0JjYmCiQwRpZyrzVoTAYakfHvCjRSyDSlNAgAAAAAAAAAw9Dz44INx8sknJ64788wzo6Fh6O7DmD17duKad7/73SlM8l9jx46NcePGJa4rZXYGv5pKD0B5Pfjgg3HJJZfE9ddfHwsXLlwicNg3FNifIGKx10+ZMiW++MUvxqc//emoq6uLiIiNN9449tprr3j11VfjiiuuiCuvvHJxsnnpQGSSvq2O3d3dccQRR8QTTzwRTU1N/Z4fABiZkhqIclnBRIaGUoKJLe2tsfYqrpUBhpqk65UmN1IAAAAAAAAAAFime+65J/bcc89oaWkpum6PPfaIo446KqWpyuOFF15IXDN+/PjyD7KUtddeO+bOnVt0jWDi8KAxcRhasGBBXHzxxbHNNtvEDjvsEJdffnksWLBgwNsRe1/f0NAQRx55ZDz88MNxzz33xIEHHrg4lNjX2muvHd/61rfi2Wefjdtvvz0+/elPR01NzTLnKqbvvHPnzo0vf/nLJc8PAGCjP8NFKW1ZSec7AINT4o0UXK8AAAAAAAAAACxh3rx5cdxxx8X73//+xFDipptuGldddVVKk5XPyy+/nLhmrbXWSmGS/h9zzpw5KUxCuWlMHEYefPDBuPjii+OGG25IpR1x8uTJMW3atDj44INj7Nix/Xq/D33oQ/GhD30o/v3vf8eFF14YF1xwQbz55pslNyj2NicWCoW49tpr49vf/nZMnDix358LABhZCoVC5Ntbi66x0Z+hoq6mNuprR0Xbos7lrmkWTAQYkgQTAQAAAAAAAEhTVXK/EAxKhUIh7r333rjmmmviV7/6Vbz11luJr5k0aVL86U9/inHjxqUwYXm9+eabiWvWXHPNFCZZUinBxFL+XTH4CSYOcQsWLIhf/OIXcemll8YjjzwSETFggcSl2wsLhUKMGjUqPvnJT8a0adNi5513XvHB/2OttdaKU089Nb7xjW/EhRdeGGeffXbMnTt3cUCx1JkvuuiiOPfcc1d6HgBgeJvf0R7dPT1F1zSW0EIHg0WufnTRYGK+XTARYChqTvj5XUprLgAAAAAAAADAUHHvvffGiy++WHRNe3t7zJs3L+bNmxevvPJKPPLII/GPf/wjFixYUPJx9t9//7jooosil8ut5MSV19bWFm1tbYnrKvFZSzlmKaFKBj/BxCHqgQceWNyO2NraWvZ2xPXXXz+OPPLIOOKII2KNNdZYicmXrb6+Pk444YQ48sgj4/TTT49zzz03uru7E8OJvc9fddVVcdZZZ8WoUaMGfDYAYPhoKSGk1aSBiCGkKTs6Xp3XvNzn823FG0IBGHy6e3pifnvxvzTWmAgAAAAAAAAADCc/+clP4oYbbijb+6+33npx5plnxuc+97myHSNtpTYOjh07tsyTrNgxNSYOD1WVHoDSzZ8/Py688MLYeuutY8qUKXHllVfGwoULFwf3elsGI94OFK5IQ2Lf12cymdhzzz3jD3/4Qzz//PNx8sknlyWU2NeYMWPirLPOinvvvTfWX3/9xXMsS9/P19LSEvfff39ZZwMAhr58W3Iw0UZ/hpJcffHGrFLOeQAGl3ntrZH0NzquVwAAAAAAAAAAkk2ePDkuvfTSePbZZ4dVKDEiYt68eSWtq0QwcZVVVklc09nZGe3t7SlMQzlpTBwC7r///rjkkktSa0dcY4014rDDDoujjjoqNthggxUffCVss802MWPGjHj/+98f//znPxObEyMiZsyYEe973/tSmhAAGIqaE9rjMhHRmC0e9ILBJCmYki+hJRSAwaW5hJ/dgokAAAAAAAAAAMuWyWTiiCOOiBNOOCEmTZpU6XHKprOzs6R19fX1ZZ7knbLZbEnrOjs7S17L4CSYOEjNnz8/rrnmmrj00ktj1qxZERFlDyTutNNO8cUvfjE+9alPRW1t7YqOPmDGjRsX1157bey4447R1dWVGE687777UpwOABiKkkJaY7P1UV2lVJyhIzGYmBDGBWDwKanh2Y0UAAAAAAAAAACWqVAoxKWXXhr33HNP7LnnnnHwwQfHZpttVumxBlypwcTq6uoyT/JONTWlxdVK/QwMXnZdDzL33XdfHH744TF+/Pg49thj49FHH41CoRCFQiEymcziR+/X+hNKXNbrx4wZE9OmTYtZs2bF3/72tzjggAMGRSix19Zbbx2f//znEz9noVCI559/PqWpAIChKmmjf1NW+xBDSy7hnJ3f0RZd3d0pTQPAQEgKlVdnqmJMXfp3sgMAAAAAAAAAGEoef/zxOOecc2KLLbaIvffeO+6+++5KjzSgSg31lRoSHEilHnPRokVlnoRyE0wcBObPnx8XXHBBbLXVVjF16tT4+c9/HgsXLlwcxusNE0ZEv8OIy3v9FltsERdeeGG88sorcf755w/q9PcXv/jFos/3frZ8Pp/CNADAUJYUTGxMaJ+DwSZXn9yY1dKuNRFgKEm+XmmIqv/8XQgAAAAAAAAAAMUVCoWYPn167LzzznHooYfG/PnzKz3SgOjq6ippnWAi5ZT+2cViM2bMiEsuuSR+9atfRVtb2xKBw0yfDWb9DSIu/fre96irq4tPfepTMW3atJg6deqKD56yLbbYIsaNGxevv/764rbHZRFMBACS5BMCWqWEvGAwyZUQpm1uWxirjR6bwjQADIR8e/FgYlJbLgAAAAAAAAAAy3bVVVfFXXfdFTfccENsv/32lR5npZQa/uvu7i7zJCt+zEqEJhlY/g2mbN68eXHNNdfEJZdcEo899lhERNkCib2v33DDDeOoo46Kww8/PFZbbbUVHb2itttuu7jpppveEbjsa968eSlOBAAMRUkNRDb6M9SUEkxMCrgAMLjk24rfSKFJwzMAAAAAAAAAMMxcf/31cf311y/3+Z6enpg3b17k8/loaWmJf/3rX/Hggw/Ggw8+GDNmzIg333yz5GO98MIL8eEPfzhuvfXW2HHHHQdi/IoYNWpUSetKbVYcSKU2IZb6GRi8BBNTcu+998Yll1wSN95444C3Iy7rPaqqqmKvvfaKadOmxe6771400DcUjB8/fplfLxQKiz9bT09PmiMBAENQUjDRRn+GmtG1dVFbVR2LepZ/d6Gk8x6AwSXp53ajhmcAAAAAAAAAYISpqqqKXC4XuVwuIiK23HLL2GuvvSLi7RDc73//+7j00kvj9ttvLylbMn/+/Nhjjz3ijjvuiO22266co5dNbW1tSesqEUws9ZiCiUNfVaUHGM5aWlriZz/7WWyxxRbxvve9L66++upobW1dHD7MZDKLQ3WFQqHfocTe12cymcWvHzduXHzzm9+M559/Pn73u9/FHnvsMeRDiRGx+JcHAMCKal/UGe1dxe/AUkr7HAwmmUwm8bxNat4CYHDR8AwAAAAAAAAAULra2tr4n//5n/jjH/8YM2bMiM0337yk182bNy/222+/mD9/fpknLI+6urqS1rW3t5d5khU/pmDi0CeYWAZPPvlkHHrooTFhwoQ47rjj4rHHHlscHFxWmHBFA4kR/w007rLLLnH99dfHv/71rzjjjDNivfXWK8dHqxg/bACAldVcQmucYCJDUWIwsV1jIsBQUSgUIt9ePFCu4RkAAAAAAAAAYNm22267eOihh+Lb3/52SetfeOGFOP7448s8VXmMHTu2pHWVCF6Wcsza2trIZrMpTEM5CSaWwa9+9atU2hHHjh0bX/rSl+Lxxx+PP//5z7HffvtFTU3NgH8eAIDhIGmTf0RELtuQwiQwsJLO26TmLQAGj4WdHdHV0110jRspAAAAAAAAAAAsX21tbZx++ulx4YUXlrT+8ssvjxkzZpR5qoG36qqrlrRu3rx5ZZ5kxY5Z6vwMboKJZVSudsT3vve9cckll8Qrr7wS5513Xmy66ablGB8AYFhp0ZjIMJXYmCiYCDBklPIzO1fvRgoAAAAAAAAAAEmOPvro+OpXv1rS2h/96EdlnmbgNTQ0lNQ42NLSksI0/T/maqutlsIklJt6vTLrbxAxIhYHEfu+Rzabjf322y+mTZsWO+yww0CNBwAwYjQnbPSvrx0VdTW1KU0DAyc5mJjcFgrA4NDcXkIwMetGCgAAAAAAAAAMrEym/7kHGArOOOOMuPnmm+Pxxx8vuu7//u//4qWXXor11lsvpckGxmqrrRYvv/xy0TWvvfZaStP817///e/ENYKJw4PGxEFkWe2I7373u+Occ86Jl19+OX7+858LJcaSTZRLhzgBAJYnn7DRX1siQ1VSc1ZLe2v0rMANUwBIXymNiY1ZjYkAAAAAAAAAAKUYNWpUnHHGGYnruru747e//W35BxpgEyZMSFxTSkhwoJVyzFJmZ/ATTBwElg4kVlVVxb777hu33nprPPPMM3HiiSdGU1NThaccHHoDm0s/AACSJLXGNWkfYohKas7qLvTEgo62lKYBYGUkXa+MrauPmurqlKYBAAAAAAAAABj69t577xg/fnziur/97W8pTDOwNthgg8Q1r7zySvkHWcqrr76auGbDDTdMYRLKrabSA4xUfZv+eoN1a6+9dhxxxBFx5JFHSv4u5YMf/GDU1DhdAYAVl9RAlNQ6B4NVUwltn/m2hbGKhi2AQc/1CgAAAAAAAADAwKquro699torLrnkkqLrhmIwsZRw33PPPZfCJP+1YMGCeO211xLXCSYOD5JeKVtWIPGDH/xgTJs2Lfbdd9+odtf7ZfrABz4QH/jAByo9BgAwhCVt9G/UmMgQ1VhCMLG5rTXWU8IOMOjl2xOCia5XAAAAAAAAAAD6berUqYnBxNdeey3mz58fY8eOTWmqlfeud70rcc3cuXNj3rx5scoqq6QwUcSzzz5b0rpSZmfwE0xMwbLCiLlcLg455JA4+uijY+LEiZUaDQBgxMi3txZ9PldCuAsGo8a6+shkMov/W2NZkoIuAAwOyY2JrlcAAAAAAAAAAPpro402Kmndm2++OaSCiZtvvnlJ65566qnYfvvtyzzNf49VilJnZ3CrqvQAw11vKLFQKEShUIhtttkmLr/88nj55Zfj3HPPFUoEAEhBV3d3zO9oK7qmyUZ/hqiqqqporKsvuiYp6ALA4JAcTGxIaRIAAAAAAAAAgOFj1VVXLWndW2+9VeZJBtaWW24ZVVXJ0bCZM2emME3px5owYUKMGzcuhWkoN42JZVYoFKK+vj4+85nPxLRp02Lbbbet9EgAACNOS0JbYoSN/gxtufrRRVtBBRMBhobEhuesGykAAAAAAAAAAPRXbW1tSeva2oqXYAw2DQ0NMXHixHjyySeLrkszmPjQQw8lrnnve9+bwiSkQTCxjDbeeOOYNm1aHHLIIZHL5So9DgDAiNVcQigrpzGRISxXPzqi+fXlPp8UdAGg8jq6FkXbos6iazQ8AwAAAAAAAAD038KFpd3cf/Toobc3Y8cdd0wMJv7tb39LZZbOzs647777EtftsMMOKUxDGpL7Oum3HXbYIe6444546qmn4rjjjhNKBACosHy7YCLDW9L5qzERYPAr5We16xUAAAAAAAAAgP6bM2dOSevGjBlT5kkG3oc+9KHENU899VS88sorZZ9lxowZJYVAd9ttt7LPQjoEE8tgjz32iA9+8IOVHgMAgP9I2uhfW1Udo2vrUpoGBl4uK5gIMNSV0vDcmG1IYRIAAAAAAAAAgOHliSeeSFyTyWRinXXWSWGagfWhD30oMplM4rpbbrml7LOUcoxcLhfbbrtt2WchHYKJAAAMe/m21qLPN9Y3lPQfZTBY5eqLB1XybQujUCikNA0AKyLfXvx6JSKiSWMiAAAAAAAAAEC/3XXXXYlrJkyYENlsNoVpBtaaa64ZW221VeK666+/vuyz3HDDDYlrdtttt6iuri77LKRDMBEAgGEv3168gSipbQ4Gu1xCUKWjuyvaujpTmgaAFdGS0JiYrWxrTj8AAQAASURBVKmNbO2olKYBAAAAAAAAABge3nrrrbjjjjsS15US7husDjjggMQ1f/7zn+Pll18u2wx33313zJ49O3FdKbMydAgmAgAw7OUTNvprH2KoKyVcm9QcCkBlNSdcrySF0AEAAAAAAAAAeKcLL7wwOjo6EtftsssuKUxTHgcccEBkMpmia7q7u+NnP/tZ2Wb48Y9/nLgml8vFnnvuWbYZSJ9gIgAAw15SMNFGf4a6UsK1SX8OAKisxIZn1ysAAAAAAAAAlEkm45Hmg/S8/PLLcc4555S0dvfddy/zNOWzzjrrxIc+9KHEdRdddFE0NzcP+PGffvrp+O1vf5u47jOf+UzU1dUN+PGpHMFEAACGvaSmOBv9Geoa6xsS1wgmAgxuidcr2eSf9QAAAAAAAAAAvG3RokVx4IEHRktLS+LarbbaKjbffPMUpiqfE088MXFNPp+PU089dcCPfcIJJ0R3d3fRNVVVVXH88ccP+LGpLMFEAACGtZ5CIVrabfRneBtVXROjRxW/i1BSExcAlaXhGQAAAAAAAAAYLm644YaYN29exY6/aNGiOOigg+Ivf/lLSeu/8IUvDNixN9hgg8hkMomPgbbHHnvEFltskbju/PPPj3vvvXfAjnv99dfHzTffnLju4x//eGyyySYDdlwGB8FEAACGtQUdbdFd6Cm6xkZ/hoNctvh5nNTEBUBlJQXIXa8AAAAAAAAAAEPFhRdeGO9617virLPOinw+n+qx58yZE7vttlvccMMNJa1fd9114/DDDy/zVOn43ve+l7imq6srDjjggJg7d+5KH++pp56Ko446KnFdVVVVfPe7313p4zH4CCYCADCsJbUPRdjoz/CQqy/e/FnKnwUAKqO7pyfmt7cVXZMUQAcAAAAAAAAAGEzefPPN+MY3vhHrrrtufPGLX4z77ruvrMfr6OiIc889NzbbbLO46667Sn7dmWeeGXV1dWWcLD2f+MQn4sMf/nDiuhdffDF22223ePPNN1f4WM8++2x86EMfKqkZ86ijjoqtttpqhY/F4CWYCADAsNZcQkucYCLDQdJ53CyYCDBotbS3RiFhTVNCAB0AAAAAAAAAYDBasGBBXHjhhTFlypTYeOON4/jjj4/bbrstFi4cmD1tjz76aHzzm9+M9ddfP0444YRoaWkp+bUf//jH48ADDxyQOQaL8847r6Sg5axZs2LbbbeNBx54oN/HuOmmm2KHHXaIV155JXHtGmusEWeccUa/j8HQUFPpAQAAoJzy7cX/wzWTyURjXX1K00D5JAUTk/4sAFA5pbTaNrqRAgAAAAAAAAAwxD377LPx4x//OH784x9HdXV1bLbZZrHNNtvEJptsEptssklMmDAh1lxzzcjlcpHNZmPUqFHR1dUVnZ2dkc/n4/XXX48XX3wxnnnmmXjooYfi73//e8yZM2eFZnn3u98dl1122QB/wsrbdNNN44c//GF86UtfSlz7wgsvxJQpU+Lzn/98nHTSSTFp0qSi6++///4488wz43e/+11Js2Qymbjmmmti1VVXLWk9Q49gIgAAw1rSRv/GuvqoqlIkztCXyxYPrLSU0B4KQGWU0mqb9HMeAAAAAAAAAGAo6e7ujkcffTQeffTR1I+9xhprxC233BKrr7566sdOwzHHHBN33XVX3HjjjYlre3p64vLLL4/LL788ttxyy5g6dWpMnDgxmpqaoru7O9566614/PHH429/+1s8++yz/Zrj5JNPjt13331FPwZDgGAiAADDWmIwUfsQw0RTwrm8oLM9FnV3RW21/wwEGGxa2ouHx6urqmJsXTalaQAAAAAAAAAAhq8NNtggbr311th4440rPUpZXXXVVTF37ty46667Sn7NQAZFDzrooDjjjDMG5L0YvFTDAAAwrOUTNvrnsg0pTQLllSshZJv05wGAyki6kUIu2xCZTCalaQAAAAAAAAAAhqddd9017r333thkk00qPUrZ1dfXx/Tp02Pq1KmpH/vTn/50XHnllfa7jACqMsrgjTfeiCeeeKLSY6Qmk8lEXV1d1NXVRTabjWw2G6uttlqMGTOm0qMBACRu9E9qmYOhorGEkG2+bWGsMXqVFKYBoD+ak4KJrlcAAAAAAAAAAFZYQ0NDnHLKKXHSSSdFVdXI6XgbM2ZM3HnnnXHUUUfF1Vdfncoxv/nNb8bpp58+or7PI5lgYhnceeed8dnPfrbSY1RcfX19rLnmmrHWWmvFJptsEpMnT473vOc9seWWW8aECRMqPR4AMEIkNhDZ6M8wUUrINunPAwCVkW9Pakx0vQIAAAAAAAAADB277757PPPMM/Hqq69WdI7q6uo48MAD4/vf//6IzbFks9m46qqrYqeddoqvf/3rkc/ny3KcCRMmxAUXXBD77LNPWd6fwUkwsUwKhUKlR6i41tbWmD17drzwwgsxY8aMJZ7bYIMNYtddd40PfOADsffee0djY2OFpgQAhrNCoSCYyIhRXzsqRlXXRGd313LXCCYCDE7J1yvJrbgAAAAAAAAAAIPFySefHN/4xjdixowZ8dvf/jZ+97vfxdNPP53a8ceNGxeHHHJIfOlLX4r11lsvteMOZkceeWTsu+++cfLJJ8c111wTixYtGpD3HT16dHzxi1+M7373uzFmzJgBeU+GDsHEMspkMpUeYVBYVkizN7D485//PEaNGhV77LFHfPazn41PfOITUVPjtAQABkZbV2d0FAlpRQgmMnxkMpnI1Y+OuQtalrumua01xYkAKFVLws9n1ysAAAAAAAAAwFCTyWRixx13jB133DHOOuusmD17dvz973+Pu+++O/7+97/H448/PmClYJlMJjbbbLPYddddY999941ddtklqqurB+S9h5Nx48bF5ZdfHqeffnpccMEFcd1118Xzzz+/Qu+12WabxUEHHRRHHnlk5HK5gR2UIUMCrMxGcnNibzBzeQHN3u9NR0dH/P73v4/f//73sc4668RJJ50URxxxRNTX16c2KwAwPOVLCGHlshqIGD5y9Q1Fg4kt7RoTAQabQqEQ+XbBRAAAAAAAAABgeNtwww1jww03jAMPPDAiIlpaWuKxxx6LZ599dvHjhRdeiJaWlliwYEHMnz8/Fi5cGD09PVFXVxd1dXUxduzYWHPNNWPNNdeM9ddfPyZOnBibbrppbLPNNtHU1FThT/i2F154odIjJBo/fnycccYZccYZZ8RTTz0Vt99+ezz22GPxxBNPxL/+9a+YP39+zJ8/PzKZTIwdOzZWWWWV2GCDDWLy5Mmx5ZZbxu67766JkogQTKSMioUyM5nMEoHF3rX/+te/4itf+Up8//vfj3POOScOOuigss8J//rXv+LWW2+NWbNmxRNPPBGzZ8+O+fPnx7x586JQKMTYsWNj7Nixsd5668XkyZNj8803j9122y023njjSo8OQIKWtuQQlo3+DCe5bPHzOV/CnwkA0rWgsz26erqLrkn6+Q4AAAAAAAAAK2M5XURQVo2NjbHTTjvFTjvtVOlRRrRJkybFpEmTKj0GQ5RgIhXRN7S4rJDi3Llz49BDD40rr7wyLrvssnjXu95ViTEZxvL5fFx22WVxzTXXxKxZs4quffPNN+PNN9+MF154If76178u/vrGG28cn/3sZ2PatGmx5pprlnvkEeX555+Pq6++uuT1G2ywQRx66KHlGwgYspoFExlhks7n5hJaRAFIVymh8Vy9hmcAAAAAAAAAAGBwEUyk4pYXUiwUCvGXv/wltt1227j22mtjjz32qNSIDCMLFiyI008/Pc4///xYuHDlGoP++c9/xqmnnhr/7//9vzjkkEPizDPPjNVXX32AJh25CoVCHHbYYXHXXXeV/JpddtlFMBFYpnx78Z/1DbV1MaraJTHDR1JwJenPBADpKy2Y6EYKAAAAAAAAAADA4FJV6QGgr0KhsDio2BtQzOfzsffee8e5555bydEYBn7/+9/HpptuGmefffZKhxL76uzsjEsvvTQmTpwYV1555YC970h18cUX9yuUCFBMPqEdrskmf4aZXLb4Od3S3ho9PT0pTQNAKfLtxa9XMhHRmNWYCAAAAAAAAAAADC6CiQxKvQHF3gbF7u7uOOmkk+LHP/5xpUdjCOrp6Ylvf/vbse+++8acOXPKdpy33norDjvssDjyyCOjs7OzbMcZzubMmRNf//rXKz0GMIwkNRAltcvBUJMUti0UCjGvoy2laQAoRdL1yti6+qipqk5pGgAAAAAAAAAAgNLUVHqA4a639a+Y3obAgXzP/kjz+P09Vt9wYqFQiBNPPDHGjh0bhx9++ArPwMjS3d0dBxxwQNx4442pHfPSSy+NZ555Jm6++eZoaBB46Y9p06bFvHnzKj0GMIw0J2z0b0xol4OhJldCC2i+vbWkdQCkI/lGCn5mAwAAAAAAAAAAg4/GxDLqbf1LepSiN5zXGwos9b1LOfbS7z1QnyvpWP05Xu9rC4VCfOlLX4qHH364pNcysvX09MShhx6aaiix11133RWf+MQnoqOjI/VjD1XXXnttTJ8+vdJjAMNMS3tr0eeT2uVgqCkpmJgQgAEgXc1txa9XGrNueAMAAAAAAAAAAAw+GhPLYP/994/999+/6JoFCxbE1772tbj44osXf23pkGLf4F7f5xoaGmLbbbeNyZMnx8SJE+Pd7353jBs3LtZYY43I5XJRV1cXdXV1kclkor29PTo6OqKlpSVef/31mDt3bjz33HPxzDPPxOOPPx4PPvhgLFy4MPGYfQORVVVVcdRRR8XZZ58do0cvufG5vb092tvbY8GCBfHqq6/Gq6++Gk8//XT84x//iJkzZ8YTTzyxxHv2fd9i+jYndnR0xGc+85l46KGHYsyYMUVfx8j2rW99K37xi1/06zUbb7xx7LTTTrHZZpvFqquuGplMJpqbm+PJJ5+Me++9Nx577LGS3+u2226LL3zhC3H11Vf3d/QR54033ojjjjuu0mMAw5AGIkaasXX1UZXJRE+R62vBRIDBJd9e/OeyGykAAAAAAAAAAACDkWBiBdx2221x1FFHxUsvvRQRpQUSt9pqq/jEJz4Re+65Z2y11VZRXV1d0rEaGhqioaEhmpqaYoMNNnjH893d3fHoo4/GzTffHL/97W9j5syZi2dYup2x9+uFQiEuuuiiuPnmm+OSSy6J3XbbbfH7ZbPZyGazkcvlYp111nnH8f7973/HbbfdFr/4xS/iT3/6U/T09Cw+VqnhxIiIZ599Nk499dQ455xzSvo+MPLccsstcdZZZ5W8/uMf/3h885vfjO23377ousceeyzOOeec+MUvfhE9PT2J73vNNdfELrvsEocffnjJs4xEX/7yl+ONN96o9BjAMLOouysWdLYXXZOr10DE8FKVyURjtiGai4QPBRMBBpcWN1IAAAAAAAAAAACGoKpKDzDSnHnmmbHnnnvGiy++uETgr1ffMODo0aPjmGOOicceeyxmzpwZ3/nOd2KbbbYpOZRYiurq6th6663j29/+djz44IPxxBNPxJe+9KUYM2bMEmHEXr0zFwqFePHFF+OjH/1onH322SUfb6211oqDDz44brvttpg9e3YcffTRUVtbu0QjYpLeEONPf/rTeO655/r/oRn23nzzzTj44IMTw64REauuumrcdNNN8dvf/jYxlBgRsdlmm8VVV10Vf//732PdddctaZ5jjz02nn322ZLWjkTTp0+P6667brnPV1X5VQWsmHx7a+IaG/0ZjpLO62KhRQDSl28rfs3iegUAAAAAAAAAABiMpD1S0tXVFYcddlh85zvfWaIlsDeI17c1sKamJo499th47rnn4qc//WlMnjw5tTknTZoU5513Xjz//PNx3HHHRW1t7eL5evWdvaenJ04++eQ44ogjoru7u1/HWnfddeOCCy6IJ598Mj70oQ8tMwi5tL5Bs0WLFsW3vvWtfh2TkeFb3/pWSe1766yzTtx///2x55579vsYU6ZMiQcffLCkP59tbW1x/PHH9/sYI8H8+fNj2rRpy31+7bXXjn322SfFiYDhpJRWuFzWRn+Gn6TzOt8umAgwWLR3LYq2rs6iawQTAQAAAAAAAACAwUgwMSWf+9zn4qqrrlrcDBjx3/bBvv+85ZZbxgMPPBA/+clPYo011qjYvKuttlqce+658cADD8RWW221zLkj/tteeOWVV8bBBx+8QsfacMMN4/bbb48f/OAHSwQ1i+k97v/93//FnDlzVui4DE8PP/xwXHrppYnrGhsb44477oh3v/vdK3yscePGxZ133hnrrLNO4trp06fHzTffvMLHGq6+9rWvFf0zfN5550VjY2OKEwHDSSnBxCYb/RmGkgIsLQnNXACkp7QbKTSkMAkAAAAAAAAAAED/CCam4KSTToobb7wxImKJcN/S/3zIIYfE/fffH1tssUVlBl2GzTffPO6777447LDDlggnRsQ7wonXX399fO1rX1vhY51wwgnxf//3f8tsaeyrb2tid3d3XHjhhSt8TIafU089NXp6ehLXXXrppTFx4sSVPt5aa60V1157bVRXVyeuPeWUU1b6eMPJX//617j44ouX+/zee+8dn/rUp1KcCBhu8u3Fw1e11dVRXzsqpWkgPU31xQMszSWEYABIR0nBRDdSAAAAAAAAAAAABiHBxDK74oor4kc/+lHRtsGIiG9/+9tx5ZVXLg7lDSY1NTVx2WWXxSmnnLLMcGLv1wqFQvzwhz+Mq666aoWPtc8++8TVV19dUnNi7zGvuOKKFT4ew8vTTz8dv//97xPXffzjH49Pf/rTA3bcnXfeOY466qjEdQ8++GD86U9/GrDjDmXt7e1xxBFHLBE07mvMmDFx/vnnpzwVMNwkbfTPZUcntjTDUJQUYMm3L1zu72AA0pV0I4UIwUQAAAAAAAAAAGBwEkwso5dffjlOOOGEd7QkRvw3VJfJZOK4446L0047rVJjluyUU06J448//h3hxF69n+krX/lKvPLKKyt8nP322y++8Y1vFN0s3fe5uXPnxr333rvCx2P4+NGPfpS4yb6mpiZ+8IMfDPixTzvttFhllVUS1/3whz8c8GMPRaecckr885//XO7zZ5xxRqy77ropTgQMR0nBxCab/BmmGrPFz+1F3d3RuqgzpWkAKCbpeqW+ZlRkawbfTawAAAAAAAAAAAAEE8vo6KOPjnnz5kXE8kOJ73//+4dUUOkHP/hB7LLLLstsTuw1b968OProo1fqOKeeempsvfXWEVG8NbHXH/7wh5U6HkNfR0dH3HDDDYnr/ud//ic22mijAT/+aqutFkcccUTiultvvTVee+21AT/+UDJz5syiP/e22267OPbYY1OcCBiuEhsTBRMZpkoJ3Sb9+QAgHcnXKw0pTQIAAAAAAAAAANA/gollctddd8VNN920OITYq2/IrqGhIX7xi1+UFLwbLDKZTPziF7+I0aNHL/7nXr1hxUKhEDfddFP89a9/XeHjVFdXx7nnnpvYftd73D/+8Y8rfCyGh+nTp0dLS0viuq985Stlm+HLX/5yVFUV/7Ha3d0d119/fdlmGOy6urrisMMOi+7u7mU+X1NTE5deemni9xGgFM1trUWfF0xkuColxCKYCDA4JP08bnS9AgAAAAAAAAAADFKSH2Vy9tlnL/e53gDfCSecEBMmTEhxqoExYcKEOPHEExNDg8W+B6XYeeed4yMf+cg72hn76v36Y489Fh0dHSt1PIa26667LnHNRhttFFOmTCnbDOuvv37svPPOietKmXW4Ouuss+LRRx9d7vPHH398bLnllilOBAxn+XYNRIxMuWxyiKVZMBFgUEj6eVzKz3QAAAAAAAAAAIBKEEwsg8cffzxuueWWxLbEk046qRLjDYgTTzwxsTXxlltuiccff3yljnPMMccs97m+39vu7u6iYSeGt+7u7rjjjjsS1+2///5ln+Uzn/lM4poHHngg3nzzzbLPMtg8/fTTcfrppy/3+Q033DC+973vpTcQMKz19PTEvPaExkQb/RmmaqqrY0xdtuialoQ/HwCkI+nncZMbKQAAAAAAAAAAAIOUYGIZFGtD6w3u7bfffjF27NgUpxpYY8eOjf333z+xNfHaa69dqeN87GMfizXXXDMiYrmtib1mzpy5Usdi6Lr//vujpaUlcd1HP/rRss9SyjF6enrizjvvLPssg0mhUIgjjjiiaLPphRdeGA0NNt0CA2N+R1v0JFyn5OoFExm+mhKCt3mNiQCDQtLPY9cr/5+9Ow+3ta7rxv9Ze1xrn2GvDQiCA0PMipqSCjmQE2aiRKlBJipBpeWTYeHQU6ZFGeWjlhZk4BApjwOZmhn0KOVEKgrJKHCUjuBBca99hr3WHu/fH/z2cR84e33vc85a95per+vaV3Du79n3Z5+Le/mFvu/7DQAAAAAAAAAAdCvBxDb453/+52SI7owzzihomvb5hV/4habXsyyLT37yk/t0j6GhoXje856XDEBGRNxxxx37dC96V56Q34YNG+JJT3pS22c59NBD48gjj0yuu+qqq9o+Szd597vfHV/4whfWvH7WWWfFqaeeWuBEQL+bztEG56A//Wwy0bA1LZgI0HGLy0uxda7edI39CgAAAAAAAAAA0K0EE1vsO9/5TnzrW9+KiNglTLc6qDgyMhKnnHJK0aO13NOe9rQYHR2NiF1/vpVWyIiIG2+8Mb773e/u032e+9zn5lq3efPmfboPvevLX/5ycs2TnvSkGBkZKWCaiKc+9anJNddee20Bk3SHu+66K97whjeseX2//faLd7zjHcUNBAyEPG1wU2UtrfSvaqoxsSGYCNBpM3lepGC/AgAAAAAAAEABhkq+ivwC6BeCiS3WLGy0ElQ88sgjY9263n/j/bp16+Koo45KrssTGmvmp37qp3Kt+5//+Z99ug+96xvf+EZyzeMf//gCJrnfE57whOSam2++Oebm5gqYpvN+7dd+LbZv377m9Ysuuige8pCHFDgRMAhSwcShUik2OOhPH5tKNGzlCe8C0F55Pos1JgIAAAAAAAAAAN1KMLHFbrzxxqbXS6VSHHPMMQVN035HH330Ls2Qu3PTTTft0z0OO+ywqFarEbFrM+OKUqkUWZbFli1b9uk+9KYtW7bEPffck1zXbcHExcXF+O///u8CpumsD3zgA/Gv//qva14/5ZRT4pWvfGWBEwGDInXQf7I8EUO72VdAv0gFWQQTATqvVs/RmCiYCAAAAAAAAAAAdCnBxBZLBRMjIg466KACJinGQx/60OSaPH8mKUcccUQyALljh8PVg+iGG27Ite7YY49t8yQ/ljd8nHf2XnXvvffGa1/72jWvj4+Px8UXX1zgRMAgqTWaH/SfLDvkT39LBVlmF+ZjfnGxoGkA2J1ao/l/xxgZGo71Y+WCpgEAAAAAAAAAANgzgoktdueddybXbNiwoYBJirF+/fqm17MsizvuuGOf7/Pwhz88uaZer+/zfeg9eZ65iIgjjzyyzZP82NTUVOy3337JdXln71W/+Zu/GT/60Y/WvP6mN70pjj766AInAgZJqg1uqjJR0CTQGXkatlKBGADaK7VfqZYnoqThGQAAAAAAAAAA6FKCiS02MzOTPDQ2MjJS0DTt1+xnWflz2Lp16z7fJ08zo2DiYNq0aVNyzUMf+tBYt67YZqw8Qcg8s/eqT3ziE/GRj3xkzevHH398XHDBBQVOBAya5EH/HKEt6GXVcjp8m3pOAGiv1OfwpBcpAAAAAAAAAAAAXUwwscW2bdvWkjW9Yvv27ck1rfh5K5VKcs3S0tI+34fe853vfCe55pBDDmn/IA9w8MEHJ9f0azBxZmYmXvWqV615vVQqxSWXXBJjY2MFTgUMmmnBRAZcrsZEwUSAjqrVZ5tet18BAAAAAAAAAAC6mWBii+UJ4U1PTxcwSTF+9KMfJde0IphYLpeTa/KEF+k/3/ve95Jr8jRutlqee27evLmASYr3ute9Lu6+++41r5933nnx0z/90wVOBAyaLMui1hBMZLBVRsdifGS06ZrpRCAGgPZK7lfK9isAAAAAAAAAAED3EkxssVKp1PR6lmVx2223FTRN+337299Orkn9meSR53tMTEzs833oPffdd19yzUEHHVTAJLvKE0zME+ztNZ/73Ofive9975rXDz744Hjb295W4ETAIJpdmI+FRJOyg/4Mgmq5+f44FYgBoL1SzbVTXqQAAAAAAAAAAAB0McHEFtuwYcOa11bCdbfeemtkWVbUSG2zvLwct9xySzI0uH79+n2+V6PRSK4RTBxMeYKJ1Wq1/YPsxT137NgRc3Nz7R+mILOzs3Huuec2XfOud70rJicnC5oIGFSpQ/4REdWKfQP9LxVomcnxrADQHvc3PDdvrtXwDAAAAAAAAAAAdDPBxBZbK5i4Ooi4ffv2+K//+q+iRmqbr33ta7Ft27aIiKZBy2ZhzbxmZ9c+rLdyb8HEwTQ9PZ1c04p/BvdU3nv2U2vi//7f/zvuuOOONa8///nPj1/8xV8scCJgUOVpgXPQn0GQ+ud8WjARoGO2zTViaXm56ZrJRPMtAAAAAAAAAABAJwkmttghhxySqw3x05/+dAHTtFfqZ8iyLEqlUhxyyCH7fK977703uUYwcfDU6/VYWFhIrutEMHHjxo251s3MzLR5kmJ89atfjXe+851rXl+/fn285z3vKXAiYJDlakx00J8BkAomppq6AGifPC9SSDXfAgAAAAAAAAAAdJJgYosdc8wxTa+XSqXIsiwuu+yyWE68Gb+bLS8vx6WXXhqlUim5NvVnksc999zT9HqpVIoDDzxwn+9Db5mfn8+1rlKptHmSByuXy7nW5f0ZutnCwkKcc845sbS0tOaat771rfGIRzyiwKmAQVarNw9brR8rx+jwSEHTQOekArh5QrwAtMdMnhcpCCYCAAAAAAAAAABdzInsFjv22GPXvLbSIBgRcffdd8eHP/zhOOuss4oaraU+/OEPx/e+972dQctmjjvuuH2+36ZNm5IhyMMOO2yf70NvyRvqGx4ebvMkDzYyku/jtR+CiRdeeGH893//95rXTzzxxHjNa15T4EQ85SlPyf3PIO1z4403dnqEgZUKWznkz6BI/bO+tTEbS8vLMTzkfTUARZtOvEihFBGTGp4BAAAAAAAAAIAu5gRqi5100knJNSthvje96U09GUqan5+PN73pTbnaEiMinvzkJ+/T/aanp+Pee++NiGgaghRMHDx5n59OBLTy3nNhYaHNk7TXTTfdFBdeeOGa10dGRuLv/u7vYkjgASjQdDKY6JA/gyEVTMzi/nAiAMWrNZrvVzaUK4LjAAAAAAAAAABAV1On1GJPfvKTY8OGDbF9+/bdtgmubk2866674nWve128613v6sSoe+2CCy6I7373u2u2Ja4OLK5fvz5XWLOZb33rW7nWCSYOnsXFxVzrBBPbY3l5Oc4555ymAdHf/u3fjsc97nHFDUVERHzhC1+IhzzkIZ0eAzpmJnHQv1rWmMhgyNMOOt3YEVMT6wuYBoDVkg3P9isAAAAAAAAAFChnZxEA7MKr11tseHg4nvnMZzZt9lsJJ2ZZFu9+97vjIx/5SIET7puPfexj8c53vnPNUOKKlZ/xGc94RgwPD+/TPb/85S/nWieYOHjyhv+WlpbaPMne37MToclWede73hVf+cpX1rx++OGHxx/90R8VOBHA/Wr15g1wecJa0A/yhFpmEs8LAO2RDCbarwAAAAAAAAAAAF1OMLENXvayl+VatxLu+5Vf+ZX4t3/7tzZPte+uuuqq+OVf/uVdGhFTzj777H2+7xe/+MVc64488sh9vhe9ZWxsLNe6vM2KrZS3CTHvz9BtNm3aFL//+7/fdM3f/M3fxMTEREETAfzYdPKgv88mBsP68XIMDzX/V75UMAaA9qg1Ui9SsF8BAAAAAAAAAAC6m2BiG5x22mlxyCGHRESsGeJbaRsslUoxPz8fL3zhC+Mf/uEfCptxT/3jP/5jvPCFL4z5+fmIiDXbElf/vAcffHC84AUv2Kf7LiwsxOc///nd/jmu/rUjjzwyqtXqPt2L3jM6OpprXSeCiXnv2avBxPPOOy927Fg7yHDmmWfGqaeeWuBEAPebX1yM2YW5pmvytMhBPxgqlWKy3DzYkgryAtAeycZE+xUAAAAAAAAAAKDLCSa2wfDwcLz61a9eM7y3IsuyyLIsSqVSzM3Nxdlnnx2vec1rol6vFzRpWqPRiN/+7d+OX/mVX4lGo7Gz5bGZlZ/pt37rt2Io0dCS8h//8R+xbdu2nd93rXuddNJJ+3QfetP4+HiudY1Go82T7P09ezGYeOmll8bVV1+95vX99tsv3vGOdxQ3EMAqtUY6ZDVVcdCfwZEKtuR5ZgBovVQw0X4FAAAAAAAAAADodiOdHqBfvfa1r433vOc9cffdd+cK862sefe73x2f+cxn4u1vf3ucdtppBU27e5/+9Kfjd37nd+L222/fGQBsZvX1Qw45JP7X//pf+zzDlVdemWudYGJxNm3aFNdee21b77Fu3bpc//xXKpUYGRlJthOuhFuLlPeeGzdubPMkrfX9738/zj///KZrLrroojjwwAMLmghgV6lD/hERVQf9GSCpYEutPlvQJACsaCzMR2NxoemaSfsVAAAAAAAAAACgywkmtkm5XI4//uM/jle84hXJQN9K6G8lnHjHHXfE6aefHieddFL87u/+bpx22mn73DyYV5Zl8clPfjIuuuii+NKXvrQzULnyM+RtS3zrW98a5XJ5n2ZZXFyMK664IvnnFyGYWKRrrrkmXvGKV7T1HoceemjuYO7U1FT84Ac/aLpm69atrRhrj+S953777dfmSVrr1a9+ddRqtTWvP/3pT2/7Px8AzdQa6ZDVZGWigEmgO1QT/7znCfMC0FrTeV6kULZfAQAAAAAAAAAAulsxabcBdfbZZ8fznve8XG2DWZY9KKD4pS99Kc4444w47LDD4vd+7/fii1/8Yttm/fKXvxyvf/3r4/DDD4+f//mf3xlKXD1Ps1DiyppSqRTPe97z4uUvf/k+z/SpT30q7rvvvoh4cCBy9Z/nxo0b44QTTtjn+9Gb9t9//+SamZmZAibZ83tOTEzsc4C3SB/96Efj4x//+JrXx8fH45JLLskVJgZol1TIanx4JCojYwVNA52XagitNQQTAYo2k+NFCqnGWwAAAAAAAAAAgE7TmNhm73vf++Ixj3lMbNmyZWd4r5ndhQE3b94cf/mXfxl/+Zd/GZOTk/HkJz85TjrppHjUox4VRx99dBxxxBExMZHvTfqNRiPuvPPOuPXWW+PGG2+ML3/5y/GVr3xlZwPa6vnytiSuDiEddNBBcdlll+WaJeU973lP0+urg5CCUIMrTzBxy5YtBUyyq+9///vJNXlm7xbT09PxW7/1W03XvOlNb4qjjz66oIkAdi8VTKxW1tk3MFCSwcT6bK4XqQDQOnnaalOf3wAAAAAAAAAAAJ0mmNhmBxxwQHz0ox+NZz/72dFoNHKHEyN2Dfyt/FqtVovPfvaz8dnPfnaX3zMxMREPechDolqtxvj4eIyNjUWpVIq5ubmYm5uLmZmZ+MEPfhA7djz48NvuwogP/PW1rA4vTkxMxMc//vE44IADkr8v5cYbb4yrr74615/XL/7iL+7z/ehdD3vYw5Jr8oQEWy3PPfPM3i1+53d+p+nPdPzxx8cFF1xQ4EQAu5cnmAiDpFpu/s/84vJS7Jifi/XjvdPiDNDrphP7lcroWIyPjBY0DQAAAAAAAAAAwN4RTCzAySefHB/+8IfjjDPOiOXl5Vxhu4hdA4qpwOCOHTt2hg4f2HayJ42HedY/8PdlWRYjIyNxxRVXxJOf/ORcvzfloosuWnO+1SYmJuJnf/ZnW3JPetNhhx2WXHP33Xe3f5AHuOeee5JrDj/88AIm2Xe33357vO9971vzeqlUiosvvjjGxsaKGwpgDamD/oKJDJpqJd2sXqvvEEwEKFCtkdivlNOf3QAAAAAAAAAAAJ0mmFiQ0047LS6//PJ42cteFgsLC7nDiREPbjRsFtTLsmy337fZ73ngPfJYHUocGxuLD3zgA/FzP/dze/Q91nLHHXfE5Zdfnmuu5z73uVEuO0Q9yPKE+77//e/H7OxsTEwUd7jz9ttvT67plWDi9u3bm15/3OMeF5s3b44Pf/jDbbn/pk2bkmvuvffeXPc/8MAD4xnPeEYrxgK6VK0x2/R6qj0O+k2eMO50Y0c8PPYvYBoAIiJq9cR+xYsUAAAAAAAAAACAHiCYWKAXv/jFceCBB8bP//zPx9atW/conLhirfUrQcFWBxCb3SvLspicnIwrr7wyTjnllH3+viuuv/76ePnLX55r7a/8yq+07L70piOOOCK5JsuyuP322+Mxj3lMARNF1Gq1uO+++5Lr8szeC77xjW/EmWee2dEZbr755lwzPP3pTxdMhD43k2xM1EDEYJksT0QpIpr9W0At8dwA0Fqpz13BRAAAAAAAAAAAoBcIJhbslFNOiS996Uvxkpe8JL71rW/tEvLbF60IHOaxet5HP/rRccUVV8Rxxx3X0nucccYZccYZZ7T0e9I6L3/5y3MHR4twwgkn5Fp3yy23FBZMvOWWW3Ktyzs7APksLy/HzFy96RoH/Rk0I0PDsWG8ElubPBup5i4AWqvWSAQTNTwDAAAAAAAAAAA9YKjTAwyi4447Lr761a/Gq171qp2BwlKplGw77KSV+bIsiyzL4tWvfnV89atfbXkoEfbUwQcfHAcddFBy3XXXXVfANPnvNTIyUlhQEmBQzMzVky9rcNCfQZQK5GpMBChWKhDuRQoAAAAAAAAAFG2olPkq8AugXwgmdsj4+Hj89V//dVxzzTXxmMc8pmsDiqvnybIsHve4x8U111wTf/VXfxXj4+Mdng7u9/jHPz65pshg4te//vXkmmOPPTbK5XIB0wAMjjzhqqnKRAGTQHdJBhMTzV0AtM7i0lJsSzY8268AAAAAAAAAAADdTzCxw5761KfGddddFxdffHEceuihOxsJVwKBnQgprr73yjyPfOQj45JLLomvf/3r8dSnPrXwmaCZk046KbnmK1/5SiwuLhYwTcR//Md/JNc86UlPKmASgMGSJ5iogYhBVC03D7hoTAQozkyjeVtihP0KAAAAAAAAAADQGwQTu0CpVIpzzz03vv3tb8fll18eT3jCE3YGAleutzOouLvvv3L/xz/+8XH55ZfH7bffHr/6q7/aVW2OsOKZz3xmcs22bdviv/7rv9o+y1133RW33357ct2zn/3sts8CMGhS4arh0lCsH68UNA10j2RjomAiQGHytNROlQUTAQAAAAAAAACA7ieY2EWGh4fjzDPPjK9+9atxww03xOtf//o47LDDdoYE1woq7utXROxyj0MPPTRe//rXxw033BBf+9rX4swzz4zh4eFO/tFAU0984hNj48aNyXWf+cxn2j5LnnuUSqVcYUoA9kwt0UA0WZ6IIS9ZYAClg4np9i4AWiPPZ67GRAAAAAAAAAAAoBcIJnapRz/60XHhhRfGHXfcEbfccku85z3viRe96EXxiEc8YpcQ4e6+Hii1/mEPe1j84i/+Yrz73e+Om2++Oe6888648MIL49GPfnQHfnLYcyMjI7mCfldccUXbZ/nwhz+cXHPiiSfGAQcc0PZZWuVxj3tc8nOknV9nn312csanP/3pub7X5z//+fb/gQEdk2p9q1YmCpoEuksq4FJfnI/G4kJB0wAMttR+ZWRoONaNjRc0DQAAAAAAAAAAwN4b6fQApB199NFx9NFHx6//+q9HRMS2bdviW9/6Vtx8882xefPmuOeee+Kee+6J++67L+r1eszNzUWj0YiIiPHx8SiXy1GpVGJqaioOOeSQOPjgg+PhD394HHfccfHoRz86V9McdLszzzwzrrzyyqZrvv3tb8e1114bT3rSk9oyw1133RX/8R//kVx35plntuX+AIMuHUzUPsRgqpbTodyZ+o4ob6i2fxiAATed2q+UJ6Kk4RkAAAAAAAAAAOgBgok9aMOGDXHSSSfFSSed1OlRoGucdtppsXHjxti6dWvTde94xzviQx/6UFtmeNe73hXLy8tN1wwNDcUv/dIvteX+AIMuedBfMJEBNZXjn/3p+o44SDARoO1qDfsVAAAAAAAAAACgPwx1egCAViiXy/HiF784ue6jH/1o3H777S2//3333Rd/93d/l1z3nOc8Jw4++OCW3x+AHAf9yw76M5gmc4Rcao3ZAiYBYKbe/PNWMBEAAAAAAAAAAOgVgolA3/id3/mdKJVKTdcsLi7G6173upbf+w/+4A+SbY0REeeff37L7w1ARJZlUUsc9M/TGgf9qDwyGpWRsaZraonGUQBaI93wPFHQJAAAAAAAAAAAAPtGMBHoG8cdd1w8//nPT677xCc+ER/5yEdadt8vfOELcfHFFyfXPf7xj49nPetZLbtvRMR3vvOdKJVKya9TTjmlpfcF6DY7FuZicXmp6ZpJB/0ZYKmgi2AiQDE0PAMAAAAAAAAAAP1ipNMD9Ju77747rr766lxrjzvuuPipn/qpNk8Eg+UP//AP49Of/nQsLy83XXfuuefGYx/72Dj66KP36X7f//7346yzzoqlpeZhmIiIN7/5zft0LwDWlidU5aA/g6xaWRf3bKuteV0wEaD9lrMsZhINz1UNzwAAAAAAAAAAQI8QTGyxj370o/Ha174219rPf/7z7R0GBtATnvCEeOUrXxnvfe97m66bmZmJZz7zmXHNNdfEEUccsVf3+sEPfhDPetaz4n/+53+Sa3/2Z382TjvttL26DwBpeUJVUw76M8BSQZdao3lQBoB9t32uHktZ85fopBpuAQAAAAAAAAAAusVQpwfoN9/85jcjy7Lk10knnRRPfepTOz0u9KULL7ww9t9//+S6zZs3xxOf+MT4zGc+s8f3uPbaa+PEE0+MG2+8Mbm2XC7HO9/5zj2+BwD51RLtQxERk2UH/RlcqcZQjYkA7ZcnBK4xEQAAAAAAAAAA6BWCiS122223RUREqVTa7dfKtZe85CWdHBP62kMe8pB43/vet/OZa+a+++6L5z3veXHGGWfE1772teT6m266KV7xilfEySefHHfddVeued75znfGUUcdlWstAHtnOhGq2jBeiZHh4YKmge6TbEwUTARou1wNz4kgOQAAAAAAAAAAQLcY6fQA/eauu+7aGYbKsmyXa6tDUi94wQsKnQsGzfOf//x43eteFxdddFGu9VdeeWVceeWVcfTRR8dTnvKUeNSjHhX77bdflEqlmJ6ejltuuSW+/OUvxw033LBHc5x11llx3nnn7c2PAMAeSB30r1a0JTLYUs/A1rl6LC4vxciQAC9Au6T2K6WI2KjhGQAAAAAAAIAOyNEHAwAPIpjYYj/84Q93++urQ4kHHHBAHHrooUWNBAPrz/7sz2Lz5s3xoQ99KPfvue2223Y2n+6rZz7zmXHppZe25HsB0NxMIxFM1D7EgEs1JkZEzDRmY/+JDQVMAzCYUsHEDeVKDA8NFTQNAAAAAAAAAADAvnHaqcUWFhbWvJZlWZRKpXjUox5V4EQwuIaGhuIDH/hAnHHGGYXf+ylPeUp84hOfiPHx8cLvDTCIavXZptfzhLKgn03lCOemAjMA7JvpxH4lz2c1AAAAAAAAAABAtxBMbLF169KHyA477LD2DwJERMTIyEh85CMfiQsuuKCwe77iFa+Iq6++OtfnAQCtMZ1qTKxMFDQJdKc84dxUwBeAfZNsePYiBQAAAAAAAAAAoIcIJrbY+vXrk2s2bNhQwCTAiqGhofizP/uzuPLKK+OQQw5p232mpqbi7/7u7+LSSy/VlAhQsFTTW1UDEQNu3dh4jA4NN11TSwRmANg3yf2KYCIAAAAAAAAAANBDBBNbLE8wMc8aoPVOP/30uOWWW+J1r3tdS9sMx8bG4pxzzolbb701fvVXf7Vl3xeAfOYWF6K+MN90zZSD/gy4UqkUk4nm0FRgBoB9My2YCAAAAAAAAAAA9JGRTg/Qbw444IC47bbbolQqrblmfr75wXmgfTZs2BAXXXRRvPGNb4xLLrkkPvjBD8aNN964V9/rJ37iJ+LMM8+MV73qVXHwwQe3eFJWnH766XHYYYc1XZO6DvS3PGEqB/3h/ubQH+7YtuZ1wUSA9qo1Zpter5abB8gBAAAAAAAAAAC6iWBiix199NHxpS99qemaHTsc+IVOm5qaigsuuCAuuOCC+O53vxv/9m//Ftdff33cdNNN8Z3vfCe2bt0a27ZtiyzLYsOGDbFhw4Z4xCMeEccff3yccMIJ8axnPSuOPfbYTv8Ycdhhh0WWZZ0eo61OP/30OP300zs9BtDFUof8IyImHfSHZEC3Vk8/SwDsnfrCfMwtLjRd40UKAAAAAAAAAABALxFMbLGjjz46uWbLli0FTALkdeihh8a5557b6TEA2Et5Wt6mHPSHqFaaB3SnNSYCtI2GZwAAAAAAAAAAoN8MdXqAfnPMMcc0vZ5lWdxxxx0FTQMA0P9SB/3LI6NRHh0raBroXtVyojGxIZgI0C55Gp4FEwEAAAAAAAAAgF4imNhiJ5988prXSqVSRER8+9vfjsXFxaJGAgDoa6mWN4f84X6p5tCZxmwsZ1lB0wAMllyNieXmzbYAAAAAAAAAAADdRDCxxQ466KB47GMfG1mW7QwiRtzflLii0WjEV7/61U6MBwDQd1Itb4KJcL/Us7C0vBzb5xoFTQMwWFLBxMroWIyPjBY0DQAAAAAAAAAAwL4TTGyD5zznOck1//qv/1rAJAAA/a9Wn216vVoWTISIiMlKuokrFfQFYO94kQIAAAAAAAAAANBvBBPb4EUvetGa10qlUmRZFv/4j/9Y4EQAAP1rJtFAVM0RxoJBMJUjpJtq9AJg76RepJDnMxoAAAAAAAAAAKCbCCa2wYknnhhPfOITI8uyKJVKO389y7Kdf33nnXfGZz/72U6MBwDQV6Y1EEEuG8sTUUqsEUwEaI/U56sXKQAAAAAAAAAAAL1GMLFNXv3qVze9nmVZ/NEf/VFB0wAA9Kel5eXY1qg3XVPVQAQRETE8NBQby82DL4KJAO2R+nydtF8BAAAAAAAAAAB6jGBim/zSL/1SHHXUURERD2pNXPn7a6+9Ni699NKOzAcA0A9mGrORJdZMaSCCnVINorXGbEGTAAwWDc8AAAAAAAAAAEC/EUxsk9HR0fjrv/7ryLLdH5UvlUqRZVmcf/75sWnTpoKnAwDoD3na3Rz0hx+rakwEKNzi0lJsn2s0XTNlvwIAAAAAAAAAAPQYwcQ2evaznx0vetGLdmlJjIidYcVSqRQzMzPxcz/3c1Gr1To0JQBA75oWTIQ9kgq+CCYCtN5MjjbaqoZnAAAAAAAAAACgxwgmttkll1wSRx11VETEbsOJERG33HJLPPOZz4x777238PkAAHpZ6qD/8NBQrB8rFzQNdL/JRDAxT9gXgD3jRQoAAAAAAAAAAEA/Ekxss8nJyfjkJz8Zk5OTEfHgcOLK33/jG9+Ik08+Ob7xjW90ZE4AgF6Uanerlid22X/BoKuWE42JOVq9ANgztUaOYGLi8xkAAAAAAAAAAKDbCCYW4Oijj45/+qd/ig0bNkTE7sOJpVIp7rzzzjjppJPiT//0T2NhYaFT4wIA9IxUA5H2IdjVVGWi6fW5xYWoL8wXNA3AYEi9SGF0aDjWjY0XNA0AAAAAAAAAPNhQyVeRXwD9QjCxIE972tPimmuuiYc+9KERETvDiBH3hxNXfm1+fj5+//d/P4499ti4/PLLY3FxsWMzAwB0u1QDkWAi7CrPM5EK0ACwZ2r15m20kxUNzwAAAAAAAAAAQO8RTCzQYx/72PjiF78YP/mTP7kzjLhidTgxy7LYtGlTvOxlL4vDDjss/vAP/zC+9a1vdWJkAICulgpQVcuCibBarmBio3mABoA9k3yRgv0KAAAAAAAAAADQgwQTC3bYYYfFtddeG29+85tjZGRkzebElYDi3XffHX/8x38cj33sY+PII4+Mc845Jy677LL4+te/Hjt2aDIBAAZbKpg4pTERdpEn/KIxEaC17FcAAAAAAAAAAIB+NNLpAfrVK1/5yuSaE044Ia677rqdwcSIB4cTV//anXfeGZs2bYr3ve99O9cfeOCBcdBBB8VBBx0UGzZsiPHx8RgbG9vle3ZaqVSKv//7v+/0GABAn8myLNnsNlmZKGga6A1jIyMxMToWswvza64RTARordTnqv0KAAAAAAAAAADQiwQT2+R973tf7nDgSvBwd7+2OqC4u7VbtmyJLVu2dFUQcbUsywQTAYC22D7fiKXl5aZr8rTDwaCpVtYJJgIUqFZv/iIF+xUAAAAAAAAAAKAXCSa22e5Ch3v7+x8YUly9Zl/vAwDQa/KEp6YqDvrDA1Ur6+LurdNrXp8WTARomeUsi5lEw7P9CgAAAAAAAAAA0IsEE9ss1WS4J4HC3a1dK6zYLQQmAYB2yRNMrDroDw+SauaqNQQTAVpl+1w9lrJEw7P9CgAAAAAAAAAA0IMEE9us3cG8bg7+dXNgEgDofdP15u1DpYiYLE8UMwz0kFQz10zi2QIgPy9SAAAAAAAAAAAA+tVQpwcAAIC9kWp121CuxPCQ7S48UCoAM60xEaBlUi9SiIioepECAAAAAAAAAADQg5zUBgCgJ80kGoiqZe1DsDupJtHtc41YXFoqaBqA/pZ6kUIpIjYKJgIAAAAAAAAAAD1IMBEAgJ6UaiBKtcLBoJrK8WykgjQA5JN6kcLG8oSGZwAAAAAAAAAAoCc5+QQAQE9KBaeqFe1DsDt5Qru1RPAXgHy8SAEAAAAAAAAAAOhXI50eoN+VSqVOjwAA0JdqiQaiatlBf9idPCGY6cTzBUA+yRcplL1IAQAAAAAAAAAA6E2CiW2UZVmnRwAA6FupYOKUBiLYrYnRsRgdHo6FpaU118wkgjQA5JN8kYL9CgAAAAAAAAAA0KMEE9vk7LPP7vQIAAB9q7EwH43FhaZrHPSH3SuVSlEtr4sf7Ni65ppUkAaAfAQTAQAAAAAAAOgFpVKnJwCgFwkmtslll13W6REAAPpWrTGbXDNZnihgEuhNU5XmwcTpevoZAyAttWeplgUTAQAAAAAAAACA3jTU6QEAAGBP5Wlzm9JABGuarDQP7mpMBNh39YX5mEs0PE8lPo8BAAAAAAAAAAC6lWAiAAA9J09oqiqYCGtKNXTVGoKJAPvKfgUAAAAAAAAAAOhngokAAPSc6cRB/8roWIyPjBY0DfSeVKOoxkSAfZfns3RSMBEAAAAAAAAAAOhRgokAAPScVJub9iFoLvWMzDRmY3l5uaBpAPpT6kUKERFTiQZbAAAAAAAAAACAbiWYCABAz6nVZ5ted8gfmksFE5ezLLbNNwqaBqA/zTSa71cmRsdibGSkoGkAAAAAAAAAAABaSzARAICeU0s0EE1WJgqaBHpTnlbR1HMGQHOpz1ENzwAAAAAAAAAAQC8TTAQAoOfUGomD/hoToalqOR3eFUwE2DfTgokAAAAAAAAAAEAfE0wEAKDn1OqzTa876A/NbRyvRKlUaromFagBoLn0ixQ0PAMAAAAAAAAAAL1LMBEAgJ6yuLQU2+bqTddMCSZCU0NDQzGZCMSkAjUANOdFCgAAAAAAAAAAQD8TTAQAoKfMNJof8o+IqFY0EEFKtdw8EJMK1ADQXLIxUTARAAAAAAAAAADoYYKJAAD0lOl6usXNQX9Im0oEeGs5njUAdm9xaSm2zzWarkkFxAEAAAAAAAAAALqZYCIAAD0lV2Oig/6QlArwppq+AFhbns/QKS9SAAAAAAAAAAAAethIpwcAAIA9kWpxGx0ajnVj4wVNA71rMhHgrdXTIWAAdi/PZ+hkorkWAAAAAAAAAIoyVOr0BAD0Io2JAAD0lOlEMHGyMhGlkv9KAilTiUBMrb4jsiwraBqA/pLar0Skm2sBAAAAAAAAAAC6mWAiAAA9pdZoftC/mmiBA+6XCsTMLy1GfWG+oGkA+stMYr8yOjQc60Y1PAMAAAAAAAAAAL1LMBEAgJ5SSzQQTWkfglzyNHXlafwC4MFS+5VqZZ2GZwAAAAAAAAAAoKeNdHoA9t7S0lLcc889cffdd8e2bduiXq9HvV6PRqMRWZY9aP3LXvayDkwJANBaeQ76A2l5npWZxmw8bHK/AqYB6C/T9dmm1+1XAAAAAAAAAACAXieY2CNuueWWuPbaa+Ob3/xmfPOb34xbb7017r333t0GENcimAgA9INao/lB/8nyREGTQG+r5nhWUkFgAHYv+SIF+xUAAAAAAAAAAKDHCSZ2qaWlpfjUpz4Vn/rUp+Lf/u3fYvPmzbtc35NAYkREqVRq5XgAAB2xnGUxk2ggmtJABLmMDo/E+rFybJ9vrLlmWjARYK/UGhqeAQAAAAAAAACA/iaY2GVuu+22uPjii+Mf/uEf4oc//GFE7D6EuCdBwz0NMTbz53/+5/GpT30que7AAw+Mj370oy27LwBARMT2uXosZctN1zjoD/lNViaaBhNTwRoAdi/1IgX7FQAAAAAAAAAAoNcJJnaJW265Jd7ylrfERz7ykVheXt4lTNgshJgKHba6KfHUU0+NN7zhDU3XZFkWpVIprrnmmnj605/e0vsDAIOtlqO9zUF/yK9aXhffm/nRmtfzPHMA7Go5y2KmkQomThQ0DQAAAAAAAAAAQHsMdXqAQbdt27b4jd/4jTjhhBPiiiuuiKWlpZ3BvpWviPvDfrv7KtpjH/vYeP7zn7/z3s1meu9731v4fABAf5tOtA9FCCbCnphKPC+CiQB7bluehuey/QoAAAAAAAAAANDbBBM76JOf/GQcf/zxcckllzwokBgRHQ0gNvP6179+51+vDlCu/sqyLD72sY/Ftm3bOjgpANBvao3mIalSqRST45WCpoHelwry1nKEgQHYlYZnAAAAAAAAAABgEAgmdkCWZfH6178+Tj/99Pje9763ZiCxW5100knxhCc8Yc3WxBVzc3Nx5ZVXdmpMAKAPzSQO+m8cr8TQkC0u5FWtTDS9ngoDA/BggokAAAAAAAAAAMAgcGq7YNu2bYuf/dmfjYsuuqjnAomrvepVr8q17oorrmjzJADAIJlOtLc55A97plpu/szsmJ+L+aXFgqYB6A+1RvP9ioZnAAAAAAAAAACgHwgmFmjr1q1x6qmnxlVXXbUzlBix94HElVDjyvcp0llnnRWTk5M753igUqkUWZbF1VdfHVu3bi16PACgT6Xa26rl5u1vwK7yhHlnEoFgAHaVakyc1PAMAAAAAAAAAAD0AaegCrJt27Y49dRT4ytf+UpE/Di4lzeQuDqE2Kkw4mrj4+Nxxhln7Hb+1b+2uLgYn/3sZ4scDQDoY6mD/lMaE2GP5AkmTieeOwB2ldqvaHgGAAAAAAAAAAD6gWBiQV760pfGtddeu0tLYsoDQ4grQcaVr5GRkahWq3HwwQfvXF+kl770pbnW/cu//EubJwEABoWD/tBa1Uq6ZTTVVArArlKB7kkNzwAAAAAAAAB0mVLJV5FfAP1ipNMDDII3v/nN8clPfjJ3KHF1wHBl7SMe8Yg49dRT48QTT4yf/MmfjEMPPTQOPPDAneuGhorPmJ5yyilx0EEHxb333ruzAXK1lV/TmAgAtEKWZYKJ0GKVkbEYHx6JuaXFNdeknjsAdpUKdGt4BgAAAAAAAAAA+oFgYpt96Utfire+9a17HErMsiwmJyfjZS97WZxzzjnxmMc8pu2z7qlSqRTPfe5z4/3vf/+D2hqzLNv5a1u2bIlvf/vbcdRRR3ViTACgTzQWF5qGpyIiqhqIYI+USqWoVtbFlu0za66p1WcLnAig980kPje9SAEAAAAAAAAAAOgHxdfsDZCFhYU477zzdoYRm4USS6XSzobB8fHxeNOb3hSbNm2Kd77znV0ZSlzxvOc9L9e6L3zhC22eBADod3la2xz0hz2Xem5SzV8A/JiGZwAAAAAAAAAAYFAIJrbR29/+9rjpppt2Bg7Xsrol8aSTTorrr78+3vrWt0a1Wi1o0r337Gc/e+f8D2xNXE0wEQDYV4KJ0B7JYGKOZw+A+9UX59MNz/YrAAAAAAAAAABAHxBMbJPZ2dn4i7/4i6ZhvYjYGVrMsix+/dd/Pa655po46qijCppy31Wr1Tj++OObrsmyLK677rqCJgIA+tW0YCK0RbU80fS6YCJAfrX6bHJN6nMXAAAAAAAAAACgFwgmtsnFF18c9913X0TEmm2JK6HEUqkUb3rTm+I973lPjIyMFDlmS5x00klNf8aIiJtvvjkWF5s3BgAANFNrNA9HTYyOx9hw7+2loNM0JgK0joZnAAAAAAAAAABgUAgmtslf/dVfNW1LXB1K/I3f+I1461vfWuB0rfXEJz5xt7++Oqy4sLAQN998c1EjAQB9KNVANOWQP+yVVEBmZq4ey8vLBU0D0NsEEwEAAAAAAAAAgEEhmNgGX/nKV+I73/lOROy+LXF1KPGnf/qn453vfGfBE7bW8ccfn2vdrbfe2uZJAIB+ljroP1mZKGgS6C/VcvOATJZlsXWuXtA0AL1NwzMAAAAAAAAAADAoBBPb4B//8R/XvLa6RXF8fDwuvfTSGB4eLmKstjnmmGNyrdu0aVObJwEA+lnqoH8qXAXs3lSOUG+eBjAANDwDAAAAAAAAAACDQzCxDT7zmc/sEkB8oJW2xNe85jVx5JFHFjhZe+y///6x3377RUQ0/bkFEwGAfeGgP7RHNcezMy2YCJCLhmcAAAAAAAAAAGBQCCa22JYtW+KOO+6IiPsDiKutDu1VKpV43eteV+hs7fSwhz3sQT/vA33ve98raBoAoB+lDvrnCVcBD7Z+vBLDpeb/aphqLAXgfqkgt4ZnAAAAAAAAAACgXwgmttgXvvCFptdX2hJPO+20OOCAAwqaqv0OOuig5Jof/OAHBUwCAPSjhaXF2D7faLqmqoEI9spQqRST5ebPT6qxFID7zTQ0PAMAAAAAAAAAAINBMLHFbrjhhlzrXvKSl7R5kmI99KEPXfNaqVSKLMvihz/8YYETAQD9pJY45B+hMRH2RSrYm2osBeB+Gp4BAAAAAAAAAIBBIZjYYnfeeeduf71UKu3y16ecckpBExVj/fr1yTW1Wq39gwAAfWkmR1tbteygP+ytVFBGMBEgTcMzAAAAAAAAAAAwSAQTW2ytYOJqRx11VFSr1fYPU6ByuZxcMzc3V8AkAEA/ms4RitJABHsvGUzM0VoKMOhyNTx7kQIAAAAAAAAAANAnBBNb7J577tmlHXG1LMuiVCrFkUceWfBU7SeYCAC0U63RPJg4OjwcE6NjBU0D/ScVlNGYCJCW57PSixQAAAAAAAAAAIB+IZjYYjt2pA+hPfzhDy9gku6zuLjY6REAgB6VOuhfLa9b8+UQQFq1MtH0eq2+I7IsK2gagN5Uq+doTBRMBAAAAAAAAAAA+oRgYovlCSauX7++gEmKVa/Xk2vGx8cLmAQA6EepYOKUQ/6wT1JBmYXlpdixoAEdoBkNzwAAAAAAAAAAwCARTGyxRqORXDM21n+H0GZn060AExPNW1gAANaSbEwUTIR9Ui2nn6HUcwgw6DQ8AwAAAAAAAAAAg0QwscUqlUpyTZ52wV5z7733Jtfk+bMBANidWqP5SxAmy16AAPsiT+uoYCJAc16kAAAAAAAAAAAADJKRTg/QbyYmJpLtgTt29N+B3s2bN695LcuyiIjYsGFDUeMAAH0mddA/T6gKWFuecG+tnm5JBxhk6WCiFykAAAAAAAAA0J2GSp2eAIBepDGxxdatSx+Kv/vuuwuYpFibNm2KUmnt3UipVIqHPexhBU4EAPSL5eXlmEk0Jmoggn0zMjwcG8abN5zXGv33ghWAVko1PFfL9isAAAAAAAAAAED/EExssampqZ0NgbuTZVncddddBU7Ufps3b44f/ehHERFNf/ZHPvKRRY0EAPSRbXP1WG6yx4gQTIRWSDV5pZrAAAadhmcAAAAAAAAAAGCQCCa22OGHH77mtZVGwdtuuy0WFhaKGqntrrvuulzrBBMBgL0xnWgfihBMhFZINXkJJgKsTcMzAAAAAAAAAAAwaAQTW+yII47Y7a+vbhKcn5+P66+/vqiR2u7f//3fc6076qij2jwJANCP8oShpsrNm96AtFRgplZPh4QBBlWehudJ+xUAAAAAAAAAAKCPCCa22FrBxAe66qqr2jxJcf7lX/5lZxtkMyeeeGIB0wAA/SYVTCyVSrFhvFLQNNC/qpXmgZnphsZEgLXkaXie0pgIAAAAAAAAAAD0EcHEFnvCE56Qa90///M/t3mSYlx33XVxxx13RMSurZARsUtYsVqtakwEAPZKLRGGmixPxNCQbS3sq2o51ZgomAiwlpkcn5GpZloAAAAAAAAAAIBe4gR3i/3kT/5kVCr3N/Y8sEUwy7IolUqRZVn813/9V9x8882dGLGlLrnkkqbXV35mbYkAwN6q1Zs3EKXCVEA+qSav+sJ8zC0uFDQNQG+ZztHwvFHDMwAAAAAAAAAA0EcEE1tsZGQknvjEJz6oPXB33v3udxcwUfv84Ac/iMsvv/xBAczdec5znlPARABAP0q1tE1VJgqaBPpbniavWqN5UBhgUGl4BgAAAAAAAAAABo0TUW2QCuGttCb+/d//fXz3u98taKrWu/DCC2PHjvsP3qWCmD//8z9fxEgAQB9KBRPzhKmAtMlyOuSbeh4BBlW64dmLFAAAAAAAAAAAgP4imNgGL3nJS9a8tjrANz8/H+eff34RI7XcjTfeGH/zN3+zZlviSvgyIuL444+PI444osjxAIA+Mi2YCIWYytOYKJgIsFtepAAAAAAAAAAAAAwawcQ2OOKII+LEE0+MLMt2G9xb+fUsy+LKK6+Myy+/vANT7r2lpaU4++yzY35+PiKatyWWSqX45V/+5aJGAwD6TJZlMdPQQARFKI+ORXlktOkawUSA3as1BBMBAAAAAAAAAIDBIpjYJmeffXZyzUo48Td+4zfi+uuvL2Cq1vjN3/zNuO6663ZpRVxtdRhzfHw8zj333CLHAwD6SH1hPuaXFpuucdAfWif1PKUaTAEGVa2eepGC/QoAAAAAAAAAANBfBBPb5JxzzomHPOQhERFrtiauXNu+fXv83M/9XNxxxx2Fzrg3/vzP/zwuvvji3f5Mq620Qv7SL/1S7L///gVNBwD0mzwhKMFEaJ3U85RqMAUYRFmWJRtlpyoangEAAAAAAAAAgP4imNgm5XI5XvOa1+y2UXDF6nDi3XffHU95ylPihhtuKGrEPfaWt7wl3vCGN+wMJabaEoeGhuL8888vbD4AoP/UGoKJUKRUo1cqeAMwiPI0PE/arwAAAAAAAAAAAH1GMLGNfuu3fisOPPDAiNh9a2LEruHELVu2xMknnxwf/OAHC5sxj+3bt8dLX/rS+KM/+qOd86YCl6VSKc4+++x41KMeVdSYAEAfyhOCqpY1EEGrVBONXoKJAA+Wq+E5EfwGAAAAAAAAgE4qlXwV+QXQLwQT22jjxo3xF3/xF01DfBG7hhNnZ2fj5S9/ebzwhS+Mu+66q4gxm/r0pz8dj3vc4+JDH/rQzsDhWj/P6vDlunXr4k/+5E+KGhMA6FO1+mzT6+vHyjE6PFLQNND/Ug2k0zlaTAEGzUyj+X4lImJKYyIAAAAAAAAAANBnBBPb7KUvfWmccsopO0N9a1kdTsyyLD71qU/FMcccE69+9atj06ZNRY2701VXXRXPetaz4gUveEHceeedyVDiipV1b3nLW+Kggw4qaFoAoF/VEiGoyUS7G7BnUo1e2xr1WFpeLmgagN6Qp03WngUAAAAAAAAAAOg3gokFuOyyy2L//fePiNijcOLc3Fz87d/+bRx11FHxrGc9Ky699NK455572jbnddddF3/4h38YxxxzTDz3uc+Nz33uczuDhqlQ4sr1UqkUz3rWs+K3f/u32zYnADA4Ugf9UyEqYM9MJYIzWeRrBgMYJNOJ/cq6sfEY0/AMAAAAAAAAAAD0GaeiCnDooYfG5ZdfHs973vOSzYOrw4krf59lWXzuc5+Lz33ucxERcdxxx8WJJ54Yj3/84+MnfuIn4pGPfGSuOTZt2hT1ej1mZ2djy5YtsXnz5ti0aVNcd911cd1118X09PQuMzxwjrWsDlsecMAB8f73vz/XPAAAKalg4lRFMBFaqZrjmao1dsR+E+sLmAagN6Qanr1IAQAAAAAAAAAA6EeCiQV5znOeE3/yJ38Sb3jDG5q2Jq5Y3VS48vcrbrrpprj55pvjgx/84IN+z+6+z8r/PfLII5veb8Xq+ZoFElevzbIsKpVKfOxjH4uHPvShTX8PAEBetXrzZrY8ISogv1zBxERgGGDQJBueE220AAAAAAAAAAAAvWio0wMMkgsuuCDe+MY3Pih0uJaVtsSI2Ln+gU2Kq9ekPPD3rP5a6/s3s3rt8PBwXH755fGUpzwl1ywAAHlMO+gPhVo/Vo7hoeb/mpgKDAMMGi9SAAAAAAAAAAAABpFgYsH++I//OH73d393l8BhSrMQYZ6A44rd/b61wo55vtfK7xkaGoq//du/jdNPPz3XHAAAecwvLsbswlzTNdWyg/7QSqVSKarl5oFfjYkAu6o1Ui9SsF8BAAAAAAAAAAD6j2BiB7ztbW+Lv/zLv4yh/7+JJG+wcMXuGg/39vft6fdYPW+WZTE+Ph7/9//+3zjnnHP26GcAAEiZaaRb2Rz0h9ZLPVepJlOAQZMKbHuRAgAAAAAAAAAA0I8EEzvkta99bXzqU5+KycnJXVoQu93qUOL+++8fn/3sZ+OMM87o8FQAQD/KE34STITWSz1XqWYwgEEyv7QYO+YTDc+V5k20AAAAAAAAAAAAvUgwsYNOPfXU+PrXvx7PeMYzdjYWdmtAcfVcWZbFM57xjLjhhhviaU97WocnAwD6VZ7wk4P+0HqpZq9UMxjAIJmpa3gGAAAAAAAAAAAGk2Bihx1++OFx9dVXx9/+7d/Ghg0bui6g+MBAYqVSiYsuuiiuuuqqOPjggzs8HQDQz1Lhp/HhkaiMjBU0DQyOqUSAJk8IB2BQ5HqRQiLwDQAAAAAAAAAA0IsEE7vEeeedF3feeWecf/75US6XHxRQLDqk+MBAYkTE2WefHd/+9rfj/PPP74rQJADQ31LBxGplnT0JtEGq2avWmN357wgAgy5Pi2wq8A0AAAAAAAAAANCLBBO7yH777RcXXXTRzoDi/vvvH1mW7Tak2OpD+Lv73lmWxejoaLz0pS+N6667Li677DItiQBAYfIEE4HWmyxPNL2+uLwU2+cbBU0D0N1S+5Wx4ZGojGp4BgAAAAAAAAAA+s9IpwfgwQ466KC46KKL4sILL4wrr7wyLrvssvjc5z4X8/PzERE7g4OtDieubj059thj46yzzorzzjsvDjzwwJbeBwAgj1pjtun1VHgK2Dt5mr1q9R2xYbxSwDQA3W26nt6vaHgGAAAAAAAAoNsN+X9tA7AXBBO72OjoaLz4xS+OF7/4xbFjx47493//9/jMZz4T//mf/xm33nprLC0tPej35DnstjqAuGLjxo1x4oknxrOf/ew4/fTT45hjjmnJzwAAsLdSDUR5wlPAnsvTRlqr74hHVA8oYBqA7lZr2K8AAAAAAAAAAACDSTCxR6xbty5e8IIXxAte8IKIiGg0GnH99dfH9ddfH5s2bYrNmzfH5s2b45577ont27dHvV6PRqMRc3NzMTo6GhMTE1GpVGL9+vXxsIc9LB75yEfGIx/5yDjyyCPjxBNPjGOPPdYb/AGArpIKJuYJTwF7brI8EaWIePDrTH4s1RAGMChm7FcAAAAAAAAAAIABJZjYo8rlcjzpSU+KJz3pSZ0eBQCg5ZaXl2Nmrt50jYP+0B7DQ0OxoVyJrY21n8GZREMYwKBIBbXtVwAAAAAAAAAAgH411OkBAADggWbm6pFlzfraIqplB/2hXaYSz1eq0RRgUNQSQe1qZaKgSQAAAAAAAAAAAIolmAgAQNfJE3qactAf2mYy0fCVaggDGATLy8sx00g0JnqRAgAAAAAAAAAA0KcEEwEA6Dp5gomp4BSw91INX6mGMIBBsDVPw7P9CgAAAAAAAAAA0KcEEwEA6Dqp0NNwaSg2jFcKmgYGT6rhK094GKDf1RJtiRGCiQAAAAAAAAAAQP8STAQAoOvU6s0P+k+WJ2KoVCpoGhg8U4kgjWAiQL7Pwqly8wZaAAAAAAAAAACAXiWYCABA10kd9K9WHPKHdko1fDUWF6KxMF/QNADdKbVfGSqVNDwDAAAAAAAAAAB9SzARAICukw4mNg9NAfsmzzNWazRvNgXod6n9ysbyRAwN+U9vAAAAAAAAAABAf3I6CgCArjMtmAgdlSuYmHhOAfpdcr9Stl8BAAAAAAAAAAD6l2AiAABdZybRxFYtTxQ0CQymPM+YYCIw6FL7lamK/QoAAAAAAAAAANC/BBMBAOgqWZYlA08aE6G9xkdGozI61nRNqikMoN/ZrwAAAAAAAAAAAINMMBEAgK6yY2EuFpaXmq5x0B/aL/Wc1RqCicBgSwW0J8v2KwAAAAAAAAAAQP8a6fQAAACwWqp9KCKi6qA/tN1UeV3cs3V6zeu1+myB0wB0lyzLkgHtqcpEQdMAAAAAAAAAwL4ZKnV6AgB6kcZEAAC6Sp5g4pTGRGi7aiJQk+dZBehXswvzsbCk4RkAAAAAAAAAABhcgokAAHSVPC1sk2UNRNBuqUBNqikMoJ/langWTAQAAAAAAAAAAPqYYCIAAF0lFXZaP16OkeHhgqaBwTVZTgQTc4SIAfpVnnC2YCIAAAAAAAAAANDPBBMBAOgqqQaiqURYCmiNqUSgZttcPRaXlgqaBqC75GlM1PAMAAAAAAAAAAD0s5FOD0Da/Px8fPe7340tW7bEvffeG/fdd180Go2Ym5uLubm5WOqBw8B/8Ad/0OkRAIAekTror30IilGtpAM1M43Z2H/dhgKmAeguqdbYdWPjMTbsP7sBAAAAAAAAAAD9ywmpLjM7Oxtf/vKX4wtf+EJ87Wtfi5tvvjm++93vxvLycqdH2yeCiQBAXqmD/oKJUIw8z9p0fYdgIjCQvEgBAAAAAAAAAAAYdIKJXaBWq8XHP/7x+MhHPhL/7//9v1hcXNx5LcuyDk7WGqVSqdMjAAA9ZLqROuifbnED9l2eUM1Mo3mQGKBf1VL7lbJgIgAAAAAAAAAA0N8EEzvotttui3e84x3xgQ98IOr1ekQ8OIjY66G+fghWAgDFSjYQOegPhVg3Oh6jQ8OxsLy05prU8wrQr1Kff1MaEwEAAAAAAAAAgD4nmNgB9913X/zv//2/473vfW8sLS3tEt5bK4jYiwG/Xg9VAgDFm1tciPrCfNM1eVrcgH1XKpWiWlkXP9ixdc0104KJwICq1Zs3xk5qeAYAAAAAAAAAAPqcYGLBPv7xj8e5554btVptZ9jwgQG+XgwhAgC0Qq3R/JB/hGAiFGmyPNE0mFhrCCYCgykVzNbwDAAAAAAAAAAA9LuhTg8wKLIsi1e/+tXxohe9KKanpyPLsiiVSjtDiVmW7fwCABhUtRzta9WyBiIoylQiCJznmQXoN/OLizG7MNd0TerzEwAAAAAAAAAAoNdpTCzA/Px8nHnmmfFP//RPOwOJKwQRAQB+LE/IyUF/KE6qoVQwERhEMxqeAQAAAAAAAAAABBPbLcuyeMlLXhKf+MQnIiJ2aUgEAGBXqZBTeWQ0yqNjBU0DJIOJOcI5AP1mOk/Ds2AiAAAAAAAAAADQ5wQT2+yNb3xjfOITn2hZIHF12yIAQL9JHfR3yB+KVa1MNL0+U5+N5SyLIf+eAgyQWiNHMLHc/PMTAAAAAAAAALqJ0z8A7A3BxDb63Oc+F29729v2OpTYLISocREA6EczifY1h/yhWNVy8zDwUrYc2+fqsdGzCQyQVMPz2PBIVDQ8AwAAAAAAAAAAfU4wsU0ajUb82q/92s6/35Mg4epA4gN/3+joaBxwwAGx//77R6VSifHx8RgeHt73gQEAukDqoL/GRChWnmeuVt8hmAgMlDz7lWYvmwIAAAAAAAAAAOgHgoltcskll8Ttt98epVIpdyjxgc2K69ati2c+85lx0kknxYknnhhHH310POIRj2jbzAAAnSaYCN0lzzM3XZ+NR04VMAxAl6ilGp4rwtoAAAAAAAAAAED/E0xsg4WFhbjoootyvx3/gYHEU089NX791389nvvc58b4+Hjb5gQA6DbTDcFE6CaT45Xky1ZqiecWoN8kX6RQtl8BAAAAAAAAAAD6n2BiG3ziE5+I733ve7naEleHEp/ylKfE29/+9jjxxBOLGBMAoKssLS/Htka96RoH/aFYQ0NDMTleadoOlgroAPQbDc8AAAAAAAAAAAARQ50eoB9dccUVyTWlUmlncLFUKsXb3va2uOaaa4QSAYCBNdOYjeavdIiYqkwUMgvwY6mATa2+dmgRoB+lg4n2KwAAAAAAAAAAQP/TmNhi8/Pz8S//8i87mxB3Z3VL4sjISHzoQx+KX/iFXyhqRACArlRrpFvXJjUQQeGqlXUR0z9Y83qeZxegXywvL8fMnIZnAAAAAAAAAAAAjYkt9vWvfz3q9fsPqGXZ2p0/K02Jf/3Xfy2UCAAQ6fahCAf9oROq5ebNX3meXYB+sXWu3vS/90RETHmRAgAAAAAAAAAAMAAEE1vsi1/8YtPrpVJpZyjxhS98YZx33nkFTQYA0N1q9dmm14eHhmLDeLmgaYAV1UTARjARGCS5XqQgmAgAAAAAAAAAAAwAwcQWu+mmm9a8ViqVdv71yMhIvP3tby9iJACAnpA66F8tT+yynwKKkSeYmGoPA+gX07kanps3zQIAAAAAAAAAAPQDwcQW27RpU9PrK22JL3rRi+Kwww4rZigAgB6QOuivfQg6I/XszS0tRn1xvqBpADqr1mi+XxkqlWKDYCIAAAAAAAAAADAABBNb7K677srV5PPLv/zLBUwDANA7Ugf9BROhM6rl9LM3U58tYBKAzqslPu8myxMxpOEZAAAAAAAAAAAYAIKJLbZt27bd/vrqsOLIyEj8zM/8TFEjAQD0hFSwqap9CDpiKkcouJZoPAXoF6nPOy9SAAAAAAAAAAAABoVgYovt2LH2AbUsyyIi4oQTTohyuVzUSAAAPcFBf+hOk5V0KHhaMBEYEMmG5xwtswAAAAAAAAAAAP1AMLHF5ufnm14vlUrxEz/xEwVNAwDQG7Isi1oj0ZgomAgdMTY8EhOj403XpII6AP2ilmp4zhHmBgAAAAAAAAAA6AeCiS22fv365JqHPvShBUwCANA7ts83YnF5qekaDUTQOVOJYHAqqAPQLzQ8AwAAAAAAAAAA3E8wscU2btyYXLNunUNqAACrpQ75R6SDUUD7pBrA8jzDAL0uyzLBRAAAAAAAAAAAgP+fYGKL5QkmLi01bwMCABg0eUJNDvpD56Sev2nBRGAAzC7Mx4KGZwAAAAAAAAAAgIgQTGy5ww8/PLIsa7pmdna2oGkAAHpDrdF8f1SKiI3lSjHDAA+SCibOJJ5hgH6g4RkAAAAAAAAAAODHBBNb7NGPfnRyzQ9/+MMCJgEA6B2pg/4bxisxMjRc0DTAA6UawPKEdQB6XZ7PusnKRAGTAAAAAAAAAAAAdJ5gYoulgolZlsWdd95Z0DQAAL0hddA/1dYGtFc1EbTZPt+IhaXFgqYB6IzpHMHEalkwEQAAAAAAAAAAGAwjnR6g35x88slrXiuVSpFlWdx2220FTgQA0P2m67NNrwsmQmfleQZrjdl4yLqNBUwD0Bm1RvNg4vqxcowO+09tAAAAAAAAAPSeoVKnJwCgF2lMbLHDDjssTjjhhMiyLEqlH/+vc5ZlO/9669at8d///d+dGA8AoCulDvqn2tqA9qqWcwQTczSJAfSyGS9SAAAAAAAAAAAA2EkwsQ1e+MIXJtdcffXVBUwCANAbUoGmPKEooH2m8jQmCiYCfW46tV/xIgUAAAAAAAAAAGCACCa2wVlnnbWzLXF1a+KKLMviiiuuKHosAICupYEIultldCzGhkearqk1mj/HAL0u2fDsRQoAAAAAAAAAAMAAEUxsg2OPPTae//znR5Zlu/x6lmU7g4pf/epX45vf/GYHpgMA6C6NxYWoL843XSOYCJ1VKpWSz6HGRKDfJRue7VcAAAAAAAAAAIABIpjYJr/3e7+XXPOnf/qnBUwCANDd8oSZquWJAiYBmkk9h4KJQL9LBxPtVwAAAAAAAAAAgMEhmNgmP/3TPx2nn376Li2JET9uTcyyLD760Y/Gf/7nf3ZwSgCAzssTZprSQAQdpzERGGTzi4sxu5BoeC7brwAAAAAAAAAAAINDMLGN3v3ud8fGjRsjInYJJ67Isix+7dd+LWZnZ4seDQCga+RqTBRMhI5LPYfTdf9eA/SvWsOLFAAAAAAAAAAAAFYTTGyjgw8+OC666KLIsmyXX1/donjrrbfGy1/+8g5MBwDQHaYTwcTK6FiMj4wWNA2wlmploun1PKEdgF6V50UKk4KJAAAAAAAAAADAABFMbLNzzz03zj333F3CiBE/DidmWRYf+9jH4jd/8zc7OCUAQOfMNJq3rFXLzcNQQDGq5eaBm62N2VheXi5oGoBi5Wt4tmcBAAAAAAAAAAAGh2BiAd7znvfEz/zMzzQNJ/7N3/xNvPKVr4yFhYUOTgoAULzUQf+q9iHoClOJZ3E5y2LbXL2gaQCKVUu8SGF8eCQqI2MFTQMAAAAAAAAAANB5gokFGB4ejiuvvDJOPvnkpuHE97///fH0pz89Nm3a1MFpAQCKNS2YCD0hz7M4nQjuAPSqPC9SWP3fewAAAAAAAAAAAPqdYGJBNm7cGFdddVU85znP2RlGXDmwtjqc+JWvfCVOOOGEeNvb3haNRqPDUwMAtF+tkTjoXxZMhG5QLU8k16SCOwC9SsMzAAAAAAAAAADArgQTC1SpVOKTn/xkvOIVr4gsy3a5trpJcXZ2Nt74xjfG4YcfHm9729tiy5YtnRgXAKAQtXrzhjUH/aE7bChPxFCiDUwwEehXqYbnyRzhbQAAAAAAAAAAgH4imFiw0dHR+Pu///v44Ac/GOvWrdttc+JKe+KWLVvijW98YzziEY+IU089Nf7P//k/8c1vfjMWFxc7/FMAALTG4tJSbJurN10zJZgIXWGoVEoGbwQTgX5VazR/kYL9CgAAAAAAAAC9bKjkq8gvgH4x0ukB+tVb3vKW5JrnP//58eEPf3hnMDFi13Diyt8vLi7G1VdfHVdffXVE3B9uPProo+ORj3xkHHLIIbFx48aoVCoxOjranh+mBf7gD/6g0yMAAF1oZq75If+IiMmKBiLoFtXKuqatYalGMYBeNZP4fNPwDAAAAAAAAAAADBrBxDZ585vfvEvgsJksy3b79w8MKK6Yn5+Pb33rW3HjjTe2aNr2E0wEAHYnT7vaVNlBf+gW1cTzOJNoFAPoRcvLyzGTaHgWTAQAAAAAAAAAAAaNYGKbPTB0uDe/d3VAcfW1ffneRcob0AQABk+tng4xOegP3SP1POYJGwP0mpm5evK/waSC2wAAAAAAAAAAAP1GMLHNUqG8POHCB67ZXVCxW/VKeBIA6IxUiGl0aDjWjY0XNA2QUq1MNL0+LZgI9KE8oevU5yMAAAAAAAAAAEC/EUxss3YE83ol7Ncr4UkAoHNSIabJyoQ9BXSRZGNiY0dkWea5BfpKvmCixkQAAAAAAAAAAGCwDHV6AAAABlet0fygf7XskD90k9QzubC0FLML8wVNA1CM1H5luDQUG8YrBU0DAAAAAAAAAADQHQQTAQDomJn6bNPr2oegu0zleCbzNIsB9JJaYr8yWZ6IIU2xAAAAAAAAAADAgBFMBACgY6YTAaZqZaKgSYA88jyTqWYxgF6TClzbrwAAAAAAAAAAAINIMBEAgI5JBZiqZY2J0E0myzmCiRoTgT6T+lybtF8BAAAAAAAAAAAG0EinB+h3pVKp0yMAAHSl5SyLmfps0zVTFQf9oZuMDo/E+rFybJ9vrLmmlniuAXpNuuHZfgUAAAAAAAAAABg8goltlmVZp0cAAOhK2+fqsZQtN13joD90n2plXSKYqDER6C8zjdSLFNJtsgAAAAAAAAAAAP1GMLFNnva0p2lLBABoIk94STARuk+1MhGbZ+5b83qqWQygl2RZltyz2K8AAAAAAAAAAACDSDCxTT7/+c93egQAgK5WS7QPRTjoD92oWm7+XNYagolA/9ixMBcLy0tN19ivAAAAAAAAAAAAg2io0wMAADCYUu1DpYjYOF4pZhggt6lEAGemng4dA/SKXA3PicA2AAAAAAAAAABAP9KYCABAR6QO+m8sT8TwkPdoQLdJNYNN5wjxAPSKXMHEykQBkwAAAAAAAABA+wyVOj0BAL3ISW8AADpiOtGqlgo/AZ2RejZnF+ZifnGxoGkA2quWowVWYyIAAAAAAAAAADCIBBMBAOiIWqN5A1G1rH0IulGeZzP1fAP0itTn2frxcowMDxc0DQAAAAAAAAAAQPcQTAQAoCNq9eYH/ac0JkJXytNmmnq+AXpFcr+iLREAAAAAAAAAABhQgokAAHRE6qB/nvATUDzBRGCQpD7PJisangEAAAAAAAAAgMEkmAgAQEfUGrNNr09qIIKuVBkdi/GR0aZrpuvNn2+AXlFLfJ5V7VcAAAAAAAAAAIABJZgIAEDh6gvzMbe40HTNlAYi6FrVcvPnc6ahMRHoD7XE59mUhmcAAAAAAAAAAGBACSYCAFC4Wj0dWqo66A9dKxXEyfOMA/SC1OeZ/QoAAAAAAAAAADCoBBMBACicYCL0tsnE8zktmAj0gfnFxZhdmG+6xn4FAAAAAAAAAAAYVIKJAAAULk9oyUF/6F7VcqIxsTFb0CQA7TPdyLFfKU8UMAkAAAAAAAAAAED3EUwEAKBwM4nQ0sToeIwNjxQ0DbCnpirNgzh5WlEBup2GZwAAAAAAAAAAgLUJJgIAULjUQf9qIvQEdFYqiLO1MRtLy8sFTQPQHjOCiQAAAAAAAAAAAGsSTAQAoHDTyWCiQ/7QzVLPaBYRW+fqxQwD0CbT9eYNz+Mjo1EZHStoGgAAAAAAAAAAgO4imAgAQOFqjUQwsSyYCN0sT3g41YwK0O3S+xUNzwAAAAAAAAAAwOAa6fQAAAAMnlqigWhKYyJ0tTzhYcFEoNelPsc0PAMAAAAAAADQL0qlTk8AQC/SmAgAQOEc9Ifetn68HMOl5v86KZgI9Dr7FQAAAAAAAAAAgLUJJgIAUKiFpcXYPt9ouqZamShoGmBvDJVKMZl4TqcFE4EeV2s0b3jO0x4LAAAAAAAAAADQr0Y6PQC9bb/99kuuKZVKcd999xUwDQDQC2YSh/wjHPSHXlAtr4sfzW5f83qtIZgI9LZUY+KUFykAAAAAAAAAAAADbKCDiUcccURyTalUijvuuKOAaXpTrVaLUqkUWZatuaZUKhU4EQDQ7Wr1HMHEimAidLupxHM6k+NZB+hWS8vLsTXVmGi/AgAAAAAAAAAADLCBDiZ+5zvfEaprkbX+nJr92QIAg2k60T4U4aA/9IJqoiksz7MO0K22NmYj9V80JjU8AwAAAAAAAAAAA2ygg4kruilUNzw8nFxTKpVicXGxgGkAAFqv1mgeVhodHo6J0bGCpgH2VipAnHrWAbrZdI7PsKlEQBsAAAAAAAAAAKCfCSZ2mV5tGNzd3NomAYDdqSVa1KrldfYR0AOqiaawWn02sizzPAM9aaY+m1yj4RkAAAAAAAAAABhkQ50eoBtkWfagr04qlUprfgEA9Lpa4qD/lEP+0BNSgZzF5aXYMT9X0DQArZV6kcJwaSjWj1cKmgYAAAAAAAAAAKD7CCZ2qW4LSwIAtErqoP9kZaKgSYB9Uc3xrKaed4BuNZ1jvzLkBVIAAAAAAAAAAMAAE0wEAKBQtUbzg/7VssZE6AWpxsSIiOnE8w7QrdL7FS9SAAAAAAAAAAAABptgIgAAhUo1qE3lCDsBnTdZnohUV9hMfbaQWQBarZb4/MoTzgYAAAAAAAAAAOhngokAABRmeXk5ZhoO+kM/GBkajg3jlaZrphNBZIBulXqRgv0KAAAAAAAAAAAw6AQTAQAozLa5eixnWdM1DvpD75isTDS9ngr2AHSrWiMRTCzbrwAAAAAAAAAAAINNMBEAgMLUEm2JEYKJ0EtSwZxUsAegG2VZFrV68z3LlP0KAAAAAAAAAAAw4AQTAQAoTJ72tGq5eQMb0D1SwRyNiUAv2jE/F4vLS03XpBpjAQAAAAAAAAAA+p1gIgAAhZlOhJRKpVJsHK8UNA2wr1INp4KJQC/K9yIFjYkAAAAAAAAAAMBgE0wEAKAwtUbzg/6T5YkYGrJFhV6RDCY2ZguaBKB1UvuViHRjLAAAAAAAAAAAQL9z6hsAgMLU6s1DStqHoLekgon1hfmYW1woaBqA1kjtVyLuf5kCAAAAAAAAAADAIBNMBACgMLV68waiqYpD/tBLqjmCOannHqDbTCc+tzaMV2JkeLigaQAAAAAAAAAAALqTYCIAAIWpNZof9E+1rwHdJc8zmwr4AHSbVKA6TygbAAAAAAAAAACg3wkmAgBQmFp9tun1ybJgIvSSPMHEWqP5cw/QbbxIAQAAAAAAAAAAIG2k0wMAADAYsixLNhBNVTQQQS8pj4xGZWQs6ovza65JPfcA3WYm8SIFwUQAAAAAAAAA+o3GKwD2hv/9AACgEPWF+ZhfWmy6xkF/6D3VRKBYMBHoNdPJxkQvUgAAAAAAAAAAABBMBACgENM5wkmCidB7Us9tLRHwAeg2qUB1tWy/AgAAAAAAAAAAIJgIAEAh8oSTBBOh9ySDifXZgiYB2HdziwtRX5hvusZ+BQAAAAAAAAAAQDARAICCzOQIJ1XLEwVMArRS6rlNNY8BdJM8n1mCiQAAAAAAAAAAAIKJAAAUZDpx0H/d2HiMDo8UNA3QKunGRMFEoHfUGl6kAAAAAAAAAAAAkIdgIgAAhag1moeTtA9Bb0o9u1vn6rG4vFTQNAD7Jk+YesqeBQAAAAAAAAAAQDARAIBipA76V8sO+UMvyhMqnsnRQAbQDVL7lfLIaJRHxwqaBgAAAAAAAAAAoHsJJgIAUIjUQX/tQ9CbpnKEimfqgolAb5hO7FcmyxMFTQIAAAAAAAAAANDdBBMBAChELRFMytO6BnSfPM9uKugD0C1qDS9SAAAAAAAAAAAAyEMwEQCAQqSCSdWKBiLoRevGxmNkaLjpmlTQB6BbpBpevUgBAAAAAAAAAADgfoKJAAC03fzSYswuzDVdUy076A+9qFQqRbXcPFhc05gI9IjU55VgIgAAAAAAAAAAwP0EEwEAaLtU+1CEg/7Qy1LPr2Ai0CumEw2v9isAAAAAAAAAAAD3E0wEAKDtpnOEkhz0h96VDiamw8kAnba0vBzbGvWma1INsQAAAAAAAAAAAINipNMDAADQ/2qJ9qGIiGrFQX/oVannN89nAECnzTRmI0us8SIFAAAAAAAAAPrRUKnTEwDQizQmAgDQdrVEY+L48EhURsYKmgZotWo51ZgomAh0v3wvUhBMBAAAAAAAAAAAiBBMBACgAKlQUrWyLkolr1yCXjWVCOrUGrORZakeMoDOyhOiTgWxAQAAAAAAAAAABoVgIgAAbVdrzDa9PlmZKGgSoB1Sz/DS8nJsm2sUNA3A3qnVm+9XhktDsX68XNA0AAAAAAAAAAAA3U0wEQCAtks2Jmofgp5WTTQmRkTUGukmMoBOSu1XJisTMaThGQAAAAAAAAAAICIEEwEAKEDqoP9UjlAT0L2mcoSLU58DAJ027UUKAAAAAAAAAAAAuQkmAgDQdsnGRMFE6GkbyxOR6hATTAS63Uxjtul1L1IAAAAAAAAAAAD4McFEAADaanl5OWbm6k3XCCZCbxseGoqN5Ymma2qJwA9Ap6VfpND8cw4AAAAAAAAAAGCQCCYCANBWM3P1yLKs6ZpqWTARel0qYKwxEeh2qc+pSfsVAAAAAAAAAACAnQQTAQBoq5kcYSQNRND7qqnGRMFEoItlWZZsdp3S8AwAAAAAAAAAALCTYCIAAG01nSuY6KA/9DqNiUAv2z7fiMXlpaZr7FcAAAAAAAAAAAB+TDARAIC2qjWah5GGS0OxYbxS0DRAu6QCO3lCygCdMlNv3pYYoeEZAAAAAAAAAABgNcFEAADaqpY46D9ZnoihUqmgaYB2qZYTjYmNdOgHoFOmEy9SiNCYCAAAAAAAAAAAsNpIpwfoBa985Ss7PcKDdONMAAC7U0u0pGkfgv4wlXiW5xYXorEwH+XRsYImAsgvtV+JiJgct2cBAAAAAAAAAABYIZi4hizLdv7f97///R2591q/3omZmllrXgCAiDzBRO1D0A/yPMvT9R1xsGAi0IVS+5UN45UYGR4uaBoAAAAAAAAAAIDuJ5iYQzcG77pxJgCA3ak1ZptenywLJkI/mMwRTKw1ZuPgjVMFTAOwZzQ8AwAAAAAAADDIhkqdngCAXiSYmEOpVNz/yuYNHBY5UzMCkgBASuqg/5SD/tAXpnKEjFOfBwCdknqRQtWLFAAAAAAAAAAAAHYhmJhDN4bvunEmAIAHyrIsRwORg/7QD8ZGRmJidCxmF+bXXCOYCHSr9IsU7FcAAAAAAAAAAABWG+r0AAAA9K8dC3OxsLzUdI1gIvSP1PMsmAh0q9Tn06SGZwAAAAAAAAAAgF0IJgIA0DZ5QkjVsmAi9ItkMLExW9AkAHumVm/++WS/AgAAAAAAAAAAsCvBRAAA2iZPMHFKYyL0jVRwR2Mi0I0aiwtRX5xvusZ+BQAAAAAAAAAAYFeCiQAAtE2qfSgiYrI8UcAkQBFSwR3BRKAbzeRpeBZMBAAAAAAAAAAA2IVgIgAAbVNrND/ov368HCPDwwVNA7TbZKV50Hg68ZkA0AnTgokAAAAAAAAAAAB7bKTTA3SDUqnU6REAAPpSqh1tquyQP/STauKZ3j7XiMWlJYFkoKvUGumG56qGZwAAAAAAAAAAgF0IJkZElmWdHgEAoC+lgonah6C/TOV4pmuNHXHAuo0FTAOQT2q/Uh4ZjfLoWEHTAAAAAAAAAAAA9IaBDiY+7WlP05YIANBGtXrzBiLBROgveZ7pWn1WMBHoKl6kAAAAAAAAAAAAsOcGOpj4+c9/vtMjAAD0telG6qD/REGTAEXIFUxMfC4AFC31uSSYCAAAAAAAAAAA8GBDnR4AAID+NZNqICo76A/9ZGJ0LEaHh5uuSTWTARQt2fBsvwIAAAAAAAAAAPAggokAALTF/OJizC7MN12jgQj6S6lUSgZ4BBOBbpP6XNLwDAAAAAAAAAAA8GAjnR4AAID+NN1Ih48EE6H/VCvr4gc7tq55fTrRTAZQtHQw0X4FAAAAAAAAgP6m8QqAveF/PwAAaIs8rWjVsgYi6DepZjGNiUA3WVxeiq1z9aZrUk2wAAAAAAAAAAAAg0gwEQCAtsgTPprSQAR9JxXgqeVoUwUoytZG81BiRMRUInANAAAAAAAAAAAwiAQTAQBoi1QwsTwyGuXRsYKmAYqSChzP1GcLmgQgLVfDsxcpAAAAAAAAAAAAPIhgIgAAbVFrNA8fTZa1D0E/SgV4ZhqzsZxlBU0D0Nx0jmDiZKIJFgAAAAAAAAAAYBAJJgIA0BapBqJUqxrQm1LBxKVsObbN1QuaBqC5WqP5fmV4aCg2jJcLmgYAAAAAAAAAAKB3CCYCANAWqWBiKrwE9KZqjjbU1OcDQFGS+5XyRJRKpYKmAQAAAAAAAAAA6B2CiQAAtIVgIgymPM+2YCLQLWr12abX7VcAAAAAAAAAAAB2TzARAIC2mG4IJsIg2jheSbaLTQsmAl2iZr8CAAAAAAAAAACwVwQTAQBouaXl5djWqDddUy076A/9aGhoKCbLE03XzDSaN5QBFCXZ8Jz4PAMAAAAAAAAAABhUgokAALTc1sZsZIk11YqD/tCvUsHjVBAIoCjJYKLGRAAAAAAAAAAAgN0STAQAoOWmG+nQkYP+0L+mEsHjacFEoAtkWRa1RIOr/QoAAAAAAAAAAMDuCSYCANByedrQUo1qQO+aTAR5ajnCywDttn2+EUvLy03X2K8AAAAAAAAAAADsnmAiAAAtV6s3bx8aHhqKDePlgqYBipYK8qQ+IwCKkOdFClMaEwEAAAAAAAAAAHZLMBEAgJZLHfSvlieiVCoVNA1QtKnKRNPrtfqOyLKsoGkAdi9PMHEy8XkGAAAAAAAAAAAwqAQTAQBouelUMFH7EPS11DM+v7QY9YX5gqYB2L3pRHtrKSImy4KJAAAAAAAAAAAAuyOYCABAy800mh/0r5YFE6Gf5Qkf1xKfEwDtVms0f5HChvFKjAwNFzQNAAAAAAAAAABAbxFMBACg5WrJxkTtQ9DPcgUTE58TAO02o+EZAAAAAAAAAABgrwkmAgDQculgooP+0M8my+nwsWAi0GnT9UTDs/0KAAAAAAAAAADAmgQTAQBoqSzLotZw0B8G2djwSKwbG2+6ZlowEeiwWiPxIoUcIWsAAAAAAAAAAIBBJZgIAEBLbZ9vxOLyUtM11bJgIvS7VAA5FQgCaDcNzwAAAAAAAAAAAHtPMBEAgJZKHfKPiJhy0B/6XiqAnOezAqCdBBMBAAAAAAAAAAD23kinBwAAoL/UGrPJNZOViQImATopFUCu1dOfFQDt0liYj8biQtM1gokAAAAAAAAADIqhUqnTIwDQgzQmAgDQUqn2oVJETJYFE6HfpQI9tYbGRKBz8rxIoWq/AgAAAAAAAAAAsCbBRAAAWioVTNwwXomRoeGCpgE6pZpoRk19VgC0U57PII2JAAAAAAAAAAAAaxNMBACgpVIH/R3yh8FQLTd/1nfMz8X80mJB0wDsSjARAAAAAAAAAABg3wgmAgDQUtP12abXHfKHwZDnWZ9JfF4AtMt0IphYGRmL8shoQdMAAAAAAAAAAAD0HsFEAABaqtZINSZOFDQJ0El5gompYBBAu8w0Ui9SsF8BAAAAAAAAAABoRjARAICWmkkEjapljYkwCPKEelJBZoB2qaX2KxqeAQAAAAAAAAAAmhJMBACgpWr1VAORg/4wCCojYzE+PNJ0TSrIDNAuqcbWSS9SAAAAAAAAAAAAaEowEQCAlmksLkR9cb7pGsFEGAylUin5vE8ngswA7ZJqbJ3K0foKAAAAAAAAAAAwyAQTAQBomVqO9rNq2UF/GBSTiWBPKhgE0C4angEAAAAAAAAAAPaNYCIAAC2TJ5g45aA/DIxqufnznuczA6DVFpeXYttcvekawUQAAAAAAAAAAIDmBBMBAGiZPCGjSQf9YWCkgsiCiUAnzDSatyVGCCYCAAAAAAAAAACkCCYCANAytcRB/8rIWJRHRguaBui0VLBHMBHohDyfPdXyRAGTAAAAAAAAAAAA9C7BRAAAWiZ10L9accgfBkkqmDgzV4/l5eWCpgG4X62uMREAAAAAAAAAAGBfjXR6AAAA+kc6mOiQPwySarn5M59lWWydq/tsAAqV2q+MDA3H+rFyQdMAAAAAAAAAQOcNlTo9AQC9SGMiAAAtMy2Y+P+xd+/Rsp51fcB/M3v23jP75JyZSUJOoJgQSEKMXJQgSZAQWogWTMSqIFJaCRAodpVl2whtYdVa0YUFW9RlKwTEAgoUFywgGrBBCoVFQgNIGi6BRCLhcgI5mZlz2TP7MjP9g3JJyHmfd+89887t81nrrKXMc877O+g8eXLO832/wPfJ05KaCggBjFq7lzivVNeiVPI3LgAAAAAAAAAAAFkEEwEAGJn0RX/BRFgkecLIqUAzwKhpeAYAAAAAAAAAANg7wUQAAEam3V3P/NxFf1gs+1drsVTK/tfOVKAZYNRS55V6jrZXAAAAAAAAAACARSeYCADASGwP+nF0o5u5puGiPyyUcqkU9Wr29z4VEAIYtVRTq4ZnAAAAAAAAAACANMFEAABGotNLh4s0JsLiSQWS24mAEMCopZpam84rAAAAAAAAAAAASYKJAACMRJ5wUVMDESycVCA5FRACGKXBcJh8mYIXKQAAAAAAAAAAAKQJJgIAMBLtrsZE4Aclg4k59g6AUTm20Yv+YJC5JtX0CgAAAAAAAAAAgGAiAAAjkmpMXC4vxb6V1YKmAaZFo5od8MnTtgowKnlaWhsangEAAAAAAAAAAJIEEwEAGIlWIlxUr61FqVQqaBpgWqQbE4/HcDgsaBpg0eUJQ2t4BgAAAAAAAAAASBNMBABgJDqJBiLtQ7CYUgGfrUE/jm9tFDQNsOhSwcRSRNQTTa8AAAAAAAAAAAAIJgIAMCLt7nrm59qHYDHlCSXnaTADGIV2L/u8sr9ai6WyPy4DAAAAAAAAAABIcdMKAICRaCWCRY2a9iFYRM0coeROItgMMCqpIHRTwzMAAAAAAAAAAEAugokAAIxEu5cIJrroDwupXk2HklPBZoBRSQUT6xqeAQAAAAAAAAAAchFMBABgzwbDYbLxLE9rGjB/KktLcdJqNXNNKtgMMCqpYKKGZwAAAAAAAAAAgHwqkx4AAIDZd2yjG/3hIHNNQzARFlazui+ObfRO+HkqKAQwKqmGVg3PAAAAAAAAACyiUmnSEwAwizQmAgCwZ+1edltiRERdAxEsrFQwWTARKEoncWbR8AwAAAAAAAAAAJCPYCIAAHuWJ1TU1EAECysdTEyHmwH2qre1Gb3trcw1Gp4BAAAAAAAAAADyEUwEAGDPUsHEUkQcqGpMhEXVSDSmtnsaE4Hxa+V4kULdeQUAAAAAAAAAACAXwUQAAPYsFUw8UF2LpbKjJyyqRqIxNU/rKsBetXvpdtamxkQAAAAAAAAAAIBc3A4HAGDPWt3si/4Nl/xhoaX2gPWtzdjc3i5oGmBR5QlBO7MAAAAAAAAAAADkI5gIAMCetXvZF/0b1bWCJgGmUZ6gTyuxjwDsVSqYWFteidXKckHTAAAAAAAAAAAAzDbBRAAA9qyTuOivfQgWW55wcp4mM4C9SL5IwXkFAAAAAAAAAAAgN8FEAAD2rCWYCGRo5tgDBBOBcWt31zM/1/AMAAAAAAAAAACQn2AiAAB71u6lLvoLJsIiqy6vRLWynLkmFRgC2KtUANqLFAAAAAAAAAAAAPITTAQAYE+6W5uxsb2VuaZZ00AEiy4V+Gn3NCYC45UMJnqRAgAAAAAAAAAAQG6CiQAA7Enqkn+EBiIgRzAxx14CsBfJhmfnFQAAAAAAAAAAgNwEEwEA2BPBRCCPRjW7OVUwERin7X4/jm50M9c0nVcAAAAAAAAAAAByE0wEAGBPUu1DERGNqov+sOg0JgKT1MlxXqnXsgPUAAAAAAAAAAAAfE9l0gMAADDbUmGiteWVWKk4dsKiSwUTWz3BRGB8WjnCz00vUgAAAAAAAABgQWm8AmA3/PMDAIA9SQUTU2EkYDGkmlOP9rrRHwwKmgZYNO0c4WdnFgAAAAAAAAAAgPwEEwEA2JNUA5FL/kBERLO2lvn5MCKO9NaLGQZYOJ1u9v6yXF6KfSurBU0DAAAAAAAAAAAw+wQTAQDYk1QDUaolDVgMeULKrRyNZgC7kXqRQr22FqVSqaBpAAAAAAAAAAAAZp9gIgAAe9JONBA1NSYCEVHPEVJuJ4JDALvlRQoAAAAAAAAAAACjJZgIAMCepC7612trBU0CTLP9q9VYKmf/K2gq6AywW6ngc55WVwAAAAAAAAAAAL5HMBEAgF3b7vfj2EYvc40GIiAiolQqRaOaHVTWmAiMSyr43PAiBQAAAAAAAAAAgB0RTAQAYNdSbYkREU0NRMD/l2okawkmAmOSOrN4kQIAAAAAAAAAAMDOCCYCALBrqfahiHQQCVgcqf2g00vvKQA7NRgOo5M4s3iRAgAAAAAAAAAAwM4IJgIAsGt52s0EE4HvSDWStTUmAmNwbKMb/eEgc029tlbQNAAAAAAAAAAAAPNBMBEAgF1r97JDRMtLS7G2vFLQNMC0SzWSCSYC45Bnb/EiBQAAAAAAAAAAgJ0RTAQAYNc6iYv+jeq+KJVKBU0DTLtUI1m7tx7D4bCgaYBF0e6tJ9c0E42uAAAAAAAAAAAA3JtgIgAAu9bqZl/01z4EfL9GIvizPejHsc1eQdMAiyLVmFiKiAPV7OA0AAAAAAAAAAAA9yaYCADArqUu+jcS7WjAYmnmCCun9hWAnUrtKweqa7FU9kdkAAAAAAAAAAAAO+HWFQAAu9buJYKJiXY0YLHkaVFt97KbWAF2KtnwrC0RAAAAAAAAAABgxwQTAQDYtVQDUZ52NGBx1KtrUUqs0ZgIjFryRQrOKwAAAAAAAAAAADsmmAgAwK4MBoPoJJrNXPQHvt9SuRz7q7XMNYKJwKh1EvuK8woAAAAAAAAAAMDOCSYCALArRzd7MRgOM9fUq2sFTQPMikY1OwAkmAiMWkswEQAAAAAAAAAAYOQEEwEA2JU84aGmi/7AfaQCQK1udhMrwE61Uw3PicA0AAAAAAAAAAAAP0gwEQCAXckTTNRABNxXo5bdpNruaUwERqe7tRkb21uZa1L7EgAAAAAAAAAAAD9IMBEAgF1pJYKJpVIpDqzWCpoGmBWpZrI8oWeAvLxIAQAAAAAAAAAAYDwEEwEA2JVUq1m9uhblsuMmcG/NRACo010vaBJgEbR76T1FMBEAAAAAAAAAAGDnKpMeAACA2dROhIdSrWjAYkoFgLrbm9Hb3opqZbmgiYB5lqsxsbpWwCQAAAAAAAAAML3KpdKkRwBgBqmwAQBgV1IX/Rs1l/yBH1TPEQDKEyQCyCO1n9SWV2JVEBoAAAAAAAAAAGDHBBMBANiVdi8VTNSYCPygZo69QTARGJX0ixScVwAAAAAAAAAAAHZDMBEAgF1pd9czP29UXfQHflCeEJBgIjAqrcR+0nReAQAAAAAAAAAA2BXBRAAAdmw4HCaDQ83aWkHTALNktbIcteWVzDWpIBFAXp1e4kUKzisAAAAAAAAAAAC7IpgIAMCOdbc2Y7O/nbkmTysasJhS+0MqSASQV+pFCs4rAAAAAAAAAAAAuyOYCADAjuVpM3PRHziRZjV7f0gFiQDyavWy95N6Yj8CAAAAAAAAAADg/gkmAgCwY3nazBou+gMn0KitZX6eJ/wMkLLd78exjV7mmqYXKQAAAAAAAAAAAOyKYCIAADuWp82snggeAYsr1VDWTjScAeSRZy9JBaUBAAAAAAAAAAC4f4KJAADsWKrNbN/KaqwsVQqaBpg1jURDWbubbmUFSMmzl6T2IwAAAAAAAAAAAO6fYCIAADuWaiByyR/I0kzsEUc3urHd7xc0DTCv8jUmOrMAAAAAAAAAAADshmAiAAA71k40JjaqLvkDJ9aorSXXdHpaE4G9SZ1XlstLsW95taBpAAAAAAAAAAAA5otgIgAAO5a66J9qQwMWW56GsjxNZwBZUueVem0tSqVSQdMAAAAAAAAAAADMF8FEAAB2rJ1oMqvnaEMDFleuYGJXYyKwN63EPqLhGQAAAAAAAAAAYPcqkx4AAIDZk2ogctEfyLJveTWWy0uxNeifcE1qnwFI6SSaVzU8AwAAAAAAAMC3abwCYDf88wMAgB3Z7G/H8c2NzDUu+gNZSqVSslm1JZgI7FHyRQrOKwAAAAAAAAAAALsmmAgAwI50uuvJNS76AympZtV2oukMIKWdOLPUq9kBaQAAAAAAAAAAAE5MMBEAgB3J02ImmAikpJpVU01nAFkGw2F0etnBRA3PAAAAAAAAAAAAuyeYCADAjuRpMWvUNBAB2VIB5lTTGUCWoxvd6A8HmWu8SAEAAAAAAAAAAGD3BBMBANiRTqLFbGWpErXKSkHTALMqGUzMEYIGOJHUeSVCMBEAAAAAAAAAAGAvBBMBANiRVqLFrFHbF6VSqaBpgFnVqGY3q3a66zEYDguaBpg3qfNKhGAiAAAAAAAAAADAXggmAgCwI6kWs0YtO2wEEJEOBPWHgzi20S1oGmDepM4rpYg4sForZhgAAAAAAAAAAIA5JJgIAMCOtLuJYGJV+xCQlqepLLXfAJxIav84UF2LpbI/FgMAAAAAAAAAANgtN7AAANiR1EX/Zo6wEUCeYGKru17AJMA8Sr5IwXkFAAAAAAAAAABgTwQTAQDYERf9gVGor9aiVCplrun0NCYCu9PuZQebG9W1giYBAAAAAAAAAACYT4KJAADkNhgMorPRzVxTd9EfyKFcLkd9tZa5JhWEBjgRDc8AAAAAAAAAAADjJZgIAEBuRza6MRwOM9e46A/klWpYbXWzG88ATiQVTKw7rwAAAAAAAAAAAOyJYCIAALnlaS9LBY0AviPVsNruaUwEdm44HCbPLI2q8woAAAAAAAAAAMBeCCYCAJBbSzARGKFUw2qeMDTAfXW3N2Ojv525plnLDkYDAAAAAAAAAACQrTLpAQAAmB2p9rKlUjn2r9YKmgaYdakgs2AisBud7npyjRcpAAAAAAAAAMD3lEulSY8AwAzSmAgAQG7txEX/enXNH1AAueUJJg6Hw4KmAeZFnlCzYCIAAAAAAAAAAMDeCCYCAJBb6qJ/vbZW0CTAPEgFgzb629Hb3ipoGmBetPIEE6uCiQAAAAAAAAAAAHshmAgAQG7tXvZFf5f8gZ3Is2fkaT4D+H6p88ra8kqsVCoFTQMAAAAAAAAAADCfBBMBAMit3V3P/DzVfgbw/Ro5WlYFE4Gdcl4BAAAAAAAAAAAYP8FEAABySwWEmjlCRgDfkScc1BJMBHYodV4RTAQAAAAAAAAAANg7wUQAAHIZDocu+gMjtbJUibXl1cw17Z5gIrAzqX2jUXVeAQAAAAAAAAAA2CvBRAAAcjm+tRFbg37mGsFEYKeaiX2j3V0vaBJgXqT2jYaGZwAAAAAAAAAAgD0TTAQAIJdOjnCQBiJgp1IBoVRTK8B9aXgGAAAAAAAAAAAYP8FEAAByyRMO0kAE7FQqINTuCSYC+W31t+PYZi9zjRcpAAAAAAAAAAAA7J1gIgAAubTyBBNd9Ad2KLVvtHO0tQJ8R6eX3jOaGhMBAAAAAAAAAAD2TDARAIBcUq1lJ61Wo7K0VNA0wLxINibmCEUDfEeeMHNq3wEAAAAAAAAAACBNMBEAgFxS4aCmtkRgFxq1tczPj232Yqu/XdA0wKzL0/BcT+w7AAAAAAAAAAAApAkmAgCQSyqYqH0I2I08e0e7l25AA4hINzwvl5di3/JqQdMAAAAAAAAAAADMr8qkBwAAYDakgkH1qvYhYOcaOdpWO931eMC+AwVMA8y6PC9SKJVKBU0DAAAAAAAAALOh7K/SAdgFjYkAAOSSuujf1JgI7EKevaOV2H8AvqPdzX6RgoZnAAAAAAAAAACA0RBMBAAglzwNRAA7VVteiZWlSuaadk8wEcgnfV7R8AwAAAAAAAAAADAKgokAACRtbm/H+tZm5hrBRGA3SqVS1KvZQaFU0AjgO1JB5kbVeQUAAAAAAAAAAGAUBBMBAEhq5WgrE0wEdquZ2D8EE4G8NDwDAAAAAAAAAAAUQzARAICkPKGgRqLxDOBEUkEhwUQgj8FgEJ3eeuaaRs15BQAAAAAAAAAAYBQEEwEASOrkCSZqIAJ2KbV/tLrZQSOAiIijm70YDIeZaxpV5xUAAAAAAAAAAIBREEwEACApFQparSxHbXmloGmAeZNqMOv0NCYCaXnaVZtepAAAAAAAAAAAADASgokAACS1E6GgRjU7VASQJdVg1umtx2AwKGgaYFblCSbWBRMBAAAAAAAAAABGQjARAICk1EV/7UPAXjQSe8hgOIyjG92CpgFmVStxXimVSlFfrRU0DQAAAAAAAAAAwHwTTAQAICkVTEyFigCy5NlDWr31AiYBZlmq4bm+Woty2R+FAQAAAAAAAAAAjILbWAAAJAkmAuPUrK4l16T2IYBONzvA7LwCAAAAAAAAAAAwOoKJAAAktRNNZY0coSKAE9lfXYtyqZS5RjARSGl5kQIAAAAAAAAAAEBhBBMBAMjUHwziSCqY6KI/sAflUinqiYBzuyeYCGRL7RNepAAAAAAAAAAAADA6gokAAGQ60luPYWKNYCKwV6l9pN3NDkgDpPYJ5xUAAAAAAAAAAIDREUwEACBTK0dLmYv+wF41qqlgosZE4MSGw2Fyn3BeAQAAAAAAAAAAGB3BRAAAMuUJA6UCRQApjdpa5ueCiUCW7vZmbPa3M9cIJgIAAAAAAAAAAIyOYCIAAJna3fXMz5fK5ThptVrQNMC8SgWGWoKJQIbUeSXCixQAAAAAAAAAAABGSTARAIBMqZayenUtyqVSQdMA8yoVTGz3jsdwOCxoGmDW5Gp4TjSzAgAAAAAAAAAAkJ9gIgAAmdq97Iv+2oeAUUjtJVv9fnS3NguaBpg1+YKJziwAAAAAAAAAAACjIpgIAECmdnc98/OmS/7ACOTZS1o5gkfAYkrtD2vLq7GyVCloGgAAAAAAAAAAgPknmAgAQKZUA1GjtlbQJMA8y7OXpBpcgcXV6XmRAgAAAAAAAAAAQJG8Kh4AgEzpYKKL/sDe1as5gokaE4ET8CIFAAAAAAAAANg9jVcA7IZ/fgAAcELD4TDaiQYiwURgFJaXKnHSSjVzTbubvR8Bi6uVCCbWq84rAAAAAAAAAAAAoySYCADACR3f3IjtQT9zTcNFf2BEUkFnjYnAibR72ftD04sUAAAAAAAAAAAARkowEQCAE8oTAmrU1gqYBFgEqf0k1YgGLK7UmUXDMwAAAAAAAAAAwGgJJgIAcEKtRPtQhIv+wOikGlg7OfYkYPFs9bfj+OZG5hovUgAAAAAAAAAAABgtwUQAAE4o1T5Uioh61UV/YDSaiaBzu7te0CTALGn30nuDFykAAAAAAAAAAACMlmAiAAAnlAom7l+tRaW8VNA0wLyrJxrNWok9CVhMqfNKRLqRFQAAAAAAAAAAgJ0RTAQA4IRSF/21DwGjlAoOrW9txOb2dkHTALMiVzDRmQUAAAAAAAAAAGCkBBMBADihdm898/N6NbvdDGAnmjmCQ+2e1kTg3lLBxOWlpVhbXiloGgAAAAAAAAAAgMUgmAgAwAmlLvrnCREB5JWn0SxPMxqwWFIvUmhU90WpVCpoGgAAAAAAAAAAgMUgmAgAwAmlAkB5QkQAeeUKJiYCSMDi8SIFAAAAAAAAAACA4gkmAgBwQu1uooHIRX9ghGrLK7FaWc5cozERuK/UvlCvrRU0CQAAAAAAAAAAwOIQTAQA4H71treiu72ZuUYwERi1RjU7QCSYCNxXK/UiharzCgAAAAAAAAAAwKgJJgIAcL/yhH9SASKAnUoFngUTgftq97L3haYXKQAAAAAAAAAAAIxcZdIDAAAwnXIFE130B0Ysta+0BBOB7zMYDOJIL9GY6LwCAAAAAAAAAJnKpdKkRwBgBmlMBADgfrUTl/wjXPQHRq9RTTQm5tibgMVxdKMbg+Ewc43zCgAAAAAAAAAAwOgJJgIAcL9SjYm1ykpUK8sFTQMsimZtLfPzjsZE4Pu08rxIoZq9rwAAAAAAAAAAALBzgokAANyvVDCxkQgPAexGqtmss9GNwWBQ0DTAtEudVyI0JgIAAAAAAAAAAIyDYCIAAPcrHUx0yR8YvdTeMhwOo7PRLWgaYNqlziulUikOrNYKmgYAAAAAAAAAAGBxVCY9AMCk3XnnnfGBD3wgbr755vjc5z4XX/7yl+Po0aNx5MiRGA6HsX///ti/f3+cccYZcf7558cjH/nIuOyyy+Kcc86Z9Ohz4dChQ/GhD30obrnllrj11lvjS1/6UrRarTh69GgcO3YsKpXKd/9v0Gw24+yzz45zzz03zj333PixH/uxOP/886NUKk36twFzqSWYCExAo5puY213j0fTHgRERLuXfV6pV9eiXPZeLgAAAAAAAAAAgFETTAQWUrvdjje84Q3xlre8JW6++ebMtYcPH47Dhw/HHXfcER/5yEe++5+fc8458exnPzte/OIXx8GDB8c98ly57bbb4o1vfGNce+21ccstt2Su3d7ejl6vF9/61rciIuKTn/zkvT4/+eST4wlPeEI88YlPjMsvvzwe/vCHj21uWDSd3nrm542qUBAwenlCz6mGNGBxtLvOKwAAAAAAAAAAAJPglfHAQjl27Fi87GUviwc/+MHxa7/2a8lQYpYvfelL8Ru/8RtxxhlnxAtf+MK4++67RzjpfPrABz4QT37yk+Pcc8+NV73qVclQYh733HNPvPe9742rr746zjvvvDj//PPjFa94Rdx6660jmBgWWyr406ilW80Aduqk1VoslbL/VVUwEfgO5xUAAAAAAAAAAIDJEEwEFsZ73/ve+OEf/uH4T//pP8Xx46O7zL65uRnXXHNNPPzhD483velNI/t158nf/M3fxGWXXRb/8B/+w/jrv/7rGA6HY3vW5z//+fit3/qt+IM/+IOxPQMWwfagH0c2uplr8rSaAexUuVSKeiJI1BJMBP6/dDDReQUAAAAAAAAAAGAcBBOBuTcYDOIVr3hF/OzP/mx89atfHdtz7rnnnnje854XL3zhC2Nzc3Nsz5kl/X4/fvM3fzN+/Md/PK6//vpJjwPsQKe3nlzjoj8wLo1q9v6SZ48CFkMqqJzaTwAAAAAAAAAAANidyqQHABinfr8fv/RLvxTvfOc7C3vmNddcE1/84hfjL//yL2NtLbvtZ54dOnQonvGMZ8RHP/rRSY8C7EKqfSgioumiPzAmzUTwOc8eBcy/4XCYDCo3Ew2sAAAAAAAAAAAA7I7GRGBuDQaDeO5zn1toKPE7PvzhD8c/+kf/KDY2Ngp/9jS47bbb4vGPf7xQIsywdldjIjA59USQKNWQBiyG7tZmbPa3M9c4rwAAAAAAAAAAAIyHxkRgbr385S+Pt771rTv6Oeecc078xE/8RDziEY+Ik08+OUqlUrRarfj85z8fH//4x+OWW27J/Wv91V/9VVx11VXx5je/eaejz7Sbb745LrvssvjmN7856VGAPWj3skM/lfJS7FtZLWgaYNE0Eo2sqT0KWAx5Qsp1Dc8AAAAAAAAAAABjIZgIzKXrrrsufud3fif3+qc//enx7/7dv4vHPe5xmetuueWWePWrXx1vfetbYzAYJH/dt7zlLXHppZfG85///NyzzLKvfOUr8dSnPnXHocRTTz01nvSkJ8Ull1wS5513Xjz0oQ+Nk08+Ofbt+/Yl4na7He12O1qtVnzhC1+Iz3zmM/GZz3wmPv3pT0e73R7D7wRoJy76N6prUSqVCpoGWDTNRMNZu7sew+HQPgQLLk9IObWfAAAAAAAAAAAAsDuCicDcOXz4cPzTf/pPYzgcJteefPLJ8Za3vCWe9rSn5fq1H/GIR8R//+//PV784hfHM5/5zLjzzjuTP+df/It/EZdeemmcffbZuZ4xq9rtdjztaU+Lr3/967l/zs/8zM/EC1/4wvipn/qpqFRO/I+kgwcPxsGDByMi4qKLLvruf769vR0f+9jH4n3ve1/8xV/8RXzhC1/Y/W8AuJdkMNElf2CMUnvM9qAfxzc34qTVakETAdModV6JiKjX1gqYBAAAAAAAAAAAYPGUJz0AwKi9/OUvj7vvvju57sEPfnB84hOfyB1K/H4XXXRR3HTTTXH++ecn13a73fiX//Jf7vgZs+b5z39+fPazn8219uKLL46bbrop3vOe98RP//RPZ4YSs1Qqlbj00kvjNa95TXz+85+Pm266KZ73vOfF2prLx7BX7e565ueCicA4NXIEifI0pQHzLXVe2beyGitL3skFAAAAAAAAACnlKPlR4A+AeSGYCMyVT3/603HNNdck19Xr9bj++uvjYQ972K6fddppp8UHP/jBePCDH5xce+2118Zf/uVf7vpZ0+4Nb3hDvOtd70quK5fL8cpXvjL+9//+33HBBReMfI4LLrgg3vjGN8bXvva1eO5znzvyXx8WSSvZmCgADIxPnvBznqY0YL6lAspepAAAAAAAAAAAADA+gonAXPmN3/iNGAwGyXXXXHNNPPzhD9/z804//fT4sz/7s1haWkqu/fVf//U9P28affnLX45f/dVfTa5bXV2Nd7zjHfHyl788139fe9FoNOKxj33sWJ8B8y550b/qoj8wPvVqjsbERFMaMP9SAeVGjr0EAAAAAAAAAACA3RFMBObGrbfeGu9973uT657+9KfHM57xjJE995JLLokXvehFyXU33XRT/PVf//XInjstrr766jh+PPtCcLlcjre+9a3xC7/wCwVNBezFYDiMTi878NPUQASMUaW8FPtXa5lrUs2uwPxLBhOdVwAAAAAAAAAAAMZGMBGYG//5P//nGA6HmWsqlUq85jWvGfmz/+N//I9x4MCB5Lrf/d3fHfmzJ+nDH/5wvOtd70que+UrXymUCDPk2EYv+on22XpNAxEwXo3EPpMKJAHzL9WcKpgIAAAAAAAAAAAwPoKJwFzY2NiId7zjHcl1P//zPx9nn332yJ9/yimnxAte8ILkug984ANx1113jfz5k/LSl740ueaSSy6Jl73sZQVMA4xKu5cO+7joD4xbo5q9z+TZq4D5ltoHUvsIAAAAAAAAAAAAuyeYCMyFa6+9NjqdTnLdr/7qr45thpe85CVRLmdvq/1+P97+9rePbYYifeQjH4lPfOITmWuWlpbij/7oj5L/vQDTJU8LWdNFf2DMmokAtMZEWGyb/e04vrmRuSa1jwAAAAAAAAAAALB7kiLAXHjb296WXHP22WfHRRddNLYZzjzzzLjkkkuS6/LMOgt+93d/N7nml3/5l+P8888vYBpglFJhn1JEHKiuFTMMsLBSzazt3npBkwDTqNNN7wH1mvMKAAAAAAAAAADAuAgmAjOv3+/H9ddfn1z3i7/4i2Of5VnPelZyzf/5P/8nDh8+PPZZxunv/u7v4n3ve19y3a/92q8VMA0waqlg4oHqWixpQgXGLBlM1JgIC62VYw9oaHgGAAAAAAAAAAAYGzfKgZn3iU98IjqdTnLdU5/61LHPkucZg8EgPvjBD459lnF6+9vfHsPhMHPNP/gH/yDOO++8giYCRinVQpYKCwGMQiPRzNrd2oyN7a2CpgGmTbuXDiY2nVkAAAAAAAAAAADGRjARmHl5Qn779++PCy+8cOyznHnmmXH22Wcn1/3P//k/xz7LOL397W9Prnn2s59dwCTAOKRayFJhIYBRyBOC1poIi6uT+P6vLFWitrxS0DQAAAAAAAAAAACLRzARmHkf//jHk2suvPDCqFQqBUwTcckllyTX3HjjjQVMMh633357/M3f/E3mmnK5HJdffnkxAwEjlwwmah8CCpBnr2kJJsLCanXTDc+lUqmgaQAAAAAAAAAAABaPYCIw8z796U8n1zzmMY8pYJJvu+CCC5JrPv/5z8fGxkYB04ze9ddfn1zzoz/6o3Hw4MECpgHGIRX0EUwEipCrMbGXHUwC5le7p+EZAAAAAAAAAABgkgQTgZl21113xTe+8Y3kumkLJm5vb8f//b//t4BpRu9DH/pQcs3FF19cwCTAuKSCPo2qYCIwftXKctQqK5lrOhoTYWFpeAYAAAAAAAAAAJisyqQHANiLm2++Ode68847b8yTfM/DH/7wXOtuvvnmeOxjHzvmaUbvwx/+cHLNhRdeWMAkwDh0tzZjY3src02zpoEIKEajthbdo5sn/DzV8ArML8FEAAAAAAAAABidcmnSEwAwiwQTgZn2t3/7t7nWnX322WOe5HuazWacfPLJcc8992Suyzv7NLnzzjvj0KFDyXXnn39+cs3hw4fjuuuuixtuuCFuueWW+PKXvxydTieOHTsWKysrsba2FqecckqcddZZ8bCHPSwe97jHxcUXXxznnnvuKH4rwAmkLvlHuOgPFKdR2xffONo+4eftnmAiLKpkw7MXKQAAAAAAAAAAAIyVYCIw07785S8n15x++umxb1+xIZqzzz47PvGJT2SuyTP7tPnsZz+ba90555xzv//5YDCIa6+9Nn7/938//tf/+l/R7/fvd123241utxuHDx+OL37xixER8V//63/97q/9jGc8I17wghfEWWedtYvfBZAldck/IqIumAgUpF7N3m/a3fSeBcyfwWAQnVQwMbF/AAAAAAAAAAAAsDflSQ8AsBd33HFHcs2DHvSg8Q9yHw984AOTa+Y1mHjKKafEgQMHfuA/v/766+MRj3hEPP3pT48PfvCDJwwlpnzpS1+K3/7t345zzjknfvEXfzG+9KUv7erXAe5fnsbEpov+QEGaicazPHsWMH+ObHRjOBxmrtHwDAAAAAAAAAAAMF6CicBM+9rXvpZcc/rppxcwyc6f+dWvfrWASUbr85//fHLNaaeddq///fjx4/Gc5zwnLrvsslw/P69+vx//43/8j3jEIx4Rr3jFK2Jra2tkvzYsslTIZ215JVYqSreBYqSCRYKJsJjyfPcFEwEAAAAAAAAAAMZLMBGYaYcPH06uOXjwYAGT3FueYOI999xTwCSjdeeddybXPOABD/ju/3z77bfHhRdeGH/6p386tpk2Nzfjt37rt+KJT3xirvmAbKmL/i75A0VK7TlHN7qxPdhdCzMwu1q5Gp6zG1cBAAAAAAAAAADYG8FEYKblCSY2Go3xD7KLZx4/fjw2NjbGP8wIHTp0KLnmO7/322+/PS699NL47Gc/O+apvu2GG26Iiy66aKStjLCIUhf9BROBIqX2nGFEHOl1ixkGmBqd3nrm5+VSKfYLJgIAAAAAAAAAAIyVYCIw01qtVnLN/v37C5hkd8+ctdbEb3zjG8k1Kysrcdddd8Xf//t/P772ta8VMNX3fP3rX48nPvGJwomwB6mL/o2qYCJQnGaOPSfV9ArMn9T3vl5di3KpVNA0AAAAAAAAAAAAi6ky6QEAdqvb7cbW1lZy3SSCiQcOHMi1rtPpxAMf+MAxTzMaw+EwV0Pl0tJSPOtZz4o777wzufbAgQNxySWXxCMf+cg488wz46STTort7e1ot9tx2223xY033hif/vSno9/v557z7rvvjiuuuCJuvPHGOOWUU3L/PODbUhf9GzXtQ0Bx6jn2nFTTKzB/Ut/7uhcpAAAAAAAAAAAAjJ1gIjCzNjc3c62r1WpjnuQHVavVXOvy/h6mQa/Xi8FgkFz3nve8J3q9Xuaaiy66KF760pfG5ZdfHsvLy5lrDx06FG9+85vjNa95TXzrW9/KNevtt98ez3nOc+K6667LtR74nlYvFUx00R8ozkkr1aiUl2J7cOKXFLQT+xYwf1Lf+6YXKQAAAAAAAAAAAIydYCIws/KG+paWlsY8yQ+qVPJtr7MWTNzrukajEX/wB38Qz3nOc3I/9/TTT4+XvvSl8eIXvziuvvrqeP3rX5/r573//e+Pa665Jq666qrcz5oXT3jCE3L//yDj89nPfnbSI+zYdr8fxzayv+sNDURAgUqlUjSqa3H3+tETrkk1vQLzp91dz/zcixQAAAAAAAAAAADGrzzpAQB2K2+obxIBrbzP3NraGvMko7OxsbGnn3/WWWfFDTfcsKNQ4vfbv39/vO51r4s3vOENucOm/+bf/JvodDq7eh4sojytY00X/YGCpQJGgomweFLfe8FEAAAAAAAAAACA8VOnBMys7e3tXOsEE0djL+2OD3zgA+ODH/xgnHXWWXue4/nPf34sLS3FlVdemVx7zz33xKtf/ep45StfuefnzpKPfvSj8YAHPGDSYzCDUu1DES76A8VLBhN76b0LmB/D4TD5MoVGda2gaQAAAAAAAAAAABaXxkRgZuUN//X7/TFPsvtnTiI0uVt5Wwrvz5ve9KaRhBK/47nPfW788i//cq61f/iHfxjdbndkz4Z5lqcxUTARKFqjlh0w0pgIi2V9azO2Ev++5bwCAAAAAAAAAAAwfoKJwMxaWVnJtS5vs+Io5W1CzPt7mAa7nfUFL3hB/NRP/dSIp4l47WtfGw960IOS69rtdrz97W8f+fNhHqXCPcvlpVhbnp19C5gPjWqiMVEwERZKnu+8YCIAAAAAAAAA7Ey5VPKjwB8A80IwEZhZy8vLudZNIpiY95nzHkzct29fvPrVrx7DNBGNRiNe9apX5Vr7Z3/2Z2OZAeZN6qJ/o7YvSv6FGChYKmDU7q3HcDgsaBpg0gQTAQAAAAAAAAAApoNgIjCzVldXc63r9XpjnmT3z5ylYGLe/76/37Of/exoNBqjH+b/e+Yznxmnnnpqct1HPvKROHbs2NjmgHnR6q5nfu6SPzAJjdpa5uf9wSCObhR/3gMmo93LEUysZu8bAAAAAAAAAAAA7F1l0gMAs+XLX/5y3HjjjWN9xr59++KKK65IrqvValGpVJLthEePHh3VaLnlfeaBAwfGPMnoVKvVWF5ejq2trdw/55/9s382xom+HZZ87nOfG695zWsy121ubsaHP/zh+Omf/umxzgOzLt2Y6JI/ULw8oeh273gcqNYKmAaYtHbiRQr7VlZjeckfdwEAAAAAAAAAAIybm1rAjnz4wx+OK6+8cqzPOPPMM3MFEyMims1mfOtb38pcc+TIkVGMtSN5n3nyySePeZLROuWUU+LQoUO51p511lnxmMc8ZswTRfzCL/xCMpgYEXHTTTcJJkJCqoGoUdWYCBSvmWPv6XSPRzTSLcrA7Eu/SMF5BQAAAAAAAAAAoAjlSQ8AsBennHJKck2n0ylgkp0/c21tLarVagHTjE6e/76/48ILLxzjJN/zoz/6o7GyspJc96lPfaqAaWC2dRINRE0X/YEJOFBdi1JiTSuxfwHzo5UKJnqRAgAAAAAAAAAAQCEEE4GZlicod9dddxUwyb3laRXcSchvWkxjMHF1dTUe/ehHJ9fdfvvtBUwDs2swHEanlx3sqdfWCpoG4HuWyuU4UM3ef1KNr8D8SH3fvUgBAAAAAAAAAACgGIKJwEz7e3/v7yXX5AkJjlqeZ+aZfdrsZOZHPepRY5zk3vIEE7/61a8WMAnMrqMb3egPB5lrNBABk9JIBRMTDWrA/Eg1PDcEEwEAAAAAAAAAAAohmAjMtIc85CHJNV//+tfHP8h9fOMb30iuOeusswqYZLQe+tCH5l578sknj3GSnT+r0+nExsZGAdPAbMoT6tFABExKKmgkmAiLo5X4vtcTQWYAAAAAAAAAAABGQzARmGl5wn2HDh2K9fXsVo1Ru+2225Jr5j2Y2Gg0xjfILp9V9P8fwCzJE+rRQARMimAiEBGxub0d61vZLxvxIgUAAAAAAAAAAIBiCCYCMy1PUG44HOYKCo5Ku92Ow4cPJ9ftJOQ3LR72sIflXiuYCLMl1T5UKpXiwGqtoGkA7i0ZTOz5ZzwsgnbPixQAAAAAAAAAAACmhWAisCPPfe5zYzgcjvXHHXfckXueRz7ykbnWfeELX9jl73jn8j4r7+zT5FGPelTutaVSaYyTTO5ZMK86iVBPvboW5bKjIzAZjarGREDDMwAAAAAAAAAAwDRxuxyYaQ984APj4MGDyXWf+tSnCpgm/7MqlcqOQn7Totls5m56bLfb4x3m+7RarVzr1tbWxjwJzK7URf9G1fcHmJxmLXsP6m1vRW9rs6BpgEnJ047aSOwXAAAAAAAAAAAAjIZgIjDzHvOYxyTXFBlM/OQnP5lcc95550W1Wi1gmtG74IILcq3LGxYchbwhyH37tKfAibRSwUTtQ8AE1XPsQal9DJh9qRcprCxVolZZKWgaAAAAAAAAAACAxSaYCMy8iy++OLnmhhtuiO3t7QKmifjIRz6SXHPhhRcWMMl4PP7xj8+17p577hnzJDt71imnnBIrKy4pw4m0e4KJwPTKswflaVIDZluy4bm2L0qlUkHTAAAAAAAAAAAALDbBRGDmPfnJT06uOXr0aHziE58Y+yxf+cpX4rbbbkuuu+yyy8Y+y7j85E/+ZK51N99885gn+Z7PfOYzyTVnnHFGAZPA7Gp3swM9japgIjA5zRx7UCqwBMy+dDBxraBJAAAAAAAAAAAAEEwEZt7jHve4OHDgQHLdddddN/ZZ8jyjVCrlClNOq/PPPz8e/OAHJ9fdeOONBUwTsbGxkSuY+PCHP7yAaWA2DYfD5EX/pov+wAStVCqxtpzdfCyYCPOvlQomepECAAAAAAAAAABAYQQTgZlXqVRyBf3e8Y53jH2Wt7/97ck1j33sY+PUU08d+yzj9LSnPS255oYbbihgkohPf/rTsbm5mVz34z/+4wVMA7Opu70Zm/3tzDWNmov+wGSl9qF2TzAR5l2nl93w3HReAQAAAAAAAAAAKIxgIjAXfumXfim55ktf+tJYW/y+8pWvxEc+8pHkujyzTrt//I//cXLNHXfcEZ/61KfGPsuf//mf51p38cUXj3kSmF3tbvYl/4iIugYiYMKSwcQcexkw21LNqHUNzwAAAAAAAAAAAIURTATmwhVXXBEHDhxIrnvta187thl+//d/PwaDQeaacrkcz3rWs8Y2Q1EuueSSOOuss5Lr/tt/+29jnaPX68Wf/MmfJNedeuqp8bjHPW6ss8AsS13yj9BABExeo5odOMqzlwGzazAYRGejm7mm4UUKAAAAAAAAAAAAhRFMBOZCtVqNZz7zmcl1f/7nfx633XbbyJ9/+PDhuOaaa5LrfvInfzIe+MAHjvz5RSuVSnHllVcm173tbW+LVqs1tjne8Y53xOHDh5PrrrjiilhaWhrbHDDr8oR5NBABk5ZuTBRMhHnW2ejGcDjMXONFCgAAAAAAAAAAAMURTATmxr/6V/8qSqVS5prt7e24+uqrR/7sf//v/30cOXIkue5f/+t/PfJnT8o//+f/PPbty774e/z48bH9nlutVvzbf/tvc619/vOfP5YZYF60EmGefSursbJUKWgagPuXCia2eoKJMM/yhI9T+wQAAAAAAAAAAACjI5gIzI0f/uEfjssvvzy57j3veU+8853vHNlzP/rRj8brXve65LrHPOYx8ZSnPGVkz42IuOOOO6JUKiV/POlJTxrpcyMiTj755HjRi16UXPemN70prrvuupE//yUveUl84xvfSK77sR/7sfiJn/iJkT8f5kk7EeZxyR+YBo1q9l50bKMX2/1+QdMARRNMBAAAAAAAAIDxKftR6A+AeWFPA+bKr//6r0e5nN7arrrqqvjiF7+45+cdOnQonv3sZ0c/xyX4//Af/sOenzdtXvrSl0a9Xk+uu/LKK+Nv//ZvR/bcN77xjfHWt74119p5/O8dRq3TXc/8PBUGAihCM0fgqNPL3s+A2ZV6kUK5VIr9q7WCpgEAAAAAAAAAAEAwEZgrF1xwQTzvec9Lrut0OvHkJz95T2G5b33rW/GUpzwl7rzzzuTapz71qXHFFVfs+lnT6uDBg/Gbv/mbyXV33XVXPPnJT45bb711z898wxvekKupMSLi0ksvjZ/5mZ/Z8zNh3rUSDUSN2lpBkwCcWJ4mtNR+BsyuduJFCvXqWpRLpYKmAQAAAAAAAAAAQDARmDu//du/Haecckpy3Ve/+tV43OMeF9ddd92On3HjjTfGYx/72PjsZz+bXFutVuP3fu/3dvyMWfErv/Ir8djHPja57o477oiLLrood9PhfR09ejRe9KIXxVVXXZWroXJtbS1e//rX7+pZsGhSDUR5wkAA45ZnL0rtZ8DsaidfpOC8AgAAAAAAAAAAUCTBRGDuPOABD4g/+ZM/iVKOtozDhw/H0572tPi5n/u5uOmmm5LrP/e5z8WVV14Zj3/84+MrX/lKrnl+7/d+L84555xca2fR0tJSvOMd74hGo5Fc226345/8k38SF198cbzrXe+Kra2t5M+566674nd+53fiYQ972I6Chq997Wvj3HPPzb0eFlnyon/VRX9g8taWV2K5vJS5JrWfAbPLeQUAAAAAAAAAAGC6VCY9AMA4XH755XH11VfHq1/96lzr3/3ud8e73/3uOPfcc+MJT3hC/MiP/EicfPLJUSqVotVqxRe+8IX4+Mc/HjfffPOO5nj2s58dL3zhC3fzW5gpD33oQ+PNb35zPP3pT4/hcJhcf8MNN8TP//zPR71ej0suuSQe9ahHxRlnnBEnnXRS9Pv9aLVacfvtt8eNN94Yn/zkJ3M1JH6/l7zkJXHVVVft9rcDC2Wzvx3HNzcy1zQ1EAFToFQqRaO2L751/MgJ1wgmwvxq99YzP9eYCAAAAAAAAAAAUCzBRGBuvepVr4qvfvWr8ba3vS33z/niF78YX/ziF0fy/Cc/+cnxx3/8xyP5tWbBFVdcEa9//evjhS98Ya5wYkREp9OJa6+9Nq699tqRzfGsZz0r/st/+S8j+/Vg3nW62Zf8I1z0B6ZHKpjYyrGnAbMp2ZhYWytoEgAAAAAAAAAAACIiypMeAGBcyuVyvPnNb46f+7mfK/zZT3jCE+I973lPrK6uFv7sSXrBC14Qr3vd66Jcnsw/Xl70ohfFn/7pn07s+TCL2r10u5hgIjAtUsGjTo49DZg9w+EwRzDReQUAAAAAAAAAAKBIkhvAXKtUKvHOd74zXvaylxX2zCuvvDKuv/762LdvMS/GXnXVVfH+978/TjnllMKeubq6Gn/4h38Yf/RHfySUCDuUuuQfEdGoaiACpkOjmn2+yrOnAbPn+NZGbA36mWtS+wMAAAAAAAAAAACjJb0BzL1yuRyvetWr4t3vfnc86EEPGttzms1mXHPNNfHHf/zHC9eUeF+XXXZZfOpTn4qnPe1pY3/WxRdfHDfeeGP8yq/8ytifBfMoFeJZWapEbXmloGkAsjUTjWjt7npBkwBF6uT4bqf2BwAAAAAAAAAAAEZLMBFYGD/7sz8bX/jCF+Lqq68eaZvhyspKPP/5z49bb701XvCCF4zs1511Z5xxRvzFX/xFvO9974tHPvKRI//1zz///HjLW94SH/vYx+LRj370yH99WBStxEX/Rm1flEqlgqYByFavZTe4dnrrMRgOC5oGKEquhufE/gAAAAAAAAAAAMBoCSYCC2X//v3x6le/Ou6888541ateFT/yIz+y61/rYQ97WLziFa+IO+64I97whjfEAx7wgBFOOj8uv/zyuPnmm+NDH/pQPPOZz4wDBw7s+teq1+vxnOc8J97//vfHLbfcEs95znMEpmCP2r3si/4u+QPTpFHNfrlEfziIoxvdgqYBitLKEUysV51ZAAAAAAAAAAAAilSZ9AAAk9BsNuNlL3tZvOxlL4u/+7u/i7/6q7+Kz3zmM/G5z30u7rjjjjhy5EgcPXo0hsNh7N+/P/bv3x8/9EM/FOeff3488pGPjKc85Slx3nnnTfq3EQ95yENiOCOtQE960pPiSU96Umxvb8fHPvax+NjHPhaf+9zn4tZbb41Dhw7F0aNH4/jx41EqlWLfvn1Rr9fjjDPOiLPOOise/ehHx8UXXxwXXHBBrKysTPq3AnMl1UCUCgEBFKlZS+9J7e5xASWYM6kXKZy0Uo3lJX/EBQAAAAAAAAAAUCS3toCFd+aZZ8ZVV1016TEWRqVSiUsvvTQuvfTSSY8CRES7u575eZ4QEEBRGjmDiWc2NVnDPEm+SMF5BQAAAAAAAAAAoHDlSQ8AAMDkpBqI6jWtY8D0OLBai1KplLmm3csOXAOzJ/UihYbzCgAAAAAAAAAAQOE0JgIALKjBYBCdRICnUdVABEyPcrkc9epaZntaqlkNmD2pFyk4rwAAAAAAAADA3pQTLwsHgPujMREAYEEd2ejGcDjMXNOsuegPTJdGNbsZTTAR5k/qe91wXgEAAAAAAAAAACicYCIAwILKE95x0R+YNql9qSWYCHMnHUzMDiwDAAAAAAAAAAAweoKJAAALKk94RzARmDapfandE0yEebK5vR3rW5uZaxpV5xUAAAAAAAAAAICiCSYCACyoTm898/NyqRT7V2sFTQOQTyqA1O5m723AbMkTNm56kQIAAAAAAAAAAEDhBBMBABZUO9GYWK+uRblUKmgagHyatbXMzzvd4zEcDguaBhi31HklQsMzAAAAAAAAAADAJAgmAgAsqFbior9L/sA0Su1NG/3t6G5vFjQNMG55gon1RGAZAAAAAAAAAACA0RNMBABYUO1eIphYFUwEpk+e0HS7u17AJEARWonv8+pSJWqVlYKmAQAAAAAAAAAA4DsEEwEAFlQquKMxEZhGeULTeRrWgNmQfJFCbV+USqWCpgEAAAAAAAAAAOA7BBMBABZUKrjTrK0VNAlAfvUce5NgIsyPTuL77EUKAAAAAAAAAAAAkyGYCACwgIbDYa4GIoBps7JUiX0rq5lrWoKJMDdS32fnFQAAAAAAAAAAgMkQTAQAWEDrW5ux1e9nrqlXXfQHplMqiJQKXgOzo91bz/y8UdXwDAAAAAAAAAAAMAmCiQAAC6ido02sqYEImFKNRHC6080OMgGzI3Vm0ZgIAAAAAAAAAAAwGYKJAAALKE8wsVHTQARMp1RwupVjjwOmX38wiCOpxkTBRAAAAAAAAAAAgImoTHoAAACKlye0k2okA5iUeiI43e4JJsI8OLLRjWFijfMKAAAAAAAAAOxdOUqTHgGAGaQxEQBgAaVCOyetVqOytFTQNAA7kwoi5WmFBaZfnu9yU8MzAAAAAAAAAADARAgmAgAsoE53PfPzpvYhYIo1a9l71PHNjdjsbxc0DTAueYKJ9cR+AAAAAAAAAAAAwHgIJgIALKBW4qJ/XfsQMMUaOYJIqQA2MP1SwcSlUjn2r9YKmgYAAAAAAAAAAIDvJ5gIALCA2r3si/4NjYnAFMsTTEztc8D0S75IoboW5VKpoGkAAAAAAAAAAAD4foKJAAALKNVA1MwR+gGYlEaOVtfUPgdMv04vu/k0z14AAAAAAAAAAADAeAgmAgAsoFRgJ08bGcCk1CorsbpUyVwjmAizz3kFAAAAAAAAAABgegkmAgAsmM3t7Vjf2sxc46I/MM1KpVLUE/tUq5vdtAZMv1YimFivOq8AAAAAAAAAAABMimAiAMCCaffSLWKCicC0a9TWMj/Ps9cB0y31PW4m9gEAAAAAAAAAAADGRzARAGDBtBPtQxERjaqL/sB0aySa0vLsdcD0Gg6H0U40n3qRAgAAAAAAAAAAwOQIJgIALJhcwUQX/YEp10zsU6lAEzDdjm9txPagn7nGeQUAAAAAAAAAAGByBBMBABZMKxHWWa0sR215paBpAHYnFUhq9zQmwizL1/AsmAgAAAAAAAAAADApgokAAAsmFdZpVNcKmgRg91LBxE5vPQaDQUHTAKOWr+HZmQUAAAAAAAAAAGBSBBMBABZM6qJ/MxH2AZgGqRD1cDiMIxvdgqYBRq2daHiO0JgIAAAAAAAAAAAwSZVJDwAAQLFSwcRUCxnANMizV7W7x+1pMKNaifPKSavVqCwtFTQNAAAAAAAAAMy3cmnSEwAwizQmAgAsmHYvu4Gorn0ImAF5AoepYBMwvTq9RMOz8woAAAAAAAAAAMBECSYCACyYVGNis7ZW0CQAu7d/tRZLpex/pW0ngk3A9NLwDAAAAAAAAAAAMN0EEwEAFkh/MIgjicZEF/2BWVAulaJezQ5Sd7rZ+x0wvdqJ72/q+w8AAAAAAAAAAMB4CSYCACyQI731GCbWCCYCs6KRaHhtJRrXgOnVSjSeNp1XAAAAAAAAAAAAJkowEQBggaQu+UcIJgKzo17N3q/aOfY8YDq1E8Fi5xUAAAAAAAAAAIDJEkwEAFggne56ck0jEfQBmBapYFI7x54HTJ+N7a3obm1mrhFMBAAAAAAAAAAAmCzBRACABZJqH1oqleOk1WpB0wDsTbO2lvl5as8DplO7l+NFCoKJAAAAAAAAAAAAEyWYCACwQFqJkE69thblUqmgaQD2Jt2YeDyGw2FB0wCjkidU3KhmB5MBAAAAAAAAAAAYL8FEAIAF0u5lX/RvVLUPAbMjFUzcGvRjfWuzoGmAUckVTNSYCAAAAAAAAAAAMFGCiQAAC6TdXc/8vOmSPzBD8oSp8wScgOmS+t6uVpajtrxS0DQAAAAAAAAAAADcH8FEAIAFkrro36itFTQJwN7lCVMLJsLsafeyX6TQqDqvAAAAAAAAAAAATJpgIgDAAmn3UsFEjYnA7KjnCCe1BBNh5qQCxRqeAQAAAAAAAAAAJk8wEQBgQQyHw2h3Uw1ELvoDs6OytBQnrVYz16QC2cD0SQUT64KJAAAAAAAAAAAAEyeYCACwII5vbsT2oJ+5RmMiMGuaiUB1KuAETJ/U99aLFAAAAAAAAAAAACZPMBEAYEHkCec0amsFTAIwOqlAdaopFpg+rUTTadN5BQAAAAAAAAAAYOIEEwEAFkTqkn+ExkRg9iSDiTn2PmB69AeDONrrZq5xXgEAAAAAAAAAAJg8wUQAgAWRakwsRUS9qoEImC2pptc8bbHA9DjSW49hYo1gIgAAAAAAAAAAwOQJJgIALIh2dz3z8/2rtaiUlwqaBmA0GtVEY6JgIsyUXA3PXqQAAAAAAAAAAAAwcYKJAAALIhXOqSdaxwCmUao5bX1rMza3twuaBtirPGFijYkAAAAAAAAAAACTJ5gIALAg2okGolTrGMA0yhNQytPABkyHVMPzUqkcJ63WCpoGAAAAAAAAAACAExFMBABYEKkGoqb2IWAGNarpttc8DWzAdMjT8FwulQqaBgAAAAAAAAAAgBOpTHoAAACKkbron6d1DGDa5AlVdwQTYWZoeAYAAAAAAACA4pXDS4IB2DmNiQAAC6LdXc/8XDARmEXV5ZWoVpYz17QS+x8wPdLnlXRLKgAAAAAAAAAAAOMnmAgAsAB621vR3d7MXCOYCMyqejU7qJRqYAOmh4ZnAAAAAAAAAACA2SCYCACwADqJS/4REY1EsAdgWjUTQaVU0AmYHslgYlUwEQAAAAAAAAAAYBoIJgIALIBWnmCiBiJgRqX2L8FEmA3D4TDavfXMNakgMgAAAAAAAAAAAMUQTAQAWACpS/4RgonA7BJMhPlwfHMjtgf9zDXOKwAAAAAAAAAAANNBMBEAYAGkQjm1ykpUK8sFTQMwWslgYo5wNjB5eULE9epaAZMAAAAAAAAAAACQIpgIALAAUhf9GzWX/IHZ1ahmBxOP9NajPxgUNA2wW61eOpjY1JgIAAAAAAAAAAAwFQQTAQAWQDtx0T/VNgYwzZqJcPUwvh1OBKabxkQAAAAAAAAAAIDZIZgIALAA2t3sQE490TYGMM3qOcLVeZrYgMlKnVf2r9aisrRU0DQAAAAAAAAAAABkEUwEAFgAqQaiVNsYwDRr5AhX52liAyYr9T1tOK8AAAAAAAAAAABMDcFEAIAFkL7orzERmF37V6uxVM7+19tUExswee1Es2meEDIAAAAAAAAAAADFEEwEAJhz24N+HNnoZq4RTARmWalUikY1u0lNYyJMPy9SAAAAAAAAAAAAmB2CiQAAc67TS7eEuegPzLrUPpZqYgMmLx1MzA4gAwAAAAAAAAAAUJzKpAcAAGC8Ot10MLFZFUwEZlsymJhjLwQmq514mULDeQUAAAAAAAAAxqJcKk16BABmkMZEAIA510q0D0VE1DUQATOuUc3ex1JNbMBkbWxvRXdrM3NNU8MzAAAAAAAAAADA1BBMBACYc+1edhinUl6Kk1aqBU0DMB7pxkTBRJhmeb6jdcFEAAAAAAAAAACAqSGYCAAw51IX/RvVtSiVSgVNAzAeyWBibz2Gw2FB0wA7lafhOdWMCgAAAAAAAAAAQHEEEwEA5lwymKh9CJgDjWr2XrY96MexzV5B0wA71e6tJ9c0nVkAAAAAAAAAAACmhmAiAMCca3ezL/oLJgLzIE9gqZPYD4HJ6SRepFCtLEd1eaWgaQAAAAAAAAAAAEgRTAQAmHPtXqoxca2gSQDGJ0/IupXYD4HJaWl4BgAAAAAAAAAAmCmCiQAAc66duuhfddEfmH0HqrUoJdak9kNgcpIvUqh6kQIAAAAAAAAAAMA0EUwEAJhjw+Ew2r31zDUaiIB5UCkvxf7VWuYawUSYXu2u8woAAAAAAAAAAMAsEUwEAJhjRzd60R8MMtc0ahqIgPmQCi4JJsL0SjY8CyYCAAAAAAAAAABMFcFEAIA51u6lQzgu+gPzIrWftRKNbMDkpM4szisAAAAAAAAAAADTRTARAGCO5WkHa1Zd9AfmQ6oBtpMjrA0Urz8YxNFeN3NNo6rhGQAAAAAAAAAAYJoIJgIAzLF2oh2sFBEHXPQH5kQjEbTOE9YGitfprccwsUZjIgAAAAAAAAAAwHQRTAQAmGPtRDvY/motlsqOhMB8aCaCS6mwNjAZeULDgokAAAAAAAAAAADTxS10AIA5lrro30y0iwHMknoiuNTd3oze9lZB0wB5tfIEE51ZAAAAAAAAAAAApkpl0gMAADA+qWCi9iFgnjSqa8k17e7xOH1/Y/zDALl1etltpkvlcpy0Wi1oGgAAAAAAAABYPOUoTXoEAGaQxkQAgDkmmAgskmaOPS21LwLFS30v69W1KJf8BQgAAAAAAAAAAMA0EUwEAJhjLcFEYIHk2dMEE2H6JM8rVecVAAAAAAAAAACAaSOYCAAwxzq99czPXfQH5slqZTlqyyuZa9qJfREoXruXHUzM04YKAAAAAAAAAABAsQQTAQDmVG9rM3rbW5lrGrW1gqYBKEaqNVFjIkyf1PfSeQUAAAAAAAAAAGD6CCYCAMypVo7wTSrAAzBrGtXsAJNgIkyfTjfR8Oy8AgAAAAAAAAAAMHUEEwEA5lS7l33JP8JFf2D+pPa1PKFtoDjD4TB5ZmlUnVcAAAAAAAAAAACmjWAiAMCcytMK1nTRH5gzqQBTuyeYCNPk2GYvtgf9zDVepAAAAAAAAAAAADB9BBMBAOZUKpi4trwSK5VKQdMAFCMVYGp3022yQHHyvEihUVsrYBIAAAAAAAAAAAB2QjARAGBOpVrBtA8B86iZ2NuObnST7WxAcfIFE51ZAAAAAAAAAAAApo1gIgDAnEq1gjWqLvkD8ydPs1qnpzURpkU7x/exXtWYCAAAAAAAAAAAMG0EEwEA5lSqgShPeAdg1uRpVsvT0AYUI/V93L9ai0p5qaBpAAAAAAAAAAAAyEswEQBgTqWDiRoTgfmTpw021SgLFMeLFAAAAAAAAAAAAGaTYCIAwJxq9QQTgcWzb2U1lhPtahoTYXq0EkHhPGFjAAAAAAAAAAAAileZ9AAAAIzedr8fxzZ6mWtc9AfmUalUinptLe4+fvSEa1qCiTA12okXKTS9SAEAAAAAAAAAxq5cKk16BABmkMZEAIA51Olltw9FuOgPzK9U8LqTCEIBxekkgsIangEAAAAAAAAAAKaTYCIAwBzK0wZWr60VMAlA8VLB63Y3Hd4GipH6PtarzisAAAAAAAAAAADTSDARAGAOtXO0gWkgAuZVan/LE94Gxq+3vRXd7c3MNRqeAQAAAAAAAAAAppNgIgDAHGonQjfL5aXYt7xa0DQAxUo1rOUJbwPjlzqvRHiRAgAAAAAAAAAAwLQSTAQAmEOpi/6N2r4olUoFTQNQrFTDWqe7HoPhsKBpgBMRTAQAAAAAAAAAAJhdgokAAHOo1V3P/Nwlf2Cepfa4/nAQxza6BU0DnEi7l31eiYhoJBpQAQAAAAAAAAAAmAzBRACAOdTppRoTXfIH5lee8HWepjZgvFLfw2plOarLKwVNAwAAAAAAAAAAwE4IJgIAzKHURf9GVWMiML9yBRNzNLUB45U8r2h4BgAAAAAAAAAAmFqCiQAAc6jdzQ7cuOgPzLP6ai1KpVLmGo2JMHmCiQAAAAAAAAAAALNLMBEAYM4MhsPoJJrAGrW1gqYBKF65XI4Dq7XMNYKJMHktDc8AAAAAAAAAAAAzSzARAGDOHN3oRn84yFzjoj8w71JNa61EsywwfqkXKTS9SAEAAAAAAAAAAGBqCSYCAMyZPC1gzURgB2DWNarZgaZ2T2MiTFrqzFJ3XgEAAAAAAAAAAJhagokAAHOmnaMFLNUkBjDrUgHsPCFuYHy2B/04stHNXKPhGQAAAAAAAAAAYHoJJgIAzJlUC1ipVIoDq7WCpgGYjFQAWzARJqvTS79IoVnLbj4FAAAAAAAAAABgcgQTAQDmTCpsU1+tRbnsGAjMt2QwMUcoChifPOFgDc8AAAAAAAAAAADTy410AIA5k7ro75I/sAhSe93G9lZ0tzYLmga4r3Y3HQ52ZgEAAAAAAAAAAJhegokAAHOmJZgIEI3qWnJNnsY2YDzavezv31K5HCetVAuaBgAAAAAAAAAAgJ0STAQAmDOpi/6CicAiyLPXCSbC5CQbnqtrUSqVCpoGAAAAAAAAAACAnRJMBACYM+3ueubnjapgIjD/8gQTUw2zwPgkg4lepAAAAAAAAAAAADDVBBMBAObIcDiMTvKi/1pB0wBMzspSJdaWVzPXdHrZQW5gfJIvUhBMBAAAAAAAAAAAmGqCiQAAc6S7vRkb/e3MNS76A4uimdjvUo1twPi0e4kXKWh4BgAAAAAAAAAAmGqVSQ8AAMDopNqHIlz0BxZHo7YWXztyzwk/bwkmwsSkgsEangEAAAAAAACgOOUoTXoEAGaQxkQAgDmSp/0r1SAGMC/qiSB2qrENGI/hcBjtXvbLFDQ8AwAAAAAAAAAATDfBRACAOZInmFjXQAQsiFQQO0/LLDB6Rzd60R8MMtdoeAYAAAAAAAAAAJhugokAAHOklQgm7ltZjZWlSkHTAExWqnEtT5gbGL08baUangEAAAAAAAAAAKabYCIAwBzp9LLbv7QPAYukkWiIPbbZi63+dkHTAN/RyREKTgWLAQAAAAAAAAAAmCzBRACAOZJq/0qFdADmSZ5gUyrQDYxeq5v9vStFxIFqrZhhAAAAAAAAAAAA2BXBRACAOdJKBhO1DwGLI09LbDsRkAJGr93LPq/sX61FpbxU0DQAAAAAAAAAAADshmAiAMAcSV30F0wEFkmePS8V6AZGL93w7LwCAAAAAAAAAAAw7QQTAQDmSPKif472MIB5sba8EstL2a1rqUA3MHqCiQAAAAAAAAAAALNPMBEAYE5s9rfj+OZG5pqmi/7AAimVSslAdiogBYxeu7ee+XmjtlbQJAAAAAAAAAAAAOyWYCIAwJzoJC75R0TUXfQHFkwqkC2YCMXT8AwAAAAAAAAAADD7BBMBAOZEnnCNi/7Aomkkg4npUDcwWslgooZnAAAAAAAAAACAqSeYCAAwJ/IEE1PNYQDzJhlM7GlMhCL1tjajt72VuUYwEQAAAAAAAAAAYPoJJgIAzIlUMHFlqRK15ZWCpgGYDo3aWubneULdwOi0cjU8Z39vAQAAAAAAAAAAmLzKpAcAAGA0Wt31zM8btX1RKpUKmgZgOjSq2c1rnd56DAaDKJe9tweK0Olln1ciNDwDAAAAAAAAQNHK7hYCsAtuXgIAzIl2L7uBKNUaBjCPGomA02A4jKMb3YKmAfK0lNYFEwEAAAAAAAAAAKaeYCIAwJzoJC76p1rDAOZRKpgYEdHK0eAGjEYrcV6pVVaiWlkuaBoAAAAAAAAAAAB2SzARAGBOtLrZwZo84RyAedOspttiU8FuYHQ0PAMAAAAAAAAAAMwHwUQAgDnhoj/AD9pfXYtyqZS5JtXgBoxO24sUAAAAAAAAAAAA5oJgIgDAHBgMBtHpJS76V130BxZPuVSKeqI1MRXsBkannQgCCyYCAAAAAAAAAADMBsFEAIA5cGSjG8PhMHNN00V/YEHVE8HsVIMbMDrJhudEkBgAAAAAAAAAAIDpUJn0AAAA7F2qfShCAxGwuJq1tbijdeLP8+yhwGikgsDOKwDAuA2Hw+j3+zEYDJIveQIAAABgOpRKpSiXy7G0tBSlUmnS4wAAAP+fYCIAwBxo99JtXxqIgEWVCjoJJkIxtvv9OLrRzVwjmAgAjMpwOIz19fXY2NiIzc3N7/7Y2tqa9GgAAAAA7MHy8nKsrKx898fq6mqsra0JLAIAwAQIJgIAzIFUqKZcKsV+wURgQaWCTi3BRChEJ8+LFAQTAYA9GA6Hcfz48Thy5EgcO3Ys+v3+pEcCAAAAYMS2trZia2srjh//3t/zLi0txUknnRQHDhyIffv2CSkCAEBBBBMBAOZAKphYr65F2R+6AgsqFXTq9NZjOBz6yykYs3YvHQJuVgUTAYCd6/f7cffdd0en0xFGBAAAAFhA/X4/Op1OdDqdWFpainq9HqeeemosLS1NejQAAJhrgokAAHMg1falfQhYZI1E0Gmzvx3drc1YW1ktaCJYTO1uujGxXtPwDADkNxwOo9PpxDe/+U2BRAAAAAAi4tshxXvuuSc6nU6cdtppUa/XvaQWAADGRDARAGAOpBqIUqEcgHnWyBF0anWPCybCmKUanivlpThppVrQNADArOv1enHo0KHodruTHgUAAACAKdTv9+Mb3/hGtNvtOP3006Na9fdQAAAwauVJDwAAwN6lGog0JgKLLM8emAp4A3uXbHiurnlbLQCQy/Hjx+OOO+4QSgQAAAAgqdvtxh133BHHj/s7YQAAGDXBRACAOZBqIMrTFgYwrxrV9B6Y2keBvUs2PHuRAgCQw/Hjx+POO++M4XA46VEAAAAAmBHD4TDuvPNO4UQAABixyqQHAABgb4bDoYv+ABmWlypx0ko1jm32Trgm1TwL7F1HwzMAsEdCiQAAAADs1nfCiT/0Qz8U+/b5eymA+ypHadIjADCDBBMBAGbc+tZmbPX7mWsaVX+gCiy2Rm1fdjAxEfAG9q6VaCat52g3BQAWV6/X23UocXl5OVZXV2NlZSVWVlZieXk5lpaWolQqRankogUAAADANBsOhzEcDqPf78fW1lZsbm7G5uZmbGxsxNbW1o5/rTvvvDMe8pCHRLVaHdPEAACwOAQTAQBmXDtxyT8ioqmBCFhwjdpafLVz+ISf59lLgb1JBYCdVwCAExkOh3Ho0KEdhRJXVlbiwIEDceDAgVhZWRFABAAAAJgzw+EwNjc348iRI3HkyJHY3NzM/fMOHToUZ555pj8zAgCAPRJMBACYcXnCNI2aBiJgsaWaYwUTYbwGw2F0uuuZaxqCiQDACXQ6neh2u7nWViqVOHjwYOzfv9/FMgAAAIA5ViqVYnV1NR7wgAfEqaeeGkePHo277rortre3kz+32+1Gp9OJRqMx/kEBAGCOCSYCAMy4Vo4wTb0qmAgstlTgqZ0ITAF7c2yjG/3hIHONFykAAPen3+/HN7/5zVxrG41GHDx4MMrl8pinAgAAAGCalEqlOHDgQJx00klx1113RbvdTv6cb37zm7F///5YWloa/4AAADCn/M0sAMCM6/SywzQnrVRjecn7KIDFlgo85Ql5A7vXTpxXIjQmAgD37+67745+v59cd/LJJ8fpp58ulAgAAACwwMrlcpx++ulx8sknJ9f2+/24++67C5gKAADml7+dBQCYce1EmMYlf4CIRjV7L1zf2ojN7e2CpoHFkzqvRKS/pwDA4hkOh9HpdJLrGo1GnHbaaVEqlQqYCgAAAIBpViqV4rTTTotGo5Fc2+l0Yjgcjn8oAACYU4KJAAAzLtXylWoJA1gEzRwh7XZPayKMSyqYWIqIetWZBQC4t+PHjyfbEiuVShw8eFAoEQAAAIDvKpVKcfDgwahUKpnr+v1+HD/u74kBAGC3BBMBAGZcKkijfQggX3tsu7tewCSwmFLBxP3VWiyV/TEVAHBvR44cSa45ePBglJ0jAAAAALiPcrkcp512WnLd0aNHC5gGAADmk7+pBQCYcamL/nlawgDmXa5gosZEGJtWIvjb9CIFAOA+hsNhHDt2LHPNyspK7N+/v6CJAAAAAJg1Bw4ciJWVlcw1R48ejeFwWNBEAAAwXwQTAQBmXCqYmCeMAzDvqpXlWF2qZK5J7afA7nVSDc/OKwDAfayvr0e/389cc+DAgSiVSgVNBAAAAMCsKZVKceDAgcw1/X4/1tezX7IJAADcP8FEAIAZtrm9Hetbm5lr6tW1gqYBmF6lUikZfBJMhPFJfb/qNecVAODeNjY2kmtSl8oAAAAAYP/+/ck1ef4sCgAA+EGCiQAAM6ydaB+KiGhqIAKIiHQjm2AijE8r1fBcdV4BAO5tczP7RUzLy8uxsrJS0DQAAAAAzKrV1dVYXl7OXJP6sygAAOD+CSYCAMywPCGaVBAHYFGk9sNUcArYvXZvPfNzL1IAAO4rdRlsdXU1SqVSQdMAAAAAMKtKpVKsrq5mrhFMBACA3alMegAAAHZPMBEgv1QjWycRnAJ2p7u1GRvbW5lrnFcAgPtKXQbTlggAAABAXqk/SxJMBIgoexkgALugMREAYIa1utkhmtXKctSWXdQDiIho1tYyP88T9gZ2zosUAICdGg6HsbWV/WIDwUQAAAAA8lpeXs78fGtrK4bDYUHTAADA/BBMBACYYe1e9kX/RjU7hAOwSFLBp85GNwaDQUHTwOJo52gjdWYBAL5fv99PrkldJgMAAACA78jzkqs8fyYFAADcm2AiAMAM6yQaiLQPAXxPvZq9Jw6Hw+hsdAuaBhaHxkQAYKfyvDBkaWmpgEkAAAAAmAd5/ixJYyIAAOycYCIAwAxrCSYC5NaspRvZ8gSogJ1Jfa9qyyuxWtF4BAB8T55LYKVSqYBJAAAAAJgHef4sKc/LsgAAgHsTTAQAmGHt3nrm541EOxjAIskT1hZMhNFr97xIAQAYPcFEAAAAAPLyZ0kAADAegokAADMsFaDJ0w4GsChOWq3FUin7X4NTASpg59rd7BcpNL1IAQAAAAAAAAAAYOYIJgIAzKj+YBBHUo2JGogAvqtcKkU9EdhOBaiAnUu9SCH1vQQAAAAAAAAAAGD6CCYCAMyoI731GCbWCCYC3Fsj0cyWClABO5f6XqW+lwAAAAAAAAAAAEwfwUQAgBnVTrQlRkQ0qhqIAL5fI9mYKJgIo9bqJYKJXqQAAAAAAAAAAAAwcwQTAQBmVJ7wjIv+APeW2hdbgokwUtv9fhzb6GWuaTqvAAAAAAAAAAAAzBzBRACAGZUKJi6VynHSaq2gaQBmQ6OaHYBqJ5rdgJ3p5Gl4TjSZAgAAAAAAAAAAMH0EEwEAZlSq1ateW4tyqVTQNACzIdXM1u6ux3A4LGgamH95WkhTgWEAAAAAAAAAAACmj2AiAMCMSrV6ueQP8IMaiWDi9qAfx7c2CpoG5l+eFtLU9xIAAAAAAAAAAIDpI5gIADCj2t31zM9TrWAAi6hRW0uuaedoeAPySX2flstLsW9ltaBpAAAAAAAAAAAAGBXBRACAGZW66F/PEb4BWDR52mQFE2F0Ui9SqNfWolQqFTQNAAAAAAAAAAAAoyKYCAAwo9q97OBMnvANwKKpV/M0JmYHqYD8nFcAAAAAAAAAAADmk2AiAMAMGg6HyeBMs+aiP8B9VZaWYv9qLXNNS2MijEyqgbThvAIAAAAAAAAAADCTBBMBAGbQ8c2N2B70M9e46A9w/xq17NbEVJAKyC8dTEy3mAIAAAAAAAAAADB9BBMBAGZQntCMi/4A969RzQ5ud3qCiTAqqYbn1PcRAAAAAAAAAACA6SSYCAAwg1o5QjMaEwHuXzOxP6aCVEA+g+EwOr3s71Pq+wgAAAAAAAAAAMB0EkwEAJhBnRyhmXpVYyLA/UkFt/OEv4G0Yxvd6A8HmWu8SAEAAAAAAAAAAGA2VSY9AAAAO9fqZodm9q/WolJeKmgagNmSCm63E3sskE+e71K95kUKAAAAAAAAADBp5ShNegQAZpDGRACAGZS66N9wyR/ghJqJhrbu1mZsbG8VNA3Mr1aOhudmVWMiAAAAAAAAAAD/j737jI+iXt8/fm16IZDQpYP0KqAU6aAoCgp2EAU99nKwHhUb9oqIvf0EVAQLglIEEem9IwJJIPQaIAkpuym7+3/gX48eITOb7MzuJp/3eeWJuWe+V/bMzg7J3HMDCEU0JgIAAISgTJdBYyI3+QPAGSUaNCZKTE0E/MHoesUhqaLBBFMAAAAAAAAAAAAAAAAAQHCiMREAACAEGTXMGE0DA4DyzFRjost40huA4mUZXK9UjIlTeBi/mgIAAAAAAAAAAAAAAACAUMTdXwAAACHIqDHRTNMNAJRXTEwE7JHhLL7Bl+sVAAAAAAAAAAAAAAAAAAhdNCYCAACEIKNJXtzoDwBnFhMRqdiIqGJraEwESi/TZfAghZg4m5IAAAAAAEpj4sSJcjgchl8TJ04MdFQAIczMeaZ3796BjgkAAAAAAADgL2hMBAAACDH5RYVyFhYUW8ON/gBQvEqxxZ8nM2hMBEqNCc8AAAAAAAAAAAAAAAAAUHZFBDoAAAAAfGNmihc3+gNA8RJj43UkO/OM3zea9AbAGI2JAAAAAAAAAICy7tSpU9q4caO2bdum7du3Ky0tTYcOHdKRI0eUm5urvLw8SVJMTIxiY2OVlJSkWrVqqXbt2mrWrJnatWun9u3bq27dugH+SQAAAAAA8B2NiQAAACHGzBQvbvQHgOIlxhR/nsx05tmUBCi7Ml3Fv4+M3ocAAAAAAAAAAASbw4cP65dfftHChQu1YsUKJScny+PxGG6Xk5OjnJwcpaenKyUl5R/fb9y4sS644AINGTJEF1xwgcLCwqyIDwAAAACAX9GYCAAAEGKMbvKXaEwEACNJsXHFft/MdFoAZ+YsLFB+UWGxNUbvQwAAAAAojYkTJ+qmm26yZN9RUVGKiYlRdHT0n18VKlRQ9erV//b1xxSc5s2bq2LFipZkAQAAgLW8Xq9Wr16tmTNnaubMmfr1118tWWfnzp3auXOnPvjgA9WqVUs33XSTRo0apWrVqlmyXjAZOXKkJk2aFOgYQWHhwoXq3bt3oGMAAAAAgGk0JgIAAIQYo2aZ2IgoxURE2pQGAEKTUQN3povGRKA0zDT3VuJBCgAAAABCVEFBgQoKCnza5qyzzlKLFi3Uvn17de/eXd27d1fVqlUtSggAAIDSWrNmjaZOnaqvv/5aBw8etHXtQ4cO6YUXXtC4ceN0++236+mnn1alSpVszQAAAAAAgBk0JgIAAIQYoxv9E5k+BACGjBoTs11OuT0ehYeF2ZQIKFvMNCYy4RkAAABAeXL48GEdPnxYv/zyi8aOHStJatGihXr37q0rrrhCffr0UXh4eIBTwk6ZmZl68803DevOOeccDR482PI8KJsmTpyoPXv2GNaNGTPG8iwAEAoOHTqkzz77TBMmTFBKSkqg4ygvL0/jxo3Tl19+qTfffFPXXXddoCMBAAAAAPA3NCYCAACEGKMpXkwfAgBjiTHFN3F7JWW58lQ5roI9gYAyJsNEY2JSDNcsAAAAAMq37du3a/v27Xr//fdVrVo1XXHFFRo2bJh69uwZ6GiwQWZmpp555hnDuhEjRtCYiBKbOHGiFi9ebFhHYyIASD/++KMGDRokt9sd6Cj/cPToUQ0dOlQ//fST3n33XcXGxgY6EgAAAAAAkiRGPwAAAISYTGdesd9P5CZ/ADBkZlKbmYlvAE4vy1X89UpcZJSiInheFgAAAAD8IT09XR9++KF69eqlDh066Msvv1RRUVGgYwEAAJQbWVlZQdmU+FcTJkxQ9+7dlZ6eHugoAAAAAABIojERAAAg5Bg1yiTFFj8FDABgrjHRzMQ3AKdndL3ChGcAAAAAOLONGzfq+uuvV6NGjfTxxx/L4/EEOhIAAACCxIYNG9SzZ08dPHgw0FEAAEAZE+Zw8GXjFwCUFTQmAgAAhBijG/3NNNsAQHlXISpGEWHhxdZkumhMBErKqLE3iQnPAAAAZZLH45HLVaDcXKcKC4vk9XoDHQkIafv379dtt92mLl26aM2aNYGOAwAAgCCxY8cOXXLJJcrOzg50FAAAAABAORcR6AAAAAAwr8jj1ql8Z7E1NCYCgDGHw6HEmDgdzzvzH2yznHk2JgLKFqPG3kQmPAMAAIS0zKwc7Ujdrx0792lH6n6l7Dqg9BNZKiws+ludw+FQfFyM6tWpruZN6qp543pq0bSuGtY7SxERxT8sBsB/rV27Vl26dNE999yj119/XVFRUYGOBAAAgL+Ij49Xhw4ddN5556lVq1Zq0KCB6tevr0qVKqlChQoKCwvTiRMndOLECR07dkyrVq3S4sWLtWLFCuXk5JRozS1btmjYsGGaOXOmn38aAAAAAADMozERAAAghJxyFd+UKNGYCABmJcbGF9uYaDTxDcCZZRo09nK9AgAAEFo8Ho/WbkrRjz+v0aatO3XkWIap7bxer3JyndqWvFfbkvf++d+jIiPU5Ow66t65tQb176KqVSpZFR0w5b777lO/fv182ub3CaEu5efny+VyKScnR4cPH9aRI0d0+PBhpaamat++fX6bHOr1evX2229rzZo1+vbbb1WnTh2/7NeMkSNHauTIkbatB6B8YtIygFDTsWNHXXLJJbrooovUpUsXhYcX//CVs846S2eddZYkqW/fvho9erRcLpcmTpyosWPHaufOnT5nmDVrlj766CPddtttJfoZAAAAAAAoLRoTAQAAQkimiSaZxBgmEAGAGUaNUUYT3wCcmfHERBoTAQAAQsGp7DzNnr9K381epv0H0/2234LCIv22Y49+27FHn3wxR73Pb6crB/VQ+zaN5XA4/LYOYFa7du00cOBAv+83JydHW7du1YYNG/TLL79o4cKFOnnyZKn2uXr1anXo0EHfffedunfv7qekAAAAMKNJkyYaPny4hg4dqiZNmpR6fzExMbrjjjt02223acKECRo1apRyc337+9RDDz2kyy67TDVr1ix1nkCZOHGiJk6caNt6I0eO1KRJk0zV7t69Ww0aNLA2EAAAAACEMBoTAQAAQoiZ6V3c6A8A5lQyaOQ20wwO4J+K3G7l5LuKrUmM4XoFAAAgmO3cfUhfTV+onxavV35+oaVrud0eLVi6UQuWblTDejV15cAeGnRxV0VHRVq6LmCHChUqqEuXLurSpYvuuuuu36ePrl2rzz//XFOnTtWJEydKtN/09HQNGDBAc+fOVbdu3fycGgAAAH8VHh6ugQMH6q677tKFF15oycNUwsLC9K9//UvdunXTtddeqy1btpjeNjs7Wy+88ILefvttv+cCAAAAAMBIWKADAAAAwDyj6UMRYeGqEBVjUxoACG1JRhMTaUwESsTMtNHEWCY8AwAABCOXq0BvfjhNN9z1smb+tMrypsT/tXvfEb3+3jcaetsLWr85xda1ATuEhYWpc+fOeuedd3To0CFNnjxZzZs3L9G+cnJyNGDAAK1atcrPKQEAACBJ0dHRuu2225SSkqIZM2aof//+lk94b968uVasWKGePXv6tN1HH32ko0ePWpQKAAAAAIAzozERAAAghBg1ySTGxFn+xxAAKCuMJsxmuvLk9XptSgOUHZnOPMMaJjwDAAAEn01bd2n4XS9r6vRFAf+30KEjJ3T3I2/rtXe+Vp4zP6BZAKtERUVp2LBh+u233/Tll1+qdu3aPu8jOztbl1xyifbs2eP/gAAAAOVUVFSU7r33XqWlpenDDz9Uo0aNbF0/Pj5es2bNUsuWLU1vU1BQoC+++MLCVAAAAAAAnB6NiQAAACHEsDGRm/wBwDSjiW1uj0c5BS6b0gBlR4aJaaNcswAAAASPP6Yk3vnweB04lB7oOH8zbdZSDb/zJaYnokwLCwvT0KFDtXXrVo0cOdLn7TMyMnTNNdeooKDA/+EAAADKkbCwMF1//fXasWOH3nrrLdWqVStgWRISEvTNN98oKirK9Daff/65hYkAAAAAADg9GhMBAABCSKar+AlE3OQPAOaZOWcaNYQD+KcsV/Hvm8iwcMVHRtuUBgAAAMVJ23NYN9wdHFMSz+SP6YlvfzxDbrcn0HEAyyQmJmrChAn64osvfLoBXZLWrl2rhx56yKJkAAAA5cNVV12lL774Qg0bNgx0FElSy5Ytdf/995uu37x5s44dO2ZhIgAAAAAA/onGRAAAgBBi1CBTKab46V8AgP9KiqExEbCC4fVKbJwcDodNaQAAAHAmW3fs0R0Pvan9B4NrSuKZTJ62QGNenaSiInegowCWuv766zV//nwlJib6tN3bb7+tpUuXWhMKAACgHAgLC75bKR9++GHFxsaarl+0aJF1YQAAAAAAOI3g+9c0AAAAzsjoRv8kJiYCgGkVY+Jk1BqV4Sx+Ui2AfzJ63ySaaAoGAACAtdZtSta9j76tUzmh9W+e+Ys36D/PfCRXfkGgowCW6tmzp3744QdFR/s2bf6+++4L2umnAAAA8F2VKlV0+eWXm67/9ddfLUwDAAAAAMA/0ZgIAAAQIrxerzJdBjf605gIAKaFh4UpIab4p8xmupiYCPiKBykAAAAEty3b0vTQ0x/J6QrN5r4Va7fpiRcnMDkRZV6PHj30+eef+zRxfsOGDZo4caJ1oQAAAGC7Sy+91HRtamqqhUkAAAAAAPiniEAHAAAAgDnZ+S65PZ5iaxJj42xKAwBlQ1JMvE65nGf8vlGDFYB/Mmro5UEKAAAAgZOadkAPPPlByE8cXLZ6q54d+4XGPHyDwsJ4DivKrquvvloLFy7U+++/b3qbp556SjfccIMiIsrvrQAFBQVKT09Xenq6srOzlZ+fr8LCQkVHRysuLu7Pr/j4eFWvXl3h4eGBjlyu5OXlaf/+/crOzlZubq6cTqeio6MVHx+vChUqqG7dukpISAh0TFvl5ORo0aJF2rx5s5KTk5WSkqJjx44pJydHOTk5KigoUFxcnBISElS9enXVrl1b7733nurVqxfo6PgLr9erw4cPKz09Xbm5ucrNzZXX61V8fLzi4+NVpUoV1a5du9xdu2zbtk2LFi3Sr7/+qq1bt+rgwYM6deqUsrOzJUlxcXGqVKmS6tevr0aNGuncc89Vt27d1K5dO5+a84OF1+vVyZMndezYMWVkZCg/P1/5+fkKDw//8/MnNjZWcXFxqlKliuLj+V0pjHXt2tV07YEDByxMgmCUm5urAwcO/O3aKioq6s9rh3r16pW7aysAAAAA9iq/f40AAAAIMWamdnGjPwD4JjE2Xnszj5/x+zQmAr7LcjLhGQAAIBhlZGbrgSc/UE7umR/OEkp+WrhOdc6qqttuND89BAhFr732mubNm6e0tDRT9QcOHNB3332na665xm8ZJk6cqJtuusmwbsKECRo5cqTf1jUjIyNDS5cu1YoVK7Rx40YlJydr37598nq9praPiIhQ7dq11aBBAzVo0EANGzZUx44d1aVLF1WtWrXU+RYtWqQ+ffqUah+TJk3SpEmTSp3lD7169dKiRYv8tr/iZGVlacmSJVq2bJlWrlyp1NRUHTlyxHC7qlWrqkmTJurSpYu6d++uXr16qUqVKjYkLt6YMWP0zDPPGNYtXLhQvXv3LrYmJydHkyZN0rfffqvly5ersLCw2Prs7GxlZ2fr0KFD2rRpk06ePPlnY2KDBg20d+9e0z/H6fi7AWz37t1q0KCB3zPYefwa2bJli5YuXaply5Zp8+bN2r17t1wuV7HbREVFqX79+mrbtq26d++uHj16qEOHDkHRgOfP13///v169913NW3aNO3cubPY2oKCAmVmZmrv3r1asmTJn5N/69Wrp2uuuUZ33XWXGjZsaOZHsJ3b7dbatWu1YsUKrV69Wjt27FBKSorhcfBXVatWVf369f/8HGrVqpW6dOmi5s2bB8VxgeDQoEEDRUZGGn5WSPqz6Rdl0+HDh7V06VItX75ca9asUVpamo4dO2a4XdWqVdWsWTOdf/756t69u/r27asKFSrYkBgAAABAeUBjIgAAQIjIMtEckxTDjf4A4AujBqlMV/ENVgD+zuP1KsvgfZMYw4RnAACAQHj9vW+UfiIr0DH8auLUeereubVaNqsf6CiAZeLj4zVu3Dhdfvnlprd5++23/dqYGGycTqemTJmiKVOmaNGiRSoqKirxvoqKirR3717t3btXixcv/tv3zj77bHXp0kV9+vTRkCFDVLly5dJGLxeKioo0ffp0ffnll/rxxx+Vn5/v8z6OHz+u48ePa+XKlRo3bpwiIiJ0wQUXaNiwYbr66qsVExNjQXJ7nDhxQs8//7w+/fRTnTp1KtBx4KOdO3dq0qRJmjJlinbt2uXz9gUFBUpNTVVqaqqmTZsmSapbt66uu+46jRgxQq1atfJ3ZFvt2bNHY8aM0Zdffmmqgao4+/bt0+uvv64333xTw4cP10svvaSaNWv6KWnprFixQv/3f/+nH374QcePn/nBh2b8cb5bv3793/57YmKiOnXqpG7dumnw4MFq27ZtqdZBaAsPD1diYqLS09MNa3NzeeBmWXPs2DFNnTpVX331lVauXGn6ARx/9ce5Zvny5XrttdcUGxurgQMH6sYbb9Sll15KIzQA4E9h4jMBAOC7sEAHAAAAgDkZBtOHHJIqcqM/APjEsDGRiYmAT7LznXJ7PcXWMDERAADAfr8s3agFSzYGOobfeTxePTf2CxUUlO7GdyDYXXbZZTr33HNN1/8xvausycnJ0bPPPqvatWvrX//6l37++edSNSUa2bVrlyZPnqxbbrlFNWrU0MUXX6wJEyYoK6tsNXn7S35+vj744AM1adJE11xzjWbMmFGipsTTKSoq0ty5c3XjjTeqUaNGeuONN5SXF1oPFPN6vfr444/VtGlTvfnmmzQlhpitW7dq2LBhat68uZ5//vkSNSWeyf79+/Xaa6+pTZs2Gjx4sNatW+e3fdvF4/HozTffVOvWrTVp0qRSNyX+VVFRkSZOnKiWLVtq8uTJfttvScyePVsdOnRQt27d9Omnn5a6KbE4mZmZ+umnn/T000+rXbt2at68uZ566ilt27bNsjUR3KKiovxah+C3a9cu3XHHHapXr55GjRqlFStWlKgp8XScTqe++eYbDRo0SG3bttXUqVP9sl8AAAAA5RONiQAAACEi01V8c0xCTKzCw7i8AwBfGE1uozER8I2Z9wyNiQAAAPbKyMzWa+98HegYltm974j+b/KPgY4BWG7MmDE+1X/11VfWBAmQGTNmqEmTJnr66aeVkZFh+/pFRUWaN2+ebr75Zn388ce2rx/sFi1apDZt2ujOO+/Unj17LF3r8OHDevDBB9W8eXPNmjXL0rX8JTc3V1dccYVuu+02nTx5MtBx4IOcnByNGjVK7dq105QpU+R2uy1by+v16vvvv9d5552nf/3rXwE515VEZmam+vfvr/vvv9/SSW0ZGRkaPny4Hn30Ub815pi1b98+9e/fXwMHDtTGjYF52EdycrKee+45yyYiOxwO019Wn+dxemYfjJCQkGBxElgtOztb999/v5o1a6YPP/zQbw96OJOtW7dq6NCh6t27t7Zv327pWgAAAADKJu5cBwAACBFGN/onxXCTPwD4yqhBylVUKFdhgU1pgNBHYyIAAEDwef29b5SRlRPoGJb6/JuftS15b6BjAJYaMGCA6tWrZ7p+5syZFqaxT1FRke68804NGTJER44cCXQc/I+CggLddddd6tOnj1JTU21de//+/Ro0aJCuv/76oJ6eeOjQIXXv3l0zZswIdBT4aOXKlWrZsqXeeusteTweW9f+9NNP1bx5c/3000+2ruurXbt2qUuXLlqwYIFta77yyiu67777bFtvzpw5atOmjebPn2/bmsD/ysnJUU6OuX/TVatWzeI0sNLs2bPVvHlzvfnmm5Y2w5/O4sWL1b59e33yySe2rgsAAAAg9NGYCAAAECKMbvTnJn8A8J2Zc2cGUxMB0zJdxd8I6HA4VCk61qY0AAAAWLrqVy1YEpipLnbyeLx6YdyXcrvtbRoA7BQWFqYRI0aYrt+6dWvITzTKz8/XoEGD9MEHHwQ6Ck7j6NGj6tu3r95///2A5vjyyy91/vnna+/e4GtQ/2OS3KZNmwIdBT769NNP1bt3b+3fvz9gGY4dO6ZLLrlEY8eODViG4uzdu1e9evVScnKy7Wu/9dZbevXVVy1f59NPP9Vll12mU6dOWb4WUBxfPkeaNGliXRBYxuPx6KmnntKgQYN06NChgOXIz8/XrbfeqjvvvNP2pnwAAAAAoYvGRAAAgBBBYyIA+J+Zc6dRoxWA/zK6XqkYHauwMH4dBQAAYJdPJ88NdATb7NpzSItXbgl0DMBSN9xwg0/1s2fPtiiJ9bxer66//nrNnVt+zmOh5ODBg+rWrZuWL18e6CiSpM2bN6tLly5KSUkJdJQ/5efn67LLLtNvv/0W6Cjw0csvv6x//etfKigoCHQUud1uPfTQQ3rggQcCHeVvjh07pgsvvFAHDx4MWIbHH39cK1eutGz/06dP16233mr7xDLgdHw51ps3b25hElghPz9fQ4YM0XPPPSev1xvoOJKkDz74QDfeeCPnQAAAAACmRAQ6AAAAAMwxaoyhMREAfJcUY3zuzGJiImAaD1IAAAAIHtuS92p76r5Ax7DVd7OWqm/3cwIdA7BMkyZN1LBhQ+3evdtU/YoVK3T33XdbnMoaY8eO1bRp0wIdA6dx5MgR9e3bV7t27Qp0lL85cuSI+vTpo8WLF6tx48aBjqPHH39cS5cuNVVbv359devWTU2aNFG9evWUkJCgqKgo5eTkKCsrSykpKdqyZYuWL18eFM1yZdkbb7yhxx57LNAx/mHcuHGKjIzUK6+8EugocrvduvLKK5WammpYGx8fr86dO+ucc85Rw4YNVblyZcXHx6uwsFCZmZnavXu31q5dq+XLlysvz7cHBBYVFemmm27Sr7/+qsjIyJL+OKe1e/dujRgxgmlhCBrTp083Xdu9e3cLk8DfXC6XhgwZEpQP45g8ebLCw8M1adKkQEcBAAAAEORoTAQAAAgRhjf6x8TZlAQAyo6oiAjFRUYpr/DMN/Rk0JgImGb0fuF6BQAAwD7TZplrhihL1m1K0Z79R9Sgbs1ARwEsc8EFF+jjjz82VbthwwaL01hj9+7devzxx33eLjw8XOedd5569eqlJk2aqHHjxqpbt67i4+MVHx+vuLg4FRUVKT8/X6dOndLRo0d1+PBhpaamKiUlRRs2bNDmzZvlcrn89rP07t37jJNv9uzZo4YNGxruY8SIEZo4caLfMpVGfn6+Bg0aVKLJhA6HQ127dtXFF1+sc889V82bN1eVKlUUHx8vp9OpjIwMpaSkaOPGjZo7d64WL16soqIin9Y4dOiQLrnkEq1du1aVKlXyOaO/LF++XOPGjSu2pmbNmrr99ts1fPhw042Up06d0vfff/+P5rQ9e/accZvevXtr8eLFhvsOlglNgTRt2jQ9+OCDJdq2WrVquvjii9WvXz+1bNlSDRo0UEJCgsLDw5Wdna0DBw5o27ZtWrRokWbPnq0DBw74vMarr76q+vXr66677ipRRn958skntWzZsjN+PywsTFdeeaVGjhypCy+80FTTYG5urr755hu9+OKLphoe/5CcnKx3331X9913n+ltzLj99tuVnZ3t83b16tXThRdeqFatWqlx48Y6++yzValSpT8/g8LDw+VyueR0OnXs2DEdO3ZMaWlpSk1N1a+//qq1a9fq2LFjfv1ZEPp2796tVatWmaqtXr26WrVqZXEi+IvH49FVV11V4qbEtm3bqk+fPurQoYOaNm2qunXrqlKlSoqNjVVhYaFycnK0b98+7dixQ8uXL9esWbO0b59vDy/67LPP1KZNGz300EMlyggAAACgfKAxEQAAIAS4CgvkKiostoYJRABQMomx8cU2Jma6aEwEzDJ6vyRxvQIAAGCLrFO5+nlxaDYkldb02ct1/x1XBjoGYJl+/fqZbkxMSUlRTk6OKlSoYHEq/3rqqad8mgrXpEkTPfzww7rqqquUlJRUbG1UVJSioqKUkJCg2rVr/+P7hYWFWr16tebPn6/Zs2dr/fr1Pucvy+655x6tW7fOp20iIiJ022236b777lOTJk1OW1OhQgVVqFBBdevWVb9+/fTQQw/pwIEDeueddzR+/HifmkVTU1N14403asaMGXI4HD5l9Zdnn332jJPWYmNj9fTTT+vf//63YmNjfdpvxYoVdcMNN2j48OEqLCz+b0bwzY4dO3TTTTf5vF2LFi305JNP6sorr1RUVNRpaypXrqzKlSurbdu2uu666+TxeDRr1iw9//zzWrt2rU/r3X///erQoYO6dOnic1Z/+O2337RkyZIzfn/AgAEaP378Gd/rZxIfH6+RI0fq+uuv17PPPqsXXnjBdLPsK6+8orvuuuuMr7+vFixYoPnz55uuj4uL0y233KI77rhDLVq0MKz/o1m+atWqatmypXr37v2376elpWn+/Pn66aef9OOPP8rpdPr6I6CMefPNN02/H6644gqL08Cf/vOf/2j27Nk+bfPHgw1uvvlm1atX74x14eHhiomJUdWqVdWhQwcNGzZM77zzjhYtWqRXXnlF8+bNM73mo48++ufDPwAAAADgdMICHQAAAADGzEzrojERAEomMab482emM8+mJEDoyzJ4v3C9AgAAYI9Z81cpv6B8NizMnr9aTld+oGMAljnnnHNM13o8Hm3cuNG6MBY4duyYvvrqK1O1kZGReuutt7Rjxw7deuuthk2JZvfZvXt3PfPMM1q3bp3S0tL0/PPPq379+qXed6ibNm2aPvnkE5+2Oe+887Rlyxa9++67Pjcq1alTRy+//LK2b9+uvn37+rTtDz/8oHfffdenbfzpTI21LVq00KZNm/TII4/43JT4Vw6Hw29NWJDcbreGDh3q04S8yMhIvfrqq9qyZYuGDh3q0/8fYWFhuuyyy7R69Wp9+OGHiouLM71tQUGBrrvuOuXmBuZhesePHz9tg1R0dLQ++eQTzZkzx+f3+l9FRkbqueee0xdffKGwMHO3tB05ckRTp04t8Zr/66233jJde+mll2rPnj0aP368qaZEMxo1aqTbb79d06ZNU3p6uqZMmaJ+/foFrNEagXX06FF9+umnpuuvv/56C9PAn7788kuNHTvWdH1sbKxeeukl7dq1S2PGjCm2KfFMHA6H+vTpo7lz52r27NmnfUjH6bjdbt1yyy00SgMAAAA4IxoTAQAAQkCmy7gphhv9AaBkEmOLv/Ej00RzOADJ6/Uavl8qGTQCAwAAoPS8Xq9++HFFoGMETE6uUwuWhFYjFuCLJk2a+NTQlJKSYmEa/5s6daqpSXCxsbFauHCh7r33XtPNKyXRsGFDPf7440pLS9MPP/yg888/37K1gll2drZGjRrl0zb/+te/tGzZslI36zRo0EA//fSTHnzwQZ+2e/zxx3Xo0KFSre1PXbt21YoVK9S0adNAR8H/GD9+vDZt2mS6vmrVqlq6dKkefvhhRURElHhdh8Oh2267TatXr1bdunVNb7d37149/fTTJV7X3xISErRgwQL961//8ts+hw0bptdff910vS+NW8U5ceKE5syZY6p21KhRmjlzpqpVq+aXtU8nPj5e1113nX7++WelpKTojjvuUExMjGXrIfg88cQTysnJMVXbtm1bdevWzeJE8IfDhw/rnnvuMV3foUMHbdmyRY8++qhPzezFueSSS7Rx40b16NHDVP3OnTv1zDPP+GVtAAAAAGUPjYkAAAAhwExTTBI3+gNAiRg1dtOYCJjjLCpQvruo2Jokg0ZgAAAAlN6Xn9nOAAEAAElEQVSRYxnae+BYoGME1Or12wMdAbBMWFiYWrZsabr+wIEDFqbxv59++slU3fjx4229+T4sLEyDBg3S8uXLdfvtt9u2brAYM2aMDh48aLr+3nvv1SeffOK3qX7h4eF6/fXX9eSTT5re5tSpUz43M1qlRYsWmj17thITEwMdBf/j8OHDPjX5Va9eXYsXL1bnzp39lqF169ZavHixT9Ovxo8fr99++81vGUoqKipKc+bMseR8fN9996lPnz6mapcuXapjx0p//btw4UIVFRX/+01J6tmzp8aOHWvrFMPGjRvr/fff18KFC21bE4G1bt06n5puR48ezWTNEHHnnXcqIyPDVO3ll1+uZcuWqXHjxn7PUa1aNc2bN08XXHCBqfq33npLhw8f9nsOAAAAAKGPxkQAAIAQYNQUExcZpahSPJUVAMozo8bEDBeNiYAZmU4mPAMAAASD7an7Ah0h4Hbs3B/oCIClGjZsaLp2//7Qej+sWrXKsKZFixa69dZbbUhzegkJCQFbOxCOHj2q999/33T94MGDNX78eEuyPPvss7rhhhtM13/11Vfavj2wzeqxsbH69ttvlZSUFNAcOL3XXnvN9DSy6OhozZgxw6fmcLMaNmyomTNnKj7e3O/OioqK9Nxzz/k9h6/effddde/e3ZJ9OxwOvfHGG6YarTwej2bPnl3qNc18Bkm/Hzfh4eGlXq8kyttnUHmVn5+vESNGyOPxmKpv1aqVrr76aotTwR9+/vlnff/996ZqL730Un3zzTc+TUv3VWxsrKZNm6ZWrVoZ1jqdTr300kuWZQEAAAAQumhMBAAACAGZBk0xlbjJHwBKLNFg4mxOvktFbrdNaYDQZWa6KI2JAAAA1ksOUGNidNUYVTm3qmpdXFt1BtVVrYtrq8q5VRVdNcb2LPsPpisn12n7uoBdzjrrLNO1oTQx8eTJkzpx4oRh3YgRI2xIgz+MHTtWTqe5c2r9+vX12WefWTqx6eOPPzbdGOb1evXCCy9YlsWMZ5991pJGNpTe8ePH9eGHH5quf+2119S1a1fL8rRt29anJuBvvvlGycnJluUxMmDAAN1yyy2WrnHOOeeoX79+pmqXLl1a6vVSUlIMa5o3b65OnTqVei2gOE888YS2bdtmuv6tt95SWBi3gYaCJ554wlRdixYtNGXKFEVGRlqcSKpYsaKmTp2q6Ohow9pPP/1U2dnZlmcCAAAAEFr4FykAAEAIMJpAlGTQVAMAOLMkE41SWS7jSXBAeWeqMZFrFgAAAMvtSLV3OlpUUpRqXVxbtS+po0otExVTPVZRSdGKqR6rSi0TVfuSOqp1cW1FJUXZmit5Z+g0YwG+8qUx8dChQxYm8a+DBw+aqmvfvr3FSfAHl8uljz/+2HT9//3f/1k+zSs6OloTJkww3YAxdepUHT161NJMZ3L22Wfr3//+d0DWhrFPPvlEeXnmfu/bs2dP3XPPPRYnkm644QYNHDjQVK3H49Hbb79tcaLTi4iI0FtvvWXLWjfffLOpuuXLl5d6LTOfQ3wGwWqzZ8/W2LFjTddfffXV6tu3r4WJ4C8//vijVq9ebVgXHh6uL774wtYJqa1bt9ZDDz1kWJebm6spU6bYkAgAEChhDgdfNn4BQFlBYyIAAEAIMLrRPzE2zqYkAFD2VDJxDs0w0XAFlHdGE57jIqMUFRFhUxoAAIDyyev1asdO+xoT42rHqdaAOoqpHltsXUz1WNUaUEdxte37HdaOAE2OBOxQs2ZN07W5uaHzO42cnBxTdXXq1LE4Cf7www8/KDMz01TtoEGDTE82K61OnTpp+PDhpmrdbrcmT55scaLTe+ihhxQVZW9jPsz77LPPTNU5HA698cYblk4C/auxY8cqwuTv0KZOnaqCggKLE/3T9ddfr8aNG9uy1iWXXGJqYtjOnTuVn59fqrXMfA7xGQQr7dmzRzfccIO8Xq+p+qpVqwasQRm+MzsV96677lKHDh0sTvNP//nPf5SYmGhYN2nSJOvDAAAAAAgp3A0GAAAQAowbE5k+BAAlZeYcatRwBcB4wjPXKwAAoCwqcBfpWHZWoGP86fjJLOU5ChVZyfomiMiKkares4bCws09BzUsIkzVe9fUsSVHVXiq0OJ00pY9u9Ur84Tl65hVPaGSosL50yz8Iza2+Gbgv3I6nRYmCYzCQuvPIfjd559/brr2ueeeszDJPz377LOaPHmy3G63Ye2kSZP0wAMP2JDqvypWrKgbb7zR1jVh3vr167V9+3ZTtZdffrk6duxocaL/atq0qUaOHKlPPvnEsPbEiROaPXu2hgwZYkOy/7rzzjttW6tSpUpq27at1q9fX2ydx+NRSkqK2rRpY2mesvoZZLYRDtbJy8vTlVdeqYyMDNPbfPDBB6pRo4aFqeAvBw8e1Jw5cwzrYmNjNXr0aBsS/VPFihU1YsQIjR8/vti6VatW6eTJk6pcubJNyQAAAAAEO/76BQAAEAIyDBpiuNEfAEouPjJakWHhKvSc+SYmowZxADxIAQAAlE/HsrP0nzlfBDrG39S9vF6gI5xRWHiYavY5y5a19is3qP6/efWS4aqTWCXQMVBGxMTEmK51uVwWJvGvKlXMvUfS0tLUrl07i9PA5XLp559/NlXbo0cP2/8/qV+/vi677DJNnz7dsHbLli3at2+f6tWz7zNy0KBBiouzb1IwfPPDDz+Yrr333nstTHLmNc00JkrSzJkzbW1MbNKkiTp37mzbepJ03nnnGTYmStKuXbtK1Zho5nMoLS2txPsHzsTr9Wr48OHasGGD6W1GjBihK6+80sJU8CezD1O45pprfJqO7m/Dhw83bEz0eDz66aefdN1119mUCgAAAECwM/cIUwAAAARMkdutnPzibx5JjOFGfwAoKYfDYdgwRWMiYCzDqDGR6xUAAAAA8AtfGhNDaWJi1apVTdWZaURD6S1dutR0Y+utt95qcZrTu/32203Xmm2y9JfBgwfbuh58Y/Z4OPvss9W3b1+L0/xT27Zt1aVLF1O1dh/bAwYMsHU96fcpkmYcPXq0VOuY+RyaP3++cnJySrUO8L8effRRn65vWrdurffee8/CRPC3WbNmmaobOXKktUEMdOzY0dQUziVLltiQBgAAAECooDERAAAgyGW58gxrEmN56i4AlIZhY6KJczFQ3hldsyQxMREAAAAA/CIqKsp0bUFBgYVJ/CspKUkVKlQwrJs6dao2b95sQ6LyzWyzU2RkpAYNGmRxmtPr27evkpKSTNXOnz/f4jR/16tXL1vXg3nZ2dlas2aNqVo7JxH+L7OT0Pbv36/k5GSL0/xXII7thg0bmqorbWNi3bp1DWucTqeeffbZUq0D/NVHH32kV1991XR9QkKCvv32W6byhpCsrCytXLnSsC4pKUk9evSwIdGZORwOU1NxN27caEMaAAAAAKGCxkQAAIAgZzR9SDJuqAEAFM+owZuJiYAxo/dJJR6kAAAAAAB+kZ+fb7rWl+mKgeZwOEzdjF1YWKirrrpKe/futSFV+bV27VpTdd26dVNiYqK1Yc4gMjLS9PS2devWWZzmvxo3bqxq1arZth58s3HjRhUVFZmqHThwoMVpzuzyyy83XWvn8X3OOefYttYfzE7UzcrKKtU6Zpsu33jjDX3++eelWguQfp8Cfdddd5muDwsL08SJE9WsWTMLU8HfFi9ebOpzp1evXgoPD7chUfHatWtnWLNlyxZ5PB4b0gAAAAAIBTQmAgAABLlMF42JAGC1xBiDiYk0JgLFKnQXKafAVWyN0fsMAAAAAGCOy1X8v7/+KpQaEyWpX79+pup27typrl27avr06RYnKr9+/fVXU3WBnuxjdv20tDTl5trzO76WLVvasg5KZsuWLabqoqKiTE2NskqTJk1Uo0YNU7Vmf6bSioyMND290J/MNj/70rh/On369JHD4TCsc7vdGjFihB566CFlZ2eXak2UXwsWLNDQoUPldrtNb/PWW2/piiuusDAVrGC2efy8886zOIk59erVM6zJy8vTwYMHbUgDAAAAIBTQmAgAABDkjJphIsPCFR8ZbVMaACibjBq8M515NiUBQlOmy/g9ksSDFAAAAADAL3xpTIyNjbUwif9dfvnlpifFHD58WFdccYU6deqkyZMny+l0Wpyu/Dh8+LCOHz9uqrZr164Wp/HP+h6PR1u3brU4ze+YZBXczDbdnnPOOQFv7jZ7fNvVmFirVi1TjXv+Fh1t7u+gpW1MrFatmnr27Gmq1uv1auzYsWrYsKGefPJJpvjCJ6tWrdLgwYN9OmafffZZ3X333RamglU2btxoqi5YHmxQvXp1U3UHDhywOAkAAACAUEFjIgAAQJAzakxMjI0PyB8BAaAsSYyNK/b7Wa48ebxem9IAocfMVFEmPAMAAACAf/gy9S3UGhMbN26s6667zqdt1q5dq+HDh6tGjRoaPny4vv32W2VlZVmUsHzYtWuX6dpA30TfvHlz082svvxcpVGrVi1b1kHJmD0OAn1sS1KrVq1M1dl1bFeuXNmWdf5XZGSkqbqioqJSr/XEE0/4VH/ixAk9//zzatiwobp3765x48YpJSWl1DlQdm3atEkDBgxQTk6O6W0eeOABPfnkkxamgpXMNo83aNDA2iAmmf33A42JAAAAAP5AYyIAAECQM5pAxE3+AFB6iTHFn0vdXo+y83nqPnAmZqaKcs0CAAAAAP5x5MgR07UJCQkWJrHGk08+qYiICJ+3y87O1uTJk3X11VeratWq6tq1q0aPHq05c+YoIyPDgqRl16FDh0zVxcbGql69ehanKV50dLQaNmxoqtbsz1VaNWrUsGUdlIzZ4yAYJl+2aNHCVN3hw4ctTvK7YG929/rh4YIXXHCBunfvXqK1ly9frgceeEDNmjVTgwYNdPPNN2vChAlKTU0tdS6UDdu3b1f//v2VmZlpeptbbrlFY8eOtS4ULOV2u3Xw4EFTte3bt5fD4Qj4V//+/U3lPXnyZGleGgAAAABliO+/zQcAAICtDCcmxhQ/5QsAYCzJRMNUljNXlTjnAqeV6Sr+eiUyLFxxkVE2pQEAALBP9YRKevWS4YGO8SeP16Nb7n9DTmeB5WtV71FD0ZWjfd4u/2S+ji09akGiv7vm8l4ackk3y9cxq3pCpUBHQBniSwNK7dq1LUxijWbNmmncuHG69957S7yPoqIirVq1SqtWrZIkORwONW3aVF26dFHXrl3VvXt3tWzZUg6Hw1+xyxSzjVu1atUKitewTp062rlzp2GdXY2JodgQXJ6YPQ7q1KljcRL/ZcjJydGpU6dUsWJFS/OYnVwY6j7//HOdd955On78eIn3sXfvXk2YMEETJkyQJFWpUkWdO3dW165ddf7556tLly6Ki+PvDeXJzp071a9fP6Wnp5veZtiwYfrwww8tTAWrHT58WG63O9AxLOF08kBXAAAAAL+jMREAACDIGTYmMn0IAErNzLk0w5mnekk2hAFCkJnrlWC4UREAAMDfosIjVCexSqBj/M3Z1Wpq46/GzRmllb78qGoNqKOwiDDT23iKPEpfflSFWdY3Tp7btHHQ/X8D+IsvjYnB0FhTEvfcc482b96sTz75xC/783q9Sk5OVnJysiZNmiRJSkpKUu/evXXRRRdpwIABAZ/8F0zMNk1Ur17d4iTmmM3hSzNIaURH+964D3sUFhYqKyvLVG0wHN++ZEhPT7e8MbG8aNCggb755hv1799fhYWFftnniRMnNGfOHM2ZM0eSFBERoY4dO+qiiy7SRRddpC5duigszPx1NULL3r171a9fP5+u4QYPHqxJkyZxXIQ4s9MSQxGNiQAAAAD+wL9cAQAAglymM6/Y79OYCAClVzE61rBpymgiHFCe8SAFAACA4NG8SV1b1inIKNCxxUfkKfKYqvcUeXRs8REVZFjflChJzRvb8zoAgbBr1y7TtaHamChJH3zwgW677TbL9p+RkaHp06frjjvuUP369dW5c2eNHTtWx44ds2zNUGH2RvPKlStbnMScKlXMNaLbdQN9eZkqF4p8OQaC4fg2e2xLNIj4W+/evfX999+rQoUKluy/qKhIq1ev1rPPPqtu3bqpTp06uueee7RmzRpL1kPgHDx4UH379tW+fftMb3PRRRfpq6++UkQEMydCXWZmZqAjWKagwJ5/2wMAAAAIfjQmAgAABDGP16ssl1FjYpxNaQCg7AoLC1Ol6Nhia4war4DyzLgxkesVAAAAuzRvYt/Er7yDeTr04wG5jhV/I7zrmFOHfjygvIPF/57LX2pWT1JSYoItawF2Kyoq0o4dO0zXh3JjYnh4uD788ENNmjRJlSpVsny9NWvW6KGHHlKdOnV0zTXXaN26dZavGaxcLpepupiYGIuTmGM2h9mfC2WXL8dAMBzfvmTg+Pa/AQMGaMOGDerUqZPlax0+fFjvvvuuOnfurLZt22rChAl+m9aIwDly5Ij69u2rtLQ009v07NlT06dPV1RUlIXJYJey3DTu9XoDHQEAAABAkKAxEQAAIIhl5zvl9hb/1PnEGCYQAYA/GE10ozEROLNMowcpcL0CAABgG7snBRZkFOjQ3IM6OGe/srZlynXMqYKMfLmOOZW1LVMH5+zXobkHbZuUKEnNmJaIMiw5Odmn6SQtWrSwMI09brzxRqWkpOjWW2+1ZRJdYWGhvvnmG5133nkaOHCgtm/fbvmawSY/P99UXbA0TURHR5uqo3ELZo9tKTiOb7PHtsTxbZUmTZpo5cqV+vjjj1W7dm1b1vz111918803q0mTJpo8eTLNPyEqPT1d/fr1U0pKiultOnfurFmzZik2tvgHaSJ0cG4GAAAAUB7QmAgAABDEskw0wSQZNNIAAMwxakzMoDEROCPjiYlcrwAAANilXp3qql410fZ184/n68S64zo096AOzPy9GfHEuuPKP26+AcBfzj2nqe1rAnbZuHGj6dqIiAi1bdvWwjT2qV69uj766COlpqbqwQcfVJUqVWxZd/bs2WrXrp2eeeYZFRUV2bJmMAgLM3cricdT/IMV7WI2h9mfC2WXL8dAMBzfvmTg+LZOWFiYbrnlFqWlpenjjz9Whw4dbFl37969Gj58uPr166c9e/bYsib848SJE+rXr5+2bdtmeptzzjlHc+fOVUICk9/LEiafAgAAACgP+K0UAABAEMtwFj99SJIqcaM/APiF4cREF42JwOl4PB5lGU1MjI2zKQ0AAAAcDocG9u8S6BgBExUZof69zw10DMAyCxYsMF3bqlUrxcTEWJjGfvXr19frr7+ugwcPavr06Ro2bJgqV65s6ZqFhYUaM2aMLrroImVkZFi6VrAwe9z4Mn3OSmZzlLX3A3znyzEQDMe3Lxk4vq0XFRWlW265RevXr9emTZv02GOPqWXLlpavu3DhQnXs2FELFy60fC2UXkZGhi688EL9+uuvprdp2bKl5s+fr8TEROuCISA4NwMAAAAoD2hMBAAACGJGTTAOh0OVomNtSgMAZVtiTPGNiVkmmsWB8ig73ymP11tsjdH7CwAAAP41eMD5Ci+nU3Mu6NVBlSpy/Ymyy5fGxI4dO1qYJLCio6M1ePBgTZ48WceOHdPKlSv1yiuv6PLLL1fVqlUtWfOXX37RBRdcoKysLEv2H0zM3kTvdDotTmJOXp6539vRHABfjoFgOL7NHtsSx7fd2rVrpxdffFG//fab9u7dq4kTJ+rWW29Vy5Yt5XA4/L7eyZMnNWDAAP38889+3zf8JysrS/379/dpwnWTJk20YMECy65fEFixsebv5UhNTZXX6w2ZrzFjxlj3wgEAAAAIKRGBDgAAAIAzy3QW35hYKTpWYeX0JjMA8Lckg4lumc5ceb1eS24qAEJZhsG0RElKYsIzAACArapXS1L3Lq21eMWWQEex3VWDegY6AmCZbdu2af/+/abrzz//fAvTBI/w8HB16dJFXbr8d1rsjh07tGzZMi1fvlzLly9XamqqX9basGGDhg0bplmzZpXp3xHFx5v7d3x6errFScwxm6NChQoWJ0Gwi439/e9qHo/HsDYYjm9fMnB8B069evU0YsQIjRgxQtLvTYR//Qxat26dXyZw5ufn68orr9S6devUpEmTUu8P/pWdna2LL75Y69atM71NgwYNtGDBAtWsWdPCZAgks9dUkuRyuSxMAgAAAADW4S52AACAIGbUmJjITf4A4DeVDM6p+e4iOYsKbEoDhI4sg+sViWsWAACAQLhyYI9AR7Bdiyb11LJZ/UDHACzz2Wefma51OBy69NJLLUwT3Jo3b65bbrlFEyZMUEpKio4ePaqvvvpKd9xxh+rXL915Ys6cOfrggw/8lDQ4mW2QOHbsmMVJzDGbg8YPhIWFqVq1aqZqg+H49iUDx3fwqFy5si677DK98sorWrZsmU6dOqUlS5bomWee0fnnn6/w8PAS7/vUqVO68cYb5fV6/ZgYpZWTk6MBAwZo1apVprepU6eOfvnlF9WtW9fCZAi0GjVqmK7NycmxMAkAAAAAWIfGRAAAgCCWQWMiANgmMcb4nJrpNJ4MB5Q3RtcrDodDFaNjbUoDAACAP5x7TlPVq1090DFsdeWg8teMifLD7Xbr888/N11/7rnn0qTyF9WrV9c111yj999/X3v27NGWLVv09NNPq1GjRiXa3xNPPFGmbx6vVauWqbrDhw+roCDwD/JKS0szVWf250LZZvY42LNnj7VBTDB7bFepUkVRUVEWp0FJRUVFqUePHnrqqae0fPlyHTt2TJ9++qn69++vsDDfb91btWqVpk6dakFSlEReXp4GDhyo5cuXm96mRo0aWrBggRo2bGhhMgSDevXqma49dOiQhUkAAAAAwDo0JgIAAASxLFfxDTA0JgKA/ySZOKcaTbIFyqNMV/Hvi0rRsSW6wQYAAAClExYWphuvvTDQMWxTo1qSLuzdMdAxAMvMnDnTp5uVBw0aZGGa0NemTRuNGTNGO3fu1Lx589SnTx+ftj958qQ+/fRTi9IFXp06dUzVud1u7dy50+I0xcvKytKRI0dM1dauXdviNAgFZo/v5ORki5MY27Fjh6k6ju3QUrlyZd10002aN2+e0tLSdP/99ysmJsanfbz22msWpYMvXC6XLrvsMi1evNj0NlWrVtWCBQvUtGlTC5MhWFSoUEGVK1c2Vbtv3z6L0wAAYCxMDr5s/AKAsoK7wgAAAIKYUQNMYkycTUkAoOyrFGt8TqUxEfgno0miPEgBAAAgcC65oJPat2kc6Bi2eOTf1yo6KjLQMQBLeL1ePfPMM6brHQ6HrrvuOgsTlR0Oh0P9+/fXL7/8oq+//loVKlQwve0XX3xhYbLAatq0qRwOczfIbdmyxeI0/lu/RYsWFiZBqGjevLmpukAf275k4NgOXfXr19cbb7yhbdu2qXPnzqa327hxo7Zt22ZhMhjJz8/X4MGDtWDBAtPbJCUlaf78+WrVqpWFyRBszJ6jt27danESAAAAALAGjYkAAABByuv1GjcmcqM/APhNVHiE4qOii60xmgwHlEdcrwAAAASvsLAwPfHA9YqJjgp0FEsN7N9F55/Hzb0ou7777jtt2rTJdH3//v3VpEkT6wKVUVdffbXmzJmj2NhYU/Vr165Venq6xakCo0KFCmrYsKGp2uXLl1ucxj/rx8bG8r6ApN8nppqRnJys48ePW5zmzIqKirR69WpTtW3btrU4DazWsGFD/fzzz+rSpYvpbebMmWNhIhSnoKBAV155pebNm2d6m4oVK2ru3Lk655xzrAuGoHTeeeeZqtuwYYPFSQAAAADAGjQmAgAABClnUYHy3UXF1nCjPwD4l9F51WgyHFAeGTXscr0CAAAQWLXPqqq7/3VZoGNYplrVRI26bUigYwCWyc7O1gMPPODTNvfee69Facq+Hj166MknnzRdb7Zp6HTCwoL7do127dqZqlu0aJG1Qfy0fsuWLRUeHm5tmCAU7MdZIJg9tiVp8eLFFiYp3rp165Sba+5BeTQmlg0VKlTQ5MmTFRMTY6p+1apVFifC6RQVFenaa6/V7NmzTW8THx+vOXPmqFOnThYmQ7Ay+//7li1bdOLECYvTAAAAAID/8RtIAACAIGWm+SUxhhv9AcCfjM6rRpPhgPLI6JolMSbOpiQAAAA4kysH9lD7No0DHcMSj426TgkVuOZE2fXAAw9o3759pusbN26sAQMGWJio7HvggQdUqVIlU7UpKSklXicyMtJUXVFR8Q8wtEq3bt1M1W3dulVpaWkWpzm9rKws/fLLL6Zqu3fvbnGa4BTsx1kgtGrVyvR7/Pvvv7c4zZlNnz7dVF1YWJjOP/98i9PALo0aNdLIkSNN1ZbmMwgl43a7NWzYMM2YMcP0NrGxsZo5c6bpz1WUPb169ZLD4TCsc7vdPjW8AgAAAECwoDERAAAgSJlpfkliAhEA+FVibPE3s2bQmAj8jdfrNbxmYWIiAABA4IWFhemJB65XXJy56SuhYtBFXXX+ea0CHQOwzJQpU/TJJ5/4tM1LL73EhLRSio6O1sUXX2yq9uDBgyVeJyoqylSd0+ks8RqlceGFF5qu/eabbyxMcmbTp09XYWGhqVpffp6yJNiPs0AIDw9X3759TdXOmjVLLpfL4kT/5PV6Tb+vOnTooMqVK1ucCHa6/PLLTdWV5jMIvvN4PBoxYoRPn3nR0dGaMWOG+vTpY2EyBLtatWrpvPPOM1X72WefWZwGAAAAAPyPv0gAAAAEKTONiZUMGmgAAL4xaqDKdNGYCPyVs7BABe7in6hPYyIAAEBwqH1WVb30+M2KiAgPdBS/aN+msR6866pAxwAss2jRItMTk/7Qs2dPXXUV7wt/aN26tam6nJycEq+RkJBgqi4jI6PEa5RGmzZtVKNGDVO1H330kTwej8WJ/un99983VRcZGalevXpZnCY4BftxFihmG1UzMjI0depUi9P809y5c7V7925TteW16bYss+MzCL7xer265ZZbNHnyZNPbREZG6ttvv1X//v0tTIZQMWTIEFN1v/zyi5KTky1OAwAAAAD+RWMiAABAkDJqfomLjFZUeIRNaQCgfEiMMWhMZGIi8Ddmpogava8AAABgn84dW+jZR0YoLMwR6Cil0qJJPb0+5jbFRJubAgWEmkWLFmnw4MEqKCgwvU1YWJjGjRtnYarypVq1aqbqvF5videIiopSxYoVDesOHTpU4jVKw+FwmG50TUtL04wZM6wN9D+WLl2qNWvWmKodMGCAKlSoYHGi4GT2WA7UcRYoQ4YMUXi4uYc1vPnmm6V6r5fE2LFjTddeffXVFiZBINjxGQTf3HnnnZowYYLp+oiICE2dOlUDBw60MBVCyfXXX2/qc8fr9erJJ5+0IREAAAAA+A+NiQAAAEEq05lX7PeTmD4EAH5ndG7NLchXocF0OKA8yXIVf70icc0CAAAQbPr2aK8nHrg+ZJsTm55dR+Oev1Px8bGBjgJY4vPPP9dFF12krKwsn7YbPXq0OnToYFGq8iczM9NUndlpdGdiZiLhnj17VFQUmN9H3XDDDaZrn3zySbndbgvT/N1jjz1munbEiBEWJgluZqde7ty50+IkwaVmzZqmJw1u3rzZ1qmJP//8sxYsWGCqtk2bNmrfvr3FiWA3uz6DYM6oUaP04Ycfmq4PDw/X559/riuuuMLCVAg1devW1eDBg03VfvPNN1qyZIm1gQAAAADAj2hMBAAACFJGU7kSY+NsSgIA5UeiiQaqTBONWEB5YWaKaCWuWQAAAILOJRd01gujb1ZkZESgo/ikXatGeu/VfyuxUvmceoWyLTMzUyNHjtSNN97o06RESerdu7fGjBljTbByas+ePabqzDZ9ncnZZ59tWJOfn6/ffvutVOuUVOfOndWiRQtTtdu2bdP48eMtTvS7SZMmafny5aZqq1atWq4nVpk5xiRp/fr1FicJPjfddJPp2kceeUSnTp2yMM3vXC6X7r33XtP1vvwMCB12fQb9lcPhMP1lNl9Z8Mgjj+itt94yXe9wOPTpp5/quuuuszAVQtV9991nunbEiBE+P6gEAAAAAAKFxkQAAIAglWHYmMj0IQDwN1ONiSYasYDywuh6JS4yWlHhoXWzOwAAQHnRp/s5euPZO1SxQmg8SKLX+W01/oW7VYFJiShjPB6PJk+erFatWmnSpEk+b1+zZk1NmTJF4eHhFqQrn9xut2bOnGmq1mzT3pk0bdrUVN28efNKtU5p/Oc//zFd+8QTT2jHjh0WppH27dvn0439999/v6KioqwLFOTMHmM//fSTxUmCz5VXXmm6cXP//v0aNWqUxYmkxx9/3PR7qHLlyrrlllssToRAmD59uqm60n4GoXhPP/20Xn31VdP1DodDH374oW688UYLUyGUde/eXZdccomp2j179uiaa65RYWGhxakAAAAAoPRoTAQAAAhSmS4aEwHAbokxxjfk0pgI/JfR9UoS1ysAAABB7bz2zTT5w9Hq1rl1oKOcUXxcjEbfN0wvP3mLYmLKb2MJyp6CgoI/GxKHDx+uQ4cO+byPqlWr6qefflLNmjUtSGi/559/XrNmzQp0DE2bNk0HDx40rHM4HOrUqVOp1jrvvPNM1X3yySdyu92lWqukhg8frgYNGpiqdTqduvzyy5WZmWlJltzcXJ/2n5iYqHvuuceSLKGidevWio01burftm2blixZYkOi4BEeHq5HH33UdP3EiRP17rvvWpZn8uTJeuONN0zXjxo1SgkJCZblKW8WL16sF154IeATyk6dOmX6QQVdunSxOE359fLLL+vZZ5/1aZu3335bt956q0WJUFa8/vrriogw9zDHn376SUOHDlV+fr7FqczJycnRq6++qi1btgQ6CgAAAIAgQ2MiAABAkMpy5hX7/cQYbvQHAH+LjYwynO5GYyLwX0bvh8TY0Ji+AwAAUJ5Vq1JJr4+5TU8/dIMSKgTXNMIuHVvoyw9H67KLu8rhcAQ6DlBqHo9Hq1ev1j333KOzzjpLw4cPL/F0ucqVK+vnn39WmzZt/JwycNatW6dBgwapffv2mjx5sgoKCmzPsH//ft11112majt27KgaNWqUar3u3bubqktNTdXo0aNLtVZJRURE6Pnnnzddn5KSogEDBvi9OTEvL0+XX365Nm3aZHqbxx57TBUrVvRrjlATGRlpuoH2jjvu0IkTJyxOFFxGjBjh09S5UaNGafLkyX7P8cMPP+jmm282XV+zZk2fJofCWEZGhp544gnVr19fjz/+uA4cOBCQHLfeequOHDliqtbs5DX4Zvz48Xrsscd82uaNN97Q3XffbVEilCUtWrTQAw88YLp+2rRp6t+/v44dO2ZhquKlp6fr+eefV8OGDfXII4/o1KlTAcsCAAAAIDjRmAgAABCECt1FyilwFVvDjf4A4H8Oh8NwIm2GQeM4UJ5kGj1IgYmJAAAAIcHhcGjABZ305YePB8X0xD+mJI57/k7VqJYU6DhAieXk5Gj16tV6//33ddVVV6latWrq0qWL3n33XZ08ebLE+61bt64WLFigdu3a+TFt8Ni0aZOGDx+uevXq6cknn9SuXbtsWXfHjh264IILTDdmjRw5stRrNmjQQK1atTJV++qrr2rw4MHauHFjqdf11fXXX6++ffuarl+1apV69eqlnTt3+mX9AwcOqF+/flqwYIHpbdq0aePTjf9l2cCBA03Vbd++XR07dtSXX34ZkMbgQIiMjNT7779vut7tduvGG2/Uq6++Kq/X65cMf3xG+PKav/nmm+W+6dYqWVlZevHFF9WwYUNdffXVmj9/vjwej+XrFhQU6NZbb9XXX39tqv7cc881/fkB8z766COfm35feukl3X///dYEQpn03HPPqUOHDqbrlyxZotatW+ubb76xMNU/rVy5UjfddJPq1q2rJ598UsePH7d1fQAAAAChw9xceAAAANgq02Xc9MKN/gBgjcTYOB3LyTrj9zNdTEwE/mD0fmDCMwAAQGj5Y3ri0lVbNeW7X7TxV/80lJhVIT5WA/t31vCrLlDVKpVsXRvl2+bNmzVr1iyftvF6vXK5XMrPz5fL5VJ2draOHDmiI0eO6PDhw0pNTdXevXv91rjyh379+mnKlCmqVq2aX/cbjI4eParnn39ezz//vLp27aqhQ4fqsssuU/369f26jsvl0kcffaQnnnhC2dnZprapXLmybrzxRr+sf+211+qpp54yVfv999/r+++/V6NGjdStWzc1a9ZMtWrVUqVKlRQZGWlqumyVKlXUtWtXn3O+//776tChg3Jzzf1ubMuWLerYsaNeeukl3X777QoPD/d5Ta/Xq88//1wPPvigTzfDR0RE6KOPPlJEBLfESNLVV1+tRx55xFRz1d69e3X99dfrjjvuUI8ePdS2bVvVq1dPVapUUUxMjMLCzD3/vF+/foqNDa5JzGfSq1cv3XLLLfrkk09M1Xs8Hj3yyCNasGCB3n77bTVt2rRE6+7bt0/333+/vvvuO5+2GzhwoK699toSrQnzioqK9O233+rbb79VrVq1NHToUA0ZMkRdu3Y1/T4wa8mSJXrooYe0du1a09vQCGeNF1980edtHnvsMZ8nLFpt4cKF6t27d6Bj4AyioqI0ZcoUderUSVlZZ/575F+lp6frmmuu0fnnn6+nn35aF154oanrPl94vV5t3LhR33//vSZPnmzbw0EAAMElzMHMKwCA7/gtLAAAQBDKdBr/YZ8b/QHAGkbn1ywT52igvDC6ZuFBCgAAAKHH4XCoZ9c26tm1jdL2HNZ3s5dqzoK1ystzWbZm07Pr6KpBPdW/d0fFxERZtg5wJm+++abefPPNQMcoVkREhB555BE988wzJWrwCnUrV67UypUr9e9//1tt2rRRv3791L17d51//vk666yzfN6f1+vV+vXrNWvWLH388cc6dOiQT9s/99xzSkhI8Hnd07ntttv04osvyuUyf55NS0tTWlpaidbr1auXFi1a5PN2TZs21ccff6xhw4aZ3ubUqVO6++679dZbb+nee+/VsGHDlJRkPAk3JydH3377rcaPH69Nmzb5nPXVV19Vly5dfN6urKpfv74uu+wyzZgxw/Q22dnZmjNnjubMmVOiNXfv3q0GDRqUaNtAeOutt7Ru3TqfjreffvpJrVu31tChQ3XnnXeqc+fOpppEtmzZovfff1+TJk2S0+n0KWfDhg01adIkn7ZB6R06dEhjx47V2LFjVaVKFfXv3189evRQt27d1KpVqxJ9Lh85ckSzZ8/W5MmTtXDhQp+27dSpk4YOHerzmgCCR9OmTTVjxgxdfPHFys/PN73dihUrdNFFF6lx48YaNmyYBg4cqHPPPbdETYput1s7duzQihUrtGLFCs2bN0+HDx/2eT8AAAAAQGMiAABAEDLTmJjEjf4AYAmj82uG03iqLVAeFLiLlFtQ/B/ME2PjbEoDAAAAKzRqcJYeuvsa3XnTZZq3cJ3mzF+t7Sn75DYxcclIYqUK6taplYZc2l2tmtX3+7QHoCzp3bu33nnnHbVq1SrQUYLCr7/+ql9//fXPZtIqVaqoVatWatKkiWrVqqVatWopISFBsbGxioiIUG5urnJzc3Xq1Cnt2rVLO3bs0NatW3Xs2LESrd+7d2/dfvvtfvt5atSooXvuuUevv/663/ZplaFDh2rt2rUaN26cT9slJyfrnnvu0ahRo9SpUyd17NhRzZo1U5UqVRQXFyeXy6XMzEylpKRo48aNWr58uQoKCkqckUli/zRmzBjNnDlTbrc70FGCUmxsrKZNm6ZOnTrpxIkTprcrLCzUZ599ps8++0w1atRQr1691KpVK9WvX18VKlRQWFiYcnJydPDgQW3btk2LFy/Wvn37SpQxPj5e06ZNU+XKlUu0PfzjxIkTmjJliqZMmSJJio6OVrNmzdSiRQvVqVNHtWrVUtWqVRUTE6OYmBgVFBQoJydHubm5OnjwoHbs2PHnV0mmKsfFxen//u//uHYGyoDevXvriy++0HXXXefz5/POnTv17LPP6tlnn1VCQoLat2+vVq1aqU6dOjrrrLMUHx+vmJgYud1uuVwuOZ1OHTt2TEePHtWBAweUnJyslJQUn5oiAQAAAOBMaEwEAAAIQkaNiVHhEYqN5OnxAGCFSgaNVJkuJiYCkpRlokmXiYkAAABlQ3xcjK64tLuuuLS7XPkF2pl2UDtS92vHzv3akbpPu/ceKbZZsWJCnFo0qafmTeqqWZN6at64rs6qUZkbqgEDjRs31rPPPstUJAMnTpzQkiVLtGTJEsvXqlevnqZOner3qZVjxozR9OnTtWvXLr/u1wpjx47VyZMnSzS1ze12/zn90goDBw5kmtwZtGvXTg8//LBefvnlQEcJWo0aNdJPP/2kfv36KTMz0+ftjx49qq+//tr/wfR74+QPP/yg9u3bW7J/lFx+fr62bNmiLVu2WL6Ww+HQxx9/rNatW1u+FgB7XHXVVZoxY4auvfZa5eWV7MGo2dnZtl0LAwAAAMDp0JgIAAAQhDJdxf/SOTE2nhu3AMAiiTHFN1JlufLk8XgUFhZmUyIgOJlp0jV6PwEAACD0xERHqXWLhmrdouGf/62goFCZWTlyFRSqoKBIRUVuRUdHKjoqQnGxMapUkd9lAb7o2rWrHnroIQ0ePJjfPwSR2rVr65dfflGNGjX8vu/4+HjNmjVL3bt392laWyA4HA59+umncrvd+uKLLwId50+XXnqpvv32W0VGRgY6StB6/vnntW3bNv3www+BjhK0OnTooLlz52rAgAHKyMgIdBxJv0/Imz59uvr27RvoKAiwd999V8OGDQt0DAB+NnDgQC1YsECDBw/W0aNHAx0HAAAAAHzGXzEAAACCkNHExMSY4qd5AQBKLslgwpvX69WpfKdNaYDgZXS9IjExEQAAoLyIiopU9WpJqle7uho3rKXmTeqqYb2aqlWzqhIrVaApETChVq1auvfee7V69WqtWLFCV1xxBU2JQaRDhw5auXKlzj77bMvWaN68uVatWqWWLVtatoa/hIWF6fPPP9dzzz0XFOf4Bx98UN9//72io6MDHSWohYeHa9q0abrzzjsDHSWode7cWWvWrFGLFi0CHUX169fXihUr1L9//0BHQQDFxcXp66+/5r0LlGFdunTRli1bdMkllwQ6CgAAAAD4jL9kAAAABCHDxkRu8gcAy5g5x5ppyALKOqP3QWR4uOIio2xKAwAAAAChxeFwqE2bNvr3v/+txYsXa//+/XrrrbfUqVOnQEfDX4SFhenee+/VsmXLVLduXcvXa9y4sTZu3KgXXnhBSUlJlq9XWk888YRmz56t2rVrB2T9qlWraurUqXr99dcVHh4ekAyhJiIiQu+9954WLFigDh06BDpO0GrcuLFWrVqlESNGBCzDFVdcoXXr1qldu3YBy4DA69ixo1avXq2rr7460FEAWKx69eqaPXu2PvroI1WrVi3Qcf4hLCxMF198sRo0aBDoKAAAAACCDI2JAAAAQSjDmVfs92lMBADrmGpMdBV/ngbKA8PrlZj4oJiaAAAAAADBoFatWurbt68efvhh/fDDDzpx4oS2bNmi8ePHq2fPnkxHlPTwww/rjjvusKUB0Izzzz9fS5cu1VtvvaXY2Fjb1o2KitLo0aO1f/9+ffzxx+rfv7+iooL3wT8DBgzQtm3bdPfddysiIsKWNcPCwjRixAjt2LFD1157rS1rljV9+/bV+vXrtWjRIt16662qUaNGoCMFnYoVK2rixImaP3++mjZtatu69erV0/Tp0zVt2jRVrVrVtnXLu/PPP18vvPCCunbtGhSfydWqVdO4ceO0atUqtW7dOtBxANjo1ltv1c6dO/XII48oPj7w94U0bdpUTz/9tNLS0vTjjz+qTp06gY4EAAAAIMjY81thAAAA+CTTZTQxMc6mJABQ/iRExyrcESa313PGGiYmAsbXK0k8SAEAAABAGRUZGano6Oi/fSUkJKh69eqqXr26atSooerVq6tOnTpq1qyZmjdvroSEhEDHDnrdunVTt27dJElbtmzRrFmzNHv2bK1Zs0ZFRUW2ZPhjEsy///1vXXTRRbaseSbx8fG65ZZbdMstt8jpdGrt2rVav369UlJStGvXLh09elTp6enKyclRfn6+CgsL5fV6A5K1YsWKeuedd/TQQw/plVde0cSJE+Vyufy+TkREhIYOHarRo0erefPmft9/edSrVy/16tVLH374oZKTk7Vq1Spt375dqampOnjwoNLT05WRkSGXy6WCggJ5PGf+nWlZdcEFF2jbtm366quv9NJLL2nr1q2WrNO4cWM98sgjGjFihCIjIy1ZA2dWvXp1jR49WqNHj9bx48c1Z84czZ49W/Pnz1dGRoZtOZo0aaI77rhDt912mypUqGDbugCCS8WKFfXyyy/r0Ucf1aeffqr33ntPu3btsmVth8Ohdu3a6dJLL9UVV1zBhGUAAAAAhhzeQP1mGgAAlFp6erqqV6/+t/927NgxVatWLUCJ4A8ej0c3fPVOsTcQ3Nb5AvU+u5WNqQCgfLln+v/ppDPnjN+/pm1XDW7dycZEQPB5bdH32nhozxm/36luY93X41L7AgEAgDIjPz9faWlpxdY0atRI0dHRNiUCAARSXl6e1q5dq5UrV2rVqlVatWqVjh496rf9x8bG6vzzz9dll12mIUOGBM3ExlCWmZmpadOmacqUKVq6dKkKCgpKvK+IiAh16dJF1113na655hr+BoaAW7NmjSZPnqzp06dr//79pdpXjRo1NHjwYA0bNkw9evSQw+HwU0r4i9fr1Y4dO7Ry5co/v7Zv3+63Jl2Hw6HmzZvrkksu0ZAhQ3T++edzHAA2mDFjhjZt2mSq9r777lNiYqKlecxYt26dZsyYoZkzZ2rr1q1+Ow9FRESoRYsW6tatm3r06KE+ffrorLPO8su+g01Z/30T95AB8Ic5v4wNdIRy5ZK+DwY6AgD4BY2JAACEMH6pVDZlOXN15/RPiq15pPflalergT2BAKAcenzuFO0+eeyM37+wSVvddF4fGxMBwWf0j1O0J4P3CQAA8L+yfqMYAKD0Dh06pNTUVO3atUs7d+7Url27tH//fp06dUo5OTnKyclRdna2ioqKFBUVpejoaCUmJqp69eo666yz1LhxYzVr1kznnHOO2rdvz3QyC7lcLq1Zs0YrV65USkqK0tLStG/fPmVnZys3N1cul0vR0dGKj49XhQoVVKdOHTVq1EhNmjRRly5d1LVrV8XHxwf6xwBOa8+ePVq2bJk2b96sXbt2affu3Tp27Jhyc3OVl5cnr9eruLg4xcfHq0qVKmrYsKEaNWqkdu3aqVu3bmratGmgfwSUQE5Ozp/Ta//4DEpLS1NGRsafnz85OTnKy8v7c8pyfHy8qlWrpho1aqh+/fpq1qyZWrVqpS5duqhy5cqB/pEAhJjs7GytX79e69ev186dO7Vv3z7t27dPJ0+eVF5enpxOpwoKChQZGamoqChVqFBBVatWVbVq1VS7dm01bNhQZ599tlq1aqXWrVsrJiYm0D+SLcr675u4hwyAP9CYaC8aEwGUFRGBDgAAAIC/y3DlGdZUiuWP8ABgpcSY4s+zma5cm5IAwcvofZDE9QoAAAAAwCK1atVSrVq11KtXr0BHgYGYmBj17NlTPXv2DHQUwO8aNGigBg0aaPjw4YGOAhtVqFBBHTp0UIcOHQIdBUA5lZCQoN69e6t3796BjgIAAAAACgt0AAAAAPxdptO42SUpJs6GJABQfiUaNFRlOo2byIGyzOPxKMvgYQpG7yMAAAAAAAAAAAAAAAAAQOiiMREAACDIGDUmhjkcSqAxEQAslRRb/HnWTBM5UJadynfK6/UWW0NjIgAAAAAAAAAAAAAAAACUXTQmAgAABBmjZpdKMXEKczhsSgMA5ZPhxERXrmFTFlCWZRpMS5RoTAQAAAAAAAAAAAAAAACAsiwi0AEAAADwdxkGjYnc5A8A1jM61xa63corLFB8VLRNiYDgYmZqaCITngEAAAAAAAAAAAAACAlhYlgCAMB3TEwEAAAIMlkGE4gSY2hMBACrmTnXmmnMAsoqo+Pf4XCoYnSsTWkAAAAAAAAAAAAAAAAAAHajMREAACDIGN3onxjL9CEAsJqZcy2NiSjPjI7/SjFxCgvj104AAAAAAAAAAAAAAAAAUFZxhxgAAECQyTBsTGRiIgBYzczERKPzNVCWGV6vMOEZAAAAAAAAAAAAAAAAAMo0GhMBAACCiNfrVaaLxkQACLSI8HBViI4ptsbofA2UZVmuvGK/n8SEZwAAAAAAAAAAAAAAAAAo02hMBAAACCJ5hQUqdLuLrWECEQDYI8ngfJvlLL4xCyjLMg0mJlbiQQoAAAAAAAAAAAAAAAAAUKbRmAgAABBEjG7yl6QkbvQHAFsYTajNMHHOBsoqo+OfBykAAAAAAAAAAAAAAAAAQNlGYyIAAEAQyXQZN7kkxsbZkAQAUCmm+POtmXM2UBZ5vV7D4z+J6xUAAAAAAAAAAAAAAAAAKNMiAh0AAAAA/2VmYqJRowwAwD+MJtSaOWcDZVFeYYEK3e5ia4wmjgIAAAAAAAAAAAAAAABnUlhYqKVLl2r58uXatm2bduzYofT0dGVnZys3N1exsbGqWLGiKleurGbNmqlly5bq3Lmz+vbtq9jY2EDHDynp6emaN2+eNm7cqG3btmnXrl3KyspSdna2CgsLlZCQoIoVK6pWrVpq2bKlWrVqpb59+6pdu3aBjo4gQGMiAABAEMl05hX7/QpRMYoM5xIOAOxg1FhFYyLKKzPHPo2JAAAAAAAAAAAAAAAA8NWyZcv07rvvas6cOTp16tQZ63JycpSTk6NDhw5p69atmjZtmiQpNjZWF1xwge68805dfPHFcjgcdkUPKU6nU59//rk+/fRTrV27Vh6P54y1GRkZysjI0N69e7Vy5co//3udOnV09dVX695771XDhg3tiI0gFBboAAAAAPgvoxv9uckfAOxjdM7NKyxQQVGRTWmA4JHpMtGYGMM1CwAAAAAAAAAAAAAAAMxZsmSJzjvvPPXo0UNTp04ttimxOE6nUzNnztQll1yiFi1aaMaMGf4NGuIKCwv1yiuvqG7durr99tu1evXqYpsSi3PgwAGNGzdOjRs31tVXX609e/b4NyxCAo2JAAAAQSTDsDExzqYkAAAzzeBmGrSAssbMxMRKXLMAAAAAAAAAAAAAAADAQGZmpkaMGKFevXpp3bp1ft13cnKyhgwZokGDBunQoUN+3XcoWr58udq1a6dHH31UJ06c8Nt+PR6Pvv32W7Vq1UqvvvqqvF6v3/aN4EdjIgAAQBAxanBh+hAA2CcxxrixykyDFlDWZDrziv1+fFS0osIjbEoDAAAAAAAAAAAAAACAULRt2zZ16tRJn332maXrzJo1Sx07dtSKFSssXSeYvffee+rTp4+2b99u2Rp5eXl65JFHdPnll5d44iVCD42JAAAAQSTL4Eb/JBPTuwAA/mHmnEtjIsojo+PezLRRAAAAAAAAAAAAAAAAlF/Lli1Tly5dlJqaast6R44cUZ8+fTR9+nRb1gsmDzzwgO6++24VFhbast7MmTPVtWtXpaen27IeAovGRAAAgCCSYXCjf6VY4+ldAAD/iImMUnREZLE1GQYN5UBZxIRnAAAAAAAAAAAAAADKljCHgy8bv8q7devW6dJLL1V2drat6xYUFOi6667TvHnzbF03kEaPHq1x48bZvu62bdvUv39/ZWZm2r427BUR6AAAAAD4XUFRkfIK84ut4UZ/ALBXYkycjuZknfH7Rg1aQFlkPDGRBykAAAAAAAAAAAAAAADgnw4cOKABAwbo1KlTpreJiYlRz549de6556p27dqqWLGicnJydPjwYW3YsEGLFi1STk6OqX0VFBToiiuu0OrVq9W6deuS/hgh4cMPP9RLL73k0zZ16tRRz5491bZtW1WtWlWRkZHKzMxUamqqVq9erXXr1snr9Zra16ZNmzRkyBD9/PPPCg8PL8mPgBBAYyIAAECQMNPckhRLYyIA2CkpNr74xkSDBi2gLMo0mBSayPUKAAAAAAAAAAAAAAAA/kdRUZGGDh2q48ePm6qvXr26nnjiCd14442qVKnSGevy8vL09ddfa8yYMdq7d6/hfvPy8nT11Vdr3bp1io8vm/e5bNq0Sffdd5/p+p49e+qpp55S37595Shmqufu3bv11ltv6b333lNBQYHhfhctWqQxY8boueeeM50FoSUs0AEAAADwOzPNLdzoDwD2Mjrv0piI8ijDaGIiE54BAAAAAAAAAAAAAADwP1588UUtW7bMVO21116r1NRU3XvvvcU2JUpSXFycRo4cqeTkZN19992m9r9jxw7df//9pmpDTUFBga677jq5XC7D2tjYWE2YMEGLFy9Wv379im1KlKSGDRtq3Lhx2rJli+mJk778/47QQ2MiAABAkKAxEQCCj2Fjoqv4yXFAWVNQVKS8wvxia5jwDAAAAAAAAAAAAAAAgL/avXu3XnrpJVO1jz32mKZOnaqKFSv6tEZ0dLTeeecdvf3226bqP/nkE61du9anNULBG2+8oeTkZMO6ihUratGiRRo5cqTPazRr1kyrVq1Sr169DGs9Ho/uueceud1un9dB8KMxEQAAIEgYNbdER0QqNjLKpjQAAImJicD/yjLRjMuDFAAAAAAAAAAAAAAAAPBXDzzwgKkJfrfffrtefPHFUq11zz336Pnnnzes83q9uueee+T1eku1XjA5dOiQqZ89MjJSs2bNUqdOnUq8Vnx8vGbNmqVzzjnHsHbz5s368MMPS7wWgheNiQAAAEHCqLklMSbOpiQAgD8YnXtPufLk9nhsSgMEXoaJZtxKXLMAAAAAAAAAAAAAAADg/9u0aZNmzJhhWNe+fXuNHz/eL2uOHj1aF110kWHdmjVrNHv2bL+sGQxeffVV5eYa39/zwgsvqEePHqVer0KFCvrqq69UoUIFU2sWFBSUek0EFxoTAQAAgoRhYyLThwDAdkbnXq9+b04EyotMl/EvLpO4ZgEAAAAAAAAAAAAAAMD/9+qrrxrWhIWF6ZNPPlF0dLRf1nQ4HProo48UGxtrWGsmXyjIyMjQJ598YljXvn17Pfjgg35bt2nTpnrqqacM6w4dOqQvvvjCb+siONCYCAAAECSMJhDRmAgA9jNz7s0w0agFlBVGD1KICo9QbGSUTWkAAAAAAAAAAAAAAAAQzPbv369vvvnGsO6GG25Qhw4d/Lp2vXr19MADDxjWLV26VGvXrvXr2oHwwQcfmJqW+MYbbygszL/tZKNGjVLDhg0N68aOHevXdRF4NCYCAAAEiUyDiVuJMTQmAoDdzJx7jRq1gLLEzIRnh8NhUxoAAAAAAAAAAAAAAAAEs8mTJ6uoqKjYGofDoUceecSS9UeNGqWYmBjDukmTJlmyvp3M/AydO3dW7969/b52VFSU7r//fsO6bdu2ad26dX5fH4FDYyIAAECQMLrRPyk2zqYkAIA/JETHKNzg6VBZzuIby4GyxPBBClyvAAAAAAAAAAAAAAAA4P+bPHmyYU3//v3VokULS9avVq2arr/+esO6r7/+2rCBMpitX79eycnJhnX33XefZRluvvlmVaxY0bDOzDGB0EFjIgAAQBDweDw6le8stiYxlomJAGA3h8OhxJjiG60ymJiIcsRwYiITngEAAAAAAAAAAAAAACBp69at2rp1q2Hd8OHDLc1hZv/p6en6+eefLc1hpSlTphjWJCQk6PLLL7csQ3x8vIYMGWJYN3XqVHm9XstywF40JgIAAASBrHyn4UV2JW70B4CAMGoMz3TRmIjyw7AxkQcpAAAAAAAAAAAAAAAAQNLcuXMNa2JiYixtlpOknj17qlatWoZ1P/74o6U5rGTmtb7ssssUGxtraY7rrrvOsObIkSPatGmTpTlgHxoTAQAAgoDRTf6SlBRb/MQuAIA1jCbAZTrzbEoCBJ5xYyLXKwAAAAAAAAAAAAAAAJDmz59vWNO9e3clJCRYmiMsLEz9+/c3rDOTNxgdPnxYv/32m2HdgAEDLM/Su3dvxcTEGNaF6muNf6IxEQAAIAiYaUxkAhEABIZRo5WZczhQFng8HmXlO4utMWrkBQAAAAAAAAAAAAAAQNlXUFCgZcuWGdZdcMEFNqQxt8727dt18OBBG9L414IFC0zV9evXz+Ikv0/A7N69u2EdjYllB42JAAAAQcCoqSXcEaYK0daOTwcAnJ5RYziNiSgvTuU75fV6i61J4kEKAAAAAAAAAAAAAACEnDD+Z+v/yoPNmzcrLy/PsM5ME5s/9OjRw1Td6tWrLU7ifytXrjSsady4sWrWrGlDGnOv9Zo1awzvQ0JoKB9nNAAAgCCXYdDUUik2TmEOh01pAAB/ZdiY6MrjlyQoF8w04VaiMREAAAAAAAAAAAAAAKDc27hxo2FNWFiYzjnnHOvDSKpXr56qVq1qWGcmd7Axk7lDhw42JPldx44dDWtOnTqltLQ0G9LAajQmAgAABIEsV/FPhUmM4SZ/AAgUo3Nwkcet3IJ8m9IAgWP0IAVJSoqJsyEJAAAAAAAAAAAAAAAAgtmGDRsMa5o2bar4ePvujzXTMBdqjYkej0ebN282rAu2xkQp9F5rnB6NiQAAAEHAaAJRYiw3+QNAoCSZmABnZpIcEOoyXcUf52EOhxJoTAQAAAAAAAAAAAAAACj3fv31V8Oa5s2b25Dkv5o1a2ZYs2XLFhuS+M+uXbuUl1f8cBTJ3te6Zs2aqlSpkmFdqL3WOD0aEwEAAIKA0QSiRBNNMQAAa1Qy0RyeYdCwBZQFmc7if4lZKSZOYQ6HTWkAAAAAAAAAAAAAAAAQrNLS0gxrmjRpYkOS/2rcuLFhzcGDB1VQUGBDGv8w8zpL9r/WZ599tmGN2ewIbjQmAgAABAGjCUSJMTQmAkCgVIqJk1GrFRMTUR4YHeeVuF4BAAAAAAAAAAAAAAAo95xOp44cOWJYZ6Z5zZ/MNCZ6PB7t3bvXhjT+sXv3blN1jRo1sjjJ35l5rc1mR3CjMREAACDAvF6v4QSiJCYmAkDARISFKyE6ttgaGhNRHhg9SCHJxHRRAAAAAAAAAAAAAAAAlG1mG/tq1aplcZK/O+uss0zVhVLD3J49ewxrKleurJiYGOvD/IWZ1zqUXmecGY2JAAAAAZZbkK8ij7vYmkQaEwEgoIzOwzQmojwwepAC1ysAAAAAAAAAAAAAAAA4ePCgqbqaNWtanKRk6x04cMDiJP5j5rW2+3U2u+aRI0fkdhd//zSCH42JAAAAAWY0fUiSEplABAABZdiY6Cq+YQsoC4wacGlMBAAAAAAAAAAAAAAAwIkTJ0zV1ahRw+Ikf1e9enWFhRm3UZ08edKGNP5h5rW2+3WWzDUmer1eZWRk2JAGVqIxEQAAIMDMTNlKjOFGfwAIJKMGcSYmoqzzer00JgIAAAAAAAAAAAAAAMCQ2cbExMREa4P8j7CwMCUkJBjWmc0fDMxktft19mXNUHqtcXo0JgIAAARYptN4ylalGCYmAkAgGTWI05iIsi6vsECFHnexNYlcrwAAAAAAAAAAAAAAAJR7ZicOVqhQweIk/2SmMTGUJiaayWrmZ/Y3s2uG0muN06MxEQAAIMAyDJpZEqJjFREeblMaAMDpGE2CM9NkDoQyUxOemZgIAAAAAAAAAAAAAABQ7p06dcqwJj4+XmFh9rc0VaxY0bAmKyvLhiT+Yea1DkRjopnXWQqt1xqnR2MiAABAgBnd6J8Yy/QhAAg0o4YrZ1GBXEWFNqUB7EdjIgAAAAAAAAAAAAAAAMwoKCgwrImNjbUhyT/FxMQY1pjJHyyC9bU28zpLofVa4/RoTAQAAAiwTJdBY2IMN/kDQKAlxhg3iZtp3AJCldGEZ8nc+wQAAAAAAAAAAAAAAABlm5lms/DwcBuS/FNERIRhTSg1ywXra23mdZZC67XG6Zn7fxoAAACWyXLmFfv9JKYPAUDAmTkXZzpzVTMh0fowQAAYPUihQlSMIsP5NRMAAAAAAAAAAAAAAKHogj6jAh0BZYiZZjOzjWv+ZmbdwsJCG5L4R7C+1mbXDKXXGqfHxEQAAIAAyzC40b9SLNOHACDQEs00JrqKbzQHQpnRgxS4XgEAAAAAAAAAAAAAAIAkFRUVGdbQmOgfwfpa05hYftCYCAAAEGCZzuIbExNjmJgIAIEWHRGp2MioYmuMzudAKMvgegUAAAAAAAAAAAAAAAAmmGlKc7vdNiQp2bqBaposiWB9rc2uGUqvNU6PxkQAAIAAyi8qlLOw+DHqSSamdAEArJcYU/xEOBoTUdZ4vV7l5rl0MjNbx05lFlvL9QoAAAAAAAAAAAAAAAAkKSqq+AfAS+Ym/VnBzIQ+M/mDRbC+1mYnIYbSa43To7UUAAAggMw0sSRyoz8ABIXE2Hgdzs484/d/WbtZKQv3KDoqUtWqVFKzs+uoeeO6qpJU0b6QQAkVud3as++odqTu+/9f+7Vz9yG58n9/gEKdy+opKvHMvwgsyC1QnjNfcbHRdkUGAABAkCosdKmoKF8REdGKjIwJdBwAAAAAAAAAAGCzyMhIw5pANSaaWTeUmuWC9bU2u2YovdY4PRoTAQAAbJB+IuvPm/x37NyvfQeOKjfPJW9CmJJ6Vyt22wqR3OAPAIFy6MgJrVi3Tdt37tN2xxGp2pn/GX3sVJa2LEz+x3+vVrmSmjWuq+aN66h968Y6p9XZCg8PszI2YIrTla+fFq7XvIXr9FvyHuXnn/lJZeFx4cXu68c5q/XVG/PVsF5N9ezaVoMvOV81q1f2d2QAAAAEsaKifCWnLtaRo8nyej1yOMJUs0YzNWvSSxER/H4LAAAAAAAAAIDyIjra+O8CLpfLhiQlWzeUmuWC9bU2u2YovdY4PRoTAQAALJCb59L8xeu1fPVv2p6yV8dPnjptXXyC8TTEYTe/qEZ1auqc1o01oN95ata4rr/jAgD+osjt1oq12zRt9jKt3rjjz/9euUNlJVZLPON24TGnb9xKP5ml9DVZWrZmqySpVo0qGjKgmwZd2FmJlSr4NTtgxt79R/Xd7GWaPX+1cnKdhvWOcIfCo4pvTCxyuuX1epW297DS9h7WZ1//pG6dWuvKgT3UqUMzhYXRjAsAAFCWud1F2rTlB2VmHfrzv3m9Hh0+sl1OZ5batxui8HD+LAkAAAAAAAAAQHmQkJBgWJObmyuv1yuHw2FDov/Kzs42rKlYsaINSfwjISFBx44dK7bGzM/sb2bXDKXXGqfHXwABAAD8KG3PYX03e6nmLFirvDzjp32ExxV/OeYp9KjAWfj7pMXU/Zo6faFaN2+gKwf2UN+e7RUdZTyCHQBgzomMU/rhp1WaMXe5jqZn/uP7bqe72O0jYs39E/vQ0RN6d+IP+njyHPXr3l5XXtpdrZrVt/2XbChfvF6vVqz5TVOmL9S6TSk+bRseW3xTovTP94fH49XSVb9q6apfVeesqrpyUA8NuaS7YmJ4yhkAAEBZtHff+r81Jf5VZtYh7d2/Xo0adLY5FQAAAAAAAAAACITKlSsb1ni9XmVnZ9vemHbq1OkHjfyVmfzBonLlytq1a1exNWZ+Zn8zu2YovdY4PRoTAQAASsnt9mjR8s36duYSbfx1p0/bGt3oX+Qs+sd/27pjj7bu2KM3P/pOgy7qqqsG9VDN6lyYA0BJOV35+vDzOfp29lIVFZ25+dCoMTE8JlxySPKaW7egsEg/LlyrHxeuVbuWjfTwXVercYNaPiQHzDl2PFMvj5+iFWu3lWj7cBNNt+7TXLP84cDh4xr/0XR988MSPX7/MHVs17REOQAAABCc8pxZ2rNvbbE1e/au1Vk1mis2tpJNqQAAAAAAAAAAQKBUqVLFVF1WVpatjYkej0c5OTmGdWbzBwMzWbOysmxIUrI1Q+m1xumFBToAAABAKEtNO6Cb/v2aHn/xU5+bEiXj6VruvDM3wWSdytUX3/ysq//1nD79cm6xzTQAgNPb8OtODb/nFU39fpHhedSoMVH6/82JJbB5W5pG3ve6Pp06j/M5/Mbr9WrWT6s07PYXS9yUKEkRJiYmnu5hCv/r0JETuvuRt/XaO18rz5lf4jwAAAAILimpi+XxFP/vGI/HreSdS2xKBAAAAAAAAAAAAslss9nRo0ctTvJ36enpcruN780KpWY5M1ntfp0l6ciRI4Y1DodDSUlJNqSBlZiYCAAAUAJFRW5NnDpPE6bMk9vtKfF+jCYmFjd96A+FhUX66LPZWrxii556aLjOZtoWABhyuvL17sSZ+nbWUtPbFLmMz8kRsRGmGhhPu/8itz76Yo4Wr9yiJ++/numJKJXSTkn8K6OJiZ5Cj7yFJkeFSpo2a6lWrtvG9EQAAIAyIP14mo6f2G2q9vjxNB0/vltVqza0OBUAAAAAAAAAAAik2rVrm6oz07zmT2bXM5s/GJjJavfrbHbNGjVqKCKCtrZQx8REAAAAH6WmHdDNo17XJ1/8WKqmRMn4Rn9fmluSd+7XiHte1YQp81Rk4okuAFBebd6WpuH3vOJTU6JkcmKiiclyRpJ3HdDI+17XxK9/ksdTus8ZlE8r1v6m6+8o3ZTEvzJ8kILL9+uOP6Ynvvvp9xznAAAAIcrtLlJKqm9TEJNTF8vtNn7oCwAAAAAAAAAACF0NGjQwVXfo0CFrg/yPw4cPm6pr2DB0HrJo5rU+efKk8vPzrQ/zF2Ze61B6nXFmNCYCAACY5PV6NfnbBRp572tK2XXAL/s0utG/yMTExL/VF7n14aRZuvW+N3ToyInSRAOAMmn+4g2667G3dbAE50hPgUceg4Z0fzQmSr+fzz/4bLaefHWSCgu5aRfmzVu4Tg+P+UjZOU6/7dP4QQolP0Y///pnPf/GZB6qAAAAEIL27lsvpyvLp22crizt3b/eokQAAAAAAAAAACAYxMbGqkaNGoZ1u3btsiHNf+3cudOwxuFwqH79+jak8Q8zzX1er1dpaWk2pPkvM681jYllA42JAAAAJng8Hr3x/jS9/cmMUk9J/JNDCo8xmEDkw8TEv9qeuk+3PzhOu/eae7oLAJQH039crqde/6xU53Gj87LRed1XC5Zt0sPPfSyny94nViE0TZ+9TGNeLd0xfjoRRg9SyCtdU+Gcn9fo8Rc+pQkXAAAghOQ5s7Rn39oSbbtn71o5nb41NAIAAAAAAAAAgNDSqFEjw5rU1FQbkvyXmWa52rVrKzo62oY0/mHmdZaC87U2mx3BjcZEAAAAA0Vut54b+4W++WGxX/cbHhMuh8NRbE1pJhCln8jS7Q+9qW3Je0u8DwAoK76dtVSvvPu1vF5vqfbjdhXfgBVhMFmuJFZt2KEHn/lIrvwCv+8bZcfs+av1yttflfoYP53wOOsmJv5h8YotljRVAgAAwBopqYvl8ZTsARUej1vJO5f4OREAAAAAAAAAAAgmbdq0MazZsWOHDUl8W89M7mBy9tlnKzY21rDOztf6yJEjysoyfkhlqL3WOD0aEwEAAIrh8Xj04rgv9eOCkj0BvjhGN/lLUlEJJyb+4VR2nkY9/q5S0w6Waj8AEMp+XLhWr3/wrV/2ZTgx0WCyXElt+HWnHn95ooqKSve5gLJp8YrNenHcl5bt36oJz/9rwdKNeuXtqZY0VwIAAMB/0o+n6fiJ3aXax/HjaTp+vHT7AAAAAAAAAAAAwat9+/aGNcnJycrLy7Mhze82bNhgWNOhQwcbkvhPeHi42rZta1hn5mf3F7NrhdprjdOjMREAAOAMvF6vxn80XXN+XmPJ/iNMNK/4YwJRdo5Tox5/V/sPpZd6XwAQalat367n/diwVWRwXraqMVGSlq/9TS/StIX/sXP3IT318iS5PRZNGnQYNyYavS988cPclfryu1/8tj8AAAD4l9tdpJRU/0w7TE5dLLfbf9eSAAAAAAAAAAAgeJhpOvN4PNq0aZP1YSTt379f6enG99GaaagMNmZeazsbE9evX29Yk5CQoLPPPtuGNLAajYkAAABn8PX3i/XVjEWW7T88tviJiV63V558/zQZnMzI1v2Pv6ecXKdf9gcAoSAjK0fPvPGFXxu23K7iJ8NFxBhPwy2NOQvWaO6idZaugdBRVOTWs69/rvyCQsvWCI8JlyPMUWyNvyYm/uGDibO0e+9hv+4TAAAA/rF333o5XVl+2ZfTlaW9+43/MA0AAAAAAAAAAEJPu3btFBsba1i3dOlSG9JIS5aYe/Bi586dLU7if127djWsSU1N1dGjR21IY+617tSpkxyO4u9JQmigMREAAOA0du87onf/73tL1zCaquXP6UOSdODwcY3/aLpf9wkAwez1D75VRlaOX/dp1IBl5cTEP4z78DsdP+mfG4ER2j77ar5Sdh2wdA2jBylI/pnw/FeFhUV67o3JKnL7t+ERAAAApZPnzNKefWv9us89e9fK6eTfNwAAAAAAAAAAlDXR0dHq3r27Yd2CBQtsSGNunebNm6tOnTo2pPGvfv36maqz47XOz8/X8uXLDesuvPBCy7PAHjQmAgAA/I8it1vPjf1CBYX+vcn+f0UY3Ojv7+lDkjRz3kqtXLfN7/sFgGDzy7JNWrB0o9/3a9Q07ghzKCza2n9qn8rJ0yvvfi2v12vpOghuqWkH9emUuZavY6bZtsiCa5ZtyXv15bRf/L5fAAAAlFxK6mJ5PP699vN43Ereae4JxQAAAAAAAAAAILRccMEFhjVLly5VTo5/Hz7/vzwej+bNm2dYF6rNcrVq1VKLFi0M63788UfLsyxatEhOp9OwLlRfa/wTjYkAAAD/Y8p3C7Utea/l6xjd6O/v6UN/eOnNKcrJNb7oB4BQlZGVo9fe/8aSfZtpGg+PsX5q4tLVWzV30TrL10FwKir6/SEKRUXWTxSMMLhe8Xq88risyfHx53O0e+9hS/YNAAAA36QfT9PxE7st2ffx42k6ftyafQMAAAAAAAAAgMC5+OKLDWtcLpe+//57S3MsXbpUhw4dMqwzkzdYmcn+/fffy+VyWZpj6tSphjU1atRQ+/btLc0B+9CYCAAA8Be79x3Rx5/NtmWt8ABMTJSkY8czNf6j6ZbsGwCCwdgPvlVGljVP0TJzbjaaiOsv4z78TicyTtmyFoLLVzMWKWXXAVvWMrxesagpUZIKC4v08ltTmQ4KAAAQYG53kVJSrZ1qmJy6WG63NQ/pAgAAAAAAAAAAgdG2bVu1bNnSsO6LL76wNMfnn39uWFOlSpWQnuI3dOhQw5rs7GxLm0Bzc3M1fbrx/cnXXnutHA6HZTlgLxoTAQAA/j+v16sXx32pgkJ7boKKiCt+AlGRRRMTJWnmvJVauzHZsv0DQKD8lrxXPy/daNn+3fluwyYpo4m4/nIqJ08TvvrJlrUQPAoKCvXFtwtsW89wwnOetddNm39L08Zfd1q6BgAAAIq3d996OV1Zlq7hdGVp7/71lq4BAAAAAAAAAADsd/311xvWzJs3Tzt27LBk/fT0dE2ePNmw7pprrlFkZKQlGexw3nnnqUmTJoZ1b775pmUZJkyYoKws478pmTkmEDpoTAQAAPj/Vq3frl+377ZtvfCYwExM/MMnX8yxdP8AEAjfzlpq7QJe4wlxdjUmStKcBWuUm+eybT0E3qLlm5WRmW3bekYTQIssvl6RpO9mL7N8DQAAAJye05mlPfvW2rLWnr1r5XRa2wAJAAAAAAAAAADsNXz4cIWHF38/ldfr1csvv2zJ+uPHj5fLZXx/1YgRIyxZ305mfoZVq1Zp0aJFfl+7oKBAb7zxhmFd8+bN1alTJ7+vj8ChMREAAOD/mzbT4maWvwiLDpMjvPgx5HZMIEpNO2jpGgBgp8ysHP28dIPl6xg1jhs1cvlTnjNfcxets209BN40q5tv/0d4nNGDFKyfNL1w2SadOHnK8nUAAADwT8k7l8jjsf5hFJLk8biVsnOJLWsBAAAAAAAAAAB71KtXT1dddZVh3eeff64NG/x779e+fftMNct169ZNnTt39uvagXDHHXcoLi7OsO7BBx+Ux+Px69rjx4/X7t3Gw2EefPBBv66LwKMxEQAAQNKhIye0fM1vtq0XbqJppchgIpc/MIEIQFkyc/5qFRZZf+40nJgYY9/EROn3RjWv12vrmgiM1LSD2vxbmq1rGh3PVk94liS326Pv566wfB0AAAD8XfrxNB0/bu/15+9rGv/RGgAAAAAAAAAAhI7//Oc/hjUej0e33nqrCgoK/LKm1+vV7bffLqfTaVhrJp8vRo4cKYfDYfjl78mFVapU0b/+9S/Dug0bNphq2DQrNTVVzz77rGHdWWedpRtuuMFv6yI40JgIAAAgacac5bY2dUTEGjetWD0xUZLmLlij3Fzjf3QBQLBzuz2a/uNyW9YqMpgQF27iHO9PafuOaNNvu2xdE4ERiAcKhMcVfzwbvR/8Zcac5Spy2zOpBwAAAJLbXaSU1MBML0xOXSy3257rTAAAAAAAAAAAYL0OHTrosssuM6zbsGGDRo0a5Zc1X3rpJc2dO9ew7txzz9WgQYP8smYw+M9//mNqauLo0aO1bFnp70XKzc3Vtddeq5ycHMPaxx57TNHR0aVeE8GFxkQAAFDuFRQU6od5K21d02hiotfrNZzI5Q9OV4F+XLDW8nUAwGqrN2zXoaMnbFnLaEJchImpuP42jQm4ZV5+QaHm/WLvZ3ZYVJjCwov/1ZEdExMl6djxTK1Zv8OWtQAAACDt3bdeTldWQNZ2urK0d//6gKwNAAAAAAAAAACs8cYbb5hqSvvggw/0+OOPl2qt9957z9Q+HA6H3n77bTkcjlKtF0zq1Kmj0aNHG9YVFhZq4MCBWrduXYnXysvL06BBg7Rx40bD2jZt2uiuu+4q8VoIXjQmAgCAcm/xyi3KzDJ+Uoc/GU3Tcrvckk0DHKfPsWfCGABYaeGKzbatZdQ4Hh5j78RESVq25jcVFjJRpCz7bcce5TnzbV3TzPRPt00TEyVpzUYaEwEAAOzgdGZpz77APshqz961cjoD0xgJAACA0lu0aJEcDofh15gxYwIdFfibMWPGmDp2Fy1aFOioAAAAQMg5++yz9cgjj5iqffHFFzV06FBlZ2f7tEZ+fr7+/e9/6+677zZVf9NNN6lLly4+rREKHnroITVp0sSwLisrS7169dKkSZN8XiM5OVldunTRwoULDWsdDofeeecdhYfbf18drEdjIgAAKPdWrt1m+5pG07Tsmj4kSbv2HNKx9Azb1gMAK2xN3mvbWkbn6LDIMDki7H2Kliu/QLv2HrZ1Tdhre+o+29c0mvAsSUU2XrPsSN1v21oAAADlWfLOJfJ47LvOOx2Px62UnUsCmgEAAAAAAAAAAPjXk08+qa5du5qqnTp1qpo0aaJ3331Xp06dKrbW6XTqs88+U/PmzfX222+b2n/Tpk01fvx4U7WhJjo6WlOnTjU1oTIvL08jR45Unz59tHDhQnm9xU9V2bNnjx544AG1bdtWv/76q6k8jz76qHr27GmqFqHH+A4zAACAMm57SiBu9DeYmGjj9CHp92aH6tWSbF0TAPzF6crX3gNHbVuvyMQ5Oq5WnHL35dqQ5r927Nyv5o3r2rom7JNsc1NeVFKUqnWpZlgXHh0mt02HesquA/J4PAoL4zlbAAAAVkk/nqbjx9MCHUPSH1l2q2rVhoGOAgAAAAAAAAAA/CAiIkJfffWV2rdvrxMnThjWHz16VPfcc48efvhh9erVSx07dlSdOnWUkJCgnJwcHTlyROvXr9eiRYt8mq4YGxurr7/+WhUqVCjNjxPUOnTooDfeeMP09MhFixZp0aJFqlu3rnr16qW2bduqSpUqioyMVGZmpnbu3KnVq1drzZo1hs2Lf9WjRw8999xzJf0xEAJoTAQAAOWa3c0sfzCaQGTnxETp9wlEvc5vZ+uaAOAvKWkH5fGY/2VHaZk5R9foXkOudJeOrz2ugswCG1JJyTuZJleW2TktMK52nKr3qqmwCOMGwFoX19GxxUeUdzDP8lx5znztO3hMDerWtHwtAACA8sjtLlJKanBNKUxOXaykpLoKD+dPmgAAAAAAAAAAlAV169bVnDlzdMEFF5huJnQ6nZo7d+7/Y+++w6Oq07+Pf2YmbQhJIIROGgRCr9JLQLAgKKAoiA0U/AmKguCirruKuq6KuoooVkRFcAVXRBSwLaAgXaV3QuhJKCFA+szzB491IXMmmTknk7xf18Wuhvt8788Mh5Nxcu75avHixaXuHxwcrHnz5qlVq/J/z+yYMWO0f/9+Pfvss4aPOXDggGbNmuWT/i1atND8+fPlcBS/mQsCGx8xDwAAKrSde8wdZpHO70AUGlP89ujO2k6FVA0xKdH5XbYAIFCZfQ0zen0Oqx6mOpfXUaU6lfyc6Lzte7iWl1dnz+Yo7VC6Kb1CqoYYHkqUJHuQXTVSapn2umXbTs5zAAAAf9mftl45uVlWx/iDnNws7T+w3uoYCEDDhw+XzWYz9Cs1NdXquBeVkJBg6DEkJCRYHRUAAAAAAAAADOvQoYMWLlxo+o6FwcHBmjNnjq666ipT+1rpmWee0b333mt638aNG+urr75SdHS06b1hLj5eFAAAVGjbd6WZ2s/oDkRB4cGq09e8HYi27zogt9stm83m914A4Gtm7hQYUiVENbrUMFxvD7KrZveayliTocKzhf9bYPv9P9r+52u60GX5z8f8/38/mHdSq/fvksNhl/vXmXv3b//r/u2ff/vt333tt4Pk/uW4383u/+/X3L+uc6Fj5f6tzx+/duFMv/3rhTP9ss6fvvSnr7kv/NgulKnYx+u+aKYLHvvb8hf42u/X/v1j+20FT48380SWYjpW/9/zwfbHf7ngt/ELfs12oX+UJDlrVzI8lPgLe5BdMR2r6/DiQ14dVxI7dqepb+/2fu8DAABQ0eTkZCk1ba3VMS4odf9a1a7ZWE5nlNVRAAAAAAAAAACAj/To0UM//PCDBgwYoL179/q9X40aNfTxxx+rW7dufu9V1rz00ktq0KCBJkyYoMLCC9zD5mNXXXWVZs+eragofrZTETCYCAAAKjRTh1lKuAPR4UUHlX8y36/ZTp7KVkbmKdWoXtWvfQDAH/bsP2Jar5j2MV4PbdkcNtXobHyYsTReWvGFKX1gvsjksv1GXVgNp0JjQpWXmefXPkeOnfDr+gAAABXVjt3L5XIVWR3jglyuIu3cvVytWlxtdRQAAALeY4895rEmISFBw4cP93sWAAAAAACA5s2ba926dRo7dqw++OADv/Xp27ev3njjDdWrV89vPcq6e++9V23atNGoUaO0Y8cOv/RwOp165JFH9OCDD8pu9+4eOwQuBhMBAECFduBQhmm9YjpWL9M7EB04nMFgIoCAlH0mx5Q+oTGhCqseZkovIBBVTojw+2Bibq5/P6wBAACgIsrM3KfMTP9/EnFpZGTuVebxfYqplmh1FAAAAtrkyZM91qSkpDCYCAAAAAAATFO1alXNmjVLI0eO1MSJE7V+/Xqfrd2oUSM99dRTuu6663y2ZiDr3r27Nm7cqOeff17PPfecTpzwzQeE2+12DRo0SFOmTFFiIj/LqWgYQQUAABXauRz/3jz/i9CYMIXVcJbo2F92IPK3HG70BxCg8vILTOlTOa6yKX2AQGXG65X8gkK/9wAAAKhIiooKtWPXMqtjGLJj1zIVFfF6EAAAAAAAAACA8qhnz55at26dli5dquuvv16VK5fsXq2wsDD169dPCxcu1Pbt2xlK/JOQkBA99NBDOnDggF599VW1b99eNputRGvVqVNH9913n3bu3Kl58+YxlFhBsWMiAACo0EwbZkko3TCLGTsQ5eWZ81wAgK+ZdS0Pjfb/0BUQyOzB/v/8KwYTAQAAfGt/2nrl5GZZHcOQnJws7T+wXvUTOlodBQAAAAAAAAAA+ElKSopSUlKUn5+v5cuXa8WKFdq6dau2b9+uzMxMZWdn69y5cwoLC1NERISio6OVnJyspk2bqmPHjurdu7cqVapk6WOYOXOmZs6caWkGTypVqqTRo0dr9OjROnbsmJYsWaIff/xRW7du1d69e5WVlaXs7GwVFhaqcuXKioiIUN26ddWkSRM1a9ZMl156qdq0aWP1w0AZwGAiAACo0PLNGmYp5Q5CpuxAZNJzAQC+VrLPa/KePcT/Q1dAIHMVuPzeIySYt7IAAAB8JScnS6lpa62O4ZXU/WtVu2ZjOZ1RVkcBAAAAAAAAAAB+FBISoj59+qhPnz5WRyn3atasqVtvvVW33nqr1VEQgLirEgAAVGhBQQ5T+pR2ByEzdiAy67kAAF8LDQ02pY8r3/9DV0Ag8/fuzhKDiQAAAL60Y/dyuVxFVsfwistVpJ27l1sdAwAAAAAAAAAAAIAYTAQAABVcaIhJwyyl3EHIjB2IzBrsAQBfM+tannfC/0NXQCA7k5rt9x5hYSF+7wEAAFARZGbuU2bmXqtjlEhG5l5lHt9ndQwAAAAAAAAAAACgwuNj5gEAQIVm1jBeXmaewmo4S3W8v5k12AMAvhYVWVmHjh73e58zaWcU1TjK732sZJMkm+3Xf7ad/4p++79fvyLZfvv937722+///thff1+2X5b/0+//bp0//f6fM/36e7+LdqGcv0X6/b9d4GsXzfznx1Z8pj8+tt/970UyXejx/j7T7x9b9tlz2rn74K/Hu//nH3759z99wX2Bf3T/qeBPh4TVcMoR5v0uyrnpOaa8Xqlds5rfewAAAJR3RUWF2rFrmdUxSmXHrmWqWiVWDgc/6gQAAAAAAAAAAACswk/rAABAhVazelVt33XA733OpJ5RVNMqpTje/zsQ1Yip4vceAOAPSQl1tHXnfr/3ycvMU25GrsKqh3l9bO7xXB1bdkyS5P7z8Jj0x+GwPwyTuf/39y90jKSQkCAt+uAfCnacHyr74/DehQfqfhmQQ9l29myOek//iym9QqqGqE7ferIH2Q0f4yp0KXN1hh9T/aZxw1hT+gAAAJRn+9PWKyc3y+oYpZKTk6X9B9arfkJHq6MAAAAAAAAAAAAAFZbxu8wAAADKoUYN6pnSJy8zV7npOSU61owdiMJCQxRXr6ZfewCAvzROMudaLkmZazPlKnR5dcz5oa1MFeUWqSi3SK481//+yv/dr4LffrkL3Od/FV7gV9EffzWKr6tKIaEKdgQp2BGkIIdDQfbzvxx2uxx2u+x2u+w2m+w2G0OJASQ83Km4ujVM6ZV/Ml/py44aPs9dhS6lLzuq/JP5fk52HoOJAAAApZOTk6XUtLVWx/CJ1P1rlZMT2AOWAAAAAAAAAAAAQCBjMBEAAFRojZPMu7k9c3VGCYdZ/L8DUcMGdeVw8NIQQGAy81qefypf6d+neze09X268k/5f2gr2cTnAeYzcyDv3KFzOrzooMcPVchNz9HhRQd17tA5U3JVcoaaNqAJAABQXu3YvVwuV5HVMXzC5SrSzt3LrY4BAAAAAAAAAAAAVFjcfQ4AACq0xg3jTOtVlncgapxk3vMAAL7WIKGOqcPV5w6f0+EvDys3I7fYutyMXB3+8rDOHTZnaMvMAU2Yz8zXLNL51y2HFx/SoS8OKGvrKeWm5yj/ZJ5y03OUtfWUDn1xQIcXHzJtp0Tp/PCt3c5bWQAAACWVmblPmZl7rY7hUxmZe5V5fJ/VMQAAAAAAAAAAAIAKKcjqAAAAAFaqFh2p6jFVlJF5ypR+v+xAFNOxusJqOC9al5ueo8zVGabd7G/mLkwA4GuhIcFqEF9bO/ceMq1n/ql8Hf7qsEKrhapyfGWFRofKHmKXK9+lvBN5OrP/jPKO55mWR5KaMJhYrln1vTovM095meaeyxfDrqAAAAAlV1RUqB27llkdwy927FqmqlVi5XDwY08AAAAAAAAAAADATPyEDgAAVHiNk2JNG0yUftuBKDQmVJUTIhQaEyp7sF2uApfyMvN0JjXb9AEABhMBBLrmjRNMHUz8Rd7xPNMHEC+kcrhT8bE1rY4BP2rWOEGVKoXp3Lnid+oszzq0TbY6AgAAQMDan7ZeOblZVsfwi5ycLO0/sF71EzpaHQUAAAAAAAAAAACoUOxWBwAAALBamxZJlvTNy8zT8XWZOrz4kA5+dkCHFx/S8XWZpg8lVomqrITYWqb2BABf69O9rdURLNWrS0sFORxWx4AfhYYE68pLL7E6hmVqVq+qDm0bWx0DAAAgIOXkZCk1ba3VMfwqdf9a5eSctjoGAAAAAAAAAAAAUKEwmAgAACq8K3pdIoej4r4suqpPhwr9+AGUD22aN1BiXMUdsr6uX3erI8AE11bgP+eBV3Vl+BYAAKCEduxeLperyOoYfuVyFWnn7mVWxwAAAAAAAAAAAAAqlCCrAwAAAFitWnSkenVrra+XbbA6iiUG9etmdQQAKDWbzabrruqm516bZ3UU0zVLjlfjpFirY8AESYl11Lp5A/20eY/VUUwVFOTQNVd0tjoGAABAQMrM3KfMzL1WxzBFRuZeZR7fp5hqiVZHAXAB+/bt0zfffKNNmzZp06ZNSktL0+nTp3X69Gm5XC5VqlRJERERiouLU2Jiotq2bauuXbuqXbt2Cgoqf7c1ZGVl6euvv9bPP/+sLVu2aOfOnTp16pROnz6ts2fPyul0KiIiQjVq1FCTJk3UrFkz9erVS506dZKjHH5wT25urg4cOKDTp0/r3LlzOnv2rIKCghQeHq7KlSurXr16qlq1qtUxTXPkyBH997///fXc2LVrl06ePKkzZ87ozJkzcrvdCg8PV2RkpGrVqqXk5GS99957VsdGgNq3b5+WLl2q7du3a8eOHdqzZ49OnTr16/nmcDhUqVIlValSRbVq1VLXrl01ZcoUy/JmZGToq6++0qZNm7Rlyxbt3r1bWVlZys7O1rlz5xQeHq6IiAjVrl371+tn79691a5dO9lsNsty+8vZs2d18OBBZWdn6+zZs8rJyVFISMgfvq9GRERYHdMnXC6X1q1bp2+//VZbtmzRtm3bdOTIkV//7H95zFFRUUpKSlKzZs3UsmVL9enTR9WrV7c6PgAAAAAA5Vb5ewcfAACgBAZf3b1CDiZ2atdEsXX4QQyA8qHvpe31yswFysnNtzqKqa67igHziuS6/t0r3GBir66tVC060uoYAAAAAaeoqFA7dlWsXQR37FqmqlVi5XDwI1CgpBISErR///5ia+Lj45WamupxrePHj2v69OmaO3euNm7cWGxtVlaWsrKydPDgQa1cuVIffPCBJKl69eoaPHiw7rrrLrVs2dLw4yiLCgoKNHv2bM2aNUvLli1TQUHBRWt/GQg6cuSIfv7551+/XqVKFQ0ePFh33323WrdubUJq3zt+/LhWrFihFStWaNWqVdq9e7eOHDkit9td7HFRUVFq1KiROnfurK5du6pPnz6Kjo42KfWF9ezZU8uWef5e6+mxSdKBAwf0xhtvaMGCBR7/vkjSqVOndOrUKaWlpWnHjh2/fj01NVWJiaUb0l+2bJlPB7iMXjNQPF9en7dv367XX39dn3/+uXbt2lVsbWFhofLy8nTy5Ent27dP586d8ya2T5w9e1YzZszQhx9+qFWrVsnlcl209peh90OHDmndunW/fr169eoaOnSoxowZo8aNG5sR2+eOHDmi7777TitWrNCaNWu0d+9epaenezwuJiZGycnJ6tKli7p166ZLL71UlStXNiGxb2zdulWvvvqq/v3vfyszM/OiddnZ2crOztbhw4e1bds2ffbZZ5Iku92uzp07a+jQoRoxYoTCw8PNig4AAAAAQIVgtzoAAABAWdCqWQM1SKhtdQzTXdu/u9URAMBnwiuF6cpe7a2OYarIiErq3b2N1TFgop5dWym6avn4hGujeL0CAABQMvvT1isnN8vqGKbKycnS/gPrrY4BVHiZmZm67777FBcXp7/97W+GhqwuJiMjQ9OnT1fr1q01cOBA7d6924dJPUtNTZXNZvP4a/jw4Rddo6ioSC+99JLq16+v4cOH6+uvvy52KLE4p06d0ltvvaU2bdqoT58+fxhaLMuysrL09ttv67LLLlPNmjU1YMAAPfvss1q+fLkOHz5saHAvKytLa9eu1dSpUzVkyBDVqlVL/fr105w5c1RYWGjCo/CPzZs3a/DgwUpMTNSTTz5Zqr8v5cXSpUsN/b177LHHLMk3c+ZMQ/lmzpxpSb7ifP/997r88svVtGlTvfjiix6HEq2Wk5Ojxx57THFxcbr33nu1cuXKYocSi5ORkaGXX35ZTZo00TXXXKOdO3f6OK1/pKena+rUqeratavq1q2rIUOGaOrUqVq1apWhoUTp/PflFStWaMqUKRowYIBq1KihG264QQsXLjR0/bXK9u3b1b9/fzVr1kyvvPJKsUOJxXG5XFqxYoXGjh2r+Ph4TZ48WTk5OT5OCwAAAABAxcVgIgAAgCSbzVbhbnqvVaOqunZoZnUMAPCp6/t39+mneZd1g67sotCQYKtjwETBwUG6aXBvq2OYpnXzBmrdvIHVMQAAAAJOTk6WUtPWWh3DEqn71yon57TVMYAK64MPPlCTJk00depUn+6q5Xa79emnn6ply5Z64YUXfLauv23evFkdO3bUuHHjdPDgQZ+u/c0336ht27YaO3ascnNzfbq2rxw9elSTJk1SXFycRo4cqa+//lpFRUU+WbugoEBffPGFhg0bpoYNG2r69OkBNaB45swZTZw4UW3atNHHH3/ss+cFuJCMjAyNGDFCPXr00FdffVWmh9F+sXz5crVs2VKTJ0/WiRMnfLr2Z599pubNm+uhhx4q8aC4v+3Zs0d33XWX4uLidN9992nlypU++3PLycnR3LlzdfXVV6tly5b68MMPfbKurxQUFGjSpElq0aKFPv/8c5+uffz4cT322GNq2bKlli9f7tO1AQAAAACoqBhMBAAA+P/69u5QoXYguvHaS+Vw8HIQQPlSP762BvXtYnUMU1SvFqWbr6s4A2r4zZABPZWcFGt1DL8LCQ7Sg/cNrVDDxgAAAL6yY/dyuVwVc8DB5SrSzt3LrI4BVDh5eXm66aabdPPNN5d4RyMjcnJyNGHCBN1yyy3Kz8/3Wx9f+PDDD9WuXTutX++/nVxdLpemTZumjh07aseOHX7r4638/Hw9+eSTql+/vp599lmdPu3fgfHU1FSNGTNG7dq106pVq/zayxd2796t9u3b6/nnnw+oYUoEprVr16p169aaOXNmQAwkStKzzz6rnj17+nWX3IKCAj399NPq3r27UlNT/dbHW9nZ2Ro/frySk5P1+uuvKy8vz6/9Nm/erBtvvFE9e/bUtm3b/NrLiNTUVHXt2lXPPvusX6+Pu3fvVs+ePfXMM8/4rQcAAAAAABUFd6IDAAD8f5WcoZow+nqrY5giOSlW11WwHSIBVBx3D79GtWpEWx3D7x4aO1QRlStZHQMWCApy6G8TblZQkMPqKH515639lBBby+oYAAAAASczc58yM/daHcNSGZl7lXl8n9UxgAojIyNDvXr10uzZs03rOWvWLA0dOrTM7jL3wgsvaNiwYaYNT27cuFFdunTRmjVrTOlXnNWrV6tly5b629/+ppycHFN7b9y4UV27dtUTTzxRZgewvvvuO3Xs2FHbt2+3OgoqgHnz5iklJUWHDx+2Ooohbrdb9957ryZNmmTa3+HVq1erc+fO2rRpkyn9ivP555+rcePGevHFF03//rZs2TK1adNGb731lql9f2/jxo3q1KmT1q41Z+d3t9utBx98UGPHjpXL5TKlJwAAAAAA5RGDiQAAAL/Tu0cbXdqttdUx/KqiDDMAqLjCK4XpkftutDqGX/Xv01FdLmlqdQxYKCmxju64qa/VMfymWeME3XjtpVbHAAAACDhFRYXasYvdAiVpx65lKipiFyrA306ePKnevXvrhx9+ML33J598orFjx5re15M33nhDEyZMMH0w7sSJE+rdu7eWL19uat/fmz59unr06GHp7o0ul0t///vfNXDgQNMHIz3ZsGGD+vXrpxMnTlgdBRXAokWLdOONN5a5vwfFmTRpkl5++WXT+x49elQpKSlat26d6b2l365bV199taVDpHl5eRo1apRGjx5t+qDe2rVrlZKSomPHjpnaV5KmTZumSZMmmd4XAAAAAIDygsFEAACAP5l4zw2qElXZ6hh+c8dNfZWUWMfqGADgV5e0aqRrr+pqdQy/qF4tSveNHGh1DJQBt1zfR8lJsVbH8LmQ4CD9bcJNcjh42woAAMBb+9PWKyc3y+oYZUJOTpb2H1hvdQygXDt79qz69etn6S5T06dP19y5cy3r/2fffPON7r77bsv6nzlzRgMGDNC2bdtM7et2uzVmzBiNGTPGtF0iPVmwYIH69++vc+fOWR1FkrRv3z5dddVVys7OtjoKKoC1a9fq+uuvV2Fh4HxIw1tvvaUpU6ZY1v/kyZPq16+f9u0zd9ftvLw8DRo0qEzt9Praa6/p1ltvNW3Xxr1796pfv346deqUKf0u5LnnnrN0t0gAAAAAAAJZkNUBAAAAyproKhF64O4b9NenZlgdxeeSk2J1y/V9rI4BAKa4e/g1+mH9Nh05Vr4+gfyhe4YoonIlq2OgDAgKcujvE2/W7fc9p7y8Aqvj+MzoEVcrIbaW1TEAAAACTk5OllLT1lodo0xJ3b9WtWs2kdMZaXUUoFwaOXKkoZ0SQ0NDdckll6ht27aqX7++qlevrvDwcBUVFen06dPav3+/NmzYoO+++65EQwmjR49Wnz59VLVq1RI8Ct9JT0/XkCFDDA0ChYeHKyUlRS1btlRSUpIiIyMVHBys06dP68iRI9q6dauWL1+u1NRUr3OcOnVKV111ldasWaPq1auX4JF4x+VyaeTIkXrnnXf83stb3377ra655hotXrxYQUHW3R5TVFSkG2+80dBOYHa7XS1atFCHDh3UoEED1a5dW+Hh4bLb7crOztbx48e1detWbdiwQRs2bDAhPQLNmTNnNGTIEJ09e9ZjbVBQkNq2bat27dqpQYMGqlmzpsLDw+VyuZSdna309HRt3bpVa9as8evA8+bNmw0PdUdHR6tXr15q1qyZEhISFBER8evfjwMHDmjr1q1aunSpjhw54nWO9PR09e3bV2vWrFFkpP9fP+bm5mrQoEFavHix33t564MPPpDD4dC7777r1z5ZWVm66qqrlJGRUaLjExIS1KNHDzVp0kR16tRRRESECgsLdfr0ae3du1ebN2/W0qVLdfr0aY9rjRkzRh07dixRDgAAAAAAKjIGEwEAAC6gd482+vb7Nvpm+Y9WR/GZ87sP3aygIIfVUQDAFOGVwvTkX4br7oenKTevbHxSe2ndMri3urRvZnUMlCENEuroiQdH6KEn3lKRy2V1nFIb2Lerhg7qZXUMAACAgLRj93K5XObsahIoXK4i7dy9TK1aXG11FKDceeONN/Thhx8WW3PFFVfojjvuUP/+/eV0Oj2umZ+fr4ULF+qpp57S+vXGdzw9fvy4Jk+erBdffNHwMf5wzz336Pjx48XWdO/eXffdd5/69++v0NBQj2tu3LhR06dP17vvvqucnBzDWVJTUzVq1CjNnz/f8DEldffdd5d4KLFhw4bq06eP2rZtqyZNmqhevXqKjo6W0+mUy+XSmTNndPDgQe3cuVM//PCDvvjiC23fvt2rHt98843GjRunadOmlSijLzz77LNavXp1sTWtW7fWnXfeqRtuuEHVqlUztO7Bgwf1/vvv/+H5T0hIKHbXNZvN5nHdlJQULV261FAGlD0TJkzwuOtf9+7dNWrUKA0aNEiVK1c2tO6uXbv09ttva+XKlb6I+auioiKNGDGi2N1WbTabBg4cqHvuuUc9e/aU3W73uO6aNWs0ffp0ffDBByooMP6hbjt27NCYMWM0a9Ysw8eUhMvl0uDBg0s8lNiyZUv16tVLbdu2VaNGjRQbG6uoqCg5nU4VFBTozJkzSktL0/bt27VixQotXLhQaWlpXvV477331KJFC02cOLFEGY0YM2aMduzY4dUxlSpV0ogRI3TXXXepefPmHusLCwv15Zdf6pVXXtEXX3xx0bqCggLdfvvtuvLKK73KAwAAAABARWdzF/eOJAAAKNMyMjJUo0aNP3wtPT3dlE/ArQjOnsvV3ZOmavuuA1ZHKTWbzabHH7xNl6W0szoKAJhu9YbtmvD4GyosDOwbdK++vJMeHjvU0M1DqHgWfbNWk6e8Z3WMUumT0laT/3KbHA7PNxYBAIDyLS8vT3v37i22pn79+oYGOiqKzMx9+mnTAqtjlFmtW16jmGqJVseAiYYPH254h599+/YpISHBv4FKKCEhQfv37/dYFx8fX6Kd9Uras3LlyioqKrrooFzHjh01bdo0XXLJJSXK4Ha7NW3aNE2cOLHYQZXfCw0N1YEDB3z+85HU1FQlJnq+fsTGxurAgYv/LCE2NlYvv/yyBgwYUKIc+/fv19ixY/XZZ595ddybb76pkSNHlqinEdOmTdPYsWO9OiYqKkojR47UyJEj1bhxY697rl+/XlOmTNFHH31U7ADen73//vu6+eabve5XnJ49e2rZsmUe60JCQi56LterV08vvviirr322hK/75eXl2f4dVEgDCYuXbpUvXp5/uCqRx99VI899pj/A/3JzJkzNWLECI9177zzjoYPH+6zvkauz8HBwcUO4TVt2lTTpk0z9PxejNHzzeifY506dXT48OGL/n6bNm302muvqUOHDl7l/MUvg4bffvutV8fNnj1bN954Y4l6GjFx4kQ9//zzXh1Tq1Yt/d///Z9uv/12xcXFeXWs2+3W0qVL9cwzz2jJkiWGj3M4HPrmm2+UkpLiVT8j5syZo2HDhnl1zHXXXacXX3xR9erVK1HP5cuXa/To0dq6detFazydk7/473//q549e5YoBwBrlPf3m7iHDAAAAFbhTi8AAICLCK8UphefHKOEuFpWRym1SWOHMJQIoMLq2LaxHn/gVjkMfIpyWdW7exs9ePcQhhJxUX17t9eD9wXu4GrPrq306MRbGEoEAAAogaKiQu3Y5XkooiLbsWuZiooKrY4BlBtnzpy54FCi3W7XE088oZUrV5Z4KFE6Pzg1duxYLV682NBOi9L5m4ynT59e4p6lVdxQYu/evbVhw4YSDyVK54dPFyxYoOeee87QTmG/eOCBB5SZmVnivsVZvny5xo8fb7je4XBo4sSJ2rdvn5577rkSDSVKUrt27fThhx9q5cqVatq0qeHj7rvvPh07dqxEPUvrYkOJgwYN0ubNm3XdddeV6j2dQL15Hr5X3FDimDFjtGHDhlINJUq+P9+KGwAbNWqUfvjhhxIPJUpScnKyvvrqKz366KNeHTdu3DidPn26xH2LM3v2bK+GEp1Op/75z39qz549euyxx7weSpTOf2/t1auXFi9erM8//1x169Y1dFxRUZFGjhzp1a69Rpw+fVrjxo0zXB8UFKTp06dr3rx5JR5KlKQePXpo7dq1xQ5EGhlKBAAAAAAAv+FuLwAAgGJUiaqsqf8Yo9i6gfsJYveOGqSBV3W1OgYAWOrSrq31z4dvV0hwkNVRvHZV7w6azMAWDBjYt6senxR4Ow72v7yTnnx4hIID8O8nAABAWbA/bb1ycrOsjlGm5eRkaf+B9VbHAMq14OBgffTRR3rkkUe8GpwrTq9evTRr1izD9e+8845P+vpS//799cUXXygmJsYn602YMEEzZ840/ByfOnXK62EcI86dO6cRI0aosNDY0HdiYqJWr16tKVOmqGrVqj7J0KlTJ61Zs0bXXXedofoTJ07ovvvu80lvXxgzZozmzZunqKgoq6OgAnj66af1yiuvBNQQ61/+8he98cYbPslst9v12GOPadq0aYaHgNPT0/Xkk0+WuvefHTlyRPfcc4/h+rZt22rjxo168MEHValSJZ9kuOqqq/Tjjz+qe/fuhup3796tyZMn+6T3L5544gmlp6cbqv3lNcZdd93lk96VKlXSrFmzNGbMGJ+sBwAAAABARRdYd6oBAABYoEb1qnrtuXFKSqxjdRSv2Gw2PXjfUA277lKrowBAmdCjUwv9a/JdquQMnJsvhlyTokfuu1FBDofVURAgLuvZTs9PvkuRlX1zk4q/3TbkMj08jnMcAACgpHJyspSattbqGAEhdf9a5eT4Z9cboKKz2WyaNWuW4QExb1x77bUaPny4odrU1FStW7fO5xlKqkOHDpo3b55CQkJ8uu4tt9yiKVOmGK5//fXXtXv3bp9mePjhh7V3715DtZ07d9batWvVrl07n2aQpPDwcP373//WLbfcYqj+o48+0k8//eTzHN668cYbNW3aNJ8N8QLFefDBBzVp0iSrY3jl1ltv1TPPPOPzde+++2799a9/NVz/0ksv6ciRIz7NMHr0aJ08edJQ7YABA/T9998rKSnJpxkkqXr16lqyZIn69OljqH7q1Kk+ey4OHz6sqVOnGq5/7bXXNGjQIJ/0/oXNZtO0adM0ePBgn64LAAAAAEBFxLucAAAABlSrGqlXn71PbVr4/gc//hAaEqwnHhqugX3ZKREAfq9dy4Z6518T1LRRvNVRilU53Km/j79J4++8lhuU4LVOlzTRB68/rK4dm1sd5aLq1o7Rq8/eq9EjruEcBwAAKIUdu5fL5SqyOkZAcLmKtHP3MqtjAOXSww8/rBtuuMFv6z/11FOGd4n67LPP/JbDG1WrVtXHH3/st93J7r//fsPDFEVFRfrXv/7ls947duzQtGnTDNVecsklWrx4sapVq+az/n/mcDj09ttv69JLPX9Io9vt1t///ne/ZTGiSZMmeuuttwzv2gaURq9evfSPf/zD6hheadmypV5//XW/rf/444/riiuuMFSbn5/v1QCdJ19//bU+/fRTQ7X9+vXT3Llz5XQ6fdb/z5xOpz7++GM1a9bMY21OTo7++c9/+qTv1KlTlZ+fb6j2zjvv1O233+6Tvn9ms9n07rvvqnHjxn5ZHwAAAACAioI7vwAAAAyKjKikl5++R2Nuv0bBwUFWx7moFk0S9d4rk9SnR1urowBAmRRfr6bemHKf7h5+jULK4PW8yyVNNfuVB3VV7w5WR0EAq14tSs89dqcenXiLIir77+aVkrj+mhTNmv6g2rZsaHUUAACAgJaZuU+ZmcZ2q8J5GZl7lXl8n9UxgHKlZcuWeuyxx/zao3bt2ho2bJih2u+++86vWYx67rnnVK9ePb/2eOWVVxQdHW2odubMmTpx4oRP+v79739XUZHnofiaNWtq/vz5ioyM9Enf4gQHB+uDDz4wNAC5cOFC7dmzx++ZLsRms2nmzJmGB22B0nA6nZo5c2ZAfSiYw+HQjBkzFBYW5rceNptNb7zxhiIiIgzVv/766zp79qxPej/yyCOG6po0aaI5c+YoODjYJ32LExkZqQ8//NDQIP2MGTOUnZ1dqn5nz541PHgaGxur5557rlT9PKlUqZLefvvtgPp7AgAAAABAWcN/VQMAAHghyOHQrTdcpvem/UVNk8vWblshwUEaO3KgXntunOJja1odBwDKtCCHQ7cM7q13pz5QZnZPrBzu1N/G36TnH71TNWKqWB0H5YDNZlPfPh00+/W/londE3/ZJXHCmMFyhvlnxwgAAICKoqioUDt2sftfSezYtUxFRYVWxwDKjZdeeklBQf7/4CejuyWtXr3a0NCcP7Vv395vuzv9Xo0aNQwPhZ47d06zZ88udc+tW7dq7ty5hmrfeOMN1a1bt9Q9japVq5aefvppj3Vut1tvv/22CYn+10033aQOHfgwMphjwoQJiouLszqGV0aMGKF27dr5vU9cXJweeOABQ7UnT57U/PnzS91z0aJFWr16tcc6h8OhWbNmGR6c9IXmzZtr4sSJHuvOnj2rOXPmlKrXJ598olOnThmq/ec//2nK89ClSxfDH4AAAAAAAAD+F4OJAAAAJZAYX1tvvDC+zOye2Lxxgt57dZJuGtxbDgcv8QDAqMTYWnpjyn26946BiooMtySD3W7TZT3aavYrD6pf7w6y2WyW5ED59cvuiS88cZc6tm1sev+4ujU0/q7r9MFrD7FLIgAAgI/sT1uvnNwsq2MEpJycLO0/sN7qGEC5kJKSop49e5rSq1OnTqpZ0/MH8p07d05791q7m+zkyZNN63XnnXca3pnxww8/LHW/1157TW6322Pd1VdfrWuuuabU/bw1YsQINWzo+b2H9957z9Dj8CWbzaaHH37Y1J6ouCpVqqTx48dbHcMrwcHB+tvf/mZav3HjxhnaZVVSqYfxJGn69OmG6saMGaO2bduWup+3/vKXv6hKlSoe6959991S9TH6XDZt2lQ33nhjqXp5Y/LkyXI4HKb1AwAAAACgPOGudQAAgBL6ZffED6Y/pCt6XWLJgGJ8bE09eN9Qvf78eCXE1jK9PwCUB0EOh4YN6qVP33lMfx9/k5qZtCNu1ajKuu2Gy/TxW3/XE3+5jV0S4Vc2m01d2jfTS0/drY/e/ptuvLaXIio7/dbPbrcppUtLvfzPe/Tvtx7RkIE9FRYa4rd+AAAAFUlOTpZS09ZaHSOgpe5fq5yc01bHAALe6NGjTetls9nUrVs3Q7Xbt2/3c5qLS05OVt++fU3rFxoaqrvuustQ7cqVK3Xw4MES98rNzdWsWbMM1T7++OMl7lMaDodDY8aM8Vh36NAh/fzzzyYk+k3v3r3VpEkTU3ui4ho2bJiio6OtjuGVQYMGmbrDY0REhEaMGGGo9ssvvzS8y9+FHDp0SF988YXHOqfTadkAc2RkpG677TaPdatWrdKJEydK1OPUqVP66quvDNXec889stvNu62xfv36uvrqq03rBwAAAABAecJgIgAAQCnF1auhyZNu06fvP64xI65WrRr+/UGfw27Xpd1a65VnxurDN/6qgX27sksiAPhAWGiIrurdQW8/f79mvjhRV1/WUaEhwT7v07JpoiZPvEWfzpys0bf2V20/f98A/iyubg3dd+e1+mzWk/rr+GG6pHUjnwwN2u02JSXW0R03Xan5707WM38fpfZtktkFFAAAwMd27F4ul6vI6hgBzeUq0s7dy6yOAQS0ypUra+DAgab2bN++vaG6PXv2+DnJxY0aNcr0nrfffruhXZ7cbrfhgZALWbBggU6ePOmxLiUlRa1bty5xn9IaNmyYofciFi9ebEKa3wwZMsTUfqjYAvF8u/POO03vafSaXVBQoGXLSv7a8YMPPlBRkefX7zfccINq1bLug2hvvvlmjzUul0tffvllidZfunSpCgoKPNY5nU5DWXzNinMQAAAAAIDywPxtfQAAAMqp6CoRunXI5bppcB/9sG6rPvn8e635cYcKCgp9sn7d2jHq27u9BvTtqurVonyyJgDgwhonxeqv9w3TuFHXav2mXdq+64C27z6gbbvTdPLUGcPrhAQHqWH9umqcFKvGDWLVunkDxdap7sfkgHFhYSG6+orOuvqKzioqcint4DFt25V2/nzfdUC79h5UTm7+BY912O2Kj62pxg1j1bhhnBo3jFXD+nXlDAs1+VEAAABULJmZ+5SZudfqGOVCRuZeZR7fp5hqiVZHAQLSpZdeqtBQc/8bsFGjRobqjh075uckFzd48GDTe9auXVtdunTRd99957H2v//9r+Edwv5s4cKFhuqGDx9eovV9pUaNGmrfvr3WrFlTbN3y5cv14IMPmpLJZrNpwIABpvQCoqKi1LNnT6tjeCU6OtqSzI0aNVLz5s21efNmj7X//e9/S/z3OFCun+3atVPNmjU9fh9dvny5hg4d6vX6//3vfw3VXXbZZYqIiPB6/dLq06ePoqKilJWVZXpvAAAAAAACGYOJAAAAPuZw2NWtY3N169hc+fkF2pN65P/f5H/+Rv89qYdVVOQqdo1qVSPVuFHc+UGW/3/DP8OIAGC+8Eph6tGxhXp0bCHp/CfLZxzP0vbdB5R2KF05uXnKzStQfkGhghx2hYaGKCQ4SDViqii5fj0lxtVSUJDnT6wHrOZw2JUYX1uJ8bV1VZ+Oks6f77l5+crPL1RefoFcLpdCQ4IVEhKssNAQdmwGAAAwmdvt1s49nodOYNzO3d+pWnQCu3wDJZCSkmJ6z8REY4PEVg0mNm/eXPHx8Zb0HjBggKHBxJLu+OV2u7VkyRKPdXa7Xf369StRD1/q1KmTx8HEH3/80aQ0UpMmTVS9Oh9WBnN07dpVQUGBdTtY3759De386g/XXHONocHE5cuXl2j9rKws/fDDDx7rqlatqu7du5eoh6/YbDZ17NhRCxYsKLaupNdPI9+nJOnqq68u0fqlFRwcrL59++rDDz+0pD8AAAAAAIEqsN6JAgAACDAhIcFq0ihOTRrF/fq1/PwCHTp6XOdycs/f6J9XoKAgu0JCghUaEqyY6ChVi460MDUA4GJsNptqxFRRjZgqVkcB/M5ms8kZFsouiAAAAGVE1umjOnfupNUxypVz504q6/RRVYmqbXUUIOC0bt3a9J4xMTGG6qza6cjKHcp69OhhqC4tLU0nT55U1apVvVp/06ZNSk9P91jXsmXLMjGA16pVK481R48e1dGjR1WrVi2/5+nSpYvfewC/CMTzzcqBvG7duhmq27p1q4qKirweoFy2bJkKCws91qWkpFg2nPl7rVq18jiYuHHjRrlcLtntxj+4rrCwUFu3bjVUa+X50L17dwYTAQAAAADwEoOJAAAAJgsJCVZinP9/0A0AAAAAAIDyIy/vjNURyiWeV6BkkpOTTe9ZpUoVQ3V5eXn+DXIRnTt3tqSvdH5QNCwsTLm5uR5rt2zZYngQ5xfr1q0zVNe+fXuv1vWXuLg4z0WSdu3aZcpgYtOmTf3eA/hFIJ5vVl4/O3XqZKguLy9Pu3btUuPGjb1avzxeP8+dO6dDhw4pNjbW8Lq7du0y9P05OjraktcYv7DyXAQAAAAAIFAZ/+giAAAAAAAAAAAAAJYIDa1sdYRyiecV8J7D4TBlmOvPQkNDDdVZNZhoZJc+fwkODjY8jLRlyxav1//xxx8N1ZWVgagaNWoYqjt48KCfk5xn5ZANKp5AO98cDoeaNGliWf+qVauqbt26hmq3bdvm9fpcP88z+tw1a9bMq3V9rUmTJl7tBAkAAAAAABhMBAAAAAAAAAAAAMq8qMhaqlSpqtUxypVKlaoqKtL84Sog0EVGRsrhcJjeNzg42FBdYWGhn5P8L7vdrqSkJNP7/l7Dhg0N1aWlpXm99saNGw3VJSQkeL22PzidTkN1Zg0m1qlTx5Q+gBR451tCQoLh67u/NGrUyFDdoUOHvF6b6+d5Rp87o38W/hIWFmZ4110AAAAAAHBekNUBAAAAAAAAAAAAABTPZrOpUYPu+mnTAqujlBuNknrIZrNZHQMIOEaHFqzidrtN71mnTh3DOzr6S4MGDQzVHTlyxOu19+/fb6hu0KBBXq9tpRMnTpjSp2bNmqb0AUJCQlSlShWrY3ilLAzkGc3g7fWzqKjI8EBemzZtvFrbat5eP40+d2XlfEhNTbU6BgAAAAAAAYMdEwEAAAAAAAAAAIAAEBOTqJiY+lbHKBeqx9RXTLUEq2MAAcnqna3Koho1algdwXAGbwdr3G63Dh8+XJJIZV5OTo4pfSIiIkzpAwTiuVa9enWrIxjO4O3188iRIyoqKipJpDLP2+vn0aNHDdWVhfOhLHxPBwAAAAAgkDCYCAAAAAAAAAAAAASI5KQestsdVscIaHa7Q42SUqyOAaAcCaRBipMnT3q1bnp6ugoKCkoSqcwzazDR6t00UXEE4rkWExNjdQTD1/Ds7Gyv1jW6W2Ig8vb6efr0aUN1gXQ+AAAAAACA8xhMBAAAAAAAAAAAAAKE0xmlhLj2VscIaAnx7eV0RlodA0A5UrlyZasjKDw83FBdbm6uV+ueOnWqBGkCQ35+vil92GUUZgnEc83pdFodwXCGvLw8r9bl+vkbo89dIJ0PAAAAAADgPAYTAQAAAAAAAAAAgAASH9dOzrAoq2MEJKczSvGx7ayOAaCcCQkJsTqC4Z3SvB1MNGtXQSu43W6rIwAVXlnY5ZHrp/e8vX4afe4C6XwAAAAAAADnMZgIAAAAAAAAAAAABBCHI0jJDVOsjhGQkhv2lMMRZHUM+JnNZjNcW1BQ4MckpWN0NyJvHi/8oyzsUmY0g7fnvLeDOADgjbLwPcxuN3b7nMvl8mpdrp+/MfrcBdL5AAAAAAAAzuO/pAEAAAAAAAAAAIAAExOTqJiY+lbHCCjVY+orplqC1TFgAm92rzM6/GcFo9nY2cd6ZWHA1WgGb3d3LAuPDUD5VRa+D+fl5Rmq8/b7LdfP3xh97gLpfAAAAAAAAOcxmAgAAAAAAAAAAAAEoOSkHrLbHVbHCAh2u0ONkthlsqIICwszXFsWboC/GKPZvHm88I+ycB75a7CG8wuAP5WFITCjGby9HnL9/I3R5yKQzgcAAAAAAHBekNUBAAAAAAAAAAAAAHjP6YxSQlx77U1dZXWUMi8hvr2czkirY8Ak3gwCnDp1yn9BSqGwsFDZ2dmGap1Op5/TwJMzZ85YHcFwBm8HZbw5v7766iv16dPHq/UBVGwnTpywOoKOHz9uqK5SpUperevN9XPXrl1KSkryav1AEh4ebqgukM4HAAAAAABwHjsmAgAAAAAAAAAAAAEqPq6dnGFRVsco05zOKMXHtrM6BkxUuXJlw7Vl9eZzb27M9+bxwj8yMjKsjmA4Q3R0tFfrGh0mkaTc3Fyv1gaAQLp+1qxZ06t1uX7+pkaNGobqysL5kJ6ebnUEAAAAAAACCoOJAAAAAAAAAAAAQIByOIKU3DDF6hhlWnLDnnI4gqyOARPVqlXLcG1ZuAH+QrzJ5c3jhX8cO3bM6giGBym8PV+8GcQpCztHAv6Wn59vdYRy5dChQ1ZHMJyhdu3aXq3L9fM3Rp+7QDofAAAAAADAeQwmAgAAAAAAAAAAAAEsJiZRMTH1rY5RJlWPqa+YaglWx4DJ6tSpY7h23759fkxSct7k8ubxwj8OHz5s+W5Xu3fvNlTn7WBNpUqVVK1aNUO1hw8f9mptIBDl5ORYHaFc2b17t9xut6UZdu7caajO2+tnXFyc4dryfv00+twZ/bPwF5fLpT179liaAQAAAACAQMNgIgAAAAAAAAAAABDgkpN6yG53WB2jTLHbHWqUxG6SFVHdunUN1+7du9ePSUrOm5vivXm88A+32235IMOuXbsM1XkzKPOL+Ph4Q3VpaWlerw38WVCQsV2OCwsL/Zzkwo4fP25J3/Lq3Llzll478vPzDb8WaNiwoVdrV65cWdHR0YZqy/v10+hzt337dj8nKV5qaqrlHzQAAAAAAECgYTARAAAAAAAAAAAACHBOZ5QS4tpbHaNMSYhvL6cz0uoYsEDDhg1ls9kM1W7bts3PaUrGmxvzGzVq5MckMOqnn36yrHdBQYHhc7lZs2Zer9+kSRNDdZs3b/Z6beDPQkNDDdXl5+f7OcmFHTp0yJK+5dnq1ast671hwwZDQ642m43rZyk0a9bM0Guz1NRUpaenm5DowlatWmVZbwAAAAAAAhWDiQAAAAAAAAAAAEA5EB/XTs6wKKtjlAlOZ5TiY9tZHQMWCQ8PV/369Q3Vbt++XWfOnPFzIu+tXbvWcG2rVq38mARG/fDDD5b1/vHHHw3v8NS8eXOv12/f3tjg+48//uj12sCfGR1MPHXqlH+DXMSOHTss6VuerVixwrLeK1euNFSXmJioSpUqeb2+0evnhg0bvF47kISHhysxMdFQbSCcDwAAAAAA4DcMJgIAAAAAAAAAAADlgMMRpOSGKVbHKBOSG6bI4QiyOgYs1LJlS0N1LpfLqyFAM+Tk5Gjjxo2GamNiYlS7dm0/J4IRS5cutaz38uXLDdXFxcWpSpUqXq/foUMHQ3UnTpywdOdIeGZ0N1krRUUZ+5CFjIwMPyf5X2632/D1GcYtXrzYst5ffPGFobouXbqUaH2j18+NGzfq+PHjJeoRKDp37myobtGiRX5OcnFGzwcAAAAAAPAbBhMBAAAAAAAAAACAciImJlExMcZ2iiuvqsfUV0w1YzuyoPzq1KmT4dolS5b4MYn3vv32WxUUFBiq7dixo5/TwKgtW7YoNTXVkt4LFiwwVNezZ88Srd+uXTtFRET4NAusERwc7LGmsLDQhCQXV6NGDUN1Vvx927Bhg7Kzs03vW97t3LlT27ZtM73vyZMnDQ929+rVq0Q9UlJSDA0EFxUV6fPPPy9Rj0Bh9Dn87LPP5HK5/Jzmf23cuFH79u0zvS8AAAAAAIGOwUQAAAAAAAAAAACgHElO6iG73WF1DEvY7Q41SmLXSEiXXXaZ4dqFCxf6MYn3vMnjzeOE/82bN8/0nkeOHNHKlSsN1ZZ0MDEkJER9+/Y1VDtr1iy53e4S9YH/hYSEeKzJyckxIcnFOZ1ORUZGeqzbvXu36cNLVu7sV9698847pvecNWuW4Q8CKOlgYp06ddS+fXtDte+9916JegSKSy+91FDd0aNHLfm79vbbb5veEwAAAACA8oDBRAAAAAAAAAAAAKAccTqjlBBn7Abo8iYhvr2cTs/DDCj/WrdubXjXrS1btuinn37ybyCD8vLy9NFHHxmuv+KKK/yYBt566623TO85Y8YMFRUVeayz2WylGmQdNGiQobpdu3bpyy+/LHEf+JeRnS9PnjxpQpLiNWjQwGPNmTNnTN9l7/333ze1X0XyzjvvmDoU63a79dprrxmqbd26tRITS74bt9Hr57fffqsdO3aUuE9Zl5iYqFatWhmqffXVV/2c5o/OnDlT7gdDAQAAAADwFwYTAQAAAAAAAAAAgHImPq6dnGFRVscwldMZpfjYdlbHQBlhs9l0zTXXGK43Opzgb/PmzdOJEycM1TZs2FCNGzf2cyJ4Y8eOHVq0aJFp/fLy8gyfu126dFG9evVK3Ouaa65RlSpVDNU++uijJe4D/6pevbrHmiNHjpiQpHhGr23Lli3zc5LffPPNN+V6aMxqmZmZeuWVV0zrN3fuXG3dutVQ7dChQ0vV66abbpLD4Xk3c7fbrb/97W+l6lXWGX0uP//8c61bt87PaX7z4osv6tSpU6b1AwAAAACgPGEwEQAAAAAAAAAAAChnHI4gJTdMsTqGqZIbpsjhCLI6BsqQ4cOHG66dOXOmDhw44L8wBhQVFekf//iH4foRI0b4MQ1KysyhvDfeeEMHDx40VFvawZpKlSrpjjvuMFS7evVqdpYro2rWrOmxJjc31/B55S8tWrQwVPfZZ5/5OclvHnvsMdN6VVRPP/20MjMz/d4nLy/P8ACgw+HQjTfeWKp+sbGxGjhwoKHauXPnavny5aXqV5YNGzZMdrux2xUfeOABP6c57+jRo3ruuedM6QUAAAAAQHnEYCIAAAAAAAAAAABQDsXEJCompr7VMUxRPaa+YqolWh0DZUzXrl3VsGFDQ7V5eXl6+OGH/ZyoeG+99Za2bdtmqNbhcOi2227zcyKUxNq1azVjxgy/90lPTzc8KFWpUqVSD9ZI0j333KOgIGMD4GPHjtX+/ftL3RO+1aBBA0N169ev93OS4nXr1s1Q3VdffaVDhw75OY30wQcf6Pvvv/d7n4ru+PHjuu+++/zeZ/Lkydq5c6eh2kGDBikuLq7UPceNG2e49rbbblNWVlape5ZFcXFxGjRokKHapUuX6s033/RzImnMmDHl9vkGAAAAAMAMDCYCAAAAAAAAAAAA5VRyUg/Z7Q6rY/iV3e5Qo6SKtTskjBs/frzh2lmzZumTTz7xY5qL27NnjyZOnGi4fsiQIapTp44fE6E0Jk6c6Pcd5+6++26dOHHCUO1tt92matWqlbpnQkKC7rzzTkO1WVlZGjBgAMMeZUyjRo0M1S1ZssTPSYrXoUMHhYWFeawrKirSCy+84NcsBw4c8GqoDKUze/Zsvf32235bf8mSJXr22WcN13vzvbk43bp101VXXWWoNjU1VTfccIMKCgp80rus8eY5HT9+vH7++We/ZZk6daplr/0AAAAAACgvGEwEAAAAAAAAAAAAyimnM0oJce2tjuFXCfHt5XRGWh0DZdQdd9yh+Ph4w/UjRozQTz/95L9AF3Dy5EkNHDhQZ86cMVTvcDj06KOP+jkVSuPkyZO67rrrlJeX55f1X3jhBc2bN89QrcPh8GpA15PJkycrKirKUO3PP/+s/v3769SpUz7rXxr5+fl644039M0331gdxTLt2xt7TfDhhx9aOlQaGhqqyy67zFDtq6++qt27d/slx5kzZzRw4EBlZmb6ZX1c2JgxY/T111/7fN2ffvpJQ4cOVVFRkaH6K6+8Uh07dvRZ/+eee87wrrNffvmlbrzxRr99H/HWmTNn9Oyzz2rjxo2lXqtTp0668sorDdWePXtWAwYMUFpaWqn7/tmCBQs0YcIEn68LAAAAAEBFw2AiAAAAAAAAAAAAUI7Fx7WTM8zYEEmgcTqjFB/bzuoYKMNCQkK8GuLLysrSFVdcobVr1/ox1W+OHTumK664Qps3bzZ8zG233WZ41zNYZ82aNbrhhhuUn5/v03VnzZqlBx54wHD9yJEj1bBhQ5/1j4mJ0T//+U/D9d9//726deumPXv2+CyDt7Kzs/Xyyy+rYcOG+r//+z8dOXLEsixWa9++vUJDQz3WnTx5UqNHj5bL5TIh1YVdf/31hupyc3N18803+3yA6/Tp07ryyiu1YcMGn64Lz/Lz83X11VdrwYIFPlvzhx9+UO/evQ0PSgcFBfl8N84mTZro/vvvN1z/8ccf6/LLL1d6erpPc3gjIyNDTz75pBITEzVp0iSdPn3aJ+s+//zzhoc09+/frx49emj79u0+6S1Jc+bM0eDBg1VYWOizNQEAAAAAqKgYTAQAAAAAAAAAAADKMYcjSMkNU6yO4RfJDVPkcBi7qRkV1/Dhw9WrVy/D9enp6erRo4dee+01ud1uv+VaunSpLrnkEq+GIGvWrKkpU6b4LRN8a8GCBerXr5+OHz/uk/X+9a9/6bbbbjM8LBYZGanHH3/cJ71/b/To0br66qsN12/ZskWtWrXS9OnTTR1027hxo+677z7Vq1dP9957r1923Ao0oaGh6tOnj6HaOXPmKCUlRd99952fU13YtddeqypVqhiqXb16tYYNG+azQeDt27erU6dOWrFihU/Ww8UFBwdf8Ou5ubkaOHCgHnzwQeXm5pZ4/aKiIv3rX/9SSkqKTpw4Yfi4sWPHqkmTJiXuezFPPPGE2rZta7h++fLlat68uebOnevzLMX54YcfNGLECMXGxupvf/ubz3cNbdq0qe655x7D9fv371f79u313nvvlarv2bNnde+992rYsGEqKCi4YM3FzkkAAAAAAHBhDCYCAAAAAAAAAAAA5VxMTKJiYupbHcOnqsfUV0y1RKtjIADYbDa9/fbbCg8PN3xMbm6uRo8erS5duuibb77xaZ7t27fr5ptvVq9evXTw4EGvjp0+fbqio6N9mgelFxsbe9Hf+/rrr9W2bVt99tlnJV4/LS1NAwcO1P333+/VYN8zzzyjGjVqlLhvcWbMmFHs4/6zs2fPasyYMWrZsqXmzZvnt12qtm3bpmeeeUatWrVSq1atNHXqVJ/t8FVeDBkyxHDt999/rx49eqhevXoaOnSoJk+erLfeekvz5s3TZ599poULF3r89e2335YoZ3h4uO68807D9f/5z3/Up08f7d+/v0T9JOncuXN64okn1KZNG23btu2CNf76O1VRjRo1SjExMRf8PbfbrWeeeUZNmjTRzJkzvdoVs6ioSP/5z3/Utm1b3X///RcdQruQZs2a6amnnjJc742QkBDNmTNHUVHGdzPPyMjQDTfcoK5du+rLL7/0y4cmuN1ubdiwQY8++qiSkpLUpUsXr59zbz311FNq2rSp4fozZ87otttuU7du3bx+Hs6ePavXXntNjRo10ssvv3zRupiYGK+uOwAAAAAAQOLjQwEAAAAAAAAAAIAKIDmph06c2C+Xq8jqKKVmtzvUKKl87gIJ/0hMTNS7776r66+/3qsb2VetWqU+ffqoRYsWGjZsmAYNGqTk5GSv+6enp2vhwoX66KOPSjxUcP/992vQoEFeHwf/u/TSS3X27FnNmzfvgr+flpama665Rj169NC4cePUr18/hYSEeFx38+bNmj59ut555x3l5OR4lal///666667vDrGGzExMVq8eLG6deumkydPGj5uy5Ytuv7661WnTh3ddNNN6t+/v7p06aKgIO9vX3G73dqzZ49WrlyplStX6quvvtLevXu9XqeiueGGG/SXv/xFR48eNXzMoUOH9O9//7tE/eLj45WamlqiY++//35Nnz5d2dnZhuq/++47NWvWTHfffbdGjx6thIQEQ8dt27ZNH3zwgV5//fVid4ZLTk7W2LFjvdrpDcWrXr26XnrpJd10000XrUlNTdWIESM0ceJEXXXVVerdu7eaN2+u+Ph4RUZGymaz6cyZMzpw4IC2bNmipUuX6vPPP9ehQ4e8zhMWFqbZs2crLCysNA+rWI0aNdL8+fN15ZVXejX4t3LlSl1xxRVKSkrSsGHD1L9/f11yySWy2WxeZygqKtL27dt/vX4uWbJER44c8Xqd0nA6nZo9e7Y6derk1a6YK1as0BVXXKH69eurf//+6t69u5o2bao6deqocuXKKioq0unTp7V3715t2rRJX3/9tRYvXqysrCyPa7/00kvauXNnaR4WAAAAAAAVDoOJAAAAAAAAAAAAQAXgdEYpIa699qausjpKqSXEt5fTGWl1DASY6667Tv/85z/14IMPen3spk2b9NBDD+mhhx5STEyM2rVrp0aNGik2NlY1a9aU0+lUaGioCgoKlJubq5MnTyotLU379u3Thg0bSj0sNWDAAE2ZMqVUa8C/pk2bpm+//VYnTpy4aM3y5cu1fPlyVa5cWT179lTLli3VoEEDRUZGKigoSGfOnNGRI0e0detWLVu2TPv27StRlri4OL399tslfSiGNW3aVJ999pmuuOIKnT171qtjDx8+rClTpmjKlClyOp1q1aqVmjdvrtjYWNWtW1fh4eFyOp1yu93Kzc1Vbm6uMjIydOzYMR0+fFg7duzQ9u3bde7cOT89uvIrNDRUjzzySEAM19WsWVOPPPKIJk2aZPiYs2fP6tlnn9WUKVPUunVrde3aVY0aNVKNGjXkdDqVl5en7OxspaWlaceOHVq5cqXS0tI8rhsWFqaPPvpIGzZsKM1DwgUMGzZMn3/+uWbPnl1s3fHjx/X+++/r/fff90sOm82mWbNmqWXLln5Z//d69uypWbNmaejQoSoq8u5DQ3bv3q3HH39cjz/+uCIiItSmTRs1a9ZM9erVU+3atRUeHq6wsDAVFRUpNzdXOTk5Sk9P17Fjx3Tw4EHt2LFDO3fu9OtuiEa1atVK77//vm644QavP7Rh7969mjp1qqZOneqTLMOGDdOwYcP02GOP+WQ9AAAAAAAqCgYTAQAAAAAAAAAAgAoiPq6djhzdppxczzuGlFVOZ5TiY9tZHQMBatKkSTp79qyeeOKJEq+RmZmpJUuWaMmSJT5MdnH9+vXTnDlzZLfbTemHkqlZs6bmzJmjfv36qbCwsNjaM2fOaOHChVq4cKHPc0RGRuqLL75QjRo1fL72hXTt2lXffvut+vXrV+xOc8XJycnRqlWrtGpV4A/OB4rRo0dr9uzZWrlypdVRPLr//vv1ySefeH1+uN1u/fjjj/rxxx9LncFut+v9999Xy5YtGUz0kxkzZig1NdXSc/KFF17QddddZ1q/wYMHa/78+RoyZEiJh6yzs7N/HXoPVIMHD9bzzz+v+++/37IMnTt3NmWgHwAAAACA8oifXAAAAAAAAAAAAAAVhMMRpOSGKVbHKJXkhilyOPj8VZTc448/rqlTp8pms1kdxaNbbrlF8+fPl9PptDoKDLj88st9tnNTSYSHh2v+/Plq1qyZqX07dOigFStWKCkpydS+KDm73a7//Oc/ql+/vtVRPAoKCtKcOXNUrVo1yzK89tprGjx4sGX9K4LQ0FDNnz9fLVq0ML23zWbTyy+/rHHjxpneu3///vrmm29Us2ZN03uXJePHj9dLL71kyWuz5s2b69NPP1VYWJjpvQEAAAAAKA8YTAQAAAAAAAAAAAAqkJiYRMXElP1BhAupHlNfMdUSrY6BcmDs2LH66quvVLduXaujXFBYWJimTZum9957T0FBDOIGktGjR+vZZ581fbiiSpUq+uqrr9SrVy9T+/6iUaNG+vHHHzV8+HBL+sN7NWvW1A8//KBu3bpZHcWjhIQELV68WBEREab2DQoK0ptvvqlRo0aZ2reiql69ur777julpJj3IRrh4eGaPXu27rnnHtN6/lmnTp20ceNGXXXVVZZlKAvuvfdeffDBB6pUqZJpPVNSUvT999+revXqpvUEAAAAAKC8YTARAAAAAAAAAAAAqGCSk3rIbndYHcMrdrtDjZICe7dHlC29e/fWxo0bdfPNN5ep3RM7d+6sdevW6e6777Y6CkrogQce0Hvvvafg4GBT+jVv3lwrV65U586dTel3MZUrV9Y777yj//znP0pISLA0y8V07dpVrVq1sjpGmVGjRg0tW7ZM06dPL7OD2r+45JJL9PXXX6tWrVqm9KtSpYoWL16skSNHmtIP50VFRWnJkiUaP3687Hb/3tbWqlUrrVu3TkOHDvVrHyNq1Kihzz//XG+88UaZHJKz2+268sor/X5tv/HGG7Vu3Tq/75xpt9s1fvx4LVmyRFFRUX7tBQAAAABAecdgIgAAAAAAAAAAAFDBOJ1RSohrb3UMryTEt5fTGWl1DJQz0dHRev/997V27VrLdpr7RVJSkubOnauVK1eqWbNmlmZB6d18881as2aNWrdu7bcedrtdo0eP1po1a9SkSRO/9fHWoEGDtH37dj399NOKjo62Oo7q1aunCRMmaMuWLfr+++/9PvASaOx2u+666y7t27dPc+bM0cCBA03dscwbHTp0MOV63a9fP23atEm9e/f2ax9cWGhoqF544QV9//33frmGVq1aVf/617+0du1aNW7c2Ofrl8aoUaO0e/duTZo0SeHh4VbHUaNGjfToo49q7969WrRokerVq+f3nk2aNNG6dev0/PPPq0qVKj5fv3Xr1lqxYoVeeOEFhYaG+nx9AAAAAAAqGgYTAQAAAAAAAAAAgAooPq6dnGGBsUOI0xml+Nh2VsdAOdauXTt9++23Wr9+vUaOHGnaMIDdblffvn312WefaceOHRo8eLApfWGO1q1ba+3atXruuedUu3Ztn67dq1cvrV+/Xq+++qqcTqdP1/aF0NBQTZo0SQcPHtQbb7yhli1bmto/OTlZ48eP1/Lly5WWlqbnnntOTZs2NTVDoAkODtbQoUP1ySef6NSpU1q1apVefvlljR07Vn379lXr1q1Vr149RUREKDQ01O+72V1MvXr19O2332rGjBmKi4vz6drNmjXTv//9by1cuNCUASwUr3Pnzvrxxx+1aNEiXXrppaU+5xITE/XMM89oz549GjdunGm72norMjJSTz/9tA4ePKjnn39eDRo0MK23zWZT69at9de//lXr16/Xjh079Nhjjyk+Pt60DJIUEhKi+++/X3v27NE///nPUve32+3q3bu3Fi1apB9//FGdOnXyUVIAAAAAAGBzu91uq0MAAICSycjIUI0aNf7wtfT0dFWvXt2iRAAAAAAAAEDp5OXlae/evcXW1K9fn90tfCQzc59+2rTA6hgetW55jWKqJVodAxXI2bNn9dVXX2nhwoVasmSJDh486LO1IyMj1atXL/Xv31/9+vXz+cAafCc1NVWJiZ6vPbfddptmzpxZbE1eXp5mzZqlWbNm6fvvv1dhYaHXeaKionTttdfqnnvuUdu2bb0+3mpbt27V/PnztWDBAq1fv75Ez8GF2O12JSUlqUuXLurRo4d69uxp6M8Nga+goEBz5szRe++9p6VLl6qoqMjrNZxOpy677DKNGjVK/fr1k81mK7Z+5syZGjFihMd133nnHQ0fPtzrPLi49PR0ff755/ryyy+1ceNG7dq1SwUFBRetr1Klipo1a6ZevXqpb9++6tSpk2UDtaW1bt06zZ8/X5999pk2b94sl8vlk3WDgoLUpEkTde3aVd27d1evXr3K5OsSl8ullStXavHixfr222+1ZcsWnT59+qL1wcHBatiwoVq2bKkrrrhC/fr14x4KAOX+/SbuIQMAAIBVGEwEACCA8aYSAAAAAAAAypvyfqNYWfTTps+UmVn8c26l6jH11arF1VbHQAV37NgxrV+/Xj///LP27dungwcP6sCBAzpx4oRycnKUm5ur3NxcBQcHy+l0KiwsTJGRkapbt65iY2MVFxenFi1aqG3btkpKSvI4+IKywZeDib936tQpff311/rpp5+0ZcsW7dy5U6dOnVJ2drbOnTunsLAwRUREqEaNGmrcuLGaNWumnj17qkuXLgoKCirFIyo7cnNz9eOPP2rt2rXatWuX0tLStH//fh0/flznzp3TuXPnlJeXp6CgIIWGhqpSpUqqVq2aqlevrjp16igxMVH169dX06ZN1apVK9N2OUXZlZGRoe+++04//PCDtm/frr179yo9PV1nz55VXl6eKlWqpMjISFWtWlXJyclq0aKFLrnkEvXu3btM7joKzwoKCrR//35lZWUpOztbubm5cjqdioiIUO3atcvkgJ0vZGdna/369Vq/fr12796ttLQ0paWl6cSJEzp37pxycnKUn5+v4OBghYSEqHLlyoqJiVH16tVVt25dJSYmqkGDBmrWrJmaN2+usLAwqx9SiRw+fFhHjx799XtnpUqVFBERoaioKMXFxZXZHTEBWKe8v9/EPWQAAACwCoOJAAAEMN5UAgAAAAAAQHlT3m8UK4tycrL0w5r35XJ5v8uQv9ntDnXucKuczkirowCogPw1mAgAAADAXOX9/SbuIQMAAIBV7FYHAAAAAAAAAAAAAGAdpzNKCXHtrY5xQQnx7RlKBAAAAAAAAAAAAMogBhMBAAAAAAAAAACACi4+rp2cYVFWx/gDpzNK8bHtrI4BAAAAAAAAAAAA4AIYTAQAAAAAAAAAAAAqOIcjSMkNU6yO8QfJSSlyOIKsjgEAAAAAAAAAAADgAhhMBAAAAAAAAAAAAKCYmETFxNS3OoYkqXpMfcXEJFodAwAAAAAAAAAAAMBF8BGjACq8AwcOaMmSJdq4caO2bt2qffv2KTs7W6dPn5bb7VZERIQiIiIUFxenpk2bqkWLFrrsssvUsGFDq6MHlPT0dK1YseLX5/ngwYM6cuSITp48qdzcXOXn5ys4OFhhYWGKiopSrVq1VLduXTVp0kQtWrRQ165dFRsba/XDAAAAAAAAAIByLTmph06c2C+Xq8iyDHa7Q42SytbujQAAAAAAAAAAAAD+iMFEABXSqVOn9NZbb+n999/Xxo0bi609fvy4jh8/rtTUVC1fvvzXrzds2FDDhg3T6NGjVbNmTX9HDkg7d+7U7Nmz9fHHH2vz5s0e6/Py8pSXl6esrCylpaVJkj755JNffz8pKUkDBw7UsGHD1KZNG7/lBgAAAAAAAICKyumMUkJce+1NXWVZhoT49nI6Iy3rDwAAAAAAAAAAAMAzu9UBAMBMZ86c0aRJk1SvXj098MADHocSi7Nr1y5NnjxZcXFxuvPOO5WZmenDpIFt+fLl6tu3r5KTkzV58mRDQ4lG7N69W88995zatm2rrl276rPPPvPJugAAAAAAAACA38THtZMzLMqS3k5nlOJj21nSGwAAAAAAAAAAAIBxDCYCqDAWLFigJk2a6Nlnn9XZs2d9tm5+fr7efPNNJScn65133vHZuoHowIEDGjx4sFJSUrR48WK/9lq5cqWuueYa9enTR9u3b/drLwAAAAAAAACoSByOICU3TLGkd3JSihyOIEt6AwAAAAAAAAAAADCOwUQA5Z7L5dIjjzyigQMH6uDBg37rc+LECd1+++268847lZ+f77c+ZdX8+fPVqlUrffzxx6b2/eabb9SuXTvNmDHD1L4AAAAAAAAAUJ7FxCQqJqa+qT2rx9RXTEyiqT0BAAAAAAAAAAAAlAyDiQDKtaKiIg0dOlT/+Mc/5Ha7Ten55ptv6vLLL9e5c+dM6VcWvPDCC7r22mt18uRJS/qfO3dOd9xxhyZNmmRJfwAAAAAAAAAoj5KTeshud5jSy253qFGSNbs0AgAAAAAAAAAAAPAeg4kAyi2Xy6Xhw4dr7ty5pvdetmyZBg0apLy8PNN7m23KlCmaMGGCaYOfxXn22Wd1//33Wx0DAAAAAAAAAMoFpzNKCXHtTemVEN9eTmekKb0AAAAAAAAAAAAAlF6Q1QEAwF/++te/atasWV4d07BhQ3Xt2lXNmzdXdHS0bDabTp48qW3btumHH37Q5s2bDa/15ZdfatSoUXrvvfe8jR4w/vOf/5Rol0KHw6GWLVuqc+fOqlOnjqpWrarIyEhlZ2fr5MmTOnr0qFatWqWffvpJBQUFXq39r3/9S0lJSRozZozXuQAAAAAAAAAAfxQf105Hjm5TTm6W33o4nVGKj23nt/UBAAAAAAAAAAAA+B6DiQDKpUWLFumZZ54xXD9gwAA9/PDD6tChQ7F1mzdv1pQpUzRr1iy5XC6P677//vtKSUnRHXfcYThLoDhy5IhGjRrl1U6JzZs317hx4zRkyBBVrlzZY31OTo7mzZunF198URs2bDDcZ8KECbr00kvVuHFjw8cAAAAAAAAAAP6XwxGk5IYp+mnTAr/1SE5KkcPBjy0BAAAAAAAAAACAQGK3OgAA+Nrx48d16623GhqYi46O1ueff6758+d7HEqUzg/Wvfvuu1qxYoViY2MN5Rk7dqx2795tqDaQPPDAAzpx4oSh2vDwcL399tvatGmT7rjjDkNDiZLkdDp1yy23aP369frwww8VFRVl6Ljc3FzdfffdhmoBAAAAAAAAAMWLiUlUTLVEP61dXzEx/lkbAAAAAAAAAAAAgP8wmAig3PnrX/+qzMxMj3X16tXTmjVrdNVVV3ndo1OnTlq3bp2aNm3qsTYnJ0fjx4/3ukdZtnXrVs2ZM8dQbWxsrNatW6fbb7+9VD2HDBmin3/+2fAuiN9++63++9//lqonAAAAAAAAAOC85IYpstsdPl3TbncoOamHT9cEAAAAAAAAAAAAYA4GEwGUKz/++KPefPNNj3VRUVH6+uuv1aBBgxL3qlGjhr755hvVq1fPY+3ChQv1xRdflLhXWfPaa6/J5XJ5rIuMjNTnn39ueJjQk/j4eC1atEg1a9Y0VP/qq6/6pC8AAAAAAAAAVHROZ5QS4tr7dM2E+PZyOqN8uiYAAAAAAAAAAAAAczCYCKBcmTx5sqGBuTfffFPJycml7lerVi3Nnj1bDofnT4l+9NFHS92vLHC5XIZ3S3z55ZfVokULn/ZPSEjQ+++/b6j2s88+0+nTp33aHwAAAAAAAAAqqvi4dnKG+WaQ0OmMUnxsO5+sBQAAAAAAAAAAAMB8DCYCKDd27NihBQsWeKwbMGCArr/+ep/17d69u/7v//7PY926dev07bff+qyvVX7++WdlZmZ6rGvWrJluvvlmv2S47LLL1Lt3b491eXl5+u677/ySAfClZs2aqVmzZlbHAAAAuCherwAAgECwefNmbd682eoY5ZrDEaTkhik+WSs5KUUOR5BP1gIAIFDwegUAAJR1vF4BAAAA4A0GEwGUGy+88ILcbnexNUFBQXruued83vvxxx9XZGSkx7rnn3/e573NtmrVKkN19913n+x2/32bmThxoqG6lStX+i0DAAAAAAAAAFQ0MTGJiqmWWMo16ismpnRrAAAAAAAAAAAAALAWg4kAyoW8vDz9+9//9lh33XXXKSkpyef9q1WrppEjR3qsW7JkiY4dO+bz/mbasWOHoborr7zSrzlSUlIUFhbmsW7nzp1+zQEAAAAAAAAAFU1ywxTZ7Y4SHWu3O5Sc1MPHiQAAAAAAAAAAAACYjcFEAOXCwoULlZWV5bFu3Lhxfstw7733etwhsKioSB9++KHfMpjh4MGDHmvq16+v2NhYv+ZwOp3q3Lmzx7q0tDS/5gAAAAAAAACAisbpjFJCXPsSHZsQ315OZ5SPEwGAfyQkJMjtdnv8NXPmTKujAgAAAAAAAABgOgYTAZQLc+bM8ViTlJSkTp06+S1DfHy8unfv7rHOSNay7MyZMx5r6tWrZ0ISqW7duh5rsrOzTUgCAAAAAAAAABVLfFw7OcO8GzB0OqMUH9vOT4kAAAAAAAAAAAAAmInBRAABr6ioSF9//bXHuiFDhvg9y9ChQz3WrF27VsePH/d7Fn9xuVwea2JiYkxIIlWvXt1jTUFBgQlJAAAAAAAAAKBicTiClNwwxatjkpNS5HAE+SkRAAAAAAAAAAAAADMxmAgg4K1Zs0ZZWVke6/r27ev3LEZ6uFwuffPNN37P4i9Vq1b1WBMSEmJCEik0NNRjTXR0tAlJAAAAAAAAAKDiiYlJVEy1RIO19RUTY6wWAAAAAAAAAAAAQNnHYCKAgGdkyC8iIkIdO3b0e5b4+HglJSV5rPvqq6/8nsVfqlWr5rEmMzPThCRSRkaGxxoGEwEAAAAAAADAf5IbpshudxRbY7c7lJzUw6REAAAAAAAAAAAAAMzAYCKAgPfDDz94rOnYsaOCgoJMSCN1797dY83q1atNSOIfDRo08FhjZGDQF9LT0z3WxMXFmZAEAAAAAAAAACompzNKCXHti61JiG8vpzPKpEQAAAAAAAAAAAAAzMBgIoCA9+OPP3qsadu2rQlJzmvXrp3Hmm3btikvL8+ENL7XrVs3jzXbtm3T2bNn/ZrD7XZr7dq1Huu6du3q1xwAAAAAAAAAUNHFx7VTlag6F/y9KlF1FB/r+X1zAAAAAAAAAAAAAIGFwUQAAe3YsWM6cuSIx7qyNphYWFioTZs2mZDG99q2bavw8PBia/Lz8/Xf//7Xrzk2btyoo0ePeqwzsoMlAAAAAAAAAKDkHI4gtW55jWrXaiKbzSFJstkcql2riVq3vEYOR5DFCQEAAAAAAAAAAAD4GoOJAALaxo0bDdU1btzYz0l+k5ycbKjOaPayJjg4WDfeeKPHuvfee8+vOd59912PNR06dFBiYqJfcwAAAAAAAAAApKCgUDVrcrl6dB2prp2Gq0fXkWrW5HIFBYVaHQ0AAAAAAAAAAACAHzCYCCCg7d2711BdUlKSn5P8pmrVqoqOjvZYZzR7WXTvvfd6rJk3b55++uknv/Q/cOCAXn31VY919913n1/6AwAAAAAAAAAuLDg4TE5nlIKDw6yOAgAAAAAAAAAAAMCPGEwEEND27dvnsaZWrVoKDw83Ic1vjAxCGsleVrVo0ULXXnttsTVut1t33nmncnJyfNq7sLBQo0aNUl5eXrF1SUlJuv76633aGwAAAAAAAAAAAAAAAAAAAAAAAAwmAghwqampHmvq1Knj/yB/Urt2bY81gTyYKEmvvvqqqlWrVmzN2rVrddNNN6moqMgnPd1ut0aPHq0lS5YUW2e32zVjxgwFBwf7pC8AAAAAAAAAAAAAAAAAAAAAAAB+w2AigIB26NAhjzW1atUyIYn3PQ8ePGhCEv+pWbOm3n77bTkcjmLrPvnkE1166aWlfrzp6enq16+f3nrrLY+1EyZMUPfu3UvVDwAAAAAAAAAAAAAAAAAAAAAAABfGYCKAgHb8+HGPNTVr1jQhyR8ZGUw8ceKECUn8a8CAAXr77bdls9mKrVu+fLlatWqlf/zjH8rMzPSqx6lTpzRlyhS1aNFCixYt8lh/yy236JlnnvGqBwAAAAAAAAAAAAAAAAAAAAAAAIwLsjoAAJSGkcHEKlWq+D9ICXqePXtWeXl5Cg0N9X8gP7rttttkt9t111136dy5cxetO3HihB555BH94x//0OWXX66uXbuqU6dOqlu3rqpWraqIiAidOXNGJ0+e1JEjR7R69WqtWLFCixcv1tmzZw1lufXWWzVjxgyPg5IAAAAAAAAAAAAAAAAAAAAAAAAoOQYTAQS0kydPeqyJiIgwIUnJep44cUK1a9f2cxr/u+WWW9S+fXvdeOON+umnn4qtzcnJ0aeffqpPP/3UZ/3Dw8M1depU3X777T5bEwAAAAAAAAAAAAAAAAAAAAAAABdmtzoAAJRUTk6OCgoKPNZZMZgYGRlpqC4rK8vPSczTuHFjrV27Vm+//bbq169vSk+Hw6Gbb75ZP//8M0OJAAAAAAAAAAAAAAAAAAAAAAAAJmEwEUDAys/PN1TndDr9nOR/hYWFGaoz+hgCRVBQkG6//Xbt2LFD8+bN09ChQw0PaXqjbt26Gjt2rLZu3ar3339fDRo08HkPAAAAAAAAAAAAAAAAAAAAAAAAXFiQ1QEAoKSMDvU5HA4/J/lfQUHGLq/lbTDxF0FBQbriiivkdrvlcrk0d+5cud1un6zdr18/PfXUU2rZsqVP1iuPunXrZvgchP9s2bLF6ggAAAAAAAAAAAAAAAAAAAAAAPgFOyYCCFhGh/qsGNAy2rOgoMDPScy3efNm3XTTTYqJidH111+vjz76yGdDiZL0+eefq1WrVkpMTNRDDz2ko0eP+mxtAAAAAAAAAAAAAAAAAAAAAAAAeMZ2SgACVmFhoaE6BhPNsXfvXk2YMEGffvqpTwcRLyY1NVVPP/20XnzxRY0YMUKPPPKI6tSp4/e+geD7779X9erVrY4BAAAAAAAAAAAAAAAAAAAAAADKKXZMBBCwjA7/FRUV+TlJyXtaMTTpD++9955at26t+fPnmzKU+Hu5ubmaPn26mjdvro8++sjU3gAAAAAAAACsYfb7kAAAAAAAAAhcvJcEAAAA+Ef5mIgBUCGFhIQYqjO6s6IvGd0J0ehjKKtcLpdGjRqlGTNmeHWcw+FQmzZt1KFDB9WoUUPR0dGqUqWKzpw5oxMnTujEiRP66aeftGrVKp07d87QmidPntSQIUO0ePFivfHGG+Vm6BMAAAAAAACoaGw2m8cabiYDAAAAAACAUUbeS7Lb2esFAAAA8BZTGwACVnBwsKE6KwYTjfYM5MFEt9utkSNH6p133jF8TEpKisaPH6/evXurcuXKHusLCgq0du1avfLKK/roo48MPa/vvPOOzp49q9mzZ8vhcBjOBgAAAAAAAKBsMHITWFFRkQlJAAAAAAAAUB4YeS/JyIdlAQAAAPgjPt4DQMAKDQ01VJebm+vnJCXvGciDiffff7/hocRWrVpp9erVWrp0qQYMGGBoKFE6P3zapUsXffDBB9qzZ48GDx5s6LiPPvpIt956q6FaAAAAAAAAAGWLkQ8cKygoMCEJAAAAAAAAyoP8/HyPNXwIPgAAAOA9dkwE4JV9+/Zp9erVfu0RHh6uq6++2mOd0+lUUFCQx130srOzfRXNMKM9IyMj/ZzEP7766iu9+OKLhmrvvPNOvfTSSwoLCytVz7i4OM2dO1fTpk3TxIkTlZeXV2z97Nmz1atXL40cObJUfQEAAAAAAACYy2azKTg4uNjhQyM3kwEAAAAAAACS5w+5Cg4OZsdEAAAAoAQYTATglWXLlmnEiBF+7REfH29oMFGSqlatqoyMjGJrTp8+7YtYXjHaMzo62s9JfC8rK0u33367odqJEydqypQpPu1/zz33qG7durruuuvkdruLrb3//vvVp08fJSQk+DQDAAAAAAAAAP8KCQlhMBEAAAAAAAA+4em9pJCQEJOSAAAAAOWL3eoAAFAa1apV81iTlZVlQhLve1aqVKnUuwha4eWXX9bBgwc91g0YMEDPPPOMXzIMGjTI0NrZ2dl68MEH/ZIBAAAAAAAAgP94uhksLy/P4weXAQAAAAAAAG63W3l5ecXWMJgIAAAAlAyDiQACmpHBxGPHjpmQ5I+OHj3qscZI9rKmoKBAr776qse6iIgIvf3227Lb/fdt5oEHHlDHjh091n388cc6cOCA33IAAAAAAAAA8D1PN4MVFBSwayIAAAAAAAA8ysvLU0FBQbE1DCYCAAAAJcNgIoCAVrduXY81RoYEfc1ITyPZy5p58+bpyJEjHuvGjRtnyuDlk08+6bGmsLBQ06ZN83sWAAAAAAAAAL4TGhrqseb06dMmJAEAAAAAAEAgy87O9lhj5L0oAAAAAP+LwUQAAS0hIcFjzeHDh/0f5E+MDO8lJiaakMS3Fi9e7LEmKChI48ePNyGN1KdPH7Vp08Zj3YIFC0xIAwAAAAAAAMBXKlWqJIfDUWzN6dOn5Xa7TUoEAAAAAACAQON2uz1+uJXD4VClSpVMSgQAAACULwwmAghoRob7jh49qnPnzpmQ5je7d+/2WBOIg4nfffedx5qOHTuqatWqJqQ578orr/RYs337dmVkZJiQBgAAAAAAAIAv2Gw2Va5cudia/Px8Q594DwAAAAAAgIrp9OnTys/PL7YmIiJCNpvNpEQAAABA+cJgIoCAVr9+fY81brfb0KCgr5w6dUrHjx/3WGcke1ly9OhR7du3z2Pd5ZdfbkIa7/t9//33fk4CAAAAAAAAwJciIyM91hw7dkwul8uENAAAAAAAAAgkRUVFSk9P91gXERFhQhoAAACgfGIwEYBXhg8fLrfb7ddfqamphvO0aNHCUN327dtL+Ii9Z7SX0exlxcGDBw3VNW/e3M9JStZv//79fk4CAAAAAAAAwJfCw8PlcDiKrSksLNSxY8fkdrtNSgUAAAAAAICyzu12Kz09XYWFhcXWORwOhYeHm5QKAAAAKH8YTAQQ0GrXrq2aNWt6rNuwYYMJaYz3CgoKUsuWLU1I4ztGdoGUpJiYGD8n+aPo6GjZ7Z6/nRnNDwAAAAAAAKBssNlsioqK8lh36tQppaenM5wIAAAAAACAX4cST5065bE2KipKNpvN/6EAAACAcorBRAABr23bth5rzBxMXL9+vceaxo0bKywszIQ0vnPixAlDdWYPJtrtdkVHR3usYzARAAAAAAAACDwxMTEed02Uzr9/WVRUxHAiAAAAAABABeZyuXT06FFD97o5HA7T73UDAAAAyhsGEwEEvM6dO3usWbVqlQoLC01IIy1fvtxjTceOHU1I4ltGb+ix4hOkjPQ0688fAAAAAAAAgO84HA7VqFHDUK3L5VJBQYGysrIYUAQAAAAAAKhA3G63srKytGfPHkM7JUpSjRo1DH0gFgAAAICLYzARQMDr3bu3x5rs7GytWbPG71nS0tK0e/duj3WXXXaZ37P4WqVKlQzVZWZm+jnJH7lcLkO7IRrNDwAAAAAAAKBsiYqKktPpNFx/+PBh7d27VxkZGcrNzWVIEQAAAAAAoBxyu93Kzc1VRkaG9u7dq8OHDxv+8Hqn06moqCg/JwQAAADKvyCrAwBAaXXo0EGRkZE6ffp0sXWLFi1Sly5d/Jpl0aJFHmtsNpuhYcqyxugbMRkZGX5O8kcnTpyQy+XyWBcZGWlCGgAAAAAAAAC+ZrPZVKtWLaWmphoeMszPz1dmZqYyMzMVHBys0NBQhYSEKDg4WCEhIXI4HLLZbLLZbH5ODwAA8JtfXsvk5eVZnAQAAODCyuLrFbfbLbfbraKiIuXn56ugoED5+fnKy8tTQUGB1+v98l4T7wsBAAAApcdgIoCAFxQUpN69e+uTTz4ptu7f//63nnjiCb9m+fDDDz3WXHLJJYqJifFrDn+Ii4szVLdlyxZde+21fk7zm02bNhmqM5ofAAAAAAAAQNkTFham2NhYHThwwOsdEAsKCkp0kxoAAICv/fKaZO/evRYnAQAAuLDy/nrFZrMpNjZWYWFhVkcBAAAAygW71QEAwBduvPFGjzW7du3S6tWr/ZYhLS1Ny5cv91hnJGtZFBcXp6Agz/PsX375pQlpfrNkyRJDdYmJiX5OAgAAAAAAAMCfwsPDFRsbe9FPsz969CgDiAAAAAAAALigX4YSw8PDrY4CAAAAlBsMJgIoF66++mpFRkZ6rHvxxRf9lmHq1KlyuVzF1tjtdg0dOtRvGfwpODhYLVq08Fi3atUqnTp1yv+B/r/Fixd7rLHZbGrbtq0JaQAAAAAAAAD4U3HDiefOndOBAwcsSAUAAAAAAICyjKFEAAAAwD8YTARQLoSFhemGG27wWDdv3jzt3r3b5/2PHz+uN99802Pd5Zdfrtq1a/u8v1k6d+7ssaawsFD/+te/TEgjLVq0SD///LPHusaNG6tq1aomJAIAAAAAAADgb+Hh4UpISJDT6bQ6CgAAAAAAAMo4p9OphIQEhhIBAAAAP2AwEUC5cf/991/wU7J/r7CwUBMnTvR577///e86ffq0x7oJEyb4vLeZ+vXrZ6juxRdf1IkTJ/yaxe1265FHHjFU27dvX79mAQAAAAAAAGCusLAwxcfHq3bt2nI4HFbHAQAAMGTv3r3au3ev1TEAAAAuqjy9XnE4HKpTp47i4+MVFhZmdRwAAACgXGIwEUC50aRJE/Xv399j3aeffqq5c+f6rO/333+v119/3WNd27Zt1adPH5/1laTU1FTZbDaPv3r27OmTfpdddpmhnQdPnz6tO+64Qy6Xyyd9L+SJJ57Qhg0bDNUa2U0TAAAAAAAAQGCx2WyqUqWKGjRooOjoaOXk5FgdCQAAAAAAABZzOByKjo5WgwYNFBUV5XGzAwAAAAAlx2AigHLl0Ucfld3u+dI2atQo7dy5s9T9jh49qmHDhqmoqMhj7WOPPVbqflYLDg7WyJEjDdXOnz9fkyZN8kuODz/80PDz2aZNG3Xs2NEvOQAAAAAAAABYz+FwqGbNmnr22Wf1/vvvq0qVKuyiCAAAAAAAUIE4HA5VqVJFsbGxatiwoWrWrMn7QwAAAIAJGEwEUK60a9dOt99+u8e6rKws9e7dW3v37i1xr4yMDPXp00cHDhzwWNu3b19dffXVJe5VlowbN06hoaGGap977jmNHj1aeXl5Puv/wgsv6NZbb5Xb7TZU/+CDD/qsNwAAAAAAAICyy+Vyaffu3apdu7YaNmyouLg41axZU1WrVlV4eLiCg4OtjggAAAAAAIBSCg4OVnh4uKpWraqaNWsqLi5ODRs2VO3atVW5cmV2SAQAAABMFGR1AADwtaeeekqffPKJjh8/XmzdwYMH1aFDB73//vvq27evVz1Wr16tG264QWlpaR5rw8LC9NJLL3m1fllWp04dTZo0SY8//rih+tdee02rVq3SG2+8ofbt25e47759+zRu3DgtWLDA8DHdunXT9ddfX+KeAAAAAAAAAAKTzWZTeHi4wsPD//B1t9utoqIiud1uuVwui9IBAICKavTo0ZKkJUuWWJwEAADgwsrq6xW73S6bzSaHw8HgIQAAAFCGMJgIoNypXr26Zs6cqWuuucbjrnrHjx/XVVddpUGDBunhhx/WJZdcUmz91q1bNWXKFL333nuGb1p56aWX1LBhQ8P5A8FDDz2kuXPnatu2bYbqf/rpJ3Xo0EE9e/bU+PHj1bt37/+5IehCCgoKtGrVKr3yyiuaN2+eioqKDGcMCwvTa6+9xhtRAAAAAAAAAH5ls9kUFMSPxwAAgDUyMjIkSaGhoRYnAQAAuDBerwAAAADwBj95BVAu9e/fXxMnTtSUKVMM1X/yySf65JNP1KhRI3Xr1k3NmjVTdHS0bDabTp48qe3bt+uHH37Qxo0bvcoxbNgw3XnnnSV5CGVaWFiYPvnkE3Xo0EGnT582fNzSpUu1dOlSBQUFqU2bNurYsaOqV6+u6OhoValSRWfOnNGJEyd0/Phx/fTTT1q1apXOnTtXooyvv/66mjVrVqJjAQAAAAAAAAAAAAAAAAAAAAAAcHEMJgIot55++mkdPHhQc+bMMXzMzp07tXPnTp/07927t2bMmOGTtcqi5ORkzZ8/X/379/d6eLCwsFBr167V2rVr/ZLtiSee0K233uqXtQEAAAAAAAAAAAAAAAAAAAAAACo6u9UBAMBf7Ha73nvvPV177bWm9+7WrZs+/fRThYaGmt7bTL169dIXX3yhqlWrWh1F0vk/8ylTpuiRRx6xOgoAAAAAAAAAAAAAAAAAAAAAAEC5xWAigHItKChIc+fO1aRJk0zrOWLECH399dcKDw83raeVUlJStH79erVt29bSHDExMfriiy80ceJES3MAAAAAAAAAAAAAAAAAAAAAAACUdwwmAij37Ha7nn76aX3yySeqU6eO3/pUrVpVb775pmbMmFHud0r8s8TERK1evVpTpkxR5cqVTe1ts9k0YsQIbdu2TVdccYWpvQEAAAAAAAAAAAAAAAAAAAAAACoiBhMBVBgDBw7U9u3bNXHiRJ/uZhgSEqI77rhDO3bs0MiRI322bqAJCgrSxIkTtW/fPv31r39VdHS0X/sFBwfrpptu0qZNmzRjxgzFxMT4tR8AAAAAAAAAAAAAAAAAAAAAAADOYzARQIUSERGhKVOm6MCBA3r66afVrFmzEq/VoEEDPfLII0pNTdVbb72l6tWr+zBp4IqJidGTTz6pI0eO6D//+Y+GDh3qs+fG6XSqT58+euWVV3TkyBHNmjWrVH+GAABzNGvWjOs1yj3OcwAIfFzLUd5xjgNA4ONajoqA8xwAAhvXcVQEnOcAAAAAAPwmyOoAAGCFqlWratKkSZo0aZL279+vL7/8Uj///LO2bt2q1NRUnT59WtnZ2XK73YqIiFBERIRiY2PVtGlTtWjRQn369FHjxo2tfhhKSEiQ2+22OsYFhYSEaNCgQRo0aJDcbrc2bdqkDRs2aPPmzdq1a5eOHDmiI0eOKDs7W7m5ucrPz1dQUJDCwsIUHh6umjVrqnbt2kpMTFSzZs3UsmVLdejQQaGhoVY/NAAAAAAAAAAAAAAAAAAAAAAAgAqNwUQAFV58fLxGjRpldYxyzWazqWXLlmrZsqXVUQAAAAAAAAAAAAAAAAAAAAAAAFBKdqsDAAAAAAAAAAAAAAAAAAAAAAAAAACAwMFgIgAAAAAAAAAAAAAAAAAAAAAAAAAAMIzBRAAAAAAAAAAAAAAAAAAAAAAAAAAAYBiDiQAAAAAAAAAAAAAAAAAAAAAAAAAAwDAGEwEAAAAAAAAAAAAAAAAAAAAAAAAAgGEMJgIAAAAAAAAAAAAAAAAAAAAAAAAAAMMYTAQAAAAAAAAAAAAAAAAAAAAAAAAAAIYxmAgAAAAAAAAAAAAAAAAAAAAAAAAAAAxjMBEAAAAAAAAAAAAAAAAAAAAAAAAAABjGYCIAAAAAAAAAAAAAAAAAAAAAAAAAADCMwUQAAAAAAAAAAAAAAAAAAAAAAAAAAGAYg4kAAAAAAAAAAAAAAAAAAAAAAAAAAMAwBhMBAAAAAAAAAAAAAAAAAAAAAAAAAIBhDCYCAAAAAAAAAAAAAAAAAAAAAAAAAADDGEwEAAAAAAAAAAAAAAAAAAAAAAAAAACGMZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAMYzARAAAAAAAAAAAAAAAAAAAAAAAAAAAYxmAiAAAAAAAAAAAAAAAAAAAAAAAAAAAwjMFEAAAAAAAAAAAAAAAAAAAAAAAAAABgGIOJAAAAAAAAAAAAAAAAAAAAAAAAAADAMAYTAQAAAAAAAAAAAAAAAAAAAAAAAACAYQwmAgAAAAAAAAAAAAAAAAAAAAAAAAAAwxhMBAAAAAAAAAAAAAAAAAAAAAAAAAAAhjGYCAAAAAAAAAAAAAAAAAAAAAAAAAAADGMwEQAAAAAAAAAAAAAAAAAAAAAAAAAAGMZgIgAAAAAAAAAAAAAAAAAAAAAAAAAAMIzBRAAAAAAAAAAAAAAAAAAAAAAAAAAAYBiDiQAAAAAAAAAAAAAAAAAAAAAAAAAAwDAGEwEAAAAAAAAAAAAAAAAAAAAAAAAAgGEMJgIAAAAAAAAAAAAAAAAAAAAAAAAAAMMYTAQAAAAAAAAAAAAAAAAAAAAAAAAAAIYxmAgAAAAAAAAAAAAAAAAAAAAAAAAAAAxjMBEAAAAAAAAAAAAAAAAAAAAAAAAAABjGYCIAAAAAAAAAAAAAAAAAAAAAAAAAADCMwUQAAAAAAAAAAAAAAAAAAAAAAAAAAGAYg4kAAAAAAAAAAAAAAAAAAAAAAAAAAMCwIKsDAACAknO5XP/ztczMTAuSoDQKCwslSRkZGRYnAfyDcxwVAec5yjvOcVQEnOco7zjHURFwnqO84xxHRcB5jvKOcxzlHec4KgLOc5R3nOOB6UL3i13ovjIAAADA12xut9ttdQgAAFAy27ZtU9OmTa2OAQAAAAAAAAAAAAAAAAAoI7Zu3aomTZpYHQMAAADlnN3qAAAAAAAAAAAAAAAAAAAAAAAAAAAAIHAwmAgAAAAAAAAAAAAAAAAAAAAAAAAAAAxjMBEAAAAAAAAAAAAAAAAAAAAAAAAAgP/H3n1HWVVYfQPeM/QuAwIiooBUFUVQRKWoSIyK2EVjwRh7jy0qGhNjixg1EaPG2NBYEwsk2BBULKCCINKrKEWkDJ0BZr4/8sUkb4R7Bu69055nrVnrfb37nv2bq2E2Z84+h8RyioqKiko6BACwbTZt2hQzZsz4r3+Wl5cXubnuPQAAAAAAAAAAAFDeFRYWxrJly/7rn7Vu3ToqV65cQokAAKgoLCYCAAAAAAAAAAAAAAAAAIl5nBIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkVrmkAwAAlIT58+fHG2+8ERMnTozJkyfHnDlzYtWqVbFy5cooKiqKOnXqRJ06daJ58+bRoUOH2GuvveLwww+P1q1bl3T0cmHRokUxcuTImDRpUkybNi1mzJgRy5cvj1WrVsXq1aujcuXK3/87qF+/fuy+++7Rpk2baNOmTXTq1Ck6dOgQOTk5Jf1tAEBGmVcyY+3atfHFF1/ErFmzYu7cud9/LVq0KFavXh1r1qyJ1atXx/r166Nq1apRrVq1qFevXjRp0iSaNm0abdu2jT322CO6du0abdq0KelvBwC2y8aNG+P999+PDz74ICZPnhxTp06NJUuWxKpVq2LNmjVRo0aNqFu3buTl5UXbtm2jQ4cO0bVr1zj00EOjRo0aJR2/TFmyZEm88cYbMX78+Jg8eXLMmjUr8vPzY9WqVbFx48aoU6dO1K1bN5o2bRodOnSIPfbYIw499NDYe++9Szo6AJQo80pmzJs37/vzTf86N/LVV1/FihUrvj83smbNmigqKorq1atHjRo1Yscdd4wmTZrEbrvtFnvssUd07NgxunXrFrVq1SrpbwcASpR5peRs2rQpxo4dG2PGjIlp06bFtGnTYv78+bF69epYtWpVbNiwIWrXrv3979R23nnn7689ad++fXTt2jXq1atX0t8GAACUaTlFRUVFJR0CACAbVqxYEY8++mgMGTIkJk6cuE3HaN26dZx22mlx4YUXRuPGjdOcsHybOXNm/PnPf45hw4bFpEmTtutYeXl5cfDBB0ePHj3i6KOPjrZt26YpJQCULPNKem3YsCHGjBkTn3zySYwfPz7GjRsX06ZNi8LCwrQcv0mTJnHEEUfEKaecEr17947Kld0DDICyYfTo0TF48OD4xz/+EStXriz2+2vUqBG9e/eOCy+8MI444gg3D9qCdevWxZAhQ+Kxxx6LTz75ZJtmkGbNmsVJJ50Ul156abRo0SIDKQGgdDKvpM+8efPigw8+iHHjxsX48eNj/PjxsXz58rQcu3LlyrHffvvFCSecECeffHLssssuaTkuAJQF5pWSUVBQEK+88kr85S9/iZEjR27TZ/8vubm50bFjxzj44IOjd+/e0adPH8uiAABQTBYTAYByb/Xq1XHrrbfG4MGDY82aNWk5ZtWqVeOss86K22+/PRo2bJiWY5ZXb7zxRvz2t7+NkSNHRqZGz/bt28fxxx8fZ5xxhiVFAMok80p6FBQUxJgxY2LUqFExcuTI+Oijj2L9+vVZ6d2sWbO45JJL4sILL4y6detmpScAFNd7770XV111VXz66adpO2bbtm3jzjvvjGOPPTZtxyzrNm7cGL/73e/i7rvvjqVLl6blmLm5uXH88cfH3XffHbvttltajgkApZF5ZfvNnz//+3Mjo0aNijlz5mSlb25ubhxzzDFx9dVXx0EHHZSVngBQEswrJWPZsmUxaNCgePTRR2PJkiUZ6VGzZs044ogj4vjjj4/+/ftHpUqVMtIHAADKE4uJAEC59tprr8XFF18cX3/9dUaOn5eXF4MGDYqzzz47I8cvyz7//PO45ppr4u23385az4svvjgeeOCBrPUDgHQwr6TPTTfdFL/5zW9KNEOjRo3i1ltvjXPPPdfdjQEoNVasWBGXX355PPXUUxnrcfTRR8fDDz8cTZs2zViPsuCDDz6Ic889N6ZMmZKR49esWTN++ctfxjXXXGPWAKBcMa+kx+bNm6Ny5colHSOOPfbYuOeee6Jly5YlHQUA0sa8UjI2bNgQv//97+P222+PFStWZK3vkiVLKsyNPwEAYHvklnQAAIBMKCwsjIEDB8axxx6bsYv8I/55R7af/vSncd5550VBQUHG+pQlmzdvjltvvTX222+/rC4lAkBZY15Jv9Jw/61vv/02zj///Dj88MPjm2++Kek4ABCTJ0+O/fffP6MXzUVEDBs2LDp37hwffvhhRvuUZg8++GAccsghGVtKjIhYu3ZtXHfdddGvX79YuXJlxvoAQDaZV9KnNJwbiYh45ZVXomPHjvHoo4+WdBQASAvzSsn41+d+7bXXZnUpEQAASM5iIgBQ7mzevDn69+8ft912W9Z+AfunP/0p+vTpE2vXrs1Kv9Jq0aJF0atXr7j55ptj06ZNJR0HAEot80r5N2LEiOjcuXN89tlnJR0FgAps9OjRccABB8SMGTOy0m/RokVxyCGHxMsvv5yVfqXJz3/+87j44otj48aNWek3dOjQ6NatWyxZsiQr/QAgU8wr5deaNWvi3HPPjQsvvDA2b95c0nEAYJuZV0rGo48+Gl26dImJEyeWdBQAAGArLCYCAOVKYWFhDBgwIF588cWs93733XfjuOOOiw0bNmS9d2kwc+bMOPDAA2P06NElHQUASjXzSsWxePHi6NmzpzsbA1AiPv300zjqqKNi1apVWe1bUFAQ/fv3jzfeeCOrfUvSDTfcEPfee2/W+06ePDn69OnjiQEAlFnmlYrhoYceiv79+0dhYWFJRwGAYjOvlIybb745zj333Fi3bl1JRwEAAFLIKcrWbfkBALLg+uuvjzvvvLNY72ndunUcdNBBseeee0ZeXl7k5OTE8uXLY8qUKfHRRx/FpEmTinW8M844I5566qlivaesmzhxYhx++OHx7bfflmiOiy++OB544IESzQAAqZhXMmfgwIFx2223lXSM/1G/fv348MMPo127diUdBYAK4uuvv45OnTrFd999l/g91atXjx49ekSXLl1i5513jrp168bq1atj4cKFMW7cuBg1alSsXr068fFq1qwZY8aMiT333HNbvoUy4+GHH44LLrigWO9p1qxZ9OjRIzp27BgNGzaMKlWqxIoVK2LGjBkxZsyY+PTTT4v1VO1evXrF22+/HZUqVSpufAAoMeaVzNi0aVNUqVKlpGP8oAsuuCD++Mc/lnQMAEjMvFIyLrzwwnjooYdKOkYsWbIkGjZsWNIxAACg1LOYCACUG8OHD4+jjjoq8YVb/fr1ixtuuCH233//rdZNmjQp7r777nj66acT38310UcfjXPOOSdRbVn31VdfRbdu3WLBggXFel/Dhg2jV69e0b1792jXrl20bNky8vLyolatWhERsWLFilixYkUsX748pk6dGhMmTIgJEybE+PHjt/gkAIuJAJR25pXMSrKYmJOTE23atIm2bdt+/9W6devIy8uLunXrRt26daNOnTqxdu3aWLlyZaxcuTLmzJkT48ePj88//zzefvvtbXoqUceOHWPs2LFRrVq1bfzuACCZTZs2xSGHHBKjR49OVN+oUaMYOHBgnHnmmVGvXr0t1q1duzZeeOGFuOWWW2LevHmJjt2uXbv49NNPv/+7fnnz+eefR7du3WL9+vWJ6nv06BE333xzHHrooZGTk7PFujlz5sTvf//7ePDBB6OgoCDRsQcOHBi33nproloAKGnmlcxJupi4ww47xB577PFf50d22WWXqFOnzvfnRypXrhz5+fmxcuXKWLp0aXzxxRcxfvz4+Pjjj+PTTz/dpnzPPvts9O/ff5veCwDZZF4pGdtyA8qcnJzo3Llz9OzZM7p06RKtWrWKXXbZJWrXrh01atSI1atXf3/9ycKFC7+/9mTChAkxZcqULf7OzmIiAAAkYzERACgXli5dGu3atUt0p7q8vLwYMmRIHHnkkcXq8fHHH8fJJ58c8+fPT1lbo0aNmDhxYuy+++7F6lHWrFixIg4++OD48ssvE7/nmGOOifPOOy9+9KMfReXKlYvdc9OmTfHBBx/E0KFD4+9//3tMnTr1+9csJgJQmplXMu+HfmFdpUqV6NKlS3Tv3j26d+8eBx10UNSvX3+be2zYsCFeffXVeOihh2LkyJHFeu8vf/nLuOWWW7a5NwAk8etf/zp++ctfJqo95ZRT4pFHHom6desmPv6GDRviqquuisGDByeqP/fcc+ORRx5JfPyyoqCgIDp27BjTpk1LWVujRo148MEHY8CAAcXqMW3atDjxxBMTPR07Nzc33n333Tj44IOL1QMASoJ5JXO2tJjYtGnT78+NdO/ePfbcc8/Izc3d5j7Tp0+PJ598MgYPHhz5+fmJ31e/fv2YNWvWdp2bAYBsMK9k35/+9Kc477zzEtc3adIkLr300jjjjDNil1122aaeCxcujGHDhsXQoUNjxIgRsXbt2u9fs5gIAADJWEwEAMqFCy64IB5++OGUdc2aNYtRo0ZFq1attqnPt99+G4ccckhMnjw5Ze3RRx8dQ4cO3aY+ZcUJJ5wQf/vb3xLVduvWLf7whz9E586d05rhs88+iwcffDCee+65OPvssy0mAlBqmVcy71+LifXr148jjzwy+vXrFz/+8Y+jdu3aGen3/PPPx5VXXhkLFy5MVF+rVq2YOXNmNGnSJCN5AGDOnDnRoUOHRE/wu/766+P222/f5l4PPPBAXHrppSnrcnJyYsyYMbHffvttc6/S6M4774zrr78+ZV3dunXjrbfeSvkE7C1Zs2ZNHHXUUfHuu++mrN17773js88+i0qVKm1TLwDIBvNKZv3nYmLnzp2jX79+ceyxx8Zee+2VkX6LFy+OK6+8Mp599tnE77nqqqti0KBBGckDAOlgXsm+zz77LLp16xYbN25MWVu9evX45S9/GZdffnnUqFEjbRlWr14dQ4YMiT/+8Y/xxRdfWEwEAICELCYCAGXe+PHjo0uXLlFYWLjVunr16sWYMWOibdu229Vv0aJFsd9++8XXX3+dsvbvf/97sZ90VFY8+uijce6556asy83NjV//+tfxi1/8IqMXxq1YsSJmzpwZXbp0yVgPANhW5pXsGDlyZBQWFkbPnj236cnM22LRokVx6KGHxpQpUxLV//rXv46bbropw6kAqKiOO+64eOWVV1LWnX/++fHQQw9td7/bbrstBg4cmLJu//33j48//jhycnK2u2dpsGDBgmjTpk2sWbNmq3VVqlSJESNGRPfu3ber3+rVq6N79+7x+eefp6wdPHhwXHTRRdvVDwAyybySWYWFhfHHP/4x+vXrF82aNcta3/vvvz+uuOKKRLV169aNBQsWRK1atTIbCgC2kXklu9auXRv77rtvTJs2LWXtnnvuGS+88EK0b98+o5k++OCD2HfffdO6+AgAAOWVxUQAoMw79thj49VXX01Z98ILL8RJJ52Ulp7vv/9+HHLIIbF58+at1nXp0iU++eSTtPQsTebMmRN77bVXygvwqlWrFk8//XSceOKJWUoGAKWTeaV8+/bbb+Oggw6KmTNnpqxt2bJlzJo1KwupAKhoPv/88+jUqVPKuk6dOsVHH30U1apV2+6eRUVF8eMf/zjeeOONlLVDhw6No48+ert7lgZXXHFF3H///Snrfvvb38Y111yTlp7Tp0+Pzp07x+rVq7da17Rp05gzZ05UrVo1LX0BIJ3MK+XbvffeGz//+c8T1T711FNxxhlnZDgRABSfeSX7Lr744njwwQdT1h166KHx8ssvR926dbOQCgAASCq3pAMAAGyPadOmxWuvvZayrl+/fmm7yD8ionv37nH++eenrPv000/jnXfeSVvf0uLqq69OuZSYm5trKREAwrxSETRq1CgeeeSRRLWzZ8+OGTNmZDgRABXRb3/725Q1ubm58eijj6blormIiJycnHjkkUcS3T0+Sb6yYPny5fHoo4+mrOvUqVNcddVVaevbpk2buPnmm1PWLViwIJ5++um09QWAdDKvlG9XXnll9OzZM1Ht66+/nuE0ALBtzCvZNWHChERPnTzggANi6NChlhIBAKAUspgIAJRpv/vd7yLVA6ArV64cgwYNSnvvX//614lOet5zzz1p712S3n333fjb3/6Wsu43v/mNpUQACPNKRXHIIYckXix9//33M5wGgIpm/vz58eKLL6asO+OMM2LfffdNa+/mzZsnejLO+++/Xy6e0vzQQw+lvFlTxD9nwNzc9P4a7vLLL48WLVqkrDPbAVAamVcqhsGDByeqc24EgNLIvJJ9V155ZRQWFm61pmnTpjF06NCoWbNmllIBAADFYTERACizNmzYEM8//3zKuhNOOCF23333tPdv0KBB/OxnP0tZ98Ybb8TixYvT3r+kXHvttSlrunfvHtddd10W0gBA6WZeqVjOOOOMRHVTp07NcBIAKppnnnkmNm3atNWanJycjP1d/fLLL4/q1aunrHvyyScz0j+bknwPXbt2jV69eqW9d9WqVePKK69MWTd58uT49NNP094fALaHeaVi2GOPPRItanz99deJbvYAANlkXsmu4cOHx8iRI7dak5OTE48//ng0bNgwS6kAAIDispgIAJRZw4YNi/z8/JR1V1xxRcYyXHbZZSnvfr958+Z47rnnMpYhm957770YO3bsVmsqVaoUDz30UNqfCgAAZZF5pWI5/PDDE92xd968eVlIA0BF8swzz6Ss6dOnT7Rv3z4j/Xfcccf4yU9+krLuhRdeSHmBX2n22WefxbRp01LWZXK2++lPf5roidhJ/psAgGwyr1Qcxx57bMqaoqKi+OqrrzIfBgCKwbySXXfffXfKmlNOOSX69OmThTQAAMC2crU4AFBmPfvssylrdt999zjggAMylmHXXXeN7t27p6xLkrUsuOeee1LWnHXWWdGhQ4cspAGA0s+8UrFUr149WrdunbJu1apVWUgDQEUxadKkmDRpUsq6008/PaM5khx/yZIl8fbbb2c0RyYlmZfq1KkT/fr1y1iGWrVqxXHHHZey7rnnnouioqKM5QCA4jCvVCx77bVXojrnRwAoTcwr2TV+/PiUT0usUqVK3HbbbVlKBAAAbCuLiQBAmbR58+ZEJ1pPOeWUjGfp379/yppPPvkkli5dmvEsmTRv3rwYOnRoyrprrrkmC2kAoPQzr1RMTZo0SVmzefPmLCQBoKJ4/fXXU9ZUr149o8tyERE9evSIpk2bpqwbPnx4RnNkUpLP+phjjokaNWpkNEeS2W7RokXx+eefZzQHACRlXqlYkpwbiXB+BIDSxbySXQ888EDKmhNOOCFatmyZhTQAAMD2sJgIAJRJY8eOjfz8/JR1P/7xjzOeJUmPwsLCGDFiRMazZFKSO+0feuih0a5duywlAoDSzbxSMeXl5aWlBgCSeuutt1LWHHzwwVGnTp2M5sjNzY0+ffqkrEuStzRauHBhfPnllynrsjHb9erVK6pXr56yrqx+1gCUP+aViiXpeQ/nRwAoTcwr2VNQUBB/+9vfUtZddNFFWUgDAABsL4uJAECZlOSi+Tp16kTXrl0znmXXXXeN3XffPWVdWT4xHPHPxcRUTjvttCwkAYCywbxSMS1btixlTYMGDbKQBICKoKCgIEaPHp2yrnfv3llIk6zPlClT4ptvvslCmvRKegOHww47LMNJ/vmEhoMPPjhlndkOgNLAvFLxJDk3EuH8CAClh3klu4YPHx4rVqzYas0uu+wS3bt3z04gAABgu1hMBADKpI8++ihlTdeuXaNy5cpZSBOJToiOGTMmC0kyY9asWfH5559vtSY3NzeOPvro7AQCgDLAvFIxLV68OGVN27Zts5AEgIpgwoQJsXbt2pR1SZbY0iHpBWNlceZIMtvtvvvu0aRJkyykSfZZjx07NoqKirKQBgC2zLxS8SQ5N9KgQQOLiQCUGuaV7HrppZdS1vTt2zcLSQAAgHSwmAgAlEnjx49PWbPvvvtmIck/de7cOWXNlClTYsOGDVlIk35vv/12ypp99tknGjdunIU0AFA2mFcqnnXr1sX06dNT1rnLLwDpkmTeyM3NjX322SfzYSKiefPm0bBhw5R1SXKXNmVxtlu5cmXMnj07C2kAYMvMKxVPqhtdRvxzsSMnJyfzYQAgAfNKdo0YMSJlzRFHHJGFJAAAQDpYTAQAypzFixfHwoULU9aVtovBNm3aFF988UUW0qTfyJEjU9Z069YtC0kAoGwwr1RMb775Zsq7Kufl5UXHjh2zlAiA8m7cuHEpa9q0aRO1atXKQpp/SjJzlLUL5woLC2PChAkp60rbbBdR9j5rAMof80rF88orr6SsOeSQQzIfBAASMq9kz9SpUxP9/uyAAw7IQhoAACAdLCYCAGXOxIkTE9W1a9cuw0n+rW3btonqkmYvbd59992UNV27ds1CEgAoG8wrFdNjjz2Wsubcc8+N3Fyn5ABIjyQ3FMjmvBGRbOYoa/PGrFmzUt58ICK7n3WTJk2iXr16KevK2mcNQPljXqlYxo0bl/KJiTVr1owzzjgjO4EAIAHzSvaMGjUqZU3Lli1jxx13zHwYAAAgLSqXdAAAgOKaPXt2orrdd989w0n+rX79+pGXlxfLli3bal3S7KXJ/PnzY9GiRSnrOnTokLJm6dKlMXz48Pj4449j0qRJMWfOnMjPz4/Vq1dH1apVo2bNmtGgQYNo0aJFtGrVKvbff//o1q1btGnTJh3fCgBkjXml4hk+fHi89tprW62pXLlyXHLJJVlKBEBFkOTnduvWrbOQ5N+SzDfffPNNFBQURNWqVbOQaPslnY+y/Vm3atUq5VMdzHYAlDTzSsVRVFQUF198ccq6M888M/Ly8rKQCACSMa9kzyeffJKyJsm1J0VFRfHJJ5/Em2++GRMnTozJkyfHkiVLYuXKlbFp06aoWbNm1K5dO5o1axYtWrSIPffcM7p16xYHHHBAVp98CQAAFYHFRACgzJkzZ07KmiZNmmT9ZOLuu+8eY8eO3WpNkuylzZdffpmobksn4gsLC2PYsGHx+9//PkaNGhWbN2/+wbp169bFunXrYunSpTF9+vSIiHjwwQe/P/ZJJ50UP/vZz6JFixbb8F0AQHaZVyqW2bNnx3nnnZey7uqrr45mzZplIREAFcG6desS3UioVatWWUjzb0kunCssLIx58+Zl/aK+bZV0PmrZsmWGk/y33XffPeViotkOgJJkXqlYbrrppvj444+3WpOXlxc333xzlhIBQGrmlexKcv3J1r6fb775JgYPHhyPP/74Vv+9rVy5MlauXBkLFiyIsWPHxvPPPx8REdWrV48f/ehHcdppp8UJJ5wQlSpVKv43AQAA/Jfckg4AAFBcc+fOTVnTtGnTzAf5P3baaaeUNWXxYrAkJ4YbNGgQdevW/Z9//vbbb8eee+4Z/fr1ixEjRmxxKTGVGTNmxO233x6tW7eOU045JWbMmLFNxwGAbDGvVBzTpk2LXr16xddff73Vur322it+9atfZSkVABXBvHnzEtVle+ZIMm9ElK2ZI8lsl5eXF9WrV898mP9gtgOgtDOvVAyFhYXxi1/8Im677baUtYMHD078+QNANphXsmvy5Mkpa37oxk/5+flx+eWXR4sWLeKOO+5ItEz6Q9avXx+vvvpqnHLKKbH77rvHQw89tM3XsQAAAP9kMREAKHO++eablDVNmjTJQpLi90x1wXppNGXKlJQ1jRo1+q//f82aNXH66afH4Ycfnuj9SW3evDleeOGF2HPPPWPgwIGxcePGtB0bANLJvFL+bdiwIW699dbYZ599Yv78+Vut3WmnneKvf/1rVK1aNUvpAKgIkswbEdmfOZL2K0szR1me7RYtWuQCOwBKjHml/Bs3blx069Yt7rrrrpS1V111VfTv3z8LqQAgOfNK9nz99dexatWqlHX/9/qTN954I9q2bRu///3v03qNyNy5c+PCCy+MLl26xKeffpq24wIAQEVjMREAKHOWLl2asqZx48ZZSPLfkpwYXrZsWRaSpFeqC+0jInbcccfv/+9Zs2ZF165d45lnnslYpoKCgrjtttuiR48eifIBQLaZV8qvCRMmxDXXXBMtWrSIm2++OdavX7/V+iZNmsTIkSOjdevWWUoIQEWRZN6IyP7M0ahRo8jNTf3rp7I0c5Tl2a6oqCiWL1+ehTQA8L/MK+XTqlWrYsiQIdGnT5/Yb7/9YuzYsSnfM728ZQAAzxFJREFUc8UVV8SgQYOykA4Aise8kj1Jr+34z+tP7rjjjjjyyCNj8eLFmYoVn3/+eRx00EExePDgjPUAAIDyrHJJBwAAKK4kJ4Z32GGHzAfZhp5r1qyJDRs2RLVq1TIfKE0WLVqUsuZf3/usWbOiZ8+eie8quL0+/vjjOOCAA+Ltt9+O9u3bZ6UnACRhXindJk6cGJMnT95qTUFBQaxcuTJWrlwZixcvjgkTJsSECRNixYoVifsceuih8eSTT0azZs22MzEA/K+kF85le+bIzc2NOnXqRH5+/lbrkuYvDcrybBfxz/wNGzbMbBgA+AHmldKrsLAwXnjhha3WFBUVxerVq2PlypWRn58f06dPj88//zxmzJgRhYWFifrUqlUr7rvvvvjZz36WjtgAkHbmlexJcu1JxL8/6+uvvz7uvPPODCb6t4KCgrjkkkti1qxZ8bvf/S4rPQEAoLywmAgAlDlJ7vJep06dLCTZtp7Lli2LnXbaKcNp0mfhwoUpa6pWrRqLFy+OQw45JGtLif+yYMGC6NGjR7z33nuWEwEoNcwrpdtf/vKXuOuuuzJ2/IYNG8bAgQPjsssui5ycnIz1AaBiS3pH/Nq1a2c4yf9KcuFcWbqjf5KspX22A4CSYF4pvQoKCuLUU0/NaI8f/ehH8Yc//CFat26d0T4AsD3MK9mT5NqTiH9ef3L77bdnbSnxP917771RUFAQDzzwQNZ7AwBAWWUxEQAoU9atWxcbN25MWVcSF4PVrVs3UV1+fn6ZudC/qKgo0R32KlWqFP3794/58+enrK1bt25079499tprr9h1112jdu3asWnTplixYkXMnDkzxowZE+PHj4/Nmzcnzvndd99F3759Y8yYMdGgQYPE7wOATDCvVFy77bZbXHLJJXHBBRdErVq1SjoOAOXcypUrU9bUqlUrcnNzs5DmvyWZOVJdWFeaJPmsS/tsBwAlwbxS8VSpUiWOOuqouOGGG2K//fYr6TgAkJJ5JXuWLFmSqO7dd9+Nm266KVFthw4d4qCDDorWrVtHgwYNolq1arF27dr4+uuv48svv4z33nsvcd9/GTx4cOy+++5xxRVXFOt9AABQUVlMBADKlIKCgkR1NWrUyHCS/1W9evVEdUm/h9Jg/fr1UVhYmLLu1VdfjfXr12+15oADDohrr702jj766KhSpcpWaxctWhRPPfVUDBo0KPFJ4lmzZsXpp58ew4cPT1QPAJliXql4jj/++Ljhhhuic+fOJR0FgAokyc/rkpg3IpLNHGVp3iitn7XZDoDSrrT+DI0of/NKSWvUqFHceuutccopp0S9evVKOg4AJGZeyZ61a9cmqrvqqqu2ep1K7dq14+KLL47zzjsvWrZsudVjFRYWxsiRI+Pee++Nv//974mzXnXVVbHffvvFQQcdlPg9AABQUWX/Ni4AANsh6UnVSpUqZTjJ/6pcOdk9H8rSieFUy4ZJ6nbYYYcYMmRIfPTRR3HcccelXEqMiGjSpElce+21MWvWrDjvvPMS53399dfjT3/6U+J6AMgE80rF87e//S1OPvnkuPTSS+Ojjz4q6TgAVBBJfl6XxLwRkWzmKEvzRmn9rM12AJR2pfVnaET5m1dK2rfffhuXXXZZnHLKKTF48OBET58CgNLAvJI96bj+5Oijj47p06fHnXfemXIpMSIiNzc3DjvssBg2bFi89dZbscsuuyTKUFhYGGeffXbiZUoAAKjILCYCAGVK0pOqSS/MSqekPTdu3JjhJOmzYcOG7Xp/ixYt4uOPP47TTz99m95fp06dePjhh+PRRx9NfLL/F7/4ReTn529TPwBIB/NKxTR79ux44IEH4sADD4wePXoU6867ALAtkswcJTFvJO1bluaN0vpZm+0AKO1K68/QpH39DC2eDRs2xBtvvBGXXHJJNG/ePG644YZYvHhxSccCgK0yr2TP9l5/csMNN8Rrr70WO+200za9v3fv3vHpp5/G/vvvn6h+xowZcc8992xTLwAAqEgsJgIAZcqmTZsS1bkYLD225+56O+20U4wYMSLatm273TnOOeecePTRRxPVLlu2LO6+++7t7gkA28q8wvvvvx9HH310HHnkkbFo0aKSjgNAOZVk5nDhXHqU1s/abAdAaVdaf4Ym7etn6LbLz8+PO+64I9q0aRNDhgwp6TgAsEXmlezZnutPrrvuurjtttsiJydnuzI0atQo3nzzzdh7770T1Q8aNCiWLl26XT0BAKC8s5gIAJQpSU/4bt68OcNJtr1nSZ203hZJn1L4Qx5//PFo0aJF2rIMGDAgzjrrrES1gwcPjnXr1qWtNwAUh3mFfxk+fHjstdde8Y9//KOkowBQDiX5eV0S80bSvmVp3iitn7XZDoDSrrT+DE3a18/Q7bdy5co488wz4+STT441a9aUdBwA+B/mlezZ1utPDjrooLj99tvTlqNevXrx3HPPRfXq1VPWrly5Mh555JG09QYAgPLIYiIAUKZUrVo1UV3SJxWlU9I70SX9HkqDbc36s5/9LH70ox+lOU3EfffdF02bNk1Zt2LFinjuuefS3h8AkjCvlH533nlnFBUVbfGrsLAw8vPzY968eTFx4sR444034rbbbovjjjsu0Szyn7777rs49thj45VXXsnMNwNAhZXk53VJzBsRyWaOsjRvlNbP2mwHQGlXWn+GRpS/eaW4qlevvtVzI0VFRbFhw4ZYvHhxTJs2LcaMGROPP/54XHzxxXHAAQcUewnixRdfjKOOOirWrl2boe8IALaNeSV7tiVrjRo14vHHH4/c3PRe6tyuXbv49a9/naj2T3/6UxQWFqa1PwAAlCcWEwGAMqVKlSqJ6krixHDSnuX9xHCtWrXi7rvvzkCaiB122CHuvPPORLV/+ctfMpIBAFIxr5R9OTk5Ubdu3WjevHnstdde0adPn7jhhhvib3/7W8yfPz9ef/31OPHEExP/u964cWOcfPLJMWzYsAwnB6AiSfJzqKQunEvStyzNG6X1szbbAVDaldafoUn7VvSfoVWrVo1GjRpFmzZtYv/9948BAwbEAw88EB999FHMnz8/br/99mjVqlXi47377rtx9NFHx/r16zOYGgCKx7ySPduS9ec//3m0bt06A2mSH3vOnDnx0UcfZSQDAACUBxYTAYAypVq1aonqSuKXmkl7lqUTw0k/7/902mmnxQ477JD+MP/fySefHA0bNkxZ995778Xq1aszlgMAtsS8Ur7l5ubGj370o3jxxRdj0qRJ0aNHj0Tv27hxY5x++unx9ddfZzghABVFkpmjpC76TtK3LM0bpfWzNtsBUNqV1p+hSfv6GbplTZo0ieuvvz6mT58e9957b9SqVSvR+0aOHBk33nhjhtMBQHLmlewp7vUnlSpVivPPPz9DaYp3/L///e8ZywEAAGVd5ZIOAACUfnPmzIkxY8ZktEetWrWib9++Ketq1KgRlStXTnlnuFWrVqUrWmJJe9atWzfDSdKnevXqUaVKldi4cWPi91xwwQUZTPTPk9UDBgyIQYMGbbWuoKAg3n333TjqqKMymgeA0sG8kkx5nFdKUps2bWLUqFHx4IMPxhVXXJHy33l+fn6cffbZ8eabb0ZOTk6WUgJQXtWpUydlzZo1a6KoqCjrP3eSzBxlad6oU6dOfPvtt1utMdsBwP8yr5R/ubm5ccUVV8Sxxx4bp556anz88ccp33PfffdFv379Et/sCQAyybySPUk+6/905JFHxi677JKhNP80YMCAGDhwYMol0Lfeeituv/32jGYBAICyymIiAJDSu+++G2effXZGe+y6666JLvSPiKhfv34sWbJkqzUrV65MR6xiSdozLy8vw0nSq0GDBrFo0aJEtS1atIh99903w4kiTjzxxJSLiRERn376qcVEgArCvJJMeZ1XSlJOTk5cfPHFseuuu8Zxxx2Xcjnx7bffjueffz769++fpYQAlFdJfl4XFRXFqlWrsn6RWpKZoyzNG3l5eTFr1qyt1pjtAOB/mVcqjt122y1GjBgRffv2jXfeeWertYWFhXH++efH5MmT3bgJgBJnXsmehg0bFqv+xBNPzFCSf2vQoEH06tUrXn/99a3WTZw4MQoKCsrUEyoBACBbcks6AABAcTVo0CBlTX5+fhaSFL9nzZo1o3r16llIkz5JPu9/6dq1awaT/Ns+++yT6ITvuHHjspAGAP6XeaXiOfroo+P+++9PVHvvvfdmOA0AFUHSv69ne+YoLCyM1atXp6wrzvmGklaWZ7uIsvVZA1C+mFcqlpo1a8bf/va3aN26dcraqVOnxvDhw7OQCgC2zrySPcXNmq3rT/bff/+UNQUFBfHll19mIQ0AAJQ9FhMBgDInycnKxYsXZyHJf0vyVMGydFL4X0rjYmK1atVi7733TlmX6mkGAJAp5pWK6aKLLorDDz88Zd3YsWPjww8/zEIiAMqzpD+zsz1zLFmyJDZv3pyyrizNHGV5tsvJyYn69etnIQ0A/C/zSsVTr169ePzxxxPV3nfffZkNAwAJmFeypzhZd9hhh2jTpk0G0/xb0utcXH8CAAA/zGIiAFDm7LzzzilrklyYlW5JeibJXtoUJ3PHjh0zmOS/JVlM/Prrr7OQBAD+l3ml4rrrrrsS1b300ksZTgJAeZf0Z3a2Z46k/crSzFGWZ7vGjRtH5cqVs5AGAP6XeaViOuigg6Jfv34p60aMGBErVqzIfCAA2ArzSvYUJ+tee+0VOTk5GUzzb0muPYlw/QkAAGyJxUQAoMzZbbfdUtYsWLAg80H+j4ULF6asadGiRRaSpFfLli0T1+bl5WUwSfF75efnx4YNG7KQBgD+m3ml4urUqVOiu+u+//77WUgDQHmWZN6IyP7MkWTeiChbM0eSz3rZsmVZPwdhtgOgtDOvVFwXXHBByprCwsL44IMPspAGALbMvJI9u+22W+TmJrtkubRdexKR/admAgBAWWExEQAoc5KcWF20aFGsXbs2C2n+bebMmSlrytJJ4X8pzmLiDjvskLkg29gr2/8dAECEeaWiS/JUgPHjx8fq1auzkAaA8qpGjRrRuHHjlHWzZs3KQpp/SzJv5OTkxK677pqFNOmRZD4qKiqK2bNnZyHNv5ntACjtzCsV12GHHRa1atVKWefGTQCUNPNK9lStWjXxUxOzee1JjRo1olq1ainrXHsCAAA/zGIiAFDmJFmUKyoqSnSiNl1WrFgRS5cuTVlXnCW/0qJVq1aJay0mAsA/mVcqtgMPPDBlzebNm2POnDlZSANAeZbk5/aMGTOykOTfksw3O++8c6ILvkqLpPNRafyszXYAlDTzSsVUpUqV2G+//VLWZfvfPQD8EPNK9iS9/iSb155ERNSrVy9ljWtPAADgh1lMBABSGjBgQBQVFWX0a+7cuYnz7LXXXonqpk6duo3fcfEl7ZU0e2nSsWPHxLU5OTkZTFJyvQAo/cwr6etVFueV0mb33XdPVJdkURQAtibJz+1szhtJ+5W1eaNVq1ZRo0aNlHXZ/KwXLVoU+fn5KevK2mcNQPljXqm4kpwfcW4EgNLAvJI9e++9d6K6bF8P4voTAADYdhYTAYAyZ6eddorGjRunrBs3blwW0iTvVbly5WIt+ZUW9evXT3x3/RUrVmQ2zH9Yvnx5orqaNWtmOAkA/C/zSsWWl5eXqG7ZsmUZTgJAedepU6eUNdOmTcvqHd2TzBz77rtvFpKkT6VKlRLNSKVttosoe581AOWPeaXiSnJ+xLkRAEoD80r2dO7cOVFdNq89SdrPtScAAPDDLCYCAGVSkhOs2bwY7LPPPktZ065du6hevXoW0qRf0pPDSZcF0yHpiehatWplNggAbIF5peKqUqVKorp169ZlOAkA5V2SeaOwsDA+//zzzIeJiPnz58eSJUtS1iW54K+0KYuzXZ06daJVq1ZZSAMAW2ZeqbiSnB9xbgSA0sC8kj2l8dqTdevWxYYNG1LWufYEAAB+mMVEAKBM6tatW8qajz/+ODZt2pSFNBHvvfdeypquXbtmIUlmHHjggYnqsnln2yS9GjRoEFWrVs1CGgD4X+aVimvNmjWJ6vwSG4Dttffee0eNGjVS1r3//vtZSJNs3ogomzNHktluxowZsXjx4iykSfZZ77///pGTk5OFNACwZeaViivJ+RHnRgAoDcwr2dOuXbuoX79+yrrSdu1JRETTpk0znAQAAMomi4kAQJl02GGHpaxZtWpVjB07NuNZvvrqq5g5c2bKusMPPzzjWTKlT58+ieomTpyY4ST/NmHChJQ1zZs3z0ISAPhh5pWK6+uvv05UV7t27QwnAaC8q1atWhx88MEp60aMGJGFNMn6tGvXLpo1a5aFNOmVZLaLyM5nvWHDhvjggw9S1pntACgNzCsVV5LzI86NAFAamFeyJzc3N3r37p2y7osvvoiioqIsJEp27UmE608AAGBLLCYCAGXS/vvvH3Xr1k1ZN3z48IxnSdIjJycn8QVspVGHDh0SndQeM2ZMFtL88wK8JCeH27Ztm4U0APDDzCsV1+TJkxPV+SU2AOmQ5GKu999/P1avXp3RHIWFhfHGG2+krCury3JNmzaN9u3bp6zLxmw3atSoWLduXcq6svpZA1D+mFcqpiTnR5wbAaC0MK9kT5IbY69YsSKmT5+ehTTJr3Nx/QkAAPwwi4kAQJlUuXLlRBfOP//88xnP8txzz6Ws6dKlSzRs2DDjWTLpyCOPTFnz8ccfZyFJxPjx46OgoCBl3X777ZeFNADww8wrFde7776bsqZSpUqx2267ZT4MAOXeEUcckbJm/fr18eqrr2Y0x/vvvx8LFixIWZckb2mVJPurr74a69evz2iOJLNd48aNo1OnThnNAQBJmVcqniVLlsSUKVNS1rVq1SoLaQAgNfNK9vz4xz+OnJyclHXZuv4kyWJivXr1ok2bNllIAwAAZY/FRACgzDr11FNT1syYMSOjT/H76quv4r333ktZlyRrafeTn/wkZc3cuXNj3LhxGc/y0ksvJarr1q1bhpMAwNaZVyqeTZs2xV//+teUde3bt4+qVatmIREA5V3Hjh2jQ4cOKeuefvrpjOYYMmRIypoGDRqU6Tv6J5mXVq1aldGLFNesWRMvv/xyyrpTTjkl0UV+AJAN5pWK5/nnn4+ioqKUdfvss0/mwwBAAuaV7Nl5552jV69eKeuSXheyPb777rsYNWpUyrquXbs6zwIAAFtgMREAKLP69u0bdevWTVl33333ZSzD73//+ygsLNxqTW5ubvTv3z9jGbKle/fu0aJFi5R1f/zjHzOaY/369fHEE0+krGvYsGHsv//+Gc0CAKmYVyqe559/PhYtWpSyrmfPnllIA0BFkeRmQm+88UZMnTo1I/2XLFkSzzzzTMq6k08+OapUqZKRDNmw3377RevWrVPWZXK2e/zxxyM/Pz9lXZL/JgAgm8wrFcfmzZtj8ODBKetycnKiR48eWUgEAMmYV7LnzDPPTFnzj3/8I7766quM5nj88cdjw4YNKeuOOuqojOYAAICyzGIiAFBmVa9ePU4++eSUdS+99FLMnDkz7f2XLl0af/rTn1LW9enTJ3baaae098+2nJycOPvss1PWPfvss7F8+fKM5Xj++edj6dKlKev69u0blSpVylgOAEjCvFKxrF69OgYOHJio9kc/+lGG0wBQkZx++ukp/w5cVFQUd955Z0b633///bF+/fqUdWeddVZG+mdTku/h448/TnS3/eIqKCiI3/3udynr2rVr52ZNAJQ65pWK449//GOihY1OnTrFjjvumIVEAJCMeSV7TjzxxJQ39iwsLIyHHnooYxk2b94cDz/8cKLafv36ZSwHAACUdRYTAYAy7ec//3nk5ORstWbTpk1x9dVXp733zTffHCtXrkxZd9VVV6W9d0m5+OKLo1atWlutWbNmTca+5+XLl8f111+fqPacc87JSAYAKC7zSsVx4YUXxty5c1PW7bjjjnHEEUdkPhAAFUbz5s3jxBNPTFk3ZMiQGDduXFp7f/XVV4mW5Q466KDo2rVrWnuXhAsuuCBq1qyZsu6qq65K+dTq4rr//vtjzpw5iXoDQGljXqkYJk6cGNddd12i2iRPSgKAbDKvZE/t2rXjoosuSll37733xrRp0zKS4e67745Zs2alrOvdu3fsuuuuGckAAADlgcVEAKBMa9++fRx99NEp61599dV48cUX09Z39OjRie6ctu+++0bv3r3T1jciYu7cuZGTk5Pyq1evXmntGxGRl5cX559/fsq6xx9/PIYPH572/pdddlksXLgwZV2nTp3ioIMOSnt/ANgW5pXMzytDhw6NxYsXp+VY26KoqCiuuuqqePrppxPVDxgwIKpUqZLhVABUNNdee23KmsLCwjj33HOjoKAgLT2Liori/PPPj3Xr1qWsTZKvOAYMGJBo3kj3kwsbNGiQ6GZI48aNS3RBYVIzZsyIX//61ynrdtpppzjjjDPS1hcA0sm8krl5ZenSpfHyyy9vf+jtMHXq1DjiiCNi7dq1KWtr1qwZP/nJT7KQCgCKx7ySnfMrERFXXnll1KhRY6s169evj7PPPjvtN3+aPHly3HLLLYlqL7300rT2BgCA8sZiIgBQ5v3yl7+M3NzUY825554b06dP3+5+ixYtitNOOy02b96csjbpicyy5Nprr4169eqlrDv77LNj9uzZaev75z//OfHF/uXxcwegbDOvZNZf//rXaNWqVdxwww2xaNGirPZevnx5nHzyyYkXD2rXrh3XXHNNhlMBUBHtu+++ccwxx6SsGzduXFx++eVp6XnHHXfE66+/nrKuS5cu0bdv37T0LA2uvfbaRE9NvOGGG2L06NHb3W/NmjVxyimnxOrVq1PWXn/99VGtWrXt7gkAmWBeyZxVq1bF8ccfHwceeGD8/e9/j6Kioqz2Hzp0aHTr1i3RzSUjIi655JJo2LBhhlMBQPGZV7KnUaNGiT7Djz76KH7xi1+kre+KFSuif//+sWHDhpS1nTt3LlefOQAAZILFRACgzOvcuXP89Kc/TVmXn58fhx122HYtyy1ZsiR69+4d8+fPT1n74x//uFyeoGzcuHHceuutKesWL14chx12WEybNm27ez766KOJntQYEdGzZ89EvygAgGwyr2TemjVr4o477ohdd901zjzzzHjnnXfSfgfd/7R58+Z4/PHHY88994yXXnop8fuuu+662HHHHTOWC4CK7Xe/+12ipbSHHnoobrzxxu3q9eCDDyY6Rk5OTvzhD3+InJyc7epXmjRr1ixuuOGGlHUbN26Mo48+Oj799NNt7rV27dro27dvjB8/PmXtXnvtFRdddNE29wKAbDCvZNZHH30URx99dLRv3z7uvffejN/AadasWXHqqafGMcccEytWrEj0nh133DGuu+66jOYCgO1hXsmegQMHRvPmzVPW3X333XHjjTdu980Xvv322+jTp0988cUXieoHDRpU7j5zAABIN4uJAEC5cPvtt0eDBg1S1n399dex//77x/Dhw4vdY8yYMdGlS5f48ssvU9ZWr1497r///mL3KCsuuuii6NKlS8q6uXPnxgEHHJD4SYf/16pVq+L888+Pc889N9ETn2rWrBmPPPLINvUCgEwzr2RHQUFBDBkyJA477LBo3rx5XHDBBfHqq68mvjgulRkzZsTtt98eu+++e/z0pz+NBQsWJH5v586d03pXXwD4v1q1apX4Iu/bb789Tj311Fi1alWxemzYsCEuu+yyuPjiixPVn3322XHAAQcUq0dZcPXVV0fr1q1T1uXn50fPnj3jySefLHaPadOmxQEHHBAjR45MWZuTkxMPPPBAVKpUqdh9ACCbzCvZMW3atPj5z38ezZo1i8MOOyzuueee+OKLL9JyE6d169bFsGHD4oQTToh27drFc889V6z3P/zww5GXl7fdOQAgU8wr2VOrVq34wx/+kKj29ttvj2OOOSbxE5r/r7fffju6dOkSn3zySaL6n/3sZ9GrV69t6gUAABWJxUQAoFzYcccd44knnkh0p7KlS5fGkUceGccff3yiO9ZPnjw5zj777DjwwAPjq6++SpTn/vvvT3RxWllVqVKleP7552OHHXZIWbtixYo444wzolu3bvG3v/0tNm7cmPI9ixcvjrvuuitatWpVrEXD++67L9q0aZO4HgCyybySfd988008/PDDceyxx0ZeXl60b98+zjjjjLjtttvixRdfjI8++ihmz54dK1asiPXr10dhYWFs2rQp1q5dGwsXLowvvvgi/v73v8d9990XZ511Vuy+++7Rpk2buPHGG2Pu3LnFytKgQYN49tlno3Llypn5ZgHg/7vpppuiW7duiWqfe+65aN26dQwePDhWrly51dp169bFU089Fe3atUt8wVibNm3K5Y0QIiKqVasWzz33XKInKKxduzYGDBgQhxxySIwcOTLl3f3nzp0bP//5z6Njx46J7+D/i1/8Inr06JGoFgBKmnklezZv3hzvvPNOXH311dGxY8eoX79+HH744fHzn/88HnrooXjzzTdj4sSJsWjRoli9enVs3LgxioqKYsOGDbFixYqYNWtWfPjhhzFkyJC44YYb4tBDD42GDRtG3759429/+1ts2rSpWHkuu+yyOO644zL03QJA+phXsueYY46JSy+9NFHtsGHDonXr1vGLX/wiZs+enbK+qKgo3nnnnTj66KPj8MMPj/nz5yfq06ZNm7jvvvsS1QIAQEWXU7S9zzYHAChFrr322rj77ruL9Z42bdrEwQcfHHvssUfk5eVFTk5OLF++PKZOnRofffRRTJw4sVjHO+200+KZZ54p1nuKY+7cudGiRYuUdT179oxRo0ZlLEdExNChQ6Nfv34pL6j7T/Xq1Yvu3btHx44do3nz5lG7du3YvHlzLF++PGbNmhVjxoyJzz77LNETEv/TZZddVq5PxgNQfphX/i1d88qAAQO26SlE2VKjRo14++2348ADDyzpKABUEPPnz49OnTrF0qVLE7+nRo0a0bNnz+jcuXM0a9Ys6tSpE6tXr45FixbFZ599FqNGjSrW3f9r1KgRH330Uey9997b8i2klPTn/8iRIzN6d/sHH3ww8dMN/mWXXXaJnj17RseOHaNBgwZRpUqVWLFiRcycOTPGjBkTY8eOLda5lu7du8fIkSM9LRGAMsW88m/pmFeSnospSccff3y8+OKLkZvrHuoAlA3mlX/L9PmVjRs3Rq9eveLDDz9M/J6cnJzYY4894sADD4w2bdpEgwYNomrVqrF27dr45ptv4ssvv4z33nsvFi9eXKwsDRs2jA8//LDc39wTAADSxS3aAYBy5c4774yvv/46nn322cTvmT59ekyfPj0t/Q877LB47LHH0nKssqBv377xyCOPxHnnnZf4grn8/PwYNmxYDBs2LG05+vfvH/fee2/ajgcAmWReqVjy8vJi2LBhie+sDADpsMsuu8Q//vGP6N27d+KL3datWxevv/56vP7669vdv0qVKvHSSy9l7KK50uSiiy6KefPmxW9/+9vE75k/f348/fTTaem/1157xSuvvGIpEYAyx7xSsZx55pnx5z//2VIiAGWKeSV7qlSpEkOHDo1DDz00JkyYkOg9RUVFMWnSpJg0aVLactSrVy+GDh1qKREAAIrBGT8AoFzJzc2Np556Ko4//vis9z744IPj1VdfjWrVqmW9d0n62c9+Fg8//HCJ/TL5/PPPj2eeecYvswEoM8wrFcfee+8dH374oaVEAErE/vvvH8OGDYvatWtntW+VKlXi2WefjSOPPDKrfUvSXXfdFZdddlnW+7Zr1y7eeuutyMvLy3pvAEgH80r5V7ly5fjNb34TTzzxRFSu7N7pAJQ95pXsycvLixEjRsQ+++xTIv0bNWoUI0eOjAMOOKBE+gMAQFnl6m0AoNypXLlyvPjii3HddddlrefZZ58db7/9dtSqVStrPUuTc889N15//fVo0KBB1npWq1YtBg8eHA899JClRADKHPNK+Va5cuW46qqrYsyYMdG2bduSjgNABdajR4/46KOPomXLllnp16hRo3jnnXfihBNOyEq/0uT++++P+++/P2sX3B955JHx8ccfR+PGjbPSDwAyxbxSfrVv3z5Gjx4dN954Y+Tk5JR0HADYZuaV7GnQoEGMHj06Tj311Kz2PfDAA+PTTz+NTp06ZbUvAACUB67gBgDKpdzc3Ljzzjvj5ZdfjqZNm2asT/369eNPf/pTPPbYYxX+yUOHH354jBs3Lit37OvWrVuMGTMmLrroooz3AoBMMa+kT48ePaJFixYlHSNycnLimGOOiS+++CIGDRpUbj9vAMqWPffcMz799NP4yU9+ktE+P/7xj+Ozzz6Lgw8+OKN9SrPLLrss3nnnnYzemKBGjRpx2223xdChQ6NevXoZ6wMA2WRe2X716tWLI444IqpWrVrSUaJx48bxwAMPxMSJE6Nr164lHQcA0sK8kj21atWKv/zlL/Hwww9HXl5eRnvVrFkzbr311nj33Xdjl112yWgvAAAorywmAgDl2rHHHhtTp06Nq6++Oq1PB6patWqcc845MW3atPjZz36WtuOWdc2bN4+///3vMXTo0Nhrr73SfvwOHTrEkCFD4oMPPoi999477ccHgJJgXtl+P/3pT2P27Nnx+eefxy233BL77LNPVvvXq1cvLrjggvjyyy/j1VdfjXbt2mW1PwCkUr9+/Xj66adj5MiR0blz57Qeu02bNvHSSy/FP/7xj2jWrFlaj10Wde/ePSZOnBi33357Wi+ey83NjRNOOCG+/PLLuOGGGyI316/4AChfzCvbp379+jF8+PD47rvv4rnnnov+/ftn/SYGXbp0iccffzzmzZsXF198cdaeJA0A2WJeya7zzjsvpk+fHhdffHHUqFEjrceuVq1anHPOOTF16tQYOHCguQUAALZDTlFRUVFJhwAAyIbly5fHI488EkOGDIkvv/xym47RqlWrOPXUU+Oiiy6KnXbaKc0Jk5k7d26iJwL17NkzRo0alflAWzFq1Kj44x//GK+//nqsXLlym45Rr1696Nu3b5x++unRp0+fyMnJSXNKACg9zCvps3Dhwhg9enR88MEH8cEHH8Tnn38emzZtStvxW7duHT179ox+/fpFnz59SsUTCQAgqXfffTcGDx4cw4cPj9WrVxf7/dWrV4/DDjssLrzwwjjyyCNL5O/qAwYMiCeffDJl3ciRI6NXr16ZD/QD1q5dG08++WQ8/vjj8emnn8a2/EquadOmcdJJJ8Wll14arVq1ykBKACidzCvbb+PGjfHZZ599f27kww8/jMWLF6ft+LVq1Ypu3bpFnz594oQTToiWLVum7dgAUBaYV7Jn6dKl8eijj8YzzzwTX3zxxTYfZ999942TTjopzj777GjcuHEaEwIAQMVlMREAqJDmzZsXb775ZkyYMCEmT54cc+fOjZUrV8aqVauiqKgo6tSpE3Xq1IlddtklOnToEHvttVf07t3b02+20aZNm77/xffkyZNj2rRpsWjRoli1alWsWbMmcnJyolatWlGvXr1o3rx5tGjRIvbee+/o1q1bdO7c2YX+AFRI5pX0Wrt2bUyaNClmzpz5/dfs2bNj+fLlsXr16li9enWsWrUqNm/eHNWqVYtq1apF7dq1o1GjRtG4cePYZZddom3bttGuXbvo3LmzX1gDUC4UFBTEe++99/3f16dOnRrfffddrFq1KtauXRvVq1ePOnXqRF5eXrRt2zY6dOgQXbt2jcMOOyxq1qxZ0vHLlMWLF8cbb7wR48ePj8mTJ8fs2bMjPz8/Vq1aFZs2bYratWtHnTp1Yuedd4727dvHHnvsEYceemh06tSppKMDQIkyr6TXnDlzYtq0af91fmTBggWxatWq78+PrF27NipXrhxVq1aN6tWrR4MGDaJx48bRpEmTaNWqVbRr1y722GOP2HvvvT1dCADCvJJt33zzTbz11lsxYcKEmDJlyn+dY9mwYUPUqFEjatWqFY0aNYoWLVpEmzZtomvXrnHggQfGzjvvXNLxAQCg3LGYCAAAAAAAAAAAAAAAAAAkllvSAQAAAAAAAAAAAAAAAACAssNiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJVS7pAAAAAAAAAAAAAAAApcHixYtj2LBh8cEHH8SkSZNi3rx5sXLlyti8eXPssMMOsdNOO0WnTp3i4IMPjuOPPz7y8vJKOjIAAJSInKKioqKSDgEAAAAAAAAAAAAAUFJGjRoVgwYNiuHDh0dhYWGi91SpUiVOPPHEuOWWW6JNmzYZTggAAKWLxUQAAAAAAAAAAAAAoEKaP39+XHTRRTFs2LBtPkalSpXi6quvjltvvTWqVKmSxnQAAFB6WUwEAAAAAAAAAAAAACqc1157Lc4888zIz89Py/E6d+4cQ4cOjZ122iktxwMAgNIst6QDAAAAAAAAAAAAAABk00MPPRTHHXdc2pYSIyI+++yzOPDAA2PmzJlpOyYAAJRWnpgIAAAAAAAAAAAAAFQYTz31VAwYMCAydRl1ixYt4uOPP45GjRpl5PgAAFAaeGIiAAAAAAAAAAAAAFAhvPrqq/HTn/50q0uJNWrUiDPPPDNeeumlmDt3bqxZsybWrl0bM2bMiCeffDIOOeSQrfaYM2dO9O3bNwoKCtIdHwAASg1PTAQAAAAAAAAAAAAAyr158+bF3nvvHfn5+VusOfXUU+N3v/tdNGnSZKvHGjFiRPzsZz+LuXPnbrHmqquuikGDBm1rXAAAKNUsJgIAAAAAAAAAAAAA5drmzZujV69eMXr06B98PScnJ+6///649NJLEx9zyZIlcdRRR8Unn3yyxWOOHDkyevbsuU2ZAQCgNMst6QAAAAAAAAAAAAAAAJn0wAMPbHEpMSLi3nvvLdZSYkTEjjvuGMOHD4927dr94OtFRUVxySWXxObNm4t1XAAAKAs8MREAAAAAAAAAAAAAKLdWr14dLVu2jCVLlvzg66eeemr85S9/2ebjT5o0Kfbbb79Yv379D74+ePDguOiii7b5+AAAUBp5YiIAAAAAAAAAAAAAUG797ne/2+JSYoMGDWLw4MHbdfw999wzbrnlli2+fscdd0RBQcF29QAAgNLGYiIAAAAAAAAAAAAAUC5t2LAh7rvvvi2+PnDgwKhfv/5297nyyiujVatWP/ja119/HU8//fR29wAAgNLEYiIAAAAAAAAAAAAAUC699tprsXz58h98rV69enHeeeelpU/VqlXjhhtu2OLrv//979PSBwAASguLiQAAUEJGjRoVOTk5ib+gJPjvFOC/+XMRAIDS5sknn0w0mw4ePLiko/6gefPmxQsvvBA33XRTnHTSSXHQQQdFy5YtIy8vL2rVqhWVKlVKPH8/8cQTJf3tAAAAUApt7e+LP/nJT6JmzZpp63X66adH06ZNf/C1CRMmxIQJE9LWq7Q56qijUv7dvVatWjF37tySjgoAQJpULukAAAAAAAAAABTfsmXL4uqrr05Z1759+zj//POzkCiZcePGxVNPPRXDhg2LWbNmlXQcAAAAyrH8/Px44403tvh6up6W+C9Vq1aNAQMGxO233/6Drz/11FNxzz33pLVnaXH33XfHG2+8EZs3b95izdq1a+PSSy+NoUOHZjEZAACZYjERAAAAAAAAoAy69tpr47vvvktZN2jQoKhcueR/NTx8+PC45ZZbYuzYsSUdBcqVRYsWxaRJk2LatGkxbdq0+Oqrr2LhwoWxaNGiWLVqVaxfvz42bNgQVatWjRo1akT16tUjLy8vmjZtGjvvvHPstttu0bFjx+jYsWO0bNkycnJySvpbAgCAtBk1atQWF+X23Xff2HvvvdPec2uLia+99lq5XUzs0KFDnHvuufHQQw9ttW7YsGHxyiuvxLHHHpudYAAAZEzJ//YJAAAAAAAAgGL54IMP4rHHHktZ17t37zjyyCOzkGjLvvnmmzjvvPPiH//4R4nmgPJg48aN8cknn8S7774bY8aMiU8//TS++eabRO9dv359rF+/PiIiFi5cGF9++eX/1OTl5cUhhxwSvXv3jqOOOip22WWXtOYHAIBsGzFixBZfO+KIIzLSs3Xr1tG+ffuYMmXK/7w2c+bMmDFjRrRu3TojvUvar371q3jmmWdi1apVW6277LLLok+fPlGzZs0sJQMAIBMsJgLAf+jVq1e8++67Jda/SpUqUa1atahWrVrUrl07dtxxx2jUqFE0adIk2rRpE23atIkOHTpEmzZt3K0WqFCy9edz1apVv/9z+D+/6tatG40aNfqfr9122y3atWsXeXl5Gc8GAMCWlfTf59PtrLPOiieeeKKkYwBQihUWFsZll10WRUVFKWvvuOOOLCTastGjR8exxx4bS5cuLdEcUJZNnz49/vGPf8Tw4cPjgw8+iDVr1mSs17Jly+Kvf/1r/PWvf42cnJzo1atXnHXWWXHKKadE9erVM9a3rHniiSfi7LPPLukYZUrPnj1j1KhRJR0DAKiAtjaDHHLIIRnre9RRR/3gYmJExFtvvVVuFxMbNWoUV155Zfz617/eat38+fPjzjvvTFkHAEDpZjERAEqRjRs3xsaNG2P16tWxdOnSmDdv3g/W1a9fPw444IA45JBDol+/ftGmTZssJwUonwoKCqKgoCDlnfv+rx133DHatWsX7dq1iw4dOsRBBx0UnTp1isqV/ZULAAAASL8///nPMW7cuJR1J5xwQnTp0iULiX7Ym2++Gcccc0xs2LChxDJAWVRUVBRjx46NF198MV599dWYOXNmieUYOXJkjBw5Mq677rr4+c9/HhdeeGHUqVOnRPIAAEBxrV+/PiZPnvyDr1WtWjUOOuigjPXu0aNHDBo06AdfGzNmTFx00UUZ613Srrrqqhg8eHDKmxQNGjQozjnnnNh1112zlAwAgHTLLekAAEDxLV++PIYPHx7XXntttG3bNvbYY4+4++673XEaoIQsWbIk3n///fjTn/4UV155Zey///6xww47RO/eveOWW26JkSNHxqZNm0o6JgAAAFAO5Ofnx8CBA1PWVapUKW699dYsJPphX3zxRZx44omWEqEYPv/887j66qtjt912iwMOOCDuueeeEltK/L8WL14c1113XbRq1SqefPLJko4DAACJTJkyJTZv3vyDr+23335Ro0aNjPXe2tLj2LFjM9a3NKhbt25cd911KevWrVsX11xzTRYSAQCQKRYTAaAcmDx5clx77bXRrFmzOP/88+Obb74p6UgAFd6aNWtixIgR8atf/SoOPfTQ2GmnneK8886Lt956y5Ii2+yJJ56InJycRF+77bZbSceF/+G/YQAoe/z8htLntttui2+//TZl3WmnnRbt27fPQqL/tXHjxjj99NNj1apVJdIfypL8/PwYNGhQdOzYMTp16hT33HNPfPXVVyUda4uWLFkSAwYMiJ49e8bcuXNLOg4AAGzVF198scXX9thjj4z2zsvLi1122eUHX5s2bVqsX78+o/1L2iWXXBKNGzdOWffiiy/Ghx9+mIVEAABkgsVEAChH1q9fH4888ki0bt06brrppigoKCjpSAD8f99991386U9/ij59+sROO+0Ul19+ecyZM6ekYwEAAABlyPz58+MPf/hDyrrc3Ny48cYbs5Doh91zzz0xceLEEusPZcknn3wS11xzzVYvmC6N3nvvvdh3331j6NChJR0FAAC2aNq0aVt8rVWrVhnvv+eee/7gPy8qKopZs2ZlvH9JqlGjRlx11VWJaq+99toMpwEAIFMql3QAACD91q1bF7/5zW/ilVdeiSFDhsQ+++xT0pEA+A/fffdd/P73v4/BgwfHcccdF1dffXV07dq1pGMBAAAApdxNN92U6IkKJ598crRt2zYLif7XqlWr4u67797m9++www6x7777RtOmTaNevXpRt27dyM1Ndr/dvffee5v7AsW3fPny6NevX9x1111xzTXXlHQcAAD4HwsWLNjia7vvvnvG+2+tx4wZMzL+1MaSduGFF8Zdd90VS5cu3WrdBx98EK+++mr069cvS8kAAEgXi4kAUI5NmjQpDjzwwHj66afj+OOPL+k4APwfmzdvjpdeeileeumlOOSQQ+L++++Pvfbaq6RjAQAAAKXQF198EUOGDElZl5OTEwMHDsxCoh/22GOPxbJly4r1nvr168dPf/rTOOecc6J9+/YZSgZkQlFRUVx77bWxcuXKuPXWW0s6DgAA/JetLSZm44mJzZs33+Jr8+bNy3j/kla7du24/PLL4+abb05Ze/3118fRRx8dlSpVykIyAADSJdmtJQGAMmvdunVx4oknxkMPPVTSUQDYipEjR8a+++4bV1xxReTn55d0HAAAAKCUufnmm6OwsDBl3Y9//OMSfeLCk08+Waz6Hj16xOTJk2PQoEGWEqEM+81vfhN33HFHSccAAID/snDhwi2+1qxZs4z331qPJUuWZLx/aXDxxRdHrVq1UtZNmTIlnn322SwkAgAgnSwmAkAFUFRUFBdffHE899xzJR0FgK3YtGlT3H///dGmTZt4+eWXSzoOAAAAUEqMHz8+XnnllUS111xzTWbDbMWsWbNi/Pjxiev32GOPePPNN6NJkyYZTAUVQ/Xq1eOAAw6ISy+9NP7whz/E0KFDY9KkSbFgwYLIz8+PTZs2xfr162PZsmXx5ZdfxvDhw+OOO+6IY489NurUqZOWDDfeeGO89NJLaTkWAAD/9OCDD0ZOTk7ir3vuuaekI2+3TZs2xb777pv4e65atWpMmDDhB4+1fPnyLfapXbt2pr6F79WvX3+Lr3333XcZ718a5OXlxdlnn52o9tZbb43NmzdnOBEAAOlUuaQDAEBZ1rFjx+jbt29ajrVp06bYsGFDrF69OpYsWRLffPNNzJw5M1asWJGW4xcWFsZZZ50V7dq1i3322SctxwQorbb3z+f169fH+vXrY8OGDbF+/fpYuXJlLFy4MBYuXBiLFy+OjRs3pjHt//r222/j+OOPj2uvvTZuv/32qFSpUkb7AQAAAKXbLbfckqiuc+fO0atXr4xm2Zq33367WPWPPfZYVKtWLUNpoHyrXLlydO3aNY444oj40Y9+FJ06dYrKlbd+CUilSpWiWrVqUb9+/ejQoUMcccQRERGxcePGeP311+PBBx+M119/fZszFRUVxYABA6Jz587RokWLbT4OAAD/tsceexSrfurUqRlKkj2//e1vi3XTm4EDB8bee+/9g6+tW7fuB//5v2bjTNvaYuKyZcsy3r+0uPLKK+OPf/xjyqXD6dOnxzPPPBNnnnlmlpIBALC9LCYCwHbo1KlT/OY3v8loj6+++io+/vjjeP3112Po0KHbdbesgoKCOO200+Kzzz6LGjVqpDElQOmSyT+fi4qKYvHixTFp0qTvvz777LOYMGFCFBUVpbXXb3/72xg7dmw899xz0bhx47QeO6levXql/fsCKMv8uQjlw1lnnRVPPPFESccAgEQ+//zzeO211xLVXnHFFZkNk8K7776buLZTp06x//77ZzANlD+5ubnRvXv3OO200+LEE0+MvLy8tBy3SpUq0bdv3+jbt2+MHTs2rrrqqhg9evQ2HWvNmjXx05/+NN55553IyclJS77SaMCAATFgwIASzVDcz/fxxx8v8cwAQPHtueeexaqfNm1ahpJkx9SpU+PXv/514vp99903brjhhi2+vn79+h/85zVr1ix2tm2xtT4bNmzISobSoGXLltG3b9945ZVXUtb+5je/idNPPz1yc3MzHwwAgO1magOAUq558+Zx8sknx2OPPRbffPNNPPvss8W+G9p/mjJlStx7771pTAhQseTk5ESTJk2id+/eccUVV8Sjjz4a48ePjyVLlsQLL7wQ559/flqXCEeNGhUHHnhgfP3112k7JgAAAFB23HXXXYnqdtxxxzjppJMynGbrJk6cmLj2lFNOyWASKF+aNm0at9xyS3z11VcxatSoOO+889K2lPh/7b///vHee+/FfffdF1WqVNmmY4waNSqeeuqpNCcDAKiYGjRoEE2aNElcX5afmFhYWBjnnHNO4oW9qlWrxpNPPrnVJ4dvaTGxVq1a25SxuKpWrbrF1yrSYmJExEUXXZSobsaMGfHyyy9nOA0AAOliMREAypCqVatG//79Y+LEiXH//fdv81MP77rrrli6dGma0wFUbA0aNIiTTjopHnroofj6669j6NChceKJJ271Fw1JzZ49Ow455JBYsGBBGpICAAAAZcWcOXPixRdfTFR77rnnRrVq1TKcaMs2bdoU06dPT1y/7777ZjANlA8HHnhgvPDCCzFv3rz45S9/GTvvvHNW+ubk5MTll18eI0aMiPr162/TMX71q1/Fxo0b05wMAKBiKs5TE5csWRLLli3LYJrM+cMf/hAffvhh4vpf/vKXKT+boqKiH/zn23oTjuLaWp+CgoKsZCgtevfuHW3atElU+9vf/jbDaQAASBeLiQBQBuXm5sZll10W7733XjRq1KjY71+5cmU8+uijGUgGQERE5cqV4+ijj44XX3wxZs2aFRdeeOF2LyjOnDkzDjnkkFi4cGGaUgIAAACl3aBBg2Lz5s0p63Jzc+P888/PQqItW7BgQbGWkDp27JjBNFC29e7dO0aOHBkffPBBnHTSSVt9Akwmde/ePd5+++3YYYcdiv3eOXPmxJAhQ9IfCgCgAirOYmJExLRp0zKUJHPmzJkTN954Y+L6/fbbL6677rqUdVtaDFy3bl3iXttja39PTsdNjsuSnJycuOCCCxLVjh07NkaNGpXZQAAApIXFRAAow7p06RKvv/561K5du9jvfeyxxzKQCID/q1mzZvHggw/GrFmzon///tt1rOnTp8dxxx3nTuMAAABQAaxYsSKefPLJRLW9e/eO5s2bZzjR1i1atChxbaVKlaJx48YZTANl06GHHhoff/xxvPXWW9GrV6+SjhMR/3y66QsvvBCVKlUq9nvdJBMAID322GOPYtVPnTo1Q0ky57zzzos1a9Ykqq1WrVo88cQTiWbULS3/ZWsxcWtPRaxWrVpWMpQmp59+euKnVd53332ZDQMAQFpYTASAMq5Tp07bdCJm+vTp8cUXX6Q/EAA/qFmzZvHss8/Gyy+/HE2aNNnm44wZMyauvfbaNCYDAAAASqPHHnss8UWZZ599dobTpPbdd98lrt2Wm+1Bebb33nvH8OHDY8SIEdG1a9eSjvM/Dj/88Lj++uuL/b6PPvoopk+fnoFEAAAVS3GfmFjWFhP//Oc/x9tvv524/le/+lV06NAhUe2W/v6ZrcXEDRs2bPG16tWrZyVDabLjjjtG3759E9UOHTo05s6dm9lAAABsN4uJAFAOnHPOObH//vsX+33vvPNOBtIAsDXHHntsTJo0KXr06LHNx7jvvvvilVdeSV8oAAAAoFQpLCyMwYMHJ6rdYYcd4rjjjstwotTWrl2buNZiIvxbt27dYty4cXHEEUeUdJStGjhwYLRq1arY73vttdcykAYAoGLZY489IicnJ3H9tGnTMpgmvRYsWBBXXXVV4vquXbvG1Vdfnbg+Ly/vB/95YWHhVpcG02XFihVbfK1mzZoZ718anXPOOYnqinNuBACAkmMxEQDKiV/84hfFfs/o0aMzkASAVBo0aBBvvvlm/OQnP9nmY5x99tmxZMmSNKYCAAAASos33ngjZs+enaj2xBNPjGrVqmU4UWrFuaCzcuXKGUwCZUutWrUiN7f0X7pRrVq1GDhwYLHfN2rUqPSHAQCoYOrUqRPNmzdPXF+Wnph44YUXRn5+fqLa6tWrx5NPPhmVKlVKfPyGDRtu8bVFixYlPs62+u6777b42o477pjx/qVRnz59En/vjz32WKxfvz7DiQAA2B6l/+w2AJDIUUcdFfXq1SvWe8rSHdIAyptq1arF008/Heeee+42vX/FihXbdCEQAAAAUPo9+uijiWtPPfXUDCZJbtOmTSUdAciw0047LerXr1+s97z//vtRVFSUoUQAABXHnnvumbh21qxZsXHjxgymSY/nnnuuWE/Y/s1vfhNt27YtVo+mTZtu8bX58+cX61jbYunSpVt8rUmTJhnvXxpVrlw5TjzxxES1y5Yti5dffjnDiQAA2B4WEwGgnKhatWr06NGjWO+ZOXNmhtIAkNQf//jHOOqoo7bpvY8++mhMmDAhzYkAAACAkrRkyZIYOnRootomTZpEr169MhsoIYtHUP5VrVo1jj/++GK9Z+XKlbFgwYIMJQIAqDj22GOPxLWbNm2K2bNnZzDN9vvuu+/isssuS1x/4IEHxpVXXlnsPrvuuusWX/vqq6+Kfbzimjdv3hZfa9y4ccb7l1b9+/dPXPvnP/85g0kAANheFhMBoBzp0qVLserXrVsX69aty1AaAJKoVKlSPP/889GxY8div7ewsHCbfvkCAAAAlF5DhgxJ/GSLE044IXJz/coXyJ7DDjus2O+ZMWNGBpIAAFQsxXliYkTE1KlTM5QkPS6//PJYsmRJotoaNWrEE088sU1//23RosUWX8vGExNnzZq1xdeaNWuW8f6lVffu3bf6NMv/9M4778ScOXMynAgAgG1VuaQDAADp07Jly2K/Z/Xq1VGjRo0MpEmfjRs3xrhx42Ls2LExa9asmDNnTsydOzdWrFgRa9asiTVr1sTGjRujVq1a33/tvPPO0aJFi2jZsmXsueeecdBBB0WjRo1K+lspNRYuXBijR4+OSZMmxaRJk2LGjBmRn58fq1atilWrVkXlypWjZs2aUadOnWjWrFm0aNEi2rZtGwceeGB07do1atWqVdLfQtoVFBTE6NGjY+zYsTFlypSYMmVKfPvtt7Fy5cpYtWpVVKlSJerUqRN16tSJ+vXrR9u2baNDhw6xxx57RPfu3SMvL6+kvwXKsFq1asWQIUNiv/32i4KCgmK9d+TIkfHee+8V+6m5FUFhYWF8+eWXMXHixJg2bVrMmDEjFi5cGN9++20sXbo01q9fHxs2bIiNGzdGtWrVombNmv/19a8/A3fbbbfYddddY7fddvv+q2rVqiX97VV45oP0W7RoUXz44Ycxbdq0mD59ekyfPj2+++67WL16daxevTrWrFkTVapUiYYNG0bz5s2jTZs2sc8++8QJJ5xQoX9xWh7431N6mbUpLzZu3BhTp06NL7/8MmbPnh2zZ8+O+fPnx5IlS+K7776LlStXRkFBQWzYsCEqV64cNWrUiOrVq0edOnWiadOm0axZs9hll11izz33jH333Tfatm0blSpVKulvq8TMmDEjxo4dGzNnzoy5c+fGvHnz4ptvvok1a9bE2rVrY+3atbFx48aoWrVqVKtWLerVqxcNGzaMxo0bf//nbYcOHWKfffaJnXbaqaS/nQrLz8z0M4P+sCFDhiSu7devXwaTsDX+TEgvfx6UHfvtt1+x35ONJ9HA1qxfvz4++eSTGD9+fMyZMydmz54dc+fOjfz8/O//zC4oKIgaNWpEzZo1o3bt2rHzzjtHy5Yto2XLltGpU6c46KCD/C6oDHBeJjX/e9gy50Iyy7y3/Yq7mDht2rQMJdl+w4YNi7/85S+J62+//fZo3br1NvXa2uc2ZcqUbTpmcWxtMbFDhw4Z719a5eTkRN++fePhhx9OWVtUVBR/+ctf4sYbb8xCMgAAistiIgCUI/Xr1y/2e4q7AJMtCxYsiBdeeCFee+21GDNmTKxduzble1auXBkrV66MiIiZM2fGu++++1+vt23bNg477LDo379/HHzwwZGTk5OR7KXVV199FU8//XS89tprMXbs2CgqKtpi7aZNm2L9+vWxbNmymDdvXnzwwQffv1a5cuXo3bt3nHLKKXHiiSdG7dq1sxE/IzZv3hxDhw6NJ554IkaMGBGrV6/eYu2mTZti3bp18e2330ZExKeffvr9a5UqVYoDDzww+vbtG6effrqLRNkmHTt2jJtvvjkGDhxY7Pf+4Q9/sJj4/33zzTfx6quvxrBhw+LDDz+M/Pz8RO/711OEly5dmrK2atWq0alTpzjggAO+/9ptt922MzlJmA/S75NPPokXX3wx3nzzzZgwYULK+s2bN8fXX38dX3/9dXz44YcREVGvXr0YMGBAhpOSbv73lF5mbcqDefPmxejRo+ODDz6Ijz76KCZPnpz4nEFBQUEUFBREfn5+LF68OGbOnPk/NTVr1oyePXvGkUceGUcdddRW71ReHixYsCBefvnlGD58eHz88ceJ5syIf14gun79+sjPz9/iBfxNmzaNHj16RM+ePeOII44wi2aYn5npZwbdumnTpsXnn3+eqLZevXrRq1evjObhv/kzIb38eVA27brrrlGpUqXYvHlz4vesWrUqg4ngh02cODFeeOGFGDFiRIwbNy7R32/+tRzz7bffxuzZs+P999///rWcnJxo37599O3bN0477bTo2LFjJuNTDM7LpOZ/Dz/MuZDMM++lV/v27Ys1h5XWJyauXLkyLrjggsT13bt3j8svv3yb+21tMXHs2LHbfNwkCgoKYvLkyT/4WsOGDWPHHXfMaP/S7thjj020mBgR8eyzz1pMBAAorYoAgO/17NmzKCISf5111lklHfm/vP3228XKHxFFK1euLOnY3yssLCx65ZVXig455JCi3NzcYn8vxflq1qxZ0U033VT03XfflfS3/V/OOuustP/3N3HixKIzzjijqHLlymn/HPPy8opuueWWouXLl2f0c0m39evXF919991Fu+yyS9o/k2rVqhWdc845RVOmTEmZY+TIkcU6dkVW1v98TmrTpk1Fbdq0KfZ/d5UrVy6aP39+RjKVhf9ON23aVPTyyy8X9e7duygnJyejPz+29LXzzjsXXXLJJUXvvvv/2rvvKCmKtY/jv82BJbNLkJzDAqKAIDlIUpAkCCgGEAPgRRG8YkBMIIKiggqKgKBkRVFykiA5g0TJOYeFZeO8f/iarhu6Z7on7fdzDufcaz/V9bBMddfW9NP1syMlJcXpv4uZ+4Cn/7gL8wPr5wcJCQmOr776ylGzZk1Lfm4TJkxwKldP/3GWL1wX05PVxxNzbf+WVeaLVrp165bjp59+cvTp08epOairfxo2bOiYMWOGIzEx0dM/CsvEx8c7xo0b56hdu7Zb56WVK1d2DB482HHw4EGn8s4K92+zsvo90+HwrTmov3n99dcN/xw6d+5sez6HDx/2+Nj39Ochq18TuB4gLblz5zb17zRs2DBPp+yXGC//dvnyZcfQoUMdFSpUsP3+U6lSJcf48eP96ncaO7Eu436Mh39jLSRtzPd8i5nPbu3atT2dbpqeeOIJw3+HyMhIp9e8/i69n1tgYKDj6tWrFvyt0rZ58+Z0/24NGjSwrV9fkZCQ4MiePbvhz8P27ds9nTIAAADSECgAAOA3bt26ZSo+KChI2bNntykbc2bOnKmqVauqbdu2Wr58uVJTU23t78SJE3rzzTdVrFgxvfDCC7pw4YKt/XnClStX1KtXL1WtWlWTJ09WcnKy5X1cunRJr7/+usqXL6+ZM2dafn47zJ49WxUqVNCAAQN0/Phxy8+fkJCg8ePHq1KlSurfv7+ht6YDfwgKCtLgwYNNt0tOTtann35qQ0be77vvvlNsbKzatWunJUuWZPgmZDudPHlSo0ePVoMGDVS4cGH17dtXR48e9Ugu/oT5gfUWL16sypUrq3v37ra/BRbehfFkLeba8FUJCQn69ttv1bVrV0VHR+vee+/V6NGjtX//frfnsmLFCnXq1EllypTRlClTPDaPs8LFixc1ePBgFS1aVL169dLatWvd+vfZuXOnhgwZotKlS6tevXqaNm2akpKS3Na/v+GeaT3moOaYue/fc889NmYCiWuC1bge+I9s2bKZirfjdybg786cOaOBAweqaNGieumll7Rnzx7b+9y9e7d69OihUqVKady4cT79O42vYV0mY4yHf2ItxL2Y79mvUqVKhmP37dtnYybOWb58ub744gvD8cOGDVOpUqVc7rdOnTpp/vfU1FRt2rTJ5fOnJ6NxUKNGDdv69RWhoaFq0KCB4fgZM2bYmA0AAACcRWEiAAB+5MqVK6bic+bMaU8iJhw6dEj33HOPOnXqpJ07d7q9/xs3bmjkyJGqUKGCJk+e7Pb+7fL999+rYsWK+vzzz93yhcbZs2fVqVMnde/eXQkJCbb354zr16+ra9eu6tixow4fPmx7f6mpqXr//fdVpUoV/fLLL7b3B//x4IMPqmLFiqbbTZo0yYZsvNfJkyfVokULtW/fXnv37vV0Ov9w+vRpjR49WmvXrvV0Kj6L+YH1rly5os6dO6tZs2YeeeACnsN4sh5zbfiiffv26amnnlLBggXVoUMHTZ06VdevX/d0WpKko0eP6uGHH1b16tU9cp1yRUpKikaPHq0yZcrojTfe0Pnz5z2dklavXq0uXbqYekgNv+OeaT3moOb99ttv2r17t+H4Ro0a2ZhN1sY1wVpcD/xPXFycqXizhYyAUSkpKRo1apTKli2r9957zyO/5xw/flxPPvmk6tata+o+DuewLpM+xsM/sRbiXsz33Cc2NtZw7KVLl7xiveoPN2/e1BNPPGH4+t2wYUP16dPHkr7r16+f7rGlS5da0kdaFixYkO4xMwV5/szM2sb3339vYyYAAABwFoWJAAD4EbPFVgULFrQpE2M+++wzxcbGasmSJR7NQ5IuXLig7t27q2XLlrp48aKn03HJG2+8oXbt2un06dNu73vy5Mlq1KiRLl++7Pa+M7Jr1y7dcccdmjp1qtv7/u2339S4cWPe3AbDAgMD1b9/f9PtTp48qS1bttiQkfdZsmSJKleurIULF3o6FdiA+YH19u/fr7vuuot7URbEeLIec234qpkzZ2rs2LFe/fnZsmWLatasqdGjR3s6FUO2bt2q22+/XX379vXKn+u5c+c8nYJP4Z5pPeagzjHzgF3RokVVsmRJG7PJurgmWIvrgf9JTU3VtWvXTLXJnj27TdkgK9uxY4dq1Kih5557ziuKjX755RfdcccdGjt2rKdT8Vusy6SP8fBvrIW4D/M99zJTmCjJq17w+sorr+i3334zFBsVFaUvv/xSAQEBlvTdokWLdM81e/ZsS/r4X0lJSVq2bFmaxwIDA1W3bl1b+vU1ZgoTd+3a5ZYXkQMAAMAcChMBAPAjmzZtMhVfvXp1mzLJWFJSkp566ik9/fTTio+P90gO6VmwYIFq1qypXbt2eToV0xITE9WlSxcNHjzYLW8ITc/atWvVqlUr3bhxw2M5/N26detUv359HTx40GM5JCQk6MEHH9SHH37osRzgWzp16uTUW8Tnzp1rQzbeZdKkSWrZsqVXf5EM5zA/sMfKlSt111138YbiLIbxZD3m2oB73Lp1S3379tXTTz+t1NRUT6eTrk8++US1a9f2uWsZ/o17pj2YgzrPzO/1DRs2tC+RLIprgvW4HvinQ4cOmZ6refpFmfA/kydPVq1atbR161ZPp/IPiYmJeuqpp9SrVy8lJiZ6Oh2/wbpMxhgPvs1X1kLSw3zP/cwWJu7bt8+mTMxZt26dqeclhg8frhIlSljWf4ECBdJ9Rmrfvn227F76ww8/pFssXr16deXKlcvyPn1R1apVlTt3bsPxP/zwg43ZAAAAwBkUJgIA4CeSk5O1atUqU21q1qxpUzbpu3nzppo3b+7Vbws9dOiQateune6by7xRSkqKunbtqmnTpnk6FUm/Lyp36tTJo18OStKKFSvUtGlTryhgcjgc6tevnyZPnuzpVOADoqKi1LFjR9Pt/L0wcfbs2Xr88ceVnJzs6VRgMeYH9ti+fbtat26tK1eueDoVuBHjyXrMtQH3++yzz9SlSxelpKR4OpV/SEpKUrdu3dS7d28lJCR4Oh24iHumPZiDOu/GjRtas2aN4XgKE63FNcF6XA/815YtW0y3KVOmjA2ZICtKTU3Vs88+q+7du3tdEfnfff755+rYsSPFWBZgXSZ9jAf/4q1rIRlhvucZZcuWVWhoqOF4b9gxMTExUT169DBcfNukSRM99dRTlufRoUOHdI/NmjXL8v4y+v3ywQcftLw/XxUYGKj69esbjl+4cKGN2QAAAMAZFCYCAOAnFixYoEuXLplq4+7CxPj4eLVu3VrLly93a7/OiIuLU+vWrbVy5UpPp2JIr169NHv2bE+n8Q/z5s3TiBEjPNb/rl271LZtW697a2nPnj1NFxEja3rooYdMt9myZYvOnDljQzaet337dnXr1s0n3xaLjDE/sMeRI0fUsmVLXbt2zdOpwI0YT/Zgrg14xowZM/Tcc895Oo0/xcfHq02bNvrmm288nQoswD3THsxBXfPzzz8rKSnJcHyjRo1szCZr4ZpgPa4H/m316tWm4kNCQizd7QZZV0pKih599FF9/PHHnk7FkLlz5+qBBx6gGMtFrMukjfHgn7xtLSQjzPc8Jzg4WOXKlTMc7w2FiW+99ZZ+/fVXQ7HZs2fX+PHjFRAQYHke3bp1U2Bg2o9Mf/nll5a+HHfXrl1asmRJmscCAwMpTPwfZtY4Vq5cyf0EAADAywR7OgEAAGCN4cOHm4ovWbKk7rzzTpuy+beUlBS1b9/esrc5Fy1aVBUqVFCRIkWUPXt2hYaG6vr167p8+bL27dunvXv36ubNmy71cfPmTd17771aunSpR3aXNOrNN9/Ul19+aapNZGSkypYtq5IlSyomJkbZsmVTSEiIbty4ofPnz+vQoUPasWOHbt265VJuL7/8su69915VrFjRpfOYdebMGd177726evWqy+fKmTOnKlSooDJlyihnzpyKiopSfHy8rl27psOHD2vPnj06e/as4fMlJiaqffv22rVrl8u5wb/VrVtX4eHhpsahw+HQhg0b1KZNGxszc7+EhAR169bNkl1pQkNDVaJECRUtWlTR0dHKnTu3wsPDFRoaqpSUFCUkJCg+Pl4XL17UuXPndPr0aR05coRdGm3C/MAeycnJ6tixo06fPm2qXXh4uMqUKaNSpUopf/78ypYtm0JDQxUXF6fr16/ryJEj2r17ty5cuGBT5nAF48kezLWB3+XNm1dFihRR/vz5VaBAAWXLlk3h4eEKCwtTYmKiEhISdOHCBZ09e1a//fabjh07Zkm/H3/8sWJjY9WrVy9LzuesGzduqEWLFqYfws9IRESESpQooZIlS6pAgQKKjIxUZGSkkpOTFR8fr6tXr+rkyZM6efKkDh06xHzUQtwz7cEc1HVLly41HFusWDEVL17cvmSyEK4J1uN64N8cDofmzJljqk316tUVHMyjKXBNSkqKHn74YU2dOtWS80VERKhcuXIqUqSIChYsqMjISEVEROjWrVu6fv26jh49qgMHDujIkSMu9fPDDz/o6aef1vjx4y3JO6thXSZtjAf3yOprIRlhvud5lSpV0s6dOw3F7tu3z+ZsMrZjxw4NGzbMcPyIESNUrFgxW3IpXLiwmjRposWLF//r2IkTJ/TNN9+oe/fulvQ1cODAdHfXbdasmQoWLGhJP/7CTGHijRs3tHbtWjVo0MDGjAAAAGAGq78AAPiBqVOnmt6BrUePHra8YSw9//3vf7VgwQKn2wcEBKhJkybq1q2bmjdvnukiXXJystasWaO5c+dq4sSJunjxolP9xsXFqUOHDtq8ebNiYmKcOoedfv75Zw0ZMsRQbMWKFfXggw+qefPmqlatmkJCQjKMT0xM1Jo1azR16lRNmTJF8fHxpvNLSkrS888/79K/vVmpqanq0qWLS1/+FCpUSD169NB9992nGjVqZDpW9u7dq3nz5mn8+PGG3vR34cIF9e7dW3369HE6R/i/8PBw1atXL80vRjKyefNmvytM/Pjjj7V7926n2oaHh+uee+5Ry5YtVa9ePZUvX970g1BJSUk6fPiwtm/frk2bNmn9+vVau3Ytb2K0APMDe7z99tvavHmzodiSJUuqa9euatGihWrUqKHQ0NBM2xw+fFg//PCDpk+frrVr17qaLizCeLIec21kVSVKlFDt2rVVu3ZtVa1aVRUqVFC+fPlMneP69etav369VqxYoW+//VZ79uxxOp9+/fqpcePGKl26tNPncEVqaqq6du3qclFiYGCg6tevr7Zt26pu3bq6/fbbFRQUZKhtYmKi9uzZow0bNmjVqlVasWKFjh8/7lI+WRn3THswB3XdihUrDMfecccd9iWSxXBNsB7XA/+2bt060/OQhg0b2pMMspTnn3/epSKswMBANWjQQK1bt1aTJk1UsWJFQ+vEp0+f1rJlyzR16lQtXLjQqReGfPnll7rzzjv1zDPPOJN6lsW6TPoYD9ZjLcQc5nueFxsbazj28OHDSkxMNPSzt1pKSooef/xxJSUlGYpv1qyZ7UW5ffv2Tff790GDBql9+/aKiopyqY958+Zp/vz56R5/+eWXXTq/P6pUqZLCwsIMv6h4+fLlFCYCAAB4EwcAAPhTgwYNHJIM/3nkkUc8nbJjz549jty5c5vKOzg42HHq1Cm35Thr1ixT+f3vnw4dOjj27t3rdP/x8fGOMWPGOPLmzet0Do0aNXIkJydb+FNJ2yOPPGI4p1atWjkKFSqUaVyTJk0cy5Ytcymv06dPO3r06OH0z2/RokUW/YQyN2zYMKfzLFSokGPixImOpKQkp/tftGiRo0qVKob66927t6n8sjJfvD5bYfjw4aY/x/fee6+lOSxfvtyjn9Pr16878uTJY/rnkDdvXse7777ruHTpkuU5ORwOx40bNxzz5s1zPP30046YmJg0c5g6darl/U6YMMHwz6BYsWKW928l5gfGmZkf3HHHHY6QkJBM42rWrOn46aefXM5txYoVjnXr1hmO94fPsKevi2lhPBnDXNu/ZdX5olFvvvlmuj+LoKAgxz333OP48MMPHQcPHrSl/40bNzoefPBBR1BQkFOf84YNGzpSU1NtyS0z/fr1c+kamzt3bsdrr71m+TrMli1bHIMHD3aULl06zX5z5sxpWV/+cP/+A/dM4/xpDuoL4uLiHMHBwYZ/5q+99pqnU06Tr10vuCYYw/UAf/fggw+a/pwuX77c02n7LbP/FhMmTPB0yk75/PPPnb5ORkVFOV588UXH4cOHXc7j0KFDjp49ezoCAwNN5xESEuLYuHGj6z8MH8a6jDUYD8axFmIc8z3fM2fOHFOfp127dnkkTzPPbuTMmdNx7Ngx23NKSUlJdz1NkqNXr14unf/MmTPpfnf8x70LaatWrZrhz0uzZs08nS4AAAD+Jms/3QwAwP/wtQcZd+3a5ShcuLDpRewBAwa4LcczZ844cuXK5dRie8GCBR2LFy+2LJeLFy86OnXq5FQukhxDhw61LJf0mFn0N/LzmzVrlqX5zZkzxxEZGWk6l+bNm1uaR3p27Nhh6IuQtP48/vjjjuvXr1uSR3JysmPo0KGZftEUEBBgKseszNeuz1ZZsWKFU2PfSp4uwHHmS/bOnTvbVpCYluTkZMfixYsdDzzwwD+uQRQmpo/5gTlWzg9y5MjhGDdunO05p8cfPsOevi7+L8aTccy1/VtWnS8aldbDeFWrVnV88MEHjjNnzrgtj+3btzvq1q3r1LibMWOG2/L8wzfffOP0dSI4ONgxYMAAx7Vr12zPc+XKlY6HH374H3NRChP/jXumOf40B/UFZueYVs9DrOJL1wuuCcZxPcAfjh07ZqqIWpKjcOHCjpSUFE+n7rfMjkFfLExcv369IzQ01KlrTs+ePR1nz561JaeKFSuazqdq1aouvRjT17Eu4zrGgzmshRjHfM/3HDx40NS/y+zZs92e4759+xzh4eGGcxw/frzbcvvqq68yzGXs2LFOnffmzZuOhg0bpnvewMBAx/r16y3+2/gPM9einDlz8nsGAACAFwkUAADwOQ6HQ19++aVq166tEydOmGpbqlQpDRkyxKbM/u25557TlStXTLe7++67tXXrVjVt2tSyXPLkyaPp06fr/fffV0BAgOn2b7zxhg4fPmxZPnaqV6+etm7dqg4dOlh63vvvv1+LFi1SRESEqXaLFi3Snj17LM0lLf369VNSUpKpNoGBgRo7dqzGjx+vqKgoS/IICgrSf//7Xy1ZskQ5c+ZMN87hcFjSH/xX5cqVTbc5ffq0zp07Z0M2njFp0iRT8S+++KKmTZum3Llz25TRvwUFBalp06aaMWOGjh8/rpdfflm5cuVyW/++iPmBZ5QtW1abN2/WE0884elUYCHGk/tl1bk2/ENgYKDatm2r5cuXa9u2berXr5/y58/vtv6rVKmin3/+Wa+//rrp68Sbb77p1t+hTp8+rT59+jjVtly5ctq4caOGDx+u7NmzW5zZv9WrV09fffWVDh8+rIEDBypbtmy29+mLuGd6BnNQY9atW2cqvkqVKjZlknVwTXA/rge+79VXX1VycrKpNl26dFFgII+lwDkJCQl69NFHlZiYaKpddHS05s+fr88//1wxMTGW51WzZk2tX79e7dq1M9Vu+/bteu+99yzPJ6vJqusyjAfnsRbiPsz33KdkyZKKjIw0HL93714bs/k3h8Ohnj176tatW4biW7Zsqccff9zmrP7y0EMP6fbbb0/3+NNPP63PPvvM1Dnj4+PVpk0brVixIt2YF154QTVr1jR13qzEzFrH1atX9euvv9qYDQAAAMxgBRgAAB+SnJys7777TjVq1FCPHj10/fp1U+1DQkI0fvx401+oOGvJkiWaOnWq6XYNGzbUokWLbPtC4LnnntP48eNNfxkeHx+v3r1725KTlVq3bq0lS5bY9vOrU6eOJkyYYKqNw+HQ119/bUs+f5gzZ46WLVtmqk1QUJC++uor9erVy5acGjZsqMWLF1OgBKflyZNHhQoVMt3u6NGjNmTjfteuXdPatWsNx7dt21bDhg2zMaPM5c+fX2+99ZaOHj2qevXqeTQXb8X8wDOqVq2qtWvXqnTp0p5OBRZiPLlfVp1rw/cFBgaqQ4cO2rFjh7777js1bNjQo7kMHjxYEydOVFBQkOF2O3fu1Pfff29jZv/Us2dPXbp0yXS7li1bav369Rk+3GSX2267Te+++64OHTqk//znP27v35txz/QM5qDGbdmyxXBsZGSkSpUqZWM2/o9rgvtxPfB9mzdv1ldffWWqTXBwsJ5++mmbMkJWMGTIENMFX+XLl9f69evVokULm7L6XVRUlGbNmqWHHnrIVLt33nlHFy5csCkr/5eV12UYD+axFuJezPfcKyAgQBUqVDAcv2/fPhuz+bdPPvlEq1atMhSbK1cuff755zZn9E8BAQEaO3asQkJC0jyempqqp59+Wg899JDOnz+f6flWrVqlatWqacmSJenGVKpUSW+88YbTOWcFZl/CZGYtBQAAAPaiMBEAAC936tQpffvtt3rqqadUpEgRtW/fXps3bzZ9nuDgYM2YMUMNGjSwIcu0DRo0yHSbypUra+7cuba/3f+xxx7T8OHDTbebP3++Vq9ebUNG1mjSpIlmzZql0NBQW/vp3LmzunbtaqrNrFmzbMrm9y/9/vvf/5pu9+6776pbt242ZPSXGjVqaPbs2QoODra1H/gvZ3ZNNLubrrdas2aNUlJSDMWGhoZq9OjRNmdkXI4cOXTbbbd5Og2vxPzA/YoXL64FCxYoT548nk4FFmM8uVdWnWvDP/Tv31+zZs1SpUqVPJ3Kn7p3765Ro0aZauOuh5R+/PFHzZs3z3S7tm3b6ocfflDOnDltyMq4mJgYDRkyxKM5eBvume7HHNSc7du3G46tVKkSu4+5iGuCe3E98H2pqanq27ev6R2bunbtqhIlStiUFfzdnj17TO+mVq5cOf38889u+9wFBgZq0qRJatWqleE2cXFxGjFihI1Z+a+svC7DeHAOayHuw3zPM2JjYw3HunPHxKNHj5p6dmPUqFEe+U61Zs2aevPNNzOM+frrr1WsWDE9+eST+v7773XixAklJCToypUr2r17t7744gs1adJEDRo0yLD4M0+ePJo1a5bCwsKs/mv4FbOFiWbWUgAAAGAvno4GAMAFW7du1SuvvGLJuVJSUpSYmKi4uDidP39eJ0+e1MGDB516O///CgsL05QpU9S2bVvXEzVo4cKF2rhxo6k2uXPn1g8//KCoqCibsvqn/v37a9u2bZoyZYqpdm+++aYWLlxoU1bOK1GihGbMmGH7F3J/GDZsmL799lvdunXLUPy+ffu0b98+lStXzvJcfvjhB9Nv+evcubP69+9veS5pady4sYYPH67nn3/eLf3BvxQtWtR0m+PHj9uQifvt3r3bcGz79u0pBPQBzA/cLyQkRDNnzlSBAgU8nQosxnhyr6w81/ZXkyZN0qRJkzydxp/uv/9+zZkzx7bze+tDL3369NEvv/xieNeqhQsX6uzZs7btjiH9/uC9MwUrTZo00fTp03kpjRfinul+zEHNuXnzpg4ePGg43pkXGOEvXBPci+uBfxg5cqTWrl1rqk1QUJBeeuklmzJCVvDaa68pOTnZcHx0dLQWL16smJgYG7P6t8DAQH3zzTe688479dtvvxlqM2bMGA0cOJACHhOy+roM48E5rIW4B/M9zzFTmOjOHROffPJJxcXFGYpt3bq1HnnkEZszSt/AgQO1Z8+eDNeJ4+PjNW7cOI0bN86pPiIiIjR37lyVL1/e2TSzjJiYGOXPn19nz541FL9t2zZ7EwIAAIBhfEMOAIALduzYoR07dng6jQzVqFFDEydOVMWKFd3a7zvvvGO6zahRo1S8eHHrk8nAmDFjtGLFClO7iy1atEibNm1S9erVbczMnICAAE2aNMmtX2IWKVJEjzzyiMaOHWu4zcqVK235Us7s2zRjYmL0ySefWJ5HRvr166dvv/3Wa99cDu9VsGBB0238ZcdEMw9mtmjRwsZMYBXmB+732muveV1OsAbjyX2y+lwbsNtHH32k+fPn68qVK5nGpqSkaPr06Xr22Wdty+frr7/Wzp07TbUpUqSIpk2b5raHZGEO90z3Yw5qzt69e5Wammo4vlixYjZm4/+4JrgX1wPf9+uvv+rVV1813a537948fA2nbdu2TbNnzzYcHxgYqKlTp6pIkSI2ZpW+nDlzavz48WrUqJGhnUXj4uI0efJk/ec//3FDdr4vq6/LMB78k7ethbiC+Z7nmClMvHr1qs6cOWN7AenEiRMNvywlT548pq6zdggICND48eN169YtTZ8+3fLzh4eHa8aMGbr77rstP7e/KlasmOHCxF9//dXmbAAAAGBUoKcTAAAA9rjttts0YsQIrV271u1Fifv27dPKlStNtWnWrJm6d+9uU0bpy5Ejh1MFas6+Dc0uPXv2VL169dze71NPPWUq3o6ivB07dpg+78iRI93+JtqAgAB9/vnn7J4B07JyYeL58+cNx1aqVMnGTGAF5gfuV7x4cQ0YMMDTacAGjCf3yspzbcAd8uXLZ+oBxMWLF9uYze+/L5oREBCgb775Rvny5bMpI7iCe6b7MQc178CBA6bib7vtNpsy8X9cE9yL64Hvi4+PV5cuXZSQkGCqXUxMjIYMGWJTVsgK3n77bUMFTX94+umn1aRJExszylyDBg3UtWtXw/ETJkywMRv/ktXXZRgP/snb1kKcxXzPs8wUJkq/vxTHTmfOnNHzzz9vOP6jjz5y6ntwqwUFBWnq1KkaPHiwAgICLDtv/vz5tXjxYt13332WnTMrMLPmcebMGcO7cwIAAMBeFCYCAOBHQkJC1LhxY82cOVNHjhxR//79FRQU5PY8vvrqK1PxAQEBGj58uE3ZZK5169aqX7++qTYzZszQrVu3bMrInLCwMA0ePNgjfd9+++0qVaqU4fhNmzZZnsPUqVNNxcfGxpr6MsxK5cuX1yOPPOKRvuG7ChUqZLrNtWvXbMjE/cx8kZArVy77EoElmB+435AhQxQWFubpNGADxpP7ZPW5NuAuTz31lAIDjX1d8fPPPys5OdmWPNatW6ft27ebatOjRw/VrVvXlnzgOu6Z7scc1DyzhYmFCxe2KRP/xzXBvbge+L5nnnlGO3bsMN3uvffeY60OTjt37py+//57w/H58uXT22+/bWNGxg0ePNjw97Lbt2/X1q1bbc7I92X1dRnGg3/zlrUQVzDf86zChQsrZ86chuPtLkzs3bu3Ll++bCi2bdu26tatm635mBEQEKDXX39dixYtsmTX744dO2r79u2sGTrB7JqH2TUVAAAA2IPCRAAAfFxQUJAeeughLV++XFevXtXSpUvVsWNHj+3K5nA4NGXKFFNtOnbsqKpVq9qUkTFvvfWWqfirV6+a+iLITt27d/fom9Lvvfdew7EHDx60/EuTadOmmYp/5ZVXDH/JY4dXX33VIwXD8F05cuQw3SY+Pt6GTNzPzPXi+vXrNmYCVzE/cL+CBQvqwQcf9HQasAHjyb2y+lwbcJcCBQqoQYMGhmKvX7+uLVu22JLHZ599Zio+KipKw4YNsyUXuI57pvsxB3XOoUOHTMWzY6JzuCa4F9cD3zd+/HhNnDjRdLs2bdp4ZJdR+I+JEycqKSnJcHz//v1NFWXYqUyZMmrVqpXh+B9//NHGbPxDVl+XYTz4N29ZC3EW8z3vUKlSJcOx+/btsy2PWbNm6dtvvzUUmzdvXtNrcO7StGlT7dy5U2PGjFHlypVNtQ0MDNS9996rlStXaubMmcqfP79NWfo3s/f93377zaZMAAAAYAaFiQAA+LiUlBRNmTJFXbt21bPPPqvFixcrJSXFY/ls3bpVx44dM9Wmb9++NmVjXL169VStWjVTbebMmWNPMib17NnTo/3Xrl3bcGxiYqLph60ysnnzZh05csRwfP78+dW+fXvL+ndGsWLF1LJlS4/mAN8SHh5uuo23vBnfVREREYZjzd574F7MD9zv8ccfV2hoqKfTgA0YT+6VlefagLs1atTIcKzZXQ2NSExMNPwA1R+eeuop5c2b1/JcYA3ume7HHNQ5J06cMBVPYaJzuCa4F9cD37Z27Vr17t3bdLt8+fJp3LhxNmSErOTLL780HBsVFeXUZ9VOPXr0MBy7cOFCGzPxD1l9XYbx4P88vRbiCuZ73iE2NtZwrF07Jl66dEl9+vQxHD969GivLtoLDg7+c+fwzZs3a9iwYWrfvr3KlSun6OhohYaGKjQ0VHnz5lW1atX00EMPaezYsTp58qR+/PFH1atXz9N/BZ9mdsfEkydP2pQJAAAAzKAwEQAAP3H69Gl98cUXatasmUqUKKGhQ4fqypUrbs9j8eLFpuIrVqzoNQtzTz/9tKn4ZcuWyeFw2JSNMaVLl1bNmjU9mkP16tVNxR8+fNiyvpcsWWIq/tFHH1VISIhl/TurV69enk4BPsSZwkR/2THRzEPeP/30k42ZwFXMD9yvU6dOnk4BNmE8uU9Wn2sD7lajRg3Dsbt27bK8/59//tnULtzBwcF6/vnnLc8D1uGe6X7MQZ1j5iG6yMhI5c6d28Zs/BfXBPfieuC7jhw5orZt2yohIcF023Hjxnn1Q+bwfgcOHDC1m9MDDzyg7Nmz25iReffcc4/CwsIMxa5fv17Xrl2zOSPfldXXZRgPWYOn10JcwXzPO3hDYWK/fv109uxZQ7EdO3b0qZ0277jjDr344ouaPXu29u7dq3PnzikhIUEJCQm6cOGCtmzZosmTJ6tXr14qUKCAp9P1C2ZfxkRhIgAAgHegMBEAAD90/PhxDRo06M8CRWe+QHaW2UIxb1qw7tChg4KDgw3Hnzt3Tjt27LAxo8y1aNHCo/1LUokSJUwV+xldlDZi+fLlpuI9vVviH5o1a6aoqChPpwEfkZULE4sWLWo4dubMmTp37pyN2cAVzA/cq0SJEqpSpYpHc4B9GE/uk9Xn2oC7lSpVynCsHQ/j/fjjj6bimzVrpoIFC1qeB6zDPdO9mIM67/Tp04ZjCxUqZGMm/o1rgvtwPfBd165dU+vWrZ1aY+vXr5/atWtnQ1bISubNm2cqvmvXrjZl4rzIyEjDhe3JycnavHmzzRn5rqy+LsN4yBo8vRbiLOZ73sNMYeKxY8d069YtS/tfsGCBJk+ebCg2Ojpan3zyiaX9w/9QmAgAAOCbKEwEAMCPXblyRYMGDdLtt9+uX375xfb+UlJStGbNGlNtvOmL6jx58ph+C/aKFSvsScagRo0aebR/SQoKCjJVPGRV4VBycrJWr15tOL5gwYKm3jppp7CwMK/4QhW+ITQ01HSbxMREGzJxv0qVKhmOvXLlip555hmP7wiAf2N+4H4NGjTwaP+wD+PJvbLyXBvwhJiYGMOxR48etbz/hQsXmop/6KGHLM8B1uGe6X7MQZ2TkpKiy5cvG473tl1wfAXXBPfieuCbkpOT1blzZ6eKHu6++24NHz7chqyQ1cyfP99wbLZs2VS/fn0bs3GemV32tm3bZl8iPi6rr8swHrIGT6+FOIv5nvcw811qamqq9u/fb1nf169f15NPPmk4fsyYMYqOjrasf/gns+seFy5csCkTAAAAmEFhIgAAWcDevXvVoEEDjRw50tZ+9u3bZ2qXrpiYGK97k57ZYrHt27fblIkx1apV82j/fzDzpcnFixct6XP//v26ceOG4fhGjRopICDAkr6t0KRJE0+nAB/hzK63zuyy6I1q1aplKn727Nl67LHHlJKSYlNGcAbzA/erW7euR/uHfRhP7pWV59qAJ2TLls1w7JkzZyzt+9q1a6YezAoMDFTLli0tzQHW4p7pfsxBnXP16lVT8RERETZl4t+4JrgX1wPf43A41LNnTy1YsMB02+joaM2YMcPUjmJAWhwOh6mXrNavX9+pl/q5g5n1hKxYiGVUVl6XYTxkHZ5cC3EF8z3vERMTY6rYb+/evZb1/eKLL+rYsWOGYjt16qQHHnjAsr7hv8yue5hdVwEAAIA9KEwEAMAFjzzyiBwOh2V/UlNTFR8frytXrujQoUNau3atpk+frtdff11t27ZVvnz5nM41OTlZL7zwgnr16qXU1FQLfwp/2blzp6n4u+++25Y8XGE2px07dtiUSeaioqJUokQJj/X/d3nz5jUce+vWLUv6NPvm5tq1a1vSr1W8LR94L2fGjL8UJhYvXlwVK1Y01WbSpEmqXbu21q1bZ1NWMIv5gft52wO0sA7jyX2y+lw7K7D693lX/8yZM8fTPxKPCw4ONhx748YNXb9+3bK+t27damrn7TvvvFO5cuWyrH9Yj3um+zEHdc6VK1dMxfvL7/vuxjXBvbge+J4BAwZo0qRJpttFRkZq7ty5uu2222zIClnNgQMHTM3xzezC5m7FihUzHLtv3z4bM/FdWX1dhvGQdXhyLcQVzPe8S2xsrOFYq8bZypUr9dlnnxmKjYmJ0ZgxYyzpF/7PbGGi2XUVAAAA2MP4b7cAAMB2AQEBCg8PV3h4uHLmzKkSJUr8a7eojRs3asaMGZowYYJTb138/PPPdevWLU2aNMny3ePMPuBhdicsd6hRo4ZCQkKUlJRkKH737t1KSUlRUFCQzZn9W5EiRdzeZ3rMLA46s/tbWswWJtaoUcOSfq0SGxuriIgIU29rR9bkzBfZ/rSDQpcuXfTqq6+aarNx40bVrl1bTZo0Ud++fdWqVSve2u5BzA/cr3z58h7pF/ZjPLlPVp9rA393+vRp7d69WwcPHtSBAwd0/PhxXbhwQRcuXNDFixd169YtJSQkKDEx0fDYtsL58+eVPXt2S861efNmU/ENGjSwpF/Yh3um+zEHdU5cXJypeH/6fd+duCa4F9cD3/LOO+9o5MiRptuFhIRo9uzZuuuuu2zIClnRli1bTMXfcccdNmXiOjPFuidPnrQxE9+V1ddlGA+elxXWQlzBfM+7xMbGavny5YZirdgxMT4+Xj179jT8kq/PPvvMpZewI2sJDQ1VYGCg4Rfue0vBNgAAQFZHYSIAAD6mRo0aqlGjht544w2NHTtWQ4YMMf0GqMmTJ6tgwYJ69913Lc3t4MGDpuLN7oLlDmFhYSpZsqThN8XdunVLJ0+eVNGiRW3O7N8KFSrk9j7TExYWZjjWqi/l9u/fbyre274gCQoKUpkyZTy+owG8nzNjxp8eVOzVq5feeustp34OS5cu1dKlS5UvXz61b99e7dq1U8OGDdlhws2YH7hXTEyMVzyYAHswntwnq8+1kbUdPnxYP/74o1auXKn169fr+PHjnk4pTVa+5MXsQ1nsDOD9uGe6F3NQ55m9d/vT7/vuxDXBfbge+JYxY8bo5ZdfNt0uMDBQkydPVosWLWzIClnV9u3bTcWXKlXKpkxclyNHDsOxZ86cUWpqqgIDA23MyPdk9XUZxoP7x0NWXAtxFvM97+PuHRNfe+01HThwwFBs165d1a5dO5f7RNYSERGhGzduGIpNTEy0ORsAAAAYwcoWAAA+KiIiQv369dO+ffvUrFkz0+2HDx+ub7/91tKcTp06ZSre2wrF/lCuXDlT8Wb/3lYx80WO3cy8eTslJcWSPs383GNiYpQzZ05L+rVS2bJlPZ0CfMClS5dMt/GnBxVjYmLUr18/l85x4cIFjRs3Ti1btlTevHnVsmVLjRgxQhs3blRycrI1iSJdzA/cK3/+/B7pF+7BeHKfrD7XRtZz5swZDR06VLGxsSpZsqSeffZZzZo1y2sfxJOc21k8PWb/nmYe+IJncM90L+agzjO7u4o//b7vTlwT3Ifrge/46quv1LdvX6fajh07Vp07d7Y4I2R1hw8fNhXviZcxGGXmfp2cnKxz587ZmI1vyurrMowH98jqayHOYr7nfdxZmLhp0yZ98MEHhmILFCigjz/+2KX+kDWZuXdQmAgAAOAd2DERAAAfFxMTo/nz56t379767LPPTLXt2bOnateurYIFC1qSi5kHHQICAlS8eHFL+rWa2bdKeuqhr6z+INLp06cNx3rrZ61EiRKeTgE+wMxn/Q+5cuWyPhEPeuWVVzRr1iz99ttvLp/r5s2bWrBggRYsWCBJioyMVM2aNXX33Xerdu3aqlWrlvLly+dyP/gL8wP34qEA/8Z4cp+sPtdG1rF3714NGTJEs2bN8rkXNniyMLFMmTKW9Q17cM90L+agzjN77Q0PD7cpE//GNcF9uB74htmzZ+vxxx+Xw+Ew3fb9999Xz549bcgKWd2JEydMxfvTGvj169dVoEABT6fhVbL6ugzjwd7xwFqIa5jveZ9KlSoZjo2Li9OJEydUuHBh0/0kJSXp8ccfN1yEPXbsWOXJk8d0P4CZeYDZFz4BAADAHuyYCACAHwgMDNQnn3yirl27mmp3+fJl9e/f37I8zBTP5MqVSyEhIZb1baWYmBhT8c4UDVnBW39+7mLm527239RdoqOjPZ0CfIAz1xhnvkzyZlFRUZo+fboiIyMtP/fNmze1YsUKvfPOO2rdurWio6NVvnx59ezZU5MmTTL9AAD+jfmBe2XPnt0j/cI9GE/u460/O8AqFy9eVI8ePRQbG6tp06b53IN4kvlinoyYmfNFRUUpKirKsr5hD+6Z7sUc1HmBgea+qvXF67U34JrgPlwPvN+8efPUpUsXp3b1GjJkiJ577jkbsgLMF2L5k/j4eE+n4HW89V7sLowHe7AWYg3me94nZ86cpr4bdnbXxHfeeUc7d+40FPvwww+rTZs2TvUDmCk2NLOzMQAAAOxDYSIAAH4iICBA48aNU7ly5Uy1mzp1qjZs2OBy/8nJybp586bheG8tFJPMv+XvypUr9iSCdCUnJ+vGjRuG47318+atecG7OPMQWZEiRWzIxLPuvPNOzZo1S2FhYbb3tW/fPo0fP16PPvqoihQpotjYWL3wwgtat26dU2+Sz8qYH7ifO8YIPIPxBMAq33//vSpVqqQvv/zSqQfSvYVV8zKHw6GrV68aji9YsKAl/cI+3DPdjzmo88w+dG/ms43fcU1wL64H3m3ZsmXq0KGDU7uKDBgwQK+99poNWQG/89QLFrwBhYn4X4wH67EWYh3me94pNjbWcOzevXtNn3/Xrl165513DMUWKlRIH330kek+gD+Y+R0+NDTUxkwAAABgFIWJAAD4kWzZsunDDz803c7oAmJGzH5JkDNnTpf7tIvZ3G7dumVTJkiP2c+bt765MUeOHJ5OAT7gyJEjptv4246Jf2jZsqUWL16svHnzurXf3bt3a+TIkapdu7aKFSuml156SQcPHnRrDr6K+YH78QWc/2I8AbDC4MGD1bZtW509e9bTqXgNf7q+4nf+9G/qK/dM5qDOM/uzo3DBPK4J7sX1wHutXr1abdq0cepz8fTTT2v48OE2ZAX8LikpSYmJiZ5Ow2NY98DfMR6sHw+shViL+Z53srMwMSUlRT169DB8bfr888+VK1cuU30Af2fm9/isvssyAACAt6AwEQAAP9O8eXPVrl3bVJsffvhBx44dc6lfs18SePOb9MzmxheG7ucvnzdvzQveZefOnabb+GthoiTVq1dP27dvV5MmTTzS//HjxzVs2DCVLVtWzZs31/Llyz2Sh6/wl+u15Dvzg4CAAI/0C/sxngC4wuFw6LHHHtMbb7zh6VS8jtmClfDwcJsygVW4Z7ofc1DnRUREmIqnMNE8rgnuxfXAO23YsEGtWrXSjRs3TLd95JFHNGbMGBuyAv6S1e9v3rADGrwH48G68cBaiD2Y73knM4WJ+/btM3XuUaNGacOGDYZiH3vsMbVq1crU+YG/S0lJMbXDe2RkpI3ZAAAAwCgKEwEA8EN9+/Y1Fe9wODRp0iSX+kxISDAVzwMecIW/fN68NS94j7Nnz+r8+fOm2xUvXtz6ZLzIbbfdpiVLluibb75R0aJFPZKDw+HQokWL1LhxYzVo0EAbN270SB7ezl+u1xLzA3ge4wmAK55//nlNnDjR02l4JQoT/Q/3TPgSszvgZfUH1Z3BNQFZ3datW9W8eXNdv37ddNtOnTpp/PjxFCDAdlyvgL8wHqzDWgiykkqVKhmONbNj4sGDB/Xqq68aii1cuLA++OADw+cG0mJ23cPsugoAAADsEezpBAAAgPXuu+8+hYaGKjEx0XCb77//3vCCIuBrvPVts96aF7yHM7slFi9eXLlz57YhG+/TpUsXdejQQZMmTdL7779v6os0K61cuVJ33XWXnnrqKb333nvKli2bR/IAAABIyxdffKFRo0ZZcq7cuXOratWqKlmypEqVKqWCBQsqf/78iomJUfbs2RUVFaWoqCiFhIQoODhYISEhph5k98RD7zxoD8CTcuXKZSqewkQAZuzcuVP33HOPrly5Yrpt69atNWXKFAUFBVmfGPA/zBaRA/6M8WAN1kKQ1VSsWFGBgYFKTU3NNPbEiRO6ceNGpt9nOhwO9ezZ0/DvoV988QVFYnCZ2XUPs+sqAAAAsAeFiQAA+KHs2bOrdu3a+vnnnw232bp1qy5cuKB8+fI51afZHQPMFE26m9kvfNgtwf3Mvh3cWz9vfLmIzKxfv950mzvvvNOGTLxXaGionnjiCT3xxBNavny5Jk2apDlz5ujq1atuzcPhcOjTTz/V0qVL9cMPP6hcuXJu7d9bMT8ArMN4AuCM3377Tc8995zT7XPlyqX77rtP99xzj+rXr++XO3NHRESYimf3Cu/HPRO+JCIiQuHh4YavLTdv3rQ5I//DNQFZ1d69e9W0aVNdvHjRdNtmzZpp5syZCgkJsSEz4N/4rAF/YTy4jrUQZEWRkZEqUaKEfvvtt0xjHQ6H9u/fr2rVqmUYN3bsWMPPHPXs2VPNmzc3FAtkxGxhYlZ5YTMAAIC3C/R0AgAAwB7Vq1c3FZ+amqoNGzY43Z/Zhxy8uSCLBzy8n7983rw1L3iPxYsXm26T1QoT/65Ro0aaOHGizp07p/nz5+vZZ59V+fLl3ZrD/v37VatWLZfuqf7EX67XEvMDeB7jCYAznn32WcXFxZluV6VKFU2dOlVnzpzR5MmT1b17d9sfxPPUjvJmrzEUJno/7pnwNQUKFDAce+7cORsz8U9cE5AVHTx4UI0bN3bqmtGgQQPNmTPH9MsBAVdERkZ6OgXAazAeXMdaCLKq2NhYw7F79+7N8PiJEyc0cOBAQ+cqWrSo3n//fcN9wz8kJydr8eLFevbZZ7V161bLznv27FlT8QULFrSsbwAAADiPHRMBAPBTlSpVMt1m27ZtatWqlVP9mX3I4dq1a0714w5md9kyu7sCXGf2Z+6tnzdvzQve4caNG1q7dq3pdnfccYcN2fiW0NBQtWjRQi1atJAkXbhwQWvWrNGqVau0atUqbdmyRcnJybb1f+XKFbVo0UJr1qxRhQoVbOvHFzA/AKzDeAJg1i+//KJ58+aZapMtWzaNGDFCTz75pAICAmzKLG2eKvgze311987cMI97JnxNoUKFdOTIEUOxFy9e1K1btyg4M4FrArKaw4cPq1GjRjp9+rTptrVr19aPP/7IZwdu58xnLikpScHBPPIE/8N4cA1rIcjKYmNj9f333xuKzaww8cknn9T169cNnWv8+PHKnj27oVhfdPbsWa1fv147d+7Ur7/+quPHj+vkyZO6fPmy4uPjlZSUpMjISOXIkUM5cuRQqVKlVKFCBVWsWFENGzb0q11X4+PjtWjRIn377beaO3euLl++LElq3LhxpjtwGnXixAlT8YUKFbKkXwAAALiGVQkAAPxU4cKFTbc5ePCg0/0FBwcrW7ZsunHjhqF4s2+5ciezbxHOmTOnTZkgPcHBwYqKijL8tsvz58/bnJFzvDUveIcVK1YoMTHRVJugoCDVrFnTpox8V758+XT//ffr/vvvl/RX0efq1av1yy+/aP369ZY/eHj58mV16NBBGzduVLZs2Sw9ty9hfgBYh/EEwKx3333XVHx0dLTmz5/vsR244+PjPdJvYGCgcufO/eeDNJlx5iF/uBf3TPia2267zVT8yZMnVapUKZuy8T9cE5CVHDt2TI0bNzb9MK/0+8vO5s+fr6ioKBsyAzIWEhKi0NBQU+vht27d4vMKv8R4cA1rIcjKzLy8fN++fekemzJliuEC3yeffFJNmzY13K8vSE1N1apVqzR79mwtXrw40yJOSbp+/bquX7+ukydPas+ePfrxxx//PFauXDm1atVKPXr0cOoF897i0Ucf1axZs/71u3VAQIDq169vWT8nT540FW92TQUAAAD2CPR0AgAAwB7R0dGm2zjzZfXfFSxY0HDs5cuXbd2tyhVmH/DgDVyeYebzZvbf1F0oTERGpkyZYrpNnTp1lDt3bhuy8S/ZsmVT06ZN9frrr2vRokW6dOmS1q9fr2HDhqlRo0YKCQmxpJ89e/ZoyJAhlpzLlzE/AKzDeAJg1Llz50ztEBAaGqrvv//eYw/iSZ7didDMy53i4uIMvyQHnsM9E76kWLFipuLNPqQHrgnIGk6ePKnGjRsb3oH172JjY7Vo0SKKWeFRZh8qv3nzpk2ZAJ7HeHAOayHI6mJjYw3Hpldsd+7cOfXr18/QOYoXL64RI0YY7tPbHT58WC+99JIKFSqkhg0b6uOPPzZUlJiZffv26YMPPlBsbKwaNmyouXPnWpCte508eVKTJk1K84U/lStXVp48eSztywx/2pESAADAl1GYCACAn4qIiDDd5sKFCy71aeZBB4fD4dQX5O5w6NAhU/E84OEZBQoUMBzrrZ+1w4cPezoFeKkrV65ozpw5ptu1bt3a+mSygD92mnzxxRe1bNkyXbx4UVOnTlWHDh0UFhbm0rlHjRqlo0ePWpSpb2J+AFiH8QTAqBkzZpgqqhg0aJBq165tY0aZ82ShTZEiRUzFHzx40KZMYBXumfAlZcqUMRXv6svlsiKuCfB3Z86cUePGjfXbb7+ZbluuXDktWbJEefPmtSEzwLiiRYuaivfmHW4BVzEenMNaCLK6cuXKGX756oEDB+RwOP713/v06aOLFy9m2j4gIEBffvmlX+zWum3bNnXs2FGlSpXSsGHDbL2m/vzzz2rTpo1atmzpU+uLP//8c7rHGjRoYGlfZtc8SpcubWn/AAAAcA6FiQAA+Kng4GDTbeLj413q0+zbG/ft2+dSf3Yx+9YzHvDwDDM/93PnznnlGye9dQzA86ZNm6Zbt26ZbkdhojWyZ8+uBx98ULNmzdKpU6c0YsQI0w+r/yEpKUmjRo2yNkEfw/wAsA7jCYBRy5YtMxybN29eDRw40MZsjPFkoY3Zud7OnTttygRW4Z4JX2K2MJGHl83jmgB/du7cOTVu3Fj79+833bZkyZJaunSp8ufPb0NmgDlmC7Eo1Ic/Yzw4h7UQZHWhoaGGf7+8efOmjh079o//NmfOHM2cOdNQ+2eeeUaNGjUynaM3OXz4sB544AFVq1ZNs2fPTrNQ0y4LFixQbGyspk2b5rY+XeHOwkQzax4RERGmf98HAACAPShMBADATzlTZJiUlORSn6VKlTIVv2fPHpf6s0NiYqKptwqz0OU55cqVMxVv9sEdu6WkpPjUW/DgPikpKXr//fdNtytTpozpcYHM5cmTR/3799eBAwf07rvvKjw83PQ5pkyZopSUFBuy8w3MDwDrMJ4AGOFwOLRq1SrD8Y8++qgiIiJszMiY3bt3e6zvihUrmorfsWOHTZnAKtwz4UvKly9vKp6Hl83jmgB/dfHiRTVt2tSpz2zRokW1bNkyPifwGmZ3uzl8+LBNmQCex3gwj7UQ4HexsbGGY//+/MSVK1f0zDPPGGpXsmRJvfvuu6Zz8xZJSUkaPHiwKlSooFmzZnksj4SEBHXt2lUjR470WA5GrVy5Mt1j9evXt7QvM2seZcqUUUBAgKX9AwAAwDkUJgIA4KeuXbtmuk1kZKRLfVapUsVU/Lp161zqzw6bN282VaBZqVIlBQYypfIEM4vqkrRhwwabMnHOzp07Xd6lFP5p8uTJOnDggOl2PXr0sCEb/CEsLEwDBw7UihUrlCNHDlNtL1y4YOoLcX/D/ACwDuMJgBGnTp3ShQsXDMd7y67b27Zt81jfd955p6n4jB7GgXfgnglfUrBgQeXNm9dwvDcWzXk7rgnwR1euXNE999zj1E7OhQoV0rJly1SsWDEbMgOcU716dVPxW7ZssSkTwPMYD+axFgL8rlKlSoZj/75T/PPPP6/Tp09n2iYgIEATJkxQtmzZnMrP0/bv36+7775bb7zxhhISEjydjhwOh1544QV98cUXnk4lXWfPnk33JeAVK1ZUdHS0ZX0lJCSYKravWrWqZX0DAADANXwbAQCAn3LmzdmuLh5WrlzZVPyaNWtc6s8OZnNioctzzCyqS9LatWttysQ53pYPvENSUpLefPNN0+3Cw8PVs2dPGzLC/7rrrrv0008/mX64LysXJjI/AKzDeAJghJndlAIDA3XXXXfZmI0xDodD69ev91j/t99+u6n53ebNm3X16lUbM4KruGfC15j592PXVvO4JsDfXLt2Tc2bN9fWrVtNt42JidHSpUtN7yQK2K1mzZqm4jdt2mRTJoDnMR7MYy0E+J0zOyYuXrxYEyZMMNSmb9++lu+Q5y6fffaZqlWrZuqaGRgYqOrVq6t///76/PPPtWrVKh0+fFgXLlxQYmKiEhMTdfXqVf32229avXq1vvjiC/Xt21dVqlQxtZNf3759vbZQOaMXtDVo0MDSvn799VclJycbjuf3XgAAAO9BYSIAAH7q0KFDptvkypXLpT7LlCljatfFM2fOaNeuXS71abVFixaZir/99tvtSQSZKlu2rKKiogzHL1++XA6Hw8aMzFm6dKmnU4AXevvtt526fnfp0sXU7gpwTd26dfXEE0+YarN582ZL+jbzJZa3YH6Av/PFz7A3YTwBMOLIkSOGY4sWLarw8HD7kjFoy5YtOn/+vMf6z5Ytm6mX36SkpGj+/Pk2ZuRdfPH+zT0TvsbMw3Rnz5716DXTF3FNgD+Ji4tTy5YttWHDBtNt8+bNqyVLlqh8+fI2ZAa4Jl++fCpZsqTh+J07d+rcuXM2ZgR4DuPBPNZCgN+ZLUyMi4sz/J1nmTJlNHToUGdT85j4+Hi1a9dOTz/9tG7evJlpfEBAgBo1aqQpU6bo/Pnz2rhxo0aMGKGePXuqbt26Kl68uPLmzauQkBCFhIQoR44cKlmypOrUqaMePXroo48+0vbt23Xs2DG9/fbbyp8/f6Z93rp1S127dlVKSooVf2VL/fzzz+kea9iwoaV9mX0RE7/3AgAAeA8KEwEA8FPOvBnRzBccaQkKClK9evVMtZkzZ45LfVrpypUrWrFihak2Vi+0wbjg4GDVrVvXcPyZM2eceljDDgkJCVq4cKGn04CX2bJli95++22n2vbt29fibJCZgQMHmoo/fPiwJf0GBQUZjjXzRkk7MT/A3/niZ9ibMJ4AGGFmJ798+fLZmIlxP/74o6dTUMuWLU3FT5kyxaZMvI8v3r+5Z8LXmN0VZ/v27TZl4p+4JsBf3Lx5U/fdd59++eUX021z5cqlRYsWmd5BFHCne+65x3Bsamqq5s6da2M2gGcxHsxhLQT4XenSpQ0X3u7bt08vvfSSjh49mmlsYGCgJkyYYOqFL97g8uXLatq0qaHf74KCgtSjRw/t379fy5YtU7du3ZQnTx6n+y5cuLAGDRqkgwcP6qWXXsp0fW3Pnj36+uuvne7PLhkVJlq9e6aZwsSAgABVr17d0v4BAADgPAoTAQDwQw6HQ2vWrDHdrnTp0i733bRpU1Pxs2bNcrlPq3z33XdKSkoyHF+gQAFTb5yD9Ro1amQq/ttvv7UpE3MWLVqkuLg4T6cBLxIXF6fu3bs79RBv27ZtVa1aNRuyQkZKlixpaledU6dOWdJvWFiY4Vgz9zS7MT/AH3z1M+xNGE8AMmPkzd9/8IYdAhwOh7766itPp6F7773XVPzChQt15swZm7LxLr56/+aeCV9Su3ZtU/FmdxEA1wT4voSEBLVt2zbDB4PTkz17ds2fP1933HGHDZkB1mnbtq2p+KlTp9qTCOAFGA/msBYC/C4wMFAVKlQwFHvq1Cl98sknhmL79eunOnXquJKa2506dUr169c39FKPNm3aaPfu3friiy8seW7q76KiovTOO+9o6dKliomJyTD2jTfeUGpqqqX9u+LixYvavXt3msfKlSunAgUKWNqfmbWOihUrKmfOnJb2DwAAAOdRmAgAgB/asGGDUw/HWfGmXDNvb5R+f7v32rVrXe7XCkYXXf/QpEkTmzKBUWb/DSZNmuQVD0mOGzfO0ynAiyQnJ+uBBx5Id1E/I6GhoRoxYoQNWcGIqlWrGo61qhjZzEPh165ds6RPKzA/wB989TPsTRhPADKTmJhoOPbKlSv2JWLQ0qVLdejQIU+nobvvvlu5c+c2HJ+cnKwPPvjAxoy8h6/ev7lnwpcUK1ZMt912m+F4ChPN45oAX5aYmKgOHTpo8eLFpttGRkbqp59+Uq1atWzIDLBW48aNlSNHDsPxS5cu1d69e23MCPAcxoM5rIUAfzHzkhIjRXBly5bVW2+95UpKbnfw4EHdfffd2rVrV4ZxefLk0ZQpU/T999+rXLlytubUoEEDrVy5UkWKFEk3Jj4+XoGB3vNI96pVq+RwONI81qBBA8v7M7PWcffdd1vePwAAAJznPbNYAABgmS+++MJ0m5CQEEsWbqpWraqSJUuaajN69GiX+3XVunXrtGnTJlNt2rVrZ1M2MOrOO+9U8eLFDcefPXvW47smHjlyRPPnz/doDvAeDodDTz75pBYsWOBU+379+qlUqVIWZwWj8ufPbzjWqqLoXLlyGY69deuW4uPjLenXVcwP8Adf/Qx7E8YTgMyYefP/2bNnbczEGG95sCk4OFhdunQx1ebTTz/VpUuXbMrIe/jq/Zt7JnxN3bp1DcdSmGge1wT4quTkZD344IP66aefTLcNDw/X3LlzVa9ePRsyA6wXGhqqjh07mmozfPhwm7IBPIvxYA5rIcBfKlWqZNm5AgMDNXHiREVERFh2TrtdvHhRLVu21NGjRzOMu+uuu7Rz505169bNTZn9vsvgkiVL0t3pr1GjRm7LxYiMdmu3ujDx7NmzOnfunOF4M2soAAAAsB+FiQAA+JnTp0/r66+/Nt2uZs2aioyMtCSHhx56yFT8tGnT9Ouvv1rSt7NeffVVU/F58uRR69atbcoGZnTu3NlU/FtvvWXozX92efPNN5WSkuKx/uE9EhIS1LVrV3355ZdOtS9YsKBefvlli7OCGWa+6I6KirKkz5iYGFPxJ06csKRfKzA/gOTbn2FvwngCkBEz846LFy9atrOzM5YuXZrhAy7u9uSTT5qKv379ul566SWbsvEevnz/5p4JX2Jml7sdO3bo+vXrNmbjn7gmwNekpKTo4Ycf1nfffWe6bVhYmObMmaPGjRvbkBlgnz59+piKnzRpkrZv325TNoBnMR6MYy0E+IuZHRMz079/f9WuXduy89ktMTFR7du318GDBzOM69q1q1asWKFChQq5KbO/lC1bVlOmTEnzWFYuTFy9erWpeDNrKAAAALAfhYkAAPiZF1980ak305t942JGHn74YVPxqampHn2Qb9GiRVqyZImpNp07d1ZoaKhNGcGMrl27morftWuXvvnmG5uyydjevXv11VdfeaRveJeLFy+qadOmmjZtmlPtg4KC9M033yhHjhwWZwYzzLy1Mb03X5plZpdGSdq/f78l/VqB+QEk3/4MexPGE4CMmHmgJjU1VYsXL7Yxm/QlJCTomWee8Ujf6alSpYpq1aplqs0XX3yhtWvX2pSRd/Dl+zf3TPiSpk2bGo5NSUnRqlWrbMzGP3FNgC9xOBzq0aOHU+uHISEhmjlzppo3b25DZoC9qlWrZmoHnNTUVD311FNKTk62MSvAMxgPxrEWAvzFqsLEChUq6M0337TkXO7y5JNPauXKlRnGPP/88/r6669NvYDWavfdd5/atm37r//uTYWJV69eTbfYvXTp0rrtttss7W/FihWGY8uXL295/wAAAHANhYkAAPiRmTNnavLkyabbBQcHmy7uykjp0qVNv53qhx9+0MyZMy3Lwai4uDjTOyJI5ndRgH2qVKli6ks56fc3+126dMmmjNLmcDj0xBNPZMkvA/FP3333nSpVqmT6rX9/N2TIEDVs2NC6pOCULVu2GI4tVaqUJX3mzp1buXPnNhy/efNmS/q1AvMDSL79GfYmjCcAGSlRooSp+B9//NGmTDL2yiuveFUB2x8GDhxoKj41NVVdunRx+++Y7uTL92/umfAlJUqUMPW74/Lly23Mxj9xTYAvefrppzVp0iTT7YKDgzV16lR2zoRPGzBggKn4devW6bXXXrMpG8CzGA/GsBYC/KVYsWLKnj27S+cICgrSpEmTFBYWZlFW9nvvvfc0ceLEDGOee+45jRw50j0JZeLdd99VQEDAn/+/aNGiKlmypAcz+qdVq1YpNTU1zWNW75YomVvjMPNiJwAAALgHhYkAAPiJNWvW6PHHH3eqbYcOHRQTE2NpPi+//LLpNr1799bJkyctzSMz//nPf3TkyBFTbe677z5VrVrVnoTglP79+5uKP3funHr37m1TNmkbNWqUS4Vo8H3Hjx9Xly5d1L59e509e9bp87Ro0UKDBg2yMDM449ChQ9q6davh+AoVKljWd7ly5QzHLl261LJ+rcD8AJJvf4a9CeMJQHrKlStnaqekadOm6dSpUzZm9G/fffedRowY4dY+jWrXrp1q1qxpqs3Ro0fVpUsXJSUl2ZSV5/ny/Zt7JnzJvffeazjWzG4C+AvXBPiCfv36aezYsabbBQYG6quvvlKHDh1syApwnzZt2ph+Md+wYcMyLUYAfBHjwRjWQoB/qlSpkkvtBw4cqBo1aliUjf12796tV155JcOYJ554Qu+//76bMspc2bJlVa9evT//vzftlihJP//8c7rHrC5MPH/+vH799VfD8WbWTgAAAOAeFCYCAOAHfvjhB7Vs2VJxcXGm2wYGBmrw4MGW59SoUSPVrl3bVJvz58+rbdu2io+PtzyftHz88cf68ssvTbdz5uEV2KtNmzYqW7asqTbTpk1z28Lz8uXLTe+6Af9x/PhxPfPMMypdurSmTZvm0rmqV6+uqVOn/uPtif5qzZo16tGjhw4ePOjpVNI0bNgwU/H169e3rG8zDxmuWrVKhw4dsqxvVzE/gOTbn2FvwngCkJ6wsDBVq1bNcPzNmzfdOu5Wr16thx56yG39OeOdd94x3WbRokXq0qWLkpOTbcjI83z5/s09E76kTZs2hmO3bt2qq1ev2piNf+KaAG83aNAgffjhh6bbBQQEaPz48erSpYsNWQHuN3LkSFPr4A6HQz179tTXX39tY1bWWLVqlT799FNPpwEfwnjIHGshwD+5UphYqVIlvf7669YlY7PU1FT16NFDiYmJ6cY0btxYn3zyiRuzMqZbt25//m9vK0xcuXJlusesLkxcsWKFHA6Hodjs2bOrcePGlvYPAAAA11GYCACAD7ty5Yr69Omjtm3b6vr1606d45FHHrF0F6e/M1u0IUmbNm1Shw4ddOvWLRsy+svXX3+t5557znS7+++/X7Vq1bIhI7giMDBQQ4cONd1u4MCBmjp1qg0Z/WXz5s3q0KGD3z6cirQlJyfrxx9/VKdOnVS6dGl9+umnGX4ZYsQdd9yhRYsWKVeuXNYk6eWSkpL05Zdfqnz58nr44Ye1bds2T6f0p4ULF+qLL74wHB8UFKRmzZpZ1n+dOnUMxzocDq8rjGZ+AF//DHsTxhOA9Jh9OOOrr77SrFmzbMrmL6tXr9a9996rmzdv2t6XK5o0aaJOnTqZbjd79my1b9/e6TUaq5w/f97yB8h8/f7NPRO+okGDBoZ/709JScnwQUGkj2sCvNXbb7/t1Dp3QECAPvvsMz366KPWJwV4yB133KFnnnnGVJuUlBQ9/PDDevPNNw0/3O4uDodDCxcuVMOGDVW/fn2tWbPG0ynBhzAejGEtBPhLbGysU+2Cg4M1adIkUzuQetqoUaO0fv36dI+XKlVKs2bNUnBwsBuzMqZu3bp//m9vKkyMi4vTli1b0jxWvHhxFS1a1NL+li9fbji2efPmPvX5BAAAyCooTAQAwAedOXNGr7/+ukqXLq0xY8Y4/WVCoUKFNHLkSIuz+0v9+vXVvXt30+3mz5+vVq1a6dKlSzZkJX3yySfq3r27UlJSTLXLli2bPv74Y1tyguvat2+vhg0bmmrzx5dyn3/+uS05/fzzz2rSpIkuX75sy/nhXS5duqRZs2bpqaee0m233abWrVtr5syZLhckStLtt9+uxYsXK3fu3BZk6ltSUlI0ZcoUVatWTfXq1dOMGTOUlJTksXxWrVqlTp06mbr3tmrVytJ/O7PXutmzZ+vZZ59VQkKCZTm4gvkBfP0z7E0YTwDS88ADD5iKT01N1UMPPaRly5bZlJE0ceJENWnSRNeuXbOtDyuNGTNGMTExptvNnTtXd911l3bu3GlDVhk7c+aMBg0apJIlS2rUqFGWntvX79/cM+ErgoOD1bp1a8PxZh7ew1+4JsAbjRo1Sq+88opTbT/88EP16tXL4owAz3vvvfdUsWJFU20cDodee+01NWvWTMeOHbMpM+OuXbumjz76SOXLl1eLFi30888/ezol+CjGQ+ZYCwH+4mxh4n//+1/deeedFmdjn0OHDunVV19N93hQUJCmTJnitd+xly9fXtWqVVPDhg0tL/aLj4/X3Llz9cILL6hZs2YqUaKEcuXKpZCQEMXExCg2NlaPPPKIJk+erKtXr/6j7Zo1a9J98bbVuyVK5tY22rVrZ3n/AAAAcB2FiQAA+ICEhARt3LhRI0eOVJMmTVS4cGENGTJEFy9edPqcgYGBGj9+vO0LcCNGjFCePHlMt1u+fLmqVaum1atXW5bL1atX9dBDD6l3795KTU013f6NN95QkSJFLMsH1hs1apRCQkJMtUlJSVGvXr3Us2dPxcXFWZJHSkqK3n33XTVt2vRfi7h/FxAQYEl/cL+zZ89q2bJl+uijj9SrVy/deeedio6O1gMPPKCxY8fq3LlzlvXVrl07/fzzz05dS/3N6tWr1blzZxUsWFB9+vTJ8O2XVktOTtaoUaN0zz33mP4CuW/fvpbmUqRIEdWsWdNUm48//ljly5fXe++9pwMHDliajzOYH2Rt/vAZ9iaMJwBpqVatmqpUqWKqTUJCgu677z6NGTPG0lzOnTunBx54QI899liGL+3wtreW58uXT2PHjnWq7Z49e3TnnXdq0KBBlv2emZF169bpscceU7FixTR06FBb+vSH+zf3TPiKzp07G4796aefbMzEv3FNgDcZN26cUztlSr8Xqli99gR4i4iICE2dOlVhYWGm2y5ZskSVKlXS66+/7vYdzZOSkvTDDz/owQcfVIECBfSf//xH+/fvd2sO8D+Mh8yxFgL8xZnCxCpVqui1116zIRv7vPDCCxnuRvrSSy959c7ygYGB2rJli6UvHdq4caMeeugh5cuXT23atNHIkSO1ePFiHTlyRFevXlVycrLOnz+v3bt366uvvlL37t1VtGhRvfjii38+g5ZR4bjZl5dl5tChQ9q7d6+h2MjISN1///2W9g8AAABr8NstAAAu2Lp1q9NvsE2Lw+FQYmKibt26pUuXLuncuXM6cuSIDh8+bPotyZkZOXKkWrRoYek50xIdHa2JEyfq/vvvN72z47Fjx1S/fn117dpVQ4YMUalSpZzKISEhQRMnTtSrr76q8+fPO3WOZs2aqV+/fk61hftUrVpVQ4YM0aBBg0y3HT9+vObPn6+hQ4eqa9euTn8RtGTJEvXv3187duzINPaZZ56x/Isu/M7V63NCQoISEhJ069YtJSQk6OrVqzpz5oxOnz6tM2fOWLILYmaCgoI0dOhQDRgwwPa+fM3Fixc1ZswYjRkzRkWLFtV9992n1q1bq0GDBoqIiLC0r5SUFH399dd68803dfDgQdPtGzRooHvuucfSnCSpW7du2rBhg6k2R44c0cCBAzVw4EDly5dPFSpUUNGiRZUnTx5FRkaavu699dZbpuL/jvkBfP0z7E0YTwDS8/zzz+vRRx811SY+Pl59+vTRvHnzNHToUNMP9P3dxYsXNWrUKH344YeGHnwcPHhwhm8494S2bdvq5Zdf1ttvv226bVJSkoYOHaqxY8fq2Wef1ZNPPqkCBQpYltuuXbs0Z84cff3114Yf3nGVr9+/uWfCVzRr1kx58uQxtCvf/v37tXfvXpUvX94NmfkXrgnwJu+8847TbQcMGOAz64dmxxog/V4kMXHiRHXt2tX0ZyguLk5DhgzRxx9/rMcee0xPPPGEypUrZ0ueZ8+e1YIFCzRv3jwtWrRIV65csaUfZG2Mh8yxFgL8rkCBAsqbN6/hl52HhIRo0qRJpl8C7UkbNmzQd999l+7xsmXL+lyhpSu2bdum559/3qkix2vXrmn48OGaPHmyvvzyywwLE63eMfH77783HNu6dWtly5bN0v4BAABgEQcAAPhTgwYNHJL8/s8LL7zg9p/tyy+/7FLOgYGBjlatWjkmT57sOHv2bKb9JScnO1avXu0YOHCgIzo62qW+ixUr5rhw4YIbfkoOxyOPPGI4r0ceecQtORnhTXmnpKQ46tev79K/+W233eYYPHiwY9OmTY7U1NRM+9y3b5/jgw8+cMTGxhruo0OHDo7ly5ebyisryyrX5z/+lChRwrFixQpP/9gdDofDY59Ts/1KcoSEhDhq1arleOGFFxzTpk1z7Ny505GQkGC67+PHjztmzJjhePjhhx158+Z1+t8xODjYsX37dst+Jn93/fp1R+7cuT36ObUC8wNjvOk+axVf/gx76/2b8ZQ5Xx1Lvpq3u5mdL2aFn1ViYqKjQoUKLo3PRo0aOaZMmeI4duyYoT5Pnz7tmDp1qqNDhw6O0NBQw/3Url3bkZycbCq35cuX2/sD/H+pqamODh06uHzfCQwMdDRp0sTx8ccfO7Zu3epITk42nENiYqJj586djgkTJjgee+wxR4kSJTLtL2fOnJb/LHz5/v133DON4f7jWb169TL883/33Xc9ne6fJkyYYOrz7A24JmSO64H9ihUr5vZ7qif+wHpm/w0mTJjg6ZSd9sEHH1jyOYyNjXUMHDjQMX/+fMeZM2ecyuXUqVOO5cuXO0aPHu14+OGHHaVLlzadR7du3Sz+CXk/X72feGPejIf0sRbiHG/8nMN1Zp6ZGDx4sKfTNa1FixYZ/p3mzp3r6RTdIi4uzvHUU085AgMDLbk3SEr3XEWKFLE8fzPr+nPmzLG8fwAAAFiDHRMBAMhi3n77bad2k3PVG2+8oZ07d+qHH35wqn1qaqrmzZunefPmKSAgQMWLF1eFChVUuHBhRUVFKTQ0VHFxcbp8+bL279+vPXv2KC4uzuW8c+TIoW+//VZ58+Z1+Vxwj8DAQE2dOlV33XWXTpw44dQ5Tp48qSFDhmjIkCHKlSuXKlasqNKlSytXrlyKjIzUrVu3dO3aNR05ckS//vqrzpw5Y+r8+fLl05gxY7Rnzx6n8oP/Cg8P14svvqj//ve/Cg8P93Q6PicpKUnr1q3TunXr/vxvwcHBKly4sG677TYVKlRIefLkUXh4uMLDw+VwOHTjxg3FxcUpLi5Ohw8f1v79+y25f0jSu+++69KbdTMSFRWlgQMH6qWXXrLl/O7C/CDr8pfPsDdhPAH4XyEhIfr444/VtGlTp8+xfPnyP9+yXaRIEVWuXFl58uRR7ty5lS1bNsXHx+v69es6evSoDhw4oGPHjpnuI0eOHJo8ebKCgoKcztNOAQEBmjx5si5duuTUG8f/kJqaqqVLl2rp0qWSpMjISJUsWVIlS5ZU/vz5FRkZqcjISCUnJys+Pl5Xr17VqVOndPLkSf32229KSkqy6q/kNH+5f3PPhC949NFHNW7cOEOxs2fP1sCBA23OyH9xTQAA39CvXz9dvnxZb7zxhkvn2bVrl3bt2qXhw4dLkvLnz69ixYqpcOHCio6OVkRExJ9rx7du3frz+6AzZ87o7NmzOnHihK5du2bFXwlwGuMhfayFAH+JjY3VypUrM42rVq2aXn75ZTdkZJ1du3ZpwYIF6R5v3Lix7rvvPjdm5BkbN25Ut27ddODAAUvPm5qamuZ/t3q3xHPnzmn16tWGYqOjo9WqVStL+wcAAIB1KEwEACCLyJ49uz777DN17drVI/0HBgZqxowZatOmjRYtWuTSuRwOhw4fPqzDhw9blF3aoqKiNH/+fN1xxx229gPrFSpUSD/99JPq1avn8hdiV65c0S+//KJffvnFktxCQ0P17bffKn/+/BQm4h/atm2r999/XyVKlPB0Kn4lOTlZR44c0ZEjR9zab9euXfX888/b2kf//v31zTffaOfOnbb2YyfmB1mbP3yGvQnjCUBamjRpoj59+mj06NEun+v48eM6fvy4BVn9JSwsTHPmzFGpUqUsPa/VIiIi9NNPP6l9+/YZPvRkxs2bN/98CNSX+MP9m3smfEHt2rVVoUIFQ2tHGzZs0OHDh1lPcBLXBADwHUOGDFF0dLT+85//pPvAvFlnz57V2bNntWHDBkvOB7gL4yF9rIUAv4uNjc00JjQ0VBMnTlRISIgbMrLOBx98kOFxX3+plhHffPONHn/8cSUkJLitT6sLE2fOnKmUlBRDsd27d/e5zykAAEBWEujpBAAAgP3uuusubd261WNFiX/4Y5HdlTcUukv27Nn1008/6e677/Z0KnBSlSpV9O233yoyMtLTqfzD+PHjVa9ePU+nAS8RGhqqRx99VLt27dJ3333HQ4R+on379po0aZLt/YSEhOi7775TdHS07X3ZiflB1uUvn2FvwngCkJaRI0eqVq1ank7jXwIDAzV58mQ1atTI06kYEhERoe+//16dOnXydCoe5S/3b+6Z8AWPP/644dhp06bZmIn/45oAAL6jT58+mj59utd99wN4AuMhfayFAMYKE1999VVVqVLFDdlYJy4uTtOnT0/3eJUqVXzidztXvPnmm+rWrVuGRYkhISFq27atJk6cqN27d+vatWtKTEzUqVOn/lzjDAw09/i41YWJZtYyzKyRAAAAwP0oTAQAwI8VLFhQ48eP1y+//OI1b9yLiIjQ/Pnz9cwzz3g6lXSVLl1a69atU/369T2dClzUpEkTLVq0SDlz5vR0KgoICNCHH36ohx56yNOpwAsUKlRIL730ko4cOaIJEyaoUqVKnk4JFundu7emT5+u4OBgt/RXqlQpLV68WIULF3ZLf3ZhfpB1+ctn2JswngD8r9DQUM2bN0+VK1f2dCp/CgsL06RJk/TAAw94OhVTQkNDNX36dI0cOdJt8z1v5C/3b+6Z8HaPPPKIwsLCDMVSmOg6rgkA4Ds6duyoLVu2sHMsIMZDelgLATIvTLzzzjv13//+103ZWGfWrFm6ceNGusd79+7txmzcb9CgQXrttdfSPR4cHKw+ffro8OHD+u677/TII4+oYsWKyp49u0JCQlSwYEG1adNG06dP19q1a1WkSBFD/RYqVEhlypSx6q+hEydOaM2aNYZi69Spo4oVK1rWNwAAAKxHYSIAAH6oWLFiGjFihPbv36/HH3/c9Fuu7BYcHKwxY8bo888/V7Zs2Tydzj/ce++92rBhA4tafqROnTpauXKlSpYs6bEcwsLCNH36dD377LMeywGeV6hQIfXt21crV67UiRMn9M4776hgwYKeTgsWyZ49u7788kuNHj3a7Q+pV61aVRs3blTbtm3d2q/VmB9kXf7yGfYmjCcA/yt37txaunSpateu7elUFB0draVLl/r0S1uef/55rVixQqVLl/Z0Kh7jL/dv7pnwZtHR0ercubOh2B07dmjr1q02Z+T/uCYAgO8oV66c1q5dqxdffFEhISGeTsc0X9+BHN6F8ZA21kKQ1eXOnTvd76JDQ0M1ceJEn3zx1owZM9I9FhwcrA4dOrgxG/d6+eWXNXTo0HSPV65cWZs3b9bHH3+s2267LdPz1axZU7/88ouhWKt3S5w0aZIcDoeh2L59+1raNwAAAKznXVUKAADAaREREWrfvr1mzZql3377Tf3791dUVJSn08pQz549tWvXLjVr1szTqSg6Olpff/21fvzxR+XOndvT6cBiVapU0ZYtWzzyBspSpUpp2bJlvP0yC8qRI4eaN2+ut99+W2vWrNHx48f10UcfqV69egoICPB0el4vb968PlO42bJlS+3atUuPPfaYx3IoUKCAvvvuOy1atEhNmjTxWB5WYH6QNfnTZ9ibMJ4A/F10dLSWLVumRx991GM5NG3aVBs3blSdOnU8loNV6tSpo127dmnIkCGKiIjwdDr/4o5dIfzp/s09E97KzMN3EyZMsDGTrIVrAgD4htDQUA0bNky7d+/W/fff7+l0MpU9e3Y98cQT2rhxoz744ANPpwM/w3hIG2shyOrS2zXx9ddfz3RHRW9048YNLVu2LN3jjRs3Vt68ed2Ykft8+umneuedd9I9/vDDD2vDhg2qUqWKqfMWLlxY06dPz/T5BasLEydOnGgorlChQmrfvr2lfQMAAMB6FCYCAOCjAgMDVbVqVfXp00ezZs3S+fPnNXv2bHXo0EFBQUGeTs+w4sWLa+HChZo5c6bpBTIrREVF6YUXXtCePXvUtWtXt/cP98mZM6dmzJih6dOnq1ixYrb3FxgYqOeee047d+7U3XffbXt/8KyYmBjVr19fvXr10kcffaTNmzfr0qVLWrBggQYNGqS7777b63av9XaVK1fWyZMn9csvv2jgwIGqVKmSp1P6l1q1amnp0qWaN2+eihYt6ul0JEn33HOPlixZor179+qtt95SzZo1ffJtp8wPsi5/+Qx7E8YTgL8LDw/XhAkTNGfOHENvwrZKgQIF9PXXX2vx4sVu+X3MXcLCwvTaa69pz549euaZZzxeoBgWFqZOnTpp5cqVWrVqldv69Zf7N/dMeKPq1aurVq1ahmK/+eYbJSYm2pxR1sE1AQB8R5kyZTRnzhytXr1a7dq186rvSSMiItShQwfNmDFDZ8+e1bhx41S9enVPpwU/xnj4N9ZCkJWlVXxYs2ZNDRw40APZuG7ZsmVKSEhI93irVq3cmI37LFiwIMMXFw0aNEhfffWVwsPDnTp/nTp1Mi3gtrIwceXKlTp48KCh2KeeesondwMGAADIanzvm2EAAPxcUFCQwsLCFBYWpvDwcOXNm1f58+dX/vz5VbRoUZUrV04VKlRQxYoVlT17dk+na5mOHTuqQ4cOmjt3rj788EOtWLFCqamptvVXpEgRPfbYY3r22Wf99o1pSFunTp3Upk0bffTRR/roo4908uRJS88fGhqqbt26acCAAapQoYKl54b9QkJC/rwG//1Pjhw5lD9/fsXExPz5J3/+/CpevLgqVKigXLlyeTp1vxQQEKDatWurdu3aevfdd3Xy5EktXLhQS5cu1cqVK3XixAm355QtWzZ17NhRTz/9tO666y63929UuXLl9PLLL+vll1/WzZs3tWnTJu3cuVMHDhzQoUOHdO7cOV24cEGXL19WQkKCEhMTlZSU5Om0/4X5QdblL59hb8J4gr979NFH1bBhQ8Pxt99+u225+IL7779fzZo100cffaQPPvhAZ8+etaWf8uXLq2/fvnrkkUeULVs2W/rwBsWKFdOYMWM0ZMgQffrpp5o8ebIOHDjglr6Dg4NVv359PfDAA+rcubNHd9Pyl/s390x4mxdeeEEdO3bMNO7ixYuaPXu2unTp4oassg6uCQC82eDBg03F+/vvQXXq1FGdOnV07Ngxffrpp5o+fboOHz7s9jyKFSumFi1aqFWrVmrSpIlf/y4E78V4+DfWQpAV/W9hYnh4uCZOnOhVRctmZPYirrp167opE/c5ceKEunXrppSUlDSPv/LKK3rzzTdd7mfAgAGaMGFCmsfy58+v8uXLu9zHHz7//HNDcZGRkXr66act6xcAAAD2CXA4HA5PJwEAAPC/Tp06pWnTpmnu3Llav3694uPjXT5nmTJl1KRJE3Xp0kX16tVTQECABZnClyUnJ+v777/XpEmTtGzZMt24ccOp8wQFBal27dpq3bq1HnroIRUqVMjiTAGk5fDhw1qzZo02bdqkzZs3a/v27bp+/bqlfQQEBKhcuXKqV6+eWrdurXvuucfpt03CdcwPAOswngD8ISkpSd99952++eYbLV68WDdv3nTpfGXKlFHz5s11//33q0mTJqauBZs2bTIcW65cOa9+YdPWrVs1c+ZMLVmyRNu2bbOsAC8wMFDly5dXgwYN1LBhQzVr1owXpdiMeyY8LTU1VeXLlzdU8FynTh2tXr3aDVmlzeFwpPuw5P8KCAjwyYdhuSYAgG/Zvn275syZo6VLl2rLli1Ofw+UnoiICFWqVEnVq1dXnTp1VK9ePXZGg9diPPyFtRBkFRs2bPjHi1aHDx+uAQMGeDAj19SpU0e//PJLmseyZcumK1euKDjYf/ZqSU1NVZMmTbRixYo0j/fq1Utjx461pK9ffvlFderUSfPYAw88oBkzZljSz/nz51WkSJEMd778Q9++ffXRRx9Z0i8AAADsRWEiAADweklJSdq0aZM2bdqkgwcP6tChQzpy5IiuXLmiGzdu6ObNm0pOTlZERISyZcumqKgoFSpUSCVLllTJkiUVGxurunXrKiYmxtN/FXixhIQErV69WuvXr9eePXu0Z88enTt3TtevX1dcXJyCg4MVFRWl7NmzK0+ePCpbtqwqVaqkSpUqqV69erzBHPASx44d0549e3TgwAEdPXpUx44d05kzZ3Tx4kVdunRJ169f/3Nnlr/vUpwzZ84/d8L8Y4fi8uXL64477lCePHk8/ddCGpgfANZhPAH4w61bt7Ru3Tpt2rRJ27dv19GjR3X8+HFduXJF8fHxSkpKUmRk5J/Xgjx58qhMmTIqV66cypUrp7vuukvFixf39F/D68THx2vjxo3aunXrn9fYI0eO6PLly7p586Zu3rypW7duKTg4WKGhoYqMjFSePHmUL18+FSpUSCVKlFDJkiVVuXJlVa1alR0XPIh7Jjzl888/V69evQzFbtu2TVWrVrU5I0hcEwDA16SkpOjXX3/Vpk2b9Ntvv+nYsWM6duyYTp8+rbi4ON28eVPx8fFKTExUSEiIwsLCFB4erly5cik6OlrR0dEqXLiwSpQooRIlSqhChQoqW7asTxbaA4yHv7AWAvgGh8Oh7Nmzp1tUfeedd5oq9PUFo0ePVt++fdM81qBBAy1ZssSyQsxhw4bppZdeSjeP3r17W9LP0KFDNWjQoEzjgoODdeDAAa6vAAAAPoLCRAAAAAAAAAAAAADwUgkJCSpVqpROnjyZaWzPnj31+eefuyErAAAAAADc4+jRoxkWqVm5q583OH/+vMqWLasrV67861jOnDm1c+dOFSlSxLL+WrVqpfnz56d5bNeuXapUqZLLfaSkpKhUqVI6evRoprEPP/ywvvrqK5f7BAAAgHsEejoBAAAAAAAAAAAAAEDawsLC0t254H9NmTJF58+ftzkjAAAAAADcZ//+/RkeL1mypJsycY/XX389zaJESXrnnXcsLUpMTU3VmjVr0jyWL18+VaxY0ZJ+Zs2aZagoMSgoSK+++qolfQIAAMA9KEwEAAAAAAAAAAAAAC/Ws2dPFS5cONO4W7duafTo0W7ICAAAAAAA9zh16lSGx/PmzeumTOx35swZjR8/Ps1jFSpUUK9evSztb9u2bbp27Vqax+rXr6+AgABL+hkxYoShuG7duqlMmTKW9AkAAAD3oDARAAAAAAAAAAAAALxYWFiYBg0aZCj2k08+UXx8vM0ZAQAAAADgHqdPn87weLZs2dyUif0+/PBDJSQkpHlswIABCg4OtrS/VatWpXusQYMGlvSxYsUKbdq0KdO44OBgdksEAADwQRQmAgAAAAAAAAAAAICX69mzp0qVKpVp3IULF/TFF1+4ISMAAAAAAOx39erVDI/7S2FiSkqKJkyYkOaxvHnzqmvXrpb3uXLlynSPWVWYOGzYMENxPXr0UOnSpS3pEwAAAO5DYSIAAAAAAAAAAAAAeLmQkBC99dZbhmKHDx+uxMREmzMCAAAAAMB+8fHxGR5PTU11Uyb2Wrp0qc6ePZvmsbZt2yosLMzyPtPbMTF37tyqXLmyy+ffuHGjFi5cmGlcZGSkXn/9dZf7AwAAgPtRmAgAAAAAAAAAAAAAPqBz58668847M407ceJEurssAAAAAADgSzJ78c7NmzfdlIm9Zs2ale6x+++/3/L+9uzZo/Pnz6d5rH79+goMdP0R8zfffNNQ3PPPP68CBQq43B8AAADcj8JEAAAAAAAAAAAAAPABAQEBGjFihKHYoUOHKikpyeaMAAAAAACwV2hoaIbHT5065aZM7LV8+fI0/3tAQIDuvvtuy/tbuXJluscaNGjg8vm3bdumuXPnZhqXP39+DRgwwOX+AAAA4BkUJgIAAAAAAAAAAACAj2jYsKHat2+fadzRo0c1btw4N2QEAAAAAIB9IiMjMzx+6NAhN2Vin9OnT+vgwYNpHitWrJjy5s1reZ92Fya+/PLLhuLefvtt5ciRw+X+AAAA4BkUJgIAAAAAAAAAAACADxkxYoTCw8MzjXvrrbd08+ZNN2QEAAAAAIA9oqOjMzy+efNmN2Vin23btqV7rGTJkrb0uWrVqjT/e86cOXX77be7dO7Vq1dr3rx5mcbdcccdeuyxx1zqCwAAAJ5FYSIAAAAAAAAAAAAA+JASJUqof//+mcadOXNGH330kRsyAgAAAADAHsWKFcvw+IEDB3TixAk3ZWOP9HZLlKRChQpZ3t/hw4d1/PjxNI/VrVtXgYGuPV4+aNAgQ3Effvihy30BAADAs5jNAQAAAAAAAAAAAICPGTRoUKYPZ0rSsGHDdOHCBTdkBAAAAACA9cqVK5dpzLfffuuGTMw5dOiQrl+/bij28OHD6R7Lli2bVSn9aeXKlekea9CggUvnnjt3brq7Mf5d9+7dVbduXZf6AgAAgOdRmAgAAAAAAAAAAAAAPiYyMlIff/xxpnFXr17V66+/bn9CAAAAAADYoEKFCsqePXuGMZ999pmbsjFm2bJlqlGjhp588klD8ZcvX073WHBwsFVp/SmjwsSGDRs6fd7k5GQNGDAg07g8efJoxIgRTvcDAAAA70FhIgAAAAAAAAAAAAD4oNatW6tt27aZxo0dO1Z79+61PyEAAAAAACwWGBio2rVrZxizZ88ezZw5000ZZWz06NFq3ry5Ll26pKlTp2rcuHGZtomLi0v32NWrV61MTxcvXtTcuXPTPJY9e3bdcccdTp/7008/1b59+zKNGzZsmKKjo53uBwAAAN7D+tdoAAAAAAAAAAAAAADc4uOPP1bVqlUzjTty5IjKly/vhowAAAAAALBWu3bttGjRogxjXnjhBTVv3lw5cuRwU1b/dPHiRfXs2VNz5sz5x3//z3/+o1q1aqlKlSrptk1OTk732IULF6xKUZL0zDPP6Pz582keq1OnjoKCgpw+d0BAgAYPHpxhTGRkpHr27Ol0HwAAAPAuAQ6Hw+HpJAAAAAAAAAAAAAAAAAAAAADgf507d05FihRRYmJihnEPPPCApk+froCAADdl9ruFCxfq8ccf16lTp9I8Xq5cOW3atElRUVFpHn/00Uc1adKkNI9FR0fr3LlzluT5xRdf6Iknnkj3+NChQ/Xf//7Xkr4AAACQNQR6OgEAAAAAAAAAAAAAAAAAAAAASEtMTIw6d+6cadzMmTPVr18/+xP6fydPnlTnzp3VokWLdIsSJal48eIKDEz/ke08efKke+z8+fPas2ePS3lK0qpVq9S7d+8MY+rUqeNyPwAAAMhaKEwEAAAAAAAAAAAAAAAAAAAA4LUGDhyooKCgTOM++ugjPfzww4qPj7ctlytXrmjIkCEqX768ZsyYkWFsp06dNHfuXEVGRqYbU6hQoQzP8dlnnzmV5x/Wr1+v++67L8MdJ0NCQlS9enWX+gEAAEDWQ2EiAAAAAAAAAAAAAAAAAAAAAK8VGxurXr16GYqdMmWKbr/9di1btszSHE6ePKlXX31VxYsX1+uvv664uLgM45988klNnTpVISEhGcbVqlUrw+Pjx4/X/v37TecrSYsWLVKzZs107dq1DONuv/12RUREONUHAAAAsi4KEwEAAAAAAAAAAAAAAAAAAAB4tXfeeUfFihUzFLt//341adJETZo00bfffqukpCSn+rxy5YpmzJihe++9V8WKFdNbb72lq1evZtgmNDRUo0eP1meffabAwMwf1a5Ro4bCwsLSPX7jxg116tRJly9fNpx3SkqKhg0bplatWmValCiJ3RIBAADglACHw+HwdBIAAAAAAAAAAAAAAAAAAAAAkJG1a9eqYcOGSkxMNNUuR44catKkiWrVqqUqVaqoWLFiKlCggCIjIxUSEqK4uDhdu3ZNp0+f1q+//qrdu3dr1apV2rhxo1JSUgz3c9ttt2nWrFmZ7oL4vzp27KjZs2dnGFOuXDlNnTpV1apVyzBu3bp16tu3rzZt2mS4/y+++EI9evQwHA8AAABIFCYCAAAAAAAAAAAAAAAAAAAA8BEzZ87Ugw8+qNTUVE+n8g/t27fXp59+qpiYGNNt16xZo7p162YaFxAQoHbt2qlDhw6qVauW8ufPr4CAAB0/flzLly/X1KlTtXLlStP9b9myJdOCRwAAAOB/UZgIAAAAAAAAAAAAAAAAAAAAwGd88803euyxx0zvnGiHQoUKacyYMWrbtq1L57nnnnu0ZMkSa5IyISgoSHFxcQoPD3d73wAAAPBtgZ5OAAAAAAAAAAAAAAAAAAAAAACM6tq1qxYvXqyCBQt6LIfIyEi98MIL+vXXX10uSpSkSZMmKTo62vXE0pDRboilSpWiKBEAAABOoTARAAAAAAAAAAAAAAAAAAAAgE+pX7++du3apW7durm13/DwcP3nP//RoUOH9N577ylnzpyWnLdQoUKaMWOGsmfPbsn5JClv3ryaMGGCnn322XRjypYta1l/AAAAyFooTAQAAAAAAAAAAAAAAAAAAADgc/LkyaMpU6Zo48aNatWqlQICAmzrKzY2Vu+//76OHz+uUaNGKX/+/Jb30bBhQ61atUqFCxd26TwRERHq16+f9u/fr0cffVQbNmxIN7ZMmTIu9QUAAICsK8DhcDg8nQQAAAAAAAAAAAAAAAAAAAAAuOLIkSOaMGGCvv/+e23fvt2lcwUFBal69epq2rSp2rRpo5o1a1qUZeauXr2q9957T6NGjdKNGzcMtytZsqQee+wxPfHEE/8onKxRo4Y2bdr05/8vXLiw2rRpo3bt2qlhw4YKDg62NH8AAABkDRQmAgAAAAAAAAAAAAAAAAAAAPArp0+f1tq1a7Vt2zbt3btXJ06c0MmTJ3Xt2jXFx8crKSlJkZGRyp49u6KiopQ/f36VK1dO5cuXV8WKFXX33XcrV65cHv07XLp0SQsWLNCCBQu0fft2nT9/XhcuXFBgYKBy5MihwoULq3z58qpZs6aaNGmiypUrp3meIkWKKHv27Grbtq3atWun6tWr27q7JAAAALIGChMBAAAAAAAAAAAAAAAAAAAAwE8lJSUpJCTE02kAAADAz1CYCAAAAAAAAAAAAAAAAAAAAAAAAAAADAv0dAIAAAAAAAAAAAAAAAAAAAAAAAAAAMB3UJgIAAAAAAAAAAAAAAAAAAAAAAAAAAAMozARAAAAAAAAAAAAAAAAAAAAAAAAAAAYRmEiAAAAAAAAAAAAAAAAAAAAAAAAAAAwjMJEAAAAAAAAAAAAAAAAAAAAAAAAAABgGIWJAAAAAAAAAAAAAAAAAAAAAAAAAADAMAoTAQAAAAAAAAAAAAAAAAAAAAAAAACAYRQmAgAAAAAAAAAAAAAAAAAAAAAAAAAAwyhMBAAAAAAAAAAAAAAAAAAAAAAAAAAAhlGYCAAAAAAAAAAAAAAAAAAAAAAAAAAADKMwEQAAAAAAAAAAAAAAAAAAAAAAAAAAGEZhIgAAAAAAAAAAAAAAAAAAAAAAAAAAMIzCRAAAAAAAAAAAAAAAAAAAAAAAAAAAYBiFiQAAAAAAAAAAAAAAAAAAAAAAAAAAwDAKEwEAAAAAAAAAAAAAAAAAAAAAAAAAgGEUJgIAAAAAAAAAAAAAAAAAAAAAAAAAAMMoTAQAAAAAAAAAAAAAAAAAAAAAAAAAAIZRmAgAAAAAAAAAAAAAAAAAAAAAAAAAAAyjMBEAAAAAAAAAAAAAAAAAAAAAAAAAABhGYSIAAAAAAAAAAAAAAAAAAAAAAAAAADCMwkQAAAAAAAAAAAAAAAAAAAAAAAAAAGAYhYkAAAAAAAAAAAAAAAAAAAAAAAAAAMAwChMBAAAAAAAAAAAAAAAAAAAAAAAAAIBhFCYCAAAAAAAAAAAAAAAAAAAAAAAAAADDKEwEAAAAAAAAAAAAAAAAAAAAAAAAAACGUZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAMozARAAAAAAAAAAAAAAAAAAAAAAAAAAAYRmEiAAAAAAAAAAAAAAAAAAAAAAAAAAAwjMJEAAAAAAAAAAAAAAAAAAAAAAAAAABgGIWJAAAAAAAAAAAAAAAAAAAAAAAAAADAMAoTAQAAAAAAAAAAAAAAAAAAAAAAAACAYRQmAgAAAAAAAAAAAAAAAAAAAAAAAAAAwyhMBAAAAAAAAAAAAAAAAAAAAAAAAAAAhlGYCAAAAAAAAAAAAAAAAAAAAAAAAAAADKMwEQAAAAAAAAAAAAAAAAAAAAAAAAAAGEZhIgAAAAAAAAAAAAAAAAAAAAAAAAAAMIzCRAAAAAAAAAAAAAAAAAAAAAAAAAAAYBiFiQAAAAAAAAAAAAAAAAAAAAAAAAAAwDAKEwEAAAAAAAAAAAAAAAAAAAAAAAAAgGEUJgIAAAAAAAAAAAAAAAAAAAAAAAAAAMMoTAQAAAAAAAAAAAAAAAAAAAAAAAAAAIZRmAgAAAAAAAAAAAAAAAAAAAAAAAAAAAyjMBEAAAAAAAAAAAAAAAAAAAAAAAAAABhGYSIAAAAAAAAAAAAAAAAAAAAAAAAAADCMwkQAAAAAAAAAAAAAAAAAAAAAAAAAAGAYhYkAAAAAAAAAAAAAAAAAAAAAAAAAAMAwChMBAAAAAAAAAAAAAAAAAAAAAAAAAIBhFCYCAAAAAAAAAAAAAAAAAAAAAAAAAADDKEwEAAAAAAAAAAAAAAAAAAAAAAAAAACGUZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAMozARAAAAAAAAAAAAAAAAAAAAAAAAAAAYRmEiAAAAAAAAAAAAAAAAAAAAAAAAAAAwjMJEAAAAAAAAAAAAAAAAAAAAAAAAAABgGIWJAAAAAAAAAAAAAAAAAAAAAAAAAADAMAoTAQAAAAAAAAAAAAAAAAAAAAAAAACAYRQmAgAAAAAAAAAAAAAAAAAAAAAAAAAAwyhMBAAAAAAAAAAAAAAAAAAAAAAAAAAAhlGYCAAAAAAAAAAAAAAAAAAAAAAAAAAADKMwEQAAAAAAAAAAAAAAAAAAAAAAAAAAGEZhIgAAAAAAAAAAAAAAAAAAAAAAAAAAMIzCRAAAAAAAAAAAAAAAAAAAAAAAAAAAYNj/ATEf4vY9KCKvAAAAAElFTkSuQmCC\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 28, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAADiYAAAv7CAYAAABW7JmjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdd3iW5dk/8DMJsqFsRAFRQIFEKi4U0YBYi4oDd9VaF65qHbVqrXVQR90LRVRctXVLFds60aBUxYGIKMgQB4IgCgoyEpLfH33r+/IDyZ0nz0jC53McHG3u5zyv+xv7vupxhC9XXkVFRUUAAAAAAAAAAAAAAAAAACSQn+sAAAAAAAAAAAAAAAAAAEDtoZgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAADUaCtXrowHHnggPvzww1xHAQAAAAAAAEIxEQAAAAAAAKihSktL44477oju3bvHL3/5y+jVq1dMmDAh17EAAAAAAABgg1cv1wEAAAAAAAAA/q/Vq1fHX/7ylxg+fHh8/PHHa3xWWlqao1QAAAAAAADAfykmAgAAAAAAADVCeXl5PPzww3HJJZfERx99lOs4AAAAAAAAwI9QTAQAAAAAAAByqqKiIsaMGRMXX3xxvP/++7mOAwAAAAAAAFRCMREAAAAAAADImaeffjouuuiimDRpUq6jAAAAAAAAAAkpJgIAAAAAAABZ9/zzz8cf//jHeOONN3IdBQAAAAAAAKgixUQAAAAAAAAga8aPHx8XXnhhvPLKK7mOAgAAAAAAAKQoP9cBAAAAAAAAgLrv9ddfj5/97GdRXFyslAgAAAAAAAC1nGIiAAAAAAAAkDHvvPNODBkyJHbeeed44YUXch0HAAAAAAAASAPFRAAAAAAAACDtpkyZEgceeGBst9128Y9//CPXcQAAAAAAAIA0qpfrAAAAAAAAAEDd8uCDD8aRRx4ZFRUVuY4CAAAAAAAAZIAbEwEAAAAAAIC0+vLLL5USAQAAAAAAoA5TTAQAAAAAAAByascdd4wxY8bkOgYAAAAAAACQUL1cBwAAAAAAAAA2TP369YuLLroofv7zn+c6CgAAAAAAAFAFiokAAAAAAABAVvXt2zcuvfRShUQAAAAAAACopRQTAQAAAAAAgKzo06dPDB8+PIYMGZLrKAAAAAAAAEA1KCYCAAAAAAAAGdWzZ88YPnx4HHTQQZGXl5frOAAAAAAAAEA1KSYCAAAAAAAAGbHFFlvExRdfHEceeWQUFBTkOg4AAAAAAACQJoqJAAAAAAAAQFp16NAhRo4cGccff3xstNFGuY4DAAAAAAAApJliIgAAAAAAAJBWhx12WK4jAAAAAAAAABmUn+sAAAAAAAAAAAAAAAAAAEDtoZgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAAAAAAAAAAAAkppgIAAAAAAAAAAAAAAAAACSmmAgAAAAAAAAAAAAAAAAAJKaYCAAAAAAAkAbjxo2LvLy8lH+dddZZuf4WaoQFCxZEmzZtUv7ruOmmm8bixYtz/W0AAAAAAAAA1GmKiQAAAAAAAGlQWFhYrf3p06enKUnt9pvf/CYWLVqU8v6oUaOiRYsW6QsEAAAAAAAAwFoUEwEAAAAAANKgffv20aZNm5T3FRMjxo4dGw8//HDK+7/85S9jyJAhaUwEAAAAAAAAwLooJgIAAAAAAKRJdW5NnDNnTqxcuTKNaWqXb7/9Nk455ZSU9zt06BA33XRTGhMBAAAAAAAA8GMUEwEAAAAAANKkOsXE8vLymDFjRhrT1C7nnntuzJ07N+X9UaNGRcuWLdOYCAAAAAAAAIAfo5gIAAAAAACQJkVFRdXanz59epqS1C4lJSVxxx13pLx/1FFHxb777pvGRAAAAAAAAACsj2IiAAAAAABAmlTnxsSIDbOYuGLFihg2bFhUVFSktL/xxhvHzTffnOZUAAAAAAAAAKyPYiIAAAAAAECaVPfGxGnTpqUpSe1xySWXxIwZM1Lev/3226Nly5ZpTAQAAAAAAABAZRQTAQAAAAAA0qRVq1ax8cYbp7y/od2YOGnSpLjuuutS3j/yyCNj//33T2MiAAAAAAAAAJJQTAQAAAAAAEijwsLClHc3pGJiWVlZHH/88VFWVpbS/sYbbxw333xzmlMBAAAAAAAAkIRiIgAAAAAAQBoVFRWlvLtkyZKYP39+GtPUXNdee21MmjQp5f2RI0dGq1at0pgIAAAAAAAAgKQUEwEAAAAAANKoOjcmRmwYtyZ+9NFHcemll6a8/4tf/CIOOOCA9AUCAAAAAAAAoEoUEwEAAAAAANKoOjcmRtT9YmJFRUUMGzYsVqxYkdJ++/bt45ZbbklzKgAAAAAAAACqol6uAwAAAAAAANQlbkxcv1GjRsX48eNT3h85cmS0bt06jYki7r///rj//vvTemZtc9JJJ8UhhxyS6xgAAAAAAABALaGYCAAAAAAAkEbNmzePTp06xWeffZbS/rRp09KcqOb4/PPP47zzzkt5//DDD4+hQ4emMdF/zJ49O1588cW0n1ubDB48ONcRAAAAAAAAgFokP9cBAAAAAAAA6prq3JpYl29MPOWUU+Lbb79Nabddu3YxYsSINCcCAAAAAAAAIBWKiQAAAAAAAGlWnWLinDlzYtWqVWlMUzM89NBD8fTTT6e8f9ttt0Xr1q3TmAgAAAAAAACAVCkmAgAAAAAApFlRUVHKu6tXr44ZM2akMU3uLVq0KH7zm9+kvH/YYYfFQQcdlMZEAAAAAAAAAFSHYiIAAAAAAECaVefGxIiI6dOnpylJzXDmmWfGwoULU9pt165djBgxIs2JAAAAAAAAAKgOxUQAAAAAAIA069WrV+Tl5aW8X5eKic8880w88MADKe/feuut0aZNmzQmAgAAAAAAAKC6FBMBAAAAAADSrEmTJtGlS5eU9+tKMXHp0qVx0kknpbx/yCGHxMEHH5zGRAAAAAAAAACkQ71cBwAAAAAAAKiLioqK4uOPP05pd9q0aWlOkxu///3v49NPP01pt23btnHrrbemOdG6XXLJJXHJJZdk5V0AAAAAAAAAdYEbEwEAAAAAADKgsLAw5d26cGPiv//977jttttS3r/11lujbdu2aUwEAAAAAAAAQLooJgIAAAAAAGRAdYqJixcvjgULFqQxTXatXLkyTjjhhCgvL09p/+CDD45DDjkkzakAAAAAAAAASBfFRAAAAAAAgAwoKiqq1n5tvjXxsssuiw8//DCl3TZt2lTrpkUAAAAAAAAAMk8xEQAAAAAAIAN69OgRBQUFKe9PmzYtjWmyZ8qUKXHVVVelvD9ixIho27ZtGhMBAAAAAAAAkG6KiQAAAAAAABnQsGHD6Nq1a8r7tfHGxNWrV8fxxx8fpaWlKe0fdNBBcdhhh6U5FQAAAAAAAADpppgIAAAAAACQIYWFhSnv1sZi4o033hhvvvlmSrtt2rSJ2267Lc2JAAAAAAAAAMgExUQAAAAAAIAMKSoqSnl32rRpaUySebNnz46LLroo5f1bbrkl2rVrl8ZEAAAAAAAAAGSKYiIAAAAAAECGVOfGxI8//jhWrVqVxjSZNWzYsPj+++9T2h06dGgcfvjhaU4EAAAAAAAAQKYoJgIAAAAAAGRIdW5MXL16dcyaNSuNaTJn9OjRMW7cuJR2W7duHSNHjkxzIgAAAAAAAAAySTERAAAAAAAgQ7bccsvYaKONUt6fPn16GtNkxrx58+Kcc85Jef+WW26J9u3bpzERAAAAAAAAAJmmmAgAAAAAAJAhG220UXTv3j3l/WnTpqUxTWacdtppsXjx4pR2DzjggPjFL36R3kAAAAAAAAAAZJxiIgAAAAAAQAYVFRWlvFvTb0x8/PHH44knnkhpt1WrVnH77benOREAAAAAAAAA2aCYCAAAAAAAkEGFhYUp79bkYuLixYvjtNNOS3n/lltuifbt26cxEQAAAAAAAADZopgIAAAAAACQQXX1xsSzzz475s+fn9Lu/vvvH0cccUSaEwEAAAAAAACQLYqJAAAAAAAAGVSdGxO//vrrWLhwYRrTpMeLL74Y99xzT0q7rVq1ittvvz3NiQAAAAAAAADIJsVEAAAAAACADOrWrVs0aNAg5f2admvi999/HyeeeGLK+zfddFNsvPHGaUwEAAAAAAAAQLYpJgIAAAAAAGRQQUFB9OjRI+X9mlZMvPDCC2P27Nkp7e67775x1FFHpTkRAAAAAAAAANmmmAgAAAAAAJBhhYWFKe9OmzYtjUmqZ+LEiXHTTTeltNuyZcsYNWpUmhMBAAAAAAAAkAuKiQAAAAAAABlWVFSU8m5NuTGxtLQ0TjjhhCgvL09p/6abbooOHTqkORUAAAAAAAAAuaCYCAAAAAAAkGHVuTGxphQTr7zyypgyZUpKu0OGDIlf/vKXaU4EAAAAAAAAQK4oJgIAAAAAAGRYdW5MnD17dpSWlqYxTdV98MEHcfnll6e026JFixg1alSaEwEAAAAAAACQS4qJAAAAAAAAGbb55ptH48aNU9otKyuLWbNmpTlRcuXl5XHCCSfEqlWrUtq/6aabYpNNNklzKgAAAAAAAABySTERAAAAAAAgw/Ly8qJXr14p70+fPj2NaapmxIgR8dprr6W0O2TIkDj66KPTnAgAAAAAAACAXFNMBAAAAAAAyILCwsKUd3NVTPzkk0/iD3/4Q0q7LVq0iFGjRqU5EQAAAAAAAAA1gWIiAAAAAABAFlSnmDht2rQ0JknupJNOiqVLl6a0e8MNN8Qmm2yS5kQAAAAAAAAA1AT1ch0AAAAAAABgQ1BUVJTybi5uTLz//vvj2WefTWl37733jmOOOSa9gdggVFRU5DoCAAAAAAAAkEBehZ/uAQAAAAAAZNynn34am222WUq7rVu3jq+++irNiX7cggULomfPnvH1119XebdFixbx/vvvx6abbpqBZAAAAAAAAADUBPm5DgAAAAAAALAh6Ny5czRv3jyl3UWLFsWiRYvSnOjHnX766SmVEiMirr/+eqVEAAAAAAAAgDpOMREAAAAAACBLevXqlfLutGnT0pjkxz311FPxyCOPpLS71157xbHHHpvmRAAAAAAAAADUNIqJAAAAAAAAWVJUVJTy7vTp09OYZN2+/fbbOPXUU1Pa/clPfhJ33HFHmhMBAAAAAAAAUBMpJgIAAAAAAGRJYWFhyrvZKCb+7ne/i7lz56a0e/3110fHjh3TnAgAAAAAAACAmkgxEQAAAAAAIEuqU0ycNm1aGpOsraSkJO68886UdgcPHhzHHXdcmhMBAAAAAAAAUFMpJgIAAAAAAGRJUVFRyruZvDFxxYoVMWzYsKioqKjybvPmzeOOO+7IQCoAAAAAAAAAairFRAAAAAAAgCzp0KFDtGrVKqXd2bNnR1lZWZoT/cfFF18cM2bMSGn3uuuui06dOqU5EQAAAAAAAAA1mWIiAAAAAABAFhUWFqa0V1paGrNnz05zmoh33nknrrvuupR299xzzzjhhBPSnAgAAAAAAACAmk4xEQAAAAAAIItSLSZGREybNi2NSSLKysrihBNOiNWrV1d5t3nz5nHXXXelNQ8AAAAAAAAAtYNiIgAAAAAAQBYVFRWlvDt9+vQ0Jom45pprYtKkSSntXnvttdGpU6e05gEAAAAAAACgdlBMBAAAAAAAyKLq3JiYzmLiRx99FMOHD09p92c/+1kMGzYsbVkAAAAAAAAAqF0UEwEAAAAAALKoJtyYWFFREcOGDYsVK1ZUebdZs2Zx1113pSUHAAAAAAAAALWTYiIAAAAAAEAWtWnTJtq1a5fS7rRp09KS4fbbb4/x48entHvttddG586d05IDAAAAAAAAgNopr6KioiLXIQAAAAAAADYku+++e7z00ksp7S5atChatWqV8rs///zzKCwsjG+//bbKu3vssUc8//zzKb8bAAAAAAAAgLrBjYkAAAAAAABZVlRUlPLu9OnTq/XuU045JaVSYrNmzeKuu+6q1rsBAAAAAAAAqBsUEwEAAAAAALKssLAw5d1p06alvPvggw/G008/ndLu1VdfHZtttlnK7wYAAAAAAACg7lBMBAAAAAAAyLJc3Ji4aNGiOOOMM1LaHTRoUJx00kkp7QIAAAAAAABQ9ygmAgAAAAAAZFl1bkxMtZh45plnxsKFC6u817Rp0xg9enTk5eWl9F4AAAAAAAAA6h7FRAAAAAAAgCxr0aJFbLrppintplJM/Ne//hUPPPBASu+7+uqrY7PNNktpF7JhwYIFsWTJklzHAAAAAAAAgA2KYiIAAAAAAEAOpHpr4qxZs6KsrCzx/NKlS+Pkk09O6V0DBw5MeRcy6ZNPPokbb7wxiouLo0OHDrHrrrvmOhIAAAAAAABsUOrlOgAAAAAAAMCGqLCwMJ577rkq761atSo+/vjj6N69e6L53//+9/Hpp59W+T1NmzaNu+++O/Ly8qq8C5nw4YcfxhNPPBFPPPFEvPPOO2t81q1btxylAgAAAAAAgA2TYiIAAAAAAEAOFBUVpbw7ffr0RMXEf//733Hbbbel9I6rrroqunTpktLuhmjJkiXx/vvvx/vvvx8ffvhhzJ07N+bOnRvz58+PpUuXxvLly2PFihVRr169aNas2Q+/2rVrFz169IiePXtGjx494qc//Wm0atUq199OjXLFFVfE/fffH9OnT//RmeLi4iwmAgAAAAAAAPIqKioqch0CAAAAAABgQ/PGG2/ETjvtlNLuNddcE+ecc856Z1auXBnbbLNNTJs2rcrnDxw4MF588UW3Ja7HV199FS+88EKUlJRESUlJfPjhh2k5Nz8/P7bbbrsYPHhwDB48OPr27RsFBQVpObs2Wrx4cbRu3TrKy8vXOzdp0qTYZpttshMKAAAAAAAAcGMiAAAAAABALhQWFkZeXl6k8mdIru/muP+67LLLUiolNmnSJEaPHq2UuA4LFiyIxx57LB5//PEoKSmJ1atXp/0d5eXl8eabb8abb74Zf/rTn6Jjx44xbNiwGDZsWHTo0CHt76vpXnnllUpLiS1atIjevXtnKREAAAAAAAAQEZGf6wAAAAAAAAAboqZNm0bnzp1T2q2smPjee+/FVVddldLZV111VWy++eYp7dZFFRUVMW7cuDjssMOiY8eO8etf/zrGjRuXkVLiunz++edx8cUXR+fOneOQQw6JyZMnZ+W9NcX48eMrndl1110jP9+PPQEAAAAAACCb/IQOAAAAAAAgR4qKilLaW18xcfXq1XH88cdHaWlplc8dMGBAnHrqqSllqmtWr14df/vb32LrrbeOQYMGxSOPPJLSX9N0KSsri8ceeyy23XbbOOaYY2LRokU5y5JNJSUllc4MGDAg80EAAAAAAACANSgmAgAAAAAA5EhhYWFKewsWLIhvvvlmnZ/deOON8dZbb1X5zCZNmsTo0aMjLy8vpUx1RUVFRfzlL3+JHj16xJFHHhlTp07NdaQ1lJeXx3333Re9evWKf/7zn7mOk1FLly6NSZMmVTpXXFychTQAAAAAAADA/6WYCAAAAAAAkCOpFhMj1n1r4qxZs+Kiiy5K6bwrr7wytthii5Tz1AUTJkyIvn37xtFHHx0zZ87MdZz1WrBgQey7777x5z//OddRMmbChAlRVla23pnmzZvHNttsk51AAAAAAAAAwA8UEwEAAAAAAHKkqKgo5d11FRNPPPHE+P7776t81m677RannXZayllqu6+//jp+9atfRf/+/ePNN9/MdZzEysvL4/e//32ce+65uY6SESUlJZXO9O/fPwoKCrKQBgAAAAAAAPi/FBMBAAAAAABypGfPnpGfn9qPa/7/YuLo0aNj3LhxVT6ncePGcffdd0deXl5KOWq7xx9/PHr16hX3339/rqOk7JprrqmTNyeOHz++0pni4uIsJAEAAAAAAAD+f/VyHQAAAAAAAGBD1ahRo9hiiy1i5syZVd6dNm3aD/993rx5cc4556SU4corr4yuXbumtFubLVu2LE499dS0FBIbNGgQO+64Y/Tq1St69OgRPXv2jE033TSaNWsWzZs3j2bNmkV5eXmsWLEili1bFvPnz4958+bFzJkzY8qUKfHuu+/GpEmTYvXq1SlnuOCCC2LrrbeOffbZp9rfT02wfPnyRLdXKiYCAAAAAABAbuRVVFRU5DoEAAAAAADAhuqAAw6IJ598ssp7vXr1iqlTp0ZExIEHHhhjxoyp8hm77rprlJSUbHC3Jb7//vtx6KGHxocffpjyGV27do399tsv9txzzyguLo5GjRpVK9OSJUuipKQkHnjggXjqqadi5cqVVT6jffv2MWXKlGjbtm21stQE48aNi0GDBq13pmnTpvHNN99EvXr+LFYAAAAAAADItvxcBwAAAAAAANiQFRUVpbQ3c+bMWL16dTz++OMplRIbN24cd9999wZXShwzZkz07ds3pVJi/fr149BDD40XXnghZsyYEddff30MHjy42qXEiIif/OQnsd9++8UjjzwSX3zxRZx33nnRsGHDKp3x5ZdfxnnnnVftLDXB+PHjK53p16+fUiIAAAAAAADkiGIiAAAAAABADhUWFqa0t2rVqnjnnXfitNNOS2n/iiuuiG7duqW0W1tdffXVcdBBB8X3339fpb369evHaaedFp9++mk8/PDDMWjQoIwWOlu1ahV//vOfY/r06bHnnntWafe+++6LyZMnZyhZ9pSUlFQ6M2DAgMwHAQAAAAAAANZJMREAAAAAACCHUi0mRkQceeSRMX/+/Crv9e/fP04//fSU31vbVFRUxGmnnRbnnXdeVFRUJN7Ly8uLI488MqZNmxa33HJLtG/fPoMp19a5c+d45pln4vLLL4+CgoJEO+Xl5XHllVdmOFlmrVq1Kt54441K54qLi7OQBgAAAAAAAFiXvIqq/PQVAAAAAACAtFq1alU0adIkysrKsvK+Ro0axXvvvbfB3JZYXl4eJ554YowePbpKe507d4677747Bg0alKFkVfPEE0/EL37xi1i1alWls40bN46lS5dm9FbHTHr11Vdj1113Xe9M48aNY/HixbHRRhtlKRUAAAAAAADwf7kxEQAAAAAAIIfq16+f1ZLg5ZdfvsGUEisqKuLYY4+tcinx2GOPjSlTptSYUmJExIEHHhhjx46Nhg0bVjq7ww471NpSYkRESUlJpTM777yzUiIAAAAAAADkkGIiAAAAAABAjhUVFWXlPbvsskucccYZWXlXTXDWWWfF/fffn3i+QYMGcd9998Xdd98dzZs3z2Cy1Oy5555x++23Vzq3++67ZyFN5owfP77SmeLi4iwkAQAAAAAAAH6MYiIAAAAAAECOFRYWZvwdjRo1invuuSfy8zeMHw9deeWVcdNNNyWeb9u2bbz44otx9NFHZzBV9f3qV7+qtFw6cODALKVJv7Kysvj3v/9d6ZxiIgAAAAAAAOTWhvGTZwAAAAAAgBosGzcmXnbZZdG9e/eMv6cmePTRR+OCCy5IPN+9e/eYOHFi7LLLLhlMlT5XXXVVdOnSZZ2fNW7cOPr27ZvdQGn09ttvx9KlS9c707Bhw1r9PQIAAAAAAEBdoJgIAAAAAACQY5m+MbFfv35x5plnZvQdNcXUqVPj2GOPTTzfrVu3eOmll3606FcTNWjQIK688sp1frbLLrtE/fr1s5wofcaPH1/pTN++faNBgwZZSAMAAAAAAAD8GMVEAAAAAACAHOvevXvGymQNGzaMu+++O/Lz6/6PhZYsWRIHHHBALFu2LNF8165d46WXXopNN900w8nS7/DDD4/evXuv9Xz33XfPQZr0KSkpqXRmwIABmQ8CAAAAAAAArFfd/wk0AAAAAABADVevXr3YaqutMnL2ZZddlrGza5pf//rXMXPmzESzm2yySbz00kvRsWPHDKfKnGOOOWatZwMHDsx+kDQpLy+PCRMmVDpXXFychTQAAAAAAADA+igmAgAAAAAA1ACFhYVpP3PnnXeOs846K+3n1kSPPPJI/PWvf00026hRo3jqqaeiU6dOGU6VWUcccUTUq1fvh6+bNWsW2223XQ4TVc/kyZNj8eLF652pX79+7LTTTtkJBAAAAAAAAPwoxUQAAAAAAIAaoKioKK3nNWzYMO65557Iz6/7Pw6aP39+nHLKKYlm8/Ly4r777qvVBb7/at++/Rolvd12222NomJtU1JSUunMjjvuGI0aNcpCGgAAAAAAAGB9au9PJgEAAAAAAOqQdN+YOHz48Nhqq63SemZNdfbZZ8fXX3+daPbCCy+MQw45JMOJsmfHHXeMV199NSIiBg4cmPX3z5kzJ8aPHx+TJ0+O9957Lz799NNYsmRJLF68OMrLy6NZs2bRqVOn6NWrV/Tr1y/22Wef2Hzzzdd51vjx4yt9X3Fxcbq/BQAAAAAAACAFeRUVFRW5DgEAAAAAALChmzlzZnTv3j0tZ+20007x6quvRkFBQVrOq8nGjRsXgwYNSjRbF/+6PPzww3H44YdHRMQ777wTffr0yfg7Z82aFffdd188+eST8d5771V5f5dddokzzjgjDj744MjLy4uIiIqKimjXrl189dVX69197rnn4mc/+1lKuQEAAAAAAID0UUwEAAAAAACoAcrLy6Np06axfPnyap3TsGHDmDRpUvTo0SNNyWqusrKy2HrrrWPatGmVzjZp0iTefffd6NatWxaSZc/3338fH3zwQUREbLvttpGfn5+xd7388stxww03xNNPPx3l5eXVPu+nP/1pjBw5MnbeeeeYOnVqFBUVrXe+Xr16sXjx4mjSpEm13w0AAAAAAABUT71cBwAAAAAAACAiPz8/evbsGe+88061zrn00ks3iFJiRMTo0aMTlRIjIq677ro6V0qMiGjcuHFsv/32GX3H1KlT4+yzz47nnnsuredOnjw5+vfvH+eee2506NCh0vntt99eKREAAAAAAABqCDcmAgAAAAAA1BBHH310/OUvf0l5v2/fvjFhwoQoKChIY6qaafny5dGtW7f44osvKp3dcccd4/XXX4+8vLwsJKs7li1bFueff36MHDkyVq9endF3bbTRRlFaWrremfPPPz+uvPLKjOYAAAAAAAAAknFjIgAAAAAAQA1RWFiY8m6DBg3innvu2SBKiRERt956a6JSYkTEDTfcoJRYRRMnToyjjjoqZsyYkZX3VVZKjIgoLi7OQhIAAAAAAAAgifxcBwAAAAAAAOA/ioqKUt699NJLo2fPnmlMU3OVlpbGjTfemGj20EMPjX79+mU2UB1zzTXXxC677JK1UmISBQUFscsuu+Q6BgAAAAAAAPA/3JgIAAAAAABQQ6R6Y+KOO+4Y55xzTprT1FwPPvhgzJ07t9K5/Pz8uOKKK7KQqG4oLS2NE088Me69995cR1nLtttuG82aNct1DAAAAAAAAOB/KCYCAAAAAADUEJtttlk0bdo0li5dmninQYMGcc8990RBQUEGk9Us119/faK5oUOHRteuXTOcpm745ptvYujQoVFSUlKlve7du8eBBx4Yffv2jd69e0ebNm2icePGsXjx4pg1a1ZMmDAh7r///njvvfeqla+4uLha+wAAAAAAAEB65VVUVFTkOgQAAAAAAAD/0bdv35g4cWLi+SuuuCJ+//vfZzBRzfLmm2/GjjvumGh2woQJ0a9fvwwnqv2+/vrr2GOPPWLSpEmJ5vPz82Po0KHxu9/9Lvr27ZtoZ+zYsXH66afHJ598klLGsWPHxpAhQ1LaBQAAAAAAANIvP9cBAAAAAAAA+F9FRUWJZ3fYYYc499xzM5im5rnnnnsSzfXt21cpMYFFixbFoEGDEpcS+/XrF2+//XY89thjiUuJERH77rtvvP322yn9b5Kfnx/9+/ev8h4AAAAAAACQOYqJAAAAAAAANUhhYWGiufr168c999wTBQUFGU5Uc6xcuTIeeuihRLPHHHNMZsPUAUuWLIlBgwbFu+++W+ls/fr144YbbohXX301ttlmm5Te17p163j22Wejd+/eVdr76U9/Gi1atEjpnQAAAAAAAEBmKCYCAAAAAADUIEmLiRdffHHi2bpi3Lhx8c0331Q6V1BQEAceeGAWEtVeZWVlcfDBB8fkyZMrne3UqVO89tprceaZZ0ZeXl613tu0adN48skno0mTJol3BgwYUK13AgAAAAAAAOmnmAgAAAAAAFCDFBUVVTqz3XbbxbnnnpuFNDXL2LFjE80VFxdHu3btMpymdjv55JPjhRdeqHSuT58+8frrr8e2226btnd36dIlLr300sTzxcXFaXs3AAAAAAAAkB6KiQAAAAAAADXIpptuGi1atPjRz+vXrx/33ntv1KtXL3uhaoinn3460dxBBx2U4SS12/XXXx+jR4+udG6nnXaKkpKS2GSTTdKe4fTTT090bl5eXuy6665pfz8AAAAAAABQPYqJAAAAAAAANUxhYeGPfnbRRRclulWxrvnwww/js88+SzTrhr0f99Zbb8X5559f6Vzfvn3j2WefjWbNmmUkR/369ePEE0+sdG7rrbeOVq1aZSQDAAAAAAAAkDrFRAAAAAAAgBrmx4qJ2223XZx33nlZTlMzTJgwIdFcy5Yto1evXhlOUzstXbo0jjjiiCgtLV3vXLdu3eIf//hHNG/ePKN5khRNlUwBAAAAAACgZlJMBAAAAAAAqGHWdSNi/fr145577ol69erlIFHuvfrqq4nmdt5558jLy8twmtrp7LPPjhkzZqx3pmXLlvGPf/wjWrdunfE848ePr3RGMREAAAAAAABqJsVEAAAAAACAGmZdNyZeeOGFsfXWW+cgTc3wxhtvJJrbcccdM5ykdpo4cWLcddddlc6NHj06ttxyy4znmT9/fqUlyYiI3XbbLeNZAAAAAAAAgKrbMP9IXQAAAAAAgBps9913j4qKilzHqDFWrVoVM2fOTDTbtWvXDKepfSoqKuL000+v9P+mjjvuuBg6dGhWMiW5LbFXr17Rtm3bLKQBAAAAAAAAqsqNiQAAAAAAANRoM2bMiLKyskSziolru//++2PixInrnWnbtm3ccMMNWUqUrJg4YMCAzAcBAAAAAAAAUqKYCAAAAAAAQI02bdq0xLNbbLFFBpPUPuXl5XHFFVdUOjd8+PBo3rx5FhL9R5JiYnFxcRaSAAAAAAAAAKlQTAQAAAAAAKBG+/TTTxPNbbTRRtG+ffsMp6ldxowZEx999NF6Z7p16xbDhg3LUqKIr7/+Ot5///1K53bbbbcspAEAAAAAAABSoZgIAAAAAABAjTZ//vxEc02aNMlwktrn6quvrnTmjDPOiIKCgiyk+Y9XXnklKioq1juz1VZbxcYbb5ylRAAAAAAAAEBVKSYCAAAAAABQo82bNy/RXNOmTTOcpHaZMmVKTJw4cb0zzZs3j2OOOSY7gf7H+PHjK50pLi7OQhIAAAAAAAAgVYqJAAAAAAAA1GjffPNNojk3Jq7pb3/7W6Uz++23X9YLnYqJAAAAAAAAUPspJgIAAAAAAFCjLV++PNFc/fr1M5yk9qioqIiHHnqo0rmDDz44C2n+19KlS2PSpEmVzikmAgAAAAAAQM2mmAgAAAAAAECNtmLFirTObQgmT54cc+bMWe9MvXr14mc/+1l2Av2PCRMmxOrVq9c7061bt9h0002zlAgAAAAAAABIhWIiAAAAAAAANdqqVasSzX3//fcZTlJ7lJSUVDqzzTbbROPGjbOQ5n+NHz++0hm3JQIAAAAAAEDNp5gIAAAAAABAjdagQYNEcwsXLoyKiooMp6kdkhQTd9pppywkWZNiIgAAAAAAANQNiokAAAAAAADUaI0aNUo0t2rVqpg/f36G09QOr776aqUzW221VRaS/K8VK1bEm2++WemcYiIAAAAAAADUfIqJAAAAAAAA1GhNmjRJPDt9+vQMJqkdFi1aFAsXLqx0bvPNN89Cmv/1xhtvxMqVK9c706VLl+jcuXOWEgEAAAAAAACpUkwEAAAAAACgRuvQoUPi2SQ38tV1M2fOTDTXsWPHDCdZU0lJSaUzbksEAAAAAACA2kExEQAAAAAAgBqtS5cuiWcnTJiQuSC1xIwZMxLNVeUmynQYP358pTOKiQAAAAAAAFA7KCYCAAAAAABQo1WlmPj888/H8uXLMxemFvjiiy8SzWWzmFhaWhqvv/56pXOKiQAAAAAAAFA7KCYCAAAAAABQo22zzTaJZ7///vv4xz/+kbkwWTJnzpz45z//mdLu0qVLE82Vl5endH4q3n777Vi2bNl6Zzp16hRbbLFFlhIBAAAAAAAA1aGYCAAAAAAAQI225ZZbRqtWrRLPjxgxIoNpMm/8+PGxww47xOGHHx4zZ86s8n7SYuLixYurfHaq/va3v1U647ZEAAAAAAAAqD0UEwEAAAAAAKjxdt5558SzJSUlMXHixAymyZw777wz9thjj/jqq6/iu+++i8MOOyxWrlxZpTO+//77RHPZKia+8sorceutt1Y6p5gIAAAAAAAAtYdiIgAAAAAAADXefvvtV6X5s88+O0NJMmPFihVx6qmnxoknnhilpaU/PH/nnXfinHPOqdJZeXl5ieZmz55dpXNTsWzZsjj22GOjvLy80lnFRAAAAAAAAKg9FBMBAAAAAACo8Q444IAoKChIPD9hwoQYNWpUBhOlz5QpU2L77bePkSNHrvPzESNGxJgxYxKf16hRo0Rzr732WuIzU1FRURFHH310zJo1q9LZDh06RPfu3TOaBwAAAAAAAEgfxUQAAAAAAABqvHbt2sXPfvazKu2cddZZ8f7772coUfVVVFTEzTffHDvssENMnTp1vbPHH398fPLJJ4nObdOmTaK5V199NdFcqi655JJ44oknEs3269cvo1kAAAAAAACA9FJMBAAAAAAAoFY444wzqjS/fPny2HvvveOzzz7LUKLUTZ48Ofr37x9nnHFGrFy5stL5b775Jl588cVEZ3fs2DHR3JQpU+Ktt95KNFtVo0aNij/96U+J5xUTAQAAAAAAoHZRTAQAAAAAAKBW+PnPfx69evWq0s5nn30We+yxR3z88ccZSlU13377bZx55pmx3Xbbxb///e9EOwUFBXHHHXfEcccdl2i+R48eifPceOONiWeTGjVqVJxyyilRUVGReEcxEQAAAAAAAGqXvIqq/EQQAAAAAAAAcujpp5+Offfdt8p77dq1i8cffzz69++fgVSVW7ZsWYwcOTKuueaaWLBgQeK9Bg0axIMPPhhDhw5NvLN8+fJo3rx5lJWVVTqbn58fzz33XAwaNCjx+T+moqIiLr300hg+fHiVSon169eP7777LurXr1/tDAAAAAAAAEB2uDERAAAAAACAWmPIkCExePDgKu8tWLAgiouL47zzzovly5dnINm6ffvtt3HVVVdFly5d4ne/+12VSonNmzePZ599tkqlxIiIRo0axc4775xotry8PI466qiYO3duld7x/1uyZEkMHTo0Lr300iqVEiMievfurZQIAAAAAAAAtYxiIgAAAAAAALXKrbfeGs2bN6/yXnl5eVx99dXRtWvXGDlyZKxYsSID6f7j1VdfjWOPPTY6dOgQ559/fnz11VdV2u/Vq1e8/vrrUVxcnNL7q3Kr5Pz582PnnXeO9957L6V3/f3vf49evXrFk08+mdL+dtttl9IeAAAAAAAAkDt5FVX9I0sBAAAAAAAgxx555JE47LDDqnVGy5Yt48gjj4yDDz44dtlll6hXr17KZy1fvjzGjx8fzz77bDz99NMxY8aMlM864ogj4o477ogmTZqkfMa8efOiU6dOsXr16sQ7TZs2jfPOOy/OPPPMaNq0aaXzr7zySlxxxRXxzDPPpJwzIuKOO+6IYcOGVesMAAAAAAAAILsUEwEAAAAAAKiVzjnnnLjuuuvSclbz5s2jX79+0adPn9h6662jU6dO0bFjx2jRokU0bNgw6tevH8uWLYtvv/02vv3225g/f3588MEHMXXq1Jg6dWpMnDix2jcw1q9fP2644YY49dRT0/I9/fKXv4wHHnigyntt2rSJ/fffPwYPHhxFRUXRrl27aNq0aSxcuDDmzJkTL7zwQjz11FPxzjvvpCXnxIkTY4cddkjLWQAAAAAAAEB2KCYCAAAAAABQK1VUVMSxxx4b9913X66jVNu2224bd911V/Tp0ydtZ86aNSsKCwtj5cqVaTsz3fLy8mLp0qXRuHHjXEcBAAAAAAAAqiA/1wEAAAAAAAAgFXl5eTF69Oj45S9/mesoKWvSpElcd911MXHixLSWEiMiunbtGhdffHFaz0y3zTffXCkRAAAAAAAAaiHFRAAAAAAAAGqtgoKCuP/+++Oiiy7KdZQqGzJkSHzwwQdx9tlnR0FBQUbecd5558U+++yTkbPX5+STT4699tqr0rlevXplIQ0AAAAAAACQboqJAAAAAAAA1HqXXnppPPnkk9G+fftcR6nUwIEDo6SkJMaOHRudO3fO6Lvy8/PjoYceiv79+2f0Pf/VtWvX+Ne//hUjR46MDz74oNL5bt26ZSEVAAAAAAAAkG6KiQAAAAAAANQJ++23X0ydOjWOPPLIyMvLy3Wctfy3kDhu3LjYbbfdsvbepk2bxjPPPBMHHnhgxt7RokWLuOyyy2Lq1KkxePDgWLBgQXzyySeV7nXt2jVjmQAAAAAAAIDMUUwEAAAAAACgzmjdunU88MAD8fbbb8dee+2V6zjRsmXLOPXUU+Ott97KeiHx/2rSpEk8/vjjMXLkyGjRokXazt1kk01i+PDhMWfOnPjDH/4QDRo0iIiIN998c717Xbt2jbPPPjv233//tGUBAAAAAAAAsievoqKiItchAAAAAAAAIBPef//9uPPOO+OBBx6Ir7/+OivvbNCgQQwYMCCOOeaYOOCAA6Jhw4ZZeW9SX331Vdx8881xxx13xJdfflnl/ZYtW8bgwYPj8MMPj3322ScKCgrWmrnkkkvi0ksvXeNZnz594oADDogDDjggevfunXJ+AAAAAAAAIPcUEwEAAAAAAKjzVq5cGSUlJfGvf/0rnnnmmZg2bVrazs7Pz49tttkm9thjjxg0aFDsuuuu0ahRo7SdnymrV6+O8ePHx7hx4+Ktt96K2bNnx/z58+P777+PiIjGjRtHy5Yto3PnzrHFFlvEtttuGzvuuGNsv/32Ua9evfWefcEFF8Q111wTu+666w9lxM6dO2fj2wIAAAAAAACyQDERAAAAAACADc7ixYvj3XffjcmTJ8eMGTNi7ty58fnnn8eXX34Z33//faxYsSJWrFgR+fn50axZs2jWrFk0bdo0mjVrFp06dYoePXrEVltt9cN/Nm3aNNffUo2zdOlSf10AAAAAAACgjlJMBAAAAAAAAAAAAAAAAAASy891AAAAAAAAAAAAAAAAAACg9lBMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAElNMBAAAAAAAAAAAAAAAAAASU0wEAAAAAAAAAAAAAAAAABJTTAQAAAAAAAAAAAAAAAAAEquX6wAAAAAAAAAAAAAAAAAA1C6lpaUxbty4ePLJJ+ONN96IefPmxaJFi6Jly5ax8cYbxzbbbBNDhgyJwYMHR9OmTXMdlzTLq6ioqMh1CAAAAAAAAAAAAAAAAABqh0ceeSR+//vfx+zZsyudbdWqVVxwwQVx2mmnRYMGDbKQjmxQTAQAAAAAAAAAAAAAAACgUt99910cccQR8fTTT1d5t0ePHvHUU09F9+7dM5CMbFNMBAAAAAAAAAAAAAAAAGC95s6dG3vttVdMmTIl5TNatWoVY8aMid122y2NyciF/FwHAAAAAAAAAAAAAAAAAKDmWrZsWQwZMmStUmJ+fn4cccQRMXbs2Pj8889j5cqVMW/evBg3blycddZZ0axZszXmv/7669hvv/1i2rRp2YxPBrgxEQAAAAAAAAAAAAAAAIAfdeihh8ajjz66xrNu3brFI488En369PnRvQULFsTJJ58cY8aMWWv3nXfeWau4SO3hxkQAAAAAAAAAAAAAAAAA1um5555bq5TYp0+feO2119ZbSoyIaNeuXTz++ONx+umnr/F85syZcc0116Q9K9njxkQAAAAAAAAAAAAAAAAA1mmbbbaJyZMn//B127Zt4+23345OnTolPqO8vDz22WefeOaZZ3541qRJk5g1a1a0b98+rXnJDjcmAgAAAAAAAAAAAAAAALCWd999d41SYkTE5ZdfXqVSYkREfn5+3HrrrbHRRhv98GzZsmXx2GOPpSUn2Vcv1wEAgNSVlZXFjBkz1njWqlWryM/3Zw8AAAAAAAAAAADUdeXl5fH111+v8ax79+5Rr57fJg4ApMdTTz21xtft27ePY489NqWztthiixg6dGg88sgjPzwbO3Zs/PrXv65WRnLDv3ECQC02Y8aM6NWrV65jAAAAAAAAAAAAUEN88MEH0bNnz1zHAADqiLfffnuNr/faa69q/SEIe++99xrFxIkTJ6Z8FrnlOiUAAAAAAAAAAAAAAAAA1jJv3rw1vq7uH4Cw1VZbrfH1N998E6tWrarWmeSGYiIAAAAAAAAAAAAAAAAAa1m8ePEaX7ds2bJa57Vu3XqtZ4sWLarWmeSGYiIAAAAAAAAAAAAAAAAAa2nVqtUaX3/zzTfVOu//LzpGRLRo0aJaZ5Ib9XIdAABI3f//L3kRER988EG0adMmB2kAAAAAAAAAAADIpq+++ip69eq1xrN1/b4yAIBUtW/ffo2vZ8yYUa3zPv744zW+bt68eTRq1KhaZ5IbiokAUIvl5699+XGbNm2ibdu2OUgDAAAAAAAAAABArq3r95UBAKRqm222iaeeeuqHr59//vlqnffcc8+tdT61k3/rBAAAAAAAAAAAAAAAAGAte++99xpff/LJJ2sUFati4cKF8fDDD6/xbN999005G7mlmAgAAAAAAAAAAAAAAADAWnbYYYfYYost1nh2/vnnx7Jly6p81vnnnx9Lly794euNNtooDjnkkGpnJDcUEwEAAAAAAAAAAAAAAABYS35+flxyySVrPPvwww/jmGOOibKyssTn3HDDDXH33Xev8eyUU06JzTbbLB0xyQHFRAAAAAAAAAAAAAAAAADW6cgjj4y+ffuu8eyxxx6LffbZJ+bNm7fe3WXLlsVvfvObOPvss9d4vskmm8Qf//jHtGcle+rlOgAAAAAAAAAAAAAAAAAANVN+fn48/vjjsf3228f8+fN/eP7cc89F9+7dY9iwYbH//vtHr169omXLlrF48eKYMWNGPPPMMzFq1KhYsGDBGuc1btw4nnrqqWjTpk22vxXSKK+ioqIi1yEAgNQsXLgw2rVrt8azBQsWRNu2bXOUCAAAAAAAAAAAgGzxe8gAgGx66623Yu+9946FCxemfEbTpk3j4Ycfjr333juNyciF/FwHAAAAAAAAAAAAAAAAAKBm23777eONN96IwsLClPa7dOkSEyZMUEqsIxQTAQAAAAAAAAAAAAAAAKjU5ptvHm+//XZcd9110bp160Q7zZo1i0svvTSmTJkSvXv3znBCsiWvoqKiItchAIDULFy4MNq1a7fGswULFkTbtm1zlAgAAAAAAAAAAIBs8XvIYMPx8ssvx8CBAxPPq4oA2bB06dJ49tln45///Ge8/fbb8eWXX8aiRYuiefPmsfHGG8fWW28dQ4YMiX322SdatGiR67ikWb1cBwAAAAAAAAAAAAAAAACgdmnatGkcdNBBcdBBB+U6CjmQn+sAAAAAAAAAAAAAAAAAAEDtoZgIAAAAAAAAAAAAAAAAACRWL9cBAAAAAAAAAAAAAACAmm/AgAFRUlKS8ffUr18/GjRosNav5s2bR7t27db61aVLl+jRo0e0atUq49kAgP9QTAQAAAAAAAAAAAAAAGqMVatWxapVq+K7776r0l7btm2jR48e0aNHj+jVq1fssssu0adPn6hXT3UCANLNP10BAAAAAAAAAAAAAIBab+HChbFw4cJ45ZVXfnjWpEmT2GmnnaJ///5RXFwcu+66q6IiAKSBf5oCAAAAAAAAAAAAAAB10rJly+LFF1+MF198MSIi2rRpE0OHDo1DDjkkBg4cqKQIACnKz3UAAAAAAAAAAAAAAACAbPjqq6/izjvvjD333DM6dOgQZ5xxRnz88ce5jgUAtY5iIgAAAAAAAAAAAAAAsMH56quv4uabb47u3bvHIYccEm+88UauIwEbgG+//TbXEeqsJUuW5DrCBkUxEQAAAAAAAAAAAAAA2GCtXr06Hnvssdhpp51i9913jylTpuQ6ElBH/fWvf42uXbvGM888k+sodc6IESNiyy23jIcffjjXUTYYiokAAAAAAAAAAAAAAAAR8dJLL8W2224bZ555ppu3gLSZM2dODB48OI466qj46quv4g9/+EOuI9UpM2bMiHPOOScWLFgQhx9+eOy3334xd+7cXMeq8xQTAQAAAAAAAAAAAACokgEDBkReXt4G/evee+/N9f8MZEhZWVncdNNNseWWW8aYMWNyHQeo5e68884oKiqKZ599NiIifvKTn8S1116b41Tp8c9//nONfzY++uijOcnRrVu3+O1vf/vD12PHjo2ioiJ/D8+werkOAAAAAAAAAAAAAAAA1D29e/eOfffdN+X9FStWxIoVK2LlypWxYsWK+Pbbb2PevHkxb968+PLLL6O0tDSNade2YMGCOPDAA+Pcc8+NK664IgoKCjL6PqBu+frrr2PYsGHxxBNP/PCsQ4cO8cwzz0Tv3r1zmCw9SktL4+yzz17j2QcffJCTLHl5eXH55ZdHYWFhHH/88bFixYpYvHhxHHjggXHaaafFtddeGw0aNMhJtrpMMREAAAAAAAAAAAAAgCpp2LBhriNQC/Tp0ycuu+yyjJxdUVERX375Zbz//vs//Hr77bdj8uTJUVFRkdZ3XX311TFx4sR46KGHon379mk9O6kBAwak/fsCMmf8+PFx5JFHxueff/7Ds+7du8fzzz8fm222WQ6Tpc8tt9wS06dPX+PZ1KlTc5TmP4444ojYYostYp999omvv/46IiJGjBgREyZMiL///e/RuXPnnOara/JzHQAAAAAAAAAAAAAAgNrl5ptvjrZt2+Y6BhuwvLy82HjjjWOPPfaIM888M+66666YNGlSLFy4MB555JE46aST0loifPnll6Nfv35rlIwA1mXEiBExaNCgNf5+0aNHjygpKakzpcSFCxfG8OHD13qe62JiRMROO+0U48ePj0022eSHZ5MmTYodd9wxJk6cmMNkdY9iIgAAAAAAAAAAAAAAVbLlllvGM888E82aNct1FFhD69at45BDDonbb789Pv/88xg7dmwcfPDBUb9+/WqfPXv27Bg4cGB88cUXaUgK1DWrVq2KE044IU4//fQoKyv74XlhYWG8/PLL0aFDhxymS68LL7wwlixZstbzGTNmRGlpaQ4SramwsDBeffXV6Nq16w/PvvzyyxgwYEA8+uijOUxWtygmAgAAAAAAAAAAAABQZdtuu2089dRT0aBBg1xHgXWqV69eDBkyJB599NGYNWtWnHLKKdUuKM6cOTMGDhwY8+bNS1NKoC745ptvYvfdd4/Ro0ev8bxnz57x0ksvpfUG11ybPHly3HXXXev8rLS0NGbMmJHlROu2+eabx8svvxybb775D8+WL18ehx12WNx22205TFZ3KCYCAAAAAAAAAAAAAJCSAQMGxIMPPhgFBQW5jgLr1bFjx7jtttti1qxZcfjhh1frrI8++iiGDh1aI24FA3Lviy++iF133TUmTJiwxvPOnTvHc889F23bts1Rssw444wzory8/Ec/nzp1ahbTrF/Hjh3jxRdfjE033fSHZxUVFfHrX/86brjhhhwmqxsUEwEAAAAAAAAAAAAASNnQoUNj1KhRuY4BiXTs2DEefPDBGDNmTGy88cYpn/PGG2/Eueeem8ZkQG00Y8aM6Nev31plvLZt28bzzz8fHTt2zFGyzHjssceipKRkvTM1qZgY8Z+bE1944YVo06bNGs/PPvvsuPLKK3OUqm5QTAQAAAAAAAAAAAAAoFqOP/74uOqqq3IdAxI74IAD4v3334/ddtst5TNuvPHG+Pvf/56+UECt8tFHH8Wuu+4an3zyyRrPGzZsGGPHjo0tt9wyR8kyY8WKFfG73/2u0rmaVkyMiOjRo0c88cQTUb9+/TWeX3DBBTFixIgcpar96uU6AAAAAAAAAAAAAAAAtd+5554bCxcujGuvvbZKezvuuGOtLDX26NEj1xGoptatW8dzzz0Xxx9/fPz1r39N6Yxjjz02dtlll2jbtm2a0wE12Zw5c2LQoEHx5ZdfrvXZ6NGjo2/fvjlIlVnXXnttzJkzp9K5Dz74IPNhUrDrrrvGHXfcEcccc8waz88444zYeOON4+CDD85NsFpMMREAAAAAAAAAAAAAgLS45pprYtGiRXHPPfck3pk4cWI8//zzcfnll2cwGaxbgwYN4oEHHojGjRvHnXfeWeX9xYsXx4UXXhijRo3KQDqgJpo7d24MGjQoPv/887U+u+CCC+KII47IQarMmjt3bvz5z39ONDtjxowoLS2NjTbaKMOpqu5Xv/pVvPfee3H99df/8Ky8vDyOOuqoaNu2bRQXF+cwXe2Tn+sAAAAAAAAAAAAAAADUHXfeeWfsv//+Vdq54oor4sYbb8xMIEhg5MiRsc8++6S0e9ddd8XkyZPTnAioiZYuXRp77bVXzJ49e63PiouLY/jw4TlIlXnnn39+LFu2LNFsaWlpfPTRRxlOlLo///nPsd12263xbOXKlXHQQQcluhGS/6WYCAAAAAAAAAAAAABA2hQUFMRDDz1U5VuHzj777HjggQcylArWr6CgIB5++OHo3bt3lXfLy8vjrLPOykAqoCYpLy+PI444IqZMmbLWZ23atIm//vWvUVBQkINkmfX666/HX//61yrtTJ06NUNpqm+jjTaKBx98MJo2bbrG80WLFsWBBx4YK1asyFGy2qdergMAAAAAAAAAAAAAAFC3NGzYMJ566qkoLi6Od999N9FORUVFHHvssdGyZcuUb66D6mjSpEn85S9/iR122CFWrVpVpd2XXnopxo8fH7vttluG0tVe5eXlMXXq1Hjvvfdi+vTpMWPGjJg3b14sWLAgFi1aFCtWrIiVK1dGaWlpNGjQIBo3brzGr2bNmkXHjh2jS5cusdlmm0WXLl1++FW/fv1cf3sZU1ZWFq+//npMnjw5pk6dGh988EHMnz8/vvvuu/juu+/i+++//+GvT8uWLaN79+7Rs2fP6N27d+yxxx7Rpk2bXH8Ldc55550XY8eOXedno0ePjk033TTLiTKvoqIizjjjjKioqKjS3gcffJChROnRvXv3uPrqq+PUU09d4/mkSZPi5JNPjnvvvTc3wWoZxUQAAAAAAAAAAAAAANKuefPm8eyzz8Yuu+wSM2fOTLRTVlYWhxxySDz33HPRv3//DCeEtfXu3TsuuuiiuPDCC6u8e8sttygm/o+5c+fGk08+GU8//XT8+9//jiVLliTaW758eSxfvjwWLVpU6Wz9+vWjT58+sdNOO/3wq0uXLtVMnlulpaUxZsyY+Pvf/x7/+te/YvHixeud/29J8YsvvoipU6fG3//+94iIyM/Pj+233z4OPvjgOO6446J169aZD1/HPfbYY3Httdeu87PDDjss9ttvvywnyo6//OUvMXHixCrv1eQbE//rpJNOivvvvz9ef/31NZ7fd999MXDgwPjVr36Vo2S1R15FVSurAECNsXDhwmjXrt0azxYsWBBt27bNUSIAAAAAAAAAAACypbb8HrI5c+bELrvsEl988UXinRYtWsT48eNj6623zmAyqmrAgAFRUlKSeP5Xv/pVrbx1avXq1dGrV6/46KOPqrRXr169+Pjjj6Njx45pz/Tyyy/HwIEDE8/noiqyevXqGDt2bNx6663x4osv5iTDpptuGkOHDo1DDjkk+vfvH/n5+Rl5zzHHHBP33Xdfotkk/3+wdOnSuOOOO+LGG2+Mzz77LA0J/1fDhg3jsMMOi4svvjg233zztJ69ofj000/jpz/96TqLoq1atYoPP/xwrX8e1wVLly6Nrbbaqkr//P6vnj171vhbEyMi3nvvvdhuu+2irKxsjec/+clPYsqUKdGpU6ccJasdMvN3WAAAAAAAAAAAAAAAiIguXbrEs88+Gy1btky8s3jx4vj5z38eH3/8cQaTwboVFBTExRdfXOW9srKyGDlyZAYS1XxjxoyJoqKiGDp0aLzwwgs5KSVG/OemxhEjRkRxcXF07NgxTj/99Pjkk09ykiWpJ554Irp37x6//e1v015KjIhYsWJF3HfffdGzZ884//zz47vvvkv7O+qy1atXxxFHHPGjt1f+6U9/qpOlxIiIK664IqVSYkTEjBkzorS0NM2J0q93795x9NFHr/V8yZIlccwxx+Ts72W1hWIiAAAAAAAAAAAAAAAZVVRUFE8//XQ0btw48c68efNizz33jC+//DKDyWDdDj/88OjVq1eV95LeoldXzJ07NwYPHhwHHnhgTJs2Lddx1jBv3rwYMWJEvPbaa7mOsk6LFy+OQw89NA466KCYP39+xt+3cuXKuOqqq6JPnz7x9ttvZ/x9dcU111wTEyZMWOdnW265ZZx44olZTpQdH3/8cVx//fUp75eVlVX51tlc+eMf/xj169df6/m4ceM22LJ5UoqJAAAAAAAAAAAAAABkXL9+/eKxxx6LjTbaKPHOzJkzY/DgwbFkyZIMJoO15efnx29/+9sq782dOzfeeeedDCSqeV544YXYeuut49lnn811lFrns88+i/79+8ejjz6a9XfPmjUr+vXrF7feemvW313bzJ49O4YPH/6jn19xxRVRr169LCbKnnPOOSdWrlz5w9d5eXlx7LHHVumMqVOnpjtWRnTp0iWOO+64dX72hz/8IRYuXJjlRLWHYiIAAAAAAAAAAAAAAFmx1157xb333ht5eXmJd959993Yb7/9YsWKFRlMBms79NBDo0mTJlXeGzt2bAbS1Cz33Xdf7LXXXvHNN9/kOkqtM3Xq1Nh5551zWtpatWpVnHbaaXHhhRfmLENtcOqpp8by5cvX+dlWW20VBx54YJYTZcdLL70UTzzxxBrPjjrqqDjmmGOqdE5tKSZGRJxxxhnrfL548eI477zzspym9lBMBAAAAAAAAAAAAAAga4444oi46aabqrQzfvz4OOyww2L16tUZSgVra9q0aRx88MFV3qvrxcTHH388jjvuuCgrK8t1lFrniy++iJ///Ocxd+7cXEeJiIjLL788Tj/99FzHqJEee+yx9d4GetZZZ1WpZF9brF69Os4888w1njVu3DiuuOKKKCoqqtJZtamY2KNHjxg4cOA6P7v33nvjtddey3Ki2kExEQAAAAAAAAAAAACArDr99NPjj3/8Y5V2nnrqqTjhhBMylAjW7aijjqryzjvvvBPz58/PQJrcmzx5chx55JFRXl6e6yi1zrJly2LfffetMaXE/xoxYkRcfvnluY5Ro5SVlcUFF1zwo5+3aNEijj766Cwmyp477rgj3nvvvTWe/fa3v42OHTtGq1atokOHDonPqk3FxIiIk08+eZ3PKyoq4pxzzslymtqhXq4DAAAAAAAAAAAAAACw4Rk+fHh89dVXMXLkyMQ79957b7Rp0+b/sXffcVLU9x/H37t7ba/CNeCoRz16kxYF7IqKvcYSS4zR2DUaNLHE2GIJajTqz96CLRJFxY6AIr2X4yh31OMKcHWv7e7vD6KRUHb22JnZ8no+Hv7h7Gfm+765YW5v7/uZrx555BETkwH/dcQRRygpKUkNDQ2G9/H7/Zo3b55OPfVUE5NZr7GxURdeeKEaGxsP+VgJCQnKz89Xly5dlJOTo7Zt2yopKUkJCQnyer1qbGyUx+NRZWWlysrKtH37dhUXF0f0Ko1XXXWVFi1aFNQ+ycnJKigoUJ8+fdS2bVulpaWpqalJNTU12rRpk1avXq3NmzcfcrY//elPys/P1y9/+ctDPlY0ePHFF1VUVHTA188++2y53W4LE1lj9+7duuuuu/ba1qFDB91+++0//X///v21fft2Q8dbt26dmpqalJCQENKcZjnllFOUnJys+vr6fV77/vvv9cknn+ikk06yIVn4ojERAAAAAAAAAAAAAAAAAAAAAGCLv//979q5c6fefvttw/s8+uijys7O3qtRAjBLUlKSxo4dqy+++CKo/RYuXBh1jYlPPfVUq1dAS0pK0nHHHacJEyZo7NixKigoUFxccC0tzc3N2rhxo5YuXaoFCxZo7ty5mjNnjpqamlqVyUofffSR3nzzTUO1bdq00a9+9SuddtppOuKIIxQfH3/Q+i1btujTTz/Vq6++qu+++65V+fx+v379619r6NCh6tu3b6uOES08Ho/+/Oc/H7TmwgsvtCiNte655x5VVFTste3+++9XSkrKT/8/YMAAffnll4aO19LSorVr12rAgAEhzWmW5ORkTZgwQe+///5+X//Tn/5EY+L/cNodAAAAAAAAAAAAAAAAAAAAAAAQm5xOp1577TUdf/zxQe33hz/8QS+++KJJqYC9HXfccUHvs3DhQhOS2Ke2tlYPPvhg0PtlZWXp4Ycf1rZt2/Thhx/q6quv1oABA4JuSpSk+Ph49e7dW+ecc44efvhhzZgxQ7t27dInn3yiq6++Wrm5uUEf0wpVVVX67W9/G7AuIyNDjz32mLZu3arJkyfrqKOOCtiUKEmdOnXSlVdeqdmzZ2vRokU6+uijW5XT4/HowgsvjIhGTzO99tpr2rZt2wFfz83N1bhx4yxMZI01a9bo6aef3mvb0KFD9atf/Wqvbf379w/quK1tZrbLWWeddcDXFi1apA8++MDCNOGPxkQAAAAAAAAAAAAAAAAAAAAAgG0SEhL0r3/9S6NGjQpqv6uuukpTp041JxTwMyNHjgx6n0WLFpmQxD5TpkzRzp07g9rnvPPOU1FRkW677Ta1bdvWlFw/rnD2zDPPaNu2bfriiy90zjnnGGros8q///3vgza6SdKECRO0du1a3XzzzUpOTm71WEOHDtVXX32l119/XampqUHvv3jxYt1zzz2tHj/S+f1+TZ48+aA1J5xwgpzO6GvHuummm9TS0rLXtscff3yfrzXY1Q8jrTHx2GOPlcPhOODrjzzyiIVpwl/0/UsAAAAAAAAAAAAAAAAAAAAAAESUlJQUffLJJ+rXr5/hfbxer84//3zNmDHDvGCApIEDBwa9z/bt21VWVmZCGnu8+uqrQdXffvvtmjJlimkNifvjcrl07LHH6p133tHmzZt15513qk2bNpaNfyB+v/+gr9955536+OOPQ7ri40UXXaR58+apa9euQe/72GOPacOGDSHLEkk+/fRTrVmz5qA1EyZMsCiNdT7++GNNnz59r22nnXaajjzyyH1qg10xcdWqVYcSzXI5OTkHvefPmTNHc+fOtTBReKMxEQAAAAAAAAAAAAAAAAAAAABgu8zMTH322Wfq0qWL4X0aGxt12mmnafHixSYmQ6zLzMxUXl5e0PuVlJSYkMZ61dXVmjNnjuH6008/XQ899JCJiQJr166d/vKXv6ikpERjx461NcvBPPDAA/rLX/5y0BXaWqtv37769ttvlZ+fH9R+TU1NuvXWW0OeJxI89dRTAWuOOeYYC5JYp7m5WTfffPNe2+Lj4w+4MmBaWlpQP6cjbcVEKfD3+PHHH7coSfijMREAAAAAAAAAAAAAAAAAAAAAEBY6deqkzz//XDk5OYb3qa6u1oknnqh169aZmAyxrjWrJm7ZssWEJNb77rvv5PV6DdUmJCTo73//u8mJjEtPT1fHjh3tjrFfv/vd7zRp0iRTx+jatas++eQTpaenB7XfBx98oB9++MGkVOGptLRUX3zxxUFrevToEdKVLcPBk08+qbVr1+617Xe/+5169ep1wH0GDBhg+Pjr1q1TU1NTq/PZYcyYMQd9/f3339e2bdssShPeaEwEAAAAAAAAAAAAAAAAAAAAAISNPn366NNPP1VaWprhfcrKynTcccfRKADTBLNC2I82b95sQhLrBbPi2Zlnnhm2jYDh5PDDD9fkyZMtGaugoEBvvPFG0PsdaMW8aPXWW28FbMAN1LAWacrLy3XffffttS0zM1N33XXXQffr37+/4TFaWlpUWFjYqnx2GTFixEFf93q9rfo3FY1oTAQAAAAAAAAAAAAAAAAAAAAAhJXhw4dr6tSpSkxMNLxPcXGxTjjhBO3atcvEZIhVHTp0CHqfaFkxMZjVSE888UQTk0QHt9utl19+WXFxcZaNOXHiRF1yySVB7TN16lStX7/epETh5/XXXw9YM2rUKAuSWOfOO+9UVVXVXtvuvvtutW3b9qD7BbNioiStWrUq6Gx26tatm7Kzsw9a89prr1mUJrzRmAgAAAAAAAAAAAAAAAAAAAAACDtHH3203nrrLblcLsP7rFixQqeccorq6+tNTIZYFMuNieXl5YZrg1lJLVbdcccd6tWrl+Xj/u1vfwvYcPZzPp9P//jHP0xMFD42btyoJUuWBKwbOHCg+WEssmTJEr344ot7bevdu7euvvrqgPsG25gYzKqr4WLYsGEHfX3lypVauHChRWnCF42JAAAAAAAAAAAAAAAAAAAAAICwdOaZZ+rZZ58Nap/vv/9eZ599tpqbm01KhViUl5cX9D7V1dUmJLFebW2t4do2bdqYFyQK5OTk6KabbrJl7MzMTN16661B7fP222/L7/eblCh8fPLJJ4bqoqnx9oYbbpDP59tr2yOPPKL4+PiA+/bt21dOp/GWtEhsTCwoKAhYM2XKFAuShDcaEwEAAAAAAAAAAAAAAAAAAAAAYevXv/61HnzwwaD2+fTTT3XZZZfFREMNrJGenh70Ph6Px4Qk1mtpaTFcW1NTY2KSyHfLLbcoJSXFtvFvuOGGoFZN3LJli2bNmmViovDw6aefBqzJzc1Vdna2BWnM9+6772rmzJl7bTv66KN16qmnGtrf7Xare/fuhseLxMbEvn37Bqz56KOPLEgS3mhMBAAAAAAAAAAAAAAAAAAAAACEtT/84Q+6+eabg9rnzTff1I033mhOIMScpKSkoPdpaGgwIYn13G634dpNmzaZmCSyJSQk6IorrrA1Q0pKii6++OKg9nn33XdNShMeGhsb9c033wSs6927twVpzNfQ0KDf//73e21zOp16/PHHgzpOMKtHrl+/Xk1NTUEd325GGhMLCwu1bt06C9KELxoTAQAAAAAAAAAAAAAAAAAAAABh79FHH9WvfvWroPZ58skndd9995mUCLGkNY2J0bJiYlZWluHajz/+2MQkke2MM84IixX3rrzyyqDqv/76a5OShIeFCxeqvr4+YF23bt3MD2OBRx55RCUlJXttu/TSSzV48OCgjjNgwADDtS0tLSosLAzq+HYzuiJkrK+aSGMiAAAAAAAAAAAAAAAAAAAAACDsORwOvfDCC5o4cWJQ+91111169tlnTUqFWBHLjYldunQxXPvuu++qrKzMxDSR68wzz7Q7gqQ9DWXBrP63atWqqP6ezp0711Bd165dTU5ivq1bt+rhhx/ea1tqaqr+8pe/BH2sYBoTJWnlypVBj2GnvLw8uVyugHVfffWVBWnCF42JAAAAAAAAAAAAAAAAAAAAAICIEBcXp3feeUfjxo0Lar/f/e53evfdd01KhViQkJAQ9D5NTU0mJLFe//79Ddfu3r1b11xzjfx+v4mJIk98fLxOPPFEu2P85LTTTguqfsaMGeYECQM//PCDobpoaEy8/fbbVVdXt8+2Dh06BH2sYO4LUuQ1JrpcLuXl5QWsmzNnTkzf72hMBAAAAAAAAAAAAAAAAAAAAABEjKSkJH344YcaMmSI4X18Pp8uuugiffnll+YFQ1RrbGwMep/WrLIYjkaPHh1U/fvvv6/LLrtMXq/XpESRZ8SIEUpPT7c7xk+OPvrooOoXLVpkUhL7zZs3z1Bda5r3wskPP/ygt956a69tnTt31i233NKq4/Xp00dxcXGG6yOtMVEytlrszp07tWbNGgvShCcaEwEAAAAAAAAAAAAAAAAAAAAAESUjI0PTp09Xjx49DO/T1NSkM844w3ATCvBzDQ0NQe8TLY2J3bp1U79+/YLa59VXX9WYMWMMr0YX7caMGWN3hL2MGjVKDofDcP2KFStMTGOfuro6lZSUGKrNyckxOY15/H6/rr/++n1W9nvwwQfldrtbdcyEhAT16tXLcP2qVataNY6d2rdvb6ju+++/NzlJ+KIxEQAAAAAAAAAAAAAAAAAAAAAQcXJyctS3b9+g9mlpaVFLS4tJiRDNWtOY2NqGn3B0wQUXBL3P/PnzNWbMGB177LH697//rebmZhOSRYYRI0bYHWEvbdu2DaqpLBJXuzOiqKhon2a9A4nkxsTXXntN8+fP32vbyJEj9ctf/vKQjjtgwADDtevWrWvVyrN2ys7ONlS3ZMkSc4OEMRoTAQAAAAAAAAAAAAAAAAAAAAAR55ZbbtG0adMM1zscDr3yyiv6xS9+YWIqRKvWNNREU2Pib37zGyUmJrZq36+++kqnn3668vLydNVVV2n69OmtavSMZAUFBXZH2EcwmUpKSqLye7Z27VrDtZHamFhbW6tJkybts/3xxx8PatXM/QmmMdHr9aqwsPCQxrOa0cbESFwNMlRoTAQAAAAAAAAAAAAAAAAAAAAARJRnnnlGkydPDmqfv/zlLzrvvPPMCYSot3PnzqD3iabGxNzcXN14442HdIyKigo9//zzmjBhgrKysjRhwgQ9+uijmj9/flSvZOpwOIJandAqvXv3Nlzr9/tVWlpqYhp7FBUVGapzuVxKS0szOY057r//fm3fvn2vbeecc44OP/zwQz52//79g6qPtJU3jTYmrl692uQk4SvO7gAAAAAAAAAAAAAAAAAAAAAAABj1ySef6Prrrw9qn8svv1x33HGHSYkQC/63sceINm3ahD6Ijf74xz/qvffe0/r16w/5WPX19Zo+fbqmT58uSUpOTtbIkSP1i1/8QmPGjNHo0aMNNwWFu5ycHCUnJ9sdYx/5+flB1W/fvl3dunUzJ4xNtm7daqguJSXF5CTm2LBhg/72t7/ttS0xMVEPP/xwSI4fzIqJUuStLNi2bVtDddu3b9fu3buj7p5vBI2JAAAAAAAAAAAAAAAAAAAAAICIsHTpUp133nnyer2G9znmmGP07LPPmpgKsaA1jYmdOnUyIYl9UlNT9fbbb2vcuHGqr68P6bHr6+s1Y8YMzZgx46dtffr00RFHHKGxY8fqmGOOidjzmZuba3eE/crJyQmqvjX/BsJdWVmZobrU1FSTk5jj1ltvVWNj417brr/++qCbUg+kZ8+eSkxM3GeMA4m0FRODaUjdtGlTTDYmOu0OAAAAAAAAAAAAAAAAAAAAAABAINu2bdMpp5yi2tpaw/v07dtX7733nuLj401MhljQmqaszp07m5DEXsOHD9d7772nxMRE08cqLCzUiy++qEsvvVSdO3fWgAEDdOutt+qHH36Q3+83ffxQCdfGxGBz7dq1y6Qk9tmxY4ehukhcMfHrr7/WBx98sNe2nJwc3XnnnSEbw+VyqaCgwHB9pDUmBtOQWlpaamKS8EVjIgAAAAAAAAAAAAAAAAAAAAAgrNXV1emUU07Rli1bDO+Tm5urTz75JCZXMELoFRcXB71PpK7wF8iECRP0xRdfKCsry9JxV65cqccee0xjxoxR165dNWnSJK1bt87SDK2RlpZmd4T9Sk9PD6q+oaHBpCT2KS8vN1SXnJxscpLQ8nq9uvHGG/fZfu+99yojIyOkYw0YMMBw7fr16w2vrhgOgmlIpTERAAAAAAAAAAAAAAAAAAAAAIAw4/V6df7552vx4sWG93G73frwww/VrVs384IhpixfvjzofaK1MVGSxo4dq6VLl+qYY46xZfzNmzfroYceUu/evXXCCSfom2++sSWHEVasLtkaweaKxsbE6upqQ3VxcXEmJwmt5557bp97Vr9+/fSb3/wm5GP179/fcK3X61VhYWHIM5iFxsTAaEwEAAAAAAAAAAAAAAAAAAAAAIStm266SdOmTTNc73A49Nprr2nUqFEmpkIs2bFjh+GV1X4u2htjO3bsqC+//FJvvfWWunTpYksGv9+vzz//XEcffbTGjx+v+fPn25LjYKKlMdHj8ZiUxD5GV++LpMbEXbt26a677tpn+2OPPSaXyxXy8YJZMVHas/JppAjm+260yTXa0JgIAAAAAAAAAAAAAAAAAAAAAAhLTzzxhJ566qmg9nnooYd09tlnm5QIsag1qyV269ZNbdu2NSFN+LngggtUVFSk559/XgUFBbblmDlzpkaNGqVrrrlGdXV1tuX4X36/3+4I+xVsLofDYVIS+0RjY+I999yjysrKvbadcMIJOvHEE00ZL5gVE6XobUyMxhVFjaAxEQAAAAAAAAAAAAAAAAAAAAAQdj766CPdfPPNQe1z5ZVX6rbbbjMpEWLV3Llzg95n+PDhJiQJXwkJCbryyiu1evVqff311/rVr36ljIwMy3P4/X794x//0LBhw1RYWGj5+PvT1NRkd4T9MtqU96OkpCSTktjH6DkwY6VBM6xevVrPPPPMXttcLpcee+wx08bMz89XSkqK4fpIakwM5vtOYyIAAAAAAAAAAAAAAAAAAAAAAGFg0aJFuuCCC+Tz+Qzvc/zxx+/TkAGEwhdffBH0PrHWmPhzRx11lF555RWVlZXp008/1fXXX2/5Sopr167V6NGjNW/ePEvH3Z9gGwCtQmOiDP+MCddVL//XTTfdpJaWlr22eb1eDRgwQA6Hw5T/nE5nUCuUrlq1KtRftmlYMTGwyFlLFAAAAAAAAAAAAAAAAAAAAAAQ9bZs2aKJEycG1egwYMAAvfvuu0E1EQBG1NXVac6cOUHvN2zYMBPSRJaEhASdeOKJOvHEEyVJFRUV+u677zRr1izNmjVLixYt2qeJKpR2796tE088Ud9995369u1r2jiBVFdX2zb2wQSbKxobExMTE+XxeALWmXmdhsq0adP02Wef2R0joPXr16uxsVGJiYl2RwnI6TS+HmAwtdGEd10AAAAAAAAAAAAAAAAAAAAAgLBQU1Ojk08+Wdu2bTO8T/v27fXxxx8rPT3dxGSIVTNmzFBTU1NQ+7hcLo0cOdKkRJErOztbp512mk477TRJ/236nD17tr7//nvNnTs35E18u3bt0llnnaX58+crJSUlpMc2qry83JZxAwk2V2ZmpklJ7GO0MdHr9VqQpvWam5t1yy232B3DEK/XqzVr1mjw4MF2RwkomIbUSGi0NENstmMCAAAAAAAAAAAAAAAAAAAAAMKK1+vVeeedp2XLlhneJzk5WR999JG6dOliYjLEsjfeeCPofQ4//HC1bdvWhDTRJSUlRccee6zuueceff7559q5c6fmzp2rhx56SEcddZTi4+NDMs7q1at17733huRYrVFWVmbb2AcTbGNihw4dTEpiH6OrQIb7iolPPPGE1q5da3cMw1auXGl3BENoTAyMxkQAAAAAAAAAAAAAAAAAAAAAgO2uu+46ffrpp4brnU6n3nzzTR122GEmpkIs2717t6ZOnRr0fhMnTgx9mBjw40qTt99+u77++mtVVlbqn//8p84666xDbvqZPHmySkpKQpQ0OOXl5aqvr7dl7IPZuHFjUPXt27c3KYl9UlNTDdU1NzebnKT1ysrKdN999+21LTMzU7t375bf77fkv+XLlweVedWqVaE8BaYJZqVMGhMBAAAAAAAAAAAAAAAAAAAAALDBY489pn/84x9B7fPII4/o9NNPNycQIGnKlClqaGgIej8aE0MjLS1N559/vt577z1t27ZNjz76qDp37tyqYzU3N2vy5MmhDWiQ3+9XUVGRLWMfTGFhoeFah8MRlY2J7dq1M1RXW1trcpLWu/POO1VdXb3XtkmTJikjI8OyDD179pTTabxFLVJWTAymMTE9Pd3EJOGLxkQAAAAAAAAAAAAAAAAAAAAAgG2mTp2q2267Lah9rr76at18880mJQL2NKQ8/vjjQe/Xq1cv9enTx4REsS0zM1O33HKLioqK9PDDDyspKSnoY7zxxhtBNRqF0po1a2wZ92CCydS1a9dWnfNwF+mNiYsXL9ZLL72017aOHTvq2muvtTRHUlKSunbtarg+UhoTPR6P4drc3FwTk4QvGhMBAAAAAAAAAAAAAAAAAAAAALaYP3++LrzwQvl8PsP7TJgwQU899ZSJqQDp9ddfb9Uqd1dccYUJafCjxMRE3XbbbZoxY0bQK5RVVFRo1qxZJiU7uHnz5tky7oHs2rVL69atM1w/YMAAE9PYx+gqkOHamHjDDTfs8/Pz7rvvtqWJNJiG7PXr17dqNVqrBfN9N9rkGm1oTAQAAAAAAAAAAAAAAAAAAAAAWK6kpESnnnqq6uvrDe8zaNAgvf3223K5XCYmQ6xrbm7WfffdF/R+SUlJ+vWvf21CIvyvUaNG6eOPP5bTGVxbjF2NiXPmzLFl3AP54Ycf5Pf7DddHa2Nip06dDNV5PB7bVts8kHfeeWef67l379667LLLbMlTUFBguNbn84XlKqL/q66uznAtKyYCAAAAAAAAAAAAAAAAAAAAAGCB6upqnXzyySotLTW8T15enj7++GOlpaWZmAyQ7r//fm3YsCHo/S644AJlZWWZkAj7c8QRR+jKK68Map+FCxealObgFixYoOrqalvG3p+vv/46qPphw4aZlMRevXv3Nly7c+dOE5MEx+Px6Lbbbttn+3333ae4uDgbEgW3YqIkrVq1yqQkoRPMiolGm1yjDY2JAAAAAAAAAAAAAAAAAAAAAADLtLS06Oyzz9bKlSsN75OSkqKPPvooZif+wzqLFi3S/fff36p9r7vuuhCnQSD7a846mI0bN5qU5OCam5v16aef2jL2/nz44YdB1Y8fP96kJPYKZpW/8vJyE5ME59FHH1VJScle24YNG6ZzzjnHpkTBNyYG8x7ALjU1NYbq0tLS1L59e5PThCcaEwEAAAAAAAAAAAAAAAAAAAAAlrnmmmv0xRdfGK53Op365z//GbUrdiF81NbW6pJLLlFLS0vQ+55++ukaOnSoCalwMN27d1f//v0N12/bts3ENAf3r3/9y7axf27FihVau3at4fp+/fopNzfXxET26dWrl1wul6HacGlM3LJlix566KF9tj/wwANyOBw2JNojGhsTjX7Pg/3aowmNiQAAAAAAAAAAAAAAAAAAAAAASzz88MP6v//7v6D2+dvf/qaJEyealAjYo6WlReecc06rmmUSEhL06KOPmpAKRgwePNhwbW1trYlJDm7q1KmqqKiwbfwfPf/880HVH3PMMSYlsV9CQoJ69+5tqLasrMzkNMbceuutqq+v32vb+PHjdcIJJ9iUaI+8vDylpaUZrqcxMTrQmAgAAAAAAAAAAAAAAAAAAAAAMN17772nSZMmBbXPddddp+uvv96kRMAefr9fV111laZPn96q/W+88Ub16NEjxKlgVLt27QzXNjc3m5jk4JqamvTiiy/aNr60pzHz9ddfD2qfs88+26Q04WH06NGG6rZs2WJyksBmzZqlt99+e5/tDz74oA1p9hVMg96GDRvU0NBgYppDZ7SROJhVW6MNjYkAAAAAAAAAAAAAAAAAAAAAAFPNnTtXl1xyifx+v+F9TjnlFE2ePNm8UICkxsZG/fKXv9RLL73Uqv07dOigO++8M8SpEIykpCTDtampqSYmCeyxxx5TXV2dbeM/8cQT2r17t+H6Tp06aezYseYFCgNjxowxVFdSUmJykoPzer269tpr99l+6qmnGv4azBZMY6LP59OaNWtMTHPojK6SOWrUKJOThC8aEwEAAAAAAAAAAAAAAAAAAAAAptm4caNOPfVUeTwew/sMHTpUU6ZMkdPJlHeYp7KyUscee6ymTJnSqv1dLpfeeustpaenhzgZgmG0eUiSMjIyTEwSWHl5uf72t7/ZMvbOnTv12GOPBbXPeeedJ4fDYVKi8GC0qa+4uNjcIAH84x//0LJly/ba5nQ6df/999uUaF/BNCZK0sqVK01KEhqbNm0KWON0OjVixAgL0oQn3qUBAAAAAAAAAAAAAAAAAAAAAEyxe/dunXzyyUE1DnXq1EnTpk1TSkqKickQ6z744AP1799fs2fPbvUx7r33Xh155JGhC4VWWbRokeHaHj16mJjEmAceeEBFRUWWj3vTTTdp165dhuudTqeuvvpqExOFh379+ikrKytgnZ2NieXl5brrrrv22X7hhRdqwIABNiTav4KCgqDqw7kx0e/3a/PmzQHr+vXrp7S0NAsShScaEwEAAAAAAAAAAAAAAAAAAAAAIdfc3KyzzjpLq1evNrxPWlqapk2bpry8PBOTIZZt3rxZF1xwgc4880zt2LGj1cc58cQTdccdd4QwGVpjw4YNWrx4seH6vn37mpjGGI/Ho8svv1wtLS2WjfnRRx/ptddeC2qf008/PSwaOc3mdDp1wgknBKwrKiqS3++3ING+fv/73+/TVBofH697773XljwHEuyKiatWrTIpyaErKytTQ0NDwLrx48dbkCZ80ZgIAAAAAAAAAAAAAAAAAAAAAAi5q666Sl9//bXhepfLpbfffluDBw82MRVi1ebNm3XNNdeoZ8+emjJlyiEd67DDDtM///lPORyOEKULX999952uuOIKrVu3zu4o+/XQQw8FVT9u3DiTkgRn9uzZuummmywZa+3atbr44ouD3u/WW281IU14OvnkkwPW1NfXa+PGjRak2dusWbP221R62WWXKT8/3/I8B9OrVy85ncZb1VasWGFimkOzYcMGQ3UnnXSSyUnCG42JAAAAAAAAAAAAAAAAAAAAAICQuv/++/Xyyy8Htc+TTz6pCRMmmJQIsailpUXTpk3Tueeeq549e+of//iHmpqaDumYw4YN0+eff642bdqEJmSYa25u1ksvvaSCggJdfPHFWrJkid2RfvLZZ5/phRdeMFzvcrl0/PHHm5goOH//+9+DbqwM1qZNmzRhwgRVVVUFtd9pp52mMWPGmJQq/JxwwgmGGupWrlxpQZr/am5u1m9/+9t9VmqMi4vTpEmTLM1ihNvtVpcuXQzXb9iwQXV1dSYmaj0j32u3262jjjrKgjThi8ZEAAAAAAAAAAAAAAAAAAAAAEDITJkyRX/605+C2uemm27SNddcY1IixJKdO3fqvffe029/+1t17NhREydO1LvvvnvIDYmSNGTIEH3xxRdq27ZtCJJGFq/XqzfeeENDhw7V2LFj9c4776i5udm2PLNmzdK55567T8PWwZx00klh972bNGmS/vSnPwX1dRi1Zs0ajR8/3vDKbz9KSEjQo48+GvI84SwrK0vjx48PWLd8+XIL0vzXX//6V61atWqf7RdccIG6detmaRajevbsabjW7/eHVbPzz+3vvP+vI488Um6324I04YvGRAAAAAAAAAAAAAAAAAAAAABASHz//fe69NJLg2qyOf3002OuCQahsWPHDn399dd68skn9Zvf/EbDhw9XTk6OzjnnHD333HMqKysL2VhnnHGGvv32W2VmZobsmJFq9uzZOu+889ShQwdde+21mjt3rmVjt7S0aPLkyTruuONUXV0d1L7XXXedSakOzuFwHPT1v/zlLzrllFNUXl4esjHfeustjRgxQsXFxUHve9NNNwXVXBYtLrroooA1Vl7rhYWFuu+++/b72pVXXmlZjmDl5eUFVT9//nyTkhwaI42J5557rgVJwluc3QEAAAAAAAAAAAAAAAAAAAAAAJFv/fr1Ou2009TY2Gh4n+zsbF155ZWaOXOmicmsNWzYMKWnp9sdIywsXrxYf/zjH1u9f2NjoxobG9XQ0KDGxkZVVVWptLRU27dvV2lpaUhWQQzE5XLpwQcf1O9//3vTx4o0lZWVevrpp/X000+rS5cuOuWUUzRx4kSNHz8+5KuIeb1evfnmm7rvvvu0bt26oPcfP368jjvuuJBmMuq0007TvHnztG3btgPWfPLJJ+rVq5fuvvtuXXXVVUpOTm7VWIsXL9bvf/97ffXVV63af/Dgwbr33ntbtW+kO/vss/W73/1ODQ0NB6yxqjHR5/Ppiiuu2O/P0549e2rs2LGW5GiN3NzcoOpnz56tG2+80Zwwh2DhwoUHfd3tduuss86yKE34ojERAAAAAAAAAAAAAAAAAAAAAHBIdu3apZNPPlkVFRVB7VdRUaGTTz7ZpFT2WLduHY2J/7Fs2TItW7bM7hitlp+fr5dfflnjx4+3O0rY27Rpk5555hk988wzio+P1/Dhw3XEEUfosMMOU//+/dW7d28lJCQEdcwtW7Zozpw5+uijj/TJJ5+osrKyVdni4uL05JNPtmrfUMjIyNCzzz6rU0899aB1VVVVuvnmm3Xffffpsssu02mnnaZf/OIXios7eOvP1q1bNX36dL366quaNWtWq3MmJSXpzTffVGJiYquPEcnS09N16qmn6p133jlgzY4dO7Rx40bl5+ebmuVvf/ubvvvuu/2+NmHCBFPHPlRJSUlB1X/zzTfy+XxyOp0mJQre+vXrA76fOf3005WWlmZRovBFYyIAAAAAAAAAAAAAAAAAAAAAoNWampp0xhlnqLCw0O4otktISFC3bt3sjoFDlJSUpNtvv11/+MMfgm6ygdTc3KwffvhBP/zww0/b4uLi1KlTJ3Xs2FF5eXnKzMxUUlKSkpKS5Pf7VVdXp9raWtXW1mrjxo1au3atamtrQ5Ln4Ycf1qBBg0JyrNaaOHGiLrzwQr355psBa3ft2qXHH39cjz/+uFJSUtS3b1/17t1bmZmZSk1NVVNTk2pqarR582atXr1aJSUlIcn43HPPqX///iE5VqS66qqrDtqYKO1ppDOzMXHZsmUHXWn2yCOPNG3sUNi1a1dQ9Tt37tT333+vI444wqREwfv5vetALr30UvODRAAaEwEAAAAAAAAAAAAAAAAAAAAArfbrX/9a3377rd0xwkL37t3lcrnsjoFDcPrpp+vxxx83fUW0WNPS0qLi4mIVFxdbOu4vf/lL3XzzzZaOeSDPPfecVq9erUWLFhnep66uTgsWLNCCBQtMTCbde++9uuSSS0wdIxIcffTRGjBggFasWHHAms8//1yXX365KeNXV1fr3HPPVUNDwwFrunbtasrYobJ27dqg93nzzTfDqjEx0Mqj/fr103HHHWdRmvAWPutcAgAAAAAAAAAAAAAAAAAAAAAiyr333qvXX3/d7hhho3fv3nZHQCskJCTo0ksv1YoVK/TBBx/QlBglzjzzTL366qt2x/hJSkqKPvroI3Xq1MnuKHu5+uqrddddd9kdI2zccMMNB339q6++ks/nC/m4Ho9HZ555ZsDVh91ud8jHDpWdO3cGbOrbnzfeeEMVFRUmJGqd6dOnH/T1G2+8UQ6Hw6I04Y3GRAAAAAAAAAAAAAAAAAAAAABA0N58803dc889dscIKzQmRpa8vDxNmjRJxcXFevnll9W/f3+7IyFEfve73+ntt99WXFyc3VH2kpeXp88++yxsmhNvv/12PfPMM3bHCCsXXnihsrOzD/h6RUWF5syZE9IxKysrddJJJ+mrr74KWPvll1+GdOxQmjRp0kFXezyQ2tpa3XDDDfL7/SakCk5hYaFKSkoO+HpOTo4uvvhiCxOFNxoTAQAAAAAAAAAAAAAAAAAAAABBmTVrli6//HK7Y4QdGhPDX15enq677jrNnDlTW7Zs0QMPPKAOHTrYHQshkpaWppdeekl///vfw64p8Uf9+vXTnDlzbG2EjY+P1+TJk/XQQw/ZliFcud1u3XrrrQetefvtt0M23tSpUzVgwADNmDHDUP2kSZP00UcfhWz8UKiurtb111+v559/vtXHeOutt3TeeeeprKwshMmC9+GHHx709VtuuUVJSUkWpQl/4XmXBQAAAAAAAAAAAAAAAAAAAACErfvuu09NTU12xwg7NCaGn/T0dI0ZM0bjxo3TkUceqdGjR8vpZI0no7KystShQwdt377d7igBTZgwQc8++6y6dOlid5SAOnXqpNmzZ+s3v/mN3n33XUvHzs/P15QpUzRy5EhLx40k1157rR5//PEDNsm9++67mjx5cqvvJaWlpfrkk0/01FNPacmSJUHtW19fr1NPPVVjxozRWWedpREjRqhbt27KyspSUlKSXC5XqzIZ0dzcLI/Ho5qaGhUXF6uoqEhff/21Pv74Y+3cufOQj//uu+9q2rRp+uUvf6kTTzxRhx9+uNq3by+HwxGC9Ma89dZbB3wtLy9P119/vWVZIgGNiQAAAAAAAAAAAAAAAAAAAACAoLjdbrsjhCUaE+2Vm5urgoICFRQUaMCAATr88MM1ePBgUxt1ot3AgQO1detW/fDDD5o6dao+/vhjrVy50u5Yexk9erTuv/9+HX300XZHCUqbNm30zjvv6IMPPtA111yj0tJSU8dLSEjQ9ddfrz/96U9KT083daxIl5KSottvv1233HLLfl8vLS3V9OnTddJJJwV97HfeeUfnn3++/H7/IWWcM2eO5syZs9e2rl27qri4+JCOeyDFxcXKz8835dg/5/F49OKLL+rFF1+UJCUlJenBBx/UjTfeaPrYa9asOWij6F133cX7n/9BYyIAAAAAAAAAAAAAAAAAAAAAICgpKSl2Rwg7aWlp6tChg90xokJ8fLwSExP3+S89PV3t2rVTbm7uT/+1a9dO3bp1U9++fdWmTRu7o0clh8OhMWPGaMyYMXr44Ye1detWffbZZ/rqq680c+ZMbdmyxfJMKSkpOvvss3X11Vdr1KhRlo8fSmeccYaOPfZYPf/885o8eXLIz2diYqLOPfdc3XPPPerevXtIjx3Nrr76ak2ePFmbN2/e7+t///vfW9WYWF9ff8hNibGkoaFBu3fvtmSsZ5999oCv9e3bV1dccYUlOSKJw8/VDABAxCovL1dubu5e28rKypSTk2NTIgAAAAAAAAAAAAAAAACAVZhDBiAcbNy4Ud99950WLFighQsXaunSpaqpqQnpGA6HQ3369NHYsWM1ceJEHXfccUpKSgrpGMG49NJL9eqrrxqq/dWvfqVXXnnFUG1zc7Pef/99TZ06VdOnT1dVVVWr8jkcDg0bNkznnHOOrrjiCmVnZ7fqOLHunXfe0Xnnnbff1xwOh9auXauePXsGdczZs2frhRdeCEW8fWRnZ+vRRx815dgVFRW69dZbTTl2IKeffrpOP/10U8eoqqpS586d93vvcjgcmjFjhsaNG2dqhkhEYyIAABGMD5UAAAAAAAAAAAAAAAAAIHYxhwxAuNq0aZNWr16toqIilZSUaNOmTSotLVVlZaV27typmpoaNTU1qbm5WS6X66dVMTMyMn5aCbNLly7q06ePCgoKNGzYMGVmZtr9Zf3ErMbEn2tpadGcOXO0dOlSrVy5UqtWrVJpaalqampUU1Oj+vp6JScnKy0tTW3atFGvXr3Ut29fDR48WMceeyw/C0LkqKOO0owZM/b72q9//Wv93//9n7WBYIpHHnlEt912235fu/zyy/Xiiy9anCgy0JgIAEAE40MlAAAAAAAAAAAAAAAAAIhdzCEDAHtY0ZiI8LBixQoNHTpULS0t+7wWFxenNWvWqEePHjYkQ6hUVVWpR48eqqys3Oe13NxcrV69Oqwao8OJ0+4AAAAAAAAAAAAAAAAAAAAAAAAAABBuBgwYoD/84Q/7fa2lpUV33323xYkQag8++OB+mxIl6eWXX6Yp8SBoTAQAAAAAAAAAAAAAAAAAAAAAAACA/bjrrrs0dOjQ/b721ltv6fvvv7c4EUJl/fr1euKJJ/b72g033KCTTjrJ4kSRhcZEAAAAAAAAAAAAAAAAAAAAAAAAANiP+Ph4vf7660pMTNznNb/fr2uuuUZer9eGZDgUfr9fV155pRoaGvZ5bciQIXr44YdtSBVZaEwEAAAAAAAAAAAAAAAAAAAAAAAAgAPo37+/Hnnkkf2+tnTpUk2ePNnaQDhkL7zwgr755pt9tufk5OiDDz7YbyMq9kZjIgAAAAAAAAAAAAAAAAAAAAAAAAAcxHXXXaeLLrpov6/98Y9/1IoVKyxOhNZau3atbr755n22JyQk6F//+pe6detmfagIRGMiAAAAAAAAAAAAAAAAAAAAAAAAAATw/PPPa8iQIftsb2ho0C9/+Us1NjZaHwpBaWho0DnnnKPa2tp9Xnvuued0xBFH2JAqMtGYCAAAAAAAAAAAAAAAAAAAAAAAAAABuN1uffDBB2rXrt0+ry1fvly33HKLDakQjOuuu07Lli3bZ/sDDzygSy+91PpAEYzGRAAAAAAAAAAAAAAAAAAAAAAAAAAwoFu3bpo+fbrS09P3ee3pp5/WK6+8Yn0oGDJ58mS98MIL+2yfNGmSJk2aZEOiyEZjIgAAAAAAAAAAAAAAAAAAAAAAAAAYNGTIEP373/9WYmLiPq/99re/1dy5c21IhYOZNm3afle0vO666/TAAw/YkCjy0ZgIAAAAAAAAAAAAAAAAAAAAAAAAAEE48sgj9c477yghIWGv7Y2NjTrjjDNUXFxsTzDsY/78+brgggvk8/n22n7bbbfpySeftClV5KMxEQAAAAAAAAAAAAAAAAAAAAAAAACCdOqpp+rDDz+U2+3ea/v27dt1/PHHq6yszKZk+NHy5ct14oknqra2dq/tDz30kB5++GGbUkUHGhMBAAAAAAAAAAAAAAAAAAAAAAAAoBVOOOEETZ8+XWlpaXttLyoq0oQJE1RTU2NTMqxdu1bHHXecdu7c+dO2uLg4/d///Z9uv/12G5NFBxoTAQAAAAAAAAAAAAAAAAAAAAAAAKCVxo0bpxkzZqhTp057bV+0aJFOPPFEVVdX25Qsdq1atUpHHXWUduzY8dO2zMxMffbZZ/r1r39tY7LoQWMiAAAAAAAAAAAAIl5zc4M8nio1NzfYHQUAAAAAAAAAAAAxaNiwYZo/f75Gjx691/bvv/9exx9/vKqqqmxKFnsWL16s8ePHa9u2bT9t69evn+bNm6ejjz7axmTRhcZEAAAAAAAAAAAARKyWlkatXP25Zn73f/ruh1c087v/08rVn6ulpdHuaAAAAAAAAAAAAIgx7du314wZM/SrX/1qr+1z587Vscceq8rKSpuSxY7Zs2frqKOOUkVFxU/bzj77bM2ZM0c9evSwMVn0oTERAAAAAAAAAAAAEcnrbdGSZR9qe+lq+f0+SZLf79P20tVasuxDeb0tNicEAAAAAAAAAABArElMTNQrr7yiV199VWlpaT9tX7BggQ4//HAVFxfbFy7KvfPOOzruuON+Wp3S7Xbr2Wef1bvvvqv09HSb00UfGhMBAAAAAAAAAAAQkUo2LdTuqm37fW131TaVbF5ocSIAAAAAAAAAAABgj0suuURLlizR6NGjf9pWWFioMWPGaNGiRTYmi05//etfdf7556uhoUGS1L9/f82bN09XXXWVzcmiF42JAAAAAAAAAAAAiDj1nioVb5p/0JrikvnyeKosSgQAAAAAAAAAAADsrXv37po1a5YefvhhJScnS5JKS0t1/fXX25wsuixZskS33367/H6/4uLidMcdd2jhwoUaMGCA3dGiGo2JAAAAAAAAAAAAiDhri76Vz+c9aI3P51XhupkWJQIAAAAAAAAAAAD2FRcXp9tuu02rVq3SxIkTlZqaqhdffNHuWFFlyJAhOvnkkzV06FDNnz9f999/vxITE+2OFfXi7A4AAAAAAAAAAAAABKO8YoMqKjcaqq2o2KCKio3Kzs43ORUAAAAAAAAAAABwYF27dtWHH36ozZs3q3PnznbHiTovv/yy2rZtq7g42uWswoqJAAAAAAAAAAAAiBheb4vWFgW3CmJh0bfyeltMSgQAAAAAAAAAAAAYR1OiOXJycmhKtBiNiQAAAAAAAAAAAIgYJZsWytNQFdQ+noYqlWxeaFIiAAAAAAAAAAAAAIg9NCYCAAAAAAAAAAAgItR7qlS8aX6r9i0umS+PJ7iGRgAAAAAAAAAAAADA/tGYCAAAAAAAAAAAgIiwtuhb+XzeVu3r83lVuG5miBMBAAAAAAAAAIBY9Morr8jv9xv675VXXrE7LgCYgsZEAAAAAAAAAAAAhL3yig2qqNx4SMeoqNigiopDOwYAAAAAAAAAAAAAgMZEAAAAAAAAAAAAhDmvt0Vri0Kz2mFh0bfyeltCciwAAAAAAAAAAAAAiFU0JgIAAAAAAAAAACCslWxaKE9DVUiO5WmoUsnmhSE5FgAAAAAAAAAAAADEKhoTAQAAAAAAAAAAELbqPVUq3jQ/pMcsLpkvjyc0jY4AAAAAAAAAAAAAEItoTAQAAAAAAAAAAEDYWlv0rXw+b0iP6fN5VbhuZkiPCQAAAAAAAAAAAACxhMZEAAAAAAAAAAAAhKXyig2qqNxoyrErKjaoosKcYwMAAAAAAAAAAABAtKMxEQAAAAAAAAAAAGHH623R2iJzVzUsLPpWXm+LqWMAAAAAAAAAAAAAQDSiMREAAAAAAAAAAABhp2TTQnkaqkwdw9NQpZLNC00dAwAAAAAAAAAAAACiEY2JAAAAAAAAAAAACCseT5WKN823ZKzikvnyeMxtgAQAAAAAAAAAAACAaENjIgAAAAAAAAAAAMJK4bqZ8vm8lozl83m1dt1MS8YCAAAAAAAAAAAAgGhBYyIAAAAAAAAAAADCRnnFBlVUbLBhzI2WjgkAAAAAAAAAAAAAkYzGRAAAAAAAAAAAAIQFr7dFa4vsWb2wsOhbeb0ttowNAAAAAAAAAAAAAJGGxkQAAAAAAAAAAACEhZJNC+VpqLJlbE9DlUo2L7RlbAAAAAAAAAAAAACINDQmAgAAAAAAAAAAwHYeT5WKN823NUNxyXx5PPY0RgIAAAAAAAAAAABAJKExEQAAAAAAAAAAALYrXDdTPp/X1gw+n1dr1820NQMAAAAAAAAAAAAARAIaEwEAAAAAAAAAAGCr8ooNqqjYYHcMST9m2Wh3DAAAAAAAAAAAAAAIazQmAgAAAAAAAAAAwDZeb4vWFoXXKoWFRd/K622xOwYAAAAAAAAAAAAAhC0aEwEAAAAAAAAAAGCbkk0L5WmosjvGXjwNVSrZvNDuGAAAAAAAAAAAAAAQtmhMBAAAAAAAAAAAgC08nioVb5pvd4z9Ki6ZL48nvBomAQAAAAAAAAAAACBc0JgIAAAAAAAAAAAAWxSumymfz2t3jP3y+bxau26m3TEAAAAAAAAAAAAAICzRmAgAAAAAAAAAAADLVVRsVEXFBrtjHFR5xQZVVG60OwYAAAAAAAAAAAAAhB0aEwEAAAAAAAAAAGApr7dFhUXf2h3DkMKib+X1ttgdAwAAAAAAAAAAAADCCo2JAAAAAAAAAAAAsFTJpoXyNFTZHcMQj6dKJZsX2h0DAAAAAAAAAAAAAMJKnN0BAMBuzc3NmjVrlr777jutWrVKa9asUXl5uWpqalRXVye326309HRlZmaqT58+6tevn0aNGqWjjz5abrfb7vgRpby8XJ999pkWL16sVatWaf369aqqqlJNTY2am5uVlpam9PR05eXlqV+/furfv7+OPvpoDR482O7oAAAAAAAAAELE46lS8ab5dscISnHJfHVoVyC3O8PuKAAAAAAAAAAAAAAQFhx+v99vdwgAsMPs2bP19NNP65NPPlF1dXXQ+7vdbh177LG6+uqrdeKJJ8rhcJiQMvJ5PB69/vrreumllzR//nz5fL6gj9GpUyedc845uu6665Sfn29CyshVXl6u3NzcvbaVlZUpJyfHpkQIpLm5UTW1Zaqv36WWlib5fC3y+bxyOJxyOl1yOuOUmJiitLRcJbvbcG9BxPH7faqr36Xa2nI1NtbL52uR19ci+f0/XeNxcQlKTs5UelqO4uIS7Y4MBK25uUHVNTtUX79bXm+zvL4W+X9+L3fFKSkxVWmpOXJzL0cE8vl8qq/fqZraCjU11cvra5Hvp3t5nJxOl+LiEpWSkqm01BzFxSXYHRkIWlNTvapryuTxVMnrbZLX593rXu5yxSsxMVVpablyJ6VzL0fE8fm8qqvbqZq6CjU31cvr8+59L3fFKf5n93KXK97uyIgxS5Z/pIqKDXbHCFpOdncNHjjR7hiIET6fV7V1FaqtrVRzs+c/78u9e+7lrjg5nXvu5akp2UpNzZbLxfNoAQAAAACIVcwhAwAAgF1oTAQQc2bOnKlbbrlFCxYsCNkx+/Tpo4ceekinn356yI4Z6Zqbm/X444/rkUceUWVlZUiO6XQ6deaZZ+qRRx5Rt27dQnLMSMeHSuHN5/Nqd9V2VdfsUE1NmaprdsjjqTK8v8uVoLTUHKWn5SotLVdt2+QpKSndxMRA8DyeKu2u2qbqmjLV1JSpprZcXm+z4f2T3W2Ulpar9LR2Sk9vp4z09nI6XSYmBoLj9bZod9U21dTs+Ok69zQYf6hFXFyC0lJzf3Yv76jExFQTEwPBq6/f9Z/3LP+9l/t8LYb3T0nO/M+9PFfp6e2UntZeTqfTxMRAcLzeZu3evU3VP7uXNzTWGN4/Li7xp/t4elo7tWmTp8SEFBMTA8Hx+/3/uZdv+8/vnmWqravY07xiiEMpKZk/XecZ6e2VnpYrh4N7OcxRUbFRS5Z/aHeMVhsy6FRlZ/HwNISW3+9XXV2ldldv/++9vLZSfr+xe7nD4VBKStbP7uUdlJaaw8MVAAAAAACIEcwhAwAAgF1oTAQQM3bv3q0bbrhBr732mmljnHLKKXruueeUl5dn2hiR4LvvvtOVV16p1atXm3L85ORk3X333fr9738f8xMr+FApPNXX79aWbcu1bftKtbQ0hvTYbdt0UqeOg5ST3Z3mLdjG52tRWfk6bd66TFVV20N67Ph4tzp26K+OeQPldtOIC/vU1e3Ulq3LtK10tbzeppAeO7NtF3XqOEjZWfk0b8E2Xm+LdpSt1Zaty1RdsyOkx05ISFHHvD338iQacWGjmtpybdm6TKU7CoN6cIIR2Vn56tRxkLIyu8b876WwT0tLk0rLCrVl6zLV1laE9NiJianqlDdQeXn9acRFSHm9Lfph3hvyNBh/cFO4cbszNHrERaxOh5BoaWnU9tI12rJ1merqd4b02O6kDHXsOFB5HfopId4d0mMDAAAAAIDwwhwyAAAA2IXGRAAxYdWqVTr99NNVVFRk+ljt27fX+++/r1/84hemjxWOnnnmGd14441qbg7tpM/9mThxot544w2lp8du4wofKoUPv9+nispibdm6TJU7S0wf76cJ/x0GKCkpzfTxAEnyNFRr69bl2rp9pZqbPaaPx4R/WM3n86q8YoO2bF2mXbu3mD4eE/5hBzMfoPC/HA6HsrO7q3PeILVt25l7OSxh5gMU9uenCf/t+ykhgQn/sIaZD1D4Xw6HU7k5PdWp4yC1ycjjXo5DtmHjXG0o/sHuGIese/5ode82yu4YiGBmPkDhfzmdLrXL7a1OeYOUnt6OezkAAAAAAFGIOWQAAACwC42JAKLe7NmzddJJJ6mmpsayMRMSEjRlyhSdccYZlo0ZDm6++Wb97W9/s3TMfv36acaMGTH7IQofKtnP7/dr+4412rBxjhoarLvP/MjhcKhdbm/17HEEKxLBNJ6GahWtm62ycvMb/PfH7c5Qj/xfqF1uLybPwRR+v19bt63QxuK5amyqs3x8h8OpDu37qmf3XyghIdny8REb6ut3ae362aqo2GDL+CnJmerZ43DlZHe3ZXxEP7/fp81blmpjyXxLHqDwv5xOl/I69FeP/DGKj0+yfHzEhtq6ShWtm2XJw3D2JzU1W716HKGszK62jI/I5/FUac681+Xzee2OcsicTpfGjLxYbneG3VEQYaprylS0bpYlD8PZn/S0durVc6zatuloy/gAAAAAAMAczCEDAACAXWhMBBDVFixYoGOOOUbV1dWWj52QkKAPP/xQJ5xwguVj2+GOO+7Qgw8+aMvYQ4YM0TfffKM2bdrYMr6d+FDJXg0NNVpd+JVtk0J/Li4uUb17jlOH9n1p3ELI/NisVbR+lulP7zciJ7uHCnofpcREVpZD6NR7qrRqzRfavXur3VEUH+9WQe+j1C63l91REEX8fp82bVmi9Ru+D4smgPbt+qh3r/FKiGdlOYROXd1OrVzzhaqrS+2OosSEFPXtc4yys/PtjoIo4vP5VLJpgTYUz5Pfb/+9PK9Df/XuOVZxcYl2R0GEWbL8I9sekmCGnOzuGjxwot0xECF8vhZtKJ6nkk0LFA5/mu3ccbB69jhcLle83VEAAAAAAEAIMIcMAAAAdqExEUDU2rJli4YOHaqKigrD+yQlJWncuHE67LDD1LFjR6Wnp6u2tlbbt2/XokWLNGPGDNXW1ho+XnJysubOnasBAwa05kuIGM8995x++9vfBrVPp06dNG7cOA0aNEjZ2dmKj4/X7t27VVRUpLlz52rBguAmaBx55JH68ssv5XK5go0f0fhQyR5+v1/bSldpbdFMeb1NdsfZS3ZWN/Xtc4wSWT0Rh8jTUK3Va77Uzl2b7Y6yl/i4JPXpfaTa5famCReHxO/3a8vWZSpaP1s+X4vdcfaSm9NLBb2PZPVEHLL6+l1aueYLVVVttzvKXhISklXQ+2jl5vSwOwoinN/vU8nmxdqwcU5YNN7+XIf2fdW75zhWT8Qhq62t0Mo1X6impszuKHtJTExVvz7HKiuL1RNhTEXFRi1Z/qHdMUJuyKBTlZ1FMzoOrrpmh1au/kJ1dZV2R9mLOylD/QqOVdu2neyOAgAAAAAADhFzyAAAAGAXGhMBRKWWlhYdddRRmj17tqH63Nxc/fGPf9Qll1yijIyMA9bV19frnXfe0T333KOSEmMrpBUUFGjBggVKSYnO1Z2WLFmiMWPGqKGhwVD9uHHjdNddd+noo48+aEPJxo0b9eSTT+qZZ55RU5Oxxq8//vGPuu+++wzVRgs+VLJeQ2OtVq/5MixWSTyQuLhE9e41Xh3aFdC4haD5/X5t3b5CRevCY5XEA8nJ7qG+fY6mcQut4vFUaWWYrJJ4IKyeiEPh9/u1ecsSrdvwXdg1a/1cu9zeKuh9FI1baJW6+l1aufrzsFgl8UASElLUj9UT0Up+v0/FJQu0oXiu/H6f3XEOaM/qieMUF5dgdxSEMa+3RT/Me0Oehiq7o4Sc252h0SMukssVZ3cUhCGfz6sNxXPDZpXEA2H1RAAAAAAAIh9zyAAAAGAXGhMBRKU///nPuvvuuw3VnnfeeXr++eeVnp5u+PiNjY265ZZb9PTTTxuqv/LKK/X8888bPn6kaGpq0qBBg1RYWBiw1u1265lnntGll14a1BiFhYU6++yztWLFioC1TqdT3377rY444oigxohkfKhkreqaMi1ZOlVNzR67oxjSqeNg9ek1nuZEGObz+bRm7dfatn2l3VEMSUxM1bDBZyglJdPuKIggu6u2acmyD9XS0mh3FEO6dR2hHvljuJfDMJ/Pq5WrP9OOsiK7oxjidmdo6OAzlOw+8ANigP+1c+cmLV0xLawfovBzPbv/Qt26jrA7BiKI19us5Ss/UUVlsd1RDElJztTQIWcoKTHV7igIUxs2ztWG4h/sjmGa7vmj1b3bKLtjIMy0tDRq6fJp2rV7i91RDElLy9XQQafxACgAAAAAACIUc8gAAABgF6fdAQAg1DZu3KgHH3zQUO2kSZM0ZcqUoJoSJSkxMVF///vf9dRTTxmqf+GFFzR//vygxogEjz/+uKGmxPT0dM2YMSPopkRJ6tOnj3744QeNHz8+YK3P59O1114rrzd8V4VB5Nq9e6sWLn4/YpoSJWnL1qVaufrzsF4pCeHD52vR8lWfRExToiQ1NtZqweJ3VV29w+4oiBCVO0u0aMkHEdOUKEnFJfNVuPabsF5dA+HD623W0uUfRUxTorRnBdMFi95VbV2l3VEQIcrK12nxsg8jpilRktZt+F5F62dzL4chLS2NWrx0asQ0JUpSXf1OLVj0ruo9u+2OgjDk8VSpeFP0fS76c8Ul8+XxVNsdA2GkqcmjRUv+FTFNiZJUU1OmBYvfU0NDjd1RAAAAAAAAAAAAEEFoTAQQdW6++WY1NDQErLvqqqv0wAMPHNJY1157rf7yl78ErPP7/br22mujahLitm3bDH3t8fHxmjZtmkaOHNnqsVJSUjRt2jQNGTIkYO3SpUv13HPPtXosYH927tqiRUunyuttsjtK0Ep3rNHyVZ/K5/PZHQVhzOfzaunyaSovX293lKA1Nzdo4ZJ/qaqq1O4oCHMVFRu1ZNmH8vla7I4StC3blmvVmi+i6r0kQs/rbdbipf9W5c4Su6MErampTgsXvaea2nK7oyDM7Shbq+UrP5HfH3kP3ijZtFCFRd9yL8dBtbQ0auGSf2l31Ta7owStoaF6T3Ni/S67oyDMFK6bGfUPTPL5vFq77lu7YyBMNDV5tHDJ+6quKbM7StDq63dpweJ31dBAoy0AAAAAAAAAAACMoTERQFRZsmSJpk6dGrBu6NCheuKJJ0Iy5h133KETTjghYN28efP08ccfh2TMcPDXv/5VdXV1Aevuv/9+jR079pDHS01N1dtvv63U1FRDYzY1RV4DGcJTVXWpli6PzEaWH5WXr9fqwi+ZBI398vt9WrFqekQ2svzI623S4mVTVVtbYXcUhKldu7Zo2cqP5fdHbpP29tLVWktDCw7A5/Nq2YqPtbtqq91RWq25pUGLl05Vff1uu6MgTFVUbtSKVZ9F9H1wy9alWr9xjt0xEKa83mYtWfahaiKwkeVHTU31WrTkA1bbwk8qKjaqomKD3TEsUV6xQRWVG+2OAZu1tDRq8bKpqovg1cAbGmq0aMkHamqqtzsKAAAAAAAAAAAAIgCNiQCiyl//+teANU6nUy+88IISExNDMqbD4dDzzz8vt9sdsNZIvkiwa9cuvfDCCwHrhg4dqltuuSVk4/bu3Vt33XVXwLpt27bpjTfeCNm4iF119bu0ZNm/5fU22x3lkG0vXa2idbPsjoEw4/f7tabwG5WVr7M7yiFraWnUoqUfyOPhqf7YW01NuZYs/ygqVmnZvHWpNhbPtTsGwozf79fK1Z9HdIP5j5qa6rVo6b/U2Bj4ASiILburtmnZishuMP9Rccl8lWxeZHcMhBm/36flKz+JyJUS/1dDY40WLf1Azc0NdkeBzbzeFhUWxdYqgoVF38rrjdwHW+HQ+HxeLV0+LaIbzH9U79mtRUunqqWFh/8BAAAAAAAAAADg4GhMBBA1Nm/erHfffTdg3cUXX6xhw4aFdOwuXbro5ptvDlg3a9YszZ8/P6Rj2+HZZ581tFri448/LqcztD9qbrjhBuXn5wese+yxx0I6LmKPz+fV8pWfRNVkyk1bFkdFAxpCp3THGm3dvsLuGCHT1FSvFaumR0XTAkLD623WspUfy+uNnsmUG4rnaufOTXbHQBjZsnWZdpSttTtGyDQ01Gjl6s8jelU8hFZLS6OWr/w0KhrMf1S0braqqrbbHQNhpLhkgSoqi+2OETL19bu0uvAr7uUxrmTTQnkaquyOYSmPp0olmxfaHQM2Wb9xjnbt3mJ3jJCprS2PueZiAAAAAAAAAAAABI/GRABR480331RLy8GfSO1wOHT77bebMv4NN9ygpKSkgHWvvvqqKeNbycjXMGrUKB155JEhHzshIUE33XRTwLpVq1ZpwYIFIR8fsWNjyXzV1lbYHSPk1hR+raZmj90xEAYaG2ujcoJZVfV2bdq82O4YCBPrNnwvjyf6JkOvKvySlSsgSar3VKlo/Wy7Y4Tczl2btG37SrtjIEysXTdTjY21dscIMb9WrvmCVbUgSaqtrdCGKFwRuax8ncrKi+yOAZt4PFUq3hT5D2drjeKS+fJ4qu2OAYtVVZWqZFP0rYi8vXRVVDXOAwAAAAAAAAAAIPRoTAQQNd58882ANccff7z69u1ryvg5OTm68MILA9a98847ARsow9nChQtVWFgYsO7GG280LcPll1+u9PT0gHVGrglgf2pqylVcEp0T6JqaPSpcO8PuGLCZ3+/X6sKv1dLSaHcUU6zfOEd1dTvtjgGb7dq9VZu3LLE7hikaGmqishkNwfH7/Vq15gv5fJH7u8XBrF03Sw0NTOqPdRWVxdq2fZXdMUxRX79LG4p/sDsGbObz+bRyzRdRu+L3mrUz1NRUb3cM2KBw3cyoWuk2GD6fV2vXRd9DgHBgXm+LVq75XFJ0rhK7uvArNTdH5+dHAAAAAAAAAAAAOHQ0JgKICitWrNCKFSsC1l100UWm5jBy/PLycn355Zem5jDTP//5z4A1aWlpOu2000zLkJKSojPOOCNg3ZQpU+T3R+eEEJjH5/Nq5ZrPo3ZiqCTtKFursvJ1dseAjUp3rFFF5Ua7Y5jG5/Nq1Zovo/rfMQ7O623WqjVf2B3DVFu3LdfOnZvsjgEbbdm6TLt3b7U7hmm83iatWvMV7+djWEtLo1YXfmV3DFOVbFqkqqrtdseAjUo2LVBNTZndMUzT3OzRmrXfcC+PMRUVG1VRscHuGLYqr9gQ1b9zY28bin9Qff0uu2OYprGxVmvXzbQ7BgAAAAAAAAAAAMIUjYkAosL06dMD1iQlJZnaLCdJ48aNU15eXsC6Tz/91NQcZjJyrk899VS53W5Tc5x//vkBa0pLS7VkyRJTcyD6bCyZr9raCrtjmG5N4ddqavbYHQM2aGysU2FR9K/eUFW9XZs2L7Y7BmyybsP38niq7I5hulWFX6qlpcnuGLBBvadK6zZ8Z3cM0+3ctUlbtwd+AA2i09p1M9XYWGt3DJP5tXLNF/J6o3PlUxxcbW2FNhTPtTuG6crK12lHWZHdMWARr7clJn7fNKKw6Fvu7zGgqrpUJZsW2R3DdNtLV6mistjuGAAAAAAAAAAAAAhDNCYCiApffBF4RZwjjjhCaWlppuZwOp06/vjjA9YZyRuOtm/frpUrVwasmzBhgulZjjzySCUlJQWsi9RzDXs0NNSoZNMCu2NYoqnZo43F8+yOARus3zhHLS2NdsewxIbiuWpqqrc7BixWV79Lm7cstTuGJRoaalSyOfonwWJf6zd8J6+32e4Ylli//nsacGNQdU2Ztm1fZXcMS9TX79KWrcvsjgEbFK2fHTMrfBetnyWfjwatWFCyaaE8DdH/gBAjPJ4qlWxeaHcMmMjv92tt0UxJsbEq7Nqib2Pm5xYAAAAAAAAAAACMozERQMRramrS7NmzA9Yde+yxFqQxNs7q1au1detWC9KE1ldffWWo7phjjjE5yZ4VMI844oiAdTQmIhhbt62Qz+e1O4Zltm1fxUT/GNPU5FHpjjV2x7CM19scM00N+K8tW5YqViaGStLWrcuY6B9jGhpqtKNsnd0xLNPc0hBTP7uwx+YtS+yOYKnNW5cy0T/G1NXtVOXOErtjWKaxsVZl5evtjgGTeTxVKt403+4YYaW4ZL48nmq7Y8Ak1TU7VFW93e4Ylqn37FZlZez87AIAAAAAAAAAAIAxNCYCiHhLly5VfX3g1ZCMNLGFwtixYw3VzZ071+QkoTdnzpyANT179lT79u0tSGPsXM+bN09+f+w0J6D1fD6vtm5fYXcMS3m9TUz0jzHbSlfFVPOtJG3ZtpyJ/jGkpaVJ20pX2x3DUk3NHib6x5it21YolppvJWnL1mW8p48hTc0e7Shba3cMSzU0VDPRP8bE4iqZsfg1x5rCdTNj7vfNQHw+r9au+9buGDBJLN7XNsfg1wwAAAAAAAAAAICDozERQMRbvHhxwBqn06khQ4aYH0ZSly5dlJ2dHbDOSO5wYyTzsGHDLEiyx/DhwwPWVFdXa8OGDRakQaQrK1+vpqbATc7Rhon+scPv92trDE4gY6J/bCktK5TXG3srwcbihNhYFYsPUpCk2rpKVVVtszsGLLJ9e+w9SEFion8sicUHKUjS7qptqqkttzsGTFJRsVEVFXz+tj/lFRtUUbnR7hgIsVh8kIIkVe4sVr2nyu4YAAAAAAAAAAAACCM0JgKIeIsWLQpY07t3b6WkpFiQZg8jDXOR1pjo8/m0dOnSgHXh1pgoRd65hj22bA18fUcjJvrHjsqdJfI0VNsdwxZM9I8Nfr9fW7bE5veaif6xI1YfpCBxL48Vfr9fW7YutzuGLZjoHzti9UEKEg9TiFZeb4sKi1gV8GAKi76V19tidwyEUKw+SEGStm6LzfdqAAAAAAAAAAAA2D8aEwFEvOXLA/8hvKCgwIIk/9WnT5+ANcuWRdZkrPXr16u+PvAkaCvPdfv27ZWRkRGwLtLONaxXW1uh3THcnMdE/9gQy5OAmegfG6qqt6u2rsLuGLaJ5X/jsSSWv89l5evU2FRndwyYbM+DFGL3Z/bWGG3KjCV7mm9j915euqNQLS2NdsdAiJVsWhjT924jPJ4qlWxeaHcMhEgsP0hBkrZtX0mjLQAAAAAAAAAAAH5CYyKAiLdhw4aANb169bIgyX/17NkzYM3WrVvV1BQ5T8g3cp4l6891jx49AtYYzY7YVVq21u4ItiqvWM+EoijX3Nyoyp3FdsewVVmM/zuPBaU7Yvt7vKOsSH6/z+4YMFFDY612V221O4Zt/H6fysrX2R0DJtsR4z+vS8sK5ff77Y4BE9XX71Jtbew+SMHrbVZ5xUa7YyCEPJ4qFW+ab3eMiFBcMl8eT7XdMRAC1dU7YroZt7m5QTt3bbI7BgAAAAAAAAAAAMIEjYkAIprH41FpaWnAOiPNa6FkpDHR5/OppKTEgjShsXGjsYlj3bt3NznJ3oyca6PZEbuqqrbbHcFWPp9XNbXldseAiaprSmN+kvvu6sDvFxDZYv1e3tLSqLr6XXbHgIli/RqXpKoq7uXRLpZXMZekxsZaVgaNcruruZdXcQ6iSuG6mfL5vHbHiAg+n1dr131rdwyEwO7q2H6/IvG7CQAAAAAAAAAAAP4rzu4AAHAojDb25eXlmZxkbx06dDBUt3HjRstXGGyt4uLigDWZmZlKSkoyP8zPGDnXNCbiYPx+v2pqy2wYVypvljZ4pIpmqdkvxTuk7Hipu1vKiZccDuvy1NSUqU2GsXsXIk9NDde4HecA1vH5WlRbZ/3qQ+F4naemZFk3ICzFvZx7ebRraWmUx2P96kPheJ0nJaZaNyAsxb2ce3k0qajYqIqKDXbHkBR+1/mBlFdsUEXlRmVn5dsdBYeAe7lUzb0cAAAAAAAAAAAA/0FjIoCItnXrVkN17du3NzlJ68bbsmWLyUlCx8i5tvo8Gx2ztLRUXq9XLpfLgkSINB5PlVpamiwds7JZmlMllTXv+1pZs7SqXsqNl8ZkSFnx1mSqrtlhzUCwhdUTxsLxGm9srFVjY50SE1OsGRCWqq2rlN/vs3TMcLzOq2vK1KF9X2sGg+W4l0t19TvV0tKkuLgEawaEpeyY4B6O13l1zQ7lZHe3ZjBYjnu5VFNbLp/PJ6fTac2AMIXX26LCovBY/S8cr/ODKSz6Vm3bdJbLxZ/nIhX3cqmmtkx+v1+OcOj4BQAAAAAAAAAAgK346z+AiFZZWWmorl27diYn2Vtubq6hCVY7d+60IE1oGDnXVp9nyVhjot/v165duyxIg0hkdUPepgZpWsX+JxP9XFnznrpNDdbkYtWK6GblpLlwvcYlrvNoZvXE0HC9zmkyj15+v9/S72+4XuPSnoYWRCfu5XtUV/N+JVr5fF7VWngPC9dr3Ofzqq7e2Od5CF8lmxbK02D9Krf/K1yv84PxeKpUsnmh3THQSi0tTaqvt+5z5nC9xpubG9TQWGPNYAAAAAAAAAAAAAhrPJIVQEQz2pjYpk0bc4P8D6fTqbS0NFVVHXyCjtH84cBIVqvPczBjVlZWKjs729wwiEhWNipVNkvf7JK8Buu92lN/QqbU1uQnnjfVVqqqvpYn9kehphaPquqrLRlrVxhf45JUunObktI6mD8QLFe2a5saLVowMZyv8/KqMtU01Mvh4BlE0cbTUK26pkZLxgrna1ySduzcqnh3lvkDwXJlu7ZzL5dUXrVDNQ0eViCKQrV1FfK0GL3qDk04X+PSnnu5Iz7N/IFgCk9DtdYUz5PFC5bvI9yv84NZs3Ge0tp2lzuJfweRZndV+L9fOSXbmpUTa2rK5E5KN38gAAAAAAAAAAAAhDVmngOIaEZXHExNTTU5yb6MNCZG0oqJRrKmpVk/mcbomJF0rmGtmtoKS8bx+6U5VcYnE/3IK+kTiy7fN6a+aM1AwM9YeY1rxwJpwQKLBgP+y7rr3Ks3/vV/VgwE7MXae/kcSXMsGgz4L+uuc49e2fK8FQMBe7H2Xv6tpG8tGgz4L0uv84Py6Y2P37I7BKKQV3s+fzw5SzL7GQc1teXKzelp7iAAAAAAAAAAAAAIeyyjACCiVVcHXgEqJSVFTqf1t7v09MBPCw7UuBhOjJxrOxoTjZxnKbLONazV1OyxZJzyZqms2ZKhAAAAAAAAAMSgsuY9n0OaranJms9UAQAAAAAAAAAAEN5oTAQQ0ZqamgLWuN1uC5LsKykpKWCNkfzhIlzPtZHzLEXWuYa1fL4WS8bZwFwdAAAAAAAAACbb2GD+GFZ9pgoAAAAAAAAAAIDwFmd3AAA4FEaazVwulwVJ9hUXF/gWG0nNcuF6ro2cZymyzvWhOuKIIwyfF0j1nt3y+3whP+4LL/9hr/+vYLVEAAAAAAAAACYrt+CjcJ/Pa/4gAAAAAAAAAAAACHusmAggohlpNrOrQcvIuM3NkdOpFK7n2uiYkXSuYTG/NcM0WzQOAAAAAAAAgNhlxeeQfj8fdgIAAAAAAAAAAIAVEwFEuJaWloA1NCaGRrieaxoT9zV79mzl5OTYHSNifP/Dq6r37DZ9nHiH6UMAAAAAAAAAiHFWfA7pcvEnZgAAAAAAAAAAALBiIoAIZ6Qpzev1WpCkdePa1TTZGuF6ro2OGUnnGtZyWjSJJjvekmEAAAAAAAAAxLCcBPPHcDpd5g8CAAAAAAAAAACAsEdjIoCIlpAQ+C/sRlb6M4ORFfqM5A8X4Xquja6EGEnnGtaKi0u0ZJzubkuGAQAAAAAAABDD8pPMH8Oqz1QBAAAAAAAAAAAQ3lg+CkBEi48PvASZXY2JRsaNpGa5cD3XRseMpHMNa6WmZGn37q2mj5MTL+XGS2XGemn30iZOGpkmORyhz/VzgwecIlccSztGm6ameq1Y9Znp4/j90rwaaXcrfhRYdY23y+2ljnkDzB0EtiguWaCduzabPk64X+cOh0NDBk6Ug5Uroo7HU63VhV+ZPk64X+OSlNe+r9q3LzB3ENhi/YY5qqouNX2ccL/OXc44DR54ivn/mGC5urqdKiz61vRxwv0al6TOHQcpJ6eHuYPANOs3zlFVlfn364OJhOs8YI6M9uqeP8beEAhadXWp1m2YY/o4h3KN58bv+RzSbKkp2eYPAgAAAAAAAACIKdu2bdP8+fO1cuVKrV69WsXFxdq2bZsqKyvl8XjU0tKipKQkud1uZWVlqWPHjurSpYsGDhyowYMHa8yYMUpJSbH7ywBiDo2JACJaYmLgp/I2NDRYkKR140ZSs1y4nmujY0bSuYa10tJyLRnH4ZDGZEjTKiRvEPu5JI1vI2WZPKHI7c7QkE5MDI1Gfr9fdZtmqqnZY/pYblf4XuOSNLBTL7XL7WL+QLBcRnOl1tab35gohfd1npaarUF5+eYOAlv4/T7VbvpWPp/5DwIJ52tckoZ27qOsLO7l0SjFs00bGq1pdAnn67xtm/Ya2KGruYPAFl5vB9VuminJb/pY4XyNS9LwLgXKyOhg/kAwRc+MDM2Z97p8vmCusNAL9+v8YJxOl8YMmSC3O93eIAhaU2a2PFvNb0yUWn+Nj8mwpvE23aLPVAEAAAAAAAAA0WvTpk368ssv9dVXX2nmzJnasmVLwH3q6+tVX1+vyspKrV27dq/XEhISNGbMGJ155pm64IILlJOTY1Z0AD/jtDsAAByKtLS0gDV1dXXy+82f9PW/ampqAtakp0fO5BMj59rI1xxqRseMpHMNa1k5iSYrXjqq7Z5JQka4tKfeiglzTCaKXg6HQ2lp7SwZK5yvccm6RmRYz8rvbThf51zj0cvhcCotzZoPS8P5Gpe4zqNZukXvV6Twvs65xqOXyxWv1JRMS8YK52vc4XAoNZU/AEYytztD3bqMsDtGWF/ngXTrOoKmxAiVkJCspMTAn5OHQjhf4y5XvJKT25g/EAAAAAAAAAAg6ixZskR/+tOfNHjwYHXt2lVXXHGF3nrrLUNNiYE0NTXp22+/1Q033KCOHTvqoosu0qpVq0KQOjJceumlcjgcEfXfK6+8YvdpQwjQmAggomVmBp7Q5ff7bWmYq66uDlhjJH+4MJLVyNccakbHjKRzDWulJGfJ6TQ6xefQdUmSTsmWcgNMEsqN31PXJcmaXGmpTICOZlY2nobrNR4Xlyh3EhM/o1WaxZPbw/U6t7KpB9az8vsbrtd4UlKaEhLc1gwGy1ndkBeu1zkPDIluVl7n4XqNpyRnyeWKs2YwmKZrl+FyJ2XYHSNsr/ODcbsz1LXzcLtj4BDYcS9PDfDRpUNWf46YI4eDPzEDAAAAAAAAAIwpLi7Wn//8Z/Xt21dDhw7VX/7yFy1btszUMZubm/Xmm29qwIABuuKKK1RZWWnqeEAsYwYAgIiWlZVlqK6qqsrSFfN8Pp9qa2sD1hnNHw6MZK2qqrIgSevGjKRzDWs5nU6lpuaourrUsjGz4qWTs6TyZmljg1TeJDX7pXiHlJMg5SdJOfGSw2FZJCZARzmrJ/qH6zXusHJAWCouLkHJyW1VX7/LsjHD9TpH9OJezkpy0S4xMUWJCSlqbKqzbMxwvM65l0e39LR22l662rLxwvEa514eHVyuOPXpNV5Lln9od5SwvM4Ppk+vI2nOjXDpabkqr1hv2XhZ8dLwVOnbg3wM7peUYeFlxb0cAAAAAAAAAGDE7Nmzdffdd+ubb76R3++3JYPf79dLL72kf//733r11Vd18skn25IDiGb89RNARDPabLZjxw517tzZ5DT/VV5eLq/XG7AukprljGTdsWOHBUn2VloauJnM4XCobdu2FqRBpMpIb29pY6K0Z0JcbsKe/+znUBqrbEW1jPT2lo8ZXte4lG7DOYC1MtLbW9qYKIXXde50upSaGjnvLRE87uVSRhr38miXnt7e0on+Unhd53FxiXK729gdAyZKT7f+965wusYlKcOGcwBzZGfnKzu7uyoqNtgdJeyu8wPJye6u7KxudsfAIbLj84WUACsmSlK9V0q36K++3MsBAAAAAAAAAEZMmzZNX3/9td0xJEmVlZWaOHGi7rrrLt1zzz12xwGiitPuAABwKDp27GiozkjzWigZHc9o/nBgJKvV59nomO3atVNcHL34OLCc7B52R7BVZttOio9PtDsGTJSYmGJLQ0s4yY3xf+exIDenp90RbJWV1U1OJ+93olmyu41SkjPtjmGrnBzu5dEuN8a/xznZPVjhOcqlp+UqMTHV7hi2cTgcys7ubncMhFCfnuPkdBromIKcTpd69xxvdwyEQNs2eYqPT7J0TLeBf2Yen/k5pD3XclZmN2sGAwAAAAAAAAAghPx+v+69915de+21tq3giL0NHDjQ7ggIARoTAUS0bt26Garbtm2buUH+x/bt2w3V5efnm5wkdIyc6507d6qxsdH8MD9j5FxH0nmGPdq26RjTE/07dRxkdwRYoGMMf5/T09rZsjoNrJWV2S2mJ/p3zovdf+OxwuFwxPTP7My2nZWSzCro0S43p5flE/3DSecY/jceKxwOpzrlxe4fVrKzuyspht+vRSO3O0PduoywO0ZE6NZ1hNzudLtjIASczjjldehv6ZjJBv6aW+81P4cktcvtE9Pv1wAAAAAAAAAAke/pp5/WnXfeaXeMmDdo0CANHz7c7hgIARoTAUQ0t9utdu0CNxqsX7/egjT/tW7duoA1DodDXbt2tSBNaBhp7vP7/dqwYYMFaf7LyLmmMRGBxPJE/8TEVGVnsWJFLGiX00vxcbE5cSxW/33HGqczdif6Jye3Vdu2ne2OAQt0aF8glyve7hi24F4eG1wu6yf6hwsepBA78jr0l8MRmx/Ld+442O4IMEHXLsPlTsqwO0ZYc7sz1LUzf1SNJh0t/t0z3inFBVhU2aoVE3mQAgAAAAAAAADATF26dNHZZ5+thx9+WFOnTtWSJUtUVlamuro6NTc3q6ysTKtXr9aXX36pe+65R0ceeaQSEhKCHufBBx/UP//5TxO+Ahh1+eWX2x0BIRKbMyAARJXu3QM31BQVFVmQ5L+MNMt17NhRiYmJFqQJDSPnWQrPc200O2JbrE7075g3QE4nbwljQaxO9I+LS1S73N52x4BFYnWif6eOg+RwBJiliqgQF5eo9u362B3DcjxIIbZYPdE/XNB8GzsSE1OUm9PT7hiWS05uq7ZtOtkdAyZwueLUp9d4u2OEtT69jpTLFWd3DIRQsjtDWZndrB0zwK+6VqyYyIMUAAAAAAAAAACh5nQ6NX78eD3xxBNas2aNSkpK9O677+q2227TaaedpsGDBysnJ0fJycmKi4tTTk6OCgoKdMwxx+juu+/WN998o40bN+rWW29VWlpaUGP/7ne/0/bt2036ynAwCQkJuuiii+yOgRCJvRmbAKLOwIGBJy2uWbPGgiTBjWckdzjp0aOH3G53wDorz3VpaamqqqoC1kXauYY9YnGiv8PhVMcOA+yOAQt17Bh73++8Dv2ZABpDYnGiv9MZpw7t+todAxaKxeYlHqQQW+yY6G83HqQQe2LxXs6DFKJbdna+srN5iMD+5GR3V3ZWN7tjwARWrxzodh38dStWTIzFn18AAAAAAAAAAHN0795dDz/8sDZt2qQZM2bo+uuvV58+rZvDm5eXp0ceeUSFhYU66qijDO+3a9cu3Xrrra0aMxy98sor8vv9tv43b948Q1knTpyorKwsk88IrMKsLgARb+jQoQFrCgsLVV9fb0GaPRYtWhSwZtiwYRYkCR2Xy6VBgwJPPDDytYeK0bEi7VzDPp07DrY7gqVyc3oqMTHF7hiwULK7jbKz8u2OYSGHOsXoqkuxrHOn2LqXd2hfoPj4yFmFG4cuLTVHbTI62h3DMk6niwcpxKBYu5d37DCABynEmDYZeUpNzbY7hmVcrngepBAD+vQcJ6czQOdUjHE6Xerdk9Uko1VWVle53RmWjecOtGKiyY2J8fFuHqQAAAAAAAAAADhkxxxzjD7++GMVFRXptttuU8eOoZsD06FDB3355ZeaNGmS4X2mTJmilStXhixDrHvppZcM1V1++eUmJ4GVaEwEEPGMNJ35fD4tWbLE/DCSNm/erPLy8oB1Rhoqw42Rc21lY+LChQsD1qSlpalHjx4WpEE0SE3NVof2sTFZ0ul0qUf+aLtjwAY9u/9CDkds/BrQqeNAJSe3sTsGLNYmI0852bHxs9/lSlB+t1F2x4ANevU43O4IlunSeRgPUohBWZld1bZNJ7tjWCI+3q2uXYbbHQMWczgc6tXjCLtjWCa/60gepBAD3O4Mdesywu4YYaVb1xFyu9PtjgGTOBxO9exu3fvy5AAf5Xi85o7fI380D1IAAAAAAAAAALTaxIkT9cMPP+jLL7/USSedJKfTnDmMTqdTDzzwgK677jpD9T6fT0899ZQpWWJNQ0ODpkyZErCuY8eOOuGEEyxIBKvExoxkAFFt8ODBcrvdAetmzZplQRpp5syZhupGjYq8SeRjxowJWFNUVKQdO3ZYkMbYuR45cqQcDocFaRAtevccp4SE6J/83iP/F0pObmt3DNggNTVb+V2jf7JoUlK6pRMEEV4Keh+luLjon/zeu+dYJSWm2h0DNsjI6KAunSPvQSfBSknOVPduI+2OARs4HA71KzhWLle83VFMV9D7KCUkBP5MA9EnK7Or8jr0tzuG6dLT2qlL58APukJ06NpluNxJ1q0gF87c7gx17UzjebRrl9tLuTm9LBnLHWBBUo+JKya2bdNJHfMGmjcAAAAAAAAAACBqjRs3TnPmzNGHH35o6dz5yZMn68QTTzRU+84776ixsdHkRNHv/fff1+7duwPWXXLJJXK5AvzhAxGFxkQAES8xMVFHHBH4KfNfffWVBWmMjVNQUKBOnSJv9YdjjjnGUJ0V57qxsVHfffddwLrjjjvO9CyILvHxSerb52i7Y5gqI72DunQeYncM2Khb1xFKTc2xO4ap+hUcq7i4BLtjwCaJiSnq0+tIu2OYKlaaGXBgPfJ/oWR3G7tjmMihfn2Pk9PJqiyxyu3OiPoV5XJzeqldrjXNDAhPvXuOVWIUP2TA4XD9517OnyFihcsVpz69xtsdIyz06TWe1eViREHvIxUfb/5DBgKumOiTfP7Qj+tyxatfwbE8/A8AAAAAAAAAELSbbrpJ3377rUaPHm352E6nU08++aTi4wM/EHnXrl36/vvvLUgV3V566SVDdZdddpnJSWA1ZgQAiArHHntswJpZs2aptrbW1Bw+n0+fffZZwLpIbZbLy8tT3759A9Z9+umnpmeZMWOGPB5PwLpIPdewV052d3VoH/haj0RO556JoQ4HbwNjmdPpUv8ovg46dRykzLad7Y4Bm7Vv10c52d3tjmEKlytBffscw8TQGOdyxalf3+h9r9uty3BlpLe3OwZs1jFvoNq2ibyH+hgRH+9WQe8j7Y4Bm8XFJapfn8CfaUWqHvmjlJqSZXcMWCw7O1/ZUfo+3Kic7O7Kzsq3OwYskpCQrILeR5k+TqAVEyWpwYRVE3v2OFxuNyuhAgAAAAAAAACC165dO1vH79Wrl6666ipDtTNmzDA3TJQrLi7WN998E7Bu7Nix6tWLBzhHm+iciQwg5hhZarmhoUH//ve/Tc0xa9Ysbdu2LWCd0aWhw5GR7P/+97/V0NBgao4pU6YErGnXrp2GDh1qag5Er949xykhIcXuGCHXI/8XSklua3cMhIG01Bzldx1pd4yQcyelq2f3w+2OgTDgcDhU0PtoxcUl2h0l5Hr3HKukpDS7YyAMtMnIU5fO0fd+NyU5U93zR9kdA2HA4XCoX8GxcrkCP8Ew0hT0PkoJCcl2x0AYyMqKzlWQ09PaqUvn4XbHgE369Bwnp9NAF1UUcjpd6t2TVSNjTbvcXsrNMfeP6IFWTJSk+hA3JrZt00md8gaF9qAAAAAAAAAAAFjowgsvNFS3dOlSk5NEt5dffll+vz9g3eWXX25BGliNxkQAUWHQoEHq169fwLo33njD1Byvv/56wJqsrKyIXsXvggsuCFhTU1NjahNoXV2dPvjgg4B15513HisJodXi45M0oN8JUbWiXFZmV3XpPMTuGAgj3boepjZtOtodI2ScTpf69ztRcXEJdkdBmEhMTFH/vsfbHSOk2uX2isrmBbRej/xfKD3N3ifMhZLLFa8B/U+U0xlndxSECbc7QwW9j7Y7Rkjldeivdrk8ARD/1bvnOKVE0cqCcXGJ6t/vBDmd0fP7NILjdmeoW5cRdsewRbeuI+R2p9sdAzYo6HOU3EnmrSzoNnBL9XhDN15CQrL69z2Oz9cBAAAAAAAAABFt5MiRys3NDVi3bt06C9JEJ5/Pp1dffTVgXWpqqs455xwLEsFqzAwAEDWMPNHgs88+05o1a0wZv7y8XG+++WbAunPPPVfx8ZG72sOIESMMLaE8efJk0zK8/PLLqqqqClhn9CkXwIFktu2s/n1PsDtGSGSkd9CgASdHVaMlDp3T6dKQgROVlppjd5RD5nA4NLD/SWqT0cHuKAgzOdnd1bfPMXbHCInMtl3Uv+/xTAzFXlyuOA0ZdJqSo2BFZKfTpcFR8nMJodWhfYF69Rhrd4yQyMnuEXWNljh0cXEJGjr4dCUlRX4zk8sVr6GDTlNKFPxcwqHp2mW4qU1a4cjtzlBXVgqNWQnxbg0dcoYSElJMOX6SUwr0m6AnRCsmxsUlRs3PJQAAAAAAAABAbHM6nTrssMMC1pWWllqQJjp99dVXKikpCVh37rnnKiXFnL+jwF7MTAcQNS666CK5XK6D1vj9fj300EOmjP/EE0+ooaEhYN2vfvUrU8a3kpGv4YcfftCMGTNCPnZTU5Mef/zxgHUFBQUaOXJkyMdH7GnfrrcK+kT2xOHU1GwNGXSqXK7IbYqGeX6cbBbpDS39Co5XTnZ3u2MgTHXMG6BePY6wO8YhyUhvr0EDTmYVOexXQoJbwwafoaSkNLujtJrD4dCAfhOU2baz3VEQprp2Gab8rpH9O15m284a0O9EVpHDfiUlpmrY4DOUkJBsd5RWczhcGjzgFGXwsBBoz8MT+vQab3cMS/XpNV4uF+/XY1myO0PDBp+u+LikkB/b4Qi8amJ9CFZMdDr3PPiEh4UAAAAAAAAAAKJFu3btAtbU1dVZkCQ6vfTSS4bqLr/8cpOTwC7MggEQNbp06aKzzz47YN3rr7+uRYsWhXTsTZs2GWqWO/zwwzVq1KiQjm2H3/72t0pODjxR7pZbbpHPF6LHNP/HE088oY0bNxoaGwiVTnkDI3a1rfS0dho25EzFx4d+QhSiR0JCsoYPPUupKdl2Rwmaw+HUgH4nqkP7ArujIMx17TJcvXpG5mpbbdp01NDBpysuLsHuKAhjSUlpOmzo2Up2t7E7StCcTpcGDThFuTk97I6CMNc9f7S654+2O0arZGV21eCBE2lYwUElJ7fRYUPPVlJi5DWa71kp8VRlZnaxOwrCSHZ2vrJj5AEyOdndlZ2Vb3cMhIHU1GwNH3qWKY3m7oM/l1H1h/hRfFxcooYNOUNtaDAHAAAAAAAAAEQRI42JLS0tFiSJPrt27dLUqVMD1vXp00eHH364+YFgCxoTAUSV2267LWCNz+fTlVdeqaamppCM6ff7ddVVV8nj8QSsNZIvGJdeeqkcDkfA/0K9cmFWVpauuOKKgHWLFi0y1LBpVFFRkf785z8HrOvQoYMuvvjikI0LSHtW2xrY/yQ5HJHz9qltm04aNuRMJcS77Y6CCJCYkKLhQ89SRnrkTD5zOvesyNK+XR+7oyBCdO08TH0LjpXksDuKYdlZ+Ro66HTFxSXaHQURICkpXYcNO0epEbS6icsVryGDTmPVWxjicDjUvdso9Y6wFbja5fb+T1MiK5gjsOTktjps2DkRtaJ5XFyihg0+g6ZE7FefnuPkdAbopopwTqdLvXtG1s8mmCs1NVuHDT1HSUnpIT1ucoCPJT2H0JiYEO/W8KFnqU1GXusPAgAAAAAAAABAGGpubg5Yk5KSYkGS6PPWW2+poaEhYN1ll11mQRrYJXJm1gOAAcOGDdOpp54asG7RokW64YYbQjLmgw8+qOnTpwesO+ywwzRx4sSQjBkObrvtNkOrJt5xxx2aPXv2IY9XV1en8847T7W1tQFrJ02apMREJu8j9Nrl9tLwIWfJHeJJRWbo3GmIhg4+jdW1EJT4+CQNG3KmOuYNtDtKQMnJbXXY0HOUnc2KFAhOxw79NXTw6UpMTLU7SgAOdes6QoMGnMLqWghKQkKyDht6ttq3C/+VZFNTsjVi2LnKbNvZ7iiIMF06DdHggRPD/gEcDodTPfLHaEC/E6O+KQehlZSUphHDzlVuTk+7owSUntZOI4efpwxW18IBuN0Z6tZlhN0xTNWt6wi53eH/WRGslZzcRiOHn6eszG4hO6Y7UGOit3XHbZORpxGHna+0CHrACQAAAAAAAAAARpWXlwesyczMtCBJ9Hn55ZcD1rhcLl1yySUWpIFdaEwEEHUef/xxQ01pzz77rO68885DGuuZZ54xdAyHw6GnnnpKDkfkrM4TSKdOnXTHHXcErGtubtYpp5yiBQsWtHqs+vp6TZw4UYsXLw5YO3DgQF1zzTWtHgsIpE2bPI0acaE6dRxsd5T9crszNHzo2erTa7ycThpZEDyXK059+xytoYPPUFJimt1x9sOhrp2HadRhv1R6eju7wyBCZWV20egRFymvQz+7o+xXSnKmRgw/Vz27/0JOJ7+2I3hxcQka0O+EPY1bCYEfJmI1h8Op/G4jNfKw85Wamm13HESonOzuGj3yYrXL7W13lP1KS83RyMPOV363kVH1WQCsEx+fpIH9T9LA/hMUH4ZNuA6HSz27H67Dhp0bUas7wh5duwyXOynD7himcLsz1LXzcLtjIEwlJCRryKBT1a/guJA8PCw5wHMO6oNcMdHpjFPvXuM1fOjZEfEgNgAAAAAAAAAAWmP58uUBa3r2DP+HxoabZcuWaeHChQHrJkyYoA4deNBtNGOGI4Co06NHD91+++2Gah944AFdcMEFqqmpCWqMxsZGXX/99frd735nqP6yyy7T6NGjgxojEtx6663q1atXwLqqqiqNHz9er776atBjFBYWavTo0frmm28C1jocDv3973+Xy8VKFDBXXFyCCnofqWFhtnpi505DNHrEhWrbpqPdURAFsjK7aPTIi9Qxb4DdUX6SnNxWhw07R716jmUFORyy+PhE9Ss4TkMGnRZGqyc61K3LYRo14gJlpLe3OwyiQE52d40ZeXFYrZ6YmpKtEcPPU4/8Mawgh0OWkODWwP4TNGjAyWGzeqLD4VT3/NEaMfw8Vh3CIXM4HGqX21tjRl4UVqsnpqe106gRF6hb18N4iAIMcbni1KfXeLtjmKJPr/H8foqDcjgcyuvQT6NHXnzIqycaWTHR7zd2rDYZeRo94kJ16TSEhygAAAAAAAAAAKJWdXW1VqxYEbCub9++FqSJLi+99JKhussvv9zkJLAbswYARKU//elPGjNmjKHaKVOmqFevXnr66adVXV190FqPx6PXXntNBQUFeuqppwwdv3fv3nriiScM1UaaxMRETZkyxdAKlfX19br00kt11FFH6ZtvvpE/wAyJ4uJi3XzzzRo0aJChJ1VI0h/+8AeNGzfOUC0QCpltO2nUiAvVudMQORz2va1KScn6aZVElyvethyIPnFxCerb5xgNHXyGkt1tbMvhcLjUtctwjTrsl2qTwZNzEFrZWd005qcmXPsmY6al5u5ZJbHH4ax4i5CKj0/6afVEOx+o4HTGKb/bKI087Hylp+XalgPRKTenp0aPvFgd2tv7h4KM9A4aedj56t5tFI23CKmEhGQNGnCyBvafYOsDFVyu+J9WSUxNybItByJTdna+srO72x0jpHKyuys7K9/uGIgQSYmpP62e2NoHKgRaMdErqSlAY2JcXOJPqyQmJ7dpVQ4AAAAAAAAAACLFxx9/rObm5oB1Y8eOtSBN9GhqatKbb74ZsC4nJ0ennHKKBYlgJ4c/UGcIAESozZs3a+jQoaqsrDS8j9vt1vjx4zV8+HB16tRJaWlpqq2tVWlpqRYuXKgZM2YEtbqi2+3WnDlzNHjw4NZ8CQFdeumlhlYh/Oabb3TkkUeakkGSnnnmGcOrR/6oc+fOGj9+vAYNGqSsrCzFx8dr9+7dWrdunebOnat58+YFbF78ubFjx+qbb76JudUSy8vLlZu798TusrIy5eSwMofVGhprtW3bCm3dtkKNTXWWjJmdla9OHQcpK7MrTzaH6fx+nyoqi7Vl6zJV7iyxZMzExFR1yhuovLz+SkxIsWRMxDZPQ7W2/ude3tzsMX08h8OhnOwe6tRxkNq26cS9HKbz+bwqr9igLVuXadfuLZaM6U7KUKeOA9WhQ7+wWdEO0a2+fre2bluubdtXqbmlwfTxHA6ncnN6qnPHQcrIyONeDtP5fC0qK1+vLVuXaXfVNkvGTE5uq04dB6lDu76Kjw/8cCrgQDyeKs2Z97p8Pq/dUQ6Z0+nSmJGXyO2278EPiFxeb4t2lK3Vlq3LVF2zw/B+ZU3StAB/7jgzW2qzn+eWpaZkqVPHwWrfro/i4hKCTAwAAAAAAMIdc8gAANi/E044QZ9//vlBa1wul0pLS5WdnW1Rqsj33nvv6ZxzzglYd9NNN+nxxx+3IBHsRGMigKg2b948HXvssUE1E4ZKfHy8pk6dqpNOOsm0McKlMVGSbr/9dv31r381dYwDGThwoGbMmKHMzExbxrcTHyqFH7Mn/MfHu9WxQ391zBvI5DfYxuwJ/1mZXdWp4yBlZ3WzdTVSxC6zJ/wnJKSoY94AdcwboCQbVz1CbKur26kt/7mXe71NIT8+D1CA3Vo74d8oHqCAcFBTW64tW5erdMcaeb2Bn/IZDB6gALNs2DhXG4p/sDvGIeueP1rdu42yOwaiQHX1Dm3ZtkylOwoDNu3WtkjvlB/8eBMypQ7/6SHnAQoAAAAAAMQO5pABALCvFStWaODAgQHrTjjhBE2fPt2CRNHjpJNO0qeffhqwbvny5RowYIAFiWCnOLsDAICZRo4cqWnTpunkk09WbW2tZePGx8frn//8p6lNieHm4YcfVkNDg5588klLxy0oKNAXX3wRk02JCE9Op0vtcnupXW4v1dXvUkXFRlXX7FBNTZnqPbuDPp7LlaD0tFylpeWqTUaesrO6yunkLRzslZzcRr16jlX3/DGq3Fms3bu3qbqmTDW1Za2aEJ2c3FbpablKT2un7OzuSnZnmJAaMM7pjFP7dn3Uvl0f1dZVqqKyWDU1O1RdUyaPpyro48XFJf50L2+b0VGZmV3kdMbWKs8IPykpmerTa7x6/Hgvr9r+n/cs5fL5WoI8mkMpKZk/3ctzsvOVlMQDFGAvlytOeR36Ka9DP9XUlKtiZ7FqaspUXVOmhobqoI8XH5+ktNRcpaflqm3bTsps25kHKMB2aak56tvnaPXqcbjKKzaqqnq7amrKVFNbHvSKdA6HQynJWUpLy1VGejvlZHdXIg9QgAm6dhmu7aWr5WkI/n11uHC7M9S183C7YyBKpKe3U7/049Srx1iVV25UVdWP9/IK+f1738vdBn6N9MWnKa9DF2Wkt1dOdnclJCSblBwAAAAAAAAAgPB25513Gqq79NJLzQ0SZbZu3RpwFUpJGjFiBE2JMYJZ7QCi3rhx4zRnzhyddtpp2rBhg+nj5ebm6v3339cRRxxh+ljh5oknnlCPHj10yy23qKUl2MnMwTvppJP01ltvKSODBhaEp5Tktkrp0van/29paVR1TblqaspUV79TXm+zfL4Web0tcjqdcjrj5HTGKTEhRWlpOUpPy5Xb3YanmSNsuVxxys3pqdycnpIkv9+v+vpdqq4pU21tuRqb6uTzeeX1tsjv98nl2nONx7kSlJzSVulp7ZSWmqO4uASbvxLgwFJTspSakvXT/zc3N/zU2FLv2S2vt1leX4t8/3MvT0pMVVpajtLScuVOyuBejrAVF5egdrm91S63tyTJ7/ep7sd7eU25mprr/3ONeyX5/3ONuxQXl6CUlCylp+YqLS1HLle8vV8IcBB77sf/fSJwU7Pnp3u556d7ufc/93LXf/6LU1JSmtJSc5Se1k5JSWncyxG24uIS1aF9gTq0L5Ak+Xw+1dVX/tTY0tzs+en9iqSf3csTlZqSpfS0XKWm5sjl4s8FMJ/LFac+vcZryfIP7Y7San16jeffC0IuPj5Jee37Kq99X0mSz+dVbd2ee3ltbYWaWxrk9bYoqXyjGry+Ax4nO2+I+hUMsyo2AAAAAAAAAABh6auvvtKHHwb+e1R+fr7OOeccCxJFj1dffVVeb+AH5V5++eUWpEE44C+nAGLCgAEDtGDBAl133XV68803TRtnwoQJev7559WpUyfTxgh3119/vYYOHaorr7xShYWFpozhdrv1xz/+UX/4wx/kdLJCBSJHXFyiMtt2Umbb2L1HILo5HHtWzEpJyZRUYHccwBTx8UnKzOyizMwudkcBTOFwOP/bkPufSdFAtEmIdysrs6uyMrvaHQUwhdPpVFpqjtJScwIXAzbIzs5XdnZ3VVSY/xC5UMvJ7q7srHy7YyAGOJ2u/6xInrvX9qxNr2tr1c4D7re7oc7saAAAAAAAAAAAhLXa2lr95je/MVR7xx13yOVymZwourzyyisBa9xuty644ALzwyAs0M0BIGa0bdtWb7zxhr755hsNHz48pMfu3bu33nvvPX3yyScx3ZT4o7Fjx2rZsmV64IEHlJmZGbLjOp1OnXXWWVq5cqXuuOMOmhIBAAAAAACACNSn5zg5nZH1R16n06XePcfbHQMxrk1SykFf3+2hMREAAAAAAAAAENt+//vfa8OGwA/IHDJkCKv6BWnmzJkqKioKWHfmmWcqIyPDgkQIB3R0AIg5Rx55pBYsWKAZM2bonHPOUWpqaquOk5SUpJNPPlnTpk3TmjVrdNZZZ4U4aWRLSEjQpEmTtHnzZj3zzDMaMWKEHA5Hq46Vl5enG264QWvXrtV7772n/HyeSg4AAAAAAABEKrc7Q926jLA7RlC6dR0htzvd7hiIcW3cyQd9ncZEAAAAAAAAAEAse/fdd/Xss88GrHM4HHrqqadYJCdIL730kqE6Gj5ji8Pv9/vtDgEAdmpqatLMmTP13XffadWqVVqzZo0qKipUU1Oj+vr/Z+/eo+2syzuBP/uck2S/+5Cc94QgF4EEmxBRvFRAxILYJIKoUdCCgsqQeBkcx67KMItWdGydVrRWp0ynl5losCKWDnYhVEFuFqlLLoqOKKCAQBELGMLZJ8nZeyc5l/mjLRUh77sTzn732e/+fNbKPz5Pzu+boGYtdr7naUS1Wo2FCxfG4sWLY+XKlfGCF7wgjj766Fi9enXUatl/CYCneuyxx+Kaa66J73//+3HXXXfF/fffH+Pj47F169aYnJyMvfbaKxYuXBjPfe5z47DDDosXvvCFsWrVqvj1X//1bkefszZt2hTPec5znvKf/eIXv4h99tmnS4kAAAAAIN/U1GTcctsXo9ka73aUXEkyEq846h0xODjU7Sj0uUu+/4/xtbu/t8v5c0cWx6de/84CEwEAAABzgb9DBgAR99xzTxx55JGxdevW3N3//J//c/zZn/1ZAanKY+vWrbH//vvHxET2N0lctmxZ3H///Xt80Ije4xNUoO/Nnz8/1qxZE2vWrOl2lNLbd99948wzz4wzzzyz21EAAAAAgC4aHByKlSuOj//3wyu7HSXXyhXHKyUyJ6TV4cy5i4kAAAAAAPSj8fHxOPnkk9sqJa5YsSI++clPFpCqXP7v//2/uaXEiIizzjpLKbHP+BQVAAAAAACAwi1ZckgsWfK8ePzx+7sdZZf2WfK8WLL3Id2OARERkSa1zPnEju2xY2oy5ivSAgAAAAC76RWv/UC3I/SVW77uWt9smZycjNNOOy3uvvvu3N358+fHJZdcErVa9r9v5+k2btyYuzMwMBBnnXVW58Mwpwx0OwAAAAAAAAD9aeXyV8XAwGC3YzyjgYHBOHT58d2OAU9Kk+yLiRER461GAUkAAAAAAGBu+MAHPhDXXnttW7uf+cxn4qijjupwovL5yU9+Et/+9rdz91atWhVLly4tIBFziWIiAAAAAAAAXZEkI7Hs4Ln5AfCypUdFkizqdgx4UlrNLybWmxMFJAEAAAAAgO674IIL4q/+6q/a2j399NPj/e9/f4cTlVM71xIjItavX9/hJMxFiokAAAAAAAB0zdKDj4ikOtLtGE+RJCOx9KAjuh0DnqKdi4mKiQAAAAAA9IMNGzbEhz70obZ2jzvuuLbLdTzV1NRUXHzxxbl7o6OjccoppxSQiLlGMREAAAAAAICuGRwcipUrju92jKdYufz4GBwc6nYMeIravPkxb3Awc6feahSUBgAAAAAAuuOyyy6Ls88+u63dl770pfH3f//3Ua1WO5yqnK666qp45JFHcvdOP/10v8d9SjERAAAAAACArlqy5JBYsuR53Y4RERH7LHleLFlySLdjwNNUKpVIq9lXE11MBAAAAACgzK666qp4+9vfHtPT07m7hx56aFxzzTUxMjJSQLJyavfS5Pr16zuchLlKMREAAAAAAICuW7n8VTEwkH0NrtMGBgbj0OVz63oj/LI0UUwEAAAAAKA//cM//EO85S1viZ07d+buHnzwwXH99dfHc57znAKSldMvfvGL+NrXvpa79+IXvziOOOKIAhIxFykmAgAAAAAA0HVJMhLLDj6qqxmWLT0qkmRRVzNAljSpZc7rzUZBSQAAAAAAoDg333xzvPGNb4xWq5W7u++++8b1118fBx10UAHJyuviiy9uqwS6bt26AtIwVykmAgAAAAAAMCcsPfiISKojXXk7SUZi6UG+mytzW1rNuZjYcjERAAAAAIByuf322+Okk06Kbdu25e4uXrw4rrvuulixYkUBycrtoosuyt2ZP39+vOMd7yggDXOVYiIAAAAAAABzwuDgUKxccXxX3l65/PgYHBzqytvQrjTJLiaOu5gIAAAAAECJ/PCHP4wTTjghxsfHc3cXLVoUX//61+NFL3pRAcnK7dZbb40777wzd2/t2rWxZMmSAhIxVykmAgAAAAAAMGcsWXJILFnyvELf3GfJ82LJkkMKfRP2RJrUMufjrUZMz8wUlAYAAAAAADrn7rvvjjVr1sQTTzyRu1ur1eJrX/taHHXUUQUkK7+NGze2tbd+/foOJ2GuU0wEAAAAAABgTlm5/FUxMDBYyFsDA4Nx6PLuXGmE3ZVWsy8mTs1Mx9btzYLSAAAAAABAZ9x3332xevXq+MUvfpG7u2DBgrjiiivi2GOPLSBZ+TWbzbj00ktz95773OfGiSeeWEAi5jLFRAAAAAAAAOaUJBmJZQcX8x1tly09KpJkUSFvwbOVJtnFxIiI8eZEAUkAAAAAAKAzHnjggfjN3/zNeOSRR3J3582bF5dddlmsWbOmgGT94e/+7u9iy5YtuXtnnnlmDA4W841GmbsUEwEAAAAAAJhzlh58RCTVkY6+kSQjsfSgIzr6BsymdoqJY81GAUkAAAAAAGD2PfTQQ/Gbv/mb8fDDD+fuDg4Oxhe/+MVYu3ZtAcn6x8aNG9vaW7duXYeT0AuGuh0AAAAAAAAAftXg4FCsXHF8/L8fXtmxN1YuPz4GB31cRu8YWZBEpVKJmZmZXe7UWy4mAgAAAAC7qVLpdgKIn//857Fq1ar4p3/6p9zdSqUSn/vc5+K0004rIFn/eOCBB+LGG2/M3Tv22GNjxYoVnQ/EnOdiIgAAAAAAAHPSkiWHxJK9D+nQ135eLFnSma8NnTIwMBCLFiSZO+NNxUQAAAAAAHrLo48+GqtWrYqf/vSnbe3/xV/8RfyH//AfOpyq/1x00UWZ3xzx36xfv76ANPQCxUQAAAAAAADmrJUrjo+BgcFZ/ZoDA4OxcvmrZvVrQlHSZDhzPtZsFJQEAAAAAACevU2bNsXq1avjnnvuaWv/M5/5TJx99tkdTtV/pqen46//+q9z9/baay+XKnmSYiIAAAAAAABzVpKMxLKDj5rVr7ls6VGRJCOz+jWhKGm1ljmvt1xMBAAAAACgN2zevDnWrFkTd911V1v7f/iHfxgf/OAHO5yqP11//fXx0EMP5e6ddtppMTyc/U0U6R+KiQAAAAAAAMxpSw8+IpLq7BQJk2Qklh50xKx8LeiGvIuJ403FRAAAAAAA5r56vR4nnHBC3HHHHW3tn3/++XH++ed3OFX/2rhxY1t769ev73ASeoliIgAAAAAAAHPa4OBQrFxx/Kx8rZXLj4/BwaFZ+VrQDXnFxDHFRAAAAAAA5ritW7fGa1/72vje977X1v4555wTf/iHf9jhVP1rbGwsvvKVr+TurVy5Mn7jN36j84HoGYqJAAAAAAAAzHlLlhwSS/Y+5Fl+jefFkiXP7mtAt6XV7GJivdUoKAkAAAAAAOy+iYmJeN3rXhe33nprW/vve9/74tOf/nSHU/W3Sy65JLZv3567t27dugLS0EsUEwEAAAAAAOgJK1ccHwMDg3v0cwcGBmPl8lfNciIoXprUMufbJ3dGa+eOgtIAAAAAAED7ms1mrF27Nr71rW+1tb9u3br48z//8w6nYuPGjbk7g4ODceaZZxaQhl6imAgAAAAAAEBPSJKRWHbwUXv0c5ctPSqSZGSWE0Hx0iT7YmJExFhzooAkAAAAAADQvu3bt8cpp5wS//AP/9DW/umnnx6f/exno1KpdDhZf/vBD34Q3//+93P3Xvva18b+++9fQCJ6iWIiAAAAAAAAPWPpwUdEUt29gmGSjMTSg47oUCIoVjvFxHqrUUASAAAAAABoz86dO+O0006La665pq39N7/5zfGFL3whBgbUnjrtc5/7XFt769ev73ASepH/hQIAAAAAANAzBgeHYuWK43fr56xcfnwMDg51KBEUK63WcnfGXUwEAAAAAGCOmJqaire//e1x5ZVXtrX/+te/Pi699NIYGvLZTqft2LEjvvSlL+Xu7bPPPrF27doCEtFrFBMBAAAAAADoKUuWHBJL9j6kzd3nxZIl7e1CL1gwNC+SefMzd8YUEwEAAAAAmAOmp6dj3bp1cdlll7W1/5rXvCb+7u/+LubNm9fhZJ316le/OiqVSu6PBx98sKs5r7jiiti8eXPu3jve8Y6e/2dCZygmAgAAAAAA0HNWrjg+BgYGM3cGBgZj5fJXFZQIipMmw5nzeksxEQAAAACA7jv77LPj4osvbmv3Va96VXzlK1+JBQsWdDgV/2bjxo1t7a1fv77DSehViokAAAAAAAD0nCQZiWUHH5W5s2zpUZEkIwUlguKk1VrmfLzZKCgJAAAAAAA8s9/5nd+JDRs2tLV7zDHHxNe+9rWo1bL//Tez5+c//3lce+21uXtHHXVUHH744QUkohcNdTsAAAAAAAAA7ImlBx8RT4w9FPXxf37aLB05IJYedEQXUkHn5V1MHGu6mAgAAAAA7IaBSrcTUDLnn39+XHjhhW3tHnHEEXH11VfHXnvt1eFU/LLPf/7zMT09nbvnWiJZXEwEAAAAAACgJw0ODsVLX/zG2H+/w6JSGYyIiEplMPbf77B46YvfGIODvkcn5ZRWs4uJ9ZZiIgAAAAAA3fPxj3+87d3bb7890jSNSqXStR+f//znO/ebMUe182tOkiROP/30zoehZ/k0FgAAAAAAgJ41NLQgXnjYCXHo8lfF5OT2GBpaEPPmVbsdCzoqTWqZ8/Fmo6AkAAAAAABAr/nmN78Z9913X+7eKaecEiMjIwUkolcpJgIAAAAAANDz5s2rKiTSN9Ik+2Lilu3NmJyeiqGBwYISAQAAAAAAvWLjxo1t7a1fv77DSeh1A90OAAAAAAAAAED78oqJERHjLVcTAQAAAACAp9q6dWt8+ctfzt1btmxZrFq1qoBE9DLFRAAAAAAAAIAeklZruTvjTcVEAAAAAADgqS699NJoNPI/QzjrrLOiUqkUkIheppgIAAAAAAAA0EPauZg41pwoIAkAAAAAANBLNm7cmLszMDAQZ511VufD0PMUEwEAAAAAAAB6yF7zqzE4kP1Rb72lmAgAAAAAAPy7u+++O2655ZbcvVWrVsXSpUsLSESvU0wEAAAAAAAA6CGVSiXSai1zZ7zZKCgNAAAAAADQC9q5lhgRsX79+g4noSyGuh0AAAAAAAAAgN2TJsOxubFtl/OxpouJAAAAAAB0x8zMTLcjdNWNN97Y7QjP6JBDDomPfvSjmTuVSiVOOeWUghLR6xQTAQAAAAAAAHpMmgxnzustxUQAAAAAAODf/af/9J+6HYGSGeh2AAAAAAAAAAB2T1qtZc7Hm42CkgAAAAAAANCPFBMBAAAAAAAAekzuxcSmi4kAAAAAAAB0jmIiAAAAAAAAQI/JLSa2GjEzM1NQGgAAAAAAAPqNYiIAAAAAAABAj0mr2cXEyempmNixvaA0AAAAAAAA9JuhbgcAAAAAAAAAYPekSS13p96ciL0WVAtIAwAAAAD0tEq3AwDQi1xMBAAAAAAAAOgxaZJ9MTEiYqw1UUASAAAAAAAA+pFiIgAAAAAAAECPGVmQfzFxvNkoIAkAAAAAAAD9SDERAAAAAAAAoMcMDQ7GwgVJ5s5Y08VEAAAAAAAAOkMxEQAAAAAAAKAHpUn21cS6YiIAAAAAAAAdopgIAAAAAAAA0IPS6nDmfLylmAgAAAAAAEBnKCYCAAAAAAAA9KA0yS4m1puNgpIAAAAAAADQbxQTAQAAAAAAAHpQmtQy52MuJgIAAAAAANAhiokAAAAAAAAAPSitZl9MHG8qJgIAAAAAANAZiokAAAAAAAAAPShNsouJjZ07YsfkZEFpAAAAAAAA6CeKiQAAAAAAAAA9KK+YGBEx1nI1EQAAAAAAgNmnmAgAAAAAAADQg9JqLXdnvKmYCAAAAAAAwOxTTAQAAAAAAADoQe1cTKwrJgIAAAAAANABiokAAAAAAAAAPSiZNz8WDM3L3BlrNgpKAwAAAAAAQD8Z6nYAAAAAAAAAAPZMWq3FY9vGdzkfb7mYCAAAAADkGKh0OwEAPcjFRAAAAAAAAIAelSbDmfN6UzERAAAAAACA2aeYCAAAAAAAANCjRqq1zPmYYiIAAAAAAAAdoJgIAAAAAAAA0KNGcy4mjrcaBSUBAAAAAACgnygmAgAAAAAAAPSoNKeYWHcxEQAAAAAAgA5QTAQAAAAAAADoUSPVWuZ8fHszpqenC0oDAAAAAABAv1BMBAAAAAAAAOhRozkXE2dmZmLL9mZBaQAAAAAAAOgXiokAAAAAAAAAPSrNKSZGRNSbEwUkAQAAAAAAoJ8oJgIAAAAAAAD0qLRay90ZU0wEAAAAAABglikmAgAAAAAAAPSohdVaDFQqmTvjrUZBaQAAAAAAAOgXiokAAAAAAAAAPWqgUomRnKuJdRcTAQAAAAAAmGWKiQAAAAAAAAA9bKQ6nDkfU0wEAAAAAABglikmAgAAAAAAAPSw0ST7YuJ4q1FQEgAAAAAAAPqFYiIAAAAAAABAD0uT7IuJdRcTAQAAAAAAmGWKiQAAAAAAAAA9bKSaXUwcU0wEAAAAAABglikmAgAAAAAAAPSw0aSWOR9vNWJmZqagNAAAAAAAAPQDxUQAAAAAAACAHpYm2RcTd0xNRnPnjoLSAAAAAAAA0A8UEwEAAAAAAAB62Eg1u5gYETHWnCggCQAAAAAAAP1CMREAAAAAAACgh43mXEyMiBhvNQpIAgAAAAAAQL9QTAQAAAAAAADoYSNJLXen7mIiAAAAAAAAs0gxEQAAAAAAAKCHzR8citq8BZk7Y4qJAAAAAAAAzCLFRAAAAAAAAIAeN5oMZ87HW42CkgAAAAAAANAPhrodAAAAAAAAAIBnJ01q8fMtT+xyXncxEQAAAADYlUql2wkA6EEuJgIAAAAAAAD0uJFq9sXEMcVEAAAAAAAAZpFiIgAAAAAAAECPG02yi4njrUZBSQAAAAAAAOgHiokAAAAAAAAAPS7NKSbWXUwEAAAAAABgFikmAgAAAAAAAPS4kWotc75tRyt2Tk0WlAYAAAAAAICyU0wEAAAAAAAA6HGjORcTIyLGW40CkgAAAAAAANAPFBMBAAAAAAAAelzaRjGx3lRMBAAAAAAAYHYoJgIAAAAAAAD0uJGklrsz1pwoIAkAAAAAAAD9QDERAAAAAAAAoMcNz1sQ8wYGM3fGW4qJAAAAAAAAzA7FRAAAAAAAAIAeV6lUIk2GM3fqLiYCAAAAAAAwSxQTAQAAAAAAAEpgpFrLnI81GwUlAQAAAAAAoOwUEwEAAAAAAABKYDTnYuJ4y8VEAAAAAAAAZodiIgAAAAAAAEAJpDnFxHpTMREAAAAAAIDZoZgIAAAAAAAAUAIj1VrmvN5sFJQEAAAAAACAshvqdgAAAAAAAAAAnr3RnIuJ461GTM/MxEClUlAiAAAAAKAnDPh3hgDsPhcTAQAAAAAAAEogzSkmTs1Mx7btzYLSAAAAAAAAUGaKiQAAAAAAAAAlMJLUcnfqzYkCkgAAAAAAAFB2iokAAAAAAAAAJTBazb6YGBFRbzUKSAIAAAAAAEDZKSYCAAAAAAAAlMCiai0qOTsuJgIAAAAAADAbFBMBAAAAAAAASmBwYCAWVpPMHcVEAAAAAAAAZoNiIgAAAAAAAEBJjFaHM+f1VqOgJAAAAAAAAJSZYiIAAAAAAABASaRJTjHRxUQAAAAAAABmgWIiAAAAAAAAQEmMJLXMuWIiAAAAAAAAs0ExEQAAAAAAAKAk0mrOxcRWo6AkAAAAAAAAlJliIgAAAAAAAEBJjCY5xUQXEwEAAAAAAJgFiokAAAAAAAAAJTGSU0xsTe6M1s4dBaUBAAAAAACgrBQTAQAAAAAAAEoirdZyd+qtRgFJAAAAAAAAKDPFRAAAAAAAAICSGM25mBgRUW9OFJAEAAAAAACAMlNMBAAAAAAAACiJEcVEAAAAAAAACjDU7QAAAAAAAAAAzI7q0LxIhuZHc3LHLnfqrUaBiQAAAACAOa9S6XYCAHqQi4kAAAAAAAAAJZImtcy5i4kAAAAAAAA8W4qJAAAAAAAAACUykgxnzhUTAQAAAAAAeLYUEwEAAAAAAABKJK3mFBNbjYKSAAAAAAAAUFaKiQAAAAAAAAAlMprUMucuJgIAAAAAAPBsKSYCAAAAAAAAlMhIknMxUTERAAAAAACAZ0kxEQAAAAAAAKBE0mp2MXHr9mZMTk8VlAYAAAAAAIAyUkwEAAAAAAAAKJHRpJY5n4mILa1mMWEAAAAAAAAoJcVEAAAAAAAAgBIZSbIvJkZE1JsTBSQBAAAAAACgrBQTAQAAAAAAAEokrbZRTGwpJgIAAAAAALDnFBMBAAAAAAAASmSvBdUYHMj+KLjebBSUBgAAAAAAgDJSTAQAAAAAAAAokYFKJUaqtcydetPFRAAAAAAAAPacYiIAAAAAAABAyaTV4cx5vaWYCAAAAAAAwJ5TTAQAAAAAAAAomdEkp5jYbBSUBAAAAAAAgDIa6nYAAAAAAAAAAGbXSFLLnNebLiYCAAAAAP9qoNLtBAD0IBcTAQAAAAAAAEomreZcTGwpJgIAAAAAALDnFBMBAAAAAAAASmY0ySkmNhsxMzNTUBoAAAAAAADKRjERAAAAAAAAoGRGklrmfHJ6KiZ2bC8oDQAAAAAAAGWjmAgAAAAAAABQMmk1+2JiRES9NVFAEgAAAAAAAMpIMREAAAAAAACgZEaTNoqJTcVEAAAAAAAA9oxiIgAAAAAAAEDJjFRruTv1ZqOAJAAAAAAAAJSRYiIAAAAAAABAyQwNDsZeC6qZO/WWi4kAAAAAAADsGcVEAAAAAAAAgBIarQ5nzutNxUQAAAAAAAD2jGIiAAAAAAAAQAmNJLXMuWIiAAAAAAAAe0oxEQAAAAAAAKCE0ryLia1GQUkAAAAAAAAoG8VEAAAAAAAAgBIaTXKKiS4mAgAAAAAAsIcUEwEAAAAAAABKaCSpZc4VEwEAAAAAANhTiokAAAAAAAAAJZRWsy8mNnbuiB2TkwWlAQAAAAAAoEwUEwEAAAAAAABKaDTJLiZGRNRbriYCAAAAAACw+4a6HQAAAAAAAACA2TfSTjGxORHP2WukgDQAAAAAwJxV6XYAAHqRi4kAAAAAAAAAJZQmtdydeqtRQBIAAAAAAADKRjERAAAAAAAAoISSofmxYHAoc6fenCgoDQAAAAAAAGWimAgAAAAAAABQQpVKJUaS4cwdxUQAAAAAAAD2hGIiAAAAAAAAQEmlSS1zXm81CkoCAAAAAABAmSgmAgAAAAAAAJRUWnUxEQAAAAAAgNmnmAgAAAAAAABQUmmimAgAAAAAAMDsU0wEAAAAAAAAKKk0qWXO661GQUkAAAAAAAAoE8VEAAAAAAAAgJJKq9kXE8dbjZieni4oDQAAAAAAAGWhmAgAAAAAAABQUmmSXUycmZmJLdubBaUBAAAAAACgLBQTAQAAAAAAAEoqr5gYEVFvNQpIAgAAAAAAQJkoJgIAAAAAAACU1Gi1lrtTb04UkAQAAAAAAIAyUUwEAAAAAAAAKKmFC5KoVCqZO4qJAAAAAAAA7C7FRAAAAAAAAICSGhgYiJGcq4n1lmIiAAAAAAAAu0cxEQAAAAAAAKDE0upw5rzebBSUBAAAAAAAgLJQTAQAAAAAAAAosTTJuZjYdDERAAAAAACA3aOYCAAAAAAAAFBiaZJzMbGlmAgAAAAAAMDuUUwEAAAAAAAAKLG0mlNMbDYKSgIAAAAAAEBZKCYCAAAAAAAAlFia1DLn9eZEzMzMFJQGAAAAAACAMlBMBAAAAAAAACixNMm+mLhjajKakzsKSgMAAAAAAEAZKCYCAAAAAAAAlFhazS4mRkTUm40CkgAAAAAAAFAWQ90OAAAAAAAAAEDnpEktd6fenIgDFo0WkAYAAAAAmHMGKt1OAEAPcjERAAAAAAAAoMTSpJ2LiRMFJAEAAAAAAKAsFBMBAAAAAAAASmz+4FDU5i3I3Km3FBMBAAAAAABon2IiAAAAAAAAQMmlSS1zXm82CkoCAAAAAABAGSgmAgAAAAAAAJRcmgxnzutNFxMBAAAAAABon2IiAAAAAAAAQMml1ZxiYksxEQAAAAAAgPYpJgIAAAAAAACUXJrUMuf1ZqOgJAAAAAAAAJSBYiIAAAAAAABAyaWJi4kAAAAAAADMHsVEAAAAAAAAgJJLq9nFxG3bWzE5NVVQGgAAAAAAAHqdYiIAAAAAAABAyaVJLXfH1UQAAAAAAADapZgIAAAAAAAAUHJpkn0xMSKi3mwUkAQAAAAAAIAyUEwEAAAAAAAAKLm2iokuJgIAAAAAANAmxUQAAAAAAACAkhuetyDmDQxm7tSbiokAAAAAAAC0RzERAAAAAAAAoOQqlUqMJLXMnXqzUVAaAAAAAAAAep1iIgAAAAAAAEAfSKvDmfN6y8VEAAAAAAAA2jPU7QAAAAAAAAAAdF6a5BQTm4qJAAAAANCXKpVuJwCgB7mYCAAAAAAAANAH0qSWOa83GwUlAQAAAAAAoNcpJgIAAAAAAAD0gbSaczGx5WIiAAAAAAAA7VFMBAAAAAAAAOgDaZJdTBxvNmJ6ZqagNAAAAAAAAPQyxUQAAAAAAACAPpAmtcz51Mx0bNveKigNAAAAAAAAvUwxEQAAAAAAAKAP5F1MjIiotyYKSAIAAAAAAECvU0wEAAAAAAAA6ANptY1iYlMxEQAAAAAAgHyKiQAAAAAAAAB9YKRai0rOTr3ZKCQLAAAAAAAAvU0xEQAAAAAAAKAPDA4MxMJqkrlTb7mYCAAAAAAAQD7FRAAAAAAAAIA+kVaHM+f1pmIiAAAAAAAA+RQTAQAAAAAAAPpEmuQVExsFJQEAAAAAAKCXKSYCAAAAAAAA9Ik0qWXO6y0XEwEAAAAAAMinmAgAAAAAAADQJ9Jq3sVExUQAAAAAAADyKSYCAAAAAAAA9Ik0yS4mjjcbBSUBAAAAAACglw11OwAAAAAAAAAAxcgrJjYnd0RrcmdUh+YVlAgAAAAA6LaKk1cA7AF/fAAAAAAAAAD0ibRay92pNycKSAIAAAAAAEAvU0wEAAAAAAAA6BN5FxMjFBMBAAAAAADIp5gIAAAAAAAA0CfaupjYahSQBAAAAAAAgF6mmAgAAAAAAADQJ6rz5kd1aF7mjouJAAAAAAAA5FFMBAAAAAAAAOgjaTKcOVdMBAAAAAAAII9iIgAAAAAAAEAfyS0mthQTAQAAAAAAyKaYCAAAAAAAANBH0motc15vNgpKAgAAAAAAQK9STAQAAAAAAADoI3kXE8ebLiYCAAAAAACQTTERAAAAAAAAoI/kFRPHWoqJAAAAAAAAZFNMBAAAAAAAAOgjabWWOd/aasbU9HRBaQAAAAAAAOhFiokAAAAAAAAAfSTvYuJMRGxpNYoJAwAAAAAAQE9STAQAAAAAAADoI3nFxIiIsdZEAUkAAAAAAADoVYqJAAAAAAAAAH0krdZyd+pNxUQAAAAAAAB2TTERAAAAAAAAoI/stSCJwUr2R8XjzUZBaQAAAAAAAOhFQ90OAAAAAAAAAEBxBiqVGElq8URj2y53xlxMBAAAAID+Ual0OwEAPcjFRAAAAAAAAIA+k1ZrmfPxlouJAAAAAAAA7JpiIgAAAAAAAECfSZPhzHndxUQAAAAAAAAyKCYCAAAAAAAA9Jm8YuKYYiIAAAAAAAAZFBMBAAAAAAAA+kxarWXOx1uNgpIAAAAAAADQixQTAQAAAAAAAPpM3sXEenMiZmZmCkoDAAAAAABAr1FMBAAAAAAAAOgzecXEndNTMbFze0FpAAAAAAAA6DWKiQAAAAAAAAB9Jq1mFxMjIsabjQKSAAAAAAAA0IsUEwEAAAAAAAD6TJrUcnfqzYkCkgAAAAAAANCLFBMBAAAAAAAA+sxINb+YOKaYCAAAAAAAwC4oJgIAAAAAAAD0mXmDQ7HX/GrmznirUVAaAAAAAAAAeo1iIgAAAAAAAEAfSpPhzHndxUQAAAAAAAB2QTERAAAAAAAAoA+lSS1zPqaYCAAAAAAAwC4oJgIAAAAAAAD0obSafTFxvKWYCAAAAAAAwDNTTAQAAAAAAADoQ2mSXUysNxsFJQEAAAAAAKDXKCYCAAAAAAAA9KE0qWXOx5ouJgIAAAAAAPDMFBMBAAAAAAAA+lBazb6Y2Ni5PXZMTRaUBgAAAAAAgF6imAgAAAAAAADQh9Iku5gYETHebBSQBAAAAAAAgF6jmAgAAAAAAADQh9opJo41JwpIAgAAAAAAQK9RTAQAAAAAAADoQ2m1lrsz3lJMBAAAAAAA4OkUEwEAAAAAAAD6UDJvfswfHMrcqbuYCAAAAAAAwDPI/pQJAAAAAAAAgFKqVCqRJsPxi23ju9wZazYKTAQAAAAAdIWTVwDsAX98AAAAAAAAAPSptFrLnI+3XEwEAAAAAADg6RQTAQAAAAAAAPpUmgxnzutNxUQAAAAAAACeTjERAAAAAAAAoE/lFRPHmo2CkgAAAAAAANBLFBMBAAAAAAAA+lRarWXOx1suJgIAAAAAAPB0iokAAAAAAAAAfSrvYuJ4qxHT09MFpQEAAAAAAKBXKCYCAAAAAAAA9Km8YuL0zExs3d4sKA0AAAAAAAC9QjERAAAAAAAAoE+l1VruTr3VKCAJAAAAAAAAvUQxEQAAAAAAAKBP5V1MjIioNycKSAIAAAAAAEAvUUwEAAAAAAAA6FOLFiRRqVQyd8YUEwEAAAAAAPgViokAAAAAAAAAfWpgYCBGFiSZO+OtRkFpAAAAAAAA6BWKiQAAAAAAAAB9LE2GM+d1FxMBAAAAAAD4FYqJAAAAAAAAAH0sr5g4ppgIAAAAAADAr1BMBAAAAAAAAOhjabWWOR9vNQpKAgAAAAAAQK9QTAQAAAAAAADoY3kXE+suJgIAAAAAAPArhrodAAAAAAAAAIDuaaeYODMzE5VKpaBEAAAAAECh/Ls/APaAi4kAAAAAAAAAfSyt1jLn26cmozW5s6A0AAAAAAAA9ALFRAAAAAAAAIA+lncxMeJfriYCAAAAAADAv1FMBAAAAAAAAOhjiokAAAAAAADsLsVEAAAAAAAAgD6WVtsoJrYaBSQBAAAAAACgVygmAgAAAAAAAPSx+UNDUZs3P3PHxUQAAAAAAAB+mWIiAAAAAAAAQJ9Lk+yriYqJAAAAAAAA/DLFRAAAAAAAAIA+l1ZziomtRkFJAAAAAAAA6AWKiQAAAAAAAAB9Lk1qmXMXEwEAAAAAAPhliokAAAAAAAAAfS5Nci4mKiYCAAAAAADwSxQTAQAAAAAAAPrcSDWnmNhqFJQEAAAAAACAXqCYCAAAAAAAANDnRnMuJm7d3ozJqamC0gAAAAAAADDXKSYCAAAAAAAA9Lk0qeXujLuaCAAAAAAAwL9STAQAAAAAAADoc2k1+2JiRES9NVFAEgAAAAAAAHrBULcDAAAAAAAAANBdadJGMbHpYiIAAAAAlJKTVwDsAX98AAAAAAAAAPS54fkLYmhgMHOn3nQxEQAAAAAAgH+hmAgAAAAAAADQ5yqVSqTVWuZOvaWYCAAAAAAAwL9QTAQAAAAAAAAg0mQ4c+5iIgAAAAAAAP9GMREAAAAAAACANoqJjYKSAAAAAAAAMNcpJgIAAAAAAAAQI9Va5rzecjERAAAAAACAf6GYCAAAAAAAAECM5l5MVEwEAAAAAADgXygmAgAAAAAAABBpXjGx1YiZmZmC0gAAAAAAADCXKSYCAAAAAAAAECPVWuZ8ano6tu1oFZQGAAAAAACAuUwxEQAAAAAAAIAYzbmYGBFRb04UkAQAAAAAAIC5TjERAAAAAAAAgEgVEwEAAAAAAGiTYiIAAAAAAAAAsaiaRCVnp95qFJIFAAAAAACAuU0xEQAAAAAAAIAYGhiMhQuSzB0XEwEAAAAAAIhQTAQAAAAAAADgX6XJcOZcMREAAAAAAIAIxUQAAAAAAAAA/tVItZY5r7caBSUBAAAAAABgLhvqdgAAAAAAAAAA5oZRFxMBAAAAoP8MVLqdAIAe5GIiAAAAAAAAABERkSomAgAAAAAA0AbFRAAAAAAAAAAiImKkWsuc11uNgpIAAAAAAAAwlykmAgAAAAAAABAREaM5FxObO3fE9smdBaUBAAAAAABgrlJMBAAAAAAAACAiItKcYmJERL05UUASAAAAAAAA5jLFRAAAAAAAAAAiImKkWsvdqbcaBSQBAAAAAABgLlNMBAAAAAAAACAiIkZdTAQAAAAAAKANiokAAAAAAAAAREREdd78qA7Ny9xRTAQAAAAAAEAxEQAAAAAAAIAnjVRrmfN6q1FQEgAAAAAAAOYqxUQAAAAAAAAAnjSaDGfOXUwEAAAAAABAMREAAAAAAACAJ6WKiQAAAAAAAORQTAQAAAAAAADgSSPVnGJiq1FQEgAAAAAAAOYqxUQASuD5UgABAABJREFUAAAAAAAAnjSa1DLnLiYCAAAAAACgmAgAAAAAAADAk9Ik+2LillYjpqanC0oDAAAAAADAXKSYCAAAAAAAAMCTRqrZxcSZiNiyvVlMGAAAAAAAAOYkxUQAAAAAAAAAnjSa1HJ36s2JApIAAAAAAAAwVykmAgAAAAAAAPCkNMm+mBihmAgAAAAAANDvFBMBAAAAAAAAeNJeC5IYrGR/lFxvKSYCAAAAAAD0M8VEAAAAAAAAAJ40UKnESLWWuVNvNgpKAwAAAAAAwFykmAgAAAAAAADAU6RJXjHRxUQAAAAAAIB+ppgIAAAAAAAAwFOMVIcz5/WWYiIAAAAAAEA/G+p2AAAAAAAAAADmljTJKSY2GwUlAQAAAAA6rtLtAAD0IhcTAQAAAAAAAHiK0aSWOa83XUwEAAAAAADoZ4qJAAAAAAAAADzFSN7FxNZEzMzMFJQGAAAAAACAuUYxEQAAAAAAAICnSKvZxcSdU1PR2LmjoDQAAAAAAADMNYqJAAAAAAAAADzFaM7FxIiIenOigCQAAAAAAADMRYqJAAAAAAAAADzFSFLL3am3FBMBAAAAAAD6lWIiAAAAAAAAAE+RVtsoJrqYCAAAAAAA0LcUEwEAAAAAAAB4inmDQ7HX/GrmTr3ZKCgNAAAAAAAAc41iIgAAAAAAAABPM5JkX02st1xMBAAAAAAA6FeKiQAAAAAAAAA8TVodzpzXm4qJAAAAAAAA/UoxEQAAAAAAAICnGU0UEwEAAAAAAHhmiokAAAAAAAAAPM1IUsuc11uNgpIAAAAAAAAw1ygmAgAAAAAAAPA0adXFRAAAAAAAAJ6ZYiIAAAAAAAAATzOaZBcTJ3Zsjx1TkwWlAQAAAAAAYC5RTAQAAAAAAADgaUaSWu7OeKtRQBIAAAAAAADmmqFuBwAAAAAAAABg7kmr2RcTIyLqzYnYZ3hRAWkAAAAAgE6pOHkFwB7wxwcAAAAAAAAATzOatFdMBAAAAAAAoP8oJgIAAAAAAADwNMm8+TFvcDBzp95qFJQGAAAAAACAuUQxEQAAAAAAAICnqVQqkVazrya6mAgAAAAAANCfFBMBAAAAAAAAeEajiWIiAAAAAAAAT6eYCAAAAAAAAMAzGklqmfN6s1FQEgAAAAAAAOYSxUQAAAAAAAAAnlFazbmY2HIxEQAAAAAAoB8pJgIAAAAAAADwjEaTnGJiUzERAAAAAACgHykmAgAAAAAAAPCMRpJa5ny81YjpmZmC0gAAAAAAADBXKCYCAAAAAAAA8IzSavbFxOmZmdi6vVlQGgAAAAAAAOYKxUQAAAAAAAAAntFokl1MjIioNycKSAIAAAAAAMBcopgIAAAAAAAAwDMaaauY2CggCQAAAAAAAHOJYiIAAAAAAAAAz2hkQRKVSiVzp95yMREAAAAAAKDfKCYCAAAAAAAA8IwGBgZiZEGSuVNvKiYCAAAAAAD0m6FuBwAAAAAAAABg7hpJhqPeauxyXm/uegYAAAAA9IBKpdsJAOhBLiYCAAAAAAAAsEtptZY5r7dcTAQAAAAAAOg3iokAAAAAAAAA7NJoMpw5rzcVEwEAAAAAAPqNYiIAAAAAAAAAuzSimAgAAAAAAMCvUEwEAAAAAAAAYJfSak4xsdUoKAkAAAAAAABzhWIiAAAAAAAAALs0mtQy59snd0Zz546C0gAAAAAAADAXKCYCAAAAAAAAsEsjSfbFxIiIenOigCQAAAAAAADMFYqJAAAAAAAAAOxS2k4xsdUoIAkAAAAAAABzhWIiAAAAAAAAALuUVmu5Oy4mAgAAAAAA9BfFRAAAAAAAAAB2acHQvEjmzc/cUUwEAAAAAADoL4qJAAAAAAAAAGRKk+HMeb2lmAgAAAAAANBPFBMBAAAAAAAAyDRazSkmNhsFJQEAAAAAAGAuUEwEAAAAAAAAINNIUsuc15suJgIAAAAAAPQTxUQAAAAAAAAAMqV5FxNbiokAAAAAAAD9RDERAAAAAAAAgExpklNMbDYKSgIAAAAAAMBcMNTtAAAAAAAAAADMbWlSy5xv3d6MyempGBoYLCgRAAAAADBrnLwCYA/44wMAAAAAAACATHkXEyMixluuJgIAAAAAAPQLxUQAAAAAAAAAMqXV7IuJERH15kQBSQAAAAAAAJgLFBMBAAAAAAAAyNTOxcR608VEAAAAAACAfqGYCAAAAAAAAECmveZXY3Ag++PlesvFRAAAAAAAgH6hmAgAAAAAAABApkqlEmm1lrlTbyomAgAAAAAA9AvFRAAAAAAAAABypclw5rzebBSUBAAAAAAAgG5TTAQAAAAAAAAgV24xseViIgAAAAAAQL9QTAQAAAAAAAAgV1qtZc7rTcVEAAAAAACAfqGYCAAAAAAAAECuvIuJ481GQUkAAAAAAADoNsVEAAAAAAAAAHLlFRPrrUbMzMwUlAYAAAAAAIBuUkwEAAAAAAAAIFdazS4mTk5PxbYdrYLSAAAAAAAA0E2KiQAAAAAAAADkSpNa7s54s1FAEgAAAAAAALpNMREAAAAAAACAXGmSfTExImKsNVFAEgAAAAAAALpNMREAAAAAAACAXCML8i8m1puKiQAAAAAAAP1AMREAAAAAAACAXEODg7FwQZK5U282CkoDAAAAAABANykmAgAAAAAAANCWNMm+muhiIgAAAAAAQH9QTAQAAAAAAACgLWl1OHNebykmAgAAAAAA9APFRAAAAAAAAADakibZxcTxZqOgJAAAAAAAAHSTYiIAAAAAAAAAbUmTWuZ8zMVEAAAAAACAvqCYCAAAAAAAAEBb0mr2xcR6UzERAAAAAACgHwx1OwAAAAAAAAAAvSFNsouJzZ07YvvkzlgwNK+gRAAAAADAs1bpdgAAepFiItD3fvazn8U111wTd9xxR9x1113xwAMPxNatW2PLli0xMzMTCxcujIULF8bBBx8cL3jBC+JFL3pRvOY1r4kVK1Z0O/qct3nz5rjtttviRz/6Udx9991x//33xyOPPBKbNm2KZrMZO3bsiAULFkSSJDE6OhoHHHBAHHTQQXH44YfHS17yknjlK18ZaZp2+5cBAAAAAAD8q7xiYkREvdWIffcaKSANAAAAAAAA3aKYCPSler0en/3sZ+Piiy+OO+64I3N38+bNsXnz5njwwQfjpptuevI/X7FiRZxxxhnxvve9L/bdd99OR+4Jjz32WNxwww3xjW98I2688cb46U9/mvtzms1mNJvNeOKJJ562Pzg4GEceeWS88Y1vjHe+851x0EEHdSo6AAAAAADQhrRay92pNycUEwEAAAAAAEpuoNsBAIq0bdu2OO+88+LAAw+M//pf/2tuKTHLvffeG3/wB38QBx98cLz3ve+Nxx9/fBaT9o577703LrjggjjmmGPigAMOiLe//e3xuc99rq1SYp6pqam49dZb4/zzz49ly5bF2rVr45ZbbpmF1AAAAAAAwJ5o52LieHOigCQAAAAAAAB0k2Ii0DeuvPLKOOyww+KP//iPY2Ji9j4Q37FjR2zYsCFWrlwZF1100ax93bnssccei09/+tNx5JFHxqGHHhof+tCH4pZbbonp6emOvTk9PR1f/epX45hjjomTTz45HnrooY69BQAAAAAAPLNk3vxYMDQvc2es2SgoDQAAAAAAAN2imAiU3vT0dHz4wx+Ok08+OR5++OGOvfPEE0/E+vXr473vfW/s2LGjY+9005133hknn3xyHHjggXHuuefG7bff3pUcV1xxRRx22GGxcePGrrwPAAAAAAD9LK3WMuf1louJAAAAAAAAZaeYCJTa1NRUvO1tb4s/+qM/ipmZmULe3LBhQ5xwwgnRaJTvuwH/4z/+Y1xxxRUxOTnZ7SjRaDTiXe96V7znPe+ZE3kAAAAAAKBfpMlw5ny8qZgIAAAAAABQdoqJQGlNT0/HWWedFZdddlnhb3/zm9+MU045JbZv31742/3ms5/9bJx66qmlvVIJAAAAAABzTV4xcUwxEQAAAAAAoPSGuh0AoFPOP//8+OIXv7hbP2fFihXxG7/xG3H44YfH4sWLo1KpxNjYWNx9991x8803x49+9KO2v9a1114b73nPe+ILX/jC7kZnN33lK1+JdevWxSWXXNLtKAAAAAAAUHpptZY5r7caBSUBAAAAAACgWxQTgVK6+uqr45Of/GTb+29605viQx/6ULz85S/P3PvRj34Un/rUp+KLX/xiTE9P537diy++OI4//vh417ve1XaWstl3333j6KOPjqOOOioOO+ywWLZsWRx44IExPDwcSZLE+Ph4PP744/Hoo4/GzTffHDfeeGPcdNNN0Wjs3l9a+NKXvhSHH354/N7v/V6HfiUAAAAAAEBE/sXEcRcTAQAAAAAASk8xESidzZs3x5lnnhkzMzO5u4sXL46LL744Xve617X1tQ8//PD467/+63jf+94Xp512WvzsZz/L/Tkf+MAH4vjjj4/ly5e39UYZHHnkkfFbv/VbceKJJ8ZLX/rSzN3FixfH4sWL49BDD41XvepVcd5558UTTzwRf/7nfx5/9md/Fps2bWr73Y9+9KPx+te/Pl784hc/y18BAAAAAACwK7nFxO3NmJ6ejoGBgYISAQAAAAAAUDSfBAGlc/7558fjjz+eu3fggQfGbbfd1nYp8Ze94hWviO9+97vxghe8IHe32WzGBz/4wd1+o9fst99+8ZGPfCTuueee+M53vhPnnXdebilxVxYvXhwf+chH4r777ou3vvWtbf+8nTt3xvve9749ehMAAAAAAGhPWq1lzmdmZmJ8e7OgNAAAAAAAAHSDYiJQKt///vdjw4YNuXsjIyNx/fXXx6/92q/t8VvPec5z4oYbbogDDzwwd/erX/1qXHXVVXv81lx25JFHxqWXXhoPPfRQfOxjH4sVK1bM2tdetGhRXHrppfG//tf/ikql0tbP+fa3vx1XX331rGUAAAAAAACeKu9iYkTEeHOigCQAAAAAAAB0i2IiUCp/8Ad/ENPT07l7GzZsiJUrVz7r9/bbb7/40pe+FIODg7m7H/3oR5/1e3PJcccdF9dcc0185zvfibe+9a0xb968jr31/ve/P/7kT/6k7f0LL7ywY1kAAAAAAKDftVNMHFNMBAAAAAAAKDXFRKA0fvKTn8SVV16Zu/emN70pTj311Fl797jjjov/+B//Y+7ed7/73fjGN74xa+92y0te8pK46qqr4qabbooTTjihsHfPOeeceO9739vW7vXXXx+PPPJIhxMBAAAAAEB/WrggiYFKJXOn3lJMBAAAAAAAKDPFRKA0PvOZz8TMzEzmztDQ0G5d3mvXxz72sVi0aFHu3qc//elZf7tIb3nLW+J73/tenHTSSV15/4ILLojR0dHcvampqfj6179eQCIAAAAAAOg/A5VKjFRrmTvjzUZBaQAAAACAZ6syUPGjwB8AZaGYCJTC9u3b42//9m9z997ylrfE8uXLZ/39vffeO9797nfn7l1zzTXx2GOPzfr7Rdlnn31iYKB7f3QsXrw4zj///LZ2b7zxxs6GAQAAAACAPpYmw5nzsaaLiQAAAAAAAGWmmAiUwle/+tUYHx/P3fud3/mdjmX47d/+7dzS3tTUVFx66aUdy9APzjjjjKhU8r9TyA9+8IMC0gAAAAAAQH9Kcy4m1luKiQAAAAAAAGWmmAiUwt/8zd/k7ixfvjxe8YpXdCzD0qVL47jjjsvdaycru7b//vvHy172sty9n/70pwWkAQAAAACA/pR3MXG82SgoCQAAAAAAAN2gmAj0vKmpqbj++utz99761rd2PMvb3va23J3vfOc7sXnz5o5nKbOjjz46d2fbtm2xbdu2AtIAAAAAAED/ySsmjjVdTAQAAAAAACgzxUSg5912220xPj6eu3fSSSd1PEs7b0xPT8cNN9zQ8Sxltu+++7a1NzHhLz0AAAAAAEAnpNVa5rzemoiZmZmC0gAAAAAAAFA0xUSg57VT8lu4cGFbV/aeraVLl8by5ctz96677rqOZymzdouJk5OTHU4CAAAAAAD9Ke9i4s6pqWju3FFQGgAAAAAAAIqmmAj0vJtvvjl35+ijj46hoaEC0kQcd9xxuTu33nprAUnKa+fOnW3tDQ9n/6UIAAAAAABgz+QVEyMixpoTBSQBAAAAAACgGxQTgZ73/e9/P3fnZS97WQFJ/sURRxyRu3P33XfH9u3bC0hTTps2bcrdGRoaioULFxaQBgAAAAAA+k9azS8m1luKiQAAAAAAAGWlmAj0tMceeyweeeSR3L25VkycnJyMH/7whwWkKad2fu8OOeSQGBwcLCANAAAAAAD0n5Gklrsz3mwUkAQAAAAAAIBuUEwEetodd9zR1t7zn//8Dif5dytXrmxrr93sPNXMzEzccsstuXuHHXZYAWkAAAAAAKA/zR8ciuH5CzJ3xpouJgIAAAAAAJSVYiLQ0+6///629pYvX97hJP9udHQ0Fi9enLvXbnae6pZbbmnrSuZxxx1XQBoAAAAAAOhfaXU4c15vKSYCAAAAAACUlWIi0NMeeOCB3J399tsvhoezPxifbe0UIdvJztN9/vOfb2tv9erVnQ0CAAAAAAB9Lk1qmfPxZqOgJAAAAAAAABRNMRHoaQ8++GDuzgEHHND5IL9i//33z91RTNx9jz/+eFx88cW5eytXroxf//VfLyARAAAAAAD0rzTJ/saQY00XEwEAAAAAAMpqqNsBAJ6Nn//857k7++23XwFJdv/Nhx9+uIAk5fLf//t/j2azmbt31llndT4MAAAAAAD0ubSaXUystxQTAQAAAKAnVLodAIBe5GIi0NM2b96cu7PvvvsWkOSp2ikmPvHEEwUkKY8f//jH8Zd/+Ze5e4sWLYqzzz67gEQAAAAAANDf8i4mjjcbBSUBAAAAAACgaIqJQE9rp5iYpmnng+zBmxMTE7F9+/bOhymBqampWL9+fezcuTN39wMf+EBX/pkDAAAAAEC/SZNa5nzbjlbsnJosKA0AAAAAAABFUkwEetrY2FjuzsKFCwtIsmdvuprYnj/5kz+Jm2++OXfvgAMOiN/93d8tIBEAAAAAAJBWsy8mRkTUW64mAgAAAAAAlJFiItCzms1mWxf0ulFMXLRoUVt74+PjHU7S+7797W/HRz7ykbZ2//iP/zj22muvDicCAAAAAAAiItIkv5g43lRMBAAAAAAAKCPFRKBn7dixo629JEk6nOTpqtVqW3vt/hr61aZNm+Ktb31rWwXUN7zhDfH2t7+9gFQAAAAAAEBEe8XEseZEAUkAAAAAAAAo2lC3AwDsqXZLfYODgx1O8nRDQ+3936ti4q7t3LkzTj311Hj44Ydzd/fee+/YsGFDAal6w7HHHtv2fwfpnDvvvLPbEQAAAAAAOqo2b37MGxiMndNTu9yptxQTAQAAAAAAysjFRKBntVvq60ZBq90327kE2K/OPvvs+OY3v9nW7uc+97nYb7/9OpwIAAAAAAD4ZZVKJfdq4riLiQAAAAAAAKXknBLQsyYnJ9vaU0zsPZ/85Cdj48aNbe2ee+658aY3vanDiXrLt771rdhnn326HQMAAAAAgD6QJsOxaWLLLudjzUaBaQAAAAAAACiKi4lAz2q3/Dc1NdXhJHv+ZjdKk3PdJZdcEr/3e7/X1u5xxx0XF1xwQYcTAQAAAAAAu5JWa5nzuouJAAAAAAAApaSYCPSs+fPnt7XX7mXF2dTuJcR2fw394qqrrop169bFzMxM7u7zn//8uPzyy5U7AQAAAACgi9JkOHM+3lJMBAAAAAAAKCPFRKBnzZs3r629bhQT231TMfHffetb34rf+q3faqvUefDBB8d1110Xe++9dwHJAAAAAACAXckrJtabjYKSAAAAAAAAUCTFRKBnLViwoK29VqvV4SR7/qZi4r+4/fbb4/Wvf300m83c3ec85zlx3XXXxYEHHlhAMgAAAAAAIEtarWXOx1uNmJ6ZKSgNAAAAAAAARRnqdgCgtzzwwANx6623dvSN4eHhWLt2be5ekiQxNDSUe51w69atsxWtbe2+uWjRog4nmfvuvPPOOPHEE2PLli25u2maxrXXXhuHHnpoAckAAAAAAIA8eRcTp2amY9v2ZizKKTACAAAAAADQWxQTgd3yzW9+M9atW9fRN5YuXdpWMTEiYnR0NDZt2pS5007hbba1++bixYs7nGRuu/fee2PNmjWxefPm3N3h4eG46qqr4iUveUkByQAAAAAAgHbkFRMjIurNCcVEAAAAAACAklFMBHra3nvvnVtMHB8fLyjN7r1Zq9WiWq0WkGZueuCBB2LVqlXx6KOP5u5Wq9W48sor45hjjikgGQAAAAAA0K60jcJhvdWIgwvIAgAAAADsoYFuBwCgF/njA+hpe++9d+7OY489VkCSp2qnbNdO9rJ6+OGHY/Xq1fHwww/n7s6bNy8uu+yyWLVqVQHJAAAAAACA3bGoWotKzk69OVFIFgAAAAAAAIqjmAj0tOc+97m5O+2UBGdbO2+2k72MHn300Vi1alU88MADubuDg4NxySWXxBve8IYCkgEAAAAAALtrcGAgFuVcTVRMBAAAAAAAKB/FRKCnLVu2LHfnn//5nzsf5Fc88sgjuTuHHHJIAUnmlk2bNsXq1avj3nvvzd2tVCqxcePGOPXUUwtIBgAAAAAA7Kk0r5jYahSUBAAAAAAAgKIoJgI9rZ1y36OPPhqNRrEfeN933325O/1WTNy8eXOsWbMm7rrrrrb2/+Iv/iLOPPPMDqcCAAAAAACerTQZzpy7mAgAAAAAAFA+iolAT3ve856XuzMzM9NWUXC21Ov12Lx5c+5eO9nLol6vxwknnBB33HFHW/uf/vSn4+yzz+5wKgAAAAAAYDYoJgIAAAAAAPQfxURgt5x11lkxMzPT0R8PPvhg23le9KIXtbX34x//eA9/xbuv3bfazd7rtmzZEieeeGJ873vfa2v/Yx/7WJxzzjkdTgUAAAAAAMyWkWotc15vNQpKAgAAAAAAQFEUE4Getv/++8e+++6bu9duKW42tPPW0NBQvPjFLy4gTXdt27YtTjrppLjtttva2v/d3/3d+MhHPtLhVAAAAAAAwGwadTERAAAAAACg7ygmAj3vZS97We5OkcXE22+/PXfn+c9/flSr1QLSdE+j0YjXv/718e1vf7ut/d/+7d+OCy64oMOpAAAAAACA2ZbmFBNbkzujtXNHQWkAAAAAAAAogmIi0POOOeaY3J1bbrklJicnC0gTcdNNN+XuHH300QUk6Z5WqxVvfOMb2/q9iIh4z3veExdeeGGHUwEAAAAAAJ0wUq3l7tRbjQKSAAAAAAAAUBTFRKDnrV69Ondn69atcdttt3U8y0MPPRT33Xdf7t5rXvOajmfplh07dsQpp5wSN9xwQ1v773znO+Ov/uqvOpwKAAAAAADolNGci4kREfXmRAFJAAAAAAAAKIpiItDzXv7yl8eiRYty966++uqOZ2nnjUql0laZshft3LkzTj311Pj617/e1v6pp54aF110UQwM+OMIAAAAAAB61YhiIgAAAAAAQN/RBAF63tDQUFtFv7/927/teJZLL700d+fII4+MJUuWdDxL0aampuKMM86IK6+8sq39tWvXxiWXXBKDg4MdTgYAAAAAAHRSdWheJEPzM3fqrUZBaQAAAAAAACiCYiJQCqeffnruzr333hu33nprxzI89NBDcdNNN+XutZO110xPT8eZZ54ZX/7yl9vaP/HEE+Oyyy6LefPmdTgZAAAAAABQhDSpZc5dTAQAAAAAACgXxUSgFNauXRuLFi3K3fvTP/3TjmX4n//zf8b09HTmzsDAQLztbW/rWIZumJmZiXe/+93xpS99qa39V7/61XH55ZfHggULOpwMAAAAAAAoSpoMZ84VEwEAAAAAAMpFMREohWq1Gqeddlru3pe//OW47777Zv39zZs3x4YNG3L3TjjhhNh///1n/f1uev/73x8XXXRRW7uvfOUr4+///u8jSZIOpwIAAAAAAIo0Us0pJrYaBSUBAAAAAACgCIqJQGmcc845UalUMncmJyfj3HPPnfW3/9t/+2+xZcuW3L3/8l/+y6y/3U3nnHNO/OVf/mVbu0ceeWRcffXVsddee3U4FQAAAAAAULTRpJY5dzERAAAAAACgXBQTgdI47LDD4g1veEPu3hVXXBGXXXbZrL37rW99K/73//7fuXsve9nLYs2aNbP2bkTEgw8+GJVKJffHq1/96ll9NyLi/PPPj//xP/5HW7sveclL4tprr41FixbNeg4AAAAAAKD70iTnYqJiIgAAAAAAQKkoJgKl8tGPfjQGBvL/r+0973lP3HPPPc/6vUcffTTOOOOMmJqayt39/d///Wf93lzxR3/0R/Hxj3+8rd0XvOAFcd1118Xo6GiHUwEAAAAAAN0yUs0uJm7d3ozJ6fzPUwAAAAAAAOgNiolAqRxxxBGxfv363L3x8fFYvXp13H///Xv81qZNm2LNmjXxs5/9LHf3pJNOirVr1+7xW3PJn/7pn8aHP/zhtnZXrFgRN9xwQ+yzzz4dTgUAAAAAAHTTaFLLnM9ExJZWs5gwAAAAAAAAdJxiIlA6H//4x2PvvffO3Xv44Yfj5S9/eVx99dW7/catt94aRx55ZNx55525u9VqNS688MLdfmMu+j//5//EBz/4wbZ2ly1bFt/4xjdiv/3263AqAAAAAACg29Ik+2JiRES9OVFAEgAAAAAAAIqgmAiUzj777BOf//zno1Kp5O5u3rw5Xve618Wb3/zm+O53v5u7f9ddd8W6devila98ZTz00ENt5bnwwgtjxYoVbe3OdR//+Mfb3n3wwQfjoIMOikql0rUfv//7v9+53wwAAAAAAOBJI9U2ioktxUQAAAAAmJMqfhT6A6AkhrodAKAT3vCGN8S5554bn/rUp9rav/zyy+Pyyy+PQw89NI499th44QtfGIsXL45KpRJjY2Px4x//OG6++ea44447divHGWecEe9973v35JcAAAAAAADQMxYuqMbgwEBMTU/vcqfebBSYCAAAAAAAgE5STARK6xOf+EQ8/PDD8Td/8zdt/5x77rkn7rnnnll5f/Xq1bFx48ZZ+VoAAAAAAABzWaVSibRai82NbbvcqTddTAQAAAAAACiLgW4HAOiUgYGB+MIXvhBvfvObC3/72GOPjSuuuCIWLFhQ+NsAAAAAAADdMFIdzpzXW4qJAAAAAAAAZaGYCJTa0NBQXHbZZXHeeecV9ua6devi+uuvj+Hh7A/fAQAAAAAAymQ0ySkmNhsFJQEAAAAAAKDTFBOB0hsYGIhPfOITcfnll8cBBxzQsXdGR0djw4YNsXHjRpcSAQAAAACAvpMmtcx5veliIgAAAAAAQFkoJgJ94+STT44f//jHce65587qNcP58+fHu971rvjJT34S7373u2ft6wIAAAAAAPSSkWrOxcSWYiIAAAAAAEBZKCYCfWXhwoXxqU99Kn72s5/FJz7xiXjhC1+4x1/r137t1+LDH/5wPPjgg/HZz3429tlnn1lMCgAAAAAA0FtGk5xiYrMRMzMzBaUBAAAAAACgk4a6HQCgG0ZHR+O8886L8847L/7pn/4prr322vjBD34Qd911Vzz44IOxZcuW2Lp1a8zMzMTChQtj4cKFcdBB/5+9Ow+Psy4XPn5PmrYzCSVT1tayQy1UqIIoiMomi4hSFAEFEVpFQRRBzgEFFxbBhcUF9YgoLasKKggFlEWWgwiKVfoqBRGK0LJDJ20zM12Sef/wpKYlmUmbmWeSzOdzXXMdyO+XmfvJQfwjfntvGpMnT44ddtgh9tlnn9h2223r/RixxRZbJPoL/KeeeiqxzwIAAAAAAIaWbIUwcUVXZ3QsWxrrjE4nNBEAAAAAAAC1IkwEGt7mm28exx57bL3HAAAAAAAAGNLa0i0V7+SKHcJEAAAAAACAYaCp3gMAAAAAAAAAMPSNrbAxMSIiV+hIYBIAAAAAAABqTZgIAAAAAAAAwID1a2NiIZ/AJAAAAAAAANSaMBEAAAAAAACAAWseMSLWGZ0ueydXtDERAAAAAABgOBAmAgAAAAAAAFAVY9OtZc9zBWEiAAAAAADAcCBMBAAAAAAAAKAqshlhIgAAAAAAQCNorvcAAAAAAAAAAAwPbemWsue5Yj6hSQAAAACA/kpZeQXAWvBfHwAAAAAAAABUxVgbEwEAAAAAABqCMBEAAAAAAACAqsgKEwEAAAAAABqCMBEAAAAAAACAqmhLt5Q9zy9fFstWrEhoGgAAAAAAAGpFmAgAAAAAAABAVYytsDExIiJXtDURAAAAAABgqBMmAgAAAAAAAFAV2f6EiQVhIgAAAAAAwFAnTAQAAAAAAACgKtoyLRXv5Ir5BCYBAAAAAACgloSJAAAAAAAAAFRFpnlUjB7RXPaOjYkAAAAAAABDnzARAAAAAAAAgKpIpVKRzbSWvSNMBAAAAAAAGPqEiQAAAAAAAABUTVumpex5rphPaBIAAAAAAABqRZgIAAAAAAAAQNVk0zYmAgAAAAAADHfCRAAAAAAAAACqZmxGmAgAAAAAADDcCRMBAAAAAAAAqJq2TEvZ81wxn9AkAAAAAAAA1IowEQAAAAAAAICqyabLb0xsL+ajq6sroWkAAAAAAACoheZ6DwAAAAAAAADA8DE2Uz5MLJVKsWhpIbIV7gEAAAAACUnVewAAhiIbEwEAAAAAAAComrZ+BIe5Yj6BSQAAAAAAAKgVYSIAAAAAAAAAVTM23VLxTq7QkcAkAAAAAAAA1IowEQAAAAAAAICqGTM6E02pVNk7wkQAAAAAAIChTZgIAAAAAAAAQNU0NTXFuhW2JuaKwkQAAAAAAIChTJgIAAAAAAAAQFVl061lz3OFfEKTAAAAAAAAUAvCRAAAAAAAAACqamymwsbEgo2JAAAAAAAAQ5kwEQAAAAAAAICqastU2JhYFCYCAAAAAAAMZcJEAAAAAAAAAKoqm64QJhbyCU0CAAAAAABALQgTAQAAAAAAAKiqsZmWsue5QkeUSqWEpgEAAAAAAKDahIkAAAAAAAAAVFVbpvzGxGWdK6KwYllC0wAAAAAAAFBtwkQAAAAAAAAAqiqbLh8mRkTkCvkEJgEAAAAAAKAWhIkAAAAAAAAAVNXYChsTIyJyhY4EJgEAAAAAAKAWhIkAAAAAAAAAVFVbpqXiHWEiAAAAAADA0CVMBAAAAAAAAKCqRo1ojpaRo8veyRWFiQAAAAAAAENVc70HAAAAAAAAAGD4GZtpjfzypX2e5wr5BKcBAAAAAPqSsvIKgLXgvz4AAAAAAAAAqLq2TEvZ81zBxkQAAAAAAIChSpgIAAAAAAAAQNVl061lz3NFYSIAAAAAAMBQJUwEAAAAAAAAoOrGZiqEiYV8QpMAAAAAAABQbcJEAAAAAAAAAKquLdNS9tzGRAAAAAAAgKFLmAgAAAAAAABA1WXT5TcmLllajBWdnQlNAwAAAAAAQDUJEwEAAAAAAACourGZ8mFihK2JAAAAAAAAQ5UwEQAAAAAAAICqa8u0VLyTK+QTmAQAAAAAAIBqEyYCAAAAAAAAUHVZGxMBAAAAAACGLWEiAAAAAAAAAFXXOnJ0jGwaUfZOriBMBAAAAAAAGIqEiQAAAAAAAABUXSqVirZMS9k7uUI+oWkAAAAAAACoJmEiAAAAAAAAADWRTbeWPc8VbUwEAAAAAAAYioSJAAAAAAAAANTE2EyFMLEgTAQAAAAAABiKhIkAAAAAAAAA1ERbpqXsea6QT2gSAAAAAAAAqqm53gMAAAAAAAAAMDxl0xU2JhZtTAQAAACAukvVewAAhiIbEwEAAAAAAACoibGZ8mFieyEfXaVSQtMAAAAAAABQLcJEAAAAAAAAAGqiLdNS9ryz1BVLlhYTmgYAAAAAAIBqESYCAAAAAAAAUBPZChsTIyJyxY4EJgEAAAAAAKCahIkAAAAAAAAA1MTYdD/CxIIwEQAAAAAAYKgRJgIAAAAAAABQE+umWyJV4U6ukE9kFgAAAAAAAKpHmAgAAAAAAABATYxoaoox6UzZO7mijYkAAAAAAABDjTARAAAAAAAAgJoZm24te54rCBMBAAAAAACGGmEiAAAAAAAAADXTlqkUJuYTmgQAAAAAAIBqESYCAAAAAAAAUDPZTEvZ81zRxkQAAAAAAIChRpgIAAAAAAAAQM1k05U2JgoTAQAAAAAAhhphIgAAAAAAAAA1k82UDxPbC/mEJgEAAAAAAKBahIkAAAAAAAAA1EylMLGwYlkUVyxPaBoAAAAAAACqQZgIAAAAAAAAQM1k0y0V7+QKHQlMAgAAAAAAQLUIEwEAAAAAAAComUobEyOEiQAAAAAAAEONMBEAAAAAAACAmulXmFjMJzAJAAAAAAAA1SJMBAAAAAAAAKBm0s0jI9M8quwdGxMBAAAAAACGFmEiAAAAAAAAADXVlmkpey5MBAAAAAAAGFqEiQAAAAAAAADUVDbTWvY8VxQmAgAAAAAADCXCRAAAAAAAAABqKpuuECYW8glNAgAAAAAAQDUIEwEAAAAAAACoqWympex5e8HGRAAAAAAAgKFEmAgAAAAAAABATWUz5TcmLiwKEwEAAAAAAIaS5noPAAAAAAAAAMDwlk2XDxMXFwvR2dUVI5r82boAAAAAkLimVL0nAGAI8lsdAAAAAAAAAGoqm2kpe16KiEXFfDLDAAAAAAAAMGDCRAAAAAAAAABqKpspvzExImJhsSOBSQAAAAAAAKgGYSIAAAAAAAAANZVNVw4TcwVhIgAAAAAAwFAhTAQAAAAAAACgptYZnY4RqfK/nm4v5BOaBgAAAAAAgIESJgIAAAAAAABQU02pVLRlWsreWWhjIgAAAAAAwJAhTAQAAAAAAACg5rLp1rLnuaIwEQAAAAAAYKgQJgIAAAAAAABQc9kKGxPbC/mEJgEAAAAAAGCghIkAAAAAAAAA1Fw2U35j4sKCjYkAAAAAAABDhTARAAAAAAAAgJrLpsuHibmiMBEAAAAAAGCoECYCAAAAAAAAUHPZTEvZ8/ZCPkqlUkLTAAAAAAAAMBDCRAAAAAAAAABqLpspvzFxeVdndCxfmtA0AAAAAAAADIQwEQAAAAAAAICay6bLh4kREblCRwKTAAAAAAAAMFDCRAAAAAAAAABqLptpqXinvZBPYBIAAAAAAAAGqrneAwAAAAAAAAAw/PVnY+JCGxMBAAAAIHGpVL0nAGAosjERAAAAAAAAgJprHjEi1hmdLnsnVxQmAgAAAAAADAXCRAAAAAAAAAASUWlrYnshn9AkAAAAAAAADIQwEQAAAAAAAIBEZDMtZc8XFmxMBAAAAAAAGAqEiQAAAAAAAAAkotLGxFxRmAgAAAAAADAUCBMBAAAAAAAASEQ2Uz5MbC/kE5oEAAAAAACAgRAmAgAAAAAAAJCIbKal7PnCgo2JAAAAAAAAQ4EwEQAAAAAAAIBEZNPlNybmly+NZStWJDQNAAAAAAAAa0uYCAAAAAAAAEAispnyYWJERHsxn8AkAAAAAAAADIQwEQAAAAAAAIBE9CdMXFjoSGASAAAAAAAABkKYCAAAAAAAAEAispmWindyRWEiAAAAAADAYCdMBAAAAAAAACARmeZRMWpEc9k77TYmAgAAAAAADHrCRAAAAAAAAAASkUqlIptpLXtnYSGf0DQAAAAAAACsLWEiAAAAAAAAAInJZlrKnueKNiYCAAAAAAAMdsJEAAAAAAAAABKTTZffmNheECYCAAAAAAAMds31HgAAAAAAAACAxpHNlA8TFxbyCU0CAAAAAERERKreAwAwFNmYCAAAAAAAAEBispmWsue5oo2JAAAAAAAAg50wEQAAAAAAAIDEZNPlNyYuKuajq6sroWkAAAAAAABYG8JEAAAAAAAAABKTzZQPE7tKpVi8tJDQNAAAAAAAAKwNYSIAAAAAAAAAiakUJkZELCzmE5gEAAAAAACAtSVMBAAAAAAAACAx2XRLxTvthY4EJgEAAAAAAGBtCRMBAAAAAAAASMy6ozORSqXK3lkoTAQAAAAAABjUhIkAAAAAAAAAJKapqSnaKmxNzBWFiQAAAAAAAIOZMBEAAAAAAACARGUrhInthXxCkwAAAAAAALA2hIkAAAAAAAAAJCqbaS17vrBgYyIAAAAAAMBgJkwEAAAAAAAAIFGVwsRcUZgIAAAAAAAwmAkTAQAAAAAAAEhUNt1S9ry9kE9oEgAAAAAAANaGMBEAAAAAAACARFXcmFjoiFKplNA0AAAAAAAArClhIgAAAAAAAACJqhQmLu1cEYUVyxKaBgAAAAAAgDXVXO8BAAAAAAAAAGgs2XRLxTvthXy0jBydwDQAAAAA0NhSTaV6jwDAEGRjIgAAAAAAAACJqrQxMSIiV+hIYBIAAAAAAADWhjARAAAAAAAAgERl05XDxIXCRAAAAAAAgEFLmAgAAAAAAABAokY1N0fLyFFl77QX8wlNAwAAAAAAwJoSJgIAAAAAAACQuGym/NbEnI2JAAAAAAAAg5YwEQAAAAAAAIDEVQoTFwoTAQAAAAAABi1hIgAAAAAAAACJy6Zbyp63F/MJTQIAAAAAAMCaEiYCAAAAAAAAkLhKGxNzNiYCAAAAAAAMWsJEAAAAAAAAABJXKUxcWBQmAgAAAAAADFbCRAAAAAAAAAASl02XDxOXLC3Gis7OhKYBAAAAAABgTQgTAQAAAAAAAEhcNtNS8U57MZ/AJAAAAAAAAKwpYSIAAAAAAAAAictmym9MjIhYWOhIYBIAAAAAAADWlDARAAAAAAAAgMRl05XDRBsTAQAAAAAABidhIgAAAAAAAACJax01OkY2jSh7J2djIgAAAAAAwKAkTAQAAAAAAAAgcalUKtoyLWXvLBQmAgAAAAAADErCRAAAAAAAAADqIptuLXveXhQmAgAAAAAADEbCRAAAAAAAAADqIpspHybmCvmEJgEAAAAAAGBNCBMBAAAAAAAAqItspqXs+cKCjYkAAAAAAACDkTARAAAAAAAAgLrIpstvTGwvChMBAAAAAAAGI2EiAAAAAAAAAHWRzZQPE3PFfJRKpYSmAQAAAAAAoL+EiQAAAAAAAADURTbTUva8s6srFi8tJjQNAAAAAAAA/SVMBAAAAAAAAKAusunyGxMjItqLHQlMAgAAAAAAwJporvcAAAAAAAAAADSmbKZymJgrdMSm2Q0SmAYAAAAAGlMqVe8JABiKbEwEAAAAAAAAoC7WTWei0v/maWEhn8gsAAAAAAAA9J8wEQAAAAAAAIC6aG4aEWNGZ8reaS92JDQNAAAAAAAA/SVMBAAAAAAAAKBuspnWsue5gjARAAAAAABgsGmu9wD0T7FYjAULFsTLL78c7e3tkcvlYvHixbFs2bJYtmxZLF++PEaMGBGjRo2KkSNHRktLS7S1tUU2m42xY8fG+PHjY/3116/3YwAAAAAAAACsIptpjadzL/d5vrCQT3AaAAAAAAAA+kOYOIgsWbIkHn744XjkkUfi8ccfj8cffzyeeOKJWLBgQeRyuQG//6hRo2L8+PGxxRZbxDbbbBMTJ06M17/+9fHGN74xtthiiwG/PwAAAAAAAMCayqZbyp63F21MBAAAAAAAGGyEiXWyfPnymD17dtx///3xhz/8IWbPnh1PPfVUlEqlVe6t/vcDsXTp0njqqafiX//6V9xzzz2rnK277roxZcqUeMtb3hK77bZb7LbbbjFu3LiqfTYAAAAAAABAb7KZ1rLnuYIwEQAAAAAAYLARJibooYceijvuuCNuv/32+MMf/hBLly5deVYuQEylUlWdo7fPam9vj/vuuy/uu++++Na3vhUREVtuuWW8613vin322Sfe9a53xXrrrVfVOQAAAAAAAAAqh4n5hCYBAAAAAACgv4SJNZTP5+O3v/1t3HjjjXHzzTfHK6+8svJs9TiwUnxYjc2J3Z/R12et/hlPPvlkzJs3L3784x9HKpWKt771rTF16tQ46KCDYrvtthvwPAAAAAAAAADZdEvZ88KKZVFcsTzSzSMTmggAAAAAAIBKhIlVtmzZspg1a1Zcc801ccstt6zcitjfELEaAWJfKm1l7G2m7u8plUrx4IMPxoMPPhinn356TJw4MY444oj40Ic+FK9//etrNjMAAAAAAAAwvFXamBgR0V7oiPSYbO2HAQAAAAAAoF+a6j3AcHH//ffHxz72sdhoo43i0EMPjeuvvz6KxWKUSqUolUorw7+eAWD3Wc9XvfQ1S8+Ze5794x//iLPOOiu22267ePOb3xzf+973YuHChXWbHwAAAAAAABia+hMmLix0JDAJAAAAAAAA/SVMHICFCxfGBRdcEJMnT453vvOdMXPmzFi0aFGvMWLEa+O/wa5cpNgzVPzLX/4Sn/3sZ+N1r3tdfPjDH47f/e53dZ4cAAAAAAAAGCqy6ZaKd9qL+QQmAQAAAAAAoL+EiWthzpw5ceyxx8Ymm2wSp512Wjz66KP9ihGHsnLbFLvPly5dGtdee23su+++sf3228cll1wS+bxfEAIAAAAAAAB9S48cFenmkWXv5GxMBAAAAAAAGFSEiWvgN7/5Tey9996x4447xmWXXRaFQmFYx4jl9HzG3rYoPvLII/GpT30qJkyYEKeffnq88MIL9R4ZAAAAAAAAGKSymday5wuFiQAAAAAAAIOKMLGCUqkU11xzTbzpTW+KAw88MO65557XBHnd92oRI/aM/qr1qrZyWxTb29vjG9/4Rmy55ZbxyU9+Mv75z39W/fMBAAAAAACAoS2bbil73l7MJzQJAAAAADSgJq9EXwDDhH+l9aFUKsXVV18d2223XRx11FExZ86cskHiQPQnIuwZPg7kVenzBhIultuiWCwW48c//nFMnjw5pk2bFk888cSAfmYAAAAAAADA8FFpY2LOxkQAAAAAAIBBpbneAwxGP//5z+PMM8+Mf/zjH6tEhz1jxLXVV/jX13tmMpmYMGHCyteYMWMik8n0+lq+fHnk8/koFAqveb3wwgsxf/78WLBgQbzyyitlZ+ttxjV95r42KK5YsSKuuOKKuPrqq+Ooo46KM888MzbddNM1em8AAAAAAABgeBEmAgAAAAAADC3CxB5+97vfxWmnnRazZ89eJazrtjZBYn8iv3XXXTd22GGHmDJlSkyZMiU233zzmDBhQmyyySYxduzYNf7MSpYuXRoLFiyIBQsWxPz582Pu3LkxZ86cmDNnTvzrX/96zXy9bW/sr3KB4syZM+OnP/1pnHDCCXH66afX5FkBAAAAAACAwS+bbil7nivmE5oEAAAAAACA/hAmRsTf//73OOWUU+L222+PiH+Hc2sb4lUKEddbb73YY489YqeddlolREzS6NGjY6uttoqtttrqNWeLFy+O//f//t/KUPG+++6Lv//9770Ght368/PpK1AsFotx0UUXxU9+8pM444wz4rOf/Ww0N/vHEgAAAAAAABpJpY2Ji4r56OzqihFNTQlNBAAAAAAAQDkNXYAtXLgwvvSlL8WPfvSj6OzsfM2WxP4GieVCvWw2G7vvvnvsueeesddee8WUKVN6jRcHizFjxsRuu+0Wu+2228qvvfLKK3H33XfH3XffHXfddVc88sgjK8/WdJtiX4FiLpeLU089NS655JK46KKL4r3vfW81HwsAAAAAAAAYxCqFiaX4d5w4tmWdZAYCAAAAAACgrIYME0ulUvzP//xPfPnLX46FCxdWJUjs+R677LJLTJ06Nfbbb7/YcccdB3WI2B/rr79+HHLIIXHIIYdERMRLL70Ud911V8yaNStuueWWePXVVyNizSLFvgLFf/7znzF16tTYd99943vf+15ss802tXosAAAAAAAAYJDIplsq3skJEwEAAAAAAAaNhgsT//znP8dxxx0Xs2fPXqsgsbfwrqmpKfbcc884/PDD46CDDopx48bVYPLBY8MNN4zDDjssDjvssOjq6or//d//jV/96ldx3XXXxfPPPx8R/Y8U+woUb7vttthhhx3itNNOi9NPPz1GjRpV46cCAAAAAAAA6qXSxsSIiFyhI4FJAAAAAAAA6I+meg+QpE9/+tOx6667rowSV4/hyln9bqlUire85S3x7W9/O+bPnx933nlnfOITnxj2UeLqmpqaYo899ojvfOc7sWDBgrjjjjviYx/7WIwZM2blzynitaHi6la/GxGxdOnSOOecc2KHHXaIP/3pT7V/GAAAAAAAAKAu1hmdiRGp8r++zhWFiQAAAAAAAINFQ4WJP/jBD6Krq2tllBixahC3uu6YLpVKrby3wQYbxEknnRRz5syJBx98ME488cSGixH7kkqlYu+9945LL700nn/++bj88stjr732iojeNyP2pvvn3PPn/s9//jNuvfXWRJ4BAAAAAAAASF5TKhVt6Zayd3KFfELTAAAAAAAAUElDhYndeoaGfZ2vHi7utttucfXVV8f8+fPjoosuiu233z7JkYecdDodRx11VNx5553x2GOPxUknnRRtbW1rFCgCAAAAAAAAjSObqRQm2pgIAAAAAAAwWDRkmNjfIHHkyJExbdq0+Otf/xr33XdffPjDH46RI0cmOeqwsM0228RFF10Uzz77bPzoRz+K7bbb7jWbEQEAAAAAAIDGls20lj3PFYWJAAAAAAAAg0VDhomrWz1IbGtri89//vPx1FNPxU9+8pOYMmVKnSccHtLpdHz84x+Pv/3tb3HTTTfF7rvvLlAEAAAAAAAAIiKiLV0hTCzkE5oEAAAAAACASho6TFw9SNxggw3ivPPOi6effjrOO++8GDduXJ0nHL4OPPDAuPvuu+P++++PAw44QKAIAAAAAAAADW5spqXsea5gYyIAAAAAAMBg0ZBh4upB4oYbbhgXXnhhPPXUU/H5z38+1llnnTpP2Dh23XXXuPnmm+Ohhx6KqVOnrhIoAgAAAAAAAI0jm6mwMbHYEaVSKaFpAAAAAAAAKKchw8SIfweJbW1t8dWvfjWefPLJOPnkkyOTydR7rIa10047xfXXXx8PPPBA7L333it/oShQBAAAAAAAgMbQli4fJi7v7Iz88mUJTQMAAAAAjSOV8kryBTBcNFyYWCqVYtSoUXHqqafGk08+Gaeffnq0tLTUeyz+z1vf+ta444474o477oiddtrJn3gKAAAAAAAADWJshY2JERG5QkcCkwAAAAAAAFBJQ4WJqVQqjjjiiHjsscfi61//emSz2XqPRB/23nvv+NOf/hSXX355TJgwod7jAAAAAAAAADWWzVT+A2VzRWEiAAAAAADAYNBc7wGS9MADD8Rb3vKWeo/BGjjqqKPi0EMPjSeeeKLeowAAAAAAAAA11JbuR5hoYyIAAAAAAMCg0FAbE0WJQ1M6nY43vOEN9R4DAAAAAAAAqKGRI5pjnVHpsndyhXxC0wAAAAAAAFBOQ4WJAAAAAAAAAAxe2Uxr2fNc0cZEAAAAAACAwUCYCAAAAAAAAMCg0JZuKXueKwgTAQAAAAAABgNhIgAAAAAAAACDwthKGxOFiQAAAAAAAIOCMBEAAAAAAACAQSFbKUws5hOaBAAAAAAAgHKEiQAAAAAAAAAMCm3plrLnNiYCAAAAAAAMDsJEAAAAAAAAAAaFsRU2JnYsWxrLOlckNA0AAAAAAAB9ESYCAAAAAAAAMChkK4SJERHtxXwCkwAAAAAAAFCOMBEAAAAAAACAQaEt3VLxTq7QkcAkAAAAAAAAlCNMBAAAAAAAAGBQGNuPjYnCRAAAAAAAgPpr6DDx9ttvr/cIAAAAAAAAAPyfzMhRMXLEiLJ3csV8QtMAAAAAQINo8kr0BTBMNPS/0vbff//YYost4swzz4ynnnqq3uMAAAAAAAAANLRUKhXZdPmtiTYmAgAAAAAA1F9Dh4kREc8880ycc845sc0228Tee+8dV199dRSLxXqPBQAAAAAAANCQxmaEiQAAAAAAAINdw4eJERGlUim6urrinnvuiY9+9KMxbty4OO644+LBBx+s92gAAAAAAAAADaUt01L2PFfIJzQJAAAAAAAAfREmRkQqlYpUKhWlUilKpVIsWrQoLr300thtt93iDW94Q1x44YXx4osv1ntMAAAAAAAAgGEvm66wMbFoYyIAAAAAAEC9CRPj3xsTI/4TKPaMFOfOnRunnnpqbLrppnHwwQfHr3/96+js7KzzxAAAAAAAAADD09hMhTCxIEwEAAAAAACoN2Hi/+kOEVePFLvPli9fHjfddFN84AMfiE022SROPfXUeOSRR+o5MgAAAAAAAMCw05ZpKXveXsxH1//9XhcAAAAAAID6ECb2omek2NsWxRdeeCEuvPDC2GGHHWLXXXeNSy+9NBYtWlTvsQEAAAAAAACGvGy6/MbErlIpFi8tJDQNAAAAAAAAvREmVtDbFsWekeKf/vSnOO6442L8+PHx0Y9+NO666646TwwAAAAAAAAwdI3NlA8TIyJyhY4EJgEAAAAAAKAvwsR+6rlFMSJeEygWCoW4+uqrY5999omtttoqzjnnnHj66afrPDUAAAAAAADA0NLWrzAxn8AkAAAAAAAA9EWYuBZ6Roq9bVF86qmn4swzz4ytttoq9t133/jZz34WS5curffYAAAAAAAAAINe2+hMpFKpsndyRRsTAQAAAAAA6kmYOEC9bVHsjhS7urrid7/7XRx55JExfvz4OOGEE+Khhx6q88QAAAAAAAAAg1dTU1O0jc6UvZMrCBMBAAAAAADqSZgYqwaFa6vnFsWe79n9tVwuFz/84Q9jl112iSlTpsS3v/3tePnll6v1CAAAAAAAAADDRlumtex5rpBPaBIAAAAAAAB609Bh4qmnnhrjx4/vNSgciHJbFEulUvztb3+LU045JTbZZJM45JBDYtasWdHV1TXg5wEAAAAAAAAYDrLplrLnuaKNiQAAAAAAAPXU0GHi17/+9Xj66afj5ptvjkMOOSRGjRq1Mh6s5RbF7rNly5bFDTfcEFOnTo1NN900vvCFL8Rjjz1WlWcDAAAAAAAAGKrGVtyYKEwEAAAAAACop4YOEyMimpqa4oADDojrrrsunn322fjud78bO+20U59bD9dWz0ixty2Kzz33XHzzm9+MyZMnx9vf/va47LLLYsmSJdV6TAAAAAAAAIAho02YCAAAAAAAMKg1fJjY09ixY+PTn/50PPTQQzFnzpw46aSTYsMNN+xz6+Ha6it67P76Aw88EMcee2yMHz8+pk2bFvfee++Anw0AAAAAAABgqMimK4SJxXxCkwAAAAAAANAbYWIftt9++7joootiwYIFccMNN8TUqVNjxIgRvW49XFs9tyhGxGsCxY6Ojrjiiitir732iokTJ8Z5550XCxYsqNYjAgAAAAAAAAxKYzMtZc+XrlgeheXLEpoGAAAAAACA1QkTKxgxYkQcdNBBcf3118eCBQviggsuiB122KHPrYdrq2ek2NsWxSeeeCK+9KUvxRZbbBHvfve747rrrovly5dX6zEBAAAAAAAABo22TPmNiRERuUJHApMAAAAAAADQG2HiGthwww3jc5/7XDz88MPx0EMPxac+9akYO3Zsr5HiQPQVPZZKpejs7Izbb789PvShD8X48ePjxBNPjL/85S8DfjYAAAAAAACAwSLbnzCxmE9gEgAAAAAAAHojTFxLO+20U3zve9+LZ599Nn7+85/HAQccEE1NTTXbotjzPbu/9uqrr8b3v//92HnnnWPHHXeMiy++OF599dWqPB8AAAAAAABAvWTTLRXv2JgIAAAAAABQP8LEARo1alQceuihcfPNN8czzzwTX/va12LSpEl9bj1cW+W2KJZKpXj44YfjpJNOigkTJsThhx8et95668r7AAAAAAAAAEPJ6OaRkRk5quwdYSIAAAAAAED9CBOraNy4cXHaaafFI488Evfff38ce+yxse666/YaFa6tvrYodp8tXbo0fvGLX8R73/ve2GyzzeKLX/xi/POf/xz4wwEAAAAAAAAkKJtpLXueKwoTAQAAAKAaUimvJF8Aw4UwsUZ23XXXuOSSS+K5556LK6+8MvbZZ5+VGw4jqrtFsVQq9bpFccGCBSs3OO6+++5x+eWXRz6fr9YjAgAAAAAAANTM2HSFMLHgd58AAAAAAAD1IkyssXQ6HUceeWTcdtttMW/evDjrrLNiq6226nXrYTUixdXfr/vrv//972P69Okxbty4+PjHPx6///3vq/J8AAAAAAAAALXQlmkpe54r2JgIAAAAAABQL8LEBG266abxpS99KR5//PG455574uijj46WlpZeo8K11XOLYs/36/7akiVLYsaMGbH77rvHpEmT4hvf+EY899xzVXk+AAAAAAAAgGrJVtqYWBQmAgAAAAAA1IswsU7e+c53xowZM+L555+Pyy67LHbfffeIiJpsUSyVSr1uUXz88cfj9NNPj8022ywOPPDA+NWvfhUrVqyoyvMBAAAAAAAADEQ2UyFMLOQTmgQAAAAAAIDVCRPrrLW1NY455pi4++6745///Gd88YtfjE033bSqWxQjotf3644UOzs74ze/+U0ceuih8brXvS5OPvnkmDNnzoCfDQAAAAAAAGBtZTMtZc8XLy3Eiq7OhKYBAAAAAACgJ2HiILLlllvG2WefHfPmzYvbb789jjjiiEin071uPVxbPbcoRsRrtii+/PLL8d3vfjd23HHH2HnnneMHP/hB5HK5Kj0hAAAAAAAAQP9U2pgYEdFetDURAAAAAACgHoSJg1AqlYp3vetdcdVVV8Xzzz8fP/zhD2PXXXftc+vh2iq3RbFUKsXs2bPjM5/5TLzuda+LI444Im677baqPB8AAAAAAABAJWPTlcPEXKEjgUkAAAAAAABYnTBxkBszZkx84hOfiPvvvz8effTROPXUU2P8+PG9RoVrq68tit1nxWIxfv7zn8cBBxwQm2++eXzlK1+JJ598cuAPBwAAAAAAANCHtkxLxTu5go2JAAAAAAAA9SBMHEJe//rXx9e//vV4+umn45ZbbokPfvCDMWrUqJVRYTW3KK7+ft1fe+aZZ+KrX/1qTJw4Mfbaa6+46qqrolAoVPEpAQAAAAAAACLWGZWO5qYRZe/kijYmAgAAAAAA1IMwcQhqamqKd7/73XHttdfGs88+GxdffHG8+c1v7nXrYTUixdXfr/vr9957bxx99NExfvz4+OQnPxkPPPBAVZ4PAAAAAAAAIJVKRTZdfmtiriBMBAAAAAAAqAdh4hA3duzYOOGEE+JPf/pTzJkzJ0466aTYcMMNe40K11bPLYo936/7a4sWLYof//jH8fa3vz0mT54cF1xwQbzwwgtVeT4AAAAAAACgcbVlKoWJ+YQmAQAAAAAAoCdh4jCy/fbbx0UXXRQLFiyIG264IaZOnRrNzc0rA8JqblFc/f26v/boo4/GaaedFptuumkcdNBB8etf/zo6Ozur+JQAAAAAAABAo8hmWsue54o2JgIAAAAAANSDMHEYGjFiRBx00EFx/fXXx4IFC+LCCy+MKVOm9Lr1sBqR4urvVyqVYsWKFXHzzTfHBz7wgZgwYUJVngsAAAAAAABoLNl0hTCxIEwEAAAAAACoB2HiMLfBBhvEySefHH/961/jz3/+c5xwwgkxduzYXqPCtdVzi+Lq71cqleKll14a+IMAAAAAAAAADSebaSl73l7IJzQJAAAAAAxfqZRXki+A4UKY2EB23HHHuPjii+O5556La6+9Nt7znvdEU1NTzbYoAgAAAAAAAAxENlNhY2Ix7/eTAAAAAAAAdSBMbEAjR46MD37wgzFr1qx45pln4mtf+1pMmjSp162Haxsp+uUfAAAAAAAAMFDZdPkwcUVXZyxZVkxoGgAAAAAAALoJExvcuHHj4rTTTotHHnkk/vCHP8Sxxx4b6667bq+RIgAAAAAAAECSspmWinfaC/kEJgEAAAAAAKAnYSIr7bLLLnHJJZfEc889F1dddVXss88+kUqlVkaK4kQAAAAAAAAgSdlM+Y2JERELix0JTAIAAAAAAEBPwkReI51OxxFHHBG33XZbPPXUU3H22WfH1ltvLU4EAAAAAAAAEtWWrrwxMVcQJgIAAAAAACRNmEhZm2yySZx++unxrW99S5wIAAAAAAAAJKq5aUSMGZ0peydXyCc0DQAAAAAAAN2a6z0Ag9fcuXNj5syZcdVVV8Xzzz+/8uulUqmOUwEAAAAAAACNJJtpicVLC32e25gIAAAAAACQPGEiq2hvb4+f/vSnMWPGjHjooYciQogIAAAAAAAA1E823RrPxCt9nueKwkQAAAAAAICkCROJUqkUt912W8ycOTN+/etfx9KlS1eJEVOp1Cp3AQAAAAAAAJKSzbSWPW8v5BOaBAAAAAAAgG7CxAb2+OOPx4wZM+LKK6+MZ599NiJCkAgAAAAAAAAMKtlMS9nzhTYmAgAAAAAAJE6Y2GAWL14cP/vZz2LmzJnxwAMPRIQYEQAAAAAAABi8sunyGxNzBWEiAAAAAABA0oSJDeLOO++MGTNmxA033BCFQiEi/hMe9owRe359ba3+fgAAAAAAAABrK5spHyYWli+LpSuWx+jmkQlNBAAAAAAAgDBxGHvyySdj5syZccUVV8QzzzwTEbXbjthX3PimN70ppk+fPqD3BgAAAAAAABpXpTAxIiJXzMfG67QlMA0AAAAAAAARwsRhp6OjI6699tqYMWNG/P73v4+I2sWIfb3feuutF0cccURMnz493vSmNw34MwAAAAAAAIDGlU23VLyTK3QIEwEAAAAAABIkTBwm7r777pg5c2b88pe/jHw+HxH/CQX72ma4tnp7v6ampthvv/1i2rRpcfDBB8eoUaMG9BkAAAAAAAAAEf3bmNhe6EhgEgAAAAAYnlJN9Z4AgKFImDiE/etf/4qZM2fGFVdcEU899VREJL8dceutt45jjjkmjjnmmJgwYcKAPwMAAAAAAACgp8zIUTG6eWQsXbG8zzsLC/kEJwIAAAAAAECYOMQUCoW47rrrYubMmXHvvfdGqVRKPEZsaWmJQw45JKZPnx577LHHgD8DAAAAAAAAoJxsuiVeWNLe53muaGMiAAAAAABAkoSJQ8R9990XM2bMiF/84hexZMmSiPhPKNgzHuz59bXV1/vtuuuuMX369Dj88MNjzJgxA/oMAAAAAAAAgP7KZlrLhontBWEiAAAAAABAkoSJg9j8+fPj8ssvj8svvzyeeOKJiIjEtyNuvPHGcdRRR8X06dNj2223HfBnAAAAAAAAAKypbKa17PlCYSIAAAAAAECihImDTLFYjF/96lcxY8aMuOuuu6JUKvUZI0bUZjtic3NzHHjggTFt2rQ48MADY8SIEQP6DAAAAAAAAICByKbLh4m5Yj6hSQAAAAAAAIgQJg4af/jDH2LmzJlx7bXXxqJFiyLiP9FhEjFiRMTkyZNj2rRpcdRRR8VGG200oM8AAAAAAAAAqJZspqXsebuNiQAAAAAAAIkSJtbRs88+G1dccUVcfvnl8Y9//CMios/tiAONEft6v3XXXTcOP/zwmD59euyyyy4D/gwAAAAAAACAastmym9MbF9aiK6urmhqakpoIgAAAAAAgMYmTEzYsmXL4vrrr4+ZM2fGHXfcEV1dXX3GiBG12Y6YSqVizz33jOnTp8chhxwSmUxmQJ8BAAAAAAAAUEvZdPkwsVQqRfvSQoytEDACAAAAAABQHcLEhPzpT3+KGTNmxM9//vPI5XIR8Z/osNox4urv2f1+m266aRx99NExbdq02HLLLQf8GQAAAAAAAABJyGZaKt5pL3QIEwEAAAAAABIiTKyhF154Ia688sqYOXNmzJ07NyKiz+2ItYoRR48eHQcffHBMmzYt9t1339dEkAAAAAAAAACDXbYfweHCQkdsUftRAAAAAAAACGFi1S1fvjxuvPHGmDFjRtx2223R2dnZZ4wYMfAgsa/323HHHWP69Olx5JFHRjabHdBnAAAAAAAAANTTmNGZaEqloqvM71dzxY4EJwIAAAAAAGhswsQqmT17dsycOTN++tOfxquvvhoRyW9HXH/99eOII46I6dOnxxvf+MYBfwYAAAAAAADAYNCUSkVbuiUWFvqOD9sL+QQnAgAAAAAAaGzCxAF46aWX4qqrroqZM2fG3/72t4hILkbsfs+mpqbYf//9Y/r06TF16tQYOXLkgD8HAAAAAAAAYLDJZlrLhonlzgAAAAAAAKguYeIa6uzsjJtuuilmzpwZt956a6xYsaLPGDGidtsRt95665g2bVocffTRMWHChAF/BgAAAAAAAMBglk23lj3PFYWJAAAAALBWUpWvAMDqhIn9NGfOnJgxY0Zcc8018fLLL0dEctsRu9+vtbU1PvjBD8a0adNi9913H/BnAAAAAAAAAAwV2UxL2fP2Qj6hSQAAAAAAABAmlvHqq6/G1VdfHTNmzIiHH344IpKLEXu+59ve9raYPn16HH744bHOOusM+HMAAAAAAAAAhppspvzGxIUFGxMBAAAAAACSIkxcTVdXV9xyyy0xY8aMuPnmm2P58uV9xogRtduOOG7cuDjqqKNi+vTpMWnSpAF/BgAAAAAAAMBQVilMzBU7olQqveZ3ugAAAAAAAFSfMPH//P3vf4+ZM2fGVVddFS+++GJEJL8dceTIkXHggQfG9OnT44ADDogRI0YM+HMAAAAAAAAAhoNsuqXs+fLOzigsXxYto0YnNBEAAAAAAEDjaugwMZfLxTXXXBMzZ86MP//5zxGRfIwYEfGGN7whpk2bFkcddVRsuOGGA/4cAAAAAAAAgOGm0sbEiIiFhQ5hIgAAAAAAQAIaOkwcN25cLF++vM8YMaL6QWL3+7W1tcWHPvShmDZtWrz1rW8d8GcAAAAAAAAADGf9CRNzxY6Y0LZeAtMAAAAAAAA0toYOE5ctW7YyGkxiO2IqlYq99torpk+fHoccckik0+kBfw4AAAAAAABAI2hLt1S8017IJzAJAAAAAAAADR0mdkulUlWJEbvfq1v3e2622WZx9NFHx7Rp02KLLbaoyucAAAAAAAAANJJRI5qjddTo6Fi2tM87CwsdCU4EAAAAAADQuISJMfANib3FiOl0Og4++OCYPn16vOtd73rNBkUAAAAAAAAA1kw201o2TMwVhYkAAAAAAABJECaupdVDw+4gcaeddorp06fHEUccEdlstg6TAQAAAAAAAAxP2XRLLGh/tc/z9kI+wWkAAAAAAAAalzBxDfW2HXGDDTaII488MqZNmxZTpkyp12gAAAAAAAAAw1o201r2fGHBxkQAAAAAAIAkCBP7obftiCNGjIj99tsvpk+fHgcddFCMHDmyTtMBAAAAAAAANIZKYWKuKEwEAAAAAABIgjCxjN62I06cODGOOeaYOProo+N1r3tdvUYDAAAAAAAAaDjZdPkwsb2QT2gSAAAAAACAxiZMXE1vMWJra2sceuihMX369HjHO95Rr9EAAAAAAAAAGlo201L2fMmyYizvXBEjR/hVOAAAAAAAQC35bUysGiNG/CdI3G233WL69Olx+OGHR2tr+T95EwAAAAAAAIDaymYq/942V8zHhq3rJjANAAAAAABA4xIm/p/uGHH8+PHx0Y9+NKZNmxavf/3r6zwVAAAAAAAAAN2y6cphYntBmAgAAAAAAFBrDR8mlkqlGDlyZLz3ve+N6dOnxwEHHBBNTU31HgsAAAAAAACA1fRnY+LCQkcCkwAAAAAAADS2hg4Tt99++5g2bVocddRRscEGG9R7HAAAAAAAAADKaBk5KkaOGBHLOzv7vJMrChMBAAAAAABqraHDxDlz5tR7BAAAAAAAAAD6KZVKRTbdGi91LOrzTruNiQAAAAAAADXXVO8BAAAAAAAAAKC/spnWsucLC/mEJgEAAAAAAGhcwkQAAAAAAAAAhoxspqXsec7GRAAAAAAAgJprrvcAAAAAAAAAANBf2XT5jYntRWEiAAAAAKyJVKpU7xEAGIJsTAQAAAAAAABgyMhmyoeJuUI+oUkAAAAAAAAalzARAAAAAAAAgCEjm2kpe95ezEdXyZ/wDgAAAAAAUEvCRAAAAAAAAACGjGy6/MbEzlJXLFlaSGgaAAAAAACAxtRc7wFYe52dnfHcc8/Fs88+G4sXL45CoRCFQiGKxWKUevkTQD/60Y/WYUoAAAAAAACA6slmyoeJERG5Qkesmy6/WREAAAAAAIC1J0wcIh599NF48MEH469//Wv89a9/jcceeyxefPHFXgPEvggTAQAAAAAAgKGuP2HiwkI+NhubwDAAAAAAAAANSpg4SHV2dsasWbNi1qxZcdttt8X8+fNXOV+TIDEiIpVKVXM8AAAAAAAAgLpYd3QmUhFR7jem7cWOpMYBAAAAAABoSMLEQeYf//hHXHLJJXHVVVfFyy+/HBG9R4hrEhquacRYzje/+c2YNWtWxXsbbbRR/OIXv6ja5wIAAAAAAABERIxoaop10y3RXsz3eSdXECYCAAAAAADUkjBxkHj00Ufj7LPPjuuuuy66urpWiQnLRYiVosNqb0rcf//94wtf+ELZO6VSKVKpVNxzzz2xxx57VPXzAQAAAAAAALKZ1rJh4sJC32cAAAAAAAAMXFO9B2h0ixcvjuOPPz522GGH+PnPfx6dnZ0rw77uV8S/Y7/eXkl74xvfGO9973tXfna5mX784x8nPh8AAAAAAAAw/GXTLWXP24s2JgIAAAAAANSSMLGObrrpppg8eXL86Ec/ek2QGBF1DRDL+fznP7/yr3sGlD1fpVIpfvnLX8bixYvrOCkAAAAAAAAwHGUzrWXPcwVhIgAAAAAAQC0JE+ugVCrF5z//+Tj44INjwYIFfQaJg9Xb3va2ePOb39zn1sRuS5cujeuvv75eYwIAAAAAAADDVKUwcaEwEQAAAAAAoKaEiQlbvHhxHHDAAXH++ecPuSCxp0996lP9uvfzn/+8xpMAAAAAAAAAjSabbil73l7MJzQJAAAAAABAYxImJmjRokWx//77x+23374ySoxY+yCxO2rsfp8kHXHEEdHW1rZyjtWlUqkolUpxxx13xKJFi5IeDwAAAAAAABjGKm1MLK5YHsXlyxKaBgAAAAAAoPEIExOyePHi2H///eOBBx6IiP+Ee/0NEntGiPWKEXsaPXp0fOADH+h1/p5fW7FiRfz2t79NcjQAAAAAAABgmKsUJkZELCx0JDAJAAAAAAx9qSavJF8Aw4V/pSXkIx/5SDz44IOrbEmsZPUIsTtk7H41NzdHNpuN8ePHr7yfpI985CP9unfLLbfUeBIAAAAAAACgkWTTLRXvtBfzCUwCAAAAAADQmJrrPUAjOPPMM+Omm27qd5TYMzDsvrvpppvG/vvvHzvvvHPsuOOOsfnmm8dGG2208l5TU/KN6Z577hkbb7xxvPjiiys3QPbU/TUbEwEAAAAAAIBq6s/GxJyNiQAAAAAAADUjTKyx+++/P84555w1jhJLpVK0tbXFRz/60fjYxz4WU6ZMqfmsayqVSsW73/3uuPzyy1+zrbFUKq382gsvvBCPP/54TJw4sR5jAgAAAAAAAMPM6OaRkRk5KgrLl/V5Z6EwEQAAAAAAoGaSX7PXQJYvXx6f+MQnVsaI5aLEVCq1csPg6NGj44wzzoh58+bFd77znUEZJXZ7z3ve06979913X40nAQAAAAAAABpJNt1S9ry9mE9oEgAAAAAAgMYjTKyhiy66KB555JGVwWFfem5JfNvb3hYPP/xwnHPOOZHNZhOadO3tu+++K+dffWtiT8JEAAAAAAAAoJqymday5zkbEwEAAAAAAGpGmFgj+Xw+LrjggrKxXkSsjBZLpVIcd9xxcc8998TEiRMTmnLgstlsTJ48ueydUqkUs2fPTmgiAAAAAAAAoBFUChMXChMBAAAAAABqRphYI5dcckm88sorERF9bkvsjhJTqVScccYZ8YMf/CCam5uTHLMq3va2t5V9xoiIuXPnxooVK5IcCwAAAAAAABjGsumWsuftxXxCkwAAAAAAADQeYWKNXHzxxWW3JfaMEo8//vg455xzEpyuut761rf2+vWeseLy5ctj7ty5SY0EAAAAAAAADHOVNibmbEwEAAAAAACoGWFiDTzwwAPx1FNPRUTv2xJ7Rolvf/vb4zvf+U7CE1bX5MmT+3Xvscceq/EkAAAAAAAAQKOoFCYuWlqIFV2dCU0DAAAAAADQWISJNXDNNdf0edZzi+Lo0aPjsssuixEjRiQxVs1MmjSpX/fmzZtX40kAAAAAAACARpFNt1S8s6hYSGASAAAAAACAxiNMrIFbb711lQBxdd3bEk888cTYZpttEpysNtZff/1Yb731IiLKPrcwEQAAAAAAAKiWShsTIyJyhY4EJgEAAAAAAGg8wsQqe+GFF+KJJ56IiH8HiD31jPYymUz813/9V6Kz1dKECRNe87yrW7BgQULTAAAAAAAAAMNdf8LEhcJEAAAAAACAmhAmVtl9991X9rx7W+L73ve+2GCDDRKaqvY23njjindeeumlBCYBAAAAAAAAGsE6o9Ixoqn8r7zbi/mEpgEAAAAAAGgszfUeYLiZM2dOv+4dfvjhNZ4kWePGjevzLJVKRalUipdffjnBiQAAAAAAAIDhLJVKRTbdEq/kl/R5J2djIgAAAABUlErVewIAhiIbE6vsySef7PXrqR7/TZ1KpWLPPfdMaKJkrLPOOhXv5HK52g8CAAAAAAAANIxsprXs+UJhIgAAAAAAQE0IE6usrzCxp4kTJ0Y2m639MAlKp9MV7yxdujSBSQAAAAAAAIBGkU2XDxPbi/mEJgEAAAAAAGgswsQqe+6551bZjthTqVSKVCoV22yzTcJT1Z4wEQAAAAAAAEhaNtNS9jxnYyIAAAAAAEBNCBOrrKOj8i+2NtlkkwQmGXxWrFhR7xEAAAAAAACAYSSbKb8xUZgIAAAAAABQG8LEKutPmLjOOuskMEmyCoVCxTujR49OYBIAAAAAAACgUWTTFcLEYj5KpVJC0wAAAAAAADQOYWKVFYvFindGjRqVwCTJyufzFe+0tLQkMAkAAAAAAADQKCptTFzR1Rkdy5YmNA0AAAAAAEDjECZWWSaTqXinP9sFh5oXX3yx4p3+/GwAAAAAAAAA+iubqfyHo+YKHQlMAgAAAAAA0FiEiVXWn62AHR3D7xdf8+fP7/OsVCpFRMSYMWOSGgcAAAAAAABoANl0+Y2JERG54vD7/SwAAAAAAEC9CROrrLW18i++nn322QQmSda8efMilUr1eZ5KpWLChAkJTgQAAAAAAAAMd23p/mxMzCcwCQAAAAAAQGMRJlbZ2LFjV24I7E2pVIqnn346wYlqb/78+fHqq69GRJR99s022yypkQAAAAAAAIAG0DxiRIwZnSl7Z2HBxkQAAAAAAIBqEyZW2ZZbbtnnWfdGwX/84x+xfPnypEaqudmzZ/frnjARAAAAAAAAqLZsha2J7UVhIgAAAAAAQLUJE6tsq6226vXrPTcJLlu2LB5++OGkRqq5O++8s1/3Jk6cWONJAAAAAAAAgEaTzbSWPc/ZmAgAAAAAAFB1wsQq6ytMXN3tt99e40mSc8stt6zcBlnOzjvvnMA0AAAAAAAAQCOpHCbmE5oEAAAAAACgcQgTq+zNb35zv+7deOONNZ4kGbNnz44nnngiIlbdChkRq8SK2WzWxkQAAAAAAACg6rLplrLnuaKNiQAAAAAAANXWXO8Bhpsdd9wxMplMFIvFSKVSq8R6pVJp5df++Mc/xty5c2O77bar47QD96Mf/ajsefcz25YIAAAAAAAA1ELljYnCRAAAAAAop8dOIgDoNxsTq6y5uTne+ta3vmZ7YG++//3vJzBR7bz00ktx9dVXr7IZsS/77bdfAhMBAAAAAAAAjaZSmJhfviyWrViR0DQAAAAAAACNQZhYA5UivO6tiT/5yU/iX//6V0JTVd95550XHR3//tNFK4WY73//+5MYCQAAAAAAAGgw2XRLxTu5oq2JAAAAAAAA1SRMrIHDDz+8z7OeAd+yZcvilFNOSWKkqvv73/8e//M//9PntsTu+DIiYvLkybHVVlslOR4AAAAAAADQICptTIyIyBWEiQAAAAAAANUkTKyBrbbaKnbeeecolUq9hnvdXy+VSnH99dfH1VdfXYcp115nZ2ccffTRsWzZsogovy0xlUrFkUcemdRoAAAAAAAAQIMRJgIAAAAAACRPmFgjRx99dMU73XHi8ccfHw8//HACU1XHpz/96Zg9e/YqWxF76hljjh49Oo499tgkxwMAAAAAAAAaSLp5ZIwe0Vz2Tq6YT2gaAAAAAACAxiBMrJGPfexjseGGG0ZE9Lk1sftsyZIlceCBB8YTTzyR6Ixr45vf/GZccsklvT5TT91bIT/0oQ/F+uuvn9B0AAAAAAAAQKNJpVIVtybamAgAAAAAAFBdwsQaSafTceKJJ/a6UbBbzzjx2WefjXe84x0xZ86cpEZcY2effXZ84QtfWBklVtqW2NTUFKecckpi8wEAAAAAAACNSZgIAAAAAACQLGFiDX3mM5+JjTbaKCJ635oYsWqc+MILL8Ruu+0WV155ZWIz9seSJUviIx/5SJx11lkr560UXKZSqTj66KPjDW94Q1JjAgAAAAAAAA2qLd1S9jxXzCc0CQAAAAAAQGMQJtbQuuuuGxdccEHZiC9i1Tgxn8/HMcccE1OnTo2nn346iTHLuvnmm+NNb3pT/PSnP10ZHPb1PD3jy9bW1jj33HOTGhMAAAAAAABoYGNtTAQAAAAAAEiUMLHGPvKRj8See+65MurrS884sVQqxaxZs2LSpElxwgknxLx585Iad6Xbb7899tlnnzjooIPiySefrBglduu+d/bZZ8fGG2+c0LQAAAAAAABAI8sKEwEAAAAAABIlTEzAjBkzYv3114+IWKM4cenSpfHDH/4wJk6cGPvss09cdtll8dxzz9VsztmzZ8dXvvKVmDRpUrz73e+Ou+66a2VoWClK7D5PpVKxzz77xEknnVSzOQEAAAAAAAB6aku3lD1vX1qIrq6uhKYBAAAAAAAY/prrPUAj2HzzzePqq6+O97znPRU3D/aME7v/vlQqxV133RV33XVXRERst912sfPOO8dOO+0UW2+9dWy22Wb9mmPevHlRKBQin8/HCy+8EPPnz4958+bF7NmzY/bs2bFw4cJVZlh9jr70jC032GCDuPzyy/s1DwAAAAAAAEA1jK2wMbFUKsWipYWKmxUBAAAAAADoH2FiQvbbb78499xz4wtf+ELZrYndem4q7P77bo888kjMnTs3rrzyytd8T2/v0/1/t9lmm7Kf163nfOWCxJ53S6VSZDKZ+OUvfxnjxo0r+z0AAAAAAAAA1dSf4DBX6BAmAgAAAAAAVIkwMUGnnXZaLF68OM4777x+bSLsuT1x9ViwUjBY7v16s3os2Z/37/kMI0aMiKuvvjre8Y53rPFcAAAAAAAAAAORTbdUvJMr5hOYBAAAAAAAoDEIExP21a9+NZYvXx7nn3/+yuCwUgS4+nlvGxfXJCTs7+f0571KpVI0NTXFD3/4wzj44IP7/f0AAAAAAAAA1TIm3RJNqVR0lfmdZ67QkeBEAAAAAAAAw1tTvQdoRN/4xjfiwgsvjKamf//4KwWDq+vemNjztbbft6bv0XPeUqkUo0ePjmuvvTY+9rGPrdEzAAAAAAAAAFRLUyoVbRW2JgoTAQAAAAAAqkeYWCcnn3xyzJo1K9ra2qJUKq3cnjjY9YwS119//fjtb38bH/jAB+o8FQAAAAAAANDo2tKtZc9zxXxCkwAAAAAAAAx/wsQ62n///ePPf/5z7L333is3Fg7WQLHnXKVSKfbee++YM2dO7L777nWeDAAAAAAAACBibMbGRAAAAAAAgKQIE+tsyy23jDvuuCN++MMfxpgxYwZdoLh6kJjJZOL888+P22+/PcaPH1/n6QAAAAAAAAD+LZupsDFRmAgAAAAAAFA1wsRB4hOf+EQ8+eSTccopp0Q6nX5NoJh0pLh6kBgRcfTRR8fjjz8ep5xyyqCIJgEAAAAAAAC6taUrhInFfEKTAAAAAAAADH/CxEFkvfXWi/PPP39loLj++utHqVTqNVKsdhjY23uXSqUYOXJkfOQjH4nZs2fHjBkzbEkEAAAAAAAABqWxmZay57lCx8rfvQIAAAAAADAwwsRBaOONN47zzz8/FixYED/72c9i//33j5EjR64SKUa8NiYcyCsiVr5/qVSKSZMmxdlnnx1PP/10XHHFFfHGN76xXj8OAAAAAAAAgIqymfIbE5d1rojC8mUJTQMAAAAAQ0cq5ZXkC2C4aK73APRt5MiRcdhhh8Vhhx0WHR0dceedd8att94a//u//xuPPfZYdHZ2vuZ7+rNJsbc/BXTdddeNnXfeOfbdd984+OCDY9KkSVV5BgAAAAAAAIAktKXLh4kREbliPlpGjU5gGgAAAAAAgOFNmDhEtLa2xkEHHRQHHXRQREQUi8V4+OGH4+GHH4558+bF/PnzY/78+fHcc8/FkiVLolAoRLFYjKVLl8bIkSOjpaUlMplMrLPOOjFhwoTYbLPNYrPNNottttkmdt5559h22237FTUCAAAAAAAADEZjK2xMjIjIFTrideuOTWAaAAAAAACA4U2YOESl0+nYZZddYpdddqn3KAAAAAAAAAB115ZpqXgnV+hIYBIAAAAAAIDhr6neAwAAAAAAAADAQI0a0RwtI0eXvZMrChMBAAAAAACqQZgIAAAAAAAAwLAwNtNa9jxXyCc0CQAAAAAAwPAmTAQAAAAAAABgWMhmWsqe5wo2JgIAAAAAAFSDMBEAAAAAAACAYaEtXWFjYlGYCAAAAAAAUA3CRAAAAAAAAACGhbGZCmFiIZ/QJAAAAAAAAMObMBEAAAAAAACAYSFbMUy0MREAAAAAAKAahIkAAAAAAAAADAtt6Zay50uWFWN554qEpgEAAAAAABi+hIkAAAAAAAAADAtjK2xMjIhoL+YTmAQAAAAAAGB4EyYCAAAAAAAAMCxk+xEm5grCRAAAAAAAgIESJgIAAAAAAAAwLLRlWireyRU7EpgEAAAAAABgeGuu9wAAAAAAAAAAUA2tI0fHyKYRsbyrs887uYIwEQAAAAB6SjWV6j0CAEOQjYkAAAAAAAAADAupVCqymdayd4SJAAAAAAAAAydMBAAAAAAAAGDYaEu3lD3PFfMJTQIAAAAAADB8CRMBAAAAAAAAGDbG2pgIAAAAAABQc8JEAAAAAAAAAIaNbMUw0cZEAAAAAACAgRImAgAAAAAAADBstKVbyp7nijYmAgAAAAAADFRDhYm77rprPPDAA/UegzWQz+fjy1/+clxwwQX1HgUAAAAAAAAYAsZW2JjYXshHV6mU0DQAAAAAAADDU0OFiX/84x/j7W9/e3z4wx+Of/3rX/Uehwouu+yymDhxYpx77rmRz+frPQ4AAAAAAAAwBGQrhImdpa5YsrSY0DQAAAAAAADDU0OFid2uvfba2HbbbeOkk06Kl156qd7jsJobbrghdthhhzj22GPjueeeq/c4AAAAAAAAwBDSlmmpeCdX7EhgEgAAAAAAgOGrIcPEUqkUS5cujYsvvji23nrr+PKXvxzt7e31Hqvh3XHHHbHrrrvGIYccEn//+9+jVCrVeyQAAAAAAABgiBmbLr8xMSIiVxAmAgAAAAAADERzvQeoh1QqFRH/DhSXLFkS5557blx88cXxmc98Jk4++eQYO3ZsnSdsLL/5zW/inHPOiQceeCAiYmWQmEqlxIkk4plnnonf/va3MWfOnHjkkUdi3rx5sXjx4li0aFGUSqUYM2ZMjBkzJjbbbLOYPHly7LDDDrHvvvvGxIkT6z06AAAAAAAAq1k33RKpiCj3m8ZcIZ/UOAAAAAAAAMNSQ4aJpVIpUqnUKoFie3t7nHvuufGd73wnPvWpT8WJJ54Y48ePr/Okw1epVIpf/epX8Y1vfCP+/Oc/r/xaxH/CUailXC4XP/7xj+PKK6+MOXPmlL37yiuvxCuvvBJPPfVU3HvvvSu/PnHixDjiiCPi+OOPj4033rjWIzeUJ598Mq644op+399iiy3imGOOqd1AAAAAAADAkDGiqSnGpDOxqFjo806uaGMiAAAAAADAQDRkmBixagTXM1BcvHhxfPOb34xvfetbceSRR8bnPve5eMMb3lDPUYeVQqEQl112WXz729+OJ598MiJeGyQKFKmlJUuWxDnnnBPf//73o6NjYL9wfvzxx+Oss86Kr33ta3H00UfHeeedFxtssEGVJm1cpVIppk+fHvfcc0+/v2ePPfYQJgIAAAAAACuNTbeWDxMLwkQAAAAAAICBaKr3APVWKpVeEymWSqVYtmxZzJw5M6ZMmRL7779/3HjjjSvvseaeeOKJOOWUU2KTTTaJE088MZ544omVP/ueP3c/Y2rpxhtvjO222y6++c1vDjhK7GnZsmVx6aWXxqRJk2LGjBlVe99Gdckll6xRlAgAAAAAALC6bKa17HmukE9oEgAAAAAAgOGpIcPE3jbx9RUolkqluOOOO+L9739/bLnllvH1r389nn322aRHHpJWrFgR119/fRxwwAExadKk+Pa3vx0LFy5cJUYUJJKErq6u+OIXvxgHH3xwzJ8/v2af8+qrr8b06dPjE5/4RCxbtqxmnzOczZ8/P0477bR6jwEAAAAAAAxxbZmWsue5oo2JAAAAANAtlfJK8gUwXDRUmLj++uuvEh/2plyg+PTTT8cZZ5wRm2++ebznPe+JX/7yl+KjXjz88MNx8sknx+te97r44Ac/GLfddlt0dXWtEiRGRNkgsef/f0qlUmywwQaJzM7w09nZGR/60Ifi3HPPTSyAvfTSS2O//faLfN6ftLumjj/++Fi0aFG9xwAAAAAAAIa4bLrSxkRhIgAAAAAAwEA0VJj42GOPxTHHHLPy73tGcqvrjuZ62+7X2dkZv/3tb+Owww6LjTbaKI455pj4zW9+E52dnQk9yeDz2GOPxVlnnRWTJ0+OnXbaKb773e/Gyy+//JqfYUT5IDEiVrm32WabxQ033BCf+tSnEnkOhpeurq445phj4rrrrkv8s++55554//vfH0uXLk38s4eqa665JmbNmlXvMQAAAAAAgGFgbKZ8mNhe8AdMAgAAAAAADERzvQdI0nrrrReXXXZZTJs2LY477riYO3fua4K53qy+QbHn1xYtWhRXXnllXHnllZHNZuM973lPTJ06Nd797nfHOuusk8BT1c+DDz4Yv/71r+PGG2+MuXPnRsSqP8PVo89K2+p6/mybm5vjpJNOijPPPDNaWlqqPDmN4owzzoirrrpqjb5n4sSJ8fa3vz223377WG+99SKVSsXChQtj7ty58Yc//CH+9re/9fu9brvttjj22GPjiiuuWNPRG87LL78cn/3sZ+s9BgAAAAAAMEy0VQgTCyuWRXHF8kg3j0xoIgAAAAAAgOGlocLEbu985ztjzpw5cfHFF8fZZ58duVxulY2IfektUOz59YULF8Y111wT11xzTYwcOTJ22WWX2GuvvWLPPfeM3XbbLUaNGlXbB6uxuXPnxl133RV33XVX3HPPPfHKK69ExMBixJ7f0313v/32i29/+9ux7bbbVmt0GtCtt94a3/jGN/p9f+rUqXH66afHW9/61rL3/va3v8X5558fV111VXR1dVV83yuvvDL22GOP+NjHPtbvWRrRiSeeGC+//HK9xwAAAAAAAIaJbLryH36aK3TEuDHZ2g8DAAAAAAAwDKVK/SnHhrFXXnklTj/99PjJT34SXV1dFbcnrq5ciNfzbPTo0auEijvuuGOMGTOmCk9QG52dnTF37ty477774u6774677747XnrppZXnq/98egs1K1n9eyZOnBgXXnhhvPe97x3g9DS6V155Jbbddtt+hW7rrbdeXHnllfGe97xnjT7jgQceiMMOOyyeeeaZinczmUzMmTMnttlmmzX6jEYxa9aseN/73tfneVNTU8UIdI899oi77767ypMNDS+99FJstNFGq3ztxRdfjA033LBOEwEAAAAAQP29sDgXJ990edk7X97ng7HtRhMSmggAAABqw/+GDKiGA7/1hXqP0FBuPvlr9R4BoCoacmNiT+uvv35ccskl8ZnPfCZOO+20uPXWW1fZiFgpsls9ROwr0CsWi3HvvffGvffeG2eddVZERGy22WYxZcqUmDJlSuywww4xZcqUeP3rXx9NTU3VfMSKnn/++ZgzZ84qr0cffTSWL1/e67NErN1mxN6+t1QqxYYbbhhf+tKX4rjjjovm5ob/R5IqOOOMM/oVJW6yySZx9913x9Zbb73Gn7HrrrvGQw89FHvttVc88sgjZe8WCoU4+eST46abblrjzxnuFi9eHMcff3yf5+PHj49ddtklbrjhhuSGAgAAAAAAhry2TGvFO7liPoFJAAAAAAAAhicV2P/Zfvvt4+abb4677747Tj311HjooYfWKFBc/c7qkWJv7/Gvf/0rnn766Zg1a9bKr40aNSomTJgQEyZMiE022WTlX3e/xowZE5lMJtLpdGQymZWvbsuWLYtCobDKK5/Px4svvhjz58+PBQsWxIIFC1b+9fz582PRokVl5+x+nnLP2x+rB4mtra3xuc99Lv77v/871llnnTV6L+jLX/7yl7j00ksr3mtra4s77rhjraLEbhtttFHceeed8Za3vCXmz59f9u6sWbPilltuWePNjMPdqaeeWvZn993vfneVf0cCAAAAAAD0R7p5ZGSaR0VhxbI+7+QKHQlOBAAAAAAAMLwIE1ez5557xh//+Mf49a9/HWeddVb89a9/XeNAsbd7vYWKvd1bunRpPPnkkzFv3rw1mnvkyJHR2dkZXV1d/f6ecs9SjRCxt/cqlUrR0tISJ5xwQvz3f/93bLDBBmv1ntCXs846q1//Obj00ktj0qRJA/68cePGxTXXXBN77bVXdHZ2lr37la98RZjYw7333huXXHJJn+fve9/74oMf/KAwEQAAAAAAWCvZTEsUFgsTAQAAAAAAaqGp3gMMVlOnTo3Zs2fHL3/5y3jTm94UpVIpSqXSysCwt3CvnO7v7/mKiFXer+ert/vlXsuWLYvOzs41+p5yn9/bzGtq9fdqbW2N//qv/4p58+bFN77xDVEiVffYY4/FjTfeWPHe1KlT49BDD63a577zne+MT37ykxXvPfTQQ/G73/2uap87lBWLxfj4xz/e579b1llnnfj+97+f8FQAAAAAAMBw0pZpLXueKwoTAQAAAAAA1pYwsYL3v//98ec//zluvfXW2HPPPXuN+tZWX7Fgz/eu9auvOQayHXH1uHKDDTaIc845J55++un45je/GRtuuOFa/8ygnIsuuqjiP7vNzc1xwQUXVP2zzz777Fh33XUr3rvwwgur/tlD0Ve+8pV4/PHH+zz/6le/Gptuuun/Z+++o+Su6/3xv2Z3k53ZTdgJJSEBJSg1lFBCCYIgiBSBC1yliYCEFnq7Ahf9IXIv34ugUqQFbwApwgVFKSpFBS8CoYQivSSU0IXsJtndSdnM7w/vrpuQnZkkM5/Z8nicM+eafb923s/P3si9x/G5rwQTAQAAAAAA/U02XaSY2N6WUBIAAAAAAID+RzGxRLvsskv86U9/iscffzwOPPDAqKurW+LWweW1tJsSFy8RLs/3Lo8lFR033HDDuOqqq+Ktt96Ks88+O7LZbFnugiWZO3du3HrrrUXn/vVf/zXWWmutst+/0korxRFHHFF07t57740PP/yw7Pf3JVOnTi1Y0Nxiiy3ihBNOSDARAAAAAADQHw3LNBQ8b2m3MREAAAAAAGBZKSYupXHjxsVNN90Ub7/9dpxzzjkxcuTIsm5RXFblLBmWakmbF2tra2OfffaJP/3pT/Hcc8/FUUcdFel0OtFcDEx33313tLS0FJ07+eSTK5bhxBNPjJqawv9Y7ejoiFtuuaViGXq7BQsWxOGHHx4dHR1LPK+rq4trrrmm6M8RAAAAAACgmKZM4Y2JM3OKiQAAAAAAAMtK82MZjRgxIs4555x4++2347e//W3stddeUVtb21UQ7F7aq0ZRsVKWVEbM5/OxzjrrxAUXXBDvvPNO/OpXv4oddtihukEZcH75y18WnVlrrbVi6623rliGNdZYI7bbbruic6Vk7a8uuOCCePbZZ3s8P+WUU2Ls2LEJJgIAAAAAAPqrbLpwMXF2rj06Fi5MKA0AAAAAAED/opi4nGpqamLPPfeM3/zmNzFjxoz46U9/GltvvXVXYW/xTYp9raS4pIJl53MNHz48TjjhhHjkkUfipZdein/7t3+LESNGVDkxA1FHR0c88MADRef233//imc54IADis488cQT8cknn1Q8S2/zyiuvxHnnndfj+Zprrhk/+MEPkgsEAAAAAAD0a8MyDQXP8xExK9eWTBgAAAAAAIB+pq7aAfqT4cOHx0knnRQnnXRSvPXWW3H77bfHb3/723jkkUdi4f/9ps0llRM7y4u9wZKKk93zfe5zn4u99tor9t1339h+++2jpka3lep7/PHHo6WlpejcbrvtVvEspdyxcOHC+OMf/xj77bdfxfP0Fvl8Po444oiYO3dujzNXXnllNDQU/i8IAAAAAAAAlKopU3hjYkTEzFxrDGsYkkAaAAAAAOi9+tj+JQB6CcXEClljjTXitNNOi9NOOy0++eSTuOeee+Lee++NP/3pT/Hhhx92zRXaoljJwmKhzY3d7x08eHBsvfXWsfPOO8fXv/712GSTTSqWCZbVH//4x6IzQ4cOja222qriWdZYY41Ya6214vXXXy84d//99w+oYuLll18eDz/8cI/nBx10UOyyyy4JJgIAAAAAAPq7bLp4MbG5vTWBJAAAAAAAAP2PYmICVlpppTjkkEPikEMOiYiI559/Ph588MF45JFH4tFHH4233nrrM99TqLBYTouXHxsbG2OLLbaIbbbZJrbbbrvYbrvtbDCj13v00UeLzmy11VZRV5fMP/K22267osXEKVOmJJKlN3j77bfjrLPO6vF8xRVXjIsvvji5QAAAAAAAwIAwpD4dtTU10bFwYY8zLe1tCSYCAAAAAADoPxQTq2DDDTeMDTfcMI4//viIiPjggw/i6aefjmeffTaeffbZePHFF+P111+P9vb2ou+1pPJiKZsWU6lUfO5zn4v11lsvNtpooxg7dmyMHTs2Nthgg6ipqVn6h4Iqevrpp4vObLbZZgkk+YfNN988rr322oIzL730UsydOzfq6+sTSlU9Rx99dMyZM6fH8wsvvDBWWWWVBBMBAAAAAAADQU0qFU3phvi0refPKWbamAgAAAAAALBMFBN7gVVXXTV222232G233Rb5+rvvvhvTpk2LGTNmxLvvvhvvv/9+fPzxx9HS0hLNzc0xZ86cmDt3bsyfPz8WLFgQNTU1MWjQoBg8eHBkMploamqKbDYbK664Yqy66qoxatSoWG211WKNNdaIL37xiwOiEEX/9+GHH8b7779fdC7pYmIxCxYsiL/97W8xbty4BBJVzy9+8Yv4wx/+0OP5DjvsEIcffniCiQAAAAAAgIEkm24sWExszikmAgAAAAAALAvFxF5stdVWi9VWW63aMaBXe+6550qaW2+99Sqc5J/WXXfdkuaee+65fl1M/Oijj+KUU07p8by+vj6uvvrqBBMBAAAAAAADzbBMY8Hzlva2hJIAAAAAAAD0LzXVDgCwPKZNm1bS3FprrVXhJP80bNiwWHHFFYvOlZq9rzr++OPj008/7fH87LPPjnXWWSfBRAAAAAAAwEDTlGkoeD6z3cZEAAAAAACAZaGYCPRp06dPLzqz6qqrRmNj4d+GW26lFCFLyd5X/fa3v43bbrutx/MxY8bEGWeckWAiAAAAAABgIMqmC39G1JxTTAQAAAAAAFgWiolAn/bmm28WnRk1alTlgyxm5MiRRWf6azGxpaUljj322B7PU6lUTJo0KQYPHpxgKgAAAAAAYCAalilcTGxpb4t8Pp9QGgAAAAAAgP5DMRHo0959992iM6uuumoCSZb+zhkzZiSQJHmnn356vPfeez2eH3XUUfGlL30pwUQAAAAAAMBA1ZRpKHg+f2FHtM6fm1AaAAAAAACA/kMxEejTPvnkk6IzI0aMSCDJokopJn766acJJEnWn//85/j5z3/e4/nIkSPjggsuSDARAAAAAAAwkGXThTcmRkQ0t7cmkAQAAAAAAKB/UUwE+rRSionZbLbyQZbhztbW1pg7t//8Bt62trY48sgjC85ceuml0dTUlFAiAAAAAABgoBuWKV5MbGlvSyAJAAAAAABA/6KYCPRpM2fOLDozdOjQBJIs2539aWvi97///XjjjTd6PN9jjz3iG9/4RoKJAAAAAACAga4p3VB0ZqaNiQAAAAAAAEtNMRHos9rb22P+/PlF56pRTFxhhRVKmmtpaalwkmQ88cQTcckll/R4PmTIkLjiiisSTAQAAAAAABBRV1sbQ+rTBWeac4qJAAAAAAAAS6uu2gEAltW8efNKmstkMhVO8lnpdOEPuDuV+gy92fz582PChAnR0dHR48x5550Xn/vc5xJMBQAAAAAA8A/D0o0xZ26ux/OW9rYE0wAAAABA75NKVTsBAH2RYiLQZ5Va6qutra1wks+qqyvtH6/9oZh4/vnnx9/+9rcez8eNGxcnnnhigonYdtttS/47SOW88MIL1Y4AAAAAAEBENGUa4p2WT3o8n9luYyIAAAAAAMDSqql2AIBlVWqprxoFrVLvnD9/foWTVNaLL74Y559/fo/ndXV1cc0110RNjf9zAwAAAAAAVEc23VjwvDmnmAgAAAAAALC0rFMC+qwFCxaUNKeYWBkLFy6MCRMmFCyInnzyybHJJpskF4qIiHj44YdjlVVWqXYMAAAAAADoFYZlChcTW9rbEkoCAAAAAADQf1hhBfRZpZb/Ojo6Kpxk2e+sRmmyXC699NJ47LHHejxfc80149xzz00wEQAAAAAAwGc1ZRoKns9stzERAAAAAABgaSkmAn3W4MGDS5ordbNiOZW6CbHUZ+htpk+fHt/73vcKzlx55ZXR0FD4g34AAAAAAIBKy6YLb0xsmz835lXh8yQAAAAAAIC+TDER6LMGDRpU0lw1ioml3tlXi4lHHXVUtLb2/NuDDzzwwNhll10STAQAAAAAALBkwzKFi4kRES25tgSSAAAAAAAA9B+KiUCfVV9fX9JcLpercJJlv7MvFhMnT54cDzzwQI/nK664Ylx88cXJBQIAAAAAACigqYRi4sz2nn8hIwAAAAAAAJ9VV+0AQN8yffr0mDJlSkXvaGxsjD333LPoXCaTibq6uqLbCWfPnl2uaCUr9c4VVlihwknK64MPPojTTjut4MyFF14Yw4cPTygRAAAAAABAYdlMQ9GZ5pxiIgAAAAAAwNJQTASWykMPPRTf+c53KnrHGmusUVIxMSJi2LBh8fHHHxecmTVrVjliLZVS71xxxRUrnKS8jjvuuGhubu7xfPvtt6/43w8AAAAAAIClkakbHPW1dTG3o+dfdtliYyIAAAAAAMBSqal2AIDlsdJKKxWdaWlpSSDJ0t/Z0NAQ6XQ6gTTlcfvtt8evf/3rHs/r6+tj0qRJkUqlEkwFAAAAAABQWCqViqZMY8GZme1tCaUBAAAAAADoHxQTgT6tlGLihx9+mECSRX3wwQdFZ0rJ3lvMnDkzTjjhhIIzZ599dqyzzjoJJQIAAAAAAChdNtNQ8Lw5Z2MiAAAAAADA0lBMBPq01VZbrehMKSXBcivlzlKy9xannnpqwWcaM2ZMnHHGGQkmAgAAAAAAKF02XXhjYku7YiIAAAAAAMDSUEwE+rTRo0cXnXnvvfcqH2Qx77//ftGZNddcM4Eky+/111+P6667rsfzVCoVV199dQwePDi5UAAAAAAAAEshmylcTJzZ3pZQEgAAAAAAgP6hrtoBAJZHKeW+Dz74INra2qKhoSGBRP/w+uuvF53pK8XEOXPmFDzfZJNNYsaMGXHLLbdU5P7p06cXnfnoo49Kun/48OGx4447liMWAAAAAADQh2QzhT8nas7ZmAgAAAAAALA0FBOBPu0LX/hC0Zl8Ph+vv/56bLzxxgkkimhubo5PPvmk6Fwp2fuCp59+Og488MCqZnjppZdKyrD99tsrJgIAAAAAwACUTRfemDgr1xYLFy6MmpqahBIBAAAAAAD0bT5VAZbKYYcdFvl8vqKvN998s+Q8G220UUlzL7/88jI+8dIr9a5SswMAAAAAALB8spnCxcSF+XzMntueUBoAAAAAAIC+TzER6NNGjhwZI0aMKDo3derUBNKUflddXV1iGxwBAAAAAAAGumLFxIiImbm2BJIAAAAAAAD0D4qJQJ+32WabFZ1Jspj41FNPFZ1Zb731Ip1OJ5AGAAAAAACAYemGojMt7a0JJAEAAAAAAOgfFBOBPm/8+PFFZx577LFYsGBBAmki/vKXvxSd2WqrrRJIAgAAAAAAQETE0PpMpFKpgjMzFRMBAAAAAABKppgI9Hk77bRT0ZnZs2fH448/XvEsb7/9drz++utF53beeeeKZwEAAAAAAOAfampqoqnI1sTmnGIiAAAAAABAqRQTgT5vyy23jBVWWKHo3O9///uKZynljlQqVVKZEgAAAAAAgPLJphsLnre0tyWUBAAAAAAAoO9TTAT6vLq6upKKfrfeemvFs9xyyy1FZ8aNGxcrr7xyxbOUyyabbBL5fL5qr0MPPbRoxu23376k93rwwQcr/wMDAAAAAAB6pWym8MbEme02JgIAAAAwMKVSea8EXwD9hWIi0C8ceOCBRWdee+21mDJlSsUyvP322/GXv/yl6FwpWQEAAAAAACivbKbwxsTmnGIiAAAAAABAqRQTgX5hzz33jBVWWKHo3MUXX1yxDJdeemksXLiw4ExNTU0ccMABFcsAAAAAAADAkmXThYuJLe1tCSUBAAAAAADo+xQTgX4hnU7HfvvtV3Tu9ttvj9dff73s93/yySdxzTXXFJ372te+FiNHjiz7/QAAAAAAABSWzTQUPG9ub418Pp9QGgAAAAAAgL5NMRHoN0499dRIpVIFZxYsWBCnn3562e/+//6//y9mzZpVdO60004r+90AAAAAAAAUl80U3pg4t2NBtC+Yl1AaAAAAAACAvk0xEeg31l9//dhjjz2Kzv32t7+N2267rWz3Pvzww3H11VcXndtss83iq1/9atnujYh48803I5VKFX3tsMMOZb0XAAAAAACgr8mmCxcTIyJa2tsSSAIAAAAAAND3KSYC/co555wTNTXF/9F25JFHxquvvrrc933wwQdx0EEHRUdHR9HZH/zgB8t9HwAAAAAAAMsmm2koOtPc3ppAEgAAAAAAgL5PMRHoVzbffPM4/PDDi861tLTETjvtFNOmTVvmuz7++OP46le/Gu+8807R2d122y323HPPZb4LAAAAAACA5ZPNFN+YOFMxEQAAAAAAoCSKiUC/c/7558dKK61UdG7GjBmx5ZZbxu9///ulvmPKlCkxbty4eOGFF4rOptPpuOSSS5b6DgAAAAAAAMpncG1dNAyqLzjTkmtLKA0AAAAAAEDfppgI9DurrLJKXHfddZFKpYrOfvLJJ7H77rvHvvvuG08++WTR+RdffDG+853vxDbbbBNvv/12SXkuueSSWHvttUuaBQAAAAAAoHKymYaC5802JgIAAAAAAJSkrtoBACphjz32iNNPPz0uvPDCkubvuOOOuOOOO2KdddaJbbfdNjbYYINYccUVI5VKxcyZM+Pll1+ORx99NJ577rmlynHQQQfFUUcdtSyPAAAAAAAAQJllM43x3qyZPZ7PVEwEAAAAAAAoiWIi0G/913/9V8yYMSN++ctflvw9r776arz66qtluX+nnXaKyZMnl+W9AAAAAAAAWH7ZdGPB85ZcW0JJAAAAAAAA+raaagcAqJSampr4xS9+Efvuu2/id2+77bbx29/+Nurr6xO/GwAAAAAAgCXLZhoKnjfbmAgAAAAAAFASxUSgX6urq4vbbrstzjjjjMTu/M53vhMPPPBANDYW/o27AAAAAAAAJCubKfz5zcycYiIAAAAAAEApFBOBfq+mpib+67/+K+64444YNWpUxe4ZNmxYXHPNNTF58mSbEgEAAAAAAHqhbLpwMXHO3Fws6OhIKA0AAAAA9A6pGq8kXwD9hX+kAQPG3nvvHS+//HKcfvrpZd1mOHjw4JgwYUK88sorccQRR5TtfQEAAAAAACivbKah6ExLri2BJAAAAAAAAH1bXbUDACRp6NChceGFF8a///u/x6RJk+KGG26IF154YZne64tf/GIceOCBceyxx8bIkSPLnJROe++9d4wePbrgTLFzAAAAAACAiIhspvgvr5zZ3horNQ5NIA0AAAAAAEDfpZgIDEjDhg2LM844I84444x466234r777otnn302XnzxxXjzzTdj1qxZMXv27Mjn8zF06NAYOnRofO5zn4sxY8bERhttFF/96ldjvfXWq/ZjxOjRoyOfz1c7RkXtvffesffee1c7BgAAAAAA0A+UUky0MREAAAAAAKA4xURgwFtjjTXiyCOPrHYMAAAAAAAAKqxxUH0MqqmN+Qs7epxpbm9NMBEAAAAAAIW88cYb8eSTT8arr74aHR09/2e7Ef9Y/HPYYYclE2wA+slPfhKzZs0qef7kk0+ObDZbuUBUnWIiAAAAAAAAAANCKpWKpkxD/L11do8zMxUTAQAAAACq4q233oonn3yy6/XUU0/FzJkzS/7+7bffXjGxQiZPnhynnXbaUn3PYYcdppjYzykmAgAAAAAAADBgZNONBYuJLTnFRAAAAACASnv33XcXKSE++eST8fe//73asViCDz74YKlLiQwMiokAAAAAAAAADBjZTGPB8+b2toSSAAAAAAAMDJ9++mk88sgji2xC/OCDD6odixIdd9xx0dzcXO0Y9EKKiQAAAAAAAAAMGNlMQ8Hzme02JgIAAAAAlNOll14a5557brVjsAxuv/32+PWvf13tGPRSNdUO0B9dd9118ZOf/CQ+/fTTakcBAAAAAAAAoJtsuvDGxJacYiIAAAAAAMycOTOOP/74asegF1NMrIC33nor/u3f/i1WW221OPjgg+Mvf/lLtSMBAAAAAAAAEBHZTOFiYnOuLfL5fEJpAAAAAACgdzrllFPiww8/rHYMejHFxArJ5/Mxd+7c+OUvfxlf+cpXYsyYMXHxxRfboggAAAAAAABQRdlMQ8HzjoULY/bcXEJpAAAAAACg97nvvvvi+uuvr3YMejnFxApKpVKRz+cjn8/Hyy+/HKeddlqsvvrqccghh8TDDz9c7XgAAAAAAAAAA06xjYkRES251gSSAAAAAABA79Pa2hpHHXVUj+c1Nepo/IO/CRWWSqW6Xvl8PnK5XNx0002x/fbbxwYbbBCXXnppNDc3VzsmAAAAAAAAwICQTRcvJja3KyYCAAAAAFRTQ0NDbLPNNnHiiSfG9ddfH7vvvnu1Iw0Y//7v/x5vvfVWj+fHHHNMgmnozeqqHaC/y+fzEfHPgmL3r7300ktxyimnxFlnnRXf/OY346ijjoptttmmalkBAAAAAAAA+rumdEOkIiJfYGZme1tScQAAAAAABrxMJhNjx46NzTffPMaNGxfjxo2L9ddfP2pra7tm/vSnP1Ux4cDx6KOPxs9+9rMez/fYY4/45je/GVdccUWCqeitFBMT0lNBMZ/PR3t7e9xwww1xww03xJgxY+Loo4+Ob3/729HU1FTNyAAAAAAAAAD9Tm1NTQxNZ2JWrr3HmZacjYkAAAAADBz/V3GARNTX18fGG2/cVUDcfPPNY4MNNoi6OhWnaps3b15MmDAhFi5cuMTzIUOGxOWXXx7Tpk1LOBm9lX/XJqyzoBgRXQXF7l9/4YUX4qSTToozzjgj9t9//zjyyCNj/PjxiecEAAAAAAAA6K+y6caCxcTmdsVEAAAAAIBy+dKXvhSTJk2KcePGxYYbbhiDBg2qdiSW4LzzzouXXnqp4PnnP/95xUS6KCZWUbEtitdff31cf/31scEGG8QxxxwTBx98cKywwgrVjAwAAAAAAADQ52UzjfF28997PJ/Z3pZgGgAAAACA/m3nnXeudgSKeO655+KCCy7o8XzcuHFxwgknJJiIvqCm2gH4Zxkxn893lRRTqVTX155//vk44YQTYtSoUTFhwoSYMmVKtSMDAAAAAAAA9FnZTEPB85acjYkAAAAAAAwMHR0dMWHChJg/f/4Sz2tra2PSpElRW1ubcDJ6O8XEXqazjBjx2U2KbW1tcd1118U222wTm2yySVx11VUxe/bsasYFAAAAAAAA6HOy6caC583tiokAAAAAAAwMP/nJT+LJJ5/s8fyUU06JTTfdNMFE9BWKiRXWfQPi0ii2RfG5556L4447LkaNGhVHHnlkPPHEExV6AgAAAAAAAID+JZspVkxsSygJAAAAAABUz+uvvx7nnHNOj+ejR4+Oc889N8FE9CWKiRVw0kknxU9/+tMYM2ZMjxsQl0ahLYqtra0xefLk2HrrrWOzzTaLSZMmxZw5c8r3MAAAAAAAAAD9TLFiYvuCeZFbMD+hNAAAAAAAkLx8Ph9HHnlktLe39zhz5ZVXRkNDQ4Kp6EsUEysgm83GSSedFH/729/i4YcfjoMPPjjS6fRnyoXl3qL4zDPPxMSJE2PUqFFx9NFHx1NPPVWJxwMAAAAAAADo07Lp4v8lipb21gSSAAAAAABAdVxzzTXx4IMP9nh+4IEHxq677ppcIPocxcQK22abbeIXv/hFvPvuu3HxxRcnskVxzpw58fOf/zy23HLLGDduXFxzzTXR2upDMwAAAAAAAICI4hsTIyJmKiYCAAAAANBPvfvuu/Hd7363x/Nhw4bFxRdfnFwg+iTFxIRks9k48cQTu7Yofvvb305ki+LUqVPjmGOOiVGjRsXEiRPj6aefrsTjAQAAAAAAAPQZJW1MzLUlkAQAAAAAAJJ37LHHRktLS4/nF154YQwfPjzBRPRFiolVsM0228T1118f7733Xlx88cWxwQYbVHyL4uzZs2PSpEkxbty42GKLLeK///u/o63NB2kAAAAAAADAwJMeNDjSdYMKzjTbmAgAAAAAQD90yy23xJ133tnj+Ze//OU4/PDDE0xEX6WYWEVNTU1x4oknxnPPPRd//etfE9ui+NRTT8VRRx0Vo0aNiuOOOy6eeeaZCjwdAAAAAAAAQO+VzTQWPJ+pmAgAAAAAQD/zySefxIknntjjeX19fUyaNGmZFq4x8Cgm9hLjx4/v2qJ4ySWXJLJFcdasWXHVVVfF5ptvHltttVVce+210d7eXr6HAgAAAAAAAOilsumGguctubaEkgAAAAAAQDJOOumk+Pjjj3s8//d///dYd911E0xEX6aY2Ms0NTXFCSec0LVF8ZBDDunaorj4BsSlUWyL4hNPPBFHHHFEjBo1qut+AAAAAAAAgP6q2MbEZhsTAQAAAADoR373u9/FTTfd1OP5+uuvH2eeeWaCiejrFBN7sfHjx8d1113XtUVxo402qvgWxZaWlrjiiiti00037drimMvlyvdQAAAAAAAAAL2AYiIAAAAA/EMq5ZXkC6ph9uzZccwxx/R4nkqlYtKkSTF48OAEU9HXKSb2AZ1bFJ999tl45JFHEtui+Pjjj8fhhx8eo0aNihNPPDGef/75Cj0hAAAAAAAAQLKy6YaC5825toSSAAAAAABAZZ155pnxzjvv9Hh+5JFHxrbbbptgIvoDxcQ+Zuutt47rrrsu3n///bj00ksrukWx82vNzc1x+eWXx9ixY+NLX/pS3HDDDTF37tyyPhcAAAAAAABAkoptTJyVa4uOhQsTSgMAAAAAAJXx8MMPx5VXXtnj+aqrrhoXXHBBgonoLxQT+6gVVlghjj/++K4tioceemgiWxQfe+yxOOyww2LkyJFx8sknx4svvlihJwQAAAAAAAConGLFxHz8o5wIAAAAAAB9VS6XiyOOOKJrmdmSXHLJJZHNZpMLRb+hmNgPbL311nHttdcmvkXxsssui4022ii22267uPHGG21RBAAAAAAAAPqMbLqh6EyzYiIAAAAAAH3YueeeG6+88kqP51//+tdjv/32SzAR/YliYj+ypC2KmUym4lsUO+8aNWpUnHrqqfHyyy9X6AkBAAAAAAAAyqPYxsSIiOb21gSSAAAAAABA+T399NNx0UUX9Xje2NgYl19+eYKJ6G8UE/upzi2K7733Xlx66aWx8cYbV3yL4syZM+OSSy6JDTbYILbffvu4+eabY968eWV9LgAAAAAAAIByGFKfidpU4Y/MFRMBAAAAAOiLFixYEBMmTIgFCxb0OHPeeefFGmuskWAq+hvFxH6uc4viM888E48++mgcdthhiWxRfPjhh+Pb3/52jBo1Kk4//fSCa18BAAAAAAAAklaTSkVTuqHgTHOuLaE0AAAAAABQPhdeeGE8/fTTPZ5vvvnmceKJJyaYiP5IMXEA2WqrrWLy5Mnx3nvvxWWXXZbIFsVPP/00fvrTn8aYMWNihx12iFtuuSXmz59f1ucCAAAAAAAAWBbZTJFioo2JAAAAAAD0Ma+++mr88Ic/7PG8trY2rrnmmqitrU0wFf2RYuIAtMIKK8Rxxx2X+BbF//3f/41vfetbsdpqq8V3v/vdeO211yr0hAAAAAAAAADFZTONBc8VEwEAAAAA6Evy+XwcccQRkcvlepw5+eSTY9NNN00wFf2VYuIAt/gWxbFjx1Z8i+Lf//73+PGPfxzrrbde7LjjjnHbbbfFggULyvpcAAAAAAAAAMU0pYsUE3NtCSUBAAAAAIDld+WVV8b//u//9ng+evToOPfccxNMRH+mmEhE/HOL4tNPPx2PPfbYErcoLotiWxQfeuihOOCAA2L11VeP73//+/HBBx+U+ckAAAAAAAAAlmxYpqHguY2JAAAAAAD0Fe+8806ceeaZBWeuuOKKaGws/Ev7oFSKiXzGlltuGZMnT473338/fvazn8XGG2+8XOXEToW2KH700Udx/vnnx+jRo+Owww6LF154oRyPAgAAAAAAANCjbKbIxsT21q7POAEAAAAAoDc75phjYvbs2T2eH3DAAbHbbrslmIj+TjGRHg0dOjSOPfbY+Otf/xqHH354WcqJEYW3KM6bNy9uuOGGGDt2bHzjG9+I5557rgxPAgAAAAAAAPBZTenCxcT5Czuibf68hNIAAAAAAMCyufHGG+N3v/tdj+fDhg2Liy++OLlADAiKifTo6aefjokTJ8aoUaPi2muv7SoPllNPWxQXLlwYd9xxR2y22WZx2GGHxYwZM8p6LwAAAAAAAMCwIhsTI/6xNREAAAAAAHqrjz/+OE4++eSCMz/60Y9ixIgRyQRiwFBMZBGtra1xzTXXxBZbbBHjxo2LSZMmxezZsxcpEFZCoYLiDTfcEOuvv35cdNFFsXDhwoplAAAAAAAAAAaWbKah6IxiIgAAAAAAvdkJJ5wQn3zySY/nX/7yl2PChAkJJmKgUEwkIiKmTp0axxxzTIwaNSqOOeaYeOqpp7rKgp1FwST0VFBsbW2NM844I7beeut44403EskCAAAAAAAA9G9N6RKKiTnFRAAAAAAAeqe77rorbr311h7P6+vr4+qrr06sF8TAopg4gLW2tsakSZNiiy22iC222CKuueaaru2IEbFIIXFptyV2fu/ir1L1VFB88sknY9NNN4277757qfIAAAAAAAAALG5QbV0MGZwuONPc3pZQGgAAAAAAKF1LS0tMnDix4MxZZ50V6623XkKJGGgUEwegp556Ko4++ugYNWpUTJw4cYnbETuLgN0LgqVYvMy4+HuUo6A4Z86c2GeffWLy5MlL8dQAAAAAAAAAn5XNNBY8b263MREAAAAAgN7nu9/9brz77rs9nq+33npx1llnJZiIgUYxcYDo3I44bty42HLLLePnP/95we2Iy1JG7F5mXHHFFeP000+PV155Je68887Yc889o6am5jP3lVpSXLyg2NHREUcffXTcc889S/NjAAAAAAAAAFhEU7qh4HlzTjERAAAAAIDe5cEHH4xrrrmmx/NUKhWTJk2KwYMHJ5iKgaau2gGorCeffDImTZoUt9xyS7S2ti5SOOxeClyaImKh7996663j2GOPjW9+85tRX18fERFrr7127LHHHvH+++/H5MmT49prr41p06Z1vUf3QmQx3bc6dnR0xBFHHBEvvvhiDBs2bKnzAwAAAAAAAAyzMREAAAAAgD7me9/7XsEezhFHHBHbbbddgokYiBQT+6E5c+bETTfdFJMmTYpnnnkmIqJshcTFNxzm8/lobGyMb33rWzFx4sQYO3Zsj987cuTIOPvss+Pss8+OP/7xjzFp0qT4zW9+E/Pnz1+qgmJnOTEi4qOPPooTTzwxbrjhhqV6DgAAAAAAAICIiGzRYmJbQkkAAAAAAKA0c+bM6fGstrY2Nt1007jlllsqcveLL75Y0txdd90Vq6yyStG5PffcMxobC/9n9fROion9yJNPPhlXX3113HrrrYlsRxwzZkxMnDgxDjnkkBg6dOhSvd9OO+0UO+20U3zwwQdx5ZVXxhVXXBGffPJJyQXFznJiPp+Pm2++Ob73ve/Fuuuuu9TPBQAAAAAAAAxsTemGgufNORsTAQAAAOjfalLFZ4C+o6OjI4499thqx4gTTzyxpLnp06crJvZRNdUOwPKZM2dOXHXVVbH55pvHVlttFZMnT445c+Z0lfoWL/otTSmx83u7f/+gQYPigAMOiIceeiief/75OO6445a6lNjdqquuGueee268/fbbcdFFF8Uqq6yySPZSXXXVVcucAQAAAAAAABi4hhXZmNg6b27M61iQUBoAAAAAAIC+QTGxj3riiSfiiCOOiJEjR8Zxxx0XTz/9dFfxsHuhsPNry1JIjPhnmfHzn/98/Od//me88847cfPNN8d2221X1ufJZDJx6qmnxuuvvx7/9m//FrW1tV1ZimXN5/Nx/fXXx7x588qaCQAAAAAAAOj/skWKiRERLe1tCSQBAAAAAADoOxQT+5DZs2fHlVdeGZtttllsvfXWce2110Zra2tZtiMu6ftTqVTsvvvucdddd8W0adPirLPOilVWWaW8D7WYIUOGxAUXXBCPPvporLHGGl05lqT787W0tMTjjz9e0WwAAAAAAABA/9OUbig605xrTSAJAAAAAABA31FX7QAU9/jjj8ekSZPi1ltvjba2tkUKed1Le0tbROzp+1dZZZU4/PDD4+ijj47Ro0cve/DlsPnmm8djjz0WX/7yl+O1117r2oxYyGOPPRbbbrttQgkBAAAAAACA/mBYCRsTm9sVEwEAAAAAALpTTOylZs+eHTfccENcc8018dxzz0VEVLyQ+KUvfSmOPfbY+MY3vhGDBg1a1uhlM3z48Lj55ptj/PjxsWDBgqLlxClTpiSYDgAAAAAAAOgPMoMGx+DaupjXsaDHGcVEAAAAAACARSkm9jJTpkyJSZMmxf/8z/8ksh1x6NChcfDBB8fEiRNjww03XI7klbHZZpvFd77znZg0adIi+ReXz+dj2rRpCSYDAAAAAAAA+oNUKhVN6Yb4uHVWjzPNubYEEwEAAAAAAPR+iom9QOd2xEmTJsXf/va3iKj8dsSNN944Jk6cGAcffHA0NjYua/REHHvssTFp0qQezzs3KTY3NycXCgAAAAAAAOg3hmUaCxcTbUwEAAAAAKAXeeaZZ6p294MPPhhf+cpXis5Nnz49Ro8eXflAVI1iYhU99thjXdsR29vbK1ZG7HyP+vr6+MY3vhETJ06MbbbZZtmDJ2zjjTeO4cOHx8cff9xVQlwSxUQAAAAAAABgWWQzhX+Zq2IiAAAAAADAohQTEzZr1qyu7YjPP/98RFR+O+Kaa64ZRx99dEyYMCFWWmmlZY1eVVtssUXcc889nylcdjdrVs+/wRQAAAAAAACgJ03phoLnzbm2hJIAAAAAAAD0DYqJCXn00Udj0qRJcdttt5V9O+KS3qOmpib22GOPmDhxYuyyyy4FC319wahRo5b49Xw+3/VsCxcuTDISAAAAAAAA0E8MszERAAAAAABgqSgmVlBLS0vXdsQXXnghIiq/HXHEiBExYcKEOOqoo+Lzn//8skbvdbLZbLUjAAAAAAAAAP1UtkgxsSXXFgsXLoyampqEEgEAAAAAAPRuiokV8NJLL8UFF1wQt99+eyLbESMitt9++5g4cWLsu+++UVfX//7XOnjw4GpHAAAAAAAAAPqppnRDwfOF+XzMnpcrOgcAAAAAADvssEM89NBDReemT58eo0ePrnwgqJD+12DrBf7nf/4nfvGLXyzytUpsR1xhhRXikEMOiYkTJ8b666+/jGkBAAAAAAAABrZhRTYmRkQ0t7cqJgIAAAAAAPwfxcQKqtR2xE033TQmTpwYBx10UDQ0+OALAAAAAAAAYHlkSywmrjFslQTSAAAAAECyUqll6zsAMLApJlbY8m5H7HyPdDod++23X0ycODG22mqrcsUDAAAAAAAAGPBWqM9EKpUq+Pluc64twUQAAAAAAAC9m2JiL7Kk7YhrrbVWHH300XH44YfHsGHDqhWtV1m8uAkAAAAAAACwPGpqaqKpPlOwfNjc3ppgIgAAAACA/uXNN9+MNddcs6J3PPTQQ8vVOZk+fXqMHj26fIGgn1NM7AUWLyTW1tbGnnvuGRMnToydd965isl6n2XZQAkAAAAAAABQTDbTqJgIAAAAAABQIsXEKlnSdsSRI0fGEUccEUcddVSsttpq1YrWK+24445RV+evKwAAAAAAAFAZTemGgueFSosAAAAAAAADjaZXwpZUSNxxxx1j4sSJsffee0dtbW21ovVqX/nKV+IrX/lKtWMAAAAAAAAA/dSwTGPBcxsTAQAAAAAA/kkxMQFLKiNms9k49NBD45hjjol11123WtEAAAAAAAAAiIisYiIAAAAAAEDJFBMrrLOU2FlI3HzzzePYY4+NAw44IDKZTDWjAQAAAAAAAPB/mtJFiom5toSSAAAAAAAA9H6KiRWWz+cjk8nEAQccEBMnToxx48ZVOxIAAAAAAAAAixmWaSh4PnfB/GifPy8ygwYnlAgAAAAAAKD3UkysoLXXXjsmTpwYhx56aGSz2WrHAQAAAAAAAKAH2UzhjYkREc3trYqJAAAAAAAMaKNHj45zzjmn6JwuVf+nmFgBW221VTzwwAOx4447VjsKAAAAAAAAACVoKqWYmGuLkSsMSyANAAAAAED/Mnr06Mjn89WOkYgHH3yw2hEqavTo0fGDH/yg2jHoBRQTK2DXXXetdgQAAAAAAAAAlsKwdGkbEwEAAAAAAIioqXYAAAAAAAAAAKi2wXV10TBocMEZxUQAAAAAAIB/UEwEAAAAAAAAgIhoyhTemticU0wEAAAAAACIUEwEAAAAAAAAgIiIGJYuUkxsb0soCQAAAAAAQO9WV+0AAAAAAAAAANAbZDMNBc+b221MBAAAAKD/SaWqnQCAvsjGRAAAAAAAAACIiKZiGxNziokAAAAAAAARiokAAAAAAAAAEBER2UyRYmJ7W0JJAAAAAAAAejfFRAAAAAAAAACIiGFFiomz57bHgo6OhNIAAAAAAAD0XoqJAAAAAAAAABARTZmGojMtc21NBAAAAAAAUEwEAAAAAAAAgIgYli68MTEiorm9NYEkAAAAAAAAvZtiIgAAAAAAAABERDZTSjHRxkQAAAAAAADFRAAAAAAAAACIiMbB9VFXU1twpjlnYyIAAAAAAIBiIgAAAAAAAABERCqVimy6oeBMc7tiIgAAAAAAgGIiAAAAAAAAAPyfbKax4LliIgAAAAAAQERdtQP0R3//+9/jxRdfrHaMxKRSqaivr4/6+vpIp9ORTqdjpZVWiiFDhlQ7GgAAAAAAAMBSacoU2ZiYa0soCQAAAAAAQO+lmFgBf/zjH+Oggw6qdoyqy2QyMWLEiFh11VVjnXXWiTFjxsQGG2wQY8eOjdVWW63a8QAAAAAAAAA+I5u2MREAAAAAAKAYxcQKyefz1Y5QdW1tbTF9+vR4880347HHHlvkbPTo0bHDDjvEV77yldhzzz2jqampSikBAAAAAAAA/mlYRjERAAAAAACgGMXECkqlUtWO0CssqaTZWVi87rrrYvDgwbHrrrvGQQcdFPvss0/U1flrCQAAAAAAAFRHU6ah4Hlzri3y+bzPgwEAAAAAgAFNA6zCBvLmxM4P4nr6QK7zZzN37ty48847484774zVV189Tj/99DjiiCMik8kklhUAAAAAAAAgIiKbLrwxsWPhwpgzLxdD632eCQAAAED/4HdwAbAsaqodgP4rn8/3+Ir4R2Gx89X59XfeeSdOPvnkWHPNNeOGG26o8hMAAAAAAAAAA82wTOFiYkREc3trAkkAAAAAAAB6L8VEqqJYSfGjjz6Kww47LHbccceYNm1aldMCAAAAAAAAA0VTpqHoTHOuLYEkAAAAAAAAvZdiIlXXU0kxn8/Hgw8+GOPGjYs//OEPVU4JAAAAAAAADARN6YZIFZmxMREAAAAAABjoFBPpVRYvKEZENDc3x5577hk//elPqxkNAAAAAAAAGADqampjaH2m4IxiIgAAAAAAMNApJtIrdRYUO7cndnR0xOmnnx4XX3xxtaMBAAAAAAAA/VxTpqHgeXN7W0JJAAAAAAAAeqe6agfo7zq3/hXSuSGwnO+5NJK8f2nv6l5OzOfzcdppp8XQoUNjwoQJy5wBAAAAAAAAoJBsujHeiU96PG/O2ZgIAAAAAAAMbDYmVlDn1r9ir1J0lvM6S4Glvncpdy/+3uV6rmJ3Lc19nd+bz+fj+OOPj6effrqk7wUAAAAAAABYWsMyjQXPm9sVEwEAAAAAgIHNxsQK2H///WP//fcvODNnzpz47ne/G1dffXXX1xYvKXYv7nU/a2hoiHHjxsWYMWNi3XXXjS9+8YsxfPjwWGWVVSKbzUZ9fX3U19dHKpWKXC4Xc+fOjZaWlvj444/jo48+ijfeeCNeffXVeOGFF+LJJ5+M1tbWond2L0TW1NTE0UcfHT/60Y+isXHRD+RyuVzkcrmYM2dOvP/++/H+++/HK6+8En/7299i6tSp8eKLLy7ynt3ft5DumxPnzp0bBxxwQDz11FMxZMiQgt8HAAAAAAAAsLSaMg0Fz5tzbQklAQAAAAAA6J0UE6vgvvvui6OPPjrefvvtiCitkLjJJpvEPvvsE7vvvntssskmUVtbW9JdDQ0N0dDQEMOGDYvRo0d/5ryjoyOeffbZ+N3vfhe/+c1vYurUqV0ZFt/O2Pn1fD4fV111Vfzud7+LSZMmxc4779z1ful0OtLpdGSz2Vh99dU/c98HH3wQ9913X9x4443xpz/9KRYuXNh1V6nlxIiI119/Pc4999y48MILS/o5AAAAAAAAAJQqm7YxEQAAAAAAoJCaagcYaM4///zYfffd46233lqk8NepexmwsbExjjvuuHj++edj6tSp8f3vfz8233zzkkuJpaitrY3NNtssvve978WTTz4ZL774Yhx//PExZMiQRcqInToz5/P5eOutt2K33XaLH/3oRyXft+qqq8YhhxwS9913X0yfPj2OOeaYGDRo0CIbEYvpLDFedtll8cYbbyz9QwMAAAAAAAAUMCxTuJjYPn9ezF0wP6E0AAAAAAAAvY9iYkIWLFgQhx9+eHz/+99fZEtgZxGv+9bAurq6OOGEE+KNN96Iyy67LMaMGZNYzvXWWy8uvfTSmDZtWpx00kkxaNCgrnydumdfuHBhnHXWWXHEEUdER0fHUt31uc99Lq644op46aWXYqeddlpiEXJx3Yuc8+fPj7PPPnup7gQAAAAAAAAopqlIMTEiojnXlkASAAAAAACA3kkxMSHf+ta34vrrr+/aDBjxz+2D3f88duzYeOKJJ+KSSy6JVVZZpWp5V1pppfjpT38aTzzxRGyyySZLzB3xz+2F1157bRxyyCHLdNeaa64Z999/f1x00UWLFDUL6bz317/+dcyYMWOZ7gUAAAAAAABYkmy6oehMc3trAkkAAAAAAAB6J8XEBJx++ulx2223RUQsUu5b/M+HHnpoPP7447HxxhtXJ+gSbLTRRjFlypQ4/PDDFyknRsRnyom33HJLfPe7313mu0499dT49a9/vcQtjd1135rY0dERV1555TLfCQAAAAAAALC4YaVsTFRMBAAAAAAABjDFxAqbPHly/OQnPym4bTAi4nvf+15ce+21XaW83qSuri5+/vOfxznnnLPEcmLn1/L5fPz4xz+O66+/fpnv2muvveIXv/hFSZsTO++cPHnyMt8HAAAAAAAAsLj0oMFRX1f4s9vm9raE0gAAAAAAAPQ+iokV9O6778app576mS2JEf8s1aVSqTjppJPihz/8YbViluycc86JU0455TPlxE6dz3TyySfHe++9t8z37LfffnHmmWcu8vNaXPezjz76KB599NFlvg8AAAAAAABgcdl0Q8Hz5pyNiQAAAAAAwMClmFhBxxxzTMyaNSsiei4lfvnLX44f//jH1Yq41C666KLYfvvtl7g5sdOsWbPimGOOWa57zj333Nhss80iovDWxE533XXXct0HAAAAAAAA0N2wTGPB8+Z2xUQAAAAAAGDgUkyskIceeijuueeerhJip+4lu4aGhrjxxhtLKt71FqlUKm688cZobGzs+nOnzrJiPp+Pe+65J/7yl78s8z21tbXx05/+tODWxO73/uEPf1jmuwAAAAAAAAAW16SYCAAAAAAA0CPFxAr50Y9+1ONZZ4Hv1FNPjdVWWy3BVOWx2mqrxWmnnVa0NFjoZ1CK7bbbLr72ta99Zjtjd51ff/7552Pu3LnLdR8AAAAAAABAp2y6SDEx15ZQEgAAAAAAgN5HMbECXnjhhfj9739fdFvi6aefXo14ZXHaaacV3Zr4+9//Pl544YXluue4447r8az7z7ajoyOeffbZ5boLAAAAAAAAoNOwTEPBcxsTAQAAAACAgUwxsQJ++ctf9njWWdzbb7/9YujQoQmmKq+hQ4fG/vvvX3Rr4s0337xc93z961+PESNGRET0uDWx09SpU5frLgAAAAAAAIBOTZnCGxNnzW2PhQsXJpQGAAAAAACgd1FMrIA777yzaIlu3333TShN5fzrv/5rwfN8Ph933XXXct1RU1MTu+++e9ECZETEG2+8sVx3AQAAAAAAAHTKpgsXE/P5fLTMbU8oDQAAAAAAQO+imFhmb775Zjz//PMREYuU6boXFevq6mKHHXZIOlrZffnLX45BgwZFxKLP17kVMiLihRdeiLfeemu57tl1111LmpsxY8Zy3QMAAAAAAADQaVimoehMS3trAkkAAAAAoLJqUl5JvgD6C8XEMpsyZUqPZ51FxbXWWisaGwv/ds2+oLGxMdZee+2ic48++uhy3bPFFluUNPfOO+8s1z0AAAAAAAAAnZoyxT/TnamYCAAAAAAADFCKiWX2wgsvFDxPpVKx7rrrJpSm8tZZZ51FNkMuyYsvvrhcd4wePTqy2WxELLqZsVMqlYp8Ph8ffvjhct0DAAAAAAAA0GlofSZqU4U/Um/OKSYCAAAAAAADk2JimRUrJkZEjBgxIoEkyVh11VWLzpTyMynmC1/4QtECZGurD/0AAAAAAACA8qhJpaIp3VBwpqW9LaE0AAAAAAAAvYtiYplNmzat6MzQoUMTSJKMIUOGFDzP5/PxxhtvLPc9q6++etGZ9vb25b4HAAAAAAAAoFNTpnAxcWa7X54KAAAAAAAMTIqJZdbS0hKpVKrgTF1dXUJpKq/Qs3T+HGbNmrXc95SymVExEQAAAAAAACinbLqx4HlzTjERAAAAAAAYmBQTy2z27Nllmekr5syZU3SmHM+byWSKznR0dCz3PQAAAAAAAACdspnCxcSW9raEkgAAAAAAAPQuiollVkoJb+bMmQkkScann35adKYcxcR0Ol10ppTyIgAAAAAAAECpspmGgucz221MBAAAAAAABibFxDJLpVIFz/P5fLz66qsJpam81157rehMsZ9JKUp5j4aGwh8KAgAAAAAAACyNYhsTm3Otkc/nE0oDAAAAAADQeygmltnQoUN7POss173yyiv94sOphQsXxssvv1y0NDhkyJDlviuXyxWdUUwEAAAAAAAAyimbLlxMnN/REe3z5yWUBgAAAAAAoPdQTCyznoqJ3YuIc+bMiccffzypSBXz5JNPxuzZsyMiChYtC5U1S9XW1tbjWefdiokAAAAAAABAOWUzxT+DnNnemkASAAAAAACA3kUxscxGjRpV0jbEe+65J4E0lVXsGfL5fKRSqRg1atRy3/XRRx8VnVFMBAAAAAAAAMopmym8MTEiojmnmAgAAAAAAAw8iolltu666xY8T6VSkc/n49prr42FCxcmlKr8Fi5cGJMnT45UKlV0ttjPpBTvv/9+wfNUKhXDhw9f7nsAAAAAAAAAOmXTxX85akt7WwJJAAAAAAAAehfFxDJbb731ejzrvknxvffei1tuuSWJSBVxyy23xLvvvhsRUXRD5Prrr7/c902fPr1oCXL06NHLfQ8AAAAAAABAp0G1ddE4uL7gzMx2GxMBAAAAAICBRzGxzMaPH190pnNr4tlnnx3z5s1LIFV5zZs3L84+++yStiVGRGy99dbLdd/MmTPjo48+iojCJUjFRAAAAAAAAKDcspnGgufNOcVEAAAAAPq2VMoryRdAf6GYWGZbb711DB06NCJiicW97sW6t99+O04//fTEspXLGWecEW+99VZELLko2P25hwwZUlJZs5Dnn3++pDnFRAAAAAAAAKDcsunCxcSW9raEkgAAAAAAAPQeiollVltbGzvttFPBzX75fL5ra+Lll18et912W4IJl8+vfvWruOSSS7ry96TzGXfccceora1drjsfffTRkuYUEwEAAAAAAIByy2YaCp7PbLcxEQAAAAAAGHgUEyvgkEMOKWmus9z37W9/O+67774Kp1p+999/f3zrW99a4ibInhx66KHLfe9f//rXkubWWmut5b4LAAAAAAAAoLtspvDGxOacYiIAAAAAADDwKCZWwJ577hmjRo2KiOixxNe5bTCVSsW8efPiX/7lX+LGG29MLOPSuvnmm+Nf/uVfYt68eRERPW5L7P68I0eOjL322mu57p0/f348+OCDS/w5dv/aWmutFdlsdrnuAgAAAAAAAFhcNl24mNjS3pZQEgAAAAAAgN5DMbECamtr47jjjuuxvNcpn89HPp+PVCoVc+fOjUMPPTROPPHEaG9vTyhpcblcLk4++eT49re/HblcrmvLYyGdz3TCCSdETc3y/RX7y1/+ErNnz+56357uGj9+/HLdAwAAAAAAALAk2UxDwfM583Ixv2NBQmkAAAAAAAB6B8XECjnllFNitdVWi4ietyZ211n4u/zyy2PjjTeOu+66q9IRi7rnnnti7Nixcdlll3UVAAvpfj5q1Kg46aSTljvDHXfcUdKcYiIAAAAAAABQCdlM4Y2JERHNOVsTAQAAAACAgUUxsULS6XT8x3/8R9HtghH/3ATYWU584403Yu+9945tt902fvvb38bChQsrHXeRLHfeeWdst912sddee8Vrr722SCmx1G2J5513XqTT6eXKsmDBgrj11ltLKnYqJgIAAAAAAACVkE0XLya2tCsmAgAAAAAAA4tiYgUdeuihsfvuu5e0bTCfz3fNdRYUH3nkkdh3331j9OjR8d3vfjf++te/Vizro48+GmeeeWasueaasc8++8QjjzzymTyFSomdM6lUKnbfffc47LDDljvT3XffHZ988klEfLYQ2f3nucIKK8RGG2203PcBAAAAAAAALK6UjYkz21sTSAIAAAAAANB71FU7QH933XXXxcYbbxwffvhhV3mvkCWVAWfMmBE//vGP48c//nE0NTXF1ltvHePHj48NNtgg1llnnfjCF74QDQ0NJeXJ5XIxbdq0eOWVV+KFF16IRx99NB577LFobm7uur9TqVsSu5cER4wYEddee21JWYq54oorCp53L0KWslURAAAAAAAAYGk1DBocg2prY35HR48zzTnFRAAAAAAAYGBRTKywlVdeOW6//fbYeeedI5fLlVxOjFi08Nf5tebm5rj33nvj3nvvXeR7GhoaYpVVVolsNhv19fUxePDgSKVSMXfu3Jg7d260tLTExx9/HK2tn/1AbEllxMW/3pPu5cWGhob49a9/HSuvvHLR7yvmhRdeiAceeKCkn9c3vvGN5b4PAAAAAAAAYElSqVRk043xceusHmdabEwEAAAAAAAGGMXEBGyzzTZxyy23xL777hsLFy4sqWwXsWhBsVhhsLW1tat0uPj2wKXZeFjK/OLfl8/no66uLm699dbYeuutS/reYi688MIe83XX0NAQu+22W1nuBAAAAAAAAFiSbKZwMXFme1uCaQAAAAAAAKqvptoBBoo999wzbrrpphg0aFBEFC7bLS6fz3e9Or+3p9fi88vyPaXo/n2DBw+OG2+8Mb7+9a+X/EyFvPHGG3HTTTct8VkWz7nrrrtGOp0uy70AAAAAAAAAS5LNNBQ8b7YxEQAAAAAAGGBsTEzQfvvtF8OHD4999tknZs2aVfLmxO56mu8sChYrPC7tfYXuyufz0dTUFHfccUfssMMOy/2+nZ599tk47LDDSpr99re/XbZ7AQAAAAAAAJYkm24seN6SU0wEAAAAAAAGFsXEhO2www7xyCOPxP777x/PP//8IiW/5VGOwmEpuufdcMMN49Zbb43111+/rHfsu+++se+++5b1PQEAAAAAAACWVTZTuJjY3N6WUBIAAAAAAIDeoabaAQai9ddfP5544ok49thjuwqFqVSq6LbDaurMl8/nI5/Px3HHHRdPPPFE2UuJAAAAAAAAAL1NNtNQ8Lwl1xYLE/plsgAAAABQbjWpvFeCL4D+QjGxSurr6+NnP/tZPPTQQ7Hxxhv32oJi9zz5fD422WSTeOihh+Kyyy6L+vr6KqcDAAAAAAAAqLxsuvDGxI78wpgztz2hNAAAAAAAANWnmFhl2223XUydOjWuvvrqWGONNbo2EnYWAqtRUux+d2eez3/+8zFp0qR46qmnYrvttks8EwAAAAAAAEC1ZDOFi4kREc3trQkkAQAAAAAA6B0UE3uBVCoVRx55ZLz22mtx0003xeabb95VCOw8r2RRcUnv33n/ZpttFjfddFO8/vrrccQRR/SqbY4AAAAAAAAASSilmDizvS2BJAAAAAAAAL1DXbUD8E+1tbVx4IEHxoEHHhjPP/983HzzzXHrrbfG9OnTu2YqVU7sLEFGRIwePToOOOCAOOigg2LDDTcs+10AAAAAAAAAfUlTfSZSqdQin6suriVnYyIAAAAAADBwKCb2UhtuuGGcf/75cf7558err74af/rTn+LPf/5zTJkyJd5+++2C37t4cbHQh2MREauvvnpsvfXW8ZWvfCV23HHHWHfddZc7PwAAAAAAAEB/UVNTEyvUZ6Il1/NWxOZ2xUQAAAAAAGDgUEzsA9ZZZ51YZ5114phjjomIiNmzZ8fzzz8fL730UsyYMSPef//9eP/99+OTTz6J9vb2mDt3buRyuYiIqK+vj3Q6HZlMJoYNGxajRo2KkSNHxuqrrx7rr79+bLjhhrHCCitU8/EAAAAAAAAAer1sprFgMXFme89nAAAAAAAA/Y1iYh80dOjQGD9+fIwfP77aUQAAAAAAAAAGhGy6Id4qcN6SszERAAAAAAAYOGqqHQAAAAAAAAAAertsprHgeXO7YiIAAAAAADBwKCYCAAAAAAAAQBHFiokzFRMBAAAAAIABRDERAAAAAAAAAIrIpgsXE1tybQklAQAAAAAAqL66agfob95777144IEHSppdf/31Y4sttqhwIgAAAAAAAACWVzbTUPA8t2B+5ObPi/SgwQklAgAAAAAAqB7FxDK7/fbb45RTTilp9sEHH6xsGAAAAAAAAADKIpspvDExImJme2uMVEwEAAAAAAAGgJpqB+hvnnnmmcjn80Vf48ePj+22267acQEAAAAAAAAoQSnFxJZcWwJJAAAAAAAAqs/GxDJ79dVXIyIilUot8Tyfz0cqlYr9998/yVgAAAAAAAAALIdsuqHoTHN7awJJAAAAAKC8eqg/AEBBNiaW2dtvv91VSlx8S2J3e+21VzXiAQAAAAAAALAM6usGRWbQ4IIzMxUTAQAAAACAAUIxscz+/ve/L/Hr3TcorrzyyrHGGmskFQkAAAAAAACAMshmGguet+TaEkoCAAAAAABQXYqJZTZ//vwez/L5fKRSqdhggw0STAQAAAAAAABAOWTTDQXPm21MBAAAAAAABgjFxDJrbCz8GzIjIkaPHl35IAAAAAAAAACUVbGNiTMVEwEAAAAAgAFCMbHMhgwZUnRm6NChCSQBAAAAAAAAoJyy6cLFxJZcW0JJAAAAAAAAqksxscxKKSaWMgMAAAAAAABA75LNNBQ8b7YxEQAAAAAAGCAUE8ts5ZVXjnw+X3Bm3rx5CaUBAAAAAAAAoFyymcIbE2fNbY8FCzsSSgMAAAAAAFA9iollts466xSdaW31WzIBAAAAAAAA+ppixcSIiFm59gSSAAAAAAAAVJdiYpmVUkz88MMPE0gCAAAAAAAAQDll0w1FZ5rb/aJaAAAAAACg/1NMLLN111234Hk+n4833ngjoTQAAAAAAAAAlEspGxNnKiYCAAAAAAADgGJimW2zzTY9nqVSqYiIeO2112LBggVJRQIAAAAAAACgDIYMTkdtTeGP2VtybQmlAQAAAAAAqB7FxDIbMWJEjB07NvL5fFcRMeIfmxI75XK5eOKJJ6oRDwAAAAAAAIBllEqlIptuKDjTbGMiAAAAAAAwACgmVsDXvva1ojN/+MMfEkgCAAAAAAAAQDllM40Fz2cqJgIAAAAAAAOAYmIFfPOb3+zxLJVKRT6fj5tvvjnBRAAAAAAAAACUQ7FiYkuuLaEkAAAAAAAA1aOYWAHjxo2LLbfcMvL5fKRSqa6v5/P5rn89bdq0uPfee6sRDwAAAAAAAIBllE03FDxvtjERAAAAAAAYABQTK+S4444reJ7P5+Pcc89NKA0AAAAAAAAA5VBsY6JiIgAAAAAAMBAoJlbIAQccEGuvvXZExGe2Jnb+ecqUKTF58uSq5AMAAAAAAABg6RUtJubaIp/PJ5QGAAAAAACgOhQTK2TQoEHxs5/9rMcPnFKpVOTz+TjttNNi+vTpCacDAAAAAAAAYFlk04WLiQsWdkTrvLkJpQEAAAAAAKgOxcQK2nnnneOb3/zmIlsSI6KrrJhKpaKlpSW+/vWvR3Nzc5VSAgAAAAAAAFCqbKah6Exze2sCSQAAAAAAAKpHMbHCJk2aFGuvvXZExBLLiRERL7/8cuy0007x0UcfJZ4PAAAAAAAAgNJlM4U3JkZENOcUEwEAAAAAgP5NMbHCmpqa4q677oqmpqaI+Gw5sfPPTz/9dGyzzTbx9NNPVyUnAAAAAAAAAMU11ZeyMbEtgSQAAAAAAADVo5iYgHXWWSd+85vfxNChQyNiyeXEVCoV06ZNi/Hjx8f/+3//L+bPn1+tuAAAAAAAAAD0oK62NobWZwrOzGy3MREAAACAvqMm5ZXkC6C/UExMyJe//OV46KGHYtVVV42I6CojRvyjnNj5tXnz5sX3vve9WG+99eKmm26KBQsWVC0zAAAAAAAAAJ+VzRTemtiSU0wEAAAAAAD6N8XEBI0dOzb++te/xqabbtpVRuzUvZyYz+dj+vTpccghh8To0aPjnHPOieeff74akQEAAAAAAABYTDbdWPC82cZEAAAAAACgn1NMTNjo0aNjypQp8YMf/CDq6up63JzYWVB877334j/+4z9i7NixsdZaa8WECRPi2muvjaeeeipaW32YBQAAAAAAAJC0bKZYMbEtoSQAAAAAAADVUVftAP3V4YcfXnRmo402iqlTp3YVEyM+W07s/rVp06bF9OnT47rrruuaHz58eIwYMSJGjBgRQ4cOjfr6+hg8ePAi71ltqVQq/vu//7vaMQAAAAAAAADKIptpKHjenPNLZgEAAAAAgP5NMbFCrrvuupLLgZ3FwyV9rXtBcUmzH374YXz44Ye9qojYXT6fV0wEAAAAAAAA+pVsutjGRMVEAAAAAACgf1NMrLAllQ6X9fsXLyl2n1neewAAAAAAAAAoTTZTuJjYNn9ezFuwIAbX+UgeAAAAAADon3wKUmHFNhkuTaFwSbM9lRV7C4VJAAAAAAAAoL8pVkyMiGjOtcbwIU0JpAEAAAAAAEieYmKFVbqY15uLf725MAkAAAAAAACwrLLphqIzze2KiQAAAAAAQP9VU+0AAAAAAAAAANCXlLQxsb01gSQAAAAAAADVoZgIAAAAAAAAAEshM2hw1NcNKjjTnGtLKA0AAAAAAEDyFBMBAAAAAAAAYCll0w0Fz21MBAAAAAAA+jPFRAAAAAAAAABYStlMY8FzxUQAAAAAAKA/q6t2gP4ulUpVOwIAAAAAAAAAZVa0mJhrSygJAAAAAABA8hQTKyifz1c7AgAAAAAAAAAVkE03FDy3MREAAACAvsI+JgCWhWJihRx66KHVjgAAAAAAAABAhRTdmKiYCAAAAAAA9GOKiRVy7bXXVjsCAAAAAAAAABVSrJjYMrc9Fi5cGDU1NQklAgAAAAAASI5PQAAAAAAAAABgKWXTDQXP8/l8zJrbnlAaAAAAAACAZCkmAgAAAAAAAMBSKrYxMSKiub01gSQAAAAAAADJU0wEAAAAAAAAgKVUUjEx15ZAEgAAAAAAgOQpJgIAAAAAAADAUhpan4maVKrgjI2JAAAAAABAf6WYCAAAAAAAAABLqSaViqZ0Q8EZxUQAAAAAAKC/UkwEAAAAAAAAgGWQzTQWPG/OtSWUBAAAAAAAIFmKiQAAAAAAAACwDLI2JgIAAAAAAAOUYiIAAAAAAAAALIOiGxMVEwEAAAAAgH5KMREAAAAAAAAAlkHRYmKuLaEkAAAAAAAAyVJMBAAAAAAAAIBlkE03FDxvbm+NfD6fUBoAAAAAAIDkKCYCAAAAAAAAwDIotjFxXseCaJ8/L6E0AAAAAAAAyVFMBAAAAAAAAIBlUKyYGBHRnGtLIAkAAAAAAECy6qodAAAAAAAAAAD6omy6hGJie2uMWmFYAmkAAAAAYNnUpKqdAIC+yMZEAAAAAAAAAFgGTZmGojPN7a0JJAEAAAAAAEiWYiIAAAAAAAAALIPBtXXROLi+4ExzTjERAAAAAADofxQTAQAAAAAAAGAZZdONBc+b29sSSgIAAAAAAJCcumoHYNl1dHTE+++/H++9917Mnj072tvbo729PXK5XOTz+c/MH3LIIVVICQAAAAAAANB/ZTMN8e6sT3s8b263MREAAAAAAOh/FBP7iJdffjmmTJkSzzzzTDzzzDPxyiuvxEcffbTEAmJPFBMBAAAAAAAAyiubKbIxMaeYCAAAAAAA9D+Kib1UR0dH3H333XH33XfHfffdFzNmzFjkfGkKiRERqVSqnPEAAAAAAAAAiIhsukgxsb0toSQAAAAAAADJUUzsZV599dW4+uqr48Ybb4y///3vEbHkEuLSFA2XtsRYyI9+9KO4++67i84NHz48br/99rLdCwAAAAAAANAbFd2Y2G5jIgAAAAAA0P8oJvYSL7/8cvzwhz+M2267LRYuXLhImbBQCbFY6bDcmxJ32WWXOOusswrO5PP5SKVS8dBDD8X2229f1vsBAAAAAAAAepNspqHg+Zx5uZjfsSAG1fp4HgAAAAAA6D9qqh1goJs9e3ZMnDgxNtpoo7j11lujo6Ojq9jX+Yr4R9lvSa+kjR07NvbYY4+uuwtl+vnPf554PgAAAAAAAIAkZdOFNyZGRLTk2hJIAgAAAAAAkBzFxCq66667YsyYMTFp0qTPFBIjoqoFxELOPPPMrn/dvUDZ/ZXP5+NXv/pVzJ49u4pJAQAAAAAAACormyleTGxuV0wEAAAAAAD6F8XEKsjn83HmmWfG3nvvHe+++26PhcTeavz48bH55pv3uDWx09y5c+OOO+6oVkwAAAAAAACAiiupmJhrTSAJAAAAAABAchQTEzZ79uzYbbfd4sILL+xzhcTujj322JLmbr311gonAQAAAAAAAKiehkGDY1BNbcGZ5nbFRAAAAAAAoH9RTEzQrFmzYpdddon777+/q5QYseyFxM5SY+f7JOmggw6KpqamrhyLS6VSkc/n44EHHohZs2YlHQ8AAAAAAAAgEalUqujWRMVEAAAAAACgv1FMTMjs2bNjl112icceeywi/lncK7WQ2L2EWK0yYnf19fWx7777LjF/968tWLAg7r333iSjAQAAAAAAACSqaDEx15ZQEgAAAABYeqmUV5IvgP5CMTEhBx98cEyZMmWRLYnFLF5C7Cwydr7q6uoim83GyJEju+aTdPDBB5c097vf/a7CSQAAAAAAAACqJ5tuKHhuYyIAAAAAANDf1FU7wEDwgx/8IO66666SS4ndC4ads5/73Odil112iXHjxsWmm24aa6yxRgwfPrxrrqYm+Y7pDjvsECNGjIiPPvqoawNkd51fszERAAAAAAAA6M+KbkxUTAQAAAAAAPoZxcQKe+SRR+K8885b6lJiPp+PpqamOOSQQ2LChAmx8cYbVzzr0kqlUrHrrrvG9ddf/5ltjfl8vutrH374Ybz22mux9tprVyMmAAAAAAAAQEUVLSbm2hJKAgAAAAAAkIzk1+wNIPPnz4+jjjqqq4xYqJSYSqW6NgzW19fH2WefHdOnT49LLrmkV5YSO+2+++4lzT388MMVTgIAAAAAAABQHdl0Q8Hzlva2WFjkl9gCAAAAAAD0JYqJFfSTn/wkXnzxxa7CYU+6b0kcP358PPvss3HeeedFNptNKOmy23nnnbvyL741sTvFRAAAAAAAAKC/KrYxsSO/MObMbU8oDQAAAAAAQOUpJlZIW1tbXHTRRQXLehHRVVrM5/NxzDHHxEMPPRRrr712QimXXzabjTFjxhScyefzMXXq1IQSAQAAAAAAACSrWDExIqI515ZAEgAAAAAAgGQoJlbI1VdfHZ988klERI/bEjtLialUKs4+++y44ooroq6uLsmYZTF+/PiCzxgR8dJLL8WCBQuSjAUAAAAAAACQiGy6oehMc3trAkkAAAAAAACSoZhYIZdddlnBbYndS4kTJ06M8847L8F05bXlllsu8evdy4rz58+Pl156KalIAAAAAAAAAIlZId0QPX86/A+KiQAAAAAAQH+imFgBjz32WLz55psRseRtid1LiV/60pfikksuSThheY0ZM6akuVdeeaXCSQAAAAAAAACSV1tTEysU2ZrYnGtLKA0AAAAAAEDlKSZWwM0339zjWfctivX19TF58uSora1NIlbFrLvuuiXNTZ8+vcJJAAAAAAAAAKojW6yYaGMiAAAAAADQjygmVsDvf//7RQqIi+vclnjiiSfGWmutlWCyylhppZVixRVXjIgo+NyKiQAAAAAAAEB/lc00FjxXTAQAAAAAAPoTxcQy+/DDD+ONN96IiH8UELvrXtrLZDJx+umnJ5qtklZbbbXPPO/i3n333YTSAAAAAAAAACSraDEx15ZQEgAAAAAAgMpTTCyzhx9+uOB557bEPffcM1ZeeeWEUlXeiBEjis58/PHHCSQBAAAAAAAASF5TuqHguY2JAAAAAABAf6KYWGbPPfdcSXP7779/hZMka9VVV+3xLJVKRT6fj7///e8JJgIAAAAAAABIzrBiGxMVEwEAAAAAgH5EMbHMpk2btsSvp1KpRf71DjvskFCiZAwZMqToTHNzc+WDAAAAAAAAAFRBtkgxMbdgfuTmz0soDQAAAAAAQGUpJpZZT8XE7tZee+3IZrOVD5OgdDpddGbu3LkJJAEAAAAAAABIXlO6oehMc64tgSQAAAAAAACVp5hYZu+///4i2xG7y+fzkUqlYq211ko4VeUpJgIAAAAAAAAD2bAiGxMjIprbWxNIAgAAAAAAUHmKiWXW2lr8g6TVV189gSS9z4IFC6odAQAAAAAAAKAimkopJtqYCAAAAAAA9BOKiWVWSjFxyJAhCSRJVnt7e9GZ+vr6BJIAAAAAAAAAJC9dNygydYMLztiYCAAAAAAA9BeKiWWWy+WKzgweXPjDqL6ora34b/ZsaGhIIAkAAAAAAABAdWQzhT8TVUwEAAAAAAD6C8XEMstkMkVnStku2Nd89NFHRWdK+dkAAAAAAAAA9FXZTGPB8+acYiIAAAAAANA/1FU7QH/T0NBQdHtga2v/+7BpxowZPZ7l8/mIiBg6dGhScQAAAAAAAAAS15QuUkxsL/xZMgAAAABUQ02q2gkA6ItsTCyzxsbCHzRFRLz33nsJJEnW9OnTI5Xq+f8bSaVSsdpqqyWYCAAAAAAAACBZwzINBc+b2/vfL7EFAAAAAAAGJsXEMhs2bFjXhsAlyefz8fbbbyeYqPJmzJgRn376aUREwWf//Oc/n1QkAAAAAAAAgMRlM0U2JuYUEwEAAAAAgP5BMbHM1lxzzR7POjcKvvrqqzF//vykIlXc1KlTS5pTTAQAAAAAAAD6s6Z04WLi7Fx7dCxcmFAaAAAAAACAylFMLLMvfOELS/x6902C8+bNi2effTapSBX3xz/+saS5tddeu8JJAAAAAAAAAKpnWKah4Hk+IlpybcmEAQAAAAAAqCDFxDLrqZi4uPvvv7/CSZLzu9/9rmsbZCHjxo1LIA0AAAAAAABAdWQzhTcmRkQ051oTSAIAAAAAAFBZiolltvnmm5c0d+edd1Y4STKmTp0ab7zxRkQsuhUyIhYpK2azWRsTAQAAAAAAgH6tKV1CMbFdMREAAAAAAOj7FBPLbNNNN41MJhMR8Zktgvl8PlKpVOTz+Xj88cfjpZdeqkbEspo0aVLB885nti0RAAAAAAAA6O+G1qejtqbwx/DN7W0JpQEAAAAAAKgcxcQyq6uriy233PIz2wOX5PLLL08gUeV8/PHHcdNNN32mgLkkX/va1xJIBAAAAAAAAFA9qVQqsumGgjM2JgIAAAAAAP2BYmIFFCvhdW5N/O///u946623EkpVfueff360tv7jQ7NiRcx99tkniUgAAAAAAAAAVdWUbix43pxTTAQAAAAAAPo+xcQK2H///Xs8617gmzdvXpx22mlJRCq7F154Ia688soetyV2li8jIsaMGRNf+MIXkowHAAAAAAAAUBXDMkWKie1tCSUBAAAAAACoHMXECvjCF74Q48aNi3w+v8TiXufX8/l83HHHHXHTTTdVIeWy6+joiEMPPTTmzZsXEYW3JaZSqfjWt76VVDQAAAAAAACAqspmGgqeN7fbmAgAAAAAAPR9iokVcuihhxad6SwnTpw4MZ599tkEUpXH8ccfH1OnTl1kK2J33cuY9fX1ceSRRyYZDwAAAAAAAKBqmtJFNibmFBMBAAAAAIC+TzGxQiZMmBCrrLJKRESPWxM7z+bMmRNf//rX44033kg047L40Y9+FFdfffUSn6m7zq2QBxxwQKy00koJpQMAAAAAAACormGZIsXE9rYl/gJYAAAAAACAvkQxsULS6XSceOKJBT9Q6l5OfO+992LbbbeN5557LqmIS+2HP/xhnHXWWV2lxGLbEmtqauK0005LLB8AAAAAAABAtWWLFBMXLOyI1vlzE0oDAAAAAMWlUl5JvgD6C8XECjrhhBNi+PDhEbHkrYkRi5YTP/zww9hmm23ihhtuSCxjKebMmRMHH3xwnHvuuV15ixUuU6lUHHroobHBBhskFRMAAAAAAACg6prSDUVnmttbE0gCAAAAAABQOYqJFbTCCivERRddVLDEF7FoObGtrS0OO+yw+Jd/+Zd4++23k4hZ0D333BObbLJJ/PKXv+wqHPb0PN3Ll42NjfGf//mfScUEAAAAAAAA6BWGFdmYGKGYCAAAAAAA9H2KiRV28MEHxw477NBV6utJ93JiPp+Pu+++O9Zdd9047rjjYvr06UnF7XL//ffHV7/61dhrr71i2rRpRUuJnTrnfvjDH8aIESMSSgsAAAAAAADQO5S2MbEtgSQAAAAAAACVo5iYgGuvvTZWWmmliIilKifOnTs3rrrqqlh77bXjq1/9akyePDnef//9iuWcOnVqnHPOObHuuuvGrrvuGn/+85+7iobFSomd56lUKr761a/GySefXLGcAAAAAAAAAL1VXW1tDKlPF5xpztmYCAAAAAAA9G111Q4wEKyxxhpx0003xe67715082D3cmLnn/P5fPz5z3+OP//5zxERsf7668e4ceNis802iy9+8Yvx+c9/vqQc06dPj/b29mhra4sPP/wwZsyYEdOnT4+pU6fG1KlTY+bMmYtkWDxHT7qXLVdeeeW4/vrrS8oDAAAAAAAA0B8NSzfGnLm5Hs+b2xUTAQAAAACAvk0xMSFf+9rX4j//8z/jrLPOKrg1sVP3TYWdf+704osvxksvvRQ33HDDZ75nSe/T+T/XWmutgvd16p6vUCGx+2w+n49MJhO/+tWvYtVVVy34PQAAAAAAAAD9WTbTGO+0fNLjeXN7W4JpAAAAAAAAyk8xMUFnnHFGzJ49O84///ySNhF23564eFmwWGGw0PstyeJlyVLev/sz1NbWxk033RTbbrvtUucCAAAAAAAA6E+a0g0Fz5tzNiYCAAAAAAB9m2Jiwv7jP/4j5s+fHxdeeGFX4bBYCXDx8yVtXFyaImGp95TyXvl8PmpqauKqq66Kvffeu+TvBwAAAAAAAOivhmUaC543tysmAgAAAAAAfVtNtQMMRBdccEH8+Mc/jpqaf/z4ixUGF9e5MbH7a1m/b2nfo3vefD4f9fX18T//8z8xYcKEpXoGAAAAAAAAgP4qW7SY2JZQEgAAAAAAgMpQTKySU045Je6+++5oamqKfD7ftT2xt+teSlxppZXi3nvvjX333bfKqQAAAAAAAAB6j6Z0Q8HztvlzY96CBQmlAQAAAAAAKD/FxCraZZdd4qmnnoodd9yxa2Nhby0ods+Vz+djxx13jOeeey6+/OUvVzkZAAAAAAAAQO8yrMjGxIiI5lxrAkkAAAAAAAAqQzGxytZcc8144IEH4qqrroqhQ4f2uoLi4oXETCYTF154Ydx///0xcuTIKqcDAAAAAACA/5+9e4+StK7vxP+pvsxUVTPTT89gAKPgcA8BSYRwk4suIpGAuDGgEnYFYSAmu252JbCrrkmMycJiCEnWJArECCbC6sIiKJqACsoKBEEI94sgF4Ho0NUMXVXd0931+4MfyG2ep6an6ql6ql+vc+ro9PdT9X3X6KHPsXzXB/pP0k4xsVHPIQkAAAAAAEB3KCb2iVNOOSV++MMfxoc//OEol8uvKCjmXVJ8eSExIuL9739/3H///fHhD3+4L0qTAAAAAAAAAP1ovFLNnLExEQAAAAAAKDLFxD6yatWqOPvss18oKK5evTpardarlhQ7XQx8tddutVoxOjoaxx9/fNxyyy3xuc99zpZEAAAAAAAAgAyVkWWxfHgkdabWUEwEAAAAAACKSzGxD2211VZx9tlnx+OPPx4XX3xxHH744TE6OvqSkmLEK8uEm/OIiBdev9VqxS677BKf+MQn4pFHHokLL7ww9txzz179dQAAAAAAAAAUSqlUiqQyljpTa9RzSgMAAAAA6YZKHnk+AAZF+lc00lOjo6Nx7LHHxrHHHhvT09NxzTXXxFVXXRXf+c534t577435+flXPKedTYovLjc+b+XKlbH33nvHYYcdFu9617til1126ch7AAAAAAAAAFiKxivVeOrZqY2e15o2JgIAAAAAAMWlmFgQY2Nj8c53vjPe+c53RkREs9mM2267LW677bZ46KGH4rHHHovHHnssnnjiiXj22Wej0WhEs9mMmZmZGB0djWq1GpVKJbbYYov4+Z//+dh2221j2223jR133DH23nvv2HXXXdsqNQIAAAAAAACQLSlnbUxUTAQAAAAAAIpLMbGgyuVy7LvvvrHvvvv2OgoAAAAAAAAALzNRySom1nNKAgAAAAAA0HlDvQ4AAAAAAAAAAINmvFJNPa81bUwEAAAAAACKSzERAAAAAAAAADosKadvTJxq1mNhYSGnNAAAAAAAAJ2lmAgAAAAAAAAAHTZRSS8mtlqtWD/TyCkNAAAAAABAZykmAgAAAAAAAECHjWcUEyMiJpv1HJIAAAAAAAB0nmIiAAAAAAAAAHTYRLmaOVNrTOeQBAAAAAAAoPMUEwEAAAAAAACgw1Ysr8RQqZQ6o5gIAAAAAAAUlWIiAAAAAAAAAHTY0NBQrMzYmlhrKiYCAAAAAADFpJgIAAAAAAAAAF2QlMdSz2uNek5JAAAAAAAAOksxEQAAAAAAAAC6YKKSsTGxYWMiAAAAAABQTIqJAAAAAAAAANAF45WMjYlNxUQAAAAAAKCYRnodAAAAAAAAAAAGUVLOKCY26jklAQAAAICNGyr1OgEARWRjIgAAAAAAAAB0wUSlmno+1ZiOVquVUxoAAAAAAIDOUUwEAAAAAAAAgC4Yr6RvTJyZn4vG3GxOaQAAAAAAADpHMREAAAAAAAAAuiAppxcTIyJqjXoOSQAAAAAAADpLMREAAAAAAAAAumAiY2NiRMRUYzqHJAAAAAAAAJ2lmAgAAAAAAAAAXTBeqWbOTComAgAAAAAABTTS6wBkm52djR/96Efx1FNPxb/+67/GunXrotlsxszMTMzMzMT8/HyvI2b6+Mc/3usIAAAAAAAAALlaNjwS1dHlUd8ws9GZWlMxEQAAAAAAKB7FxD5Tr9fje9/7Xnz3u9+Nm2++Oe6+++740Y9+FAsLC72OtlkUEwEAAAAAAIClaKIyllpMnGrUc0wDAAAAAADQGYqJfaBWq8Wll14aX/rSl+Kb3/xmzM3NvXDWarV6mKwzSqVSryMAAAAAAAAA9MR4pRqPP/P0Rs8nGzYmAgAAAAAAxaOY2EP33XdfnHvuuXHhhRdGo9GIiFcWEYte6huEYiUAAAAAAADAYiXlsdTzWlMxEQAAAAAAKB7FxB5Yt25d/Pf//t/j/PPPj/n5+ZeU9zZWRCxiwa/opUoAAAAAAACAzZVUqqnnU416TkkAAAAAAAA6RzExZ5deemmsXbs2arXaC2XDlxf4ilhCBAAAAAAAAOCVkkr6xsRJGxMBAAAAAIACGup1gKWi1WrF7/zO78QxxxwTk5OT0Wq1olQqvVBKbLVaLzwAAAAAAAAAGAxJOb2Y+OxMM+bm53NKAwAAAAAA0Bk2JuZgdnY23ve+98X//b//94VC4vMUEQEAAAAAAAAGV1KpZs5MNeuxemxFDmkAAAAAAAA6w8bELmu1WvGe97wnLrvsspeUEm1HBAAAAAAAABh8SSV9Y2JExGRjOockAAAAAAAAnWNjYpd95CMficsvv/wlhcTN8eJtiwAAAAAAAAD0t3aKibWmYiIAAAAAvaOlAMBiKCZ20be+9a0466yzFl1KTCsh2rYIAAAAAAAA0P/GRpfH6NBwbFiY3+jMVKOeYyIAAAAAAIDNp5jYJc1mM0499dQX/rwpRcIXFxJf/rzR0dHYcsstY/Xq1VGpVGL58uUxPDy8+YEBAAAAAAAA6LhSqRTjlWr8dHr9RmcmGzYmAgAAAAAAxaKY2CWf/exn44EHHohSqdR2KfHlmxXHxsbi0EMPjf333z/23nvv2HnnneP1r3991zIDAAAAAAAA0HlJeSy1mDjVVEwEAAAAAACKRTGxCzZs2BBnn332SzYfpnl5IfHwww+P3/qt34pf/dVfjeXLl3ctJwAAAAAAAADdl1TGUs9rjXpOSQAAAAAAADpDMbELLr/88nj88cfb2pb44lLigQceGOecc07svffeecQEAAAAAAAAIAdJpZp6PtmwMREAAAAAACiWoV4HGESXXHJJ5kypVHqhuFgqleKss86Ka6+9VikRAAAAAAAAYMAk5fSNiVNNxUQAAAAAAKBYbEzssNnZ2fja1772wibEV/PiLYkjIyPxxS9+Md797nfnFREAAAAAAACAHCWV9GJirVl/4UttAQAAAAAAisDGxA77/ve/H41GIyKeKx5uzPMfKv2v//W/lBIBAAAAAAAABlhSqaaezy8sxPqZZk5pAAAAAAAANp9iYoddf/31qeelUumFUuLRRx8dp5xySk7JAAAAAAAAAOiFrI2JERFTzekckgAAAAAAAHSGYmKH3XXXXRs9K5VKL/z7kZGROOecc/KIBAAAAAAAAEAPJeXsYmKtoZgIAAAAAAAUh2Jihz300EOp589vSzzmmGPiDW94Qz6hAAAAAAAAAOiZ8XI1Shkzk416LlkAAAAAAAA6QTGxwx555JGXbEbcmN/8zd/MIQ0AAAAAAAAAvTY8NBQrypXUmammjYkAAAAAAEBxKCZ22Pr161/15y8uK46MjMRb3/rWvCIBAAAAAAAA0GNJeSz1vNZQTAQAAAAAAIpDMbHDpqc3/mFRq9WKiIg99tgjyuVyXpEAAAAAAAAA6LGkkl5MnGzUc0oCAAAAAACw+RQTO2x2djb1vFQqxQ477JBTGgAAAAAAAAD6QVKppp5PNW1MBAAAAAAAikMxscO22GKLzJmtt946hyQAAAAAAAAA9IuknL4xsdZQTAQAAAAAAIpDMbHDVq5cmTkzNpb+gRMAAAAAAAAAgyWpZBUT6zklAQAAAAAA2HyKiR3WTjFxfn4+hyQAAAAAAAAA9IusYmJjbjaacxtySgMAAAAAALB5FBM7bM2aNdFqtVJn6nXfdAkAAAAAAACwlCTlaubMVGM6hyQAAAAAAACbTzGxw3bffffMmZ/+9Kc5JAEAAAAAAACgX2RtTIyImFRMBAAAAAAACmKk1wEGTVYxsdVqxQ9/+MOc0gAAAAAAAADQD9ramNis55AEAAAAAF5qqNTrBAAUkY2JHXbAAQds9KxUeu639X333ZdXHAAAAAAAAAD6QHl0WZRHRlNnajYmAgAAAAAABaGY2GFveMMbYo899ohWq/VCETHiuU2Jz3vmmWfiX/7lX3oRDwAAAAAAAIAeSSpjqeeTiokAAAAAAEBBKCZ2wdFHH505c/XVV+eQBAAAAAAAAIB+kVVMnGrWc0oCAAAAAACweRQTu+C44457YVvii7cmPq/VasUll1ySdywAAAAAAAAAeigpV1PPazYmAgAAAAAABaGY2AW77rprHHnkkdFqtV7y81ar9UJR8Z//+Z/jBz/4QQ/SAQAAAAAAANALWRsTFRMBAAAAAICiUEzsktNPPz1z5n/8j/+RQxIAAAAAAAAA+kFmMbFZzykJAAAAAADA5lFM7JI3v/nN8a53veslWxIjfrY1sdVqxZe//OX4zne+08OUAAAAAAAAAOQlKVdTz59p1mN+YSGnNAAAAAAAAIunmNhFn/70p2PlypURES8pJz6v1WrFqaeeGvW6b70EAAAAAAAAGHRZGxNb8Vw5EQAAAAAAoN8pJnbRNttsE2effXa0Wq2X/PzFWxTvvffeOOGEE3qQDgAAAAAAAIA8ZRUTIyJqiokAAAAAAEABKCZ22dq1a2Pt2rUvKSNG/Kyc2Gq14v/8n/8T/+E//IcepgQAAAAAAACg25JyNXOm1pjOIQkAAAAAAMDmUUzMwV/91V/FW9/61tRy4l//9V/HBz7wgdiwYUMPkwIAAAAAAADQLVssr8RwKf1jesVEAAAAAACgCBQTczA8PByXXXZZHHDAAanlxM9//vNxyCGHxEMPPdTDtAAAAAAAAAB0w1CpFOOV9K2JtWY9pzQAAAAAAACLp5iYk5UrV8Y//dM/xdvf/vYXyojPFxRfXE684YYbYo899oizzjorms1mj1MDAAAAAAAA0ElJOaOYaGMiAAAAAABQAIqJOapUKnHFFVfEiSeeGK1W6yVnL96kWK/X4yMf+UisWbMmzjrrrHjqqad6ERcAAAAAAACADksqY6nniokAAAAAAEARKCbmbHR0NC644IK46KKLYmxs7FU3Jz6/PfGpp56Kj3zkI/H6178+Dj/88PizP/uz+MEPfhBzc3M9fhcAAAAAAAAALEZmMbFZzykJAAAAADxnqOSR5wNgUIz0OsCg+sQnPpE5c+SRR8bFF1/8QjEx4qXlxOf/PDc3F1dffXVcffXVEfFcuXHnnXeObbfdNl772tfGypUro1KpxOjoaHfeTAd8/OMf73UEAAAAAAAAgJ5LytXUcxsTAQAAAACAIlBM7JI/+IM/eEnhME2r1XrVP7+8oPi82dnZuOOOO+LOO+/sUNruU0wEAAAAAAAAaGNjYmP6hS+0BQAAAAAA6FeKiV328tLhYp774oLii88257Xz5AMzAAAAAAAAgOdkFRM3LMxHfcNsjC1bnlMiAAAAAACATaeY2GVZpbx2yoUvn3m1omK/Kkp5EgAAAAAAACAPSTm9mBjx3NZExUQAAAAAAKCfKSZ2WTeKeUUp+xWlPAkAAAAAAACQl6RSzZypNabj58dX5ZAGAAAAAABgcYZ6HQAAAAAAAAAAlorxchvFxOZ0DkkAAAAAAAAWTzERAAAAAAAAAHIyOjwSWywrp87UGvWc0gAAAAAAACyOYiIAAAAAAAAA5CipjKWe1xo2JgIAAAAAAP1NMREAAAAAAAAAcpRUqqnntaZiIgAAAAAA0N9Geh1g0JVKpV5HAAAAAAAAAKCPJGUbEwEAAAAAgGJTTOyyVqvV6wgAAAAAAAAA9JGkklVMrOeUBAAAAAAAYHEUE7vk4IMPti0RAAAAAAAAgFdIKtXU81rTxkQAAAAAAKC/KSZ2ybe//e1eRwAAAAAAAACgDyXl9I2J07MzMTs/F8uGfaQPAAAAAAD0J59iAAAAAAAAAECOkkp6MTEiYqpRj9dssTKHNAAAAAAsdUOlXicAoIiGeh0AAAAAAAAAAJaSdoqJteZ0DkkAAAAAAAAWRzERAAAAAAAAAHKUlKuZM7WGYiIAAAAAANC/FBMBAAAAAAAAIEeV0WWxbHgkdUYxEQAAAAAA6Gfpn3QALAGPPvpofOMb34jbb7897rrrrnjooYdi/fr18cwzz0Sr1YoVK1bEihUrYtttt43ddtst9thjjzjssMNip5126nX0gfDkk0/Gt771rbjjjjvi3nvvjfvvvz8mJydj/fr18eyzz8bIyMgL/xlMTEzEjjvuGDvvvHPsvPPO8cu//Mux2267RalU6vXbAAAAAAAAaFupVIqkMhb/+uzURmdqzXqOiQAAAAAAADaNYiKwJNVqtTj//PPjoosuittvvz11dt26dbFu3bp4+OGH47rrrnvh5zvttFMcd9xx8cEPfjC22mqrbkceKA888EBccMEFceWVV8Ydd9yROjs3NxfNZjN+8pOfRETE97///Zecr1q1Kg488MA4+OCD48gjj4xddtmla7kBAAAAAAA6JSlX04uJNiYCAAAAAAB9bKjXAQDy9Oyzz8YZZ5wRr3vd6+L3fu/3MkuJae6///74wz/8w9h2223jlFNOiZ/+9KcdTDqYvvGNb8Shhx4aO++8c5x55pmZpcR2PP300/GVr3wlTjvttNh1111jt912i4997GNx7733diAxAAAAAABAdySVsdRzxUQAAAAAAKCfKSYCS8ZXvvKV+IVf+IX4n//zf8b0dOc+yJ2dnY3zzjsvdtlll/jc5z7XsdcdJD/4wQ/isMMOi1/91V+Nb37zm9Fqtbp219133x1//Md/HH/5l3/ZtTsAAAAAAAA2V2YxsVnPKQkAAAAAAMCmU0wEBt7CwkJ87GMfi3e9613x2GOPde2ep59+Oj7wgQ/EKaecErOzs127p0jm5+fjj/7oj+JXfuVX4uqrr+51HAAAAAAAgL6RlKup5zYmAgAAAAAA/Wyk1wEAuml+fj7e9773xZe+9KXc7jzvvPPivvvui6997WtRraZ/oDzInnzyyTjmmGPiu9/9bq+jAAAAAAAA9J2sjYlTzXosLCzE0JDvGwYAAAAAAPqPTzCAgbWwsBAnnHBCrqXE51177bXxb//tv42ZmZnc7+4HDzzwQBxwwAFKiQAAAAAAABuRVUxcaLVi/WwzpzQAAAAAAACbxsZEYGB99KMfjS984Qub9Jyddtop3vzmN8fuu+8eq1atilKpFJOTk3H33XfH9773vbjjjjvafq1//Md/jLVr18aFF164qdEL7fbbb4/DDjss/vVf/7XXUQAAAAAAAPpWUq5mztQa0zHexhwAAAAAAEDeFBOBgXTVVVfFWWed1fb80UcfHR/5yEdin332SZ2744474uyzz44vfOELsbCwkPm6F110URxyyCFx0kkntZ2lyB555JF4xzvescmlxC233DLe8pa3xEEHHRS77rprbL/99rFq1aoYG3vum4JrtVrUarWYnJyMe+65J2677ba47bbb4tZbb41ardaFdwIAAAAAANBdWRsTI54rJm438Zoc0gAAAAAAAGwaxURg4Kxbty7+/b//99FqtTJnV61aFRdddFEcccQRbb327rvvHp///Ofjgx/8YBx77LHx6KOPZj7nP/7H/xiHHHJI7Ljjjm3dUVS1Wi2OOOKI+PGPf9z2c975znfGKaecEocffniMjGz8V9JWW20VW221VURE7Lfffi/8fG5uLq6//vq44oor4qtf/Wrcc889i38DAAAAAAAAOVq5vBKlUin1M61as55jIgAAAAAAgPYN9ToAQKd99KMfjZ/+9KeZc6973evipptuaruU+GL77bdf3HzzzbHbbrtlzjYajfjP//k/b/IdRXPSSSfFnXfe2dbs/vvvHzfffHNcfvnl8Wu/9muppcQ0IyMjccghh8SnPvWpuPvuu+Pmm2+OD3zgA1GtVhf1egAAAAAAAHkZGhqK8eWV1JlaYzqnNAAAAAAAAJtGMREYKLfeemucd955mXPj4+Nx9dVXxw477LDou37u534urrnmmnjd616XOXvllVfG1772tUXf1e/OP//8uPTSSzPnhoaG4pOf/GR85zvfib322qvjOfbaa6+44IIL4vHHH48TTjih468PAAAAAADQSUllLPVcMREAAACAPJRKHnk+AAaFYiIwUP7wD/8wFhYWMufOO++82GWXXTb7vq233jr+4R/+IYaHhzNnf//3f3+z7+tHDz30UPzu7/5u5tzy5cvjkksuiY9+9KNt/X1tjiRJYu+99+7qHQAAAAAAAJsrs5jYrOeUBAAAAAAAYNMoJgID4957742vfOUrmXNHH310HHPMMR2796CDDopTTz01c+7mm2+Ob37zmx27t1+cdtppMT2d/m29Q0ND8YUvfCF+4zd+I6dUAAAAAAAA/S8pV1PPbUwEAAAAAAD6lWIim2XVqlWZj9WrV/c6JkvEOeecE61WK3VmZGQkPvWpT3X87k984hOxcuXKzLk//dM/7fjdvXTttdfGpZdemjn3yU9+UikRAAAAAADgZTI3JiomAgAAAAAAfWqk1wF6afvtt8+cKZVK8eCDD+aQpphqtVqUSqXUMlipVMoxEUvVzMxMXHLJJZlz7373u2PHHXfs+P2rV6+Ok08+Oc4555zUuW984xvx1FNPxVZbbdXxDL1w+umnZ84cdNBBccYZZ+SQBgAAAAAAoFgyi4nNek5JAAAAAAAANs2SLiY+/PDDSnUdsrG/p6ztddApV155ZUxNTWXO/e7v/m7XMnzoQx+Kc889NxYWFjY6Mz8/HxdffHH8p//0n7qWIy/XXXdd3HTTTakzw8PD8Td/8zcxNGRBLwAAAAAAwMsl5Wrq+czchmhsmI3K6LKcEgEAAAAAALRHUySeK9W92qMXhoeHMx8jI0u6Twqv6otf/GLmzI477hj77bdf1zJst912cdBBB2XOtZO1CP70T/80c+b9739/7LbbbjmkAQAAAAAAKJ6sjYkREbXGdA5JAAAAAAAANo1iYp9ptVptPfpNETIyuObn5+Pqq6/OnHvPe97T9Szvfe97M2f++Z//OdatW9f1LN30ox/9KK644orMud/7vd/LIQ0AAAAAAEAxtVVMbNZzSAIAAAAAALBpFBOj/0p1G9vg2KstjtDvbrrpppiamsqce8c73tH1LO3csbCwENdcc03Xs3TTxRdfnPnPyn/zb/5N7LrrrjklAgAAAAAAKJ6kbGMiAAAAAABQTIqJfarfypLQz9op+a1YsSL23XffrmfZbrvtYscdd8yc+6d/+qeuZ+mmiy++OHPmuOOOyyEJAAAAAABAcS0bGYnq6LLUGcVEAAAAAACgHykmAoX3ve99L3Nm3333jZGRkRzSRBx00EGZMzfeeGMOSbrjwQcfjB/84AepM0NDQ3HkkUfmEwgAAAAAAKDAkkr61sRaUzERAAAAAADoP4qJQOHdeuutmTNvetObckjynL322itz5u67746ZmZkc0nTe1VdfnTnzS7/0S7HVVlvlkAYAAAAAAKDYknJGMbFRzykJAAAAAABA+xQTgUJ76qmn4oknnsic67di4tzcXPzLv/xLDmk671vf+lbmzP77759DEgAAAAAAgOJLKtXU81rDxkQAAAAAAKD/KCYChXb77be3Nbfrrrt2OcnP7LLLLm3NtZu931x77bWZM/vuu28OSQAAAAAAAIovqWRsTGwqJgIAAAAAAP1npNcBADbHD3/4w7bmdtxxxy4n+ZmJiYlYtWpVPP3006lz7WbvJ48++mg8+eSTmXO77bZb5sy6deviqquuihtuuCHuuOOOeOihh2JqaiqeffbZWLZsWVSr1Vi9enWsWbMmdthhh9hnn31i//33j5133rkTbwUAAAAAAKAvjJcziomNek5JAAAAAAAA2qeYCBTaQw89lDmz9dZbx9hY+ge6nbbjjjvGTTfdlDrTTvZ+c+edd7Y1t9NOO73qzxcWFuLKK6+Mv/iLv4hvf/vbMT8//6pzjUYjGo1GrFu3Lu67776IiPirv/qrF177mGOOiZNPPjnWrFmziHcBAAAAAADQPyYyNiaun2nE3Px8jAwP55QIAAAAAAAg21CvAwBsjocffjhz5rWvfW33g7zMNttskzkzqMXE1atXx8qVK1/x86uvvjp23333OProo+Oaa67ZaCkxy/333x9/8id/EjvttFO85z3vifvvv39RrwMAAAAAANAPkko1c2ZqxtZEAAAAAACgvygmAoX2+OOPZ85svfXWOSTZ9Dsfe+yxHJJ01t13350583M/93Mv+fP09HQcf/zxcdhhh7X1/HbNz8/H//7f/zt23333+NjHPhYbNmzo2GsDAAAAAADkJSmnb0yMiKg1pnNIAgAAAAAA0D7FRKDQ1q1blzmz1VZb5ZDkpdopJj799NM5JOmsRx99NHPmNa95zQv//sEHH4x99903/v7v/75rmWZnZ+OP//iP4+CDD24rHwAAAAAAQD9JKu0UE21MBAAAAAAA+otiIlBo7RQTkyTpfpBF3Dk9PR0zMzPdD9NBTz75ZObM8+/9wQcfjEMOOSTuvPPOLqd6zg033BD77bdfR7cyAgAAAAAAdNvYsuUxMjScOlNr2pgIAAAAAAD0F8VEoNAmJyczZ1asWJFDksXdWbStiU888UTmzLJly+Kpp56Kt771rfH444/nkOpnfvzjH8fBBx+snAgAAAAAABRGqVSKpFxNnak1FBMBAAAAAID+MtLrAACL1Wg0YsOGDZlzvSgmrly5sq25qamp2GabbbqcpjNarVZbGyqHh4fjve99bzz66KOZsytXroyDDjoo9thjj9huu+1iiy22iLm5uajVavHAAw/EjTfeGLfeemvMz8+3nfOnP/1pHHXUUXHjjTfG6tWr234eAAAAAABArySVsfhpff1GzxUTAQAAAOgmG68AWAzFRKCwZmdn25qrVCpdTvJK5XK5rbl230M/aDabsbCwkDl3+eWXR7PZTJ3Zb7/94vTTT48jjzwyRkdHU2effPLJuPDCC+NTn/pU/OQnP2kr64MPPhjHH398XHXVVW3NAwAAAAAA9FJSGUs9rzXrOSUBAAAAAABoj2IiUFjtlvqGh4e7nOSVRkba+8dr0YqJmzuXJEn85V/+ZRx//PFt37v11lvH6aefHh/84AfjtNNOi89+9rNtPe/rX/96nHfeebF27dq27xoUBx54YNv/HaR77rzzzl5HAAAAAACgIMbL1dRzGxMBAAAAAIB+Y+MuUFjtlvp6UdBq984NGzZ0OUnnzMzMbNbz16xZEzfccMMmlRJfbMWKFfGZz3wmzj///LbLpv/1v/7XmJqaWtR9AAAAAAAAeZnI2piomAgAAAAAAPQZ65SAwpqbm2trTjGxMzZnu+M222wT11xzTaxZs2azc5x00kkxPDwcJ554Yubs008/HWeffXZ88pOf3Ox7i+S73/1uvOY1r+l1DAAAAAAAoE1JVjGxWY9WqxWlUimnRAAAAAAAAOlsTAQKq93y3/z8fJeTLP7OXpQmF6vdLYWv5nOf+1xHSonPO+GEE+L9739/W7Of/vSno9FodOxuAAAAAACAThsvV1PP5xcW4tnZZk5pAAAAAAAAsikmAoW1bNmytuba3azYSe1uQmz3PfSDxWY9+eST4/DDD+9wmohzzz03Xvva12bO1Wq1uPjiizt+PwAAAAAAQKdMZGxMjIioNaZzSAIAAAAAANAexUSgsEZHR9ua60Uxsd07B72YODY2FmeffXYX0kQkSRJnnnlmW7P/8A//0JUMAAAAAAAAnZC0U0xs1nNIAgAAAAAA0B7FRKCwli9f3tZcs9nscpLF31mkYmK7f98vdtxxx0WSJJ0P8/879thjY8stt8ycu+666+LZZ5/tWg4AAAAAAIDNsbJciVLGjI2JAAAAAABAPxnpdQCgWB566KG48cYbu3rH2NhYHHXUUZlzlUolRkZGMrcTrl+/vlPR2tbunStXruxyks4pl8sxOjoaGzZsaPs5v/Vbv9XFRM+VJU844YT41Kc+lTo3Ozsb1157bfzar/1aV/MAAAAAAAAsxsjQcKxYXolnZhobnVFMBAAAAAAA+oliIrBJrr322jjxxBO7esd2223XVjExImJiYiJ+8pOfpM4888wznYi1Sdq9c9WqVV1O0lmrV6+OJ598sq3ZNWvWxJve9KYuJ4r4jd/4jcxiYkTEzTffrJgIAAAAAAD0raQyllFMrOeYBgAAAAAAIN1QrwMAbI7Vq1dnzkxNTeWQZNPvrFarUS6Xc0jTOe38fT9v33337WKSn/mlX/qlWLZsWebcLbfckkMaAAAAAACAxRkvV1PPa00bEwEAAAAAgP6hmAgUWjtFuaeeeiqHJC/VzlbBTSn59Yt+LCYuX7489txzz8y5Bx98MIc0AAAAAAAAizNRGUs9rzUUEwEAAAAAgP6hmAgU2s///M9nzrRTEuy0du5sJ3u/2ZTMb3zjG7uY5KXaKSY+9thjOSQBAAAAAABYnCSrmNis55QEAAAAAAAgm2IiUGhveMMbMmd+/OMfdz/IyzzxxBOZM2vWrMkhSWdtv/32bc+uWrWqi0k2/a6pqamYmZnJIQ0AAAAAAMCmGy9XU89tTAQAAAAAAPrJSK8DAGyOdsp9Tz75ZPhpY18AAQAASURBVNTr9ahW0z/M7aQHHnggc2bQi4lJknQvyCLvqtfrsXz58u6GAQAAAAAAWISJjI2JjQ2zMTO3IZaPjOaUCAAAAIClYqjU6wQAFJGNiUChtVOUa7VabRUFO6VWq8W6desy5zal5Ncvdthhh7Zn+7WYCAAAAAAA0I+SjGJiRESt6bMOAAAAAACgPygmApvkhBNOiFar1dXHww8/3HaePfbYo625e+65Z5HveNO1e1e72fvJG9/4xrZnS6X8vjolz7sAAAAAAAC6YbxczZypNaZzSAIAAAAAAJBNMREotG222Sa22mqrzLlbbrklhzTt3zUyMrJJJb9+MTEx0famx1qt1t0wLzI5OdnWXLWa/YE+AAAAAABAL0y0szFRMREAAAAAAOgTiolA4b3pTW/KnMmzmPj9738/c2bXXXeNcrmcQ5rO22uvvdqaa7cs2AntliDHxrI/0AcAAAAAAOiF8uiyKI+Mps7UGvWc0gAAAAAAAKRTTAQKb//998+cueGGG2Jubi6HNBHXXXdd5sy+++6bQ5LuOOCAA9qae/rpp7ucZNPuWr16dSxbtiyHNAAAAAAAAIszXq6mnteaNiYCAAAAAAD9QTERKLxDDz00c2b9+vVx0003dT3LI488Eg888EDm3GGHHdb1LN3y9re/va2522+/vctJfua2227LnNl2221zSAIAAAAAALB4E5Wx1PNaQzERAAAAAADoD4qJQOHts88+sXLlysy5q666qutZ2rmjVCq1VabsV7vttlu87nWvy5y78cYbc0gTMTMz01YxcZdddskhDQAAAAAAwOIliokAAAAAAEBBKCYChTcyMtJW0e+SSy7pepaLL744c2bvvfeOLbfcsutZuumII47InLnhhhtySBJx6623xuzsbObcr/zKr+SQBgAAAAAAYPHGyxnFxGY9pyQAAAAAAADpFBOBgfC+970vc+b+++/v6ha/Rx55JK677rrMuXay9rvf/M3fzJx5+OGH45Zbbul6li9/+cttze2///5dTgIAAAAAALB5JirV1HMbEwEAAAAAgH6hmAgMhKOOOipWrlyZOXfuued2LcNf/MVfxMLCQurM0NBQvPe97+1ahrwcdNBBsWbNmsy5v/7rv+5qjmazGX/3d3+XObflllvGPvvs09UsAAAAAAAAmyuppG9MfGamkfl5FAAAAAAAQB4UE4GBUC6X49hjj82c+/KXvxwPPPBAx+9ft25dnHfeeZlzb3/722Obbbbp+P15K5VKceKJJ2bOffGLX4zJycmu5bjkkkti3bp1mXNHHXVUDA8Pdy0HAAAAAABAJ4yX04uJrVYrpmYaOaUBAAAAAADYOMVEYGD8l//yX6JUKqXOzM3NxWmnndbxuz/+8Y/HM888kzn34Q9/uON398rv/M7vxNhY+ofj09PTXXvPk5OT8d/+239ra/akk07qSgYAAAAAAIBOmqhUM2dqjekckgAAAAAAAKQb6XWAIvjABz7Q6wiv0I+ZoNd+4Rd+IY488si44oorUucuv/zy+NKXvhTHHHNMR+797ne/G5/5zGcy5970pjfF2972to7c+byHH3441qxZkzl3yCGHxLe//e2O3r1q1ao49dRT45xzzkmd+9znPhfHHHNMvOMd7+jo/R/60IfiiSeeyJz75V/+5Xjzm9/c0bsBAAAAAAC6IamkfylkhGIiAAAAAADQHxQTN6LVar3wr5///Od7cvfGft6LTGk2lhd64fd///fjq1/9aiwsLKTOrV27Nvbcc8/YeeedN+u+J598Mo477riYn5/PnP2DP/iDzbqrH51++ulxwQUXxNTUVOrciSeeGP/v//2/2H777Tty7wUXXBBf+MIX2podxL93AAAAAABgMG2xvBLDpaGYb238s65aUzERAAAAgM4aKvU6AQBFNNTrAEXQarVye/Rjpk7khbzstddebW0UnZqaikMPPTR++MMfLvqun/zkJ/G2t70tHn300czZd7zjHXHUUUct+q5+tdVWW8Uf/dEfZc499dRTceihh8a999672Xeef/75ceqpp7Y1e8ghh8Q73/nOzb4TAAAAAAAgD0OlUoyXq6kztUY9pzQAAAAAAAAbp5jYhlKplNujHzN1Ii/k6U/+5E9i9erVmXOPPfZY7LPPPnHVVVdt8h033nhj7L333nHnnXdmzpbL5fjzP//zTb6jKH77t3879t5778y5hx9+OPbbb7+2Nx2+3Pr16+PUU0+NtWvXtrWhslqtxmc/+9lF3QUAAAAAANArSSWrmGhjIgAAAAAA0HuKiW3oxw2Evd6UaGMi/ew1r3lN/N3f/V1b5dl169bFEUccEb/+678eN998c+b8XXfdFSeeeGIccMAB8cgjj7SV58///M9jp512amu2iIaHh+OSSy6JJEkyZ2u1Wvy7f/fvYv/9949LL700NmzYkPmcp556Ks4666zYYYcdNqloeO6558bOO+/c9jwAAAAAAEA/GC+PpZ7XmoqJAAAAAABA7430OgBANxx55JFx2mmnxdlnn93W/GWXXRaXXXZZ7LzzznHggQfGL/7iL8aqVauiVCrF5ORk3HPPPfG9730vbr/99k3Kcdxxx8Upp5yymLdQKNtvv31ceOGFcfTRR7dVWr7hhhvi3e9+d4yPj8dBBx0Ub3zjG2PbbbeNLbbYIubn52NycjIefPDBuPHGG+P73/9+WxsSX+xDH/pQrF27drFvBwAAAAAAoGeSSkYxsVHPKQkAAAAAAMDGKSYCA+vMM8+Mxx57LL74xS+2/Zz77rsv7rvvvo7cf+ihh8bf/u3fduS1iuCoo46Kz372s3HKKae0vVF1amoqrrzyyrjyyis7luO9731v/Nmf/VnHXg8AAAAAACBPE5Vq6nmtYWMiAAAAAADQe0O9DgDQLUNDQ3HhhRfGr//6r+d+94EHHhiXX355LF++PPe7e+nkk0+Oz3zmMzE01JtfL6eeemr8/d//fc/uBwAAAAAA2FzjWRsTm9Ntf0kkAAAAAABAt2huAANtZGQkvvSlL8UZZ5yR250nnnhiXH311TE2lv6h8aBau3ZtfP3rX4/Vq1fndufy5cvj05/+dPzN3/yNUiIAAAAAAFBoSTn9M6YN8/NR3zCbUxoAAAAAAIBXp70BDLyhoaE488wz47LLLovXvva1XbtnYmIizjvvvPjbv/3bJbcp8eUOO+ywuOWWW+KII47o+l37779/3HjjjfHbv/3bXb8LAAAAAACg2yYyNiZGRNQa0zkkAQAAAAAA2DjFxIgolUoeXXhAv3nXu94V99xzT5x22mkd3Wa4bNmyOOmkk+Lee++Nk08+uWOvW3TbbrttfPWrX40rrrgi9thjj46//m677RYXXXRRXH/99bHnnnt2/PUBAAAAAAB6YbxSzZypNRUTAQAAAACA3lJMjIhWq+XRpQf0mxUrVsTZZ58djz76aJx55pnxi7/4i4t+rR122CE+9rGPxcMPPxznn39+vOY1r+lg0sFx5JFHxu233x7f+ta34thjj42VK1cu+rXGx8fj+OOPj69//etxxx13xPHHH68IDQAAAAAADJSk3EYx0cZEAAAAAACgx0Z6HaCXDj74YIUWWKImJibijDPOiDPOOCN+9KMfxT/+4z/GbbfdFnfddVc8/PDD8cwzz8T69euj1WrFihUrYsWKFfH6178+dtttt9hjjz3ibW97W+y66669fhvxhje8oTAl4Le85S3xlre8Jebm5uL666+P66+/Pu666664995748knn4z169fH9PR0lEqlGBsbi/Hx8dh2221jzZo1seeee8b+++8fe+21VyxbtqzXbwUAAAAAAKBrRodHYotl5Xh2trnRmVqjnmMiAAAAAACAV1rSxcRvf/vbvY4A9IHtttsu1q5d2+sYS8bIyEgccsghccghh/Q6CgAAAAAAQF8ar1TTi4lNGxMBAAAAAIDeGup1AAAAAAAAAADgZ5LyWOp5raGYCAAAAAAA9JZiIgAAAAAAAAD0kYlKVjGxnlMSAAAAAACAVzfS6wAAAAAAAAAAwM+MV6qp57WmjYkAAAAAdI6NVwAsht8fAAAAAAAAANBHknLWxkTFRAAAAAAAoLcUEwEAAAAAAACgj0xU0ouJ07MzsWF+Lqc0AAAAAAAAr6SYCAAAAAAAAAB9ZLxSzZypNes5JAEAAAAAAHh1iokAAAAAAAAA0EeScvrGxIiIWmM6hyQAAAAAAACvTjERAAAAAAAAAPrIRKWdYqKNiQAAAAAAQO8oJgIAAAAAAABAH6mMLovR4eHUmVrTxkQAAAAAAKB3FBMBAAAAAAAAoI+USqVIyulbE2sNxUQAAAAAAKB3FBMBAAAAAAAAoM9MVLKKifWckgAAAAAAALySYiIAAAAAAAAA9JnxSjX13MZEAAAAAACglxQTAQAAAAAAAKDPJOWMjYlNxUQAAAAAAKB3FBMBAAAAAAAAoM9MVNKLiVONek5JAAAAAAAAXkkxEQAAAAAAAAD6zHilmno+1azHQquVUxoAAAAAAICXUkwEAAAAAAAAgD6TlNM3Js63FmL9TCOnNAAAAAAAAC+lmAgAAAAAAAAAfWaikl5MjIiYakznkAQAAAAAAOCVFBMBAAAAAAAAoM+Mt1FMnGzUc0gCAAAAAADwSoqJAAAAAAAAANBnxpdXolQqpc7UmjYmAgAAAAAAvaGYCAAAAAAAAAB9ZmhoKMaXV1JnphqKiQAAAAAAQG8oJgIAAAAAAABAHxqvjKWeTzbqOSUBAAAAAAB4KcVEAAAAAAAAAOhDSbmael5r2pgIAAAAAAD0hmIiAAAAAAAAAPShiYyNiVMNxUQAAAAAAKA3RnodAAAAAAAAAAB4pfGMYuKkYiIAAAAAHTBUKvU6AgAFZGMiAAAAAAAAAPShpJxeTKw16zklAQAAAAAAeCnFRAAAAAAAAADoQxOVaur5zNyGaG6YzSkNAAAAAADAzygmAgAAAAAAAEAfGq+kb0yMiJhsTOeQBAAAAAAA4KUUEwEAAAAAAACgDyVtFBNrzXoOSQAAAAAAAF5KMREAAAAAAAAA+lBSrmbOTNmYCAAAAAAA9IBiIgAAAAAAAAD0oeUjo1EZXZY6M6mYCAAAAAAA9IBiIgAAAAAAAAD0qaQylnpeayomAgAAAAAA+VNMBAAAAAAAAIA+NVFOLyZONeo5JQEAAAAAAPgZxUQAAAAAAAAA6FPjlWrq+WTDxkQAAAAAACB/iokAAAAAAAAA0KeSjI2JtaZiIgAAAAAAkD/FRAAAAAAAAADoU0klvZg41ajnlAQAAAAAAOBnFBMBAAAAAAAAoE8llWrq+TMzjZhbmM8pDQAAAAAAwHMUEwEAAAAAAACgT2VtTIyImGramggAAAAAAORLMREAAAAAAAAA+tREuY1iYkMxEQAAAAAAyNdIrwMAAAAAAAAAAK9uvFLNnJlsTOeQBAAAAIBBNVTqdQIAisjGRAAAAAAAAADoU1ssK8fI0HDqTK2pmAgAAAAAAORLMREAAAAAAAAA+lSpVIqknL41capRzykNAAAAAADAcxQTAQAAAAAAAKCPjVfSi4mTDRsTAQAAAACAfCkmAgAAAAAAAEAfSypjqee1pmIiAAAAAACQL8VEAAAAAAAAAOhjSTm9mDjVqOeUBAAAAAAA4DmKiQAAAAAAAADQx5JKNfW81rAxEQAAAAAAyJdiIgAAAAAAAAD0saSSvjGx1qxHq9XKKQ0AAAAAAIBiIgAAAAAAAAD0taScXkycW5iP6dmZnNIAAAAAAAAoJgIAAAAAAABAX0sq1cyZWmM6hyQAAAAAAADPUUwEAAAAAAAAgD6WVNI3JkZETDYVEwEAAAAAgPwoJgIAAAAAAABAHxsvZ29MnGrUc0gCAAAAAADwHMVEAAAAAAAAAOhjI0PDsWJ5JXVmsmFjIgAAAAAAkB/FRAAAAAAAAADoc0klfWtiTTERAAAAAADI0UivAwAAAAAAAAAA6ZLyWDwa6zZ6PtVUTAQAAABgcUqlXicAoIhsTAQAAAAAAACAPpdUxlLPa416TkkAAAAAAAAUEwEAAAAAAACg7yWVaur5pI2JAAAAAABAjhQTAQAAAAAAAKDPJeX0jYlTDcVEAAAAAAAgP4qJAAAAAAAAANDnkkp6MbG+YTZm5+ZySgMAAAAAACx1iokAAAAAAAAA0OeyiokREZNNWxMBAAAAAIB8KCYCAAAAAAAAQJ9LytXMmamGYiIAAAAAAJAPxUQAAAAAAAAA6HPtbEysKSYCAAAAAAA5UUwEAAAAAAAAgD5XGV0Wy0dGU2cmG/Wc0gAAAAAAAEudYiIAAAAAAAAAFEBSrqaeTzVtTAQAAAAAAPKhmAgAAAAAAAAABZBUxlLPaw3FRAAAAAAAIB+KiQAAAAAAAABQAFnFxEnFRAAAAAAAICeKiQAAAAAAAABQAEk5vZg41aznlAQAAAAAAFjqFBMBAAAAAAAAoACSSjX1vGZjIgAAAAAAkBPFRAAAAAAAAAAogKSSsTFxphELCws5pQEAAAAAAJaykV4HAAAAAAAAAACyJeX0YmKr1YpnZhqZBUYAAAAAeDEbrwBYDL8/AAAAAAAAAKAAkko1c6bWmM4hCQAAAAAAsNQpJgIAAAAAAABAAbSzCbHWrOeQBAAAAAAAWOoUEwEAAAAAAACgAFYsr8RQqZQ6Y2MiAAAAAACQB8VEAAAAAAAAACiAoVIpxsvV1BnFRAAAAAAAIA+KiQAAAAAAAABQEEllLPW81qznlAQAAAAAAFjKFBMBAAAAAAAAoCCSckYx0cZEAAAAAAAgB4qJAAAAAAAAAFAQSaWaeq6YCAAAAAAA5EExEQAAAAAAAAAKIqlkbExs1nNKAgAAAAAALGWKiQAAAAAAAABQEJnFxMZ0tFqtnNIAAAAAAABLlWIiAAAAAAAAABREUq6mns/Oz0Vjw2xOaQAAAAAAgKVKMREAAAAAAAAACiJrY2JERK1ZzyEJAAAAAACwlCkmAgAAAAAAAEBBtFVMbEznkAQAAAAAAFjKFBMBAAAAAAAAoCDGy9XMGcVEAAAAAACg2xQTAQAAAAAAAKAglg2PxNiy5akztaZiIgAAAAAA0F2KiQAAAAAAAABQIEllLPW81qjnlAQAAAAAAFiqFBMBAAAAAAAAoECScjX1vNawMREAAAAAAOguxUQAAAAAAAAAKJDMjYlNxUQAAAAAAKC7FBMBAAAAAAAAoEAyi4mNek5JAAAAAACApUoxEQAAAAAAAAAKJClnFRNtTAQAAAAAALpLMREAAAAAAAAACiSpVFPPn51txob5uZzSAAAAAAAAS9FIrwMAAAAAAAAAAO1LKukbEyMippr12HJsZQ5pAAAAACi6oVKp1xEAKCAbEwEAAAAAAACgQJJydjGx1qjnkAQAAAAAAFiqFBMBAAAAAAAAoEDa2ZhYa07nkAQAAAAAAFiqFBMBAAAAAAAAoECqo8tidHg4dabWUEwEAAAAAAC6RzERAAAAAAAAAAqkVCpFUk7fmqiYCAAAAAAAdJNiIgAAAAAAAAAUTFLJKCY26zklAQAAAAAAliLFRAAAAAAAAAAomKRSTT23MREAAAAAAOgmxUQAAAAAAAAAKJiknLExUTERAAAAAADoIsVEAAAAAAAAACiYpJJRTGzWc0oCAAAAAAAsRYqJAAAAAAAAAFAwSaWaej7VqMdCq5VTGgAAAAAAYKlRTAQAAAAAAACAgknK6RsT51sL8exMI6c0AAAAAADAUqOYCAAAAAAAAAAFk1TSi4kREbVmPYckAAAAAADAUqSYCAAAAAAAAAAF01YxsTGdQxIAAAAAAGApUkwEAAAAAAAAgIJZubwSpYwZxUQAAAAAAKBbFBMBAAAAAAAAoGCGh4ZiZbmaOlNr1nNKAwAAAAAALDUjvQ4AAAAAAAAAAGy6pDIWUynlQxsTAQAAAGiHjVcALIbfHwAAAAAAAABQQEnWxkTFRAAAAAAAoEsUEwEAAAAAAACggJLKWOp5LWWbIgAAAAAAwOZQTAQAAAAAAACAAsosJtqYCAAAAAAAdIliIgAAAAAAAAAUUFKupp4rJgIAAAAAAN2imAgAAAAAAAAABZS1MbE5tyGaG2ZzSgMAAAAAACwliokAAAAAAAAAUEBZxcSIiFqznkMSAAAAAABgqVFMBAAAAAAAAIACSsrVzJlaYzqHJAAAAAAAwFKjmAgAAAAAAAAABWRjIgAAAAAA0CuKiQAAAAAAAABQQMtHRqMyuix1xsZEAAAAAACgGxQTAQAAAAAAAKCgknI19VwxEQAAAAAA6AbFRAAAAAAAAAAoqKQylnpeayomAgAAAAAAnaeYCAAAAAAAAAAFlVlMbNRzSgIAAAAAACwliokAAAAAAAAAUFBJuZp6XmvYmAgAAAAAAHTeSK8DAAAAAAAAAACLk7kxsamYCAAAAEC6oVKp1xEAKCAbEwEAAAAAAACgoLKKieubjZhfWMgpDQAAAAAAsFQoJgIAAAAAAABAQSXlaup5KyKmmvV8wgAAAAAAAEuGYiIAAAAAAAAAFFTWxsSIiFpzOockAAAAAADAUqKYCAAAAAAAAAAF1VYxsaGYCAAAAAAAdJZiIgAAAAAAAAAU1BbLyjE8lP7Rf61RzykNAAAAAACwVCgmAgAAAAAAAEBBlUqlSMrV1BkbEwEAAAAAgE5TTAQAAAAAAACAAksqY6nntaZiIgAAAAAA0FmKiQAAAAAAAABQYEk5o5jYqOeUBAAAAAAAWCoUEwEAAAAAAACgwJJKNfW81rAxEQAAAAAA6CzFRAAAAAAAAAAosKSSsTGxqZgIAAAAAAB0lmIiAAAAAAAAABRYUs4oJjbq0Wq1ckoDAAAAAAAsBYqJAAAAAAAAAFBgWRsT5xbmY3rDTE5pAAAAAACApUAxEQAAAAAAAAAKLKlUM2dqjekckgAAAAAAAEvFSK8DAAAAAAAAAACLl5TTNyZGPFdMfN346hzSAAAAAFA0Q6VeJwCgiGxMBAAAAAAAAIACGy+3szGxnkMSAAAAAABgqVBMBAAAAAAAAIACGxkejhXLK6kzteZ0TmkAAAAAAIClQDERAAAAAAAAAAouydiaWGsoJgIAAAAAAJ2jmAgAAAAAAAAABZdUxlLPa416TkkAAAAAAIClQDERAAAAAAAAAAous5jYtDERAAAAAADoHMVEAAAAAAAAACi4pFxNPa81FBMBAAAAAIDOUUwEAAAAAAAAgILL3JjYqOeUBAAAAAAAWAoUEwEAAAAAAACg4MYzNibWN8zE7NxcTmkAAAAAAIBBp5gIAAAAAAAAAAU3kbExMSKi1pzOIQkAAAAAALAUKCYCAAAAAAAAQMEl7RQTG/UckgAAAAAAAEuBYiIAAAAAAAAAFNx4pZo5Y2MiAAAAAADQKYqJAAAAAAAAAFBwlZFlsXx4JHWm1lBMBAAAAAAAOkMxEQAAAAAAAAAKrlQqRVIZS52pNeo5pQEAAAAAAAadYiIAAAAAAAAADIDxSjX1vNa0MREAAAAAAOgMxUQAAAAAAAAAGABJOWtjomIiAAAAAADQGYqJAAAAAAAAADAAJipZxcR6TkkAAAAAAIBBp5gIAAAAAAAAAANgvFJNPa81bUwEAAAAAAA6QzERAAAAAAAAAAZAUk7fmDjVrMfCwkJOaQAAAAAAgEGmmAgAAAAAAAAAA2Cikl5MbLVasX6mkVMaAAAAAABgkCkmAgAAAAAAAMAAGM8oJkZETDbrOSQBAAAAAAAGnWIiAAAAAAAAAAyAiXI1c6bWmM4hCQAAAAAAMOhGeh0AAAAAAAAAANh8K5ZXYqhUioVWa6MziokAAAAAvJyNVwAsht8fAAAAAAAAADAAhoaGYmXG1sRaUzERAAAAAADYfIqJAAAAAAAAADAgkvJY6nmtUc8pCQAAAAAAMMgUEwEAAAAAAABgQExUMjYmNmxMBAAAAAAANp9iIgAAAAAAAAAMiPFKxsbEpmIiAAAAAACw+RQTAQAAAAAAAGBAJOWMYmKjnlMSAAAAAABgkCkmAgAAAAAAAMCAmKhUU8+nGtPRarVySgMAAAAAAAwqxUQAAAAAAAAAGBDjlfSNiTPzc9GYm80pDQAAAAAAMKgUEwEAAAAAAABgQCTl9GJiREStUc8hCQAAAAAAMMgUEwEAAAAAAABgQExkbEyMiJhqTOeQBAAAAAAAGGSKiQAAAAAAAAAwIMYr1cyZScVEAAAAAABgMykmAgAAAAAAAMCAWDY8EtXR5akztaZiIgAAAAAAsHkUEwEAAAAAAABggExUxlLPpxr1nJIAAAAAAACDSjERAAAAAAAAAAbIeKWaej7ZsDERAAAAAADYPIqJAAAAAAAAADBAknL6xsRaUzERAAAAAADYPCO9DgAAAAAAAAAAdM5EJb2YONWo55QEAAAAgCIYKpV6HQGAArIxEQAAAAAAAAAGyHilmno+aWMiAAAAAACwmRQTAQAAAAAAAGCAJOX0jYnPzjRjbn4+pzQAAAAAAMAgUkwEAAAAAAAAgAEyUUkvJkZETDXrOSQBAAAAAAAGlWIiAAAAAAAAAAyQ8Uo1c2ayMZ1DEgAAAAAAYFApJgIAAAAAAADAAEna2JhYayomAgAAAAAAi6eYCAAAAAAAAAADZGx0eYwODafOTDXqOaUBAAAAAAAGkWIiAAAAAAAAAAyQUqkU45Vq6sxkw8ZEAAAAAABg8RQTAQAAAAAAAGDAJOWx1PNaUzERAAAAAABYPMVEAAAAAAAAABgwE5X0YuJUo55TEgAAAAAAYBApJgIAAAAAAADAgBmvVFPPJxs2JgIAAAAAAIunmAgAAAAAAAAAAyYpp29MrDUVEwEAAAAAgMVTTAQAAAAAAACAATNRSS8mTjXrsdBq5ZQGAAAAAAAYNIqJAAAAAAAAADBgxivV1PP5hYV4dqaZUxoAAAAAAGDQjPQ6AAAAAAAAAADQWUnGxsSIiFpzOlaWKzmkAQAAAKCfDUWp1xEAKCAbEwEAAAAAAABgwEyUs4uJU43pHJIAAAAAAACDSDERAAAAAAAAAAbMynI183vuJxv1XLIAAAAAAACDRzERAAAAAAAAAAbM8NBQrChXUmdqTRsTAQAAAACAxVFMBAAAAAAAAIABNFEeSz2faigmAgAAAAAAi6OYCAAAAAAAAAADaLySXkycbNRzSgIAAAAAAAwaxUQAAAAAAAAAGEBJpZp6XmvamAgAAAAAACyOYiIAAAAAAAAADKCknL4xcaqhmAgAAAAAACyOYiIAAAAAAAAADKCkkl5MrDXqOSUBAAAAAAAGjWIiAAAAAAAAAAygrGJiY242mnMbckoDAAAAAAAMEsVEAAAAAAAAABhASbmaOTPVmM4hCQAAAAAAMGgUEwEAAAAAAABgAGVtTIyImFRMBAAAAAAAFkExEQAAAAAAAAAGUDvFxFqznkMSAAAAAABg0CgmAgAAAAAAAMAAKo+MRmVkWerMlI2JAAAAAADAIoz0OgAAAAAAAAAA0B3jlWo01s9u9HxSMREAAABgyRsq9ToBAEVkYyIAAAAAAAAADKikMpZ6XmsqJgIAAAAAAJtOMREAAAAAAAAABlRSTi8mTjXqOSUBAAAAAAAGiWIiAAAAAAAAAAyopFJNPa81bEwEAAAAAAA2nWIiAAAAAAAAAAyopJK+MXGyqZgIAAAAAABsOsVEAAAAAAAAABhQSTm9mLi+2Yj5hYWc0gAAAAAAAINCMREAAAAAAAAABlRSqaaetyLimWY9nzAAAAAAAMDAUEwEAAAAAAAAgAGVVNI3JkZETDanc0gCAAAAAAAMEsVEAAAAAAAAABhQSTm7mDjVsDERAAAAAADYNIqJAAAAAAAAADCgtlhejuFS+v81oNawMREAAAAAANg0iokAAAAAAAAAMKCGSqUYr1RTZyYVEwEAAAAAgE2kmAgAAAAAAAAAAywpj6WeTzXrOSUBAAAAAAAGhWIiAAAAAAAAAAywJGNjYs3GRAAAAAAAYBMpJgIAAAAAAADAAEsq6RsTJxUTAQAAAACATaSYCAAAAAAAAAADLCmnFxOnmvWckgAAAAAAAINipNcBAAAAAAAAAIDuSSrV1PNaYzparVaUSqWcEgEAAADQT4b870IALIKNiQAAAAAAAAAwwJJK+sbEDQvzMb1hJqc0AAAAAADAIFBMBAAAAAAAAIABlpTTi4kREVONeg5JAAAAAACAQaGYCAAAAAAAAAADLKlUM2dqjekckgAAAAAAAINCMREAAAAAAAAABlg7GxMnFRMBAAAAAIBNoJgIAAAAAAAAAANsZHg4tlheTp2ZatZzSgMAAAAAAAwCxUQAAAAAAAAAGHBZWxNrNiYCAAAAAACbQDERAAAAAAAAAAZcUqmmnk8qJgIAAAAAAJtAMREAAAAAAAAABlzWxsSppmIiAAAAAADQPsVEAAAAAAAAABhwSSW9mFhr1HNKAgAAAAAADALFRAAAAAAAAAAYcEmlmno+2bAxEQAAAAAAaJ9iIgAAAAAAAAAMuKScvjGxvmEmZufnckoDAAAAAAAUnWIiAAAAAAAAAAy4pJJeTIyImGrUc0gCAAAAAAAMAsVEAAAAAAAAABhw7RQTJxvTOSQBAAAAAAAGgWIiAAAAAAAAAAy4pFLNnJlqKiYCAAAAAADtUUwEAAAAAAAAgAFXGVkWy4ZHUmdqNiYCAAAAAABtUkwEAAAAAAAAgAFXKpUiqYylzkw26jmlAQAAAAAAik4xEQAAAAAAAACWgKRSTT2fatqYCAAAAAAAtEcxEQAAAAAAAACWgKScvjGx1lBMBAAAAAAA2qOYCAAAAAAAAABLQFJJLyZONuo5JQEAAAAAAIpOMREAAAAAAAAAloCkUk09n2ramAgAAAAAALRHMREAAAAAAAAAloCknL4xcapZj4WFhZzSAAAAAAAARTbS6wAAAAAAAAAAQPcllfRi4kKrFetnGjGeMQcAAADAYLHxCoDF8PsDAAAAAAAAAJaArGJiREStWc8hCQAAAAAAUHSKiQAAAAAAAACwBCTlauZMrTGdQxIAAAAAAKDoFBMBAAAAAAAAYAlYubwSpVIpdWZSMREAAAAAAGiDYiIAAAAAAAAALAFDQ0MxnrE1capZzykNAAAAAABQZIqJAAAAAAAAALBEJBnFxJqNiQAAAAAAQBsUEwEAAAAAAABgiUgqY6nnk4qJAAAAAABAGxQTAQAAAAAAAGCJyComTjXrOSUBAAAAAACKTDERAAAAAAAAAJaIpFxNPa/ZmAgAAAAAALRBMREAAAAAAAAAloisjYm1xnS0Wq2c0gAAAAAAAEWlmAgAAAAAAAAAS0RWMXFmfi6acxtySgMAAAAAABSVYiIAAAAAAAAALBFJuZo5U2tM55AEAAAAAAAoMsVEAAAAAAAAAFgisjYmRigmAgAAAAAA2RQTAQAAAAAAAGCJSMptFBOb9RySAAAAAAAARTbS6wAAAAAAAAAAQD6WjYxEdXRZ1DfMbnTGxkQAAACApWWoVOp1BAAKyMZEAAAAAAAAAFhCkkr61kTFRAAAAAAAIItiIgAAAAAAAAAsIZnFxGY9pyQAAAAAAEBRKSYCAAAAAAAAwBKSlKup5zYmAgAAAAAAWRQTAQAAAAAAAGAJydyYqJgIAAAAAABkUEwEAAAAAAAAgCUks5jYrOeUBAAAAAAAKCrFRAAAAAAAAABYQpJyejFx/Uwj5ubnc0oDAAAAAAAUkWIiAAAAAAAAACwhSaWaOTNlayIAAAAAAJBCMREAAAAAAAAAlpCkkr4xMSKi1pzOIQkAAAAAAFBUiokAAAAAAAAAsIQk5TaKiQ0bEwEAAAAAgI1TTAQAAAAAAACAJWRs2fIYHRpOnbExEQAAAAAASKOYCAAAAAAAAABLSKlUivFKNXWm1lBMBAAAAAAANk4xEQAAAAAAAACWmKQ8lnqumAgAAAAAAKRRTAQAAAAAAACAJSapZBQTm/WckgAAAAAAAEU00usAAAAAAAAAAEC+kko19dzGRAAAAIClYyhKvY4AQAHZmAgAAAAAAAAAS0xSztiYqJgIAAAAAACkUEwEAAAAAAAAgCUmqWQUE5v1aLVaOaUBAAAAAACKRjERAAAA4P9j776jrKrP9uHfU5kCzNBEQSkqiqIYQQEFYzcxsRsTW+wl8TGx5vVJNIka0+yaGJNorLEkaixRY40VFbGiUYoiCgjSZoYynTnvH/408YnO2QNzzpny+aw1y7XY997fa3AzZxj2db4AAADQzVSWlrV6fHVLS6xsrM9SGgAAAAAAoLNRTAQAAAAAAACAbqaypPUdEyMiqutWZSEJAAAAAADQGSkmAgAAAAAAAEA3U1maoJhYX5uFJAAAAAAAQGekmAgAAAAAAAAA3UzvktLISzNjx0QAAAAAAOCLKCYCAAAAAAAAQDdTmF8QvXqUtjqjmAgAAAAAAHwRxUQAAAAAAAAA6IYqS8tbPV5dV5ulJAAAAAAAQGejmAgAAAAAAAAA3VDaYmK9HRMBAAAAAIDPp5gIAAAAAAAAAN1QZUlZq8er6xQTAQAAAACAz6eYCAAAAAAAAADdUPodE2uzlAQAAAAAAOhsFBMBAAAAAAAAoBtKW0y0YyIAAAAAAPAFFBMBAAAAAAAAoBuqLClr9XhdU2M0NDdlKQ0AAAAAANCZKCYCAAAAAAAAQDeUbsfEiIjq+tosJAEAAAAAADqbwlwHAAAAAAAAAACyL1ExsW5VDOxZkYU0AAAAAORKfl6uEwDQGdkxEQAAAAAAAAC6ocqSsrQz1XWrspAEAAAAAADobBQTAQAAAAAAAKAbKikqjpLColZnqutqs5QGAAAAAADoTBQTAQAAAAAAAKCbqiwtb/V4db0dEwEAAAAAgP+mmAgAAAAAAAAA3VRlSVmrx6vrFBMBAAAAAID/ppgIAAAAAAAAAN1U2h0TFRMBAAAAAIDPoZgIAAAAAAAAAN1U2mJifW2WkgAAAAAAAJ2JYiIAAAAAAAAAdFOVJWWtHrdjIgAAAAAA8HkUEwEAAAAAAACgm0q3Y+LyhrpoaWnJUhoAAAAAAKCzUEwEAAAAAAAAgG4qXTExlUpFTUNdltIAAAAAAACdhWIiAAAAAAAAAHRTlSVlaWeq61ZlIQkAAAAAANCZKCYCAAAAAAAAQDeVbsfECMVEAAAAAADgvykmAgAAAAAAAEA31bNHaRTktf7oQHW9YiIAAAAAAPBZiokAAAAAAAAA0E3l5+VFRUlZqzPVdbVZSgMAAAAAAHQWiokAAAAAAAAA0I1VlqYrJtoxEQAAAAAA+CzFRAAAAAAAAADoxipLy1s9Xl2vmAgAAAAAAHyWYiIAAAAAAAAAdGMVJWmKiXW1WUoCAAAAAAB0FoqJAAAAAAAAANCN9Skta/V4dZ0dEwEAAAAAgM9STAQAAAAAAACAbqyyNM2OifWrIpVKZSkNAAAAAADQGSgmAgAAAAAAAEA3VlHSejGxafXqqG1qzFIaAAAAAACgM1BMBAAAAAAAAIBurE+aHRMjIqrrVmUhCQAAAAAA0FkoJgIAAAAAAABAN1ZZWpZ2prpeMREAAAAAAPi3wlwHAAAAAAAAAAByp6IkQTHRjokAAAAAXVZ+5OU6AgCdkB0TAQAAAAAAAKAbKyoojJ7FJa3OVNfVZikNAAAAAADQGSgmAgAAAAAAAEA3V1la3urx6no7JgIAAAAAAP+mmAgAAAAAAAAA3VxFSVmrx6vrFBMBAAAAAIB/U0wEAAAAAAAAgG6uT7odE+tqs5QEAAAAAADoDBQTAQAAAAAAAKCbq0xXTKy3YyIAAAAAAPBviokAAAAAAAAA0M1VlJS1ery6TjERAAAAAAD4N8VEAAAAAAAAAOjm+qTZMXFVY0M0rW7OUhoAAAAAAKCjU0wEAAAAAAAAgG6uMk0xMSKiur42C0kAAAAAAIDOQDERAAAAAAAAALq5ipKytDPVdauykAQAAAAAAOgMFBMBAAAAAAAAoJvrk2THxDo7JgIAAAAAAB9TTAQAAAAAAACAbq60qDiKCwpbnamut2MiAAAAAADwMcVEAAAAAAAAAOjm8vLyoqKkrNWZ6jrFRAAAAAAA4GOKiQAAAAAAAABA9Cktb/V4dV1tlpIAAAAAAAAdXWGuAwAAAAAAAAAAuVeZtphox0QAAACArig/Ly/XEQDohOyYCAAAAAAAAABERUlZq8er6xUTAQAAAACAjykmAgAAAAAAAADRJ82OiTV1tVlKAgAAAAAAdHSKiQAAAAAAAABAVKYrJtbXRksqlaU0AAAAAABAR6aYCAAAAAAAAABERUlZq8dXp1piRUNdltIAAAAAAAAdmWIiAAAAAAAAABB90uyYGBFRU7cqC0kAAAAAAICOTjERAAAAAAAAAIjKBMXEqrraLCQBAAAAAAA6OsVEAAAAAAAAACB69yiNvLy8Vmeq6+2YCAAAAAAAKCYCAAAAAAAAABGRn58fFT1KW52pqVNMBAAAAAAAFBMBAAAAAAAAgP+nsrS81eNVdbVZSgIAAAAAAHRkiokAAAAAAAAAQEREVJSUtXq8ut6OiQAAAAAAgGIiAAAAAAAAAPD/9EmzY2JNnWIiAAAAAACgmAgAAAAAAAAA/D+VaYqJVYqJAAAAAABAKCYCAAAAAAAAAP9PRUnrxcTq+tosJQEAAAAAADqywlwHAAAAAAAAAAA6hj6lZa0eb2huivqmxigpKs5SIgAAAAAyLT/ych0BgE7IjokAAAAAAAAAQEREVJa2vmNiRERV3aosJAEAAAAAADoyxUQAAAAAAAAAICIiKhIUE6vra7OQBAAAAAAA6MgUEwEAAAAAAACAiIjoU5K+mFhjx0QAAAAAAOj2FBMBAAAAAAAAgIiIKC4sjLKi4lZnqhQTAQAAAACg21NMBAAAAAAAAAA+VVHa+q6J1fWKiQAAAAAA0N0pJgIAAAAAAAAAn+pT0noxsaauNktJAAAAAACAjkoxEQAAAAAAAAD4VGVpWavHq+rsmAgAAAAAAN2dYiIAAAAAAAAA8KmKNDsmVtcrJgIAAAAAQHenmAgAAAAAAAAAfKqytPViYk1dbZaSAAAAAAAAHZViIgAAAAAAAADwqT5pionLG+qiuWV1ltIAAAAAAAAdkWIiAAAAAAAAAPCpitKytDM19XZNBAAAAACA7kwxEQAAAAAAAAD4VJ+S1ndMjIioqVNMBAAAAACA7kwxEQAAAAAAAAD4VGVp+mJiVd2qLCQBAAAAAAA6KsVEAAAAAAAAAOBT5cU9ojC/oNWZ6nrFRAAAAAAA6M4Kcx0AAAAAAAAAAOg48vLyorKkLJbUrvjCmZq62iwmAgAAACCT8vPych0BgE7IjokAAAAAAAAAwGdUlpa3eryqzo6JAAAAAADQnSkmAgAAAAAAAACfUVFa1urx6nrFRAAAAAAA6M4UEwEAAAAAAACAz6gsaX3HxJq62iwlAQAAAAAAOiLFRAAAAAAAAADgM/qUtl5MrK6zYyIAAAAAAHRniokAAAAAAAAAwGdUlJa1ery6vjZSqVSW0gAAAAAAAB2NYiIAAAAAAAAA8BmVJa3vmNjcsjpWNTZkKQ0AAAAAANDRKCYCAAAAAAAAAJ/Rp7T1YmJERHXdqiwkAQAAAAAAOiLFRAAAAAAAAADgMypKy9LOVNUrJgIAAAAAQHelmAgAAAAAAAAAfEZFSVnkpZmpqavNShYAAAAAAKDjUUwEAAAAAAAAAD6jML8gevUobXWmqs6OiQAAAAAA0F0pJgIAAAAAAAAA/6WitKzV49WKiQAAAAAA0G0pJgIAAAAAAAAA/6WypLzV4zX1iokAAAAAANBdFeY6AECuzZ07Nx5++OGYNm1avPXWW/Hee+/FihUrYvny5ZFKpaJXr17Rq1evGDJkSGy++eax5ZZbxu677x4jRozIdfROZdGiRTF58uRPf5/nzZsXCxYsiKqqqqivr4/GxsYoKiqKkpKSqKioiHXXXTcGDx4cm222WWy55ZYxceLE2GCDDXL9aQAAAAAAAHQbfUpbLyZW19VmKQkAAAAAANDRKCYC3VJ1dXVce+21cfPNN8e0adNanV26dGksXbo05syZE08//fSnvz5ixIg49NBD47vf/W4MHDgw05E7pZkzZ8att94ad911V7z55ptp5xsaGqKhoSFqamrigw8+iIiIu++++9PjG2+8cey3335x6KGHxtZbb52x3AAAAAAAAERUlJa1erzKjokAAAAAANBt5ec6AEA2rVy5Ms4666xYf/314wc/+EHaUmJrZs2aFeedd14MGTIkTjjhhFiyZEk7Ju3cnn766dhzzz1j0003jfPOOy9RKTGJd955Jy6++OIYM2ZMTJw4Mf7+97+3y3UBAAAAAAD4b5Ulre+YWFOnmAgAAAAAAN2VYiLQbdx3332x2WabxYUXXhirVrXfP5I2NjbGNddcE5tuumlcf/317Xbdzmju3LnxjW98I3bcccd46KGHMrrWc889F/vss0/stttuMX369IyuBQAAAAAA0B31KW29mFjb1BiNzc1ZSgMAAAAAAHQkiolAl9fS0hLnnHNO7LfffjFv3ryMrbNs2bI45phj4oQTTojGxsaMrdNR3XPPPbHVVlvFXXfdldV1H3/88Rg7dmxcd911WV0XAAAAAACgq6tIU0yMiKiqt2siAAAAAAB0R4qJQJe2evXqOPjgg+PnP/95pFKprKx5zTXXxB577BG1tbVZWa8juPTSS+OAAw6IqqqqnKxfW1sbxx57bJx11lk5WR8AAAAAAKArqiwpSztTU6eYCAAAAAAA3ZFiItBltbS0xFFHHRV33HFH1td+6qmnYv/994+Ghoasr51tF110UZxxxhlZK3625sILL4zTTz891zEAAAAAAAC6hD4JdkysVkwEAAAAAIBuqTDXAQAy5eyzz44///nPbTpnxIgRMXHixNhiiy2ib9++kZeXF1VVVfH222/H888/H2+++Wbiaz3yyCNx/PHHx0033dTW6J3G3/72tzXapbCgoCBGjx4d2223XQwaNCj69OkTvXv3jhUrVkRVVVUsXLgwXnjhhXjttdeiqampTde+7LLLYuONN46TTjqpzbkAAAAAAAD4t5Ki4uhRWBQNzV/87zVVdbVZTAQAAAAAAHQUiolAl/SPf/wjfv3rXyee33fffeNHP/pRjBs3rtW5N998My666KL485//HC0tLWmve/PNN8eOO+4Yxx57bOIsncWCBQvi+OOPb9NOiVtssUWceuqp8a1vfSt69uyZdr6uri7uvPPOuPzyy+OVV15JvM4ZZ5wRu+yyS4wcOTLxOQAAAAAAAPy3ypKy+GhlzRcer6m3YyIAAABAZ5cfebmOAEAnlJ/rAADtbenSpXHEEUckKsz17ds3HnjggbjnnnvSlhIjPi7W3XjjjTF58uTYYIMNEuX53ve+F++8806i2c7kBz/4QSxbtizRbHl5efzpT3+KN954I4499thEpcSIiNLS0vj2t78dL7/8ctx+++1RUVGR6Lz6+vr4n//5n0SzAAAAAAAAfLE+peWtHq+uU0wEAAAAAIDuSDER6HLOPvvsWLJkSdq59ddfP1588cX42te+1uY1JkyYEC+99FJsvvnmaWfr6uritNNOa/MaHdlbb70Vt912W6LZDTbYIF566aU45phj1mrNb33rW/H6668n3gXxn//8ZzzxxBNrtSYAAAAAAEB3V5GmmFilmAgAAAAAAN2SYiLQpbz66qtxzTXXpJ2rqKiIxx57LDbaaKM1XmudddaJxx9/PNZff/20s/fff388+OCDa7xWR/P73/8+Wlpa0s717t07HnjggcRlwnSGDh0a//jHP2LgwIGJ5n/3u9+1y7oAAAAAAADdVWVJ68XEmvraLCUBAAAAAAA6EsVEoEs577zzEhXmrrnmmth0003Xer111103br311igoKEg7+9Of/nSt1+sIWlpaEu+W+Jvf/Ca23HLLdl1/2LBhcfPNNyea/fvf/x7Lly9v1/UBAAAAAAC6kz6lZa0er7ZjIgAAAAAAdEuKiUCXMWPGjLjvvvvSzu27775x0EEHtdu6O+ywQ5x44olp51566aX45z//2W7r5srrr78eS5YsSTs3atSoOPzwwzOSYffdd49dd9017VxDQ0M888wzGckAAAAAAADQHVSUptkxsaEu0RuHAgAAAAAAXYtiItBlXHrppZFKpVqdKSwsjIsvvrjd1z7//POjd+/eaecuueSSdl8721544YVEc6ecckrk52fuZebMM89MNPfcc89lLAMAAAAAAEBXV1nSejExlUrF8oa6LKUBAAAAAAA6CsVEoEtoaGiIv/zlL2nnDjzwwNh4443bff1+/frFcccdl3bu4Ycfjo8++qjd18+mGTNmJJr76le/mtEcO+64Y5SUlKSdmzlzZkZzAAAAAAAAdGV9SsvSzlTXrcpCEgAAAAAAoCNRTAS6hPvvvz9qamrSzp166qkZy/D9738/7Q6Bq1evjttvvz1jGbJh3rx5aWc23HDD2GCDDTKao7S0NLbbbru0cx988EFGcwAAAAAAAHRlFaWt75gYEVGlmAgAAAAAAN2OYiLQJdx2221pZzbeeOOYMGFCxjIMHTo0dthhh7RzSbJ2ZCtXrkw7s/7662chScTgwYPTzqxYsSILSQAAAAAAALqmXj1KoyCv9UcLauprs5QGAAAAAADoKBQTgU5v9erV8dhjj6Wd+9a3vpXxLAcffHDamalTp8bSpUszniVTWlpa0s70798/C0kiBgwYkHamqakpC0kAAAAAAAC6pvy8vKgoKWt1ptqOiQAAAAAA0O0oJgKd3osvvhg1NTVp5/bcc8+MZ0myRktLSzz++OMZz5Ipffr0STtTXFychSQRPXr0SDvTt2/fLCQBAAAAAADouipKWy8mVikmAgAAAABAt6OYCHR6SUp+vXr1ivHjx2c8y9ChQ2PjjTdOO/foo49mPEum9OvXL+3MkiVLspAkYvHixWlnFBMBAAAAAADWTmVJeavHa+prs5QEAAAAAADoKBQTgU7v+eefTzszfvz4KCwszEKaiB122CHtzJQpU7KQJDM22mijtDNJCoPtYdGiRWlnhgwZkoUkAAAAAAAAXVdlaevFxGo7JgIAAAAAQLejmAh0eq+++mramTFjxmQhycfGjh2bdubtt9+OhoaGLKRpf5MmTUo78/bbb8eqVZn9B+hUKhVTp05NOzdx4sSM5gAAAAAAAOjqKkvLWj1epZgIAAAAAADdjmIi0Kl99NFHsWDBgrRzHa2Y2NzcHG+88UYW0rS/MWPGRHl56++K29jYGE888URGc0ybNi0WLlyYdi7JDpYAAAAAAAB8sXQ7JtbU10YqlcpSGgAAAADaW35eno8sfgB0FYqJQKc2bdq0RHMjR47McJJ/23TTTRPNJc3e0RQVFcUhhxySdu6mm27KaI4bb7wx7cy4ceNi+PDhGc0BAAAAAADQ1VWWpHnTytXNUdfUmKU0AAAAAABAR6CYCHRqs2fPTjS38cYbZzjJv/Xp0yf69u2bdi5p9o7o+9//ftqZO++8M1577bWMrD937tz43e9+l3bulFNOycj6AAAAAAAA3UllaVnamaq6VVlIAgAAAAAAdBSKiUCn9t5776WdWXfddaO8vPV3cW1vSYqQSbJ3VFtuuWUccMABrc6kUqk44YQToq6url3Xbm5ujuOPPz4aGhpandt4443joIMOate1AQAAAAAAuqPK0vT/1lZTX5uFJAAAAAAAQEehmAh0anPmzEk7M2jQoMwH+T/WW2+9tDOduZgYEfG73/0u+vXr1+rM1KlT47DDDovVq1e3y5qpVCq++93vxsMPP9zqXH5+flx33XVRVFTULusCAAAAAAB0Z5Ul6XdMrLZjIgAAAAAAdCuKiUCnNn/+/LQz6667bhaStH3NefPmZSFJ5gwcODD+9Kc/RUFBQatzd999d+yyyy5r/fkuWrQovv71r8e1116bdvaMM86IHXbYYa3WAwAAAAAA4GNFBYVRXtyj1ZkqxUQAAAAAAOhWFBOBTm3p0qVpZwYOHJiFJJ+VpJi4bNmyLCTJrH333Tf+9Kc/RV5eXqtzTz/9dGy11Vbx85//PJYsWdKmNaqrq+Oiiy6KLbfcMv7xj3+knf/2t78dv/71r9u0BgAAAAAAAK2rLC1v9XhNfW2WkgAAAAAAAB1BYa4DAKyNJMXEysrKzAdZgzVXrVoVDQ0N0aNH6+8u29EdeeSRkZ+fH9/5zneitvaL/8F52bJlcc4558TPf/7z2GOPPWLixIkxYcKEGDx4cPTp0yd69eoVK1eujKqqqliwYEFMmTIlJk+eHA899FCsWpXsHXaPOOKIuO6669IWJemeUqlUrF69OlpaWiKVSuU6DgAAAAAJ5eXlRX5+fhQUFPjZH0AOVZaUx/yaL37jzWo7JgIAAAAAQLeimAh0alVVVWlnevXqlYUka7bmsmXLYr311stwmsz79re/Hdtuu20ccsgh8dprr7U6W1dXF/fee2/ce++97bZ+eXl5XHnllXHMMce02zXpvFKpVNTX10ddXV00NTVFY2NjNDY2RlNTk0IiAAAAQCeWl5cXRUVFUVxcHMXFxVFUVBSlpaVRUlKisAiQBZWlZa0er1JMBAAAAACAbkUxEei0PikdpZOLYmLv3r0TzdXU1HSJYmJExMiRI2Pq1Klx0003xc9//vOYPXt2xtcsKCiIQw45JM4999zYaKONMr4eHdcnZcQVK1bE8uXLE31tAAAAAKBzSaVSn74J1X8qKiqK3r17R69evZQUATKosrS81eM19bVZSgIAAAAAAHQEiolAp/V/Hz75IqWlpRlO8t9KSkoSzSX9HDqLwsLCOOaYY+KII46Ie++9N+6888548MEHY/ny5e26zuDBg+OAAw6Ik08+OTbZZJN2vTadSyqViuXLl8fixYuVEQEAAAC6qaampli6dGksXbo0ioqKYsCAAdG7d28FRYB2VlnSejGx2o6JAAAAAADQrSgmAp1W0lJfQUFBhpP8t8LCZF9eu1ox8ROFhYXxla98JVKpVLS0tMQdd9wRqVSqXa799a9/PX7xi1/E6NGj2+V6XdGkSZMS34Od2TrrrBNf//rXY9iwYbmO8rlGjRqV6wgAAAAA3U5TU1N8+OGHUV1dHeuuu2706NEj15EAuozK0rJWj69srI+m1c1RVND1/40CAAAAAABQTAQ6saSlvlwUtJKu2RV3eHvzzTfjl7/8Zdx1113R0NDQ7td/4IEH4oEHHohhw4bFwQcfHKecckqsu+667b4OHVdBQUHsvvvuMX78+MjPz//CucLCwigpKYmioqJPPwoLCyM/P9+75QMAAAB0cbW1tTF79uzo27dvDBgwoNWfIwGQTGVp6zsmRkTU1NdG//LeWUgDAAAAAADkmmIi0Gk1NzcnmlNMzI7Zs2fHGWecEffee2+77Y7Ymjlz5sSvfvWruPzyy+Poo4+Oc845JwYNGpTxdTuDZ599NgYMGJDrGBnR0tIS8+fPj5UrV+Y6CgAAAACdwLJly6KxsTEGDx6snAiwlipL0hcTq+sUEwEAAAAAoLvwL7BAp5W0/Ld69eoMJ1nzNXNRmsyEm266Kb70pS/FPffck5VS4n+qr6+Pq6++OrbYYov461//mtW1yS6lRAAAAADWxMqVK2P+/PnR0tKS6ygAnVqSHROr6lZlIQkAAAAA7S0/8nxk8QOgq+gajRigWyouLk40l3RnxfaUdCfEpJ9DR9XS0hLHH398XHfddW06r6CgILbeeusYN25crLPOOtG3b9+orKyMlStXxrJly2LZsmXx2muvxQsvvBC1tbWJrllVVRXf+ta34qGHHoo//vGPXab0yceUEgEAAABYG5+UE+2cCLDmyoqKo6igIJpaeYPOmnrFRAAAAAAA6C60NoBOq6ioKNFcLoqJSdfszMXEVCoVxx13XFx//fWJz9lxxx3jtNNOi1133TV69uyZdr6pqSmmTp0aV111Vfz1r39N9Pt6/fXXx6pVq+LWW2+NgoKCxNno2BYvXrxGpcSCgoIoKSmJ4uLiTz8KCgoiLy8v8vK84wwAAABAR5dKpSKVSsXq1aujsbHx04/6+vpY3Uox5vOsXLkyFi9eHAMHDsxQWoCuLS8vLypLymPxquVfOFNtx0QAAAAAAOg2FBOBTqtHjx6J5urr6zOcZM3X7MzFxNNPPz1xKXGrrbaKP/7xjzFu3Lg2rVFUVBTbb799bL/99vHLX/4yzjjjjLjzzjvTnvfXv/41CgsL45ZbbmnTenRM9fX1sWzZssTzBQUF0bt37+jVq1eUlZUpIAIAAAB0QalUKmpra2PFihWxfPnyxCXFZcuWRWVlZeKfLwPwWZWlrRcTq+pqs5gGAAAAAADIJcVEoE3ee++9mDJlSkbXKC8vj7333jvtXGlpaRQWFqbdRW/FihXtFS2xpGv27t07w0ky49FHH43LL7880ewJJ5wQV1xxRZSUlKzVmkOGDIk77rgjfvvb38aZZ54ZDQ0Nrc7feuutsfPOO8dxxx23VuuSW6lUKj766KPE83379o3+/fvbLRMAAACgi8vLy4vy8vIoLy+PAQMGxJIlSxK/udXChQtjyJAh3tAKYA1Ulpa1erym3o6JAAAAAADQXSgmAm3y1FNPxdFHH53RNYYOHZqomBgR0adPn1i8eHGrM8uXf/G7tmZK0jX79u2b4STtr6amJo455phEs2eeeWZcdNFF7br+ySefHIMHD44DDzwwUqlUq7Onn3567LbbbjFs2LB2zUD2LF++PGpr07+7cmFhYWywwQZrXYAFAAAAoPMpKCiIgQMHRkVFRcydOzftm9nV1tbG8uXLo6KiIksJAbqOypLyVo9X1ykmAgAAAABAd5Gf6wAAa6Nfv35pZ2pqarKQpO1rlpWVdcoS1W9+85uYN29e2rl99903fv3rX2ckw/7775/o2itWrIj//d//zUgGMi+VSqUtHkd8XEocMmRIp/zzBAAAAED7KSkpiSFDhkRhYfr35Vy8eHHaNz4D4L9VlqYrJqZ/s0EAAAAAAKBrUEwEOrUkxcSPPvooC0k+a+HChWlnkmTvaJqamuJ3v/td2rlevXrFn/70p8jPz9zLzA9+8IMYP3582rm77ror5s6dm7EcZE59fX00NTWlndtggw2iR48eWUgEAAAAQEfXo0eP2GCDDdLONTU1RX19fRYSAXQtlaVlrR6vqa+NFsVvAAAAAADoFhQTgU5t8ODBaWeSlATbW5I1k2TvaO68885YsGBB2rlTTz01K8XLCy64IO1Mc3Nz/Pa3v814FtrfihUr0s707dvXTokAAAAAfEZJSUn06dMn7VySnz8B8FmVJa3vmLg61RIrG+qylAYAAAAAAMglxUSgUxs2bFjamQ8//DDzQf6PJOW94cOHZyFJ+3rooYfSzhQWFsZpp52WhTQRu+22W2y99dZp5+67774spKE9pVKpWL58easzBQUF0b9//ywlAgAAAKAzGTBgQBQUFLQ6s3z58kjZ1QugTSpLWy8mRkRU163KQhIAAAAAACDXFBOBTi1JuW/hwoVRW1ubhTT/9s4776Sd6YzFxGeeeSbtzPjx4xO9G3l7+epXv5p2Zvr06bF48eIspKG91NfXR1NTU6szvXv3TvtwGQAAAADdU0FBQfTu3bvVmaampqivr89SIoCuIVExsT67/y4HAAAAAADkhmIi0KltuOGGaWdSqVSiomB7qa6ujqVLl6adS5K9I1m4cGG89957aef22GOPLKRp+3rPPvtshpPQnurq6tLO9OrVKwtJAAAAAOiskvz8KMnPoQD4t4oepZGXl9fqjB0TAQAAAACge1BMBNrkqKOOilQqldGPOXPmJM6z5ZZbJpqbPn36Gn7GbZd0raTZO4p58+Ylmttiiy0ynGTN1nv//fcznIT2lG63xIKCgigrK8tSGgAAAAA6o7KysigoKGh1Jt3PoQD4rPz8/Ojdo7TVGcVEAAAAAADoHhQTgU5tvfXWi4EDB6ade+WVV7KQJvlahYWFMXr06CykaT9JdoGMiOjfv3+Gk3xW3759Iz8//ctZ0vx0DI2Nja0eLykpSfuOzAAAAAB0b3l5eVFSUtLqTLqfQwHw3ypLy1s9Xl1fm6UkAAAAAABALikmAp3emDFj0s5ks5j48ssvp50ZOXJk2gdiOpply5Ylmst2MTE/Pz/69u2bdk4xsXNJ90BYcXFxlpIAAAAA0Jml+zmSYiJA21WWlLV63I6JAAAAAADQPRTmOgDA2tpuu+3iH//4R6szL7zwQjQ3N0dhYea/7D399NNpZ8aPH5/xHO0tlUolmsvFLnZJ1mxubs5CEtpDKpVSTAQAAACgXaT7OVJTU1OkUqmc/FwToLNKu2OiYiIAAABAp5Pv5+QArAE7JgKd3q677pp2ZsWKFfHiiy9mPMsHH3wQ77zzTtq53XffPeNZ2ltZWevvfvuJJUuWZDjJZ7W0tCTaDTFpfnJv9erVaWcUEwEAAABIIt3PkVKpVKKfRwHwb2mLifW1WUoCAAAAAADkkmIi0OmNGzcuevfunXYu3a6K7SHJGnl5eYnKlB1NRUVFornFixdnOMlnLVu2LFpaWtLOJblH6BiS/P8sKCjIQhIAAAAAOrskP0dKpVJZSALQdVSW2DERAAAAAABQTAS6gMLCwkRFv7/85S8Zz3L77benndlmm22if//+Gc/S3oYMGZJo7l//+leGk3zWG2+8kWguaX5yL8mDYHl5eVlIAgAAAEBnl+TnSEneKAuAf6ssLWv1eH1zU9Q3NWYpDQAAAAAAkCuKiUCXcMghh6SdmTVrVkyZMiVjGT744IN4+umn084lydoRDRkyJAoLC9POPfLII1lI828PP/xwornhw4dnOAnZpJgIAAAAQBJ+jgTQ/ipLW98xMSKiur42C0kAAAAAAIBcUkwEuoS99947evfunXbu8ssvz1iGK6+8Mu07a+fn58fBBx+csQyZVFRUFFtuuWXauRdeeCGqq6szH+j/eeihh9LO5OXlxZgxY7KQBgAAAAAAoGurLGl9x8SIiOq6VVlIAgAAAAAA5JJiItAllJSUxDe/+c20c3feeWe888477b7+0qVL45prrkk7t8cee8R6663X7utny3bbbZd2prm5OS677LIspIn4xz/+Ea+//nrauZEjR0afPn2ykAgAAAAAAKBrS7RjomIiAAAAAAB0eYqJQJdx+umnR15eXqszzc3NceaZZ7b72j/5yU9i+fLlaefOOOOMdl87m77+9a8nmrv88stj2bJlGc2SSqXinHPOSTS75557ZjQLAAAAAABAd9GjsChKi4pbnamur81SGgAAAAAAIFcUE4EuY7PNNou99tor7dy9994bd9xxR7ut++yzz8Yf/vCHtHNjxoyJ3Xbbrd3WjYiYM2dO5OXlpf3Yaaed2mW93XffPdHOg8uXL49jjz02Wlpa2mXdz/Ozn/0sXnnllUSzSXbTBAAAAAAAIJnKkrJWj9sxEQAAAAAAuj7FRKBL+elPfxr5+em/tB1//PExc+bMtV5v4cKFceihh8bq1avTzp577rlrvV6uFRUVxXHHHZdo9p577omzzjorIzluv/32xL+fW2+9dYwfPz4jOQAAAAAAALqjytLyVo8rJgIAAAAAQNenmAh0KWPHjo1jjjkm7VxNTU3suuuuMXv27DVea/HixbHbbrvF3Llz087uueeesffee6/xWh3JqaeeGj169Eg0e/HFF8d3v/vdaGhoaLf1L7300jjiiCMilUolmv/f//3fdlsbAAAAAACABMXE+tosJQEAAAAAAHJFMRHocn7xi19Ev3790s7Nmzcvxo0bF//4xz/avMaUKVNim222iX/9619pZ0tKSuKKK65o8xod1aBBg9q0E+Lvf//7mDBhQkydOnWt1n3vvfdi3333jTPOOCOampoSnTNp0qQ46KCD1mpdAAAAAAAAPquypKzV43ZMBAAAAACArk8xEehyBgwYEDfccEPk5eWlnV26dGl87WtfiwMOOCBeeumltPNvvfVWHH300bH99tvHBx98kCjPFVdcESNGjEg021n88Ic/jM022yzx/GuvvRbjxo2LnXfeOe67775YtSrZP0Y3NTXFM888EwcffHCMGDEi7rvvvsRrlpSUxO9///tE9wEAAAAAAADJpd0xUTERAAAAAAC6vMJcBwDIhL322ivOPPPMuOiiixLN33333XH33XfHJptsEpMmTYpRo0ZF3759Iy8vL6qqqmL69Onx/PPPx7Rp09qU49BDD40TTjhhTT6FDq2kpCTuvvvuGDduXCxfvjzxeU8++WQ8+eSTUVhYGFtvvXWMHz8+BgwYEH379o3KyspYuXJlLFu2LJYuXRqvvfZavPDCC1FbW7tGGf/whz/EqFGj1uhcAAAAAAAAvli6YuKKhrpoblkdhfkFWUoEAAAAAABkm2Ii0GX96le/innz5sVtt92W+JyZM2fGzJkz22X9XXfdNa677rp2uVZHtOmmm8Y999wTe+21V5vLg83NzTF16tSYOnVqRrL97Gc/iyOOOCIj1wYAAAAAAOjuKkvKWj2eiojl9XXRt6xndgIBAAAAAABZl5/rAACZkp+fHzfddFMccMABWV970qRJce+990aPHj2yvnY27bzzzvHggw9Gnz59ch0lIj7+f37RRRfFOeeck+soAAAAAAAAXVa6HRMjIqrrVmUhCQAAAAAAkCuKiUCXVlhYGHfccUecddZZWVvz6KOPjsceeyzKy9P/g2xXsOOOO8bLL78cY8aMyWmO/v37x4MPPhhnnnlmTnMAAAAAAAB0dYmKifWKiQAAAAAA0JUpJgJdXn5+fvzqV7+Ku+++OwYNGpSxdfr06RPXXHNNXHfddV1+p8T/a/jw4TFlypS46KKLomfPnlldOy8vL44++uh4++234ytf+UpW1wYAAAAAAOiOehaXREF+648bVNfVZikNAAAAAACQC4qJQLex3377xfTp0+PMM89s190Mi4uL49hjj40ZM2bEcccd127X7WwKCwvjzDPPjPfeey/OPvvs6Nu3b0bXKyoqisMOOyzeeOONuO6666J///4ZXQ8AAAAAAICP5eXlRWVJWasz1XV2TAQAAAAAgK5MMRHoVnr16hUXXXRRzJ07N371q1/FqFGj1vhaG220UZxzzjkxZ86cuPbaa2PAgAHtmLTz6t+/f1xwwQWxYMGC+Nvf/hYHH3xwu/3elJaWxm677RZXXXVVLFiwIP785z+v1f9DAAAAAAAA1kxlaetvBFpdr5gIAAAAAABdWWGuAwDkQp8+feKss86Ks846K95///145JFH4vXXX4+33nor5syZE8uXL48VK1ZEKpWKXr16Ra9evWKDDTaIzTffPLbccsvYbbfdYuTIkbn+NGLYsGGRSqVyHeNzFRcXx/777x/7779/pFKpeOONN+KVV16JN998M2bNmhULFiyIBQsWxIoVK6K+vj4aGxujsLAwSkpKory8PAYOHBjrrbdeDB8+PEaNGhWjR4+OcePGRY8ePXL9qQEAAAAAAHR7lSVpiol1tVlKAgAAAAAA5IJiItDtDR06NI4//vhcx+jS8vLyYvTo0TF69OhcRwEAAAAAAKAdVJaWtXq8us6OiQAAAACdRX7k5ToCAJ1Qfq4DAAAAAAAAAACdS2Vpmh0T6xUTAQAAAACgK1NMBAAAAAAAAADapLIkTTGxrjZSqVSW0gAAAAAAANmmmAgAAAAAAAAAtEm6HRObW1bHqsaGLKUBAAAAAACyTTERAAAAAAAAAGiTytKytDPV9auykAQAAAAAAMgFxUQAAAC+0A033BB5eXlpP2644YZcRwU6sSRfZ3baaadcxwQAAOA/VJa0vmNiRER1nWIiAAAAAAB0VYqJAAAAAAAAAECbVJQk2DGxrjYLSQAAAAAAgFxQTAQAAAAAAAAA2qSwoCB69Shtdaa63o6JAAAAAADQVRXmOgAAAAAAAHQlLS0tMX369HjppZfivffei1QqlfacysrKOPXUUzMfDgCgHVWWlMWKhrovPF5dp5gIAAAAAABdlWIiAADQ5dxwww1x9NFHZ+TaxcXFUVJSEj169Pj0o2fPnrHOOut85mPw4MGx6aabxsiRI6N3794ZyQIAQO6lUqmYOXNmvPTSS59+vPrqq7FqVdsewh86dGi3LCaee+65cd555+U6Rodw/fXXx1FHHZXrGADQJpWl5TG3ZukXHldMBAAAAACArksxEQAAoA0aGxujsbGxTeest956sdlmm8XWW28dkyZNikmTJkX//v0zlBAAgEx69913P1NCfOWVV2L58uW5jgUAkBOVpeWtHq+ur81SEgAAAAAAINsUEwEAADJswYIFsWDBgvjnP/8Zl1xySUREbLbZZrHTTjvFAQccEDvvvHMUFBTkOCXZVF1dHZdffnnauS996Uux3377ZTwPXdMNN9wQc+bMSTt37rnnZjwLQGc1Z86ceOmll+Lll1/+9L9VVVW5jgUA0GFUlpS1etyOiQAAAAAA0HUpJgIAAOTA22+/HW+//XZcffXVMWDAgDjggAPi0EMPjS9/+cu5jkYWVFdXx3nnnZd27sgjj1RMZI3dcMMN8dRTT6WdU0wE+G8nnnhi/O1vf4slS5bkOgoAQIeWdsdExUQAAAAAAOiy8nMdAAAAoLtbvHhx/OEPf4gdd9wxxowZE7feems0NzfnOhYAQLc1ZcoUpUQAgATSFRNrmxqj0c+5AAAAAACgS1JMBAAA6EBeffXVOOyww2LDDTeMa665JlpaWnIdCQAAAAA+V2VJWdqZ6nq7JgIAAAAAQFekmAgAANABzZ07N0444YSYMGFCvPjii7mOAwAAAAD/Jd2OiRER1XWKiQAAAAAdXX5eno8sfgB0FYW5DgAAQOfU0LAqlq/4KFatWhpNTQ3R0tIcq1uaIy/yIj+/IPILCqOoqDR6lveL3r3WieLi9O+cDfy3qVOnxoQJE+Lkk0+Oiy++OIqLi3MdCQAAAAAiImExsb42C0kAAAAAAIBsU0wEACCt1aubo6p6XixfvjCWr1gUK1YsiobGtr3LdUmPXtGr1zrRu9c6UVGxXlRWDIr8/IIMJYbkTj311Nh1113bdE5LS0vU19dHQ0ND1NfXx8qVK2PBggWxcOHCWLBgQcyaNSs++OCDSKVS7ZIxlUrFb37zm3jxxRfjzjvvjPXXX79drpvEUUcdFUcddVTW1gO6p/b6egkAAEB2lRQWRY+CwmhY3fyFM3ZMBAAAAACArkkxEQCAL1RbVx3z578RHy54K5qa69fqWvUNK6K+YUUsXvJuREQUF5fF4PW2iMGDtoiSkl7tERfWyFZbbRV77bVXu1935cqV8eabb8Yrr7wS//znP+OJJ56IZcuWrdU1p0yZEmPGjIm//e1vMWnSpHZKCgBAe9twww1j7NixMXbs2LjpppvirbfeynWkDuvcc8+Nc889N6vrnXfeeYlmn3jiidhpp50yGwgAOrm8vLyoLC2Pj1bWfOGMYiIAAAAAAHRNiokAAHxGKtUSS5bOiXnzp8XSZe9nbJ3Gxtp47/0XY84HU6N//w1jg0Gjo0+fDSIvLy9ja0I29ezZMyZMmBATJkyIk046KVpaWmLq1Klx8803x+233x5Lly5do+suXrw49txzz3jooYdi4sSJ7ZwaAIC2Gj58+KclxG222SbGjh0bffr0+fT4P/7xjxymAwDIvLTFxPraLKYBAAAAAACyRTERAIBPLVr8Tsx699moq/vih0jaWyqVisWL343Fi9+N8vJ+scnGX45+fYdkbX3Ilvz8/Bg/fnyMHz8+Lr300rjzzjvjZz/7WUyfPr3N11q5cmXsueee8cgjj8SECRMykBYAgM8zdOjQT8uHn/y3b9++uY4FAJBTFSVlrR63YyIAAAAAAHRNiokAAERjY13MmPVkfLRoZk5zrFq1NF59/e4YPGiLGLHRpCgs7JHTPJApxcXFceihh8bBBx8cf/nLX+IHP/hBzJ8/v03XWLFiRXzta1+LV155JYYNG5aZoAAA3VReXl4MGTLkv0qI/fr1y3U0AIAOp09peavHq+vsmAgAAAAAAF2RYiIAQDe3aPE7MX3GP6OxqS7XUT41/8M3Y+nS92OzkbvZPZEuLT8/Pw455JDYc88947TTTosbbrihTedXVVXFN7/5zXj22WejuLg4MyEBALqhZ555Jnr27JnrGAAAnUJlumJivR0TAQAAAACgK8rPdQAAAHKjqak+3vjXP2Lamw90qFLiJ+obVsSrr98db894PFavbsp1HMioysrKuP766+PPf/5zmwuGU6dOjTPPPDNDyQAAuielRACA5CpKylo9XlNfGy0tLVlKAwAAAAAAZItiIgBAN1RXvzymvvyX+GjRzFxHSWv+h2/GS6/cEY2NtbmOAhl32GGHxaOPPhqVlZVtOu83v/lNPPPMM5kJBQAAAACt6JNmx8RUKhUrGjrem+MBAAAAAABrRzERAKCbWbVqWbz0yh1RW1ed6yiJrVi5OF569c6or1+R6yiQcV/+8pfjvvvuix49erTpvFNPPTVSqVSGUgEAAADA56tMU0yMiKiq98ZzAAAAAADQ1SgmAgB0I6tWLYuXXr0zGhpW5jpKm9XWVsVLr96hnEi3sMMOO8TNN98ceXl5ic955ZVX4oYbbshcKAAAAAD4HJUlZWlnqutWZSEJAAAAAACQTYW5DgAAQHbU1S2PV16/O5qa6nIdZY3V16+IV16/O7bZ+htRXJz+YRfozA466KB44okn4uqrr058zk9+8pP49re/HYWF3feveo2NjbF48eJYvHhxrFixIhoaGqKpqSl69OgRZWVln36Ul5fHOuusEwUFBbmO3K3U1tbG3LlzY8WKFbFq1aqoq6uLHj16RHl5efTs2TM22GCD6NWrV65jZtXKlSvjySefjNdffz1mzJgRM2fOjEWLFsXKlStj5cqV0djYGGVlZdGrV69YZ511YvDgwfG73/0uhgwZkuvo/IdUKhULFiyIxYsXx6pVq2LVqlWRSqWivLw8ysvLo1+/fjF48ODIz+9e7xH21ltvxZNPPhlvvPFGvPnmmzF//vxYvnx5rFjx8RtNlJWVRUVFRQwdOjQ23HDD2GabbWLixImx1VZbtamc31GkUqlYtmxZLFq0KKqqqqKhoSEaGhqioKDg09ef0tLSKCsri379+kV5efpdZQBaU19fH3Pnzo3ly5dHbW1trFq1KgoLCz/93mr99dePPn365DomAN1Ar5KyyM/Li5ZU6gtnFBMBAAAAAKDr6b5PqwIAdCONTXXxyut/65Q7Jf5ftbVV8err98Y2Y74RBQVFuY4DGXXRRRfFww8/HLNnz040P2/evPjb3/4W3/zmN9stww033BBHH3102rnrr78+jjrqqHZbN4mqqqp45pln4rnnnotXX301ZsyYER988EGkWnkI7j8VFhbG4MGDY9iwYTFs2LAYPnx4jB07NiZMmBD9+/df63xPPvlk7Lzzzmt1jRtvvDFuvPHGtc7yiR133DGefPLJdrtea2pqauLpp5+OZ599Np5//vmYNWtWLFy4MO15/fv3jxEjRsSECRNi0qRJseOOO0a/fv2ykLh15557bpx33nlp55544onYaaedWp1ZuXJl3HjjjXHnnXfG5MmTo6mpqdX5FStWxIoVK+LDDz+M1157LZYtW/ZpMXHYsGHx/vvvJ/48Pk97F8Dee++9GDZsWLtnyOb9m860adPimWeeiWeffTZef/31eO+996K+vr7Vc4qLi2Po0KExevTomDRpUuywww4xZsyYDlHAa8/f/7lz58ZVV10Vd911V7zzzjutzjY2NkZ1dXW8//778fTTT3+68++QIUPim9/8Zpx00kkxfPjwJJ9C1q1evTqmTp0azz33XEyZMiWmT58eM2fOTHsf/Kf+/fvH0KFDP30dGjVqVEyYMCFGjhzZIe4LoGNZunRpTJ48OSZPnhwvvPBCvPPOO7FgwYK03/tWVFTEJptsEtttt11MnDgxdtttt+jbt2+WUgPQXeTn5UVFSVlUtVI+rK5XTAQAAAAAgK5GMREAoItLpVIxfcY/o66uJtdR2s2KlYti1jvPxMhNd8l1FMio8vLyuOyyy2LfffdNfM5vfvObdi0mdjR1dXVx2223xW233RZPPvlkNDc3r/G1mpub4/3334/3338/nnrqqc8c22ijjWLChAmx8847x/777+/h7YSam5vj7rvvjltvvTX+8Y9/RENDQ5uvsWTJkliyZEk8//zzcdlll0VhYWHstttuceihh8ZBBx0UJSUlGUieHUuXLo0LLrggrrvuuli+fHmu49BG77zzTtx4441x2223xbvvvtvm8xsbG2PWrFkxa9asuOuuuyIiYoMNNoiDDz44jjzyyBg1alR7R86qOXPmxLnnnhu33npr2rJtOh988EFcfPHFcfnll8fhhx8ev/zlL2Pddddtp6Rr57nnnos//elPcd9998WSJUvW6lqffL17+eWXP/PrlZWVMW7cuJg4cWLst99+MXr06LVaB+i8ampq4s4774zbb789nnjiiVi9evUaXWPq1KkxderUuPLKK6OoqCh23333OPzww+Oggw7q1rutA9C+KkrKWy8m1tVmMQ0AAAAAbZUf3jwVgLbLz3UAAAAy66NFs2LR4tZ3q+mM5n34RiyrmpvrGJBx++yzT2yzzTaJ5z/ZvaurWblyZZx//vkxePDgOPbYY+Oxxx5bq1JiOu+++27ccsstcdxxx8XAgQPjq1/9alx//fVRU9N1St7tqaGhIX7/+9/HiBEj4pvf/Gbcc889a1RK/DzNzc3x0EMPxRFHHBEbbrhhXHrppVFb27keZkylUnHNNdfEJptsEpdffrlSYifz5ptvxqGHHhojR46MCy64YI1KiV9k7ty5cdFFF8WWW24Z++23X7z00kvtdu1saWlpicsvvzy22GKLuPHGG9e6lPifmpub44YbbojNN988brnllna77pp44IEHYsyYMTFx4sS47rrr1rqU2Jrq6up45JFH4qc//WlstdVWMXLkyPjJT34Sb731VsbWBDqWhQsXxllnnRVDhgyJ4447Lh577LE1KiV+nqampnjwwQfj0EMPjREjRsTVV1+d0e+rAeg++pSWtXq8upXSIgAAAAAA0DkpJgIAdGENjatixqwnch0jY96a/lg0NzfmOgZk3Lnnntum+b/85S+ZCZIj99xzT4wYMSJ++tOfRlVVVdbXb25ujocffjiOOeaYuOaaa7K+fkf35JNPxpZbbhnf/e53Y86cORlda8GCBXHGGWfEyJEj4/7778/oWu1l1apVccABB8QJJ5wQy5Yty3Uc2mDlypVxyimnxFZbbRW33XZbuxVCPk8qlYp77703tt122zj22GNz8rVuTVRXV8cee+wRp512WqxalbmHjKuqquLwww+P//3f/41UKpWxdT7PBx98EHvssUfstdde8eqrr2Z17U/MmDEjfvazn2VsR+S8vLzEH5n+Og/dXWNjY1xwwQWx4YYbxoUXXpjxNzOYM2dOnHTSSTF27Nh44YUXMroWAF1fZWl5q8er6xUTAQAAAACgq1FMBADoolKpVEyf+UQ0NdXnOkrG1Ncvj3fefTbXMSDj9txzzxgyZEji+b///e8ZTJM9zc3N8d3vfjf233//WLhwYa7j8H80NjbGSSedFDvvvHPMmjUrq2vPnTs39t577zjssMM69O6JH374YUyaNCnuueeeXEehjZ5//vnYfPPN48orr4yWlpasrn3dddfFyJEj45FHHsnqum317rvvxoQJE+Lxxx/P2pq//vWv49RTT83aeg8++GBsueWW8eijj2ZtTaD7mjJlSowePTp+/OMfR11dXVbXnjZtWkycODF+9rOfZb0ADkDXUVGSpphY13H//g4AAAAAAKwZxUQAgC5q0eJZsXjxu7mOkXHzPnwjllXNzXUMyKj8/Pw48sgjE8+/+eabnX5Ho4aGhth7773j97//fa6j8Dk++uij2GWXXeLqq6/OaY5bb701tt9++3j//fdzmuPzfLKT3GuvvZbrKLTRddddFzvttFPMnZu77y8WLVoUX/va1+KSSy7JWYbWvP/++7HjjjvGjBkzsr72lVdeGRdeeGHG17nuuutin332yfhuZQAREVdffXV8+ctfzsnX1U+0tLTET37yk9hvv/2yXowEoGvoU1rW6vGaulUK8AAAAAAA0MUoJgIAdEEtLatj5jvP5DpG1sx852kPtdDlffvb327T/AMPPJChJJmXSqXisMMOi4ceeijXUfgc8+fPj4kTJ8bkyZNzHSUiIl5//fWYMGFCzJw5M9dRPtXQ0BD77LNP/Otf/8p1FNroV7/6VRx77LHR2NiY6yixevXqOPPMM+P000/PdZTPWLRoUey+++4xf/78nGU4++yz4/nnn8/Y9e++++44/vjjY/Xq1RlbAyDi4+97TzrppDjppJM6xGtPRMR9990Xe+21V4felRqAjqmytPUdExtWN0ddc8d4vQMAAAAAANpHYa4DAADQ/hYvmR0NDStzHSNrVq5cEtU1H0afysG5jgIZM2LEiBg+fHi89957ieafe+65+J//+Z8Mp8qMSy65JO66665cx+BzLFy4MHbZZZd4992OtSPvwoULY+edd46nnnoqNt5441zHibPPPjueeSbZGwQMHTo0Jk6cGCNGjIghQ4ZEr169ori4OFauXBk1NTUxc+bMmDZtWkyePLnDFBa6qksvvTR++MMf5jrGf7nsssuiqKgofv3rX+c6SqxevToOPPDAmDVrVtrZ8vLyGD9+fHzpS1+K4cOHR9++faO8vDyampqiuro63nvvvZg6dWpMnjy5zeWX5ubmOProo+ONN96IoqKiNf10Ptd7770XRx55ZLS0tLTrdQH+r5aWljjuuOPi+uuvz3WU//LPf/4z9tlnn3jooYeisNA/IwGQTEVJ68XEiIjqutooK+qRhTQAAAAAAEA2+BdlAIAuaN78abmOkHXz5k9TTKTL22233eKaa65JNPvKK69kOE1mvPfee3H22We3+byCgoLYdtttY8cdd4wRI0bExhtvHBtssEGUl5dHeXl5lJWVRXNzczQ0NMTy5cvjo48+igULFsSsWbNi5syZ8corr8Trr78e9fX17fa57LTTTl+4m+ucOXNi+PDhaa9x5JFHxg033NBumdZGQ0ND7L333mu0M2FeXl5st9128dWvfjW22WabGDlyZPTr1y/Ky8ujrq4uqqqqYubMmfHqq6/GQw89FE899VQ0Nze3aY0PP/wwvva1r8XUqVOjoqKizRnby+TJk+Oyyy5rdWbdddeNE088MQ4//PDERcrly5fHvffe+1/ltDlz5nzhOTvttFM89dRTaa9t1+GIu+66K84444w1OnfAgAHx1a9+NXbdddfYfPPNY9iwYdGrV68oKCiIFStWxLx58+Ktt96KJ598Mh544IGYN29em9e48MILY+jQoXHSSSetUcb28uMf/zieffbZLzyen58fBx54YBx11FGx++67JyoNrlq1Ku644474xS9+kajw+IkZM2bEVVddFaeeemric5I48cQTY8WKFW0+b8iQIbH77rvHqFGjYuONN46NNtooKioqPn0NKigoiPr6+qirq4tFixbFokWLYvbs2TFr1qx44403YurUqbFo0aJ2/VyAju1//ud/1riUOGLEiNhtt91izJgxsdlmm8X6668fffv2jdLS0mhpaYmVK1fGvHnzYubMmfH888/Hgw8+GNOnT2/TGo8//niceuqp8dvf/naNMgLQ/fRJs2NiRERN3aoY1LtPFtIAAAAAAADZoJgIANDFrFy1NKqq2/7Ae2e3aPE70dCwKnr0SP8ADHRWu+66a+Ji4syZM2PlypXRs2fPDKdqXz/5yU/atCvciBEj4gc/+EF84xvfiD59Wn+wrbi4OIqLi6NXr14xePB/F5mbmppiypQp8eijj8YDDzwQL7/8cpvzd2Unn3xyvPTSS206p7CwME444YQ49dRTY8SIEZ8707Nnz+jZs2dssMEGseuuu8aZZ54Z8+bNi9/+9rdxxRVXtKksOmvWrDjiiCPinnvuiby8vDZlbS/nn3/+F+60VlpaGj/96U/j+9//fpSWlrbpur17945vf/vbcfjhh0dTU1N7ROX/mT59ehx99NFtPm+zzTaLH//4x3HggQdGcXHx58707ds3+vbtG6NHj46DDz44Wlpa4v77748LLrggpk6d2qb1TjvttBgzZkxMmDChzVnbw7/+9a94+umnv/D4nnvuGVdcccUX/ln/IuXl5XHUUUfFYYcdFueff378/Oc/T1yW/fWvfx0nnXTSF/7+t9Xjjz8ejz76aOL5srKyOO644+I73/lObLbZZmnnPynL9+/fPzbffPPYaaedPnN89uzZ8eijj8YjjzwS//jHP6Kurq6tnwLQSfz2t7+N3//+9206p6KiIo477rg47rjjYuTIka3O/ufrzze+8Y245JJL4uWXX46LLroo/vrXvyb+OnvVVVfFhAkT4vDDD29TVgC6p4rSsrQzVXWrspAEAAAAAADIlvxcBwAAoH3Nm/9GriPkRCrVEvMXvJnrGJBRX/rSlxLPtrS0xKuvvpq5MBmwaNGi+Mtf/pJotqioKK688sqYPn16HH/88WlLiUmvOWnSpDjvvPPipZdeitmzZ8cFF1wQQ4cOXetrd3Z33XVXXHvttW06Z9ttt41p06bFVVdd1eai0vrrrx+/+tWv4u23345ddtmlTefed999cdVVV7XpnPb0RcXazTbbLF577bU466yz2lxK/E95eXntVsIiYvXq1XHIIYe0aYe8oqKiuPDCC2PatGlxyCGHtOn/R35+fuyzzz4xZcqU+MMf/hBlZekf3P1EY2NjHHzwwbFqVW4e5F2yZMnnFll69OgR1157bTz44INt/rP+n4qKiuJnP/tZ/PnPf478/GQ/sly4cGHcfvvta7zm/3XllVcmnv36178ec+bMiSuuuCJRKTGJDTfcME488cS46667YvHixXHbbbfFrrvumrOiNZAZTz/9dJx22mmJ5wsKCuLMM8+M9957Ly6++OK0pcQvMnbs2Lj99tvjueeei8033zzxeaecckp89NFHa7QmAN1LcUFhlBX1aHWmul4xEQAAAAAAuhLFRACALqS5uTEWLHw71zFyZv6Hb37hLlXQFYwYMaJNhaaZM2dmME37u/322xPtBFdaWhpPPPFEfO9730tcXlkTw4cPj7PPPjtmz54d9913X2y//fYZW6sjW7FiRZxyyiltOufYY4+NZ599dq3LOsOGDYtHHnkkzjjjjDadd/bZZ8eHH364Vmu3p+222y6ee+652GSTTXIdhf/jiiuuiNdeey3xfP/+/eOZZ56JH/zgB1FYWLjG6+bl5cUJJ5wQU6ZMiQ022CDxee+//3789Kc/XeN121uvXr3i8ccfj2OPPbbdrnnooYfGxRdfnHj+uuuua5d1ly5dGg8++GCi2VNOOSX+/ve/x4ABA9pl7c9TXl4eBx98cDz22GMxc+bM+M53vhMlJSUZWw/Ijtra2jj66KOjubk50fzw4cNjypQpcdFFF7XLG3FEREyYMCFefPHFOPDAAxPNL1u2rM3fCwLQffUpLW/1eE1dbZaSAAAAAAAA2aCYCADQhSyr+iBWr/78nZq6g4aGlbF8+YJcx4CMyc/Pb9PuJvPmzctgmvb3yCOPJJq74oorYuLEiRlO82/5+fmx9957x+TJk+PEE0/M2rodxbnnnhvz589PPP+9730vrr322nbb1a+goCAuvvji+PGPf5z4nOXLl7e5zJgpm222WTzwwANRWVmZ6yj8HwsWLGhTyW+dddaJp556KsaPH99uGbbYYot46qmnYsiQIYnPueKKK+Jf//pXu2VYU8XFxfHggw9m5OvxqaeeGjvvvHOi2WeeeSYWLVq01ms+8cQTiYpCX/7yl+OSSy7J6i6GG2+8cVx99dXxxBNPZG1NIDN+9KMfxezZsxPNbrfddjF16tQYO3Zsu+coLy+Pv/zlL/Htb3870fxf//rXNhX5Aei+Kktb3xW+qs6OiQAAAAAA0JUoJgIAdCE1NQtzHSHnapb7PaBrGz58eOLZuXPnZjBJ+3vhhRfSzmy22WZx/PHHZyHN5+vVq1fO1s6Fjz76KK6++urE8/vtt19cccUVGcly/vnnJ354PiLiL3/5S7z9dm53ES4tLY0777yz3XY4on1ddNFFsXLlykSzPXr0iHvuuadN5fCkhg8fHn//+9+jvLz1nUU+0dzcHD/72c/aPUdbXXXVVTFp0qSMXDsvLy8uvfTSROW/lpaWeOCBB9Z6zSSvQREf3zcFBQVrvd6a6G6vQdDVzJgxI377298mmt1mm23ioYcein79+mUsT0FBQfzpT3+KXXbZJe1sKpWKn/zkJxnLAkDXUVHS+t9rqusVEwEAAAAAoCtRTAQA6EKWr/go62umUhGLGiNeqIm4f0nE3Ys//u8LNR//eiqV3TzLV6z9jjnQka233nqJZzvTjonLli2LpUuXpp078sgjs5CGT1xyySVRV1eXaHbo0KFx0003ZXQXsWuuuSZxMSyVSsXPf/7zjGVJ4vzzz89IkY21t2TJkvjDH/6QeP6iiy6K7bbbLmN5Ro8e3aYS8B133BEzZszIWJ509txzzzjuuOMyusaXvvSl2HXXXRPNPvPMM2u93syZM9POjBw5MsaNG7fWawHd009+8pNYvXp12rmBAwfGPffcE7179854pqKiorjlllsSFSDvv//+ePfddzOeCYDOrU9p68XEmrraLCUBAAAAAACyQTERAKCLSKVSsWJldkt5S5siHlgacf/SiLdqIxY1RVQ1f/zft2o//vUHln48ly25KGdCNrWlmPjhhx9mMEn7mj9/fqK5rbfeOsNJ+ER9fX1cc801ief/9Kc/ZXw3rx49esT1118f+fnJfpxx++23x0cf5eZ1YaONNorvf//7OVmb9K699tqorU32QOyXv/zlOPnkkzOcKOLb3/527LXXXolmW1pa4je/+U2GE32+wsLCuPLKK7Oy1jHHHJNobvLkyWu9VpLXIa9BwJp666234o477kg0+8c//jEGDx6c4UT/tu6668avfvWrtHOpVCr+9Kc/ZSERAJ1ZZZpiYpUdEwEAAAAAoEtRTAQA6CLq6mqiubkxa+t9UP/xzoiL0pQOFzV9PPdBfXZyffz70JCdxSAH1l133cSzq1Z1noe9Vq5cmWhu/fXXz3ASPnHfffdFdXV1otm999478c5ma2vcuHFx+OGHJ5pdvXp13HLLLRlO9PnOPPPMKC4uzsnapHfTTTclmsvLy4tLL700ozuB/qdLLrkkCgsLE83efvvt0diYve/9PnHYYYfFxhtvnJW1vva1r0VRUVHauXfeeScaGtbu+78kr0Neg4A19fvf/z5SqVTaub333jv22WefLCT6rKOPPjpGjBiRdu6mm25K9HkA0H1VlJS1enxlQ300J9hBGAAAAIDsy8/L85HFD4CuItmTTgAA/JfG1c2xaEVNrmN8asnSOVGVpZ0Ja5ojnqyOaEk4vzoi/lkVsVNlREUWvgOd8eE7UdE7eXkr09bpVRHFBb71pn2UlpYmnq2rq8tgktxoasriFqzd3M0335x49mc/+1kGk/y3888/P2655ZZYneBhxhtvvDFOP/30LKT6t969e8cRRxyR1TVJ7uWXX46333470ey+++4bY8eOzXCif9tkk03iqKOOimuvvTbt7NKlS+OBBx6I/fffPwvJ/u273/1u1taqqKiI0aNHx8svv9zqXEtLS8ycOTO23HLLjObpqq9BSkaQWfX19fHnP/850ez555+f4TSfr6CgIE466aQ47bTTWp2bP39+vP766/GlL30pO8EA6HT6pNkxMSKipr42+pX3ykIaAAAAAAAg0zwdDQCwhhatqIn/78FkDxfycYnxn9XZWevuZx/LzkIJXfi1w2P9yn65jkEXUVJSkni2vj5LW5W2g379kv0ZmT17dmy11VYZTkN9fX089liyr6U77LBD1v+fDB06NPbZZ5+4++67085OmzYtPvjggxgyZEgWkn1s7733jrKy1neJIHfuu+++xLPf+973Mpjki9dMUkyMiPj73/+e1WLiiBEjYvz48VlbLyJi2223TVtMjIh4991316qYmOR1aPbs2Wt8faD7uu+++6Kqqirt3I477pjTwt+hhx4ap59+etqy8kMPPaSYCMAXqkxQTKyqW6WYCAAAAAAAXUR+rgMAAACQXFuKiZ1px8T+/fsnmktSRGPtPfPMM4mLrccff3yG03y+E088MfFs0pJle9lvv/2yuh5tk/R+2GijjWKXXXbJcJr/Nnr06JgwYUKi2Wzf23vuuWdW14v4eBfJJD766KO1WifJ69Cjjz4aK1euXKt1gO7n/vvvTzR31FFHZTZIGuuss05su+22aeeefvrpLKQBoLOqKE3/Jj3V9auykAQAAAAAAMgGxUQAAIBOpLi4OPFsY2NjBpO0rz59+kTPnj3Tzt1+++3x+uuvZyFR95a07FRUVBR77713htN8vl122SX69OmTaPbRRx/NcJrP2nHHHbO6HsmtWLEiXnzxxUSz2dyJ8P868MADE83NnTs3ZsyYkeE0/5aLe3v48OGJ5ta2mLjBBhuknamrq4vzzz9/rdYBupdUKhUPP/xw2rn8/Pz4+te/noVErUtSjH/11VezkASAzqq8qEcU5Re0OlNTV5ulNAAAAAAAQKYpJgIAAHQiDQ0NiWfbsrtiruXl5cUOO+yQdq6pqSm+8Y1vxPvvv5+FVN3X1KlTE81NnDgxKisrMxvmCxQVFSXeve2ll17KcJp/23jjjWPAgAFZW4+2efXVV6O5uTnR7F577ZXhNF9s3333TTybzfv7S1/6UtbW+kTSHXVramrWap2kpctLL700br755rVaC+g+3njjjVi0aFHaudGjR3eI7x+22mqrtDMLFy6MhQsXZiENAJ1RXl5eVJaWtzpTVWfHRAAAAAAA6CoUEwEAADqR+vr6xLOdqZgYEbHrrrsmmnvnnXdiu+22i7vvvjvDibqvN954I9FckjJpJiVdf/bs2bFqVXYefNx8882zsg5rZtq0aYnmiouLY/z48RlO88VGjBgRAwcOTDSb9HNaW0VFRYl3L2xPScvPbSnuf56dd9458vLy0s6tXr06jjzyyDjzzDNjxYoVa7Um0PUlLY9vu+22GU6SzJAhQxLNzZo1K8NJAOjMKkrKWj1eXa+YCAAAAAAAXYViIgAAQCfSlmJiaWlpBpO0v3333TcKCgoSzS5YsCAOOOCAGDduXNxyyy1RV1eX4XTdx4IFC2LJkiWJZrfbbrsMp2mf9VtaWuLNN9/McJqPbbrppllZhzWTtHT7pS99Kefl7qT3d7aKiYMGDUpU3GtvPXr0SDS3tsXEAQMGxJe//OVEs6lUKi655JIYPnx4/PjHP7aLL/CFXn311URzHeWNDdZZZ51Ec/PmzctwEgA6sz5pdkysqavNUhIAAAAAACDTFBMBAAA6kbbs+tbZiokbb7xxHHzwwW06Z+rUqXH44YfHwIED4/DDD48777wzampqMpSwe3j33XcTz+b6IfqRI0cmLrO25fNaG4MGDcrKOqyZpPdBru/tiIhRo0YlmsvWvd23b9+srPN/FRUVJZprbm5e67XOOeecNs0vXbo0Lrjgghg+fHhMmjQpLrvsspg5c+Za5wC6jqTl8WHDhmU2SEJJ//6gmAhAayrTFBOr6uyYCAAAAAAAXYViIgAAQCeycOHCxLO9evXKYJLM+PGPfxyFhYVtPm/FihVxyy23xEEHHRT9+/eP7bbbLn70ox/Fgw8+GFVVVRlI2nV9+OGHieZKS0tjyJAhGU7Tuh49esTw4cMTzSb9vNbWwIEDs7IOaybpfdARdr7cbLPNEs0tWLAgw0k+1tHL7qlUaq2vsdtuu8WkSZPWaO3JkyfH6aefHptuumkMGzYsjjnmmLj++utj1qxZa50L6LyS7qi6//77R15eXs4/Ntlkk0R5ly1btja/LQB0cRUlZa0er65XTAQAAAAAgK6i7U97AgAQERHr9KqIC792eK5jfGrJ0vdi1ruTM75OKhXxdE3EsjXYlKZvYcSXKyLy8to/13/afNNdo6Jivcwu0gbr9KrIdQS6kLYUUAYPHpzBJJmx6aabxmWXXRbf+9731vgazc3N8cILL8QLL7wQEfHpQ9YTJkyI7bbbLiZNmhSbb7555GX6i1EnlbS4NWjQoA7xe7j++uvHO++8k3YuW8XEzlgI7k6S3gfrr79+hpO0X4aVK1fG8uXLo3fv3hnNk3Tnws7u5ptvjm233TaWLFmyxtd4//334/rrr4/rr78+IiL69esX48ePj+222y623377mDBhQpSVtf6wNtD5pVKprH3/kW11dXW5jgBAB9YnzY6JNfW10ZJKRX4H+JkCAAAAAACwdhQTAQDWUHFBYaxf2S/XMT7Vtzg/lnyQ+WJiRMQOlRH3L4lY3YZzCv7feX2z8Ez7JoM2jqKikswvBDnQlmJiRyjWrImTTz45Xn/99bj22mvb5XqpVCpmzJgRM2bMiBtvvDEiIvr06RM77bRTfOUrX4k999wz5zv/dSSLFy9ONLfOOutkOEkySXMk/bzWVo8ePbKyDm3X1NQUNTU1iWY7wv3dlgyLFy/OeDGxuxg2bFjccccdsccee0RTU1O7XHPp0qXx4IMPxoMPPhgREYWFhTF27Nj4yle+El/5yldiwoQJkZ+f3y5rAR3HokWL2u3rSEejmAhAayrTFBNXt7TEyob66F3SsXdlBwAAAAAA0vPECwBAF1FaWhkFBcVZWatfUcTOfT4uGyZREB/P98tCKbG0tEIpkS7t3XffTTzbWYuJERG///3v44QTTsjY9auqquLuu++O73znOzF06NAYP358XHLJJbFo0aKMrdlZJH3QvG/fvhlOkky/fsneJCBbD9B3l13lOqO23AMd4f5Oem9HKIi0t5122inuvffe6NmzZ0au39zcHFOmTInzzz8/Jk6cGOuvv36cfPLJ8eKLL2ZkPSA3qqurcx0hYxobG3MdAYAOrKI0/e7g1fWrspAEAAAAAADINMVEAIAuIi8vL3r3yt7uPkNKIvbqH7FOmv7FOkUfzw3JUlcwm78HkG3Nzc0xffr0xPOduZhYUFAQf/jDH+LGG2+MioqKjK/34osvxplnnhnrr79+fPOb34yXXnop42t2VPX19YnmSko6Rgk8aY6knxddV1vugY5wf7clg/u7/e25557xyiuvxLhx4zK+1oIFC+Kqq66K8ePHx+jRo+P666/vsrusQXfSlUvjqVQq1xEA6MD6lLS+Y2JERE2dYiIAAAAAAHQFiokAAF1IryyX8voVRXy9X8Re/SJGlX9cQuxT+PF/R5V//Otf75ednRI/0aunYiJd14wZM9q0O8lmm22WwTTZccQRR8TMmTPj+OOPz8pOdE1NTXHHHXfEtttuG3vttVe8/fbbGV+zo2loaEg0V1ycnV160+nRo0eiOcUtkt7bER3j/k56b0e4vzNlxIgR8fzzz8c111wTgwcPzsqab7zxRhxzzDExYsSIuOWWW5R/oBPztRmA7qp3SVnkpZmpqqvNShYAAAAAACCzFBMBALqQit7rZn3NvLyIdYojxvf+eGfE/Qd8/N/xvT/+9bx0T6G0s4qK9bK7IGTRq6++mni2sLAwRo8encE02bPOOuvEH//4x5g1a1acccYZ0a9fv6ys+8ADD8RWW20V5513XjQ3N2dlzY4gPz/ZjwpaWloynCSZpDmSfl50XW25BzrC/d2WDO7vzMnPz4/jjjsuZs+eHddcc02MGTMmK+u+//77cfjhh8euu+4ac+bMycqaQPuy8ykA3VVBfn70Kiltdaa63o6JAAAAAADQFXhqCQCgC+nXd2gUFGRxe8IOpri4PCflTMiWxx9/PPHsqFGjoqSkJINpsm/o0KFx8cUXx/z58+Puu++OQw89NPr27ZvRNZuamuLcc8+Nr3zlK1FVVZXRtTqKpPdNW3afy6SkObranwfari33QEe4v9uSwf2decXFxXHcccfFyy+/HK+99lr88Ic/jM033zzj6z7xxBMxduzYeOKJJzK+FtC+fG0GoDvrU1Le6vGaOsVEAAAAAADoChQTAQC6kMLC4lhv4Mhcx8iZwYO2iPz8glzHgIxpSzFx7NixGUySWz169Ij99tsvbrnllli0aFE8//zz8etf/zr23Xff6N+/f0bW/Oc//xm77bZb1NTUZOT6HUnSh+jr6uoynCSZ2traRHPKAbTlHugI93fSezvC/Z1tW221VfziF7+If/3rX/H+++/HDTfcEMcff3xsvvnmkZeB7cKXLVsWe+65Zzz22GPtfm0gc0pLW98p6j89+uijkUqlOs3HDTfckLnfOAC6hMrS1ouJVXXJ/74DAAAAAAB0XIW5DgAAQPtaf/DomPfhG7mOkXV5eXmx/qAtch0DMuatt96KuXPnJp7ffvvtM5im4ygoKIgJEybEhAkTPv216dOnx7PPPhuTJ0+OyZMnx6xZs9plrVdeeSUOPfTQuP/++zNSPOkoystbf3jwE4sXL85wkmSS5ujZs2eGk9DRlZaWRn5+frS0tKSd7Qj3d1syuL9zZ8iQIXHkkUfGkUceGREflwj/8zXopZdeapcdOBsaGuLAAw+Ml156KUaMGLHW1wMyL+n3VBER9fX1GUwCANlXUVrW6vHqejsmAgAAAABAV2DHRACALqZnz/5RWTEo1zGybkD/jaJHDw/l03XddNNNiWfz8vLi61//egbTdGwjR46M4447Lq6//vqYOXNmfPTRR/GXv/wlvvOd78TQoUPX6toPPvhg/P73v2+npB3Tuuuum2hu0aJFGU6STNIcST8vuq78/PwYMGBAotmOcH+3JYP7u+Po27dv7LPPPvHrX/86nn322Vi+fHk8/fTTcd5558X2228fBQVrvrv38uXL44gjjohUKtWOiYFMGThwYOLZlStXZjAJAGRfZUnrBf2aOsVEAAAAAADoChQTAQC6oPUHj851hKzrjp8z3cfq1avj5ptvTjy/zTbbKKn8h3XWWSe++c1vxtVXXx1z5syJadOmxU9/+tPYcMMN1+h655xzTpd+eHzQoGTl9gULFkRjY2OG06Q3e/bsRHNJPy+6tqT3wZw5czIbJIGk93a/fv2iuLg4w2lYU8XFxbHDDjvET37yk5g8eXIsWrQorrvuuthjjz0iP7/tP5p94YUX4vbbb89AUqC9lZWVRb9+/RLNfvjhhxlOAwDZ1ae09WJidV1tlpIAAAAAAACZpJgIANAFrTNg4+hR3PrDH11JeXm/6FO5fq5jQMb8/e9/b9PDynvvvXcG03R+W265ZZx77rnxzjvvxMMPPxw777xzm85ftmxZXHfddRlKl3vrr5/s6+nq1avjnXfeyXCa1tXU1MTChQsTzQ4ePDjDaegMkt7fM2bMyHCS9KZPn55ozr3dufTt2zeOPvroePjhh2P27Nlx2mmnRUlJSZuucdFFF2UoHdDeku7W/cEHH2Q4CQBkV0WaYmJdc2PUNzdlKQ0AAAAASeRHno8sfgB0FYqJAABdUH5+QWy80aRcx8iaTTbeIfLy/GWdrimVSsV5552XeD4vLy8OPvjgDCbqOvLy8mKPPfaIf/7zn/HXv/41evbsmfjcP//5zxlMllubbLJJ4q+p06ZNy3Ca9lt/s802y2ASOouRI0cmmsv1vd2WDO7tzmvo0KFx6aWXxltvvRXjx49PfN6rr74ab731VgaTAe0l6dfoN998M8NJACC7KkvK0s7U1K3KQhIAAAAAACCTFBMBALqodQduGv37Dc91jIwbtN6o6Nc32S4U0Bn97W9/i9deey3x/B577BEjRozIXKAu6qCDDooHH3wwSktLE81PnTo1Fi9enOFUudGzZ88YPjzZ68fkyZMznKZ91i8tLfXngoj4eMfUJGbMmBFLlizJcJov1tzcHFOmTEk0O3r06AynIdOGDx8ejz32WEyYMCHxOQ8++GAGEwHtZdttt0009+qrr2Y4CQBkV580OyZGRFQpJgIAAAAAQKenmAgA0EXl5eXFZpvuGoWFPXIdJWN69OgZm2y8Q65jQMasWLEiTj/99Dad873vfS9Dabq+HXbYIX784x8nnk9aGvo8+fkd+6/jW221VaK5J598MrNB2mn9zTffPAoKCjIbpgPq6PdZLiS9tyMinnrqqQwmad1LL70Uq1Yle0hXMbFr6NmzZ9xyyy1RUlKSaP6FF17IcCKgPYwbNy7R3LJly9r0ZiQA0NFVJCgmVtfXZiEJAAAAAACQSZ5QAwDownr0KI9NR+yU6xgZs/mmu3Xp4iWcfvrp8cEHHySe33jjjWPPPffMYKKu7/TTT4+KiopEszNnzlzjdYqKihLNNTc3r/Eaa2PixImJ5t58882YPXt2htN8vpqamvjnP/+ZaHbSpEkZTtMxdfT7LBdGjRqV+M/4vffem+E0X+zuu+9ONJefnx/bb799htOQLRtuuGEcddRRiWbX5jUIyJ6xY8dGr169Es3ed999GU4DANlTUlgUpYXFrc7U2DERAAAAAAA6PcVEAIAubt2Bm0b/fsNzHaPdDVpvVPTrNzTXMSBjbrvttrj22mvbdM4vf/lLO6StpR49esRXv/rVRLPz589f43WKi1t/OO8TdXV1a7zG2th9990Tz95xxx0ZTPLF7r777mhqako025bPpyvp6PdZLhQUFMQuu+ySaPb++++P+vr6DCf6b6lUKvGfqzFjxkTfvn0znIhs2nfffRPNrc1rEJA9xcXFid845M9//nOkUqkMJwKA7KksLWv1eJViIgAAAAAAdHqeWAUA6OLy8vJi85G7RUlJ71xHaTc9y/vFJht/OdcxIGOefPLJxDsmfeLLX/5yfOMb38hMoG5miy22SDS3cuXKNV4j6c45VVVVa7zG2thyyy1j4MCBiWb/+Mc/RktLS4YT/berr7460VxRUVHsuOOOGU7TMXX0+yxXkhZVq6qq4vbbb89wmv/20EMPxXvvvZdotruWbruybLwGAdm1//77J5qbNWtWPPLIIxlOAwDZU1Fa3urx6nrFRAAAAAAA6OwUEwEAuoHi4rIYs9X+UVzc+rtUdwalpRWx9Vb7R2Fhsl2goLN58sknY7/99ovGxsbE5+Tn58dll12WwVTdy4ABAxLNrc2ONsXFxdG7d/rC+IcffrjGa6yNvLy8xEXX2bNnxz333JPZQP/HM888Ey+++GKi2T333DN69uyZ4UQdU9J7OVf3Wa7sv//+UVBQkGj28ssvz/ruVZdcckni2YMOOiiDSciFbLwGAdm1zz77RGVlZaLZn/70p5kNAwBZVFnSejGxpq42S0kAAAAAAIBMUUwEAOgmysoqY8xW+0dRYUmuo6yxHj16xpitDogePVp/qAU6q5tvvjm+8pWvRE1NTZvO+9GPfhRjxozJUKrup7q6OtFc0t3ovkiSHQnnzJkTzc3Na7XOmvr2t7+dePbHP/5xrF69OoNpPuuHP/xh4tkjjzwyg0k6tqS7Xr7zzjsZTtKxrLvuuol3Gnz99dezumviY489Fo8//nii2S233DK23nrrDCci27L1GgRkT1lZWRx77LGJZqdMmRI333xzhhMBQHb0KW39TfKq6+yYCAAAAAAAnZ1iIgBAN9KzZ/8Yu/WBnXLnxNLSithm629EaWn6Hcags6muro6jjjoqjjjiiDbtlBgRsdNOO8W5556bmWDd1Jw5cxLNJS19fZGNNtoo7UxDQ0P861//Wqt11tT48eNjs802SzT71ltvxRVXXJHhRB+78cYbY/LkyYlm+/fvH3vttVeGE3VcSe6xiIiXX345w0k6nqOPPjrx7FlnnRXLly/PYJqP1dfXx/e+973E8235HOg8svUa9J/y8vISfyTNB3zWySefHIWFhYlmv/e978X777+f4UQAkHkVpa2/uVxVvWIiAAAAAAB0doqJAADdTM+e/WObMQdFaUnnKfj1LO8X22x9UJSWVuQ6CrSrlpaWuOWWW2LUqFFx4403tvn8ddddN2677bYoKCjIQLruafXq1fH3v/890WzS0t4X2WSTTRLNPfzww2u1ztr4//6//y/x7DnnnBPTp0/PYJqIDz74IE499dTE86eddloUFxdnLlAHl/Qee+SRRzKcpOM58MADExc3586dG6ecckqGE0WcffbZif8M9e3bN4477rgMJyIX7r777kRza/saBGTXsGHD4oQTTkg0W1NTE/vuu2+bd1EHgI6msqT1YuKK+rpY3dKSpTQAAAAAAEAmKCYCAHRDZaWVse3Yb8WA/skeyM+l9dbdLLYZc1D06NH6gyzQmTQ2Nn5aSDz88MPjww8/bPM1+vfvH4888kisu+66GUiYfRdccEHcf//9uY4Rd911V8yfPz/tXF5eXowbN26t1tp2220TzV177bWxevXqtVprTR1++OExbNiwRLN1dXWx7777RnV1dUayrFq1qk3Xr6ysjJNPPjkjWTqLLbbYIkpLS9POvfXWW/H0009nIVHHUVBQEP/7v/+beP6GG26Iq666KmN5brnllrj00ksTz59yyinRq1evjOXpbp566qn4+c9/nvMS0PLlyxO/UcGECRMynAZob+edd15UVCR7s53XX3899tprr4x9X9VWjY2N8cc//jEef/zxXEcBoBPpU1rW6vFURCyvr81OGAAAAAAAICMUEwEAuqni4rIYvcXXY4vNvxpFhSW5jvNfehSXx5e23CdGbbZHFBb2yHUcWGstLS0xZcqUOPnkk2O99daLww8/fI13l+vbt2889thjseWWW7Zzytx56aWXYu+9946tt946brnllmhsbMx6hrlz58ZJJ52UaHbs2LExcODAtVpv0qRJieZmzZoVP/rRj9ZqrTVVWFgYF1xwQeL5mTNnxp577tnuD9HX1tbGvvvuG6+99lric374wx9G796dZ3fgTCgqKkpcoP3Od74TS5cuzXCijuXII49s065zp5xyStxyyy3tnuO+++6LY445JvH8uuuu26adQ0mvqqoqzjnnnBg6dGicffbZMW/evJzkOP7442PhwoWJZr/2ta9lOA3Q3vr37x+//OUvE88/++yzMWnSpHj33XczmKp1K1asiN/85jcxYsSIOPHEE2PBggU5ywJA51NRmv6N5qrqV2UhCQAAAAAAkCmKiQAA3VheXl6sO3DTmDDu8A61e+J6624WE8YdHv37D891FFhjK1eujClTpsTVV18d3/jGN2LAgAExYcKEuOqqq2LZsmVrfN0NNtggHn/88dhqq63aMW3H8dprr8Xhhx8eQ4YMiR//+MdZexB7+vTpsdtuuyUuZh111FFrveawYcNi1KhRiWYvvPDC2G+//eLVV19d63Xb6rDDDotddtkl8fwLL7wQO+64Y7zzzjvtsv68efNi1113bdMOPVtuuWWcfvrp7bJ+Z7fXXnslmnv77bdj7Nixceutt+akGJwLRUVFcfXVVyeeX716dRxxxBFx4YUXRiqVapcMn7xGtOX3/PLLL+/2pdtMqampiV/84hcxfPjwOOigg+LRRx+NlpaWjK/b2NgYxx9/fPz1r39NNL/NNtskfv0AOpbvfve7sffeeyee/9e//hVbbbVVXH311Vn5evSJadOmxSmnnBLrr79+fP/7348PPvgga2sD0HVUlqQvJtbU2TERAAAAAAA6s8JcBwAAIPd69CiP0Vt8PT5aNDNmvftsNDSszEmOstLK2GTjLyskklWvv/563H///W06J5VKRX19fTQ0NER9fX2sWLEiFi5cGAsXLowFCxbErFmz4v3332+34sondt1117jttttiwIAB7Xrdjuijjz6KCy64IC644ILYbrvt4pBDDol99tknhg4d2q7r1NfXxx//+Mc455xzYsWKFYnO6du3bxxxxBHtsv63vvWt+MlPfpJo9t5774177703Ntxww5g4cWJsuummMWjQoKioqIiioqLIy8tLe41+/frFdttt1+acV199dYwZMyZWrUq2k8G0adNi7Nix8ctf/jJOPPHEKCgoaPOaqVQqbr755jjjjDNiyZIlic8rLCyMP/7xj1FY6EceEREHHXRQnHXWWYnKDO+//34cdthh8Z3vfCd22GGHGD16dAwZMiT69esXJSUlkZ+f7P2tdt111ygtLV3b6Fmx4447xnHHHRfXXnttovmWlpY466yz4vHHH4/f/OY3sckmm6zRuh988EGcdtpp8be//a1N5+21117xrW99a43WJLnm5ua48847484774xBgwbFIYccEvvvv39st912if8cJPX000/HmWeeGVOnTk18zmmnndauGfhiTz75ZOy8885ZW+/9999P9HqezhNPPBE77bTT2gciI6677roYM2ZMzJ07N9H8qlWr4qSTToqrrroqzj333Nhvv/0y8n3O22+/Hffdd1/ceuutMW3atHa/PgDdT88eJVGQnx+rW/n7aHWdHRMBAAAAAKAz85QeAAAR8e/dE9cZsHEsXjI75s2fFlXV87Kydv9+w2L9waOjX9+hkZdnU2+y6/LLL4/LL7881zFaVVhYGGeddVacd955a1Tw6uyef/75eP755+P73/9+bLnllrHrrrvGpEmTYvvtt4/11luvzddLpVLx8ssvx/333x/XXHNNfPjhh206/2c/+1n06tWrzet+nhNOOCF+8YtfRH19feJzZs+eHbNnz16j9Xbcccd48skn23zeJptsEtdcc00ceuihic9Zvnx5/M///E9ceeWV8b3vfS8OPfTQ6NOnT9rzVq5cGXfeeWdcccUV8dprr7U564UXXhgTJkxo83ld1dChQ2OfffaJe+65J/E5K1asiAcffDAefPDBNVrzvffei2HDhq3Rublw5ZVXxksvvdSm++2RRx6JLbbYIg455JD47ne/G+PHj09UJpo2bVpcffXVceONN0ZdXV2bcg4fPjxuvPHGNp3D2vvwww/jkksuiUsuuST69esXe+yxR+ywww4xceLEGDVq1Bq9Li9cuDAeeOCBuOWWW+KJJ55o07njxo2LQw45pM1rAh1H//7946GHHopJkyZFVVVV4vP+9a9/xUEHHRSDBg2Kww47LPbaa6/Yfvvt16ikmEql4t13343nnnsunnvuuXj00UfX+PtLAPgi+Xl5UVFSFstqv/hN8KoUEwEAAAA6jHzP7QGwBhQTAQD4jPz8ghi4zogYuM6IWLVqWcz78I34cMFbsXp1Y7uuU1RUGoPW2zzWH7RllJZWtOu1oSvZaaed4re//W2MGjUq11E6hDfeeCPeeOONT8uk/fr1i1GjRsWIESNi0KBBMWjQoOjVq1eUlpZGYWFhrFq1KlatWhXLly+Pd999N6ZPnx5vvvlmLFq0aI3W32mnneLEE09st89n4MCBcfLJJ8fFF1/cbtfMlEMOOSSmTp0al112WZvOmzFjRpx88slxyimnxLhx42Ls2LGx6aabRr9+/aKsrCzq6+ujuro6Zs6cGa+++mpMnjw5GhvX7DXnkEMOsZPY5zj33HPj73//e6xevTrXUTqk0tLSuOuuu2LcuHGxdOnSxOc1NTXFTTfdFDfddFMMHDgwdtxxxxg1alQMHTo0evbsGfn5+bFy5cqYP39+vPXWW/HUU0/FBx98sEYZy8vL46677oq+ffuu0fm0j6VLl8Ztt90Wt912W0RE9OjRIzbddNPYbLPNYv31149BgwZF//79o6SkJEpKSqKxsTFWrlwZq1ativnz58f06dM//ViTXZXLysr+f/buOz6qMv37+HfSJ4EkQOgdAqEjIL0jVlDALjbYVVdRxI76010sa8MGoqhrQQVFhVURFKz0XhQQEhJCQocESEgvM/P84aPuupA5E+acM5N83r74h1xzX985Hk4mk3PNrbffftsvO+oBsFeHDh305Zdf6vzzzze8I/VvDh48qKlTp2rq1KlyOp3q2rWrOnXqpKZNm6px48aKiYmR0+n8fZf34uJiZWVl6ciRIzp48KBSUlKUnJyswsJCk54dAAB/iI+KqXAwMbeY70cAAAAAAAAAAAQzBhMBAABwWjExtZXUZrASW/XTseN7dfLkYZ3MO6q8/KMqKzO+u5ckRUREq2aNeoqtWU9xcQ1VK76JQkN5OQqcTmJioh5//HF2RfLi2LFjWr58uZYvX256r2bNmmnu3Ll+37VyypQp+uyzz7R7926/rmuGF154QcePH6/Urm0ul+v33S/NMHLkSHaTO42uXbvq/vvv1zPPPGN3lIDVqlUrffPNNzrnnHOUk5Pj8+OPHDmiTz75xP/B9Ovg5IIFC9StWzdT1kfllZSUaOvWrdq6davpvRwOh/71r3+pU6dOpvcCYI3+/fvrhx9+0IgRI5SdnV2pNYqKirR27VqtXbvWz+kAAPCPWs6YCr+ew46JAAAAAAAAAAAENe4EBwAAgFehoeGqV7e16tVtLUm/7rxQkqe8vKPKz89WWXmJ3O5yud2/7sQUEhKqkJAwhYc7VbNGgmrWrKfIiBh2dwEM6Nu3r+677z6NHj1aISEhdsfB/9e4cWP98MMPql+/vt/XjomJ0cKFCzVgwACfdmuzg8Ph0DvvvCOXy6XZs2fbHed3I0aM0Lx58xQeHm53lID15JNPaseOHVqwYIHdUQJW9+7dtXjxYl144YU6ceKE3XEk/bpD3meffaZhw4bZHQU2e/XVVzV27Fi7YwDws169emnVqlUaMWKE0tLS7I4DAIDfxTmjK/z6CQYTAQAAAAAAAAAIagwmAgAAwGcOh0POqFg5o2JVr26i3XGAoNeoUSNddtlluu6669SrVy+74+BPunfvrs8//1xNmzY1rUe7du20du1ajRo1Sjt27DCtjz+EhITogw8+UFJSkv7+97/L4/HYmufee+/Vs88+6/edLKua0NBQzZ8/X3feeadmzpxpd5yA1bt3b61fv16XXHKJdu7caWuW5s2b64svvlDXrl1tzQF7RUdHa9asWbriiivsjgLAJG3bttWWLVs0ceJEzZo1y+44AAD4VXxUxTsm5hYXWpQEAAAAAAAAAACYge03AAAAAMBiDodDnTt31p133qlly5Zp3759mj59OkOJASYkJEQTJ07UypUrTR1K/E1iYqK2bNmif/7zn6pVq5bp/c7UI488okWLFqlx48a29E9ISNDcuXP1/PPPM5RoUFhYmF577TV9//336t69u91xAlZiYqLWrl2rG2+80bYMl156qTZu3MhQYjXXo0cPrVu3jqFEoBqoUaOG3n33Xf373/9WixYt7I5zSv379+f7EgDAZ7WcFQ8m5hQV2P6BRwAAAAAAAAAAoPIYTAQAAAAAkzVq1EjDhg3T/fffrwULFujYsWPaunWrpk2bpkGDBikkhB/N7r//ft16662WDAAa0a9fP61YsULTp0+X0+m0rG9ERIQefvhh7du3T//617903nnnKSIiwrL+vrrwwgu1Y8cO3X777QoLC7OkZ0hIiG688UYlJyfrqquusqRnVTNs2DBt2rRJS5cu1c0336z69evbHSngxMbGatasWfr222/Vtm1by/o2a9ZMn332mebPn6+EhATL+lZ3/fr10z//+U/17ds3IL4n161bVy+99JLWrl2rTp062R0HgIXGjBmj5ORkPfPMM6pdu7bdcdSkSRPde++9+uWXX7Ry5Up17tzZ7kgAgCAT54yu8OtlbpcKykosSgMAAAAAAAAAAPzNmrsGAQAAAKCKCA8PV2Rk5H/9qVmzpurVq6d69eqpfv36qlevnpo0aaKkpCS1a9dONWvWtDt2wOvfv7/69+8vSdq6dasWLlyoRYsWaf369SovL7ckQ0hIiC644ALdeeedOv/88y3peToxMTG66aabdNNNN6moqEgbNmzQpk2btGvXLu3evVtHjhxRVlaW8vPzVVJSorKyMtt2GIiNjdWMGTN033336dlnn9WsWbNUXFzs9z5hYWG65ppr9PDDD6tdu3Z+X786Gjx4sAYPHqw33nhDKSkpWrt2rXbu3KnU1FQdOHBAWVlZOnHihIqLi1VaWiq32213ZMsNHz5cO3bs0Mcff6ynn35a27dvN6VPYmKiJk+erBtvvFHh4eGm9MDp1atXTw8//LAefvhhZWdn66uvvtKiRYv07bff6sSJE5blaNOmjW699VbdcsstqlGjhmV9AQSWyMhITZ48WXfeeadmz56tGTNmaOvWrZb1T0pK0kUXXaQxY8ZowIABcjgclvUGAFQ98VEV75goSblFhaoREWVBGgAAAAAAAAAA4G8Oj113LgIAgDOWlZWlevXq/dffHT16VHXr1rUp0ZkrKSlRenp6hTWtWrVSZGSkRYkAAHYqLCzUhg0btGbNGq1du1Zr167VkSNH/La+0+lUv379dMkll2jMmDEBs2NjMMvJydH8+fP10UcfacWKFSotLa30WmFhYerTp4+uvvpqXXnllUH9GgdVw/r16zVnzhx99tln2rdv3xmtVb9+fY0ePVpjx47VwIEDGfwIQB6PR8nJyVqzZs3vf3bu3Om3IV2Hw6F27dr9PgDUr18/zgPAAkuXLtXSpUsN1Y4bN04tWrQwNY8RO3bs0Oeff64FCxZo06ZNfvvgjpCQECUmJqpfv34aNGiQhgwZopYtW/pl7UDCe00AYJ9jBXma+MU7Fdb837BL1bEB78cAAAAAwJmoiveQAbDeVz+8YHeEauWiYffaHQEA/ILBRAAAglhVfFOJm8UAAN4cPHhQqamp2r17t9LS0rR7927t27dPJ0+eVH5+vvLz85WXl6fy8nJFREQoMjJS8fHxqlevnho2bKjExEQlJSXprLPOUrdu3didzETFxcVav3691qxZo127dik9PV179+5VXl6eCgoKVFxcrMjISMXExKhGjRpq0qSJWrVqpTZt2qhPnz7q27evYmK8764A2CEjI0MrV67Uzz//rN27d2vPnj06evSoCgoKVFhYKI/Ho+joaMXExKhOnTpq2bKlWrVqpa5du6p///5q27at3U8BlZCfn//77rW/fQ9KT0/XiRMnfv/+k5+fr8LCwt93WY6JiVHdunVVv359NW/eXElJSerYsaP69Omj2rVr2/2UAASZ4uJibdmyRRs2bFBqaqr27t2rzMxMHTt2TIWFhSosLFRJSYnCwsIUGRmp6Oho1alTR3Xr1lWjRo1+/37UoUMHde3atVq81uK9JgCwT7nLpRs+nlFhzYS+52tAy3YWJQIAAACAqqkq3kMGwHoMJlqLwUQAVUWY3QEAAAAAAPBFo0aN1KhRIw0ePNjuKPAiKipKgwYN0qBBg+yOAvhdixYt1KJFC1133XV2R4GFatSooe7du6t79+52RwFQTUVFRalv377q27ev3VEAAPAqLDRUNSKjlF9SfNqa3OJCCxMBAAAAAAAAAAB/CrE7AAAAAAAAAAAAAAAAqHpqRVW8O29OUYFFSQAAAAAAAAAAgL8xmAgAAAAAAAAAAAAAAPwuzhld4ddPMJgIAAAAAAAAAEDQYjARAAAAAAAAAAAAAAD4XbyXHRNzixlMBAAAAAAAAAAgWIXZHQAAAAAAAAAAAAAAAFQ9tZwVDybmFBValAQAAAAAAAAVCZHD7ggAgCDEjokAAAAAAAAAAAAAAMDv4pzRFX79RBE7JgIAAAAAAAAAEKwYTAQAAAAAAAAAAAAAAH4XH1XxjomFZSUqdZVblAYAAAAAAAAAAPgTg4kAAAAAAAAAAAAAAMDvajkrHkyUpNyiQguSAAAAAAAAAAAAf2MwEQAAAAAAAAAAAAAA+F2cgcHEE0UFFiQBAAAAAAAAAAD+xmAiAAAAAAAAAAAAAADwu3hntNea3GIGEwEAAAAAAAAACEYMJgIAAAAAAAAAAAAAAL9zhkUoMjSswpocdkwEAAAAAAAAACAoMZgIAAAAAAAAAAAAAAD8zuFwKM4ZU2HNiaJCi9IAAAAAAAAAAAB/YjARAAAAAAAAAAAAAACYIt4ZXeHXc4vZMREAAAAAAAAAgGAUZncAAAAAAAAAAAAAAABQNcVHVbxjYk4Rg4kAAAAAAAAA/ltZWZlWrFihVatWaceOHUpOTlZWVpby8vJUUFAgp9Op2NhY1a5dW0lJSerQoYN69+6tYcOGyel02h0/qGRlZWnJkiXasmWLduzYod27dys3N1d5eXkqKytTzZo1FRsbq0aNGqlDhw7q2LGjhg0bpq5du9odHQGAwUQAAAAAAAAAAAAAAGCKeGfFg4knigotSgIAAAAAAAAg0K1cuVKvvvqqvvrqK508efK0dfn5+crPz9fBgwe1fft2zZ8/X5LkdDo1fPhw3XbbbbrgggvkcDisih5UioqK9MEHH+idd97Rhg0b5Ha7T1t74sQJnThxQpmZmVqzZs3vf9+kSRNdccUVmjhxolq2bGlFbASgELsDAAAAAAAAAAAAAACAqineGV3h13OL2TERAAAAAAAAqO6WL1+unj17auDAgZo7d26FQ4kVKSoq0pdffqmLLrpI7du31+eff+7foEGurKxMzz77rJo2baq//e1vWrduXYVDiRXZv3+/XnrpJSUmJuqKK65QRkaGf8MiKDCYCAAAAAAAAAAAAAAATBEfVfGOibnFhZW+8QUAAAAAAABAcMvJydGNN96owYMHa+PGjX5dOyUlRWPGjNHFF1+sgwcP+nXtYLRq1Sp17dpVDz74oI4dO+a3dd1ut+bNm6eOHTvqueeek8fj8dvaCHwMJgIAAAAAAAAAAAAAAFPEOyseTHR7PMorKbIoDQAAAAAAAIBAsWPHDvXq1Uvvv/++qX0WLlyoHj16aPXq1ab2CWSvvfaahg4dqp07d5rWo7CwUJMnT9aoUaMqveMlgg+DiQAAAAAAAAAAAAAAwBTeBhMlKae40IIkAAAAAAAAAALFypUr1adPH6WmplrS7/Dhwxo6dKg+++wzS/oFknvuuUe33367ysrKLOn35Zdfqm/fvsrKyrKkH+zFYCIAAAAAAAAAAAAAADBFrahorzU5RQUWJAEAAAAAAMDphDgc/LHwT3W3ceNGjRgxQnl5eZb2LS0t1dVXX60lS5ZY2tdODz/8sF566SXL++7YsUPnnXeecnJyLO8Na4XZHQAAAAAAAAAAAAAAAFRNNSOdcjgc8ng8p605wWAiAAAAAAAAUC3s379fF154oU6ePGn4MVFRURo0aJDOPvtsNW7cWLGxscrPz9ehQ4e0efNmLV26VPn5+YbWKi0t1aWXXqp169apU6dOlX0aQeGNN97Q008/7dNjmjRpokGDBqlLly5KSEhQeHi4cnJylJqaqnXr1mnjxo0Vvtf7n3766SeNGTNG3333nUJDQyvzFBAEGEwEAAAAAAAAAAAAAACmCAkJUVxUdIW7IuYWF1qYCAAAAAAAAIAdysvLdc011yg7O9tQfb169fTII4/ohhtuUFxc3GnrCgsL9cknn2jKlCnKzMz0um5hYaGuuOIKbdy4UTExMYbzB5OffvpJd911l+H6QYMG6e9//7uGDRsmRwW7eu7Zs0fTp0/Xa6+9ptLSUq/rLl26VFOmTNETTzxhOAuCS4jdAQAAAAAAAAAAAAAAQNUVH1XxzT0VDS0CAAAAAAAAqBqeeuoprVy50lDtVVddpdTUVE2cOLHCoURJio6O1rhx45SSkqLbb7/d0PrJycm6++67DdUGm9LSUl199dUqLi72Wut0OvXuu+9q2bJlOueccyocSpSkli1b6qWXXtLWrVsN7zjpy/93BB8GEwEAAAAAAAAAAAAAgGnindEVfv0Eg4kAAAAAAABAlbZnzx49/fTThmofeughzZ07V7GxsT71iIyM1IwZM/TKK68Yqn/rrbe0YcMGn3oEgxdffFEpKSle62JjY7V06VKNGzfO5x5JSUlau3atBg8e7LXW7XbrjjvukMvl8rkPAh+DiQAAAAAAAAAAAAAAwDTxzop3TMwtLrQoCQAAAAAAAAA73HPPPYZ28Pvb3/6mp5566ox63XHHHXryySe91nk8Ht1xxx3yeDxn1C+QHDx40NBzDw8P18KFC9WrV69K94qJidHChQt11llnea39+eef9cYbb1S6FwIXg4kAAAAAAAAAAAAAAMA08VEVDybmsGMiAAAAAAAAUGX99NNP+vzzz73WdevWTdOmTfNLz4cffljnn3++17r169dr0aJFfukZCJ577jkVFHh/v/Wf//ynBg4ceMb9atSooY8//lg1atQw1LO0tPSMeyKwMJgIAAAAAAAAAAAAAABME++MrvDrOUUFVepTyQEAAAAAAAD84bnnnvNaExISorfeekuRkZF+6elwOPTmm2/K6XR6rTWSLxicOHFCb731lte6bt266d577/Vb37Zt2+rvf/+717qDBw9q9uzZfuuLwMBgIgAAAAAAAAAAAAAAME28s+IdE0tc5SouL7MoDQAAAAAAAACr7Nu3T59++qnXuuuvv17du3f3a+9mzZrpnnvu8Vq3YsUKbdiwwa+97fD6668b2i3xxRdfVEiIf8fJJk2apJYtW3qte+GFF/zaF/ZjMBEAAAAAAAAAAAAAAJgmPqriwUTp110TAQAAAAAAAFQtc+bMUXl5eYU1DodDkydPNqX/pEmTFBUV5bXuvffeM6W/lYw8h969e2vIkCF+7x0REaG7777ba92OHTu0ceNGv/eHfRhMBAAAAAAAAAAAAAAApol3RnutYTARAAAAAAAAqHrmzJnjtea8885T+/btTelft25dXXvttV7rPvnkE68DlIFs06ZNSklJ8Vp31113mZbhL3/5i2JjY73WGTknEDwYTAQAAAAAAAAAAAAAAKaJdxrYMbG40IIkAAAAAAAAAKyyfft2bd++3WvdddddZ2oOI+tnZWXpu+++MzWHmT766COvNTVr1tSoUaNMyxATE6MxY8Z4rZs7d648Ho9pOWAtBhMBAAAAAAAAAAAAAIBpIkLDFB0eWWENOyYCAAAAAAAAVcvixYu91kRFRZk6LCdJgwYNUqNGjbzWff3116bmMJORY33JJZfI6XSamuPqq6/2WnP48GH99NNPpuaAdRhMBAAAAAAAAAAAAAAApop3Rlf4dQYTAQAAAAAAgKrl22+/9VozYMAA1axZ09QcISEhOu+887zWGckbiA4dOqRffvnFa92FF15oepYhQ4YoKirKa12wHmv8LwYTAQAAAAAAAAAAAACAqeKdMRV+Pae40KIkAAAAAAAA+LMQ/rP0v+qgtLRUK1eu9Fo3fPhwC9IY67Nz504dOHDAgjT+9f333xuqO+ecc0xO8usOmAMGDPBax2Bi1VE9rmgAAAAAAAAAAAAAAMA28VFeBhPZMREAAAAAAACoMn7++WcVFnr/MDIjQ2z+MHDgQEN169atMzmJ/61Zs8ZrTWJioho0aGBBGmPHev369fJ4PBakgdkYTAQAAAAAAAAAAAAAAKaKd0ZX+HUGEwEAAAAAAICqY8uWLV5rQkJCdNZZZ5kfRlKzZs2UkJDgtc5I7kBjJHP37t0tSPKrHj16eK05efKk0tPTLUgDszGYCAAAAAAAAAAAAAAATBXv9LJjYrH3T08HAAAAAAAAEBw2b97staZt27aKian4fUN/MjIwF2yDiW63Wz///LPXukAbTJSC71jj1BhMBAAAAAAAAAAAAAAApoqPqvgGo7ySIpW7XBalAQAAAAAAAGCmbdu2ea1p166dBUn+kJSU5LVm69atFiTxn927d6uw0PuHvll5rBs0aKC4uDivdcF2rHFqDCYCAAAAAAAAAAAAAABTxTujvdbksmsiAAAAAAAAUCWkp6d7rWnTpo0FSf6QmJjotebAgQMqLS21II1/GDnOkvXHunXr1l5rjGZHYGMwEQAAAAAAAAAAAAAAmCreWfGOiZKUU1xgQRIAAAAAAAAAZioqKtLhw4e91hkZXvMnI4OJbrdbmZmZFqTxjz179hiqa9WqlclJ/puRY200OwIbg4kAAAAAAAAAAAAAAMBUhgYTi9gxEQAAAAAAAAh2Rgf7GjVqZHKS/9awYUNDdcE0MJeRkeG1pnbt2oqKijI/zH8wcqyD6Tjj9BhMBAAAAAAAAAAAAAAApooJj1R4SGiFNTlF7JgIAAAAAAAABLsDBw4YqmvQoIHJSSrXb//+/SYn8R8jx9rq42y05+HDh+VyuSxIAzMxmAgAAAAAAAAAAAAAAEzlcDgU54yusCanmMFEAAAAAAAAINgdO3bMUF39+vVNTvLf6tWrp5AQ72NUx48ftyCNfxg51lYfZ8nYYKLH49GJEycsSAMzMZgIAAAAAAAAAAAAAABMFx8VU+HX2TERAAAAAAAACH5GBxPj4+PNDfInISEhqlmzptc6o/kDgZGsVh9nX3oG07HGqTGYCAAAAAAAAAAAAAAATBfv9DaYWGhREgAAAAAAAABmMbrjYI0aNUxO8r+MDCYG046JRrIaec7+ZrRnMB1rnBqDiQAAAAAAAAAAAAAAwHTxzugKv55TzI6JAAAAAAAAQLA7efKk15qYmBiFhFg/0hQbG+u1Jjc314Ik/mHkWNsxmGjkOEvBdaxxagwmAgAAAAAAAAAAAAAA08VHedsxkcFEAAAAAAAAINiVlpZ6rXE6nRYk+V9RUVFea4zkDxSBeqyNHGcpuI41To3BRAAAAAAAAAAAAAAAYLp4p5fBxOJCeTwei9IAAAAAAAAAMIORYbPQ0FALkvyvsLAwrzXBNCwXqMfayHGWgutY49SM/Z8GAAAAAAAAAAAAAAA4A/HO6Aq/7nK7lV9arJqR9nxaOgAAAAAAQHU1fOgkuyOgCjEybGZ0cM3fjPQtKyuzIIl/BOqxNtozmI41To0dEwEAAAAAAAAAAAAAgOm87ZgoSTlFBRYkAQAAAAAAAGCW8vJyrzUMJvpHoB5rBhOrDwYTAQAAAAAAAAAAAACA6eKjGEwEAAAAAAAAqjojQ2kul8uCJJXra9fQZGUE6rE22jOYjjVOjcFEAAAA+E1ZWbGKinJVVlZsdxQAAAAAAAAAQICJi4qWw0tNTnGhJVkAAAAAAAAAmCMiIsJrjZGd/sxgZIc+I/kDRaAea6M7IQbTscapMVoKAACAM1ZeXqKU1GU6fCRFHo9bDkeIGtRPUlKbwQoLi7Q7HgAAAAAAAAAgAISGhKhmlFMni4tOW7Nk1Salb9ivqKgINaxXW+0Sm6punTg5HN5GGoHAUlJapt0ZB7U745By8wpUWlquktJSSQ5FRoQrMiJccbHRat2ikVq3aKSIcG7hQXDxeDw6mp2j5LR9Onz0uIpLylRSUqay8nJFhIcpMiJcUVGRatTg12t5Qu04uyMDPisuKVXanoPanXlIefmFKikpU2lZmSSHIiPDFRkervi4Gkps2UitmjVQONdyBBmPx6NDR48rJW2/jmSdUHFJqUpLy1Xucik8PEyR4WFyOiPVuGGC2iU2Ve34mnZHBgAAQSI8PNxrjV2DiUb6BtOwXKAea6M9g+lY49T4SRgAAABnxOUq109bFygn9+Dvf+fxuHXo8E4VFeWqW9cxCg3lZScAAAAAAAAAVFd5+YX66Zd0JafuVWFZsVTB59ltSUnXd5s3/Nff1YqvofaJzdQusanaJTbVWZ1aK7ZmtMmpAeM8Ho92pR/Q9uQMJaftU0raPu3OPCSXy23o8WFhoWrVvKHaJzZVuzZN1SmphRJbNmIgFwElN69AP23frZ2p+34/z0/k5ht+fELtWLVLbKZ2bZqoXWJTdeuUqJjoKBMTA75xu91KTtunX1IylZz263mesfeIXG5j1/LwsFAltmykdm1+fc3SuV0LtWzWgGs5AsqJ3Hxt2Z6m5P9/LU9O26eTecZ3LK+XEP/ra/I2TdU+sZnO6tRKzig+rBoAAPyvyEjvrxGKi4stSFK5vsE0LBeox9poz2A61jg17hAHAADAGcncu+m/hhL/U07uQWXu26RWLXpbnAoAAAAAAAAAYCePx6NtOzM0f9EK/bDyJ5WVuyRJDYY2UHSj0w8VhjpD/+fvTuTka/XGHVq9cYekX4e4hvbrqstGDFDXjq244R+2yc0r0KLv1uvfX63U/oPZlV6nvNylXbv3a9fu/fpiyRpJUvMm9XTpRf110Tm9VLMGg7iwh8fj0eZtafr3opVaumar4WHbU8k+flIr12/XyvXbJUkR4WEaPqibLr1ogDomNedaDtscz8nTwm/W6t9fr9bho8crvU5ZuUs7U/dpZ+q+3/+udfOGunTEAF0w9GwGcWEbt9utDT/t0vxFK7Vy/Xa53Z5Kr3U0O0dHs3O0fO02SVJUZITOG9JDl40YoKTWTfwVGQAAVAE1a3rfabmgoEAej8fynwfz8vK81sTGxlqQxD9q1qypo0ePVlhj5Dn7m9GewXSscWoMJgIAAKDSCotylbF3Q4U1GZkb1LB+OzmdcRalAgAAAAAAAADYpbCoRN8s3aT5i1Yqdc+B//m6q8hV4eNPNZj4Z+XlLn27fLO+Xb6ZG/5hi52pezV/0Up9u2yzSkrLTOmRuf+oXnrzM818bxE3/MNy+QVF+vqHDZq/aKUy9h0xpUdpWbm++n6Dvvp+g5JaN9FlIwbovME9FBXFTgkw3+k+QMHfdmce0tTXPtWr7y7QhcN66tKL+qt1i0am9AL+zF8foFCR4pJSLViyRguWrFGndi102YgBGjbgLEVGhJvSDwAABI/atWt7rfF4PMrLy7N8MO3kyZNea4zkDxS1a9fW7t27K6wx8pz9zWjPYDrWODUGEwEAAFBpu1KXye2u+Jc0brdLKWnLdVbniy1KBQAAAAAAAACwWklpmd7/9DvN/XypCgqLT1tXXlxe4TpGBhP/03/e8H/lJYM17qpzFRXJUAvMsXXHHr3y9ufalpxhWc//vOG/a8dWuvOvo9Uxqbll/VG9FBWX6O0Pl2j+ohUqKi61rG/K7v16avpcvfL2F7rm0qG67rJzFBHObW0wx8afd+mVt79Qyu79lvUsLCrR/EUrNX/RSp3dta0m3TRabVo1tqw/qpf8giK9OfsrfbF4jWkfoHAq25MztD05Q9P+9Zmuv3y4rho9WGGhvr22BwAAVUedOnUM1eXm5lo6mOh2u5Wfn++1zmj+QGAka25urgVJKtczmI41Ti3E7gAAAAAITlnZ6co+tsdQbXZ2urKzjdUCAAAAAAAAAILL9uQM3XjnVL394eIKhxIl7zsmhkVVbhClsKhEsz7+RjdMnKqtO3g/Gv5VXFyql//1mf72wDRLhxL/7Odf0nXzfS/p1XcXWDpogOph87Y0XXf7s5o9/3tLhxL/U15Bkd784CuNn/S8klP32ZIBVVdBYbGeffUT3fHwq5YOJf7Zxp93adxdz+utD79WuUk7NaL6Wrtpp8ZOeEafLFhu22uFnJMFeuWdL3TzvS8pPfOQLRkAAID9jA6bHTlyxOQk/y0rK0sul/fX4cE0LGckq9XHWZIOHz7stcbhcKhWrVoWpIGZGEwEAACAz1yucu1KXe7TY1JSl8nlqviTsAEAAAAAAAAAwaOktEwz3lmgW+5/WRn7jN3c4m0wMSQiRI5QR6Uz7T1wVH97YJqmvfWZim0arEHV8vOOdF0/8TnN/XypPB6P3XHkdnv0wbzvdeOdU/VLSqbdcVAFFBWX6PmZ8zThwVd04PAxu+NI+nU33L/e86Le+GCRSsv4/SLO3IafUnTt7c/qs69W2R1FkuRyufXWnMX6y90vKDX9gN1xUAXkFxTpn9M+0l1/f11Hs3PsjiNJ2pm6TzfeOVXvffKtyg3c/A8AAKqWxo2N7RBuZHjNn4z2M5o/EBjJavVxNtqzfv36Cgur3AfVIXAwmAgAAACfZe7dpKJi37Z2LyrOVea+TSYlAgAAAAAAAABYaceuTN1451TNnv+93G7jw1reBhMlKdQZeibR5PF49NFnS3X9xOe0bSe7J6JySkrL9PK/PtOtD0zXvoNZdsf5Hxn7jvy+eyKDW6isLdt/3SVx3sIVdkf5Hy63W+/O/ebX3RPT2D0RlVNYVKJnX/1EE//vNR0+etzuOP9jV/qBP3ZPZHALlbRuc7LGTnhGX36z1u4o/6Os3KWZ7y3Uzfe+pD17rb8ZHgAA2KdFixaG6g4ePGhukD85dMjYjs4tW7Y0OYn/GDnWx48fV0lJiflh/oORYx1Mxxmnx2AiAAAAfFJYlKuMvRsq9diMzA0qKvJtoBEAAAAAAAAAEFi+WbpJt9w/zfAuif+pvMj7ANWZDib+Zt/BLN06eboWfbfeL+uh+sg9WaAJD74SMLskns5vuydO/L9XlZdfaHccBJnPF6/W7Q/NCJhdEk9nd+Yh3XLfy/ph1U92R0GQOXb8pG65/+WA2SXxdH7bPfHeKW+qqNjaG4UR/D767EdNenRmwOySeDo7U/dp/F0vaM3GnXZHAQAAFnE6napfv77Xut27d1uQ5g9paWleaxwOh5o3b25BGv8wMtzn8XiUnp5uQZo/GDnWDCZWDQwmAgAAwCe7UpfJ7a7cpzW63S6lpC33cyIAAAAAAAAAgFX+/dVK/eP5D1ReXrn3iV3F3h8XFhVWqbVP2c/l1hMvzdHHC5b5bU1UbVnHcnXbg9P1S0qm3VEM+/mXdN3+0Awdz8mzOwqCxAfzvtczr3zs0463diotK9cjz8zSwm8DbzcwBKaDR47pbw9MU9oea3dfORPrNifrzv97TSfzGDSHdx6PR298sEjT3vrc7iiGFZeU6v4n/qXvV2yxOwoAALBIq1atvNakpqZakOQPRoblGjdurMjISAvS+IeR4ywF5rE2mh2BjcFEAAAAGJaVna7sY3vOaI3s7HRlZ5/ZGgAAAAAAAAAA6839fKmee/XTM9pBzlPukbvMXWGNv3ZM/E8vvfFvvf/pd35fF1XL0ewc3frANKVnHrY7is92pR/QbZOn69iJk3ZHQYB7+8PFevXdBXbH8Jnb7dGTL3+k+YtW2h0FAe7AoWz97f5p2n8o2+4oPtuWnKHbH5rBcCIq5PF49MrbX+jdud/YHcVn5eUuPfrce/r6hw12RwEAABbo3Lmz15rk5GQLkvjWz0juQNK6dWs5nU6vdVYe68OHDys3N9drXbAda5wag4kAAAAwxOUq165U/+x2mJK6TC5XuV/WAgAAAAAAAACY78tv1urlf33ml7XKiyp+f9iMwURJem3Wl/r3Vwy04NRycvM16dGZOnD4mN1RKi1z/1Hd9ejrystnoAWnNvfzpfrXnK/tjnFGnp85T4t/3Gh3DASorGO5uvOR15R1zPsNsIEqdc8B3TvlDRUWldgdBQHq3bnf6MPPfrQ7RqW53R49+dKHWr52m91RAACAybp16+a1JiUlRYWF1r2PsXnzZq813bt3tyCJ/4SGhqpLly5e64w8d38x2ivYjjVOjcFEAAAAGJK5d5OKiv3zC5yi4lxl7tvkl7UAAAAAAAAAAOZatmarnn5lrt/WcxW5Kvx6mDPMb73+bOpr8/Tdii2mrY/gVFxcqnumvKE9e4Nvp8Q/S91zQPdMeVMlpWV2R0GA+fqHDX4bMLeTx+PREy/O0eqNO+yOggCTX1CkSY++FtQD5r/ZlpyhB//5tspdFb9mQvUzb+EKvTn7K7tjnDGX261HnpmlLdvT7I4CAABMZGTozO1266effjI/jKR9+/YpKyvLa52RgcpAY+RYWzmYuGmT9/uDa9asqdatW1uQBmZjMBEAAABeFRblKmPvBr+umZG5QUVFwftJlQAAAAAAAABQHRw+elyPvTBbbrfHb2u6iiu+yd6sHROlXwdannzpQx04lG1aDwSfaW9/rh279todw2+27dyjmbO+tDsGAkjm/iN65pWP7Y7hNy63W/947v2g3hUP/vfca58qPTP4B8x/s35Lit79aIndMRBAktP26aU3/213DL8pLSvXI8+8p9y8ArujAAAAk3Tt2lVOp9Nr3YoVKyxIIy1fvtxQXe/evU1O4n99+/b1WpOamqojR45YkMbYse7Vq5ccDocFaWA2BhMBAADg1a7UZXK7/ftpjG63Sylpxn7QAwAAAAAAAABYz+Px6Knpc1VYVOLXdb3tmBgaZd5goiQVl5TqyWkfye12m9oHwWHDTyn67KtVdsfwu48XLNdPv+y2OwYCgMvl1pMvfVjldtHMKyjSMzM+lsfjv8F5BK9la7bqm6Xed+QINrM++VYpu/fbHQMBoKysXE+8NEcuV9V6/XrsxEm9+Pp8u2MAAACTREZGasCAAV7rvv/+ewvSGOvTrl07NWnSxII0/nXOOecYqrPiWJeUlGjVKu/vtZ177rmmZ4E1GEwEAABAhbKy05V9bI8pa2dnpys725y1AQAAAAAAAABn5osla7R+S4rf1y0vKq/w62bumPibLdvS9O8qOIwG3xQUFuuf0+baHcMUHo9HT778oYqLS+2OApvN/XyptiVn2B3DFKvW/6LFP260OwZslnuyQM/O+MTuGKZwudx64qU5Kiur+LUTqr53536j3RmH7I5hiiVLN2n5mm12xwAAACYZPny415oVK1YoPz/f1Bxut1tLlnjfkTxYh+UaNWqk9u3be637+uuvTc+ydOlSFRUVea0L1mON/8VgIgAAAE7L5SrXrlRzdzVMSV0ml4tfpAAAAAAAAABAIDl89Limv/W5KWsb2jHRYUrr/zLjnQU6cCjb/EYIWDPeXaDDR4/bHcM0+w9m6/X3F9odAzbK2HdEb3ywyO4Ypnrx9fnKOpZrdwzY6IU35ut4Tp7dMUyTtuegZn38jd0xYKPktH1675Nv7Y5hqmdf/US5eQV2xwAAACa44IILvNYUFxfriy++MDXHihUrdPDgQa91RvIGKiPZv/jiCxUXF5uaY+5c7x8CVr9+fXXr1s3UHLAOg4kAAAA4rcy9m1RUbO4v8oqKc5W5b5OpPQAAAAAAAAAAxnk8Hj39yscqLCoxZX1vg4kOh0OhkebvmlhcUqonp30kt9ttei8Eng0/peizarBr5scLluunX3bbHQM2cLnc+ufLH6q0iu+0lldQpGdmfCyPx2N3FNhg2Zqt+mZp1f9d86xPvlXK7v12x4ANysrK9cRLc+Sq4q9Xj504qRdfn293DAAAYIIuXbqoQ4cOXutmz55tao4PPvjAa02dOnWCehe/a665xmtNXl6eqUOgBQUF+uyzz7zWXXXVVXI4LPhkOliCwUQAAACcUlFRrjL2brCkV0bmBhUV8UmmAAAAAAAAABAIVq7/Res2J5u2fnmx9yGZUKf5g4mStGVbmn5c9bMlvRA43G63Xnrz33bHsITH49FLb/yboa1q6Jtlm7QtOcPuGJZYtf4Xrd+SYncMWKy83KWX/+X9hteqwOVya1o1ea74b18sWaPdGYfsjmGJJUs3aXs1+b4FAEB1c+2113qtWbJkiZKTzXk/MisrS3PmzPFad+WVVyo8PNyUDFbo2bOn2rRp47Xu5ZdfNi3Du+++q9xc7/cCGzknEDwYTAQAAMAppaQtl9td8adW+4vb7dKutOWW9AIAAAAAAAAAVOzjL5aaur63HRMl6wYTJenjBcss64XAsOHnXUrPPGx3DMuk7N6vn3ek2x0DFvJ4PJr7+VK7Y1jq4y+4llc3y9dt06Ejx+2OYZnN29KUmn7A7hiwkNvtrnbXtur2fAEAqC6uu+46hYZW/F6fx+PRM888Y0r/adOmqbi42GvdjTfeaEp/Kxl5DmvXrtXSpUv93ru0tFQvvvii17p27dqpV69efu8P+zCYCAAAgP+RlZ2u7Gxrf0H9a889lvYEAAAAAAAAAPy3PXsPa+PPqab2cJe45XFXvHtbmDPM1Az/aeuOPdzoX838e9FKuyNYrjo+5+psx669Stm93+4YllqzaacOHMq2OwYsVB2va//+qvo95+psw8+7tO9glt0xLPXj6p917PhJu2MAAAA/a9asmS6//HKvdR988IE2b97s19579+41NCzXv39/9e7d26+97XDrrbcqOjraa929994rt9vt197Tpk3Tnj3e7wG+9957/doX9mMwEQAAAP/F5SrXrlR7di9MSV0ml6vclt4AAAAAAAAAAOmzr1dZ0sfbrolW7pgocaN/dXIk64RWrNtudwzL/bDqZx07wY3+1cX8ajiw5fF49NnXq+2OAYtY8UEKgWjxjxuVX1BkdwxYpDoO35aXu7Tgm7V2xwAAACZ44IEHvNa43W7dfPPNKi0t9UtPj8ejv/3tbyoq8v4a2kg+X4wbN04Oh8PrH3/vXFinTh399a9/9Vq3efNmQwObRqWmpurxxx/3WtewYUNdf/31fuuLwMBgIgAAAP5L5t5NKirOtaV3UXGuMvdtsqU3AAAAAAAAAFR3hUUlWvTdekt6lRdX/CF1Vg8mcqN/9fH54tVye9mxsyoqL3dpwRJu9K8Ock8W6Lvl/t1hIlh8+e1alZSW2R0DFvj3V9Z8kEKgKSou1dc/bLA7BixQXT9IQZI+X7xK5a6KP8QEAAAEn+7du+uSSy7xWrd582ZNmjTJLz2ffvppLV682Gvd2WefrYsvvtgvPQPBAw88YGjXxIcfflgrV575h2EUFBToqquuUn5+vtfahx56SJGRkWfcE4GFwUQAAAD8rqgoVxl77f1FRkbmBhUV2TMYCQAAAAAAAADV2TdLN6mgsNiSXt52TAyLCrMkx2+Kikv11ffc6F/VlZWV64vFa+yOYRtu9K8eFn67TqVlFQ9/V1W5Jwv0/YotdseAyQqLSvTV99Z8kEIgmr9opTye6jdgX91U1w9SkKQjWTlatf4Xu2MAAAATvPjii4aG0l5//XX93//93xn1eu211wyt4XA49Morr8jhcJxRv0DSpEkTPfzww17rysrKNHLkSG3cuLHSvQoLC3XxxRdryxbvP4t37txZEyZMqHQvBC4GEwEAAPC7lLTlcrvt/YW02+3SrrTltmYAAABA5S1dulQOh8PrnylTptgdFfgvU6ZMMXTuLl261O6oAAAApvnWwh22vA0mWr1jomTt84c9Nm9P0/GcPLtj2OZIVo627dxjdwyY7Jtlm+yOYKtvlnEtr+rWbtpp2QcpBKKMfUeUmn7A7hgwWXV/XVrdnz8AAFVV69atNXnyZEO1Tz31lK655hrl5fn2Pk5JSYnuvPNO3X777Ybqx48frz59+vjUIxjcd999atOmjde63NxcDR48WO+9957PPVJSUtSnTx/9+OOPXmsdDodmzJih0FDr3/OF+RhMBAAAgCQpKztd2dnpdseQ9FsWfjEOAAAAAAAAAFZxudz6JSXTun4BOJiYnLpXZdV0l7HqgqE8advODLsjwERFxSVK3VO9B5Z+Sc5gN7kqbivXcm1LzrA7Akx0Ijdf+w9m2x3DVtt5vQIAQJX16KOPqm/fvoZq586dqzZt2ujVV1/VyZMnK6wtKirS+++/r3bt2umVV14xtH7btm01bdo0Q7XBJjIyUnPnzjW0Q2VhYaHGjRunoUOH6scff/T6M3VGRobuuecedenSRdu2bTOU58EHH9SgQYMM1SL4hNkdAAAAAPZzucq1KzWwdilMSV2mWrWaKjSUl6wAAAAAAAAAYLbM/UdUXFJqWb/y4ooHAMOiwxSZEKmS7BKLEkll5S6l7z2spNZNLOsJayWn7relb2RCpGo0r6HI2pEKiQiRu9StkuMlys/Mt/Qcl6SUtH2W9oO1UtMPyu22figvkM7xvIIiHTh8TE0aJljaF9ax6zoWSOd5MtfyKi05lXP8cNYJ5eTmKz6uhqV9AQCA+cLCwvTxxx+rW7duOnbsmNf6I0eO6I477tD999+vwYMHq0ePHmrSpIlq1qyp/Px8HT58WJs2bdLSpUt92l3R6XTqk08+UY0aVff1Rvfu3fXiiy8a3j1y6dKlWrp0qZo2barBgwerS5cuqlOnjsLDw5WTk6O0tDStW7dO69ev9+kDgQYOHKgnnniisk8DQYC7vAEAAKDMvZtUVJxrd4z/UlScq8x9m9SqRW+7owAAAAAAAABAlWf1De7edkx0hDjU+PzGKs4qVvb6bJXmWDM0mZy2j8HEKixlt7XneUR8hBJ6JSiqbtT/fC2qXpTi2sXZco6j6rL6/28gnuPSr8eBwcSqye12K2W3tUPmgXieM2RetXEt/1Vy2j716dHesn4AAMA6TZs21VdffaXhw4cbHiYsKirS4sWLtXjx4jPuHx4ernnz5qlr165nvFagmzBhgjIzM/Xcc88Zfsy+ffs0e/Zsv/Tv3LmzPv/8c4WGhvplPQSmELsDAAAAwF5FRbnK2LvB7hinlJG5QUVFgTUwicA3btw4ORwOQ38yMjLsjntaLVq0MPQcWrRoYXdUAAAAAAAAVAE7Ld6ZJbxGuKG6qLpRanR+I0U3jjY50a+SU/da0gfWyz6eq6xj1v3OIbpxtBqd3+iUN/n/J6vP8QOHjyk3r8CSXrBecpp117BAPcclaSfX8ipr74EsFRZZt3NboJ7nuzMPqaS0zJJesB7X8l9Z/fMJAACwVq9evbRw4ULLdywMDw/XRx99pIsuusjSvnZ69tlndeedd1ret127dvr2229Vu3Zty3vDWuyYCAAAUM2lpC2X213xJ1Pbxe12aVfacnXtfLHdUQAAAAAAAACgSrNyZ5aI+AjVOquW4fqQsBDVG1hPh74/pLJcc2/C37lnn/JLik3tAXv8lJKukAhrPr87PC5c9QbWU0iosX5WnuOS9HNKurp3bmN6H1gvOWOfJed5oJ/jO/fs5VpeRf28i2u5JHkkbU/LUFLrpqb2gT2SM/YH7rV8QD0dXHLQkp0T2eUZAICqb9CgQVqzZo1GjRql9PR00/vVq1dP8+fP14ABA0zvFWimTZum1q1b695771V5ebnp/S666CJ9+OGHiouLM70X7MdgIgAAQDWWnb1H2dnm/0B3JrKy05V9bI8S6rS0OwoAAEFtypQpXmtatGihcePGmZ4FAAAAABBYPB6PdmcctKxfQq8EwzdA/yYkNESNz2tsUqI/lEq6Zf4bpveBPVpc0cLuCKdl1TkuSa/v+kHa9YMlvWCxPtFq0aeF3SlOycpzPEduruVVGNfyX73w01fST5a0gsVihtVSjIx/iIeVQsJClNArQQe/Mf9nh7Q9B0zvAQAA7NepUydt3LhREydO1Jw5c0zrc+GFF+rNN99UkyZNTOsR6O68805169ZNN998s1JSUkzp4XQ69cgjj+jBBx9USIg1HyoD+zGYCAAAUE25XOVKSV1mdwxDUlKXqVZ8U4WG8vIVAIDKeuyxx7zWDB48mMFEAAAAAKiGSkrLVFhUYkmvyIRIRdWNsqQXAAAAAP+KqhulyDqRKjlm7s8PJ3LzTV0fAAAEjlq1amn27Nm66aabdN9992nTpk1+W7tt27Z66qmndNlll/ltzWA2cOBAbd26VS+88IKef/55HT9+3C/rhoSEaMyYMZo6dapatmQTkuqGEVQAAIBqKnPvJhUV59odw5Ciolxl7vPfD5sAAAAAAAAAgD+UlpZb1qtG8xqW9QIAAADgf1a8pi8ts+5nFAAAEBiGDBmijRs3aunSpbriiitUo0blXnNERUVpxIgRWrhwoZKTkxlK/JOIiAg99NBD2rdvn1577TX17NlTDoejUms1atRIkyZN0q5duzRv3jyGEqsptpwBAACohoqKcpWxd4PdMXySkblBDeu3k9MZZ3cUAAAAAAAAAKhSSkrLLOsVWTvSsl4AAAAA/C+yjvmv6cvLXXK53AoNZf8VAACqm8GDB2vw4MEqLS3V8uXLtWrVKu3YsUPJycnKzs5WXl6eCgsLFRUVpZo1a6p27dpKSkpShw4d1Lt3b51zzjmKjo629TnMmjVLs2bNsjWDN9HR0brtttt022236ciRI1qyZIm2bNmiHTt2KD09Xbm5ucrLy1N5eblq1KihmjVrqnHjxmrfvr06duyoYcOGqVu3bnY/DQQABhMBAACqoZS05XK7XXbH8Inb7dKutOXq2vliu6MAAAAAAAAAQJXi8Xgs6xUSwY3FAAAAQDCz6jW9lT+nAACAwBMREaHhw4dr+PDhdkep8urXr68bbrhBN9xwg91REIR4xx8AAKCayc7eo+zsdLtjVEpWdrqyj+2xOwYAAAAAAAAAVCmREeGW9XKXui3rBQAAAMD/rHhNHxoSorCwUNP7AAAAADgzDCYCAABUIy5XuVJSl9kd44ykpC6Ty1VudwwAAAAAAAAAqDKsHEwsOV5iWS8AAAAA/ldyzPzX9JGR1v2MAgAAAKDyGEwEAACoRjL3blJRca7dMc5IUVGuMvdtsjsGAAAAAAAAAFQZERFhCrdoN5L8zHxL+gAAAAAwhxWv6WOio0zvAQAAAODMhdkdAAAAANYoKspVxt4Ndsfwi4zMDWpYv52czji7owAAAAAAAABA0AsJCVHLZg20K/2A6b1KsktUnFWsqLq+32hcmlOqY5uOmZDqDw3q1dLDk64xtQfssXlbmmbN/caSXnV61FFEfITPj7PiHJekm6+9UJ07tDS9D6z32PMf6NiJPNP7BPo53qJpfd1z62Wm94H1Vm/4RXM/X2ZJr0A/z++8abQSWzYyvQ8s5vHooafeVUFhsemtKnuOF2cVW7JjYuvmDU3vAQAAAODMMZgIAABQTaSkLZfb7bI7hl+43S7tSluurp0vtjsKAAAAAAAAAFQJSYlNLRlMlKTs9dlqdH4jhYSFGH6Mu9yto6uOqjSn1MRkUrsOndS5QTNTe8AetTzRmnn4C0t6HV11NGDPcUka3qWr6iXEm94H1mtbu5F+2PmT6X0C/RzveHZTruVVVHh7h959fbElvQL9PD+v61nsKFdFtY6vr3Xpyab3qew5nr0+28RUf0hKbGpJHwAAAABnxvhPFAAAAAha2dl7lJ2dbncMv8rKTlf2sT12xwAAAAAAAACAKqF9G+tu/C3NKdXRlUflLncbqneXu3V0pTU3+bdLbGJ6D9ijcYM6qhnjtKRXIJ/jteNrqm6dONP7wB7tLLqWB/I5LnEtr8paN2+o8LBQS3oF8nnerHE9hhKrsHYWDeQF8jkuWXccAAAAAJwZBhMBAACqOJerXCmpy+yOYYqU1GVyucrtjgEAAAAAAAAAQc/qG38LDxTq4JKDKs4qrrCuOKtYB5ccVOGBQktytWvDDltVlcPhsHTnnUA9x9u3aSqHw2FJL1jPymt5oJ7jEtfyqiw8PEyJLRtZ1i9Qz3OGb6s2ruW/svKDUwAAAABUXpjdAQAAAGCuzL2bVFSca3cMUxQV5Spz3ya1atHb7igAAAAAAAAAENRat2ik0NAQuVzGdkzxh9KcUh385qAi60SqRvMaiqwTqZCIELlL3So5VqL8zHyVHCuxLE9IiENtWzW2rB+s1y6xqTb+vMuyfoF2jkvsPlTVJVk8rBSI53hkZLhaNK1vaU9Yq11iU+1M3WdZv0A8z60ctIf1rNr99jeBeI7Hx8aoft1alvYEAAAAUDkMJgIAAFRhRUW5yti7we4YpsrI3KCG9dvL6Yy1OwoAAAAAAAAABK3IiHC1bdXY0hv9f1NyrMTym51PpWWzBnJGRdodAybqmNTclr6Bco5LUoe29hwDWCOuZoyaNqqrfQezLO0bSOd4UusmCgsNtTsGTNQxqbk++3q15X0D6TzvyLW8SmtQt5Zqx9fU8Zw8S/sG0jneoW1zdngGAAAAgkSI3QEAAABgnpS05XK7XXbHMJXb7dKutGV2xwAAAAAAAACAoDe4bxe7I9hqSDV//tVBr25JckZF2B3DNjVinOrRpY3dMWCyIf2q97VsSL+udkeAyfr17KiwsOo7fFqnVqw6tW9hdwyYyOFwaHA1v5ZX9+cPAAAABBMGEwEAAKqo7Ow9ys5OtzuGJbKy05V9bI/dMQAAAAAAAAAgqF18Xp9qe6N/aEiIRl3Qz+4YMFlMdJQuGHq23TFsM2J4L0VV48HM6mL0Bf2q7S5TkRHhGjG8l90xYLLa8TU1tBoPoI6+oC+7glYDl17Y3+4ItqkR49R5g7vbHQMAAACAQWF2BwAAAID/uVzlSkmtXrsIpqQuU634pgoN5SUuEGj27Nmj77//Xtu2bdO2bdu0d+9enTx5UidPnpTb7VZ0dLRq1qypZs2aqWXLlurevbv69++vHj16KCys6v2bzs3N1Xfffaeff/5Zv/zyi3bt2qWcnBydPHlSBQUFcjqdqlmzpurVq6f27durY8eOGjp0qPr06aPQKviL5uLiYu3bt08nT55UYWGhCgoKFBYWppiYGNWoUUNNmjRRrVq17I5pmUOHDunHH3/8/dxITU3ViRMnlJ+fr/z8fHk8HsXExCg2NlYNGjRQUlKS3n//fbtjI0jt2bNHS5cuVXJyslJSUrR7927l5OT8fr6FhoYqOjpa8fHxatCggfr376+pU6faljcrK0vffvuttm3bpl9++UVpaWnKzc1VXl6eCgsLFRMTo5o1a6phw4a/Xz/POecc9ejRo0rejFdQUKD9+/crLy9PBQUFKioqUkRExH99X61Zs6bdMf3C7XZr48aN+uGHH/TLL79o586dOnTo0O//7397znFxcUpMTFTHjh3VpUsXDR8+XHXr1rU7PgAAQFCpUytWw/p31TfLNtsdxXID+3RSvYR4u2PAApdeNECffb3a7hi2uPSi6jvkUJ00bpigvj3aa/XGHXZHsdy5g7srrmaM3TFggctGDtC3y6vf6xU+SKH6aNOqsbp0aKmtO6rfBzSPGN5LzqhIu2MAAAAAMKjq3eEJAAAAZe7dpKLiXLtjWKqoKFeZ+zapVYvedkcBglaLFi2UmZlZYU3z5s2VkZHhda1jx45p5syZ+vTTT7V169YKa3Nzc5Wbm6v9+/dr9erVmjNnjiSpbt26uvzyy3XrrbeqS5cuhp9HICorK9OHH36o2bNna9myZSorKztt7W8DQYcOHdLPP//8+9/Hx8fr8ssv1+23366zzjrLgtT+d+zYMa1atUqrVq3S2rVrlZaWpkOHDsnj8VT4uLi4OLVt21Z9+/ZV//79NXz4cNWuXdui1Kc2ZMgQLVvm/UMAvD03Sdq3b5/efPNNLViwwOu/F0nKyclRTk6O9u7dq5SUlN//PiMjQy1btvT6+IosW7bMrwNcRq8ZqJg/r8/Jycl64403tGjRIqWmplZYW15erpKSEp04cUJ79uxRYWGhL7H9oqCgQO+8847mzp2rtWvXyu12n7b2t6H3AwcOaOPGjb//fd26dXX11VdrwoQJateunRWx/e7QoUNasWKFVq1apfXr1ys9PV1Hjx71+riEhAQlJSWpX79+GjBggIYNG6YaNWpYkNg/duzYoddee00ff/yxsrOzT1uXl5envLw8HTx4UDt37tSXX34pSQoJCVHfvn119dVXa/z48YqJ4cZEAAAAIy4dMaBaDiZeNmKA3RFgkep6o3/Ps9qqeZP6dseARS4bMaBaDiZyLa8+unZopdYtGmp3xiG7o1iKD1KoXi4bMaDavV6R+CAFAAAAINiE2B0AAAAA/lVUlKuMvRvsjmGLjMwNKio6aXcMoFrLzs7WpEmT1KxZMz366KOGhqxOJysrSzNnztRZZ52l0aNHKy0tzY9JvcvIyJDD4fD6Z9y4caddw+Vyadq0aWrVqpXGjRun7777rsKhxIrk5OTorbfeUrdu3TR8+PD/GloMZLm5uXr77bd17rnnqn79+ho1apSee+45LV++XAcPHjQ0uJebm6sNGzZo+vTpuuqqq9SgQQONGDFCH330kcrLyy14FubYvn27Lr/8crVs2VJPPvnkGf17qSqWLl1q6N/dlClTbMk3a9YsQ/lmzZplS76KrFy5Uuedd546dOigl19+2etQot2Kioo0ZcoUNWvWTHfeeadWr15d4VBiRbKysvTKK6+offv2uuSSS7Rr1y4/pzXH0aNHNX36dPXv31+NGzfWVVddpenTp2vt2rWGhhKlX78vr1q1SlOnTtWoUaNUr149XXnllVq4cKGh669dkpOTNXLkSHXs2FGvvvpqhUOJFXG73Vq1apUmTpyo5s2b67HHHlNRUZGf0wIAAFQ9v93oX500b1JPZ3dta3cMWKg6Di9Vx+dcnfXp0V4N69v74W5W69C2mdq3aWZ3DFjE4XBUy+tadXzO1dnQ/mepVlzwfNCcP5zdlQ9SAAAAAIINg4kAAABVTEracrndLrtj2MLtdmlXmvfdqwCYY86cOWrfvr2mT5/u1121PB6PvvjiC3Xp0kUvvvii39Y12/bt29W7d2/ddddd2r9/v1/X/v7779W9e3dNnDhRxcXFfl3bXw4fPqzJkyerWbNmuummm/Tdd9/J5fLP96eysjJ99dVXGjt2rNq0aaOZM2cG1YBifn6+7rvvPnXr1k3z58/323EBTiUrK0vjx4/XoEGD9O233wb0MNpvli9fri5duuixxx7T8ePH/br2l19+qU6dOumhhx6q9KC42Xbv3q1bb71VzZo106RJk7R69Wq//X8rKirSp59+qosvvlhdunTR3Llz/bKuv5SVlWny5Mnq3LmzFi1a5Ne1jx07pilTpqhLly5avny5X9cGAACoahwOh664eJDdMSx12YiBcjgcdseAhYb2P0t1asXaHcMyDerW0oDeneyOAQuFhobo8hED7Y5hqctHVq/nC+n8IWerZozT7hiWadG0Ph+kUM1EhIdp9IX97I5hqSsu5loOAAAABBsGEwEAAKqQ7Ow9ys5OtzuGrbKy05V9bI/dMYBqpaSkRNdee62uu+66Su9oZERRUZHuvfdeXX/99SotLTWtjz/MnTtXPXr00KZNm0zr4Xa7NWPGDPXu3VspKSmm9fFVaWmpnnzySbVq1UrPPfecTp40dyfbjIwMTZgwQT169NDatWtN7eUPaWlp6tmzp1544YWgGqZEcNqwYYPOOusszZo1KygGEiXpueee05AhQ0zdJbesrEzPPPOMBg4cqIyMDNP6+CovL0933323kpKS9MYbb6ikpMTUftu3b9c111yjIUOGaOfOnab2MiIjI0P9+/fXc889Z+r1MS0tTUOGDNGzzz5rWg8AAICqYMQ5vdSyWQO7Y1iiaaO6GnVBX7tjwGIR4WG69YYRdsewzIRxFyssNNTuGLDYpSP6V5tdE9u2aqzzhvSwOwYsFhMdpb+OvcDuGJaZ+JdRfJBCNXTN6KGqHV/T7hiW6NqxlQb16Wx3DAAAAAA+YjARAACginC5ypWSym6BkpSSukwuF8MegBWysrI0dOhQffjhh5b1nD17tq6++uqA3WXuxRdf1NixYy0bnty6dav69eun9evXW9KvIuvWrVOXLl306KOPqqioyNLeW7duVf/+/fXEE08E7ADWihUr1Lt3byUnJ9sdBdXAvHnzNHjwYB08eNDuKIZ4PB7deeedmjx5smX/htetW6e+fftq27ZtlvSryKJFi9SuXTu9/PLLln9/W7Zsmbp166a33nrL0r7/aevWrerTp482bNhgST+Px6MHH3xQEydOlNvttqQnAABAsAkPD9Ojd49VaEjVvqXA4XDokbvHKjIi3O4osMHIc3urT/d2dscw3aA+nXXu4O52x4ANnFGRemTSWLtjmC40NESP3n0tw7fV1BUXD1KXDi3tjmG6C4f1VP9eHe2OARvE1ozWg3dcZXcM00VGhuv/Jl3D8C0AAAAQhKr2bxEAAACqkcy9m1RUnGt3jIBQVJSrzH3m7VIG4FcnTpzQOeecozVr1lje+7PPPtPEiRMt7+vNm2++qXvvvdfywbjjx4/rnHPO0fLlyy3t+59mzpypQYMG2bp7o9vt1t///neNHj3a8sFIbzZv3qwRI0bo+PHjdkdBNfD111/rmmuuCbh/BxWZPHmyXnnlFcv7Hj58WIMHD9bGjRst7y39cd26+OKLbR0iLSkp0c0336zbbrvN8kG9DRs2aPDgwTpy5IilfSVpxowZmjx5suV9AQAAgkWHts113eXD7I5hqqtHD1bXDq3sjgGbOBwOPXTn1YqJjrI7imlia0Rr8u1XcpN/NdajaxtdNmKA3TFM9Zerz1ebVo3tjgGbhIaG6JG7qvaHDCTUjtXdt1xqdwzYaFDfzjq/iu8Ke9sNI9WscT27YwAAAACoBAYTAQAAqoCiolxl7LVmd5FgkZG5QUVFJ+2OAVRZBQUFGjFihK27TM2cOVOffvqpbf3/7Pvvv9ftt99uW//8/HyNGjVKO3futLSvx+PRhAkTNGHCBMt2ifRmwYIFGjlypAoLC+2OIknas2ePLrroIuXl5dkdBdXAhg0bdMUVV6i8PHh2j37rrbc0depU2/qfOHFCI0aM0J49eyztW1JSojFjxgTUTq+vv/66brjhBst2bUxPT9eIESOUk5NjSb9Tef75523dLRIAACDQ/XXshWrZrIHdMUzRrHE9/e36EXbHgM3q162lSTeNtjuGae659TLVqR1rdwzY7Pbxl6hh/dp2xzBF21aNdeOV59odAzZr1riebr2h6n5Pn3zHVYqtGW13DNjsnlsvU51aVfN7eteOrXTlJYPsjgEAAACgksLsDgAAAIAzl5K2XG63NTcPBwu326VdacvUtfPFdkcBqqSbbrrJ0E6JkZGROvvss9W9e3e1atVKdevWVUxMjFwul06ePKnMzExt3rxZK1asqNRQwm233abhw4erVq1alXgW/nP06FFdddVVhgaBYmJiNHjwYHXp0kWJiYmKjY1VeHi4Tp48qUOHDmnHjh1avny5MjIyfM6Rk5Ojiy66SOvXr1fdunUr8Ux843a7ddNNN+ndd981vZevfvjhB11yySVavHixwsLse/vD5XLpmmuuMbQTWEhIiDp37qxevXqpdevWatiwoWJiYhQSEqK8vDwdO3ZMO3bs0ObNm7V582YL0iPY5Ofn66qrrlJBQYHX2rCwMHXv3l09evRQ69atVb9+fcXExMjtdisvL09Hjx7Vjh07tH79elMHnrdv3254qLt27doaOnSoOnbsqBYtWqhmzZq///vYt2+fduzYoaVLl+rQoUM+5zh69KguvPBCrV+/XrGx5t/cUVxcrDFjxmjx4sWm9/LVnDlzFBoaqvfee8/UPrm5ubrooouUlZVVqce3aNFCgwYNUvv27dWoUSPVrFlT5eXlOnnypNLT07V9+3YtXbpUJ096/7CSCRMmqHfv3pXKAQAAUNVFhIfp0bvH6uZ7X5bL4t21zeRwOPTIXWMVFRlhdxQEgIvP66MfVv6ktZuT7Y7iV4P6VP3dlWBMtDNSj0waq9sfnmF3FL8KDQ3Ro3dfq7CwULujIABceclg/bj6Z23dYe2Hj5ntwmE9NbB3J7tjIADE1YzR5Duu1ANPVK0PWYuMDNcjd41VSAh7rAAAAADBisFEAACAIJedvUfZ2el2xwhIWdnpyj62Rwl1WtodBahS3nzzTc2dO7fCmvPPP19//etfNXLkSDmdTq9rlpaWauHChXrqqae0adMmw1mOHTumxx57TC+//LLhx5jhjjvu0LFjxyqsGThwoCZNmqSRI0cqMjLS65pbt27VzJkz9d5776moqMhwloyMDN188836/PPPDT+msm6//fZKDyW2adNGw4cPV/fu3dW+fXs1adJEtWvXltPplNvtVn5+vvbv369du3ZpzZo1+uqrr5Sc7NvNYd9//73uuusuzZhh3w03zz33nNatW1dhzVlnnaVbbrlFV155perUqWNo3f379+uDDz74r+PfokWLCnddczgcXtcdPHiwli5daigDAs+9997rdde/gQMH6uabb9aYMWNUo0YNQ+umpqbq7bff1urVq/0R83cul0vjx4+vcLdVh8Oh0aNH64477tCQIUMM3Zywfv16zZw5U3PmzFFZWZnhPCkpKZowYYJmz55t+DGV4Xa7dfnll1d6KLFLly4aOnSounfvrrZt26pp06aKi4uT0+lUWVmZ8vPztXfvXiUnJ2vVqlVauHCh9u7d61OP999/X507d9Z9991XqYxGTJgwQSkpKT49Jjo6WuPHj9ett96qTp2835BVXl6ub775Rq+++qq++uqr09aVlZXpL3/5iy644AKf8gAAAFQXHdo2199uGKHXZn1pdxS/uWnsBerSgfeN8SuHw6H/u2us/nL3C8o6lmt3HL9oULeWHpx4laH3g1A99OjaRjdeOVzvffKd3VH85s6/jlKbVo3tjoEAERoaoin3Xq/xd7+g3JPeP7gtGDRrXE/3/O1Su2MggAzq01mXjxyoeQtX2B3Fb+6/7XI1bWT+h60CAAAAMI/DU9EdawAAIKBlZWWpXr16//V3R48etWSHJLOUlJQoPb3iIbtWrVoZGuioDlyucq1dP1tFxVXjF+VmcDrj1KfndQoN5TM5qotx48YZ3uFnz549atGihbmBKqlFixbKzMz0Wte8efNK7axX2Z41atSQy+U67aBc7969NWPGDJ199tmVyuDxeDRjxgzdd999FQ6q/KfIyEjt27fP79//MjIy1LKl9xvUmjZtqn379lX49VdeeUWjRo2qVI7MzExNnDhRX37p281///rXv3TTTTdVqqcRM2bM0MSJE316TFxcnG666SbddNNNateunc89N23apKlTp+qTTz6pcADvzz744ANdd911PveryJAhQ7Rs2TKvdREREac9l5s0aaKXX35Zl156aaVvEispKTH8uigYBhOXLl2qoUOHeq37xz/+oSlTppgf6E9mzZql8ePHe6179913NW7cOL/1NXJ9Dg8Pr3AIr0OHDpoxY4ah43s6Rs83o/8fGzVqpIMHD5726926ddPrr7+uXr16+ZTzN78NGv7www8+Pe7DDz/UNddcU6meRtx333164YUXfHpMgwYN9Le//U1/+ctf1KxZM58e6/F4tHTpUj377LNasmSJ4ceFhobq+++/1+DBg33qZ8RHH32ksWPH+vSYyy67TC+//LKaNGlSqZ7Lly/Xbbfdph07dpy2xts5+Zsff/xRQ4YMqVQOANbjvSYA8A+Px6Np//pMc7/w/rNwoLtsxADdd9vlDGzhf6RnHtKtk6frZF6h3VHOSK34GnrjuUlq1rie92JUKx6PR09N+0hfflvxB6kFgxuuGK4J4y62OwYCUHLqPk146BUVFpXYHeWM1K8brzeem6QG9WrbHQUBxuVy6+/PvafvV/5kd5QzNuHGkbrhynPtjlFlVMV7yAAAABAc2P8cAAAgiGXu3cRQohdFRbnK3Gd89zUAFcvPzz/lUGJISIieeOIJrV69utJDidKvg1MTJ07U4sWLDe20KP16o/HMmTMr3fNMVTSUeM4552jz5s2VHkqUfh0+XbBggZ5//nlDO4X95v7771d2dnal+1Zk+fLluvvuuw3Xh4aG6r777tOePXv0/PPPV2ooUZJ69OihuXPnavXq1erQoYPhx02aNElHjhypVM8zdbqhxDFjxmj79u267LLLzuhGSG6gx28qGkqcMGGCNm/efEZDiZL/z7eKBsBuvvlmrVmzptJDiZKUlJSkb7/9Vv/4xz98etxdd92lkydPVrpvRT788EOfhhKdTqeefvpp7d69W1OmTPF5KFH69Xvr0KFDtXjxYi1atEiNGxvbScDlcummm27yaddeI06ePKm77rrLcH1YWJhmzpypefPmVXooUZIGDRqkDRs2VDgQaWQoEQAAoLpyOBy686bRGnlub7ujnJHzhvTQvbee2c/iqLpaNW+olx+/VdHO4H2/pUaMU9OfmMBQIk7J4XDowYlXa1j/s+yOckbGXNRft9040u4YCFDt2jTV8/+4RZER4XZHqbRacTU0/ckJDCXilEJDQzTlvuvV9+z2dkc5I9dddg5DiQAAAEAVwWAiAABAkCoqylXG3g12xwgKGZkbVFRkzs3lAH7dpeuTTz7RI4884tPgXEWGDh2q2bNnG65/9913/dLXn0aOHKmvvvpKCQkJflnv3nvv1axZswwf45ycHJ+HcYwoLCzU+PHjVV5ebqi+ZcuWWrdunaZOnapatWr5JUOfPn20fv16XXbZZYbqjx8/rkmTJvmltz9MmDBB8+bNU1xcnN1RUA0888wzevXVV4NqiPWBBx7Qm2++6ZfMISEhmjJlimbMmGH4xuOjR4/qySefPOPef3bo0CHdcccdhuu7d++urVu36sEHH1R0dLRfMlx00UXasmWLBg4caKg+LS1Njz32mF96/+aJJ57Q0aNHDdX+9hrj1ltv9Uvv6OhozZ49WxMmTPDLegAAANVNSEiIHpp4tcZc2M/uKJUyYngv/f2ea/32/hWqpg5tm+uVf96u2Jr++TnMSrXiaui1p+9Qm1bGPpAG1VNoaIgef+AGnTekh91RKuWKiwfpfna9hRfdOyfqpSAdNK9bJ04zn71TzZvUtzsKAlh4eJie+b+/alCfznZHqZTxV5+n28ez6y0AAABQVfCOOwAAQJBKSVsut9tld4yg4Ha7tCttmd0xgCrJ4XBo9uzZhgfEfHHppZdq3LhxhmozMjK0ceNGv2eorF69emnevHmKiIjw67rXX3+9pk6darj+jTfeUFpaml8zPPzww0pPTzdU27dvX23YsEE9evj/JpeYmBh9/PHHuv766w3Vf/LJJ/rpp5/8nsNX11xzjWbMmMFNkLDEgw8+qMmTJ9sdwyc33HCDnn32Wb+ve/vtt+v//u//DNdPmzZNhw4d8muG2267TSdOnDBUO2rUKK1cuVKJiYl+zSBJdevW1ZIlSzR8+HBD9dOnT/fbsTh48KCmT59uuP7111/XmDFj/NL7Nw6HQzNmzNDll1/u13UBAACqi9DQED1w+5W6/vJz7I7ik6tHDdb/TbpGYaGhdkdBEOiY1Fwzn5mohNqxdkcxrH7deL3+3J1q27ryO82j+ggLC9WUe6/TpRf1tzuKT/56zfm652+X8t4qDOneOVGvPn2H4mJj7I5iWJNGCXpj6iS1aMpQIryLjAjXUw+P14XDetodxScT/zpKf7t+BAPmAAAAQBXCOzUAAABBKDt7j7KzjQ2F4FdZ2enKPrbH7hhAlfPwww/ryiuvNG39p556yvAuUV9++aVpOXxRq1YtzZ8/37Tdye655x7DwxQul0svvfSS33qnpKRoxowZhmrPPvtsLV68WHXq1PFb/z8LDQ3V22+/rWHDhnmt9Xg8+vvf/25aFiPat2+vt956i1+2whJDhw7VP//5T7tj+KRLly564403TFv/8ccf1/nnn2+otrS01KcBOm++++47ffHFF4ZqR4wYoU8//VROp9Nv/f/M6XRq/vz56tixo9faoqIiPf30037pO336dJWWlhqqveWWW/SXv/zFL33/zOFw6L333lO7du1MWR8AAKCqczgcun38JXrkrrEBvxORMypCD95xlSbdPIZBFvikdYtGeuele9WjSxu7o3jVu3s7vf3iPeyuBZ+EhITo/glX6L7bLldkZLjdcSpUI8apKfddr5uvu4j3VuGT9m2a6Z0X71Hndi3sjuLVoD6d9dbzd6tRffN+p4KqJyw0VI/ePVa3j79E4WGB/QEc8bExeub//qJrL/X+Oz0AAAAAwYV33gEAAIKMy1WulFR2/6uMlNRlcrnK7Y4BVBldunTRlClTTO3RsGFDjR071lDtihUrTM1i1PPPP68mTcz9ZPJXX31VtWvXNlQ7a9YsHT9+3C99//73v8vl8r5bb/369fX5558rNtb8T5UPDw/XnDlzDA1ALly4ULt37zY906k4HA7NmjXL8KAtcCacTqdmzZoVVDfdhoaG6p133lFUVJRpPRwOh958803VrFnTUP0bb7yhgoICv/R+5JFHDNW1b99eH330kcLDzb8hMDY2VnPnzjU0SP/OO+8oLy/vjPoVFBQYHjxt2rSpnn/++TPq5010dLTefvvtoPp3AgAAEGhGnttbH772oHp1S7I7yin16NJGc159UKMv7McgCyqlXkK8XvnnBN132+VyRkXYHed/RDsj9dCdV+vlx29VQu04u+MgCDkcDl0+cqBmz5isszq2tjvOKfU7u4M+fO1BXTD0bLujIEg1bpig15+bpIl/HaXIiMAbwo2tEa0p912vZx/5q+LjatgdB0EoJCRE119+jt6bfr86tG1md5xTGtb/LH048yEN6dfV7igAAAAATMBdFwAAAEEmc+8mFRXn2h0jKBUV5Spz3ya7YwBVxrRp0xQWFmZ6H6O7Ja1bt87Q0JyZevbsadruTv+pXr16hodCCwsL9eGHH55xzx07dujTTz81VPvmm2+qcePGZ9zTqAYNGuiZZ57xWufxePT2229bkOh/XXvtterVq5ctvVH93HvvvWrWLDBvQDid8ePHq0ePHqb3adasme6//35DtSdOnNDnn39+xj2//vprrVu3zmtdaGioZs+ebXhw0h86deqk++67z2tdQUGBPvroozPq9dlnnyknJ8dQ7dNPP23JcejXr5/hD0AAAADAqTWoV1vTnrhND068KmB2T3RGRej+CVfolX9OUKMG7DqEMxMSEqLLRw7UnFcfVPfOiXbH+V3v7u304WsPatT5fRm8xRlr2qiuXnvmDt19y5iA2T2xRoxTj959rV6YcovqJcTbHQdBLjQ0RNdeOkzvv3J/QO2eOKhPZ3008yFdMPRsruU4Y62aN9Sbz9+lCTeODJjdE+NjY/TPB8fpqYfHq3a8de97AwAAALAWg4kAAABBpKgoVxl7N9gdI6hlZG5QUdFJu2MAQW/w4MEaMmSIJb369Omj+vXre60rLCxUenq6BYlO77HHHrOs1y233GJ4Z8a5c+eecb/XX39dHo/Ha93FF1+sSy655Iz7+Wr8+PFq06aN17r333/f0PPwJ4fDoYcfftjSnqi+oqOjdffdd9sdwyfh4eF69NFHLet31113GdplVdIZD+NJ0syZMw3VTZgwQd27dz/jfr564IEHFB8f77XuvffeO6M+Ro9lhw4ddM0115xRL1889thjCg0NjBt1AAAAgpXD4dDoC/rpw9ce1IBenWzN0vfs9prz2oO6bMQAdseGXzVqUEcznrpd90+4QrE1o23LER8b8/suiQ3q1bYtB6qekJAQXTVqiGbPmGz7TriD+3bRh689qBHDezGsBb9q3qS+Xn9uku68abRioqNsy5FQO/b3XRLr1I61LQeqnrDQUN1w5bl6/5UHbN8J97whPfThzId0zsButuYAAAAAYD7eiQcAAAgiKWnL5XbbuxtYsHO7XdqVtszuGEDQu+222yzr5XA4NGDAAEO1ycnJJqc5vaSkJF144YWW9YuMjNStt95qqHb16tXav39/pXsVFxdr9uzZhmoff/zxSvc5E6GhoZowYYLXugMHDujnn3+2INEfzjnnHLVv397Snqi+xo4dq9q1g+vGxDFjxli6w2PNmjU1fvx4Q7XffPON4V3+TuXAgQP66quvvNY5nU7bBphjY2N14403eq1bu3atjh8/XqkeOTk5+vbbbw3V3nHHHZbeQN6qVStdfPHFlvUDAACoyhrUq63n/3GzPpjxgMZc1F/OqAhL+kZFRmjU+X313vT79dJjt6pRfXZJhDlCQkJ02YgB+mLWFD048Sq1adnYst5JrZvo/yZdo8/fncIuiTBV00Z1Nf3JCXr35Xt18bm9FRlhzQ6K0c5IXT5yoD587UE9+8hf2SURpgkNDdESfDt6AAEAAElEQVTYMUO14L3HdN9tl6tlswaW9e7croWm3He9/v3OP9glEaZq2ayBZj47Uf96/i5dMPRsy3ZQrBnj1NWjh+iTN/9Pj99/A7skAgAAANVEmN0BAAAAYEx29h5lZ9u7E1hVkZWdruxje5RQp6XdUYCgVKNGDY0ePdrSnj179tT8+fO91u3evduCNKd28803W97zL3/5i/7xj3/I5ap4aN3j8ejbb781PIjzZwsWLNCJEye81g0ePFhnnXVWpXr4w9ixY3XPPfd43RFx8eLFlua86qqrLOsFBOP5dsstt1je8+abb9bzzz/vta6srEzLli3TqFGjKtVnzpw5Xq/RknTllVeqQQPrboL6s+uuu07Tpk2rsMbtduubb77R1Vdf7fP6S5cuVVlZmdc6p9Op6667zuf1z9Qtt9yizz//3PK+AAAAVVWblo01+fYrdcf4S/T1Dxs0f9FK7dl72O99mjepp0tHDNBFw3qqZg37drBD9eOMitToC/pp1Pl9tT05Q/MXrdT3K7aorNy/HywZER6m4YO667IRA9ShbTMGWGCp9m2a6f/uGqs7/jpKX323XvO/Wqn9B7P93qd1i4a6bMQAnT/kbFt3sEP1ExMdpctHDtRlIwZoy/bdmr9opZau/lkul9uvfaIiI3T+kB66dMQAJbVu4te1gYo4HA51bt9Sndu31KSbx+jLb9bq31+t0uGjlfvwuYoktW6iy0cO1LmDuivKog8nAQAAABA4GEwEAAAIAh6PR7t2r7A7RpWyK22F6tRuwS/ygUoYNmyYIiMjLe3Ztm1bQ3VHjhwxOcnpXX755Zb3bNiwofr166cVK7x/j/jxxx8rPZi4cOFCQ3Xjxo2r1Pr+Uq9ePfXs2VPr16+vsG758uV68MEHLcnkcDgqPdAE+CouLk5DhgyxO4ZPateubUvmtm3bqlOnTtq+fbvX2h9//LHS/46D5frZo0cP1a9f3+v30eXLl1dqMPHHH380VHfuueeqZk3rP0V7+PDhiouLU25uruW9AQAAqrL/vOF/284Mrf8pWcmp+5Wye5+yjvn+2qtOrVi1a9NU7RKbqudZbdW1Qyve34Wt/nzD/8p127U9OUPJafu0O/OQyn0cVAwPC1XrFo3Uvk1TdUxqoYG9OykuNsak9IAxcTVjdM2Yobpq1GD9vCNdG7bsUnLaPiWn7dPxnDyf16tbJ07t2zRTu8Sm6tUtSR2TmnMth60cDoe6d05U986JOnb8pFas265fUjKUnLZf6XsP+TyoGBEepsSWjdW+TVN1atdCA3p15AMUYLtacTV0wxXDde2lw7Rpa6o2bU1Vyv+/luecLPB5vQZ1aykpsanat2mqPj3aK6l1E67lAAAAQDXGYCIAAEAQyD15WIWF3neqgnGFhSeUe/Kw4uMa2h0FCDqDBw+2vGfLlsZ2OLVrMLFTp05q3ry5Lb1HjRplaDBx2bJllVrf4/FoyZIlXutCQkI0YsSISvXwpz59+ngdTNyyZYtFaaT27durbt26lvVD9da/f3+FhQXX230XXnihQkNDbel9ySWXGBpMXL58eaXWz83N1Zo1a7zW1apVSwMHDqxUD39xOBzq3bu3FixYUGFdZa+fRr5PSdLFF19cqfXPVHh4uC688ELNnTvXlv4AAABVncPhUJcOLdWlwx/v72Qfz/19sOXQkeMqLi5VSWm5ysrLFR4WpsiIMEVGRqhh/dpql/jrMGLdOnE2PgugYrXiauji8/ro4vP6SJJKy8qVnnFIO9P2anfGIZ3MK1BJablKSsvkcEgR4eGKjAxXbI1oJbZspHaJTdW6eUOFhwfXz/WoPkJCQtStU6K6dUqU9Ov7xlnHcpWcuk8pu/fp0NHjKikpU3FpmcrLXb9eyyPDFRUZrsYNEtQusYmSEpuqTq1Ym58JcHp1asdq9IX9NPrCfpKkktIype05qJ2pe5WeeUj5BUUqKS1TSUmZHCEORUaEKyIiXPGxMWrTsrHaJTZVy2YNFBZmz/udgDehoSHq1S1JvbolSfr1Wn4k68T/f12+X0ezT6i4uEwlZb9eyyPCwxQRES5nVISaNExQu8SmSkpsqlpxNWx+JgAAAAACCe9oAgAABIGSkny7I1RJHFegcs466yzLeyYkJBiqs2unIzt3KBs0aJChur179+rEiROqVauWT+tv27ZNR48e9VrXpUuXgBjA69q1q9eaw4cP6/Dhw2rQoIHpefr162d6D+A3wXi+2TmQN2DAAEN1O3bskMvl8nmActmyZSovL/daN3jwYNuGM/9T165dvQ4mbt26VW63WyEhIYbXLS8v144dOwzV2nk+DBw4kMFEAAAACyXUjtOAXnEa0KuT3VEAU0SEh/26w2ebpnZHAUzhcDhULyFe9RLiNahvZ7vjAKaIjAhXx6Tm6phkzwdTAmZzOBxqUK+2GtSrrSH9vP9+DQAAAABOxfgdJAAAALBNZCSfOGcGjitQOUlJSZb3jI+PN1RXUlJibpDT6Nu3ry19pV8HRaOiogzV/vLLLz6vv3HjRkN1PXv29HltMzRr1sxQXWpqqslJftWhQwdL+gBScJ5vdl4/+/TpY6iupKSkUteMqnj9LCws1IEDB3xaNzU11dD359q1a9vyGuM3dp6LAAAAAAAAAAAAAAAAwYjBRAAAgCAQF9tA0dG+7XCFikVH11JcrPk7ZQFVTWhoqCW7zP1ZZGSkoTq7BhON7NJnlvDwcMPDSJUZTNyyZYuhukAZiKpXr56huv3795uc5Fd2Dtmg+gm28y00NFTt27e3rX+tWrXUuHFjQ7U7d+70eX2un78yeuw6duzo07r+1r59e592ggQAAAAAAAAAAAAAAKjuuNMCAAAgCDgcDrVtPdDuGFVK28RBcjgcdscAgk5sbKxCQ0Mt7xseHm6orry83OQk/yskJESJiYmW9/1Pbdq0MVS3d+9en9feunWroboWLVr4vLYZnE6noTqrBhMbNWpkSR9ACr7zrUWLFoav72Zp27atoTpfdwmUuH7+xuixM/r/wixRUVGGd90FAAAAAAAAAAAAAACAFGZ3AAAAABiTkNBSCQmtlJ2dbneUoFc3oZUS6rSwOwYQlIwOLdjF4/FY3rNRo0aGd3Q0S+vWrQ3VHTp0yOe1MzMzDdWNGTPG57XtdPz4cUv61K9f35I+QEREhOLj4+2O4ZNAGMgzmsHX66fL5TI8kNetWzef1rabr9dPo8cuUM6HjIwMu2MAAAAAAAAAAAAAAAAEBXZMBAAACCJJiYMUEmL9TmVVSUhIqNomDrY7BhC07N7ZKhDVq1fP7giGM/g6WOPxeHTw4MHKRAp4RUVFlvSpWbOmJX2AYDzX6tata3cEwxl8vX4eOnRILperMpECnq/Xz8OHDxuqC4TzIRC+pwMAAAAAAAAAAAAAAAQLBhMBAACCiNMZpxbNetodI6i1aN5TTmes3TEAVCHBNEhx4sQJn9Y9evSoysrKKhMp4Fk1mGj3bpqoPoLxXEtISLA7guFreF5enk/rGt0tMRj5ev08efKkobpgOh8AAAAAAAAAAAAAAADAYCIAAEDQad6sh5xRcXbHCEpOZ5yaN+1hdwwAVUyNGjXsjqCYmBhDdcXFxT6tm5OTU4k0waG0tNSSPuwyCqsE47nmdDrtjmA4Q0lJiU/rcv38g9FjF0znAwAAAAAAAAAAAAAAABhMBAAACDqhoWFKajPY7hhBKanNEIWGhtkdA0AVExERYXcEwzul+TqYaNWugnbweDx2RwCqvUDY5ZHrp+98vX4aPXbBdD4AAAAAAAAAAAAAAACAwUQAAICglJDQUgkJreyOEVTqJrRSQp0WdseABRwOh+HasrIyE5OcGaO7EfnyfGGOQNilzGgGX895XwdxAMAXgfA9LCTE2Nujbrfbp3W5fv7B6LELpvMBAAAAAAAAAAAAAAAADCYCAAAEraTEQQoJCbU7RlAICQlV20R2mawufNm9zujwnx2MZmNnH/sFwoCr0Qy+7u4YCM8NQNUVCN+HS0pKDNX5+v2W6+cfjB67YDofAAAAAAAAAAAAAAAAwGAiAABA0HI649SiWU+7YwSFFs17yumMtTsGLBIVFWW4NhBugD8do9l8eb4wRyCcR2YN1nB+ATBTIAyBGc3g6/WQ6+cfjB6LYDofAAAAAAAAAAAAAAAAIIXZHQAAAACV17xZDx06vFNFxbl2RwlYTmecmjftYXcMWMiXQYCcnBzzgpyB8vJy5eXlGap1Op0mp4E3+fn5dkcwnMHXQRlfzq9vv/1Ww4cP92l9ANXb8ePH7Y6gY8eOGaqLjo72aV1frp+pqalKTEz0af1gEhMTY6gumM4HAAAAAAAAAAAAAAAAsGMiAABAUAsNDVNSm8F2xwhoSW2GKDSUz+OoTmrUqGG4NlBvPvflxnxfni/MkZWVZXcEwxlq167t07pGh0kkqbi42Ke1ASCYrp/169f3aV2un3+oV6+eobpAOB+OHj1qdwQAAAAAAAAAAAAAAICgwWAiAABAkEtIaKmEhFZ2xwhIdRNaKaFOC7tjwGINGjQwXBsIN8Cfii+5fHm+MMeRI0fsjmB4kMLX88WXQZxA2DkSMFtpaandEaqUAwcO2B3BcIaGDRv6tC7Xzz8YPXbBdD4AAAAAAAAAAAAAAACAwUQAAIAqISlxkEJCQu2OEVBCQkLVNpHdJKujRo0aGa7ds2ePiUkqz5dcvjxfmOPgwYO273aVlpZmqM7XwZro6GjVqVPHUO3Bgwd9WhsIRkVFRXZHqFLS0tLk8XhszbBr1y5Ddb5eP5s1a2a4tqpfP40eO6P/L8zidru1e/duWzMAAAAAAAAAAAAAAAAEEwYTAQAAqgCnM04tmvW0O0ZAadG8p5zOWLtjwAaNGzc2XJuenm5iksrz5aZ4X54vzOHxeGwfZEhNTTVU58ugzG+aN29uqG7v3r0+rw38WVhYmKG68vJyk5Oc2rFjx2zpW1UVFhbaeu0oLS01/FqgTZs2Pq1do0YN1a5d21BtVb9+Gj12ycnJJiepWEZGhu0fNAAAAAAAAAAAAAAAABBMGEwEAACoIpo36yFnVJzdMQKC0xmn5k172B0DNmnTpo0cDoeh2p07d5qcpnJ8uTG/bdu2JiaBUT/99JNtvcvKygyfyx07dvR5/fbt2xuq2759u89rA38WGRlpqK60tNTkJKd24MABW/pWZevWrbOt9+bNmw0NuTocDq6fZ6Bjx46GXptlZGTo6NGjFiQ6tbVr19rWGwAAAAAAAAAAAAAAIBgxmAgAAFBFhIaGKanNYLtjBISkNoMVGmpsxyVUPTExMWrVqpWh2uTkZOXn55ucyHcbNmwwXNu1a1cTk8CoNWvW2NZ7y5Ythnd46tSpk8/r9+xpbEfeLVu2+Lw28GdGBxNzcnLMDXIaKSkptvStylatWmVb79WrVxuqa9mypaKjo31e3+j1c/PmzT6vHUxiYmLUsmVLQ7XBcD4AAAAAAAAAAAAAAADgVwwmAgAAVCEJCS2VkGBsIKuqqpvQSgl1jN34jKqrS5cuhurcbrdPQ4BWKCoq0tatWw3VJiQkqGHDhiYnghFLly61rffy5csN1TVr1kzx8fE+r9+rVy9DdcePH7d150h4Z3Q3WTvFxRnb/TkrK8vkJP/L4/EYvj7DuMWLF9vW+6uvvjJU169fv0qtb/T6uXXrVh07dqxSPYJF3759DdV9/fXXJic5PaPnAwAAAAAAAAAAAAAAAH7FYCIAAEAVk5Q4SCEhoXbHsEVISKjaJrJrJKQ+ffoYrl2yZImJSXz3ww8/qKyszFBt7969TU4Do3755RdlZGTY0nvBggWG6oYMGVKp9Xv06KGaNWv6NQvsER4e7rWmvLzcgiSnV69ePUN1dvx727x5s/Ly8izvW9Xt2rVLO3futLzviRMnDA92Dx06tFI9Bg8ebGgg2OVyadGiRZXqESyMHsMvv/xSbrfb5DT/a+vWrdqzZ4/lfQEAAAAAAAAAAAAAAIIZg4kAAABVjNMZpxbNetodwxYtmveU0xlrdwwEgHPPPddw7cKFC01M4jtf8vjyPGG+efPmWd7z0KFDWr16taHayg4mRkRE6MILLzRUO3v2bHk8nkr1gfkiIiK81hQVFVmQ5PScTqdiY71/L09LS7N8eMnOnf2qunfffdfynrNnzzb8QQCVHUxs1KiRevY09rr8/fffr1SPYDFs2DBDdYcPH7bl39rbb79teU8AAAAAAAAAAAAAAIBgx2AiAABAFdS8WQ85o+LsjmEppzNOzZv2sDsGAsRZZ51leNetX375RT/99JO5gQwqKSnRJ598Yrj+/PPPNzENfPXWW29Z3vOdd96Ry+XyWudwOM5okHXMmDGG6lJTU/XNN99Uug/MZWTnyxMnTliQpGKtW7f2WpOfn2/5LnsffPCBpf2qk3fffdfSoViPx6PXX3/dUO1ZZ52lli1bVrqX0evnDz/8oJSUlEr3CXQtW7ZU165dDdW+9tprJqf5b/n5+VV+MBQAAAAAAAAAAAAAAMAMDCYCAABUQaGhYUpqM9juGJZKajNYoaFhdsdAgHA4HLrkkksM1xsdTjDbvHnzdPz4cUO1bdq0Ubt27UxOBF+kpKTo66+/tqxfSUmJ4XO3X79+atKkSaV7XXLJJYqPjzdU+49//KPSfWCuunXreq05dOiQBUkqZvTatmzZMpOT/OH777+v0kNjdsvOztarr75qWb9PP/1UO3bsMFR79dVXn1Gva6+9VqGhoV7rPB6PHn300TPqFeiMHstFixZp48aNJqf5w8svv6ycnBzL+gEAAAAAAAAAAAAAAFQVDCYCAABUUQkJLZWQ0MruGJaom9BKCXUqv5MNqqZx48YZrp01a5b27dtnXhgDXC6X/vnPfxquHz9+vIlpUFlWDuW9+eab2r9/v6HaMx2siY6O1l//+ldDtevWrWNnuQBVv359rzXFxcWGzyuzdO7c2VDdl19+aXKSP0yZMsWyXtXVM888o+zsbNP7lJSUGB4ADA0N1TXXXHNG/Zo2barRo0cbqv3000+1fPnyM+oXyMaOHauQEGNvR99///0mp/nV4cOH9fzzz1vSCwAAAAAAAAAAAAAAoKphMBEAAKAKS0ocpJAQ7zu0BLOQkFC1Taxeu0PCmP79+6tNmzaGaktKSvTwww+bnKhib731lnbu3GmoNjQ0VDfeeKPJiVAZGzZs0DvvvGN6n6NHjxoelIqOjj7jwRpJuuOOOxQWZmxn2okTJyozM/OMe8K/Wrdubahu06ZNJiep2IABAwzVffvttzpw4IDJaaQ5c+Zo5cqVpvep7o4dO6ZJkyaZ3uexxx7Trl27DNWOGTNGzZo1O+Oed911l+HaG2+8Ubm5uWfcMxA1a9ZMY8aMMVS7dOlS/etf/zI5kTRhwoQqe7wBAAAAAAAAAAAAAADMxmAiAABAFeZ0xqlFs552xzBVi+Y95XTG2h0DAeruu+82XDt79mx99tlnJqY5vd27d+u+++4zXH/VVVepUaNGJibCmbjvvvtM33Hu9ttv1/Hjxw3V3njjjapTp84Z92zRooVuueUWQ7W5ubkaNWoUwx4Bpm3btobqlixZYnKSivXq1UtRUVFe61wul1588UVTs+zbt8+noTKcmQ8//FBvv/22aesvWbJEzz33nOF6X743V2TAgAG66KKLDNVmZGToyiuvVFlZmV96Bxpfjundd9+tn3/+2bQs06dPt+21HwAAAAAAAAAAAAAAQFXAYCIAAEAV17xZDzmj4uyOYQqnM07Nm/awOwYC2F//+lc1b97ccP348eP1008/mRfoFE6cOKHRo0crPz/fUH1oaKj+8Y9/mJwKZ+LEiRO67LLLVFJSYsr6L774oubNm2eoNjQ01KcBXW8ee+wxxcUZ+57y888/a+TIkcrJyfFb/zNRWlqqN998U99//73dUWzTs6exDyuYO3eurUOlkZGROvfccw3Vvvbaa0pLSzMlR35+vkaPHq3s7GxT1sepTZgwQd99953f1/3pp5909dVXy+VyGaq/4IIL1Lt3b7/1f/755w3vOvvNN9/ommuuMe37iK/y8/P13HPPaevWrWe8Vp8+fXTBBRcYqi0oKNCoUaO0d+/eM+77ZwsWLNC9997r93UBAAAAAAAAAAAAAACqEwYTAQAAqrjQ0DAltRlsdwxTJLUZrNBQYzd4o3qKiIjwaYgvNzdX559/vjZs2GBiqj8cOXJE559/vrZv3274MTfeeKPhXc9gn/Xr1+vKK69UaWmpX9edPXu27r//fsP1N910k9q0aeO3/gkJCXr66acN169cuVIDBgzQ7t27/ZbBV3l5eXrllVfUpk0b/e1vf9OhQ4dsy2K3nj17KjIy0mvdiRMndNttt8ntdluQ6tSuuOIKQ3XFxcW67rrr/D7AdfLkSV1wwQXavHmzX9eFd6Wlpbr44ou1YMECv625Zs0anXPOOYYHpcPCwvy+G2f79u11zz33GK6fP3++zjvvPB09etSvOXyRlZWlJ598Ui1bttTkyZN18uRJv6z7wgsvGB7SzMzM1KBBg5ScnOyX3pL00Ucf6fLLL1d5ebnf1gQAAAAAAAAAAAAAAKiOGEwEAACoBhISWiohoZXdMfyqbkIrJdRpaXcMBIFx48Zp6NChhuuPHj2qQYMG6fXXX5fH4zEt19KlS3X22Wf7NARZv359TZ061bRM8K8FCxZoxIgROnbsmF/We+mll3TjjTcaHhaLjY3V448/7pfe/+m2227TxRdfbLj+l19+UdeuXTVz5kxLB922bt2qSZMmqUmTJrrzzjtN2XEr2ERGRmr48OGGaj/66CMNHjxYK1asMDnVqV166aWKj483VLtu3TqNHTvWb4PAycnJ6tOnj1atWuWX9XB64eHhp/z74uJijR49Wg8++KCKi4srvb7L5dJLL72kwYMH6/jx44YfN3HiRLVv377SfU/niSeeUPfu3Q3XL1++XJ06ddKnn37q9ywVWbNmjcaPH6+mTZvq0Ucf9fuuoR06dNAdd9xhuD4zM1M9e/bU+++/f0Z9CwoKdOedd2rs2LEqKys7Zc3pzkkAAAAAAAAAAAAAAAD8LwYTAQAAqomkxEEKCQm1O4ZfhISEqm1i1dwFEv7ncDj09ttvKyYmxvBjiouLddttt6lfv376/vvv/ZonOTlZ1113nYYOHar9+/f79NiZM2eqdu3afs2DM9e0adPTfu27775T9+7d9eWXX1Z6/b1792r06NG65557fBrse/bZZ1WvXr1K963IO++8U+Hz/rOCggJNmDBBXbp00bx580zbpWrnzp169tln1bVrV3Xt2lXTp0/32w5fVcVVV11luHblypUaNGiQmjRpoquvvlqPPfaY3nrrLc2bN09ffvmlFi5c6PXPDz/8UKmcMTExuuWWWwzX//vf/9bw4cOVmZlZqX6SVFhYqCeeeELdunXTzp07T1lj1r+p6urmm29WQkLCKb/m8Xj07LPPqn379po1a5ZPu2K6XC79+9//Vvfu3XXPPfecdgjtVDp27KinnnrKcL0vIiIi9NFHHykuLs7wY7KysnTllVeqf//++uabb0z50ASPx6PNmzfrH//4hxITE9WvXz+fj7mvnnrqKXXo0MFwfX5+vm688UYNGDDA5+NQUFCg119/XW3bttUrr7xy2rqEhASfrjsAAAAAAAAAAAAAAADVXZjdAQAAAGANpzNOLZr1VHrGWrujnLEWzXvK6Yy1OwaCSMuWLfXee+/piiuu8OlG9rVr12r48OHq3Lmzxo4dqzFjxigpKcnn/kePHtXChQv1ySefVHqo4J577tGYMWN8fhzMN2zYMBUUFGjevHmn/PrevXt1ySWXaNCgQbrrrrs0YsQIRUREeF13+/btmjlzpt59910VFRX5lGnkyJG69dZbfXqMLxISErR48WINGDBAJ06cMPy4X375RVdccYUaNWqka6+9ViNHjlS/fv0UFub72xMej0e7d+/W6tWrtXr1an377bdKT0/3eZ3q5sorr9QDDzygw4cPG37MgQMH9PHHH1eqX/PmzZWRkVGpx95zzz2aOXOm8vLyDNWvWLFCHTt21O23367bbrtNLVq0MPS4nTt3as6cOXrjjTcq3BkuKSlJEydO9GmnN1Ssbt26mjZtmq699trT1mRkZGj8+PG67777dNFFF+mcc85Rp06d1Lx5c8XGxsrhcCg/P1/79u3TL7/8oqVLl2rRokU6cOCAz3mioqL04YcfKioq6kyeVoXatm2rzz//XBdccIFPg3+rV6/W+eefr8TERI0dO1YjR47U2WefLYfD4XMGl8ul5OTk36+fS5Ys0aFDh3xe50w4nU59+OGH6tOnj0+7Yq5atUrnn3++WrVqpZEjR2rgwIHq0KGDGjVqpBo1asjlcunkyZNKT0/Xtm3b9N1332nx4sXKzc31uva0adO0a9euM3laAAAAAAAAAAAAAAAA1QqDiQAAANVI82Y9dOjwThUVe78xN1A5nXFq3rSH3TEQhC677DI9/fTTevDBB31+7LZt2/TQQw/poYceUkJCgnr06KG2bduqadOmql+/vpxOpyIjI1VWVqbi4mKdOHFCe/fu1Z49e7R58+YzHpYaNWqUpk6dekZrwFwzZszQDz/8oOPHj5+2Zvny5Vq+fLlq1KihIUOGqEuXLmrdurViY2MVFham/Px8HTp0SDt27NCyZcu0Z8+eSmVp1qyZ3n777co+FcM6dOigL7/8Uueff74KCgp8euzBgwc1depUTZ06VU6nU127dlWnTp3UtGlTNW7cWDExMXI6nfJ4PCouLlZxcbGysrJ05MgRHTx4UCkpKUpOTlZhYaFJz67qioyM1COPPBIUw3X169fXI488osmTJxt+TEFBgZ577jlNnTpVZ511lvr376+2bduqXr16cjqdKikpUV5envbu3auUlBStXr1ae/fu9bpuVFSUPvnkE23evPlMnhJOYezYsVq0aJE+/PDDCuuOHTumDz74QB988IEpORwOh2bPnq0uXbqYsv5/GjJkiGbPnq2rr75aLpfLp8empaXp8ccf1+OPP66aNWuqW7du6tixo5o0aaKGDRsqJiZGUVFRcrlcKi4uVlFRkY4ePaojR45o//79SklJ0a5du0zdDdGorl276oMPPtCVV17p84c2pKena/r06Zo+fbpfsowdO1Zjx47VlClT/LIeAAAAAAAAAAAAAABAdcBgIgAAQDUSGhqmpDaD9dO2BXZHqbSkNoMVGsrLWFTO5MmTVVBQoCeeeKLSa2RnZ2vJkiVasmSJH5Od3ogRI/TRRx8pJCTEkn6onPr16+ujjz7SiBEjVF5eXmFtfn6+Fi5cqIULF/o9R2xs7P9j777DrCqs/XGvMwVmKIMMVaRIb4IFFFABFSUW7MaSq4km9hZLookx5RuvxsSeiFHjjYlo1JhrNGiQWLAjCqKoKCJFQQUR6Z2Z+f2RX0xyo5w9cMqcmfd9Hp4nwXX2+sxhHs5iz157x1//+tdo27Ztxo/9Rfbaa6946qmn4pBDDtnik+a2ZN26dfHSSy/FSy8V/hN9C8VZZ50Vf/jDH+LFF1/Md5S0Lrroovjzn/9c6++PmpqamD59ekyfPn2bMxQVFcW4ceNi4MCBFhOz5Le//W3Mnz8/r9+T119/fRx99NE563fMMcfEQw89FMcdd9xWL1mvWrXq86X3QnXMMcfEddddFxdddFHeMgwbNiwnC/0AAAAAAAAAAPWNK1sBABqY1q27RuvW3fIdY6u0ad0tWrfqmu8YFLif/vSn8ctf/jJSqVS+o6R10kknxUMPPRTl5eX5jkICo0ePztiTm7ZG06ZN46GHHor+/fvntO8ee+wRL7zwQvTo0SOnfdl6RUVF8eCDD0a3bnV/HigpKYl77703WrVqlbcMt956axxzzDF5698QNG7cOB566KEYMGBAznunUqn41a9+FRdccEHOe48ZMyaefPLJaNeuXc571yUXXnhh3HTTTXmZzXbaaad4+OGHo6ysLOe9AQAAAAAAAAAKncVEAIAGqHePEVFUVJzvGLVSVFQcvXqMzHcM6onzzjsvHn/88dhhhx3yHeULlZWVxc033xx33XVXlJR4QmghOeuss+IXv/hFzpcrtttuu3j88cdj3333zWnff+jVq1dMnz49Tj755Lz0p/batWsXkydPjr333jvfUdLacccd47HHHovmzZvntG9JSUn85je/idNOOy2nfRuqNm3axHPPPRcjR+Zu3mvatGn84Q9/iHPPPTdnPf+voUOHxowZM+Lggw/OW4a64Pzzz4977rknmjRpkrOeI0eOjOeffz7atGmTs54AAAAAAAAAAPWJxUQAgAaovLxF7Nh593zHqJUdu+we5eUV+Y5BPTJq1KiYMWNGnHjiiXXq6YnDhg2LqVOnxjnnnJPvKGyl7373u3HXXXdFaWlpTvrttNNO8eKLL8awYcNy0u/LNGvWLO6888548MEHY8cdd8xrli+z1157xc4775zvGHVG27Zt45lnnolf//rXdXZR+x8GDx4cTzzxRLRv3z4n/bbbbrt47LHH4tRTT81JP/6uRYsWMXHixLjwwgujqCi7py133nnnmDp1ahx//PFZ7ZNE27Zt49FHH43bb7+9Ti7JFRUVxYEHHpj1v9tPOOGEmDp1atafnFlUVBQXXnhhTJw4MVq0aJHVXgAAAAAAAAAA9ZnFRACABqpL50FRXlYYF+KWl7eILp0G5TsG9VBlZWWMGzcuXnnllbw9ae4fevToEQ888EC8+OKL0b9//7xmYdudeOKJ8fLLL8cuu+yStR5FRUVx1llnxcsvvxx9+/bNWp/aOvLII+Odd96Jq6++OiorK/MdJzp27BgXX3xxvPXWW/H8889nfeGl0BQVFcWZZ54Z8+bNi3vvvTeOOOKInD6xrDb22GOPnPx9fcghh8Qbb7wRo0aNymofvljjxo3j+uuvj+effz4rf4e2bNkybrjhhnjllVeiT58+GT/+tjjttNPivffei0svvTSaNm2a7zjRq1ev+PGPfxxz586NCRMmRMeOHbPes2/fvjF16tS47rrrYrvttsv48XfZZZd44YUX4vrrr4/GjRtn/PgAAAAAAAAAAA2JxUQAgAaquLgkevccme8YifTuOTKKi0vyHYN6bNCgQfHUU0/FtGnT4tRTT83ZMkBRUVEcdNBBMX78+Jg1a1Ycc8wxOelLbuyyyy7xyiuvxLXXXhvbb799Ro+97777xrRp0+KWW26J8vLyjB47Exo3bhyXXnppLFy4MG6//fYYOHBgTvv37t07Lrzwwnj22Wfjgw8+iGuvvTb69euX0wyFprS0NI4//vj485//HMuXL4+XXnopfvWrX8V5550XBx10UOyyyy7RsWPHaN68eTRu3DjrT7P7Mh07doynnnoqfvvb30bnzp0zeuz+/fvH/fffH4888khOFrDYsmHDhsX06dNjwoQJsd9++23z91zXrl3j5z//ecyZMycuuOCCnD3VtrYqKiri6quvjoULF8Z1110X3bt3z1nvVCoVu+yyS/zgBz+IadOmxaxZs+InP/lJdOnSJWcZIiIaNWoUF110UcyZMyd+9rOfbXP/oqKiGDVqVEyYMCGmT58eQ4cOzVBSAAAAAAAAAICGLVVTU1OT7xAAwNZZsmRJtG3b9t9+75NPPok2bdrkKdG227BhQ8ydO3eLNd26dfN0iwx67Y3x8emnW37P86lN626x84BD8x2DBmbNmjXx+OOPxyOPPBITJ06MhQsXZuzYFRUVse+++8aYMWPikEMOyfjCGpkzf/786Nq1a9q6b3zjG/G73/1uizUbNmyIu+++O+6+++54/vnnY/PmzbXO06JFizjqqKPi3HPPjd12263Wr8+3mTNnxkMPPRR/+ctfYtq0aVv1HnyRoqKi6NGjR+y5554xYsSI2GeffRL9uVH4Nm3aFPfee2/cdddd8fTTT0dVVVWtj1FeXh4HHHBAnHbaaXHIIYdEKpXaYv3vfve7OOWUU9Ie984774yTTz651nn4cp988kk8+uij8be//S1mzJgRs2fPjk2bNn1p/XbbbRf9+/ePfffdNw466KAYOnRo3hZqt9XUqVPjoYceivHjx8ebb74Z1dXVGTluSUlJ9O3bN/baa68YPnx47LvvvnVyLqmuro4XX3wxHnvssXjqqafirbfeipUrV35pfWlpafTs2TMGDhwYX/nKV+KQQw4p6H8jA9vOuSYAAAAA6rv6eA0ZAACFwWIiABSw+nhSycViubdu3YqY/PK4qK6u/cX82VZUVBzD9vh6lJdX5DsKDdzixYtj2rRp8frrr8e8efNi4cKFsWDBgvjss89i3bp1sX79+li/fn2UlpZGeXl5lJWVRUVFReywww7RqVOn6Ny5cwwYMCB222236NGjR9rFF+qGTC4m/qvly5fHE088Ea+99lq89dZb8e6778by5ctj1apVsXbt2igrK4vmzZtH27Zto0+fPtG/f//YZ599Ys8994ySkvrx9Nj169fH9OnT45VXXonZs2fHBx98EO+//34sXbo01q5dG2vXro0NGzZESUlJNG7cOJo0aRKtWrWKNm3aRIcOHaJr167RrVu36NevX+y88845e8opddeSJUviueeei8mTJ8c777wTc+fOjU8++STWrFkTGzZsiCZNmkRFRUW0bNkyevfuHQMGDIjBgwfHqFGj6uRTR0lv06ZN8f7778eKFSti1apVsX79+igvL4/mzZvH9ttvXycX7DJh1apVMW3atJg2bVq899578cEHH8QHH3wQn332WaxduzbWrVsXGzdujNLS0mjUqFE0a9YsWrduHW3atIkddtghunbtGt27d4/+/fvHTjvtFGVlZfn+krbKRx99FIsWLfr8s7NJkybRvHnzaNGiRXTu3LnOPhETyA/nmgAAAACo7+rjNWQAABQGi4kAUMDq40klF4vlx9x5U2Lu/JfyHeM/dOs6NLrtOCTfMYAGKluLiQAAQO441wQAAABAfVcfryEDAKAwFOU7AAAA+del86AoL2uR7xj/pry8RXTpNCjfMQAAAAAAAAAAAAAA+D8sJgIAEMXFJdG758h8x/g3vXuMjOLiknzHAAAAAAAAAAAAAADg/7CYCABARES0bt01Wrfulu8YERHRpnW3aN26a75jAAAAAAAAAAAAAADwBSwmAgDwud49RkRRUXFeMxQVFUevHnXr6Y0AAAAAAAAAAAAAAPyTxUQAAD5XXt4iduy8e14z7Nhl9ygvr8hrBgAAAAAAAAAAAAAAvpzFRAAA/k2XzoOivKxFXnqXl7eILp0G5aU3AAAAAAAAAAAAAADJWEwEAODfFBeXRO+eI/PSu3ePkVFcXJKX3gAAAAAAAAAAAAAAJGMxEQCA/9C6dddo3bpbTnu2ad0tWrfumtOeAAAAAAAAAAAAAADUnsVEAAC+UO8eI6KoqDgnvYqKiqNXj/w8pREAAAAAAAAAAAAAgNqxmAgAwBcqL28RO3bePSe9duyye5SXV+SkFwAAAAAAAAAAAAAA28ZiIgAAX6pL50FRXtYiqz3Ky1tEl06DstoDAAAAAAAAAAAAAIDMsZgIAMCXKi4uid49R2a1R+8eI6O4uCSrPQAAAAAAAAAAAAAAyByLiQAAbFHr1l2jdauuWTp2t2jdOjvHBgAAAAAAAAAAAAAgOywmAgCQVu+eI6OoqDijxywqKo7ePUZk9JgAAAAAAAAAAAAAAGSfxUQAANIqL28RO3bePaPH3LHL7lFe3iKjxwQAAAAAAAAAAAAAIPssJgIAkEiXzoOivCwzi4Tl5S2iS6dBGTkWAAAAAAAAAAAAAAC5ZTERAIBEiotLonfPkRk5Vu8eI6O4uCQjxwIAAAAAAAAAAAAAILcsJgIA5Nmbb74Zb775Zr5jJNK6dddo3arrNh6jW7RuvW3HAAByq5DmFQCg4TKzAAB1Xf/+/aN///75jgEA8KXMKwAAQG1YTAQAoFZ69xwZRUXFW/XaoqLi6N1jRIYTAQAAAAAAAAAAAACQSxYTAQColfLyFrFj59236rU7dtk9ystbZDgRAAAAAAAAAAAAAAC5VJLvAAAAFJ4unQfFx4vejnXrVyR+TXl5i+jSaVAWUwFk1o477hg1NTX5jgEAAAAAAAAAAABQ53hiIgAAtVZcXBK9e46s1Wt69xgZxcXuiwEAAAAAAAAAAAAAUOgsJgIAsFVat+4arVt1TVjbLVq3TlYLAAAAAAAAAAAAAEDdZjERAICt1rvnyCgqKt5iTVFRcfTuMSJHiQAAAAAAAAAAAAAAyDaLiQAAbLXy8haxY+fdt1izY5fdo7y8RY4SAQAAAAAAAAAAAACQbRYTAQDYJl06D4rtWnT4wv+2XYsO0aXToBwnAgAAAAAAAAAAAAAgmywmAgCwTYqLS2KXgYfF9u37RipVHBERqVRxbN++b+wy8LAoLi7Jc0IAAAAAAAAAAAAAADLJVeIAAGyzkpLG0b/v6OjVY0Rs3rwhSkoaR2lpWb5jAQAAAAAAAAAAAACQBRYTAQDImNLSMguJAAAAAAAAAAAAAAD1XFG+AwAAAAAAAAAAAAAAAAAAhcNiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAYCCU1NTk+8IAAAAABQA55EAAAAAAAAAssNiIgBQp6RSqbQ1LigDAAAAIIkk55GKivy4DAAAAAAAAKC2/KQVAKhTklwIVlVVlYMkAAAAABS6JOeRktwoCwAAAAAAAIB/ZzERAKhTiouL09Zs3LgxB0kAAAAAKHTpziOlUqlE56MAAAAAAAAA+HcWEwGAOiWVSkWjRo22WGMxEQAAAIAk0p1HKi0t9cREAAAAAAAAgK1gMREAqHMsJgIAAACQCenOI6U7DwUAAAAAAADAF7OYCADUOekuCFu/fn3U1NTkKA0AAAAAhaimpibWr1+/xRqLiQAAAAAAAABbx2IiAFDnlJaWbvG/V1VVxdq1a3OUBgAAAIBCtHbt2qiqqtpiTbrzUAAAAAAAAAB8MYuJAECdU15enrZm1apVOUgCAAAAQKFKcv4oyXkoAAAAAAAAAP6TxUQAoM4pKytLe7f6lStXpr3jPQAAAAANU1VVVaxcuXKLNaWlpVFWVpajRAAAAAAAAAD1i8VEAKDOSaVSUVFRscWaqqqq+PTTT3OUCAAAAIBCsmTJkrQ3taqoqIhUKpWjRAAAAAAAAAD1i8VEAKBOat68edqazz77LNavX5+DNAAAAAAUivXr18eyZcvS1iU5/wQAAAAAAADAF7OYCADUSWVlZVFaWpq2bsGCBbFhw4YcJAIAAACgrqupqYkFCxakrSstLY2ysrIcJAIAAAAAAAConywmAgB1UiqVijZt2qSt27x5c3zwwQeenAgAAADQwFVXV8emTZti8+bNaWvbtGkTqVQqB6kAAAAAAAAA6ieLiQBAnVVRURFNmjRJW7d58+aYN29eLFq0KKqqqnKQDAAAAIC6oqqqKhYtWpRoITEiokmTJlFRUZHlVAAAAAAAAAD1W0m+AwAAfJlUKhXt27ePuXPnJqpftmxZrFy5MioqKqJ58+bRpEkTd74HAAAAqIdqampi7dq1sWrVqli5cmWtblbVvn1754wAAAAAAAAAtpHFRACgTmvcuHFUVlbGZ599lqi+qqoqli1bFsuWLYvi4uIoKyuLRo0aff6ruLg4UqlUnbr4rKamJiIiNmzYkOckAABfzLwCAORLTU1N1NTURFVVVWzcuPHzX+vXr6/VMuI/VFZWRuPGjbOQFAAAAAAAAKBhsZgIANR5bdq0iY0bN8bq1atr9bqqqqpYs2ZNrFmzJkvJMmPTpk0REYmfDAkAkGvmFQCgUPzjhgpfpFmzZtGmTZscpgEAAAAAAACov4ryHQAAIJ2ioqLYYYcdolmzZvmOAgAAAEAdtXbt2liwYMEX/rdmzZrFDjvsEEVFfjQGAAAAAAAAkAl++goAFATLiQAAAABsyaJFi2Lz5s3/8fuWEgEAAAAAAAAyz09gAYCC8Y/lxMrKynxHAQAAAKAAVFZWWkoEAAAAAAAAyIKSfAcAAKiNoqKiaNeuXWy33XaxaNGiWLt2bb4jbbO5c+dGRET//v3znAQA4IuZVwCAQtOkSZNo3759NG7cON9RAAAAAAAAAOoli4kAQEFq3LhxdO7cOVauXBlLliyJTZs25TsSAAAAAHn22WefRYcOHaKioiJSqVS+4wAAAAAAAADUWxYTAYCClUqlokWLFlFRURHr16+PVatWxcqVKy0pAgAAADQgpaWlUVFREbfddlt89NFHcfrpp+c7EgAAAAAAAEC9ZzERACh4qVQqysvLo7y8PNq0aRPr16+PdevWxaZNm2Ljxo2xcePG2LRpU9TU1OQ7KgAAAABbKZVKRWlpaTRq1CgaNWoUpaWlUV5eHmVlZZFKpeKjjz7Kd0QAAAAAAACABsNiIgBQr/zrkuK/qqmpiaqqqqipqYnq6uo8pftiZ511VkRETJw4Mc9JAAC+mHkFAMinoqKiSKVSUVxcHKlUKt9xAAAAAAAAAAiLiQBAA5FKpaKkpG6OPkuWLImIiMaNG+c5CQDAFzOvAAAAAAAAAAAA8K+K8h0AAAAAAAAAAAAAAAAAACgcFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAgq/r37x/9+/fPdwzIKt/nAIXP3+XUd77HAQqfv8tpCHyfAxQ2f4/TEPg+BwAAgH+ymAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMRK8h0AANh61dXV//F7n376aR6SsC02b94cERFLlizJcxLIDt/jNAS+z6nvfI/TEPg+p77zPU5D4Puc+s73OA2B73PqO9/j1He+x2kIfJ9T3/keL0xfdL3YF11XBgAAmZaqqampyXcIAGDrvP3229GvX798xwAAAAAAAAAAAKCOmDlzZvTt2zffMQAAqOeK8h0AAAAAAAAAAAAAAAAAACgcFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiaVqampq8h0CANg6mzdvjtmzZ//b71VWVkZRkXsPAAAAAAAAAAAA1HfV1dXx2Wef/dvv9ezZM0pKSvKUCACAhsJiIgAAAAAAAAAAAAAAAACQmMcpAQAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIl+Q4AAJAPCxYsiIkTJ8aMGTNi5syZMW/evFi1alWsXLkyampqonnz5tG8efPo3Llz9OvXLwYMGBAHHHBA9OzZM9/R64VFixbFpEmT4s0334xZs2bF7NmzY9myZbFq1apYvXp1lJSUfP5n0LJly+jRo0f06tUrevXqFbvuumv069cvUqlUvr8MAMgq80p2rF27Nt54442YM2dOzJ8///NfixYtitWrV8eaNWti9erVsX79+mjUqFE0btw4WrRoEe3bt48OHTpE7969o3///jFkyJDo1atXvr8cANgmmzZtiueeey5eeOGFmDlzZrzzzjuxZMmSWLVqVaxZsybKy8ujoqIiKisro3fv3tGvX78YMmRI7LffflFeXp7v+AVlyZIlMXHixJg+fXrMnDkz5syZEytWrIhVq1bFpk2bonnz5lFRUREdOnSIfv36Rf/+/WO//faLnXfeOd/RASCvzCvZ8f77739+vukf50Y++OCDWL58+efnRtasWRM1NTVRVlYW5eXl0aZNm2jfvn3suOOO0b9//xg4cGAMGzYsmjZtmu8vBwDyyrySP5s3b46XX345pkyZErNmzYpZs2bFggULYvXq1bFq1arYsGFDNGvW7POfqe2www6fX3vSt2/fGDJkSLRo0SLfXwYAABS0VE1NTU2+QwAA5MLy5cvjjjvuiHHjxsWMGTO26hg9e/aMr33ta3HWWWdFu3btMpywfnvvvffif/7nf+KRRx6JN998c5uOVVlZGXvvvXeMGDEixowZE717985QSgDIL/NKZm3YsCGmTJkSr7zySkyfPj1effXVmDVrVlRXV2fk+O3bt48DDzwwjjvuuNh///2jpMQ9wAAoDM8//3yMHTs2/vrXv8bKlStr/fry8vLYf//946yzzooDDzzQzYO+xLp162LcuHHx29/+Nl555ZWtmkE6duwYX/3qV+O8886Lrl27ZiElANRN5pXMef/99+OFF16IV199NaZPnx7Tp0+PZcuWZeTYJSUlsfvuu8fRRx8dxx57bHTq1CkjxwWAQmBeyY+NGzfGQw89FH/4wx9i0qRJW/Xe/0NRUVEMHDgw9t5779h///1j9OjRlkUBAKCWLCYCAPXe6tWr44orroixY8fGmjVrMnLMRo0axTe+8Y246qqronXr1hk5Zn01ceLE+MUvfhGTJk2KbI2effv2jaOOOipOOukkS4oAFCTzSmZs3LgxpkyZEk8//XRMmjQpJk+eHOvXr89J744dO8a5554bZ511VlRUVOSkJwDU1rPPPhsXX3xxTJ06NWPH7N27d1x99dVxxBFHZOyYhW7Tpk1x/fXXxzXXXBNLly7NyDGLioriqKOOimuuuSZ23HHHjBwTAOoi88q2W7BgwefnRp5++umYN29eTvoWFRXFYYcdFt/5zndir732yklPAMgH80p+fPbZZ3HttdfGHXfcEUuWLMlKjyZNmsSBBx4YRx11VBx//PFRXFyclT4AAFCfWEwEAOq1v/zlL3HOOefEwoULs3L8ysrKuPbaa+OUU07JyvEL2WuvvRbf/e5344knnshZz3POOSduvvnmnPUDgEwwr2TOD3/4w/jv//7vvGZo27ZtXHHFFXHaaae5uzEAdcby5cvj29/+dtx1111Z6zFmzJi47bbbokOHDlnrUQheeOGFOO200+Ltt9/OyvGbNGkSP/7xj+O73/2uWQOAesW8khlVVVVRUlKS7xhxxBFHxHXXXRfdunXLdxQAyBjzSn5s2LAhfvnLX8ZVV10Vy5cvz1nfJUuWNJgbfwIAwLYoyncAAIBsqK6ujssvvzyOOOKIrF3kH/H3O7J985vfjNNPPz02btyYtT6FpKqqKq644orYfffdc7qUCACFxrySeXXh/luffPJJnHHGGXHAAQfEhx9+mO84ABAzZ86MPfbYI6sXzUVEPPLIIzFo0KB48cUXs9qnLrvlllti3333zdpSYkTE2rVr49JLL43DDz88Vq5cmbU+AJBL5pXMqQvnRiIiHnrooRg4cGDccccd+Y4CABlhXsmPf7zvl1xySU6XEgEAgOQsJgIA9U5VVVUcf/zxceWVV+bsB7C/+c1vYvTo0bF27dqc9KurFi1aFPvss0/86Ec/is2bN+c7DgDUWeaV+u/JJ5+MQYMGxbRp0/IdBYAG7Pnnn4+hQ4fG7Nmzc9Jv0aJFse+++8af//znnPSrSy666KI455xzYtOmTTnpN378+Bg2bFgsWbIkJ/0AIFvMK/XXmjVr4rTTTouzzjorqqqq8h0HALaaeSU/7rjjjhg8eHDMmDEj31EAAIAtsJgIANQr1dXVcfLJJ8cDDzyQ897PPPNMHHnkkbFhw4ac964L3nvvvdhzzz3j+eefz3cUAKjTzCsNx+LFi2PkyJHubAxAXkydOjUOOeSQWLVqVU77bty4MY4//viYOHFiTvvm02WXXRY33HBDzvvOnDkzRo8e7YkBABQs80rDcOutt8bxxx8f1dXV+Y4CALVmXsmPH/3oR3HaaafFunXr8h0FAABII1WTq9vyAwDkwPe///24+uqra/Wanj17xl577RU77bRTVFZWRiqVimXLlsXbb78dkydPjjfffLNWxzvppJPirrvuqtVrCt2MGTPigAMOiE8++SSvOc4555y4+eab85oBANIxr2TP5ZdfHldeeWW+Y/yHli1bxosvvhh9+vTJdxQAGoiFCxfGrrvuGp9++mni15SVlcWIESNi8ODBscMOO0RFRUWsXr06Pv7443j11Vfj6aefjtWrVyc+XpMmTWLKlCmx0047bc2XUDBuu+22OPPMM2v1mo4dO8aIESNi4MCB0bp16ygtLY3ly5fH7NmzY8qUKTF16tRaPVV7n332iSeeeCKKi4trGx8A8sa8kh2bN2+O0tLSfMf4QmeeeWb8+te/zncMAEjMvJIfZ511Vtx66635jhFLliyJ1q1b5zsGAADUeRYTAYB6Y8KECXHIIYckvnDr8MMPj8suuyz22GOPLda9+eabcc0118Tdd9+d+G6ud9xxR3zrW99KVFvoPvjggxg2bFh89NFHtXpd69atY5999onhw4dHnz59olu3blFZWRlNmzaNiIjly5fH8uXLY9myZfHOO+/E66+/Hq+//npMnz79S58EYDERgLrOvJJdSRYTU6lU9OrVK3r37v35r549e0ZlZWVUVFRERUVFNG/ePNauXRsrV66MlStXxrx582L69Onx2muvxRNPPLFVTyUaOHBgvPzyy9G4ceOt/OoAIJnNmzfHvvvuG88//3yi+rZt28bll18eX//616NFixZfWrd27dr44x//GD/5yU/i/fffT3TsPn36xNSpUz//t35989prr8WwYcNi/fr1iepHjBgRP/rRj2K//faLVCr1pXXz5s2LX/7yl3HLLbfExo0bEx378ssvjyuuuCJRLQDkm3kle5IuJm633XbRv3//fzs/0qlTp2jevPnn50dKSkpixYoVsXLlyli6dGm88cYbMX369HjppZdi6tSpW5Xv3nvvjeOPP36rXgsAuWReyY+tuQFlKpWKQYMGxciRI2Pw4MHRvXv36NSpUzRr1izKy8tj9erVn19/8vHHH39+7cnrr78eb7/99pf+zM5iIgAAJGMxEQCoF5YuXRp9+vRJdKe6ysrKGDduXBx88MG16vHSSy/FscceGwsWLEhbW15eHjNmzIgePXrUqkehWb58eey9997x1ltvJX7NYYcdFqeffnp85StfiZKSklr33Lx5c7zwwgsxfvz4ePTRR+Odd975/L9ZTASgLjOvZN8X/cC6tLQ0Bg8eHMOHD4/hw4fHXnvtFS1bttzqHhs2bIiHH344br311pg0aVKtXvvjH/84fvKTn2x1bwBI4qc//Wn8+Mc/TlR73HHHxe233x4VFRWJj79hw4a4+OKLY+zYsYnqTzvttLj99tsTH79QbNy4MQYOHBizZs1KW1teXh633HJLnHzyybXqMWvWrDjmmGMSPR27qKgonnnmmdh7771r1QMA8sG8kj1ftpjYoUOHz8+NDB8+PHbaaacoKira6j7vvvtu/P73v4+xY8fGihUrEr+uZcuWMWfOnG06NwMAuWBeyb3f/OY3cfrppyeub9++fZx33nlx0kknRadOnbaq58cffxyPPPJIjB8/Pp588slYu3bt5//NYiIAACRjMREAqBfOPPPMuO2229LWdezYMZ5++uno3r37VvX55JNPYt99942ZM2emrR0zZkyMHz9+q/oUiqOPPjoefPDBRLXDhg2LX/3qVzFo0KCMZpg2bVrccsstcd9998Upp5xiMRGAOsu8kn3/WExs2bJlHHzwwXH44YfHQQcdFM2aNctKv/vvvz8uvPDC+PjjjxPVN23aNN57771o3759VvIAwLx586Jfv36JnuD3/e9/P6666qqt7nXzzTfHeeedl7YulUrFlClTYvfdd9/qXnXR1VdfHd///vfT1lVUVMTjjz+e9gnYX2bNmjVxyCGHxDPPPJO2duedd45p06ZFcXHxVvUCgFwwr2TXvy4mDho0KA4//PA44ogjYsCAAVnpt3jx4rjwwgvj3nvvTfyaiy++OK699tqs5AGATDCv5N60adNi2LBhsWnTprS1ZWVl8eMf/zi+/e1vR3l5ecYyrF69OsaNGxe//vWv44033rCYCAAACVlMBAAK3vTp02Pw4MFRXV29xboWLVrElClTonfv3tvUb9GiRbH77rvHwoUL09Y++uijtX7SUaG444474rTTTktbV1RUFD/96U/je9/7XlYvjFu+fHm89957MXjw4Kz1AICtZV7JjUmTJkV1dXWMHDlyq57MvDUWLVoU++23X7z99tuJ6n/605/GD3/4wyynAqChOvLII+Ohhx5KW3fGGWfErbfeus39rrzyyrj88svT1u2xxx7x0ksvRSqV2uaedcFHH30UvXr1ijVr1myxrrS0NJ588skYPnz4NvVbvXp1DB8+PF577bW0tWPHjo2zzz57m/oBQDaZV7Kruro6fv3rX8fhhx8eHTt2zFnfm266KS644IJEtRUVFfHRRx9F06ZNsxsKALaSeSW31q5dG7vttlvMmjUrbe1OO+0Uf/zjH6Nv375ZzfTCCy/EbrvtltHFRwAAqK8sJgIABe+II46Ihx9+OG3dH//4x/jqV7+akZ7PPfdc7LvvvlFVVbXFusGDB8crr7ySkZ51ybx582LAgAFpL8Br3Lhx3H333XHMMcfkKBkA1E3mlfrtk08+ib322ivee++9tLXdunWLOXPm5CAVAA3Na6+9Frvuumvaul133TUmT54cjRs33uaeNTU1cdBBB8XEiRPT1o4fPz7GjBmzzT3rggsuuCBuuummtHW/+MUv4rvf/W5Ger777rsxaNCgWL169RbrOnToEPPmzYtGjRplpC8AZJJ5pX674YYb4qKLLkpUe9ddd8VJJ52U5UQAUHvmldw755xz4pZbbklbt99++8Wf//znqKioyEEqAAAgqaJ8BwAA2BazZs2Kv/zlL2nrDj/88Ixd5B8RMXz48DjjjDPS1k2dOjWeeuqpjPWtK77zne+kXUosKiqylAgAYV5pCNq2bRu33357otq5c+fG7Nmzs5wIgIboF7/4RdqaoqKiuOOOOzJy0VxERCqVittvvz3R3eOT5CsEy5YtizvuuCNt3a677hoXX3xxxvr26tUrfvSjH6Wt++ijj+Luu+/OWF8AyCTzSv124YUXxsiRIxPVPvbYY1lOAwBbx7ySW6+//nqip04OHTo0xo8fbykRAADqIIuJAEBBu/766yPdA6BLSkri2muvzXjvn/70p4lOel533XUZ751PzzzzTDz44INp6/77v//bUiIAhHmlodh3330TL5Y+99xzWU4DQEOzYMGCeOCBB9LWnXTSSbHbbrtltHfnzp0TPRnnueeeqxdPab711lvT3qwp4u8zYFFRZn8M9+1vfzu6du2ats5sB0BdZF5pGMaOHZuozrkRAOoi80ruXXjhhVFdXb3Fmg4dOsT48eOjSZMmOUoFAADUhsVEAKBgbdiwIe6///60dUcffXT06NEj4/1btWoVp556atq6iRMnxuLFizPeP18uueSStDXDhw+PSy+9NAdpAKBuM680LCeddFKiunfeeSfLSQBoaO65557YvHnzFmtSqVTW/q3+7W9/O8rKytLW/f73v89K/1xK8jUMGTIk9tlnn4z3btSoUVx44YVp62bOnBlTp07NeH8A2BbmlYahf//+iRY1Fi5cmOhmDwCQS+aV3JowYUJMmjRpizWpVCruvPPOaN26dY5SAQAAtWUxEQAoWI888kisWLEibd0FF1yQtQznn39+2rvfV1VVxX333Ze1DLn07LPPxssvv7zFmuLi4rj11lsz/lQAAChE5pWG5YADDkh0x973338/B2kAaEjuueeetDWjR4+Ovn37ZqV/mzZt4r/+67/S1v3xj39Me4FfXTZt2rSYNWtW2rpsznbf/OY3Ez0RO8n3BADkknml4TjiiCPS1tTU1MQHH3yQ/TAAUAvmldy65ppr0tYcd9xxMXr06BykAQAAtparxQGAgnXvvfemrenRo0cMHTo0axm6dOkSw4cPT1uXJGshuO6669LWfOMb34h+/frlIA0A1H3mlYalrKwsevbsmbZu1apVOUgDQEPx5ptvxptvvpm27sQTT8xqjiTHX7JkSTzxxBNZzZFNSeal5s2bx+GHH561DE2bNo0jjzwybd19990XNTU1WcsBALVhXmlYBgwYkKjO+REA6hLzSm5Nnz497dMSS0tL48orr8xRIgAAYGtZTAQAClJVVVWiE63HHXdc1rMcf/zxaWteeeWVWLp0adazZNP7778f48ePT1v33e9+NwdpAKDuM680TO3bt09bU1VVlYMkADQUjz32WNqasrKyrC7LRUSMGDEiOnTokLZuwoQJWc2RTUne68MOOyzKy8uzmiPJbLdo0aJ47bXXspoDAJIyrzQsSc6NRDg/AkDdYl7JrZtvvjltzdFHHx3dunXLQRoAAGBbWEwEAArSyy+/HCtWrEhbd9BBB2U9S5Ie1dXV8eSTT2Y9SzYludP+fvvtF3369MlRIgCo28wrDVNlZWVGagAgqccffzxtzd577x3NmzfPao6ioqIYPXp02rokeeuijz/+ON566620dbmY7fbZZ58oKytLW1eo7zUA9Y95pWFJet7D+REA6hLzSu5s3LgxHnzwwbR1Z599dg7SAAAA28piIgBQkJJcNN+8efMYMmRI1rN06dIlevTokbaukE8MR/x9MTGdr33tazlIAgCFwbzSMH322Wdpa1q1apWDJAA0BBs3boznn38+bd3++++fgzTJ+rz99tvx4Ycf5iBNZiW9gcOoUaOynOTvT2jYe++909aZ7QCoC8wrDU+ScyMRzo8AUHeYV3JrwoQJsXz58i3WdOrUKYYPH56bQAAAwDaxmAgAFKTJkyenrRkyZEiUlJTkIE0kOiE6ZcqUHCTJjjlz5sRrr722xZqioqIYM2ZMbgIBQAEwrzRMixcvTlvTu3fvHCQBoCF4/fXXY+3atWnrkiyxZULSC8YKceZIMtv16NEj2rdvn4M0yd7rl19+OWpqanKQBgC+nHml4UlybqRVq1YWEwGoM8wrufWnP/0pbc2hhx6agyQAAEAmWEwEAArS9OnT09bstttuOUjyd4MGDUpb8/bbb8eGDRtykCbznnjiibQ1u+yyS7Rr1y4HaQCgMJhXGp5169bFu+++m7bOXX4ByJQk80ZRUVHssssu2Q8TEZ07d47WrVunrUuSu64pxNlu5cqVMXfu3BykAYAvZ15peNLd6DLi74sdqVQq+2EAIAHzSm49+eSTaWsOPPDAHCQBAAAywWIiAFBwFi9eHB9//HHaurp2MdjmzZvjjTfeyEGazJs0aVLammHDhuUgCQAUBvNKw/S3v/0t7V2VKysrY+DAgTlKBEB99+qrr6at6dWrVzRt2jQHaf4uycxRaBfOVVdXx+uvv562rq7NdhGF914DUP+YVxqehx56KG3Nvvvum/0gAJCQeSV33nnnnUQ/Pxs6dGgO0gAAAJlgMREAKDgzZsxIVNenT58sJ/mn3r17J6pLmr2ueeaZZ9LWDBkyJAdJAKAwmFcapt/+9rdpa0477bQoKnJKDoDMSHJDgVzOGxHJZo5CmzfmzJmT9uYDEbl9r9u3bx8tWrRIW1do7zUA9Y95pWF59dVX0z4xsUmTJnHSSSflJhAAJGBeyZ2nn346bU23bt2iTZs22Q8DAABkREm+AwAA1NbcuXMT1fXo0SPLSf6pZcuWUVlZGZ999tkW65Jmr0sWLFgQixYtSlvXr1+/tDVLly6NCRMmxEsvvRRvvvlmzJs3L1asWBGrV6+ORo0aRZMmTaJVq1bRtWvX6N69e+yxxx4xbNiw6NWrVya+FADIGfNKwzNhwoT4y1/+ssWakpKSOPfcc3OUCICGIMnnds+ePXOQ5J+SzDcffvhhbNy4MRo1apSDRNsu6XyU6/e6e/fuaZ/qYLYDIN/MKw1HTU1NnHPOOWnrvv71r0dlZWUOEgFAMuaV3HnllVfS1iS59qSmpiZeeeWV+Nvf/hYzZsyImTNnxpIlS2LlypWxefPmaNKkSTRr1iw6duwYXbt2jZ122imGDRsWQ4cOzemTLwEAoCGwmAgAFJx58+alrWnfvn3OTyb26NEjXn755S3WJMle17z11luJ6r7sRHx1dXU88sgj8ctf/jKefvrpqKqq+sK6devWxbp162Lp0qXx7rvvRkTELbfc8vmxv/rVr8app54aXbt23YqvAgByy7zSsMydOzdOP/30tHXf+c53omPHjjlIBEBDsG7dukQ3EurevXsO0vxTkgvnqqur4/3338/5RX1bK+l81K1btywn+Xc9evRIu5hotgMgn8wrDcsPf/jDeOmll7ZYU1lZGT/60Y9ylAgA0jOv5FaS60+29PV8+OGHMXbs2Ljzzju3+Oe2cuXKWLlyZXz00Ufx8ssvx/333x8REWVlZfGVr3wlvva1r8XRRx8dxcXFtf8iAACAf1OU7wAAALU1f/78tDUdOnTIfpD/Y/vtt09bU4gXgyU5MdyqVauoqKj4j99/4oknYqeddorDDz88nnzyyS9dSkxn9uzZcdVVV0XPnj3juOOOi9mzZ2/VcQAgV8wrDcesWbNin332iYULF26xbsCAAfH//t//y1EqABqC999/P1FdrmeOJPNGRGHNHElmu8rKyigrK8t+mH9htgOgrjOvNAzV1dXxve99L6688sq0tWPHjk38/gNALphXcmvmzJlpa77oxk8rVqyIb3/729G1a9f42c9+lmiZ9IusX78+Hn744TjuuOOiR48eceutt271dSwAAMDfWUwEAArOhx9+mLamffv2OUhS+57pLlivi95+++20NW3btv23/79mzZo48cQT44ADDkj0+qSqqqrij3/8Y+y0005x+eWXx6ZNmzJ2bADIJPNK/bdhw4a44oorYpdddokFCxZssXb77beP//3f/41GjRrlKB0ADUGSeSMi9zNH0n6FNHMU8my3aNEiF9gBkDfmlfrv1VdfjWHDhsXPf/7ztLUXX3xxHH/88TlIBQDJmVdyZ+HChbFq1aq0df/3+pOJEydG796945e//GVGrxGZP39+nHXWWTF48OCYOnVqxo4LAAANjcVEAKDgLF26NG1Nu3btcpDk3yU5MfzZZ5/lIElmpbvQPiKiTZs2n//vOXPmxJAhQ+Kee+7JWqaNGzfGlVdeGSNGjEiUDwByzbxSf73++uvx3e9+N7p27Ro/+tGPYv369Vusb9++fUyaNCl69uyZo4QANBRJ5o2I3M8cbdu2jaKi9D9+KqSZo5Bnu5qamli2bFkO0gDAfzKv1E+rVq2KcePGxejRo2P33XePl19+Oe1rLrjggrj22mtzkA4Aase8kjtJr+341+tPfvazn8XBBx8cixcvzlaseO2112KvvfaKsWPHZq0HAADUZyX5DgAAUFtJTgxvt9122Q+yFT3XrFkTGzZsiMaNG2c/UIYsWrQobc0/vvY5c+bEyJEjE99VcFu99NJLMXTo0HjiiSeib9++OekJAEmYV+q2GTNmxMyZM7dYs3Hjxli5cmWsXLkyFi9eHK+//nq8/vrrsXz58sR99ttvv/j9738fHTt23MbEAPCfkl44l+uZo6ioKJo3bx4rVqzYYl3S/HVBIc92EX/P37p16+yGAYAvYF6pu6qrq+OPf/zjFmtqampi9erVsXLlylixYkW8++678dprr8Xs2bOjuro6UZ+mTZvGjTfeGKeeemomYgNAxplXcifJtScR/3yvv//978fVV1+dxUT/tHHjxjj33HNjzpw5cf311+ekJwAA1BcWEwGAgpPkLu/NmzfPQZKt6/nZZ5/F9ttvn+U0mfPxxx+nrWnUqFEsXrw49t1335wtJf7DRx99FCNGjIhnn33WciIAdYZ5pW77wx/+ED//+c+zdvzWrVvH5ZdfHueff36kUqms9QGgYUt6R/xmzZplOcl/SnLhXCHd0T9J1ro+2wFAPphX6q6NGzfGCSeckNUeX/nKV+JXv/pV9OzZM6t9AGBbmFdyJ8m1JxF/v/7kqquuytlS4r+64YYbYuPGjXHzzTfnvDcAABQqi4kAQEFZt25dbNq0KW1dPi4Gq6ioSFS3YsWKgrnQv6amJtEd9oqLi+P444+PBQsWpK2tqKiI4cOHx4ABA6JLly7RrFmz2Lx5cyxfvjzee++9mDJlSkyfPj2qqqoS5/z000/j0EMPjSlTpkSrVq0Svw4AssG80nDtuOOOce6558aZZ54ZTZs2zXccAOq5lStXpq1p2rRpFBUV5SDNv0syc6S7sK4uSfJe1/XZDgDywbzS8JSWlsYhhxwSl112Wey+++75jgMAaZlXcmfJkiWJ6p555pn44Q9/mKi2X79+sddee0XPnj2jVatW0bhx41i7dm0sXLgw3nrrrXj22WcT9/2HsWPHRo8ePeKCCy6o1esAAKChspgIABSUjRs3JqorLy/PcpL/VFZWlqgu6ddQF6xfvz6qq6vT1j388MOxfv36LdYMHTo0LrnkkhgzZkyUlpZusXbRokVx1113xbXXXpv4JPGcOXPixBNPjAkTJiSqB4BsMa80PEcddVRcdtllMWjQoHxHAaABSfJ5nY95IyLZzFFI80Zdfa/NdgDUdXX1MzSi/s0r+da2bdu44oor4rjjjosWLVrkOw4AJGZeyZ21a9cmqrv44ou3eJ1Ks2bN4pxzzonTTz89unXrtsVjVVdXx6RJk+KGG26IRx99NHHWiy++OHbffffYa6+9Er8GAAAaqtzfxgUAYBskPalaXFyc5ST/qaQk2T0fCunEcLplwyR12223XYwbNy4mT54cRx55ZNqlxIiI9u3bxyWXXBJz5syJ008/PXHexx57LH7zm98krgeAbDCvNDwPPvhgHHvssXHeeefF5MmT8x0HgAYiyed1PuaNiGQzRyHNG3X1vTbbAVDX1dXP0Ij6N6/k2yeffBLnn39+HHfccTF27NhET58CgLrAvJI7mbj+ZMyYMfHuu+/G1VdfnXYpMSKiqKgoRo0aFY888kg8/vjj0alTp0QZqqur45RTTkm8TAkAAA2ZxUQAoKAkPama9MKsTErac9OmTVlOkjkbNmzYptd37do1XnrppTjxxBO36vXNmzeP2267Le64447EJ/u/973vxYoVK7aqHwBkgnmlYZo7d27cfPPNseeee8aIESNqdeddANgaSWaOfMwbSfsW0rxRV99rsx0AdV1d/QxN2tdnaO1s2LAhJk6cGOeee2507tw5Lrvssli8eHG+YwHAFplXcmdbrz+57LLL4i9/+Utsv/32W/X6/fffP6ZOnRp77LFHovrZs2fHddddt1W9AACgIbGYCAAUlM2bNyeqczFYZmzL3fW23377ePLJJ6N3797bnONb3/pW3HHHHYlqP/vss7jmmmu2uScAbC3zCs8991yMGTMmDj744Fi0aFG+4wBQTyWZOVw4lxl19b022wFQ19XVz9CkfX2Gbr0VK1bEz372s+jVq1eMGzcu33EA4EuZV3JnW64/ufTSS+PKK6+MVCq1TRnatm0bf/vb32LnnXdOVH/ttdfG0qVLt6knAADUdxYTAYCCkvSEb1VVVZaTbH3PfJ203hpJn1L4Re68887o2rVrxrKcfPLJ8Y1vfCNR7dixY2PdunUZ6w0AtWFe4R8mTJgQAwYMiL/+9a/5jgJAPZTk8zof80bSvoU0b9TV99psB0BdV1c/Q5P29Rm67VauXBlf//rX49hjj401a9bkOw4A/AfzSu5s7fUne+21V1x11VUZy9GiRYu47777oqysLG3typUr4/bbb89YbwAAqI8sJgIABaVRo0aJ6pI+qSiTkt6JLunXUBdsbdZTTz01vvKVr2Q4TcSNN94YHTp0SFu3fPnyuO+++zLeHwCSMK/UfVdffXXU1NR86a/q6upYsWJFvP/++zFjxoyYOHFiXHnllXHkkUcmmkX+1aeffhpHHHFEPPTQQ9n5YgBosJJ8Xudj3ohINnMU0rxRV99rsx0AdV1d/QyNqH/zSm2VlZVt8dxITU1NbNiwIRYvXhyzZs2KKVOmxJ133hnnnHNODB06tNZLEA888EAccsghsXbt2ix9RQCwdcwrubM1WcvLy+POO++MoqLMXurcp0+f+OlPf5qo9je/+U1UV1dntD8AANQnFhMBgIJSWlqaqC4fJ4aT9qzvJ4abNm0a11xzTRbSRGy33XZx9dVXJ6r9wx/+kJUMAJCOeaXwpVKpqKioiM6dO8eAAQNi9OjRcdlll8WDDz4YCxYsiMceeyyOOeaYxH/WmzZtimOPPTYeeeSRLCcHoCFJ8jmUrwvnkvQtpHmjrr7XZjsA6rq6+hmatG9D/wxt1KhRtG3bNnr16hV77LFHnHzyyXHzzTfH5MmTY8GCBXHVVVdF9+7dEx/vmWeeiTFjxsT69euzmBoAase8kjtbk/Wiiy6Knj17ZiFN8mPPmzcvJk+enJUMAABQH1hMBAAKSuPGjRPV5eOHmkl7FtKJ4aTv97/62te+Ftttt13mw/z/jj322GjdunXaumeffTZWr16dtRwA8GXMK/VbUVFRfOUrX4kHHngg3nzzzRgxYkSi123atClOPPHEWLhwYZYTAtBQJJk58nXRd5K+hTRv1NX32mwHQF1XVz9Dk/b1Gfrl2rdvH9///vfj3XffjRtuuCGaNm2a6HWTJk2KH/zgB1lOBwDJmVdyp7bXnxQXF8cZZ5yRpTS1O/6jjz6atRwAAFDoSvIdAACo++bNmxdTpkzJao+mTZvGoYcemrauvLw8SkpK0t4ZbtWqVZmKlljSnhUVFVlOkjllZWVRWloamzZtSvyaM888M4uJ/n6y+uSTT45rr712i3UbN26MZ555Jg455JCs5gGgbjCvJFMf55V86tWrVzz99NNxyy23xAUXXJD2z3zFihVxyimnxN/+9rdIpVI5SglAfdW8efO0NWvWrImampqcf+4kmTkKad5o3rx5fPLJJ1usMdsBwH8yr9R/RUVFccEFF8QRRxwRJ5xwQrz00ktpX3PjjTfG4YcfnvhmTwCQTeaV3EnyXv+rgw8+ODp16pSlNH938sknx+WXX552CfTxxx+Pq666KqtZAACgUFlMBADSeuaZZ+KUU07Jao8uXbokutA/IqJly5axZMmSLdasXLkyE7FqJWnPysrKLCfJrFatWsWiRYsS1Xbt2jV22223LCeKOOaYY9IuJkZETJ061WIiQANhXkmmvs4r+ZRKpeKcc86JLl26xJFHHpl2OfGJJ56I+++/P44//vgcJQSgvkryeV1TUxOrVq3K+UVqSWaOQpo3KisrY86cOVusMdsBwH8yrzQcO+64Yzz55JNx6KGHxlNPPbXF2urq6jjjjDNi5syZbtwEQN6ZV3KndevWtao/5phjspTkn1q1ahX77LNPPPbYY1usmzFjRmzcuLGgnlAJAAC5UpTvAAAAtdWqVau0NStWrMhBktr3bNKkSZSVleUgTeYkeb//YciQIVlM8k+77LJLohO+r776ag7SAMB/Mq80PGPGjImbbropUe0NN9yQ5TQANARJ/72e65mjuro6Vq9enbauNucb8q2QZ7uIwnqvAahfzCsNS5MmTeLBBx+Mnj17pq195513YsKECTlIBQBbZl7JndpmzdX1J3vssUfamo0bN8Zbb72VgzQAAFB4LCYCAAUnycnKxYsX5yDJv0vyVMFCOin8D3VxMbFx48ax8847p61L9zQDAMgW80rDdPbZZ8cBBxyQtu7ll1+OF198MQeJAKjPkn5m53rmWLJkSVRVVaWtK6SZo5Bnu1QqFS1btsxBGgD4T+aVhqdFixZx5513Jqq98cYbsxsGABIwr+RObbJut9120atXryym+aek17m4/gQAAL6YxUQAoODssMMOaWuSXJiVaUl6Jsle19Qm88CBA7OY5N8lWUxcuHBhDpIAwH8yrzRcP//5zxPV/elPf8pyEgDqu6Sf2bmeOZL2K6SZo5Bnu3bt2kVJSUkO0gDAfzKvNEx77bVXHH744WnrnnzyyVi+fHn2AwHAFphXcqc2WQcMGBCpVCqLaf4pybUnEa4/AQCAL2MxEQAoODvuuGPamo8++ij7Qf6Pjz/+OG1N165dc5Aks7p165a4trKyMotJat9rxYoVsWHDhhykAYB/Z15puHbddddEd9d97rnncpAGgPosybwRkfuZI8m8EVFYM0eS9/qzzz7L+TkIsx0AdZ15peE688wz09ZUV1fHCy+8kIM0APDlzCu5s+OOO0ZRUbJLluvatScRuX9qJgAAFAqLiQBAwUlyYnXRokWxdu3aHKT5p/feey9tTSGdFP6H2iwmbrfddtkLspW9cv19AAAR5pWGLslTAaZPnx6rV6/OQRoA6qvy8vJo165d2ro5c+bkIM0/JZk3UqlUdOnSJQdpMiPJfFRTUxNz587NQZp/MtsBUNeZVxquUaNGRdOmTdPWuXETAPlmXsmdRo0aJX5qYi6vPSkvL4/GjRunrXPtCQAAfDGLiQBAwUmyKFdTU5PoRG2mLF++PJYuXZq2rjZLfnVF9+7dE9daTASAvzOvNGx77rln2pqqqqqYN29eDtIAUJ8l+dyePXt2DpL8U5L5Zocddkh0wVddkXQ+qovvtdkOgHwzrzRMpaWlsfvuu6ety/WfPQB8EfNK7iS9/iSX155ERLRo0SJtjWtPAADgi1lMBADSOvnkk6Ompiarv+bPn584z4ABAxLVvfPOO1v5Fdde0l5Js9clAwcOTFybSqWymCR/vQCo+8wrmetViPNKXdOjR49EdUkWRQFgS5J8budy3kjar9Dmje7du0d5eXnauly+14sWLYoVK1akrSu09xqA+se80nAlOT/i3AgAdYF5JXd23nnnRHW5vh7E9ScAALD1LCYCAAVn++23j3bt2qWte/XVV3OQJnmvkpKSWi351RUtW7ZMfHf95cuXZzfMv1i2bFmiuiZNmmQ5CQD8J/NKw1ZZWZmo7rPPPstyEgDqu1133TVtzaxZs3J6R/ckM8duu+2WgySZU1xcnGhGqmuzXUThvdcA1D/mlYYryfkR50YAqAvMK7kzaNCgRHW5vPYkaT/XngAAwBezmAgAFKQkJ1hzeTHYtGnT0tb06dMnysrKcpAm85KeHE66LJgJSU9EN23aNLtBAOBLmFcartLS0kR169aty3ISAOq7JPNGdXV1vPbaa9kPExELFiyIJUuWpK1LcsFfXVOIs13z5s2je/fuOUgDAF/OvNJwJTk/4twIAHWBeSV36uK1J+vWrYsNGzakrXPtCQAAfDGLiQBAQRo2bFjampdeeik2b96cgzQRzz77bNqaIUOG5CBJduy5556J6nJ5Z9skvVq1ahWNGjXKQRoA+E/mlYZrzZo1ier8EBuAbbXzzjtHeXl52rrnnnsuB2mSzRsRhTlzJJntZs+eHYsXL85BmmTv9R577BGpVCoHaQDgy5lXGq4k50ecGwGgLjCv5E6fPn2iZcuWaevq2rUnEREdOnTIchIAAChMFhMBgII0atSotDWrVq2Kl19+OetZPvjgg3jvvffS1h1wwAFZz5Ito0ePTlQ3Y8aMLCf5p9dffz1tTefOnXOQBAC+mHml4Vq4cGGiumbNmmU5CQD1XePGjWPvvfdOW/fkk0/mIE2yPn369ImOHTvmIE1mJZntInLzXm/YsCFeeOGFtHVmOwDqAvNKw5Xk/IhzIwDUBeaV3CkqKor9998/bd0bb7wRNTU1OUiU7NqTCNefAADAl7GYCAAUpD322CMqKirS1k2YMCHrWZL0SKVSiS9gq4v69euX6KT2lClTcpDm7xfgJTk53Lt37xykAYAvZl5puGbOnJmozg+xAciEJBdzPffcc7F69eqs5qiuro6JEyemrSvUZbkOHTpE375909blYrZ7+umnY926dWnrCvW9BqD+Ma80TEnOjzg3AkBdYV7JnSQ3xl6+fHm8++67OUiT/DoX158AAMAXs5gIABSkkpKSRBfO33///VnPct9996WtGTx4cLRu3TrrWbLp4IMPTlvz0ksv5SBJxPTp02Pjxo1p63bfffccpAGAL2ZeabieeeaZtDXFxcWx4447Zj8MAPXegQcemLZm/fr18fDDD2c1x3PPPRcfffRR2rokeeuqJNkffvjhWL9+fVZzJJnt2rVrF7vuumtWcwBAUuaVhmfJkiXx9ttvp63r3r17DtIAQHrmldw56KCDIpVKpa3L1fUnSRYTW7RoEb169cpBGgAAKDwWEwGAgnXCCSekrZk9e3ZWn+L3wQcfxLPPPpu2LknWuu6//uu/0tbMnz8/Xn311axn+dOf/pSobtiwYVlOAgBbZl5peDZv3hz/+7//m7aub9++0ahRoxwkAqC+GzhwYPTr1y9t3d13353VHOPGjUtb06pVq4K+o3+SeWnVqlVZvUhxzZo18ec//zlt3XHHHZfoIj8AyAXzSsNz//33R01NTdq6XXbZJfthACAB80ru7LDDDrHPPvukrUt6Xci2+PTTT+Ppp59OWzdkyBDnWQAA4EtYTAQACtahhx4aFRUVaetuvPHGrGX45S9/GdXV1VusKSoqiuOPPz5rGXJl+PDh0bVr17R1v/71r7OaY/369fG73/0ubV3r1q1jjz32yGoWAEjHvNLw3H///bFo0aK0dSNHjsxBGgAaiiQ3E5o4cWK88847Wem/ZMmSuOeee9LWHXvssVFaWpqVDLmw++67R8+ePdPWZXO2u/POO2PFihVp65J8TwBALplXGo6qqqoYO3Zs2rpUKhUjRozIQSIASMa8kjtf//rX09b89a9/jQ8++CCrOe68887YsGFD2rpDDjkkqzkAAKCQWUwEAApWWVlZHHvssWnr/vSnP8V7772X8f5Lly6N3/zmN2nrRo8eHdtvv33G++daKpWKU045JW3dvffeG8uWLctajvvvvz+WLl2atu7QQw+N4uLirOUAgCTMKw3L6tWr4/LLL09U+5WvfCXLaQBoSE488cS0/wauqamJq6++Oiv9b7rppli/fn3aum984xtZ6Z9LSb6Gl156KdHd9mtr48aNcf3116et69Onj5s1AVDnmFcajl//+teJFjZ23XXXaNOmTQ4SAUAy5pXcOeaYY9Le2LO6ujpuvfXWrGWoqqqK2267LVHt4YcfnrUcAABQ6CwmAgAF7aKLLopUKrXFms2bN8d3vvOdjPf+0Y9+FCtXrkxbd/HFF2e8d76cc8450bRp0y3WrFmzJmtf87Jly+L73/9+otpvfetbWckAALVlXmk4zjrrrJg/f37aujZt2sSBBx6Y/UAANBidO3eOY445Jm3duHHj4tVXX81o7w8++CDRstxee+0VQ4YMyWjvfDjzzDOjSZMmaesuvvjitE+trq2bbrop5s2bl6g3ANQ15pWGYcaMGXHppZcmqk3ypCQAyCXzSu40a9Yszj777LR1N9xwQ8yaNSsrGa655pqYM2dO2rr9998/unTpkpUMAABQH1hMBAAKWt++fWPMmDFp6x5++OF44IEHMtb3+eefT3TntN122y3233//jPWNiJg/f36kUqm0v/bZZ5+M9o2IqKysjDPOOCNt3Z133hkTJkzIeP/zzz8/Pv7447R1u+66a+y1114Z7w8AW8O8kv15Zfz48bF48eKMHGtr1NTUxMUXXxx33313ovqTTz45SktLs5wKgIbmkksuSVtTXV0dp512WmzcuDEjPWtqauKMM86IdevWpa1Nkq82Tj755ETzRqafXNiqVatEN0N69dVXE11QmNTs2bPjpz/9adq67bffPk466aSM9QWATDKvZG9eWbp0afz5z3/e9tDb4J133okDDzww1q5dm7a2SZMm8V//9V85SAUAtWNeyc35lYiICy+8MMrLy7dYs379+jjllFMyfvOnmTNnxk9+8pNEteedd15GewMAQH1jMREAKHg//vGPo6go/Vhz2mmnxbvvvrvN/RYtWhRf+9rXoqqqKm1t0hOZheSSSy6JFi1apK075ZRTYu7cuRnr+z//8z+JL/avj+87AIXNvJJd//u//xvdu3ePyy67LBYtWpTT3suWLYtjjz028eJBs2bN4rvf/W6WUwHQEO22225x2GGHpa179dVX49vf/nZGev7sZz+Lxx57LG3d4MGD49BDD81Iz7rgkksuSfTUxMsuuyyef/75be63Zs2aOO6442L16tVpa7///e9H48aNt7knAGSDeSV7Vq1aFUcddVTsueee8eijj0ZNTU1O+48fPz6GDRuW6OaSERHnnntutG7dOsupAKD2zCu507Zt20Tv4eTJk+N73/texvouX748jj/++NiwYUPa2kGDBtWr9xwAALLBYiIAUPAGDRoU3/zmN9PWrVixIkaNGrVNy3JLliyJ/fffPxYsWJC29qCDDqqXJyjbtWsXV1xxRdq6xYsXx6hRo2LWrFnb3POOO+5I9KTGiIiRI0cm+kEBAOSSeSX71qxZEz/72c+iS5cu8fWvfz2eeuqpjN9B919VVVXFnXfeGTvttFP86U9/Svy6Sy+9NNq0aZO1XAA0bNdff32ipbRbb701fvCDH2xTr1tuuSXRMVKpVPzqV7+KVCq1Tf3qko4dO8Zll12Wtm7Tpk0xZsyYmDp16lb3Wrt2bRx66KExffr0tLUDBgyIs88+e6t7AUAumFeya/LkyTFmzJjo27dv3HDDDVm/gdOcOXPihBNOiMMOOyyWL1+e6DVt2rSJSy+9NKu5AGBbmFdy5/LLL4/OnTunrbvmmmviBz/4wTbffOGTTz6J0aNHxxtvvJGo/tprr6137zkAAGSaxUQAoF646qqrolWrVmnrFi5cGHvssUdMmDCh1j2mTJkSgwcPjrfeeittbVlZWdx000217lEozj777Bg8eHDauvnz58fQoUMTP+nw/1q1alWcccYZcdpppyV64lOTJk3i9ttv36peAJBt5pXc2LhxY4wbNy5GjRoVnTt3jjPPPDMefvjhxBfHpTN79uy46qqrokePHvHNb34zPvroo8SvHTRoUEbv6gsA/1f37t0TX+R91VVXxQknnBCrVq2qVY8NGzbE+eefH+ecc06i+lNOOSWGDh1aqx6F4Dvf+U707Nkzbd2KFSti5MiR8fvf/77WPWbNmhVDhw6NSZMmpa1NpVJx8803R3Fxca37AEAumVdyY9asWXHRRRdFx44dY9SoUXHdddfFG2+8kZGbOK1bty4eeeSROProo6NPnz5x33331er1t912W1RWVm5zDgDIFvNK7jRt2jR+9atfJaq96qqr4rDDDkv8hOb/64knnojBgwfHK6+8kqj+1FNPjX322WeregEAQENiMREAqBfatGkTv/vd7xLdqWzp0qVx8MEHx1FHHZXojvUzZ86MU045Jfbcc8/44IMPEuW56aabEl2cVqiKi4vj/vvvj+222y5t7fLly+Okk06KYcOGxYMPPhibNm1K+5rFixfHz3/+8+jevXutFg1vvPHG6NWrV+J6AMgl80ruffjhh3HbbbfFEUccEZWVldG3b9846aST4sorr4wHHnggJk+eHHPnzo3ly5fH+vXro7q6OjZv3hxr166Njz/+ON5444149NFH48Ybb4xvfOMb0aNHj+jVq1f84Ac/iPnz59cqS6tWreLee++NkpKS7HyxAPD/++EPfxjDhg1LVHvfffdFz549Y+zYsbFy5cot1q5bty7uuuuu6NOnT+ILxnr16lUvb4QQEdG4ceO47777Ej1BYe3atXHyySfHvvvuG5MmTUp7d//58+fHRRddFAMHDkx8B//vfe97MWLEiES1AJBv5pXcqaqqiqeeeiq+853vxMCBA6Nly5ZxwAEHxEUXXRS33npr/O1vf4sZM2bEokWLYvXq1bFp06aoqamJDRs2xPLly2POnDnx4osvxrhx4+Kyyy6L/fbbL1q3bh2HHnpoPPjgg7F58+Za5Tn//PPjyCOPzNJXCwCZY17JncMOOyzOO++8RLWPPPJI9OzZM773ve/F3Llz09bX1NTEU089FWPGjIkDDjggFixYkKhPr1694sYbb0xUCwAADV2qZlufbQ4AUIdccsklcc0119TqNb169Yq99947+vfvH5WVlZFKpWLZsmXxzjvvxOTJk2PGjBm1Ot7Xvva1uOeee2r1mtqYP39+dO3aNW3dyJEj4+mnn85ajoiI8ePHx+GHH572grp/1aJFixg+fHgMHDgwOnfuHM2aNYuqqqpYtmxZzJkzJ6ZMmRLTpk1L9ITEf3X++efX65PxANQf5pV/ytS8cvLJJ2/VU4hypby8PJ544onYc8898x0FgAZiwYIFseuuu8bSpUsTv6a8vDxGjhwZgwYNio4dO0bz5s1j9erVsWjRopg2bVo8/fTTtbr7f3l5eUyePDl23nnnrfkS0kr6+T9p0qSs3t3+lltuSfx0g3/o1KlTjBw5MgYOHBitWrWK0tLSWL58ebz33nsxZcqUePnll2t1rmX48OExadIkT0sEoKCYV/4pE/NK0nMx+XTUUUfFAw88EEVF7qEOQGEwr/xTts+vbNq0KfbZZ5948cUXE78mlUpF//79Y88994xevXpFq1atolGjRrF27dr48MMP46233opnn302Fi9eXKssrVu3jhdffLHe39wTAAAyxS3aAYB65eqrr46FCxfGvffem/g17777brz77rsZ6T9q1Kj47W9/m5FjFYJDDz00br/99jj99NMTXzC3YsWKeOSRR+KRRx7JWI7jjz8+brjhhowdDwCyybzSsFRWVsYjjzyS+M7KAJAJnTp1ir/+9a+x//77J77Ybd26dfHYY4/FY489ts39S0tL409/+lPWLpqrS84+++x4//334xe/+EXi1yxYsCDuvvvujPQfMGBAPPTQQ5YSASg45pWG5etf/3r8z//8j6VEAAqKeSV3SktLY/z48bHffvvF66+/nug1NTU18eabb8abb76ZsRwtWrSI8ePHW0oEAIBacMYPAKhXioqK4q677oqjjjoq57333nvvePjhh6Nx48Y5751Pp556atx22215+2HyGWecEffcc48fZgNQMMwrDcfOO+8cL774oqVEAPJijz32iEceeSSaNWuW076lpaVx7733xsEHH5zTvvn085//PM4///yc9+3Tp088/vjjUVlZmfPeAJAJ5pX6r6SkJP77v/87fve730VJiXunA1B4zCu5U1lZGU8++WTssssueenftm3bmDRpUgwdOjQv/QEAoFC5ehsAqHdKSkrigQceiEsvvTRnPU855ZR44oknomnTpjnrWZecdtpp8dhjj0WrVq1y1rNx48YxduzYuPXWWy0lAlBwzCv1W0lJSVx88cUxZcqU6N27d77jANCAjRgxIiZPnhzdunXLSb+2bdvGU089FUcffXRO+tUlN910U9x00005u+D+4IMPjpdeeinatWuXk34AkC3mlfqrb9++8fzzz8cPfvCDSKVS+Y4DAFvNvJI7rVq1iueffz5OOOGEnPbdc889Y+rUqbHrrrvmtC8AANQHruAGAOqloqKiuPrqq+PPf/5zdOjQIWt9WrZsGb/5zW/it7/9bYN/8tABBxwQr776ak7u2Dds2LCYMmVKnH322VnvBQDZYl7JnBEjRkTXrl3zHSNSqVQcdthh8cYbb8S1115bb99vAArLTjvtFFOnTo3/+q//ymqfgw46KKZNmxZ77713VvvUZeeff3489dRTWb0xQXl5eVx55ZUxfvz4aNGiRdb6AEAumVe2XYsWLeLAAw+MRo0a5TtKtGvXLm6++eaYMWNGDBkyJN9xACAjzCu507Rp0/jDH/4Qt912W1RWVma1V5MmTeKKK66IZ555Jjp16pTVXgAAUF9ZTAQA6rUjjjgi3nnnnfjOd76T0acDNWrUKL71rW/FrFmz4tRTT83YcQtd586d49FHH43x48fHgAEDMn78fv36xbhx4+KFF16InXfeOePHB4B8MK9su29+85sxd+7ceO211+InP/lJ7LLLLjnt36JFizjzzDPjrbfeiocffjj69OmT0/4AkE7Lli3j7rvvjkmTJsWgQYMyeuxevXrFn/70p/jrX/8aHTt2zOixC9Hw4cNjxowZcdVVV2X04rmioqI4+uij46233orLLrssior8iA+A+sW8sm1atmwZEyZMiE8//TTuu+++OP7443N+E4PBgwfHnXfeGe+//36cc845OXuSNADkinklt04//fR4991345xzzony8vKMHrtx48bxrW99K9555524/PLLzS0AALANUjU1NTX5DgEAkAvLli2L22+/PcaNGxdvvfXWVh2je/fuccIJJ8TZZ58d22+/fYYTJjN//vxETwQaOXJkPP3009kPtAVPP/10/PrXv47HHnssVq5cuVXHaNGiRRx66KFx4oknxujRoyOVSmU4JQDUHeaVzPn444/j+eefjxdeeCFeeOGFeO2112Lz5s0ZO37Pnj1j5MiRcfjhh8fo0aPrxBMJACCpZ555JsaOHRsTJkyI1atX1/r1ZWVlMWrUqDjrrLPi4IMPzsu/1U8++eT4/e9/n7Zu0qRJsc8++2Q/0BdYu3Zt/P73v48777wzpk6dGlvzI7kOHTrEV7/61TjvvPOie/fuWUgJAHWTeWXbbdq0KaZNm/b5uZEXX3wxFi9enLHjN23aNIYNGxajR4+Oo48+Orp165axYwNAITCv5M7SpUvjjjvuiHvuuSfeeOONrT7ObrvtFl/96lfjlFNOiXbt2mUwIQAANFwWEwGABun999+Pv/3tb/H666/HzJkzY/78+bFy5cpYtWpV1NTURPPmzaN58+bRqVOn6NevXwwYMCD2339/T7/ZSps3b/78B98zZ86MWbNmxaJFi2LVqlWxZs2aSKVS0bRp02jRokV07tw5unbtGjvvvHMMGzYsBg0a5EJ/ABok80pmrV27Nt5888147733Pv81d+7cWLZsWaxevTpWr14dq1atiqqqqmjcuHE0btw4mjVrFm3bto127dpFp06donfv3tGnT58YNGiQH1gDUC9s3Lgxnn322c//vf7OO+/Ep59+GqtWrYq1a9dGWVlZNG/ePCorK6N3797Rr1+/GDJkSIwaNSqaNGmS7/gFZfHixTFx4sSYPn16zJw5M+bOnRsrVqyIVatWxebNm6NZs2bRvHnz2GGHHaJv377Rv3//2G+//WLXXXfNd3QAyCvzSmbNmzcvZs2a9W/nRz766KNYtWrV5+dH1q5dGyUlJdGoUaMoKyuLVq1aRbt27aJ9+/bRvXv36NOnT/Tv3z923nlnTxcCgDCv5NqHH34Yjz/+eLz++uvx9ttv/9s5lg0bNkR5eXk0bdo02rZtG127do1evXrFkCFDYs8994wddtgh3/EBAKDesZgIAAAAAAAAAAAAAAAAACRWlO8AAAAAAAAAAAAAAAAAAEDhsJgIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwmAgAAAAAAAAAAAAAAAACJWUwEAAAAAAAAAAAAAAAAABKzmAgAAAAAAAAAAAAAAAAAJGYxEQAAAAAAAAAAAAAAAABIzGIiAAAAAAAAAAAAAAAAAJCYxUQAAAAAAAAAAAAAAAAAIDGLiQAAAAAAAAAAAAAAAABAYhYTAQAAAAAAAAAAAAAAAIDELCYCAAAAAAAAAAAAAAAAAIlZTAQAAAAAAAAAAAAAAAAAErOYCAAAAAAAAAAAAAAAAAAkZjERAAAAAAAAAAAAAAAAAEjMYiIAAAAAAAAAAAAAAAAAkJjFRAAAAAAAAAAAAAAAAAAgMYuJAAAAAAAAAAAAAAAAAEBiFhMBAAAAAAAAAAAAAAAAgMQsJgIAAAAAAAAAAAAAAAAAiVlMBAAAAAAAAAAAAAAAAAASs5gIAAAAAAAAAAAAAAAAACRmMREAAAAAAAAAAAAAAAAASMxiIgAAAAAAAAAAAAAAAACQmMVEAAAAAAAAAAAAAAAAACAxi4kAAAAAAAAAAAAAAAAAQGIWEwEAAAAAAAAAAAAAAACAxCwm8v+xd9/hUVT9+8fvdBJC773XIAgoSgdBFBSkWkAFBUEFFEVRQQUEpYgNxEoVlKpURXrvvQmhhd47gfTs74/nZ/tKyMxmZmc3eb+uK9f1PO7nzLmz7MycnJ0zAwAAAAAAAAAAAAAAAAAAAAAAAACAYSxMBAAAAAAAAAAAAAAAAAAAAAAAAAAAhrEwEQAAAAAAAAAAAAAAAAAAAAAAAAAAGMbCRAAAAAAAAAAAAAAAAAAAAAAAAAAAYBgLEwEAAAAAAAAAAAAAAAAAAAAAAAAAgGEsTAQAAAAAAAAAAAAAAAAAAAAAAAAAAIaxMBEAAAAAAAAAAAAAAAAAAAAAAAAAABjGwkQAAAAAAAAAAAAAAAAAAAAAAAAAAGAYCxMBAAAAAAAAAAAAAAAAAAAAAAAAAIBhLEwEAAAAAAAAAAAAAAAAAAAAAAAAAACGsTARAAAAAAAAAAAAAAAAAAAAAAAAAAAYxsJEAAAAAAAAAAAAAAAAAAAAAAAAAABgGAsTAQAAAAAAAAAAAAAAAAAAAAAAAACAYSxMBAAAAAAAAAAAAAAAAAAAAAAAAAAAhrEwEQAAAAAAAAAAAAAAAAAAAAAAAAAAGMbCRAAAAAAAAAAAAAAAAAAAAAAAAAAAYBgLEwEAAAAAAAAAAAAAAAAAAAAAAAAAgGEsTAQAAAAAAAAAAAAAAAAAAAAAAAAAAIaxMBEAAAAAAAAAAAAAAAAAAAAAAAAAABjGwkQAAAAAAAAAAAAAAAAAAAAAAAAAAGAYCxMBAAAAAAAAAAAAAAAAAAAAAAAAAIBhLEwEAAAAAAAAAAAAAAAAAAAAAAAAAACGsTARAAAAAAAAAAAAAAAAAAAAAAAAAAAYxsJEAAAAAAAAAAAAAAAAAAAAAAAAAABgGAsTAQAAAAAAAAAAAAAAAAAAAAAAAACAYSxMBAAAAAAAAAAAAAAAAAAAAAAAAAAAhrEwEQAAAAAAAAAAAAAAAAAAAAAAAAAAGMbCRAAAAAAAAAAAAAAAAAAAAAAAAAAAYBgLEwEAAAAAAAAAAAAAAAAAAAAAAAAAgGEsTAQAAAAAAAAAAAAAAAAAAAAAAAAAAIaxMBEAAAAAAAAAAAAAAAAAAAAAAAAAABjGwkQAAAAAAAAAAAAAAAAAAAAAAAAAAGAYCxMBAAAAAAAAAAAAAAAAAAAAAAAAAIBhLEwEAAAAAAAAAAAAAAAAAAAAAAAAAACGsTARAAAAAAAAAAAAAAAAAAAAAAAAAAAYxsJEAAAAAAAAAAAAAAAAAAAAAAAAAABgGAsTAQAAAAAAAAAAAAAAAAAAAAAAAACAYSxMBAAAAAAAAAAAAAAAAAAAAAAAAAAAhrEwEQAAAAAAAAAAAAAAAAAAAAAAAAAAGMbCRAAAAAAAAAAAAAAAAAAAAAAAAAAAYBgLEwEAAAAAAAAAAAAAAAAAAAAAAAAAgGEsTAQAAAAAAAAAAAAAAAAAAAAAAAAAAIaxMBEAAAAAAAAAAAAAAAAAAAAAAAAAABjGwkQAAAAAAAAAAAAAAAAAAAAAAAAAAGAYCxMBAAAAAAAAAAAAAAAAAAAAAAAAAIBhLEwEAAAAAAAAAAAAAAAAAAAAAAAAAACGsTARAAAAAAAAAAAAAAAAAAAAADKAa9euafv27U7HAAAAQDrAwkQAAAAAAAAAAAAAAAAAAAAASMdu3bqlYcOGqWTJkqpWrZp+/PFHpyMBAADAxwU6HQAAAAAAAAAAAAAAAAAAAAAAYL34+Hh99913+vDDD3X27Nm//ntCQoKDqQAAAJAesDARAAAAAAAAAAAAAAAAAAAAANKRpKQk/fDDDxo4cKCOHTvmdBwAAACkQyxMBAAAAAAAAAAAAAAAAAAAAIB0wOVyafr06erfv78iIyOdjgMAAIB0jIWJAAAAAAAAAAAAAAAAAAAAAODj5s+fr3fffVc7d+50OgoAAAAyABYmAgAAAAAAAAAAAAAAAAAAAICPWr58ufr166f169c7HQUAAAAZCAsTAQAAAAAAAAAAAAAAAAAAAMDHbNy4Uf369dPSpUudjgIAAIAMiIWJAAAAAAAAAAAAAAAAAAAAAOAj9u3bp7fffltz5851OgoAAAAyMH+nAwAAAAAAAAAAAAAAAAAAAAAAjPn2229ZlAgAAADHsTARAAAAAAAAAAAAAAAAAAAAANIJPz8/tWrVSo8//rjTUQAAAJCOsTARAAAAAAAAAAAAAAAAAAAAANKBli1baseOHfrll19UoUIFp+MAAAAgHQt0OgAAAAAAAAAAAAAAAAAAAAAAwH1NmjTRRx99pOrVqzsdBQAAABkET0wEAAAALLJixQr5+fkZ/gGcwOcUAP6N4yIAAAC8zcSJEw2NTUePHu101Ns6duyYpk+frvfee0/t2rVT7dq1VbJkSeXMmVOZM2dWQECA4fH3hAkTnP51AAAAAADwejVr1tTy5cu1cOFCn1mU+Mgjj6Q6L5A5c2YdPXrU6agAAAC4A56YCAAAAAAAAAAAAABe4PLly3rjjTdSratQoYK6devmgUTGbNu2TT/88IPmz5+vw4cPOx0HAAAAAIAMoXLlyho0aJBatGjhdBTTPv74Yy1cuFBJSUkp1ty6dUs9e/bUvHnzPJgMAAAAZvDERAAAAAAAAAAAAADwAn369NHFixdTrRsxYoQCA52/B+2CBQt03333qXr16vriiy9YlAgAAAAAgIe8+uqr2rFjh08uSpSkihUr6oUXXki1bv78+Zo9e7b9gQAAAOAWFiYCAAAAAAAAAAAAgMPWrl2rcePGpVrXuHFjNWvWzAOJUnbq1Ck98sgjatasmTZt2uRoFgAAAAAAMqISJUrIz8/P6RhpMnDgQGXJkiXVuldeeUW3bt3yQCIAAACY5fxtNAEAsFGDBg20cuVKx/oPCgpSSEiIQkJCFB4erjx58ihv3rzKnz+/ypYtq7Jly6pixYoqW7asz08UAYAZnjo+BwcH/3Uc/udP1qxZlTdv3v/8FC9eXOXLl1fOnDltzwYAAICUOf33vNU6duyoCRMmOB0DAODFkpOT9corr8jlcqVaO2TIEA8kStmaNWvUsmVLXbp0ydEcQEaSmJioPXv2aMuWLX/97N69W/Hx8Ya3UaxYMR09etS+kD5uwoQJeu6555yO4VPq16+vFStWOB0DAAAAPixv3rx67bXX9MEHH9yx7sSJExo6dGiqdQAAAPA8FiYCAGCjhIQEJSQkKDo6WpcuXdKxY8duW5cjRw7df//9atiwoR577DGVLVvWw0kBIH2Kj49XfHy8bty4Yapdnjx5VL58eZUvX14VK1ZU7dq1VbVqVQUG8icUAAAAAACw3tixY7Vt27ZU69q0aaN77rnHA4lub9GiRWrRooXi4uIcywCkd0lJSfrjjz+0ZcsWbd26VVu2bNHOnTsVGxvrdDQAAAAAsFzv3r01evToVG+ANGLECHXu3FnFihXzUDIAAAAYwVW1AAB4gStXrmjBggVasGCB+vTpo4oVK6pTp056/vnnlStXLqfjAUCGc+HCBV24cEGrV6/+679lzpxZ999/v+rUqaP69eurbt26LFQEAAAAAABpdu3aNb377rup1gUEBGjQoEEeSHR7u3fvVtu2bVmUCFgoOTlZkZGR/3oS4o4dO3Tr1i2nowEAAACAR2TNmlVvvfWW+vTpc8e6mJgYvfnmm5o+fbqHkgEAAMAIf6cDAACA//rjjz/Up08fFS5cWN26ddOpU6ecjgQAGd7Nmze1dOlSDRw4UA888IAKFCigrl27avHixUpMTHQ6HnzUhAkT5OfnZ+inePHiTscF/oPPMAAAvofzN+B9PvzwQ50/fz7Vuvbt26tChQoeSPRfCQkJevrpp3Xjxg1H+gfSA5fLpQMHDuinn37S66+/rnr16ilbtmyqWLGinn32WY0cOVLr1q1jUSIAAACADKdHjx7Kly9fqnUzZszQunXrPJAIAAAARrEwEQAALxYbG6vvvvtOZcqU0Xvvvaf4+HinIwEA/r+LFy/q+++/V5MmTVSgQAG9+uqrioqKcjoWAAAAAADwISdOnNCoUaNSrfP391e/fv08kOj2PvnkE+3atcux/gFfFhkZqQceeEA5cuRQuXLl1KFDB3322WdavXq1oqOjnY4HAAAAAI4LDQ1V7969DdWm9mRFAAAAeFag0wEAAEDqYmJiNHjwYM2ePVuTJk3S3Xff7XQkAMA/XLx4USNHjtTo0aPVqlUrvfHGG7rvvvucjgUAAAAAALzce++9p9jY2FTrHn/8cZUrV84Dif7rxo0b+vjjj91unz17dlWrVk0FCxZUtmzZlDVrVvn7G7t/bpUqVdzuF/AWZ86c0fLly52OAQAAAABe7aWXXtKwYcN06dKlO9atXbtWc+bM0WOPPeahZAAAALgTFiYCAOBD9uzZo1q1amny5Mlq3bq103EAAP9HUlKSZs6cqZkzZ6phw4b64osvdNdddzkdCwAAAAAAeKHdu3dr0qRJqdb5+fnp3Xff9UCi2xs3bpwuX75sqk2OHDn0/PPPq3PnzqpQoYJNyQAAAAAAQHoRHh6uV199Ve+//36qte+8844effRRBQQEeCAZAAAA7sTYrSgBAIDXiImJUdu2bfXNN984HQUAcAfLly9XtWrV1KtXL127ds3pOAAAAAAAwMu8//77Sk5OTrWuadOmioiI8ECi25s4caKp+nr16umPP/7QiBEjWJQIAAAAAAAM6969uzJnzpxq3b59+zRlyhQPJAIAAEBqWJgIAIAPcrlc6t69u6ZOnep0FADAHSQmJuqLL75Q2bJlNWvWLKfjAAAAAAAAL7F9+3bNnj3bUO2bb75pb5g7OHz4sLZv3264PiIiQosWLVL+/PltTAUAAAAAvuurr76Sn5+f4Z9PPvnE6chplpiYqGrVqhn+nYODg7Vz506nY8MBOXPm1HPPPWeodtCgQUpKSrI5EQAAAFIT6HQAAAC8SeXKldW8eXNLtpWYmKi4uDhFR0frwoULOnXqlA4dOqSrV69asv3k5GR17NhR5cuX1913323JNgHAW6X1+BwbG6vY2FjFxcUpNjZW169f15kzZ3TmzBmdO3dOCQkJFqb9r/Pnz6t169bq06ePPvroIwUEBNjaHwAAAAAA8G4DBgwwVFe9enU1aNDA1ix3smTJElP148aNU0hIiE1pAAAAAMD3RUREmKrfv3+/TUk8Z/jw4aZuevPuu++qSpUqNiaCN3vttdf09ddfp7ro8MCBA/rxxx/17LPPeigZAAAAboeFiQAA/EPVqlU1ePBgW/s4fvy4NmzYoN9//13z5s3TxYsX3d5WfHy82rdvr61btyo0NNTClADgXew8PrtcLp07d0579uz562fr1q3auXOnXC6XpX0NHz5cmzZt0tSpU5UvXz5Lt21UgwYNLP+9AMCXcVwE0oeOHTtqwoQJTscAAMCQHTt2aO7cuYZqe/XqZW+YVKxcudJwbdWqVVWjRg0b0wCAfTp16qROnTo5msHPz89U/fjx4x3PDAAAzKtUqZKp+sjISJuSeMb+/fv1wQcfGK6vVq2a+vbta2MieLuSJUuqefPmmj17dqq1gwcP1tNPPy1/f3/7gwEAAOC2GIkBAOBhRYsW1eOPP65x48bp1KlTmjJlium7of3Tvn379Nlnn1mYEAAyFj8/P+XPn1+NGzdWr169NGbMGG3fvl0XLlzQ9OnT1a1bN0sXEa5YsUK1atXSyZMnLdsmAAAAAADwHcOGDTNUlydPHrVr187mNHe2a9cuw7VPPPGEjUkASFLBggXVvHlzDRw4UN27d3c6DgAAANyQK1cu5c+f33C9Lz8xMTk5WZ07d1ZcXJyh+uDgYE2cOFGBgTxzJaN7+eWXDdUdPHhQs2bNsjkNAAAA7oSFiQAAOCg4OFhPPvmkdu3apS+++MLtpx4OGzZMly5dsjgdAGRsuXLlUrt27fTNN9/o5MmTmjdvntq2bavg4OA0b/vIkSNq2LChTp8+bUFSAAAAAADgK6KiojRjxgxDtS+88IJCQkJsTpSyxMREHThwwHB9tWrVbEwDZDz58+fXI488ov79+2vevHk6c+aMTp06pblz5+r999/XPffc43REAAAAuMnMUxMvXLigy5cv25jGPqNGjdK6desM1/fv39/0EyWRPjVu3Fhly5Y1VDt8+HCb0wAAAOBOWJgIAIAX8Pf31yuvvKJVq1Ypb968pttfv35dY8aMsSEZAECSAgMD9eijj2rGjBk6fPiwXnrppTQvUDx06JAaNmyoM2fOWJQSAAAAAAB4uxEjRigpKSnVOn9/f3Xr1s0DiVJ2+vRpJSQkGK6vXLmyjWmA9C1fvnxq1qyZ3nvvPc2ZM0cnT57UmTNnNH/+fA0YMECPPvqoqafqAAAAwLuZXXwXGRlpUxL7REVFqV+/fobr7733Xr311ls2JoIv8fPz04svvmiodtOmTVqxYoW9gQAAAJAiFiYCAOBF7rnnHv3+++8KDw833XbcuHE2JAIA/F+FCxfWV199pcOHD+vJJ59M07YOHDigVq1ambrIDwAAAAAA+KarV69q4sSJhmobN26sokWL2pzozs6ePWu4NiAgQPny5bMxDZB+5MmTRw8//LD69eunWbNm6cSJEzp79qx+/fVXffDBB2rRooUKFSrkdEwAAADYKCIiwlT9/v37bUpin65du+rmzZuGakNCQjRhwgQFBATYnAq+5Omnn1ZQUJCh2s8//9zeMAAAAEgRCxMBAPAyVatWdWuy5MCBA9q9e7f1gQAAt1W4cGFNmTJFs2bNStPdyjdu3Kg+ffpYmAwAAAAAAHijcePGGb4o87nnnrM5TeouXrxouNadm+0BGUW+fPn0zjvv6Oeff9axY8d0/vx5LViwQIMHD1bLli1VuHBhpyMCAADAw8w+MdHXFiaOHTtWS5YsMVw/cOBAVaxY0cZE8EV58uRR8+bNDdXOmzdPR48etTcQAAAAbouFiQAAeKHOnTurRo0aptstW7bMhjQAgDtp2bKl9uzZo3r16rm9jc8//1yzZ8+2LhQAAAAAAPAqycnJGj16tKHa7Nmzq1WrVjYnSt2tW7cM17IwEUhZhQoV9NFHH6l169aOPwkVAAAA3iEiIkJ+fn6G6yMjI21MY63Tp0+rd+/ehuvvu+8+vfHGGzYmgi/r3LmzoToz8y4AAACwFgsTAQDwUm+//bbpNmvWrLEhCQAgNbly5dKiRYvUoUMHt7fx3HPP6cKFCxamAgAAAAAA3mLhwoU6cuSIodq2bdsqJCTE5kSpi4uLM1wbGBhoYxIAAAAASF+yZMli6qYVvvTExJdeeknXrl0zVJspUyZNnDhRAQEBNqeCr2rSpIny5MljqHbcuHGKjY21OREAAAD+LxYmAgDgpR555BFly5bNVBtfukMaAKQ3ISEhmjx5sl544QW32l+9elXvvvuuxakAAAAAAIA3GDNmjOHap556ysYkxiUmJjodAQAAAADSrUqVKhmuPXz4sBISEmxMY42pU6dq7ty5husHDx6scuXK2ZgIvi4wMFBt27Y1VHv58mXNmjXL5kQAAAD4v1iYCACAlwoODla9evVMtTl06JBNaQAARn399dd65JFH3Go7ZswY7dy50+JEAAAAAADASRcuXNC8efMM1ebPn18NGjSwN5BBLpfL6QgAAAAAkG5FREQYrk1MTNSRI0dsTJN2Fy9e1CuvvGK4vlatWnrttdfS1OeECRPk5+fn0z+TJ09O03uQETz55JOGa8eOHWtjEgAAANwOCxMBAPBi99xzj6n6mJgYxcTE2JQGAGBEQECApk2bpsqVK5tum5ycnOYvXwAAAAAAgHeZNGmS4SdbtGnTRv7+fIULAAAAAOmdmScmStL+/fttSmKNV199VRcuXDBUGxoaqgkTJvD3LwypW7euChYsaKh22bJlioqKsjkRAAAA/inQ6QAAACBlJUuWNN0mOjpaoaGhNqSxTkJCgrZt26ZNmzbp8OHDioqK0tGjR3X16lXdvHlTN2/eVEJCgjJnzvzXT6FChVSiRAmVLFlSlSpVUu3atZU3b16nfxWvcebMGa1Zs0Z79uzRnj17dPDgQV27dk03btzQjRs3FBgYqLCwMGXJkkWFCxdWiRIlVK5cOdWqVUv33XefMmfO7PSvYLn4+HitWbNGmzZt0r59+7Rv3z6dP39e169f140bNxQUFKQsWbIoS5YsypEjh8qVK6eKFSsqIiJCdevWVc6cOZ3+FeDDMmfOrEmTJunee+9VfHy8qbbLly/XqlWrTD81NyNITk7W3r17tWvXLkVGRurgwYM6c+aMzp8/r0uXLik2NlZxcXFKSEhQSEiIwsLC/vXz5zGwePHiKlasmIoXL/7XT3BwsNO/XobH+MB6Z8+e1bp16xQZGakDBw7owIEDunjxoqKjoxUdHa2bN28qKChIuXPnVtGiRVW2bFndfffdatOmjQoXLux0fKQB+5O1GGsjvUhISND+/fu1d+9eHTlyREeOHNGJEyd04cIFXbx4UdevX1d8fLzi4uIUGBio0NBQZcqUSVmyZFHBggVVuHBhFSlSRJUqVVK1atVUrlw5BQQEOP1rOebgwYPatGmTDh06pKNHj+rYsWM6deqUbt68qVu3bunWrVtKSEhQcHCwQkJClC1bNuXOnVv58uX763hbsWJF3X333SpQoIDTv06GxTnTeoxBb2/SpEmGax977DEbk+BOOCZYi+MBADvFxsZq8+bN2r59u6KionTkyBEdPXpU165d++uYHR8fr9DQUIWFhSk8PFyFChVSyZIlVbJkSVWtWlW1a9fmuyAfwLxM6tgfUsZciL0Y76Wd2YWJkZGRNiVJu/nz5+unn34yXP/RRx+pTJkyNiZCeuLn56fmzZvr22+/TbXW5XLpp59+Ur9+/TyQDAAAABILEwEA8Go5cuQw3cbsAhhPOX36tKZPn665c+dq48aNunXrVqptrl+/ruvXr0uSDh06pJUrV/7r9XLlyqlRo0Z68sknVadOHfn5+dmS3VsdP35ckydP1ty5c7Vp0ya5XK4UaxMTExUbG6vLly/r2LFjWrt27V+vBQYGqnHjxnriiSfUtm1bhYeHeyK+LZKSkjRv3jxNmDBBS5cuVXR0dIq1iYmJiomJ0fnz5yVJW7Zs+eu1gIAA1apVS82bN9fTTz/NRaJwS+XKlfX+++/r3XffNd121KhRLEz8/06dOqU5c+Zo/vz5Wrduna5du2ao3Z9PEb506VKqtcHBwapataruv//+v36KFy+exuQwgvGB9TZv3qwZM2Zo0aJF2rlzZ6r1SUlJOnnypE6ePKl169ZJkrJly6ZOnTrZnBRWY3+yFmNtpAfHjh3TmjVrtHbtWq1fv15//PGH4TmD+Ph4xcfH69q1azp37pwOHTr0n5qwsDDVr19fzZo10yOPPKISJUpY/St4ldOnT2vWrFlasGCBNmzYYGicKf3vAtHY2Fhdu3ZNx48fv21NwYIFVa9ePdWvX18PP/wwY1Gbcc60HmPQO4uMjNSOHTsM1WbLlk0NGjSwNQ/+jWOCtTgeALDTrl27NH36dC1dulTbtm0z9PfNn4tjzp8/ryNHjmj16tV/vebn56cKFSqoefPmat++vSpXrmxnfJjAvEzq2B9uj7kQ+zHes1aFChUUEBCgpKQkQ/Xe+sTE69ev68UXXzRcX7duXb366qs2JkJ61LJlS0MLEyVpypQpLEwEAADwJBcAAOlY/fr1XZIM/3Ts2NHpyP+yZMkSU/klua5fv+507L8kJye7Zs+e7WrYsKHL39/f9O9i5qdw4cKu9957z3Xx4kWnf+1/6dixo+Wfv127drmeeeYZV2BgoOXvY86cOV0DBgxwXblyxdb3xWqxsbGujz/+2FWkSBHL35OQkBBX586dXfv27Us1x/Lly01tOyPz9eOzUYmJia6yZcua/twFBga6Tpw4YUsmX/icJiYmumbNmuVq3Lixy8/Pz9bzR0o/hQoVcvXo0cO1cuVKV1JSktu/i5nzgNM/nsL4wPrxQVxcnOuHH35w1ahRw5L3bfz48W5ldfrHXb5wXExJRt+fGGunbxllvGil2NhY16+//urq0aOHW2PQtP40aNDANX36dFd8fLzTb4VlYmJiXN99952rZs2aHh2X3nXXXa7+/fu7Dh065FbujHD+NiujnzNdLt8ag6Y3AwYMMPw+PPHEE7bniYqKcnzfd/rzkNGPCRwP0o/x48ebem+LFSvmdGSkgv3lv65cueIaMmSIq0KFCraffyIiIlxjx45NV3/T2Il5Gc9jf/gv5kJuj/GebzHz2a1Zs6bTcW/rhRdeMPw7hIWFuT3ndTtmx8Te+DNp0iTL3o+U9O/f3+f3ybi4OFeWLFkMv687d+50OjIAAECGwRMTAQDwYrGxsabqAwIClCVLFpvSmDNjxgwNGjRIu3fv9kh/J0+e1KBBg/Tpp5/qxRdf1Ntvv63cuXN7pG9PuXr1qvr06aMxY8bc8c6gaXH58mUNGDBAX3/9tUaNGqV27drZ0o+Vfv75Z7355puKioqyZftxcXEaO3asxo8fr169emnQoEEKCwuzpS+kPwEBAerfv786dOhgql1iYqK+/vprffjhhzYl816zZs1S3759Hb/j56lTp/Tll1/qyy+/VIECBdSmTRu98cYbKlasmKO5fB3jA+stXrxYPXr00IEDB5yOAg9jf7IWY234qri4OP3666+aOXOm5s+frxs3bjiWZcWKFVqxYoWKFSumwYMHq0OHDj77hKhLly5p5MiR+vrrr3XhwgWP9797927t3r1bAwcOVJ06ddS9e3e1adNGQUFBHs+SHnDOtB5jUHNmzJhhuPbBBx+0MQkkjglW43gAwC5nz57Vp59+qm+++cZjf+fs3btXnTt31oABA/Tuu+/qhRde8Nm/aXwN8zJ3xv7wb8yFeBbjPftFREQYfn8jIyNtTmPe8uXLNWbMGMP1Q4cOValSpSzrP2fOnKpSpYpl23NCzpw5nY7gE4KDg1W/fn3Nnz/fUP306dN99gnAAAAAvoaFiQAAeLGrV6+aqs+WLZs9QUw4cuSIunXrpiVLljjS/82bN/XJJ59o4sSJ+vTTT/XMM884ksNqc+bM0UsvvaQzZ854pL9z587p8ccf1zPPPKPvv/9eISEhHunXjBs3bqhbt26aMmWKR/pLTk7Wp59+qjlz5uiHH35QrVq1PNIvfN+TTz6pDz/8UH/88YepdhMnTsxQCxNPnTqlzp07a+HChU5H+Y8zZ87oyy+/VO3atVmY6CbGB9a7evWqunXrpunTpzsdBR7G/mQ9xtrwRZGRkfrss880ffp0Xblyxek4/3Ls2DE988wz+uyzzzRhwgTdddddTkcyLCkpSV9//bXef/99r3lf16xZozVr1qhMmTJcBGgS50zrMQY17/Dhw9q7d6/h+oYNG9qYJmPjmGAtjgcA7JKUlKRRo0bp/fffd2yx0YkTJ9StWzdNnDhR3333nSIiIhzJkVEwL5My9od/Yy7EsxjveU6lSpU0a9YsQ7WXL1/WhQsXlCdPHptTGXPr1i298MILhheVN2jQQD169LA0Q4sWLdSiRQtLtwnv1bBhQ8MLE+fMmaPBgwfbnAgAAACS5O90AAAAkDKzT4ArUKCATUmM+eabb1SpUiXHLu74p4sXL+rZZ59V06ZNdenSJafjpMkHH3ygVq1aeewLuX+aNGmSGjZs6HVf7uzZs0fVqlXz2KLEfzp8+LAeeOABvoSBYf7+/urdu7fpdqdOndK2bdtsSOR9lixZorvuussrFyUi7RgfWO/AgQO67777OBdlQOxP1mOsDV81Y8YMffvtt179+dm2bZtq1KihL7/80ukohmzfvl133323evbs6ZXv6/nz552O4FM4Z1qPMah75syZY7i2aNGiKlmypI1pMi6OCdbieADALrt27dK9996r1157zdEnoP1p3bp1qlatmr799luno6RbzMukjP3hv5gL8RzGe55VqVIlU/X79++3KYl57777rg4fPmyoNjw8XOPGjUt3TxWFZ5m5odOePXtMX3cHAAAA97AwEQAAL7ZlyxZT9ffcc49NSe4sISFBL774ol566SXFxMQ4kiElv//+u2rUqKE9e/Y4HcW0+Ph4PfXUU+rfv7/hO8zZYf369WrWrJlu3rzpWIZ/2rBhg+rVq6dDhw45liEuLk5PPvmkvvjiC8cywLc8/vjjypw5s+l28+bNsyGNd5k4caKaNm3q1V8kwz2MD+yxatUq3XfffTwxKYNhf7IeY23AM2JjY9WzZ0+99NJLSk5OdjpOir766ivVrFnT545l+C/OmfZgDOo+M3/XN2jQwL4gGRTHBOtxPABgl0mTJun+++/X9u3bnY7yL/Hx8XrxxRfVtWtXxcfHOx0n3WBe5s7YH3ybr8yFpITxnueZXZgYGRlpUxJzNmzYYOp6ieHDh6tEiRI2JkJGUKVKFeXIkcNw/dy5c21MAwAAgD+xMBEAAC+VmJio1atXm2pTo0YNm9Kk7NatW3rooYe8+m6hR44cUc2aNbVs2TKnoxiWlJSk9u3ba+rUqU5HkfS/SeXHH3/c0S8HJWnFihVq3LixVyxgcrlc6tWrlyZNmuR0FPiA8PBwtW3b1nS79L4w8eeff9bzzz+vxMREp6PAYowP7LFz5041b95cV69edToKPIj9yXqMtQHP++abb/TUU08pKSnJ6Sj/kpCQoA4dOqh79+6Ki4tzOg7SiHOmPRiDuu/mzZtau3at4XoWJlqLY4L1OB4AsENycrJeeeUVPfvss163iPyfvv/+e7Vt25bFWBZgXiZl7A/pi7fOhdwJ4z1nlC1bVsHBwYbrveGJifHx8ercubPhxbeNGjXSiy++aHMqZAT+/v6qV6+e4fqFCxfamAYAAAB/YmEiAABe6vfff9fly5dNtfH0wsSYmBg1b95cy5cv92i/7oiOjlbz5s21atUqp6MY0rVrV/38889Ox/iX3377TSNGjHCs/z179qhly5Zed9fSLl26mF5EjIzp6aefNt1m27ZtOnv2rA1pnLdz50516NDBJ+8WiztjfGCPo0ePqmnTprp+/brTUeBB7E/2YKwNOGP69Ol67bXXnI7xl5iYGLVo0UI//fST01FgAc6Z9mAMmjYrV65UQkKC4fqGDRvamCZj4ZhgPY4HAOyQlJSkTp06adSoUU5HMWTevHlq164di7HSiHmZ22N/SJ+8bS7kThjvOScwMFDlypUzXO8NCxMHDx6sP/74w1BtlixZNHbsWPn5+dmcChmFmfmTVatWca4CAADwgECnAwAAgNsbPny4qfqSJUuqevXqNqX5r6SkJLVu3dqyuzkXLVpUFSpUUJEiRZQlSxYFBwfrxo0bunLliiIjI7V//37dunUrTX3cunVLjzzyiJYuXerI0yWNGjRokMaNG2eqTVhYmMqWLauSJUsqb968ypw5s4KCgnTz5k1duHBBR44c0a5duxQbG5umbP369dMjjzyiihUrpmk7Zp09e1aPPPKIrl27luZtZcuWTRUqVFCZMmWULVs2hYeHKyYmRtevX1dUVJT27dunc+fOGd5efHy8WrdurT179qQ5G9K3OnXqKFOmTKb2Q5fLpU2bNqlFixY2JvO8uLg4dejQwZKn0gQHB6tEiRIqWrSo8uTJoxw5cihTpkwKDg5WUlKS4uLiFBMTo0uXLun8+fM6c+aMjh49ylMabcL4wB6JiYlq27atzpw5Y6pdpkyZVKZMGZUqVUr58uVT5syZFRwcrOjoaN24cUNHjx7V3r17dfHiRZuSIy3Yn+zBWBv4n1y5cqlIkSLKly+f8ufPr8yZMytTpkwKCQlRfHy84uLidPHiRZ07d06HDx/W8ePHLel31KhRqlSpkrp27WrJ9tx18+ZNPfzww1qzZo1l2wwNDVWJEiVUsmRJ5c+fX2FhYQoLC1NiYqJiYmJ07do1nTp1SqdOndKRI0cYj1qIc6Y9GIOm3dKlSw3XFitWTMWLF7cvTAbCMcF6HA8A2CEpKUnPPPOMpkyZYsn2QkNDVa5cORUpUkQFChRQWFiYQkNDFRsbqxs3bujYsWM6ePCgjh49mqZ+5s6dq5deekljx461JHdGw7zM7bE/eEZGnwu5E8Z7zouIiNDu3bsN1UZGRtqc5s527dqloUOHGq4fMWKEihUrZmMiZDRmFibevHlT69evV/369W1MBAAAABYmAgDghaZMmWL6CWydO3f26B3G3n77bf3+++9ut/fz81OjRo3UoUMHPfTQQypQoMAd6xMTE7V27VrNmzdPEyZM0KVLl9zqNzo6Wm3atNHWrVuVN29et7Zhp5UrV2rgwIGGaitWrKgnn3xSDz30kKpWraqgoKA71sfHx2vt2rWaMmWKJk+erJiYGNP5EhIS9Prrr6fp396s5ORkPfXUU2n68qdgwYLq3LmzHn30Ud17772p7iv79+/Xb7/9prFjxxq609/FixfVvXt39ejRw+2MSP8yZcqkunXravHixababd26Nd0tTBw1apT27t3rVttMmTLpwQcfVNOmTVW3bl2VL19egYHm/rRNSEhQVFSUdu7cqS1btmjjxo1av349d0u0AOMDe3z44YfaunWrodqSJUuqffv2evjhh3XvvfcqODg41TZRUVGaO3eupk2bpvXr16c1LizC/mQ9xtrIqEqUKKGaNWuqZs2aqlKliipUqKDcuXOb2saNGze0ceNGrVixQr/88ov27dvndp5evXrpgQceUOnSpd3eRlokJyerffv2aV6U6O/vr3r16qlly5aqU6eO7r77bgUEBBhqGx8fr3379mnTpk1avXq1VqxYoRMnTqQpT0bGOdMejEHTbsWKFYZrq1WrZl+QDIZjgvU4HgCww+uvv56mRVj+/v6qX7++mjdvrkaNGqlixYqG5onPnDmjZcuWacqUKVq4cKFbNwwZN26cqlevrpdfftmd6BkW8zIpY3+wHnMh5jDec16lSpUM10ZFRSk+Pt7Qe2+1pKQkPf/880pISDBU36RJE69elAvfFBERoZCQEMM3QV6+fDkLEwEAAOzmAgAgHatfv75LkuGfjh07Oh3ZtW/fPleOHDlM5Q4MDHSdPn3aYxlnzpxpKt///WnTpo1r//79bvcfExPjGj16tCtXrlxuZ2jYsKErMTHRwnfl9jp27Gg4U7NmzVwFCxZMta5Ro0auZcuWpSnXmTNnXJ07d3b7/Vu0aJFF71Dqhg4d6nbOggULuiZMmOBKSEhwu/9Fixa5KleubKi/7t27m8qXkfni8dkKw4cPN/05fuSRRyzNsHz5ckc/pzdu3HDlzJnT9PuQK1cu17Bhw1yXL1+2PJPL5XLdvHnT9dtvv7leeuklV968eW+bYcqUKZb3O378eMPvQbFixSzv30qMD4wzMz6oVq2aKygoKNW6GjVquH799dc0Z1uxYoVrw4YNhuvTw2fY6ePi7bA/GcNYO33LqONFowYNGpTiexEQEOB68MEHXV988YXr0KFDtvS/efNm15NPPukKCAhw63PeoEEDV3Jysi3ZUtOrV680HWNz5Mjhev/99y2fh9m2bZurf//+rtKlS9+232zZslnWV3o4f/+Jc6Zx6WkM6guio6NdgYGBht/z999/3+nIt+VrxwuOCcZwPEg/zOyj3rKf4s7MHjPGjx/vdGS3fP/9924fJ8PDw11vvfWWKyoqKs05jhw54urSpYvL39/fdI6goCDX5s2b0/5m+DDmZazB/mAccyHGMd7zPbNnzzb1edqzZ48jOc1cu5EtWzbX8ePHHcmJ/+rfv3+K/1a+OKasWrWq4c9ikyZNnI4LAACQ7mXsq6EBAOmer13IuGfPHlfhwoVNT2K/+eabHst49uxZV/bs2d2abC9QoIBr8eLFlmW5dOmS6/HHH3criyTXkCFDLMuSEjOT/kbev5kzZ1qab/bs2a6wsDDTWR566CFLc6Rk165dhr4Iud3P888/77px44YlORITE11DhgxJ9YsmPz8/UxkzMl87PltlxYoVbu37VnJ6AY47X7I/8cQTti1IvJ3ExETX4sWLXe3atfvXMYiFiSljfGCOleODrFmzur777jvbM6ckPXyGnT4u/l/sT8Yx1k7fMup40ajbXYxXpUoV12effeY6e/asx3Ls3LnTVadOHbf2u+nTp3ss559++uknt48TgYGBrjfffNN1/fp123OuWrXK9cwzz/xrLMrCxP/inGlOehqD+gKzY0yrxyFW8aXjBccE4zgepB8sTEx/zO6DvngR+caNG13BwcFuHXO6dOniOnfunC2ZKlasaDpPlSpV0nRjTF/HvEzasT+Yw1yIcYz3fM+hQ4dM/bv8/PPPHs8YGRnpypQpk+GMY8eO9XhGpCy9LUw0c5zLli2bKykpyenIAAAA6Zq/AACA41wul8aNG6eaNWvq5MmTptqWKlVKAwcOtCnZf7322mu6evWq6Xa1atXS9u3b1bhxY8uy5MyZU9OmTdOnn34qPz8/0+0/+OADRUVFWZbHTnXr1tX27dvVpk0bS7f72GOPadGiRQoNDTXVbtGiRdq3b5+lWW6nV69eSkhIMNXG399f3377rcaOHavw8HBLcgQEBOjtt9/WkiVLlC1bthTrXC6XJf0h/brrrrtMtzlz5ozOnz9vQxpnTJw40VT9W2+9palTpypHjhw2JfqvgIAANW7cWNOnT9eJEyfUr18/Zc+e3WP9+yLGB84oW7astm7dqhdeeMHpKLAQ+5PnZdSxNtIHf39/tWzZUsuXL9eOHTvUq1cv5cuXz2P9V65cWStXrtSAAQNMHycGDRrk0b+hzpw5ox49erjVtly5ctq8ebOGDx+uLFmyWJzsv+rWrasffvhBUVFR6tOnjzJnzmx7n76Ic6YzGIMas2HDBlP1lStXtilJxsExwfM4HgAwKy4uTp06dVJ8fLypdnny5NGCBQv0/fffK2/evJbnqlGjhjZu3KhWrVqZardz5059/PHHlufJaDLqvAz7g/uYC/EcxnueU7JkSYWFhRmu379/v41p/svlcqlLly6KjY01VN+0aVM9//zzNqdCRmZmHuXatWv6448/bEwDAAAAFiYCAOCgxMREzZo1S/fee686d+6sGzdumGofFBSksWPHmv5CxV1LlizRlClTTLdr0KCBFi1aZNsXAq+99prGjh0rf39zQ5uYmBh1797dlkxWat68uZYsWWLb+1e7dm2NHz/eVBuXy6Uff/zRljx/mj17tpYtW2aqTUBAgH744Qd17drVlkwNGjTQ4sWLWaAEt+XMmVMFCxY03e7YsWM2pPG869eva/369YbrW7ZsqaFDh9qYKHX58uXT4MGDdezYMdWtW9fRLN6K8YEzqlSpovXr16t06dJOR4GF2J88L6OOteH7/P391aZNG+3atUuzZs1SgwYNHM3Sv39/TZgwQQEBAYbb7d69W3PmzLEx2b916dJFly9fNt2uadOm2rhxo+6++27rQ6WiUKFCGjZsmI4cOaJXX33V4/17M86ZzmAMaty2bdsM14aFhalUqVI2pkn/OCZ4HscDAO4YOHCg6QVf5cuX18aNG/Xwww/blOp/wsPDNXPmTD399NOm2n300Ue6ePGiTanSv4w8L8P+YB5zIZ7FeM+z/Pz8VKFCBcP1kZGRNqb5r6+++kqrV682VJs9e3Z9//33NidCRmf2Bk9m5mkAAABgHgsTAQDwsNOnT+uXX37Riy++qCJFiqh169baunWr6e0EBgZq+vTpql+/vg0pb69v376m29x1112aN2+e7Xf3f+655zR8+HDT7RYsWKA1a9bYkMgajRo10syZMxUcHGxrP0888YTat29vqs3MmTNtSvO/L/3efvtt0+2GDRumDh062JDob/fee69+/vlnBQYG2toP0i93nppo9mm63mrt2rVKSkoyVBscHKwvv/zS5kTGZc2aVYUKFXI6hldifOB5xYsX1++//66cOXM6HQUWY3/yrIw61kb60Lt3b82cOVMRERFOR/nLs88+q88//9xUG09dpDR//nz99ttvptu1bNlSc+fOVbZs2WxIZVzevHk1cOBARzN4G86ZnscY1JydO3caro2IiDC9cA3/xjHBszgeAHDHvn37TD9NrVy5clq5cqVKlChhU6p/8/f318SJE9WsWTPDbaKjozVixAgbU6VfGXlehv3BPcyFeA7jPWdUqlTJcK0nn5h47NgxU9dufP7553ynCtuZXZhoZp4GAAAA5nE1NQAA/7B9+3a9++67lmwrKSlJ8fHxio6O1oULF3Tq1CkdOnTIrbvz/18hISGaPHmyWrZsmfagBi1cuFCbN2821SZHjhyaO3euwsPDbUr1b71799aOHTs0efJkU+0GDRqkhQsX2pTKfSVKlND06dNt/0LuT0OHDtUvv/yi2NhYQ/WRkZGKjIxUuXLlLM8yd+5c03f5e+KJJ9S7d2/Ls9zOAw88oOHDh+v111/3SH9IX4oWLWq6zYkTJ2xI4nl79+41XNu6dWu+tPIBjA88LygoSDNmzFD+/PmdjgKLsT95VkYea6dXEydO1MSJE52O8ZfHHntMs2fPtm37ISEhtm07LXr06KF169YZfmrVwoULde7cOduejiFJycnJbi1YadSokaZNm8ZNabwQ50zPYwxqzq1bt3To0CHD9e7cwAh/45jgWRwPALjr/fffV2JiouH6PHnyaPHixcqbN6+Nqf7L399fP/30k6pXr67Dhw8bajN69Gj16dOHBTwmZPR5GfYH9zAX4hmM95xjZmGiJ5+Y2K1bN0VHRxuqbd68uTp27GhzIuB/N3LLly+fzp07Z6h+x44d9gYCAADI4PhGHQCAf9i1a5d27drldIw7uvfeezVhwgRVrFjRo/1+9NFHptt8/vnnKl68uPVh7mD06NFasWKFqaeLLVq0SFu2bNE999xjYzJz/Pz8NHHiRI9+iVmkSBF17NhR3377reE2q1atsuVLObN308ybN6+++uory3PcSa9evfTLL7947Z3L4b0KFChguk16eWKimQszH374YRuTwCqMDzzv/fff97pMsAb7k+dk9LE2YLeRI0dqwYIFunr1aqq1SUlJmjZtml555RXb8vz444/avXu3qTZFihTR1KlTPXaRLMzhnOl5jEHN2b9/v5KTkw3XFytWzMY06R/HBM/ieADAHTt27NDPP/9suN7f319TpkxRkSJFbEyVsmzZsmns2LFq2LChXC5XqvXR0dGaNGmSXn31VQ+k830ZfV6G/SF98ra5kLRgvOccMwsTr127prNnz9q+gHTChAmGb5aSM2dOU8dZIK2KFStmeGHiH3/8YXMaAACAjM3f6QAAAMCYQoUKacSIEVq/fr3HFyVGRkZq1apVpto0adJEzz77rE2JUpY1a1a3Fqh99913NqRxX5cuXVS3bl2P9/viiy+aqrdjUd6uXbtMb/eTTz7x+J1o/fz89P333/P0DJiWkRcmXrhwwXBtRESEjUlgBcYHnle8eHG9+eabTseADdifPCsjj7UBT8idO7epCxAXL15sY5r//b1ohp+fn3766Sflzp3bpkRIC86ZnscY1LyDBw+aqi9UqJBNSdI/jgmexfEAgLs+/PBDQwua/vTSSy+pUaNGNiZKXf369dW+fXvD9ePHj7cxTfqS0edl2B/SJ2+bC3EX4z1nmVmYKP3vpjh2Onv2rF5//XXD9SNHjnTre3DAXWbmU86ePWv4yZ8AAAAwj4WJAAB4saCgID3wwAOaMWOGjh49qt69eysgIMDjOX744QdT9X5+fho+fLhNaVLXvHlz1atXz1Sb6dOnKzY21qZE5oSEhKh///6O9H333XerVKlShuu3bNlieYYpU6aYqq9UqZKpL8OsVL58eXXs2NGRvuG7ChYsaLrN9evXbUjieWYm+7Nnz25fEFiC8YHnDRw4UCEhIU7HgA3Ynzwno4+1AU958cUX5e9v7OuHlStXKjEx0ZYcGzZs0M6dO0216dy5s+rUqWNLHqQd50zPYwxqntmFiYULF7YpSfrHMcGzOB4AcMf58+c1Z84cw/W5c+fWhx9+aGMi4/r372/4e9mdO3dq+/btNifyfRl9Xob9IX3zlrmQtGC856zChQsrW7ZshuvtXpjYvXt3XblyxVBty5Yt1aFDB1vzAP+X2fkUs/M1AAAAMI6FiQAAeJmAgAA9/fTTWr58ua5du6alS5eqbdu2jj2VzeVyafLkyabatG3bVlWqVLEpkTGDBw82VX/t2jVTXwTZ6dlnn3X0TumPPPKI4dpDhw5Z/qXJ1KlTTdW/++67hr/kscN7773nyIJh+K6sWbOabhMTE2NDEs8zc7y4ceOGjUmQVowPPK9AgQJ68sknnY4BG7A/eVZGH2sDnpI/f37Vr1/fUO2NGze0bds2W3J88803purDw8M1dOhQW7Ig7Thneh5jUPccOXLEVD1PTHQPxwTP4ngAwF0TJkxQQkKC4frevXubWpRhpzJlyqhZs2aG6+fPn29jmvQho8/LsD+kb94yF+IuxnveISIiwnBtZGSkbTlmzpypX375xVBtrly5TM/BAVYwO6Y4fPiwTUkAAADAwkQAALxMUlKSJk+erPbt2+uVV17R4sWLlZSU5Fie7du36/jx46ba9OzZ06Y0xtWtW1dVq1Y11Wb27Nn2hDGpS5cujvZfs2ZNw7Xx8fGmL7a6k61bt+ro0aOG6/Ply6fWrVtb1r87ihUrpqZNmzqaAb4lU6ZMptt4y53x0yo0NNRwrdlzDzyL8YHnPf/88woODnY6BmzA/uRZGXmsDXhaw4YNDdeafaqhEfHx8YYvoPrTiy++qFy5clmeBdbgnOl5jEHdc/LkSVP1LEx0D8cEz+J4AMBd48aNM1wbHh6u7t2725jGvM6dOxuuXbhwoY1J0oeMPi/D/pD+OT0XkhaM97xDpUqVDNfa9cTEy5cvq0ePHobrv/zyS+XLl8+WLMCdmH1i4qlTp2xKAgAAABYmAgDgpc6cOaMxY8aoSZMmKlGihIYMGaKrV696PMfixYtN1VesWFF169a1KY05L730kqn6ZcuWyeVy2ZTGmNKlS6tGjRqOZrjnnntM1UdFRVnW95IlS0zVd+rUSUFBQZb1766uXbs6HQE+xJ2FienliYlmLvL+9ddfbUyCtGJ84HmPP/640xFgE/Ynz8noY23A0+69917DtXv27LG8/5UrV5p6CndgYKBef/11y3PAOpwzPY8xqHvMXOgWFhamHDly2Jgm/eKY4FkcDwC44+DBg6ae5tSuXTtlyZLFxkTmPfjggwoJCTFUu3HjRl2/ft3mRL4ro8/LsD9kDE7PhaQF4z3v4A0LE3v16qVz584Zqm3bti1P2oRjzN7oiYWJAAAA9mFhIgAAPuDEiRPq27fvXwsU4+LiPNa32YVi3jRh3aZNGwUGBhquP3/+vHbt2mVjotQ9/PDDjvYvSSVKlDC12M/opLQRy5cvN1Xv9NMS/9SkSROFh4c7HQM+IiMvTCxatKjh2hkzZuj8+fM2pkFaMD7wrBIlSqhy5cqOZoB92J88J6OPtQFPK1WqlOFaOy7Gmz9/vqn6Jk2aqECBApbngHU4Z3oWY1D3nTlzxnBtwYIFbUySvnFM8ByOBwDc9dtvv5mqb9++vU1J3BcWFmZ4YXtiYqK2bt1qcyLfldHnZdgfMgan50LcxXjPe5hZmHj8+HHFxsZa2v/vv/+uSZMmGarNkyePvvrqK0v7h30GDBggl8t1259OnTo5Hc8tLEwEAADwHixMBADAh1y9elV9+/bV3XffrXXr1tneX1JSktauXWuqTatWrWxKY17OnDlN3wV7xYoV9oQxqGHDho72L0kBAQGmFg9ZtXAoMTFRa9asMVxfoEABU3edtFNISIhXfKEK3xAcHGy6TXx8vA1JPC8iIsJw7dWrV/Xyyy87/kQA/BfjA8+rX7++o/3DPuxPnpWRx9qAE/LmzWu49tixY5b3v3DhQlP1Tz/9tOUZYB3OmZ7HGNQ9SUlJunLliuF6b3sKjq/gmOBZHA8AuGvBggWGazNnzqx69erZmMZ9Zp6yt2PHDvuC+LiMPi/D/pAxOD0X4i7Ge97DzHepycnJOnDggGV937hxQ926dTNcP3r0aOXJk8ey/gGzzM6pXLx40aYkAAAAYGEiAAA+aP/+/apfv74++eQTW/uJjIw09ZSuvHnzet2d9MwuFtu5c6dNSYypWrWqo/3/ycyXJpcuXbKkzwMHDujmzZuG6xs2bCg/Pz9L+rZCo0aNnI4AH+HOU2/decqiN7r//vtN1f/888967rnnlJSUZFMiuIPxgefVqVPH0f5hH/Ynz8rIY23ACZkzZzZce/bsWUv7vn79uqkLs/z9/dW0aVNLM8BanDM9jzGoe65du2aqPjQ01KYk6RvHBM/ieADAHS6Xy9RNVuvVq+fWTf08wcx8QkZciGVURp6XYX/IOJycC0kLxnveI2/evKYW++3fv9+yvt966y0dP37cUO3jjz+udu3aWdY34A6zcypm52wAAABgHAsTAQD4h44dO8rlcln2k5ycrJiYGF29elVHjhzR+vXrNW3aNA0YMEAtW7ZU7ty53c6amJioN954Q127dlVycrKF78Lfdu/ebaq+Vq1atuRIC7OZdu3aZVOS1IWHh6tEiRKO9f9PuXLlMlwbGxtrSZ979uwxVV+zZk1L+rWKt+WB93Jnn0kvCxOLFy+uihUrmmozceJE1axZUxs2bLApFcxifOB53nYBLazD/uQ5GX2snRFY/fd8Wn9mz57t9FviuMDAQMO1N2/e1I0bNyzre/v27aaevF29enVlz57dsv5hPc6ZnscY1D1Xr141VZ9e/t73NI4JnsXxAIA7Dh48aGqMb+YpbJ5WrFgxw7WRkZE2JvFdGX1ehv0h43ByLiQtGO95l0qVKhmutWo/W7Vqlb755htDtXnz5tXo0aMt6RdIC7MLE83O2QAAAMA4438NAwAA0/z8/JQpUyZlypRJ2bJlU4kSJf7ztKjNmzdr+vTpGj9+vFt3Xfz+++8VGxuriRMnWv70OLMXeJh9EpYn3HvvvQoKClJCQoKh+r179yopKUkBAQE2J/uvIkWKeLzPlJiZwHPn6W+3Y3Zh4r333mtJv1apVKmSQkNDTd2tHRmTO19kp6cnKDz11FN67733TLXZvHmzatasqUaNGqlnz55q1qyZgoKCbEqI1DA+8Lzy5cs70i/sx/7kORl9rA3805kzZ7R3714dOnRIBw8e1IkTJ3Tx4kVdvHhRly5dUmxsrOLi4hQfH29437bChQsXlCVLFku2tXXrVlP19evXt6Rf2IdzpucxBnVPdHS0qfr09Pe+J3FM8CyOBwDcsW3bNlP11apVsylJ2hUqVMhw7alTp2xM4rsy+rwM+4PzMsJcSFow3vMulSpV0vLlyw3VWvHExJiYGHXp0sXwTb6++eabNN2EHbBKcHCw/P39Dd/M31sWgwMAAKRHLEwEAMBh9957r+6991598MEH+vbbbzVw4EDTd2maNGmSChQooGHDhlma7dChQ6bqzT4FyxNCQkJUsmRJw3eKi42N1alTp1S0aFGbk/1XwYIFPd5nSkJCQgzXWvWl3IEDB0zVe9sXJAEBASpTpozjTzSA93Nnn0lPFyp27dpVgwcPdut9WLp0qZYuXarcuXOrdevWatWqlRo0aMATJjyM8YFn5c2b1ysuTIA92J88J6OPtZGxRUVFaf78+Vq1apU2btyoEydOOB3ptqy8yYvZi7J4MoD345zpWYxB3Wf23J2e/t73JI4JnsPxAIC7du7caaq+VKlSNiVJu6xZsxquPXv2rJKTk+Xv729jIt+T0edl2B88vz9kxLkQdzHe8z6efmLi+++/r4MHDxqqbd++vVq1apXmPgGrhIaG6ubNm4Zq4+PjbU4DAACQcTETBgCAlwgNDVWvXr0UGRmpJk2amG4/fPhw/fLLL5ZmOn36tKl6b1so9qdy5cqZqjf7e1vFzBc5djNz5+2kpCRL+jTzvufNm1fZsmWzpF8rlS1b1ukI8AGXL1823SY9XaiYN29e9erVK03buHjxor777js1bdpUuXLlUtOmTTVixAht3rxZiYmJ1gRFihgfeFa+fPkc6Reewf7kORl9rI2M5+zZsxoyZIgqVaqkkiVL6pVXXtHMmTO99kI8yb0ni6fE7O9p5oIvOINzpmcxBnWf2aerpKe/9z2JY4LncDwA4K6oqChT9U7cjMEoM+frxMREnT9/3sY0vimjz8uwP3hGRp8LcRfjPe/jyYWJW7Zs0WeffWaoNn/+/Bo1alSa+gOsZua8xMJEAAAA+/DERAAAvEzevHm1YMECde/eXd98842ptl26dFHNmjVVoEABS7KYudDBz89PxYsXt6Rfq5m9q6RTF31l9AuRzpw5Y7jWWz9rJUqUcDoCfICZz/qfsmfPbn0QB7377ruaOXOmDh8+nOZt3bp1S7///rt+//13SVJYWJhq1KihWrVqqWbNmrr//vuVO3fuNPeDvzE+8CwuCkjf2J88J6OPtZFx7N+/XwMHDtTMmTN97oYNTi5MLFOmjGV9wx6cMz2LMaj7zB57M2XKZFOS9I1jgudwPADgrpMnT5qqT09z4Ddu3FD+/PmdjuFVMvq8DPuDvfsDcyFpw3jP+0RERBiujY6O1smTJ1W4cGHT/SQkJOj55583vAj722+/Vc6cOU33A9jJzBjD7M2kAAAAYBxPTAQAwAv5+/vrq6++Uvv27U21u3Llinr37m1ZDjOLZ7Jnz66goCDL+rZS3rx5TdW7s2jICt76/nmKmffd7L+pp+TJk8fpCPAB7hxj3PkyyZuFh4dr2rRpCgsLs3zbt27d0ooVK/TRRx+pefPmypMnj8qXL68uXbpo4sSJpi8AwH8xPvCsLFmyONIvPIP9yXO89b0DrHLp0iV17txZlSpV0tSpU33uQjzJ/GKeOzEz5gsPD1d4eLhlfcMenDM9izGo+/z9zX316ovHa2/AMcFzOB4AcFdGnoeNiYlxOoLX8dZzsaewP9iDuRBrMN7zPtmyZTP13bC7T0386KOPtHv3bkO1zzzzjFq0aOFWP4CdzCw2NPPUZAAAAJjDwkQAALyUn5+fvvvuO5UrV85UuylTpmjTpk1p7j8xMVG3bt0yXO+tC8Uk83f5u3r1qj1BkKLExETdvHnTcL23ft68NRe8izsXkRUpUsSGJM6qXr26Zs6cqZCQENv7ioyM1NixY9WpUycVKVJElSpV0htvvKENGzbI5XLZ3n96wvjA8zyxj8AZ7E8ArDJnzhxFRERo3Lhxhu9w7o2sGpe5XC5du3bNcH2BAgUs6Rf24ZzpeYxB3Wf2onszn238D8cEz+J4AMBdTt1gwRuwMBH/F/uD9ZgLsQ7jPe9UqVIlw7X79+83vf09e/boo48+MlRbsGBBjRw50nQfgCeYmR8IDg62MQkAAEDGxsJEAAC8WObMmfXFF1+Ybmd0AvFOzH5JkC1btjT3aRez2WJjY21KgpSY/bx5650bs2bN6nQE+ICjR4+abpPenpj4p6ZNm2rx4sXKlSuXR/vdu3evPvnkE9WsWVPFihXTO++8o0OHDnk0g69ifOB5fEmWfrE/AbBC//791bJlS507d87pKF4jPR1f8T/p6d/UV86ZjEHdZ/a9Y+GCeRwTPIvjAQB3JCQkKD4+3ukYjmHeA//E/mD9/sBciLUY73knOxcmJiUlqXPnzoaPTd9//72yZ89uqg/AU8zMEWT0JzgDAADYiYWJAAB4uYceekg1a9Y01Wbu3Lk6fvx4mvo1+yWBN99Jz2w2vjD0vPTyefPWXPAuu3fvNt0mvS5MlKS6detq586datSokSP9nzhxQkOHDlXZsmX10EMPafny5Y7k8BXp5Xgt+c74wM/Pz5F+YT/2JwBp4XK59Nxzz+mDDz5wOorXMbtgJVOmTDYlgVU4Z3oeY1D3hYaGmqpnYaJ5HBM8i+MBAHdk9PObNzwBDd6D/cG6/YG5EHsw3vNOZhYmRkZGmtr2559/rk2bNhmqfe6559SsWTNT2wc8JSkpSQkJCYbrw8LCbEwDAACQsbEwEQAAH9CzZ09T9S6XSxMnTkxTn3FxcabqucADaZFePm/emgve49y5c7pw4YLpdsWLF7c+jBcpVKiQlixZop9++klFixZ1JIPL5dKiRYv0wAMPqH79+tq8ebMjObxdejleS4wP4Dz2JwBp8frrr2vChAlOx/BKLExMfzhnwpeYfQJeRr9Q3R0cEwDA+3G8Av7G/mAd5kKQkURERBiuNfPExEOHDum9994zVFu4cGF99tlnhrcNeJrZORWzczYAAAAwLtDpAAAAIHWPPvqogoODFR8fb7jNnDlzDE8oAr7GW+8266254D3ceVpi8eLFlSNHDhvSeJ+nnnpKbdq00cSJE/Xpp5+a+iLNSqtWrdJ9992nF198UR9//LEyZ87sSA4AAIDbGTNmjD7//HNLtpUjRw5VqVJFJUuWVKlSpVSgQAHly5dPefPmVZYsWRQeHq7w8HAFBQUpMDBQQUFBpu6k78Rd97nTPwAnZc+e3VQ9CxMBAOmR2UXkQHrG/mAN5kKQ0VSsWFH+/v5KTk5OtfbkyZO6efNmqt9nulwudenSxfDfoWPGjGEhF7ya2TkVs3M2AAAAMI6FiQAA+IAsWbKoZs2aWrlypeE227dv18WLF5U7d263+jT7xAAziyY9zewXPjwtwfPM3h3cWz9vfLmI1GzcuNF0m+rVq9uQxHsFBwfrhRde0AsvvKDly5dr4sSJmj17tq5du+bRHC6XS19//bWWLl2quXPnqly5ch7t31sxPgCsw/4EwB2HDx/Wa6+95nb77Nmz69FHH9WDDz6oevXqpcsnc4eGhpqq5+kV3o9zJnxJaGioMmXKZPjYcuvWLZsTpT8cEwDA+wUFBTkdAfAa7A9px1wIMqKwsDCVKFFChw8fTrXW5XLpwIEDqlq16h3rvv32W8PXHHXp0kUPPfSQoVrAKWYXJmaUm0EDAAA4wd/pAAAAwJh77rnHVH1ycrI2bdrkdn9mL3Lw5gVZXODh/dLL581bc8F7LF682HSbjLYw8Z8aNmyoCRMm6Pz581qwYIFeeeUVlS9f3qMZDhw4oPvvvz9N59T0JL0cryXGB3Ae+xMAd7zyyiuKjo423a5y5cqaMmWKzp49q0mTJunZZ5+1/UI8p54ob/YYw8JE78c5E74mf/78hmvPnz9vY5L0iWMCAHi/sLAwpyMAXoP9Ie2YC0FGValSJcO1+/fvv+PrJ0+eVJ8+fQxtq2jRovr0008N9430ITExUYsXL9Yrr7yi7du3Ox3HkHPnzpmqL1CggE1JAAAAwBMTAQDwEREREabb7NixQ82aNXOrP7MXOVy/ft2tfjzB7FO2zD5dAWln9j331s+bt+aCd7h586bWr19vul21atVsSONbgoOD9fDDD+vhhx+WJF28eFFr167V6tWrtXr1am3btk2JiYm29X/16lU9/PDDWrt2rSpUqGBbP76A8QFgHfYnAGatW7dOv/32m6k2mTNn1ogRI9StWzf5+fnZlOz2nFrwZ/b46uknc8M8zpnwNQULFtTRo0cN1V66dEmxsbEsODOBYwIAeD93jlcJCQkKDOQSJqQ/7A9pw1wIMrJKlSppzpw5hmpTW5jYrVs33bhxw9C2xo4dqyxZshiq9UXnzp3Txo0btXv3bv3xxx86ceKETp06pStXrigmJkYJCQkKCwtT1qxZlTVrVpUqVUoVKlRQxYoV1aBBg3T11NWYmBgtWrRIv/zyi+bNm6crV65Ikh544IFUn8DpDU6ePGmqvmDBgjYlAQAAALMYAAD4iMKFC5tuc+jQIbf7CwwMVObMmXXz5k1D9WbvROVJZu88ni1bNpuSICWBgYEKDw83fLfLCxcu2JzIPd6aC95hxYoVio+PN9UmICBANWrUsCmR78qdO7cee+wxPfbYY5L+XvS5Zs0arVu3Ths3brT8wsMrV66oTZs22rx5szJnzmzptn0J4wPAOuxPAMwaNmyYqfo8efJowYIFjj2BOyYmxpF+/f39lSNHjr8upEnNmTNnbE6EtOKcCV9TqFAhU/WnTp1SqVKlbEqT/nBMAADvFxQUpODgYFPz4bGxsQoPD7cxFeAM9oe0YS4EGZmZm5dHRkam+NrkyZMNL/Dt1q2bGjdubLhfX5CcnKzVq1fr559/1uLFi1NdxClJN27c0I0bN3Tq1Cnt27dP8+fP/+u1cuXKqVmzZurcubNbN5j3Fp06ddLMmTP/87e1n5+f6tWr51Aqc06dOmWq3ux8DQAAAIzzdzoAAAAwJk+ePKbbmL071P9VoEABw7VXrlyx9WlVaWH2Ag/ukuUMM583s/+mnsLCRNzJ5MmTTbepXbu2cuTIYUOa9CVz5sxq3LixBgwYoEWLFuny5cvauHGjhg4dqoYNGyooKMiSfvbt26eBAwdasi1fxvgAsA77EwCjzp8/b+oJAcHBwZozZ45jF+JJzj6J0MzNnaKjow3fJAfO4ZwJX1KsWDFT9WYvpAPHBADwBWYv/L5165ZNSQDnsT+4h7kQZHSVKlUyXJvSYrvz58+rV69ehrZRvHhxjRgxwnCf3i4qKkrvvPOOChYsqAYNGmjUqFGGFiWmJjIyUp999pkqVaqkBg0aaN68eRak9axTp05p4sSJt73hz1133aWcOXM6kMo8s/Mp6elplwAAAN6GhYkAAPiI0NBQ020uXryYpj7NXOjgcrl09OjRNPVnlyNHjpiq5wIPZ+TPn99wrbd+1qKiopyOAC919epVzZ4923S75s2bWx8mA/jzSZNvvfWWli1bpkuXLmnKlClq06aNQkJC0rTtzz//XMeOHbMoqW9ifABYh/0JgFHTp083taiib9++qlmzpo2JUufkQpsiRYqYqj906JBNSWAVzpnwJWXKlDFVn9aby2VEHBMAwPsVLVrUVL03P+EWSCv2B/cwF4KMrly5coZvvnrw4EG5XK7//PcePXro0qVLqbb38/PTuHHj0sXTWnfs2KG2bduqVKlSGjp0qK3H1JUrV6pFixZq2rSpT80vrly5MsXX6tev78EkaWN2PqV06dI2JQEAAAALEwEA8BGBgYGm28TExKSpT7N3b4yMjExTf3Yxe9czLvBwhpn3/fz58155x0lv3QfgvKlTpyo2NtZ0OxYmWiNLlix68sknNXPmTJ0+fVojRowwfbH6nxISEvT5559bG9DHMD4ArMP+BMCoZcuWGa7NlSuX+vTpY2MaY5xcaGN2rLd7926bksAqnDPhS8wuTOTiZfM4JgCA9zO7EIuF+kjP2B/cw1wIMrrg4GDDf1/eunVLx48f/9d/mz17tmbMmGGo/csvv6yGDRuazuhNoqKi1K5dO1WtWlU///zzbRdq2uX3339XpUqVNHXqVI/1mRbpZWGimfmU0NBQ03MJAAAAMI6FiQAA+Ah3FhkmJCSkqc9SpUqZqt+3b1+a+rNDfHy8Dh8+bLieySjnlCtXzlS92Qt37JaUlORTd8GD5yQlJenTTz813a5MmTKm9wukLmfOnOrdu7cOHjyoYcOGKVOmTKa3MXnyZCUlJdmQzjcwPgCsw/4EwAiXy6XVq1cbru/UqZNCQ0NtTGTM3r17Heu7YsWKpup37dplUxJYhXMmfEn58uVN1XPxsnkcEwDA+5l9Ik1UVJRNSQDnsT+Yx1wI8D+VKlUyXPvP6yeuXr2ql19+2VC7kiVLatiwYaazeYuEhAT1799fFSpU0MyZMx3LERcXp/bt2+uTTz5xLINRq1atSvG1evXqeTBJ2piZTylTpoz8/PxsTAMAAJCxsTARAAAfcf36ddNtwsLC0tRn5cqVTdVv2LAhTf3ZYevWraYWaEZERMjfnyGSE8xMqkvSpk2bbErint27d6f5KaVInyZNmqSDBw+abte5c2cb0uBPISEh6tOnj1asWKGsWbOaanvx4kVTX4inN4wPAOuwPwEw4vTp07p48aLhem956vaOHTsc67t69eqm6u90MQ68A+dM+JICBQooV65chuu9cdGct+OYAADe75577jFVv23bNpuSAM5jfzCPuRDgfyIiIgzX/vNJ8a+//rrOnDmTahs/Pz+NHz9emTNndiuf0w4cOKBatWrpgw8+UFxcnNNx5HK59MYbb2jMmDFOR0nRuXPnUrwJeMWKFZUnTx4PJ3JPXFycqYX8VapUsTENAAAA+PYCAAAf4c6ds9M6eXjXXXeZql+7dm2a+rOD2UxMRjnHzKS6JK1fv96mJO7xtjzwDgkJCRo0aJDpdpkyZVKXLl1sSIT/67777tOvv/5q+uK+jLwwkfEBYB32JwBGmHmakr+/v+677z4b0xjjcrm0ceNGx/q/++67TY3vtm7dqmvXrtmYCGnFORO+xsy/H09tNY9jAgB4vxo1apiq37Jli01JAOexP5jHXAjwP+48MXHx4sUaP368oTY9e/b0qSfk/dM333yjqlWrmjpm+vv765577lHv3r31/fffa/Xq1YqKitLFixcVHx+v+Ph4Xbt2TYcPH9aaNWs0ZswY9ezZU5UrVzb1tL2ePXt67ULlO92grX79+h5MkjZ//PGHEhMTDdfzNzUAAIC9WJgIAICPOHLkiOk22bNnT1OfZcqUMfXUxbNnz2rPnj1p6tNqixYtMlV/99132xMEqSpbtqzCw8MN1y9fvlwul8vGROYsXbrU6QjwQh9++KFbx++nnnrK1NMVkDZ16tTRCy+8YKrN1q1bLenbzJdY3oLxAf7JFz/D3oT9CYARR48eNVxbtGhRZcqUyb4wBm3btk0XLlxwrP/MmTObuvlNUlKSFixYYGMi7+KL52/OmfA1Zi54O3funKPHTF/EMQEAvF/u3LlVsmRJw/W7d+/W+fPnbUwEOIf9wTzmQoD/MbswMTo62vB3nmXKlNGQIUPcjeaYmJgYtWrVSi+99JJu3bqVar2fn58aNmyoyZMn68KFC9q8ebNGjBihLl26qE6dOipevLhy5cqloKAgBQUFKWvWrCpZsqRq166tzp07a+TIkdq5c6eOHz+uDz/8UPny5Uu1z9jYWLVv315JSUlW/MqWWrlyZYqvNWjQwHNB0sjsTZ74mxoAAMBeLEwEAMBHuHNnRDNfcNxOQECA6tata6rN7Nmz09Snla5evaoVK1aYauNLE23pTWBgoOrUqWO4/uzZs9q0aZONiYyLi4vTwoULnY4BL7Nt2zZ9+OGHbrXt2bOnxWmQmj59+piqj4qKsqTfgIAAw7Vm7vpoJ8YH+Cdf/Ax7E/YnAEaYeZJf7ty5bUxi3Pz5852OoKZNm5qqnzx5sk1JvI8vnr85Z8LXmH0qzs6dO21Kkj5xTAAA3/Dggw8ark1OTta8efNsTAM4i/3BHOZCgP8pXbq04YW3kZGReuedd3Ts2LFUa/39/TV+/HhTN3zxBleuXFHjxo0N/X0XEBCgzp0768CBA1q2bJk6dOignDlzut134cKF1bdvXx06dEjvvPNOqvNr+/bt048//uh2f3a508JEX3p6ppmFiX5+frrnnntsTAMAAAAWJgIA4ANcLpfWrl1rul3p0qXT3Hfjxo1N1c+cOTPNfVpl1qxZSkhIMFyfP39+U3ecg/UaNmxoqv6XX36xKYk5ixYtUnR0tNMx4EWio6P17LPPunURb8uWLVW1alUbUuFOSpYsaeqpOqdPn7ak35CQEMO1Zs5pdmN8gD/56mfYm7A/AUiNkTt//8kbnhDgcrn0ww8/OB1DjzzyiKn6hQsX6uzZszal8S6+ev7mnAlfUrNmTVP1Zu/0D44JAOALWrZsaap+ypQp9gQBvAD7gznMhQD/4+/vrwoVKhiqPX36tL766itDtb169VLt2rXTEs3jTp8+rXr16mndunWp1rZo0UJ79+7VmDFjLLlu6p/Cw8P10UcfaenSpcqbN+8daz/44AMlJydb2n9aXLp0SXv37r3ta+XKlVP+/Pk9nMh9ZuZRKlasqGzZstmYBgAAACxMBADAB2zatMmti+PuuuuuNPdt5u6N0v/u7r1+/fo092sFo5Ouf2rUqJFNSWCU2X+DiRMnesVFkt99953TEeBFEhMT1a5duxQn9e8kODhYI0aMsCEVjKhSpYrhWqsWI5u5KPz69euW9GkFxgf4k69+hr0J+xOA1MTHxxuuvXr1qn1BDFq6dKmOHDnidAzVqlVLOXLkMFyfmJiozz77zMZE3sNXz9+cM+FLihUrpkKFChmuZ2GieRwTAMD7PfDAA8qaNavh+qVLl2r//v02JgKcw/5gDnMhwN/M3KTEyCK4smXLavDgwWmJ5HGHDh1SrVq1tGfPnjvW5cyZU5MnT9acOXNUrlw5WzPVr19fq1atUpEiRVKsiYmJkb+/91yivXr1arlcrtu+Vr9+fQ+nSRsz8yi1atWyMQkAAAAkFiYCAOATxowZY7pNUFCQJZMrVapUUcmSJU21+fLLL9Pcb1pt2LBBW7ZsMdWmVatWNqWBUdWrV1fx4sUN1587d87xpyYePXpUCxYscDQDvIfL5VK3bt30+++/u9W+V69eKlWqlMWpYFS+fPkM11q1KDp79uyGa2NjYxUTE2NJv2nF+AB/8tXPsDdhfwKQGjN3/j937pyNSYzxlgubAgMD9dRTT5lq8/XXX+vy5cs2JfIevnr+5pwJX1OnTh3DtSxMNI9jAgB4v+DgYLVt29ZUm+HDh9uUBnAW+4M5zIUAf4uIiLBsW/7+/powYYJCQ0Mt26bdLl26pKZNm+rYsWN3rLvvvvu0e/dudejQwUPJ/veUwSVLlqT4NL6GDRt6LIsRK1euTPE1X1qYeO7cOZ0/f95wvZn5GQAAALiHhYkAAHi5M2fO6McffzTdrkaNGgoLC7Mkw9NPP22qfurUqfrjjz8s6dtd7733nqn6nDlzqnnz5jalgRlPPPGEqfrBgwcbuvOfXQYNGqSkpCTH+of3iIuLU/v27TVu3Di32hcoUED9+vWzOBXMMPNFd3h4uCV95s2b11T9yZMnLenXCowPIPn2Z9ibsD8BuBMz445Lly5Z9mRndyxduvSOF7h4Wrdu3UzV37hxQ++8845NabyHL5+/OWfCl5h5yt2uXbt048YNG9OkTxwTAMD79ejRw1T9xIkTtXPnTpvSAM5ifzCOuRDgb2aemJia3r17q2bNmpZtz27x8fFq3bq1Dh06dMe69u3ba8WKFSpYsKCHkv2tbNmymjx58m1fY2GiPdasWWOq3sz8DAAAANzDwkQAALzcW2+95dad6c3ecfFOnnnmGVP1ycnJjl7It2jRIi1ZssRUmyeeeELBwcE2JYIZ7du3N1W/Z88e/fTTTzalubP9+/frhx9+cKRveJdLly6pcePGmjp1qlvtAwIC9NNPPylr1qwWJ4MZZu6smNKdL80y85RGSTpw4IAl/VqB8QEk3/4MexP2JwB3YuaCmuTkZC1evNjGNCmLi4vTyy+/7EjfKalcubLuv/9+U23GjBmj9evX25TIO/jy+ZtzJnxJ48aNDdcmJSVp9erVNqZJnzgmAID3q1q1qqmn1CQnJ+vFF19UYmKijakAZ7A/GMdcCPA3qxYmVqhQQYMGDbJkW57SrVs3rVq16o41r7/+un788UdTN6C12qOPPqqWLVv+579708LEa9eupbjYvXTp0ipUqJCHE7lvxYoVhmvLly/vU78bAACAr2JhIgAAXmzGjBmaNGmS6XaBgYGmF3fdSenSpU3fQWru3LmaMWOGZRmMio6ONv1EBMn8UxRgn8qVK5v6Uk763539Ll++bFOi23O5XHrhhRcy5JeB+LdZs2YpIiLC9J35/mngwIFq0KCBdaHglm3bthmuLVWqlCV95siRQzly5DBcv3XrVkv6tQLjA0i+/Rn2JuxPAO6kRIkSpurnz59vU5I7e/fdd71qAduf+vTpY6o+OTlZTz31lMf/xvQkXz5/c86ELylRooSpvx2XL19uY5r0iWMCAPiGN99801T9hg0b9P7779uUBnAW+4MxzIUAfytWrJiyZMmSpm0EBARo4sSJCgkJsSiV/T7++GNNmDDhjjWvvfaaPvnkE88ESsWwYcPk5+f31/8vWrSoSpYs6WCif1u9erWSk5Nv+5ovPS1RMjd/YuamUQAAAHAfCxMBAPBSa9eu1fPPP+9W2zZt2ihv3ryW5unXr5/pNt27d9epU6cszZGaV199VUePHjXV5tFHH1WVKlXsCQS39O7d21T9+fPn1b17d5vS3N7nn3+epoVo8H0nTpzQU089pdatW+vcuXNub+fhhx9W3759LUwGdxw5ckTbt283XF+hQgXL+i5Xrpzh2qVLl1rWrxUYH0Dy7c+wN2F/ApCScuXKmXpS0tSpU3X69GkbE/3XrFmzNGLECI/2aVSrVq1Uo0YNU22OHTump556SgkJCTalcp4vn785Z8KXPPLII4ZrzdzxH3/jmAAA3q9Fixamb8w3dOjQVBcjAL6I/cEY5kKAf4uIiEhT+z59+ujee++1KI399u7dq3ffffeONS+88II+/fRTDyVKXdmyZVW3bt2//r83PS1RklauXJnia760MPHChQv6448/DNebmZcBAACA+1iYCACAF5o7d66aNm2q6Oho0239/f3Vv39/yzM1bNhQNWvWNNXmwoULatmypWJiYizPczujRo3SuHHjTLdz5+IV2KtFixYqW7asqTZTp0712MTz8uXLTT91A+nHiRMn9PLLL6t06dKaOnVqmrZ1zz33aMqUKf+6e2J6tXbtWnXu3FmHDh1yOsptDR061FR9vXr1LOvbzEWGq1ev1pEjRyzrO60YH0Dy7c+wN2F/ApCSkJAQVa1a1XD9rVu3PLrfrVmzRk8//bTH+nPHRx99ZLrNokWL9NRTTykxMdGGRM7z5fM350z4khYtWhiu3b59u65du2ZjmvSJYwIA+IZPPvnE1Dy4y+VSly5d9OOPP9qYyhqrV6/W119/7XQM+BD2h9QxFwL8W1oWJkZERGjAgAHWhbFZcnKyOnfurPj4+BRrHnjgAX311VceTGVMhw4d/vrf3rYwcdWqVSm+5ksLE1esWCGXy2WoNkuWLHrggQdsTgQAAACJhYkAAHiVq1evqkePHmrZsqVu3Ljh1jY6duxo6VOc/snsog1J2rJli9q0aaPY2FgbEv3txx9/1GuvvWa63WOPPab777/fhkRIC39/fw0ZMsR0uz59+mjKlCk2JPrb1q1b1aZNm3R7cSpuLzExUfPnz9fjjz+u0qVL6+uvv77jlyFGVKtWTYsWLVL27NmtCenlEhISNG7cOJUvX17PPPOMduzY4XSkvyxcuFBjxowxXB8QEKAmTZpY1n/t2rUN17pcLq9bGM34AL7+GfYm7E8AUmL2AooffvhBM2fOtCnN39asWaNHHnlEt27dsr2vtGjUqJEef/xx0+1+/vlntW7d2u05GqtcuHDB8gvIfP38zTkTvqJ+/fqG/+5PSkq644WCSBnHBADwftWqVdPLL79sqk1SUpKeeeYZDRo0yPAF6J7icrm0cOFCNWjQQPXq1dPatWudjgQfwv5gDHMhwN8qVarkVrvAwEBNnDjR1BNInfb5559r48aNKb5eqlQpzZw5U4GBgR5MZUydOnX++t/etDAxOjpa27Ztu+1rxYsXV9GiRT2cyH3Lly83XPvQQw/51GcfAADAl7EwEQAAL3D27FkNGDBApUuX1ujRo93+MqFgwYL65JNPLE73t3r16unZZ5813W7BggVq1qyZLl++bEMq6auvvtKzzz6rpKQkU+0yZ86sUaNG2ZIJade6dWs1aNDAVJs/v5T7/vvvbcm0cuVKNWrUSFeuXLFl+/Auly9f1syZM/Xiiy+qUKFCat68uWbMmJHmBYmSdPfdd2vx4sXKkSOHBUl9S1JSkiZPnqyqVauqbt26mj59uhISEhzLs3r1aj3++OOmzr3NmjWz9N/O7LHu559/1iuvvKK4uDjLMqQF4wP4+mfYm7A/AUhJu3btTNUnJyfr6aef1rJly2xKJE2YMEGNGjXS9evXbevDSqNHj1bevHlNt5s3b57uu+8+7d6924ZUd3b27Fn17dtXJUuW1Oeff27ptn39/M05E74iMDBQzZs3N1xv5gI7/I1jAgD4ho8//lgVK1Y01cblcun9999XkyZNdPz4cZuSGXf9+nWNHDlS5cuX18MPP6yVK1c6HQk+iv0hdcyFAH9zd2Hi22+/rerVq1ucxj5HjhzRe++9l+LrAQEBmjx5std+x16+fHlVrVpVDRo0sHyxX0xMjObNm6c33nhDTZo0UYkSJZQ9e3YFBQUpb968qlSpkjp27KhJkybp2rVr/2q7du3aFG+87UtPS5TMzZu0atXKxiQAAAD4JxYmAgDggLi4OG3evFmffPKJGjVqpMKFC2vgwIG6dOmS29v09/fX2LFjbZ+AGzFihHLmzGm63fLly1W1alWtWbPGsizXrl3T008/re7duys5Odl0+w8++EBFihSxLA+s9/nnnysoKMhUm6SkJHXt2lVdunRRdHS0JTmSkpI0bNgwNW7c+D+TuP/k5+dnSX/wvHPnzmnZsmUaOXKkunbtqurVqytPnjxq166dvv32W50/f96yvlq1aqWVK1e6dSxNb9asWaMnnnhCBQoUUI8ePe5490urJSYm6vPPP9eDDz5o+gvknj17WpqlSJEiqlGjhqk2o0aNUvny5fXxxx/r4MGDluZxB+ODjC09fIa9CfsTgNupWrWqKleubKpNXFycHn30UY0ePdrSLOfPn1e7du303HPP3fGmHd521/LcuXPr22+/davtvn37VL16dfXt29eyvzPvZMOGDXruuedUrFgxDRkyxJY+08P5m3MmfMUTTzxhuPbXX3+1MUn6xjEBALxfaGiopkyZopCQENNtlyxZooiICA0YMMDjTzRPSEjQ3Llz9eSTTyp//vx69dVXdeDAAY9mQPrD/pA65kKAv7mzMLFy5cp6//33bUhjnzfeeOOOTyN95513vPrJ8v7+/tq2bZulNx3avHmznn76aeXOnVstWrTQJ598osWLF+vo0aO6du2aEhMTdeHCBe3du1c//PCDnn32WRUtWlRvvfXWX9eg3WnhuNmblznpyJEj2r9/v6HasLAwPfbYYzYnAgAAwJ/4axgAgH/Yvn273n33Xcu253K5FB8fr9jYWF2+fFnnz5/X0aNHFRUVZfouyan55JNP9PDDD1u6zdvJkyePJkyYoMcee8z0kx2PHz+uevXqqX379ho4cKBKlSrlVoa4uDhNmDBB7733ni5cuODWNpo0aaJevXq51RaeU6VKFQ0cOFB9+/Y13Xbs2LFasGCBhgwZovbt27v9RdCSJUvUu3dv7dq1K9Xal19+2fIvuvA/aT0+x8XFKS4uTrGxsYqLi9O1a9d09uxZnTlzRmfPnrXkKYipCQgI0JAhQ/Tmm2/a3pevuXTpkkaPHq3Ro0eraNGievTRR9W8eXPVr19foaGhlvaVlJSkH3/8UYMGDdKhQ4dMt69fv74efPBBSzNJUocOHbRp0yZTbY4ePao+ffqoT58+yp07typUqKCiRYsqZ86cCgsLM33cGzx4sKn6f2J8AF//DHsT9icAKXn99dfVqVMnU21iYmLUo0cP/fbbbxoyZIjpC/r+6dKlS/r888/1xRdfGLrwsX///ne8w7kTWrZsqX79+unDDz803TYhIUFDhgzRt99+q1deeUXdunVT/vz5Lcu2Z88ezZ49Wz/++KPhC2zSytfP35wz4SuaNGminDlzGnoq34EDB7R//36VL1/eA8nSF44J8AUDBgzQwIEDHev/2LFjlt9cz+z+BlSuXFkTJkxQ+/btTX9+oqOjNXDgQI0aNUrPPfecXnjhBZUrV86WnOfOndPvv/+u3377TYsWLdLVq1dt6QcZG/tD6pgLAf4nf/78ypUrl+GbnQcFBWnixImmbwLtpE2bNmnWrFkpvl62bFmfW2iZFjt27NDrr7/u1iLH69eva/jw4Zo0aZLGjRt3x4WJvvTExDlz5hiubd68uTJnzmxjGgAAAPyLCwCAdKx+/fouSen+54033vD4e9uvX780Zfb393c1a9bMNWnSJNe5c+dS7S8xMdG1Zs0aV58+fVx58uRJU9/FihVzXbx40QPvksvVsWNHw7k6duzokUxGeFPupKQkV7169dL0b16oUCFX//79XVu2bHElJyen2mdkZKTrs88+c1WqVMlwH23atHEtX77cVK6MLKMcn//8KVGihGvFihVOv+0ul8vl2OfUbL+SXEFBQa7777/f9cYbb7imTp3q2r17tysuLs503ydOnHBNnz7d9cwzz7hy5crl9r9jYGCga+fOnZa9J/9048YNV44cORz9nFqB8YEx3nSetYovf4a99fzN/pQ6X92XfDW3p5kdL2aE9yo+Pt5VoUKFNO2fDRs2dE2ePNl1/PhxQ32eOXPGNWXKFFebNm1cwcHBhvupWbOmKzEx0VS25cuX2/sG/n/JycmuNm3apPm84+/v72rUqJFr1KhRru3bt7sSExMNZ4iPj3ft3r3bNX78eNdzzz3nKlGiRKr9ZcuWzfL3wpfP3//EOdMYzj/O6tq1q+H3f9iwYU7H/cv48eNNfZ69AceE1HE8cE7//v09fq61+wfWMvv+jx8/3unIbvvss88s+QxWqlTJ1adPH9eCBQtcZ8+edSvL6dOnXcuXL3d9+eWXrmeeecZVunRp0zk6dOhg8Tvk/Xz1fOKNudkfUsZciHu88XOOtDNzzUT//v2djmvaww8/fMffad68eU5H9Ijo6GjXiy++6PL397fk3CApxW0VKVLE6V/XFDPfGcyePdvpuAAAABkKT0wEAMDHffjhh249TS6tPvjgA+3evVtz5851q31ycrJ+++03/fbbb/Lz81Px4sVVoUIFFS5cWOHh4QoODlZ0dLSuXLmiAwcOaN++fYqOjk5z7qxZs+qXX35Rrly50rwteIa/v7+mTJmi++67TydPnnRrG6dOndLAgQM1cOBAZc+eXRUrVlTp0qWVPXt2hYWFKTY2VtevX9fRo0f1xx9/6OzZs6a2nzt3bo0ePVr79u1zKx/Sr0yZMumtt97S22+/rUyZMjkdx+ckJCRow4YN2rBhw1//LTAwUIULF1ahQoVUsGBB5cyZU5kyZVKmTJnkcrl08+ZNRUdHKzo6WlFRUTpw4IAl5w9JGjZsWJrurHsn4eHh6tOnj9555x1btu8pjA8yrvTyGfYm7E8A/q+goCCNGjVKjRs3dnsby5cv/+su20WKFNFdd92lnDlzKkeOHMqcObNiYmJ048YNHTt2TAcPHtTx48dN95E1a1ZNmjRJAQEBbue0k5+fnyZNmqTLly+7dcfxPyUnJ2vp0qVaunSpJCksLEwlS5ZUyZIllS9fPoWFhSksLEyJiYmKiYnRtWvXdPr0aZ06dUqHDx9WQkKCVb+S29LL+ZtzJnxBp06d9N133xmq/fnnn9WnTx+bE6VfHBMAwDf06tVLV65c0QcffJCm7ezZs0d79uzR8OHDJUn58uVTsWLFVLhwYeXJk0ehoaF/zR3Hxsb+9X3Q2bNnde7cOZ08eVLXr1+34lcC3Mb+kDLmQoC/VapUSatWrUq1rmrVqurXr58HEllnz549+v3331N8/YEHHtCjjz7qwUTO2Lx5szp06KCDBw9aut3k5OTb/ndfelri+fPntWbNGkO1efLkUbNmzWxOBAAAgH9iYSIAAD4qS5Ys+uabb9S+fXtH+vf399f06dPVokULLVq0KE3bcrlcioqKUlRUlEXpbi88PFwLFixQtWrVbO0H1itYsKB+/fVX1a1bN81fiF29elXr1q3TunXrLMkWHBysX375Rfny5WNhIv6lZcuW+vTTT1WiRAmno6QriYmJOnr0qI4ePerRftu3b6/XX3/d1j569+6tn376Sbt377a1HzsxPsjY0sNn2JuwPwG4nUaNGqlHjx768ssv07ytEydO6MSJExak+ltISIhmz56tUqVKWbpdq4WGhurXX39V69at73jRkxm3bt366yJQX5Iezt+cM+ELatasqQoVKhiaO9q0aZOioqKYT3ATxwQA8B0DBw5Unjx59Oqrr6Z4wbxZ586d07lz57Rp0yZLtgd4CvtDypgLAf6nUqVKqdYEBwdrwoQJCgoK8kAi63z22Wd3fN3Xb6plxE8//aTnn39ecXFxHuvTlxYmzpgxQ0lJSYZqn332WZ/bBwAAAHydv9MBAACAeffdd5+2b9/u2KLEP/05yZ6WOxR6SpYsWfTrr7+qVq1aTkeBmypXrqxffvlFYWFhTkf5l7Fjx6pu3bpOx4CXCA4OVqdOnbRnzx7NmjWLiwjTidatW2vixIm29xMUFKRZs2YpT548tvdlJ8YHGVd6+Qx7E/YnALfzySef6P7773c6xn/4+/tr0qRJatiwodNRDAkNDdWcOXP0+OOPOx3FUenl/M05E77g+eefN1w7depUG5OkfxwTAMB39OjRQ9OmTfO6734AJ7A/pIy5EMDYwsT33ntPlStX9kAa60RHR2vatGkpvl65cmWf+NsuLQYNGqQOHTrccVFiUFCQWrZsqQkTJmjv3r26fv264uPjdfr06b/mOP39zV0O7ksLE83Mk5iZfwEAAIA1WJgIAIAPKVCggMaOHat169Z5zR33QkNDtWDBAr388stOR0lR6dKltWHDBtWrV8/pKEijRo0aadGiRcqWLZvTUeTn56cvvvhCTz/9tNNR4AUKFiyod955R0ePHtX48eMVERHhdCRYpHv37po2bZoCAwM90l+pUqW0ePFiFS5c2CP92YXxQcaVXj7D3oT9CcD/FRwcrN9++0133XWX01H+EhISookTJ6pdu3ZORzElODhY06ZN0yeffOKx8Z43Si/nb86Z8HYdO3ZUSEiIoVoWJqYdxwQA8B1t27bVtm3beHIsIPaHlDAXAqS+MLF69ep6++23PZTGOjNnztTNmzdTfL179+4eTON5ffv21fvvv5/i64GBgerRo4eioqI0a9YsdezYot0HpgAAHBtJREFUURUrVlSWLFkUFBSkAgUKqEWLFpo2bZrWr1+vIkWKGOq3YMGCKlOmjFW/hq1OnjyptWvXGqqtXbu2KlasaHMiAAAA/F8sTAQAwAcUK1ZMI0aM0IEDB/T888+bvsuV3QIDAzV69Gh9//33ypw5s9Nx/uWRRx7Rpk2bmHhKR2rXrq1Vq1apZMmSjmUICQnRtGnT9MorrziWAc4rWLCgevbsqVWrVunkyZP66KOPVKBAAadjwSJZsmTRuHHj9OWXX3r8IvUqVapo8+bNatmypUf7tRrjg4wrvXyGvQn7E4D/K0eOHFq6dKlq1qzpdBTlyZNHS5cu9embtrz++utasWKFSpcu7XQUx6SX8zfnTHizPHny6IknnjBUu2vXLm3fvt3mROkfxwQA8B3lypXT+vXr9dZbbykoKMjpOKb5+hPI4V3YH26PuRBkdDly5Ejxu+jg4GBNmDDBJ2+8NX369BRfCwwMVJs2bTyYxrP69eunIUOGpPj6XXfdpa1bt2rUqFEqVKhQqturUaOG1q1bZ6jWl56WOHHiRLlcLkO1PXv2tDkNAAAAbse7VjUAAIC/hIaGqnXr1po5c6YOHz6s3r17Kzw83OlYd9SlSxft2bNHTZo0cTqK8uTJox9//FHz589Xjhw5nI4Di1WuXFnbtm1z5A6UpUqV0rJly7j7ZQaUNWtWPfTQQ/rwww+1du1anThxQiNHjlTdunXl5+fndDyvlytXLp9ZuNm0aVPt2bNHzz33nGMZ8ufPr1mzZmnRokVq1KiRYzmswPggY0pPn2Fvwv4E4J/y5MmjZcuWqVOnTo5laNy4sTZv3qzatWs7lsEqtWvX1p49ezRw4ECFhoY6Hec/PPFUiPR0/uacCW9l5gK58ePH25gkY+GYAAC+ITg4WEOHDtXevXv12GOPOR0nVVmyZNELL7ygzZs367PPPnM6DtIZ9ofbYy4EGV1KT00cMGBAqk9U9EY3b97UsmXLUnz9gQceUK5cuTyYyHO+/vprffTRRym+/swzz2jTpk2qXLmyqe0WLlxY06ZNS/X6BV9amDhhwgRDdQULFlTr1q3tDQMAAIDbYmEiAABewt/fX1WqVFGPHj00c+ZMXbhwQT///LPatGmjgIAAp+MZVrx4cS1cuFAzZswwPUFmhfDwcL3xxhvat2+f2rdv7/H+4TnZsmXT9OnTNW3aNBUrVsz2/vz9/fXaa69p9+7dqlWrlu39wVl58+ZVvXr11LVrV40cOVJbt27V5cuX9fvvv6tv376qVauW1z291tvdddddOnXqlNatW6c+ffooIiLC6Uj/cf/992vp0qX67bffVLRoUafjSJIefPBBLVmyRPv379fgwYNVo0YNn7zbKeODjCu9fIa9CfsTgH/KlCmTxo8fr9mzZxu6E7ZV8ufPrx9//FGLFy/2yN9jnhISEqL3339f+/bt08svv+z4AsWQkBA9/vjjWrVqlVavXu2xftPL+ZtzJrzRPffco/vvv99Q7U8//aT4+HibE2UcHBMAwHeUKVNGs2fP1po1a9SqVSuv+p40NDRUbdq00fTp03Xu3Dl99913uueee5yOhXSM/eG/mAtBRna7xYc1atRQnz59HEiTdsuWLVNcXFyKrzdr1syDaTzn999/v+ONi/r27asffvhBmTJlcmv7tWvXTnUBt68sTFy1apUOHTpkqPbFF1/0yScNAwAApAe+900yAAA+JiAgQCEhIQoJCVGmTJmUK1cu5cuXT/ny5VPRokVVrlw5VahQQRUrVlSWLFmcjmuZtm3bqk2bNpo3b56++OILrVixQsnJybb1V6RIET333HN65ZVX0u0d03B7jz/+uFq0aKGRI0dq5MiROnXqlKXbDw4OVocOHfTmm2+qQoUKlm4b9gsKCvrrGPzPn6xZsypfvnzKmzfvXz/58uVT8eLFVaFCBWXPnt3p6OmSn5+fatasqZo1a2rYsGE6deqUFi5cqKVLl2rVqlU6efKkxzNlzpxZbdu21UsvvaT77rvP4/0bVa5cOfXr10/9+vXTrVu3tGXLFu3evVsHDx7UkSNHdP78eV28eFFXrlxRXFyc4uPjlZCQ4HTs/2B8kHGll8+wN2F/QnrXqVMnNWjQwHD93XffbVsWX/DYY4+pSZMmGjlypD777DOdO3fOln7Kly+vnj17qmPHjsqcObMtfXiDYsWKafTo0Ro4cKC+/vprTZo0SQcPHvRI34GBgapXr57atWunJ554wtGnaaWX8zfnTHibN954Q23btk217tKlS/r555/11FNPeSBVxsExAYA369+/v6n69P53UO3atVW7dm0dP35cX3/9taZNm6aoqCiP5yhWrJgefvhhNWvWTI0aNUrXfwvBe7E//BdzIciI/u/CxEyZMmnChAletWjZjNRuxFWnTh0PJfGckydPqkOHDkpKSrrt6++++64GDRqU5n7efPNNjR8//rav5cuXT+XLl09zH57w/fffG6oLCwvTSy+9ZHMaAAAApMTP5XK5nA4BAADSv9OnT2vq1KmaN2+eNm7cqJiYmDRvs0yZMmrUqJGeeuop1a1bV35+fhYkhS9LTEzUnDlzNHHiRC1btkw3b950azsBAQGqWbOmmjdvrqeffloFCxa0OCmA24mKitLatWu1ZcsWbd26VTt37tSNGzcs7cPPz0/lypVT3bp11bx5cz344INu320Sacf4ALAO+xOAPyUkJGjWrFn66aeftHjxYt26dStN2ytTpoweeughPfbYY2rUqJGpY8GWLVsM15YrV86rb9i0fft2zZgxQ0uWLNGOHTssW4Dn7++v8uXLq379+mrQoIGaNGnCjVJsxjkTTktOTlb58uUNLXiuXbu21qxZ44FUt+dyuVK8WPL/8vPz88mLYTkmAIBv2blzp2bPnq2lS5dq27Ztbn8PlJLQ0FBFRETonnvuUe3atVW3bl2ejAavxf7wN+ZCkFFs2rTpXzdaHT58uN58800HE6VN7dq1tW7dutu+ljlzZl29elWBgenn2SvJyclq1KiRVqxYcdvXu3btqm+//daSvtatW6fatWvf9rV27dpp+vTplvRjpwsXLqhIkSJ3fKrmn3r27KmRI0d6IBUAAABuh4WJAADA4xISErRlyxZt2bJFhw4d0pEjR3T06FFdvXpVN2/e1K1bt5SYmKjQ0FBlzpxZ4eHhKliwoEqWLKmSJUuqUqVKqlOnjvLmzev0rwIvFhcXpzVr1mjjxo3at2+f9u3bp/Pnz+vGjRuKjo5WYGCgwsPDlSVLFuXMmVNly5ZVRESEIiIiVLduXe5gDniJ48ePa9++fTp48KCOHTum48eP6+zZs7p06ZIuX76sGzdu/PVkln8+pThbtmx/PQnzzycUly9fXtWqVVPOnDmd/rVwG4wPAOuwPwH4U2xsrDZs2KAtW7Zo586dOnbsmE6cOKGrV68qJiZGCQkJCgsL++tYkDNnTpUpU0blypVTuXLldN9996l48eJO/xpeJyYmRps3b9b27dv/OsYePXpUV65c0a1bt3Tr1i3FxsYqMDBQwcHBCgsLU86cOZU7d24VLFhQJUqUUMmSJXXXXXepSpUqPHHBQZwz4ZTvv/9eXbt2NVS7Y8cOValSxeZEkDgmAICvSUpK0h9//KEtW7bo8OHDOn78uI4fP64zZ84oOjpat27dUkxMjOLj4xUUFKSQkBBlypRJ2bNnV548eZQnTx4VLlxYJUqUUIkSJVShQgWVLVvWJxfaA+wPf2MuBPANLpdLWbJkSXFRdfXq1U0t9PUFX375pXr27Hnb1+rXr68lS5ZYthBz6NCheuedd1LM0b17d0v6sdOQIUPUt2/fVOsCAwN18OBBjt0AAAAOYmEiAAAAAAAAAAAAAHhIXFycSpUqpVOnTqVa26VLF33//fceSAUAAAAAgGccO3bsjgvJfOWpfkZduHBBZcuW1dWrV//zWrZs2bR7924VKVLEsv6aNWumBQsW3Pa1PXv2KCIiwrK+7JCUlKRSpUrp2LFjqdY+88wz+uGHHzyQCgAAACnxdzoAAAAAAAAAAAAAAGQUISEhKT654P+aPHmyLly4YHMiAAAAAAA858CBA3d8vWTJkh5K4hkDBgy47aJESfroo48sXZSYnJystWvX3va13Llzq2LFipb1ZZeZM2caWpQYEBCg9957zwOJAAAAcCcsTAQAAAAAAAAAAAAAD+rSpYsKFy6cal1sbKy+/PJLDyQCAAAAAMAzTp8+fcfXc+XK5aEk9jt79qzGjh1729cqVKigrl27Wtrfjh07dP369du+Vq9ePfn5+Vnanx1GjBhhqK5Dhw4qU6aMzWkAAACQGhYmAgAAAAAAAAAAAIAHhYSEqG/fvoZqv/rqK8XExNicCAAAAAAAzzhz5swdX8+cObOHktjviy++UFxc3G1fe/PNNxUYGGhpf6tXr07xtfr161valx1WrFihLVu2pFoXGBjI0xIBAAC8BAsTAQAAAAAAAAAAAMDDunTpolKlSqVad/HiRY0ZM8YDiQAAAAAAsN+1a9fu+Hp6WZiYlJSk8ePH3/a1XLlyqX379pb3uWrVqhRf84WFiUOHDjVU17lzZ5UuXdrmNAAAADCChYkAAAAAAAAAAAAA4GFBQUEaPHiwodrhw4crPj7e5kQAAAAAANgvJibmjq8nJyd7KIm9li5dqnPnzt32tZYtWyokJMTyPlN6YmKOHDl01113Wd6flTZv3qyFCxemWhcWFqYBAwbYHwgAAACGsDARAAAAAAAAAAAAABzwxBNPqHr16qnWnTx5MsWnLAAAAAAA4EtSu/HOrVu3PJTEXjNnzkzxtccee8zy/vbt26cLFy7c9rV69erJ39+7LxkfNGiQobrXX39d+fPntzkNAAAAjPLuUSYAAAAAAAAAAAAApFN+fn4aMWKEodohQ4YoISHB5kQAAAAAANgrODj4jq+fPn3aQ0nstXz58tv+dz8/P9WqVcvy/latWpXia/Xr17e8Pyvt2LFD8+bNS7UuX758evPNNz2QCAAAAEaxMBEAAAAAAAAAAAAAHNKgQQO1bt061bpjx47pu+++80AiAAAAAADsExYWdsfXjxw54qEk9jlz5owOHTp029eKFSumXLlyWd6nLy9M7Nevn6G6Dz/8UFmzZrU5DQAAAMxgYSIAAAAAAAAAAAAAOGjEiBHKlClTqnWDBw/WrVu3PJAIAAAAAAB75MmT546vb9261UNJ7LNjx44UXytZsqQtfa5evfq2/z1btmy6++67benTCmvWrNFvv/2Wal21atX03HPPeSARAAAAzGBhIgAAAAAAAAAAAAA4qESJEurdu3eqdWfPntXIkSM9kAgAAAAAAHsUK1bsjq8fPHhQJ0+e9FAae6T0tERJKliwoOX9RUVF6cSJE7d9rU6dOvL3997Lxfv27Wuo7osvvvDq3wMAACCjYoQGAAAAAAAAAAAAAA7r27dvqhdnStLQoUN18eJFDyQCAAAAAMB65cqVS7Xml19+8UASc44cOaIbN24Yqo2KikrxtcyZM1sV6S+rVq1K8bX69etb3p9V5s2bl+KTHv/p2WefVZ06dTyQCAAAAGaxMBEAAAAAAAAAAAAAHBYWFqZRo0alWnft2jUNGDDA/kAAAAAAANigQoUKypIlyx1rvvnmGw+lMWbZsmW699571a1bN0P1V65cSfG1wMBAq2L95U4LExs0aGB5f1ZITEzUm2++mWpdzpw5NWLECA8kAgAAgDtYmAgAAAAAAAAAAAAAXqB58+Zq2bJlqnXffvut9u/fb38gAAAAAAAs5u/vr5o1a96xZt++fZoxY4aHEt3Zl19+qYceekiXL1/WlClT9N1336XaJjo6OsXXrl27ZmU8Xbp0SfPmzbvta1myZFG1atUs7c8qX3/9tSIjI1OtGzp0qPLkyeOBRAAAAHCH9bfdAAAAAAAAAAAAAAC4ZdSoUapSpUqqdUePHlX58uU9kAgAAAAAAGu1atVKixYtumPNG2+8oYceekhZs2b1UKp/u3Tpkrp06aLZs2f/67+/+uqruv/++1W5cuUU2yYmJqb42sWLF62KKEl6+eWXdeHChdu+Vrt2bQUEBFjan1X8/PzUv3//O9aEhYWpS5cuHkoEAAD+X3t3F5p13cdx/HNtrXQ4C0NXazIpaiMsDKYMlRisIizE9aBRBFpYB1F5ENFJUBAVCCFS5IEhgjSaFUQn9kBBI6wckVAWO4jAlqBROiaCw9bB/cDdzXbtp5u77m5fr7Px//5/v+/Orzd/OBeV8fHx8VovAQAAAAAAAAAAAAD8/zt69GgWL16c06dPV527995789Zbb6VSqczSZv/wwQcf5KGHHsovv/wy4fP29vYMDg5m3rx5Ez7fuHFjdu/ePeGzhQsX5ujRozOy586dO7N58+ZJn7/00kt55plnZuQuAACYSF2tFwAAAAAAAAAAAAAALgyLFi3Khg0bppzbu3dvtmzZcv4X+qfh4eFs2LAht99++6RRYpIsWbIkdXWT/wR7wYIFkz47duxYvv/++2ntmSQDAwN57LHHqs6sWrVq2vcAAEA1wkQAAAAAAAAAAAAAYNY8/fTTqa+vn3Ju+/btefDBB3Pq1Knztsvx48fz/PPPp6OjI/39/VVn169fn/fffz+NjY2TzrS0tFQ9Y8eOHee05798+eWXufPOO6t+cbKhoSGdnZ3TugcAAKYiTAQAAAAAAAAAAAAAZs3SpUvzyCOPFM3u2bMny5YtyyeffDKjOwwPD+fZZ5/NkiVL8txzz2V0dLTq/KOPPpq+vr40NDRUnevq6qr6/I033sjQ0NBZ75skH374YW677baMjIxUnVu2bFnmzp17TncAAEApYSIAAAAAAAAAAAAAMKtefPHFtLW1Fc0ODQ2lp6cnPT09effddzM2NnZOdx4/fjz9/f2544470tbWlhdeeCEnTpyo+s7FF1+cV199NTt27Ehd3dQ/vV6+fHkuueSSSZ+fPHky69evz++//16895kzZ/Lyyy9nzZo1U0aJSXwtEQCAWVEZHx8fr/USAAAAAAAAAAAAAMCFZf/+/enu7s7p06fP6r358+enp6cnXV1dufHGG9PW1pYrrrgijY2NaWhoyOjoaEZGRnLkyJEcOnQo3333XQYGBnLgwIGcOXOm+J6rrroqb7/99pRfQfxv99xzT955552qM+3t7enr68tNN91Ude6LL77I448/nsHBweL7d+7cmYcffrh4HgAAzoUwEQAAAAAAAAAAAACoib179+a+++7LH3/8UetV/uKuu+7K66+/nkWLFp31u59//nlWr1495VylUklvb2/uvvvudHV1pbm5OZVKJYcPH86nn36avr6+fPbZZ2d9/9dffz1l8AgAANMlTAQAAAAAAAAAAAAAaubNN9/Mpk2bzvrLiedDS0tLXnvttaxbt25a59x66635+OOPZ2aps1BfX5/R0dHMmTNn1u8GAODCUlfrBQAAAAAAAAAAAACAC9f999+fjz76KFdeeWXNdmhsbMxTTz2VQ4cOTTtKTJLdu3dn4cKF019sAtW+hnjNNdeIEgEAmBXCRAAAAAAAAAAAAACgpm6++eZ8++23eeCBB2b13jlz5uTJJ5/Mjz/+mK1bt+bSSy+dkXNbWlrS39+fpqamGTkvSS6//PLs2rUrTzzxxKQz11133YzdBwAA1QgTAQAAAAAAAAAAAICaW7BgQfbs2ZMDBw5kzZo1qVQq5+2upUuX5pVXXsnhw4ezbdu2NDc3z/gd3d3dGRgYSGtr67TOmTt3brZs2ZKhoaFs3LgxX3311aSz11577bTuAgCAUpXx8fHxWi8BAAAAAAAAAAAAAPCffvrpp+zatSvvvfdeDh48OK2z6uvr09nZmVtuuSVr167NihUrZmjLqZ04cSJbt27Ntm3bcvLkyeL3rr766mzatCmbN2/+Szi5fPnyDA4O/vvv1tbWrF27Nr29venu7s5FF100o/sDAMBEhIkAAAAAAAAAAAAAwP+0I0eOZP/+/fnmm2/yww8/5Oeff87w8HBGRkZy6tSpjI2NpbGxMU1NTZk3b16am5vT3t6ejo6OXH/99Vm5cmUuu+yymv4Pv/32W/bt25d9+/bl4MGDOXbsWH799dfU1dVl/vz5aW1tTUdHR1asWJGenp7ccMMNE56zePHiNDU1Zd26dent7U1nZ+d5/bokAABMRJgIAAAAAAAAAAAAAPA3MTY2loaGhlqvAQDABU6YCAAAAAAAAAAAAAAAAAAUq6v1AgAAAAAAAAAAAAAAAADA34cwEQAAAAAAAAAAAAAAAAAoJkwEAAAAAAAAAAAAAAAAAIoJEwEAAAAAAAAAAAAAAACAYsJEAAAAAAAAAAAAAAAAAKCYMBEAAAAAAAAAAAAAAAAAKCZMBAAAAAAAAAAAAAAAAACKCRMBAAAAAAAAAAAAAAAAgGLCRAAAAAAAAAAAAAAAAACgmDARAAAAAAAAAAAAAAAAACgmTAQAAAAAAAAAAAAAAAAAigkTAQAAAAAAAAAAAAAAAIBiwkQAAAAAAAAAAAAAAAAAoJgwEQAAAAAAAAAAAAAAAAAoJkwEAAAAAAAAAAAAAAAAAIoJEwEAAAAAAAAAAAAAAACAYsJEAAAAAAAAAAAAAAAAAKCYMBEAAAAAAAAAAAAAAAAAKCZMBAAAAAAAAAAAAAAAAACKCRMBAAAAAAAAAAAAAAAAgGLCRAAAAAAAAAAAAAAAAACgmDARAAAAAAAAAAAAAAAAACgmTAQAAAAAAAAAAAAAAAAAigkTAQAAAAAAAAAAAAAAAIBiwkQAAAAAAAAAAAAAAAAAoJgwEQAAAAAAAAAAAAAAAAAoJkwEAAAAAAAAAAAAAAAAAIoJEwEAAAAAAAAAAAAAAACAYsJEAAAAAAAAAAAAAAAAAKCYMBEAAAAAAAAAAAAAAAAAKCZMBAAAAAAAAAAAAAAAAACKCRMBAAAAAAAAAAAAAAAAgGLCRAAAAAAAAAAAAAAAAACgmDARAAAAAAAAAAAAAAAAACgmTAQAAAAAAAAAAAAAAAAAigkTAQAAAAAAAAAAAAAAAIBiwkQAAAAAAAAAAAAAAAAAoJgwEQAAAAAAAAAAAAAAAAAoJkwEAAAAAAAAAAAAAAAAAIoJEwEAAAAAAAAAAAAAAACAYsJEAAAAAAAAAAAAAAAAAKCYMBEAAAAAAAAAAAAAAAAAKCZMBAAAAAAAAAAAAAAAAACKCRMBAAAAAAAAAAAAAAAAgGLCRAAAAAAAAAAAAAAAAACgmDARAAAAAAAAAAAAAAAAACgmTAQAAAAAAAAAAAAAAAAAigkTAQAAAAAAAAAAAAAAAIBiwkQAAAAAAAAAAAAAAAAAoJgwEQAAAAAAAAAAAAAAAAAoJkwEAAAAAAAAAAAAAAAAAIoJEwEAAAAAAAAAAAAAAACAYsJEAAAAAAAAAAAAAAAAAKCYMBEAAAAAAAAAAAAAAAAAKCZMBAAAAAAAAAAAAAAAAACKCRMBAAAAAAAAAAAAAAAAgGLCRAAAAAAAAAAAAAAAAACgmDARAAAAAAAAAAAAAAAAACgmTAQAAAAAAAAAAAAAAAAAigkTAQAAAAAAAAAAAAAAAIBiwkQAAAAAAAAAAAAAAAAAoNifWRkuMbIEZdYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "# Show plots\n", - "from IPython.core.display import SVG\n", - "SVG(filename=\"./v_Cd_0/v_Cd_0.svg\")" + "figs = plotting.plot_all_defects(\n", + " defect_charges_dict,\n", + " add_colorbar=True,\n", + " metric=\"disp\"\n", + ")" ] }, { @@ -2557,8 +2395,8 @@ }, { "cell_type": "code", - "execution_count": 29, - "id": "322a1032-bc82-4d20-94d9-cf0f2f2b8208", + "execution_count": 36, + "id": "52f15ac2-98b4-4841-afcf-46712ded8072", "metadata": { "pycharm": { "name": "#%%\n" @@ -2570,18 +2408,18 @@ "output_type": "stream", "text": [ "Energy lowering distortion number 0\n", - "Found for charge states: [-1]\n", - "Not found in: {0, -2} \n", + "Found for charge states: [0]\n", + "Not found in: {-2, -1} \n", "\n", "Energy lowering distortion number 1\n", - "Found for charge states: [0]\n", - "Not found in: {-1, -2} \n", + "Found for charge states: [-1]\n", + "Not found in: {0, -2} \n", "\n" ] } ], "source": [ - "for index, subdict in enumerate(low_energy_defects[\"v_Cd\"]):\n", + "for index, subdict in enumerate(low_energy_defects[\"v_Cd_s0\"]):\n", " print(f\"Energy lowering distortion number {index}\")\n", " print(\"Found for charge states:\", subdict[\"charges\"]) # Charge state for which the energy lowering was found\n", " print(f\"Not found in:\", subdict[\"excluded_charges\"], \"\\n\")" @@ -2601,7 +2439,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 37, "id": "4b6ea78a-48b6-48d3-856d-e059aaf1f924", "metadata": { "pycharm": { @@ -2613,18 +2451,19 @@ "name": "stdout", "output_type": "stream", "text": [ - "Writing low-energy distorted structure to ./v_Cd_0/Bond_Distortion_20.0%_from_-1\n", - "Writing low-energy distorted structure to ./v_Cd_-2/Bond_Distortion_20.0%_from_-1\n", - "No subfolders with VASP input files found in ./v_Cd_-2, so just writing distorted POSCAR file to ./v_Cd_-2/Bond_Distortion_20.0%_from_-1 directory.\n", - "Writing low-energy distorted structure to ./v_Cd_-1/Bond_Distortion_-60.0%_from_0\n", - "No subfolders with VASP input files found in ./v_Cd_-1, so just writing distorted POSCAR file to ./v_Cd_-1/Bond_Distortion_-60.0%_from_0 directory.\n", - "Writing low-energy distorted structure to ./v_Cd_-2/Bond_Distortion_-60.0%_from_0\n", - "No subfolders with VASP input files found in ./v_Cd_-2, so just writing distorted POSCAR file to ./v_Cd_-2/Bond_Distortion_-60.0%_from_0 directory.\n" + "Writing low-energy distorted structure to ./v_Cd_s0_-2/Bond_Distortion_-60.0%_from_0\n", + "No subfolders with VASP input files found in ./v_Cd_s0_-2, so just writing distorted POSCAR file to ./v_Cd_s0_-2/Bond_Distortion_-60.0%_from_0 directory.\n", + "Writing low-energy distorted structure to ./v_Cd_s0_-1/Bond_Distortion_-60.0%_from_0\n", + "No subfolders with VASP input files found in ./v_Cd_s0_-1, so just writing distorted POSCAR file to ./v_Cd_s0_-1/Bond_Distortion_-60.0%_from_0 directory.\n", + "Writing low-energy distorted structure to ./v_Cd_s0_0/Bond_Distortion_20.0%_from_-1\n", + "No subfolders with VASP input files found in ./v_Cd_s0_0, so just writing distorted POSCAR file to ./v_Cd_s0_0/Bond_Distortion_20.0%_from_-1 directory.\n", + "Writing low-energy distorted structure to ./v_Cd_s0_-2/Bond_Distortion_20.0%_from_-1\n", + "No subfolders with VASP input files found in ./v_Cd_s0_-2, so just writing distorted POSCAR file to ./v_Cd_s0_-2/Bond_Distortion_20.0%_from_-1 directory.\n" ] } ], "source": [ - "energy_lowering_distortions.write_distorted_inputs(low_energy_defects)" + "energy_lowering_distortions.write_retest_inputs(low_energy_defects)" ] }, { @@ -2664,7 +2503,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 38, "id": "7eb4d411-fc2b-4680-92a9-c3c683898814", "metadata": { "pycharm": { @@ -2673,13 +2512,13 @@ }, "outputs": [], "source": [ - "!cp ./v_Cd_0/v_Cd_0_additional_distortions.yaml ./v_Cd_0/v_Cd_0.yaml\n", - "!cp ./v_Cd_-1/v_Cd_-1_additional_distortions.yaml ./v_Cd_-1/v_Cd_-1.yaml\n", - "!cp ./v_Cd_-2/v_Cd_-2_additional_distortions.yaml ./v_Cd_-2/v_Cd_-2.yaml\n", - "!cp ./v_Cd_0/Bond_Distortion_-60.0%/CONTCAR ./v_Cd_-1/Bond_Distortion_-60.0%_from_0/\n", - "!cp ./v_Cd_0/Bond_Distortion_-60.0%/CONTCAR ./v_Cd_-2/Bond_Distortion_-60.0%_from_0/\n", - "!cp ./v_Cd_-1/Unperturbed/CONTCAR ./v_Cd_-2/Bond_Distortion_20.0%_from_-1/\n", - "!cp ./v_Cd_-1/Unperturbed/CONTCAR ./v_Cd_0/Bond_Distortion_20.0%_from_-1/" + "!cp ./v_Cd_s0_0/v_Cd_s0_0_additional_distortions.yaml ./v_Cd_s0_0/v_Cd_s0_0.yaml\n", + "!cp ./v_Cd_s0_-1/v_Cd_s0_-1_additional_distortions.yaml ./v_Cd_s0_-1/v_Cd_s0_-1.yaml\n", + "!cp ./v_Cd_s0_-2/v_Cd_s0_-2_additional_distortions.yaml ./v_Cd_s0_-2/v_Cd_s0_-2.yaml\n", + "!cp ./v_Cd_s0_0/Bond_Distortion_-60.0%/CONTCAR ./v_Cd_s0_-1/Bond_Distortion_-60.0%_from_0/\n", + "!cp ./v_Cd_s0_0/Bond_Distortion_-60.0%/CONTCAR ./v_Cd_s0_-2/Bond_Distortion_-60.0%_from_0/\n", + "!cp ./v_Cd_s0_-1/Unperturbed/CONTCAR ./v_Cd_s0_-2/Bond_Distortion_20.0%_from_-1/\n", + "!cp ./v_Cd_s0_-1/Unperturbed/CONTCAR ./v_Cd_s0_0/Bond_Distortion_20.0%_from_-1/" ] }, { @@ -2696,8 +2535,8 @@ }, { "cell_type": "code", - "execution_count": 32, - "id": "da6b9e3b-c05d-4dcd-a281-0b972ea56c05", + "execution_count": 39, + "id": "664ddfe6-84bc-4950-8bb8-f60742fe42ef", "metadata": { "pycharm": { "name": "#%%\n" @@ -2710,23 +2549,23 @@ "output_type": "stream", "text": [ "\n", - "v_Cd\n", - "Parsing v_Cd_-1...\n", - "v_Cd_-1: Energy difference between minimum, found with -60.0%_from_0 bond distortion, and unperturbed: -1.20 eV.\n", - "Energy lowering distortion found for v_Cd with charge -1. Adding to low_energy_defects dictionary.\n", - "Parsing v_Cd_-2...\n", - "v_Cd_-2: Energy difference between minimum, found with 20.0%_from_-1 bond distortion, and unperturbed: -1.90 eV.\n", + "v_Cd_s0\n", + "Parsing v_Cd_s0_-2...\n", + "v_Cd_s0_-2: Energy difference between minimum, found with 20.0%_from_-1 bond distortion, and unperturbed: -1.90 eV.\n", + "Energy lowering distortion found for v_Cd_s0 with charge -2. Adding to low_energy_defects dictionary.\n", + "Parsing v_Cd_s0_0...\n", + "v_Cd_s0_0: Energy difference between minimum, found with -0.6 bond distortion, and unperturbed: -0.76 eV.\n", "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "New (according to structure matching) low-energy distorted structure found for v_Cd_-2, adding to low_energy_defects['v_Cd'] list.\n", - "Parsing v_Cd_0...\n", - "v_Cd_0: Energy difference between minimum, found with -0.6 bond distortion, and unperturbed: -0.76 eV.\n", + "New (according to structure matching) low-energy distorted structure found for v_Cd_s0_0, adding to low_energy_defects['v_Cd_s0'] list.\n", + "Parsing v_Cd_s0_-1...\n", + "v_Cd_s0_-1: Energy difference between minimum, found with -60.0%_from_0 bond distortion, and unperturbed: -1.20 eV.\n", "Comparing structures to specified ref_structure (Cd31 Te32)...\n", "Comparing structures to specified ref_structure (Cd31 Te32)...\n", - "Low-energy distorted structure for v_Cd_0 already found with charge states [-1], storing together.\n", + "Low-energy distorted structure for v_Cd_s0_-1 already found with charge states [0], storing together.\n", "\n", "Comparing and pruning defect structures across charge states...\n", - "Ground-state structure found for v_Cd with charges [-1, 0] has also been found for charge state -2 (according to structure matching). Adding this charge to the corresponding entry in low_energy_defects[v_Cd].\n", - "Ground-state structure found for v_Cd with charges [-2] has also been found for charge state 0 (according to structure matching). Adding this charge to the corresponding entry in low_energy_defects[v_Cd].\n" + "Ground-state structure found for v_Cd_s0 with charges [-2] has also been found for charge state 0 (according to structure matching). Adding this charge to the corresponding entry in low_energy_defects[v_Cd_s0].\n", + "Ground-state structure found for v_Cd_s0 with charges [0, -1] has also been found for charge state -2 (according to structure matching). Adding this charge to the corresponding entry in low_energy_defects[v_Cd_s0].\n" ] } ], @@ -2748,7 +2587,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 40, "id": "c9b9f5d3-cce7-4d26-99ed-e8049127bab5", "metadata": { "pycharm": { @@ -2760,87 +2599,47 @@ "name": "stdout", "output_type": "stream", "text": [ - "Energy lowering distortion found for v_Cd with charge -1. Generating distortion plot...\n", - "Previous version of v_Cd_-1.svg found in output_path: 'v_Cd_-1/'. Will rename old plot to v_Cd_-1_2022-11-07-12-43.svg.\n", - "Plot saved to v_Cd_-1/v_Cd_-1.svg\n", - "Energy lowering distortion found for v_Cd with charge -2. Generating distortion plot...\n", - "Plot saved to v_Cd_-2/v_Cd_-2.svg\n", - "Energy lowering distortion found for v_Cd with charge 0. Generating distortion plot...\n", - "Previous version of v_Cd_0.svg found in output_path: 'v_Cd_0/'. Will rename old plot to v_Cd_0_2022-11-07-12-43.svg.\n", - "Plot saved to v_Cd_0/v_Cd_0.svg\n" + "Energy lowering distortion found for v_Cd_s0 with charge -2. Generating distortion plot...\n", + "Plot saved to v_Cd_s0_-2/v_Cd_s0_-2.png\n", + "Energy lowering distortion found for v_Cd_s0 with charge 0. Generating distortion plot...\n", + "Plot saved to v_Cd_s0_0/v_Cd_s0_0.png\n", + "Energy lowering distortion found for v_Cd_s0 with charge -1. Generating distortion plot...\n", + "Plot saved to v_Cd_s0_-1/v_Cd_s0_-1.png\n" ] - } - ], - "source": [ - "figs = plotting.plot_all_defects(defect_charges_dict)" - ] - }, - { - "cell_type": "code", - "execution_count": 34, - "id": "2830f9ff", - "metadata": {}, - "outputs": [ + }, { "data": { - "image/svg+xml": "\n \n \n \n \n 2022-11-07T12:43:59.855185\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADRcAAAzNCAYAAABfu8yaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdeZje49k38POeSWYimUxjZBVJEanIDLUmEUto6EttiV3R2oKipQ6lWm+Jx0NRO7VULCmqXqFKW1qiE0KFIggTkVgqFdkkkX2Sud8/+j59Hi9y33Pn3mZ+n89x5Gg7c57X9Z3UXzO+c6XS6XQ6AAAAAAAAAAAAAAAAgMSpKHUAAAAAAAAAAAAAAAAAoDSUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoTqUOgAAAAAAAAAAlNrcuXPjmWeeiWeffTbeeuutmDlzZixYsCCWLVsW6XQ6OnfuHLW1tdGvX7/YdNNNY9ttt42dd945dtppp6iuri51fAAAAACAnKXS6XS61CEAAAAAAAAAoNhWrVoV9913X9xzzz3x17/+NVpaWlp9RteuXWP//fePY445Jvbdd99IpVIFSAoAAAAAUDjKRQAAAAAAAAAkyqpVq+KGG26Iq666KubMmZO3cwcNGhTnn39+HHvssUpGAAAAAECboVwEAAAAAAAAQGI88cQTcfrpp8fMmTMLdsdOO+0Ut956a2y33XYFuwMAAAAAIF8qSh0AAAAAAAAAAApt1apVceaZZ8Y+++xT0GJRRMSLL74Yw4YNi2uuuaag9wAAAAAA5IOXiwAAAAAAAABo1+bNmxcHHXRQPP/880W/+4QTTohbb701OnToUPS7AQAAAACyoVwEAAAAAAAAQLv17rvvxl577RWzZs0qWYaDDjooHnzwQQUjAAAAAKAsVZQ6AAAAAAAAAAAUwgcffBB77rlnSYtFERGPPPJIHH/88eF3fwIAAAAA5cjLRQAAAAAAAAC0O4sWLYqhQ4fG22+/nfVOjx494vDDD4+99947ttlmm+jVq1dUVlbG/PnzY/78+fHhhx/G008/HU899VRMnTq11WWhSy65JH7605+29ksBAAAAACgo5SIAAAAAAAAA2pW1a9fGvvvuG3/5y1+ymu/du3dceOGFccIJJ0RVVVVWO2+//XZcfPHF8Zvf/CZaWlqy2qmsrIwnn3wy9thjj6zmAQAAAACKQbkIAAAAAAAAgHZl7NixcdFFF2U1e/TRR8eNN94Y3bp1y+muadOmxaGHHhpNTU1ZzQ8cODBef/31qK6uzuk+AAAAAIB8qyh1AAAAAAAAAADIl5deeikuueSSjHMVFRVx7bXXxj333JNzsSgior6+Pl544YX41re+ldX8jBkz4he/+EXO9wEAAAAA5JuXiwAAAAAAAABoF9LpdAwZMiReeumldc6lUqm4++6749hjj83b3WvWrImRI0fGpEmTMs7W1dXF+++/HzU1NXm7HwAAAAAgV14uAgAAAAAAAKBduPvuuzMWiyIiLrjggrwWiyIiOnToEL/97W+jT58+GWcXLlwY48aNy+v9AAAAAAC58nIRAAAAAAAAAG3e2rVrY+DAgfHuu++uc27UqFHx0EMPRSqVKkiOhx9+OA4++OCMczvssENWRSgAAAAAgEJTLgIAAAAAAACgzbv33nvjmGOOWefMV77ylZg5c2ZstNFGBcuRTqdj8ODB0dTUlHF21qxZsdlmmxUsCwAAAABANipKHQAAAAAAAAAA1tcNN9yQceYnP/lJQYtFERGpVCrOPffcrGb/+te/FjQLAAAAAEA2lIsAAAAAAAAAaNPeeuuteOGFF9Y5079///jBD35QlDwHHXRQpFKpjHPPPfdcEdIAAAAAAKybchEAAAAAAAAAbdq9996bceaUU06JTp06FSFNRF1dXdTX12ece/vtt4uQBgAAAABg3ZSLAAAAAAAAAGjTHnvssYwzRx11VBGS/Lfdd98948y7775bhCQAAAAAAOumXAQAAAAAAABAm/XPf/4zpk6dus6Z4cOHx2abbVakRP+y+eabZ5xZvHhxEZIAAAAAAKybchEAAAAAAAAAbdazzz6bcWb06NFFSPJZdXV1GWeWLVtWhCQAAAAAAOumXAQAAAAAAABAm/XCCy9knBk6dGgRknxWNuWi6urqIiQBAAAAAFi3DqUOAAAAAAAAAAC5OvLII6OmpiaeeeaZeOGFF2L58uWf+XxFRUVsv/32Rc/VuXPnjDM1NTVFSAIAAAAAsG7KRQAAAAAAAAC0WTvttFPstNNOERHR3NwcL730UjzzzDPxzDPPxOTJk6NPnz7RpUuXouf65JNPMs507dq1CEkAAAAAANZNuQgAAAAAAACAdqFjx46x8847x8477xznnntupNPpmDNnTkmyvPXWWxln+vXrV4QkAAAAAADrVlHqAAAAAAAAAABQCKlUKvr06VOSu59//vmMM4MGDSpCEgAAAACAdVMuAgAAAAAAAIA8WrRoUTz99NMZ55SLAAAAAIByoFwEAAAAAAAAAHl03333xerVqzPO7bbbbkVIAwAAAACwbql0Op0udQgAAAAAAAAAaA9aWlpi0KBBMWPGjHXO9erVKz766KNIpVJFSgYAAAAA8MW8XAQAAAAAAAAAeXLvvfdmLBZFRHzrW99SLAIAAAAAyoJyEQAAAAAAALQzEydOjFQqlfOfH/7wh6X+EsrC3Llzo3v37jn/Pfbt2zcWLVpU6i+DIlq1alVceOGFWc2eeuqpBU4DAAAAAJAd5SIAAAAAAABoZ+rr69drf/r06XlK0rb94Ac/iAULFuS8f+utt0a3bt3yF4iyd9VVV8W7776bcW7o0KExZMiQIiQCAAAAAMgslU6n06UOAQAAAAAAAORXjx49Yv78+Tntbr755jFz5sw8J2pbHn300TjwwANz3j/22GNj/PjxeUxEuZs1a1ZsvfXWsXz58oyzjz32WOy3335FSAUAAAAAkJlyEQAAAAAAALRDe+yxRzQ2Nua0W1FREcuXL4/q6uo8p2oblixZEoMHD47Zs2fntN+nT5+YNm1abLjhhnlORrlqaWmJvfbaK55++umMs3vttVf85S9/KUIqAAAAAIDsVJQ6AAAAAAAAAJB/9fX1Oe+2tLTEjBkz8pimbTn33HNzLhZFRNx6662KRQnz85//PKtiUVVVVdx4441FSAQAAAAAkD3lIgAAAAAAAGiHGhoa1mt/+vTpeUrStjQ2NsZtt92W8/4xxxwTBxxwQB4TUe4mTpwYP/vZz7KaveCCC2LLLbcscCIAAAAAgNZRLgIAAAAAAIB2aH1eLopIZrlo5cqVMWbMmEin0znt9+7dO66//vo8p6KcffDBB3HEEUfE2rVrM85uu+228eMf/7gIqQAAAAAAWke5CAAAAAAAANqh9X25qKmpKU9J2o6LLrooZsyYkfP+LbfcEhtuuGEeE1HOVqxYEaNGjYr58+dnnK2uro5f//rX0bFjxyIkAwAAAABoHeUiAAAAAAAAaIfq6uqid+/eOe8n7eWiV155Ja666qqc948++ug46KCD8piIcnfSSSfFK6+8ktXspZdeut6FPwAAAACAQlEuAgAAAAAAgHaqvr4+590klYvWrFkTJ554YqxZsyan/d69e8f111+f51SUsyuuuCLuu+++rGa/+c1vxg9/+MMCJwIAAAAAyJ1yEQAAAAAAALRT6/NSyuLFi2POnDl5TFO+fvGLX2T9As0Xufnmm6Ouri6PiShnf/rTn+L888/ParZXr14xfvz4SKVSBU4FAAAAAJA75SIAAAAAAABop9bn5aKIZLxe9Pbbb8fYsWNz3j/qqKNi1KhR+QtEWZs+fXocddRR0dLSknG2oqIi7r333ujVq1cRkgEAAAAA5E65CAAAAAAAANqp9Xm5KKL9l4vS6XSMGTMmVq5cmdN+r1694oYbbshzKsrVokWL4sADD4zFixdnNX/BBRfEyJEjC5wKAAAAAGD9KRcBAAAAAABAO+XlonW79dZbY9KkSTnv33zzzbHRRhvlMRHlau3atXHkkUfG22+/ndX83nvvHRdeeGGBUwEAAAAA5EeHUgcAAAAAAAAACqO2tjb69esX//jHP3Lab2pqynOi8vHhhx/Geeedl/P+kUceGaNHj85jon8ZP358jB8/Pu/ntiWnnHJKHHbYYaWO8RnnnntuPPHEE1nNbrLJJnHvvfdGRYXf9QkAAAAAtA3KRQAAAAAAANCO1dfX51wuas8vF33ve9+LJUuW5LTbs2fPuPHGG/Oc6F9mzZoVTz31VEHObiv22WefUkf4jPHjx8fVV1+d1WxVVVVMmDAhevToUeBUAAAAAAD541clAQAAAAAAQDtWX1+f8+57770Xq1evzmOa8nD//ffHY489lvP+L3/5y9hoo43ymIhy9cILL8TJJ5+c9fwNN9wQQ4YMKWAiAAAAAID8Uy4CAAAAAACAdqyhoSHn3bVr18aMGTPymKb0FixYED/4wQ9y3j/iiCPikEMOyWMiytU///nPGD16dKxatSqr+TFjxrSqiAQAAAAAUC6UiwAAAAAAAKAdW5+XiyIipk+fnqck5eGss86KefPm5bTbs2fPuPHGG/OciHK0cuXKGDVqVHz00UdZzQ8bNsw/GwAAAABAm6VcBAAAAAAAAO3Y4MGDI5VK5bzfnspFjz/+eNxzzz057990003RvXv3PCaiXI0ZMyZefPHFrGZ79+4dEyZMiKqqqgKnAgAAAAAoDOUiAAAAAAAAaMe6dOkSm266ac777aVctHTp0jjllFNy3j/ssMPi0EMPzWMiytVFF12UdQmtqqoqJkyYEBtvvHGBUwEAAAAAFI5yEQAAAAAAALRzDQ0NOe82NTXlMUnpnH/++fHBBx/ktNujR4+46aab8pyIcjR+/PgYO3Zs1vPXX399DB8+vICJAAAAAAAKL5VOp9OlDgEAAAAAAAAUzvnnnx8///nPc9rt1q1bfPLJJ3lOVFzPPfdc7LbbbtHS0pLT/gMPPBCHHXZYnlNRbqZMmRK77757rFq1Kqv5k046KX71q18VOBUAAAAAQOF5uQgAAAAAAADaufr6+px3Fy1aFHPnzs1jmuJatWpVnHTSSTkXiw499FDFogSYM2dOHHzwwVkXi4YNG+Y1KwAAAACg3VAuAgAAAAAAgHauoaFhvfanT5+epyTFd8kll8Rbb72V02737t3jl7/8ZZ4TUW5Wr14dBx98cMyePTur+d69e8eECROiqqqqwMkAAAAAAIpDuQgAAAAAAADauUGDBkVlZWXO+01NTXlMUzyvv/56XH755Tnv33jjjdGjR488JqIcfe9734vnn38+q9mqqqqYMGFCbLzxxgVOBQAAAABQPMpFAAAAAAAA0M516tQpBgwYkPN+W3y5aO3atXHiiSdGc3NzTvuHHHJIHHHEEXlORbm54YYb4o477sh6/vrrr4/hw4cXMBEAAAAAQPEpFwEAAAAAAEAC1NfX57zbFstF1157bbz44os57Xbv3j1++ctf5jkR5eavf/1rnH322VnPn3TSSXHKKacUMBEAAAAAQGkoFwEAAAAAAEACNDQ05Lzb1NSUxySFN2vWrPjZz36W8/4NN9wQPXv2zGMiys17770Xhx12WKxZsyar+WHDhsVNN91U4FQAAAAAAKWhXAQAAAAAAAAJsD4vF7377ruxevXqPKYprDFjxsTy5ctz2h09enQceeSReU5EOVm+fHmMGjUq5s+fn9V87969Y8KECVFVVVXgZAAAAAAApaFcBAAAAAAAAAmwPi8XrV27NmbOnJnHNIUzbty4mDhxYk67G220Udx88815TkS5Of7442Pq1KlZzVZVVcWECRNi4403LnAqAAAAAIDSUS4CAAAAAACABPja174WHTt2zHl/+vTpeUxTGB999FGcc845Oe/fcMMN0atXrzwmotxceuml8cADD2Q9f91118Xw4cMLmAgAAAAAoPSUiwAAAAAAACABOnbsGAMHDsx5v6mpKY9pCuOMM86IRYsW5bQ7atSoOOqoo/IbiLLy2GOPxf/+3/876/mTTjopTj311AImAgAAAAAoD8pFAAAAAAAAkBANDQ0575b7y0UTJkyIhx56KKfdurq6uOWWW/KciHLS1NQURx99dLS0tGQ1P2zYsLjpppsKnAoAAAAAoDwoFwEAAAAAAEBC1NfX57xbzuWiRYsWxRlnnJHz/g033BC9evXKYyLKyeLFi+Oggw6KJUuWZDXfu3fvmDBhQlRVVRU4GQAAAABAeVAuAgAAAAAAgIRory8XnX322TFnzpycdg866KD49re/nedElIuWlpb49re/HW+//XZW8x07dowHH3wwNt544wInAwAAAAAoH8pFAAAAAAAAkBDr83LRwoULY968eXlMkx9PPfVU3HnnnTnt1tXVxS233JLnRJSTn/zkJ/HHP/4x6/nrr78+dtlllwImAgAAAAAoP8pFAAAAAAAAkBBbbLFFVFdX57xfbq8XLV++PE4++eSc96+77rro3bt3HhNRTu6///64/PLLs54/6aST4tRTTy1gIgAAAACA8qRcBAAAAAAAAAlRWVkZgwYNynm/3MpFF1xwQcyaNSun3QMOOCCOOeaYPCeiXLzyyitx4oknZj0/bNiwuOmmmwqYCAAAAACgfCkXAQAAAAAAQILU19fnvNvU1JTHJOtnypQpcd111+W0u+GGG8att96a50SUi3nz5sWoUaNi+fLlWc337t07JkyYEFVVVQVOBgAAAABQnpSLAAAAAAAAIEEaGhpy3i2Xl4uam5vjpJNOipaWlpz2r7vuuujTp0+eU1EOmpub47DDDosPPvgg6505c+ZE3759I5VKlfTPZZddVsC/GQAAAACAL6dcBAAAAAAAAAmyPi8XlUu56LLLLovXX389p939998/jj322DwnolycddZZ0djYWOoYrVZdXR1jxowpdQwAAAAAIKFS6XQ6XeoQAAAAAAAAQHHMmjUrBgwYkNNuhw4dYvny5dGxY8c8p8rem2++Gdttt12sXr261bvdunWLadOmxcYbb1yAZJTa7bff3mYLOt/97nfjrrvuKnUMAAAAACChvFwEAAAAAAAACbLZZptF586dc9pds2ZNzJw5M8+JstfS0hInnXRSTsWiiIjrrrtOsaideu655+L0008vdYycnXHGGaWOAAAAAAAkmHIRAAAAAAAAJEgqlYrBgwfnvD99+vQ8pmmdG2+8MZ5//vmcdvfff//4zne+k+dElIPZs2fHIYccknPprNSGDRsWO+64Y6ljAAAAAAAJplwEAAAAAAAACVNfX5/zbqnKRe+//3789Kc/zWm3W7duceutt+Y5EeXi8MMPjzlz5pQ6Rs68WgQAAAAAlJpyEQAAAAAAACTM+pSLmpqa8pgke6ecckosXbo0p91rrrkmNt544zwnolxMmzat1BFy1qtXrzjssMNKHQMAAAAASDjlIgAAAAAAAEiYhoaGnHdL8XLR+PHj44knnshp91vf+lYcd9xx+Q0EeXLyySdHVVVVqWMAAAAAAAmXSqfT6VKHAAAAAAAAAIrngw8+iK9+9as57W600UYxf/78PCf6cnPnzo2tttoqFi5c2Ordbt26xRtvvBF9+/YtQDIAAAAAAGgfvFwEAAAAAAAACdO/f/+ora3NaXfBggWxYMGCPCf6ct///vdzKhZFRFx99dWKRQAAAAAAkIFyEQAAAAAAACTQ4MGDc95tamrKY5Iv9/vf/z4eeOCBnHb33XffOP744/OcCAAAAAAA2h/lIgAAAAAAAEighoaGnHenT5+exyRfbMmSJXHaaafltPuVr3wlbrvttjwnAgAAAACA9km5CAAAAAAAABKovr4+591ilIt+9KMfxezZs3Pavfrqq2OTTTbJcyIAAAAAAGiflIsAAAAAAAAggdanXNTU1JTHJJ/X2NgYv/rVr3La3WeffeKEE07IcyIAAAAAAGi/lIsAAAAAAAAggRoaGnLeLeTLRStXrowxY8ZEOp1u9W5tbW3cdtttBUgFAAAAAADtl3IRAAAAAAAAJFCfPn2irq4up91Zs2bFmjVr8pzoXy688MKYMWNGTrtXXXVV9OvXL8+JAAAAAACgfVMuAgAAAAAAgISqr6/Paa+5uTlmzZqV5zQRL7/8clx11VU57X7zm9+Mk046Kc+JAAAAAACg/VMuAgAAAAAAgITKtVwUEdHU1JTHJBFr1qyJk046KdauXdvq3dra2rj99tvzmgcAAAAAAJJCuQgAAAAAAAASqqGhIefd6dOn5zFJxJVXXhmvvPJKTru/+MUvol+/fnnNAwAAAAAASaFcBAAAAAAAAAm1Pi8X5bNc9Pbbb8fFF1+c0+7ee+8dY8aMyVsWAAAAAABIGuUiAAAAAAAASKhyeLkonU7HmDFjYuXKla3e7dq1a9x+++15yQEAAAAAAEmlXAQAAAAAAAAJ1b179+jZs2dOu01NTXnJcMstt8SkSZNy2v3FL34R/fv3z0sOAAAAAABIqlQ6nU6XOgQAAAAAAABQGt/4xjfi6aefzml3wYIFUVdXl/PdH374YdTX18eSJUtavbvXXnvFX/7yl5zvBgAAAAAA/sXLRQAAAAAAAJBgDQ0NOe9Onz59ve7+3ve+l1OxqGvXrnH77bev190AAAAAAMC/KBcBAAAAAABAgtXX1+e829TUlPPub37zm3jsscdy2r3iiiviq1/9as53AwAAAAAA/025CAAAAAAAABKsFC8XLViwIM4888ycdkeOHBmnnHJKTrsAAAAAAMDnKRcBAAAAAABAgq3Py0W5lovOOuusmDdvXqv3ampqYty4cZFKpXK6FwAAAAAA+DzlIgAAAAAAAEiwbt26Rd++fXPazaVc9Kc//SnuueeenO674oor4qtf/WpOu1AMc+fOjcWLF5c6BgAAAABAqygXAQAAAAAAQMLl+nrRzJkzY82aNVnPL126NE499dSc7tpzzz1z3oVCev/99+Paa6+NESNGRJ8+fWK33XYrdSQAAAAAgFbpUOoAAAAAAAAAQGnV19fHn//851bvrV69Ot59990YOHBgVvPnn39+fPDBB62+p6amJu64445IpVKt3oVCeOutt+Khhx6Khx56KF5++eXPfG6LLbYoUSoAAAAAgNwoFwEAAAAAAEDCNTQ05Lw7ffr0rMpFzz33XPzyl7/M6Y7LL788Nt1005x2k2jx4sXxxhtvxBtvvBFvvfVWzJ49O2bPnh1z5syJpUuXxooVK2LlypXRoUOH6Nq167//9OzZMwYNGhRbbbVVDBo0KL7+9a9HXV1dqb+csnLppZfG+PHjY/r06V86M2LEiCImAgAAAABYf6l0Op0udQgAAAAAAACgdF544YUYNmxYTrtXXnllnHPOOeucWbVqVWy77bbR1NTU6vP33HPPeOqpp7xatA7z58+PJ598MhobG6OxsTHeeuutvJxbUVERO+ywQ+yzzz6xzz77xNChQ6OysjIvZ7dFixYtio022ihaWlrWOffKK6/EtttuW5xQAAAAAAB54OUiAAAAAAAASLj6+vpIpVKRy+8lXNcLLv/lkksuyalY1KVLlxg3bpxi0ReYO3duPPjggzFhwoRobGyMtWvX5v2OlpaWePHFF+PFF1+M//iP/4hNNtkkxowZE2PGjIk+ffrk/b5y98wzz2QsFnXr1i222WabIiUCAAAAAMiPilIHAAAAAAAAAEqrpqYm+vfvn9NupnLRa6+9FpdffnlOZ19++eWx2Wab5bTbHqXT6Zg4cWIcccQRsckmm8Tpp58eEydOLEix6It8+OGHceGFF0b//v3jsMMOi6lTpxbl3nIxadKkjDO77bZbVFT4MTwAAAAA0Lb4riYAAAAAAAAQDQ0NOe2tq1y0du3aOPHEE6O5ubnV5+6xxx5x2mmn5ZSpvVm7dm3cd999sfXWW8fIkSPjgQceyOnvNF/WrFkTDz74YGy//fZx3HHHxYIFC0qWpZgaGxszzuyxxx6FDwIAAAAAkGfKRQAAAAAAAEDU19fntDd37tz45JNPvvBz1157bbz00kutPrNLly4xbty4SKVSOWVqL9LpdPz617+OQYMGxdFHHx3Tpk0rdaTPaGlpibvvvjsGDx4cf/zjH0sdp6CWLl0ar7zySsa5ESNGFCENAAAAAEB+KRcBAAAAAAAAOZeLIr749aKZM2fGz372s5zOu+yyy2LzzTfPOU97MHny5Bg6dGh85zvfiXfeeafUcdZp7ty5ccABB8TPf/7zUkcpmMmTJ8eaNWvWOVNbWxvbbrttcQIBAAAAAOSRchEAAAAAAAAQDQ0NOe9+Ubno5JNPjuXLl7f6rN133z3OOOOMnLO0dQsXLozvfve7seuuu8aLL75Y6jhZa2lpifPPPz/OPffcUkcpiMbGxowzu+66a1RWVhYhDQAAAABAfikXAQAAAAAAALHVVltFRUVuPz78/8tF48aNi4kTJ7b6nM6dO8cdd9wRqVQqpxxt3YQJE2Lw4MExfvz4UkfJ2ZVXXtkuXzCaNGlSxpkRI0YUIQkAAAAAQP51KHUAAAAAAAAAoPQ22GCD2HzzzeOdd95p9W5TU9O///tHH30U55xzTk4ZLrvsshgwYEBOu23ZsmXL4rTTTstLqai6ujqGDBkSgwcPjkGDBsVWW20Vffv2ja5du0ZtbW107do1WlpaYuXKlbFs2bKYM2dOfPTRR/HOO+/E66+/Hq+++mq88sorsXbt2pwz/OQnP4mtt9469ttvv/X+esrBihUrsnpFSrkIAAAAAGirUul0Ol3qEAAAAAAAAEDpjRo1Kh555JFW7w0ePDimTZsWEREHH3xwPPzww60+Y7fddovGxsbEvVr0xhtvxOGHHx5vvfVWzmcMGDAgDjzwwPjmN78ZI0aMiA022GC9Mi1evDgaGxvjnnvuid///vexatWqVp/Rq1eveP3116NHjx7rlaUcTJw4MUaOHLnOmZqamvjkk0+iQwe/3xMAAAAAaHsqSh0AAAAAAAAAKA8NDQ057b3zzjuxdu3amDBhQk7Fos6dO8cdd9yRuGLRww8/HEOHDs2pWFRVVRWHH354PPnkkzFjxoy4+uqrY5999lnvYlFExFe+8pU48MAD44EHHoh//vOfcd5550WnTp1adcbHH38c55133npnKQeTJk3KODN8+HDFIgAAAACgzVIuAgAAAAAAACIior6+Pqe91atXx8svvxxnnHFGTvuXXnppbLHFFjnttlVXXHFFHHLIIbF8+fJW7VVVVcUZZ5wRH3zwQfz2t7+NkSNHFrSUVVdXFz//+c9j+vTp8c1vfrNVu3fffXdMnTq1QMmKp7GxMePMHnvsUfggAAAAAAAFolwEAAAAAAAARETu5aKIiKOPPjrmzJnT6r1dd901vv/97+d8b1uTTqfjjDPOiPPOOy/S6XTWe6lUKo4++uhoamqKG264IXr16lXAlJ/Xv3//ePzxx+M///M/o7KyMqudlpaWuOyyywqcrLBWr14dL7zwQsa5ESNGFCENAAAAAEBhpNKt+Y41AAAAAAAA0G6tXr06unTpEmvWrCnKfRtssEG89tpriXm1qKWlJU4++eQYN25cq/b69+8fd9xxR4wcObJAyVrnoYceiqOOOipWr16dcbZz586xdOnSgr6uVEjPPvts7Lbbbuuc6dy5cyxatCg6duxYpFQAAAAAAPnl5SIAAAAAAAAgIiKqqqqKWvT5z//8z8QUi9LpdBx//PGtLhYdf/zx8frrr5dNsSgi4uCDD45HH300OnXqlHF2p512arPFooiIxsbGjDM777yzYhEAAAAA0KYpFwEAAAAAAAD/1tDQUJR7dtlllzjzzDOLclc5+OEPfxjjx4/Per66ujruvvvuuOOOO6K2traAyXLzzW9+M2655ZaMc9/4xjeKkKZwJk2alHFmxIgRRUgCAAAAAFA4ykUAAAAAAADAv9XX1xf8jg022CDuvPPOqKhIxo8rL7vssrjuuuuynu/Ro0c89dRT8Z3vfKeAqdbfd7/73YwFsT333LNIafJvzZo18dxzz2WcUy4CAAAAANq6ZHy3HgAAAAAAAMhKMV4uuuSSS2LgwIEFv6cc/J//83/iJz/5SdbzAwcOjClTpsQuu+xSwFT5c/nll8emm276hZ/r3LlzDB06tLiB8ujvf/97LF26dJ0znTp1atNfIwAAAABAhHIRAAAAAAAA8D8U+uWi4cOHx1lnnVXQO8rFtGnT4vjjj896fosttoinn376S8s65ai6ujouu+yyL/zcLrvsElVVVUVOlD+TJk3KODN06NCorq4uQhoAAAAAgMJRLgIAAAAAAAD+beDAgQUrhHTq1CnuuOOOqKho/z+mXLx4cYwaNSqWLVuW1fyAAQPi6aefjr59+xY4Wf4deeSRsc0223zu49/4xjdKkCZ/GhsbM87ssccehQ8CAAAAAFBg7f+79gAAAAAAAEDWOnToEFtuuWVBzr7kkksKdna5Of300+Odd97JanbjjTeOp59+OjbZZJMCpyqc44477nMf23PPPYsfJE9aWlpi8uTJGedGjBhRhDQAAAAAAIWlXAQAAAAAAAB8Rn19fd7P3HnnneOHP/xh3s8tRw888EDce++9Wc1usMEG8fvf/z769etX4FSF9e1vfzs6dOjw7//dtWvX2GGHHUqYaP1MnTo1Fi1atM6ZqqqqGDZsWHECAQAAAAAUkHIRAAAAAAAA8BkNDQ15Pa9Tp05x5513RkVF+//x5Jw5c+J73/teVrOpVCruvvvuNl3C+S+9evX6TNFm9913/0zZqK1pbGzMODNkyJDYYIMNipAGAAAAAKCw2u53cwEAAAAAAICCyPfLRRdffHFsueWWeT2zXJ199tmxcOHCrGYvuOCCOOywwwqcqHiGDBkSzz77bERE7LnnnkW//7333otJkybF1KlT47XXXosPPvggFi9eHIsWLYqWlpbo2rVr9OvXLwYPHhzDhw+P/fbbLzbbbLMvPGvSpEkZ7xsxYkS+vwQAAAAAgJJIpdPpdKlDAAAAAAAAAOXjnXfeiYEDB+blrGHDhsWzzz4blZWVeTmvnE2cODFGjhyZ1Wx7/Hv57W9/G0ceeWRERLz88sux3XbbFfzOmTNnxt133x2PPPJIvPbaa63e32WXXeLMM8+MQw89NFKpVEREpNPp6NmzZ8yfP3+du3/+859j7733zik3AAAAAEA5US4CAAAAAAAAPqOlpSVqampixYoV63VOp06d4pVXXolBgwblKVn5WrNmTWy99dbR1NSUcbZLly7x6quvxhZbbFGEZMWzfPnyePPNNyMiYvvtt4+KioqC3fXXv/41rrnmmnjssceipaVlvc/7+te/HjfffHPsvPPOMW3atGhoaFjnfIcOHWLRokXRpUuX9b4bAAAAAKDUOpQ6AAAAAAAAAFBeKioqYquttoqXX355vc4ZO3ZsIopFERHjxo3LqlgUEXHVVVe1u2JRRETnzp1jxx13LOgd06ZNi7PPPjv+/Oc/5/XcqVOnxq677hrnnntu9OnTJ+P8jjvuqFgEAAAAALQbXi4CAAAAAAAAPuc73/lO/PrXv855f+jQoTF58uSorKzMY6rytGLFithiiy3in//8Z8bZIUOGxN/+9rdIpVJFSNZ+LFu2LH784x/HzTffHGvXri3oXR07dozm5uZ1zvz4xz+Oyy67rKA5AAAAAACKxctFAAAAAAAAwOfU19fnvFtdXR133nlnIopFERE33XRTVsWiiIhrrrlGsaiVpkyZEsccc0zMmDGjKPdlKhZFRIwYMaIISQAAAAAAiqOi1AEAAAAAAACA8tPQ0JDz7tixY2OrrbbKY5ry1dzcHNdee21Ws4cffngMHz68sIHamSuvvDJ22WWXohWLslFZWRm77LJLqWMAAAAAAOSNl4sAAAAAAACAz8n15aIhQ4bEOeeck+c05es3v/lNzJ49O+NcRUVFXHrppUVI1D40NzfHySefHHfddVepo3zO9ttvH127di11DAAAAACAvFEuAgAAAAAAAD7nq1/9atTU1MTSpUuz3qmuro4777wzKisrC5isvFx99dVZzY0ePToGDBhQ4DTtwyeffBKjR4+OxsbGVu0NHDgwDj744Bg6dGhss8020b179+jcuXMsWrQoZs6cGZMnT47x48fHa6+9tl75RowYsV77AAAAAADlJpVOp9OlDgEAAAAAAACUn6FDh8aUKVOynr/00kvj/PPPL2Ci8vLiiy/GkCFDspqdPHlyDB8+vMCJ2r6FCxfGXnvtFa+88kpW8xUVFTF69Oj40Y9+FEOHDs1q59FHH43vf//78f777+eU8dFHH439998/p10AAAAAgHJUUeoAAAAAAAAAQHlqaGjIenannXaKc889t4Bpys+dd96Z1dzQoUMVi7KwYMGCGDlyZNbFouHDh8ff//73ePDBB7MuFkVEHHDAAfH3v/89p/9PKioqYtddd231HgAAAABAOVMuAgAAAAAAAL5QfX19VnNVVVVx5513RmVlZYETlY9Vq1bF/fffn9XscccdV9gw7cDixYtj5MiR8eqrr2acraqqimuuuSaeffbZ2HbbbXO6b6ONNoonnngittlmm1btff3rX49u3brldCcAAAAAQLlSLgIAAAAAAAC+ULblogsvvDDr2fZi4sSJ8cknn2Scq6ysjIMPPrgIidquNWvWxKGHHhpTp07NONuvX794/vnn46yzzopUKrVe99bU1MQjjzwSXbp0yXpnjz32WK87AQAAAADKkXIRAAAAAAAA8IUaGhoyzuywww5x7rnnFiFNeXn00UezmhsxYkT07NmzwGnatlNPPTWefPLJjHPbbbdd/O1vf4vtt98+b3dvuummMXbs2KznR4wYkbe7AQAAAADKhXIRAAAAAAAA8IX69u0b3bp1+9LPV1VVxV133RUdOnQoXqgy8dhjj2U1d8ghhxQ4Sdt29dVXx7hx4zLODRs2LBobG2PjjTfOe4bvf//7WZ2bSqVit912y/v9AAAAAAClplwEAAAAAAAAfKn6+vov/dzPfvazrF43am/eeuut+Mc//pHVrJduvtxLL70UP/7xjzPODR06NJ544ono2rVrQXJUVVXFySefnHFu6623jrq6uoJkAAAAAAAoJeUiAAAAAAAA4Et9Wblohx12iPPOO6/IacrD5MmTs5rbcMMNY/DgwQVO0zYtXbo0vv3tb0dzc/M657bYYov4wx/+ELW1tQXNk01ZTFEMAAAAAGivlIsAAAAAAACAL/VFLxNVVVXFnXfeGR06dChBotJ79tlns5rbeeedI5VKFThN23T22WfHjBkz1jmz4YYbxh/+8IfYaKONCp5n0qRJGWeUiwAAAACA9kq5CAAAAAAAAPhSX/Ry0QUXXBBbb711CdKUhxdeeCGruSFDhhQ4Sds0ZcqUuP322zPOjRs3Lr72ta8VPM+cOXMyFp0iInbfffeCZwEAAAAAKIVk/ioxAAAAAAAAICvf+MY3Ip1OlzpG2Vi9enW88847Wc0OGDCgwGnannQ6Hd///vcz/jN1wgknxOjRo4uSKZtXiwYPHhw9evQoQhoAAAAAgOLzchEAAAAAAABAlmbMmBFr1qzJala56PPGjx8fU6ZMWedMjx494pprrilSouzKRXvssUfhgwAAAAAAlIhyEQAAAAAAAECWmpqasp7dfPPNC5ik7WlpaYlLL70049zFF18ctbW1RUj0L9mUi0aMGFGEJAAAAAAApaFcBAAAAAAAAJClDz74IKu5jh07Rq9evQqcpm15+OGH4+23317nzBZbbBFjxowpUqKIhQsXxhtvvJFxbvfddy9CGgAAAACA0lAuAgAAAAAAAMjSnDlzsprr0qVLgZO0PVdccUXGmTPPPDMqKyuLkOZfnnnmmUin0+uc2XLLLaN3795FSgQAAAAAUHzKRQAAAAAAAABZ+uijj7Kaq6mpKXCStuX111+PKVOmrHOmtrY2jjvuuOIE+n8mTZqUcWbEiBFFSAIAAAAAUDrKRQAAAAAAAABZ+uSTT7Ka83LRZ913330ZZw488MCil7KUiwAAAAAAlIsAAAAAAAAAsrZixYqs5qqqqgqcpO1Ip9Nx//33Z5w79NBDi5Dmvy1dujReeeWVjHPKRQAAAABAe6dcBAAAAAAAAJCllStX5nUuCaZOnRrvvffeOmc6dOgQe++9d3EC/T+TJ0+OtWvXrnNmiy22iL59+xYpEQAAAABAaSgXAQAAAAAAAGRp9erVWc0tX768wEnajsbGxowz2267bXTu3LkIaf7bpEmTMs54tQgAAAAASALlIgAAAAAAAIAsVVdXZzU3b968SKfTBU7TNmRTLho2bFgRknyWchEAAAAAwL8oFwEAAAAAAABkaYMNNshqbvXq1TFnzpwCp2kbnn322YwzW265ZRGS/LeVK1fGiy++mHFOuQgAAAAASALlIgAAAAAAAIAsdenSJevZ6dOnFzBJ27BgwYKYN29exrnNNtusCGn+2wsvvBCrVq1a58ymm24a/fv3L1IiAAAAAIDSUS4CAAAAAAAAyFKfPn2yns3mZZz27p133slqbpNNNilwks9qbGzMOOPVIgAAAAAgKZSLAAAAAAAAALK06aabZj07efLkwgVpI2bMmJHVXGtehMqHSZMmZZxRLgIAAAAAkkK5CAAAAAAAACBLrSkX/eUvf4kVK1YULkwb8M9//jOruWKWi5qbm+Nvf/tbxjnlIgAAAAAgKZSLAAAAAAAAALK07bbbZj27fPny+MMf/lC4MEXy3nvvxR//+MecdpcuXZrVXEtLS07n5+Lvf/97LFu2bJ0z/fr1i80337xIiQAAAAAASku5CAAAAAAAACBLX/va16Kuri7r+RtvvLGAaQpv0qRJsdNOO8WRRx4Z77zzTqv3sy0XLVq0qNVn5+q+++7LOOPVIgAAAAAgSZSLAAAAAAAAAFph5513znq2sbExpkyZUsA0hfOrX/0q9tprr5g/f358+umnccQRR8SqVatadcby5cuzmitWueiZZ56Jm266KeOcchEAAAAAkCTKRQAAAAAAAACtcOCBB7Zq/uyzzy5QksJYuXJlnHbaaXHyySdHc3Pzvz/+8ssvxznnnNOqs1KpVFZzs2bNatW5uVi2bFkcf/zx0dLSknFWuQgAAAAASBLlIgAAAAAAAIBWGDVqVFRWVmY9P3ny5Lj11lsLmCh/Xn/99dhxxx3j5ptv/sLP33jjjfHwww9nfd4GG2yQ1dzzzz+f9Zm5SKfT8Z3vfCdmzpyZcbZPnz4xcODAguYBAAAAACgnykUAAAAAAAAArdCzZ8/Ye++9W7Xzwx/+MN54440CJVp/6XQ6rr/++thpp51i2rRp65w98cQT4/3338/q3O7du2c19+yzz2Y1l6uLLrooHnrooaxmhw8fXtAsAAAAAADlRrkIAAAAAAAAoJXOPPPMVs2vWLEivvWtb8U//vGPAiXK3dSpU2PXXXeNM888M1atWpVx/pNPPomnnnoqq7M32WSTrOZef/31eOmll7Kaba1bb701/uM//iPreeUiAAAAACBplIsAAAAAAAAAWul//a//FYMHD27Vzj/+8Y/Ya6+94t133y1QqtZZsmRJnHXWWbHDDjvEc889l9VOZWVl3HbbbXHCCSdkNT9o0KCs81x77bVZz2br1ltvje9973uRTqez3lEuAgAAAACSJpVuzXdRAQAAAAAAAIiIiMceeywOOOCAVu/17NkzJkyYELvuumsBUmW2bNmyuPnmm+PKK6+MuXPnZr1XXV0dv/nNb2L06NFZ76xYsSJqa2tjzZo1GWcrKiriz3/+c4wcOTLr879MOp2OsWPHxsUXX9yqYlFVVVV8+umnUVVVtd4ZAAAAAADaCi8XAQAAAAAAAORg//33j3322afVe3Pnzo0RI0bEeeedFytWrChAsi+2ZMmSuPzyy2PTTTeNH/3oR60qFtXW1sYTTzzRqmJRRMQGG2wQO++8c1azLS0tccwxx8Ts2bNbdcf/b/HixTF69OgYO3Zsq4pFERHbbLONYhEAAAAAkDjKRQAAAAAAAAA5uummm6K2trbVey0tLXHFFVfEgAED4uabb46VK1cWIN2/PPvss3H88cdHnz594sc//nHMnz+/VfuDBw+Ov/3tbzFixIic7m/N605z5syJnXfeOV577bWc7vrd734XgwcPjkceeSSn/R122CGnPQAAAACAtiyVbu2vagIAAAAAAADg3x544IE44ogj1uuMDTfcMI4++ug49NBDY5dddokOHTrkfNaKFSti0qRJ8cQTT8Rjjz0WM2bMyPmsb3/723HbbbdFly5dcj7jo48+in79+sXatWuz3qmpqYnzzjsvzjrrrKipqck4/8wzz8Sll14ajz/+eM45IyJuu+22GDNmzHqdAQAAAADQ1igXAQAAAAAAAKync845J6666qq8nFVbWxvDhw+P7bbbLrbeeuvo169fbLLJJtGtW7fo1KlTVFVVxbJly2LJkiWxZMmSmDNnTrz55psxbdq0mDZtWkyZMmW9X0KqqqqKa665Jk477bS8fE3HHnts3HPPPa3e6969exx00EGxzz77RENDQ/Ts2TNqampi3rx58d5778WTTz4Zv//97+Pll1/OS84pU6bETjvtlJezAAAAAADaCuUiAAAAAAAAgPWUTqfj+OOPj7vvvrvUUdbb9ttvH7fffntst912eTtz5syZUV9fH6tWrcrbmfmWSqVi6dKl0blz51JHAQAAAAAoqopSBwAAAAAAAABo61KpVIwbNy6OPfbYUkfJWZcuXeKqq66KKVOm5LVYFBExYMCAuPDCC/N6Zr5tttlmikUAAAAAQCIpFwEAAAAAAADkQWVlZYwfPz5+9rOflTpKq+2///7x5ptvxtlnnx2VlZUFueO8886L/fbbryBnr8upp54a++67b8a5wYMHFyENAAAAAED5US4CAAAAAAAAyKOxY8fGI488Er169Sp1lIz23HPPaGxsjEcffTT69+9f0LsqKiri/vvvj1133bWg9/yXAQMGxJ/+9Ke4+eab480338w4v8UWWxQhFQAAAABA+VEuAgAAAAAAAMizAw88MKZNmxZHH310pFKpUsf5nP8qFU2cODF23333ot1bU1MTjz/+eBx88MEFu6Nbt25xySWXxLRp02KfffaJuXPnxvvvv59xb8CAAQXLBAAAAABQzpSLAAAAAAAAAApgo402invuuSf+/ve/x7777lvqOLHhhhvGaaedFi+99FLRS0X/U5cuXWLChAlx8803R7du3fJ27sYbbxwXX3xxvPfee/HTn/40qqurIyLixRdfXOfegAED4uyzz46DDjoob1kAAAAAANqSVDqdTpc6BAAAAAAAAEB798Ybb8SvfvWruOeee2LhwoVFubO6ujr22GOPOO6442LUqFHRqVOnotybrfnz58f1118ft912W3z88cet3t9www1jn332iSOPPDL222+/qKys/NzMRRddFGPHjv3Mx7bbbrsYNWpUjBo1KrbZZpuc8wMAAAAAtAfKRQAAAAAAAABFtGrVqmhsbIw//elP8fjjj0dTU1Pezq6oqIhtt9029tprrxg5cmTstttuscEGG+Tt/EJZu3ZtTJo0KSZOnBgvvfRSzJo1K+bMmRPLly+PiIjOnTvHhhtuGP3794/NN988tt9++xgyZEjsuOOO0aFDh3We/ZOf/CSuvPLK2G233f5dKOrfv38xviwAAAAAgDZBuQgAAAAAAACghBYtWhSvvvpqTJ06NWbMmBGzZ8+ODz/8MD7++ONYvnx5rFy5MlauXBkVFRXRtWvX6Nq1a9TU1ETXrl2jX79+MWjQoNhyyy3//Z81NTWl/pLKztKlS/29AAAAAAB8CeUiAAAAAAAAAAAAAAAASKiKUgcAAAAAAAAAAAAAAAAASkO5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASSrkIAAAAAAAAAAAAAAAAEqpDqQMAALlbs2ZNzJgx4zMfq6uri4oK/WEAAAAAAAAAAAAAyFZLS0ssXLjwMx8bOHBgdOjQ/qs37f8rBIB2bMaMGTF48OBSxwAAAAAAAAAAAACAdufNN9+MrbbaqtQxCs6zBgAAAAAAAAAAAAAAAJBQykUAAAAAAAAAAAAAAACQUMpFAAAAAAAAAAAAAAAAkFAdSh0AAMhdXV3d5z725ptvRvfu3UuQBgAAAAAAAAAAAADapvnz58fgwYM/87Ev+nd12yPlIgBowyoqPv8IYffu3aNHjx4lSAMAAAAAAAAAAAAA7ccX/bu67VEyvkoAAAAAAAAAAAAAAADgc5SLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChOpQ6AABAMaTT6Vi7dm20tLREOp0udRwAAAAAAP6HVCoVFRUVUVlZGalUqtRxAAAAAAASRbkIAGhX0ul0rFy5MlasWBHNzc2xevXqWL16dTQ3NysVAQAAAAC0AR07doyOHTtGVVXVv/906dIlKioqSh0NAAAAAKBdUi4CANq8/yoUffrpp7FkyZJobm4udSQAAAAAAHLU3Nwczc3NsXz58n9/LJVKRU1NTXTt2jVqamqisrKyhAkBAAAAANoX5SIAoM1Kp9OxZMmSmDdvnkIRAAAAAEA7lk6n49NPP41PP/00UqlUdO3aNXr06BFVVVWljgYAAAAA0OYpFwEAbdKqVatizpw5n/nNlQAAAAAAtH//9YunPv3006irq4vu3btHRUVFqWMBAAAAALRZykUAQJvS0tIS8+bNi4ULF5Y6CgAAAAAAJZROp2PBggWxePHi6NWrV9TW1pY6EgAAAABAm6RcBAC0GS0tLTF79uxYunRpqaMAAAAAAFAm1qxZE7Nnz441a9ZEXV1dqeMAAAAAALQ53oYHANoExSIAAAAAANbl448/jvnz50c6nS51FAAAAACANkW5CAAoe4pFAAAAAABkY968eTFv3jwFIwAAAACAVuhQ6gAAAJnMmzcvp2JRZWVldOrUKaqqqv79p7KyMlKpVKRSqQIkBQAAAACgtdLpdKTT6WhpaYnVq1dHc3NzrF69OlavXh2rVq1q9XkLFiyI6urq+MpXvlKAtAAAAAAA7Y9yEQBQ1lauXBkLFy7Mer6ysjJqa2uja9eu0blzZyUiAAAAAIA2pEuXLp/5383NzfHpp5/Gp59+GsuXL8/6nI8//jhqamqisrIy3xEBAAAAANod5SIAoGyl0+n4+OOPs56vq6uL7t27+2ExAAAAAEA70bFjx6irq4u6urpYvnx5fPzxx7Fy5cqMe2vXro2PP/44Nt544yKkBAAAAABo2ypKHQAA4MssWbIkq99E2aFDh9hss82iV69eikUAAAAAAO1U586dY9NNN43evXtnNb948eJYtmxZgVMBAAAAALR9ykUAQFlKp9Mxb968jHMdOnSI/v37R6dOnYqQCgAAAACAUkqlUrHhhhtG3759I5VKZZzP5vvMAAAAAABJp1wEAJSllStXRnNzc8a5fv36RXV1dRESAQAAAABQLmpra6NPnz4Z51asWJHV95oBAAAAAJJMuQgAKEuffvppxpm6ujovFgEAAAAAJFRtbW106dIl49ySJUuKkAYAAAAAoO1SLgIAyk46nc74w97Kysro3r17kRIBAAAAAFBuUqlU9O7dO1Kp1DrnFi9eXKREAAAAAABtk3IRAFB2Vq5cGc3Nzeucqa2tjcrKyiIlAgAAAACgHFVVVUVNTc06Z1atWhWrVq0qUiIAAAAAgLZHuQgAKDsrVqzIONO1a9ciJAEAAAAAoNx95StfyTiTzfedAQAAAACSSrkIACg7mV4tqqysjM6dOxcpDQAAAAAA5axLly5RUbHuH32vXr26SGkAAAAAANoe5SIAoOxk+iFvp06dIpVKFSkNAAAAAADlrKKiIjp16rTOGeUiAAAAAIAvp1wEAJSdTD/kraqqKlISAAAAAADagkzfN1YuAgAAAAD4cspFAEBZSafTykUAAAAAALRKNuWidDpdpDQAAAAAAG2LchEAUFbWrl2bcUa5CAAAAACA/ynT943T6XRW338GAAAAAEgi5SIAoKy0tLRknKmsrCxCEgAAAAAA2opsvm/s5SIAAAAAgC+mXAQAlJVsfribSqWKkAQAAAAAgLaioiLzj76z+eVWAAAAAABJpFwEALQ5ykUAAAAAAPxPvm8MAAAAAJA75SIAAAAAAAAAAAAAAABIKOUiAAAAAAAAAAAAAAAASCjlIgAAAAAAAAAAAAAAAEgo5SIAAAAAAAAAAAAAAABIKOUiAAAAAAAAAAAAAAAASCjlIgAAAAAAAAAAAAAAAEgo5SIAAAAAAAAAAAAAAABIKOUiAAAAAAAAAAAAAAAASCjlIgAAAAAAAAAAAAAAAEgo5SIAAAAAAAAAAAAAAABIKOUiAAAAAAAAAAAAAAAASCjlIgAAAAAAAAAAAAAAAEgo5SIAAAAAAAAAAAAAAABIKOUiAAAAAAAAAAAAAAAASCjlIgAAAAAAAAAAAAAAAEgo5SIAAAAAAAAAAAAAAABIKOUiAAAAAAAAAAAAAAAASCjlIgAAAAAAAAAAAAAAAEgo5SIAAAAAAAAAAAAAAABIKOUiAAAAAAAAAAAAAAAASCjlIgAAAAAAAAAAAAAAAEgo5SIAAAAAAAAAAAAAAABIKOUiAAAAIC/uuuuuSKVSGf/cddddpY5KCRx33HFZ/fPx3nvvlToqAAAAAAAAAECiKBcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEJ1KHUAAACAfPvwww/j1VdfLdj5qVQqOnbsGNXV1VFdXR21tbXRs2fP2GijjSKVShXsXgAAAAAAAAAAAMg35SIAAKDdefLJJ+P4448v+r0dOnSIvn37xqBBg2LLLbeMHXbYIXbdddfYfPPNi54FAAAAAAAAAAAAsqFcBAAAkCdr1qyJ999/P95///144okn/v3xvn37xujRo+PQQw+N3Xff3etGAAAAAAAAAAAAlA3lIgAAgAKbPXt23HjjjXHjjTfG1772tTjzzDPjuOOOi86dO5c6WqL97ne/i1dffTXj3FlnnRXdunUreJ4vs2jRorj22mszzm277bYxatSogucBAAAAAAAAAADaF+UiAACAInr77bfj9NNPj0svvTQuv/zyOProo0sdKbF+97vfxd13351x7rjjjit5uWjs2LEZ57773e8qFwEAAAAAAAAAAK1WUeoAAAAASTR79uw45phjYt9994358+eXOg4AAAAAAAAAAAAJpVwEAABQQo8//nh8/etfj9dee63UUQAAAAAA4P+yd9/hUdRrG8fvTa8QaugldKR3pFcFxIagHARBFAtYjhVRj4gFRQ72gqI0QVBUVFCkSGgC0ksgEAi9JCEhQHrb9w9fPaLAziY7O7vh+7kurnOd5Jnfc+9AJpM4z/4AAAAAAMBViOEiAAAAALDYyZMn1a1bN23evNnqKAAAAAAAAAAAAAAAAACAqwzDRQAAAADgAVJSUtSvXz8dO3bM6igAAAAAAAAAAAAAAAAAgKsIw0UAAAAArmrTp0+X3W53+s+FCxd07Ngx7dq1SytWrNDrr7+uW2+9VRUrVix0lsTERN16663Ky8tz4SsEAAAAAAAAAAAAAAAAAODy/KwOAAAAAADeKCwsTGFhYapSpYokqXv37pKkgoICLV68WO+9956WLVsmu93u1LqbN2/Wm2++qSeffNLlmQEAAAAAAAAAAAAAAAAA+Dt2LgIAAAAAF/Lx8VH//v31888/a9WqVapWrZrTa7z44otKSEgwIR0AAAAAAAAAAAAAAAAAABdjuAgAAAAATNKpUyft2LFD/fv3d+q49PR0vfPOOyalAgAAAAAAAAAAAAAAAADgfxguAgAAAAATRURE6KuvvtK1117r1HEffvihsrOzTUoFAAAAAAAAAAAAAAAAAMDvGC4CAAAAAJMFBgZq4cKFqlKliuFjzp49q6VLl5qYCgAAAAAAAAAAAAAAAAAAhosAAAAAwC3KlSun5557zqljvvnmG5PSAAAAAAAAAAAAAAAAAADwO4aLAAAAAMBN7r77blWrVs1w/erVq01MAwAAAAAAAAAAAAAAAAAAw0UAAABwgdz8PKVlZ+lsRpqS0s7rbEaa0rKzlJufZ3U0wKP4+/trxIgRhuvj4+OVlJRkYiIAAAAAAAAAAAAAAAAAwNXOz+oAAAAA8B52u11nM9N1KCVRh1IS/v9/E5WalXHZYyKCQ1WzVDnVLF1eNUtHKqp0eZUKCXNjasCzdOvWTS+++KLh+t27d6tbt24mJgIAAAAAAAAAAAAAAAAAXM0YLgIAAMAV2e12xSae0MqDMdp9+ugVB4kuJTUzXdsy07Xt5OE/PxYRFKJGFaqpW+1Gql+ukmw2m4tTA56rXbt2Cg4OVmZmpqH6I0eOmJzIeWfPnlVSUpJSUlKUmZmp7Oxs+fj4KDg4WEFBQSpdurQqV66soKAgq6MChXb+/HkdP35c6enpSk9PV2ZmpoKCghQaGqoSJUqoWrVqCgkJsTqmS+Tm5urXX3/VqlWrFBMTo9jYWCUlJen8+fPKyspSWFiYwsPDFRERoXr16qlhw4Zq1qyZevbsqRIlSlgdHwAAAAAAAAAAAAAAAEXEcBEAAAAuKSM3W2sPxWpZ3E6dOJfi0rVTszK09nCs1h6OVZWSZdSrTmN1qFlfIf6BLu0DeKLAwEDVrFlTe/bsMVR/9OhRkxNd3okTJ/Tbb79px44d2rlzp+Li4nTo0CGlp6cbOr5MmTKqX7++mjdvrpYtW6pXr16qXLmyyakv1rVrV61atapIa9SsWdNFaX63cuVKde3a9aKPRUdHF3mHqpkzZ2rmzJlFWuOvunTpoujoaJet58kOHTqktWvXat26ddqyZYvi4+OVkuL4e1+FChXUsGFDdejQQR07dlSXLl0UGOg938s2btyoDz74QN9++60uXLhw2bpz587p3LlzOn78uHbv3q2vv/5akuTv768uXbrozjvv1L/+9S/5+/u7KzoAAAAAAAAAAAAAAABciOEiAAAAXCThQqoWx27V2kOxysrLNb3f8XPJmr45Wl9sX6eONeurX/0WigyPML0vYKUyZcoYrj137pyJSS6WkJCgZcuWaenSpVq9enWRd01KTk7WunXrtG7duj8/1qRJEw0aNEgjR45UhQoVihoZKLQjR45o7ty5mj9/vnbs2FGoNU6fPq3Tp0/rl19+kSSVLFlSN998s+6++2517tzZlXFd6rffftNjjz120ddmYeTm5mr58uVavny5nnvuOT3xxBMaM2aMfH19XZQUAAAAAAAAAAAAAAAA7uBjdQAAAAB4hvyCAn0Xs0lPLv5cy+N2uWWw6K+y8nK1PG6Xnlz8ub6L2aT8ggK39gfcyZnhooyMDBOTSAcOHNDrr7+utm3bqmLFiho6dKhmz55d5MGiy9m5c6eee+45VatWTUOGDNHBgwdN6QNczo4dOzR48GDVqlVL48aNK/Rg0aWcO3dOM2fOVJcuXdShQwf9/PPPLlvbFdLS0nT33XerXbt2RR4s+rvjx4/r0UcfVdu2bbVz506Xrg0AAAAAAAAAAAAAAABzMVwEAAAAHU9N1gtL52v+jl+VV5BvaZa8gnzN3/GrXlg6X8dTky3NApglJCTEcG1urusH/S5cuKD33ntPbdu2VZ06dTR27Fj99ttvstvtLu91Obm5uZo7d64aNGigxx9/XFlZWW7rjatTQkKChg4dqmbNmmnevHnKzzf3+92vv/6q66+/XgMGDNDx48dN7WXE9u3b1aJFC02fPt3Ur/UtW7aodevWmjNnjmk9AAAAAAAAAAAAAAAA4FoMFwEAAFzF/titaNySLxSfkmh1nIvEpyRq3JIv2MUIxVJKSorh2hIlSri8/7p16/TQQw/pt99+c/nazsrNzdWUKVPUqlUr7d692+o4KKZmzJih+vXr6/PPP3d772+++UaNGjXSokWL3N77DytWrFCnTp0UFxfnln45OTkaOnSoJk2a5JZ+AAAAAAAAAAAAAAAAKBqGiwAAAK5SqZnpenHZVx6xW9Hl/LGL0YvLvlJqZrrVcQCXSU42vitXRESEeUE8SExMjDp06KDVq1dbHQXFSHZ2tu69916NGDFCqampluU4d+6cbrzxRr388stu771o0SL169dPaWlpbu1rt9v19NNP64MPPnBrXwAAAAAAAAAAAAAAADiP4SIAAICrUFLaeb247CsdSD5tdRRDDiSf1ovLvlJS2nmrowAukZSUZLi2ZMmSJibxLOfPn9d1112nX375xeooKAZSU1PVtWtXTZs2zeookn4ftnn++ef1zDPPuK3nb7/9pkGDBik7O9ttPf/u4Ycf1s8//2xZfwAAAAAAAAAAAAAAADjmZ3UAAAAAuNeJcyma+Mu3Ssl07w4GRZWQdk4vLvtKz3S/RZVLlrY6DlBop0+f1uHDhw3X16pVy7wwHigrK0u33XabNmzYoLp161odB14qJSVFvXr10tatW62O8g+vvfaaAgIC9OKLL5ra5+jRo+rfv78yMzMLdXyDBg107bXXqkGDBoqMjFRYWJiys7N17tw5HThwQDt37tTq1asdrp+fn6/Bgwdrz549hcoBAAAAAAAAAAAAAAAA8zFcBAAAcBVJSjvvlYNFf0jJTNPEX77VC70GqlxYCavjAIUSHR3tVH3Lli3NCWJQ5cqV1aZNGzVo0ED169dX1apVVaFCBZUtW1ZBQUEKDg7+c+AgNTVVZ8+e1e7du7Vp0yZt2rRJu3btUkFBgVM9z549qwEDBmjLli0KCAgoUv4rne/hw4dr5syZDtc4dOiQatSoUaQcjnTt2lV2u/2Snzt8+LBq1qzpcI277rpLM2bMcHEy75ORkVHowSIfHx+1bt1aXbp0UfPmzVWrVi1VqVJFJUqUUFBQkHJycnT+/HkdOXJEMTExWrt2rX744QendiOTpAkTJqhRo0YaOHCg0xmNKCgo0J133qnExESnjitdurRGjRqlUaNGGfo3l5WVpe+++07vvvuu1q1bd9m6s2fP6sEHH1SJEnzvBgAAAAAAAAAAAAAA8EQMFwEAAFwlUjPT9eov33jtYNEfUjLT9Oov3+iFXgMVERxqdRzAaT///LPh2ooVK6pixYompvmnsmXL6rrrrlOfPn3UtWtXVa5c2eExISEhCgkJ+TPrtddeq1GjRkmSjhw5ok8++UTTp0/XyZMnDefYvXu3XnnlFdN3d0HxYrfbdddddzk9WFSrVi098MADGjZsmMqVK3fZuuDgYAUHBysyMlJt2rTRiBEjlJ+fr8WLF2vixInasGGD4Z4jRoxQkyZNVK9ePaeyGvH6669rzZo1Th1z//3365VXXlHp0sZ3BwwKCtLtt9+u22+/Xd9++60efvhhHT9+/JK13377rSpVquRUJgAAAAAAAAAAAAAAALiHj9UBAAAAYL78ggJNWb1ICWnnrI7iEglp5zRl9SLlO7kbCmC1Y8eOae7cuYbru3XrZmKa/wkMDNTgwYO1ePFinTp1Sp9//rmGDBliaLDIkerVq+vll1/WkSNHNHHiRAUGBho+9rXXXtPRo0eLnAFXj4kTJ2rBggWG60uXLq2pU6cqNjZWjz/++BUHiy7H19dXN954o9avX6+ZM2cqIiLC0HHp6em65557LrtjVWEdPnxYEyZMMFwfFhamb775Rh9++KFTg0V/d8stt2jbtm3q2bPnZWucGTAEAAAAAAAAAAAAAACA+zBcBAAAcBVYtHeLDiSftjqGSx1IPq1Fe7dYHQNwymuvvaacnBzD9cOGDTMxjVS+fHlNmDBBR48e1dy5c9W3b1/5+Zmzwa2fn5/Gjh2r7du3q2XLloaOycnJ0cSJE03Jg+Jn586dGj9+vOH6Xr16ac+ePRo1apTL/t0PGzZMW7ZsUcOGDQ3Vr127VlOnTnVJ7z88+eSTysrKMlRbokQJ/fzzz7rllltc0rts2bJavHixbrrpJpesBwAAAAAAAAAAAAAAAPdguAgAAKCYO5Z6Rl/v2mh1DFN8vWujjqcmWx0DMGTFihX6+OOPDddXqlTpijuAFEVERIRee+01xcfH6/nnn1f58uVN6XMp9evXV3R0tLp06WKo/rPPPlNiYqLJqeDt8vPzdffddys3N9dQ/QMPPKCffvpJkZGRLs8SFRWlVatWqUmTJobqJ0yYoMzMTJf03rJli+Gdm3x9ffXVV1/p2muvdUnvPwQEBOjLL790+boAAAAAAAAAAAAAAAAwD8NFAAAAxVh+QYGmblimvIJ8q6OYIq8gXx9tWKr8ggKrowBXtG/fPt12223Ky8szfMyjjz4qX19fU/K0a9dOTz/9tEJDQ01Z35GwsDAtXLhQderUcVibk5OjuXPnuiEVvNn06dO1ZYux3exGjRqlDz74wLSvL+l/O/hUrFjRYe2pU6f04YcfuqTvG2+8Ybj2pZdeUu/evV3S9+8CAgL0zTffqFy5cqasDwAAAAAAAAAAAAAAANdiuAgAAKAYW7R3i+JTiveOH/EpiVq019gD5YAVli9frm7duik1NdXwMbVr19YjjzxiXigPEBERoZkzZ8rHx/GPpbNmzXJDInirnJwcvfTSS4Zqu3btqvfff9/kRL+rUqWKZsyYYaj23Xffld1uL1K/o0ePGt61qGXLlnrqqaeK1M+RyMhIvfPOO6b2AAAAAAAAAAAAAAAAgGswXAQAAFBMJVxI1de7Nlodwy2+3rVRCWnnrI4BXOTs2bN68skn1bt3b506dcqpY9966y0FBASYlMxztG/fXgMHDnRYt23bNqfPIa4en376qY4ePeqwLjw8XLNnz5afn58bUv2ud+/eGjJkiMO6w4cPa9myZUXqNWvWLOXnG9up8O233zZ156Y/3HHHHerYsaPpfQAAAAAAAAAAAAAAAFA0DBcBAAAUU4tjtyqvwNhDxt4uryBfi9m9CB4gLy9Pv/32m+69915VrlxZkydPdno3kueee079+vUzKaHneeyxxwzVrVixwuQk8FYffvihobrx48erSpUqJqf5p5deesnQIM/MmTOL1OeLL74wVHfdddepQ4cORerljFdeecVtvQAAAAAAAAAAAAAAAFA47nu7XgAAALhNRm621h6KtTqGW609FKvBzToq2L/47/YC19qxY4cWLVrk9HHp6elKTU1VamqqEhIStHnzZm3ZskUZGRmFznLHHXdowoQJhT7eG7Vp00Y1atTQ4cOHr1gXHR2tO++80z2h4DU2bNigXbt2OayrWLGiHnzwQTck+qeaNWvqhhtu0HfffXfFuiVLlqigoEA+Ps6/D0xMTIz27NljqPaRRx5xev2i6Ny5s5o1a6bt27e7tS8AAAAAAAAAAAAAAACMY7gIAACgGFp3KFZZeblWx3CrrLxcrT0cq151mlgdBV7mrbfe0ltvvWV1DN1777167733ZLPZrI7idt26ddP06dOvWLNz5043pYE3mTVrlqG6UaNGKSgoyOQ0l3fnnXc6HC5KSUnRb7/9pnbt2jm9/rJlywzVVatWTdddd53T6xfVqFGjLBvuAgAAAAAAAAAAAAAAgGPOvx0uAAAAPJrdbteyOMe7OBRHy/fvlN1utzoG4BR/f3+99957+vjjjxUQcHXuvNWoUSOHNTExMSooKHBDGniTxYsXG6obPny4uUEc6N27t/z8HL+/y+rVqwu1/sqVKw3V3XzzzYXaGamobr31Vkv6AgAAAAAAAAAAAAAAwBie7AAAAChmYhNP6Pi5ZKtjWOLYuWTFJp20OgZg2M0336yYmBiNHj3a6iiWql69usOajIwMHTt2zA1p4C1iYmJ09OhRh3WNGzdWjRo1zA90BSVKlFDDhg0d1m3btq1Q669Zs8ZQXf/+/Qu1flFFRkaqTZs2lvQGAAAAAAAAAAAAAACAYwwXAQAAFDMrD8ZYHcFSKw/stjoCcEVBQUEaOHCg1qxZo2+//VZ16tSxOpLlwsPDDdWdOnXK5CTwJitWrDBU16NHD5OTGNO0aVOHNYUZLjp27JjOnj3rsM7Pz0/t27d3en1X6dSpk2W9AQAAAAAAAAAAAAAAcGV+VgcAAACA69jtdu0+7XgXh+Lsan/98Gy33367PvroI0VERFgdxaMEBAQYqmO4CH+1efNmQ3WtW7c2OYkx1apVc1hz8OBBFRQUyMfH+HvB7N5tbKi2cePGCg0NNbyuq1k52AQAAAAAAAAAAAAAAIArY7gIAACgGDmbma7UrAyrY1gqNStDZzPSVCokzOoowD/Mnz9fe/bs0bvvvqsuXbpYHcewgoICxcbGaufOnYqLi9OBAwd08uRJnTlzRmfOnFF6erqys7OVk5OjvLw803IkJSWZtja8j9Fdfho2bGhyEmPKly/vsCYvL08JCQmqWLGi4XX37t1rqK5Ro0aG1zSD1f0BAAAAAAAAAAAAAABweQwXAQAAFCOHUhKtjuAR4lMS1ZLhInioXbt2qVu3bho9erTefPNN+fl55o9lcXFx+uGHH/TTTz9p48aNunDhgtWRlJmZaXUEeIjc3FzFxsYaqq1Ro4a5YQwKDg42VHf8+HGnhotOnDhhqK5u3bqG1zRDzZo15e/vr9zcXEtzAAAAAAAAAAAAAAAA4J888yk2AAAAFMqhlASrI3iEQymJalklyuoYwGXZ7Xa99957io2N1ddff60SJUpYHUmSlJ6errlz5+rjjz/W5s2brY7zD1lZWVZHgIc4ceKE4V2ySpUqZXIa10pJSXGq/tSpU4bqrB6y8vPzU+XKlXX48GFLcwAAAAAAAAAAAAAAAOCffKwOAAAAANdh56LfcR7gjOnTp8tutxv+k5WVpYSEBB04cEArVqzQlClTNGzYMJUpU8bp3suXL1e/fv2UkZFhwiszLicnR2+//baioqI0atQojxwskqTs7GyrI8BDHD9+3OoIpnF2h67Tp08bqitXrlxh4rhU+fLlrY4AAAAAAAAAAAAAAACAS2DnIgAAgGKEoZrfHTrLeYB5AgMDVb58eZUvX161atVS9+7dJUm5ublaunSpJk2apNWrVxteb+3atRowYIAWLVokX19fs2Jf1ubNmzV8+HDFxMS4vbezCgoKrI4AD3HixAmrI5jG2eGi8+fPG6orW7ZsYeK4lCcMOAEAAAAAAAAAAAAAAOCf2LkIAACgmMjJz1NqlrW7n3iK1Mx05ebnWR0DVxl/f3/169dPq1at0oIFC1ShQgXDxy5ZskTjxo0zMd2lffjhh2rfvr1XDBYBf5Wammp1BNPk5OQ4VW90R6/g4ODCxHEpT8gAAAAAAAAAAAAAAACAf2K4CAAAoJjIyWOY5q+yGS6ChQYMGKAtW7bommuuMXzMpEmT9O2335qY6mLjxo3Tgw8+qDyuHfBCzu7u403sdrtT9VlZWYbqAgMDCxPHpTwhAwAAAAAAAAAAAAAAAP6J4SIAAIBigp16Lpabn291BFzlKlWqpOjoaNWtW9fwMaNGjVJiYqKJqX43efJkTZw40fQ+gFmMDtRcDQoKCgzV2Ww2k5M45uPDr6EAAAAAAAAAAAAAAAA8kZ/VAQAAAOAaeQYfLr5a5DFcBA9QtmxZ/fjjj2rVqpVSU1Md1p85c0YPPPCAvv76a9MyRUdH66mnnir08WFhYWrSpIkaNWqkmjVrqlq1aipfvrzKly+vEiVKKCwsTCEhIfLz85Ovr698fX0NZerWrVuhM+Hqk5uba3UEj2F0N6CcnByTkziWnZ1tdQQAAAAAAAAAAAAAAABcAsNFAAAAxYQfuwFcxM/AQAPgDrVq1dKMGTN08803G6r/5ptv9N133+mmm25yeZb09HTdddddstvtTh3XpEkTDR48WL169VLz5s3ZfQSWCwoKsjqCxzB6LjxhsMcTMgAAAAAAAAAAAAAAAOCfGC4CAAAoJvx9ubX7K3+Gi+BBbrrpJg0fPlwzZswwVP/YY4/p+uuvN7wjiVFvvfWWjh49ari+U6dOmjhxojp06ODSHH+Xz05jcFJwcLDh2tzcXPn5Fd/vkaGhoYbqUlJSTE7iWHJystURAAAAAAAAAAAAAAAAcAm83TQAAEAxEVCMH5wujECGreBhpkyZovLlyxuqjY+P1+TJk13aPyMjw/CaNptNr776qlatWmX6YJEkZWZmmt4DxYvRgRpJysrKMjGJ9YxeV5KSkkxO4lhiYqLVEQAAAAAAAAAAAAAAAHAJDBcBAAAUEwG+fooICrE6hkeICA5lJyd4nFKlSumNN94wXP/666+7dJePr7/+WqmpqYZq33zzTT3zzDOy2Wwu638laWlpbumD4iMyMtJwbXH/91WxYkVDdSdOnDA5iWMnT560OgIAAAAAAAAAAAAAAAAugeEiAACAYqRmaWO7FxR3NUtxHuCZhg4dqhYtWhiqvXDhgl577TWX9f7iiy8M1d1000165JFHXNbXCAYO4Kxq1aoZri3u/76MDhft37/f5CRXdvLkyWI/6AUAAAAAAAAAAAAAAOCtGC4CAAAoRhgu+h3nAZ7KZrNp0qRJhuvff/99lwxG5OXlac2aNQ7rnM3nKseOHXN7T3i36tWrG649evSoiUmsV6dOHUN1sbGxJifx7P4AAAAAAAAAAAAAAAC4PIaLAAAAipGapSOtjuARGC6CJ+vRo4e6du1qqDYzM1OvvvpqkXvu3LnT0I4hXbp0Ud26dYvcz1k7d+50e094t/DwcFWuXNlQ7e7du01OY61GjRoZqtu8ebPy8/NNTnN5GzZssKw3AAAAAAAAAAAAAAAArozhIgAAgGKEoZrfRXEe4OFeeuklw7XTpk3TiRMnitTP6I4h119/fZH6FIbdbtf27dvd3hfer3Xr1obqtm7danISa9WtW1cBAQEO69LS0iwd5Pv1118t6w0AAAAAAAAAAAAAAIArY7gIAACgGCkVHKqIoBCrY1gqIihEpULCrI4BXFHHjh3VrVs3Q7XZ2dlF3r0oPj7eUF2TJk2K1Kcwtm/frpSUFLf3lSQfH+/4kdhbcrpbmzZtDNWtWrXK0h17zObn52d40Oqnn34yOc2lZWZmauXKlZb0BgAAAAAAAAB3sdvtstvtVscAAAAAgELhCSUAAIBixGazqVGFalbHsNTV/vrhPV544QXDtdOmTdOxY8cK3cvo8E6VKlUK3aOwfvzxR7f3/IO/v7+hury8PJOTXJm35HQ3owN6KSkpWrdunclprGX0XHz33XcmJ7m0ZcuWKSMjw5LeAAAAAAAAAOAu64/s14ajcVbHAAAAAIBCYbgIAACgmOlW6xqrI1iqW+1GVkcADOnSpYu6dOliqDYnJ6dIuxelp6cbqgsJcf/OZ7Nnz3Z7zz8EBAQYqsvMzDQ5yZV5S053a9u2rSpUqGCodtasWSansVb37t0N1f3222/as2ePyWn+6dNPP3V7TwAAAAAAAABwp8zcHH2+bY0+37pambk5VscBAAAAAKcxXAQAAFDM1C9fWVVKlrE6hiWqliyj+uUqWR0DMMyZ3Ys+++wzHT16tFB98vPzDdWdO3euUOsX1sqVK7Vv3z639vyr8PBwQ3Vnz541OcmVeUtOd7PZbLrpppsM1X7xxRfF+vx06tRJZcuWNVT7wQcfmJzmYkePHtXixYvd2hMAAAAAAAAA3O3rXRuUmpmus5np+mbXRqvjAAAAAIDTGC4CAAAoZmw2m3rVaWx1DEv0rNtENpvN6hiAYd26dVOnTp0M1ebk5OiVV14pVJ/g4GBDdQkJCYVav7AmTJjg1n5/V65cOUN1J0+eNDnJlQUEBKhEiRIO66zOaYW77rrLUF1GRoYmTpxochrr+Pn5acCAAYZqP/30U504ccLkRP8zYcIEwwOOAAAAAAAAAOCNjqWe0ZJ92//8/z/t26ZjqWesCwQAAAAAhcBwEQAAQDHUoWZ9Bfn5Wx3DrYL8/NWxRn2rYwBO+89//mO4dvr06Tpy5IjTPSIiIgzV7dy50+m1C+v7779XdHS02/pdSmRkpKG6AwcOmJzEMSNZDx8+rLy8PDek8Rzt27dXq1atDNW+8847iouLMzmRdYYOHWqoLisrS88++6zJaX63a9cuzZw50y29AAAAAAAAAMAKdrtd0zdHq8Bu//NjBf//MftfPgYAAAAAno7hIgAAgGIoxD9QHWteXYM2HWvWV7B/gNUxAKf17NlT1157raHa3Nxcvfzyy073qFGjhqG6RYsWOb12YZw7d05jxoxxS68rqVWrlqG6LVu2mJzEMSNZs7OzFRMT44Y0nuWRRx4xVJedna0hQ4YoNzfX5ETW6NChg1q2bGmodubMmVq6dKmpefLz8zVy5MirbuANAAAAAAAAwNVl7eFYxSb+c7f42MQTWnd4nwWJAAAAAKBwGC4CAAAopvrVbyE/H1+rY7iFn4+v+jUw9kA14IleeOEFw7UzZ87UoUOHnFq/fn1jw4br16/Xvn3m/ocuu92uoUOH6tixY6b2MaJu3bqG6qKjo5WTk2NymiszmvXnn382OYnnGTx4sBo3bmyodtOmTbrvvvtMTmSdJ554wnDtXXfdpRMn/vkfvF3lySef1KZNm0xbHwAAAAAAAACslp6TrTnb1lz283O2rVFGTrYbEwEAAABA4TFcBAAAUExFhkdoQOO2VsdwiwGN2yoyrKTVMYBC6927t9q1a2eotjC7F7Vo0UL+/v4O6/Lz850aTiiMf//73/rhhx9M7WFUqVKlDO0IlJqaqnnz5rkh0eW1bt3aUN20adOUn59vchrP4uvrq//+97+G66dPn65HHnlEdrvdxFTGJScna9y4cUpMTCzyWgMHDtQ111xjqPb06dPq37+/zp49W+S+f/fBBx/ozTffdPm6AAAAAAAAAOBJFuxcr/NZmZf9/LmsDH21c4MbEwEAAABA4TFcBAAAUIzd0KClokqXtzqGqaJKR+oGdi1CMeDM7kWzZs1SfHy84frg4GB16NDBUO2iRYv00UcfGV7bqIKCAj366KN6++23Xb52UXTs2NFQ3VNPPeX0jlGuZDRnXFycxo0bZ3Iaz9OrVy8NGjTIcP0777yjQYMGKS0tzcRUV3b06FE99dRTqlGjhiZOnOiS3bF8fX01ZcoUw/Xbtm1Tjx49dOrUqSL3/sPkyZM1evRol60HAAAAAAAAAJ7o8NkkLY3b6bBuadwOHTmb5IZEAAAAAFA0DBcBAAAUY74+Prq/XW/5+fhaHcUUfj6+ur9dL/n6cFsL73f99derTZs2hmrz8vL00ksvObX+wIEDDdeOHj1ac+bMcWr9K0lKSlL//v09brBIkm644QZDdQkJCWrdurU++OADpaenm5zqn2rUqGF4R5pJkybp5ptv1rZt20xO5VmmTp2qqlWrGq5fsGCBmjRpol9++cXEVBcrKCjQsmXLNGDAAEVFRemNN95w+YBT7969dfPNNxuu37Ztm5o3b66ffvqpSH3PnDmjQYMG6cknn7xsjZEd1AAAAAAAAADA0xXY7Zq+aaXsdrvDWvv/1xYYqAUAAAAAK/lZHQAAAADmqhJRRgMat9X8Hb9aHcXlBjRuqyoRZayOAbjMf/7zH8PDLrNnz9azzz6r2rVrG6r/17/+paefftrQIENBQYHuvPNOrV69WlOmTFFoaKihHn+Xl5enWbNm6emnn9aZM2cuWxcVFeXUTkyu1LdvX4WFhRk6L8nJyRo9erQef/xxdejQQc2aNVONGjVUpkwZhYSEyNfX2CBn+/btVaaM89eu22+/Xf/5z38M1X733Xf67rvvFBUVpQ4dOqhevXqqVKmSSpYsKX9/f9lsNodrlClTRu3bt3c6p1UiIiI0Z84c9ejRQ7m5uYaOOXTokHr06KF+/frpueeeU7t27VyeKz8/X+vXr9fChQv1xRdf6OTJky7v8Xcff/yx1q9fr4SEBEP1CQkJ6tu3r2644QaNGzfOqb/3lJQUffLJJ3rttdeUmpp62bp69eqpefPmmjdvnuG1AQAAAAAAAMATrY7fo7gzxneE33/mlNYc2qsuUQ1NTAUAAAAARcNwEQAAwFXghgYtteV4vA4kn7Y6isvULlNBNzRoaXUMwKX69eunli1basuWLQ5r8/Pz9dJLL2nmzJmG1o6IiND999+vyZMnG87z8ccf6/vvv9f999+v++67TxUqVDB03PHjxzV37lxNnTrV4dBQpUqV9MYbb2jAgAGGc7lSSEiI7rnnHr311luGj8nKytKKFSu0YsWKQvVcuXKlunbt6vRxo0aN0quvvqqsrCzDx8THxxd6cKtLly6Kjo4u1LFW6dSpk2bMmKE777zT0DtG/mHx4sVavHixmjZtqsGDB+uGG24wvFPU3+Xm5mrnzp1av3691q1bp6VLlyolJaVQaxVWuXLlNGPGDPXt29ep87Bo0SItWrRIjRo1Ur9+/XTttdeqQYMGKl++vMLCwpSTk6Nz587pwIED2rFjh5YuXaply5YpMzPziuvabDZNmzZN06ZNK+pLAwAAAAAAAABLpWVn6Yvt65w+7otta9WySpTCAoJMSAUAAAAARcdwEQAAwFXA18dHj3W+QS8u+0oJaeesjlNkkWEl9VjnG+Tr42N1FMDlXnjhBd14442GaufMmaPnnntOderUMVT/3HPPadasWUpMTDSc5/Tp0xo/frxefPFFNWzYUNdee63q1aunUqVKqVSpUrLb7UpLS9Px48cVFxen9evXa9++fYbWttlsmj59ugICAgznMcNTTz2lzz77TOfPn7c0hyORkZEaM2aMUwNiV6N//etfSkxM1L///W+nj92xY4d27NihsWPHqnTp0mrRooXq16+vKlWqqEKFCgoJCVFQUJByc3OVlZWljIwMJSQkKCEhQceOHdPevXt18OBB5eXlmfDKnHP99ddr8uTJevzxx50+dvfu3dq9e7fLsowdO1YdO3ZkuAgAAAAAAACA1/ty56+6kH3lN1y6lPPZmfpqx3qNaN3NhFQAAAAAUHQMFwEAAFwlIoJDNa77rXpx2VdKyUyzOk6hlQ4O07getyoiONTqKIAp+vfvrxYtWmjr1q0Oa//YvWjWrFmG1i5ZsqSmTp2qW265xelcdrtdMTExiomJcfrYy3njjTfUu3dvy3fHqVixoiZNmqT777/f0hxGjB8/Xt9++60OHjxodRSP9uijjyokJEQPPvig8vPzC7VGSkqKli9fruXLl7s4nfs89thjOnLkiN555x3LMgwYMECvvPKKZf0BAAAAAAAAwFXikxO0Im5XoY9fHrdTXWo1VFTpSBemAgAAAADX4K3eAQAAriLlwkrome63qHRwmNVRCqV0cJie6X6LyoWWsDoKYKr//Oc/hmvnzp2r/fv3G66/+eab9dRTTxUmlks9/vjjhdpRxSz33XefRo8ebXUMh0JDQ7Vo0SKVKVPG6igeb9SoUfrmm28UHh5udRRLvf3223riiScs6d21a1fNnj1bNpvNkv4AAAAAAAAA4CoFBQX6bNNK2Yuwhl3S9E0rVWAvyioAAAAAYA6GiwAAAK4ylUuW1gu9BioyrKTVUZwSGVZSL/QaqMolS1sdBTDdjTfeqKZNmxqqzc/P14QJE5xa/7XXXtPdd99dmGguMXbsWL3xxhuW9b+c9957TxMmTJCvr6/VUa6ofv362rBhgxo2bGh1FI934403atu2bWrbtq3VUSz1xhtvaPLkyfLzc98G1oMGDdKSJUsUHBzstp4AAAAAAAAAYJaV8TGKT0ko8joHkxMUfTDGBYkAAAAAwLUYLgIAALgKlQsroRd6DVTtMhWsjmJI7TIV9EKvgSoXxo5FuDrYbDandi/64osvFBsb69T606ZNc/sORgEBAZo5c6YmTpzosTuZPP/889q0aZO6detmdZQrql27trZt26ZXXnlFpUqVsjqOR6tVq5bWrl2rV199VWFhnrdzX0BAgAYOHKiIiAhT+zz++ONatWqVqlWrZmqfwMBAvfrqq5o3b54CAwNN7QUAAAAAAAAA7nA+K1Pzt//qsvXmbV+n81mZLlsPAAAAAFyB4SIAAICrVERwqF7oNVC3N71Wfj6euUuHn4+vbm96rV7oNVARwaFWxwHc6pZbblHjxo0N1RYUFDi9e5HNZtPrr7+uBQsWqGzZsoWJ6JQuXbpo+/btGjZsmOm9iqp58+b65ZdftGXLFj3yyCOqXr261ZEuKSAgQOPGjdOxY8f0ySefqHfv3goICLA6lkfy8/PTM888owMHDujee++Vv7+/1ZHUrFkzvfHGGzp27Ji+/PJLtww+XXvttYqJidGzzz5ryo5CXbt21fbt2/XMM8947AAhAAAAAAAAADjDbrdr6oalSsvJctmaaTlZemHpfO1NPCG73e6ydQEAAACgKPysDgAAAADr+Pr46KZrWqtl5Sh9tGGp4lMSrY70p6jS5XV/u96qElHG6ijwQs2aNdMLL7xguNYT2Ww2ffTRR1q6dKmhel9fX+Xk5Dg9XDJgwAB17txZEyZM0NSpU5Wbm1uYuJfVpEkTPfXUUxoyZIhL13WHFi1aqEWLFnrrrbd06NAhrV+/XjExMYqLi9Px48eVlJSk5ORkZWVlKScnR/n5+ZbkDA0N1T333KN77rlHmZmZ2rRpk7Zs2aL9+/fr4MGDSkhIUFJSktLS0pSdna3c3Nyr9j9WRkZG6uOPP9aECRP00Ucf6eOPP9apU6fc0tvX11dt2rRRv379dNttt6levXpu6ft3YWFhevnll/XAAw/ogw8+0LRp05SYWPjv//7+/urXr5+eeuoptW/f3oVJAQAAAAAAAMA6GbnZWnsoVov3blVS+nmXr5+Qdk4vLV+gKiXLqFedxupQs75C/NkNHgAAAIB1bPar9YkiAACKgaSkJJUvX/6ijyUmJqpcuXIWJSq67OxsxcfHX7EmKipKgYH8YtXV8gsKtGjvFn29a6PyCqx5QF76fbeiAY3b6oYGLeXrw0abgDudPHlSn3zyiebMmaO4uLhCrxMZGanrrrtOI0aMUNeuXR3WHz9+XAsWLHBY165dO7Vr167QuYC/Kygo0Nq1a7Vw4UItXrxY+/fvd9nagYGBaty4sTp27KhOnTqpa9euKl26tMvWd5WcnBytWrVKS5Ys0apVq7R3715lZGRctj4oKEj169dX06ZN1adPH11//fUqWbKkGxMDAAAAwKXxu2UAAOAKCRdStTh2q9YeilVWnmvfkO1Kgvz81bFmffWr30KR4RFu6wsAAADgYsXxuVyjGC4CAMCLFcebGP4DsPUS0s5p8d4t1v3CvEFLRYbxkDJgtX379mnVqlXasmWL9u3bp2PHjik5OVmZmZnKz89XSEiIwsLCVKJECdWoUUP16tVTvXr1dO2116pp06ay2WxWvwTAaSkpKdq0aZO2bt2q+Ph4HT16VMeOHVNqaqoyMjKUmZmp3NxcBQQEKCAgQCVKlFCZMmVUrlw5Va1aVTVr1lTt2rXVqFEjNWzYUH5+3rdhtN1u19GjR5WUlKQLFy4oOztboaGhCg8PV0REhKpVqyYfhn8BAAAAeCB+twwAAIqCN2IEAAAAIBXP53KNYrgIAAAvVhxvYvgPwJ4jIzdb6w7FalncLh0/l2xanyoly6hX3SbqWKO+gv0DTOsDAAAAAAAAoPjid8sAAKCwjqcm66MNSxWfkmh1lD9FlS6v+9v1VpWIMlZHAQAAAK4qxfG5XKO87y10AQAA4BYh/oHqVbepetZpotikk1p5YLd2nz6q1KyMIq8dERSiRhWqqXvtRqpXrhI7nAAAAAAAAAAAAABwK0/ZrehS4lMSNW7JF+xiBAAAAMBtGC4CAADAFdlsNjUoX1kNyleWJJ3NSFN8SqIO/fHnbKJSM9Mve3xEcKhqliqvmqV//xNVurxKhYS5Kz4AAAAAAAAAAAAAXCQ1M11TVi/SgeTTVke5rLyCfM3f8au2HI/XY51vUERwqNWRAAAAABRjDBcBAADAKaVCwtQyJEwtq0T9+bHc/Dxl5+cpNz9fefn58vP1lb+vrwJ9/eTvyy0nAAAAAAAAAAAAAM+QlHZer/7yjRLSzlkdxZADyaf14rKvNK77rSoXVsLqOAAAAACKKfZLBQAAQJH5+/opLCBIpYJDVS6shEoFhyosIIjBIgAAAAAAAAAAAAAe48S5FL247CuvGSz6Q0LaOb247CudOJdidRQAAAAAxRRPewK46uXm5mrNmjVat26d9uzZo9jYWCUlJenChQtKT09XcHCwSpQoodKlS6tevXpq2LCh2rZtq+7duys4ONjq+F4lKSlJP//8s7Zt26Y9e/bo4MGDOnfunC5cuKDc3FyFh4erRIkSqlSpkho2bKhrrrlG3bt3V9OmTa2ODgAAAAAAAAAAAAAAvFhS2nlN/OVbpWSmWR2lUFIy0zTxl2/1Qq+B7GAEAAAAwOVsdrvdbnUIALDC2rVr9f777+vHH3/U+fPnnT4+ODhYPXv21AMPPKDrr79eNpvNhJTeLzMzU7Nnz9Znn32mTZs2qaCgwOk1qlSpooEDB+qhhx5SzZo1TUjpvZKSklS+fPmLPpaYmKhy5cpZlKjosrOzFR8ff8WaqKgoBQYGuikRAAAAAAAAAMDT8btlAABwJamZ6V65Y9GlRIaV1Au9BioiONTqKAAAAECxUxyfyzXKx+oAAOBuq1evVuvWrdWpUyfNmzevUINF0u9DMz/88IP69u2rBg0aaOHCha4N6uVyc3P1+uuvq2rVqrrvvvu0cePGQg0WSdLx48f15ptvqnbt2ho4cKAOHz7s2rAAAAAAAAAAAAAAAKBYyi8o0JTVi4rFYJEkJaSd05TVi5RfyGcwAAAAAOBSGC4CcNVITU3VXXfdpS5dumjz5s0uXXvfvn265ZZb1L9/f508edKla3ujdevWqWnTpho7dqySk5Ndtm5BQYEWLFiga665RpMmTRKb7wEAAAAAAAAAAAAAgCtZtHeLDiSftjqGSx1IPq1Fe7dYHQMAAABAMcJwEYCrwp49e9SmTRvNmjXL1D6LFi1Sy5Yt9euvv5rax5N98MEH6tatm/bu3Wtaj4yMDD399NO66aabCr3zFAAAAAAAAAAAAAAAKN6OpZ7R17s2Wh3DFF/v2qjjqa57w1cAAAAAVzeGiwAUe2vXrlW7du0UFxfnln6nT59Wt27d9O2337qlnyd57LHHNHr0aOXm5rql3w8//KD27dsrKSnJLf0AAAAAAAAAAAAAAIB3yC8o0NQNy5RXkG91FFPkFeTrow1LlV9QYHUUAAAAAMUAw0UAirXNmzerX79+unDhglv75uTk6I477tDPP//s1r5WGjdunN588023992zZ4969+6t1NRUt/cGAAAAAAAAAAAAAACeadHeLYpPSbQ6hqniUxK1aO8Wq2MAAAAAKAb8rA4AAGY5fvy4+vTpo/Pnzxs+JigoSJ07d1arVq1UuXJllShRQmlpaTp16pS2bt2q6OhopaWlGVorJydHt956qzZu3KhGjRoV9mV4halTp2rixIlOHVOlShV17txZTZo0UdmyZeXv76/U1FTFxcVp48aN2rx5s+x2u6G1tm/frltuuUXLly+Xr69vYV4CAAAAAAAAAAAAAAAoJhIupOrrXRutjuEWX+/aqHbV6yoyrKTVUQAAAAB4MYaLABRLeXl5Gjx4sM6cOWOovnz58nruuec0bNgwlSx5+V+2ZGRk6Msvv9T48eN15MgRh+tmZGRo4MCB2rx5s0JDQw3n9ybbt2/Xo48+ari+c+fO+s9//qPu3bvLZrNdtu7QoUN655139MEHHygnJ8fhutHR0Ro/frxeeuklw1kAAAAAAAAAAAAAAEDxszh2q/IK8q2O4RZ5BflavHeL7m7d3eooAAAAALyYj9UBAMAMr776qtauXWuo9vbbb1dcXJweeuihKw4WSVJISIiGDx+uffv2afTo0YbWj42N1b///W9Dtd4mJydHd9xxh7KyshzWBgcHa/r06Vq1apV69OhxxcEiSapZs6befPNN7dy50/DOT878vQMAAAAAAAAAAAAAgOInIzdbaw/FWh3DrdYeilVmruM3bgUAAACAy2G4CECxc+jQIU2cONFQ7TPPPKN58+apRIkSTvUIDAzUe++9p3fffddQ/bRp07Rp0yaneniDKVOmaN++fQ7rSpQooejoaA0fPtzpHvXq1dOGDRvUpUsXh7UFBQUaM2aM8vOvjncfAgAAAAAAAAAAAAAAF1t3KFZZeblWx3CrrLxcrT18dQ1UAQAAAHAthosAFDuPPfaYoZ107rvvPr366qtF6jVmzBi9/PLLDuvsdrvGjBkju91epH6e5OTJk4Zeu7+/vxYtWqQ2bdoUuldoaKgWLVqkZs2aOazdsWOHpk6dWuheAAAAAAAAAAAAAADAO9ntdi2L22V1DEss37+zWD2XAgAAAMC9GC4CUKxs375dCxcudFjXvHlzvf322y7pOW7cOF133XUO63777TctXrzYJT09waRJk5Senu6w7pVXXlGnTp2K3C8sLEzz589XWFiYoZ45OWz3DQAAAAAAAAAAAADA1SQ28YSOn0u2OoYljp1LVmzSSatjAAAAAPBSDBcBKFYmTZrksMbHx0fTpk1TYGCgS3rabDZ9/PHHCg4OdlhrJJ83OHv2rKZNm+awrnnz5nr88cdd1rdu3br6z3/+47Du5MmT+vzzz13WFwAAAAAAAAAAAAAAeL6VB2OsjmCplQd2Wx0BAAAAgJdiuAhAsXHs2DF99dVXDuuGDh2qFi1auLR3tWrV9NhjjzmsW7NmjTZt2uTS3lb46KOPDO1aNGXKFPn4uPZbzSOPPKKaNWs6rPvvf//r0r4AAAAAAAAAAAAAAMBz2e127T591OoYlrraXz8AAACAwmO4CECxMWfOHOXl5V2xxmaz6emnnzal/yOPPKKgoCCHdTNnzjSlvzsZeQ1t27ZV165dXd47ICBA//73vx3W7dmzR5s3b3Z5fwAAAAAAAAAAAAAA4HnOZqYrNSvD6hiWSs3K0NmMNKtjAAAAAPBCDBcBKDbmzJnjsKZ3795q0KCBKf3LlSunIUOGOKz78ssvHQ5BebItW7Zo3759DuseffRR0zLcfffdKlGihMM6I/8mAAAAAAAAAAAAAACA9zuUkmh1BI8Qz3kAAAAAUAgMFwEoFnbv3q3du3c7rLvzzjtNzWFk/aSkJC1fvtzUHGb64osvHNaEh4frpptuMi1DaGiobrnlFod18+bNk91uNy0HAAAAAAAAAAAAAADwDIdSEqyO4BEYsgIAAABQGAwXASgWlixZ4rAmKCjI1IEXSercubMqVarksO6nn34yNYeZjJzrG2+8UcHBwabmuOOOOxzWnD59Wtu3bzc1BwAAAAAAAAAAAAAAsB5DNb/jPAAAAAAoDIaLABQLy5Ytc1jTsWNHhYeHm5rDx8dHvXv3dlhnJK8nOnXqlGJiYhzW9enTx/QsXbt2VVBQkMM6bz3XAAAAAAAAAAAAAADAOIZqfnfoLOcBAAAAgPMYLgLg9XJycrR27VqHdT179nRDGmN99u7dqxMnTrghjWutWLHCUF2PHj1MTvL7TlQdO3Z0WMdwEQAAAAAAAAAAAAAAxVtOfp5SszKsjuERUjPTlZufZ3UMAAAAAF6G4SIAXm/Hjh3KyHD8CyIjgyiu0KlTJ0N1GzduNDmJ661fv95hTe3atVWhQgU3pDF2rn/77TfZ7XY3pAEAAAAAAAAAAAAAAFbIyWOY5q+yGS4CAAAA4CSGiwB4vW3btjms8fHxUbNmzcwPI6latWoqW7aswzojuT2NkcwtWrRwQ5LftWzZ0mHN+fPnFR8f74Y0AAAAAAAAAAAAAADACuzUc7Hc/HyrIwAAAADwMgwXAfB6W7dudVhTt25dhYaGuiHN74wMvXjbcFFBQYF27NjhsM7Thosk7zvXAAAAAAAAAAAAAADAuLyCAqsjeJQ8hosAAAAAOInhIgBeb9euXQ5r6tev74Yk/1OvXj2HNTt37nRDEtc5ePCgMjIyHNa581xXqFBBJUuWdFjnbecaAAAAAAAAAAAAAAAY5+fDY3B/5efra3UEAAAAAF6Gn6oAeL34+HiHNXXq1HFDkv+pXbu2w5oTJ04oJyfHDWlcw8h5ltx/rmvVquWwxmh2AAAAAAAAAAAAAADgffx9/ayO4FH8GS4CAAAA4CSGiwB4tczMTJ0+fdphnZEBFFcyMlxUUFCgI0eOuCGNaxw6dMhQXVRUlMlJLmbkXBvNDgAAAAAAAAAAAAAAvE+AH8NFfxXIsBUAAAAAJzFcBMCrGR3OqVSpkslJLlaxYkVDdd409HL48GGHNaVLl1ZQUJD5Yf7CyLn2pvMMAAAAAAAAAAAAAACcE+DrpxD/AKtjeISI4FB2cgIAAADgNIaLAHi1EydOGKqrUKGCyUkK1+/48eMmJ3EdI+fa3efZaM/Tp08rPz/fDWkAAAAAAAAAAAAAAIC7ZebmKIfnAiRJ1UqWtToCAAAAAC/EcBEAr5acnGyoLjIy0uQkFytfvrx8fBxfYlNSUtyQxjWMnGt3n2fJ2HCR3W7X2bNn3ZAGAAAAAAAAAAAAAAC429e7NiivgOEiScrMzbY6AgAAAAAvxHARAK9mdLgoIiLC3CB/4+Pjo/DwcId1RvN7AiNZ3X2enenpTecaAAAAAAAAAAAAAAAYcyz1jJbs2251DI9xIDlBx1LPWB0DAAAAgJdhuAiAVzO6809YWJjJSf7JyHCRN+1cZCSrkdfsakZ7etO5BgAAAAAAAAAAAAAAjtntdk3fHK0Cu93qKB7Drt/PiZ1zAgAAAMAJDBcB8Grnz593WBMaGiofH/df7kqUKOGw5ty5c25I4hpGzrUVw0VGzrPkXecaAAAAAAAAAAAAAAA4tu7wPsUmnrA6hseJTTyhdYf3WR0DAAAAgBdhuAiAV8vJyXFYExwc7IYk/xQUFOSwxkh+T+Gp59rIeZa861wDAAAAAAAAAAAAAIArS8/J1pxta6yO4bHmbFujjJxsq2MAAAAA8BJ+VgcAgKIwMjDi6+vrhiT/5Ofn+BLrTQMvnnqujZxnybvOdVF17NjR8HnxROXKldOYMWMu+lhUVNRF/3///v2y2WzujOW0Ro0aWR0BAAAAAAAAAAAAAIqtBTs36FxWhtUxPNa5rAx9tXOD7mrVxeooAAAAALwAOxcB8GpGBkasGrIw0jc3N9cNSVzDU8+10Z7edK4BAAAAAAAAAAAAAAAAAAAAwF28d1sDAJCUl5fnsIbhItfw1HPNcNE/rV27VuXKlbM6RqFlZ2crPj7+ijVRUVEKDAx0UyIAAAAAAAAAAAAAgKcZ2KSdNhzdz+5FlxERFKKBTdpZHQMAAACAl2DnIgBezchgSX5+vhuSFK6vVYNPheGp59poT2861wAAAAAAAAAAAAAA4MpCAgI1pHknq2N4rH8176SQAN60EwAAAIAxDBcB8GoBAQEOa4zsuGMGIzvlGMnvKTz1XBvdkcibzjUAAAAAAAAAAAAAAHCsQ416ql++stUxPE6D8pXVoUY9q2MAAAAA8CIMFwHwav7+/g5rrBouMtLXmwZePPVcG+3pTecaAAAAAAAAAAAAAAA4ZrPZNKJVV/nYbFZH8Rg+NptGtOomG+cEAAAAgBMYLgLg1QIDHW/fnJWV5YYkhevrTQMvnnqujfb0pnMNAAAAAAAAAAAAAACMqRpRVtfXa2Z1DI/Rp15zVYkoY3UMAAAAAF6G4SIAXi08PNxhTXp6uux2uxvSXOzChQsOa0qUKOGGJK5h5Fwbec2uZrSnN51rAAAAAAAAAAAAAABg3IDG7VQqONTqGJYrFRyqWxu3tToGAAAAAC/EcBEAr1a6dGmHNXa73ZKhl/PnzzusMZLfUxjJauQ1u5rRnt50rgEAAAAAAAAAAAAAgHHB/gEa0ryT1TEsd2eLzgr2D7A6BgAAAAAvxHARAK9WpoyxbZzPnTtncpKLFRQUKC0tzWGd0fyewEhWd59nZ3p607kGAAAAAAAAAAAAAADOaV+9rq6JrGJ1DMs0qlBV7arVsToGAAAAAC/FcBEAr2Z0YCQhIcHkJBdLSkpSfn6+wzpvGngxktXd51mSTp8+7bDGZrOpVKlSbkgDAAAAAAAAAAAAAACsYLPZNLxVN/n6XH2PxPn6+Oiull1ls9msjgIAAADAS119P0kBKFYqV65sqM7IAIorGe1nNL8nMJLV3efZaM/IyEj5+fm5IQ0AAAAAAAAAAAAAALBK5ZKl1bd+c6tjuF2/+i1UuWRpq2MAAAAA8GIMFwHwajVq1DBUd/LkSXOD/M2pU6cM1dWsWdPkJK5j5FynpKQoOzvb/DB/YeRce9N5BgAAAAAAAAAAAAAAhXdLo7YqExJmdQy3KRMSppsbtbE6BgAAAAAvx3ARAK8WHBysyMhIh3UHDx50Q5r/OXDggMMam82m6tWruyGNaxgZ0LHb7YqPj3dDmv8xcq4ZLgIAAAAAAAAAAAAA4OoQ5OevoS06Wx3DbYa27KIgP3+rYwAAAADwcgwXAfB6UVFRDmvi4uLckOR/jAy8VK5cWYGBgW5I4xpGzrPkmefaaHYAAAAAAAAAAAAAAOD9WletrSYVvecNXwuracXqal2lltUxAAAAABQDDBcB8HqNGzd2WBMbG+uGJM71M5Lbk9SqVUvBwcEO69x5rk+fPq1z5845rPO2cw0AAAAAAAAAAAAAAArPZrPprpZd5Ofja3UU0/j5+GpYyy6y2WxWRwEAAABQDDBcBMDrNW/e3GHNvn37lJGR4YY0v9u6davDmhYtWrghiev4+vqqSZMmDuuMvHZXMdrL2841AAAAAAAAAAAAAAAomoolSumGBi2tjmGa/g1bqmKJUlbHAAAAAFBMMFwEwOsZGRwpKCjQ9u3bzQ8j6dixY0pKSnJYZ2QoytMYOdfuHC7asmWLw5rw8HDVqsUW4AAAAAAAAAAAAAAAXG1uuqaVyoWWsDqGy5ULLaGbGra2OgYAAACAYoThIgBer2nTpgoODnZYt2bNGjekkVavXm2orm3btiYncb327ds7rImLi1NCQoIb0hg7123atGELcAAAAAAAAAAAAAAArkKBfv4a1rKL1TFcbljLLgrw87M6BgAAAIBihOEiAF4vMDBQHTt2dFi3YsUKN6Qx1qd+/fqqUqWKG9K4Vo8ePQzVueNcZ2dna926dQ7revXqZXoWAAAAAAAAAAAAAADgmVpWiVLzSjWtjuEyLSrXVMsqUVbHAAAAAFDMMFwEoFjo2bOnw5o1a9YoLS3N1BwFBQX6+eefHdZ568BLpUqV1KBBA4d1P/30k+lZoqOjlZmZ6bDOW881AAAAAAAAAAAAAABwjWGtusjf19fqGEXm7+tbLHdiAgAAAGA9hosAFAvXX3+9w5qsrCx99913puZYs2aNTp486bDOSF5PZST7d999p6ysLFNzzJs3z2FNZGSkmjdvbmoOAAAAAAAAAAAAAADg2SLDSuqmhq2tjlFkNzVsrfJhJa2OAQAAAKAYYrgIQLHQpEkTNWzY0GHd559/bmqO2bNnO6wpU6aMV++mM3jwYIc1Fy5cMHWQKz09Xd9++63Duttvv102m820HAAAAAAAAAAAAAAAwDvc0LClIr14MCcyrKRuaNjS6hgAAAAAiimGiwAUG0OGDHFY8/PPPys2NtaU/klJSZozZ47DukGDBsnf39+UDO7QunVr1alTx2HdW2+9ZVqG6dOn69y5cw7rjPybAAAAAAAAAAAAAAAAxV+Ar5/uatXV6hiFNrxVVwX4+lkdAwAAAEAxxXARgGLjzjvvlK+v7xVr7Ha7XnvtNVP6v/3228rKynJYd9ddd5nS352MvIYNGzYoOjra5b1zcnI0ZcoUh3X169dXmzZtXN4fAAAAAAAAAAAAAAB4p2aVaqhVlVpWx3Ba6yq11LRSDatjAAAAACjGGC4CUGxUq1ZNt912m8O62bNna+vWrS7tffToUUMDLx06dFDbtm1d2tsK999/v0JCQhzWPf744yooKHBp77fffluHDh0y1BsAAAAAAAAAAAAAAOCvhrbs7FU7AAX6+mloy85WxwAAAABQzDFcBKBYeeqppxzWFBQU6N5771VOTo5Letrtdt13333KzMx0WGsknzOGDx8um83m8I+rdxAqU6aMRo4c6bBu69athoaujIqLi9OECRMc1lWsWFFDhw51WV8AAAAAAAAAAAAAAFA8lAstoVsatbE6hmG3NGqjsqElrI4BAAAAoJhjuAhAsdKiRQvdeOONDuu2bt2qRx55xCU9J06cqCVLljisa9Wqlfr37++Snp7gqaeeMrR70bhx47R27doi90tPT9ftt9+utLQ0h7XPPPOMAgMDi9wTAAAAAAAAAAAAAAAUP33rN1fF8AirYzhUsUQp9a3fwuoYAAAAAK4CDBcBKHamTJliaLDko48+0rPPPlukXh988IGhNWw2m959913ZbLYi9fMkVapU0bhx4xzW5ebm6oYbbtDmzZsL3SsjI0P9+/fXtm3bHNY2btxYDz74YKF7AQAAAAAAAAAAAACA4s3f10/DW3W1OoZDw1t1lZ+vr9UxAAAAAFwFGC4CUOzUqlVLTz/9tKHaV199VYMHD9aFCxec6pGdna2HH35Yo0ePNlQ/YsQItWvXzqke3uCJJ55QnTp1HNadO3dOXbp00cyZM53usW/fPrVr104rV650WGuz2fTee+/Jl1+sAQAAAAAAAAAAAACAK2hcsbraVnP8zINV2lWro8YVqlkdAwAAAMBVguEiAMXS888/r/bt2xuqnTdvnurUqaP3339f58+fv2JtZmamZs2apfr16+vdd981tH7dunX19ttvG6r1NoGBgZo3b56hnaIyMjI0fPhwdevWTStXrpTdbr9i/eHDh/XYY4+pSZMm2rVrl6E8Y8eOVefOnQ3VAgAAAAAAAAAAAACAq9udLTop0M/f6hj/EOjnrztb8PwDAAAAAPfxszoAAJjBz89P8+fPV/PmzZWcnOywPiEhQWPGjNGTTz6pLl26qGXLlqpSpYrCw8OVlpam06dPa8uWLYqOjnZql6Pg4GB9+eWXCgsLK8rL8WgtWrTQlClTDO/iFB0drejoaFWtWlVdunRRkyZNVKZMGfn7+ys1NVUHDhzQxo0b9dtvvzkcQPqrTp066aWXXirsywAAAAAAAAAAAAAAAFeZMiHhurVRW32xfa3VUS4yoHFblQ4pvs+aAAAAAPA8DBcBKLaqVq2qH3/8UT179jQ8EJSZmaklS5ZoyZIlRe7v7++vBQsWqGnTpkVey9M9+OCDOnLkiCZNmmT4mGPHjunzzz93Sf/GjRtr4cKF8vX1dcl6AAAAAAAAAAAAAADg6tCnfjOtPrRHJ86lWB1FklSlZBldX6+Z1TEAAAAAXGV8rA4AAGZq06aNFi1a5Padg/z9/fXFF1+ob9++bu1rpddff10PP/yw2/vWr19fy5YtU+nSpd3eGwAAAAAAAAAAAAAAeDc/H1+NaNXN6hh/GtGqq/x8eHNVAAAAAO7FcBGAYq9z585av369oqKi3NKvfPny+uWXXzRgwAC39PMkb7/9tt5++235+blnY7y+fftqw4YNioyMdEs/AAAAAAAAAAAAAABQ/DSMrKJrq9ezOoY61KinBpFVrI4BAAAA4CrEcBGAq0KjRo20efNmDRkyxNQ+ffr00ZYtW9SxY0dT+3iyhx9+WL/88ovq1TPvl27BwcF65ZVX9MMPP6hkyZKm9QEAAAAAAAAAAAAAAFeHIS06KdgvwLL+wf4BGtK8k2X9AQAAAFzdGC4CcNUoVaqUPv/8c61cuVItW7Z06dp169bVggUL9OOPP6pKFd5BplOnTtq5c6deffVVlS5d2mXr+vj4aMCAAYqJidG4cePk48O3MQAAAABwNZvN5vBP165drY4JAAAAAAAAuFSp4FDd1qSdZf1va9xOEcGhlvUHAAAAcHXjqWwAV52uXbtq8+bNio6O1sCBAxUWFlaodYKCgtSvXz8tWrRIsbGxGjBggIuTereAgAA988wzOnbsmD744AO1bt1aNputUGtVqlRJjzzyiPbv368FCxaoZs2aLk4LAAAAAAAAAAAAAACudr3rNlXViDJu71stoqx6123q9r4AAAAA8Aeb3W63Wx0CAKyUk5Oj1atXa926ddqzZ49iY2N15swZXbhwQRkZGQoKClJ4eLhKly6tevXqqWHDhmrbtq169OihkJAQq+N7lYSEBP3888/atm2b9uzZo/j4eJ07d04XLlxQXl6ewsLCFB4ersqVK6tBgwa65ppr1L17dzVv3tzq6B4rKSlJ5cuXv+hjiYmJKleunEWJii47O1vx8fFXrImKilJgYKCbEgEAAHinnJwcHTt2TOfPn9f58+eVmZmp0NBQhYeHq2TJkqpatar8/PysjgkPZOSNIbp06aLo6GjzwwAAAAAG8btlAADgKrGJJzRh+QK39nyh10DVK1fJrT0BAAAA/FNxfC7XKJ4gAXDVCwgIUM+ePdWzZ0+roxR7kZGRGjZsmIYNG2Z1FAAAAKDYOXDggBYvXqzo6Gjt2bNHBw8eVH5+/mXrAwICVLduXV1zzTXq0aOH+vbtq8qVK7sxMQAAAAAAAAB4nvrlK6tzzQZafWivW/p1jmrAYBEAAAAAyzFcBAAAAKDYmTFjhkaMGGF1DKexsSwAZ124cEGfffaZPvroI8XGxjp1bE5Ojnbv3q3du3dr/vz5kqRWrVpp9OjRGjx4MO/mDQAAAAAAAOCqNbhZB20+flAZuTmm9gnxD9TgZh1N7QEAAAAARvhYHQAAAAAAAADOycjI0HPPPafKlSvr0UcfdXqw6HI2b96sESNGqFq1anrzzTeVl5fnknUBAAAAAAAAwJuUDA7VoKbXmt7n9qbtVTIoxPQ+AAAAAOAIOxcBAAAAAAB4kR9++EEPPfSQjhw5YlqPxMREPfbYY5o+fbqmTp2q9u3bm9YLAAAUT9HR0YqOjnZYN3z4cNWoUcP0PHCMvzMAAADgYj1rN1b0wRgdPptkyvo1SpVXj9qNTVkbAAAAAJzFcBEAAAAAAIAXyM/P19ixYzV58mS39dy1a5c6d+6syZMn65FHHnFbXwAA4P2io6P14osvOqzr2rUrgyoegr8zAAAA4GI+Pj4a0bqbXlj6pcvXtkm6u3U3+fj4uHxtAAAAACgMfjoBAAAAAADwcGlpaerbt69bB4v+kJeXp0cffVTDhw9XXl6e2/sDAAAAAAAAgFXqlK2obrWucfm6XWs1Uu2yFVy+LgAAAAAUFsNFAAAAAAAAHiwzM1M33HCDli5dammOmTNnavjw4SooKLA0BwAAAAAAAAC40+1NOygsIMhl64UFBOn2pte6bD0AAAAAcAWGiwAAAAAAADxUbm6ubr31Vq1atcrqKJKkOXPm6P7777c6BgAAAAAAAAC4TYmgYN3ezHXDQHc066ASQcEuWw8AAAAAXIHhIgAAAAAAAA81duxYLVmyxOnjqlSposcff1zffPONDh48qNTUVOXm5io5OVl79+7VnDlzNGrUKJUqVcrptT/55BO9//77Th8HAAAAAAAAAN6qW9Q1iiodWeR1apWJVNda17ggEQAAAAC4FsNFAAAAAAAAHuiHH37QlClTnDqmdu3aWrBggY4cOaLJkyfrlltuUVRUlEqWLCk/Pz+VLl1a9evX17/+9S9NnTpVp0+f1ocffqjy5cs71efxxx/X1q1bnToGAAAAAAAAALyVj4+P7m7dTbYirGGTNKJ1N/nYirIKAAAAAJiD4SIAAAAAV7Xp06fLbrd7xB8A+ENycrJGjBjh1DH333+/YmJiNGDAAPn4GPuVT0BAgO6//37t27dP/fv3N9wrOztbgwcPVk5OjlMZAQAAAAAAAMBbRZWJVI86jQt9fM86TVyy+xEAAAAAmIHhIgAAAAAAAA8zbtw4JScnG65/++239eGHHyogIKBQ/SIiIvTdd9/p4YcfNnzM/v379eabbxaqHwAAAAAAAAB4o0FNrlV4YLDTx5UIDNbApu1NSAQAAAAArsFwEQAAAAAAgAfZsmWLpk2bZrj+1VdfdWoo6HJsNpvefvtt3X333YaPefnll3Xy5Mki9wYAAAAAAAAAbxAWGKTBzTo4fdzg5h0VFhBkQiIAAAAAcA2GiwAAAAAAADzIs88+q4KCAkO1N910k5555hmX9v/ggw/UrFkzQ7VpaWl6+eWXXdofAAAAAAAAADxZ56iGqlO2ouH6umUrqlPNBiYmAgAAAICiY7gIAAAAAADAQ+zYsUM///yzodoyZcro008/dXmGwMBAzZ07V/7+/obqZ8yYoaSkJJfnAAAAAAAAAABP5GOzaUTrbrLZbA5rbf9f62OgFgAAAACsxHARAAAAAACAh5g0aZLh2gkTJqhMmTKm5GjQoIFGjx5tqDYzM1PvvPOOKTkAAAAAAAAAwBPVKFVOves0cVjXu05TVS9Vzg2JAAAAAKBoGC4CAAAAAADwAElJSfryyy8N1dasWVP33XefqXmef/55hYaGGqqdOnWq8vLyTM0DAAAAAAAAAJ7ktibtVTIo5LKfLxkUooFN2rkxEQAAAAAUnp/VAQAAAGCOlJQUnTp1yuoYblGxYkWVLl3a6hgAABTJ/PnzDQ/oPPzww/L19TU1T+nSpXXXXXfpgw8+cFiblJSkpUuXqm/fvqZmAgAAAAAAAABPERoQqH8176gP1y+95OeHNO+kkIBAN6cCAAAAgMJhuAgAAKCYWblypcaMGaM9e/ZYHcWtGjZsqPfff19du3a1OgoAAIUyZ84cQ3UhISEaOXKkyWl+9/DDDxsaLpJ+z89wEQAAAAAAAICrScca9bXyYIxiE09c9PEG5SurQ416FqUCAAAAAOcxXAQAAFCMrFy5Ut27d7c6hiX27Nmjbt26aeXKlQwYAU46deqUVq5cqZiYGO3fv19xcXE6e/as0tLSlJaWJrvdrtDQUJUoUUIVKlRQvXr1NGvWLLdky8vL07Fjx3T27Fmlp6crPT1d/v7+Cg0NVWhoqCpUqKBy5cq5JYunOH/+vFasWKFt27YpJiZG+/btU2pqqi5cuKD09HSFh4erVKlSKlOmjJo2baq2bduqY8eOatCggenZtm7dqk2bNmn79u3auXOnkpKSdO7cOZ07d052u11hYWEqV66c6tSpo0aNGqlr167q1KmTQkJCTM/m6Q4fPqwNGzYYqu3fv7/Cw8NNTvS7evXqqUWLFtq6davD2u+++05ZWVkKCgpyQzLvV1BQoJMnTyo5OVnp6enKyMhQfn6+wsLCVKJECYWHh6tkyZIqVaqU1VFdZs+ePYqOjtauXbu0e/dunThxQufPn9eFCxck/T44V7JkSVWvXl1RUVFq1aqVOnTooKZNm8pms1mcvmjOnj2rpKQkpaSkKDMzU9nZ2fLx8VFwcLCCgoJUunRpVa5c+ar9+vGUe5GMjAytWrVK69at0969e7Vv3z4lJyfrwoULysrK+vPrMyIiQvXq1dM111yjZs2aqUePHm67LnuS/Px8HT9+/M/7tIyMDNntdoWEhPx5n1ahQgWv//r1RBcuXFBiYqLOnDmjrKwsZWVl/Xnu//qnuH0f8WTnz59XUlKSzpw58+d1XtKf1/mIiAhVrlxZoaGhFifF5XBNAwAAQGHZbDaNaNVVz/w0VwV2uyTJx2bTiFbduH8EAAAA4FVsdvv//1QDAAC8TlJSksqXL3/RxxITE736Ievs7GzFx8dfsSYqKkqBgWwffynXXHPNVbdj0d9dc8012r17t9UxYLEZM2ZoxIgRhmqnT5+u4cOHmxvIRbp27apVq1Y5rDPyY96xY8f08ccf6/vvv9fOnTudylGyZEmlpqY6dYwRubm5Wr9+vdauXat169Zpz549OnbsmPLz8694XHh4uKKiotSyZUt17NhRXbp0UVRUlMvzOSs6OlrdunVzWPfCCy9o/PjxV6zJy8vTvHnzNGvWLK1atUo5OTlO52ndurXuueceDRkyxKUPNe7du1ezZs3S/PnzdejQIaePDw8P16BBg/Twww+rSZMmLsvlbT766CM98MADhmq//fZb3XzzzeYG+ovJkyfrySefNFS7dOlS9erVy+RE3ufs2bNav369NmzYoN9++0379+/X8ePHlZub6/DYiIgINWjQQA0bNlSDBg3Upk0btW/fXn5+5r1nkJGHHrp06aLo6GiHdceOHdP777+vr7/+WgcOHChUnmrVqmnQoEF68MEHVbNmzUKt4S4nTpzQb7/9ph07dmjnzp2Ki4vToUOHlJ6ebuj4MmXKqH79+mrevLlatmypXr16qXLlyianNq443osUFBTop59+0tSpU7V06dI/BwKcERgYqG7dumno0KEaNGiQw6/P+fPna9OmTQ7XffbZZz1mMCQrK0sbN27U2rVr9euvv2rfvn06evSow+tYUFCQoqKi1Lp1a3Xo0EE9evTwiPs0b7Jv3z6tWbNGGzZs0O7du/8cLDcqLCxM1atXV40aNVSjRg3VrVtXbdu2VfPmzRUQEFDkfMOHD9fMmTOLvI4rmfkzXlJS0p/X+R07dmj//v2Kj4/X+fPnDR0fERGhOnXqqHnz5mrRooV69Oih2rVrm5L1cq62v7NL4ZpWfPG7ZQAAYKXPt67Wj7HbJEn96rfQkBadLE4EAAAAoDCK43O5RrFzEQAAQDGRnJx81Q8WSVJMTIxSUlJUunRpq6MAHmn37t0aP368Fi5c6HBox13Wrl2r2bNna8GCBUpJSXH6+AsXLvz5cN9nn30mSWrRooUGDx6soUOHKjIy0tWR3SY/P18ffvihJk2apGPHjhVprU2bNmnTpk166aWX9NZbb2nAgAFFWm///v0aP3685s2bZ+gh8su5cOGCPv30U02fPl1DhgzRf//736viFzJ/t3z5ckN1/v7+bh/e6du3r+HhomXLljFc9P+Sk5P11Vdf6euvv1Z0dLTy8vIKtU5qaqrWr1+v9evX//mx8PBwdevWTb1799YNN9yg6tWruyq2yxw+fFjjx4/X3LlzDQ1RXcnRo0c1efJkvfXWW7rzzjs1ceJEVahQwUVJiyYhIUHLli3T0qVLtXr1ah05cqRI6yUnJ2vdunVat27dnx9r0qSJBg0apJEjR3rM6y4KT7oX+eqrr/TMM8/o4MGDRVonOztbS5Ys0ZIlS/Tss8/qqaee0n333ScfH59L1v/000+GHuwfM2aMpcNFeXl5+umnnzRv3jx9//33SktLc3qNrKws7dmzR3v27PnzNbdq1Up33HGHRo4cqYiICBenLh7i4+M1bdo0LViwQHFxcUVaKy0tTTExMYqJibno44GBgWrevLnat2+vfv36qWvXrvL19S1Sr+Lo7NmzWrFixZ/X+X379hVpvdTU1D/vy/9Qp04d3XrrrRo1ahSDKibimgYAAACzDWjcTuuP7Jck3dq4rcVpAAAAAMB5l/6vmwAAAPA6p0+ftjqCxzh16pTVEQCPk5aWpieeeELNmzfX119/bfnDvJL0448/qkOHDurUqZM+/vjjQg0WXc7WrVv15JNPqmbNmnrkkUd04sQJl63tLrt27VL79u310EMPFXmw6K+OHz+u2267TTfddFOhHqjLy8vTc889p4YNG+qLL74o0mDRXxUUFGj27Nlq3Lixli1b5pI1vUVBQYF++eUXQ7Xt2rVz6c5TRjRs2FCVKlUyVHu1/d1dyr59+3T//feratWqeuCBB7R8+fJCDxZdzoULF/T9999rzJgxioqK0vXXX69vvvnG5X0Ko6CgQG+99ZYaNWqkmTNnFnmw6K/y8vI0Y8YMNWzYUHPmzHHZus46cOCAXn/9dbVt21YVK1bU0KFDNXv27CIPFl3Ozp079dxzz6latWoaMmRIkQdhrOJJ9yKHDh1Sp06dNGjQIJefz8OHD+vBBx9Uhw4dtHfvXpeu7S6ZmZl6//33VadOHd14442aO3duoe4ZLmfz5s164oknVL16dY0dO9al94DeLiYmRrfccovq1KmjiRMnFnmw6Eqys7O1YcMGvfnmm+rZs6cqVaqkBx54QCtXrnTZ/Z23OnHihN59911169ZN5cqV08CBA/XJJ58UebDocuLi4vT666+rdu3auuGGG7R9+3ZT+lytuKYBAADAXYL9AzSkeSfd2aKzgv2LvlMsAAAAALgbw0UAAAAAUMwdOHBArVu31n//+1+PePD80KFDuu6669SvXz/9+uuvpvbKzMzUO++8o7p16+qNN97wiNdvxBdffKHWrVtf9I7mrvb999+rU6dOOnnypOFjjhw5oi5duuiVV14x7aHwhIQE9e3bV7NmzTJlfU+0e/dunT171lBt9+7dTU5TtL47duzQuXPnTE7jmc6cOaP77rtPDRs21NSpU5WZmemWvgUFBfr55581YMAAVa1aVatXr3ZL30tJTU1V79699e9//1vp6emm9Tl79qzuvPNOjR071m0PwF+4cEHvvfee2rZtqzp16mjs2LH67bff3PoAfm5urubOnasGDRro8ccfV1ZWltt6F5Un3YvMnz9fzZo109q1a03ts2HDBjVv3lxffvmlqX1cbcGCBapTp47GjBmjw4cPm9rr/Pnzev3111W/fv2r6vv+pWRkZOiRRx5RkyZNtHDhQhUUFLg9Q2Jioj766CN1795dycnJbu9vtZycHM2YMUM9evRQtWrV9PDDDys6Otqtg5B2u12LFy9WixYtdNdddxm+P8TlcU0DAACAu7WvXlftqtWxOgYAAAAAFArDRQAAAABQjK1Zs0Zt27ZVbGys1VEkSR9//LEaNWqkpUuXurVvRkaGnnrqKbVp00bx8fFu7e2siRMnasiQIcrOzja91/bt29WxY0edOXPGYe2ePXvUrl070wfCpN93Jxk+fLjXPZBdWFu2bDFc27p1axOTFL2v3W6/Kt9tf8aMGapTp44+/vhjSx4I/8Pp06ctu8YdPHhQ7dq104oVK9zW8/XXX9ejjz7qll7r1q3TQw89pN9++80t/a4kNzdXU6ZMUatWrbR7926r4zjkSfcikyZN0h133KHz58+7pV92drbuuOMOvfXWW27pVxSnTp1Snz59NHDgQLfv+JiUlKS77rpLt9xyiy5cuODW3p7gwIEDatmypd555x1Lv4dc7eLj4zVixAj98ssvlv892O12zZo1S02bNtWaNWsszeKtuKYBAADAKjabTTabzeoYAAAAAFAoDBcBAAAAQDG1detW9evXTykpKVZHUW5urh588EHdd999ysjIsCzHtm3b1Lp1a7c+/O6MKVOmaNy4cW7dCePQoUMaMGCAcnNzL1uzc+dOde3aVadPn3ZbLrvdrmHDhnnEg/xm27Ztm+HaFi1amJjENX2deT3eLj09XcOGDdOIESOUmppqdRzL/LGr2b59+9ze+5133tGkSZPc3tcTxMTEqEOHDpbuVuWIJ92LPPfcc3r66afd3tdut+vf//63pk6d6vbeRq1du1YtW7bUkiVLLM2xcOFCrxgEd6WtW7eqXbt2HjF8B89z7Ngx9ezZ86oZuHcVrmkAAAAAAAAAABSOn9UBAAAA4D6d/j1S4RXKWh2jSC6cPqM1b35qdQzA4x06dEh9+/b1iHdKzs3N1YABA/TDDz9YHUWSlJKSouuvv17z58/XrbfeanWcP3355Zd64oknLOm9evVqjR07Vv/973//8bmjR4+qZ8+eSkpKcnuu7OxsDR06VNu3b1dwcLDb+7vL1q1bDdWVL19eFStWNDnNpTVr1kw2m83Q4JvR1+PtTp8+reuuu047d+60OoqlEhMT1atXL7fvCvBXzz77rDp16qT27dtblsEq58+f13XXXafFixere/fuVse5iCfdi7z//vt65ZVXLM0wZswY1a5dWz169LA0x9/Nnj1bI0eOvOKQsTvFxsaqS5cuWrlypWrXrm11HFMdOHBA119/vZKTk62OAg+Wk5OjwYMHKycnR3feeafVcTwe1zQAAAAAAAAAAAqP4SIAAICrSHiFsipZxZqHkgG4T35+vgYPHqyEhASHtT4+PmrcuLHatGmjWrVqqWLFigoNDZWPj48uXLig5ORk7dmzR1u3bi3UwEBeXp7uuOMOjxks+sMfub766ivddNNNVsdRbGyshg8f7nBww9fXV82aNVPbtm1Vu3ZtlS9fXmFhYcrNzdXZs2d18OBBbdiwQb/++qvTD9S98847GjFihBo1avTnx7KysjRgwABDg0WVKlVSx44dVb9+fVWvXl3h4eEKCAhQWlqajh07pl27dumXX35xevej/fv368UXX9Rrr73m1HHeJCYmxlBd3bp1TU5yeWFhYapYsaJOnjzpsNbo6/FmR44cUc+ePXXgwAGro1gqPz9fAwYMUFxcnMPa0NBQtW3bVs2aNVPNmjVVunRphYaGKjc3V6mpqTp06JA2bdqkdevWOb3DXV5enkaMGKFdu3bJ39+/sC/Ha2VlZem2227Thg0bLL1O/JUn3Yv8/PPPevjhhwvzMmSz2f78vluvXj2VLVtWYWFhysnJ0fnz5xUfH689e/Zo1apVDncvy8vL0+233649e/YUKosZPvvsM917770qKCiwOspFjh8/ri5dumjjxo2qUqWK1XFMkZOTo9tvv92S4W14n4KCAt1zzz2qWbOmOnToYHUcj8U1DQAAAAAAAACAomG4CAAAAACKmUmTJmnjxo1XrGnWrJlGjRqlQYMGqUyZMobWPX78uGbPnq3p06cbzvLvf/9b33zzjeH6v6pbt6769OmjTp06qUGDBqpQoYLCw8OVl5f35wO9u3fv1rJly/Tzzz/r/PnzTq2fm5urO+64Q+vWrVOLFi0KldEV8vLyNHToUGVmZl62pl69enrooYd0xx13GPr7Sk5O1rRp0/T666/r7NmzhnM89NBDWrly5Z8fGz16tDZv3nzZY0JCQnTPPfdo2LBhatmypcMeBQUFWrJkicaPH69NmzYZyiVJb7/9tkaPHq2qVasaPsZbpKamOnwg/Q9Wv9t57dq1DQ0XHTp0yA1prJOUlKTu3bsrPj6+UMf7+PioTZs26tChg1q1aqWaNWuqWrVqCgsLU0hIiPLy8pSZmamkpCSdOnVKcXFx2r17tzZv3qxNmzYpOzvbxa+o8J5//nmtXbv2sp/38fHRgAEDNHz4cPXq1cvQ4E96erq++uorvfrqq4aGlv6wb98+vf/++3r00UcNH2OWypUrq02bNmrQoIHq16+vqlWrqkKFCipbtqyCgoIUHBys7OxsnTt3TqmpqTp79qx2796tTZs2adOmTdq1a5fTD0afPXtWAwYM0JYtWxQQEGDSKzPOU+5FEhISNGzYMKfPZ40aNfTggw9q2LBhioyMdFifn5+vlStX6qOPPtI333xz2WHh5ORkjRkzRiEhIU7lMcMXX3yhe+65x9COdH9Xrlw59erVS61atVKTJk1UtWpVRUZGKjg4WL6+vkpPT1dCQoIOHjyojRs3asWKFVq7dq1TvU6ePKlbbrlFa9asUVBQkNMZPd3kyZMLNSwXERGhHj16qEWLFqpdu7bq1KmjsmXLKiQkRKGhoQoICFB2draysrKUnJyspKQkHTlyRHFxcdqzZ482bdqkgwcPuvS1zJgxQzNmzLjk58aPH68XX3zR4RorV65U165dXZrLTOXKlVObNm3UsGFD1a9fXzVq1FBkZKTKlSun4OBgBQUFqaCg4M/7vNTUVO3du1ebNm3S5s2btW3bNqffCCA7O1u33XabYmJiVLp06SLlL45/Z1zTAAAAAAAAAAAoOpu9ML9pBwAAHiEpKUnly5e/6GOJiYkqV66cRYmKLjs72+GDmlFRUQoMDHRTIu8RExNz0W4Tl9L39ae9fueic8dP6cenX79ize7du3XNNde4KRE80YwZMzRixAhDtdOnT9fw4cPNDeQiXbt21apVqxzWBQQEKCcn55Kfq1Klit566y3deuutstlshcqRnZ1t6Do8Z84c3XnnnU6v36dPHz399NPq0qWL4WPS0tI0e/Zsvfzyy4aGH/6qRo0a2rJlS5Ef0vu76OhodevWzWFd2bJldebMmUt+LiIiQpMnT9bw4cPl6+vrdIbTp0/rzjvv1IoVKwwfs3r1anXq1Ek//vij+vXrd9m6u+++W6+99lqh7jvsdrsmTZqkcePGGX7ge8yYMXr33Xed7uXptm3bZni47eWXX9azzz5rcqLLGzlypD777DNDtampqSpZsqTJidwvKytL3bt31/r1650+tmbNmnr44Yd1++23q2LFwt2PZWdna82aNfruu+/07bff6sSJE/+occX3NSPfH8qWLavk5OTLPljbp08fvf3226pTp06hMuTm5mrChAl65ZVXDD+8W6FCBR05csSU4ZolS5aoT58+l/xc2bJldd1116lPnz7q2rWrKleuXKReR44c0SeffKLp06c7/T3tP//5j6GHwgvL2+5F+vfvr0WLFhleNygoSOPHj9ejjz5a6J85t27dqgcffPCKw1VVq1bVsWPHHK516NAh1ahRo1A5rmTTpk3q3LmzsrKyDB/j6+urQYMGadSoUercubN8fHyc6nn8+HG98847+uCDD5Senm74uJEjR2ratGlO9fJ0KSkpqlmzpuHBeJvNphtvvFGPPfaYOnToUKh7wr9KTk7WihUrtHz5cn333XdKTEz8R01SUpLKli1bpD6Sdw2qxMbGqkGDBpf8XHh4uHr16qU+ffqoe/fuioqKKlKvxMRETZ8+XdOmTXN6F8Rhw4Zp5syZRep/Jd70d/YHrmn4K363DAAAAAAAAKCoiuNzuUY599tyAAAAAIDHu9zDvLfccot2796tAQMGFPphXkmGHsI5evSo7rvvPqfWjYyM1KJFi/Tjjz86NVgkSWFhYXrggQe0b98+PfTQQ04de/jwYY0aNcqpY1zpcoNFrVu31u7duzVy5MhCP0RaoUIF/fTTT7rxxhsNH/P+++8rIyNDo0ePvuTnw8PD9d133+nTTz8t9C9ObDabnn76ac2YMcPwv8VZs2YpLS2tUP08mTO7/BR1YKGoKlWqZLi2uO5eNGbMGKcHi8qWLatPP/1U+/fv16OPPlrowSLp9+tvz5499e677+ro0aNasmSJBgwYUOQHzQvjzJkzlxz6CQwM1LRp0/Tjjz8WerBIkvz9/fXSSy/p888/N/zA7+nTpzVv3rxC93RGYGCgBg8erMWLF+vUqVP6/PPPNWTIEJd8nVavXl0vv/yyjhw5ookTJzr18Otrr72mo0ePFjlDUXnCvcgPP/zg1GBRzZo1tWHDBj399NNFeuC4RYsWWrt2rR5//PHL1hgZLDLLmTNndPPNNzv1EH7//v21Z88ezZ07V127dnX6IXzp96GySZMmKTY2Vv379zd83Keffqply5Y53c+TzZw50/BgUd26dbV161YtXLhQnTt3dsn1vkyZMho0aJA+/vhjnTx5Ur/88ouGDh3Kbip/4+vrq/79+2v+/PlKTEzU119/rXvuuafIg0WSVL58eT399NPav3+/pk2b5tRA9qxZswo15FxccU0DAAAAAAAAAMB1GC4CAAAAgKvAgw8+qAULFrhtJ5ExY8Y49Q7Obdq00fbt26+4U44RYWFheueddzR//nyndq74+uuvtXjx4iL1dqVevXpp1apVLnlI3d/fX3PnzlX9+vUN1X/zzTcaPXq0Dh8+/I/PlS5dWqtXr3ZqWOlKhg4dqqeeespQ7fnz5/XVV1+5pK8ncWYIIDIy0sQkjlWoUMFwrScMN7jaokWL9Omnnzp1zE033aTY2Fjdfffd8vPzc2keHx8fXXfddVqwYIHi4uL04IMPmrJjjzPCw8O1YsUKjRw50mVr/utf/9LkyZMN1xvdXauwypcvrwkTJujo0aOaO3eu+vbt6/K/2z/4+flp7Nix2r59u1q2bGnomJycHE2cONGUPEXlznuR3NzcKw73/F29evW0Zs0aNW3a1CX9/fz8NHnyZE2aNMkl67nSmDFjDO+IFRISolmzZun7779X3bp1XdK/SpUq+v777536d3rvvfc6NTjg6WbPnm2ormPHjtq0aZOaNWtmWhZfX19169ZNs2bN0smTJ/Xqq6/+4534rjbh4eF64okndPDgQX3//fcaNGiQaYNXNptNI0eOVExMjHr16mX4uAkTJpiSxxtxTQMAAAAAAAAAwHUYLgIAAACAYm7w4MF67733CvWOzIXxww8/6IcffjBcf+2112r58uVODS44MmjQIC1cuNCpB+1Hjx6t7Oxsl2UorNatW2vhwoUKDg522ZqhoaGaOnWqodrc3FzNmDHjHx8PCgrSTz/95PIHXF988UXVrl3bUO0333zj0t6e4HI7V12KK79GCsOZ/s68Lm9w7tw53XvvvU4dM27cOH377bcqU6aMSan+p2bNmnr//fe1f/9+tW7d2vR+lxIQEKAff/xRHTp0cPnajz76qLp162aods2aNUpMTHR5hoiICL322muKj4/X888/79aH7+vXr6/o6GjDu/p99tlnppyDonD3vcjs2bMVFxdnqLZs2bL66aefTNkd7sknn9Rjjz3m8nULa+HChZo/f76h2vLly2vdunUaOnSoKVnGjh1r+N7kyJEj+uijj0zJ4W5JSUnavn27w7qyZctq/vz5KlGihPmh/l+pUqX0zDPP6PDhw4qIiHBbX08RFBSksWPH6vDhw3rjjTdUvXp1t/WuXLmyfvzxR91+++2G6pcsWaIdO3aYnMrzcU0DAAAAAAAAAMC1GC4CAAAAcFUbMWKEbDabJX+GDx9u+utr0KCBpk2bJpvNZnqvP4wfP95wbVRUlL7//nuFh4e7PEefPn304YcfGq4/cuSIpk+f7vIczihVqpQWLFigkJAQl6/duXNnp94R/e/eeecdtWnTxoWJfhcYGKjnn3/eUO2yZcuK3bt8p6SkGK4tW7asiUkcK1eunOFaZ16XN3j99dd1+vRpw/UvvPCCXnnlFbdeeyWpevXquuaaa9za8w/vv/++OnbsaMraNptNU6ZMMXQ+CwoKTNmJrl27dnr66acVGhrq8rWNCAsL08KFC1WnTh2HtTk5OZo7d64bUhnj7nsRu92u//73v4br58yZo5o1a5qW54033jDta8MZubm5hgedSpUqpV9++cXUHXMkadSoUYbvAV577TVlZGSYmscdNm7cKLvd7rDuySefVKVKldyQ6J+Cg4NN25HNk9WoUUMTJ05U6dKlLenv5+enWbNmGR7StfrnFqtxTQMAAAAAAAAAwPUYLgIAAACAYspms2nGjBmmDKpczo8//qitW7caqvXz89NXX31l6q4ed999t+6++27D9a+//rry8vJMy+PIpEmTVK1aNdPWf+CBBwp1XI8ePZzetcUZt99+u6EHObOzs7Vp0ybTclghOTnZcK07dy+4FGeGAJ15XZ7u1KlTevvttw3XDx8+3Kkhy+KgT58+uueee0zt0axZM/Xo0cNQ7Zo1a0zNYpWIiAjNnDnT0O4/s2bNckMix6y4F1m2bJn27NljqHbkyJHq3bu3qXl8fHz02WefKTAw0NQ+jkybNk2HDh1yWOfj46N58+a5bVBx/PjxhoavEhISNG/ePDckMtf+/fsd1vj4+Ji2uwo8W0BAgGbNmmXomjl37lxLf26xGtc0AAAAAAAAAABcj+EiAAAAACimhgwZYspOM1fyzjvvGK4dO3asWrRoYWKa302ZMkWVK1c2VHv48GEtXLjQ3ECX0axZM40cOdLUHv369VNYWJhTx9hsNr311lvmBPp/gYGBuuWWWwzV/vrrr6ZmcTdndvgxY4cvZzjTvzjtXPTmm28afmf5xo0bO7VjWnHg5+fn1LW/KIwOi65bt87kJNZp3769Bg4c6LBu27ZtOnXqlBsSXZkV9yKff/65obqQkBC98sorJqf5XZ06dfTggw+6pdel5ObmGn6tjzzyiOkDV3/l4+OjTz75RL6+vg5rp02b5oZE5jpx4oTDmsjISFWsWNENaeCJoqKi9NBDDzmsS0pKKnZD90ZxTQMAAAAAAAAAwBwMFwEAAABAMWSz2TRu3Di39jx16pSWL19uqLZChQp65plnTE70u5IlS+qll14yXG/Vbg/jxo2TzWYztUdAQIC6d+/u1DE33XSTGjVqZFKi/7n++usN1e3atcvkJO6Vnp5uqC40NNTQbiVmcmbnpLS0NBOTuE92dramT59uqNZms+njjz9WUFCQyak8y5AhQ1S7dm239Orbt6/8/f0d1h04cEDZ2dluSGSNxx57zFDdihUrTE5yZVbci2RlZRkeEn7ggQcUGRlpbqC/eOaZZyy7Pvzwww+GhloqVKjg1D2Tq9SvX1/Dhg1zWLd+/XrFxcW5IZF5jHx/rFKlihuSwJM98sgjhu77rL7OW4VrGgAAAAAAAAAA5mC4CAAAAACKoR49eqhBgwZu7Tl37lzl5+cbqh07dqxCQkJMTvQ/w4YNU7169QzV/vTTT0pKSjI50cXKly9veOeeomrbtq1T9ffee69JSS7Wrl07Q3X79u0zOYl7GR2ACAwMNDmJazPk5OSYmMR9vv76a505c8ZQ7bBhwwz/Oy5OHnjgAbf1KlmypJo0aeKwrqCgQPv373dDImu0adNGNWrUcFgXHR1tepYrseJe5JdfftGFCxcc1tlsNrfvJFSuXDlDu06Z4eOPPzZUN3bsWIWGhpqc5tIefvhhQ3WLFy82OYn1cnNzrY4Ai1WsWFGdO3d2WGf1dd4qXNMAAAAAAAAAADAHw0UAAAAAUAzdfvvtbu/5/fffG6oLCwvTiBEjTE5zMV9fX8MPEefl5emnn34yOdHFBg4cKD8/P7f0atq0qeHaMmXK6LrrrjMxzf9UqVJFZcqUcVh34MABN6RxH6NDOO7693ElRnaM+UNxGS6aN2+eoTofHx+379DiCerUqeP0wGJRtW7d2lDdwYMHTU5irW7dujms2blzpxuSXJ4V9yJGd/Ho0qWLoqKiTE7zT+6+/5Gk06dPa9myZQ7rwsLCNHLkSDckurRmzZrpmmuucVi3ZMkSN6Qxj5F7nSNHjqigoMANaeDJvOE6bwWuaQAAAAAAAAAAmIfhIgAAAAAoZmw2m2666Sa39kxPT9eGDRsM1Q4aNEglSpQwOdE/3XXXXYZ3Xlm+fLnJaS7mrgEeSapVq5bh2h49esjX19fENBczki01NdXwbj/ewOjuBJ4wXORMhuIwXJSVlWV4UKFfv36qW7euyYk8T58+fdze0+h5TkhIMDmJtRo1auSwJiYmxrIBBSvuRSRp5cqVhupuvvlmc4NcRqdOnVS6dGm39vzxxx8N/TsYMGCAwsLC3JDo8vr16+ewZu3atV49eFO2bFmHNWfPnr1qd6TB/xi5ziclJRX773d/xzUNAAAAAAAAAADzMFwEAAAAAMVMgwYNVK5cObf2XL16teFhgltvvdXkNJdWsmRJ9ezZ01Ctu4eLOnfu7LZeVatWNVzbsWNHE5P8k9FsiYmJJidxH28aLrradi5auXKlMjIyDNUOHTrU5DSeqUuXLm7vWbNmTUN1xf1h6+rVqzusycjI0LFjx9yQ5p+suBfJysoyvIvH9ddfb3KaS/Pz81OvXr3c2tPobow33nijyUkca9euncOa9PR0xcXFuSGNOYze6zz77LMMHFzljFznJSk2NtbkJJ6FaxoAAAAAAAAAAOZhuAgAAAAAiplrr73W7T03bdpkqC4oKMjwgI8ZjO6icOrUKZ04ccLkNL+rXr26SpYs6ZZekhQaGmp4B6cmTZqYnOZiZcqUMVSXmppqbhAPZLfbrY7g1EPONpvNxCTusXbtWkN1QUFBuuGGG0xO45maNWvm9p5Gdv2QpHPnzpmcxFrh4eGG6k6dOmVykkuz4l5k7969ys/Pd1hXpkwZ1atXzw2JLq19+/Zu7WdkBzabzabu3bu7Ic2VNW3a1FDdtm3bTE5iHqMD5Rs2bNCDDz7IgNFVzNOv81bhmgYAAAAAAAAAgHkYLgIAAABwVZs+fbrsdrslf2bMmGHKa2rYsKEp616J0Z0CWrdubXiwxQydOnUyXGv0NRVV3bp13dLnr4w+rFinTh2Tk1ysRIkShuqys7NNTuI+AQEBhury8vJMTuLaDEZflyfbunWroboOHTooODjY5DSex9/f3/AuQq4UERFhqK44XScuxejXmFUPnVtxL7J7925Dda1atTI5yZW1bt3abb3i4+N19uxZh3W1a9c2/LVlpipVqhgaTvXmXT4iIyPVqFEjQ7VTp05Vv379dOjQIZNTwRN5+nXeClzTAAAAAAAAAAAwl5/VAQAAAAAArmXFu/Hv2rXLUJ27363/7+rVq6dSpUoZeiht586d6tOnj+mZKlWqZHqPvzPysKKvr68iIyPdkOZ/jD5EWZyGBrxpuCg3N9dwbXEYLjL6LvJdunQxOYlnqlSpkiU7VBkdULX6OlFQUKDY2Fjt3LlTcXFxOnDggE6ePKkzZ87ozJkzSk9PV3Z2tnJyckz9+k5KSjJt7Sux4l7k4MGDhuqs3LVIkurXr++2XkavY1YMg11KQMD/sXfn0TXd+//HXyeJyGgm5iGKmOeZoqiibqnSqppbrbFKb0tH2ltKtbSui1JzVU01FW0NMWuDaowxxDxGTEnInN8f/fGtFtknOXufk+T5WMu6a/W+936/4sjHwX6ft6dy5cqV6vu0c+fOWZTIHB07djQ8DLdu3ToFBQXpxRdfVL9+/VSnTh2T08EeJ06c0L59++6d8+fOndPVq1cVERGhqKgoxcfHKy4uLlOe887AmQYAAAAAAAAAgLkYLgIAAACATMbqYZWUlBTDn6ju7Ae9bDabKlSooO3bt6daa/Qh5fTKmzevJX3+Klu2bKnW5MyZU+7u7hak+T9GckmuMWjjKBnpa05KSjJcm9GHi27cuKHLly8bqq1atarJaVxTnjx5nNLXlb9njh07plWrVmnt2rX69ddfFRUVZXmGv7tz545T+jpjcNbo9g6rt/L9XZ48eZQ3b15FRkaa3svoFsaSJUuaG8QO3t7emf5B/MGDB+uLL74wfEbEx8dr9uzZmj17tsqWLavnnntO7dq1U506deTm5mZyWvzVuXPntHr1av3444/auXOnJd/HqXHWOe8MnGkAAAAAAAAAAJiLf3kCAAAAgEzG6m0zERERhjeaOHtbgCSVL1/eUN2FCxdMTvInLy8vS/rYy1VzSX8OtGUWRrew3L592+QkqYuJiTFca/TrclVnz541XFupUiUTk7gub29vZ0d4JKvOiZiYGE2fPl21a9dW2bJlNWzYMK1fv94lBoskKTY21il9rX4vIhkfLipUqJDJSVJXsGBBS/qcPn3aUN2XX34pm83mEj+MvP+6du1aen9qnCpPnjx6/fXX03Tt0aNHNXr0aNWvX1/58uXTs88+q4kTJ2r37t0uMYicGSUkJGjhwoVq1qyZihUrpn79+mn16tUuMVgkOe+cdwbONAAAAAAAAAAAzMXmIgAAAADIZPz9/S3tZ88QTtGiRU1M4tgMVg0XGd3CYTVXzZXZ5MyZ01BdXFycEhISnPq62DMsYfTrclVGh4tsNpuKFy9uchrXlNXPiPj4eE2ZMkWjR4/WlStXnB3noeLi4pzS1+r3ItKfw85GFChQwOQkqcufP78lfTLrNozMsKnl/fff18aNG7Vjx4403+P69ev64Ycf9MMPP0j6c+izZs2aqlevnho0aKBGjRpZ9mstM0pOTtb8+fM1cuRIw1tancFZ57wzcKYBAAAAAAAAAGAuhosAAAAAIJOxemOI0Yd5Jdd4oNdoBnu+LiCt8uTJY7j21q1byps3r4lpUu9vlD1flyu6fPmyobr8+fPLw4O/Xstqdu/erZ49e+rgwYPOjpKq5ORkp/R1xvYyow9n58qVy9wgLpTh/PnzlvSxWmZ4EN/T01PLli1TrVq1HDYwcefOHW3btk3btm2799/KlSunli1bqlWrVmrevLnLb51zFceOHVOvXr20fft2Z0dJlbPOeWfgTAMAAAAAAAAAwFxuzg4AAAAAAHAsq7dJGH0YytfXV56enianSZ3R4Qwe8oIV7BkWsme4xwz29HfmEJQjxMTEGKrL6F8n7DdlyhTVr18/QwwWOZMzNlsZ3d7hCu9FrBq+unHjhiV9rBYfH+/sCA4REBCg4OBglS1b1rQeYWFh+u9//6t27dopf/786ty5s1asWKHExETTemZ0y5cvV/Xq1TPEYFFWw5kGAAAAAAAAAIC5GC4CAAAAAKRLbGysoTovLy+TkxhjNIfRrwtID3s2/Fy5csXEJKkzus1HyvibizLauQZrvPPOO+rfvz8P5bsoow9nu8JwkVUZMuugdEpKirMjOEzp0qUVEhKi7t27m94rJiZGixcvVvv27VWsWDGNGjVK165dM71vRjJ16lR17NjR8JAxrMWZBgAAAAAAAACAuRguAgAAAACkS0baFCAZ3xbAcBGsUKBAAcO1ly5dMjGJY/vb83W5IoaL8Hfjx4/XmDFjnB0Dj+Du7m6ozhWGw6zKwHuZjCFHjhyaM2eONm3apFq1alnS89KlSxo5cqRKlCihUaNGMUwjadGiRRowYICSk5OdHQUPwZkGAAAAAAAAAIC5PJwdAAAAAACQsbm5GfvcCld5UM9oDqNfF5AeJUuWNFybkYaL7Pm6XFFGO9dgruDgYL311ltpvt7Pz09VqlRRpUqVVKpUKRUvXlwFChRQgQIFlCNHDvn5+cnHx0ceHh5yd3c3NCQTHBysZs2apTlTZmR02M/ohiMzGR3MTq+EhARL+sAxmjZtqpCQEP3000+aNGmS1q5da/rvM9HR0Ro5cqTmzJmjmTNnqmnTpqb2c1VHjhxRz5490/zz7eXlpUqVKqly5coqVaqUSpYsqQIFCiggIODeOe/r6ysPD497Z31qTp06pVKlSqUpT2bFmQYAAAAAAAAAgLkYLgIAAAAApIvRh3mtepA2NUZzsJEEVrDnodGzZ8+amMRx/W02m0qUKGFyGnN5e3sbquMT9DO/mJgY9ejRQykpKXZdV6VKFXXp0kUtW7ZU9erVGVi1gNHNhK6woeX27duW9PHy8rKsFxynVatWatWqlc6fP69FixZp2bJl2rVrl6kbr06ePKkWLVpo3LhxGjp0qGl9XFFycrK6d++uO3fu2HVd6dKl1aVLF7Vq1Ur16tWThwf/3GY2zjQAAAAAAAAAAMzFv3YAAAAAANLF6BCOvQ/smcXoA2kMF8EKJUuWlM1mMzS4cOzYMQsSpb9/oUKFMvz3j9HhIh5wzfwmTpyoM2fOGK5v3LixxowZo4YNG5qYSkpKSjL1/hlRrly5DNVduXLF3CAulMHb29vQOfXuu+/qP//5jwWJYI8iRYrojTfe0BtvvKGbN29q06ZN2rZtm3bs2KE9e/Y4fAtXUlKShg0bppiYGL3//vsOvbcr++677xQSEmK4vnLlyho9erSefvppE1Nxzj8IZxoAAAAAAAAAAOZiuAgAAAAAkC6+vr6G6uLi4hQVFSV/f3+TEz1aRESEoTo/Pz+TkwB/DrEVLlxY58+fT7X2+PHjFiR6uBMnThiqCwwMNDmJ+YyeU5cvXzY5CZzp9u3bGj9+vKFam82mTz75RMOHD5fNZjM5mesM7LqSQoUKGarLSsNFvr6+ioyMTLWOLWyuL2fOnGrfvr3at28v6c/X7Ndff9X27du1bds27dq1S9evX3dIrw8++EBly5bV888/75D7ubqPP/7YcO3AgQP1+eefy9PT08REf+Kc/yfONAAAAAAAAAAAzOXm7AAAAAAAgIytYMGChmsz0gO99nxdQHpUqVLFUF1YWJiSk5NNTvNgly9f1o0bNwzVVq1a1dwwFihatKihulu3bikmJsbkNHCWpUuXGv51P2HCBI0YMcKSwSJJio6OtqRPRmJ0uMjooKRZYmNjdeHCBUt6BQQEGKrj11PG4+XlpSZNmuidd97RmjVrFBkZqdDQUH355Zd6+umnDQ//P0zfvn2zxADt1q1bFRYWZqh2yJAhmjRpkiWDRRLflw/CmQYAAAAAAAAAgLkYLgIAAAAApEvhwoUN1546dcq8IAaFh4cbqrPn6wLSo0aNGobqYmJidPToUZPTPNiePXsM11avXt3EJNYwOlwkOX9QAeb57rvvDNU988wzev31101Ocz+rhlMykuLFixuqc9Y5etfx48ctGxQ1+nPCr6eMz2azqXLlyho8eLBWrVqlyMhIrVq1St26dZOPj4/d97t165Y++OADE5K6FqPnfI0aNQxvsnMUvi//iTMNAAAAAAAAAABzMVwEAAAAAEiXHDlyyN/f31Ct0U8GN9ORI0cM1RUpUsTkJMCf7BnG2bt3r4lJHs6e4SKjw1KurGjRonJzM/bXZvv37zc5DZwhMTFRW7duTbXOZrNp3LhxFiS639mzZy3v6eoqVqxoqG7fvn3mBknF77//blmvEiVKGKo7c+aMyUlgtezZs+vpp5/W3LlzdfHiRU2YMMHurZxz5sxxia2jZtq0aZOhuk8//VTu7u4mp7kf5/w/caYBAAAAAAAAAGAuhosAAAAAAOkWFBRkqC40NNTkJI8WHx9veLiofPnyJqcB/lSrVi3Dtbt27TIxSfr7enl5GX7A35Vlz55d5cqVM1Rrz+AVMo7Q0FBFR0enWtekSROVLVvWgkT3c/bvp66oUqVKhuqOHz+uiIgIk9M83M6dOy3rZfS9TFhYmBITE01OA2fJkSOHhgwZouPHj6t3796Gr4uLi9OSJUtMTOZckZGRhv5cUKpUKbVs2dKCRPfjnP8nzjQAAAAAAAAAAMzFcBEAAAAAIN0qV65sqG779u0mJ3m0vXv3KjY21lBtlSpVTE4D/KlEiRIKDAw0VLt+/XqT0/xTQkKCNm/ebKi2UaNG8vT0NDmRNYxuYNq4caPJSeAMRgdRn3rqKZOT/FNKSorTt++4onz58qlYsWKGap35fWtl79q1axuqi42N1aFDh0xOA2fz9fXVN998o4EDBxq+Zs2aNSYmci6jG1VbtWplcpIHs3LLWUbBmQYAAAAAAAAAgLkYLgIAAAAApFvVqlUN1R08eNCp2wKCg4MN1dlsNsMDU4AjtGjRwlDd4cOHdeHCBZPT3G/Xrl2KiYkxVOuMT/Y3i9GNUqGhobp06ZLJaWC18PBwQ3XOGETdt2+frl27ZnnfjKBp06aG6lasWGFukIc4cuSI4YEGR6hUqZJ8fHwM1TIomXVMmDDB8JbB9G5MdHNz3X+CcuVzPjIyUn/88YflfSXXfs040wAAAAAAAAAAMJfr/isBAAAAACDDaNiwoaG6lJQUrVq1yuQ0D/fDDz8YqqtSpYr8/f1NTgP8H3uGcpYvX25ekAcw+n0jZa7hIqMDXykpKVq4cKHJaWA1o8M7RYsWNTnJP2XmTSLp1axZM0N1q1atUlRUlMlp/mnBggWW9nN3d1fjxo0N1a5cudLkNHAVHh4eev/99w3VRkZGpmuYMVu2bIbqEhMT09wjrVz5nF+3bp2Sk5Mt7yu59mvGmQYAAAAAAAAAgLkYLgIAAAAApFv16tWVN29eQ7WLFy82Oc2DnTx5UiEhIYZqM9OABDKGli1bKnv27IZqrRxkSU5O1qJFiwzVFilSRNWqVTM3kIUqVaqkEiVKGKqdM2eOyWlgNaPbuoxuUHCkefPmWd4zo3jqqacMbd2Ijo62/OcxMTFRM2bMsLSnJD3zzDOG6jZv3qwzZ86YnAauonXr1oaHSM6fP5/mPp6enobq7ty5k+YeaeXK5/zcuXMt73mXK79mEmcaAAAAAAAAAABmYrgIAAAAAJBubm5uat68uaHan3/+WeHh4SYn+qepU6cqJSXFUC3DRbBazpw51aZNG0O127Zts+x7aMOGDYYfKu7SpYtsNpvJiazVrl07Q3X79u3Tzz//bHIaWCkpKclQ3c2bN01Ocr9NmzYpLCzM0p4ZSaFChdSkSRNDtePHj1dCQoLJif7PrFmzdPHiRcv63fXMM88YOpuTk5M1ZcoUCxLBFeTIkUPFixc3VBsdHZ3mPkY3gV6/fj3NPdLKVc/5EydOaP369Zb2/CtXfs0kzjQAAAAAAAAAAMzEcBEAAAAAwCE6depkqC45OVkTJ040N8zf3Lx50/C2gHz58qlZs2YmJwL+6aWXXjJUl5KSoi+//NLkNH+aMGGC4dquXbuamMQ5evbsabh25MiRhgcY4fq8vb0N1V2+fNnkJPf76KOPLO2XEXXp0sVQ3cmTJzV16lST0/wpJibGaa9d4cKFDQ9NT5482fJf03Ce/PnzG6pLz+9tRntcuHAhzT3SylXP+f/85z9KTk62tOdfufJrJnGmAQAAAAAAAABgJoaLAAAAAAAO0a5dO+XKlctQ7bRp03T69GlzA/3FZ599pmvXrhmq7dKli7Jly2ZyIuCf2rZtqzx58hiqnTlzpq5evWpqnv3792vdunWGaitXrqxq1aqZmscZatasqRo1ahiq3blzp2bNmmVyIljF6O9noaGh5gb5i5UrVyo4ONiyfhlVly5dlDt3bkO17777rs6cOWNyImn48OE6d+6c6X0eZtCgQYbqoqKi9M4775icBq7ixo0bhuqMbrJ5kICAAEN1x48fT3OPtHLFc/7333/XvHnzLOv3IK78mt3FmQYAAAAAAAAAgDkYLgIAAAAAOET27NkNbwuIj4/X4MGDTU70p7CwMH3++eeG6+3ZVAI4Uvbs2dW/f39DtdHR0frggw9MzTNs2DDD2wqGDh1qahZnMvoAqyS9+eabOnnypIlpYJWSJUsaqlu9erW5Qf6/mzdvauDAgZb0yuj8/Pz02muvGaqNiopSly5dFBcXZ1qeFStWaPLkyabd34g2bdqoTJkyhmpnzpypFStWmJwIzpacnKyzZ88aqjU6bPIgpUuXNlS3Z8+eNPdIK6Pn/I8//mhukP8vISFBr7zyipKSkizp9zCu/JrdxZkGAAAAAAAAAIA5GC4CAAAAADjMsGHD5O7ubqh25cqVmjNnjql5EhIS1LNnT8XGxhqqb9mypeEtJYAZBg0aJC8vL0O1X3/9tWkPdi5ZskS//PKLodoiRYqoa9eupuRwBd26dVO5cuUM1V6/fl0dO3bU7du3TU4FswUFBRmq27lzp8LCwkzNkpKSom7duhkeBID0+uuvy8/Pz1Dtjh071Lt3byUnJzs8x2+//aauXbsaHtQ0i5ubmz755BPD9T169LB0Wwus9/PPPysmJibVujx58qhAgQJp7hMQEKCcOXOmWhcaGqpLly6luU9aGD3nz549q/Xr15ucRnrjjTecOrBzlyu/ZndxpgEAAAAAAAAAYA6GiwAAAAAADlO6dGm98MILhuv79eun3bt3m5ZnwIAB2rVrl+H69957z7QsgBEFChRQnz59DNUmJSXphRdeUFRUlEMznDlzRn379jVcP3ToUGXLls2hGVyJu7u7Pv74Y8P1v//+u9q1a2d4qBGuqUaNGoZ+XSclJenNN980Ncsbb7yhVatWmdojswkICNCIESMM1y9YsEBdunRx6Pftxo0b1aJFC0MDHFbo1KmTGjZsaKj25s2batWqlQ4cOGByKuN+/vlnTZkyxdkx0iUqKkp9+/ZVeHi4s6No0qRJhurq1auX7l61atVKtSY5OVlff/11unvZo0iRIipatKih2jfffNOUAcS7JkyY4PQNZ3/lqq/ZX3GmAQAAAAAAAADgeAwXAQAAAAAcatSoUYY3r9y5c0dt27Y15ZOkR4wYoenTpxuub926tR5//HGH5wDs9eGHHypXrlyGao8fP67OnTsrPj7eIb2vX7+uf/3rX7p+/bqh+scee0wDBgxwSG9X1qlTJ7Vo0cJw/caNG9WyZUtduXLFxFT3S0xM1IwZM/TTTz9Z1jMz8/b2NvzQ8urVqzV16lSHZ0hOTtaQIUP05ZdfOvzeWcHQoUMVGBhouH7RokWqW7duuh8+j4+P16hRo/Tkk08+dPgze/bs6eqRVpMnT5anp6eh2kuXLqlRo0Zat26dyakeLikpST/88IPq16+vVq1aucRWl/RISkrS9OnTVa5cOXXv3t1pX8///vc/rVmzxlBtmzZt0t2vUaNGhurGjh1r6ocOPIjR39v/+OMPvfPOO6Zk+PzzzzV06FBT7p1Wrvya/RVnGgAAAAAAAAAAjsVwEQAAAADAoUqXLm3XtoArV66oWbNmDnsgPjY2Vq+88oo+/fRTw9d4e3u71KeFI2vLnz+/PvroI8P169at03PPPZfu7RiXLl3Sk08+qT/++MPwNRMnTnTaQ/JW++abb+Tv72+4ftu2bapZs6bpwz4xMTGaPHmyypUrp1deeUUXL140tV9W0qlTJ8O1AwYM0Lfffuuw3hEREWrXrh2DReng5eWlefPmyd3d3fA1oaGhqlatmvr27asjR47Y1S82NlZz5sxRhQoVNHLkSCUlJT2wrmLFinr22WfturejVK1aVaNHjzZcf/PmTbVp00aDBg3SrVu3TEx2vwsXLmjs2LEqXbq0nn32Wbu2UGYEiYmJmjdvnmrVqqUGDRpo3rx5lm24mjZtmoYMGWKo1svLy66NpA/z9NNPG6q7ffu2mjZtqtGjR+vatWvp7muEPef82LFj7frzRWqio6PVu3dv07ffpYUrv2Z/xZkGAAAAAAAAAIBjeTg7AAAAAAAg8xk+fLgWLVqkgwcPGqq/du2aWrdurcGDB2vkyJGGt7b83fbt29W/f3+7NyF9/PHHKlWqVJp6Ambo37+/5s6da/jT4FetWqU6dero22+/VbVq1ezut379enXv3t2uwZQOHTqobdu2dvfKqIoXL67//e9/6tatm+Frzp07p6eeekqdOnXS+++/r8qVKzssz+7duzV79mwtWLDA8KYp2OfFF1/U22+/rejo6FRrk5OT9dJLL2nLli364osv5Ovrm6aeiYmJmjt3rt5++21dvXr1oXWBgYEKDw9PU4+spEGDBvrggw/04YcfGr7m7naZ6dOn39suUadOHZUtW1b58+eXr6+v4uPjFRUVpfDwcB08eFCbNm3SmjVrUv1edHNz04wZM0zZdGXU0KFDtXHjRsOba1JSUvTf//5XCxcu1IgRI9SnTx/lzJnT4bkuXbqkNWvWaOHChdqwYYOSk5Md3sMV7dy5Uzt37lS/fv3UoUMHPffcc2rZsqV8fHwc2ic8PFzvvfeevvvuO8PXdOvWTXnz5k1371q1ahk+s2JiYvTuu+/qww8/VN26dVWzZk0FBgYqf/788vHxkYeHsX/SqlatmooWLZpqXatWrVSyZEmdOnXK0H1HjBihX3/9VdOnT1e+fPkMXfN3KSkpWr58uYYOHfrIvs485135Nfs7zjQAAAAAAAAAAByH4SIAAAAAgMN5enpq6dKlqlOnjuFPhU5JSdGXX36pefPm6dVXX9XLL7+swMDAVK9LSkrShg0bNGnSJK1evdrurO3bt9fQoUPtvg4wk7u7uxYuXKgaNWoY/h46dOiQatasqZ49e2rQoEGpDhmlpKRoy5Yt+vzzz7Vq1Sq78hUvXlzffPONXddkBi+99JIOHDigsWPH2nXd4sWLtWTJErVo0UJdunTRv/71L7sf2L5x44a2b9+u9evXa8WKFTp58qRd18N+uXLl0muvvabx48cbvubrr7/WypUr9dprr+nVV19VwYIFDV137tw5LViwQNOmTUv1Ye7ChQvrs88+U8eOHQ3nysree+89hYaGaunSpXZfe3fww1E++OAD1atXz/Bwkc1mc1jvv97z+++/V9OmTbVnzx7D1129elXDhg3T+++/r06dOumZZ55Ry5Yt5efnl6Ycly9f1q5du7Rjxw5t2rRJu3fvVkpKSprulRnExMRo/vz5mj9/vry8vNS0aVM1adJEDRs2VK1ateTt7Z2me/7yyy9aunSpFi5cqMTERMPX+vv727VFMTWDBw82vDFJ+nPQcvv27dq+fXua+s2aNUs9e/ZMtc7d3V1vvvmmBg4caPjey5cvV3BwsHr37q3+/furdOnShq67evWqFi1apGnTpqX6QQh+fn76+uuv1aJFC8O5HM1VX7O/40wDAAAAAAAAAMBxGC4CAAAAAJiiXLlymjNnjjp27GjXJzVfu3ZNY8aM0ZgxYxQUFKQGDRooKChIhQoVkp+fn5KSknTr1i2Fh4frwIEDCg4O1o0bN9KUMSgoSHPmzDHl4V0gvUqXLq0ZM2aoc+fOhq9JTk7WzJkzNXPmTJUvX14NGzZUlSpVlDdvXvn6+urWrVu6cuWKfv/9d23ZskVnz561O1e2bNn0/fffK3fu3HZfmxmMGTNG4eHhWrx4sV3XpaSk6JdfftEvv/wim82moKCge5/uX6xYMfn5+cnHx0eJiYm6c+eOrl69qvPnz+v48eM6ePCgjh8/zqfeO8F7772nuXPn6sqVK4avuXTpkkaOHKlRo0apQoUKatCggcqVK6fcuXMrd+7cSklJUXR0tM6dO6djx45p586dCgsLM3Rvm82mWbNmydPTM61fUpbj5uam+fPn69KlS2l+6N0RXnjhBbs2KEl/nrdm8PPz05o1a9SoUSMdO3bMrmtv376tOXPmaM6cOXJ3d1dQUJCqVaumEiVKqGjRosqZM6e8vb3l7u6u2NhYxcbG6vr167p8+bIuXryo48eP6/Dhw4qMjDTla8sMYmNjtW7dOq1bt07Sn7+GS5UqpYoVK6pEiRIqXLiwAgIC5O3tLW9vbyUnJys6OloxMTGKiIhQWFiYjhw5ogMHDiguLi5NGSZOnGh4ONKIV155RV988YXOnDnjsHs6yquvvqopU6YY3rgq/Tnw+8UXX+iLL75Q6dKl1aBBA1WqVEl58uRR7ty55ebmppiYGF24cEHHjx/Xb7/9ptDQUMPDJhMmTDA8tGQWV37N/o4zDQAAAAAAAAAAx2C4CAAAAABgmvbt22vatGnq27dvmj65+ciRIzpy5IgJyaTAwECtX79eOXLkMOX+gCN06tRJn376qYYPH273tYcPH9bhw4cdmsfNzU1z585VvXr1HHrfjMRms2nBggX3tkulRUpKiimvDxwvZ86cmjZtmjp06GD3tSkpKTp48KBdD6yn5rPPPtOTTz6p4OBgh90zK/Dy8tLatWvVoUMHbdiwwfL+Tz75pGbNmmX3ddmzZzchzZ8KFCigbdu2qU2bNnZt+/irpKQkh/8axz8lJyfrxIkTOnHihCX9+vbtq969ezv0nj4+Ppo6daratm3rcttcPDw8NGvWLDVq1Ejx8fF2X+/o12bgwIF6+eWXderUKYfdMy1c+TV7EM40AAAAAAAAAADSj+EiAACALCTq0lVnR0i3zPA1AFnNyy+/rMTERA0YMMBltm6ULl1aGzZsUJEiRZwdBUjV22+/rZiYGH388cdOzWGz2TRjxgy98MILTs3hCjw8PPTtt98qV65cmjp1qrPjwGTt27fXW2+9pXHjxjk1x7BhwzRs2DCnZsjI/P39tWbNGvXu3VvffvutZX27deumb7755r4tRLGxsYauNXO4SPrzYfzg4GA9//zzWrNmjam9kDG8+OKLmjJliin3bt26tcaNG6d///vfptw/PWrXrq2JEyeqf//+Ts3RqVMnffnll07N8Feu/Jo9CGcaAAAAAAAAAADpw3ARAABAFrJ1wjfOjgAgi3rttddUokQJdenSRTdv3nRqlubNm2vRokXKkyePU3MA9vjoo4+UO3du/fvf/1ZSUpLl/X18fDRz5kw9//zzlvd2VW5ubpoyZYrq1q2r/v37686dO86OBBN9+umnunr1qmbOnOmU/sOHD9fo0aOd0jsz8fT01Pz58/XEE09o8ODBiomJMa2Xt7e3Ro8erddff102m+2+/8/ocJG3t7cZ0e7j5+en1atXa8KECRoxYkSaNrcgc3jrrbc0ZswYubm5mdbjzTffVO7cuTVw4EDD3wdW6devnyIiIvThhx86pX/37t01ffp0U3/+08KVX7MH4UwDAAAAAAAAACDtXOtfKQAAAAAAmVbr1q3122+/qV69ek7pny1bNr333ntat24dg0XIkN544w2tW7dOefPmtbRvyZIltWPHDgaLHqJnz54KCQlRw4YNnR0FJrq7ueutt96ytK+np6fmzJmjMWPG/GNABWnXu3dvHT58WN26dTPl5/XJJ59UaGiohgwZ8sD7X79+PdV75MmTR+7u7g7P9iA2m01Dhw5VSEiIGjdubElPe5UuXVqtWrVydoxMKSAgQMuWLdPYsWMtGWzp06ePDhw4oA4dOrjcufbBBx/oq6++sux7T/rz+2/06NGaM2eOPD09LetrD1d+zR6EMw0AAAAAAAAAgLRhuAgAAAAAYJmyZctq+/btmjRpknLlymVZ34YNG2rPnj36+OOP5eHBEl9kXC1atNDhw4fVo0cP0x/u9PDw0JtvvqkDBw6oatWqpvbK6CpWrKitW7dq1qxZKlKkiFMyBAQEaMSIEWrdurVT+mcFNptNY8eO1ZIlS5QvXz7T+zVp0kT79u1T9+7dTe+VFRUrVkxz587VH3/8ob59+8rPzy9d9/P09FSnTp0UEhKin376SY899thDay9evJjq/QICAtKVJy2qVKmiLVu2aMmSJSpXrpzl/f/O399f3bp10/r163Xs2DF16tTJ2ZHSxd/fX1OnTtXTTz8tHx8fZ8eRp6enBg4cqEOHDqlDhw6W9i5durSWLVumsLAwjRgxQkFBQZb2f5RBgwZpw4YNKlmypOm9qlSpou3bt2vEiBGm90ovV37NHoYzDQAAAAAAAAAA+zBcBAAAAACwlJubmwYOHKjTp09r9OjRKlCggGm9mjRpop9//lnbtm1T5cqVTesDWCl//vyaPXu2tm3bpjZt2jh8yMjDw0MvvPCC9u3bp88++0y+vr4OvX9mZbPZ1LNnT4WHh2vWrFmWnDnu7u5q0aKFFi1apLNnz2r06NFOGUjIajp27KhDhw5p4MCBypYtm8PvX6VKFc2fP1/BwcEqX768w++P+1WuXFnTpk3TxYsXtWzZMr322muqXLmysmfP/sjrvL29Vb16dfXq1UuLFy/W1atXtWjRItWqVeuR16WkpOj8+fOp5ipYsKBdX4cjdezYUYcPH9aaNWvUunVrS7bZ3FWgQAH16NFDS5cu1ZUrVzR37lw1b948Q2xLSY27u7teffVVrVq1SpGRkVq9erX69etnyRDLX+XJk0dDhw7V0aNHNWnSJKdu9CxTpoxGjx6tw4cP68KFC1qyZIk+/PBDvfjii2rYsKHKli2rvHnzysfHx9IPCGjSpIn279+v999/35T3QYGBgZo0aZL27Nmj+vXrO/z+ZnLV1+xRONMAAAAAAAAAADDGlpKSkuLsEAAAIG0iIiL+8UD2lStXlD9/ficlSr+4uDiFh4c/siYwMDDVB72yosjISEs+QT0jiIyMdOoDUgDsk5CQoHXr1mnBggVau3atbt68ma77BQUFqVOnTuratatLfEI1YLajR49q2rRpWrlypY4fP57m+1SpUkXt27dX3759nbZ9J7PZt2+fFi1apOXLl+vw4cMOuWfRokXVqlUrPfXUU2rRooWlW+DwTxcuXND06dP17bff6tixY2m+T0BAgFq1aqVevXqpadOmqdafO3dOS5YsSbWuXr16qlevXppzZWXJyck6ffq0rl69qujoaMXFxcnX11f+/v7KnTu3ihUrlqYH1E+cOPHIrUZ39e7dW998801aojvc5cuXtWLFCq1YsUJbtmxRdHS0w+5duHBh1a1bV40bN1aTJk1UvXr1LPnQ/fnz57Vz5857P/bu3au4uDiH3b9w4cJq2bKl2rdvr6eeekpeXl4Ou3dmd+3aNc2ePfveprO0yp07t5o3b67u3burbdu2qZ4ft27d0syZM1O9b4UKFfTkk0+mOVdWxJmWufF3ywAAAAAAAADSKzM+l2sUw0UAAGRgmfFNDP8AnD4VK1bUoUOHnB3DqSpWrKgDBw44OwaANEpOTtb+/fu1fft2HTx4UCdPntTJkyd1/fp13b59W7dv35a7u7t8fX3l6+urggULKjAwUKVLl1bNmjXVuHFjUzchAa7u2LFj2rx5sw4ePKhDhw7p1KlTunXrlqKiohQbGysfHx/5+/srZ86cKl26tMqXL69KlSrpiSeeUNGiRZ0dP1OLjIzUzp07tWfPHoWHh+vkyZM6d+6coqKidPv2bcXGxsrLy0t+fn7y9/e/N8BQtmxZlS9fXkFBQSpfvryKFy/u7C8FDxEWFqbNmzdrz549CgsL09mzZxUZGak7d+4oKSlJPj4+8vPzU44cOVSyZEmVK1dO5cqVU4MGDVS1alUePs4ili5dqueeey7VuvHjx2vYsGEWJLJPcnKyDh06pJCQEB06dEinT5/WmTNndOnSJcXExNw7z9zc3OTp6Slvb2/lzp1b+fPnV8GCBVWyZEmVKlVKQUFBqlatWob++wszJSQk6Pjx4zpx4sS9/z1x4oSuXLmi6OhoRUVFKTo6WjExMbLZbMqePbu8vb2VN29eFShQQMWKFbv3+0edOnUs346UWZ05c0abNm3S7t27dfjwYZ09e1ZXrlzRnTt3lJCQcO+c9/f3V7Fixe6d83Xq1FGdOnXk7u7u7C8Bf8OZlvnwd8sAAAAAAAAA0iszPpdrFMNFAABkYJnxTQz/AJw+wcHBatasmbNjONWmTZsMfdo7AAAAAFhtwIAB+t///pdq3Zo1a9S6dWsLEgEAkHnwd8sAAAAAAAAA0iszPpdrlJuzAwAAAMBxmjZtqk2bNqlixYrOjmK5ihUrMlgEAAAAwKWtW7fOUF316tVNTgIAAAAAAAAAAAAA/8fD2QEAAADgWE2bNtWBAwd07do1Xbx40dlxLFGoUCHlyZPH2TEAAAAA4KG2b9+e6jYFSSpXrpwKFixoQSIAAAAAAAAAAAAA+BPDRQAAAJlUnjx5GLgBAAAAABcxZcoUQ3VNmjQxOQkAAAAAAAAAAAAA3M/N2QEAAAAAAAAAAMjMjh07poULFxqqbd26tclpAAAAAAAAAAAAAOB+DBcBAAAAAAAAAGCigQMHKikpKdW6XLlyMVwEAAAAAAAAAAAAwHIMFwEAAAAAAAAAYJIpU6bo559/NlT77LPPKnv27CYnAgAAAAAAAAAAAID7MVwEAAAAAAAAAIAJ1q9fr9dff91w/cCBA01MAwAAAAAAAAAAAAAPxnARAAAAAAAAACDT+vTTT7V//37L+65atUrt2rVTQkKCofonn3xS1atXNzkVAAAAAAAAAAAAAPwTw0UAAAAAAAAAgExr9erVqlq1qp599llt3brV9H7x8fEaPny42rdvr9jYWEPX2Gw2ffjhhyYnAwAAAAAAAAAAAIAHY7gIAAAAAAAAAJCppaSk6IcfftDjjz+u6tWr66uvvlJERIRDeyQlJWnhwoWqUKGCxo4dq+TkZMPX9urVSw0aNHBoHgAAAAAAAAAAAAAwiuEiAAAAAAAAAECWsW/fPr3++usqXLiwmjZtqs8++0whISFKSEiw+17Jycn69ddf9d5776lkyZLq0qWLTpw4Ydc9AgICNHbsWLt7AwAAAAAAAAAAAICjeDg7AAAAAAAAAAAAVktMTNTmzZu1efNmSZK3t7cqVKig8uXLq2TJkipYsKDy5MkjLy8vubu7KzY2Vrdv39bFixd17tw5HThwQPv27dOtW7fSnMHDw0OLFy9Wvnz5HPVlAQAAAAAAAAAAAIDdGC4CAAAAAAAAAGR5d+7c0Z49e7Rnzx7Lek6aNEmNGze2rB8AAAAAAAAAAAAAPIibswMAAAAAAAAAAJCV2Gw2TZ48Wa+99pqzowAAAAAAAAAAAAAAm4sAAAAAAAAAALCKr6+vpk2bpq5duzo7CgAAAAAAAAAAAABIYrgIAAAAAAAAAABLVK5cWd9//73Kly/v7CgAAAAAAAAAAAAAcI+bswMAAAAAAAAAAGCWvHnzOjuC8uTJo6+++kp79+5lsAgAAAAAAAAAAACAy2G4CAAAAAAAAACQaa1YsUK7d+/W8OHDVaZMGUt7BwYG6vPPP1d4eLgGDRokDw8PS/sDAAAAAAAAAAAAgBH8SyYAAAAAAAAAIFOrWbOmatasqTFjxujAgQPasmWLduzYoR07dujkyZMO7VW6dGm1a9dOzzzzjB5//HG5ufEZXwAAAAAAAAAAAABcG8NFAAAAAAAAAIAso1KlSqpUqZL69+8vSbp8+bJCQ0N18uRJnTp1SqdPn9bp06d17do13b59+96PO3fuyN3dXd7e3vLy8lLu3LlVtGhRFStWTIGBgapRo4Zq1qypggULOvkrBAAAAAAAAAAAAAD7MFwEAAAAAAAAAMiyAgIC1LJlS2fHAAAAAAAAAAAAAACncXN2AAAAAAAAAAAAAAAAAAAAAAAAAADOwXARAAAAAAAAAAAAAAAAAAAAAAAAkEUxXAQAAAAAAAAAAAAAAAAAAAAAAABkUQwXAQAAAAAAAAAAAAAAAAAAAAAAAFkUw0UAAAAAAAAAAAAAAAAAAAAAAABAFsVwEQAAAAAAAAAAAAAAAAAAAAAAAJBFMVwEAAAAAAAAAAAAAAAAAAAAAAAAZFEMFwEAAAAAAAAAAAAAAAAAAAAAAABZFMNFAAAAAAAAAAAAAAAAAAAAAAAAQBbFcBEAAAAAAAAAAAAAAAAAAAAAAACQRTFcBAAAAAAAAAAAAAAAAAAAAAAAAGRRDBcBAAAAAAAAAAAAAAAAAAAAAAAAWRTDRQAAAAAAAAAAAAAAAAAAAAAAAEAWxXARAAAAAAAAAAAAAAAAAAAAAAAAkEUxXAQAAAAAAAAAAAAAAAAAAAAAAABkUQwXAQAAAAAAAAAAAAAAAAAAAAAAAFkUw0UAAAAAAAAAAAAAAAAAAAAAAABAFsVwEQAAAAAAAAAAAAAAAAAAAAAAAJBFMVwEAAAAAAAAAAAAAAAAAAAAAAAAZFEMFwEAAAAAAAAAAAAAAAAAAAAAAABZFMNFAAAAAAAAAAAAAAAAAAAAAAAAQBbFcBEAAAAAAAAAAAAAAAAAAAAAAACQRTFcBAAAAAAAAAAAAAAAAAAAAAAAAGRRDBcBAAAAAAAAAAAAAAAAAAAAAAAAWRTDRQAAAAAAAAAAAAAAAAAAAAAAAEAWxXARAAAAAAAAAAAAAAAAAAAAAAAAkEUxXAQAAAAAAAAAAAAAAAAAAAAAAABkUQwXAQAAAAAAAAAAAAAAAAAAAAAAAFkUw0UAAAAAAAAAAAAAAAAAAAAAAABAFsVwEQAAAAAAAAAAAAAAAAAAAAAAAJBFMVwEAAAAAAAAAAAAAAAAAAAAAAAAZFEMFwEAAAAAAAAAAAAAAAAAAAAAAABZFMNFAAAAAAAAAAAAAAAAAAAAAAAAQBbFcBEAAAAAAAAAAAAAAAAAAAAAAACQRTFcBAAAAAAAAAAAAAAAAAAAAAAAAGRRDBcBAAAAAAAAAAAAAAAAAAAAAAAAWRTDRQAAAAAAAAAAAAAAAAAAAAAAAEAWxXARAAAAAAAAAAAAAAAAAAAAAAAAkEUxXAQAAAAAAAAAAAAAAAAAAAAAAABkUQwXAQAAAAAAAAAAAAAAAAAAAAAAAFkUw0UAAAAAAAAAAAAAAAAAAAAAAABAFsVwEQAAAAAAAAAAAAAAAAAAAAAAAJBFMVwEAAAAAAAAAAAAAAAAAAAAAAAAZFEMFwEAAAAAAAAAAAAAAAAAAAAAAABZFMNFAAAAAAAAAAAAAAAAAAAAAAAAQBbFcBEAAAAAAAAAAAAAAAAAAAAAAACQRTFcBAAAAAAAAAAAAAAAAAAAAAAAAGRRDBcBAAAAAAAAAAAAAAAAAAAAAAAAWRTDRQAAAAAAAAAAAAAAAAAAAAAAAEAWxXARAAAAAAAAAAAAAAAAAAAAAAAAkEUxXAQAAAAAAAAAAAAAAAAAAAAAAABkUQwXAQAAAAAAAAAAAAAAAAAAAAAAAFkUw0UAAAAAAAAAAAAAAAAAAAAAAABAFsVwEQAAAAAAAIAMwWazpfqjadOmzo4JAAAAGkR+9wABAABJREFUAAAAAAAAAECGwnARAAAAAAAAAAAAAAAAAAAAAAAAkEUxXAQAAAAAAAAAAAAAAAAAAAAAAABkUR7ODgAAAAAAAICsITY2Vn/88Yd2796tiIgIQ9dUq1ZN7du3NzcYAAAAAAAAAAAAAABAFsZwEQAAAIBMZ/bs2erVq5ezY9gtJSXF2REAwGHi4+MVGhqq3bt33/tx8OBBJSYm2nWfHj16MFwEAAAAAAAAAAAAAABgIoaLAAAAAAAAkC6JiYk6cODAfYNE+/fvV3x8vLOjAQAAAAAAAAAAAAAAIBUMFwEAAAAAAMCwpKQkHTp0SLt379aePXu0e/du/fHHH4qNjXV2NAAAAEOCg4MVHBycal3Pnj1VsmRJ0/MgdbxmAAAAAAAAAACYi+EiAAAAAAAApOr27dtq2bKl9u3bp9u3bzs7DgAAQJoFBwdr1KhRqdY1bdqUQRUXwWsGAAAAAAAAAIC5GC4CAAAAAABAquLj47Vjxw5nxwAAAAAAAAAAAAAAAICDuTk7AAAAAAAAAAAAAAAAAAAAAAAAAADnYLgIAAAAAAAAAAAAAAAAAAAAAAAAyKIYLgIAAAAAAAAAAAAAAAAAAAAAAACyKIaLAAAAAAAAAAAAAAAAAAAAAAAAgCyK4SIAAAAAWdqsWbOUkpLiEj8AIDPz8PBQlSpV1Lt3b02ePNnZcQAAAAAAAAAAAAAAAPD/eTg7AAAAAAAAADIXDw8PlS9fXrVq1VLNmjVVq1YtVa1aVV5eXvdqBgwY4MSEAAAAAAAAAAAAAAAAuIvhIgAAAAAAAKSZu7v7AweJvL29nR0NAAAAAAAAAAAAAAAABjBcBAAAAAAAAEPc3d0VFBR0b5CoZs2aql69OoNEAAAAAAAAAAAAAAAAGRjDRQAAAAAAAEhVjhw5dOvWLfn4+Dg7CgAAAAAAAAAAAAAAABzIzdkBAAAAAAAA4Prc3NwYLAIAAAAAAAAAAAAAAMiEGC4CAAAAAAAAAAAAAAAAAAAAAAAAsigPZwcAAACAOW7fvq3Lly87O4ZlAgIC2KYAAAAAAAAAAAAAAAAAAABgJ4aLAAAAMpm9e/dqwIABCgkJUVJSkrPjWMbd3V21a9fW5MmTVaNGDWfHAQAAAAAAAAAAAAAAAAAAyBAYLgIAAMhEdu/erfr16ysxMdHZUSyXlJSkXbt2qV69etqxY4dq1arl7EhAhnHx4kVt2rRJBw8e1NGjR3Xs2DFdv35d0dHRio6OVkpKinx9fZUjRw4VLFhQ5cqV09y5cy3JlpiYqLNnz+r69euKiYlRTEyMsmXLJl9fX/n6+qpgwYLKnz+/JVlcxa1bt7Rhwwb9/vvvOnjwoMLCwnTjxg1FRUUpJiZG/v7+yp07t/LmzauqVauqbt26atSokcqXL296tr179yokJET79u1TaGioIiIidPPmTd28eVMpKSny8/NT/vz5VaZMGVWqVElNmzZV48aN2TwHuJjk5GRduHBBkZGRiomJ0e3bt5WUlCQ/Pz/lyJFD/v7+ypkzp3Lnzu3sqA5z6NAhBQcHa//+/Tpw4IDOnz+vW7duKSoqSpLk4+OjnDlzqkSJEgoMDFStWrXUsGFDVa1aVTabzcnp0+f69euKiIjQtWvXdOfOHcXFxcnNzU3e3t7y8vJSnjx5VKRIEXl5eTk7qlO4yvuk27dva/Pmzdq+fbsOHz6ssLAwRUZGKioqSrGxsfe+P3PlyqVy5cqpYsWKqlatmpo3by5/f3+H53F1SUlJOnfu3L33kLdv31ZKSop8fHzuvYcsWLBghv/+dUVRUVG6cuWKrl69qtjYWMXGxt77uf/rj8z2+4gru3XrliIiInT16tV757yke+d8rly5VKRIEfn6+jo5KR6GMw0AAAAAAAAAYAVbSkpKirNDAACAtImIiFCBAgXu+29XrlzJ0A9Zx8XFKTw8/JE1gYGByp49u0WJMpYGDRpo586dzo7hdPXr19eOHTucHQNONHv2bPXq1ctQ7axZs9SzZ09zAzlI06ZNtXnz5lTrjPwx7+zZs/r666+1cuVKhYaG2pUjZ86cunHjhl3XGJGQkKCdO3dq27Zt2r59uw4dOqSzZ8+muoXN399fgYGBqlmzpho1aqQmTZooMDDQ4fnsFRwcrGbNmqVa9+GHH2rkyJGPrElMTNTChQs1d+5cbd68WfHx8XbnqV27tl5++WV17drVoQ8OHj58WHPnztX333+vkydP2n29v7+/OnfurMGDB6tKlSoOywXXZ/Thxx49emj27NnmhsnCrl+/rp07d2rXrl367bffdPToUZ07d04JCQmpXpsrVy6VL19eFSpUUPny5VWnTh3Vr19fHh7mfZ6RkV83TZo0UXBwcKp1Z8+e1eTJk7V06VIdP348TXmKFy+uzp07q3///ipVqlSa7mGV8+fP67ffftMff/yh0NBQHTt2TCdPnlRMTIyh6/PmzaugoCBVr15dNWvWVMuWLVWkSBGTUxuXGd8nJScna+3atZo2bZp+/vnnewMB9siePbuaNWumbt26qXPnzql+f37//fcKCQlJ9b7vvvuuywyGxMbG6tdff9W2bdu0Y8cOhYWF6cyZM6meY15eXgoMDFTt2rXVsGFDNW/e3CXeQ2YkYWFh2rp1q3bt2qUDBw7cG3o3ys/PTyVKlFDJkiVVsmRJlS1bVnXr1lX16tXl6emZ7nw9e/bUnDlz0n0fRzLzz58RERH3zvk//vhDR48eVXh4uG7dumXo+ly5cqlMmTKqXr26atSooebNm+uxxx4zJevDZLXX7EE409KHv1sGAAAAAAAAkF6Z8blco9hcBAAAkEnEx8fr119/dXYMl/Dbb78pPj7eIQ8jAZnNgQMHNHLkSC1fvjzVoR2rbNu2TfPmzdOSJUt07do1u6+Pioq69wDdzJkzJUk1atRQly5d1K1bNwUEBDg6smWSkpI0ZcoUjRs3TmfPnk3XvUJCQhQSEqKPP/5YEydOVMeOHdN1v6NHj2rkyJFauHChoQe1HyYqKkrffPONZs2apa5du+rzzz/PEn8hAzhTZGSkFi9erKVLlyo4ODjNWy9v3LihnTt33jfc7u/vr2bNmunJJ5/U008/rRIlSjgqtsOcOnVKI0eO1IIFCwwNUT3KmTNnNH78eE2cOFEvvfSSxowZo4IFCzooafpcvnxZv/zyi37++Wdt2bJFp0+fTtf9IiMjtX37dm3fvv3ef6tSpYo6d+6sPn36uMzXnR6u9D5p8eLFGjFihE6cOJGu+8TFxWndunVat26d3n33Xb311lt69dVX5ebm9sD6tWvXGnqwf+DAgU4dLkpMTNTatWu1cOFCrVy5UtHR0XbfIzY2VocOHdKhQ4fufc21atXSCy+8oD59+ihXrlwOTp05hIeHa8aMGVqyZImOHTuWrntFR0fr4MGDOnjw4H3/PXv27Kpevbrq16+vtm3bqmnTpnJ3d09Xr8zo+vXr2rBhw71zPiwsLF33u3Hjxr0/M9xVpkwZPfvss+rbt2+WHFSxCmcaAAAAAAAAAMAVPPhfEAEAAJDh3LlzJ10Pd2cmycnJio2NdXYMwKVER0frzTffVPXq1bV06VKnPzArSWvWrFHDhg3VuHFjff3112kaLHqYvXv36t///rdKlSql119/XefPn3fYva2yf/9+1a9fX4MGDUr3YNFfnTt3Ts8995yeeeaZND20lpiYqPfee08VKlTQd99957Dfe5KTkzVv3jxVrlxZv/zyi0PuCeB+YWFheu2111SsWDH169dP69evT/Ng0cNERUVp5cqVGjhwoAIDA/XUU09p2bJlDu+TFsnJyZo4caIqVaqkOXPmpHuw6K8SExM1e/ZsVahQQd9++63D7muv48ePa+zYsapbt64KFSqkbt26ad68eekeLHqY0NBQvffeeypevLi6du2a7kEYZ3Gl90knT55U48aN1blzZ4f/fJ46dUr9+/dXw4YNdfjwYYfe2yp37tzR5MmTVaZMGf3rX//SggUL0vR+5mF2796tN998UyVKlNDw4cMd+v40ozt48KA6dOigMmXKaMyYMekeLHqUuLg47dq1SxMmTFCLFi1UuHBh9evXT5s2bcryf+9x/vx5TZo0Sc2aNVP+/PnVqVMnTZ8+Pd2DRQ9z7NgxjR07Vo899piefvpp7du3z5Q+WRVnGgAAAAAAAADAlTBcBAAAkEnkzJlTNWrUcHYMl1CjRg3lyJHD2TEAl3H8+HHVrl1bn3/+uUs83H3y5Em1atVKbdu21Y4dO0ztdefOHX311VcqW7asPvvsM5f4+o347rvvVLt27fs+NdzRVq5cqcaNG+vChQuGrzl9+rSaNGmiTz75xLQHry9fvqw2bdpo7ty5ptwfyIquXr2qV199VRUqVNC0adN0584dS/omJyfrp59+UseOHVWsWDFt2bLFkr4PcuPGDT355JN64403FBMTY1qf69ev66WXXtLw4cMtewA+KipK//3vf1W3bl2VKVNGw4cP12+//WbpA/gJCQlasGCBypcvr2HDhmWoQX9Xep/0/fffq1q1atq2bZupfXbt2qXq1atr0aJFpvZxtCVLlqhMmTIaOHCgTp06ZWqvW7duaezYsQoKCsry70lu376t119/XVWqVNHy5cuVnJxseYYrV65o6tSpeuKJJxQZGWl5f2eLj4/X7Nmz1bx5cxUvXlyDBw9WcHCwpYOQKSkp+vHHH1WjRg316NFD169ft6x3ZsWZBgAAAAAAAABwNQwXAQAAZCKvvvqqsyO4hNdee83ZEQCXsXXrVtWtW1dHjhxxdhRJ0tdff61KlSrp559/trTv7du39dZbb6lOnToKDw+3tLe9xowZo65duyouLs70Xvv27VOjRo109erVVGsPHTqkevXqmT4QJv25AaRnz54Z7qFnwBXNnj1bZcqU0ddff+2UB8LvunTpktPO3xMnTqhevXrasGGDZT3Hjh2rIUOGWNJr+/btGjRokH777TdL+j1KQkKCvvjiC9WqVUsHDhxwdpxUudL7pHHjxumFF17QrVu3LOkXFxenF154QRMnTrSkX3pcvHhRrVu3VqdOnSzfRhkREaEePXqoQ4cOioqKsrS3Kzh+/Lhq1qypr776yqm/h2R14eHh6tWrlzZu3Oj01yElJUVz585V1apVtXXrVqdmyag40wAAAAAAAAAArorhIgAAgEykR48eKlGihLNjOFXJkiXVvXt3Z8cAXMLevXvVtm1bXbt2zdlRlJCQoP79++vVV1/V7du3nZbj999/V+3atS19wNweX3zxhd555x1Lt02cPHlSHTt2VEJCwkNrQkND1bRpU126dMmyXCkpKerevbtLPCwPZEQxMTHq3r27evXqpRs3bjg7jtPc3bgWFhZmee+vvvpK48aNs7yvKzh48KAaNmzo1G1VqXGl90nvvfee3n77bcv7pqSk6I033tC0adMs723Utm3bVLNmTa1bt86pOZYvX54hhtQdae/evapXr55LDN/B9Zw9e1YtWrTgwwDsxJkGAAAAAAAAAHBlHs4OAAAAAMfx9PTUu+++q759+z6yziO7p5q+/ZrcsmWct4NJ8QnaPG6aEuPiH1n37rvvytPT06JUgOs6efKk2rRp4xKfRpyQkKCOHTtq1apVzo4iSbp27Zqeeuopff/993r22WedHeeeRYsW6c0333RK7y1btmj48OH6/PPP//H/nTlzRi1atFBERITlueLi4tStWzft27dP3t7elvcHMqpLly6pVatWCg0NdXYUp7py5Ypatmxp+VaAv3r33XfVuHFj1a9f32kZnOXWrVtq1aqVfvzxRz3xxBPOjnMfV3qfNHnyZH3yySdOzTBw4EA99thjat68uVNz/N28efPUp0+fRw5AW+nIkSNq0qSJNm3apMcee8zZcUx1/PhxPfXUU4qMjHR2FLiw+Ph4denSRfHx8XrppZecHcflcaYBAAAAAAAAAFxdxnmaFAAAAIb06NFDn3zyiU6fPv3QmsS4eF0/dU5lWz1uYbL0CVu3OdXBIrYWAX9KSkpSly5ddPny5VRr3dzcVLlyZdWpU0elS5dWoUKF5OvrKzc3N0VFRSkyMlKHDh3S3r17tXfvXruzJCYm6oUXXnCZwaK77uZavHixnnnmGWfH0ZEjR9SzZ89UNxa5u7urWrVqqlu3rh577DEVKFBAfn5+SkhI0PXr13XixAnt2rVLO3bssPuhta+++kq9evVSpUqV7v232NhYdezY0dBgUeHChdWoUSMFBQWpRIkS8vf3l6enp6Kjo3X27Fnt379fGzdutHv70dGjRzVq1Ch9+umndl0HZFWnT59WixYtdPz4cWdHcaqkpCR17NhRx44dS7XW19dXdevWVbVq1VSqVCnlyZNHvr6+SkhI0I0bN3Ty5EmFhIRo+/btdm/fS0xMVK9evbR//35ly5YtrV9OhhUbG6vnnntOu3btUtmyZZ0dR5JrvU/66aefNHjw4LR8GbLZbPfeE5QrV0758uWTn5+f4uPjdevWLYWHh+vQoUPavHlzqtvLEhMT9fzzz+vQoUNpymKGmTNn6pVXXlFycrKzo9zn3LlzatKkiX799VcVLVrU2XFMER8fr+eff94pg+XIeJKTk/Xyyy+rVKlSatiwobPjuCzONAAAAAAAAABARsBwEQAAQCZjdHvRoZXrVbpZfbl7uv5Djonx8Tq8akOqdWwtAv40btw4/frrr4+sqVatmvr27avOnTsrb968hu577tw5zZs3T7NmzTKc5Y033tCyZcsM1/9V2bJl1bp1azVu3Fjly5dXwYIF5e/vr8TExHsPzR44cEC//PKLfvrpJ926dcuu+yckJOiFF17Q9u3bVaNGjTRldITExER169ZNd+7ceWhNuXLlNGjQIL3wwguGXq/IyEjNmDFDY8eO1fXr1w3nGDRokDZt2nTvvw0YMEC7d+9+6DU+Pj56+eWX1b17d9WsWTPVHsnJyVq3bp1GjhypkJAQQ7kk6csvv9SAAQNUrFgxw9cAWVFERISeeOIJhYeHp+l6Nzc31alTRw0bNlStWrVUqlQpFS9eXH5+fvLx8VFiYqLu3LmjiIgIXbx4UceOHdOBAwe0e/duhYSEKC4uzsFfUdq9//772rZt20P/fzc3N3Xs2FE9e/ZUy5YtDQ3+xMTEaPHixRo9erShoaW7wsLCNHnyZA0ZMsTwNWYpUqSI6tSpo/LlyysoKEjFihVTwYIFlS9fPnl5ecnb21txcXG6efOmbty4oevXr+vAgQMKCQlRSEiI9u/fb/eD0devX1fHjh21Z88el3iv7irvky5fvqzu3bvb/fNZsmRJ9e/fX927d1dAQECq9UlJSdq0aZOmTp2qZcuWPXSQOTIyUgMHDpSPj49deczw3Xff6eWXX0516PpB8ufPr5YtW6pWrVqqUqWKihUrpoCAAHl7e8vd3V0xMTG6fPmyTpw4oV9//VUbNmzQtm3b7Op14cIFdejQQVu3bpWXl5fdGV3d+PHj0zQslytXLjVv3lw1atTQY489pjJlyihfvnzy8fGRr6+vPD09FRcXp9jYWEVGRioiIkKnT5/WsWPHdOjQIYWEhOjEiRMO/Vpmz56t2bNnP/D/GzlypEaNGpXqPTZt2qSmTZs6NJeZ8ufPrzp16qhChQoKCgpSyZIlFRAQoPz588vb21teXl5KTk7WjRs37v04fPiwQkJCtHv3bv3+++92f0hBXFycnnvuOR08eFB58uRJV/7M+JpxpgEAAAAAAAAAMgpbSlr+NhsAALiEiIgIFShQ4L7/duXKFeXPn99JidIvLi4u1YchAwMDlT17dosSZUzx8fEqW7bsI7cXSVLN7s9miO1FYes2a++8Hx5ZU7JkSYWFhbnEA4twvtmzZ6tXr16GamfNmqWePXuaG8hBmjZtqs2bN6da5+npqfj4B2/6Klq0qCZOnKhnn31WNpstTTni4uIMncPffvutXnrpJbvv37p1a7399ttq0qSJ4Wuio6M1b948/ec//9GFCxfs6leyZEnt2bMn3Q/C/V1wcLCaNWuWal2+fPl09erVB/5/uXLl0vjx49WzZ0+5u7vbneHSpUt66aWXtGFD6gOad23ZskWNGzfWmjVr1LZt24fW9e7dW59++mma3nekpKRo3Lhxeueddww/VD1w4EBNmjTJ7l5wXUbPoB49ejz0IVP8n9jYWD3xxBPauXOn3deWKlVKgwcP1vPPP69ChQqlqX9cXJy2bt2qFStW6IcfftD58+f/UeOI33ON/LrJly+fIiMjH/pgbevWrfXll1+qTJkyacqQkJCgjz76SJ988onhh3cLFiyo06dPm/Jedd26dWrduvUD/798+fKpVatWat26tZo2baoiRYqkq9fp06c1ffp0zZo1y+7fbz/44ANDD4WnVUZ7n9SuXTutXr3a8H29vLw0cuRIDRkyJM1/Ht67d6/69+//yOGqYsWK6ezZs6ne6+TJkypZsmSacjxKSEiIHn/8ccXGxhq+xt3dXZ07d1bfvn31+OOPy83Nza6e586d01dffaX//e9/iomJMXxdnz59NGPGDLt6ubpr166pVKlShof2bTab/vWvf2no0KFq2LBhmt6v/lVkZKQ2bNig9evXa8WKFbpy5co/aiIiIpQvX7509ZEy1qDKkSNHVL58+Qf+f/7+/mrZsqVat26tJ554QoGBgenqdeXKFc2aNUszZsywewti9+7dNWfOnHT1f5SM9JrdxZlmPf5uGQAAAAAAAEB6Zcbnco2y72+kAQAAkCHc3V6UmkMr1ysp3r5PpLUaW4sA+z3sgdkOHTrowIED6tixY5ofmJVk6CGcM2fO6NVXX7XrvgEBAVq9erXWrFlj12CRJPn5+alfv34KCwvToEGD7Lr21KlTqW57M9PDBotq166tAwcOqE+fPml+ULNgwYJau3at/vWvfxm+ZvLkybp9+7YGDBjwwP/f399fK1as0DfffJPmvzix2Wx6++23NXv2bMO/FufOnavo6Og09QOygoEDB9o9WJQvXz598803Onr0qIYMGZLmwSLpz98bWrRooUmTJunMmTNat26dOnbsmO4HzdPi6tWrDxz6yZ49u2bMmKE1a9akebBIkrJly6aPP/5Y8+fPN/zA76VLl7Rw4cI097RH9uzZ1aVLF/3444+6ePGi5s+fr65du6Z7sEiSSpQoof/85z86ffq0xowZY9eDuZ9++qnOnDmT7gzp5Qrvk1atWmXXYFGpUqW0a9cuvf322+l6GLpGjRratm2bhg0b9tAaI4NFZrl69arat29v10P47dq106FDh7RgwQI1bdrU7ofwpT+HysaNG6cjR46oXbt2hq/75ptv9Msvv9jdz5XNmTPH8GBR2bJltXfvXi1fvlyPP/64Q877vHnzqnPnzvr666914cIFbdy4Ud26dWObyt+4u7urXbt2+v7773XlyhUtXbpUL7/8croHiySpQIECevvtt3X06FHNmDFDOXPmNHzt3Llz0zTknFlxpgEAAAAAAAAAMhqGiwAAADKpHj16qESJEo+suXPjlk5scu0HP05s3Kk7Nx79cFPJkiXVvXt3ixIBGVP//v21ZMkSux4OS4+BAwfa9SnJderU0b59+x65KccIPz8/ffXVV/r+++/tGjhcunSpfvzxx3T1dqSWLVtq8+bNDnkQPFu2bFqwYIGCgoIM1S9btkwDBgzQqVOn/vH/5cmTR1u2bLFrWOlRunXrprfeestQ7a1bt7R48WKH9AUym9WrV+ubb76x65pnnnlGR44cUe/eveXh4eHQPG5ubmrVqpWWLFmiY8eOqX///k4fAvf399eGDRvUp08fh93zxRdf1Pjx4w3Xz5w502G9H6RAgQL66KOPdObMGS1YsEBt2rRx+Gt7l4eHh4YPH659+/apZs2ahq6Jj4/XmDFjTMmTXla+T0pISHjkcM/flStXTlu3blXVqlUd0t/Dw0Pjx4/XuHHjHHI/Rxo4cKDhjVg+Pj6aO3euVq5cqbJlyzqkf9GiRbVy5Uq7fp2+8sordg0OuLp58+YZqmvUqJFCQkJUrVo107K4u7urWbNmmjt3ri5cuKDRo0f/41MCsxp/f3+9+eabOnHihFauXKnOnTubNnhls9nUp08fHTx4UC1btjR83UcffWRKnoyIMw0AAAAAAAAAkNEwXAQAAJBJZYbtRWwtAhyjS5cu+u9//5umTz1Oi1WrVmnVqlWG6xs0aKD169erYMGCDsvQuXNnLV++3K6zYcCAAYqLi3NYhrSqXbu2li9fLm9vb4fd09fXV9OmTTNUm5CQoNmzZ//jv3t5eWnt2rUOf4h01KhReuyxxwzVLlu2zKG9gczg5s2beuWVV+y65p133tEPP/ygvHnzmpTq/5QqVUqTJ0/W0aNHVbt2bdP7PYinp6fWrFmjhg0bOvzeQ4YMUbNmzQzVbt26VVeuXHF4hly5cunTTz9VeHi43n//fUsfvg8KClJwcLDhjYMzZ8405ecgPax+nzRv3jwdO3bMUG2+fPm0du1ahwwb/92///1vDR061OH3Tavly5fr+++/N1RboEABbd++Xd26dTMly/Dhww2/bzp9+rSmTp1qSg6rRUREaN++fanW5cuXT99//71y5Mhhfqj/L3fu3BoxYoROnTqlXLlyWdbXVXh5eWn48OE6deqUPvvss1Q/SMaRihQpojVr1uj55583VL9u3Tr98ccfJqdyfZxpAAAAAAAAAICMiOEiAACATCyjby9iaxGs0KtXL9lsNqf86Nmzp+lfX/ny5TVjxgzZbDbTe901cuRIw7WBgYFauXKl/P39HZ6jdevWmjJliuH606dPa9asWQ7PYY/cuXNryZIl8vHxcfi9H3/8cbs+dfzvvvrqK9WpU8eBif6UPXt2vf/++4Zqf/nlFz5JG/ibsWPH6tKlS4brP/zwQ33yySeW/r4gSSVKlFDFihUt7XnX5MmT1ahRI1PubbPZ9MUXXxj6+UxOTjZlS169evX09ttvy9fX1+H3NsLPz0/Lly9XmTJlUq2Nj4/XggULLEhljNXvk1JSUvT5558brv/2229VqlQp0/J89tlnpn1v2CMhIcHwoFPu3Lm1ceNGUzfmSFLfvn0Nvz/59NNPdfv2bVPzWOHXX39VSkpKqnX//ve/VbhwYQsS/ZO3t7dpG9lcWcmSJTVmzBjlyZPHKf09PDw0d+5cw0O6zv4zlbNxpgEAAAAAAAAAMiqGiwAAADKxjLy9iK1FQPrZbDbNnj3blEGVh1mzZo327t1rqNbDw0OLFy82dXNG79691bt3b8P1Y8eOVWJioml5UjNu3DgVL17ctPv369cvTdc1b97c7s0o9nj++ecNPSwZFxenkJAQ03IAGc3Fixf15ZdfGq7v2bOnXQOgmUHr1q318ssvm9qjWrVqat68uaHarVu3mprFWXLlyqU5c+YY2v4zd+5cCxKlzhnvk3755RcdOnTIUG2fPn305JNPmprHzc1NM2fOVPbs2U3tk5oZM2bo5MmTqda5ublp4cKFlg0qjhw50tDw1eXLl7Vw4UILEpnr6NGjqda4ubmZtl0Frs3T01Nz5841dGYuWLDAqX+mcjbONAAAAAAAAABARsVwEQAAQCaXUbcXsbUISL+uXbuasmnmUb766ivDtcOHD1eNGjVMTPOnL774QkWKFDFUe+rUKS1fvtzcQA9RrVo19enTx9Qebdu2lZ+fn13X2Gw2TZw40ZxA/1/27NnVoUMHQ7U7duwwNQuQkUyYMMHwJ8tXrlzZrm1umYGHh4ddvy+lh9FB1u3bt5ucxHnq16+vTp06pVr3+++/6+LFixYkejRnvE+aP3++oTofHx998sknJqf5U5kyZdS/f39Lej1IQkKC4a/19ddfN33g6q/c3Nw0ffp0ubu7p1o7Y8YMCxKZ6/z586nWBAQEqFChQhakgSsKDAzUoEGDUq2LiIjIsh8IwJkGAAAAAAAAAMjIGC4CAADI5DLi9iK2FgHpZ7PZ9M4771ja8+LFi1q/fr2h2oIFC2rEiBEmJ/pTzpw59fHHHxuud9ZGhXfeeUc2m83UHp6ennriiSfsuuaZZ55RpUqVTEr0f5566ilDdfv37zc5CZAxxMXFadasWYZqbTabvv76a3l5eZmcyrV07dpVjz32mCW92rRpo2zZsqVad/z4ccXFxVmQyDmGDh1qqG7DhtTf65vJGe+TYmNjDQ8w9+vXTwEBAeYG+osRI0Y47XxYtWqVoaGWggUL2vV+zlGCgoIMfaDFzp07dezYMQsSmSc6OjrVmqJFi1qQBK7s9ddfN7SlztnnvLNwpgEAAAAAAAAAMjKGiwAAALKAjLa9iK1FQPo1b95c5cuXt7TnggULlJSUZKh2+PDh8vHxMTnR/+nevbvKlStnqHbt2rWKiIgwOdH9ChQoYHhzT3rVrVvXrvpXXnnFpCT3q1evnqG6sLAwk5MAGcPSpUt19epVQ7Xdu3c3/D2WmfTr18+yXjlz5lSVKlVSrUtOTtbRo0ctSOQcderUUcmSJVOtCw4ONj3LozjjfdLGjRsVFRWVap3NZrN8k1D+/PkNbZ0yw9dff22obvjw4fL19TU5zYMNHjzYUN2PP/5ochLnS0hwjQ8kgfMUKlRIjz/+eKp1zj7nnYUzDQAAAAAAAACQkTFcBAAAkAVkpO1FbC0CHOP555+3vOfKlSsN1fn5+alXr14mp7mfu7u74Qd1ExMTtXbtWpMT3a9Tp07y8PCwpFfVqlUN1+bNm1etWrUyMc3/KVq0qPLmzZtq3fHjxy1IA7i+hQsXGqpzc3OzfEOLKyhTpozdw5TpVbt2bUN1J06cMDmJczVr1izVmtDQUAuSPJwz3icZ3eLRpEkTBQYGmpzmn6x+byZJly5d0i+//JJqnZ+fn/r06WNBogerVq2aKlasmGrdunXrLEhjHiPvw06fPq3k5GQL0sCVZYRz3hk40wAAAAAAAAAAGR3DRQAAAFlERtlexNYiIP1sNpueeeYZS3vGxMRo165dhmo7d+6sHDlymJzon3r06KHs2bMbql2/fr3Jae5n1QCPJJUuXdpwbfPmzeXu7m5imvsZyXbjxg3FxcVZkAZwXbGxsYYHFdq2bauyZcuanMj1tG7d2vKeRn+eL1++bHIS56pUqVKqNQcPHnTagIIz3idJ0qZNmwzVtW/f3twgD9G4cWPlyZPH0p5r1qwx9OugY8eO8vPzsyDRw7Vt2zbVmm3btmXowZt8+fKlWnP9+vUsu5EG/8fIOR8REZHpf7/7O840AAAAAAAAAEBGx3ARAABAFpERthextQhwjPLlyyt//vyW9tyyZYvi4+MN1T777LMmp3mwnDlzqkWLFoZqrR4uevzxxy3rVaxYMcO1jRo1MjHJPxnNduXKFZOTAK5t06ZNun37tqHabt26mZzGNTVp0sTynqVKlTJUl9kftk7tAw0k6fbt2zp79qwFaf7JGe+TYmNjDW/xeOqpp0xO82AeHh5q2bKlpT2Nbor817/+ZXKS1NWrVy/VmpiYGB07dsyCNOYw+j7s3XffZeAgizNyzkvSkSNHTE7iWjjTAAAAAAAAAAAZHcNFAAAAWYirby9iaxHgGA0aNLC8Z0hIiKE6Ly8vwwM+ZjC6qeDixYs6f/68yWn+VKJECeXMmdOSXpLk6+treINTlSpVTE5zv7x58xqqu3HjhrlBABe3bds2Q3VeXl56+umnTU7jmqpVq2Z5TyNbPyTp5s2bJidxLn9/f0N1Fy9eNDnJgznjfdLhw4eVlJSUal3evHlVrlw5CxI9WP369S3tZ2QDm81m0xNPPGFBmkerWrWqobrff//d5CTmMTrsvmvXLvXv358BoyzM1c95Z+FMAwAAAAAAAABkdAwXAQAAZCGuvL2IrUVwllmzZiklJcUpP2bPnm3K11ShQgVT7vsoRj+Nv3bt2oYHW8zQuHFjw7VGv6b0Klu2rCV9/sroA4FlypQxOcn9cuTIYaguLi7O5CSAa9u7d6+huoYNG8rb29vkNK4nW7ZshrcIOVKuXLkM1WX2M8zoe3VnPXTujPdJBw4cMFRXq1Ytk5M8Wu3atS3rFR4eruvXr6da99hjjxn+3jJT0aJFZbPZUq3LyFs+AgICVKlSJUO106ZNU9u2bXXy5EmTU8EVufo57wycaQAAAAAAAACAzMDD2QEAAABgrR49euiTTz7R6dOnH1pzd3tR2VbGPrnYEdhaBDiOMz7xfv/+/YbqrP5E/L8rV66ccufObejBr9DQULVu3dr0TIULFza9x98ZeSDQ3d1dAQEBFqT5P0YfVMzsD+YDqTH6KfJNmjQxOYlrKly4sKEHZh3N6PCss8+w5ORkHTlyRKGhoTp27JiOHz+uCxcu6OrVq7p69apiYmIUFxen+Ph4JSYmmpYjIiLCtHs/ijPeJ504ccJQnTO3FklSUFCQZb2MnmPOGAZ7EE9PT+XKlSvV95Dnzp2zKJE5OnbsaHgYbt26dQoKCtKLL76ofv36qU6dOiangz1OnDihffv23Tvnz507p6tXryoiIkJRUVGKj49XXFxcpjznnYEzDQAAAAAAAACQGTBcBAAAkMXc3V7Ut2/fR9YdWrlepZvVl7tnNtMzsbUIcCyrh1VSUlIMf2q5sx+mstlsqlChgrZv355qrdEHgdMrb968lvT5q2zZUj/bc+bMKXd3dwvS/B8juSSZ+hAk4Opu3Lihy5cvG6qtWrWqyWlcU548eZzS15XPsGPHjmnVqlVau3atfv31V0VFRVme4e/u3LnjlL7OGOo1ur3D6o2Bf5cnTx7lzZtXkZGRpvcyuiGyZMmS5gaxg7e3d6Z/EH/w4MH64osvDJ8R8fHxmj17tmbPnq2yZcvqueeeU7t27VSnTh25ubmZnBZ/de7cOa1evVo//vijdu7cacn3cWqcdc47A2caAAAAAAAAACAz4F93AAAAsqAePXqoRIkSj6y5u73ICmwtAhzL6m0zERERSkhIMFTr7E/kl6Ty5csbqrtw4YLJSf7k5eVlSR97uWou6c+BNiCrOnv2rOHaSpUqmZjEdXl7ezs7wiNZdYbFxMRo+vTpql27tsqWLathw4Zp/fr1LjFYJEmxsbFO6Wv1+yTJ+HBRoUKFTE6SuoIFC1rS51GbdP/qyy+/lM1mc4kfRt4bXrt2Lb0/NU6VJ08evf7662m69ujRoxo9erTq16+vfPny6dlnn9XEiRO1e/duBsNNkpCQoIULF6pZs2YqVqyY+vXrp9WrV7vEYJHkvHPeGTjTAAAAAAAAAACZAZuLAAAAsiBX2l7E1iLA8fz9/S3tZ88QTtGiRU1M4tgMVg0XGd10YTVXzZVZWP2J8nnz5lX9+vUt6wfzGB0ustlsKl68uMlpXFNWP7/i4+M1ZcoUjR49WleuXHF2nIeKi4tzSl+r3ydJfw5iG1GgQAGTk6Quf/78lvTJrNswMsOmlvfff18bN27Ujh070nyP69ev64cfftAPP/wg6c+hz5o1a6pevXpq0KCBGjVqZNmvtcwoOTlZ8+fP18iRIw1vkHUGZ53zzsCZBgAAAAAAAADIDBguAgAAyKJ69OihTz755JGfrnp3e1HZVo+bloOtRYDjZc+e3dJ+Rh+YlVzjoVmjGez5ugB7jRgxQps3b7asX5MmTRQcHGxZP5jn8uXLhury588vDw/+6i+r2b17t3r27KmDBw86O0qqkpOTndLX6vdJkvGHs3PlymVuEBfKcP78eUv6WC0zPIjv6empZcuWqVatWg4bmLhz5462bdumbdu23ftv5cqVU8uWLdWqVSs1b97c5bfOuYpjx46pV69e2r59u7OjpMpZ57wzcKYBAAAAAAAAADIDN2cHAAAAgHPc3V6UmkMr1yspPsGUDGwtAsxh9cYGow8c+fr6usT3ct68eQ3V8SAVAFcUExNjqM7oWYfMY8qUKapfv36GGCxyJmdstjK6vcMV3idZNXx148YNS/pYLT4+3tkRHCIgIEDBwcEqW7asaT3CwsL03//+V+3atVP+/PnVuXNnrVixQomJiab1zOiWL1+u6tWrZ4jBoqyGMw0AAAAAAAAAkBkwXAQAAJCF9ejRQyVKlHhkzd3tRWZgaxGQOcTGxhqq8/LyMjmJMUZzGP26AMBKGe3MhTXeeecd9e/fn4fyXZTRh7NdYbjIqgyZdYg7JSXF2REcpnTp0goJCbHkz+MxMTFavHix2rdvr2LFimnUqFG6du2a6X0zkqlTp6pjx46Gh4xhLc40AAAAAAAAAEBmwHARAABAFubM7UVsLQIyj4z0afyS8U/kZ7gIgCtiuAh/N378eI0ZM8bZMfAI7u7uhupcYTjMqgy8z8oYcuTIoTlz5mjTpk2qVauWJT0vXbqkkSNHqkSJEho1ahTDNJIWLVqkAQMGKDk52dlR8BCcaQAAAAAAAACAzMDD2QEAAADgXD169NAnn3yi06dPP7Tm7vaisq0ed1hfthYBmYebm7HPrXCVh+GM5jD6dQGAlTLamQtzBQcH66233krz9X5+fqpSpYoqVaqkUqVKqXjx4ipQoIAKFCigHDlyyM/PTz4+PvLw8JC7u7uhIZng4GA1a9YszZkyI6PDfkY3HJnJ6NB4eiUkOPbDK2Cupk2bKiQkRD/99JMmTZqktWvXmv77THR0tEaOHKk5c+Zo5syZatq0qan9XNWRI0fUs2fPNP98e3l5qVKlSqpcubJKlSqlkiVLqkCBAgoICLh3zvv6+srDw+PeWZ+aU6dOqVSpUmnKk1lxpgEAAAAAAAAAMgOGiwAAALK4u9uL+vbt+8i6QyvXq3Sz+nL3zJbunmwtAjIXow/MWvWwamqM5mDrBwBX5O3tbaiOT9DP/GJiYtSjRw+lpKTYdV2VKlXUpUsXtWzZUtWrV2eY1gJGtya6woaW27dvW9LHy8vLsl5wnFatWqlVq1Y6f/68Fi1apGXLlmnXrl2mbrw6efKkWrRooXHjxmno0KGm9XFFycnJ6t69u+7cuWPXdaVLl1aXLl3UqlUr1atXTx4e/FOg2TjTAAAAAAAAAACZAf9yDAAAAPXo0UMlSpR4ZM3d7UWOwNYiIHMxOoRj70NxZjH60BfDRQBckdHhIh5wzfwmTpyoM2fOGK5v3Lixtm3bpj/++EPDhw9XzZo1TRksSkpKcvg9M7pcuXIZqrty5Yq5QVwog9Gz7N1331VKSkqG+XHq1Clzf+JcRJEiRfTGG29o69atunr1qn744QcNGzZM9evXN+UDQpKSkjRs2DB9/PHHDr+3K/vuu+8UEhJiuL5y5cpatWqVjh8/ro8//liNGjUyZbCIc/6fONMAAAAAAAAAAJkBw0UAAAC4t70oNYdWrldSfEK6erG1CMh8fH19DdXFxcUpKirK5DSpi4iIMFTn5+dnchIAsJ+/v7+husuXL5ucBM50+/ZtjR8/3lCtzWbT6NGjtXnzZjVs2NDkZK4zTOxKChUqZKguKw0XGX3/yBY215czZ061b99e48eP144dO3Tz5k0FBwfrk08+UevWrZU7d26H9frggw/0/fffO+x+rs6eYaqBAwdq9+7devrpp01M9CfO+X/iTAMAAAAAAAAAZAYMFwEAAECSdduL2FoEZD4FCxY0XJuRHpq15+sC7BUcHGzpp44HBwc7+0uGgxQtWtRQ3a1btxQTE2NyGjjL0qVLdePGDUO1EyZM0IgRI2Sz2cwN9f9FR0db0icjMTpcdOLECZOTPFpsbKwuXLhgSa+AgABDdfx6yni8vLzUpEkTvfPOO1qzZo0iIyMVGhqqL7/8Uk8//bThIYyH6du3b5YYoN26davCwsIM1Q4ZMkSTJk2y7ANa+L78J840AAAAAAAAAEBmwHARAAAAJFmzvYitRUDmVLhwYcO1p06dMi+IQeHh4Ybq7Pm6AMAqRoeLJOcPKsA83333naG6Z555Rq+//rrJae5n1XBKRlK8eHFDdUePHjU5yaMdP35cycnJlvQy+nPCr6eMz2azqXLlyho8eLBWrVqlyMhIrVq1St26dZOPj4/d97t165Y++OADE5K6FqPnfI0aNQxvsnMUvi//iTMNAAAAAAAAAJAZMFwEAACAe8zeXsTWIiBzypEjh/z9/Q3VGv30bTMdOXLEUF2RIkVMTgIA9itatKjc3Iz9ld7+/ftNTgNnSExM1NatW1Ots9lsGjdunAWJ7nf27FnLe7q6ihUrGqrbt2+fuUFS8fvvv1vWK7U/d9515swZk5PAatmzZ9fTTz+tuXPn6uLFi5owYYLdG0PnzJnjEhtRzbRp0yZDdZ9++qnc3d1NTnM/zvl/4kwDAAAAAAAAAGQGDBcBAADgHjO3F7G1CMjcgoKCDNWFhoaanOTR4uPjDQ8XlS9f3uQ0AGC/7Nmzq1y5coZq9+zZY3IaOENoaKiio6NTrWvSpInKli1rQaL7Ofv3eldUqVIlQ3XHjx9XRESEyWkebufOtH2IRFoYfZ8VFhamxMREk9PAWXLkyKEhQ4bo+PHj6t27t+Hr4uLitGTJEhOTOVdkZKShP7OUKlVKLVu2tCDR/Tjn/4kzDQAAAAAAAACQGTBcBAAAgPuYtb2IrUVA5la5cmVDddu3bzc5yaPt3btXsbGxhmqrVKlichoASJsaNWoYqtu4caPJSeAMRodkn3rqKZOT/FNKSorTt++4onz58qlYsWKGap35fWtl79q1axuqi42N1aFDh0xOA2fz9fXVN998o4EDBxq+Zs2aNSYmci6j215btWplcpIHs3LLWUbBmQYAAAAAAAAAyAwYLgIAAMB9zNhexNYiIPOrWrWqobqDBw869RP5g4ODDdXZbDbDA1MAYLVatWoZqgsNDdWlS5dMTgOrhYeHG6pzxpDsvn37dO3aNcv7ZgRNmzY1VLdixQpzgzzEkSNHDA80OEKlSpXk4+NjqJZByaxjwoQJqlixoqHaXbt2pauXm5vr/vOYK5/zkZGR+uOPPyzvK7n2a8aZBgAAAAAAAADIDFz3b+IBAADgNI7eXsTWIiDza9iwoaG6lJQUrVq1yuQ0D/fDDz8YqqtSpYr8/f1NTgMAadOiRQtDdSkpKVq4cKHJaWA1o8M7RYsWNTnJP2XmTSLp1axZM0N1q1atUlRUlMlp/mnBggWW9nN3d1fjxo0N1a5cudLkNHAVHh4eev/99w3VRkZGpmuYMVu2bIbqEhMT09wjrVz5nF+3bp2Sk5Mt7yu59mvGmQYAAAAAAAAAyAwYLgIAAMA/OHJ7EVuLgKyhevXqyps3r6HaxYsXm5zmwU6ePKmQkBBDtS1btjQ5DQCkXaVKlVIdBL9rzpw5JqeB1WJiYgzVGd2g4Ejz5s2zvGdG8dRTTxnauhEdHW35z2NiYqJmzJhhaU9JeuaZZwzVbd68WWfOnDE5DVxF69atDQ+RnD9/Ps19jP79w507d9LcI61c+ZyfO3eu5T3vcuXXTOJMAwAAAAAAAABkfAwXAQAA4IEctb2IrUVA1uDm5qbmzZsbqv35558VHh5ucqJ/mjp1qlJSUgzVMlwEwNW1a9fOUN2+ffv0888/m5wGVkpKSjJUd/PmTZOT3G/Tpk0KCwuztGdGUqhQITVp0sRQ7fjx45WQ8OgPcXCkWbNm6eLFi5b1u+uZZ56RzWZLtS45OVlTpkyxIBFcQY4cOVS8eHFDtdHR0WnuY3RL6fXr19PcI61c9Zw/ceKE1q9fb2nPv3Ll10ziTAMAAAAAAAAAZHwMFwEAAOCBHLG9iK1FQNbSqVMnQ3XJycmaOHGiuWH+5ubNm4Y/kT9fvnxq1qyZyYkAIH169uxpuHbkyJGGhyvh+ry9vQ3VXb582eQk9/voo48s7ZcRdenSxVDdyZMnNXXqVJPT/CkmJsZpr13hwoUND3RPnjzZ8l/TcJ78+fMbqkvP721Ge1y4cCHNPdLKVc/5//znP0pOTra051+58msmcaYBAAAAAAAAADI+hosAAADwUOndXsTWIiBradeunXLlymWodtq0aTp9+rS5gf7is88+07Vr1wzVdunSRdmyZTM5EQCkT82aNVWjRg1DtTt37tSsWbNMTgSrGP29NjQ01Nwgf7Fy5UoFBwdb1i+j6tKli3Lnzm2o9t1339WZM2dMTiQNHz5c586dM73PwwwaNMhQXVRUlN555x2T08BV3Lhxw1Cd0U02DxIQEGCo7vjx42nukVaueM7//vvvmjdvnmX9HsSVX7O7ONMAAAAAAAAAABkZw0UAAAB4qPRsL2JrEZD1ZM+e3fAn8sfHx2vw4MEmJ/pTWFiYPv/8c8P19mwDAQBnMvoAqyS9+eabOnnypIlpYJWSJUsaqlu9erW5Qf6/mzdvauDAgZb0yuj8/Pz02muvGaqNiopSly5dFBcXZ1qeFStWaPLkyabd34g2bdqoTJkyhmpnzpypFStWmJwIzpacnKyzZ88aqjU6bPIgpUuXNlS3Z8+eNPdIK6Pn/I8//mhukP8vISFBr7zyipKSkizp9zCu/JrdxZkGAAAAAAAAAMjIGC4CAADAI6V1exFbi4CsadiwYXJ3dzdUu3LlSs2ZM8fUPAkJCerZs6diY2MN1bds2dLwJhAAcLZu3bqpXLlyhmqvX7+ujh076vbt2yangtmCgoIM1e3cuVNhYWGmZklJSVG3bt0MDwJAev311+Xn52eodseOHerdu7eSk5MdnuO3335T165dlZKS4vB728PNzU2ffPKJ4foePXpYuq0F1vv5558VExOTal2ePHlUoECBNPcJCAhQzpw5U60LDQ3VpUuX0twnLYye82fPntX69etNTiO98cYbTh3YucuVX7O7ONMAAAAAAAAAABkZw0UAAAB4pLRsL2JrEZB1lS5dWi+88ILh+n79+mn37t2m5RkwYIB27dpluP69994zLQsAOJq7u7s+/vhjw/W///672rVrZ3jgEq6pRo0aypYtW6p1SUlJevPNN03N8sYbb2jVqlWm9shsAgICNGLECMP1CxYsUJcuXRz6fbtx40a1aNHC0ACHFTp16qSGDRsaqr1586ZatWqlAwcOmJzKuJ9//llTpkxxdox0iYqKUt++fRUeHu7sKJo0aZKhunr16qW7V61atVKtSU5O1tdff53uXvYoUqSIihYtaqj2zTffNGUA8a4JEyY4fcPZX7nqa/ZXnGkAAAAAAAAAgIyK4SIAAACkyt7tRWwtArK2UaNGycvLy1DtnTt31LZtW1M+rXnEiBGaPn264frWrVvr8ccfd3gOADBTp06d1KJFC8P1GzduVMuWLXXlyhUTU90vMTFRM2bM0E8//WRZz8zM29vb8EPLq1ev1tSpUx2eITk5WUOGDNGXX37p8HtnBUOHDlVgYKDh+kWLFqlu3brpfvg8Pj5eo0aN0pNPPqmoqKgH1mTPnj1dPdJq8uTJhj944tKlS2rUqJHWrVtncqqHS0pK0g8//KD69eurVatWLrHVJT2SkpI0ffp0lStXTt27d3fa1/O///1Pa9asMVTbpk2bdPdr1KiRobqxY8ea+oEID2L09/Y//vhD77zzjikZPv/8cw0dOtSUe6eVK79mf8WZBgAAAAAAAADIiBguAgAAQKrs2V4UH3ObrUVAFle6dGm7PpH/ypUratasmcMeOo+NjdUrr7yiTz/91PA13t7eLvWJ3ABgj2+++Ub+/v6G67dt26aaNWuaPuwTExOjyZMnq1y5cnrllVd08eJFU/tlJZ06dTJcO2DAAH377bcO6x0REaF27doxWJQOXl5emjdvntzd3Q1fExoaqmrVqqlv3746cuSIXf1iY2M1Z84cVahQQSNHjlRSUtID6ypWrKhnn33Wrns7StWqVTV69GjD9Tdv3lSbNm00aNAg3br16A+2cKQLFy5o7NixKl26tJ599lm7NmRmBImJiZo3b55q1aqlBg0aaN68eZZtuJo2bZqGDBliqNbLy8uubakP8/TTTxuqu337tpo2barRo0fr2rVr6e5rhD3n/NixY+36s09qoqOj1bt3b9O336WFK79mf8WZBgAAAAAAAADIiDycHQAAAAAZQ48ePfTJJ5/o9OnTD625c+OWNn06ha1FADR8+HAtWrRIBw8eNFR/7do1tW7dWoMHD9bIkSOVK1euNPXdvn27+vfvb/cmpI8//lilSpVKU08gqxk5cqRGjRplWb85c+Zozpw56b5PSkqKA9K4puLFi+t///ufunXrZviac+fO6amnnlKnTp30/vvvq3Llyg7Ls3v3bs2ePVsLFizQ9evXHXZf/J8XX3xRb7/9tqKjo1OtTU5O1ksvvaQtW7boiy++kK+vb5p6JiYmau7cuXr77bd19erVh9YFBgYqPDw8TT2ykgYNGuiDDz7Qhx9+aPiau9tlpk+ffm+7RJ06dVS2bFnlz59fvr6+io+PV1RUlMLDw3Xw4EFt2rRJa9asSfV70c3NTTNmzDBl05VRQ4cO1caNGw1vrklJSdF///tfLVy4UCNGjFCfPn2UM2dOh+e6dOmS1qxZo4ULF2rDhg1KTk52eA9XtHPnTu3cuVP9+vVThw4d9Nxzz6lly5by8fFxaJ/w8HC99957+u677wxf061bN+XNmzfdvWvVqmX4zIqJidG7776rDz/8UHXr1lXNmjUVGBio/Pnzy8fHRx4exv65rVq1aipatGiqda1atVLJkiV16tQpQ/cdMWKEfv31V02fPl358uUzdM3fpaSkaPny5Ro6dOgj+zrznHfl1+zvONMAAAAAAAAAABkNw0UAAAAw5O72or59+z6y7lr42VTvxdYiIPPz9PTU0qVLVadOHcOfvJySkqIvv/xS8+bN06uvvqqXX35ZgYGBqV6XlJSkDRs2aNKkSVq9erXdWdu3b6+hQ4fafR0AuJKXXnpJBw4c0NixY+26bvHixVqyZIlatGihLl266F//+pfdD2zfuHFD27dv1/r167VixQqdPHnSruthv1y5cum1117T+PHjDV/z9ddfa+XKlXrttdf06quvqmDBgoauO3funBYsWKBp06al+jB34cKF9dlnn6ljx46Gc2Vl7733nkJDQ7V06VK7r707+OEoH3zwgerVq2d4uMhmszms91/v+f3336tp06bas2eP4euuXr2qYcOG6f3331enTp30zDPPqGXLlvLz80tTjsuXL2vXrl3asWOHNm3apN27d2fqAdXUxMTEaP78+Zo/f768vLzUtGlTNWnSRA0bNlStWrXk7e2dpnv+8ssvWrp0qRYuXKjExETD1/r7++ujjz6yu+fDDB482PDGJOnPQcvt27dr+/btaeo3a9Ys9ezZM9U6d3d3vfnmmxo4cKDhey9fvlzBwcHq3bu3+vfvr9KlSxu67urVq1q0aJGmTZuW6oc0+Pn56euvv1aLFi0M53I0V33N/o4zDQAAAAAAAACQ0TBcBAAAAMOMbC9KDVuLgKyjXLlymjNnjjp27GjXpyFfu3ZNY8aM0ZgxYxQUFKQGDRooKChIhQoVkp+fn5KSknTr1i2Fh4frwIEDCg4O1o0bN9KUMSgoSHPmzDHlAVkAsNqYMWMUHh6uxYsX23VdSkqKfvnlF/3yyy+y2WwKCgq69+n+xYoVk5+fn3x8fJSYmKg7d+7o6tWrOn/+vI4fP66DBw/q+PHjfOq9E7z33nuaO3eurly5YviaS5cu3ds+VqFCBTVo0EDlypVT7ty5lTt3bqWkpCg6Olrnzp3TsWPHtHPnToWFhRm6t81m06xZs/gQATu4ublp/vz5unTpUpofeneEF154wa4NSpKULVs2U7L4+flpzZo1atSokY4dO2bXtbdv37637c7d3V1BQUGqVq2aSpQooaJFiypnzpzy9vaWu7u7YmNjFRsbq+vXr+vy5cu6ePGijh8/rsOHDysyMtKUry0ziI2N1bp167Ru3TpJf/4aLlWqlCpWrKgSJUqocOHCCggIkLe3t7y9vZWcnKzo6GjFxMQoIiJCYWFhOnLkiA4cOKC4uLg0ZZg4caLh4UgjXnnlFX3xxRc6c+aMw+7pKK+++qqmTJlieBus9OfA7xdffKEvvvhCpUuXVoMGDVSpUiXlyZNHuXPnlpubm2JiYnThwgUdP35cv/32m0JDQw0Pm0yYMMHw0JJZXPk1+zvONAAAAAAAAABARsJwEQAAAAwzur3oUdhaBGQt7du317Rp09S3b980fTrykSNHdOTIEROSSYGBgVq/fr1y5Mhhyv0BwGo2m00LFiyQu7u7Fi5cmKZ7pKSk6PDhwzp8+LCD08HRcubMqWnTpqlDhw52X5uSkqKDBw/a9cB6aj777DM9+eSTCg4Odtg9swIvLy+tXbtWHTp00IYNGyzv/+STT2rWrFl2X5c9e3YT0vypQIEC2rZtm9q0aWPXto+/SkpKcvivcfxTcnKyTpw4oRMnTljSr2/fvurdu7dD7+nj46OpU6eqbdu2LrfNxcPDQ7NmzVKjRo0UHx9v9/WOfm0GDhyol19+WadOnXLYPdPClV+zB+FMAwAAAAAAAABkFG7ODgAAAICMpUePHipRokSarmVrEZA1vfzyy/rf//4nNzfX+SNo6dKltXHjRhUpUsTZUQDAoTw8PPTtt9/qtddec3YUWKB9+/Z66623nB1Dw4YN07Bhw5wdI8Py9/fXmjVr1LVrV0v7duvWTatXr5aXl9e9/xYbG2voWjOHi6Q/H8YPDg5WmzZtTO2DjOPFF1/UlClTTLl369atNW7cOFPunV61a9fWxIkTnR1DnTp10pdffunsGPe48mv2IJxpAAAAAAAAAICMwHWe7AIAAECGcHd7UVqwtQjIul577TWtXr1aOXPmdHYUNW/eXL/99luaByUBwNW5ublpypQpmjVrlry9vZ0dByb79NNPHb7Jwx7Dhw/XZ5995rT+mYWnp6fmz5+vb775Rr6+vqb28vb21oQJEzRnzhxly5btvv/P6HCRFWeLn5+fVq9erc8//5w/R2Zxb731lubNm2fqhxW8+eabmjFjxn3Ddq6iX79+GjVqlNP6d+/eXfPnz3epD4uQXPs1exDONAAAAAAAAACAq3OtfwkAAABAhpCW7UVsLQLQunVr/fbbb6pXr55T+mfLlk3vvfee1q1bpzx58jglAwBYqWfPngoJCVHDhg2dHQUmstlsmjFjhuUbjDw9PTVnzhyNGTNGNpvN0t6ZWe/evXX48GF169bNlJ/XJ598UqGhoRoyZMgD73/9+vVU75EnTx65u7s7PNuD2Gw2DR06VCEhIWrcuLElPe1VunRptWrVytkxMqWAgAAtW7ZMY8eOtWSwpU+fPjpw4IA6dOjgcufaBx98oK+++sqy7z3pz++/0aNHa86cOS47DOPKr9mDcKYBAAAAAAAAAFwZw0UAAACwW1q2F7G1CIAklS1bVtu3b9ekSZOUK1cuy/o2bNhQe/bs0ccffywPDw/L+gKAs1WsWFFbt27VrFmzVKRIEadkCAgI0IgRI9S6dWun9M8KbDabxo4dqyVLlihfvnym92vSpIn27dvHhweYpFixYpo7d67++OMP9e3bV35+fum6n6enpzp16qSQkBD99NNPeuyxxx5ae/HixVTvFxAQkK48aVGlShVt2bJFS5YsUbly5Szv/3f+/v7q1q2b1q9fr2PHjqlTp07OjpQu/v7+mjp1qp5++mn5+Pg4O448PT01cOBAHTp0SB06dLC0d+nSpbVs2TKFhYVpxIgRCgoKsrT/owwaNEgbNmxQyZIlTe9VpUoVbd++XSNGjDC9V3q58mv2MJxpAAAAAAAAAABXxHARAAAA0sSe7UVsLQLwV25ubho4cKBOnz6t0aNHq0CBAqb1atKkiX7++Wdt27ZNlStXNq0PALgym82mnj17Kjw8XLNmzbLkPHR3d1eLFi20aNEinT17VqNHj3bKQEJW07FjRx06dEgDBw5UtmzZHH7/KlWqaP78+QoODlb58uUdfn/cr3Llypo2bZouXryoZcuW6bXXXlPlypWVPXv2R17n7e2t6tWrq1evXlq8eLGuXr2qRYsWqVatWo+8LiUlRefPn081V8GCBe36OhypY8eOOnz4sNasWaPWrVtbss3mrgIFCqhHjx5aunSprly5orlz56p58+YZYltKatzd3fXqq69q1apVioyM1OrVq9WvXz9Lhlj+Kk+ePBo6dKiOHj2qSZMmOXXbaJkyZTR69GgdPnxYFy5c0JIlS/Thhx/qxRdfVMOGDVW2bFnlzZtXPj4+ln54QZMmTbR//369//778vX1dfj9AwMDNWnSJO3Zs0f169d3+P3N5Kqv2aNwpgEAAAAAAAAAXIktJSUlxdkhAABA2kRERPzjgewrV64of/78TkqUfnFxcQoPD39kTWBgYKoPU8Ea06dPV9++fQ3VvfzyyxYkApARJSQkaN26dVqwYIHWrl2rmzdvput+QUFB6tSpk7p27eoSnwINAK5o3759WrRokZYvX67Dhw875J5FixZVq1at9NRTT6lFixaWbqjDP124cEHTp0/Xt99+q2PHjqX5PgEBAWrVqpV69eqlpk2bplp/7tw5LVmyJNW6evXqqV69emnOlZUlJyfr9OnTunr1qqKjoxUXFydfX1/5+/srd+7cKlasWJoeUD9x4sQjtxrd1bt3b33zzTdpie5wly9f1ooVK7RixQpt2bJF0dHRDrt34cKFVbduXTVu3FhNmjRR9f/H3n2HSVme+wO/t8CyLL2DgICCUkQEC1YgtigaayzERDHqiaix5piTmKgxJ7HFo8aE2FGxJJpoFHsDVCw0RUGQjigC0uuy7O7vj/ximrDvLDszWz6f69orV3bu97m/M8y+s86+9zx77VUnL7r/7LPP4u233/7qa8qUKVFcXFxl63fo0CEOP/zwOP744+Ob3/xmNGjQoMrWru1WrlwZo0aN+mqns8pq3rx5HHroofG9730vhg4dWuH5Y+3atXHfffdVuG6vXr3iiCOOqHSuusg5bcd5bxkAAAAA2FG18brcpAwXAUANVht/ifEH4Jply5Yt0aNHj1i4cOE2a7p06RKzZs2K+vXrZzAZUFOVlZXFhx9+GG+99VZMnz495s+fH/Pnz49Vq1bFxo0bY+PGjZGXlxdFRUVRVFQU7dq1i27dusUuu+wSAwYMiIMPPjitOyEB1EYrVqyIt99+OyZPnhzz5s2L+fPnx+LFi2PdunWxcePG2Lx5czRo0CAaNWoUjRs3/mqAoUePHtGzZ8/Yfffdo2fPntG5c+ds3xW2YdasWTFu3LiYPHlyzJo1Kz799NNYsWJFbNq0KUpLS6Nhw4bRqFGjaNKkSXTp0iV222232G233eKAAw6IPffcs1ZefMx/+vOf/xwnn3xyhXU333xzXH755RlIlJqysrKYMWNGTJw4MWbMmBELFy6MRYsWxRdffBEbNmz46nyWm5sb9evXj8LCwmjevHm0bt062rVrF126dImuXbvG7rvvHv369avR762kU0lJScyZMyfmzp371f/OnTs3li1bFuvXr49169bF+vXrY8OGDZGTkxMFBQVRWFgYLVu2jDZt2kSnTp2+ev3Yd999M747Um21aNGieP3112PSpEnx8ccfx6effhrLli2LTZs2RUlJyVfn+caNG0enTp2+Os/vu+++se+++0ZeXl627wL/xjmtcry3DAAAAADsqNp4XW5ShosAoAarjb/E+ANwzXPPPffEueeeu93bv//972cwEQAAAKm64IIL4ve//32Fdc8991wcddRRGUgEAKnx3jIAAAAAsKNq43W5SeVmOwAAADXb2WefHSeeeOLX3nbSSSfF8OHDM5wIAACAVL3wwguJ6vbaa680JwEAAAAAAAAyzXARAAA7JDc3Nx588MG46qqrolmzZhER0axZs7jqqqvigQceiNxcv3ICAABUZ2+99VaFOz1EROy2227Rrl27DCQCAAAAAAAAMik/2wEAAKj5ioqK4rrrrourr746SktLIy8vL/Lz/aoJAABQE4wcOTJR3aBBg9KcBAAAAAAAAMgGV3wCAFBl8vPzDRUBAADUILNnz47HHnssUe1RRx2V5jQAAAAAAABANuRmOwAAAAAAAJAdF154YZSWllZY16xZM8NFAAAAAAAAUEsZLgIAAAAAgDpo5MiR8dJLLyWqPfHEE6OgoCDNiQAAAAAAAIBsMFwEAAAAAAB1zCuvvBIXX3xx4voLL7wwjWkAAAAAAACAbDJcBAAAAAAAWXD99dfHhx9+mPG+zzzzTBx77LFRUlKSqP6II46IvfbaK82pAAAAAAAAgGwxXAQAAAAAAFkwZsyY2HPPPePEE0+MN954I+39tmzZEj/+8Y/j+OOPj82bNyc6JicnJ66++uo0JwMAAAAAAACyyXARAAAAAABkSXl5eTz55JNxyCGHxF577RW33357LF++vEp7lJaWxmOPPRa9evWKG264IcrKyhIfO3z48DjggAOqNA8AAAAAAABQvRguAgAAAACAauD999+Piy++ODp06BCDBw+Om266KSZOnBglJSUpr1VWVhbvvvtuXHXVVdGlS5c4/fTTY+7cuSmt0bZt27jhhhtS7g0AAAAAAADULPnZDgAAAAAAAPzD1q1bY9y4cTFu3LiIiCgsLIxevXpFz549o0uXLtGuXbto0aJFNGjQIPLy8mLz5s2xcePGWLJkSSxevDg++uijeP/992Pt2rWVzpCfnx+PP/54tGrVqqruFgAAAAAAAFBNGS4CAAAAAIBqbNOmTTF58uSYPHlyxnr+9re/jYMPPjhj/QAAAAAAAIDsyc12AAAAAAAAoHrIycmJ3/3ud/GDH/wg21EAAAAAAACADLFzEQAAAAAAEEVFRXHnnXfGd77znWxHAQAAAAAAADLIcBEAAAAAANRxe+yxR/zxj3+Mnj17ZjsKAAAAAAAAkGG52Q4AAAAAAAB1UcuWLbMdIVq0aBG33357TJkyxWARAAAAAAAA1FGGiwAAAAAAIAv++te/xqRJk+LHP/5xdO/ePaO9u3XrFr/5zW9i3rx5cdFFF0V+fn5G+wMAAAAAAADVh78WAgAAAABAlgwYMCAGDBgQv/71r+Ojjz6K8ePHx4QJE2LChAkxf/78Ku21yy67xLHHHhvHHXdcHHLIIZGb6/PHAAAAAAAAAMNFAAAAAABQLfTp0yf69OkTI0aMiIiIpUuXxrRp02L+/PmxYMGCWLhwYSxcuDBWrlwZGzdu/Opr06ZNkZeXF4WFhdGgQYNo3rx5dOzYMTp16hTdunWL/v37x4ABA6Jdu3ZZvocAAAAAAABAdWS4CAAAAAAAqqG2bdvG4Ycfnu0YAAAAAAAAQC2Xm+0AAAAAAAAAAAAAAAAAQHYYLgIAAAAAAAAAAAAAAIA6ynARAAAAAAAAAAAAAAAA1FGGiwAAAAAAAAAAAAAAAKCOMlwEAAAAAAAAAAAAAAAAdZThIgAAAAAAAAAAAAAAAKijDBcBAAAAAAAAAAAAAABAHWW4CAAAAAAAAAAAAAAAAOoow0UAAAAAAAAAAAAAAABQRxkuAgAAAAAAAAAAAAAAgDrKcBEAAAAAAAAAAAAAAADUUYaLAAAAAAAAAAAAAAAAoI4yXAQAAAAAAAAAAAAAAAB1lOEiAAAAAAAAAAAAAAAAqKMMFwEAAAAAAAAAAAAAAEAdZbgIAAAAAAAAAAAAAAAA6ijDRQAAAAAAAAAAAAAAAFBHGS4CAAAAAAAAAAAAAACAOspwEQAAAAAAAAAAAAAAANRRhosAAAAAAAAAAAAAAACgjjJcBAAAAAAAAAAAAAAAAHWU4SIAAAAAAAAAAAAAAACoowwXAQAAAAAAAAAAAAAAQB1luAgAAAAAAAAAAAAAAADqKMNFAAAAAAAAAAAAAAAAUEcZLgIAAAAAAAAAAAAAAIA6ynARAAAAAAAAAAAAAAAA1FGGiwAAAAAAAAAAAAAAAKCOMlwEAAAAAAAAAAAAAAAAdZThIgAAAAAAAAAAAAAAAKijDBcBAAAAAAAAAAAAAABAHWW4CAAAAAAAAAAAAAAAAOoow0UAAAAAAAAAAAAAAABQRxkuAgAAAAAAAAAAAAAAgDrKcBEAAAAAAAAAAAAAAADUUYaLAAAAAAAAAAAAAAAAoI4yXAQAQJUpLy+P8vLybMcAAAAAAAAAAAAAICHDRQAAVJm3F34S7yyane0YAAAAAAAAAAAAACSUn+0AAADUDptKtsToqW9ETkT069AlCuvVz3YkAAAAAAAAAAAAACpg5yIAAKrEnz98J1Zv2hCrNm2Iv3z4brbjAAAAAAAAAAAAAJCA4SIAAHbYp6u/jBdmvf/V/39+1tT4dPWX2QsEAAAAAAAAAAAAQCKGiwAA2CHl5eVx/6SxUVZe/tX3yv7/98r/6XsAAAAAAAAAAAAAVD+GiwAA2CFvLpgZM5d99h/fn7nss3hrwawsJAIAAAAAAAAAAAAgKcNFAABU2oYtxfHw1De2efvDU9+IjVuKM5gIAAAAAAAAAAAAgFQYLgIAoNKemPZ2rN28aZu3r9m8MR6f9k4GEwEAAAAAAAAAAACQCsNFAABUyoJVy+Ol2dMqrHtp9gexcNXyDCQCAAAAAAAAAAAAIFWGiwAASFlZeXncP/H1KC8vr7C2/P/XliWoBQAAAAAAAAAAACCzDBcBAJCy8fNmxOwvlySu/+TLJfHG/I/TmAgAAAAAAAAAAACAyjBcBABAStYXb45H338r5eMenfpmrN+yOQ2JAAAAAAAAAAAAAKgsw0UAAKTkT9MmxLriTSkft7Z4Uzz+wdtpSAQAAAAAAAAAAABAZRkuAgAgsXkrlsarsz+s9PGvzJ4W81YurcJEAAAAAAAAAAAAAOwIw0UAACRSVlYW9018Pcp3YI3yiLh/4utRVr4jqwAAAAAAAAAAAABQVQwXAQCQyOvzplfJrkNzVyyNsXOnV0EiAAAAAAAAAAAAAHaU4SIAACq0dvOm+OP7E6psvcfefyvWbt5UZesBAFB9jB07NnJycir8uuaaa7IdFf7FNddck+i5O3bs2GxHBQAAAAAAAKhShosAAKjQHz94K9Zv2Vxl663fsjn++EHVDSsBAAAAAAAAAAAAUDmGiwAA2K7ZXy6J1+dOr/J1x879KOZ8+UWVrwsAAAAAAAAAAABAcoaLAADYprKysrh/4utpWbs8Iu6b+HqUlZWlZX0AAAAAAAAAAAAAKma4CACAbXplzoexYNXytK2/YNWyeHXOh2lbn7rprLPOipycnERfCxYsyHbcberSpUui+9ClS5dsRwUAAAAAAAAAAKAGM1wEAMDXWrNpQ/zpgwlp7/PHD96ONZs3pr0PAAAAAAAAAAAAAP8pP9sBAAConh59/63YWLIl7X02lhTHo++/GT8YeETaewFAXXbNNddUWNOlS5c466yz0p4FAAAAAAAAAIDqw3ARAAD/Yeayz2L8/I8z1m/8vI9jyC59YrfWHTLWEwDqmmuvvbbCmkGDBhkuAgAAAAAAAACoY3KzHQAAgOqltKws7p/0esb73j/x9SgtK8t4XwAAAAAAAAAAAIC6zHARAAD/4qVPPohPV6/IeN9Fq7+Mlz75ION9AQAAAAAAAAAAAOoyw0UAAHxl1aYN8cS0d7LW/4kP34lVmzZkrT8AAAAAAAAAAABAXWO4CACArzw85Y3YtHVL1vpvKtkSj0x9I2v9AQAAAAAAAAAAAOoaw0UAAERExIyli2PCwlnZjhFvLZgVHy9dnO0YAAAAAAAAAAAAAHWC4SIAAGJrWWncP+n1bMf4yv2TxsbWstJsxwAAAAAAAAAAAACo9QwXAQAQz898Pz5bszLbMb6yeM2KeGHW+9mOAQAAAAAAAAAAAFDrGS4CAKjjVmxcF3/56N1sx/gPf/7w3VixcV22YwAAAAAAAAAAAADUaoaLAADquNFT3ojirSXZjvEfireWxMNT3sh2DAAAAAAAAAAAAIBazXARAEAd9uGShfHuotnZjrFN7yyaHR9+sSjbMQAAAAAAAAAAAABqLcNFAAB1VEnp1hg1aWy2Y1Ro1KSxUVK6NdsxAAAAAAAAAAAAAGolw0UAAHXUczOnxpJ1q7Mdo0JL1q6K52dOzXYMAAAAAAAAAAAAgFrJcBEAQB20fMPaePKj97IdI7EnP3ovvtywNtsxAAAAAAAAAAAAAGodw0UAAHXQQ5PHx5bSrdmOkVhx6dZ4aPL4bMcAAAAAAAAAAAAAqHXysx0AAIDMmvrZ/Ji0eG62Y6Rs4uK58f7nC6Jfhy7ZjgKkaP78+fHqq6/Ghx9+GB9++GEsWrQo1q5dG2vXro2ysrJo2LBhNG7cODp37hxdu3aN/v37x4EHHhgDBgyI/Pza95+ta9asiVdeeSU++OCDmD59enzyySexevXqWLt2bWzYsCEKCwujcePG0aZNm+jZs2f07t07hgwZEgMHDoy8vLxsx69ymzdvjk8//TTWrl0bGzdujA0bNkR+fn4UFRVFo0aNomPHjtG8efNsx8yYJUuWxOuvv/7Vc2P27NmxatWqWL9+faxfvz7Ky8ujqKgomjRpEu3atYvddtstHnzwwWzHpoaaP39+jB07NmbOnBmzZs2KuXPnxurVq796vuXl5UXDhg2jWbNm0a5duzjwwAPjpptuylre5cuXx8svvxwffvhhTJ8+PebMmRNr1qyJdevWxcaNG6OoqCgaN24c7du3/+r8eeihh8aAAQMiJycna7nTZcOGDbF48eJYt25dbNiwITZt2hT169f/l9fVxo0bZztmlSgrK4tJkybFa6+9FtOnT4+PP/44lixZ8tW//d/vc9OmTWPXXXeN3r17R9++feOwww6L1q1bZzs+AAAAAAAAQLVX+67SAgBgm7aUbo0HJ4/LdoxKe2DS2Og19Iyon+fXWEiHLl26xMKFC7dbs/POO8eCBQsqXGvFihUxcuTIePzxx2PatGnbrV2zZk2sWbMmFi9eHBMmTIiHH344IiJat24dJ598cvzgBz+Ivn37Jr4f1VFJSUk88sgjMXr06Bg3blyUlJRss/bvF/UvWbIkPvjgg6++36xZszj55JPjggsuiH79+mUgddVbsWJFvPXWW/HWW2/FO++8E3PmzIklS5ZEeXn5do9r2rRp9OjRI/bff/848MAD47DDDosWLVpkKPXXGzx4cIwbV/FrakX3LSLi008/jbvuuiuefvrpCn9eIiJWr14dq1evjkWLFsWsWbO++v6CBQuia9euFR6/PePGjavSIYyk5wy2ryrPzzNnzow777wznn322Zg9e/Z2a7du3RrFxcWxatWqmD9/fmzcuDGV2FViw4YNcd9998Vjjz0W77zzTpSVlW2z9u+Dq5999llMmjTpq++3bt06TjvttBgxYkTsvvvumYhd5ZYsWRJvvPFGvPXWW/Hee+/FvHnzYtmyZRUe16pVq9htt93igAMOiIMOOii+8Y1vRKNGjTKQuGrMmDEjfv/738cf//jH+PLLL7dZt27duli3bl18/vnn8fHHH8czzzwTERG5ubmx//77x2mnnRbDhw+PoqKiTEUHAAAAAAAAqFFysx0AAIDMGTNjcixdvybbMSpt6fo1MWbG5GzHALbjyy+/jIsvvjg6d+4cP/vZzxINSmzL8uXLY+TIkdGvX784/vjjY86cOVWYtGILFiyInJycCr/OOuusba5RWloat912W3Tr1i3OOuuseOWVV7Y7WLQ9q1evjnvuuSf22muvOOyww/5l8Kg6W7NmTdx7771x+OGHR9u2beO4446LG2+8McaPHx+ff/55ouGbNWvWxMSJE+P222+PU089Ndq1axdDhw6NRx99NLZu3ZqBe5EeH330UZx88snRtWvX+OUvf7lDPy+1xdixYxP93F1zzTVZyTdq1KhE+UaNGpWVfNvz5ptvxhFHHBG9evWKW2+9tcLBomzbtGlTXHPNNdG5c+f44Q9/GBMmTNjuYNH2LF++PH77299Gz54941vf+lZ88sknVZw2PZYtWxa33357HHjggbHTTjvFqaeeGrfffnu88847iQaLIv72uvzWW2/FTTfdFMcdd1y0adMmTjnllBgzZkyi82+2zJw5M4455pjo3bt3/O53v9vuYNH2lJWVxVtvvRUXXXRR7LzzznHttdfGpk2bqjgtAAAAAAAAQM1nuAgAoI5Yun5N/HXGxGzH2GF/nTExltXgASmozR5++OHo2bNn3H777VW6u0V5eXn89a9/jb59+8Ytt9xSZeum20cffRT77bdfXHLJJbF48eIqXfvVV1+N/v37x0UXXRSbN2+u0rWryhdffBFXXnlldO7cOc4555x45ZVXorS0tErWLikpieeeey6GDRsW3bt3j5EjR9aoIaP169fHFVdcEXvttVf8+c9/rrLHBb7O8uXLY/jw4XHIIYfEyy+/XK0HSv5u/Pjx0bdv37j22mtj5cqVVbr2M888E3369In/+Z//qfSwZ7rNnTs3fvCDH0Tnzp3j4osvjgkTJlTZv9umTZvi8ccfj2OPPTb69u0bjz32WJWsW1VKSkriyiuvjD322COeffbZKl17xYoVcc0110Tfvn1j/PjxVbo2AAAAAAAAQE1nuAgAoI54cNK4KKkFFy+XlJbGg5PHZTsG8E+Ki4vjO9/5TpxxxhmV3lkgiU2bNsXll18e3/3ud2PLli1p61MVHnvssRgwYEBMnpy+3dbKysrijjvuiP322y9mzZqVtj6p2rJlS/zyl7+Mbt26xY033hhr165Na78FCxbEiBEjYsCAAfHOO++ktVdVmDNnTuyzzz7xm9/8pkYNRFEzTZw4Mfr16xejRo2qEUNFERE33nhjDB48OK271ZWUlMT1118fBx98cCxYsCBtfVK1bt26uPTSS2O33XaLO++8M4qLi9Pa76OPPorTTz89Bg8eHB9//HFaeyWxYMGCOPDAA+PGG29M6/lxzpw5MXjw4LjhhhvS1gMAAAAAAACgpjFcBABQB0xePC+mfj4/2zGqzJTP5sfkxfOyHQOIv+2IMWTIkHjkkUcy1nP06NFx2mmnVdvdXm655ZYYNmxYxgagpk2bFgcccEC89957Gem3Pe+++2707ds3fvazn8WmTZsy2nvatGlx4IEHxnXXXVdthyjeeOON2G+//WLmzJnZjkId8MQTT8SgQYPi888/z3aURMrLy+OHP/xhXHnllRn7GX733Xdj//33jw8//DAj/bbn2Wefjd133z1uvfXWjL++jRs3Lvbaa6+45557Mtr3n02bNi0GDhwYEydmZqfV8vLy+PGPfxwXXXRRlJWVZaQnAAAAAAAAQHVmuAgAoJYr3loSD0wem+0YVe7ByeNiix0fIKtWrVoVhx56aLz99tsZ7/3kk0/GRRddlPG+Fbnrrrvi8ssvz/hwy8qVK+PQQw+N8ePHZ7TvPxs5cmQccsghWd1FqaysLH7+85/H8ccfn/HhpopMmTIlhg4dGitXrsx2FOqA559/Pk4//fRq93OwPVdeeWX89re/zXjfL774IgYNGhSTJk3KeO+If5y3jj322KwOghUXF8e5554b559/fsaHbSZOnBiDBg2KpUuXZrRvRMQdd9wRV155Zcb7AgAAAAAAAFQ3hosAAGq5v06fFF9uWJftGFVu+Ya18dcZmflkc+A/bdiwIYYOHZrV3R5GjhwZjz/+eNb6/7tXX301Lrjggqz1X79+fRx33HHx8ccfZ7RveXl5jBgxIkaMGJGx3Zoq8vTTT8cxxxwTGzduzHaUiIiYP39+HH300bFuXe17Pab6mThxYnz729+OrTVoCPuee+6Jm266KWv9V61aFUOHDo358zO702dxcXGccMIJ1WrHtT/84Q/xve99L2O7J82bNy+GDh0aq1evzki/r3PzzTdnddcmAAAAAAAAgOogP9sBAABInyVrV8WYjydnO0baPDNjchzUZfdo36R5tqNAnXPOOeck2rGooKAg9t577+jfv39069YtWrduHUVFRVFaWhpr166NhQsXxpQpU+KNN96o1IXF559/fhx22GHRvHl2zwPLli2LU089NdHF/EVFRTFo0KDo27dv7LrrrtGkSZOoV69erF27NpYsWRIzZsyI8ePHx4IFC1LOsXr16jj66KPjvffei9atW1finqSmrKwszjnnnLj//vvT3itVr732WnzrW9+KF154IfLzs/f2R2lpaZx++umJduTIzc2NPfbYI/bdd9/YZZddon379lFUVBS5ubmxbt26WLFiRcyYMSOmTJkSU6ZMyUB6apr169fHqaeeGhs2bKiwNj8/P/r37x8DBgyIXXbZJdq2bRtFRUVRVlYW69ati2XLlsWMGTPivffeS+vQ4kcffZR4MLNFixYxZMiQ6N27d3Tp0iUaN2781c/Hp59+GjNmzIixY8fGkiVLUs6xbNmyOOqoo+K9996LJk2apHx8qjZv3hwnnHBCvPDCC2nvlaqHH3448vLy4oEHHkhrnzVr1sTRRx8dy5cvr9TxXbp0iUMOOSR69uwZHTp0iMaNG8fWrVtj7dq1MW/evPjoo49i7NixsXbt2grXGjFiROy3336VygEAAAAAAABQGxguAgCopcrLy2PUpLGxtSwznzqeDVvLSuOByePiysHHRU5OTrbjQJ1x1113xWOPPbbdmiOPPDK+//3vxzHHHBOFhYUVrrlly5YYM2ZM/OpXv4rJk5MPRa5YsSKuvfbauPXWWxMfkw4XXnhhrFixYrs1Bx98cFx88cVxzDHHREFBQYVrTps2LUaOHBkPPPBAbNq0KXGWBQsWxLnnnhtPPfVU4mMq64ILLqj0YFH37t3jsMMOi/79+0fPnj2jY8eO0aJFiygsLIyysrJYv359LF68OD755JN4++2347nnnouZM2em1OPVV1+NSy65JO64445KZawKN954Y7z77rvbrenXr1+cd955ccopp0TLli0Trbt48eJ46KGH/uXx79Kly3Z3P0nyWjlo0KAYO3ZsogxUP5dffnmFu+8cfPDBce6558YJJ5wQjRo1SrTu7Nmz4957740JEyZURcyvlJaWxvDhw7e761lOTk4cf/zxceGFF8bgwYMjN7fijdjfe++9GDlyZDz88MNRUlKSOM+sWbNixIgRMXr06MTHVEZZWVmcfPLJlR4s6tu3bwwZMiT69+8fPXr0iE6dOkXTpk2jsLAwSkpKYv369bFo0aKYOXNmvPXWWzFmzJhYtGhRSj0efPDB2GOPPeKKK66oVMYkRowYEbNmzUrpmIYNG8bw4cPjBz/4QfTp06fC+q1bt8ZLL70Uv/vd7+K5557bZl1JSUmcffbZ8c1vfjOlPAAAAAAAAAC1RU759q46AQCqteXLl0ebNm3+5XvLli3LyE4F6VJcXBzz5s3bbk23bt0SXZRd1723aHbc+ua2L6CrTS45eGjs22nXbMegmjjrrLMSf9L+/Pnzo0uXLukNVEldunSJhQsXVli38847V2qHm8r2bNSoUZSWlm5z2GW//faLO+64I/bee+9KZSgvL4877rgjrrjiiu1ebP7PCgoK4tNPP63y178FCxZE165dK6zr1KlTfPrpp9u9/be//W0cd9xxlcqxcOHCuOiii+KZZ55J6bi77747zjnnnEr1TOKOO+6Iiy66KKVjmjZtGuecc06cc845sfvuu6fcc/LkyXHTTTfFn/70p+0O0fy7hx56KM4444yU+23P4MGDY9y4cRXW1a9ff5vP5Y4dO8att94aJ554YqWHZIuLixP/XlQThovGjh0bQ4YMqbDu6quvjmuuuSb9gf7NqFGjYvjw4RXW3X///XHWWWdVWd8k5+d69eptd5CmV69ecccddyR6fLcl6fMt6b9jhw4d4vPPP9/m7XvttVf84Q9/iH333TelnH/392Gh1157LaXjHnnkkTj99NMr1TOJK664In7zm9+kdEy7du3iv/7rv+Lss8+Ozp07p3RseXl5jB07Nm644YZ48cUXEx+Xl5cXr776agwaNCilfkk8+uijMWzYsJSOOemkk+LWW2+Njh07Vqrn+PHj4/zzz48ZM2Zss6ai5+Tfvf766zF48OBK5QAA0sd7ywAAAADAjqqN1+UmVfFHfQIAUONs3loSD04Zn+0YGfPQ5HGxeWvyT6UHKm/9+vVfO1iUm5sb1113XUyYMKHSg0URfxt+uOiii+KFF15ItONRxN8uHho5cmSle+6o7Q0WHXrooTFlypRKDxZF/G2A7Omnn46bb7450Y4df/ejH/0ovvzyy0r33Z7x48fHpZdemrg+Ly8vrrjiipg/f37cfPPNlRosiogYMGBAPPbYYzFhwoTo1atX4uMuvvjiWLp0aaV67qhtDRadcMIJ8dFHH8VJJ520Q7vvuSiOv9veYNGIESNiypQpOzRYFFH1z7ftDXGce+658fbbb1d6sCgiYrfddouXX345rr766pSOu+SSS2Lt2rWV7rs9jzzySEqDRYWFhfHrX/865s6dG9dcc03Kg0URf3ttHTJkSLzwwgvx7LPPxk477ZTouNLS0jjnnHNS2j0vibVr18Yll1ySuD4/Pz9GjhwZTzzxRKUHiyIiDjnkkJg4ceJ2h5qSDBYBAAAAAAAA1EaGiwAAaqEnP3o3Vm5cn+0YGbNi4/p46qP3sh0D6qx69erFn/70p7jqqqtSGn7ZniFDhsTo0aMT199///1V0rcqHXPMMfHcc89Fq1atqmS9yy+/PEaNGpX4MV69enXKF9QnsXHjxhg+fHhs3bo1UX3Xrl3j3XffjZtuuimaN29eJRkGDhwY7733Xpx00kmJ6leuXBkXX3xxlfSuCiNGjIgnnngimjZtmu0o1AHXX399/O53v6tRg2j//d//HXfddVeVZM7NzY1rrrkm7rjjjsSDfMuWLYtf/vKXO9z73y1ZsiQuvPDCxPX9+/ePadOmxY9//ONo2LBhlWQ4+uijY+rUqXHwwQcnqp8zZ05ce+21VdL776677rpYtmxZotq//47xgx/8oEp6N2zYMEaPHh0jRoyokvUAAAAAAAAAagvDRQAAtcxna1bGcx9PzXaMjHt25pT4bM3KbMeAOicnJydGjx6deMgjFSeeeGKcddZZiWoXLFgQkyZNqvIMlbXvvvvGE088EfXr16/Sdb/73e/GTTfdlLj+zjvvjDlz5lRphp/85Ccxb968RLX7779/TJw4MQYMGFClGSIiioqK4o9//GN897vfTVT/pz/9Kd5///0qz5Gq008/Pe64444qG8SD7fnxj38cV155ZbZjpOR73/te3HDDDVW+7gUXXBA//elPE9ffdtttsWTJkirNcP7558eqVasS1R533HHx5ptvxq677lqlGSIiWrduHS+++GIcdthhiepvv/32KnssPv/887j99tsT1//hD3+IE044oUp6/11OTk7ccccdcfLJJ1fpugAAAAAAAAA1mStZAABqkfLy8hg16fUoLS/LdpSMKy0ri1GTxkZ5eXm2o0Cd8pOf/CROOeWUtK3/q1/9KvFuDc8880zacqSiefPm8ec//zltu4RcdtlliS+ILi0tjf/7v/+rst6zZs2KO+64I1Ht3nvvHS+88EK0bNmyyvr/u7y8vLj33nvjG9/4RoW15eXl8fOf/zxtWZLo2bNn3HPPPYl3T4EdMWTIkPjf//3fbMdISd++fePOO+9M2/q/+MUv4sgjj0xUu2XLlpSGYCryyiuvxF//+tdEtUOHDo3HH388CgsLq6z/vyssLIw///nP0bt37wprN23aFL/+9a+rpO/tt98eW7ZsSVR73nnnxdlnn10lff9dTk5OPPDAA7H77runZX0AAAAAAACAmsZwEQBALfL2wk9i+tLF2Y6RNdOXfhrvLJqd7RhQZ/Tt2zeuueaatPZo3759DBs2LFHtG2+8kdYsSd18883RsWPHtPb43e9+Fy1atEhUO2rUqFi5smp2dvv5z38epaWlFda1bds2nnrqqWjSpEmV9N2eevXqxcMPP5xoiGnMmDExd+7ctGf6Ojk5OTFq1KjEw3KwIwoLC2PUqFE1aoesvLy8uO+++6JBgwZp65GTkxN33XVXNG7cOFH9nXfeGRs2bKiS3ldddVWiup49e8ajjz4a9erVq5K+29OkSZN47LHHEg3D3nfffbFu3bod6rdhw4bEw2OdOnWKm2++eYf6VaRhw4Zx77331qifEwAAAAAAAIB08ZdTAIBaYlPJlhg9tXpcWJ9No6eMj00lyT4NHdgxt912W+Tn56e9T9JdC959991Egy/ptM8++6Rtl4V/1qZNm8SDXRs3boxHHnlkh3vOmDEjHn/88US1d911V+y000473DOpdu3axfXXX19hXXl5edx7770ZSPSfvvOd78S+++6bld7UPZdffnl07tw52zFSMnz48BgwYEDa+3Tu3Dl+9KMfJapdtWpVPPXUUzvc8/nnn4933323wrq8vLwYPXp04uGnqtCnT5+44oorKqzbsGFDPProozvU68knn4zVq1cnqv31r3+dkcfhgAMOSDzEDAAAAAAAAFCbGS4CAKgl/vzhO7F6U9V8snpNtmrThvjLhxVfvAnsmEGDBsXgwYMz0mvgwIHRtm3bCus2btwY8+bNy0Cibbv22msz1uu8885LvEPSY489tsP9/vCHP0R5eXmFdccee2x861vf2uF+qRo+fHh07969wroHH3ww0f2oSjk5OfGTn/wkoz2puxo2bBiXXnpptmOkpF69evGzn/0sY/0uueSSRLudRcQOD9RERIwcOTJR3YgRI6J///473C9V//3f/x3NmjWrsO6BBx7YoT5JH8tevXrF6aefvkO9UnHttddGXl5exvoBAAAAAAAAVEeGiwAAaoFPV38ZL8x6P9sxqo3nZ02NT1d/me0YUKudf/75GeuVk5MTBx10UKLamTNnpjnNtu22225x1FFHZaxfQUFB/OAHP0hUO2HChFi8eHGle23evDlGjx6dqPYXv/hFpfvsiLy8vBgxYkSFdZ999ll88MEHGUj0D4ceemj07Nkzoz2pu4YNGxYtWrTIdoyUnHDCCRndaalx48YxfPjwRLUvvfRS4t12vs5nn30Wzz33XIV1hYWFWRtCbNKkSZx55pkV1r3zzjuxcuXKSvVYvXp1vPzyy4lqL7zwwsjNzdzb1t26dYtjjz02Y/0AAAAAAAAAqiPDRQAANVx5eXncP2lslGV4F4bqrOz/PyaZ3pkC6opGjRrF8ccfn9Ge++yzT6K6uXPnpjnJtp177rkZ73n22Wcn2m2hvLw88UXdX+fpp5+OVatWVVg3aNCg6NevX6X77Khhw4ZFTk5OhXUvvPBCBtL8w6mnnprRftRtNfH5dt5552W8Z9JzdklJSYwbN67SfR5++OEoLS2tsO6UU06Jdu3aVbrPjjrjjDMqrCkrK4uXXnqpUuuPHTs2SkpKKqwrLCxMlKWqZeM5CAAAAAAAAFCdGC4CAKjh3lowK2Yu+yzbMaqdmcs+i7cWzMp2DKiVvvGNb0RBQUFGe/bo0SNR3dKlS9OcZNtOPvnkjPds3759HHDAAYlqX3/99Ur3GTNmTKK6s846q9I9qkKbNm0SDaKNHz8+A2n+JicnJ4477riM9aNua9q0aQwePDjbMVLSokWLrGTu0aNH9OnTJ1FtXTh/DhgwINq2bVthXWXPn0kfw8MPPzwaN25cqR474rDDDoumTZtmvC8AAAAAAABAdWG4CACgBtuwpTgenvpGtmNUWw9PfSM2binOdgyodQYNGpTxnl27dk1Ul63hoj59+sTOO++cld5JB1cqu/NGeXl5vPjiixXW5ebmxtChQyvVoyoNHDiwwpqpU6dmIMnf9OzZM1q3bp2xftRtBx54YOTn52c7RkqOOuqoRDuwpcO3vvWtRHWVHahZs2ZNvP322xXWNW/ePA4++OBK9agqOTk5sd9++1VYV9nz5xtvJPtvlmOPPbZS6++oevXqxVFHHZWV3gAAAAAAAADVgeEiAIAa7Ilp78SazRuzHaPaWrN5Yzw+7Z1sx4Bap1+/fhnv2apVq0R1a9asSXOSr5fNnUIOOeSQRHWLFi2KVatWpbz+hx9+GMuWLauwrm/fvtViiGbPPfessOaLL76IL774IgNpIvHOUlAVauLzLZtDNQcddFCiuhkzZkRpaWnK648bNy62bt1aYd2gQYOyNmD1z5KcP6dNmxZlZWUprbt169aYMWNGotpsPh+yPeAFAAAAAAAAkE2GiwAAAEjJbrvtlvGezZo1S1RXXJyd3cr233//rPSN+NuwV4MGDRLVTp8+PeX1J02alKhun332SXntdOjcuXOiutmzZ6c5yd/06tUrI30gomY+37J5/kyy01nE315bKnPOqI3nz40bN8Znn32W0rqzZ89O9PrcokWLrPyO8XfZfC4CAAAAAAAAZJvhIgCAGuzbfQdG0wYNsx2j2mrWoGF8u2+yi0aBZPLy8qJdu3YZ71tQUJCoLlvDRUl2e0iXevXqJR4oqMxw0dSpUxPVVZehhjZt2iSqW7x4cZqT/E02L5Sn7qlpz7e8vLzo2bNn1vo3b948dtppp0S1H3/8ccrrO3/+TdLHrnfv3imtW9V69uwZubneLgcAAAAAAADqJn8tBQCowRrWL4jv7HVwtmNUW8P2Ojga1k82kAAk06RJk8jLy8t433r16iWq27p1a5qT/Kfc3NzYddddM973n3Xv3j1R3aJFi1Jee9q0aYnqunTpkvLa6VBYWJioLlPDRR06dMhIH4ioec+3Ll26JD6/p0uPHj0S1aW6W0+E8+ffJX3skv5bpEuDBg0S734HAAAAAAAAUNvkZzsAAAA75sAuu8Vrcz+KmctSv+CxNuvZZqc4sEvN+vR+qAmSXnicLeXl5Rnv2aFDh8Q7K6XLLrvskqhuyZIlKa+9cOHCRHUnnHBCymtn08qVKzPSp23bthnpA/Xr149mzZplO0ZKqsNQTdIMqZ4/S0tLEw/V7LXXXimtnW2pnj+TPnbV5fmwYMGCbMcAAAAAAAAAyDg7FwEA1HA5OTkxfO/BkZuTk+0o1UZuTk4M33tI5HhMoMple4eJ6qhNmzbZjpA4Q6oXx5eXl8fnn39emUjV3qZNmzLSp3HjxhnpAzXxuda6detsR0icIdXz55IlS6K0tLQykaq9VM+fX3zxRaK66vB8qA6v6QAAAAAAAADZYLgIAKAW6NSsVXxzt37ZjlFtHLXbXtGxWctsxwDqiJp0MfSqVatSWnfZsmVRUlJSmUjVXqaGi7K9qxV1R018rrVq1SrbERKfw9etW5fSukl3LaqJUj1/rl27NlFdTXo+AAAAAAAAANQ2hosAAGqJk/YYGM0Li7IdI+uaFxbFiXvsl+0YQB3SqFGjbEeIoqJk5//NmzentO7q1asrkaZm2LJlS0b62O2LTKmJz7XCwsJsR0icobi4OKV1nT//IeljV5OeDwAAAAAAAAC1jeEiAIBaorBe/fjOXgdnO0bWndH/kCisVz/bMYA6pH797J9zku5YkupwUaZ298mG8vLybEeAOq867Lbk/Jm6VM+fSR+7mvR8AAAAAAAAAKht8rMdACDbPv3003jxxRdj2rRpMWPGjJg/f36sW7cu1q5dG+Xl5dG4ceNo3LhxdO7cOXr16hV77LFHHH744dG9e/dsRwf4D/vv3CNen/tRTF+6ONtRsqJPu04xsLPzc12Xk5OTuLakpCSNSXZM0l0BUrm/pEd12C0kaYZUn/OpXkwPkIrq8BqWm5vss5fKyspSWtf58x+SPnY16fkAAAAAAAAAUNsYLgLqpNWrV8c999wTDz30UEybNm27tStWrIgVK1bEggULYvz48V99v3v37jFs2LA4//zzo23btumOXKfMmzcvHnzwwcT1Xbp0ibPOOit9gaAGycnJibP2HhI/fv7hKE3xAsiaLi83N84cMLhaXJRIdqWyi0zSAZ5sSJrNJ+xnX3UYUkuaIdVdlqrDfQNqr+rwOlxcXJyoLtXXW+fPf0j62NWk5wMAAAAAAABAbWO4CKhT1q9fH9ddd1387ne/iw0bNuzQWrNnz45rr702fv3rX8eZZ54Zv/rVr6JVq1ZVlLTuKi8vj7PPPjvGjRuX+JhBgwYZLoJ/slPTFnH07nvFMzMmZztKRg3dvX/s1LRFtmNQDTRo0CBxbXW4iHVbkmZL5f6SHtXheZSui+M9v4B0qg6DHEkzpHo+dP78h6SPRU16PgAAAAAAAADUNoaLgDrj6aefjgsuuCAWL15cpetu2bIl7r777vjzn/8cN998cwwfPrxK169r7rzzzpQGi4Cvd0Kf/WLCglmxYuP6bEfJiJYNG8XxffbNdgyqiVQu5l29enX6guyArVu3xrp16xLVFhYWpjkNFVm/Pvvn2qQZUr3YPZXn18svvxyHHXZYSusDddvKlSuzHSFWrFiRqK5hw4YprZvK+XP27Nmx6667prR+TVJUVJSoriY9HwAAAAAAAABqm9xsBwBIt7Kysrjqqqvi+OOPr/LBon+2cuXKOPvss+O8886rFp9eXxMtXrw4rrzyymzHgFqhQX69+G7/Q7IdI2O+O2BQNMivl+0YVBONGjVKXFtdLyBN5eLaVO4v6bF8+fJsR0icoUWL1HZ4S3pBeETE5s2bU1oboCadP9u2bZvSus6f/9CmTZtEddXh+bBs2bJsRwAAAAAAAADICsNFQK1WWloap512Wvzv//5vlJeXZ6Tn3XffHUcccURs3LgxI/1qk/PPPz/Wrl2b7RhQa+zTadfo237nbMdIuz3b7xz7dNwl2zGoRtq1a5e4tjpcxPp1UsmVyv0lPZYuXZrtCIkvhk71+ZLKxfTVYQcnSDcfJFG1Pvvss2xHSJyhffv2Ka3r/PkPSR+7mvR8AAAAAAAAAKhtDBcBtVZZWVmcddZZ8fjjj2e897hx4+KEE06I4uLijPeuqR555JEYM2ZMtmNArZKTkxNnDhgU+bl52Y6SNvm5efG9AYMiJycn21GoRjp06JC4dv78+WlMUnmp5Erl/pIen3/+edZ3nZgzZ06iulQvjm/YsGG0bNkyUe3nn3+e0tpQE23atCnbEWqVOXPmZOyDQLblk08+SVSX6vmzc+fOiWtr+/kz6WOX9N8iXcrKymLu3LlZzQAAAAAAAACQLfnZDgCQLj/96U9j9OjRKR3TvXv3OPDAA6NPnz7RokWLyMnJiVWrVsXHH38cb7/9dnz00UeJ13rppZfi3HPPjQcffDDV6HXOl19+GRdffHG2Y0Ct1L5J8zim54B4avp72Y6SFsf2GhDtmzTPdgyqmZ122ilx7bx589KYpPJSubA1lftLepSXl8fcuXOjd+/eWcswe/bsRHWpXOz+dzvvvHOsWLGiwrpFixalvDb8u/z8ZG9Vbd26Nc1Jvl6SnwWS27hxYyxatCh23jk7u21u2bIl8e8C3bt3T2ntRo0aRYsWLWLlypUV1tb282fSx27mzJlpTrJ9CxYsyPqwMAAAAAAAAEC2GC4CaqXnn38+brjhhsT1xx13XPzkJz+Jfffdd7t1H330Udx0000xevToKCsrq3Ddhx56KAYNGhTf//73E2epi374wx/Gl19+me0YUGsd13vveGvBzFi+YW22o1Sp1kVN4rhe+2Q7BtVQ9+7dIycnJ9FOCB9//HEGEqUulYtre/TokcYkJPX+++9nbbiopKQk8XO5Mhl79uwZU6ZMqbAulUF82JaCgoJEdVu2bElzkq/32WefZaVvbfbuu+9mbbhoypQpiQbVcnJyKn3+fOuttyqsq+3nz969eyf63WzBggWxbNmyaNOmTYaS/at33nknK30BAAAAAAAAqoPcbAcAqGorVqyI733ve4kuKG7RokU8++yz8dRTT1U4WBQR0adPn3jggQfirbfeik6dOiXKc9FFF8WcOXMS1dZFY8aMiUcffXSbt+fmeqmCHVWQXy++N2BQtmNUue8NGBT1E+5uQN1SVFQU3bp1S1Q7c+bMWL9+fZoTpW7ixImJa/fcc880JiGpt99+O2u9p06dmninhT59+qS8/j77JBvknDp1asprw79LOly0evXq9AbZhlmzZmWlb22WZPgmXSZMmJCormvXrtGwYcOU1096/kwywFmTFRUVRdeuXRPV1oTnAwAAAAAAAEBt5IptoNb56U9/mmgXnI4dO8Z7770XRx99dMo9Bg4cGJMmTYpevXpVWLtp06a49NJLU+5RF6xbty7OP//8bd7evn37+Na3vpXBRFB7DejYLfbqkOyCvpqg/05dY0DHZMMj1E19+/ZNVFdWVpbSIE8mbNq0KaZNm5aotlWrVtG+ffs0JyKJsWPHZq33+PHjE9V17tw5mjVrlvL6SYbwIyJWrlwZ77//fsrrkzk5OTnZjlChpk2bJqpbvnx5mpP8p/Ly8sTnZ5J74YUXstb7ueeeS1R3wAEHVGr9pOfPadOmxYoVKyrVo6bYf//9E9U9//zzaU6ybUmfDwAAAAAAAAC1keEioFaZOnVq3H333RXWNW3aNF555ZXYZZddKt2rTZs28eqrr0bHjh0rrB0zZoyLVL7Gf//3f8fixYu3efvtt9+e+OJCoGLf23tQ1MvLy3aMHVYvL69W7sRE1Ro4cGDi2hdffDGNSVL32muvRUlJSaLa/fbbL81pSGr69OmxYMGCrPR++umnE9UNHjy4UusPGDAgGjduXKVZyI569epVWLN169YMJNm2Nm3aJKrLxs/blClTYt26dRnvW9t98skn8fHHH2e876pVqxIPZw4ZMqRSPQYNGpRoqK+0tDSeffbZSvWoKZI+hs8880yUlZWlOc1/mjZtWsyfPz/jfQEAAAAAAACqC8NFQK1y7bXXJroI5e67747ddttth/u1a9cuHnnkkchLcLH+1VdfvcP9apPx48fHnXfeuc3bjz322Dj55JMzmAhqv7aNmsZxvfbJdowddlyvfaJNI4OHbN/hhx+euHbMmDFpTJK6VPKkcj9JvyeeeCLjPZcsWRITJkxIVFvZ4aL69evHUUcdlah29OjRUV5eXqk+pF/9+vUrrNm0aVMGkmxbYWFhNGnSpMK6OXPmZHwAIZs77NR2999/f8Z7jh49OvEwb2WHizp06BD77JPs9+8HH3ywUj1qim984xuJ6r744ous/Kzde++9Ge8JAAAAAAAAUJ0YLgJqjVmzZiX6pPTjjjsuvv3tb1dZ34MPPjj+67/+q8K6SZMmxWuvvVZlfWuyzZs3xznnnLPNC08bNWoUv/vd7zKcCuqGY3oNiLY1eDCnbaOmcUyvAdmOQQ3Qr1+/xLtfTJ8+Pd5///30BkqouLg4/vSnPyWuP/LII9OYhlTdc889Ge953333RWlpaYV1OTk5OzSMdsIJJySqmz17drz00kuV7kN6JdmBatWqVRlIsn1Jdphdv359xne7eeihhzLary65//77MzrYVl5eHn/4wx8S1fbr1y+6du1a6V5Jz5+vvfZazJo1q9J9qruuXbvGnnvumaj297//fZrT/Kv169fX+uEuAAAAAAAAgIoYLgJqjVtuuaXCT0nPz8+Pm2++ucp7/+IXv0j06dq/+c1vqrx3TXT11VfH7Nmzt3n7L3/5y+jUqVMGE0HdUT8vP87ce3C2Y1TaWXsPjvp5+dmOQQ2Qk5MT3/rWtxLXJ73AON2eeOKJWLlyZaLa7t27x+67757mRKRi1qxZ8fzzz2esX3FxceLn7gEHHBAdO3asdK9vfetb0axZs0S1duysvlq3bl1hzZIlSzKQZPuSntvGjRuX5iT/8Oqrr9bqwY9s+/LLLzP6AROPP/54zJgxI1HtaaedtkO9vvOd7yTa7bi8vDx+9rOf7VCv6i7pY/nss8/GpEmT0pzmH2699dZYvXp1xvoBAAAAAAAAVEeGi4Baobi4OP74xz9WWHfSSSfFrrvuWuX9W7ZsGeecc06FdS+++GIsXbq0yvvXJFOmTNnukNU+++wTF110UQYTQd3Tr0OX2LtjxTsCVDf7dNwl9uzQJdsxqEHOOuusxLWjRo2KTz/9NH1hEigtLY3//d//TVw/fPjwNKahsjI5WHPXXXfF4sWLE9Xu6MXxDRs2jO9///uJat999107vFRTbdu2rbBm8+bNiZ9X6bLHHnskqnvmmWfSnOQfrrnmmoz1qquuv/76+PLLL9Pep7i4OPEQT15eXpx++uk71K9Tp05x/PHHJ6p9/PHHY/z48TvUrzobNmxY5OYmezv6Rz/6UZrT/M0XX3yRlg+hAQAAAAAAAKhpDBcBtcKYMWNizZo1FdZdcsklacvwwx/+sMKLZEpLS+Oxxx5LW4bqbuvWrXH22WdHaWnp196en58fd999d+KLjYDK++6AQ2rUDkAFefnx3QGHZDsGNcyBBx4Y3bt3T1RbXFwcP/nJT9KcaPvuueee+PjjjxPV5uXlxZlnnpnmRFTGxIkT47777kt7n2XLliUedmjYsOEOXxwfEXHhhRdGfn6y146LLrooFi5cuMM9qVq77JJsuHjy5MlpTrJ9Bx10UKK6l19+OT777LM0p4l4+OGH480330x7n7puxYoVcfHFF6e9z7XXXhuffPJJotoTTjghOnfuvMM9U3kv4swzz0z0/kZN1Llz5zjhhBMS1Y4dOzbuvvvuNCeKGDFiRK19vAEAAAAAAABS4eptoFZ49NFHK6zZddddY+DAgWnLsPPOO8fBBx9cYV2SrLXVDTfcEB988ME2b7/00ktjzz33zGAiqLtaFzWJE/rsm+0YiZ3QZ99oVdQk2zGogS699NLEtaNHj44nn3wyjWm2be7cuXHFFVckrj/11FOjQ4cOaUzEjrjiiivSvvPLBRdcECtXrkxUe+aZZ0bLli13uGeXLl3ivPPOS1S7Zs2aOO6441ywXc306NEjUd2LL76Y5iTbt++++0aDBg0qrCstLY1bbrklrVk+/fTTtH5IBf/qkUceiXvvvTdt67/44otx4403Jq5P5bV5ew466KA4+uijE9UuWLAgTjnllCgpKamS3tVNKo/ppZdeut33EHbU7bffnrXf/QAAAAAAAACqG8NFQI1XWloar7zySoV1p556atqznHbaaRXWTJw4MVasWJH2LNXNrFmz4rrrrtvm7V27dk386ftA1Th6972ifeNm2Y5RofZNmsfRu/fPdgxqqO9///ux8847J64fPnx4vP/+++kL9DVWrVoVxx9/fKxfvz5RfV5eXlx99dVpTsWOWLVqVZx00klRXFyclvVvueWWeOKJJxLV5uXlpTRkV5Frr702mjZtmqj2gw8+iGOOOSZWr15dZf13xJYtW+Kuu+6KV199NdtRsmafffZJVPfYY49ldTCsoKAgDj/88ES1v//972POnDlpybF+/fo4/vjj48svv0zL+ny9ESNGJPpv/FS9//77cdppp21zJ91/981vfjP222+/Kut/8803J9797aWXXorTTz89ba8jqVq/fn3ceOONMW3atB1ea+DAgfHNb34zUe2GDRviuOOOi0WLFu1w33/39NNPx+WXX17l6wIAAAAAAADUVIaLgBrvvffeS3Th21FHHZX2LEl6lJWV1bkLGsvLy+Occ87Z7oVRI0eOjIYNG2YwFVAvLz/O2ntwtmNU6Ky9B0d+Xl62Y1BD1a9fP6VBnDVr1sSRRx4ZEydOTGOqf1i6dGkceeSR8dFHHyU+5swzz0y8+wjZ895778Upp5wSW7ZsqdJ1R48eHT/60Y8S159zzjnRvXv3KuvfqlWr+PWvf524/s0334yDDjoo5s6dW2UZUrVu3br47W9/G927d4//+q//iiVLlmQtS7bts88+UVBQUGHdqlWr4vzzz4+ysrIMpPp63/72txPVbd68Oc4444wqH8JYu3ZtfPOb34wpU6ZU6bpUbMuWLXHsscfG008/XWVrvv3223HooYcmHnbMz8+v8l2xevbsGZdddlni+j//+c9xxBFHxLJly6o0RyqWL18ev/zlL6Nr165x5ZVXxtq1a6tk3d/85jeJB60WLlwYhxxySMycObNKekf8bUfpk08+ObZu3VplawIAAAAAAADUdIaLgBovyaBO48aNq/QTh7dl5513jl133bXCupdffjntWaqT3/3ud/Hmm29u8/Zhw4bFkUcemcFEwN/t0X7n2K9z1V10XtUGdu4ee7TrnO0Y1HBnnXVWDBkyJHH9smXL4pBDDok//OEPUV5enrZcY8eOjb333julQaa2bdvGTTfdlLZMVK2nn346hg4dWmW7Vv7f//1fnHnmmYkHPpo0aRK/+MUvqqT3Pzv//PPj2GOPTVw/ffr02HPPPWPkyJEZHVaZNm1aXHzxxdGxY8f44Q9/mJadL2qagoKCOOywwxLVPvroozFo0KB444030pzq65144onRrFmzRLXvvvtuDBs2rMqG+WbOnBkDBw6Mt956q0rWY9vq1av3td/fvHlzHH/88fHjH/84Nm/eXOn1S0tL4//+7/9i0KBBsXLlysTHXXTRRdGzZ89K992W6667Lvr3T74j5/jx46NPnz7x+OOPV3mW7Xn77bdj+PDh0alTp/jZz35W5bt39erVKy688MLE9QsXLox99tknHnzwwR3qu2HDhvjhD38Yw4YNi5KSkq+t2dZzEgAAAAAAAKC2M1wE1Hhvv/12hTX77bdf4k/F3VEHH3xwhTXvvvtuBpJUD4sWLYr/+Z//2ebtLVq0iFtvvTVzgYD/cEb/g6Mgv/pdRFeQXy/O6H9ItmNQC+Tk5MS9994bRUVFiY/ZvHlznH/++XHAAQdU+Y6DM2fOjDPOOCOGDBkSixcvTunYkSNHRosWLao0DzuuU6dO27ztlVdeif79+8czzzxT6fUXLVoUxx9/fFx22WUpDefccMMN0aZNm0r33Z777rtvu/f7323YsCFGjBgRffv2jSeeeCJtu0V8/PHHccMNN8See+4Ze+65Z9x+++1VttNGbXHqqacmrn3zzTfjkEMOiY4dO8Zpp50W1157bdxzzz3xxBNPxDPPPBNjxoyp8Ou1116rVM6ioqI477zzEtf/5S9/icMOOywWLlxYqX4RERs3bozrrrsu9tprr/j444+/tiZdP1N11bnnnhutWrX62tvKy8vjhhtuiJ49e8aoUaNS2p2qtLQ0/vKXv0T//v3jsssu2+Ygydfp3bt3/OpXv0pcn4r69evHo48+Gk2bNk18zPLly+OUU06JAw88MF566aW0DD6Xl5fHlClT4uqrr45dd901DjjggJQf81T96le/il69eiWuX79+fZx55plx0EEHpfw4bNiwIf7whz9Ejx494re//e0261q1apXSeQcAAAAAAACgNsnMlfYAaTR16tQKa1L5ZOAdNWDAgLj//vu3W/Pxxx9HcXFxFBQUZChV9vzXf/1XrF+/fpu333TTTdG6desMJgL+XcuGjePEPvvFo+9ve4exbDhpj/2iRcNG2Y5BLdG1a9d44IEH4tvf/nZKF6O+8847cdhhh8Uee+wRw4YNixNOOCF22223lPsvW7YsxowZE3/6058qfWHwZZddFieccELKx5F+3/jGN2LDhg3xxBNPfO3tixYtim9961txyCGHxCWXXBJDhw6N+vXrV7juRx99FCNHjoz7778/Nm3alFKmY445Jn7wgx+kdEwqWrVqFS+88EIcdNBBsWrVqsTHTZ8+Pb797W9Hhw4d4jvf+U4cc8wxccABB1TqgwDKy8tj7ty5MWHChJgwYUK8/PLLMW/evJTXqWtOOeWU+O///u/44osvEh/z2WefxR//+MdK9dt5551jwYIFlTr2sssui5EjR8a6desS1b/xxhvRu3fvuOCCC+L888+PLl26JDru448/jocffjjuvPPO7e7Qsttuu8VFF12U0o4rbF/r1q3jtttui+985zvbrFmwYEEMHz48rrjiijj66KPj0EMPjT59+sTOO+8cTZo0iZycnFi/fn18+umnMX369Bg7dmw8++yz8dlnn6Wcp0GDBvHII49EgwYNduRubVePHj3iqaeeim9+85spDe9MmDAhjjzyyNh1111j2LBhccwxx8Tee+8dOTk5KWcoLS2NmTNnfnX+fPHFF2PJkiUpr7MjCgsL45FHHomBAwemtDvVW2+9FUceeWR069YtjjnmmDj44IOjV69e0aFDh2jUqFGUlpbG2rVrY968efHhhx/GK6+8Ei+88EKsWbOmwrVvu+22+OSTT3bkbgEAAAAAAADUWIaLgBpt6dKliS6AyfRwUUW2bt0aH374Yey9994ZSJQ9Dz74YLzwwgvbvH3w4MFx9tlnZzARsC1H7d4vxs+fEZ+tWZntKBER0bFpy/jmbv2yHYNa5qSTTopf//rX8eMf/zjlYz/88MP4n//5n/if//mfaNWqVQwYMCB69OgRnTp1irZt20ZhYWEUFBRESUlJbN68OVatWhWLFi2K+fPnx5QpU3Z44OG4446Lm266aYfWIL3uuOOOeO2112Llym2fR8ePHx/jx4+PRo0axeDBg6Nv376xyy67RJMmTSI/Pz/Wr18fS5YsiRkzZsS4ceNi/vz5lcrSuXPnuPfeeyt7VxLr1atXPPPMM3HkkUfGhg0bUjr2888/j5tuuiluuummKCwsjD333DP69OkTnTp1ip122imKioqisLAwysvLY/PmzbF58+ZYvnx5LF26ND7//POYNWtWzJw5MzZu3Jime1d7FRQUxFVXXVUjBmTatm0bV111VVx55ZWJj9mwYUPceOONcdNNN0W/fv3iwAMPjB49ekSbNm2isLAwiouLY926dbFo0aKYNWtWTJgwIRYtWlThug0aNIg//elPMWXKlB25S3yNYcOGxbPPPhuPPPLIdutWrFgRDz30UDz00ENpyZGTkxOjR4+Ovn37pmX9fzZ48OAYPXp0nHbaaVFaWprSsXPmzIlf/OIX8Ytf/CIaN24ce+21V/Tu3Ts6duwY7du3j6KiomjQoEGUlpbG5s2bY9OmTbFs2bJYunRpLF68OGbNmhWffPJJWnclSmrPPfeMhx56KE455ZSUB6/nzZsXt99+e9x+++1VkmXYsGExbNiwuOaaa6pkPQAAAAAAAICaxnARUKNNmzYtUd3uu++e5iT/kHQ3g2nTptXq4aJly5bFpZdeus3bCwoK4s4778xgImB78nPzYvjeQ+KXr/4521EiImL43oMjPzcv2zGoha688srYsGFDXHfddZVe48svv4wXX3wxXnzxxSpMtm1Dhw6NRx99NHJzczPSj8pp27ZtPProozF06NDYunXrdmvXr18fY8aMiTFjxlR5jiZNmsRzzz0Xbdq0qfK1v86BBx4Yr732WgwdOnS7O75sz6ZNm+Kdd96Jd955p4rTsS3nn39+PPLIIzFhwoRsR6nQZZddFk8++WTKz4/y8vKYOnVqop1uK5KbmxsPPfRQ9O3b13BRmtx3332xYMGCrD4nb7nlljjppJMy1u/kk0+Op556Kk499dRKD0quW7fuq8HVmurkk0+O3/zmN3HZZZdlLcP++++fkaFcAAAAAAAAgOrM1WlAjZZ0F4Bdd901zUn+oXnz5tGiRYsK63Z0B4Pq7sILL9zuJ/f/9Kc/jR49emQwEVCRXm07xgE7JxuQTKcDu+wWPdt2zHYMarFf/OIXcfvtt0dOTk62o1Tou9/9bjz11FNRWFiY7SgkcMQRR1TZDgqVUVRUFE899VT07t07o3333XffeOuttzL6Ozc7Jjc3N/7yl79Et27dsh2lQvn5+fHoo49Gy5Yts5bhD3/4Q5x88slZ618XFBQUxFNPPRV77LFHxnvn5OTEb3/727jkkksy3vuYY46JV199Ndq2bZvx3tXJpZdeGrfddltWfjfr06dP/PWvf40GDRpkvDcAAAAAAABAdWK4CKjR5s+fX2FNu3btoqioKANp/iHJhZVJstdUf/3rX+Pxxx/f5u29evWKK6+8MoOJgKS+0//gKMyvn7X+hfXqx3f2Ojhr/ak7Lrroonj55Zdjp512ynaUr9WgQYO444474sEHH4z8fBvO1iTnn39+3HjjjRm/QLpZs2bx8ssvx5AhQzLa9+969OgRU6dOjbPOOisr/Uld27Zt4+23346DDjoo21Eq1KVLl3jhhReicePGGe2bn58fd999d5x77rkZ7VtXtW7dOt54440YNGhQxnoWFRXFI488EhdeeGHGev67gQMHxrRp0+Loo4/OWobq4Ic//GE8/PDD0bBhw4z1HDRoULz55pvRunXrjPUEAAAAAAAAqK4MFwE12oIFCyqs6dChQ/qD/Jv27dtXWFNbh4vWrFkTI0aM2ObtOTk5cdddd0X9+tkbXgC2rXlhUZzcd2DW+p+8x8BoVpjZgVDqrkMPPTSmTZsWZ5xxRrXaxWj//fePSZMmxQUXXJDtKFTSj370o3jwwQejXr16GenXp0+fmDBhQuy///4Z6bctjRo1ivvvvz/+8pe/RJcuXbKaZVsOPPDA2HPPPbMdo9po06ZNjBs3LkaOHFlthy3/bu+9945XXnkl2rVrl5F+zZo1ixdeeCHOOeecjPTjb5o2bRovvvhiXHrppZGbm963Lffcc8+YNGlSnHbaaWntk0SbNm3i2WefjbvuuqtaDrrk5ubGN7/5zbSf208//fSYNGlS2newys3NjUsvvTRefPHFaNq0aVp7AQAAAAAAANQUhouAGu2zzz6rsCZTF5+l2nPx4sUZSJJ5V1xxRXz++efbvP28886LAw88MIOJgFQd0WPP6NSsZcb7dm7WKo7o4YJvMqtFixbx0EMPxcSJE7O248vf7brrrvH444/HhAkTonfv3lnNwo4744wz4r333ot+/fqlrUdubm6cf/758d5770XPnj3T1idVJ5xwQsycOTOuv/76aNGiRbbjRMeOHePyyy+P6dOnx5tvvpn2i9Zrmtzc3PjBD34Q8+fPj0cffTSOP/74jO4ckop99903I+froUOHxocffhiHHnpoWvvw9QoKCuKWW26JN998My3n0ObNm8f//d//xcSJE2P33Xev8vV3xLnnnhtz5syJK6+8MuM7MH+dHj16xNVXXx3z5s2L559/Pjp27Jj2nj179oxJkybFb37zm2jWrFmVr9+vX79466234pZbbomCgoIqXx8AAAAAAACgpjJcBNRoK1asqLCmbdu2GUjyr5IMF61cuTIDSTLr9ddfj3vuuWebt7dv3z5uuOGGDCYCKiMvNzeG7535IYvh+wyJvDR/Qj1sy4ABA+K1116LyZMnxznnnJOxC3pzc3PjqKOOimeeeSZmzZoVJ598ckb6khn9+vWLiRMnxs0335xoZ8tUDBkyJCZPnhy///3vo7CwsErXrgoFBQVx5ZVXxuLFi+Ouu+6Kvn37ZrT/brvtFpdeemmMHz8+Fi1aFDfffHP06tUroxlqmnr16sVpp50WTz75ZKxevTreeeed+O1vfxsXXXRRHHXUUdGvX7/o2LFjNG7cOAoKCtK+q8y2dOzYMV577bW47777onPnzlW6du/eveOPf/xjjBkzJiNDFGzf/vvvH1OnTo3nn38+vvGNb+zwc65r165xww03xNy5c+OSSy7J2O5yqWrSpElcf/31sXjx4vjNb34Tu+yyS8Z65+TkRL9+/eKnP/1pTJ48OWbNmhXXXHNN7LzzzhnLEBFRv379uOyyy2Lu3Lnx61//eof75+bmxqGHHhrPP/98TJ06NQYOzN5OrQAAAAAAAADVVU55eXl5tkMAVFbbtm1j2bJl26259NJL45ZbbslQor+59dZb49JLL62wbvPmzbXmk3I3btwYffv2jblz526z5vHHH0/5oumzzjorHnjgge3WDBo0KMaOHZvSurXF8uXLo02bNv/yvWXLlkXr1q2zlGjHFRcXx7x587Zb061bt1rzs1Od/eHtl2L8/I8z0uuQbj3jBwOPyEgvSGLDhg3x8ssvx5gxY+LFF1+s0h0HmzRpEkOGDIljjjkmhg4dWuVDJ1SdBQsWRNeuXSusO/PMM2PUqFHbrSkuLo7Ro0fH6NGj480334ytW7emnKdp06Zx4oknxoUXXhj9+/dP+fhsmzFjRjz11FPx9NNPx+TJkyv1GHyd3Nzc2HXXXeOAAw6IQw45JAYPHpzo342ar6SkJB599NF48MEHY+zYsVFaWpryGoWFhXH44YfHueeeG0OHDo2cnJzt1o8aNSqGDx9e4br3339/nHXWWSnnYduWLVsWzz77bLz00ksxbdq0mD17dpSUlGyzvlmzZtG7d+8YMmRIHHXUUTFw4MCsDcXtqEmTJsVTTz0VzzzzTHz00UdRVlZWJevm5+dHz54948ADD4yDDz44hgwZUi1/LykrK4sJEybECy+8EK+99lpMnz491q5du836evXqRffu3aNv375x5JFHxtChQ2v0fyMDAMl5bxkAAAAA2FG18brcpAwXATVa/fr1t3sxUUTEz3/+87j22mszlOhv7r333jjnnHMqrPv888+r5YU7lXH55Zdvd4jrmGOOiWeeeSbldQ0XbV9t/CXGH4CrjzWbNsTlYx6MjSVb0tqnYb2C+M2x34umDRqmtQ/siKVLl8bkyZPjgw8+iPnz58fixYvj008/jZUrV8amTZti8+bNsXnz5qhXr14UFhZGgwYNokmTJrHTTjtFp06donPnzrHHHntE//79Y9ddd63w4nWqh6ocLvpnq1evjldeeSXef//9mD59enzyySexevXqWLduXWzcuDEaNGgQjRs3jjZt2sTuu+8evXv3jsGDB8cBBxwQ+fn5O3CPqo/NmzfH1KlTY+LEiTF79uxYtGhRLFy4MFasWBEbN26MjRs3RnFxceTn50dBQUE0bNgwWrZsGa1bt44OHTpE165do1u3btGrV6/Yc889M7bbGNXX8uXL44033oi33347Zs6cGfPmzYtly5bFhg0bori4OBo2bBhNmjSJ5s2bx2677RZ77LFH7L333nHooYdWy92/qFhJSUksXLgw1qxZE+vWrYvNmzdHYWFhNG7cONq3b19r/lv7361bty4mT54ckydPjjlz5sSiRYti0aJFsXLlyti4cWNs2rQptmzZEvXq1Yv69etHo0aNolWrVtG6devYaaedomvXrrHLLrtE7969o0+fPtGgQYNs36VK+fzzz+OLL7746rWzYcOG0bhx42jatGl07ty52u5MBQCkl/eWAQAAAIAdVRuvy02qdlyVBNRJmzZtqnCwKCKicePGGUjzr5o0aZKobs2aNbXigqeJEyfGbbfdts3bGzVqFL///e8zmAioCk0Li+KUPQ+IUZPGprXPqXvub7CIaq9t27Zx9NFHx9FHH53tKNQCzZo1i5NPPjnlHR1rkwYNGsT+++8f+++/f7ajUEu0bt06TjzxxDjxxBOzHYUMqVevXuy6667ZjpFxjRs3jsGDB8fgwYOzHSWrOnToEB06dMh2DAAAAAAAAIBaIzfbAQAqa8uWZDtpZONTqJN+8m/S+1CdlZSUxPe///0oLS3dZs11110XnTp1ymAqoKoctuse0aV5+ibuuzRvE4fuukfa1gcAAAAAAAAAAABg++xcBNRYSQdz8vLy0pzkP+XnJzu91obhol/96lfx4YcfbvP2vffeO374wx9mMBEHHXRQ4udgddS6deu48MIL/+V73bp1+5f//8knn0ROTk4mY6WsT58+2Y5QJXJzc2P4PkPi6pf+VOVr50TE2fsMidxc8+4AAAAAAAAAAAAA2eJKTqDGSjqYk40hi6Q9S0pK0pwkvWbMmBG/+tWvtnl7fn5+3H333QYHoIbr3qp9DNmld5WvO3iXPrFrq3ZVvi4AAAAAAAAAAAAAydXcbQ2AOm/r1q2J6gwXpUdZWVl8//vf3+6Q1yWXXBL9+vXLXCgiIuLNN9+M1q1bZztGpRUXF8e8efO2W9OtW7coKCjIUCIiIk7d88CY+OncWL9lc5Ws16h+gzh1zwOqZC0AAAAAAAAAAAAAKs9WEkCNlXSAp7S0NM1JKt8zG4NPVeX222+Pd955Z5u3d+3aNa699toMJgLSqUmDwji1X9UNA53W78Bo0qCwytYDAAAAAAAAAAAAoHIMFwE1Vv369RPVJd3hqCol3ZEo6X2obubPnx9XXXXVdmtGjhwZDRs2zFAiIBOGdOsd3Vq03eF1dmnZNgbv0rsKEgEAAAAAAAAAAACwowwXATVWvXr1EtVlY7goac+aOlx03nnnxYYNG7Z5++mnnx5HHnlkBhMBmZCbmxtn7zMkcnZgjZyIGL7PkMjN2ZFVAAAAAAAAAAAAAKgqhouAGqugoCBR3ebNm9OcpPI9a+Jw0X333RevvPLKNm9v0aJF3HrrrZkLBGRUt5Zt49Due1T6+MO6962S3Y8AAAAAAAAAAAAAqBr52Q4A1Czz58+Pd999N609ioqK4thjj62wrrCwMPLz8yvcJWjdunVVFS2xpD2bNGmS5iRV64svvojLL798uzU33XRTtGnTJkOJgGw4pe8B8e6iObGueFNKxzUpKIxv77l/mlIBAAAAAAAAAAAAUBmGi4CUjBs3LoYPH57WHjvvvHOi4aKIiObNm8fy5cu3W7N27dqqiJWSpD1btGiR5iRV64ILLojVq1dv8/ZBgwal/fkBZF+jggZxer8D4653t72L2dc5fa+DolH9BmlKBQAAAAAAAAAAAEBl5GY7AMCOaNmyZYU1a9asyUCS1Hs2bNgwGjSoORfZP/HEE/GXv/xlm7cXFBTEXXfdFTk5ORlMBWTLId16RfdW7RPX92jVPg7u2jONiQAAAAAAAAAAAACoDMNFQI2WZLho6dKlGUjyr7744osKa5Jkry5WrVoVF1100XZrfvrTn0aPHj0ylAjIttycnBi+z5BEA4U5/7821/AhAAAAAAAAAAAAQLVjuAio0XbaaacKa5IM+lS1JD2TZK8uLrvssu3ep169esWVV16ZwURAddClees4onvfCuuO6L5n7Ny8dQYSAQAAAAAAAAAAAJAqw0VAjdalS5cKaz7//PP0B/k3S5YsqbCma9euGUiy4+bMmROjRo3a5u05OTlx5513Rv369TMXCqg2Tu67fzRt0HCbtzdt0DC+3XdgBhMBAAAAAAAAAAAAkIr8bAcA2BFJBnS++OKL2LhxYzRsuO2L36vanDlzKqypKcNF69ev3+7t/fr1i8WLF8djjz2Wlv7z58+vsGbZsmWJ+rdp0ya+8Y1vVEUs4P8rql8Qw/Y6KEa+/dLX3v6dvQ6OhvULMpwKAAAAAAAAAAAAgKQMFwE1Wrdu3SqsKS8vjzlz5kTfvn0zkChi9erVsWLFigrrkmSvCaZOnRqnn356VjN8/PHHiTIMGjTIcBGkwUFddo/X506Pmcs++5fv92yzUxzYZbcspQIAAAAAAAAAAAAgidxsBwBqlrPOOivKy8vT+rVgwYLEefbYY49EdTNnzqzkPU5d0l5JswNUdzk5OTF878GRm5Pz1fdyc3Ji+N5DIuefvgcAAAAAAAAAAABA9WO4CKjR2rdvH23btq2wbsqUKRlIk7xXfn5+xnZSAsiETs1axTd36/fV/z9qt72iY7OW2QsEAAAAAAAAAAAAQCKGi4Aar3///hXWZHK4aPLkyRXW7L777tGgQYMMpAHInJP2GBjNC4uieWFRnLjHftmOAwAAAAAAAAAAAEAChouAGm///fevsOadd96JrVu3ZiBNxPjx4yus2W8/F90DtU9hvfrxnb0OjjP6HxKF9epnOw4AAAAAAAAAAAAACRguAmq8Qw89tMKadevWxXvvvZf2LIsWLYo5c+ZUWHf44YenPQtANuy/c48Y2Ll7tmMAVIkuXbpEeXl5hV+jRo3KdlQAAAAAAAAAAIBKM1wE1Hj77rtvNGnSpMK6559/Pu1ZkvTIyclJNBAFUBPl5ORETk5OtmMAAAAAAAAAAAAAkJDhIqDGy8/PTzSs88c//jHtWR577LEKa/bee+9o1apV2rNUlX79+iX6xP50fZ155pkVZhw0aFCitcaOHZv+BwwAAAAAAAAAAAAAoAYxXATUCqeffnqFNbNnz4533303bRkWLVoU48ePr7AuSVYAAAAAAAAAAAAAAMgEw0VArXDsscdGkyZNKqy79dZb05bh9ttvj7Kysu3W5ObmxmmnnZa2DAAAAAAAAAAAAAAAkArDRUCt0KBBgzjllFMqrHviiSdizpw5Vd5/xYoVcffdd1dYd8QRR0T79u2rvD8AAAAAAAAAAAAAAFSG4SKg1rjssssiJydnuzVbt26NK664osp7//znP4+1a9dWWHf55ZdXeW8AAAAAAAAAAAAAAKgsw0VArdGzZ8845phjKqz761//Go8//niV9X3zzTfjzjvvrLCuf//+cdhhh1VZ34iIBQsWRE5OToVfgwcPrtK+AAAAAAAAAAAAAADUDoaLgFrl6quvjtzcik9t5557bnzyySc73O+LL76IYcOGRWlpaYW111xzzQ73AwAAAAAAAAAAAACAqmS4CKhVBgwYEGeffXaFdWvWrIlDDz005s2bV+ley5cvj8MOOyw+/fTTCmuPOuqoOPbYYyvdCwAAAAAAAAAAAAAA0sFwEVDr/OpXv4qWLVtWWLd48eLYd9994/nnn0+5x7vvvht77713TJ8+vcLaBg0axG233ZZyDwAAAAAAAAAAAAAASDfDRUCt07p16xg1alTk5ORUWLtixYo4+uij48QTT4xJkyZVWD9jxowYPnx4HHDAAbFo0aJEeW677bbo3r17oloAAAAAAAAAAAAAAMik/GwHAEiHY445Jq644oq46aabEtU/+eST8eSTT0aPHj3ioIMOit69e0eLFi0iJycnVq1aFTNnzoy33347pk2bllKOYcOGxXnnnVeZuwAAAAAAAAAAAAAAAGlnuAiota6//vpYvHhxPProo4mP+eSTT+KTTz6pkv6HHnpo3HfffVWyFgAAAAAAAAAAAAAApENutgMApEtubm48+OCDceKJJ2a890EHHRR//etfo6CgIOO9AQAAAAAAAAAAAAAgKcNFQK2Wn58fjz/+eFx55ZUZ6zl8+PB45ZVXoqioKGM9AQAAAAAAAAAAAACgMgwXAbVebm5uXH/99fHkk09Ghw4d0tanefPmcffdd8d9991nxyIAAAAAAAAAAAAAAGoEw0VAnXH88cfHzJkz44orrqjSXYXq168f3//+92PWrFlxzjnnVNm6AAAAAAAAAAAAAACQbvnZDgCQSY0bN46bbropfvKTn8Rdd90VDz30UEyfPr1Sa+2yyy5x+umnx4gRI6J9+/ZVnJS/O/7446NLly7branodgAAAAAAAAAAAAAAvl5OeXl5ebZDAGTTwoUL46WXXooPPvggZsyYEQsWLIi1a9fGunXrory8PBo3bhyNGzeOTp06Ra9evWKPPfaIww47LHbfffdsR4dYvnx5tGnT5l++t2zZsmjdunWWEu244uLimDdv3nZrunXrFgUFBRlKBAAAAABAdee9ZQAAAABgR9XG63KTsnMRUOftvPPOce6552Y7BgAAAAAAAAAAAAAAZFxutgMAAKTKxosAAAAAAPwz7xsDAAAAAFSe4SIAoFrJycmpsMYfiQEAAAAA+GdJ3jfOzfXncQAAAACAr+PdUwCgWknyx92ysrIMJAEAAAAAoKYoLS2tsCbJh1sBAAAAANRFhosAgGolLy+vwpotW7ZkIAkAAAAAADVFkveNk7z/DAAAAABQFxkuAgCqlZycnKhXr952a0pKSjKUBgAAAACAmqCi943r1atn5yIAAAAAgG0wXAQAVDsVDRfZuQgAAAAAgH9W0fvG9evXz1ASAAAAAICax3ARAFDtVPRHXsNFAAAAAAD8XXl5eRQXF2+3xnARAAAAAMC2GS4CAKqdiv7IW1xcHCUlJRlKAwAAAABAdZbkPWPDRQAAAAAA22a4CACodpL8kXfdunUZSAIAAAAAQHWX5P3igoKCDCQBAAAAAKiZDBcBANVOUVFR5OTkbLfGcBEAAAAAAOXl5bF27drt1uTl5UXDhg0zlAgAAAAAoOYxXAQAVDu5ubnRqFGj7dZs3LgxNm7cmKFEAAAAAABUR2vXro0tW7Zst6Zx48YVfqAVAAAAAEBdZrgIAKiWGjduXGHN0qVLo7y8PANpAAAAAACobkpLS2PZsmUV1iV5vxkAAAAAoC4zXAQAVEsV7VwUEbF58+ZYvXp1+sMAAAAAAFCtlJeXx7Jly2Lr1q3brcvLy4uioqIMpQIAAAAAqJkMFwEA1VJeXl40adKkwrovvvgi1q5dm4FEAAAAAABUB38fLEry4VNNmzaNnJyc9IcCAAAAAKjBDBcBANVW69atE/3R9/PPP481a9ZEeXl5BlIBAAAAAJAtZWVl8cUXX8TKlSsrrM3Ly4tWrVplIBUAAAAAQM1muAgAqLbq168fLVq0qLCuvLw8Pv/881i8eHFs2bIlA8kAAAAAAMik8vLyWLNmTcydOzfRjkUREW3atIm8vLz0BgMAAAAAqAXysx0AAGB7WrVqFWvWrImtW7dWWLt+/frYsGFDNGrUKJo2bRpFRUWRm2uWGgAAAACgJiovL4/i4uJYt25drF27NqUPlyosLIymTZumMR0AAAAAQO1huAgAqNZyc3Ojbdu28dlnnyWqLy8vj3Xr1sW6desiNzc3GjRoEPXr1//qKy8vL3JzcyMnJyfNyQEAAAAASKK8vDzKy8ujtLQ0tmzZEiUlJbFly5YoLi6OkpKSlNfLycmJdu3aeR8YAAAAACAhw0UAQLXXpEmT2Lp1ayxdujSl48rKymLjxo2xcePGNCUDAAAAAKA6ycnJiU6dOkWDBg2yHQUAAAAAoMbIzXYAAIAkWrRoEa1bt852DAAAAAAAqqm/DxYVFRVlOwoAAAAAQI1iuAgAqDFatmwZLVu2zHYMAAAAAACqGYNFAAAAAACVl5/tAAAASeXk5ETr1q2joKAgli5dGqWlpdmOBAAAAABAlhUWFka7du2iQYMG2Y4CAAAAAFAjGS4CAGqUnJycaNq0aTRq1CiWLl0aa9asyXYkAAAAAACyIC8vL9q2bRtNmjSJnJycbMcBAAAAAKixDBcBADVSXl5edOjQIZo2bRrLly+PTZs2ZTsSAAAAAAAZkJeXF02bNo1WrVpFXl5etuMAAAAAANR4hosAgBqtqKgoioqKoqSkJNauXRtr1qyJ4uLibMcCAAAAAKAK5eXlRePGjaNx48ZRVFRkpyIAAAAAgCpkuAgAqBXq1asXLVu2jJYtW0ZxcXFs2rQptmzZ8i9f5eXl2Y4JAAAAAEAF6tWrF/Xr1//qq6CgIBo2bGigCAAAAAAgTQwXAQC1TkFBQRQUFPzL98rLy6O0tDTKy8ujrKwsS8kAAAAAAPg6ubm5kZOTE3l5eYaIAAAAAAAyzHARAFAn5OTkRH6+X30AAAAAAAAAAAAA4J/lZjsAAAAAAAAAAAAAAAAAkB2GiwAAAAAAAAAAAAAAAKCOMlwEAAAAAAAAAAAAAAAAdZThIgAAAAAAAAAAAAAAAKijDBcBAAAAAAAAAAAAAABAHWW4CAAAAAAAAAAAAAAAAOoow0UAAAAAAAAAAAAAAABQRxkuAgAAAAAAAAAAAAAAgDrKcBEAAAAAAAAAAAAAAADUUYaLAAAAAAAAAAAAAAAAoI4yXAQAAAAAAAAAAAAAAAB1lOEiAAAAAAAAAAAAAAAAqKMMFwEAAAAAAAAAAAAAAEAdZbgIAAAAAAAAAAAAAAAA6ijDRQAAAAAAAAAAAAAAAFBHGS4CAAAAAAAAAAAAAACAOspwEQAAAAAAAAAAAAAAANRRhosAAAAAAAAAAAAAAACgjjJcBAAAAAAAAAAAAAAAAHWU4SIAAAAAAAAAAAAAAACoowwXAQAAAAAAAAAAAAAAQB1luAgAAAAAAAAAAAAAAADqKMNFAAAAAAAAAAAAAAAAUEcZLgIAAAAAAAAAAAAAAIA6ynARAAAAAAAAAAAAAAAA1FGGiwAAAAAAAAAAAAAAAKCOMlwEAAAAAAAAAAAAAAAAdZThIgAAAAAAAAAAAAAAAKijDBcBAAAAAAAAAAAAAABAHWW4CAAAAAAAAAAAAAAAAOoow0UAAAAAAAAAAAAAAABQRxkuAgAAAAAAAAAAAAAAgDrKcBEAAAAAAAAAAAAAAADUUYaLAAAAAAAAAAAAAAAAoI4yXAQAAAAAAAAAAAAAAAB1lOEiAAAAAAAAAAAAAAAAqKMMFwEAAAAAAAAAAAAAAEAdZbgIAAAAAAAAAAAAAAAA6ijDRQAAAAAAAAAAAAAAAFBHGS4CAAAAAAAAAAAAAACAOspwEQAAAAAAAAAAAAAAANRRhosAAAAAAAAAAAAAAACgjjJcBAAAAAAAAAAAAAAAAHWU4SIAAAAAAAAAAAAAAACoowwXAQAAAAAAAAAAAAAAQB1luAgAAAAAAAAAAAAAAADqKMNFAAAAAAAAAAAAAAAAUEcZLgIAAAAAAAAAAAAAAIA6ynARAAAAAAAAAAAAAAAA1FGGiwAAAAAAAAAAAAAAAKCOMlwEAAAAAAAAAAAAAAAAdZThIgAAAAAAAAAAAAAAAKijDBcBAAAAAAAAAAAAAABAHWW4CAAAAAAAAAAAAAAAAOoow0UAAAAAAAAAAAAAAABQRxkuAgAAAAAAAAAAAAAAgDrKcNH/Y+++w6Qsz8WP37ssXXoXLCgIFlCIYo/GhsYEURNRFHWX6DGak2is0fxiizlJSIyJaWqkqGDl2MCuYIliI4IKYgMRRKlSpLPz+yNnyYLszsBOYXk/n+uaKzrzzPvcM0SdP97v9QAAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEiokkIPQGZWrlwZs2fPjvnz58fixYvjyy+/jKVLl8bq1atj9erVsWbNmqhTp07Uq1cv6tatG40aNYpmzZpF8+bNo0WLFtGhQ4do1apVoT8GAAAAAAAAAAAAAAAAWxFx0VZk2bJlMWnSpJgyZUp88MEH8cEHH8RHH30Us2fPji+//LLG169Xr1506NAhdt555+jSpUt07do1dtttt9h7771j5513rvH1AQAAAAAAAAAAAAAAqF3ERQWyZs2amDhxYrz88svxyiuvxMSJE2PGjBmRSqU2WLfx39fEqlWrYsaMGfHJJ5/E888/v8FrTZs2jZ49e8Z+++0XBx10UBx00EHRvn37rO0NAAAAAAAAAAAAAADA1qcolc16hWq98cYb8cwzz8TTTz8dr7zySqxatWr9a9X9MRQVFWV1jqr22nifzp07x5FHHhlHHXVUHHnkkdGyZcuszgFAzc2bNy/atm27wXNz586NNm3aFGgiAAAAAAAAAAAAAKh9knxfrpOLcmj58uXx5JNPxiOPPBJjx46NBQsWrH9t48AnXUCUjQasYo+q9tp4j48//jimT58e//jHP6KoqCj69OkTJ5xwQvTr1y923333Gs8DAAAAAAAAAAAAAABAYTm5KMtWr14dY8aMiVGjRsVjjz22/nSiTGOiQv1xZDJP5TVdu3aNgQMHxqmnnhq77bZbzucDYNOSXEgDAAAAAAAAAAAAQLYk+b5ccVGWvPzyy3H77bfH6NGjY+nSpRFRdZhTYWv/6jeeuapAap999onS0tI4/fTTo0WLFnmbD4Bk/4gBAAAAAAAAAAAAgGxJ8n254qIaWLRoUdx+++0xdOjQmDZtWkRUHxTV5q86XRxVVFQU9erVi/79+8c555wTRxxxRD7HA0isJP+IAQAAAAAAAAAAAIBsSfJ9ucWFHqA2mjx5cpxzzjnRqVOnuPzyy+O9996LVCoVqVQqioqK1j8iYv3ztTksitjwc1R8lo0/56pVq+K+++6Lo48+Ovbaa6+45ZZbYvny5YUcGwAAAAAAAAAAAAAAgGqIizbDE088EUcccUT06tUrhg4dGitWrNimg6LqVP6MlT9/xXNTpkyJ888/Pzp27BhXXnllfPHFF4UeGQAAAAAAAAAAAAAAgI2Ii9JIpVIxatSo2GeffeL444+P559//mtRTcW6XARFlcOdbD2yrbrTjBYvXhy/+c1vonPnzvFf//Vf8eGHH2Z9fwAAAAAAAAAAAAAAALaMuKgKqVQqRo4cGbvvvnsMGjQoJk+eXG1UVBOZhECV46WaPNLtV5P4qLrTjFauXBn/+Mc/Yo899ojS0tL46KOPavSdAQAAAAAAAAAAAAAAUHNFqWwftbMNuPfee+Oaa66J999/f4NwqHJQtKWqinequmbDhg2jY8eO6x9NmjSJhg0bbvKxZs2aWL58eaxYseJrjy+++CJmzZoVs2fPjgULFmzWbNXNl87GgVTFc3Xq1IlBgwbFNddcEzvssMMWXRuAiHnz5kXbtm03eG7u3LnRpk2bAk0EAAAAAAAAAAAAALVPku/LFRdV8txzz8Xll18eEydO3CCEqbAlX9Wmgp2Nr9O0adPo0aNH9OzZM3r27Bk77bRTdOzYMTp16hQtWrTY7D3TWbVqVcyePTtmz54ds2bNiqlTp8bkyZNj8uTJ8cknn3xtvo0/Q02/h8rfbf369eOCCy6IK6+8MiefFWBbl+QfMQAAAAAAAAAAAACQLUm+L1dcFBHvvvtuXHzxxfH0009HxL/jly2NitLFRC1btozDDjssevfuvUFMtLVYunRpvP322+tjo5deeinefffdTcZWFbb0+6l8zWbNmsVVV10VP/nJT6KkpKSGnwIgOZL8IwYAAAAAAAAAAAAAsiXJ9+UmOi5atGhR/L//9//i1ltvjXXr1n0toMn0q6nuZJ/mzZvHN7/5zTj88MPjW9/6VvTs2XOTgc7WbMGCBTF+/PgYP358jBs3LqZMmbL+tS091aiqyGjXXXeNG2+8Mb7zne9kYXKAbV+Sf8QAAAAAAAAAAAAAQLYk+b7cRMZFqVQq/va3v8UvfvGLWLRoUVaiosrX6NOnT5xwwglxzDHHRK9evWpdTJTOvHnzYty4cTFmzJh47LHHYuHChRGxZaFRVd/h0UcfHX/+85+jS5cuWZwcYNuT5B8xAAAAAAAAAAAAAJAtSb4vN3Fx0ZtvvhnnnXdeTJw4cYuiok3FMMXFxXHYYYfFgAEDol+/ftG+ffscTL51Ki8vjxdffDH+93//N+6///74/PPPI2LzQ6NNfa/169ePyy+/PK688sqoV69elicH2DYk+UcMAAAAAAAAAAAAAGRLku/LTVRc9KMf/ShuueWWKC8vj1QqtcmgpSqbWrvffvvF6aefHqecckqigqKqpFKpGDduXNx9991x//33x5IlSyJi099dVTYOvYqKiqJLly5x1113xX777ZejyQFqryT/iAEAAAAAAAAAAACAbEnyfbmJiouKi4ujqKhog7Couo+/qSimTZs2cfrpp0dZWVnstddeuR24Flu5cmXcf//9MXz48Bg/fvwWx1wV77v66qvjF7/4RU5nBqiNkvwjBgAAAAAAAAAAAACyJcn35RYXeoBCqAiMqgpcioqKNohbUqlUHHTQQTFy5MiYNWtW3HjjjcKiNBo0aBCDBg2KZ599NqZNmxYXXnhhNGvWbIMTiSrHRhtLUPMGAAAAAAAAAAAAAABQMImMizKNiurWrRulpaXx1ltvxUsvvRSnnXZa1K1bN5+jbhO6dOkSN954Y3z22Wdx6623xu67774+2koXGQEAAAAAAAAAAAAAAJA7iYyLNrZxVNSsWbO44oorYsaMGXH77bdHz549CzzhtqFBgwbxgx/8IN5555149NFH45vf/KbICAAAAAAAAAAAAAAAoIASHRdtHBW1bt06fvWrX8XMmTPjV7/6VbRv377AE267jj/++Bg/fny8/PLLcdxxx4mMAAAAAAAAAAAAAAAACiCRcdHGUVGbNm3i97//fcyYMSOuuOKK2G677Qo8YXIccMABMXbs2HjjjTfihBNO2CAyAgAAAAAAAAAAAAAAILcSGRdF/DsqatasWfzyl7+Mjz/+OC666KJo2LBhocdKrN69e8eDDz4YEyZMiCOOOCJSqVREhMgIAAAAAAAAAAAAAAAghxIXF6VSqahXr15cdtll8fHHH8eVV14ZjRo1KvRY/J8+ffrEM888E88880z07t17fWQEAAAAAAAAAAAAAABA9iUqLioqKoqBAwfGtGnT4te//nU0b9680CNRhSOOOCJef/31GDFiRHTs2LHQ4wAAAAAAAAAAAAAAAGyTSgo9QD5NmDAh9ttvv0KPwWYYNGhQfP/734+PPvqo0KMAAAAAAAAAAAAAAABscxJ1cpGwqHZq0KBB7LnnnoUeAwAAAAAAAAAAAAAAYJuTqLgIAAAAAAAAAAAAAAAA+A9xEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEioRMdFTz/9dKFHAAAAAAAAAAAAAAAAgIJJdFzUt2/f2HnnneOaa66JGTNmFHocAAAAAAAAAAAAAAAAyKtEx0UREZ9++mlcf/310aVLlzjiiCNi5MiRsXLlykKPBQAAAAAAAAAAAAAAADmX+LgoIiKVSkV5eXk8//zzceaZZ0b79u3jvPPOi1dffbXQowEAAAAAAAAAAAAAAEDOiIsioqioKIqKiiKVSkUqlYolS5bEbbfdFgcddFDsueee8fvf/z7mzp1b6DEBAAAAAAAAAAAAAAAgq8RF8e+TiyL+ExlVDo2mTp0al112Weywww7Rv3//ePjhh2PdunUFnhgAAAAAAAAAAAAAAABqTlz0fypioo1Do4rX1qxZE48++micdNJJ0alTp7jssstiypQphRwZAAAAAAAAAAAAAAAAakRctAmVQ6NNnWb0xRdfxO9///vo0aNHHHDAAXHbbbfFkiVLCj02AAAAAAAAAAAAAAAAbBZxURqbOs2ocmj0+uuvx3nnnRcdOnSIM888M8aNG1fgiQEAAAAAAAAAAAAAACAz4qIMVT7NKCK+FhmtWLEiRo4cGUcddVTssssucf3118fMmTMLPDUAAAAAAAAAAAAAAABUTVy0BSqHRps6zWjGjBlxzTXXxC677BJHH3103HPPPbFq1apCjw0AAAAAAAAAAAAAAAAbEBfV0KZOM6oIjcrLy+O5556L008/PTp06BAXXHBBvPHGGwWeGAAAAAAAAAAAAAAAAP5NXBQbRkFbqvJpRpWvWfHcl19+GX//+99j//33j549e8ZNN90U8+fPz9ZHAAAAAAAAAAAAAAAAgM2W6Ljosssuiw4dOmwyCqqJ6k4zSqVS8c4778TFF18cnTp1ipNPPjnGjBkT5eXlNf48AAAAAAAAAAAAAAAAsDkSHRf9+te/jpkzZ8bYsWPj5JNPjnr16q0PgHJ5mlHFa6tXr46HHnooTjjhhNhhhx3iZz/7WUybNi0rnw0AAAAAAAAAAAAAAADSKUpVlC/EokWLYuTIkTF8+PCYOHFiRMTX4qJsfF2Vr1n5ehXPH3DAATF48OA45ZRTYrvttqvxfgBsu+bNmxdt27bd4Lm5c+dGmzZtCjQRAAAAAAAAAAAAANQ+Sb4vV1xUhXfeeSeGDh0ao0aNirlz50ZE1VHQlqoqXKp4vlGjRvG9730vSktL45vf/GaN9wNg25PkHzEAAAAAAAAAAAAAkC1Jvi9XXJTGunXrYuzYsTFs2LAYO3ZsrF27NiJyGxpt6jSjXXbZJUpLS+Oss86Kjh071ng/ALYNSf4RAwAAAAAAAAAAAADZkuT7csVFm2HevHlx5513xogRI+Ltt9+OiKpPH6qJ6kKj4uLiOPLII2Pw4MHRv3//qFu3bo33A6D2SvKPGAAAAAAAAAAAAADIliTflysu2kITJ06MoUOHxj333BMLFy6MiNyeZlT5mhXPt2jRIgYOHBilpaXRq1evGu8HQO2T5B8xAAAAAAAAAAAAAJAtSb4vV1xUQ6tXr46HH344hg8fHk899VSsW7cu76cZRUT07NkzysrK4vTTT4+WLVvWeD8Aaock/4gBAAAAAAAAAAAAgGxJ8n254qIs+vzzz2PEiBExYsSIeO+99yKi6tOHtlR11ysqKop69epFv3794uyzz45jjz32a+sB2LYk+UcMAAAAAAAAAAAAAGRLku/LFRflyIQJE2LYsGFx3333xeLFiyOi6tOHtlS604y23377OOuss+Lss8+OLl261Hg/ALY+Sf4RAwAAAAAAAAAAAADZkuT7csVFObZy5coYPXp0jBgxIp577rkoLy/P+mlGEelDo4MPPjgGDx4c3//+96NRo0Y13g+ArUOSf8QAAAAAAAAAAAAAQLYk+b5ccVEeffrppzF8+PC444474qOPPoqIyHpoVNX1Kp5v3LhxnHLKKVFaWhoHH3xwjfYCoPCS/CMGAAAAAAAAAAAAALIlyffliosK5MUXX4yhQ4fGAw88EF999VVEVH360JZKd5pRly5doqysLM4888zo0KFDjfcDIP+S/CMGAAAAAAAAAAAAALIlyffliosK7Kuvvor7778/hg8fHi+++GKkUqmsn2YUUX1oVFxcHMccc0wMHjw4+vXrFyUlJTXeD4D8SPKPGAAAAAAAAAAAAADIliTflysu2opMnz49hg0bFnfccUfMnDkzInJ7mlHla1Y836pVqzj99NOjtLQ0evbsWeP9AMitJP+IAQAAAAAAAAAAAIBsSfJ9ueKirVAqlYrnnnsuhg0bFg8++GCsWLEiInIbGm18mlFERK9evaKsrCwGDhwYzZs3r/F+AGRfkn/EAAAAAAAAAAAAAEC2JPm+XHHRVm7p0qVx9913x/Dhw2PChAkRUfXpQ1uquusVFRVF/fr1o3///nH22WfHMcccU6O9AMiuJP+IAQAAAAAAAAAAAIBsSfJ9ueKiWuT999+PoUOHxl133RWfffZZROT/NKNOnTrF2WefHWeddVbssssuNd4PgJpJ8o8YAAAAAAAAAAAAAMiWJN+XKy6qhcrLy+Opp56KoUOHxqOPPhqrVq2KiPyHRt/85jdj8ODBcfLJJ0fDhg1rvB8Amy/JP2IAAAAAAAAAAAAAIFuSfF+uuKiWW7RoUYwaNSqGDx8eb775ZkRsGAVF1Dw0qup6Fc83adIkBgwYEKWlpXHAAQfUaC8ANk+Sf8QAAAAAAAAAAAAAQLYk+b5ccdE25J133omhQ4fGqFGjYu7cuRGR/9OMunXrFmVlZTFo0KBo165djfcDoHpJ/hEDAAAAAAAAAAAAANmS5PtyxUXboHXr1sXYsWNj2LBh8dhjj8WaNWsiIr+hUZ06deLYY4+NwYMHx3e+852oU6dOjfcD4OuS/CMGAAAAAAAAAAAAALIlyffliou2cfPnz48777wzRowYEZMnT46IDaOgiJqHRlVdr+L5Nm3axOeff16jPQDYtCT/iAEAAAAAAAAAAACAbEnyfbnFhR6A3GrdunVcdNFF8dZbb8Wbb74ZF1xwQbRo0SJSqdQGEdDGgdDmqLjWpq6XSqVi3rx5Nf8gAAAAAAAAAAAAAAAAZJ24KEF69eoVN998c8yZMyfuu++++Pa3vx3FxcVfi4KyERoBAAAAAAAAAAAAAACw9RMXJVDdunXje9/7XowZMyY+/fTT+J//+Z/o1q3bJk8f2tLQSGAEAAAAAAAAAAAAAACw9RMXJVz79u3j8ssvjylTpsQrr7wS55xzTjRt2nSToREAAAAAAAAAAAAAAADbFnER6+2///5xyy23xJw5c+Kuu+6Ko446KoqKitaHRgIjAAAAAAAAAAAAAACAbYu4iK9p0KBBDBw4MJ566qmYMWNGXHfddbHrrrsKjAAAAAAAAAAAAAAAALYx4iKq1alTp7jyyivjD3/4g8AIAAAAAAAAAAAAAABgG1NS6AHYek2dOjWGDx8ed911V3z++efrn0+lUgWcCgAAAAAAAAAAAAAAgGwRF7GBxYsXx9133x3Dhg2LN954IyLERAAAAAAAAAAAAAAAANsqcRGRSqXiqaeeiuHDh8fDDz8cq1at2iAoKioq2mAtAAAAAAAAAAAAAAAA2wZxUYJ98MEHMWzYsLjzzjvjs88+i4gQFQEAAAAAAAAAAAAAACSIuChhli5dGvfcc08MHz48JkyYEBGCIgAAAAAAAAAAAAAAgKQSFyXEs88+G8OGDYuHHnooVqxYERH/iYcqB0WVn99SG18PAAAAAAAAAAAAAACArZO4aBv28ccfx/Dhw+OOO+6ITz/9NCJyd0pRVYHSPvvsE2VlZTW6NgAAAAAAAAAAAAAAALkhLtrGfPXVV3HffffFsGHD4p///GdE5C4oqup6LVu2jIEDB0ZZWVnss88+Nd4DAAAAAAAAAAAAAACA3BAXbSPGjx8fw4cPj9GjR8fy5csj4j+xT1WnCm2pTV2vuLg4jjnmmCgtLY3+/ftHvXr1arQHAAAAAAAAAAAAAAAAuScuqsU++eSTGD58eNxxxx0xY8aMiMj/KUW77rprnH322XH22WdHx44da7wHAAAAAAAAAAAAAAAA+SMuqmVWrFgR999/fwwfPjxeeOGFSKVSeQ+KGjVqFCeffHKUlZXFYYcdVuM9AAAAAAAAAAAAAAAAKAxxUS3x0ksvxbBhw+KBBx6IZcuWRcR/Yp/KAVDl57dUVdc74IADoqysLAYMGBBNmjSp0R4AAAAAAAAAAAAAAAAUnrhoKzZr1qwYMWJEjBgxIj766KOIiLyfUtSuXbsYNGhQlJWVRffu3Wu8BwAAAAAAAAAAAAAAAFsPcdFWZuXKlfG///u/MWzYsBg3blykUqkqg6KI3JxSVFJSEscff3yUlpbG8ccfH3Xq1KnRHgAAAAAAAAAAAAAAAGydxEVbiVdeeSWGDx8e9913XyxZsiQi/hMO5SMoiojYY489orS0NAYNGhRt27at0R4AAAAAAAAAAAAAAABs/cRFBfTZZ5/FHXfcESNGjIj3338/IqLKU4pqGhRVdb2mTZvGgAEDoqysLPbff/8a7wEAAAAAAAAAAAAAAEDtIS7Ks9WrV8eDDz4Yw4cPj2eeeSbKy8urDIoicnNKUVFRURx++OFRVlYWJ598cjRs2LBGewAAAAAAAAAAAAAAAFA7iYvy5PXXX49hw4bFvffeG19++WVE/CccynZQtPE1K663ww47xFlnnRWlpaXRuXPnGu8BAAAAAAAAAAAAAABA7SYuyqEvvvgi7rzzzhg+fHhMnTo1IqLKU4pyFRTVr18/+vfvH6WlpXH00Ud/LWQCAAAAAAAAAAAAAAAgucRFWbZmzZp45JFHYtiwYfHUU0/FunXrqgyKImoeFVV1vV69ekVZWVmcfvrp0bx58xrtAQAAAAAAAAAAAAAAwLZJXJQlEydOjOHDh8fdd98dCxcujIj8n1LUqlWrGDhwYJSVlcXee+9d4z0AAAAAAAAAAAAAAADYtomLamDevHlx1113xfDhw+Odd96JiPwFRRXXLC4ujr59+0ZZWVmccMIJUbdu3RrvAwAAAAAAAAAAAAAAQDKIizbTunXr4tFHH43hw4fH448/HmvXrq0yKIrI3SlFu+66a5SWlsZZZ50VHTt2rPEeAAAAAAAAAAAAAAAAJI+4KEOTJ0+OYcOGxahRo2L+/PkRkb9Tiiqu17hx4/je974XpaWl8c1vfrPGewAAAAAAAAAAAAAAAJBs4qJqLFy4MEaOHBnDhg2LSZMmRUT+gqLK1zzwwAOjrKwsBgwYENttt12N9wEAAAAAAAAAAAAAAIAIcdHXlJeXx2OPPRbDhg2LsWPHxpo1a6oMiiJyd0pR+/btY9CgQVFWVhbdunWr8R4AAAAAAAAAAAAAAACwMXHR/3n33Xdj+PDhcdddd8XcuXMjIv+nFNWtWzeOP/74KCsri+OOOy7q1KlT430AAAAAAAAAAAAAAACgKomOi7788ssYNWpUDB8+PN58882IyH9QFBGx5557RmlpaQwaNCjatGlT430AAAAAAAAAAAAAAAAgE4mOi9q3bx9r1qypMiiKyH5UVHG9Zs2axamnnhqlpaXRp0+fGu8BAAAAAAAAAAAAAAAAmyvRcdHq1avXhz/5OKWoqKgovvWtb0VZWVmcfPLJ0aBBgxrvAwAAAAAAAAAAAAAAAFsq0XFRhaKioqwERRXXqlBxzR133DHOOuusKC0tjZ133jkr+wAAAAAAAAAAAAAAAEBNiYui5icVbSooatCgQfTv3z/KysriyCOP/NpJRgAAAAAAAAAAAAAAAFBo4qIttHEsVBEV9e7dO8rKymLgwIHRvHnzAkwGAAAAAAAAAAAAAAAAmREXbaZNnVLUunXrOP3006O0tDR69uxZqNEAAAAAAAAAAAAAAABgs4iLMrCpU4rq1KkTxxxzTJSVlUW/fv2ibt26BZoOAAAAAAAAAAAAAAAAtoy4qBqbOqWoa9eucfbZZ8dZZ50V22+/faFGAwAAAAAAAAAAAAAAgBoTF21kU0FR48aN4/vf/36UlZXFIYccUqjRAAAAAAAAAAAAAAAAIKvERbFhUBTxn6jooIMOirKyshgwYEA0bty4EKMBAAAAAAAAAAAAAABAzoiL/k9FUNShQ4c488wzo7S0NHbbbbcCTwUAAAAAAAAAAAAAAAC5k/i4KJVKRd26deM73/lOlJWVxXHHHRfFxcWFHgsAAAAAAAAAAAAAAAByLtFx0V577RWlpaUxaNCgaN26daHHAQAAAAAAAAAAAAAAgLxKdFw0efLkQo8AAAAAAAAAAAAAAAAABVNc6AEAAAAAAAAAAAAAAACAwhAXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACRUSaEHYMutW7cu5syZE5999lksXbo0VqxYEStWrIiVK1dGKpX62vozzzyzAFMCAAAAAAAAAAAAAACwtRIX1RLvvfdevPrqq/HWW2/FW2+9FdOmTYu5c+duMiKqirgIAAAAAAAAAAAAAACAysRFW6l169bFmDFjYsyYMfHUU0/FrFmzNnh9c6KiiIiioqJsjgcAAAAAAAAAAAAAAMA2QFy0lXn//ffjlltuibvuuivmz58fEZsOiTYnFtrcEKk6v/3tb2PMmDFp17Vt2zYeeOCBrO0LAAAAAAAAAAAAAABA9omLthLvvfdeXHfddXH//fdHeXn5BkFQdSFRunAo2ycW9e3bN372s59VuyaVSkVRUVE8//zzcdhhh2V1fwAAAAAAAAAAAAAAALKnuNADJN3SpUvjhz/8YfTo0SPuvffeWLdu3fo4p+IR8e9gZ1OPfNt7773jO9/5zvq9q5vpH//4R97nAwAAAAAAAAAAAAAAIHPiogJ69NFHY4899ohbb731a1FRRBQ0IqrOFVdcsf6vK0dQlR+pVCpGjx4dS5cuLeCkAAAAAAAAAAAAAAAAVEdcVACpVCquuOKK6N+/f8yePbvKqGhrdeCBB8Y3vvGNKk8vqrBq1ap48MEHCzUmAAAAAAAAAAAAAAAAaYiL8mzp0qVx3HHHxZAhQ2pdVFTZ+eefn9G6e++9N8eTAAAAAAAAAAAAAAAAsKXERXm0ZMmS6Nu3bzz99NPrw6KILY+KKsKkiuvk08CBA6NZs2br59hYUVFRpFKpeOaZZ2LJkiX5Hg8AAAAAAAAAAAAAAIAMiIvyZOnSpdG3b9+YMGFCRPwnvsk0KqocEhUqKKqsfv36cdJJJ21y/srPrV27Np588sl8jgYAAAAAAAAAAAAAAECGxEV5csYZZ8Srr766wWlF6WwcElXESBWPkpKSaN68eXTo0GH9+nw644wzMlr32GOP5XgSAAAAAAAAAAAAAAAAtkRJoQdIgmuuuSYeffTRjMOiypFQxdoddtgh+vbtG/vuu2/06tUrdtppp2jbtu36dcXF+e/EDj/88GjXrl3MnTt3/UlMlVU85+QiAAAAAAAAAAAAAACArZO4KMdefvnluP766zc7LEqlUtGsWbM488wzY/DgwdGzZ8+cz7q5ioqK4thjj40RI0Z87dSkVCq1/rkvvvgiPvjgg+jatWshxgQAAAAAAAAAAAAAAKAK+T/uJkHWrFkT55577vqgqLqwqKioaP1JP/Xr14+rrroqpk+fHn/84x+3yrCowre//e2M1r300ks5ngQAAAAAAAAAAAAAAIDNJS7KoRtvvDGmTJmyPhqqSuXTig488MCYNGlSXH/99dG8efM8Tbrljj766PXzb3x6UWXiIgAAAAAAAAAAAAAAgK2PuChHli9fHr/73e+qDW4iYn14lEql4rzzzovnn38+unbtmqcpa6558+axxx57VLsmlUrFxIkT8zQRAAAAAAAAAAAAAAAAmRIX5cgtt9wSCxYsiIio8tSiirCoqKgorrrqqvjrX/8aJSUl+RwzKw488MBqP2NExNSpU2Pt2rX5HAsAAAAAAAAAAAAAAIA0xEU5cvPNN1d7alHlsOiHP/xhXH/99XmcLrv69OmzyecrB0dr1qyJqVOn5mskAAAAAAAAAAAAAAAAMiAuyoEJEybEjBkzImLTpxZVDosOPvjg+OMf/5jnCbNrjz32yGjdtGnTcjwJAAAAAAAAAAAAAAAAm0NclAOjRo2q8rXKpxnVr18/hg4dGnXq1MnHWDnTrVu3jNZNnz49x5MAAAAAAAAAAAAAAACwOcRFOfD4449vEBFtrOLUoh//+MfRpUuXPE6WG61atYqWLVtGRFT7ucVFAAAAAAAAAAAAAAAAWxdxUZZ98cUX8dFHH0XEvyOiyiqHNw0bNoxLLrkkr7PlUseOHb/2eTc2e/bsPE0DAAAAAAAAAAAAAABAJsRFWfbSSy9V+3rFqUXf/e53o3Xr1nmaKvfatWuXds28efPyMAkAAAAAAAAAAAAAAACZEhdl2eTJkzNaN2DAgBxPkl/t27ev8rWioqJIpVIxf/78PE4EAAAAAAAAAAAAAABAOuKiLPv44483+XxRUdEGf3344YfnaaL82G677dKu+fLLL3M/CAAAAAAAAAAAAAAAABkTF2VZVXFRZV27do3mzZvnfpg8atCgQdo1q1atysMkAAAAAAAAAAAAAAAAZEpclGVz5szZ4JSiylKpVBQVFUWXLl3yPFXuiYsAAAAAAAAAAAAAAABqH3FRln311Vdp13Tq1CkPk2x91q5dW+gRAAAAAAAAAAAAAAAAqERclGWZxEXbbbddHibJrxUrVqRdU79+/TxMAgAAAAAAAAAAAAAAQKbERVm2cuXKtGvq1auXh0nya/ny5WnXNGrUKA+TAAAAAAAAAAAAAAAAkClxUZY1bNgw7ZpMTvmpbebOnZt2TSbfDQAAAAAAAAAAAAAAAPlTUugBtjWNGjVKe4rPV199ladp8mfWrFlVvpZKpSIiokmTJvkaBzbLp59+Gk8++WRMnjw5pkyZEtOnT4+lS5fGkiVLIpVKRZMmTaJJkyax4447xh577BE9evSIo48+Orp27Vro0WuVuXPnxj//+c/13/OsWbNizpw5sWjRoli5cmWsXr066tatGw0aNIhmzZpF+/bto2PHjrH77rtHjx494uCDD44ddtih0B8DAAAAAAAAAAAAAGCbIi7KssaNG8f8+fOrXfPZZ5/laZr8mT59ehQVFVX5elFRUXTs2DGPE0H1vvzyy/jHP/4Rd955Z0yePLnatQsWLIgFCxbEjBkz4oUXXlj/fNeuXWPgwIHxwx/+MNq1a5frkWul999/P0aNGhWjR4+Od955J+36VatWxapVq2Lx4sUxc+bMiIh48MEH17/epUuX6N+/fwwcODB69eqVs7kBAAAAAAAAAAAAAJKiuNADbGtatGix/qSeTUmlUutvmN9WzJo1KxYuXBgRUe1n33HHHfM1ElRp2bJlcfnll0enTp3i0ksvTRsWVeeDDz6Ia6+9Nnbcccc499xz04aFSfLCCy/EcccdF926dYtrr702o7AoEx9++GH87ne/i969e8fBBx8cjz76aFauCwAAAAAAAAAAAACQVOKiLOvcuXOVr1Wc7PP+++/HmjVr8jVSzk2cODGjdeIiCu2RRx6J3XffPX7729/GV199lbXrrl69Om677bbo1q1bDBs2LGvXrY0+/fTT+N73vheHHXZYPPHEEznd6+WXX45+/frFUUcdFe+9915O9wIAAAAAAAAAAAAA2FaJi7Jsl1122eTzlU/0Wb16dUyaNClfI+Xcs88+m9G6rl275ngS2LTy8vL4+c9/Hv37949Zs2blbJ+FCxdGWVlZnHvuubF69eqc7bO1euihh2LvvfeO0aNH53XfZ599Nr7xjW/E0KFD87ovAAAAAAAAAAAAAMC2QFyUZVXFRRt7+umnczxJ/jz22GPrT2Wqzr777puHaWBD69ati1NPPTVuuOGGDSK/XLrtttvimGOOieXLl+dlv63BjTfeGCeddFIsWrSoIPsvX748Bg8eHJdffnlB9gcAAAAAAAAAAAAAqK3ERVn2jW98I6N1jzzySI4nyY+JEyfGRx99FBHxtXCjcnDUvHlzJxeRd+Xl5XH22WfH/fffn/e9n3/++TjxxBNj1apVed8734YMGRIXX3xx3uKt6vz2t7+Nn/70p4UeAwAAAAAAAAAAAACg1igp9ADbml69ekXDhg1j5cqVUVRUtMHN9qlUav1zr732WkydOjV23333Ak5bc7feemu1r1d8ZqcWUQhXXXVV3HXXXZv1nq5du8bBBx8ce+21V7Rs2TKKiopi0aJFMXXq1HjllVfinXfeyfhaTz31VJxzzjlxxx13bO7otcb//u//btFpQXXq1ImePXvGgQceGNtvv320aNEimjZtGkuXLo1FixbF559/HhMmTIi33nor1qxZs1nX/sMf/hBdunSJ888/f7PnAgAAAAAAAAAAAABIGnFRlpWUlESfPn3i+eef3+Dknk35y1/+En/+85/zNFn2zZs3L0aOHJn2c0ZEHHPMMXmYCP7j8ccfj9/85jcZrz/hhBPiyiuvjD59+lS77p133okhQ4bEXXfdFeXl5Wmve+edd8Zhhx0WgwcPzniW2mLOnDlxzjnnbNaJRXvttVdceOGFMWDAgNhuu+3Srl+xYkU88MADcdNNN8XEiRMz3ufiiy+OI444Irp3757xewAAAAAAAAAAAAAAkqi40ANsi9KFNBWnF91+++3xySef5Gmq7PvVr34VX331VURE2rjgxBNPzMdIEBERCxYsiDPPPDOj6KVly5YxduzYeOihh9KGRRH/jmNGjBgR//znP2OHHXbIaJ7//u//jg8//DCjtbXJpZdeGgsXLsxobePGjeP222+Pt99+OwYPHpxRWBQR0bBhwxg0aFC8+eabcc8990SzZs0yet/KlSvjggsuyGgtAAAAAAAAAAAAAECSiYtyYMCAAVW+Vjl2WL16dVx88cX5GCnr3n333fjb3/5W5alFFQFVRMQee+wRu+yySz7HI+GuuuqqmD9/ftp1nTp1itdeey2+/e1vb/YeBxxwQLzxxhuxxx57pF27YsWKuOiiizZ7j63ZlClT4u67785o7Q477BBvvPFGlJWV1WjPAQMGxKRJkzI+jei5556LcePG1WhPAAAAAAAAAAAAAIBtnbgoB3bZZZfYd999I5VKbTK+qXg+lUrFgw8+GCNHjizAlFtu3bp1cdZZZ8Xq1asjovpTi4qKiuL000/P12gQ//rXv+K2225Lu65Zs2bxzDPPxK677rrFe7Vt2zaeffbZ6NSpU9q1Y8aMiccee2yL99ra/P3vf4/y8vK065o2bRpjx47NOAhKZ6eddorHH3882rVrl9H6v/71r1nZFwAAAAAAAAAAAABgWyUuypGzzjor7ZqKwOiHP/xhTJo0KQ9TZcePfvSjmDhx4ganE1VWOaiqX79+nHPOOfkcj4S79tprM4pebrvttujWrVuN92vfvn2MGjUq6tSpk3bt1VdfXeP9tgbl5eUZn1p08803R48ePbK6/8477xx33nlnRmsfffTRWLJkSVb3BwAAAAAAAAAAAADYloiLcmTw4MHRpk2biIgqTy+qeG3ZsmVx/PHHx0cffZTXGbfEb3/727jllls2+Zkqqzid6dRTT41WrVrlaTqSbtq0afHII4+kXXfCCSfE97///azte+ihh8Z//dd/pV33xhtvxHPPPZe1fQtl0qRJMX/+/LTr9txzzzjjjDNyMsPRRx8dRx55ZNp1q1atihdffDEnMwAAAAAAAAAAAAAAbAvERTnSoEGD+PGPf7zJk30qVA6MPvvsszjkkENi8uTJ+Rpxs1133XXxs5/9bH1YlO7UouLi4rj44ovzNh/ceOON1f4zFxFRUlISv/vd77K+93XXXRdNmzZNu+73v/991vfOtwkTJmS07ic/+UkUF+fuPzOXXHJJRutefvnlnM0AAAAAAAAAAAAAAFDbiYty6L//+7+jbdu2EbHp04siNgyMvvjiizjooIPizjvvzNuMmVi2bFmcccYZce21166fN100VVRUFGeddVbsueee+RqThFu1alXce++9adedfPLJ0aVLl6zv36pVq/jBD36Qdt2TTz4ZX3zxRdb3z6dp06ZltO7YY4/N6RyHHXZYNGjQIO26999/P6dzAAAAAAAAAAAAAADUZuKiHGratGn87ne/S3uSSuXAaPny5XH22WfHCSecEDNnzszHmNUaO3Zs7LPPPnH33Xevj4aq+jyVA6rGjRvHDTfckK8xIcaMGROLFy9Ou+7CCy/M2Qw//vGP057Us27durjnnntyNkM+zJo1K+2aXXbZJXbYYYecztGwYcM48MAD067bGv5dCgAAAAAAAAAAAACwtRIX5dgZZ5wRhx9++PowpyqVA6NUKhVjxoyJbt26xQUXXBDTp0/P17jrPf3003HUUUdFv3794uOPP04bFlWoWHfddddFu3bt8jQtRNx9991p13Tp0iUOOOCAnM2w0047xaGHHpp2XSazbs2WLVuWdk2nTp3yMElEx44d065ZunRpHiYBAAAAAAAAAAAAAKidxEV5MGzYsGjVqlVExGYFRqtWrYq///3v0bVr1zjqqKNi6NChMWfOnJzNOXHixLj66qujW7duceyxx8a4cePWx0LpwqKK14uKiuKoo47K6ekwsLF169bFM888k3bdgAEDcj7LqaeemnbN66+/HgsWLMj5LLlSXl6edk3r1q3zMElEmzZt0q5Zs2ZNHiYBAAAAAAAAAAAAAKidSgo9QBLstNNOMXLkyPj2t7+d9gSgyoFRxd+nUqkYN25cjBs3LiIidt9999h3332jd+/eseuuu8aOO+6Y0RzTp0+PFStWxPLly+OLL76IWbNmxfTp02PixIkxceLEWLRo0QYzbDxHVSoHU61bt44RI0ZkNA9ky2uvvRaLFy9Ou+64447L+SyZ7FFeXh7PPvtsnHLKKTmfJxdatGiRdk29evXyMElE/fr1065p2bJlHiYBAAAAAAAAAAAAAKidxEV5cswxx8QNN9wQP/vZz6o9vahC5RODKv6+wpQpU2Lq1Klx5513fu09m7pOxf926dKl2v0qVJ6vuqio8tpUKhUNGzaM0aNHR/v27at9D2Tbs88+m3ZNkyZNYv/998/5LDvttFN06dIlPvzww2rXPf3007U2Lqo4ia068+fPz8MkEfPmzUu7RlwEAAAAAAAAAAAAAFC14kIPkCSXX355XHnllV8Lh6pScWpRRKxfv/GJRpXXpLPxeyo/qrp+dSqvrVOnTowcOTIOOeSQjGaBbHrllVfSrtl///2jpCQ/PeWhhx6ads2rr76ah0lyY9ddd027JpPoJxvmzp2bdk2mp7sBAAAAAAAAAAAAACSRuCjPfvnLX8all166QTSUTnUhUCaRUoVNva+qYCmTa1W8p7i4OP7+979H//79M5oDsu1f//pX2jW9e/fOwyT/9o1vfCPtmqlTp8aqVavyME32ZRIRTp06Nb766quczpFKpeL1119Pu+7ggw/O6RwAAAAAAAAAAAAAALWZuKgAfvOb38Tvf//7KC7+99efaRxUYVMnD23p+zb3GpXnTaVSUb9+/bjvvvti8ODBm/UZIFu++OKLmDNnTtp1W1tctHbt2nj77bfzME329e7dOxo3blztmtWrV8e4ceNyOsfkyZPj888/T7suk5OkAAAAAAAAAAAAAACSSlxUIBdddFGMGTMmmjVrtsFpRFu7ymFRq1at4sknn4yTTjqpwFORZJMnT85oXffu3XM8yX9069Yto3WZzr61qVu3bpx22mlp191xxx05nWPEiBFp1/Tp0yc6d+6c0zkAAAAAAAAAAAAAAGozcVEB9e3bN95888044ogj1p8ctLVGRpXnSqVSccQRR8TkyZPjm9/8ZoEnI+k+/vjjjNZ16dIlx5P8R4sWLaJly5Zp12U6+9boxz/+cdo1DzzwQLz11ls52f/TTz+Nv/71r2nX/eQnP8nJ/gAAAAAAAAAAAAAA2wpxUYF17tw5nnnmmfj73/8eTZo02eoio42jooYNG8aQIUPi6aefjg4dOhR4OoiYPn162jXt27ePxo0b52Ga/8gkZspk9q1Vjx490p5alkql4txzz40VK1Zkde+1a9fGOeecE6tWrap2XZcuXeL73/9+VvcGAAAAAAAAAAAAANjWiIu2Eueee258/PHHcfHFF0eDBg2+FhnlOzTaOCqKiDjrrLPigw8+iIsvvnirCJ8gImLGjBlp12y//fa5H2QjmcR3tTkuioj461//Gq1atap2zeuvvx6nn356rFu3Lit7plKp+OEPfxhPPvlkteuKi4tj6NChUbdu3azsCwAAAAAAAAAAAACwrRIXbUVatmwZQ4YMWR8ZtWrVKlKp1CZDo2zHPZu6diqVirp168YZZ5wREydOjGHDhjmtiK3O7Nmz065p3759HibZ/D1nzZqVh0lyp127dnH77bdHnTp1ql334IMPxhFHHFHjzzt37tw4/vjj4x//+EfatRdffHEceuihNdoPAAAAAAAAAAAAACAJxEVboXbt2sWQIUNi9uzZcc8990Tfvn2jbt26G4RGEV8PgmryiIj110+lUtGtW7e47rrrYubMmXHHHXfE3nvvXaivA6q1YMGCtGvatWuXh0k2lElctHDhwjxMklsnnHBC3H777WmDxxdeeCH23nvvuOGGG2L+/PmbtceXX34ZQ4YMiR49esTjjz+edv2gQYPiN7/5zWbtAQAAAAAAAAAAAACQVCWFHoCq1a1bN0455ZQ45ZRT4quvvopnn302Hn/88XjxxRdj2rRpsW7duq+9J5MTjSoHShWaNm0a++67bxx99NHRv3//6NatW1Y+A+RaJnFR8+bNcz/IFuz51VdfxapVq6J+/fq5HyiHzjrrrCguLo7zzjsvli9fXuW6hQsXxs9//vO44YYb4phjjomDDz44DjjggOjYsWO0aNEimjRpEsuWLYtFixbFnDlz4tVXX41//vOf8cQTT8RXX32V0SxnnnlmDB06NOunuwEAAAAAAAAAAAAAbKvERbVE48aNo1+/ftGvX7+IiFi5cmVMmjQpJk2aFNOnT49Zs2bFrFmzYs6cObFs2bJYsWJFrFy5MlatWhV169aNRo0aRcOGDWO77baLjh07xo477hg77rhjdOnSJfbdd9/o3r27m/GplRYtWpR2TZMmTfIwyZbtuXDhwujQoUOOp8m9QYMGxX777RennXZavPXWW9WuXbFiRTz88MPx8MMPZ23/xo0bx5/+9KcoKyvL2jUBAAAAAAAAAAAAAJJAXFRLNWjQIPbff//Yf//9Cz0KFMyKFStizZo1adcVIi5q2rRpRusWL168TcRFERHdu3eP119/Pe6444644YYb4uOPP875nnXq1InTTjstrrnmmth1111zvh8AAAAAAAAAAAAAwLZGXATUWqtXr85oXcOGDXM8ydc1aNAgo3WZfobaoqSkJMrKyuLMM8+Mhx9+OB544IF47LHHYsmSJVndp2PHjnHSSSfFj370o9htt92yeu1twSGHHBIlJf4TX2jvvvtuoUcAAAAAAAAAAAAAgLTceQzUWpmGOXXq1MnxJF+XadixrcVFFUpKSqJv376RSqWivLw87r///kilUlm59vHHHx+/+tWvomfPnlm5HgAAAAAAAAAAAABAkomLgFor0zCnECe4ZLrnmjVrcjxJ/r3zzjvxP//zPzF69OhYtWpV1q8/duzYGDt2bOy8885x6qmnxk9+8pNo37591vepzV566aVo06ZNoccAAAAAAAAAAAAAAGqB4kIPALCl1q5dm9E6cVF+fPzxx3HiiSdGz549Y9SoUTkJiyqbMWNG/PrXv47OnTvH+eefH5999llO9wMAAAAAAAAAAAAA2BaJi4BaK9OAZ926dTmeZMv3LET4lAt33HFH7LPPPvHQQw9FKpXK694rV66Mv/3tb7HXXnvFfffdl9e9AQAAAAAAAAAAAABqu23jrnYgkerVq5fRukxPOMqmTE8kyvQzbK3Ky8vjnHPOiaFDh27W++rUqRO9evWKPn36RNu2baNly5bRvHnzWLZsWSxcuDAWLlwYb731VkyYMCGWL1+e0TUXLVoUAwYMiCeeeCJuvfXWbSbcAgAAAAAAAAAAAADIJXdeA7VW3bp1M1pXiLgo0z1rc1yUSqXiBz/4QQwbNizj9xx22GFx0UUXxZFHHhnbbbdd2vVr1qyJ119/Pf7yl7/Efffdl9H3OmzYsPjqq69i1KhRUadOnYxnAwAAAAAAAAAAAABIouJCDwCwperXr5/RupUrV+Z4ki3fszbHRT/96U8zDov23nvvePXVV2P8+PFxwgknZBQWRfw7IDvooINi5MiR8dFHH8X3vve9jN533333xZlnnpnRWgAAAAAAAAAAAACAJHNyEbBZpk+fHq+++mpO92jcuHF897vfTbuuYcOGUVJSkvY0m6VLl2ZrtIxlumfTpk1zPEluPP3003HTTTdltPbcc8+NP/7xj9GgQYMa7bnjjjvG/fffH3/+85/jkksuiVWrVlW7ftSoUfGtb30rfvCDH9RoXwAAAAAAAAAAAACAbZm4CNgszz//fJSWluZ0j5122imjuCgiokWLFjFv3rxq1yxZsiQbY22WTPds2bJljifJvsWLF0dZWVlGay+55JIYMmRIVn4gZJEAAQAASURBVPf/0Y9+FB07doyTTz45UqlUtWt/+tOfxlFHHRU777xzVmcAAAAAAAAAAAAAANhWFBd6AICaaNWqVdo1ixcvzsMkm79no0aNanyaTyHcfPPNMWvWrLTrTjjhhPjNb36TkxlOPPHEjK69dOnSuOKKK3IyAwAAAAAAAAAAAADAtkBcBNRqmcRFX3zxRR4m2dDnn3+edk0ms29t1qxZE3/961/TrmvSpEncfvvtUVycu//MXHrppbH//vunXTd69Oj49NNPczYHAAAAAAAAAAAAAEBtJi4CarWOHTumXZNJ6JNtmeyZyexbmwceeCDmzJmTdt2FF16Yl3jql7/8Zdo1a9eujT//+c85nwUAAAAAAAAAAAAAoDYSFwG12s4775x2zWeffZb7QTaSSYDTuXPnPEySXU888UTaNSUlJXHRRRflYZqIo446Knr16pV23SOPPJKHaQAAAAAAAAAAAAAAah9xEVCrZRLofP7557F8+fI8TPMfH374Ydo1tTEuevHFF9Ou2X///aNFixZ5mObfjj322LRr3nvvvZg3b14epgEAAAAAAAAAAAAAqF3ERUCttssuu6Rdk0qlMop9suXLL7+MBQsWpF2Xyexbk88//zymT5+edt0xxxyTh2k2f7+XXnopx5MAAAAAAAAAAAAAANQ+iYqLDjjggJgwYUKhx2AzLF++PH7xi1/E7373u0KPwv85++yzI5VK5fQxY8aMjOfp0aNHRuvee++9LfzEmy/TvTKdfWsxa9asjNbttddeOZ5ky/b75JNPcjwJAAAAAAAAAAAAAEDtk6i46LXXXouDDz44TjvtNDeZ1wJDhw6Nrl27xg033BDLly8v9DhspTp06BDt2rVLu27ixIl5mCbzvUpKSqJnz555mCZ7MjmNKSKidevWOZ5kQy1btozi4vT/Oct0fgAAAAAAAAAAAACAJElUXFThvvvui+7du8eFF14Y8+bNK/Q4bOShhx6KHj16xDnnnBNz5swp9DjUAr179067Jp9x0Ztvvpl2Tffu3aNBgwZ5mCZ7Fi5cmNG6fMdFxcXF0bJly7TrxEUAAAAAAAAAAAAAAF+XyLgolUrFqlWr4uabb45dd901fvGLX8TixYsLPVbiPfPMM3HAAQfEySefHO+++26kUqlCj0QtceCBB6ZdM2HChFi7dm0epol44YUX0q7Zf//98zBJdmX6z2RRUVGOJ9myPfP15w8AAAAAAAAAAAAAUJskMi4qKiqKoqKiSKVSsWzZsrjhhhti5513jl/84hexaNGiQo+XOE888UQcfPDB0bdv33j99dfXBwyFCBSonY488si0a5YuXRqvvfZazmeZOXNmfPjhh2nXHX300TmfJdsaNWqU0br58+fneJINlZeXZ3QqUabzAwAAAAAAAAAAAAAkSSLjosrxSkVktHjx4vWR0c9+9rOYM2dOgafctqVSqRg9enT06dMnjj/++JgwYUKkUqlIpVLr/1wgU3369ImmTZumXff444/nfJZM9igqKsooiNraNGvWLKN18+bNy/EkG1q4cGGUl5enXZfJ/0cAAAAAAAAAAAAAAJImkXFRRKwPWSI2jIyWLl0av/3tb6Nz584xePDgePfddws86bZlxYoV8Ze//CV22223OOWUU+LNN9/8WlRU+c8GMlFSUpJRrHPvvffmfJZ77rkn7Zp99903WrdunfNZsm3HHXfMaF2+/7359ttvZ7Qu0/kBAAAAAAAAAAAAAJIksXFRhaoio9WrV8fw4cOjZ8+e0bdv33jkkUcELzXw0UcfxcUXXxydOnWKH//4x/HRRx+Jisiq0047Le2aDz74IF599dWczTBz5sx44YUX0q7LZNat0Y477hglJSVp1z311FN5mOY/nnzyyYzWde7cOceTAAAAAAAAAAAAAADUPomMi4qKir72XFWRUSqVimeeeSZOPPHE6Ny5c/z617+Ozz77LN8j10pr166NBx98MI477rjo1q1b3HTTTbFo0aINgiJREdny3e9+N5o2bZp23U033ZSzGf70pz9FeXl5tWuKi4vj1FNPzdkMuVS3bt3o0aNH2nUTJkyIL7/8MvcD/Z8nnngi7ZqioqLo3bt3HqYBAAAAAAAAAAAAAKhdEhUXtWrVaoOAaFOqi4xmzpwZV111Vey0007x7W9/O0aPHh2rV6/O2/y1xaRJk+Kiiy6K7bffPr73ve/FU089FeXl5RtERRFRbVRU+c8nlUpF69at8zI7tVeDBg3ilFNOSbvugQceiA8//DDr+y9YsCBuu+22tOuOOeaY6NChQ9b3z5cDDzww7Zq1a9fGH/7whzxME/H444/HpEmT0q7r3r17tGjRIg8TAQAAAAAAAAAAAADULomKi6ZNmxZnn332+r+vHLpsrCJ82dQpO+vWrYsnn3wyTjnllGjbtm2cffbZ8cQTT8S6devy9Em2PtOmTYtrr7029thjj+jdu3f86U9/ivnz53/tO4yoPiqKiA3W7bjjjvHQQw/F+eefn5fPQe3205/+tMp/piusXbs2Lrnkkqzv/Ytf/CKWLFmSdt3FF1+c9b3z6fjjj89o3U033RQLFy7M6SypVCp+/vOfZ7T2uOOOy+ksAAAAAAAAAAAAAAC1VaLiopYtW8bQoUNj/Pjx0b1796+dUFSV6k4zWrJkSdx5551x/PHHR9u2bWPQoEHxwAMPxLJly/LymQrp1VdfjSuvvDL22muv2GOPPeK6666L9957b5NRVkRmUVHFd1unTp245JJLYsqUKdGvX798fSRqud133z2+853vpF338MMPx/3335+1fV966aW45ZZb0q7r3bt3HHXUUVnbNyJixowZG/yzVtXj8MMPz8p+Rx99dEYnAC1ZsiQGDx4c5eXlWdl3U66//vqYOHFiRmszOdUKAAAAAAAAAAAAACCJilLV1R7bsHXr1sXNN98c1113XXz55ZcbBDDpbBwiVX5PxWt169aN/fffP771rW/F4YcfHgcddFDUq1cvi58g/6ZOnRrjxo2LcePGxfPPPx8LFiyIiE1//gqb831WrD3mmGPipptuiu7du2drdBLkzTffjD59+qSNWpo1axavvfZa7LbbbjXa7/PPP48+ffrEp59+mnbtI488Et/97ndrtN/GZsyYEZ07d0677rDDDovx48dnZc/LLrsshgwZktHaSy65JOO1m+Oee+6JgQMHZvTvmF69emUcIdVG8+bNi7Zt227w3Ny5c6NNmzYFmggAAAAAAAAAAAAAap8k35eb2LiowoIFC+LKK6+M22+/PcrLyzcrMorILDSKiKhfv/4GsVGvXr2iSZMmWfgEubFu3bqYOnVqvPTSSzF+/PgYP358zJs3b/3rG38/lT/rlnx3qVQqunbtGr///e8zOnkGqnPOOefEP/7xj7TrOnXqFM8//3zssssuW7TPvHnz4lvf+la8++67adced9xx8dhjj23RPtUpRFz02WefxS677BKrVq3KaP15550XN910U9SvXz8r+994441xxRVXxJo1azJaf++9927TJxcl+UcMAAAAAAAAAAAAAGRLku/LTXxcVOGdd96Jyy+/PB5//PEtCmUi0p/as/HrO+64Y/Ts2TN69uwZPXr0iJ49e8Zuu+0WxcXFW/AJttznn38ekydP3uDx3nvvbXDjfrrPsqXfUyqVijZt2sT/+3//L84777woKSnZwk8B/zFv3rzYfffd15+uVZ1WrVrFnXfeGccdd9xm7fHqq6/GKaecEjNnzky7tkGDBjF58uTo2rXrZu2RiULERRERV199dVx33XUZr99nn33i1ltvjf3222+L95w+fXpceOGF8cgjj2T8nkMOOSReeOGFr/07a1uS5B8xAAAAAAAAAAAAAJAtSb4vV1y0kfHjx8dll10Wb7zxxhZHRhFfj2+qusbG6+rVqxcdO3aMjh07RqdOndb/dcWjSZMm0bBhw2jQoEE0bNhw/aPC6tWrY8WKFRs8li9fHnPnzo1Zs2bF7NmzY/bs2ev/etasWbFkyZLNnrOqddXZ+Pts3Lhx/PSnP41LL700tttuu826FqQzZsyY6NevX8b/Pz3xxBPjyiuvjH333bfadVOmTIkhQ4bEHXfcEeXl5Rld+5Zbbolzzz03o7Wbq1Bx0cqVK6N3794xderUzXrf4YcfHhdddFEceeSR0bhx47Tr16xZExMmTIi//OUv8cADD8S6desy3qtBgwbxxhtvxJ577rlZM9Y2Sf4RAwAAAAAAAAAAAADZkuT7csVFVXj44Yfj2muvjbfeeqtGkVGFqk7NqOp6m3vKRt26dWPdunUZxw7V7V3V/tn47KlUKho1ahQXXHBBXHrppdG6destuiZk4rLLLoshQ4Zs1nt22223OOSQQ2LPPfeMli1bRlFRUSxatCjee++9eOWVV2Ly5Mmbdb2BAwfGyJEjN+s9m6NQcVFExLRp06JPnz5fCxQzUVJSEr169Yr9998/2rRpEy1btozmzZvHsmXLYuHChbFgwYJ46623YsKECbF8+fItmm/EiBFx5plnbtF7a5Mk/4gBAAAAAAAAAAAAgGxJ8n254qI0HnzwwfjlL38Z//rXvyLi66FMTVQXEOXrjyWXM2z8XW233XZx3nnnxaWXXpqIf7govPLy8jjjjDPi7rvvLsj+Rx55ZIwdOzbq16+fsz0KGRdFRIwbNy6+853vbHEAlCvXX399/PznPy/0GHmR5B8xAAAAAAAAAAAAAJAtSb4vt7jQA2ztTjzxxHjzzTfj8ccfj8MPPzxSqdT66KaoqGizTxiqrOJalR8VKq6d60dVc9TklKKKR8V1WrduHddff33MnDkzfvvb3ybiHyy2DsXFxXHHHXfESSedlPe9DznkkHj44YdzGhZtDb71rW/FY489Fi1atCj0KBHx7z/zIUOGJCYsAgAAAAAAAAAAAACoKXFRhvr27RvPPfdcvPbaa3HaaadFSUnJ1yKjmoRGFaoKfdI9avL+bNhUrLTXXnvF3//+9/jkk0/iqquuiubNm2dlL9gcJSUlcf/998fll1+etz1LS0vjmWeeicaNG+dtz0I67LDD4s0334zevXsXdI7WrVvHY489FpdccklB5wAAAAAAAAAAAAAAqE3ERZtp3333jZEjR8bMmTPj6quvjg4dOmT1NKMtlc1QKFObOgGpTp06ceKJJ8Zzzz0XkydPjnPPPTcaNGiQ17lgY8XFxfHrX/86Hnzwwdh+++1ztk+LFi3itttui6FDh27zJxZtrHPnzvHqq6/GkCFDYrvttsvr3kVFRVFaWhpTp06Nvn375nVvAAAAAAAAAAAAAIDaTly0hdq1axdXX311zJw5Mx5++OHo169f1KlTZ33kUzm8KURslCubCopSqVTstttu8Zvf/CY+/fTTGD16dBx++OGFHRQ2oX///vHee+/FJZdcktVTherVqxeDBw+OadOmxQ9+8IOsXbe2KSkpiUsuuSSmT58eV111VbRs2TKn+9WtWzdOP/30ePvtt2Po0KHRunXrnO4HAAAAAAAAAAAAALAtKkrl+7ibbdjcuXPj7rvvjnvvvTcmTJiw/vmN46La9JVvKoyqmL9du3ZxyimnxGmnnRYHHHBAvkeDGlm0aFHceuutceedd8a77767RdfYdddd47TTTovzzz8/OnTokOUJMzNjxozo3Llz2nWHHXZYjB8/PvcDVbJ69eoYO3Zs3HffffHss8/GvHnzanzNhg0bxsEHHxwnnnhiDBgwIFq1apWFSWu3efPmRdu2bTd4bu7cudGmTZsCTQQAAAAAAAAAAAAAtU+S78sVF+XIJ598Eg888EA8/PDD8fLLL0d5eXlEVB/rbA3SzbfDDjtEv3794qSTTorDDjssiosdfkXt98knn8RTTz0VkyZNiilTpsSMGTNiyZIlsXTp0kilUtGkSZNo0qRJ7LDDDrHHHntEjx494qijjoru3bsXevRaI5VKxdtvvx0TJ06Md955Jz744IOYM2dOzJkzJ5YuXRorV66M1atXR0lJSTRo0CAaN24c7dq1iw4dOkTnzp1jzz33jJ49e0afPn2ifv36hf44W5Uk/4gBAAAAAAAAAAAAgGxJ8n254qI8WLBgQYwdOzaefPLJeO655+KLL75Y/9qmYp4KufyjyXTfevXqxQEHHBBHH310HH/88bHPPvvkbCYANl+Sf8QAAAAAAAAAAAAAQLYk+b5ccVEBvPPOOzF+/Ph4+eWX45VXXolPPvnka2uqi3+yaeM//saNG8d+++0XBx10UBx66KFx6KGHRqNGjfIyCwCbL8k/YgAAAAAAAAAAAAAgW5J8X664aCvw+eefx7/+9a+YNGlSTJo0KaZMmRIffvhhrFixIu17NxUhZfJHWlRUFDvssEN07949evToEXvvvXfsvffeseeee0ZxcfEWfQ4A8i/JP2IAAAAAAAAAAAAAIFuSfF9uSaEHIKJ9+/Zx3HHHxXHHHbfB87Nnz46PP/44Zs2aFbNnz445c+bEvHnzYvHixfHll1/GsmXLYtWqVbFmzZpYu3ZtFBcXR926daNevXrRsGHDaNasWTRv3jxatmwZ7du3j+233z46duwYO+20U+y6665Rv379An1iAAAAAAAAAAAAAAAAtgbioq1Yx44do2PHjoUeAwAAAAAAAAAAAAAAgG1UcaEHAAAAAAAAAAAAAAAAAApDXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAD4/+zdd5SU9dk/4HuW3oSIgIBBNCKKBQsqEFHAGg22xBI1ghqFFbu+KZJmih6j0RhLFBVsWGISu4mKQRITxIKIFEsANQgKokjvz++P97f7Lri7M8tO2d25rnPmHHaee+b7eQZi9o/5nBsAAAAAKFLKRQAAAAAAAAAAAAAAAFCklIsAAAAAAAAAAAAAAACgSCkXAQAAAAAAAAAAAAAAQJFSLgIAAAAAAAAAAAAAAIAipVwEAAAAAAAAAAAAAAAARUq5CAAAAAAAAAAAAAAAAIqUchEAAAAAAAAAAAAAAAAUKeUiAAAAAAAAAAAAAAAAKFLKRQAAAAAAAAAAAAAAAFCklIsAAAAAAAAAAAAAAACgSCkXAQAAAAAAAAAAAAAAQJFSLgIAAAAAAAAAAAAAAIAipVwEAAAAAAAAAAAAAAAARUq5CAAAAAAAAAAAAAAAAIqUchEAAAAAAAAAAAAAAAAUKeUiAAAAAAAAAAAAAAAAKFLKRQAAAAAAAAAAAAAAAFCklIsAAAAAAAAAAAAAAACgSCkXAQAAAAAAAAAAAAAAQJFSLgIAAAAAAAAAAAAAAIAipVwEAAAAAAAAAAAAAAAARUq5CAAAAAAAAAAAAAAAAIqUchEAAAAAAAAAAAAAAAAUKeUiAAAAAAAAAAAAAAAAKFLKRQAAAAAAAAAAAAAAAFCklIsAAAAAAAAAAAAAAACgSCkXAQAAAAAAAAAAAAAAQJFSLgIAAAAAAAAAAAAAAIAipVyUA3fffXdcf/318dlnnxU6CgAAAAAAAAAAAAAAAFRJuSgHPvjgg/if//mf6Nq1a5x++unxj3/8o9CRAAAAAAAAAAAAAAAA4EuUi3IkSZJYs2ZNPPjggzFo0KDo1atX/O53v7PNCAAAAAAAAAAAAAAAgDpDuSiHUqlUJEkSSZLE22+/HZdddllst912ccYZZ8RLL71U6HgAAAAAAAAAAAAAAAAUOeWiHEulUuWPJEli9erVMW7cuDj44INjt912i9///vexZMmSQscEAAAAAAAAAAAAAACgCCkX5VjZ5qKI2KRklCRJzJo1Ky655JLo2rVrDBs2LP79738XOC0AAAAAAAAAAAAAAADFRLkoTyorGZU9v2rVqrjvvvtiwIABsccee8TNN98cX3zxRSHjAgAAAAAAAAAAAAAAUASUi/KsrGSUJEl5yajiNqMZM2bERRddFF26dImzzjorJk2aVOjIAAAAAAAAAAAAAAAANFDKRQWUbpvRPffcEwceeGDsueeeceutt8bSpUsLGRcAAAAAAAAAAAAAAIAGRrmoDki3zWj69OlxwQUXRJcuXeLss8+OyZMnFzoyAAAAAAAAAAAAAAAADYByUR1T3TajlStXxt133x39+/ePvfbaK2677bZYtmxZIeMCAAAAAAAAAAAAAABQjykX5VjFTUQ1kW6b0bRp02LkyJHRpUuXOOecc+LVV1/N0R0AAAAAAAAAAAAAAADQUCkX5cBFF10UN9xwQ/Tq1avKTUQ1Ud02oxUrVsSYMWOib9++sc8++8To0aNj+fLl2bsZAAAAAAAAAAAAAAAAGizlohxo165dXHTRRfHWW2/FSy+9FKeffno0b978SwWhbG8zmjp1apSWlkaXLl1i+PDh8frrr+fi9gAAAAAAAAAAAAAAAGgglItyrH///nHvvffGRx99FL/73e/yss1o+fLlceedd8b+++8fffr0iTvuuCNWrFiRvZsCAAAAAAAAAAAAAACgQVAuypN27drFhRdeWL7N6Lvf/W5ethlNmTIlRowYEV26dInS0tJ44403cnF7AAAAAAAAAAAAAAAA1EPKRQXQv3//uOeee2L+/Pnxu9/9LnbbbbecbzNatmxZjB49Ovr06RP77bdf3HXXXbFy5crs3RQAAAAAAAAAAAAAAAD1jnJRAbVt2zYuvPDCmDZtWvzrX//K2zaj119/Pc4999zo0qVLjBw5MqZOnZqDuwMAAAAAAAAAAAAAAKCuUy6qI/r161e+zejGG2/MyzajpUuXxm233Rb77rtvHHDAATF27NhYtWpV9m4KAAAAAAAAAAAAAACAOk25qI5p27ZtXHDBBeXbjM4444zybUabbyKqiXTbjF599dX43ve+F126dCk/HwAAAAAAAAAAAAAAgIZNuagO69evX9x9993l24z22GOPnG8z+uKLL+LWW2+Nvffeu3yb0urVq7N3UwAAAAAAAAAAAAAAANQZykX1QNk2ozfffDP+/e9/522b0SuvvBJnnXVWdOnSJS688MKYPn16ju4QAAAAAAAAAAAAAACAQlAuqmf69u0bd999dyxYsCB+//vf53SbUdlzS5YsiVtuuSV69+4dX//61+O+++6LNWvWZPW+AAAAAAAAAAAAAAAAyD/lonpqq622ivPPP798m9HQoUPzss3o5ZdfjmHDhkXnzp3j4osvjpkzZ+boDgEAAAAAAAAAAAAAAMg15aIGoG/fvjF27Ni8bzO66aabYo899ogBAwbE/fffb5sRAAAAAAAAAAAAAABAPaNc1IBUts2oRYsWOd9mVHZWly5d4tJLL4233347R3cIAAAAAAAAAAAAAABANikXNVBl24zmz58fv//972PPPffM+Tajzz//PG688cbYbbfd4uCDD44HHngg1q5dm9X7AgAAAAAAAAAAAAAAIHuUixq4sm1GU6dOjUmTJsWwYcPyss3opZdeiu9+97vRpUuXuPzyy+Odd97J0R0CAAAAAAAAAAAAAACwpZSLisgBBxwQY8aMifnz58dNN92Ul21Gn332Wdxwww3Rq1evGDhwYDz00EOxbt26rN4XAAAAAAAAAAAAAAAAW0a5qAhttdVWMXLkyLxvM/rnP/8Zp512WnTt2jW+//3vx3vvvZejOwQAAAAAAAAAAAAAACATykVFbvNtRr179875NqNPP/00fvvb38Yuu+wSgwcPjkceeSTWr1+f1fsCAAAAAAAAAAAAAAAgPeUiIuL/thm98cYb8fLLL1e6zWhLpNtmNHHixDjllFNiu+22i5/85Cfx8ccfZ/nOAAAAAAAAAAAAAAAAqIpyEV+y//77x5gxY2LBggVx8803x5577lmrglGZ6rYZLVy4MK666qro3r17DBs2LGbMmJGNWwEAAAAAAAAAAAAAAKAaykVUqU2bNnHeeefFv/71rzjrrLOyUjCKqH6b0dq1a+O+++6L3r17x7e//e2YNm1aFu4EAAAAAAAAAAAAAACAyigXUaU33ngjSktLo0uXLjF27NjyAlA2VbXNaOPGjfHoo4/GPvvsE8OGDYt58+Zl9VwAAAAAAAAAAAAAAACUi9jMihUr4o477oj99tsv+vTpE6NHj45ly5ZtUgLKhepKRvfdd1/suuuucd1118XGjRtzlgEAAAAAAAAAAAAAAKDYKBcRERFTpkyJESNGRJcuXWLEiBHx+uuvlxd+yso++VBVyWjFihXxgx/8IPr27RuzZ8/OSxYAAAAAAAAAAAAAAICGTrmoiK1YsSJGjx4d++23X+y3335xxx13lG8piohNSkU13VpU9trNH5mqqmT02muvxd577x1PPfVUjfIAAAAAAAAAAAAAAADwZcpFRej111+P4cOHR5cuXaK0tLTSLUVlZZ6KJZ9MbF5I2vw9slEyWr58eRx//PExZsyYGtw1AAAAAAAAAAAAAAAAm1MuKhJlW4r69OkT+++/f9x5553VbinakkJRxULS1ltvHZdffnm888478cQTT8SQIUOipKTkS+dlWjTavGS0YcOGGD58eDz99NM1+RgAAAAAAAAAAAAAAACoIJXUpEVCvfPaa6/F6NGj46GHHooVK1ZsUhqqWOzZkn8Glb2+b9++cd5558WJJ54YzZo122R+wYIFMWbMmBg7dmzMmTNnizNULEF16tQpZs6cGV/5yldqnB+gIVi0aFF07Nhxk+cWLlwYHTp0KFAiAAAAAAAAAAAAAKh/ivl7ucpFDdDy5ctj3LhxMXr06Jg6dWpERNZKRZtvGkqSJFq1ahWnnXZalJaWRu/evTN6nxdeeCFGjx4djz32WKxbt67Gmcq2JKVSqTj11FPjvvvuq9F9ADQUxfxLDAAAAAAAAAAAAABkSzF/L1e5qAF57bXX4vbbb4+HH344L1uKevXqFaWlpXHGGWdEmzZttijzxx9/HH/4wx/i1ltvjcWLF9coZ8WC0cyZM6Nnz55blAGgPivmX2IAAAAAAAAAAAAAIFuK+Xu5JYUOQO0sX748brvttth3333jgAMOiDFjxsTy5cvLizmpVKq8sJMkSY2KRWWvrfj6Jk2axCmnnBITJ06M6dOnx8iRI7e4WBQRse2228aVV14ZH374YVx33XXRoUOHTbJn6rbbbtviDAAAAAAAAAAAAAAAAMXK5qJ66tVXXy3fUrRy5cqcbynafvvt49xzz43vfe97OW3dLV++PH75y1/GDTfcEBs2bNgkQ1U5kySJdu3axccffxxNmzbNWTaAuqiYG9IAAAAAAAAAAAAAkC3F/L1cm4vqkWXLlsUf/vCH2GeffaJv374xduzYWLFiRVa2FFX2+lQqFUcddVQ8+eSTMWfOnPjRj36U8/9RtG7dOq655pqYNGlSbL/99uU5KlPx/r744ot45ZVXcpoNAAAAAAAAAAAAAACgoWlc6ACk98orr8To0aPztqWoQ4cOcdZZZ8Xw4cOje/fuWx68Fvbdd994+eWX46CDDor33nsvUqlU2vt7+eWX48ADD8xTQgAAAAAAAAAAAAAAgPpPuaiOWrZsWdx3331xxx13xLRp0yIicl4q+vrXvx7nnXdefPvb344mTZpsafSs6dixYzzwwAPRr1+/WL9+fdqC0eTJk/OYDgAAAAAAAAAAAAAAoP5TLqpjJk+eHKNHj44//vGPedlS1KZNmzj99NOjtLQ0dt9991okz4199tknzjzzzBg9evQm+TeXJEnMmTMnj8kAAAAAAAAAAAAAAADqP+WiOqBsS9Ho0aPjrbfeiojcbynac889o7S0NE4//fRo1arVlkbPi/POOy9Gjx5d5fWyjUZLlizJXygAAAAAAAAAAAAAAIAGQLmogF5++eXyLUWrVq3KWaGo7D2aNWsW3/72t6O0tDT69++/5cHzbM8994yOHTvGokWLyotElVEuAgAAAAAAAAAAAAAAqBnlojxbunRp+Zai6dOnR0TutxTtsMMOMXz48Dj77LOjffv2Wxq9oPbbb794+umnv1Saqmjp0qV5TAQAAAAAAAAAAAAAAFD/KRflyaRJk2L06NHxyCOPZH1LUWXvUVJSEt/85jejtLQ0jjjiiGpLOfVBly5dKn0+SZLye9u4cWM+IwEAAAAAAAAAAAAAANR7ykU59MUXX5RvKZoxY0ZE5H5LUadOneLss8+Oc889N7p167al0eucdu3aFToCAAAAAAAAAAAAAABAg6NclAOzZs2Ka665Jv70pz/lZUtRRMTBBx8cpaWlccIJJ0Tjxg3vr7Vp06aFjgAAAAAAAAAAAAAAANDgNLwWSh3wxz/+Me69995NnsvFlqKtttoqzjjjjCgtLY1dd911C9MCAAAAAAAAAAAAAABQrJSLcihXW4r23nvvKC0tjVNPPTVatmxZu5AAAAAAAAAAAAAAAAAULeWiHKvtlqKy92jevHmcdNJJUVpaGgcccEC24gEAAAAAAAAAAAAAAFDElIvqkMq2FO20004xfPjwOOuss+IrX/lKoaLVKZuXrwAAAAAAAAAAAAAAANgyykV1wOalokaNGsWQIUOitLQ0DjvssAImq3u2ZBMUAAAAAAAAAAAAAAAAlVMuKpDKthR17tw5vve978W5554bXbt2LVS0Omnw4MHRuLF/rgAAAAAAAAAAAAAAANmkrZFnlZWKBg8eHKWlpXHcccdFo0aNChWtThs0aFAMGjSo0DEAAAAAAAAAAAAAAAAaFOWiPKisUNSuXbsYOnRojBgxInr27FmoaAAAAAAAAAAAAAAAABQx5aIcKysWlZWK9t133zjvvPPilFNOiRYtWhQyGgAAAAAAAAAAAAAAAEVOuSjHkiSJFi1axCmnnBKlpaXRp0+fQkcCAAAAAAAAAAAAAACAiFAuyqkePXpEaWlpDB06NNq1a1foOAAAAAAAAAAAAAAAALAJ5aIcOOCAA2L8+PExePDgQkcBAAAAAAAAAAAAAACAKikX5cCRRx5Z6AgAAAAAAAAAAAAAAACQVkmhAwAAAAAAAAAAAAAAAACFoVwEAAAAAAAAAAAAAAAARUq5CAAAAAAAAAAAAAAAAIqUchEAAAAAAAAAAAAAAAAUKeUiAAAAAAAAAAAAAAAAKFLKRQAAAAAAAAAAAAAAAFCklIsAAAAAAAAAAAAAAACgSCkXAQAAAAAAAAAAAAAAQJFSLgIAAAAAAAAAAAAAAIAipVwEAAAAAAAAAAAAAAAARUq5CAAAAAAAAAAAAAAAAIqUchEAAAAAAAAAAAAAAAAUKeUiAAAAAAAAAAAAAAAAKFKNCx2gIfr0009j5syZhY6RN6lUKpo1axbNmjWL5s2bR/PmzaN9+/bRunXrQkcDAAAAAAAAAAAAAACgGspFOfDCCy/EqaeeWugYBdeiRYvo1KlTbLvttrHzzjtHr169YrfddovevXtH165dCx0PAAAAAAAAAAAAAACg6CkX5UiSJIWOUHArV66MuXPnxvvvvx8vv/zyJte6d+8eAwcOjEGDBsWQIUOibdu2BUoJAAAAAAAAAAAAAABQvJSLciiVShU6Qp1QWdGqrHR09913R9OmTePII4+MU089NY4//vho3Ng/SwAAAAAAAAAAAAAAgHwoKXSAhi5JkqJ9lEmlUpU+yubWrFkTTzzxRJxyyinxta99LW666aZYtWpVAf/WAAAAAAAAAAAAAAAAioNyETmTrnhUWdHov//9b1x88cWxww47xH333VfgOwAAAAAAAAAAAAAAAGjYlIsoiHRFo4ULF8awYcNi8ODBMWfOnAKnBQAAAAAAAAAAAAAAaJiUiyi4qopGSZLEiy++GH369Im//e1vBU4JAAAAAAAAAAAAAADQ8CgXUadsXjKKiFiyZEkMGTIkbrjhhkJGAwAAAAAAAAAAAAAAaHAaFzoAVGbzgtGGDRvi8ssvj1QqFRdffHEBkwEAAAAAAAAAAAAAADQcykU5VlaOqU5ZkSab71kT+Ty/pmclSRKpVCpSqVQkSRKXXXZZtGnTJs4+++wtzgAAAAAAAAAAAAAAAMD/Kil0gIYsSZKMHpkoK9iUFXsyfe9Mzt78vbN1X+nOqsl5Za9NkiTOP//8eOONNzJ6LQAAAAAAAAAAAAAAAFVLJTVdJUNWLF++PL7//e/H7bffXv7c5n8VFcs3Fa+1bNky+vTpE7169YqePXvG1772tejYsWN06NAh2rVrF82aNYtmzZpFKpWK1atXx5o1a+KLL76IRYsWxcKFC2P27Nnx7rvvxowZM+K1116LFStWpD2zYqmppKQkhg8fHr/5zW+iVatWm2RevXp1rF69OpYvXx4LFiyIBQsWxDvvvBNvvfVWTJkyJWbOnJn2rKpUzNCjR494/fXXo3Xr1mlfB9CQLVq0KDp27LjJcwsXLowOHToUKBEAAAAAAAAAAAAA1D/F/L1c5aICeO6552L48OHx4YcfRkRmpaK99torjj/++DjqqKNir732ikaNGmUly4YNG+LNN9+MZ555Jh577LGYMmVKlRk2f75bt24xevToOOywwzI+7+OPP47nnnsu7r///vj73/8eGzdu3KQ0lE7Z9qJUKhWXXnppXHvttRmfDdAQFfMvMQAAAAAAAAAAAACQLcX8vVzlojy76qqr4qc//Wls3Lix0usVizatW7eOoUOHRmlpafTq1Ssv+d5+++249dZb45577olly5alLf6UlJTEVVddFd///vdrfNZ///vfuPrqq2PMmDGxdu3ajEpGFWeaNm0aM2bMiK997Ws1PhugoSjmX2IAAAAAAAAAAAAAIFuK+Xu5JYUOUCzWr18fZ511VvzkJz8p39ZT9oiI8j8nSRKNGzeOCy64IGbPnh033XRT3opFERG77LJL/P73v485c+bERRddFE2aNCnPV6Zi9o0bN8aPfvSj+N73vhcbNmyo0Vlf/epX49Zbb41Zs2bFIYccUl4qqnjW5ioWj9atWxejRo2q0ZkAAAAAAAAAAAAAAAD8H+WiPDnttNPinnvuiSRJNtm+s/nPvXv3jldffTVuvPHGgrbb2rdvHzfccEO8+uqrsddee1WaOyLKC1Fjx46NM844Y4vO2mGHHeL555+P6667bpOyVXXKzv3LX/4S8+bN26JzAQAAAAAAAAAAAAAAip1yUR5cfvnl8cgjj0REbFLQ2fznoUOHxiuvvBJ77rlnYYJWYo899ojJkyfHWWedtUnBKCK+VDB66KGH4vvf//4Wn3XppZfGX/7yl0q3JVVUcXvRhg0b4g9/+MMWnwkAAAAAAAAAAAAAAFDMlItybMyYMXH99ddXu/UnIuLHP/5xjB07trxYU5c0btw47rzzzvjZz35WacGo7LkkSeK3v/1t3HPPPVt81jHHHBP33ntvRhuMys4cM2bMFp8HAAAAAAAAAAAAAABQzJSLcuijjz6KSy+99EvbiiL+rxiTSqXioosuil/84heFipmxn/3sZ3HJJZd8qWBUpuyeLr744pg/f/4Wn3PSSSfFD3/4w00+r81VvLZw4cKYNGnSFp8HAAAAAAAAAAAAAABQrJSLcmjEiBGxdOnSiKi6WHTQQQfFb3/720JFrLHrrrsuDj744Eo3GJVZunRpjBgxolbnXHnllbHPPvtERPXbi8o8+eSTtToPAAAAAAAAAAAAAACgGCkX5cjEiRPj6aefLi8SlalYlGnZsmXcf//9GZVn6opUKhX3339/tGrVqvznMmWFoyRJ4umnn45//OMfW3xOo0aN4oYbbqh2e1HFc//2t79t8VkAAAAAAAAAAAAAAADFSrkoR37zm99Uea2shHPppZdG165d85gqO7p27RqXXXZZ2uJPdZ9BJgYMGBCHH374l7YkVVT2/PTp02PNmjW1Og8AAAAAAAAAAAAAAKDYKBflwIwZM+Kvf/1r2q1Fl19+eSHiZcVll12WdnvRX//615gxY0atzhk5cmSV1yp+ths2bIg333yzVmcBAAAAAAAAAAAAAAAUG+WiHHjwwQervFZWvjnppJOiTZs2eUyVXW3atImTTz457faiBx54oFbnHH300dGpU6eIiCq3F5WZMmVKrc4CAAAAAAAAAAAAAAAoNspFOfDEE0+kLcKccMIJeUqTO9/61reqvZ4kSTz55JO1OqOkpCSOOuqotCWmiIjZs2fX6iwAAAAAAAAAAAAAAIBio1yUZe+//35Mnz49ImKTQkzFslHjxo1j4MCB+Y6WdQcddFA0adIkIja9v7LtTBERM2bMiA8++KBW5xx55JEZzc2bN69W5wAAAAAAAAAAAAAAABQb5aIsmzx5cpXXyspGO+20U7Rq1SpfkXKmVatW0aNHj7RzkyZNqtU5++23X0Zz//3vf2t1DgAAAAAAAAAAAAAAQLFRLsqyGTNmVHs9lUpFz54985Qm93beeedNNjRVZubMmbU6o3v37tGuXbuI2HRDUplUKhVJksQnn3xSq3MAAAAAAAAAAAAAAACKjXJRlqUrF0VEdOrUKQ9J8mPbbbdNO5PJZ5LOjjvumLbEtGLFilqfAwAAAAAAAAAAAAAAUEyUi7Jszpw5aWfatGmThyT50bp162qvJ0kSs2fPrvU52223XdqZVatW1focAAAAAAAAAAAAAACAYqJclGVffPFFpFKpamcaN26cpzS5V929lH0OS5curfU5mWxIUi4CAAAAAAAAAAAAAACoGeWiLFu2bFlWZuqL5cuXp53Jxv22aNEi7cyGDRtqfQ4AAAAAAAAAAAAAAEAxUS7KskyKNJ9//nkekuTHZ599lnYmG+Wi5s2bp53JpIAEAAAAAAAAAAAAAADA/1EuyrJUKlXt9SRJ4t13381Tmtx777330s6k+0wykcl7tGzZstbnAAAAAAAAAAAAAAAAFBPloixr06ZNldfKCjLvvPNOJEmSr0g5s3Hjxnj77bfTFn9at25d67NWr16ddka5CAAAAAAAAAAAAAAAoGaUi7KsqnJRxTLR8uXL45VXXslXpJx57bXXYtmyZRER1ZalqitcZWrlypVVXis7W7kIAAAAAAAAAAAAAACgZpSLsqxLly4ZbSV6+umn85Amt9LdQ5IkkUqlokuXLrU+a+HChWlnlIsAAAAAAAAAAAAAAABqRrkoy3r27Fnt9VQqFUmSxNixY2Pjxo15SpV9GzdujDFjxkQqlUo7m+4zycSCBQuqvZ5KpaJjx461PgcAAAAAAAAAAAAAAKCYKBdl2S677FLltYobjebPnx8PPfRQPiLlxEMPPRQfffRRRETaTU277rprrc+bO3du2iJT9+7da30OAAAAAAAAAAAAAABAMVEuyrJ+/fqlnSnbXjRq1KhYu3ZtHlJl19q1a2PUqFEZbS2KiOjbt2+tzvv8889j4cKFEVF9kUm5CAAAAAAAAAAAAAAAoGaUi7Ksb9++0aZNm4iISss3FcsxH374YVx++eV5y5YtP/jBD+KDDz6IiMrLPhXvu3Xr1hkVrqozffr0jOaUiwAAAAAAAAAAAAAAAGpGuSjLGjVqFIcccki1G3aSJCnfXnTLLbfEI488kseEtfPnP/85brzxxvL8VSm7x8GDB0ejRo1qdeakSZMymlMuAgAAAAAAAAAAAAAAqBnlohw444wzMporK+h897vfjeeeey7HqWrv+eefj9NOO63SjUxVGTp0aK3P/de//pXR3E477VTrswAAAAAAAAAAAAAAAIqJclEODBkyJLp06RIRUWURp2zrTyqVirVr18axxx4b999/f94y1tQDDzwQxx57bKxduzYiosqtRRXvt3PnznHMMcfU6tx169bFiy++WOnnWPG5nXbaKdq1a1erswAAAAAAAAAAAAAAAIqNclEONGrUKEaOHFllAadMkiSRJEmkUqlYs2ZNDB06NC688MJYtWpVnpKmt3r16rj44ovju9/9bqxevbp821J1yu7pggsuiJKS2v0T+8c//hHLli0rf9+qzurXr1+tzgEAAAAAAAAAAAAAAChGykU5cskll0TXrl0jourtRRWVlXZuueWW2HPPPePJJ5/MdcS0nn766ejdu3fcdNNN5SWe6lS83qVLl7joootqneHRRx/NaE65CAAAAAAAAAAAAAAAoOaUi3KkefPm8atf/Srtlp+I/9vIU1Ywmj17dhx33HFx4IEHxuOPPx4bN27MddxNsjzxxBMxYMCAOOaYY+K9997bpFiU6daiX/7yl9G8efNaZVm/fn08/PDDGZWzlIsAAAAAAAAAAAAAAABqLpVk0n5hi33zm9+MZ555prw4lM7mJZ5UKhVdu3aNU045JY499tj4+te/npOckyZNiscffzweeuih+O9//1ueIdNSUdn9pVKpOOqoo7Kyeemxxx6LE044odLPrmKutm3bxmeffZZRCQmgoVm0aFF07Nhxk+cWLlwYHTp0KFAiAAAAAAAAAAAAAKh/ivl7ucpFOfbpp5/GnnvuGZ988klEpC/pRHy5YFTxubZt20bfvn2jX79+sdtuu8XOO+8cO+64Y7Rs2TKjPKtXr445c+bEO++8EzNmzIhJkybFyy+/HEuWLKnyzEyKRWVz2267bUybNi222WabjPJU5/DDD4/x48dXWS4qKzOdcsopMW7cuFqfB1AfFfMvMQAAAAAAAAAAAACQLcX8vdzGhQ7Q0G2zzTbxpz/9KQ477LBYvXp1RhuMKm4t2vy5JUuWxLPPPhvPPvvsJq9p2bJldOjQIdq1axfNmjWLpk2bRiqVijVr1sSaNWviiy++iEWLFsWKFSuqPK+qM6tTsVjUsmXL+Mtf/pKVYtGMGTOqLBZt7tvf/natzwMAAAAAAAAAAAAAAChGykV50L9//3jooYfihBNOiI0bN2ZUmInYtGSUrvSzYsWK8uJQxdmq5iuq6fzmr0uSJBo3bhwPP/xw9O3bN6PXpnPttddWma+ili1bxje+8Y2snAkAAAAAAAAAAAAAAFBsSgodoFgMGTIkxo0bF02aNImI6gszm0uSpPxR9tqqHpvPb8lrMlHxdU2bNo37778/jj766IzvqTqzZ8+OcePGVXovm+c88sgjo3nz5lk5FwAAAAAAAAAAAAAAoNjYXJRHJ510UnTs2DGOP/74WLp0acYbjCqqar6s7JOutFTT86o7K0mSaNu2bTz66KMxcODAWr9vmTfffDOGDRuW0ex3v/vdrJ0LAAAAAAAAAAAAAABQbFJJNtom1MisWbPi5JNPjunTp29S1KkPKubdfffd4+GHH45dd921wKkAiteiRYuiY8eOmzy3cOHC6NChQ4ESAQAAAAAAAAAAAED9U8zfyy0pdIBitOuuu8arr74a5513XnmpKJVKpd06VEhl+ZIkiSRJYuTIkfHqq68qFgEAAAAAAAAAAAAAANRjykUF0qxZs7j55ptj4sSJseeee9bZklHFPEmSxF577RUTJ06Mm266KZo1a1bgdAAAAAAAAAAAAAAAANSGclGBDRgwIKZMmRK33357bL/99uWbgcpKPYUoGlU8uyxPt27dYvTo0fH666/HgAED8p4JAAAAAAAAAAAAAACA7FMuqgNSqVScc8458d5778W4ceNi3333LS/1lF3PZdmosvcvO3+fffaJcePGxX/+85/43ve+V6e2KgEAAAAAAAAAAAAAAFA7qaSswUKdMn369HjggQfi4Ycfjrlz55Y/n6tyT8V/Bt27d49TTjklTj311Nh9991zch4A2bFo0aLo2LHjJs8tXLgwOnToUKBEAAAAAAAAAAAAAFD/FPP3cpWL6oF33303/v73v8eECRNi8uTJ8eGHH1Y7v3kBKd1f8XbbbRd9+/aNQYMGxeDBg6Nnz561zgxAfhTzLzEAAAAAAAAAAAAAkC3F/L1c5aJ6aNmyZTF9+vSYNWtWzJs3LxYsWBALFiyIxYsXx6pVq2LNmjWxevXqiIho1qxZNG/ePFq0aBFf+cpXokuXLtG5c+fYbrvtYtddd43dd989ttpqqwLfEQBbqph/iQEAAAAAAAAAAACAbCnm7+U2LnQAaq5NmzbRr1+/6NevX6GjAAAAAAAAAAAAAAAAUI+VFDoAAAAAAAAAAAAAAAAAUBjKRQAAAAAAAAAAAAAAAFCklIsAAAAAAAAAAAAAAACgSDUudICGZv78+TF+/PiMZnfdddfYb7/9cpwIAAAAAAAAAAAAAAAAKqdclGV/+tOf4pJLLslo9sUXX8xtGAAAAAAAAAAAAAAAAKiGclGWTZ06NZIkSTvXv3//GDBgQB4SAQAAAAAAAAAAAAAAQOWUi7Ls3XffjYiIVCpV6fUkSSKVSsXJJ5+cz1gAAAAAAAAAAAAAAADwJcpFWfbhhx+WF4s232BUsXB0zDHH5DUXAAAAAAAAAAAAAAAAbK6k0AEamk8//bTS5ysWi7bZZpvYfvvt8xUJAAAAAAAAAAAAAAAAKqVclGXr1q2r8lqSJJFKpWK33XbLYyIAAAAAAAAAAAAAAAConHJRlrVq1SrtTPfu3XMfBAAAAAAAAAAAAAAAANJQLsqy1q1bp51p06ZNHpIAAAAAAAAAAAAAAABA9ZSLsiyTclEmMwAAAAAAAAAAAAAAAJBrykVZts0220SSJNXOrF27Nk9pAAAAAAAAAAAAAAAAoGrKRVm28847p51ZsWJFHpIAAAAAAAAAAAAAAABA9ZSLsiyTctEnn3yShyQAAAAAAAAAAAAAAABQPeWiLOvZs2e115MkidmzZ+cpDQAAAAAAAAAAAAAAAFRNuSjL+vfvX+W1VCoVERHvvfderF+/Pl+RAAAAAAAAAAAAAAAAoFLKRVnWqVOn6N27dyRJUl4mivjfjUVlVq9eHa+++moh4gEAAAAAAAAAAAAAAEA55aIcOPzww9PO/O1vf8tDEgAAAAAAAAAAAAAAAKiaclEOnHjiiVVeS6VSkSRJPPDAA3lMBAAAAAAAAAAAAAAAAF+mXJQDffr0if333z+SJIlUKlX+fJIk5X+eM2dOPPvss4WIBwAAAAAAAAAAAAAAABGhXJQzI0eOrPZ6kiRx5ZVX5ikNAAAAAAAAAAAAAAAAfJlyUY6ccsop0aNHj4iIL20vKvt58uTJMWbMmILkAwAAAAAAAAAAAAAAAOWiHGnSpEncfPPNkSRJpddTqVQkSRKXXXZZzJ07N8/pAAAAAAAAAAAAAAAAQLkopw477LA48cQTN9lWFBHlhaNUKhVffPFFHH300bFkyZICpQQAAAAAAAAAAAAAAKBYKRfl2OjRo6NHjx4REZUWjCIi3n777TjkkENi4cKFec8HAAAAAAAAAAAAAABA8VIuyrG2bdvGk08+GW3bto2ILxeMyn5+4403on///vHGG28UJCcAAAAAAAAAAAAAAADFR7koD3beeed47LHHok2bNhFRecEolUrFnDlzol+/fnH11VfHunXrChUXAAAAAAAAAAAAAACAIqFclCcHHXRQTJw4MbbddtuIiPJCUcT/FozKnlu7dm38+Mc/jl122SXGjRsX69evL1hmAAAAAAAAAAAAAAAAGjblojzq3bt3/Otf/4q99967vFBUpmLBKEmSmDt3bpxxxhnRvXv3+NnPfhbTp08vRGQAAAAAAAAAAAAAAAAasFSyecuFnNuwYUP8+te/jl//+tflm4kqlovKbP7cDjvsEAcffHAceOCBseeee8Yuu+wSrVq1ynN6AOqSRYsWRceOHTd5buHChdGhQ4cCJQIAAAAAAAAAAACA+qeYv5fbuNABGqqzzjor7cwee+wRU6ZMqbJQVPZ82XNz5syJuXPnxt13310+37Fjx+jUqVN06tQp2rRpE82aNYumTZtu8p6Flkql4q677ip0DAAAAAAAAAAAAAAAADZjc1GOlJSUZFTwSffxb/4eVc3XpTJRRUmSRCqVig0bNhQ6CkCDVMwNaQAAAAAAAAAAAADIlmL+Xq7NRTlW2+5WxddX3Ga0+YyOGAAAAAAAAAAAAAAAADWlXJRj6TYK1aQUVNlsVYWjukLpCQAAAAAAAAAAAAAAoO5SLsqxXJdr6nJ5py6XngAAAAAAAAAAAAAAAIgoKXQAAAAAAAAAAAAAAAAAoDCUiwAAAAAAAAAAAAAAAKBIKRcBAAAAAAAAAAAAAABAkVIuAgAAAAAAAAAAAAAAgCLVuNABGrpUKlXoCAAAAAAAAAAAAAAAAFAp5aIcSpKk0BEAAAAAAAAAAAAAAACgSspFOTJ06NBCRwAAAAAAAAAAAAAAAIBqKRflyNixYwsdAQAAAAAAAAAAAAAAAKpVUugAAAAAAAAAAAAAAAAAQGEoFwEAAAAAAAAAAAAAAECRUi4CAAAAAAAAAAAAAACAIqVcBAAAAAAAAAAAAAAAAEVKuQgAAAAAAAAAAAAAAACKlHIRAAAAAAAAAAAAAAAAFCnlIgAAAAAAAAAAAAAAAChSykUAAAAAAAAAAAAAAABQpJSLAAAAAAAAAAAAAAAAoEgpFwEAAAAAAAAAAAAAAECRUi4CAAAAAAAAAAAAAACAIqVcBAAAAAAAAAAAAAAAAEVKuQgAAAAAAAAAAAAAAACKlHIRAAAAAAAAAAAAAAAAFCnlIgAAAAAAAAAAAAAAAChSykUAAAAAAAAAAAAAAABQpBoXOgBbbsOGDbFgwYKYP39+LFu2LFatWhWrVq2K1atXR5IkX5o/44wzCpASAAAAAAAAAAAAAACAukq5qJ54++23Y/LkyTF16tSYOnVqvPPOO7Fw4cJKS0RVUS4CAAAAAAAAAAAAAACgIuWiOmrDhg3x1FNPxVNPPRXPPfdczJs3b5PrNSkVRUSkUqlsxgMAAAAAAAAAAAAAAKABUC6qY9599924/fbb4/77749PP/00IiovEtWkLFTTIlJ1fvOb38RTTz2Vdq5jx47xpz/9KWvnAgAAAAAAAAAAAAAAkH3KRXXE22+/Hb/4xS/ikUceiY0bN25SCKquSJSuOJTtjUVHHHFE/OhHP6p2JkmSSKVSMXHixDj44IOzej4AAAAAAAAAAAAAAADZU1LoAMVu2bJlUVpaGnvssUc8/PDDsWHDhvJyTtkj4n8LO5U98q13797xzW9+s/zs6jLdeeedec8HAAAAAAAAAAAAAABA5pSLCujJJ5+MXr16xejRo79UKoqIgpaIqvPDH/6w/M8VS1AVH0mSxJ///OdYtmxZAZMCAAAAAAAAAAAAAABQHeWiAkiSJH74wx/GcccdFx999FGVpaK6ql+/frHvvvtWub2ozJo1a+LRRx8tVEwAAAAAAAAAAAAAAADSUC7Ks2XLlsU3vvGNuPbaa+tdqaii8847L6O5hx9+OMdJAAAAAAAAAAAAAAAA2FLKRXm0dOnSOOKII+L5558vLxZFbHmpqKyYVPY++XTqqadG27Zty3NsLpVKRZIkMX78+Fi6dGm+4wEAAAAAAAAAAAAAAJAB5aI8WbZsWRxxxBHx8ssvR8T/lW8yLRVVLBIVqlBUUbNmzeKEE06oNH/F59avXx/PPvtsPqMBAAAAAAAAAAAAAACQIeWiPDn99NNj8uTJm2wrSmfzIlFZGans0bhx42jXrl107ty5fD6fTj/99IzmnnnmmRwnAQAAAAAAAAAAAAAAYEs0LnSAYvDzn/88nnzyyYyLRRVLQmWzX/3qV+OII46IPn36xN577x3bb799dOzYsXyupCT/PbGBAwdGp06dYuHCheWbmCoqe87mIgAAAAAAAAAAAAAAgLpJuSjH/v3vf8cvf/nLGheLkiSJtm3bxhlnnBFnn3127LnnnjnPWlOpVCqOPPLIuOeee760NSlJkvLnPvnkk3jvvfeiR48ehYgJAAAAAAAAAAAAAABAFfK/7qaIrFu3Ls4999zyQlF1xaJUKlW+6adZs2YxatSomDt3btx44411slhU5qijjspo7qWXXspxEgAAAAAAAAAAAAAAAGpKuSiHrr/++pg5c2Z5aagqFbcV9evXL95888345S9/Ge3atctT0i132GGHlefffHtRRcpFAAAAAAAAAAAAAAAAdY9yUY6sXLkyrrvuumoLNxFRXjxKkiRGjBgREydOjB49euQpZe21a9cuevXqVe1MkiQxZcqUPCUCAAAAAAAAAAAAAAAgU8pFOXL77bfH4sWLIyKq3FpUVixKpVIxatSouPXWW6Nx48b5jJkV/fr1q/YeIyJmzZoV69evz2csAAAAAAAAAAAAAAAA0lAuypGbbrqp2q1FFYtFpaWl8ctf/jKP6bJr//33r/T5ioWjdevWxaxZs/IVCQAAAAAAAAAAAAAAgAwoF+XAyy+/HO+//35EVL61qGKx6Otf/3rceOONeU6YXb169cpo7p133slxEgAAAAAAAAAAAAAAAGpCuSgHHnjggSqvVdxm1KxZsxgzZkw0atQoH7FypmfPnhnNzZ07N8dJAAAAAAAAAAAAAAAAqAnlohz461//ukmJaHNlW4suvPDC2GmnnfKYLDfat28fW2+9dUREtfetXAQAAAAAAAAAAAAAAFC3KBdl2SeffBKzZ8+OiP8tEVVUsXjTokWLuPzyy/OaLZe6du36pfvd3EcffZSnNAAAAAAAAAAAAAAAAGRCuSjLXnrppWqvl20tGjJkSGyzzTZ5SpV7nTp1SjuzaNGiPCQBAAAAAAAAAAAAAAAgU8pFWTZt2rSM5k4++eQcJ8mvbbfdtsprqVQqkiSJTz/9NI+JAAAAAAAAAAAAAAAASEe5KMvmzJlT6fOpVGqTPw8cODBPifKjdevWaWeWLFmS+yAAAAAAAAAAAAAAAABkTLkoy6oqF1XUo0ePaNeuXe7D5FHz5s3TzqxZsyYPSQAAAAAAAAAAAAAAAMiUclGWLViwYJMtRRUlSRKpVCp22mmnPKfKPeUiAAAAAAAAAAAAAACA+ke5KMtWrFiRdma77bbLQ5K6Z/369YWOAAAAAAAAAAAAAAAAQAXKRVmWSbmodevWeUiSX6tWrUo706xZszwkAQAAAAAAAAAAAAAAIFPKRVm2evXqtDNNmzbNQ5L8WrlyZdqZli1b5iEJAAAAAAAAAAAAAAAAmVIuyrIWLVqknclky099s3DhwrQzmXw2AAAAAAAAAAAAAAAA5I9yUZZlsp1nxYoVeUiSX/PmzavyWpIkERHRpk2bfMUBAAAAAAAAAAAAAAAgA8pFWdaqVau0M/Pnz89DkvyaO3dupFKpKq+nUqno2rVrHhMBAAAAAAAAAAAAAACQjnJRln3lK18p39RTmSRJ4sMPP8xjotybN29efPbZZxER1d57t27d8hUJAAAAAAAAAAAAAACADCgXZdkOO+xQ5bWyzT7vvvturFu3Ll+Rcm7KlCkZzSkXAQAAAAAAAAAAAAAA1C3KRVm24447Vvp8xY0+a9eujTfffDNfkXLuhRdeyGiuR48eOU4CAAAAAAAAAAAAAABATSgXZVlV5aLNPf/88zlOkj/PPPNM+Vam6vTp0ycPaQAAAAAAAAAAAAAAAMiUclGW7bvvvhnNPfHEEzlOkh9TpkyJ2bNnR8Sm25kiYpPCUbt27WwuAgAAAAAAAAAAAAAAqGOUi7Js7733jhYtWkREfGmbT5IkkUqlIkmSeOWVV2LWrFmFiJhVo0ePrvZ62T3bWgQAAAAAAAAAAAAAAFD3KBdlWePGjWP//ff/0hafytxyyy15SJQ7ixYtinHjxn2pRFWZww8/PA+JAAAAAAAAAAAAAAAAqAnlohxIV6Qp21501113xQcffJCnVNl31VVXxYoVKyIi0papjj/++HxEAgAAAAAAAAAAAAAAoAaUi3Lg5JNPrvJaxRLO2rVr47LLLstHpKybMWNG/OEPf6hya1FZgSoiolevXrHjjjvmMx4AAAAAAAAAAAAAAAAZUC7KgR133DH69OkTSZJUWr4pez5Jknj00Udj3LhxBUi55TZs2BBDhw6NtWvXRkT1W4tSqVScdtpp+YoGAAAAAAAAAAAAAABADSgX5cjQoUPTzpQVjEpLS+PNN9/MQ6rsOP/882PKlCmbbCeqqGKhqlmzZnHOOefkMx4AAAAAAAAAAAAAAAAZUi7KkbPPPjs6dOgQEVHl9qKya8uXL4+jjz46Zs+endeMW+I3v/lN3H777ZXeU0Vl25lOOeWUaN++fZ7SAQAAAAAAAAAAAAAAUBPKRTnSvHnzuPDCCyvd7FOmYsFo/vz5ceCBB8a0adPyFbHGfvGLX8SPfvSj8mJRuq1FJSUlcdlll+UtHwAAAAAAAAAAAAAAADWjXJRDF1xwQXTs2DEiKt9eFLFpweiTTz6J/v37x3333Ze3jJlYvnx5nH766XHllVeW501XmkqlUjF06NDYbbfd8hUTAAAAAAAAAAAAAACAGlIuyqGtttoqrrvuumqLOBGbFoxWrlwZw4YNi2OPPTY+/PDDfMSs1tNPPx177bVXPPjgg+Wloarup2KBqlWrVvHrX/86XzEBAAAAAAAAAAAAAADYAspFOXb66afHwIEDy4s5ValYMEqSJJ566qno2bNnjBw5MubOnZuvuOWef/75OPTQQ+OYY46JOXPmpC0WlSmb+8UvfhGdOnXKU1oAAAAAAAAAAAAAAAC2RCpJ1xah1j744IPo06dPfPbZZxER1RZ0ygpIFctGqVQqBg4cGKeeemp84xvfiM6dO3/pdSUlJZWWf8qeS6VSsWHDhmpzTpkyJR5//PF46KGH4j//+U95js0zVZW7bPbQQw+NZ599ttqzAMiORYsWRceOHTd5buHChdGhQ4cCJQIAAAAAAAAAAACA+qeYv5fbuNABisH2228f48aNi6OOOirtBqCKpaKyn5MkiQkTJsSECRMiImLXXXeNPn36xD777BNf+9rXolu3bhnlmDt3bqxatSpWrlwZn3zyScybNy/mzp0bU6ZMiSlTpsTnn3++SYbNc1Sl4kambbbZJu65556M8gAAAAAAAAAAAAAAAFBYNhfl0TXXXBM/+tGPqi0XVVSxtFPZRqKKavp+m6usUJTJ+1YsH7Vo0SKeffbZOPDAA9NmASA7irkhDQAAAAAAAAAAAADZUszfy7W5KI9+8IMfxLJly+Kqq67KaCNQxS1Gmxd+tqQTlun2oXSzm78mSZJo1KhRjBs3TrEIAAAAAAAAAAAAAACgHlEuyrNf/epXsW7durj22mvLS0PpijzpthZVNlOZ6jYXZfoem79XkiRRUlISt912Wxx33HEZvx4AAAAAAAAAAAAAAIDCKyl0gGJ0zTXXxG9/+9soKfnfjz9d6WdzZZuLKj629HU1fY+KeZMkiWbNmsUf//jHOPvss2t0DwAAAAAAAAAAAAAAABSeclGBXHLJJfHUU09F27ZtI0mS8i1GdV3FYlH79u3j2WefjRNOOKHAqQAAAAAAAAAAAAAAANgSykUFdMQRR8Trr78egwcPLt8cVFdLRhVzJUkSgwcPjmnTpsVBBx1U4GQAAAAAAAAAAAAAAABsKeWiAtthhx1i/Pjxcdttt0WbNm3qXMlo81JRixYt4tprr43nn38+OnfuXOB0AAAAAAAAAAAAAAAA1IZyUR1x7rnnxpw5c+Kyyy6L5s2bf6lklO+i0ealooiIoUOHxnvvvReXXXZZnSg+AQAAAAAAAAAAAAAAUDvKRXXI1ltvHddee215yah9+/aRJEmlRaNsl3sqe+8kSaJJkyZx+umnx5QpU2Ls2LG2FQEAAAAAAAAAAAAAADQgqaSsuUKds27dunj00Udj7NixMWHChFi7dm1ERM62BlX8p7DLLrvEqaeeGueee2507NgxJ+cBUHuLFi360n+nFy5cGB06dChQIgAAAAAAAAAAAACof4r5e7nKRfXEihUr4oUXXoi//vWv8c9//jPeeeed2LBhw5fmMikeVfZXvtVWW0WfPn3isMMOi+OOOy569uyZldwA5FYx/xIDAAAAAAAAAAAAANlSzN/LbVzoAGSmVatWccwxx8QxxxwTERGrV6+ON998M958882YO3duzJs3L+bNmxcLFiyI5cuXx6pVq2L16tWxZs2aaNKkSbRs2TJatGgRrVu3jq5du0a3bt2iW7dusdNOO0WfPn1il112ydlGJAAAAAAAAAAAAAAAAOom5aJ6qnnz5nHAAQfEAQccUOgoAAAAAAAAAAAAAAAA1FMlhQ4AAAAAAAAAAAAAAAAAFIZyEQAAAAAAAAAAAAAAABQp5SIAAAAAAAAAAAAAAAAoUspFAAAAAAAAAAAAAAAAUKSUiwAAAAAAAAAAAAAAAKBIKRcBAAAAAAAAAAAAAABAkVIuAgAAAAAAAAAAAAAAgCKlXAQAAAAAAAAAAAAAAABFSrkIAAAAAAAAAAAAAAAAipRyEQAAAAAAAAAAAAAAABQp5SIAAAAAAAAAAAAAAAAoUspFAAAAAAAAAAAAAAAAUKSUiwAAAAAAAAAAAAAAAKBIKRcBAAAAAAAAAAAAAABAkVIuAgAAAAAAAAAAAAAAgCKlXAQAAAAAAAAAAAAAAABFqnGhA5De2rVr44MPPohPPvkkFi5cGIsXL47Vq1fHmjVrYs2aNbFhw4ZCR0zrpz/9aaEjAAAAAAAAAAAAAAAAsBnlojpm5cqVMWnSpHjppZfitddei1mzZsUHH3wQGzduLHS0WlEuAgAAAAAAAAAAAAAAqHuUi+qAJUuWxF/+8pd45JFH4u9//3usX7++/FqSJAVMlh2pVKrQEQAAAAAAAAAAAAAAAKiEclEBvfvuu/G73/0u7r333li1alVEfLlMVN+LOQ2hHAUAAAAAAAAAAAAAANBQKRcVwOLFi+MnP/lJ3HnnnbFhw4ZNCjhVlYnqY0mnvhejAAAAAAAAAAAAAAAAGjrlojz7y1/+Euecc04sWbKkvDC0eQmnPhaJAAAAAAAAAAAAAAAAqH9KCh2gWCRJEiNHjowTTzwxPv/880iSJFKpVHmxKEmS8gcAAAAAAAAAAAAAAADkg81FebB27dr4zne+E4899lh5qaiMMhEAAAAAAAAAAAAAAACFolyUY0mSxMknnxyPP/54RMQmm4oAAAAAAAAAAAAAAACgkJSLcuyKK66Ixx9/PGuloopbjwAAAAAAAAAAAAAAAKA2lItyaMKECXHNNddscbGouiKRzUcAAAAAAAAAAAAAAADUlnJRjqxevTqGDx9e/nNNykAVS0Wbv65JkyaxzTbbRPv27aNFixbRrFmzaNSoUe0DAwAAAAAAAAAAAAAAUHSUi3Jk9OjR8Z///CdSqVTGxaLNNxy1atUqDjnkkOjXr1/06dMndt555/jqV7+as8wAAAAAAAAAAAAAAAAUF+WiHFi3bl1ce+21m2wgqs7mpaIjjjgiRowYEUceeWQ0a9YsZzkBAAAAAAAAAAAAAAAobspFOfD444/HRx99lNHWoorFogMPPDCuv/766NOnTz5iAgAAAAAAAAAAAAAAUORKCh2gIXr44YfTzqRSqfLyUSqVimuuuSYmTpyoWAQAAAAAAAAAAAAAAEDe2FyUZWvXro1nnnmmfCNRZSpuK2rcuHE8+OCD8a1vfStfEQEAAAAAAAAAAAAAACAibC7Kutdffz1WrVoVEf9bHqpK2caim2++WbEIAAAAAAAAAAAAAACAglAuyrJ//etf1V5PpVLlxaJjjz02zj333DwlAwAAAAAAAAAAAAAAgE0pF2XZzJkzq7yWSqXK/9y4ceO4/vrr8xEJAAAAAAAAAAAAAAAAKqVclGVz586t9nrZ1qITTzwxunfvnp9QAAAAAAAAAAAAAAAAUAnloiz78MMPN9lQVJXTTjstD2kAAAAAAAAAAAAAAACgaspFWbZs2bJKn69YOGrcuHEMGjQoX5EAAAAAAAAAAAAAAACgUspFWbZixYoqryVJEhERe+yxRzRv3jxfkQAAAAAAAAAAAAAAAKBSykVZtnbt2mqvp1Kp+NrXvpanNAAAAAAAAAAAAAAAAFA15aIsa926ddqZbbfdNg9JAAAAAAAAAAAAAAAAoHqNCx2godlqq61i6dKl1c60atUqT2kACmv+/Pnx6quvxowZM2LWrFnx/vvvx/z582Px4sWxatWqWL9+fTRv3jxatGgR7du3j65du0a3bt1ijz32iN69e0e/fv38NxMAAAAAAAAAAAAAIIeUi7Jsq622SjuzYcOGPCQBamLFihUxZcqUmDJlSnz++edp54cNGxbdu3fPfbB65sMPP4zx48fHCy+8EP/4xz9i3rx5aV+zcuXKWLlyZSxevDjefffdTa41bdo0+vXrFyeccEJ85zvfiQ4dOuQqOmTFZ599FgsWLCh0jLzo3LlzbL311oWOAQAAAAAAAAAAAEAtKRdl2Q477BAzZsyIVCpV5czKlSvzmAjY3KpVq2Lq1Knx2muvlT/efvvt2LhxY8bvMXDgQOWi/2/q1Knx5z//OZ544omYNm1aVt977dq1MXHixJg4cWJcfvnlcdJJJ8UVV1wRvXr1yuo5UFsTJkyI888/P2bOnFnoKHnVq1evuOWWW2LgwIGFjgIAAAAAAAAAAADAFlIuyrLdd989nnrqqWpnPv300zylAdasWRPTpk3bpEg0c+bMWL9+faGj1Wvvv/9+3HvvvfHggw/G22+/nZcz161bF+PGjYsHHnggzjzzzPjNb34T7du3z8vZUJ0JEybE4MGDCx2jIGbOnBmDBg2KCRMmKBgBAAAAAAAAAAAA1FPKRVm2++67V3s9SZKYM2dOntJA8ZkyZcomRaLp06fHunXrCh2rwXjppZfiZz/7WUyYMCGSJClIhiRJYsyYMfH444/HPffcE0cffXRBckCZ888/v9ARCu7888+P6dOnFzoGAAAAAAAAAAAAAFtAuSjL+vfvX+W1VCoVSZLEu+++m8dEUFz23XffQkdo0J566qn4+9//XugYERGxePHiGDJkSPz0pz+Nn//854WOQ5FavHhxzJw5s9AxCm7GjBnx2WefxdZbb13oKAAAAAAAAAAAAADUUEmhAzQ03bt3jz322COSJIlUKlX+fMUNH0uXLo233nqrEPEAGpQkSeLKK6+M888/v2CblChuH3/8caEj1BkLFiwodAQAAAAAAAAAAAAAtoByUQ4ce+yxaWfGjx+fhyQAxeGWW26JUaNGFToGAAAAAAAAAAAAAEC9o1yUA6eeemr51qKK24vKJEkSDz/8cL5jARREt27d4tvf/nZcc8018dhjj8XUqVNj4cKFsWLFili3bl0sXLgwZs2aFePHj4+f//znMXDgwGjatGmNz7n66qvjwQcfzMEdAAAAAAAAAAAAAAA0XI0LHaAh2mWXXeKb3/xmPPnkk5uUi5IkiVQqFUmSxKuvvhpTp06Nvfbaq3BBAXKgpKQkBgwYECeccEIcccQR0bNnz2rnO3ToEB06dIhddtklDjnkkPjZz34W8+fPjxtuuCFuv/32WLZsWcZnjxw5MgYOHBidO3eu7W0AAAAAAAAAAAAAABQF5aIc+f73vx9PPvlktTNXX321DUZQB3Tv3j369OkTffr0ic6dO8fQoUMLHale2nHHHWP48OFx2mmnRdeuXWv1Xl26dIlrr702Lr300jjttNNiwoQJGb3u888/j8svvzzGjRtXq/MhmwZccna02XabQseolWUffxr/vOGuQscAAAAAAAAAAAAAIAeUi3Lk61//ehx33HHx2GOPlW8rith0e9Gf/vSn+Oc//xkDBgwocFooHt26dYs+ffrEvvvuW14o2nrrrcuvv//++4ULV08dcsghcemll8aRRx4ZJSUlWX3vzp07x/jx4+PHP/5xXH311Rm95qGHHoorrrgidtttt6xmgS3VZtttou12tmkBAAAAAAAAAAAAUDcpF+XQLbfcEn//+99j2bJlmxSMyiRJEsOHD4/XXnstWrZsWaCU0HBtt912m5SI9t133+jQoUOhYzUYQ4YMiVGjRsUBBxyQ03NKSkriqquuiuXLl8dNN92Udn7jxo1x0003xW233ZbTXAAAAAAAAAAAAAAADUF2V0ywic6dO8e1115baakolUpFRMQ777wTw4YNK0A6aJiuvPLKeOqpp+Ljjz+O//73v/HYY4/Fj3/84zjyyCMVi7LkoIMOikmTJsUTTzyR82JRRb/73e/iyCOPzGj2j3/8Y6xZsybHiQAAAAAAAAAAAAAA6j/lohw755xz4pxzztmkUBTxfwWjJEniz3/+c5x//vkFTAkNx09/+tM4+uijo1OnToWO0iBdcsklMXHixOjbt2/ezy4pKYnf//730aRJk7Szn3/+efz73//OQyoAAAAAAAAAAAAAgPpNuSgPbr311hg0aFC1BaM//OEPcdZZZ8W6desKmBSgeoUubfXo0SOGDx+e0eyLL76Y2zAAAAAAAAAAAAAAAA2AclEeNGrUKB599NHo379/tQWje+65Jw4++OCYO3duAdMC1G2nnXZaRnNvvvlmjpMAAAAAAAAAAAAAANR/ykV5stVWW8Xzzz8fhx9+eHmhqKxkVLFg9PLLL8cee+wR11xzTaxevbrAqQHqnv333z86duyYdu4///lPHtIAAAAAAAAAAAAAANRvykV51KJFi3jyySfjzDPPjCRJNrlWcaPRypUr44orrogddtghrrnmmvjkk08KERegTiopKYk+ffqknfv444/zkAYAAAAAAAAAAAAAoH5TLsqzJk2axF133RX33XdftGrVqtINRmVbjD755JO44oor4qtf/WocccQRccMNN8TUqVNj/fr1Bb4LgMLq1KlT2pkVK1bkIQkAAAAAAAAAAAAAQP3WuNABGqpf/OIXaWe++c1vxkMPPVReLorYtGBU9vP69etj/PjxMX78+Ij434LSzjvvHN26dYsuXbrEVlttFS1atIgmTZrk5may4Kc//WmhIwANSCblIkVMAAAAAAAAAAAAAID0lIty5Oc///kmpaHqJElS6c+bl4zKrF27NqZPnx4zZszIUtrcUy4CsmndunVpZ1q1apWHJAAAAAAAAAAAAAAA9ZtyUY5tXhzaktdWLBlVvFab986nTEtWAJlatGhR2pmtt946D0kAAAAAAAAAAAAAAOo35aIcS1esyaQgtPlMZWWjuqq+FKCA+uWtt95KO7PTTjvlIQkAAAAAAAAAAAAAQP2mXJRjuSjX1JfCTn0pQAH1y9KlS2P69Olp53bdddc8pAEAAAAAAAAAAAAAqN9KCh0AAGri6aefjnXr1qWdGzBgQB7SAAAAAAAAAAAAAADUb8pFANQrd999d9qZRo0axcCBA3OeBQAAAAAAAAAAAACgvlMuAqDemD59ejz33HNp5w499NDYZptt8pAIAAAAAAAAAAAAAKB+Uy4CoN4YNWpURnPDhg3LbRAAAAAAAAAAAAAAgAaicaEDNHSpVKrQEQAahBdeeCGeeOKJtHM77LBDnHjiiXlIBAAAAAAAAAAAAABQ/ykX5ViSJIWOAFDvLV++PM4999yMZq+44opo1KhRjhMBAAAAAAAAAAAAADQMykU5ctBBB9laBJAl//M//xNz5sxJO7fXXnvFWWedlYdEAAAAAAAAAAAAAAANg3JRjrz44ouFjgDQIDzyyCNx2223pZ1LpVJx0003RUlJSR5SAQAAAAAAAAAAAAA0DL6BDUCd9e6778bZZ5+d0ezIkSPjwAMPzHEiAAAAAAAAAAAAAICGxeYiAOqkL774Io477rhYtmxZ2tkePXrENddck4dU9cOBBx4YjRv7v/h8WL16daEjAAAAAAAAAAAAAECt2FwEQJ2zfv36OOmkk2LWrFlpZ5s2bRrjxo2Lli1b5iEZAAAAAAAAAAAAAEDDYq0BAHXOBRdcEM8991xGs9dff33st99+OU5Uv7z00kvRoUOHQscoCjNmzIjdd9+90DEAAAAAAAAAAAAAYIvZXARAnXL11VfHbbfdltHsd77znRg5cmSOEwEAAAAAAAAAAAAANFzKRQDUGXfccUdcccUVGc0OGDAgxowZk+NEAAAAAAAAAAAAAAANm3IRAHXCI488EiNGjMhodq+99oonn3wymjdvnuNUAAAAAAAAAAAAAAANm3IRAAX3zDPPxGmnnRYbN25MO7vzzjvHs88+G23bts1DMgAAAAAAAAAAAACAhq1xoQMA9cvcuXNj8uTJOT2jVatWMWTIkJyeQd0xYcKE+Na3vhXr1q1LO9utW7cYP358dOzYMQ/JAAAAAAAAAAAAAAAaPuUioEYmTpwYZ555Zk7P2H777ZWLisSkSZPimGOOidWrV6ed7dSpU4wfPz6++tWv5iEZAAAAAAAAAAAAAEBxKCl0AACK0+uvvx7f+MY3Yvny5Wlnt95663j++eejR48eeUgGAAAAAAAAAAAAAFA8lIsAyLu33norDj/88Pjiiy/Szm611Vbxt7/9LfbYY488JAMAAAAAAAAAAAAAKC7KRQDk1axZs+LQQw+Nzz77LO1sy5Yt4+mnn4799tsvD8kAAAAAAAAAAAAAAIqPchEAefOf//wnDjnkkFi4cGHa2WbNmsXjjz8eBx54YB6SAQAAAAAAAAAAAAAUJ+UiAPJi7ty5MWjQoFiwYEHa2SZNmsQjjzwShx56aB6SAQAAAAAAAAAAAAAUL+UiAHLuww8/jEGDBsW8efPSzjZq1Cjuv//+GDJkSB6SAQAAAAAAAAAAAAAUN+UioEaGDRsWSZLk9PH+++8X+jbJoo8++igGDx4cH3zwQdrZVCoVd911V5x00kl5SAYAAAAAAAAAAAAAgHIRADnz8ccfx+DBg2P27NkZzd96660xdOjQHKcCAAAAAAAAAAAAAKBM40IHoH7beuut086kUqlYvHhxHtIAdcmiRYvikEMOiXfffTej+euvvz5GjBiR41QAAAAAAAAAAAAAAFRU1OWiHXfcMe1MKpXKeONGMVqyZEmkUqlIkqTKmVQqlcdEQF2wePHiOPTQQ2PmzJkZzf/qV7+KSy65JMepAAAAAAAAAAAAAADYXFGXi95//33FmCyp6nOq7rMFGqYlS5bE4YcfHtOmTctoftSoUTFq1KgcpwIAAAAAAAAAAAAAoDJFXS4qU5eKMY0aNUo7k0qlYv369XlIA1Azy5YtiyOPPDKmTJmS0fyll14av/rVr3KcCgAAAAAAAAAAAACAqigX1TH1ddNPZbltfYLismLFijjqqKNi8uTJGc2XlpbGb3/72xynAgAAAAAAAAAAAACgOspFUfeKMdWdXV/LR0DDtmrVqhgyZEi89NJLGc2feeaZccstt+Q4FQAAAAAAAAAAAAAA6SgX1VF1rfAEUJU1a9bE8ccfHxMmTMho/jvf+U7ceeed/psGAAAAAAAAAAAAAFAHlBQ6AAD117p16+Kkk06KZ599NqP5E044Ie69994oKfF/PwAAAAAAAAAAAAAAdYHNRQBskQ0bNsRpp50WTzzxREbzRx99dDz00EPRuLH/66G4LPv400JHqLWGcA8AAAAAAAAAAAAAVM43vAHqsRdffDEGDRqUdm7o0KFx9913Z+3cjRs3xplnnhmPPPJIRvOHHXZY/PnPf44mTZpkLQPUF/+84a5CRwAAAAAAAAAAAACAKpUUOgAA9c+IESPivvvuy2j2oIMOisceeyyaNWuW41QAAAAAAAAAAAAAANSUchEANXLxxRfHHXfckdFsv3794umnn46WLVvmOBUAAAAAAAAAAAAAAFtCuQiAjI0aNSpuvPHGjGb33Xff+Otf/xqtW7fOcSoAAAAAAAAAAAAAALaUchHQ4AwbNixSqdQWPXbYYYeMzhg0aNAWnzFs2LDcfgA5dNVVV2U8+/rrr0e7du22+HPKxuPuu+/O3YcBEbHtttsWOkKd0blz50JHAAAAAAAAAAAAAGALKBcBAGyh9u3bR69evQodo+B222232HrrrQsdAwAAAAAAAAAAAIAtoFwEAFALt9xyS6EjFNzNN99c6AgAAAAAAAAAAAAAbCHlIgCAWhg4cGBMmDAhdtttt0JHybvddtstJkyYEAMHDix0FAAAAAAAAAAAAAC2UONCBwAAqO8GDhwY06dPj88++ywWLFhQ6Dh50bnz/2Pv/mOtLug/jr/P5cIVbhgCF0Icv0xdYv4IDEEk0Cn+SBPBpTIWSWVb6qxp/aFDSGrWmKsVW1pquWaxydImzkYJVKLQDcEEJWUSkQi3AAVvIuD5/lHql+9XOede7rmHc9+Px3Y3vfd97ud1r3/4z33uDIq+fftWewYAAAAAAAAAAAAAh0lcBADQQfr27Su4AQAAAAAAAAAAAKCm1FV7AAAAAAAAAAAAAAAAAFAd4iIAAAAAAAAAAAAAAABIqlAsFovVHlEtdXV1USgU4v1+Be98vlAoxIEDB1JvOpRa2wvQ1bS0tMSAAQMO+tz27dujqampSosAAAAAAAAAAAAAoPZk/rtc71wEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABIqr7aA2rBtddeW+0J/8+RuAkAAAAAAAAAAAAAAIDaUigWi8Vqj6iWurq6KBQKUepXUCgUOmlRlNzyjs7cdCiH2vvO77ZQKMSBAwc6cRVAHi0tLTFgwICDPrd9+/Zoamqq0iIAAAAAAAAAAAAAqD2Z/y7XOxeV4Ujsr47ETQAAAAAAAAAAAAAAANQWcVEZvHPRBxM5AQAAAAAAAAAAAAAA1C5xURmOxIDmSNwEAAAAAAAAAAAAAABAbamr9gAAAAAAAAAAAAAAAACgOsRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABIqr7aA44EhUKh2hMAAAAAAAAAAAAAAACg04mLIqJYLFZ7AgAAAAAAAAAAAAAAAHS61HHRhAkTvGsRAAAAAAAAAAAAAAAAaaWOi5YtW1btCQAAAAAAAAAAAAAAAFA1ddUeAAAAAAAAAAAAAAAAAFSHuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEiqvtoDAMht06ZNsWzZsli/fn1s2LAhNm7cGLt27Yo9e/bEnj17oqGhIXr37h29e/eOfv36xQknnBAnnnhinHjiiTF69Og4/vjjq/0jAAAAAAAAAAAAAADULHERQES88cYbsXr16li9enXs3Lmz5P3MmTNj2LBhlR/WRa1Zsybuu+++eOyxx2Ljxo2HvG1tbY3W1tbYtm1bvPTSS7Fy5cqDvj5o0KA455xzYsKECXHppZfGkCFDKjkdAAAAAAAAAAAAAKBLKRSLxWK1RwB0pn//+9+xZs2aaG5ufvfjhRdeiLfffrvs77F06dKYOHFi5UZ2QcViMRYuXBh33XVX/OlPf6rYc0aPHh1XXHFFzJgxI4477riKPedI0dLSEgMGDDjoc9u3b4+mpqYqLQIAAAAAAAAAAACA2pP573K9cxHQpe3duzeeffbZg0Ki9evXx/79+6s9LZVly5bFLbfcEs3NzRV/1jv/nbt37x4333xzxZ8HAAAAAAAAAAAAAFDLxEVAl7J69eqDQqLnnnsu9u3bV+1Zab355ptx8803x4IFC6o9BQAAAAAAAAAAAACA9yEuArqUUaNGVXsC/7Vhw4aYOnVqrFu3rtpTAAAAAAAAAAAAAAD4AOIiADrcqlWr4pJLLol//vOf1Z4CAAAAAAAAAAAAAMAh1FV7AABdy+9+97s499xzhUUAAAAAAAAAAAAAADXAOxcB0GHWrFkTU6ZMiTfeeKNNrxs8eHBMmjQpzj777DjxxBNjxIgR0adPn2hsbIz9+/fHrl27YteuXbFjx45Yt25drF27NtauXRtr1qxp87MAAAAAAAAAAAAAAHiPuAiADrF58+a4+OKLY/fu3WXdd+vWLa655pqYNWtWTJgwIQqFwvvede/ePXr27BmDBg2KiIizzz773a/t3bs3nnjiiXj00Udj8eLF8be//e3wfxAAAAAAAAAAAAAAgETqqj0AoNqGDRsW06ZNizvvvDN+9rOfVXtOTdq/f39ceeWVsXXr1rLuP/3pT8fzzz8fDzzwQHzqU5/6wLColIaGhrjoootiwYIFsWnTpnjiiSdi2rRpUV+vnQUAAAAAAAAAAAAAKIe/vgZSGTJkSIwePTpGjRoVo0ePjtGjR0ffvn3f/fqmTZuqN66GzZkzJ1atWlXyrqGhIRYsWBCzZs2qyI5JkybFpEmTYuvWrbFjx46KPAMAAAAAAAAAAAAAoCsRFwFd1nHHHXdQRDRq1Khoamqq9qwu5+mnn44777yz5F2fPn3i17/+dZxzzjkV3zRo0KAYNGhQxZ8DAAAAAAAAAAAAAFDrxEVAlzJ37tx3g6KBAwdWe06XVywW44YbbogDBw4c8q5nz56xePHiGDduXCctAwAAAAAAAAAAAACgHOIioEuZPXt2tSek8sADD0Rzc3PJu3vvvVdYBAAAAAAAAAAAAABwBKqr9gAAatO+ffvitttuK3k3ffr0uPrqqzthEQAAAAAAAAAAAAAAbSUuAqBdfvGLX8SWLVsOedO7d+/43ve+1zmDAAAAAAAAAAAAAABoM3ERAO1y1113lby55ZZbon///p2wBgAAAAAAAAAAAACA9hAXAdBmf/jDH2Lt2rWHvOnZs2fccMMNnbQIAAAAAAAAAAAAAID2EBcB0GYPPvhgyZurr746+vTpU/kxAAAAAAAAAAAAAAC0m7gIgDbZv39/LFq0qOTdNddc0wlrAAAAAAAAAAAAAAA4HOIiANpk+fLl0dLScsibPn36xIQJEzppEQAAAAAAAAAAAAAA7SUuAqBNfvvb35a8Offcc6N79+6dsAYAAAAAAAAAAAAAgMMhLgKgTZYuXVryZuzYsZ2wBAAAAAAAAAAAAACAwyUuAqBse/bsiT//+c8l78aMGdMJawAAAAAAAAAAAAAAOFz11R4AQO145plnYv/+/SXvTj755JI3r7zySixevDiam5vjueeei82bN8drr70Wra2t0dDQEI2NjdHU1BTDhw+PE044IcaMGRPjxo2LIUOGdMSPAgAAAAAAAAAAAABAiIsAaIN169aVvDnmmGOiX79+7/u1ffv2xcKFC+OHP/xhrFq1KorF4vvetba2Rmtra7S0tMT69esP+trpp58eV155ZcyaNSsGDhzY9h8CAAAAAAAAAAAAAIB31VV7AAC1o5y4aMSIEe/7+YULF8aIESNixowZsXLlyg8Mi0pZs2ZN3HrrrTF06NC47rrrYuvWre36PgAAAAAAAAAAAAAAiIsAaIPnn3++5M2AAQMO+vft27fHBRdcEFdddVVs2bKlw7bs3bs37rnnnjjppJPi+9//frtjJQAAAAAAAAAAAACAzMRFAJTt73//e8mbpqamd/+5ubk5Ro0aFUuWLKnYpt27d8dNN90Ul112WezcubNizwEAAAAAAAAAAAAA6IrERQCU7dVXXy1506dPn4iIWLVqVZx33nkd+m5Fh/Loo4/G+PHjY+vWrZ3yPAAAAAAAAAAAAACArkBcBEBZWltb4/XXXy9516NHj1i/fn1Mnjy5rPuOtH79+jjnnHNi27ZtnfpcAAAAAAAAAAAAAIBaVV/tAQDUhpaWlrLu9u3bF9OmTYtdu3aVvO3fv39MmDAhRo4cGccdd1w0NjbG3r17Y8eOHfHiiy/GihUrYt26dVEsFsveuXHjxrj88stj6dKlcdRRR5X9OgAAAAAAAAAAAACAjMRFAJSltbW1rLu777473nzzzUPeXHjhhfG1r30tzjvvvKirO/Sb6G3atCl+/OMfxw9+8IPYvXt3WRuefvrpuOmmm+JHP/pRWfcAAAAAAAAAAAAAAFmJiwAoS6lgqJy7wYMHx09+8pO48MILy37usGHD4lvf+lbceOON8eUvfzkefvjhsl539913x9SpU+P8888v+1ldxfjx46O+3v/iq23dunXVngAAAAAAAAAAAAAAJR367SIA4L/27t17WK//xCc+Ec3NzW0Ki/63gQMHxq9+9auYM2dO2a+5/vrr48CBA+16HgAAAAAAAAAAAABABt7WAICyvPXWW+1+7cknnxxLliyJvn37HvaO22+/PYrFYsydO7fk7V//+te4//774wtf+MJhP7eW/PGPf4ympqZqzwAAAAAAAAAAAAAAaoB3LgKgLN26dWvX63r06BG//OUvOyQsesftt98eEydOLOt2/vz5HfZcAAAAAAAAAAAAAICuRlwEQFl69OjRrtfNnj07Pv7xj3folkKhEPfdd180NjaWvN2wYUMsXbq0Q58PAAAAAAAAAAAAANBViIsAKEt74qKhQ4fGN77xjQqsiRg+fHjZ3/vBBx+syAYAAAAAAAAAAAAAgFonLgKgLA0NDW1+zZe+9KWor6+vwJr/+OIXvxjdu3cveffYY49VbAMAAAAAAAAAAAAAQC2r3F98A13Syy+/HCtXrqzoMxobG+PSSy+t6DNou969e7fpvnv37jFr1qwKrfmPj3zkI/GZz3wmHnrooUPevfLKK7Fu3boYOXJkRfcAAAAAAAAAAAAAANQacRHQJsuXL4/Pf/7zFX3G0KFDxUVHoP79+7fpfvz48TFw4MAKrXnPtGnTSsZFERHNzc3iIgAAAAAAAAAAAACA/6Ou2gMAqA0NDQ3R2NhY9v2YMWMquOY9n/zkJ8u6W716dYWXAAAAAAAAAAAAAADUHnERAGXr169f2bedFRcNHz48mpqaSt5t3LixE9YAAAAAAAAAAAAAANQWcREAZRs8eHDZt6eeemoFlxzstNNOK3mzZcuWTlgCAAAAAAAAAAAAAFBbxEUAlG3EiBFl3/bt27eCS9r+rG3btnXCEgAAAAAAAAAAAACA2iIuAqBs5cZFhUIhjj766AqveU+fPn1K3rS2tlZ+CAAAAAAAAAAAAABAjREXAVC2448/vqy7o48+OurqOu9/MeIiAAAAAAAAAAAAAID2ERcBbTJz5swoFosV/di0aVO1f0w+wGmnnVbWXaFQqPCS6j4PAAAAAAAAAAAAAKCrEBcBULaRI0dGQ0NDybvXX389isViJyz6j507d5a86dWrVycsAQAAAAAAAAAAAACoLeIiAMrWvXv3OPXUU0vevf322/Haa691wqL/2LVrV8mbxsbGyg8BAAAAAAAAAAAAAKgx4iIA2mTcuHFl3e3YsaPCS9r2rGOPPbYTlgAAAAAAAAAAAAAA1BZxEQBtcsEFF5R19+yzz1Z4yXvWrl1b8mbIkCGdsAQAAAAAAAAAAAAAoLaIiwBok4kTJ0aPHj1K3q1cubIT1kS8/PLL0dLSUvLupJNO6oQ1AAAAAAAAAAAAAAC1RVwEQJv06tUrJk6cWPLu6aefrvyYKD9iOvPMMyu8BAAAAAAAAAAAAACg9oiLAGiz6dOnl7x58skn49VXX634loceeqisu7POOqvCSwAAAAAAAAAAAAAAao+4CIA2mzp1ajQ2Nh7yZt++fXHvvfdWdMfWrVvjkUceKXl3xhlnxLHHHlvRLQAAAAAAAAAAAAAAtUhcBECbNTY2xmc/+9mSd/fcc0/s37+/YjvK/f6XX355xTYAAAAAAAAAAAAAANQycREA7XLzzTdHoVA45M3mzZvj29/+dkWev3Hjxvjud79b8q5bt24xc+bMimwAAAAAAAAAAAAAAKh14iKAGrZs2bIoFAolPyoR13zsYx+LKVOmlLybN29erF27tkOfXSwW49prr43W1taSt5dddlkMGTKkQ58PAAAAAAAAAAAAANBViIsAaLe5c+dGfX39IW/27dsXV111VfzrX//qsOfOnj07fv/735e8q6uri9mzZ3fYcwEAAAAAAAAAAAAAuhpxEQDtdsopp8SNN95Y8u6FF16I888/P7Zu3XrYz5wzZ07MmzevrNsZM2bE6aefftjPBAAAAAAAAAAAAADoqsRFAByWuXPnxpAhQ0rePfPMM3HmmWfGb37zm3Y9Z/v27TFlypSYO3duWfeDBg2K+fPnt+tZAAAAAAAAAAAAAABZiIuALmfmzJlRKBTa9TF8+PCynjFp0qR2P2PmzJmV/QV0sg996EOxcOHC6NGjR8nbf/zjH3HhhRfGRRddFEuWLIm333675Gs2bdoUt956a3z0ox+Nhx9+uKxNdXV1cf/990f//v3LugcAAAAAAAAAAAAAyKq+2gMAqH1nnXVW3HXXXXH99deXdf/444/H448/Hk1NTTFhwoQ45ZRTYvDgwdHY2BhvvfVW7NixI1588cVYsWJF/OUvf4lisdimPfPnz4/Jkye350cBAAAAAAAAAAAAAEhFXARAh/jKV74S27ZtizvuuKPs17S0tMSiRYti0aJFHbbj61//enz1q1/tsO8HAAAAAAAAAAAAANCV1VV7AABdxze/+c247bbbqvb8efPmxXe+852qPR8AAAAAAAAAAAAAoNaIiwDoUHfccUf8/Oc/j169enXaMz/84Q/HokWL4tZbb+20ZwIAAAAAAAAAAAAAdAXiIgA63PTp02PlypUxduzYij/r4osvjjVr1sQVV1xR8WcBAAAAAAAAAAAAAHQ14iIAKuKUU06JJ598Mn7605/G8OHDO/z7n3XWWfHoo4/G4sWLY9iwYR3+/QEAAAAAAAAAAAAAMhAXAVAxhUIhPve5z8VLL70UjzzySFxyySXRs2fPdn+/AQMGxHXXXRcrVqyIp556Ki655JIOXAsAAAAAAAAAAAAAkE+hWCwWqz0CgDzefPPNWL58eTz11FPx/PPPx4YNG6KlpSX27NkTb7zxRtTX10evXr3imGOOiaFDh8aIESPijDPOiLFjx8bpp58edXW62P+tpaUlBgwYcNDntm/fHk1NTVVaBAAAAAAAAAAAAAC1J/Pf5dZXewAAuRx11FExefLkmDx5crWnAAAAAAAAAAAAAACk5+0fAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAgKTERQAAAAAAAAAAAAAAAJCUuAgAAAAAAAAAAAAAAACSEhcBAAAAAAAAAAAAAABAUuIiAAAAAAAAAAAAAAAASEpcBAAAAAAAAAAAAAAAAEmJiwAAAAAAAAAAAAAAACApcREAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAACApMRFAAAAAAAAAAAAAAAAkJS4CAAAAAAAAAAAAAAAAJISFwEAAAAAAAAAAAAAAEBS4iIAAAAAAAAAAAAAAABISlwEAAAAAAAAAAAAAAAASYmLAAAAAAAAAAAAAAAAIClxEQAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAICkxEUAAAAAAAAAAAAAAACQlLgIAAAAAAAAAAAAAAAAkhIXAQAAAAAAAAAAAAAAQFLiIgAAAAAAAAAAAAAAAEhKXAQAAAAAAAAAAAAAAABJiYsAAAAAAAAAAAAAAAAgKXERAAAAAAAA/A979x1mZX3mj/+eYRgYgUFHRCSsglIUS6QougKWoBGDBbtrd4OatSW2NKJGoxtjNFcSMbZN1vaNIdVgI4KiqIAiRZEiIiFYBhCklwFmfn/kt3HdJDwPMOecOed5va7L69ol95zPeybJ6OfJeZ8bAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKMqCh0AAAAAAAAAAAAAAABgS9auXRuLFi0qdIy82XXXXWOHHXYodAwyQrkIAAAAAAAAAAAAAABokqZMmRKXXXZZvP7667F58+ZCx8mbZs2axUEHHRQjRoyI3r17FzoOJa680AEAAAAAAAAAAAAAAAD+r8mTJ0e/fv1i4sSJmSoWRURs3rw5Jk6cGIccckhMnjy50HEoccpFAAAAAAAAAAAAAABAk3PllVfGpk2bCh2joDZu3BhXXnlloWNQ4pSLAAAAAAAAAAAAAACAJqWuri4mTZpU6BhNwmuvvRZ1dXWFjkEJUy4CAAAAAAAAAAAAAACalHXr1kVDQ0OhYzQJ9fX1sX79+kLHoIQpFwEAAAAAAAAAAAAAAE1K27Zto3fv3oWO0ST07t07qqurCx2DEqZcBAAAAAAAAAAAAAAANDmXXHJJoSM0CZdeemmhI1DilIsAAAAAAAAAAAAAAIAm5/zzz4899tij0DEKqnPnznHeeecVOgYlrqLQAQAAAAAAAAAAAAAAAP6vysrK+Pa3vx0XX3zxFucqWlTGEV+/NMqbF09FYnPdxnjxB/fFpg11W5z79re/HZWVlXlKRVYVz39zAAAAAAAAAAAAAACATDn//PPj1ltvjQULFvzTmU0b6uKTP78f3b84MI/Jts+cZ19MLBbZWkS+lBc6AAAAAAAAAAAAAAAAwD/yP9uLksz845jYXLcxD4m236a6upg1amzinK1F5ItyEQAAAAAAAAAAAAAA0GSdf/75sccee2xxZt3ylTHvhQl5SrR95j0/IdYtX7nFGVuLyCflIgAAAAAAAAAAAAAAoMkqpe1FthbRFCkXAQAAAAAAAAAAAAAATVqpbC+ytYimSLkIAAAAAAAAAAAAAABo0kphe5GtRTRVykUAAAAAAAAAAAAAAECTV+zbi2wtoqlSLgIAAAAAAAAAAAAAAJq8Yt5eZGsRTZlyEQAAAAAAAAAAAAAAUBSKdXuRrUU0ZcpFAAAAAAAAAAAAAABAUSjG7UW2FtHUKRcBAAAAAAAAAAAAAABFo9i2F9laRFOnXAQAAAAAAAAAAAAAABSNYtpeZGsRxUC5CAAAAAAAAAAAAAAAKCrFsr3I1iKKgXIRAAAAAAAAAAAAAABQVIphe5GtRRQL5SIAAAAAAAAAAAAAAKDoNPXtRbYWUSyUiwAAAAAAAAAAAAAAgKLTlLcX2VpEMVEuAgAAAAAAAAAAAAAAilJT3V5kaxHFRLkIAAAAAAAAAAAAAAAoSk1xe5GtRRQb5SIAAAAAAAAAAAAAAKBoNbXtRbYWUWyUiwAAAAAAAAAAAAAAgKLVlLYX2VpEMVIuAgAAAAAAAAAAAAAAilpT2V5kaxHFSLkIAAAAAAAAAAAAAAAoak1he5GtRRQr5SIAAAAAAAAAAAAAAKDoFXp7ka1FFCvlIgAAAAAAAAAAAAAAoOgVcnuRrUUUM+UiAAAAAAAAAAAAAACgJBRqe5GtRRQz5SIAAAAAAAAAAAAAAKAkFGJ7ka1FFDvlIgAAAAAAAAAAAAAAoGTke3uRrUUUO+UiAAAAAAAAAAAAAACgZORze5GtRZQC5SIAAAAAAAAAAAAAAKCk5Gt7ka1FlALlIgAAAAAAAAAAAAAAoKTkY3uRrUWUCuUiAAAAAAAAAAAAAACg5OR6e5GtRZQK5SIAAAAAAAAAAAAAAKDk5HJ7ka1FlBLlIgAAAAAAAAAAAAAAoCTlanuRrUWUEuUiAAAAAAAAAAAAAACgJOVie5GtRZQa5SIAAAAAAAAAAAAAAKBkNfb2IluLKDXKRQAAAAAAAAAAAAAAQMlqzO1FthZRipSLAAAAAAAAAAAAAACAktZY24tsLaIUKRcBAAAAAAAAAAAAAAAlrTG2F9laRKlSLgIAAAAAAAAAAAAAAEre9m4vsrWIUqVcBAAAAAAAAAAAAAAAlLzt2V5kaxGlTLkIAAAAAAAAAAAAAADIhG3dXmRrEaVMuQgAAAAAAAAAAAAAAMiEbdleZGsRpU65CAAAAAAAAAAAAAAAyIyt3V5kaxGlTrkIAAAAAAAAAAAAAADIjK3ZXlS3Zq2tRZQ85SIAAAAAAAAAAAAAACBT0m4veuH7P7O1iJKnXAQAAAAAAAAAAAAAAGRK2u1Fy95bmDhjaxHFTrkIAAAAAAAAAAAAAADInDTbi5LYWkQpUC4CAAAAAAAAAAAAAAAyJ+32oi2xtYhSoFwEAAAAAAAAAAAAAABk0vZsL7K1iFKhXAQAAAAAAAAAAAAAAGTS9mwvsrWIUqFcBAAAAAAAAAAAAAAAZNa2bC+ytYhSolwEAAAAAAAAAAAAAABk1rZsL7K1iFKiXAQAAAAAAAAAAAAAAGTa1mwvsrWIUqNcBAAAAAAAAAAAAAAAZNrWbC+ytYhSo1wEAAAAAAAAAAAAAABkXprtRbYWUYqUiwAAAAAAAAAAAAAAgMyrrKyM4cOHb3Fm+PDhthZRcpSLAAAAAAAAAAAAAAAAIuKiiy6Kk08++R/+a6ecckpceOGFeU4EuadcBAAAAAAAAAAAAAAAEBHl5eXx8MMPx/Dhw2PHHXeMiIgdd9wxhg8fHg899FCUl6thUHrKGhoaGgodAgDYNkuWLIn27dt/5s8WL14cu+yyS4ESAQAAAAAAAAAAAJSGTZs2xebNm6NZs2ZRUVFR6DjkWJbfl+s/3QAAAAAAAAAAAAAAAP9HRUWFUhGZYB8XAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZFRFoQMA5FNdXV1Mnz49pk6dGrNmzYp33nknPvjgg6itrY3Vq1fHunXroqKiIlq2bBmtW7eOjh07RseOHaNHjx5xwAEHxEEHHRQ9evQo9LdRtDZu3Bjjx4+PV155JWbOnBmzZ8+OJUuWxKpVq2LNmjVRVVUV1dXVUVNTEz169IiePXtGv3794qijjoqqqqpCxwcAAAAAAAAAAAAAKDllDQ0NDYUOAZArdXV18corr8Tzzz8fzz//fLzxxhuxYcOG7XrNf/mXf4ljjz02zjnnnBgwYECUlZU1UtrS9fLLL8eIESPi6aefjpUrV27111dVVcWgQYPiK1/5Shx77LF+5v/LkiVLon379p/5s8WLF8cuu+xSoEQAAAAAAAAAAAAAUHyy/L5c5SKg5KxatSpGjRoVf/jDH2L06NHbVGZJa6+99orrr78+LrjggqisrMzZOcXqpZdeimuuuSYmT57caK/Zo0eP+P73vx8nnXRSo71mMcvyP8QAAAAAAAAAAAAAQGPJ8vtylYuAkrBx48Z46qmn4rHHHounnnoq1q1bl9fz99hjj/jJT34SJ5xwQl7PbaqWL18eV111VTz88MM5O2PIkCFx3333RceOHXN2RjHI8j/EAAAAAAAAAAAAAEBjyfL7cssLHQBge9TX18e1114bnTp1iqFDh8ZvfvObvBeLIiIWLFgQJ554YpxxxhmxatWqvJ/flMycOTMOPvjgnBaLIiKefPLJ6NOnT7z66qs5PQcAAAAAAAAAAAAAoJQpFwFFra6uLu68885YvHhxoaNERMTIkSOjb9++MXfu3EJHKYiXX345DjnkkLx9/7W1tXHkkUfG73//+7ycBwAAAAAAAAAAAABQapSLABrZO++8EwMGDIi33nqr0FHyavLkyfGlL30p75ub6urq4swzz4zRo0fn9VwAAAAAAAAAAAAAgFJQUegAAKVo0aJFccwxx8SkSZNi9913L3ScnHv//fdj8ODBsXLlytRf07Jlyxg4cGD07ds3Pve5z0V1dXWsXr06Pvroo5gyZUqMGzcuVq9eneq16urq4uSTT45JkybFfvvtt63fBgAAAAAAAAAAAABA5igXAZnTokWL6NOnT/Tt2zd69eoVXbp0ic6dO0fbtm2jVatWUVdXF0uXLo2lS5fGm2++GePGjYvnn38+/vKXv2zVObW1tXH88cfHa6+9Fi1atMjRd1N4mzZtirPOOis+/vjjVPPt27eP4cOHx3nnnRdt27b9p3Nr166NkSNHxk033RQLFixIfN21a9fGaaedFpMnT45WrVqlzg8AAAAAAAAAAAAAkGVlDQ0NDYUOAbCt1q9fH1VVVYlz7du3j1NPPTWOO+64OPLII2OHHXbYqnMaGhriiSeeiNtvvz0mTpy4VV97/fXXx+23375VX1NMbr755rjxxhtTzZ5xxhlx//33R3V1derX37BhQ1xzzTUxYsSIVPPDhg2L+++/P/XrF7slS5ZE+/btP/Nnixcvjl122aVAiQAAAAAAAAAAAACg+GT5fbnKRUBR21K5qKKiIoYOHRpf/vKX4wtf+EI0a9asUc78+c9/HldccUWsXbs21XyzZs3irbfein322adRzm9K5s+fHz179oz169cnzn7zm9+M2267bZvPuvvuu+OKK65InCsrK4tJkybFQQcdtM1nFZMs/0MMAAAAAAAAAAAAADSWLL8vt7zQAQAaW01NTdxwww3xl7/8JUaOHBnHHHNMoxWLIiIuuuiieP3116Nz586p5jdv3hw33XRTo53flFx99dWpikWXXHLJdhWLIiIuv/zy+N73vpc419DQEJdffnnozgIAAAAAAAAAAAAAJLO5CChq/3tz0a677hrXXnttXHrppdG6deucn/3OO+/EYYcdFh9//HHibHl5eSxcuDA6duyY81z5Mm3atOjVq1fiXK9evWLChAnRokWL7T6zoaEhBg8eHKNHj06cHTVqVAwZMmS7z2zqstyQBgAAAAAAAAAAAIDGkuX35dpcBBS96urquPnmm2PevHlx7bXX5qVYFBHRvXv3+MMf/hBlZWWJs/X19fHoo4/mIVX+/OAHP0icKS8vjwcffLBRikUREWVlZXH//ff/rVC2JWnyAQAAAAAAAAAAAABknXIRUNQqKytj3rx58Z3vfCdatWqV9/MPO+ywOO+881LNPvXUUzlOkz8LFy6MX//614lz5557bvTu3btRz959993j6quvTpwbP358vP766416NgAAAAAAAAAAAABAqVEuAopaeXl5tGvXrqAZbrvttlSbeSZNmhTr16/PQ6Lce+yxx2LTpk1bnCkrK4uvf/3rOTn/qquuipYtWybOPfTQQzk5HwAAAAAAAAAAAACgVCgXAWynjh07xhFHHJE4t2HDhpg9e3buA+XBY489ljhzzDHHxD777JOT83fZZZc4++yzE+dGjhyZWIICAAAAAAAAAAAAAMgy5SKARjBkyJBUc++++26Ok+TejBkzYsaMGYlz55xzTk5zpHn9JUuWxJgxY3KaAwAAAAAAAAAAAACgmCkXATSCfv36pZqrra3NcZLce/bZZxNnWrZsGSeeeGJOcwwcODA6duyYOPfMM8/kNAcAAAAAAAAAAAAAQDFTLgJoBLvuumuquTVr1uQ4Se4999xziTP9+/ePNm3a5DRHeXl5HHPMMYlzafICAAAAAAAAAAAAAGSVchFAI0hbLtq0aVOOk+RWXV1dvPzyy4lzgwYNykOadOfMmjUrPvjggzykAQAAAAAAAAAAAAAoPspFAI1g48aNqeZatWqV4yS5NX369Fi7dm3iXP/+/fOQJmLAgAGp5iZNmpTjJAAAAAAAAAAAAAAAxUm5CKARLFmyJNVcTU1NjpPk1tSpUxNnysvL48ADD8x9mIjYfffdo127dolzaXIDAAAAAAAAAAAAAGSRchFAI3jrrbdSzXXt2jXHSXJrypQpiTPdu3fP64amPn36JM4oFwEAAAAAAAAAAAAA/GPKRQCN4NVXX02cKSsri7333jsPaXInTYkq399jjx49EmfefPPNPCQBAAAAAAAAAAAAACg+ykUAjeD3v/994kzPnj2jpqYmD2ly57333kuc6datWx6SfCrNNqgPPvgg6urq8pAGAAAAAAAAAAAAAKC4KBcBbKcJEybEO++8kzj3hS98IQ9pcmfdunVRW1ubOLfXXnvlIc2n0pSL6uvrY8GCBXlIAwAAAAAAAAAAAABQXJSLALbTXXfdlWrurLPOynGS3EpbzunYsWOOk3zWbrvtlmpu/vz5OU4CAAAAAAAAAAAAAFB8lIsAtsMbb7wRv/3tbxPnevToEYccckgeEuXOBx98kGquQ4cOOU6ybee9//77OU4CAAAAAAAAAAAAAFB8lIsAtlFDQ0N87Wtfi4aGhsTZ66+/Pg+Jcmvp0qWp5nbdddccJ/ms9u3bR3l58t/Oli1bloc0AAAAAAAAAAAAAADFRbkIYBv97Gc/i/HjxyfOde7cOc4999w8JMqttOWiHXfcMbdB/o/y8vJo06ZN4lza/AAAAAAAAAAAAAAAWaJcBLAN5s2bl3ob0Z133hnNmzfPcaLcS7v5p3Xr1jlO8vfSlItsLgIAAAAAAAAAAAAA+HvKRQBbacOGDXH66afHmjVrEmcHDRoUJ598ch5S5d7KlSsTZ1q1ahXl5fn/W0t1dXXizIoVK/KQBAAAAAAAAAAAAACguCgXAWylK6+8MqZMmZI416ZNm3jggQfykCg/6urqEmeqqqrykOTvtWzZMnEmTX4AAAAAAAAAAAAAgKypKHQAgGLywAMPxP33359q9s4774zOnTvnNlAepSnnNGvWLA9J/l5FRfLfzrJULurfv3+qnwm59fbbbxc6AgAAAAAAAAAAAAAksrkIIKWxY8fGf/zHf6SaHTp0aAwbNizHifIrTTmnUIWWNOdu3LgxD0kAAAAAAAAAAAAAAIqLtQYAKcyePTtOPfXU2LRpU+LsXnvtFb/4xS/ykCq/0nzvykVNw8svvxy77LJLoWOQJ/vuu29E2JQEAABA8XK3BQAAoBS43wIAAMXM5iKABB9++GEMHjw4li9fnjhbVVUVv/nNb6Jt27a5D5ZnaQo8mzdvzkOSbTu3UMUnAAAAAAAAAAAAAICmTLkIYAs++eST+OIXvxh//vOfE2ebNWsWjz/+eBx44IE5z1UIlZWViTNpthvlQpqtRGnyAwAAAAAAAAAAAABkjXIRwD+xZs2aOO6442LGjBmJs2VlZfFf//VfccIJJ+QhWWE0b948caZQ5aI05yoXAQAAAAAAAAAAAAD8PeUigH9g/fr1ccIJJ8TEiRNTzf/oRz+K888/P8epCqtFixaJM+vXr89Dkm07V7kIAAAAAAAAAAAAAODvVRQ6AFBc5s+fH5MmTcrpGa1atYrjjz8+p2dsycaNG+O0006L559/PtX8d7/73bjqqqtynKrw2rRpkzizZs2aaGhoiLKysjwk+tSqVasSZ6qrq/OQBAAAAAAAAAAAAACguCgXAVvlxRdfjAsvvDCnZ+yxxx4FKxdt3rw5zjnnnHjyySdTzV999dVxww035DhV01BTU5M409DQEKtWrcp7kWflypWJM2nyAwAAAAAAAAAAAABkTXmhAwA0FfX19XHhhRfGyJEjU81ffPHFceedd+Y4VdOx8847p5pbsWJFjpN8Vn19faxevTpxLm1+AAAAAAAAAAAAAIAsUS4CiL9u3Ln00kvjkUceSTV/9tlnx89+9rMcp2pa0pZzFi1alOMkn7VkyZLYvHlz4pxyEQAAAAAAAAAAAADA31MuAoiIq666Kh544IFUs0OHDo3//u//jvLybP0K/dznPpdqrra2NsdJtu28tPkBAAAAAAAAAAAAALIkW++MB/gHrr/++vjpT3+aanbw4MHx+OOPR0VFRY5TNT2dO3dONffhhx/mNsj/8dFHH6Wa69KlS46TAAAAAAAAAAAAAAAUH+UiINOGDx8ed9xxR6rZI444In77299GZWVljlM1TVVVVbHrrrsmzs2bNy8PaT717rvvJs6UlZXFHnvskYc0AAAAAAAAAAAAAADFRbkIyKybb745br311lSzhx56aIwaNSqqqqpynKpp23PPPRNn5s6dm4ckn0pTLvrc5z4XLVq0yEMaAAAAAAAAAAAAAIDiolwEbJULLrggGhoacvrXn//855x/H7fffnvceOONqWZ79+4dzzzzTLRu3TrHqZq+/fffP3Fm9uzZeUiydeelyQ0AAAAAAAAAAAAAkEXKRUDm/OhHP4pvfOMbqWb322+/+NOf/hRt27bNcari0KtXr8SZOXPmxNq1a/OQ5q+mTJmSONO7d+88JAEAAAAAAAAAAAAAKD7KRUCmjBgxIq6++upUs927d4/nnnsudt555xynKh5pSjr19fUxbdq03IeJiIULF8aSJUsS59KUogAAAAAAAAAAAAAAski5CMiMBx54IK644opUs126dImxY8dGhw4dcpyquHz+85+PqqqqxLnx48fnIU3ESy+9lGquX79+OU4CAAAAAAAAAAAAAFCclIuATHjooYfikksuiYaGhsTZTp06xdixY6NTp055SFZcWrRoEf3790+cGzt2bB7SpDtn77339u8lAAAAAAAAAAAAAMA/oVwElLxf/vKXcdFFF6UqFnXo0CGef/756NKlSx6SFadBgwYlzowfPz5Wr16d0xz19fUxevToxLmjjz46pzkAAAAAAAAAAAAAAIqZchFQ0n7729/GeeedF/X19Ymz7dq1izFjxkS3bt3ykKx4HXvssYkz69evjyeeeCKnOcaPHx8ffvhh4lyavAAAAAAAAAAAAAAAWaVcBJSsUaNGxVlnnRWbNm1KnN1pp53iueeei3333TcPyYrbAQccED179kyce/TRR3Oa45FHHkmc2XnnnW0uAgAAAAAAAAAAAADYAuUioCSNHj06TjvttNi4cWPibJs2beLZZ5+NAw88MPfBSsTZZ5+dODN69OiYPXt2Ts5fsmRJPPbYY4lzp59+ejRv3jwnGQAAAAAAAAAAAAAASoFyEVByxo0bF0OHDo0NGzYkzu6www7x9NNPx8EHH5yHZKXjnHPOiWbNmm1xpqGhIb7//e/n5Pwf//jHsX79+sS5888/PyfnAwAAAAAAAAAAAACUCuUioKS8+uqrcfzxx8e6desSZ1u2bBmjRo2K/v375yFZadl9993j1FNPTZx75JFHYsqUKY169l/+8pe46667EucOO+yw6NevX6OeDQAAAAAAAAAAAABQapSLgJIxefLkOO6442L16tWJs5WVlfG73/0ujjrqqDwky51x48ZFWVlZ4l8XXHBBo599/fXXJ87U19fHsGHDoq6urlHObGhoiEsuuSRVeSxNPgAAAAAAAAAAAACArFMuAkrCW2+9FV/84hdjxYoVibMVFRXxq1/9KgYPHpyHZKWrd+/eccIJJyTOTZkyJa666qpGOfM///M/49lnn02c69u3bxx//PGNciYAAAAAAAAAAAAAQClTLgKK3pw5c2LQoEGxbNmyxNlmzZrFY489FieddFLug2XAXXfdFS1atEicu/fee+Pb3/72dp11zz33pHqNsrKy+OlPfxplZWXbdR4AAAAAAAAAAAAAQBYoFwFFbf78+TFo0KBYvHhx4mx5eXn84he/iNNPPz0PybJhr732iq9//eupZm+77bY466yzYtWqVVt1xoYNG+LKK6+Myy67LNX8hRdeGIcccshWnQEAAAAAAAAAAAAAkFXKRUBRe+ihh+L9999PNVtfXx/nnXdelJWVFeyvzp075/YHUgDf+c534tBDD001+/jjj0e3bt1ixIgRsXLlyi3Orlu3Lh5++OHYe++946c//Wmq1+/evXv8+Mc/TjULAAAAAAAAAAAAAEBERaEDAFDcKioq4le/+lX06tUrli5dmji/aNGiuPzyy+O6666Lww8/PPr06ROdOnWKNm3axOrVq6O2tjbeeOONGDdu3FZtOaqqqoqRI0dG69att+fbAQAAAAAAAAAAAADIFOUiALbbv/zLv8TTTz8dgwYNSl0IWrduXTz77LPx7LPPbvf5zZs3j9/85jfx+c9/frtfCwAAAAAAAAAAAAAgS8oLHQCA0nDwwQfHk08+mffNQc2bN49f/vKXcdxxx+X1XAAAAAAAAAAAAACAUqBcBECjGThwYEyYMCH23HPPvJzXvn37eP755+OUU07Jy3kAAAAAAAAAAAAAAKVGuQiARrXffvvF5MmT4+yzz87pOYMHD4433ngj+vfvn9NzAAAAAAAAAAAAAABKmXIRAI1up512ikcffTReeOGF6NOnT6O+dvfu3eM3v/lNPP3009GpU6dGfW0AAAAAAAAAAAAAgKxRLgIgZ4444oiYPHlyjBs3Lk477bRo3br1Nr1Oy5Yt40tf+lI8+eSTMXv27DjllFMaOSkAAAAAAAAAAAAAQDaVNTQ0NBQ6BADZUFdXFy+99FK88sorMXPmzJg9e3Z8/PHHsWrVqli7dm20bNky2rRpEzU1NdGjR4/o2bNn9OvXL77whS/EDjvsUOj4TdKSJUuiffv2n/mzxYsXxy677FKgROTbvvvuGxERb7/9doGTAAAAwLZxtwUAAKAUuN8CAEDxy/L7cisKHQCA7KisrIxBgwbFoEGDCh0FAAAAAAAAAAAAAICIKC90AAAAAAAAAAAAAAAAAKAwlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAAAAAAAAAAAAAIKOUiwAAAAAAAAAAAAAAACCjlIsAAAAAAAAAAAAAAAAgo5SLAAAAKAr77rtv7LvvvoWOAZAXfucBAJQm/5wHZI3fewAApck/5wFZ4nceWaFcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZpVwEAAAAAAAAAAAAAAAAGaVcBAAAAAAAAAAAAAAAABmlXAQAAAAAAAAAAAAAAAAZVVHoAADAtquvr/+7P/v4448LkIRC2bRpU0RELFmypMBJAHLP7zwgS/zOA7LE7zwgS/zOA7LG7z0gS/zOA7LE7zwgS/zOy5Z/9B7cf/Re3VJU1tDQ0FDoEADAtpk1a1b07Nmz0DEAAAAAAAAAAAAAoOTMnDkz9tlnn0LHyLnyQgcAAAAAAAAAAAAAAAAACkO5CAAAAAAAAAAAAAAAADJKuQgAAAAAAAAAAAAAAAAyqqyhoaGh0CEAgG2zadOmmDt37mf+rKamJsrL9YcBAAAAAAAAAAAAIK36+vpYtmzZZ/6sW7duUVFRUaBE+aNcBAAAAAAAAAAAAAAAABllrQEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZJRyEQAAAAAAAAAAAAAAAGSUchEAAAAAAAAAAAAAAABklHIRAAAAAAAAAAAAAAAAZFRFoQMAABSbhQsXxujRo+PNN9+MmTNnxvz582PVqlWxcuXKaGhoiDZt2kSbNm1i9913j549e8b+++8fRx99dHTr1q3Q0UtCbW1tvPDCCzFjxoyYM2dOzJ07Nz755JNYtWpVrF69OioqKv7278FOO+0UXbt2je7du0f37t2jV69e0bNnzygrKyv0twEAAFBw7re5sXbt2njrrbdi3rx58ec///lvf9XW1sbq1atjzZo1sXr16li/fn1UVlZGixYtom3bttGhQ4fo2LFj9OjRI/bdd9/o169fdO/evdDfDgAAQM5s3Lgxxo8fH6+88krMnDkzZs+eHUuWLIlVq1bFmjVroqqqKqqrq6OmpiZ69OgRPXv2jH79+sVRRx0VVVVVhY5fVJYsWRKjR4+OqVOnxsyZM2PevHmxYsWKWLVqVWzcuDHatGkT1dXV0bFjx+jZs2fsu+++cdRRR8XnP//5QkcHAADypKyhoaGh0CEAAJq65cuXx4MPPhiPPPJIvPnmm9v0Gt26dYt/+7d/i6985Sux6667NnLC0vbuu+/Gf/3Xf8WTTz4ZM2bM2K7Xqqmpif79+8fAgQNjyJAh0aNHj0ZKCQAA0PS53zauDRs2xKRJk+L111+PqVOnxpQpU2LOnDlRX1/fKK/foUOHOPbYY+OMM86IQYMGRUWFz4wDAACK38svvxwjRoyIp59+OlauXLnVX19VVRWDBg2Kr3zlK3Hsscf6YMF/Yt26dfHII4/Ez3/+83j99de36a7aqVOnOO200+KKK66ILl265CAlAADQVCgXAQBswerVq+OWW26JESNGxJo1axrlNSsrK+P888+P2267Ldq1a9cor1mqRo8eHT/4wQ/ihRdeiFz9Y+s+++wTJ598cpx77rmKRgAAQMlyv20cdXV1MWnSpBg3bly88MILMWHChFi/fn1ezu7UqVNcfvnl8ZWvfCWqq6vzciYAAEBjeumll+Kaa66JyZMnN9pr9ujRI77//e/HSSed1GivWew2btwYd911V9xxxx2xdOnSRnnN8vLyOPnkk+OOO+6Izp07N8prAgAATYtyEQDAP/HHP/4xLrvssnj//fdz8vo1NTXxwx/+MC688MKcvH4xmzZtWlx33XUxZsyYvJ152WWXxd1335238wAAAPLF/bbxfOc734nvfe97Bc3Qvn37uOWWW2LYsGE+nRsAACgKy5cvj6uuuioefvjhnJ0xZMiQuO+++6Jjx445O6MYvPLKKzFs2LCYNWtWTl5/hx12iBtvvDGuu+46d1IAACgx5YUOAADQ1NTX18fw4cPjpJNOytkbryIili1bFhdddFFcfPHFUVdXl7NzisnmzZvjlltuiYMOOiivxSIAAIBS5H7b+JrC57UtXrw4Lrnkkjj66KPjgw8+KHQcAACALZo5c2YcfPDBOS0WRUQ8+eST0adPn3j11Vdzek5Tds8998SRRx6Zs2JRRMTatWvj61//epx44omxcuXKnJ0DAADkn3IRAMD/snnz5jjzzDPj1ltvzdsbhh544IE45phjYu3atXk5r6mqra2NI444Im644YbYtGlToeMAAAAUNffb0jd27Njo06dPvPHGG4WOAgAA8A+9/PLLccghh8TcuXPzcl5tbW0ceeSR8fvf/z4v5zUlV199dVx22WWxcePGvJw3atSoOPTQQ2PJkiV5OQ8AAMg95SIAgP9ffX19XHDBBfHrX/8672e/+OKLMXTo0NiwYUPez24K3n333fjXf/3XePnllwsdBQAAoOi532bHokWL4vDDD8/0J3MDAABN0+TJk+NLX/pSrFq1Kq/n1tXVxZlnnhmjR4/O67mF9K1vfSt+9KMf5f3cmTNnxjHHHBPLly/P+9kAAEDjqyh0AACApuLb3/52PProo1v1Nd26dYvDDjss9ttvv6ipqYmysrL45JNPYtasWTFhwoSYMWNG6tf605/+FMOGDYuHH354a6MXtTfffDOOPvroWLx4caGjAAAAlAT322xZs2ZNDBkyJF599dXYe++9Cx0HAAAg3n///Rg8eHCsXLky9de0bNkyBg4cGH379o3Pfe5zUV1dHatXr46PPvoopkyZEuPGjYvVq1eneq26uro4+eSTY9KkSbHffvtt67dRFO677774z//8z636mk6dOsXAgQPjgAMOiHbt2kXz5s1j+fLlMXfu3Jg0aVJMnjw59RbkadOmxdChQ2PMmDHRrFmzbfkWAACAJkK5CAAgIp555pm4/fbbU8+feOKJ8a1vfSsOPvjgLc7NmDEj7rjjjnj00Uejvr4+8XUfeeSROPzww+Pf//3fU2cpZn/5y19i8ODBW10sateuXRxxxBExYMCA2HvvvWPPPfeMmpqaaNWqVURELF++PJYvXx6ffPJJzJ49O6ZPnx7Tp0+PqVOn+uQsAACgpLnfFl5ZWVl07949evTo8be/unXrFjU1NVFdXR3V1dXRpk2bWLt2baxcuTJWrlwZ8+fPj6lTp8a0adNizJgxW313/eSTT+KMM86I1157LVq0aJGbbwwAACCFTZs2xVlnnRUff/xxqvn27dvH8OHD47zzzou2bdv+07m1a9fGyJEj46abbooFCxYkvu7atWvjtNNOi8mTJ//tf0MsNdOmTYuvfvWrqecHDhwYN9xwQxx11FFRVlb2T+fmz58fP/nJT+Kee+6Jurq6xNcdN25c3HTTTXHLLbekzgIAADQ9ZQ1pP2YAAKBELV26NPbee+9UD7hramrikUceieOOO26rzpg4cWKcfvrpsXDhwsTZqqqqePPNN6Nr165bdUaxWb58efTv3z/efvvt1F9zwgknxMUXXxxf/OIXo6Ji63vymzZtildeeSVGjRoVTz31VMyePftv/9pll10Wd99991a/JgAAQFPhfpt7w4cPj1tvvfUzf9a8efPo27dvDBgwIAYMGBCHHXZY7LTTTtt8xoYNG+KJJ56Ie++9N1544YWt+tobb7wxbrrppm0+GwAAYHvdfPPNceONN6aaPeOMM+L++++P6urq1K+/YcOGuOaaa2LEiBGp5ocNGxb3339/6tcvFnV1dXHAAQfEnDlzEmerqqrinnvuiQsuuGCrzpgzZ06ceuqpqbYZl5eXx4svvhj9+/ffqjMAAICmQ7kIAMi8Sy+9NO67777EuU6dOsW4ceNir7322qZzFi9eHEceeWTMnDkzcXbIkCExatSobTqnWJxyyinxu9/9LtXsoYceGj/96U+jT58+jZrhjTfeiHvuuScef/zxuPDCC5WLAACAouZ+m3v/Uy7aaaed4rjjjosTTzwxBg8eHK1bt87Jeb/61a/ia1/7Wnz00Uep5lu1ahXvvvtudOjQISd5AAAAtmT+/PnRs2fPWL9+feLsN7/5zbjtttu2+ay77747rrjiisS5srKymDRpUhx00EHbfFZT9P3vfz+++c1vJs5VV1fHc889l7ix+J9Zs2ZNfOlLX4oXX3wxcfbzn/98vPHGG9GsWbNtOgsAACgs5SIAINOmTp0affv2jfr6+i3OtW3bNiZNmhQ9evTYrvNqa2vjoIMOivfffz9x9qmnntrqT5AuFg8++GAMGzYsca68vDxuvvnm+MY3vpHTh9DLly+Pd999N/r27ZuzMwAAAHLJ/TY/Xnjhhaivr4/DDz98mzbqbova2to46qijYtasWanmb7755vjOd76T41QAAAB/b+jQofGHP/whce6SSy6Je++9d7vPu/XWW2P48OGJcwcffHBMnDgxysrKtvvMpuDDDz+M7t27x5o1a7Y417x58xg7dmwMGDBgu85bvXp1DBgwIKZNm5Y4O2LEiPiP//iP7ToPAAAoDOUiACDTTjrppHjiiScS50aOHBmnnXZao5w5fvz4OPLII2Pz5s1bnOvbt2+8/vrrjXJmUzJ//vzYf//9Ex92t2jRIh599NE49dRT85QMAACgeLnflrbFixfHYYcdFu+++27i7J577hnz5s3LQyoAAIBPTZs2LXr16pU416tXr5gwYUK0aNFiu89saGiIwYMHx+jRoxNnR40aFUOGDNnuM5uCr371q/HjH/84ce4HP/hBXHfddY1y5jvvvBN9+vSJ1atXb3GuY8eOMX/+/KisrGyUcwEAgPwpL3QAAIBCmTNnTvzxj39MnDvxxBMb7Y1XEREDBgyISy65JHFu8uTJ8fzzzzfauU3Ftddem1gsKi8vVywCAABIyf229LVv3z7uv//+VLPvvfdezJ07N8eJAAAAPusHP/hB4kx5eXk8+OCDjVIsiogoKyuL+++/P6qqqhJn0+QrBp988kk8+OCDiXO9evWKa665ptHO7d69e9xwww2Jcx9++GE8+uijjXYuAACQP8pFAEBm3XXXXZG0xLGioiJ++MMfNvrZN998c1RXVyfO3XnnnY1+diG9+OKL8bvf/S5x7nvf+55iEQAAQErut9lw5JFHpi6HjR8/PsdpAAAAPrVw4cL49a9/nTh37rnnRu/evRv17N133z2uvvrqxLnx48eXxFbde++9N/GDHCP++qygvLxx3xp41VVXRZcuXRLnPAMAAIDipFwEAGTShg0b4le/+lXi3CmnnBJdu3Zt9PN33nnn+PKXv5w4N3r06Fi0aFGjn18o119/feLMgAED4utf/3oe0gAAABQ/99tsOffcc1PNzZ49O8dJAAAAPvXYY4/Fpk2btjhTVlaWs/8N8KqrroqWLVsmzj300EM5OT+f0nwP/fr1iyOOOKLRz66srIyvfe1riXMzZ86MyZMnN/r5AABAbikXAQCZ9OSTT8aKFSsS57761a/mLMOVV16Z+GlRmzdvjscffzxnGfLppZdeitdee22LM82aNYt777230T9FCwAAoFS532bL0UcfHTvssEPi3IIFC/KQBgAA4K8ee+yxxJljjjkm9tlnn5ycv8suu8TZZ5+dODdy5MjEElRT9sYbb8ScOXMS53L5DOCiiy5KtcE4zX8mAACApsW7NgGATPrlL3+ZONO1a9c45JBDcpZhjz32iAEDBiTOpclaDO68887EmfPPPz969uyZhzQAAAClwf02W1q2bBndunVLnFu1alUe0gAAAETMmDEjZsyYkTh3zjnn5DRHmtdfsmRJjBkzJqc5cinNvbpNmzZx4okn5ixDq1atYujQoYlzjz/+eDQ0NOQsBwAA0PiUiwCAzNm8eXOqh8ZnnHFGzrOceeaZiTOvv/56LF26NOdZcmnBggUxatSoxLnrrrsuD2kAAABKg/ttNnXo0CFxZvPmzXlIAgAAEPHss88mzrRs2TKnhZeIiIEDB0bHjh0T55555pmc5silND/rE044IaqqqnKaI80zgNra2pg2bVpOcwAAAI1LuQgAyJzXXnstVqxYkTg3ePDgnGdJc0Z9fX2MHTs251lyKc0nUx111FGx99575ykRAABA8XO/zaaamppGmQEAAGgMzz33XOJM//79o02bNjnNUV5eHsccc0ziXJq8TdFHH30Ub7/9duJcPp4BHHHEEdGyZcvEuWL9WQMAQFYpFwEAmZPmjUxt2rSJfv365TzLHnvsEV27dk2cK/YHr48//njizL/927/lIQkAAEDpcL/NpmXLliXO7LzzznlIAgAAZF1dXV28/PLLiXODBg3KQ5p058yaNSs++OCDPKRpXGk/rOMLX/hCjpP8dRNV//79E+c8AwAAgOKiXAQAZM6ECRMSZ/r16xcVFRV5SBMxYMCAxJlJkyblIUluzJs3L3HlfXl5eQwZMiQ/gQAAAEqE+202LVq0KHGmR48eeUgCAABk3fTp02Pt2rWJc2mKKI0hzb00ojjvpmmeAXTt2jU6dOiQhzTpftavvfZaNDQ05CENAADQGJSLAIDMmTp1auJM796985Dkr/r06ZM4M2vWrNiwYUMe0jS+MWPGJM4ceOCBseuuu+YhDQAAQOlwv82edevWxTvvvJM4l/YNdQAAANsjzb20vLw8DjzwwNyHiYjdd9892rVrlziXJndTU4zPAFauXBnvvfdeHtIAAACNQbkIAMiURYsWxUcffZQ419QevG7atCneeuutPKRpfC+88ELizKGHHpqHJAAAAKXD/Tab/vSnPyV+KnhNTU0ccMABeUoEAABk2ZQpUxJnunfvHq1atcpDmr9KczcttnJRfX19TJ8+PXGuqT0DiCi+nzUAAGSZchEAkClvvvlmqrm99947x0k+1aNHj1RzabM3NS+++GLiTL9+/fKQBAAAoHS432bTz3/+88SZYcOGRXm5//kHAADIvTQfHpHPe2lEurtpsd1L582bl/hBExH5/Vl36NAh2rZtmzhXbD9rAADIsopCBwAAyKe0a9e7du2a4ySf2mmnnaKmpiaWLVu2xbliXBm/cOHCqK2tTZzr2bNn4szSpUvjmWeeiYkTJ8aMGTNi/vz5sWLFili9enVUVlbGDjvsEDvvvHN06dIl9tprrzj44IPj0EMPje7duzfGtwIAANCkuN9mzzPPPBN//OMftzhTUVERl19+eZ4SAQAAWZfmftetW7c8JPlUmnvwBx98EHV1dVFZWZmHRNsv7T063z/rvfbaK3F7lWcAAABQPJSLAIBMmT9/fuJMhw4dolWrVnlI86muXbvGa6+9tsWZNNmbmrfffjvV3D970F1fXx9PPvlk/OQnP4lx48bF5s2b/+HcunXrYt26dbF06dJ45513IiLinnvu+dtrn3baafHlL385unTpsg3fBQAAQNPjfpst7733Xlx88cWJc9dee2106tQpD4kAAICsW7duXaoPGdxrr73ykOZTacpF9fX1sWDBgryXcbZV2nv0nnvumeMkn9W1a9fEcpFnAAAAUDzKCx0AACCf/vznPyfOdOzYMfdB/o/ddtstcaYYH7ymKRftvPPOUV1d/Xd/PmbMmNhvv/3ixBNPjLFjx/7TYlGSuXPnxm233RbdunWLM844I+bOnbtNrwMAANCUuN9mx5w5c+KII46I999/f4tz+++/f3z3u9/NUyoAACDrFixYkGou33fTNPfSiOK6m6Z5BlBTUxMtW7bMfZj/xTMAAAAoLcpFAECmfPDBB4kzHTp0yEOSrT8z6U1ETdGsWbMSZ9q3b/+Z/3/NmjVxzjnnxNFHH53q69PavHlzjBw5Mvbbb78YPnx4bNy4sdFeGwAAIN/cb0vfhg0b4pZbbokDDzwwFi5cuMXZ3XbbLX77299GZWVlntIBAABZl+ZeGpH/u2na84rpblrMzwBqa2u3+UMkAQCA/FIuAgAyZenSpYkzu+66ax6SfFaaB6/Lli3LQ5LGlfTmp4iIXXbZ5W//97x586Jfv37x2GOP5SxTXV1d3HrrrTFw4MBU+QAAAJoi99vSNX369LjuuuuiS5cuccMNN8T69eu3ON+hQ4d44YUXolu3bnlKCAAAkO5eGpH/u2n79u2jvDz5LXHFdDct5mcADQ0N8cknn+QhDQAAsL0qCh0AACCf0jx43XHHHXMfZBvOXLNmTWzYsCFatGiR+0CNpLa2NnHmf773efPmxeGHH576U86218SJE+OQQw6JMWPGxD777JOXMwEAABqL+23T9uabb8bMmTO3OFNXVxcrV66MlStXxqJFi2L69Okxffr0WL58eepzjjrqqHjooYeiU6dO25kYAABg66QtF+X7blpeXh5t2rSJFStWbHEubf6moJifAUT8NX+7du1yGwYAANhuykUAQKak+VSkNm3a5CHJtp25bNmy2G233XKcpvF89NFHiTOVlZWxaNGiOPLII/NWLPofH374YQwcODBeeuklBSMAAKCouN82bf/v//2/uP3223P2+u3atYvhw4fHlVdeGWVlZTk7BwAA4J9Ju/mndevWOU7y99KUi4ppc1GarE39GQAAAND0KRcBAJmxbt262LhxY+JcIR68VldXp5pbsWJF0bz5qqGhIdWnaDVr1izOPPPMWLhwYeJsdXV1DBgwIPbff//YY489onXr1rFp06ZYvnx5vPvuuzFp0qSYOnVqbN68OXXOjz/+OI4//viYNGlS7Lzzzqm/DgAAoFDcb7Orc+fOcfnll8ell14arVq1KnQcAAAgw1auXJk406pVqygvL89Dms9KczdNKh81JWl+1k39GQAAAND0KRcBAJlRV1eXaq6qqirHSf5ey5YtU82l/R6agvXr10d9fX3i3BNPPBHr16/f4swhhxwS119/fQwZMiSaN2++xdna2tp4+OGH44c//GEsWbIkVdZ58+bFOeecE88880yqeQAAgEJyv82ek08+Ob71rW9Fnz59Ch0FAAAgItLd6wpxL41IdzctpntpU/1ZewYAAAClJf8fDQEAUCBpH1o2a9Ysx0n+XkVFus53MT14TSoMpZnbcccd45FHHokJEybE0KFDE4tFEREdOnSI66+/PubNmxcXX3xx6rzPPvtsPPDAA6nnAQAACsX9Nnt+97vfxemnnx5XXHFFTJgwodBxAAAAUt3rCnEvjUh3Ny2me2lT/Vl7BgAAAKVFuQgAyIy0Dy3TPgRtTGnP3LhxY46TNJ4NGzZs19d36dIlJk6cGOecc842fX2bNm3ivvvuiwcffDD1w/RvfOMbsWLFim06DwAAIF/cb7Ppvffei7vvvjv+9V//NQYOHBhPPfVUoSMBAAAZluZuWoh7adpzi+le2lR/1p4BAABAaVEuAgAyY9OmTanmPHhtHNvzCVS77bZbjB07Nnr06LHdOf793/89HnzwwVSzy5YtizvuuGO7zwQAAMgl91vGjx8fQ4YMieOOOy5qa2sLHQcAAMigNHdT5aLG0VR/1p4BAABAaVEuAgAyI+3Dzc2bN+c4ybafWagH8Nsi7bagf+QXv/hFdOnSpdGyXHDBBXH++eenmh0xYkSsW7eu0c4GAABobO63/I9nnnkm9t9//3j66acLHQUAAMiYNPe6QtxL055bTPfSpvqz9gwAAABKi3IRAJAZlZWVqebSfgJ0Y0r7aU1pv4emYFuzfvnLX47/j737DI+ibN8/fm4SCKH3LoYWOhiqIB1RQBAEQUEEBBUERRQrFrCAXcGC0qQqVZQmoPQqvbdQEqQl1JDe9//Cvz6Pv0fJzGZmd5P9fo4jb+C65z53s7szs5lr7nvvvdfiNNL48eNVtmzZTOuio6M1b948y+cHAAAAAKtwfuv93n//fTmdzn/9ycjI0M2bN3X27FkdPHhQq1ev1tixY/XAAw8YOnf9b1evXlW3bt30008/2fNgAAAAAOAfGDmv88R5qWTs3DQ7nZd663PNdwAAAABAzkJzEQAA8Bm5cuUyVOeJL16Nzpmdvnh1JWu+fPn00Ucf2ZBGKly4sN5//31Dtd9//70tGQAAAADACpzfZn8Oh0MFCxZUhQoVVKdOHd1zzz0aNWqUFi9erHPnzmnVqlV68MEHDf+uU1NT1atXLy1fvtzm5AAAAADwByPnK55qLjIyb3Y6L/XW55rvAAAAAICcheYiAADgMwIDAw3VJSUl2ZzE9Tmz0xevRp/v/9anTx8VLlzY+jD/X69evVS8ePFM6zZt2qS4uDjbcgAAAABAVnB+m7P5+fnp3nvv1cKFC3X48GG1bNnS0LjU1FT17dtX58+ftzkhAAAAABg7N/XEeanRebPTeam3Ptd8BwAAAADkLAGeDgAAAHK28PBw7dixw9Y58uXLpy5dumRaFxQUpICAgEzvoBQbG2tVNMOMzlmwYEGbk1gnT548ypUrl1JTUw2PGTJkiI2J/vjifcCAAfr4449vWZeSkqKNGzfqvvvuszUPAAAAgOyD81tjcuL5rSeFhIRow4YNmjhxokaMGJHp7/zmzZt67LHH9Msvv8jhcLgpJQAAAABfVKBAgUxr4uPj5XQ63X5+YuTcNDudlxYoUECXL1++ZQ3fAQAAAADIKpqLAACArTZu3KjHHnvM1jluv/12QxdfSVKRIkV05cqVW9bExMRYEcsUo3MWLVrU5iTWKlasmCIjIw3VVqxYUfXr17c5kfTggw9m2lwkSbt376a5CAAAAMBfOL81Jqee33qSw+HQsGHDdPvtt+uBBx7ItMFozZo1mj9/vh5++GE3JQQAAADgi4yc1zmdTsXGxrq9ucTIuWl2Oi8tWrSoTp8+fcsavgMAAAAAkFV+ng4AAADgTsWKFcu05ubNm25IYn7OvHnzKk+ePG5IYx0jz/efmjRpYmOS/7jjjjuUO3fuTOv27t3rhjQAAAAA4BrOb31P586dNWHCBEO1n332mc1pAAAAAPg6o38HdPe5aUZGhuLi4jKtM/N3TE/Lzt8BSNnruQYAAAB8Gc1FAADApxj54jIqKsoNSf7OyOo+2fFLV29sLgoMDFS9evUyrcvs7l8AAAAA4Emc3/qmoUOHqn379pnW7dy5U9u2bXNDIgAAAAC+yui5nbvPTa9cuaL09PRM67LTuWl2/g7A4XCoSJEibkgDAAAAIKtoLgIAAD6lXLlymdYY+RLUakbmNJLd25jJXLduXRuT/J2R5qLz58+7IQkAAAAAuIbzW9/1wQcfGKpbtGiRzUkAAAAA+DKj53buPjc1Ol92OjfNzt8BlCpVSgEBAW5IAwAAACCraC4CAAA+JTg4ONOaixcv2h/k/7h06VKmNRUrVnRDEmtVqlTJcG3RokVtTGJ+rps3byo5OdkNaQAAAADAPM5vfVdoaKih1X83b97shjQAAAAAfJWR81LJ/eemRs5Lpex1bmrkub5+/brb/7bJdwAAAABAzkJzEQAA8ClGvryMjIxUQkKCG9L8x6lTpzKtyY5fvJppLipcuLB9QVycy92vAwAAAAAwivNb39a1a9dMa/bt26e4uDg3pAEAAADgi4KCglSqVKlM606fPu2GNP9h5LzU4XDo9ttvd0Maaxg5j3Y6nTpz5owb0vwH3wEAAAAAOQvNRQAAwKcYaXZxOp2Gvgi1SnR0tK5du5ZpnZlGHW9RuXJlw7U0FwEAAACAcZzf+rZmzZplWpOenq7w8HA3pAEAAADgq4yc3508edINSf7DyHlwuXLlFBgY6IY01jB6Hu2NzzXfAQAAAADZB81FAADAVgMGDJDT6bT1JyIiwnCeOnXqGKo7fvy4i4/YPKNzGc3uTerWrWu41uFw2JjEc3MBAAAAyBk4v7Vurux4futtqlSpYqjOSLMXAAAAALjKyPmdO89Ljc6X3c5LK1eurKCgoEzr3PlcR0ZG6ubNm5nWZbfnGgAAAPBlNBcBAACfUqZMGZUqVSrTur1797ohjfG5AgICTDXqeIsiRYoYvhtVdHS0vWH+y40bNwzV5c2b1+YkAAAAAOAazm99W9GiRQ3VXb9+3eYkAAAAAHxZaGhopjUnTpxQQkKCG9L8wci5af369d2QxDr+/v6GzqW97TsAKfs91wAAAIAvo7kIAAD4HCNfYLrzi9c9e/ZkWlO9enXlyZPHDWms16BBA0N1Rht+rGC0kSlfvnz2BgEAAACALOD81nflypXLUF1iYqLNSQAAAAD4MiPnpRkZGdq/f7/9YSSdO3dOV65cybTOSFOUt8mO3wEUKFBAlStXdkMaAAAAAFaguQgAAPicpk2bZlrz22+/KS0tzQ1ppE2bNmVa06RJEzcksUezZs0M1bnzbspG5ipWrJhy587thjQAAAAA4BrOb31XfHy8oTpumgEAAADATvXq1VNQUFCmdZs3b3ZDGmPnpVL2PDc18h3AyZMnFRUV5YY0xp7rxo0by+FwuCENAAAAACvQXAQAAHxOu3btMq2JjY3Vzp07bc/y+++/69SpU5nWtW/f3vYsdrnnnnsM1R08eNDmJP9x4MCBTGsqVKjghiQAAAAA4DrOb33X+fPnDdXlz5/f5iQAAAAAfFlgYKCaN2+ead3atWvdkMbYPNWrV1f58uXdkMZaRr4DkNzzXCcnJ2vr1q2Z1vEdAAAAAJC90FwEAAB8TuPGjVWwYMFM61auXGl7FiNzOBwOw18We6OaNWsa+oJ+x44dbkjzx5fdRpqLqlWr5oY0AAAAAOA6zm9919GjRw3VceMMAAAAAHa7++67M63ZvHmz4uLibM2RkZGh1atXZ1qXXRteypYtqxo1amRa547vADZs2KDExMRM67Lrcw0AAAD4KpqLAACAzwkICDB0MdP8+fNtzzJv3rxMaxo2bKjixYvbnsVOnTp1yrTmt99+c0MSad++fUpJScm0rlGjRm5IAwAAAACu4/zWd23cuDHTGn9/fwUHB9sfBgAAAIBP69ChQ6Y1SUlJWrJkia05Nm/erIsXL2ZaZySvtzKSfcmSJUpKSrI1h5HvAEqVKqXQ0FBbcwAAAACwFs1FAADAJ/Xu3TvTmpMnT9q6ms7vv/+uTZs2ZVpnJKu3e+SRRzKtiYiI0N69e23PsmjRIkN1TZs2tTkJAAAAAGQd57e+Jy0tTT/88EOmdTVq1FDu3LndkAgAAACAL6tbt65q1qyZad2cOXNszTF79uxMa4oVK5atV9Mxcl4dGxtrayNXfHy8fvzxx0zrHnroITkcDttyAAAAALAezUUAAMAndenSRQULFsy0bvz48bZl+Pzzz5WRkXHLGj8/Pz388MO2ZXCXFi1aqGLFipnWff3117bmSEpK0owZMzKtK168uBo3bmxrFgAAAACwAue3vmf+/PmKjIzMtK5Vq1ZuSAMAAAAAxm40uHr1ah0/ftyW+a9cuaLvvvsu07pevXopV65ctmRwh0aNGqlq1aqZ1tn5HcD06dN18+bNTOuMvCYAAAAAeBeaiwAAgE/KkyePevXqlWndokWLdOrUKcvnv3btmqZMmZJp3T333KMyZcpYPr+7ORwOPfbYY5nWzZ07Vzdu3LAtx/z583Xt2rVM67p06SJ/f3/bcgAAAACAVTi/9S1xcXF6/fXXDdXee++9NqcBAAAAgD/07ds307+tOZ1Ovf/++7bMP2HCBCUlJWVa179/f1vmdycjj+G3337Thg0bLJ87JSVFn376aaZ11atX50aOAAAAQDZEcxEAAPBZzz//fKZLsaelpemFF16wfO4333xTMTExmdaNHDnS8rk9ZdiwYcqXL98ta+Lj4217zDdu3NCrr75qqHbQoEG2ZAAAAAAAO3B+6zueeuopRUREZFpXokQJdejQwf5AAAAAACCpQoUKevDBBzOtmz17tvbu3Wvp3L///ruhhpe77rpLTZo0sXRuTxgyZIjy5s2bad3IkSMzXWXYrAkTJig8PNzQ3AAAAACyH5qLAACAz6pRo4Y6d+6cad2SJUu0cOFCy+bdsmWLJk2alGld/fr1dffdd1s2ryRFRETI4XBk+tO6dWtL55WkokWLavDgwZnWTZ8+XStXrrR8/uHDh+vSpUuZ1oWGhuquu+6yfH4AAAAAsAvnt/af3y5btkxRUVGWbMsVTqdTI0eO1Jw5cwzVDxgwQLly5bI5FQAAAAD8x0svvZRpTUZGhp544gmlpKRYMqfT6dTgwYOVmJiYaa2RfGYMGDDA0Hmp1SsIFStWzNCNEvfu3Wuo6cqokydP6u233860rkyZMnr00UctmxcAAACA+9BcBAAAfNro0aPl55f5IdETTzyhsLCwLM8XGRmpPn36KD09PdPaMWPGZHk+b/PSSy+pUKFCmdY99thjOnPmjGXzTps2zfAFWDnxeQcAAACQ83F+a68ffvhBlStX1qhRoxQZGenWuW/cuKFevXoZvigsf/78evHFF21OBQAAAAB/V79+fd1///2Z1u3du1fPPvusJXO+9957WrVqVaZ1DRs2VJcuXSyZ0xu89NJLhlYvGjVqlLZs2ZLl+eLj4/XQQw8pLi4u09pXX31VgYGBWZ4TAAAAgPvRXAQAAHxagwYNNHDgwEzrbt68qXbt2mWp4eXKlSu6++67de7cuUxrO3bsmKO+4P5TqVKl9M4772RaFxUVpXbt2unEiRNZnnPq1KmGVkySpFatWhn6owcAAAAAeBvOb+0XHx+v9957T7fffrv69eundevWKSMjw7b50tPTNX36dNWuXVuLFi0yPO7ll19WiRIlbMsFAAAAAP/m008/NdRY8s033+i1117L0lwTJ040tA2Hw6EvvvhCDocjS/N5k/Lly2vUqFGZ1qWmpqpz587avXu3y3MlJCSoS5cu2rdvX6a1derU0dChQ12eCwAAAIBn0VwEAAB83rhx41SsWLFM686fP6/GjRtr5cqVpufYsWOHGjZsqCNHjmRamydPHk2YMMH0HNnF0KFD1bBhw0zrIiIidOeddxpecej/io2N1eDBg/XEE08YupN23rx5NXnyZJfmAgAAAABvwPmte6SkpGj27Nlq166dKlSooCFDhmjJkiWKjo62ZPsnT57UuHHjVKVKFQ0cOFAXL140PLZBgwZ65ZVXLMkBAAAAAGZVrlxZL7/8sqHacePGqXfv3oqNjTU1R3JysoYPH65hw4YZqn/sscd05513mpojO3jhhRdUtWrVTOtu3rypVq1aaebMmabnOHHihO68806tX78+01qHw6Evv/xS/v7+pucBAAAA4B1oLgIAAD6vRIkSmjFjhqG7VV27dk2dOnVS9+7dDd3h6ejRo3rsscfUrFkz/f7774byTJgwwdAXwdmVv7+/5s+fr8KFC2daGx0drUcffVRNmzbV4sWLlZqamumYqKgoffDBB6pcubKpZqHx48crJCTEcD0AAAAAeBvOb93vwoULmjRpkrp166aiRYuqRo0aevTRRzV27FgtXLhQ27dv15kzZxQdHa2kpCRlZGQoLS1NCQkJunTpkg4dOqQVK1Zo/Pjx6t+/v6pUqaKQkBC99tprioiIMJWlWLFimjt3rgICAux5sAAAAABgwBtvvKGmTZsaqp03b56qVq2qr776SjExMbesTUxM1KxZs1S9enV98cUXhrYfEhKSI296IUmBgYGaN2+eoZWiEhISNGDAALVp00br16+X0+m8ZX1ERISef/551a1bV4cOHTKU55VXXlHLli0N1QIAAADwTg5nZmcLAAAAPuKll17SRx99ZGpMSEiImjdvrlq1aqlo0aJyOBy6ceOGjh8/ru3bt+vgwYOmttenTx999913psaYERERoYoVK2Za16pVK23YsMG2HJK0bNkyde3aNdMvr/9boUKF1KJFC9WtW1cVKlRQ/vz5lZ6erhs3buj06dPasWOH9uzZY2ilov82fPjwHPuHBQAAAAC+h/Pb/7Dq/HbAgAEu3eXZXYKCgrRmzRo1a9bM01EAAAAAQOfOnVNoaKiuXbtmeExQUJBatWqlBg0aqHz58ipQoIDi4uIUGRmpPXv2aMOGDaZWOQoKCtL27dtVr149Vx5CpoyeJ65fv16tW7e2JYMkTZw40fAqTn+67bbb1KpVK9WtW1fFihVTrly5FB0drVOnTmnHjh3auXOnqb/htmjRQuvXr2fVIgAAACCb4/Z1AAAA/9/777+v8+fPa+7cuYbHhIWFKSwszJL527Vrp2+//daSbWUHXbp00eTJk/Xkk08a/nL65s2bWr58uZYvX25ZjocfflifffaZZdsDAAAAAE/j/Na3FC1aVMuXLzd8Z3AAAAAAsNttt92mn3/+WXfffbfhhqDExEStWrVKq1atyvL8uXLl0qJFi2xrLPImQ4cO1dmzZ/Xhhx8aHnPu3DnNmTPHkvnr1Kmjn376icYiAAAAIAfw83QAAAAAb+Hn56dZs2ape/fubp+7efPmWrJkiaFl63OSxx9/XJMmTZKfn2cOSwcPHqzvvvvOY/MDAAAAgB04v/Ud9erV07Zt22gsAgAAAOB1GjdurOXLlyt//vxunTdXrlyaO3euOnXq5NZ5PemDDz7Q8OHD3T5v9erV9euvv6po0aJunxsAAACA9biKEgAA4L8EBARo4cKFevnll90252OPPaY1a9YoX758bpvTmzzxxBNatWqVihUr5rY5AwMD9dVXX+mbb76hsQgAAABAjsT5bc4WEBCgkSNHaseOHapWrZqn4wAAAADAP2rZsqW2b9+uSpUquWW+kiVLat26derRo4db5vMmEyZM0IQJExQQEOCW+Tp16qTffvtNpUqVcst8AAAAAOzHlZQAAAD/h5+fn95//339+OOPKlu2rG3zFClSRFOmTNG3337r83d0bt++vfbu3euWO4g1bdpUO3bs0NChQ22fCwAAAAA8ifNb67Rs2VIVK1b0dAw5HA7df//9OnTokD7++OMc+3wDAAAAyDlq166t3bt365FHHrF1no4dO2rPnj1q3ry5rfN4s+HDh2vdunW23oQiKChIY8eO1bJly1SoUCHb5gEAAADgfjQXAQAA/Itu3brp+PHjeuGFFyy963Lu3Lk1aNAgnThxQo8//rhl283uKlSooBUrVmjZsmWqU6eO5duvWbOmZs+era1bt6pevXqWbx8AAAAAvBXnt1k3cOBAnTlzRvv379eYMWN0xx13uHX+QoUKaciQITpy5IiWLFmi6tWru3V+AAAAAMiKIkWKaM6cOVq/fr0aNGhg6bZDQkK0aNEi/fzzzypfvryl286OWrRooYMHD2rcuHEqWrSoZdv18/NTjx49dOTIEY0aNUp+flx2CAAAAOQ0DqfT6fR0CAAAAG9348YNTZ48WbNnz9aRI0dc2kblypXVu3dvDR06VGXKlLE4oTERERGG7rTcqlUrbdiwwf5At7BhwwZ9/fXXWrVqlWJiYlzaRqFChdSlSxf17dtX99xzjxwOh8UpAQAAACB74fzWOpcuXdKWLVu0detWbd26Vfv371daWppl269atapatWqlrl276p577lHu3Lkt2zYAAAAAeNLGjRv11VdfaeXKlYqLizM9Pk+ePGrXrp2eeuopderUySN/AxwwYIBmzpyZad369evVunVr+wP9g4SEBM2cOVPTp0/X7t275cplgmXLllXPnj31zDPPqHLlyjakBAAAAOAtaC4CAAAw6ezZs/rll1904MABHT16VBEREYqJiVFsbKycTqcKFCigAgUK6LbbblPNmjVVp04d3X333dxV2EVpaWl/Xah19OhRnThxQpGRkYqNjVV8fLwcDofy5cunQoUKqUKFCqpYsaLq1aunpk2bqkGDBlx8BQAAAAD/gvNbayUkJOjw4cM6derUXz9nzpzRjRs3FBcXp7i4OMXGxio9PV2BgYEKDAxU/vz5VbJkSZUqVUq33XabqlWrpurVq6tBgwYqVaqUpx8SAAAAANgqJSVFmzZt+uvvgMePH9fVq1cVGxurhIQE5cmTRwUKFFDRokVVrVo11axZU02aNFG7du2UN29eT8fPVqKiorR69Wrt27dPR48e1ZkzZ3Tz5k3FxsYqLS1N+fPnV4ECBVSuXDnVqFFDtWrVUtu2bRUaGurp6AAAAADchOYiAAAAAAAAAAAAAAAAAAAAAAAAwEf5eToAAAAAAAAAAAAAAAAAAAAAAAAAAM+guQgAAAAAAAAAAAAAAAAAAAAAAADwUTQXAQAAAAAAAAAAAAAAAAAAAAAAAD6K5iIAAAAAAAAAAAAAAAAAAAAAAADAR9FcBAAAAAAAAAAAAAAAAAAAAAAAAPgomosAAAAAAAAAAAAAAAAAAAAAAAAAH0VzEQAAAAAAAAAAAAAAAAAAAAAAAOCjaC4CAAAAAAAAAAAAAAAAAAAAAAAAfBShgubKAAB7tUlEQVTNRQAAAAAAAAAAAAAAAAAAAAAAAICPorkIAAAAAAAAAAAAAAAAAAAAAAAA8FE0FwEAAAAAAAAAAAAAAAAAAAAAAAA+iuYiAAAAAAAAAAAAAAAAAAAAAAAAwEfRXAQAAAAAAAAAAAAAAAAAAAAAAAD4KJqLAAAAAAAAAAAAAAAAAAAAAAAAAB9FcxEAAAAAAAAAAAAAAAAAAAAAAADgo2guAgAAAAAAAAAAAAAAAAAAAAAAAHwUzUUAAAAAAAAAAAAAAAAAAAAAAACAj6K5CAAAAAAAAAAAAAAAAAAAAAAAAPBRNBcBAAAAAAAAAAAAAAAAAAAAAAAAPormIgAAAAAAAAAAAAAAAAAAAAAAAMBH0VwEAAAAAAAAAAAAAAAAAAAAAAAA+CiaiwAAAAAAAAAAAAAAAAAAAAAAAAAfRXMRAAAAAAAAAAAAAAAAAAAAAAAA4KNoLgIAAAAAAAAAAAAAAAAAAAAAAAB8FM1FAAAAAAAAAAAAAAAAAAAAAAAAgI+iuQgAAAAAAAAAAAAAAAAAAAAAAADwUTQXAQAAAAAAAAAAAAAAAAAAAAAAAD6K5iIAAAAAAAAAAAAAAAAAAAAAAADAR9FcBAAAAAAAAAAAAAAAAAAAAAAAAPgomosAAAAAAAAAAAAAAAAAAAAAAAAAH0VzEQAAAAAAAAAAAAAAAAAAAAAAAOCjaC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTNRQAAAAAAAAAAAAAAAAAAAAAAAICPorkIAAAAAAAAAAAAAAAAAAAAAAAA8FE0FwEAAAAAAAAAAAAAAAAAAAAAAAA+iuYiAAAAAAAAAAAAAAAAAAAAAAAAwEfRXAQAAAAAAAAAAAAAAAAAAAAAAAD4KJqLAAAAAAAAAAAAAAAAAAAAAAAAAB9FcxEAAAAAAAAAAAAAAAAAAAAAAADgo2guAgAAAAAAAAAAAAAAAAAAAAAAAHwUzUUAAAAAAAAAAAAAAAAAAAAAAACAj6K5CAAAAAAAAAAAAAAAAAAAAAAAAPBRNBcBAAAAAAAAAAAAAAAAAAAAAAAAPormIgAAAAAAAAAAAAAAAAAAAAAAAMBH0VwEAAAAAAAAAAAAAAAAAAAAAAAA+CiaiwAAAAAAAAAAAAAAAAAAAAAAAAAfRXMRAAAAAAAAAAAAAAAAAAAAAAAA4KNoLgIAAAAAAAAAAAAAAAAAAAAAAAB8FM1FAAAAAAAAAAAAAAAAAAAAAAAAgI+iuQgAAAAAAAAAAAAAAAAAAAAAAADwUTQXAQAAAAAAAAAAAAAAAAAAAAAAAD6K5iIAAAAAAAAAAAAAAAAAAAAAAADAR9FcBAAAAAAAAAAAAAAAAAAAAAAAAPgomosAAAAAAAAAAAAAAAAAAAAAAAAAH0VzEQAAAAAAAAAAAAAAAAAAAAAAAOCjaC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTNRQAAAAAAAAAAAAAAAAAAAAAAAICPorkIAAAAAAAAAAAAAAAAAAAAAAAA8FE0FwEAAAAAAAAAAAAAAAAAAAAAAAA+iuYiAAAAAAAAAAAAAAAAAAAAAAAAwEfRXAQAAAAAAAAAAAAAAAAAAAAAAAD4KJqLAAAAAAAAAAAAAAAAAAAAAAAAAB9FcxEAAAAAAAAAAAAAAAAAAAAAAADgo2guAgAAAAAAAAAAAAAAAAAAAAAAAHwUzUUAAAAAAAAAAAAAAAAAAAAAAACAj6K5CAAAAAAAAAAAAAAAAAAAAAAAAPBRNBcBAAAAAAAAAAAAAAAAAAAAAAAAPormIgAAAAAAAAAAAAAAAAAAAAAAAMBH0VwEAAAAAAAAAAAAAAAAAAAAAAAA+CiaiwAAAAAAAAAAAAAAAAAAAAAAAAAfRXMRAAAAAAAAAAAAAAAAAAAAAAAA4KNoLgIAAAAAAAAAAAAAAAAAAAAAAAB8FM1FAAAAAAAAAAAAAAAAAAAAAAAAgI+iuQgAAAAAAAAAAAAAAAAAAAAAAADwUTQXAQAAAAAAAAAAAAAAAAAAAAAAAD6K5iIAAAAAAAAAAAAAAAAAAAAAAADAR9FcBAAAAAAAAAAAAAAAAAAAAAAAAPgomosAAAAAAAAAAAAAAAAAAAAAAAAAH0VzEQAAAAAAAAAAAAAAAAAAAAAAAOCjaC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTNRQAAAAAAAAAAAAAAAAAAAAAAAICPorkIAAAAAAAAAAAAAAAAAAAAAAAA8FE0FwEAAAAAAAAAAAAAAAAAAAAAAAA+iuYiAAAAAAAAAAAAAAAAAAAAAAAAwEfRXAQAAAAAAAAAAAAAAAAAAAAAAAD4KJqLAAAAAAAAAAAAAAAAAAAAAAAAAB9FcxEAAAAAAAAAAAAAAAAAAAAAAADgo2guAgAAAAAAAAAAAAAAAAAAAAAAAHwUzUUAAAAAAAAAAAAAAAAAAAAAAACAj6K5CAAAAAAAAAAAAAAAAAAAAAAAAPBRNBcBAAAAAAAAAAAAAAAAAAAAAAAAPormIgAAAAAAAAAAAAAAAAAAAAAAAMBH0VwEAAAAAAAAAAAAAAAAAAAAAAAA+CiaiwAAAAAAAAAAAAAAAAAAAAAAAAAfRXMRAAAAAAAAAAAAAAAAAAAAAAAA4KNoLgIAAAAAAAAAAAAAAAAAAAAAAAB8FM1FAAAAAAAAAAAAAAAAAAAAAAAAgI+iuQgAAAAAAAAAAAAAAAAAAAAAAADwUTQXAQAAAAAAAAAAAAAAAAAAAAAAAD6K5iIAAAAAAAAAAAAAAAAAAAAAAADAR9FcBAAAAAAAAAAAAAAAAAAAAAAAAPgomosAAAAAAAAAAAAAAAAAAAAAAAAAH0VzEQAAAAAAAAAALgoODpbD4TD0M2PGDE/HhY8aM2aM4ddp69atPR0XAGzXunVrw5+LY8aM8XRcAAAAAAAAALAdzUUAAAAAAAAAAAAAAAAAAAAAAACAj6K5CAAAAAAAAAAAAAAAAAAAAAAAAPBRNBcBAAAAAAAAAAAAAAAAAAAAAAAAPirA0wEAAAAAAAAAq7Ru3VobN2702Py5cuVSYGCgAgMDlT9/fpUoUUIlS5ZU6dKlFRISopCQENWsWVMhISFyOBweywkA7rZhwwa1adPG9nn8/f0VGBio3Llz//V5HBgYqKCgIBUvXlwlS5b820+ZMmUUEhKiSpUqKSCAP5kAAAB4SkREhCpWrOjpGJZav369Wrdu7ekYAAAAAAAAhvCXMgAAAAAAAMAiqampSk1NVVxcnK5du6azZ8/+Y12RIkV05513qk2bNuratatCQkLcnBQAcqb09HQlJCQoISHB1LhcuXKpSpUqql69uqpVq6YGDRqoefPmKl26tE1JAQAAAAAAAAAAAO9BcxEAAAAAAADgZjdu3NDKlSu1cuVKvfTSS6pZs6YGDBiggQMHqlixYp6OBwA+JzU1VceOHdOxY8f+9u9VqlRRixYt1Lx5c91zzz0qX768hxICAAAAAAAAAAAA9vHzdAAAAAAAAADA1x09elQvvfSSypcvr8GDB+vChQuejgQAkHTq1ClNnz5dgwYNUoUKFXTXXXdpwoQJOn/+vKejIRtr3bq1HA6HoZ8xY8Z4Oi7wP4KDgw2/hmfMmOHpuAAA5FhG98cOh0MbNmzwdFwAAAAAgJejuQgAAAAAAADwEklJSZo8ebKqVq2qN954QykpKZ6OBAD4/5xOp7Zt26YRI0aoQoUKatGihebPn6/09HRPRwMAAAAAAAAAAACyhOYiAAAAAAAAwMskJibq3XffVYMGDbR//35PxwEA/B9Op1NbtmzRww8/rMqVK+uzzz5TbGysp2MBAAAAAAAAAAAALqG5CAAAAAAAAPBShw8fVrNmzbR48WJPRwEA/IuzZ8/q+eef12233aaPPvpIqampno4EAAAAAAAAAAAAmEJzEQAAAAAAAODFEhMT9eCDD+qbb77xdBQAwC3cvHlTL730kurWras1a9Z4Og4AAAAAAAAAAABgGM1FAAAAAAAAgJdzOp0aNmyY5s2b5+koAIBMHD9+XO3bt9dDDz2k6OhoT8cBAAAAAAAAAAAAMhXg6QAAAAAAAACAp9StW1ddunSxZFtpaWlKTk5WXFycrly5ogsXLujUqVOWXViekZGh/v37q3r16rrjjjss2SYAeLOnn35ahQoVcmlsenq6EhMTlZycrKSkJCUmJury5cu6dOmSIiMj3dL0s2DBAu3Zs0c//PCD6tWrZ/t8AAAAAAAAAAAAgKtoLgIAAAAAAIDPCg0N1bvvvmvrHL///rt+++03rVq1SsuWLdPVq1dd3lZKSor69OmjPXv2KCgoyMKUAOB9Ro4cqeDgYFu2nZSUpLCwMB0+fPivn61bt+r69euWznP69Gk1bdpUX3/9tfr372/pts0YM2aMxowZ47H5AcDbbNiwwdMRAFhg/fr1at26tadjAAAAAAAA5Ag0FwEAAAAAAAA2qlChgipUqKBevXopJSVFixcv1rvvvqsjR464tL1jx47ps88+06hRoyxOCgC+I0+ePKpbt67q1q37179lZGRo3759Wrt2rVauXKmNGzfK6XRmea7ExEQNGDBAFy9e1Kuvvprl7QEAAAAAAAAAAABW8/N0AAAAAAAAAMBX5M6dWw8//LAOHjyoCRMmuLz60AcffKBr165ZnA4AfJufn58aNGigl156SevXr1dERITeffddVa1a1ZLtjxo1Sh999JEl2wIAAAAAAAAAAACsRHMRAAAAAAAA4GZ+fn4aPny4Nm3apJIlS5oeHxMTo6lTp9qQDADwpwoVKui1117TiRMnNH/+fNWqVSvL23zppZf06aefWpAOAAAAAAAAAAAAsA7NRQAAAAAAAICHNGzYUKtWrVL+/PlNj/32229tSAQA+L8cDod69eqlQ4cO6fvvv1epUqWytL2RI0dq6dKlFqUDAAAAAAAAAAAAso7mIgAAAAAAAMCDQkNDNX78eNPjwsLCdOjQIesDAQD+kcPhUO/evXX06FE98sgjWdrWgAEDFBERYU0wAAAAAAAAAAAAIItoLgIAAAAAAAA8bNCgQWrcuLHpcevWrbMhDQDgVooWLao5c+Zozpw5yp07t0vbuHHjhnr16qWUlBSL0wEAAAAAAAAAAADm0VwEAAAAAAAAeIFXXnnF9JgtW7bYkAQAYMQjjzyiX3/9VUWLFnVp/K5du/TWW29ZnAoAAAAAAAAAAAAwj+YiAAAAAAAAwAvcd999KlSokKkxJ06csCkNAMCIli1batOmTSpcuLBL4z/55BOFh4dbGwoAAAAAAAAAAAAwieYiAAAAAAAAwAvkzp1bLVu2NDXm1KlTNqUBABhVq1Yt/fTTTwoMDDQ9Njk5WS+++KINqQAAAAAAAAAAAADjaC4CAAAAAAAAvETDhg1N1ScmJioxMdGmNAAAo1q1aqWpU6e6NPaHH37Qxo0bLU4EAAAAAAAAAAAAGBfg6QAAAAAAAAAA/lCpUiXTY+Li4hQUFGRDGmvFxsZq+/bt2r9/v86cOaMzZ87o3Llzio2NVXx8vOLj4+VwOJQvXz7ly5dPBQoUUIUKFVSpUiVVqlRJ9evX15133qm8efN6+qF4hevXr2vz5s06dOiQDh8+rLCwMN24cUMxMTGKjY3923NZrlw5VaxYUVWrVlXTpk3VtGlTFS5c2NMPwRYnTpzQ+vXrdfToUR07dkwRERF/PSepqakqUKDAXz/BwcGqWbOmatWqpYYNG6pWrVqejo9srm/fvlq+fLnmz59veuxbb72ldevW2ZAq+7tx44Z27dql48eP68SJE4qIiNDly5d1+fJlxcbGKjk5WcnJyXI4HMqbN+///BQvXlzBwcEKDg7W7bffruDgYFWsWFElSpTw9EODpGvXrmnr1q06fPjwX8cH58+f/+vYID4+Xv7+/n/t0woWLKjg4GBVqlRJlStXVsOGDdWwYUOXVg7LiSIjI7Vt2zadOHFCYWFhCgsL09WrVxUXF6e4uDjFx8crV65cKl68uCpUqKCQkBDdcccd6tGjh8qXL+/p+Mii48ePa/v27QoLC/vr/XT16lUlJCQoPj5eiYmJCgoK+uv9VKJEib+OtUNCQnTXXXepSpUqnn4YXsHpdGrfvn3avXu3Dh8+rMOHD+vixYuKiYlRTEyMkpKSFBQUpLx586pIkSJ/7VvuuOMO3XXXXapVq5YcDoenHwZyqNTUVB0/flxHjhz527n1lStXdPXqVcXExCglJUXJyckKCAhQUFCQ8uTJowIFCqhs2bIqX768brvtNtWuXVv169dXtWrV5O/v7+mH5RFJSUnat2+f9u7dq4iICJ09e1YRERF/fXb++eNwOBQYGKg8efKoWLFiKl68uMqVK/fX8UjdunVVp04dvq/wsPDwcG3btk3Hjx/XmTNnFB4erqioqL+OKRMTExUYGPjXfrBo0aJ/7QerVKmipk2b8vn9X44dO6Y9e/YoLCxMJ06c0OnTpxUdHf3XceWfxxWlSpVSxYoVVb16dYWGhuqRRx5Rnjx5PB0fAAAAgItoLgIAAAAAAAC8RJEiRUyPSUlJsSGJNQ4dOqS5c+dq9erVOnDggNLT0zMdk5KSohs3bkj640KG/xYQEKD69eurY8eO6t27t6pVq2ZLbm919epVzZkzR0uWLNGWLVuUlpZ2y/o/n8vz589rx44df/27w+FQ8+bN9dBDD+mhhx5S8eLF7Y5uq2PHjmnSpElaunSpwsPDb1l748aNv15fR44c0YoVK/76v+DgYHXp0kW9evVS8+bNbc2MnOurr77Sxo0bFRkZaWrc+vXrdfjwYdWuXdumZNlHWlqaNm3apJ9++klr167VsWPH5HQ6DY3986JvI8qVK6c777zzr58GDRpki2bdnGD79u2aN2+e1qxZY+j3m5aWpuTkZF2/fl3SH5/f/y1Pnjxq1KiRunTpoocffli33Xabbdm90a5du7Rw4UL98ssvOnDgQKb16enpOn/+vM6fP69t27ZJkgoVKqQBAwbYnBRWi4+P15IlS7Ro0SJt3rxZV69eNTQmPj5e0h8XYe/cufNv/1+6dGm1bNlSPXv2VOfOnX3u4uB169Zp4cKFWrp0qS5evHjL2j8vrr58+bJOnDjxt/8rUaKEevTood69e6tly5Z2RoYPOHv2rLZs2aKtW7dq+/btOnr0qOHvAVJSUpSSkqKbN28qKipKp06d+p+avHnzqlWrVurUqZPuu+8+VaxY0eqH4DWcTqd27typxYsXa/369dq/f79SU1MNjU1LS1N8fLyuXbumsLCw//l/Pz8/1a1bV61atVKbNm109913K1++fFY/BPyXlJQUrVy5UgsXLtSGDRt04cKFTMf82TB25coVRUREaO/evX/7/yJFiqhFixbq3r27HnjgARUsWNCu+F4nPT1dK1as0LJly7R69WqdO3cu0zHx8fF/NTmuXbtWktSuXTsFBwfbnBYAAACAbZwAAAAAAABADtGqVSunJMM//fv393Tkv1mzZo2p/JKcMTExno79NwkJCc4JEyY4a9WqZfqxmP0JDQ11Tp482ZmcnOzph/2X0aNHG87fqlUrQ9s8c+aM8+mnn3bmzZvX8ucwb968zueee8558eJFe58YG6xbt87Ztm1bW15bTZo0cf7www/O9PT0THPcfvvthrc7ffp0+58YL7V+/XrTv4fw8HBPx3bJrFmzXHrdDR482LZMdnw2We3s2bPOUaNGOUuWLGn7/uOffgICApxt2rRxfv31186oqKgsPRZP5Hflx53HQTdu3HC+8847zuDgYFsfk8PhcLZo0cI5f/58Q5/h7tK/f39Lfy/JycnOWbNmORs3bmzJ8/bf+6fw8HCPvzaN/owePdrl34mZ84aszGOHvXv3Ovv06WPLseF//xQoUMD52GOPOY8ePerph/w3Zh7D+vXrM91eWlqac+7cuc7Q0FBbnscGDRo4Fy9ebP8TkwO48vlj5Hec3SQlJTlXrFjhfPrpp50hISFu/2xt3bq1c8GCBc6UlBRPPxWWOXPmjPP55593litXzm3PY548eZydOnVyzpo1yxkXF+dSblfOoTz1485z3ZMnTzoHDx7sLFy4sO2/w549ezp/++03tz02I6z+DuLq1avO9957z1mhQgVLnrfseh4PAAAA4A9+AgAAAAAAAOAVkpKSTNX7+/urQIECNqUxJykpSR988IGCg4P17LPP/s+qAnbYt2+fnnzySVWuXFlffvml4TsOZxdJSUl67bXXVK1aNX355ZdKSEiwfI6EhAR99tlnql69uiZOnGh4dRBPOn36tB544AG1bdtW69ats2WOHTt2qEePHmratKlbXsvIWfr06aPq1aubHjdnzhxFR0dbH8jLRUVFaejQoapcubLGjRuny5cveyRHWlqa1q9fr6eeekply5ZV27ZtNWvWLI9kyUmio6M1atQo3X777XrjjTcUERFh63xOp1ObN2/WQw89pFq1amnOnDnZYt9mxq+//qo6deqoX79+/7PqDHK23bt3q3Pnzqpfv76+//57W44N/1tsbKymT5+u2rVrq2fPnjnymGjHjh0KDQ1V7969tW/fPlvm2LNnj7p376727dvrzJkztsyB7C85OVmLFy9Wnz59VKJECd1333368ssv/3GFHLtt2LBBvXr1UtWqVbP9fnTnzp168MEHVbVqVX366aeGVraxSlJSkn7++Wf169dPpUuX1uOPP25ohUH8u7CwMD3yyCOqXr26Jk2aZPu5U1JSkhYuXKg777xT7du3/2vFx5wiIyNDX331lapUqaJXX31Vv//+u6cjAQAAAPACNBcBAAAAAAAAXsLshRGFChWyJ4hJ69atU506dfTKK6945KLw8+fP65lnnlGDBg20Y8cOt89vh61bt6pu3boaN26cW5qmYmJiNGzYMHXo0MGrmxtmzpypevXq6aeffnLLfDt37lT9+vU1duzYbH1RHdzL399fY8aMMT0uPj5eCxcutD6QF5s+fbpCQkL09ddfKy0tzdNx/pKenq7169dr3Lhxno6SrS1cuFA1atTQe++9p5iYGLfPf/z4cT366KNq3bq1Tpw44fb5rRYdHa2HHnpI99xzj0cuNofnxMbGavjw4WrSpIlWrFjh9vkzMjK0aNEihYaG6rXXXjN9QwRvlJycrGeffVbNmjXToUOH3DLnmjVrVKdOHS1atMgt8yF7OHHihIYMGaIyZcqoR48emjt3rmJjYz0dS5J09uxZPfroo2rYsKHb3idWuXjxovr27asmTZrohx9+UHp6ukfzxMXFadq0abrjjjs4vnRBSkqK3n77bdWtW1fff/+9R36fa9asUfPmzfXkk0969XcmRh0+fFiNGjXS008/nSMeDwAAAADr0FwEAAAAAAAAeInw8HBT9WXKlLEpiTEpKSkaMmSI2rVrp1OnTnk0iyQdOnRIzZo108svv+zxi4eyYtq0aWrTpo1Onjzp9rl/+eUX3XnnnTp79qzb576VlJQU9e/fXwMGDFB8fLzb53799dfVu3dvJScnu3VuZF+9evXS7bffbnrcsmXLbEjjfRITE9WrVy8NHDjQI00nsNfNmzf1wAMPqFevXoqMjPR0HG3atEn16tXTZ5995ukoLgsLC1OTJk20YMECT0eBm23dulW1atXSF198oYyMDI9mSU1N1bhx41S3bl3t37/fo1myIioqSm3atNHnn3/u9uc0ISFBvXr10vvvv+/WeeG9Fi5cqEmTJunGjRuejvKv9u7dq8aNG+vLL7/0dBRDJkyYoJCQEH333XeejvKPPLVKZ3Z17Ngx1a9fX6NHj/b4+bjT6dSUKVNUo0YNrV271qNZsmLZsmVq1qyZ9u7d6+koAAAAALwQzUUAAAAAAACAl9i9e7ep+oYNG9qUJHORkZFq3bq1Jk2a5LEM/yQjI0MffvihOnXq5NUXaP0Tp9OpF154QY8//rhbViv6NydOnNDdd9/tFReES3+s5nLfffdp1qxZHs0xf/58dejQgUYIGOJwONS/f3/T49asWaPExEQbEnmP69evq02bNj63SpOv+LMJxl0rzBmVnJys559/Xv369ct2q65s2rRJTZo0YbUiHzR16lS1bdtW586d83SUvzl58qTuuuuubPk5fvjwYTVu3Fjbt2/3WAan06lXX31Vn3zyiccyAGYlJSXpmWee0VNPPeXxRsd/c+PGDXXt2lUjRoxw+w0pYI/ly5frzjvv1JEjRzwd5W8iIyPVoUMHff75556OYtqECRPUrVs3r1khDQAAAID3obkIAAAAAAAA8AJpaWnavHmzqTGNGze2Kc2thYWFqVGjRh69KC8zv/zyi5o0aaLz5897Oophzz//vNdcZHjq1Cl17NjR4xdgx8bG6u6779aaNWs8muNPGzZsUK9evZSWlubpKMgGBgwYIIfDYWpMYmJitr4LdmYSEhLUuXNn7dixw9NRYIPt27ercePGOnHihKej/KvZs2erTZs2unnzpqejGHLgwAF16dJF0dHRno4CN3v55Zf1xBNPKCUlxdNR/tGfK/B88MEHno5i2MmTJ9WuXTv9/vvvno4iSXrhhRc0b948T8cATPnmm2/Uu3dvr1sp+OjRowoNDdXSpUs9HQUW+eqrr9S1a1evvblHWlqann32WQ0bNkxOp9PTcQyZPn26RowY4bUNggAAAAC8A81FAAAAAAAAgBdYtWqVrl+/bmqMJ5qLzpw5o7Zt22aLpp2TJ0+qbdu2unTpkqejZOrtt9/W+PHjPR3jb/bv36+RI0d6bP60tDT17NlTv/32m8cy/JPVq1dr+PDhno6BbKBixYpq1qyZ6XErVqywIY13GDRokFc3psJ1u3btUocOHbJF085vv/2mjh07ev0d2yMiItSxY0evvagW9hk1apQ+/PBDT8cw5JVXXtHHH3/s6RiZOnfunO6++25dvnzZ01H+ZvDgwTp9+rSnYwCmLFiwQM8995ynY/xl9+7datmypc6ePevpKLDIpEmT9PTTT2eLJpiJEydmi+8Hfv75Zz355JOejgEAAAAgGwjwdAAAAAAAAAAAMn0BYaVKldSgQQOb0vyzixcvqk2bNrpw4UKWtxUQEKAqVaqoRo0aKlmypAoUKCCHw6GYmBhdvnxZx44d06lTp7K8QszJkyfVpk0bbdu2TUWLFs1ybjvMnj1bo0ePNjUmd+7cCgkJUcWKFVW2bFnly5dPuXPnVkJCgq5fv67w8HAdPHgwyxdOT5w4Ud26dVP79u2ztB1XDB06VKtXr87ydgICAlS1alVVr15dJUuWVMGCBeV0OhUTE6OoqCgdO3ZMp0+fNnX37a+//loNGjTQoEGDspwPOVv79u21detWU2Ny6qo+c+bMsWyFhpIlSyo4OFjlypVTkSJFVKhQIeXKlUsBAQFKSkpScnKyYmNjdfnyZV2+fFnh4eG6ceOGJXPjfx0+fFj33nuvJU0wgYGBqlatmqpXr65ixYqpQIECSk9PV0xMjC5duqRjx44pPDw8yxebbt++XZ06ddKaNWsUGBiY5dxWS0tL04MPPmi6QTpPnjyqWrWqKleurFKlSv11fBAXF6fY2FhFREToyJEjunr1qk3JkVVjx47Ve++9Z8m2ihcvrho1aqhy5coqWLCg8ubNq4SEBMXExOj06dM6evSorl27luV5XnzxReXNm1dDhw61ILX1EhIS1KlTJ9MrFpUuXVpVq1ZVcHCwChUqpHz58ik9PV1xcXE6d+6cwsLCdPLkySxli4mJUf/+/bVly5YsbQe+q1ixYrrttttUqlQplS5dWvny5VOePHkUGBiolJQUJScn6+rVq4qKitLp06ctW7nriy++UO3atT3erLB161bLG4ZLlCihSpUqqWLFin+99wMDA5WUlKTExERdvnxZFy9e1NmzZ7PFjUyymzlz5uipp56yZFuFChVSjRo1VLVqVRUqVEj58+dXYmLiX8dEx44ds+R3+OWXXyooKMhrG4PPnj2r3r17m/5+rXDhwgoJCVGlSpVUtGhR5c2bV35+foqJiVFMTIzCwsJ07NgxxcfH25QcAAAAgCfQXAQAAAAAAAB42Ny5c7V582ZTYwYNGiSHw2FTov+Vmpqqnj17ZulipDx58qhXr17q3r272rVrp/z589+yPjY2VmvWrNEPP/yghQsXKiUlxaV5T5w4oUceeUQrVqyQn593LeZ+/PhxwxfOBAcHq1evXurcubMaNWqkPHny3LI+PT1du3fv1vz58zVjxgyXL6x/7rnndODAAfn7+7s03hXTp0/XlClTXB6fK1cu9ejRQz179lT79u1VoECBW9ZHR0frl19+0fz587VkyRJDjUYjR45Uhw4dXM4I39C+fXuNGTPG1JjDhw8rOTnZKxseXBUfH68XXnjB5fFVqlRRt27d1KZNGzVu3FjFixc3vY1r167p+PHj2r17t3bv3q1NmzZZdoGtL7t586YeeOCBLDVvFSxYUI8++qjuv/9+tWrVKtPX/rVr17R69WrNnz9fy5cvd7nRaMuWLXrmmWc0efJkl8bbaezYsdqzZ4+h2kqVKqlPnz7q0KGDGjVqpNy5c2c6Jjw8XEuXLtX8+fNZTcyLLF++XG+88UaWtlGrVi0NGDBAHTt2VK1atTKtP3z4sH7++Wd9++23OnHihMvzPvvss6pdu7Zatmzp8jbs8swzz+jw4cOZ1uXKlUvt27dXr1691KpVKwUHB2c65sqVK1q+fLlmzJihTZs2uZRv69atmjdvnh5++GGXxsN3VKxYUU2bNlXTpk1Vr1491ahRw/QxUWxsrHbs2KENGzZo8eLFOnbsmMt5RowYobZt26pKlSoubyMrwsLCdP/992e5sahw4cJ64IEH1L59ezVv3ly33Xab4bHXrl3TwYMHtXXrVm3evFlbtmxRQkJClvL4sj179uiJJ56Q0+l0eRu33367Bg4cqE6dOqlBgwaZfm92+vRprVy5UjNmzDB87PVPPvroI91xxx3q06ePy9uwg9Pp1MCBAw3fBKBJkybq06eP2rZtq1q1amX6/DmdTu3Zs0dLlizRd999p/DwcCtiAwAAAPAkJwAAAAAAAJBDtGrVyinJ8E///v09Hdl57NgxZ5EiRUzlDggIcF68eNGtOZ955hlTGf/7JzAw0PnKK684r1696vL8UVFRzueee84ZEBDgco433njDwmfkn40ePdpwnsaNGzvr1KmTaV3Dhg2dP/74ozMjI8PlXNHR0c6XX37Z6e/v79JzN3nyZAufpVs7deqUM3/+/C7l9Pf3dw4dOtR56dIll+c/d+6cc+DAgU6Hw5HpfJ07d3befvvthvNNnz7duicqm1m/fr3p32d4eLinY2dZamqqs2DBgqYf+65duyzNYeazqVWrVpbO7XQ6nWPHjnXpPd2xY0fnxo0bLc/zpxMnTjg///xzZ4sWLZx+fn7/M3+1atVsmdfM8cro0aNtyWCFjIwM5/333+/S71aSs2DBgs4PP/zQGRsb63KG8PBwZ79+/Qx9Zv/bz7fffmvhs/LP+vfvbzhP/fr1nbly5cq0rnHjxs4VK1ZkOduGDRucv/32m6kxOWHf523vw9OnTzsLFy7s8us4NDTUuWbNGpfnz8jIcK5YscJZs2ZNlzOULl3aLecoZjI9/vjjmdYEBQU5n3/+eeeFCxeylGvjxo3OWrVqufTc3X777c7U1FSLnqHsKzw83PRzt379ek/HzpJ33nnnXx+bv7+/s3379s4JEyY4T506Zcv8u3btcj788MMunye2bt06S+eprrp69aqzSpUqLn9eSX/sbxcsWOBMTk62LFdCQoLzp59+cvbv39+ZL1++f5z32WeftWw+p9PcZ6I3v1+uXbvmDA4Odvn3WblyZeeiRYuc6enpLmfYunWrs1mzZi5nyJs3r/PQoUMWPiv/zMxxWOPGjTOtcTgczp49e2Y5e2pqqnPGjBnOK1euWPRIAQAAAHiCd92mEwAAAAAAAPAhR44cUfv27U3f7f+5555TmTJlbEr1v1avXq0vvvjCpbFNmjTRkSNH9N5776lYsWIuZyhZsqQ+/fRTHThwQHXr1nVpG++++65X3Z1/586dOnTo0L/+f6FChfTNN99o586d6tatW5ZWqipUqJDef/99bdq0SSVKlDA9/tNPP83S3YONcjqdevTRRxUXF2d6bEhIiHbv3q2vvvpKpUuXdjlD+fLlNW3aNG3btk233377LWuXL1/Oyie4pYCAANWvX9/0uL1799qQxjMyMjI0adIkU2OKFy+uJUuW6Oeff7Z1FYyQkBA988wz2rRpk86fP68PPvhAlStXtm2+nGby5MlaunSpS2Pvu+8+nTx5Ui+++GKmKxneSnBwsGbOnKnNmzerQoUKLm1j2LBhXnWX9b179yo1NfVf/79gwYKaPHmyduzYoU6dOmV5vlatWqlJkyZZ3g5c9+fxT3R0tOmxuXPn1vjx47V79261a9fO5QwOh0OdOnXSgQMH9O6777q0YmVkZKQGDhzocgY7TJ069Zb/f++99+rIkSP65JNPVLZs2SzN1bJlS+3Zs8el5+Ds2bNatGhRluZHzlGvXj199tlnunDhgn755RcNHz7ctuOThg0bau7cudq7d6+aN29uevyGDRs88tp95JFHdOrUKZfG3nbbbfrxxx+1Z88e9ezZ09CKf0YFBQWpa9eumjFjhiIjI/Xtt9+6dC7gi4YNG6aIiAjT4xwOh1599VUdOXJEPXr0yNJq1c2aNdOWLVs0ZcoUBQUFmR6fkJCg3r173/I4zt127tx5y/+vUqWKNm3apAULFqh27dpZmisgIED9+/d3aZVZAAAAAN6D5iIAAAAAAADAzZxOp7799ls1bdpU58+fNzW2cuXKeuutt2xK9r8SExM1dOhQl8YOGTJEmzdvtvRCqJo1a+q3335T7969TY91Op0aPHiw0tLSLMtjl1q1amnXrl0aPHhwlpqK/q8/L5Yx22B0/PhxrV692rIc/2b27NkuNYB17NhRu3bt0h133GFZljvvvFN79+5VmzZtblnnjqYrZG916tQxPWb//v3WB/GQ9evXm2rCK1eunLZv367777/fxlT/q0yZMnrppZd08uRJrVy5Ui1btrT08zeniYqK0iuvvOLS2HfeeUfLli1TyZIlLctz1113ad++fWrbtq3psVk51nG3kJAQ7dmzR0888YSno8BCU6ZM0bZt20yPK1WqlLZs2aJnn302SxdT/7eAgAC99tprWrNmjQoXLmx6/KpVqzR//nxLstjJz89P7777rlauXKmKFStatt3AwEBNmzZNw4cPNz12/PjxluVA9uPn56du3bpp/fr12r9/v0aMGKFSpUq5bf66detq48aNGjNmjOnjn3feecet50TffPONy+emgwYN0tGjR9WtWzdrQ/2D/Pnz67HHHtOePXu0fv163XvvvbbPmV398ssvmjdvnulx+fPn14oVKzRu3DgFBgZaksXhcOjxxx/Xb7/95lLj+uHDh/Xpp59aksVunTt31r59+1xqLAQAAACQc9FcBAAAAAAAALhJWlqafvzxRzVq1EiDBg1SbGysqfG5cuXStGnTXLqDqqvGjh2rM2fOmB734osv6uuvv1auXLkszxQUFKQ5c+Zo0KBBpsceOnTI6y/0aNy4sbZu3aqqVavasv2QkBD99NNPpu9IP2fOHFvy/Ck+Pl6vvvqq6XFdunTRTz/9pIIFC1qeqWjRolqxYoXat29v+bbhO1xpLjp79qwNSTzDzMWfAQEB+umnn1SlShUbE92aw+FQhw4dtHHjRi1evNhjObzdyJEjTa+y4nA49MUXX+j111+3pXHrz8/sjh07mh67atUqLViwwPJMVqpXr562b9/u0fcHrHflyhWXGvXKlSunTZs2qVGjRjakklq3bq1169a5tPLoiBEjFBMTY0Mqa/j7+2vWrFl67bXXbGsiHT9+vO677z5TY3bs2OHySizIvvz8/NSjRw8dPHhQP/74o1q3bu3RLKNHj9aMGTNMnSseOnRIS5YssTHZf4SHh+vFF180PS4gIEBfffWVpk6dmqUVE13VunVrrVq1Sps3b7btczu7Sk5OdqnJu2DBglq9erVLx31G/Nlw50oD6ttvv+3SKkzu1L9/fy1ZssQj7wcAAAAA3o3mIgAAAAAAAMBGFy9e1OLFizVkyBDddttt6t69u/bs2WN6OwEBAVqwYIFatWplQ8p/duXKFX322Wemxz322GP68MMPbUj0H35+fpoyZYpLK1u8//77phu73KV27dr65ZdfVKhQIVvnadasmV5++WVTY5YtW6bk5GSbEkkTJkzQxYsXTY1p2LChFixYoNy5c9uU6o9mtsWLF7vUIAJIrjUXmV3Vzptt3LjRcO3gwYPVsGFDG9OYU6NGDU9H8EqHDx/W999/b3rc6NGj9fTTT9uQ6D/y5MmjxYsXu3Th7htvvKGMjAwbUmVdcHCwVq1apaJFi3o6Ciz24Ycf6saNG6bGFChQQKtWrVJISIhNqf4QGhqqpUuXmj7OioyM1IQJE2xKlXWTJ0/WI488YuscDodD06ZNM/2eXbhwoU2J4K1GjhypRYsWqVatWp6O8pd+/fqZXklrypQp9oT5P1588UXFxcWZGuPv7685c+Z4xSqFzZs3t/3zJ7uZOnWqTp8+bWpMQECAFi9erGbNmtmU6g/BwcH65ZdfVKRIEVPjEhIS9M4779iUKus6d+6sqVOnWrbqIQAAAICcJcDTAQAAAAAAAABP2bdvn15//XVLtpWenq6UlBTFxcXpypUrunDhgk6dOqXr169neduBgYGaM2eOunXrlvWgJnz66adKSEgwNaZJkyb65ptvbEr0dw6HQ3PmzFGTJk107Ngxw+Nu3LihL7/80qVVcuxUtGhRLVmyxPbGoj+NGjVK06ZNU1RUlKH6mJgYbdiwQffee6/lWZKTk/XFF1+YGlOsWDH9+OOPypMnj+V5/q/8+fNryZIlCg0N1c2bN22fDzlLhQoVTI85d+6cDUk84+jRo4Zrn3nmGRuTwCpjx46V0+k0NeaBBx7Qm2++aVOiv8uTJ49++ukn1a9f3/A+TpLCwsI0f/589e7d28Z05uXKlUsLFy5U6dKlPR0FFrt27ZpLx82zZ89W7dq1bUj0v5o1a6aJEyfq8ccfNzVuwoQJeu6557xuRYRnn31WAwcOdMtcpUqV0quvvmpqlZWlS5d63TmKt2vTpo2nI/zNjz/+aOq8PTAw0L4wWfD0009r27Ztmjt3rqH61atXKyoqSqVKlbIt086dO/XDDz+YHjd58mQ99NBDNiRCVqWmprp0Y5qPP/5Y7dq1syHR/6pSpYrmz5+ve++919Tx7+zZszV69GiXzgXtFBwcrDlz5igggMsFAQAAAPwzzhYAAAAAAADgsw4ePKiDBw96OsYtNWrUSDNmzFDNmjXdOu/Nmzc1ceJEU2Py5MmjmTNn2rqKzP9VoEABzZgxQ82aNVN6errhcZ999plGjBihoKAgG9OZ8/nnn6tSpUpumy9fvnwaMWKEqQsYN23aZEtz0Zw5cxQZGWlqzPjx41W+fHnLs/ybihUr6qOPPtKTTz7ptjmRM5QqVUp+fn6mVkS5ceOGEhISlDdvXhuT2S8yMtLw3eWDg4NVrVo1mxMhq06dOmV6ZY2SJUtq8uTJcjgcNqX6X2XLltXEiRPVo0cPU+PGjRvndc1Fb775plet6AXrfP7556ZX4HjsscfUtWtXmxL9s0GDBmnJkiVatmyZ4THXrl3TpEmTNHLkSBuTmVOzZk3bV1f9v4YNG6Zx48YZXp1qz549OWL/j5zh888/18qVKxUdHZ1pbXp6uubPn6/hw4fblseVxrunnnrKbQ2FMG/OnDn6/fffTY1p27atra+zf9K+fXs9/fTTpm6Ikpqaqo8++sj0TVTsNmvWLLfd0AYAAABA9sQapwAAAAAAAIAXKleunD7++GNt377d7Y1FkjRv3jzFxMSYGvPmm2965MLwxo0b69lnnzU15sqVK/rxxx9tSmRe+/bt9cgjj7h93oEDBypXrlyG67ds2WJLjq+++spUfbt27dS3b19bstzKE088oebNm7t9XmRv/v7+KlGihOlx58+ftyGNe125csVwba1atWxMAqtMmzbNVDOv9EczaPHixW1K9O+6d++u7t27mxpz+PBhbdu2zaZE5gUHB5ta9QTZR0ZGhqZNm2ZqTMmSJfXZZ5/ZlOjWvvnmG9OrEE2ePNmmNK6ZPHmyW2+CIElBQUHq16+f4frU1FTt2LHDxkSAccWLFzd1nv3rr7/almX//v1at26dqTG1a9fW+PHj7QkES5jdTwQGBmrq1KlubVj/03vvvWd6FaJZs2YpMTHRpkTmPfzww2rRooWnYwAAAADwcjQXAQAAAAAAAF4iV65catu2rRYuXKiIiAiNHDlS/v7+Hskya9YsU/XlypXTiBEj7AljwOuvv67ChQubGjNz5kx7wrhg3LhxHpm3ZMmSatmypeH6PXv2yOl0WprhxIkT2rdvn6kxnnq+pD8uKgLMKlu2rOkxZhs8vZGZFTnMfobD/TIyMvTdd9+ZGtOgQQM9/PDDNiXK3Pvvv6+AgABTY7zp+OCtt95SYGCgp2PABmvXrtWFCxdMjXnttdc8ttpA2bJl9fzzz5saExYWpu3bt9uUyJz77rtPd911l0fmfvDBB03V796926YkgHlDhgyRn5+xy4o2btyotLQ0W3J88803puodDoe+/vprtzcUwriTJ0/qt99+MzVm6NChqlixok2Jbi1fvnwaM2aMqTExMTH66aefbMljlr+/v8aOHevpGAAAAACyAZqLAAAAAAAAAA/y9/dX3759tX79et28eVNr167Vgw8+aPpCWCudPn3a9F37R40apaCgIJsSZa5IkSKmL3hcu3atLl68aFMi49q3b6+GDRt6bP777rvPcG18fLzOnTtn6fxz5841Vd+hQwc1btzY0gxmNG/eXO3atfPY/MieChYsaHqMN93l2lVmLjCNjY21MQmssGHDBtP7gLffftsjd5f/U9WqVU2tGiJJCxYsUFJSkk2JjCtTpoxHG7Ngr9mzZ5uqL1eunIYMGWJTGmNGjhxpuhHU7A0L7DJq1CiPzd2sWTMVKVLEcP2xY8dsTAOYU7p0abVq1cpQbWxsrPbu3Wt5htjYWNPNzQ8//DArzno5s/vBoKAgj36WS1K/fv0UEhJiaoy37Ae7deumSpUqeToGAAAAgGyA5iIAAAAAAADAg9LT0zVnzhz16dNHw4cP16+//qr09HSPZlqyZImp+oIFC6p///42pTFuyJAhpu5MnJ6ermXLltmYyJjHH3/co/M3bdrUVP3x48ctnf+HH34wVT906FBL53fFU0895ekIyGby5Mljeow3NDdklZmm099//93GJLCC2TuvV6lSRR07drQnjAnDhw83VR8dHa2NGzfalMa4gQMHsuJCDuXKMejgwYM9/nooWLCgBgwYYGqM2fMKO9SsWVPNmjXz2Px+fn6mGuOtPtYGsqpNmzaGaw8cOGD5/MuXLze1GqbD4fB4EwoyZ/a4snfv3ipevLg9YQzy9/c3/X3E2rVrTb1+7eLpBmUAAAAA2QfNRQAAAAAAAIAXuHTpkqZOnap77rlHFStW1Hvvvafo6GiPZPn1119N1fft21f58uWzKY1xJUqU0IMPPmhqzJo1a2xKY0y+fPnUtWtXj2YIDQ2Vv7+/4frw8HDL5o6KitLhw4cN15ctW1adOnWybH5Xde3aVaVKlfJ0DGQjrjQX5YSVi4oVK2a49sCBA7pw4YKNaZBVZo8PnnzySY+uWvSnevXqmW4s8PTxgST16tXL0xFgk927d5s6zvf39/d4M/qfzDZYX7p0SUeOHLEpjTF9+vTx6PySTK1SauWxNmCFRo0aGa41c25n1PLly03Vd+rUSbVr17Y8B6wTFRWlQ4cOmRrjLc0xAwYMMHUDhdTUVI83rZcoUcJUkyAAAAAA30ZzEQAAAAAAAOBlzp07p1GjRv3VZJScnOy2uVNSUrR582ZTY7zp4teHHnrIVP26deuUkZFhU5rMtWnTRoGBgR6bX5ICAwNVoUIFw/VRUVGWzb1+/XpT9V27djXVCGWXgIAA3X///Z6OgWzEV5uLypcvLz8/Y3+Kcjqd+uqrr2xOBFdduHDB9GoaPXv2tCmNeWaPDzzdXFSxYkXVrVvXoxlgH7OvrxYtWqhMmTI2pTEnJCREoaGhpsZ4+v3UoUMHj84v/fG8GXXlyhU5nU4b0wDmVK5c2XCt1c1F6enpWrVqlakx3rCqMm7N7H4hODjYVJObnQoVKmR6v+Lp/WDnzp294nsUAAAAANkDzUUAAAAAAACAl4qOjtaoUaN0xx13aNu2bW6Zc/fu3YqPjzdcX7x4cTVv3tzGROa0b99eefPmNVx//fp103fMtZK33D22UqVKhmsvX75s2bwbNmwwVe9NDT2eXnEK2Uvu3LlNj0lJSbEhiXvlypVLVatWNVz/8ccfa+/evTYmgqvM3nE9NDRUwcHB9oRxQbdu3UzVHzhwwGMrSEpSq1atPDY37Gf2/fTAAw/YlMQ1Zt9PZo/3rFSoUCHVr1/fY/P/ycyxdnp6uq5du2ZjGsCckiVLGq49e/aspXPv2rVL169fN1xfsGBBdenSxdIMsB77QffiuBIAAACAGTQXAQAAAAAAAF7u+PHjatWqlT755BPb59q/f7+p+rZt23rVHVCDgoJMXzhx4MABm9Jkzuyd3+1i5oIxKy92NNNEEBAQoJYtW1o2d1a1atXKq1778G6urEDnympH3ujOO+80XJuamqr27dtr586dNiaCK8weH7Rv396eIC6qUKGCatSoYbje6XTq4MGDNia6NW9q3Ib1zB57etv7yeyKDZ481q5Xr54cDofH5v+TmWNtydrjbSCr8uXLZ7g2MjLS0rl37dplqv7uu+/OMcfQOVl2P640ux88evSo0tLSbEqTOY4rAQAAAJhBcxEAAAAAAAB8Vv/+/eV0Oi37ycjIUGJioqKjo3XmzBlt375d8+fP15gxY9StWzcVL17c5axpaWl64YUX9OSTTyojI8PCZ+HvzK7i06xZM5uSuM5sJk9ePFynTh2Pzf3fihUrZrg2KSnJkjmdTqeOHj1quL5evXqmVqWyW/78+b3m9wfv58r7JqdcGHnfffeZqr9+/bpatmypt99+29RKerAXxwfuVbduXY/NDXtFRUWZWgWyaNGiql69uo2JzAsNDVVQUJDh+oiICMXGxtqY6N95y7GamWNtybrjbV+wfv16S8/ps/pjdkWT7CAgIMBwbXx8vKXvd7MrWrZr186yuWGPjIwMHTlyxHC9w+FQ06ZNbUxkXsmSJVW5cmXD9SkpKTp+/LiNif5dvnz5TK2eBwAAAADGvwUAAAAAAAAAcEsOh0N58uRRnjx5VKhQIVWsWPF/VmzYtWuXFixYoOnTp7t0R+opU6YoKSlJM2fOtOUu3GYvHjazIoW7ZJeLh4OCgrLUcGYlMxeIurICyz8JDw831TjQqFEjS+a1UuPGjU3fdRm+yZWLhM28L71Zp06dVLBgQcXExBgek5ycrNGjR+uLL77QkCFDNGjQIAUHB9sXEpnKKccH06ZNM1zvyeYib2smgXXMvpcaN27sFSvv/LdcuXKpYcOG2rx5s6F6p9OpQ4cOeaTpsEKFCm6f85+Y3adbdbyNnO3SpUs6cuSITp06pZMnT+rcuXO6evWqrl69qmvXrikpKUnJyclKSUlRamqq23JduXJFBQoUsGRbe/bsMVVvdhVjuN+ZM2eUkJBguL5atWoqXLiwfYFc1KxZM50+fdpw/cGDB1W7dm0bE/2z6tWre91xBAAAAADvRnMRAAAAAAAA4EaNGjVSo0aN9Pbbb2vSpEl66623FB0dbWobs2fPVpkyZfTBBx9Ynu/UqVOm6mvWrGl5hqwym8nsY7ZK2bJlPTLvPwkMDDRca9XFjmFhYabqvfFCa2/MBO/kyvsmpzQX5cuXT4MGDdJnn31meuzVq1f17rvvauzYsWrWrJkefPBBdenSxdSdwpF1SUlJunDhguH6okWLqlSpUjYmck12OT4oWbKkZRdlw/vkhGNt6Y9cRpuLpD8etyeai7zleNvMsbZEcxH+WXh4uJYvX65NmzZpx44dOnfunKcj/aPExERLtuN0Ok2dM+bOnVvVqlWzZG7YJyftB83w1HEl500AAAAAzPLzdAAAAAAAAADAFwUFBWnEiBE6ceKE7rnnHtPjP/zwQy1evNjSTGlpabpy5Yrh+rJly3rlxa+lS5dWoUKFDNdfunTJxjT/rmDBgh6Z95/4+/sbrk1PT7dkzosXL5qqDwkJsWReK3ljJnin69evmx6TU5qLJOmVV17J0mee0+nU1q1b9dxzz6lKlSqqVq2ahg0bpkWLFikqKsrCpPgnZj+vvbXx0uwFx2Yft1W8sTEL1uH95F7ecrxt5lhbsu54G9lfZGSk3nvvPdWuXVuVKlXS8OHDtWjRIq9tLJJcW7Hzn1y+fNlUo1316tUVEMD9lb0d+0H34rgSAAAAgFk0FwEAAAAAAAAeVLJkSa1cuVJDhgwxPfbxxx+3tDEmMjJSGRkZhusrVqxo2dxWq1SpkuHapKQkly78z6qc1DjgCrOv3eDgYHuCZIE3vwfgXVz5rC5cuLD1QTykZMmSlq62FxYWpokTJ6pnz54qXbq0qlSpon79+unrr7/WgQMHuCjbYmYvhvTWz8YiRYqoSJEihuu5CBR2yCnvJ7MrIXjq/eTrx9vIvo4fP67evXvrtttu06hRo3TkyBFPRzLMquYisw1UVatWtWRe2Iv9oHtxXAkAAADALJqLAAAAAAAAAA/z8/PTxIkT1adPH1Pjbty4oZEjR1qWw+zF7yVLlrRsbquZzeaJ1Yty5crl9jm9SU54vZUoUcLTEZANpKam6tq1a6bGOBwOlStXzqZEnjFkyBA99NBDtmz79OnTmj17toYOHao77rhDhQsX1j333KN33nlHGzduVGpqqi3z+oqc8Hn9JzPZYmNjFR8fb2Oaf+aNq0LCOjnl/ZQdjrUljreR/Vy7dk2DBg1S7dq1NW/ePKWlpXk6kmlWZT5//ryp+jJlylgyL+zFftC9OK4EAAAAYBbNRQAAAAAAAIAXcDgcmjx5sqpVq2Zq3Ny5c7Vz505LMty8edNUvbde5CGZvztrdHS0PUHwr8w85/7+/ipatKh9YVxUrFgx+fv7ezoGvFxkZKScTqepMSVKlFBgYKBNiTxn5syZat++ve3zxMXF6ddff9Wbb76p1q1bq2jRourataumTZtmutELHB+4W0587+M/csr7KTu8l4DsZsmSJapVq5a+/fbbbL0Ko9nj3n9z48YNU/U0F2UPOWU/WKJECfn5Gb/kzlP7QY4rAQAAAJhFcxEAAAAAAADgJfLly6cJEyaYHjdu3DhL5k9MTDRVX6hQIUvmtYPZbElJSTYlwb8x83rLnz+/HA6HjWlc4+fnp3z58nk6BrxcRESE6THly5e3PogXCAwM1PLly9W3b1+3zhsXF6elS5fq8ccfV+nSpdWxY0ctXLhQKSkpbs2RXXF84F65c+d2+5xwn5zyfsoO7yUgOxk9erS6deumqKgoT0fxGjnl8xJ/l1N+r/7+/qa+C/DUfpDjSgAAAABm0VwEAAAAAAAAeJF7771XTZs2NTVm6dKl+v3337M8t9mLHbz5Dqhms3HBo/uZec5z0msNvufQoUOmx+TU5iLpjwvcZs+erSlTpih//vxunz8tLU2rVq1Sr169VL58eb3zzjum74zvazg+cC9vbKaFdXLK+yk7vJeA7MDpdOqxxx7T22+/7ekoXsdsE0qePHlsSgIr5ZT9oGQum6f2gxxXAgAAADCL5iIAAAAAAADAyzzzzDOm6p1Op2bOnJnleZOTk03V55SLPCQuePQEM6+3nPRag+9xpbmoYsWKNiTxLo8//rhOnDihvn37ys/PM3+uunLlit58803dfvvtGjdunOmLWH0FxweAdcy8nwICAjz2+ZgZ3kuANZ5//nnNmDHD0zG8Es1FOZOvHleyHwQAAACQXXjnt5EAAAAAAACAD+vcubNy585tasySJUtsSgN4ntPp9HSEf+XN2eAdXGkuCg0NtSGJ9ylbtqxmz56tw4cPq1+/fh67eDA2NlavvfaaatasqQ0bNngkAwAA8C1Tp07V+PHjLdlWkSJF1Lp1aw0cOFBjx47Vt99+qxUrVmjXrl06fvy4zp8/r+joaMXHxys5OVkZGRlyOp2GfzyBFVcAAAAAAHC/AE8HAAAAAAAAAPB3BQoUUNOmTbVx40bDY/bt26erV6+qePHiLs9r9k6/KSkpLs9lN7N3w+Uux+5npokgJ73W4FtSUlK0b98+0+MaNGhgQxrvVaNGDc2cOVOffPKJZs2ape+//1579uxxe46IiAi1bdtWb7zxhsaMGcNFrf8fxweAdcy8ptLS0uR0Or3ys4j3EpA1p0+f1nPPPefy+MKFC6tz585q3769WrZsqeDgYOvCeYmgoCBT9awMkz346nEl+0EAAAAA2QUrFwEAAAAAAABeqGHDhqbqMzIytHPnzizNafZiB29uquCCR+9n5jnPSa81+JZt27YpISHB1JigoCDVqFHDpkTerXjx4nr++ee1e/dunT59Wp9//rnuu+8+5c+f320ZnE6n3n77bfXr108ZGRlum9ebcXwAWCenvJ94LwFZM3z4cMXFxZkeV7duXc2dO1eRkZGaPXu2+vXrZ3tjkadWLjL7uUFzUfaQU/aDEs1FAAAAAHImmosAAAAAAAAAL1SrVi3TY/bv35+lOc1e7BATE5Ol+ex08+ZNU/Vm74qMrDPznMfFxXnsorZbycjIUHx8vKdjwIv9+uuvpsfUq1dP/v7+NqTJXipVqqRnnnlGy5cvV3R0tPbs2aPPP/9cDz74oEqXLm37/HPmzNHQoUNtnyc74PgAsE5OeT/xXgJct23bNv3888+mxuTLl09ff/219u/fr4cfftjUKrBZ5ammHbOfG2Y/l+AZOWU/mJ6ebuq7APaDAAAAALKLAE8HAAAAAAAAAPC/ypcvb3rMqVOnsjRn4cKFTdVHRUVlaT47Xb582VR9oUKFbEqCf1OkSBHDtenp6bp+/bqKFStmYyLzrl27xsomuKVffvnF9JhmzZrZkCR78/f3V/369VW/fn0988wzkqSwsDBt2bJFW7du1fbt23Xs2DHL5500aZIaN26sgQMHWr7t7ITjA8A6rryfSpYsaU+YLOC9BLjugw8+MFVfokQJrVy5Ug0aNLAp0a0lJiZ6ZF6z536XLl2yKQmslFOOK69evWrquwD2gwAAAACyC1YuAgAAAAAAALxQiRIlTI85f/58luYsU6aMqXqzFxW6k9lsZcuWtSkJ/k1OeL1duXLF0xHgxU6cOKHdu3ebHte5c2cb0uQ8ISEhGjhwoKZNm6ajR48qKipK8+fP1xNPPKHbbrvNsnmee+45RUZGWra97CgnfF7/yUy2ggULKl++fDamgS/KKe8njrUB11y+fNnUqkW5c+fWkiVLPNZYJHluRSCzN1yhuSh7YD8IAAAAAN6N5iIAAAAAAADACwUFBZkec/Xq1SzNWbp0afn5Gf/KMDw8PEvz2enMmTOGa4OCgkytogNrlC5d2lR9RESEPUGywJvfA/C8GTNmmB5TuHBhtWjRwvowPqBkyZLq1auXJk+erN9//10HDhzQ6NGjVbVq1SxtNyYmRm+++aZFKbMnsxdDeutn482bN3X9+nXD9VwECjvklPeTmWNtifcT8KcFCxYoLS3NcP2oUaPUtGlTGxNl7sKFCx6Z12yzeFZXcoZ7sB8EAAAAAO9GcxEAAAAAAADghQICAkyPSUxMzNKc/v7+KlWqlOH6CxcuKC4uLktz2iEqKkrR0dGG683eORfWMHtxTVhYmE1JXHfixAlPR4CXSk9P16xZs0yP69Chg0uf//hfdevW1ZgxYxQWFqZNmzapR48ephpo/9usWbMUFRVlccLsw+zntbd+Nh4/ftxUPReBwg7lypUzVc/7CchZ1q1bZ7i2WLFieumll2xMY0xWV0h2VYkSJZQnTx7D9cePHzfVuAXPYD8IAAAAAN6N5iIAAAAAAADAC7nSKJSamprleStXrmyq3uwFFe5w7NgxU/VVqlSxKQlupVq1aqbqvfG15o2Z4B2+++47Xbx40fS4Ll262JAGLVq00KJFi7R3716X7v6fnJysefPm2ZAsewgMDFT58uUN11+9ejXLqynageMDeAOzx9pmX7fuwvsJMM/pdGrz5s2G6wcMGODSisZWO3LkiMfmrlGjhuHa5ORkr21EwX+wHwQAAAAA70ZzEQAAAAAAAOCFYmJiTI/JmzdvluetW7euqfrffvsty3Nabfv27abqzT5mWCM4OFj58uUzXL9z504b07jGGzPB89LS0vTOO++YHle0aFE98MADNiTCn+rVq6fNmzerT58+psf++OOPNiTKPjg+AKxh9nW1Y8cOm5K4Li0tTbt37zZc73A4VKdOHRsTAdnDxYsXTTXfekvT+f79+z02d4MGDUzVb9q0yaYksEqlSpWUP39+w/XHjh1z6fsxu3FcCQAAACCnorkIAAAAAAAA8ELnz583PcZMo8a/MXvh39atW7M8p9XMZqpXr55NSXArDodDNWvWNFx/8OBBJSQk2JjInLi4OB0+fNjTMeCFZs2apVOnTpkeN2jQIK+4O31O5+/vr1mzZqlDhw6mxu3YscOSFQKzK44PAGuUKFFCpUqVMlx/9epVr1uJY//+/YqPjzdcb/ZCciCnOn36tOFaPz8/NWnSxMY0xjidTo82OdavX99U/dq1a21KAqs4HA7VqlXLcH1GRobpRh67Xb16VWFhYYbrAwMDTa/cDAAAAACeQnMRAAAAAAAA4IXOnDljekzhwoWzPO8dd9xhqn7dunXKyMjI8rxWSU5ONn23YrOPGdYxcyfqtLQ0bdy40cY05mzYsEHp6emejgEvc+XKFb3yyiumx/n5+Wno0KE2JMI/8ff318SJE5UnTx7DY5KSknTkyBFL5nc4HJZsx53M7it//fVXe4K46MKFCzp69Kjhej8/P+4wfwvZ8TXsTbL7++mXX34xVc+xNvCHiIgIw7UVKlQwdZxil7179+rKlSsem99sg9WaNWuUnJxsUxpYxdf2g7Vr11ZAQIBNaQAAAADAWjQXAQAAAAAAAF5o9+7dpsdUqlQpy/M2bNjQ1J3FL1++rG3btmV5XqusWbNGsbGxhutLlChh6q65sFbr1q1N1S9dutSeIC5YsmSJpyPACw0ZMsSlCzA7d+6s4OBg6wPhX1WsWFE9e/Y0NSY8PNySuf39/Q3XpqWlWTJnVpn9vN6zZ49LqzDa5aeffpLT6TRcHxoaqoIFC9qYKHvLjq9hb2L2/fTTTz/ZksNVP/74o6l6s48XyKlu3rxpuLZ48eI2JjFu+fLlHp0/NDTU1GpvN2/e1LJly2xM5H2y4z7Z7H7B28692Q8CAAAAyMloLgIAAAAAAAC8jNPp1NatW02Pq1KlSpbnDggIUKtWrUyNWbhwYZbntcqCBQtM1bdt25a773uQKxcVecNqQWlpaT530RoyN336dC1evNj0OD8/P40ZM8b6QMjU/fffb6r+4sWLlswbGBhouDY1NdWSObOqdOnSpptxs/Pxwd13321TkpwhO76GvYnZ19fGjRs9unLIfztz5ozpmyDwfgL+kJCQYLjWG1YtcjqdmjVrlkczOBwOderUydSYmTNn2pTGO2XHfXK7du1MfQ9z6tQp7du3z8ZExsXGxmrlypWmxrAfBAAAAJCd0FwEAAAAAAAAeJmdO3cqMjLS9Lg6depYMn/79u1N1c+aNUuJiYmWzJ0V165d4+LhbKZUqVKqXbu24fpLly5pxYoVNiYyZsmSJYqKivJ0DHiRdevWaciQIS6NfeyxxxQaGmpxIhhRr149U/VxcXGWzGvmItCYmBhL5rSC2eODyZMn25TEnCNHjmjTpk2mxnB8cGvZ9TXsLerXr6+iRYsark9LS9PUqVNtTGTc119/baq+fPnyql69uk1pgOwlJSXFcG10dLR9QQxau3atzpw54+kY6ty5s6n6FStW6OjRozal8T7ZcZ9cokQJ08fh33zzjU1pzJk1a5bi4+MN1+fOnVstW7a0MREAAAAAWIvmIgAAAAAAAMDLuHLxYK5cudSsWTNL5u/ataupu8hGR0drzpw5lsydFVOmTFFSUpLh+oCAAHXp0sXGRDCiR48epurNXtRqh4kTJ3o6ArzIwYMH1b17d1MXjP6pQIECGjt2rA2pYESpUqVM1Vt1t/fChQsbrr1+/bolc1rhgQceMFV//Phx/frrrzalMe6LL74wVV+0aFEuAs1Edn0News/Pz917drV1JhJkyYpLS3NpkTGxMfHa/r06abGdOvWzZ4wQDZkZjUib7iRwbvvvuvpCJKkTp06mWrIdDqdPnV8nV33yWaPK7/77jvduHHDpjTGZGRkmP4u4J577lHevHltSgQAAAAA1qO5CAAAAAAAAPAily5d0nfffWd6XOPGjS27YCE4OFgtWrQwNWbs2LEuXVhvlZiYGH388cemxtx7772mLyyH9R5++GFT9atWrdLOnTttSpO5zZs3a926dR6bH95lw4YNatWqlW7evOnS+DfffJPPIQ8yc5GvJOXPn9+SeUuWLGm49vz585bMaYUWLVooODjY1JjRo0fbE8ag8PBwffvtt6bG9O7dW7lz57YpUc6QXV/D3uTRRx81VX/27FlNmzbNpjTGjB8/XteuXTM1pn///jalAbIfM8cR165ds2zFRFesXbtWGzdu9Nj8/y1PnjymP0vmzp2rbdu22ZTIu2TXfXLfvn1N3dQmPj5eH374oY2JMjd37lzTq2KxHwQAAACQ3dBcBAAAAAAAAHiRl19+WYmJiabHPfjgg5bm6Nevn6n6s2fP6quvvrI0gxnvv/++6YsdzT5G2KN69eoKDQ01NWbUqFE2pfHuueFdZs+erXvvvVfR0dEujW/fvr2ef/55a0PBlMuXL5uqL1SokCXzmmkoCwsLs2ROKzgcDvXt29fUmO3bt+vHH3+0KVHmXnvtNdMrTnF8kLns+hr2Jq1bt1aFChVMjXn77bc91mxw+fJlffTRR6bG1KxZUw0bNrQpEZD9lC1b1nBtRkaGx1b/S05O1tChQz0y97958sknTdU7nU499dRTlq066c2y6z65UqVKuuuuu0yN+fzzzz3WIJWUlKQ333zT1JgiRYqwWjYAAACAbIfmIgAAAAAAAMBLLFy4ULNnzzY9LiAgQH369LE0S69evVSkSBFTY9544w2Fh4dbmsOI/fv3m77YsXTp0uratatNiWDWsGHDTNWvXbtWc+bMsSnNv5syZYq2bNni9nnhXa5du6ZHHnlE/fr1c3nFtrJly+q7776Tnx9/pvGkvXv3mqqvXLmyJfOa2c7Vq1f1+++/WzKvFQYNGqSAgABTY55++mmXm/CyYvny5Zo7d66pMaGhoWrcuLFNiXIOM6/hw4cPe3R1S2/lcDj0xBNPmBpz8eJFvfzyyzYlurVhw4aZXqVv8ODBNqUBsqeKFSuaql++fLlNSW7t9ddf96omFOmPG1Lcf//9psYcPHjQJxr5zeyT9+zZY2MS88zuJxISEjy2b3n99dd15swZU2MGDBigwMBAmxIBAAAAgD34qxUAAAAAAADgBbZu3aqBAwe6NLZHjx4qWbKkpXkKFCigZ555xtSY+Ph4DRgwQGlpaZZmuZWEhAT169fP9JwvvPACF3l4kb59+5q647IkjRgxQhcuXLAp0f+KiIjQiy++6Lb54H0yMjL0/fffq1atWvr+++9d3o6/v7/mzZunEiVKWJgOrvjhhx9M1deoUcOSeatVq2aqfu3atZbMa4Xg4GDTDc0XL150+woIUVFRLl18+tprr9mQJucx8xpOSkrS1q1bbUyTfT399NMqWLCgqTFff/21Vq9ebVOifzZ79mwtWrTI1JiSJUuabp4Ccrpq1aopd+7chuvnzZunixcv2pjof/3444/6+OOP3TqnUWPHjjXdmP/ll19q5syZNiXyDmb2yeHh4R65Icy/6d27typVqmRqzM8//6zJkyfblOifbdiwQZ999pmpMYGBgXrhhRdsSgQAAAAA9qG5CAAAAAAAAPCwpUuXqmPHjoqLizM91s/PT6NHj7YhlfTss88qf/78psZs2rRJzz77rC15/i+n06n+/fvr0KFDpsYVK1ZMQ4YMsSkVXBEYGGi6me3atWvq3r27kpOTbUr1H/Hx8eratavpO/YjZ3A6nVqwYIHq1q2rRx55RFFRUS5vy8/PT99++61atGhhYULvNXjwYM2cOdOtTadGhYeHa968eYbrq1evbllDWOXKlZUvXz7D9TNmzLBkXqu8+uqrpi/unTt3rulVBl2VkpKi7t27m74gu0aNGurevbtNqXKWevXqmar3ttewtyhcuLDp1RudTqcefvhht60qsmvXLj355JOmxz333HMKCgqyIRGQfQUGBio0NNRwfUJCglubXrds2aK+ffu6bT6zateu7dKKzYMGDTLdIJmdZOd9sr+/v0sr8j3zzDNua1yOiIhQz549lZGRYWrcgAEDVLZsWZtSAQAAAIB9aC4CAAAAAAAAPCQ6OlpPP/20unXrptjYWJe20b9/f8tWUvi/ihYt6tJKLRMnTtRbb71lQ6L/cDqdGjZsmEsXCb3++uumLuqGe4wYMUJlypQxNWbnzp166KGHlJKSYlMqKTExUd27d9fBgwdtmwPe6ffff9fYsWNVrVo1PfTQQzpy5EiWtudwODRt2jT169fPooTe78SJExowYICqVaumSZMmKSEhwdORJEmpqal67LHHTH12dOzY0bL5AwIC1KRJE8P1mzZt0vLlyy2bP6uqV6+u/v37mx73yiuvaPr06TYk+o+UlBT17NlT27ZtMz123LhxcjgcNqTKeUqXLm1qpYHvv/9e+/fvty9QNvbCCy+oePHipsZER0erQ4cOioiIsCfU/3fw4EF17txZSUlJpsaVL19eTz/9tE2pgOytbdu2pupnzZrllsaYLVu26L777vOaY7V/88EHH6hIkSKmxqSnp6tPnz6aMmWKTamM27p1q7777jtLt1m/fn1TzZwTJkzQ+fPnLc2QFX+eK5iRkpKirl27au/evTal+sO5c+d0zz336OrVq6bG5c+fX6+//rpNqQAAAADAXjQXAQAAAAAAAG4WGRmpMWPGqEqVKvrqq6/kdDpd2k7ZsmX1ySefWJzu715++WWFhISYHjdmzBg9//zzSk9PtzxTcnKyBgwYoK+//tr02NDQUNMr5MA98uXLp3Hjxpket2TJEj3wwAMuN+jdyo0bN9S5c2f98ssvlm8b3icjI0N79+7Vhx9+qDZt2ig4OFivv/66Tp48meVtOxwOTZkyRQMGDMh60GzozJkzGjJkiMqVK6cXXnhBp0+f9liW1NRUPfroo9q4caOpcVbfyb9Nmzam51+5cqWlGbLiww8/VLFixUyNycjI0KBBg/Tpp5/akik6Olr333+/li5danrs/fffr27dulkfKgcz8xpOS0tT586dtWvXLhsTZU9FixbVhx9+aHpceHi4WrZsaVvz85YtW9S2bVtdvnzZ9NjPP//c9OqngK/o2bOnqfqMjAz17dtX69atsynRHyvZtGvXTjExMbbNYZWyZctqwoQJpselpqbqySef1JAhQxQfH29DslvbvHmzOnXqpObNm1u+L8ydO7eaNWtmuP7mzZvq0KGDJec4VsidO7dL3+1cu3ZNbdu21fr1621IJR07dkytWrVy6Xl6++23Vb58eRtSAQAAAID9aC4CAAAAAAAAbJacnKxdu3bpk08+Ubt27VS+fHm99dZbunbtmsvb9PPz07Rp00zftdeswMBATZw40aWxn332mdq1a6dz585ZlicsLEzNmjXTrFmzTI/18/PTpEmT5O/vb1keWKt///6mVvP4088//6xGjRrpwIEDlmXZsWOH6tevn+mFfKxykT0lJyfr8OHDmjdvnl5//XV17dpVJUuWVIMGDfTyyy9rw4YNLjd+/l+FCxfW0qVLNWjQIEu2l51FR0frk08+UdWqVdWiRQtNmTJF0dHRbps/LCxMrVq10vz5802Na9asmerXr29plh49epiqv3nzpjp16qSOHTtq0aJFunnzpqV5zCpevLhLDRFOp1MjR45Uz549df36dcvy7Ny5Uw0aNNDq1atNj82XL5+++OILy7L4CrOv4QsXLujOO+/UQw89pJ9//tnrV8dwpwEDBqhly5amx507d0533nmnpkyZYtk+Kz09XR999JHatGnj0rlK586d9cADD1iSBciJQkNDVbduXVNjkpOT1blzZ3311VeWZrl8+bJ69uyZ6WqOAQEBls6bVY8++qjLDcGTJk1SrVq1tGzZMmtD/YOEhATNnj1bjRs3VsuWLW1tEje7Tz5y5Ijq1KmjJ554Qhs2bLB1JWAj2rRpo0cffdT0uJs3b6p9+/Z69913lZaWZlmemTNnqlGjRgoPDzc99o477tDw4cMtywIAAAAA7uZd3wIAAAAAAAAAbrRv3z69/vrrlm3P6XQqJSVFSUlJun79ui5fvqyIiAiFh4dbvoLPJ598og4dOli6zX/Trl07jRw50qVVkjZu3Kjq1avrxRdf1IgRI1S4cGGXMly9elUffPCBPv/8c5cvfHnrrbfUqFEjl8bCPRwOh2bPnq3Q0FDTd5Q+ceKEGjRooKeeekqvvfaaSpcu7VKG8+fPa8yYMZo+fboyMjJuWXvffffp8OHDOnv2rEtz4dY++eQTFSpUyKWx6enpSk5OVlJSkpKTk5WYmKjLly/r0qVLioyMtLSp4VbuuOMO/fDDD6pUqZJb5ssunE6ntmzZoi1btmjYsGFq1aqVunTpovvuu0+VK1e2fL4zZ87o3Xff1ezZs1268HDs2LGWZ6pRo4ZCQ0O1b98+U+NWrVqlVatWyeFwqGrVqqpSpYpKly6twoULKzAwUH5+xu8rWL9+fXXv3t1s9L8MHDhQK1eu1KJFi0yPXbRokdatW6c333xTTz75pIKCglzK8Pvvv+utt97S9OnTXW6u+Oabb1ShQgWXxvqyu+++WyVLljS1sk1GRoYWLFigBQsWKCAgQNWqVVPlypVVsmRJFSpUSLlz5zb1Gm7btq3atm3rSnyv4nA4NGvWLDVo0MB0Q09iYqKefPJJTZs2TR9++KFLTUp/Wr16tV588UUdOnTIpfHlypXT1KlTXZ4f8BXPP/+86dUsExMT9fTTT+vnn3/We++9Z7pB6b9du3ZN48eP14QJEwyt/jp69Gi98cYbLs9nhxkzZqhZs2Y6evSo6bFnz57V/fffr4YNG+rll19W165dlStXLktyJScna+3atVq8eLEWLlzottWgHnzwQY0YMcLUdyXJycmaOnWqpk6dqsDAQNWoUUMVK1ZUyZIlVaBAAeXOndvUjTR69Oih0NBQV+JL+mPVu23btple4TQ9PV1vvPGGvv/+e33wwQfq3LmzyzcA+e233/TSSy9p8+bNLo3Pnz+/vv/+e25oAwAAACBbo7kIAAAAAAAAPuvgwYM6ePCgp2OY9sILL2jEiBFunfP999/X7t27tXHjRtNjExIS9NZbb+mjjz5Snz599MADD6h169bKmzfvLcfFx8dr3bp1WrRokebPn6/k5GRX46tLly567bXXXB4P96latarGjx+vJ554wvTY9PR0ffnll5o8ebJ69uypnj17ql27dsqfP/8tx928eVNr1qzRvHnz9NNPPxlqPihUqJAmTZqku+66y3ROGPPll196OoLLHA6HBg8erE8//dTlpglfkZqaqjVr1mjNmjV69tlnVbZsWTVv3lzNmjVTnTp1VKtWLZUqVcrUNhMSEnT06FGtWrVKy5cv186dO11uPOnZs6dat27t0tjMjBw5Un379nVprNPpVFhYmMLCwlyev3///llqLpKkb7/9VocPH9bx48dNj71+/bpGjBiht956S/3799f999+vu+66S7lz577luBs3buiXX37R/PnztXTp0iw1cA8bNszl34Gvy5Url4YPH+5yo35aWpqOHDmiI0eOuJwhICAgRzQXSdLtt9+u7777Tp06dcq0ufmf7NixQ61atdIdd9yhAQMGqGPHjgoJCcl03LFjx/Tzzz9r2rRpOnbsmCvRJf3xeli4cKHpz2vAF/Xp00cffPCBS++5n3/+WT///LPatGmjQYMGqWXLlrrtttsyHRcZGakNGzZo0aJFWrZsmeEmlKZNm+rVV1/1uuaiQoUKadmyZWrSpImuXr3q0jZ2796tnj17qmjRourevbvuueceNWvWTOXKlTO8jejoaB06dEjbtm3Tpk2btGnTJsXFxbmUJyv+X3v3HqR1WfcP/LMLe4A9wCrsqshBBHbXY6YIKJqKgWioLTIaMhZ4GvNs0BTYmKE1eYSghFKsECuDMDPIiBWnWhHRwAO7oi4uCAiIEIddXTKeP37j/p6ep55iT/ey39drhhn+YK/Pe4d79/7e9329v1f37t3jiiuuaHTB86OPPopVq1bFqlWrGp2hX79+TSoXde3aNX71q1/F4MGDo66u7oC/vrKyMi688MLo169fTJgwIc4///w44YQT/m3R6J133onFixfHj3/841ixYkVj40dExKOPPhqlpaVNWgMAACDVlIsAAAAA4CBy9913x+TJk1t9bseOHeMXv/hFnHbaaVFdXd2oNWpraxvujJuZmRn9+/ePkpKSKCwsjNzc3EhLS4vdu3fH1q1bo6qqKtauXRv79u1rcvbjjjsufvrTnzb67rW0vquuuiqef/75mDNnTqO+vr6+PubNmxfz5s2LjIyMGDBgQMNjLS8vL/bv3x+7d++O9957L6qqquLNN9884M3pDzzwwAFtPCM5Bg4cGN///vedlNZImzZtajjZ5BMFBQVx5JFHRo8ePeKwww6LnJycyM7OjszMzKirq4u9e/fGnj17Yvv27fHGG2/E+vXrG10m+u969+4ds2bNavI6/8pll10W3/nOd5pUrki1vLy8WLhwYQwdOvSAT1z5xI4dO2LatGkxbdq06NSpUxQXF0dxcXEceuihkZeXFx9//HHs3r07Nm/eHFVVVfHWW281qnzxP5199tnx4IMPNnmdJLvhhhtixowZsWXLllRHaRdGjBgR3/3ud2PSpEmNXmPVqlVxyy23xC233BKFhYVRWloaffv2jfz8/OjUqVPU1dXFrl27orq6OtasWRPbtm1rluw/+MEPYsiQIc2yFrR3GRkZMWPGjDj33HMbvcazzz4bzz77bERE9OzZM44//vg45JBDoqCgIHJycqKuri52794dNTU18eabb8b69esPeEZ+fn7MnTu3zZ7C0rdv33j66adjxIgR8de//rXR63zwwQcN71NERBQVFUXfvn2jT58+0bVr1+jcuXNkZmY2nIa6bdu22LRpU7zzzjuxadOm5vp2mmzy5Mkxb968RhVz2ooTTjghHn300Rg7dmyjr/XeeuutmDx5ckyePDkKCgqitLQ0+vXrF126dImcnJz46KOPYteuXVFTUxOVlZWxcePGZsl+++23xyWXXNIsawEAAKSSchEAAAAAHATy8vJi1qxZMXbs2JRlKCoqivLy8jjzzDMbtTnpv6uvr2/y3er/EyUlJbF06dLo2rVri86h+c2aNSvWr18ff/jDH5q0zr59+5r9sXbdddfFhAkTmm092oeioqKYOnVqXHnllZGenp7qOO3Kjh07YseOHfHqq6+22sy8vLxYsGBBHHLIIS02o0OHDvGjH/0ohg4d2ixlmVQpKSmJJUuWxDnnnBM7d+5s0lp1dXVNvnP+f+KMM86I3/zmN5GRkdGic9q7Ll26xPTp0+Oyyy5LdZR2Y+LEibFnz5648847m7zW1q1bY+vWrY06efRATJ8+Pa666qoWnQHtzbBhw+KGG25olpM6N2zYEBs2bGiGVP9fVlZWPPnkk3H00Uc367rNbdCgQbF06dIYPnx4fPDBB82y5pYtW2LLli3x/PPPN8t6reWoo46KO+64I772ta+lOkqTXHrppbF379646qqrmnyzgB07dkRFRUVUVFQ0U7p/7tZbb42pU6e26AwAAIDW4tMtAAAAAGjjBg0aFH/5y19SWiz6RO/evaO8vDx69eqV6ij/VklJSZSXl0dhYWGqo9AIGRkZsWDBgjZ3+st5550XM2bMSHUM2pCSkpL44Q9/GDU1NXH11VcrFrUDOTk5sWjRojj55JNbfNaQIUPaxek5J510UjzzzDNRUFCQ6ij/1tChQ+O3v/1t5OTkpDpKu3DppZfGrbfemuoY7co3v/nNmDJlSqpj/FtpaWlx//33x0033ZTqKHBQuv/++2Pw4MGpjvG/pKenx9y5c+Pss89OdZT/yMknnxzLli2Lnj17pjpKyk2aNClGjx6d6hhNNmHChHjooYcOitdVN998czzwwAOpjgEAANBs2v4rMQAAAABIqMMPPzweeeSRqKioaFN3DD766KPjxRdfjKFDh6Y6yr80cuTIWL58eRx++OGpjkIT5Ofnx9KlS9vMxrazzz47nnjiiejQoUOqo5BiHTp0iM9+9rPx1FNPxZo1a+Lqq6+OrKysVMeiGfTo0SOWLVvWqs9xN910U9xzzz0HxQbK/8upp54aK1asiGOOOSbVUf6l8ePHx9KlSyMvLy/VUdoVBZPmd9ddd8WcOXPa7HNLbm5uLFiwIG677bZUR4GDVmZmZixatCiOP/74VEdpkJWVFT/5yU9izJgxqY5yQI4//vh4+eWXY/jw4amOklLp6enx2GOPxSWXXJLqKE127bXXxtNPPx1dunRJdZR/qmPHjjFz5syYNm1aqqMAAAA0q4P7UwoAAAAAaId69+4d9913X6xduzYmTJjQJjcbFxYWRnl5eVx//fWRlpaW6jgNOnToEF//+tfb9CYUDkxeXl4sXrw4Lr/88pTmuOyyy+J3v/udDekJ1qFDhzjnnHNi1qxZsXnz5vj9738fo0aNalO/A2mac889N1auXBmnnHJKq8+eNGlSLFq0KPr06dPqs5tTv379Yvny5W1uU2t2dnZMnz495syZE5mZmamO0+6kpaXF9OnTY+7cudG9e/dUx2k3xo8fH8uWLYvevXunOso/KC4ujoqKivj85z+f6ihw0CsoKIilS5fGkCFDUh0lunfvHkuXLo1x48alOkqjdOvWLRYvXhx33XVXmy1mtobs7Ox44okn4v7774/c3NxUx2mSkSNHxgsvvNCmCngREUcccUQsWbIkrr/++lRHAQAAaHZtb1cCAAAAACRQp06doqysLObPnx9vv/12fOUrX2nzG0EyMjJi5syZUV5eHv379091nDjxxBNj+fLl8e1vf7tNFrJovKysrHjsscfi4Ycfjs6dO7fq7MzMzLjrrrvi8ccftyE9YdLS0qK0tDSuueaamDt3bmzevDmWLl0a1157rc3z/6HS0tKD4qSvgoKCmD17dixZsiQOO+ywlOUYMWJErFmzJu69997o2bNnynI0VV5eXvzyl7+M+fPnt4kTBM8666x45ZVXnKzTCsaNGxdvvPFG3H777dGtW7dUx2kXBg8eHK+99lrcfPPNKb++zcjIiNtvvz1Wr17d5jZ6w8Gse/fuUV5eHl/60pdSluHcc8+NF198MU4//fSUZWgO6enpMWXKlHjttdfivPPOS3Wc/yUzMzOKi4tbfE5aWlrcdtttUVVVFTfddFObf2/p/1JcXBwvvfRSTJ06NeWlsbS0tLj22mujsrIyzjrrrJRmAQAAaCk+YQcAAACAFEhPT48TTzwxbrjhhpg/f35s27YtFixYEKNHjz4oNmL/d59s2r3nnnuiqKio1ef36tUrZs6cmbLTJmg9V155ZaxatSpGjRrVKvNOPfXUePnll2PKlClOp2nnMjMz45hjjomysrKYMmVKLFy4MLZu3Rpr1qyJ2bNnx7hx4xSKGuGhhx6K9957L+bMmRMXX3xxmzv5Kzc3NyZPnhzV1dVxzTXXpDpORPy/svHEiROjuro6Fi9eHNdcc0306tUr1bEaZfTo0VFZWRmTJ09OyWmCpaWlMW/evDZTgk6KgoKCmDp1amzYsCEWLFgQl19+eUquD9uT3NzcmDZtWqxYsSIuuOCCVp+fnp4eY8aMiVWrVrWJzd3QHmVnZ8ejjz4aTz75ZPTo0aPV5h522GExb968WLJkSZs7Ja0p+vXrF4sXL45FixbFmWeemeo4ceSRR8Y3vvGNqKmpieuuu67V5vbo0SOmT58eGzdujLlz50ZZWVkUFBS02vzm8km59dVXX43LL788Je+ZDR8+PCoqKmLWrFmRn5/f6vMBAABaS8dUBwAAAACA9qRDhw6RlZUVWVlZkZ2dHYceemgUFRVFUVFR9OrVK4qLi6O0tDSOOeaYNrfJuimys7Nj0qRJceONN8bDDz8cs2fPjtdee61FZ37605+OL3/5y3HFFVdERkZGi86i7ejfv3889dRTUV5eHt/61rfiueeea/YZp556akyaNCnKyspSfkoAByY9Pb3hd3BmZmbD3zt16hTdu3ePwsLCf/hzxBFHxIABA6Jv374HXbHzYNGtW7cYP358jB8/Pvbt2xcVFRWxZMmSePbZZ2PlypVRX1/f6plOOOGEuPrqq+OKK65os5sDO3bsGOedd17DXfc3btwYK1asiKqqqnjzzTdjw4YNsW3btti+fXvs2rUr6uvro76+Pv7+97+nOPk/6tKlS9x9993x1a9+NWbOnBmPPPJIrFu3rsXmpaWlxRlnnBE33nhjjB49WjE0hbKzs6OsrCzKysoiIqK6ujpefPHFWLt2bcNjePv27bF9+/bYs2dPm30MtyUnn3xyPP3007F69eq49957Y+HChVFbW9ti8/Lz82PMmDExceLEKCkpabE58ImuXbvGHXfccUBf06dPn5YJkyIXXXRRDB8+PL73ve/Fgw8+GFu2bGmROSUlJXHjjTfGF7/4xcjJyWmRGW3ByJEjY+TIkbFixYqYMWNG/PrXv47du3e3yuxu3brFqFGj4gtf+EIMGzYspa8r8/PzY9y4cTFu3LjYv39/VFVVxUsvvRRr166Nt956KzZu3Bjvv/9+bN++PWpra6O+vj727dvX5p6T+/fvH4899ljceeedcd9998XPf/7z2LlzZ4vNy87OjgsvvDAmTpwYAwcObLE5AAAAbUna/v3796c6BAAAAADQ/rzyyivx+OOPxzPPPBOvvvpqfPzxx01ar2PHjvGpT30qzj///Bg7dmwUFxc3U1IOZq+//nrMnj07nnrqqaipqWn0On369IkLLrggLr300jjjjDOaMSHwr9TV1cULL7wQK1asiJUrV8bLL78c1dXV0dwfXeXn58egQYNi+PDhcfHFF0e/fv2adX0OzPPPPx8/+9nPYsmSJfHGG280+f87KysrBg4cGJ/73Odi7Nix0bNnz2ZKCm3b3r1748knn4z58+fHn/70p3j//febvGZRUVGceeaZMWbMmBg1alRkZ2c3Q1KgMfbt2xcLFy6Mxx9/PJYsWdLkMmH//v1jxIgRcdFFF8WwYcMOqIC7cuXK//jfFhcXt9kbqXz44YexaNGiWLhwYfzxj39s0uvH/6lz584xaNCg+MxnPhPDhg2L0047zY0qWlh9fX0sWrQonnjiiXjuuedi06ZNTV6zoKAgTj/99Bg9enSUlZW12RsRAAAAtBTlIgAAAACgxe3atSsqKipi9erV8fbbb0d1dXVs2LAhdu/eHbW1tbF3796IiMjJyYmcnJzIy8uLXr16Rd++fePoo4+Ok046KYYMGdKu76pM01VWVsayZcvi9ddfj8rKyqipqYldu3bF7t27429/+1vk5uZGbm5u5OfnR+/evePYY4+NY489NgYOHBjHHntsquMDEVFbWxtVVVVRVVUV1dXVsX79+nj33XcbTunZuXNnfPjhh1FfXx/79++PzMzMyMzMjM6dO0e3bt2isLAwDj/88Ojfv38UFxc3/Jzb3Nk2bd++Pf785z/HK6+8EtXV1VFdXR0bN26MPXv2xN69e6O2tjY6dOgQnTt3jpycnOjSpUv06dOn4frglFNOiYEDB0ZWVlaqvxVIqf3790dlZWUsX7481q5dG2+//XasW7cu3n///di7d2/s3bs3Pvroo8jOzm74eSosLIyjjjoq+vbtGyUlJTFkyJAYMGBAqr8V4J/48MMPY/ny5bFy5cpYvXp11NTUxIYNG2Lnzp1RV1cX+/bta/jZzs3NjUMOOaThWqi4uDgGDRrU7k55ag6bN2+OioqKqKysjHXr1sW6devi3XffjT179kRtbW3U1tbGxx9/HBkZGZGVlRV5eXnRrVu36N69e/Tq1SuOOuqo6N+/f5x44okxYMAA15spVl1dHRUVFQ2vI6qrq2PLli0N15R1dXWRmZnZ8L7ToYce2vA8OGDAgBg8eHAcd9xxTr4EAAASTbkIAAAAAAAAAAAAAAAAEsptMwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACChlIsAAAAAAAAAAAAAAAAgoZSLAAAAAAAAAAAAAAAAIKGUiwAAAAAAAAAAAAAAACCh/gty8pm/s3pRYQAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 34, "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Show plots\n", - "from IPython.core.display import SVG\n", - "SVG(filename=\"./v_Cd_0/v_Cd_0.svg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 35, - "id": "16a79cb7", - "metadata": {}, - "outputs": [ + "output_type": "display_data" + }, { "data": { - "image/svg+xml": "\n \n \n \n \n 2022-11-07T12:43:59.209736\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADRcAAAzlCAYAAAC0REvBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdeZjd890//tcsyWSZpElksySWLJgZSlQiEQbBTW0Jaqe2KGr/qqAuFVWK2mls4ZZbW3UXtdXSiu9EgsYSESGR2JuKkE0n22Qy5/dHv3f7cyPnzJlzziyfx+O6erWdeb3e7+dJ+9eMZ95FqVQqFQAAAAAAAAAAAAAAAEDiFDd3AAAAAAAAAAAAAAAAAKB5KBcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEKVNncAAAAAAAAAAPJr7dq18dJLL8VLL70Ur7/+enzwwQfxySefRG1tbaxatSrKy8ujW7du0adPn9h+++1jhx12iFGjRsUWW2zR3NEBAAAAAMizolQqlWruEAAAAAAAAADk3ssvvxy33357PPbYY7F06dJG7++0005x7LHHxoknnhgdOnTIQ0IAAAAAAJqbchEAAAAAAABAGzNlypS48MIL46WXXsrJeRtttFH89Kc/jVNOOSVKS0tzciYAAAAAAC2DchEAAAAAAABAG/HFF1/Ej3/843jwwQfzcv6OO+4Y999/fwwePDgv5wMAAAAAUHjKRQAAAAAAAABtwPPPPx9HHnlkfPbZZ3m9p1OnTnHXXXfFUUcdldd7AAAAAAAojOLmDgAAAAAAAABA09x1112x9957571YFBGxcuXKOOaYY+L666/P+10AAAAAAOSfchEAAAAAAABAK3b77bfHKaecEvX19QW7M5VKxf/5P/8nLrvssoLdCQAAAABAfhSlUqlUc4cAAAAAAAAAoPEmTZoUxx9/fDTnr33vvPPOGDt2bLPdDwAAAABA0ygXAQAAAAAAALRCDz30UBx++OGxbt26jHf69esXhx9+eIwYMSK++93vRo8ePaJz586xZMmS+OCDD+KFF16I3//+9/Haa69lfGZpaWk88cQT8R//8R/ZfAwAAAAAAJqZchEAAAAAAABAKzN37twYMmRIrFy5MqP5wYMHxzXXXBMHHHBAFBcXp52fOnVqnHXWWTFjxoyMzu/Vq1e8+eab0bdv34zmAQAAAABoOdL/1BgAAAAAAACAFqOuri6OPPLIjItFF1xwQcyaNSsOOuigjIpFEREjR46MV155JS655JKM5j///PM4/vjjw99tCQAAAADQ+igXAQAAAAAAALQiF110UUYvCpWUlMSkSZPi6quvjvbt2zf6npKSkvj5z38e99xzTxQVFaWdf+aZZ+L2229v9D0AAAAAADSvopS/OgoAAAAAAACgVXj55ZdjxIgRGb0QdNddd8XJJ5+ck3tvuummOOecc9LO9ejRI+bNmxc9evTIyb0AAAAAAOSfl4sAAAAAAAAAWokLL7wwo2LRueeem7NiUUTE2WefndF5S5YsiUsvvTRn9wIAAAAAkH9eLgIAAAAAAABoBZ566qn4/ve/n3auqqoqXn311SgrK8vp/StWrIghQ4bEu+++u965kpKSeOedd2LQoEE5vR8AAAAAgPzwchEAAAAAAABAC5dKpeLiiy/OaPbOO+/MebEoIqJz584xYcKEtHPr1q2La665Juf3AwAAAACQH8pFAAAAAAAAAC3cs88+G2+88UbauYMPPjiGDx+etxx77LFHjBkzJu3cpEmTYsGCBXnLAQAAAABA7igXAQAAAAAAALRw9957b0Zzl19+eZ6TRFx11VVRXLz+XzXX1dXFzTffnPcsAAAAAAA0XVEqlUo1dwgAAAAAAAAAvtny5cujb9++sXr16vXO7bXXXvHss88WJNPBBx8cjzzyyHpn+vbtG5988kmUlpYWJBMAAAAAANnxchEAAAAAAABAC/bAAw+kLRZFRJx99tkFSPNPF1xwQdqZhQsXxjPPPFOANAAAAAAANIVyEQAAAAAAAEAL9sADD6Sd6dOnT+yzzz4FSPNPO+20U1RUVKSdu++++wqQBgAAAACAplAuAgAAAAAAAGihVq1aFS+++GLaucMPPzxKSkoKkOjfTjjhhLQzf/rTn6Kurq4AaQAAAAAAyJZyEQAAAAAAAEALNXXq1IzKOYceemgB0nzVYYcdlnZmxYoVUVNTU4A0AAAAAABkS7kIAAAAAAAAoIV67rnn0s5069YtRowYUYA0X9W/f//Ydttt08796U9/KkAaAAAAAACypVwEAAAAAAAA0EJNnjw57cxee+0VJSUlBUjzdfvvv3/amT//+c8FSAIAAAAAQLaUiwAAAAAAAABaoPr6+pg5c2bauV122aUAab5ZdXV12pl33nknvvzyywKkAQAAAAAgG8pFAAAAAAAAAC3Q3Llzo66uLu3cTjvtVIA032z48OFpX01qaGiIV199tUCJAAAAAABoLOUiAAAAAAAAgBZo1qxZaWfKyspiu+22y3+Yb9GlS5eoqqpKO/fKK68UIA0AAAAAANlQLgIAAAAAAABogTIpF2255ZbRrl27AqT5dttss03amZkzZxYgCQAAAAAA2VAuAgAAAAAAAGiBZs+enXamoqKiAEnWr7KyMu3MvHnzCpAEAAAAAIBsKBcBAAAAAAAAtECffPJJ2pmtt966AEnWT7kIAAAAAKB1Uy4CAAAAAAAAaIE+/fTTtDP9+/cvQJL123TTTdPOLF++PD7//PMCpAEAAAAAoLGUiwAAAAAAAABamHXr1sWiRYvSzvXr168AaXKT4eOPP85zEgAAAAAAsqFcBAAAAAAAAAkyefLkKCoqyvpf5557bnN/hBZh0aJF0bNnz6z/HDfeeONYtmzZes9ft25d2hwbb7xxDj9Vdrp37x7l5eVp57xcBAAAAADQMikXAQAAAAAAQIJUVlY2aX/u3Lk5StK6nXXWWbF48eKs9++4447o1q3bt35/4cKFGZ3To0ePrDPkUs+ePdPOKBcBAAAAALRMykUAAAAAAACQIH369MmoCPJtlIsiHn/88fj973+f9f6xxx4b+++//3pnamtrMzqre/fuWefIpUxyKBcBAAAAALRMykUAAAAAAACQME15vejDDz+MNWvW5DBN6/Lll1/GaaedlvX+hhtuGDfddFPaudWrV6ed6dSpU7Rr1y7rLLmUSblo6dKlBUgCAAAAAEBjKRcBAAAAAABAwjSlXNTQ0BDz5s3LYZrW5YILLogFCxZkvX/HHXdkVMTJpFzUsWPHrHPkWnl5edqZJJfSAAAAAABaMuUiAAAAAAAASJiqqqom7c+dOzdHSVqXmpqauPPOO7PeP+aYY+KAAw7IaDaTclFLebUoIrMsykUAAAAAAC2TchEAAAAAAAAkTFNeLopIZrlo9erVMXbs2EilUlnt9+3bN26++eaM5zMp4rSkclH79u3TztTV1RUgCQAAAAAAjaVcBAAAAAAAAAnT1JeL5syZk6Mkrcdll10W8+bNy3r/9ttvj+7du2c8n0mJKduiUz5kUnRSLgIAAAAAaJmUiwAAAAAAACBhevToEX379s16P2kvF82YMSOuu+66rPePPvroOOiggxq1k8lLQKtWrco2Us6tXbs27UxpaWkBkgAAAAAA0FjKRQAAAAAAAJBAlZWVWe8mqVxUX18fJ510UtTX12e137dv37j55psbvZfJS0AtqVyUyatEHTp0KEASAAAAAAAaS7kIAAAAAAAAEqiqqirr3eXLl8fChQtzmKbl+tWvfhUzZszIen/ChAnRo0ePRu+VlZWlnVm9enU2kfJizZo1aWeUiwAAAAAAWiblIgAAAAAAAEigprxcFJGM14vefffdGD9+fNb7Rx55ZIwePTqr3a5du6adaWhoaDEFIy8XAQAAAAC0XspFAAAAAAAAkEBNebkoou2Xi1KpVIwdOzbr8k6fPn3illtuyfr+TF87WrVqVdZ35NKyZcvSzigXAQAAAAC0TMpFAAAAAAAAkEBeLlq/O+64I6ZMmZL1/oQJE2KDDTbIej/T3aVLl2Z9Ry598cUXaWe6d+9egCQAAAAAADSWchEAAAAAAAAkUNeuXaNfv35Z78+ZMyeHaVqWv/3tbzFu3Lis94844ogYM2ZMkzJssMEGUVRUlHbuk08+adI9ubJ48eK0M3379i1AEgAAAAAAGku5CAAAAAAAABKqKa8XteWXi0477bT48ssvs9rt3bt33HrrrU3O0K5du4zKOB9//HGT72qq+vr6WL58edo55SIAAAAAgJZJuQgAAAAAAAASqinlog8//DDq6upymKZleOCBB+KJJ57Iev/Xv/51bLDBBjnJ0r9//7QzLeHlokwLTspFAAAAAAAtk3IRAAAAAAAAJFRVVVXWu+vWrYt58+blME3zW7x4cZx11llZ7x9++OFxyCGH5CzPpptumnamJbxc9N5772U0p1wEAAAAANAyKRcBAAAAAABAQjXl5aKIiLlz5+YoSctwzjnnxOeff57Vbu/evePWW2/NaZ7BgwennWkJ5aL3338/7cxGG20UHTp0KEAaAAAAAAAaS7kIAAAAAAAAEqqioiKKioqy3m9L5aKnn3467r///qz3b7vttujZs2cOE2X2stQ777yT0zuzMX/+/LQzFRUVBUgCAAAAAEA2lIsAAAAAAAAgoTp37hybbbZZ1vttpVxUW1sbP/rRj7Le/8EPfhCHHnpoDhP90zbbbJN25sMPP4zly5fn/O7GeOONN9LONPWVLAAAAAAA8ke5CAAAAAAAABIsk9dxvs2cOXNymKT5XHTRRfHxxx9ntdurV6+47bbbcpzonwYPHhwdOnRIOzdz5sy83J+p119/Pe2Ml4sAAAAAAFou5SIAAAAAAABIsKa8KNMWXi568cUX49e//nXW+7fddlv06tUrh4n+rbS0NHbccce0c1OnTs3L/Zn48MMPY8mSJWnnmlJiAwAAAAAgv5SLAAAAAAAAIMGaUi5atmxZLFq0KIdpCmvNmjVx8sknR0NDQ1b7hx56aPzgBz/IcaqvGjlyZNqZF154Ia8Z1uell15KO1NWVhZDhgwpQBoAAAAAALKhXAQAAAAAAAAJ1tQXZVrz60VXXHFFvPPOO1nt9uzZs0kvHmVql112STszderUqKury3uWb/L000+nnRk6dGh06NChAGkAAAAAAMiGchEAAAAAAAAk2FZbbRUlJSVZ78+ZMyeHaQpn1qxZcfXVV2e9f+utt0avXr1ymOib7brrrlFWVrbemdra2qipqcl7lv8tlUrFM888k3Zu1113LUAaAAAAAACypVwEAAAAAAAACdahQ4cYMGBA1vut8eWidevWxUknnRRr167Nav+QQw6Jww8/PMepvlnnzp1j9913Tzv3xBNPFCDNV7366qvx2WefpZ2rrq4uQBoAAAAAALKlXAQAAAAAAAAJV1lZmfVuaywX3XjjjfHKK69ktduzZ8/49a9/neNE63fAAQeknfnv//7vaGhoKECaf7vnnnvSzpSXl8fOO+9cgDQAAAAAAGRLuQgAAAAAAAASrqqqKuvdOXPm5DBJ/r3//vtx6aWXZr1/yy23RO/evXOYKL3Ro0dHcfH6f7X76aefxnPPPVegRBG1tbXxm9/8Ju3cQQcdFJ06dSpAIgAAAAAAsqVcBAAAAAAAAAnXlJeLPvjgg6irq8thmvwaO3ZsrFy5MqvdMWPGxBFHHJHjROlttNFGsccee6Sdy+QloVz5zW9+E//4xz/Szh199NEFSAMAAAAAQFMoFwEAAAAAAEDCNeXlonXr1sV7772XwzT5M3HixJg8eXJWuxtssEFMmDAhx4kyd+yxx6ad+cMf/hAfffRR3rOsXr06fvGLX6Sd69WrV+y11155zwMAAAAAQNMoFwEAAAAAAEDCDR48ONq1a5f1/ty5c3OYJj8+/fTTOP/887Pev+WWW6JPnz45TNQ4hxxySHTt2nW9M/X19XHdddflPcuNN94Yn3zySdq5Y489NkpLS/OeBwAAAACAplEuAgAAAAAAgIRr165dDBo0KOv9OXPm5DBNfpxxxhmxbNmyrHZHjx4dRx55ZG4DNVLnzp3jxBNPTDt3++23x9tvv523HAsXLoxf/vKXaec6duwYP/nJT/KWAwAAAACA3FEuAgAAAAAAAKKqqirr3Zb+ctFDDz0UDz/8cFa7PXr0iNtvvz3HibJz1llnRXHx+n/Fu3bt2jj99NOjoaEh5/enUqn44Q9/GMuXL087e+qpp0bfvn1zngEAAAAAgNxTLgIAAAAAAACisrIy692WXC5atmxZnHHGGVnv33LLLdGnT58cJsre5ptvHmPGjEk7V1NTE5dddlnO7//Vr34Vzz77bNq5jh07xrhx43J+PwAAAAAA+aFcBAAAAAAAALTZl4vOO++8WLhwYVa7Bx10UBx11FE5TtQ0V1xxRZSWlmY09+CDD+bs3j//+c/x05/+NKPZCy64oMUUsgAAAAAASK8olUqlmjsEAAAAAAAA0Lzmzp0bW221Vdb7ixYtil69euUwUdM999xzseeee2a126NHj5g9e3b07ds3x6ma7rTTTovbb7897VxJSUncd999cfTRRzfpvueffz4OPPDAqK2tTTs7ZMiQePnll6Ndu3ZNuhMAAAAAgMLxchEAAAAAAAAQAwcOjLKysqz3W9rrRStXroxTTjkl6/2bbrqpRRaLIiLGjx8fPXr0SDu3bt26OO644+LCCy+Murq6rO664447Yt99982oWFRWVhb33XefYhEAAAAAQCujXAQAAAAAAABESUlJk14uamnloksuuSTef//9rHYPOOCAOOaYY3KcKHd69+4d9957b0azDQ0NcfXVV8fQoUPj8ccfj1QqldHejBkzYq+99opTTz011qxZk9HOFVdcEVVVVRnNAgAAAADQchSlMv3pMQAAAAAAANCmHX300fHb3/42q93zzz8/rr322hwnys706dNj+PDh0dDQ0Ojd7t27x+zZs2PDDTfMQ7LcOuuss+KWW25p1M6WW24Zo0ePjj322CMGDx4cPXv2jA4dOsSyZcti3rx58dJLL8XDDz8c06ZNa9S5J5xwQtxzzz2N2gEAAAAAoGVQLgIAAAAAAAAiIuKqq66Kiy++OKvdAw44IB577LEcJ2q8tWvXxg477BCzZs3Kan/SpElx7LHH5jhVftTV1cVBBx0UTz/9dLPm2G+//eKPf/xjlJaWNmsOAAAAAACyU9zcAQAAAAAAAICWobKyMuvduXPn5jBJ9q666qqsi0X7779/qykWRUS0b98+Hn744dh9992bLcPQoUPjwQcfVCwCAAAAAGjFvFwEAAAAAAAARETE+++/HwMGDMhqt7S0NFauXBnt2rXLcarMvf3227H99ttHXV1do3e7desWs2fPjo022igPyfKrtrY2DjvssHjqqacKeu9uu+0Wf/zjH+M73/lOQe8FAAAAACC3vFwEAAAAAAAARETE5ptvHp06dcpqt76+Pt57770cJ8pcQ0NDnHzyyVkViyIibrrpplZZLIqIKC8vjyeeeCIuueSSKCoqKsidJ510Ujz99NOKRQAAAAAAbYByEQAAAAAAABAREUVFRVFRUZH1/ty5c3OYpnFuvfXWeOmll7La3X///eO4447LcaLCKi4ujp///Ofx5JNPxhZbbJG3e3r16hUPPPBA3H333VFWVpa3ewAAAAAAKBzlIgAAAAAAAOBfKisrs95trnLRRx99FD/96U+z2u3WrVvccccdOU7UfPbdd994++2345e//GV06dIlZ+d26tQpzj333Hj33Xfj8MMPz9m5AAAAAAA0P+UiAAAAAAAA4F+aUi6aM2dODpNk7kc/+lHU1tZmtXvDDTfERhttlONEzausrCzGjRsXCxYsiLvvvjt23nnnrM+qrKyMK6+8Mj7++OO4/vrro1u3brkLCgAAAABAi1CUSqVSzR0CAAAAAAAAaBmeeuqp+P73v5/V7ogRI2LatGk5TrR+kyZNih/+8IdZ7X7/+9+PJ598MseJWqYFCxbESy+9FNOnT4/XXnstFi5cGMuWLYulS5fG2rVro1OnTtGtW7fYdNNNY/DgwTFs2LCorq6OwYMHN3d0AAAAAADyTLkIAAAAAAAA+JePP/44Nt1006x2N9hgg/jiiy9ynOjbLVq0KLbeeutYsmRJo3e7desWb731Vmy88cZ5SAYAAAAAAK1HcXMHAAAAAAAAAFqO/v37R9euXbPaXbx4cSxevDjHib7dmWeemVWxKCLi+uuvVywCAAAAAIBQLgIAAAAAAAD+l4qKiqx358yZk8Mk3+6xxx6LBx98MKvdfffdN0444YQcJwIAAAAAgNZJuQgAAAAAAAD4iqqqqqx3586dm8Mk3+zLL7+M008/Pavd73znO3HnnXfmOBEAAAAAALReykUAAAAAAADAV1RWVma9W4hy0U9+8pNYsGBBVrvXX399bLLJJjlOBAAAAAAArZdyEQAAAAAAAPAVTSkXzZkzJ4dJvq6mpibuuuuurHb32WefOPHEE3OcCAAAAAAAWjflIgAAAAAAAOArqqqqst7N58tFq1evjrFjx0YqlWr0bteuXePOO+/MQyoAAAAAAGjdlIsAAAAAAACAr9hwww2jR48eWe2+//77UV9fn+NE//Szn/0s5s2bl9XuddddF/369ctxIgAAAAAAaP2UiwAAAAAAAICvqayszGpv7dq18f777+c4TcTrr78e1113XVa7e++9d5x88sk5TgQAAAAAAG2DchEAAAAAAADwNdmWiyIi5syZk8MkEfX19XHyySfHunXrGr3btWvXuPvuu3OaBwAAAAAA2hLlIgAAAAAAAOBrqqqqst6dO3duDpNEXHvttTFjxoysdn/1q19Fv379cpoHAAAAAADaEuUiAAAAAAAA4Gua8nJRLstF7777blx++eVZ7e61114xduzYnGUBAAAAAIC2SLkIAAAAAAAA+JqW8HJRKpWKsWPHxurVqxu926VLl7j77rtzkgMAAAAAANoy5SIAAAAAAADga3r27Bm9e/fOanfOnDk5yXD77bfHlClTstr91a9+Ff37989JDgAAAAAAaMuKUqlUqrlDAAAAAAAAAC3PHnvsEc8//3xWu4sXL44ePXpkffff/va3qKysjC+//LLRu3vuuWf8+c9/zvpuAAAAAABIEi8XAQAAAAAAAN+oqqoq6925c+c26e7TTjstq2JRly5d4u67727S3QAAAAAAkCTKRQAAAAAAAMA3qqyszHp3zpw5We/+7ne/iyeeeCKr3WuuuSY23XTTrO8GAAAAAICkUS4CAAAAAAAAvlFzvFy0ePHiOPvss7PaHTVqVPzoRz/KahcAAAAAAJJKuQgAAAAAAAD4Rk15uSjbctE555wTn3/+eaP3ysvLY+LEiVFUVJTVvQAAAAAAkFTKRQAAAAAAAMA36tatW2y88cZZ7WZTLnrqqafi/vvvz+q+a665JjbddNOsdqEQFi1aFMuXL2/uGAAAAAAAX6NcBAAAAAAAAHyrbF8veu+996K+vj7j+dra2jj11FOzumv33XfPehfy6aOPPoobb7wxqqurY8MNN4xddtmluSMBAAAAAHxNaXMHAAAAAAAAAFquysrKePbZZxu9V1dXFx988EEMGjQoo/mLLrooPv7440bfU15eHvfcc08UFRU1ehfy4Z133omHH344Hn744Xj99de/8r2BAwc2UyoAAAAAgG+nXAQAAAAAAAB8q6qqqqx3586dm1G56MUXX4xf//rXWd1x9dVXx2abbZbVbhItX7483nrrrXjrrbfinXfeiQULFsSCBQti4cKFUVtbG6tWrYrVq1dHaWlpdOnS5V//6t27d2y11Vax9dZbx1ZbbRXf/e53o0ePHs39cVqUK6+8MiZNmhRz58791pnq6uoCJgIAAAAAyExRKpVKNXcIAAAAAAAAoGX661//GjvttFNWu9dee22cf/75651Zs2ZNbLfddjFnzpxGn7/77rvHc88959Wi9fjiiy/iL3/5S9TU1ERNTU288847OTm3uLg4dthhh9hnn31in332iWHDhkVJSUlOzm6Nli1bFhtssEE0NDSsd27GjBmx3XbbFSYUAAAAAECGvFwEAAAAAAAAfKvKysooKiqKbP7OwvW94PI/rrjiiqyKRZ07d46JEycqFn2DRYsWxR/+8Id46KGHoqamJtatW5fzOxoaGuKVV16JV155JX7+85/HJptsEmPHjo2xY8fGhhtumPP7WroXXnghbbGoW7duse222xYoEQAAAABA5oqbOwAAAAAAAADQcpWXl0f//v2z2k1XLnrzzTfj6quvzursq6++OjbffPOsdtuiVCoVkydPjsMPPzw22WST+PGPfxyTJ0/OS7Hom/ztb3+Ln/3sZ9G/f//4wQ9+EDNnzizIvS3FlClT0s7ssssuUVzsV/QAAAAAQMvjJ5cAAAAAAADAelVVVWW1t75y0bp16+Kkk06KtWvXNvrc3XbbLU4//fSsMrU169ati9/+9rexzTbbxKhRo+LBBx/M6s80V+rr6+MPf/hDDBkyJI4//vhYvHhxs2UppJqamrQzu+22W/6DAAAAAABkQbkIAAAAAAAAWK/Kysqs9hYtWhRLly79xu/deOON8eqrrzb6zM6dO8fEiROjqKgoq0xtRSqViv/6r/+KrbbaKo4++uiYPXt2c0f6ioaGhrjvvvuioqIi/vSnPzV3nLyqra2NGTNmpJ2rrq4uQBoAAAAAgMZTLgIAAAAAAADWK9tyUcQ3v1703nvvxaWXXprVeVdddVVsscUWWedpC6ZNmxbDhg2L4447LubPn9/ccdZr0aJFccABB8Qvf/nL5o6SN9OmTYv6+vr1znTt2jW22267wgQCAAAAAGgk5SIAAAAAAABgvaqqqrLe/aZy0SmnnBIrV65s9Fm77rprnHHGGVlnae2WLFkSP/zhD2PkyJHxyiuvNHecjDU0NMRFF10UF1xwQXNHyYuampq0MyNHjoySkpICpAEAAAAAaDzlIgAAAAAAAGC9tt566yguzu5Xi/+7XDRx4sSYPHlyo8/p1KlT3HPPPVFUVJRVjtbuoYceioqKipg0aVJzR8natdde2yZfMJoyZUramerq6gIkAQAAAADITmlzBwAAAAAAAABato4dO8YWW2wR8+fPb/TunDlz/vWfP/300zj//POzynDVVVfFgAEDstptzVasWBGnn356TkpFZWVlMXTo0KioqIitttoqtt5669h4442jS5cu0bVr1+jSpUs0NDTE6tWrY8WKFbFw4cL49NNPY/78+TFr1qx44403YsaMGbFu3bqsM1x88cWxzTbbxH777dfkz9MSrFq1KqNXpJSLAAAAAICWrCiVSqWaOwQAAAAAAADQso0ePToeffTRRu9VVFTE7NmzIyLi4IMPjkceeaTRZ+yyyy5RU1OTuFeL3nrrrTjssMPinXfeyfqMAQMGxIEHHhh77713VFdXR8eOHZuUafny5VFTUxP3339/PPbYY7FmzZpGn9GnT5+YNWtW9OrVq0lZWoLJkyfHqFGj1jtTXl4eS5cujdJSf/cnAAAAANAyFTd3AAAAAAAAAKDlq6qqympv/vz5sW7dunjooYeyKhZ16tQp7rnnnsQVix555JEYNmxYVsWi9u3bx2GHHRZ/+ctfYt68eXH99dfHPvvs0+RiUUTEd77znTjwwAPjwQcfjL///e8xbty46NChQ6PO+Oyzz2LcuHFNztISTJkyJe3MiBEjFIsAAAAAgBZNuQgAAAAAAABIq7KyMqu9urq6eP311+OMM87Iav/KK6+MgQMHZrXbWl1zzTVxyCGHxMqVKxu11759+zjjjDPi448/jt///vcxatSovJayevToEb/85S9j7ty5sffeezdq97777ouZM2fmKVnh1NTUpJ3Zbbfd8h8EAAAAAKAJlIsAAAAAAACAtLItF0VEHH300bFw4cJG740cOTLOPPPMrO9tbVKpVJxxxhkxbty4SKVSGe8VFRXF0UcfHXPmzIlbbrkl+vTpk8eUX9e/f/94+umn4xe/+EWUlJRktNPQ0BBXXXVVnpPlV11dXfz1r39NO1ddXV2ANAAAAAAA2StKNean0gAAAAAAAEAi1dXVRefOnaO+vr4g93Xs2DHefPPNxLxa1NDQEKecckpMnDixUXv9+/ePe+65J0aNGpWnZI3z8MMPx5FHHhl1dXVpZzt16hS1tbV5fV0pn6ZOnRq77LLLemc6deoUy5Yti3bt2hUoFQAAAABA43m5CAAAAAAAAEirffv2BS36/OIXv0hMsSiVSsUJJ5zQ6GLRCSecELNmzWoxxaKIiIMPPjgef/zx6NChQ9rZHXfcsdUWiyIiampq0s4MHz5csQgAAAAAaPGUiwAAAAAAAICMVFVVFeSenXfeOc4+++yC3NUSnHvuuTFp0qSM58vKyuK+++6Le+65J7p27ZrHZNnZe++94/bbb087t8ceexQgTf5MmTIl7Ux1dXUBkgAAAAAANI1yEQAAAAAAAJCRysrKvN/RsWPHuPfee6O4OBm/yrzqqqvipptuyni+V69e8dxzz8Vxxx2Xx1RN98Mf/jBtQWz33XcvUJrcq6+vjxdffDHtnHIRAAAAANAaJOMn8gAAAAAAAECTFeLloiuuuCIGDRqU93tagv/+7/+Oiy++OOP5QYMGxfTp02PnnXfOY6rcufrqq2OzzTb7xu916tQphg0bVthAOfTaa69FbW3temc6dOjQqj8jAAAAAJAcykUAAAAAAABARvL9ctGIESPinHPOyesdLcXs2bPjhBNOyHh+4MCB8fzzz39rWaclKisri6uuuuobv7fzzjtH+/btC5wod6ZMmZJ2ZtiwYVFWVlaANAAAAAAATaNcBAAAAAAAAGRk0KBBeSuEdOjQIe65554oLm77v8Jcvnx5jB49OlasWJHR/IABA+L555+PjTfeOM/Jcu+II46Ibbfd9mtf32OPPZohTe7U1NSkndltt93yHwQAAAAAIAfa/k/mAQAAAAAAgJwoLS2NLbfcMi9nX3HFFXk7u6X58Y9/HPPnz89odqONNornn38+Ntlkkzynyp/jjz/+a1/bfffdCx8kRxoaGmLatGlp56qrqwuQBgAAAACg6ZSLAAAAAAAAgIxVVlbm/Mzhw4fHueeem/NzW6IHH3wwfvOb32Q027Fjx3jssceiX79+eU6VX0cddVSUlpb+67936dIldthhh2ZM1DQzZ86MZcuWrXemffv2sdNOOxUmEAAAAABAEykXAQAAAAAAABmrqqrK6XkdOnSIe++9N4qL2/6vLhcuXBinnXZaRrNFRUVx3333teoSzv/o06fPV4o2u+6661fKRq1NTU1N2pmhQ4dGx44dC5AGAAAAAKDpWu9PbAEAAAAAAICCy/XLRZdffnlsueWWOT2zpTrvvPNiyZIlGc1ecskl8YMf/CDPiQpn6NChMXXq1IiI2H333Qt+/4cffhhTpkyJmTNnxptvvhkff/xxLF++PJYtWxYNDQ3RpUuX6NevX1RUVMSIESNiv/32i8033/wbz5oyZUra+6qrq3P9EQAAAAAA8qYolUqlmjsEAAAAAAAA0DrMnz8/Bg0alJOzdtppp5g6dWqUlJTk5LyWbPLkyTFq1KiMZtvin8vvf//7OOKIIyIi4vXXX4/tt98+73e+9957cd9998Wjjz4ab775ZqP3d9555zj77LPj0EMPjaKiooiISKVS0bt37/jiiy/Wu/vss8/GXnvtlVVuAAAAAIBCUy4CAAAAAAAAMtbQ0BDl5eWxatWqJp3ToUOHmDFjRmy11VY5StZy1dfXxzbbbBNz5sxJO9u5c+d44403YuDAgQVIVjgrV66Mt99+OyIihgwZEsXFxXm76//+3/8bN9xwQzzxxBPR0NDQ5PO++93vxoQJE2L48OExe/bsqKqqWu98aWlpLFu2LDp37tzkuwEAAAAACqG0uQMAAAAAAAAArUdxcXFsvfXW8frrrzfpnPHjxyeiWBQRMXHixIyKRRER1113XZsrFkVEdOrUKb73ve/l9Y7Zs2fHeeedF88++2xOz505c2aMHDkyLrjggthwww3Tzn/ve99TLAIAAAAAWhUvFwEAAAAAAACNctxxx8V//dd/Zb0/bNiwmDZtWpSUlOQwVcu0atWqGDhwYPz9739POzt06NB4+eWXo6ioqADJ2o4VK1bEhRdeGBMmTIh169bl9a527drF2rVr1ztz4YUXxlVXXZXXHAAAAAAAueTlIgAAAAAAAKBRKisrs94tKyuLe++9NxHFooiI2267LaNiUUTEDTfcoFjUSNOnT49jjjkm5s2bV5D70hWLIiKqq6sLkAQAAAAAIHeKmzsAAAAAAAAA0LpUVVVlvTt+/PjYeuutc5im5Vq7dm3ceOONGc0edthhMWLEiPwGamOuvfba2HnnnQtWLMpESUlJ7Lzzzs0dAwAAAACgUbxcBAAAAAAAADRKti8XDR06NM4///wcp2m5fve738WCBQvSzhUXF8eVV15ZgERtw9q1a+OUU06J//zP/2zuKF8zZMiQ6NKlS3PHAAAAAABoFOUiAAAAAAAAoFE23XTTKC8vj9ra2ox3ysrK4t57742SkpI8JmtZrr/++ozmxowZEwMGDMhzmrZh6dKlMWbMmKipqWnU3qBBg+Lggw+OYcOGxbbbbhs9e/aMTp06xbJly+K9996LadOmxaRJk+LNN99sUr7q6uom7QMAAAAANIeiVCqVau4QAAAAAAAAQOsybNiwmD59esbzV155ZVx00UV5TNSyvPLKKzF06NCMZqdNmxYjRozIc6LWb8mSJbHnnnvGjBkzMpovLi6OMWPGxE9+8pMYNmxYRjuPP/54nHnmmfHRRx9llfHxxx+P/fffP6tdAAAAAIDmUtzcAQAAAAAAAIDWp6qqKuPZHXfcMS644II8pml57r333ozmhg0bpliUgcWLF8eoUaMyLhaNGDEiXnvttfjDH/6QcbEoIuKAAw6I1157Lav/TYqLi2PkyJGN3gMAAAAAaG7KRQAAAAAAAECjVVZWZjTXvn37uPfee6OkpCTPiVqONWvWxAMPPJDR7PHHH5/fMG3A8uXLY9SoUfHGG2+knW3fvn3ccMMNMXXq1Nhuu+2yum+DDTaIZ555JrbddttG7X33u9+Nbt26ZXUnAAAAAEBzUi4CAAAAAAAAGi3TctHPfvazjGfbismTJ8fSpUvTzpWUlMTBBx9cgEStV319fRx66KExc+bMtLP9+vWLl156Kc4555woKipq0r3l5eXx6KOPRufOnTPe2W233Zp0JwAAAABAc1EuAgAAAAAAABqtqqoq7cwOO+wQF1xwQQHStCyPP/54RnPV1dXRu3fvPKdp3U499dT4y1/+knZu++23j5dffjmGDBmSs7s322yzGD9+fMbz1dXVObsbAAAAAKCQlIsAAAAAAACARtt4442jW7du3/r99u3bx3/+539GaWlp4UK1EE888URGc4ccckiek7Ru119/fUycODHt3E477RQ1NTWx0UYb5TzDmWeemdG5RUVFscsuu+T8fgAAAACAQlAuAgAAAAAAALJSWVn5rd+79NJLM3rdqK1555134pNPPslo1ks33+7VV1+NCy+8MO3csGHD4plnnokuXbrkJUf79u3jlFNOSTu3zTbbRI8ePfKSAQAAAAAg35SLAAAAAAAAgKx8W7lohx12iHHjxhU4Tcswbdq0jOa6d+8eFRUVeU7TOtXW1sZRRx0Va9euXe/cwIED48knn4yuXbvmNU8mZTFFMQAAAACgNVMuAgAAAAAAALLyTS8TtW/fPu69994oLS1thkTNb+rUqRnNDR8+PIqKivKcpnU677zzYt68eeud6d69ezz55JOxwQYb5D3PlClT0s4oFwEAAAAArZlyEQAAAAAAAJCVb3q56JJLLoltttmmGdK0DH/9618zmhs6dGiek7RO06dPj7vvvjvt3MSJE2Pw4MF5z7Nw4cK0RaeIiF133TXvWQAAAAAA8iWZf10YAAAAAAAA0GR77LFHpFKp5o7RYtTV1cX8+fMzmh0wYECe07Q+qVQqzjzzzLT/nzrxxBNjzJgxBcmUyatFFRUV0atXrwKkAQAAAADIDy8XAQAAAAAAAOTAvHnzor6+PqNZ5aKvmzRpUkyfPn29M7169YobbrihQIkyKxfttttu+Q8CAAAAAJBHykUAAAAAAAAAOTBnzpyMZ7fYYos8Jml9Ghoa4sorr0w7d/nll0fXrl0LkOifMikXVVdXFyAJAAAAAED+KBcBAAAAAAAA5MDHH3+c0Vy7du2iT58+eU7TujzyyCPx7rvvrndm4MCBMXbs2AIliliyZEm89dZbaed23XXXAqQBAAAAAMgf5SIAAAAAAACAHFi4cGFGc507d85zktbnmmuuSTtz9tlnR0lJSQHS/NMLL7wQqVRqvTNbbrll9O3bt0CJAAAAAADyQ7kIAAAAAAAAIAc+/fTTjObKy8vznKR1mTVrVkyfPn29M127do3jjz++MIH+nylTpqSdqa6uLkASAAAAAID8Ui4CAAAAAAAAyIGlS5dmNOfloq/67W9/m3bmwAMPLHgpS7kIAAAAAEgK5SIAAAAAAACAHFi1alVGc+3bt89zktYjlUrFAw88kHbu0EMPLUCaf6utrY0ZM2aknVMuAgAAAADaAuUiAAAAAAAAgBxYvXp1TueSYObMmfHhhx+ud6a0tDT22muvwgT6f6ZNmxbr1q1b78zAgQNj4403LlAiAAAAAID8US4CAAAAAAAAyIG6urqM5lauXJnnJK1HTU1N2pntttsuOnXqVIA0/zZlypS0M14tAgAAAADaCuUiAAAAAAAAgBwoKyvLaO7zzz+PVCqV5zStQyblop122qkASb5KuQgAAAAASBLlIgAAAAAAAIAc6NixY0ZzdXV1sXDhwjynaR2mTp2admbLLbcsQJJ/W716dbzyyitp55SLAAAAAIC2QrkIAAAAAAAAIAc6d+6c8ezcuXPzmKR1WLx4cXz++edp5zbffPMCpPm3v/71r7FmzZr1zmy22WbRv3//AiUCAAAAAMgv5SIAAAAAAACAHNhwww0zns3kZZy2bv78+RnNbbLJJnlO8lU1NTVpZ7xaBAAAAAC0JcpFAAAAAAAAADmw2WabZTw7bdq0/AVpJebNm5fRXGNehMqFKVOmpJ1RLgIAAAAA2hLlIgAAAAAAAIAcaEy56M9//nOsWrUqf2Fagb///e8ZzRWyXLR27dp4+eWX084pFwEAAAAAbYlyEQAAAAAAAEAObLfddhnPrly5Mp588sn8hSmQDz/8MP70pz9ltVtbW5vRXENDQ1bnZ+O1116LFStWrHemX79+scUWWxQoEQAAAABA/ikXAQAAAAAAAOTA4MGDo0ePHhnP33rrrXlMk39TpkyJHXfcMY444oiYP39+o/czLRctW7as0Wdn67e//W3aGa8WAQAAAABtjXIRAAAAAAAAQI4MHz4849mampqYPn16HtPkz1133RV77rlnfPHFF/GPf/wjDj/88FizZk2jzli5cmVGc4UqF73wwgtx2223pZ1TLgIAAAAA2hrlIgAAAAAAAIAcOfDAAxs1f9555+UpSX6sXr06Tj/99DjllFNi7dq1//r666+/Hueff36jzioqKspo7v3332/UudlYsWJFnHDCCdHQ0JB2VrkIAAAAAGhrlIsAAAAAAAAAcmT06NFRUlKS8fy0adPijjvuyGOi3Jk1a1Z873vfiwkTJnzj92+99dZ45JFHMj6vY8eOGc299NJLGZ+ZjVQqFccdd1y89957aWc33HDDGDRoUF7zAAAAAAAUmnIRAAAAAAAAQI707t079tprr0btnHvuufHWW2/lKVHTpVKpuPnmm2PHHXeM2bNnr3f2pJNOio8++iijc3v27JnR3NSpUzOay9Zll10WDz/8cEazI0aMyGsWAAAAAIDmoFwEAAAAAAAAkENnn312o+ZXrVoV3//+9+OTTz7JU6LszZw5M0aOHBlnn312rFmzJu380qVL47nnnsvo7E022SSjuVmzZsWrr76a0Wxj3XHHHfHzn/8843nlIgAAAACgLVIuAgAAAAAAAMih//iP/4iKiopG7XzyySex5557xgcffJCnVI3z5ZdfxjnnnBM77LBDvPjiixntlJSUxJ133hknnnhiRvNbbbVVxnluvPHGjGczdccdd8Rpp50WqVQq4x3lIgAAAACgLSpKNeYnpQAAAAAAAACk9cQTT8QBBxzQ6L3evXvHQw89FCNHjsxDqvRWrFgREyZMiGuvvTYWLVqU8V5ZWVn87ne/izFjxmS8s2rVqujatWvU19ennS0uLo5nn302Ro0alfH53yaVSsX48ePj8ssvb1SxqH379vGPf/wj2rdv3+QMAAAAAAAtiZeLAAAAAAAAAHJs//33j3322afRe4sWLYrq6uoYN25crFq1Kg/JvtmXX34ZV199dWy22Wbxk5/8pFHFoq5du8YzzzzTqGJRRETHjh1j+PDhGc02NDTEMcccEwsWLGjUHf/b8uXLY8yYMTF+/PhGFYsiIrbddlvFIgAAAACgTVIuAgAAAAAAAMiD2267Lbp27drovYaGhrjmmmtiwIABMWHChFi9enUe0v3T1KlT44QTTogNN9wwLrzwwvjiiy8atV9RUREvv/xyVFdXZ3V/Y153WrhwYQwfPjzefPPNrO764x//GBUVFfHoo49mtb/DDjtktQcAAAAA0NIVpRr71zEBAAAAAAAAkJEHH3wwDj/88Cad0b179zj66KPj0EMPjZ133jlKS0uzPmvVqlUxZcqUeOaZZ+KJJ56IefPmZX3WUUcdFXfeeWd07tw56zM+/fTT6NevX6xbty7jnfLy8hg3blycc845UV5ennb+hRdeiCuvvDKefvrprHNGRNx5550xduzYJp0BAAAAANASKRcBAAAAAAAA5NH5558f1113XU7O6tq1a4wYMSK233772GabbaJfv36xySabRLdu3aJDhw7Rvn37WLFiRXz55Zfx5ZdfxsKFC+Ptt9+O2bNnx+zZs2P69OlNfgmpffv2ccMNN8Tpp5+ek8907LHHxv3339/ovZ49e8ZBBx0U++yzT1RVVUXv3r2jvLw8Pv/88/jwww/jL3/5Szz22GPx+uuv5yTn9OnTY8cdd8zJWQAAAAAALYlyEQAAAAAAAEAepVKpOOGEE+K+++5r7ihNNmTIkLj77rtj++23z9mZ7733XlRWVsaaNWtydmauFRUVRW1tbXTq1Km5owAAAAAA5FxxcwcAAAAAAAAAaMuKiopi4sSJceyxxzZ3lKx17tw5rrvuupg+fXpOi0UREQMGDIif/exnOT0z1zbffHPFIgAAAACgzVIuAgAAAAAAAMizkpKSmDRpUlx66aXNHaXR9t9//3j77bfjvPPOi5KSkrzcMW7cuNhvv/3ycvb6nHrqqbHvvvumnauoqChAGgAAAACA5qFcBAAAAAAAAFAg48ePj0cffTT69OnT3FHS2n333aOmpiYef/zx6N+/f17vKi4ujgceeCBGjhyZ13v+x4ABA+Kpp56KCRMmxNtvv512fuDAgQVIBQAAAADQPJSLAAAAAAAAAArowAMPjNmzZ8fRRx8dRUVFzR3na/6nVDR58uTYddddC3ZveXl5PP3003HwwQfn7Y5u3brFFVdcEbNnz4599tknFi1aFB999FHavQEDBuQtEwAAAABAc1MuAgAAAAAAACiwDTbYIO6///547bXXYt99923uONG9e/c4/fTT49VXXy14qej/r3PnzvHQQw/FhAkTolu3bjk7d6ONNorLL788Pvzww/jpT38aZWVlERHxyiuvrHdvwIABcd5558VBBx2UsywAAAAAAC1NUSqVSjV3CAAAAAAAAIAke+utt+Kuu+6K+++/P5YsWVKQO8vKymK33XaL448/PkaPHh0dOnQoyL2Z+uKLL+Lmm2+OO++8Mz777LNG73fv3j322WefOOKII2K//faLkpKSr81cdtllMX78+K98bfvtt4/Ro0fH6NGjY9ttt806PwAAAABAa6FcBAAAAAAAANBCrFmzJmpqauKpp56Kp59+OubMmZOzs4uLi2O77baLPffcM0aNGhW77LJLdOzYMWfn58u6detiypQpMXny5Hj11Vfj/fffj4ULF8bKlSsjIqJTp07RvXv36N+/f2yxxRYxZMiQGDp0aHzve9+L0tLS9Z598cUXx7XXXhu77LLLvwpF/fv3L8THAgAAAABoMZSLAAAAAAAAAFqoZcuWxRtvvBEzZ86MefPmxYIFC+Jvf/tbfPbZZ7Fy5cpYvXp1rF69OoqLi6NLly7RpUuXKC8vjy5dukS/fv1iq622ii233PJf/15eXt7cH6nFqa2t9ecCAAAAACSachEAAAAAAAAAAAAAAAAkVHFzBwAAAAAAAAAAAAAAAACah3IRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAklHIRAAAAAAAAAAAAAAAAJJRyEQAAAAAAAAAAAAAAACSUchEAAAAAAAAAAAAAAAAkVGlzBwAAsldfXx/z5s37ytd69OgRxcX6wwAAAAAAAAAAAACQqYaGhliyZMlXvjZo0KAoLW371Zu2/wkBoA2bN29eVFRUNHcMAAAAAAAAAAAAAGhz3n777dh6662bO0beedYAAAAAAAAAAAAAAAAAEkq5CAAAAAAAAAAAAAAAABJKuQgAAAAAAAAAAAAAAAASqrS5AwAA2evRo8fXvvb2229Hz549myENAAAAAAAAAAAAALROX3zxRVRUVHzla9/0z+q2RcpFANCKFRd//RHCnj17Rq9evZohDQAAAAAAAAAAAAC0Hd/0z+q2Rcn4lAAAAAAAAAAAAAAAAMDXKBcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQAAAAAAAAAAAAAAQEIpFwEAAAAAAAAAAAAAAEBCKRcBAAAAAAAAAAAAAABAQikXAQD/H3v3HmV3Wd+L/7P3XPdkksyAXCSxchEJKEEuIoioqHjBapc9UmutrfasLk+PVVv1aOvx17rac2y19d56tMtTq0Lr9XhFROwCDQgIBEQNwQhEJYEQYHaSyey57v37g2sI2c93Zr77/nqtVsnsZ3+fz2x5sp8987y/HwAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAAAAAAAAA6FHCRQAAAAAAAAAAAAAAANCjhIsAAAAAAAAAAAAAAACgRwkXAQAAAAAAAAAAAAAAQI8SLgIAAAAAAAAAAAAAAIAeJVwEAAAAAAAAAAAAAAAAPUq4CAAAAAAAAAAAAAAAAHqUcBEAAAAAAAAAAAAAAAD0KOEiAAAAAAAAgCao1WpRq9VaXQYAAAAAAOxDuAgAAAAAAACgCa765c/j6l9taXUZAAAAAACwj/5WFwAAAAAAAADQ7Spzs3HBDRuiEBFPO+LIKA0MtrokAAAAAACICJ2LAAAAAAAAABruKz+5OsqVvTFR2Rv/7yfXtLocAAAAAAB4iHARAAAAAAAAQAP9unxPfOeWGx/688W33BC/Lt/TuoIAAAAAAOARhIsAAAAAAAAAGqRWq8Wnr7s8qrXaQ1+rPvC12iO+BgAAAAAArSJcBAAAAAAAANAgV2zdHJvv3rbf1zffvS2u3HpLCyoCAAAAAIB9CRcBAAAAAAAANMDe2Zm48IYNB3z8whs2xNTsTBMrAgAAAACA/QkXAQAAAAAAADTAl2+6KnZPVw74+K7pqfjSTVc3sSIAAAAAANifcBEAAAAAAABAzrZO7IzvbrkpOe67W34cv5zY2YSKAAAAAADgsQkXAQAAAAAAAOSoWqvFp6+9LGq1WnJs7YGx1QxjAQAAAACgEYSLAAAAAAAAAHL0g9s2xZZ77sw8/uf33Bkbbr+5gRUBAAAAAMCBCRcBAAAAAAAA5GRyZjr+48YrF/28/7jhipicnW5ARQAAAAAAUJ9wEQAAAAAAAEBOvnjTD2PPTGXRz9s9U4kv/fiqBlQEAAAAAAD1CRcBAAAAAAAA5OC2e3fEf275yZKf/70tN8Vt9+3IsSIAAAAAAEgTLgIAAAAAAABYpmq1Gv967WVRW8Y1ahHx6Wsvi2ptOVcBAAAAAIDFES4CAAAAAAAAWKbLbvtZLl2Hbr13R1x+689yqAgAAAAAALIRLgIAAAAAAABYht3TlfjCjT/M7Xqfv/HK2D1dye16AAAAAABQj3ARAAAAAAAAwDJ84cdXxuTsdG7Xm5ydji/8OL+wEgAAAAAA1CNcBAAAAAAAALBEW+65My679We5X/fyW38av7jnrtyvCwAAAAAAjyZcBAAAAAAAALAE1Wo1Pn3tZQ25di0i/vXay6JarTbk+gAAAAAA8CDhIgAAAAAAAIAl+N4vfhJbJ3Y27PpbJ+6O//zFTxp2fQAAAAAAiBAuAgAAAAAAAFi0XZW98cUf/7Dh83zhx1fFrumphs8DAAAAAEDvEi4CAAAAAAAAWKT/uPHKmJqbbfg8U3Mz8R83XtHweQAAAAAA6F3CRQAAAAAAAACLsPnubfGD229u2nw/uO3muGXn9qbNBwAAAABAbxEuAgAAAAAAAMhooVqNT193WdPn/fS1l8VCtdr0eQEAAAAA6H7CRQAAAAAAAAAZfffnP45fl+9t+ry/Kt8T3/35j5s+LwAAAAAA3a+/1QUAtNrc3Fxs2LAhrrzyyti0aVNs3rw5du7cGXv27Im9e/dGqVSKVatWxUEHHRTHHXdcnHDCCfGMZzwjnve850WpVGp1+R1l586dcckll8QNN9wQmzZtiltvvTV27doVe/bsibm5uVi5cmWsWrUqjjjiiDjhhBPiKU95Sjzvec+Lk046qdWlAwAAAABATFT2xpdvurpl83/5J1fHGU98coyXVrSsBgAAAAAAuk+hVqvVWl0EQCtcccUV8c///M/x7W9/O3bv3r3o55dKpXjBC14Qf/InfxIvfvGLo1AoNKDKzlepVOJzn/tc/Ou//mtce+21Ua1WF32NtWvXxvnnnx9vetOb4qijjmpAlZ1r586dceihh+7ztbvvvjsOOeSQFlUEAAAAANC9/unK78QPf3lLS2s468jj4o3PfHFLawAAAAAA6Ea9fC632OoCAJrtBz/4QTz96U+Ps88+Oz7/+c8vKVgUcX9o5pvf/Gacd955cfzxx8fXvva1fAvtcHNzc/G+970vnvCEJ8Qb3vCGuOaaa5YULIqIuOOOO+JDH/pQPOlJT4rzzz8/tm7dmm+xAAAAAACQsGnHHS0PFkVEXLn1lrh5xx2tLgMAAAAAgC4iXAT0jHK5HH/4h38Yz3nOc+K6667L9dq33HJLvOIVr4iXvexlsX379lyv3YmuvPLKOOmkk+Iv/uIv4t57783tutVqNb785S/HU57ylHj/+98fmu8BAAAAANAM89WF+PR1l7W6jId8+rrLY7660OoyAAAAAADoEsJFQE/YtGlTnH766fHZz362ofN861vfilNPPTV++MMfNnSedvbxj388zjnnnLj55psbNsfU1FS8853vjN/6rd9acucpAAAAAADI6uLNN8a2Xfe1uoyH3LHr3vjOLTe2ugwAAAAAALqEcBHQ9a644oo444wzYsuWLU2Z76677opzzjknvvrVrzZlvnby1re+Nd74xjfG3NxcU+b75je/GWeeeWbs3LmzKfMBAAAAANB77p3aE//vp9e0uoz9fOUn18S9U3taXQYAAAAAAF1AuAjoatddd1289KUvjT17mvvLtdnZ2fjd3/3duOSSS5o6byu9613vig996ENNn3fTpk3xwhe+MMrlctPnBgAAAACg+12wcUPMzDfnplqLMTM/Fxdu3NDqMgAAAAAA6AL9rS4AoFHuuOOOeMlLXhK7d+/O/Jzh4eF49rOfHaeddlqsWbMmVq1aFZOTk3HnnXfGxo0b4/LLL4/JyclM15qdnY3f/u3fjmuuuSae+tSnLvXb6Aif/OQn4+/+7u8W9Zy1a9fGs5/97Fi/fn087nGPi4GBgSiXy7Fly5a45ppr4rrrrotarZbpWjfeeGO84hWviO9973vR19e3lG8BAAAAAAD285M7fxnX/GpLq8s4oKt/tSXOuetXceLhv9HqUgAAAAAA6GDCRUBXmp+fj1e/+tVxzz33ZBp/6KGHxrvf/e74gz/4g1i9evUBx01NTcUXv/jFeM973hO//OUvk9edmpqK888/P6677rpYsWJF5vo7yY033hh/9md/lnn8s5/97Pirv/qreN7znheFQuGA426//fb46Ec/Gh//+MdjdnY2ed3LL7883vOe98Tf/u3fZq4FAAAAAAAOZG5hPv7tustbXUbSv113efz9S34vBvr86hcAAAAAgKUptroAgEZ473vfG1dccUWmsa961atiy5Yt8aY3valusCgiYmRkJF73utfFLbfcEm984xszXX/z5s3x53/+55nGdprZ2dn43d/93Zienk6OLZVK8elPfzq+//3vx/Of//y6waKIiKOOOio+9KEPxU033ZS589Ni/ncHAAAAAIB6vr35hrhzT7nVZSTduXsiLt58Q6vLAAAAAACggwkXAV3n9ttvj7/7u7/LNPYv//Iv4/Of/3ysWrVqUXMMDQ3FP/3TP8XHPvaxTOM/9alPxbXXXruoOTrBBz/4wbjllluS41atWhWXX355vO51r1v0HMcdd1xcffXV8ZznPCc5tlqtxp/+6Z/GwsLCoucBAAAAAIAH7dy7O7760x+1uozMvvrTH8U9e3e3ugwAAAAAADqUcBHQdd761rdm6qTzhje8Id773vcua64//dM/jf/1v/5XclytVos//dM/jVqttqz52sn27dszfe8DAwPxrW99K04//fQlz7VixYr41re+FU972tOSY3/84x/HJz/5ySXPBQAAAAAAn7v+BzG7MN/qMjKbWZiPz13/g1aXAQAAAABAhxIuArrKjTfeGF/72teS404++eT4yEc+ksuc73rXu+JFL3pRctyPfvSjuOiii3KZsx28//3vj7179ybH/e///b/j7LPPXvZ8o6Oj8YUvfCFGR0czzTk7O7vsOQEAAAAA6D03bLs9rrvj1laXsWjX3nFr3Lh9a6vLAAAAAACgAwkXAV3l/e9/f3JMsViMT33qUzE0NJTLnIVCIf7lX/4lSqVScmyW+jrBxMREfOpTn0qOO/nkk+Ntb3tbbvM++clPjr/6q79Kjtu+fXtccMEFuc0LAAAAAEBvmF2Yj89e//1Wl7Fkn7nu8o7quAQAAAAAQHsQLgK6xq9//ev40pe+lBz32te+Nk455ZRc5/6N3/iNeOtb35oct2HDhrj22mtznbsVPvGJT2TqWvTBD34wisV832re8pa3xFFHHZUc94EPfCDXeQEAAAAA6H7f2nR97Jjc1eoylmzH5K741qbrW10GAAAAAAAdpr/VBQDk5cILL4z5+fp34ysUCvHOd76zIfO/5S1viQ984AMxPT1dd9xnPvOZePrTn96QGprlM5/5THLMM57xjHjuc5+b+9yDg4Px53/+5/HmN7+57rhNmzbFddddF6eddlruNQAAAABAN6tWq7F990Tcdt/dcceue2Pv7HTMLSzEfHUh+ot9MdDXFysGh2Pt6oPj6IMPjSNWjud+kyFohR2Tu+Lrmzr/BmFf33RtPOuodXHo6OpWlwK58d4EAAAAAI0lXAR0jQsvvDA55oUvfGEcf/zxDZn/kEMOide85jXxf//v/6077otf/GJ8+MMfjv7+zvwr+Prrr49bbrklOe7P/uzPGlbDH/3RH8W73/3u2L17d91xF154oXARAAAA9BCHTmFparVa3Hz3trj+jlvj1vt2xC/v2xkzC/Vv5PRIQ/0D8cTxx8UxBx0Wp649Jo4/dE0UCoUGVgyN8dnrvh9zCwutLmPZ5hYW4rPXfz/e/pyXt7oUWDLvTdAYPjNBfqwnyIe1BPmwliA/1hO9rFCr1WqtLgJguX7605/GiSeemBz3uc99Ln7/93+/YXVcfvnlcc455yTHXXzxxfHiF7+4YXU00tvf/vb4wAc+UHfMypUrY8eOHVEqlRpWx+te97pkB6XDDz88tm/f3tW/LNq5c2cceuih+3zt7rvvjkMOOaRFFQEAAEDzOHQKy7N3diY23H5zfG/LTbF990Ru1z1i1Xi84Nj1cfZRx8eKwaHcrguNdP0dt8UHfvDNVpeRq7c9+2Vx6tqjW10GLIr3JsiXz0yQH+sJ8mEtQT6sJciP9cSj9fK5XOEioCv84z/+Y/yP//E/6o4ZHh6Ou+++O1auXNmwOqrVajzhCU+I7du31x335je/OT7ykY80rI5GeupTnxo/+9nP6o55zWteExdccEFD6/jOd74TL3nJS5LjNm7cGCeffHJDa2mlXt7EAAAA0LscOoXl2bGnHN/YdH38cOvmRf2SdLGG+vrjmUeui5efcGoctnKsYfPAcs3Mz8X/uOhzcc/ePa0uJVeHrFgV//DS18Zgf3+rS4Ek702QL5+ZID/WE+TDWoJ8WEuQH+uJA+nlc7nCRUBXeNGLXhTf/e536455wQteEJdeemnDa3n9618f//Zv/1Z3zPHHHx+bNm1qeC15u/POO+OII45IjrvgggviNa95TUNrmZ6ejvHx8Zienq477n3ve1+84x3vaGgtrdTLmxgAAAB6j0OnsDwL1WpctHljfOWmq2OuutC0eQeKffHK9WfES9edEsVisWnzQlZf/PFV8bWf/ajVZTTEK556epy//sxWlwEH5L0J8uUzE+THeoJ8WEuQD2sJ8mM9kdLL53KFi4CONzs7G+Pj4zE1NVV33N///d/HO9/5zobXc+GFF8bv//7vJ8fdcccdsWbNmobXk6cLLrggXvva1ybH3XnnnXH44Yc3vJ5zzz03vve979Ud06xQWav08iYGYDmq1Wps3z0Rt913d9yx697YOzsdcwsLMV9diP5iXwz09cWKweFYu/rgOPrgQ+OIleMOGQAAtJBDp7B823bdF5+4+rtx6707WlbDkw4+PN5wxrmxZvVBLasBHu3O3RPxzm9fGPNNfH9ppv5iX7zvvNfE41eNt7oU2I/3JsiPz0yQH+sJ8mEtQT6sJciP9URWvXwuV7gI6HjXXnttnH766clxV1xxRZx11lkNr+dXv/pVPPGJT0yO+8pXvhK//du/3fB68vTGN74xPv7xj9cd86QnPSm2bNnSlHr+5m/+Jv76r/+67phVq1ZFuVyOQqHQlJqarZc3MQCLUavV4ua7t8X1d9wat963I355385F3X1kqH8gnjj+uDjmoMPi1LXHxPGHruna9xYAgHbj0CksT7VWi4tu3hhfvumqpv7C9EDu/0XqmfHS40+Jos9VtFitVou/v+xr8ZO7ftXqUhpq/eOfGO987m/5WQZtw3sT5MtnJsiP9QT5sJYgH9YS5Md6YjF6+VyucBHQ8f7lX/4l3vCGN9QdUywWY/fu3bFixYqm1HTIIYfEPffcU3fMu9/97vjbv/3bptSTl2c+85lx1VVX1R3zO7/zO/GFL3yhKfVcdNFF8Zu/+ZvJcb/4xS/imGOOaUJFzdfLmxiALPbOzsSG22+O7225KbbvnsjtukesGo8XHLs+zj7q+FgxOJTbdQEAeJhDp7B889WF+OTVl8aVW29pdSn7OevI4+INZ5wb/cW+VpdCD/vRr7bEh6/4dqvLaIo/O/ulcfoTntTqMsB7E+TIZybIj/UE+bCWIB/WEuTHemIpevlcbn+rCwBYro0bNybHPPnJT25asCgi4tRTT41LLrmk7pgbbrihSdXko1qtxo9//OPkuFNOOaUJ1dzv1FNPzTTuhhtu6NpwEQCPbceecnxj0/Xxw62bF9WhKKvtuyfis9d/P75w45XxzCPXxctPODUOWzmW+zwAAL2qHQ+dzlUX4j9uvCJ+Vd7p0CkdYXZhPj56xbdj47bbW13KY7py6y1RmZuNNz/rvBjs8+sqmm96fi4+u/EHrS6jaT53/fdj/eOfGMP9A60uhR7mvQny4zMT5Md6gnxYS5APawnyYz3B4hVbXQDAcv3kJz9Jjlm3bl0TKnnYcccdlxxz0003NaGS/Nx6660xNTWVHNfM1/rwww+P1atXJ8d12msNwNItVKvxjU3XxTsuuiAuu/WnDQkWPdLMwnxcdutP4x0XXRDf3HRdVKvVhs4HANALZhfm48MbLmqrX/Y80pVbb4kPb7goZhu814TlmK8utPXh7Qdt3HZ7fOyKi2O+De4YSe/56k+vifumJltdRtPcOzUZX/vpj1pdBj3MexPkx2cmyI/1BPmwliAf1hLkx3qCpREuAjrebbfdlhxz7LHHNqGShz3pSU9Kjtm2bVvMzs42oZp8ZHmdI5r/WmfpSJS1dgA627Zd98V7Lv1ifP7GK5veyvj+O4tcGe+59Euxbdd9TZ0bAKCbOHQKy1et1eKTV1/a9uvoQddvuy0+efWlUa3VWl0KPWTbrvvi2zff0Ooymu6izRv93IKW8N4E+fGZCfJjPUE+rCXIh7UE+bGeYOmEi4COVqlU4q677kqOyxJAyVOWcFG1Wo1f/vKXTagmH7ffnm2jdfTRRze4kn1lea2z1g5AZ6rWavHNTdfHuy7+97j13h0treUX994V77r43+Obm653+AAAYJEcOoV8XHTzxra9G+OBXLn1lvj25o2tLoMeUavV4t+uuywWar3XfXihWo1/u+7yqHnvosm8N0E+fGaC/FhPkA9rCfJhLUF+rCdYHuEioKNlDeccccQRDa5kX49//OMzjeuk0MvWrVuTYw466KAYHh5ufDGPkOW17qTXGYDFma8uxP+56pL4jxuvaHq3ogO5v4vRFfF/rrrE3UUAABbBoVNYvm277osv33RVq8tYki/9+CodVWiKq3758/jZjjtaXUbL/GzHr+PqX21pdRn0EO9NkB+fmSA/1hPkw1qCfFhLkB/rCZZHuAjoaNu2bcs07vDDD29wJUub7447OucXmFle62a/zlnnvOuuu2JhweFugG4zuzAfH95wUdv+UODKrbfEhzdcFLML860uBQCg7Tl0Csu3UK3GJ67+btvceGGx5qoL99+hsdp73WRonsrcbFxww4ZWl9FyF2z8QVTmZltdBj3AexPkx2cmyI/1BPmwliAf1hLkx3qC5RMuAjravffem2ncYYcd1uBK9nXooYdGsZj+K/a++zpnM5DltW726xyRLVxUq9ViYmKiCdUA0Czz1YX46BXfbvs2xhu33R4fu+JiHYwAAOpw6BTy8e3NG+PWe3e0uoxl+cW9d8VF7tBIA33lJ1dHubK31WW03ERlb/y/n1zT6jLoAd6bIB8+M0F+rCfIh7UE+bCWID/WE+RDuAjoaFnDRWNjY40t5FGKxWKsXLkyOS5r/e0gS63Nfp0XM2cnvdYA1Fet1eKTV1/a9sGiB12/7bb7fwBQq7W6FACAtuTQKSzfjj3l+PJNV7e6jFx8+aarY8eecqvLoAv9unxPfOeWG1tdRtu4+JYb4tfle1pdBl3MexPkx2cmyI/1BPmwliAf1hLkx3qCfAgXAR0ta+ef0dHRBleyvyzhok7qXJSl1izfc96yztlJrzUA9V1088a4custrS5jUa7cekt82w8AAAD249Ap5OMbm67v2DsyPtpcdSG+sen6VpdBl6nVavHp6y53449HqD7wmtS8JjSI9ybIh89MkB/rCfJhLUE+rCXIj/UE+REuAjra7t27k2NWrFgRxWLz/7pbtWpVcsyuXbuaUEk+srzWrQgXZXmdIzrrtQbgwLbtui++fNNVrS5jSb7046ti2y5hVwCAR3LoFJZv7+xM/HDr5laXkasfbt0cU7MzrS6DLnLl1lti893bWl1G29l897aOu4ELncF7E+THZybIj/UE+bCWIB/WEuTHeoL8CBcBHW12djY5plQqNaGS/Q0PDyfHZKm/XbTra53ldY7orNcagMe2UK3GJ67+bsf+QGCuuhCfvPrSqFarrS4FAKAtOHQK+dhw+80xszDf6jJyNbMwHxtuv7nVZdAl9s7OxIU3bGh1GW3rwhs2eO8id96bIB8+M0F+rCfIh7UE+bCWID/WE+Srv9UFACxHlsBIX19fEyrZX39/+q/YTgq8tOtrneV1juis13q5nvWsZ2V+XWicn/3sZ60uAbrOtzdvjFvv3dHqMpblF/feFRdt3hgvO+G0VpcCANBy3Xzo9EXHPa3VpdAjarVaXLrlplaX0RCXbrkpXvjkk6JQKLS6FDrcl2+6OnZNT7W6jLa1a3oqvnTT1fGHpz2n1aXQJbw3QX58ZoL8WE+QD2sJ8mEtQX6sJ8iXzkVAR8sSGGlVyCLLvHNzc02oJB/t+lpnnbOTXmsA9rdjTzm+fNPVrS4jF1++6erYsafc6jIAAFqq2w+d1mq1VpdBj7j57m1x5+6JVpfRENt3T8Tmu7e1ugwAFsl7E+TDZybIj/UE+bCWIB/WEuTHeoL8aWsAdLT5+XTiWLgoH+36WgsX7e+KK66IQw45pNVlAOTqG5uuj7nqQqvLyMVcdSG+sen6+ONnPL/VpQAAtEwvHDo9/rC1rS6FHnD9Hbe2uoSGuu6O26wllu389WfE1b/6ue5FBzA2PBLnrz+j1WXQRbw3QT58ZoL8WE+QD2sJ8mEtQX6sJ8ifzkVAR8sSLFlYaM1B5Czztir4tBTt+lpnnbOTXmsA9rV3diZ+uHVzq8vI1Q+3bo6p2ZlWlwEA0DK9cOgUmuHW+3a0uoSGuq3Lvz+aY2RwKF5z8tmtLqNt/d7JZ8fI4FCry6CLeG+CfPjMBPmxniAf1hLkw1qC/FhPkD/hIqCjDQ4OJsdk6bjTCFk65WSpv12062udtSNRJ73WAOxrw+03x8xCa97PG2VmYT423H5zq8sAAGgZh05h+arVavzyvp2tLqOhtk7sjGq12uoy6AJnHXlcrDt0TavLaDvHH7omzjryuFaXQRfx3gT58ZkJ8mM9QT6sJciHtQT5sZ4gf8JFQEcbGBhIjmlVuCjLvJ0UeGnX1zrrnJ30WgPwsFqtFpduuanVZTTEpVtuilqt1uoyAACazqFTyMf23RNddyOGR5uZn4vteyZaXQZdoFAoxOtPe24UC4VWl9I2ioVCvP60c6LgNSFH3psgHz4zQX6sJ8iHtQT5sJYgP9YTNEZ/qwsAWI6hoaHkmOnp6SZUsrR5Oynw0q6vddY5O+m1BuBhN9+9Le7c3Z2/rN++eyI2370tjj9sbatLAQBoql45dLrh9s3xuNGV93+hFlGLWtQiIh4ImNce+sfaA//8cPC8FrV4ZA794T8/cI0HrlN74Dr7XrMWjxz54HX2veZjz/nA/z08S0PrfmCyunXXHjHfEuquPXj1/euOR82ZGtvauh/+50fWfV9lMnrB+y77eowODWcau7SIxBKftYSnNau+pdXWvIDJUsIsS6ruMZ60engkJip7l3K1rrN6eCQ+de1/PvaDS7gXylJun9Ksm67UllRdxNLKW/yTlvbaLeFJS30dFjF2cqY1v5Nrto9ecXGMl1Y89PfZg3/dFAqP/Nu0EIXCA3+/Fh76yv3/WNj3792Hn/fAfz70lMJDf6c/NKLw8DX2veZjzf3oaz58jUc88oix7VL3I+fIWPcD11l63Q//82PX/fAzmlH3zsndPfGZ6cY7fxmHrxxrdSl0ubv2lK0nyIG1BPmwliA/vbKetu+ZiLWrD251KfQQ4SKgo61cuTI5Zu/evVGr1Zp+9709e/Ykx6xataoJleRj5cqVcffdd9cdk+V7zlvWOTvptQbgYdffcWurS2io6+64TbgIAOg5t91X/+cL3eKT11za6hKgK9w7tSfunWr+zx2h201U9gpawRLdseveuGPXva0uAzreP37/G60uAbqG9QT5sJYgH9YS5Of2++4WLqKpiq0uAGA5DjrooOSYWq3WktDL7t27k2Oy1N8ustSa5XvOW9Y5O+m1BuBht963o9UlNNRtXf79AQA8FgcxAQAAAAAAoL47yn6nRnMJFwEd7eCDsyVyd+3a1eBK9lWtVmNycjI5Lmv97SBLrc1+nRczZye91gDcr1qtxi/v29nqMhpq68TOqFarrS4DAKCp9s5Ot7oEAAAAAAAAaGuTszOtLoEeI1wEdLSsgZEdO5rbFWDnzp2xsLCQHNdJgZcstTb7dY6IuOuuu5JjCoVCjI+PN6EaAPK0ffdEzCzMt7qMhpqZn4vteyZaXQYAQFPNZfiZCQAAAAAAAPSyuS4/N0X7ES4COtqaNWsyjcsSQMlT1vmy1t8OstTa7Nc565yHHXZY9Pf3N6EaAPJ02313t7qEpri9R75PAIAHzVeFiwAAAAAAAKAev1Oj2YSLgI525JFHZhq3ffv2xhbyKHfeeWemcUcddVSDK8lPltf6vvvui5mZ5rZhzPJad9LrDMDD7th1b6tLaIo7yr3xfQIAPKi/2NfqEgAAAAAAAKCt+Z0azSZcBHS0UqkUhx12WHLcrbfe2oRqHvaLX/wiOaZQKMQTn/jEJlSTjywBnVqtFrfddlsTqnlYltdauAigM+2dnW51CU0xOdvcYC4AQKsN9PlFCAAAAAAAANQz0Nff6hLoMf6NAzre0UcfHTt27Kg7ZsuWLU2q5n5ZAi9r1qyJoaGhJlSTj6OPPjrTuC1btsTxxx/f4GoeluW1zlo7AO1lbqE3WvvOLcy3ugQAgKZaMTjc6hK6WiEiolB46J8LUYj7/6/wiMfv/3PhoScV9hn70LgoROERz93neQ99qfDQnA9e7+E593/u/UMfUcsDf65fy8Nz7vt97POnB2p9uO6Hatlvjn3r3v+1enjgPt//o66z7/eR7bXar5aHnvfo7+MxXqtH/e921+Su2Hz3tuh2Jx9xVDxh7ODkuFrUFn/xJTxlqU9rVn1Lmae2xNdhKQUu6bVbUn3ZnlSr1eKHv/x5TPbADU6eetjaWLM6vZYeVkgPefQzFv+UJcyytGctpbb7Z2rON7WUeZb0LTX4dfh1+Z64YfvWpU3SQdYdckQcvnIsavHA37u1h//WqT3wl1Ytao/4++v+v53v//ODj+879sEvPvKa+16n9hhzPPzPjx770H/WHvj6Q4NqjzHH/rU8cs5Hfx8PXiMecZ1aPPr7eHjs/nPs/1rt8/0+4hoPfx+1x5gj/VodsJZH/+/20J/3f60AAACgVUYHO+eMMd1BuAjoeCeeeGJcddVVdcds3ry5SdVkn+/EE09sQiX5OeaYY6JUKkWlUqk7bvPmzfHyl7+8KTXdddddsWvXruS4TnutAbjffLU3wkW98n0CADxo7aIONneu15323DjjN4594E+PCJ5kDMzsG1I50HP3D7rQO+4o3xvv+PYFrS6j4V598lk98/cGrXHSEUfGP3z/G60uo+H+4LTnWks03B3le3siXPRHpz/Peuox+wSjHjPo9HAoKmLfQFOmINajQmFX//Ln8Znrv9/ob6vlfmf9mXHKmqNaXQZd7vptt8WXbrq61WU0nPVEo1lLkA9rCfLTK+tpbYYbb0GehIuAjnfyyScnx9xyyy0xNTUVIyMjTagoYuPGjckxp5xyShMqyU9fX1+sX78+rrnmmrrjsnzveck6V6e91gDcr7/Y1+oSmqJXvk8AgAcdfdChrS6hKU44bG2sGm7Oz6LoTUesGo+hvv6Y6eJuqEP9A3HEyvFWl0GXO+nxT4y+QiEWlt7Cqe1ZSzSL9ya61b7dJBsf6n/KYU9o+Bzt4LQnHCOoR8MVC8WeOHRqPdFo1hLkw1qC/PTKejqqR36nRvsotroAgOXKEhypVqtx4403Nr6YiPj1r38dO3fuTI7LEopqN1le62aGi66//vrkmJUrV8YxxxzThGoAyNtAX2+Ebgb63PMBAOgtDx467WYOndIMxWIxnnjQIa0uo6GOHD8kikW/yqKxisViHHXwYa0uo6GsJZrFexPkw2cmyI/1BPmwliAf1hLkx3qCxvBTL6DjnXTSSVEqlZLjNmzY0IRqIn7wgx9kGveMZzyjwZXk78wzz0yO2bJlS+zYsaMJ1WR7rU8//fSH7iYGQGdZMTjc6hKaYnRwqNUlAAA0lUOnkJ9jDuruQMTRXf790T6OPfjwVpfQUNYSzeS9CZbPZybIj/UE+bCWIB/WEuTHeoLG8G8c0PGGhobiWc96VnLcf/7nfzahmmzzrFu3LtauXduEavL1/Oc/P9O4ZrzWMzMzceWVVybHnXvuuQ2vBYDG6JU22WvHeuP7BAB4JIdOIR+nru3ujt2nrT261SXQI6wlyI/1BPnwmQnyYz1BPqwlyIe1BPmxniB/wkVAV3jBC16QHLNhw4aYnJxsaB3VajUuueSS5LhODbwcccQRcfzxxyfHXXzxxQ2v5fLLL49KpZIc16mvNQARRx90aKtLaIqjeuT7BAB4JIdOIR/HH7omHr9qvNVlNMQRq8Zj3aFrWl0GPcJagvxYT5APn5kgP9YT5MNagnxYS5Af6wnyJ1wEdIUXv/jFyTHT09Px9a9/vaF1bNiwIbZv354cl6XedpWl9q9//esxPT3d0Do+//nPJ8ccdthhcfLJJze0DgAa54hV4zHU19/qMhpqqH8gjljZnYctAADqcegU8lEoFOLcY9e3uoyGOPfY9VEoFFpdBj3CWoL8WE+QD5+ZID/WE+TDWoJ8WEuQH+sJ8idcBHSF9evXxwknnJAcd8EFFzS0js997nPJMQcffHBHd9N59atfnRyzZ8+ehga59u7dG1/96leT4171qlf5JQ9ABysWi/HEgw5pdRkNdeT4IVEs+lgGAPQeh04hP2cfdXzX3ZhhqK8/zj4q3UEd8mQtQX6sJ1g+n5kgP9YT5MNagnxYS5Af6wny5xQb0DVe85rXJMdccsklsXnz5obMv3PnzrjwwguT437nd34nBgYGGlJDMzz96U+PY489Njnuwx/+cMNq+PSnPx27du1Kjsvy7wQA7e2Ygw5rdQkNdXSXf38AAPU4dAr5WDE4FM88cl2ry8jVM49cFyODQ60ugx5jLUF+rCfIh89MkB/rCfJhLUE+rCXIj/UE+RIuArrG7//+70dfX1/dMbVaLf7+7/++IfN/5CMfienp6eS4P/zDP2zI/M2U5Xu4+uqr4/LLL8997tnZ2fjgBz+YHLdu3bo4/fTTc58fgOY6de0xrS6hoU5be3SrSwAAaBmHTiE/Lz/h1Bgo1v/ZaKcYKPbFy084tdVl0KOsJciP9QTL5zMT5Md6gnxYS5APawnyYz1BvoSLgK7xG7/xG/HKV74yOe5zn/tcbNy4Mde5f/WrX2UKvJx11lnxjGc8I9e5W+G//bf/FiMjI8lxb3vb26JareY690c+8pG4/fbbM80NQOc7/tA18fhV460uoyGOWDUe6w5d0+oyAABayqFTyMdhK8filevPaHUZuXjl+jPisJVjrS6DHmUtQX6sJ8iHz0yQH+sJ8mEtQT6sJciP9QT5ES4Cuso73vGO5JhqtRp//Md/HLOzs7nMWavV4g1veENUKpXk2Cz1LcbrXve6KBQKyf/Pu4PQwQcfHP/1v/7X5LiNGzdmCl1ltWXLlvibv/mb5LjHP/7x8drXvja3eQFonUKhEOceu77VZTTEuceuj0Kh0OoyAABayqFTyM95606JYw4+rNVlLMuTDj48XrrulFaXQY+zliA/1hMsn89MkB/rCfJhLUE+rCXIj/UE+REuArrKKaecEi9/+cuT4zZu3Bhvectbcpnz7/7u7+I73/lOctxpp50WL3vZy3KZsx284x3vyNS96F3veldcccUVy55v79698apXvSomJyeTY//yL/8yhoa0hQToFmcfdXwM9fW3uoxcDfX1x9lHHd/qMgAA2oJDp5CPvmIx/tsZL+zYOzQOFPviDWecG8WiX13RWtYS5Md6gnz4zAT5sZ4gH9YS5MNagvxYT5APPwUDus4HP/jBTMGST3ziE/E//+f/XNZcH//4xzNdo1AoxMc+9rGu6k6wdu3aeNe73pUcNzc3F7/5m78Z11133ZLnmpqaipe97GVxww03JMeeeOKJ8d//+39f8lwAtJ8Vg0PxzCPXtbqMXD3zyHUxMigICwAQ4dAp5GnN6oPilevPbHUZS3L+SWfGmtUHtboMiAhrCfJkPcHy+cwE+bGeIB/WEuTDWoL8WE+QD/8GAl3nmGOOiXe+852Zxr73ve+NV7/61bFnz55FzTEzMxNvfvOb441vfGOm8a9//evjjDO6o+3iI7397W+PY489Njlu165d8ZznPCc+85nPLHqOW265Jc4444y47LLLkmMLhUL80z/9U/T1deYGEYADe/kJp3bsDwAebaDYFy8/4dRWlwEA0FYcOoX8vPT4U+KsI49rdRmLctaRx8V57shIm7GWID/WEyyfz0yQH+sJ8mEtQT6sJciP9QTLJ1wEdKX/7//7/+LMM7NtEj7/+c/HscceG//8z/8cu3fvrju2UqnEZz/72Vi3bl187GMfy3T9Jz/5yfGRj3wk09hOMzQ0FJ///OczdYqampqK173udXHOOefEZZddFrVare74rVu3xlvf+tZYv359/OQnP8lUz1/8xV/Es5/97ExjAegsh60ci1eu746g7ivXnxGHrRxrdRkAAG3HoVPIR7FQiDeccW6csuaoVpeSyalrjr7/joxd1PWd7mAtQX6sJ8iHz0yQH+sJ8mEtQT6sJciP9QTLU6ilTncDdKhf//rXcfLJJ8e9996b+TmlUime85znxKmnnhpr166NlStXxuTkZNx1111x/fXXx+WXX76oLkelUimuuuqqOOmkk5byLSS97nWvy9QN6LLLLovnPve5DakhIuLjH/945i5OD3rCE54Qz3nOc2L9+vVx8MEHx8DAQJTL5fjFL34R11xzTfzoRz9KBpAe6eyzz47LLrus57oW7dy5Mw499NB9vnb33XfHIYcc0qKKABpnoVqN91z6xbj13h2tLmXJnnTw4fGec8/XxhgA4ADmqwvx4Q0XxcZtt7e6lKRT1xwdbzn7vOjvkg6bdJ/Zhfn46BXfbuv1dOqao+NNz3pJDPb1t7oUOCBrCfJjPcHy+cwE+bGeIB/WEuTDWoL8WE8sVy+fyxUuArraj370o3jBC16wqEBQXgYGBuJrX/tanHfeeQ2bo13CRRER73znO+P9739/Q+c4kBNPPDEuv/zyOOig3msL2cubGKA3bdt1X7zr4n+PuepCq0tZtIFiX7z3Jb+njTEAQIJDp5Cf+epCfPLqS+PKrbe0upT9nHXkcfGGM871S1M6wnx1If7PVd+Nq37581aXsh9riU7jvQmWz2cmyI/1BPmwliAf1hLkx3piOXr5XK7bZQNd7fTTT49vfetbMTo62tR5BwYG4j/+4z8aGixqN+973/vizW9+c9PnXbduXVx66aU9GSwC6EVrVh8Ur1x/ZqvLWJLzTzpTsAgAIIPBvv74s7NfGmcdeVyrS3lMZx15XLzl7PP8soeO0F/siz8580Xx6qc9Kwba5KD0QLEvfu/kZ8WfnPkih7fpGP3FvnjjM18czzvmqa0u5SF9haK1REfy3gTL5zMT5Md6gnxYS5APawnyYz3B0uhcBPSEn/70p/Fbv/VbcdtttzV8rkMPPTS+8pWvxLOe9ayGz9VOnYse9NGPfjTe9ra3xfz8fMPnOu+88+Lf//3fY/Xq1Q2fq131ckIa6F3VWi3+z1WXtOXdTQ/krCOPiz8580VRLBRaXQoAQMeo1mpx0c0b48s3XdUWnSsHin1x/klnxnnrTrGvoyNt23VffOLq78at9+5oWQ1POvjweMMZ57rxAh3tHy7/etywfWtLaxgdHI6/Pvd8a4mO570JlsdnJsiP9QT5sJYgH9YS5Md6Yil6+VyucBHQMyYmJuJNb3pTXHjhhQ2b4yUveUn8y7/8S6xdu7ZhczxSO4aLIiI2bNgQf/zHfxy33NKYQ9+lUine/e53x1/8xV9EsdjbTfh6eRMD9Lb56kJ8eMNFbd2++EGnrjk63nL2ee56CgCwRA6dQn4WqtX49uaN8eWbrm7qL1IHin3xyvVnxkvXndzzP8+j801U9sbbvvmZmJ6fa8n8A8W++NDL/jAOWrGyJfND3rw3wfL5zAT5sZ4gH9YS5MNagvxYTyxGL5/LFS4Ces7ll18eb3/72+P666/P7ZpPfvKT473vfW/8l//yX3K7ZhbtGi6KiJidnY0PfOAD8Y//+I9x33335XLNYrEYr3jFK+If/uEf4qijjsrlmp2ulzcxALML8/HRK77d1gGjU9ccHW961ku0MQYAWCaHTiFfO/aU4xubro8fbt0cMwuN60A+1NcfzzxyXbz8hFPjsJVjDZsHmu3izTfE5zb+oCVzv/aUZ8dL1p3ckrmhkbw3wfL4zAT5sZ4gH9YS5MNagvxYT2TVy+dyhYuAnvX9738//vmf/zkuvvjimJycXPTzh4eH4/nPf378yZ/8SZx33nlRaEGLwnYOFz1oamoqPvOZz8SnP/3puO6662IpbztHHHFEnH/++fGmN70pjjnmmAZU2bl6eRMDEHF/B6NPXn1pXLm1Md3yluOsI4+LN5xxro5FAAA5cugU8jU1OxMbbr85Lt1yU2zfPZHbdY9YNR7nHrs+zj7q+BgZHMrtutAuFqrVeNd3/j1+Xb63qfP+xtjj4n+/+NXR5xACXcx7EyyPz0yQH+sJ8mEtQT6sJciP9URKL5/LFS4Cet7s7Gz84Ac/iCuvvDI2bdoUmzdvjnvuuSf27NkTU1NTMTw8HCtXroyDDjoojjvuuDjhhBPiGc94Rjz/+c+PkZGRVpffUXbs2BGXXHJJ3HDDDbFp06a47bbbYteuXbFnz56Yn5+P0dHRWLlyZaxZsyaOP/74eMpTnhLPe97z4uST3YXxQHp5EwPwoGqtFhfdvDG+fNNVTb2zyIEMFPvi/JPOjPPWnRLFFoSPAQB6gUOnkK9arRab794W191xW9x2347Yet/di/ql6lD/QBw5fkgcfdBhcdrao2PdoWtacjMmaKbNd2+Lv/nel5s651+fe34cd8gRTZ0TWsV7EyyPz0yQH+sJ8mEtQT6sJciP9cSB9PK5XOEiAOhgvbyJAXi0bbvui09c/d249d4dLavhSQcfHm8449xYs/qgltUAANBLHjx0etHmjbFx2+2Lfr5Dp/DYqtVqbN8zEbffd3fcUb43JmdnYm5hPuarC9Ff7IuBvv4YHRyKtWMHx1EHHRpHrByPok4q9KBPXPXd+MHtNzdlrmcffXz8tzNe2JS5oB15b4KlEdSD/FhPkA9rCfJhLUF+rCcerZfP5QoXAUAH6+VNDMBjWahW49ubN8aXb7q6qV2MBop98cr1Z8ZL153s0AIAQAt89+c/jn+77vIDPl4sFOKZTzzOoVMAcrWrsjfe9q3PxtTcbEPnGRkYig+87A9i9fBIQ+cBoPsJ6kF+rCfIh7UE+bCWID/WE718Lre/1QUAAADkpa9YjJedcFqc/oQnxTc2XR8/3Lp5UXcTWayhvv545pHr4uUnnBqHrRxr2DwAANQ3Udlb9/FDVqyK//7MFzWpGgB6xerSividk55ZN+Cah1eddKZgEQC5KBaLsXb1wbF29cGtLgU6nvUE+bCWIB/WEuTHeqKXCRcBAABd57CVY/HHz3h+vObkZ8WG22+OS7fcFNt3T+R2/SNWjce5x66Ps486PkYGh3K7LgAAS1NOhIvGR0abVAkAveYFTzoxLr/1Z7F1YmdDrn/k+KHx/Ced2JBrAwAAAADAg4SLAACArjUyOBQvOu5p8cInnxSb794WX/3Zj+Knd/160dcpFgpx7OMeH0cfdFictvboWHfomigUCg2oGACApUh1LhobXtGkSgDoNcViMV7/9HPir7/7xdyvXYiIP3r6OVEsFnO/NgAAAAAAPJJwEQAA0PUKhUIcf9jauPnubUsKFx1z8GHx1+ee34DKAADIw0Rlsu7j4yXhIgAa59jHPT7OOeYpcdmtP8v1us895qnxpMcdnus1AQAAAADgsbjNFQAA0DNSd7Q/kHJlKudKAADIU2q/Nj4iXARAY73qpLNidHA4t+uNDg7Hq056Zm7XAwAAAACAeoSLAACAnlGeXmq4aG/UarWcqwEAIA9zC/OxZ6ZSd8zYsHARAI21argUr3pafmGg333aWbFquJTb9QAAAAAAoB7hIgAAoGdMTC0tXDRXXYi9czM5VwMAQB7K0+kukzoXAdAM5xz9lDj6oMOWfZ1jDj4snnvMU3KoCAAAAAAAshEuAgAAeka5srRwUUREeYnBJAAAGivLHm+8NNqESgDodcViMf7o6edEYRnXKETE659+ThQLy7kKAAAAAAAsjnARAADQE6q1WpSnlx4QmqhM5lgNAAB5mcgQLhorjTShEgCIOPrgw+L5x5645Oe/4Nj1uXQ/AgAAAACAxRAuAgAAesKe6amo1mpLfn6WQ6sAADTfRKLD5FD/QJT6B5tUDQBE/M76Z8bKodKin7dqqBTnn3RmAyoCAAAAAID6hIsAAICesNxwUFm4CACgLaW6U46XVkShUGhSNQAQMTo0HK9+2lmLft6rT35WjA4ON6AiAAAAAACoT7gIAADoCcsNF+lcBADQniYqk3UfHyutaFIlAPCwZx99Qhz7uMdnHv/kxz0+zj7q+AZWBAAAAAAAByZcBAAA9ITldh4SLgIAaE8TU+nORQDQbMVCIV7/9HMydc8rPDC2qNMeAAAAAAAtIlwEAAD0hOWGg5YbTgIAoDFS+zThIgBa5cjxQ+KFx65PjnvhsSfFE8cPaUJFAAAAAADw2ISLAACAnjBRmVzm84WLAADa0cR0Klw02qRKAGB/r1x/ZqweHjng46uHR+L89Wc0sSIAAAAAANifcBEAANATlhsOmqjsjVqtllM1AADkYW5hPiZnpuuOGSsd+EA3ADTaisGh+L2Tn3XAx19z8tkxMjjUxIoAAAAAAGB/wkUAAEBPKCfCRQeP1L+j/Xx1ISZn6x9cBQCgucqVqeQYnYsAaLVnHbku1h26Zr+vH3/omjjryONaUBEAAAAAAOxLuAgAAOgJqc5FRx10WPIaqYASAADNlaU75XhpRRMqAYADKxQK8frTnhvFQuGhrxULhXj9aedE4RFfAwAAAACAVhEuAgAAul61Wo3ydP272h990KHJ62Q5vAoAQPOUK5PJMWPCRQC0gSeMPS5efNzTHvrzS447OdaOHdy6ggAAAAAA4BGEiwAAgK63e6YStVqt7pgnjh+SvFuwcBEAQHtJ7c+G+weiNDDYpGoAoL7/cuIZMV5aEeOlFfHbJz6j1eUAAAAAAMBD+ltdAAAAQKNlCQUdPDIaq4dKdTscTWS4Mz4AAM2T2ueN61oEQBspDQzGa04+OwqFgvArAAAAAABtRbgIAADoellCQWOl0RgrjdYNF5UrB34MAIDmKyfCRWPCRQC0mTOf+ORWlwAAAAAAAPsptroAAACARkvd0b6vWIyVQ8PJO9vrXAQA0F50LgKg0xQKhSgUCq0uAwAAAAAA9iFcBAAAdL3UHe3HSyuiUCjE+EgiXDRV/zoAADRXep832qRKAAAAAAAAADqXcBEAAND1Une0Hxtesc9/H0jq8CoAAM2V3OfpXAQAAAAAAACQJFwEAAB0vVTHoQc7FiU7F03vjVqtlltdAAAs3ezCfEzOTtcdMy5cBAAAAAAAAJAkXAQAAHS91B3tx0ujD/x3/cOnC9Vq7Jmpf4AVAIDmyNJVUrgIAAAAAAAAIE24CAAA6Hrl6foHT8dKIxHxcMio7rUqk7nUBADA8mQJF40JFwEAAAAAAAAkCRcBAABdbaFajV3TU3XHPBgqynL4NNUFCQCA5siyL9O5CAAAAAAAACBNuAgAAOhqu6enolar1R3z4KHT1UOlKBQKdccKFwEAtIfUvqzUPxjDA4NNqgYAAAAAAACgcwkXAQAAXW1iOvsd7YvFYowNj9QdWxYuAgBoC6l92diIrkUAAAAAAAAAWQgXAQAAXW1iKh0GGis9fPB0vFT/EKrORQAA7SG1LxsfFi4CAAAAAAAAyEK4CAAA6GqpO9r3F/tidHD4oT+PJcJFOhcBALSHicpk3cdT+zoAAAAAAAAA7idcBAAAdLXUodPx0oooFAr7/Ln+9YSLAADaQbkyVffx8RHhIgAAAAAAAIAshIsAAICuNpE6dPqoMNF4aTRxvfphJQAAmiPZuWhYuAgAAAAAAAAgC+EiAACgq5VTh04fFS569J/3v95UVGu1ZdcFAMDSzc7Px97ZmbpjUh0pAQAAAAAAALifcBEAANDVJip76z6+f+ei+odQF2rVmJypLLsuAACWrjxdf48XETE+Ur8jJQAAAAAAAAD3Ey4CAAC6Wt7hoizXBACgsbLsx8aGR5pQCQAAAAAAAEDnEy4CAAC61kK1Grunp+qOGRMuAgDoOFn2Y1n2dQAAAAAAAAAIFwEAAF1s1/RU1BJjHn3odOXwSBQLhbrPmahMLrMyAACWY2Kq/n6sNDAYwwODTaoGAAAAAAAAoLMJFwEAAF0rSwhovDS6z5+LhUKMDde/y325Ur8bEgAAjVWert+5SNciAAAAAAAAgOyEiwAAgK6VJQQ0NrL/wdOxxGFUnYsAAFprYqp+uCi1nwMAAAAAAADgYcJFAABA10qFgAaKfbFiYGi/r48/RuBo3+vWP8wKAEBjpfZjOhcBAAAAAAAAZCdcBAAAdK3UodOx0oooFAr7f304ES5K3CkfAIDGKk+nwkWjTaoEAAAAAAAAoPMJFwEAAF0reUf7A3QoSt3pPnWYFQCAxkqFvcdKI02qBAAAAAAAAKDzCRcBAABdq5wKFx3gjvYHCh098rrVWm3JdQEAsHSz8/MxNTdTd4zORQAAAAAAAADZCRcBAABdK9W5aGz4QJ2L6h9GrdZqsWd6asl1AQCwdBMZukimOlECAAAAAAAA8DDhIgAAoGtNVCbrPn6gDkVjGQ6jpoJLAAA0xsRU/T1eRLb9HAAAAAAAAAD3Ey4CAAC60nx1IXZPV+qOOdAd7bPc6V64CACgNcoZ9mHCRQAAAAAAAADZCRcBAABdadf0VHLMgQ6drhwqRV+h/selLIdaAQDIXyrkPTIwGMP9A02qBgAAAAAAAKDzCRcBAABdaWIqHf45UIeiYqEQY6WR+tcXLgIAaIlUyFvXIgAAAAAAAIDFES4CAAC6Upbwz3hp9ICPpQ6lTlQmF10TAADLl9rnHShADgAAAAAAAMBjEy4CAAC6Unm6/qHTwb7+GBkYPODj9YJHERHlytSS6gIAYHlSIe/UPg4AAAAAAACAfQkXAQAAXWliqn64aKy0IgqFwgEfT93xXuciAIDWSIW8Ux0oAQAAAAAAANiXcBEAANCVysk72tc/dJo6lDpRqR9eAgCgMdKdi4SLAAAAAAAAABZDuAgAAOhKqfBP6tBp6vFd01NRrVYXXRcAAEs3Mz8XU3OzdccIFwEAAAAAAAAsjnARAADQlcoNDhdVa7XYPVNZdF0AACxdao8Xke5ACQAAAAAAAMC+hIsAAICulOpclDp0muWO96k5AADIV5b9l85FAAAAAAAAAIsjXAQAAHSd+YWFZFeh8dJo3cez3PF+ojK5qLoAAFieLOEinYsAAAAAAAAAFke4CAAA6Drl6eXf0X50qBR9xfofmcqVqUXVBQDA8pQT4aKRgaEY6h9oUjUAAAAAAAAA3UG4CAAA6DpZQj+pO9oXC4UYH64/RuciAIDmSnUuSgXIAQAAAAAAANifcBEAANB1soR+shw8TQWQUodbAQDIV2qfl9q/AQAAAAAAALA/4SIAAKDrpEI/Q339URoYTF4nFUCamBIuAgBoprLORQAAAAAAAAC5Ey4CAAC6TurQ6VhpRRQKheR1Une+L08LFwEANFMqRC5cBAAAAAAAALB4wkUAAEDXyevQ6fhIonNRYh4AAPKV2n+lwuEAAAAAAAAA7E+4CAAA6DrpQ6ejma4znhi3a3oqFqrVzHUBALB00/NzUZmbrTtmfCTbPg8AAAAAAACAhwkXAQAAXWeiMln38aydi8aG64+r1Wqxe3oqc10AACxdOUPXyLHhkSZUAgAAAAAAANBdhIsAAICuU67UD/yMj2QLF2UZNzGdPuQKAMDypbpTRuhcBAAAAAAAALAUwkUAAEBXmVuYjz0zlbpjUh2JHpSlw9HElHARAEAzTEzV704ZETGecZ8HAAAAAAAAwMOEiwAAgK5Snq7ftSgie+ei0cHh6C/21Z8vwx30AQBYvnKiY+SKwaEY7O9vUjUAAAAAAAAA3UO4CAAA6CpZOgmNl0YzXatQKMRYaaT+fJX0HfQBAFi+iUSoeyxD10kAAAAAAAAA9idcBAAAdJXUHe0jIhkYeqRUEGmiku6UBADA8qVC5OPCRQAAAAAAAABLIlwEAAB0ldSh06H+gSj1D2a+XuqQalnnIgCApkiFyLN2pwQAAAAAAABgX8JFAABAV5lIhH3GSyuiUChkvt5YIlw0UUl3SgIAYPlS+67FdKcEAAAAAAAA4GHCRQAAQFdJ39G+flhosePLwkUAAE1RTnSo1LkIAAAAAAAAYGmEiwAAgK4ykTh0mupE9GipcNGu6alYqFYXdU0AABZnem42KvOzdccsNkQOAAAAAAAAwP2EiwAAgK6S6iSUd+eiWtwfMAIAoHEmMnSLXGyIHAAAAAAAAID7CRcBAABdJXXwdLw0uqjrZTmkOlGZXNQ1AQBYnFSAPELnIgAAAAAAAIClEi4CAAC6xtzCfEzOTtcds/jORekwUrmicxEAQCPpXAQAAAAAAADQOMJFAABA18gS8lnsodMVg0MxUOyrO0bnIgCAxkqFi1YMDsVgX3+TqgEAAAAAAADoLsJFAABA18gS8lls56JCoZAMJGW5kz4AAEtXTuy3snSbBAAAAAAAAOCxCRcBAABdI0vIZ7GdiyLSgSThIgCAxkqFyBcbIAcAAAAAAADgYcJFAABA10jd0X64fyBKA4OLvm4qkJSaFwCA5SlXpuo+LlwEAAAAAAAAsHTCRQAAQNdIdRBa6qHT8dLosuYFAGB5Up2LltKdEgAAAAAAAID7CRcBAABdIx0uqh8SOuDzRuofVk0ddgUAYHkaFSIHAAAAAAAAQLgIAADoIo26o/3YcP3n7Z6uxHx1YUnXBgCgvsrcbEzPz9UdI1wEAAAAAAAAsHTCRQAAQNcoV6bqPr7UQ6epzkUREbum688NAMDSlBNdiyKWHiIHAAAAAAAAQLgIAADoIo3qXJQllDQxlT70CgDA4k1kCBeNl0abUAkAAAAAAABAdxIuAgAAusLs/HzsnZ2pO2bJnYsyHFbNcugVAIDFy9a5aKQJlQAAAAAAAAB0J+EiAACgK5SnM9zRfmRpd7QfGRiMgb6++vMnuiYBALA0qRD36OBwDPT1N6kaAAAAAAAAgO4jXAQAAHSFLJ2DxoaXdkf7QqGQ7F40UZla0rUBAKhvIhHiXmp3SgAAAAAAAADuJ1wEAAB0hSzhouUcPE09V+ciAIDGKCf2eWPCRQAAAAAAAADLIlwEAAB0hYmp+uGe0sBgDA8MLvn6qUOrWcJNAAAsXmqfpXMRAAAAAAAAwPIIFwEAAF2hPN3YO9qnOxcJFwEANEIqXKRzEQAAAAAAAMDyCBcBAABdYWKqsXe0Tz1f5yIAgMZIdy4abVIlAAAAAAAAAN1JuAgAAOgK6UOnyw0X1T+0unumEvMLC8uaAwCAfVXmZmNmfq7umPERnYsAAAAAAAAAlkO4CAAA6ArlBt/Rfqw0kq5hWvciAIA8ZekOOTYsXAQAAAAAAACwHMJFAABAV0gdPM0SDqonSzipXJla1hwAAOxrojKZHKNzEQAAAAAAAMDyCBcBAAAdb2Z+LqbmZuqOWW7novFS+tBqlsOvAABkl+pOGRExNry8EDkAAAAAAABArxMuAgAAOl6WQ6dZwkH1lAYGY6ivv+6YVPckAAAWJ7W/Gh0ajoHEHg0AAAAAAACA+oSLAACAjpcl1LPccFGhUIixxDWEiwAA8jUxVX9/tdw9HgAAAAAAAADCRQAAQBfI0rkoFQzKInV4NUsdAABkV55OhYtGm1QJAAAAAAAAQPcSLgIAADpeqmPQyMBgDPUPLHuescThVZ2LAADyldpfjZVGmlQJAAAAAAAAQPcSLgIAADpe6tBpXne0T3UumqhM5jIPAAD3m5iqv7/SuQgAAAAAAABg+YSLAACAjldu0h3tx5LhIp2LAADyUqvVojw9VXdMKvwNAAAAAAAAQJpwEQAA0PFSHYOa1blocmY65hbmc5kLAKDXVeZnY2Z+ru6YVPgbAAAAAAAAgDThIgAAoOOlOgbldUf78ZH0dVJ31wcAIJuJqXRXSJ2LAAAAAAAAAJZPuAgAAOh4qXBRXne0z9IBKcshWAAA0sqJPV6EcBEAAAAAAABAHoSLAACAjjY9PxeVudm6Y/I6dDpWGkmOKVcmc5kLAKDXpQLkERFjw8JFAAAAAAAAAMslXAQAAHS0LHe0z6tzUal/MIb6B+qOmahM5TIXAECvS4WLVg6Vor+vr0nVAAAAAAAAAHQv4SIAAKCjZbmj/fjIaC5zFQqFZBekCZ2LAABykeoImVd3SgAAAAAAAIBeJ1wEAAB0tCydi8aH8zt4muqClKUeAADSUh0hhYsAAAAAAAAA8iFcBAAAdLRUp6CRgaEY7O/Pbb505yLhIgCAPKQ6F6VC3wAAAAAAAABkI1wEAAB0tFSYZ3wk30OnqXCRzkUAAPlI7vOEiwAAAAAAAAByIVwEAAB0tImp5h46HS+N1n1c5yIAgOWr1WrJ0LZwEQAAAAAAAEA+hIsAAICOVp6uf+h0bDjfQ6djpZG6j0/OTsfswnyucwIA9JrK3GzMJPZUY8JFAAAAAAAAALkQLgIAADpaqlPQ+EhzOxdFROyqTOU6JwBAr8nSDTLLvgwAAAAAAACANOEiAACgo5WnEuGinA+djme4Q/5EZTLXOQEAek05U7hI5yIAAAAAAACAPAgXAQAAHWt6bjYq87N1x+R96HQsU7gofRgWAIADy7KfWj080oRKAAAAAAAAALqfcBEAANCxshw6zRIGWozSwGAM9w/UHSNcBACwPKlOkKuGStHf19ekagAAAAAAAAC6m3ARAADQscoZQjx5dy7Kcs0sdQEAcGCpsHYj9ngAAAAAAAAAvUq4CAAA6Fit6FwUETFeGq37uM5FAADLkwprN2KPBwAAAAAAANCrhIsAAICOlQrxjA4Ox2Bff+7zpg6zTlQmc58TAKCX6FwEAAAAAAAA0DzCRQAAQMdq1R3tU4dZdS4CAFie1H5qLNFJEgAAAAAAAIDshIsAAICOleoQ1Kg72qdCS6nQEwAAB1ar1ZL7qfERnYsAAAAAAAAA8iJcBAAAdKzUHe0bFS5KXXfv7EzMzs83ZG4AgG43NTcbswv191Jjw8JFAAAAAAAAAHkRLgIAADpW6o72qQ5DSzU+MpocMzGtexEAwFKkulNGNC5EDgAAAAAAANCLhIsAAICO1arORWPDI8kxE1PpQ7EAAOwvFSCPiBgfES4CAAAAAAAAyItwEQAA0JEqc7MxPT9Xd0yjwkVZrluenmrI3AAA3S4VIC9ExOoMYW8AAAAAAAAAshEuAgAAOlLq0GlExFhptCFzDw8MRmlgsO4YnYsAAJYmtc9bOVyK/mJfk6oBAAAAAAAA6H7CRQAAQEcqZwgXNapzUZZrZ6kPAID9pfZR4w0KkAMAAAAAAAD0KuEiAACgI01U0p2BxkojDZt/LBEuytJZCQCA/aX2UWPDjdvjAQAAAAAAAPQi4SIAAKAjpQ6djg4Nx0Bff8PmT3UuEi4CAFiaVIh8fETnIgAAAAAAAIA8CRcBAAAdqZwI76TCP8s1Xqp/qDVVHwAAj21iqrX7PAAAAAAAAIBeI1wEAAB0pFRnoLHhxh46HSuN1H08dcd9AAD2V6vVojyd2OcJFwEAAAAAAADkSrgIAADoSKlw0fhIazsXTc3Nxsz8XENrAADoNnvnZmJuYaHuGJ2LAAAAAAAAAPIlXAQAAHSkian6nYFS4Z/lynKotZwIQAEAsK/yVHr/JFwEAAAAAAAAkC/hIgAAoOPUarUoT0/VHdPoQ6dZrp/qrgQAwL4mprOEixobIgcAAAAAAADoNcJFAABAx6nMz8bM/FzdMWMNDhdlub5wEQDA4kwkOhcVImL18EhzigEAAAAAAADoEcJFAABAx0kdOo1ofOeiof6BGBkYrDumLFwEALAo5cpk3cdXDY9EX9GPtQEAAAAAAADy5LewAABAx8kS2ml0uOj+OUbrPq5zEQDA4kxUpuo+3ow9HgAAAAAAAECvES4CAAA6TpbQzthw4w+ejiUOt04k7rwPAMC+Uvun1P4LAAAAAAAAgMUTLgIAADpOKly0cqgU/X19Da8jded8nYsAABYn1aFS5yIAAAAAAACA/AkXAQAAHaecuKN9sw6dpuZJHY4FAGBfqXC2cBEAAAAAAABA/oSLAACAjjNRmar7eLMOnY7pXAQAkJtarZYMZ6f2XwAAAAAAAAAsnnARAADQcVKdi5p16HR8ZLTu45W52Ziem21KLQAAnW7v7EzMVRfqjhkv1d9/AQAAAAAAALB4wkUAAEDHSXUEalrnouGR5BjdiwAAsplIBMgjmrfPAwAAAAAAAOglwkUAAEBHqdVqbRMuSnUuiogoT081oRIAgM5XzhDKblaHSgAAAAAAAIBeIlwEAAB0lMrcbMwuzNcdM1ZKh37yMD6cPtw6MZW+Az8AAOmOj4WIWJ2hcyQAAAAAAAAAiyNcBAAAdJTUodOI5nUuGuzvjxWDQ3XHZKkXAID0vmn18Ej0Ff1IGwAAAAAAACBvfhMLAAB0lIlKuhNQs8JFERFjibnKwkUAAJmk9k3N6k4JAAAAAAAA0GuEiwAAgI6SpRPQ6tJIEyq5XyrIpHMRAEA2qX3TeBP3eAAAAAAAAAC9RLgIAADoKKk72q8aKkV/sa9J1USMJ+6gr3MRAEA2qXCRzkUAAAAAAAAAjSFcBAAAdJT0He3rdxLK21jiDvoTlckmVQIA0NlSoexm7/MAAAAAAAAAeoVwEQAA0FHSd7Rv7qHTdOeiqSZVAgDQuWq1WtuFyAEAAAAAAAB6hXARAADQUZJ3tB+pH/bJW+qQa2V+Nipzs02qBgCgM03OTsd8daHumGaHyAEAAAAAAAB6hXARAADQUZKdi4ab3bkoPV8qEAUA0Ouy7JfGR4SLAAAAAAAAABpBuAgAAOgYtVotJiqTdcc0+9BpljvopwJRAAC9Lst+abzJIXIAAAAAAACAXiFcBAAAdIy9czMxt7BQd0yWTkJ5yhIu0rkIAKC+VLioUCjEquGRJlUDAAAAAAAA0FuEiwAAgI6RJaTT7HDRYF9/jA4O1x2jcxEAQH2p7pSrh0eir+jH2QAAAAAAAACN4LexAABAx8gS0snSSShvqUBT6rAsAECvK1em6j4+Ntz8PR4AAAAAAABArxAuAgAAOsbEVP1wUSHuv6t9s6UCTToXAQDUlwpjN7s7JQAAAAAAAEAvES4CAAA6Rjlx6HTV8Ej0F/uaVM3DUoddy8JFAAB1pULk4yPCRQAAAAAAAACNIlwEAAB0jInKVN3HUx2EGkXnIgCA5SlPJ8JFOhcBAAAAAAAANIxwEQAA0DEmEp2LWnXodLw0WvfxicreqNVqTaoGAKCz1Gq1ZBi7VSFyAAAAAAAAgF4gXAQAAHSMcuLQaevCRSN1H5+Zn4vK/GyTqgEA6Cx7ZqZjoVqtO0bnIgAAAAAAAIDGES4CAAA6RuqO9q06dDqW6FwUEVGuTDWhEgCAzlOerr/Hi0h3igQAAAAAAABg6YSLAACAjlCr1ZKdi8Za1bloJD3vRGWyCZUAAHSeial0uKhV+zwAAAAAAACAXiBcBAAAdIS9szMxV12oO6ZVd7QfGx5JjslyaBYAoBelQtiFQiFWD5WaVA0AAAAAAABA7xEuAgAAOkKWzj/jLbqj/UBff4wODdcdM5HougQA0KvK04nulMMjUSz6UTYAAAAAAABAo/iNLAAA0BHKGcI5rQoXZZk7S/0AAL0o1eFxrIV7PAAAAAAAAIBeIFwEAAB0hFTnn0JErBoeaU4xj2G8NFr3cZ2LAAAeWyqE3coAOQAAAAAAAEAvEC4CAAA6Qiqcs3p4JPqKrfuIM1aqH2wqVyabVAkAQGdJ7fOEiwAAAAAAAAAaS7gIAADoCKlDp2OJzkGNpnMRAMDSpDoXjQkXAQAAAAAAADSUcBEAANARUodOxxOdgxotdUf9cmVv1Gq1JlUDANAZqrVaTEyn9nmtDZEDAAAAAAAAdDvhIgAAoCO0f+ei+uGimYX5qMzNNqkaAIDOMDlTiYVqte6Y1D4LAAAAAAAAgOURLgIAADrCRGWy7uOtPnQ6lmH+VEAKAKDXpLpTRrR+nwcAAAAAAADQ7YSLAACAtler1aJcmao7ZnyktYdOsxx6zXJ4FgCgl2QJX2cJcQMAAAAAAACwdMJFAABA25ucnY756kLdMWPDLe5clGF+nYsAAPaV2h8VC4VYNVRqUjUAAAAAAAAAvUm4CAAAaHtZQjmt7lzU39eXPPg6UZlsUjUAAJ0h1dlxbHhFFIt+jA0AAAAAAADQSH4rCwAAtL2JqQzhotJoEyqpb6xUP+CkcxEAwL5S+6Ox0kiTKgEAAAAAAADoXcJFAABA2ytP1z90WigUYnWia1AzjCfCRak78wMA9JpUuKgdAuQAAAAAAAAA3U64CAAAaHsTlcm6j68eHolisfUfb1LhIp2LAAD2lQpfpzpDAgAAAAAAALB8rT99BwAAkDAxlbqjfXscOh1L3FlfuAgAYF+pEHm77PMAAAAAAAAAuplwEQAA0PZSd7Rvl0On46WRuo9PVCajVqs1qRoAgPZWrdWiXJmqO6Zd9nkAAAAAAAAA3Uy4CAAAaHupjj9jbXLoNNW5aG5hIabmZptUDQBAe5ucqcRCrVp3TLvs8wAAAAAAAAC6mXARAADQ9jqnc1G6jonKZBMqAQBof6kAeUT77PMAAAAAAAAAuplwEQAA0NZqtVpMTKfCRfU7BjXL+EiWcFH6EC0AQC8QLgIAAAAAAABoD8JFAABAW9szMx0L1WrdMe1y6HT18EgUEmMmpoSLAAAi0h0di4VCrBweaVI1AAAAAAAAAL1LuAgAAGhr5cSh04iIsTYJF/UX+2LlcKnumHKiCxMAQK8oV6bqPj5WWhHFQiq6DQAAAAAAAMByCRcBAABtbaKSDuO0S+eiiIjx0mjdx3UuAgC4X6pz0dhw++zxAAAAAAAAALqZcBEAANDWUuGiYqEQq4bqdwtqprHhkbqPpw7RAgD0itQ+b3xEuAgAAAAAAACgGYSLAACAtlZOHDodG14RxWL7fLQZH6nfuag8rXMRAEBEep/XTt0pAQAAAAAAALpZ+5zAAwAAeAypO9qPlep3Cmq21CHYiSnhIgCAiAz7vGHhIgAAAAAAAIBmEC4CAADaWurQ6XipfqegZkuFi8qVvVGr1ZpUDQBAe6rWarGrMlV3zPiIcBEAAAAAAABAMwgXAQAAbW2iMln38bFEmKfZUvXMVRdi7+xMk6oBAGhPe2YqsVCr1h3TbiFyAAAAAAAAgG4lXAQAALS1crJzUXuFi7LUk/qeAAC6Xao7ZUT7hcgBAAAAAAAAupVwEQAA0LaqtVqUK1N1x7RfuCh9h/1UNyYAgG43MZXeD7XbPg8AAAAAAACgWwkXAQAAbWvPTCUWatW6Y9rtjvarh0eikBiT5U79AADdrDxdfz/UVyjGyqFSk6oBAAAAAAAA6G3CRQAAQNsqZwjhjI+kOwU1U1+xGKuGR+qOES4CAHrdxFT9/dDq0kgUC6nINgAAAAAAAAB5EC4CAADaVpYQzngiyNMK44luSllCUwAA3Sy1z0vtpwAAAAAAAADIj3ARAADQtiYqk3UfLxYKsbIDw0U6FwEAvS4Vth4vtVd3SgAAAAAAAIBuJlwEAAC0rYmp+odOx0orolgoNKma7MYSh2GFiwCAXqdzEQAAAAAAAED7EC4CAADaVnm6Mw+djpfqd1NKdWQCAOh2qc5FY226zwMAAAAAAADoRsJFAABA20rd0b5dD52OJzoXlStTUavVmlQNAEB7qVarHRsiBwAAAAAAAOhGwkUAAEDbmpjqzEOnqdDTfHUhJmenm1QNAEB72TNTiWoiaN2u+zwAAAAAAACAbiRcBAAAtK1yonNRqkNQq4yPpA/DproyAQB0qyz7oHbtUAkAAAAAAADQjYSLAACAtlSt1aI8Xf/g6VhppEnVLM74cIZwUaIrEwBAt8oSLtK5CAAAAAAAAKB5hIsAAIC2tGd6Kqq1Wt0x7dq5aNXwSBQKhbpjUsEpAIBulepO2VcsxuhQqUnVAAAAAAAAACBcBAAAtKVOvqN9X7EYq4frd1WaqEw2qRoAgPaS2ueNDY9EMRHUBgAAAAAAACA/wkUAAEBb6uRwUUTE2HD92iamdC4CAHpTKmTdrt0pAQAAAAAAALqVcBEAANCWyolwUV+hGKNDpSZVs3ip4FPq+wMA6FblylTdx9s5QA4AAAAAAADQjYSLAACAtpTqXDRWGoliodCkahZvfCTRuUi4CADoUanORWPCRQAAAAAAAABNJVwEAAC0pdSh0/HSaJMqWRqdiwAAHlsqZK1zEQAAAAAAAEBzCRcBAABtqVyZqvt4ux86Td1xf2J6b9RqtSZVAwDQHqrVapSn6+/zdC4CAAAAAAAAaC7hIgAAoC2lOhe1+6HTVPhpoVqNPTPTTaoGAKA97J6pJAPW7R4iBwAAAAAAAOg2wkUAAEBbmqjsrft4ux86HS+NJseUEwEqAIBuk9rjRbT/Pg8AAAAAAACg2wgXAQAAbadarUZ5eqrumE7vXBSR7XAtAEA3SXWnjIgYyxDSBgAAAAAAACA/wkUAAEDb2T1TiVqtVndMu9/RftVQKQqFQt0xwkUAQK8pV+oHyPuKxVg5NNykagAAAAAAAACIEC4CAADaUJbQTbuHi4rFYowNj9QdUxYuAgB6TKpz0fjwimRAGwAAAAAAAIB8CRcBAABtJ3XoNCJirDTahEqWJxWA0rkIAOg1qf3PWJsHyAEAAAAAAAC6kXARAADQdsqVqbqP9xWLsXJouEnVLN14IgAlXAQA9JpU58bxEeEiAAAAAAAAgGYTLgIAANpOqnPR+PCKKBQKTapm6cZKI3Ufz9KhCQCgmyQ7Fw0LFwEAAAAAAAA0m3ARAADQdpKHTkudceg01bkoded+AIBuk9rn6VwEAAAAAAAA0HzCRQAAQNuZmOqOQ6fjiRBUuTIV1VqtSdUAALRWtVqNXdNTdcekwtkAAAAAAAAA5E+4CAAAaDvl6US4qEMOnaY6LC3UqrFnptKkagAAWmvXTCVqiWD12HBnhMgBAAAAAAAAuolwEQAA0HYmKvXDRWOlkSZVsjypzkUR6e8VAKBbTFQmk2M6pUMlAAAAAAAAQDcRLgIAANrKQrUau6an6o7plM5FWcJFZeEiAKBHTEyl9z1Z9k8AAAAAAAAA5Eu4CAAAaCu7p6eiVqvVHdMph05XDo9EsVCoOybLHfwBALpBebp+uKi/2Bejg8NNqgYAAAAAAACABwkXAQAAbWUiceg0ImKsQ8JFxUIhWWuWO/gDAHSD1L5nrDQShUQwGwAAAAAAAID8CRcBAABtJUvYplM6F0VEjA0nwkUV4SIAoDek9j3jpdEmVQIAAAAAAADAIwkXAQAAbaWcOHTaX+yL0cHhJlWzfOMj9cNF5QydmgAAukFqn9dJAXIAAAAAAACAbiJcBAAAtJX0He1XRKFQaFI1y5c6JJulUxMAQDdI7fPGhIsAAAAAAAAAWkK4CAAAaCvdduh0bDjRuSjx/QIAdItyZbLu4zoXAQAAAAAAALSGcBEAANBWuu3Q6fhIIlw0vTeqtVqTqgEAaI2FajV2zVTqjum0fR4AAAAAAABAtxAuAgAA2kqqc1GnHTodL43Wfbxaq8We6akmVQMA0Bq7p6eilghUd1qHSgAAAAAAAIBuIVwEAAC0lXLXhYvS9aYCVQAAnS7LfqfT9nkAAAAAAAAA3UK4CAAAaBsL1WrsSnTx6bQ72mepV7gIAOh22cJF9Ts+AgAAAAAAANAYwkUAAEDb2DU9FbXEmE67o/3KoVL0Fep/9Ep1awIA6HSp/c5AsS9WDA41qRoAAAAAAAAAHkm4CAAAaBsTlcnkmE67o32xUIix0kjdMToXAQDdLrXPGyutiEKh0KRqAAAAAAAAAHgk4SIAAKBtlCtTyTFjHda5KCIdiMoSqgIA6GSpMHWndacEAAAAAAAA6CbCRQAAQNtIhWwGin2xYnCoSdXkJxWI0rkIAOh25cR+pxMD5AAAAAAAAADdQrgIAABoG6mQzVhpRRQKhSZVk5/UnfhTh20BADqdzkUAAAAAAAAA7Uu4CAAAaBupkM34SGceOk0dltW5CADodsJFAAAAAAAAAO1LuAgAAGgbyc5Fw5156HQs1bloeiqq1WqTqgEAaK6FajV2T0/VHTNWGm1SNQAAAAAAAAA8mnARAADQNtJ3tO/MQ6epO/HXarXYNVNpUjUAAM21a3oqaokx46WRptQCAAAAAAAAwP6EiwAAgLYxUZms+/j4SGd2LkqFiyIiyolgFQBAp0rt8SI6N0QOAAAAAAAA0A2EiwAAgLYwX12IPdP1u/dkCem0o7EMh2WzHLoFAOhE5cpUcsxYh4bIAQAAAAAAALqBcBEAANAWdk1PRS0xZqxDw0Urh4ajr1j/49eEzkUAQJdKhagHin2xYmCoSdUAAAAAAAAA8GjCRQAAQFuYmEqHazq1c1GhUIjx4fq1Z/n+AQA6USpEPVZaEYVCoUnVAAAAAAAAAPBowkUAAEBbyNK5Z7w02oRKGiPVdak8LVwEAHSncmKfNz7SmQFyAAAAAAAAgG4hXAQAALSFVLhmoK8vRgYGm1RN/lKHZnUuAgC6VbJzUaLDIwAAAAAAAACNJVwEAAC0hVS4Zrw0GoVCoUnV5C91aDZL5yYAgE6U2ud0cndKAAAAAAAAgG4gXAQAALSFcmWy7uPjpc6+o32qc1GqcxMAQKeaSO3zEvskAAAAAAAAABpLuAgAAGgL6Tvad/ah09Qd+XdNT8VCtdqkagAAmmO+uhB7pit1x6Q6PAIAAAAAAADQWMJFAABAWygnwkVjHR8uql9/rVaL3dNTTaoGAKA5dk1PRS0xRuciAAAAAAAAgNYSLgIAANpCt3cuyhKOSr0GAACdZmIqvb/p9H0eAAAAAAAAQKcTLgIAAFpufmEhds9U6o4ZL402qZrGyHJoVrgIAOg25eks4aLO3ucBAAAAAAAAdDrhIgAAoOV2TU8lx3T6He1HB4ejv9hXd0xZuAgA6DKp8PRAX1+MDAw2qRoAAAAAAAAAHotwEQAA0HJZOvaMdXi4qFAoJANSE5XJJlUDANAcE1P193njpdEoFApNqgYAAAAAAACAxyJcBAAAtFyWUE2ndy6KSAeksoSsAAA6SXk6FS7q/D0eAAAAAAAAQKcTLgIAgP+fvTuPmrQs78R/1btWVb/dXQVBAVHRAAoRjIobI9ER1GNcMDGoIUePqBgdJ5txhgQ0GnPiEpfojBPHoOhocBlyhtFxcAGMGo6I65EoGkBBhREOtlXd/VJV71q/P/xB2Pq5n3676qnl+XzO6T/0uei63qo+1t1yfe+LkUuFahZn56I2v1BQN8OTGp5tCxcBAFOm1ckOkU/6dkoAAAAAAACAaSBcBAAAjFwqVNOobYtKpVJQN8OTChfZXAQATJvUOc/mIgAAAAAAAIDREy4CAABGLhWqmZahU+EiAKBsWr1ynPMAAAAAAAAAJplwEQAAMHKpUE2jtlRQJ8PVSAzP7ul1YmNzs6BuAACGa31zI/b0upk1qfMRAAAAAAAAAMMnXAQAAIxc2+aiiIjoR8TuXqeYZgAAhmx3N32umZZzHgAAAAAAAMAkEy4CAABGLr25aDqGTps5NjC1ussFdAIAMHypM15EvvMRAAAAAAAAAMMlXAQAAIzU2sZ67F3pZtZMy432jXr658gzhAsAMAnynGumJUQOAAAAAAAAMMmEiwAAgJFq9zrJmmaOUM4k2Da/GPMzs5k1wkUAwLRoJzYyLszORX1+oaBuAAAAAAAAANgX4SIAAGCk2jnCNM3aUgGdDF+lUknezp/n/QAAmASp0HSzti0qlUpB3QAAAAAAAACwL8JFAADASOXZ1NOo1QvopBipLUw2FwEA0yIVmm4mQtcAAAAAAAAAFEO4CAAAGKlWJ3vodHFuPmpzCwV1M3yNaiJc1FkuqBMAgOFKhaZTGx0BAAAAAAAAKIZwEQAAMFKtbnaYplnbFpVKpaBuhq9ZW8p83u51CuoEAGC4UuEim4sAAAAAAAAAxoNwEQAAMFLtXrlutG/WE5uLEmErAIBJ0U5uLsoOXQMAAAAAAABQDOEiAABgpFqdct1on/p59vS6sb65UVA3AADDsb6xEXtWupk103bOAwAAAAAAAJhUwkUAAMBIpW60n7ah0zybmHZ3OwV0AgAwPKntlBHTd84DAAAAAAAAmFTCRQAAwEi1kuGipYI6KUaeIdrUewIAMO7aOcLSeULXAAAAAAAAAAyfcBEAADAyaxvrsbzay6xp1OoFdVOMPGEp4SIAYNK1usvJGpuLAAAAAAAAAMaDcBEAADAyeW60n7bNRfX5hViYncusaecYxgUAGGepsPTi7FzU5hcK6gYAAAAAAACALMJFAADAyJTxRvtKpRKNxM9kcxEAMOnaifNMo7YtKpVKQd0AAAAAAAAAkEW4CAAAGJnU0GlEJIM4kygVmMrzvgAAjLNUWHraAuQAAAAAAAAAk0y4CAAAGJnU0Gl1bj5q8wsFdVOc1DCtzUUAwKRLnWcataWCOgEAAAAAAAAgRbgIAAAYmbLeaC9cBABMu1Z3OfP5tJ7zAAAAAAAAACaRcBEAADAy6XDRdN5o3xAuAgCmXLvbyXzerAsXAQAAAAAAAIwL4SIAAGBk2okQTaNWL6iTYqVCU3tXurG+sVFQNwAAg7W2sR57V7qZNY2qcBEAAAAAAADAuBAuAgAARqasm4uaic1FERHtnu1FAMBkaveytxZF2FwEAAAAAAAAME6EiwAAgJFpdZcznzdyhHAmUZ6fKxW8AgAYV6ntlBHTGyIHAAAAAAAAmETCRQAAwEisrq/HbasrmTV5NvxMojw/l3ARADCp8pxjGrV6AZ0AAAAAAAAAkIdwEQAAMBLtXp4b7aczXFSbX4jF2bnMmjw3/gMAjKNWJ/scszg3H7W5hYK6AQAAAAAAACBFuAgAABiJfDfaT2e4qFKpJH82m4sAgEmVCpE3a9uiUqkU1A0AAAAAAAAAKcJFAADASOQJz0zr5qKI9M/W6i4X1AkAwGClzjHTGiAHAAAAAAAAmFTCRQAAwEi0E+Gi2vxCVOcXCuqmeI3aUubzVsfmIgBgMqXOMdMcIAcAAAAAAACYRMJFAADASJT9RvvUUG27J1wEAEym1DlGuAgAAAAAAABgvAgXAQAAI1H2G+2b9eyfr5XY7AQAMK5S55hpD5EDAAAAAAAATBrhIgAAYCRSQ6fTHi5qVLN/vuWVXqxtrBfUDQDAYKxtrMfySi+zZtrPeQAAAAAAAACTRrgIAAAYiXYvFS5aKqiT0UhtLoqIaPc6BXQCADA47W76/DLt5zwAAAAAAACASSNcBAAAjESrkx0uatTqBXUyGnmGalPvEQDAuEltp4yIaNhcBAAAAAAAADBWhIsAAIDCrayvRWdtJbNm2m+0b+YYqm13lwvoBABgcPKcX/KcgwAAAAAAAAAojnARAABQuHaOG+2nfei0Nr8Qi3PzmTV5bv4HABgnqfNLdW4+avMLBXUDAAAAAAAAQB7CRQAAQOHyhGYaUx4uikgHqISLAIBJkzq/THuAHAAAAAAAAGASCRcBAACFy7O5SLgo3/sEADBOUueXMpzxAAAAAAAAACaNcBEAAFC41I329fmFqM7NF9TN6NhcBABMG5uLAAAAAAAAACaPcBEAAFC41I32zdpSQZ2MVurmfuEiAGDSOOcBAAAAAAAATB7hIgAAoHCp0EyjVi+ok9FKDdemhnMBAMZN+pxncxEAAAAAAADAuBEuAgAACtfqLmc+L8uN9s3EcO3yai9WN9YL6gYA4MCsbqzH8movsyZ1/gEAAAAAAACgeMJFAABA4VI32pdl6DTPz2l7EQAwKXZ3O8maspzzAAAAAAAAACaJcBEAAFC4VGCmUZKh0zw/ZyqIBQAwLlLbKSPKc84DAAAAAAAAmCTCRQAAQKF662vRWVvNrCnLjfZ5hmttLgIAJkWeULRwEQAAAAAAAMD4ES4CAAAKlScsU5ah09r8QtTmFjJrbC4CACZF6txSm1uI2nz22QcAAAAAAACA4gkXAQAAhcoTlmnWlwroZDw0avXM563uckGdAAAcmFSIPHXuAQAAAAAAAGA0hIsAAIBC5dlc1KyWY3NRRESzlh2kanVsLgIAJkMqRJ469wAAAAAAAAAwGsJFAABAoVKbeOrzi7EwN1dQN6PXqGUHqdo94SIAYDKkznmpcw8AAAAAAAAAoyFcBAAAFCp5o329XEOnqZ839X4BAIyLdreT+bxs5zwAAAAAAACASSFcBAAAFKqdCheV7Eb7RjURLuoIFwEAkyG5uShx7gEAAAAAAABgNISLAACAQqU28ZRt6DQVpuqsrcTq+npB3QAAbM3q+nrctrqSWVO2EDkAAAAAAADApBAuAgAACpUKFzXr5Ro6bdaXkjWtnu1FAMB4a+c4r+Q59wAAAAAAAABQPOEiAACgUO1OIlxUK9fQaZ4b/Fud5QI6AQDYulSAPCKiUa0X0AkAAAAAAAAA+0u4CAAAKExvbTW666uZNXnCNtOkkePnbecY1gUAGKU84aKynfMAAAAAAAAAJoVwEQAAUJhcN9qXbOi0OjcftfmFzJo87xsAwCilwtC1+YWoJs48AAAAAAAAAIyGcBEAAFCYPBt4ynijfepntrkIABh3re5y5vOyBcgBAAAAAAAAJolwEQAAUBibi+5dKlxkcxEAMO5anezzShkD5AAAAAAAAACTQrgIAAAoTCoks21hMRZm5wrqZnykAlWpTQAAAKOWOucJFwEAAAAAAACML+EiAACgMO3k0OlSQZ2Ml9TP3e52CuoEAGBr2r3sc14Zt1MCAAAAAAAATArhIgAAoDCpDTxlvdE+9XPbXAQAjLtWx+YiAAAAAAAAgEklXAQAABQmtYGnrEOnqZ+7s7YavfW1groBANg/q+vr0Vlbyawp64ZKAAAAAAAAgEkgXAQAABQmtYGnUdJwUZ6fu93N3gYAADAqrV76nFLWEDkAAAAAAADAJBAuAgAACtNKBGTKOnSa5+cWLgIAxlWrkx0gjyhviBwAAAAAAABgEggXAQAAheiurUZvfS2zpqzhojzDtqlgFgDAqOQJQQsXAQAAAAAAAIwv4SIAAKAQ+YZOlwroZPwszs1HfX4xs6bVTW8EAAAYhVQIuj6/ENW5+YK6AQAAAAAAAGB/CRcBAACFyLN5p6ybiyLSP7vNRQDAuEqFyG0tAgAAAAAAABhvwkUAAEAh8mzeadTqBXQynlJDt3k2PwEAjEIqBF3mADkAAAAAAADAJBAuAgAACpEaOl1arMb87FxB3Ywfm4sAgEmVDhctFdQJAAAAAAAAAFshXAQAABQitXmnWS33jfbCRQDApEqd81IbGgEAAAAAAAAYLeEiAACgEKlwTNmHTlM/f2poFwBgVFrd5cznqRA1AAAAAAAAAKMlXAQAABQiFS5q1ss9dNqsL2U+766tRm9ttaBuAADyWVlfi07ijCJcBAAAAAAAADDehIsAAIBCpDbvNGvZ4Zppl2foNhXQAgAoWp7timXfUAkAAAAAAAAw7oSLAACAoev3+8lgTKNa7qHTPEO3eYZ3AQCKlCf8bHMRAAAAAAAAwHgTLgIAAIauu74aK+trmTXNermHTps5wlU2FwEA4ybP+cTmIgAAAAAAAIDxJlwEAAAMXavjRvuUhbm52LawmFkjXAQAjJvUZsX6/GIszs0X1A0AAAAAAAAAWyFcBAAADF27J1yUR7O2lPk8NbwLAFC0VPjZGQ8AAAAAAABg/AkXAQAAQ5dnc1GjavC0UatnPm91lwvqBAAgn9T5pCFcBAAAAAAAADD2hIsAAIChS91ov32xFnOzswV1M77Sm4s6BXUCAJBParOizUUAAAAAAAAA40+4CAAAGLp24kZ7Q6e/lHofbC4CAMZNKkTunAcAAAAAAAAw/oSLAACAoWslNu40DJ1GRJ5wUfbwLgBA0VLnE+c8AAAAAAAAgPEnXAQAAAydzUX5pIZve+tr0V1bLagbAIBsec4mzfpSQd0AAAAAAAAAsFXCRQAAwNClbrQXLvqlPO9D2/YiAGBM5DmXNKr1AjoBAAAAAAAA4EAIFwEAAEPV7/eTg6fCRb/UrKVv9k8FtQAAipLnXGJzEQAAAAAAAMD4Ey4CAACGqru2Gisb65k1DeGiiIho1NI3+7e6ywV0AgCQ1uqkzyXNqnMeAAAAAAAAwLgTLgIAAIYq1432OTb2lMH87FwsLVQza2wuAgDGRbuXfS6pzy/GwtxcQd0AAAAAAAAAsFXCRQAAwFDl2bTTtLnoDqn3oi1cBACMiVTouVl3xgMAAAAAAACYBMJFAADAULW7nWTNzlq9gE4mQyMRLrK5CAAYF61OIlwkQA4AAAAAAAAwEYSLAACAoUptLtqxWIu5mdmCuhl/qSFc4SIAYFy0e6lw0VJBnQAAAAAAAABwIISLAACAoUqFYdxof1epzUVt4SIAYEykznkN2ykBAAAAAAAAJoJwEQAAMFTpoVPhojtL3fDf6t4W/X6/oG4AAPat3bG5CAAAAAAAAGAaCBcBAABDldq0Y3PRXTXr2e/HyvpadNdXC+oGAODe9dZWk2cS5zwAAAAAAACAySBcBAAADFV6c5Eb7e+sUU0P4bYSWwIAAIYtdcaLsKESAAAAAAAAYFIIFwEAAEPT7/ej1V3OrElt6imbPO9HuydcBACMVmo7ZYTNRQAAAAAAAACTQrgIAAAYms7aaqxtbGTWGDq9q0a1nqyxuQgAGDWbiwAAAAAAAACmh3ARAAAwNKmtRRERjaqh0zubn52L7Yu1zJo8w7wAAMOUOo9sW1iMhdm5groBAAAAAAAA4EAIFwEAAEOTJwTTrAsX3V2jlr29qJ0jtAUAMEztxDmvWVsqqBMAAAAAAAAADpRwEQAAMDStTvbQaSUidlazgzRllBrGbXU7BXUCAHDvUiHyZk2AHAAAAAAAAGBSCBcBAABD0+5lD53uqNZjbma2oG4mR2oY1+YiAGDUUpuLGsJFAAAAAAAAABNDuAgAABia1OYiQ6f3LhUuSm0KAAAYtlYi7GxzEQAAAAAAAMDkEC4CAACGxtDp1qRCV63ubdHv9wvqBgDgnlJhZ+c8AAAAAAAAgMkhXAQAAAxN29DplqTel9WN9eiurRbUDQDAXXXXVqO3vpZZ45wHAAAAAAAAMDmEiwAAgKFJ3Wif2tBTVs3aUrIm9d4CAAxLKkAe4ZwHAAAAAAAAMEmEiwAAgKHo9/s2F21Rnvel1V0uoBMAgHvKE3LOE5YGAAAAAAAAYDwIFwEAAENx2+pKrG1uZNYYOr13O6v1ZI3NRQDAqOTbXJQ+zwAAAAAAAAAwHoSLAACAocgzdGpz0b2bm52NHYu1zJo87y8AwDCkQs5LC9WYn50rqBsAAAAAAAAADpRwEQAAMBSt7nKypiFctE+p4JXNRQDAqKTOeQLkAAAAAAAAAJNFuAgAABiKVPilEhE7q/VimplAqeCVcBEAMCqpDYoC5AAAAAAAAACTRbgIAAAYilT4ZWe1HrMz/kqyL6kb/1NDvQAAw5I659lcBAAAAAAAADBZTPIBAABDkb7RfqmgTiZT6v2xuQgAGJXUOcTmIgAAAAAAAIDJIlwEAAAMRfpG+3pBnUymZj17KLfVXY5+v19QNwAA/yYVIm8KkQMAAAAAAABMFOEiAABgKNI32hs6zdKoZoeL1jY24ra1lYK6AQD4pe7aavTW1zJrhMgBAAAAAAAAJotwEQAAMBSt7nLm82YtOzxTdnnen9TWAACAQUsFyCOEyAEAAAAAAAAmjXARAAAwcP1+P9rdTmaNcFG2Zj39/uQZ7gUAGKRUgDwi3zkGAAAAAAAAgPEhXAQAAAzc8mov1jc3MmsawkWZdlbrUUnUtDrCRQBAsfJsTmxU6wV0AgAAAAAAAMCgCBcBAAADl2ejjhvts83NzMb2ai2zpp1jcwAAwCClznlLi9WYn50rqBsAAAAAAAAABkG4CAAAGLg8N9o3a0sFdDLZUu9Rq9spqBMAgF9KbU5s2k4JAAAAAAAAMHGEiwAAgIFL3WhfqVRi52L2Vh7Sw7ktm4sAgIK1e6lwkQA5AAAAAAAAwKQRLgIAAAYuFXrZWa3HzIy/jqSkwkV5NkQBAAxSKkTeqNUL6gQAAAAAAACAQTHNBwAADFyrk7rRPjs0wy81kpuLhIsAgGK1OtkhcpuLAAAAAAAAACaPcBEAADBw7Z5w0SDk2VzU7/cL6gYAKLt+vx/tXiezxjkPAAAAAAAAYPIIFwEAAAOX2lyU2sjDL6Vu/l/b3IjbVlcK6gYAKLvu+mqsrK9l1jjnAQAAAAAAAEwe4SIAAGDg2l2biwYhz/vU6i4X0AkAQDpAHuGcBwAAAAAAADCJhIsAAICB6vf70eqlwkXZG3n4pTw3/7cSQS4AgEFpJ854EcJFAAAAAAAAAJNIuAgAABiovSu92NjczKxp1OoFdTPZdlbrUUnUpLZEAQAMSp7NRY2qcBEAAAAAAADApBEuAgAABqrdXU7W2FyUz+zMTOysZgexbC4CAIqSOndsX6zF3OxsQd0AAAAAAAAAMCjCRQAAwEDlCbs0a260z6uReK+EiwCAoqRC5M54AAAAAAAAAJNJuAgAABioVNhlplKJHYu1grqZfKkh3VaOTVEAAIPQ6nYyn6dC0QAAAAAAAACMJ+EiAABgoNqJcNHOaj1mZvxVJK9GbSnzeTsx5AsAMCg2FwEAAAAAAABMJxN9AADAQKU2Fxk63T82FwEA48I5DwAAAAAAAGA6CRcBAAADlR46zd7Ew12lhnTb3U70+/2CugEAyqrf7yc3VAoXAQAAAAAAAEwm4SIAAGCgUkOnDUOn+yX1fq1vbsTyaq+gbgCAsuqurcbKxnpmjXMeAAAAAAAAwGQSLgIAAAaq1V3OfO5G+/3TrKffr9S2KACAA5XnvGFDJQAAAAAAAMBkEi4CAAAGZrPfj3a3k1kjXLR/8gzptjrCRQDAcKW2U0Y45wEAAAAAAABMKuEiAABgYPaudGOjv5lZ0zB0ul92LtaiUqlk1qS2RQEAHKg8m4t2VusFdAIAAAAAAADAoAkXAQAAA+NG+8GbmZlJDuq2ezYXAQDDlQoz71isxdzsbEHdAAAAAAAAADBIwkUAAMDA5LnRXrho/6Xes1ZHuAgAGK5UiNwZDwAAAAAAAGByCRcBAAADk7rRfqZSie2JLTzcU2pYN8/GKACAA5EKkTeEiwAAAAAAAAAmlnARAAAwMO1uJ/N5o7YtZiqVgrqZHqlh3TwbowAADkTqvGFzEQAAAAAAAMDkEi4CAAAGJrW5qFE1dLoVNhcBAKOW3ly0VFAnAAAAAAAAAAyacBEAADAwyRvt68JFW9FMDOu2erfFZr9fUDcAQNn0+/1kmLlZqxfUDQAAAAAAAACDJlwEAAAMTKuTGjoVLtqK1Pu2sbkZyyvdgroBAMqms7YaqxvrmTU2FwEAAAAAAABMLuEiAABgYNq9VLjI0OlWNHKEslJbowAAtqrVXU7WCJEDAAAAAAAATC7hIgAAYCA2+/1oJwIujVq9oG6mS55h3dR7DwCwVXnOGc26cBEAAAAAAADApBIuAgAABmJvrxOb/X5mjc1FW7NjsRYzlUpmjc1FAMCwpM4ZlYjYWRUiBwAAAAAAAJhUwkUAAMBA5Am35NnAwz3NzMwkB3aFiwCAYUmdM7ZXazE3M1tQNwAAAAAAAAAMmnARAAAwEHnCLQ3hoi1LBbNa3eWCOgEAyqadOOfZTgkAAAAAAAAw2YSLAACAgUgNnc5WZmL7Yq2gbqZPami33e0U1AkAUDapEHkjsWERAAAAAAAAgPEmXAQAAAxEcui0Vo+ZSqWgbqZPauuTzUUAwLCkzhnNus1FAAAAAAAAAJNMuAgAABiIVLgotXmHbM1kuCj7/QcA2KrUhsTUOQUAAAAAAACA8SZcBAAADEQ7ubnI0OmBSA3t7u52YrPfL6gbAKAs+v1+cnORcx4AAAAAAADAZBMuAgAABiI1dOpG+wOTGtrd6G/G3pVuQd0AAGVx29pKrG1sZNY45wEAAAAAAABMNuEiAABgIFqJzUWGTg9Ms76UrEl9BgAA+6vdSZ8vnPMAAAAAAAAAJptwEQAAcMA2Nzdjd6+TWZPavEO2ZrWerGl1srdHAQDsr1YvHS5yzgMAAAAAAACYbMJFAADAAduz0o3Nfj+zxo32B2Z7tR4zlUpmTTvH8C8AwP5oJTYXVSJiZ44QNAAAAAAAAADjS7gIAAA4YK1uOtQiXHRgZiqV5FaA1PAvAMD+anezNyPuqNZjbma2oG4AAAAAAAAAGAbhIgAA4IC1EkOnERGN2lIBnUy3VEArT8gLAGB/tLqdzOcC5AAAAAAAAACTT7gIAAA4YO3E0OnszExsX6wW1M30Sm0uagsXAQADlgqRp84nAAAAAAAAAIw/4SIAAOCApYZOm9VtUalUCupmetlcBAAULRVetrkIAAAAAAAAYPIJFwEAAAcsFWpxo/1gNGtLmc9tLgIABi11zhMuAgAAAAAAAJh8wkUAAMABS95oXzd0Ogip4d1277bY3NwsqBsAYNr1+/3kOU+IHAAAAAAAAGDyCRcBAAAHLLm5qGrodBBSw7ub/X7sWekW1A0AMO1uW12Jtc2NzJrUZkUAAAAAAAAAxp9wEQAAcMBS4SKbiwYjtbkoIr1FCgAgrzznijznEwAAAAAAAADGm3ARAABwQDY3N2N3r5NZ40b7wcgzvJsKegEA5NXqLidrUpsVAQAAAAAAABh/wkUAAMAB2b3SjX6/n1njRvvBWFqsxexM9l/jhIsAgEFJnSsqEbGzWi+mGQAAAAAAAACGRrgIAAA4IG60L85MpRKNxABvns8DACCPVLhoZ7WeDD4DAAAAAAAAMP78m18AAOCAtDrpTTk2Fw1Os7aU+bxtcxEAMCCpc4UAOQAAAAAAAMB0EC4CAAAOSGrodG5mNpYWqgV1M/1SQa3UhgEAgLxS5woBcgAAAAAAAIDpIFwEAAAckNTQaaNWj0qlUlA30y+1IUC4CAAYlPQ5L3ujIgAAAAAAAACTQbgIAAA4IOkb7Q2dDlJqQ0BqkxQAQF6pc4XNRQAAAAAAAADTQbgIAAA4IO3ucuZzQ6eDldpc1O51YnNzs6BuAIBp1e/3c4TInfMAAAAAAAAApoFwEQAAcEBa3U7mc0Ong5XaBNXv92P3SregbgCAabW82ov1zY3MmlToGQAAAAAAAIDJIFwEAAAckNTmIkOng9Ws1ZM1rcRnAgCQ0k5sLYqIaNad8wAAAAAAAACmgXARAACwZRubm7G7Z3NRkRqJzUUR+YaBAQCytPKEi6rOeQAAAAAAAADTQLgIAADYst29TvQTNcJFg7V9sRqzM9l/lcszDAwAkCV1nqhUKrGjmt6oCAAAAAAAAMD4Ey4CAAC2LM+GnGaOTTvkV6lUkoGtVke4CAA4MKlz3s5qPRl4BgAAAAAAAGAy+Le/AADAluXZkNOwuWjgGtVEuMjmIgDgAKXOE6nzCAAAAAAAAACTQ7gIAADYslZ3OfP5/MxsbFtYLKib8mjWs4d582yUAgDIkjrnpTYpAgAAAAAAADA5hIsAAIAtS95oX9sWlUqloG7Ko1lbynxucxEAcKDa3U7m81TYGQAAAAAAAIDJIVwEAABsWWpDjhvthyP1vrYTmwYAAFJSm4saVec8AAAAAAAAgGkhXAQAAGxZns1FDF7qfd3d68TG5mZB3QAA06bf7yfPeTYXAQAAAAAAAEwP4SIAAGDLkkOntaWCOimX1OaifkTs6XWKaQYAmDp7V3rJoLINlQAAAAAAAADTQ7gIAADYsrYb7UcizzBvKvgFALAv7V76HCFEDgAAAAAAADA9hIsAAIAtWd/cSG7HaVSFi4YhzzCvcBEAsFWtTvoc0bC5CAAAAAAAAGBqCBcBAABbsrvXiX6ixuai4di2sBjzM7OZNa3uckHdAADTJnWOqFQqsXOxVlA3AAAAAAAAAAybcBEAALAleW60b7rRfigqlUpyW0Db5iIAYIvavexzRKNaj5kZ/9cyAAAAAAAAwLTwb4ABAIAtSQ2dRkQ0a0sFdFJOqeBWS7gIANiiVIg8FXIGAAAAAAAAYLIIFwEAAFuSCq/Mz85GfX6hoG7KJzXUK1wEAGxVagOi7ZQAAAAAAAAA00W4CAAA2JLUjfbN2lJUKpWCuimf1FBvaigYAGBfUiFl4SIAAAAAAACA6SJcBAAAbEm7u5z53NDpcKXeX5uLAICtSoWUUxsUAQAAAAAAAJgswkUAAMCWpMIrhk6Hq1Fbyny+p9eJ9c2NgroBAKZFv9+PVi+9oRIAAAAAAACA6SFcBAAAbEnqRnubi4arWatnPu9HxO5ep5hmAICpsXelFxubm5k1znkAAAAAAAAA00W4CAAA2JLU5iJDp8OVZ2NAKgAGAHB37e5yssaGSgAAAAAAAIDpIlwEAADst/XNjdiz0s2syRN+Yesa9fRQbyoABgBwd3nOD0LkAAAAAAAAANNFuAgAANhvu7udZE2jVi+gk/LaNr8Y87OzmTXCRQDA/kqdH2YqldixWCuoGwAAAAAAAACKIFwEAADst3w32ttcNEyVSiUa1eytAa2OcBEAsH/aiXNeo7otZmb838oAAAAAAAAA08S/BQYAAPZbq7ucrGnWsoMvHLhmPfs9bveEiwCA/ZMKkdtOCQAAAAAAADB9hIsAAID9lrrRfnF2LmrzCwV1U16p7VCtTjoEBgBwZ6lwke2UAAAAAAAAANNHuAgAANhv6Rvtt0WlUimom/JKbYdKhcAAAO4udX5o2E4JAAAAAAAAMHWEiwAAgP2WvtHe0GkRUsO9qc8JAODuWt3szYfOeQAAAAAAAADTR7gIAADYb+nNRUsFdVJuqeHePSvdWN/cKKgbAGDSbfb70e52MmuEiwAAAAAAAACmj3ARAACw39o2F42FPO/z7sSAMADA7ZZXurHR38ysSW1OBAAAAAAAAGDyCBcBAAD7Lb25yNBpEZo5NkSlPisAgNvlOTcIkQMAAAAAAABMH+EiAABgv6xtrMfelW5mjaHTYuQJcbW6ywV0AgBMA+EiAAAAAAAAgHISLgIAAPZLu9dJ1jTrhk6LUJ9fiIXZucyats1FAEBOqXPDTKUS26v1groBAAAAAAAAoCjCRQAAwH7JE1ZpVIWLilCpVJLbA/JsIAAAiEifGxrVbTFTqRTUDQAAAAAAAABFES4CAAD2S56wis1FxWkIFwEAA9LqLmc+T507AAAAAAAAAJhMwkUAAMB+aXWywyqLc/NRm1soqBtsLgIABiV1bhAgBwAAAAAAAJhOwkUAAMB+afcSQ6e1bVGpVArqhlS4qC1cBADklDo3NKrCRQAAAAAAAADTSLgIAADYL63ucubzRiLswmA1akuZz20uAgDySm4ucs4DAAAAAAAAmErCRQAAwH5pdQydjpPU+713pRvrGxsFdQMATKrNfj92dzuZNc26cx4AAAAAAADANBIuAgAA9kvbjfZjJc/73e7ZXgQAZNu70o2N/mZmTTOxMREAAAAAAACAySRcBAAA7JdWIqhi6LRYjRzholYiEAYAkOe8kOfcAQAAAAAAAMDkES4CAAByW9tYj+WVXmZNo1YvqBsiIpp14SIA4MC1OsvJGhsqAQAAAAAAAKaTcBEAAJBbu9tJ1thcVKza3EIszs5l1rQ6wkUAQLZ2YjvlbGUmti/WCuoGAAAAAAAAgCIJFwEAALm1um60HzeVSiUaifc8NSwMAJAKI++s1WOmUimoGwAAAAAAAACKJFwEAADk1u6mQyqpoAuD16xnb4vKEwoDAMqtlTjnCZADAAAAAAAATC/hIgAAILfU0Gl1bj5q8wsFdcPtUsO+qU0EAACpTYfNWnaYGQAAAAAAAIDJJVwEAADk5kb78dSoZr/veTZOAQDllgojN2r1gjoBAAAAAAAAoGjCRQAAQG6pkIob7UejWU9sLkpsIgAAcM4DAAAAAAAAKC/hIgAAILfU5iI32o9GamPU8kov1jbWC+oGAJg0m5ub0U6EkW2oBAAAAAAAAJhewkUAAEBuqXCRG+1HI8/73u52CugEAJhEe1e6sdnvZ9Y0hIsAAAAAAAAAppZwEQAAkFuru5z53NDpaOR531OfHQBQXqkAeYTNRQAAAAAAAADTbG7UDQCM2k9/+tP43Oc+F1dddVVcffXVcf3118fevXtjz5490e/3Y/v27bF9+/Z4wAMeEMcdd1wcf/zx8ZSnPCWOPvroUbc+9nbt2hVf+9rX4rvf/W58//vfjx/96Efxs5/9LG699dbodruxuroai4uLUavVotlsxuGHHx73v//942EPe1g8/OEPj5NOOikajcaofwwA/n+rG+tx2+pKZo2h09HI8763cwwNAwDlJFwEAAAAAAAAUG7CRUAptdvteP/73x8f+chH4qqrrsqs3bVrV+zatStuuOGG+PKXv3zHf3/00UfHGWecEa985Svjvve977Bbngi33HJLXHbZZfGFL3whvvjFL8YPf/jD5D/T7Xaj2+3GL37xi3vUz87OxoknnhjPfvaz44UvfGHc//73H1brAOSQJ5xi6HQ0avMLUZ2bj9762j5r8gwNAwDllDrnzc7MxNJiraBuAAAAAAAAACjazKgbACjS8vJynH322XHEEUfEf/pP/ykZLMpy7bXXxl/+5V/GAx7wgHj5y18eP//5zwfY6eS49tpr481vfnM8/vGPj8MPPzx+7/d+Lz7wgQ/kChalbGxsxJVXXhnnnntuHHnkkfGsZz0rvvrVrw6gawC2Ik84pSFcNDKp9164CADYl9Q5oVGtx0ylUlA3AAAAAAAAABRNuAgojU996lNx7LHHxt/8zd/EbbcNbrh2dXU1zjvvvHjIQx4SH/zgBwf2+46zW265Jd7xjnfEiSeeGMccc0ycc8458dWvfjU2NzeH9pqbm5vx6U9/Oh7/+MfHc57znPjJT34ytNcC4N7lCafYXDQ6qfdeuAgA2JdWdznzebO2VFAnAAAAAAAAAIyCcBEw9TY3N+O1r31tPOc5z4kbb7xxaK/zi1/8Il7ykpfEy1/+8lhdXR3a64zS9773vXjOc54TRxxxRLzmNa+Jb37zmyPp45Of/GQce+yxcf7554/k9QHKqp0Ip9TmFqI6v1BQN9xdKlyU+vwAgPJqdzuZzwXIAQAAAAAAAKabcBEw1TY2NuIFL3hB/PVf/3X0+/1CXvO8886Lpz71qdHpZA/mTKJ//ud/jk9+8pOxvr4+6lai0+nES1/60jjrrLPGoh+AMkjdaN+oGzodpdRGAZuLAIB9SZ7zhIsAAAAAAAAApppwETC1Njc348UvfnFceOGFhb/2l770pfit3/qtWFlZKfy1y+b9739/nH766VO7LQpgnLQ62eEUN9qPVmroNzU0DACUVyqE7JwHAAAAAAAAMN3mRt0AwLCce+658Q//8A/79c8cffTR8e/+3b+Lhz3sYXHQQQdFpVKJVqsV3//+9+OKK66I7373u7l/r89//vNx1llnxYc//OH9bZ399L//9/+OM888My644IJRtwIw1do9Q6fjLPX+37a6Eqsb67Ew66+BAMC/2dzcjN297O3LNhcBAAAAAAAATDdTZcBU+sxnPhNvfetbc9efdtppcc4558RjHvOYzLrvfve78ba3vS3+4R/+ITY3N5O/70c+8pF44hOfGC996Utz9zJt7nvf+8ZjH/vYePSjHx3HHntsHHnkkXHEEUfEtm3bolarxe7du+PnP/953HzzzXHFFVfEF7/4xfjyl78cnU72YNPdffSjH42HPexh8ed//udD+kkASN1ob+h0tPKEu9rd2+I+SzsL6AYAmBR7Vrqx2e9n1giRAwAAAAAAAEw34SJg6uzatSte9KIXRT8xGBMRcdBBB8VHPvKR+M3f/M1cv/fDHvaw+B//43/EK1/5ynje854XP/3pT5P/zB/8wR/EE5/4xDjqqKNyvcY0OPHEE+N3fud34mlPe1r8+q//embtQQcdFAcddFAcc8wx8Ru/8Rtx9tlnxy9+8Yv4b//tv8V//a//NW699dbcr/v6178+nvGMZ8QJJ5xwgD8BAPem1bG5aJzlCXe1hIsAgLtJBcgjnPMAAAAAAAAApt3MqBsAGLRzzz03fv7znyfrjjjiiPja176WO1h0Z4973OPiG9/4Rhx33HHJ2m63G3/yJ3+y368xaQ499NB43eteF9dcc018/etfj7PPPjsZLNqXgw46KF73utfFddddF89//vNz/3Nra2vxyle+ckuvCUC21fX16KytZNY0a0sFdcO9yTP0m2d4GAAol1Z3OVnTcM4DAAAAAAAAmGrCRcBU+fa3vx3nnXdesm7nzp1x6aWXxq/+6q9u+bXuc5/7xGWXXRZHHHFEsvbTn/50XHzxxVt+rXF24oknxsc//vH4yU9+Em984xvj6KOPHtjvvWPHjvj4xz8e73nPe6JSqeT6Z77yla/EZz7zmYH1AMAvtXputB931fmFqM0tZNa0hYsAgLtpdzuZz2dnZmL7YrWgbgAAAAAAAAAYBeEiYKr85V/+ZWxubibrzjvvvHjIQx5ywK936KGHxkc/+tGYnZ1N1r7+9a8/4NcbJyeffHJ87nOfi69//evx/Oc/P+bn54f2Wq961avi7W9/e+76d7/73UPrBaCsWp08N9oLF41ao579GeTZTAAAlEvqfNCsbst94QcAAAAAAAAAk0m4CJga//qv/xqf+tSnknWnnXZanH766QN73ZNPPjl+//d/P1n3jW98I77whS8M7HVH5eEPf3hcfPHF8eUvfzme+tSnFva6r371q+PlL395rtpLL700fvaznw25I4ByybPxRrho9FLbo1odm4sAgLtqJc55zngAAAAAAAAA00+4CJga73znO6Pf72fWzM3N7dcGnLze+MY3xo4dO5J173jHOwb+2kV67nOfG9/61rfi6U9/+khe/81vfnM0m81k3cbGRnz2s58toCOA8kgNndbnF6I6N7wtduTTqKY2FwkXAQB3lQqRNxObEQEAAAAAAACYfMJFwFRYWVmJT3ziE8m65z73uXHUUUcN/PUPPvjgeNnLXpas+9znPhe33HLLwF+/KIccckjMzIzuq+Oggw6Kc889N1ftF7/4xeE2A1AyqaFTN9qPh9Twb7snXAQA3FVyc1EivAwAAAAAAADA5BMuAqbCpz/96di9e3ey7o//+I+H1sMf/uEfJoM3Gxsb8fGPf3xoPZTBGWecEZVKJVn3ne98p4BuAMojNXTaFC4aC6nPodURLgIA7ip5zrO5CAAAAAAAAGDqCRcBU+FjH/tYsuaoo46Kxz3ucUPr4YEPfGCcfPLJybo8vbJvhx12WDzykY9M1v3whz8soBuA8mh1lzOfN2tLBXVCltTn0FlbiZX1tYK6AQDG3ebmZuzudTJrnPMAAAAAAAAApp9wETDxNjY24tJLL03WPf/5zx96Ly94wQuSNV//+tdj165dQ+9lmj32sY9N1iwvL8fycvYgPAD5tbupoVM32o+DRo7PoZ3YTgAAlMfulW70+/3MmkbVOQ8AAAAAAABg2gkXARPva1/7WuzevTtZ9/SnP33oveR5jc3NzbjsssuG3ss0u+9975ur7rbbDE8DDEpqc1GeUAvDlyfk1RIuAgD+f6kzXkREs+6cBwAAAAAAADDthIuAiZcnqLN9+/Zc224O1AMf+MA46qijknWXXHLJ0HuZZnnDRevr60PuBKAceutr0VlbzayxuWg82FwEAOyPPOcC5zwAAAAAAACA6SdcBEy8K664Ilnz2Mc+Nubm5groJuLkk09O1lx55ZUFdDK91tbWctVt22YACmAQ8gyd2lw0Hqpz81GbX8issbkIALhd6lwwNzMbSwvVgroBAAAAAAAAYFSEi4CJ9+1vfztZ88hHPrKATn7pUY96VLLm+9//fqysrBTQzXS69dZbkzVzc3Oxffv2AroBmH65brSvLxXQCXmktgsIFwEAt2t1ss8FjVo9KpVKQd0AAAAAAAAAMCrCRcBEu+WWW+JnP/tZsm7cwkXr6+vxL//yLwV0M53yvHcPetCDYnZ2toBuAKZfnjBKs2pz0bhIhYvyhMUAgHJInfOaNQFyAAAAAAAAgDIQLgIm2lVXXZWr7qEPfeiQO/k3D3nIQ3LV5e2du+r3+/HVr341WXfssccW0A1AObS6y5nP6/OLsTA3V1A3pKSGgFOfJwBQHqnQcaNWL6gTAAAAAAAAAEZJuAiYaD/60Y9y1R111FFD7uTfNJvNOOigg5J1eXvnrr761a/m2lZ18sknF9ANQDkkb7Sv21o0ThqJzUV5NlEBAOVgcxEAAAAAAAAAEcJFwIS7/vrrkzWHHnpobNtW7NBznjBTnt65pw996EO56k455ZThNgJQIskb7avCReOkmQgXpT5PAKA82omNhqlzBQAAAAAAAADTQbgImGg33HBDsubwww8ffiN3c9hhhyVrhIv2389//vP4yEc+kqx7yEMeEo94xCMK6AigHNI32hs6HSepz6Ozthq99bWCugEAxtXG5mbsXulm1jjnAQAAAAAAAJSDcBEw0W666aZkzaGHHlpAJ/v/mjfeeGMBnUyXv/qrv4puN3vwKSLixS9+8fCbASiRZLiobuh0nDRyDAHbXgQA7Ol1ot/vZ9bkOVcAAAAAAAAAMPmEi4CJtmvXrmTNfe973wI6uas84aJf/OIXBXQyPX7wgx/Ee9/73mTdjh074hWveEUBHQGURyqI0qwtFdQJeeTZMJAKjAEA0y/PecDmIgAAAAAAAIByEC4CJlqecFGj0Rh+I1t4zdtuuy1WVlaG38wU2NjYiJe85CWxtraWrP2DP/iDkXzmANOqt7Ya3bXVzBo32o8Xm4sAgDzyhYuEyAEAAAAAAADKQLgImGitVitZs3379gI62dpr2l6Uz9vf/va44oorknWHH354/Nmf/VkBHQGUhxvtJ8/i3HzU5xcza1rd5YK6AQDGVSpsPD8zG9sWss8UAAAAAAAAAEwH4SJgYnW73VybbEYRLtqxY0euut27dw+5k8n3la98JV73utflqv2bv/mbWFpyqzLAIOXZcCNcNH6a9ezPJE9oDACYbqmwcaO2LSqVSkHdAAAAAAAAADBKwkXAxFpdXc1VV6vVhtzJPVWr1Vx1eX+Gsrr11lvj+c9/fq4Q2TOf+cz4vd/7vQK6AiiXPCGUhnDR2GlUE+GijnARAJRdq9vJfC5ADgAAAAAAAFAec6NuAGCr8gZzZmdnh9zJPc3N5fufV+GifVtbW4vTTz89brzxxmTtwQcfHOedd14BXU2GJzzhCbn/DDI83/ve90bdAgxEKly0bWExFmb9b864SQ0Dt3vCRQBQdu0cm4sAAAAAAAAAKAebi4CJlTeYM4qQRd7XzLORp6xe8YpXxJe+9KVctR/4wAfi0EMPHXJHAOXUToSLmrWlgjphfzTric1FOTZSAQDTLXUesLkIAAAAAAAAoDxcMQ5MrPX19Vx1wkWT561vfWucf/75uWpf85rXxGmnnTbkjibL5ZdfHocccsio2wCmRCtxo72h0/GUCn21O8JFAFB2wkUAAAAAAAAA3M7mImBi5Q3wbGxsDLmTrb/mKIJP4+6CCy6IP//zP89Ve/LJJ8eb3/zmIXcEUG7tbifzecPQ6VhKfS7d9dXoreXbAgkATJ+Nzc3Y03POAwAAAAAAAOCXhIuAibWwsJCrLu+Go0HKu5Eo789QFhdffHGceeaZ0e/3k7UPfehD46KLLhLQAhgym4smU57PJbWtAACYXrt7nUj9zds5DwAAAAAAAKA8hIuAiTU/P5+rbhThoryvKVz0by6//PL4nd/5nVzBrAc84AFxySWXxMEHH1xAZwDllgqgGDodT3k+l7ZwEQCUVipAHhHRrC0V0AkAAAAAAAAA40C4CJhYi4uLuep6vd6QO9n6awoX/dI3v/nNeMYznhHdbjdZe5/73CcuueSSOOKIIwroDKDcumur0VvPDn0KF42nhs1FAECGdreTrGnUnfMAAAAAAAAAymJu1A0Ak+X666+PK6+8cqivsW3btnjWs56VrKvVajE3N5fcErR3795BtZZb3tfcsWPHkDsZf9/73vfiaU97WuzZsydZ22g04vOf/3wcc8wxBXQGQJ7NNnlCLBRvYXYuti0sxm2rK/usES4CgPJKbS6an5mNbfP5LnUBAAAAAAAAYPIJFwH75Utf+lKceeaZQ32NBz7wgbnCRRERzWYzbr311syaPKGVQcv7mgcddNCQOxlv1157bZx66qmxa9euZO22bdvi4osvjoc//OEFdAZARL7wSbO2VEAnbEWztpQZLsoTHgMAplPqnNeobYtKpVJQNwAAAAAAAACM2syoGwA4EAcffHCyZvfu3QV0sv+vWa/Xo1qtFtDNeLr++uvjyU9+ctx8883J2mq1Gp/61Kfi8Y9/fAGdAXC71I32ERGNWr2ATtiKZmKrVJ7PFwCYTqmQcbNuOyUAAAAAAABAmQgXARMtT7jolltuKaCTu8oTmMnT+7S68cYb45RTTokbb7wxWTs/Px8XXnhhPPnJTy6gMwDurN3tZD5fWqzG/KxlqOOqkQwX2VwEAGWV3FxUFS4CAAAAAAAAKBPhImCi3e9+90vW5An6DFqe18zT+zS6+eab48lPfnJcf/31ydrZ2dm44IIL4pnPfGYBnQFwd6nNNk1Dp2MttbkotbEAAJheqXBRs7ZUUCcAAAAAAAAAjAPhImCiHXnkkcma//f//t/wG7mbn/3sZ8maBz3oQQV0Ml5uvfXWOOWUU+Laa69N1lYqlTj//PPj9NNPL6AzAO5N8kb7RHiF0UqFi2wuAoDySoWMm3XnPAAAAAAAAIAyES4CJlqegM7NN98cnU6ngG7+zXXXXZesKVu4aNeuXXHqqafG1Vdfnav+7/7u7+JFL3rRkLsCIEvyRntDp2MtFS7qra9Fd221oG4AgHGxvrkRe3rZ/z9Jw4ZKAAAAAAAAgFIRLgIm2oMf/OBkTb/fzxX2GZR2ux27du1K1uXpfVq02+146lOfGldddVWu+ne84x3xile8YshdAZCSutHe0Ol4y7NZyvYiACif3b1O9BM1QuQAAAAAAAAA5SJcBOyXF7/4xdHv94f664Ybbsjdz/HHH5+r7gc/+MEWf+L9l/e18vY+6fbs2RNPe9rT4lvf+lau+je+8Y3x6le/eshdAZDS7/fTm4tqSwV1w1bk+XxSATIAYPrk+f5PbUAEAAAAAAAAYLoIFwET7bDDDov73ve+ybq8wZZByPNac3NzccIJJxTQzWgtLy/H05/+9Pja176Wq/7P/uzP4nWve92QuwIgj+76aqysr2XWuNF+vDVq9WRNq7tcQCcAwDjJs7kwzwZEAAAAAAAAAKaHcBEw8R75yEcma4oMF33zm99M1jz0oQ+NarVaQDej0+l04hnPeEZ85StfyVX/h3/4h/HmN795yF0BkFe720nWuNF+vM3PzsXSYvZ5I89wMQAwXVLf//Ozs7FtfrGgbgAAAAAAAAAYB8JFwMR7/OMfn6z56le/Guvr6wV0E/HlL385WfPYxz62gE5Gp9frxbOf/exc70VExFlnnRXvfve7h9wVAPsjz0YbN9qPv2Y1+zNqdYSLAKBsUt//zdpSVCqVgroBAAAAAAAAYBwIFwET75RTTknW7N27N772ta8NvZef/OQncd111yXrnvKUpwy9l1FZXV2N3/qt34rLLrssV/0LX/jC+O///b8PuSsA9lee0EmjWi+gEw5EKgDW7gkXAUDZpL7/bacEAAAAAAAAKB/hImDiPeYxj4kdO3Yk6z7zmc8MvZc8r1GpVHIFoibR2tpanH766fHZz342V/3pp58eH/zgB2NmxtcRwLhpdbOHTrcv1mJ+dq6gbtiqZj2xuSjxOQMA06fVyd5QaTslAAAAAAAAQPmY5gYm3tzcXK6wzic+8Ymh9/Lxj388WXPiiSfGr/zKrwy9l6JtbGzEGWecEZ/61Kdy1T/rWc+KCy64IGZnZ4fcGQBb0U6ETtxoPxmataXM56nhYgBg+jjnAQAAAAAAAHB3wkXAVPjd3/3dZM21114bV1555dB6+MlPfhJf/vKXk3V5ep00m5ub8aIXvSj+8R//MVf90572tLjwwgtjfn5+yJ0BsFWpjTZutJ8MjWr259Tu3hb9fr+gbgCAcdDqCRcBAAAAAAAAcFfCRcBUeNaznhU7duxI1r3rXe8aWg//5b/8l9jc3MysmZmZiRe84AVD62EU+v1+vOxlL4uPfvSjueqf9KQnxUUXXRSLi4tD7gyAA9HuZm+0MXQ6GZr17M9pZWM9uuurBXUDAIza+uZG7Ol1M2uEyAEAAAAAAADKR7gImArVajWe97znJev+8R//Ma677rqBv/6uXbvivPPOS9Y99alPjcMOO2zgrz9Kr3rVq+KDH/xgrtqTTjop/s//+T9Rq9WG3BUAByq1uUi4aDLk+ZxanezPGgCYHru7nWSNcx4AAAAAAABA+QgXAVPj1a9+dVQqlcya9fX1eM1rXjPw1/6Lv/iL2LNnT7LuT//0Twf+2qP06le/Ot773vfmqj3xxBPjM5/5TCwtLQ25KwAOVL/fj3YiXORG+8mQZzg49VkDANMjFSCPiGjW/L0dAAAAAAAAoGyEi4Cpceyxx8Yzn/nMZN0nP/nJuPDCCwf2updffnm8733vS9Y98pGPjFNPPXVgrxsRccMNN0SlUkn+etKTnjTQ142IOPfcc+Nv//Zvc9U+/OEPj89//vOxY8eOgfcBwOB111ZjZWM9s8aN9pOhUc2xuUi4CABKI8/3vhA5AAAAAAAAQPkIFwFT5fWvf33MzKT/p+2ss86Ka6655oBf7+abb44zzjgjNjY2krVveMMbDvj1xsVf//Vfx5ve9KZctccdd1xccskl0Ww2h9wVAIPiRvvpMTc7G9sXa5k1wkUAUB7t7nLm84XZuajPLxTUDQAAAAAAAADjQrgImCqPetSj4iUveUmybvfu3XHKKafEj370oy2/1q233hqnnnpq/PSnP03WPv3pT49nPetZW36tcfKud70rXvva1+aqPfroo+Oyyy6LQw45ZMhdATBI7VzhIjfaT4rUZ5UaMgYApker28l83qxti0qlUlA3AAAAAAAAAIwL4SJg6rzpTW+Kgw8+OFl34403xmMe85j4zGc+s9+vceWVV8aJJ54Y3/ve95K11Wo13v3ud+/3a4yjv//7v48/+ZM/yVV75JFHxhe+8IU49NBDh9wVAIOWZ5PNzmq9gE4YhEYiXGRzEQCURypUnDo3AAAAAAAAADCdhIuAqXPIIYfEhz70oVw37e7atSt+8zd/M377t387vvGNbyTrr7766jjzzDPjpJNOip/85Ce5+nn3u98dRx99dK7acfemN70pd+0NN9wQ97///aNSqYzs1xve8IbhvRkAU6yVGDrdsViLudnZgrrhQKU2FwkXAUB5pL73bacEAAAAAAAAKKe5UTcAMAzPfOYz4zWveU287W1vy1V/0UUXxUUXXRTHHHNMPOEJT4hf+7Vfi4MOOigqlUq0Wq34wQ9+EFdccUVcddVV+9XHGWecES9/+cu38iMAwMgYOp0uqc+rLVwEAKXhnAcAAAAAAADAvREuAqbWW97ylrjxxhvjYx/7WO5/5pprrolrrrlmIK9/yimnxPnnnz+Q3wsAipQKmzQMnU6UPJuL+v1+rq2PAMBkc84DAAAAAAAA4N7MjLoBgGGZmZmJD3/4w/Hbv/3bhb/2E57whPjkJz8Zi4uLhb82ABwoN9pPl9SQ8OrGenTWVgvqBgAYlfWNjdiz0s2sadaWCuoGAAAAAAAAgHEiXARMtbm5ubjwwgvj7LPPLuw1zzzzzLj00ktj2zaD1wBMplS4qGHodKLkGRJObTEAACZfu5f+vhciBwAAAAAAACgn4SJg6s3MzMRb3vKWuOiii+Lwww8f2us0m80477zz4vzzz7exCICJ1e/3o9Vdzqxp1g2dTpI8Q8KpzxwAmHztbidZk9p4CAAAAAAAAMB0Ei4CSuM5z3lO/OAHP4jXvOY1A90qtLCwEC996UvjX//1X+NlL3vZwH5fABiFztpqrG1sZNY0qoZOJ8nOWj1Zk9pWBQBMvjxhYpuLAAAAAAAAAMpJuAgole3bt8fb3va2+OlPfxpvectb4td+7de2/Hv96q/+arz2ta+NG264Id7//vfHIYccMsBOAWA0DJ1On7mZ2dixWMusES4CgOmX+r5fnJ2L2vxCQd0AAAAAAAAAME7mRt0AwCg0m804++yz4+yzz44f//jH8fnPfz6+853vxNVXXx033HBD7NmzJ/bu3Rv9fj+2b98e27dvj/vf//5x3HHHxfHHHx+nnnpqPPShDx31jxFHHnlk9Pv9wl7vhhtuKOy1ABiNPCGTZl24aNI0a9tiz0p3n8/bwkUAMPVS3/eN2raoVCoFdQMAAAAAAADAOBEuAkrvgQ98YJx11lmjbgMAxkJq6LQSETur9WKaYWAatW3x4/bP9/nc5iIAmH6p73vbKQEAAAAAAADKa2bUDQAAAOMjNXS6vVqLuZnZgrphUJr1pcznre5yQZ0AAKOSOuc1atnnBQAAAAAAAACml3ARAABwh1YndaO9odNJ1KhmbyJIfe4AwORLbai0uQgAAAAAAACgvISLAACAO6Q22Bg6nUzNevbn1u7dFv1+v6BuAIBRSG8ucs4DAAAAAAAAKCvhIgAA4A7tnhvtp1Hqc1vb2Ijb1lYK6gYAKNraxnrsXelm1jjnAQAAAAAAAJSXcBEAAHCHVseN9tMoz7BwO/HZAwCTq93rJGtSmw4BAAAAAAAAmF7CRQAAQERE9Pv9aHdtLppGeUJhre5yAZ0AAKOQOuNFRDSqznkAAAAAAAAAZSVcBAAARETEbasrsba5kVnTrC0V1A2DtLNaj0qiptVNbzQAACZTK0e4yOYiAAAAAAAAgPISLgIAACIi5432tXoBnTBoczOzsaOa/dm1bS4CgKnV6mSf8xbn5qM2t1BQNwAAAAAAAACMG+EiAAAgIiJaOcIlNhdNrkYtextBno0GAMBkaveyv+ebtW1RqaT2HAIAAAAAAAAwrYSLAACAiEiHSyoRsTOx/Ybx1RQuAoDSSoXIUyFkAAAAAAAAAKabcBEAABAREe1EuGRntR6zM/4KMalS4aLU5w8ATK5WJ725CAAAAAAAAIDyMhkIAABERHpzjRvtJ5vNRQBQXu2ecBEAAAAAAAAA+yZcBAAAREQ6XGLodLKlwmGt7m3R7/cL6gYAKJIQOQAAAAAAAABZhIsAAICIyDN0ulRQJwxDM/H5rW9uxG2rKwV1AwAUZW1jPZZXepk1QuQAAAAAAAAA5SZcBAAARERE2+aiqZbn82t1lwvoBAAoUrvXSdakQsgAAAAAAAAATDfhIgAAIPr9fnJzkXDRZMsXLsr+MwAATJ5WJ/393nDOAwAAAAAAACg14SIAACCWV3uxvrmRWWPodLLtqNajkqgRLgKA6dPOsZlQiBwAAAAAAACg3ISLAACAXKGSZt3Q6SSbnZmJndV6Zk1buAgApk7qnFedm4/a/EJB3QAAAAAAAAAwjoSLAACAXKGSZlW4aNI1akuZz20uAoDpk/p+t50SAAAAAAAAAOEiAAAgOXRaqVRiR2LrDeOvmRgebnWXC+oEAChKKkSeOh8AAAAAAAAAMP2EiwAAgGSoZGe1HrMz/vow6VKbCVodm4sAYNqkQuTCRQAAAAAAAACYDgQAAKLd7WQ+N3Q6HVKfY7snXAQA0ya9uWipoE4AAAAAAAAAGFfCRQAAQHJzUaMqXDQNmvXE5qLubdHv9wvqBgAoQmpzUWqzIQAAAAAAAADTT7gIAACIVidxo30ilMJkSG0u2tjcjL0rvYK6AQCGbXVjPZZXs7/bbagEAAAAAAAAQLgIAACIduJGe0On0yHPZoJ2YosVADA5dnc7yRrnPAAAAAAAAACEiwAAoOT6/X60eqlw0VJB3TBMeT7HVo4hZABgMrRyhIbzhI8BAAAAAAAAmG7CRQAAUHJ7V3qxsbmZWdOo1QvqhmHauViLSqWSWZNnCBkAmAytxHbKCOEiAAAAAAAAAISLAACg9No5wiQ2F02HmZmZ2FnNDoq1cwwhAwCTIfW9XptbiNr8QkHdAAAAAAAAADCuhIsAAKDk8txo33Sj/dRIfZZ5/jwAAJMh9b1uOyUAAAAAAAAAEcJFAABQeqmh00qlEjsWawV1w7ClwkU2FwHA9Eid82ynBAAAAAAAACBCuAgAAEovFSZpVOsxM+OvDtPC5iIAKI9WdznzecN2SgAAAAAAAABCuAgAAEovfaO9odNpkhoiTg0hAwCTo93tZD53zgMAAAAAAAAgQrgIAABKL7W5qFlbKqgTipD6PNu9Tmz2+wV1AwAMk81FAAAAAAAAAOQhXAQAACWX2lzUqNUL6oQipDYUbGxuxvJKt6BuAIBhWV1fj9tWVzJrbC4CAAAAAAAAIEK4CAAASi91o73NRdMlzxBxKnAGAIy/di/9fd6sO+cBAAAAAAAAIFwEAAClttnvR7vbyaxxo/10aQgXAUAp5Pk+b1RtqAQAAAAAAABAuAgAAEpteaUbG/3NzJo8YRQmx47FWsxUKpk1beEiAJh4ecJFQuQAAAAAAAAARAgXAQBAqRk6LZ+ZmZloVLM/U5uLAGDypcLCtfmFqM4vFNQNAAAAAAAAAONMuAgAAEpMuKicUtuoWt3lgjoBAIYl9X1uOyUAAAAAAAAAtxMuAgCAEksNnc5UKrG9Wi+oG4qSCozZXAQAk6/Vyf4+FyAHAAAAAAAA4HbCRQAAUGLtbifzeaO6LWYqlYK6oSipTQVt4SIAmHjtnnARAAAAAAAAAPkIFwEAQImlNhelQihMJpuLAGD6pb7PnfMAAAAAAAAAuJ1wEQAAlFhq6LRZN3Q6jVKfa7t7W2z2+wV1AwAMQ6tjcxEAAAAAAAAA+QgXAQBAibVT4SJDp1OpUc3+XDf7/djb6xTUDQAwaKvr69FZW8msadaWCuoGAAAAAAAAgHEnXAQAACWW2lyUCqEwmZr19DBxS7gIACZWq5d9xouIaAiRAwAAAAAAAPD/Ey4CAICS2uz305uL6oZOp1GejVStznIBnQAAw5Dne9yGSgAAAAAAAABuJ1wEAAAltbfXic1+P7OmWUtvuGHybF+sxWwl+6+DqeAZADC+8nyP21wEAAAAAAAAwO2EiwAAoKRavU6yxo3202mmUomdtXpmTUu4CAAmVup7vD6/ENW5+YK6AQAAAAAAAGDcCRcBAEBJtTrLyRo32k+vVHBMuAgAJldqc5EzHgAAAAAAAAB3JlwEAAAllRo6na3MxPbFWkHdULRmbSnzeerPBwAwvlIhYdspAQAAAAAAALgz4SIAACip1NBpo1aPmUqloG4oWqNWz3ze6qY3WwEA4ykdLsoOGQMAAAAAAABQLsJFAABQUulwkRvtp1l6c1GnoE4AgEFLbSB0zgMAAAAAAADgzoSLAACgpFJDp260n27NxFBxu3dbbG5uFtQNADBIqQ2EqXMAAAAAAAAAAOUiXAQAACVl6LTcUp/vZr8fe1a6BXUDAAzKyvpadNZWM2uc8wAAAAAAAAC4M+EiAAAoqXa3k/nc0Ol0a+T4fFuJ7VYAyq3OWAABAABJREFUwPhJbaeMyHcOAAAAAAAAAKA8hIsAAKCENjc3o93LHjw1dDrd8oTH8gwnAwDjJU84WIgcAAAAAAAAgDsTLgIAgBLas9KNzX4/s8bQ6XRbWqzF7Ez2XwltLgKAyWNzEQAAAAAAAAD7S7gIAABKyI32zFQq0axmf8at7nJB3QAAg5I659XnF2Jxbr6gbgAAAAAAAACYBMJFAABQQvlutF8qoBNGKbW1wOYiAJg8qe/vpjMeAAAAAAAAAHcjXAQAACWUGjqdnZmJ7YvVgrphVFLbqfKE0ACA8ZLaPJgKFwMAAAAAAABQPsJFAABQQqmh02Z1W1QqlYK6YVRsLgKA6ZMKB6fCxQAAAAAAAACUj3ARAACUUCo04kb7cmjWhYsAYNqkvr+FiwAAAAAAAAC4O+EiAAAooeSN9onQCdOhUc3+nHf3OrG5uVlQNwDAIAiRAwAAAAAAALC/hIsAAKCEkkOnidAJ06FZW8p83u/3Y/dKt6BuAIAD1Vtfi+7aamZNs579/Q8AAAAAAABA+QgXAQBACaXCRTYXlUOez7nVXS6gEwBgEFLbKSMiGtV6AZ0AAAAAAAAAMEmEiwAAoGQ2Nzdjd6+TWZPaaMN0yLOhqtVJDykDAOMhFSCPsLkIAAAAAAAAgHsSLgIAgJLZvdKNfr+fWZMndMLk275YjdmZ7L8W5tmAAACMhzzf203nPAAAAAAAAADuRrgIAABKptVdTtY064ZOy6BSqUSzlv1Z59mAAACMh9Q5rz6/GAtzcwV1AwAAAAAAAMCkEC4CAICSaXVy3GifCJwwPZq1pcznwkUAMDlS39sC5AAAAAAAAADcG+EiAAAomXYve+h0bmY2lhaqBXXDqDVq9czn7RybrgCA8dBOhYsEyAEAAAAAAAC4F8JFAABQMqnNRY1aPSqVSkHdMGo2FwHA9Eh9bzeqwkUAAAAAAAAA3JNwEQAAlExq6DQVNmG6pDYYpDYgAADjI3nOqwsXAQAAAAAAAHBPwkUAAFAy7e5y5vNU2ITpkvq8d/c6sbG5WVA3AMCBaCc2VAqRAwAAAAAAAHBvhIsAAKBkWt1O5nPhonJpJD7vfvwyYAQAjLfe2mp011cza1Lf+wAAAAAAAACUk3ARAACUTGpzkaHTcskTJmt3s7cgAACj18rxfS1EDgAAAAAAAMC9ES4CAIAS2djcTG6hMXRaLs3aUrImz7AyADBaecLAznkAAAAAAAAA3BvhIgAAKJE9vU70EzWGTstl28JizM/MZta0EtuuAIDRyxMGtqESAAAAAAAAgHsjXAQAACVi6JS7q1Qqyc/c5iIAGH+p7+ttC4uxMDtXUDcAAAAAAAAATBLhIgAAKJE8IZFmbamAThgnqW1VbeEiABh7qe9rZzwAAAAAAAAA9kW4CAAASqTVXc58Pj8zG9sWFgvqhnFhcxEATL7U93UqTAwAAAAAAABAeQkXAQBAiaRutG/UtkWlUimoG8ZFapOBcBEAjL885zwAAAAAAAAAuDfCRQAAUCJutOfeNGv1zOepjVcAwOilvq+d8wAAAAAAAADYF+EiAAAokVS4yI325dRIbC7a2+vG+uZGQd0AAFvR7nYynwsXAQAAAAAAALAvwkUAAFAi6c1F2SETplOznj1s3I+I3b3sgWUAYHS6a6vRXV/NrBEiBwAAAAAAAGBfhIsAAKBE2qlwUSJkwnTKs8mg1cn+swMAjE7qjBdhcxEAAAAAAAAA+yZcBAAAJbG+uRF7EttnGlVDp2WUZ5NBausVADA6eb6nbagEAAAAAAAAYF+EiwAAoCR29zrRT9TYXFRO2+YXY352NrOm3RMuAoBxlWdz0c5avYBOAAAAAAAAAJhEwkUAAFASeYZOmzk22DB9KpVKcptBqyNcBADjKrW5aGmhGguzcwV1AwAAAAAAAMCkES4CAICSSA2dRkQ0hItKq5HYZtDuLhfUCQCwv1qJ72kBcgAAAAAAAACyCBcBAEBJpMJF87OzsW1+saBuGDfJzUU5wmkAwGikNlQKkAMAAAAAAACQRbgIAABKotXJHjpt1paiUqkU1A3jJrXRIDW0DACMTioEbHMRAAAAAAAAAFmEiwAAoCTaPUOn7Fvq87e5CADGV+p72uYiAAAAAAAAALIIFwEAQEm0OsuZzw2dllvq89+z0o31jY2CugEA9kdqw2CztlRQJwAAAAAAAABMIuEiAAAoifTQqXBRmeX5/Hf3OgV0AgDsj+7aavTW1zJrmrV6Qd0AAAAAAAAAMImEiwAAoCRawkVkyLPRIPVnCAAoXp7v54bNRQAAAAAAAABkEC4CAIASWN/ciD0r3cyaPOESpleecFmru1xAJwDA/khtp4yIaNaFyAEAAAAAAADYN+EiAAAogd3dTrKmUasX0Anjqja/EAuzc5k1NhcBwPjJE/5tVJ3zAAAAAAAAANg34SIAACiBPKEQm4vKrVKpJLcX5dmMAAAUK3XOW1qsxnwiQAwAAAAAAABAuQkXAQBACeQLF2UHS5h+qT8DNhcBwPhpdbK/n53xAAAAAAAAAEgRLgIAgBJod5czny/MzkVtfqGgbhhXjcT2KuEiABg/7V7293OjKlwEAAAAAAAAQDbhIgAAKIFUKKRZ2xaVSqWgbhhXzVo983krEVIDAIqXPOfVhYsAAAAAAAAAyCZcBAAAJZAnXASpzUXtbqegTgCAvFqd7PBvM/H9DgAAAAAAAABzo26AfHq9Xtx0003x85//PHbv3h3tdjv27t0bq6ursbq6GmtrazE7OxsLCwsxPz8f9Xo9du7cGY1GI5rNZhx22GFx8MEHj/rHAABgRNqJcFEqVEI5pEJme1e6sbaxHvOz/ioJAOOg3+9Hu5cd/hUiBwAAAAAAACDFRNgYWV5eju985ztx9dVXx7XXXhvXXntt/PCHP4ybbrop2u32Af/+CwsLcdhhh8WRRx4ZRx11VBx99NFxzDHHxMMf/vA48sgjD/j3BwBgfKU3F9UL6oRx1qynh4/bvU4csm1HAd0AACnd9dVYWV/LrGkIFwEAAAAAAACQIFw0Imtra/Gtb30rvvKVr8QVV1wR3/rWt+KGG26Ifr9/l7q7/+cDsbKyEjfccEP8+Mc/ji996Ut3ebZjx4444YQT4tGPfnScdNJJcdJJJ8Whhx46sNcGAGC0UuEim4uIiGhU08PHrc5twkUAMCZanewzXoTNRQAAAAAAAACkCRcV6Bvf+EZceumlcckll8QVV1wRKysrdzzLChFVKpWB9nFvr7V79+64/PLL4/LLL4+//du/jYiIBz3oQXHKKafEqaeeGqecckocdNBBA+0DAIBirG9sxN6VbmaNoVMi8m4uSg8xAwDFyPO97JwHAAAAAAAAQIpw0RB1Op343Oc+F5/61Kfi//7f/xu7du2649ndAz6pANEgNhjd/hr7eq27v8aPfvSjuP766+P9739/VCqVeMxjHhOnnXZaPPvZz45jjz32gPsBAKAYuYZOc4RKmH61uYVYnJuPlfW1fdbk2ZAAABQjz/dyns2EAAAAAAAAAJSbcNGAra6uxqc//en46Ec/GhdffPEd24nyhokGESLal9R2pHvr6fZ/pt/vx5VXXhlXXnllnHPOOXH00UfHGWecES94wQvimGOOGVrPAAAcuFbX0Cn5VCqVaFTrccvy7n3WtLrLBXYEAGRJnfO2L9Zibna2oG4AAAAAAAAAmFQzo25gWnzlK1+Jl770pXGf+9wnTj/99Ljoooui1+tFv9+Pfr9/R3jnziGe25/d+deo7KuXO/d852fXXHNN/OVf/mUce+yx8ahHPSre8573RKvVGln/AADsW55wkc1F3K5ZX8p83s7x5wkAKEbqe7lZc8YDAAAAAAAAIE246AC0Wq14+9vfHscdd1ycfPLJ8aEPfSj27Nlzr4GiiHsGeMZdVtDozmGjb3/72/FHf/RHcfjhh8fv/u7vxhe+8IURdw4AwJ21OtlDp4tz81GbWyioG8Zdagg5T1gNAChG6nu5IVwEAAAAAAAAQA7CRVtw1VVXxVlnnRVHHHFEnH322fGDH/wgV6BokmVtNbr9+crKSvzP//k/4ylPeUo87GEPi/e9733R6XRG2TYAABHR7iWGTqv1O851kAoX2VwEAOOj3V3OfG5zEQAAAAAAAAB5CBfth89+9rPx5Cc/OR7xiEfE+eefH91ud6oDRVnu/DPe2zajq6++Ov7Df/gPcb/73S/OOeecuOWWW0bdMgBAabVSQ6f1pYI6YRKkNhzYXAQA4yP1vSxcBAAAAAAAAEAewkUJ/X4/PvrRj8av//qvxzOe8Yz40pe+dI9Qze11wwgU3Tm4M6hfg5a1zWj37t3x1re+NR70oAfF7//+78d111038NcHACBbq2PolPxSfx6WV3uxtrFeUDcAwL70+/3kRsFUaBgAAAAAAAAAIoSL9qnf78cFF1wQxx57bLzwhS+Mq666KjNUdCDyBIHuHF46kF+p1zuQ8FHWNqNerxfvf//747jjjoszzzwzfvjDHx7QewYAQH7tnnAR+TVr6U1W7W6ngE4AgCzdtdVYSQR+nfMAAAAAAAAAyGNu1A2Mo0984hPxhje8Ia655pq7BIfuHCjaqn2Fd/b1e9Zqtbjf/e53x6/t27dHrVa7119ra2vR6XSi2+3e49ctt9wSN954Y9x0002xa9euzN7urcf9/Zn3tclofX09PvzhD8cFF1wQL3zhC+MNb3hD3P/+99+v3xsAgP3TcqM9+yHPEHKruxyHLO0ooBsAYF9SZ7yIfKFhAAAAAAAAABAuupMvfOELcfbZZ8e3vvWtu4RjbreVUFGeoM6OHTvi+OOPjxNOOCFOOOGEeOADHxj3u9/94ogjjohms7nfr5mysrISN910U9x0001x4403xve///246qqr4qqrroof//jH9+jv3rYo5ZUVMvrQhz4UH/vYx+JVr3pVnHPOOUP5WQEAym5tYz2WV3qZNW60587yhM3yDDMDAMPVzhUucs4DAAAAAAAAIE24KCK+973vxZ/+6Z/GJZdcEhG/DL9sNUyTChMddNBB8cQnPjEe+chH3iVMVKTFxcV48IMfHA9+8IPv8Wzv3r3xL//yL3eEjS6//PL43ve+d68hodvleX/2FTLq9Xrxzne+Mz7wgQ/EueeeG3/0R38Uc3P+WAIADEq720nWuNGeO6vNL0R1bj5662v7rMkzzAwADFeesO/Oar2ATgAAAAAAAACYdKVOcbRarXjd614Xf//3fx8bGxv32FaUN1SUFbZpNBrxG7/xG/GkJz0p/v2///dxwgkn3GsAaVxs3749TjrppDjppJPu+O927doVX/ziF+OLX/xi/NM//VNcffXVdzzb361G+woZtdvt+M//+T/H+973vnjnO98Zz3zmMwf5YwEAlFaeoVM32nN3zdq2+Nne9j6f21wEAKPX6i5nPt+xWIu52dmCugEAAAAAAABgkpUyXNTv9+O9731v/MVf/EW0Wq2BhIru/Hs89rGPjdNOOy2e+tSnxiMe8YixDhPlcfDBB8dzn/vceO5znxsREbfeemv80z/9U3z605+Oiy++OH7xi19ExP4FjfYVMrruuuvitNNOi6c85Snxnve8J4466qhh/VgAAKXQTgydRkQ0hIu4m2ZtSbgIAMZcapOgADkAAAAAAAAAeZUuXPTNb34zXvGKV8S3vvWtLYWK7i08MzMzE0960pPi+c9/fjz72c+OQw89dAidj49DDjkknve858Xznve82NzcjH/+53+O//W//ldceOGFcfPNN0dE/qDRvkJGn//85+P444+Ps88+O84555xYWFgY8k8FADCdUiGQ6tx81OadtbirRq2e+Ty1KQEAGL7UOU+AHAAAAAAAAIC8ZkbdQJH+43/8j/G4xz3ujmDR3QMtWe5e2+/349GPfnS8613vihtvvDEuu+yyePnLXz71waK7m5mZiSc+8Ynx7ne/O2666aa49NJL46UvfWls3779jvcp4p5ho7u7e21ExMrKSvzVX/1VHH/88fH1r399+D8MAMAUSg2dutGee9OsLWU+b3c7BXUCAOyLcx4AAAAAAAAAg1KqcNHf/d3fxebm5h3Booi7hlru7vZATKVSuaPuV37lV+KP//iP46r/j707D5OzKvMG/FQvSVVnq2ZPArgiyiqIgKgIjIqIIu6KbAmKBBRR3P0cR1xmXEdFHUQlQRYFddxAR0FBBxFkETKso4AgEDbpTtLp6r2+P5wOIXTXqXR3vVXddd/XlWtm+j2pfipTfb1vwvmd38qVcfXVV8fJJ5/cdIGi8eRyuTjooIPim9/8ZjzwwANx9tlnx4EHHhgRYzcUjWX0z3nDP/e//OUv8Ytf/CKT9wAAMNN0O9GeCUh9LjQXAUD9pZ/zKoeFAQAAAAAAAGBUU4WLRm0YFhrv+sbho/322y/OO++8uPfee+OLX/xi7LLLLlmOPO3k8/k46qij4te//nXcfvvtccopp8SCBQs2KWQEAMDkOdGeiUh9LtYN9MfA0FBG0wAAGyuXy1U853VkNA0AAAAAAAAA011ThouqDRW1t7fHkiVL4oYbbogrrrgi3vzmN0d7e3uWo84IT3/60+OLX/xi3H///XHmmWfGs571rCc0FAEAUBvpTadOtOeJqgmddfVV/mwBALXTOzgQA8OVg76aiwAAAAAAAACoVlOGiza2cahowYIF8cEPfjD++te/xre//e3Ybbfd6jzhzJDP5+Otb31r3HTTTfGzn/0s9t9/fyEjAIAa606Ei4qaixhDNZ+L1GcLAKidrlJPco2GSgAAAAAAAACq1dThoo1DRVtssUV8+tOfjnvuuSc+/elPxzbbbFPnCWeuQw89NC6//PK48sor45BDDhEyAgCogYHhoegZ6Ku4xqZTxlJVc5FwEQDUTTUhX895AAAAAAAAAFSrKcNFG4eKttxyy/jCF74Qf/3rX+ODH/xgzJ07t84TNo999903Lr744rj22mvjVa961eNCRgAATI5Np0xUvn1WFNpmVVzT1ZtuTAAAaqOakO+CQkcGkwAAAAAAAAAwEzRluCjiH6GiBQsWxCc/+cm48847493vfncUCoV6j9W09txzz/jRj34UV111VRx00EFRLpcjIoSMAAAmoZpNp0XhIsZR7Kj82agmvAYA1EbqOW9+vhBtLa0ZTQMAAAAAAADAdNd04aJyuRyzZs2K97///XHnnXfGhz/84ejocIpno9h7773j0ksvjUsvvTT23HPP9SEjAAA2neYiJiP12agmvAYA1EbqOa+zoJkdAAAAAAAAgOo1Vbgol8vFEUccEbfffnv827/9WxSLxXqPxDgOOuiguOaaa+Lss8+OxYsX13scAIBpKRX+KLTNinz7rIymYboRLgKAxpW6DxfzDlMCAAAAAAAAoHpt9R4gS1dddVU897nPrfcYbIKjjjoqXv/618cdd9xR71EAAKadrlJPxevFDq1FjK+YCBdV04wFANRG6jmvs0NzEQAAAAAAAADVa6rmIsGi6Smfz8fOO+9c7zEAAKadrt7K4Y9UMw3NTXMRADSu7lJvxeue8wAAAAAAAADYFE0VLgIAgGbS3Vc5/FHM23TK+DoLlRsPegf7o39oMKNpAIBR5XI53VApXAQAAAAAAADAJhAuAgCAGSrVLNPZYdMp46um8aBbexEAZG7dYH8MDg9XXKO5CAAAAAAAAIBNIVwEAAAzVFdvIlxk0ykVVNN4kAqwAQBTr5pwr+c8AAAAAAAAADaFcBEAAMxAA0ND0TvYX3FNZ2FuRtMwHVUTLtJcBADZqybcW819HAAAAAAAAABGCRcBAMAM1NVn0ymTk29rj472WRXXaC4CgOyl2ilzEbEg35HNMAAAAAAAAADMCMJFAAAwA3X19iTXdAoXkZBqtxIuAoDsdSdC5PPzHdHW0prRNAAAAAAAAADMBMJFAAAwA3VXEfrQXERKsVC59aCrlA6xAQBTK9Vc5BkPAAAAAAAAgE0lXAQAADNQqlGmo31W5NvaM5qG6SrVXFRNiA0AmFqpcK92SgAAAAAAAAA2lXARAADMQKnQhxPtqUZqc3IqxAYATL3Uc55wEQAAAAAAAACbqqnDRZdcckm9RwAAgJpIhT5sOqUaqRCacBEAZM9zHgAAAAAAAABTra3eA9TTwQcfHNtvv30ce+yxceyxx8aTn/zkeo8EAABToqvUU/F6Z2FuRpMwnaU2J5cGB6JvaDDybe0ZTQQAza1cLmuoBAAAmMEeffTRWLVqVb3HyMTChQtjs802q/cYAAAAwP9p6nBRRMTf/va3+MQnPhGf/OQnY//994/jjjsuXvva10Y+n6/3aAAAMGHdpd6K1206pRrVfE66S+tim3nF2g8DAMS6gf4YHBmuuEaIHAAAYPq57LLL4h3veEfccsst9R4lUzvttFN87WtfiwMOOKDeowAAAEDTa6n3AI2gXC7HyMhI/Pa3v42jjz46ttlmmzjhhBPi6quvrvdoAAAwIenmIuEi0jo70puTuxLtCQDA1Em1FkV4zgMAAJhuLrvssjjooIOaLlgUEXHLLbfEgQceGJdffnm9RwEAAICmJ1wUEblcLnK5XJTL5SiXy7FmzZr45je/Gfvtt1/svPPO8YUvfCEeeuiheo8JAABV6R8ajN7BgYprbDqlGp359Oekq7dykA0AmDqpAHmEhkoAAIDp5h3veEe9R6g7fwYAAABQf8JF8Y/moojHQkYbBo1uvfXWeP/73x/bbbddHH744fGTn/wkhoeH6zwxAACMr5oT7W06pRqz2tqio312xTWaiwAgO6n7bi4iFuQ7shkGAACASfv73//elI1FG7v55pvj0UcfrfcYAAAA0NSEi/7PaJho46DR6LXBwcH42c9+Fq95zWti2223jfe///3+gQcAgIZUTdhDcxHV6uyo/Fnp7hMuAoCspELkC/Id0drin3wBAACmiwceeKDeIzSMVatW1XsEAAAAaGr+S/MYNgwajdVm9OCDD8YXvvCF2HXXXWPfffeNb37zm7FmzZp6jw0AABFRXbhIcxHVSgXRunqFiwAgK6nnPM94AAAAAAAAAEyEcFHCWG1GGwaNrrnmmjjhhBNi4cKFcfTRR8dll11W54kBAGh2XaWeitc72mfH7Lb2jKZhuivmE81FVYTZAICpkQoXaacEAAAAAAAAYCKEi6q0YZtRRDwhZFQqleK8886LF7/4xfHUpz41PvGJT8Q999xT56kBAGhG3aXeitc7O2w6pXqpz0sqzAYATJ1UqLdYmJvRJAAAAAAAAADMJG31HmA6Gg0YRfwjZLTx1//617/Gv/zLv8THP/7xOPDAA+O4446LV7/61TF79uzMZwUAoPmkwh6pJhrYUGdik3IqzAYATJ10c1FHRpMAAACQlRe++7iYt80W9R5jUtY+8Ej8979/u95jAAAAABUIF03Sxk1GG369XC7Hb37zm/jNb34TCxYsiDe/+c2xZMmS2Guvveo1LgAATSC96VS4iOqlPi+loYEoDQ5EoX1WRhMBQHMql8tVPOdpLgIAAJhp5m2zRSzYdmG9xwAAAABmuJZ6D9AIRoNBG4aDNtVomGjjsNHo17q7u+OMM86IffbZJ3bbbbf40pe+FI888shUvQUAAFgvuem0Q7iI6hWrCKN1Jz5zAMDk9Qz0xdDIcMU11dy3AQAAAAAAAGBjTR0uev/73x8LFy4cMxQ0GWO93oZBo5tuuilOPfXU2HbbbeO1r31tXHTRRTEyMjLp9wMAABHpoEcxb9Mp1aum6Uq4CABqr5r7rYZKAAAAAAAAACaiqcNF//Zv/xb33HNPXHzxxfHa1742Zs2atT4AVMs2o9FrAwMD8eMf/zhe9apXxXbbbRcf+tCH4vbbb5+S9wYAQHPqGxyI0uBAxTWdHXMzmoaZoJoGhFRbFgAwedXcb4WLAAAAAAAAAJiIpg4XRUS0tLTEIYccEt///vfj/vvvj6985Sux5557jts+NFEbBo3GajNatWpVfPazn42ddtopnv/858dZZ50VPT09U/U2AQBoEjadMtVmtbbF3Fn5imuEiwCg9lL321wuF/PzHRlNAwAAAAAAAMBM0vThog11dnbGO97xjrj22mtj5cqVccopp8SWW245bvvQRI0XXBr9+lVXXRVve9vbYuHChbFkyZL43e9+N+n3BgBAc+ju602uES5iU6Xai7pKDkYAgFrrToSLFuQ7orXFP/cCAAAAAAAAsOn81+Zx7LLLLvHFL34x7rvvvvjxj38cr3rVq6K1tXXM9qGJ2rDNKCKeEDJat25dfOc734kDDzwwdthhh/j0pz8d991331S9RQAAZqCu3nTIIxUUgY2lAmmpzc4AwOSlmouKec94AAAAAAAAAEyMcFFCa2trHHbYYfGjH/0o7rvvvvj85z8fu+6667jtQxO1YdBorDajO+64Iz760Y/Gk5/85HjZy14W3//+92NwcHCq3iYAADNEatPpnFmzY1ZrW0bTMFOkwkWpzx0AMHmppkDtlAAAAAAAAABMlHDRJthyyy3jPe95T9x4441x7bXXxoknnhidnZ1jBo0mY7zgUrlcjuHh4bjkkkviTW96UyxcuDBOPvnk+NOf/jTp9wYAwMyQapDpLMzNaBJmklTblXARANRed6m34vXODuEiAAAAAAAAACZGuGiC9txzz/jqV78a999/f1xwwQVxyCGHREtLS83ajDZ8zdGvPfroo/G1r30t9tprr9hjjz3i9NNPj0cffXRK3h8AANNTKuThRHsmQnMRANRfqrmomPecBwAAAAAAAMDECBdN0qxZs+L1r399XHzxxfG3v/0t/vVf/zV23HHHcduHJqpSm1G5XI4bb7wxTjnllFi8eHG88Y1vjF/84hfr1wMA0DxSzUWpBhoYSypc1D80GKXBgYymAYDmUy6XNRcBAAAAAAAAUDPCRVNom222iQ984ANxyy23xJVXXhlve9vbYv78+WMGgyZqvDaj0Wv9/f3xgx/8IF7xilfE9ttvH//v//2/+Mtf/jL5NwcAwLSQOtFecxETUSzMTa7RXgQAtdMz0BdDI8MV13jOAwAAAAAAAGCihItqZN99941vfOMbsWrVqjjnnHPixS9+8fqmoYipbTMql8tjthndd99965uU9t9//zj77LOjt7fyCacAAExvqYCHTadMRDWfm1SwDQCYuGpCvBoqAQAAAAAAAJgo4aIay+fz8Za3vCV+9atfxV133RUf//jH46lPfeqY7UNTETTa+PVGv/773/8+li5dGttss0289a1vjd///vdT8v4AAGgcpcGB6BsarLjGplMmoljoSK7p6tVcBAC1Us19trOKpkEAAAAAAAAAGItwUYa22267+OhHPxp//vOf47e//W0cc8wx0dHRMWYwaKI2bDPa8PVGv9bT0xPLly+P/fffP3bcccf4zGc+E6tWrZqS9wcAQH11V3GiveYiJqK9tS3mzs5XXNPdJ1wEALWSagjM5XKxYHYho2kAAAAAAAAAmGmEi+rkhS98YSxfvjweeOCBOOuss2L//fePiKhJm1G5XB6zzejPf/5zfPjDH47tt98+Dj300PjP//zPGBoampL3BwBA9rqqChc50Z6JSQXTNBcBQO2kQrwL8h3R0uKfegEAAAAAAACYGP/Fuc7mzJkTxx57bFx++eXxl7/8Jf7f//t/sd12201pm1FEjPl6o0Gj4eHh+K//+q94/etfH4sWLYp3v/vdsXLlykm/NwAAslVNc1Gx0JHBJMxExXwiXFTF5w8AmJhUiFc7JQAAAAAAAACTIVzUQJ7ylKfEaaedFnfddVdccsklccQRR0Q+nx+zfWiiNmwziogntBk98sgj8ZWvfCX22GOP2GuvveLrX/96dHd3T9E7BACgllLhjrmz8tHe2pbRNMw0nR2VNy13l3oymgQAmk8qRC5cBAAAAAAAAMBkCBc1oFwuF//0T/8U5557bjzwwANxxhlnxL777jtu+9BEVWozKpfLcf3118c73/nOWLRoURxxxBHxq1/9akreHwAAtdGVCHfYdMpkdBbmVryuuQgAaid1n/WcBwAAAAAAAMBkCBc1uHnz5sXxxx8fV155Zdx2223x/ve/PxYuXDhmMGiixmszGr3W19cXF1xwQRxyyCHxpCc9KT72sY/FnXfeOfk3BwDAlEptOi3adMokpDYtd5fWrf87BQAwtVLNRZ7zAAAAAAAAAJgM4aJp5BnPeEb827/9W9xzzz3x85//PF73utfFrFmz1geDprLNaOPXG/3a3/72t/jkJz8ZO+ywQxx44IFx7rnnRqlUmsJ3CQDARKU2nXZ22HTKxKU2LfcPD0VpcCCjaQCgeZTL5ejqSzUXVW4YBAAAAAAAAIBKhIumoZaWlnjZy14WF154Ydx///1x+umnx3Oe85wx24emImi08euNfv13v/tdHHPMMbFw4cJ4+9vfHlddddWUvD8AACYm2VyUFy5i4lLNRRHpzyAAsOnW9vfF8MhIxTXV3KcBAAAAAAAAYDzCRdNcZ2dnnHTSSXHNNdfEypUr45RTToktt9xyzGDQRG3YZrTh641+bc2aNfGtb30rnv/858dOO+0Un//85+PBBx+ckvcHAEB1yuVyMtjhRHsmo5pNy6n2LABg03WXepJrUg2DAAAAAAAAAFCJcNEMsssuu8QXv/jFuO++++LHP/5xvOpVr4q2trb1IaCpbDPa+PVGv3bbbbfFBz7wgdhuu+3isMMOi5/85CcxPDw8he8SAICxlIYGon9osOKazg6bTpm4apqvNBcBwNSr5v6quQgAAAAAAACAyRAumoFaW1vjsMMOix/96Edx3333xRe+8IXYbbfdxmwfmoqg0cavVy6XY2hoKC6++OJ4zWteE4sXL56S9wUAwPi6S73JNdWEQ2A8ba2tMW92oeKariqaFQCATZMKF7XkcjE/cY8GAAAAAAAAgEqEi2a4LbbYIt797nfHDTfcENddd12cdNJJ0dnZOWYwaKI2bDPa+PXK5XI8/PDDk38jAABUVE2oQ3MRk5VqRejWXAQAUy51f12Q74iWFv/MCwAAAAAAAMDE+a/OTWSPPfaI008/PVatWhUXXnhhvPzlL4+WlpaatRkBAJCdrt50qKOY78hgEmayVLgo1awAAGy61P01dX8GAAAAAAAAgBThoibU3t4er3vd6+Kiiy6Kv/3tb/Gv//qvseOOO47ZPjTRoJGAEQBAtrr7Km86nTe7EO2tbRlNw0wlXAQA2UuHi+ZmNAkAAAAAAAAAM5VwUZPbZptt4gMf+EDccsst8Yc//CHe9ra3xfz588cMGgEA0LhSzUXFgtYiJq8oXAQAmetO3F895wEAAAAAAAAwWcJFrLfPPvvEN77xjVi1alWce+658eIXvzhyudz6oJGAEQBA43KiPVlINRd1l9ZpMQWAKdZV6ql43XMeAAAAAAAAAJMlXMQT5PP5OOKII+JXv/pV/PWvf43TTjstnva0pwkYAQA0sO7kptPKoRCoRjGxeXlgeCh6BwcymgYAZr6Rcjm6S70V13jOAwAAAAAAAGCyhIuoaNttt40Pf/jD8e///u8CRgAADSzdXGTTKZNXzeco1a4AAFSvp78Uw+WRimuKnvMAAAAAAAAAmKS2eg9A47r11ltjxYoVce6558YDDzyw/uvlcrmOUwEAsLFyuRzdiXCRTadMherCReti2wWbZzANAMx8qQB5hBA5AAAAAAAAAJMnXMTjrF69Or773e/G8uXL49prr40IYSIAgEZXGhyI/uGhimtsOmUqLCh0JNekgm4AQPWEiwAAAAAAAADIgnARUS6X41e/+lWsWLEifvKTn0R/f//jAkW5XO5xawEAaCzVbTqdm8EkzHRtLa0xP1+INX2lcddU83kEAKqTCu225HIxL58O/wIAAAAAAABAJcJFTezPf/5zLF++PM4555y4//77IyKEigAApqFqmmKKVTTOQDU683Mqh4t6hYsAYKqkQrvF/Jxo2eDf8AAAAAAAAABgIoSLmszatWvje9/7XqxYsSKuuuqqiBAoAgCY7qppiinm52QwCc2gWJgTd3c/Mu71rlJPhtMAwMyWuq8WC57xAAAAAAAAAJg84aIm8etf/zqWL18eP/7xj6NU+scp46PhodxGp5tONlS08esBAFBbqU2n82cXoq21NaNpmOk6O+ZWvN7dp7kIAKZKd6m34vXODuEiAAAAAAAAACZPuGgGu/POO2PFihXxne98J/72t79FRO1aisYLKD372c+OpUuXTuq1AQCorDvRXNTpRHumUOrz1NUrXAQAUyXZXKSdEgAAAAAAAIApIFw0w6xbty4uvPDCWL58efz+97+PiNoFisZ7vc022yyOOOKIWLp0aTz72c+e9PcAAKCyrkS4qChcxBRKfZ66S+uiXC5rNAWAKZB6zhMiBwAAAAAAAGAqCBfNEJdffnmsWLEifvjDH0Zvb29EPBb2Ga9VaKLGer2WlpZ46UtfGkuWLInDDz88Zs2aNanvAQBA9Ww6JUupz9PgyHCsG+yPubPyGU0EADPTSLkcq0u9Fdd0dnjOAwAAAAAAAGDyhIumsbvvvjtWrFgR3/nOd+Kvf/1rRGTfUvS0pz0tjj322Dj22GNj8eLFk/4eAABsunRz0dyMJqEZVBNW6+5dJ1wEAJO0tr8Uw+WRimuKeeEiAAAAAAAAACZPuGiaKZVK8f3vfz9WrFgRv/vd76JcLmceKOro6IjXvva1sXTp0njRi1406e8BAMDElcvl6E41FznRninUWUVYravUE9sWN89gGgCYuVIB8oiIzg4hcgAAAAAAAAAmT7homrjiiiti+fLl8YMf/CB6enoi4rGwz4YBoA2/PlHjvd6+++4bS5cujTe+8Y0xb968SX0PAACmRu/gQAwMD1Vc40R7ptKCfEfkIqLS3zqq2QwNAFTW1duTXFNNoyAAAAAAAAAApAgXNbB77703zj777Dj77LPjjjvuiIjIvKVo6623jqOOOiqWLl0az3zmMyf9PQAAmFpdJZtOyVZrS0vMz3fE6r7ecdek2rQAgLTuvsr309ZcS8ybXchoGgAAAAAAAABmMuGiBtPX1xf/+Z//GcuXL4/LLrssyuXyuIGiiNq0FLW1tcWhhx4aS5YsiUMPPTRaW1sn9T0AAKidahpiOjuEi5hanYU5FcNFmosAYPK6eivfTxcUOqJlo3/bAwAAAAAAAICJEC5qEH/4wx9ixYoVceGFF8aaNWsi4rHgUBaBooiInXbaKZYsWRJHHXVUbLXVVpP6HgAAZCPVEJOLiAX5jmyGoWl0FubEX7seHve6cBEATF7qfqqdEgAAAAAAAICpIlxUR/fff3985zvfibPPPjv+93//NyJi3JaiyQaKxnu9+fPnxxvf+MZYunRp7LPPPpP+HgAAZCu16XRevhBtLZoomVrFxGZm4SIAmLzuvlS4aG5GkwAAAAAAAAAw0wkXZWxgYCB+9KMfxYoVK+LSSy+NkZGRcQNFEbVpKcrlcnHAAQfE0qVL47WvfW0UCoVJfQ8AAOqnq9emU7KXakpINWoBAGmp57xiQTslAABAM1j7wCP1HmHSZsJ7AAAAgJlOuCgj11xzTSxfvjwuuOCC6O7ujojHgkNTHSja+DVHX2+77baLY445JpYsWRJPecpTJv09AACov/SJ9pVDIDARqdBaV2nd+oMNAICJSYV1hcgBAACaw3//+7frPQIAAADQBISLaujBBx+Mc845J1asWBG33nprRMS4LUW1ChTNnj07Dj/88FiyZEm85CUvsbkPAGCG6Sr1VLxeFC6iBlKfq6GR4egZ6It5s7WkAsBEjJTLQuQAAAAAAAAAZEa4aIoNDg7GT3/601i+fHn86le/iuHh4XEDRRGTDxWN93p77LFHLF26NN7ylrdEsVic1PcAAKBxdfXadEr2qvlcdZXWCRcBwASt7euNkcS/GwqRAwAAAAAAADBVhIumyPXXXx8rVqyI7373u/Hoo49GRPYtRZtvvnkcccQRsXTp0th9990n/T0AAGhs5XI5ukvCRWSvms9Vd2ldbF/cIoNpAGDm6Uo840V4zgMAAAAAAABg6ggXTcLDDz8c5557bqxYsSJuuummiMguUDT6mi0tLXHwwQfH0qVL41WvelW0t7dP+vsAADA9rBvsj8GR4YprOgtzM5qGZjI/3xG5XK7i33Oq2RQNAIxNuAgAAKA5bLPNNvUeoWEsXLiw3iMAAABAUxMu2kTDw8Pxs5/9LFasWBG/+MUvYmhoaNxAUUTtWoqe9rSnxZIlS+KYY46JxYsXT/p7AAAw/XT3pjedFgsdGUxCs2ltaYkFswvR3dc77pquUk+GEwHAzJJqp2zNtcTc2YWMpgEAAKBWNt9889hpp53illtuqfcodbXzzjvHZpttVu8xAAAAoKkJF1Vp5cqVsXz58jj//PPjkUceiYjsWopGX2/OnDnxute9LpYsWRL777//pL8HAADTWzXhDc1F1EqxMLdyuKiK8BsAMLZUc1Gx0BEtGx1yBAAAwPT0ta99LQ488MB6j1FXX/3qV+s9AgAAADQ94aIKHn300TjvvPNi+fLlceONN0ZEdoGiDV/zec97XixdujTe+MY3xty5NocCAPAPqU2nuYhYkNdcRG10FubEX7vGv97dJ1wEABOVCpELkAMAAMwcBxxwQFx22WXxjne8I26++eZ6j5OpnXfeOb761a/GAQccUO9RAAAAoOkJF21kZGQkfv7zn8fy5cvj4osvjsHBwXEDRRG1aynaZptt4qijjoqlS5fGjjvuOOnvAQDAzNOdCBfNz3dEa0tLRtPQbDo75lS8rrkIACauuzR+O2DEP0K+AAAAzBwHHHBA3HTTTfHoo4/GqlWr6j1OJhYuXBibbbZZvccAAAAA/o9w0f+5+eabY8WKFXHuuefGQw89FBHZtxS1t7fHoYceGkuXLo1DDjkkWltbJ/19AACYuVLNRTadUkvFfOXPVyr8BgCML9VcVPScBwAAMCNtttlmAjcAAABAXTR1uKi7uzvOP//8WLFiRVx33XURkX2gKOIfNc9LliyJo446KrbccstJfx8AAJqDcBH1lGwu6lsX5XL5CX8PAgDSPOcBAAAAAAAAkKWmDhdts802MTg4OG6gKGLqQ0Wjr7dgwYJ405veFEuWLIm999570t8DAIDmk2qGKRbmZjQJzSi1qXl4ZCTW9vfF/Hwho4kAYGYYGRmJ1X29FddoLgIAAAAAAABgKjV1uGhgYGB98CeLlqJcLhcHHnhgLF26NF772tdGPp+f9PcBAKB5pU+078hoEppRZxXhte5Sj3ARAGyiNf2lGEn8+6TmIgAAAAAAAACmUlOHi0blcrkpCRSNvtao0dfcfvvt45hjjoklS5bEk5/85Cn5PgAANLdyuVxFuEhzEbVTTWNCV2ldbN+5ZQbTAMDMkXrGixAuAgAAAAAAAGBqCRfF5JuKxgoU5fP5OPzww2Pp0qXxT//0T09oMgIAgMnoGeiLoZHhimuqCX/ARC2YXUge1FDN5mgA4PG6q7h/FoXIAQAAAAAAAJhCwkUTtHFYaHRD3Z577hlLly6NI444IorFYh0mAwCgGVSz6bSzQ7iI2mlpaYlivqNigKiazykA8HipcG5rS0vMm53PaBoAAAAAAAAAmoFw0SYaq6Voiy22iLe85S2xZMmS2G233eo1GgAATaSaRpjOvHARtdVZmFPxs6i5CAA2XVepp+L1zvwcLekAAAAAAAAATCnhoiqM1VLU2toaL33pS2Pp0qVx2GGHRXt7e52mAwCgGaVCG7lcLubnOzKahmZVLFQOsAkXAcCmS90/U/dfAAAAAAAAANhUwkUVjNVStMMOO8Sxxx4bxxxzTCxatKheowEA0ORSJ9ovyHdEa0tLRtPQrDoTm5u7hYsAYJOl7p+p+y8AAAAAAAAAbCrhoo2MFSiaM2dOvP71r4+lS5fGC17wgnqNBgAA63WXeiteL+ZtOqX2OgtzK15PheAAgCfSXAQAAAAAAABA1oSL4vGBoojHQkX77bdfLF26NN74xjfGnDn+oz0AAI0jFdpwoj1ZSDcX9cZIuRwtG/2dCwAYXypc1NnhOQ8AAAAAAACAqSVc9H9GA0ULFy6Mo48+OpYsWRLPeMYz6jwVAACMravXplPqL9WcMFweibX9pViQ78hoIgCY3kZGRmJ1X+WGylRzIAAAAAAAAABsqqYPF5XL5Whvb49XvOIVsXTp0jjkkEOipaWl3mMBAEBF3X2JcJHmIjJQzeesu7ROuAgAqrS6v7T+EKTxFPOe8wAAAAAAAACYWk0dLtpll11iyZIlcdRRR8UWW2xR73EAAKAq5XI5ukqVw0WpRhmYCtWEi7pK6+JJnVtmMA0ATH9dpZ7kGg2VAAAAAAAAAEy1pg4XrVy5st4jAADAJlvb3xfDIyMV12guIgvz8h3RksvFSIWGhWo2SQMA/9CdCJBHeM4DAAAAAAAAYOq11HsAAABg03RXc6J9YW4Gk9DsWnK5KOYrb3Du6k1vkgYA/iHVTtnW0hpzZ+UzmgYAAAAAAACAZiFcBAAA00xXqTe5xon2ZKWY+Kx19wkXAUC1UqHcYqEjcrlcRtMAAAAAAAAA0CyEiwAAYJrpSjQX5XK5mD+7kNE0NLvOjkRzUaKBAQB4TCqUq50SAAAAAAAAgFoQLgIAgGmmOxHWKOY7oqXFoz7ZKOYT4aJEAwMA8JhqmosAAAAAAAAAYKrZcQgAANNMqgmms1A57AFTKfV5SzUwAACPST/naS4CAAAAAAAAYOoJFwEAwDSTai6y6ZQsdXYkwkWldTFSLmc0DQBMb6lQrhA5AAAAAAAAALXQVu8BmLjh4eFYtWpV3H///bF27doolUpRKpWir68vymNs3jv66KPrMCUAAFMtdaJ9sdCR0SSQDrONlMuxtq83FtgMDQAVDY+MxOq+3opriu6nAAAAAAAAANSAcNE0cdttt8XVV18dN9xwQ9xwww1x++23x0MPPTRmiGg8wkUAADNDV6mn4nXNRWSpmk3OXaV1wkUAkLCmrzf5b32aiwAAAAAAAACoBeGiBjU8PBwXXXRRXHTRRfGrX/0q7r333sdd35RQUURELpebyvEAAKiTkXI5uhMn2tt0Spaq+bx1ldbFk2s/CgBMa6l2ygjPeQAAAAAAAADUhnBRg/nf//3f+MY3vhHnnntuPPLIIxExdpBoU8JCmxpEquSzn/1sXHTRRcl1W221VfzgBz+Ysu8LAMA/9PSXYnhkpOKaappkYKrMm12I1lxLDJfH/1x2V7FZGgCaXTXhIs95AAAAAAAAANSCcFGDuO222+K0006L73//+zEyMvK4QFClIFEqODTVjUUHH3xwfOhDH6q4plwuRy6Xi9/+9rfxohe9aEq/PwBAs3OiPY2mJZeLYqEj/t7bM+6aaj63ANDsUmHctpbWmDsrn9E0AAAAAAAAADSTlnoP0OzWrl0by5Yti1133TUuuOCCGB4eXh/OGf0V8Y/Azli/srb77rvHK17xivXfu9JM3/rWtzKfDwBgphMuohGlWhS6SuMHjwCAf0jdLzsLc6b8ICEAAAAAAAAAiBAuqquf/exnsdNOO8WZZ575hFBRRNQ1RFTJBz/4wfX/+4YhqA1/lcvl+OEPfxhr166t46QAADNP6kT7llwu5uU7MpoG/qGzMLfi9e5Sb0aTAMD01ZW4XwqQAwAAAAAAAFArwkV1UC6X44Mf/GAcfvjhcd99940bKmpUz3ve8+I5z3nOuO1Fo/r7++NHP/pRvcYEAJiRUs1FxfycaHGiPRlLbXbWXAQAad2J+2WqKRAAAAAAAAAAJkq4KGNr166NQw45JD73uc9Nu1DRhk488cSq1l1wwQU1ngQAoLmkQho2nVIP6XBR5VAcAJC+X2ouAgAAAAAAAKBWhIsytGbNmjj44IPjkksuWR8siph4qGg0mJSrw8n0RxxxRCxYsGD9HBvL5XJRLpfj0ksvjTVr1mQ9HgDAjJXcdNph0ynZS4Xauvt6Y2RkJKNpAGB66hYuAgAAAAAAAKBOhIsysnbt2jj44IPjqquuiojHwjfVhoo2DBLVK1C0odmzZ8drXvOaMeff8GtDQ0Pxy1/+MsvRAABmNJtOaUSpz125XI41/aWMpgGA6Wd4ZCRW9/VWXKOhEgAAAAAAAIBaES7KyJFHHhlXX33149qKUjYOEo2GkUZ/tbW1RbFYjIULF65fn6UjjzyyqnU///nPazwJAEDzSDUXFfM2nZK9akJtqc8uADSz1X29kfrXQiFyAAAAAAAAAGqlrd4DNIN/+Zd/iZ/97GdVB4s2DAmNrt1uu+3i4IMPjr322iv22GOPeNKTnhRbbbXV+nUtLdnnxA444IDYeuut46GHHlrfxLSh0a9pLgIAmBoj5XKsLlU+0b6zw6ZTsldNk0JXqSeeElsl1wFAM0q1U0ZEdBbmZjAJAAAAAAAAAM1IuKjGrrzyyvjEJz6xycGicrkcCxYsiKOPPjqOO+642G233Wo+66bK5XLxspe9LM4+++wntCaVy+X1X3vwwQfjz3/+c+ywww71GBMAYMZY21+K4fJIxTU2nVIPc2cXorWlJYZHxv98ai4CgPFVc5+sJswLAAAAAAAAABORfd1NExkcHIzjjz9+faCoUrAol8utb/qZPXt2fOQjH4m77rorvvzlLzdksGjUy1/+8qrWXXHFFTWeBABg5rPplEbVkstFZ77yZ6+aRgYAaFZdpZ6K19tbWmPOrNkZTQMAAAAAAABAsxEuqqEvfvGLccstt6wPDY1nw7ai5z3veXHjjTfGJz7xiSgWixlNOnEveclL1s+/cXvRhoSLAAAmr6u38qbTiIhO4SLqJBVs01wEAONL3SeLhTkV/+0NAAAAAAAAACZDuKhGent74/Of/3zyP/qPBo/K5XKccMIJ8dvf/jZ22GGHjKacvGKxGDvttFPFNeVyOa6//vqMJgIAmLlSzS+tuZaYN7uQ0TTweKlgW1evcBEAjCf1nCdADgAAAAAAAEAtCRfVyDe+8Y34+9//HhExbmvRaLAol8vFRz7ykfj6178ebW1tWY45JZ73vOdVfI8REbfeemsMDQ1lORYAwIyTPtG+I1qcaE+daC4CgImrprkIAAAAAAAAAGpFuKhGTj/99IqtRRsGi5YtWxaf+MQnMpxuau29995jfn3DwNHg4GDceuutWY0EADAj2XRKI+vsqPz56+4TLgKA8aSe8zoLczOaBAAAAAAAAIBmJFxUA1dddVX89a9/jYixW4s2DBY9//nPjy9/+csZTzi1dtppp6rW3X777TWeBABgZuu26ZQGlvr8re7rjeGRkYymAYDpJfmclwjxAgAAAAAAAMBkCBfVwPnnnz/utQ3bjGbPnh1nnXVWtLa2ZjFWzey4445VrbvrrrtqPAkAwMzWVeqpeL1TcxF1VMxX/vyVy+VY09eb0TQAMH0MjQwn75Gp+ywAAAAAAAAATIZwUQ384he/eFyIaGOjrUUnn3xyPP3pT89wstrYfPPNY7PNNouIqPi+hYsAACanu1R506lwEfVUTaNCV1/lVgYAaEar+3rjid3nj6e5CAAAAAAAAIBaEi6aYg8++GDccccdEfGPENGGNgzeFAqFeO9735vpbLW0ePHiJ7zfjd13330ZTQMAMPOMjIxEdyKYURQuoo6qCbd19QoXAcDGukvp+6MQOQAAAAAAAAC1JFw0xa644oqK10dbi175ylfGFltskdFUtbf11lsn1zz88MMZTAIAMDOt6S/FSCLMbdMp9TR3Vj7aWlorrqlm8zQANJuuKu6PQuQAAAAAAAAA1JJw0RRbuXJlVeve+MY31niSbG2zzTbjXsvlclEul+ORRx7JcCIAgJnFifY0ulwuF8VCR8U1XaWejKYBgOkjFS5qb22NOe2zM5oGAAAAAAAAgGYkXDTF7rzzzjG/nsvlHve/H3DAARlNlI25c+cm13R3d9d+EACAGcqJ9kwHnYXKfy/oKvVmNAkATB+pEHlnYe7j/m0RAAAAAAAAAKaacNEUGy9ctKEddtghisVi7YfJUD6fT67p7+/PYBIAgJkpFS5qbWmJubMLGU0DY0u1Z3VrLgKAJ0g956WaAQEAAAAAAABgsoSLptiqVavGPUm0XC5HLpeLpz/96RlPVXvCRQAAtdWVCGV05udEixPtqbNUuKiaBi4AaDZdvYnnvEQzIAAAAAAAAABMlnDRFFu3Lr1Zbtttt81gksYzNDRU7xEAAKat7uSJ9pVDHZCF1OdQuAgAnij1nJcK7wIAAAAAAADAZAkXTbFqwkVz586800ZLpVJyzezZszOYBABgZkqFMmw6pRGkPodr+npjeGQko2kAYHro6hMiBwAAAAAAAKC+hIumWF9fX3LNrFmzMpgkW729vck1HR0dGUwCADAzpcJFNp3SCFLhonJErO5L/90BAJrF0MhwrOmrfGiPEDkAAAAAAAAAtSZcNMUKhUJyTTUtP9PNQw89lFxTzZ8NAABjSzYXddh0Sv1VE3LrKvVkMAkATA+rS+nQrXARAAAAAAAAALUmXDTFqmnnWbeu8sbQ6ejee+8d91q5XI6IiHnz5mU1DgDAjDIyMpJse+kszM1oGhhfNZ/DVFAOAJpJNfdFz3kAAAAAAAAA1Jpw0RSbMyd9kuj999+fwSTZuuuuuyKXy417PZfLxeLFizOcCABg5ljdX1of2B5PMe9Ee+pvzqzZ0d7SWnFNt3ARAKxXTbiommZAAAAAAAAAAJgM4aIp1tnZWXHjZ7lcjnvuuSfDiWrv3nvvjUcffTQiouJ733777bMaCQBgRukq9STXdHbYdEr95XK55AZozUUA8JjuxHPerNa26GifldE0AAAAAAAAADQr4aIp9pSnPGXca6PNPv/7v/8bg4ODWY1Uc9dff31V64SLAAAmppqml04n2tMgUp9F4SIAeExXqbfi9c7CnIpt4QAAAAAAAAAwFYSLpthTn/rUMb++YaPPwMBA3HjjjVmNVHO//vWvq1q3ww471HgSAICZKRXGaGtpjbmz8hlNA5Ulm4t6001cANAsUs1FqfsqAAAAAAAAAEwF4aIpNl64aGOXXHJJjSfJzs9//vOqTlDda6+9MpgGAGDm6eqtHC4qFjqcaE/D6CzMrXi9u69yQwMANJNUiFw7JQAAAAAAAABZEC6aYs95znOqWvfTn/60xpNk4/rrr4877rgjIh7fzhQRj9vgWiwWNRcBAExQetNp5TAHZKmzI9FclGhoAIBm0i1cBAAAAAAAAEADEC6aYnvssUcUCoWIiCecHl8ulyOXy0W5XI4//vGPceutt9ZjxCl15plnVrw++p61FgEATJxNp0wnxXzlz+OavlIMjQxnNA0ANLZUiLzoOQ8AAAAAAACADAgXTbG2trbYe++9n9DiM5avfe1rGUxUOw8//HCcd955TwhRjeWlL31pBhMBAMxMNp0ynaSaiyIiVvf1ZjAJADS2oeHhWNNfqrhGQyUAAAAAAAAAWRAuqoFUkGa0vejb3/523H333RlNNfU+/elPx7p1/9jomgpTvfrVr85iJACAGam71FPxuuYiGkk1n8eu3sqBOQBoBt196fuh5zwAAAAAAAAAsiBcVANvfOMbx722YQhnYGAgTj311CxGmnI333xz/Md//Me4rUWjAaqIiJ122ime+tSnZjkeAMCMMTwykmx5semURlJNw0KqjQsAmkF3Kd3kp6ESAAAAAAAAgCwIF9XAU5/61Nhrr72iXC6PGb4Z/Xq5XI4f/ehHcd5559VhyokbHh6OY445JgYGBiKicmtRLpeLt7zlLVmNBgAw46zp643KHZHCRTSWjvZZ0d7aWnFNqo0LAJpBVxX3Q895AAAAAAAAAGRBuKhGjjnmmOSa0YDRsmXL4sYbb8xgqqnxjne8I66//vrHtRNtaMNA1ezZs+Ntb3tbluMBAMwo1TS8ONGeRpLL5ZLtRV1VNDUAwEyXes6b3doWhfZZGU0DAAAAAAAAQDMTLqqR4447LrbccsuIiHHbi0av9fT0xKGHHhp33HFHpjNOxGc/+9n4xje+MeZ72tBoO9Ob3vSm2HzzzTOaDgBg5qkmXJQKckDWUi0LmosAIKI78ZxXLMxJ/hscAAAAAAAAAEwF4aIayefzcfLJJ4/Z7DNqw4DR/fffHy94wQti5cqVWY24yU477bT40Ic+tH5TQ6q1qKWlJU499dTM5gMAmIlSm07bW1pjzqzZGU0D1UmFi6oJzQHATJe6H6bupwAAAAAAAAAwVYSLauid73xnbLXVVhExdntRxOMDRg8++GDst99+cc4552Q2YzV6enriyCOPjI9//OPr502FpnK5XBxzzDGx8847ZzUmAMCM1JVoeHGiPY2oKFwEAEmp+2FROyUAAAAAAAAAGREuqqH58+fH5z//+YpBnIjHB4x6e3vj2GOPjVe96lVxzz33ZDFmRRdffHE8+9nPju9+97vrQ0PjvZ8NN7XOmTMnPvWpT2U1JgDAjOVEe6aj1Ocy1cgFAM0gdT/0nAcAAAAAAABAVoSLauzII4+MAw44YH0wZzwbBozK5XJcdNFFseOOO8ZJJ50Ud911V1bjrnfJJZfEi1/84jjssMPizjvvTAaLRo2uO+2002LrrbfOaFoAgJkrfaK9Tac0ns5E08Ka/lIMDQ9nNA0ANCbPeQAAAAAAAAA0CuGiDCxfvjw233zziIhNChj19/fHGWecETvssEO8+MUvjrPOOitWrVpVszmvv/76+NjHPhY77rhjvOxlL4vLLrtsfVgoFSwavZ7L5eLFL35xnHLKKTWbEwCgmaRPtK8c4oB6qKZpobtPexEAzWtoeDjW9pcqrtFcBAAAAAAAAEBW2uo9QDN40pOeFOedd168/OUvTzYAbRgwGv2/y+VyXHbZZXHZZZdFRMSznvWs2GuvvWLPPfeMpz3tabH99ttXNcddd90VpVIpent748EHH4x777037rrrrrj++uvj+uuvj66ursfNsPEc49kwMLXFFlvE2WefXdU8AACkpU607yx0ZDQJVK+apoWu0rrYYs78DKYBgMZTTci2s0O4CAAAAAAAAIBsCBdl5KUvfWl86lOfig996EMV24tGbdgYNPp/j7rlllvi1ltvjXPOOecJv2es1xn9n09/+tMrfr9RG85XKVS04dpyuRyFQiF++MMfxjbbbFPx9wAAUJ2hkeFY09dbcU1RcxENqKrmokRwDgBmslSAPCKimBcuAgAAAAAAACAbLfUeoJl84AMfiA9/+MNPCA6NZ7S1KCLWr9+40WjDNSkb/54Nf433+pVsuLa1tTXOO++8eMELXlDVLAAApK3u643Uk54T7WlEhfZZMbu18lkW1WyqBoCZqpr7oOc8AAAAAAAAALIiXJSxT37yk/G+973vcaGhlEpBoGpCSqPG+n3jBZaqea3R39PS0hJnnHFGHH744VXNAQBAdappdqmmIQaylsvlopj4bAoXAdDMunor3wdnt7VHoW1WRtMAAAAAAAAA0OyEi+rgM5/5THzhC1+IlpZ//PFXGw4aNVbz0ER/36a+xobzlsvlmD17dlx44YVx3HHHbdJ7AAAgrZrwRSrAAfWSCr51lXoymgQAGk93X+XnvGK+Y5P/zRAAAAAAAAAAJkq4qE7e/e53x0UXXRQLFix4XBtRo9swWLT55pvHL3/5y3jNa15T56kAAGamVLiovbU15rTPzmga2DTFwtyK17tLvRlNAgCNJxWy7eyofB8FAAAAAAAAgKkkXFRHBx98cFx33XVx0EEHrW8OatSQ0YZzlcvlOOigg2LlypWx//7713kyAICZqzsRLuoszG3IZ0eI0FwEAJV09aae87RTAgAAAAAAAJAd4aI6e8pTnhKXXnppnHHGGTFv3ryGCxltHCoqFArxuc99Li655JJYuHBhnacDAJjZUs1FxUJHRpPApismw0WVP98AMJN19wkXAQAAAAAAANA4hIsaxPHHHx933nlnnHrqqZHP558QMso6aLRxqCgi4phjjok///nPceqppzZE8AkAYKbr6q3c7NJZmJvRJLDpUpuie/r7YnB4KKNpAKCxpEPkwkUAAAAAAAAAZEe4qIFsttlm8bnPfW59yGjzzTePcrk8ZtBoqsM9Y712uVyO9vb2OPLII+P666+P5cuXaysCAMhQd2LTqRPtaWSdHenPZ3dfbwaTAEBjGRweip7+voprPOcBAAAAAAAAkCXhoga09dZbx+c+97m477774nvf+14cfPDB0d7e/rigUcQTA0GT+RUR61+/XC7HjjvuGKeddlrcc8898Z3vfCd23333ev1xAAA0ra4+4SKmr2qatbp6K3/GAWAmqiZcq6ESAAAAAAAAgCy11XsAxtfe3h5veMMb4g1veEOsW7cufv3rX8cvfvGL+O///u+4/fbbY3h4+Am/p5pGow0DSqPmz58fe+21V7zkJS+Jww8/PHbccccpeQ8AAEzM0MhwrOkrVVxTFC6igRULHck13aWeDCYBgMZSTbjWcx4AAAAAAAAAWRIumibmzJkThx12WBx22GEREdHX1xc33nhj3HjjjXHXXXfFvffeG/fee2+sWrUqenp6olQqRV9fX/T390d7e3t0dHREoVCIuXPnxuLFi2P77beP7bffPp7+9KfHXnvtFc985jOrCiYBAJCN1aVqTrS36ZTGVWibFbPb2qN/aHDcNV1VfM4BYKapJlzrOQ8AAAAAAACALAkXTVP5fD722Wef2Geffeo9CgAANdBVSp9o31mYm8EkMDG5XC46C3PigbXd467p0lwEQBNKhWvzbe1RaJ+V0TQAAAAAAAAAENFS7wEAAIAnqi5c5ER7GlvqM9pdxeccAGaaVLi26BkPAAAAAAAAgIwJFwEAQAPqTmw6ndXa5kR7Gl5qc3Q1IToAmGlS4VoBcgAAAAAAAACyJlwEAAANKBW66CzMiVwul9E0MDGaiwDgiap5zgMAAAAAAACALAkXAQBAA7LplJmgszC34nXNRQA0o1S4NtX8BwAAAAAAAABTTbgIAAAakE2nzASpEFzPQF8MDA9lNA0ANIZ0iLxyOBcAAAAAAAAApppwEQAANCDNRcwE1YTgUkE6AJhJBoaHomegr+Iaz3kAAAAAAAAAZE24CAAAGlAqXFR0oj3TQDWbo4WLAGgmq0u9yTXCRQAAAAAAAABkTbgIAAAazNDwcKztL1VcY9Mp00E1zUWpIB0AzCRdpZ7kmmrunwAAAAAAAAAwlYSLAACgwXT3pcMWwkVMB4X2WZFva6+4RrgIgGZSzX1PuAgAAAAAAACArAkXAQBAg7HplJkkFYSrpsEBAGaK7sRzXqFtVhTaZ2U0DQAAAAAAAAD8g3ARAAA0mGrCRZ0dwkVMD52FuRWvd5d6M5oEAOov9ZxXLHRkNAkAAAAAAAAAPEa4CAAAGkzqRPvZbe1RaHOiPdNDqmVLcxEAzSQVLkqFcgEAAAAAAACgFoSLAACgwSRPtM93RC6Xy2gamJzOZLgo3dQFADNFKkSeCuUCAAAAAAAAQC0IFwEAQINJNbl0djjRnukjtUk6tckaAGaSdHORcBEAAAAAAAAA2RMuAgCABtPVa9MpM0fq87puoD8GhoYymgYA6isVItdcBAAAAAAAAEA9CBcBAECD6e6rHC4q5m06ZfqopmmrK/GZB4CZYGB4KNYN9FdcI0QOAAAAAAAAQD00Vbho3333jauuuqreY7AJent745//+Z/j85//fL1HAQDITFcp0VzUYdMp00cx35Fc09VbucUBAGaC7sQzXoRwEQAAAAAAAAD10VThoj/+8Y/x/Oc/P9785jfH3XffXe9xSDjrrLNihx12iE996lPR29tb73EAADIxODwUPf19FdfYdMp0Us3ntbvP8z4AM18qQB4RUfScBwAAAAAAAEAdNFW4aNSFF14Yz3zmM+OUU06Jhx9+uN7jsJEf//jHseuuu8bb3va2WLVqVb3HAQDIVDUhi87C3AwmgamRb58VhfZZFddoLgKgGVQTLhIiBwAAAAAAAKAemjJcVC6Xo7+/P04//fR42tOeFv/8z/8cq1evrvdYTe/SSy+NfffdN1772tfGzTffHOVyud4jAQBkrqvXifbMPKmN0t1VbLYGgOkudb8rtM2KfCKQCwAAAAAAAAC10JTholwuF7lcLsrlcvT09MSnPvWpePKTnxz//M//HF1dXfUer+n813/9Vzz/+c+Pgw8+OK655pr1oaJcLlfnyQAAstddSje4ONGe6SYViKumyQEApruuxHNescMzHgAAAAAAAAD10ZThog3DK6Mho9WrV68PGX3oQx+KVatW1XnKma1cLscPf/jD2HvvvePQQw+Nq666KsrlcpTL5fX/fwEAaEapkEW+rT0KTrRnmkkF4oSLAGgGqYZKAXIAAAAAAAAA6qUpw0URsT7IEvH4kNHatWvjs5/9bDzlKU+J4447Lm6++eY6TzqzlEql+NrXvhbPeMYz4g1veENcd911TwgVbfj/GwCAZpMKWdh0ynTUWZhb8Xq3cBEATaC7z3MeAAAAAAAAAI2pacNFo8YLGQ0MDMSKFStit912i4MPPjh++tOfCrxMwh133BGnnnpqbLvttnHyySfHHXfcIVQEADCGVMiiaNMp01C6uagno0kAoH5SIXLPeQAAAAAAAADUS1u9B6iH0SDLhjYOGG34tUsvvTQuvfTS2G677eKEE06Io48+OhYtWpTt0NPQ0NBQ/OxnP4szzzwzLrnkkicEuUYJFAEAPEZzETNRarN07+BA9A8Nxuy29owmAoDsdfV6zgMAAAAAAACgMTVVc9Hmm28+ZrhlQ+M1GZXL5bjnnnviIx/5SDzpSU+Kl7/85fHDH/4wBgYGMpt/urjxxhvj3e9+dyxatChe97rXxa9+9asYGRl5XEtRRFRsKto4fLTFFltkMjsAQL2lw0VzM5oEpk41m6VTrV0AMJ0NDA1F72B/xTWe8wAAAAAAAACol6YKF91+++1x7LHHrv+/Nwy6bGw0+LJhIGY0aDQ8PBy//OUv4w1veENstdVWceyxx8Z//dd/xfDwcEbvpPHcfvvt8fGPfzx22mmn2HPPPeMrX/lKPPLII0/4M4yoHCqKiMet23777ePHP/5xnHjiiZm8DwCAeksFLFINMNCIqgkXpYJ1ADCddfWl73Oe8wAAAAAAAACol6YKF2222WZx1llnxeWXXx7PfOYzn9BQNJ5KbUZr1qyJc845Jw499NDYaqut4qijjoof/OAH0dPTk8l7qqerr746PvzhD8cuu+wSO+20U5x22mlx2223jRnKiqguVDT6Z9va2hrvfe9745ZbbonDDjssq7cEAFBXA8ND0TPQV3FNNSENaDTVbJYWLgJgJuvqTf9boec8AAAAAAAAAOqlrd4D1MMLX/jCWLlyZZx++ulx2mmnRXd39+OCLeMZL4w0+vWurq44//zz4/zzz4/29vbYZ5994sADD4wDDjgg9ttvv5g1a1Zt31iN3XrrrXHZZZfFZZddFr/97W/j73//e0TE4/7MNg5pVfrz3Pj3jK596UtfGl/60pfimc985lSNDgAwLaRaiyJsOmV6mt3WHh3ts6J3cGDcNV2lmX9AAwDNq7uvN7lGcxEAAAAAAAAA9dKU4aKIiNbW1jjllFPiqKOOig9/+MPx7W9/O0ZGRp4QdBnLxmGasYJGAwMDccUVV8QVV1wRn/jEJ2L27NmPCxvtscceMW/evBq9u8kbHh6OW2+9Na644oq4/PLL4/LLL4+HH354/fWN/3zG+jNI2fj37LDDDvGFL3whXvGKV0xyegCA6amacJFNp0xXnYW50Tv46LjXu0vpTdcAMF2lmosK7bMi39ae0TQAAAAAAAAA8HhNGy4atfnmm8c3vvGNeOc73xkf+MAH4he/+MXjAkOpoEw1QaOIiL6+vvjd734Xv/vd7+LjH/94RERsv/32sdtuu8Vuu+0Wu+66a+y2227xjGc8I1paWqbyLSY98MADsXLlysf9uu2222JwcHDM9xIxsYaisX5vuVyOLbfcMj760Y/GCSecEG1tTf+RBACaWJfmImawYmFO3Ldm/HCR5iIAZrJUiNwzHgAAAAAAAAD1JMnxf3bZZZe4+OKL4/LLL4/3v//9ce21125SyGjjNRsHjcZ6jbvvvjvuueeeuOiii9Z/bdasWbF48eJYvHhxbLvttuv/99Ff8+bNi0KhEPl8PgqFwvpfowYGBqJUKj3uV29vbzz00ENx7733xn333Rf33Xff+v/93nvvjTVr1lScc/T9VHq/1dg4VDRnzpx4z3veE+973/ti7ty5m/RaAAAzUSpcVGibFfn2WRlNA1MrtWm6mnAdAExXqfuccBEAAAAAAAAA9SRctJEDDjgg/vjHP8ZPfvKT+PjHPx433HDDJoeMxlo3VthorHX9/f1x5513xl133bVJc7e3t8fw8HCMjIxU/XsqvZepCBON9Vrlcjk6OjripJNOive9732xxRZbTOg1AQBmolRzS7HDplOmL+EiAJpZ6j5XFC4CAAAAAAAAoI5a6j1Ao3rVq14V119/ffzwhz+MZz/72VEul6NcLq8PCY0Vvqlk9Pdv+CsiHvd6G/4aa32lXwMDAzE8PLxJv6fS9x9r5k218WvNmTMn3vve98Zdd90Vn/nMZwSLAAA20l3qrXjdifZMZ6lN093CRQDMYKn7XGdBqzcAAAAAAAAA9SNclPDqV786rrvuuvjFL34RBxxwwJjBnIkaL/Cz4WvX+td4c0ympWjjgNQWW2wRn/jEJ+Kee+6Jz372s7HllltO+M8MAGAmSzYX5YWLmL46Oypvmi4NDkTf4EBG0wBAtlLPeULkAAAAAAAAANSTcFGVDj744PjNb34Tf/zjH+PNb35ztLW1jdn+M1mb2li0cRBoMr93MsYKK+2yyy5xxhlnxN133x0f+chHolgsTsn3AgCYqbpSJ9p32HTK9FXMdyTXpH4GAGA66h8ajN5EgFa4CAAAAAAAAIB6Ei7aRHvttVecd955cc8998THPvaxWLhw4ZS2GU3UVAaFqjVWA1Jra2u8+tWvjt/85jexcuXKOP744yOfz2c6FwDAdNXVmwgX2XTKNJZqLoqI6O7rzWASAMhWdxXh2aLnPAAAAAAAAADqSLhogrbeeuv42Mc+Fvfcc0/85Cc/icMOOyxaW1vXh3w2DN7UI2xUK2MFisrlcjzjGc+Iz3zmM/G3v/0tfvjDH8YBBxxQ30EBAKaZgaGh6B3sr7immLfplOmrs4rPb1dvTwaTAEC2qmnmEyIHAAAAAAAAoJ7a6j3AdNfS0hKvfOUr45WvfGU89NBD8d3vfjcuuOCCuOqqq9av2ThglHXD0GSMFYwanX/rrbeON7zhDfHmN7859t1336xHAwCYUbr6qth0WkXzCzSqWW1tMWfW7Fg3MH6IrprN1wAw3WguAgAAAAAAAKDRCRdNoa222ire9a53xbve9a64++674wc/+EH85Cc/iSuvvDJGRkYi4olBo4jGChtVChNFRGy33XZx2GGHxWte85p40YteFC0tyq8AAKZCNY0tTrRnuisW5lQMF1Wz+RoApptUeLajfVbMbmvPaBoAAAAAAAAAeCLhohp50pOeFKeeemqceuqp8fe//z0uvvji+OUvfxm/+c1v4sEHH1y/bqyw0ahaho7G+54bf99Zs2bFvvvuGy95yUvi0EMPjWc/+9k1mwkAoJl19/Um1zjRnumuszAn7lv96LjXNRcBMBOl7m+dBe2UAAAAAAAAANSXcFEGNt988zj66KPj6KOPjoiIm266KS6//PK48sor4w9/+EPcfffdT/g9lUJHU2njANOcOXPiuc99buy3337xwhe+MF74whdGR0dHzecAAGh2qeaiQvusyDvRnmkutXlacxEAM1Hq/iZADgAAAAAAAEC9CRfVwS677BK77LJLvOMd74iIiAceeCD+9Kc/xY033hg33nhj3HLLLfGXv/wlSqVS8rXGCiBV03iUy+Viu+22i2c+85mx6667xu677x6777577LzzztHS0rLpbwoAgElJbTrttOmUGSD1Oe4qVQ7ZAcB0lLq/ec4DAAAAAAAAoN6EixrANttsE4ccckgccsghj/v6fffdF3feeWfce++9cd9998WqVavi4YcfjtWrV0d3d3f09PREf39/DA4OxtDQULS0tER7e3vMmjUrCoVCLFiwIIrFYmy22WaxzTbbxKJFi2Lx4sXxpCc9KZ72tKfF7Nmz6/SOAQDYWJdwEU0g1cyQ+jkAgOnIcx4AAAAAAAAAjU64qIEtXrw4Fi9eXO8xAADIQHrT6dyMJoHaSW2e7hsajNLgQBTaZ2U0EQDUXuo5LxW+BQAAAAAAAIBaa6n3AAAAQES3Tac0gWqaGVI/CwAwnYwGZyvRXAQAAAAAAABAvQkXAQBAA+gq9VS8btMpM0E1IblUuwMATCfVhGaFyAEAAAAAAACoN+EiAACos/6hweh1oj1NoLpwUeWgHQBMJ9WEZjs75mYwCQAAAAAAAACMT7gIAADqzIn2NItZrW0xd1a+4pruUm9G0wBA7VXznNeZ95wHAAAAAAAAQH0JFwEAQJ1VdaK9cBEzROqzrLkIgJkkdV/raJ8ds9raMpoGAAAAAAAAAMYmXAQAAHVWTbhIcxEzReqzXM3PAwBMF6n7WmeHZzwAAAAAAAAA6k+4CAAA6qw7sem0o312zG5rz2gaqK10c5FwEQAzR+o5TzslAAAAAAAAAI1AuAgAAOoseaK9TafMIKnmotQmbACYTlLPecW85zwAAAAAAAAA6k+4CAAA6qyr1FPxeiqMAdNJZ2FuxetdpXVRLpczmgYAaisZIu/wnAcAAAAAAABA/QkXAQBAnWkuopl0FjoqXu8fGozS0EBG0wBAbaUa+VKhWwAAAAAAAADIgnARAADUWXLTqRPtmUGKVWyi7i71ZjAJANRW3+BAlAYrB2Y1VAIAAAAAAADQCISLAACgzlLNRcW8TafMHNWE5bpKPRlMAgC1lXrGi9BQCQAAAAAAAEBjEC4CAIA6quZE+86OdNMLTBfFfEdyTVdvejM2ADS6VDtlhHARAAAAAAAAAI1BuAgAAOrIifY0m/bWtpg7O19xTTU/FwDQ6Kq5nxU95wEAAAAAAADQAISLAACgjrr7epNrbDplpkkF5qppegCARpcKF82ZNTtmtbZlNA0AAAAAAAAAjE+4CAAA6qirtye5pjMvXMTM0lmYW/G65iIAZoJUWDZ1PwQAAAAAAACArAgXAQBAHVV1on2bE+2ZWdLNRenQHQA0utRzXup+CAAAAAAAAABZES4CAIA66u5zoj3Np5jYTK25CICZINVclLofAgAAAAAAAEBWhIsAAKCOunpTm047MpoEspNuLloX5XI5o2kAoDa6Ek18mosAAAAAAAAAaBTCRQAAUEepE+01FzETpTZT9w8PRWlwIKNpAKA2uku9Fa8LFwEAAAAAAADQKISLAACgjpxoTzMqVvG57koE7wCgkZUGB6I0VDkoW839EAAAAAAAAACyIFwEAAB15ER7mlE1n+tU8A4AGlmqnTLCcx4AAAAAAAAAjUO4CAAA6sSJ9jSrYj79uU4F7wCgkVUXLpqbwSQAAAAAAAAAkCZcBAAAdeJEe5pVW2trzJ9dqLhGcxEA01lXFc95CwodGUwCAAAAAAAAAGnCRQAAUCfVbDp1oj0zVaqVq5qfDwBoVKn72NxZ+ZjV2pbRNAAAAAAAAABQmXARAADUSTXNRU60Z6ZKtXIJFwEwnaUa+LRTAgAAAAAAANBIhIsAAKBOnGhPM0ttqq4mfAcAjSp1H0s1+AEAAAAAAABAloSLAACgTpxoTzMrFuZWvK65CIDpLHUf85wHAAAAAAAAQCMRLgIAgDpxoj3NrLPQUfF6V6knyuVyRtMAwNRKhYs85wEAAAAAAADQSISLAACgTpxoTzNLNRcNDg9H7+BARtMAwNRKhcg7E/dBAAAAAAAAAMiScBEAANSJE+1pZtWE57pKPRlMAgBTqzQ4EH1DgxXXpBr8AAAAAAAAACBLwkUAAFAn6eYiJ9ozc3V2VBMuqvwzAgCNqJr7V6rBDwAAAAAAAACyJFwEAAB1UBociP7UifZVhC9gulqQ74hcYk1Xr3ARANNPdxXhIs95AAAAAAAAADQS4SIAAKiDqk60z9t0yszV1tIa8/KFimu6+4SLAJh+uko9yTXFfEcGkwAAAAAAAABAdYSLAACgDqrZdOpEe2a6zsLcitc1FwEwHaVC5HNn56O9tS2jaQAAAAAAAAAgTbgIAADqoJrQhBPtmek6C5UDdNWE8ACg0XQnwkWp+x8AAAAAAAAAZE24CAAA6qC7z4n2UExsrk5tzgaARpRqLirmhYsAAAAAAAAAaCzCRQAAUAep5iIn2tMM0s1FwkUATD+p+1dnh+c8AAAAAAAAABqLcBEAANRBctNpYW5Gk0D9pMJF3aV1US6XM5oGAKZGV29Pxeue8wAAAAAAAABoNMJFAABQB919mougmPicD44Mx7qB/oymAYDJK5fL0d3XW3FNMe85DwAAAAAAAIDGIlwEAAB1kDrRPhW6gJmgmhBdV6nyzwoANJLS0ED0Dw1WXNPZ4TkPAAAAAAAAgMYiXAQAABkrl8vRXdJcBJ2Fuck1qZ8VAGgkXb3p+5bnPAAAAAAAAAAajXARAABkrDQ4EP3DQxXX2HRKM1iQ74hcYk2XcBEA00h3n3ARAAAAAAAAANOPcBEAAGSsmrBENY0uMN21trTE/HxHxTXCRQBMJ9U0FxXzwkUAAAAAAAAANBbhIgAAyFh3FWGJYqFy4AJmilR7g3ARANNJ6r41b3Yh2lpbM5oGAAAAAAAAAKojXAQAABmrJizhRHuaRSpcVE0YDwAaReq+lbrvAQAAAAAAAEA9CBcBAEDGuko9Fa/Pd6I9TaRYmFvxuuYiAKaT1H2rKFwEAAAAAAAAQAMSLgIAgIw50R4e01noqHg9FcYDgEbSnbhvec4DAAAAAAAAoBEJFwEAQMacaA+P6Uw0F3WXeqNcLmc0DQBMTuo5T7gIAAAAAAAAgEYkXAQAABmz6RQekwrTDY0MR89AX0bTAMDElcvlZEOlEDkAAAAAAAAAjUi4CAAAMpbedFq5yQVmks6O9CbrVCAPABpBaXAg+oeHKq4RIgcAAAAAAACgEQkXAQBAhsrlchXNRR0ZTQP115mvIlzUK1wEQOOrJgzbKUQOAAAAAAAAQAMSLgIAgAz1Dg7EQOJEe81FNJP5+Y7I5XIV13T3CRcB0PhS7ZQREUUhcgAAAAAAAAAakHBRDaxYsSK++MUvxqOPPlrvUQAAaDBdpZ7kms5CuskFZorWlpZYkK+80bqanxsAqLdqmouKVTT2AQAAAAAAAEDWhItq4O677473ve99sXjx4jjyyCPjd7/7Xb1HAgCgQVRzon1nh02nNJdUoK6rV3MRAI0vFYadP7sQba2tGU0DAAAAAAAAANUTLqqRcrkc/f398d3vfjcOPPDA2GmnneJLX/qSNiMAgCaXOtE+F5FscYGZJtXiUE0oDwDqLXW/KmqnBAAAAAAAAKBBCRfVUC6Xi3K5HOVyOW677bY49dRTY9ttt42jjz46rrjiinqPBwBAHaTCRfPyhWhrcaI9zSXV1pX6uQGARpC6X6Wa+gAAAAAAAACgXoSLaiyXy63/VS6Xo6+vL84777x40YteFDvvvHN85Stfie7u7nqPCQBARrp6U5tO52Y0CTSO1GZrzUUATAfCRQAAAAAAAABMV8JFNTbaXBQRjwsZlcvluPXWW+Pd7353LF68OI499ti48sor6zwtAAC11t1n0ylsLBWq6+pbFyP/9/cqAGhUqTBsUYgcAAAAAAAAgAYlXJSRsUJGo18vlUpxzjnnxAtf+MLYdddd46tf/WqsXr26nuMCAFAjXaWeiteLwkU0oWKho+L14ZGR6OkvZTQNAGy6crlcRXNR5fsdAAAAAAAAANSLcFHGRkNG5XJ5fchowzajm2++Od71rnfFokWLYunSpfGHP/yh3iMDADCFuno1F8HGUs1FEek2CACop97BgRgYHqq4RnMRAAAAAAAAAI1KuKiOUm1GZ599drzgBS+I3XbbLb7+9a/HmjVr6jkuAACTVC6Xo7tPuAg2Vs3nPtUGAQD1VE0I1nMeAAAAAAAAAI1KuKgBpNqMbrrppnjnO98ZixYtiuOOOy6uvvrqeo8MAMAErBvsj8Hh4Yprijad0oTmzy6sP2xhPMJFADSyrlJPco1wEQAAAAAAAACNSriowVRqM+rt7Y0VK1bEfvvtF89+9rPjjDPOiLVr19ZzXAAANkF3rxPtYSwtLS1RzHdUXCNcBEAjq+Y+taBQ+V4HAAAAAAAAAPUiXFRjGzYRbYpUm9HKlSvjpJNOikWLFsXb3va2uOaaa2r0DgAAmCrVnWg/N4NJoPGkgnXdwkUANLDUfWp+vhBtLa0ZTQMAAAAAAAAAm0a4qAbe9a53xb//+7/HTjvtNG4T0aao1Ga0bt26OOuss2LfffeNPffcM84888zo6UlvWgUAIHtdpd6K13MRsSDR3gIzVSpYp7kIgEaWuk915rVTAgAAAAAAANC4hItqoFgsxrve9a74n//5n7jiiiviyCOPjHw+/4SA0FS3Gd1www2xbNmyWLRoUbz97W+P6667rhZvDwCACepONBfNz3dEa4tHdJpTsVA5WFdN8xcA1EsqXFRMNPQBAAAAAAAAQD3ZuVhj++23X3znO9+J++67L770pS9l0mbU09MT3/rWt2LvvfeOvfbaK775zW/GunVO+QYAqLfkifY2ndLENBcBMJ2lQrCdHZXvcwAAAAAAAABQT8JFGSkWi3HyySevbzM66qijMmkzuv766+OEE06IRYsWxbJly+JPf/pTLd4eAABVEC6C8aU+/6tLvTHyf39/AoBG013qrXi9mPecBwAAAAAAAEDjEi6qg/322y/OPvvsuP/+++NLX/pS7LzzzjVvM1q7dm2ceeaZsddee8Vzn/vc+Pa3vx29vZU3PQAAMLW6E+GiYqK5BWayYiJcNFweibX9pYymAYDqlcvlKpqLhIsAAAAAAAAAaFzCRXW0YMGCOPnkk2PlypXx+9//PrM2o+uuuy6OP/74WLRoUZx00klxww031ODdAQCwsXRzUUdGk0Djqaa5K/UzBAD1sG6wPwaHhyuu0VAJAAAAAAAAQCMTLmoQz3ve89a3GX35y1/OpM1ozZo1ccYZZ8RznvOc2GeffWL58uVRKjkJHACgFv5xon0qXKS5iOZVzabrVPsXANRDNfcn4SIAAAAAAAAAGplwUYNZsGBBvPOd71zfZnT00UevbzPauIloU6TajK655pp461vfGosWLVr//QEAmDrrBvpjaKTyifZFm05pYvPyHdGS+HtOV6kno2kAoHrVNOt5zgMAAAAAAACgkQkXNbDnPe95sWLFivVtRrvuumvN24xWr14dX//612OPPfZY36bU19c3dW8KAKBJVROKcKI9zawll0tuvO7q1VwEQONJ3Z9yEbEg35HNMAAAAAAAAAAwAcJF08Bom9GNN94YV155ZWZtRn/84x9j6dKlsWjRojj55JPjpptuqtE7BACY+ao50V64iGZXzCfCRVX8HAFA1rr7Kt+f5uc7oq2lNaNpAAAAAAAAAGDTCRdNM/vuu2+sWLEiVq1aFV/5yldq2mY0+rXu7u742te+Frvvvns8//nPj3POOSf6+/un9H0BAMx0qVBELpeL+U60p8l1dlQOF6U2bwNAPaSai1LNfAAAAAAAAABQb8JF09T8+fPjHe94x/o2o2OOOSaTNqOrrroqjj322Fi4cGGccsopccstt9ToHQIAzCzdiXDRgnxHtLZ4PKe5pdq7Upu3AaAeuko9Fa9rpwQAAAAAAACg0dm9OAPsu+++sXz58szbjE4//fTYdddd44UvfGGce+652owAACpINRcV8zadQmdhbsXrqZAeANRDqllPuAgAAAAAAACARidcNIOM1WZUKBRq3mY0+r0WLVoU73nPe+K2226r0TsEAJi+nGgPacVCR8Xr3X3rYmRkJKNpAKA6qWa9ouc8AAAAAAAAABqccNEMNdpmdP/998dXvvKV2G233WreZtTV1RVf/vKXY+edd44XvehFcf7558fAwMCUvi8AgOkqtem0s8OmU0g1F42Uy7G2v5TRNACQVi6Xk816QuQAAAAAAAAANDrhohlutM3ohhtuiD/84Q9x7LHHZtJmdMUVV8RRRx0VixYtive+971x++231+gdAgBMD919Np1CSjU/B12JDdwAkKV1A/0xODJccU0qPAsAAAAAAAAA9SZc1ET22WefOOuss+L++++P008/PZM2o0cffTT+/d//PXbaaac44IAD4nvf+14MDg5O6fsCAGh05XI5GYgoChdBVT8HwkUANJJUa1FERLHQkcEkAAAAAAAAADBxwkVNaP78+XHSSSdl3mb03//93/GWt7wlFi9eHO9///vjz3/+c43eIQBAY1nb3xfDIyMV12gugoh5swvRmqv811ThIgAaSVepJ7lGcxEAAAAAAAAAjU64qMlt3Ga0++6717zN6JFHHokvfOEL8cxnPjMOOuig+P73vx9DQ0NT+r4AABpJd186DGHTKUS05HLJdodqGiIAICup0GsuIhbkNRcBAAAAAAAA0NiEi4iIx9qM/vSnP8VVV101ZpvRRKTajH7729/Gm970pth2223jox/9aDzwwANT/M4AAOqvqzcdhihqLoKISAftqmmIAICspEKvC/Id0drin2ABAAAAAAAAaGz+yzZPsPfee8dZZ50Vq1atiq9+9aux2267TSpgNKpSm9FDDz0Un/70p+PJT35yHHvssXHzzTdPxVsBAGgIqTBELpeLBbMLGU0DjS0VtEs1RABAllL3JQFyAAAAAAAAAKYD4SLGNW/evDjxxBPj97//fSxdunRKAkYRlduMBgYG4pxzzondd989Xve618XKlSun4J0AANRX6kT7Yr4jWpxoDxER0SlcBMA0krovpe5rAAAAAAAAANAI7GBkXH/6059i2bJlsWjRoli+fPn6ANBUGq/NaGRkJH70ox/FnnvuGccee2zce++9U/p9AQCyZNMpVC/185AK6wFAlpIh8sLcjCYBAAAAAAAAgIkTLuJx1q1bF9/85jfjuc99buy1115x5plnxtq1ax8XAqqFSiGjc845J571rGfF5z//+RgZGanZDAAAtZLedCpcBKNSPw/dfb3+XgBAw0iHyDsymgQAAAAAAAAAJk64iIiIuP766+OEE06IRYsWxQknnBDXXXfd+sDPaNgnC+OFjNatWxcf+MAHYt9994077rgjk1kAAKaK5iKoXurnoVwux+r+UkbTAMD4yuVyFc95mosAAAAAAAAAaHzCRU1s3bp1ceaZZ8Zzn/vceO5znxvf/OY317cURcTjQkWb2lo0+ns3/lWt8UJG1157beyxxx5x0UUXbdI8AAD11FXqqXjdplN4TDVhu1QbGABkYd1AfwyNDFdco6ESAAAAAAAAgOlAuKgJXXfddfH2t789Fi1aFMuWLRuzpWg0zLNhyKcaGweSNn6NqQgZ9fT0xKtf/eo466yzNuFdAwDUx0i5HN19vRXXaC6CxxSrCNulAnsAkIVq7kee8wAAAAAAAACYDoSLmsRoS9Fee+0Ve++9d3zrW9+q2FI0kUDRhoGkzTbbLN773vfG7bffHj/96U/jla98ZbS0tDzh+1UbNNo4ZDQ8PBxvf/vb4+KLL96UPwYAgMz19JdieGSk4hon2sNj5s3OR2tL5b+qdmkuAqABVHM/Ei4CAAAAAAAAYDpoq/cA1Na1114bZ555Znzve9+LdevWPS40tGGwZ1PCRJV+/7777hsnnnhivP71r4/Zs2dHRMQOO+wQr3jFK2LVqlVx1llnxfLly+POO+9c/xobhppSNmxXGh4ejre+9a1xyy23RGdn5ybPDwCQBZtOYdPkcrnozM+JR3rXjrumq1e4CID6Sz3n5XK5mJ/vyGgaAAAAAAAAAJg4zUUzUE9PT3zjG9+I5zznObHPPvvEt7/97ejp6ZnylqLR39/R0RHHH398/OlPf4orr7wyjjzyyPXBog0tXLgwPvKRj8Rf/vKXuOSSS+L1r399tLW1jTlXJRvO+9BDD8XJJ59c9fwAAFnrFi6CTZZq8+ruEy4CoP5Sz3kLZheSbXwAAAAAAAAA0Aj81+0Z5Nprr423ve1tsWjRojjxxBPjT3/60/rw0IahoNGvTSRUFPFYIOlZz3pWnH766XH//ffHGWecEbvvvnvVr/dP//RPccEFF8Tdd98dH/3oR2OzzTbbpJDR6Hsql8tx/vnnx+2331719wYAyFLqRPuWXC7mOdEeHqezo3K4SHMRAI0g9ZxXLMzNaBIAAAAAAAAAmBzhommup6cnzjjjjPUtRWeddVZNW4ra29vjTW96U/z2t7+Nm266KU466aSYN2/ehOffZptt4uMf/3jcc8898fnPfz623HLLx81erTPOOGPCMwAA1FJy02l+TrRswnMPNIPOxGbs1M8VAGShq9RT8bp2SgAAAAAAAACmC+Giaeqaa66Jt771rbFw4cI46aSTat5StP3228enPvWp+Nvf/hbnn39+vPCFL5zS91MoFOI973lP/OUvf4n3ve990draun6W1KzlcjnOPvvsGBgYmNKZAACmQmrTadGmU3iCYqFym1d34ucKALLQXeqteD3VxAcAAAAAAAAAjUK4aBpZu3Zt/Md//Efsueeese+++8by5ctj3bp1U9JSNNbvz+Vy8fKXvzx+9rOfxZ133hkf+tCHYsstt5zaN7WRuXPnxmc+85n4wx/+EE960pPWzzGWDd/f6tWr449//GNNZwMAmAibTmHTpZqLVveXYnhkJKNpAGBsyRB53nMeAAAAAAAAANNDW70HIO2Pf/xjnHnmmXHBBRdEb2/v40I1GwZvNjVMNN7v33LLLWPp0qXx9re/PZ785CdPfPBJeM5znhNXXXVV7L///vHnP/95fUNRJVdddVW84AUvyGhCAIDq2HQKm64z0ehVLpdjTV9vdHZUDiEBQK2Uy2UhcgAAAAAAAABmDOGiBrV27do455xz4pvf/GasXLkyIqLmoaLnP//5ceKJJ8brXve6aG9vn+joU2arrbaK888/P573vOfF0NBQMmB09dVXZzgdAEB1ukrrKl5PhSigGRWr+LnoKq0TLgKgbnoG+mJoZLjiGs95AAAAAAAAAEwXwkUN5uqrr44zzzwzLrzwwkxaiubNmxdHHnlkLFu2LHbZZZdJTF4be+65ZyxZsiTOPPPMx82/sXK5HHfeeWeGkwEApI2Uy7HaifawyarZjJ0K7gFALVVzH6omLAsAAAAAAAAAjUC4qAGMthSdeeaZ8T//8z8RUfuWot122y2WLVsWRx55ZMyZ09gbHU488cQ488wzx70+2mjU3d2d3VAAAFVY21+K4fJIxTWdBc0rsLG5s/LR1tJasRGiW7gIgDrq6k3fhzznAQAAAAAAADBdCBfV0VVXXbW+pahUKtUsUDT6GrNnz47Xve51sWzZsthvv/0mPnjGdtttt9hqq63i4YcfXh8kGotwEQDQaJxoDxOTy+WiszAnHl63Ztw1XaWeDCcCgMfr7qv8nJfL5WLB7EJG0wAAAAAAAADA5AgXZWzNmjXrW4puuummiKh9S9FTnvKUePvb3x7HHXdcbL755hMdva6e+9znxsUXX/yE0NSG1qwZf+MhAEA9dPWmww+dwkUwpmIyXKS5CID6SYVcF+Q7oqWlJaNpAAAAAAAAAGByhIsy8oc//CHOPPPM+P73vz/lLUVjvUZLS0u84hWviGXLlsXBBx9cMZQzHSxatGjMr5fL5fXvbWRkJMuRAACSUifat+ZaYp4T7WFMqeCdcBEA9dTVW/k+JEAOAAAAAAAAwHQiXFRDq1evXt9SdPPNN0dE7VuKtt566zjuuOPi+OOPj+23336iozecYrFY7xEAADZZatPpgkJHtEzzEDjUSmpTdrdwEQB1lLoPCRcBAAAAAAAAMJ0IF9XArbfeGp/5zGfiBz/4QSYtRRERL3rRi2LZsmXxmte8JtraZt7/W2fNmlXvEQAANlmqWcWmUxif5iIAGlnqPlT0nAcAAAAAAADANDLzUigN4MILL4zvfOc7j/taLVqK5s+fH0cffXQsW7YsnvWsZ01wWgAAaiV9ov3cjCaB6Se1KXtNX28Mj4xEa0tLRhMBwGM0FwEAAAAAAAAwkwgX1VCtWor22GOPWLZsWRxxxBHR0dExuSEBAKgZzUUwcamfj3JErO7rjc06hPQAyFa5XI6uPiFyAAAAAAAAAGYO4aIam2xL0ehr5PP5eMMb3hDLli2LffbZZ6rGAwCghlIn2qeaWaCZVbMpu6vUI1wEQObW9vfF8MhIxTVC5AAAAAAAAABMJ8JFDWSslqKnP/3p8fa3vz2WLl0anZ2d9RqtoWwcvgIAaEQjIyPRnTzR3qZTGE+xI/3zkWoHA4Ba6C71JNcIkQMAAAAAAAAwnQgXNYCNQ0Wtra3xyle+MpYtWxYveclL6jhZ45lIExQAQD2s6S/FSOLZRbgIxjenfXa0t7TG4MjwuGuEiwCoh2ruP57zAAAAAAAAAJhOhIvqZKyWooULF8Zb3/rWOP7442Px4sX1Gq0hHXTQQdHW5uMKAEwf3TadwqTkcrkoFubEw+vWjLummp8zAJhqqXBRSy4X82cXMpoGAAAAAAAAACZPWiNjY4WKDjrooFi2bFkcfvjh0draWq/RGtqBBx4YBx54YL3HAACoWjUn2heFi6Cizo7K4SLNRQDUQyrcuiDfES0tLRlNAwAAAAAAAACTJ1yUgbECRcViMY455pg44YQTYscdd6zXaAAA1Egq9NDa0hJznWgPFXUW5la83tXbk9EkAPCY1HOedkoAAAAAAAAAphvhohobDRaNhoqe85znxIknnhhvetObolCwmRQAYKZKnWjfmZ8TLRuE0IEnKuYrb85O/ZwBQC0kn/MS4VgAAAAAAAAAaDTCRTVWLpejUCjEm970pli2bFnstdde9R4JAIAMdJUqN6oUnWgPSZ0dlX9OuvqEiwDIXqq5qFjoyGgSAAAAAAAAAJgawkU1tMMOO8SyZcvimGOOiWKxWO9xAADIUGrTaadwESSlfk7W9JViaGQ42lpaM5oIANIhcs1FAAAAAAAAAEw3wkU1sM8++8Sll14aBx10UL1HAQCgTtIn2gsXQUo1PyerS72x+Zx5GUwDABEj5XJ0l3orrhEiBwAAAAAAAGC6ES6qgZe97GX1HgEAgDrrTjUXddh0CinVbM7uKq0TLgIgMz39pRguj1RcI0QOAAAAAAAAwHTTUu8BAABgphkZGYnuvson2hfzNp1CSmdhbnJNqiUMAKZSNfcdzUUAAAAAAAAATDfCRQAAMMVW95fi/7N352FylXX68L/VS7qr00m6AVlEBJRFUUSRUXFUcEVRFJlRBB1BEDfc4ScqOooLDuLuuKAO7grjgguu4ILjhmgUZBEEAhjBoNiVrav38/7h27ED6XpO0lWnuqo+n+vKNUOfJ33uznBOnTDPfb5ZltVck6c0AZ1uoHdJLOmuPXC3Ut1QUBoAUC4CAAAAAAAAoD0pFwEAQJ2N5Cg7DA/YdAoppVIphhIbtE0uAqBIlcTnTlepFMv6BwpKAwAAAAAAAAD1oVwEAAB1ltp0GuGN9pBX6lpRLgKgSKnPnaH+pdFVKhWUBgAAAAAAAADqQ7kIAADqLLXptKerOwaX9BeUBlpbqlyUp8wHAPWSmlCZmrgHAAAAAAAAAIuRchEAANTZyGjijfblgSh5oz3kYnIRAItJpTpa8/jwgHIRAAAAAAAAAK1HuQgAAOqsMla77DBcHiwoCbS+1AQI5SIAipScXNSvXAQAAAAAAABA61EuAgCAOsszuQjIJ1XGWz9ejanp6YLSANDpUqXW1MQ9AAAAAAAAAFiMlIsAAKDO0ptOTS6CvPJs0k5NCwOAepjJslhbHa25ZnhAuQgAAAAAAACA1qNcBAAAdVapbqh53BvtIb+hHNdLqtAHAPWwfrwa09lMzTVD/Z7zAAAAAAAAAGg9ykUAAFBH0zMzsXa8WnONchHkl+d6US4CoAh5Pm+GB0yoBAAAAAAAAKD1KBcBAEAdrRsbjSzLaq7JM4kF+Idy75Lo6+6puaaiXARAAUZGa0+njFAiBwAAAAAAAKA1KRcBAEAd5XqjvU2nkFupVEoW8kwuAqAIlbHanzfdpa5Y1lcuKA0AAAAAAAAA1E/t1z+zTf72t7/F1Vdf3ewYhSmVStHX1xd9fX3R398f/f39sf3228fg4GCzowEAFC5fuchzEmyN4YHBWLNh7bzHR6rpSRIAsFAjo7Wf81aUB6KrVCooDQAAAAAAAADUj3JRA/zgBz+IY489ttkxmq5cLsdOO+0UO++8c+yzzz6x3377xf3ud7844IADYtddd212PACAhqgkykW9Xd2xdElfQWmgPQz1JyYXJTZ7A0A9pErkplMCAAAAAAAA0KqUixoky7JmR2i60dHRWLVqVdx0003xy1/+crNje+yxRxx66KHx6Ec/Oo444ohYsWJFk1ICANRXaoLKUHlplLzRHrZKarN2ZUy5CIDGS33eDCkXAQAAAAAAANCilIsayKbRf9hS0Wq2dPSpT30qlixZEk984hPj2GOPjac//enR0+NfSwCgdXmjPdTf8EBiclHiugOAekhNyvOcBwAAAAAAAECr6mp2gHaXZVnH/ppVKpW2+Gt23fj4eHzjG9+IZz3rWXHve987PvjBD0a1Wm3i/9UAALZdJVFy8EZ72HpD/bWvmw3jYzE5PVVQGgA6Veo5b7g8WFASAAAAAAAAAKgv5SIaJlU82lLR6E9/+lO88pWvjD333DM++9nPNvknAADYeiYXQf2lJhdFRFSqowUkAaBTzWRZVMY85wEAAAAAAADQnpSLaIpU0ej222+P448/Ph7zmMfEjTfe2OS0AAD5KRdB/eWZBJG69gBgIdaPjcbMnEndW2JCJQAAAAAAAACtSrmIppuvaJRlWfz4xz+Ogw46KL773e82OSUAQNr0zEysG6s9PWUoR0kC2FyeUl6luqGAJAB0qjwlViVyAAAAAAAAAFqVchGLyp1LRhERlUoljjjiiHjve9/bzGgAAElrx0aj9vvsI4YHbDqFrVXuXRJ9Pb0115hcBEAjKRcBAAAAAAAA0M6Ui1iUZktGs1OMpqen49RTT433ve99zY4GADCvkRyTU4b7bTqFbZHasK1cBEAjVRKfM92lrhjsKxeUBgAAAAAAAADqq6fZAdrd7PSdWmYn9dTze26NIs+/teeaWzDKsixOOeWUWLZsWZx44onbnAHu7E9/+lN873vfiyuuuCKuvvrqWLVqVaxfvz7WrVsXWZbFsmXLYtmyZXHPe94z9ttvv9h///3j8Y9/fOy9997Njg7AIpOn3DBkchFsk+Hy0vjL+sq8x1ObvgFgIVLPeUPlgeiq83+zAwAAAAAAAICiKBc10NYWaWq5c6GnXt97trizNd93W89953NtzfnmFoxe+tKXxoEHHhgPetCDtikHRERUKpX4xCc+EZ/97GfjiiuuqLn2jjvuiDvuuCNuuumm+MlPfrLp63vvvXcce+yx8eIXvzh22mmnRkfuKDfeeGN85jOfyb1+jz32iOOPP75xgQBySm067e3ujqW9fQWlgfZichEAzZT6nBkuDxaUBAAAAAAAAADqT7moAY4++ug4+uija67ZsGFDvOY1r4lzzjln09fuXLSZr/QzMDAQBx10UOy3336x7777xr3vfe/Ycccd4253u1sMDQ1FX19f9PX1RalUirGxsRgfH4+1a9fGX//617j99tvjhhtuiOuuuy6uuuqq+PWvfx0bN25MnnP261mWRVdXV7zwhS+Md77znbF06eYb/MbGxmJsbCw2bNgQt912W9x2221x7bXXxu9///tYuXJlXH311Zt9z7nft5a5BaPx8fF41rOeFb/5zW9icNDGDbbOhg0b4q1vfWt86EMf2uzf/W3xxz/+Mc4444x4xzveEccdd1yceeaZscMOO9QpaefKsixOOOGEuOSSS3L/nkMOOUS5CFgUUpNThsuDdZ9CCZ1iSLkIgCZKPeelPqcAAAAAAAAAYDFTLmqC73//+/HCF74wbrnllojIVyp64AMfGE9/+tPj8MMPjwc+8IHR3d2d61wDAwMxMDAQw8PDsccee9zl+PT0dFx++eXx7W9/O772ta/FypUrN2WYW/yZzTE7PeijH/1ofPvb346Pfexj8fjHP37T9+vv74/+/v4YGhqKe9zjHnc531/+8pf4/ve/H5/73Ofihz/8YczMzGw2laiW2YJRRMT1118fZ5xxRpx99tm5/hwgIuIb3/hGnHzyybF69eq6ft+JiYn4+Mc/Hl/5ylfiXe96Vzzvec+r6/fvNOecc85WFYsAFpNUuWGoPFBQEmg/qYkQI9UNBSUBoBOlPmdSE/YAAAAAAAAAYDHranaATnPmmWfG4YcfHjfffPNmpZ1Zcws9S5cujZNPPjmuvPLKWLlyZbzxjW+MBz/4wbmLRXl0d3fHgQceGG94wxvi17/+dVx99dXx0pe+NAYHBzcrFM2azZxlWdx8883xpCc9Kd75znfmPt/OO+8cz33uc+P73/9+rFq1Kl70ohdFb2/vZpOJUmaLSB/84Afjhhtu2Pofmo4zMzMTb3jDG+LII4+se7Forr///e9xwgknxAte8IKYmJho2Hna2erVq+O0005rdgyAbTYymtp0auoibKvUpu2NE+MxMT1VUBoAOk2qRK5cBAAAAAAAAEArUy4qyNTUVJxwwgnxxje+cbNpPbNlmrnTe3p6euJlL3tZ3HDDDfHBD34w9ttvv8Jy3uc+94kPfOADceONN8YrXvGK6O3t3ZRv1tzsMzMz8brXvS6e//znx/T09Fada7fddosPf/jDcc0118RjH/vYLZaZ7mxuGWtycjJOP/30rTonnWd6ejqe9axnxdvf/vbkdKx6+fjHPx5PeMITYnR0tJDztZMXv/jFsW7dumbHANhmFZtOoWHyXD+paxAAtsXMzEysHav9d/whz3kAAAAAAAAAtDDlooI8+9nPjk9/+tObJvRE/HMK0Nx/PuCAA+Kyyy6L97///XG3u92taXm33377eO973xuXXXZZPPCBD9xi7oh/ThH65Cc/Gc997nO36Vx77rlnXHTRRfGud71rs7JVLbPn/epXv9rQSTS0tpmZmTj++OPjS1/6UuHnvuSSS+LpT396jI+PF37uVvWFL3whLrzwwmbHAFiQkbHaxQabTmHb5bl+UlMlAGBbrBuvxkzihSVK5AAAAAAAAAC0MuWiApx66qmbyg1zCzp3/ufjjjsufvWrX8UDHvCA5gTdgv333z8uvfTSOOGEEzYrGEXEXQpG5513XrzmNa/Z5nO9+tWvjq9+9atbnJY019zpM9PT0/GRj3xkm89Jezv99NPjc5/73Fb9nr333juOP/74eNe73hXnnntufPKTn4z3vOc9cdJJJ8X973//rfpe3//+9+Okk07aqt/Tqf72t7/FK17ximbHAFiQqZnpWDdWrbnGplPYdnnKRSYXAdAIecqrnvMAAAAAAAAAaGU9zQ7Q7s4999x4z3vec5dSUcQ/SzmlUine8IY3xFve8pZmxaypp6cnPvGJT8Ruu+0WZ5xxxqbcEXctGL373e+O+93vfnHcccdt07me+tSnxmc+85k49thjN/3ZZPO8GXb22Lnnnhtvf/vbt+2Ho2195zvfibPOOiv3+qc97Wnx+te/Ph7ykIfUXHfllVfG2WefHZ/73OdiZmYm+X0/+9nPxiGHHBInnnhi7iyd6OUvf3n87W9/a3YMgAVZWx1NrrHpFLZduXdJlHuWRHVqYt41JhcB0Ah5yqtD5cECkgAAAAAAAABAY5hc1EB//vOf49WvfnWyWPSKV7xi0RaL5nrTm94Ur3rVq+4ywWjW7M/0yle+Mm699dZtPs8zn/nMeO1rXztvqShi8z/L22+/PX7xi19s8/loP3fccUc897nPrfnv0KztttsuvvWtb8XXvva1ZLEoIuL+979/fPrTn46f/exnsdtuu+XK87KXvSyuv/76XGs70YUXXhhf/OIX5z3e1eWjCmgN+d5ob9MpLMTQQO2C3kh1Q0FJAOgkqee87q6uWNbXX1AaAAAAAAAAAKg/O7Yb6EUvelGsW7cuIuYvFj3qUY+Kd7/73c2KuNXe9a53xSGHHHKXgtHcn2/dunXxohe9aEHnOeOMM+LAAw+MiNhikenOvvnNby7ofLSX008/PdcUnHvc4x7xq1/9Kg4//PCtPsfDHvaw+PWvfx377bdfcm21Wo1XvepVW32OTrB+/fp48YtfPO/xXXbZJZ761KcWmAhg2+UpFw2ZXAQLMtyfKBeNmlwEQP2lyqvD/Utz/fcrAAAAAAAAAFislIsa5JJLLolvfetbm4pEs+ZuNBgYGIjPfe5zLbX5oFQqxec+97lYunTppn+eNVs4yrIsvvWtb8VPfvKTbT5Pd3d3vPe97801eSbLsvjud7+7zeeivfz2t7+Nj3/848l1K1asiIsvvjjufe97b/O5dtxxx/jBD34Q97jHPZJrL7zwwvj2t7+9zedqV695zWti9erV8x7/wAc+ECtWrCgwEcC2qyQ2nS7p7omB3iUFpYH2lCroVcaUiwCov0qiRK5ADgAAAAAAAECrUy5qkHe+853zHpst4bz61a+OXXfdtcBU9bHrrrvGKaeckiz+1PozyOORj3xkPOEJT7jLlKS5Zr9+5ZVXxvj4+ILOR3s444wzYmZmJrnu4x//eOy7774LPt/OO+8cX/jCF6K7uzu59k1vetOCz9dOfvKTn8Q555wz7/Ejjjgi/v3f/73ARAALk5pcNFz2RntYqOGBxOSiHBPEAGBr5XnOAwAAAAAAAIBWplzUAFdddVV85zvfSU4tOvXUU5sRry5OOeWU5PSi73znO3HVVVct6Dwnn3zyvMfm/tlOT0/H5ZdfvqBz0fquvfba+MY3vpFc97SnPS2e8Yxn1O28j3zkI+OFL3xhct2vf/3r+OEPf1i387aysbGxeP7znz9vSXFwcDA+9KEPFZwKYGFSb7S36RQWLnUdjYwqFwFQf6lykclFAAAAAAAAALQ65aIG+OIXvzjvsdnyzTOf+cxYtmxZganqa9myZXH00Ucnpxd94QtfWNB5nvzkJ8dOO+0UEZF80//KlSsXdC5a33ve857kv5M9PT3xrne9q+7nfstb3hLLly9Prnv3u99d93O3oje96U3xxz/+cd7jb3vb22K33XYrMBHAwtl0Co031F/7OhqdHI+JqamC0gDQKZIl8sRkPQAAAAAAAABY7JSLGuAb3/hGsghz1FFHFZSmcf7t3/6t5vEsy+Kb3/zmgs7R1dUVhx9+eLIwEhFxww03LOhctLbx8fE4//zzk+v+7d/+Lfbaa6+6n3/77beP5z//+cl13/ve92LNmjV1P38rWblyZc2S1b/8y7/Ey172sgITAdRHqlxkchEs3PDAYHLNyJjpRQDUz8zMTFTGRmuuSZVfAQAAAAAAAGCxUy6qs5tuuimuvPLKiIjNCjFzy0Y9PT1x6KGHFh2t7h71qEdFb29vRGz+881OZ4qIuOqqq+Lmm29e0Hme+MQn5lq3evXqBZ2H1nbhhRfG2rVrk+te+cpXNizDy1/+8ujqqn1bnZ6ejvPOO69hGRa7qampOOGEE2J6enqLx3t6euLjH/948s8RYDFKTy5KlyKA2vKU9EZGNxSQBIBOsXa8mnzpzbDnPAAAAAAAAABanN3bdXbppZfOe2x2I8Jee+0VS5e2/htNly5dGnvvvXdy3S9+8YsFnedf/uVfcq3705/+tKDz0Nq++MUvJtfstdde8bCHPaxhGXbfffd45CMfmVyXJ2u7Ouuss+Lyyy+f9/irXvWqOOCAAwpMBFAfU9PTsX68WnONyUWwcEM5rqNKougHAFtjpJourQ4PeM4DAAAAAAAAoLUpF9XZVVddVfN4qVSKfffdt6A0jbfPPvsk39569dVXL+gce+yxRwwNDUXE5hOSZpVKpciyLNasWbOg89C6pqen4+KLL06uO/rooxue5VnPelZyzWWXXRZ33HFHw7MsNtdee2289a1vnff4nnvuGW9+85uLCwRQR5WxdJlBuQgWrr+nN8q9S2quSU0RA4Ctkae0OtTvOQ8AAAAAAACA1qZcVGepclFExE477VRAkmLsvPPOyTV5/kxS7nWveyVLTBs32kTYqX71q1/F2rVrk+ue9KQnNTxLnnPMzMzED37wg4ZnWUyyLIvnP//5MT4+Pu+aj3zkIzEwMFBgKoD6yVNmyDNxBUhLFfVMLgKgnlLPed1dXbGsr7+gNAAAAAAAAADQGMpFdXbjjTcm1yxbtqyAJMUYHByseTzLsrjhhhsWfJ573OMeyTXVanXB56E15SnqLFu2LB760Ic2PMvuu+8ee+21V3LdRRdd1PAsi8mHPvSh+OlPfzrv8WOPPTYOO+ywAhMB1FeeMsPwgHIR1EOqXGRyEQD1NDJa+3NluLx0i5O2AQAAAAAAAKCVKBfV2dq1a5MbCnp6egpK03i1fpbZP4d169Yt+Dx5JiQpF3WuX/ziF8k1D33oQwu79h75yEcm11x66aUFJFkcbrnllnjd61437/Htttsu3ve+9xUXCKABUmWGvu6eKPcsKSgNtLfUFLCR6oaCkgDQCSpjqXJR7RfvAAAAAAAAAEArUC6qs/Xr19dlTavYsCG9ca8eP2+5XE6umZ6eXvB5aE2//e1vk2sOPPDAApL8w4Mf/ODkmmuuuSbGx8cLSNN8L3zhC2veK84+++y4293uVmAigPpLlYuGvNEe6ia1idvkIgDqKTW5aKg8UFASAAAAAAAAAGgc5aI6y1OkGRkZKSBJMf7+978n19SjXNTf359ck6eARPtZs2ZN3Hbbbcl1i61cNDU1Fb///e8LSNNcn/nMZ+K73/3uvMcPPfTQOOGEEwpMBNAYqUkpwwPeaA/1MpyYXFRRLgKgjlKlVZOLAAAAAAAAAGgHykV1lnojfZZlcd111xWUpvH++Mc/JtfU4y39eb7HwIA3xXaiK664Ite6+9znPg1O8k/77rtvrnV5s7eq22+/PV71qlfNe7yvry/OOeecAhMBNE6lOlrzeKoMAeSXup5GJydibGqyoDQAtLvKWKpc5DkPAAAAAAAAgNanXFRny5Ytm/fYbEHm2muvjSzLiorUMDMzM/GHP/whWfwZHFz4G1zHxsaSa5SLOtONN96Ya91ee+3V4CT/NDw8HNttt11yXd7sreqlL31pzelmp59+euyzzz4FJgJonNTkoqF+m06hXoZybOI2vQiAepiemYm1Y7VL5Hk+lwAAAAAAAABgsVMuqrP5ykVzy0QbNmyIX/3qV0VFaphf//rXsX79+oiImmWpWoWrvEZH59/IMXtu5aLOtGrVquSanXfeOZYuLXazT54yU57srerrX/96fOlLX5r3+H777RennXZagYkAGmskUWQYHrDpFOolz4QI5SIA6mHd2GjyBUEmFwEAAAAAAADQDpSL6uzud797rqlE3/rWtwpI01ipnyHLsiiVSnH3u999wee6/fbbk2uUizrTTTfdlFxTj38Ht9Yuu+ySXNOu5aK1a9fGS17yknmPl0ql+NjHPhZLliwpMBVA40xOT8WG8dpTFm06hfrJMyEiVfgDgDxGxtKfJ57zAAAAAAAAAGgHykV1tu+++9Y8XiqVIsuy+OQnPxkzMzMFpaq/mZmZOPfcc6NUKiXXpv5M8rjttttqHi+VSrHjjjsu+Dy0nj//+c/JNTvvvHMBSbb+nKtXry4gSfFOPfXUuPXWW+c9/oIXvCD+9V//tcBEAI1VGZt/wuKsPGUIIJ++nt4Y6O2ruWakuqGgNAC0s5HRdLnIcx4AAAAAAAAA7UC5qM7uc5/7zHts7kSjW2+9Nc4777wiIjXEeeedt6nUkZrUdN/73nfB51u1alWyyLTHHnss+Dy0njvuuCO5ZqeddiogyebylIv+/ve/F5CkWD/60Y/iE5/4xLzHd9lllzjrrLMKTATQeHk2nQ6XBwtIAp0jNSXC5CIA6qGS+Dzp6eqOwSX9BaUBAAAAAAAAgMZRLqqzgw8+OLlmdnrR6aefHhMTEwWkqq+JiYk4/fTTc00tioh42MMetqDzjYyMxO233x4RtYtMykWdKU+5aGhoqPFBtuGcGzdujPHx8caHKcjo6GicdNJJNdd84AMfiBUrVhSUCKAYlRwTUlJFCGDrpKZEpDaDA0AeqUl4w+Wluf/7GAAAAAAAAAAsZspFdfawhz0sli1bFhGxxc0Fc8sxt9xyS5x66qmFZauX0047LW6++eaI2HLZZ+7PPTg4mKtwVcuVV16Za51yUWcaGRlJrpm9JouU95ztNL3ojW98Y9xwww3zHn/KU54S//7v/15gIoBijFRHax7v7+mNcu+SgtJAZzC5CIAipJ7zUmVXAAAAAAAAAGgVykV11t3dHY997GNrTtjJsmzT9KIPfehD8aUvfanAhAvzla98Jd7//vdvyj+f2Z/xMY95THR3dy/onL/4xS9yrVMu6jzVajUmJyeT65pRLlq+fHmudWvXrm1wkmJcdtll8f73v3/e44ODg/HhD3+4wEQAxUm90d6mU6i/4QHlIgAaLzWh0nRKAAAAAAAAANqFclEDPPe5z821brag8x//8R/x/e9/v8GpFu6iiy6KZz/72VucyDSf4447bsHn/dnPfpZr3V577bXgc9FaJiYmcq0rl8sNTnJX/f39udbl/RkWs8nJyTjxxBNjenp63jVvfetbY7fddiswFUBxKokSg02nUH9D/bWvq8qochEAC5cqq3rOAwAAAAAAAKBdKBc1wBFHHBF3v/vdIyLmLeLMTv0plUoxMTERT3va0+Jzn/tcYRm31he+8IV42tOetqkIMd/Uork/7y677BJPfepTF3TeycnJ+PGPf7zFP8e5X9trr71iaGhoQeei9eQt5ix0eta26OnpybWuHcpFZ555Zvz+97+f9/hBBx0UL3/5ywtMBFAsm06heMMDgzWPV6cmYmyy9Z+zAGguJXIAAAAAAAAAOkW+3e9sle7u7jj55JPj9NNPrznlZ27BaHx8PI477rj41a9+FWeddVZTJq1sydjYWLz2ta+ND37wg5Fl2aZpS7XMrnvZy14WXV0L66/95Cc/ifXr18973tlzHXzwwQs6D60pbzEnb9GnnvKec3JyssFJGuvqq6+OM888c97jPT098fGPf3zB9wK2ziMe8Yim/HvP5q666qpmR6Ag6U2ntUsQwNbLs5l7pLoxduldUkAaANrR9MxMrB0brblmSLkIAAAAAAAAgDZht3eDvOpVr4pdd901IuafXjTXbHnmQx/6UDzgAQ+Ib37zm42OmPStb30rDjjggM2KRbXMPX73u989XvGKVyw4wwUXXJBrnXJRZ5qamsq1TrmoMWZmZuLEE0+sWfJ65StfGQ984AOLCwXQBKnJRTadQv3lua5SxT8AqGXt2GjUfr2OyUUAAAAAAAAAtA9jDRqkv78/3va2t8Xznve8ZClntrgzWzC64YYb4sgjj4yDDz44/t//+39xxBFHFDb1I8uy+OY3vxlnn312/PznP99sutLs8dTvL5VK8da3vjX6+/sXlGVqairOP//8XOUs5aLOlLfAMz093eAk237OVp4u84EPfCB++ctfznt8zz33jDPOOKPARMz66U9/Gne7292aHQM6wsT0VGyYGKu5xqZTqL/h/nyTiwBgW+UpqZpQCQAAAAAAAEC7MLmogY477rg4/PDDc039ybLsLiWjn//853HUUUfFHnvsEa95zWviZz/7WcOy/uIXv4jXvva1seeee8bTn/70TcWiuXlqFYtm15RKpTj88MPj+OOPX3CmCy+8MO64446IuGupae6f5/Lly2P//fdf8PloPUuWLMm1Lu+Eo3rKO5Eo78+w2KxatSre8IY31FzzkY98JAYGBgpKBNAc+TadKhdBvS3p6YmlS/pqrlEuAmAh8nyOmFAJAAAAAAAAQLto3ZEZLeJTn/pUPOABD4g1a9ZsKuDUsqVCz+rVq+Pd7353vPvd744VK1bEwx72sDj44IPjfve7X+yzzz5xr3vdK/cG/rGxsbjxxhvj2muvjauuuip+8YtfxC9/+cuoVCqbzj8r77SiuUWfnXbaKT75yU/mypLy4Q9/uObxuWWmPNONaD+9vb251jWjXJT3nK1aLnrBC14QGzfOv9HqmGOOicMOO6zARADNkadcZNMpNMZweTA2TozPezzP9QkA8xmpbqh5vLerO1l0BQAAAAAAAIBWoVzUYDvssEN8+ctfjsc//vExNjaWu2AUsXlpZ/ZrlUolvve978X3vve9zX7PwMBA3O1ud4uhoaHo6+uLJUuWRKlUivHx8RgfH4+1a9fGX//61y2WAbZUKLrz1+czt4A0MDAQX/3qV2OHHXZI/r6Uq666Ki6++OJcf17//u//vuDz0Zr6+vJt4hkbG2twkm0/ZyuWi84999y4+OKL5z2+3Xbbxfve977iAgE0kTfaQ/MMlQdi9do75j2e2hQOALWkSqpD5aVedgMAAAAAAABA21AuKsDDH/7wOO+88+Koo46KmZmZXIWZiM1LRqnSz8aNGzcVh+68sWFrJg/lWX/n35dlWfT09MT5558fD3vYw3L93pSzzz573nxzDQwMxJOe9KS6nJN8Vq1aFZdeemlDz7F06dI44ogjkuvK5XL09PQkpwStX7++XtFyy3vO5cuXNzhJff3lL3+JU045peaas88+O3bccceCEgE0V6pcVO5ZEuXe1iuSQisYLg/WPJ6n/AcA80l9jgwrkAMAAAAAAADQRpSLCnLEEUfE5z//+Xjuc58bk5OTuQtGEXedLFSrbJNl2Ra/b+pNqnmz3Pn7ZVkWS5Ysic985jPx5Cc/eau+x3xuuOGG+PznP58r1xOf+MTo7++vy3nJ55JLLonnPe95DT3H7rvvnqtcFBExPDwcf/3rX2uuWbduXT1ibZW859xuu+0anKS+Tj755KhUKvMeP+SQQxr+7wfAYpJ8o/2ATafQKKlN3anrEwBqSZWLTKcEAAAAAAAAoJ0oFxXomc98Zuy4447x9Kc/PdatW7dVBaNZ862fLfvUu0RU61xZlsWKFSviggsuiEMPPXTB33fW5ZdfHscff3yutf/xH/9Rt/PSmrbffvtkuWjt2rUFpdm6cw4MDLRUOe7LX/5yfPWrX533eF9fX3zsYx9L3ocA2knyjfb9Np1Co6TKRSYXAbAQ6clFtSfoAQAAAAAAAEArUS4q2KGHHho///nP4+ijj44rr7xys6LOQtSjNJTH3Lz3v//94/zzz4/73ve+dT3HUUcdFUcddVRdvyfta/vtt0+uWbNmTQFJNveXv/wluSZP9sViZGQkXvayl9Vcc/rpp8c+++xTUCKAxWGkuqHmcW+0h8ZJXV9jU5NRnZyIcu+SghIB0E5SE/CGywMFJQEAAAAAAACAxutqdoBOdN/73jcuu+yyeMlLXrKpFFQqlRb1tI/ZfFmWRZZlcfLJJ8dll11W92IRbK1dd901uSZP0afe8pwzT/bF4tWvfnXNn2m//faL0047rcBEAItD8o32A8pF0CipyUUR6Y3hALAlUzPTsW5stOaaIZOLAAAAAAAAAGgjykVN0tfXF//93/8dl1xySTzgAQ9YtCWjuXmyLIsHPvCBcckll8QHP/jB6Ovra3I6iNhjjz2Sa2699dbGB7mT2267Lblmzz33LCDJwl1//fXxqU99at7jpVIpzjnnnFiyxFQAoPOk32ivXASNMpxjU3eqAAgAW7J2bDRSM8KVyAEAAAAAAABoJz3NDtDpHvnIR8bKlSvjE5/4RLzjHe+Im266KSJis4LRbPGoKFs69+677x6nn356nHjiiYuq/AR5Cjp/+ctfYnR0NAYGBgpI9A/XX399ck2rlIs2bNhQ8/gDH/jAWL16dZx33nkNOf+qVauSa26//fZc599xxx3jMY95TD1iAcTE1FRsnBivuWao36ZTaJShcvrZbqRa+zkGALYkz+Q7JXIAAAAAAAAA2oly0SJQKpXipJNOihNOOCH+93//N97znvfEb37zm03H7lzmqXfZaEtlodlzHHjggXHKKafEM5/5zOju7q7reaEe7nWveyXXZFkW119/fTzgAQ8oIFFEpVKJO+64I7kuT/ZW8Nvf/jaOOeaYpma45pprcmU45JBDlIuAuhkZy7HpdCA9WQXYNr3dPTG4pD82TIzNu8bkIgC2RZ7PjyHlIgAAAAAAAADaSFezA/BP3d3dccwxx8Rll10WV1xxRbz2ta+NPfbYI7Is2/Qr4p+Fo3r9iojNzrH77rvHa1/72rjiiivi17/+dRxzzDGKRWxy/PHHb/bvSyN+zU7wymP//ffPte4Pf/jDNv7EWy/vufJmB2BxGhlNT0TxRntorNQ1lmfyBADcWapc1NvdHUt7+wpKAwAAAAAAAACNZ3LRInX/+98/zjzzzDjzzDPjuuuuix/+8Ifxox/9KC699NK45ZZbav7erZ10dI973CMe9rCHxaMf/eh4zGMeE/vuu++C80NRdtlll9hpp51izZo1NdetXLkynvnMZxaSaeXKlck1PT09hU1SAqAxKmOjyTXeaA+NNVReGn9aO//ESJOLANgWqXLqcHlwi5PAAQAAAAAAAKBVKRe1gH322Sf22WefeNGLXhQREevXr48rr7wyrrnmmli9enXcdtttcdttt8Udd9wR1Wo1xsfHY2xsLCIi+vr6or+/P8rlcgwPD8fd73732GWXXeIe97hH3Pe+94373//+sXz58mb+eLBgBx54YHznO9+puSZP4adefvOb3yTX3Oc+94n+/v4C0gDQKKnJReXeJdHf01tQGuhMwwO1C3zKRQBsi9Tnx1B5oKAkAAAAAAAAAFAM5aIWtGzZsjj44IPj4IMPbnYUWBQOPvjgZLnol7/8ZUxNTUVPT+Nvez/5yU+Sax760Ic2PAcAjZV+o72pRdBoQ/2JclGiBAgAW5L6/BguDxaUBAAAAAAAAACK0dXsAAAL9djHPja5Zv369fGrX/2q4VluueWWuP7665PrHv/4xzc8CwCNlXqjvXIRNF5qc3dlbDSyLCsoDQDtojI2WvO45zwAAAAAAAAA2o1yEdDyHvKQh8Ty5cuT61LTjeohzzlKpVKuQhQAi1uqXDRk0yk03PBA7etsfGoyqlMTBaUBoF2MVGtPLvKcBwAAAAAAAEC7US4CWl5PT0+uss7555/f8CznnXdecs1BBx0UO+ywQ8Oz1MsDH/jAyLKsab+OO+64ZMZDDjkk1/f68Y9/3Pg/MKBjVJKTi2pPVAEWbqg/vbl7ZLT2tQoAc03NTMe6sWrNNSYXAQAAAAAAANBuepodoN3ceuutcfHFF+dae9/73jf+5V/+pcGJoDMcc8wxccEFF9Rc88c//jEuvfTSeOhDH9qQDLfcckv85Cc/Sa475phjGnJ+AIqVeqO9TafQeKnJRRH/KALuumK7AtIA0A7WVkeTazznAQAAAAAAANBulIvq7Mtf/nK86lWvyrXWBA2onyOOOCKWL18e69atq7nufe97X3zxi19sSIYPfOADMTMzU3NNV1dXPOtZz2rI+QEozvjUZIxOTtRcY9MpNN5Q/0ByzUhiyhgAzJXnc2PIcx4AAAAAAAAAbaar2QHaze9+97vIsiz56+CDD45HPvKRzY4LbaO/vz+e+cxnJtd9+ctfjuuvv77u57/jjjvi4x//eHLdE57whNhll13qfn4AilWx6RQWhd7unljWV665RrkIgK2R53NjuDxYQBIAAAAAAAAAKI5yUZ1dd911ERFRKpW2+Gv22NFHH93MmNCWXv3qV2+6zuYzNTUVp556at3P/Z//+Z/JqUkREaecckrdzw1A8fJtOlUugiIMlWtPL6pUNxSUBIB2kPrcWNLdEwO9SwpKAwAAAAAAAADFUC6qs1tuuWVTueHO04rmeupTn9qMeNDW7nvf+8ZTnvKU5Lqvf/3r8aUvfalu5/3pT38a55xzTnLdgQceGI973OPqdt6IiJtuumneMuPcX4ceemhdzwvQ6fKUi0wugmKkpkeYXATA1hipjtY8PlxemnyxCQAAAAAAAAC0GuWiOvvb3/62xa/P3XSwww47xO67715UJOgob3rTm6KrK31rO+mkkzZNGluIv/zlL3HsscfG9PR0cu2b3/zmBZ8PgMWhkigrDPQuib6e3oLSQGdLTQlLXa8AMFdqcpECOQAAAAAAAADtSLmoziYnJ+c9lmVZlEqluN/97ldgIugsD37wg+OEE05Irlu7dm089rGPjRtvvHGbz/XXv/41Hve4x8Wf/vSn5NonPelJccQRR2zzuQBYXFKTUFKTVID6SZWLTC4CYGukn/OUiwAAAAAAAABoP8pFdbZ0aXqDwR577NH4INDBzjzzzNh+++2T61avXh0PechD4jvf+c5Wn+PSSy+Ngw46KK666qrk2v7+/nj/+9+/1ecAYPEa8UZ7WDRS19tIdWNkWVZQGgBaXWrinXIRAAAAAAAAAO1IuajOBgfTb6lftmxZAUmgc93tbneLT33qU1EqlZJr77jjjjj88MPjqKOOil//+tfJ9VdffXU873nPi4c//OFxyy235Mrz/ve/P/bee+9cawFoDTadwuKRut4mpqeiOjlRUBoAWl1qcpESOQAAAAAAAADtqKfZAdpNnnJRnjXAwjzlKU+JU089Nc4+++xc6y+44IK44IILYp999olHPOIRcb/73S+22267KJVKMTIyEn/4wx/iF7/4RVxxxRVblePYY4+NF7zgBdvyIwCwiKU2nSoXQXGGy+m/X41UN8bAkr4C0gDQyqamp2PdeLXmmjyfOwAAAAAAAADQapSL6myHHXaI6667rubElIkJb82GIvzXf/1XrF69Or74xS/m/j3XXXddXHfddXU5/2Mf+9g499xz6/K9AFhcvNEeFo88Zb6R6obYdcV2BaQBoJWtHRtNrlEiBwAAAAAAAKAddTU7QLvZZ599kms2bqy9GRWoj66urvjMZz4TRx11VOHnfsQjHhFf//rXo6/PG/IB2s3Y1GRUJ2uXxYcHvNEeirKifyC5JlUIBICIfJ8XSuQAAAAAAAAAtCPlojrLUy5as2ZNAUmAiIienp740pe+FKeddlph53ze854XF198cSxdasMRQDuq5Nh06o32UJye7u5Y3leuuSbPdQsAI9UNyTWe8wAAAAAAAABoR8pFdbbvvvvWPJ5lWdxwww0FpQEi/jHB6L/+67/iggsuiLvf/e4NO8/w8HB8/OMfj3PPPdfEIoA25o32sPikNnqbXARAHqnPi77unij3LikoDQAAAAAAAAAUR7mozh7+8IfPe6xUKkVExB//+MeYmpoqKhLw/zvyyCPjD3/4Q5x66ql1nSq0ZMmSOPHEE+Paa6+N5z//+XX7vgAsTiOjOd5o369cBEVKFfqUiwDIIzXpbqi8dNN/3wMAAAAAAACAdtLT7ADtZqeddooDDjggLr/88iiVSpFlWUT8Y2LR7OaDsbGxuOyyy+Lggw9uZlToSMuWLYuzzz47Xv/618fHPvax+OxnPxtXXXXVNn2ve9/73nHMMcfES17ykthll13qnJRZRx55ZOyxxx4116SOA9RTqqSwdElfLOnxmA1FSk8uSpcCASD1nJf6vAEAAAAAAACAVmXXYwM84QlPiMsvv7zmmu9+97vKRdBEw8PDcdppp8Vpp50WN998c3z/+9+Pyy+/PK6++uq46aabYt26dbF+/frIsiyWLVsWy5Yti9122y3222+/2H///eNxj3tc3Oc+92n2jxF77LHHphJjuzryyCPjyCOPbHYMgE0qY6lNp4MFJQFmDSWuu0p1tKAkALSyVLko9XkDAAAAAAAAAK1KuagBnvGMZ8TZZ5+9xWOz04y+8IUvxBlnnFFwMmBLdt999zjppJOaHQOAFjEymtp0OlBQEmDW8EB6ctHcabIAsCWV5OQiz3kAAAAAAAAAtKeuZgdoRwcddFA85CEPucvmtbnTRW688cb43ve+14x4AAAsQHrTqTfaQ9GG+muXiyanp2Pj5HhBaQBoVSYXAQAAAAAAANCplIsa5OSTT655PMsyk4sAAFrQyFiqXFS75ADUX57rrpKYOgZAZ5uano7149WaazznAQAAAAAAANCulIsa5FnPelbsvffeERF3mV40+8+XXnppnHvuuU3JBwDAtkkVFIZsOoXCDQ+kr7tUMRCAzlbJ8TmR5/MGAAAAAAAAAFqRclGD9Pb2xn//939HlmVbPF4qlSLLsjjllFNi1apVBacDAGBbVCcnojo1UXONN9pD8Vb0D0QpsWbE5CIAahippj8nhvo95wEAAAAAAADQnpSLGujxj398POMZz9hsWlFEbCoclUqlWLt2bTz5yU+OSqXSpJQAAORVybHpVLkIitfT1R3L+ss111SqGwpKA0ArylMuMrkIAAAAAAAAgHalXNRgH/vYx2LvvfeOiNhiwSgi4g9/+EM89rGPjdtvv73wfAAA5JevXDRYQBLgzlLXXp5N4wB0rtRzXl9Pb5R7lhSUBgAAAAAAAACKpVzUYCtWrIhvfvObsWLFioi4a8Fo9p9/+9vfxsMf/vD47W9/25ScAACk5SknrCgPFJAEuLPU1DDlIgBqSX1ODPUPbPbf9QAAAAAAAACgnSgXFWCfffaJr33ta7Fs2bKI2HLBqFQqxY033hgHH3xwvOMd74jJyclmxQUAYB6pTaeDS/pjSXdPQWmAuVLlojyTxwDoXCPVDTWPDw+YTgkAAAAAAABA+1IuKsijHvWouOSSS2LnnXeOiNhUKIr4R8Fo9msTExPxhje8Ie5zn/vE5z//+ZiammpaZgAANpfcdJooNwCNM2RyEQALMDJa+3PCcx4AAAAAAAAA7Uy5qEAHHHBA/OxnP4sHPehBmwpFs+YWjLIsi1WrVsVzn/vc2GOPPeJNb3pTXHnllc2IDADAHKnJJ6lyA9A4qU3fI9WNd/l7GADMqowlnvP6PecBAAAAAAAA0L6Uiwq2xx57xKWXXhpvfvObo6enZ94JRrMlo1tvvTXe9ra3xQEHHBB77bVXnHjiifHJT34yfvOb38TGjd68DQBQpNTkE2+0h+YZLg/WPD41Mx0bJ8YLSgNAq0k+5w14zgMAAAAAAACgffU0O0C7OuGEE5Jr9t9//1i5cuWmclHEXQtGc7924403xqpVq+JTn/rUpvU77rhj7LTTTrHTTjvFsmXLoq+vL5YsWbLZ92y2UqkU//M//9PsGAAAC5badGpyETRPnnLfSHVDDPb1F5AGgFYyOT0VG8bHaq5RIgcAAAAAAACgnSkXNcinPvWp3AWf2fLQlr42t2S0pbVr1qyJNWvWLKoy0VxZlikXAQBto5KcXFR7cgrQOHnKfSPVjbHb0A4FpAGglVTGRpNrlMgBAAAAAAAAaGfKRQ22peLQtv7+OxeN5q5Z6HkAAKitOjkRY1OTNdcMlwcKSgPc2Yr+gShFRK2/GaUKggB0ppHR9OeDEjkAAAAAAAAA7Uy5qMFSE4W2phS0pbXzFY4WC6UnAKBdjOQoJQzZdApN093VFSv6B2pOn8hzHQPQeSrVDck1wyYXAQAAAAAAANDGlIsarNHlmsVc3lnMpScAgK01kmfT6YBNp9BMQ+VB5SIAttpIdf7PjoiI/p7eKPcuKSgNAAAAAAAAABSvq9kBAACgFVTyTC7qHyggCTCf4XLtazBPSRCAzpP6fBgytQgAAAAAAACANqdcBAAAOaQmngz29Udvt8Gg0ExD5cGaxyuJyRQAdKZUiXxYuQgAAAAAAACANqdcBAAAOYyM2nQKi13qOjS5CIAtSZXIPecBAAAAAAAA0O6UiwAAIIf0ptPaE1OAxkuXizZGlmUFpQGgVaQmFw0pFwEAAAAAAADQ5nqaHaDdlUqlZkcAAKAOKmPeaA+LXWrz9/TMTKwfH4vl/eWCEgHQCpTIAQAAAAAAAOh0ykUN5I3YAADtY2R0Q83j3mgPzTc8kL4OK2MblYsA2GRyeio2TIzVXKNEDgAAAAAAAEC7Uy5qkOOOO67ZEQAAqJMsy6KSfKO9TafQbHkmS4yMbox7Du1QQBoAWkGlOppco0QOAAAAAAAAQLtTLmqQT37yk82OAABAnVSnJmJ8eqrmGuUiaL4VfeUolUo1p8iOVGtPIQOgs+T5XPCcBwAAAAAAAEC762p2AAAAWOxGRmtPLYrwRntYDLq6umJF/0DNNakpZAB0lpEcnwue8wAAAAAAAABod8pFAACQkKeM4I32sDikrsU8m8gB6Byp57z+nt4o9y4pKA0AAAAAAAAANIdyEQAAJOR6o32/chEsBqlykclFAMyVes5TIAcAAAAAAACgEygXAQBAQmrT6fK+cvR0dxeUBqhlyOQiALZCulw0WFASAAAAAAAAAGge5SIAAEioVDfUPJ4qMwDFSU2YGElczwB0ltREO895AAAAAAAAAHQC5SIAAEhIv9HeplNYLFITJipjozGTZQWlAWCx85wHAAAAAAAAAMpFAACQZNMptI7U9Tg9MxMbxqsFpQFgsUtNtDO5CAAAAAAAAIBOoFwEAAAJlUS5aCgxKQUoTp5N4KnCIACdYWJ6KjZOjNdco0QOAAAAAAAAQCdQLgIAgBqyLMsxuWigoDRASp5N4KnCIACdIc/ngXIRAAAAAAAAAJ1AuQgAAGoYnZyIiempmmtMLoLFY3lfObpKpZprTC4CICLf50GeiXgAAAAAAAAA0OqUiwAAoAZvtIfW0tXVFUP9ta9J5SIAIjznAQAAAAAAAMAs5SIAAKhhpLohucamU1hchsoDNY/nua4BaH+psmm5Z0n09y4pKA0AAAAAAAAANI9yEQAA1JBnwsmKRJEBKNZwebDm8Up1tKAkACxmqbLp0IACOQAAAAAAAACdQbkIAABqSJWLlveXo6eru6A0QB5DiWliJhcBEBExMlr7Oc90SgAAAAAAAAA6hXIRAADUUEmUi1ITUoDipTaD55lIBkD7q4zV/jwY6lcuAgAAAAAAAKAzKBcBAEANqRLCUP9AQUmAvFLlorXV0ZjJsoLSALBYpZ7zhgeUiwAAAAAAAADoDD3NDsC2m56ejttuuy1uvfXWWL9+fVSr1ahWqzE2NhbZFjbKPfe5z21CSgCA1jZS3VDz+PCAyUWw2AwlykXT2UysH6/GCuVAgI42MpqaUKlcBAAAAAAAAEBnUC5qEX/4wx/i0ksvjd/97nfxu9/9Lq699tq4/fbbt1gimo9yEQDA1rPpFFpPntLfSHWjchFAB5uYmorRyfGaa4bLSuQAAAAAAAAAdAblokVqeno6Lrzwwrjwwgvj+9//fqxevXqz41tTKoqIKJVK9YwHANARsiyLyphyEbSa4RyloZHRDbHH8N0KSAPAYjSSeMaLSE/CAwAAAAAAAIB2oVy0yFx33XVxzjnnxOc+97n429/+FhFbLhJtTVloa4tItbzzne+MCy+8MLluxx13jC9/+ct1Oy8AQDNsnByPyenpmmtsOoXFZ1n/QHSVSjFT4+9ClWp6UzkA7WtkdENyjRI5AAAAAAAAAJ1CuWiR+MMf/hBvectb4ktf+lLMzMxsVgiqVSRKFYfqPbHosMMOi9e97nU112RZFqVSKS655JI45JBD6np+AIAiVUbT5QObTmHx6SqVYqi8NP5eY+P4iHIRQEerjI0m1yiRAwAAAAAAANApupodoNOtX78+XvziF8f+++8f559/fkxPT28q58z+ivhHYWdLv4p2wAEHxFOe8pRN566V6ROf+ETh+QAA6mlkLE+5aLCAJMDWShX/lIsAOltqclG5d0n09/QWlAYAAAAAAAAAmku5qIm++c1vxn777Rcf+9jH7lIqioimlohqee1rX7vpf59bgpr7K8uy+MpXvhLr169vYlIAgIUZSUwuKkXEiv6BYsIAWyU1baKiXATQ0VKfA6ZTAgAAAAAAANBJlIuaIMuyeO1rXxtHHnlk/PnPf563VLRYHXzwwfHgBz943ulFs8bHx+OCCy5oVkwAgAWrVGu/0X55/0B0d3mkhsUoPbmo9vUNQHtLTbBTLgIAAAAAAACgk9gJWbD169fHk570pDj77LNbrlQ010te8pJc684///wGJwEAaBybTqF1DZcHax6vVEcLSgLAYpR6zktNwAMAAAAAAACAdqJcVKB169bFYYcdFhdddNGmYlHEtpeKZotJs9+nSMcee2ysWLFiU447K5VKkWVZXHzxxbFu3bqi4wEA1IVyEbSu1PVZGdsYMzMzBaUBYLGpJJ/zapdUAQAAAAAAAKCdKBcVZP369XHYYYfFL3/5y4j4Z/kmb6lobpGoWYWiufr6+uKoo47aYv65X5uamorvfe97RUYDAKib1KZTb7SHxSt1fc5kWawbrxaUBoDFZqS6oeZxJXIAAAAAAAAAOolyUUGe85znxKWXXrrZtKKUOxeJZstIs796enpiaGgodtlll03ri/Sc5zwn17pvf/vbDU4CANAYJhdB68pzfaYKhAC0p/GpyRidnKi5RokcAAAAAAAAgE7S0+wAneDNb35zfPOb38xdLJpbEppdu9tuu8Vhhx0WBx10UDzoQQ+K3XffPXbcccdN67q6iu+JHXroobHTTjvF7bffvmkS01yzXzO5CABoRVmW5SgXDRaUBthaecpFI9WNsUfjowCwyOQplyqRAwAAAAAAANBJlIsa7Oc//3m89a1v3epiUZZlsWLFinjuc58bJ554YjzgAQ9oeNatVSqV4olPfGJ8+tOfvsvUpCzLNn1tzZo18cc//jH23nvvZsQEANgmGyfGY2pmuuYab7SHxWuwrxzdXV0xPTMz75pUgRCA9pTn/q9cBAAAAAAAAEAnKX7cTQeZnJyMF7zgBZsKRbWKRaVSadOkn76+vjj99NNj1apV8f73v39RFotmHX744bnW/fSnP21wEgCA+hqpbkiusekUFq+uUimG+gdqrslznQPQfvJMLlIiBwAAAAAAAKCTKBc10Hve8564+uqrN5WG5jN3WtHBBx8cl19+ebz1rW+NoaGhgpJuu8c//vGb8t95etFcykUAQKvxRntofcPlwZrH82wuB6D9pJ7zBnqXRF9Pb0FpAAAAAAAAAKD5lIsaZHR0NN71rnfVLNxExKbiUZZl8aIXvSguueSS2HvvvQtKuXBDQ0Ox33771VyTZVmsXLmyoEQAAPWRKh2USqVYnpiKAjRXqgCYp0QIQPtJ3f9T5VQAAAAAAAAAaDfKRQ1yzjnnxB133BERMe/UotliUalUitNPPz0+/OEPR09PT5Ex6+Lggw+u+TNGRFxzzTUxNTVVZCwAgAVJbTpd0VeO7i6P07CYDSkXAbAFqRJ56vMDAAAAAAAAANqN3ZAN8sEPfrDm1KK5xaIXv/jF8da3vrXAdPX1kIc8ZItfn1s4mpycjGuuuaaoSAAAC5YqHQx5oz0seiYXAbAlI9UNNY+nPj8AAAAAAAAAoN0oFzXAL3/5y7jpppsiYstTi+YWi/71X/813v/+9xecsL7222+/XOuuvfbaBicBAKgfm06h9aUmT6wdG42ZmZmC0gCwWKTKpZ7zAAAAAAAAAOg0ykUN8IUvfGHeY3OnGfX19cW5554b3d3dRcRqmH333TfXulWrVjU4CQBA/VSqozWPDw/YdAqL3XBiwliWZbF2vFpQGgAWi0pyQqXnPAAAAAAAAAA6i3JRA3znO9/ZrER0Z7NTi17+8pfHXnvtVWCyxth+++1ju+22i4io+XMrFwEArSQ1uWio36ZTWOyGywPJNalrHYD2MjY1GaOTEzXXmFwEAAAAAAAAQKdRLqqzNWvWxA033BAR/ygRzTW3eFMul+PUU08tNFsj7brrrnf5ee/sz3/+c0FpAAAWJsuyGEm80d7kIlj8hhKTiyIiRkZrX+sAtJfU1KIIk4sAAAAAAAAA6DzKRXX205/+tObx2alFRxxxROywww4FpWq8nXbaKbnmr3/9awFJAAAWbv34WEzPzNRc4432sPgt6+uP7q7af+2tjCkXAXSSVIE8ImJ4IF1OBQAAAAAAAIB2olxUZ1dccUWudUcffXSDkxRr5513nvdYqVSKLMvib3/7W4GJAAC2XZ6ywXCOiShAc5VKpWQR0OQigM6SZ3LRcL8SOQAAAAAAAACdRbmozm688cYtfr1UKm32vx966KEFJSrG4GB6c22lUml8EACAOshTNhgyuQhawlBig3ieCRYAtI+R6oaaxwd6+2JJT09BaQAAAAAAAABgcVAuqrP5ykVz7b333jE0NNT4MAXq7+9PrhkfHy8gCQDAwqU2nZZKpVjRVy4oDbAQwwO1y0WVxPUOQHtJlUpTnxsAAAAAAAAA0I6Ui+rstttu22xK0VxZlkWpVIq99tqr4FSNp1wEALSTyljtTadD/QPR1eVRGlrBcLn2lNWR6mhBSQBYDCqpcpHplAAAAAAAAAB0IDsi62zjxtobFCIi7nGPexSQZPGZmppqdgQAgFxGRhPlIptOoWWkNombXATQWVKTi4b6PecBAAAAAAAA0HmUi+osT7locLD2m7NbUbVaTa7p6+srIAkAwMJ5oz20j1QZcO3YaEzPzBSUBoBmS5WLhgc85wEAAAAAAADQeZSL6mxsbCy5ZsmSJQUkKdbo6GhyzcDAQAFJAAAWLrnpVLkIWkbqes0iYt1Y+u8zALSHdIm8/V4KBAAAAAAAAAApykV1Vi6Xk2vyTPlpNbfffntyTZ4/GwCAxcCmU2gfecqAqUIhAO1hbHIiqpMTNdekJt4BAAAAAAAAQDtSLqqzPNN5Nm5sv41rq1evnvdYlmUREbFs2bKi4gAAbLOZLIuRsdrPazadQuvIUwZULgLoDHnu9yZUAgAAAAAAANCJlIvqbOnS9AaEW2+9tYAkxVq1alWUSqV5j5dKpdh1110LTAQAsG02jFdjemam5hqbTqF1LF3SF71d3TXXjFQ3FJQGgGaqjI0m13jOAwAAAAAAAKATKRfV2fDw8KZJPVuSZVnccsstBSZqvNWrV8ff//73iIiaP/s973nPoiIBAGwzb7SH9lIqlZLTxiomFwF0hJHRdJnUhEoAAAAAAAAAOpFyUZ3tueee8x6bnexz3XXXxeTkZFGRGm7lypW51ikXAQCtIE/JQLkIWkvqms1TKgSg9aXu90uX9MWS7p6C0gAAAAAAAADA4qFcVGf3ute9tvj1uRN9JiYm4vLLLy8qUsP94Ac/yLVu7733bnASAICFS2067SqVYln/QEFpgHpITaFQLgLoDKkS+XB5sKAkAAAAAAAAALC4KBfV2Xzloju76KKLGpykON/+9rc3TWWq5aCDDiogDQDAwqRKBkP9S6Mrx7MPsHiYXARARI7nvLICOQAAAAAAAACdSbmozh784AfnWveNb3yjwUmKsXLlyrjhhhsiYvPpTBGxWeFoaGjI5CIAoCWk3mifmoACLD6pclHqugegPZhcBAAAAAAAAABbplxUZw960IOiXC5HRNxlmk+WZVEqlSLLsvjVr34V11xzTTMi1tXHPvaxmsdnf2ZTiwCAVpF6o32qpAAsPkOJzeLrxkZjama6oDQANMtIdUPN457zAAAAAAAAAOhUykV11tPTEw95yEPuMsVnSz70oQ8VkKhx/vrXv8bnP//5u5SotuQJT3hCAYkAABYutenU5CJoPcPlgZrHs4hYOzZaTBgAmqZSrX2v95wHAAAAAAAAQKdSLmqAVJFmdnrR//zP/8TNN99cUKr6O/PMM2Pjxn+82T9Vpnr6059eRCQAgAUzuQjaz3BiclFExMho7WsfgNZWnZyI6tREzTWe8wAAAAAAAADoVMpFDXD00UfPe2xuCWdiYiJOOeWUIiLV3VVXXRUf+chH5p1aNFugiojYb7/94l73uleR8QAAtslMlsXaxBvthwdsOoVWM5Tjuq2MKRcBtLNKokAeoVwEAAAAAAAAQOdSLmqAe93rXnHQQQdFlmVbLN/Mfj3Lsrjgggvi85//fBNSbrvp6ek47rjjYmLiH297rTW1qFQqxbOf/eyiogEALMj68WpMZzM11wz123QKrWZpb1/0dnfXXJOaWgZAa8tXLkpPugMAAAAAAACAdqRc1CDHHXdccs1swejFL35xXH755QWkqo+XvvSlsXLlys2mE801t1DV19cXJ510UpHxAAC2WZ5ywfCATafQakqlUrIYODKqXATQzvI8560oDxSQBAAAAAAAAAAWH+WiBjnxxBPjbne7W0TEvNOLZo9t2LAhnvzkJ8cNN9xQaMZt8c53vjPOOeecLf5Mc81OZ3rWs54V22+/fUHpAAAWZmR0Q3LNcNnkImhFwwO1r91KNX39A9C6UuWiwSX9saS7p6A0AAAAAAAAALC4KBc1SH9/f7z85S/f4mSfWXMLRrfeems84hGPiCuuuKKoiFvtLW95S7zuda/bVCxKTS3q6uqKU045pbB8AAALVRmrvem0u9QVy/rKBaUB6mm4XHvqWJ6JFgC0rkriPq9ADgAAAAAAAEAnUy5qoJe97GWx4447RsSWpxdFbF4wWrNmTTz84Q+Pz372s4VlzGPDhg3xnOc8J84444xNeVOlqVKpFMcdd1zc7373KyomAMCCjYzW3nS6ojwQXYkJjsDilNo0ntp0DkBrG0lMqBtSLgIAAAAAAACggykXNdDy5cvjXe96V80iTsTmBaPR0dE4/vjj42lPe1rccsstRcSs6Vvf+lY88IEPjC9+8YubSkPz/TxzC1RLly6Nt7/97UXFBACoi9TkEm+0h9aV2jRuchFAe/OcBwAAAAAAAADzUy5qsOc85zlx6KGHbirmzGduwSjLsrjwwgtj3333jZNPPjlWrVpVVNxNLrroonjc4x4XT33qU+PGG29MFotmza57y1veEjvttFNBaQEA6qMyltp0OlhQEqDeUpvG141XY2p6uqA0ABQtVS4yuQgAAAAAAACATqZcVIBPfvKTsf3220dEbFXBaHx8PD760Y/G3nvvHY973OPi3HPPjdtuu61hOVeuXBlvetObYt99940nPvGJ8aMf/WhTWShVLJo9XiqV4nGPe1y88pWvbFhOAIBGGRlNbTodKCgJUG95JlKsHRstIAkAzVAxuQgAAAAAAAAA5tXT7ACdYPfdd4/Pf/7zcfjhhycnAM0tGM3+c5Zl8aMf/Sh+9KMfRUTEfe973zjooIPiwAMPjHvf+95xz3veM1eOVatWRbVajdHR0VizZk2sXr06Vq1aFStXroyVK1fGyMjIZhnunGM+cwtTO+ywQ3z605/OlQcAYLFJbzo1uQhaVZ7rd6S6MbZfuqyANAAUqTo5EWNTkzXXKBcBAAAAAAAA0MmUiwryhCc8Id7+9rfH6173uprTi2bNnRg0+8+zrr766rjmmmvis5/97F1+z5a+z+z/3GuvvWqeb9bcfLVKRXPXZlkW5XI5vvKVr8TOO+9c8/cAACxGMzMzURnzRntoV0M5rt+R6oYCkgBQtJFEgTwiYkiJHAAAAAAAAIAO1tXsAJ3ktNNOi9e//vV3KQ7NZ3ZqUURsWn/niUZz16Tc+ffM/TXf969l7tru7u74/Oc/H494xCNyZQEAWGzWj1djJvH8o1wErWugd0ks6a79fo3U9DIAWlOe+7vnPAAAAAAAAAA6mXJRwd72trfF//t//2+z0lBKrSJQnpLSrC39vvkKS3m+1+zv6erqio9+9KNx5JFH5soBALAY5XujvU2n0KpKpVJy43ie+wAArSfPZLqh8kABSQAAAAAAAABgcVIuaoKzzjor3v3ud0dX1z/++POWg2ZtafLQtv6+rf0ec/NmWRZ9fX3xv//7v3HiiSdu1c8AALDY5CkVeKM9tDblIoDOlLq/D/b1R29iuh0AAAAAAAAAtDPloiZ51ateFRdeeGGsWLFis2lEi93cYtH2228f3/ve9+Koo45qcioAgIVLbTrt7uqKwb5yQWmARkhNH1MuAmhPlcT9XYEcAAAAAAAAgE6nXNREhx12WPzmN7+JxzzmMZsmBy3WktHcXFmWxWMe85i44oor4lGPelSTkwEA1Edy02n/0uhahM9pQH6pzeOp+wAArSlVHh3qVy4CAAAAAAAAoLMpFzXZnnvuGRdffHF89KMfjWXLli26ktGdS0XlcjnOPvvsuOiii2KXXXZpcjoAgPoZqW6oeTw18QRY/IbKgzWPm1wE0J5S9/fhAc95AAAAAAAAAHQ25aJF4gUveEHceOONccopp0R/f/9dSkZFF43uXCqKiDjuuOPij3/8Y5xyyimLovgEAFBPyU2nykXQ8lLX8frxakxOTxWUBoCiJCdUJsqnAAAAAAAAANDulIsWke222y7OPvvsTSWj7bffPrIs22LRqN7lni197yzLore3N57znOfEypUr45Of/KRpRQBA20ptOjW5CFpfnpJgZWy0gCQAFCXLsmSJfKjfcx4AAAAAAAAAnU25aBHaaaed4uyzz44///nPcd5558Vhhx0Wvb29mxWNIu5aCFrIr4jY9P2zLIt999033vKWt8Qtt9wSn/nMZ+KAAw5o1h8HAEAhTC6C9penJJgqGgLQWqpTEzE+NVlzzfCA5zwAAAAAAAAAOltPswMwv97e3njmM58Zz3zmM2Pjxo3xgx/8IL7zne/E//3f/8W1114b09PTd/k9eSYazS0ozVq+fHkcdNBB8fjHPz6OPPLI2HfffevyMwAAtIKZmZnktBKTi6D15dk8nioaAtBaKtX0RDolcgAAAAAAAAA6nXJRi1i6dGk89alPjac+9akRETE2NhaXX355XH755bFq1apYvXp1rF69Om677bbYsGFDVKvVGBsbi/Hx8ejt7Y2BgYEol8sxODgYu+66a9zznveMe97znrHXXnvFQQcdFPe5z31yFZMAANrR2vHqFgvYcw2XBwtKAzRKuWdJ9HX3xPj01LxrRkaViwDayUh1Q3KNEjkAAAAAAAAAnU65qEX19/fHQx/60HjoQx/a7CgAAC2vkmNSSZ6JJ8DiViqVYqi8NNZsWDvvmjyb0AFoHXlKo0P9AwUkAQAAAAAAAIDFq6vZAQAAoNlyvdG+X7kI2sHwQO0pZJUxk4sA2slIokS+rK8cvd3evwQAAAAAAABAZ1MuAgCg46U2nXZ3dcWyvv6C0gCNNFyuXRTMM+ECgNaRmlA5VDa1CAAAAAAAAACUiwAA6HipMsFweWmUSqWC0gCNlJpCltqEDkBrSZXIh8u1J9oBAAAAAAAAQCdQLgIAoONVxmw6hU4xPJCYXKRcBNBWKtUNNY+nJtoBAAAAAAAAQCdQLgIAoOOlJhcNlQcKSgI0WmoT+YaJsZicniooDQCNlp5cpFwEAAAAAAAAAMpFAAB0vPSmU5OLoF3kuZ4r1dECkgDQaFmWRSXxnDekXAQAAAAAAAAAykUAAFAZ80Z76BR5NpGPVDcUkASARqtOTsR4Yhqd5zwAAAAAAAAAUC4CAKDDTc/MxNqx2lNKvNEe2keeTeSpKRcAtIbUdMoIEyoBAAAAAAAAIEK5CACADrdubDSyLKu5xhvtoX2Ue5dEf09vzTV5NqMDsPjlKYsOlQcKSAIAAAAAAAAAi5tyEQAAHS3fG+2Vi6CdpK5p5SKA9pDnfj7U7zkPAAAAAAAAAJSLAADoaPnKRYMFJAGKMqRcBNARUvfz5X3l6OnuLigNAAAAAAAAACxeykUAAHS0SmLTaW9Xdyxd0ldQGqAIqclFqfsCAK2hUt1Q83iqbAoAAAAAAAAAnUK5CACAjjaSY9NpqVQqKA1QhNQ0MpOLANpD6n6eKpsCAAAAAAAAQKdQLgIAoKPZdAqdJzWpIlU6BKA1eM4DAAAAAAAAgHyUiwAA6GiVxKbTVAkBaD2pzeQbJ8ZjYmqqoDQANIrnPAAAAAAAAADIR7kIAICO5o320HnyXNeVsdr3BgAWtyzLPOcBAAAAAAAAQE49zQ5A2sTERNx8882xZs2auP322+OOO+6IsbGxGB8fj/Hx8Zienm52xKT//M//bHYEAIAtsukUOk+eSRUj1Y2x4+CKAtIA0AijkxMxMV17Ct1QebCgNAAAAAAAAACwuCkXLTKjo6Pxi1/8In7605/Gr3/967jmmmvi5ptvjpmZmWZHWxDlIgBgMZqemYl1Y6M119h0Cu0nT2kwVTwEYHGr5LiPK5EDAAAAAAAAwD8oFy0ClUolvvrVr8aXvvSl+OEPfxhTU/98q2qWZU1MVh+lUqnZEQAAtmjt2GiknraGywOFZAGK09+7JMo9S6I6NTHvmpHRDQUmAqDeRqrp+7hyEQAAAAAAAAD8g3JRE1133XXxvve9Lz7zmc9EtVqNiLuWiVq9mNMO5SgAoH3l23RqchG0o6GBpVFdN3+5qDJmchFAK8szgW6FEjkAAAAAAAAARIRyUVPccccd8cY3vjE+8YlPxPT09GYFnPnKRK1Y0mn1YhQA0P7ybDodGvBGe2hHw+Wlcdu6kXmPj4wqFwG0skriOW95fzl6uroLSgMAAAAAAAAAi5tyUcG++tWvxkknnRSVSmVTYejOJZxWLBIBALSi1KbT3u7uWNrbV1AaoEhD/bWLg3nKhwAsXqn7+HDicwAAAAAAAAAAOklXswN0iizL4uSTT45nPOMZMTIyElmWRalU2lQsyrJs0y8AAIqR2nQ61L/UNEZoU8OJqWSp8iEAi1vyOa+sXAQAAAAAAAAAs0wuKsDExEQcc8wx8bWvfW1TqWiWMhEAQPMk32ifKB8ArWs4sanc5CKA1pYqiQ4PDBaUBAAAAAAAAAAWP5OLGizLsjj66KPjggsu2KxYZEoRAEDzjYxuqHl8uGzTKbSr1PU9Ojke41OTBaUBoN7yTKgEAAAAAAAAAP7B5KIGe/3rXx9f//rXNysVLcTcqUcAACxMZWy05vHUZBOgdQ3luL4r1Y2x07KhxocBoK6yLIuRaqJEbkIlAAAAAAAAAGyiXNRAP/rRj+Kss87a5mJRrSKRqUcAAAuX2nSap3wAtKY85cER5SKAlrRxcjwmp6drrlEiBwAAAAAAAIB/Ui5qkLGxsXjhC1+46Z+3pgw0t1R059/X29sbO+ywQ2y//fZRLpejr68vuru7Fx4YAKDDTM1Mx7qxas01Np1C+8o7uQiA1pPn/j3U7zkPAAAAAAAAAGYpFzXIxz72sbj++uujVCrlLhbdecLR0qVL47GPfWwcfPDBcdBBB8U+++wTu+22W8MyAwB0krXV0eQa5SJoX/09vTHQuyRGJyfmXTOiXATQkvLcv4cHPOcBAAAAAAAAwCzlogaYnJyMs88+e7MJRLXcuVR02GGHxYte9KJ44hOfGH19fQ3LCQDQyfJsOs0z2QRoXUPlpcpFAG1oZLT2/bsUESv6B4oJAwAAAAAAAAAtQLmoAb7+9a/Hn//851xTi+YWix7xiEfEe97znjjooIOKiAkA0NFyvdG+PFhAEqBZhstL49Z1I/MerygXAbSkyljt+/fy/oHo6eouKA0AAAAAAAAALH5dzQ7Qjs4///zkmlKptKl8VCqV4qyzzopLLrlEsQgAoCCV6oaax5d098RA75KC0gDNkCoQjiTuEwAsTqnJRaZTAgAAAAAAAMDmTC6qs4mJifj2t7+9aSLRlsydVtTT0xNf/OIX49/+7d+KiggAQESMVEdrHh8uL635TAe0vuHE5vI8E84AWHxS5dDU/R8AAAAAAAAAOo3JRXX2m9/8JqrVakT8ozw0n9mJRf/93/+tWAQA0ASpyUXeaA/tL3WdKxcBtKbKWO37t3IRAAAAAAAAAGxOuajOfvazn9U8XiqVNhWLnva0p8ULXvCCgpIBADBXqjRg0ym0v9R1Xp2ciLGpyYLSAFAvI6O1n/OUyAEAAAAAAABgc8pFdXb11VfPe6xUKm3633t6euI973lPEZEAANgC5SIgz+byiulFAC0ly7LkvdtzHgAAAAAAAABsTrmozlatWlXz+OzUomc84xmxxx57FBMKAIC7SG06HSoPFpQEaJY8m8tTRUQAFpeNk+MxOTNdc82w5zwAAAAAAAAA2IxyUZ3dcsstm00oms+zn/3sAtIAALAlU9PTsW68WnONN9pD+8szuWhkdEMBSQCol8pouhQ6VB4oIAkAAAAAAAAAtA7lojpbv379Fr8+t3DU09MTj370o4uKBADAnVTG0ptOlYug/fX19MZAb1/NNXnuFwAsHiPVdCnU5CIAAAAAAAAA2JxyUZ1t3Dj/xrMsyyIiYv/994/+/v6iIgEAcCcj1TxvtFcugk4wPFD7Ws9zvwBg8Ujdt0sRsaLf5CIAAAAAAAAAmEu5qM4mJiZqHi+VSnHve9+7oDQAAGxJJUdZwOQi6AxD/Yly0ahyEUArST3nLe8fiO4u/0kUAAAAAAAAAOby/0mvs8HBweSanXfeuYAkAADMJ/VG+77unij3LikoDdBMqSJhnjIiAItH6jlPgRwAAAAAAAAA7kq5qM6WL1+eXLN0qU0MAADNlNp0OlReGqVSqaA0QDMNDyQmF40pFwG0EuUiAAAAAAAAANh6ykV1lqdcND09XUASAADmk5pEMjyQnkYJtIfhcu3rvTKqXATQSlLPeUOJ+z4AAAAAAAAAdCLlojrbc889I8uymmtGR0cLSgMAwJYkJxf1e6M9dIqhxASL6tREjE1OFJQGgIVKTy4aKCgJAAAAAAAAALQO5aI6u//9759c87e//a2AJAAAzGekuqHm8eFE2QBoH3mu99RGdQAWhyzLcpSLTC4CAAAAAAAAgDtTLqqzVLkoy7K48cYbC0oDAMCWJDedDigXQafIUy6qKBcBtISNE+MxNTNdc01qYh0AAAAAAAAAdCLlojp7+MMfPu+xUqkUERHXXXddUXEAALiTyemp2DA+VnONyUXQOfJsMje5CKA1pKZTRnjOAwAAAAAAAIAtUS6qsz322CP233//yLJsU5ko4h8Ti2atW7cufv/73zcjHgBAx6uMjSbXeKM9dI4l3T2xdElfzTXKRQCtIc/9WrkIAAAAAAAAAO5KuagBnva0pyXXXHzxxQUkAQDgzkZG82w6HSwgCbBYpK75inIRQEtI3a9LpVIs7x8oKA0AAAAAAAAAtA7logY49thjN00tmju9aFaWZXH++ecXHQsAgIioVDck13ijPXSW1DU/kuO+AUDzpSYXregrR3eX/xwKAAAAAAAAAHfm/5veAPe5z33iKU95SmRZttnXsyzbVDa67LLL4ne/+10T0gEAdLaR6mjN4/09vVHuXVJQGmAxSJeLTC4CaAWp+/WQ6ZQAAAAAAAAAsEXKRQ3ymte8JrnmHe94RwFJAACYKzWBZMjUIug4qeteuQigNaSe80ynBAAAAAAAAIAtUy5qkH/913+NI488crNpRRH/nF6UZVl8+ctfjv/7v/9rYkoAgM5TSZQEbDqFzpO67lP3DQAWh0piQqUSOQAAAAAAAABsmXJRA33oQx+K5cuXR0RsVjCalWVZvPCFL4zR0dobHwAAqJ/UBBLlIug8qet+bGoyqpMTBaUBYFuZXAQAAAAAAAAA20a5qIF22WWXOPvssyPLss2+Pnea0bXXXhvHH398E9IBAHSm1AQSb7SHzpPnuk8VEwForizLkpOLhgc85wEAAAAAAADAligXNdhJJ50UJ5100maFooh/FoyyLIuvfOUr8dKXvrSJKQEAOkd6ctFgQUmAxSLPdZ+ahgFAc22YGIupmemaa0wuAgAAAAAAAIAtUy4qwIc//OF49KMfXbNg9JGPfCROOOGEmJycbGJSAID2NjE9FRsmxmqusekUOs9QeSC5JjX1DIDmyjNhzoRKAAAAAAAAANgy5aICdHd3xwUXXBAPf/jDaxaMPv3pT8chhxwSq1atamJaAID2tbY6mlyjXASdp7e7Jwb7+muuybNpHYDmGRlN36dNqAQAAAAAAACALVMuKsjy5cvjoosuiic84QmbCkWzJaO5BaNf/vKXsf/++8dZZ50VY2O136oPAMDWGaluSK7xRnvoTMP9ta/9PJvWAWieyljt+3SpVIoVfeWC0gAAAAAAAABAa1EuKlC5XI5vfvOb8bznPS+yLNvs2NyJRqOjo/H6178+9txzzzjrrLNizZo1zYgLANB28kweUS6CzpS69k0uAljcUiXyFf0D0dXlP4UCAAAAAAAAwJb4/6gXrLe3N/7nf/4nPvvZz8bSpUu3OMFodorRmjVr4vWvf33stttucdhhh8V73/ve+N3vfhdTU1NN/ikAAFpTqhxQ7lkS5d4lBaUBFpPhgdrlotREDACaKzVhbliBHAAAAAAAAADm1dPsAO3qLW95S3LNU57ylDjvvPM2lYsiNi8Yzf7z1NRUXHzxxXHxxRdHxD8KSvvss0/c8573jLvf/e6xfPnyKJfL0dvb25gfpg7+8z//s9kRAACikigXDSXKBUD7Gi4P1jw+Mlp7IgYAzZUqgSoXAQAAAAAAAMD8lIsa5M1vfvNmpaFasizb4j/fuWQ0a2JiIq688sq46qqr6pS28ZSLAIDFIDW5aLjfplPoVEOJ679S3bjpZRAALD6pyUVDykUAAAAAAAAAMC/loga7c3FoW37v3JLR3GML+d5FsvkOAFgsRqq1J4/YdAqdazgxuWx8eiqqUxMx0NtXUCIAtkZqQqXJRQAAAAAAAAAwP+WiBksVa/IUhO68Zktlo8WqVQpQAEBnqFRHax5PlQuA9pVn0/nI6MYYWKFcBLDYZFkWI2OpctFgQWkAAAAAAAAAoPUoFzVYI8o1rVLYaZUCFADQOZKTi/qVi6BT5SkXVaobY9cV2xWQBoCtsX58LKZnZmquGSoPFJQGAAAAAAAAAFpPV7MDAABAESampmLjxHjNNXnKBUB7ylMuHKnWnooBQHNUEgXyCJOLAAAAAAAAAKAW5SIAADrCyFi6FDA8YNMpdKqe7u5Y1leuuUa5CGBxynN/ViIHAAAAAAAAgPkpFwEA0BEqNp0CCal7QJ7JGAAUL1UuKpVKsTxRIAUAAAAAAACATqZcBABAR8jzRvsh5SLoaKlykclFAItTqkQ+1D8QXV3+MygAAAAAAAAAzKen2QHaXalUanYEAAAiYmS09sSRcu+S6O/pLSgNsBilCobKRQCLU+r+bDolAAAAAAAAANSmXNRgWZY1OwIAAJF+o71Np0DqPpC6jwDQHOnnvMGCkgAAAAAAAABAa1IuapBHPepRphYBACwi3mgPpKTuAyPVjZFlmb/rASwyqee8ofJAQUkAAAAAAAAAoDUpFzXIj3/842ZHAABgjvSmU+Ui6HSp+8DE9FSMTk7E0iV9BSUCII+R6oaax00uAgAAAAAAAIDaupodAAAAilBJTi6y6RQ6XZ77QGoDOwDFmsmyqIyN1lxjQiUAAAAAAAAA1KZcBABAR0hNLrLpFMhzH0gVFQEo1obxakzPzNRcY0IlAAAAAAAAANSmXAQAQNsbn5qM0cnxmmtsOgVWlAeSa1JFRQCKlee+rEQOAAAAAAAAALUpFwEA0PbyTBqx6RTo6eqO5X3lmmuUiwAWF+UiAAAAAAAAAFg45SIAANqeTadAXql7wciochHAYpIqkXeVSrGsPz2ZDgAAAAAAAAA6mXIRAABtL8/koiHlIiDS94LKmHIRwGKSKpEP9S+NrlKpoDQAAAAAAAAA0JqUiwAAaHupTacDvUuir6e3oDTAYjY8MFjz+Eh1Q0FJAMgjdV9WIAcAAAAAAACANOUiAADaXqpcNFyuXSYAOsdQf+1N6COjJhcBLCaV6mjN48PKRQAAAAAAAACQpFwEAEDb80Z7IK/hgdr3g0p1Y2RZVlAaAFI85wEAAAAAAADAwikXAQDQ9irJyUU2nQL/kLofTM5Mx8bJ8YLSAJCSnlDpOQ8AAAAAAAAAUpSLAABoezadAnnluR9URmvfUwAoxkyWxdrqaM01qYl0AAAAAAAAAIByEQAAHSBVLhpSLgL+f3nuByPVDQUkASBl/Xg1prOZmmuG+j3nAQAAAAAAAECKchEAAG1tbGoyqpMTNdcMDwwWlAZY7Fb0D0QpsWYkMSUDgGKkCuQRnvMAAAAAAAAAIA/lIgAA2lolx6bTof6BApIAraCnqzuWJ+4JFZOLABaFPM95wyZUAgAAAAAAAECSchEAAG3NG+2BrZXaiJ7nvgJA440kyp7dpa5Y1lcuKA0AAAAAAAAAtC7lIgAA2trIaHrCyHC/N9oD/zSkXATQEkZGa9+PV5QHoqtUKigNAAAAAAAAALQu5SIAANpaZaz2ptOlS/piSU9PQWmAVpCaXFRRLgJYFFLPean7OQAAAAAAAADwD8pFAAC0tdSEkdSEEqDzpDajm1wEsDh4zgMAAAAAAACA+vCKdhZku+22S64plUpxxx13FJAGAOCuRka90R7YOqnN6CPVjZFlWZRKpYISAbAlnvMAAAAAAAAAoD46ulx0r3vdK7mmVCrFDTfcUECa1lSpVKJUKkWWZfOuseEOAGimSuKN9sPlwYKSAK0idV+YmpmODRNjsayvXFAiALbEcx4AAAAAAAAA1EdHl4tuuukmxZg6me/PqdafLQBAEUbGvNEe2Dp57guV6kblIoAmmsmyqCSe84bKAwWlAQAAAAAAAIDW1tHlolmLqRjT3d2dXFMqlWJqaqqANAAAra8ymtp0qlwEbC5PuWikujF2G9qhgDQAbMn6sdGYSfy3O5OLAAAAAAAAACAf5aJFplUn/Wwpt6lPAECzjU1ORHVqouYak4uAO1vePxCliKj1t7ORau3iIgCNlec+7DkPAAAAAAAAAPLpanaAxSDLsrv8aqZSqTTvLwAA8rPpFNgW3V1dsaJ/oOaakeqGgtIAsCWe8wAAAAAAAACgfpSLFqnFVngCAGhFlRybTodsOgW2YKg8WPN4pTpaUBIAtiT1nNdd6orBvnJBaQAAAAAAAACgtSkXAQDQtvK80V65CNiS1LQLk4sAmiv1nDdUHoguU8ABAAAAAAAAIBflIgAA2lZq0+ngkv5Y0t1TUBqglaSKhyOj6fIiAI2Tes4bTkygAwAAAAAAAAD+SbkIAIC2VUluOjW1CNiy1P0hdX8BoLFS92HTKQEAAAAAAAAgP+UiAADa1kh1Q83jNp0C8xkeSEwuGtsYWZYVlAaAO0s95ymRAwAAAAAAAEB+ykUAALStEZOLgG2Uuj9Mz8zE+vGxgtIAcGeV6mjN457zAAAAAAAAACA/5SIAANpWqlxkchEwnzz3h0piagYAjTEzMxOVMc95AAAAAAAAAFAvykUAALStSnJy0WBBSYBWk+f+MJKYmgFAY6wbr8ZMltVcY3IRAAAAAAAAAOSnXAQAQFuqTk7E2NRkzTXD5YGC0gCtZkVfOUqlUs01IyYXATRFajplhHIRAAAAAAAAAGwN5SIAANpSnk2nQyYXAfPo6uqKof7aBcTUdDQAGiPP/XdIuQgAAAAAAAAAclMuAgCgLeXZdDo8YNMpML/UxvQ8JUYA6i91/+3u6orBvnJBaQAAAAAAAACg9SkXAQDQlkaqG5JrUlNJgM42nCgXmVwE0Byp57zh/qXRVSoVlAYAAAAAAAAAWp9yEQAAbSn1RvvBvv7o7e4pKA3QilLlIpOLAJojVe5MTZ4DAAAAAAAAADanXAQAQFsaGa296TRVGgBIbU7PMyENgPpLlTs95wEAAAAAAADA1lEuAgCgLVXGUptOBwtKArSq1H2iUh2NmSwrKA0As1LlIpOLAAAAAAAAAGDrKBcBANCW0ptOBwpKArSq1OSL6WwmNoxXC0oDwKxKanLRgHIRAAAAAAAAAGwN5SIAANrSyOiGmsdNLgJSUuWiiHSREYD6mpmZicrYaM01Q/3KRQAAAAAAAACwNZSLAABoO1mWpd9on6M0AHS2IeUigEVn7Xg1siyruUaJHAAAAAAAAAC2jnIRAABtpzo1EePTUzXXKBcBKcv7ytFVKtVcM1KtPSUNgPpKFcgjIoYHPOcBAAAAAAAAwNZQLgIAoO2MjKY3neaZSAJ0tq6urhjqr32vqFRHC0oDQES+Umfq3g0AAAAAAAAAbE65CACAtpPrjfbKRUAOqSKiyUUAxRpJPOd1d3XFsr7+gtIAAAAAAAAAQHtQLgIAoO2kNp1GeKM9kE+qiJjnfgNA/aQmVA6Xl0apVCooDQAAAAAAAAC0B+UiAADaTmqz/7K+cvR0dxeUBmhlyclFiU3uANRXZaz2fVeBHAAAAAAAAAC2nnIRAABtp1LdUPN4ahIJwKzU/SK1yR2A+kpOLhrwnAcAAAAAAAAAW0u5CACAtpOaXKRcBOSV2qReqW6MmSwrKA0A6ee8wYKSAAAAAAAAAED7UC4CAKDtVJSLgDoZ6q99v5jJslg/NlpQGgBSE+M85wEAAAAAAADA1lMuAgCg7aTeaD9k0ymQ0/BAegLGiHIRQCGmZ2ZibeKe6zkPAAAAAAAAALaechEAAG0ly7Jkucgb7YG88twvRkY3FJAEgHVjo5FlWc01nvMAAAAAAAAAYOspFwEA0FZGJydiYnqq5pqhcnoSCUBExLK+cnSXav/VuZIoNAJQHyNj6futchEAAAAAAAAAbD3lIgAA2kqeTf42nQJ5dZVKsaI8UHNNaloaAPUxMpq+3w55zgMAAAAAAACAraZcBABAWxmpbkiuUS4CtkbqnqFcBFCMVIm8p6s7Bpf0F5QGAAAAAAAAANqHchEAAG0lzyb/1BQSgLmGy4M1j+eZmAbAwqWe84bLS6NUKhWUBgAAAAAAAADah3IRAABtJbXJf3l/OXq6ugtKA7SD9OSi9MQ0ABYuVS4aMp0SAAAAAAAAALaJchEAAG0l+Ub7fptOga2T2qyeZ2IaAAtXSZQ5U2VQAAAAAAAAAGDLlIsAAGgr3mgP1Ftqs/rasdGYmZkpKA1A50qWyD3nAQAAAAAAAMA2US4CAKCtjKTeaD8wWFASoF2kNqvPZFmsG68WlAagc1WUyAEAAAAAAACgIZSLAABoK5XqaM3j3mgPbK08m9VT0zQAWJjpmZlYO+Y5DwAAAAAAAAAaQbkIAIC2kWVZcnKRN9oDWyvPZvXUvQeAhVk7NhpZYo1yEQAAAAAAAABsG+UiAADaxsbJ8Zicnq65xqZTYGsN9pWju6v2X59TU9MAWJhKjglxw+XBApIAAAAAAAAAQPtRLgIAoG1URvNsOlUuArZOV6kUw/217x0mFwE01kiOcpEJlQAAAAAAAACwbXqaHaAVnHDCCc2OcBeLMRMAQLONjHmjPdAYQ+Wl8bfR9fMez7PpHYBtlypx9nZ1x9IlfQWlAQAAAAAAAID2olw0jyzLNv3PT3/6000593xfb0amWubLCwBQtJHE5KJSRKzoHygmDNBWUlPPUvcfABamkihxDpWXRqlUKigNAAAAAAAAALQX5aIcFmN5ZjFmAgBotkrijfbL+weiu6uroDRAOxlKlIsqOSanAbDtUhPiUiVQAAAAAAAAAGB+ykU5FPnW07ylocXyJlYlJwBgMRmpjtY8btMpsK2GBxKTixKb3gFYmNR9NlUCBQAAAAAAAADmp1yUw2Is0CzGTAAAzTaSmFxk0ymwrYb6a98/1o6Nxv/H3r9HS1aXd+L/U+daVX36dBWILURFFBTxfgcDQkZNRiLRmGiUOKOo6JiZcZwZozOj62ucaJYZdTTJcqKikajxErN0eUlQx0twNAJRiURFEJWIQiM0Vd19TlWda/3+8KeCwv7sc07Vrtp1Xq+1WGvifvrsp52sTz50P+/9bG5uxpTtaABD0U5uLlooqBMAAAAAAAAAmDymngAAmBjpoVPhImB7UkPr/X4/Dq10C+oGYPdJbS5q1uoFdQIAAAAAAAAAk0e4CACAiZEeOhUuAranWU+fH6ntaQBsz/rmRhzudTJrGjYXAQAAAAAAAMC2CRcBADAR+v1+js1Fhk6B7ckTTmx1ss8gALbnUK8T/URNnhAoAAAAAAAAAHD7hIsAAJgIy6srsba5kVnTsLkI2KaFuWrMTE1n1qQCjgBsT57ztVl1zwMAAAAAAACA7RIuAgBgIrS6S8maPJtHAG5PpVKJRq2eWdMSLgIYijzna8PmIgAAAAAAAADYtplRNzAOKpXKqFsAAGCH8gydChcBO9GsLcTNy0fu8LlwEcBwpM7X2enp2DM7X1A3AAAAAAAAADB5hIsiot/vj7oFAAB2qJ0YOq1UKrFYzd46ApAlFVBs59igBsDWpe55jeoeHw8CAAAAAAAAgB3Y1eGixzzmMQYPAAAmROqL9vvmazE9NVVQN8AkaiTCRTYXAQxH6nxt1m2nBAAAAAAAAICd2NXhor//+78fdQsAAAxIaui0UVsoqBNgUqU3FwkXAQxDq5O9Ga7pngcAAAAAAAAAO+LT7QAATITUUH8qFACQkjpHDvU6sbG5WVA3ALtHu9fJfO6eBwAAAAAAAAA7I1wEAMBESG8uMnQK7EzqHOnHjwNGAAxWq5u9ucg9DwAAAAAAAAB2RrgIAICJkBo69UV7YKfynCOpswiArVnf3IjDvW5mjXseAAAAAAAAAOyMcBEAAKXX7/ej3c3eFtKsGzoFdqZZW0jWpM4iALYmz0Y44SIAAAAAAAAA2BnhIgAASm9ptRfrmxuZNYZOgZ3aMzcfs1PTmTU2FwEMVquznKxpuOcBAAAAAAAAwI4IFwEAUHqtrqFTYPgqlUryLMlzHgGQX55zNc9mOQAAAAAAAADgjgkXAQBQenm+aG/oFBiE1BY04SKAwWonNsLNTc9EfXauoG4AAAAAAAAAYDIJFwEAUHqtxNBppVKJffO1groBJllqc1FbuAhgoFrdTubzRm1PVCqVgroBAAAAAAAAgMkkXAQAQOm1e9nD/I1qPaamXH2BnUttQbO5CGCwUpuLUhvlAAAAAAAAAIA0E5YAAJReq5MIFxk6BQakWatnPk9tUgNga1KhTeEiAAAAAAAAANg54SIAAEqvbegUKEgjsbnocK8b65sbBXUDMPlS9zwhcgAAAAAAAADYOeEiAABKzxftgaI06+nz5FCvU0AnALuDex4AAAAAAAAADJ9wEQAApeeL9kBR8gyxtzrZZxIA+axvbMThlW5mTTOxUQ4AAAAAAAAASBMuAgCg1Db7/Wj1Ul+0N3QKDEaesGJqywYA+eTZBGdzEQAAAAAAAADsnHARAACltrTSjY3NzcwaQ6fAoOyZnY/Z6enMmnYi8AhAPnnCmjZUAgAAAAAAAMDOCRcBAFBq7RxDp8JFwKBUKpXkNrRWR7gIYBBa3aVkjXseAAAAAAAAAOyccBEAAKXmi/ZA0VKD7O0cw/AApKVC5PPTM1GbnSuoGwAAAAAAAACYXMJFAACUWipcNFWpxOJ8raBugN0gFVjME3oEIC11njZqe6JSqRTUDQAAAAAAAABMLuEiAABKLTl0Wt0TU1OuvcDgpDcXCRcBDELqnpc6jwEAAAAAAACAfExZAgBQaqkh/tSGEYCtSg2z21wEMBjpe95CQZ0AAAAAAAAAwGQTLgIAoNR80R4oWiq0eHilG+sbGwV1AzC50ve8ekGdAAAAAAAAAMBkEy4CAKDUWt2lzOc2FwGDlie02O7ZXgSwU6lwkc1FAAAAAAAAADAYwkUAAJRa2+YioGDNHMPs7W6ngE4AJtf6xkYcWelm1rjnAQAAAAAAAMBgCBcBAFBam/1+coDf0CkwaHnOldRWNQCy5dkA554HAAAAAAAAAIMhXAQAQGkdWenGRn8zs6Zh6BQYsNrsXMxNz2TWtBJb1QDIluccdc8DAAAAAAAAgMEQLgIAoLTyDJ026wsFdALsJpVKJbktQ7gIYGfy3fOEiwAAAAAAAABgEISLAAAorXaeoVNftAeGIHW25DmfALhjqXN0fmY2ajNzBXUDAAAAAAAAAJNNuAgAgNJqdZcyn09XpmLvfK2gboDdpFHL3opmcxHAzqTO0Ua1HpVKpaBuAAAAAAAAAGCyCRcBAFBarU720Om+Wj2mDJ0CQ9Cs1TOfp8KPAGRLnaPNenbIEwAAAAAAAADIT7gIAIDSSn3RvlnbU1AnwG5jcxHAcLW7nczn7nkAAAAAAAAAMDjCRQAAlFa7lwoX+aI9MBypofallV6sbawX1A3A5EltLmpUhYsAAAAAAAAAYFCEiwAAKK1WJztc1KjVC+oE2G2a9fRQe7uXvXUDgDuW3FCZ4xwGAAAAAAAAAPIRLgIAoLTaqaFTm4uAIcmzMSMVgATg9q1trMfSSi+zJrVBDgAAAAAAAADIT7gIAIBS2uz3o91LhYsMnQLDkW9zkXARwHbk2fzWcM8DAAAAAAAAgIERLgIAoJSO9Dqx2e9n1hg6BYalNjMX8zOzmTU2FwFsT57z04ZKAAAAAAAAABgc4SIAAEqp1c0zdCpcBAxHpVJJnjGt7lJB3QBMlnaO89M9DwAAAAAAAAAGR7gIAIBSEi4CRi21Ha2d45wC4Be1up3M5/Mzs1GbnSuoGwAAAAAAAACYfMJFAACUUmpof3pqKhbmawV1A+xG6c1FwkUA25Ha/CZADgAAAAAAAACDJVwEAEAppYb2G9V6TFUqBXUD7Eap4XabiwC2J3V+ChcBAAAAAAAAwGAJFwEAUErpL9ovFNQJsFs1bC4CGIrU+SlcBAAAAAAAAACDJVwEAEApGToFRi11ziyt9mJ1Y72gbgAmR2pzUSrcCQAAAAAAAABsjXARAAClZOgUGLU8G9IOdTsFdAIwWdIhchsqAQAAAAAAAGCQhIsAACglm4uAUctzzrS6SwV0AjA51jbWY2m1l1njngcAAAAAAAAAgyVcBABA6Wxubka7l70NxOYiYNjynDOpICQAt9XOsfHNPQ8AAAAAAAAABku4CACA0jm80o1+v59Z06wtFNQNsFvVZueiOjObWSNcBLA1eTa+2VwEAAAAAAAAAIMlXAQAQOnkGdZv1uoFdALsdqkB97ZwEcCW5Dk3bS4CAAAAAAAAgMESLgIAoHTyfNG+YXMRUIDUljSbiwC2JnVuVmdmozY7V1A3AAAAAAAAALA7CBcBAFA6qaHT6amp2DtfLagbYDdrJLak5QlDAvAzqXteamMcAAAAAAAAALB1wkUAAJROO8fQaaVSKagbYDezuQhgsNLhItspAQAAAAAAAGDQhIsAACid1NBpo+qL9kAxGokNGqkwJAC3lTo3UxvjAAAAAAAAAICtEy4CAKB0Wp3EF+3rwkVAMZqJcNHy6kqsrq8X1A1A+dlcBAAAAAAAAADFEy4CAKB0DJ0C4yIVLoqIaPVsLwLIq9Vdynye2hgHAAAAAAAAAGydcBEAAKXTTgzq5xn2BxiEPEPu7UQgEoAfW91Yj+XVlcwa9zwAAAAAAAAAGDzhIgAASmVjczMO9TqZNb5oDxQl1+Yi4SKAXPKEMYWLAAAAAAAAAGDwhIsAACiVw71O9Pv9zBpDp0BRqrNzUZudy6xpdZYK6gag3PKEMYXIAQAAAAAAAGDwhIsAACiVPEOnwkVAkVKD7nk2cQBgcxEAAAAAAAAAjIpwEQAApeKL9sC4SQ265zm3AEifl7WZuagmtsUBAAAAAAAAAFsnXAQAQKmkvmg/MzUdC3PVgroBEC4CGJRWdynzeaMuQA4AAAAAAAAAwyBcBABAqaSGTpu1PVGpVArqBiC9LS0VigTgx9rdTubzVJgTAAAAAAAAANge4SIAAEqlZegUGDPpzUXZoUgAfiy5uajqngcAAAAAAAAAwyBcBABAqbRTQ6fCRUDBmrWFzOedtdVYWV8rqBuA8molNr016+55AAAAAAAAADAMwkUAAJRKcuhUuAgoWJ5zp504uwCIaHXc8wAAAAAAAABgFISLAAAoFeEiYNzk2ZiWOrsAdrvV9fXorK1k1jSq7nkAAAAAAAAAMAzCRQAAlMbG5mYc7nUyaxq1hYK6Afgx4SKAnWv10udks+6eBwAAAAAAAADDIFwEAEBpHOp1op+oadbqhfQC8BPVmdmoz85l1rSFiwAytTpLyRobKgEAAAAAAABgOISLAAAojVY3z9CpL9oDxUudPTYXAWRrJ7ZTRuTbFAcAAAAAAAAAbJ1wEQAApZFnOL9RN3QKFK+R2JqWJxwJsJulNhfVZueiOjNbUDcAAAAAAAAAsLsIFwEAUBrtRLhodno69szOF9QNwM/YXASwM6l7XtPWIgAAAAAAAAAYGuEiAABKIzWc36juiUqlUlA3AD+TGnpPDc0D7Hape55wEQAAAAAAAAAMj3ARAAClkRw6rRs6BUajkRh6t7kIIFsyRC5cBAAAAAAAAABDI1wEAEBppDZ/NGsLBXUCcFupjRrdtdXora8V1A1A+bjnAQAAAAAAAMDoCBcBAFAayS/aV33RHhiNPBs1UoPzALtZckOlzUUAAAAAAAAAMDTCRQAAlEaru5T5vFk3dAqMRrOe3qiRGpwH2K1W1teis7aSWZMnxAkAAAAAAAAAbI9wEQAApbC+uRGHe93MGl+0B0almWNzWquTHZAE2K3ybHZzzwMAAAAAAACA4REuAgCgFA71OskaQ6fAqMzNzER9dj6zxuYigNuX53x0zwMAAAAAAACA4REuAgCgFFqd9NBpw9ApMELNevYZ1O4JFwHcnjybi9zzAAAAAAAAAGB4hIsAACiFfF+0XyigE4Dbl9qqkSckCbAbpe559dm5mJ+ZLagbAAAAAAAAANh9hIsAACiFdncp8/nc9EzUZ+cK6gbgFzWqic1FOUKSALtRKlwkQA4AAAAAAAAAwyVcBABAKbS6ncznzdqeqFQqBXUD8Iua9cTmokRIEmC3SoUvG7V6QZ0AAAAAAAAAwO4kXAQAQCmkNhc1atlD/QDDltqs0U6EJAF2q1T40uYiAAAAAAAAABgu4SIAAEqhlfiifVO4CBix1DnUXV+N7tpqQd0AlId7HgAAAAAAAACMlnARAACl0DZ0Coy5PBvUUmcZwG6UOhttqAQAAAAAAACA4RIuAgCgFFJftDd0CoxanpBj6iwD2G1662vRSWx1EyIHAAAAAAAAgOESLgIAYOytb2zE4ZVuZk2ztlBQNwC3z+YigK3Lcy4KkQMAAAAAAADAcAkXAQAw9tq99NCpL9oDozY3PRMLc9XMGpuLAG4rT7ioWRciBwAAAAAAAIBhEi4CAGDstbudZI0v2gPjIHUWtbpLBXUCUA55QpfNqnseAAAAAAAAAAyTcBEAAGMvzzC+zUXAOEidRTYXAdxW6p5Xn52PuZmZgroBAAAAAAAAgN1JuAgAgLGXGsafn56J2uxcQd0A3LFUuKgtXARwG6l7XrMuQA4AAAAAAAAAwyZcBADA2EsNnTZqe6JSqRTUDcAda9hcBLAlqdBloypcBAAAAAAAAADDJlwEAMDYSw2dNusLBXUCkC21uajVXY5+v19QNwDjL7m5KHGuAgAAAAAAAAA7J1wEAMDYS24u8kV7YEykhuBX1teiu75aUDcA4y8ZLqq75wEAAAAAAADAsOS6eGQAAQAASURBVAkXAQAw9lrdpcznvmgPjItGLb1Jrd3tFNAJQDmkNlQKkQMAAAAAAADA8AkXAQAw9lKD+L5oD4yLPOdRKjAJsFv01laju5a9za1ZT4c2AQAAAAAAAICdES4CAGCsrW2sx5GVbmaNL9oD46JRrSdrWp3sLR0Au0UrsbUowoZKAAAAAAAAACiCcBEAAGOt3cveWhRhcxEwPmanZ2JhvppZ0+4JFwFE5LznCRcBAAAAAAAAwNAJFwEAMNbybPho1hYK6AQgn9QgvM1FAD/W6iwlaxrCRQAAAAAAAAAwdMJFAACMtTwbPnzRHhgnqcBjqytcBBCRPg/3zM3H3PRMQd0AAAAAAAAAwO4lXAQAwFhLbfiYn5mN2uxcQd0ApDVq9czn7W56UwfAbpAKkdtOCQAAAAAAAADFEC4CAGCstRJD+LYWAePG5iKAfFIh8lRYEwAAAAAAAAAYDOEiAADGWjsxhC9cBIyb1LnU7i5Hv98vqBuA8ZW+59lcBAAAAAAAAABFEC4CAGCspTZ8CBcB46aROJdWNtaju7ZaUDcA46vVc88DAAAAAAAAgHEgXAQAwFhLfdE+NcQPULQ8w/Cp4CTAbtDuuOcBAAAAAAAAwDgQLgIAYKylNxctFNQJQD55wkWp4CTApOuurUZ3PXuLm81FAAAAAAAAAFAM4SIAAMbW2sZ6LK32MmsMnQLjplG1uQggJU/I0j0PAAAAAAAAAIohXAQAwNhqdzvJmoahU2DMzExPx975WmZNq7tUUDcA4ylPuMg9DwAAAAAAAACKIVwEAMDYyjN874v2wDhKnU02FwG7XZ5zULgIAAAAAAAAAIohXAQAwNgydAqUVSpclGdjB8AkS93zFuaqMTc9U1A3AAAAAAAAALC7CRcBADC2UsP3tZm5qM3OFdQNQH42FwFkS93zbKcEAAAAAAAAgOIIFwEAMLZSw/eNWr2gTgC2JrVVTbgI2O1a3aXM57ZTAgAAAAAAAEBxhIsAABhbqeH7Zm2hoE4Atia9uWgp+v1+Qd0AjJ/0PU+4CAAAAAAAAACKIlwEAMDY8kV7oKwaifDj2sZGdNZWC+oGYPy0kxsq3fMAAAAAAAAAoCjCRQAAjK12t5P5vFk3dAqMpzwbN1IBSoBJZnMRAAAAAAAAAIwP4SIAAMZWcnNR1dApMJ7yhYuyB+sBJlV3bTV662uZNcJFAAAAAAAAAFAc4SIAAMbS6vp6LK+uZNYYOgXG1b5aPVnTFi4Cdqk851+jtlBAJwAAAAAAAABAhHARAABjqt1LD50264ZOgfE0MzUdi9VaZo3NRcBulef8EyIHAAAAAAAAgOIIFwEAMJbyDJ02qunNIACj0kxs3Wh1hIuA3anVXUrWNHJsgAMAAAAAAAAABkO4CACAseSL9kDZpQKQeYbrASZR6p63MF+N2emZgroBAAAAAAAAAISLAAAYS61O9tB9bXYuqrNzBXUDsHXNevbmonbP5iJgd2onwkXNqgA5AAAAAAAAABRJuAgAgLGUGrq3tQgYd6lzqtURLgJ2p9TmooZ7HgAAAAAAAAAUSrgIAICxlBq6N3QKjLvUOdXuLke/3y+oG4DxkQoXNevueQAAAAAAAABQJOEiAADGUnLoVLgIGHOpc2ptcyOWV1cK6gZgfLST97yFgjoBAAAAAAAAACKEiwAAGFOGToGyyxOCTJ11AJOm3+8nQ+SNqhA5AAAAAAAAABRJuAgAgLFkcxFQdnlCkK3uUgGdAIyP7vpqrKyvZdY06+55AAAAAAAAAFAk4SIAAMbOyvpadNZWMmsawkXAmNtXrUclUZMKUgJMmna3k6wRIgcAAAAAAACAYgkXAQAwdto5hu0NnQLjbnpqKhar9cwa4SJgt8mzsU2IHAAAAAAAAACKJVwEAMDYyTNsL1wElEHqrMoTpgSYJK1O+txrJIKZAAAAAAAAAMBgCRcBADB28gzb+6I9UAapcJHNRcBu0+5ln3t752sxOz1TUDcAAAAAAAAAQIRwEQAAYyg1bF+fnYv5mdmCugHYvlQQUrgI2G1Sm4saNVuLAAAAAAAAAKBowkUAAIyd1LB9s7ZQUCcAO5PeXLRUUCcA48E9DwAAAAAAAADGj3ARAABjp50YOk1tAgEYF6kh+Xa3E/1+v6BuAEavnQhVpkKZAAAAAAAAAMDgCRcBADB2Ups8DJ0CZZEKQ65vbsTSaq+gbgBGL7W5SIgcAAAAAAAAAIonXAQAwNhJDZ0KFwFlkee8Sp15AJOi3+8nN1S65wEAAAAAAABA8YSLAAAYO75oD0yKPEPyqUF7gEnRXVuNlY31zBrhIgAAAAAAAAAonnARAABjpbe+Ft211cyaZn2hoG4AdmaxWo9KpZJZY3MRsFvkOe+aNfc8AAAAAAAAACiacBEAAGMlzwaPRrVeQCcAOzc9NRX7EmdWq7tUUDcAo5XrnldzzwMAAAAAAACAogkXAQAwVnJ90d7mIqBEGtU9mc9bHZuLgN0hzz0vdWYCAAAAAAAAAIMnXAQAwFjJ80X7pqFToESatewzq90TLgJ2h1S4aHG+FjPT0wV1AwAAAAAAAAD8hHARAABjpdVdynxen52PuZmZgroB2Llm3eYigIiIduKe10iEMQEAAAAAAACA4RAuAgBgrKS+aJ8a0gcYN43EtrU8G9sAJkHynidcBAAAAAAAAAAjIVwEAMBYSW3wMHQKlE1yc1FvOfr9fkHdAIxOKkzpngcAAAAAAAAAoyFcBADAWGn3UkOnCwV1AjAYqWH5jc3NOLLSK6gbgNFJbS5qCBcBAAAAAAAAwEgIFwEAMFbSQ6f1gjoBGIw8och2d6mATgBGp9/vJ+95NhcBAAAAAAAAwGgIFwEAMFbaHZuLgMmSZxNHauAeoOw6a6uxurGeWdNwzwMAAAAAAACAkRAuAgBgbPTWVqO7vppZ44v2QNnsm69FpVLJrBEuAiZdO8c5554HAAAAAAAAAKMhXAQAwNjIM1xv6BQom6mpqWhU65k1eYbuAcqs1V1K1rjnAQAAAAAAAMBoCBcBADA28gzXNwydAiWUGpi3uQiYdHnOuX217CAmAAAAAAAAADAcwkUAAIyNPEOnwkVAGaXOLuEiYNKlQuSL1VrMTE0X1A0AAAAAAAAAcGvCRQAAjI3UcP3CXDXmpmcK6gZgcNKbi5YK6gRgNFL3vGZVgBwAAAAAAAAARkW4CACAsZH6or2tRUBZNWsLmc9T5x9A2aXCRe55AAAAAAAAADA6wkUAAIyN1OaO1OYPgHGVOr/a3U5s9vsFdQNQvFSIslnPDmECAAAAAAAAAMMjXAQAwNhIfdFeuAgoq9RGjo3+ZhxZ6RbUDUDxkpuLqu55AAAAAAAAADAqwkUAAIyN1BftU8P5AOMqTzgydQYClFW/309vqKy75wEAAAAAAADAqAgXAQAwNmwuAiZVnvMrdQYClFVnbTXWNjYya9zzAAAAAAAAAGB0hIsAABgL3bXV6K2vZdYYOgXKam+1HlOVSmZNaqsHQFnlOd8aVfc8AAAAAAAAABgV4SIAAMZCno0djdpCAZ0ADN5UpZIcnG91bC4CJlOee16zLlwEAAAAAAAAAKMiXAQAwFhoGzoFJlwjsX2t3RMuAiZTKjxZiYh91XoxzQAAAAAAAAAAv0C4CACAsdDqLiVrGoZOgRJLBSTzbPYAKKNUeHJvtRYzU9MFdQMAAAAAAAAA/DzhIgAAxkJqqH5hvhqz0zMFdQMweI1qIlyU2OwBUFap861ZWyioEwAAAAAAAADg9ggXAQAwFtqJcFGzlj2UDzDuUudY6hwEKKvUhkr3PAAAAAAAAAAYLeEiAADGQmpzUWrjB8C4a9YT4aLecmz2+wV1A1Ccdi9xzxMuAgAAAAAAAICREi4CAGAspMJFqaF8gHHXrC1kPt/s9+NIr1NQNwDFaXVsqAQAAAAAAACAcSZcBADAWGh1ljKfp4byAcZdns0cqaAlQNn0+/1op0LkwkUAAAAAAAAAMFLCRQAAjFy/3492YluHoVOg7PKcY8JFwKRZXluJtc2NzBohcgAAAAAAAAAYLeEiAABGrru+Givra5k1eTZ+AIyzvfO1mK5k/2t4arsHQNm0O+lzrVGrF9AJAAAAAAAAAHBHhIsAABi5Vo6hU5uLgLKbqlSSA/Q2FwGTptVdStbYXAQAAAAAAAAAoyVcBADAyOXZ1CFcBEyC1Ba2PEP4AGXS6nYyn1ciYl/V5iIAAAAAAAAAGCXhIgAARi7Ppo5GVbgIKL/Udg6bi4BJ006EJher9Zie8keUAAAAAAAAADBK/uYeAICRSw3T752vxcz0dEHdAAxPagtbnk1uAGWSuufZTgkAAAAAAAAAoydcBADAyKW+aG/oFJgUqfPM5iJg0ggXAQAAAAAAAMD4Ey4CAGDkWt1O5nNDp8CkaKQ2F/U6sbm5WVA3AMOX2siWOhcBAAAAAAAAgOETLgIAYORSm4sMnQKTIhWW7Pf7cWilW1A3AMNncxEAAAAAAAAAjD/hIgAARs7QKbBb5DnPUls+AMqi3+/nuOctFNQNAAAAAAAAAHBHhIsAABipfEOnwkXAZGjkGKJvJba5AZTF8upKrG9uZNbYUAkAAAAAAAAAoydcBADASHXXVmN1Yz2zJs8wPkAZ7J2vxvRU9r+KpwKXAGWRJywpRA4AAAAAAAAAoydcBADASOUZojd0CkyKSqUSzWr2mdYWLgImhHseAAAAAAAAAJSDcBEAACPli/bAbtNInGk2FwGTIhWWrFQqsVitF9QNAAAAAAAAAHBHhIsAABipPEP0+2qGToHJkQpMtjrCRcBkSN3z9s3XYnrKH08CAAAAAAAAwKj523sAAEYq9UX7xWotZqamC+oGYPhsLgJ2i9R51qgtFNQJAAAAAAAAAJBFuAgAgJFKDZ02q9lD+ABl06xnn2vtnnARMBlSIfLUJjcAAAAAAAAAoBjCRQAAjFT6i/aGToHJ0kxs6jjU68TG5mZB3QAMj3seAAAAAAAAAJSDcBEAACOV/KJ9PXsIH6BsGomNbP1+Pw73OgV1AzA8re5S5nObiwAAAAAAAABgPAgXAQAwUskv2ieG8AHKpllPn2upsxFg3PX7/Wh3s4OSec5DAAAAAAAAAGD4hIsAABiZfr+f/qK9oVNgwuTZ1CFcBJTd0mov1jc3MmuEyAEAAAAAAABgPAgXAQAwMstrK7G2kT10mmcIH6BMFuaqMTM1nVnTFi4CSi5PSFKIHAAAAAAAAADGg3ARAAAjk2d4XrgImDSVSiUatXpmTWqrG8C4a3Xy3PMWCugEAAAAAAAAAEgRLgIAYGTyfNG+IVwETKDUQH2e8xFgnLV72edYpVKJffO1groBAAAAAAAAALIIFwEAMDKpL9pXImJfNXu7B0AZpbay5dnsBjDOUhvY9lXrMTXljyYBAAAAAAAAYBz4G3wAAEamnRg6XazWY2ZquqBuAIqTChfZXASUXSpEnjoHAQAAAAAAAIDiCBcBADAyrW4n87mhU2BSNYSLgAnX7gkXAQAAAAAAAEBZCBcBADAyrcTmotTwPUBZpYbqD/c6sbG5WVA3AIOX2lzkngcAAAAAAAAA40O4CACAkWknNnP4oj0wqVLnWz8iDvWyt7sBjDP3PAAAAAAAAAAoD+EiAABGpmXoFNilmrWFZE1quxvAuOr3+9Hqpe556XMQAAAAAAAAACiGcBEAACPR7/eTX7RvCBcBEyrP+ZYKYAKMqyMrvdjY3MysadTqBXUDAAAAAAAAAKQIFwEAMBLLqyuxtrmRWeOL9sCk2jM3H7NT05k1qQAmwLhq59i85p4HAAAAAAAAAONDuAgAgJFo5Ro6tbkImEyVSiW5vcjmIqCsWt1OssY9DwAAAAAAAADGh3ARAAAjkWcjh6FTYJI168JFwGRKhcgrlUosztcK6gYAAAAAAAAASBEuAgBgJFJD85WIWKzWi2kGYAQa1US4qJPe8AYwjlIh8ka1HlNT/lgSAAAAAAAAAMaFv8UHAGAkUuGifdV6TBs6BSZYs7aQ+bzd6xTUCcBgpe55tlMCAAAAAAAAwHgxrQkAwEikhk4biaF7gLJr1hObi7o2FwHllNxcJFwEAAAAAAAAAGNFuAgAgJFIDZ36oj0w6RrV7HPucK8b65sbBXUDMDg2FwEAAAAAAABAuQgXAQAwEunNRYZOgcmW2lwUEXGo2ymgE4DBSm1ea9pQCQAAAAAAAABjRbgIAICRSA+dChcBky3POZcKYgKMm81+P9q97GCkex4AAAAAAAAAjBfhIgAACtfv96Od2MaRZ6MHQJnl2dwhXASUzdJKNzY2NzNrbKgEAAAAAAAAgPEiXAQAQOGWVnuxvrmRWdOoGjoFJlt9di5mp6cza9qJLW8A4yZPKNLmIgAAAAAAAAAYL8JFAAAULtfQqc1FwISrVCrJ7UU2FwFl0xYuAgAAAAAAAIDSES4CAKBwrU6eodPsgXuASZAasM8zpA8wTlKhyKlKJfZW6wV1AwAAAAAAAADkIVwEAEDh2r3sodNKpRL75msFdQMwOqlwkc1FQNmkzq1GdU9MVSoFdQMAAAAAAAAA5CFcBABA4Vrdpczn+6r1mJpyVQUmX0O4CJgwqY1rqXMPAAAAAAAAACieiU0AAArX6mQPnaY2eQBMCpuLgEmTOrfc8wAAAAAAAABg/AgXAQBQuNQX7Q2dArtFs7aQ+fzISjfWNzYK6gZg51IbKm0uAgAAAAAAAIDxI1wEAEDhfNEe4MfynHftnu1FQHm45wEAAAAAAABA+QgXAQBQuNTmIl+0B3aLPOddalAfYFxs9vtxqNvJrBEuAgAAAAAAAIDxI1wEAECh+v1+tBJbOJq1hYK6ARitXJuLhIuAkjiy0o2N/mZmjRA5AAAAAAAAAIwf4SIAAAp1ZKUXG5vZQ6e+aA/sFrXZuZifnsmssbkIKIs851WzLkQOAAAAAAAAAONGuAgAgEK1u0vJGl+0B3aLSqWSPPOEi4CyyLNpTYgcAAAAAAAAAMaPcBEAAIXK9UV7Q6fALpI681o5QpkA4yB1Xk1XpmLvfK2gbgAAAAAAAACAvISLAAAoVCpcNFWpxKKhU2AXadQWMp+3u52COgHYmVYn+563r1aPqUqloG4AAAAAAAAAgLyEiwAAKFQ7ES5qVPfE1JRrKrB72FwETIp2L/ueZzslAAAAAAAAAIwnU5sAABQqtbmoUasX1AnAeGgkw0XZ5ybAuEjf84SLAAAAAAAAAGAcCRcBAFCo1NBps7ZQUCcA4yG1yWNppRdrG+sFdQOwfa2OzUUAAAAAAAAAUEbCRQAAFKrVXcp87ov2wG7TrKfPvXavU0AnADvT7gmRAwAAAAAAAEAZCRcBAFCodnJzkXARsLvkGbZPbQMBGLXNfj95z2vU6gV1AwAAAAAAAABshXARAACF+fHQafb2DeEiYLfJM2zfTmx9Axi1I71ObPb7mTU2FwEAAAAAAADAeBIuAgCgMEdWurHR38ysaQgXAbtMbWYu5mdmM2taiW0gAKOW55wSIgcAAAAAAACA8SRcBABAYdp5hk7rvmgP7C6VSiU5cC9cBIy7POeUEDkAAAAAAAAAjCfhIgAACuOL9gC3L3X25QlnAoxS6pyarkzF3vlaQd0AAAAAAAAAAFshXAQAQGFa3aXM54ZOgd0qtc3D5iJg3KXOqUatHlOVSkHdAAAAAAAAAABbIVwEAEBhWp3sodN9hk6BXSq1uUi4CBh3qXOqWVsoqBMAAAAAAAAAYKuEiwAAKEy7lxo6zR6uB5hUqaH7tnARMOZS51RqQxsAAAAAAAAAMDozo24AYNSuu+66+OQnPxlXXHFFfPOb34zvfe97ceTIkTh8+HD0+/3Yu3dv7N27N+5+97vHKaecEg94wAPi8Y9/fJx00kmjbn0iHDhwID73uc/F17/+9bjqqqvi29/+drRarThy5EgsLS3FzMzMT///oNlsxoknnhj3vve94973vnc85CEPiVNOOSUqtpxAaaS+aG/oFNitUuHKpdVerG6sx9y0f40HxlOru5T5XIgcAAAAAAAAAMaXqSRgV2q32/H2t7893v3ud8cVV1yRWXvw4ME4ePBgXHvttfH5z3/+p//5SSedFOeee2688IUvjP379w+75YlyzTXXxDve8Y74+Mc/Hl//+tcza9fX16PX68VNN90UERFf+cpXbvP8qKOOitNPPz0e85jHxBOf+MS4z33uM7S+gZ1rdWwuArg9ecKV7e5y3HlhXwHdAGxdu9vJfO6eBwAAAAAAAADja2rUDQAUaWlpKV72spfFXe961/j93//9ZLAoy7e//e141ateFXe/+93j+c9/ftx8880D7HQyffKTn4zHPvaxce973zte+9rXJoNFedxyyy3x0Y9+NF7ykpfEySefHKecckq84hWviKuuumoAHQOD1k5sLmrWFgrqBGC85Bm6T52hAKOyubkZ7Z4NlQAAAAAAAABQVsJFwK7x0Y9+NO573/vG//pf/yuWlwc3mLm6uhoXXHBB3Oc+94l3vvOdA/u5k+Sf/umf4vGPf3z863/9r+Ozn/1s9Pv9ob3ryiuvjNe85jXxZ3/2Z0N7B7A9m/1+cujUF+2B3SrP0H1LuAgYU4dXurGZ+Pc89zwAAAAAAAAAGF/CRcDE29zcjFe84hXx5Cc/OX7wgx8M7T233HJLPOc5z4nnP//5sbq6OrT3lMnGxkb84R/+YTziEY+IT3/606NuBxixI71OcujUF+2B3ao2Oxe1mbnMGuEiYFzl2awmXAQAAAAAAAAA42tm1A0ADNPGxkY84xnPiA9+8IOFvfOCCy6Iq6++Ov7u7/4u6vV6Ye8dNwcOHIinPvWp8YUvfGHUrQBjIs9QvKFTYDdr1OrRPXLHIfVWd6nAbgDyy3PPEyIHAAAAAAAAgPFlcxEwsTY3N+PZz352ocGin7j44ovjN3/zN2NlZaXwd4+Da665Jh796EcLFgG3IVwEkK1ZW8h83u52CuoEYGtS97zpqalYmK8V1A0AAAAAAAAAsFU2FwET6+Uvf3m85z3v2dKvOemkk+KXf/mX4/73v38cddRRUalUotVqxZVXXhlf+tKX4utf/3run/WpT30qzj///HjXu9611dZL7YorrojHP/7x8aMf/WjUrQBjpm3oFCBTaquHzUXAuEqdT83qnpiqVArqBgAAAAAAAADYKuEiYCJddNFF8cd//Me565/0pCfF//gf/yMe+chHZtZ9/etfj9e97nXxnve8JzY3N5M/993vfneceeaZ8dznPjd3L2X2/e9/P57whCdsOVh0pzvdKc4666w444wz4uSTT4573vOecdRRR8WePT8esG2329Fut6PVasW3vvWt+NrXvhZf+9rX4vLLL492uz2E3wkwDKkv2jeqdUOnwK6W2t6WZwMcwCikQuSp8CQAAAAAAAAAMFrCRcDEOXjwYPzbf/tvo9/vJ2uPOuqoePe73x1nn312rp99//vfP/7yL/8yXvjCF8bTnva0uO6665K/5j/+x/8YZ555Zpx44om53lFW7XY7zj777Lj++utz/5rf+I3fiOc///nxa7/2azEzc8f/J2n//v2xf//+iIg49dRTf/qfr6+vxxe/+MX42Mc+Fn/7t38b3/rWt7b/GwCGLvlF+9pCQZ0AjKfk5qKOcBEwnlLhx1R4EgAAAAAAAAAYralRNwAwaC9/+cvj5ptvTtbd9a53jcsuuyx3sOjWTj311Pjyl78cp5xySrK22+3Gf/7P/3nL7yib5z73ufGNb3wjV+1pp50WX/7yl+MjH/lI/Pqv/3pmsCjLzMxMnHnmmfH6178+rrzyyvjyl78cz3nOc6Jer2/r5wHD1e52Mp8bOgV2u9Q52FlbidX19YK6AcgvuaHSPQ8AAAAAAAAAxppwETBRLr/88rjggguSdfv27YtPf/rTca973Wvb77rzne8cn/nMZ+Kud71rsvbjH/94/N3f/d223zXu3v72t8eHPvShZN3U1FS8+tWvjv/3//5fPOxhDxt4Hw972MPiHe94R/zwhz+MZz/72QP/+cDOpDYXGToFdrtmPb3BrdWzvQgYP22biwAAAAAAAACg1ISLgInyqle9KjY3N5N1F1xwQdznPvfZ8fvucpe7xHvf+96Ynp5O1r7yla/c8fvG0fe+97148YtfnKybn5+PD3zgA/Hyl788139fO9FoNOLhD3/4UN8BbF3qi/aGToHdrlFNb19sdbKDmgBF29zcjHYve0OlEDkAAAAAAAAAjDfhImBiXHXVVfHRj340WfekJz0pnvrUpw7svWeccUa84AUvSNZ9+ctfjs9+9rMDe++4eMlLXhLLy9mBgampqXjPe94Tv/3bv11QV8C4MXQKkJYnZJnaDgJQtEMr3ej3+5k1zVp6MxsAAAAAAAAAMDrCRcDE+N//+38nB5pmZmbi9a9//cDf/T//5/+MxcXFZN0b3vCGgb97lC6++OL40Ic+lKx79atfLVgEu9xhQ6cASdXZuajNzmXWpLbAARQtT+ixWRciBwAAAAAAAIBxJlwETISVlZX4wAc+kKz7rd/6rTjxxBMH/v6jjz46nve85yXrPvnJT8aNN9448PePyktf+tJkzRlnnBEve9nLCugGGGd5huGbtXoBnQCMt9T2IpuLgHHT6i4laxpV4SIAAAAAAAAAGGfCRcBE+PjHPx6HDh1K1r34xS8eWg8vetGLYmoq+1jd2NiI97///UProUif//zn47LLLsusmZ6ejre85S3J/16AyZdr6NTmIoBoJMJFNhcB4yZ1Lk1PTcXe+WpB3QAAAAAAAAAA22HaG5gI73vf+5I1J554Ypx66qlD6+H444+PM844I1mXp9cyeMMb3pCsedaznhWnnHJKAd0A487QKUA+qc1FecKaAEVKbVRr1vZEpVIpqBsAAAAAAAAAYDuEi4DS29jYiE9/+tPJut/5nd8Zei9Pf/rTkzX/+I//GAcPHhx6L8P0L//yL/Gxj30sWff7v//7BXQDlIGhU4B8moktbu1up6BOAPJJhcgb1ezQJAAAAAAAAAAwesJFQOlddtllcejQoWTdE57whKH3kucdm5ub8ZnPfGbovQzT+9///uj3+5k1/+pf/as4+eSTC+oIGHeGTgHysbkIKJtWJxEir7vnAQAAAAAAAMC4Ey4CSi9PUGfv3r3xqEc9aui9HH/88XHiiScm6/7v//2/Q+9lmN7//vcna84999wCOgHKwtApQD6NRLios7YavfW1groBSEuFyFMb2QAAAAAAAACA0RMuAkrvS1/6UrLmUY96VMzMzBTQTcQZZ5yRrLn00ksL6GQ4vvOd78Q//dM/ZdZMTU3FE5/4xGIaAkqh3TN0CpBHanNRREQ7McgPUKTUPa9RqxfUCQAAAAAAAACwXcJFQOldfvnlyZqHPvShBXTyYw972MOSNVdeeWWsrKwU0M3gffrTn07WPPjBD479+/cX0A1QFqkv2hs6Bfgx4SKgTDY2N+NQr5NZI0QOAAAAAAAAAONPuAgotRtvvDFuuOGGZN24hYvW19fjn//5nwvoZvA+97nPJWtOO+20AjoBysLQKUB+jRzholRgE6Aoh3ud6Pf7mTV5QpMAAAAAAAAAwGgJFwGldsUVV+SqO/nkk4fcyc/c5z73yVWXt/dxc/HFFydrHvWoRxXQCVAWhk4B8pufmY367FxmTau7VFA3ANlavXTYMU9oEgAAAAAAAAAYrZlRNwCwE9/97ndz1Z144olD7uRnms1mHHXUUXHLLbdk1uXtfZxcd911ceDAgWTdKaeckqw5ePBgXHTRRXHJJZfE17/+9fje974Xhw4diqWlpZibm4t6vR5HH310nHDCCXGve90rHvnIR8Zpp50W9773vQfxWwEKlGfoVLgI4GeatYXorN3xXbLdzd4GB1CUVsc9DwAAAAAAAAAmgXARUGrf+973kjV3uctdYs+eYoeZTjzxxLjssssya/L0Pm6+8Y1v5Ko76aSTbvc/39zcjI9//OPxp3/6p/H3f//3sbGxcbt13W43ut1uHDx4MK6++uqIiPg//+f//PRnP/WpT43nPe95ccIJJ2zjdwEULc/QqS/aA/xMo7Ynfnj4jsNFNhcB46Ldzb7nzUxNx8JctaBuAAAAAAAAAIDtmhp1AwA7ce211yZrjjvuuOE38nOOPfbYZM2khouOPvroWFxc/IX//NOf/nTc//73jyc96Unxmc985g6DRSnf/va344/+6I/ipJNOit/5nd+Jb3/729v6OUBxDJ0CbE1qy0crca4CFCV1HjVre6JSqRTUDQAAAAAAAACwXcJFQKn98Ic/TNbc5S53KaCTrb/zBz/4QQGdDNaVV16ZrLnzne98m/95eXk5nvnMZ8bjH//4XL8+r42Njfjrv/7ruP/97x+veMUrYm1tbWA/Gxis1IYNQ6cAtyVcBJRF6jyynRIAAAAAAAAAykG4CCi1gwcPJmv2799fQCe3lSdcdMsttxTQyWBdd911yZpjjjnmp//v73znO/GoRz0q/uqv/mpoPa2ursZrXvOaeMxjHpOrP6B4rW4n83lqiB5gt0kN46c2wgEUpZ0jRA4AAAAAAAAAjD/hIqDU8oSLGo3G8BvZxjuXl5djZWVl+M0M0IEDB5I1P/m9f+c734kzzzwzvvGNbwy5qx+75JJL4tRTTx3odiRgMFJDp75oD3BbzfpC5vPu2mr01lYL6gbgjgmRAwAAAAAAAMBkEC4CSq3VaiVr9u7dW0An23tn2bYX3XDDDcmaubm5uPHGG+NXfuVX4oc//GEBXf3M9ddfH495zGMEjGDMtBIbNgydAtxWo1pP1qTOVoAiCJEDAAAAAAAAwGSYGXUDANvV7XZjbW0tWTeKcNHi4mKuukOHDsWxxx475G4Go9/v59oUNT09HU9/+tPjuuuuS9YuLi7GGWecEQ94wAPi+OOPj4WFhVhfX492ux3XXHNNXHrppXH55ZfHxsZG7j5vvvnmOOecc+LSSy+No48+OvevA4anLVwEsCWpzUURPz5bj11sFtANwO3b2NyMQz2biwAAAAAAAABgEggXAaW1urqaq65Wqw25k19UrVZz1eX9PYyDXq8Xm5ubybqPfOQj0ev1MmtOPfXUeOlLXxpPfOITY3Z2NrP2wIED8a53vSte//rXx0033ZSr1+985zvxzGc+My666KJc9cDw5Bk69UV7gNtqVtPnos1FwKgd6nWin6gRLgIAAAAAAACAchAuAkorbzBnenp6yJ38opmZfMdr2cJFO61rNBrxZ3/2Z/HMZz4z93vvcpe7xEtf+tJ44QtfGC95yUvibW97W65f94lPfCIuuOCCOP/883O/a1Kcfvrpuf93kOH5xje+MeoWxoKhU4Ctm5uZiT1z87G8unKHNcJFwKiltlNGCJEDAAAAAAAAQFlMjboBgO3KG8wZRcgi7zvX1taG3MngrKzc8XBrHieccEJccsklWwoW3drevXvjrW99a7z97W/PHRj7b//tv8WhQ4e29T5gMFrdpWRNs7ZQQCcA5ZIayM8z1A8wTHlCju55AAAAAAAAAFAO1hoApbW+vp6rTrhoMHayZenYY4+Nz3zmM3HCCSfsuI/nPve5MT09Heedd16y9pZbbonXve518epXv3rH7y2TL3zhC3HMMceMug2IiIh2t5OsadR90R7g5zVre+KHh265w+d5wpsAw5Q6h2anpmPP3HxB3QAAAAAAAAAAO2FzEVBaeQM8GxsbQ+5k++8cRfBpu/JuC7o973znOwcSLPqJZz/72fGsZz0rV+2b3/zm6Ha7A3s3sDW5hk5nDZ0C/LzUto884U2AYUptUGvU9kSlUimoGwAAAAAAAABgJ4SLgNKam5vLVZd3w9Eg5d1IlPf3MA622+vznve8+LVf+7UBdxPxpje9KY477rhkXbvdjve///0Dfz+QT8vQKcC2NGvZW91sLgJGLXXPS51jAAAAAAAAAMD4EC4CSmt2djZX3SjCRXnfOenhoj179sTrXve6IXQT0Wg04rWvfW2u2ve+971D6QFISw6d1g2dAtyeRjJclH2+AgxbnhA5AAAAAAAAAFAOwkVAac3Pz+eq6/V6Q+5k++8sU7go73/ft3buuedGo9EYfDP/f0972tPiTne6U7Lu85//fCwt+bo/jEI7+UX7hYI6ASiX1MaP3vpadNdWC+oG4Be55wEAAAAAAADA5JgZdQNAuXzve9+LSy+9dKjv2LNnT5xzzjnJulqtFjMzM8ktQUeOHBlUa7nlfefi4uKQOxmcarUas7Ozsba2lvvX/Lt/9++G2NGPA0/Pfvaz4/Wvf31m3erqalx88cXx67/+60PtB/hFyS/aV33RHuD2pMJFET8e7K/NliesDkyW5IbKWr2gTgAAAAAAAACAnRIuArbk4osvjvPOO2+o7zj++ONzhYsiIprNZtx0002ZNYcPHx5EW1uS951HHXXUkDsZrKOPPjoOHDiQq/aEE06Ihz70oUPuKOK3f/u3k+GiiIgvf/nLwkUwAq1u9tawZl24COD25Nn40eoux7GLzQK6Abitjc3NONzrZNY0bC4CAAAAAAAAgNKYGnUDADtx9NFHJ2sOHTpUQCdbf2e9Xo9qtVpAN4OT57/vn3jUox41xE5+5sEPfnDMzaW/2P/Vr361gG6AW1vf3IgjvW5mTZ7NHAC70b4cGz9SAU6AYTnU60Q/USNEDgAAAAAAAADlIVwElFqesMuNN95YQCe3lWe7z1aCOuNiHMNF8/Pz8aAHPShZ953vfKeAboBbyzN02hAuArhdc9MzsTCXHURvd7O3hgAMS55wY7PqngcAAAAAAAAAZSFcBJTaL/3SLyVr8gR9Bi3PO/P0Pm620vMDH/jAIXZyW3nCRT/4wQ8K6AS4tVZnOVljcxHAHUudkTYXAaPS6qbveQ2biwAAAAAAAACgNISLgFK7xz3ukay5/vrrh9/Iz7nhhhuSNSeccEIBnQzWPe95z9y1Rx111BA72fq7Dh06FCsrKwV0A/xEnqHTZm2hgE4Ayim13S3POQswDO3E+TM7PR17ZucL6gYAAAAAAAAA2CnhIqDU8gR0Dhw4EJ1Op4Bufuaaa65J1kx6uKjRaAyvkW2+q+j/PYDdrt3LHjqdm56J+uxcQd0AlE96c5FwETAaqfOnUd0TlUqloG4AAAAAAAAAgJ0SLgJKLU/Ypd/v5wr7DEq73Y6DBw8m67YS1BkX97rXvXLXChcBrU5i6LRm6BQgS2pzUWpzCMCwpMJFzXr2+QUAAAAAAAAAjBfhImBLnv3sZ0e/3x/qP9dee23ufh7wgAfkqvvWt761zd/x1uV9V97ex8kDH/jA3LVFBgaEE2A8tbtLmc9TGzkAdrtmbSHzeau7HP1+v6BuAH6m1Und87LPLwAAAAAAAABgvAgXAaV27LHHxv79+5N1X/3qVwvoJv+7ZmZmthTUGRfNZjP3xqV2uz3cZm6l1WrlqqvX60PuBLi15BfthYsAMjVr2XeXlfW16K6vFtQNwM+0e9lbYRtV9zwAAAAAAAAAKBPhIqD0HvrQhyZrigwXfeUrX0nWnHzyyVGtVgvoZvAe9rCH5arLG/gZhLxBpj17DLhBkdrCRQA70six+aPVyT5rAYahldpQWXfPAwAAAAAAAIAyES4CSu+0005L1lxyySWxvr5eQDcRn//855M1j3rUowroZDge/ehH56q75ZZbhtzJ1t519NFHx9zcXAHdAD+R2lzUEC4CyJRnOL/dEy4CirW+uRGHe93MGiFyAAAAAAAAACgX4SKg9B772Mcma44cORKXXXbZ0Hv5/ve/H9dcc02y7vGPf/zQexmWX/3VX81Vd8UVVwy5k5/52te+lqy5+93vXkAnwE+sb2zE4ZXU0Gl6IwfAbtao1pM1NhcBRTvU6yRrhIsAAAAAAAAAoFyEi4DSe+QjHxmLi4vJuosuumjoveR5R6VSyRWIGlennHJK3PWud03WXXrppQV0E7GyspIrXHSf+9yngG6AnzB0CrBzs9MzsTBfzaxJbYkDGLQ8oUYbKgEAAAAAAACgXISLgNKbmZnJFdb5wAc+MPRe3v/+9ydrHv7wh8ed7nSnofcyTGeffXay5pJLLimgk4jLL788VldXk3WPeMQjCugG+Ik8w+6GTgHSUkHMdnepoE4AfizPPc+GSgAAAAAAAAAoF+EiYCI84xnPSNZ8+9vfHuo2ne9///vx+c9/PlmXp9dx97u/+7vJmmuvvTa++tWvDr2Xv/mbv8lVd9pppw25E+DWWjmG3W0uAkhLDei3uulNcQCD1O5lh4vmpmeiPjtXUDcAAAAAAAAAwCAIFwET4ZxzzonFxcVk3Zve9Kah9fCnf/qnsbm5mVkzNTUVT3/604fWQ1HOOOOMOOGEE5J1f/7nfz7UPnq9Xlx44YXJujvd6U7xyEc+cqi9ALeV+qL9/PRM1AydAiTZXASMm1Yn+57XqO2JSqVSUDcAAAAAAAAAwCAIFwEToVqtxtOe9rRk3d/8zd/ENddcM/D3Hzx4MC644IJk3a/+6q/GscceO/D3F61SqcR5552XrHvf+94XrVZraH184AMfiIMHDybrzjnnnJienh5aH8AvaifCRYZOAfJpJMJFqTAnwKClQo22UwIAAAAAAABA+QgXARPjv/yX/5IcVF9fX4+XvOQlA3/3//f//X9x+PDhZN1//a//deDvHpV//+//fezZkz00try8PLTfc6vViv/+3/97rtrnPve5Q+kBuGOpYXdDpwD5pM7LVnc5+v1+Qd0AuOcBAAAAAAAAwCQSLgImxn3ve9944hOfmKz7yEc+Eh/84AcH9t4vfOEL8da3vjVZ99CHPjQe97jHDey9ERHXXnttVCqV5D9nnXXWQN8bEXHUUUfFC17wgmTdO9/5zrjooosG/v4XvehFccMNNyTrHvKQh8Qv//IvD/z9QLbU0GmjtlBQJwDllhrSX91Yj+7aakHdAOTbUAkAAAAAAAAAlItwETBRXvnKV8bUVPpoO//88+Pqq6/e8fsOHDgQ5557bmxsbCRr/+AP/mDH7xs3L33pS2Pfvn3JuvPOOy+++93vDuy973jHO+I973lPrtpJ/O8dyqDVXcp87ov2APk0c4QxU4FOgEGyuQgAAAAAAAAAJo9wETBRHvawh8VznvOcZN2hQ4fisY997I4CLzfddFM87nGPi+uuuy5Z+4QnPCHOOeecbb9rXO3fvz/+8A//MFl34403xmMf+9i46qqrdvzOt7/97bk2JkVEnHnmmfEbv/EbO34nsHXtbifzebNu6BQgj0atnqxJBToBBmV9YyMOr3Qza/KEIgEAAAAAAACA8SJcBEycP/qjP4qjjz46WfeDH/wgHvnIR8ZFF1205Xdceuml8fCHPzy+8Y1vJGur1Wr8yZ/8yZbfURa/93u/Fw9/+MOTdddee22ceuqpuTcO/bwjR47EC17wgjj//PNzbYqq1+vxtre9bVvvAnZmbWM9jiSGThtV4SKAPPKcl6lAJ8CgHOqlz5s8oUgAAAAAAAAAYLwIFwET55hjjokLL7wwKpVKsvbgwYNx9tlnx1Oe8pT48pe/nKz/5je/Geedd148+tGPju9///u5+vmTP/mTOOmkk3LVltH09HR84AMfiEajkaxtt9vxb/7Nv4nTTjstPvShD8Xa2lry19x4443xx3/8x3Gve91rS2GhN73pTXHve987dz0wOO0cQ6c2FwHkMzM9HYvztcwam4uAorS6y8kam4sAAAAAAAAAoHxmRt0AwDA88YlPjJe85CXxute9Llf9hz/84fjwhz8c9773veP000+P+93vfnHUUUdFpVKJVqsV3/rWt+JLX/pSXHHFFVvq49xzz43nP//52/ktlMo973nPeNe73hVPetKTot/vJ+svueSS+K3f+q3Yt29fnHHGGfHABz4w7n73u8fCwkJsbGxEq9WK73znO3HppZfGV77ylVybim7tRS96UZx//vnb/e0AO9Q2dAowUM3anjicsREuz7A/wCDkCTM2a0LkAAAAAAAAAFA2wkXAxHrta18bP/jBD+J973tf7l9z9dVXx9VXXz2Q9z/2sY+Nv/iLvxjIzyqDc845J972trfF85///FwBo4iIQ4cOxcc//vH4+Mc/PrA+nv70p8cb3/jGgf08YOvyDLk3avUCOgGYDI3anviX9s13+Fy4CChKKkQ+Pz0Ttdm5groBAAAAAAAAAAZlatQNAAzL1NRUvOtd74qnPOUphb/79NNPj4985CMxPz9f+LtH6XnPe1689a1vjamp0fyflxe84AXxV3/1VyN7P/BjrU5i6HRmNmozhk4B8kptAcmzMQ5gEFJhxkZtT1QqlYK6AQAAAAAAAAAGxfQ1MNFmZmbigx/8YLzsZS8r7J3nnXdefPrTn449e7KHQCfV+eefH5/4xCfi6KOPLuyd8/Pz8eY3vzne8pa3CBbBGGh1lzKfNw2dAmxJo7aQ+dzmIqAoqfMmFYYEAAAAAAAAAMaTCWxg4k1NTcVrX/va+PCHPxzHHXfc0N7TbDbjggsuiL/4i7/YdRuLft7jH//4+OpXvxpnn3320N912mmnxaWXXhq/93u/N/R3Afm0e4ZOAQapWatnPm91l6Lf7xfUDbCbpTalpcKQAAAAAAAAAMB4Ei4Cdo0nP/nJ8a1vfSte8pKXDHSr0NzcXDz3uc+Nq666Kp73vOcN7OeW3d3vfvf427/92/jYxz4WD3jAAwb+80855ZR497vfHV/84hfjQQ960MB/PrB9rU5q6FS4CGArUsP6axsbsby2UlA3wG6W3lyUHYYEAAAAAAAAAMaTcBGwq+zduzde97rXxXXXXRevfe1r4373u9+2f9a97nWveMUrXhHXXnttvP3tb49jjjlmgJ1Ojic+8YlxxRVXxOc+97l42tOeFouLi9v+Wfv27YtnPvOZ8YlPfCK+/vWvxzOf+cyoVCoD7BYYhNQX7W0uAtiaPOdm6uwFGIRUuMjmIgAAAAAAAAAop5lRNwAwCs1mM172spfFy172sviXf/mX+NSnPhVf+9rX4pvf/GZce+21cfjw4Thy5Ej0+/3Yu3dv7N27N+52t7vFKaecEg94wAPicY97XJx88smj/m3EPe5xj+j3+6NuI5ezzjorzjrrrFhfX48vfvGL8cUvfjG++c1vxlVXXRUHDhyII0eOxPLyclQqldizZ0/s27cv7n73u8cJJ5wQD3rQg+K0006Lhz3sYTE3Nzfq3wqQkP6ivaFTgK1o1tPholZ3Oe667+gCugF2q/WNjTiy0s2sESIHAAAAAAAAgHISLgJ2veOPPz7OP//8Ubexa8zMzMSZZ54ZZ5555qhbAYZgbWM9llZ7mTWGTgG2Zl+1HpWIyIqUtzo2FwHD1e6lzxn3PAAAAAAAAAAop6lRNwAAwORodzvJmoahU4AtmZmajr3VWmZNu7tUUDfAbpXaThnhngcAAAAAAAAAZSVcBADAwLRyDLf7oj3A1jVrC5nPWznCnQA7kSdc1Ky75wEAAAAAAABAGQkXAQAwMG1ftAcYilQwM0+4E2AnUve8+emZqM3MFdQNAAAAAAAAADBIwkUAAAxM6ov21ZnZqM0aOgXYqlQwM0+4E2AnUve8Rm1PVCqVgroBAAAAAAAAAAZJuAgAgIFJDZ2mNm8AcPvSm4uEi4DhSm1Ia9YXCuoEAAAAAAAAABg04SIAAAYmHS4ydAqwHalwUbu7HP1+v6BugN2o3e1kPhciBwAAAAAAAIDyEi4CAGBg2olwUcPQKcC2pMKZa5sbsby6UlA3wG6U2lzUqLrnAQAAAAAAAEBZCRcBADAw6c1Fhk4BtqNRqydrUoP/ADuRvOfV3fMAAAAAAAAAoKyEiwAAGJjkF+2FiwC2JbW5KCK9PQ5gu9Y21mNppZdZI0QOAAAAAAAAAOUlXAQAwECsrq/H8upKZo2hU4Dt2VetRyVRk9oqArBd7V4nWSNEDgAAAAAAAADlJVwEAMBAtHvpofZmPb15A4BfND01Ffuq9cwa4SJgWFqdHPe8HBvWAAAAAAAAAIDxJFwEAMBA5BlqbyQG4wG4Y6mtIMJFwLDkCpHbXAQAAAAAAAAApSVcBADAQOQZajd0CrB9qTO0LVwEDElqc9H8zGzUZucK6gYAAAAAAAAAGDThIgAABiI11F6bnYuqoVOAbWvUFjKf21wEDEuru5T5XIAcAAAAAAAAAMpNuAgAgIFIDZ02DJ0C7EizVs98njqHAbYrFSIXLgIAAAAAAACAchMuAgBgIFodQ6cAw9RMbC5qdzvR7/cL6gbYTVKb0YTIAQAAAAAAAKDchIsAABiI1NCpcBHAzqSG99c3N2JptVdQN8BuYnMRAAAAAAAAAEw24SIAAAai3UsNnWZv3AAgW7OeHt5PBT0BtiMdInfPAwAAAAAAAIAyEy4CAGAgWp3sodNGrV5QJwCTqVnNES5KnMUAW7W2sZ7ciuaeBwAAAAAAAADlJlwEAMCOrayvRWdtJbPGF+0BdmaxWo9KpZJZ0+ouFdQNsFu0u51kjXseAAAAAAAAAJSbcBEAADvW7qY3ZTRr6Y0bANyx6amp2FfN3g7S7tlcBAxWntCiex4AAAAAAAAAlJtwEQAAO9YSLgIoROosbXWEi4DByhMib7jnAQAAAAAAAECpCRcBALBjhk4BitGoZp+lec5jgK1IhcirM7NRm50rqBsAAAAAAAAAYBiEiwAA2LHU0Gl9di7mZ2YL6gZgcjXric1FwkXAgKXOFdspAQAAAAAAAKD8hIsAANix1KaMZm2hoE4AJltqiN/mImDQ3PMAAAAAAAAAYPIJFwEAsGOpL9o3avWCOgGYbKkh/lZvOTb7/YK6AXYD9zwAAAAAAAAAmHzCRQAA7Firu5T53BftAQYjNcS/sbkZSyvdgroBdoNUuMg9DwAAAAAAAADKT7gIAIAdSw+d7imoE4DJlmeIv504kwG2IhUib7jnAQAAAAAAAEDpCRcBALBjqUF2Q6cAg5EnrJkKfALktbqxHsurK5k1QuQAAAAAAAAAUH7CRQAA7EhvfS06a6uZNYZOAQZjcb4WU5VKZo1wETAoeTahuecBAAAAAAAAQPkJFwEAsCN5hk5tLgIYjKmpqdhXrWfWCBcBg5LnPHHPAwAAAAAAAIDyEy4CAGBH8gydNusLBXQCsDuktoTkCX0C5GFzEQAAAAAAAADsDsJFAADsSK6h06qhU4BBadayA5s2FwGDkjpPajNzUZ2dK6gbAAAAAAAAAGBYhIsAANiRVncp83l9dj7mZmYK6gZg8jVq9cznqXMZIK/UedKoC5ADAAAAAAAAwCQQLgIAYEdSX7RvGjoFGCibi4CitLudzOfNmnseAAAAAAAAAEwC4SIAAHaknQoXGToFGKjUuXqo24nNfr+gboBJltxcVHXPAwAAAAAAAIBJMDPqBgAAKLfUhgxDpwCD1UiEizb6m3FkpRv7qvWCOgImlQ2VAMB29fv92NjYiM3Nzej7+AEAAAAAwFiZmpqKSqUS09PTUalURt0OY0K4CACAHTF0ClCsPBvhWt1l4SJgx2yoBABS+v1+dDqdWFlZidXV1Z/+s7a2NurWAAAAAABIqFQqMTs7G3NzczE/Px9zc3NRq9Vifn5+1K0xAsJFAADsSLuTGjpdKKgTgN0hV7iosxT3aB5TQDfApFpdX4/l1ZXMGhsqAWB36vf7sby8HIcPH46lpaXY2NgYdUsAAAAAAGxDv9//6UejlpaWfvqfz8/Px+LiYiwuLsbc3NwIO6RIwkUAAGxbb201uuurmTW+aA8wWHur9ZiqVGKz37/DmnYvO/gJkNLKcY4060LkALCbbGxsxM033xyHDh0SKAIAAAAAmGArKytx0003xU033RS1Wi2OOeaY2LPHHOCkEy4CAGDbWt300GlDuAhgoKYqlWjU9sQtnaU7rGkltsoBpLQyzpifECIHgN2h3+/HoUOH4kc/+pFQEQAAAADALtPtduP73/9+7Nu3L/bv3x/T09OjbokhES4CAGDb2jnCRYZOAQavUU2Ei3KczwBZ2r1OskaIHAAmX6/XiwMHDkS32x11KwAAAAAAjNChQ4diaWkp9u/fH4uLi1GpVEbdEgM2NeoGAAAoL5uLAEajWc8+W/OEPwGypDYX1WbnojozW1A3AMAoLC8vx7XXXitYBAAAAABARERsbGzE9ddfHzfddFP0+/1Rt8OACRcBALBtqXDRwlw15qYtywQYtNRWOJuLgJ1KhRRtpwSAyba8vBzXXXedvxwGAAAAAOAXHDx4MA4ePDjqNhgw4SIAALYtNXRqaxHAcDRrC5nPbS4CdioVUnTPA4DJJVgEAAAAAEDKTTfdFLfccsuo22CAfEYeAIBta3WXMp/7oj3AcDRq9czn7d5ybG5uxtSUb4oA25MKF7nnAcBk6vV62w4Wzc7Oxvz8fMzNzcXc3FzMzs7G9PR0VCqVqFQqQ+gWAAAAAICt6vf70e/3Y319PdbW1mJlZSVWV1ej1+vF5ubmln7WjTfeGDMzM7G4uDikbimScBEAANvW7nYynxs6BRiO1OaizX4/Dq90bRYBti21AS11DgEA5dPv9+PAgQNbChbNzc3F4uJiLC4uxtzcnBARAAAAAEBJbW5uxvLychw+fDiOHDmS+8+Kb7zxxlhYWPAB3AkgXAQAwLalNhcZagcYjjzhzXZ32TkMbJvNRQCw+xw6dCi63W6u2pmZmdi/f3/s3btXoAgAAAAAYAJMTU3F3r17Y+/evbG6uhoHDhyI5eXsvzeOiFhfX4+bb7457nznOxfQJcMkHgYAwLYZOgUYjTzna+qMBrgjK+tr0VlbyawRXgSAybKxsRE/+tGPctU2Go24173uFYuLi4JFAAAAAAATaG5uLu52t7vFcccdl+vPgW+55ZZYXV0toDOGSbgIAIBt6a6tRm99LbNGuAhgOBbmazFdyf5XeuEiYLvaOc4P9zwAmCw333xzbGxsJOuOOuqouMtd7hJTU/6KEQAAAABgklUqldi3b18cd9xxydp+vx833XRTAV0xTP7kHwCAbckzdNqoLRTQCcDuM1WpRKNWz6zJc04D3J484UThIgCYHP1+Pw4dOpSsazQacec739m2IgAAAACAXWRxcTHucpe7JOuOHDmS6yNWjC/hIgAAtsXQKcBoNRMBzlZ3qaBOgEmTL0TungcAk2J5eTn5F74zMzOxf/9+wSIAAAAAgF2o0WhEtVrNrOn3+7G0ZFalzISLAADYljxD66mtGgBsX2qwP08IFOD2pM6P+uxczM/MFtQNADBshw8fTtbs378/pqb8tSIAAAAAwG5UqVRi//79ybojR44U0A3D4m8BAADYltTQ6cJ8NWanZwrqBmD3SW2HEy4Ctit1fqQ2pwEA5ZHnS5Jzc3Oxd+/egjoCAAAAAGAc1ev1qNezPza+tLQUm5ubBXXEoAkXAQCwLe3k0Gn20DsAO5M6Z1PnNMAdSZ0ftlMCwOTodDqxsbGRWbO4uBiVSqWgjgAAAAAAGFepD1H1+/3odDoFdcOgCRcBALAtqS/aN6rCRQDD1EiFi3odX4MBtqXVzd5eYHMRAEyOlZWVZM3i4mIBnQAAAAAAMO4WFtJ/V5znz50ZT8JFAABsSypc1KwLFwEMU2pzUb/fj0Mr3YK6ASZJ8p5nQyUATIzV1dXM57OzszE3N1dQNwAAAAAAjLO5ubmYn5/PrEn9uTPjS7gIAIBtaSeHTn3RHmCY8gz3p7aPANye1D0vtTkNACiP1F/yzs/PR6VSKagbAAAAAADGXeqDVGtrawV1wqAJFwEAsGX9fj/5RftG1dApwDA1coQ4UwEBgJ/XW1+Lzlr2kLHNRQAwOVLhIluLAAAAAAC4tdSfG9tcVF7CRQAAbFl3fTVW1rO/MNCsGzoFGKa989WYnsr+1/pUEBTg5+UJJdpcBACTod/vJ78gKVwEAAAAAMCtzc7OZj5fW1uLfr9fUDcMknARAABb1uqkh0590R5guCqVSjQTW+LynNcAt5YnXNSspzenAQDjb2NjI1mT+ktiAAAAAAB2lzwfpcrz58+MH+EiAAC2rN0TLgIYB6ntITYXAVuV59xIBRsBgHLY3NxM1kxPTxfQCQAAAAAAZTE1lY6g2FxUTsJFAABsWZ5NGA1DpwBD16xnn7V5NpAA3Fqru5T5vD47H3MzMwV1AwAMU56/3K1UKgV0AgAAAABAWeT5c+M8H7di/AgXAQCwZakv2u+dr8WML9sCDF2ztpD53OYiYKva3U7m81SoEQCYLMJFAAAAAADcmj83nlzCRQAAbFk78UX7Zs3QKUARGrV65vPUeQ3w81Kbi2ynBAAAAAAAAIDJI1wEAMCWtVJftBcuAihEanPRoV4nNqyaBrYgtfHMPQ8AAAAAAAAAJo9wEQAAW5bahNEwdApQiNSQfz8iDveyA6EAt9ZOhYvq7nkAAAAAAAAAMGmEiwAA2DJftAcYD3nO29SZDXBrqTOjUXXPAwAAAAAAAIBJI1wEAMCW9Pv99BfthYsACpFnU5xwEZBXb201umurmTXN+kJB3QAAAAAAAAAARREuAgBgS7prq7GysZ5Zk2fYHYCdW5irxszUdGZNKhAK8BN5wohC5AAAAAAAAAAweYSLAADYknxDp75oD1CESqWSHPRvdZcK6gYou3avk6wRIgcAAAAAAACAySNcBADAluQZUvdFe4DipAb984RCASIiWp0c97yqex4AAAAAAAAATBrhIgAAtqTdTX/Rfl+tXkAnAESkA53CRUBeqfNiz9x8zM3MFNQNAAAAAAAAAFAU4SIAALYktblocb4WM1PTBXUDQCpc1BYuAnJq97LPi2ZtoaBOAAAAAAAAAIAiCRcBALAlqS/ap4bcARgsm4uAQWl1ss+Lhu2UAAAAAAAAADCRhIsAANiS1JB6Q7gIoFCpc/dwrxPrmxsFdQOUWWrTmc1FAAAAAAAAADCZhIsAANiS5NBp3dApQJFSm4v6EXGo1ymmGaDUWj0bKgEAAAAAAABgNxIuAgBgS5Kbi6qGTgGKlGeTSCoYChAR0e7YUAkAAAAAAAAAu5FwEQAAufX7/Wh1lzJrmnVDpwBFauQ4d1PBUIDe2mp011cza2wuAgAAAAAAAIDJJFwEAEBunbXVWNvYyKwxdApQrD2z8zE7NZ1ZI1wEpOQ5J9zzAAAAAAAAAGAyCRcBAJBbamtRRESjaugUoEiVSiUaiYH/Vke4CMjWzhEuSp01AAAAAAAAAEA5CRcBAJBbri/a1w2dAhQtdfa2e8JFQLY89zzhIgAAAAAAAACYTMJFAADkltp8UYmIfdV6Mc0A8FPN2kLm81YnvXkO2N1S4aKFuWrMTc8U1A0AAAAAAAAAUCThIgAAckttvlis1mNmarqgbgD4iUY1sbkox0YSYHdLnRO2FgEAAAAAAADA5BIuAgAgt9TmIkOnAKPRrGefv6mNJACtbvaGs6Z7HgAAAAAAAABMLOEiAAByM3QKMJ5S5+/hlW6sb24U1A1QRqkQonseAADAcF144YVRqVSS/1x44YWjbhUosTznzFlnnTXqNgEAABgB4SIAAHJrGzoFGEt5zt9D3U4BnQBllbrn2VAJAAAAAAAAAJNrZtQNAABQHr5oDzCe8gz9t7rLcfSevQV0A5SRex4AAAAAAOPq8OHDcfnll8c3v/nNuPLKK+O73/1uXH/99XHgwIFYXl6OTufHH9mrVqtRq9Wi2WzGcccdF7/0S78U97nPfeJBD3pQPOQhD4m73e1uI/6dAACML+EiAABy6ff7vmgPMKaatYVkTSo4AOxe3bXV6K2vZdYIFwEAAAAAUJQbbrghPvvZz8bnPve5+Id/+Ie46qqrYnNzM/nrlpaWYmlpKW666aa4+uqrf+H5iSeeGI973OPiN3/zN+Nxj3tcTE1NDaN9AIBSEi4CACCX5dWVWNvcyKzJM9wOwODVZ+dibnomVjfW77Cm3V0qsCOgTFIB8oiIhnseAABwOy688MI477zzhvKz5+bmolqtxvz8/E//WVhYiDvf+c63+ecnX6M/+eSTY3FxcSi9AAAwXP1+Py699NL42Mc+Fh/72Mfin//5n4fynmuuuSauueaaeMtb3hLHHXdcnHfeefGf/tN/imOOOWYo7xsnz372s+Mv//IvR93GWPjc5z4XZ5111qjbAICxI1wEAEAueYZOfdEeYDQqlUo0a3vixqVDd1hjcxFwR/KcD+55AABA0VZXV2N1dXVLv+bYY4+N+973vvGQhzwkTj/99Dj99NPjTne605A6BABgpy677LJ4//vfH3/9138dP/zhDwt99/XXXx+vec1r4o1vfGO84AUviFe+8pWxb9++QnsAABgnwkUAAOTSyrHxwtApwOg0hIuAbcpzz2vU6gV0AgAAsDM33HBD3HDDDfHZz3423vCGN0RExH3ve98466yz4ilPeUr8yq/8SkxPT4+4S4rUbrfjTW96U7LuwQ9+cDz5yU8eej9MpgsvvDCuvfbaZN0f/MEfDL0XgDK4/vrr413vele8853vjKuvvnrU7USn04k3vvGN8d73vjfe9KY3xdOf/vRRtwQAMBLCRQAA5JIaSq9ExGLV0CnAqKQCnnk20AG7U7vbyXy+MF+N2Wl/jAgAAJTTlVdeGVdeeWX8+Z//eRxzzDHxlKc8Jc4999x4zGMeM+rWKEC73Y5XvepVybpnPetZwkVs24UXXhgXX3xxsk64CCDioosuinPOOSc2NjZG3covuPHGG+MZz3hGfOpTn4o3v/nNUavVRt0SAEChpkbdAAAA5ZAKF+2r1mN6yvUSYFRS4SKbi4A7ktpc1KzaTgkAAEyGm266Kd761rfGmWeeGQ996EPjve99b6yvr4+6LQCAXePQoUNjGSy6tXe+851x+umnx0033TTqVgAACmX6EwCAXFIbLxq1hYI6AeD2NISLgG1KnQ+p8wUAAKCMLr/88vjd3/3duOc97xkXXHBBbG5ujrolAADGxFe/+tV4zGMeEz/84Q9H3QoAQGGEiwAAyCU1dNqs1QvqBIDb00yEPI+sdGN9zL8EB4xG8p5XFy4CAAAm13XXXRfPf/7z49RTT43LLrts1O0AADAmvvWtb8XZZ58dR44cGXUrAACFmBl1AwAAlEP6i/Y2FwGMUjPHZpF2bznutGexgG6AMkluqKwKFwEAAJPvH//xH+PUU0+N//Af/kO8/vWvj7m5uVG3BADArezZsyce+tCHxiMe8Yi43/3uF/e4xz3i+OOPj3379sXCwkJMTU3FwYMH4+DBg/GjH/0oLrnkkrj44ovjH/7hH2JpaWlb77ziiivi3HPPjY997GMD/t0AAIwf4SIAAHJpdbP/sC3PUDsAw9PIcQ63usJFwG31+/0cGyqFyAEAgJ178YtfHI997GO39Gs2Nzej1+vFyspK9Hq9WFpaihtuuCEO/P/Yu8/wqMr17cPXpE8KJHTpQUKXKk1AmoCgoIgiIE0FC2LXbVfEzhYLbraKSBWBLQgiIIpIb1KlSei9BUhI7/N+2K/8dQuz1iSzZiaZ33kcfHHutZ4rMmUxee51nzmj06dPa//+/Tp27JgcDodbMjocDn3yySf69ddfNWfOHFWuXNkt5zVj6NChGjp0qMfWA+Cf3PV+CQCe0qxZM/Xo0UPdunVTq1atFBgY6LT+mmuu0TXXXCNJ6tSpk1588UVlZmZqypQpGjt2rA4cOOByhoULF2rChAl64IEHCvQzAAAAFBU0FwEAAMCQw+FQUka605qYcJqLAMCbzDR5GjUQAPA/GbnZysrNcVrDdR4AAAAAd2jUqJFuvfVWt583NTVVu3bt0tatW/XLL79o+fLlunjxYqHOuXHjRjVt2lTffvut2rZt66akAAAAMCMuLk4DBw5U//79FRcXV+jzhYWF6aGHHtIDDzygyZMn6/HHH1dammu/M3vmmWfUq1cvVahQodB5vGXKlCmaMmWKx9YbOnSopk6daqr28OHDql69urWBAACAoQBvBwAAAIDvS83OVG5+ntOa6DA2nQKAN9mDQxQa6PweIonpNBcB+CujBnKJ6zwAAAAAvi0yMlKtWrXSiBEjNGfOHCUkJGjDhg165JFHVLp06QKfNyEhQd27d9fatWvdmBYAAABXEhgYqNtuu00//vij4uPj9eqrr7qlsejPAgICdP/992vz5s1q2LChS8empKTorbfecmseAAAAX8PkIgAAABgyM+mCO9oDgHfZbDZF2yN0NvXSVWuSMmkuAvBXiRmphjVc5wEAAHhffn6+TiUn6tDFczpx6YLSsjOVk5en3Pw8BQUEKjgwUBEhYapcsrRqlC6nilExCgjgPpPwTwEBAWrZsqVatmypDz74QHPmzNEbb7yhvXv3unyu1NRUde/eXT/99JNatWplQVoAAAD/FhoaqiFDhui5555TjRo1PLJmnTp1tG7dOvXo0UOrVq0yfdyECRP08ssvq3z58hamAwAA8B6aiwAAAGAoyUxzkT3SA0kAAM7EhEc6bS4y00QAwL+YmWgWHRbugSQAAAD4M4fDod/PndSWEwd18OJZHb2YoKy8XNPHhwYFq1pMGV1bqryaVb5WdctVks1mszAx4JtCQkI0YMAA9evXT7Nnz9azzz6rkydPunSOlJQU9ejRQ1u3blX16tWtCQoAAOBnQkJC9OCDD+r5559XxYoVPb5+RESEFi5cqFatWmnPnj2mjsnOztZXX32lp59+2uJ0AAAA3sHtqgAAAGDIaHKRzWZTyVC7h9IAAK4mOsz5dBEzTQQA/IvRRLOoULuCA7k/EQAAgKekZWdpSfx2Pbtout5cNlc/xG/XvoTTLjUWSVJWbo72JZzWD/Hb9eayuXp20XQtid+utOwsi5IDvi0gIED9+/fXrl27NHToUJePT0xMVN++fZWdne3+cAAAAH4kICBA99xzj/bu3atx48Z5pbHoD1FRUfrmm28UEhJi+pjp06dbmAgAAMC7aC4CAACAIaNJFyXDwhUQwKUlAHhbjN15c5GZSXQA/ItR02G0nalFAAAAnnA2JUlfbFymkfMmatqWlTqVnOjW859KTtS0LSs1ct5EfbFxmc6mJLn1/EBRER0drcmTJ+urr75yaROpJG3atEnPPPOMRckAAAD8w5133qmvvvpKsbGx3o4iSapXr56efPJJ0/W//fabzp07Z2EiAAAA72EHKAAAAAwZbTo12swOAPCMmHCDyUUGE0oA+B+jCZUx9kgPJQEAAPBPefn5WrBns/6x6CstP7jL5QlFrsrKy9Xyg7v0j0Vf6fs9m5Wfn2/peoCvuueee7R06VJFR0e7dNwnn3yi1atXWxMKAADAD/jiTUufffZZ2e120/UrVqywLgwAAIAX+d6VGgAAAHxOksFmdJqLAMA3GL0fp2ZlKsfijWoAihau8wAAALzn5KWLGrX0P5q1fa1y8vM8unZOfp5mbl+rUUu/0clLFz26NuArbrzxRi1YsEChoaEuHffEE0/I4XBYlAoAAACeVrp0ad12222m63fu3GlhGgAAAO+huQgAAACGjCYXRbPpFAB8gpn346SMdA8kAVBUJKanOn2c6zwAAAD3y3c49P2eLXrxh6918MJZr2Y5cOGMXvzha32/Z4vyaZaAH2rXrp2mT58um81m+pitW7dqypQp1oUCAACAx91yyy2ma/fv329hEgAAAO8J8nYAAAAA+L6kDO5oDwBFQYw90rAmMSNNZSNLeCANAF/ncDi4zgMAAPCw3Pw8fb5hqdYeifd2lMv+O8VojY4lJejBVl0UFBDo7UiAR911111avny5Pv30U9PHvPrqqxo0aJCCgvx3y0V2drYSEhKUkJCglJQUZWVlKScnR6GhoQoPD7/8JyIiQuXKlVNgIO8tnpSenq7jx48rJSVFaWlpysjIUGhoqCIiIhQZGakqVaooKirK2zE9KjU1VStWrNBvv/2m+Ph47du3T+fOnVNqaqpSU1OVnZ2t8PBwRUVFqVy5cqpUqZL+/e9/q2rVqt6Ojj9xOBw6ffq0EhISlJaWprS0NDkcDkVERCgiIkKlS5dWpUqVFBDgX/fb3rNnj1asWKGdO3dq165dOnnypJKTk5WSkiJJCg8PV8mSJVWtWjXVqFFD119/vdq0aaNGjRq51GDrKxwOhy5evKhz584pMTFRWVlZysrKUmBg4OXPH7vdrvDwcJUuXVoREXzHCWOtW7c2XXvixAkLk8AXpaWl6cSJE3+5tgoJCbl87VC1alW/u7YCABRP/vtNFwAAAExxOBxKzDTadGq8mR0AYD0zTQBJGc6nlADwHxk52crKy3VaQ3MRAACA+2Tn5WrcmsXaevKwt6Nc0doj8crIydZjbXsoJJBfI8O//POf/9SPP/6oQ4cOmao/ceKEvv32W/Xt29dtGaZMmaJ7773XsG7y5MkaOnSo29Y1IzExUatXr9a6deu0bds2xcfH69ixY3KYnHgWFBSkSpUqqXr16qpevbpiY2PVrFkztWrVSmXKlCl0vhUrVqhjx46FOsfUqVM1derUQmf5Q/v27bVixQq3nc+ZS5cuadWqVVqzZo3Wr1+v/fv368yZM4bHlSlTRnFxcWrVqpXatm2r9u3bq3Tp0h5I7NyoUaP0+uuvG9YtX75cHTp0cFqTmpqqqVOnas6cOVq7dq1ycnKc1qekpCglJUWnTp3S9u3bdfHixcvNRdWrV9fRo0dN/xxX4u4mjsOHD6t69epuz+DJ56+RHTt2aPXq1VqzZo1+++03HT58WJmZmU6PCQkJUbVq1dSwYUO1bdtW7dq1U9OmTX2iicad//+PHz+u8ePHa+7cuTpw4IDT2uzsbCUlJeno0aNatWrV5Ql8VatWVd++fTVixAjFxsaa+RE8Li8vT5s2bdK6deu0ceNG7d27V/v27TN8HvxZmTJlVK1atcufQ/Xr11erVq1Up04dn3hewDdUr15dwcHBhp8Vki437qF4On36tFavXq21a9fq119/1aFDh3Tu3DnD48qUKaPatWvrhhtuUNu2bdWpUydFRrKXBgBQtPCtMAAAAJxKycpUXn6+0xo2nQKAb7AHhygsKFiZuVf/xUeiwZQSAP7DzPtBNNd5AAAAbpGbn+fTjUV/2HrysD5Z84Meb9eDCUbwKxEREfrwww912223mT7mk08+cWtzka/JyMjQzJkzNXPmTK1YsUK5uc5vTuFMbm6ujh49qqNHj2rlypV/eezaa69Vq1at1LFjR/Xu3VulSpUqbHS/kJubq3nz5unrr7/WDz/8oKysLJfPcf78eZ0/f17r16/Xhx9+qKCgIN10000aMGCA7rrrLoWFhVmQ3DMuXLigN998U5MmTVJycrK348BFBw4c0NSpUzVz5kwdPHjQ5eOzs7O1f/9+7d+/X3PnzpUkValSRf369dOQIUNUv359d0f2qCNHjmjUqFH6+uuvTTVBOHPs2DG9//77+uijjzRw4EC98847qlChgpuSFs66dev05ZdfasGCBTp//nyhzvXH+92WLVv+8t+jo6PVokULtWnTRrfffrsaNmxYqHVQtAUGBio6OloJCQmGtWlp/K6tuDl37pxmzZql2bNna/369aab6P/sj/eatWvX6p///KfsdrtuvfVWDR48WLfccgvNjACAIsG/ZsACAADAZWYmXLDpFAB8h9F7Ms1FAP6QZOL9gCZyAACAwst3OPT5hqU+31j0hy0nD+nzDUuVX4DNVEBR1qtXL11//fWm6/+YolHcpKamavTo0apUqZLuv/9+/fzzz4VqLDJy8OBBzZgxQ8OGDVP58uV18803a/Lkybp06ZJlaxZlWVlZ+uyzzxQXF6e+fftq/vz5BWosupLc3FwtWbJEgwcPVo0aNfTBBx8oPT3dLef2FIfDoS+++EK1atXSRx99RGNREbNr1y4NGDBAderU0ZtvvlmgxqKrOX78uP75z3/quuuu0+23367Nmze77dyekp+fr48++kgNGjTQ1KlTC91Y9Ge5ubmaMmWK6tWrpxkzZrjtvAWxaNEiNW3aVG3atNGkSZMK3VjkTFJSkn766Se99tpratSokerUqaNXX31Ve/bssWxN+LaQkBC31sH3HTx4UA899JCqVq2qxx9/XOvWrStQY9GVZGRk6JtvvlHPnj3VsGFDzZo1yy3nBQDASjQXAQAAwCkzm9DZdAoAvsPoPdlMMwEA/2BqclEY13kAAACFtej3rVp7JN7bMVyy9ki8Fu/d6u0YgMeNGjXKpfrZs2dbE8RL5s+fr7i4OL322mtKTEz0+Pq5ubn68ccfdd999+mLL77w+Pq+bsWKFbruuuv08MMP68iRI5audfr0aT399NOqU6eOFi5caOla7pKWlqY77rhDDzzwgC5evOjtOHBBamqqHn/8cTVq1EgzZ85UXl6eZWs5HA599913at68ue6//36vvNcVRFJSkrp27aonn3zS0okpiYmJGjhwoJ5//nm3ba4369ixY+ratatuvfVWbdu2zaNr/yE+Pl5vvPGGZZMJbTab6T9Wv8/jysw2N0dFRVmcBFZLSUnRk08+qdq1a+vzzz93W7P21ezatUv9+/dXhw4d9Pvvv1u6FgAAhUFzEQAAAJwy2nQaYLOpRKjdQ2kAAEaMmouYXATgD0bvB1GhdgUFBnooDQAAQPF08tJFzdmx3tsxCuSb39br5CU2Z8O/dO/eXVWrVjVd//3331uYxnNyc3P18MMPq3fv3jpz5oy34+B/ZGdna8SIEerYsaP279/v0bWPHz+unj176p577vHpKUanTp1S27ZtNX/+fG9HgYvWr1+vevXqady4ccrPz/fo2pMmTVKdOnX0008/eXRdVx08eFCtWrXSsmXLPLbme++9pyeeeMJj6y1evFjXXXedli5d6rE1gf+Vmpqq1NRUU7Vly5a1OA2stGjRItWpU0cfffSRpQ2tV7Jy5Uo1adJEEydO9Oi6AACYRXMRAAAAnDKacBEdFqGAAC4rAcBXRNNcBMCkpAznvyhlOiUAAEDh5OXn67MNPykn37ObldwlJz9Pn29Y6vGNvoA3BQQEaMiQIabrd+3aVeQnC2RlZalnz5767LPPvB0FV3D27Fl16tRJn376qVdzfP3117rhhht09OhRr+a4kj8mumzfvt3bUeCiSZMmqUOHDjp+/LjXMpw7d049evTQ2LFjvZbBmaNHj6p9+/aKj/f8FMxx48ZpzJgxlq8zadIk9erVS8nJyZavBTjjyudIXFycdUFgmfz8fL366qvq2bOnTp065bUcWVlZGj58uB5++GH+vQ0A8DnsAgUAAIBTRpvQo+3hHkoCADAjxh7p9PFEg2YCAP7D6DqP5iIAAIDCWbx3qw5eOOvtGIVy4MIZLdq71dsxAI8aNGiQS/WLFi2yKIn1HA6H7rnnHi1ZssTbUXAFJ0+eVJs2bbR27VpvR5Ek/fbbb2rVqpX27dvn7SiXZWVlqVevXtq9e7e3o8BF7777ru6//35lZ2d7O4ry8vL0zDPP6KmnnvJ2lL84d+6cunTpopMnT3otw0svvaT1662bwjlv3jwNHz7c45NDgCtx5blep04dC5PACllZWerdu7feeOMNORwOb8eRJH322WcaPHgw74EAAJ8S5O0AAAAA8G3Gm06db2IHAHiWUTNAWnaWsvNyFRLIVwKAvzOaUElzEQAAQMGdTUnSnB0bvB3DLebs2KAWVWqqfFS0t6MAHhEXF6fY2FgdPnzYVP26dev0yCOPWJzKGmPHjtXcuXO9HQNXcObMGXXq1EkHDx70dpS/OHPmjDp27KiVK1eqZs2a3o6jl156SatXrzZVW61aNbVp00ZxcXGqWrWqoqKiFBISotTUVF26dEn79u3Tjh07tHbtWp9oeCnOPvjgA73wwgvejvE3H374oYKDg/Xee+95O4ry8vLUp08f7d+/37A2IiJCLVu2VOPGjRUbG6tSpUopIiJCOTk5SkpK0uHDh7Vp0yatXbtW6enpLuXIzc3Vvffeq507dyo4OLigP84VHT58WEOGDGFqB3zGvHnzTNe2bdvWwiRwt8zMTPXu3dsnG+pnzJihwMBATZ061dtRAACQRHMRAAAADBhtOo1m0ykA+BQzzQBJGWkqF1nSA2kA+DLjCZVc5wEAABTUgj1blJNfPO4+nJOfpwV7tmh4y87ejgJ4zE033aQvvvjCVO3WrUVzutfhw4f10ksvuXxcYGCgmjdvrvbt2ysuLk41a9ZUlSpVFBERoYiICIWHhys3N1dZWVlKTk7W2bNndfr0ae3fv1/79u3T1q1b9dtvvykzM9NtP0uHDh2uegf6I0eOKDY21vAcQ4YM0ZQpU9yWqTCysrLUs2fPAk0Istlsat26tW6++WZdf/31qlOnjkqXLq2IiAhlZGQoMTFR+/bt07Zt27RkyRKtXLlSubm5Lq1x6tQp9ejRQ5s2bVLJkt77jnHt2rX68MMPndZUqFBBDz74oAYOHGi6GSo5OVnffffd3xpMjhw5ctVjOnTooJUrVxqe21cmJXjT3Llz9fTTTxfo2LJly+rmm29W586dVa9ePVWvXl1RUVEKDAxUSkqKTpw4oT179mjFihVatGiRTpw44fIaY8aMUbVq1TRixIgCZXSXV155RWvWrLnq4wEBAerTp4+GDh2qLl26mGr8SUtL0zfffKO3337bVNPSH+Lj4zV+/Hg98cQTpo8x48EHH1RKSorLx1WtWlVdunRR/fr1VbNmTV177bUqWbLk5c+gwMBAZWZmKiMjQ+fOndO5c+d06NAh7d+/Xzt37tSmTZt07tw5t/4sKPoOHz6sDRvM3RyiXLlyql+/vsWJ4C75+fm68847C9xY1LBhQ3Xs2FFNmzZVrVq1VKVKFZUsWVJ2u105OTlKTU3VsWPHtHfvXq1du1YLFy7UsWPHXFpj2rRpuu666/TMM88UKCMAAO5EcxEAAACcSsxIdfo4d7QHAN9iphkgkeYiwO85HA4TEyq5zgMAACiItOwsrTuy19sx3Grdkb26p0lbhYeEejsK4BGdO3c23Vy0b98+paamKjIy0uJU7vXqq6+6NJ0lLi5Ozz77rO68807FxMQ4rQ0JCVFISIiioqJUqVKlvz2ek5OjjRs3aunSpVq0aJG2bNnicv7ibOTIkdq8ebNLxwQFBemBBx7QE088obi4uCvWREZGKjIyUlWqVFHnzp31zDPP6MSJE/rXv/6ljz/+2KWGr/3792vw4MGaP3++bDabS1ndZfTo0VedeGK32/Xaa6/psccek91ud+m8JUqU0KBBgzRw4EDl5OS4Iyr+v7179+ree+91+bi6devqlVdeUZ8+fRQSEnLFmlKlSqlUqVJq2LCh+vXrp/z8fC1cuFBvvvmmNm3a5NJ6Tz75pJo2bapWrVq5nNUddu/erVWrVl318e7du+vjjz++6mv9aiIiIjR06FDdc889Gj16tN566y3TDW/vvfeeRowYcdX//65atmyZli5daro+PDxcw4YN00MPPaS6desa1v/R8FqmTBnVq1dPHTp0+Mvjhw4d0tKlS/XTTz/phx9+UEZGhqs/AoqZjz76yPTr4Y477rA4DdzpH//4hxYtWuTSMX80J993332qWrXqVesCAwMVFhamMmXKqGnTphowYID+9a9/acWKFXrvvff0448/ml7z+eefv9zADwCANwV4OwAAAAB8V77DoaSMdKc1bDoFAN9itrkIgH/LyMlWdp7zOxNH24vWxjgAAABfsfrw78oyuNYqarLycrX68O/ejgF4TOPGjU3X5ufna9u2bdaFscC5c+c0e/ZsU7XBwcEaN26c9u7dq+HDhxs2Fpk9Z9u2bfX6669r8+bNOnTokN58801Vq1at0Ocu6ubOnauJEye6dEzz5s21Y8cOjR8/3uVmg8qVK+vdd9/V77//rk6dOrl07IIFCzR+/HiXjnGnqzXH1a1bV9u3b9dzzz3ncmPRn9lsNrc1UkDKy8tT//79XZpUExwcrDFjxmjHjh3q37+/S38fAQEB6tWrlzZu3KjPP/9c4eHhpo/Nzs5Wv379lJbmne/Rz58/f8Umh9DQUE2cOFGLFy92+bX+Z8HBwXrjjTf01VdfKSDA3NbBM2fOaNasWQVe83+NGzfOdO0tt9yiI0eO6OOPPzbVWGRGjRo19OCDD2ru3LlKSEjQzJkz1blzZ681S8K7zp49q0mTJpmuv+eeeyxMA3f6+uuvNXbsWNP1drtd77zzjg4ePKhRo0Y5bSy6GpvNpo4dO2rJkiVatGjRFRvtryQvL0/Dhg2j2REA4HU0FwEAAOCqUrIylOe48l3f/mBmEzsAwHPswSGyBzn/JWsSzUWA3zPTZEgTOQAAgOscDoeW7t/h7RiWWLp/h+m7eQNFXVxcnEtNCfv27bMwjfvNmjXL1EQWu92u5cuX69FHHzW9Ab0gYmNj9dJLL+nQoUNasGCBbrjhBsvW8mUpKSl6/PHHXTrm/vvv15o1awq94b569er66aef9PTTT7t03EsvvaRTp04Vam13at26tdatW6datWp5Owr+x8cff6zt27ebri9TpoxWr16tZ599VkFBQQVe12az6YEHHtDGjRtVpUoV08cdPXpUr732WoHXdbeoqCgtW7ZM999/v9vOOWDAAL3//vum611pvnDmwoULWrx4sanaxx9/XN9//73Kli3rlrWvJCIiQv369dPPP/+sffv26aGHHlJYWJhl68H3vPzyy0pNTTVV27BhQ7Vp08biRHCH06dPa+TIkabrmzZtqh07duj55593qSHVmR49emjbtm1q166dqfoDBw7o9ddfd8vaAAAUFM1FAAAAuCozm89jwrmjPQD4muhw5w0BiRnmfkkCoPgy8z5AcxEAAIDrfj93UqeTE70dwxKnkhO199xJb8cAPCIgIED16tUzXX/ixAkL07jfTz/9ZKru448/9ugG2oCAAPXs2VNr167Vgw8+6LF1fcWoUaN08qT599lHH31UEydOdNt0ncDAQL3//vt65ZVXTB+TnJzsckOSVerWratFixYpOjra21HwP06fPu1So065cuW0cuVKtWzZ0m0ZGjRooJUrV7o0heLjjz/W7t273ZahoEJCQrR48WJL3o+feOIJdezY0VTt6tWrde7cuUKvuXz5cuXmGk/5vPHGGzV27FiPThOqWbOmPv30Uy1fvtxja8K7Nm/e7FLj3IsvvsiEqyLi4YcfVmKiuX+b33bbbVqzZo1q1qzp9hxly5bVjz/+qJtuuslU/bhx43T69Gm35wAAwCyaiwAAAHBVpu5oH+aeu7YAANwnJsyguSidyUWAvzNznVfSznUeAACAq7acOOjtCJbafOKQtyMAHhMbG2u69vjx4xYmcb8NGzYY1tStW1fDhw/3QJori4qK8tra3nD27Fl9+umnputvv/12ffzxx5ZkGT16tAYNGmS6fvbs2fr9998tyWKW3W7XnDlzFBMT49UcuLJ//vOfpqeChIaGav78+S41eJoVGxur77//XhER5m6ok5ubqzfeeMPtOVw1fvx4tW3b1pJz22w2ffDBB6aaJfLz87Vo0aJCr2nmM0j67/MmMDCw0OsVhL99BvmrrKwsDRkyRPn5+abq69evr7vuusviVHCHn3/+Wd99952p2ltuuUXffPONS1NLXWW32zV37lzVr1/fsDYjI0PvvPOOZVkAADBCcxEAAACuyuiO9gE2m6JoLgIAnxNtMG3ETFMBgOLNaEJliVC7ggK888t7AACAouzgxbPejmCpQ8X85wP+7JprrjFdW5QmF128eFEXLlwwrBsyZIgH0uAPY8eOVUZGhqnaatWqadq0aZZOTvjiiy9MN3c4HA699dZblmUxY/To0ZY0o6Dwzp8/r88//9x0/T//+U+1bt3asjwNGzZ0qZHvm2++UXx8vGV5jHTv3l3Dhg2zdI3GjRurc+fOpmpXr15d6PX27dtnWFOnTh21aNGi0GsBzrz88svas2eP6fpx48YpIIDttkXByy+/bKqubt26mjlzpoKDgy1OJJUoUUKzZs1SaGioYe2kSZOUkpJieSYAAK6Eqx0AAABcVVJGutPHo+0RCmDsNwD4nJhw581FSZk0FwH+zqjJMMagSREAAAB/l5+fr6MXE7wdw1JHEhNM39kbKOpcaS46deqUhUnc6+TJk6bqmjRpYnES/CEzM1NffPGF6fovv/zS8qkaoaGhmjx5sulN1LNmzdLZs95pQL322mv12GOPeWVtGJs4caLS053/vvEPN954o0aOHGlxImnQoEG69dZbTdXm5+frk08+sTjRlQUFBWncuHEeWeu+++4zVbd27dpCr2Xmc4jPIFht0aJFGjt2rOn6u+66S506dbIwEdzlhx9+0MaNGw3rAgMD9dVXX3l0UlmDBg30zDPPGNalpaVp5syZHkgEAMDfBXk7AAAAAHyX0eQiNp0CgG8yen9OTKe5CPB3Rs1FRhPQAAAAPC07L1fnUi55O4ZTZ1KSlJWX6+0YlsrKzdG2k4dVPira21GuqlxUSYUE8mtwFF6FChVM16alFZ3vWlJTnX/v/4fKlStbnAR/WLBggZKSkkzV9uzZ0/SEkcJq0aKFBg4cqGnTphnW5uXlacaMGXrqqac8kOyvnnnmGYWEhHh8XZhj5vkjSTabTR988IGlE7n+bOzYsVqyZIlyc42v3WbNmqUPPvjA48+ze+65RzVr1vTIWj169FBwcLBycnKc1h04cEBZWVmmJm9cjZnPIT6DYKUjR45o0KBBcjgcpurLlCnjtSZDuM7sdLoRI0aoadOmFqf5u3/84x8aP3684bXf1KlT9cADD3gmFAAAf8K3qgAAALgqNp0CQNEUHeb8/Tk9J0tZuTkKDQr2UCIAviaJyUUAAKCIOZdySf9Y/JW3Y0DS2NULvR3BqTE9BqpydGlvx0AxYLfbTddmZGRYmMQ7jDaYw32mT59uuvaNN96wMMnfjR49WjNmzFBeXp5h7dSpUz3eXFSiRAkNHjzYo2vCvC1btuj33383VXvbbbepWbNmFif6P7Vq1dLQoUM1ceJEw9oLFy5o0aJF6t27tweS/Z+HH37YY2uVLFlSDRs21JYtW5zW5efna9++fbruuusszVNcP4PMNrPAOunp6erTp48SExNNH/PZZ5+pfPnyFqaCu5w8eVKLFy82rLPb7XrxxRc9kOjvSpQooSFDhujjjz92WrdhwwZdvHhRpUqV8lAyAAD+y9z8YgAAAPglo8kWbDoFAN8UEx5pWGPUWACgeDNuIjd+HwEAAACA4iwsLMx0bWZmpoVJ3Kt0aXPNd4cOHbI4CaT/Pnd+/vlnU7Xt2rVTo0aNLE70V9WqVVOvXr1M1e7YsUPHjh2zONFf9ezZU+Hh4R5dE+YtWLDAdO2jjz5qYZLCr/n9999bmOTv4uLi1LJlS4+u2bx5c1N1Bw8eLNQ6Zj6H+AyCFRwOhwYOHKitW7eaPmbIkCHq06ePhangTmYbovv27evSlFJ3GzhwoGFNfn6+fvrpJw+kAQDgr2guAgAAwFUlZRo1F7HpFAB8kZnmT6PGAgDFl8PhUGJGqtOamHCayAEAAAD4N1eai4rS5KIyZcqYqps3b57FSSBJq1evNt2cNnz4cIvTXNmDDz5outZso5S73H777R5dD64x+3y49tpr1alTJ4vT/F3Dhg3VqlUrU7Wefm53797do+tJ/53mZMbZs2cLtY6Zz6GlS5cqNdX595eAq55//nmXrm8aNGigf//73xYmgrstXGhuyu7QoUOtDWKgWbNmpqZhrVq1ygNpAAD4K5qLAAAAcEX5DofhVItoO3eDAwBfFG2iuYjJRYD/Ss/JVo7B3fuYUAkAAADA34WEhJiuzc7OtjCJe8XExCgy0vjGYbNmzdJvv/3mgUT+zWzDQnBwsHr27Glxmivr1KmTYmJiTNUuXbrU4jR/1b59e4+uB/NSUlL066+/mqrt3bu3xWmuzuxEkuPHjys+Pt7iNP/HG8/t2NhYU3WFbS6qUqWKYU1GRoZGjx5dqHWAP5swYYLGjBljuj4qKkpz5sxhOl4RcunSJa1fv96wLiYmRu3atfNAoquz2WymptNt27bNA2kAAPgrmosAAABwRSmZ6cp3OJzWMLkIAHxTWFCw7MHON8AwuQjwX0ZTiyQpOozmIgAAAAD+LSsry3StK1OOvM1ms5naUJmTk6M777xTR48e9UAq/7Vp0yZTdW3atFF0dLS1Ya4iODjY9BSVzZs3W5zm/9SsWVNly5b12HpwzbZt25Sbm2uq9tZbb7U4zdXddtttpms9+fxu3Lixx9b6g9nJdpcuXSrUOmYbpz744ANNnz69UGsB0n+nMY4YMcJ0fUBAgKZMmaLatWtbmArutnLlSlOfO+3bt1dgYKAHEjnXqFEjw5odO3YoPz/fA2kAAPg/NBcBAADgisxsOueO9gDgu4zeo5lcBPgvU9d54VznAQAAAPBvmZmZpmuLUnORJHXu3NlU3YEDB9S6dWvNmzfP4kT+a+fOnabqvH2HfbPrHzp0SGlpnvnesV69eh5ZBwWzY8cOU3UhISGmpjdYJS4uTuXLlzdVa/ZnKqzg4GDTU4TcyWwDoyvNt1fSsWNH2Ww2w7q8vDwNGTJEzzzzjFJSUgq1JvzXsmXL1L9/f+Xl5Zk+Zty4cbrjjjssTAUrmG0Abd68ucVJzKlataphTXp6uk6ePOmBNAAA/B+aiwAAAHBFNBcBQNFm9B7N5CLAfxk1F9oklQwL90wYAAAAAPBRrjQX2e12C5O432233Wb6ju2nT5/WHXfcoRYtWmjGjBnKyMiwOJ3/OH36tM6fP2+qtnXr1hancc/6+fn52rVrl8Vp/ouJEr7NbONc48aNvd6gafb57anmoooVK5pqvnG30NBQU3WFbS4qW7asbrzxRlO1DodDY8eOVWxsrF555RWm6cElGzZs0O233+7Sc3b06NF65JFHLEwFq2zbts1Una80J5crV85U3YkTJyxOAgDAX9FcBAAAgCsy2nQaaAtQZGjR+oUpAPiTaMPmolQPJQHga4yaC6PC7AoKMLfJDAAAAACKK1emrxS15qKaNWuqX79+Lh2zadMmDRw4UOXLl9fAgQM1Z84cXbp0yaKE/uHgwYOma729EbZOnTqmG9Jc+bkKo2LFih5ZBwVj9nng7ee2JNWvX99Unaee26VKlfLIOv8rODjYVF1ubm6h13r55Zddqr9w4YLefPNNxcbGqm3btvrwww+1b9++QudA8bV9+3Z1795dqanmfxf21FNP6ZVXXrEwFaxktgG0evXq1gYxyey/H2guAgB4WpC3AwAAAMA3GW06jbaHK8ALd80CAJgTY490+jiTiwD/lZju/PVv9P4BAADgDeWiSmpMj4HejuHUlhOHNHvHOm/HsNzdjW5Qs0o1vB3jqspFlfR2BBQTZ86cMV0bFRVlYRJrvPLKK5o9e7bLm8RTUlI0Y8YMzZgxQ0FBQbr++uvVsWNHtW3bVq1bt1ZMTIxFiYufU6dOmaqz2+2qWrWqxWmcCw0NVWxsrA4cOGBYa/bnKqzy5ct7ZB0UjNnngS9MoKpbt66putOnT1uc5L98vWHV4XAU+hw33XST2rZtqzVr1ri89tq1a7V27Vo99dRTqlatmjp16qR27dqpbdu2iouLK3Q2FH2///67unbtqqSkJNPHDBs2TGPHjrUuFCyVl5enkydPmqpt0qSJxWnc6+LFi96OAADwMzQXAQAA4IqMJlqw6RQAfFuMweQiowl1AIov4+s85+8fAAAA3hASGKTK0aW9HcOQPzQXNatcQ5VL+v7fBVBYrmwir1SpkoVJrFG7dm19+OGHevTRRwt8jtzcXG3YsEEbNmyQJNlsNtWqVUutWrVS69at1bZtW9WrV082blR2RWabLypWrOgT/w8rV67sU81FRbGpz5+YfR5UrlzZ4iTuy5Camqrk5GSVKFHC0jxmJwgVddOnT1fz5s11/vz5Ap/j6NGjmjx5siZPnixJKl26tFq2bKnWrVvrhhtuUKtWrRQeHu6uyCgCDhw4oM6dOyshIcH0MQMGDNDnn39uYSpY7fTp08rLy/N2DEtkZGR4OwIAwM/QXAQAAIArSspId/o4m04BwLcZvU+n52QrMzdHYUH+8YtKAP8nKdNoQiXXeQAAAAVRsUSMQgODlJXn2hSQoiQ0KFgVo5hKAv/gSnORL2yOL4iRI0fqt99+08SJE91yPofDofj4eMXHx2vq1KmSpJiYGHXo0EHdunVT9+7dvT6Bx5eY3fhcrlw5i5OYYzaHKxu6CyM0NNQj68B1OTk5unTpkqlaX3h+u5IhISHB8uYif1G9enV988036tq1q3JyctxyzgsXLmjx4sVavHixJCkoKEjNmjVTt27d1K1bN7Vq1UoBAQFuWQu+5+jRo+rcubNL13C33367pk6dyvOiiDM7tagoorkIAOBpXBUBAADgiozuaM+mUwDwbWbep5leBPinxHTnr32ayAEAAAomICBA1UqV9XYMS1WPKcvGO/iNgwcPmq4tqs1FkvTZZ5/pgQcesOz8iYmJmjdvnh566CFVq1ZNLVu21NixY3Xu3DnL1iwqzG4WLVWqlMVJzCld2tzUOk9tgvWX6S5FkSvPAV94fpt9bkts8na3Dh066LvvvlNkZKQl58/NzdXGjRs1evRotWnTRpUrV9bIkSP166+/WrIevOfkyZPq1KmTjh07ZvqYbt26afbs2QoK4v78RV1SUpK3I1gmOzvb2xEAAH6Gb34BAABwRYkGG87ZdAoAvs3M+7TRez2A4sfhcBg2FnKdBwAAUHDXlirv7QiWqlHMfz7gD7m5udq7d6/p+qLcXBQYGKjPP/9cU6dOVcmSJS1f79dff9UzzzyjypUrq2/fvtq8ebPla/qqzMxMU3VhYWEWJzHHbA6zPxeKL1eeA77w/HYlA89v9+vevbu2bt2qFi1aWL7W6dOnNX78eLVs2VINGzbU5MmT3TY1Cd5z5swZderUSYcOHTJ9zI033qh58+YpJCTEwmTwlOLc+OlwOLwdAQDgZ2guAgAAwN/k5+frUma60xomFwGAb2NyEYArScvJUk5+ntMarvMAAAAKrlnla70dwVLXV67h7QiAR8THx7t0l/C6detamMYzBg8erH379mn48OEemQiTk5Ojb775Rs2bN9ett96q33//3fI1fU1WVpapOl/Z+BwaGmqqjuYLmH1uS77x/Db73JZ4flslLi5O69ev1xdffKFKlSp5ZM2dO3fqvvvuU1xcnGbMmMEG/iIqISFBnTt31r59+0wf07JlSy1cuFB2u93CZPAk3psBAHAfmosAAADwN8lZGco3+AKVO9oDgG8LDQpWeLDzX4omZqR6KA0AX5GUbtxUyHUeAABAwdUtV0nXlIjxdgxLVCwRozrlPLPZE/C2bdu2ma4NCgpSw4YNLUzjOeXKldOECRO0f/9+Pf300ypdurRH1l20aJEaNWqk119/Xbm5uR5Z0xcEBJjbspOfn29xEnPM5jD7c6H4cuU54AvPb1cy8Py2TkBAgIYNG6ZDhw7piy++UNOmTT2y7tGjRzVw4EB17txZR44c8ciacI8LFy6oc+fO2rNnj+ljGjdurCVLligqKsrCZPA0JpABAOA+/IsHAAAAf5NoYpIFm04BwPcZvVebeb8HULyYaSqMsUd6IAkAAEDxZLPZ1CWueDQZ/K8ucQ1ls9m8HQPwiGXLlpmurV+/vsLCwixM43nVqlXT+++/r5MnT2revHkaMGCASpUqZemaOTk5GjVqlLp166bExERL1/IVZp83rkyBsZLZHMXt9QDXufIc8IXntysZeH5bLyQkRMOGDdOWLVu0fft2vfDCC6pXr57l6y5fvlzNmjXT8uXLLV8LhZeYmKguXbpo586dpo+pV6+eli5dqujoaOuCwSt4bwYAwH1oLgIAAMDfmNl0Gs2mUwDwedFGzUUmJpgAKF4SM9KdPm6TVDIs3DNhAAAAiql2sXUVGhjk7RhuFRoYpHaxdb0dA/AYV5qLmjVrZmES7woNDdXtt9+uGTNm6Ny5c1q/fr3ee+893XbbbSpTpowla/7yyy+66aabdOnSJUvO70vMboTNyMiwOIk56enOv1P4Axt84cpzwBee32af2xLPb09r1KiR3n77be3evVtHjx7VlClTNHz4cNWrV8+SpveLFy+qe/fu+vnnn91+brjPpUuX1LVrV5cmTcbFxWnZsmWWXb/Au+x2u+na/fv3y+FwFJk/o0aNsu5/HAAAV1C8vtUGAACAWyQZbDoNDAhQVChfngOArzOaXJSUSXMR4G+SDJrIS4SFKzCA+xEBAAAURkRIqG6oXkfLD+7ydhS3uaF6HYWHhHo7BuARe/bs0fHjx03X33DDDRam8R2BgYFq1aqVWrVqdfm/7d27V2vWrNHatWu1du1a7d+/3y1rbd26VQMGDNDChQuL9cS0iAjn3939ISEhweIk5pjNERnJzen8nd1uV0BAgPLz8w1rfeH57UoGnt/eU7VqVQ0ZMkRDhgyR9N9GoD9/Bm3evNktk7CysrLUp08fbd68WXFxcYU+H9wrJSVFN998szZv3mz6mOrVq2vZsmWqUKGChcngTWavqSQpMzPTwiQAABR97BQAAADA3xhNLooJiyjWv9ADgOIiJtxgclEGzUWAvzF63Rs1JQIAAMCcXvWaKTgg0Nsx3CI4IFC96hXfySzA/5o2bZrpWpvNpltuucXCNL6tTp06GjZsmCZPnqx9+/bp7Nmzmj17th566CFVq1atUOdevHixPvvsMzcl9U1mNzmfO3fO4iTmmM3B5m0EBASobNmypmp94fntSgae376jVKlS6tWrl9577z2tWbNGycnJWrVqlV5//XXdcMMNCgws+LV4cnKyBg8eLIfD4cbEKKzU1FR1795dGzZsMH1M5cqV9csvv6hKlSoWJoO3lS9f3nRtaqrzvTAAAPg7mosAAADwN0abTqPZdAoARUJ0mMHkonSaiwB/Q3MRAACAZ5SPitadDVsZFxYBdzZspfJR0d6OAXhEXl6epk+fbrr++uuvZ6P5n5QrV059+/bVp59+qiNHjmjHjh167bXXVKNGjQKd7+WXXy7WG0ArVqxoqu706dPKzs62OI2xQ4cOmaoz+3OheDP7PDhy5Ii1QUww+9wuXbq0QkJCLE6DggoJCVG7du306quvau3atTp37pwmTZqkrl27KqAAk9o3bNigWbNmWZAUBZGenq5bb71Va9euNX1M+fLltWzZMsXGxlqYDL6gatWqpmtPnTplYRIAAIo+mosAAADwN4kGm82NJmEAAHxDTHik08czcrOVmeP9jQkAPCeJJnIAAACP6VGnqa4tbf4Oyr6oZukKuqVOU2/HADzm+++/d2nDYc+ePS1MU/Rdd911GjVqlA4cOKAff/xRHTt2dOn4ixcvatKkSRal877KlSubqsvLy9OBAwcsTuPcpUuXdObMGVO1lSpVsjgNigKzz+/4+HiLkxjbu3evqTqe20VLqVKldO+99+rHH3/UoUOH9OSTTyosLMylc/zzn/+0KB1ckZmZqV69emnlypWmjylTpoyWLVumWrVqWZgMviIyMlKlSpUyVXvs2DGL0wAAULTRXAQAAIC/Sco0uqO9883qAADfYGYCidEUEwDFC5OLAAAAPCcwIEAPteqq4IBAb0cpkOCAQD3YqkuB7vQOFEUOh0Ovv/666XqbzaZ+/fpZmKj4sNls6tq1q3755Rf95z//UWSk+d8xfPXVVxYm865atWrJZrOZqt2xY4fFady3ft26dS1MgqKiTp06puq8/dx2JQPP7aKrWrVq+uCDD7Rnzx61bNnS9HHbtm3Tnj17LEwGI1lZWbr99tu1bNky08fExMRo6dKlql+/voXJ4GvMvkfv2rXL4iQAABRtfBMMAACAvzHadBptD/dQEgBAYZhpEjCaYgKg+HA4HIaveZrIAQAA3KtSyVK6s2Frb8cokLsatValkubu/gwUB99++622b99uur5r166Ki4uzLlAxddddd2nx4sWy2+2m6jdt2qSEhASLU3lHZGSkYmNjTdWuXbvW4jTuWd9ut/O6gKT/Ti4zIz4+XufPn7c4zdXl5uZq48aNpmobNmxocRpYLTY2Vj///LNatWpl+pjFixdbmAjOZGdnq0+fPvrxxx9NH1OiRAktWbJEjRs3ti4YfFLz5s1N1W3dutXiJAAAFG00FwEAAOAv8vPzdSkz3WkNm04BoGiIZnIRgD9Jy85STn6e0xoz7xsAAABwzS11m6pN9drejuGSNtVrq0edpt6OAXhMSkqKnnrqKZeOefTRRy1KU/y1a9dOr7zyiul6sxv/r8TXp681atTIVN2KFSusDeKm9evVq6fAwKI5sa8wfP155g1mn9uStHLlSguTOLd582alpZn7jpzmouIhMjJSM2bMUFhYmKn6DRs2WJwIV5Kbm6u7775bixYtMn1MRESEFi9erBYtWliYDL7K7N/7jh07dOHCBYvTAABQdPGvWwAAAPzFpawMORwOpzVmJmEAALwvJDBIESGhTmtoLgL8R2JGqmEN13kAAADuF2Cz6cFWXdS0krnpFN7WrFINPdiqiwJsNm9HATzmqaee0rFjx0zX16xZU927d7cwUfH31FNPqWTJkqZq9+3bV+B1goODTdXl5uYWeI3CaNOmjam6Xbt26dChQxanubJLly7pl19+MVXbtm1bi9P4Jl9/nnlD/fr1Tb/Gv/vuO4vTXN28efNM1QUEBOiGG26wOA08pUaNGho6dKip2sJ8BqFg8vLyNGDAAM2fP9/0MXa7Xd9//73pz1UUP+3bt5fNxL9h8/LyXGpaAwDA39BcBAAAgL8ws+mUO9oDQNFhNG0uieYiwG+YaSakuQgAAMAaQQGBeqxtD59vMGpWqYYebdtdQQH+N3UC/mvmzJmaOHGiS8e88847TCoppNDQUN18882mak+ePFngdUJCQkzVZWRkFHiNwujSpYvp2m+++cbCJFc3b9485eTkmKp15ecpTnz9eeYNgYGB6tSpk6nahQsXKjMz0+JEf+dwOEy/rpo2bapSpUpZnAiedNttt5mqK8xnEFyXn5+vIUOGuPSZFxoaqvnz56tjx44WJoOvq1ixopo3b26qdtq0aRanAQCg6OLbLgAAAPxFYjqbTgGgOIm2hzt93ExTKYDiwaiZ0CapRJjz9wwAAAAUXEhgkJ5od4vaVK/t7ShX1KZ6bT3erodCAoO8HQXwmBUrVpieXPCHG2+8UXfeeac1gfxMgwYNTNWlphb8+6uoqChTdYmJiQVeozCuu+46lS9f3lTthAkTlJ+fb3Giv/v0009N1QUHB6t9+/YWp/FNvv488xazzWaJiYmaNWuWxWn+bsmSJTp8+LCpWn9tnCvOPPEZBNc4HA4NGzZMM2bMMH1McHCw5syZo65du1qYDEVF7969TdX98ssvio+PtzgNAABFE81FAAAA+AujTadBAYGKDAnzUBoAQGEZTS4yM8kEQPFg9HovGRauQO68DQAAYKmggEA93Lqb+jduq2AfmQ4UHBCoAU3a6uHW3ZhYBL+yYsUK3X777crOzjZ9TEBAgD788EMLU/mXsmXLmqpzOBwFXiMkJEQlSpQwrDt16lSB1ygMm81mulnt0KFDmj9/vrWB/sfq1av166+/mqrt3r27IiOdfxdZXJl9LnvreeYtvXv3VmCguWuLjz76qFCv9YIYO3as6dq77rrLwiTwBk98BsE1Dz/8sCZPnmy6PigoSLNmzdKtt95qYSoUJffcc4+pzx2Hw6FXXnnFA4kAACh62C0AAACAvzDadBpjj5DNZvNQGgBAYRlNmzNqKgVQfBhd50UbNCMCAADAPQJsNvWs10xvdx+ga0ubm1ZhlZqlK+jt7gN0a91mCuA7P/iR6dOnq1u3brp06ZJLx7344otq2rSpRan8T1JSkqk6s1NhrsbMZKAjR44oNze3UOsU1KBBg0zXvvLKK8rLy7MwzV+98MILpmuHDBliYRLfZnb61IEDByxO4lsqVKhgeuLPb7/95tHpRT///LOWLVtmqva6665TkyZNLE4ET/PUZxDMefzxx/X555+brg8MDNT06dN1xx13WJgKRU2VKlV0++23m6r95ptvtGrVKmsDAQBQBNFcBAAAgL8w3nTqfJM6AMC3GDUXMbkI8B9GzYRG7xcAAABwr0olS2lUl77q37iNx6cYBQcEqn/jthrV5S5VKlnKo2sD3pSUlKShQ4dq8ODBLk0skqQOHTpo1KhR1gTzU0eOHDFVZ7Zx42quvfZaw5qsrCzt3r27UOsUVMuWLVW3bl1TtXv27NHHH39scaL/mjp1qtauXWuqtkyZMn49OcLMc0yStmzZYnES33Pvvfearn3uueeUnJxsYZr/yszM1KOPPmq63pWfAUWHpz6D/sxms5n+YzZfcfDcc89p3LhxputtNpsmTZqkfv36WZgKRdUTTzxhunbIkCEu32wAAIDijuYiAAAA/EVSRqrTx9l0CgBFi1FTaGZujjJyXNtMA6BoookcAADA9wQGBKhnves15paB6nhtA4UGBlm6XmhgkDpe20BjbhmonvWaKSCAXxfDP+Tn52vGjBmqX7++pk6d6vLxFSpU0MyZMxUY6NlGwOIsLy9P33//valas403V1OrVi1TdT/++GOh1imMf/zjH6ZrX375Ze3du9fCNNKxY8dc2pz75JNPKiQkxLpAPs7sc+ynn36yOInv6dOnj+nmq+PHj+vxxx+3OJH00ksvmX4NlSpVSsOGDbM4Ebxh3rx5puoK+xkE51577TWNGTPGdL3NZtPnn3+uwYMHW5gKRVnbtm3Vo0cPU7VHjhxR3759lZOTY3EqAACKDr4tBgAAwF8YbTqluQgAihYz79tMLwL8QyJN5AAAAD6rfFS0hrfsrPG9h2lIs/aqWCLGreevWCJGQ5q11/jewzS8ZWeVj4p26/kBX5WdnX25qWjgwIE6deqUy+coU6aMfvrpJ1WoUMGChJ735ptvauHChd6Ooblz5+rkyZOGdTabTS1atCjUWs2bNzdVN3HiROXl5RVqrYIaOHCgqlevbqo2IyNDt912m5KSkizJkpaW5tL5o6OjNXLkSEuyFBUNGjSQ3W43rNuzZ49WrVrlgUS+IzAwUM8//7zp+ilTpmj8+PGW5ZkxY4Y++OAD0/WPP/64oqKiLMvjb1auXKm33nrL65NCkpOTTTcbt2rVyuI0/uvdd9/V6NGjXTrmk08+0fDhwy1KhOLi/fffV1CQuRt3/PTTT+rfv7+ysrIsTmVOamqqxowZox07dng7CgDAT9FcBAAAgL9IorkIAIqVGHukYY3Rez+Aos/hcCgpI91pTUw413kAAADeFh4Sqm61G+uftwzSK537qHvtJqpdtqLLE41Cg4JVu2xFda/dRK907qN/3jJI3Wo3VnhIqEXJAd+Rn5+vjRs3auTIkbrmmms0cODAAk95KVWqlH7++Wddd911bk7pPZs3b1bPnj3VpEkTzZgxQ9nZnp9offz4cY0YMcJUbbNmzVS+fPlCrde2bVtTdfv379eLL75YqLUKKigoSG+++abp+n379ql79+5ubzBKT0/Xbbfdpu3bt5s+5oUXXlCJEiXcmqOoCQ4ONt0E99BDD+nChQsWJ/ItQ4YMcWn6y+OPP64ZM2a4PceCBQt03333ma6vUKGCSxO8YCwxMVEvv/yyqlWrppdeekknTpzwSo7hw4frzJkzpmrNTkCBaz7++GO98MILLh3zwQcf6JFHHrEoEYqTunXr6qmnnjJdP3fuXHXt2lXnzp2zMJVzCQkJevPNNxUbG6vnnntOycnJXssCAPBvrn0LDQAAgGItLz9flzKdbzqNprkIAIqUaHu4YY3RNBMARV9qdqZy853ffTk6jOs8AAAAX2Gz2VS3fGXVLV9Z0n+bJU6lJOrwxXM6kXRBqdlZysnLVW5+noICAhUcGKTIkFBVji6t2FLlVDEqRgEB3GcS/iE1NVW7d+/W1q1btWzZMi1fvlwXL14s9HmrVKmiBQsWqFGjRm5I6Xu2b9+ugQMH6umnn9bw4cM1dOhQXXvttZavu3fvXt12222mmyuGDh1a6DWrV6+u+vXra/fu3Ya1Y8aMUXx8vF577TU1adKk0Gu74p577tGkSZP0yy+/mKrfsGGD2rdvr7lz56pmzZqFXv/EiRO66667tGHDBtPHXHfddS5t3i3Obr31Vq1cudKw7vfff1ezZs309ttv684771RISIgH0nlXcHCwPv30U3Xo0MFUfV5engYPHqyTJ0/q2Weflc1mK3SGTz/9VI8//rhycnJMH/PRRx/5feOcVS5duqS3335bY8aM0e23364HHnhAnTt3tvz6NTs7W4888oj+85//mKq//vrrVb9+fUsz+aMJEya43Lj3zjvv6Mknn7QmEIqlN954Qz///LO2bt1qqn7VqlVq0KCBxo8fr7vuusvidP9n/fr1mjBhgmbOnOkz05MAAP6N5iIAAABcdikzXQ6DGiYXAUDR8t8NZmFKzc68ak0ik4uAYs/M65zJRQAAAL4rICBAlUuWVuWSpb0dBSiw3377TQsXLnTpGIfDoczMTGVlZSkzM1MpKSk6c+aMzpw5o9OnT2v//v06evSoHA6jb7Zd07lzZ82cOVNly5Z163l90dmzZ/Xmm2/qzTffVOvWrdW/f3/16tVL1apVc+s6mZmZmjBhgl5++WWlpKSYOqZUqVIaPHiwW9a/++679eqrr5qq/e677/Tdd9+pRo0aatOmjWrXrq2KFSuqZMmSCg4ONtXoULp0abVu3drlnJ9++qmaNm2qtDRz39ft2LFDzZo10zvvvKMHH3xQgYGBLq/pcDg0ffp0Pf300zp//rzp44KCgjRhwgQFBbH1SJLuuusuPffcc8rPzzesPXr0qO655x499NBDateunRo2bKiqVauqdOnSCgsLM91g0blzZ9nt9sJG94j27dtr2LBhmjhxoqn6/Px8Pffcc1q2bJk++eQT1apVq0DrHjt2TE8++aS+/fZbl4679dZbdffddxdoTZiXm5urOXPmaM6cOapYsaL69++v3r17q3Xr1m5vNFq1apWeeeYZbdq0yfQxNLNY4+2333b5mBdeeMHlSUdWW758uemmSXheSEiIZs6cqRYtWujSpUumjklISFDfvn11ww036LXXXlOXLl3c0uD6Zw6HQ9u2bdN3332nGTNm6ODBg249PwAAhcW/8AEAAHBZkplNp/ZIDyQBALhTjD3CeXNROs1FQHHHdR4AAAAAb/voo4/00UcfeTuGU0FBQXruuef0+uuvF6hJo6hbv3691q9fr8cee0zXXXedOnfurLZt2+qGG27QNddc4/L5HA6HtmzZooULF+qLL77QqVOnXDr+jTfeUFRUlMvrXskDDzygt99+W5mZV/+O7H8dOnRIhw4dKtB67du314oVK1w+rlatWvriiy80YMAA08ckJyfrkUce0bhx4/Too49qwIABiomJMTwuNTVVc+bM0ccff6zt27e7nHXMmDFq1aqVy8cVV9WqVVOvXr00f/5808ekpKRo8eLFWrx4cYHWPHz4sKpXr16gY71h3Lhx2rx5s0vPt59++kkNGjRQ//799fDDD6tly5amNnrv2LFDn376qaZOnaqMjAyXcsbGxmrq1KkuHYPCO3XqlMaOHauxY8eqdOnS6tq1q9q1a6c2bdqofv36BfpcPnPmjBYtWqQZM2Zo+fLlLh3bokUL9e/f3+U1AfiOWrVqaf78+br55ptdmgq0bt06devWTTVr1tSAAQN066236vrrry9Qo1FeXp727t2rdevWad26dfrxxx91+vRpl88DAICn0FwEAACAy8zc0T6ayUUAUORE2yN0/NKFqz6elElzEVDcGV3n2Ww2lQwtGne6BQAAAAArdOjQQf/6179Uv359b0fxCTt37tTOnTsvN4SVLl1a9evXV1xcnCpWrKiKFSsqKipKdrtdQUFBSktLU1pampKTk3Xw4EHt3btXu3bt0rlz5wq0focOHfTggw+67ecpX768Ro4cqffff99t57RK//79tWnTJn344YcuHRcfH6+RI0fq8ccfV4sWLdSsWTPVrl1bpUuXVnh4uDIzM5WUlKR9+/Zp27ZtWrt2rbKzswuckYkefzdq1Ch9//33ysvL83YUn2S32zV37ly1aNFCFy5c/fvq/5WTk6Np06Zp2rRpKl++vNq3b6/69eurWrVqioyMVEBAgFJTU3Xy5Ent2bNHK1eu1LFjxwqUMSIiQnPnzlWpUqUKdDzc48KFC5o5c6ZmzpwpSQoNDVXt2rVVt25dVa5cWRUrVlSZMmUUFhamsLAwZWdnKzU1VWlpaTp58qT27t17+U9BphuGh4fryy+/dPvEEgCe16FDB3311Vfq16+fy5/PBw4c0OjRozV69GhFRUWpSZMmql+/vipXrqxrrrlGERERCgsLU15enjIzM5WRkaFz587p7NmzOnHihOLj47Vv3z6XGpsAAPA2mosAAABwWWJGqtPHgwMCFRES6qE0AAB3iQl33hhqprkUQNFmdJ1XMixcAQEBHkoDAAAAAL6jZs2aGj16NNMJDFy4cEGrVq3SqlWrLF+ratWqmjVrltunR40aNUrz5s3TwYMH3XpeK4wdO1YXL14s0PSUvLy8y1OorHDrrbcy1eUqGjVqpGeffVbvvvuut6P4rBo1auinn35S586dlZSU5PLxZ8+e1X/+8x/3B9N/m58WLFigJk2aWHJ+FFxWVpZ27NihHTt2WL6WzWbTF198oQYNGli+FgDPuPPOOzV//nzdfffdSk9PL9A5UlJSPHYtDACAN7FjAAAAAJcZbS6PtkdwhyYAKIKiwwyai9KdNx0AKPoS051f58UwnRIAAACAn2ndurXmzp2r+Ph4Got8SKVKlfTLL7+ofPnybj93RESEFi5cqNKlS7v93O5ms9k0adIkDRw40NtR/uKWW27RnDlzFBwc7O0oPuvNN99Ur169vB3DpzVt2lRLlixRTEyMt6NcFh4ervnz56tTp07ejgIvGz9+vAYMGODtGADc7NZbb9WyZcssucYEAKA4obkIAAAAlyUZNBcZTb4AAPimGHuk08eTMtLkcDg8lAaANyRlGjSRGzQhAgAAAEBxULFiRT366KPauHGj1q1bpzvuuIMprj6kadOmWr9+va699lrL1qhTp442bNigevXqWbaGuwQEBGj69Ol64403fOLGb08//bS+++47hYaGejuKTwsMDNTcuXP18MMPezuKT2vZsqV+/fVX1a1b19tRVK1aNa1bt05du3b1dhR4UXh4uP7zn//w2gWKsVatWmnHjh3q0aOHt6MAAOCz+JYMAAAAlxlOLmLTKQAUSUbNoVl5ucrIzfZQGgDeYDi5iCZyAAAAAMWQzWbTddddp8cee0wrV67U8ePHNW7cOLVo0cLb0fAnAQEBevTRR7VmzRpVqVLF8vVq1qypbdu26a233vKpySlX8/LLL2vRokWqVKmSV9YvU6aMZs2apffff1+BgYFeyVDUBAUF6d///reWLVumpk2bejuOz6pZs6Y2bNigIUOGeC3DHXfcoc2bN6tRo0ZeywDva9asmTZu3Ki77rrL21EAWKxcuXJatGiRJkyYoLJly3o7zt8EBATo5ptvVvXq1b0dBQDgp2guAgAAwGVGzUVGky8AAL4pxm7cNGDUeACgaDOcUGnifQIAAAAAfF3FihXVqVMnPfvss1qwYIEuXLigHTt26OOPP9aNN97IlCJJzz77rB566CGPNPGYccMNN2j16tUaN26c7Ha7x9YNCQnRiy++qOPHj+uLL75Q165dFRIS4rH1XdW9e3ft2bNHjzzyiIKCgjyyZkBAgIYMGaK9e/fq7rvv9siaxU2nTp20ZcsWrVixQsOHD1f58uW9HcnnlChRQlOmTNHSpUtVq1Ytj61btWpVzZs3T3PnzlWZMmU8tq6/u+GGG/TWW2+pdevWPvGZXLZsWX344YfasGGDGjRo4O04ADxo+PDhOnDggJ577jlFRHj/9yO1atXSa6+9pkOHDumHH35Q5cqVvR0JAOCnPPONAwAAAIqExIxUp49zR3sAKJqiTTQNJGWkqVLJUh5IA8DTHA6HEjNpIgcAAABQtAQHBys0NPQvf6KiolSuXDmVK1dO5cuXV7ly5VS5cmXVrl1bderUUVRUlLdj+7w2bdqoTZs2kqQdO3Zo4cKFWrRokX799Vfl5uZ6JMMfd2R/7LHH1K1bN4+seTUREREaNmyYhg0bpoyMDG3atElbtmzRvn37dPDgQZ09e1YJCQlKTU1VVlaWcnJy5HA4vJK1RIkS+te//qVnnnlG7733nqZMmaLMzEy3rxMUFKT+/fvrxRdfVJ06ddx+fn/Uvn17tW/fXp9//rni4+O1YcMG/f7779q/f79OnjyphIQEJSYmKjMzU9nZ2crPz/d2ZI+76aabtGfPHs2ePVvvvPOOdu3aZck6NWvW1HPPPachQ4YoODjYkjVwdeXKldOLL76oF198UefPn9fixYu1aNEiLV26VImJiR7LERcXp4ceekgPPPCAIiP5XhTwVyVKlNC7776r559/XpMmTdK///1vHTx40CNr22w2NWrUSLfccovuuOMOJh0CAHyGzeGtbz0AAEChJSQkqFy5cn/5b+fOnfPJ0b3wfbn5eRoy619ydnH4cOuuahdb12OZAADukZOXqyGzxzutGdG6m9rGslkAKI6SMzP00LcTnNY8076nmlaq4aFEAADAF2RlZenQoUNOa2rUqKHQ0FAPJQIAeFN6ero2bdqk9evXa8OGDdqwYYPOnj3rtvPb7XbdcMMN6tWrl3r37u0zk5OKsqSkJM2dO1czZ87U6tWrlZ2dXeBzBQUFqVWrVurXr5/69u3L7xrhdb/++qtmzJihefPm6fjx44U6V/ny5XX77bdrwIABateunWw2m5tSwl0cDof27t2r9evXX/7z+++/u63RzmazqU6dOurRo4d69+6tG264gecB4AHz58/X9u3bTdU+8cQTio6OtjSPGZs3b9b8+fP1/fffa9euXW57HwoKClLdunXVpk0btWvXTh07dtQ111zjlnMDgDcU9++W/XlfLs1FAAAUYf58EQP3u5CeokfnT3Ja80Kn3rquQlUPJQIAuNODcycoJSvjqo/3b9xWPes182AiAJ5yLDFBz//wtdOat27ur9hS5ZzWAACA4qW4/wIYAFB4p06d0v79+3Xw4EEdOHBABw8e1PHjx5WcnKzU1FSlpqYqJSVFubm5CgkJUWhoqKKjo1WuXDldc801qlmzpmrXrq3GjRurSZMmTAmxUGZmpn799VetX79e+/bt06FDh3Ts2DGlpKQoLS1NmZmZCg0NVUREhCIjI1W5cmXVqFFDcXFxatWqlVq3bq2ICOPp54A3HDlyRGvWrNFvv/2mgwcP6vDhwzp37pzS0tKUnp4uh8Oh8PBwRUREqHTp0oqNjVWNGjXUqFEjtWnTRrVq1fL2j4ACSE1NvTxF7o/PoEOHDikxMfHy509qaqrS09MvTzuMiIhQ2bJlVb58eVWrVk21a9dW/fr11apVK5UqVcrbPxKAIiYlJUVbtmzRli1bdODAAR07dkzHjh3TxYsXlZ6eroyMDGVnZys4OFghISGKjIxUmTJlVLZsWVWqVEmxsbG69tprVb9+fTVo0EBhYWHe/pEAwG2K+3fL/rwvN8jbAQAAAOAbEtPTDGti7PxiCQCKqmh7uNPmoqSMVA+mAeBJiRnphjVc5wEAAAAA/lfFihVVsWJFtW/f3ttRYCAsLEw33nijbrzxRm9HAdyuevXqql69ugYOHOjtKPCgyMhINW3aVE2bNvV2FAB+KioqSh06dFCHDh28HQUAAI8J8HYAAAAA+IakTDPNRZEeSAIAsILRe3hihvHnAICiKdGgedBms6lEqN1DaQAAAAAAAAAAAAAAgK+huQgAAACSjDeVBwcGKjw4xENpAADuZjSVJInmIqDYMnp9R4eFKyCArwkBAAAAAAAAAAAAAPBX7BoAAACAJCkx3fmm0xh7pGw2m4fSAADczai5iMlFQPFl9Po2en8AAAAAAAAAAAAAAADFG81FAAAAkCQlZaQ6fZxNpwBQtEWbaC5yOBweSgPAkwwnF3GdBwAAAAAAAAAAAACAX6O5CAAAAJK4oz0AFHdG7+PZeblKz8n2UBoAnsR1HgAAAAAAAAAAAAAAcIbmIgAAAEjijvYAUNzF2CMNa4w+CwAUTYmGEyqN3x8AAAAAAAAAAAAAAEDxRXMRAAAAJHFHewAo7sy8jxs1IAAoevIdDiVlpjutoYkcAAAAAAAAAAAAAAD/RnMRAAAAlJuXp+SsDKc13NEeAIq2kmHhhjVGjaYAip7UrAzl5ec7raGJHAAAAAAAAAAAAAAA/0ZzEQAAAHTJ4G72EptOAaCoCwoMVIlQu9MamouA4sfM65rrPAAAAAAAAAAAAAAA/BvNRQAAADC16TSaTacAUOQZNRAk0VwEFDtmXtdc5wEAAAAAAAAAAAAA4N9oLgIAAIASM1INa7ijPQAUfUYNBEwuAoofo9d1gM1mONUMAAAAAAAAAAAAAAAUbzQXAQAAwPCO9qGBQbIHh3goDQDAKkaNomaaTQEULUbNRdFhEQoI4CtCAAAAAAAAAAAAAAD8GTsHAAAAYLzp1B4hm83moTQAAKtE2yOdPp6YzuQioLgxaiI3mmgGAAAAAAAAAAAAAACKP5qLAAAAYNhcZDTpAgBQNMSEO38/T8pMk8Ph8FAaAJ7AdR4AAAAAAAAAAAAAADBCcxEAAABMTC5yPukCAFA0GDUR5OTlKS0ny0NpAHhCYkaq08eZXAQAAAAAAAAAAAAAAGguAgAAgJK4oz0A+IXoMOP386R0558JAIoWrvMAAAAAAAAAAAAAAIARmosAAABgYnIRm04BoDiICTd+P0/MpLkIKC7yHQ4lZaQ7raG5CAAAAAAAAAAAAAAA0FwEAADg53LycpWSleG0hk2nAFA8lAwLl82gJpHJRUCxkZKVoTxHvtMamsgBAAAAAAAAAAAAAADNRQAAAH4uKdP53ewlc5MuAAC+LyggUFFhdqc1SRmpHkoDwGpG0yklKSY80gNJAAAAAAAAAAAAAACAL6O5CAAAwM8lmdl0amfTKQAUF0bv6WaaEQAUDaau88LCPZAEAAAAAAAAAAAAAAD4MpqLAAAA/JyZTeTRdjadAkBxEWN3Po2O5iKg+Eg0mEQWYLMpiuYiAAAAAAAAAAAAAAD8Hs1FAAAAfi4x3fkm8tCgYNmDQjyUBgBgNaPmIjOTTgAUDUbXedH2CAXYbB5KAwAAAAAAAAAAAAAAfBXNRQAAAH4uKdP5ptMYe4RsbDoFgGIjmslFgN8wus6LDnP+fgAAAAAAAAAAAAAAAPwDzUUAAAB+LjEj1enjRpvQAQBFi9HkosSMNDkcDg+lAWAlo2bBmHCu8wAAAAAAAAAAAAAAAM1FAAAAfi8x3XhyEQCg+IixRzp9PDc/T2nZWR5KA8BKXOcBAAAAAAAAAAAAAAAzaC4CAADwc0lGd7Rn0ykAFCtm3teNptoBKBqSMo2u85w3GwIAAAAAAAAAAAAAAP9AcxEAAICfS2TTKQD4lWhTzUXOPxsA+L58h8OwiTzaHu6hNAAAAAAAAAAAAAAAwJfRXAQAAODHcvJylZqV6bSGTacAULyUDAuXzaCG5iKg6EvJTFe+w+G0hiZyAAAAAAAAAAAAAAAg0VwEAADg15Iy0g1r2HQKAMVLYECASoY5bxw1mnYCwPclZpq5zjOeZAYAAAAAAAAAAAAAAIo/mosAAAD8WGJGqmENm04BoPiJNmgcZXIRUPQlphtf50VznQcAAAAAAAAAAAAAAERzEQAAgF8zM5mCTacAUPzE2J1PLjLTfArAtxld5wXaAhQVavdQGgAAAAAAAAAAAAAA4MtoLgIAAPBjRpMpwoKCZQ8O8VAaAICnGE4uSmdyEVDUGV3nRdvDFWCzeSgNAAAAAAAAAAAAAADwZTQXAQAA+DGjTacxTC0CgGLJ6P09KZPmIqCoM24u4joPAAAAAAAAAAAAAAD8F81FAAAAfizJsLnI+WQLAEDRFBPuvKkgMSNNDofDQ2kAWIHrPAAAAAAAAAAAAAAAYBbNRQAAAH7M+I724R5KAgDwpOgw581Fefn5SsnK9FAaAFZIzEh1+jgTKgEAAAAAAAAAAAAAwB9oLgIAAPBjRs1F3NEeAIono8lFkpRk0JgAwLclZaQ7fTya5iIAAAAAAAAAAAAAAPD/0VwEAADgx4zuaM+mUwAonsw0jyYaNCYA8F35+flKyjRqIuc6DwAAAAAAAAAAAAAA/BfNRQAAAH4qOy9XadlZTmvYdAoAxVPJULtsNpvTGqMGVAC+KzkrQ/kOh9MarvMAAAAAAAAAAAAAAMAfaC4CAADwU0kZzu9mL7HpFACKq4CAAJUMC3daY+ZzAoBv4joPAAAAAAAAAAAAAAC4guYiAAAAP5VoYtNpNJtOAaDYMmosMPM5AcA3cZ0HAAAAAAAAAAAAAABcQXMRAACAnzKz6ZQ72gNA8WX0Hs/kIqDoMrrOCwwIUGSo3UNpAAAAAAAAAAAAAACAr6O5CAAAwE8ZbRq3B4coLDjEQ2kAAJ5mNLWEyUVA0WV0nRcTFqEAm81DaQAAAAAAAAAAAAAAgK+juQgAAMBPJWakOn3caNM5AKBoM5pcZPQ5AcB3cZ0HAAAAAAAAAAAAAABcQXMRAACAn0pMN7ijPZtOAaBYi7FHOn08KTNd+Q6Hh9IAcCejyWNc5wEAAAAAAAAAAAAAgD+juQgAAMBPJWWy6RQA/JnR+3xefr5SszI8lAaAOxk1FzG5CAAAAAAAAAAAAAAA/BnNRQAAAH6KTacA4N/MvM8bfVYA8E1JTC4CAAAAAAAAAAAAAAAuoLkIAADATyWms+kUAPyZmfd5mouAoic/P19JmelOa2giBwAAAAAAAAAAAAAAf0ZzEQAAgB/Kzs1Vek6W05oYe6SH0gAAvKFEqF0BNpvTGqPpJwB8z6WsDDkcDqc1XOcBAAAAAAAAAAAAAIA/o7kIAADADyVmGm8WZ3IRABRvAQEBig5z/l7P5CKg6DHTFBhjD/dAEgAAAAAAAAAAAAAAUFTQXAQAAOCHEtNTDWuiaS4CgGIv2qDBIDHD+PMCgG8x87qNZnIRAAAAAAAAAAAAAAD4E5qLAAAA/JCZO9rTXAQAxV+MQYMBk4uAosfodRsYEKCo0DAPpQEAAAAAAAAAAAAAAEUBzUUAAAB+yGjTaXhwiMKCgj2UBgDgLUaNpGaaUQH4FqPXbYw9QjabzUNpAAAAAAAAAAAAAABAUUBzEQAAgB8y3nTqfJIFAKB4iDFoLmJyEVD0GL1uo8OYTgkAAAAAAAAAAAAAAP6K5iIAAAA/ZLjp1B7uoSQAAG8yai5KykhTvsPhoTQA3CEx3aCJPJzmIgAAAAAAAAAAAAAA8Fc0FwEAAPihxIxUp48zuQgA/EO0QXNRvsOhlMx0D6UB4A5JmUyoBAAAAAAAAAAAAAAArqG5CAAAwA8lZTjfKG40yQIAUDzEhBs3GSTSXAQUKUyoBAAAAAAAAAAAAAAArqK5CAAAwA8ZTS4ymmQBACgezDSTJqY7/8wA4Dvy8vN1yaAhkMlFAAAAAAAAAAAAAADgf9FcBAAA4Gcyc3OUnpPttIbJRQDgH6JC7Qq0Of9qIMlgCgoA35GcmS6Hw+G0hus8AAAAAAAAAAAAAADwv2guAgAA8DNmNokzuQgA/EOAzaaS9nCnNYk0FwFFRmIm13kAAAAAAAAAAAAAAMB1NBcBAAD4GTPNRTHhkR5IAgDwBUZTTGguAoqOxHQT13k0FwEAAAAAAAAAAAAAgP9BcxEAAICfMbNJPCaMTacA4C+MppiYaUoF4BuMXq9BAYGKDAnzUBoAAAAAAAAAAAAAAFBU0FwEAADgZxIzUp0+Hh4cqpCgIA+lAQB4m/HkIuefGwB8h1ETebQ9XDabzUNpAAAAAAAAAAAAAABAUUFzEQAAgJ8x2nQaE87UIgDwJzH2SKePJ2WkeygJgMIyvM4zeL0DAAAAAAAAAAAAAAD/RHMRAACAn0ky3HRKcxEA+BOj9/2kzDTl5+d7KA2AwkgymDTGdR4AAAAAAAAAAAAAALgSmosAAAD8jNEd7aPD2HQKAP4k2qDZIN/hUHJWhofSACiMRINJYzQXAQAAAAAAAAAAAACAK6G5CAAAwM8YNRfFhLPpFAD8iZlmA6PPDgC+wWhykVEzIQAAAAAAAAAAAAAA8E80FwEAAPiZJKPmInukh5IAAHyBmeYio88OAN6Xl5+vS5lMLgIAAAAAAAAAAAAAAK6juQgAAMCPZOZkKyMn22kNd7QHAP8SGWpXYIDzrweYXAT4vuTMdDkMamguAgAAAAAAAAAAAAAAV0JzEQAAgB8xszmcTacA4F8CbDZFh4U7rUnMSPVQGgAFZeY6jyZyAAAAAAAAAAAAAABwJTQXAQAA+JEkmosAAFcQY490+jiTiwDfZ66J3PlrHQAAAAAAAAAAAAAA+CeaiwAAAPwId7QHAFyJUWOpmeZUAN5l9DoNDghUREioh9IAAAAAAAAAAAAAAICihOYiAAAAP2LUXBQREqqQwCAPpQEA+AqjxlImFwG+LzEj1enj0fYI2Ww2D6UBAAAAAAAAAAAAAABFCc1FAAAAfsTojvYx9kgPJQEA+BKjyUU0FwG+z+h1avQ6BwAAAAAAAAAAAAAA/ovmIgAAAD9idEd7Np0CgH8ymlx0KTNd+fn5HkoDoCCMmouMXucAAAAAAAAAAAAAAMB/0VwEAADgR5Iy0p0+TnMRAPgno8l1DodDl7IyPJQGQEEYT6jkOg8AAAAAAACAOTabzfBPhw4dvB0TAAAAgBvRXAQAAOBHjCYXcUd7APBPMeHG7/9GnyEAvMtochHNRQAAAAAAAAAAAAAA4GpoLgIAAPAjbDoFAFxJdJiJ5qJ0558hALwnLz9fyZnOJ1RGG0woAwAAAAAAAAAAAAAA/ivI2wEAAADgGRk52crMzXFaQ3MRAPinqNAwBQYEKC8//6o1SZk0FwG+6lJmuhwGNWYmlAEAAAAAAKB4yMzM1G+//abNmzcrISHB1DGNGzfW7bffbm0wAAAAAIDPorkIAADATyQZTC2SuKM9APgrm82mGHuEzqelXLWGyUWA70rMSDWsiTExoQwAAAAAXDVlyhTde++93o7hMofD6BYNAFB0ZGdna8eOHdq8efPlP7t371Zubq5L5xkyZAjNRQAAAADgx2guAgAA8BOJJpqLmFwEAP4rOsygucjE5wgA7zDz+oxmchEAAAAAAECRl5ubq127dv2lkWjnzp3Kzs72djQAAAAAQBFHcxEAAICfMHNH+2h7uAeSAAB8UUx4hHTh6o8nmfgcAeAdRhMqgwMDFREc6qE0AAAAAAAAcIe8vDzt2bNHmzdv1pYtW7R582b99ttvyszM9HY0AAAAU1asWKEVK1YY1g0dOlTVq1e3PA+M8XcG+DeaiwAAAPxEUka608cjQ8MUHMjlIQD4qxh7pNPHEw0+RwB4j9HkouiwCNlsNg+lAQAAAAAAQGGkp6erS5cu2r59u9LT+V4WAAAUXStWrNDrr79uWNehQwcaVXwEf2eAf2P3KAAAgJ8wmlwUExbhoSQAAF8UY3f+OcDkIsB3GTUXxYRznQcAAAAAAFBUZGdna926dd6OAQAAAADwMwHeDgAAAADPMLyjvcGmcgBA8Wb0OXApM115+fkeSgPAFUlGzUUGk8kAAAAAAAAAAAAAAIB/o7kIAADAT3BHewCAM0aTixz6b4MRAN9j2ETOhEoAAAAAAAAAAAAAAOAEzUUAAAB+gjvaAwCcMWoukow/SwB4R2JGqtPHaSIHAAAAAAAAAAAAAADO0FwEAADgBxwOB3e0BwA4ZabJ1OizBIDn5ebnKTkzw2mNmeZBAAAAAAAAAAAAAADgv2guAgAA8AMZudnKys1xWsMd7QHAv0WEhCo4INBpjdF0FACedykz3bAmmuYiAAAAAD5g8uTJcjgcPvEHAIqzoKAgNWzYUPfdd5/Gjx/v7TgAAAAAgCIiyNsBAAAAYL2kDONNp9zRHgD8m81mU7Q9QglpyVetYXIR4HsS041fl1znAQAAAAAAFE9BQUGqW7eurr/+ejVr1kzXX3+9GjVqpLCwsMs1jzzyiBcTAgAAAACKCpqLAAAA/ICZSRNsOgUAxBg0FyXRXAT4HDNNfzH2SA8kAQAAAAAAgJUCAwOv2Ehkt9u9HQ0AAAAAUAzQXAQAAOAHzNzRPjqM5iIA8HfRBo2mTC4CfE9SpvPXZXBgoMKDQzyUBgAAAAAAAO4QGBioOnXqXG4katasmZo0aUIjEQAAAADAMjQXAQAA+AGjzeBRoXYFBQZ6KA0AwFcZTbGjuQjwPUZN5DH2SNlsNg+lAQAAAAAAQGGVKFFCycnJCg8P93YUAAAAAIAfCfB2AAAAAFgvyWAzuNFmcgCAfzBuLkr1UBIAZiUZvC65zgMAAAAAAChaAgICaCwCAAAAAHgczUUAAAB+wGjSRDSbTgEAkqLtkU4fT8nMUG5+nofSADDD6DqP5iIAAAAAAAAAAAAAAGAkyNsBAAAAYD3uaA8AMCMm3PnngUPSpcx0lQ6P8kwgAIaMJlTSRA4AAOAZFy9e1OnTp70dwyOuueYalSpVytsxAAAAAAAAAABuRHMRAACAH+CO9gAAM2LCjD8PEtPTaC4CfAjXeQAAAN61fPlyjRw5Unv27PF2FI+qV6+exo8frw4dOng7CgAAAAAAAADADWguAgAAKOYcDofhHe3ZdAoAkKRog8lFkpSU6fwzBYDn5ObnKTkrw2lNjD3SQ2kAAAD8z/Lly9WpUydvx/CKPXv2qGPHjlq+fDkNRoALTp8+reXLl2v37t3at2+f9u/fr8TERKWmpio1NVUOh0MREREqUaKEKlSooNq1a2vatGkeyZabm6vjx48rMTFRaWlpSktLU3BwsCIiIhQREaEKFSqobNmyHsniK5KTk7Vs2TJt27ZNu3fvVnx8vJKSkpSSkqK0tDRFRUUpJiZGpUuXVqNGjdSyZUu1bdtWdevWtTzb1q1btWnTJm3fvl07duxQQkKCLl26pEuXLsnhcCgyMlJly5ZVXFycGjRooA4dOqhdu3YKDw+3PBsA8/Lz83Xq1ClduHBBaWlpSk9PV15eniIjI1WiRAlFRUWpZMmSiomJ8XZUt9mzZ49WrFihnTt3ateuXTp58qSSk5OVkpIiSQoPD1fJkiVVrVo11ahRQ9dff73atGmjRo0ayWazeTl94SQmJiohIUEXL15URkaGsrKyFBAQILvdrrCwMJUqVUqVKlVSWFiYt6N6ha9cJ6Wnp2vlypVau3atfv/9d8XHx+vChQtKSUlRZmbm5ddndHS0ateurfr166tx48bq3LmzoqL87+Z8eXl5OnHixOVryPT0dDkcDoWHh1++hqxQoUKRf/36opSUFJ07d07nz59XZmamMjMzL/+///Of4vY54suSk5OVkJCg8+fPX36fl3T5fT46OlqVKlVSRAR7tHwV72kAzUUAAADFXkZOtrLycp3WRNNcBACQFBEcquDAQOXk5V21xmhKCgDPuZSRblgTbWfTEAAAgFVGjhzp7QheN3LkSO3atcvbMQC369Chg1auXGlY53A4DGuOHz+uCRMmaMGCBdqxY4dhfVJSkpKSknTs2DHFx8ebyuuqnJwcrV+/XmvWrNHatWu1Z88eHT9+XHlOvhOSpKioKNWoUUPNmjVT27Zt1b59e9WoUcOSjK5YsWKFOnbsaFj32muvadSoUU5rcnNzNWvWLE2bNk0rV65Udnb2VWv/+Ls6fPiwNm/erC+//FKS1Lx5cw0bNkz33HOPWzcO/v7775o2bZpmz56tw4cPO629ePGiLl68qPj4eC1cuFDvvvuuoqKi1LdvXz322GNq2LCh23IBMCcxMVHr16/Xhg0b9Ouvv2rfvn06ceKEcnJyDI+Njo5W3bp1Va9ePdWtW1ctWrRQ69atFRRUNLb+HT9+XOPHj9fcuXN14MABp7XZ2dlKSkrS0aNHtWrVKk2ZMkWSVLVqVfXt21cjRoxQbGysB1IX3MmTJ/Xrr7/qt99+044dO7R//34dPnxYaWnmfr9SunRp1alTR02aNFGzZs3UpUsXVapUyeLU5hXH66T8/Hz98MMP+vzzz/XTTz9dbgi4kj+aeY8fP66dO3dqzpw5kqTQ0FB17NhRgwYNUt++fQ1fn7Nnz9amTZsMs7300ks+0xiSmZmpjRs3as2aNVq3bp3i4+N17Ngxw/exsLAw1ahRQ82bN1ebNm3UuXNnn7iGLEri4+O1evVqbdiwQbt27brc9G5WZGSkqlWrpurVq6t69eqqVauWWrZsqSZNmigkJKTQ+YYOHaqpU6cW6hxmruddMXnyZA0dOtSt5/xDQkLC5ff53377Tfv27dOhQ4eUnJxs6vjo6GjFxcWpSZMmatq0qTp37qyaNWtakvVq/O3v7Ep4TwOurGj8CwMAAAAFZmYTOHe0BwBIks1mU3RYhBLSrv7FZ2I6zUWAr+A6DwAAwHsuXLigPXv2eDuG1+3evVsXL15UqVKlvB0F8Dm7du3SqFGjNH/+fMOmHU9Zs2aNpk+frjlz5ujixYsuH5+SknJ5A92kSZMkSU2bNlX//v01aNAglS9f3t2RPSYvL0+ffvqpxowZo+PHjxfqXJs2bdKmTZv0xhtv6KOPPlKfPn0Kdb59+/Zp1KhRmjVrlqmN2leTkpKiL7/8UpMnT9Y999yjsWPH+t00KsDTLly4oG+++UZz587VihUrlJvr/IaQV5OUlKT169dr/fr1l/9bVFSUOnbsqK5du+rWW29VtWrV3BXbbY4cOaJRo0bp66+/NtVE5cyxY8f0/vvv66OPPtLAgQP1zjvvqEKFCm5KWjhnz57V0qVL9dNPP2nVqlU6evRooc534cIFrV27VmvXrr383xo2bKi+ffvq/vvv95mfuzB86Trpm2++0QsvvKCDBw8W6jxZWVlasmSJlixZopdeekn/+Mc/9OCDDyogIOCK9T/88IOpjf0jR470anNRbm6ufvjhB82aNUsLFixQamqqy+fIzMzUnj17tGfPnss/8/XXX69+/frp/vvvV3R0tJtTFw+HDh3SxIkTNWfOHO3fv79Q50pNTdXu3bu1e/fuv/z30NBQNWnSRK1bt9Ytt9yiDh06KDAwsFBrFUeJiYlatmzZ5ff5wjY3JiUlXf43wx/i4uJ0xx136IEHHqBRxUK8pwHGrnzlAgAAgGIjydSmUyYXAQD+Kybc+WdCUobrX7ABsEaiidcj13kAAADWOHPmjLcj+IzTp097OwLgU1JTU/XMM8+oSZMmmjt3rtc3zErS4sWL1aZNG7Vr104TJkwoUGPR1WzdulXPPvusYmNj9fjjj+vkyZNuO7en7Ny5U61bt9ajjz5a6MaiPztx4oTuvPNO3XbbbQXatJabm6uXX35Z9erV08yZMwvVWPRn+fn5mj59uq677jotXbrULecE8Ffx8fF66KGHVKVKFT388MP6+eefC9xYdDUpKSlasGCBRo4cqRo1aujmm2/Wt99+6/Z1CiI/P18fffSRGjRooKlTpxa6sejPcnNzNWXKFNWrV08zZsxw23lddeDAAb333ntq2bKlrrnmGg0aNEjTp08vdGPR1ezYsUMvv/yyqlatqnvuuafQjTDe4kvXSYcPH1a7du3Ut29ft///PHLkiEaMGKE2bdro999/d+u5PSUjI0Pjx49XXFycevXqpa+//rpA1zNXs3nzZj3zzDOqVq2ann/+ebdenxZ1u3fvVu/evRUXF6d33nmn0I1FzmRlZWnDhg368MMPddNNN6lixYp6+OGHtXz5crddexZVJ0+e1CeffKKOHTuqbNmyuuuuu/TFF19YNl12//79eu+991SzZk3deuut2r59uyXr+Cve0wDzaC4CAAAo5szc0b6kPdwDSQAARYHRlBMznysAPMOoiTwkMEj24BAPpQEAAAAAHDhwQM2bN9fYsWN9YnP34cOH1a1bN91yyy1at26dpWtlZGRo3LhxqlWrlv75z3/6xM9vxsyZM9W8efO/3DXc3RYsWKB27drp1KlTpo85evSo2rdvr7feesuyjddnz55Vjx49NG3aNEvOD/ij8+fP68EHH1S9evX0+eefKyMjwyPr5ufn68cff1SfPn1UpUoVrVq1yiPrXklSUpK6du2qJ598Umlp1v0+ITExUQMHDtTzzz/vsQ3wKSkp+te//qWWLVsqLi5Ozz//vH799VePbsDPycnR119/rbp16+rpp59WZmamx9YuLF+6Tpo9e7YaN26sNWvWWLrOhg0b1KRJE/3nP/+xdB13mzNnjuLi4jRy5EgdOXLE0rWSk5P13nvvqU6dOn5/TZKenq7HH39cDRs21Pz585Wfn+/xDOfOndNnn32mTp066cKFCx5f39uys7M1ZcoUde7cWVWrVtVjjz2mFStWeLQR0uFwaNGiRWratKmGDBmixMREj61dXPGeBriG5iIAAIBizuiO9iVC7QoKYKwxAOC/jKacmJmIB8AzjJr9YuwRstlsHkoDAAAAAP5t9erVatmypfbu3evtKJKkCRMmqEGDBvrpp588um56err+8Y9/qEWLFjp06JBH13bVO++8o3vuuUdZWVmWr7V9+3a1bdtW58+fN6zds2ePWrVqZXlDmPTfCSBDhw4tcpueAV80ZcoUxcXFacKECV7ZEP6HM2fOeO399+DBg2rVqpWWLVvmsTXfe+89PfHEEx5Za+3atXr00Uf166+/emQ9Z3JycvTBBx/o+uuv165du7wdx5AvXSeNGTNG/fr1U3JyskfWy8rKUr9+/fTRRx95ZL3COH36tLp376677rrL49MoExISNGTIEPXu3VspKSkeXdsXHDhwQM2aNdO4ceO8+hni7w4dOqR7771Xv/zyi9f/HhwOh6ZNm6ZGjRpp9erVXs1SVPGeBhQMzUUAAADFnJlNpwAA/CHa4HOByUWA7+A6DwAAAAB8w9atW3XLLbfo4sWL3o6inJwcjRgxQg8++KDS09O9lmPbtm1q3ry5RzeYu+KDDz7Qiy++6NFpE4cPH1afPn2Uk5Nz1ZodO3aoQ4cOOnPmjMdyORwODR482Cc2ywNFUVpamgYPHqx7771XSUlJ3o7jNX9MXIuPj/f42uPGjdOYMWM8vq4v2L17t9q0aePVaVVGfOk66eWXX9Zzzz3n8XUdDoeefPJJff755x5f26w1a9aoWbNmWrJkiVdzzJ8/v0g0qbvT1q1b1apVK59ovoPvOX78uG666SZuBuAi3tOAggvydgAAAABYy2jChNEmcgCAfzFqRkjOylBuXp6CApl6B3gb13kAAAC+rd2T9yuqQhlvxyiUlDPntfrDL70dA/Bphw8fVo8ePXzibsQ5OTnq06ePvv/+e29HkSRdvHhRN998s2bPnq077rjD23Eu+89//qNnnnnGK2uvWrVKzz//vMaOHfu3x44dO6abbrpJCQkJHs+VlZWlQYMGafv27bLb7R5fHyiqzpw5o27dumnHjh3ejuJV586dU5cuXTw+FeDPXnrpJbVr106tW7f2WgZvSU5OVrdu3bRo0SJ16tTJ23H+wpeuk8aPH6+33nrLqxlGjhypmjVrqnPnzl7N8b+mT5+u+++/32kDtCft3btX7du31/Lly1WzZk1vx7HUgQMHdPPNN+vChQvejgIflp2drf79+ys7O1sDBw70dhyfx3saUDg0FwEAABRz3NEeAOAKM58LlzLTVToiygNpADjDdR4AAIBvi6pQRiUrX+PtGAAslJeXp/79++vs2bOGtQEBAbruuuvUokULXXvttbrmmmsUERGhgIAApaSk6MKFC9qzZ4+2bt2qrVu3upwlNzdX/fr185nGoj/8keubb77Rbbfd5u042rt3r4YOHWo4sSgwMFCNGzdWy5YtVbNmTZUrV06RkZHKyclRYmKiDh48qA0bNmjdunUub1obN26c7r33XjVo0ODyf8vMzFSfPn1MNRZVrFhRbdu2VZ06dVStWjVFRUUpJCREqampOn78uHbu3KlffvnF5elH+/bt0+uvv653333XpeMAf3X06FHddNNNOnDggLejeFVeXp769Omj/fv3G9ZGRESoZcuWaty4sWJjY1WqVClFREQoJydHSUlJOnz4sDZt2qS1a9e6PH0vNzdX9957r3bu3Kng4OCC/jhFVmZmpu68805t2LBBtWrV8nYcSb51nfTjjz/qscceK8iPIZvNdvmaoHbt2ipTpowiIyOVnZ2t5ORkHTp0SHv27NHKlSsNp5fl5ubq7rvv1p49ewqUxQqTJk3S8OHDlZ+f7+0of3HixAm1b99eGzduVOXKlb0dxxLZ2dm6++67vdJYjqInPz9fw4YNU2xsrNq0aePtOD6L9zSg8GguAgAAKOaMNp1G2yM9lAQAUBTEmPhcSMxIo7kI8AFc5wEAAACAd40ZM0YbN250WtO4cWM98MAD6tu3r0qXLm3qvCdOnND06dM1efJk01mefPJJffvtt6br/6xWrVrq3r272rVrp7p166pChQqKiopSbm7u5U2zu3bt0tKlS/Xjjz8qOTnZpfPn5OSoX79+Wrt2rZo2bVqgjO6Qm5urQYMGKSMj46o1tWvX1qOPPqp+/fqZ+vu6cOGCJk6cqPfee0+JiYmmczz66KNavnz55f/2yCOPaPPmzVc9Jjw8XMOGDdPgwYPVrFkzwzXy8/O1ZMkSjRo1Sps2bTKVS5I+/vhjPfLII6pSpYrpYwB/lJCQoE6dOunQoUMFOj4gIEAtWrRQmzZtdP311ys2NlZVq1ZVZGSkwsPDlZubq4yMDCUkJOj06dPav3+/du3apc2bN2vTpk3Kyspy809UcK+88orWrFlz1ccDAgLUp08fDR06VF26dDHV+JOWlqZvvvlGb7/9tqmmpT/Ex8dr/PjxeuKJJ0wfY5VKlSqpRYsWqlu3rurUqaMqVaqoQoUKKlOmjMLCwmS325WVlaVLly4pKSlJiYmJ2rVrlzZt2qRNmzZp586dLm+MTkxMVJ8+fbRlyxaFhIRY9JOZ5yvXSWfPntXgwYNd/v9ZvXp1jRgxQoMHD1b58uUN6/Py8rR8+XJ99tln+vbbb6/ayHzhwgWNHDlS4eHhLuWxwsyZMzVs2DDDpusrKVu2rLp06aLrr79eDRs2VJUqVVS+fHnZ7XYFBgYqLS1NZ8+e1cGDB7Vx40YtW7ZMa9ascWmtU6dOqXfv3lq9erXCwsJczujr3n///QI1y0VHR6tz585q2rSpatasqbi4OJUpU0bh4eGKiIhQSEiIsrKylJmZqQsXLighIUFHjx7V/v37tWfPHm3atEkHDx50688yZcoUTZky5YqPjRo1Sq+//rrhOZYvX64OHTq4NZeVypYtqxYtWqhevXqqU6eOqlevrvLly6ts2bKy2+0KCwtTfn6+kpKSLv/5/ffftWnTJm3evFnbtm1z+SYFWVlZuvPOO7V7926VKlWqUPmL498Z72mAe9gcBXkVAQAAn5CQkKBy5cr95b+dO3dOZcuW9VIi+BqHw6Gh/xmvnLy8q9bc27yjusQ19GAqAIAvS8vO0vA5nzmtebLdLWpehZHdgDfl5uVp8Ox/Oa0Z0bqb2sbW8VAiAABQ1GRlZRluhqxRo4ZCQ0M9lKho2b17918mTlxJj/eeK/KTiy6dOK3Fz73ntGbXrl2qX7++hxLB10yZMkX33nuvqdrJkydr6NCh1gZykw4dOmjlypWGdSEhIcrOzr7iY5UrV9ZHH32kO+64QzabrUA5srKyTL0Pz5gxQwMHDnT5/N27d9dzzz2n9u3bmz4mNTVV06dP15tvvqlTp065tF716tW1ZcuWQm+E+18rVqxQx44dDevKlCmj8+fPX/Gx6Ohovf/++xo6dKgCAwNdznDmzBkNHDhQy5YtM33MqlWr1K5dOy1evFi33HLLVevuu+8+vfvuuwX6/Z/D4dCYMWP04osvmt5UPXLkSH3yyScurwXfZfY9aMiQIVfdZIr/k5mZqU6dOmn9+vUuHxsbG6vHHntMd999t665pmDXiVlZWVq9erW+++47zZs3TydPnvxbjTs+c808b8qUKaMLFy5cdWNt9+7d9fHHHysuLq5AGXJycjR69Gi99dZbpjfvVqhQQUePHrWkuWbJkiXq3r37FR8rU6aMunXrpu7du6tDhw6qVKlSodY6evSovvjiC02ePNnlz9tXX33V1Kbwgipq10k9e/bUwoULTZ83LCxMo0aN0hNPPFHgfw9v3bpVI0aMcNpcVaVKFR0/ftzwXIcPH1b16tULlMOZTZs26cYbb1RmZqbpYwIDA9W3b1898MADuvHGGxUQEODSmidOnNC4ceP073//W2lpzm+e9mf333+/Jk6c6NJavu7ixYuKjY013bRvs9nUq1cvPfXUU2rTpk2Brlf/7MKFC1q2bJl+/vlnfffddzp37tzfahISElSmTJlCrSMVrUaVvXv3qm7duld8LCoqSl26dFH37t3VqVMn1ahRo1BrnTt3TpMnT9bEiRNdnoI4ePBgTZ06tVDrO1OU/s7+wHua5xX375b9eV+ua68EAAAAFCnpOdlOG4skKcYe4aE0AICiIDw4RCGBzgcdG01LAWC9pEzj1yHXeQAAAABgrattmO3du7d27dqlPn36FHjDrCRTm3COHTumBx980KXzli9fXgsXLtTixYtdaiySpMjISD388MOKj4/Xo48+6tKxR44c0QMPPODSMe50tcai5s2ba9euXbr//vsLvFGzQoUK+uGHH9SrVy/Tx4wfP17p6el65JFHrvh4VFSUvvvuO3355ZcF3sBks9n03HPPacqUKaafi9OmTVNqamqB1gP8wciRI11uLCpTpoy+/PJL7du3T0888USBG4uk/3423HTTTfrkk0907NgxLVmyRH369Cn0RvOCOH/+/BWbfkJDQzVx4kQtXry4wI1FkhQcHKw33nhDX331lekNv2fOnNGsWbMKvKYrQkND1b9/fy1atEinT5/WV199pXvuuafQjUWSVK1aNb355ps6evSo3nnnHZc25r777rs6duxYoTMUli9cJ33//fcuNRbFxsZqw4YNeu655wq1Gbpp06Zas2aNnn766avWmGksssr58+d1++23u7QJv2fPntqzZ4++/vprdejQweVN+NJ/m8rGjBmjvXv3qmfPnqaP+/LLL7V06VKX1/NlU6dONd1YVKtWLW3dulXz58/XjTfe6Jb3+9KlS6tv376aMGGCTp06pV9++UWDBg1imsr/CAwMVM+ePTV79mydO3dOc+fO1bBhwwrdWCRJ5cqV03PPPad9+/Zp4sSJKlmypOljp02bVqAm5+KK9zTAvWguAgAAKMYSM4x/+RMdxqZTAMD/sdlshg0JSTQXAV5npskvmuYiAAAAAPC4ESNGaM6cOS5tDiuMkSNHunSX5BYtWmj79u1OJ+WYERkZqXHjxmn27NkuTYeYO3euFi1aVKi13alLly5auXKlWzaCBwcH6+uvv1adOuamCH/77bd65JFHdOTIkb89VqpUKa1atcqlZiVnBg0apH/84x+mapOTk/XNN9+4ZV2guFm4cKG+/PJLl4657bbbtHfvXt13330KCnJ+Yy9XBQQEqFu3bpozZ47279+vESNGWDKxxxVRUVFatmyZ7r//fredc8CAAXr//fdN10+aNMlta19JuXLlNHr0aB07dkxff/21evTo4fa/2z8EBQXp+eef1/bt29WsWTNTx2RnZ+udd96xJE9hefI6KScnx2lzz/+qXbu2Vq9erUaNGrll/aCgIL3//vsaM2aMW87nTiNHjjQ9ESs8PFzTpk3TggULVKtWLbesX7lyZS1YsMCl5+nw4cNdahzwddOnTzdV17ZtW23atEmNGze2LEtgYKA6duyoadOm6dSpU3r77bf/Nq3D30RFRemZZ57RwYMHtWDBAvXt29eyxiubzab7779fu3fvVpcuXUwfN3r0aEvyFEW8pwHuRXMRAABAMWZm02lMOJtOAQB/ZdRcxOQiwPvMNPlxnQcAAAAAntW/f3/961//KtBdjwvi+++/1/fff2+6/oYbbtDPP/+sChUquC1D3759NX/+fJc2sz/yyCPKyspyW4aCat68uebPny+73e62c0ZEROjzzz83VZuTk6MpU6b87b+HhYXphx9+cPsm0tdff101a9Y0Vfvtt9+6dW2gOLh06ZKGDx/u0jEvvvii5s2bp9KlS1uU6v/ExsZq/Pjx2rdvn5o3b275elcSEhKixYsXq02bNm4/9xNPPKGOHTuaql29erXOnTvn9gzR0dF69913dejQIb3yyise3Xxfp04drVixwvTEwUmTJlny/6AwPH2dNH36dO3fv99UbZkyZfTDDz+4pdn4fz377LN66qmn3H7egpo/f75mz55tqrZcuXJau3atBg0aZEmW559/3vR109GjR/XZZ59ZksPTEhIStH37dsO6MmXKaPbs2SpRooT1of6/mJgYvfDCCzry/9i77/ioyrT/499Jb0BCC71KCb1LLwIiAgIqKtjAtoLY3bWsBdddFHtd7IAisoIVRBQUpCtFDF1a6BBKEkgvM88fPioiZO5J5pwzST7v18vfs7/kmnN9J5mcMyT3de6kJMXGxtrWN1BERETogQceUFJSkp555hnVrVvXtt41a9bUvHnzdOWVVxrVz58/Xz///LPFqQIf5zTA/xguAgAAKMW8LTp1SaoQEWVPGABAieFttxOGiwDnefs5DA8OUWSIs3cpBQAAAIDTjRkzRi6Xy5H/Ro8ebfnzS0hI0Ntvvy2Xy2V5r99MmDDBuLZBgwb64osvVK5cOb/nGDhwoCZPnmxcv2fPHk2ZMsXvOXwRFxen2bNnKyrK/38j6dmzp093HT/Tyy+/rE6dOvkx0a/Cw8P1yCOPGNUuWLCAO2kDZ5g0aZIOHz5sXP/YY4/pP//5j63XBUmqW7eumjdvbmvP37z22mvq3r27Jcd2uVx6/vnnjb6ebrfbkl3yOnfurPvvv1/R0c7c1CkmJkafffaZGjVq5LU2NzdXM2bMsCGVGbvfJ3k8Hj333HPG9R988IHq169vWZ5nnnnGsp8NX+Tl5RkPOsXFxem7776zdMccSbrllluM35889dRTyszMtDSPHX744Qd5PB6vdX//+99Vo0YNGxL9VWRkpGU7sgWyevXq6cknn1TFihUd6R8SEqL33nvPeEjX6X9TOY1zGmANhosAAABKMW+LTstHRCkkKNimNACAksL7zkXpNiUBcC7e3ufFRkbbvnABAAAAAMoql8ulqVOnWjKoci7z5s3TunXrjGpDQkI0a9YsS3fOuOGGG3TDDTcY10+aNEn5+fmW5fHm6aefVp06dSw7/tixY4v0uL59+/q8M4ovrrzySqPFkjk5OVq9erVlOYCS5tChQ3rppZeM60ePHu3TAGhpMHDgQN10002W9mjTpo369u1rVLt06VJLszglNjZW06ZNM9r957333rMhkXdOvE9asGCBNm/ebFR744036sILL7Q0T1BQkN59912Fh4db2sebt99+W7t37/ZaFxQUpJkzZ9o2qDhhwgSj4asjR45o5syZNiSy1i+//OK1JigoyLLdVRDYwsLC9N577xmdM2fMmOHov6mcxjkNsAbDRQAAAKVYSqb3RacAAJwpNjKm0M+nZnEHHcBp3ob84qIK/zkGAAAAAPjP1VdfbclOM4V5+eWXjWsfeOABtWvXzsI0v3r++edVs2ZNo9qkpCR99tln1gY6hzZt2ujGG2+0tMegQYMUE+Pbv81dLpdefPFFawL9v/DwcA0fPtyodsWKFZZmAUqSF154wfjO8i1btvRpN7fSICQkxKfrUnGYDrIuX77c4iTO6dKli0aMGOG17qefftKhQ4dsSFQ4J94nTZ8+3aguKipK//nPfyxO86tGjRpp3LhxtvQ6m7y8POPneuedd1o+cHW6oKAgvfXWWwoO9n5j3LffftuGRNY6cOCA15r4+HhVr17dhjQIRA0aNNDtt9/ute7o0aNl9oYAnNMA6zBcBAAAUIp5XXTKcBEA4Cy8XR9O5WQpr6Ds3gUJCATehvxiI3ifBwAAAAB2cLlceuihh2zteejQIS1cuNCotlq1anrwwQctTvSrChUq6IknnjCud2pHhYceesjy3X7DwsJ0wQUX+PSYoUOHqkWLFhYl+sNFF11kVLdhwwaLkwAlQ05OjqZMmWJU63K59OabbyoiIsLiVIHl6quv1nnnnWdLr4svvlihoaFe63bs2KGcnBwbEjnjnnvuMar79ttvLU5SOCfeJ2VnZxsPMI8dO1bx8fHWBjrNgw8+6Nj5Yc6cOUZDLdWqVfPp/Zy/NG3aVNddd53XupUrV2r79u02JLJOenrh63gkqVatWjYkQSC78847jXapc/o87xTOaYB1GC4CAAAoxVKzC9+5iOEiAMDZmFwfUrPZvQhwEkPkAAAAABAY+vbtq4SEBFt7zpgxQwUFBUa1DzzwgKKioixO9IfrrrtOTZo0Mar96quvdPToUYsT/VnVqlWNd+4prvPPP9+n+ptvvtmiJH/WuXNno7pt27ZZnAQoGT7++GMdO3bMqPa6664z/hkrTcaOHWtbrwoVKqhVq1Ze69xut3755RcbEjmjU6dOqlevnte6xYsXW56lME68T/ruu+906tQpr3Uul8v2nYSqVKlitOuUFd58802jugceeEDR0c78feGOO+4wqvvyyy8tTuK8vLw8pyPAYdWrV1fPnj291jl9nncK5zTAOgwXAQAAlGIpmYUPF8Wy6BQAcBYm1wdv1xgA1krJ8jJEHsX7PAAAAACww5VXXml7zy+++MKoLiYmRmPGjLE4zZ8FBwcbL9TNz8/XV199ZXGiPxsxYoRCQkJs6dW6dWvj2kqVKmnAgAEWpvlDrVq1VKlSJa91O3bssCENEPhmzpxpVBcUFGT7Di2BoFGjRj4PUxZXx44djep27txpcRJn9enTx2tNYmKiDUnOzYn3Saa7ePTq1UsNGjSwOM1f2f3eTJIOHz6sBQsWeK2LiYnRjTfeaEOis2vTpo2aN2/utW7+/Pk2pLGOyfuwPXv2yO1225AGgawknOedwDkNsBbDRQAAAKWUx+NRqrdFpwwXAQDOwmQowdvueACsk1eQr/Sc7EJrYiN4nwcAAAAAVnO5XBo6dKitPTMyMrRq1Sqj2iuuuELly5e3ONFfXX/99QoPDzeqXbhwocVp/syuAR5JatiwoXFt3759FRwcbGGaPzPJlpqaqpycHBvSAIErOzvbeFBh0KBBaty4scWJAs/AgQNt72n6dT5y5IjFSZzVokULrzWbNm1ybEDBifdJkrRo0SKjumHDhlkb5Bx69OihihUr2tpz3rx5Rq+Dyy67TDExMTYkOrdBgwZ5rVm2bFmJHrypXLmy15qUlJQyuyMN/mBynj969Gipv96diXMaYC2GiwAAAEqpjNwc5bkLCq2Ji3T2H1EAgMAUGRKm8ODC7+DKzkWAc1KzM73WsHMRAAAAAFgvISFBVapUsbXnkiVLlJuba1R76aWXWpzm7CpUqKB+/foZ1do9XNSzZ0/betWuXdu4tnv37hYm+SvTbMnJyRYnAQLbokWLlJnp/XdxknTttddanCYw9erVy/ae9evXN6or7Yut69at67UmMzNT+/btsyHNXznxPik7O9t4F4+LLrrI4jRnFxISov79+9va03SnyEsuucTiJN517tzZa01GRoa2b99uQxprmL4P++c//8nAQRlncp6XpK1bt1qcJLBwTgOsxXARAABAKeVt1yKJnYsAAGfncrkU6+UakZKVblMaAGcyGe5jiBwAAAAArNe1a1fbe65evdqoLiIiwnjAxwqmOxUcOnRIBw4csDjNr+rWrasKFSrY0kuSoqOjjXdwatWqlcVp/qxSpUpGdampqdYGAQLcsmXLjOoiIiI0ePBgi9MEpjZt2tje02TXD0lKS0uzOImzypUrZ1R36NAhi5OcnRPvk7Zs2aKCgsJvwCr9eh1s0qSJDYnOrkuXLrb2M9mBzeVy6YILLrAhTeFat25tVPfTTz9ZnMQ6psPuq1at0rhx4xgwKsMC/TzvFM5pgLUYLgIAACilTBZ9e1s4DgAou+KiCh9MSM1m5yLAKSY/fwyRAwAAAAg0U6ZMkcfjceS/qVOnWvKcmjVrZslxC2N6N/6OHTsaD7ZYoUePHsa1ps+puBo3bmxLn9OZLghs1KiRxUn+rHz58kZ1OTk5FicBAtu6deuM6rp166bIyEiL0wSe0NBQ412E/Ck2NtaorrSfw8LCwozqnFp07sT7pI0bNxrVdejQweIkhevYsaNtvXbt2qWUlBSvdeedd57xz5aVatWqJZfL5bWuJO/yER8frxYtWhjVvvHGGxo0aJB2795tcSoEokA/zzuBcxpgvRCnAwAAAMAaKV52LnJJqhARZU8YAECJ420wwWTnFADW8PbzFx4SqshQsz84AAAAAACKzok73m/YsMGozu474p+pSZMmiouLM1r4lZiYqIEDB1qeqUaNGpb3OJPJgsDg4GDFx8fbkOYPpgsVS/vCfMAb07vI9+rVy+IkgalGjRpGC2b9zXR41ulzmNvt1tatW5WYmKjt27drx44dOnjwoI4dO6Zjx44pIyNDOTk5ys3NVX5+vmU5jh49atmxC+PE+6SdO3ca1Tm5a5EkNW3a1LZepucxJ4bBziYsLEyxsbFe30Pu37/fpkTWuOyyy4yH4ebPn6+mTZtq1KhRGjt2rDp16mRxOvhi586dWr9+/e/n+f379+vYsWM6evSoTp06pdzcXOXk5JTK87wTOKcB1mO4CAAAoJRK9TJcVCEiSsFBbGQJADi72IjCh4u8XWcAWMfbDpXsWgQAAAAA9rB7WMXj8RjftdzpxVQul0vNmjXT8uXLvdaaLgQurkqVKtnS53ShoaFeaypUqKDg4GAb0vzBJJckSxdBAoEuNTVVR44cMapt3bq1xWkCU8WKFR3pG8jnsO3bt2vOnDn66quv9MMPP+jUqVO2ZzhTVlaWI32dGOo13b3D7h0Dz1SxYkVVqlRJx48ft7yX6Q6R9erVszaIDyIjI0v9Qvw77rhDzz//vPE5Ijc3V1OnTtXUqVPVuHFjXX755RoyZIg6deqkINb92Gr//v2aO3euvvzyS61cudKWn2NvnDrPO4FzGmA9rioAAACllLedi2IjY2xKAgAoieKivOxcxHAR4JjU7MJ//hguAgAAAAB72L3bzNGjR5WXl2dU6/Qd+SUpISHBqO7gwYMWJ/lVRESELX18Fai5pF8H2oCyat++fca1LVq0sDBJ4IqMjHQ6QqHsOodlZGTorbfeUseOHdW4cWPde++9WrhwYUAMFklSdna2I33tfp8kmQ8XVa9e3eIk3lWrVs2WPnv27DGqe+mll+RyuQLiP5P3hidOnCjul8ZRFStW1J133lmkx/7yyy+aOHGiunTposqVK+vSSy/Viy++qDVr1jAYbpG8vDzNnDlTffr0Ue3atTV27FjNnTs3IAaLJOfO807gnAZYj52LAAAASilvi77jIqNsSgIAKIm8DSek52YrryBfocH8agGwW0qmtyFyhosAAAAAwA7lypWztZ8vQzi1atWyMIl/M9g1XGS604XdAjVXaWH3HeUrVaqkLl262NYP1jEdLnK5XKpTp47FaQJTWT9/5ebmavLkyZo4caKSk5OdjnNOOTk5jvS1+32S9OsgtomqVatanMS7KlWq2NKntO6GURp2annkkUf03XffacWKFUU+RkpKij799FN9+umnkn4d+mzfvr06d+6srl27qnv37ra91kojt9ut6dOna8KECcY7yDrBqfO8EzinAdZjBRAAAEApxc5FAIDiiDO4TqRmZapKTHkb0gA4XarXIXKGiwAAAADADuHh4bb2M10wKwXGolnTDL48L8BXDz74oL7//nvb+vXq1UuLFy+2rR+sc+TIEaO6KlWqKCSEJXhlzZo1azR69Ght2rTJ6Sheud1uR/ra/T5JMl+cHRsba22QAMpw4MABW/rYrTQsxA8LC9Mnn3yiDh06+G1gIisrS8uWLdOyZct+/1iTJk3Uv39/DRgwQH379g34XecCxfbt2zVmzBgtX77c6SheOXWedwLnNMB6QU4HAAAAgDVYdAoAKA6TnU9SstJtSALgTN53qGSIHAAAAADsYPeODaYLjqKjoxUWFmZxGu8qVapkVMdCKgCBKCOj8N/B/cb0XIfSY/LkyerSpUuJGCxykhM7W5nu3hEI75PsGr5KTU21pY/dcnNznY7gF/Hx8Vq8eLEaN25sWY9t27bp1Vdf1ZAhQ1SlShVdccUV+vzzz5Wfn29Zz5Lus88+U9u2bUvEYFFZwzkNsB7DRQAAAKWQx+MxWHTKcBEA4NxMrhPerjUA/C+vIF/pudmF1sRGRtmUBgAAAABgp+zswv89+JuIiAiLk5gxzWH6vADATiXtnAt7PPTQQxo3bhyL8gOU6eLsQBgusitDaR3i9ng8Tkfwm4YNG2r16tW67rrrLO+VkZGhWbNmadiwYapdu7Yef/xxnThxwvK+Jcnrr7+uyy67zHjIGPbinAZYj+EiAACAUig9N1v57oJCa0x2pAAAlF2RoWGKCCn8rnLedskD4H+pWZlea9i5CAAAAABKp5J0N37J/I78DBcBCEQMF+FMzz77rJ588kmnY6AQwcHBRnWBMBxmVwbeZ5UM5cuX17Rp07Ro0SJ16NDBlp6HDx/WhAkTVLduXT3++OMM00j66KOPdNttt8ntdjsdBefAOQ2wXojTAQAAAOB/JjtJxEUxXAQAKFxcZLQOnUo95+fZuQiwX0pWutcadqgEAAAAgNIpKMjs/rGBshjONIfp8wIAO5W0cy6stXjxYv3jH/8o8uNjYmLUqlUrtWjRQvXr11edOnVUtWpVVa1aVeXLl1dMTIyioqIUEhKi4OBgoyGZxYsXq0+fPkXOVBqZDvuZ7nBkJdOh8eLKy8uzpQ/8o3fv3lq9erW+/vprvfLKK/rqq68sv86kp6drwoQJmjZtmt5991317t3b0n6BauvWrRo9enSRv94RERFq0aKFWrZsqfr166tevXqqWrWq4uPjfz/PR0dHKyQk5PdzvTdJSUmqX79+kfKUVpzTAOsxXAQAAFAKmewkwR3tAQDexDJcBAQck/d57FAJAAAAAKWT6YJZuxaremOag10/AASiyMhIozruoF/6ZWRk6Prrr5fH4/Hpca1atdLIkSPVv39/tW3blmFaG5jumhgIO7RkZmba0iciIsK2XvCfAQMGaMCAATpw4IA++ugjffLJJ1q1apWlO17t3r1b/fr109NPP6177rnHsj6ByO1267rrrlNWVpZPj2vYsKFGjhypAQMGqHPnzgoJYUm+1TinAdbjTAYAAFAKeVvs7XK5VCHc7BfiAICyy9vuJyY7qADwL2/v8yJCQhUZGmZTGgAAAACAnUyHcHxdFGcV00VfDBcBCESmw0UscC39XnzxRe3du9e4vkePHnryySfVrVs3C1NJBQUFlh6/JIqNjTWqS05OtjZIAGWIjIw0Ok/985//1L///W8bEsEXNWvW1N133627775baWlpWrRokZYtW6YVK1Zo7dq1ft+Fq6CgQPfee68yMjL0yCOP+PXYgezDDz/U6tWrjetbtmypiRMnavDgwRam4jx/NpzTAOsxXAQAAFAKeVvsXSEiijsjAQC88rbLXWoWfzQF7OZtuMjbUCAAAAAAoOSKjjb7N19OTo5OnTqlcuXKWZyocEePHjWqi4kp/HdQAOAE03PokSNHLE4CJ2VmZurZZ581qnW5XPrPf/6jBx54QC6Xy+JkgTNMHEiqV69uVFeWhouio6N1/Phxr3Xswhb4KlSooGHDhmnYsGGSfv2e/fDDD1q+fLmWLVumVatWKSUlxS+9Hn30UTVu3FhXXnmlX44X6J544gnj2vHjx+u5555TWJj1N/rjPP9XnNMA6zFcBAAAUAp5W+zNolMAgIlYdi4CAk6q1+EiFmQBAAAAQGlVrVo149rk5GTHh4tMF8368rwAXy1evNjpCCihatWqZVR38uRJZWRkGA+AomT5+OOPlZqaalT7wgsv6M4777Q20GnS0/kbzZlMh4t27txpcZLCZWdn6+DBg7b0io+PN9p5i9dTyRMREaFevXqpV69ekiSPx6ONGzdq0aJFWrBggRYtWqSMjML/plSYW265Rb1791Z8fLy/IgekpUuXatu2bUa1d911l1544QWLE/2Bn8u/4pwGWI/b1QMAAJRC3hZ7M1wEADDh7XqRkZuj3Px8m9IAkLzvXBQbGWVTEgAAAACA3WrUqGFcm5SUZF0QQ7t27TKq8+V5AYBdTIeLJOcHFWCdDz/80Khu6NChtg4WSbJtOKUkqVOnjlHdL7/8YnGSwu3YsUNut9uWXqZfE15PJZ/L5VLLli11xx13aM6cOTp+/LjmzJmja6+9VlFRvv/t6OTJk3r00UctSBpYTM/z7dq1M97Jzl/4ufwrzmmA9RguAgAAKIVSMr0tOmW4CADgnckwakp20e94BcB33oaL2LkIAAAAAEqv8uXLG+9GZHr3bStt3brVqK5mzZoWJwEA39WqVUtBQWZL6zZs2GBxGjghPz9fS5cu9Vrncrn09NNP25Doz/bt22d7z0DXvHlzo7r169dbG8SLn376ybZedevWNaoz2QkEJUt4eLgGDx6s9957T4cOHdILL7zg846h06ZNM96NtKRatGiRUd1TTz2l4OBgi9P8Gef5v+KcBliP4SIAAIBSKNXrolOGiwAA3pkMo3q75gDwL28/cwyRAwAAAEDp1rRpU6O6xMREi5MULjc313i4KCEhweI0AOC78PBwNWnSxKh27dq1FqeBExITE5Wenu61rlevXmrcuLENif7M6Wt9IGrRooVR3Y4dO3T06FGL05zbypUrbetl+j5r27Ztys/PtzgNnFK+fHnddddd2rFjh2644Qbjx+Xk5Gj27NkWJnPW8ePHjf7NUr9+ffXv39+GRH/Gef6vOKcB1mO4CAAAoJTxeDxed5HgjvYAABNGOxcxXATYJrcgX+m52YXWMEQOAAAAAKVby5YtjeqWL19ucZLCrVu3TtnZhf8b9jetWrWyOA0AFE27du2M6r777juLk8AJpkOyF110kcVJ/srj8Ti++04gqly5smrXrm1U6+TPrZ29O3bsaFSXnZ2tzZs3W5wGTouOjtY777yj8ePHGz9m3rx5FiZylulurwMGDLA4ydnZuctZScE5DbAew0UAAAClzKmcbBW43YXWxEZG2ZQGAFCSRYSGKTIkrNCalEzvd+0D4B8mO4UxXAQAAAAApVvr1q2N6jZt2uToHfkXL15sVOdyuYwHpgDAbh06dDCqS0xM1OHDhy1OA7vt2rXLqM6JIdn169frxIkTtvctCXr37m1U9/nnn1sb5By2bt1qPNDgDy1atFBUlNn6EAYly44XXnhBzZs3N6pdtWpVsXoFBQXuMvVAPs8fP35cP//8s+19pcD+nnFOA6wXuGcAAAAAFElqlvdF3uxcBAAwFRtV+KBCqpfd8gD4j8lOYbEMFwEAAABAqdatWzejOo/Hozlz5lic5tw+/fRTo7pWrVqpXLlyFqcBgKLp16+fUZ3H49HMmTMtTgO7mQ7v1KpVy+Ikf1WadxIprj59+hjVzZkzR6dOnbI4zV/NmDHD1n7BwcHq0aOHUe0XX3xhcRoEipCQED3yyCNGtcePHy/WMGNoaKhRXX5+fpF7FFUgn+fnz58vt5cbS1slkL9nnNMA6zFcBAAAUMqYLDrljvYAAFPerhkpmQwXAXZh5yIAAAAAQNu2bVWpUiWj2lmzZlmc5ux2796t1atXG9X279/f4jQAUHQtWrRQ3bp1jWqnTZtmcRrYLSPD7O8fpjso+NP7779ve8+S4qKLLjLadSM9Pd32r2N+fr7efvttW3tK0tChQ43qvv/+e+3du9fiNAgUAwcONB4iOXDgQJH7hIWFGdVlZWUVuUdRBfJ5/r333rO9528C+XsmcU4DrMZwEQAAQCnjbbgoyOVS+fBIm9IAAEq62Agvw0UGww4A/MPbz1tkSJgiQs1+4Q8AAAAAKJmCgoLUt29fo9pvvvlGu3btsjjRX73++uvyeDxGtQwXAQh0Q4YMMapbv369vvnmG4vTwE4FBQVGdWlpaRYn+bNFixZp27ZttvYsSapXr65evXoZ1T777LPKy8uzONEfpkyZokOHDtnW7zdDhw6Vy+XyWud2uzV58mQbEiEQlC9fXnXq1DGqTU9PL3If011KU1JSityjqAL1PL9z504tXLjQ1p6nC+TvmcQ5DbAaw0UAAACljLc72leIiDK6Uw8AAJIUF1X4cJHJTioA/CMlq/A/3sR6+XkFAAAAAJQOI0aMMKpzu9168cUXrQ1zhrS0NOM78leuXFl9+vSxOBEAFM/o0aONaydMmGA8XInAFxlpdsPOI0eOWJzkz/71r3/Z2q8kGjlypFHd7t279frrr1uc5lcZGRmOfe9q1KhhPND92muv2f6ahnOqVKliVFeca5tpj4MHDxa5R1EF6nn+3//+t9xut609TxfI3zOJcxpgNVaVAgAAlDLe7mgfF8miUwCAOW/XDXYuAuyTmpVZ6OfjvOw0BgAAAAAoHYYMGaLY2Fij2jfeeEN79uyxNtBpnnnmGZ04ccKoduTIkQoNDbU4EQAUT/v27dWuXTuj2pUrV2rKlCkWJ4JdTK+1iYmJ1gY5zRdffKHFixfb1q+kGjlypOLi4oxq//nPf2rv3r0WJ5IeeOAB7d+/3/I+53L77bcb1Z06dUoPPfSQxWkQKFJTU43qTHeyOZv4+Hijuh07dhS5R1EF4nn+p59+0vvvv29bv7MJ5O/ZbzinAdZhuAgAAKCU8baDRFxkjE1JAAClgbfrRmZejnLy82xKA5RtXncuYogcAAAAAMqE8PBw4zvy5+bm6o477rA40a+2bdum5557zrjel91AAMBJpgtYJem+++7T7t27LUwDu9SrV8+obu7cudYG+X9paWkaP368Lb1KupiYGN16661GtadOndLIkSOVk5NjWZ7PP/9cr732mmXHN3HxxRerUaNGRrXvvvuuPv/8c4sTwWlut1v79u0zqjUdNjmbhg0bGtWtXbu2yD2KyvQ8/+WXX1ob5P/l5eXp5ptvVkFBgS39ziWQv2e/4ZwGWIfhIgAAgFLG2w4SLDoFAPjC5LrhbbAVgH943aEyivd5AAAAAFBW3HvvvQoODjaq/eKLLzRt2jRL8+Tl5Wn06NHKzs42qu/fv7/xTiAA4LRrr71WTZo0MapNSUnRZZddpszMwnchR+Br2rSpUd3KlSu1bds2S7N4PB5de+21xoMAkO68807FxJjdeHXFihW64YYb5Ha7/Z7jxx9/1NVXXy2Px+P3Y/siKChI//nPf4zrr7/+elt3a4H9vvnmG2VkeP8bb8WKFVW1atUi94mPj1eFChW81iUmJurw4cNF7lMUpuf5ffv2aeHChRanke6++25HB3Z+E8jfs99wTgOsw3ARAABAKePtjvZxDBcBAHxgct3wNvAAwD+871DJ+zwAAAAAKCsaNmyoq666yrh+7NixWrNmjWV5brvtNq1atcq4/uGHH7YsCwD4W3BwsJ544gnj+p9++klDhgwxHrhEYGrXrp1CQ0O91hUUFOi+++6zNMvdd9+tOXPmWNqjtImPj9eDDz5oXD9jxgyNHDnSrz+33333nfr162c0wGGHESNGqFu3bka1aWlpGjBggDZu3GhxKnPffPONJk+e7HSMYjl16pRuueUW7dq1y+koeuWVV4zqOnfuXOxeHTp08Frjdrv15ptvFruXL2rWrKlatWoZ1d53332WDCD+5oUXXnB8h7PTBer37HSc0wBrMFwEAABQirg9HqVmFX4XLBadAgB8wc5FQGDIzc9XRm5OoTWxEbzPAwAAAICy5PHHH1dERIRRbVZWlgYNGmTJ3ZoffPBBvfXWW8b1AwcOVM+ePf2eAwCsNGLECPXr18+4/rvvvlP//v2VnJxsYao/y8/P19tvv62vv/7atp6lWWRkpPGi5blz5+r111/3ewa326277rpLL730kt+PXRbcc889atCggXH9Rx99pPPPP7/Yi89zc3P1+OOP68ILL9SpU6fOWhMeHl6sHkX12muvKSwszKj28OHD6t69u+bPn29xqnMrKCjQp59+qi5dumjAgAEBsatLcRQUFOitt95SkyZNdN111zn2fP773/9q3rx5RrUXX3xxsft1797dqG7SpEmW3hDhbEyv7T///LMeeughSzI899xzuueeeyw5dlEF8vfsdJzTAP9juAgAAKAUSc/JUoGn8DtlmCwSBwDgNxEhoYoKLfwXcuxcBFgvJdv7z1lcVIwNSQAAAAAAgaJhw4Y+3ZE/OTlZffr08dui8+zsbN1888166qmnjB8TGRkZUHfkBgBfvPPOOypXrpxx/bJly9S+fXvLh30yMjL02muvqUmTJrr55pt16NAhS/uVJSNGjDCuve222/TBBx/4rffRo0c1ZMgQBouKISIiQu+//76Cg4ONH5OYmKg2bdrolltu0datW33ql52drWnTpqlZs2aaMGGCCgoKzlrXvHlzXXrppT4d219at26tiRMnGtenpaXp4osv1u23366TJ09amOzPDh48qEmTJqlhw4a69NJLfdohsyTIz8/X+++/rw4dOqhr1656//33bdvh6o033tBdd91lVBsREeHTbqnnMnjwYKO6zMxM9e7dWxMnTtSJEyeK3deEL+f5SZMm+fRvH2/S09N1ww03WL77XVEE8vfsdJzTAP8LcToAAAAA/MdkcTc7FwEAfBUbGa3MvNxzfp7hIsB6JjuE8T4PAAAAAMqeBx54QB999JE2bdpkVH/ixAkNHDhQd9xxhyZMmKDY2Ngi9V2+fLnGjRvn805ITzzxhOrXr1+knkBZM2HCBD3++OO29Zs2bZqmTZtW7ON4PB4/pAlMderU0X//+19de+21xo/Zv3+/LrroIo0YMUKPPPKIWrZs6bc8a9as0dSpUzVjxgylpKT47bj4w6hRo3T//fcrPT3da63b7dY111yjJUuW6Pnnn1d0dNF+X5ufn6/33ntP999/v44dO3bOugYNGmjXrl1F6lGWdO3aVY8++qgee+wx48f8trvMW2+99fvuEp06dVLjxo1VpUoVRUdHKzc3V6dOndKuXbu0adMmLVq0SPPmzfP6sxgUFKS3337bkp2uTN1zzz367rvvjHeu8Xg8evXVVzVz5kw9+OCDuvHGG1WhQgW/5zp8+LDmzZunmTNn6ttvv5XbXfiNdUuLlStXauXKlRo7dqyGDx+uyy+/XP3791dUVJRf++zatUsPP/ywPvzwQ+PHXHvttapUqVKxe3fo0MH4nJWRkaF//vOfeuyxx3T++eerffv2atCggapUqaKoqCiFhJgte2/Tpo1q1arltW7AgAGqV6+ekpKSjI774IMP6ocfftBbb72lypUrGz3mTB6PR5999pnuueeeQvs6eZ4P5O/ZmTinAf7FcBEAAEApwnARAMAKcZHROnjy3H8MScny/kc1AMVj8j6PHSoBAAAAoOwJCwvTxx9/rE6dOhnfednj8eill17S+++/r7/97W+66aab1KBBA6+PKygo0LfffqtXXnlFc+fO9TnrsGHDdM899/j8OAAIJNdcc402btyoSZMm+fS4WbNmafbs2erXr59GjhypSy65xOcF26mpqVq+fLkWLlyozz//XLt37/bp8fBdbGysbr31Vj377LPGj3nzzTf1xRdf6NZbb9Xf/vY3VatWzehx+/fv14wZM/TGG294Xcxdo0YNPfPMM7rsssuMc5VlDz/8sBITE/Xxxx/7/NjfBj/85dFHH1Xnzp2Nh4tcLpffep9+zP/973/q3bu31q5da/y4Y8eO6d5779UjjzyiESNGaOjQoerfv79iYmKKlOPIkSNatWqVVqxYoUWLFmnNmjWlekDVm4yMDE2fPl3Tp09XRESEevfurV69eqlbt27q0KGDIiMji3TMBQsW6OOPP9bMmTOVn59v/Nhy5crpX//6l889z+WOO+4w3jFJ+nXQcvny5Vq+fHmR+k2ZMkWjR4/2WhccHKz77rtP48ePNz72Z599psWLF+uGG27QuHHj1LBhQ6PHHTt2TB999JHeeOMNrzdpiImJ0Ztvvql+/foZ5/K3QP2enYlzGuBfDBcBAACUIt4Wdwe5XCoX4d+7mwAASr+4yMJ/gWayowqA4knJLPx9XmRomCJCQm1KAwAAAAAIJE2aNNG0adN02WWX+XQ35BMnTujJJ5/Uk08+qaZNm6pr165q2rSpqlevrpiYGBUUFOjkyZPatWuXNm7cqMWLFys1NbVIGZs2bapp06ZZskAWAOz25JNPateuXZo1a5ZPj/N4PFqwYIEWLFggl8ulpk2b/n53/9q1aysmJkZRUVHKz89XVlaWjh07pgMHDmjHjh3atGmTduzYwV3vHfDwww/rvffeU3JysvFjDh8+/PvuY82aNVPXrl3VpEkTxcXFKS4uTh6PR+np6dq/f7+2b9+ulStXatu2bUbHdrlcmjJlisLCwor6lMqcoKAgTZ8+XYcPHy7yond/uOqqq3zaQUmSQkOt+b1/TEyM5s2bp+7du2v79u0+PTYzM/P33e6Cg4PVtGlTtWnTRnXr1lWtWrVUoUIFRUZGKjg4WNnZ2crOzlZKSoqOHDmiQ4cOaceOHdqyZYuOHz9uyXMrDbKzszV//nzNnz9f0q+v4fr166t58+aqW7euatSoofj4eEVGRioyMlJut1vp6enKyMjQ0aNHtW3bNm3dulUbN25UTk5OkTK8+OKLxsORJm6++WY9//zz2rt3r9+O6S9/+9vfNHnyZOPdYKVfB36ff/55Pf/882rYsKG6du2qFi1aqGLFioqLi1NQUJAyMjJ08OBB7dixQz/++KMSExONh01eeOEF46ElqwTy9+xMnNMA/2G4CAAAoBRJzcos9POxkdEK4g93AAAfedv1zmRHFQDFk5pd+M8Zu1MCAAAAQNk2bNgwvfHGG7rllluKdHfkrVu3auvWrRYkkxo0aKCFCxeqfPnylhwfAOzmcrk0Y8YMBQcHa+bMmUU6hsfj0ZYtW7RlyxY/p4O/VahQQW+88YaGDx/u82M9Ho82bdrk04J1b5555hldeOGFWrx4sd+OWRZEREToq6++0vDhw/Xtt9/a3v/CCy/UlClTfH5ceHi4BWl+VbVqVS1btkwXX3yxT7t9nK6goMDvr3H8ldvt1s6dO7Vz505b+t1yyy264YYb/HrMqKgovf766xo0aFDA7eYSEhKiKVOmqHv37srNzfX58f7+3owfP1433XSTkpKS/HbMogjk79nZcE4D/IPhIgAAgFLE285FsREsOgUA+C6W4SLAcSmZhf+cefs5BQAAgP1OHT7mdIRiKw3PAShLbrrpJuXn5+u2224LmJ0tGjbFGa4sAAEAAElEQVRsqG+//VY1a9Z0OgoA+FVISIg++OADxcbG6vXXX3c6Diw2bNgw/eMf/9DTTz/taI57771X9957r6MZSrJy5cpp3rx5uuGGG/TBBx/Y1vfaa6/VO++886ddiLKzs40ea+VwkfTrYvzFixfryiuv1Lx58yzthZJh1KhRmjx5siXHHjhwoJ5++mn9/e9/t+T4xdGxY0e9+OKLGjdunKM5RowYoZdeesnRDKcL5O/Z2XBOA4qP4SIAAIBSxNvi7rgoFp0CAHznbUeUrLxcZefnKSIktNA6AEXn9X0ew0UAAAABZ+kL7zgdAUAZdOutt6pu3boaOXKk0tLSHM3St29fffTRR6pYsaKjOQDAKkFBQZo8ebLOP/98jRs3TllZWU5HgoWeeuopHTt2TO+++64j/R944AFNnDjRkd6lSVhYmKZPn64LLrhAd9xxhzIyrLuBXmRkpCZOnKg777xTLpfrT58zHS6KjIy0ItqfxMTEaO7cuXrhhRf04IMPFmnnFpQO//jHP/Tkk08qKCjIsh733Xef4uLiNH78eOOfA7uMHTtWR48e1WOPPeZI/+uuu05vvfWWpV//ogjk79nZcE4DiiewzkAAAAAoFm93tGfRKQCgKEx2REll9yLAUt5+xuIiY2xKAgAAAAAIdAMHDtSPP/6ozp07O9I/NDRUDz/8sObPn89gEYAyYfTo0Vq9erW6devmdBRYyOVy6e2339Y//vEPW/uGhYVp2rRpevLJJ/8yoIKiu+GGG7RlyxZde+21lnxdL7zwQiUmJuquu+466/FTUlK8HqNixYoKDg72e7azcblcuueee7R69Wr16NHDlp6+atiwoQYMGOB0jFIpPj5en3zyiSZNmmTLYMuNN96ojRs3avjw4QF3Xnv00Uf18ssv2/azJ/368zdx4kRNmzZNYWFhtvX1RSB/z86GcxpQdAwXAQAAlCKp2Sw6BQD4X1yU9+uHt11VABSPt5+x2Mgom5IAAAAAAEqCxo0ba/ny5XrllVcUGxtrW99u3bpp7dq1euKJJxQSEmJbXwBwWvPmzbV06VJNmTJFNWvWdCRDfHy8HnzwQQ0cONCR/mWBy+XSpEmTNHv2bFWuXNnyfr169dL69et13XXXWd6rLKpdu7bee+89/fzzz7rlllsUE1O89RRhYWEaMWKEVq9era+//lrnnXfeOWsPHTrk9Xjx8fHFylMUrVq10pIlSzR79mw1adLE9v5nKleunK699lotXLhQ27dv14gRI5yOVCzlypXT66+/rsGDBysqyvm/64SFhWn8+PHavHmzhg8fbmvvhg0b6pNPPtG2bdv04IMPqmnTprb2L8ztt9+ub7/9VvXq1bO8V6tWrbR8+XI9+OCDlvcqrkD+np0L5zTAdwwXAQAAlBJuj8frHe1ZdAoAKIq4CO87F6VkptuQBCibcvLzlJmXU2gNQ+QAAAAAgDMFBQVp/Pjx2rNnjyZOnKiqVata1qtXr1765ptvtGzZMrVs2dKyPgAQyFwul0aPHq1du3ZpypQptpwPg4OD1a9fP3300Ufat2+fJk6c6MhAQllz2WWXafPmzRo/frxCQ0P9fvxWrVpp+vTpWrx4sRISEvx+fPxZy5Yt9cYbb+jQoUP65JNPdOutt6ply5YKDw8v9HGRkZFq27atxowZo1mzZunYsWP66KOP1KFDh0If5/F4dODAAa+5qlWr5tPz8KfLLrtMW7Zs0bx58zRw4EBbdrP5TdWqVXX99dfr448/VnJyst577z317du3ROyW4k1wcLD+9re/ac6cOTp+/Ljmzp2rsWPH2jLEcrqKFSvqnnvu0S+//KJXXnnF0d1GGzVqpIkTJ2rLli06ePCgZs+erccee0yjRo1St27d1LhxY1WqVElRUVG23rygV69e2rBhgx555BFFR3v/W7mvGjRooFdeeUVr165Vly5d/H58KwXq96wwnNMAcy6Px+NxOgQAACiao0eP/uUPQcnJyapSpYpDieCktKwMjf307UJr/tF7qNrUqGdPIABAqXLTrNcLHW64pl0PXdy0nY2JgLLjyKlU3T1nWqE1j/a7XE2rOnNHVAAAUDLl5ORo165dhdY0aNDA62Kqsur48eO23Km8JDh+/LijC5EAmMvLy9P8+fM1Y8YMffXVV0pLSyvW8Zo2baoRI0bo6quvDoi7QANAIFq/fr0++ugjffbZZ9qyZYtfjlmrVi0NGDBAF110kfr162frDnX4q4MHD+qtt97SBx98oO3btxf5OPHx8RowYIDGjBmj3r17e63fv3+/Zs+e7bWuc+fO6ty5c5FzlWVut1t79uzRsWPHlJ6erpycHEVHR6tcuXKKi4tT7dq1i7RAfefOnYXuavSbG264Qe+8805RovvdkSNH9Pnnn+vzzz/XkiVLlJ7uv5sO1qhRQ+eff7569OihXr16qW3btmVy0f2BAwe0cuXK3/9bt26dcnIKv/GcL2rUqKH+/ftr2LBhuuiiixQREeG3Y5d2J06c0NSpU3/f6ayo4uLi1LdvX1133XUaNGiQ1/PHyZMn9e6773o9brNmzXThhRcWOVdZxDmt+Er775bL8rpchosAACjByvKbGPxVUspRPfTVjEJrnhw4SnXjeH0AAHz39y/f14G0E+f8/KCEdrq6bQ8bEwFlx9bkA/rXwsL/SPzCkOsVXy7WnkAAAKBUKO1/ALZD8+bNtXnzZqdjOKp58+bauHGj0zEAFIHb7daGDRu0fPlybdq0Sbt379bu3buVkpKizMxMZWZmKjg4WNHR0YqOjla1atXUoEEDNWzYUO3bt1ePHj0s3QkJAEqj48ePa+XKlVq7dq127dql3bt3a//+/Tp16pQyMzOVnZ2tiIgIxcTEqFy5cr8PMDRu3FgJCQlq2rSpEhISVKdOHaefCs5h27Zt+v7777V27Vpt27ZN+/bt0/Hjx5WVlaWCggJFRUUpJiZG5cuXV7169dSkSRM1adJEXbt2VevWrUvl4mP81ccff6zLL7/ca92zzz6re++914ZEvnG73dq8ebNWr16tzZs3a8+ePdq7d68OHz6sjIyM389nQUFBCgsLU2RkpOLi4lSlShVVq1ZN9erVU/369dW0aVO1adOGNU7nkJeXpx07dmjnzp2//9+dO3cqOTlZ6enpOnXqlNLT05WRkSGXy6Xw8HBFRkaqUqVKqlq1qmrXrv379aNTp062745UWu3du1eLFi3SmjVrtGXLFu3bt0/JycnKyspSXl7e7+f5cuXKqXbt2r+f5zt16qROnTopODjY6aeAM3BOK5rS/rvlsrwuNzD2GwMAAECxpWR6v4tCbKT/t+oFAJQNsRHRhQ4XpWRm2JgGKFtSs7z/fPE+DwAAwH6vvfaa+vTp43QMR7366qtORwBQREFBQWrdurVat27tdBQAKDMqVaqkwYMHa/DgwU5HgUV+W0QOFOa7774zqmvWrJnFSYomKChILVq0UIsWLZyOUqqFhoYqISFBCQkJTkfBaerUqaPrr79e119/vdNR4Cec04A/831PRgAAAAQkb4tOg11BKhceaVMaAEBpE+dlcMFk+AFA0aR4+fmKCg1TeEioTWkAAADwm969e2vRokVq3ry501Fs17x5cy1atEi9e/d2OgoAAAAAlCjz5883qmvbtq3FSQAAAP6MnYsAAABKCW+LTmMjoxTENuoAgCKKiyp8uCglm+EiwCrehvfiImNsSgIAAIAz9e7dWxs3btSJEyd06NAhp+PYonr16qpYsaLTMQAAAACgxFm+fLl27drlta5JkyaqVq2aDYkAAAD+wHARAABAKeFtuIhFpwCA4vB2HUnNZLgIsIrJEDkAAACcVbFiRQZuAAAAAACFmjx5slFdr169LE4CAADwV0FOBwAAAIB/eLujfWxk4TtOAABQGG/Xkaz8XGXl5dqUBihbUrLSC/08Q+QAAAAAAAAAAAS27du3a+bMmUa1AwcOtDgNAADAXzFcBAAAUEp4X3TKcBEAoOhMriPeBl0BFE1qVmahn+d9HgAAAAAAAAAAgW38+PEqKCjwWhcbG8twEQAAcATDRQAAAKVEipcF3Sw6BQAUB8NFgHO8DZGzQyUAAAAAAAAAAIFr8uTJ+uabb4xqL730UoWHh1ucCAAA4K8YLgIAACgF3G630rILv6M9i04BAMVhch3xNugKwHfZ+XnKzMsttIYhcgAAAAAAAAAAAtPChQt15513GtePHz/ewjQAAADnxnARAABAKXAyJ0tuj6fQGhadAgCKIyw4RNFhhd8ljeEiwP9MdgRjiBwAAAAAAAAAgHN76qmntGHDBtv7zpkzR0OGDFFeXp5R/YUXXqi2bdtanAoAAODsGC4CAAAoBUwWczNcBAAorrjImEI/n5KVblMSoOwwGS7ifR4AAAAAAAAAAOc2d+5ctW7dWpdeeqmWLl1qeb/c3Fw98MADGjZsmLKzs40e43K59Nhjj1mcDAAA4NwYLgIAACgFzO5oX/iCcAAAvPE2wGByPQLgG5MhcnYuAgAAAAAAAACgcB6PR59++ql69uyptm3b6uWXX9bRo0f92qOgoEAzZ85Us2bNNGnSJLndbuPHjhkzRl27dvVrHgAAAF8wXAQAAFAKeFt0GhwUpHLhETalAQCUVt6Gi0yGIAD4xtuOYFGh4QoPCbUpDQAAAAAAAAAAJd/69et15513qkaNGurdu7eeeeYZrV69Wnl5eT4fy+1264cfftDDDz+sevXqaeTIkdq5c6dPx4iPj9ekSZN87g0AAOBPIU4HAAAAQPF5W3QaFxEtl8tlUxoAQGnlbXcUhosA/0vNyiz0896G/gAAAAAAAAAAwNnl5+fr+++/1/fffy9JioyMVLNmzZSQkKB69eqpWrVqqlixoiIiIhQcHKzs7GxlZmbq0KFD2r9/vzZu3Kj169fr5MmTRc4QEhKiWbNmqXLlyv56WgAAAEXCcBEAAEAp4G0xt7fF4AAAmGDnIsB+3obIeZ8HAAAAAAAAAIB/ZGVlae3atVq7dq1tPV955RX16NHDtn4AAADnEuR0AAAAABRfqpfF3HFRLDoFABSft+GinPw8ZeXl2pQGKBu8De2xcxEAAAAAAAAAACWPy+XSa6+9pltvvdXpKAAAAJIYLgIAACgVvO5cFMGiUwBA8cVGxnitYfciwL8YIgcAAAAAAAAAoHSJjo7W+++/r3HjxjkdBQAA4HcMFwEAAJQCXu9oz6JTAIAfmOyQkpKVbkMSoOxgiBwAAAAAAAAAgNKjZcuWWr16ta6++mqnowAAAPwJw0UAAAAlnNvtVlp2ZqE1cQY7TQAA4E1sZJTXGm+7rAAwl52fp6y83EJr4qJ4nwcAAAAAAAAAQGEqVarkdARVrFhRL7/8statW6eEhASn4wAAAPwFw0UAAAAlXFpOljweT6E1JjtNAADgTWhwiGLCIwqt8bbLCgBzJsN6vM8DAAAAAAAAAKBwn3/+udasWaMHHnhAjRo1srV3gwYN9Nxzz2nXrl26/fbbFRISYmt/AAAAU7xLAQAAKOFSstK91sSy6BQA4CdxEdFKz8k+5+dTMhkuAvzFZFiP93kAAAAAAAAAAHjXvn17tW/fXk8++aQ2btyoJUuWaMWKFVqxYoV2797t114NGzbUkCFDNHToUPXs2VNBQewDAAAAAh/DRQAAACWcySJu7mgPAPCX2Mho7Us7fs7Ps3MR4D8pmd6HyOMieJ8HAAAAAAAAAIAvWrRooRYtWmjcuHGSpCNHjigxMVG7d+9WUlKS9uzZoz179ujEiRPKzMz8/b+srCwFBwcrMjJSERERiouLU61atVS7dm01aNBA7dq1U/v27VWtWjWHnyEAAIDvGC4CAAAo4VKzC1/EHRIUrJiwCJvSAABKu7iowgcZvF2XAJjzNqwXHRausBB+vQcAAAAAAAAAQHHEx8erf//+TscAAABwFHstAgAAlHDedi6KjYySy+WyKQ0AoLSLi4wp9PMmO60AMONtWC+W3SkBAAAAAAAAAAAAAIAfMFwEAABQwnm7o723ReAAAPgiNsLLzkVZGfJ4PDalAUo3b0PkcQwXAQAAAAAAAAAAAAAAP2C4CAAAoIRLzSp8hwgWnQIA/CkuqvDrSk5BvrLycm1KA5RuqQyRAwAAAAAAAAAAAAAAGzBcBAAAUMKlZGUW+nmGiwAA/mRyXfG2qx4AMynZhf8sxUZG2ZQEAAAAAAAAAAAAAACUZgwXAQAAlHDedi6KZbgIAOBHJsNF3nZbAWAmNZOdiwAAAAAAAAAAAAAAgPUYLgIAACjBCtxupWWzcxEAwD6xEexcBNghOy9XWfm5hdbwPg8AAAAAAAAAAAAAAPgDw0UAAAAlWFp2pjxealh0CgDwp5DgYJULjyy0JsXLrnoAvDMZ0uN9HgAAAAAAAAAAAAAA8AeGiwAAAEqwVKNFpzE2JAEAlCXeBhpMrk8ACmfycxTLcBEAAAAAAAAAAAAAAPADhosAAABKMJM72rPoFADgb96Gi0yuTwAKx/s8AAAAAAAAAAAAAABgF4aLAAAASrCUrPRCPx8aFKzosHCb0gAAygpvAw0MFwHF5+3nKCYsQmHBITalAQAAAAAAAAAAAAAApRnDRQAAACVYqpdFp7GR0XK5XDalAQCUFexcBFjP5H0eAAAAAAAAAAAAAACAPzBcBAAAUIJ5W7ztbfE3AABF4e36kpqVIY/HY1MaoHTytkMl7/MAAAAAAAAAAAAAAIC/MFwEAABQgnkbLuKO9gAAK8RGxhT6+dyCfGXm5dqUBiidGCIHAAAAAAAAAAAAAAB2YbgIAACgBPO+6LTwxd8AABSFyVCDt11XABQulSFyAAAAAAAAAAAAAABgkxCnAwAAAKDovC06jYti0SkAwP/MhosyVKtCJRvSACWf2+3WwZMp2nUiWfvTjisjN1tH0tMKfQw7FwEAAAAAAAAAAAAAAH9huAgAAKCEOHPR6amcLKVlZxb6mNgIFp0CAPyvQmSU15qPE1dp1Z5fFB0WoVoVKqlBpaqqUS5OQUFsogx4PB5tST6gtft3aueJI9pz4qhyCvJ9OsaC7YlKTk9T+1oNlVC1plwul0VpAQAAAAAAAAAAAABAacdwEQAAQIDyx6LTuVvWaE9KMotOAQB+cfq1KdgVpAKP+5y1vxw7pF+OHfrTx8JDQlU3rrIaVozn2oQyKSM3R0t3b9HC7Yk6eDKlWMc6eDJFB0+m6Ktt61WjfJz6NWqlHvUTFB0W7qe0AAAAAAAAAAAAAACgrHB5PB6P0yEAAEDRHD16VFWrVv3Tx5KTk1WlShWHEsEf/Lno9HQsOgUAFBXXJqB4jpxK1Reb12pF0lafh8V9ER4coq71muqSZu0VXy7Wsj4AAKB0yMnJ0a5duwqtadCggcLDea8OAAAAAAAAAPhVaf/dcllel8twEQAAJVhZfhNTGrHoFAAQaLg2AcVT4Hbry63r9HHiKuW5C2zrGxoUrMtbddagpu0UFBRkW18AAFCylPY/AAMAAAAAAAAA/K+0/265LK/LDXE6AAAAQFln96LTnIJ8Ldq5Uct2b2HRKQDgrLg2AcV3IO2EXl/1jXYeP2J77zx3gT5cv1yr9+3U3zr3V80KFW3PAAAAAAAAAAAAAAAASg6GiwAAABzEolMAQKDh2gQUj9vj0Zdb1ml24kpbdys6mx3HD+uhr2bo8lZdNCihnYJcLkfzAAAAAAAAAAAAAACAwMRtgAEAABzg9ng0Z/NaPfTVDEcWb5/ut0WnczavldvjcTQLAMA5XJuA4st3F2jyyq/14fpljg8W/ebXob1lmrzya+UHSCYAAAAAAAAAAAAAABBY2LkIAADAZvnuAr2xaoGWJ21zOsrvflt0ujf1qP7Wub9CgoKdjgQAsBHXJqD4cgvy9fKyeVp3YLfTUc5qedI2ZeXl6o7uFyssmF8JAgAAAAAAAAAAAACAP7BzEQAAgI1yC/L14tIvA2rx9umWJ23Ti0u/VG5BvtNRAAA24doEFF++uyCgB4t+s+7Abr2y7Ct2MAIAAAAAAAAAAAAAAH/CcBEAAIBNWHQKAAg0XJuA4nN7PHpj1YKA/zn6zdoDu/TGqgVyezxORwEAAAAAAAAAAAAAAAGC4SIAAAAbsOgUABBouDYB/vHllnUBu/PXuSxP2qZ5W9c5HQMAAAAAAAAAAAAAAAQIhosAAABswKJTAECg4doEFN+BtBOanbjS6RhFMuvnlTqQdsLpGAAAAAAAAAAAAAAAIAAwXAQAAGAxFp0CAAIN1yag+Arcbr2+6hvluQucjlIkee6CX3cDc7udjgIAAAAAAAAAAAAAABzGcBEAAICFWHQKAAg0XJsA/5i3dZ12Hj/idIxi2XH8sL5kNzAAAAAAAAAAAAAAAMo8hosAAAAsxKJTAECg4doEFN+RU6manbjK6Rh+MTtxlY6cSnU6BgAAAAAAAAAAAAAAcBDDRQAAABZh0SkAINBwbQL844vNa0vs7l9nynMX6IvNa52OAQAAAAAAAAAAAAAAHMRwEQAAgEVYdAoACDRcm4Diy8jN0YqkrU7H8KsVSVuVmZvjdAwAAAAAAAAAAAAAAOAQhosAAAAswKJTAECg4doE+MfS3VuUU5DvdAy/yinI19LdW5yOAQAAAAAAAAAAAAAAHMJwEQAAgAVYdAoACDRcm4Di83g8WrA90ekYlliwPVEej8fpGAAAAAAAAAAAAAAAwAEMFwEAAPgZi04BAIGGaxPgH1uSD+jQyRSnY1ji4MkUbU0+4HQMAAAAAAAAAAAAAADgAIaLAAAA/IxFpwCAQMO1CfCPtft3Oh3BUmv273I6AgAAAAAAAAAAAAAAcADDRQAAAH7GolMAQKDh2gT4x84TR5yOYKldpfz5AQAAlDYej4edXAEAAAAAAAAAfsFwEQAAgJ+x6BQAEGi4NgHF53a7tefEUadjWCop5ajcbrfTMQAAAGBo5Z5ftGrvdqdjAAAAAAAAAABKgRCnAwAAAJQmZWnRaVAQc+oAUBJwbQL84+DJFOUU5Dsdw1I5+Xk6eCpFtSpUcjoKAAAAvMjKy9X0n5bKJalNjXqKDA1zOhIAAAAAAAAAoARjuAgAAMCPWHQKAAg0ZeXa9NKyeYoKC5ckeeSRPPr///3//9fj+b3e8/8f/fVDnjPqzvaxvz72tBZnfOz0Y//ps2ccx1uuPz/2jxanf+yPnJ4znrA/nrc8nnM8x0Ke99kea/i8z/4cfX/eZz3eGQf0nPH5Pz52xtfltCdc4CkbO/rsPpHM+zwAAIAS4OMNq5SalSFJ+mTDD7q6XQ+HEwEAAAAAAAAASjKGiwAAAPxo14lkpyPYgkWnAFBylJVr0+r9O52OAJQK+1OPOx0BAAAAXuxLPab529b//v//attP6tkgQbVjKzsXCgAAAAAAAABQogU5HQAAAKA02Z9WNhZjsugUAEqOsnJtAuAf6bk5TkcAAABAITwej6asWSz3abuBuv//Y6fvEAoAAAAAAAAAgC8YLgIAAPCjjNxspyPYgkWnAFBylJVrEwD/yCvIdzoCAAAACrEsaau2Jh/4y8e3Jh/Q8qRtDiQCAAAAAAAAAJQGDBcBAAD4UV5BgdMRbMGiUwAoOcrKtQmAf+S7OWcAAAAEqozcHH3w09Jzfv6Dn5Yqk5sCAQAAAAAAAACKgOEiAAAAPyorizHLyvMEgNKAczYAX4QEBTsdAQAAAOcwO3GlTmZnnfPzadmZmpW4ysZEAAAAAAAAAIDSguEiAAAAPyorizHLyvMEgNKAczYAX4QGhzgdAQAAAGeRlHJU32xP9Fr3zfaftSflqA2JAAAAAAAAAAClCcNFAAAAfhQaXDYWcLPoFABKjrJybQLgHzFh4U5HAAAAwBncHo+mrF4kj8fjtdbz/7Vug1oAAAAAAAAAAH7DqlAAAAA/ig6LcDqCLVh0CgAlR1m5NlWOLqca5StKklynfdzlcp3xMZf+/0Ny6ff/8fv/dv1R9sfnTzvW6cf59WM6x8cKeexp/f/42On9Xad/6BwfO61rUR57xnFcZ+Q6+7H//7N/OvaZHyvksWf9Op/ra3rm168I34/T+p/+vf4t59m+H2fP/uv/+8uxg/pux0aVdrViKzkdAQAAAGdYsmuzth87ZFz/y7FDWrp7i3o1aGZhKgAAAAAAAABAacJwEQAAgB/VqlA2FmOy6BQASo6ycm0a0aqLetRPcDoGSrEGFauWieGi+hWrOh0BAAAAp0nPydaH65f7/LgPf1qm9rUaKKaM3HACAAAAAAAAAFA8QU4HAAAAKE0alJHFmCw6BYCSg2sT4B81yscpPLh036cnPCRUNcrFOR0DAAAAp/kocYVO5WT5/LiTOVma9fNKCxIBAAAAAAAAAEojhosAAAD8iEWnAIBAw7UJ8I+goCDVrVjF6RiWqhdXRUFB/LoQAAAgUOw6fkTfbt9Q5Mcv3J6oXSeO+DERAAAAAAAAAKC0YrUAAACAH7HoFAAQaLg2Af7TsGK80xEs1aCUPz8AAICSxO12693Vi+QpxjE8kqasXiS3pzhHAQAAAAAAAACUBay8AQAA8DMWnQIAAg3XJsA/2tdq6HQES3Wo1cDpCAAAAPh/i3Zt8suuQzuPH9HinZv8kAgAAAAAAAAAUJoxXAQAAOBnLDoFAAQark2AfyRUranq5eOcjmGJGuXj1LRqTadjAAAAQNLJ7Cz9b/0Kvx1v5vrlOpmd5bfjAQAAIHAsXrxYLpfL638TJkxwOirwJxMmTDB67S5evNjpqAAAAGUGw0UAAAB+xqJTAECg4doE+IfL5VL/Rq2cjmGJ/o1ayeVyOR0DAAAAkv7383Kl52b77Xjpudn638/+G1YCAAAAAAAAAJQ+DBcBAAD4GYtOAQCBhmsT4D896icoPDjE6Rh+FR4coh71E5yOAQAAAEnbjx3Sop2b/H7cxTs3asexw34/LgAAAAAAAACgdGC4CAAAwAIsOgUABBquTYB/RIeFq2u9pk7H8Kuu9ZoqKizc6RgAAABlntvt1pTViyw5tkfSu6sXye12W3J8AAAAAAAAAEDJxnARAACABVh0CgAINFybAP+5pFl7hQYFOx3DL0KDgnVJs/ZOxwAAAICkhTs2KCnlqGXHT0pJ1rc7Nlh2fJRNo0ePlsvlMvovKSnJ6bjnVK9ePaPnUK9ePaejAgAAAAAAAJZguAgAAMAiLDoFAAQark2Af8SXi9XlrTo7HcMvLm/VWfHlYp2OAQAAUOalZWXoo59XWN7nfz+vVFp2puV9AAAAAAAAAAAlS4jTAQAAAEqr3xadfrh+udNRio1FpwBQOnBtAvzn4qbt9OO+Hdp5/IjTUYrsvErVNKhpO6djAAAAQNKH65crMy/X8j6ZeTn6cP0y3dr5Qst7AQBQlk2YMMFrTb169TR69GjLswAAAAAAYILhIgAAAAux6BQAEGi4NgH+ERwUpFs7X6iHvpqhPHeB03F8FhoUrL917q+gIDY2BwAAcNrW5ANasnuLbf2W7NqiPg1bqEmVGrb1BACgrHn88ce91vTq1YvhIgAAAABAwGD1AAAAgIV+W3QaGhTsdJQiYdEpAJQ+XJsA/6lZoaIub9XF6RhFMqJ1F9WsUNHpGAAAAGVegdutKWsW2d53yupFKnC7be8LAAAAAAAAAAhMrMQBAACwGItOAQCBhmsT4D+DEtqpW70mTsfwSbd6TXQxu38BAAAEhG9++Vn7Uo/b3ndv6jF988vPtvcFAAAAAAAAAAQmhosAAABswKJTAECg4doE+EeQy6W/de6vdjXrOx3FSPuaDX7d/cvlcjoKAABAmZeSlaHZiasc6z97wyqlZGU41h8AAAAAAAAAEDgYLgIAALABi04BAIGGaxPgPyFBwbqj+8UB//PUvmYD3d59oEKCgp2OAgAAAEkfrFuqrPxcx/pn5eVqxk9LHesPAAAAAAAAAAgcDBcBAADYhEWnAIBAw7UJ8J+w4BDd1WNQwO4I1q1eE93Z42KFBYc4HQUAAACSNh/ZrxV7tjkdQ8uTtmnLkf1OxwAAAAAAAAAAOIzhIgAAABux6BQAEGi4NgH+ExIUrLFdBmhkm+4KDZBhuNCgYI1q211juwxgQA8AACBA5LsLNGXNIqdj/G7KmsXKdxc4HQMAAAAAAAAA4CCGiwAAAGzGolMAQKDh2gT4T5DLpSHN2mviwFFqWCne0SznVaqmiQNHaXBCewW5XI5mAQAAwB++2rpeB9JOOB3jd/vTjmv+tvVOxwAAAAAAAAAAOIjb/gIAADjgt0Wn7WrW1+urvtHO40ccy3JepWr6W+f+qlmhomMZAADO49oE+FfNChU1of8Vmrd1nWYnrlKejXeCDw0K1uWtumhQ07YKCuLeQgAAAIHkeOYpfbLxB6dj/MXHG35Ql7qNVSmqnNNRAAAAAAAAAAAOYLgIAADAQSw6BQAEGq5NgP8EBwVpSLMO6lT7PH2xea1WJG1VTkG+Zf3Cg0PUtV5TXdKsveLLxVrWBwAAAEU3fd1S5eTnOR3jL3Ly8/TBuqW6o/vFTkcBAAAAAAAAADiA4SIAAACHsegUABBouDYB/hVfLlY3n99XV7ftrqW7t2jB9kQdPJnit+PXKB+n/o1aqUf9BEWFhfvtuAAAAPCvDYf26Ie9252OcU6r9m5Xn8N71bJaHaejAAAAAAAAAABsxnARAABAgGDRKQAg0HBtAvwrKixcA5q00YWNW2tr8gGt2b9Lu04cUdKJZJ8G+MJDQlUvrooaVIxXh1oN1LRqTblcLguTAwAAoLjyCvI1dc1ip2N4NXXNYj01cJRCg/kzMgAAAAAAAACUJfxWGAAAIMCw6BQAEGi4NgH+5XK5lBBfSwnxtSRJbrdbB0+laPeJZO1PPa703BzlFeQr312gkKBghQaHKCYsXLViK6l+xaqqUS5OQUFBDj8LAAAA+GLe1p906FSq0zG8OnQyRV9t/UmXNO/odBQAAAAAAAAAgI0YLgIAAAhQLDoFAAQark2ANYKCglSrQiXVqlDJ6SgAAACwwNGMk/p0449OxzD26cYf1bVeE1WOLu90FAAAAAAAAACATRguAgAAKCFYdAoACDRcmwAAAADAu/fXLlGuD7u+Oi2nIF/vr12iu3sOdjoKAAAAAAAAAMAmDBcBAAAAAAAAAAAAgAV+OrBba/bvdDqGz1bv36n1B5PUpkY9p6MA8NHu3bv17bffasOGDdqwYYP27t2rkydP6uTJk3K73YqKilK5cuVUp04d1a9fX+3atVO3bt3Uvn17hYSUviUkaWlpWrhwoX7++Wdt2rRJv/zyi1JTU3Xy5EllZGQoMjJS5cqVU9WqVZWQkKDmzZurT58+6ty5s4KDg52O73fZ2dnat2+fTp48qczMTGVkZCgkJETR0dGKiYlRrVq1FBcX53RM2xw6dEiLFi36/bWxfft2paSkKD09Xenp6fJ4PIqOjlb58uVVrVo1NWnSRO+9957TsVFC7d69W4sXL9bWrVu1bds27dy5U6mpqb+/3oKDgxUVFaXY2FhVq1ZN3bp10zPPPONY3qNHj2rBggXasGGDNm3apB07digtLU2nTp1SZmamoqOjVa5cOVWvXv3382ffvn3Vvn17uVwux3JbJSMjQ/v379epU6eUkZGhrKwshYWF/em6Wq5cOadj+oXb7daaNWv03XffadOmTdqyZYsOHTr0+/f+t+dcoUIFnXfeeWrevLlatWqlfv36qUqVKk7HBwAAQDGUvt8MAQAAAAAAAAAAAIDDcgvy9d7a752OUWTT1ixWs0HXKCyYPykDVqhXr5727NlTaE3dunWVlJTk9VjHjx/X5MmTNWvWLCUmJhZam5aWprS0NO3fv18rVqzQBx98IEmqUqWKLr/8ct16661q1aqV8fMIRHl5eZoxY4amT5+u77//Xnl5eees/W1R/6FDh/Tzzz///vHY2Fhdfvnluu2229SmTRsbUvvf8ePHtXz5ci1fvlyrVq3Sjh07dOjQIXk8nkIfV6FCBTVu3FhdunRRt27d1K9fP1WsWNGm1GfXu3dvff+992uqt+cmSfv27dObb76pL774wuvPiySlpqYqNTVVe/fu1bZt237/eFJSkurXr+/18YX5/vvv/TqEYXrOQOH8eX7eunWr3njjDX355Zfavn17obX5+fnKyclRSkqKdu/erczMTF9i+0VGRobeffddzZw5U6tWrZLb7T5n7W+DqwcOHNCaNWt+/3iVKlV01VVXady4cWratKkdsf3u0KFDWrp0qZYvX64ff/xRu3btUnJystfHVa5cWU2aNFHXrl3VvXt3XXDBBYqJibEhsX9s3rxZ//3vf/W///1Px44dO2fdqVOndOrUKR08eFBbtmzRnDlzJElBQUHq0qWLrrrqKo0ZM0bR0dF2RQcAAICfBDkdAAAAAAAAAAAAAABKm7mb1+pIeprTMYrsSHqa5m5e63QMAIU4duyY7rzzTtWpU0ePPPKI0aDEuRw9elSTJ09WmzZtNGzYMO3YscOPSb1LSkqSy+Xy+t/o0aPPeYyCggK99NJLatCggUaPHq2FCxcWOlhUmNTUVL399ttq27at+vXr96fBo0CWlpamd955R/3791d8fLyGDh2qp59+WkuWLNHBgweNhm/S0tK0evVqvfzyy7ryyitVrVo1DRo0SB9++KHy8/NteBbW2Lhxoy6//HLVr19f//73v4v181JaLF682OjnbsKECY7kmzp1qlG+qVOnOpKvMMuWLdOFF16oZs2a6cUXX/Q6WOS0rKwsTZgwQXXq1NEdd9yhFStWFDpYVJijR4/qlVdeUUJCgi655BL98ssvfk5rjeTkZL388svq1q2batasqSuvvFIvv/yyVq1aZTRYJP16XV6+fLmeeeYZDR06VFWrVtUVV1yhuXPnGp1/nbJ161YNHjxYzZs312uvvVboYFFh3G63li9frttvv11169bV448/rqysLD+nBQAAgJUYLgIAAAAAAAAAAAAAPzqSnqbPN692Okaxfb55tZJL8IAUUJp98MEHSkhI0Msvv+zX3S08Ho8+//xztWrVSs8//7zfjmu1jRs36vzzz9ddd92l/fv3+/XY3377rdq1a6fbb79d2dnZfj22vxw+fFj333+/6tSpo5tuukkLFy5UQUGBX46dl5enefPmadSoUWrUqJEmT55cooaM0tPTdd9996lt27b6+OOP/fZ1Ac7m6NGjGjNmjHr27KkFCxYE9EDJb5YsWaJWrVrp8ccf14kTJ/x67Dlz5qhFixZ68MEHizzsabWdO3fq1ltvVZ06dXTnnXdqxYoVfvu+ZWVladasWRoyZIhatWqlmTNn+uW4/pKXl6f7779fLVu21JdffunXYx8/flwTJkxQq1attGTJEr8eGwAAANZhuAgAAAAAAAAAAAAA/Oi9Nd8rrxQsXs4rKNB7a793OgaA0+Tk5Ojqq6/WNddcU+SdBUxkZWXp3nvv1bXXXqvc3FzL+vjDzJkz1b59e61da91ua263W6+++qrOP/98bdu2zbI+vsrNzdW///1vNWjQQE8//bROnjxpab+kpCSNGzdO7du316pVqyzt5Q87duxQx44d9dxzz5WogSiUTKtXr1abNm00derUEjFUJElPP/20evfubeludXl5eXrqqafUo0cPJSUlWdbHV6dOndLdd9+tJk2a6I033lBOTo6l/TZu3KiRI0eqd+/e2rJli6W9TCQlJalbt256+umnLT0/7tixQ71799akSZMs6wEAAAD/YbgIAAAAAAAAAAAAAPxk7f5d+ungbqdj+M26A7u1dv8up2MA0K87YvTp00czZsywref06dN11VVXBexuL88//7xGjRpl2wBUYmKiunbtqh9//NGWfoX54Ycf1KpVKz3yyCPKysqytXdiYqK6deumJ554ImCHKJYuXarzzz9fW7dudToKyoDZs2erV69eOnjwoNNRjHg8Ht1xxx26//77bfsZ/uGHH9SlSxdt2LDBln6F+fLLL9W0aVO9+OKLtl/fvv/+e7Vt21Zvv/22rX1Pl5iYqM6dO2v1ant2WvV4PHrggQd0++23y+1229ITAAAARcNwEQAAAAAAAAAAAAD4QU5+nqatXex0DL97b+33ymXHB8BRKSkp6tu3r1auXGl7708//VS333677X29efPNN3XvvffaPtxy4sQJ9e3bV0uWLLG17+kmT56snj17OrqLktvt1qOPPqphw4bZPtzkzbp16zRo0CCdOHHC6SgoA7766iuNHDky4H4OCnP//ffrlVdesb3v4cOH1atXL61Zs8b23tIf560hQ4Y4OgiWk5Ojm2++WWPHjrV92Gb16tXq1auXjhw5YmtfSXr11Vd1//33294XAAAA5hguAgAAAAAAAAAAAAA/+HzTGh3LOOV0DL87mnFSn2+2587mAP4qIyNDgwYNcnS3h8mTJ2vWrFmO9T/Tt99+q9tuu82x/unp6Ro6dKi2bNlia1+Px6Nx48Zp3Lhxtu3W5M0XX3yhwYMHKzMz0+kokqTdu3fr4osv1qlTpe96jMCzevVqjRgxQvklaAj77bff1jPPPONY/5SUFA0aNEi7d9u702dOTo6GDx8eUDuuvf7667ruuuts2z1p165dGjRokFJTU23pdzbPPvuso7s2AQAAoHAhTgcAAAAAAAAAAAAAgJLu0MkUzd2y1ukYlpmzea2612uq6uXjnI4ClDk33XST0Y5F4eHh6tChg9q1a6cGDRqoSpUqio6OVkFBgU6ePKk9e/Zo3bp1Wrp0aZEWFo8dO1b9+vVTXJyz54Hk5GRdeeWVRov5o6Oj1atXL7Vq1UrnnXeeypcvr9DQUJ08eVKHDh3S5s2btWTJEiUlJfmcIzU1VRdffLF+/PFHValSpQjPxDdut1s33XSTpkyZYnkvX3333Xe65JJLNH/+fIWEOLcUqaCgQCNHjjTakSMoKEgtW7ZUp06d1LBhQ1WvXl3R0dEKCgrSqVOndPz4cW3evFnr1q3TunXrbEiPkiY9PV1XXnmlMjIyvNaGhISoXbt2at++vRo2bKj4+HhFR0fL7Xbr1KlTSk5O1ubNm/Xjjz9aOrS4ceNG48HMihUrqk+fPmrevLnq1auncuXK/f7zsW/fPm3evFmLFy/WoUOHfM6RnJysgQMH6scff1T58uV9fryvsrOzNXz4cM2fP9/yXr764IMPFBwcrGnTplnaJy0tTRdffLGOHj1apMfXq1dPPXv2VEJCgmrUqKFy5copPz9fJ0+e1K5du7Rx40YtXrxYJ0+e9HqscePG6fzzzy9SDgAAAFiL4SIAAAAAAAAAAAAAKAaPx6OpaxYr323PXcedkO8u0LS13+v+3kPlcrmcjgOUGW+++aZmzpxZaM2AAQN04403avDgwYqMjPR6zNzcXM2dO1cTJ07U2rXmQ5HHjx/X448/rhdffNH4MVYYP368jh8/XmhNjx49dOedd2rw4MEKDw/3eszExERNnjxZ06ZNU1ZWlnGWpKQk3Xzzzfrss8+MH1NUt912W5EHixo1aqR+/fqpXbt2SkhIUK1atVSxYkVFRkbK7XYrPT1d+/fv1y+//KKVK1dq3rx52rp1q089vv32W91111169dVXi5TRH55++mn98MMPhda0adNGt9xyi6644gpVqlTJ6Lj79+/X+++//6evf7169Qrd/cTkWtmrVy8tXrzYKAMCz7333ut1950ePXro5ptv1vDhwxUTE2N03O3bt+udd97RihUr/BHzdwUFBRozZkyhu565XC4NGzZM48ePV+/evRUUFOT1uD/++KMmT56sDz74QHl5ecZ5tm3bpnHjxmn69OnGjykKt9utyy+/vMiDRa1atVKfPn3Url07NW7cWLVr11aFChUUGRmpvLw8paena+/evdq6dauWL1+uuXPnau/evT71eO+999SyZUvdd999RcpoYty4cdq2bZtPj4mKitKYMWN06623qkWLFl7r8/Pz9c033+i1117TvHnzzlmXl5enG264QRdddJFPeQAAAGA9lydQ9vkEAAA+O3r0qKpWrfqnjyUnJ9tydzQAAAAAAAAAJVdOTo527dpVaE2DBg2MFmRD+nHvdr247NwL6EqTu3oMUqfa5zkdAwFi9OjRxnfa3717t+rVq2dtoCKqV6+e9uzZ47Wubt26Rdrhpqg9Y2JiVFBQcM5hl/PPP1+vvvqqOnToUKQMHo9Hr776qu67775CF5ufLjw8XPv27fP736KSkpJUv359r3W1a9fWvn37Cv38K6+8oqFDhxYpx549e3T77bdrzpw5Pj3urbfe0k033VSkniZeffVV3X777T49pkKFCrrpppt00003qWnTpj73XLt2rZ555hl99NFHhQ7RnOn999/XNddc43O/wvTu3Vvff/+917qwsLBzvpZr1aqlF198UZdeemmRh2RzcnKM3xuVhOGixYsXq0+fPl7rHnvsMU2YMMH6QGeYOnWqxowZ47VuypQpGj16tN/6mpyfQ0NDCx2kadasmV599VWjr++5mL7eTL+PNWrU0MGDB8/5+bZt2+r1119Xp06dfMr5m9+Ghb777jufHjdjxgyNHDmySD1N3HfffXruued8eky1atX0t7/9TTfccIPq1Knj02M9Ho8WL16sSZMm6euvvzZ+XHBwsL799lv16tXLp34mPvzwQ40aNcqnx1x22WV68cUXVatWrSL1XLJkicaOHavNmzefs8bba/I3ixYtUu/evYuUAwAAWKO0/265LK/L9X57AQAAAAAAAAAAAADAWWXn5+m9dUucjmGb99d+r+x887vSAyi69PT0sw4WBQUF6YknntCKFSuKPFgk/Tr8cPvtt2v+/PlGOx5Jvy4gmjx5cpF7Fldhg0V9+/bVunXrijxYJP06QPbFF1/o2WefNdqx4zd///vfdezYsSL3LcySJUt09913G9cHBwfrvvvu0+7du/Xss88WabBIktq3b6+ZM2dqxYoVatasmfHj7rzzTh05cqRIPYvrXINFw4cP18aNG3XZZZcVa/e9krowDv5X2GDRuHHjtG7dumINFkn+f70VNsRx8803a+XKlUUeLJKkJk2aaMGCBXrsscd8etxdd92lkydPFrlvYWbMmOHTYFFkZKSefPJJ7dy5UxMmTPB5sEj69drap08fzZ8/X19++aVq1qxp9LiCggLddNNNPu2eZ+LkyZO66667jOtDQkI0efJkzZ49u8iDRZLUs2dPrV69utChJpPBIgAAANiL4SIAAAAAAAAAAAAAKKJPN/6gE5npTsewzfHMdH228UenYwBlVmhoqD766CM9/PDDPg2/FKZPnz6aPn26cf2UKVP80tefBg8erHnz5qly5cp+Od69996rqVOnGn+NU1NTfV5QbyIzM1NjxoxRfn6+UX39+vX1ww8/6JlnnlFcXJxfMnTu3Fk//vijLrvsMqP6EydO6M477/RLb38YN26cZs+erQoVKjgdBWXAU089pddee61EDaL94x//0JtvvumXzEFBQZowYYJeffVV40G+5ORk/fvf/y527zMdOnRI48ePN65v166dEhMT9cADDygqKsovGS6++GL99NNP6tGjh1H9jh079Pjjj/ul92+eeOIJJScnG9X+9h7j1ltv9UvvqKgoTZ8+XePGjfPL8QAAAGA9hosAAAAAAAAAAAAAoAgOpJ3QvC0/OR3Ddl9uXacDaSecjgGUOS6XS9OnTzce8vDFpZdeqtGjRxvVJiUlac2aNX7PUFSdOnXS7NmzFRYW5tfjXnvttXrmmWeM69944w3t2LHDrxkeeugh7dq1y6i2S5cuWr16tdq3b+/XDJIUHR2t//3vf7r22muN6j/66COtX7/e7zl8NXLkSL366qt+G8QDCvPAAw/o/vvvdzqGT6677jpNmjTJ78e97bbb9M9//tO4/qWXXtKhQ4f8mmHs2LFKSUkxqh06dKiWLVum8847z68ZJKlKlSr6+uuv1a9fP6P6l19+2W9fi4MHD+rll182rn/99dc1fPhwv/T+jcvl0quvvqrLL7/cr8cFAACANfjXMwAAAAAAAAAAAAD4yOPxaOqaRSrwuJ2OYrsCt1tT1yyWx+NxOgpQpjz00EO64oorLDv+xIkTjXdrmDNnjmU5fBEXF6ePP/7Ysl1C7rnnHuMF0QUFBXrhhRf81nvbtm169dVXjWo7dOig+fPnq1KlSn7rf6bg4GC98847uuCCC7zWejwePfroo5ZlMZGQkKC3337bePcUoDj69Omj//znP07H8EmrVq30xhtvWHb8f/3rXxowYIBRbW5urk9DMN4sXLhQn3/+uVHtoEGDNGvWLEVGRvqt/5kiIyP18ccfq3nz5l5rs7Ky9OSTT/ql78svv6zc3Fyj2ltuuUU33HCDX/qeyeVyadq0aWratKklxwcAAID/MFwEAAAAAAAAAAAAAD5auecXbTqy3+kYjtl0ZJ9W7d3udAygzGjVqpUmTJhgaY/q1atr1KhRRrVLly61NIupZ599VrVq1bK0x2uvvaaKFSsa1U6dOlUnTvhnZ7dHH31UBQUFXuvi4+P12WefqXz58n7pW5jQ0FB98MEHRkNMc+fO1c6dOy3PdDYul0tTp041HpYDiiMyMlJTp04tUTtkBQcH691331VERIRlPVwul958802VK1fOqP6NN95QRkaGX3o//PDDRnUJCQn68MMPFRoa6pe+hSlfvrxmzpxpNAz77rvv6tSpU8Xql5GRYTw8Vrt2bT377LPF6udNVFSU3nnnnRL1cwIAAFAW8W4NAAAAAAAAAAAAAHyQlZer6T8FxsJ6J01ft0RZeWZ3QwdQPC+99JJCQkIs72O6a8EPP/xgNPhipY4dO1q2y8LpqlatajzYlZmZqRkzZhS75+bNmzVr1iyj2jfffFM1a9Ysdk9T1apV01NPPeW1zuPx6J133rEh0V9dffXV6tSpkyO9Ufbce++9qlOnjtMxfDJmzBi1b9/e8j516tTR3//+d6PalJQUffbZZ8Xu+dVXX+mHH37wWhccHKzp06cbDz/5Q4sWLXTfffd5rcvIyNCHH35YrF6ffvqpUlNTjWqffPJJW74OXbt2NR5iBgAAgDMYLgIAAAAAAAAAAAAAH3y8YZVSs/xzZ/WSLCUrQ59s8L54E0Dx9OrVS71797alV+fOnRUfH++1LjMzU7t27bIh0bk9/vjjtvW65ZZbjHdImjlzZrH7vf766/J4PF7rhgwZoksuuaTY/Xw1ZswYNWrUyGvde++9Z/Q8/Mnlcumhhx6ytSfKrqioKN19991Ox/BJaGioHnnkEdv63XXXXUa7nUkq9kCNJE2ePNmobty4cWrXrl2x+/nqH//4h2JjY73WTZs2rVh9TL+WzZo108iRI4vVyxePP/64goODbesHAAAA3zBcBAAAAAAAAAAAAACG9qUe0/xt652OETC+2vaT9qUeczoGUKqNHTvWtl4ul0vdu3c3qt26davFac6tSZMmGjhwoG39wsPDdeuttxrVrlixQvv37y9yr+zsbE2fPt2o9l//+leR+xRHcHCwxo0b57XuwIED+vnnn21I9Ie+ffsqISHB1p4ou0aNGqWKFSs6HcMnw4cPt3WnpXLlymnMmDFGtd98843xbjtnc+DAAc2bN89rXWRkpGNDiOXLl9f111/vtW7VqlU6ceJEkXqkpqZqwYIFRrXjx49XUJB9S0gbNGigIUOG2NYPAAAAvmG4CAAAAAAAAAAAAAAMeDweTVmzWG6bd2EIZO7//5rYvTMFUFbExMRo2LBhtvbs2LGjUd3OnTstTnJuN998s+09b7jhBqPdFjwej/Gi7rP54osvlJKS4rWuV69eatOmTZH7FNeoUaPkcrm81s2fP9+GNH+48sorbe2Hsq0kvt5uueUW23uanrPz8vL0/fffF7nPBx98oIKCAq91V1xxhapVq1bkPsV1zTXXeK1xu9365ptvinT8xYsXKy8vz2tdZGSkURZ/c+I1CAAAADMMFwEAAAAAAAAAAACAgeVJ27Q1+YDTMQLO1uQDWp60zekYQKl0wQUXKDw83NaejRs3Nqo7cuSIxUnO7fLLL7e9Z/Xq1dW1a1ej2kWLFhW5z9y5c43qRo8eXeQe/lC1alWjQbQlS5bYkOZXLpdLQ4cOta0fyrYKFSqod+/eTsfwScWKFR3J3LhxY7Vo0cKotiycP9u3b6/4+HivdUU9f5p+Dfv3769y5coVqUdx9OvXTxUqVLC9LwAAALxjuAgAAAAAAAAAAAAAvMjIzdEHPy11OkbA+uCnpcrMzXE6BlDq9OrVy/ae9evXN6pzarioRYsWqlu3riO9TQdXirrzhsfj0ddff+21LigoSIMGDSpSD3/q3Lmz15qffvrJhiS/SkhIUJUqVWzrh7KtW7duCgkJcTqGTwYOHGi0A5sVLrnkEqO6og7UpKWlaeXKlV7r4uLi1KNHjyL18BeXy6Xzzz/fa11Rz59Ll5r9m2XIkCFFOn5xhYaGauDAgY70BgAAQOEYLgIAAAAAAAAAAAAAL2YnrlJadqbTMQJWWnamZiWucjoGUOq0adPG9p6VK1c2qktLS7M4ydk5uVNIz549jer27t2rlJQUn4+/YcMGJScne61r1apVQAzRtG7d2mvN4cOHdfjwYRvSyHhnKcAfSuLrzcmhmu7duxvVbd68WQUFBT4f//vvv1d+fr7Xul69ejk2YHU6k/NnYmKi3G63T8fNz8/X5s2bjWqdfD04PeAFAACAs2O4CAAAAAAAAAAAAAAAIAA1adLE9p6xsbFGdTk5zuxW1qVLF0f6Sr8Oe0VERBjVbtq0yefjr1mzxqiuY8eOPh/bCnXq1DGq2759u8VJftWsWTNb+gBSyXy9OXn+NNnpTPr12lKUc0ZpPH9mZmbqwIEDPh13+/btRtfnihUrOvIe4zdOvhYBAABwbgwXAQAAAAAAAAAAAIAXI1p1VoWIKKdjBKzYiCiNaGW2aBSAmeDgYFWrVs32vuHh4UZ1Tg0Xmez2YJXQ0FDjgYKiDBf99NNPRnWBMtRQtWpVo7r9+/dbnORXTi6UR9lT0l5vwcHBSkhIcKx/XFycatasaVS7ZcsWn4/P+fNXpl+75s2b+3Rcf0tISFBQEEtXAQAAAg3v0AAAAAAAAAAAAADAi6iwcF3dtofTMQLWqLY9FBVmNpAAwEz58uUVHBxse9/Q0FCjuvz8fIuT/FVQUJDOO+882/uerlGjRkZ1e/fu9fnYiYmJRnX16tXz+dhWiIyMNKqza7ioRo0atvQBpJL3eqtXr57x+d0qjRs3NqrzdbceifPnb0y/dqbfC6tEREQY734HAAAA+4Q4HQAAAAAAAAAAAAAASoJu9Zrou50btTXZ9wWPpVlC1ZrqVq9k3b0fKAlMFx47xePx2N6zRo0axjsrWaVhw4ZGdYcOHfL52Hv27DGqGz58uM/HdtKJEyds6RMfH29LHyAsLEyxsbFOx/BJIAzVmGbw9fxZUFBgPFTTtm1bn47tNF/Pn6Zfu0B5PSQlJTkdAwAAAKdh5yIAAAAAAAAAAAAAMOByuTSmQ28FuVxORwkYQS6XxnToIxdfE8DvnN5hIhBVrVrV6QjGGXxdHO/xeHTw4MGiRAp4WVlZtvQpV66cLX2Akvhaq1KlitMRjDP4ev48dOiQCgoKihIp4Pl6/jx8+LBRXSC8HgLhmg4AAIA/Y7gIAAAAAAAAAAAAAAzVjq2si5q0cTpGwBjYpK1qxVZyOgaAMqIkLYZOSUnx6bjJycnKy8srSqSAZ9dwkdO7WqHsKImvtcqVKzsdwfgcfurUKZ+Oa7prUUnk6/nz5MmTRnUl6fUAAAAA+zBcBAAAAAAAAAAAAAA+uKxlZ8VFRjsdw3FxkdG6tOX5TscAUIbExMQ4HUHR0Wbn/+zsbJ+Om5qaWoQ0JUNubq4tfdjtC3Ypia+1yMhIpyMYZ8jJyfHpuJw//2D6tStJrwcAAADYh+EiAAAAAAAAAAAAAPBBZGiYrm7bw+kYjrumXU9FhoY5HQNAGRIW5vw5x3THEl+Hi+za3ccJHo/H6QhAmRcIuy1x/vSdr+dP069dSXo9AAAAwD4MFwEAAAAAAAAAAACAj7rUbazm8bWcjuGYFtVqq3OdRk7HgMNcLpdxbV5enoVJisd0VwBfni+sEQi7hZhm8PU17+tiegDwRSBcw4KCzJYqut1un47L+fMPpl+7kvR6AAAAgH14hwYAAAAAAAAAAAAAPnK5XBrdoY+Cy+CiuOCgIF3fvndALEqEs3zZRcZ0gMcJptm4w77zAmFIzTSDr7ssBcJzA1B6BcJ1OCcnx6jO1+st588/mH7tStLrAQAAAPYpe7/pBgAAAAAAAAAAAAA/qFmhoi5u2tbpGLYb1LSdalao6HQMBICIiAjj2kBYxHouptl8eb6wRiC8jqxaHM/rC4CVAmGQwzSDr+dDzp9/MP1alKTXAwAAAOwT4nQAAAAAAAAAAAAAACiphrc4XyuStul4ZrrTUWxRKSpGw1p0cjoGAoQvi3lTU1OtC1IM+fn5OnXqlFFtZGSkxWngTXq68+da0wy+Lnb35fW1YMEC9evXz6fjAyjbTpw44XQEHT9+3KguKirKp+P6cv7cvn27zjvvPJ+OX5JER0cb1ZWk1wMAAADsw85FAAAAAAAAAAAAAFBEESGhurZdT6dj2Oba9r0UERLqdAwEiJiYGOPaQF1A6sviWl+eL6xx9OhRpyMYZ6hY0bcd3kwXhEtSdna2T8cGgJJ0/oyPj/fpuJw//1C1alWjukB4PSQnJzsdAQAAAGdguAgAAAAAAAAAAAAAiqFj7fPUqnpdp2NYrnX1uupYq6HTMRBAqlWrZlwbCItYz8aXXL48X1jjyJEjTkcwXgzt6+vFl8X0gbCDE2C13NxcpyOUKgcOHHA6gnGG6tWr+3Rczp9/MP3alaTXAwAAAOzDcBEAAAAAAAAAAAAAFIPL5dL17XspJCjY6SiWCQkK1nXte8nlcjkdBQGkRo0axrW7d++2MEnR+ZLLl+cLaxw8eNDxXSd27NhhVOfr4vioqChVqlTJqPbgwYM+HRsoibKyspyOUKrs2LFDHo/H0Qy//PKLUZ2v5886deoY15b286fp1870e2EVt9utnTt3OpoBAAAAf8VwEQAAAAAAAAAAAAAUU/XycRqc0N7pGJYZ0qy9qpePczoGAkzNmjWNa3ft2mVhkqLzZWGrL88X1vB4PI4vRt6+fbtRnS+L3X9Tt67ZLnh79+71+djAmUJCQozq8vPzLU5ydsePH3ekb2mVmZnp6LkjNzfX+L1Ao0aNfDp2TEyMKlasaFRb2s+fpl+7rVu3WpykcElJSY4PCwMAAOCvGC4CAAAAAAAAAAAAAD8Y2ryDqkSXdzqG31WJLq+hzTo6HQMBqFGjRsa7WW3ZssXiNEXjy+Laxo0bW5gEptavX+9Y77y8POPXcvPmzX0+fkJCglHdxo0bfT42cKbw8HCjutzcXIuTnN2BAwcc6Vua/fDDD471XrdundGgmsvl4vxZDM2bNzd6b5aUlKTk5GQbEp3dqlWrHOsNAACAc2O4CAAAAAAAAAAAAAD8IDwkVNe17+V0DL+7rn0vhRnuboCyJTo6Wg0aNDCq3bp1q9LT0y1O5LvVq1cb17Zu3drCJDC1cuVKx3r/9NNPxjsttGjRwufjd+xoNsj5008/+Xxs4Eymw0WpqanWBjmHbdu2OdK3NFu+fLljvVesWGFUV79+fUVFRfl8fNPz57p163w+dkkSHR2t+vXrG9WWhNcDAAAA7MVwEQAAAAAAAAAAAAD4SftaDdS2htmCvpKgXc36al/LbHgEZVOrVq2M6txut0+DPHbIyspSYmKiUW3lypVVvXp1ixPBxOLFix3rvWTJEqO6OnXqKDY21ufjd+rUyajuxIkTju7gBO9Md3VzUoUKFYzqjh49anGSv/J4PMbnZ5ibP3++Y73nzZtnVNe1a9ciHd/0/JmYmKjjx48XqUdJ0aVLF6O6r776yuIk52b6egAAAIC9GC4CAAAAAAAAAAAAAD+6rkMvhQYHOx2j2EKDg0vlTkzwr86dOxvXfv311xYm8d13332nvLw8o9rzzz/f4jQwtWnTJiUlJTnS+4svvjCq6927d5GO3759e5UrV86vWeCM0NBQrzX5+fk2JDm3qlWrGtU58fO2bt06nTp1yva+pd0vv/yiLVu22N43JSXFeDizT58+RerRq1cvo6G+goICffnll0XqUVKYfg3nzJkjt9ttcZq/SkxM1O7du23vCwAAAO8YLgIAAAAAAAAAAAAAP4qPqaChzTo6HaPYhjbrqKoxZrsaoOzq37+/ce3cuXMtTOI7X/L48jxhvdmzZ9ve89ChQ1qxYoVRbVGHi8LCwjRw4ECj2unTp8vj8RSpD6wXFhbmtSYrK8uGJOcWGRmp8uXLe63bsWOH7QMITu6wU9pNmTLF9p7Tp083HuYt6nBRjRo11LGj2fvv9957r0g9SooLLrjAqO7w4cOO/Ky98847tvcEAACAGYaLAAAAAAAAAAAAAMDPBjdrr/gSPJgTH1NBg5u1dzoGSoA2bdoY736xadMmrV+/3tpAhnJycvTRRx8Z1w8YMMDCNPDV22+/bXvPd999VwUFBV7rXC5XsYbRhg8fblS3fft2ffPNN0XuA2uZ7ECVkpJiQ5LCNWzY0GtNenq67bvdvP/++7b2K0umTJli62Cbx+PR66+/blTbpk0b1a9fv8i9TM+f3333nbZt21bkPoGufv36at26tVHtf//7X4vT/Fl6enqpH+4CAAAoyRguAgAAAAAAAAAAAAA/CwsO0fUdejsdo8hGd+itsOAQp2OgBHC5XLrkkkuM600XGFtt9uzZOnHihFFto0aN1LRpU4sTwRfbtm3TV199ZVu/nJwc49du165dVatWrSL3uuSSSxQbG2tU+9hjjxW5D6xVpUoVrzWHDh2yIUnhTM9t33//vcVJ/vDtt9+W6sEPpx07dkyvvfaabf1mzZqlzZs3G9VeddVVxep19dVXKzg42Gudx+PRI488Uqxegc70a/nll19qzZo1Fqf5w4svvqjU1FTb+gEAAMA3DBcBAAAAAAAAAAAAgAXa1KinDrW87wgQaDrWaqjWNeo5HQMlyOjRo41rp06dqn379lkXxkBBQYH+85//GNePGTPGwjQoKjsHa958803t37/fqLa4i+OjoqJ04403GtX+8MMP7PASoOLj473WZGdnG7+urNKyZUujujlz5lic5A8TJkywrVdZ9dRTT+nYsWOW98nJyTEe4gkODtbIkSOL1a927doaNmyYUe2sWbO0ZMmSYvULZKNGjVJQkNnS0L///e8Wp/nV4cOH9eyzz9rSCwAAAEXDcBEAAAAAAAAAAAAAWOTa9j1L1A5A4cEhurZ9T6djoITp1q2bGjVqZFSbk5Ojhx56yOJEhXv77be1ZcsWo9rg4GBdf/31FidCUaxevVrvvvuu5X2Sk5ONhx2ioqKKvTheksaPH6+QELNrx+233649e/YUuyf8q2FDs+HitWvXWpykcN27dzeqW7BggQ4cOGBxGumDDz7QsmXLLO9T1h0/flx33nmn5X0ef/xx/fLLL0a1w4cPV506dYrd86677jKuvf7665WWllbsnoGoTp06Gj58uFHt4sWL9dZbb1mcSBo3blyp/XoDAACUFgwXAQAAAAAAAAAAAIBFqkSX1/AWnZyOYWx4i06qHF3e6Rgoge6++27j2unTp+vTTz+1MM257dy5U/fdd59x/ZVXXqkaNWpYmAjFcd9991m+88ttt92mEydOGNVef/31qlSpUrF71qtXT7fccotRbVpamoYOHcqC7QDTuHFjo7qvv/7a4iSF69SpkyIiIrzWFRQU6Pnnn7c0y759+3waDEHxzJgxQ++8845lx//666/19NNPG9f7cm0uTPfu3XXxxRcb1SYlJemKK65QXl6eX3oHGl++pnfffbd+/vlny7K8/PLLjr33AwAAgDmGiwAAAAAAAAAAAADAQhc3bavq5WKdjuFV9fJxurhpO6djoIS68cYbVbduXeP6MWPGaP369dYFOouUlBQNGzZM6enpRvXBwcF67LHHLE6F4khJSdFll12mnJwcS47//PPPa/bs2Ua1wcHBPg3ZefP444+rQoUKRrU///yzBg8erNTUVL/1L47c3Fy9+eab+vbbb52O4piOHTsa1c2cOdPRwbDw8HD179/fqPa///2vduzYYUmO9PR0DRs2TMeOHbPk+Di7cePGaeHChX4/7vr163XVVVepoKDAqP6iiy7S+eef77f+zz77rPHub998841Gjhxp2XXEV+np6Xr66aeVmJhY7GN17txZF110kVFtRkaGhg4dqr179xa775m++OIL3XvvvX4/LgAAAPyP4SIAAAAAAAAAAAAAsFBocIhGd+jtdAyvRnforZDgYKdjoIQKCwvzaRAnLS1NAwYM0OrVqy1M9YcjR45owIAB2rhxo/Fjrr/+euPdR+CcH3/8UVdccYVyc3P9etzp06fr73//u3H9TTfdpEaNGvmtf+XKlfXkk08a1y9btkzdu3fXzp07/ZbBV6dOndIrr7yiRo0a6W9/+5sOHTrkWBandezYUeHh4V7rUlJSNHbsWLndbhtSnd2IESOM6rKzs3XNNdf4fQjj5MmTuuiii7Ru3Tq/Hhfe5ebmasiQIfriiy/8dsyVK1eqb9++xsOOISEhft8VKyEhQffcc49x/ccff6wLL7xQycnJfs3hi6NHj+rf//636tevr/vvv18nT570y3Gfe+4540GrPXv2qGfPntq6datfekvShx9+qMsvv1z5+fl+OyYAAACsw3ARAAAAAAAAAAAAAFisZfW6Or+O/xad+1vnOo3Uslodp2OghBs9erT69OljXJ+cnKyePXvq9ddfl8fjsSzX4sWL1aFDB58GmeLj4/XMM89Ylgn+9cUXX2jQoEE6fvy4X473wgsv6Prrrzce+Chfvrz+9a9/+aX36caOHashQ4YY12/atEmtW7fW5MmTbR1WSUxM1J133qlatWrpjjvusGTni5ImPDxc/fr1M6r98MMP1atXLy1dutTiVGd36aWXKjY21qj2hx9+0KhRo/w2zLd161Z17txZy5cv98vxcG6hoaFn/Xh2draGDRumBx54QNnZ2UU+fkFBgV544QX16tVLJ06cMH7c7bffroSEhCL3PZcnnnhC7dqZ78i5ZMkStWjRQrNmzfJ7lsKsXLlSY8aMUe3atfXII4/4ffeuZs2aafz48cb1e/bsUceOHfXee+8Vq29GRobuuOMOjRo1Snl5eWetOddrEgAAAM5huAgAAAAAAAAAAAAAbHBNux4KDwm8RXThIaG6pl1Pp2OgFHC5XHrnnXcUHR1t/Jjs7GyNHTtWXbt21bfffuvXPFu3btU111yjPn36aP/+/T49dvLkyapYsaJf86D4ateufc7PLVy4UO3atdOcOXOKfPy9e/dq2LBhuueee3wazpk0aZKqVq1a5L6Feffddwt93mfKyMjQuHHj1KpVK82ePduy3SK2bNmiSZMmqXXr1mrdurVefvllv+20UVpceeWVxrXLli1Tz549VatWLV111VV6/PHH9fbbb2v27NmaM2eO5s6d6/W/7777rkg5o6OjdcsttxjXf/LJJ+rXr5/27NlTpH6SlJmZqSeeeEJt27bVli1bzlpj1c9UWXXzzTercuXKZ/2cx+PRpEmTlJCQoKlTp/q0O1VBQYE++eQTtWvXTvfcc885B0nOpnnz5po4caJxvS/CwsL04YcfqkKFCsaPOXr0qK644gp169ZN33zzjSWDzx6PR+vWrdNjjz2m8847T127dvX5a+6riRMnqlmzZsb16enpuv7669W9e3efvw4ZGRl6/fXX1bhxY73yyivnrKtcubJP5x0AAADYw2zPSwAAAAAAAAAAAABAsVSKKqdLW5yvD9cvczrKn1zW8nxVjIpxOgZKifr162vatGkaMWKET4tRV61apX79+qlly5YaNWqUhg8friZNmvjcPzk5WXPnztVHH31U5IXB99xzj4YPH+7z42C9Cy64QBkZGZo9e/ZZP793715dcskl6tmzp+666y4NGjRIYWFhXo+7ceNGTZ48WVOmTFFWVpZPmQYPHqxbb73Vp8f4onLlypo/f766d++ulJQU48dt2rRJI0aMUI0aNXT11Vdr8ODB6tq1q0JCfF8q5PF4tHPnTq1YsUIrVqzQggULtGvXLp+PU9ZcccUV+sc//qHDhw8bP+bAgQP63//+V6R+devWVVJSUpEee88992jy5Mk6deqUUf3SpUvVvHlz3XbbbRo7dqzq1atn9LgtW7bogw8+0BtvvFHoDi1NmjTR7bff7tOOKyhclSpV9NJLL+nqq68+Z01SUpLGjBmj++67TxdffLH69u2rFi1aqG7duipfvrxcLpfS09O1b98+bdq0SYsXL9aXX36pAwcO+JwnIiJCM2bMUERERHGeVqEaN26szz77TBdddJFPwzsrVqzQgAEDdN5552nUqFEaPHiwOnToIJfL5XOGgoICbd269ffz59dff61Dhw75fJziiIyM1IwZM9S5c2efdqdavny5BgwYoAYNGmjw4MHq0aOHmjVrpho1aigmJkYFBQU6efKkdu3apQ0bNmjhwoWaP3++0tLSvB77pZde0i+//FKcpwUAAAALMFwEAAAAAAAAAAAAADYZ2LSNluzerANpJ5yOIkmqVaGSLmrSxukYKGUuu+wyPfnkk3rggQd8fuyGDRv04IMP6sEHH1TlypX/j737jpKiwN4+/nRPZpgZZoaccw6Sc5KgEiSogAEFFRNGQDGw6qsri2IABURFUUFBcRUEBJSccwbJWRjyZCb3+4c/w+4qVTN0Vafv5xzP2dXbdZ9uRO5U161S48aNVb16dZUrV04lSpRQRESEwsLClJ2drYyMDF2+fFknTpzQ0aNHtXXr1mteeOjVq5fGjh17TceAtSZMmKClS5fq0qW//+/oypUrtXLlShUuXFgdOnRQ/fr1VaVKFUVHRys4OFipqak6c+aM9u7dqxUrVujo0aMFylK+fHl9/PHHBX0rptWuXVtz587VDTfcoLS0tHy99vTp0xo7dqzGjh2riIgINWjQQHXr1lW5cuVUpkwZRUZGKiIiQi6XSxkZGcrIyND58+d19uxZnT59Wvv379e+ffuUnp5u0bvzX2FhYRo1apRPLMiUKFFCo0aN0siRI02/Ji0tTW+88YbGjh2r6667Tq1bt1b16tVVvHhxRUREKDMzUykpKTpx4oT279+vtWvX6sSJE4bHDQ8P19dff62tW7dey1vCX7jjjjs0f/58ffnll1etu3jxoqZNm6Zp06ZZksPhcGj69OmqX7++Jcf/sw4dOmj69OkaMGCAcnNz8/XaQ4cO6ZVXXtErr7yiqKgoNWzYUHXq1FHZsmVVqlQpRUZGKjw8XLm5ucrIyNCVK1d07tw5nT17VqdOndL+/ft14MABS59KZFaDBg00bdo09evXL9+L10eOHNG7776rd9991y1Z7rjjDt1xxx16+eWX3XI8AAAAuA/LRQAAAAAAAAAAAABgk2BnkAY36ah/Lvm3p6NIkgY36aBgZ5CnY8APjRw5UmlpaXr11VcLfIwLFy5o0aJFWrRokRuT/b3u3btrxowZcjqdtvRDwZQoUUIzZsxQ9+7dlZOTc9Xa1NRUzZs3T/PmzXN7jujoaP3www8qXry424/9V1q3bq2lS5eqe/fuV33iy9VcuXJF69ev1/r1692cDn/n4Ycf1pdffqm1a9d6OoqhYcOG6bvvvsv3vx8ul0vbtm3Ttm3brjmD0+nUtGnTVL9+fZaLLPLJJ5/o2LFjHv138u2339Ytt9xiW79bb71Vs2fPVv/+/Qu8KJmSkvL74qqvuvXWW/XWW29p2LBhHsvQsmVLW5ZyAQAAUDCcEQMAAAAAAAAAAAAAG9UuUVatKtTwdAy1rlhDtUqU9XQM+LFXXnlF7777rhwOh6ejGBo4cKBmz56tiIgIT0eBCV27dnXbExQKIjIyUrNnz1adOnVs7dusWTOtWbNGVatWtbUvCs7pdOrbb79V5cqVPR3FUHBwsGbMmKH4+HiPZZg8ebJuvfVWj/UPBGFhYZo9e7bq1atne2+Hw6H33ntPTz75pO29e/TooSVLlqhEiRK29/YmTz31lMaPH++R2axu3bqaM2eOwsPDbe8NAAAAc1guAgAAAAAAAAAAAACb3dmorSKCQz3WPyIkVHc2bOux/ggcjz32mH766SeVKVPG01H+Unh4uCZMmKDPP/9cwcHBno6DfHj44Yf1xhtv2H6BdJEiRfTTTz+pY8eOtvb9TfXq1bVt2zYNGjTII/2RfyVKlNC6devUpk0bT0cxVLFiRS1cuFBRUVG29g0ODtZHH32kIUOG2No3UBUrVkyrVq1S+/btbesZGRmpL7/8Uo8++qhtPf9bixYttHPnTnXr1s1jGbzB448/ri+++EKFChWyrWf79u21evVqFStWzLaeAAAAyD+WiwAAAAAAAAAAAADAZrERkbq1fguP9b+1XgsViYj0WH8Elk6dOmnnzp266667vOopRi1bttTmzZs1dOhQT0dBAT399NP6/PPPFRISYku/unXrau3atWrZsqUt/f5O4cKFNXXqVH377beqWLGiR7P8ndatW6tBgwaejuE1ihcvrhUrVuj999/32mXL3zRp0kSLFy9WyZIlbelXpEgRLVy4UPfff78t/fCrmJgYLVq0SE899ZScTmsvIWzQoIE2b96sAQMGWNrHjOLFi2v+/Pn68MMPvXLRxel06sYbb7T8v+233367Nm/ebPkTrJxOp5566iktWrRIMTExlvYCAADAtWO5CAAAAAAAAAAAAAA8oGv1BipXJN72vuWLFFXX6lzwDXvFxcVp2rRp2rRpk8ee+PKbqlWratasWVq7dq3q1Knj0Sy4dnfddZc2btyo6667zrIeTqdTDz/8sDZu3KhatWpZ1ie/+vTpo3379mnMmDGKi4vzdByVLVtWw4cP1549e7R69WrLL1r3NU6nUw899JCOHj2qGTNmqHfv3rY+OSQ/mjVrZst/r7t3765du3apU6dOlvbBXwsLC9Pbb7+t1atXW/Lf0NjYWL3zzjvatGmTatas6fbjX4shQ4bo0KFDGjlypCIjPb9wX716db300ks6cuSIFixYoLJly1res1atWtq8ebPeeustFSlSxO3Hv+6667RmzRq9/fbbCgsLc/vxAQAA4H480xtAwDt58qQWLVqknTt3au/evTp69KhSUlKUnJwsl8ulqKgoRUVFqXz58qpdu7bq1aunLl26qFq1ap6O7lPOnTunNWvW/P45nzp1SmfOnNHly5eVkZGhrKwshYSEKDw8XDExMSpZsqTKlCmjWrVqqV69emrdurXKlSvn6bcBAAAAAAAAAIDbBDmdGtyko15Z/I2tfQc37aggi+9QD/ydxo0ba+nSpdq6davef/99zZgxQ2lpaZb3dTqduuGGG/TII4+oW7dulj+lAfa67rrrtGnTJo0fP15vvfWWzpw547Zjd+zYUW+//baly0vXIiwsTCNHjtTjjz+u6dOna8KECdq5c6dt/WvUqKFu3bqpT58+atOmjVc9ncxbhYSEaMCAARowYICys7O1detWbdq0SQcOHNChQ4d05swZXbhwQUlJScrKylJ2drby8vJsz1m2bFktXbpUU6dO1csvv6wTJ0647dh16tTRiy++qH79+rntmCi4li1batu2bVq4cKHGjh2r5cuXX9O/c5UqVdJDDz2kIUOGKDY21o1J3Ss6OlpjxozRs88+q08++USTJk3S4cOHbentcDjUoEEDde/eXX379lWjRo1s6fvfQkNDNWzYMA0aNEgffvihJk+erOPHjxf4eE6nUx07dtSIESN04403ujEpAAAA7OBwuVwuT4cAALslJiZqypQpmjZtWoFPrFarVk133HGHHn74YZUoUcLNCf3DgQMH9OWXX+rf//63du/efc3Hq1q1qnr37q077rhDDRs2dENC33f+/HkVL178P/7euXPnvPLx3QAAAAAAAAC8R2Zmpo4cOXLVmsqVK3OHaZtMXvejVh792ZZe7SrX0kMtutrSCzAjLS1NP/30k+bNm6dFixbp1KlTbjt2dHS0OnbsqB49eqh79+4qVaqU244N9zp27JgqVapkWHfPPffo008/vWpNZmampk+frunTp2v16tXKycnJd56YmBj17dtXjz76qMcu+L4We/fu1ezZs/X9999ry5YtBfoM/orT6VTVqlXVqlUrtWvXTh06dDD16wbfl52drRkzZujzzz/X8uXLlZubm+9jREREqEuXLhoyZIi6d+9uuIj26aefavDgwYbHnTp1qgYNGpTvPPh7586d0/z58/Xjjz9q586dOnjwoLKzs/+2vkiRIqpTp446duyom266SS1atPDZJd7Nmzdr9uzZmjt3rnbv3u22xb7g4GDVqlVLrVu3Vtu2bdWxY0evnEvy8vK0du1aLVy4UEuXLtWePXuUnJz8t/UhISGqVq2a6tevrxtuuEHdu3fnehUAAAKAv59bDuTrclkuAhBQUlNT9eqrr2rixIluuwNaaGio7rnnHo0ePVpFixZ1yzF93cqVK/Wvf/1LCxcutKxHq1at9Oyzz6pnz56W9fAFgTzEAAAAAAAAACg4f/8C2NckXUnT8HmfKz07y9I+hULC9FbPuxUTXsjSPsC1OHv2rLZs2aIdO3bo6NGjOnXqlE6ePKlLly7pypUrysjIUEZGhkJCQhQREaHw8HBFR0erTJkyKleunMqXL6969eqpUaNGqlq1Kk9R8RHuXC76s8TERC1evFjbt2/Xnj17dODAASUmJiolJUXp6ekKDw9XVFSUihcvrpo1a6pOnTrq0KGDWrVqpeDg4Gt4R94jIyND27Zt06ZNm3Tw4EGdOHFCx48f18WLF5Wenq709HRlZmYqODhYYWFhKlSokOLj41WsWDGVLl1alSpVUuXKlVW7dm01aNBAkZGRnn5L8LDz589r1apVWrdunfbt26cjR47o3LlzSktLU2ZmpgoVKqTo6GjFxsaqRo0aqlevnpo0aaJOnTopIiLC0/FRANnZ2Tp+/LiSkpKUkpKijIwMRUREKCoqSqVKlfLKJRl3SElJ0ZYtW7RlyxYdOnRIJ06c0IkTJ3Tp0iWlp6frypUrysrKUkhIiEJDQ1W4cGEVLVpUxYoVU5kyZVSpUiVVqVJFderUUd26dRUeHu7pt1Qgp0+fVkJCwu9/dhYqVEhRUVGKiYlR+fLlFRIS4umIAADAZv5+bjmQr8tluQhAwPj+++81dOhQt97t7M/i4uL05ptvmrpzjr86efKknnrqKf373/+2rWenTp00YcIE1axZ07ae3iSQhxgAAAAAAAAABefvXwD7oh8P7NCnm5db2mNwkw7qUr2BpT0AoCCsWi4CAAAAAADu5e/nlgP5ulzffP4oAORDXl6eRo0apd69e1u2WCRJly5d0r333qsHHnhAWVnW3lnQG82ePVsNGjSwdbFIkpYsWaLGjRvrk08+sbUvAAAAAAAAAADu1LlqPVWMte4L6oqxxdWpaj3Ljg8AAAAAAAAA8F0sFwHwa7m5uRowYIBee+012fWgto8++khdu3ZVenq6Lf28wdtvv62+ffvq8uXLHumfnp6u++67TyNHjvRIfwAAAAAAAAAArpXT6dTgph0tObZD0r1NO8rp5OthAAAAAAAAAMD/4uwxAL+Vl5enQYMGadasWbb3XrFihfr06aPMzEzbe9tt7NixGj58uG3LW1fzxhtvaNiwYZ6OAQAAAAAAAABAgVQrWkodq9Rx+3E7VKmrqkVLuv24AAAAAAAAAAD/EOzpAABglRdeeEHTp0/P12uqVaum1q1bq27duoqLi5PD4dDly5f1888/a926ddq9e7fpY/34448aMmSIPv/88/xG9xnffvttgZ4WFBQUpPr166tly5YqXbq0YmNjFR0drZSUFF2+fFkJCQlav369tm/fruzs7Hwd+5133lHVqlX1yCOP5DsXAAAAAAAAAACe1r9Ba206eVipWRluOV7h0HD1b9DKLccCAAAAAAAAAPgnlosA+KUFCxbo9ddfN13fq1cvPf/882rWrNlV63bv3q2xY8dq+vTpysvLMzzutGnT1L59e913332ms/iKM2fOaMiQIfl6YlHdunX15JNPqn///ipcuLBh/ZUrV/TNN99o3Lhx2rp1q+k+w4cP1/XXX6+aNWuafg0AAAAAAAAAAN4gOjxC/a9rpY83LnXL8QZc11rR4RFuORYAAAAAAAAAwD85PR0AANzt4sWLuvvuu00tvcTFxWn+/PmaPXu24WKR9OtyzGeffaY1a9aoXLlypvI89thjOnTokKlaX/L000/r0qVLpmojIyP18ccfa9euXbrvvvtMLRZJUkREhAYOHKgtW7Zo5syZiomJMfW6jIwMDR061FQtAAAAAAAAAADepmPlOqocV+Kaj1MlvoQ6VKnjhkQAAAAAAAAAAH/GchEAv/PCCy/owoULhnVly5bVxo0b1a1bt3z3aNGihTZv3qzatWsb1l65ckVPPfVUvnt4s71792rGjBmmasuVK6fNmzfr3nvvvaae/fv3144dO0w/jWjp0qVatmzZNfUEAAAAAAAAAMATnE6n7m3aUY5rOIZD0uCmHeV0XMtRAAAAAAAAAACBgOUiAH5l27Zt+uijjwzrYmJitHjxYlWpUqXAvYoXL64lS5aobNmyhrXz5s3TDz/8UOBe3mby5MnKy8szrIuOjtb8+fNNLwQZqVChghYsWKASJczdrXHSpElu6QsAAAAAAAAAgN0qx5dQp2r1Cvz6ztXqu+XpRwAAAAAAAAAA/8dyEQC/8v/+3/8ztfTy0UcfqUaNGtfcr2TJkvryyy8VFBRkWPvSSy9dcz9vkJeXZ/qpRe+9957q1Sv4F59/pWLFipo2bZqp2rlz5yo5Odmt/QEAAAAAAAAAsEu/+q0UFRaR79dFh0XotgYtLUgEAAAAAAAAAPBHLBcB8Bv79+/X999/b1jXq1cv3XbbbW7r27ZtWz344IOGdZs3b9bSpUvd1tdTduzYoQsXLhjW1alTR3fddZclGbp06aJOnToZ1mVmZmrVqlWWZAAAAAAAAAAAwGqFw8J1+3Wt8/262xu2UeHQcAsSAQAAAAAAAAD8EctFAPzG22+/LZfLddWa4OBgvfnmm27v/corryg6Otqw7q233nJ7b7utX7/eVN0TTzwhp9O6P2ZGjBhhqm7t2rWWZQAAAAAAAAAAwGrtKtdWtaKlTNdXL1pKbSvVsjARAAAAAAAAAMDfsFwEwC9kZmbqq6++Mqy75ZZbVLVqVbf3j4+P1/33329Yt2jRIp09e9bt/e20f/9+U3U33nijpTnat2+v8HDjuy4eOHDA0hwAAAAAAAAAAFjJ6XBocNOOcjgchrWO/6t1mqgFAAAAAAAAAOA3LBcB8Avz5s1TUlKSYd2TTz5pWYbHH3/c8Ek9ubm5mjlzpmUZ7HDq1CnDmsqVK6tcuXKW5oiIiFDLli0N606cOGFpDgAAAAAAAAAArFYxtpi6VqtvWNe1WgNViC1mQyIAAAAAAAAAgD9huQiAX5gxY4ZhTdWqVdWiRQvLMlSoUEFt27Y1rDOT1ZulpqYa1pQtW9aGJFKZMmUMa1JSUmxIAgAAAAAAAACAtW6t31Ix4YX+9p/HhBfSbfWt+x4EAAAAAAAAAOC/WC4C4PNyc3O1ePFiw7r+/ftbnmXAgAGGNZs2bdLFixctz2KVvLw8w5qiRYvakEQqVsz47ovZ2dk2JAEAAAAAAAAAwFqRoWG6o2Gbv/3ndzZsq0KhYTYmAgAAAAAAAAD4C5aLAPi8jRs3KikpybDupptusjyLmR55eXlasmSJ5VmsEhsba1gTGhpqQxIpLMz4S9K4uDgbkgAAAAAAAAAAYL02FWuqZvEy//P3axUvo9YVa3ggEQAAAAAAAADAH7BcBMDnmVnUiYqKUvPmzS3PUqFCBVWtWtWw7qeffrI8i1Xi4+MNay5cuGBDEun8+fOGNSwXAQAAAAAAAAD8hcPh0OAmHeR0OH7/e06HQ4ObdJTjT38PAAAAAAAAAID8YLkIgM9bt26dYU3z5s0VHBxsQxqpbdu2hjUbNmywIYk1qlSpYlhjZunHHc6dO2dYU758eRuSAJ5Tp04d1alTx9MxAAAA4GbMeQAAAP5p9+7d2r179zUdo1yRorqxxnW///+bajRU2SLGNwYDAACAtdwx6wEAAMD7MOchULBcBMDnbdu2zbCmUaNGNiT5VePGjQ1rfv75Z2VmZtqQxv3atGljWPPzzz8rLS3N0hwul0ubNm0yrGvdurWlOQAAAAAAAAAAsNst9VooNiJSsRGR6luvuafjAAAAAAAAAAB8HMtFAHza2bNndebMGcM6b1suysnJ0a5du2xI436NGjVSZGTkVWuysrK0bNkyS3Ps3LlTCQkJhnVmniQFAAAAAAAAAIAviQgJ1Z0N2+quRu0UERLq6TgAAAAAAAAAAB/HchEAn7Zz505TdTVr1rQ4yR9q1Khhqs5sdm8TEhKi22+/3bDu888/tzTHZ599ZljTrFkzVapUydIcAAAAAAAAAAB4QssK1dWifDVPxwAAt6hYsaJcLpfhX59++qmnowIAAAAAAPgllosA+LQjR46YqqtatarFSf4QGxuruLg4wzqz2b3R448/bljzzTffaPv27Zb0P3nypCZNmmRY98QTT1jSHwAAAAAAAAAAT3M4HHI4HJ6OAQAAAAAAAADwAywXAfBpR48eNawpWbKkIiMjbUjzBzPLTGaye6t69eqpb9++V61xuVx64IEHdOXKFbf2zsnJ0ZAhQ5SZmXnVuqpVq+q2225za28AAAAAAAAAAAAAAAAAAAAA8DcsFwHwaceOHTOsKV26tPVB/kupUqUMa3x5uUiSJk2apPj4+KvWbNq0SXfeeadyc3Pd0tPlcunhhx/WokWLrlrndDr1ySefKCQkxC19AQAAAAAAAAAAAAAAAAAAAMBfsVwEwKf98ssvhjUlS5a0IUn+e546dcqGJNYpUaKEPv74YwUFBV217rvvvtP1119/ze/33Llz6t69u6ZMmWJYO3z4cLVt2/aa+gEAAAAAAAAAAAAAAAAAAABAIGC5CIBPu3jxomFNiRIlbEjyn8wsF126dMmGJNbq1auXPv74YzkcjqvWrVy5Ug0aNNBrr72mCxcu5KtHYmKixo4dq3r16mnBggWG9QMHDtTrr7+erx4AAAAAAAAAAAAAAAAAAAAAEKiCPR0AAK6FmeWiIkWKWB+kAD3T0tKUmZmpsLAw6wNZ6J577pHT6dRDDz2k9PT0v627dOmSRo0apddee01du3ZV69at1aJFC5UpU0axsbGKiopSamqqLl++rDNnzmjDhg1as2aNFi5cqLS0NFNZ7r77bn3yySeGy04AAAAAAAAAAAAAAAAAAAAAgF+xXATAp12+fNmwJioqyoYkBet56dIllSpVyuI01hs4cKCaNm2q22+/Xdu3b79q7ZUrVzRnzhzNmTPHbf0jIyP17rvv6t5773XbMQEAAAAAAAAAAAAAAAAAAAAgEDg9HQAACurKlSvKzs42rPPEclF0dLSpuqSkJIuT2KdmzZratGmTPv74Y1WuXNmWnkFBQbrrrru0Y8cOFosAAAAAAAAAAAAAAAAAAAAAoABYLgLgs7KyskzVRUREWJzkf4WHh5uqM/sefEVwcLDuvfde7d+/X998840GDBhgetEqP8qUKaPHHntMe/fu1bRp01SlShW39wAAAAAAAAAAAAAAAAAAAACAQBDs6QAAUFBmF3OCgoIsTvK/goPN/efV35aLfhMcHKwbbrhBLpdLeXl5mjVrllwul1uO3b17d40ePVr169d3y/H8UZs2bUz/Owjr7Nmzx9MRAAAAAAAAAAAAAAAAAAAAAEM8uQiAzzK7mOOJJQuzPbOzsy1OYr/du3frzjvvVNGiRXXbbbfp66+/dttikSTNnz9fDRo0UKVKlfTcc88pISHBbccGAAAAAAAAAAAAAAAAAAAAgEDDYw0A+KycnBxTdSwX2ePIkSMaPny45syZ49Zlor9z7NgxjRkzRuPGjdPgwYM1atQolS5d2vK+vmD16tUqVqyYp2MAAAAAAAAAAAAAAAAAAAAA8AE8uQiAzzK7wJObm2txkoL39MTikxU+//xzXXfddZo9e7Yti0V/lpGRoffff19169bV119/bWtvAAAAAAAAAAAAAAAAAAAAAPB1/nFVO4CAFBoaaqrO7BOO3MnsE4nMvgdvlZeXpyFDhuiTTz7J1+uCgoLUsGFDNWvWTMWLF1dcXJyKFCmi1NRUXbp0SZcuXdL27du1fv16paenmzrm5cuX1b9/fy1cuFAffvih3yxuAQAAAAAAAAAAAAAAAAAAAICVuPIagM8KCQkxVeeJ5SKzPX15ucjlcun+++/X1KlTTb+mffv2euqpp9SpUycVLlzYsD47O1ubNm3SxIkT9fXXX5v6XKdOnaq0tDR9+eWXCgoKMp0NAAAAAAAAAAAAAAAAAAAAAAKR09MBAKCgwsLCTNVlZGRYnKTgPX15uWjYsGGmF4saNGigDRs2aPny5erVq5epxSLp1wWyVq1a6YsvvtDhw4d16623mnrd119/rbvvvttULQAAAAAAAAAAAAAAAAAAAAAEMp5cBCBfjh49qg0bNljaIzIyUj179jSsi4iIUHBwsOHTbFJSUtwVzTSzPaOjoy1OYo2ffvpJ48aNM1X7wAMPaPz48QoPD7+mnuXLl9esWbM0YcIEjRgxQpmZmVet//LLL9WxY0fdf//919QXAAAAAAAAAAAAAAAAAAAAAPwZy0UA8mXFihUaPHiwpT0qVKhgarlIkmJjY3X+/Pmr1iQnJ7sjVr6Y7RkXF2dxEvdLSkrSvffea6p2xIgRGjt2rFv7P/rooypTpoxuueUWuVyuq9YOGzZMnTt3VsWKFd2aAQAAAAAAAAAAAAAAAAAAAAD8hdPTAQDgWsTHxxvWJCUl2ZAk/z0LFSp0zU/z8YT33ntPp06dMqzr1auXXn/9dUsy9OnTx9SxU1JS9Oyzz1qSAQAAAAAAAAAAAAAAAAAAAAD8ActFAHyameWis2fP2pDkPyUkJBjWmMnubbKzszVp0iTDuqioKH388cdyOq37Y+bpp59W8+bNDev+/e9/6+TJk5blAAAAAAAAAAAAAAAAAAAAAABfxnIRAJ9WpkwZwxoziz7uZqanmeze5ptvvtGZM2cM65588klblqf++c9/Gtbk5ORowoQJlmcBAAAAAAAAAH/jcrk8HQEAAAAAAAAA4EU4b+y/WC4C4NMqVqxoWHP69Gnrg/wXMws4lSpVsiGJey1cuNCwJjg4WE899ZQNaaTOnTurYcOGhnXff/+9DWkAAAAAAAAAwHc4HA7DGr4kBgAAAAAAAAD8mZnzxk4nayq+iF81AD7NzIJOQkKC0tPTbUjzh0OHDhnW+OJy0apVqwxrmjdvrtjYWBvS/OrGG280rNm3b5/Onz9vQxoAAAAAAAAA8A1mvtzNzc21IQkAAAAAAAAAwFfk5eUZ1pi5uRW8D8tFAHxa5cqVDWtcLpepZR93SUxM1MWLFw3rzGT3JgkJCTp69KhhXdeuXW1Ik/9+q1evtjgJAAAAAAAAAPiOoKAgw5rs7GwbkgAAAAAAAAAAfEVWVpZhjZnzz/A+LBcByJdBgwbJ5XJZ+texY8dM56lXr56pun379hXwHeef2V5ms3uLU6dOmaqrW7euxUkK1u/48eMWJwEAAAAAAAAA3+FwOBQSEnLVGjNfEgMAAAAAAAAAAofRTalCQkJ4cpGPYrkIgE8rVaqUSpQoYVi3detWG9KY7xUcHKz69evbkMZ9zDyNSZKKFi1qcZL/FBcXJ6fT+I8zs/kBAAAAAAAAIFCEhoZe9Z+zXAQAAAAAAAAA+DOj88ZG553hvVguAuDzGjVqZFhj53LRli1bDGtq1qyp8PBwG9K4z6VLl0zV2b1c5HQ6FRcXZ1jHchEAAAAAAAAA/CejL3kzMzPlcrlsSgMAAAAAAAAA8HZGy0UhISE2JYG7sVwEwOe1bNnSsGb9+vXKycmxIY20cuVKw5rmzZvbkMS9zH6B7IlHGZrpadevPwAAAAAAAAD4CqPlouzsbJ5eBAAAAAAAAACQ9OtiUWZm5lVreHKR72K5CIDP69Spk2FNSkqKNm7caHmWEydO6NChQ4Z1Xbp0sTyLuxUqVMhU3YULFyxO8p/y8vJMPZXIbH4AAAAAAAAACBRhYWGGNcnJyTYkAQAAAAAAAAB4u9TUVMMaM+ed4Z1YLgLg85o1a6bo6GjDugULFliexUwPh8NhaiHK28TExJiqO3/+vMVJ/tOlS5eUl5dnWGfm3xEAAAAAAAAACCSFChVSUFDQVWuSk5NNP9keAAAAAAAAAOC/UlJSrvrPHQ4HDwPwYSwXAfB5wcHBppZ1vvrqK8uzzJw507CmSZMmKlq0qOVZ3K18+fKm6vbs2WNxkv+0a9cuU3Vm8wMAAAAAAABAoHA4HCpcuPBVa7Kysgy/MAYAAAAAAAAA+Lf09HSlp6dftaZw4cJyOllR8VX8ygHwC7fffrthzcGDB7VhwwbLMpw4cUIrV640rDOT1RuVL19ewcHBhnU//vijDWn+sGjRIlN1lSpVsjgJAAAAAAAAAPgeM099P3v2rKknyAMAAAAAAAAA/I/L5dLZs2cN66KiomxIA6uwXATAL/Ts2dPUF6Djxo2zLMO7775r+OWq0+nUgAEDLMtgpZCQENWrV8+wbv369UpMTLQ+0P9ZuHChYY3D4VCjRo1sSAMAAAAAAAAAviUyMlJBQUFXrcnJydHZs2flcrlsSgUAAAAAAAAA8BaJiYnKyMi4ao3D4VDhwoVtSgQrsFwEwC+Eh4erX79+hnXffPONDh065Pb+Fy9e1EcffWRY17VrV5UqVcrt/e3SsmVLw5qcnBy98847NqSRFixYoB07dhjW1axZU7GxsTYkAgAAAAAAAADf4nA4FBMTY1iXmJioc+fOsWAEAAAAAAAAAAEkOTlZCQkJhnVRUVGGN7KCd2O5CIDfGDZsmBwOx1VrcnJyNGLECLf3fvHFF5WcnGxYN3z4cLf3tlP37t1N1Y0bN06XLl2yNIvL5dKoUaNM1d50002WZgEAAAAAAAAAX1a0aFFTX/peunRJCQkJysvLsyEVAAAAAAAAAMBTXC6XkpKS9MsvvxjWOhwOFStWzIZUsBLLRQD8Rq1atdSjRw/Dujlz5mjWrFlu67t69Wp98MEHhnWNGjVS586d3dZXko4dOyaHw2H4V4cOHdzSr0uXLqaeAJScnKz77rvP0i+YX331VW3dutVUrZmnWgEAAAAAAABAoAoKClLx4sVN1SYmJurw4cNKSkriKUYAAAAAAAAA4IeysrJ08uRJnT592lR9XFycQkNDLU4Fq7FcBMCvvPTSS3I6jf/TNmTIEB04cOCa+yUkJOiOO+5Qbm6uYe3LL798zf08LSQkRPfff7+p2tmzZ2vkyJGW5Jg5c6bpz7Nhw4Zq3ry5JTkAAAAAAAAAwF/ExMQoIiLCVG1OTo5Onz6tI0eO6Pz588rIyGDRCAAAAAAAAAB8WF5enlJSUnTq1CkdOXJEaWlppl4XHBysokWLWpwOdgj2dAAAcKfGjRvr3nvv1ZQpU65al5SUpE6dOmnFihWqXLlygXqdP39enTt31smTJw1rb7rpJvXs2bNAfbzNk08+qXfffVeZmZmGtW+++aZSU1M1btw4hYWFuaX/22+/rWeffdb0F9XPPvusW/oCAAAAAAAAgD9zOBwqWbKkjh07Zvr8a1ZWli5cuKALFy4oJCREYWFhCg0NVUhIiEJDQxUUFCSHwyGHw2Fxet/x22dr5hw7AAAAfAuzHgAAgH/ytznP5XIpLy9Pubm5ysrK+v2vjIwM5eXl5ft4JUqUMPVgCHg/losA+J3Ro0fru+++08WLF69ad+rUKTVr1kzTpk3TTTfdlK8eGzZsUL9+/XTixAnD2vDwcI0fPz5fx/dmpUuX1siRI/XKK6+Yqp88ebLWr1+vDz/8UE2bNi1w36NHj+rJJ5/U999/b/o1bdq00W233VbgngAAAAAAAAAQSMLDw1WuXDmdPHky308iys7OVnZ2tkXJ/Mdvn9GRI0c8nAQAAADuxqwHAADgn5jz/l6JEiUUHR3t6RhwE1bEAPidYsWK6dNPPzV1J8SLFy+qW7du6tu3rzZv3mxYv3fvXg0ePFitWrUytVgkSePHj1e1atVM1fqK5557TrVq1TJdv337djVr1kwdO3bU999/b/pRidnZ2Vq1apUGDBigatWq5WuxKDw8XJMnT+aOmAAAAAAAAACQD5GRkSpXrhznVgEAAAAAAAAAf6tYsWKKi4vzdAy4EU8uAuCXevTooREjRmjs2LGm6r/77jt99913ql69utq0aaM6deooLi5ODodDly9f1r59+7Ru3Trt3LkzXznuuOMOPfDAAwV5C14tPDxc3333nZo1a6bk5GTTr1u+fLmWL1+u4OBgNWzYUM2bN/99uChSpIhSU1N16dIlXbx4Udu3b9f69euVnp5eoIwffPCB6tSpU6DXAgAAAAAAAEAg+23BqCBPMAIAAAAAAAAA+Lf4+HjFx8d7OgbcjOUiAH5rzJgxOnXqlGbMmGH6NQcOHNCBAwfc0r9Tp0765JNP3HIsb1SjRg3Nnj1bPXr0yPcCUE5OjjZt2qRNmzZZku3VV1/V3XffbcmxAQAAAAAAACAQREZGqmLFikpISNCVK1c8HQcAAAAAAAAA4GFBQUEqUaKEoqOj5XA4PB0Hbub0dAAAsIrT6dTnn3+uvn372t67TZs2mjNnjsLCwmzvbaeOHTvqhx9+UGxsrKejSPr113zs2LEaNWqUp6MAAAAAAAAAgM8LDw9XhQoVVKpUKQUFBXk6jl84cuSIjhw54ukYAAAAsACzHgAAgH9izvtVTEyMqlSpopiYGBaL/BTLRQD8WnBwsGbNmqWRI0fa1nPw4MFavHixIiMjbevpSe3bt9eWLVvUqFEjj+YoWrSofvjhB40YMcKjOQAAAAAAAADAnzgcDhUpUkRVqlRRXFwcS0YAAAAAAAAAEEAiIiJUvnx5lS5dmvPDfo7lIgB+z+l0asyYMfruu+9UunRpy/rExsbqo48+0ieffOL3Tyz6b5UqVdKGDRs0duxYFS5c2NbeDodDgwcP1s8//6wbbrjB1t4AAAAAAAAAECiCgoJUokQJVatWTeXKlVORIkX4IhkAAAAAAAAA/FBYWJiKFy+uqlWrqmLFigHzwIVAx3IRgIDRu3dv7du3TyNGjHDrH3KhoaG67777tH//ft1///1uO66vCQ4O1ogRI3T06FG98MILiouLs7RfSEiI7rzzTu3atUuffPKJihYtamk/AAAAAAAAAMCvN3wqXLiwSpUqpWrVqql8+fIqUaKEYmNjFRkZqZCQEE9HBAAAAAAAAACY4HA4FBYWpqioKMXHx6tUqVKqXLmyKleurPj4eM73BhiHy+VyeToEANjt8uXL+vDDDzVt2jTt2bOnQMeoUqWKbr/9dj3yyCMqVaqUmxOac+zYMVWqVMmwrn379lq+fLn1gf4kKytL8+fP19dff60lS5bo/Pnz13zMiIgItW7dWn369FH//v0VHx/vhqS+7fz58ypevPh//L1z586pWLFiHkoEu9WpU0eSCvzfMgAAAHgn5jwAAODLXC6XcnNz5XK5lJeX5+k4XuWGG26QJC1atMjDSQAAAOBuzHoAAAD+yR/nPKfTKYfDoaCgIDkcDk/H8SqBfF1usKcDAIAnxMbGauTIkRo5cqSOHz+uH3/8UTt27NDevXt17NgxJScnKyUlRS6XS1FRUYqKilK5cuVUu3Zt1atXT507d1bNmjU9/TZUsWJFeeuOaGhoqPr06aM+ffrI5XJp165d2rp1q3bv3q2DBw/qzJkzOnPmjFJSUpSRkaGsrCwFBwcrPDxckZGRKlGihEqVKqVKlSqpTp06ql+/vpo1a6awsDBPvzUAAAAAAAAAwFU4HA4FB/M15F/57UZcnOsGAADwP8x6AAAA/ok5D4GCs/oAAl6FChU0ZMgQT8fwaw6HQ/Xr11f9+vU9HQUAAAAAAAAAAAAAAAAAAAAA8CdOTwcAAAAAAAAAAAAAAAAAAAAAAAAA4BksFwEAAAAAAAAAAAAAAAAAAAAAAAABiuUiAAAAAAAAAAAAAAAAAAAAAAAAIECxXAQAAAAAAAAAAAAAAAAAAAAAAAAEKJaLAAAAAAAAAAAAAAAAAAAAAAAAgADFchEAAAAASKpTp47q1Knj6RiAz+P3EgDA2/BnE+Ae/F4CAHgb/mwC3IPfSwAAb8OfTYB78HsJAJBfLBcBAAAAAAAAAAAAAAAAAAAAAAAAAYrlIgAAAAAAAAAAAAAAAAAAAAAAACBAsVwEAAAAAAAAAAAAAAAAAAAAAAAABCiWiwAAAAAAAAAAAAAAAAAAAAAAAIAAxXIRAAAAAAAAAAAAAAAAAAAAAAAAEKBYLgIAAAAAAAAAAAAAAAAAAAAAAAACFMtFAAAAAAAAAAAAAAAAAAAAAAAAQIBiuQgAAAAAAAAAAAAAAAAAAAAAAAAIUCwXAQAAAAAAAAAAAAAAAAAAAAAAAAGK5SIAAAAAAAAAAAAAAAAAAAAAAAAgQLFcBAAAAAAAAAAAAAAAAAAAAAAAAAQolosAAAAAAAAAAAAAAAAAAAAAAACAAMVyEQAAAAAAAAAAAAAAAAAAAAAAABCgWC4CAAAAAAAAAAAAAAAAAAAAAAAAAhTLRQAAAAAAAAAAAAAAAAAAAAAAAECAYrkIAAAAAAAAAAAAAAAAAAAAAAAACFAsFwEAAAAAAAAAAAAAAAAAAAAAAAABiuUiAAAAAAAAAAAAAAAAAAAAAAAAIECxXAQAAAAAAAAAAAAAAAAAAAAAAAAEKJaLAAAAAAAAAAAAAAAAAAAAAAAAgADFchEAAAAAAAAAAAAAAAAAAAAAAAAQoFguAgAAAAAAAAAAAAAAAAAAAAAAAAIUy0UAAAAAAAAAAAAAAAAAAAAAAABAgGK5CAAAAAAAAAAAAAAAAAAAAAAAAAhQLBcBAAAAAAAAAAAAAAAAAAAAAAAAAYrlIgAAAAAAAAAAAAAAAAAAAAAAACBAsVwEAAAAAAAAAAAAAAAAAAAAAAAABCiWiwAAAAAAAAAAAAAAAAAAAAAAAIAAxXIRAAAAAAAAAAAAAAAAAAAAAAAAEKBYLgIAAAAAAAAAAAAAAAAAAAAAAAACFMtFAAAAAAAAAAAAAAAAAAAAAAAAQIBiuQgAAAAAAAAAAAAAAAAAAAAAAAAIUCwXAQAAAAAAAAAAAAAAAAAAAAAAAAGK5SIAAAAAAAAAAAAAAAAAAAAAAAAgQLFcBAAAAAAAAAAAAAAAAAAAAAAAAAQolosAAAAAAAAAAAAAAAAAAAAAAACAAMVyEQAAAAAAAAAAAAAAAAAAAAAAABCgWC4CAAAAAAAAAAAAAAAAAAAAAAAAAlSwpwMAAICCy8vL+5+/d+HCBQ8kgafk5ORIks6fP+/hJIDv4/cT4B78XgLcg99LgPvw+wlwD34vAe7B7yXAffj9BLgHv5cA9+H3E+Ae/F4C3IPfS4D78PspsPzVNbh/da2uP3K4XC6Xp0MAAICC+fnnn1W7dm1PxwAAAAAAAAAAAAAAAAAAAAD8zt69e1WrVi1Px7Cc09MBAAAAAAAAAAAAAAAAAAAAAAAAAHgGy0UAAAAAAAAAAAAAAAAAAAAAAABAgGK5CAAAAAAAAAAAAAAAAAAAAAAAAAhQDpfL5fJ0CAAAUDA5OTk6ePDgf/y9uLg4OZ3sDwMAAAAAAAAAAAAAAAAAAABm5eXl6dKlS//x96pVq6bg4GAPJbIPy0UAAAAAAAAAAAAAAAAAAAAAAABAgOKxBgAAAAAAAAAAAAAAAAAAAAAAAECAYrkIAAAAAAAAAAAAAAAAAAAAAAAACFAsFwEAAAAAAAAAAAAAAAAAAAAAAAABiuUiAAAAAAAAAAAAAAAAAAAAAAAAIECxXAQAAAAAAAAAAAAAAAAAAAAAAAAEKJaLAAAAAAAAAAAAAAAAAAAAAAAAgADFchEAAAAAAAAAAAAAAAAAAAAAAAAQoFguAgAAAAAAAAAAAAAAAAAAAAAAAAIUy0UAAAAAAAAAAAAAAAAAAAAAAABAgGK5CAAAAAAAAAAAAAAAAAAAAAAAAAhQLBcBAAAAAAAAAAAAAAAAAAAAAAAAAYrlIgAAAAAAAAAAAAAAAAAAAAAAACBAsVwEAAAAAAAAAAAAAAAAAAAAAAAABCiWiwAAAAAAAAAAAAAAAAAAAAAAAIAAxXIRAAAAAAAAAAAAAAAAAAAAAAAAEKBYLgIAAAAAAAAAAAAAAAAAAAAAAAACFMtFAAAAAAAAAAAAAAAAAAAAAAAAQIBiuQgAAAAAAAAAAAAAAAAAAAAAAAAIUCwXAQAAAAAAAAAAAAAAAAAAAAAAAAGK5SIAAAAAAAAAAAAAAAAAAAAAAAAgQLFcBAAAAAAAAAAAAAAAAAAAAAAAAAQolosAAAAAAAAAAAAAAAAAAAAAAACAAMVyEQAAAAAAAAAAAAAAAAAAAAAAABCgWC4CAAAAAAAAAAAAAAAAAAAAAAAAAhTLRQAAAAAAAAAAAAAAAAAAAAAAAECAYrkIAAAAAAAAAAAAAAAAAAAAAAAACFAsFwEAAAAAAAAAAAAAAAAAAAAAAAABiuUiAAAAAAAAAAAAAAAAAAAAAAAAIECxXAQAAAAAAAAAAAAAAAAAAAAAAAAEKJaLAAAAAAAAAAAAAAAAAAAAAAAAgADFchEAAAAAAAAAAAAAAAAAAAAAAAAQoFguAgAAAAAAAAAAAAAAAAAAAAAAAAIUy0UAAAAAAAAAAAAAAAAAAAAAAABAgGK5CAAAAAAAAAAAAAAAAAAAAAAAAAhQLBcBAAAAAAAAAAAAAAAAAAAAAAAAAYrlIgAAAAAAAAAAAAAAAAAAAAAAACBAsVwEAAAAAAAAAAAAAAAAAAAAAAAABCiWiwAAAAAAAAAAAAAAAAAAAAAAAIAAxXIRAAAAAAAAAAAAAAAAAAAAAAAAEKBYLgIAAAAAAAAAAAAAAAAAAAAAAAACFMtFAAAAAAAAAAAAAAAAAAAAAAAAQIBiuQgAAAAAAAAAAAAAAAAAAAAAAAAIUCwXAQAAAAAAAAAAAAAAAAAAAAAAAAGK5SIAAAAAAAAAAAAAAAAAAAAAAAAgQLFcBAAAAAAAAAAAAAAAAAAAAAAAAAQolosAAAAAAAAAAAAAAAAAAAAAAACAAMVyEQAAAAAAAAAAAAAAAAAAAAAAABCggj0dAAAAwNecPHlSixYt0s6dO7V3714dPXpUKSkpSk5OlsvlUlRUlKKiolS+fHnVrl1b9erVU5cuXVStWjVPR/cLCQkJWrZsmXbv3q39+/fr4MGDunz5slJSUpSamqrg4ODffw1iY2NVtWpVVa9eXdWrV1fDhg1Vu3ZtORwOT78NAADghZjzrJGenq5du3bp8OHDOnbs2O9/JSQkKDU1VWlpaUpNTVVGRoZCQ0MVFhammJgYlSxZUqVLl1aNGjVUp04dNW/eXNWrV/f02wEAADbLzs7WqlWrtGbNGu3du1f79u3T+fPnlZKSorS0NEVERCg6OlpxcXGqUaOGateurebNm+v6669XRESEp+P7lPPnz2vRokXatm2b9u7dq8OHDyspKUkpKSnKzs5WVFSUoqOjVbp0adWuXVt16tTR9ddfrwYNGng6OgAA8FHMetY4fvz47+c3fzsXd+LECSUmJv5+Li4tLU0ul0vh4eGKiIhQsWLFVLJkSVWsWFF16tRR/fr11bJlS0VGRnr67QAAAB/EnOc5OTk52rhxozZs2KD9+/dr//79OnnypFJTU5WSkqLMzEwVLlz49+++y5Qp8/u1dbVq1VLz5s0VExPj6bcBD3G4XC6Xp0MAAAB4u8TERE2ZMkXTpk3Tzp07C3SMatWq6Y477tDDDz+sEiVKuDmhfzt06JA+/vhjzZs3T7t3776mY8XFxalNmzZq166devTooRo1argpJQAA8EXMee6VmZmpDRs2aNOmTdq2bZu2bt2q/fv3Ky8vzy3HL1mypG688Ub1799fnTt3VnAw904CAMBfrV69WhMnTtQPP/yg5OTkfL8+IiJCnTt31sMPP6wbb7yRm838jStXrmjatGn65JNPtGnTpgLNbWXLltVtt92mxx57TJUqVbIgJQAA8DfMeu5z/PhxrVmzRlu3btW2bdu0bds2Xb582S3HDg4OVtOmTXXLLbeoX79+KleunFuOCwAA/BdznmdkZWVp9uzZ+vLLL7Vs2bICffa/cTqdql+/vtq0aaPOnTura9euLHwFEJaLAAAAriI1NVWvvvqqJk6cqLS0NLccMzQ0VPfcc49Gjx6tokWLuuWY/mrRokV64403tGzZMlk1ttaqVUt9+/bVwIEDWTQCACCAMOe5R1ZWljZs2KDly5dr2bJlWrdunTIyMmzpXbZsWT366KN6+OGHFR0dbUtPAABgvZUrV2r48OHavHmz245Zo0YNjRkzRr1793bbMX1ddna23n77bY0dO1YXL150yzGdTqf69u2rsWPHqmLFim45JgAA8C/Metfu5MmTv5+LW758uY4ePWpLX6fTqZtvvlkjRoxQ69atbekJAAB8B3OeZ1y6dElvvvmmpkyZovPnz1vSo1ChQrrxxhvVt29fDRgwQEFBQZb0gXdguQgAAOBvfP/99xo6dKhOnTplyfHj4uL05ptvavDgwZYc35dt375dTz/9tBYvXmxbz6FDh2rChAm29QMAAJ7DnOc+//jHP/TPf/7ToxmKFy+uV199VUOGDOHuZQAA+LDExEQ98cQT+vzzzy3r0aNHD33wwQcqXbq0ZT18wZo1azRkyBD9/PPPlhy/UKFCeumll/T0008znwEAAEnMeu6Sm5vrFU/y7t27t9566y1VrlzZ01EAAICHMed5RmZmpt59912NHj1aiYmJtvU9f/58wNxkM1A5PR0AAADA2+Tl5WnUqFHq3bu3ZRecSr/eOeDee+/VAw88oKysLMv6+JLc3Fy9+uqratq0qa2LRQAAIDAw57mfN9y36Ny5c3rwwQfVpUsX/fLLL56OAwAACmDv3r1q1qyZpRchSNK8efPUuHFjrV271tI+3mzSpEnq2LGjZYtFkpSenq6RI0eqV69eSk5OtqwPAADwDcx67uMN5+Ikafbs2apfv76mTJni6SgAAMCDmPM847fP/ZlnnrF1sQiBgeUiAACAP8nNzdWAAQP02muv2XZy9qOPPlLXrl2Vnp5uSz9vlZCQoA4dOujFF19UTk6Op+MAAAA/w5zn/5YsWaLGjRtry5Ytno4CAADyYfXq1WrRooUOHjxoS7+EhAR17NhR3333nS39vMmwYcM0dOhQZWdn29Jv7ty5atmypc6fP29LPwAA4H2Y9fxXWlqahgwZoocffli5ubmejgMAAGzGnOcZU6ZMUZMmTbRz505PR4GfYrkIAADg/+Tl5WnQoEGaNWuW7b1XrFihPn36KDMz0/be3uDQoUNq1aqVVq9e7ekoAADADzHnBY6zZ8+qffv23LkMAAAfsXnzZnXv3l0pKSm29s3KytKAAQO0aNEiW/t60vPPP6933nnH9r579+5V165duYsqAAABiFkvMEyePFkDBgxQXl6ep6MAAACbMOd5xosvvqghQ4boypUrno4CP+ZwecvzUgEAADzsueee05gxY/L1mmrVqql169aqW7eu4uLi5HA4dPnyZf38889at26ddu/ena/jDRw40PJHxXqbnTt3qkuXLjp37pxHcwwdOlQTJkzwaAYAAGAN5jzrjBo1Sq+99pqnY/yP2NhYrV27VjVr1vR0FAAA8DdOnTqlhg0b6sKFC6ZfEx4ernbt2qlJkyYqU6aMoqOjlZqaqjNnzmjr1q1avny5UlNTTR+vUKFC2rBhg+rWrVuQt+AzPvjgAz300EP5ek3ZsmXVrl071a9fX0WLFlVISIgSExN18OBBbdiwQZs3b87XE0E7dOigxYsXKygoKL/xAQCAD2LWs0ZOTo5CQkI8HeMvPfTQQ3r//fc9HQMAAFiMOc8zHn74YU2ePNnTMXT+/HkVLVrU0zFgIZaLAAAAJC1YsEDdu3c3/YV4r1699Pzzz6tZs2ZXrdu9e7fGjh2r6dOnm75b05QpU3TfffeZqvV1J06cUMuWLXX69Ol8va5o0aLq0KGD2rZtq5o1a6py5cqKi4tTZGSkJCkxMVGJiYm6fPmy9u3bpx07dmjHjh3atm3b394lleUiAAD8E3OetcwsFzkcDlWvXl01atT4/a9q1aopLi5O0dHRio6OVlRUlNLT05WcnKzk5GQdPXpU27Zt0/bt27V48eIC3em+fv362rhxo8LCwgr47gAAgFVycnLUsWNH00+xLl68uEaNGqW7775bMTExf1uXnp6ur7/+Wi+//LKOHz9u6tg1a9bU5s2bfz+v5G+2b9+uli1bKiMjw1R9u3bt9OKLL+r666+Xw+H427qjR4/q3Xff1aRJk5SVlWXq2KNGjdKrr75qqhYAAPguZj3rmF0uKlKkiOrUqfMf5+PKlSunqKio38/HBQcHKykpScnJybp48aJ27dqlbdu2af369dq8eXOB8s2YMUMDBgwo0GsBAID3Y87zjILc7NHhcKhx48Zq3769mjRpoipVqqhcuXIqXLiwIiIilJqa+vv1dWfOnPn92rodO3bo559//tvv1lku8n8sFwEAgIB38eJF1axZ09QdFeLi4jRt2jR169YtXz3Wr1+vfv366eTJk4a1ERER2rlzp6pWrZqvHr4mMTFRbdq00Z49e0y/5uabb9YDDzygG264QcHBwfnumZOTozVr1mju3LmaP3++9u3b9/s/Y7kIAAD/w5xnvb86mR0SEqImTZqobdu2atu2rVq3bq3Y2NgC98jMzNScOXM0efJkLVu2LF+vfemll/Tyyy8XuDcAALDGK6+8opdeeslUbf/+/fXhhx8qOjra9PEzMzM1fPhwTZw40VT9kCFD9OGHH5o+vq/IyspS/fr1tX//fsPaiIgITZo0SYMGDcpXj/379+vWW2819WRPp9OpFStWqE2bNvnqAQAAfAuznnX+brmodOnSv5+La9u2rerWrSun01ngPgcOHNBnn32miRMnKikpyfTrYmNjdfjw4Ws6FwgAALwXc579PvroIz3wwAOm60uWLKnHHntMAwcOVLly5QrU88yZM5o3b57mzp2rJUuWKD09/fd/xnKR/2O5CAAABLyHHnpIH3zwgWFd2bJltXz5clWpUqVAfc6dO6eOHTtq7969hrU9evTQ3LlzC9THV9xyyy369ttvTdW2bNlS7733nho3buzWDFu2bNGkSZM0c+ZMDR48mOUiAAD8DHOe9X5bLoqNjVW3bt3Uq1cv3XTTTSpcuLAl/b766is99dRTOnPmjKn6yMhIHTp0SCVLlrQkDwAAyL+jR4+qdu3app6k89xzz2n06NEF7jVhwgQ99thjhnUOh0MbNmxQ06ZNC9zLG40ZM0bPPfecYV10dLR++uknw6d3/p20tDR1795dK1asMKxt0KCBtmzZoqCgoAL1AgAA3o1Zz1p/Xi5q3LixevXqpd69e6tevXqW9Dt79qyeeuopzZgxw/Rrhg8frjfffNOSPAAAwHOY8+y3ZcsWtWzZUtnZ2Ya14eHheumll/TEE08oIiLCbRlSU1M1bdo0vf/++9q1axfLRQGA5SIAABDQtm3bpiZNmigvL++qdTExMdqwYYNq1KhxTf0SEhLUtGlTnTp1yrB2/vz5+b5zvq+YMmWKhgwZYljndDr1yiuv6Nlnn7X0goPExEQdOnRITZo0sawHAACwF3OePZYtW6a8vDy1b9++QE+WLIiEhARdf/31+vnnn03Vv/LKK/rHP/5hcSoAAGBWnz59NHv2bMO6Bx98UJMnT77mfq+99ppGjRplWNesWTOtX79eDofjmnt6g9OnT6t69epKS0u7al1ISIiWLFmitm3bXlO/1NRUtW3bVtu3bzesnThxoh555JFr6gcAALwTs5618vLy9P7776tXr14qW7asbX3Hjx+vJ5980lRtdHS0Tp8+rcjISGtDAQAAWzHn2Ss9PV2NGjUy9UTyunXr6uuvv1atWrUszbRmzRo1atTIrctL8D4sFwEAgIDWu3dvzZkzx7Du66+/1m233eaWnqtWrVLHjh2Vm5t71bomTZpo06ZNbunpTY4ePap69eoZXtgQFham6dOn69Zbb7UpGQAA8CfMef7t3Llzat26tQ4dOmRYW7lyZR0+fNiGVAAAwMj27dvVsGFDw7qGDRtq3bp1CgsLu+aeLpdLN910kxYtWmRYO3fuXPXo0eOae3qDJ598UuPHjzese+ONN/T000+7peeBAwfUuHFjpaamXrWudOnSOnr0qEJDQ93SFwAAeAdmPf/2zjvvaNiwYaZqP//8cw0cONDiRAAAwC7MefYbOnSoJk2aZFh3/fXX67vvvlN0dLQNqRAInJ4OAAAA4Cn79+/X999/b1jXq1cvt11wKklt27bVgw8+aFi3efNmLV261G19vcWIESMMF4ucTieLRQAAoMCY8/xf8eLF9eGHH5qqPXLkiA4ePGhxIgAAYMYbb7xhWON0OjVlyhS3XIQgSQ6HQx9++KGpO2qayecLLl++rClTphjWNWzYUMOHD3db3+rVq+vFF180rDt9+rSmT5/utr4AAMA7MOv5t6eeekrt27c3Vbtw4UKL0wAAADsx59lrx44dpp7+1KJFC82dO5fFIrgVy0UAACBgvf322zJ6iGNwcLDefPNNt/d+5ZVXTA32b731ltt7e9KKFSv07bffGtb985//ZLEIAAAUGHNeYOjYsaPp5bBVq1ZZnAYAABg5efKkZs2aZVg3cOBANWrUyK29y5cvb+ou66tWrfKLJ0xOnjzZ8OY+0q9zs9Pp3q+Ln3jiCVWqVMmwjnkYAAD/wqwXGCZOnGiqjnNxAAD4D+Y8+z311FPKy8u7ak3p0qU1d+5cFSpUyKZUCBQsFwEAgICUmZmpr776yrDulltuUdWqVd3ePz4+Xvfff79h3aJFi3T27Fm39/eUZ555xrCmbdu2GjlypA1pAACAP2LOCywDBw40Vbdv3z6LkwAAACNffPGFcnJyrlrjcDgsOy/0xBNPKDw83LDus88+s6S/ncy8h+bNm6tDhw5u7x0aGqqnnnrKsG7v3r3avHmz2/sDAADPYNYLDHXq1DF10fCpU6dMLbsDAADvx5xnrwULFmjZsmVXrXE4HJo6daqKFi1qUyoEEpaLAABAQJo3b56SkpIM65588knLMjz++OOGdwbNzc3VzJkzLctgp5UrV2rjxo1XrQkKCtLkyZPdfsdUAAAQOJjzAkuXLl1M3ZHr+PHjNqQBAABX88UXXxjWdO3aVbVq1bKkf7FixXTnnXca1n399deGF0x4sy1btmj//v2GdVbOw/fee6+pp3ma+XcCAAD4Bma9wNG7d2/DGpfLpRMnTlgfBgAAWI45z15jx441rOnfv7+6du1qQxoEIq7aBAAAAWnGjBmGNVWrVlWLFi0sy1ChQgW1bdvWsM5MVl/w1ltvGdbcc889ql27tg1pAACAv2LOCyzh4eGqVq2aYV1KSooNaQAAwN/ZvXu3du/ebVh31113WZrDzPHPnz+vxYsXW5rDSmZmzKioKPXq1cuyDJGRkerTp49h3cyZM+VyuSzLAQAA7MGsF1jq1atnqo7zcQAA+D7mPHtt27bN8KlFISEheu2112xKhEDEchEAAAg4ubm5pn6Y6N+/v+VZBgwYYFizadMmXbx40fIsVjp+/Ljmzp1rWPf000/bkAYAAPgr5rzAVLJkScOa3NxcG5IAAIC/s3DhQsOa8PBwSxdeJKldu3YqXbq0Yd2CBQsszWElM5/1zTffrIiICEtzmJmHExIStH37dktzAAAA6zHrBRYz5+IkzscBAOAPmPPsNWHCBMOaW265RZUrV7YhDQIVy0UAACDgbNy4UUlJSYZ1N910k+VZzPTIy8vTkiVLLM9iJTN3Ib3++utVs2ZNmxIBAAB/xJwXmOLi4txSAwAArPPTTz8Z1rRp00ZRUVGW5nA6neratathnZm83ujMmTPas2ePYZ0d83CHDh0UHh5uWOernzUAAPgDs15gMXuejfNxAAD4PuY8+2RlZenbb781rHvkkUdsSINAxnIRAAAIOGYu4IyKilLz5s0tz1KhQgVVrVrVsM6Xf/iRfl0uMnLHHXfYkAQAAPgz5rzAdOnSJcOa+Ph4G5IAAIC/kpWVpdWrVxvWde7c2YY05vr8/PPP+uWXX2xI415mF9c7depkcZJf71rbpk0bwzrmYQAAfBuzXuAxcy5O4nwcAAC+jjnPXgsWLFBiYuJVa8qVK6e2bdvaEwgBi+UiAAAQcNatW2dY07x5cwUHB9uQRqaG/g0bNtiQxBqHDx/W9u3br1rjdDrVo0cPewIBAAC/xZwXmM6ePWtYU6NGDRuSAACAv7Jjxw6lp6cb1plZRHEHs1/A++KcZmYerlq1qkqWLGlDGnOf9caNGw2feA4AALwXs17gMXMuLj4+nuUiAAB8HHOevb755hvDmp49e9qQBIGO5SIAABBwtm3bZljTqFEjG5L8qnHjxoY1P//8szIzM21I436LFy82rLnuuutUokQJG9IAAAB/xpwXeK5cuaIDBw4Y1nEXLwAAPMfMjOZ0OnXddddZH0ZS+fLlVbRoUcM6M7m9jS/Ow8nJyTpy5IgNaQAAgBWY9QKP0U0lpV8vMnY4HNaHAQAAlmHOs5eZJ5LfeOONNiRBoGO5CAAABJSzZ8/qzJkzhnXe9iV7Tk6Odu3aZUMa91u2bJlhTcuWLW1IAgAA/BlzXmD68ccfDe+aFhcXp/r169uUCAAA/LetW7ca1lSvXl2RkZE2pPmVmTnN1y5EyMvL044dOwzrvG0elnzvswYAAH9g1gs8s2fPNqzp2LGj9UEAAIClmPPss2/fPlPfc7do0cKGNAh0LBcBAICAsnPnTlN1NWvWtDjJH2rUqGGqzmx2b7NixQrDmubNm9uQBAAA+DPmvMD0ySefGNYMGTJETienQQEA8BQzi9R2zmiSuTnN12a0w4cPGy5dS/Z+1iVLllRMTIxhna991gAA4A/MeoFl69athk8uKlSokAYOHGhPIAAAYBnmPPssX77csKZy5coqVqyY9WEQ8II9HQAAAMBOR44cMVVXtWpVi5P8ITY2VnFxcbp06dJV68xm9yYnT55UQkKCYV3t2rUNay5evKgFCxZo/fr12r17t44ePaqkpCSlpqYqNDRUhQoVUnx8vCpVqqQqVaqoWbNmatmypapXr+6OtwIAALwcc17gWbBggb7//vur1gQHB+vRRx+1KREAAPgrZmadatWq2ZDkD2Zmwl9++UVZWVkKDQ21IdG1MztT2v1ZV6lSxfBOt8zDAAD4Lma9wOFyuTR06FDDurvvvltxcXE2JAIAAFZizrPPpk2bDGvMXFvncrm0adMm/fjjj9q5c6f27t2r8+fPKzk5WTk5OSpUqJAKFy6ssmXLqlKlSqpbt65atmypFi1a2PoEKng3losAAEBAOXr0qGFNyZIlbR+Yq1atqo0bN161xkx2b7Nnzx5TdX/3w2ZeXp7mzZund999V8uXL1dubu5f1l25ckVXrlzRxYsXdeDAAUnSpEmTfj/2bbfdpvvvv1+VKlUqwLsAAAC+gDkvsBw5ckQPPPCAYd2IESNUtmxZGxIBAIC/cuXKFVM3nqlSpYoNaf5g5kKEvLw8HT9+3PaLJArK7ExZuXJli5P8p6pVqxouFzEPAwDgm5j1Ass//vEPrV+//qo1cXFxevHFF21KBAAArMKcZy8z19dd7f388ssvmjhxoqZOnXrVX7fk5GQlJyfr9OnT2rhxo7766itJUnh4uG644QbdcccduuWWWxQUFJT/NwG/4fR0AAAAADsdO3bMsKZ06dLWB/kvpUqVMqzxxS/ZzfzwEx8fr+jo6P/5+4sXL1bdunXVq1cvLVmy5G8Xi4wcPHhQo0ePVrVq1dS/f38dPHiwQMcBAADejTkvcOzfv18dOnTQqVOnrlpXr149/b//9/9sSgUAAP7K8ePHTdXZPaeZmdEk35rTzMzDcXFxCg8Ptz7MnzAPAwDgv5j1AkNeXp6effZZvfbaa4a1EydONP35AwAA78WcZ6+9e/ca1vzVDYOSkpL0xBNPqFKlSvrXv/5laiHsr2RkZGjOnDnq37+/qlatqsmTJxf4Oj34PpaLAABAQPnll18Ma0qWLGlDkvz3NLp40hv9/PPPhjXFixf/j/+flpamu+66S126dDH1erNyc3P19ddfq27duho1apSys7PddmwAAOB5zHn+LzMzU6+++qquu+46nTx58qq1pUqV0r///W+FhobalA4AAPwVMzOaZP+cZrafL81pvjwPJyQkcMECAAA+iFnP/23dulUtW7bU66+/blg7fPhwDRgwwIZUAADAasx59jl16pRSUlIM6/77+rpFixapRo0aevfdd916DdyxY8f08MMPq0mTJtq8ebPbjgvfwXIRAAAIKBcvXjSsKVGihA1J/pOZH34uXbpkQxL3MrroU5KKFSv2+/8+fPiwmjdvri+++MKyTFlZWXrttdfUrl07U/kAAIBvYM7zXzt27NDTTz+tSpUq6cUXX1RGRsZV60uWLKlly5apWrVqNiUEAAB/x8yMJtk/pxUvXlxOp/HXpL40p/nyPOxyuXT58mUb0gAAAHdi1vNPKSkpmjZtmrp27aqmTZtq48aNhq958skn9eabb9qQDgAA2IE5zz5mr1378/V1//rXv9StWzedPXvWqljavn27WrdurYkTJ1rWA94p2NMBAAAA7GTmh58iRYpYH6QAPdPS0pSZmamwsDDrA7mJmcet/vbeDx8+rPbt25u++8W1Wr9+vVq0aKHFixerVq1atvQEAADWYc7zbjt37tTevXuvWpOVlaXk5GQlJyfr7Nmz2rFjh3bs2KHExETTfa6//np99tlnKlu27DUmBgAA7mD2QgS75zSn06moqCglJSVdtc5sfm/gy/Ow9Gv+okWLWhsGAAC4FbOe98rLy9PXX3991RqXy6XU1FQlJycrKSlJBw4c0Pbt23Xw4EHl5eWZ6hMZGalx48bp/vvvd0dsAADgJZjz7GPm2jrpj8/6ueee05gxYyxM9IesrCw9+uijOnz4sN5++21besLzWC4CAAABxcwdMKOiomxIUrCely5dUqlSpSxO4z5nzpwxrAkNDdXZs2fVsWNH2xaLfnP69Gm1a9dOK1euZMEIAAAfx5zn3b788ku9/vrrlh2/aNGiGjVqlB5//HE5HA7L+gAAgPwxe5fQwoULW5zkf5m5EMGX7nJqJqu3z8MAAMC3MOt5r6ysLN1+++2W9rjhhhv03nvv8fRwAAD8EHOefcxcWyf9en3d6NGjbVss+rN33nlHWVlZmjBhgu29YT+WiwAAQMC4cuWKsrOzDes88SV7dHS0qbqkpCSfuejU5XKZuhNEUFCQBgwYYOoxr9HR0Wrbtq3q1aunChUqqHDhwsrJyVFiYqIOHTqkDRs2aNu2bcrNzTWd88KFC+rZs6c2bNig+Ph4068DAADegzkvcFWsWFGPPvqoHnroIUVGRno6DgAA+C/JycmGNZGRkXI6nTak+U9m5jSjCxW8iZnP2tvnYQAA4FuY9QJPSEiIunfvrueff15Nmzb1dBwAAGAR5jz7nD9/3lTdihUr9I9//MNUbe3atdW6dWtVq1ZN8fHxCgsLU3p6uk6dOqU9e/Zo5cqVpvv+ZuLEiapataqefPLJfL0OvoflIgAAEDCysrJM1UVERFic5H+Fh4ebqjP7HrxBRkaG8vLyDOvmzJmjjIyMq9a0aNFCzzzzjHr06KGQkJCr1iYkJOjzzz/Xm2++afoHocOHD+uuu+7SggULTNUDAADvwpwXePr27avnn39ejRs39nQUAABwFWZmHE/MaJK5Oc2XZjRv/ayZhwEA8F/eOn9I/jfreVrx4sX16quvqn///oqJifF0HAAAYDHmPPukp6ebqhs+fPhVr8MrXLiwhg4dqgceeECVK1e+6rHy8vK0bNkyvfPOO5o/f77prMOHD1fTpk3VunVr06+B77F/ZRAAAMBDzP7gEBQUZHGS/xUcbG7n25d++DFaGDJTV6RIEU2bNk3r1q1Tnz59DBeLJKlkyZJ65plndPjwYT3wwAOm8y5cuFAfffSR6XoAAOA9mPMCz7fffqt+/frpscce07p16zwdBwAA/A0zM44nZjTJ3JzmSzOat37WzMMAAPgvb50/JP+b9Tzt3Llzevzxx9W/f39NnDjR1NMMAACA72LOs487rq/r0aOHDhw4oDFjxhguFkmS0+lUp06dNG/ePP30008qV66cqQx5eXkaPHiw6YUo+CaWiwAAQMAw+4OD2S+83clsz+zsbIuTuE9mZuY1vb5SpUpav3697rrrrgK9PioqSh988IGmTJli+gfaZ5991qcejQsAAH7FnBeYjhw5ogkTJqhVq1Zq165dvu6sBQAA7GFmTvPEjGa2ry/NaN76WTMPAwDgv7x1/jDbl/kjfzIzM7Vo0SI9+uijKl++vJ5//nmdPXvW07EAAIAFmPPsc63X1z3//PP6/vvvVapUqQK9vnPnztq8ebOaNWtmqv7gwYN66623CtQLvoHlIgAAEDBycnJM1fElu3tcy10gSpUqpSVLlqhGjRrXnOO+++7TlClTTNVeunRJY8eOveaeAADAXsx5WLVqlXr06KFu3bopISHB03EAAMD/MTOncSGCe3jrZ808DACA//LW+cNsX+aPgktKStK//vUvVa9eXdOmTfN0HAAA4GbMefa5luvrRo4cqddee00Oh+OaMhQvXlw//vijGjRoYKr+zTff1MWLF6+pJ7wXy0UAACBgmP2hJjc31+IkBe/pqR/MCuJaHn87depUVapUyW1ZBg0apHvuucdU7cSJE3XlyhW39QYAANZjzsNvFixYoHr16umHH37wdBQAACBzM44nZjSzfX1pRvPWz5p5GAAA/+Wt84fZvswf1y45OVl33323+vXrp7S0NE/HAQAAbsKcZ5+CXl/XunVrjR492m05YmJiNHPmTIWHhxvWJicn68MPP3Rbb3gXlosAAEDACA0NNVVn9s737mT2jglm34M3KGjW+++/XzfccIOb00jjxo1T6dKlDesSExM1c+ZMt/cHAADWYc7zfmPGjJHL5frbv/Ly8pSUlKTjx49r586dWrRokV577TX16dPH1Az3ZxcuXFDv3r01e/Zsa94MAAAwzcyM44kZTTI3p/nSjOatnzXzMAAA/stb5w/J/2a9/AoPD7/quTiXy6XMzEydPXtW+/fv14YNGzR16lQNHTpULVq0yPcFubNmzVL37t2Vnp5u0TsCAAB2Ys6zT0GyRkREaOrUqXI63bsGUrNmTb3yyiumaj/66CPl5eW5tT+8A8tFAAAgYISEhJiq88QPP2Z7+vsPP5GRkRo7dqwFaaQiRYpozJgxpmq//PJLSzIAAABrMOf5PofDoejoaJUvX1716tVT165d9fzzz+vbb7/VyZMntXDhQt16662mf62zs7PVr18/zZs3z+LkAADgasz82e2pCxHM9PWlGc1bP2vmYQAA/Je3zh9m+wb6/BEaGqrixYurevXqatasmQYNGqQJEyZo3bp1OnnypEaPHq0qVaqYPt6KFSvUo0cPZWRkWJgaAADYgTnPPgXJOmzYMFWrVs2CNOaPffToUa1bt86SDPAslosAAEDACAsLM1XniROeZnv60g8/Zj/vP7vjjjtUpEgR94f5P/369VPRokUN61auXKnU1FTLcgAAAPdizvNvTqdTN9xwg2bNmqXdu3erXbt2pl6XnZ2tu+66S6dOnbI4IQAA+Dtm5jRPXXxopq8vzWje+lkzDwMA4L+8df4w25f54++VLFlSzz33nA4cOKB33nlHkZGRpl63bNkyvfDCCxanAwAAVmPOs09+r68LCgrSgw8+aFGa/B1//vz5luWA5+TvGaYAAAD5dPToUW3YsMHSHpGRkerZs6dhXUREhIKDgw3vYJCSkuKuaKaZ7RkdHW1xEvcJDw9XSEiIqcfR/uahhx6yMNGvP5ANGjRIb7755lXrsrKytGLFCnXv3t3SPAAA+DLmPHP8cc7zpOrVq2v58uWaNGmSnnzyScNf86SkJA0ePFg//vijHA6HTSkBAMBvoqKiDGvS0tLkcrls/7PazJzmSzNaVFSUzp07d9Ua5mEAAOBOzHr+z+l06sknn1Tv3r11++23a/369YavGTdunHr16mX6BkEAAMD7MOfZx8xn/WfdunVTuXLlLErzq0GDBmnUqFGGi1w//fSTRo8ebWkW2I/lIgAAYKkVK1Zo8ODBlvaoUKGCqYtOJSk2Nlbnz5+/ak1ycrI7YuWL2Z5xcXEWJ3Gv+Ph4JSQkmKqtVKmSGjVqZHEi6dZbbzVcLpKkzZs3s1wEAMBVMOeZ469znic5HA4NHTpUFSpUUJ8+fQwXjBYvXqyvvvpKAwYMsCkhAAD4jZkZx+VyKSUlxfYv/c3Mab40o8XFxenw4cNXrWEeBgAA7sSsFzgqVqyoJUuWqGfPnlq6dOlVa/Py8vTggw9q79693OwHAAAfxZxnn6JFi+ar/tZbb7UoyR/i4+PVoUMHLVy48Kp1O3fuVFZWlk89KQrGnJ4OAAAAYKf4+HjDmqSkJBuS5L9noUKFFB4ebkMa9zHzef+mefPmFib5w3XXXWfqh5qtW7fakAYAALgLc17g6dGjh8aPH2+q9p133rE4DQAA+Ctmzw3ZPafl5eUpNTXVsC4/57Y8zZfnYcm3PmsAAPArZr3AUqhQIX377beqVq2aYe2+ffu0YMECG1IBAAArMOfZJ79Z7bq+rlmzZoY1WVlZ2rNnjw1pYCeWiwAAQEAxM5CfPXvWhiT/yczTfXzpB5/feONyUVhYmBo0aGBYZ3SnVwAA4F2Y8wLTI488oi5duhjWbdy4UWvXrrUhEQAA+DOzc47dc9r58+eVm5trWOdLc5ovz8MOh0OxsbE2pAEAAO7ErBd4YmJiNHXqVFO148aNszYMAACwDHOeffKTtUiRIqpevbqFaf5g9jo+rq/zPywXAQCAgFKmTBnDGjNfeLubmZ5msnub/GSuX7++hUn+k5nlolOnTtmQBAAAuAtzXuB6/fXXTdV98803FicBAAD/zeycY/ecZrafL81pvjwPlyhRQsHBwTakAQAA7sSsF5hat26tXr16GdYtWbJEiYmJ1gcCAABux5xnn/xkrVevnhwOh4Vp/mDm2jqJ6+v8EctFAAAgoFSsWNGw5vTp09YH+S9nzpwxrKlUqZINSdyrcuXKpmvj4uIsTJL/XklJScrMzLQhDQAAcAfmvMDVsGFDU3fPWrVqlQ1pAADAn5mZ0ST75zQzM5rkW3Oamc/60qVLtp/vYh4GAMB/MesFroceesiwJi8vT2vWrLEhDQAAcDfmPPtUrFhRTqe5dQ5vu7ZO8syT0mEtlosAAEBAMfPDQ0JCgtLT021I84dDhw4Z1vjSDz6/yc9yUZEiRawLUsBedv97AAAACo45L7CZuVvqtm3blJqaakMaAADwm4iICJUoUcKw7vDhwzak+YOZGc3hcKhChQo2pHEPMzOly+XSkSNHbEjzB+ZhAAD8F7Ne4OrUqZMiIyMN67jZDwAAvok5zz6hoaGmn15k57V1ERERCgsLM6zj2jr/w3IRAAAIKGaWXVwul6kfRtwlMTFRFy9eNKzLz6KOt6hSpYrpWpaLAADAtWDOC2ytWrUyrMnNzdXRo0dtSAMAAP7MzKxz8OBBG5L8wcxMWKZMGVNfoHsLszOlN37WzMMAAPguZr3AFBISoqZNmxrW2f1rDwAA3Ic5zz5mr6+z89o6SYqJiTGs4do6/8NyEQAAsNSgQYPkcrks/evYsWOm89SrV89U3b59+wr4jvPPbC+z2b1J/fr1Tdc6HA4Lk3iuFwAA/oo5z329fHHO8zZVq1Y1VWdm2QsAALiXmVnHzhnNbD9fm9GqVKmiiIgIwzo7P+uEhAQlJSUZ1vnaZw0AAP7ArBe4zJyP41wcAAC+iznPPg0aNDBVZ/f1blxfF5hYLgIAAAGlVKlSph7bunXrVhvSmO8VHBycr0UdbxEbG2v6zqOJiYnWhvmTy5cvm6orVKiQxUkAAIC7MOcFtri4OFN1ly5dsjgJAAD4bw0bNjSs2b9/v613uTQzpzVq1MiGJO4TFBRkaq70tnlY8r3PGgAA/IFZL3CZOR/HuTgAAHwXc559GjdubKrOzmvrzPbj2jr/w3IRAAAIOGZ+iLDzS/YtW7YY1tSsWVPh4eE2pHE/sz8AmV34cQezP2xFRkZaGwQAALgVc17gCgkJMVV35coVi5MAAID/ZmZGy8vL0/bt260PI+nkyZM6f/68YZ2ZCyi8jS/Ow1FRUapSpYoNaQAAgBWY9QKXmfNxnIsDAMB3MefZxxuvrbty5YoyMzMN67i2zv+wXAQAAAJOy5YtDWvWr1+vnJwcG9JIK1euNKxp3ry5DUms0apVK1N1dt65ykyv+Ph4hYaG2pAGAAC4C3Ne4EpLSzNVxwluAADs16BBA0VERBjWrVq1yoY05mY0yTfnNDPz8MGDB3X27Fkb0pj7rJs1ayaHw2FDGgAAYAVmvcBl5nwc5+IAAPBdzHn2qVmzpmJjYw3rvO3aOkkqXbq0xUlgN5aLAABAwOnUqZNhTUpKijZu3Gh5lhMnTujQoUOGdV26dLE8i1W6du1qqm7nzp0WJ/nDjh07DGvKly9vQxIAAOBOzHmB69SpU6bqChcubHESAADw38LCwtSmTRvDuiVLltiQxlyfmjVrqmzZsjakcS8z87Bkz2edmZmpNWvWGNYxDwMA4NuY9QKXmfNxnIsDAMB3MefZx+l0qnPnzoZ1u3btksvlsiGRuWvrJK6v80csFwEAgIDTrFkzRUdHG9YtWLDA8ixmejgcDtMXBnij2rVrm/rBbcOGDTak+fXCBjM/ANWoUcOGNAAAwJ2Y8wLX3r17TdVxghsAAM8w8+X4qlWrlJqaammOvLw8LVq0yLDOVxdeSpcurVq1ahnW2TEPL1++XFeuXDGs89XPGgAA/IFZLzCZOR/HuTgAAHwbc559zNy8OzExUQcOHLAhjfnr+Li+zv+wXAQAAAJOcHCwqYs4v/rqK8uzzJw507CmSZMmKlq0qOVZrNStWzfDmvXr19uQRNq2bZuysrIM65o2bWpDGgAA4E7MeYFrxYoVhjVBQUGqWLGi9WEAAMD/uPHGGw1rMjIyNGfOHEtzrFq1SqdPnzasM5PXW5nJPmfOHGVkZFiaw8w8XKJECTVs2NDSHAAAwHrMeoHn/Pnz+vnnnw3rqlSpYkMaAABgFeY8+9x0001yOByGdXZdX2dmuSgmJkbVq1e3IQ3sxHIRAAAISLfffrthzcGDBy19ms6JEye0cuVKwzozWb3dnXfeaVhz7Ngxbd261fIs33zzjam6li1bWpwEAABYgTkv8OTk5Ojf//63YV2tWrUUGhpqQyIAAPDf6tevr9q1axvWTZ8+3dIc06ZNM6yJj4/36bucmpkxU1JSLL3oIy0tTd99951hXf/+/U1dNAEAALwbs17g+eqrr+RyuQzrrrvuOuvDAAAAyzDn2adMmTLq0KGDYZ3Z696uxYULF7R8+XLDuubNm3Nuzw+xXAQAAAJSz549FR0dbVg3btw4yzK8++67ysvLu2qN0+nUgAEDLMtgl7Zt26pSpUqGde+//76lOTIyMvTpp58a1hUtWlTNmjWzNAsAALAGc17g+eqrr5SQkGBY1759exvSAACAv2Pm5jOLFi3Svn37LOl//vx5ffHFF4Z1/fr1U0hIiCUZ7NC0aVNVq1bNsM7KeXjq1KlKSkoyrDPz7wQAAPANzHqBIzc3VxMnTjSsczgcateunQ2JAACAlZjz7HP33Xcb1vzwww86ceKEpTmmTp2qzMxMw7ru3btbmgOewXIRAAAISOHh4erXr59h3TfffKNDhw65vf/Fixf10UcfGdZ17dpVpUqVcnt/uzkcDg0ePNiwbsaMGbp8+bJlOb766itdvHjRsK5nz54KCgqyLAcAALAOc15gSU1N1ahRo0zV3nDDDRanAQAAV3PXXXcZnm9xuVwaM2aMJf3Hjx+vjIwMw7p77rnHkv52MvMe1q9fb+oOpPmVlZWlt99+27CuZs2a3NwHAAA/wqwXON5//31TFw83bNhQxYoVsyERAACwEnOefW699VbDm2jm5eVp8uTJlmXIzc3VBx98YKq2V69eluWA57BcBAAAAtawYcMMH82Zk5OjESNGuL33iy++qOTkZMO64cOHu723pwwdOlSRkZFXrUlLS7PsPV++fFnPPfecqdr77rvPkgwAAMAezHmB4+GHH9axY8cM64oVK6Ybb7zR+kAAAOBvlS9fXrfeeqth3bRp07R161a39j5x4oSphZfWrVurefPmbu3tCQ899JAKFSpkWDd8+HDDJ27m1/jx43X06FFTvQEAgP9g1gsMO3fu1MiRI03VmrnzPgAA8H7MefYpXLiwHnnkEcO6d955R/v377ckw9ixY3X48GHDus6dO6tChQqWZIBnsVwEAAACVq1atdSjRw/Dujlz5mjWrFlu67t69WpTG/6NGjVS586d3dZXko4dOyaHw2H4V4cOHdzaV5Li4uL04IMPGtZNnTpVCxYscHv/xx9/XGfOnDGsa9iwoVq3bu32/gAAwD7MedbPeXPnztXZs2fdcqyCcLlcGj58uKZPn26qftCgQQoJCbE4FQAAMPLMM88Y1uTl5WnIkCHKyspyS0+Xy6UHH3xQV65cMaw1ky8/Bg0aZGpGc/cThOLj403dPGfr1q2mLtAw6+DBg3rllVcM60qVKqWBAwe6rS8AAPAOzHrWzXoXL17Ud999d+2hr8G+fft04403Kj093bC2UKFCuvPOO21IBQAA7MCcZ885PUl66qmnFBERcdWajIwMDR482O03Ddq7d69efvllU7WPPfaYW3vDe7BcBAAAAtpLL70kp9N4JBoyZIgOHDhwzf0SEhJ0xx13KDc317DW7LDuS5555hnFxMQY1g0ePFhHjhxxW9+PP/7Y9IWn/vi5AwAQiJjzrPXvf/9bVapU0fPPP6+EhARbe1++fFn9+vUzfSFs4cKF9fTTT1ucCgAAmNGoUSPdfPPNhnVbt27VE0884Zae//rXv7Rw4ULDuiZNmqhnz55u6ekNnnnmGVNPL3r++ee1evXqa+6Xlpam/v37KzU11bD2ueeeU1hY2DX3BAAA3oVZzzopKSnq27evWrVqpfnz58vlctnaf+7cuWrZsqWpGzlK0qOPPqqiRYtanAoAANiFOc8+xYsXN/UZrlu3Ts8++6zb+iYmJmrAgAHKzMw0rG3cuLFffeb4TywXAQCAgNa4cWPde++9hnVJSUnq1KnTNS28nD9/Xp07d9bJkycNa2+66Sa/HMJLlCihV1991bDu7Nmz6tSpk1se4TplyhRTT0ySpPbt25v6YRgAAHg/5jzrpaWl6V//+pcqVKigu+++W0uXLnX7HbL+LDc3V1OnTlXdunX1zTffmH7dyJEjVaxYMctyAQCA/Hn77bdNLZZMnjxZL7zwwjX1mjRpkqljOBwOvffee3I4HNfUz5uULVtWzz//vGFddna2evTooc2bNxe4V3p6unr27Klt27YZ1tarV0+PPPJIgXsBAADvxqxnrXXr1qlHjx6qVauW3nnnHctv+nP48GHdfvvtuvnmm5WYmGjqNcWKFdPIkSMtzQUAAOzHnGefUaNGqXz58oZ1Y8eO1QsvvHDNi+fnzp1T165dtWvXLlP1b775pt995vgDy0UAACDgjR49WvHx8YZ1p06dUrNmzbRgwYJ899iwYYOaNGmiPXv2GNaGh4dr/Pjx+e7hKx555BE1adLEsO7YsWNq0aKF6ScO/beUlBQ9+OCDGjJkiKknCBQqVEgffvhhgXoBAADvxJxnj6ysLE2bNk2dOnVS+fLl9dBDD2nOnDmmLzgwcvDgQY0ePVpVq1bVvffeq9OnT5t+bePGjd161y4AAHDtqlSpYvpiw9GjR+v2229XSkpKvnpkZmbq8ccf19ChQ03VDx48WC1atMhXD18wYsQIVatWzbAuKSlJ7du312effZbvHvv371eLFi20bNkyw1qHw6EJEyYoKCgo330AAIBvYNazx/79+zVs2DCVLVtWnTp10ltvvaVdu3a55cY/V65c0bx583TLLbeoZs2amjlzZr5e/8EHHyguLu6acwAAAO/CnGefyMhIvffee6ZqR48erZtvvtn0Eyb/2+LFi9WkSRNt2rTJVP3999+vDh06FKgXfAPLRQAAIOAVK1ZMn376qamN+osXL6pbt27q27evqbt57t27V4MHD1arVq104sQJU3nGjx9v6kt/XxUUFKSvvvpKRYoUMaxNTEzUwIED1bJlS3377bfKzs42fM3Zs2f1+uuvq0qVKvlaFho3bpyqV69uuh4AAHg/5jz7/fLLL/rggw/Uu3dvxcXFqVatWho4cKBee+01zZo1S+vWrdORI0eUmJiojIwM5eXlKScnR+np6Tpz5ox27dql+fPna9y4cbrnnntUtWpVVa9eXS+88IKOHTuWryzx8fGaMWOGgoODrXmzAACgwP7xj3+oZcuWpmpnzpypatWqaeLEiUpOTr5q7ZUrV/T555+rZs2apr+Ar169ul8ugEtSWFiYZs6caequsunp6Ro0aJA6duyoZcuWGd7x9NixYxo2bJjq169v+q6mzz77rNq1a2eqFgAA+C5mPfvk5uZq6dKlGjFihOrXr6/Y2Fh16dJFw4YN0+TJk/Xjjz9q586dSkhIUGpqqrKzs+VyuZSZmanExEQdPnxYa9eu1bRp0/T888/r+uuvV9GiRdWzZ099++23ysnJyVeexx9/XH369LHo3QIAAE9jzrPPzTffrMcee8xU7bx581StWjU9++yzOnLkiGG9y+XS0qVL1aNHD3Xp0kUnT5401ad69eoaN26cqVr4LofrWp+FBQAA4CeeeeYZjR07Nl+vqV69utq0aaM6deooLi5ODodDly9f1r59+7Ru3Trt3LkzX8e744479MUXX+TrNflx7NgxVapUybCuffv2Wr58uWU5JGnu3Lnq1atXvh7NGhMTo7Zt26p+/foqX768ChcurNzcXF2+fFmHDx/Whg0btGXLFlNPKvqzxx9/3K9/4AQAINAx5/3BXXPeoEGDCnRne7tERERo8eLFatWqlaejAACAv3Hy5Ek1bNhQFy9eNP2aiIgItW/fXo0bN1bZsmUVFRWl1NRUJSQkaMuWLVq+fHm+7ogaERGhdevWqUGDBgV5C4bMzkzLli2z9I6fkyZNMn3H19+UK1dO7du3V/369RUfH6+QkBAlJibq0KFD2rBhgzZu3Jiv83pt27bVsmXLeGoRAAABglnvD+6Y9cye+/Okvn37atasWXI6udc5AAD+jDnvD1af08vOzlaHDh20du1a069xOByqU6eOWrVqperVqys+Pl6hoaFKT0/XL7/8oj179mjlypU6e/ZsvrIULVpUa9eu9fsbaULitp0AAAD/Z8yYMTp16pRmzJhh+jUHDhzQgQMH3NK/U6dO+uSTT9xyLF/Qs2dPffjhh3rggQdMX4iQlJSkefPmad68eW7LMWDAAL3zzjtuOx4AAPA+zHmBJS4uTvPmzTN95zQAAOAZ5cqV0w8//KDOnTubvnjgypUrWrhwoRYuXHjN/UNCQvTNN99YdhGCN3nkkUd0/PhxvfHGG6Zfc/LkSU2fPt0t/evVq6fZs2ezWAQAQABh1gssd999tz7++GMWiwAACADMefYJCQnR3Llzdf3112vHjh2mXuNyubR7927t3r3bbTliYmI0d+5cFosCBBM9AADA/3E6nfr888/Vt29f23u3adNGc+bMUVhYmO29Pen+++/XBx984LETzQ8++KC++OILTnQDAODnmPMCR4MGDbR27VoWiwAA8BHNmjXTvHnzVLhwYVv7hoSEaMaMGerWrZutfT3p9ddf1+OPP25735o1a+qnn35SXFyc7b0BAIBnMev5v+DgYP3zn//Up59+quBg7nEOAECgYM6zT1xcnJYsWaLrrrvOI/2LFy+uZcuWqUWLFh7pD/txFSUAAMCfBAcHa9asWRo5cqRtPQcPHqzFixcrMjLStp7eZMiQIVq4cKHi4+Nt6xkWFqaJEydq8uTJLBYBABAgmPP8W3BwsIYPH64NGzaoRo0ano4DAADyoV27dlq3bp0qV65sS7/ixYtr6dKluuWWW2zp503Gjx+v8ePH23bhZ7du3bR+/XqVKFHCln4AAMD7MOv5r1q1amn16tV64YUX5HA4PB0HAADYjDnPPvHx8Vq9erVuv/12W/u2atVKmzdvVsOGDW3tC8/iSkoAAID/4nQ6NWbMGH333XcqXbq0ZX1iY2P10Ucf6ZNPPgn4O9l36dJFW7duteXOEi1bttSGDRv0yCOPWN4LAAB4F+Y892nXrp0qVark6RhyOBy6+eabtWvXLr355pt++3kDAODv6tatq82bN+vOO++0tM9NN92kLVu2qE2bNpb28WaPP/64li5daulCdkREhF577TXNnTtXMTExlvUBAAC+gVnv2sXExOjGG29UaGiop6OoRIkSmjBhgnbu3KnmzZt7Og4AAPAg5jz7REZG6ssvv9QHH3xg+RPCCxUqpFdffVUrVqxQuXLlLO0F78NyEQAAwN/o3bu39u3bpxEjRrj1bvOhoaG67777tH//ft1///1uO66vK1++vObPn6+5c+eqXr16bj9+7dq1NW3aNK1Zs0YNGjRw+/EBAIDvYM67dvfee6+OHDmi7du36+WXX9Z1111na/+YmBg99NBD2rNnj+bMmaOaNWva2h8AALhfbGyspk+frmXLlqlx48ZuPXb16tX1zTff6IcfflDZsmXdemxf1LZtW+3cuVOjR49268UITqdTt9xyi/bs2aPnn3+eJ4YDAIDfMetdm9jYWC1YsEAXLlzQzJkzNWDAANuXuJs0aaKpU6fq+PHjGjp0qG1PwwQAAN6NOc9eDzzwgA4cOKChQ4cqIiLCrccOCwvTfffdp3379mnUqFHMewHK4XK5XJ4OAQAA4O0uX76sDz/8UNOmTdOePXsKdIwqVaro9ttv1yOPPKJSpUq5OaE5x44dM3WH+fbt22v58uXWB7qK5cuX6/3339fChQuVnJxcoGPExMSoZ8+euuuuu9S1a1c5HA43pwQAAL6OOc99zpw5o9WrV2vNmjVas2aNtm/frpycHLcdv1q1amrfvr169eqlrl27esWdWgEAgHVWrFihiRMnasGCBUpNTc3368PDw9WpUyc9/PDD6tatm0fOCw0aNEifffaZYd2yZcvUoUMH6wP9hfT0dH322WeaOnWqNm/erIJ8dVy6dGnddttteuyxx1SlShULUgIAAH/DrHftsrOztWXLlt/Pxa1du1Znz5512/EjIyPVsmVLde3aVbfccosqV67stmMDAAD/xZxnn4sXL2rKlCn64osvtGvXrgIfp1GjRrrttts0ePBglShRwo0J4YtYLgIAAMin48eP68cff9SOHTu0d+9eHTt2TMnJyUpJSZHL5VJUVJSioqJUrlw51a5dW/Xq1VPnzp25m3oB5eTk/H5SfO/evdq/f78SEhKUkpKitLQ0ORwORUZGKiYmRuXLl1elSpXUoEEDtWz5/9m77/Aoqvb/4590CKFD6L2TCAICgtIRQUQRsIAIKIiioiiKjxUQFUVQLKioIE1BiiKg9A7SBKQJoYXeW0ggPfv7w5/tKwkzm5md3ez7dV25rudx7zPnTtiZOXt27nMaqV69ejx0CgAADGOcZ62rV69q586d2r9//18/Bw8e1MWLF5WQkKCEhATFx8crPT1dYWFhCgsLU0REhCIjI1WsWDGVKVNG1apVU/Xq1VWvXj0mswEA8FMpKSlatWrVX3NDe/bs0blz5xQfH6+rV68qV65cyps3rwoVKqRq1aqpZs2aatiwoVq1aqXw8HCn0/cpp0+f1sKFC7V161b9/vvvOnjwoOLi4hQfH6+0tDRFREQob968KlWqlGrUqKGoqCi1bNlSderUcTp1AADgoxjrWSs2NlYxMTH/mo87ceKE4uPj/5qPu3r1qoKDgxUaGqpcuXKpcOHCKlasmIoXL65KlSqpevXqioqKUu3atVmtHgAAuI1xnmcdP35cixcv1rZt27R79+5/zeslJycrd+7cypMnjyIjI1WhQgVVrVpVDRs2VOPGjVWqVCmn04cXobgIAAAAAAAAAAAAAAAAAAAAAAAA8FOBTicAAAAAAAAAAAAAAAAAAAAAAAAAwBkUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgpyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH6K4iIAAAAAAAAAAAAAAAAAAAAAAADAT1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgpiosAAAAAAAAAAAAAAAAAAAAAAAAAP0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCnKC4CAAAAAAAAAAAAAAAAAAAAAAAA/BTFRQAAAAAAAAAAAAAAAAAAAAAAAICforgIAAAAAAAAAAAAAAAAAAAAAAAA8FMUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgpyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH6K4iIAAAAAAAAAAAAAAAAAAAAAAADAT1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgpiosAAAAAAAAAAAAAAAAAAAAAAAAAP0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCnKC4CAAAAAAAAAAAAAAAAAAAAAAAA/BTFRQAAAAAAAAAAAAAAAAAAAAAAAICforgIAAAAAAAAAAAAAAAAAAAAAAAA8FMUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgpyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH6K4iIAAAAAAAAAAAAAAAAAAAAAAADAT1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgpiosAAAAAAAAAAAAAAAAAAAAAAAAAP0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCnKC4CAAAAAAAAAAAAAAAAAAAAAAAA/BTFRQAAAAAAAAAAAAAAAAAAAAAAAICforgIAAAAAAAAAAAAAAAAAAAAAAAA8FMUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgpyguAgAAAAAAAAAAAAAAAAAAAAAAAPwUxUUAAAAAAAAAAAAAAAAAAAAAAACAn6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBTFBcBAAAAAAAAAAAAAAAAAAAAAAAAforiIgAAAAAAAAAAAAAAAAAAAAAAAMBPUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CmKiwAAAAAAAAAAAAAAAAAAAAAAAAA/RXERAAAAAAAAAAAAAAAAAAAAAAAA4KcoLgIAAAAAAAAAAAAAAAAAAAAAAAD8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgJ+iuAgAAAAAAAAAAAAAAAAAAAAAAADwUxQXAQAAAAAAAAAAAAAAAAAAAAAAAH6K4iIAAAAAAAAAAAAAAAAAAAAAAADAT1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgpiosAAAAAAAAAAAAAAAAAAAAAAAAAP0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCnKC4CAAAAAAAAAAAAAAAAAAAAAAAA/BTFRQAAAAAAAAAAAAAAAAAAAAAAAICforgIAAAAAAAAAAAAAAAAAAAAAAAA8FMUFwEAAAAAAAAAAAAAAAAAAAAAAAB+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwE9RXAQAAAAAAAAAAAAAAAAAAAAAAAD4KYqLAAAAAAAAAAAAAAAAAAAAAAAAAD9FcREAAAAAAAAAAAAAAAAAAAAAAADgp4KdTgAAAAAAAAAAAAAAAAAAAAAAABh3+vRpzZs3T2vXrtXOnTt1+PBhXb58Wenp6SpQoIBKlCihOnXq6NZbb1WnTp1UqFAhp1MG4MUCXC6Xy+kkAAAAAAAAAAAAAAAAAAAAAABA1lasWKGRI0dq/vz5ysjIMNQmJCREXbp00ZAhQ1S1alWbMwTgiyguAgAAAAAAAAAAAAAAAAAAAADAix09elRPPPGE5s2b5/YxgoKC9Pzzz2vYsGEKCQmxMDsAvo7iIgAAAAAAAAAAAAAAAAAAAAAAvNScOXPUo0cPxcXFWXK8evXqae7cuSpRooQlxwPg+wKdTgAAAAAAAAAAAAAAAAAAAAAAAPzX559/rnvuuceywiJJ2rx5sxo3bqz9+/dbdkwAvo2diwAAAAAAAAAAAAAAAAAAAAAA8DKTJk1Sr169ZNcj/xUqVND69esVGRlpy/EB+A52LgIAAAAAAAAAAAAAAAAAAAAAwIv8+OOPeuSRR7IsLMqdO7d69OihmTNn6tChQ7py5YquXr2qffv2aeLEiWrRokWWfcTGxqpDhw5KSUmxOn0APoadiwAAAAAAAAAAAAAAAAAAAAAA8BKHDx9W7dq1FRcXl2lM165d9f7776t48eJZHmvp0qXq06ePDh06lGnMwIEDNXLkSHfTBZADUFwEAAAAAAAAAAAAAAAAAAAAAIAXSE9PV/PmzbVmzZprvh4QEKAPP/xQ/fv3N3zMs2fPqn379tq0aVOmx1y+fLmaNWvmVs4AfF+g0wkAAAAAAAAAAAAAAAAAAAAAAADpk08+ybSwSJI++OADU4VFklS0aFHNnz9f1atXv+brLpdLTz31lNLT000dF0DOwc5FAAAAAAAAAAAAAAAAAAAAAAA4LCEhQRUrVtTZs2ev+XrXrl317bffun38nTt3qn79+kpKSrrm62PGjNETTzzh9vEB+C52LgIAAAAAAAAAAAAAAAAAAAAAwGHvv/9+poVFhQsX1pgxY7J1/OjoaA0ZMiTT14cPH66UlJRs9QHAN1FcBAAAAAAAAAAAAAAAAAAAAACAg5KTkzV69OhMX3/11VdVsGDBbPfz7LPPqlKlStd87dixY5oyZUq2+wDgeyguAgAAAAAAAAAAAAAAAAAAAADAQXPmzNHFixev+Vr+/PnVt29fS/oJDQ3Vyy+/nOnrH330kSX9APAtFBcBAAAAALK0YsUKBQQEGP4BnMD7FAD+jesiAAAAvM3EiRMNjU3HjBnjdKrXdPjwYU2fPl2vvfaa7r33Xt1yyy2qWLGiChUqpDx58igoKMjw+HvChAlO/zoAAAAAAC+U1efFBx98UOHh4Zb11b17d5UsWfKar23btk3btm2zrC9v0759++t+ds+TJ48OHTrkdKqARwU7nQAAAAAAAAAAAAAAAMi5Lly4oOeff/66cTVq1NBjjz3mgYyM2bJliyZNmqR58+bpwIEDTqcDAAAAAMjB4uLitHDhwkxft2rXoj+FhoaqV69eevvtt6/5+qRJkzRq1ChL+/QW7733nhYuXKj09PRMY65evar+/ftr7ty5HswMcBbFRQAAAAAAAAAAAAAAwDaDBg3SuXPnrhs3cuRIBQc7/xjD/PnzNWTIEG3cuNHpVIAc5dSpU9q5c6diYmIUExOjI0eO6OTJkzp16pTi4+OVlJSk5ORkhYaGKnfu3MqVK5cKFSqkkiVLqlSpUipfvrxq1aqlWrVqqWLFiuzECwAAgBxlxYoVmRa71K1bV7Vr17a8z6yKi+bMmZNji4tq1qypRx99VJ9//nmWcfPmzdPs2bPVsWNHzyQGOMz5WTkAAAAAAAAAAAAAAJAjrV27VuPHj79uXOvWrXXHHXd4IKPMHT9+XH379tXPP//saB5ATpCamqpNmzZp5cqV2rBhg3799VcdP37cUNukpCQlJSVJkk6ePKldu3b9J6ZQoUJq0aKFWrdurfbt26tMmTKW5g8AAAB42tKlSzN9rW3btrb0WaVKFdWoUUO7d+/+z2v79+/Xvn37VKVKFVv6dtrQoUP1zTffKD4+Psu4p59+Wm3atFF4eLiHMgOcQ3ERAACAD2revLlWrlzpWP8hISEKCwtTWFiYIiIiVLRoUUVGRqp48eKqWrWqqlatqpo1a6pq1aqsGgfAr3jq+hwaGvrXdfifP/ny5VNkZOR/fsqXL6/q1aurUKFCtucGAACAzDn9ed5qPXv21IQJE5xOAwDgxTIyMvT000/L5XJdN3b48OEeyChza9asUceOHXX+/HlH8wB82d69e/Xzzz9r/vz5Wrt2ra5cuWJbXxcuXNCsWbM0a9YsBQQEqHnz5urZs6fuv/9+5cqVy7Z+fc2ECRP08MMPO52GT2nWrJlWrFjhdBoAAMAPZTUGadGihW39tm/f/prFRZK0ePHiHFtcFBkZqWeffVZvvPFGlnFHjx7VO++8c904ICeguAgAAACmpaamKjU1VQkJCTp//rwOHz58zbiCBQvq5ptvVosWLXT33XeratWqHs4UAHKmlJQUpaSkXHcFnf+raNGiql69uqpXr66aNWvqlltuUZ06dRQczPQAAAAAAACw3rhx47Rly5brxnXu3Fk33XSTBzK6tkWLFumuu+5ScnKyYzkAvsjlcmnjxo2aMWOGfvzxR+3fv9+xPJYvX67ly5frxRdf1HPPPad+/fopb968juQDAAAAmJWUlKTff//9mq+Fhobqlltusa3vpk2bauTIkdd8bcOGDXriiSds69tpAwcO1JgxY6670MjIkSPVu3dvlStXzkOZAc4IdDoBAAAA5FwXL17U/PnzNWjQIFWrVk1RUVF67733WPkRABxy9uxZrV69Wl9++aWeffZZNWjQQAUKFFDr1q01ZMgQLV++XGlpaU6nCQAAAAAAcoC4uDi9+uqr140LCgrSsGHDPJDRte3YsUNdunShsAgw4bffftPzzz+v8uXL6+abb9aoUaMcKyz6v06fPq0XX3xRlSpV0sSJE51OBwAAADBk9+7dSk9Pv+Zr9evXV+7cuW3rO6vCpY0bN9rWrzfIly+fXnzxxevGJSYm6oUXXvBARoCzKC4CAACAx/z+++8aNGiQSpcurccee0zHjx93OiUA8HtXrlzR0qVLNXToULVs2VIlSpRQ3759tXjxYgqN4LYJEyYoICDA0E/58uWdThf4D97DAAD4Hu7fgPd56623dObMmevGdevWTTVq1PBARv+Vmpqq7t27m94dGvBHcXFxGjlypGrVqqU6depo1KhROnLkiNNpZers2bPq1auXmjVrpkOHDjmdDgAAAJClHTt2ZPpaVFSUrX0XKlRIZcqUueZrMTExSkpKsrV/pz311FMqVqzYdeNmzJihX375xQMZAc6huAgAAAAel5SUpC+++EJVqlTRa6+9ppSUFKdTAgD8f+fOndOXX36pNm3aqESJEnrmmWcUGxvrdFoAAAAAAMCHHD16VB9//PF14wIDA/XKK694IKNrGzVqlLZv3+5Y/4Av2bRpk1544YUsH3r0RqtWrVLdunU1d+5cp1MBAAAAMhUTE5Ppa5UqVbK9/+jo6Gv+d5fLpQMHDtjev5Ny586tgQMHGoodNGiQzdkAzgp2OgEAAAD4r8TERL355puaPXu2Jk+erBtvvNHplAAA/3Du3Dl99NFHGjNmjO655x49//zzatiwodNpAQAAAAAAL/faa68ZWtn4vvvuU7Vq1TyQ0X/Fx8frvffec7t9gQIFVLduXZUsWVL58+dXvnz5FBhobH3X2rVru90vAPMuXryou+++W++++65eeOEFp9MBAAAA/uPEiROZvla5cmXb+8+qj3379tm+e5LT+vXrp3fffVfnz5/PMm7t2rX68ccfdffdd3soM8CzKC4CAACA43bu3KnGjRtrypQp6tSpk9PpAAD+j/T0dM2cOVMzZ85UixYt9OGHH+qGG25wOi0AAAAAAOCFduzYocmTJ183LiAgQK+++qoHMrq28ePH68KFC6baFCxYUI888oh69+6tGjVq2JQZADu4XC4NGjRIly9f1rBhw5xOBwAAAPiXrIqLPLFzUdmyZTN97fDhw7b377SIiAg988wzev31168b+9JLL+nOO+9UUFCQBzIDPMvYsjkAAACAzRITE9WlSxd9/vnnTqcCAMjC8uXLVbduXQ0YMEBxcXFOpwMAAAAAALzM66+/royMjOvGtWvXztGVjydOnGgqvmnTpvr99981cuRICosAH/bmm29q+PDhTqcBAAAA/MvJkyczfa106dK2959VH2fPnrW9f2/w5JNPKk+ePNeN2717t6ZOneqBjADPo7gIAAAAXsPlcunJJ5/UtGnTnE4FAJCFtLQ0ffjhh6patap++OEHp9MBAAAAAABeYuvWrZo9e7ah2BdeeMHeZLJw4MABbd261XB8VFSUFi1apOLFi9uYFeAfcuXKpZtvvln9+/fXxx9/rLlz52rnzp06ceKE4uLilJaWpqSkJF24cEG7du3S/PnzNXz4cHXs2FF58+a1JIdXXnlFM2fOtORYAAAA+MOnn36qgIAAwz+jRo1yOuVsS0tLU926dQ3/zqGhodq2bds1j3Xx4sVM+4mIiLDrV/hLwYIFM33t3LlztvfvDQoVKqSHH37YUOywYcOUnp5uc0aA5wU7nQAAAADsV6tWLXXo0MGSY6WlpSk5OVkJCQk6e/asjh8/rv379+vSpUuWHD8jI0M9e/ZU9erVdeONN1pyTADwVtm9PiclJSkpKUnJyclKSkrS5cuXdfLkSZ08eVKnT59Wamqqhdn+15kzZ9SpUycNGjRIb7/9Ntt+AwAAAADg54YMGWIorl69emrevLmtuWRlyZIlpuLHjx+vsLAwm7IBcrbg4GA1bNhQbdu21e233646deooODjrx5WCgoIUFhamggULqmbNmmrbtq0kKTU1VQsWLNCnn36qBQsWuJ2Ty+VSr169VK9ePVWoUMHt4wAAAOBvZnem3bNnj02ZeM6IESNMLVzx6quvqnbt2td8LTEx8Zr//c+xsd2yKi66cOGC7f17i2effVafffbZdQuH9u7dq2+++UY9evTwUGaAZ1BcBAAA4Afq1KmjN99809Y+jhw5ovXr12vBggWaO3dutlatSElJUbdu3bR582blzp3bwiwBwLvYeX12uVw6ffq0du7c+dfP5s2btW3bNrlcLkv7GjFihDZu3Khp06apWLFilh7bqObNm1v+ewGAL+O6COQMPXv21IQJE5xOAwAAQ3777TfNmTPHUOyAAQPsTeY6Vq5caTi2Tp06atCggY3ZADlPYGCgmjRpom7duqlLly4qVKiQJccNCQlRhw4d1KFDB23cuFEDBw7UmjVr3DrWlStX9Mgjj2jZsmUKCAiwJD9v1KtXL/Xq1cvRHMz+fb/++mvHcwYAAOZFR0ebio+JibEpE8/Ys2eP3njjDcPxdevW1csvv5zp60lJSdf87+Hh4aZzc0dW/SQnJ3skB29QsWJFdejQwdCuzG+++aa6d++uwMBA+xMDPIR3MwAAACxRtmxZ3XfffRo/fryOHz+uqVOnml6V5J92796tDz74wMIMAcC/BAQEqHjx4mrdurUGDBigr776Slu3btXZs2c1ffp0PfbYY5YWAq1YsUKNGzfWsWPHLDsmAAAAAADwHe+++66huKJFi+ree++1OZusbd++3XDs/fffb2MmQM5SsmRJDRkyREeOHNGKFSvUt29fywqL/q8GDRpo1apVGj16tEJCQtw6xooVKzRp0iSLMwMAAPBPhQsXVvHixQ3H+/LORRkZGerdu7fhopvQ0FBNnDgxyx08MysuypMnj1s5mhUaGprpa/5UXCRJTzzxhKG4ffv26YcffrA5G8CzKC4CAACA5UJDQ/XAAw9o+/bt+vDDD93efejdd9/V+fPnLc4OAPxb4cKFde+99+rzzz/XsWPHNHfuXHXp0iXLyUKjDh48qBYtWujEiRMWZAoAAAAAAHxFbGysZsyYYSj20UcfVVhYmM0ZZS4tLU179+41HF+3bl0bswFyhsaNG2v69Ok6fPiwBg8erFKlSnmk34CAAD3zzDNaunSpChYs6NYxhg4dqtTUVIszAwAA8E9mdi86e/asLly4YGM29vn444/1yy+/GI4fPHjwdf82Lpfrmv/d3UJ6s7LqJyUlxSM5eIvWrVuratWqhmJHjBhhczaAZ1FcBAAAANsEBgbq6aef1qpVqxQZGWm6/eXLl/XVV1/ZkBkAQJKCg4N15513asaMGTpw4ID69euX7SKj/fv3q0WLFjp58qRFWQIAAAAAAG83cuRIpaenXzcuMDBQjz32mAcyytyJEydMFRLUqlXLxmwA39a6dWstX75ca9eu1b333pvlSux2atKkiZYsWaICBQqYbhsbG6vJkydbnxQAAIAfMlNcJEkxMTE2ZWKf2NhYvfLKK4bj69evrxdffPG6cZkV9yQmJhruKzuy+pxsxUKlviQgIECPP/64odiNGzdqxYoV9iYEeBDFRQAAALDdTTfdpAULFigiIsJ02/Hjx9uQEQDg/ypdurQ+/fRTHThwQA888EC2jrV3717dc889rPgJAAAAAIAfuHTpkiZOnGgotnXr1ipbtqzNGWXt1KlThmODgoJUrFgxG7MBfFPLli21fv16LV68WM2bN3c6HUl/7DI2ffp0BQUFmW7LQncAAADWiIqKMhW/Z88emzKxT9++fXXlyhVDsWFhYZowYYKhMWpmBTyeKi7KanciJ3cfdkr37t0N7xo1evRoe5MBPIjiIgAAAHhEnTp13PowtXfvXu3YscP6hAAA11S6dGlNnTpVP/zwg4oXL+72cTZs2KBBgwZZmBkAAAAAAPBG48ePN/xg1cMPP2xzNtd37tw5w7HuLJgF5GS1a9fW/PnztXTpUjVs2NDpdP7jtttu00svvWS63bp167R3714bMgIAAPAvZncu8rXionHjxmnJkiWG44cOHaqaNWsais3s86eniouSk5MzfS1XrlweycGbFC1aVB06dDAUO3fuXB06dMjehAAPobgIAAAAHtO7d281aNDAdLtly5bZkA0AICsdO3bUzp071bRpU7ePMXr0aM2ePdu6pAAAAAAAgFfJyMjQmDFjDMUWKFBA99xzj80ZXd/Vq1cNx1JcBPytUaNG2rJli9q2bet0Kll69dVXValSJdPt5syZY0M2AAAA/iUqKkoBAQGG42NiYmzMxlonTpzQwIEDDcc3bNhQzz//vOH4QoUKXfO/Z2RkZFn4Y5VLly5l+lp4eLjt/Xuj3r17G4ozMzcCeDuKiwAAAOBR//vf/0y3WbNmjQ2ZAACup3Dhwlq0aJEefPBBt4/x8MMP6+zZsxZmBQAAAAAAvMXChQt18OBBQ7FdunRRWFiYzRldn5mHsoKDg23MBPAtefLkUWCg9z9mFBYWpldffdV0uxUrVlifDAAAgJ/JmzevypYtazjel3Yu6tevn+Li4gzF5sqVSxMnTlRQUJDh4xcpUiTT106dOmX4OO7KapffokWL2t6/N2rTpo3h3338+PFKSkqyOSPAft7/qR8AAAA5Svv27ZU/f35TbXxppRIAyGnCwsI0ZcoUPfroo261v3Tpkltf5gMAAAAAAO/31VdfGY7t2rWrjZkYl5aW5nQKAGzWrVs3FSxY0FSb1atXy+Vy2ZQRAACA/4iOjjYce+DAAaWmptqYjTWmTZtmaqfLN998U9WqVTPVR8mSJTN97ejRo6aO5Y7z589n+lrx4sVt798bBQcHq0uXLoZiL1y4oB9++MHmjAD7UVwEAAAAjwoNDVXTpk1Ntdm/f79N2QAAjPrss8/Uvn17t9p+9dVX2rZtm8UZAQAAAAAAJ509e1Zz5841FFu8eHE1b97c3oQMongAyPlCQ0PVqVMnU20uX76sEydO2JQRAACA/4iKijIcm5aWZng3XKecO3dOTz/9tOH4xo0b69lnnzXdT7ly5TJ97ciRI6aPZ9bhw4czfa1YsWK29++tHnjgAcOx48aNszETwDMoLgIAAIDH3XTTTabiExMTlZiYaFM2AAAjgoKC9N1336lWrVqm22ZkZLg1gQoAAAAAALzX5MmTDa8w3blzZwUG8ngCAM9p1aqV6Tb79u2zIRMAAAD/YmbnIknas2ePTZlY45lnntHZs2cNxebOnVsTJkxw6/NvhQoVMn3NEzsXHThwINPXSpcubXv/3qpJkyZZ7ir1T8uWLVNsbKzNGQH2CnY6AQAAAPifihUrmm6TkJCg3Llz25CNdVJTU7VlyxZt3LhRBw4cUGxsrA4dOqRLly7pypUrunLlilJTU5UnT56/fkqVKqUKFSqoYsWKio6O1i233KLIyEinfxWvcfLkSa1Zs0Y7d+7Uzp07tW/fPsXFxSk+Pl7x8fEKDg5WeHi48ubNq9KlS6tChQqqVq2aGjdurIYNGypPnjxO/wqWS0lJ0Zo1a7Rx40bt3r1bu3fv1pkzZ3T58mXFx8crJCREefPmVd68eVWwYEFVq1ZNNWvWVFRUlJo0aaJChQo5/SvAh+XJk0eTJ09W/fr1lZKSYqrt8uXLtWrVKtO71/mDjIwM7dq1S9u3b1dMTIz27dunkydP6syZMzp//rySkpKUnJys1NRUhYWFKTw8/F8/f14Dy5cvr3Llyql8+fJ//YSGhjr96/k9xgfWO3XqlH755RfFxMRo79692rt3r86dO6eEhAQlJCToypUrCgkJUZEiRVS2bFlVrVpVN954ozp37uzXX37kBJxP1mKsjZwiNTVVe/bs0a5du3Tw4EEdPHhQR48e1dmzZ3Xu3DldvnxZKSkpSk5OVnBwsHLnzq1cuXIpb968KlmypEqXLq0yZcooOjpadevWVbVq1RQUFOT0r+WYffv2aePGjdq/f78OHTqkw4cP6/jx47py5YquXr2qq1evKjU1VaGhoQoLC1P+/PlVpEgRFStW7K/rbc2aNXXjjTeqRIkSTv86fot7pvUYg17b5MmTDcfefffdNmaCrHBNsBbXA99Rv3590208sSI8kJWkpCRt2rRJW7duVWxsrA4ePKhDhw4pLi7ur2t2SkqKcufOrfDwcEVERKhUqVKqWLGiKlasqDp16uiWW27huyAfwLzM9XE+ZI65EHsx3ss+s8VFMTExNmWSffPmzdO3335rOP7tt99WlSpV3Oorq7/b7t273TqmGVkVF9WsWdP2/r1VQECAOnTooLFjx1431uVy6dtvv9Urr7zigcwAe1BcBAAAAI8rWLCg6TZmH2L3lBMnTmj69OmaM2eONmzYoKtXr163zeXLl3X58mVJ0v79+7Vy5cp/vV6tWjW1atVKDzzwgG699VYFBATYkru3OnLkiKZMmaI5c+Zo48aNcrlcmcampaUpKSlJFy5c0OHDh7V27dq/XgsODlbr1q11//33q0uXLoqIiPBE+rZIT0/X3LlzNWHCBC1dulQJCQmZxqalpSkxMVFnzpyRJP36669/vRYUFKTGjRurQ4cO6t69Ow96wS21atXS66+/rldffdV0248//pjiov/v+PHj+vHHHzVv3jz98ssviouLM9Tuz938zp8/f93Y0NBQ1alTRzfffPNfP+XLl89m5jCC8YH1Nm3apBkzZmjRokXatm3bdePT09N17NgxHTt2TL/88oskKX/+/OrVq5fNmcJqnE/WYqyNnODw4cNas2aN1q5dq3Xr1un33383PGeQkpKilJQUxcXF6fTp09q/f/9/YsLDw9WsWTPdcccdat++fZYrhuYEJ06c0A8//KD58+dr/fr1hsaZ0h8PeSUlJSkuLi7Th3BLliyppk2bqlmzZmrbti1jUZtxz7QeY9CsxcTE6LfffjMUmz9/fjVv3tzWfPBvXBOsxfXAN5UrV05BQUFKT0833CY+Pt7GjIBr2759u6ZPn66lS5dqy5Ythj7f/PmA+5kzZ3Tw4EGtXr36r9cCAgJUo0YNdejQQd26dVOtWrXsTB8mMC9zfZwP18ZciP0Y71mrRo0apsZh3rpz0eXLl/X4448bjm/SpImeeeYZt/vLqrho48aNbh/XiJSUFP3+++/XfK1IkSIqWrSorf17u44dOxoqLpKkqVOnUlwE3+YCAACAz2nWrJlLkuGfnj17Op3yvyxZssRU/pJcly9fdjrtv2RkZLhmz57tatGihSswMND072Lmp3Tp0q7XXnvNde7cOad/7X/p2bOn5e+/7du3ux566CFXcHCw5X/HQoUKuYYMGeK6ePGirX8XqyUlJbnee+89V5kyZSz/m4SFhbl69+7t2r1793XzWL58ualj+zNfvz4blZaW5qpatarp911wcLDr6NGjtuTkC+/TtLQ01w8//OBq3bq1KyAgwNb7R2Y/pUqVcj311FOulStXutLT093+XczcB5z+8RTGB9aPD5KTk12TJk1yNWjQwJK/29dff+1Wrk7/uMsXrouZ8ffzibF2zuYv40UrJSUluX766SfXU0895dYYNLs/zZs3d02fPt2VkpLi9J/CMomJia4vvvjC1ahRI4+OS2+44QbX4MGDXfv373crb3+4f5vl7/dMl8u3xqA5zZAhQwz/He6//37b84mNjXX83Hf6/eDv1wSuB7iWggULmvp3euedd5xOOUfifPmvixcvuoYPH+6qUaOG7fefqKgo17hx43LUZxo7MS/jeZwP/8VcyLUx3vMtZt67jRo1cjrda3r00UcN/w7h4eFuz3n9U2Z/t8DAQFdcXJwFv9W1bd68OdPfrVmzZrb16yuSk5NdefPmNfx+2LZtm9MpA24LFAAAAOBhSUlJpuKDgoKUN29em7IxZ8aMGapdu7Y6duyo5cuXKyMjw9b+jh07pmHDhqlcuXJ6/vnnde7cOVv7c8KlS5fUt29f1a5dW5MnT1ZaWprlfVy4cEFDhgxR9erVNWPGDMuPb4dZs2apRo0aeuGFF3T06FHLj5+cnKxx48YpKipKAwcONLR6KfCnoKAgDR482HS7tLQ0ffbZZzZk5P1++OEHRUdH65577tGSJUuyXJHQTsePH9cnn3yiZs2aqXTp0urfv78OHz7sSC45CeMD6y1evFg33HCDevToYftqbPAunE/WYqwNX5WcnKzvv/9e3bp1U9GiRdW+fXt98skn2rt3r8dzWbFihe677z5VqVJFU6ZMcWwcZ4Xz589r8ODBKlu2rPr27at169Z59PfZsWOHhg4dqsqVK6tJkyaaNm2aUlNTPdZ/TsM903qMQc0xc9+/7bbbbMwEEtcEq3E9yDny5MljKt6Oz0zAP506dUqDBg1S2bJl9dJLL2n37t2297lr1y717t1blSpV0hdffOHTn2l8DfMyWeN8+DfmQjyL8Z79oqKiDMfGxMTYmIl7li9frq+++spw/DvvvKNKlSplu99bbrnlmv89IyNDv/76a7aPn5mszoP69evb1q+vCA0NVbNmzQzHT58+3cZsAHtRXAQAAACPu3Tpkqn4/Pnz25OICQcPHtRtt92m++67Tzt27PB4/1euXNGoUaNUo0YNTZ482eP92+XHH39UzZo19eWXX3pkUvL06dO677771KNHDyUnJ9venzvi4+PVrVs3denSRbGxsbb3l5GRoffff1+1atX6a8t2wIgHHnhANWvWNN1u4sSJNmTjvY4fP662bduqU6dO2rNnj9Pp/MvJkyf1ySefaN26dU6n4rMYH1jv0qVLuv/++9WmTRtHvjSFczifrMdYG74oJiZGjz/+uEqUKKHOnTtr6tSpio+PdzotSdLhw4f10EMP6aabbnLkOpUd6enp+uSTT1SlShW98cYbOnv2rNMpac2aNerataupB03wB+6Z1mMMat6BAwe0a9cuw/EtWrSwMRv/xjXBWlwPcp6EhART8WaLkQCj0tPTNXr0aFWtWlXvvfeeI59zjh49qscee0y33nqrqfs43MO8TOY4H/6NuRDPYrznOdHR0YZjIx1mnAAAeJ1JREFUL1y44BXzVX+6evWqHn30UcPX7+bNm+upp56ypO+mTZtm+trSpUst6eNaFixYkOlrZopqcjIzcxs//vijjZkA9qK4CAAAAB5ntmCiRIkSNmVizOeff67o6GgtWbLE0Twk6dy5c+rRo4fatWun8+fPO51Otrzxxhu65557dPLkSY/3PXnyZLVo0UIXL170eN9Z2blzp+rWraupU6d6vO8DBw6oZcuWrKACwwIDAzVw4EDT7Y4fP64tW7bYkJH3WbJkiW644QYtXLjQ6VRgA8YH1tu7d68aNmzIvcgPcT5Zj7E2fNWMGTM0duxYr37/bNmyRQ0aNNAnn3zidCqGbN26VTfeeKP69+/vlX/XM2fOOJ2CT+GeaT3GoO4x85BM2bJlVbFiRRuz8V9cE6zF9SDnycjI0OXLl021yZs3r03ZwJ9t375d9evX17PPPusVBQO//PKL6tatq7FjxzqdSo7FvEzmOB/+i7kQz2G851lmioskedUija+++qoOHDhgKDYiIkLjx49XQECAJX23bds202PNmjXLkj7+r9TUVC1btuyarwUGBurWW2+1pV9fY6a4aOfOnR5ZTBiwA8VFAAAA8DizW/XedNNNNmWStdTUVD3++OPq16+fEhMTHckhMwsWLFCDBg20c+dOp1MxLSUlRV27dtXgwYMd3UJ93bp1uuOOO3TlyhXHcvin9evXq2nTptq/f79jOSQnJ+uBBx7Qhx9+6FgO8C333XefW6t5zp0714ZsvMvEiRPVrl07r/4yCO5hfGCPVatWqWHDhqwU6Gc4n6zHWBvwjKSkJPXv31/9+vVTRkaG0+lk6tNPP1WjRo187lqG/+KeaQ/GoO4z87m+efPm9iXip7gmWI/rQc508OBB02M1pxe7Q84zefJk3Xzzzdq6davTqfxLSkqKHn/8cfXt21cpKSlOp5NjMC+TNc4H3+YrcyGZYbzneWaLi2JiYmzKxJz169ebel5ixIgRqlChgmX9Fy9ePNNnpGJiYmzZRWzOnDmZFnzedNNNKlCggOV9+qLatWurYMGChuPnzJljYzaAfSguAgAAgEelpaVp9erVpto0aNDApmwyd/XqVd1+++1evWrXwYMH1ahRo0xXEPFG6enp6tatm6ZNm+Z0KpL+mBi67777HJ3gl6QVK1aodevWXlGE4HK5NGDAAE2ePNnpVOADIiIi1KVLF9Ptcnpx0axZs/TII48oLS3N6VRgMcYH9ti2bZs6dOigS5cuOZ0KPIjzyXqMtQHP+/zzz9W1a1elp6c7ncq/pKam6sEHH9STTz6p5ORkp9NBNnHPtAdjUPdduXJFa9euNRxPcZG1uCZYj+tBzuXO7ulVqlSxIRP4o4yMDD399NPq0aOH1xWC/tOXX36pLl26UFBhAeZlMsf5kLN461xIVhjvOaNq1aoKDQ01HO8NOxelpKSod+/ehgvoWrVqpccff9zyPDp37pzpazNnzrS8v6w+Xz7wwAOW9+erAgMD1bRpU8PxCxcutDEbwD4UFwEAAMCjFixYoAsXLphq4+niosTERHXo0EHLly/3aL/uSEhIUIcOHbRq1SqnUzGkb9++tm3V7K6ff/5ZI0eOdKz/nTt3qmPHjl63elifPn1MFwLCP3Xv3t10my1btujUqVM2ZOO8bdu26cEHH/TJVduQNcYH9jh06JDatWuny5cvO50KPIjzyR6MtQFnTJ8+Xc8++6zTafwlMTFRd911l7799lunU4EFuGfagzFo9qxcuVKpqamG41u0aGFjNv6Fa4L1uB7kbGvWrDEVHxISYumq8/Bf6enp6tWrlz7++GOnUzFk7ty5uvfeeymoyCbmZa6N8yFn8ra5kKww3nNOcHCwqlWrZjjeG4qL3nzzTf3++++GYvPmzatx48YpICDA8jwefPBBBQZe+/H+8ePHW7rA5c6dO7VkyZJrvhYYGEhx0f9hZo5j1apV3E/gk4KdTgAAAAD+ZcSIEabiK1asqHr16tmUzX+lp6erU6dOlq2qWLZsWdWoUUNlypRR3rx5FRoaqvj4eF28eFExMTHas2ePrl69mq0+rl69qvbt22vp0qWO7PJk1LBhwzR+/HhTbcLDw1W1alVVrFhRkZGRypMnj0JCQnTlyhWdPXtWBw8e1Pbt25WUlJSt3F555RW1b99eNWvWzNZxzDp16pTat2+vuLi4bB8rf/78qlGjhqpUqaL8+fMrIiJCiYmJunz5smJjY7V7926dPn3a8PFSUlLUqVMn7dy5M9u5IWe79dZblStXLlPnocvl0saNG3XXXXfZmJnnJScn68EHH7RkdfjQ0FBVqFBBZcuWVdGiRVWwYEHlypVLoaGhSk9PV3JyshITE3X+/HmdOXNGJ0+e1KFDh9gtySaMD+yRlpamLl266OTJk6ba5cqVS1WqVFGlSpVUrFgx5cmTR6GhoUpISFB8fLwOHTqkXbt26dy5czZljuzgfLIHY23gD4ULF1aZMmVUrFgxFS9eXHny5FGuXLkUFhamlJQUJScn69y5czp9+rQOHDigI0eOWNLvxx9/rOjoaPXt29eS47nrypUratu2rekHabOSO3duVahQQRUrVlTx4sUVHh6u8PBwpaWlKTExUXFxcTp+/LiOHz+ugwcPMh61EPdMezAGzb6lS5caji1XrpzKly9vXzJ+hGuC9bge5Gwul0uzZ8821eamm25ScDCPUSF70tPT9dBDD2nq1KmWHC937tyqVq2aypQpoxIlSig8PFy5c+dWUlKS4uPjdfjwYe3bt0+HDh3KVj9z5sxRv379NG7cOEvy9jfMy1wb54Nn+PtcSFYY7zkvKipKO3bsMBQbExNjczZZ2759u9555x3D8SNHjlS5cuVsyaV06dJq1aqVFi9e/J/Xjh07pm+//VY9evSwpK9BgwZlustdmzZtVKJECUv6ySnMFBdduXJF69atU7NmzWzMCLAen4oBAADgMVOnTjW9E0rv3r1tWekjM//73/+0YMECt9sHBASoVatWevDBB3X77bdf94N2Wlqa1q5dq7lz52rChAk6f/68W/0mJCSoc+fO2rx5syIjI906hp1WrlypoUOHGoqtWbOmHnjgAd1+++2qU6eOQkJCsoxPSUnR2rVrNXXqVE2ZMkWJiYmm80tNTdVzzz2XrX97szIyMtS1a9dsTeCWLFlSvXv31p133qn69etf91zZs2ePfv75Z40bN87Qijvnzp3Tk08+qaeeesrtHJHz5cqVS02aNLnm5GZWNm/enOOKiz7++GPt2rXLrba5cuXSbbfdpnbt2qlJkyaqXr266YcZUlNTFRsbq23btunXX3/Vhg0btG7dOlZEsgDjA3u89dZb2rx5s6HYihUrqlu3bmrbtq3q16+v0NDQ67aJjY3VnDlz9N1332ndunXZTRcW4XyyHmNt+KsKFSqoUaNGatSokWrXrq0aNWqoSJEipo4RHx+vDRs2aMWKFfr++++1e/dut/MZMGCAWrZsqcqVK7t9jOzIyMhQt27dsl1YFBgYqKZNm6pjx4669dZbdeONNyooKMhQ25SUFO3evVsbN27U6tWrtWLFCh09ejRb+fgz7pn2YAyafStWrDAcW7duXfsS8TNcE6zH9SBnW79+velxSPPmze1JBn7lueeey1YhRWBgoJo1a6YOHTqoVatWqlmzpqF54pMnT2rZsmWaOnWqFi5c6FbR//jx41WvXj098cQT7qTut5iXyRzng/WYCzGH8Z7zoqOjDcfGxsYqJSXF0N/eaunp6XrkkUcM79Lbpk0b2wvr+vfvn+n37y+//LI6deqkiIiIbPXx888/a/78+Zm+/sorr2Tr+DlRVFSUwsLCDC82unz5coqL4HtcAAAA8DnNmjVzSTL807NnT6dTdu3evdtVsGBBU3kHBwe7Tpw44bEcZ86caSq///vTuXNn1549e9zuPzEx0TVmzBhX4cKF3c6hRYsWrrS0NAv/KtfWs2dPwzndcccdrpIlS143rlWrVq5ly5ZlK6+TJ0+6evfu7fbfb9GiRRb9ha7vnXfecTvPkiVLuiZMmOBKTU11u/9Fixa5atWqZai/J5980lR+/swXr89WGDFihOn3cfv27S3NYfny5Y6+T+Pj412FChUy/XcoXLiw691333VduHDB8pxcLpfrypUrrp9//tnVr18/V2Rk5DVzmDp1quX9fv3114b/BuXKlbO8fysxPjDOzPigbt26rpCQkOvGNWjQwPXTTz9lO7cVK1a41q9fbzg+J7yHnb4uXgvnkzGMtXM2fx0vGjVs2LBM/xZBQUGu2267zfXhhx+69u/fb0v/mzZtcj3wwAOuoKAgt97nzZs3d2VkZNiS2/UMGDAgW9fYggULul5//XXL52G2bNniGjx4sKty5crX7Dd//vyW9ZUT7t9/4p5pXE4ag/qChIQEV3BwsOG/+euvv+50ytfka9cLrgnGcD3APz3wwAOm36fLly93Ou0cy+y/xddff+10ym758ssv3b5ORkREuF588UVXbGxstvM4ePCgq0+fPq7AwEDTeYSEhLg2bdqU/T+GD2NexhqcD8YxF2Ic4z3fM3v2bFPvp507dzqSp5lnN/Lnz+86cuSI7Tmlp6dnOp8mydW3b99sHf/UqVOZfnf8570L11anTh3D75c2bdo4nS5gmn8/9QUAAOCjfO1hpJ07d7pKly5teiLqhRde8FiOp06dchUoUMCtCbMSJUq4Fi9ebFku58+fd913331u5SLJNXz4cMtyyYyZiTsjf7+ZM2damt/s2bNd4eHhpnO5/fbbLc0jM9u3bzc0mXmtn0ceecQVHx9vSR5paWmu4cOHX3eyOCAgwFSO/szXrs9WWbFihVvnvpWcfojenS/K7r//ftuKiq4lLS3NtXjxYte99977r2sQxUWZY3xgjpXjg3z58rm++OIL23POTE54Dzt9Xfy/OJ+MY6yds/nreNGoaz1QU7t2bdcHH3zgOnXqlMfy2LZtm+vWW29167ybPn26x/L807fffuv2dSI4ONj1wgsvuC5fvmx7nqtWrXI99NBD/xqLUlz0X9wzzclJY1BfYHaMafU4xCq+dL3gmmAc1wP86ciRI6YKISW5Spcu7UpPT3c69RzL7Dnoi8VFGzZscIWGhrp1zenTp4/r9OnTtuRUs2ZN0/nUrl07W4vb+TrmZbKP88Ec5kKMY7zne/bv32/q32XWrFkezzEmJsaVK1cuwzmOGzfOY7lNmjQpy1zGjh3r1nGvXr3qat68eabHDQwMdG3YsMHi3ybnMHMtyp8/P58z4HMCBQAAANjE5XJp/PjxatSokY4dO2aqbaVKlQxvIW+FZ599VpcuXTLdrnHjxtq6datat25tWS6FChXSd999p/fff18BAQGm27/xxhuKjY21LB87NWnSRFu3blXnzp0tPe7dd9+tRYsWKXfu3KbaLVq0KFtbvxs1YMAAw1tq/ykwMFBjx47VuHHjsr299Z+CgoL0v//9T0uWLFH+/PkzjXO5XJb0h5zrhhtuMN3m5MmTOnPmjA3ZOGPixImm4l988UVNmzZNBQsWtCmj/woKClLr1q01ffp0HT16VK+88ooKFCjgsf59EeMDZ1StWlWbN2/Wo48+6nQqsBDnk+f561gbOUNgYKA6duyo5cuX67ffftOAAQNUrFgxj/Vfq1YtrVy5UkOGDDF9nRg2bJhHP0OdPHlSTz31lFttq1Wrpk2bNmnEiBHKmzevxZn9V5MmTTRp0iTFxsZq0KBBypMnj+19+iLumc5gDGrM+vXrTcXXqlXLpkz8B9cEz+N64Ptee+01paWlmWrTtWtXBQbyCBXck5ycrF69eiklJcVUu6JFi2r+/Pn68ssvFRkZaXleDRo00IYNG3TPPfeYardt2za99957lufjb/x1XobzwX3MhXgO4z3PqVixosLDww3H79mzx8Zs/svlcqlPnz5KSkoyFN+uXTs98sgjNmf1t+7du+vGG2/M9PV+/frp888/N3XMxMRE3XXXXVqxYkWmMc8//7waNGhg6rj+xMxcR1xcnH7//XcbswGsxydjAAAAWC4tLU0//PCD6tevr969eys+Pt5U+5CQEI0bN870pKi7lixZoqlTp5pu17x5cy1atMi2Sb1nn31W48aNM/2FVmJiop588klbcrJShw4dtGTJEtv+frfccou+/vprU21cLpe++eYbW/L50+zZs7Vs2TJTbYKCgjRp0iT17dvXlpyaN2+uxYsXU2QAtxUqVEglS5Y03e7w4cM2ZON5ly9f1rp16wzHd+zYUe+8846NGV1fsWLF9Oabb+rw4cNq0qSJo7l4K8YHzqhdu7bWrVunypUrO50KLMT55Hn+OtaG7wsMDFTnzp21fft2/fDDD2revLmjuQwePFgTJkxQUFCQ4XY7duzQjz/+aGNm/9anTx9duHDBdLt27dppw4YNWT6gYJdSpUrp3Xff1cGDB/XMM894vH9vxj3TGYxBjduyZYvh2PDwcFWqVMnGbHI+rgmex/XA923evFmTJk0y1SY4OFj9+vWzKSP4g6FDh5ou2qhevbo2bNigtm3b2pTVHyIiIjRz5kx1797dVLu3335b586dsymrnM+f52U4H8xjLsSzGO95VkBAgGrUqGE4PiYmxsZs/uvTTz/V6tWrDcUWKFBAX375pc0Z/VtAQIDGjh2rkJCQa76ekZGhfv36qXv37jp79ux1j7d69WrVqVNHS5YsyTQmKipKb7zxhts5+wOzC6mYmUsBvAHFRQAAALDEiRMn9P333+vxxx9XmTJl1KlTJ23evNn0cYKDgzV9+nQ1a9bMhiyv7eWXXzbd5oYbbtDcuXNtX2X34Ycf1ogRI0y3mz9/vtasWWNDRtZo1aqVZs6cqdDQUFv7uf/++9WtWzdTbWbOnGlTNn9M3P/vf/8z3e7dd9/Vgw8+aENGf6tfv75mzZql4OBgW/tBzuXO7kVmd7XzVmvXrlV6erqh2NDQUH3yySc2Z2Rcvnz5VKpUKafT8EqMDzyvfPnyWrBggQoVKuR0KrAY55Nn+etYGznDwIEDNXPmTEVFRTmdyl969Oih0aNHm2rjqQcN5s2bp59//tl0u44dO2rOnDlZ7mDrCZGRkR7dtdoXcM/0PMag5mzbts1wbFRUFLuAZBPXBM/ieuD7MjIy1L9/f9M7J3Tr1k0VKlSwKSvkdLt37za9q0m1atW0cuVKj73vAgMDNXHiRN1xxx2G2yQkJGjkyJE2ZpVz+fO8DOeDe5gL8RzGe86Ijo42HOvJnYsOHz5s6tmN0aNHO/KdaoMGDTRs2LAsY7755huVK1dOjz32mH788UcdO3ZMycnJunTpknbt2qWvvvpKrVq1UrNmzbIs4CpUqJBmzpypsLAwq3+NHMVscZGZuRTAG/DUGAAAgB/YunWrXn31VUuOlZ6erpSUFCUkJOjs2bM6fvy49u/f79Yquf9XWFiYpkyZoo4dO2Y/UYMWLlyoTZs2mWpTsGBBzZkzRxERETZl9W8DBw7Ub7/9pilTpphqN2zYMC1cuNCmrNxXoUIFTZ8+3fZJ9T+98847+v777w1vZR0TE6OYmBhVq1bN8lzmzJljerWd+++/XwMHDrQ8l2tp2bKlRowYoeeee84j/SFnKVu2rOk2R48etSETz9u1a5fh2E6dOlHM4wMYH3heSEiIZsyYoeLFizudCizG+eRZ/jzWzqkmTpyoiRMnOp3GX+6++27Nnj3btuN76xfXTz31lH755RfDu0csXLhQp0+ftm2VaumPh2fdeei8VatW+u6771hYwgtxz/Q8xqDmXL16Vfv37zcc784iJPgb1wTP4nqQM4waNcrU7uKSFBQUpJdeesmmjOAPXn/9daWlpRmOL1q0qBYvXqzIyEgbs/qvwMBAffvtt6pXr54OHDhgqM2YMWM0aNAgHsI3wd/nZTgf3MNciGcw3nOOmeIiT+5c9NhjjykhIcFQbIcOHdSzZ0+bM8rcoEGDtHv37izniRMTE/XFF1/oiy++cKuP3Llza+7cuapevbq7afqNyMhIFStWTKdPnzYU/9tvv9mbEGAxvjkAAADwA9u3b9f27dudTiNL9evX14QJE1SzZk2P9vv222+bbjN69GiVL1/e+mSyMGbMGK1YscLULh+LFi3Sr7/+qptuusnGzMwJCAjQxIkTPfpFRJkyZdSzZ0+NHTvWcJtVq1bZMrFudlWryMhIffrpp5bnkZUBAwbo+++/99oVROG9SpQoYbpNTtm5yMzDVW3btrUxE1iF8YHnvf76616XE6zB+eQ5/j7WBuz20Ucfaf78+bp06dJ1Y9PT0/Xdd9/p6aefti2fb775Rjt27DDVpkyZMpo2bZrHHnSDOdwzPY8xqDl79uxRRkaG4fhy5crZmE3OxzXBs7ge+L7ff/9dr732mul2Tz75JA9Qwm2//fabZs2aZTg+MDBQU6dOVZkyZWzMKnP58+fXuHHj1KJFC0M7fCUkJGjy5Ml65plnPJCd7/P3eRnOh5zJ2+ZCsoPxnnPMFBfFxcXp1KlTtheBTZgwwfCCB4UKFTJ1nbVDQECAxo0bp6SkJH333XeWHz9XrlyaPn26GjdubPmxc6py5coZLi76/fffbc4GsBb7kAMAAMBRpUqV0siRI7Vu3TqPFxbFxMRo1apVptq0adNGPXr0sCmjzOXLl8+tIhN3VyWxS58+fdSkSROP9/v444+birejsGb79u2mjztq1CiPrwgXEBCgL7/8klWsYZo/FxedPXvWcGxUVJSNmcAKjA88r3z58nrhhRecTgM24HzyLH8eawOeUKRIEVMPES1evNjGbP74vGhGQECAvv32WxUpUsSmjJAd3DM9jzGoefv27TMVz6697uOa4FlcD3xfYmKiunbtquTkZFPtIiMjNXToUJuygj946623DBUl/Klfv35q1aqVjRldX7NmzdStWzfD8V9//bWN2eQs/j4vw/mQM3nbXIi7GO85y0xxkfTHwhZ2OnXqlJ577jnD8R999JFb34NbLSgoSFOnTtXgwYMVEBBg2XGLFSumxYsX684777TsmP7AzJzHqVOnDO+SBXgDiosAAADgcSEhIWrZsqVmzJihQ4cOaeDAgQoKCvJ4HpMmTTIVHxAQoBEjRtiUzfV16NBBTZs2NdVm+vTpSkpKsikjc8LCwjR48GBH+r7xxhtVqVIlw/G//vqr5TkY3TL+T9HR0aYmtK1UvXp1R7f1hm8qWbKk6TaXL1+2IRPPMzMZWKBAAfsSgSUYH3je0KFDFRYW5nQasAHnk+f4+1gb8JTHH39cgYHGvlpbuXKl0tLSbMlj/fr12rZtm6k2vXv31q233mpLPsg+7pmexxjUPLPFRaVLl7Ypk5yPa4JncT3wfU888YS2b99uut17773HXB3cdubMGf3444+G44sUKaK33nrLxoyMGzx4sOHvZbdt26atW7fanJHv8/d5Gc6HnM1b5kKyg/Ges0qXLq38+fMbjre7uOjJJ5/UxYsXDcV27NhRDz74oK35mBEQEKAhQ4Zo0aJFluy+2aVLF23bto05QzeYnfMwO6cCOIniIgAAAHhEUFCQunfvruXLlysuLk5Lly5Vly5dHNsdxeVyacqUKabadOnSRbVr17YpI2PefPNNU/FxcXGmJnPt1KNHD0dXLG3fvr3h2P3791s+8Tlt2jRT8a+++qrhiVo7vPbaa44U/cF35cuXz3SbxMREGzLxPDPXi/j4eBszQXYxPvC8EiVK6IEHHnA6DdiA88mz/H2sDXhK8eLF1axZM0Ox8fHx2rJliy15fP7556biIyIi9M4779iSC7KPe6bnMQZ1z8GDB03Fs3ORe7gmeBbXA983btw4TZgwwXS7u+66y5HdvpBzTJgwQampqYbjBw4caOrBajtVqVJFd9xxh+H4efPm2ZhNzuDv8zKcDzmbt8yFuIvxnneIiooyHBsTE2NbHjNnztT3339vKLZw4cKm5+A8pXXr1tqxY4fGjBmjG264wVTbwMBAtW/fXqtWrdKMGTNUrFgxm7LM2cze9w8cOGBTJoD1KC4CAACAR6Snp2vKlCnq1q2bnn76aS1evFjp6emO5bN161YdOXLEVJv+/fvblI1xTZo0UZ06dUy1mT17tj3JmNSnTx9H+2/UqJHh2JSUFNMPTGRl8+bNOnTokOH4YsWKqVOnTpb1745y5cqpXbt2juYA35IrVy7Tbbxlhdrsyp07t+FYs/ceeBbjA8975JFHFBoa6nQasAHnk2f581gb8LQWLVoYjjW7u5ARKSkphh+C+NPjjz+uwoULW54LrME90/MYg7rn2LFjpuIpLnIP1wTP4nrg29atW6cnn3zSdLsiRYroiy++sCEj+JPx48cbjo2IiHDrvWqn3r17G45duHChjZnkDP4+L8P5kPM5PReSHYz3vEN0dLThWLt2Lrpw4YKeeuopw/GffPKJVxfeBAcH/7WD5+bNm/XOO++oU6dOqlatmooWLarQ0FCFhoaqcOHCqlOnjrp3766xY8fq+PHjmjdvnpo0aeL0r+DTzO5cdPz4cZsyAaxHcREAAAA86uTJk/rqq6/Upk0bVahQQcOHD9elS5c8nsfixYtNxdesWdNrPlz369fPVPyyZcvkcrlsysaYypUrq0GDBo7mcNNNN5mKj42NtazvJUuWmIrv1auXQkJCLOvfXX379nU6BfgQd4qLcsrORWYe1Pzpp59szATZxfjA8+677z6nU4BNOJ88x9/H2oCn1a9f33Dszp07Le9/5cqVpnbDDA4O1nPPPWd5HrAO90zPYwzqHjMPwoSHh6tgwYI2ZpNzcU3wLK4HvuvQoUPq2LGjkpOTTbf94osvvPpBUXi/ffv2mdpV4d5771XevHltzMi82267TWFhYYZiN2zYoMuXL9ucke/y93kZzgf/4PRcSHYw3vMO3lBcNGDAAJ0+fdpQbJcuXXxqx6u6devqxRdf1KxZs7Rnzx6dOXNGycnJSk5O1rlz57RlyxZNnjxZffv2VfHixZ1ON0cwu6AKxUXwJRQXAQAAwDFHjx7Vyy+//FeRkTtfArnLbLGHN006de7cWcHBwYbjz5w5o+3bt9uY0fW1bdvW0f4lqUKFCqYKdoxOLBmxfPlyU/FO71r0pzZt2igiIsLpNOAj/Lm4qGzZsoZjZ8yYoTNnztiYDbKD8YFnVahQQbVq1XI0B9iH88lz/H2sDXhapUqVDMfa8UDNvHnzTMW3adNGJUqUsDwPWId7pmcxBnXfyZMnDceWLFnSxkxyNq4JnsP1wHddvnxZHTp0cGuObcCAAbrnnntsyAr+5OeffzYV361bN5sycV94eLjh4tS0tDRt3rzZ5ox8l7/Py3A++Aen50LcxXjPe5gpLjpy5IiSkpIs7X/BggWaPHmyodiiRYvq008/tbR/5DwUFyEno7gIAAAAjrt06ZJefvll3Xjjjfrll19s7y89PV1r16411cabvmwqVKiQ6dUoV6xYYU8yBpnZKt0uQUFBpgoArHr4Py0tTWvWrDEcX6JECVOrP9kpLCzMK74UgW8IDQ013SYlJcWGTDwvKirKcOylS5f0xBNPOL4yL/6L8YHnNWvWzNH+YR/OJ8/y57E24ITIyEjDsYcPH7a8/4ULF5qK7969u+U5wDrcMz2PMah70tPTdfHiRcPx3rYava/gmuBZXA98U1pamu6//363Hlxu3LixRowYYUNW8Dfz5883HJsnTx41bdrUxmzcZ2a3m99++82+RHycv8/LcD74B6fnQtzFeM97mPkuNSMjQ3v37rWs7/j4eD322GOG48eMGaOiRYta1j9yJrPzHufOnbMpE8B6FBcBAADAa+zZs0fNmjXTqFGjbO0nJibG1G4ZkZGRXreijdmCj23bttmUiTF16tRxtP8/mZn4PH/+vCV97t27V1euXDEc36JFCwUEBFjStxVatWrldArwEe7sPufObkfe6OabbzYVP2vWLD388MNKT0+3KSO4g/GB5916662O9g/7cD55lj+PtQEn5MmTx3DsqVOnLO378uXLph6uCAwMVLt27SzNAdbinul5jEHdExcXZyo+d+7cNmWSs3FN8CyuB77H5XKpT58+WrBggem2RYsW1fTp003t7AFci8vlMrVQYtOmTd1amMsTzMwn+GMxhVH+PC/D+eA/nJwLyQ7Ge94jMjLSVMHOnj17LOv7xRdf1JEjRwzF3nfffbr33nst6xs5l9l5D7PzKoCTKC4CAADwAz179pTL5bLsJyMjQ4mJibp06ZIOHjyodevW6bvvvtOQIUPUsWNHFSlSxO1c09LS9Pzzz6tv377KyMiw8K/wtx07dpiKb9y4sS15ZIfZnLZv325TJtcXERGhChUqONb/PxUuXNhwrFVbbZtdQbFRo0aW9GsVb8sH3sudcyanFBeVL19eNWvWNNVm4sSJatSokdavX29TVjCL8YHnedtDcLAO55Pn+PtY2x9Y/Xk+uz+zZ892+k/iuODgYMOxV65cUXx8vGV9b9261dQOmPXq1VOBAgUs6x/W457peYxB3XPp0iVT8Tnl876ncU3wLK4HvueFF17QxIkTTbcLDw/X3LlzVapUKRuygr/Zt2+fqTG+md1QPK1cuXKGY2NiYmzMxHf5+7wM54P/cHIuJDsY73mX6Ohow7FWnWerVq3S559/big2MjJSY8aMsaRf5Hxmi4vMzqsATjJ+1wcAAAD+v4CAAOXKlUu5cuVS/vz5VaFChf/s2rBp0yZNnz5dX3/9tVurH3355ZdKSkrSxIkTLd/FxeyXtGZ3pPCE+vXrKyQkRKmpqYbid+3apfT0dAUFBdmc2X+VKVPG431mxswHfHd2YbkWs8VF9evXt6Rfq0RHRyt37tymVk2Ff3Lny6ictJJx165d9dprr5lqs2nTJjVq1EitWrVS//79dccdd7B6qoMYH3he9erVHekX9uN88hx/H2sD/3Ty5Ent2rVL+/fv1759+3T06FGdO3dO586d0/nz55WUlKTk5GSlpKQYPretcPbsWeXNm9eSY23evNlUfLNmzSzpF/bhnul5jEHdk5CQYCo+J33e9ySuCZ7F9cC3vP322xo1apTpdiEhIZo1a5YaNmxoQ1bwR1u2bDEVX7duXZsyyT4zBXfHjx+3MRPf5e/zMpwPzvOHuZDsYLznXaKjo7V8+XJDsVbsXJSYmKg+ffoYXqjn888/z9ZCyvAvoaGhCgwMNLxotrcUXQJGUFwEAAAAW9SvX1/169fXG2+8obFjx2ro0KGmV2KYPHmySpQooXfffdfS3Pbv328q3uxuFJ4QFhamihUrGl6xJSkpScePH1fZsmVtzuy/SpYs6fE+MxMWFmY41qqJ9b1795qK97ZJzqCgIFWpUsXxlYXh/dw5Z3LSw0Z9+/bVm2++6dbfYenSpVq6dKmKFCmiTp066Z577lHz5s1Z6dnDGB94VmRkpFd8uQh7cD55jr+PteHfYmNjNW/ePK1atUobNmzQ0aNHnU7pmqxcqMHsgxWs0Ov9uGd6FmNQ95m9d+ekz/uexDXBc7ge+JYxY8bolVdeMd0uMDBQkydPVtu2bW3ICv5q27ZtpuIrVapkUybZly9fPsOxp06dUkZGhgIDA23MyPf4+7wM54Pnzwd/nAtxF+M97+PpnYtef/117du3z1Bst27ddM8992S7T/iX3Llz68qVK4ZiU1JSbM4GsA4jfgAAANgqd+7cGjBggGJiYtSmTRvT7UeMGKHvv//e0pxOnDhhKt7bij3+VK1aNVPxZn9vq5iZjLWbmRUw09PTLenTzN89MjJS+fPnt6RfK1WtWtXpFOADLly4YLpNTnrYKDIyUgMGDMjWMc6dO6cvvvhC7dq1U+HChdWuXTuNHDlSmzZtUlpamjWJIlOMDzyrWLFijvQLz+B88hx/H2vD/5w6dUrDhw9XdHS0KlasqKefflozZ8702odpJPd2+MyM2d/TzEMbcAb3TM9iDOo+s6uc56TP+57ENcFzuB74jkmTJql///5utR07dqzuv/9+izOCv4uNjTUV70RBtVFm7tdpaWk6c+aMjdn4Jn+fl+F88Ax/nwtxF+M97+PJ4qJff/1VH3zwgaHY4sWL6+OPP85Wf/BPZu4dFBfBl7BzEQAAADwiMjJS8+fP15NPPqnPP//cVNs+ffqoUaNGKlGihCW5mPmyMiAgQOXLl7ekX6uZXd3JqQc3/P1hgpMnTxqO9db3WoUKFZxOAT7AzHv9TwUKFLA+EQe9+uqrmjlzpg4cOJDtY129elULFizQggULJEnh4eFq0KCBGjdurEaNGunmm29WkSJFst0P/sb4wLP4Yi9n43zyHH8fa8N/7NmzR0OHDtXMmTN9rujayeKiKlWqWNY37ME907MYg7rP7LWXnXjdwzXBc7ge+IZZs2bpkUcekcvlMt32/fffV58+fWzICv7u2LFjpuJz0hx4fHy8ihcv7nQaXsXf52U4H+w9H5gLyR7Ge94nKirKcGxCQoKOHTum0qVLm+4nNTVVjzzyiOFCyrFjx6pQoUKm+wHMjAPMLtoCOImdiwAAAOAxgYGB+vTTT9WtWzdT7S5evKiBAwdaloeZB+ALFCigkJAQy/q2UmRkpKl4dx78t4K3/v08xczf3ey/qacULVrU6RTgA9y5xrgzIezNIiIi9N133yk8PNzyY1+9elUrVqzQ22+/rQ4dOqho0aKqXr26+vTpo4kTJ5r+Eg//xfjAs/LmzetIv/AMzifP8da/HWCV8+fPq3fv3oqOjta0adN87mEayfwD+VkxM+aLiIhQRESEZX3DHtwzPYsxqPsCA809VuCL12tvwDXBc7geeL+ff/5ZXbt2dWt3jaFDh+rZZ5+1ISvAfDFFTpKYmOh0Cl7HW+/FnsL5YA/mQqzBeM/75M+f39R3w+7uXvT2229rx44dhmIfeugh3XXXXW71A5gpGDKzwyDgNIqLAAAA4FEBAQH64osvVK1aNVPtpk6dqo0bN2a7/7S0NF29etVwvLcWe0jmV9u5dOmSPYkgU2lpabpy5YrheG99v3lrXvAu7jwIUqZMGRsycVa9evU0c+ZMhYWF2d5XTEyMxo0bp169eqlMmTKKjo7W888/r/Xr17u1oqs/Y3zgeZ44R+AMzicAVvnxxx8VFRWl8ePHu/VQqbewalzmcrkUFxdnON6q3Z9hH+6ZnscY1H1mH5w1897GH7gmeBbXA++2bNkyde7c2a3VvV944QW9/vrrNmQF/MGpImlvQHER/i/OB+sxF2IdxnveKTo62nDsnj17TB9/586devvttw3FlixZUh999JHpPoA/mfkMHxoaamMmgLUoLgIAAIDH5cmTRx9++KHpdkYnAbJidqIvf/782e7TLmZz84btx/2N2febt66glC9fPqdTgA84dOiQ6TY5beeiP7Vr106LFy9W4cKFPdrvrl27NGrUKDVq1EjlypXTSy+9pP3793s0B1/F+MDzmETPuTifAFhh8ODB6tixo06fPu10Kl4jJ11f8Yec9G/qK/dMxqDuM/u34+Fj87gmeBbXA++1Zs0a3XXXXW69L/r166cRI0bYkBXwh9TUVKWkpDidhmOY98A/cT5Yfz4wF2Itxnveyc7iovT0dPXu3dvwtenLL79UgQIFTPUB/JOZz/H+vtshfAvFRQAAAHDE7bffrkaNGplqM2fOHB05ciRb/Zqd6PPmFW3M5sakv+fllPebt+YF72J0e/l/yqnFRZLUpEkTbdu2Ta1atXKk/6NHj+qdd95R1apVdfvtt2v58uWO5OErcsr1WvKd8UFAQIAj/cJ+nE8AssPlcunhhx/WG2+84XQqXsfsQ+e5cuWyKRNYhXum5zEGdV/u3LlNxVNcZB7XBM/ieuCdNm7cqDvuuENXrlwx3bZnz54aM2aMDVkBf/P3+5s37EQC78H5YN35wFyIPRjveSczxUUxMTGmjj169Ght3LjRUOzDDz+sO+64w9TxgX9KT083tdNqeHi4jdkA1qK4CAAAAI7p37+/qXiXy6WJEydmq8/k5GRT8XxJi+zIKe83b80L3uP06dM6e/as6Xbly5e3PhkvUqpUKS1ZskTffvutypYt60gOLpdLixYtUsuWLdWsWTNt2rTJkTy8XU65XkuMD+A8zicA2fHcc89pwoQJTqfhlSguynm4Z8KXmN2Jxt8fNnUH1wT4u61bt+r2229XfHy86bb33Xefxo0bx0PEsB3XK+BvnA/WYS4E/iQqKspwrJmdi/bv36/XXnvNUGzp0qX1wQcfGD42cC05afdh4P8KdjoBAAAA+K8777xToaGhprZM//HHHw1PCgC+xltXffPWvOA93Nm1qHz58ipYsKAN2Xifrl27qnPnzpo4caLef/99U5PhVlq1apUaNmyoxx9/XO+9957y5MnjSB4AAADX8tVXX2n06NGWHKtgwYKqXbu2KlasqEqVKqlEiRIqVqyYIiMjlTdvXkVERCgiIkIhISEKDg5WSEiIqYdRnXhwlYdlATipQIECpuIpLgJgxo4dO3Tbbbfp0qVLptt26NBBU6ZMUVBQkPWJAf+H2UJQICfjfLAGcyHwNzVr1lRgYKAyMjKuG3vs2DFduXLlut9nulwu9enTx/Dn0K+++opCD2Sb2XkPs/MqgJMoLgIAAIBj8ubNq0aNGmnlypWG22zdulXnzp1TkSJF3OrT7Mq9ZgqfPM3spC2rFnue2VU6vfX9xhcEuJ4NGzaYblOvXj0bMvFeoaGhevTRR/Xoo49q+fLlmjhxombPnq24uDiP5uFyufTZZ59p6dKlmjNnjqpVq+bR/r0V4wPAOpxPANxx4MABPfvss263L1CggO68807ddtttatq0aY7cITN37tym4llF2vtxz4QvyZ07t3LlymX42nL16lWbM8p5uCbAX+3Zs0etW7fW+fPnTbdt06aNZsyYoZCQEBsyA/6L9xrwN86H7GMuBP4oPDxcFSpU0IEDB64b63K5tHfvXtWpUyfLuLFjxxp+5qhPnz66/fbbDcUCWTFbXOQvi64iZwh0OgEAAAD4t5tuuslUfEZGhjZu3Oh2f2a/qPTmogq+pPV+OeX95q15wXssXrzYdBt/Ky76pxYtWmjChAk6c+aM5s+fr6efflrVq1f3aA579+7VzTffnK17ak6SU67XEuMDOI/zCYA7nn76aSUkJJhuV6tWLU2dOlWnTp3S5MmT1aNHD9sfpnFqZ1ez1xiKi7wf90z4muLFixuOPXPmjI2Z5ExcE+CP9u/fr5YtW7p1zWjWrJlmz55teoEvIDvCw8OdTgHwGpwP2cdcCPxVdHS04dg9e/Zk+fqxY8c0aNAgQ8cqW7as3n//fcN9I2dIS0vT4sWL9fTTT2vr1q2WHff06dOm4kuUKGFZ34Dd2LkIAAAAjoqKijLd5rffftMdd9zhVn9mv6i8fPmyW/14gtndLsyucozsM/s399b3m7fmBe9w5coVrVu3znS7unXr2pCNbwkNDVXbtm3Vtm1bSdK5c+e0du1arV69WqtXr9aWLVuUlpZmW/+XLl1S27ZttXbtWtWoUcO2fnwB4wPAOpxPAMz65Zdf9PPPP5tqkydPHo0cOVKPPfaYAgICbMrs2pwq2jF7ffX0Dpkwj3smfE3JkiV16NAhQ7Hnz59XUlISRSMmcE2Av4mNjVWLFi108uRJ020bNWqkefPm8d6Bx7nznktNTVVwMI/nIefhfMge5kLgz6Kjo/Xjjz8air1ecdFjjz2m+Ph4Q8caN26c8ubNayjWF50+fVobNmzQjh079Pvvv+vo0aM6fvy4Ll68qMTERKWmpio8PFz58uVTvnz5VKlSJdWoUUM1a9ZU8+bNc9TuZ4mJiVq0aJG+//57zZ07VxcvXpQktWzZ8ro7YRl17NgxU/ElS5a0pF/AExitAQAAwFGlS5c23Wb//v1u9xccHKw8efLoypUrhuLNrjbhSWZX88ufP79NmSAzwcHBioiIMLzq1NmzZ23OyD3emhe8w4oVK5SSkmKqTVBQkBo0aGBTRr6rSJEiuvvuu3X33XdL+rtwa82aNfrll1+0YcMGyx8eunjxojp37qxNmzYpT548lh7blzA+AKzD+QTArHfffddUfNGiRTV//nzHdsJMTEx0pN/AwEAVLFjwry/Dr8edB3XhWdwz4WtKlSplKv748eOqVKmSTdnkPFwT4E+OHDmili1bmn4gT/pjwaL58+crIiLChsyArIWEhCg0NNTUfHhSUhLvV+RInA/Zw1wI/JmZBYhjYmIyfW3KlCmGi/Qee+wxtW7d2nC/viAjI0OrV6/WrFmztHjx4usWYklSfHy84uPjdfz4ce3evVvz5s3767Vq1arpjjvuUO/evd1aJNpb9OrVSzNnzvzPZ+uAgAA1bdrUsn6OHz9uKt7snArgpECnEwAAAIB/K1q0qOk27nzh9E9mtpu9ePGirbtGZIfZL2lZCcMZZt5vZv9NPYXiImRlypQpptvccsstKliwoA3Z5Cx58uRR69atNWTIEC1atEgXLlzQhg0b9M4776hFixYKCQmxpJ/du3dr6NChlhzLlzE+AKzD+QTAqDNnzphaqTc0NFQ//vijYw/TSM7uCGRmgZaEhATDC13AOdwz4UvKlStnKt7sgzbgmgD/cPz4cbVs2dLwTmj/FB0drUWLFlGQBkeZfTD06tWrNmUCOI/zwT3MhcDfRUdHG47NrGDmzJkzGjBggKFjlC9fXiNHjjTcp7eLjY3VSy+9pJIlS6p58+b6+OOPDRUWXU9MTIw++OADRUdHq3nz5po7d64F2XrW8ePHNXHixGsu2nHDDTeoUKFClvZlRk7aGQo5H8VFAAAAcJQ7W6afO3cuW32a+bLS5XK59SWXJxw8eNBUPF/SOqN48eKGY731vRYbG+t0CvBSly5d0uzZs02369Chg/XJ+IE/d3x68cUXtWzZMp0/f15Tp05V586dFRYWlq1jjx49WocPH7YoU9/E+ACwDucTAKOmT59u6sHol19+WY0aNbIxo+tz8mH5MmXKmIrPzs7P8AzumfAlVapUMRWf3QWi/BHXBOR0p06dUsuWLXXgwAHTbatVq6YlS5aocOHCNmQGGFe2bFlT8d680xyQXZwP7mEuBP6uWrVqhhdQ3Ldvn1wu13/++1NPPaXz589ft31AQIDGjx+fI3ZN++2339SlSxdVqlRJ77zzjq3X1JUrV+quu+5Su3btfGp+ceXKlZm+1qxZM0v7MjvnUblyZUv7B+xEcREAAAAcFRwcbLpNdrfdNruKUlZbLTvJ7OojfEnrDDN/9zNnznjlyk/eeg7AedOmTVNSUpLpdhQXWSNv3rx64IEHNHPmTJ04cUIjR440/cDpn1JTUzV69GhrE/QxjA8A63A+ATBq2bJlhmMLFy6sQYMG2ZiNMU4+LG92rLdjxw6bMoFVuGfCl5gtLuIBRPO4JiAnO3PmjFq2bKm9e/eabluxYkUtXbpUxYoVsyEzwByzxRQU2yIn43xwD3Mh8HehoaGGP19evXpVR44c+dd/mz17tmbMmGGo/RNPPKEWLVqYztGbxMbG6t5771WdOnU0a9asaxZb2WXBggWKjo7WtGnTPNZndniyuMjMnEfu3LlNf94HnERxEQAAABzlTqFQampqtvqsVKmSqfjdu3dnqz87pKSkmFrdjw+rzqlWrZqpeCu2rLZSenq6T61GA89JT0/X+++/b7pdlSpVTJ8XuL5ChQpp4MCB2rdvn959913lypXL9DGmTJmi9PR0G7LzDYwPAOtwPgEwwuVyafXq1Ybje/Xq5dbux1bbtWuXY33XrFnTVPz27dttygRW4Z4JX1K9enVT8TyAaB7XBORU58+fV+vWrd16z5YtW1bLli3jfQKvYXbV+djYWJsyAZzH+WAecyHAH6Kjow3H/vP5iUuXLumJJ54w1K5ixYp69913TefmLVJTUzV48GDVqFFDM2fOdCyP5ORkdevWTaNGjXIsB6NWrVqV6WtNmza1tC8zcx5VqlRRQECApf0DdqK4CAAAAI66fPmy6Tbh4eHZ6rNWrVqm4tevX5+t/uywefNmU0VWUVFRCgxk+O8EMxNjkrRx40abMnHPjh07sr1bGHKmyZMna9++fabb9e7d24Zs8KewsDANGjRIK1asUL58+Uy1PXfunKkvtXIaxgeAdTifABhx4sQJnTt3znC8t+x++dtvvznWd7169UzFZ/WFOrwD90z4khIlSqhw4cKG472x8MXbcU1ATnTp0iXddtttbu2oWLJkSS1btkzlypWzITPAPTfddJOp+C1bttiUCeA8zgfzmAsB/hAVFWU49p87tj733HM6efLkddsEBATo66+/Vp48edzKz2l79+5V48aN9cYbbyg5OdnpdORyufT888/rq6++cjqVTJ0+fTrThXxr1qypokWLWtZXcnKyqYLZ2rVrW9Y34AnM0gAAAMBR7qxgmd0JgBtuuMFU/Nq1a7PVnx3M5sSHVeeYmRiTpHXr1tmUiXu8LR94h9TUVA0bNsx0u1y5cqlPnz42ZIT/q2HDhvrpp59MP6Djz8VFjA8A63A+ATDCzK4GgYGBatiwoY3ZGONyubRhwwbH+r/xxhtNje82b96suLg4GzNCdnHPhK8x8+/H7mnmcU1ATnP58mXdfvvt2rp1q+m2kZGRWrp0qekdvQC7NWjQwFT8r7/+alMmgPM4H8xjLgT4gzs7Fy1evFhff/21oTb9+/e3fKcaT/n8889Vp04dU9fMwMBA3XTTTRo4cKC+/PJLrV69WrGxsTp37pxSUlKUkpKiuLg4HThwQGvWrNFXX32l/v37q1atWqZ21Onfv7/XFhtmtchSs2bNLO3r999/V1pamuF4PvfC11BcBAAAAEcdPHjQdJsCBQpkq88qVaqY2v3o1KlT2rlzZ7b6tNqiRYtMxd944432JILrqlq1qiIiIgzHL1++XC6Xy8aMzFm6dKnTKcALvfXWW25dv7t27WpqlWNkz6233qpHH33UVJvNmzdb0rcvbu3O+AD/5IvvYW/C+QTAiEOHDhmOLVu2rHLlymVfMgZt2bJFZ8+edaz/PHnymFrAIj09XfPnz7cxI+/ii/dv7pnwNWYeiDl9+rSj10xfxDUBOUlCQoLatWunjRs3mm5buHBhLVmyRNWrV7chMyB7ihQpoooVKxqO37Fjh86cOWNjRoBzOB/MYy4E+IPZ4qKEhATD33lWqVJFw4cPdzc1xyQmJuqee+5Rv379dPXq1evGBwQEqEWLFpoyZYrOnj2rTZs2aeTIkerTp49uvfVWlS9fXoULF1ZISIhCQkKUL18+VaxYUbfccot69+6tjz76SNu2bdORI0f01ltvqVixYtftMykpSd26dVN6eroVv7KlVq5cmelrzZs3t7Qvs4up8LkXvobiIgAAADjKnRWKzExSXktQUJCaNGliqs3s2bOz1aeVLl26pBUrVphqY/WHZRgXHBysW2+91XD8qVOn3PrC1Q7JyclauHCh02nAy2zZskVvvfWWW2379+9vcTa4nkGDBpmKN7OFe1aCgoIMx5pZ2clOjA/wT774HvYmnE8AjDCzo06RIkVszMS4efPmOZ2C2rVrZyp+ypQpNmXifXzx/s09E77G7Or027ZtsymTnIlrAnKKq1ev6s4779Qvv/xium2BAgW0aNEi0zt5AZ502223GY7NyMjQ3LlzbcwGcBbngznMhQB/qFy5suHiuZiYGL300ks6fPjwdWMDAwP19ddfm1q0wRtcvHhRrVu3NvT5LigoSL1799bevXu1bNkyPfjggypUqJDbfZcuXVovv/yy9u/fr5deeum682u7d+/WN99843Z/dsmquMjqXazMFBcFBATopptusrR/wG4UFwEAAMAxLpdLa9euNd2ucuXK2e67devWpuJnzpyZ7T6t8sMPPyg1NdVwfPHixU2t/ALrtWjRwlT8999/b1Mm5ixatEgJCQlOpwEvkpCQoB49erj1IF7Hjh1Vp04dG7JCVipWrGhqdfsTJ05Y0m9YWJjhWDP3NLsxPsCffPU97E04nwBcj5EVOP/kDSv1ulwuTZo0yek01L59e1PxCxcu1KlTp2zKxrv46v2beyZ8SaNGjUzFm13NF1wT4PuSk5PVsWPHLB/uy0zevHk1f/581a1b14bMAOt07NjRVPzUqVPtSQTwApwP5jAXAvwhMDBQNWrUMBR74sQJffrpp4ZiBwwYoFtuuSU7qXnciRMn1LRpU0OF+XfddZd27dqlr776ypLnpv4pIiJCb7/9tpYuXarIyMgsY9944w1lZGRY2n92nD9/Xrt27brma9WqVVPx4sUt7c/MXEfNmjWVP39+S/sH7EZxEQAAAByzceNGtx5wsWLFOjOrKEl/rLK5bt26bPdrBaMTJ39q1aqVTZnAKLP/BhMnTvSKB52++OILp1OAF0lLS9O9996b6cRcVkJDQzVy5EgbsoIRtWvXNhxrVUGhmQc7L1++bEmfVmB8gD/56nvYm3A+AbielJQUw7GXLl2yLxGDli5dqoMHDzqdhho3bqyCBQsajk9LS9MHH3xgY0bew1fv39wz4UvKlSunUqVKGY6nuMg8rgnwZSkpKercubMWL15sum14eLh++ukn3XzzzTZkBlirZcuWypcvn+H4pUuXas+ePTZmBDiH88Ec5kKAv5lZaMBIIUvVqlX15ptvZiclj9u/f78aN26snTt3ZhlXqFAhTZkyRT/++KOqVatma07NmjXTqlWrVKZMmUxjEhMTFRjoPeUHq1evlsvluuZrzZo1s7w/M3MdjRs3trx/wG7ec3YDAADA73z11Vem24SEhFjy4at27dqqWLGiqTaffPJJtvvNrvXr1+vXX3811eaee+6xKRsYVa9ePZUvX95w/OnTpx3fvejQoUOaP3++oznAe7hcLj322GNasGCBW+0HDBigSpUqWZwVjCpWrJjhWKsKGwsUKGA4NikpSYmJiZb0m12MD/AnX30PexPOJwDXY2YF3tOnT9uYiTHe8nBCcHCwunbtaqrNZ599pgsXLtiUkffw1fs390z4mltvvdVwLMVF5nFNgK9KS0vTAw88oJ9++sl021y5cmnu3Llq0qSJDZkB1gsNDVWXLl1MtRkxYoRN2QDO4nwwh7kQ4G9RUVGWHSswMFATJkxQ7ty5LTum3c6fP6927drp8OHDWcY1bNhQO3bs0IMPPuihzP7Y7WfJkiWZ7rjTokULj+ViRFa7plpdXHT69GmdOXPGcLyZORTAW1BcBAAAAEecPHlS33zzjel2DRo0UHh4uCU5dO/e3VT8tGnT9Pvvv1vSt7tee+01U/GFChVShw4dbMoGZtx///2m4t98801Ht5IeNmyY0tPTHesf3iM5OVndunXT+PHj3WpfokQJvfLKKxZnBTPMfFkVERFhSZ+RkZGm4o8dO2ZJv1ZgfADJt9/D3oTzCUBWzIw7zp8/b9kOi+5YunRpll9Se9pjjz1mKj4+Pl4vvfSSTdl4D1++f3PPhC8xs9vM9u3bFR8fb2M2ORPXBPia9PR0PfTQQ/rhhx9Mtw0LC9Ps2bPVsmVLGzID7PPUU0+Zip84caK2bdtmUzaAszgfjGMuBPibmZ2LrmfgwIFq1KiRZcezW0pKijp16qT9+/dnGdetWzetWLFCJUuW9FBmf6tataqmTJlyzdf8ubhozZo1puLZsRe+iOIiAAAAOOLFF190a4VYsysfZeWhhx4yFZ+RkeHowziLFi3SkiVLTLW5//77FRoaalNGMKNbt26m4nfu3Klvv/3WpmyytmfPHk2aNMmRvuFdzp8/r9atW2vatGlutQ8KCtK3336rfPnyWZwZzDCzelJmK1CZZWa3JEnau3evJf1agfEBJN9+D3sTzicAWTHzpXhGRoYWL15sYzaZS05O1hNPPOFI35mpVauWbr75ZlNtvvrqK61bt86mjLyDL9+/uWfCl7Ru3dpwbHp6ulavXm1jNjkT1wT4EpfLpd69e7s1fxgSEqIZM2bo9ttvtyEzwF516tQxtRJ9RkaGHn/8caWlpdmYFeAMzgfjmAsB/mZVcVGNGjU0bNgwS47lKY899phWrVqVZcxzzz2nb775xtQikla788471bFjx//8d28qLoqLi8u0YLVy5coqVaqUpf2tWLHCcGz16tUt7x/wBIqLAAAA4HEzZszQ5MmTTbcLDg42XaCRlcqVK5teJWLOnDmaMWOGZTkYlZCQYHplYsn8asawT61atUxveTxw4EBduHDBpoyuzeVy6dFHH/XLCX382w8//KCoqCjTq+/809ChQ9W8eXPrkoJbtmzZYji2UqVKlvRZsGBBFSxY0HD85s2bLenXCowPIPn2e9ibcD4ByEqFChVMxc+bN8+mTLL26quvelURyp8GDRpkKj4jI0Ndu3b1+GdMT/Ll+zf3TPiSChUqmPrsuHz5chuzyZm4JsCX9OvXTxMnTjTdLjg4WFOnTmUHK/i0F154wVT8+vXr9frrr9uUDeAszgdjmAsB/lauXDnlzZs3W8cICgrSxIkTFRYWZlFW9nvvvfc0YcKELGOeffZZjRo1yjMJXce7776rgICAv/5/2bJlVbFiRQcz+rfVq1crIyPjmq9ZvWuRZG6Ow8ziLIA3obgIAAAAHrV27Vo98sgjbrXt3LmzIiMjLc3nlVdeMd3mySef1PHjxy3N43qeeeYZHTp0yFSbO++8U7Vr17YnIbhl4MCBpuLPnDmjJ5980qZsrm306NHZKiaB7zt69Ki6du2qTp066fTp024fp23btnr55ZctzAzuOHjwoLZu3Wo4vkaNGpb1Xa1aNcOxS5cutaxfKzA+gOTb72FvwvkEIDPVqlUztWPBtGnTdOLECRsz+q8ffvhBI0eO9GifRt1zzz1q0KCBqTaHDx9W165dlZqaalNWzvPl+zf3TPiS9u3bG441s6ov/sY1Ab5gwIABGjt2rOl2gYGBmjRpkjp37mxDVoDn3HXXXaYX13rnnXeu+0Ax4Is4H4xhLgT4t6ioqGy1HzRokOrXr29RNvbbtWuXXn311SxjHn30Ub3//vseyuj6qlatqiZNmvz1/71p1yJJWrlyZaavWV1cdPbsWf3++++G483MnQDehOIiAAAAeMycOXPUrl07JSQkmG4bGBiowYMHW55TixYt1KhRI1Ntzp49q44dOyoxMdHyfK7l448/1vjx4023c+cLaNjrrrvuUtWqVU21mTZtmscmj5YvX2569WvkHEePHtUTTzyhypUra9q0adk61k033aSpU6f+axWjnGrt2rXq3bu39u/f73Qq1/TOO++Yim/atKllfZt5UGj16tU6ePCgZX1nF+MDSL79HvYmnE8AMhMWFqY6deoYjr969apHz7s1a9aoe/fuHuvPHW+//bbpNosWLVLXrl1z7G61vnz/5p4JX3LXXXcZjt26davi4uJszCZn4poAb/fyyy/rww8/NN0uICBA48aNU9euXW3ICvC8UaNGmZoHd7lc6tOnj7755hsbs7LG6tWr9dlnnzmdBnwI58P1MRcC/Ft2iouioqI0ZMgQ65KxWUZGhnr37q2UlJRMY1q2bKlPP/3Ug1kZ8+CDD/71v72tuGjVqlWZvmZ1cdGKFSvkcrkMxebNm1ctW7a0tH/AUyguAgAAgO0uXbqkp556Sh07dlR8fLxbx+jZs6eluyn8k9kHryXp119/VefOnZWUlGRDRn/75ptv9Oyzz5pud/fdd+vmm2+2ISNkR2BgoIYPH2663aBBgzR16lQbMvrb5s2b1blz5xz7gBmuLS0tTfPmzdN9992nypUr67PPPstyQtOIunXratGiRSpQoIA1SXq51NRUjR8/XtWrV9dDDz2k3377zemU/rJw4UJ99dVXhuODgoLUpk0by/q/5ZZbDMe6XC6vK25kfABffw97E84nAJkx+wXrpEmTNHPmTJuy+duaNWvUvn17Xb161fa+sqNVq1a67777TLebNWuWOnXq5PYcjVXOnj1r+UMgvn7/5p4JX9GsWTPDn/vT09OzfNgHmeOaAG/11ltvuTXPHRAQoM8//1y9evWyPinAIXXr1tUTTzxhqk16eroeeughDRs2zPADqp7icrm0cOFCNW/eXE2bNtXatWudTgk+hPPBGOZCgL9FR0e71S44OFgTJ040tROY00aPHq0NGzZk+nqlSpU0c+ZMBQcHezArY2699da//rc3FRclJCRoy5Yt13ytfPnyKlu2rKX9LV++3HDs7bff7lPvT+CfKC4CAACAbU6dOqUhQ4aocuXKGjNmjNsTgiVLltSoUaMszu5vTZs2VY8ePUy3mz9/vu644w5duHDBhqykTz/9VD169FB6erqpdnny5NHHH39sS07Ivk6dOql58+am2vw5sf7ll1/aktPKlSvVqlUrXbx40Zbjw7tcuHBBM2fO1OOPP65SpUqpQ4cOmjFjRraLiiTpxhtv1OLFi1WwYEELMvUt6enpmjJliurUqaMmTZpo+vTpSk1NdSyf1atX67777jN1773jjjss/bcze62bNWuWnn76aSUnJ1uWQ3YwPoCvv4e9CecTgMzce++9puIzMjLUvXt3LVu2zKaMpAkTJqhVq1a6fPmybX1YacyYMYqMjDTdbu7cuWrYsKF27NhhQ1ZZO3XqlF5++WVVrFhRo0ePtvTYvn7/5p4JXxEcHKwOHToYjjfzAA7+xjUB3mj06NF69dVX3Wr74Ycfqm/fvhZnBDjvvffeU82aNU21cblcev3119WmTRsdOXLEpsyMu3z5sj766CNVr15dbdu21cqVK51OCT6K8+H6mAsB/uZucdH//vc/1atXz+Js7HPw4EG99tprmb4eFBSkKVOmeO137NWrV1edOnXUvHlzywt2EhMTNXfuXD3//PNq06aNKlSooAIFCigkJESRkZGKjo5Wz549NXny5P/sirx27dpMF8+1etciydzcxj333GN5/4CnUFwEAAAAyyQnJ2vTpk0aNWqUWrVqpdKlS2vo0KE6f/6828cMDAzUuHHjbP8QPXLkSBUqVMh0u+XLl6tOnTpas2aNZbnExcWpe/fuevLJJ5WRkWG6/RtvvKEyZcpYlg+sN3r0aIWEhJhqk56err59+6pPnz5KSEiwJI/09HS9++67at269X8mYv4pICDAkv7geadPn9ayZcv00UcfqW/fvqpXr56KFi2qe++9V2PHjtWZM2cs6+uee+7RypUr3bqW5jRr1qzR/fffrxIlSuipp57KchUqq6WlpWn06NG67bbbTH8J1L9/f0tzKVOmjBo0aGCqzccff6zq1avrvffe0759+yzNxx2MD/xbTngPexPOJwDXUqdOHdWqVctUm+TkZN15550aM2aMpbmcOXNG9957rx5++OEsC++9bfXQIkWKaOzYsW613b17t+rVq6eXX37Zss+ZWVm/fr0efvhhlStXTsOHD7elz5xw/+aeCV9x//33G4796aefbMwkZ+OaAG/yxRdfuLVjlfTHw+ZWzz0B3iJ37tyaOnWqwsLCTLddsmSJoqKiNGTIEI/vLJqamqo5c+bogQceUPHixfXMM89o7969Hs0BOQ/nw/UxFwL8zZ3iolq1aun111+3IRv7PP/881nuCvbSSy959Q6vgYGB2rJli6ULh2zatEndu3dXkSJFdNddd2nUqFFavHixDh06pLi4OKWlpens2bPatWuXJk2apB49eqhs2bJ68cUX/3oGLaviT7MLEF3PwYMHtWfPHkOx4eHhuvvuuy3tH/Ak7voAAAB+YOvWrW6vJHctLpdLKSkpSkpK0oULF3TmzBkdOnRIsbGxplcrvJ5Ro0apbdu2lh7zWooWLaoJEybo7rvvNr3D0pEjR9S0aVN169ZNQ4cOVaVKldzKITk5WRMmTNBrr72ms2fPunWMNm3aaMCAAW61hefUrl1bQ4cO1csvv2y67bhx4zR//nwNHz5c3bp1c3syd8mSJRo4cKC2b99+3dgnnnjC8slq/CG71+fk5GQlJycrKSlJycnJiouL06lTp3Ty5EmdOnXKkt2IricoKEjDhw/XCy+8YHtfvub8+fMaM2aMxowZo7Jly+rOO+9Uhw4d1KxZM+XOndvSvtLT0/XNN99o2LBh2r9/v+n2zZo102233WZpTpL04IMPauPGjabaHDp0SIMGDdKgQYNUpEgR1ahRQ2XLllWhQoUUHh5u+rr35ptvmor/J8YH8PX3sDfhfAKQmeeee069evUy1SYxMVFPPfWUfv75Zw0fPtz0Qzn/dP78eY0ePVoffvihoYeXBg8enOVKo07o2LGjXnnlFb311lum26ampmr48OEaO3asnn76aT322GMqXry4Zbnt3LlTs2fP1jfffGP4C/js8vX7N/dM+Io2bdqoUKFChnbH2bt3r/bs2aPq1at7ILOchWsCvMnbb7/tdtsXXnjBZ+YPzZ5rgPTHg84TJkxQt27dTL+HEhISNHToUH388cd6+OGH9eijj6patWq25Hn69GktWLBAP//8sxYtWqRLly7Z0g/8G+fD9TEXAvyhePHiKly4sOEFi0NCQjRx4kTTC7k6aePGjfrhhx8yfb1q1ao+VyyVHb/99puee+45twqVLl++rBEjRmjy5MkaP358lsVFVu9c9OOPPxqO7dChg/LkyWNp/4BHuQAAAOBzmjVr5pKU43+ef/55j/9tX3nllWzlHBgY6LrjjjtckydPdp0+ffq6/aWlpbnWrFnjGjRokKto0aLZ6rtcuXKuc+fOeeCv5HL17NnTcF49e/b0SE5GeFPe6enprqZNm2br37xUqVKuwYMHu3799VdXRkbGdfuMiYlxffDBB67o6GjDfXTu3Nm1fPlyU3n5M3+5Pv/5U6FCBdeKFSuc/rO7XC6XY+9Ts/1KcoWEhLhuvvlm1/PPP++aNm2aa8eOHa7k5GTTfR89etQ1ffp010MPPeQqXLiw2/+OwcHBrm3btln2N/mn+Ph4V8GCBR19n1qB8YEx3nSftYovv4e99f7N+XR9vnou+WrenmZ2vOgPf6uUlBRXjRo1snV+tmjRwjVlyhTXkSNHDPV58uRJ19SpU12dO3d2hYaGGu6nUaNGrrS0NFO5LV++3N4/4P+XkZHh6ty5c7bvO4GBga5WrVq5Pv74Y9fWrVtdaWlphnNISUlx7dixw/X111+7Hn74YVeFChWu21/+/Pkt/1v48v37n7hnGsP9x1l9+/Y1/Pd/9913nU73L19//bWp97M34JpwfVwP7FeuXDmP31Od+IH1zP4bfP31106n7LYPPvjAkvdhdHS0a9CgQa758+e7Tp065VYuJ06ccC1fvtz1ySefuB566CFX5cqVTefx4IMPWvwX8n6+ej/xxrw5HzLHXIh7vPF9juwz88zE4MGDnU7XtLZt22b5O82dO9fpFD0iISHB9fjjj7sCAwMtuTdIyvRYZcqUsTx/M/P6s2fPtrx/wJPYuQgAAABe6a233nJrV5fseuONN7Rjxw7NmTPHrfYZGRn6+eef9fPPPysgIEDly5dXjRo1VLp0aUVERCg0NFQJCQm6ePGi9u7dq927dyshISHbeefLl0/ff/+9ChcunO1jwTMCAwM1depUNWzYUMeOHXPrGMePH9fQoUM1dOhQFShQQDVr1lTlypVVoEABhYeHKykpSZcvX9ahQ4f0+++/69SpU6aOX6RIEY0ZM0a7d+92Kz/kXLly5dKLL76o//3vf8qVK5fT6fic1NRUrV+/XuvXr//rvwUHB6t06dIqVaqUSpYsqUKFCilXrlzKlSuXXC6Xrly5ooSEBCUkJCg2NlZ79+615P4hSe+++262VrjLSkREhAYNGqSXXnrJluN7CuMD/5VT3sPehPMJwP8VEhKijz/+WK1bt3b7GMuXL/9rtcsyZcrohhtuUKFChVSwYEHlyZNHiYmJio+P1+HDh7Vv3z4dOXLEdB/58uXT5MmTFRQU5HaedgoICNDkyZN14cIFt1b+/FNGRoaWLl2qpUuXSpLCw8NVsWJFVaxYUcWKFVN4eLjCw8OVlpamxMRExcXF6cSJEzp+/LgOHDig1NRUq34lt+WU+zf3TPiCXr166YsvvjAUO2vWLA0aNMjmjHIurgkA4BsGDBigixcv6o033sjWcXbu3KmdO3dqxIgRkqRixYqpXLlyKl26tIoWLarcuXP/NXeclJT01/dBp06d0unTp3Xs2DFdvnzZil8JcBvnQ+aYCwH+Fh0drVWrVl03rk6dOnrllVc8kJF1du7cqQULFmT6esuWLXXnnXd6MCNnbNq0SQ8++KD27dtn6XEzMjKu+d+t3rXozJkzWrNmjaHYokWL6o477rC0f8DTKC4CAACAV8mbN68+//xzdevWzZH+AwMDNX36dN11111atGhRto7lcrkUGxur2NhYi7K7toiICM2fP19169a1tR9Yr2TJkvrpp5/UpEmTbE9qX7p0Sb/88ot++eUXS3ILDQ3V999/r2LFilFchH/p2LGj3n//fVWoUMHpVHKUtLQ0HTp0SIcOHfJov926ddNzzz1nax8DBw7Ut99+qx07dtjaj50YH/i3nPAe9iacTwCupVWr/9fevUdXVZ/5438ScoFAQKEBTaEgiOEi6CgiELnMpGqHjspNmUqtYJFOVbTTitPi2OrSKtPSsSIO1ssArdUGUHAxtd6gLhBUiIojigMW5C7iBZCLgMDvj+9PezE3yMk5Sc7rtZZ/yOfJfp6slX32yc55709JXHPNNTF16tQaH2vjxo2xcePGBEz1Z7m5uTFv3rzo1KlTQo+baE2aNInf//73MWzYsEo/uHA09u7d+/kHueqThnD9ds2kPujbt2907dq1WveOli1bFuvWrXM/4Rh5TQCoP2655ZYoKCiI6667rsIPvR6tbdu2xbZt22LZsmUJOR4ki/OhYu6FwP9z6qmnVlmTk5MTM2bMiOzs7CRMlDh33nlnpev1/cE41fHwww/HFVdcEfv3709az0SHi2bPnh2HDh2qVu23vvWtevdzCn8rM9UDAADAZ84+++x49dVXUxYs+sxnN8pq8qSgZMnPz4/f//730a9fv1SPwjHq2bNnPPbYY5GXl5fqUf7Kgw8+GP3790/1GNQROTk5MXr06Fi5cmXMnTvXB4EaiGHDhsXMmTNrvU92dnbMnTs3CgoKar1XbfL+IH01lJ/husT5BJTnF7/4RfTp0yfVY3xBZmZm/OY3v4m///u/T/Uo1dKkSZN4/PHH45JLLkn1KCnVUK7frpnUB1dccUW1a3/3u9/V4iQNn9cEgPrjmmuuidLS0jr3tx9IBedDxdwLgeqFi2666abo2bNnEqZJnN27d0dpaWmF6z179qwXv9vVxK233hqjRo2qNFiUnZ0dQ4YMiRkzZsQbb7wRu3btigMHDsSWLVs+v8eZmXl0UYdEh4uO5l7G0dwjgbpKuAgAgJQ78cQT48EHH4ylS5fWmSffNGnSJP7whz/EVVddlepRKnTyySfHiy++GAMGDEj1KNRQSUlJPP3009GiRYtUjxIZGRlx1113xTe/+c1Uj0IdUFhYGD/60Y/inXfeienTp0f37t1TPRIJcvXVV0dpaWlkZSVnU+tOnTrFM888E23btk1Kv9ri/UH6aig/w3WJ8wn4Wzk5OfHEE09Ejx49Uj3K53Jzc2PmzJlx8cUXp3qUo5KTkxOlpaXxi1/8Imnv9+qihnL9ds2krrv88ssjNze3WrXCRTXnNQGg/hgxYkS88sordnCDcD5UxL0QqDpcdOaZZ8YPf/jDJE2TOHPmzIk9e/ZUuH711VcncZrkmzhxYvz4xz+ucD0rKyuuueaaWLduXcydOzcuv/zy6NatW+Tn50d2dnaceOKJceGFF0ZpaWm88MIL0a5du2r1LSwsjM6dOyfq24hNmzbFkiVLqlVbXFwc3bp1S1hvSBXhIgAAUqZ9+/YxefLkWL16dVxxxRVH/bSJ2paVlRX33HNP3H///dG0adNUj/NXvv71r8eyZcv8YtqAFBcXx6JFi6Jjx44pmyE3NzdKS0vj2muvTdkMpF5hYWGMHz8+Fi1aFJs2bYrbb789TjzxxFSPRYLk5+fHf//3f8fUqVOT/kHT0047LZYvXx5DhgxJat9E8/4gfTWUn+G6xPkE/K3jjz8+FixYEH379k31KFFQUBALFiyo1w9e+P73vx/PPfdcnHzyyakeJWUayvXbNZO6rKCgIEaOHFmt2v/93/+NV199tZYnavi8JgDUH0VFRfHCCy/Ev/3bv0V2dnaqxzlq9X0nUOoW50P53Ash3R1//PEV/i06JycnZsyYUS8fnjNr1qwK17KysmL48OFJnCa5brzxxrjjjjsqXO/Ro0e8/PLLcffdd8eXv/zlKo/Xu3fvWLp0abVqE71r0cyZM+PIkSPVqh0/fnxCe0Oq1K1PbwIA0OA1adIkhg0bFnPmzIk//elP8YMf/CCaNWuW6rEqNXbs2Fi5cmWcd955qR4lCgoK4re//W38z//8Txx//PGpHocE69mzZ7zyyispeRJUp06dYuHChZ5ClYaaN28e559/fvz0pz+NJUuWxMaNG2PKlCnRv3//yMjISPV4dV6rVq3qTfjqH//xH2PlypUxZsyYlM1wwgknxNy5c+Ppp5+OkpKSlM2RCN4fpKeG9DNclzifgL9UUFAQCxcujNGjR6dshq9+9auxfPnyKC4uTtkMiVJcXBwrV66MW265JZo0aZLqcb4gGU9nbkjXb9dM6qqj+QDN9OnTa3GS9OI1AaB+yMnJiUmTJsUbb7wRF110UarHqVJ+fn5ceeWVsXz58rjzzjtTPQ4NjPOhfO6FkO4q2r3o5ptvrnJno7poz549sXDhwgrX/+Ef/iFatWqVxImSZ9q0aXH77bdXuH7ZZZfFsmXLomfPnkd13LZt20ZpaWmVn19IdLhoxowZ1aorLCyMYcOGJbQ3pIpwEQAAtSozMzNOO+20uOaaa2LOnDmxffv2ePTRR2P48OHRqFGjVI9XbR06dIinnnoqZs+efdS/5CZCs2bN4vrrr49Vq1bFpZdemvT+JE+LFi1i1qxZUVpaGu3bt6/1fpmZmfGv//qv8frrr0e/fv1qvR+p1bp16xgwYECMGzcupkyZEi+//HJ8+OGH8eSTT8bEiROjX79+dW4XubquR48esXnz5li6dGnccMMN0b1791SP9AV9+vSJBQsWxBNPPBFf+cpXUj1ORESce+658eyzz8Zbb70Vt912W/Tu3btePnXM+4P01VB+husS5xPwlxo3bhzTp0+PefPmVeuJlIlywgknxG9/+9t45plnkvL7WLLk5ubGj3/841i1alVcddVVKQ8Z5ebmxiWXXBKLFi2KxYsXJ61vQ7l+u2ZSF/Xq1Sv69OlTrdqHH344Dhw4UMsTpQ+vCQD1R+fOnWPevHnx/PPPx9ChQ+vU30mbNGkSw4cPj1mzZsW2bdvivvvui169eqV6LBow58MXuRdCOisvQNS7d++44YYbUjBNzS1cuDD2799f4frgwYOTOE3yPPnkk5U+fGTixInx61//Oho3bnxMxy8uLq4yhJnIcNGiRYvi7bffrlbtv/zLv9TLXfmgPPXvjjkAAHVCo0aNIjc3N3Jzc6Nx48bRqlWraNOmTbRp0ya+8pWvRFFRUXTt2jW6desW+fn5qR43YUaMGBHDhw+P+fPnx1133RXPPfdcHD58uNb6tWvXLsaMGRPXXnttg31yCeW75JJL4sILL4wpU6bElClTYvPmzQk9fk5OTowaNSomTJgQXbt2TeixqX3Z2dmfvwb/5X/NmzePNm3aROvWrT//r02bNtGhQ4fo2rVrHHfccakevUHKyMiIvn37Rt++feM//uM/YvPmzfHUU0/FggULYtGiRbFp06akz9S0adMYMWJEfPe7342zzz476f2rq6ioKG688ca48cYbY+/evVFWVhavv/56rFmzJtauXRvvvfdevP/++/HRRx/F/v3748CBA3Hw4MFUj/0F3h+kr4byM1yXOJ9o6EaPHh2DBg2qdv3pp59ea7PUBxdddFGcd955MWXKlLjzzjtj27ZttdKnS5cuMX78+Lj88sujadOmtdKjLmjfvn3cc889ccstt8S0adPiN7/5TaxZsyYpvbOysmLAgAFx8cUXx8iRI1O6q0VDuX67ZlLXXH/99TFixIgq6z744IN49NFH4xvf+EYSpkofXhOAuuwnP/nJUdU39N+DiouLo7i4ODZs2BDTpk2L0tLSWLduXdLnaN++fXzta1+LwYMHR0lJSYP+XYi6y/nwRe6FkI7+NlzUuHHjmDFjRp0KHh6Nqh6mc8455yRpkuTZtGlTjBo1Kg4dOlTu+r//+7/HrbfeWuM+EyZMqHBH5DZt2kSXLl1q3OMz999/f7Xq8vLy4rvf/W7C+kKqZRw5cuRIqocAAID6asuWLfG73/0u5s+fHy+99FLs27evxsfs3LlzlJSUxDe+8Y3o379/ldv60vB9+umn8fjjj8fMmTNj4cKFsWfPnmM6TqNGjaJv375xwQUXxDe/+c0oLCxM8KRAedatWxdLliyJsrKyePnll+O1116Ljz/+OKE9MjIyoqioKPr37x8XXHBBnHvuucf81CdqzvsDSBznE/CZgwcPxty5c+Phhx+OZ555Jvbu3Vuj43Xu3DnOP//8uOiii6KkpOSoXgvKysqqXVtUVFSnH7ry6quvxuzZs+PZZ5+NFStWJCxEk5mZGV26dImBAwfGoEGD4rzzzvOwg1rmmkmqHT58OLp06VKt0GJxcXE8//zzSZiqfEeOHKnwA09/KyMjo15+oM1rAkD98tprr8W8efNiwYIF8corrxzz34Eq0qRJk+jevXv06tUriouLo3///nYooc5yPvyZeyGki2XLlv3VwxJ/9rOfxYQJE1I4Uc0UFxfH0qVLy11r2rRp7Nixo17upl2Rw4cPR0lJSTz33HPlro8bNy5+9atfJaTX0qVLo7i4uNy1iy++OGbNmpWQPtu3b4927dpVugPVZ8aPHx9TpkxJSF+oC4SLAAAgQQ4ePBhlZWVRVlYWb7/9dqxduzbeeeed2LFjR+zZsyf27t0bn376aTRp0iSaNm0azZo1i8LCwujYsWN07NgxTj311DjnnHOidevWqf5WqMP2798fzz//fLz00kuxatWqWLVqVbz33nvx8ccfx+7duyMrKyuaNWsW+fn50bJlyzjllFOie/fu0b179+jfv78niUIdsWHDhli1alWsWbMm1q9fHxs2bIh33303Pvjgg/jwww/j448//vwJ6X+5W2CLFi0+35Hqs50Cu3TpEmeccUa0bNky1d8W5fD+ABLH+QR85pNPPokXX3wxysrK4rXXXov169fHxo0bY8eOHbFv3744ePBg5OXlff5a0LJly+jcuXMUFRVFUVFRnH322dGhQ4dUfxt1zr59+2L58uXx6quvfv4a+84778RHH30Ue/fujb1798Ynn3wSWVlZkZOTE3l5edGyZcv40pe+FIWFhXHSSSdFx44do0ePHnHaaad58nEKuWaSKvfff3+MGzeuWrUrVqyI0047rZYnIsJrAkB9c+jQoXjzzTejrKws/vSnP8WGDRtiw4YNsXXr1ti9e3fs3bs39u3bFwcOHIjs7OzIzc2Nxo0bx3HHHRcFBQVRUFAQbdu2jZNOOilOOumk6Nq1a5xyyin1MiwLzoc/cy8E6ocjR45Efn5+hcHIM88886jCevXB1KlTY/z48eWuDRw4MJ599tmEhakmTZoUP/rRjyqc4+qrr05InzvuuCMmTpxYZV1WVlasWbPG6ysNinARAAAAAAAAAFAj+/fvj06dOsXmzZurrB07dmzcf//9SZgKAAAAkmP9+vWVBk0SubtOXbB9+/Y45ZRTYseOHV9Ya9GiRbz++uvRrl27hPUbPHhw/OEPfyh3beXKldG9e/ca9zh06FB06tQp1q9fX2XtZZddFr/+9a9r3BPqksxUDwAAAAAAAAAA1G+5ubkVPkH4bz300EOxffv2Wp4IAAAAkmf16tWVrnfs2DFJkyTHzTffXG6wKCLi9ttvT2iw6PDhw7FkyZJy1770pS9Ft27dEtJnzpw51QoWNWrUKG666aaE9IS6RLgIAAAAAAAAAKixsWPHRtu2baus++STT2Lq1KlJmAgAAACSY8uWLZWut2rVKkmT1L533303HnzwwXLXunbtGuPGjUtovxUrVsSuXbvKXRswYEBkZGQkpM/kyZOrVTdq1Kjo3LlzQnpCXSJcBAAAAAAAAADUWG5ubkycOLFatf/1X/8V+/btq+WJAAAAIDm2bt1a6XrTpk2TNEntu+uuu2L//v3lrk2YMCGysrIS2m/x4sUVrg0cODAhPZ577rkoKyursi4rK8uuRTRYwkUAAAAAAAAAQEKMHTs2OnXqVGXd+++/Hw888EASJgIAAIDat3PnzkrXG0q46NChQzF9+vRy11q1ahWXXnppwnsuWrSowrVEhYsmTZpUrbpvf/vbcfLJJyekJ9Q1wkUAAAAAAAAAQEJkZ2fHbbfdVq3an/3sZ3HgwIFanggAAABqX1W78x4+fDhJk9SuBQsWxLZt28pdGzJkSOTm5ia8Z0U7Fx1//PHRo0ePGh9/+fLl8dRTT1VZl5eXFzfffHON+0FdJVwEAAAAAAAAACTMyJEj48wzz6yybtOmTRU+7RgAAADqk6oenrF3794kTVK75syZU+HaRRddlPB+q1atiu3bt5e7NmDAgMjMrHkc4tZbb61W3fe///044YQTatwP6irhIgAAAAAAAAAgYTIyMmLy5MnVqr3jjjvi4MGDtTwRAAAA1K6cnJxK17ds2ZKkSWrXH//4x3L/PSMjI/r165fwfosWLapwbeDAgTU+/ooVK2L+/PlV1rVp0yYmTJhQ435QlwkXAQAAAAAAAAAJNWjQoBg2bFiVdevXr4/77rsvCRMBAABA7cnLy6t0fe3atUmapPZs3bo13n777XLX2rdvH61atUp4z9oOF914443VqvvpT38azZs3r3E/qMuEiwAAAAAAAACAhJs8eXI0bty4yrrbbrst9u7dm4SJAAAAoHYUFBRUuv7yyy8naZLas2LFigrXOnbsWCs9Fy9eXO6/t2jRIk4//fQaHfv555+PJ554osq6M844I8aMGVOjXlAfCBcBAAAAAAAAAAl30kknxQ9+8IMq6959992YMmVKEiYCAACA2tG+fftK19esWRObNm1K0jS1o6JdiyIiCgsLE95v3bp1sXHjxnLXzjnnnMjMrFkUYuLEidWqu+uuu2rcC+oDP+UAAAAAAAAAQK2YOHFilR+wioiYNGlSvP/++0mYCAAAABKvqKioyprHHnssCZMcnbVr18bHH39crdp169ZVuNa0adNEjfS5RYsWVbg2cODAGh17/vz5Fe6K9Je+9a1vxTnnnFOjXlBfCBcBAAAAAAAAALUiLy8v7r777irrdu7cGTfffHPtDwQAAAC1oGvXrpGfn19pzb333pukaapn4cKFcdZZZ8V3vvOdatV/9NFHFa5lZWUlaqzPVRYuGjRo0DEf99NPP40JEyZUWdeyZcuYPHnyMfeB+ka4CAAAAAAAAACoNRdccEEMGTKkyrpf/epX8dZbb9X+QAAAAJBgmZmZ0bdv30prVq1aFbNnz07SRJWbOnVqnH/++fHhhx/GI488Evfdd1+VX7N79+4K13bu3JnI8eKDDz6I+fPnl7uWn58fZ5xxxjEfe9q0afF///d/VdZNmjQpCgoKjrkP1DeJjwgCAAAAAAAAAPyFu+++O0477bQq6955553o0qVLEiYCAACAxBo6dGg8/fTTldZcf/31cf7550fz5s2TNNVf++CDD2Ls2LExb968v/r36667Lvr06RM9e/as8Gs//fTTCtfef//9RI0YERFXXXVVbN++vdy14uLiaNSo0TEfOyMjI37yk59UWpOXlxdjx4495h5QH2UcOXLkSKqHAAAAAAAAAAAAAACA+uq9996Ldu3axYEDByqtu/jii6O0tDQyMjKSNNn/89RTT8UVV1wRW7ZsKXe9qKgoysrKolmzZuWujx49OmbOnFnuWkFBQbz33nsJmfOBBx6IK6+8ssL1O+64I374wx8mpBfwZ5mpHgAAAAAAAAAAAAAAAOqz1q1bx8iRI6usmz17dnzve9+r/YH+f5s3b46RI0fG1772tQqDRRERHTp0iMzMiuMFLVu2rHBt+/btsWrVqhrNGRGxePHiuPrqqyutKS4urnEf4IuEiwAAAAAAAAAAAAAAoIZuuOGGaNSoUZV1U6ZMicsuuyz27dtXa7Ps2LEjbrnllujSpUvMmjWr0tpLLrkk5s+fH3l5eRXWFBYWVnqMe++995jm/MxLL70U//RP/1Tpzk/Z2dnRq1evGvUByidcBAAAAAAAAAAAAAAANXTqqafGuHHjqlX70EMPxemnnx4LFy5M6AybN2+Om266KTp06BA333xz7N69u9L673znO/HII49EdnZ2pXV9+vSpdP3BBx+M1atXH/W8ERFPP/10nHfeebFr165K604//fRo0qTJMfUAKidcBAAAAAAAAAAAAAAACXD77bdH+/btq1W7evXqKCkpiZKSknjsscfi4MGDx9Rzx44dMWvWrPj6178e7du3j9tuuy127txZ6dfk5OTE1KlT4957743MzKpjBWeddVbk5uZWuL5nz5645JJL4qOPPqr23IcOHYpJkybF4MGDqwwWRYRdi6AWZRw5cuRIqocAAAAAAAAAAAAAAICG4IUXXohBgwbFgQMHjurrmjdvHiUlJdGnT5/o2bNntG/fPk444YTIy8uL7Ozs2L17d+zatSu2bt0ab775ZrzxxhuxePHiWL58eRw6dKjafb785S/HnDlzqtyN6G+NGDEiHn300UprioqK4pFHHom/+7u/q7TuxRdfjPHjx0dZWVm1+z/wwAPx7W9/u9r1QPUJFwEAAAAAAAAAAAAAQALNnj07/vmf/zkOHz6c6lH+yrBhw2LatGnRunXro/7aJUuWxDnnnFNlXUZGRgwdOjSGDx8effr0iTZt2kRGRkZs3Lgx/vjHP8YjjzwSixYtOur+r7zySpWhJeDYCBcBAAAAAAAAAAAAAECCPfzwwzFmzJij3sGoNhQWFsY999wTQ4YMqdFxzj333Hj22WcTM9RRaNSoUezevTsaN26c9N6QDjJTPQAAAAAAAAAAAAAAADQ0l156aTzzzDNx4oknpmyGvLy8uP766+PNN9+scbAoImLmzJlRUFBQ88HKUdmuRJ06dRIsglokXAQAAAAAAAAAAAAAALVgwIABsXLlyhg1alRS+zZu3Diuu+66WLt2bfz85z+PFi1aJOS4hYWFMWvWrMjPz0/I8SIiWrVqFdOnT49rr722wppTTjklYf2ALxIuAgAAAAAAAAAAAACAWtKyZct46KGHYvny5TF48ODIyMiotV6nnnpq/Od//mds3LgxfvnLX0abNm0S3mPQoEGxePHiaNu2bY2O06RJk/je974Xq1evjtGjR8eyZcsqrO3cuXONegGVyzhy5MiRVA8BAAAAAAAAAAAAAADp4J133onp06fH448/Hq+99lqNjtWoUaPo1atXfPWrX40LL7wwevfunaApq7Zz5874+c9/Hr/85S9jz5491f66jh07xpgxY+LKK6/8q/DTWWedFWVlZZ//f9u2bePCCy+MoUOHxqBBgyIrKyuh8wN/JlwEAAAAAAAAAAAAAAApsHXr1njhhRdixYoV8dZbb8WmTZti8+bNsWvXrti3b18cPHgw8vLyIj8/P5o1axZt2rSJoqKi6NKlS3Tr1i369esXxx13XEq/hw8//DCefPLJePLJJ+O1116L7du3x/vvvx+ZmZnRvHnzaNu2bXTp0iV69+4dJSUl0aNHj3KP065du8jPz48hQ4bE0KFDo1evXrW6yxPwZ8JFAAAAAAAAAAAAAABASh08eDCys7NTPQakJeEiAAAAAAAAAAAAAAAASFOZqR4AAAAAAAAAAAAAAAAASA3hIgAAAAAAAAAAAAAAAEhTwkUAAAAAAAAAAAAAAACQpoSLAAAAAAAAAAAAAAAAIE0JFwEAAAAAAAAAAAAAAECaEi4CAAAAAAAAAAAAAACANCVcBAAAAAAAAAAAAAAAAGlKuAgAAAAAAAAAAAAAAADSlHARAAAAAAAAAAAAAAAApCnhIgAAAAAAAAAAAAAAAEhTwkUAAAAAAAAAAAAAAACQpoSLAAAAAAAAAAAAAAAAIE0JFwEAAAAAAAAAAAAAAECaEi4CAAAAAAAAAAAAAACANCVcBAAAAAAAAAAAAAAAAGlKuAgAAAAAAAAAAAAAAADSlHARAAAAAAAAAAAAAAAApCnhIgAAAAAAAAAAAAAAAEhTwkUAAAAAAAAAAAAAAACQpoSLAAAAAAAAAAAAAAAAIE0JFwEAAAAAAAAAAAAAAECaEi4CAAAAAAAAAAAAAACANCVcBAAAAAAAAAAAAAAAAGlKuAgAAAAAAAAAAAAAAADSlHARAAAAAAAAAAAAAAAApCnhIgAAAAAAAAAAAAAAAEhTwkUAAAAAAAAAAAAAAACQpoSLAAAAAAAAAAAAAAAAIE0JFwEAAAAAAAAAAAAAAECaEi4CAAAAAAAAAAAAAACANCVcBAAAAAAAAAAAAAAAAGlKuAgAAAAAAAAAAAAAAADSlHARAAAAAAAAAAAAAAAApCnhIgAAAAAAAAAAAAAAAEhTwkUAAAAAAAAAAAAAAACQpoSLAAAAAAAAAAAAAAAAIE0JFwEAAAAAAAAAAAAAAECaEi4CAAAAAAAAAAAAAACANCVcBAAAAAAAAAAAAAAAAGlKuAgAAAAAAAAAAAAAAADSlHARAAAAAAAAAAAAAAAApCnhIgAAAAAAAAAAAAAAAEhTwkUAAAAAAAAAAAAAAACQpoSLAAAAAAAAAAAAAAAAIE0JFwEAAAAAAAAAAAAAAECaEi4CAAAAAAAAAAAAAACANCVcBAAAAAAAAAAAAAAAAGlKuAgAAAAAAAAAAAAAAADSlHARAAAAAAAAAAAAAAAApCnhIgAAAAAAAAAAAAAAAEhTwkUAAAAAAAAAAAAAAACQpoSLAAAAAAAAAAAAAAAAIE0JFwEAAAAAAAAAAAAAAECaEi4CAAAAAAAAAAAAAACANCVcBAAAAAAAAAAAAAAAAGlKuAgAAAAAAAAAAAAAAADSlHARAAAAAAAAAAAAAAAApCnhIgAAAAAAAAAAAAAAAEhTwkUAAAAAAAAAAAAAAACQpoSLAAAAAAAAAAAAAAAAIE0JFwEAAAAAAAAAAAAAAECa+v8AhegDWw0mmsoAAAAASUVORK5CYII=\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 35, "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "SVG(filename=\"./v_Cd_-1/v_Cd_-1.svg\")" - ] - }, - { - "cell_type": "code", - "execution_count": 36, - "id": "3120b4c3", - "metadata": {}, - "outputs": [ + "output_type": "display_data" + }, { "data": { - "image/svg+xml": "\n \n \n \n \n 2022-11-07T12:43:59.639315\n image/svg+xml\n \n \n Matplotlib v3.6.1, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADRcAAAziCAYAAACpQXt5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdaXiW5Z3/4V8SZIeyIyq4ABWSaF1BcImKWlpRwaVaUatVtFqty2FFO/2rUKtV674gVKRSpy5TddxatYqTCFZRQQQ0yOJeEQWBsi95/i9mpjOOSp48eZYk93keR49p4bru+xunr7Af76JUKpUKAAAAAAAAAAAAAAAAIHGKCz0AAAAAAAAAAAAAAAAAKAxxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAABZsH79+rjvvvvi7bffLvQUAAAAAIC0iYsAAAAAAAAAoB42btwYEyZMiL59+8bJJ58cpaWlMW3atELPAgAAAABIS7NCDwAAAAAAAACAxmjz5s3xhz/8IcaOHRvvvvvul35v48aNBVoFAAAAAFA34iIAAAAAAAAAqIOampp48MEH48orr4x33nmn0HMAAAAAAOpFXAQAAAAAAAAAaUilUvHoo4/GFVdcEXPmzCn0HAAAAACArBAXAQAAAAAAAEAtnnzyybj88stj5syZhZ4CAAAAAJBV4iIAAAAAAAAA+AZ//etf4//9v/8Xr7zySqGnAAAAAADkhLgIAAAAAAAAAP6Pqqqq+OUvfxkvvvhioacAAAAAAORUcaEHAAAAAAAAAEBD8fLLL8ehhx4aFRUVwiIAAAAAIBHERQAAAAAAAAAk3owZM2LYsGExaNCgeO655wo9BwAAAAAgb8RFAAAAAAAAACTW7Nmz4+ijj44999wznnrqqULPAQAAAADIu2aFHgAAAAAAAAAAhXD//ffHyJEjI5VKFXoKAAAAAEDB+HIRAAAAAAAAAIn06aefCosAAAAAgMQTFwEAAAAAAABAGgYMGBCPPvpooWcAAAAAAGRVs0IPAAAAAAAAAICGbPDgwXH55ZfHd7/73UJPAQAAAADIOnERAAAAAAAAAHyNgQMHxpgxY0RFAAAAAECTJi4CAAAAAAAAgP9l9913j7Fjx8awYcMKPQUAAAAAIOfERQAAAAAAAAAQEf3794+xY8fGMcccE0VFRYWeAwAAAACQF+IiAAAAAAAAABJtp512iiuuuCJGjhwZJSUlhZ4DAAAAAJBX4iIAAAAAAAAAEqlHjx4xbty4OP3002OrrbYq9BwAAAAAgIIQFwEAAAAAAACQSMcff3yhJwAAAAAAFFxxoQcAAAAAAAAAAAAAAAAAhSEuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAJAgU6ZMiaKiooz/deGFFxb6R2gQlixZEl26dMn4r+O2224by5cvL/SPAQAAAAAA4iIAAAAAAABIkrKysnrdnzdvXpaWNG4/+9nPYunSpRnfHz9+fHTo0CF7gwAAAAAAIEPiIgAAAAAAAEiQ7t27R5cuXTK+Ly6KeOKJJ+LBBx/M+P7JJ58cw4YNy+IiAAAAAADInLgIAAAAAAAAEqY+Xy967733Yv369Vlc07isXLkyzj777Izv9+jRI2655ZYsLgIAAAAAgPoRFwEAAAAAAEDC1Ccuqqmpifnz52dxTeNyySWXxMcff5zx/fHjx0fHjh2zuAgAAAAAAOpHXAQAAAAAAAAJU15eXq/78+bNy9KSxqWysjImTJiQ8f2TTjopjjjiiCwuAgAAAACA+hMXAQAAAAAAQMLU58tFEcmMi9atWxejRo2KVCqV0f2tt946br311iyvAgAAAACA+hMXAQAAAAAAQMLU98tF1dXVWVrSeFx55ZUxf/78jO/fdddd0bFjxywuAgAAAACA7BAXAQAAAAAAQMJ06tQptt5664zvJ+3LRTNnzowbbrgh4/sjR46Mo446KouLAAAAAAAge8RFAAAAAAAAkEBlZWUZ301SXLRp06Y4/fTTY9OmTRnd33rrrePWW2/N8ioAAAAAAMgecREAAAAAAAAkUHl5ecZ3V6xYEYsXL87imobrt7/9bcycOTPj++PGjYtOnTplcREAAAAAAGSXuAgAAAAAAAASqD5fLopIxteL3nnnnRgzZkzG93/4wx/G8OHDszcIAAAAAAByQFwEAAAAAAAACVSfLxdFNP24KJVKxahRo2LdunUZ3e/evXvcdtttWV4FAAAAAADZ16zQAwAAAAAAAID88+WiLRs/fnxUVVVlfH/cuHHRuXPnLC6KmDx5ckyePDmrz2xszjrrrDjuuOMKPQMAAAAAoEkRFwEAAAAAAEACtW/fPnr27BkffvhhRverq6uzvKjh+Oijj2L06NEZ3z/hhBNixIgRWVz0nxYtWhTPP/981p/bmAwdOrTQEwAAAAAAmpziQg8AAAAAAAAACqM+Xy9qyl8uOvvss2PlypUZ3e3WrVvcfvvtWV4EAAAAAAC5Iy4CAAAAAACAhKpPXPTee+/Fhg0bsrimYXjggQfiySefzPj+nXfeGZ07d87iIgAAAAAAyC1xEQAAAAAAACRUeXl5xnc3b94c8+fPz+Kawlu6dGn87Gc/y/j+8ccfH8ccc0wWFwEAAAAAQO6JiwAAAAAAACCh6vPlooiIefPmZWlJw3DBBRfEZ599ltHdbt26xe23357lRQAAAAAAkHviIgAAAAAAAEio0tLSKCoqyvh+U4qLnn766bjvvvsyvn/HHXdEly5dsrgIAAAAAADyQ1wEAAAAAAAACdWmTZvYYYcdMr7fVOKiVatWxVlnnZXx/eOOOy6OPfbYLC4CAAAAAID8aVboAQAAAAAAAEDhlJeXx7vvvpvR3erq6iyvKYzLLrssPvjgg4zudu3aNe64444sL/p6V155ZVx55ZV5eRcAAAAAAMnhy0UAAAAAAACQYGVlZRnfbQpfLnrppZfizjvvzPj+HXfcEV27ds3iIgAAAAAAyC9xEQAAAAAAACRYfeKi5cuXx5IlS7K4Jr/Wr18fZ5xxRtTU1GR0/9hjj43jjjsuy6sAAAAAACC/xEUAAAAAAACQYOXl5fW635i/XnTVVVfF22+/ndHdLl261OuLRwAAAAAA0FCIiwAAAAAAACDB+vXrFyUlJRnfr66uzuKa/Jk9e3Zce+21Gd+//fbbo2vXrllcBAAAAAAAhSEuAgAAAAAAgARr2bJl9O7dO+P7jfHLRZs3b47TTz89Nm7cmNH9Y445Jo4//vgsrwIAAAAAgMIQFwEAAAAAAEDClZWVZXy3McZFN998c7z66qsZ3e3SpUvceeedWV4EAAAAAACFIy4CAAAAAACAhCsvL8/4bnV1dRaX5N6iRYvi8ssvz/j+bbfdFt26dcviIgAAAAAAKCxxEQAAAAAAACRcfb5c9O6778aGDRuyuCa3Ro0aFWvWrMno7ogRI+KEE07I8iIAAAAAACgscREAAAAAAAAkXH2+XLR58+ZYuHBhFtfkzsSJE2PKlCkZ3e3cuXOMGzcuy4sAAAAAAKDwxEUAAAAAAACQcN/+9rdjq622yvj+vHnzsrgmNz755JO4+OKLM75/2223Rffu3bO4CAAAAAAAGgZxEQAAAAAAACTcVlttFX379s34fnV1dRbX5Ma5554by5cvz+ju8OHD44c//GF2BwEAAAAAQAMhLgIAAAAAAACivLw847sN/ctFDz/8cDzyyCMZ3e3UqVPcddddWV4EAAAAAAANh7gIAAAAAAAAiLKysozvNuS4aPny5XHuuedmfP+2226L7t27Z3ERAAAAAAA0LOIiAAAAAAAAoMl+ueiiiy6KxYsXZ3T3qKOOihNPPDHLiwAAAAAAoGERFwEAAAAAAAD1+nLRsmXL4rPPPsvimux4/vnnY9KkSRnd7dSpU9x1111ZXgQAAAAAAA2PuAgAAAAAAACIPn36RIsWLTK+39C+XrRmzZo488wzM75/yy23xNZbb53FRQAAAAAA0DCJiwAAAAAAAIAoKSmJfv36ZXy/ocVFv/zlL2PRokUZ3T3iiCPipJNOyvIiAAAAAABomMRFAAAAAAAAQERElJWVZXy3uro6i0vqZ/r06XHLLbdkdLdjx44xfvz4LC8CAAAAAICGS1wEAAAAAAAAREREeXl5xncbypeLNm7cGGeccUbU1NRkdP+WW26JHj16ZHkVAAAAAAA0XOIiAAAAAAAAICLq9+WihhIXXXPNNTF79uyM7g4bNixOPvnkLC8CAAAAAICGTVwEAAAAAAAARET9vly0aNGi2LhxYxbX1N1bb70Vv/71rzO626FDhxg/fnyWFwEAAAAAQMMnLgIAAAAAAAAiImLHHXeM1q1bZ3R306ZNsXDhwiwvSl9NTU2cccYZsWHDhozu33LLLbHNNttkeRUAAAAAADR84iIAAAAAAAAgIiKKioqitLQ04/vz5s3L4pq6uf322+Nvf/tbRneHDRsWp5xySpYXAQAAAABA4yAuAgAAAAAAAP6prKws47uFiovef//9+Jd/+ZeM7nbo0CHGjx+f5UUAAAAAANB4iIsAAAAAAACAf6pPXFRdXZ3FJek766yzYtWqVRndvemmm2KbbbbJ8iIAAAAAAGg8mhV6AAAAAAAAANBwlJeXZ3y3EF8umjx5cjzzzDMZ3f3+978fp556anYHkQipVKrQEwAAAAAAsqYo5U89AQAAAAAAgP/ywQcfxPbbb5/R3c6dO8fnn3+e5UXfbMmSJdG/f/9YtmxZne926NAh5syZE9tuu20OlgEAAAAAQONRXOgBAAAAAAAAQMPRq1evaN++fUZ3ly5dGkuXLs3yom923nnnZRQWRUTceOONwiIAAAAAAAhxEQAAAAAAAPB/lJaWZny3uro6i0u+2eOPPx4PPfRQRne/973vxWmnnZblRQAAAAAA0DiJiwAAAAAAAIAvKS8vz/juvHnzsrjk661cuTLOOeecjO5+61vfigkTJmR5EQAAAAAANF7iIgAAAAAAAOBLysrKMr6bj7jo5z//eXz88ccZ3b3xxhtju+22y/IiAAAAAABovMRFAAAAAAAAwJfUJy6qrq7O4pKvqqysjN/97ncZ3R06dGj8+Mc/zvIiAAAAAABo3MRFAAAAAAAAwJeUl5dnfDeXXy5at25djBo1KlKpVJ3vtm/fPiZMmJCDVQAAAAAA0LiJiwAAAAAAAIAv6dGjR3Tq1Cmju4sWLYpNmzZledF/uuKKK2L+/PkZ3b3hhhuiZ8+eWV4EAAAAAACNn7gIAAAAAAAA+IqysrKM7m3cuDEWLVqU5TURM2bMiBtuuCGju4cddlicccYZWV4EAAAAAABNg7gIAAAAAAAA+IpM46KIiOrq6iwuidi0aVOcccYZsXnz5jrfbd++fdx9991Z3QMAAAAAAE2JuAgAAAAAAAD4ivLy8ozvzps3L4tLIq6//vqYOXNmRnd/+9vfRs+ePbO6BwAAAAAAmhJxEQAAAAAAAPAV9flyUTbjonfeeSfGjh2b0d1DDz00Ro0albUtAAAAAADQFImLAAAAAAAAgK9oCF8uSqVSMWrUqFi3bl2d77Zr1y7uvvvurOwAAAAAAICmTFwEAAAAAAAAfEWXLl2iW7duGd2trq7Oyoa77rorqqqqMrr729/+Nnr16pWVHQAAAAAA0JQVpVKpVKFHAAAAAAAAAA3PwQcfHC+88EJGd5cuXRqdOnXK+N0fffRRlJWVxcqVK+t895BDDom//vWvGb8bAAAAAACSxJeLAAAAAAAAgK9VXl6e8d158+bV691nn312RmFRu3bt4u67767XuwEAAAAAIEnERQAAAAAAAMDXKisry/hudXV1xnfvv//+ePLJJzO6e91118X222+f8bsBAAAAACBpxEUAAAAAAADA1yrEl4uWLl0a559/fkZ3hwwZEmeddVZGdwEAAAAAIKnERQAAAAAAAMDXqs+XizKNiy644IL47LPP6nyvbdu2MXHixCgqKsrovQAAAAAAkFTiIgAAAAAAAOBrdejQIbbddtuM7mYSF/3lL3+J++67L6P3XXfddbH99ttndBfyYcmSJbFixYpCzwAAAAAA+ApxEQAAAAAAAPCNMv160cKFC2PTpk1pn1+1alX85Cc/yehdBx10UMZ3IZfef//9uPnmm6OioiJ69OgR+++/f6EnAQAAAAB8RbNCDwAAAAAAAAAarrKysnj22WfrfG/Dhg3x7rvvRt++fdM6f9lll8UHH3xQ5/e0bds27rnnnigqKqrzXciFt99+Ox555JF45JFHYsaMGV/6vT59+hRoFQAAAADANxMXAQAAAAAAAN+ovLw847vz5s1LKy566aWX4s4778zoHddee23ssMMOGd1NohUrVsScOXNizpw58fbbb8fHH38cH3/8cSxevDhWrVoVa9eujXXr1kWzZs2iXbt2//xXt27dol+/ftG/f//o169ffOc734lOnToV+sdpUK6++uqYPHlyzJs37xvPVFRU5HERAAAAAEB6ilKpVKrQIwAAAAAAAICG6ZVXXol99tkno7vXX399XHzxxVs8s379+thtt92iurq6zs8/6KCD4vnnn/fVoi34/PPP47nnnovKysqorKyMt99+OyvPLS4ujj333DOGDh0aQ4cOjYEDB0ZJSUlWnt0YLV++PDp37hw1NTVbPDdz5szYbbfd8jMKAAAAACBNvlwEAAAAAAAAfKOysrIoKiqKTP6ZhVv6gst/u+qqqzIKi9q0aRMTJ04UFn2NJUuWxJ/+9Kd4+OGHo7KyMjZv3pz1d9TU1MSrr74ar776avzqV7+K7bbbLkaNGhWjRo2KHj16ZP19Dd2LL75Ya1jUoUOH2HXXXfO0CAAAAAAgfcWFHgAAAAAAAAA0XG3bto1evXpldLe2uOjNN9+Ma6+9NqNnX3vttbHjjjtmdLcpSqVSMWXKlDj++ONju+22i5/+9KcxZcqUnIRFX+ejjz6KK664Inr16hXHHXdczJo1Ky/vbSiqqqpqPbP//vtHcbG/RQ8AAAAANDz+5BIAAAAAAADYovLy8ozubSku2rx5c5x++umxcePGOj/3wAMPjHPOOSejTU3N5s2b449//GPssssuMWTIkHjooYcy+muaLZs2bYo//elPsccee8Spp54aS5cuLdiWfKqsrKz1zIEHHpj7IQAAAAAAGRAXAQAAAAAAAFtUVlaW0b0lS5bEF1988bW/d/PNN8drr71W52e2adMmJk6cGEVFRRltaipSqVT84Q9/iH79+sXIkSNj7ty5hZ70JTU1NXHvvfdGaWlp/PnPfy70nJxatWpVzJw5s9ZzFRUVeVgDAAAAAFB34iIAAAAAAABgizKNiyK+/utFCxcujMsvvzyj511zzTWx0047ZbynKZg2bVoMHDgwTjnllFiwYEGh52zRkiVL4ogjjojf/OY3hZ6SM9OmTYtNmzZt8Uz79u1jt912y88gAAAAAIA6EhcBAAAAAAAAW1ReXp7x3a+Li84888xYs2ZNnZ91wAEHxLnnnpvxlsZu2bJl8aMf/Sj222+/ePXVVws9J201NTVx2WWXxSWXXFLoKTlRWVlZ65n99tsvSkpK8rAGAAAAAKDuxEUAAAAAAADAFvXv3z+KizP7W4v/Ny6aOHFiTJkypc7Pad26ddxzzz1RVFSU0Y7G7uGHH47S0tKYPHlyoadk7Prrr2+SXzCqqqqq9UxFRUUelgAAAAAAZKZZoQcAAAAAAAAADVurVq1ip512igULFtT5bnV19T///SeffBIXX3xxRhuuueaa6N27d0Z3G7PVq1fHOeeck5WoqEWLFjFgwIAoLS2Nfv36Rf/+/WPbbbeNdu3aRfv27aNdu3ZRU1MT69ati9WrV8fixYvjk08+iQULFsTs2bPjjTfeiJkzZ8bmzZsz3vCLX/widtlllzj88MPr/fM0BGvXrk3rK1LiIgAAAACgIStKpVKpQo8AAAAAAAAAGrbhw4fHY489Vud7paWlMXfu3IiIOProo+PRRx+t8zP233//qKysTNxXi+bMmRM/+MEP4u233874Gb17944jjzwyDjvssKioqIhWrVrVa9OKFSuisrIy7rvvvnj88cdj/fr1dX5G9+7dY/bs2dG1a9d6bWkIpkyZEkOGDNnimbZt28YXX3wRzZr5Z38CAAAAAA1TcaEHAAAAAAAAAA1feXl5RvcWLFgQmzdvjocffjijsKh169Zxzz33JC4sevTRR2PgwIEZhUXNmzePH/zgB/Hcc8/F/Pnz48Ybb4yhQ4fWOyyKiPjWt74VRx55ZDz00EPx97//PUaPHh0tW7as0zM+/fTTGD16dL23NARVVVW1nhk8eLCwCAAAAABo0MRFAAAAAAAAQK3Kysoyurdhw4aYMWNGnHvuuRndv/rqq6NPnz4Z3W2srrvuujjmmGNizZo1dbrXvHnzOPfcc+ODDz6IBx98MIYMGZLTKKtTp07xm9/8JubNmxeHHXZYne7ee++9MWvWrBwty5/Kyspazxx44IG5HwIAAAAAUA/iIgAAAAAAAKBWmcZFEREjR46MxYsX1/nefvvtF+edd17G721sUqlUnHvuuTF69OhIpVJp3ysqKoqRI0dGdXV13HbbbdG9e/ccrvyqXr16xdNPPx2//vWvo6SkJK07NTU1cc011+R4WW5t2LAhXnnllVrPVVRU5GENAAAAAEDmilJ1+VNpAAAAAAAAIJE2bNgQbdq0iU2bNuXlfa1atYo333wzMV8tqqmpiTPPPDMmTpxYp3u9evWKe+65J4YMGZKjZXXzyCOPxA9/+MPYsGFDrWdbt24dq1atyunXlXJp6tSpsf/++2/xTOvWrWP58uWx1VZb5WkVAAAAAEDd+XIRAAAAAAAAUKvmzZvnNfT59a9/nZiwKJVKxWmnnVbnsOi0006L2bNnN5iwKCLi6KOPjieeeCJatmxZ69m999670YZFERGVlZW1nhk0aJCwCAAAAABo8MRFAAAAAAAAQFrKy8vz8p599903zj///Ly8qyG48MILY/LkyWmfb9GiRdx7771xzz33RPv27XO4LDOHHXZY3HXXXbWeO/jgg/OwJneqqqpqPVNRUZGHJQAAAAAA9SMuAgAAAAAAANJSVlaW83e0atUqJk2aFMXFyfhbmddcc03ccsstaZ/v2rVrPP/883HKKafkcFX9/ehHP6o1EDvooIPytCb7Nm3aFC+99FKt58RFAAAAAEBjkIw/kQcAAAAAAADqLR9fLrrqqquib9++OX9PQ/Bv//Zv8Ytf/CLt83379o3p06fHvvvum8NV2XPttdfGDjvs8LW/17p16xg4cGB+B2XR66+/HqtWrdrimZYtWzbqnxEAAAAASA5xEQAAAAAAAJCWXH+5aPDgwXHBBRfk9B0Nxdy5c+O0005L+3yfPn3ihRde+MZYpyFq0aJFXHPNNV/7e/vuu280b948z4uyp6qqqtYzAwcOjBYtWuRhDQAAAABA/YiLAAAAAAAAgLT07ds3Z0FIy5Yt45577oni4qb/tzBXrFgRw4cPj9WrV6d1vnfv3vHCCy/Etttum+Nl2XfCCSfErrvu+pVfP/jggwuwJnsqKytrPXPggQfmfggAAAAAQBY0/T+ZBwAAAAAAALKiWbNmsfPOO+fk2VdddVXOnt3Q/PSnP40FCxakdXabbbaJF154Ibbbbrscr8qdU0899Su/dtBBB+V/SJbU1NTEtGnTaj1XUVGRhzUAAAAAAPUnLgIAAAAAAADSVlZWlvVnDho0KC688MKsP7cheuihh+Jf//Vf0zrbqlWrePzxx6Nnz545XpVbJ554YjRr1uyf/7ldu3ax5557FnBR/cyaNSuWL1++xTPNmzePffbZJz+DAAAAAADqSVwEAAAAAAAApK28vDyrz2vZsmVMmjQpioub/t+6XLx4cZx99tlpnS0qKop77723UUc4/6179+5fCm0OOOCAL8VGjU1lZWWtZwYMGBCtWrXKwxoAAAAAgPprvH9iCwAAAAAAAORdtr9cNHbs2Nh5552z+syG6qKLLoply5aldfaXv/xlHHfccTlelD8DBgyIqVOnRkTEQQcdlPf3v/fee1FVVRWzZs2KN998Mz744INYsWJFLF++PGpqaqJdu3bRs2fPKC0tjcGDB8fhhx8eO+6449c+q6qqqtb3VVRUZPtHAAAAAADImaJUKpUq9AgAAAAAAACgcViwYEH07ds3K8/aZ599YurUqVFSUpKV5zVkU6ZMiSFDhqR1tin+dXnwwQfjhBNOiIiIGTNmxO67757zdy5cuDDuvffeeOyxx+LNN9+s8/199903zj///Dj22GOjqKgoIiJSqVR069YtPv/88y3effbZZ+PQQw/NaDcAAAAAQL6JiwAAAAAAAIC01dTURNu2bWPt2rX1ek7Lli1j5syZ0a9fvywta7g2bdoUu+yyS1RXV9d6tk2bNvHGG29Enz598rAsf9asWRNvvfVWRETsscceUVxcnLN3/cd//EfcdNNN8eSTT0ZNTU29n/ed73wnxo0bF4MGDYq5c+dGeXn5Fs83a9Ysli9fHm3atKn3uwEAAAAA8qFZoQcAAAAAAAAAjUdxcXH0798/ZsyYUa/njBkzJhFhUUTExIkT0wqLIiJuuOGGJhcWRUS0bt069tprr5y+Y+7cuXHRRRfFs88+m9Xnzpo1K/bbb7+45JJLokePHrWe32uvvYRFAAAAAECj4stFAAAAAAAAQJ2ccsop8Yc//CHj+wMHDoxp06ZFSUlJFlc1TGvXro0+ffrE3//+91rPDhgwIF5++eUoKirKw7KmY/Xq1XHppZfGuHHjYvPmzTl911ZbbRUbN27c4plLL700rrnmmpzuAAAAAADIJl8uAgAAAAAAAOqkrKws47stWrSISZMmJSIsioi444470gqLIiJuuukmYVEdTZ8+PU466aSYP39+Xt5XW1gUEVFRUZGHJQAAAAAA2VNc6AEAAAAAAABA41JeXp7x3TFjxkT//v2zuKbh2rhxY9x8881pnf3BD34QgwcPzu2gJub666+PfffdN29hUTpKSkpi3333LfQMAAAAAIA68eUiAAAAAAAAoE4y/XLRgAED4uKLL87ymobr/vvvj48//rjWc8XFxXH11VfnYVHTsHHjxjjzzDPj97//faGnfMUee+wR7dq1K/QMAAAAAIA6ERcBAAAAAAAAdbL99ttH27ZtY9WqVWnfadGiRUyaNClKSkpyuKxhufHGG9M6N2LEiOjdu3eO1zQNX3zxRYwYMSIqKyvrdK9v375x9NFHx8CBA2PXXXeNLl26ROvWrWP58uWxcOHCmDZtWkyePDnefPPNeu2rqKio130AAAAAgEIoSqVSqUKPAAAAAAAAABqXgQMHxvTp09M+f/XVV8dll12Ww0UNy6uvvhoDBgxI6+y0adNi8ODBOV7U+C1btiwOOeSQmDlzZlrni4uLY8SIEfHzn/88Bg4cmNadJ554Is4777x4//33M9r4xBNPxLBhwzK6CwAAAABQKMWFHgAAAAAAAAA0PuXl5Wmf3XvvveOSSy7J4ZqGZ9KkSWmdGzhwoLAoDUuXLo0hQ4akHRYNHjw4Xn/99fjTn/6UdlgUEXHEEUfE66+/ntH/T4qLi2O//far8z0AAAAAgEITFwEAAAAAAAB1VlZWlta55s2bx6RJk6KkpCTHixqO9evXxwMPPJDW2VNPPTW3Y5qAFStWxJAhQ+KNN96o9Wzz5s3jpptuiqlTp8Zuu+2W0fs6d+4czzzzTOy66651uved73wnOnTokNE7AQAAAAAKSVwEAAAAAAAA1Fm6cdEVV1yR9tmmYsqUKfHFF1/Ueq6kpCSOPvroPCxqvDZt2hTHHntszJo1q9azPXv2jL/97W9xwQUXRFFRUb3e27Zt23jssceiTZs2ad858MAD6/VOAAAAAIBCERcBAAAAAAAAdVZeXl7rmT333DMuueSSPKxpWJ544om0zlVUVES3bt1yvKZx+8lPfhLPPfdcred23333ePnll2OPPfbI2rt32GGHGDNmTNrnKyoqsvZuAAAAAIB8EhcBAAAAAAAAdbbttttGhw4dvvH3mzdvHr///e+jWbNm+RvVQDz55JNpnTvmmGNyvKRxu/HGG2PixIm1nttnn32isrIyttlmm6xvOO+889J6blFRUey///5Zfz8AAAAAQD6IiwAAAAAAAICMlJWVfePvXX755Wl93aipefvtt+PDDz9M66wv3Xyz1157LS699NJazw0cODCeeeaZaNeuXU52NG/ePM4888xaz+2yyy7RqVOnnGwAAAAAAMg1cREAAAAAAACQkW+Ki/bcc88YPXp0ntc0DNOmTUvrXMeOHaO0tDTHaxqnVatWxYknnhgbN27c4rk+ffrEU089Fe3bt8/pnnRiMaEYAAAAANCYiYsAAAAAAACAjHzdl4maN28ekyZNimbNmhVgUeFNnTo1rXODBg2KoqKiHK9pnC666KKYP3/+Fs907NgxnnrqqejcuXPO91RVVdV6RlwEAAAAADRm4iIAAAAAAAAgI1/35aJf/vKXscsuuxRgTcPwyiuvpHVuwIABOV7SOE2fPj3uvvvuWs9NnDgxvv3tb+d8z+LFi2sNnSIiDjjggJxvAQAAAADIlWT+48IAAAAAAACAejv44IMjlUoVekaDsWHDhliwYEFaZ3v37p3jNY1PKpWK8847r9b/Tv34xz+OESNG5GVTOl8tKi0tja5du+ZhDQAAAABAbvhyEQAAAAAAAEAWzJ8/PzZt2pTWWXHRV02ePDmmT5++xTNdu3aNm266KU+L0ouLDjzwwNwPAQAAAADIIXERAAAAAAAAQBZUV1enfXannXbK4ZLGp6amJq6++upaz40dOzbat2+fh0X/KZ24qKKiIg9LAAAAAAByR1wEAAAAAAAAkAUffPBBWue22mqr6N69e47XNC6PPvpovPPOO1s806dPnxg1alSeFkUsW7Ys5syZU+u5Aw44IA9rAAAAAAByR1wEAAAAAAAAkAWLFy9O61ybNm1yvKTxue6662o9c/7550dJSUke1vynF198MVKp1BbP7LzzzrH11lvnaREAAAAAQG6IiwAAAAAAAACy4JNPPknrXNu2bXO8pHGZPXt2TJ8+fYtn2rdvH6eeemp+Bv2XqqqqWs9UVFTkYQkAAAAAQG6JiwAAAAAAAACy4IsvvkjrnC8Xfdkf//jHWs8ceeSReY+yxEUAAAAAQFKIiwAAAAAAAACyYO3atWmda968eY6XNB6pVCoeeOCBWs8de+yxeVjzP1atWhUzZ86s9Zy4CAAAAABoCsRFAAAAAAAAAFmwbt26rJ5LglmzZsV77723xTPNmjWLQw89ND+D/su0adNi8+bNWzzTp0+f2HbbbfO0CAAAAAAgd8RFAAAAAAAAAFmwYcOGtM6tWbMmx0saj8rKylrP7LbbbtG6des8rPkfVVVVtZ7x1SIAAAAAoKkQFwEAAAAAAABkQYsWLdI699lnn0UqlcrxmsYhnbhon332ycOSLxMXAQAAAABJIi4CAAAAAAAAyIJWrVqldW7Dhg2xePHiHK9pHKZOnVrrmZ133jkPS/7HunXr4tVXX631nLgIAAAAAGgqxEUAAAAAAAAAWdCmTZu0z86bNy+HSxqHpUuXxmeffVbruR133DEPa/7HK6+8EuvXr9/imR122CF69eqVp0UAAAAAALklLgIAAAAAAADIgh49eqR9Np0v4zR1CxYsSOvcdtttl+MlX1ZZWVnrGV8tAgAAAACaEnERAAAAAAAAQBbssMMOaZ+dNm1a7oY0EvPnz0/rXF2+CJUNVVVVtZ4RFwEAAAAATYm4CAAAAAAAACAL6hIX/fWvf421a9fmbkwj8Pe//z2tc/mMizZu3Bgvv/xyrefERQAAAABAUyIuAgAAAAAAAMiC3XbbLe2za9asiaeeeip3Y/Lkvffeiz//+c8Z3V21alVa52pqajJ6fiZef/31WL169RbP9OzZM3baaac8LQIAAAAAyD1xEQAAAAAAAEAWfPvb345OnTqlff7222/P4Zrcq6qqir333jtOOOGEWLBgQZ3vpxsXLV++vM7PztQf//jHWs/4ahEAAAAA0NSIiwAAAAAAAACyZNCgQWmfraysjOnTp+dwTe787ne/i0MOOSQ+//zz+Mc//hHHH398rF+/vk7PWLNmTVrn8hUXvfjii3HHHXfUek5cBAAAAAA0NeIiAAAAAAAAgCw58sgj63T+oosuytGS3Fi3bl2cc845ceaZZ8bGjRv/+eszZsyIiy++uE7PKioqSuvcokWL6vTcTKxevTpOO+20qKmpqfWsuAgAAAAAaGrERQAAAAAAAABZMnz48CgpKUn7/LRp02L8+PE5XJQ9s2fPjr322ivGjRv3tb9/++23x6OPPpr281q1apXWub/97W9pPzMTqVQqTjnllFi4cGGtZ3v06BF9+/bN6R4AAAAAgHwTFwEAAAAAAABkSbdu3eLQQw+t050LL7ww5syZk6NF9ZdKpeLWW2+NvffeO+bOnbvFs6effnq8//77aT23S5cuaZ2bOnVqWucydeWVV8YjjzyS1tnBgwfndAsAAAAAQCGIiwAAAAAAAACy6Pzzz6/T+bVr18b3v//9+PDDD3O0KHOzZs2K/fbbL84///xYv359ree/+OKLeP7559N69nbbbZfWudmzZ8drr72W1tm6Gj9+fPzqV79K+7y4CAAAAABoisRFAAAAAAAAAFn03e9+N0pLS+t058MPP4xDDjkk3n333RytqpuVK1fGBRdcEHvuuWe89NJLad0pKSmJCRMmxI9//OO0zvfr1y/tPTfffHPaZ9M1fvz4OPvssyOVSqV9R1wEAAAAADRFRam6/EkpAAAAAAAAALV68skn44gjjqjzvW7dusXDDz8c++23Xw5W1W716tUxbty4uP7662PJkiVp32vRokXcf//9MWLEiLTvrF27Ntq3bx+bNm2q9WxxcXE8++yzMWTIkLSf/01SqVSMGTMmxo4dW6ewqHnz5vGPf/wjmjdvXu8NAAAAAAANiS8XAQAAAAAAAGTZsGHDYujQoXW+t2TJkqioqIjRo0fH2rVrc7Ds661cuTKuvfba2GGHHeLnP/95ncKi9u3bxzPPPFOnsCgiolWrVjFo0KC0ztbU1MRJJ50UH3/8cZ3e8X+tWLEiRowYEWPGjKlTWBQRseuuuwqLAAAAAIAmSVwEAAAAAAAAkAN33HFHtG/fvs73ampq4rrrrovevXvHuHHjYt26dTlY95+mTp0ap512WvTo0SMuvfTS+Pzzz+t0v7S0NF5++eWoqKjI6P11+brT4sWLY9CgQfHmm29m9K5///d/j9LS0njssccyur/nnntmdA8AAAAAoKErStX1H8cEAAAAAAAAQFoeeuihOP744+v1jI4dO8bIkSPj2GOPjX333TeaNWuW8bPWrl0bVVVV8cwzz8STTz4Z8+fPz/hZJ554YkyYMCHatGmT8TM++eST6NmzZ2zevDntO23bto3Ro0fHBRdcEG3btq31/IsvvhhXX311PP300xnvjIiYMGFCjBo1ql7PAAAAAABoiMRFAAAAAAAAADl08cUXxw033JCVZ7Vv3z4GDx4cu+++e+yyyy7Rs2fP2G677aJDhw7RsmXLaN68eaxevTpWrlwZK1eujMWLF8dbb70Vc+fOjblz58b06dPr/SWk5s2bx0033RTnnHNOVn6mk08+Oe6777463+vSpUscddRRMXTo0CgvL49u3bpF27Zt47PPPov33nsvnnvuuXj88cdjxowZWdk5ffr02HvvvbPyLAAAAACAhkRcBAAAAAAAAJBDqVQqTjvttLj33nsLPaXe9thjj7j77rtj9913z9ozFy5cGGVlZbF+/fqsPTPbioqKYtWqVdG6detCTwEAAAAAyLriQg8AAAAAAAAAaMqKiopi4sSJcfLJJxd6SsbatGkTN9xwQ0yfPj2rYVFERO/eveOKK67I6jOzbccddxQWAQAAAABNlrgIAAAAAAAAIMdKSkpi8uTJcfnllxd6Sp0NGzYs3nrrrbjooouipKQkJ+8YPXp0HH744Tl59pb85Cc/ie9973u1nistLc3DGgAAAACAwhAXAQAAAAAAAOTJmDFj4rHHHovu3bsXekqtDjrooKisrIwnnngievXqldN3FRcXxwMPPBD77bdfTt/z33r37h1/+ctfYty4cfHWW2/Ver5Pnz55WAUAAAAAUBjiIgAAAAAAAIA8OvLII2Pu3LkxcuTIKCoqKvScr/jvqGjKlClxwAEH5O29bdu2jaeffjqOPvronL2jQ4cOcdVVV8XcuXNj6NChsWTJknj//fdrvde7d++cbQIAAAAAKDRxEQAAAAAAAECede7cOe677754/fXX43vf+16h50THjh3jnHPOiddeey3vUdH/1qZNm3j44Ydj3Lhx0aFDh6w9d5tttomxY8fGe++9F//yL/8SLVq0iIiIV199dYv3evfuHRdddFEcddRRWdsCAAAAANDQFKVSqVShRwAAAAAAAAAk2Zw5c+J3v/td3HfffbFs2bK8vLNFixZx4IEHxqmnnhrDhw+Pli1b5uW96fr888/j1ltvjQkTJsSnn35a5/sdO3aMoUOHxgknnBCHH354lJSUfOXMlVdeGWPGjPnSr+2+++4xfPjwGD58eOy6664Z7wcAAAAAaCzERQAAAAAAAAANxPr166OysjL+8pe/xNNPPx3V1dVZe3ZxcXHstttuccghh8SQIUNi//33j1atWmXt+bmyefPmqKqqiilTpsRrr70WixYtisWLF8eaNWsiIqJ169bRsWPH6NWrV+y0006xxx57xIABA2KvvfaKZs2abfHZv/jFL+L666+P/fff/59BUa9evfLxYwEAAAAANBjiIgAAAAAAAIAGavny5fHGG2/ErFmzYv78+fHxxx/HRx99FJ9++mmsWbMm1q1bF+vWrYvi4uJo165dtGvXLtq2bRvt2rWLnj17Rr9+/WLnnXf+5/9t27ZtoX+kBmfVqlX+ugAAAAAAiSYuAgAAAAAAAAAAAAAAgIQqLvQAAAAAAAAAAAAAAAAAoDDERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUM0KPQAAyNymTZti/vz5X/q1Tp06RXGxfhgAAAAAAAAAAAAA0lVTUxPLli370q/17ds3mjVr+ulN0/8JAaAJmz9/fpSWlhZ6BgAAAAAAAAAAAAA0OW+99Vb079+/0DNyzmcNAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIqGaFHgAAZK5Tp05f+bW33norunTpUoA1AAAAAAAAAAAAANA4ff7551FaWvqlX/u6/61uUyQuAoBGrLj4qx8h7NKlS3Tt2rUAawAAAAAAAAAAAACg6fi6/61uU5SMnxIAAAAAAAAAAAAAAAD4CnERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAAAABJKXAQAAAAAAAAAAAAAAAAJJS4CAAAAAAAAAAAAAACAhBIXAQAAAAAAAAAAAAAAQEKJiwAAAAAAAAAAAAAAACChxEUAAAAAAAAAAAAAAACQUOIiAAAAAAAAAAAAAAAASChxEQAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAAASSlwEAAAAAAAAAAAAAAAACSUuAgAAAAAAAAAAAAAAgIQSFwEAAAAAAAAAAAAAAEBCiYsAAAAAAAAAAAAAAAAgocRFAAAAAAAAAAAAAAAAkFDiIgAAAAAAAAAAAAAAAEgocREAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAAAEkpcBAAAAAAAAAAAAAAAAAklLgIAAAAAAAAAAAAAAICEEhcBAAAAAAAAAAAAAABAQomLAAAAAAAAAAAAAAAAIKHERQAAAAAAAAAAAAAAAJBQ4iIAAAAAAAAAAAAAAABIKHERAAAAAAAAQB6kUqlIpVKFngEAAAAAAF8iLgIAAAAAAADIg7+9/068/MH8Qs8AAAAAAIAvaVboAQAAAAAAAABN3dqNG+K+mS9GUUTsts0O0Wqr5oWeBAAAAAAAEeHLRQAAAAAAAAA59/Dsl2P52tXxxdrV8cjsVwo9BwAAAAAA/klcBAAAAAAAAJBDHy7/PJ6e98Y///Nf5s2MD5d/XrhBAAAAAADwv4iLAACA/8/enUfJWdf54v9U9ZJ0urqbJKSaJSg7ASSYBBAkQVB0BBz9OcqIg9t47hxnxqPOzJ1Nr3e8Z+7RcTmz6IyM4z0zXkc9btw7LogyqCA7koRNQxDZZE01CelOdZLudHf9/sCrIlBPdeep56nl9frPPJ+u553n+KH6pPtdXwAAAACapFarxWc2Xh1ztdov/mzu539W+5U/AwAAAACAvCgXAQAAAAAAADTJdQ9sja2VR57x51srj8T1D9ydQyIAAAAAAHg65SIAAAAAAACAJpicnoov3Hrtc17/wq3Xxu7pqQwTAQAAAADAMykXAQAAAAAAADTBpXfcGBN79zzn9fG9u+Ord9yUYSIAAAAAAHgm5SIAAAAAAACAlD3w5Fj85z13JM795z23x4NPjmWQCAAAAAAAnp1yEQAAAAAAAECK5mq1+MwtV0WtVkucrf18dq6BWQAAAAAAaAblIgAAAAAAAIAUXXPflrjniccanv/JE4/Ftfff1cREAAAAAADw3JSLAAAAAAAAAFJSndobX7zt+nl/3RdvvS6q03ubkAgAAAAAAOpTLgIAAAAAAABIyVfuuCF2Te2Z99dNTO2Jr95+YxMSAQAAAABAfcpFAAAAAAAAACm4b/u2+N49dy746797zx1x345tKSYCAAAAAIBkykUAAAAAAAAA+2lubi7+7ZarorYfr1GLiM/cclXM1fbnVQAAAAAAYH6UiwAAAAAAAAD201X3/TiVU4fu3b4trr73xykkAgAAAACAxigXAQAAAAAAAOyHib174su33ZDa633ptutjYu+e1F4PAAAAAADqUS4CAAAAAAAA2A9fvv36qE7vTe31qtN748u3p1dWAgAAAACAepSLAAAAAAAAABbonicei6vu/XHqr3v1vT+Knz7xeOqvCwAAAAAAv065CAAAAAAAAGAB5ubm4jO3XNWU165FxL/dclXMzc015fUBAAAAAOD/US4CAAAAAAAAWIDv/vTOeODJsaa9/gNPVuJ7P72zaa8PAAAAAAARykUAAAAAAAAA8za+ZzK+cvsNTb/Pl2+/Mcb37m76fQAAAAAA6F7KRQAAAAAAAADz9MXbro/d+6abfp/d+6bii7dd1/T7AAAAAADQvZSLAAAAAAAAAOZha+WRuOb+uzK73zX33RV3jz2a2f0AAAAAAOguykUAAAAAAAAADZqdm4vPbLwq8/t+5parYnZuLvP7AgAAAADQ+ZSLAAAAAAAAABr0nz+5PR7auT3z+/5s5xPxnz+5PfP7AgAAAADQ+XrzDgCQt3379sW1114b119/fWzZsiW2bt0aY2NjsWvXrpicnIyBgYEYHh6OZcuWxXHHHRcnnHBCvOhFL4qXvvSlMTAwkHf8tjI2NhZXXHFF3HrrrbFly5a49957Y3x8PHbt2hX79u2LoaGhGB4ejkMOOSROOOGEOPHEE+OlL31pnHzyyXlHBwAAAACAeHLPZFx6x0253f/SO2+K059/bCwdGMwtAwAAAAAAnadQq9VqeYcAyMN1110Xn/zkJ+Pyyy+PiYmJeX/9wMBAnHvuufEHf/AH8cpXvjIKhUITUra/PXv2xOc+97n4t3/7t7jllltibm5u3q+xcuXKuPDCC+Nd73pXHHHEEU1I2b7GxsaiXC4/7c8qlUqsWLEip0QAAAAAAJ3rn67/Ttzw4N25Zjjz8OPinS9+Za4ZAAAAAAA6UTf/Xm4x7wAAWbvmmmvi1FNPjQ0bNsSXvvSlBRWLIp4qzXzzm9+M888/P44//vj42te+lm7QNrdv3774yEc+Eocddli84x3viJtvvnlBxaKIiIcffjj+/u//Po4++ui48MIL44EHHkg3LAAAAAAAJNiy7eHci0UREdc/cHfcte3hvGMAAAAAANBBlIuArrFz585461vfGi95yUti48aNqb723XffHa997WvjN3/zN+PRRx9N9bXb0fXXXx8nn3xy/OVf/mVs3749tdedm5uLSy+9NE488cT46Ec/Gg7fAwAAAAAgCzNzs/GZjVflHeMXPrPx6piZm807BgAAAAAAHUK5COgKW7ZsidNOOy3+/d//van3ueyyy2LdunVxww03NPU+reySSy6Jc845J+66666m3WP37t3xF3/xF/Ga17xmwSdPAQAAAABAo7699bZ4ZHxH3jF+4eHx7fGdu2/LOwYAAAAAAB1CuQjoeNddd12cfvrpcc8992Ryv8cffzzOOeec+I//+I9M7tdK/uRP/iTe+c53xr59+zK53ze/+c0444wzYmxsLJP7AQAAAADQfbbv3hX/90c35x3jGf7PnTfH9t278o4BAAAAAEAH6M07AEAzbdy4MS644ILYtSvbH65NT0/HRRddFN/4xjfiN37jNzK9d17e9773xd///d9nft8tW7bEK17xirjqqqvigAMOyPz+kKW5ubl4dOLJuG9HJR4e3x6T03tj3+xszMzNRm+xJ/p6emKwf3GsHFkeRy4vxyFDS6NY1CWHZ2OfIB12CdJhlyA99gnSYZfg6T6/+dqYmsnmQ7XmY2pmX3xh87Xx7vXn5x0Fms57EwAAAAA0l3IR0LEefvjhOO+882JiYqLhr1m8eHGcddZZccopp8Shhx4aw8PDUa1W47HHHovNmzfH1VdfHdVqtaHXmp6ejt/6rd+Km2++OV7wghcs9K/RFv7lX/4l/uZv/mZeX7Ny5co466yzYvXq1XHggQdGX19f7Ny5M+655564+eabY+PGjVGr1Rp6rdtuuy1e+9rXxne/+93o6elZyF8BWlKtVou7Ko/EpofvjXt3bIsHd4zF1OxMw1+/qLcvnr/0wDhq2WisW3lUHF8+NAqFQhMTQ+uyT5AOuwTpsEuQHvsE6bBL8NzufOzBuPln9+Qd4znd9LN74pzHfxYnHfS8vKNAqrw3AQAAAEC2CrVGf3MboI3MzMzEOeecE9ddd11D8+VyOd7//vfHW97ylhgZGXnOud27d8dXvvKV+B//43/Egw8+2NBrr1q1KjZu3BiDg4MNzbeb2267Lc4444zYu3dvQ/NnnXVW/NVf/VW89KUvrftDnPvvvz8+8YlPxCWXXBLT09MNvfb73//++J//8382NNspxsbGolwuP+3PKpVKrFixIqdEpGFyeiquvf+u+O49d8SjE0+m9rqHDC+Nc49ZHRuOOD4G+xel9rrQyuwTpMMuQTrsEqTHPkE67BLUt292Jv7y8i/EY7t25h2lroOHl8aHz/ud6OvxuZK0P+9NAAAAAOSpm38vV7kI6Eh//dd/HR/4wAcamn3DG94Qn/70p2N4eLjh15+amor/+l//a3zyk59saP73fu/34tOf/nTDr98upqenY/Xq1XH33Xcnzg4MDMQll1wSb3vb2+Z1j7vvvjte//rXx49+9KPE2WKxGD/4wQ9i/fr187pHO+vmb2I60bZdO+MbWzbFDQ9sndcnMM7Xop7eePHhq+LVJ6yL0aEDmnYfyJN9gnTYJUiHXYL02CdIh12Cxnz9x7fEl2+/Ie8YDbno5BfHq088Ne8YsGDemwAAAABoBd38e7nKRUDHuf/+++OEE05o6CSd9773vfGhD31owff6p3/6p3jXu96VOFcoFOLmm2+OU0/trB/sffjDH473vve9iXPDw8Nx5ZVXxmmnnbag+0xOTsYFF1wQP/jBDxJnTz755Ni0aVP09PQs6F7tppu/iekks3Nz8a2tm+P/3HFT7Jubzey+fcWeeP3q0+OCVWujWCxmdl9oJvsE6bBLkA67BOmxT5AOuwSNG5uciD+77HMx3cSSQ5oW9fTGx1715jhwsPEPUoNW4L0JAAAAgFbSzb+Xq1wEdJzXvva18bWvfS1x7h3veEd86lOf2u/7ffCDH4z3v//9iXOnnXZa3HTTTVEoFPb7nq3g0UcfjWOPPTYmJyfrzvX19cX3vve92LBhw37dr1qtxoYNG+K2225LnP3kJz8Zf/iHf7hf92sX3fxNTKd4ZHxHfOqm/4x7t2/LLcPRyw+Kd5z+8jh0ZFluGSAN9gnSYZcgHXYJ0mOfIB12Cebn7665LDY+fG/eMebl1JVHxR+f9aq8Y0DDvDcBAAAA0Gq6+fdylYuAjnLbbbfFmjVrEufWrFkTN954YyxatGi/71mr1eK8886LK664InH2m9/8ZrzqVZ3xg70/+qM/io9//OOJcx/96Efjz/7sz1K5509+8pNYt25dVKvVunOHHHJI3H///dHf35/KfVtZN38T0+7marX41l2b49I7bsz00xify1Of0nhGXHD82ih2SAmS7mGfIB12CdJhlyA99gnSYZdg/m595P742A++kXeMBfnzs18TLzzk8LxjQF3emwAAAABoVd38e7nKRUBH+Z3f+Z344he/WHemWCzGLbfcEmvXrk3tvj/72c9i1apVsWfPnrpzGzZsiGuuuSa1++blySefjMMOOyzx1KI1a9bExo0bo1gspnbvj33sY/Hnf/7niXP/+q//Gm9/+9tTu2+r6uZvYtrZzNxs/MtNV8b1D9ydd5RnOPPw4+Idp788eos9eUeBhtgnSIddgnTYJUiPfYJ02CWYv+nZmfiLb30+tlXH846yIKOlkfjIBW+K/p7evKPAs/LeBAAAAEAr6+bfy03vt70BcvbQQw/FV7/61cS5N7/5zakWiyIinve858Wf/MmfJM5de+21ccstt6R67zx86lOfSiwWRUT83d/9XarFooiI97znPXHEEUckzv3t3/5tqveFtEzPzsQ/XPutlvzBaUTE9Q/cHf9w7bdienYm7yiQyD5BOuwSpMMuQXrsE6TDLsHCXLZlU9sWiyIitlXH47Itm/KOAc/KexMAAAAAtC7lIqBjfOELX4iZmfr/2F8oFOIv/uIvmnL/97znPbF48eLEuc9+9rNNuX+WGvk7vOhFL4qzzz479Xv39/fHH//xHyfObdmyJTZu3Jj6/WF/zMzNxieuuzw2P3J/3lHq2vzI/fGP1307ZuZm844Cz8k+QTrsEqTDLkF67BOkwy7BwmyrjsfXt7T/B4R9fcstUWnjghSdyXsTAAAAALQ25SKgY3zhC19InHnFK14Rxx9/fFPuv2LFirj44osT577yla8klqBa2aZNm+Luu5M/Ue6P/uiPmpbh7W9/ewwPDyfONfL/CcjKXK0W/3LTlS3/g9P/Z9Mj98W/3HRlzNVqeUeBZ7BPkA67BOmwS5Ae+wTpsEuwcP++8Qexb7b9CwX7Zmfj3zf9IO8Y8AvemwAAAACg9SkXAR3hRz/6UfzoRz9KnHvTm97U1ByNvP7Y2Fh897vfbWqOZvriF7+YODM0NBSvec1rmpZhcHAwXvva1ybOfelLX4qaH/zQIr511+a4/oHkYl4ruf6Bu+PyrZvzjgHPYJ8gHXYJ0mGXID32CdJhl2BhNj18X9z6aHsUHxqx+ZH7Y9PD9+UdAyLCexMAAAAAtAPlIqAjfOc730mcWbx4cVMLLxERZ511VhxyyCGJc9/+9rebmqOZGnnWr371q2NgYKCpOS666KLEmccffzxuu+22puaARjwyviMuvePGvGMsyFdvvzEeGd+Rdwz4BfsE6bBLkA67BOmxT5AOuwQLMzWzLz676eq8Y6Tu3zf9IKZnZvKOQZfz3gQAAAAA7UG5COgIV155ZeLM+vXrY2hoqKk5isVivOIVr0icayRvK3rsscfixz/+ceLceeed1/QsZ599dixevDhxrl2fNZ1jdm4uPnXTf8a+udm8oyzIvrnZ+Jebroy5ubm8o4B9gpTYJUiHXYL02CdIh12Chfv6jzfGE5O78o6RurHJifj6llvyjkEX894EAAAAAO1DuQhoe9PT03Hdddclzp177rkZpGnsPnfddVc88sgjGaRJ1/e+972G5l72spc1OclTJ1GtX78+cU65iLxdvnVz3Lt9W94x9stPtz8e39q6Oe8YYJ8gJXYJ0mGXID32CdJhl2BhHpt4Mi67a1PeMZrmm1s2xWMTT+Ydgy7lvQkAAAAA2odyEdD2br/99ti9e3fiXCNFlDRs2LChobmbb765yUnSd+ONNybOHH300XHQQQdlkKaxZ/3DH/4warVaBmngmbbt2hmX3nFT3jFScekdN8W2XTvzjkEXs0+QDrsE6bBLkB77BOmwS7AwtVot/vfGq2OmTU9VacTM3Gx8dtMP/Ds5mfPeBAAAAADtRbkIaHu33npr4kyxWIwXvvCFzQ8TEc973vPiwAMPTJxrJHeraSTz2rVrM0jylHXr1iXOTExMxH333ZdBGnimb2zZFPs65BcT9s3Nxje2dO4nuNL67BOkwy5BOuwSpMc+QTrsEizMLQ/9NO58/Gd5x2i6Ox57MG55+N68Y9BlvDcBAAAAQHtRLgLa3ubNmxNnjj322BgcHMwgzVMaKb20W7lobm4ubr/99sS5VisXRbTfs6YzTE5PxQ0PbM07RqpueGBr7J6eyjsGXcg+QTrsEqTDLkF67BOkwy7Bwuyd2Rf/vvmavGNk5nObfhB7Z/blHYMu4b0JAAAAANqPchHQ9u68887EmVWrVmWQ5JeOO+64xJk77rgjgyTpuffee2P37t2Jc1k+64MOOihGRkYS59rtWdMZrr3/rpianck7RqqmZmfi2vvvyjsGXcg+QTrsEqTDLkF67BOkwy7BwvzHj26OHburecfIzPbd1fjaj36Ydwy6hPcmAAAAAGg/ykVA27vvvvsSZ4455pgMkvzS0UcfnTjzyCOPxPT0dAZp0tHIc47I/lkfddRRiTONZoe01Gq1uPKeziy1XXnPHVGr1fKOQRexT5AOuwTpsEuQHvsE6bBLsDCPjO+Iy+/qvhPvv7V1czwyviPvGHQ4700AAAAA0J6Ui4C2tmfPnnj88ccT5xopoKSpkXLR3NxcPPjggxmkScf999/f0NyRRx7Z5CRP18izbjQ7pOWuyiPx2MSTecdoikcnnoytlUfyjkEXsU+QDrsE6bBLkB77BOmwSzB/tVot/vfGq2K2Npd3lMzNzs3F/954tXIETeW9CQAAAADak3IR0NYaLecccsghTU7ydAcffHBDc+1UennggQcSZ5YtWxaLFy9ufphf0cizbqfnTGfY9PC9eUdoqo0POw2M7NgnSIddgnTYJUiPfYJ02CWYvxsf/En8eNvDecfIzY+3PRQ3/eyevGPQwbw3AQAAAEB7Ui4C2tojjzT26WAHHXRQk5Ms7H4PP9w+P8Bs5Fln/Zwbvefjjz8es7OzGaSBp9y7Y1veEZrqvg7/+9Fa7BOkwy5BOuwSpMc+QTrsEszPnn3T8flbr807Ru4+v/ma2LNvOu8YdCjvTQAAAADQnpSLgLa2ffv2huZGR0ebnOTpyuVyFIvJ/4ndsWNHBmnS0cizzvo5RzRWLqrVavHkk09mkAYi5ubm4sEdY3nHaKoHnhyLubm5vGPQBewTpMMuQTrsEqTHPkE67BLM3/+586bYuWcy7xi5e3LPZPzfO2/OOwYdyHsTAAAAALQv5SKgrTVaLjrggAOaG+TXFIvFGBoaSpxrNH8raCRr1s95Pvdsp2dNe3t04smYmp3JO0ZTTc3si0d3KezRfPYJ0mGXIB12CdJjnyAddgnm56GdT8R37r4t7xgt49t33xoP7Xwi7xh0GO9NAAAAANC+evMOALA/Gj35p1QqNTnJMw0NDcX4+HjdmXY6uaiRrI0UqtLW6D3b6VnT3u7bUck7QiY+fNXXYrB/Ud4x6HCT01N5R8iEfaLZ7BKkwy5BeuwTpMMuQeNqtVqMVSdirlbLO0rLmKvV4q+u+HKsKA1HoVDIOw4dolvem+7fUYmVI8vzjgEAAAAAqVIuAtraxMRE4szg4GAUi9kf1DY8PJw4k1Q+aiWNPOs8ykWNPOeI9nrWtLeHx7vjlKwdu6uxY3c17xjQEewTpMMuQTrsEqTHPkE67BI0z9TsTDw87oO5YL4e3tkdPwcAAAAAoLtk/9v2ACmanp5OnBkYGMggyTMtXrw4caaR/K2iVZ91I885or2eNe1tcnpv3hEAAAAAAIAmqXbJCU0AAAAAdBcnFwFtrZHCSE9PTwZJnqm3N/k/se1UeGnVZ93Ic45or2e9v9avX9/wcyF9h736nFh20jF5xwAAAAAAAJpg3+xM3hEAAAAAIHVOLgLaWiOFkbxKFo3cd9++fRkkSUerPutG79lOz5r2Vuzx7RUAAAAAAHSqmbnZvCMAAAAAQOocawC0tZmZ5E8GUy5KR6s+a+WiZ7ruuutixYoVecfoWpfccEVc98DWvGMAAAAAAABN0FvsyTsCAAAAAKTOR+sDba2RYsnsbD6fHtbIffMqPi1Eqz7rRu/ZTs+a9tbX44eKAAAAAADQqfp6/MwJAAAAgM6jXAS0tf7+/sSZRk7caYZGTsppJH+raNVn3eiJRO30rGlvg/2L844AAAAAAAA0Sal/Ud4RAAAAACB1PlIHaGt9fX2JM3mVixq5bzsVXlr1WTd6z3Z61rS3lSPL846QibWHHhHPO+DAvGPQ4X6284nY/Mj9ecdoOvtEs9klSIddgvTYJ0iHXYL5mdi7O66698dRyztIiyhExDlHvSCGFw/kHYUO0i3vTSsP6I6fAwAAAADQXZSLgLa2aFHyJ4Pt3bs3gyQLu287FV5a9Vk3es92eta0tyOXlfOOkImLXnhm1xSpyM/DO7d3xS8j2CeazS5BOuwSpMc+QTrsEszf4r7+uHzrrXnHaAnnr1obF6/dkHcMOky3vDcd0SU/BwAAAACguxTzDgCwP4aGhhJnJicno1bL/rMId+3alTgzPDycQZJ0NPKsG/k7p63Re7bTs6a9HTK8NBb1dHZ/e1FvXxwytDTvGHQB+wTpsEuQDrsE6bFPkA67BPP3upNOj6UDg3nHyN3SgcH4rZNelHcMOpD3JgAAAABoX8pFQFtbtmxZ4kytVsul9DIxMZE400j+VtFI1kb+zmlr9J7t9Kxpb8ViMZ6/bEXeMZrq8KUrolj0bSTNZ58gHXYJ0mGXID32CdJhl2D+Bvr64+I1Tut509qzYqCvP+8YdCDvTQAAAADQvvyrF9DWli9f3tDc+Ph4k5M83dzcXFSr1cS5RvO3gkayZv2c53PPdnrWtL+jlo3mHaGpjuzwvx+txT5BOuwSpMMuQXrsE6TDLsH8nfH8Y+PE0ZV5x8jNCw46LE5/3jF5x6CDeW8CAAAAgPakXAS0tUYLI9u2bWtykqcbGxuL2dnZxLl2Krw0kjXr5xwR8fjjjyfOFAqFWLp0aQZp4CnrVh6Vd4SmOmXlkXlHoIvYJ0iHXYJ02CVIj32CdNglmL9CoRBvO+Wc6OnCk0d6isV467qzo1Ao5B2FDua9CQAAAADaU/f9qznQUQ499NCG5hopoKSp0fs1mr8VNJI16+fc6D1HR0ejt7c3gzTwlOPLh8bBw51ZaDtkeGmsKrfPf7tof/YJ0mGXIB12CdJjnyAddgkW5tCRZXH+qjV5x8jcBavWxqEjy/KOQYfz3gQAAAAA7Um5CGhrhx9+eENzjz76aHOD/JrHHnusobkjjjiiyUnS08iz3rFjR0xNTTU/zK9o5Fm303OmMxQKhXj5MavzjtEULz9mtU82JVP2CdJhlyAddgnSY58gHXYJFu61L3hRLF9SyjtGZpYvKcX/94LT8o5BF/DeBAAAAADtSbkIaGsDAwMxOjqaOHfvvfdmkOaXfvrTnybOFAqFeP7zn59BmnQ0UtCp1Wpx3333ZZDmlxp51spF5GHDEcfHop7OOjFrUU9vbDji+Lxj0IXsE6TDLkE67BKkxz5BOuwSLMzi3r5489qz8o6RmTeve0ks7u3LOwZdwnsTAAAAALQf5SKg7R155JGJM/fcc08GSX6pkcLLoYceGosWLcogTToaec4RrfmsG80OaRrsXxQvPnxV3jFS9eLDV8WS/vb57xadwz5BOuwSpMMuQXrsE6TDLsHCnXrY0bH64Pb5ELCFOvng58epK4/KOwZdxHsTAAAAALQf5SKg7Z100kmJM1u3bs0gyfzu10juVnLUUUfFwMBA4lyWz/rxxx+P8fHxxLl2e9Z0jlefsC76ij15x0hFX7EnXn3Curxj0MXsE6TDLkE67BKkxz5BOuwSLEyhUIi3rntJ9HbI/jyb3mJPvGXdS6JQKOQdhS7jvQkAAAAA2otyEdD21qxZkzhz9913x+7duzNI85TNmzcnzqxduzaDJOnp6emJ1atXJ8418ndPS6P3ardnTecYHTogXr/69LxjpOL1q0+P0aED8o5BF7NPkA67BOmwS5Ae+wTpsEuwcAcPL41XHd+5pYHfPGFdHDy8NO8YdCHvTQAAAADQXpSLgLbXSHFkbm4ubrvttuaHiYiHHnooxsbGEucaKUW1mkaedZblok2bNiXODA0NxVFHHZVBGnh2569aG0ctH807xn45evlBccEqJT3yZ58gHXYJ0mGXID32CdJhl2DhXnPiKbFicDjvGKlbMTgcrznh1Lxj0MW8NwEAAABA+1AuAtreySefHAMDA4lz1157bQZpIq655pqG5l70ohc1OUn6zjjjjMSZe+65J7Zt25ZBmsae9WmnnRaFQiGDNPDseorF+P3TXxF9xZ68oyxIX7En3nH6y6NY9G0j+bNPkA67BOmwS5Ae+wTpsEuwcIt6++It616Sd4zUvWXdS6K/tzfvGHQx700AAAAA0D78KxjQ9hYtWhTr169PnPve976XQZrG7rNq1apYuXJlBmnS9bKXvayhuSye9dTUVFx//fWJcy9/+cubngWSHDqyLF6/Ormc14ouPPmMOHRkWd4x4BfsE6TDLkE67BKkxz5BOuwSLNy6lUfGmkOOyDtGatYeekSsW3lk3jHAexMAAAAAtAnlIqAjnHvuuYkz1157bVSr1abmmJubiyuuuCJxrl0LL4ccckgcf/zxiXPf/va3m57l6quvjj179iTOteuzpvNccPzaOPPw4/KOMS9nHn5cnL9qbd4x4BnsE6TDLkE67BKkxz5BOuwSLNxbTnlJ9PW05wkrv6qvp6cjT2KifXlvAgAAAIDWp1wEdIRXvvKViTN79+6Nr3/9603Nce2118ajjz6aONdI3lbVSPavf/3rsXfv3qbm+NKXvpQ4Mzo6GmvWrGlqDmhUsVCId5z+8lh7aHt8+um6Q4+Md5z+8igWCnlHgWewT5AOuwTpsEuQHvsE6bBLsHCjpZF4zQmn5h1jv73mhFOjXBrJOwb8gvcmAAAAAGh9ykVAR1i9enWccMIJiXOf//znm5rjc5/7XOLM8uXL2/o0nTe+8Y2JM7t27WpqkWtycjL+4z/+I3HuDW94QxT84IcW0lvsiXevP7/lf4C67tAj413rz4veYvt/Siudyz5BOuwSpMMuQXrsE6TDLsHCveqEdTHaxsWc0dJIvOqEdXnHgGfw3gQAAAAArU25COgYF198ceLMFVdcEVu3bm3K/cfGxuILX/hC4txv//ZvR19fX1MyZOHUU0+NY445JnHuH/7hH5qW4TOf+UyMj48nzjXy/wnIWn9Pb/zRhgvizMOPyzvKszrz8OPiPRvOj/6e3ryjQCL7BOmwS5AOuwTpsU+QDrsEC9Pf0xtvPeXsvGMs2NtOOdte0bK8NwEAAABA61IuAjrGm970pujpqf8pYrVaLT784Q835f4f//jHY+/evYlzb33rW5ty/yw18ne46aab4uqrr0793tPT0/F3f/d3iXOrVq2K0047LfX7Qxp6iz3xB2f8Rrzxheujr0U+/bCv2BO/s2Z9/MEZv+ETGWkr9gnSYZcgHXYJ0mOfIB12CRbmhYccHqesPCrvGPN26sqj4uRDDs87BtTlvQkAAAAAWlOhVqvV8g4BkJaLLroovvzlL9edKRaLccstt8TatWtTu+/PfvazWLVqVezZs6fu3JlnnhnXXXddavfNy/bt2+N5z3te7N69u+7c2rVr45ZbboliMb0u68c+9rH48z//88S5//W//lf8l//yX1K7b6saGxuLcrn8tD+rVCqxYsWKnBIxX4+M74hP3fSfce/2bbllOHr5QfGO018eh44syy0DpME+QTrsEqTDLkF67BOkwy7B/IxNTsSfXfa5mJ6dyTtKQxb19MbHXvXmOHBwOO8o0DDvTQAAAAC0mm7+vVzlIqCjbN68OdatW5c4t3bt2rjxxhujv79/v+9Zq9Xi/PPPj+985zuJs1//+tfj1a9+9X7f8/9529veFp/97GcT56666qo4++yzU7tvRMS73/3u+Md//MfEuY997GPxp3/6p6nc85577om1a9dGtVqtO3fwwQfH/fffH4sWLUrlvq2sm7+J6SSzc3Nx+dbNcekdN8W+udnM7ttX7InXrz4jLli1JtUSIOTJPkE67BKkwy5BeuwTpMMuwfx8/ce3xJdvvyHvGA256OQXx6tPPDXvGDBv3psAAAAAaCXd/Hu5ykVAx3nNa14T3/jGNxLnfv/3fz/++Z//eb/v96EPfSj+23/7b4lzp5xySvzwhz+MQqGw3/f8f/IsFz388MNx3HHHJZ5e1NfXF9///vdj/fr1+3W/ycnJ2LBhQ9x6662Js5/4xCfiXe96137dr1108zcxnWjbrp3xjS2b4oYHtsZUEz8RdVFPb7z48FXx6hPWxejQAU27D+TJPkE67BKkwy5BeuwTpMMuQWP2zc7EX17+hXhs1868o9R18PDS+Mh5F0dvT0/eUWDBvDcBAAAA0Aq6+fdylYuAjnPvvffGiSeeGFNTU4mz73vf++KDH/zggu91ySWXxDvf+c7EuUKhEDfccEOcfvrpC77Xs8mzXBQR8cEPfjDe//73J86NjIzEd7/73TjllFMWdJ/du3fHq171qrjqqqsSZ0866aS49dZbo6dLfojazd/EdLLd01Nx7f13xZX33BGPTjyZ2useMrw0Xn7M6thwxPGxpL/zT/aCCPsEabFLkA67BOmxT5AOuwTJ7nzswfibq76Wd4y63vvS18ZJBz0v7xiQCu9NAAAAAOSpm38vV7kI6Egf+MAH4q//+q8bmr3ooovi05/+dAwNDTX8+lNTU/Fnf/Zn8Y//+I8Nzb/97W+Pf/3Xf2349RuVd7loamoqTjrppLjnnnsSZ5csWRKXXHJJvPWtb53XPe6+++648MIL484770ycLRQKcfXVV8dZZ501r3u0s27+JqYb1Gq12Fp5JDY+fF/ct2NbPLCjMq9PbFzU2xeHL10RRy4bjVNWHhmryoemenoatBP7BOmwS5AOuwTpsU+QDrsE9X38usvj5p8l/zt4Hk5/3jHx7vXn5x0DUre/700REQO9fXH2US/w3gQAAABAw7r593KVi4CONDMzE2eddVbceOONDc2Pjo7Gf//v/z3e/OY3x/Dw8HPO7dmzJ7761a/GBz7wgXjggQcaeu1jjz02Nm3aFKVSqaH5+ci7XBQRsXnz5njxi1/c0ElRERFnn312/NVf/VWcffbZdX+I88ADD8QnPvGJ+OQnPxnT09MNvfZ73/ve+NCHPtTQbKfo5m9iutHc3Fw8uuvJuH9HJR7euT2q01Oxb3YmZuZmo7fYE309vVHqXxQrD1geRywrxyFDS6NYLOYdG1qSfYJ02CVIh12C9NgnSIddgqfbvntX/Olln4upmX15R3maRb198bevekssW5L+zx+g1Tzbe9O92x+Ln+3c/pxfM7J4Sfzzb/1ehikBAAAAaHfd/Hu5ykVAx3rooYdizZo1sX37c/9Q4dcNDAzES17ykli3bl2sXLkyhoaGolqtxuOPPx6bNm2Kq6++Onbt2jWv17vxxhvj5JNPXshfIVErlIsiIi655JJ45zvfOa+vOeyww+IlL3lJrF69OpYvXx59fX2xc+fO+OlPfxo333xz/PCHP4z5vEVt2LAhrrrqqujp6Zlv/LbWzd/EAAAAAABk5ZtbNsUXb7su7xhP8ztr1serjl+XdwzIzTX3bYlP3XRl3Zl/++0/jMW9fRklAgAAAKDddfPv5fbmHQCgWQ477LC4/PLL49xzz224ELRnz574zne+E9/5znf2+/59fX1x6aWXNq1Y1Er+8A//MB588MH46Ec/2vDXPPTQQ/H5z38+lfufdNJJ8bWvfa3rikUAAAAAAGTjvFUvjGvu3xKPjO/IO0pERKwcWR6vPO6FeceAXJVLI4kzY9XxOOyAAzNIAwAAAADtrZh3AIBmOu200+Kyyy6LUqmU6X37+vrii1/8Ypx//vmZ3jdPH/nIR+Ld73535vddtWpVXHnllbFs2bLM7w0AAAAAQHfoLfbE755yTt4xfuF3Tzk7eos+cIvu1ki5qFKdyCAJAAAAALQ/5SKg45111llx4403xpFHHpnJ/crlcnz/+9+P173udZncr5V8/OMfj49//OPR25vNwXjnn39+3HTTTTE6OprJ/QAAAAAA6F4njK6MFz//uLxjxJmHHxfHj67MOwbk7oCBwehLKNlVquMZpQEAAACA9qZcBHSFF7zgBbFx48a4+OKLm3qf8847LzZt2hTr169v6n1a2bvf/e74/ve/H8cd17wfsA4MDMQHP/jB+OY3vxkjI8mfSgcAAAAAAGm4eO2GGOjtz+3+A339cfGaDbndH1pJsVCIFaXhujPKRQAAAADQGOUioGssXbo0Pv/5z8dVV10V69atS/W1jz322Lj00kvj8ssvj5UrfVrghg0b4o477ogPfehDsWzZstRet1gsxute97r48Y9/HO973/uiWPQ2BgAAAABAdpYODMbrV5+e2/1ff9LpccDAYG73h1ZTLtX/EDrlIgAAAABojN/KBrrO2WefHRs3boyrr746LrzwwiiVSgt6ncWLF8cFF1wQl112WWzdujVe97rXpZy0vfX398d73/veeOihh+KSSy6JU089NQqFwoJe65BDDon3vOc98ZOf/CQuvfTSOOKII1JOCwAAAAAAjXnFsSfHYQcsz/y+zzvgwHjFsSdnfl9oZcnloomMkgAAAABAeyvUarVa3iEA8jQ9PR3XXHNNXH/99bFly5bYunVrPPHEE7Fr167YvXt3LF68OIaGhmLZsmVx3HHHxQknnBAvetGL4mUve1ksWbIk7/htZdu2bXHFFVfErbfeGlu2bIn77rsvxsfHY9euXTEzMxOlUimGhobi0EMPjeOPPz5OPPHEeOlLXxpr1qzJO3rLGhsbi3K5/LQ/q1QqsWLFipwSAQAAAAB0vq2VR+Kvv3tppvf8wMsvjONWHJLpPaHVXb51c3x+87XPeb2vpyc+89vvjOICPwAPAAAAgO7Szb+X25t3AIC89ff3x7nnnhvnnntu3lE63ujoaLzlLW+Jt7zlLXlHAQAAAACABVtVPjTOOuL4uOb+uzK531lHHq9YBM8i6eSifbOzMb5nMpYuKWWUCAAAAADaUzHvAAAAAAAAAADt5o0vPDOW9PU3/T5L+hbFG1+4vun3gXaUVC6KiNhWHc8gCQAAAAC0N+UiAAAAAAAAgHkaGRiM3z75xU2/zxtOPiNGFi9p+n2gHZUHhxNnKtWJDJIAAAAAQHtTLgIAAAAAAABYgHOPPikOX7qiaa9/+NJyvOzok5r2+tDuFvf1J5bvKk4uAgAAAIBEykUAAAAAAAAAC1AsFuN3Tz2nKa9diIi3n3pOFIt+pAv1lEsjda8rFwEAAABAMv8SDQAAAAAAALBAxxx4cJxz1Impv+7ZR70gjj7woNRfFzpNuTRc97pyEQAAAAAkUy4CAAAAAAAA2A9vOPnMKPUvTu31Sv2L4w0nvzi114NO5uQiAAAAANh/ykUAAAAAAAAA+2F48UC84YXplYEueuGZMbx4ILXXg06WVC7auXd3TM3syygNAAAAALQn5SIAAAAAAACA/XTOkSfGkctG9/t1jlo+GmcfdWIKiaA7JJWLIiLGqhMZJAEAAACA9qVcBAAAAAAAALCfisVivP3Uc6KwH69RiIjfPfWcKBb251Wgu5RLw4kz26rjGSQBAAAAgPalXAQAAAAAAACQgiOXj8bLjjlpwV9/7jGrUzn9CLrJ0oFS9BZ76s5UlIsAAAAAoC7lIgAAAAAAAICU/PbqF8fQooF5f93wooG48OQzmpAIOluxUIgVCacXVaoTGaUBAAAAgPakXAQAAAAAAACQktKixfHGF545769745r1Uepf3IRE0PnKg0nlIicXAQAAAEA9ykUAAAAAAAAAKTrryBPimAMPbnj+2AMPjg1HHN/ERNDZyqWRutcrk8pFAAAAAFCPchEAAAAAAABAioqFQvzuqedEoVBInC38fLbYwCzw7BLLRdXxqNVqGaUBAAAAgPajXAQAAAAAAACQssOXrohXHLM6ce4Vx5wcz1+6IoNE0LmSykX7Zmdj597dGaUBAAAAgPajXAQAAAAAAADQBK9ffUaMLF7ynNdHFi+JC1efnmEi6EyjpeHEmUp1PIMkAAAAANCelIsAAAAAAAAAmmCwf1H8zpr1z3n94jUbYkn/ogwTQWdKOrkoQrkIAAAAAOpRLgIAAAAAAABokvWHr4pV5UOf8efHlw+NMw8/LodE0HkW9/XH8OKBujPKRQAAAADw3JSLAAAAAAAAAJqkUCjE755ydhQLhV/8WbFQiN895Zwo/MqfAfunPFj/9KJtu5SLAAAAAOC5KBcBAAAAAAAANNFhBxwYrzzuhb/43+cdtyZWHrA8v0DQgcql+uWiyqRyEQAAAAA8F+UiAAAAAAAAgCZ73Umnx9KBwVg6MBi/ddKL8o4DHSexXFSdyCgJAAAAALSf3rwDAAAAAAAAAHS6gb7+uHjNhigUCjHQ1593HOg45dJw3es790zG1My+WNTbl1EiAAAAAGgfykUAAAAAAAAAGTjj+cfmHQE61mjCyUUREWOTE7FyZHkGaQAAAACgvRTzDgAAAAAAAADQDQqFQhQKhbxjQEcqN1AuqlTHM0gCAAAAAO1HuQgAAAAAAAAAaGtLBwajt9hTd6ZSncgoDQAAAAC0F+UiAAAAAAAAAKCtFYvFWDE4VHfGyUUAAAAA8OyUiwAAAAAAAACAtlcujdS9rlwEAAAAAM9OuQgAAAAAAAAAaHvJ5aKJjJIAAAAAQHtRLgIAAAAAAAAA2l4jJxfVarWM0gAAAABA+1AuAgAAAAAAAADaXrk0XPf69OxMjO/dnVEaAAAAAGgfykUAAAAAAAAAQNsbTTi5KOKp04sAAAAAgKdTLgIAAAAAAAAA2t6KhspFExkkAQAAAID2olwEAAAAAAAAALS9gb7+GF40UHdmW3VnNmEAAAAAoI0oFwEAAAAAAAAAHaGccHqRk4sAAAAA4JmUiwAAAAAAAACAjlAuDde9XqmOZ5QEAAAAANqHchEAAAAAAAAA0BGSTy5SLgIAAACAX6dcBAAAAAAAAAB0hKRy0ZN7JmN6ZiajNAAAAADQHpSLAAAAAAAAAICOkFQuiogYm5zIIAkAAAAAtA/lIgAAAAAAAACgI5RLw4kzlep4BkkAAAAAoH0oFwEAAAAAAAAAHWHZQCl6ivV/FUK5CAAAAACeTrkIAAAAAAAAAOgIxWIxVgzWP71IuQgAAAAAnk65CAAAAAAAAADoGOXSSN3rlepERkkAAAAAoD0oFwEAAAAAAAAAHaNccnIRAAAAAMyHchEAAAAAAAAA0DGSTy4aj1qtllEaAAAAAGh9ykUAAAAAAAAAQMcYTSgXTc3OxMTe3RmlAQAAAIDWp1wEAAAAAAAAAHSMpJOLIiK2VScySAIAAAAA7UG5CAAAAAAAAADoGCtKw4kzlep4BkkAAAAAoD0oFwEAAAAAAAAAHWNJ36IYWjRQd0a5CAAAAAB+SbkIAAAAAAAAAOgo5YTTi5SLAAAAAOCXlIsAAAAAAAAAgI5SLo3Uva5cBAAAAAC/pFwEAAAAAAAAAHSU5HLRREZJAAAAAKD1KRcBAAAAAAAAAB2lXBque33HnmpMz85klAYAAAAAWptyEQAAAAAAAADQUZJOLoqIGHN6EQAAAABEhHIRAAAAAAAAANBhGikXVarjGSQBAAAAgNanXAQAAAAAAAAAdJTlA6XoKdT/lYiKk4sAAAAAICKUiwAAAAAAAACADlMsFuPAwaG6M04uAgAAAICnKBcBAAAAAAAAAB2nXBqpe70yqVwEAAAAABHKRQAAAAAAAABAB0osFzm5CAAAAAAiQrkIAAAAAAAAAOhAo0NJ5aKJqNVqGaUBAAAAgNalXAQAAAAAAAAAdJykk4umZvbFxNSejNIAAAAAQOtSLgIAAAAAAAAAOk5SuSgiYtuu8QySAAAAAEBrUy4CAAAAAAAAADpOeXA4caZSVS4CAAAAAOUiAAAAAAAAAKDjLOlfFKVFi+vOKBcBAAAAgHIRAAAAAAAAANChyoMjda9XJpWLAAAAAEC5CAAAAAAAAADoSOVSQrmoOpFREgAAAABoXcpFAAAAAAAAAEBHKpeG616vVJ1cBAAAAADKRQAAAAAAAABARxpNOLnoyd3VmJ6dySgNAAAAALQm5SIAAAAAAAAAoCOVE8pFtYh4YnJXNmEAAAAAoEUpFwEAAAAAAAAAHSmpXBQRUamOZ5AEAAAAAFqXchEAAAAAAAAA0JGWLSlFT6H+r0YoFwEAAADQ7ZSLAAAAAAAAAICO1FMsxoGDQ3VnlIsAAAAA6HbKRQAAAAAAAABAxyqXRuper1QnMkoCAAAAAK1JuQgAAAAAAAAA6FjJ5SInFwEAAADQ3ZSLAAAAAAAAAICO1Ui5qFarZZQGAAAAAFqPchEAAAAAAAAA0LFGS8N1r++d2RcTU3sySgMAAAAArUe5CAAAAAAAAADoWEknF0U8dXoRAAAAAHQr5SIAAAAAAAAAoGMpFwEAAABAfcpFAAAAAAAAAEDHWtK/KEr9i+vOVKoTGaUBAAAAgNajXAQAAAAAAAAAdLRyabjudScXAQAAANDNlIsAAAAAAAAAgI5WLo3Uva5cBAAAAEA3Uy4CAAAAAAAAADqachEAAAAAPDflIgAAAAAAAACgoyWVi3bsrsa+2ZmM0gAAAABAa1EuAgAAAAAAAAA6Wrk0XPd6LSKemNyVTRgAAAAAaDHKRQAAAAAAAABAR0s6uSgiolIdzyAJAAAAALQe5SIAAAAAAAAAoKMtXzIUxUKh7oxyEQAAAADdSrkIAAAAAAAAAOhoPcViHDg4XHemUp3IKA0AAAAAtBblIgAAAAAAAACg442WRuped3IRAAAAAN1KuQgAAAAAAAAA6HjlUtLJRcpFAAAAAHQn5SIAAAAAAAAAoOOVE04u2lYdj1qtllEaAAAAAGgdykUAAAAAAAAAQMdLKhftndkXu6b2ZJQGAAAAAFqHchEAAAAAAAAA0PGSykUREZXqRAZJAAAAAKC1KBcBAAAAAAAAAB2vsXLReAZJAAAAAKC1KBcBAAAAAAAAAB1vsH9RDPYvqjujXAQAAABAN1IuAgAAAAAAAAC6QtLpRcpFAAAAAHQj5SIAAAAAAAAAoCskl4smMkoCAAAAAK1DuQgAAAAAAAAA6Arl0nDd604uAgAAAKAbKRcBAAAAAAAAAF0h6eSi7bt3xczsbEZpAAAAAKA1KBcBAAAAAAAAAF0hqVxUi4ixyYlswgAAAABAi1AuAgAAAAAAAAC6QlK5KCKiUlUuAgAAAKC7KBcBAAAAAAAAAF1h+ZJSFAuFujOVyfGM0gAAAABAa1AuAgAAAAAAAAC6Qm+xJw4cHK47U6kqFwEAAADQXZSLAAAAAAAAAICuUS4pFwEAAADAr1IuAgAAAAAAAAC6Rrk0Uvd6ZZdyEQAAAADdRbkIAAAAAAAAAOgaieWi6kTUarWM0gAAAABA/pSLAAAAAAAAAICukVQu2jMzHbum9maUBgAAAADyp1wEAAAAAAAAAHSNcmk4caZSHc8gCQAAAAC0BuUiAAAAAAAAAKBrJJ1cFKFcBAAAAEB3US4CAAAAAAAAALpGqX9xLOlbVHemMqlcBAAAAED3UC4CAAAAAAAAALpK0ulFlepERkkAAAAAIH/KRQAAAAAAAABAVymXhuter1SdXAQAAABA91AuAgAAAAAAAAC6ymjiyUXKRQAAAAB0D+UiAAAAAAAAAKCrlBPKRdt3V2NmdjajNAAAAACQL+UiAAAAAAAAAKCrlEvDda/XarV4YveujNIAAAAAQL6UiwAAAAAAAACArpJ0clFERKU6nkESAAAAAMifchEAAAAAAAAA0FWWDw5FsVCoO6NcBAAAAEC3UC4CAAAAAAAAALpKb7Enli8ZqjtTqU5klAYAAAAA8qVcBAAAAAAAAAB0nXJppO71bdWd2QQBAAAAgJwpFwEAAAAAAAAAXSepXOTkIgAAAAC6hXIRAAAAAAAAANB1RkvDda9XquNRq9UySgMAAAAA+VEuAgAAAAAAAAC6TtLJRXv2TUd1em9GaQAAAAAgP8pFAAAAAAAAAEDXSSoXRTx1ehEAAAAAdDrlIgAAAAAAAACg6zRWLprIIAkAAAAA5Eu5CAAAAAAAAADoOoP9i2JJX3/dGScXAQAAANANlIsAAAAAAAAAgK5TKBQSTy9SLgIAAACgGygXAQAAAAAAAABdSbkIAAAAAJSLAAAAAAAAAIAulVwumsgoCQAAAADkR7kIAAAAAAAAAOhK5dJw3etP7N4VM3OzGaUBAAAAgHwoFwEAAAAAAAAAXSnp5KJarRbbJ3dllAYAAAAA8qFcBAAAAAAAAAB0pdGEclFERKU6nkESAAAAAMiPchEAAAAAAAAA0JWWDw5FoVCoO1OpTmSUBgAAAADyoVwEAAAAAAAAAHSl3mJPHLhkqO7MNicXAQAAANDhlIsAAAAAAAAAgK5VLg3XvV5RLgIAAACgwykXAQAAAAAAAABdq1waqXtduQgAAACATqdcBAAAAAAAAAB0raRy0bbqeNRqtYzSAAAAAED2lIsAAAAAAAAAgK6VVC7as286JqenMkoDAAAAANlTLgIAAAAAAAAAula5NJw4U6mOZ5AEAAAAAPKhXAQAAAAAAAAAdK2kk4silIsAAAAA6GzKRQAAAAAAAABA1yr1L46Bvv66M8pFAAAAAHQy5SIAAAAAAAAAoGsVCoXE04u2VScySgMAAAAA2VMuAgAAAAAAAAC6Wrk0XPe6k4sAAAAA6GTKRQAAAAAAAABAV0s6uUi5CAAAAIBOplwEAAAAAAAAAHS1pHLR9t27YmZuNqM0AAAAAJAt5SIAAAAAAAAAoKuNJpSL5mq12L67mlEaAAAAAMiWchEAAAAAAAAA0NWSTi6KiKhUxzNIAgAAAADZUy4CAAAAAAAAALragUuGolAo1J2p7FIuAgAAAKAzKRcBAAAAAAAAAF2tt6cnli8p1Z1xchEAAAAAnUq5CAAAAAAAAADoeuXSSN3r25SLAAAAAOhQykUAAAAAAAAAQNdLKhdVqhMZJQEAAACAbCkXAQAAAAAAAABdr1warnu94uQiAAAAADqUchEAAAAAAAAA0PXKg/VPLtq9byqq03szSgMAAAAA2VEuAgAAAAAAAAC6XrlUv1wU4fQiAAAAADqTchEAAAAAAAAA0PUaKxdNZJAEAAAAALKlXAQAAAAAAAAAdL2hRYtjoLe/7oyTiwAAAADoRMpFAAAAAAAAAEDXKxQKUS4N151RLgIAAACgEykXAQAAAAAAAABERLk0Uve6chEAAAAAnUi5CAAAAAAAAAAgGikXTWSUBAAAAACyo1wEAAAAAAAAABAR5aH65aInJididm4uozQAAAAAkA3lIgAAAAAAAACAiCgP1i8XzdVqsX33rozSAAAAAEA2lIsAAAAAAAAAACKiXBpOnNlWHc8gCQAAAABkR7kIAAAAAAAAACAiVgwORyFhpqJcBAAAAECHUS4CAAAAAAAAAIiI3p6eWL5kqO6MchEAAAAAnUa5CAAAAAAAAADg58qlkbrXK9WJjJIAAAAAQDaUiwAAAAAAAAAAfq5cGq573clFAAAAAHQa5SIAAAAAAAAAgJ9LPrlIuQgAAACAzqJcBAAAAAAAAADwc0nlosnpqahO780oDQAAAAA0n3IRAAAAAAAAAMDPJZWLIiLGqhMZJAEAAACAbCgXAQAAAAAAAAD8XLk0nDhTqY5nkAQAAAAAsqFcBAAAAAAAAADwc0OLBmJxb1/dGeUiAAAAADqJchEAAAAAAAAAwM8VCoUol0bqzigXAQAAANBJlIsAAAAAAAAAAH5FcrloIqMkAAAAANB8ykUAAAAAAAAAAL9i1MlFAAAAAHQR5SIAAAAAAAAAgF9RLg3Xvf7E5K6YnZvLKA0AAAAANJdyEQAAAAAAAADArygnnFw0W5uL7bt3ZZQGAAAAAJpLuQgAAAAAAAAA4FcklYsiIirV8QySAAAAAEDzKRcBAAAAAAAAAPyKAweHopAwU6lOZJIFAAAAAJpNuQgAAAAAAAAA4Ff09fTGsiWlujNOLgIAAACgUygXAQAAAAAAAAD8mnJppO515SIAAAAAOoVyEQAAAAAAAADAr1EuAgAAAKBbKBcBAAAAAAAAAPya5HLRREZJAAAAAKC5lIsAAAAAAAAAAH5NuTRc93p1em9MTk9llAYAAAAAmke5CAAAAAAAAADg1ySdXBQRMVYdzyAJAAAAADSXchEAAAAAAAAAwK9ppFxUUS4CAAAAoAMoFwEAAAAAAAAA/JrhRQOxqLev7sy26kRGaQAAAACgeZSLAAAAAAAAAAB+TaFQiHJpuO6Mk4sAAAAA6ATKRQAAAAAAAAAAz2K0dEDd68pFAAAAAHQC5SIAAAAAAAAAgGfh5CIAAAAAuoFyEQAAAAAAAADAsyiXRupef2JyV8zOzWWUBgAAAACaQ7kIAAAAAAAAAOBZJJWLZmtzsWN3NaM0AAAAANAcykUAAAAAAAAAAM8iqVwUEVGpjmeQBAAAAACaR7kIAAAAAAAAAOBZHDg4FIWEGeUiAAAAANqdchEAAAAAAAAAwLPo7+mNpUtKdWe2KRcBAAAA0OaUiwAAAAAAAAAAnkO5NFL3eqU6kVESAAAAAGgO5SIAAAAAAAAAgOdQLg3XvV5xchEAAAAAbU65CAAAAAAAAADgOZQHE04umlQuAgAAAKC9KRcBAAAAAAAAADyHcql+uag6tTd2T09llAYAAAAA0qdcBAAAAAAAAADwHJLKRRERlcmJDJIAAAAAQHMoFwEAAAAAAAAAPIfR0nDiTKU6nkESAAAAAGgO5SIAAAAAAAAAgOcwvHhJLOrtqzujXAQAAABAO1MuAgAAAAAAAAB4DoVCIcoJpxcpFwEAAADQzpSLAAAAAAAAAADqKJdG6l6vVCcySgIAAAAA6VMuAgAAAAAAAACoozyYVC5ychEAAAAA7Uu5CAAAAAAAAACgjqSTi8YmJ2Jubi6jNAAAAACQLuUiAAAAAAAAAIA6yqXhutdn5+Zi+55qRmkAAAAAIF3KRQAAAAAAAAAAdSSdXBQRUamOZ5AEAAAAANKnXAQAAAAAAAAAUMeKhJOLIpSLAAAAAGhfykUAAAAAAAAAAHX09/TGsoFS3ZlKdSKjNAAAAACQLuUiAAAAAAAAAIAE5YTTi5xcBAAAAEC7Ui4CAAAAAAAAAEhQLo3Uva5cBAAAAEC7Ui4CAAAAAAAAAEiQXC6ayCgJAAAAAKRLuQgAAAAAAAAAIEFSuWjX1J7YvW8qozQAAAAAkB7lIgAAAAAAAACABOXScOLMmNOLAAAAAGhDykUAAAAAAAAAAAmSTi6KiKhUxzNIAgAAAADpUi4CAAAAAAAAAEgwsnhJLOrprTtTcXIRAAAAAG1IuQgAAAAAAAAAIEGhUEg8vcjJRQAAAAC0I+UiAAAAAAAAAIAGKBcBAAAA0ImUiwAAAAAAAAAAGlAuDde9vk25CAAAAIA2pFwEAAAAAAAAANCApJOLxiYnYm5uLqM0AAAAAJAO5SIAAAAAAAAAgAYklYtm5+Zix55qRmkAAAAAIB3KRQAAAAAAAAAADUgqF0VEVKoTGSQBAAAAgPQoFwEAAAAAAAAANGDF4HDiTKU6nkESAAAAAEiPchEAAAAAAAAAQAP6e3tj6cBg3RnlIgAAAADajXIRAAAAAAAAAECDyqWRuteViwAAAABoN8pFAAAAAAAAAAANSi4XTWSUBAAAAADSoVwEAAAAAAAAANCgcmm47nUnFwEAAADQbpSLAAAAAAAAAAAalHRy0cTUntizbzqjNAAAAACw/5SLAAAAAAAAAAAalFQuiogYc3oRAAAAAG1EuQgAAAAAAAAAoEGjDZSLtlUnMkgCAAAAAOlQLgIAAAAAAAAAaNDI4iXR39Nbd6bi5CIAAAAA2ohyEQAAAAAAAABAgwqFQpQTTi9SLgIAAACgnSgXAQAAAAAAAADMQ7k0XPe6chEAAAAA7US5CAAAAAAAAABgHpxcBAAAAEAnUS4CAAAAAAAAAJiHpHLR2OSumJubyygNAAAAAOwf5SIAAAAAAAAAgHkol4brXp+Zm40n90xmlAYAAAAA9o9yEQAAAAAAAADAPCSdXBQRUamOZ5AEAAAAAPafchEAAAAAAAAAwDysGKx/clFExDblIgAAAADahHIRAAAAAAAAAMA8LOrtiwMGBuvOVKoTGaUBAAAAgP2jXAQAAAAAAAAAME/lUv3TiypOLgIAAACgTSgXAQAAAAAAAADMU3lwpO515SIAAAAA2oVyEQAAAAAAAADAPJVLCeWiSeUiAAAAANqDchEAAAAAAAAAwDwllYsm9u6JvfumM0oDAAAAAAunXAQAAAAAAAAAME/l0nDiTGVyIoMkAAAAALB/lIsAAAAAAAAAAOZpdOiAxJlKdbz5QQAAAABgPykXAQAAAAAAAADM0wGLl0RfT0/dGeUiAAAAANqBchEAAAAAAAAAwDwVCoUol0bqzmzbpVwEAAAAQOtTLgIAAAAAAAAAWIDyYP1ykZOLAAAAAGgHykUAAAAAAAAAAAuQdHJRZXIioyQAAAAAsHDKRQAAAAAAAAAAC1AuDde9PladiLlaLaM0AAAAALAwykUAAAAAAAAAAAuQdHLRzNxsPLmnmlEaAAAAAFgY5SIAAAAAAAAAgAUYTSgXRURUqhMZJAEAAACAhVMuAgAAAAAAAABYgBWl4cSZSnU8gyQAAAAAsHDKRQAAAAAAAAAAC7Coty8OWLyk7oxyEQAAAACtTrkIAAAAAAAAAGCByqWRuteViwAAAABodcpFAAAAAAAAAAALlFwumsgoCQAAAAAsjHIRAAAAAAAAAMAClUvDda87uQgAAACAVqdcBAAAAAAAAACwQEknF43v3R17Z/ZllAYAAAAA5k+5CAAAAAAAAABggZLKRRERY04vAgAAAKCFKRcBAAAAAAAAACzQaAPlokp1IoMkAAAAALAwykUAAAAAAAAAAAs0MjAYfT09dWe2VXdmEwYAAAAAFkC5CAAAAAAAAABggYqFQpQH659e5OQiAAAAAFqZchEAAAAAAAAAwH4ol4brXq9UxzNKAgAAAADzp1wEAAAAAAAAALAfyqWkk4uUiwAAAABoXcpFAAAAAAAAAAD7IalcNFadiLlaLaM0AAAAADA/ykUAAAAAAAAAAPshqVy0b242du6ZzCgNAAAAAMyPchEAAAAAAAAAwH4ol4YTZyrV8QySAAAAAMD8KRcBAAAAAAAAAOyHFQknF0UoFwEAAADQupSLAAAAAAAAAAD2w+LevhhZvKTujHIRAAAAAK1KuQgAAAAAAAAAYD+VE04vqlQnMkoCAAAAAPOjXAQAAAAAAAAAsJ/KpeG6151cBAAAAECrUi4CAAAAAAAAANhPyScXKRcBAAAA0JqUiwAAAAAAAAAA9tNoQrlo597dMTWzL6M0AAAAANA45SIAAAAAAAAAgP2UdHJRRMRYdSKDJAAAAAAwP8pFAAAAAAAAAAD7qZFy0bbqeAZJAAAAAGB+lIsAAAAAAAAAAPbTAQOD0VfsqTtTUS4CAAAAoAUpFwEAAAAAAAAA7KdioRArSsN1Z5SLAAAAAGhFykUAAAAAAAAAACkol0bqXlcuAgAAAKAVKRcBAAAAAAAAAKQguVw0kVESAAAAAGicchEAAAAAAAAAQArKpeG61yuT4zFXq2WUBgAAAAAao1wEAAAAAAAAAJCCpJOL9s3OxvieyYzSAAAAAEBjlIsAAAAAAAAAAFKQVC6KiNhWHc8gCQAAAAA0TrkIAAAAAAAAACAF5cHhxJlKdSKDJAAAAADQOOUiAAAAAAAAAIAULO7rj+HFA3VnKk4uAgAAAKDFKBcBAAAAAAAAAKSkPDhS97pyEQAAAACtRrkIAAAAAAAAACAl5VJCuWhSuQgAAACA1qJcBAAAAAAAAACQktGhpJOLJjJKAgAAAACNUS4CAAAAAAAAAEhJ0slFO/dMxtTMvozSAAAAAEAy5SIAAAAAAAAAgJQklYsiIsacXgQAAABAC1EuAgAAAAAAAABISbk0nDizrTqeQRIAAAAAaIxyEQAAAAAAAABASpYOlKK32FN3pqJcBAAAAEALUS4CAAAAAAAAAEhJsVCIFQmnF1WqExmlAQAAAIBkykUAAAAAAAAAACkqDyaVi5xcBAAAAEDrUC4CAAAAAAAAAEhRuTRS93plUrkIAAAAgNahXAQAAAAAAAAAkKLEclF1PGq1WkZpAAAAAKA+5SIAAAAAAAAAgBQllYv2zc7Gzr27M0oDAAAAAPUpFwEAAAAAAAAApGi0NJw4U6mOZ5AEAAAAAJIpFwEAAAAAAAAApGhFwslFEcpFAAAAALQO5SIAAAAAAAAAgBQN9PXH8KKBujPKRQAAAAC0CuUiAAAAAAAAAICUlRNOL6pUJzJKAgAAAAD1KRcBAAAAAAAAAKQsuVzk5CIAAAAAWoNyEQAAAAAAAABAypSLAAAAAGgXykUAAAAAAAAAACkrl4brXn9yz2RMz8xklAYAAAAAnptyEQAAAAAAAABAykYTTi6KiKhMOr0IAAAAgPwpFwEAAAAAAAAApKzcSLmoqlwEAAAAQP6UiwAAAAAAAAAAUrZ0YDB6iz11ZyrViYzSAAAAAMBzUy4CAAAAAAAAAEhZsViMFYNDdWecXAQAAABAK1AuAgAAAAAAAABognJppO515SIAAAAAWoFyEQAAAAAAAABAEySXiyYySgIAAAAAz025CAAAAAAAAACgCRo5uahWq2WUBgAAAACenXIRAAAAAAAAAEATlEvDda9Pz87E+N7dGaUBAAAAgGenXAQAAAAAAAAA0ARJJxdFPHV6EQAAAADkSbkIAAAAAAAAAKAJViScXBQRUalOZJAEAAAAAJ6bchEAAAAAAAAAQBMs6VsUQ4sG6s44uQgAAACAvCkXAQAAAAAAAAA0yWhppO515SIAAAAA8qZcBAAAAAAAAADQJOXScN3rykUAAAAA5E25CAAAAAAAAACgScoJJxdtUy4CAAAAIGfKRQAAAAAAAAAATZJULnpyz2RMz8xklAYAAAAAnkm5CAAAAAAAAACgSZLKRRERY5MTGSQBAAAAgGenXAQAAAAAAAAA0CTl0nDiTKU6nkESAAAAAHh2ykUAAAAAAAAAAE2ybKAUPcX6v56hXAQAAABAnpSLAAAAAAAAAACapFgsxorB+qcXKRcBAAAAkCflIgAAAAAAAACAJiqXRuper1QnMkoCAAAAAM+kXAQAAAAAAAAA0ETlkpOLAAAAAGhdykUAAAAAAAAAAE2UfHLReNRqtYzSAAAAAMDTKRcBAAAAAAAAADRRUrloanYmJvbuzigNAAAAADydchEAAAAAAAAAQBMllYsiIrZVJzJIAgAAAADPpFwEAAAAAAAAANBE5dJw4kylOp5BEgAAAAB4JuUiAAAAAAAAAIAmWtK3KIYWDdSdUS4CAAAAIC/KRQAAAAAAAAAATZZ0elFlUrkIAAAAgHwoFwEAAAAAAAAANFm5NFL3emWXchEAAAAA+VAuAgAAAAAAAABossRyUXUioyQAAAAA8HTKRQAAAAAAAAAATVYuDde9vmNPNaZnZzJKAwAAAAC/pFwEAAAAAAAAANBkSScXRUSMOb0IAAAAgBwoFwEAAAAAAAAANFkj5aJKdTyDJAAAAADwdMpFAAAAAAAAAABNtnygFD2F+r+mUXFyEQAAAAA5UC4CAAAAAAAAAGiyYrEYBw4O1Z1xchEAAAAAeVAuAgAAAAAAAADIQLk0Uvd6ZVK5CAAAAIDsKRcBAAAAAAAAAGQgsVzk5CIAAAAAcqBcBAAAAAAAAACQgeRy0UTUarWM0gAAAADAU5SLAAAAAAAAAAAyMFoarnt9amZfTEztySgNAAAAADxFuQgAAAAAAAAAIANJJxdFRFSq4xkkAQAAAIBfUi4CAAAAAAAAAMiAchEAAAAArUi5CAAAAAAAAAAgA0v6F0Vp0eK6M5XqREZpAAAAAOApykUAAAAAAAAAABkpD9Y/vWhbdWc2QQAAAADg55SLAAAAAAAAAAAyUi7VLxc5uQgAAACArCkXAQAAAAAAAABkpFwarnu9Uh3PKAkAAAAAPEW5CAAAAAAAAAAgI6MJJxc9ubsa07MzGaUBAAAAAOUiAAAAAAAAAIDMlBPKRbWIeGJyVzZhAAAAACCUiwAAAAAAAAAAMpNULoqIqFTHM0gCAAAAAE9RLgIAAAAAAADg/2fvzqPkLKiED9/q7nSWru4mCakkkMgiuyyCKIiCyCqChBERjQclUZQZZhxQDyjIiDqDuID7CpKwCsInggjKJjDILo4ZCMgaIQFSWUh3Kt3pTrrr+8NJDJDUW0l3vd1V9Tzn5I/p91LvLcaj55D8uEBKxo3JRmOm9B/XEBcBAAAAkCZxEQAAAAAAAABAShobGmLzltaSM+IiAAAAANIkLgIAAAAAAAAASFEu217yeb7QmdImAAAAACAuAgAAAAAAAABIVS7bVvK5y0UAAAAApElcBAAAAAAAAACQouTLRR1RLBZT2gYAAACAeicuAgAAAAAAAABIUVJctHL1qlje053SNgAAAADUO3ERAAAAAAAAAECKJibERRER+UJnCpsAAAAAgLgIAAAAAAAAACBVSZeLIiLyhY4UNgEAAAAAcREAAAAAAAAAQKrGNI+MbPOokjMLxUUAAAAApERcBAAAAAAAAACQsly2reRzl4sAAAAASIu4CAAAAAAAAAAgZblse8nn4iIAAAAA0iIuAgAAAAAAAABImbgIAAAAgOFCXAQAAAAAAAAAkLKkuGhpVyFW9a1OaRsAAAAA6pm4CAAAAAAAAAAgZblsW8nnxYhYvGJ5OssAAAAAUNfERQAAAAAAAAAAKUu6XBQRkS90pLAJAAAAAPVOXAQAAAAAAAAAkLLxY1qjIZMpOSMuAgAAACAN4iIAAAAAAAAAgJQ1NjTE5i1tJWfyhc6UtgEAAACgnomLAAAAAAAAAACGQC6bFBe5XAQAAABA5YmLAAAAAAAAAACGQC7bXvK5uAgAAACANIiLAAAAAAAAAACGQHJc1BnFYjGlbQAAAACoV01DvQDAUHvhhRfi97//fcyZMyfmzp0bzz33XCxfvjw6O//+D+pbW1ujtbU13vCGN8Quu+wSu+22Wxx66KGx/fbbD/Xqw96SJUviwQcfjEcffTQef/zxePbZZ+Oll16KRYsWRXd3d/T29sbIkSNj9OjRMXbs2Nhiiy1i6tSpseuuu8Yee+wR++23X2y22WZD/TUAAAAAAACgIiYmxEXdq3tjec/KaBs1OqWNAAAAAKhH4iKgLi1btiwuuuiiuOyyy2LOnDklZ5csWRJLliyJefPmxd13373259tvv31Mnz49/vmf/zkmTpxY6ZWrwsKFC+P222+PO+64I+6888545plnEv+a7u7u6O7ujqVLl75uvrGxMfbee+84+uij44QTToipU6dWanUAAAAAAABIXdLlooiIfKFDXAQAAABARWWK7mcDdaRQKMRXv/rV+OEPfxgrVqwYlM9sbm6Oj33sY3HuuefG5ptvPiifWU2eeuqpuPbaa+OGG26IBx98MPr7+yvynoaGhnjve98bZ511Vuy7774VeUc1WrRoUeRyuVf9LJ/Px4QJE4ZoIwAAAAAAAMq1orcnTrr2JyVn/nW/98R+W++Y0kYAAAAA9aue/1xuw1AvAJCWG264IXbeeef4xje+MWhhUUREb29vXHjhhbHjjjvGrFmzBu1zh7OFCxfG+eefH3vvvXfssMMOceaZZ8b9999fsbAoIqK/vz9uvPHGePvb3x7HHHNMPP/88xV7FwAAAAAAAKShpXlktDSPLDmTL3SktA0AAAAA9UpcBNS8/v7++OIXvxjHHHNMzJ8/v2LvWbp0acycOTM++clPRm9vb8XeM5Qee+yxOOaYY2LKlCnxuc99Lv70pz8NyR7XX3997LzzznHxxRcPyfsBAAAAAABgsOSy7SWfi4sAAAAAqDRxEVDT+vr64kMf+lD813/9VxSLxVTeeeGFF8Zhhx0WXV1dqbwvTf/93/8d119/faxevXqoV4murq74+Mc/HieddNKw2AcAAAAAAAA2RXJc1JnSJgAAAADUK3ERULP6+/vjxBNPjGuuuSb1d991113xT//0T9HT05P6u+vNRRddFMcdd1zNXosCAAAAAACgtuWybSWfu1wEAAAAQKU1DfUCAJVy1llnxeWXX75Rf832228f73jHO2LXXXeNcePGRSaTiVdeeSUef/zxuO++++LRRx8t+7NuueWWOOmkk+LSSy/d2NXZSL/+9a9jxowZccUVVwz1KgAAAAAAALBRki4XLelaHqv7+qKpsTGljQAAAACoN+IioCbdfPPN8fWvf73s+WnTpsWZZ54Zb3vb20rOPfroo/HNb34zLr/88ujv70/83Msuuyze9a53xcc//vGyd6k1EydOjH322Sfe+ta3xs477xxbb711TJkyJVpaWmL06NHR0dERixcvjpdffjnuu+++uPPOO+Puu++Orq6ujXrPlVdeGbvuumt84QtfqNA3AQAAAAAAgMGXFBcVI2LRis6Y3DY2nYUAAAAAqDuZYrFYHOolAAbTkiVLYqeddorFixcnzo4bNy4uu+yyeO9737tR77j//vvjgx/8YLzwwguJs6NHj445c+bEdtttt1HvGI5+8pOfxD//8z8nzu29997xgQ98IA4//PB485vfvNHvWbp0afzwhz+M73//+7Fo0aKy/7oRI0bEww8/HLvvvvtGv7NaLVq0KHK53Kt+ls/nY8KECUO0EQAAAAAAABtjYaEjTrthdsmZMw48JvbYYqt0FgIAAACoU/X853IbhnoBgMF21llnlRUWTZkyJR588MGNDosiIvbdd994+OGHY5dddkmc7e7ujtNOO22j31FtJk2aFGeffXY8+eST8dBDD8UZZ5yxSWFRxN+jr7PPPjuefvrpOP7448v+61atWlVW/AQAAAAAAADDxfgx2WjIZErO5Fd0pLQNAAAAAPVIXATUlD//+c9x4YUXJs61t7fHbbfdFm984xs3+V25XC5uv/32mDJlSuLsjTfeGDfddNMmv2s423vvveOqq66K559/Pr7yla/E9ttvP2if3dbWFldddVX84Ac/iEzCb6isce+998bNN988aDsAAAAAAABAJTU1NMb4Ma0lZ/IFcREAAAAAlSMuAmrKl7/85ejv70+cu/DCC2PHHXcc8PsmTZoUV155ZTQ2NibOfulLXxrw+4aT/fffP37/+9/HQw89FMcff3yMGDGiYu865ZRT4lvf+lbZ89/97ncrtgsAAAAAAAAMtly2veRzcREAAAAAlSQuAmrGX//617jhhhsS56ZNmxbHHXfcoL13//33j0996lOJcw8//HDccccdg/beobLHHnvETTfdFHfffXccdthhqb33M5/5THzyk58sa/a2226Ll156qcIbAQAAAAAAwOBIjos6U9oEAAAAgHokLgJqxgUXXBDFYrHkTFNT00ZdwCnXV77ylWhra0ucO//88wf93Wk69thj45FHHokjjjhiSN7/ta99LcaOHZs419fXF7/73e9S2AgAAAAAAAAGbmJr8uWipN8LBQAAAIBNJS4CakJPT09cffXViXPHHntsbLfddoP+/vHjx8cnPvGJxLnf//73sXDhwkF/f1omTJgQDQ1D9z8d48aNi7POOqus2TvvvLOyywAAAAAAAMAgSbpc1L2qNwq9K1PaBgAAAIB6Iy4CasKNN94YHR0diXOnnnpqxXb49Kc/nRje9PX1xVVXXVWxHerB9OnTI5PJJM795S9/SWEbAAAAAAAAGLhcti1xZuHy5N8PBQAAAIBNIS4CasIvfvGLxJntttsu9t1334rtsNVWW8X++++fOFfOrmzY5MmTY6+99kqce+aZZ1LYBgAAAAAAAAYu6XJRRES+IC4CAAAAoDLERUDV6+vri9tuuy1x7vjjj6/4Lh/60IcSZx566KFYsmRJxXepZfvss0/iTKFQiEKhkMI2AAAAAAAAMDDZ5lExZsTIkjP5FeIiAAAAACpDXARUvQcffDA6OpL/QfoRRxxR8V3KeUd/f3/cfvvtFd+llk2cOLGsuRUrVlR4EwAAAAAAABgcSdeL8oXOlDYBAAAAoN6Ii4CqV06o09raWta1m4HaaqutYrvttkucu/XWWyu+Sy0rNy5avXp1hTcBAAAAAACAwZHLtpV8ni+4XAQAAABAZYiLgKp33333Jc7ss88+0dTUlMI2Efvvv3/izAMPPJDCJrVr1apVZc21tLRUeBMAAAAAAAAYHBMTLxeJiwAAAACoDHERUPX+/Oc/J87stddeKWzyd295y1sSZx5//PHo6elJYZvatGjRosSZpqamaG1tTWEbAAAAAAAAGLhcQly0pKsQq/v6UtoGAAAAgHoiLgKq2sKFC+Oll15KnBtucdHq1avjf//3f1PYpjaV8/dum222icbGxhS2AQAAAAAAgIHLZdtKPi8Wi7G4a3lK2wAAAABQT8RFQFWbM2dOWXM77bRThTf5hx133LGsuXJ359WKxWLcf//9iXM777xzCtsAAAAAAADA4Ei6XBQRkS90pLAJAAAAAPVGXARUtWeffbasue22267Cm/zD2LFjY9y4cYlz5e7Oq91///1lXavaf//9U9gGAAAAAAAABsf4ltbIZDIlZ8RFAAAAAFSCuAioas8991zizKRJk6KlpSWFbf6hnJipnN15vdmzZ5c1d/DBB1d2EQAAAAAAABhETQ2NsfmY1pIz+UJnStsAAAAAUE/ERUBVmzdvXuLMFltsUflFXmPy5MmJM+Kijbd48eK47LLLEud23HHH2HPPPVPYCAAAAAAAAAZPLttW8rnLRQAAAABUgrgIqGoLFixInJk0aVIKm2z8O+fPn5/CJrXlq1/9anR3dyfOnXjiiZVfBgAAAAAAAAZZLrtZyefiIgAAAAAqQVwEVLUlS5YkzkycODGFTV6tnLho6dKlKWxSO5544on48Y9/nDjX1tYWJ598cgobAQAAAAAAwOCamHC5aGGhI4rFYkrbAAAAAFAvxEVAVSsnLtpss80qv8gmvHPFihXR09NT+WVqQF9fX8ycOTNWrVqVOPtv//ZvQ/L/cwAAAAAAABioXLa95PPuVb1R6F2Z0jYAAAAA1AtxEVDVXnnllcSZ1tbWFDbZtHe6XlSeb33rW3Hfffclzm2xxRbx+c9/PoWNAAAAAAAAYPAlxUUREflCRwqbAAAAAFBPxEVA1eru7i7rks1QxEVtbW1lzXV0+Af/Se699944++yzy5r9xje+EdlstsIbAQAAAAAAQGWUFxd1prAJAAAAAPVEXARUrd7e3rLmRo8eXeFNXm/UqFFlzZX7HerVokWL4vjjjy8rIjvqqKPiIx/5SApbAQAAAAAAQGW0NI+MMSOaS864XAQAAADAYGsa6gUANlW5YU5jY2OFN3m9pqby/utVXLRhq1atiuOOOy7mz5+fODt+/Pi48MILU9iqOrzzne8s+z+DVM5jjz021CsAAAAAAABVJpPJRC7bHvNeWbTBGXERAAAAAIPN5SKgapUb5gxFZFHuO8u5yFOvTj755LjrrrvKmv35z38ekyZNqvBGAAAAAAAAUHm5bHvJ5+IiAAAAAAabswZA1Vq9enVZc+Ki6vP1r389Lr744rJmP/e5z8W0adMqvFF1ueeee2LChAlDvQYAAAAAAACbIDku6kxpEwAAAADqhctFQNUqN+Dp6+ur8Cab/s6hCJ+GuyuuuCK+8IUvlDW7//77x9e+9rUKbwQAAAAAAADpyWXbSj5f3LU8Vven/3ugAAAAANQucRFQtZqbm8uaK/fC0WAq9yJRud+hXtx0000xY8aMKBaLibM77bRTXHfddQItAAAAAAAAakrS5aJisRhLVixPaRsAAAAA6oG4CKhaI0aMKGtuKOKict8pLvqHe+65Jz7wgQ+UFWa94Q1viFtvvTXGjx+fwmYAAAAAAACQnqS4KCIiX+hIYRMAAAAA6oW4CKhaI0eOLGtu5cqVFd5k098pLvq7P/3pT3HkkUdGd3d34mwul4tbb701pkyZksJmAAAAAAAAkK7Nx7RGJpMpOZMvdKa0DQAAAAD1oGmoFwCqy3PPPRcPPPBARd/R0tIS73vf+xLnRo8eHU1NTYlXgpYvXz5Yq5Wt3He2tbVVeJPh77HHHovDDz88OjuTfwNks802i1tuuSV22GGHFDYDAAAAAACA9DU1Nsb4MdlYvGLDv+fochEAAAAAg0lcBGyUu+66K2bMmFHRd2y11VZlxUUREWPHjo1FixaVnCknWhls5b5z3LhxFd5keHvqqafikEMOiSVLliTOtrS0xE033RR77LFHCpsBAAAAAADA0JmYbS8ZFy0UFwEAAAAwiBqGegGAgRg/fnziTEdH+v9gvZx3jhkzJkaNGpXCNsPTc889FwcddFC8/PLLibOjRo2KG264Id7+9rensBkAAAAAAAAMrVy2veTzfCH9f8EiAAAAALVLXARUtXLiooULF6awyauVE8yUs3utmj9/fhx88MExf/78xNkRI0bENddcEwcddFAKmwEAAAAAAMDQS46LlkWxWExpGwAAAABqnbgIqGpbbrll4kw5oc9gK+ed5exei15++eU46KCD4rnnnkucbWxsjCuuuCKOOuqoFDYDAAAAAACA4SEpLupa1RsrentS2gYAAACAWicuAqra1ltvnTjz4osvVn6R13jppZcSZ7bZZpsUNhleFi1aFAcffHA89dRTibOZTCYuvvjiOO6441LYDAAAAAAAAIaPXLYtcSZf6EhhEwAAAADqgbgIqGrlBDovv/xydHV1pbDNPzz99NOJM/UWFy1ZsiQOOeSQmDt3blnzP/rRj+KjH/1ohbcCAAAAAACA4SfpclGEuAgAAACAwSMuAqratttumzhTLBbLin0Gy7Jly2LJkiWJc+XsXiuWLVsWhx12WMyZM6es+fPPPz9OPvnkCm8FAAAAAAAAw1O2eVSMHtFcckZcBAAAAMBgERcBG+XEE0+MYrFY0V/z5s0re5/ddtutrLknnnhiE7/xxiv3XeXuXu06Ozvj8MMPj0ceeaSs+a985Svxmc98psJbAQAAAAAAwPCVyWQSrxctLHSmtA0AAAAAtU5cBFS1yZMnx8SJExPnyg1bBkM572pqaordd989hW2GVqFQiCOOOCIefPDBsuY///nPx9lnn13hrQAAAAAAAGD4y2XbSj53uQgAAACAwSIuAqreXnvtlTiTZlz0pz/9KXFmp512ilGjRqWwzdDp6uqKI488Mu69996y5j/96U/H1772tQpvBQAAAAAAANUh6XKRuAgAAACAwSIuAqre29/+9sSZ+++/P1avXp3CNhF333134sw+++yTwiZDZ+XKlXH00UeX9fciIuKkk06K7373uxXeCgAAAAAAAKpHUly0pGt5rO7vS2kbAAAAAGqZuAioegcffHDizPLly+PBBx+s+C7PP/98PP3004lzhx56aMV3GSq9vb3xT//0T3H77beXNX/CCSfET37ykwpvBQAAAAAAANUl11I6LuovFmNJVyGlbQAAAACoZeIioOq97W1vi7a2tsS5m2++ueK7lPOOTCZTVhBVjVatWhXHHXdc/O53vytr/rjjjotZs2ZFQ4P/OQIAAAAAAIB15bLJvweaL3SksAkAAAAAtc6f5gaqXlNTU1mxztVXX13xXa666qrEmb333js233zziu+Str6+vpg+fXrccMMNZc2/733viyuuuCIaGxsrvBkAAAAAAABUnwktbZHJZErOiIsAAAAAGAziIqAmfPjDH06ceeqpp+KBBx6o2A7PP/983H333Ylz5exabfr7++OjH/1oXHvttWXNH3744XHNNdfEiBEjKrwZAAAAAAAAVKemxsYYPyZbckZcBAAAAMBgEBcBNeF973tftLW1Jc595zvfqdgO3/ve96K/v7/kTENDQ3zoQx+q2A5DoVgsxic+8Ym48sory5o/8MAD47rrrouRI0dWeDMAAAAAAACobrlse8nn+UJnSpsAAAAAUMvERUBNGDVqVHzwgx9MnLv22mvj6aefHvT3L1myJC688MLEucMOOywmT5486O8fSqecckrMmjWrrNn99tsvfvOb38To0aMrvBUAAAAAAABUv6S4aOFyl4sAAAAAGDhxEVAzPvOZz0Qmkyk5s3r16vjc5z436O/+j//4j+jsTP63gn32s58d9HcPpc985jPx4x//uKzZvffeO26++ebIZrMV3goAAAAAAABqQy7bVvJ5viAuAgAAAGDgxEVAzdh5553jqKOOSpy7/vrr45prrhm0995zzz3x05/+NHFur732ikMOOWTQ3hsRMW/evMhkMom/DjzwwEF9b0TEWWedFd/+9rfLmt1jjz3illtuiba20r/5AQAAAAAAAPxDrqX05aKuVT1R6F2Z0jYAAAAA1CpxEVBTvvSlL0VDQ/J/tZ100knx5JNPDvh9L7/8ckyfPj36+voSZ88555wBv2+4+K//+q8499xzy5rdZZdd4tZbb42xY8dWeCsAAAAAAACoLbls6bgowvUiAAAAAAZOXATUlLe85S0xc+bMxLmOjo44+OCD49lnn93kdy1atCgOOeSQeOGFFxJnjzjiiHjf+963ye8aTr7zne/EF7/4xbJmt99++7j99ttjwoQJFd4KAAAAAAAAak95cVFnCpsAAAAAUMvERUDNOffcc2P8+PGJc/Pnz4+3ve1tcfPNN2/0Ox544IHYe++947HHHkucHTVqVHz3u9/d6HcMRz/72c/itNNOK2t26623jjvuuCMmTZpU4a0AAAAAAACgNrWOHBWjm5pLzrhcBAAAAMBAiYuAmjNhwoSYPXt2ZDKZxNklS5bEe9/73nj/+98fDz/8cOL83LlzY8aMGbHffvvF888/X9Y+3/3ud2P77bcva3a4O/fcc8uenTdvXkydOjUymcyQ/TrnnHMq9zcDAAAAAAAAKiyTyUQu21ZyRlwEAAAAwEA1DfUCAJVw1FFHxec+97n45je/Wdb8ddddF9ddd13ssMMO8c53vjPe9KY3xbhx4yKTycQrr7wSTzzxRNx3330xZ86cjdpj+vTp8clPfnJTvgIAAAAAAABA5LLt8bdlizf4XFwEAAAAwECJi4Cadd5558X8+fPjF7/4Rdl/zZNPPhlPPvnkoLz/4IMPjosvvnhQPgsAAAAAAACoT7lse8nn+UJnSpsAAAAAUKsahnoBgEppaGiISy+9NN7//ven/u53vvOdcf3118fIkSNTfzcAAAAAAABQO3LZtpLPF6/ojL7+/pS2AQAAAKAWiYuAmtbU1BTXXHNNnHHGGam9c8aMGXHbbbdFS0tLau8EAAAAAAAAalPS5aL+YjGWdC1PaRsAAAAAapG4CKh5DQ0Ncd5558V1110XW2yxRcXeM3bs2Ljwwgvj4osvdrEIAAAAAAAAGBRJcVFERL7QkcImAAAAANQqcRFQN4455ph44okn4nOf+9ygXhVqbm6Oj3/84/HXv/41PvGJTwza5wIAAAAAAABMaGmLTMJMvtCZyi4AAAAA1CZxEVBXWltb45vf/Ga88MILcd5558Wb3vSmTf6sN77xjfHFL34x5s2bFxdddFFMmDBhEDcFAAAAAAAAiGhqbIzxY1pLzrhcBAAAAMBANA31AgBDYezYsXHGGWfEGWecEX/729/illtuib/85S8xd+7cmDdvXnR2dsby5cujWCxGa2trtLa2xtSpU2OXXXaJ3XbbLQ455JDYaaedhvprxNZbbx3FYjG1982bNy+1dwEAAAAAAAB/l8u2x+Ku5Rt8vlBcBAAAAMAAiIuAurfVVlvFSSedNNRrAAAAAAAAAKxXLtsWc/Mbfu5yEQAAAAAD0TDUCwAAAAAAAAAAsGG5bHvJ5+IiAAAAAAZCXAQAAAAAAAAAMIwlxUUrenui0LsypW0AAAAAqDXiIgAAAAAAAACAYSwpLoqIWFToTGETAAAAAGqRuAgAAAAAAAAAYBjLZdsSZ/KFjhQ2AQAAAKAWiYsAAAAAAAAAAIax1pGjY1TTiJIz4iIAAAAANpW4CAAAAAAAAABgGMtkMpHLtpecERcBAAAAsKnERQAAAAAAAAAAw1xyXNSZ0iYAAAAA1BpxEQAAAAAAAADAMJfLtpV87nIRAAAAAJtKXAQAAAAAAAAAMMwlXS5avGJ59PX3p7QNAAAAALVEXAQAAAAAAAAAMMwlxUV9xf5Y2lVIaRsAAAAAaom4CAAAAAAAAABgmJuYEBdFROQLHSlsAgAAAECtERcBAAAAAAAAAAxzm7e0RiZhRlwEAAAAwKYQFwEAAAAAAAAADHMjGpti3JhsyZmF4iIAAAAANoG4CAAAAAAAAACgCuSy7SWfu1wEAAAAwKYQFwEAAAAAAAAAVAFxEQAAAACVIC4CAAAAAAAAAKgCyXFRZ0qbAAAAAFBLxEUAAAAAAAAAAFUgl20r+bzQuzJW9PaktA0AAAAAtUJcBAAAAAAAAABQBZIuF0VELCp0pLAJAAAAALVEXAQAAAAAAAAAUAXKiYvy4iIAAAAANpK4CAAAAAAAAACgCrSNHB0jm0aUnFlY6ExpGwAAAABqhbgIAAAAAAAAAKAKZDKZyGXbSs64XAQAAADAxhIXAQAAAAAAAABUiVy2veRzcREAAAAAG0tcBAAAAAAAAABQJXIt4iIAAAAABpe4CAAAAAAAAACgSiRdLlq8Ynn09/entA0AAAAAtUBcBAAAAAAAAABQJSa2lo6L+or9saS7kNI2AAAAANQCcREAAAAAAAAAQJVIulwUEZEvdKSwCQAAAAC1QlwEAAAAAAAAAFAlNm9pjUzCjLgIAAAAgI0hLgIAAAAAAAAAqBLNjU0xdky25MzC5eIiAAAAAMonLgIAAAAAAAAAqCK5bHvJ5/lCZ0qbAAAAAFALxEUAAAAAAAAAAFUkl20r+TxfcLkIAAAAgPKJiwAAAAAAAAAAqkiuJeFy0QpxEQAAAADlExcBAAAAAAAAAFSRXLZ0XFToWRldvT0pbQMAAABAtRMXAQAAAAAAAABUkaS4KCIiv6IzhU0AAAAAqAXiIgAAAAAAAACAKjIx25Y4ky90pLAJAAAAALVAXAQAAAAAAAAAUEXaRo2JkY1NJWfERQAAAACUS1wEAAAAAAAAAFBFMplM5LLtJWfERQAAAACUS1wEAAAAAAAAAFBlkuOizpQ2AQAAAKDaiYsAAAAAAAAAAKpMLttW8rnLRQAAAACUS1wEAAAAAAAAAFBlctnNSj5ftKIz+vv701kGAAAAgKomLgIAAAAAAAAAqDJJl4v6+vtjaXchpW0AAAAAqGbiIgAAAAAAAACAKpPLtifO5AudKWwCAAAAQLUTFwEAAAAAAAAAVJkJCZeLIiIWFpZVfhEAAAAAqp64CAAAAAAAAACgyjQ3NsW40dmSMy4XAQAAAFAOcREAAAAAAAAAQBXKJVwvyhc6UtoEAAAAgGomLgIAAAAAAAAAqEK5bHvJ5+IiAAAAAMohLgIAAAAAAAAAqELJcVFnSpsAAAAAUM3ERQAAAAAAAAAAVSgpLlre0x1dq3pS2gYAAACAaiUuAgAAAAAAAACoQrlsW+LMIteLAAAAAEggLgIAAAAAAAAAqEJJl4siIvKFjhQ2AQAAAKCaiYsAAAAAAAAAAKpQ+6gx0dzYVHIm73IRAAAAAAnERQAAAAAAAAAAVSiTySReL3K5CAAAAIAk4iIAAAAAAAAAgCqVy7aVfC4uAgAAACCJuAgAAAAAAAAAoEq5XAQAAADAQImLAAAAAAAAAACq1MSEuGjRiuXR39+f0jYAAAAAVCNxEQAAAAAAAABAlUq6XLS6vy9e6V6R0jYAAAAAVCNxEQAAAAAAAABAlUqKiyIiFhY6UtgEAAAAgGolLgIAAAAAAAAAqFITWtoSZ/LiIgAAAABKEBcBAAAAAAAAAFSp5qamGDu6peSMuAgAAACAUsRFAAAAAAAAAABVLJdtL/lcXAQAAABAKeIiAAAAAAAAAIAqlhwXdaa0CQAAAADVSFwEAAAAAAAAAFDFctm2ks9dLgIAAACgFHERAAAAAAAAAEAVS7pc1NnTHd2relPaBgAAAIBqIy4CAAAAAAAAAKhiSXFRRMQi14sAAAAA2ABxEQAAAAAAAABAFSsnLlpY6ExhEwAAAACqkbgIAAAAAAAAAKCKbTZqTIxobCw5k3e5CAAAAIANEBcBAAAAAAAAAFSxTCaTeL1IXAQAAADAhoiLAAAAAAAAAACqXK5FXAQAAADAphEXAQAAAAAAAABUuYmtCXHRis6UNgEAAACg2oiLAAAAAAAAAACqXC5bOi5aVOiM/mIxpW0AAAAAqCbiIgAAAAAAAACAKpfLtpV8vrq/L17pKqS0DQAAAADVRFwEAAAAAAAAAFDlki4XRUTkCx0pbAIAAABAtREXAQAAAAAAAABUuQktpS8XRUQsFBcBAAAAsB7iIgAAAAAAAACAKjeyaURsNrql5Ey+0JnSNgAAAABUE3ERAAAAAAAAAEANyGVLXy/Ku1wEAAAAwHqIiwAAAAAAAAAAakCupb3kc3ERAAAAAOsjLgIAAAAAAAAAqAG5bEJctEJcBAAAAMDriYsAAAAAAAAAAGpAUlzUubI7Vq7qTWkbAAAAAKqFuAgAAAAAAAAAoAbksm2JM/kVnSlsAgAAAEA1ERcBAAAAAAAAANSAiQmXiyIi8oWOFDYBAAAAoJqIiwAAAAAAAAAAakD76JYY0dhYckZcBAAAAMBriYsAAAAAAAAAAGpAQyYTuZbS14vyhc6UtgEAAACgWoiLAAAAAAAAAABqRC6bFBe5XAQAAADAq4mLAAAAAAAAAABqhLgIAAAAgI0lLgIAAAAAAAAAqBG5bFvJ54sKndFfLKa0DQAAAADVQFwEAAAAAAAAAFAjki4Xrervi1e6CyltAwAAAEA1EBcBAAAAAAAAANSIiQlxUUREvtCZwiYAAAAAVAtxEQAAAAAAAABAjZiQbUucyRc6UtgEAAAAgGohLgIAAAAAAAAAqBEjm0bEZqPGlJwRFwEAAACwLnERAAAAAAAAAEANyWXbSz4XFwEAAACwLnERAAAAAAAAAEANSY6LOlPaBAAAAIBqIC4CAAAAAAAAAKghuWxbyecuFwEAAACwLnERAAAAAAAAAEANSbpc1LGyK1auXpXSNgAAAAAMd+IiAAAAAAAAAIAakhQXRUQscr0IAAAAgP8jLgIAAAAAAAAAqCHlxEX5QmcKmwAAAABQDcRFAAAAAAAAAAA1ZLPRLTGiobHkTN7lIgAAAAD+j7gIAAAAAAAAAKCGNGQyideLxEUAAAAArCEuAgAAAAAAAACoMblsW8nn4iIAAAAA1hAXAQAAAAAAAADUmKTLRQvFRQAAAAD8H3ERAAAAAAAAAECNSYqLFhU6o79YTGkbAAAAAIYzcREAAAAAAAAAQI1JiotW9ffFsu4VKW0DAAAAwHAmLgIAAAAAAAAAqDG5bFviTL7QkcImAAAAAAx34iIAAAAAAAAAgBozIeFyUYS4CAAAAIC/ExcBAAAAAAAAANSYUU0jon3UmJIz4iIAAAAAIsRFAAAAAAAAAAA1KZdwvShf6ExpEwAAAACGM3ERAAAAAAAAAEANymXbSj53uQgAAACACHERAAAAAAAAAEBNSr5cJC4CAAAAQFwEAAAAAAAAAFCTkuKiZSu7omf1qpS2AQAAAGC4EhcBAAAAAAAAANSgpLgoImJRoTOFTQAAAAAYzsRFAAAAAAAAAAA1KJdtS5xZWOhIYRMAAAAAhjNxEQAAAAAAAABADRo7OhsjGhpLzuTFRQAAAAB1T1wEAAAAAAAAAFCDGjKZmJBwvShf6ExpGwAAAACGK3ERAAAAAAAAAECNymXbSz7PF5alswgAAAAAw5a4CAAAAAAAAACgRiXHRS4XAQAAANQ7cREAAAAAAAAAQI3KZdtKPs+v6Ij+YjGlbQAAAAAYjsRFAAAAAAAAAAA1Kuly0aq+vujoXpHSNgAAAAAMR+IiAAAAAAAAAIAalRQXRUQsLHSksAkAAAAAw5W4CAAAAAAAAACgRuVa2hJn8oXOFDYBAAAAYLgSFwEAAAAAAAAA1KhRI5qjbdTokjN5l4sAAAAA6pq4CAAAAAAAAACghuVa2ks+FxcBAAAA1DdxEQAAAAAAAABADctlE+KiFeIiAAAAgHomLgIAAAAAAAAAqGGJcVGhM6VNAAAAABiOxEUAAAAAAAAAADUsl20r+XxZ94roWb0qpW0AAAAAGG7ERQAAAAAAAAAANWxiwuWiiIhFK1wvAgAAAKhX4iIAAAAAAAAAgBqWa02Oi/KFjhQ2AQAAAGA4EhcBAAAAAAAAANSwsaOz0dTQWHImX3C5CAAAAKBeiYsAAAAAAAAAAGpYQyYTE7JtJWcWLne5CAAAAKBeiYsAAAAAAAAAAGpcrqV0XJQviIsAAAAA6pW4CAAAAAAAAACgxuWy7SWf51eIiwAAAADqlbgIAAAAAAAAAKDGJcZFhY4oFospbQMAAADAcCIuAgAAAAAAAACocUlx0aq+vli2siulbQAAAAAYTsRFAAAAAAAAAAA1bmK2LXEmX+hIYRMAAAAAhhtxEQAAAAAAAABAjZuQcLkoQlwEAAAAUK/ERQAAAAAAAAAANW70iOZoGzm65Iy4CAAAAKA+iYsAAAAAAAAAAOpALuF6Ub7QmdImAAAAAAwn4iIAAAAAAAAAgDqQy7aVfO5yEQAAAEB9EhcBAAAAAAAAANSB5MtF4iIAAACAeiQuAgAAAAAAAACoA0lx0SvdK6J39eqUtgEAAABguBAXAQAAAAAAAADUgYkJcVFExKIVnSlsAgAAAMBwIi4CAAAAAAAAAKgDSZeLIiLyhY4UNgEAAABgOBEXAQAAAAAAAADUgbGjW6KpobHkzEJxEQAAAEDdERcBAAAAAAAAANSBhoaGmNDSWnLG5SIAAACA+iMuAgAAAAAAAACoE7lse8nn4iIAAACA+iMuAgAAAAAAAACoE8lxUWdKmwAAAAAwXIiLAAAAAAAAAADqRDmXi4rFYkrbAAAAADAciIsAAAAAAAAAAOpELttW8nlv3+roWNmV0jYAAAAADAfiIgAAAAAAAACAOpF0uSji79eLAAAAAKgf4iIAAAAAAAAAgDoxIeFyUUREvtCZwiYAAAAADBfiIgAAAAAAAACAOjFmxMhoHTm65IzLRQAAAAD1RVwEAAAAAAAAAFBHcgnXi8RFAAAAAPVFXAQAAAAAAAAAUEdy2faSz8VFAAAAAPVFXAQAAAAAAAAAUEeS46LOlDYBAAAAYDgQFwEAAAAAAAAA1JGJCXHR0u5C9PatTmkbAAAAAIaauAgAAAAAAAAAoI4kXS6KiFjkehEAAABA3RAXAQAAAAAAAADUkVy2LXEmX+hIYRMAAAAAhgNxEQAAAAAAAABAHRk3OhuNDaX/yIi4CAAAAKB+iIsAAAAAAAAAAOpIQ0NDTGgpfb1IXAQAAABQP8RFAAAAAAAAAAB1JpdtL/k8X+hMaRMAAAAAhpq4CAAAAAAAAACgzuSyLhcBAAAA8HfiIgAAAAAAAACAOpN8uagjisViStsAAAAAMJTERQAAAAAAAAAAdSYpLurpWx2dK7tS2gYAAACAoSQuAgAAAAAAAACoM0lxUUTEwkJnCpsAAAAAMNTERQAAAAAAAAAAdSbX0pY4ky90pLAJAAAAAENNXAQAAAAAAAAAUGfGNI+M7MhRJWfERQAAAAD1QVwEAAAAAAAAAFCHci3tJZ/nV4iLAAAAAOqBuAgAAAAAAAAAoA7lsglxUaEzpU0AAAAAGEriIgAAAAAAAACAOjSxNSkucrkIAAAAoB6IiwAAAAAAAAAA6lAu21by+StdhejtW53SNgAAAAAMFXERAAAAAAAAAEAdymVLXy4qRsSiQmc6ywAAAAAwZMRFAAAAAAAAAAB1KCkuiojIFzpS2AQAAACAoSQuAgAAAAAAAACoQ+NHZ6MxU/qPjuRdLgIAAACoeeIiAAAAAAAAAIA61NDQEJu3tJaccbkIAAAAoPaJiwAAAAAAAAAA6lQu217yeX6FuAgAAACg1omLAAAAAAAAAADqVGJc5HIRAAAAQM0TFwEAAAAAAAAA1KnkuKgzisViStsAAAAAMBTERQAAAAAAAAAAdWpitq3k857Vq6KzpzulbQAAAAAYCuIiAAAAAAAAAIA6lXS5KCIiX+hIYRMAAAAAhoq4CAAAAAAAAACgTomLAAAAABAXAQAAAAAAAADUqTHNIyPbPKrkTL7QmdI2AAAAAAwFcREAAAAAAAAAQB3LZdtKPne5CAAAAKC2iYsAAAAAAAAAAOpYLrtZyefiIgAAAIDaJi4CAAAAAAAAAKhjLhcBAAAA1DdxEQAAAAAAAABAHZuYbS/5fGlXIVb1rU5pGwAAAADSJi4CAAAAAAAAAKhjuYS4qBgRi1YsT2cZAAAAAFInLgIAAAAAAAAAqGNJcVFERL7QkcImAAAAAAwFcREAAAAAAAAAQB0bNyYbjZnSf4REXAQAAABQu8RFAAAAAAAAAAB1rLGhITZvaS05Iy4CAAAAqF3iIgAAAAAAAACAOpfLtpd8ni90prQJAAAAAGkTFwEAAAAAAAAA1Llctq3kc5eLAAAAAGqXuAgAAAAAAAAAoM4lXy7qiGKxmNI2AAAAAKRJXAQAAAAAAAAAUOeS4qKVq1fF8p7ulLYBAAAAIE3iIgAAAAAAAACAOpcUF0VE5AudKWwCAAAAQNrERQAAAAAAAAAAda68uKgjhU0AAAAASJu4CAAAAAAAAACgzrU0j4yW5pElZ8RFAAAAALVJXAQAAAAAAAAAQExMuF4kLgIAAACoTeIiAAAAAAAAAAAilxgXdaa0CQAAAABpEhcBAAAAAAAAAJAYFy0sLEtnEQAAAABSJS4CAAAAAAAAACAxLlraVYhVfatT2gYAAACAtIiLAAAAAAAAAACIXLat5PNiRCxesTydZQAAAABIjbgIAAAAAAAAAIDEy0UREflCRwqbAAAAAJAmcREAAAAAAAAAADF+TGs0ZDIlZ8RFAAAAALVHXAQAAAAAAAAAQDQ2NMTmLW0lZ/KFzpS2AQAAACAt4iIAAAAAAAAAACIiIpdNiotcLgIAAACoNeIiAAAAAAAAAAAiIiKXbS/5XFwEAAAAUHvERQAAAAAAAAAAREQ5cVFnFIvFlLYBAAAAIA3iIgAAAAAAAAAAIiI5Lupe3RvLe1amtA0AAAAAaRAXAQAAAAAAAAAQERG5bFviTL7QkcImAAAAAKRFXAQAAAAAAAAAQEQkXy6KEBcBAAAA1BpxEQAAAAAAAAAAERGRbR4VLc0jS87kV4iLAAAAAGqJuAgAAAAAAAAAgLWSrhflC50pbQIAAABAGsRFAAAAAAAAAACslRgXLXe5CAAAAKCWiIsAAAAAAAAAAFgrl20r+TxfEBcBAAAA1BJxEQAAAAAAAAAAayVdLlrStTxW9/WltA0AAAAAlSYuAgAAAAAAAABgraS4qBgRi1Z0prMMAAAAABUnLgIAAAAAAAAAYK2kuCgiIl8QFwEAAADUCnERAAAAAAAAAABrjR+TjYZMpuRMfkVHStsAAAAAUGniIgAAAAAAAAAA1mpqaIzxY1pLzuQL4iIAAACAWiEuAgAAAAAAAADgVXLZ9pLPxUUAAAAAtUNcBAAAAAAAAADAqyTHRZ0pbQIAAABApYmLAAAAAAAAAAB4lYnZtpLP84WOKBaLKW0DAAAAQCWJiwAAAAAAAAAAeJWky0Xdq3qj0LsypW0AAAAAqCRxEQAAAAAAAAAAr5IUF0X8/XoRAAAAANVPXAQAAAAAAAAAwKvkWsuJizpT2AQAAACASmsa6gUoz8qVK2PBggWxePHi6OjoiGXLlsXy5cujt7c3ent7Y9WqVdHY2BjNzc0xYsSIGDNmTLS3t8dmm20WY8eOjcmTJ8f48eOH+msAAAAAAAAAAFUg2zwqxowYGV2rejY443IRAAAAQG0QFw0jhUIh/vKXv8TcuXPjqaeeiqeeeiqeeeaZWLBgQSxbtmzAn9/c3ByTJ0+OrbfeOrbbbrvYfvvtY4cddog99tgjtt566wF/PgAAAAAAAABQO3LZ9pj3Sn6DzxeKiwAAAABqgrhoiKxatSoeeeSRuPfee+O+++6LRx55JObNmxfFYvFVc6/9vweip6cn5s2bF3/729/irrvuetWztra22H333eOtb31r7LfffrHffvvFpEmTBu3dAAAAAAAAAEB1yWXbSsZFLhcBAAAA1AZxUYoefvjhuO222+LWW2+N++67L3p6/nE6vFRElMlkBnWP9b2ro6Mj7rnnnrjnnnvi29/+dkREbLPNNnHwwQfHIYccEgcffHCMGzduUPcAAAAAAAAAAIavidn2ks/FRQAAAAC1QVxUQV1dXfH73/8+brjhhvjtb38bS5YsWfvstYFPUkA0GBeM1rxjQ+967TueffbZeO655+Kiiy6KTCYTb3vb22LatGlx9NFHx8477zzgfQAAAAAAAACA4SuXEBct6SrE6r6+aGpsTGkjAAAAACpBXDTIent748Ybb4wrr7wybrrpprXXicqNiQYjItqQpOtI69tpzV9TLBbjgQceiAceeCDOPPPM2H777WP69OnxoQ99KHbYYYeK7QwAAAAAAAAADI1ctq3k82KxGIu7lsek1s3SWQgAAACAimgY6gVqxb333hsf//jHI5fLxXHHHRfXXXddrFy5MorFYhSLxbXxzroRz5pn6/4aKhvaZd2d13325JNPxpe//OXYeeed4y1veUv84Ac/iFdeeWXI9gcAAAAAAAAABlfS5aKIiHyhI4VNAAAAAKgkcdEAvPLKK/Gtb30rdtlll9h///1j9uzZ0dnZud6gKOL1Ac9wVyo0Wjc2+vOf/xz//u//HltssUV8+MMfjjvuuGOINwcAAAAAAAAABmp8S+vaP/OwIeIiAAAAgOonLtoEc+bMiZNOOimmTJkSZ5xxRjzxxBNlBUXVrNRVozXPe3p64pe//GUceuihseuuu8ZPf/rT6OrqGsq1AQAAAAAAAIBN1NTQGJuPaS05ky90prQNAAAAAJUiLtoIv/vd7+Kggw6KPffcMy6++OLo7u6u6aColHW/4/quGc2dOzf+5V/+Jbbccss488wzY+HChUO9MgAAAAAAAACwkXLZtpLPXS4CAAAAqH7iogTFYjGuvPLKePOb3xxHHnlk3HXXXa+LatbMVSIoWjfcGaxfg63UNaOOjo74+te/Httss0186lOfiqeffnrQ3w8AAAAAAAAAVEYu217yubgIAAAAoPqJizagWCzGFVdcETvvvHOccMIJMWfOnJJR0UCUEwKtGy8N5FfS+wYSH5W6ZrRy5cq46KKLYpdddokZM2bEM888M6C/ZwAAAAAAAABA5SXFRQsLHYP+L2IFAAAAIF1NQ73AcHT11VfHOeecE08++eSr/gHYukHRptpQvLOhzxw9enRsueWWa3+1trbG6NGj1/tr1apV0dXVFd3d3a/7tXDhwpg/f34sWLAglixZUnK39e24sd95Q5eMVq9eHZdeemlcccUVccIJJ8Q555wTU6dO3ajPBgAAAAAAAADSkRQXda/qjRW9PZEdOSqljQAAAAAYbOKiddxxxx1xxhlnxCOPPPKqOGaNTYmKygl12traYrfddovdd989dt9999hqq61iyy23jClTpsTYsWM3+p1Jenp6YsGCBbFgwYKYP39+PP744zFnzpyYM2dO/O1vf3vdfuu7olSuUpHR7Nmz4xe/+EWccsopceaZZ1bkuwIAAAAAAAAAm25iQlwUEZEvdIiLAAAAAKqYuCgiHnvssfjsZz8bt956a0T8PX7Z1JgmKSYaN25cvOtd74q99trrVTFRmkaOHBnbbrttbLvttq97tnz58vjf//3ftbHRPffcE4899th6I6E1yvn7s6HIaOXKlXHBBRfEz3/+8zjrrLPi3//936OpyX8sAQAAAAAAAGA4SLpcFPH3uGjb8RNT2AYAAACASqjriuOVV16Js88+O372s59FX1/f664VlRsVlYptNttsszjggAPiwAMPjHe/+92x++67rzdAGi5aW1tjv/32i/3222/tz5YsWRJ33nln3HnnnfGHP/wh5s6du/bZxl412lBktGzZsjj99NPjpz/9aVxwwQVx1FFHDebXAgAAAAAAAAA2QUvzyBgzojm6VvVucGZhoSPFjQAAAAAYbHUZFxWLxfjxj38c//Ef/xGvvPLKoERF637GPvvsE9OmTYvDDjss9txzz2EdE5Vj/Pjxceyxx8axxx4bERGLFi2KP/zhD3HjjTfGTTfdFEuXLo2IjQuNNhQZPf300zFt2rQ49NBD4wc/+EFst912lfpaAAAAAAAAAECCTCYTuWx7zHtl0QZn8uIiAAAAgKpWd3HRn/70pzj55JPjkUce2aSoaH3xTENDQxx44IFx/PHHx9FHHx2TJk2qwObDx4QJE+KDH/xgfPCDH4z+/v747//+7/jVr34V11xzTbz88ssRUX5otKHI6JZbbonddtstzjjjjDjzzDOjubm5wt8KAAAAAAAAAFgfcREAAABAbWsY6gXS9K//+q+x7777rg2LXhu0lPLa2WKxGG9961vjO9/5TsyfPz9uv/32+OQnP1nzYdFrNTQ0xLve9a747ne/GwsWLIjbbrstPv7xj0dra+vav08Rr4+NXuu1sxERPT098dWvfjV22223eOihhyr/ZQAAAAAAAACA18ll20s+zxc6U9oEAAAAgEqoq7joRz/6UfT3968NiyJeHbW81pogJpPJrJ3bfPPN49RTT405c+bEAw88EJ/+9KfrLijakEwmEwcddFBceOGF8fLLL8cll1wS7373uyNi/ReK1mfN3+d1/74//fTTcfPNN6fyHQAAAAAAAACAV8tl20o+X9y1PFb396W0DQAAAACDra7iojXWjYU29Py18dF+++0XV1xxRcyfPz8uuOCC2HXXXdNcueqMGjUqTjjhhLj99tvjr3/9a5x66qnR3t6+UZERAAAAAAAAADD0ki4XFYvFWLJieUrbAAAAADDY6jIuKjcqGjFiRMyYMSP+53/+J+6555748Ic/HCNGjEhz1Zqw3XbbxQUXXBAvvvhi/OxnP4udd975dReKAAAAAAAAAIDhKSkuiojIFzpS2AQAAACASqjLuOi1XhsVtbe3x+c///mYN29e/PznP4/dd999iDesDaNGjYpPfOIT8eijj8ZvfvObOOCAA0RGAAAAAAAAADDMbT6mNfH39POFzpS2AQAAAGCw1XVc9NqoaPPNN49zzz03nn/++Tj33HNj0qRJQ7xh7TryyCPjzjvvjHvvvTeOOOIIkREAAAAAAAAADFNNjY0xfky25IzLRQAAAADVqy7jotdGRRMmTIjzzz8/5s2bF5///Ocjmy39D8QYPPvuu2/89re/jYcffjimTZv2qsgIAAAAAAAAABgectn2ks8XiosAAAAAqlZdxkURf4+K2tvb4z//8z/j2WefjdNOOy1Gjx491GvVrb322iuuu+66uP/+++Oggw6KYrEYESEyAgAAAAAAAIBhICkuyhc6U9oEAAAAgMFWd3FRsViM5ubmOP300+PZZ5+NM888M8aMGTPUa/F/3va2t8Vtt90Wt912W+y1115rIyMAAAAAAAAAYOjksm0ln+ddLgIAAACoWnUVF2UymZg+fXr89a9/jfPOOy8222yzoV6JDTjooIPioYceiksuuSS23HLLoV4HAAAAAAAAAOraxOxmJZ93reqJQu/KdJYBAAAAYFA1DfUCabr//vvjrW9961CvwUY44YQT4rjjjotnnnlmqFcBAAAAAAAAgLqVdLko4u/Xi7LjRqWwDQAAAACDqa4uFwmLqtOoUaPiTW9601CvAQAAAAAAAAB1K5dtT5zJL+9IYRMAAAAABltdxUUAAAAAAAAAAGy8bPOoGD2iueRMviAuAgAAAKhG4iIAAAAAAAAAAErKZDKJ14sWFjpT2gYAAACAwSQuAgAAAAAAAAAgUS7bVvK5y0UAAAAA1UlcBAAAAAAAAABAoqTLReIiAAAAgOokLgIAAAAAAAAAIFFSXLSka3ms7u9LaRsAAAAABou4CAAAAAAAAACARLmW0nFRf7EYS7oKKW0DAAAAwGARFwEAAAAAAAAAkCiXbUucyRc6UtgEAAAAgMEkLgIAAAAAAAAAINGElrbIJMyIiwAAAACqj7gIAAAAAAAAAIBETY2NMX5Ma8kZcREAAABA9anruOjWW28d6hUAAAAAAAAAAKpGLtte8nm+0JnSJgAAAAAMlrqOiw4//PDYeuut45xzzol58+YN9ToAAAAAAAAAAMNaLttW8rnLRQAAAADVp67jooiIF154Ib761a/GdtttFwcddFBcccUVsXLlyqFeCwAAAAAAAABg2Mm1Jl0uEhcBAAAAVJu6j4siIorFYvT398ddd90VH/3oR2PSpElx8sknxwMPPDDUqwEAAAAAAAAADBu5ltJx0Yrenij0+pe6AgAAAFQTcVFEZDKZyGQyUSwWo1gsRmdnZ1x44YWx3377xZve9KY4//zzI5/PD/WaAAAAAAAAAABDKpctHRdFRCwqdKawCQAAAACDRVwUf79cFPGPyGjd0Ojxxx+P008/PaZOnRrHHHNMXH/99dHX1zfEGwMAAAAAAAAApK+cuGhhoSOFTQAAAAAYLOKi/7MmJnptaLTm2apVq+I3v/lNvP/9748pU6bE6aefHnPnzh3KlQEAAAAAAAAAUtU6clSMbmouOZMXFwEAAABUFXHReqwbGq3vmtHChQvj/PPPj9122y323XffuPDCC6Oz00lvAAAAAAAAAKC2ZTKZyGXbSs6IiwAAAACqi7gowfquGa0bGj300ENx8sknx+TJk+OjH/1o/OEPfxjijQEAAAAAAAAAKieXbS/5XFwEAAAAUF3ERWVa95pRRLwuMuru7o4rrrgiDjnkkNh2223jq1/9ajz//PNDvDUAAAAAAAAAwOBKjos6U9oEAAAAgMEgLtoE64ZG67tmNG/evDjnnHNi2223jUMPPTSuuuqq6OnpGeq1AQAAAAAAAAAGLJdtK/l88YrO6OvvT2kbAAAAAAZKXDRA67tmtCY06u/vjzvuuCM+8pGPxOTJk+OUU06Jhx9+eIg3BgAAAAAAAADYdEmXi/qLxVjStTylbQAAAAAYKHFRvDoK2lTrXjNa9zPX/GzZsmXxk5/8JPbZZ5/Yfffd4zvf+U4sXrx4sL4CAAAAAAAAAEAqkuKiiIh8oSOFTQAAAAAYDHUdF51++ukxefLk9UZBA1HqmlGxWIxHH300PvvZz8aUKVPi2GOPjRtvvDH6nQMHAAAAAAAAAKrA5i2tkfQnK/KFzlR2AQAAAGDg6jouOu+88+L555+P3/72t3HsscdGc3Pz2gCokteM1jzr7e2NX//61zFt2rSYOnVqfOELX4i//vWvg/LdAAAAAAAAAAAqYURjU4wbky0543IRAAAAQPWo67goIqKhoSGOOOKIuOaaa+LFF1+M733ve7HXXntt8PrQplo3NFrfNaOXXnopvvGNb8Quu+wS73jHO+Liiy+OQqEwWF8TAAAAAAAAAGDQ5LLtJZ+LiwAAAACqR93HResaO3Zs/Ou//ms8/PDDMWfOnDj11FNjwoQJG7w+tKk2FC6t+fn9998fJ510UkyePDlmzJgRd99994C/GwAAAAAAAADAYJkoLgIAAACoGeKiDdh1113jggsuiAULFsSvf/3rmDZtWjQ2Nq73+tCmWveaUUS8LjJasWJFXHrppfHud787tt9++zj33HNjwYIFg/UVAQAAAAAAAAA2SfLlos6UNgEAAABgoMRFCRobG+Poo4+O6667LhYsWBDf+ta3Yrfddtvg9aFNtW5otL5rRs8880ycffbZsfXWW8d73vOeuOaaa2LVqlWD9TUBAAAAAAAAAMqWFBcVelfGit6elLYBAAAAYCDERRthwoQJ8ZnPfCb+8pe/xMMPPxz/8i//EmPHjl1vaDQQGwqXisVi9PX1xa233hof+tCHYvLkyfHpT386/vznPw/4uwEAAAAAAAAAlCspLoqIyBc6UtgEAAAAgIESF22ivfbaK37wgx/Eiy++GFdffXUcccQR0dDQULFrRut+5pqfLV26NH74wx/G3nvvHXvuuWd8//vfj6VLlw7K9wMAAAAAAAAA2JBcti1xRlwEAAAAUB3ERQPU3Nwcxx13XPz2t7+NF154Ib72ta/FjjvuuMHrQ5uq1DWjYrEYf/nLX+LUU0+NLbfcMo4//vi4+eab184DAAAAAAAAAAym1pGjY1TTiJIz4iIAAACA6iAuGkSTJk2KM844I+bOnRv33ntvnHTSSdHW1rbeMGhTbeia0ZpnPT09ce2118ZRRx0Vb3jDG+KLX/xiPP300wP/cgAAAAAAAAAA/yeTyUQu215yRlwEAAAAUB3ERRWy7777xk9/+tN46aWX4rLLLotDDjlk7aWhiMG9ZlQsFtd7zWjBggVrLykdcMABcckll0RXV9dgfUUAAAAAAAAAoI4lx0WdKW0CAAAAwECIiyps1KhR8ZGPfCRuueWWeO655+LLX/5ybLvttuu9PjQYodFrP2/Nz//4xz/GzJkzY9KkSfGJT3wi/vjHPw7K9wMAAAAAAAAA6lMu21byuctFAAAAANVBXJSiqVOnxtlnnx1PPfVU3HXXXfGxj30sxowZs94waFOte81o3c9b87NCoRCzZs2KAw44IHbcccf4+te/Hi+99NKgfD8AAAAAAAAAoH4kXS5avGJ59PX3p7QNAAAAAJtKXDRE9t9//5g1a1a8/PLLcfHFF8cBBxwQEVGRa0bFYnG914yeeuqpOPPMM+MNb3hDHHnkkfGrX/0qVq9ePSjfDwAAAAAAAACobUlxUV+xP5Z2FVLaBgAAAIBNJS4aYi0tLXHiiSfGnXfeGU8//XR88YtfjKlTpw7qNaOIWO/nrQmN+vr64ne/+10cd9xxscUWW8Rpp50Wc+bMGfB3AwAAAAAAAABqV1JcFBGRL3SksAkAAAAAAyEuGka22Wab+MpXvhLPPfdc3HrrrTF9+vQYNWrUeq8Pbap1rxlFxOuuGS1evDi+973vxZ577hl77713/OhHP4ply5YN0jcEAAAAAAAAAGrF5i2tkfQnGMRFAAAAAMOfuGgYymQycfDBB8fll18eL7/8cvzkJz+Jfffdd4PXhzZVqWtGxWIxHnnkkfi3f/u32GKLLWL69Olxyy23DMr3AwAAAAAAAACqX3NjU4wdky05s1BcBAAAADDsiYuGudbW1vjkJz8Z9957bzzxxBNx+umnx+TJk9cbBm2qDV0zWvNs5cqVcfXVV8cRRxwRW221VXzpS1+KZ599duBfDgAAAAAAAACoahOz7SWf5wudKW0CAAAAwKYSF1WRHXbYIc4777x4/vnn46abbooPfOAD0dzcvDYMGsxrRq/9vDU/e+GFF+I///M/Y/vtt493v/vdcfnll0d3d/cgfksAAAAAAAAAoFrkEuMil4sAAAAAhjtxURVqaGiI97znPfHLX/4yXnzxxfj+978fb3nLW9Z7fWgwQqPXft6an999993xsY99LCZPnhyf+tSn4v777x+U7wcAAAAAAAAAVIfEuGiFuAgAAABguBMXVbmxY8fGKaecEg899FDMmTMnTj311JgwYcJ6w6BNte41o3U/b83POjs746KLLop3vOMdscsuu8S3vvWtWLhw4aB8PwAAAAAAAABg+Mpl20o+L/SsjK7enpS2AQAAAGBTiItqyK677hoXXHBBLFiwIH7961/HtGnToqmpaW0ENJjXjF77eWt+9sQTT8QZZ5wRU6dOjaOPPjquv/766OvrG8RvCQAAAAAAAAAMF0mXiyIi8gXXiwAAAACGM3FRDWpsbIyjjz46rrvuuliwYEGcf/75sfvuu6/3+tBghEav/bxisRirV6+O3/72t/H+978/ttxyy0H5XgAAAAAAAADA8CIuAgAAAKh+4qIat/nmm8dpp50W//M//xN/+tOf4pRTTomxY8euNwzaVOteM3rt5xWLxVi0aNHAvwgAAAAAAAAAMOy0jRwdI5tGlJxZWOhMaRsAAAAANoW4qI7sueee8f3vfz9eeuml+OUvfxnvfe97o6GhoWLXjAAAAAAAAACA2pbJZCKXbSs543IRAAAAwPAmLqpDI0aMiA984ANx4403xgsvvBBf+9rXYscdd1zv9aFNDY0ERgAAAAAAAABQH3LZ9pLPxUUAAAAAw5u4qM5NmjQpzjjjjJg7d27cd999cdJJJ0VbW9t6QyMAAAAAAAAAgNfKtYiLAAAAAKqZuIi19tlnn/jpT38aL730Ulx++eVxyCGHRCaTWRsaCYwAAAAAAAAAgNdKuly0eMXy6O/vT2kbAAAAADaWuIjXGTVqVEyfPj1uueWWmDdvXnzlK1+JN77xjQIjAAAAAAAAAOB1ctm2ks/7iv2xpLuQ0jYAAAAAbCxxESVNmTIlzjzzzPj2t78tMAIAAAAAAAAAXifpclFERL7QkcImAAAAAGyKpqFegOHr8ccfj9mzZ8fll18eL7/88tqfF4vFIdwKAAAAAAAAABhOJiRcLor4e1z0polTU9gGAAAAgI0lLuJVOjo64he/+EXMmjUrHn744YgQEwEAAAAAAAAAG9bc2BTjRmdjaXdhgzP5QmeKGwEAAACwMcRFRLFYjFtuuSVmz54d119/ffT09LwqKMpkMq+aBQAAAAAAAABYV661PSEu6khxGwAAAAA2hriojj311FMxa9asuOyyy+LFF1+MiBAVAQAAAAAAAAAbLZdtiyfyCzb4XFwEAAAAMHyJi+rM8uXL46qrrorZs2fH/fffHxGCIgAAAAAAAABgYHIt7SWfLxQXAQAAAAxb4qI6cfvtt8esWbPi17/+dXR3d0fEP+KhdYOidX++qV77eQAAAAAAAABAbctlS8dFhZ6V0dXbE2OaR6a0EQAAAADlEhfVsGeffTZmz54dl156abzwwgsRUbkrRRsKlN785jfHzJkzB/TZAAAAAAAAAMDwlhQXRUTkV3TG1s0TUtgGAAAAgI0hLqoxK1asiF/+8pcxa9as+OMf/xgRlQuKNvR548aNi+nTp8fMmTPjzW9+84DfAQAAAAAAAAAMbxOzbYkz+UJHbD1WXAQAAAAw3IiLasSdd94Zs2fPjv/3//5fdHV1RcQ/Yp8NXRXaVOv7vIaGhjjssMNixowZccwxx0Rzc/OA3gEAAAAAAAAAVI+2UWNiZGNT9PSt3uBMvtCR4kYAAAAAlEtcVMX+9re/xezZs+PSSy+NefPmRUT6V4re+MY3xoknnhgnnnhibLnllgN+BwAAAAAAAABQfTKZTOSy7fFCx5INzoiLAAAAAIYncVGV6e7ujmuuuSZmz54dd999dxSLxdSDojFjxsSxxx4bM2fOjHe9610DfgcAAAAAAAAAUP2S46LOFLcBAAAAoFzioipxzz33xKxZs+Laa6+NQqEQEf+IfdYNgNb9+aba0Oftu+++MXPmzDj++OOjtbV1QO8AAAAAAAAAAGpLLttW8rnLRQAAAADDk7hoGJs/f35ccsklcckll8QzzzwTEZH6laKJEyfGCSecEDNnzoyddtppwO8AAAAAAAAAAGpTLtte8vmiFZ3R398fDQ0NKW0EAAAAQDnERcPMypUr41e/+lXMmjUr/vCHP0SxWNxgUBRRmStFTU1NceSRR8aMGTPiyCOPjMbGxgG9AwAAAAAAAACofUlxUV9/fyztLsTmLaUvHAEAAACQLnHRMHHffffF7Nmz45e//GV0dnZGxD/CoTSCooiIXXbZJWbMmBEnnHBC5HK5Ab0DAAAAAAAAAKgvSXFRRES+0CkuAgAAABhmxEVD6MUXX4xLL700LrnkknjyyScjIjZ4pWigQdGGPq+trS2OP/74mDlzZuyzzz4DfgcAAAAAAAAAUJ8mlBEN5QsdscvEKSlsAwAAAEC5xEUp6+3tjeuuuy5mz54dt912W/T3928wKIqozJWiTCYTBx54YMycOTOOPfbYGD169IDeAQAAAAAAAADQ3NQU40ZnY2l3YYMz+UJHihsBAAAAUA5xUUoeeuihmDVrVlx99dWxbNmyiPhHODTYQdFrP3PN502dOjU+9rGPxYwZM2KbbbYZ8DsAAAAAAAAAANaVy7aJiwAAAACqjLioghYuXBiXXXZZzJ49Ox5//PGIiA1eKapUUDRy5Mg45phjYsaMGXHooYe+LmQCAAAAAAAAABgsuWx7PLHoxQ0+XyguAgAAABh2xEWDbNWqVXHDDTfErFmz4pZbbom+vr4NBkURA4+KNvR5e+65Z8ycOTM+8pGPxGabbTagdwAAAAAAAAAAlCOXbS/5PF/oTGkTAAAAAMolLhokjzzySMyePTt+8YtfxNKlSyMi/StF48ePj+nTp8fMmTNjjz32GPA7AAAAAAAAAAA2RlJctLynO7pW9cSYESNT2ggAAACAJOKiAVi0aFFcfvnlMXv27Hj00UcjIr2gaM1nNjQ0xOGHHx4zZ86MadOmxYgRIwb8HgAAAAAAAACATZHLtiXOLCp0xlZjJ6SwDQAAAADlEBdtpL6+vvjNb34Ts2fPjptvvjlWr169waAoonJXit74xjfGjBkz4mMf+1hsueWWA34HAAAAAAAAAMBAJV0uiojIFzrERQAAAADDiLioTHPmzIlZs2bFlVdeGYsXL46I9K4Urfm8lpaW+MAHPhAzZsyIAw44YMDvAAAAAAAAgP/P3p1Hx12X/eO+J0nbtEmTsjTdWIVSKFC2CgXhoaKArAIqIAKFshYUFAoqqAh89SiLCrhAUXYQBER2WVRQZKdQpGVvoRRKUwpNOumezO8Pf4lpaWamTeYzWa7rnJwH8r5n3q9PipznhLxyA0BHqi7vF71Ly2Jp4/I2Z2rT9QkmAgAAACAX5aIsPv7447j55pvj2muvjSlTpkREcoWi1u+58847x/jx4+Owww6LysrKdt8DAAAAAAAAAFAIqVQqaiqrY1bdvDZnatN1CSYCAAAAIBflopU0NTXFAw88ENdee23cf//9sWzZsjYLRRGF21I0ePDgOOqoo2L8+PExYsSIdt8BAAAAAAAAAJCEmsoq5SIAAACALkS56P83derUuO666+Kmm26K2traiEh+S1GvXr1iv/32i/Hjx8c+++wTpaWl7b4HAAAAAAAAACBJNZXVWc+ViwAAAAA6lx5dLpo/f37ccsstcd1118ULL7wQEckXiiIittxyyzj22GPjqKOOioEDB7b7HgAAAAAAAACAYslVLprbsCCampqipKQkoUQAAAAAZNOjy0WDBw+OZcuWtVkoiuj4UlHz+1VXV8fhhx8exx57bOy4447tvgMAAAAAAAAAoDOoqazKer68qTE+WdQQ61T0TygRAAAAANn06HLR0qVLW4o/SWwpSqVS8fnPfz7Gjx8fX/nKV6K8vLzd9wAAAAAAAAAAdCa5NhdFRNSm65SLAAAAADqJHl0uapZKpTqkUNT8Xs2a33ODDTaIcePGxbHHHhsbbbRRh9wDAAAAAAAAANAZ1VTkLhfNSdfFFoPWSyANAAAAALkoF0X7NxWtqlBUXl4eBx10UIwfPz6+8IUvfGqTEQAAAAAAAABAd9S7rCzW6lsRnyxqaHOmNl2fYCIAAAAAslEuWkMrl4WaS0Xbb799jB8/Po444ogYMGBAEZIBAAAAAAAAABRXTWV1jnLR/OTCAAAAAJCVctFqWtWWonXXXTe+8Y1vxLHHHhujRo0qVjQAAAAAAAAAgE6hprI6Xp/7QZvnNhcBAAAAdB7KRXlY1Zai0tLS2GuvvWL8+PFx4IEHRq9evYqUDgAAAAAAAACgc6mprMp6XpuuSygJAAAAALkoF2Wxqi1Fw4cPj2OOOSbGjRsXQ4cOLVY0AAAAAAAAAIBOq6ayOut5/ZJFsWjZ0ujbq3dCiQAAAABoi3LRSlZVKKqoqIivfe1rMX78+Nh1112LFQ0AAAAAAAAAoEvIVS6KiJibrosN1hqYQBoAAAAAslEuihULRRH/KxXtsssuMX78+DjssMOioqKiGNEAAAAAAAAAALqcfMpFc9L1ykUAAAAAnYBy0f+vuVA0ZMiQOProo+PYY4+NzTbbrMipAAAAAAAAAAC6ngHl/aJXaWksa2xsc6Y2XZdgIgAAAADa0uPLRZlMJnr16hX7779/jB8/PvbZZ58oKSkpdiwAAAAAAAAAgC4rlUpFTWV1vF/3cZszykUAAAAAnUOPLhdttdVWceyxx8ZRRx0V6667brHjAAAAAAAAAAB0GzUVykUAAAAAXUGPLhe9/PLLxY4AAAAAAAAAANAt1VRWZz2vbahPKAkAAAAA2ZQUOwAAAAAAAAAAAN1PTWVV1vO56fpoymQSSgMAAABAW5SLAAAAAAAAAADocLk2Fy1vaoxPFqUTSgMAAABAW5SLAAAAAAAAAADocIP6Zy8XRUTUpusTSAIAAABANspFAAAAAAAAAAB0uIEVVTlnatN1CSQBAAAAIBvlIgAAAAAAAAAAOlyfsl4xoG9F1pk5C5SLAAAAAIpNuQgAAAAAAAAAgIKoqcy+vcjmIgAAAIDiKyt2ANZcY2NjzJ49Oz744INYsGBBLFq0KBYtWhSLFy+OTCbzqfmjjz66CCkBAAAAAAAAgJ6qpqI63pg7u81z5SIAAACA4lMu6iJee+21eOaZZ+Kll16Kl156KV5//fWora1dZYmoLcpFAAAAAAAAAECSaiqrs57XNigXAQAAABSbclEn1djYGPfdd1/cd9998fDDD8esWbNWOF+dUlFERCqV6sh4AAAAAAAAAAA55SoX1S9eFIuXLY3yXr0TSgQAAADAypSLOpk33ngjrrrqqrjpppvio48+iohVF4lWpyy0ukWkbC666KK47777cs7V1NTEHXfc0WH3AgAAAAAAAABdT01lVc6Z2ob62GDAugmkAQAAAGBVlIs6iddeey0uuOCCuP3226OpqWmFQlC2IlGu4lBHbyzae++94/vf/37WmUwmE6lUKh5//PHYfffdO/R+AAAAAAAAAKDrGJRjc1FERG26TrkIAAAAoIhKih2gp1uwYEFMmDAhtt5667jtttuisbGxpZzT/BHx38LOqj6Sts0228T+++/fcne2TL///e8TzwcAAAAAAAAAdB7VfSuiV2lp1pnadF1CaQAAAABYFeWiIrr33ntj5MiRMWnSpE+ViiKiqCWibL73ve+1/HXrElTrj0wmE3feeWcsWLCgiEkBAAAAAAAAgGIqSaWipiL79qLadH1CaQAAAABYFeWiIshkMvG9730vDjrooHj//ffbLBV1VjvvvHPssMMObW4varZkyZK46667ihUTAAAAAAAAAOgEaiqrsp7bXAQAAABQXMpFCVuwYEHss88+cfHFF3e5UlFrp5xySl5zt912W4GTAAAAAAAAAACdWU1lrs1FykUAAAAAxaRclKD6+vrYe++945FHHmkpFkWseamouZjU/D5JOuKII6K6urolx8pSqVRkMpl49NFHo77e+nIAAAAAAAAA6KlylYvmpuujqYv8MlYAAACA7ki5KCELFiyIvffeO55++umI+F/5Jt9SUesiUbEKRa316dMnDjnkkFXmb/255cuXx0MPPZRkNAAAAAAAAACgE8lVLlrW1BjzFzUklAYAAACAlSkXJeTII4+MZ555ZoVtRbmsXCRqLiM1f5SVlcWAAQNiyJAhLfNJOvLII/Oae+CBBwqcBAAAAAAAAADorAblKBdFRNSm6xJIAgAAAMCqlBU7QE/w4x//OO699968i0WtS0LNs+uvv37svffeMXr06Nhuu+1iww03jJqampa5kpLke2Jjx46NQYMGRW1tbcsmptaaP2dzEQAAAAAAAAD0XAMrq3LOzEnXxeY1wxJIAwAAAMDKlIsK7Mknn4wLL7xwtYtFmUwmqqur4+ijj47jjjsuRo0aVfCsqyuVSsWXvvSluP766z+1NSmTybR8bs6cOfHmm2/G8OHDixETAAAAAAAAACiiPmW9YkB5v5i/eGGbMzYXAQAAABRP8utuepBly5bFiSee2FIoylYsSqVSLZt++vTpE+eee27MmDEjLrvssk5ZLGq277775jX3xBNPFDgJAAAAAAAAANBZ1VRWZz1XLgIAAAAoHuWiAvrFL34R06ZNaykNtaX1tqKdd945pkyZEhdeeGEMGDAgoaRrbs8992zJv/L2otaUiwAAAAAAAACg58pdLqpPKAkAAAAAKysrdoDuauHChXHJJZdkLdxExArFo5NPPjkuv/zyKCvrOn8sAwYMiJEjR8a0adPanMlkMjF58uQEU8Hqee+99+Khhx6Kl19+OaZNmxYzZsyIBQsWRH19fWQymejfv3/0798/Nthggxg5cmRsvfXWseeee8bw4cOLHR0AAAAAAACgS6iprMp6bnMRAAAAQPF0nRZLF3PVVVfFvHnzsm4taj5LpVJxzjnnxIUXXphwyo6x8847x9SpU1dZpGp+xldffTWWL1/epYpTdG/z58+P3//+93HjjTfGyy+/nHV23rx5MW/evHjnnXfin//8Z8vnhw8fHkcccURMmDAhBg0aVOjInc6Pf/zjOP/884sdYwWnnnpq/PrXvy52DAAAAAAAAGAluTYX1S1eGIuXL4vysl4JJQIAAACgWUmxA3RXV1xxRdatRa2LRRMmTOiyxaKIiB133HGVn29dqlq2bFm8+uqrSUWCNqXT6fjud78b6623Xpx11lk5i0XZvPnmm3H++efHBhtsECeeeGJ89NFHHZgUAAAAAAAAoPvIVS6KiJhrexEAAABAUSgXFcDTTz8d77zzTkTEKrcWtS4Wfe5zn4vLLrss4YQda+TIkXnNvf766wVOAtndc889scUWW8RFF10UDQ0NHfa+S5cujauvvjpGjBgR1157bYe9LwAAAAAAAEB3kU+5qDZdn0ASAAAAAFamXFQAt9xyS5tnrbcZ9enTJ6655pooLS1NIlbBjBgxIq+5GTNmFDgJrFpTU1P84Ac/iIMOOihmzZpVsHs+/vjjGD9+fJx44omxdOnSgt0DAAAAAAAA0NUM6FsRvUqy/3xErc1FAAAAAEWhXFQADz744AolopU1by067bTTYtNNN00wWWGss846sfbaa0dEZH1u5SKKobGxMQ4//PD4yU9+sspNYoVw9dVXx1577RULFy5M5D4AAAAAAACAzq4klYqBlVVZZ5SLAAAAAIpDuaiDzZkzJ95+++2IiE8VGVoXb/r27RsTJ05MNFshDRs2LGdx4/33308oDfxXU1NTHHPMMXH77bcnfvfjjz8eBx98cCxZsiTxuwEAAAAAAAA6o5rK6qznykUAAAAAxVFW7ADdzRNPPJH1vHlr0QEHHBDrrrtuQqkKb9CgQfGf//wn68zcuXMTSgP/de6558ZNN920Wq8ZPnx4fO5zn4utttoq1l577UilUvHJJ5/Eq6++Gk899VS88soreb/Xww8/HCeccELccMMNqxsdAAAAAAAAoNvJXS6qTygJAAAAAK0pF3Wwl19+Oa+5ww47rMBJkjV48OA2z1KpVGQymfjoo48STERP9+CDD8bPf/7zvOe//OUvxznnnBM77rhj1rlXXnklLr744rjpppuiqakp5/veeOONsfvuu8dxxx2XdxYAAAAAAACA7mhQrnJRQ100ZTJRkkollAgAAACAiIiSYgfobqZPn77Kz6dafeMrlUrF2LFjE0qUjMrKypwz8+fPL3wQiIh58+bF0UcfHZlMJufs2muvHffff3/85S9/yVksiojYaqut4vrrr49///vfsf766+eV51vf+la89dZbec12NzNmzIhMJpPYx69//etiPzIAAAAAAADQhlybi5Y1NkbdooaE0gAAAADQTLmog7VVLmpt+PDhMWDAgMKHSVB5eXnOmSVLliSQBCLOPffcvDZlrbfeevHss8/Gvvvuu9p3jBkzJp5//vkYOXJkztlFixbFd77zndW+AwAAAAAAAKA7qamsyjkzJ12XQBIAAAAAWlMu6mCzZ89eYUtRa5lMJlKpVGy66aYJpyo85SI6ixdffDGuvvrqnHPV1dXx6KOPxiabbLLGd9XU1MTf/va3WG+99XLO3nffffHAAw+s8V0AAAAAAAAAXd3AHJuLIiJqlYsAAAAAEqdc1MEaGnKv586niNAdLV++vNgR6AHOP//8aGpqyjl39dVXx4gRI9p93+DBg+OWW26J0tLSnLPnnXdeu+8DAAAAAAAA6KrKy3pFdXm/rDPKRQAAAADJUy7qYPmUiyorKxNIkqxFixblnOnTp08CSejJXn/99bjnnntyzn35y1+Or33tax1272677RYnnXRSzrnnn38+/v73v3fYvQAAAAAAAABdTU2O7UW16fqEkgAAAADQTLmogy1evDjnTO/evRNIkqyFCxfmnOnXL/tvH4L2+sUvfhGZTCbrTFlZWVxyySUdfvcFF1wQVVVVOecuvfTSDr8bAAAAAAAAoKuoqcz+31VtLgIAAABInnJRB+vbt2/OmXy2/HQ1tbW1OWfy+drAmlqyZEncdtttOee+8pWvxKabbtrh96+zzjpx/PHH55x76KGHYs6cOR1+PwAAAAAAAEBXkHtzkXIRAAAAQNKUizpYPtt5GhoaEkiSrFmzZrV51rxJpn///knFoQe67777oq4u9zeZv/3tbxcsw2mnnRYlJdn/tdrY2Bi33nprwTIAAAAAAAAAdGa5ykXzFy+MJcuXJZQGAAAAgAjlog5XUVGRc+aDDz5IIEmyZsyYEalUqs3zVCoVw4YNSzARPc0f//jHnDObbrppjBkzpmAZNtxww9htt91yzuWTFQAAAAAAAKA7ylUuioiYm65PIAkAAAAAzZSLOthaa63VsqlnVTKZTMycOTPBRIU3a9as+PjjjyMisj77BhtskFQkepjGxsZ49NFHc84ddthhBc9y+OGH55x57rnnYt68eQXPAgAAAAAAANDZ1FRW5ZyZk65LIAkAAAAAzZSLOtjGG2/c5lnzZp833ngjli3rPiu8J0+enNecchGF8uyzz0ZdXe5vLu+zzz4Fz5LPHU1NTfG3v/2t4FkAAAAAAAAAOpu1+lZGWUlp1pla5SIAAACARCkXdbDPfOYzq/x8640+S5cujSlTpiQVqeDyLUkMHz68wEnoqfL5Z7B///6x0047FTzLhhtuGJtuumnOuUceeaTgWQAAAAAAAAA6m5JUKgbm2F5Um65PKA0AAAAAEcpFHa6tctHKulOx4IEHHmjZypTN6NGjE0hDT/TUU0/lnNlpp52irKwsgTQRu+22W86ZZ555JoEkAAAAAAAAAJ1PTUWucpHNRQAAAABJUi7qYDvssENec/fcc0+BkyRj8uTJ8fbbb0fEituZImKFwtGAAQNsLqJgXnzxxZwz22+/fQJJ/iuffw+8+uqrsWTJkgTSAAAAAAAAAHQug/oPyHpe26BcBAAAAJAk5aIOdhcHHQABAABJREFUtt1220Xfvn0jIj61zSeTyUQqlYpMJhPPPvtsvPrqq8WI2KEmTZqU9bz5mW0tolDmzJkTs2fPzjnX2cpFy5cvj//85z8JpAEAAAAAAADoXGoqc28uWvkXnAIAAABQOMpFHaysrCx23HHHvL7J9Zvf/CaBRIUzd+7cuPnmmz9VolqVvfbaK4FE9EQvv/xyXnObb755gZP8z4gRI/Kayzc7AAAAAAAAQHdSU1md9XxZY2PMX9SQUBoAAAAAyoodoDvaa6+94vHHH2/zvHl70R/+8Ic466yzYsMNN0wwXcf56U9/Gg0NDS3Pk83BBx+cUCp6munTp+c1t+mmmxY4yf+stdZasfbaa8fHH3+cdS7f7F3dokWL4oknnohnn302XnrppZg+fXrMmjUr0ul0LF68OMrLy6Nv375RXV0d66+/fqy//vqxxRZbxOjRo2P06NGx9tprF/sRAAAAAAAAgA6Uq1wUETEnXRdr9atMIA0AAAAAykUFcNhhh8W55567yrNMJtOy6Wfp0qVx5plnxh133JFkvA4xderU+N3vftfm1qLWhaORI0fGZz7zmSTj0YPMmDEj58zgwYOjoqIigTT/s+mmm8azzz6bdSaf7F3duHHj4rnnnotFixa1ObNw4cJYuHBhzJs371OFq5KSkthxxx1j//33j2984xux0UYbFTgxAAAAAAAAUGg1FVU5Z2rT9bF5zbAE0gAAAABQUuwA3dFnPvOZGD169ApFotaaP5/JZOKuu+6Km2++uQgp11xjY2OMGzculi5dGhGRdWtRKpWKb3zjG0lFowd65513cs4MHTq08EFWMmTIkJwzPaFc9M9//jNrsSiXpqamePrpp+MHP/hBbLLJJrHffvtl3QwHAAAAAAAAdH7lvXpHVXnfrDO16bqE0gAAAACgXFQg48aNyznTXDCaMGFCTJkyJYFUHeOb3/xmTJ48eYXtRK21LlT16dMnTjjhhCTj0cO8//77OWcGDx6cQJLVv3PWrFkJJOk+mpqa4oEHHoixY8fGPvvsE9OmTSt2JAAAAAAAAGAN1VRUZz1XLgIAAABIjnJRgRx33HExcODAiIg2txc1n6XT6dhvv/3i7bffTjTjmrjoooviqquuWuUztda8nenwww+PddZZJ6F09ETz5s3LOTNo0KAEkqwon3LRxx9/nECS7umvf/1rbL/99nHJJZdEU1NTseMAAAAAAAAAq6mmMke5qEG5CAAAACApykUFUl5eHqeddtoqN/s0a10w+uCDD2LXXXeNl19+OamIq+2CCy6I73//+y3Folxbi0pKSuLMM89MLB89Uz7logEDBhQ+yBrc2dDQEEuWLCl8mG5qyZIlcdZZZ8VBBx0UDQ0NxY4DAAAAAAAArIac5aJ0fUJJAAAAAFAuKqBvfetbUVNTExGr3l4UsWLBaM6cObHLLrvEjTfemFjGfKTT6TjyyCPj/PPPb8mbqzSVSqVi3LhxseWWWyYVkx7qk08+yTnTv3//BJKs2Z22F7XfvffeG7vuumt89NFHxY4CAAAAAAAA5Kmmsirr+fxFDbFk+bKE0gAAAAD0bMpFBVRVVRWXXHJJ1iJOxIoFo4ULF8YxxxwTX/7yl2PmzJlJxMzq/vvvj2233Tb++Mc/tpSG2nqe1gWqioqK+MlPfpJUTHqoRYsWxbJlub+ZXIxyUVVV9m+EN6urqytwkp7hpZdeir333tvXEwAAAAAAALqIQTk2F0VEzG2wvQgAAAAgCcpFBXbkkUfG2LFjW4o5bWldMMpkMnHffffFiBEj4tRTT40ZM2YkFbfFI488El/84hfjwAMPjOnTp+csFjVrnrvgggti0KBBCaWlp1q6dGlec3379i1wkk8rLy/Pay7fZ+hqSktLY9ttt40jjzwyfvazn8V9990XL730UkyfPj3mzZsXy5Yti8WLF8fHH38cr776ajz88MNx8cUXx9e+9rVYa6211ujOyZMnx1e+8pVoamrq4KcBAAAAAAAAOlpNHuWi2rRfLggAAACQhLJiB+gJrr322hg9enR8/PHHWQs6zcWc5pklS5bElVdeGVdddVWMHTs2jjjiiNhnn31iyJAhBck5efLkuPvuu+PWW2+Nt956a4VMzX/dlubMqVQqvvjFL8a3v/3tgmSE1vIt5pSWlhY4yaeVleX3r9fuVC4aNGhQfOlLX4p99tkn9tprr5wlobKysujTp0+stdZasfnmm8eee+4ZERGNjY3x8MMPx+9+97u49957VyvD3/72tzjvvPPiwgsvXOPn6A523XXXvP8ZpHCmTp1a7AgAAAAAAACd1lp9K6KspDSWNzW2OVObtrkIAAAAIAl+8jgBG264Ydx8882x77775twA1HqDUfPfZzKZ+Mc//hH/+Mc/IiJiiy22iNGjR8f2228fm2yySWywwQZ55ZgxY0YsWrQoFi5cGHPmzIlZs2bFjBkzYvLkyTF58uT45JNPVsiwco62tN7ItO6668b111+fVx5or3yLOcUoWeR757JlywqcpLBKS0tj3333jRNPPDH23XffKClp/0K80tLS2GeffWKfffaJF198Mb75zW/Gk08+mffrf/rTn8ZBBx0UO+ywQ7uzAAAAAAAAAIVRUlISAyv6x+wF89ucsbkIAAAAIBnKRQnZa6+94ic/+Ul8//vfX6GM05bWW4ya/77ZtGnT4tVXX40bb7zxU69Z1fs0/99NN900633NWufLVipqPZvJZKJv375x5513xuDBg7O+BjrK8uXL85pTLiqMAw44II4//vhYb731CnbHdtttF//617/iZz/7Wfzwhz+MpqamnK9pampqKSTl8+/b7uiJJ56IgQMHFjsGAAAAAAAAZFVTWa1cBAAAANAJtH/FBHn77ne/G+ecc86nikNtad5aFBEt8ytvNGo9k8vKr2n90db7Z9N6trS0NG6++ebYdddd88oCHSHfAk9jY2OBk6z5ncUoPnWUHXbYoaDFomYlJSVxzjnnxB133BG9evXK6zVPP/103HvvvQVOBgAAAAAAALRHTWV11vPadH1CSQAAAAB6NuWihP2///f/4qyzzlqhNJRLtiJQPiWlZqt6XVuFpXzeq/k1JSUlceWVV8ZBBx2UVw7oKL17985rLt8NRx0p341E+T4DEQcffPCnNrZlc/HFFxcwDQAAAAAAANBeuctFdXn/wlUAAAAA1pxyURH8/Oc/j0svvTRKSv775c+3HNRsVZuH1vR1q/serfNmMpno06dP/OlPf4rjjjtutZ4BOkK+W2yKUS7K907lotVz2GGHxcSJE/OafeKJJ2Lq1KkFTgQAAAAAAACsqVzloqWNy2P+4oUJpQEAAADouZSLiuQ73/lO3HfffVFdXb3CNqLOrnWxaJ111omHHnooDjnkkCKnoqfq06dPXnOLFy8ucJI1v1O5aPVdeOGFsckmm+Q1e/vttxc4DQAAAAAAALCmBlVW5ZypTdclkAQAAACgZysrdoCebO+9944XXnghTjjhhPj73/++QsGos631bl18ymQysccee8SNN94YQ4YMKWIqimHGjBnxzDPPFPSOioqKOOCAA3LO9e3bN8rKynJuCVqwYEFHRctbvndWVeX+ZjkrKi8vj/PPPz+OPPLInLP33HNP/PjHPy58KAAAAAAAAGC1DcyxuSjiv+WiEQOHJpAGAAAAoOdSLiqyjTfeOB599NGYNGlSnH322VFfX9+pSkYrl4r69esX559/fpxxxhldYtMSHe/xxx+PY489tqB3bLjhhnmViyIi1lprrZg7d27Wmfr6+o6ItVryvXPttdcucJLu6fDDD4/vfve78f7772ede/nllyOdTkdlZWVCyQAAAAAAAIB89e3VO6r69I36JYvanLG5CAAAAKDwSoodgP868cQTY/r06XHmmWdGeXl5S6mouWiUdJFnVQWncePGxZtvvhlnnnmmYhGdxjrrrJNzpq4u+W8253Nnv379ory8PIE03U9paWkceuihOecaGxvjueeeSyARAAAAAAAAsCZqcmwvqk0n/8skAQAAAHoa5aJOZO21146LL764pWS0zjrrRCaTWWXRqKPLPat670wmE7169YojjzwyJk+eHNdee20MGTKkQ++F9sqnXDRnzpwEkqzoww8/zDmTT3battdee+U199prrxU4CQAAAAAAALCmaiqrsp7bXAQAAABQeMpFndCgQYPi4osvjvfffz9uvfXW2HvvvaNXr14rFI0iPl0Ias9HRLS8fyaTiREjRsQFF1wQM2fOjBtuuCG22WabYn05IKthw4blnMmn6NPR8rkzn+y0bcyYMXnNvfPOO4UNAgAAAAAAAKyx3JuLlIsAAAAACq2s2AFoW69eveLQQw+NQw89NBoaGuJvf/tbPPjgg/Gvf/0rXn/99WhsbPzUa/LZaNS6oNSsqqoqRo8eHXvuuWccdNBBMWLEiA55Bii0jTbaKOfMBx98UPggK5k9e3bOmY033jiBJN3XgAEDYt11142PPvoo69z777+fUCIAAAAAAABgdeUqF32yqCGWLl8evcv8iAsAAABAofjOSxdRUVERBx54YBx44IEREbF48eKYMmVKTJkyJWbMmBGzZs2KWbNmxezZsyOdTseiRYti8eLFsWTJkujVq1f069cv+vbtG5WVlTFs2LDYYIMNYoMNNohNN900Ro8eHZtvvnlexSTobPIp6Hz44YexcOHC6NevXwKJ/uutt97KOaNc1H7Dhg3LWS5Kp9MJpQEAAAAAAABWV65yUUTE3Ib6GFa9dgJpAAAAAHom5aIuqry8PHbaaafYaaedih0Fiuozn/lMzplMJhNvvfVWjBo1KoFEEfPnz4958+blnMsnO9nlUxhbuHBhAkkAAAAAAACANVFTWZVzpjZdp1wEAAAAUEAlxQ4AdC3HHHNMZDKZgn688847eefZeuut85p77bXX1vCJV1++d+WbnbbZuAYAAAAAAABd29p9K6O0JPuPr9Sm6xJKAwAAANAzKRcBXdqQIUNi0KBBOecmT56cQJr87yorK0tsk1J31tDQkHMmn+1GAAAAAAAAQHGUlJRETUX27UXKRQAAAACFpVwEdHnbb799zpkky0UvvPBCzpnNN988ysvLE0jTvX3wwQc5ZyoqKhJIAgAAAAAAAKypmsrqrOe16fqEkgAAAAD0TMpFQJe3884755x5+umnY/ny5QmkifjnP/+Zc2annXZKIEn3VldXF3Pnzs05N3To0ATSAAAAAAAAAGsqV7lojs1FAAAAAAWlXAR0eV/4whdyzixYsCCeffbZgmeZOXNmvPXWWznn9txzz4Jn6e6efvrpvOY22mijwgYBAAAAAAAA2iX35qK6yGQyCaUBAAAA6HmUi4Aub8cdd4yqqqqccw8++GDBs+RzRyqVyqsQRXaPPPJIXnPDhw8vcBIAAAAAAACgPWoqs//33qWNy6Nu8cKE0gAAAAD0PMpFQJdXVlaWV1nntttuK3iWW2+9NefM6NGjY9111y14lu6ssbEx/vSnP+WcS6VSseOOOyaQCAAAAAAAAFhTuTYXRfx3exEAAAAAhaFcBHQLX//613POvPnmm/HMM88ULMPMmTPjn//8Z865fLKS3e233x7vvfdezrktttgiBgwYUPhAAAAAAAAAwBobmGNzUUREbbo+gSQAAAAAPZNyEdAtHHDAAVFVlfsbzr/61a8KluHyyy+PpqamrDMlJSVx+OGHFyxDT7BkyZL40Y9+lNfs/vvvX+A0AAAAAAAAQHv169Un+vfpm3XG5iIAAACAwlEuArqF8vLyOPTQQ3PO3XHHHfHWW291+P3z5s2Lq6++OufcXnvtFUOGDOnw+3uS8847L9588828ZvP5ZwIAAAAAAAAovpoc24uUiwAAAAAKR7kI6DbOOOOMSKVSWWeWL18eEydO7PC7f/SjH0V9fX3OuTPPPLPD7+5J7rzzzrjooovymt1mm21ihx12KHAiAAAAAAAAoCPUVFZnPVcuAgAAACgc5SKg29hiiy1i//33zzl39913x+23395h9z7xxBNx1VVX5Zzbfvvt44tf/GKH3RsR8c4770Qqlcr5MXbs2A6577nnnosZM2Z0yHutrnvuuSeOOOKIyGQyec2fffbZBU4EAAAAAAAAdJTc5aLcv+wRAAAAgDWjXAR0K+edd16UlOT+V9sJJ5wQb7zxRrvv+/DDD+OII46IxsbGnLM//vGP231fsf373/+OESNGxEknndQhX798ZDKZuPjii+OQQw6JpUuX5vWakSNHxqGHHlrgZAAAAAAAAEBHqamsynr+8aJ0LG1cnlAaAAAAgJ5FuQjoVnbYYYcYP358zrm6urr4whe+ENOnT1/ju+bOnRtf/OIX47333ss5u88++8QBBxywxnd1JsuWLYtJkybF5ptvHvvtt1/cddddeZd+VteUKVNi9913j7PPPjuvAlez3/72t1FWVlaQTAAAAAAAAEDHy7W5KCJiru1FAAAAAAWhXAR0Oz/96U9jnXXWyTk3a9as2HHHHePBBx9c7TueeeaZGD16dEydOjXnbHl5eVx22WWrfUdnl8lk4oEHHohDDjkkBg8eHOPGjYvbbrst5s2b1673bWxsjIceeigOOeSQ2G677eJf//rXar3+lFNOid13371dGQAAAAAAAIBk5VMuqk3XJZAEAAAAoOex1gHodgYOHBjXXXddHHjggZHJZLLOzps3L/bdd984+OCD45xzzonRo0dnnZ82bVpcfPHFccMNN0RTU1NeeS677LIYPnx43vm7ok8++SRuuOGGuOGGGyIiYvjw4bHjjjvG5ptvHiNGjIj11lsvBg0aFGuvvXaUl5dH7969Y/ny5bFo0aKYM2dOzJw5M/7zn//EM888E4888kh8/PHHa5RjzJgx8ctf/rIjHw0AAAAAAABIwDp9K6O0pCQas/x32FqbiwAAAAAKokeVi8aMGRO/+tWvYsyYMcWOQp4WLlwYP/vZz6KqqiomTpxY7Dh0Ifvvv39MnDgxLr744rzm77rrrrjrrrtis802i1133TW23HLLWHvttSOVSsUnn3wSr732Wjz11FPx8ssvr1aOI444Ik488cQ1eYQu7c0334w333wz0Tu32GKLuPvuu6N3796J3gsAAAAAAAC0X0lJSQysqIoPF8xvc8bmIgAAAIDC6FHlomeffTY+97nPxaGHHho/+9nPYsMNNyx2JLK45ppr4oc//GF8+OGHcd555xU7Dl3Qz372s5g1a1b88Y9/zPs1b7zxRrzxxhsdcv8XvvCFuOaaazrkvchuyy23jEcffTRqamqKHQUAAAAAAABYQzWV1cpFAAAAAEVQUuwAxfCnP/0pNt988/j2t78dc+fOLXYcVvKXv/wltt566zjhhBNi9uzZxY5DF1ZSUhI33HBDHHLIIYnfveuuu8bdd98dffr0Sfzunuaggw6Kp556KgYPHlzsKAAAAAAAAEA71FRWZT1XLgIAAAAojB5ZLspkMrFkyZK44oorYpNNNokf/ehHUVfnG1DF9uijj8aYMWPiK1/5SkydOjUymUyxI9ENlJWVxe233x7f/e53E7vz2GOPjUcffTQqKioSu7Mn6t+/f1x++eXx5z//Ofr371/sOAAAAAAAAEA71VRWZz2vTdf5WQIAAACAAuiR5aJUKhWpVCoymUyk0+n4yU9+EhtttFH86Ec/ik8++aTY8Xqcv/71r/G5z30u9t5773juuedavhGYSqWKnIzuoqSkJH72s5/FXXfdFUOHDi3YPWuttVZcffXVcc0113TbjUWd4X+XpaWlceSRR8a0adPiW9/6VqfIBAAAAAAAALRfrnLRksblUb94YUJpAAAAAHqOHlkual1eaS4Z1dXVtZSMvv/978fs2bOLnLJ7y2Qyceedd8aOO+4Y++23Xzz99NORyWQik8m0/LlARzvooIPitddei4kTJ3boVqHevXvHcccdF6+//nocf/zxHfa+ndEpp5wSjz32WJxzzjmxww47JPq/1erq6jjppJPi1VdfjRtvvDHWW2+9xO4GAAAAAAAACi9XuSgiYk66PoEkAAAAAD1LjywXRURLkSVixZLRggUL4qKLLoqNN944jjvuuJg6dWqRk3YvixYtit/85jex2WabxaGHHhovvPDCp0pFrf9soKP1798/Lr744njvvffiZz/7WWy55ZZr/F6bbLJJ/OAHP4h33nknfv/738fAgQM7MGnn1KtXr9h9993jJz/5STz//PMxZ86c+NOf/hQTJ06MsWPHRlVVVYfeN3jw4DjyyCPj1ltvjQ8//DCuvPLKGD58eIfeAQAAAAAAAHQONRW5/3tjbbougSQAAAAAPUsq04NaHCUlJS3llZW13r7RunQUEfHFL34xTj311DjggANs1FlDb7/9dvz2t7+N6667LubPn7/Cn0Hz13TlP5fmP6tUKhXnnXde/OhHP0o0Mz3Hu+++Gw8//HBMmTIlpk2bFu+8807U19fHggULIpPJRP/+/aN///6x/vrrx8iRI2PrrbeOL37xi7H55psXO3qnk8lk4s0334ypU6fGO++8E++++26888478d5770V9fX00NDTEwoULo6GhITKZTJSXl0d5eXmstdZaMWTIkBg6dGhsuummMWrUqNhmm21ixIgRxX6kTm/u3LlRU1Ozwudqa2t7RNkNAAAAAACA7ufEO6+K9JLFbZ5/desxccjWOyWYCAAAAOgpevLP5ZYVO0AxrKpgtPIWo9afe/TRR+PRRx+N9ddfP04++eQ4+uijY+jQocmG7oKWL18e9957b0yaNCkeeeSRT22LataD+m10UhtuuGGccMIJxY7RLaRSqdhss81is802K3YUAAAAAAAAoAuqqajOWi6qbbC5CAAAAKCjlRQ7QJLWWWedVZZbWlu5ANNcRMpkMjFz5sw499xzY8MNN4x999037rzzzli6dGli+buKKVOmxHe+850YOnRofPWrX42HH344mpqaWrYQtS5vtVUsWrl8tO666yaSHQAAAAAAAAAonprK6qznten6hJIAAAAA9Bw9qlz0+uuvxzHHHNPy962LLitrLr60LsQ0F40aGxvjoYceikMPPTRqamrimGOOib/+9a/R2NiY0JN0Pq+//nqcf/75MXLkyNh+++3j8ssvj48++uhTX8OI7KWiiFhhboMNNoi//OUvccoppyTyHAAAAAAAAABA8dRUVmU9r03bXAQAAADQ0XpUuWjttdeOa665Jh577LHYfPPNP7WhqC3ZthnV19fHjTfeGPvtt1/U1NTEUUcdFXfccUek0+lEnqmYnnnmmTjnnHNiq622ipEjR8YFF1wQr7322ipLWRH5lYqav7alpaUxceLEmDZtWhx44IFJPRIAAAAAAAAAUESDcmwu+mRhOpY2Lk8oDQAAAEDPUFbsAMWw2267xcsvvxxXXHFFXHDBBTF//vwVii1taauM1Pz5Tz75JG655Za45ZZbolevXrHTTjvF5z//+Rg7dmzssssu0bt378I+WIG9+uqr8Y9//CP+8Y9/xOOPPx7z5s2LiFjha7ZySSvb13Pl1zTP7rXXXvGrX/0qNt98846KDgAAAAAAAAB0ATU5ykWZiPioYUEMrVormUAAAAAAPUAqk0/7oxubN29enHPOOfGHP/whmpqaPlV0ySVbmab1WZ8+fVYoG2233XbRv3//DniCwmhsbIxXX301nnjiiXjsscfisccei7lz57acr/z1WVXZKpeVXzN8+PC49NJLY//9929neoCeY+7cuVFTU7PC52pra2PgwIFFSgQAAAAAAABrbm5DfZx+97VZZ84e++XYduhGyQQCAAAAeoye/HO5Pb5c1OyVV16J7373u/Hggw+uUVEmIvfWnpXPN9hggxg1alSMGjUqtt566xg1alRsttlmUVJSsgZPsOY+/PDDePnll1f4eO2112LZsmUtM7meZU2/TplMJgYOHBg//OEP4+STT46ysh65TAtgjfXk/ycGAAAAAACA7qepqSnG3fabaMw0tTlzzOixsddm2ySYCgAAAOgJevLP5Wpy/P+22mqruP/+++Oxxx6Ls88+O55//vlIpVKrtclo5a1FuQo47777bsycOTPuu+++ls/17t07hg0bFsOGDYv11luv5a+bP/r37x99+/aN8vLy6Nu3b8tHs6VLl8aiRYtW+Fi4cGHU1tbGrFmz4v3334/333+/5a9nzZoV9fX1WXM2P0+2583HyqWiioqKOOOMM+Kss86KysrK1XovAAAAAAAAAKD7KSkpiXUr+secdF2bM3MWtH0GAAAAwOpTLlrJ2LFj49lnn4277747zj///HjppZdWu2S0qrlVlY1WNbdkyZKYPn16zJgxY7Vy9+rVKxobG6Opqe3f3JPr7tY6oky0qvfKZDLRr1+/OPXUU+Oss86Kddddd43eEwAAAAAAAADonmoqq7OWi2oblIsAAAAAOlJJsQN0Vl/+8pdj8uTJceedd8a2224bmUwmMplMS0loVeWbbJpf3/ojIlZ4v9Yfq5rP9rF06dJobGxcrddku39VmVfXyu9VUVEREydOjBkzZsTPf/5zxSIAAAAAAAAA4FNqKquzntdmKR4BAAAAsPqUi3I4+OCD44UXXogHH3wwxo4du8pizppqq/DT+r0L/dFWjvZsKVq5ILXuuuvGhRdeGDNnzoyLLrooBg4cuMZfMwAAAAAAAACge8tdLqpf459rAAAAAODTlIvytPfee8ff//73ePbZZ+PrX/96lJWVrXL7T3ut7sailYtA7Xlte6yqrLTVVlvFlVdeGe+++26ce+65MWDAgA65CwAAAAAAAADovgZVVmU9X7J8WdQvWZRQGgAAAIDuT7loNY0ePTpuvvnmmDlzZpx33nkxZMiQDt1mtKY6siiUr1VtQCotLY2DDz44/v73v8fLL78cJ554YpSXlyeaCwAAAAAAAADounJtLoqIqE3XJZAEAAAAoGdQLlpDgwYNivPOOy9mzpwZd999dxx44IFRWlraUvJpXbwpRtmoUFZVKMpkMrHZZpvFz3/+83jvvffizjvvjLFjxxY3KAAAAAAAAADQJSkXAQAAACSrrNgBurqSkpI44IAD4oADDoja2tr44x//GLfddls8/fTTLTMrF4yS3jDUHqsqRjXnHzRoUBx66KHx9a9/PcaMGZN0NAAAAAAAAACgG+rXu09U9i6P9NLFbc7UpusTTAQAAADQvSkXdaCampo4/fTT4/TTT49333037rjjjrj77rvjySefjKampoj4dNEoonOVjbKViSIi1l9//TjwwAPjkEMOid133z1KSiy/AgAAAAAAAAA6Vk1lVaQ/zlYusrkIAAAAoKMoFxXIhhtuGGeeeWaceeaZMW/evLj//vvjoYceir///e8xZ86clrlVlY2aFbJ01NadK9/bu3fvGDNmTOy5556x3377xbbbbluwTAAAAAAAAAAAERE1ldUx/ePaNs+ViwAAAAA6jnJRAtZZZ504+uij4+ijj46IiFdeeSUee+yxePLJJ+Opp56Kd99991OvyVY66kgrF5gqKiris5/9bOyyyy6x2267xW677Rb9+vUreA4AAAAAAAAAgGY1ldVZz5WLAAAAADqOclERbLXVVrHVVlvFN7/5zYiI+PDDD+PFF1+MKVOmxJQpU2LatGnx1ltvxaJFi3K+16oKSPlsPEqlUrH++uvH5ptvHltvvXVss802sc0228SWW24ZJSUlq/9QAAAAAAAAAAAdJFe56OOF6VjWuDx6lfrRFwAAAID28h2WTmDw4MGxzz77xD777LPC599///2YPn16zJo1K95///2YPXt2zJ07N+rq6mL+/PmRTqdjyZIlsWzZsli+fHmUlJREr169onfv3tG3b9+orq6OAQMGxNprrx2DBw+OoUOHxrBhw2LDDTeMTTbZJPr06VOkJwYAAAAAAAAAaNugHOWiTER81LAghlStlUwgAAAAgG5MuagTGzZsWAwbNqzYMQAAAAAAAAAAEpVrc1FERG26TrkIAAAAoAOUFDsAAAAAAAAAAAC0tna/yihNZf+xljnpuoTSAAAAAHRvykUAAAAAAAAAAHQqpSUlsW5F/6wztcpFAAAAAB1CuQgAAAAAAAAAgE6nprI663ltuj6hJAAAAADdm3IRAAAAAAAAAACdTk1lVdZzm4sAAAAAOoZyEQAAAAAAAAAAnU7uzUV1kclkEkoDAAAA0H0pFwEAAAAAAAAA0OnkKhctXr4sFixZlFAaAAAAgO5LuQgAAAAAAAAAgE4nV7koIqI2XZ9AEgAAAIDuTbkIAAAAAAAAAIBOJ79yUV0CSQAAAAC6N+UiAAAAAAAAAAA6nYrefaKid5+sM8pFAAAAAO2nXAQAAAAAAAAAQKeUa3uRchEAAABA+ykXAQAAAAAAAADQKeUuF9UnlAQAAACg+1IuAgAAAAAAAACgU6qprMp6bnMRAAAAQPspFwEAAAAAAAAA0CkNqhyQ9XzewgWxvLExmTAAAAAA3ZRyEQAAAAAAAAAAnVKuzUWZiJjbUJ9MGAAAAIBuSrkIAAAAAAAAAIBOqaayOudMbbougSQAAAAA3ZdyEQAAAAAAAAAAndI6/fpHSSqVdUa5CAAAAKB9lIsAAAAAAAAAAOiUSktKYt2Kqqwzten6hNIAAAAAdE/KRQAAAAAAAAAAdFo1lbnKRTYXAQAAALSHchEAAAAAAAAAAJ1WTWV11nPlIgAAAID2US4CAAAAAAAAAKDTyl0uqo9MJpNQGgAAAIDuR7kIAAAAAAAAAIBOK1e5aNHypbFgyeKE0gAAAAB0P8pFAAAAAAAAAAB0WjWVVTlnatN1CSQBAAAA6J6UiwAAAAAAAAAA6LRybS6KUC4CAAAAaA/lIgAAAAAAAAAAOq3K3uXRr1efrDO1DcpFAAAAAGtKuQgAAAAAAAAAgE4t1/ai2nR9QkkAAAAAuh/lIgAAAAAAAAAAOrWayqqs57Vpm4sAAAAA1pRyEQAAAAAAAAAAndqg/rk2FykXAQAAAKwp5SIAAAAAAAAAADq1msrs5aJ5C9OxvLExoTQAAAAA3YtyEQAAAAAAAAAAnVquclEmk4m5DfUJpQEAAADoXpSLAAAAAAAAAADo1HKViyIiatPKRQAAAABrQrkIAAAAAAAAAIBObZ1+lVGSSmWdqW2oSygNAAAAQPeiXAQAAAAAAAAAQKdWVlIa6/Trn3WmNq1cBAAAALAmlIsAAAAAAAAAAOj0aiqrs54rFwEAAACsGeUiAAAAAAAAAAA6vdzlovqEkgAAAAB0L8pFAAAAAAAAAAB0eoMqq7Ke16brIpPJJJQGAAAAoPtQLgIAAAAAAAAAoNPLtblo0bKlkV66OKE0AAAAAN2HchEAAAAAAAAAAJ1ernJRxH+3FwEAAACwepSLAAAAAAAAAADo9PIrF9UnkAQAAACge1EuAgAAAAAAAACg06vo3Sf69eqddcbmIgAAAIDVp1wEAAAAAAAAAECnl0qlcm4vUi4CAAAAWH3KRQAAAAAAAAAAdAnKRQAAAAAdT7kIAAAAAAAAAIAuYVDOclF9QkkAAAAAug/lIgAAAAAAAAAAuoRcm4s+Wrggljc2JpQGAAAAoHtQLgIAAAAAAAAAoEuoqazKep7JZOKjhQsSSgMAAADQPSgXAQAAAAAAAADQJeTaXBQRUZuuSyAJAAAAQPehXAQAAAAAAAAAQJewTkX/SKVSWWeUiwAAAABWj3IRAAAAAAAAAABdQllJaazbr3/Wmdp0fUJpAAAAALoH5SIAAAAAAAAAALqMmsqqrOc2FwEAAACsHuUiAAAAAAAAAAC6jJrK6qznykUAAAAAq0e5CAAAAAAAAACALiNXuWhOui4ymUxCaQAAAAC6PuUiAAAAAAAAAAC6jFzlokXLlkbD0iUJpQEAAADo+pSLAAAAAAAAAADoMmoqq3LO1KbrEkgCAAAA0D0oFwEAAAAAAAAA0GXk2lwUoVwEAAAAsDqUiwrguuuui1/84hfx8ccfFzsKAAAAAAAAAEC3Utm7PPr26p11RrkIAAAAIH/KRQXw7rvvxllnnRXDhg2LI488Mv75z38WOxIAAAAAAAAAQLeQSqViUI7tRXPS9QmlAQAAAOj6lIsKJJPJxJIlS+KPf/xjfP7zn4+RI0fGr371K9uMAAAAAAAAAADaqSZHucjmIgAAAID8KRcVUCqVikwmE5lMJl577bU488wzY7311oujjz46nnjiiWLHAwAAAAAAAADokpSLAAAAADqOclGBpVKplo9MJhOLFy+Om2++OXbffffYcsst4/LLL4/58+cXOyYAAAAAAAAAQJdRU1mV9XzewgWxvKkxoTQAAAAAXZtyUYE1by6KiBVKRplMJl599dX4zne+E8OGDYtjjjkmnnzyySKnBQAAAAAAAADo/HJtLmrKZGJew4KE0gAAAAB0bcpFCVlVyaj584sWLYobb7wxdtttt9h6663j17/+ddTVWc8NAAAAAAAAALAqucpFERG1aT97AQAAAJAP5aKENZeMMplMS8mo9TajqVOnxumnnx5Dhw6N8ePHx1NPPVXsyAAAAAAAAAAAncq6/fq3/GLXttSm6xNKAwAAANC1KRcVUa5tRtdff33suuuuMWrUqPjtb38b9fW+6QUAAAAAAAAAUFZaGuv0q8w6Y3MRAAAAQH6UizqBXNuMXnnllfjWt74VQ4cOjeOOOy6eeeaZYkcGAAAAAAAAACiqmsrqrOdzlIsAAAAA8qJc1Mlk22a0cOHCuO6662KXXXaJbbfdNq688spYsGBBMeMCAAAAAAAAABRFrnJRbbo+oSQAAAAAXZtyUYG13kS0OnJtM3r55Zfj1FNPjaFDh8YJJ5wQzz33XIGeAAAAAAAAAACg86mprMp6XmtzEQAAAEBelIsK4PTTT49f/vKXMXLkyDY3Ea2ObNuMGhoa4pprrokxY8bE9ttvH5MmTYp0Ot1xDwMAAAAAAAAA0AnVVGTfXLRw2ZJIL12cUBoAAACArku5qAAGDBgQp59+evznP/+JJ554Io488sgoLy//VEGoo7cZvfTSSzFhwoQYOnRonHTSSfHCCy8U4vEAAAAAAAAAAIqupjJ7uSjC9iIAAACAfCgXFdguu+wSN9xwQ7z//vvxq1/9KpFtRul0On7/+9/HjjvuGKNHj46rr746GhoaOu6hAAAAAAAAAACKLL9yUX0CSQAAAAC6NuWihAwYMCBOO+20lm1GRx11VCLbjCZPnhwnn3xyDB06NCZMmBAvvvhiIR4PAAAAAAAAACBR/fuUR99evbPO2FwEAAAAkJtyURHssssucf3118cHH3wQv/rVr2LLLbcs+DajBQsWxKRJk2L06NHx2c9+Nv7whz/EwoULO+6hAAAAAAAAAAASlEqlcm4vUi4CAAAAyE25qIiqq6vjtNNOi5dffjn+/e9/J7bN6IUXXogTTzwxhg4dGqeeemq89NJLBXg6AAAAAAAAAIDCqqmsynquXAQAAACQm3JRJ7Hzzju3bDO67LLLEtlmVF9fH1deeWXssMMOsdNOO8W1114bixYt6riHAgAAAAAAAAAooFybi+YsUC4CAAAAyEW5qJOprq6Ob33rWy3bjI4++uiWbUYrbyJaHbm2GT333HNx/PHHx9ChQ1vuBwAAAAAAAADozHKVi+YtXBDLmxoTSgMAAADQNSkXdWI777xzXHfddS3bjLbeeuuCbzOqq6uL3/72t7Hddtu1bFNavHhxxz0UAAAAAAAAAEAHqanIXi5qymRi3sJ0QmkAAAAAuibloi6geZvRlClT4sknn0xsm9Gzzz4b48ePj6FDh8Zpp50Wr7zySoGeEAAAAAAAAABg9dVUVuWcqU3XJZAEAAAAoOtSLupixowZE9ddd13Mnj07Lr/88oJuM2r+3Pz58+M3v/lNbLPNNvG5z30ubrzxxliyZEmHPhcAAAAAAAAAwOoaWFEVuX5KQrkIAAAAIDvloi6qqqoqvvnNb7ZsMxo3blwi24yefvrpOOaYY2LIkCHx7W9/O6ZNm1agJwQAAAAAAAAAyK6stDTW6dc/64xyEQAAAEB2ykXdwJgxY+Laa69NfJvRFVdcEVtvvXXstttucdNNN9lmBAAAAAAAAAAkrqayOut5bbo+oSQAAAAAXZNyUTeyqm1Gffv2Lfg2o+a7hg4dGmeccUa89tprBXpCAAAAAAAAAIAV1VRWZT23uQgAAAAgO+Wibqp5m9EHH3wQl19+eYwaNarg24w++eSTuOyyy2LLLbeM3XffPW655ZZYunRphz4XAAAAAAAAAEBruTcXKRcBAAAAZKNc1M01bzN66aWX4qmnnopjjjkmkW1GTzzxRBx11FExdOjQmDhxYrz++usFekIAAAAAAAAAoCfLVS5qWLok0ksXJ5QGAAAAoOtRLupBdtppp7jmmmvigw8+iCuuuCKRbUYff/xx/PKXv4yRI0fG2LFj49Zbb41ly5Z16HMBAAAAAAAAAD1XrnJRRMTcdH0CSQAAAAC6JuWiHqiqqipOPfXUxLcZ/etf/4pvfOMbMWzYsDj77LPjzTffLNATAgAAAAAAAAA9RT7lotp0XQJJAAAAALom5aIebuVtRttss03Btxl99NFHcemll8bmm28ee+yxR9x+++2xfPnyDn0uAAAAAAAAAKBn6N+nPPqW9c46o1wEAAAA0DblIiLif9uMXnzxxXj66adXuc1oTeTaZvT444/H4YcfHuutt1788Ic/jA8//LCDnwwAAAAAAAAA6M5SqVTUVFZlnVEuAgAAAGibchGfsuOOO8Y111wTs2fPjl//+tcxatSodhWMmmXbZlRbWxs//elPY6ONNopjjjkmpk6d2hGPAgAAAAAAAAD0ADWV1VnP5ygXAQAAALRJuYg29e/fP0455ZT497//HePHj++QglFE9m1GS5cujRtvvDG22Wab+OpXvxovv/xyBzwJAAAAAAAAANCd5SoX1abrE0oCAAAA0PUoF9GmF198MSZMmBBDhw6Na6+9tqUA1JHa2mbU1NQUd911V2y//fZxzDHHxKxZszr0XgAAAAAAAACg+6iprMp6/lFDfTQ2NSWUBgAAAKBrUS5iBQ0NDXH11VfHZz/72Rg9enRMmjQpFixYsEIJqBCylYxuvPHG2GKLLeKSSy6JJt/oAwAAAAAAAABWkmtzUVMmE/MWLkgoDQAAAEDXolxERERMnjw5Tj755Bg6dGicfPLJ8cILL7QUfprLPkloq2TU0NAQ3/3ud2PMmDHx9ttvJ5IFAAAAAAAAAOgacpWLIiJq03UJJAEAAADoepSLerCGhoaYNGlSfPazn43PfvazcfXVV7dsKYqIFUpFq7u1qPm1K3/kq62S0fPPPx/bbbdd3HfffauVBwAAAAAAAADovtat6B+5fiqhNl2fSBYAAACArka5qAd64YUX4qSTToqhQ4fGhAkTVrmlqLnM07rkk4+VC0krv0dHlIzS6XQcfPDBcc0116zGUwMAAAAAAAAA3VWv0rJYu19l1hmbiwAAAABWTbmoh2jeUjR69OjYcccd4/e//33WLUVrUihqXUhae+21Y+LEifH666/HPffcEwcccECUlJR86r58i0Yrl4waGxvjpJNOivvvv391vgwAAAAAAAAAQDdVU1md9Vy5CAAAAGDVyoodgMJ6/vnnY9KkSXHrrbdGQ0PDCqWh1sWe1SkTZXv9mDFj4pRTTomvfe1r0adPn4iIGD58eOy///4xe/bsuOaaa+Laa6+N6dOnt7xH61JTLq23KzU2Nsbxxx8f06ZNi7XWWmu18wMAAAAAAAAA3UdNZXW8Wvt+m+fKRQAAAACrZnNRN5ROp+Oqq66KHXbYIXbaaaf4wx/+EOl0usO3FDW/vl+/fnHiiSfGiy++GE8++WQceeSRLcWi1oYMGRLnnntuvPXWW/HII4/E1772tSgrK1tlrmxa562trY3TTjst7/wAAAAAAAAAQPeUe3NRfUJJAAAAALoW5aJu5Pnnn48TTjghhg4dGqecckq8+OKLLeWh1qWg5s+tSako4n+FpC222CKuuOKK+OCDD+LKK6+MbbbZJu/3+8IXvhC33XZbvPvuu/HDH/4w1l577dUqGTU/UyaTiVtuuSVef/31vO8GAAAAAAAAALqfmsqqrOfppYujYemShNIAAAAAdB3KRV1cOp2OK6+8smVL0TXXXFPQLUW9evWKww8/PB5//PF45ZVX4tRTT43+/fuvcf7BgwfH+eefHzNnzoxLLrkkBg4cuEL2fF155ZVrnAEAAAAAAAAA6PpybS6KiJibrksgCQAAAEDXolzURT333HNx/PHHx5AhQ+LUU08t+JaiDTbYIH7yk5/Ee++9F7fcckvstttuHfo8ffv2jTPOOCPeeuutOOuss6K0tLQlS66smUwmrr/++li6dGmHZgIAAAAAAAAAuo5BeZSLapWLAAAAAD5FuagLWbBgQfzud7+L7bffPsaMGRPXXnttNDQ0dMiWolW9PpVKxb777hv33ntvTJ8+Pb7//e/HwIEDO/ahVlJZWRk///nP46mnnooNN9ywJceqtH6+urq6ePbZZwuaDQAAAAAAAADovPr36RvlZb2yzsxJ1yeUBgAAAKDrKCt2AHJ79tlnY9KkSXHbbbfFwoULVyjVtC7erG6ZqK3XDxw4MMaPHx8nnXRSbLTRRmsevB122GGHePrpp+P//u//4s0332zZUJTN008/HbvuumtCCQEAAAAAAACAziSVSkVNZXXMnP9RmzO16fnJBQIAAADoIpSLOqkFCxbEjTfeGFdffXW8/PLLEREFLxV97nOfi1NOOSW++tWvRq9e2X+TTxJqamrilltuiZ133jmWL1+es2D0zDPPJJgOAAAAAAAAAOhscpeLbC4CAAAAWJlyUSfzzDPPxKRJk+JPf/pTIluK+vfvH0ceeWRMmDAhttpqq3YkL4ztt98+jj322Jg0adIK+VeWyWRi+vTpCSYDAAAAAAAAADqbmsqqrOe16bqEkgAAAAB0HcpFnUDzlqJJkybFf/7zn4go/JaiUaNGxYQJE+LII4+MioqKNY2eiFNOOSUmTZrU5nnzRqP58+cnFwoAAAAAAAAA6HRqKquznn/UsCAam5qitKQkoUQAAAAAnZ9yURE9/fTTLVuKFi1aVLBCUfN79OnTJ7761a/GhAkTYpdddlnz4AkbNWpU1NTUxNy5c1uKRKuiXAQAAAAAAAAAPVuuclFjpik+XpiOgTk2HAEAAAD0JMpFCauvr2/ZUvTKK69EROG3FG288cZx0kknxXHHHRfrrLPOmkYvqs9+9rNx//33f6o01Vp9fX2CiQAAAAAAAACAziZXuSgiojZdp1wEAAAA0IpyUUKeeuqpmDRpUtx+++0dvqVoVe9RUlIS+++/f0yYMCH23nvvrKWcrmDo0KGr/Hwmk2l5tqampiQjAQAAAAAAAACdzLoV/SMVEdl++qI2XRdbxvpJRQIAAADo9JSLCqiurq5lS9HUqVMjovBbigYNGhTHHXdcnHjiibHBBhusafROZ8CAAcWOAAAAAAAAAAB0cr1Ly2KtfpXx8cJ0mzNz0nUJJgIAAADo/JSLCuDVV1+Nn//853HHHXcksqUoImL33XePCRMmxCGHHBJlZd3vj7V3797FjgAAAAAAAAAAdAE1ldVZy0W16foE0wAAAAB0ft2vhdIJ/OlPf4obbrhhhc8VYktRVVVVHH300TFhwoTYYost1jAtAAAAAAAAAED3UVNZFa/Vvt/mea3NRQAAAAArUC4qoEJtKdpuu+1iwoQJccQRR0S/fv3aFxIAAAAAAAAAoBupqajOel7boFwEAAAA0JpyUYG1d0tR83uUl5fHoYceGhMmTIiddtqpo+IBAAAAAAAAAHQrNZXZy0XpJYtj4dIl0a93n4QSAQAAAHRuykWdyKq2FG266aZx0kknxfjx42OttdYqVrROZeXyFQAAAAAAAABAs0H9s5eLIiJqG+pjo94DE0gDAAAA0PkpF3UCK5eKSktL44ADDogJEybEnnvuWcRknc+abIICAAAAAAAAAHqOXJuLIiJq03Wx0VrKRQAAAAARykVFs6otRUOGDInjjz8+TjzxxBg2bFixonVKe+yxR5SV+ccVAAAAAAAAAMiuqk/f6FPWK5YsX9bmzJwFdQkmAgAAAOjctDUStqpS0R577BETJkyIgw46KEpLS4sVrVP7/Oc/H5///OeLHQMAAAAAAAAA6ORSqVTUVFbFe/PntTlTm1YuAgAAAGimXJSAVRWKBgwYEOPGjYuTTz45RowYUaxoAAAAAAAAAADdTk1ltXIRAAAAQJ6UiwqsuVjUXCraYYcd4pRTTonDDz88+vbtW8xoAAAAAAAAAADdUk1FddZz5SIAAACA/1EuKrBMJhN9+/aNww8/PCZMmBCjR48udiQAAAAAAAAAgG6tpjJ7ueijhgXR1NQUJSUlCSUCAAAA6LyUiwpo+PDhMWHChBg3blwMGDCg2HEAAAAAAAAAAHqEmsqqrOeNmaaYtygdAyuyzwEAAAD0BMpFBbDTTjvFo48+GnvssUexowAAAAAAAAAA9Di5NhdFRNSm65SLAAAAAEK5qCC+9KUvFTsCAAAAAAAAAECPNTDH5qKI/5aLthy0fgJpAAAAADq3kmIHAAAAAAAAAACAjtS7tCzW7luZdaY2XZ9QGgAAAIDOTbkIAAAAAAAAAIBupybH9qLadF1CSQAAAAA6N+UiAAAAAAAAAAC6nZrK6qznykUAAAAA/6VcBAAAAAAAAABAt5O7XFSfUBIAAACAzk25CAAAAAAAAACAbidXuWjBkkWxcNmShNIAAAAAdF7KRQAAAAAAAAAAdDu5ykUREXNtLwIAAABQLgIAAAAAAAAAoPsZVFmVc2ZOui6BJAAAAACdm3IRAAAAAAAAAADdTlV5v+hTWpZ1pla5CAAAAEC5CAAAAAAAAACA7ieVSkVNZXXWGeUiAAAAAOUiAAAAAAAAAAC6qdzlovqEkgAAAAB0XspFAAAAAAAAAAB0SzWVVVnPbS4CAAAAUC4CAAAAAAAAAKCbyrW5aG5DfTQ1NSWUBgAAAKBzUi4CAAAAAAAAAKBbylUuamxqio8XpRNKAwAAANA5lRU7QHf00UcfxbRp04odIzGpVCr69OkTffr0ifLy8igvL4911lknKisrix0NAAAAAAAAAOjBcpWLIiJq0/WxbkVVAmkAAAAAOiflogL429/+FkcccUSxYxRd3759Y9CgQTF48ODYbLPNYuTIkbHlllvGNttsE8OGDSt2PAAAAAAAAACgmxuYR2moNl0XIwetl0AaAAAAgM5JuahAMplMsSMU3cKFC2PGjBnxzjvvxNNPP73C2UYbbRRjx46Nz3/+83HAAQdEdXXu3xQEAAAAAAAAALA6epeVxVp9K+KTRQ1tztSm6xJMBAAAAND5KBcVUCqVKnaETmFVRavm0tF1110XvXv3ji996UtxxBFHxMEHHxxlZf6xBAAAAAAAAAA6Rk1ltXIRAAAAQBYlxQ7Q3WUymR770SyVSq3yo3luyZIlcc8998Thhx8em2yySVxxxRWxaNGiIv6pAQAAAAAAAADdRU1lddbz2nR9QkkAAAAAOiflIgomV/FoVUWj9957L7797W/HxhtvHDfeeGORnwAAAAAAAAAA6OoG5SwX2VwEAAAA9GzKRRRFrqJRbW1tHHPMMbHHHnvE9OnTi5wWAAAAAAAAAOiqcm0uql+yKBYtW5pQGgAAAIDOR7mIomuraJTJZOKxxx6L0aNHx1//+tcipwQAAAAAAAAAuqKayqqcM7YXAQAAAD2ZchGdysolo4iI+fPnxwEHHBC//OUvixkNAAAAAAAAAOiCcm0uilAuAgAAAHo25SI6peaSUfMWo8bGxpg4cWL86le/KnY0AAAAAAAAAKALqS7vF71Ly7LO1KbrE0oDAAAA0Plk/84J7da8fSeb5k09HfmeqyPJ+1f3rtYFo0wmE2eeeWb0798/jjvuuDXOAAAAAAAAAAD0HKlUKmoqq2NW3bw2Z2wuAgAAAHoym4sKqHn7Tq6PfDQXbJqLPfm+dz53r/zeHfVcue5anfuaX5vJZOKb3/xmvPjii3m9FgAAAAAAAACgprIq67lyEQAAANCT2VxUAIcddlgcdthhWWfS6XScffbZcdVVV7V8buWiUevyTeuzfv36xejRo2PkyJExYsSI2GSTTaKmpiYGDhwYAwYMiD59+kSfPn0ilUrF4sWLY8mSJVFXVxdz586N2traePvtt+ONN96IqVOnxvPPPx8NDQ0572xdaiopKYmTTjopLrrooqioqFgh8+LFi2Px4sWRTqdj9uzZMXv27Hj99dfjP//5T0yePDmmTZu2wnu2ft9sWm8wWrJkSRx++OHxwgsvRGVlZdbXAQAAAAAAAADUVFZnPVcuAgAAAHoy5aIiePjhh+Okk06KmTNnRkR+paJtt902Dj744Nh3331j2223jdLS0rzu6tevX/Tr1y/WWmut2GijjT513tjYGFOmTIkHHngg/vKXv8TkyZNbMqy8Jan585lMJq688sp44IEHYtKkSbHnnnu2vF95eXmUl5fHgAEDYr311vvUfR9++GE8/PDDcdNNN8Xf//73aGpqarkr34JRRMRbb70V559/flx88cV5fR0AAAAAAAAAgJ4rV7lobsOCaGpqipKSkoQSAQAAAHQeviOSsJ/+9Kex7777xrvvvrtCaadZ60JPRUVFnHrqqfHKK6/E5MmT44c//GHssMMOeReL8lFaWhrbb799/OAHP4jnn38+pk2bFt/85jejsrJyhUJRs+bMmUwm3n333dhnn33ioosuyvu+wYMHx9FHHx0PP/xwzJgxI04++eTo1avXCpuJcmkuIl1xxRXx9ttvr/5DAwAAAAAAAAA9Sk1lVdbz5U2N8cmihoTSAAAAAHQuykUJWb58eYwfPz5++MMfrrCtp7lM03p7T1lZWXzrW9+Kt99+O6644ooYOXJkYjk333zzuPzyy2P69Olx+umnR69evVryNWudvampKb7//e/H8ccfH42Njat11/rrrx+//e1v49VXX40vfOELqywzrax1GWvZsmVx7rnnrtadAAAAAAAAAEDPk2tzUUREbbougSQAAAAAnY9yUUK+8Y1vxPXXX9+yoSfif1uAWv/9NttsE88991xcdtllMXDgwKLlXWeddeKXv/xlPPfcc7HtttuuMnfE/7YIXXvttXH00Uev0V0bb7xxPPLII3HJJZesULbKpvneP//5zzFr1qw1uhcAAAAAAAAA6BkGVmTfXBQRMUe5CAAAAOihlIsSMHHixLj99tsjIlYo6Kz89+PGjYtnn302Ro0aVZygq7D11lvHM888E+PHj1+hYBQRnyoY3XrrrXH22Wev8V1nnHFG/PnPf17ltqTWWm8vamxsjN/97ndrfCcAAAAAAAAA0P31KesVA/pWZJ2pTdcnlAYAAACgc1EuKrBrrrkmfvGLX2Td+hMR8YMf/CCuvfbalmJNZ1JWVha///3v47zzzltlwaj5c5lMJi699NK4/vrr1/iuAw88MG644Ya8Nhg133nNNdes8X0AAAAAAAAAQM9QU5l9e1GtzUUAAABAD6VcVEDvv/9+nHHGGZ/aVhTxv2JMKpWK008/PS644IJixczbeeedF9/5znc+VTBq1vxM3/72t+ODDz5Y43sOPfTQ+N73vrfC12tlrc9qa2vjqaeeWuP7AAAAAAAAAIDub1DlgKznykUAAABAT6VcVEAnn3xy1Nf/d2V2W8Wi//u//4tLL720WBFX2yWXXBK77777KjcYNauvr4+TTz65Xfecf/75sf3220dE9u1Fze6999523QcAAAAAAAAAdG85Nxc1KBcBAAAAPZNyUYE8/vjjcf/997cUiZq1Lsr069cvbrrpprzKM51FKpWKm266KSoqKlr+vllz4SiTycT9998f//znP9f4ntLS0vjlL3+ZdXtR63v/+te/rvFdAAAAAAAAAED3V1NZnfW8fvGiWLRsaUJpAAAAADoP5aICueiii9o8ay7hnHHGGTFs2LAEU3WMYcOGxZlnnpmz+JPta5CP3XbbLfbaa69PbUlqrfnzr7zySixZsqRd9wEAAAAAAAAA3VeuclFExNy07UUAAABAz6NcVABTp06NBx98MOfWookTJxYjXoc488wzc24vevDBB2Pq1KntuufUU09t86z117axsTGmTJnSrrsAAAAAAAAAgO4rn3LRnHR9AkkAAAAAOhflogL44x//2OZZc/nm0EMPjf79+yeYqmP1798/DjvssJzbi2655ZZ23bPffvvFoEGDIiLa3F7UbPLkye26CwAAAAAAAADovgaU94tepaVZZ2ptLgIAAAB6IOWiArjnnntyFmEOOeSQhNIUzle+8pWs55lMJu6999523VFSUhL77rtvzhJTRMTbb7/drrsAAAAAAAAAgO4rlUrl3F6kXAQAAAD0RMpFHeydd96JV155JSJihUJM67JRWVlZjB07NuloHe7//u//olevXhGx4vM1b2eKiJg6dWq8++677brnS1/6Ul5zs2bNatc9AAAAAAAAAED3VlOhXAQAAACwMuWiDvbMM8+0edZcNtp0002joqIiqUgFU1FREcOHD88599RTT7Xrns9+9rN5zb333nvtugcAAAAAAAAA6N5ybi5qqE8oCQAAAEDnoVzUwaZOnZr1PJVKxYgRIxJKU3ibbbbZChuaVmXatGntumOjjTaKAQMGRMSKG5KapVKpyGQyMWfOnHbdAwAAAAAAAAB0bzWVVVnP56broynHz0EAAAAAdDfKRR0sV7koImLQoEEJJEnG4MGDc87k8zXJ5TOf+UzOElNDQ0O77wEAAAAAAAAAuq9cm4uWNzXGJ4vSCaUBAAAA6ByUizrY9OnTc870798/gSTJqKyszHqeyWTi7bffbvc96623Xs6ZRYsWtfseAAAAAAAAAKD7GpSjXBQRUZuuTyAJAAAAQOehXNTB6urqIpVKZZ0pKytLKE3hZXuW5q9DfX37v+mWz4Yk5SIAAAAAAAAAIJuBlVU5Z2rTdQkkAQAAAOg8lIs62IIFCzpkpqtIp3OvAu+I5+3bt2/OmcbGxnbfAwAAAAAAAAB0X33KesWA8n5ZZ5SLAAAAgJ5GuaiD5VOk+eSTTxJIkoyPP/4450xHlIvKy8tzzuRTQAIAAAAAAAAAeraa/tVZz5WLAAAAgJ5GuaiDpVKprOeZTCbeeOONhNIU3ptvvplzJtfXJB/5vEe/ftl/sxAAAAAAAAAAQE1FrnJRfUJJAAAAADoH5aIO1r9//zbPmgsyr7/+emQymaQiFUxTU1O89tprOYs/lZWV7b5r8eLFOWeUiwAAAAAAAACAXGoqs5eL5qTnJxMEAAAAoJNQLupgbZWLWpeJ0ul0PPvss0lFKpjnn38+FixYEBGRtSyVrXCVr4ULF7Z51ny3chEAAAAAAAAAkEuuclH94kWxeNnShNIAAAAAFJ9yUQcbOnRoXluJ7r///gTSFFauZ8hkMpFKpWLo0KHtvqu2tjbnjHIRAAAAAAAAAJBLTWVVzpnahvoEkgAAAAB0DspFHWzEiBFZz1OpVGQymbj22mujqakpoVQdr6mpKa655ppIpVI5Z3N9TfIxe/bsrOepVCpqamrafQ8AAAAAAAAA0L0NyrG5KCKiNl2XQBIAAACAzkG5qINtvvnmbZ613mj0wQcfxK233ppEpIK49dZb4/3334+IyLmpaYsttmj3fTNmzMhZZNpoo43afQ8AAAAAAAAA0L1V962IXqWlWWeUiwAAAICeRLmog+288845Z5q3F5177rmxdOnSBFJ1rKVLl8a5556b19aiiIgxY8a0675PPvkkamtrIyJ7kUm5CAAAAAAAAADIpSSVipqK7NuLatP1CaUBAAAAKD7log42ZsyY6N+/f0TEKss3rcsxM2fOjIkTJyaWraN897vfjXfffTciVl32af3clZWVeRWusnnllVfymlMuAgAAAAAAAADyUVNZlfXc5iIAAACgJ1Eu6mClpaXxhS98IeuGnUwm07K96De/+U3cfvvtCSZsnzvvvDMuu+yylvxtaX7GPfbYI0pzrBLP5amnnsprTrkIAAAAAAAAAMhHTWWuzUXKRQAAAEDPoVxUAEcffXRec80FnaOOOioefvjhAqdqv0ceeSS+8Y1vrHIjU1vGjRvX7nv//e9/5zW36aabtvsuAAAAAAAAAKD7y1Uumpuuj6Ysv3QVAAAAoDtRLiqAAw44IIYOHRoR0WYRp3nrTyqViqVLl8aXv/zluOmmmxLLuLpuueWW+PKXvxxLly6NiGhza1Hr5x0yZEgceOCB7bp32bJl8dhjj63y69j6c5tuumkMGDCgXXcBAAAAAAAAAD1DrnLRsqbGmL+oIaE0AAAAAMWlXFQApaWlceqpp7ZZwGmWyWQik8lEKpWKJUuWxLhx4+K0006LRYsWJZQ0t8WLF8e3v/3tOOqoo2Lx4sUt25ayaX6mb33rW1FS0r5/xP75z3/GggULWt63rbt23nnndt0DAAAAAAAAAPQcNZVVOWdq03UJJAEAAAAoPuWiAvnOd74Tw4YNi4i2txe11lza+c1vfhOjRo2Ke++9t9ARc7r//vtjm222iSuuuKKlxJNN6/OhQ4fG6aef3u4Md911V15zykUAAAAAAAAAQL4G5thcFKFcBAAAAPQcykUFUl5eHv/v//2/nFt+Iv63kae5YPT222/HQQcdFLvuumvcfffd0dTUVOi4K2S55557YrfddosDDzww3nzzzRWKRfluLbrwwgujvLy8XVmWL18et912W17lLOUiAAAAAAAAACBf5WW9YkB5v6wzykUAAABAT6FcVEDjxo2LfffdN6+tP5lMpmWuuWT05JNPxiGHHBIbbbRRnH322fHvf/+7YFmfeuqp+N73vhcbb7xxHHzwwfHkk09+Kk+2YlHzTCqVin333TeOOeaYdme67777Yt68eRHx6VJT669nVVVVbL311u2+DwAAAAAAAADoOWpybC+qTdcnlAQAAACguMqKHaC7u+6662LUqFExZ86clgJONqsq9MyaNSsuvfTSuPTSS6O6ujrGjBkTO++8c2y55Zax2WabxWc+85no1y/7b9Nptnjx4pg+fXq8/vrrMXXq1Hjqqafi6aefjvnz57fc3yzfbUWtiz6DBg2Ka6+9Nq8sufz2t7/Net66zJTPdiMAAAAAAAAAgGY1ldXxxkez2zyfY3MRAAAA0EMoFxXYuuuuG3fccUfsueeesXjx4rwLRhErlnaaPzd//vx46KGH4qGHHlrhNf369YuBAwfGgAEDok+fPtG7d+9IpVKxZMmSWLJkSdTV1cXcuXOjoaGhzfvaujOb1gWkfv36xZ///OdYd911c74ul6lTp8ajjz6a19frq1/9arvvAwAAAAAAAAB6lprKqqzntcpFAAAAQA+hXJSAXXbZJW699dY45JBDoqmpKa/CTMSKJaNcpZ+GhoaW4tDKW3xWZ/NQPvMrvy6TyURZWVncdtttMWbMmLxem8vFF1/cZr7W+vXrF/vss0+H3AkAAAAAAAAA9Bw1ldVZz+sWL4zFy5dFeVmvhBIBAAAAFEdJsQP0FAcccEDcfPPN0avXf7/hlK0ws7JMJtPy0fzatj5Wnl+T1+Sj9et69+4dN910U+y33355P1M2b7/9dtx8882rfJaVc37pS1+K8vLyDrkXAAAAAAAAAOg5cpWLIiLm2l4EAAAA9AA2FyXo0EMPjZqamjj44IOjvr4+7w1GrbU131z2yVVaWt37st2VyWSiuro67rrrrhg7dmy737fZlClT4phjjslr9qijjuqwewEAAAAAAACAniOfclFtuj7WH7BuAmkAAAAAike5KGFjx46NJ598Mg477LB45ZVXVijqtEdHlIby0TrvVlttFbfddltsscUWHXrHIYccEoccckiHvicAAAAAAAAAQGsD+lZEr5LSWNbU2OZMrc1FAAAAQA9QUuwAPdEWW2wRzz33XJxyyiktpaBUKpVz61AxNefLZDKRyWTi1FNPjeeee67Di0UAAAAAAAAAAEkoSaViYGVV1hnlIgAAAKAnUC4qkj59+sSvf/3rePzxx2PUqFGdtmTUOk8mk4ltt902Hn/88bjiiiuiT58+RU4HAAAAAAAAALDmaiqrs54rFwEAAAA9gXJRke22224xefLkuOqqq2LDDTds2QzUXOopRtGo9d3NeTbYYIOYNGlSvPDCC7HbbrslngkAAAAAAAAAoKPlLhfVJ5QEAAAAoHiUizqBVCoVJ5xwQrz55ptx8803xw477NBS6mk+L2TZaFXv33z/9ttvHzfffHO89dZbcfzxx3eqrUoAAAAAAAAAAO1RU1mV9by2oS6a/v+f3wAAAADorsqKHYD/KS0tja9//evx9a9/PV555ZW45ZZb4rbbbosZM2a0zBSqYJRp9Y2wjTbaKA4//PA44ogjYqutturwuwAAAAAAAAAAOoNcm4uWNTZG3aKGWKtfZUKJAAAAAJKnXNRJbbXVVvHTn/40fvrTn8Ybb7wRf//73+Mf//hHPPPMMzFz5sysr125fJTJ8Rt01ltvvRgzZkx8/vOfjz322CP+P/buPDruuuwb/zVJ2jTNJKHbhEV2CggWbpAbZHFlc8flQRCRVVDcbhDuR0EfF3DDeiveIqIIiIgLiywiiOCOCgIVENlUilgpnS40yaRt0iTz+4Nfa1ua+U7bme/MJK/XOTnS+Vwzn3cCp56TzDvXLrvsssn5AQAAAAAAAADqXVK5KCJiQaFHuQgAAAAY05SLGsDOO+8cO++8c7znPe+JiIi+vr546KGH4pFHHol58+bF/PnzY/78+bF48eJYvnx5DAwMxIoVKyIiorW1NSZNmhRtbW0xZcqU2HLLLWOLLbaIF7zgBfHCF74wXvSiF0VnZ+kV3wAAAAAAAAAAY1E55aJ8oTd2zW2VQhoAAACA2lAuakAdHR2x//77x/7771/rKAAAAAAAAAAADWtSy4TomjQ5elYsG3UmX+hJMREAAABA+ppqHQAAAAAAAAAAAGolaXuRchEAAAAw1ikXAQAAAAAAAAAwbuWynSXPlYsAAACAsU65CAAAAAAAAACAccvmIgAAAGC8a6l1gLHm6aefjjvuuKOs2Re+8IXxn//5n1VOBAAAAAAAAADAaJLKRUtXLIuBoZXR2jIhpUQAAAAA6VIuqrBrr702zjjjjLJmf/WrX1U3DAAAAAAAAAAAJSWViyIiFhZ64wWbTUshDQAAAED6mmodYKy5//77o1gsJn7sv//+8dKXvrTWcQEAAAAAAAAAxrVctjNxZkGhJ4UkAAAAALVhc1GFPf744xERkclk1nteLBYjk8nEUUcdlWYsAAAAAAAAAADWY0pbNlqammNoZHjUmbxyEQAAADCG2VxUYU899dTqYtG624rW9MY3vrEW8QAAAAAAAAAAWENTJhMzErYX5Qu9KaUBAAAASJ9yUYUtWrRovY+vuclo+vTpse2226YVCQAAAAAAAACAEnLtSeUim4sAAACAsUu5qMJWrlw56lmxWIxMJhO77757iokAAAAAAAAAACgll+0qeZ7vVy4CAAAAxi7logprb29PnNluu+2qHwQAAAAAAAAAgLIklosKPVEsFlNKAwAAAJAu5aIKy2aziTMdHR0pJAEAAAAAAAAAoBxJ5aKVw8OxdMWylNIAAAAApEu5qMLKKReVMwMAAAAAAAAAQDq6O0qXiyKe214EAAAAMBYpF1XY9OnTE9dgDw4OppQGAAAAAAAAAIAkufbOxBnlIgAAAGCsUi6qsJ133jlxpr+/P4UkAAAAAAAAAACUY9KEidE5qa3kzII+5SIAAABgbFIuqrByykULFixIIQkAAAAAAAAAAOXKtXeVPLe5CAAAABirlIsqbJdddil5XiwW4+9//3tKaQAAAAAAAAAAKEcum1Au6lcuAgAAAMYm5aIKO+CAA0Y9y2QyERHx17/+NYaGhtKKBAAAAAAAAABAgsRyUaE3pSQAAAAA6VIuqrDu7u7Yc889o1gsri4TRTy3sWiVFStWxD333FOLeAAAAAAAAAAArEcu21nyfOny/hgYWplSGgAAAID0KBdVwWGHHZY489Of/jSFJAAAAAAAAAAAlKM7YXNRRMTCftuLAAAAgLFHuagKjjzyyFHPMplMFIvF+N73vpdiIgAAAAAAAAAASsmVUS7KF3pSSAIAAACQLuWiKthnn31i3333jWKxGJlMZvXjxWJx9T8/8cQTcdttt9UiHgAAAAAAAAAA65jS1h4tTc0lZ/IFm4sAAACAsUe5qEre9773lTwvFovxqU99KqU0AAAAAAAAAACU0tTUFDPaO0rO2FwEAAAAjEXKRVVy9NFHx8yZMyMinre9aNWf77777rjssstqkg8AAAAAAAAAgLXlsl0lz5WLAAAAgLFIuahKJkyYEBdeeGEUi8X1nmcymSgWi3HmmWfG3LlzU04HAAAAAAAAAMC6kstFvSklAQAAAEiPclEVHXrooXHkkUeuta0oIlYXjjKZTPT09MTrXve6WLp0aY1SAgAAAAAAAAAQUd7motF+0SwAAABAo1IuqrJvfvObMXPmzIiI9RaMIiIeffTROPjggyOfz6eeDwAAAAAAAACA5ySViwaHh6JnxbKU0gAAAACkQ7moyrq6uuLHP/5xdHU9982ndQtGq/78pz/9KQ444ID405/+VJOcAAAAAAAAAADjXXe2M3EmX+hJIQkAAABAepSLUrDzzjvHDTfcEB0dHRGx/oJRJpOJJ554Ivbff//43Oc+FytXrqxVXAAAAAAAAACAcWlGwuaiiIgFykUAAADAGKNclJKXvexl8etf/zo233zziIjVhaKI5wpGqx4bHByMj33sY7HrrrvGVVddFUNDQzXLDAAAAAAAAAAwnrRNmBidrW0lZ2wuAgAAAMYa5aIU7bnnnvG73/0u9tprr9WFolXWLBgVi8WYO3duHHfccbHddtvFJz7xiXjooYdqERkAAAAAAAAAYFzJJWwvyhd6U0oCAAAAkA7lopRtt912cffdd8cnP/nJaGlpGXWD0aqS0dNPPx2f/vSnY88994yddtopTj755Lj88svjvvvui/7+/lp+KgAAAAAAAAAAY04u21ny3OYiAAAAYKxpqXWAseqkk05KnJk1a1bMmTNndbko4vkFozUfe+KJJ2Lu3Lnx7W9/e/V8LpeL7u7u6O7ujo6OjmhtbY2JEyeu9Zq1lslk4tJLL611DAAAAAAAAACARMmbi5SLAAAAgLFFuahKvv3tb5dd8FlVHlrfY2uWjNY3u2DBgliwYEFdlYnWVCwWlYsAAAAAAAAAgIaRVC56dnl/DA4NxcQWb7sBAAAAxgbf5aiy9RWHNvb56xaN1pzZ1HsAAAAAAAAAAEguF0VELOzvja26pqaQBgAAAKD6lIuqLGmj0IaUgtY3O1rhqF4oPQEAAAAAAAAAjSSX7UycyRd6lIsAAACAMUO5qMqqXa6p5/JOPZeeAAAAAAAAAADWZ2pbNpqbmmJ4ZGTUmXyhJ8VEAAAAANXVVOsAAAAAAAAAAABQL5qammJGe+ntRcpFAAAAwFiiXAQAAAAAAAAAAGvIZbtKnucLvSklAQAAAKg+5SIAAAAAAAAAAFhDLmtzEQAAADB+KBcBAAAAAAAAAMAaurOblTzPF3qiWCymEwYAAACgylpqHWCsy2QytY4AAAAAAAAAAMAGSNpcNDA8FL0rlkVXW3tKiQAAAACqR7moivyGGgAAAAAAAACAxpPLdiXOLCj0KBcBAAAAY4JyUZUcf/zxtY4AAAAAAAAAAMBGmJGwuSgiIl/ojZ1nbJlCGgAAAIDqUi6qkssvv7zWEQAAAAAAAAAA2AiTJ7RGR2tb9A0sH3UmX+hJMREAAABA9TTVOgAAAAAAAAAAANSbXML2IuUiAAAAYKxQLgIAAAAAAAAAgHXksl0lz5WLAAAAgLFCuQgAAAAAAAAAANaRXC7qTSkJAAAAQHUpFwEAAAAAAAAAwDpy2c6S50uWF2JweCilNAAAAADVo1wEAAAAAAAAAADrSNpcFBGx0PYiAAAAYAxQLgIAAAAAAAAAgHWUUy7KF3pSSAIAAABQXcpFAAAAAAAAAACwjmlt2WjOlH5rTd7mIgAAAGAMUC4CAAAAAAAAAIB1NDU1xfT2jpIzNhcBAAAAY4FyEQAAAAAAAAAArEcu21XyPN+vXAQAAAA0PuUiAAAAAAAAAABYj+6OhHKRzUUAAADAGKBcBAAAAAAAAAAA65G4uajQG8ViMaU0AAAAANWhXAQAAAAAAAAAAOuRVC4aGFoZvSuWpZQGAAAAoDqUiwAAAAAAAAAAYD2SykUREQsKvSkkAQAAAKge5SIAAAAAAAAAAFiPXHtn4ky+0JNCEgAAAIDqUS4CAAAAAAAAAID1mDyxNbKtk0rOKBcBAAAAjU65CAAAAAAAAAAARpFr7yp5nu9XLgIAAAAaW0utA7DxhoeHY/78+fH0009HX19fLF++PJYvXx4rVqyIYrH4vPnjjjuuBikBAAAAAAAAABpXLtsVTyxZMOp5vtCbYhoAAACAylMuahCPPvpo3H333XH//ffH/fffH4899ljk8/n1lohGo1wEAAAAAAAAALBhctnOkuf5gs1FAAAAQGNTLqpTw8PDcfPNN8fNN98cP/vZz2LevHlrnW9IqSgiIpPJVDIeAAAAAAAAAMC40J3tKnn+7LJCDA4PxcRmb8MBAAAAGpPvatSZxx9/PL7xjW/Ed7/73Vi0aFFErL9ItCFloQ0tIpXyhS98IW6++ebEuVwuF9dee23F7gUAAAAAAAAAqIVcQrmoGBGL+vtiy84p6QQCAAAAqDDlojrx6KOPxrnnnhvXXHNNjIyMrFUIKlUkSioOVXpj0eGHHx5nn312yZlisRiZTCZ+/etfx8tf/vKK3g8AAAAAAAAAkKakclFERL7Qo1wEAAAANKymWgcY7/r6+uK0006LWbNmxQ9/+MMYHh5eXc5Z9RHxXGFnfR9p23PPPeP1r3/96rtLZfrWt76Vej4AAAAAAAAAgEqaOjkbzZnSb7HJF3pSSgMAAABQecpFNfTjH/84dtttt/jmN7/5vFJRRNS0RFTKRz7ykdX/vGYJas2PYrEY1113XfT19dUwKQAAAAAAAADApmluaorp7R0lZ5SLAAAAgEamXFQDxWIxPvKRj8Sb3vSm+Ne//jVqqahe7b///vHiF7941O1FqwwMDMT1119fq5gAAAAAAAAAABWRy3aVPM8XelNKAgAAAFB5ykUp6+vri9e85jUxe/bshisVrem9731vWXM//OEPq5wEAAAAAAAAAKC6kstFNhcBAAAAjUu5KEW9vb1x+OGHx+233766WBSx8aWiVcWkVa+TpmOOOSa6urpW51hXJpOJYrEYd9xxR/T2+u08AAAAAAAAAEDjSioXLSj0NMwvlAUAAABYl3JRSvr6+uLwww+Pu+66KyL+Xb4p9xtLaxaJalUoWlNra2u85S1vWW/+NR8bGhqK2267Lc1oAAAAAAAAAAAV1Z3tLHk+MLQyegeWp5QGAAAAoLKUi1Jy7LHHxt13373WtqIk6xaJVpWRVn20tLTEZpttFltsscXq+TQde+yxZc3dcsstVU4CAAAAAAAAAFA9SZuLIiLyhZ4UkgAAAABUXkutA4wHn/zkJ+PHP/5x2cWiNUtCq2a33nrrOPzww2OfffaJvfbaK7bddtvI5XKr55qa0u+JveIVr4ju7u7I5/OrNzGtadVjNhcBAAAAAAAAAI2s3HLRzOlbpJAGAAAAoLKUi6rs97//fZx33nkbXCwqFovR1dUVxx13XJx88smxxx57VD3rhspkMvHqV786rrjiiudtTSoWi6sfW7BgQfz1r3+NmTNn1iImAAAAAAAAAMAmmTyxNbITJ0VhcMWoM/lCb4qJAAAAACon/XU348jKlSvj1FNPXV0oKlUsymQyqzf9tLa2xkc/+tGYO3dufOUrX6nLYtEqr33ta8uau/POO6ucBAAAAAAAAACgenLZzpLn+UJPSkkAAAAAKku5qIq+9KUvxcMPP7y6NDSaNbcV7b///vHAAw/EeeedF5tttllKSTfeoYceujr/utuL1qRcBAAAAAAAAAA0sly2q+S5chEAAADQqJSLqmTZsmXxxS9+sWThJiJWF4+KxWK85z3viV//+tcxc+bMlFJuus022yx22223kjPFYjHmzJmTUiIAAAAAAAAAgMpTLgIAAADGKuWiKvnGN74RixcvjogYdWvRqmJRJpOJj370o3HRRRdFS0tLmjErYv/99y/5OUZEPPLIIzE0NJRmLAAAAAAAAACAikkqFy1ZVoiVw94bAQAAADQe5aIq+epXv1pya9GaxaLTTjstzjvvvBTTVda+++673sfXLBytXLkyHnnkkbQiAQAAAAAAAABUVC7bWfK8GBGL+vvSCQMAAABQQcpFVXDXXXfFk08+GRHr31q0ZrHowAMPjK985SspJ6ys3Xbbray5xx57rMpJAAAAAAAAAACqI2lzUUREvtCTQhIAAACAylIuqoLvfe97o56tuc2otbU1Lrvssmhubk4jVtXssssuZc3NnTu3ykkAAAAAAAAAAKpj2uSOaM6UfquNchEAAADQiJSLquDWW29dq0S0rlVbiz74wQ/GTjvtlGKy6pg2bVpMnTo1IqLk561cBAAAAAAAAAA0quamppje3lFyJl/oTSkNAAAAQOUoF1XYggUL4u9//3tEPFciWtOaxZu2trY466yzUs1WTVtttdXzPt91/etf/0opDQAAAAAAAABA5eWyXSXPbS4CAAAAGpFyUYXdeeedJc9XbS16wxveENOnT08pVfV1d3cnzixcuDCFJAAAAAAAAAAA1ZHLdpY8X6BcBAAAADQg5aIKe/DBB8uaO+qoo6qcJF2bb775qGeZTCaKxWIsWrQoxUQAAAAAAAAAAJVVzuaiYrGYUhoAAACAylAuqrAnnnhivY9nMpm1/vkVr3hFSonSkc1mE2eWLl1a/SAAAAAAAAAAAFWSVC5aMbQy+gaWp5QGAAAAoDKUiypstHLRmmbOnBmbbbZZ9cOkaNKkSYkzAwMDKSQBAAAAAAAAAKiOpHJRRES+0JtCEgAAAIDKUS6qsPnz56+1pWhNxWIxMplM7LTTTimnqj7lIgAAAAAAAABgrCuvXNSTQhIAAACAylEuqrD+/v7EmRe84AUpJKk/Q0NDtY4AAAAAAAAAALDR2ie2RvvE1pIzykUAAABAo1EuqrByykXZbDaFJOlavnx54kxra+lvrgEAAAAAAAAA1Luk7UXKRQAAAECjUS6qsBUrViTOTJw4MYUk6Vq2bFnizOTJk1NIAgAAAAAAAABQPcnlot6UkgAAAABUhnJRhbW1tSXOlLPlp9Hk8/nEmXK+NgAAAAAAAAAA9SyX7Sx5bnMRAAAA0GiUiyqsnO08/f39KSRJ17x580Y9KxaLERHR0dGRVhwAAAAAAAAAgKpI2ly0eFlfDA0Pp5QGAAAAYNMpF1VYe3t74szTTz+dQpJ0zZ07NzKZzKjnmUwmttpqqxQTAQAAAAAAAABUXlK5qBgRC/t70wkDAAAAUAHKRRU2ZcqU1Zt61qdYLMZTTz2VYqLqmzdvXixZsiQiouTnvs0226QVCQAAAAAAAACgKpLKRRER+YJyEQAAANA4lIsqbPvttx/1bNVmn8cffzxWrlyZVqSqmzNnTllzykUAAAAAAAAAQKObPrkjmv7/94CMJt/fk1IaAAAAgE2nXFRhO+yww3ofX3Ojz+DgYDzwwANpRaq6n//852XNzZw5s8pJAAAAAAAAAACqq7mpKaa3d5acyReUiwAAAIDGoVxUYaOVi9Z1++23VzlJem655ZbVW5lK2WeffVJIAwAAAAAAAABQXblsQrmoT7kIAAAAaBzKRRX24he/uKy5m266qcpJ0jFnzpz4+9//HhFrb2eKiLUKR5tttpnNRQAAAAAAAADAmJDLdpU8t7kIAAAAaCTKRRW21157RVtbW0TE87b5FIvFyGQyUSwW449//GM88sgjtYhYUd/85jdLnq/6nG0tAgAAAAAAAADGiuRyUe/zfkkrAAAAQL1SLqqwlpaW2Hfffcv6BtHXvva1FBJVz8KFC+Oqq656XolqfQ477LAUEgEAAAAAAAAAVF9SuWj50GD0DaxIKQ0AAADAplEuqoKkIs2q7UWXXnpp/OMf/0gpVeV99rOfjf7+/oiIxDLVm9/85jQiAQAAAAAAAABUXS7bmTiTL/SkkAQAAABg0ykXVcFRRx016tmaJZzBwcE488wz04hUcX/5y1/i61//+qhbi1YVqCIidtttt9hhhx3SjAcAAAAAAAAAUDVJm4silIsAAACAxqFcVAU77LBD7LPPPlEsFtdbvln1eLFYjOuvvz6uuuqqGqTceMPDw3H88cfH4OBgRJTeWpTJZOId73hHWtEAAAAAAAAAAKouO3FSTJ7QWnIm369cBAAAADQG5aIqOf744xNnVhWMTjvttHjggQdSSFUZ73//+2POnDlrbSda05qFqtbW1jjllFPSjAcAAAAAAAAAUHVJ24vyhd6UkgAAAABsGuWiKjn55JNjxowZERGjbi9adVYoFOJ1r3td/P3vf08148b4whe+EN/4xjfW+zmtadV2pqOPPjqmTZuWUjoAAAAAAAAAgHTksp0lz/MFm4sAAACAxqBcVCWTJk2KD37wg+vd7LPKmgWjp59+Og466KB48MEH04q4wc4999w4++yzVxeLkrYWNTU1xZlnnplaPgAAAAAAAACAtHQnbi5SLgIAAAAag3JRFX3gAx+IXC4XEevfXhSxdsFowYIFccABB8SVV16ZWsZyFAqFOPbYY+NTn/rU6rxJpalMJhPHH3987L777mnFBAAAAAAAAABITS6hXLR4WSGGhodTSgMAAACw8ZSLqqizszO++MUvliziRKxdMFq2bFmccMIJccQRR8RTTz2VRsySfvKTn8R//Md/xPe///3VpaHRPp81C1Tt7e3xmc98Jq2YAAAAAAAAAACpymU7S54Xi8VYtKwvpTQAAAAAG0+5qMqOPfbYeMUrXrG6mDOaNQtGxWIxbr755thll13ife97X8ydOzetuKvdfvvtccghh8Qb3/jGeOKJJxKLRausmjv33HOju7s7pbQAAAAAAAAAAOnKdWyWOJMv9FQ/CAAAAMAmUi5KweWXXx7Tpk2LiNiggtHAwEBcfPHFMXPmzDjkkEPisssui/nz51ct55w5c+ITn/hE7LLLLvHqV786fvnLX64uCyUVi1adZzKZOOSQQ+L000+vWk4AAAAAAAAAgFqbNjkbTSXeBxKhXAQAAAA0hpZaBxgPtt1227jqqqvita99beIGoDULRqv+XCwW45e//GX88pe/jIiIF77whbHPPvvE3nvvHTvuuGNss802ZeWYO3duLF++PJYtWxYLFiyIefPmxdy5c2POnDkxZ86cePbZZ9fKsG6O0axZmJo+fXpcccUVZeUBAAAAAAAAAGhULU3NMW1yRyzs7x11Jl8Y/QwAAACgXigXpeSwww6Lz3zmM3H22WeX3F60ypobg1b9eZWHH344Hnnkkbjyyiuf95z1vc6q/91pp51K3rfKmvlKlYrWnC0Wi9HW1hbXXXddbL755iWfAwAAAAAAAAAwFuSyXSXLRQsKS9MLAwAAALCRmmodYDz58Ic/HOecc87zikOjWbW1KCJWz6+70WjNmSTrPmfNj9Fev5Q1Z5ubm+Oqq66Kgw46qKwsAAAAAAAAAACNLpftKnlucxEAAADQCGwuStmnP/3pWLlyZcyePXt1mSepxLPu+fpKSeUUjMopM5VrzWJRU1NTXHzxxfGmN72p7OcDAAAAAAAAADS67mxnyfN8oWf1L30FAAAAqFc2F9XA+eefH//zP/8TTU3Pffk39BtI69s8tLHP29DXWDNvsViM1tbWuPrqq+Pkk0/eoM8BAAAAAAAAAKDRJW0uWr5yMAqDK1JKAwAAALBxlItq5Iwzzoibb745urq6Vv+Gmkb4LTVrFoumTZsWt912W7zlLW+pcSoAAAAAAAAAgPQllYsintteBAAAAFDPlItq6PDDD4/77rsvXvWqV63eHFSvJaM1cxWLxXjVq14VDz74YLzsZS+rcTIAAAAAAAAAgNoor1zUm0ISAAAAgI2nXFRj22+/fdxxxx1x8cUXR0dHR92VjNYtFbW1tcXs2bPj9ttvjy222KLG6QAAAAAAAAAAaqd9YmtMnjCx5IzNRQAAAEC9Uy6qE6eeemo88cQTceaZZ8akSZOeVzJKu2i0bqkoIuL444+Pv/71r3HmmWfWRfEJAAAAAAAAAKCWMplM4vYi5SIAAACg3ikX1ZGpU6fG7NmzV5eMpk2bFsVicb1Fo0qXe9b32sViMSZMmBDHHntszJkzJy6//HLbigAAAAAAAAAA1qBcBAAAADQ65aI61N3dHbNnz45//etf8YMf/CAOP/zwmDBhwlpFo4jnF4I25SMiVr9+sViMXXbZJc4999x46qmn4jvf+U7sueeetfpyAAAAAAAAAADUreRyUW9KSQAAAAA2TkutAzC6CRMmxNve9rZ429veFv39/fHzn/88br311vjtb38bjz32WAwPDz/vOeVsNFqzoLRKZ2dn7LPPPnHooYfGm970pthll10q8jkAAAAAAAAAAIxluWxnyfNFy/piaGQ4WpqaU0oEAAAAsGGUixpEe3t7vPGNb4w3vvGNERGxYsWKeOCBB+KBBx6IuXPnxrx582LevHkxf/78KBQKsXz58lixYkUMDAzEhAkTYvLkydHW1hbZbDa22mqr2GabbWKbbbaJnXbaKfbZZ5/YddddyyomAQAAAAAAAADwb90Jm4uKxWIs7u+L7o7N0gkEAAAAsIGUixrUpEmTYr/99ov99tuv1lEAAAAAAAAAAMatXEK5KCIiX+hRLgIAAADqVlOtAwAAAAAAAAAAQKOa1t4RmUym5Ey+0JtSGgAAAIANp1wEAAAAAAAAAAAbqaWpOaZP7ig5s6DQk1IaAAAAgA2nXAQAAAAAAAAAAJsgl+0seZ5XLgIAAADqmHIRAAAAAAAAAABsgly2q+S5chEAAABQz5SLAAAAAAAAAABgEySVixYUeqJYLKaUBgAAAGDDKBcBAAAAAAAAAMAmSCoXLV85GP2DAymlAQAAANgwykUAAAAAAAAAALAJctnOxJl8oSeFJAAAAAAbTrkIAAAAAAAAAAA2QdLmogjlIgAAAKB+KRcBAAAAAAAAAMAmyE6cFG0TJpacUS4CAAAA6pVyEQAAAAAAAAAAbIJMJpO4vWhBoTelNAAAAAAbRrkIAAAAAAAAAAA2US7bWfLc5iIAAACgXikXAQAAAAAAAADAJkraXKRcBAAAANQr5SIAAAAAAAAAANhE3QnlosXL+mJoZDilNAAAAADlUy4CAAAAAAAAAIBNlLS5aKRYjMXLCimlAQAAACifchEAAAAAAAAAAGyipHJRRES+0JNCEgAAAIANo1wEAAAAAAAAAACbaPrkjshkMiVn8n3KRQAAAED9aal1AJINDg7GP/7xj1iwYEHk8/lYvHhxrFixIgYGBmJgYCCGh4drHTHRxz/+8VpHAAAAAAAAAACompbm5pg2ORuL+vtGnbG5CAAAAKhHykV1ZtmyZfGHP/wh7rzzzrj33nvjkUceiX/84x8xMjJS62ibRLkIAAAAAAAAABjrctmukuWiBcpFAAAAQB1SLqoDS5cujR/96EdxzTXXxC9+8YsYGhpafVYsFmuYrDKSVn4DAAAAAAAAAIwFuWxXPLxg3qjn+UJvimkAAAAAyqNcVEOPP/54XHDBBfGd73wnli9fHhHPLxM1ejFnLJSjAAAAAAAAAADKkct2ljzP21wEAAAA1CHlohpYvHhx/L//9//iW9/6VgwPD69VwBmtTNSIJZ1GL0YBAAAAAAAAAGyIXHtXyfNlKweiMLgishMnpZQIAAAAIJlyUcp+9KMfxSmnnBJLly5dXRhat4TTiEUiAAAAAAAAAIDxLpctXS6KeG57UXaqchEAAABQP5pqHWC8KBaL8b73vS+OPPLIePbZZ6NYLEYmk1ldLCoWi6s/AAAAAAAAAABoPOWVi3pTSAIAAABQPpuLUjA4OBhvf/vb44YbblhdKlpFmQgAAAAAAAAAYGzoaJ0UbS0TY/nQ4Kgz+UJPiokAAAAAkikXVVmxWIyjjjoqbrzxxoiItTYVAfXhn//8Z9x2223x4IMPxsMPPxxz586Nvr6+6O3tjWKxGB0dHdHR0RHbbLNN7LbbbjFr1qw49NBDY+bMmbWO3lDy+Xz87ne/W/11njdvXsyfPz+effbZWLFiRQwODsaECRNi0qRJ0dXVFZtvvnlstdVW8cIXvjBmzZoVBx54YGy99da1/jQAAAAAAAAARpXJZCKX7Yx/LF006oxyEQAAAFBvlIuq7Jxzzokbb7yxYqWiNbceARtv6dKl8a1vfSuuvPLKePDBB0vOLl68OBYvXhxPPvlk/OY3v1n9+MyZM+OYY46J0047Lbq7u6sduSE9/vjj8b3vfS+uu+66eOihhxLnBwYGYmBgIHp6euKpp56KiIjrr79+9flOO+0Ub3rTm+KYY46Jvfbaq2q5AQAAAAAAADZWLtulXAQAAAA0lEzRCp2q+eUvfxkHH3zwRheLShWJGulfWyaTieHh4VrHgIiIKBQKcd5558XXvva16O/vr8hrTpw4MY4//vj47Gc/G9OnT6/Iaza63/zmN/G5z30ufvrTn1btjgMOOCA+8pGPxBve8Iaq3dEIFi5cGLlcbq3H8vl8zJgxo0aJAAAAAAAAYHy7as5v4yePzhn1PJftigveeEJ6gQAAAICyjOf35dpcVCUrVqyId7/73av/vCFloDVLRes+b8KECTF9+vSYNm1atLW1RWtrazQ3N296YBgHbrrppnjf+94X8+bNq+jrDg4OxiWXXBLXXXddfPGLX4wTTzyxoq/fSP75z3/GGWecEdddd13V7/r9738fb3zjG+Pggw+OCy+8MHbdddeq3wkAAAAAAACQJNfRVfJ8UX9vDI+MRHNTU0qJAAAAAEpTLqqSb37zm/G3v/0tMplM2cWidTcctbe3x8EHHxz7779/7LPPPrHzzjvH1ltvXbXMMFaNjIzExz/+8fjsZz9b1a1fS5YsiZNOOin+8Ic/xIUXXhgTJ06s2l316IYbboiTTjopnn322VTv/fnPfx4vfvGL46tf/WqcdNJJqd4NAAAAAAAAsK5ce+ly0UixGIuX9UUuW3oOAAAAIC3KRVWwcuXKmD179lobiEpZt1R0+OGHx3ve85549atfHa2trVXLCePB8PBwvP3tb49rrrkmtTsvueSSePzxx+OWW26JyZMnp3ZvLX3pS1+Ks846q6rlrVKWLVsWJ598cjz22GNx/vnn1yQDAAAAAAAAQERELtuZOLOg0KNcBAAAANQN+5Wr4MYbb4x//etfERGJb7Rfs1h00EEHxR//+Me49dZb44gjjlAsgk00MjISJ5xwQqrFolV+/etfx5vf/OYYGBhI/e60zZ49O84888yaFYvW9IUvfCE+9KEP1ToGAAAAAAAAMI7NaO+MpF9Hmy/0pJIFAAAAoBw2F1XBD3/4w8SZNUtFTU1N8fnPfz7OOuussrcdAck++tGPxne/+90Nes7MmTPjwAMPjBe96EUxderUyGQy8eyzz8YjjzwSf/jDH+Khhx4q+7V+9rOfxSmnnBLf+c53NjR6w/jRj34UH/7whzf4ec3NzbHHHnvE/vvvH1tuuWVMmTIlOjs7o6+vL5599tl45pln4q677or7778/Vq5cuUGv/eUvfzl22mmneO9737vBuQAAAAAAAAA2VUtzc0yb3BGLlvWNOqNcBAAAANQT5aIKGxwcjFtuuaVkSWjNYlFLS0t8//vfj7e+9a1pRYRx4dZbb43zzz+/7PkjjjgizjnnnNh3331Lzj300EMxe/bs+O53vxsjIyOJr3vllVfGy1/+8jj55JPLztIo5s+fH6eccsoGbSx60YteFKeffnocddRRkc1mE+eXL18e1157bVxwwQUxZ86csu8588wz41WvelXsuuuuZT8HAAAAAAAAoFJy2a6EclFvimkAAAAASmuqdYCx5r777ovly5dHRJR8w32xWIxMJhMXXnihYhFU2OLFi+O4444rq/QyderU+MlPfhI33HBDYrEo4rlyzBVXXBG/+93vYuutty4rzwc+8IH429/+VtZsI/nv//7vWLJkSVmz7e3tcemll8af//znOPnkk8sqFkVEtLW1xTvf+c6477774gc/+EF0dXWV9bwVK1bE+973vrJmAQAAAAAAACotl+0seW5zEQAAAFBPlIsq7He/+13J80wms7pYdMQRR8Spp56aUjIYPz760Y/GokWLEude8IIXxB//+Md47Wtfu8F3vOQlL4l77703dtttt8TZ5cuXxxlnnLHBd9Szhx9+OL7//e+XNbv11lvHvffeGyeddNIm3XnUUUfFAw88UPY2ol/84hfxy1/+cpPuBAAAAAAAANgYuWzpX5yoXAQAAADUE+WiCnv44YdHPctkMqv/uaWlJb70pS+lEQnGlT/96U9xySWXJM51dXXFHXfcETvuuONG35XL5eLnP/95vOAFL0icvfnmm+OWW27Z6LvqzcUXXxwjIyOJc52dnfGTn/yk7EJQkm233TZuvfXW6O7uLmv+oosuqsi9AAAAAAAAABsiqVzUPzgQhcEVKaUBAAAAKE25qMLmzp1b8nzV1qIjjzwytttuu3RCwTjyqU99qqzSyyWXXBK77LLLJt+3+eabx/e+971obm5OnP3EJz6xyffVg5GRkbK3Fn31q1+NWbNmVfT+7bbbLq688sqyZn/84x9Hb29vRe8HAAAAAAAASJJULoqIWFjws0wAAACgPigXVdhTTz211oai0bzjHe9IIQ2ML4899ljcdNNNiXNHHHFEHHnkkRW796UvfWm8+93vTpy799574xe/+EXF7q2VBx54IBYtWpQ4t/vuu8exxx5blQyHHnpoHHzwwYlzAwMD8dvf/rYqGQAAAAAAAABGk8t2Js7kCz0pJAEAAABIplxUYX19fet9fM3CUUtLS7zyla9MKxKMG1/60peiWCyWnGlpaYkvfvGLFb/73HPPjc7O5G8O/8///E/F707bXXfdVdbcf/3Xf0VTU/X+b+ass84qa+73v/991TIAAAAAAAAArE9Ha1tMaplQcka5CAAAAKgXykUV1t/fP+rZqtLDrFmzYtKkSWlFgnFhYGAgfvjDHybOvfWtb42ddtqp4vdPmzYt3vWudyXO3XbbbbFgwYKK35+mxx57rKy5V7/61VXN8fKXv7ysv0sff/zxquYAAAAAAAAAWFcmk4lctqvkjHIRAAAAUC+UiypscHCw5Hkmk4kdd9wxpTQwftx8883R05P8jdfTTz+9ahk++MEPJm7qGR4ejh/84AdVy5CGefPmJc7ssMMOsfXWW1c1R1tbW+y///6Jc0899VRVcwAAAAAAAACsT3K5qDelJAAAAAClKRdVWDabTZzZfPPNU0gC48v3v//9xJmddtopXvKSl1Qtw7bbbhsvfelLE+fKyVrPCoVC4swLXvCCFJJEbLXVVokzfX19KSQBAAAAAAAAWFu3zUUAAABAg1AuqrDOzs7Emfb29hSSwPgxPDwcd9xxR+LcUUcdVfUsRx99dOLMPffcE4sXL656lmoZGRlJnJk+fXoKSSJmzJiROLNy5coUkgAAAAAAAACsLZct/R6SRf19MVzGz18BAAAAqk25qMLKKRcNDw+nkATGjz/+8Y/R05P8G51e85rXVD1LOXeMjIzEz3/+86pnqZYpU6YkzkycODGFJBGtra2JM1OnTk0hCQAAAAAAAMDacgmbi4aLI7F4WV9KaQAAAABGp1xUYdtvv30Ui8WSM8uWLUspDYwP5RR1Ojo6Yr/99qt6lm233TZ22mmnxLnbb7+96lmqZdq0aYkzixYtSiFJxMKFCxNnlIsAAAAAAACAWkgqF0VE5AvJv0gTAAAAoNqUiyrsRS96UeJMWm+6h/HiD3/4Q+LMfvvtFy0tLSmkiXjpS1+aOHP33XenkKQ6dtxxx8SZcko/lZDP5xNnttlmmxSSAAAAAAAAAKxtentHZBJm8oXeVLIAAAAAlKJcVGFJ5aJisRhPPPFESmlgfPjTn/6UOLP33nunkOQ5L37xixNnHnnkkRgYGEghTeUddNBBiTOPPPJI9Pf3VzVHsViMe+65J3HuwAMPrGoOAAAAAAAAgPWZ0NwSUydnS87YXAQAAADUA+WiCjvggANGPctknvt9NI8//nhacWDMW7BgQcyfPz9xrt7KRUNDQ/HnP/85hTSVt/fee0d7e3vJmcHBwfjlL39Z1RwPPvhgPPPMM4lz5WySAgAAAAAAAKiGXLar5LlyEQAAAFAPlIsqbLvttotZs2ZFsVhcXSaKeG7Dxiq9vb0NWyqAevPggw+WNbfrrrtWOcm/7bLLLmXNlZu93kyYMCHe/va3J8595zvfqWqOK664InFm3333je23376qOQAAAAAAAABGo1wEAAAANALloio44ogjEmfuuOOOFJLA2PfEE0+UNbfTTjtVOcm/TZkyJaZOnZo4V272evTBD34wcebaa6+N+++/vyr3//Of/4yLLrooce6//uu/qnI/AAAAAAAAQDmSy0W9KSUBAAAAGJ1yURUcc8wxq7cWrbm9aJVisRg//OEP044FY9LcuXMTZzbffPNob29PIc2/lVNmKid7vZo1a1a85S1vKTlTLBbj1FNPjeXLl1f07qGhoTjllFNiYGCg5NxOO+0URx55ZEXvBgAAAAAAANgQuWxnyfPC4IroHyz9s08AAACAalMuqoJdd901Xv/610exWFzr8WKxuLpsdM8991RtoweMJ08++WTizJZbbln9IOvYYostEmcauVwUEXHRRRfFtGnTSs7cc8898Y53vCOGh4crcmexWIzTTjstbrvttpJzTU1Ncdlll8WECRMqci8AAAAAAADAxkjaXBQRsbDQk0ISAAAAgNEpF1XJ//2//zdx5nOf+1wKSWBs+9e//pU4s/nmm6eQZMPvnDdvXgpJqqe7uzsuvfTSaG5uLjl3/fXXx6te9apN/nzz+Xy87nWvi29961uJs2eeeWa89KUv3aT7AAAAAAAAADZVOeWivHIRAAAAUGPKRVVy4IEHxpve9Ka1thVF/Ht7UbFYjGuvvTZ++9vf1jAlNL7FixcnznR3d6eQZG3llIuWLFmSQpLqOuKII+LSSy9d6++59fnNb34Te+65Z3zmM5+JRYsWbdAdS5cujdmzZ8esWbPi1ltvTZx/5zvfGeeff/4G3QEAAAAAAABQDZ2tbdHaMqHkzIJCb0ppAAAAANavpdYBxrKvfe1r8Ytf/CL6+vpWF4rWVCwW493vfnfce++9MXny5BqlhMZWTrlos802q36Qjbizv78/BgYGorW1tfqBquj444+PpqameM973hPLli0bdW7JkiXxsY99LD7zmc/EYYcdFgceeGC85CUvia222iqmTJkSHR0dUSgU4tlnn4358+fH3XffHb/73e/ipz/9afT395eV5bjjjovLLrsssewEAAAAAAAAkIZMJhO5bGf8c+noP9u2uQgAAACoNeWiKtpiiy1i9uzZ8e53v3vU7UWPPfZYnHDCCXH11VfXMCk0rmeffTZxpqOjI4UkG3fnkiVLYosttqhymup75zvfGf/5n/8Zb3/72+P+++8vObt8+fK48cYb48Ybb6zY/e3t7fG///u/cdJJJ1XsNQEAAAAAAAAqoTu7mXIRAAAAUNeaah1grDvllFPilFNOWV0oWmXNgtF1110X73//+2uYEhrT8uXLY+XKlYlztSgXdXZ2ljXX0zN2vkm86667xj333BOXXnpp7LDDDqnc2dzcHMcee2w88MADikUAAAAAAABAXcplS//8WLkIAAAAqDXlohRcdNFF8cpXvrJkwejrX/96nHTSSWUVJYDnDA4OljXX1tZW5STPN2nSpLLmyv0cGkVLS0ucdNJJ8dhjj8W1114bRx99dNlFqw2x1VZbxQc+8IF4+OGH48orr4wdd9yx4ncAAAAAAAAAVEIu21XyfFF/XwyPjKSUBgAAAOD5WmodYDxobm6O66+/Pl772tfG73//+9WFooi1C0ZXXHFFPProo3HVVVfF9ttvX+PUUP/KLeY0NzdXOcnztbSU99frWCsXrdLS0hKHH354FIvFGBkZiWuuuWb133ub6nWve1189rOfjT322KMirzcWHXTQQWX/N0j1/OUvf6l1BAAAAAAAAOpAUrlouDgSS5YVYkbChiMAAACAarG5KCWdnZ1x++23x2GHHba6ULRqi9GaBaO77rorZs2aFeeff36sWLGixqmhvpVbzKlFyaLcO8fitrKHHnoo3vGOd8T06dPjyCOPjKuvvrpixaKIiJ/85Cex5557xvbbbx9nn312PPPMMxV7bQAAAAAAAIBKSyoXRUTkCz0pJAEAAABYP2sNUtTW1hY//vGP4z3veU9cfvnlq8tFEWsXjJYtWxbnnHNOXHDBBXH66afHCSecEN3d3TVMDvVpaGiorDnlonQ88cQTceaZZ8aNN95Y0TLRaJ588sn4/Oc/HxdccEGceOKJ8bGPfSy23HLLqt/bCO68886YMWNGrWMAAAAAAAAAETG9vSMyEVHqp6j5Qk/sHlunFQkAAABgLTYXpWzChAlx6aWXxpVXXhnt7e3r3WC0qmS0YMGCOOecc2LrrbeOww8/PL785S/H/fffX3ahAsa6cgs8w8PDVU6y8XfWovhUDd/5znfiP/7jP+KGG25IpVi0phUrVsTXv/71eNGLXhRXX311qncDAAAAAAAAJJnY3BJTJmdLziywuQgAAACoobHxrvY6dO655ybOvP71r48f/OAH691gtGbhaGhoKO6444644447IuK5gtLOO+8c22yzTWy55ZbR2dkZbW1tMWHChOp8MhXw8Y9/vNYRGIMmTpxY1lwtCnnlbiQq93OoVyMjI3HKKafEZZddtkHPa25ujr322iv23XffyOVyMXXq1Nhss82iUCjEkiVLYsmSJXH//ffHXXfdFcuWLSvrNZ999tk46qij4qc//Wl885vfHDPFLQAAAAAAAKDx5bJdsWRZYdTzfKE3xTQAAAAAa/PO6yr55Cc/uVZpqJR1t3ys+vO6JaNVBgcH46GHHoq//OUvFUpbfcpFVEO5hbpalIvKvbORy0XFYjHe9a53xeWXX172c17+8pfHGWecEQcffHBks6V/M1fEcyWte+65J772ta/F1VdfXdbX9fLLL4/+/v743ve+F83NzWVnAwAAAAAAAKiWXLYzHs3/a9TzvM1FAAAAQA011TrAWFcsFkt+lPPciH8XjdYtHDXCB1RLa2trWXMrVqyocpKNv7ORy0Uf+tCHyi4W7bnnnnH33XfHr371qzjiiCPKKhZFPFcgO+CAA+Kqq66Kv//97/F//s//Ket5V199dRx33HFlzQIAAAAAAABUW669q+R5vl+5CAAAAKgdm4uqLGl7UTnlm3Vn1iwY1TvlorFn7ty5cffdd1f1jvb29njDG96QONfW1hYtLS2J22z6+voqFa1s5d7Z2dlZ5STVcfvtt8cFF1xQ1uypp54aX/nKV2LSpEmbdOc222wT11xzTVx44YVx1llnxcDAQMn5733ve/HKV74y3vWud23SvQAAAAAAAACbKpctXS4qDKyIZYMDMXlieb9kEwAAAKCSlIuqrBrlmkYp7DRKAYoN8+tf/zpOPPHEqt6x7bbbllUuioiYMmVKLFy4sORMb29vJWJtkHLvnDp1apWTVF5PT0+cdNJJZc2eddZZMXv27Ire//73vz+22mqreOtb35r49+GHPvShOOSQQ2K77baraAYAAAAAAACADZFULoqIyPf3xnYTZ6SQBgAAAGBtTbUOALAppk2bljjT05P++vhy7pw8efImb/Opha9+9asxb968xLkjjjgizj///KpkePOb31zWa/f19cVHPvKRqmQAAAAAAAAAKFd3tjNxJl9I/2fbAAAAABHKRUCDK6dctGDBghSSrO2ZZ55JnCkne71ZuXJlXHTRRYlzHR0dcemll0ZTU/X+b+a///u/Y7/99kucu+666+Kf//xn1XIAAAAAAAAAJOmcNDlaWyaUnFEuAgAAAGpFuQhoaFtttVXiTDlFn0or585ysteba6+9NubPn584d/rpp6dSnvr0pz+dODM0NBQXXnhh1bMAAAAAAAAAjCaTyUQuYXuRchEAAABQK8pFQEPbbrvtEmeefvrp6gdZRzkFnO233z6FJJX105/+NHGmpaUlzjjjjBTSRBxyyCGx1157Jc7ddNNNKaQBAAAAAAAAGF0u21XyPF/oTSkJAAAAwNqUi6osk8mM2w9IQzkFnWeeeSaWLVuWQpp/+9vf/pY404jlot/+9reJM/vtt19MmTIlhTTPefWrX5048+ijj8bChQtTSAMAAAAAAACwfrn20uWiBX1L0wkCAAAAsA7loiorFovj+gOqbYcddkicKRaLZZV9KmXp0qWxePHixLlysteTZ555JubOnZs4d9hhh6WQZsPvu/POO6ucBAAAAAAAAGB0SZuLFvX3xcjISEppAAAAAP6tpdYBxqqXvexltvcwJp1wwglxwgkn1DrGarNmzSpr7tFHH4099tijymn+fVc5ys1eL+bNm1fW3Ite9KIqJ9m4+/7xj39UOQkAAAAAAADA6HLZzpLnw8WRWLy8EDPaS88BAAAAVJpyUZX86le/qnUEGBe22GKL6O7ujgULFpScmzNnTrztbW9LJdOcOXMSZ1paWlIrO1VKOduYIiKmT59e5SRrmzp1ajQ1NSX+Bq9y8wMAAAAAAABUQ9LmooiIfKFHuQgAAABIXVOtAwBsqr333jtxppzCT6Xcd999iTO77rprTJo0KYU0lbNkyZKy5tIuFzU1NcXUqVMT55SLAAAAAAAAgFqakbC5KOK5chEAAABA2pSLgIa3//77J87cddddMTQ0lEKaiN/85jeJM/vtt18KSSqrWCyWNZfJZKqcZOPuTOvfPwAAAAAAAMD6TGxuialt2ZIz+UJvSmkAAAAA/k25CGh4Bx98cOJMX19f/PGPf6x6lqeeeir+9re/Jc4deuihVc9SaZMnTy5rbtGiRVVOsraRkZGythKVmx8AAAAAAACgWnIJ24tsLgIAAABqQbkIaHj77rtvdHYmr4+/9dZbq56lnDsymUxZhah609XVVdbcwoULq5xkbUuWLImRkZHEuXL+GwEAAAAAAACoply29M9dlYsAAACAWlAuAhpeS0tLWWWdH/7wh1XP8oMf/CBxZp999onp06dXPUulbbPNNmXN/eUvf6lykrX9+c9/Lmuu3PwAAAAAAAAA1ZJcLupNKQkAAADAvykXAWPC29/+9sSZv/71r3H33XdXLcNTTz0Vv/nNbxLnyslaj7bZZptoaWlJnPvZz36WQpp/u+2228qa23777aucBAAAAAAAAKC0pHJR38DyWLZyIKU0AAAAAM9RLgLGhDe84Q3R2dmZOHfBBRdULcP//u//xsjISMmZpqamOProo6uWoZomTJgQs2bNSpy76667YunSpdUP9P/76U9/mjiTyWRi7733TiENAAAAAAAAwOhy2eSfay+0vQgAAABImXIRMCZMmjQp3va2tyXOXXvttfG3v/2t4vcvXrw4LrnkksS5ww47LLbYYouK35+W/fffP3FmaGgovvzlL6eQJuLWW2+NBx54IHFu1113jSlTpqSQCAAAAAAAAGB0SZuLIiLyhZ4UkgAAAAD8m3IRMGZ86EMfikwmU3JmaGgozjrrrIrf/fGPfzx6e5N/e9SZZ55Z8bvT9LrXva6suQsuuCCWLFlS1SzFYjE+9rGPlTX7mte8pqpZAAAAAAAAAMrRNWlytDa3lJzJ21wEAAAApEy5CBgzXvjCF8brX//6xLkbb7wxrrnmmorde+edd8Y3vvGNxLm99947DjnkkIrdGxHx5JNPRiaTSfx4xSteUZH7Dj300LI2APX29sbJJ58cIyMjFbl3fc4777yYM2dOWbPlbLUCAAAAAAAAqLZMJpO4vcjmIgAAACBtykXAmPKJT3wimpqS/2o75ZRT4vHHH9/k+5555pk45phjYnh4OHH2k5/85CbfV2sTJkyId73rXWXN3nDDDfHhD3+4Kjl+8IMflP313GuvvWK//farSg4AAAAAAACADZVULlqgXAQAAACkTLkIGFNe/OIXx0knnZQ419PTEwcffHA88cQTG33XwoUL45BDDol//vOfibOvec1r4g1veMNG31VPTj/99GhtbS1r9otf/GKcdtppMTAwULH7v/SlL8Vxxx0XxWKxrPmPfOQjFbsbAAAAAAAAYFPlsp0lz20uAgAAANKmXASMOZ/97Gdj2rRpiXPz5s2LfffdN2699dYNvuPuu++OffbZJ/7yl78kzk6aNCm+8pWvbPAd9WrLLbfcoI1EF198cbzkJS+Je+65Z5PunTt3bhxxxBFx5plnxsqVK8t6zkEHHRRHHnnkJt0LAAAAAAAAUElJm4sW9vfGyMhISmkAAAAAlIuAMWjGjBnx7W9/OzKZTOLs4sWL47WvfW285S1viXvvvTdx/uGHH44TTzwxDjjggHjqqafKyvOVr3wlZs6cWdZsozj77LPjhS98Ydnz999/f+y7777xyle+Mm666abo7+8v63krV66M3/72t3H00UfHzJkz46abbir7zkmTJsXFF19c1n8HAAAAAAAAAGlJKhcNj4zEkuWFlNIAAAAARLTUOgBANbz+9a+Ps846K2bPnl3W/PXXXx/XX3997LzzznHQQQfF7rvvHlOnTo1MJhPPPvtsPProo/GHP/whHnzwwQ3Kccwxx8Spp566MZ9CXZs0aVJcf/31se+++0Zvb2/Zz/vVr34Vv/rVr6KlpSX22muv2G+//WLGjBkxderU2GyzzaJQKMSSJUti8eLFcf/998ddd90Vy5Yt26iM3/jGN2L33XffqOcCAAAAAAAAVEtSuSgiIl/ojentnSmkAQAAAFAuAsawz3/+8zFv3rz4/ve/X/ZzHn/88Xj88ccrcv/BBx8cl112WUVeqx7tsssuccMNN8TrX//6DS4ADQ0NxT333BP33HNPVbKdd955cdxxx1XltQEAAAAAAAA2xYwySkP5Qk/s1v2CFNIAAAAARDTVOgBAtTQ1NcV3vvOdeMtb3pL63QcddFDceOON0dramvrdaXrlK18Zt9xyS0yZMqXWUSLiuX/ns2fPjo997GO1jgIAAAAAAACwXhNbWmJKW3vJmXyhJ6U0AAAAAMpFwBjX0tIS11xzTXz4wx9O7c4TTzwx7rjjjmhvL/3N4LHi5S9/edx3332x99571zTH9OnT45ZbbomzzjqrpjkAAAAAAAAAkuSyXSXPlYsAAACANCkXsUmmTp2a+DFt2rRax2Sca2pqis9//vNx/fXXx5Zbblm1e6ZMmRKXXHJJXHbZZWN+Y9G6tt9++7j77rtj9uzZkc1mU707k8nEiSeeGI888kgcfvjhqd4NAAAAAAAAsDGSy0W9KSUBAAAAiGipdYBa2mGHHRJnMplM/P3vf08hTWNaunRpZDKZKBaLo85kMpkUE8Ho3vSmN8XBBx8c5557bnz961+P/v7+irzuxIkT453vfGd87nOfixkzZlTkNRtRS0tLnHXWWXHCCSfEBRdcEF//+tdjyZIlVbtvwoQJ8ba3vS3OPvvs2H333at2DwAAAAAAAECl5bKdJc9tLgIAAADSNK7LRU8++aRiTIWM9nUq9bWFWujo6IjZs2fHOeecE9/85jfjyiuvjL/85S8b9Vo77rhjvP3tb4/3vve9scUWW1Q4aeOaPn16fPrTn46Pf/zj8ZOf/CSuvvrq+PnPfx4LFy7c5Ndua2uLAw88MN785jfHUUcdZTMaAAAAAAAA0JCSNhf1DiyP5SsHo23CxJQSAQAAAONZpjiO2x9NTU0ly0PFYjEymUwMDw+nlqm5uTlxJpPJxNDQUAppktXj1xA21D/+8Y/42c9+Fg888EA8/PDD8eSTT0Zvb2/09fVFsViMjo6O6OjoiK233jp22223mDVrVhxyyCGx66671jp6wygWi/HnP/855syZEw899FD89a9/jfnz58f8+fOjr68vVqxYEYODg9HS0hKTJk2K9vb26O7uji222CK233772H333WOPPfaIfffdN1pbW2v96dSVhQsXRi6XW+uxfD4/rrdoAQAAAAAAQL17bOHT8anbryk58/nXHBPbTPFzPwAAAEjLeH5f7rjeXFSPGrXrtb7ctj7RKLbddts45ZRTah1jTMtkMrHHHnvEHnvsUesoAAAAAAAAADXXnbC5KCJiQaFXuQgAAABIhXJR1F8xJmkTEAAAAAAAAAAAjatr0uSY2NwSg8NDo87kCz0pJgIAAADGs6ZaB2D9isXi8z4AAAAAAAAAAGh8mUwmcgnbi5SLAAAAgLQoFwEAAAAAAAAAQMpy2c6S58pFAAAAQFqUiwAAAAAAAAAAIGU2FwEAAAD1QrkIAAAAAAAAAABSllQuWtjfFyMjIymlAQAAAMYz5SIAAAAAAAAAAEhZLttZ8nxoZDieXd6fUhoAAABgPFMuAgAAAAAAAACAlCVtLoqIyBd6UkgCAAAAjHfKRQAAAAAAAAAAkLIZ7aU3F0VELFAuAgAAAFKgXAQAAAAAAAAAAClrbZkQm7W1l5zJF3pTSgMAAACMZ8pFAAAAAAAAAABQA7ls6e1FeZuLAAAAgBQoFwEAAAAAAAAAQA3k2rtKnisXAQAAAGlQLgIAAAAAAAAAgBrIZRPKRf3KRQAAAED1KRcBAAAAAAAAAEANJJWLelcsjxUrB1NKAwAAAIxXykUAAAAAAAAAAFAD3R2ly0UREfn+3hSSAAAAAOOZchEAAAAAAAAAANRA0uaiiIh8oSeFJAAAAMB4plwEAAAAAAAAAAA1sNmkyTGhubnkzII+5SIAAACgupSLAAAAAAAAAACgBjKZTOL2IpuLAAAAgGpTLgIAAAAAAAAAgBrJtSsXAQAAALWlXAQAAAAAAAAAADWSuLmovzelJAAAAMB4pVwEAAAAAAAAAAA1kst2ljxfWOiNkWIxpTQAAADAeKRcBAAAAAAAAAAANZK0uWhoZDieXV5IKQ0AAAAwHikXAQAAAAAAAABAjXQnlIsiIvKF3hSSAAAAAOOVchEAAAAAAAAAANTIjGxn4ky+0JNCEgAAAGC8Ui4CAAAAAAAAAIAaaW2ZEJtNmlxyRrkIAAAAqCblIgAAAAAAAAAAqKFctqvkuXIRAAAAUE3KRQAAAAAAAAAAUEPJ5aLelJIAAAAA45FyEQAAAAAAAAAA1FAu21ny3OYiAAAAoJqUiwAAAAAAAAAAoIZy2c1KnvesWBYrhlamEwYAAAAYd5SLAAAAAAAAAACghpI2F0VELLS9CAAAAKgS5SIAAAAAAAAAAKih7mxX4swC5SIAAACgSpSLAAAAAAAAAACghrra2mNCc3PJmbxyEQAAAFAlykUAAAAAAAAAAFBDTZlM5NpLby/KF3pTSgMAAACMN8pFAAAAAAAAAABQY7lsZ8lzm4sAAACAalEuAgAAAAAAAACAGstlkzYXKRcBAAAA1aFcBAAAAAAAAAAANZZULlpY6I2RYjGlNAAAAMB4olwEAAAAAAAAAAA1llQuWjkyHEuX96eUBgAAABhPlIsAAAAAAAAAAKDGctnOxJl8oSeFJAAAAMB4o1wEAAAAAAAAAAA1NiNhc1GEchEAAABQHcpFAAAAAAAAAABQY5NaJkTXpMklZ5SLAAAAgGpQLgIAAAAAAAAAgDqQS9helC/0ppQEAAAAGE+UiwAAAAAAAAAAoA7ksp0lz20uAgAAAKqhpdYBGsFJJ51U6wjPU4+ZAAAAAAAAAADYeN2Jm4uUiwAAAIDKUy4aRbFYXP2/V1xxRU3uHu3xWmQqZbS8AAAAAAAAAACUL5dQLlq6YlkMDK2M1pYJKSUCAAAAxgPlojLUY3mmHjMBAAAAAAAAALDxkspFEc9tL9p6s+kppAEAAADGC+WiMmQymdTuKrc0lGamUpScAAAAAAAAAAAqo7xyUa9yEQAAAFBRykVlqMcCTT1mAgAAAAAAAABg423W1h4Tmppj5cjwqDP5Qk+KiQAAAIDxoKnWAQAAAAAAAAAAgIimTCZmZDtLzigXAQAAAJWmXAQAAAAAAAAAAHUil+0qea5cBAAAAFSachEAAAAAAAAAANSJ5HJRb0pJAAAAgPFCuQgAAAAAAAAAAOpELttZ8jzf3xMjxWJKaQAAAIDxQLkIAAAAAAAAAADqRNLmopXDw9GzvD+lNAAAAMB40FLrAPUgk8nUOgIAAAAAAAAAACSWiyIiFhR6YsrkbAppAAAAgPFAuSgiilZFAwAAAAAAAABQB3LtnYkz+UJv7JrbKoU0AAAAwHgwrstFL3vZy2wtAgAAAAAAAACgbkyaMDE6J7VF74rlo87kCz0pJgIAAADGunFdLvrVr35V6wgAAAAAAAAAALCWXHuXchEAAACQmqZaBwAAAAAAAAAAAP6tu6Or5Hm+X7kIAAAAqBzlIgAAAAAAAAAAqCO5bEK5qNCbUhIAAABgPFAuAgAAAAAAAACAOpJULlq6vD8GhlamlAYAAAAY65SLAAAAAAAAAACgjiSViyIiFtpeBAAAAFSIchEAAAAAAAAAANSRXLYzcWZBoSeFJAAAAMB4oFwEAAAAAAAAAAB1ZEpbNlqamkvO5JWLAAAAgApRLgIAAAAAAAAAgDrSlMnEjITtRflCb0ppAAAAgLFOuQgAAAAAAAAAAOpMrj2pXGRzEQAAAFAZykUAAAAAAAAAAFBnctmukuf5fuUiAAAAoDKUiwAAAAAAAAAAoM4klosKPVEsFlNKAwAAAIxlykUAAAAAAAAAAFBnkspFK4eHY+mKZSmlAQAAAMYy5SIAAAAAAAAAAKgz3dnOxJl8oSeFJAAAAMBYp1wEAAAAAAAAAAB1ZkbC5qII5SIAAACgMpSLAAAAAAAAAACgzrRNmBidrW0lZ5SLAAAAgEpQLgIAAAAAAAAAgDqUS9helC/0ppQEAAAAGMuUiwAAAAAAAAAAoA4ll4tsLgIAAAA2nXIRAAAAAAAAAADUoaRy0QLlIgAAAKAClIsAAAAAAAAAAKAO5bKdJc+XLu+PgaGVKaUBAAAAxirlIgAAAAAAAAAAqEPdCZuLIiIW9vemkAQAAAAYy5SLAAAAAAAAAACgDuXKKBflCz0pJAEAAADGMuUiAAAAAAAAAACoQ1Pa2qOlqbnkTL5gcxEAAACwaZSLAAAAAAAAAACgDjU1NcWM9o6SMzYXAQAAAJtKuQgAAAAAAAAAAOpULttV8ly5CAAAANhUykUAAAAAAAAAAFCnkstFvSklAQAAAMYq5SIAAAAAAAAAAKhT5WwuKhaLKaUBAAAAxiLlIgAAAAAAAAAAqFO5bGfJ88HhoehZsSylNAAAAMBYpFwEAAAAAAAAAAB1KmlzUcRz24sAAAAANpZyEQAAAAAAAAAA1KnyykW9KSQBAAAAxirlIgAAAAAAAAAAqFNtEyZGZ2tbyRmbiwAAAIBNoVwEAAAAAAAAAAB1LGl7kXIRAAAAsCmUiwAAAAAAAAAAoI7lsp0lzxcoFwEAAACbQLkIAAAAAAAAAADqmM1FAAAAQDUpFwEAAAAAAAAAQB1LKhc9u7w/BoeGUkoDAAAAjDXKRQAAAAAAAAAAUMeSykUREQv7e1NIAgAAAIxFykUAAAAAAAAAAFDHctnOxJl8oSeFJAAAAMBYpFwEAAAAAAAAAAB1bGpbNpqbSr/NR7kIAAAA2FjKRQAAAAAAAAAAUMeamppiRnvp7UXKRQAAAMDGUi4CAAAAAAAAAIA6l8t2lTzPF3pTSgIAAACMNcpFAAAAAAAAAABQ53JZm4sAAACA6lAuAgAAAAAAAACAOpe8uagnisViSmkAAACAsUS5CAAAAAAAAAAA6lxSuWhgeCh6VyxLKQ0AAAAwligXAQAAAAAAAABAnUsqF0VELCj0ppAEAAAAGGuUiwAAAAAAAAAAoM7lsp2JM/lCTwpJAAAAgLFGuQgAAAAAAAAAAOrc5Amt0dHaVnJGuQgAAADYGMpFAAAAAAAAAADQAJK2FykXAQAAABtDuQgAAAAAAAAAABpALttV8ly5CAAAANgYykUAAAAAAAAAANAAkstFvSklAQAAAMYS5SIAAAAAAAAAAGgAuWxnyfMlywsxODyUUhoAAABgrFAuAgAAAAAAAACABpC0uSgiYqHtRQAAAMAGUi4CAAAAAAAAAIAGUE65KF/oSSEJAAAAMJYoFwEAAAAAAAAAQAOY1paN5kzpt/vkbS4CAAAANpByEQAAAAAAAAAANICmpqaY3t5RcsbmIgAAAGBDKRcBAAAAAAAAAECDyGW7Sp7n+5WLAAAAgA2jXAQAAAAAAAAAAA0isVxkcxEAAACwgZSLAAAAAAAAAACgQSSXi3qjWCymlAYAAAAYC5SLAAAAAAAAAACgQXRnO0ueDwytjN6B5SmlAQAAAMYC5SIAAAAAAAAAAGgQuY7NEmfyhZ7qBwEAAADGDOUiAAAAAAAAAABoELn20puLIpSLAAAAgA2jXAQAAAAAAAAAAA1i8sTWyLZOKjmzoE+5CAAAACifchEAAAAAAAAAADSQXHtXyfN8v3IRAAAAUD7lIgAAAAAAAAAAaCC5bEK5qNCbUhIAAABgLFAuAgAAAAAAAACABpLLdpY8zxdsLgIAAADKp1wEAAAAAAAAAAANpDthc9GzywoxODyUUhoAAACg0SkXAQAAAAAAAABAA8kllIuKEbGovy+dMAAAAEDDUy4CAAAAAAAAAIAGklQuiojIF3pSSAIAAACMBcpFAAAAAAAAAADQQKZOzkZzpvTbfpSLAAAAgHIpFwEAAAAAAAAAQANpbmqK6e0dJWeUiwAAAIByKRcBAAAAAAAAAECDyWW7Sp7nC70pJQEAAAAanXIRAAAAAAAAAAA0mFy2s+S5zUUAAABAuZSLAAAAAAAAAACgwSRvLuqJYrGYUhoAAACgkSkXAQAAAAAAAABAg+lOKBetGFoZfQPLU0oDAAAANDLlIgAAAAAAAAAAaDBJm4siIvKF3hSSAAAAAI1OuQgAAAAAAAAAABpMOeWiBYWl1Q8CAAAANDzlIgAAAAAAAAAAaDCTJ7ZGduKkkjM2FwEAAADlUC4CAAAAAAAAAIAGlMt2ljzPF3pSSgIAAAA0MuUiAAAAAAAAAABoQLlsV8lz5SIAAACgHMpFAAAAAAAAAADQgJSLAAAAgEpQLgIAAAAAAAAAgAaUVC5asqwQK4eHUkoDAAAANCrlIgAAAAAAAAAAaEC5bGfJ82JELOrvSycMAAAA0LCUiwAAAAAAAAAAoAElbS6KiMgXelJIAgAAADQy5SIAAAAAAAAAAGhA0yZ3RFMmU3JGuQgAAABIolwEAAAAAAAAAAANqLmpKaa3d5acyRd6U0oDAAAANCrlIgAAAAAAAAAAaFC5bFK5yOYiAAAAoDTlIgAAAAAAAAAAaFC5bFfJc+UiAAAAIIlyEQAAAAAAAAAANKjuxHJRbxSLxZTSAAAAAI1IuQgAAAAAAAAAABpU0uai5UOD0TewIqU0AAAAQCNSLgIAAAAAAAAAgAaVVC6KiMgXelJIAgAAADQq5SIAAAAAAAAAAGhQykUAAADAplIuAgAAAAAAAACABtU+sTXaJ7aWnFEuAgAAAEpRLgIAAAAAAAAAgAaWtL1IuQgAAAAoRbkIAAAAAAAAAAAaWHK5qDelJAAAAEAjUi4CAAAAAAAAAIAGlst2ljy3uQgAAAAoRbkIAAAAAAAAAAAaWNLmosXL+mJoeDilNAAAAECjUS4CAAAAAAAAAIAGllQuKkbEwv7edMIAAAAADUe5CAAAAAAAAAAAGlhSuSgiIl9QLgIAAADWT7kIAAAAAAAAAAAa2LTJ2WjKZErO5Pt7UkoDAAAANBrlIgAAAAAAAAAAaGAtTc0xbXJHyZl8QbkIAAAAWD/lIgAAAAAAAAAAaHC5bFfJc+UiAAAAYDTKRQAAAAAAAAAA0OC6O5LKRb0pJQEAAAAajXIRAAAAAAAAAAA0uHI2FxWLxZTSAAAAAI1EuQgAAAAAAAAAABpcUrlo+crBKAyuSCkNAAAA0EiUiwAAAAAAAAAAoMHlsp2JMwv6elJIAgAAADQa5SIAAAAAAAAAAGhwSZuLIiLyBeUiAAAA4PmUiwAAAAAAAAAAoMFlJ06KyRNaS87k+5WLAAAAgOdTLgIAAAAAAAAAgDEgaXtRvtCbUhIAAACgkSgXAQAAAAAAAADAGJDLdpY8zxdsLgIAAACeT7kIAAAAAAAAAADGgO7EzUXKRQAAAMDzKRcBAAAAAAAAAMAYkEsoFy1eVoih4eGU0gAAAACNQrkIAAAAAAAAAADGgFy2s+R5sViMRcv6UkoDAAAANArlIgAAAAAAAAAAGAOSNhdFROQLPSkkAQAAABqJchEAAAAAAAAAAIwB09o7IpPJlJxRLgIAAADWpVwEAAAAAAAAAABjQEtTc0yf3FFyJl/oTSkNAAAA0CiUiwAAAAAAAAAAYIzIZbtKnttcBAAAAKxLuQgAAAAAAAAAAMYI5SIAAABgQykXAQAAAAAAAADAGNGd7Sx5vqDQE8ViMaU0AAAAQCNQLgIAAAAAAAAAgDEiaXPR8pWDURhckVIaAAAAoBEoFwEAAAAAAAAAwBiRVC6KiMgXelJIAgAAADQK5SIAAAAAAAAAABgjyisX9aaQBAAAAGgUykUAAAAAAAAAADBGtE9sjckTJpacsbkIAAAAWJNyEQAAAAAAAAAAjBGZTCZxe5FyEQAAALAm5SIAAAAAAAAAAPj/2Lvv8Lrr8n/8d3Z3SyfS0gWFtkqBFmigZQ8tGwG/CEWKgiiCDNdHEQTk40JQQD6AINMKCAgyKlNGW6B0ABVLB11075WOpEnO7w9/oAg07zRnJDmPx3Xl8rra+7xfz+C5mzQ9z/NuRpSLAAAAgPpQLgIAAAAAAAAAgGak7nLR+iwlAQAAAJoC5SIAAAAAAAAAAGhGurZpt83fX7lpQ1TX1mQpDQAAANDYKRcBAAAAAAAAAEAzUtedi1KpVKzauCFLaQAAAIDGTrkIAAAAAAAAAACakbrKRRERyyvWZSEJAAAA0BQoFwEAAAAAAAAAQDPSuVXbKCgo2ObM8or1WUoDAAAANHbKRQAAAAAAAAAA0IwUFxVFp1ZttjnjzkUAAADAB5SLAAAAAAAAAACgmenWpv02f3+ZchEAAADw/1MuAgAAAAAAAACAZqZrHeWi5RXrs5QEAAAAaOyUiwAAAAAAAAAAoJmpu1y0NlKpVJbSAAAAAI2ZchEAAAAAAAAAADQzdZWLNm2tio1VlVlKAwAAADRmykUAAAAAAAAAANDMdG3Trs6Z5RXrspAEAAAAaOyUiwAAAAAAAAAAoJmp685FEcpFAAAAwL8oFwEAAAAAAAAAQDPTprRFtCwp3eaMchEAAAAQoVwEAAAAAAAAAADNTkFBQZ13L1pWsT5LaQAAAIDGTLkIAAAAAAAAAACaoa5t2m3z9925CAAAAIhQLgIAAAAAAAAAgGaprjsXKRcBAAAAEcpFAAAAAAAAAADQLNVVLlq1aUNU19ZkKQ0AAADQWCkXAQAAAAAAAABAM9S19bbLRbWpVKzaVJGlNAAAAEBjpVwEAAAAAAAAAADNUNc27eqcWV6xLgtJAAAAgMZMuQgAAAAAAAAAAJqhLq3bRUFBwTZnlIsAAACA4lwHAAAAAAAAAAAA0q+4qCg6tWoTKzdu+NSZv01/M2YsXxwlRUXRurRF9GjfKfp26ho7td0hCgu9bzF8ktra2li8fk3MWb08Fq5bFRurtsTWmpqorq2J4sIi+wQJ2SVID7sE6WOfyGfKRQAAAAAAAAAA0MykUql4d/miqE2ltjm3eP2aWLx+zcd+vay4JHrt0Dl26dgthvTYJQZ07V7nXZCgufpgnyYvnB2zVy+L+atXRGVNdeLH2yf4F7sE6WGXIH3sE/xbQSpVx08QAIBGa8WKFdG1a9eP/Nry5cujS5cuOUoEAAAAAAAA5NLGqsoYO/fdeH7W1E8sDW2vndrtEEf0GxQH9hkQrUvL0nZdaMzsE6SHXYL0sEuQPvaJT5PPr8tVLgKAJiyfv4kBAAAAAAAA/m3ZhrXx+LTJ8eq86fV6p+36KisqjgN694/jBw6Jbm07ZOwcyCX7BOlhlyA97BKkj32iLvn8ulzlIgBowvL5mxgAAAAAAAAgoqa2Np6aPiUemfp6bK2tydq5JYVFccqg8jim/+AoLCzM2rmQSfYJ0sMuQXrYJUgf+0RS+fy6XOUiAGjC8vmbGAAAAAAAAMh3i9atjltffzZmr1qWswy7dtoxzis/Mrq375izDJAO9gnSwy5BetglSB/7RH3k8+tylYsAoAnL529iAAAAAAAAIF/VplLx1LtT4uGpr2X1Xbc/zb/ejXv/OGbA4CgsKMh1HKgX+wTpYZcgPewSpI99Ynvk8+tylYsAoAnL529iAAAAAAAAIB9V19bEba8/F+Pnzch1lI8Z1nv3OK/8yCguLMp1FEjEPkF62CVID7sE6WOf2F75/Lrc4lwHAAAAAAAAAAAA6lZVUx03jhsTUxbNzXWUTzR+3ozYvLUqvj386Cgt8rIkGjf7BOlhlyA97BKkj32C7VOY6wAAAAAAAAAAAMC2VdfWNOoXyH1gyqK5cdO4v0V1bU2uo8Cnsk+QHnYJ0sMuQfrYJ9h+ykUAAAAAAAAAANCI1aZScdvrzzX6F8h9YPKiOXHb689FbSqV6yjwMfYJ0sMuQXrYJUgf+wQNo1wEAAAAAAAAAACN2FPvTonx82bkOka9jJ83I8ZMn5LrGPAx9gnSwy5BetglSB/7BA2jXAQAAAAAAAAAAI3UonWr4+Gpr+U6xnZ56O3XYtG61bmOAR+yT5AedgnSwy5B+tgnaDjlIgAAAAAAAAAAaIRqamvj1tefja21NbmOsl221tbEba8/F7W1tbmOAvYJ0sQuQXrYJUgf+wTpoVwEAAAAAAAAAACN0JjpU2L2qmW5jtEg761aGk9Nn5LrGGCfIE3sEqSHXYL0sU+QHspFAAAAAAAAAADQyCzbsDYenvp6rmOkxcNTX49lG9bmOgZ5zD5BetglSA+7BOljnyB9lIsAAAAAAAAAAKCReXza5NhaW5PrGGmxtbYmHp82OdcxyGP2CdLDLkF62CVIH/sE6aNcBAAAAAAAAAAAjcjGqsp4dd70XMdIq1fnTY9NVZW5jkEesk+QHnYJ0sMuQfrYJ0gv5SIAAAAAAAAAAGhExs59NyprqnMdI60qa6pj7Nx3cx2DPGSfID3sEqSHXYL0sU+QXspFAAAAAAAAAADQSKRSqXhu1tRcx8iI52ZNjVQqlesY5BH7BOlhlyA97BKkj32C9FMuAgAAAAAAAACARuLd5Ytiyfo1uY6REYvXr4npyxflOgZ5xD5BetglSA+7BOljnyD9lIsAAAAAAAAAAKCRmLxwdq4jZNSkhXNyHYE8Yp8gPewSpIddgvSxT5B+ykUAAAAAAAAAANBIzF69LNcRMmpOM//8aFzsE6SHXYL0sEuQPvYJ0k+5CAAAAAAAAAAAGoHa2tqYv3pFrmNk1Lw1K6K2tjbXMcgD9gnSwy5BetglSB/7BJmhXAQAAAAAAAAAAI3A4vVrorKmOtcxMqqyemss3rAm1zHIA/YJ0sMuQXrYJUgf+wSZUZzrAAAAAAAAAAAAQMSc1ctzHSErbn716ejUqm2uY9DMrdq0IdcRssI+kWl2CdLDLkH65Ms+zV29PHq075TrGOQR5SIAAAAAAAAAAGgEFq5blesIWTF/zcqYv2ZlrmNAs2CfID3sEqSHXYL0Wbg2P/5+SONRmOsAAAAAAAAAAABAxMaqLbmOAAAAQCNQUVWZ6wjkGeUiAAAAAAAAAABoBLbW1OQ6AgAAAI3A1prqXEcgzygXAQAAAAAAAABAI1Bdq1wEAACAvx+SfcpFAAAAAAAAAADQCBQXFuU6AgAAAI2Avx+SbcpFAAAAAAAAAADQCJQUefEYAAAAESVFxbmOQJ5RLgIAAAAAAAAAgEagdWmLXEcAAACgEWhTWpbrCOQZdTYAAAAAAAAAAGgEerTvlOsIWdGv847RtU37XMegmVtesS5mrVya6xgZZ5/INLsE6WGXIH3yZZ96dMiPvx/SeCgXAQAAAAAAAABAI9C3Y9dcR8iKc4cekTdFKnJn4dpV8f0xf8x1jIyzT2SaXYL0sEuQPvmyT33y5O+HNB6FuQ4AAAAAAAAAAABE7NRuhygrat7vFVxWXBI7td0h1zHIA/YJ0sMuQXrYJUgf+wSZoVwEAAAAAAAAAACNQGFhYfTq2CXXMTKq9w5dorDQS5bIPPsE6WGXID3sEqSPfYLM8IwDAAAAAAAAAIBGYpeO3XIdIaP6NvPPj8bFPkF62CVID7sE6WOfIP2UiwAAAAAAAAAAoJEY0mOXXEfIqH169M11BPKIfYL0sEuQHnYJ0sc+QfopFwEAAAAAAAAAQCMxoGv3+Ey7HXIdIyN2ardD9O/aPdcxyCP2CdLDLkF62CVIH/sE6adcBAAAAAAAAAAAjURBQUEc2W9QrmNkxJH9BkVBQUGuY5BH7BOkh12C9LBLkD72CdJPuQgAAAAAAAAAABqRA/sMiLKi4lzHSKuyouI4sM+AXMcgD9knSA+7BOlhlyB97BOkl3IRAAAAAAAAAAA0Iq1Ly+KA3v1zHSOtDujdP1qVluU6BnnIPkF62CVID7sE6WOfIL2UiwAAAAAAAAAAoJE5fuCQKCksynWMtCgpLIrjBw7JdQzymH2C9LBLkB52CdLHPkH6KBcBAAAAAAAAAEAj061thzhlUHmuY6TFKYPKo1vbDrmOQR6zT5AedgnSwy5B+tgnSB/lIgAAAAAAAAAAaISO7j84dunULdcxGmTXTjvGMf0H5zoG2CdIE7sE6WGXIH3sE6SHchEAAAAAAAAAADRCRYWF8Y3yo6KksCjXUbZLSWFRnFd+ZBQWeokSuWefID3sEqSHXYL0sU+QHp6BAAAAAAAAAADQSHVv3zFOGbR/rmNsl1P33D+6t++Y6xjwIfsE6WGXID3sEqSPfYKGUy4CAAAAAAAAAIBG7JgBg2NY791zHaNehvXePY7uPzjXMeBj7BOkh12C9LBLkD72CRpGuQgAAAAAAAAAABqxwoKCOK/8yBjcvU+uoyQypHvfOK/8yCgsKMh1FPgY+wTpYZcgPewSpI99goZRLgIAAAAAAAAAgEauuLAovj386Eb/Qrkh3fvGhcNHRHFhUa6jwKeyT5AedgnSwy5B+tgn2H7KRQAAAAAAAAAA0ASUFhXHxQceE8N6757rKJ9oWO/d46IDj47SouJcR4E62SdID7sE6WGXIH3sE2yfglQqlcp1CABg+6xYsSK6du36kV9bvnx5dOnSJUeJAAAAAAAAgEyrTaXiqXenxMNTX4uttTW5jhMlhUVx6p77x9H9B0dhQUGu40C92CdID7sE6WGXIH3sE9sjn1+Xq1wEAE1YPn8TAwAAAAAAAPlu0brVcevrz8bsVctylmHXTjvGeeVHRvf2HXOWAdLBPkF62CVID7sE6WOfqI98fl2uchEANGH5/E0MAAAAAAAAEFFTWxtjpk+Jh6e+ntV34y4pLIpTBu0fx/TfOwoLC7N2LmSSfYL0sEuQHnYJ0sc+kVQ+vy5XuQgAmrB8/iYGAAAAAAAA+LdlG9bG49Mmx6vzpkdlTXXGzikrKo4DeveP4wcOiW5tO2TsHMgl+wTpYZcgPewSpI99oi75/Lpc5SIAaMLy+ZsYAAAAAAAA4OM2VVXG2LnvxnOzpsbi9WvSdt2d2u0QR/YbFAf2GRCtSsvSdl1ozOwTpIddgvSwS5A+9olPk8+vy1UuAoAmLJ+/iQEAAAAAAAA+XSqViunLF8WkhXNizuplMW/18nq9M3dZcUn03qFL9O3YLfbp0Tf6d+0eBQUFGUwMjZd9gvSwS5AedgnSxz7x3/L5dbnKRQDQhOXzNzEAAAAAAABAcrW1tbF4w5qYu3p5LFy7KiqqKmNrTXVU19ZEcWFRlBQVR5vSsujRoVP06dg1dmq7QxQWFuY6NjRK9gnSwy5BetglSB/7RD6/Lle5CACasHz+JgYAAAAAAAAAAAAA0iWfX5erJgcAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnlIuAgAAAAAAAAAAAAAAgDylXAQAAAAAAAAAAAAAAAB5SrkIAAAAAAAAAAAAAAAA8pRyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8pFAAAAAAAAAAAAAAAAkKeUiwAAAAAAAAAAAAAAACBPKRcBAAAAAAAAAAAAAABAnirOdQAA8sfWrVtj7NixMX78+Jg2bVpMnz49VqxYERs2bIiNGzdGy5Yto127dtGxY8fYfffdY+DAgTF06NA47LDDomXLlrmODwAAAAAAAAAAAADQ7BSkUqlUrkMA5NrGjRtjypQpMWXKlFizZk2d86NGjYrevXtnPlgzMW7cuLj55ptjzJgxsX79+no/vmXLlnHEEUfEN7/5zfjCF74QBQUFGUjZNK1YsSK6du36kV9bvnx5dOnSJUeJAAAAAAAAAAAAAKDpyefX5bpzEZB3Nm/eHG+99VZMmjTpw4/p06dHbW1t4msccsghykUJvPLKK/Gd73wnJk2a1KDrbN68OZ544ol44oknYvfdd49f/OIXceKJJ6YnJAAAAAAAAAAAAABAHlMuApq1ysrKmDp16keKRNOmTYvq6upcR2vW1q5dGxdddFHce++9ab/2jBkz4qSTTopjjz02brvttthpp53SfgYAAAAAAAAAAAAAQL5QLgKalSlTpnykSPTOO+/E1q1bcx0rr0ybNi1OPPHEmDVrVkbPefLJJ2PIkCHxyCOPxAEHHJDRswAAAAAAAAAAAAAAmivlIqBZGTJkSK4j5LVx48bF0UcfHRs2bMjKeUuXLo1DDz00HnjggTjppJOyciYAAAAAAAAAAAAAQHNSmOsAADQPkyZNimOOOSZrxaIPVFVVxWmnnRbPPPNMVs8FAAAAAAAAAAAAAGgO3LkIgAZbuHBhjBgxItavX5/4MS1atIiDDjoo9tlnn+jevXu0a9cuKioqYsmSJTFlypR46aWXoqKiItG1qqqq4otf/GJMmDAhPve5z23vpwEAAAAAAAAAAAAAkHeUiwBokOrq6vjyl78cK1euTDTftWvX+PGPfxxf+cpXon379p86t2nTpvjzn/8cV155ZcyfP7/O627atClOPfXUmDRpUrRu3TpxfgAAAAAAAAAAAACAfFaY6wAANG0/+9nPYty4cYlm/9//+38xa9asuPDCC7dZLIqIaNWqVYwaNSpmzJgR3/rWtxJdf/r06XHJJZckmgUAAAAAAAAAAAAAQLkIIHr37h2nnHJK/OIXv4h77rkn13GalLlz58bPf/7zRLM//OEP44EHHoh27drV64yysrL43e9+FzfddFOi+TvuuCMmTpxYrzMAAAAAAAAAAAAAAPJVca4DAGRTz549Y5999okhQ4bEPvvsE/vss0907Njxw9+fN29e7sI1QZdeemls2bKlzrnzzjsvfvaznzXorAsuuCDWrVsXP/7xj7c5l0ql4oILLojXX389CgoKGnQmAAAAAAAAAAAAAEBzp1wENFs9evT4SIloyJAh0aVLl1zHajbeeuuteOyxx+qc23vvveOGG25Iy5k/+tGPYuzYsfHMM89sc+6NN96Ip556Ko499ti0nAsAAAAAAAAAAAAA0FwpFwHNylVXXfVhoahbt265jtOs/epXv6pzprCwMO64444oKytLy5kFBQXx+9//Pvr37x+bN2+uM59yEQAAAAAAAAAAAADAthXmOgBAOl1xxRVxzDHHKBZl2IIFC+Khhx6qc+7MM8+MwYMHp/Xsnj17xqWXXlrn3NixY2PixIlpPRsAAAAAAAAAAAAAoLlRLgKg3kaPHh3V1dXbnCkoKIgf/OAHGTn/oosuihYtWtQ5d88992TkfAAAAAAAAAAAAACA5kK5CIB6Gz16dJ0zRx11VAwYMCAj53fp0iXOOOOMOuf+/Oc/11mCAgAAAAAAAAAAAADIZ8pFANTLO++8E++8806dcyNHjsxojiTXX7FiRTz//PMZzQEAAAAAAAAAAAAA0JQpFwFQL08//XSdMy1atIgTTjghozkOOuig2Gmnneqc+9vf/pbRHAAAAAAAAAAAAAAATZlyEQD18txzz9U5M3z48Gjbtm1GcxQWFsZRRx1V51ySvAAAAAAAAAAAAAAA+Uq5CIDEqqqqYty4cXXOHXHEEVlIk+ycd999NxYtWpSFNAAAAAAAAAAAAAAATY9yEQCJvf3227Fp06Y654YPH56FNBEHHnhgorkJEyZkOAkAAAAAAAAAAAAAQNOkXARAYm+++WadM4WFhbHXXntlPkxE9OzZMzp37lznXJLcAAAAAAAAAAAAAAD5SLkIgMSmTJlS58xuu+0WrVu3zkKafxkyZEidM8pFAAAAAAAAAAAAAACfTLkIgMT+8Y9/1DnTv3//LCT5t913373OmalTp2YhCQAAAAAAAAAAAABA06NcBEBic+bMqXOmX79+WUjyb7vuumudM4sWLYqqqqospAEAAAAAAAAAAAAAaFqUiwBIZPPmzbF06dI653bZZZcspPm3JOWi2tramD9/fhbSAAAAAAAAAAAAAAA0LcW5DgBA05C0nLPTTjtlOMlHfeYzn0k0N3fu3KzfVQkAAAAAgMYllUpFTU1N1NbWRiqVynUcAAAAAICsKywsjIKCgigqKoqCgoJcx6GRUC4CIJFFixYlmttxxx0znGT7zlu4cGGGkwAAAAAA0FikUqnYtGlTVFZWRlVV1YcfW7duzXU0AAAAAIBGoaCgIEpKSqK0tDTKysqitLQ0WrZsGWVlZbmORg4oFwGQyKpVqxLNdevWLcNJPqpr165RWFgYtbW125xbvXp1lhIBAAAAAJALqVQqNm7cGOvXr4+KioqoqanJdSQAAAAAgEYrlUp9+MZMFRUVH/56WVlZtGvXLtq1axelpaU5TEg2KRcBkEjSclGHDh0yG+S/FBYWRtu2bWPdunXbnEuaHwAAAACApqWmpiZWrlwZ69atUygCAAAAAGigysrKWLFiRaxYsSJatmwZXbp0idatW+c6FhmmXARAIknv/NOmTZsMJ/m4JOUidy4CAAAAAGheUqlUrFu3LpYvX65UBAAAAACQAZs3b473338/2rdvH926dYuioqJcRyJDlIsASGT9+vV1zrRu3ToKCwuzkOaj2rVrV+dMXeUjAAAAAACaji1btsTSpUtj8+bNuY4CAAAAANDsrVu3LioqKqJbt27Rrl27KCgoyHUk0ky5CIBEqqqq6pxp2bJlFpJ8XIsWLeqcSZIfAAAAAIDGb+PGjbFgwYJIpVK5jgIAAAAAkDdqampi8eLFUVlZGV26dFEwamaUiwBIJEk5J1e3OiwurvvLWT6Vi4YPH57ovwmZ9c9//jPXEQAAAACg2VEsAgAAAADIrVWrVkVhYWF07tw511FIo8JcBwCgaUhSzslVoSXJuVu3bs1CEgAAAAAAMkWxCAAAAACgcVixYkWsXr061zFII7c1ACCR6urqOmeUixqHcePGRZcuXXIdAwAAAAAgbbZs2bLdxaKSkpIoKyuL0tLSKC0tjZKSkigqKoqCgoIoKCjIQFoAAAAAgMYplUpFKpWK6urq2Lp1a1RWVkZVVVVs2bIlamtr63WtZcuWRXFxcbRr1y5Dackm5SIAEklS4KmpqclCku07N1fFJwAAAAAAGiaVSsXSpUvrVSwqLS2Ndu3aRbt27aK0tFSJCAAAAABgG2pra2Pjxo2xfv362LBhQ+Kfxy5btizatGkThYWFGU5IpnmlNQCJlJaW1jmT5O5GmZDkrkRJ8gMAAAAA0PisW7cuNm/enGi2uLg4unXrFm3btlUoAgAAAABIqLCwMNq2bRtt27aNqqqqWLp0aWzcuLHOx1VXV8fKlSuja9euWUhJJqmHAZBISUlJnTO5KhclOVe5CAAAAACg6ampqYnly5cnmu3QoUPssssu0a5dO8UiAAAAAIDtVFpaGjvvvHPstNNOiX7Wunr16qiqqspCMjJJuQiARMrKyuqc2bJlSxaSbN+5ykUAAAAAAE3PypUro6amps65jh07xo477hiFhf75EwAAAACgoQoKCqJ9+/ax00471TmbSqVixYoVWUhFJhXnOgDQtMydOzcmTJiQ0TNat24dxx13XEbPoP7atm1b58zGjRsjlUpl/R0hN2zYUOdMu3btspAEAAAAAIB0SaVSsW7dujrnOnToEF27dnW3IgAAAACANGvXrl3U1NTE0qVLtzm3YcOGqKmpiaKioiwlI92Ui4B6efnll+Pss8/O6Bm9evVSLmqEOnbsWOdMKpWKDRs2ZL3Is379+jpnkuQHAAAAAKDx2LhxY513LSouLo5u3bopFgEAAAAAZEiHDh1i7dq1sWXLlk+dSaVSUVFREe3bt89iMtKpMNcBAGgaOnXqlGguybtIplNtbW1UVFTUOZc0PwAAAAAAjUOSN5bq1q1bFBb6J08AAAAAgEwpKCiIbt261Tm3YcOGLKQhU/ykHYBEkpZzli1bluEkH7VixYo637kyQrkIAAAAAKAp+eBdLreltLQ02rZtm6VEAAAAAAD5q1WrVtGqVattzlRUVERtbW2WEpFuykUAJNK9e/dEc0uXLs1wku07L2l+AAAAAAByb9OmTXW+sVS7du2ioKAgS4kAAAAAAPJbXW/2lEqlYtOmTVlKQ7opFwGQSO/evRPNLV68OLNB/suSJUsSzfXp0yfDSQAAAAAASJfKyso6Z9q1a5eFJAAAAAAARES0adOmzpkkP9ulcVIuAiCRli1bRrdu3eqcmz17dhbS/Nt7771X50xBQUH06tUrC2kAAAAAAEiHqqqqbf5+SUlJlJaWZikNAAAAAAClpaVRVla2zZm6frZL46VcBEBiffv2rXNm1qxZWUjyb0nKRd27d6/zmxkAAAAAABqPuv4BuqysLAoKCrKUBgAAAACAiKjzTZ+2bt2apSSkm3IRUC+jRo2KVCqV0Y958+bl+tPkU+yxxx51zkyfPj0LSep3XpLcAAAAAAA0HnWVi9y1CAAAAAAg++r62aw7FzVdykUAJLb33nvXOTNjxozYtGlTFtL8y5QpU+qcGTx4cBaSAAAAAACQDqlUqs53t1QuAgAAAADIvpKSkm3+/tatWyOVSmUpDemkXARAYklKOrW1tfHWW29lPkxELFiwIFasWFHnXJJSFAAAAAAAjUNNTU2dM3X9AzYAAAAAAOmX5I2fkvyMl8ZHuQiAxPbcc89o2bJlnXNjx47NQpqIV155JdHc0KFDM5wEAAAAAIB0qa2trXOmqKgoC0kAAAAAAPhPhYV1V1DcuahpUi4CILGysrIYPnx4nXMvvPBCFtIkO6d///7Ro0ePLKQBAAAAACAdkvzDc0FBQRaSAAAAAADwn5L8bDbJG0jR+CgXAVAvRxxxRJ0zY8eOjYqKiozmqK2tjWeeeabOuSOPPDKjOQAAAAAAyD7lIgAAAACA7POz2eZLuQiAevnCF75Q58yWLVvir3/9a0ZzjB07NhYvXlznXJK8AAAAAAAAAAAAAAD5SrkIgHoZNGhQDBw4sM65P/7xjxnNcd9999U506lTJ3cuAgAAAAAAAAAAAADYBuUiAOrtjDPOqHPmmWeeienTp2fk/BUrVsTo0aPrnPvSl74UJSUlGckAAAAAAAAAAAAAANAcKBcBUG8jR46MoqKibc6kUqn4xS9+kZHzb7jhhtiyZUudc2eddVZGzgcAAAAAAAAAAAAAaC6UiwCot549e8Ypp5xS59x9990XU6ZMSevZ77//flx//fV1zg0bNiyGDh2a1rMBAAAAAAAAAAAAAJob5SKAJuyll16KgoKCOj9GjRqV9rO///3v1zlTW1sb5557blRVVaXlzFQqFeedd15s3ry5ztkk+QAAAAAAAAAAAAAA8p1yEQDbZfDgwXH88cfXOTdlypS46KKL0nLmz3/+83j66afrnNtnn33iuOOOS8uZAAAAAAAAAAAAAADNmXIRANvt+uuvj7Kysjrnbr311rjssssadNb//d//JbpGQUFB3HTTTVFQUNCg8wAAAAAAAAAAAAAA8oFyEQDbbZdddokf/OAHiWZ/9rOfxZe//OXYsGFDvc6orKyMb3/72/Gtb30r0fzZZ58d5eXl9ToDAAAAAAAAAAAAACBfKRcBzc6oUaOioKBguz769OmT6IxDDz10u88YNWpUZv8DZNnll18e+++/f6LZBx54IPr16xc333xzrF+/fpuzmzdvjnvvvTf69+8fN910U6Lr77bbbnHDDTckmgUAAAAAAAAAAAAAIKI41wEAaNqKi4vjwQcfjL333jtWrVpV5/yyZcviggsuiO9973tx8MEHx5AhQ6JHjx7Rtm3bqKioiKVLl8bkyZPjpZdeqtddjlq2bBl//vOfo02bNg35dAAAAAAAAAAAAAAA8opyEQANtvPOO8eYMWPiiCOOSFwI2rx5czz99NPx9NNPN/j8kpKSePjhh2PPPfds8LUAAAAAAAAAAAAAAPJJYa4DANA87LfffvHkk09m/c5BJSUlcf/998fRRx+d1XMBAAAAAAAAAAAAAJoD5SIA0uaggw6K1157Lfr27ZuV87p27Rp///vf4+STT87KeQAAAAAAAAAAAAAAzY1yEQBp9bnPfS4mTZoUZ5xxRkbPGTFiREyePDmGDx+e0XMAAAAAAAAAAAAAAJoz5SIA0m6HHXaIP/7xj/Hiiy/GkCFD0nrt3XbbLR5++OEYM2ZM9OjRI63XBgAAAAAAAAAAAADIN8pFAGTMIYccEpMmTYqXXnopTj311GjTps12XadFixZxzDHHxJNPPhnTp0+Pk08+Oc1JAQAAAAAAAAAAAADyU0EqlUrlOgQA+aGqqipeeeWVGD9+fEybNi2mT58eK1eujA0bNsSmTZuiRYsW0bZt2+jYsWPsvvvuMXDgwBg6dGgcfvjh0apVq1zHb5RWrFgRXbt2/civLV++PLp06ZKjRAAAAAAADVNZWRlz5szZ5kzfvn2jrKwsS4kAAAAAAIho/j+/zefX5RbnOgAA+aO0tDSOOOKIOOKII3IdBQAAAAAAAAAAAACAiCjMdQAAAAAAAAAAAAAAAAAgN5SLAAAAAAAAAAAAAAAAIE8pFwEAAAAAAAAA8InuvvvuKCgoqPPj7rvvznVUoAlL8ufMIYcckuuYAAAAzZZyEQAAAAAAAAAAAAAAAOQp5SIAAAAAAAAAAAAAAADIU8W5DgAAAAAAAAAAAAAAzUVtbW1Mnz49Jk2aFHPnzo1UKlXnYzp06BAXX3xx5sMBAHwC5SIAAAAAAAAAoFm5++674+yzz87ItUtLS6NFixZRVlb24UebNm2ia9euH/no3r177L777tG/f/9o165dRrIAAJB7qVQqZs6cGZMmTfrw480334yNGzfW6zq9evXKy3LRlVdeGVdddVWuYzQKd911V4waNSrXMQDIU8pFAAAAAAAAAAAJVVVVRVVVVb0e85nPfCYGDBgQe++9dwwfPjyGDx8enTt3zlBCAAAyafbs2R8pEk2ZMiXWr1+f61gAAA2iXAQAAAAAAAAAkEFLliyJJUuWxN///ve47rrrIiJiwIABccghh8QXv/jFOPTQQ6OoqCjHKcmmtWvXxm9/+9s65/baa6848cQTM56H5unuu++OefPm1Tl35ZVXZjwLQFM1b968mDRpUkyePPnD/12zZk2uYwEApJ1yEQAAAAAAAABAlr377rvx7rvvxi233BJdunSJL37xi3H66afHQQcdlOtoZMHatWvjqquuqnPurLPOUi5iu919993x8ssv1zmnXATwceedd1785S9/iZUrV+Y6CgBAVhTmOgAAAAAAAAAAQD5bsWJF3HbbbXHwwQfH4MGD409/+lNUV1fnOhYAQN6aMGGCYhEAkFeUiwAAAAAAAAAAGok333wzzjjjjOjbt2/cfvvtUVtbm+tIAAAAADRzykUAAAAAAAAAAI3MggUL4utf/3qUl5fHG2+8kes4AAAAADRjykUAAAAAAAAAAI3UxIkTo7y8PL797W9HVVVVruMAAAAA0AwV5zoAAAAAAAAAAECuXHzxxXH44YfX6zG1tbWxZcuWqKysjC1btkRFRUUsWbIkli5dGkuWLIlZs2bF+++/H6lUKi0ZU6lU3HTTTfHGG2/Eww8/HD169EjLdZMYNWpUjBo1KmvnAfkpXX9eAgAAsH2UiwAAAAAAAACAvLXnnnvGsccem/brVlRUxDvvvBNTpkyJv//97/Hiiy/G6tWrG3TNCRMmxODBg+Mvf/lLDB8+PE1JAQBIt759+8aQIUNiyJAhce+998a0adNyHanRuvLKK+PKK6/M6nlXXXVVotkXX3wxDjnkkMwGAoBGQrkIAAAAAAAAACDN2rRpE+Xl5VFeXh7nn39+1NbWxsSJE+O+++6LBx54IFatWrVd112xYkWMGDEinn766Rg2bFiaUwMAUF99+vT5sEi0zz77xJAhQ2KHHXb48Pf/9re/5TAdAEAyykUAAAAAAAAAABlWWFgYQ4cOjaFDh8b1118fDz/8cPz0pz+N6dOn1/taFRUVMWLEiHj22WejvLw8A2kBAPgkvXr1+rBA9MH/duzYMdexAAAaTLkIAAAAAAAAgO1SW1sbi9eviTmrl8fCdatiY9WW2FpTE9W1NVFcWBQlRUXRurRF9GjfKfp26ho7td0hCgsLcx0bcq60tDROP/30OO200+LBBx+M733ve7Fo0aJ6XWPDhg1x9NFHx5QpU6J3796ZCQoAkKcKCgqiZ8+eHysSderUKdfRAAAyQrkIAAAAAAAAgERSqVS8u3xRTF44O2avXhbzV6+IyprqxI8vKy6JXjt0jl06doshPXaJAV27R0FBQQYTQ+NWWFgYX/7yl2PEiBFxySWXxN13312vx69Zsya+9KUvxbhx46K0tDQzIQEA8tDYsWOjTZs2uY4BAJA1ykUAAAAAAAAAbNPGqsoYO/fdeH7W1Fi8fs12X6eyemvMXLEkZq5YEn+b8Vbs1G6HOKLfoDiwz4BoXVqWxsTQtHTo0CHuuuuuOOKII+KrX/1qVFVVJX7sxIkT47vf/W7ceOONGUwIAJBfFIsAgHyjXAQAAAAAAADAJ1q2YW08Pm1yvDpver3uUJTU4vVr4t7JL8eDb42PA3r3j+MHDolubTuk/RxoKs4444zYeeed44QTToi1a9cmftxNN90Up556ahx44IGZCwcAAABAs1WY6wAAAAAAAAAANC41tbXx+LRJ8f2n/hgvzn4nI8Wi/1RZUx0vzn4nvv/UH+OJaZOitrY2o+dBY3bQQQfF448/HmVl9bub18UXXxypVCpDqQAAAABozpSLAAAAAAAAAPjQonWr48rn/hwPvDU+ttbWZPXsrbU1cf9b4+PK5x6KRetWZ/VsaEwOPPDAuO+++6KgoCDxY6ZMmRJ333135kIBAAAA0GwV5zoAAAAAAAAAALlXm0rFU+9OiYenvpb1UtF/e2/V0vjR3/4UpwzaP44ZMDgK61GwgObi1FNPjRdffDFuueWWxI+54oor4swzz4zi4vx9OUhVVVWsWLEiVqxYERs2bIjKysrYunVrlJWVRatWrT78aN26dXTt2jWKiopyHTmvbNq0KRYsWBAbNmyIjRs3xubNm6OsrCxat24dbdq0iZ133jnatm2b65hZVVFRES+99FK8/fbbMWPGjJg5c2YsX748KioqoqKiIqqqqqJVq1bRtm3b6Nq1a3Tv3j3+7//+L3r27Jnr6PyHVCoVS5YsiRUrVsTGjRtj48aNkUqlonXr1tG6devo1KlTdO/ePQoL8+u9wKdNmxYvvfRS/OMf/4h33nknFi1aFOvXr48NGzZERESrVq2iffv20atXr+jbt2/ss88+MWzYsNhzzz3rVbBtLFKpVKxevTqWL18ea9asicrKyqisrIyioqIPv/60bNkyWrVqFZ06dYrWrVvnOjLQxG3ZsiUWLFgQ69evj02bNsXGjRujuLj4w++tevToETvssEOuYwLQROTvT5MAAAAAAAAAiIiI6tqauO3152L8vBm5jvKhf93FaFy8v3ZFnFd+ZBQXKgCQf6699tp45plnYs6cOYnmFy5cGH/5y1/iS1/6Utoy3H333XH22WfXOXfXXXfFqFGj0nZuEmvWrImxY8fGq6++Gm+++WbMmDEj3n///UilUokeX1xcHN27d4/evXtH7969o0+fPjFkyJAoLy+Pzp07NzjfSy+9FIceemiDrnHPPffEPffc0+AsHzj44IPjpZdeStv1tmXdunXxyiuvxLhx4+K1116LWbNmxdKlS+t8XOfOnaNfv35RXl4ew4cPj4MPPjg6deqUhcTbduWVV8ZVV11V59yLL74YhxxyyDZnKioq4p577omHH344xo8fH1u3bt3m/IYNG2LDhg2xePHieOutt2L16tUflot69+4d8+fPT/x5fJJ0lzjmzp0bvXv3TnuGbD5/6zJ16tQYO3ZsjBs3Lt5+++2YO3dubNmyZZuPKS0tjV69esWgQYNi+PDhceCBB8bgwYMbRYkmnf/9FyxYEDfffHM88sgj8d57721ztqqqKtauXRvz58+PV1555cM78PXs2TO+9KUvxfnnnx99+vRJ8ilkXU1NTUycODFeffXVmDBhQkyfPj1mzpxZ5/PgP3Xu3Dl69er14dehz372s1FeXh79+/dvFM8LoHFZtWpVjB8/PsaPHx+vv/56vPfee7FkyZI6v/dt37597LbbbrH//vvHsGHD4ogjjoiOHTtmKTUATYlyEQAAAAAAAEAeq6qpjhvHjYkpi+bmOsonGj9vRmzeWhXfHn50lBb5J27yS+vWreM3v/lNnHDCCYkfc9NNN6W1XNTYbN68Oe6///64//7746WXXorq6urtvlZ1dXXMnz8/5s+fHy+//PJHfm+XXXaJ8vLyOPTQQ+Okk07yAsyEqqur49FHH40//elP8be//S0qKyvrfY2VK1fGypUr47XXXovf/OY3UVxcHEcccUScfvrpceqpp0aLFi0ykDw7Vq1aFddcc03ceeedsX79+lzHoZ7ee++9uOeee+L++++P2bNn1/vxVVVVMWvWrJg1a1Y88sgjERGx8847x2mnnRZnnXVWfPazn0135KyaN29eXHnllfGnP/2pzsJcXd5///349a9/Hb/97W9j5MiR8fOf/zx23HHHNCVtmFdffTX+8Ic/xOOPPx4rV65s0LU++PNu8uTJH/n1Dh06xH777RfDhg2LE088MQYNGtSgc4Cma926dfHwww/HAw88EC+++GLU1NT/LsPr1q2LiRMnxsSJE+PGG2+MkpKSOPLII2PkyJFx6qmn5vVdTwH4qPy6zyoAAAAAAAAAH6qurWnUxaIPTFk0N24a97eorq3/C6mgqTv++ONjn332STz/wV00mpuKioq4+uqro3v37vG1r30tnn/++QYVi+oye/bsGD16dJxzzjnRrVu3+MIXvhB33XVXrFu3LmNnNmWVlZVx6623Rr9+/eJLX/pSPPbYY9tVLPok1dXV8fTTT8dXvvKV6Nu3b1x//fWxadOmtFw7W1KpVNx+++2x2267xW9/+1vFoibmnXfeidNPPz369+8f11xzzXYViz7NggUL4tprr4099tgjTjzxxJg0aVLarp0ttbW18dvf/jY+97nPxT333NPgYtF/qq6ujrvvvjsGDhwYo0ePTtt1t8dTTz0VgwcPjmHDhsWdd97Z4GLRtqxduzaeffbZ+MlPfhJ77rln9O/fP6644oqYNm1axs4EGpelS5fGD37wg+jZs2ecc8458fzzz29XseiTbN26NcaMGROnn3569OvXL2655ZaMfl8NQNOhXAQAAAAAAACQh2pTqbjt9ecafbHoA5MXzYnbXn8ualOpXEeBrLvyyivrNf/ggw9mJkiOPPbYY9GvX7/4yU9+EmvWrMn6+dXV1fHMM8/EV7/61bj99tuzfn5j99JLL8Uee+wR3/zmN2PevHkZPWvJkiXxne98J/r37x9PPvlkRs9Kl40bN8YXv/jF+PrXvx6rV6/OdRzqoaKiIi666KLYc8894/7770/bi7o/SSqVir/+9a+x7777xte+9rWc/Fm3PdauXRtHHXVUXHLJJbFx48aMnbNmzZoYOXJk/M///E+ksvy94Pvvvx9HHXVUHHvssfHmm29m9ewPzJgxI376059m7M6EBQUFiT8y/ec85Luqqqq45pprom/fvvGrX/0q44XkefPmxfnnnx9DhgyJ119/PaNnAdD4KRcBAAAAAAAA5KGn3p0S4+fNyHWMehk/b0aMmT4l1zEg60aMGBE9e/ZMPP/EE09kME32VFdXxze/+c046aSTYunSpbmOw3+pqqqK888/Pw499NCYNWtWVs9esGBBHHfccXHGGWc06rsYLV68OIYPHx6PPfZYrqNQT6+99loMHDgwbrzxxqitrc3q2XfeeWf0798/nn322ayeW1+zZ8+O8vLyeOGFF7J25i9/+cu4+OKLs3bemDFjYo899ojnnnsua2cC+WvChAkxaNCguPzyy2Pz5s1ZPXvq1KkxbNiw+OlPf5r1EicAjYdyEQAAAAAAAECeWbRudTw89bVcx9guD739Wixa584P5JfCwsI466yzEs+/8847Tf7OApWVlXHcccfFrbfemusofIJly5bFYYcdFrfccktOc/zpT3+KAw44IObPn5/THJ/kgzu6vPXWW7mOQj3deeedccghh8SCBQtylmH58uVx9NFHx3XXXZezDNsyf/78OPjgg2PGjOwX1W+88cb41a9+lfFz7rzzzjj++OMzftcQgIiIW265JQ466KCc/Ln6gdra2rjiiivixBNPzHq5CYDGQbkIAAAAAAAAII/U1NbGra8/G1tra3IdZbtsra2J215/Lut3EYBcO/PMM+s1/9RTT2UoSealUqk444wz4umnn851FD7BokWLYtiwYTF+/PhcR4mIiLfffjvKy8tj5syZuY7yocrKyjj++OPjn//8Z66jUE+/+MUv4mtf+1pUVVXlOkrU1NTEd7/73bj00ktzHeUjli9fHkceeWQsWrQoZxkuu+yyeO21zBXlH3300Tj33HOjpqZpfr8MNB2pVCrOP//8OP/88xvF156IiMcffzyOPfbYRn13SAAyozjXAQAAAAAAAADInjHTp8TsVctyHaNB3lu1NJ6aPiWOG7hPrqNA1vTr1y/69OkTc+fOTTT/6quvxre+9a0Mp8qM6667Lh555JFcx+ATLF26NA477LCYPXt2rqN8xNKlS+PQQw+Nl19+OXbddddcx4nLLrssxo4dm2i2V69eMWzYsOjXr1/07Nkz2rZtG6WlpVFRURHr1q2LmTNnxtSpU2P8+PGN5kXHzdX1118fP/zhD3Md42N+85vfRElJSfzyl7/MdZSoqamJk08+OWbNmlXnbOvWrWPo0KGx1157RZ8+faJjx47RunXr2Lp1a6xduzbmzp0bEydOjPHjx9f7BezV1dVx9tlnxz/+8Y8oKSnZ3k/nE82dOzfOOussRXYg42pra+Occ86Ju+66K9dRPubvf/97HH/88fH0009HcbGXmgPkC3/iAwAAAAAAAOSJZRvWxsNTX891jLR4eOrrsd/Ou0a3th1yHQWy5ogjjojbb7890eyUKVMynCYz5s6dG5dddlm9H1dUVBT77rtvHHzwwdGvX7/YddddY+edd47WrVtH69ato1WrVlFdXR2VlZWxfv36WLZsWSxZsiRmzZoVM2fOjClTpsTbb78dW7ZsSdvncsghh0QqlfrE35s3b1706dOnzmucddZZcffdd6ctU0NUVlbGcccdt113CCooKIj9998/vvCFL8Q+++wT/fv3j06dOkXr1q1j8+bNsWbNmpg5c2a8+eab8fTTT8fLL78c1dXV9Tpj8eLFcfTRR8fEiROjffv29c6YLuPHj4/f/OY325zZcccd47zzzouRI0cmLkOtX78+/vrXv36sYDJv3rxPfcwhhxwSL7/8cp3X/rTnaT555JFH4jvf+c52PbZLly7xhS98IQ4//PAYOHBg9O7dO9q2bRtFRUWxYcOGWLhwYUybNi1eeumleOqpp2LhwoX1PuNXv/pV9OrVK84///ztypgul19+eYwbN+5Tf7+wsDBOPvnkGDVqVBx55JGJij8bN26Mhx56KH72s58lKi19YMaMGXHzzTfHxRdfnPgxSZx33nmxYcOGej+uZ8+eceSRR8ZnP/vZ2HXXXWOXXXaJ9u3bf/g1qKioKLZs2RKbN2+O5cuXx/Lly2POnDkxa9as+Mc//hETJ06M5cuXp/VzARq3b33rW9tdLOrXr18cccQRMXjw4BgwYED06NEjOnbsGC1btoza2tqoqKiIhQsXxsyZM+O1116LMWPGxPTp0+t1xgsvvBAXX3xx/O53v9uujAA0PcpFAAAAAAAAAHni8WmTY2ttTa5jpMXW2pp4fNrkOHfo4bmOAllz+OGHJy4XzZw5MyoqKqJNmzYZTpVeV1xxRb3uztKvX7/43ve+F6ecckrssMMO25wtLS2N0tLSaNu2bXTv3v1jv79169aYMGFCPPfcc/HUU0/F5MmT652/Obvgggti0qRJ9XpMcXFxfP3rX4+LL744+vXr94kzbdq0iTZt2sTOO+8chx9+eHz3u9+NhQsXxu9+97u44YYb6lX4mjVrVnzlK1+Jxx57LAoKCuqVNV2uvvrqT73jScuWLeMnP/lJfPvb346WLVvW67rt2rWLM888M0aOHBlbt25NR1T+f9OnT4+zzz673o8bMGBAXH755XHyySdHaWnpJ8507NgxOnbsGIMGDYrTTjstamtr48knn4xrrrkmJk6cWK/zLrnkkhg8eHCUl5fXO2s6/POf/4xXXnnlU39/xIgRccMNN3zqrn+a1q1bx6hRo+KMM86Iq6++Ov73f/83ceHtl7/8ZZx//vmf+t+/vl544YV47rnnEs+3atUqzjnnnPjGN74RAwYMqHP+g8Jr586dY+DAgXHIIYd85PfnzJkTzz33XDz77LPxt7/9LTZv3lzfTwFoIn73u9/FrbfeWq/HtG/fPs4555w455xzon///tuc/c+vP6ecckpcd911MXny5Lj22mvjz3/+c+I/Z2+++eYoLy+PkSNH1isrAE1TYa4DAAAAAAAAAJB5G6sq49V59Xun4sbu1XnTY1NVZa5jQNbstddeiWdra2vjzTffzFyYDFi+fHk8+OCDiWZLSkrixhtvjOnTp8e5555bZ7Eo6TWHDx8eV111VUyaNCnmzJkT11xzTfTq1avB127qHnnkkbjjjjvq9Zh99903pk6dGjfffHO9ywY9evSIX/ziF/Huu+/GYYcdVq/HPv7443HzzTfX6zHp9GnluAEDBsRbb70VP/jBD+pdLPpPBQUFaStSEFFTUxNf/vKX63WnmpKSkvjVr34VU6dOjS9/+cv1+v+jsLAwjj/++JgwYULcdttt0apVq8SPraqqitNOOy02btyY+DHptHLlyk98MXpZWVnccccdMWbMmHrv+n8qKSmJn/70p/HHP/4xCguTvaxx6dKl8cADD2z3mf/txhtvTDx7zDHHxLx58+KGG25IVCxKom/fvnHeeefFI488EitWrIj7778/Dj/88JyVJYHMeOWVV+KSSy5JPF9UVBTf/e53Y+7cufHrX/+6zmLRpxkyZEg88MAD8eqrr8bAgQMTP+6iiy6KZcuWbdeZADQtykUAAAAAAAAAeWDs3HejsqY61zHSqrKmOsbOfTfXMSBr+vXrV69SwsyZMzOYJv0eeOCBRHdkadmyZbz44otx4YUXJn4B+vbo06dPXHbZZTFnzpx4/PHH44ADDsjYWY3Zhg0b4qKLLqrXY772ta/FuHHjGvyC+969e8ezzz4b3/nOd+r1uMsuuywWL17coLPTaf/9949XX301dtttt1xH4b/ccMMN8dZbbyWe79y5c4wdOza+973vRXFx8XafW1BQEF//+tdjwoQJsfPOOyd+3Pz58+MnP/nJdp+bbm3bto0XXnghvva1r6Xtmqeffnr8+te/Tjx/5513puXcVatWxZgxYxLNXnTRRfHEE09Ely5d0nL2J2ndunWcdtpp8fzzz8fMmTPjG9/4RrRo0SJj5wHZsWnTpjj77LOjujrZ38379OkTEyZMiGuvvTYtZfqIiPLy8njjjTfi5JNPTjS/evXqen8vCEDTpFwEAAAAAAAA0MylUql4btbUXMfIiOdmTf3Ed9GH5qiwsLBe7zK+cOHCDKZJv2effTbR3A033BDDhg3LcJp/KywsjOOOOy7Gjx8f5513XtbObSyuvPLKWLRoUeL5Cy+8MO6444603V2nqKgofv3rX8fll1+e+DHr16+vdyEpUwYMGBBPPfVUdOjQIddR+C9LliypV1Gna9eu8fLLL8fQoUPTluFzn/tcvPzyy9GzZ8/Ej7nhhhvin//8Z9oybK/S0tIYM2ZMRv48vvjii+PQQw9NNDt27NhYvnx5g8988cUXE73Y/6CDDorrrrsuq3cT2nXXXeOWW26JF198MWtnApnxox/9KObMmZNodv/994+JEyfGkCFD0p6jdevW8eCDD8aZZ56ZaP7Pf/5zvcq4ADRNykUAAAAAAAAAzdy7yxfFkvVrch0jIxavXxPTlyd/0Ts0dX369Ek8u2DBggwmSb/XX3+9zpkBAwbEueeem4U0n6xt27Y5OzsXli1bFrfcckvi+RNPPDFuuOGGjGS5+uqrE78ANiLiwQcfjHffze3d7Vq2bBkPP/xw2u40QHpde+21UVFRkWi2rKwsHnvssXoVPJPq06dPPPHEE9G6detE89XV1fHTn/407Tnq6+abb47hw4dn5NoFBQVx/fXXJyrw1NbWxlNPPdXgM5N8DYr41/OmqKiowedtj3z7GgTNzYwZM+J3v/tdotl99tknnn766ejUqVPG8hQVFcUf/vCHOOyww+qcTaVSccUVV2QsCwCNg3IRAAAAAAAAQDM3eeHsXEfIqEkLk73zMzQHn/nMZxLPNqU7F61evTpWrVpV59xZZ52VhTR84LrrrovNmzcnmu3Vq1fce++9Gb2bx+2335643JFKpeJ///d/M5YliauvvjojZRQabuXKlXHbbbclnr/22mtj//33z1ieQYMG1avI99BDD8WMGTMylqcuI0aMiHPOOSejZ+y1115x+OGHJ5odO3Zsg8+bOXNmnTP9+/eP/fbbr8FnAfnpiiuuiJqamjrnunXrFo899li0a9cu45lKSkpi9OjRiUpMTz75ZMye3bx/tgCQ75SLAAAAAAAAAJq52auX5TpCRs1p5p8f/Kf6lIsWL16cwSTptWhRsjuQ7b333hlOwge2bNkSt99+e+L5P/zhDxm/q0ZZWVncddddUViY7CVPDzzwQCxblpuvEbvsskt8+9vfzsnZ1O2OO+6ITZs2JZo96KCD4oILLshwoogzzzwzjj322ESztbW1cdNNN2U40ScrLi6OG2+8MStnffWrX000N378+AafleTrkK9BwPaaNm1aPPTQQ4lmf//730f37t0znOjfdtxxx/jFL35R51wqlYo//OEPWUgEQK4oFwEAAAAAAAA0Y7W1tTF/9Ypcx8ioeWtWRG1tba5jQFbsuOOOiWc3btyYwSTpVVFRkWiuR48eGU7CBx5//PFYu3Ztotnjjjsu8R1GGmq//faLkSNHJpqtqamJ0aNHZzjRJ/vud78bpaWlOTmbut17772J5goKCuL666/P6B25/tN1110XxcXFiWYfeOCBqKqqynCijzvjjDNi1113zcpZRx99dJSUlNQ5995770VlZWWDzkrydcjXIGB73XrrrZFKpeqcO+644+L444/PQqKPOvvss6Nfv351zt17772JPg8AmqZkfxMBAAAAAAAA4GOqaqpj+YZ1uY6xTUs3rI3Kmupcx8ioyuqt8eaiudGtbYdcR/lUXdu2j9Ii/0RPw7Vs2TLx7ObNmzOYJDe2bt2a6wh547777ks8+9Of/jSDST7u6quvjtGjR0dNTU2ds/fcc09ceumlWUj1b+3atYuvfOUrWT2T5CZPnhzvvvtuotkTTjghhgwZkuFE/7bbbrvFqFGj4o477qhzdtWqVfHUU0/FSSedlIVk//bNb34za2e1b98+Bg0aFJMnT97mXG1tbcycOTP22GOPjOZprl+DFAUgs7Zs2RJ//OMfE81effXVGU7zyYqKiuL888+PSy65ZJtzixYtirfffjv22muv7AQDIKv85BIAAAAAAABgOy3fsC6+PybZi4TIrOvGPpnrCNv0q6NHRo8OnXIdg2agRYsWiWe3bNmSwSTp1alTsv2YM2dO7LnnnhlOw5YtW+L5559PNHvggQdm/f+TXr16xfHHHx+PPvponbNTp06N999/P3r27JmFZP9y3HHHRatWrbJ2HvXz+OOPJ5698MILM5jk089MUi6KiHjiiSeyWi7q169fDB06NGvnRUTsu+++dZaLIiJmz57doHJRkq9Dc+bM2e7rA/nr8ccfjzVr1tQ5d/DBB+e0tHP66afHpZdeWmfh8Omnn1YuAmimCnMdAAAAAAAAAACAZOpTLmpKdy7q3LlzorkkZRIabuzYsYnLaeeee26G03yy8847L/Fs0qJUupx44olZPY/6Sfp82GWXXeKwww7LcJqPGzRoUJSXlyeazfZze8SIEVk9L+Jfd3NKYtmyZQ06J8nXoeeeey4qKioadA6Qf558MtkbYYwaNSqzQerQtWvX2Hfffeuce+WVV7KQBoBcUC4CAAAAAAAAAGgiSktLE89WVVVlMEl67bDDDtGmTZs65x544IF4++23s5AovyUtLJSUlMRxxx2X4TSf7LDDDosddtgh0exzzz2X4TQfdfDBB2f1PJLbsGFDvPHGG4lms3lHoP928sknJ5pbsGBBzJgxI8Np/i0Xz+0+ffokmmtouWjnnXeuc2bz5s1x9dVXN+gcIL+kUql45pln6pwrLCyMY445JguJti1JufXNN9/MQhIAckG5CAAAAAAAAACgiaisrEw8W5+7HOVaQUFBHHjggXXObd26NU455ZSYP39+FlLlr4kTJyaaGzZsWHTo0CGzYT5FSUlJ4ruoTJo0KcNp/m3XXXeNLl26ZO086ufNN9+M6urqRLPHHntshtN8uhNOOCHxbDaf33vttVfWzvpA0jvbrVu3rkHnJC1OXX/99XHfffc16Cwgf/zjH/+I5cuX1zk3aNCgRvH9w5577lnnzNKlS2Pp0qVZSANAtikXAQAAAAAAAAA0EVu2bEk825TKRRERhx9+eKK59957L/bff/949NFHM5wof/3jH/9INJekEJZJSc+fM2dObNy4McNp/mXgwIFZOYftM3Xq1ERzpaWlMXTo0Ayn+XT9+vWLbt26JZpN+jk1VElJSeK7CKVT0gJjfcq3n+TQQw+NgoKCOudqamrirLPOiu9+97uxYcOGBp0JNH9JC6D77rtvhpMk07Nnz0Rzs2bNynASAHJBuQgAAAAAAAAAoImoT7moZcuWGUySfieccEIUFRUlml2yZEl88YtfjP322y9Gjx4dmzdvznC6/LFkyZJYuXJlotn9998/w2nSc35tbW288847GU7zL7vvvntWzmH7JC3O7bXXXjkvaCZ9fmerXLTTTjslKt+kW1lZWaK5hpaLunTpEgcddFCi2VQqFdddd1306dMnLr/8cnfTAz7Vm2++mWiusZSTu3btmmhu4cKFGU4CQC4oFwEAAAAAAAAANBH1uftKUysX7brrrnHaaafV6zETJ06MkSNHRrdu3WLkyJHx8MMPx7p16zKUMD/Mnj078WyuXwjbv3//xIW0+nxeDbHTTjtl5Ry2T9LnQa6f2xERn/3sZxPNZeu53bFjx6yc899KSkoSzVVXVzf4rB//+Mf1ml+1alVcc8010adPnxg+fHj85je/iZkzZzY4B9B8JC2A9u7dO7NBEkr69wflIoDmSbkIAAAAAAAAAKCJWLp0aeLZtm3bZjBJZlx++eVRXFxc78dt2LAhRo8eHaeeemp07tw59t9///jRj34UY8aMiTVr1mQgafO1ePHiRHMtW7aMnj17ZjjNtpWVlUWfPn0SzSb9vBqqW7duWTmH7ZP0edAY7kA1YMCARHNLlizJcJJ/aeyF1VQq1eBrHHHEETF8+PDtOnv8+PFx6aWXxu677x69e/eOr371q3HXXXfFrFmzGpwLaLqS3tnspJNOioKCgpx/7Lbbbonyrl69uiH/WQBopOr/0xgAAAAAAAAAIiKia9v28aujR+Y6xjZNXjgnHpz6aq5jZNz/2/OAGNK9b65jfKqubdvnOgLNRH1eRN69e/cMJsmM3XffPX7zm9/EhRdeuN3XqK6ujtdffz1ef/31iIgPXyhZXl4e+++/fwwfPjwGDhwYBQUF6YrdrCQtX+y0006N4r9hjx494r333qtzLlvloqZY6ssnSZ8HPXr0yHCS9GWoqKiI9evXR7t27TKaJ+kdhJq6++67L/bdd99YuXLldl9j/vz5cdddd8Vdd90VERGdOnWKoUOHxv777x8HHHBAlJeXR6tWrdIVGWikUqlU1r7/yLbNmzfnOgIAGaBcBAAAAAAAALCdSouKo0eHTrmOUad8KBcN6dE3erRv/P9fQEPVp1zUGF4cvz0uuOCCePvtt+OOO+5Iy/VSqVTMmDEjZsyYEffcc09EROywww5xyCGHxOc///kYMWJEzu/A05isWLEi0VzXrl0znCSZpDmSfl4NVVZWlpVzqL+tW7fGunXrEs02hud3fTKsWLEi4+WifNG7d+946KGH4qijjoqtW7em5ZqrVq2KMWPGxJgxYyIiori4OIYMGRKf//zn4/Of/3yUl5dHYWFhWs4CGo/ly5en7c+Rxka5CKB58h0pAAAAAAAAQDO2U7sdoqyoeb/vZFlxSezUdodcx4CsmD17duLZplouioi49dZb4+tf/3rGrr9mzZp49NFH4xvf+Eb06tUrhg4dGtddd10sX0RmaCQAAQAASURBVL48Y2c2FUlfLNqxY8cMJ0mmU6dkxdJsvQg2X+7u0hTV5znQGJ7fSZ/bEV7knW6HHHJI/PWvf402bdpk5PrV1dUxYcKEuPrqq2PYsGHRo0ePuOCCC+KNN97IyHlAbqxduzbXETKmqqoq1xEAyADlIgAAAAAAAIBmrLCwMHp17JLrGBnVe4cu3u2dvFBdXR3Tp09PPN+Uy0VFRUVx2223xT333BPt27fP+HlvvPFGfPe7340ePXrEl770pZg0aVLGz2ystmzZkmiuRYsWGU6STNIcST8vmq/6PAcaw/O7Phk8v9NvxIgRMWXKlNhvv/0yftaSJUvi5ptvjqFDh8agQYPirrvuarZ3O4F80pyLn6lUKtcRAMgAP10FAAAAAAAAaOZ26dgt1xEyqm8z//zgAzNmzKjXu4QPGDAgg2my4ytf+UrMnDkzzj333KzcEWbr1q3x0EMPxb777hvHHntsvPvuuxk/s7GprKxMNFdaWprhJMmUlZUlmlO+IOlzO6JxPL+TPrcjPL8zpV+/fvHaa6/F7bffHt27d8/Kmf/4xz/iq1/9avTr1y9Gjx7tBfzQhPmzGYCmRrkIAAAAAAAAoJkb0mOXXEfIqH169M11BMiKN998M/FscXFxDBo0KINpsqdr167x+9//PmbNmhXf+c53olOnTlk596mnnoo999wzrrrqqqiurs7KmY1B0jvB1dbWZjhJMklzuMMd9XkONIbnd30yeH5nTmFhYZxzzjkxZ86cuP3222Pw4MFZOXf+/PkxcuTIOPzww2PevHlZORNIL3cgA6Cp8bcKAAAAAAAAgGZuQNfu8Zl2O+Q6Rkbs1G6H6N81O+8kD7n2wgsvJJ797Gc/Gy1atMhgmuzr1atX/PrXv45FixbFo48+Gqeffnp07Ngxo2du3bo1rrzyyvj85z8fa9asyehZjUXS50197gKTSUlzNLd9oP7q8xxoDM/v+mTw/M680tLSOOecc2Ly5Mnx1ltvxQ9/+MMYOHBgxs998cUXY8iQIfHiiy9m/CwgvfzZDEBTo1wEAAAAAAAA0MwVFBTEkf2axx1M/tuR/QZFQUFBrmNAVtSnXDRkyJAMJsmtsrKyOPHEE2P06NGxfPnyeO211+KXv/xlnHDCCdG5c+eMnPn3v/89jjjiiFi3bl1Grt+YJH0h7ObNmzOcJJlNmzYlmvMCX+rzHGgMz++kz+0Iz+9s23PPPeNnP/tZ/POf/4z58+fH3XffHeeee24MHDgwI9+Xrl69OkaMGBHPP/982q8NZE7Lli0Tzz733HORSqWazMfdd9+duf9wAORMca4DAAAAAAAAAJB5B/YZEA++NT4qa6pzHSVtyoqK48A+A3IdA7Ji2rRpsWDBgsTzBxxwQAbTNB5FRUVRXl4e5eXlH/7a9OnTY9y4cTF+/PgYP358zJo1Ky1nTZkyJU4//fR48sknm3WpsXXr1onmVqxYkeEkySTN0aZNmwwnobFr2bJlFBYWRm1tbZ2zjeH5XZ8Mnt+507NnzzjrrLPirLPOioh/FYH+82vQpEmT0nInrMrKyjj55JNj0qRJ0a9fvwZfD8i8pN9TRURs2bIlg0kAIBl3LgIAAAAAAADIA61Ly+KA3v1zHSOtDujdP1qVluU6BmTFvffem3i2oKAgjjnmmAymadz69+8f55xzTtx1110xc+bMWLZsWTz44IPxjW98I3r16tWga48ZMyZuvfXWNCVtnHbcccdEc8uXL89wkmSS5kj6edF8FRYWRpcuXRLNNobnd30yeH43Hh07dozjjz8+fvnLX8a4ceNi/fr18corr8RVV10VBxxwQBQVFW33tdevXx9f+cpXIpVKpTExkCndunVLPFtRUZHBJACQjHIRAAAAAAAAQJ44fuCQKCnc/hc0NiYlhUVx/MAhuY4BWVFTUxP33Xdf4vl99tnHC83/Q9euXeNLX/pS3HLLLTFv3ryYOnVq/OQnP4m+fftu1/V+/OMfN+sXgO60006J5pYsWRJVVVUZTlO3OXPmJJpL+nnRvCV9HsybNy+zQRJI+tzu1KlTlJaWZjgN26u0tDQOPPDAuOKKK2L8+PGxfPnyuPPOO+Ooo46KwsL6v3zz9ddfjwceeCADSYF0a9WqVXTq1CnR7OLFizOcBgDqplwEAAAAAAAAkCe6te0Qpwwqz3WMtDhlUHl0a9sh1zEgK5544ol6veDwuOOOy2Capm+PPfaIK6+8Mt5777145pln4tBDD63X41evXh133nlnhtLlXo8ePRLN1dTUxHvvvZfhNNu2bt26WLp0aaLZ7t27ZzgNTUHS5/eMGTMynKRu06dPTzTnud20dOzYMc4+++x45plnYs6cOXHJJZdEixYt6nWNa6+9NkPpgHRLetfM999/P8NJAKBuykUAAAAAAAAAeeTo/oNjl07dch2jQXbttGMc039wrmNAVqRSqbjqqqsSzxcUFMRpp52WwUTNR0FBQRx11FHx97//Pf785z9HmzZtEj/2j3/8YwaT5dZuu+0WBQUFiWanTp2a4TTpO3/AgAEZTEJT0b9//0RzuX5u1yeD53bT1atXr7j++utj2rRpMXTo0MSPe/PNN2PatGkZTAakS9I/o995550MJwGAuikXAQAAAAAAAOSRosLC+Eb5UVFSWJTrKNulpLAozis/MgoL/XM3+eEvf/lLvPXWW4nnjzrqqOjXr1/mAjVTp556aowZMyZatmyZaH7ixImxYsWKDKfKjTZt2kSfPn0SzY4fPz7DadJzfsuWLe0FEfGvO5clMWPGjFi5cmWG03y66urqmDBhQqLZQYMGZTgNmdanT594/vnno7w8+R1Gx4wZk8FEQLrsu+++iebefPPNDCcBgLr5aSsAAAAAAABAnunevmOcMmj/XMfYLqfuuX90b98x1zEgKzZs2BCXXnppvR5z4YUXZihN83fggQfG5Zdfnng+6Qv/P0ljL0juueeeieZeeumlzAZJ0/kDBw6MoqKmWaptiMb+PMuFpM/tiIiXX345g0m2bdKkSbFx48ZEs8pFzUObNm1i9OjR0aJFi0Tzr7/+eoYTAemw3377JZpbvXp1vd5QAAAywd8gAQAAAAAAAPLQMQMGx7Deu+c6Rr0M6717HN1/cK5jQNZceuml8f777yee33XXXWPEiBEZTNT8XXrppdG+fftEszNnztzuc0pKShLNVVdXb/cZDTFs2LBEc++8807MmTMnw2k+2bp16+Lvf/97otnhw4dnOE3j1NifZ7nw2c9+NvGO//Wvf81wmk/36KOPJporLCyMAw44IMNpyJa+ffvGqFGjEs025GsQkD1DhgyJtm3bJpp9/PHHM5wGALZNuQgAAAAAAAAgDxUWFMR55UfG4O59ch0lkSHd+8Z55UdGYUFBrqNAVtx///1xxx131OsxP//5z92ppIHKysriC1/4QqLZRYsWbfc5paWlieY2b9683Wc0xJFHHpl49qGHHspgkk/36KOPxtatWxPN1ufzaU4a+/MsF4qKiuKwww5LNPvkk0/Gli1bMpzo41KpVOK9Gjx4cHTs6I6OzckJJ5yQaK4hX4OA7CktLU1c/v/jH/8YqVQqw4kA4NP5iRIAAAAAAABAniouLIpvDz+60ReMhnTvGxcOHxHFhUW5jgJZ8dJLLyW+c8EHDjrooDjllFMyEyjPfO5zn0s0V1FRsd1nJH0H+zVr1mz3GQ2xxx57RLdu3RLN/v73v4/a2toMJ/q4W265JdFcSUlJHHzwwRlO0zg19udZriQtm61ZsyYeeOCBDKf5uKeffjrmzp2baDZfi3PNWTa+BgHZddJJJyWamzVrVjz77LMZTgMAn065CAAAAAAAACCPlRYVx8UHHhPDeu+e6yifaFjv3eOiA4+O0qLiXEeBrHjppZfixBNPjKqqqsSPKSwsjN/85jcZTJVfunTpkmiuIe8sX1paGu3atatzbvHixdt9RkMUFBQkLqvNmTMnHnvsscwG+i9jx46NN954I9HsiBEjok2bNhlO1DglfS7n6nmWKyeddFIUFSUrLP/2t7/N+l0krrvuusSzp556agaTkAvZ+BoEZNfxxx8fHTp0SDT7k5/8JLNhAGAblIsAAAAAAAAA8lxxYVF8c//Px5f3Gh4ljeTuQCWFRXH63sPjm/t/3h2LyBv33XdffP7zn49169bV63E/+tGPYvDgwRlKlX/Wrl2baC7pXWE+TZI7A82bNy+qq6sbdM72OvPMMxPPXn755VFTU5PBNB/1wx/+MPHsWWedlcEkjVvSu0+99957GU7SuOy4446J7/jz9ttvZ/XuRc8//3y88MILiWb32GOP2HvvvTOciGzL1tcgIHtatWoVX/va1xLNTpgwIe67774MJwKAT6ZcBAAAAAAAAEAUFhTEcQOHxM9GnB67dEr2YuRM2bXTjvGzEafHsQOGRGFBQU6zQDasXbs2Ro0aFV/5ylfqdceiiIhDDjkkrrzyyswEy1Pz5s1LNJe0uPFpdtlllzpnKisr45///GeDztleQ4cOjQEDBiSanTZtWtxwww0ZTvQv99xzT4wfPz7RbOfOnePYY4/NcKLGK8lzLCJi8uTJGU7S+Jx99tmJZ3/wgx/E+vXrM5jmX7Zs2RIXXnhh4vn6fA40Hdn6GvSfCgoKEn8kzQd81AUXXBDFxcnuxnvhhRfG/PnzM5wIAD5OuQgAAAAAAACAD3Vv3zGuPPJL8eW9hmX9LkYlhUXx5b2Gx5VHnhrd23fM6tmQC7W1tTF69Oj47Gc/G/fcc0+9H7/jjjvG/fffH0VF7u6VLjU1NfHEE08kmk1avPk0u+22W6K5Z555pkHnNMT3v//9xLM//vGPY/r06RlME/H+++/HxRdfnHj+kksuidLS0swFauSSPseeffbZDCdpfE4++eTE5asFCxbERRddlOFEEZdddlniHerYsWOcc845GU5ELjz66KOJ5hr6NQjIrt69e8fXv/71RLPr1q2LE044od53MwWAhlIuAgAAAAAAAOAjigoL47iB+8SvjhkZh+7yuSgrSvYOy9urrKg4Dt3lc/GrY0bGcQOHRGGhf8qmeauqqvqwVDRy5MhYvHhxva/RuXPnePbZZ2PHHXfMQMLsu+aaa+LJJ5/MdYx45JFHYtGiRXXOFRQUxH777degs/bdd99Ec3fccUfU1NQ06KztNXLkyOjdu3ei2c2bN8cJJ5wQa9euzUiWjRs31uv6HTp0iAsuuCAjWZqKz33uc9GyZcs656ZNmxavvPJKFhI1HkVFRfE///M/iefvvvvuuPnmmzOWZ/To0XH99dcnnr/ooouibdu2GcuTb15++eX43//935y/kH/9+vWJy8bl5eUZTgOk21VXXRXt27dPNPv222/Hsccem7Hvq+qrqqoqfv/738cLL7yQ6ygAZJCfyAIAAAAAAADwibq17RDnDj08bj7pnDhryMGxU7sd0nr9ndrtEGcNOThuPumcOHfo4dGtbYe0Xh8ak9ra2pgwYUJccMEF8ZnPfCZGjhy53Xd56dixYzz//POxxx57pDll7kyaNCmOO+642HvvvWP06NFRVVWV9QwLFiyI888/P9HskCFDolu3bg06b/jw4YnmZs2aFT/60Y8adNb2Ki4ujmuuuSbx/MyZM2PEiBFpfyHspk2b4oQTToi33nor8WN++MMfRrt27dKao6kpKSlJXIL7xje+EatWrcpwosblrLPOqtfdXy666KIYPXp02nM8/vjj8dWvfjXx/I477livO3hRtzVr1sSPf/zj6NWrV1x22WWxcOHCnOQ499xzY+nSpYlmjz766AynAdKtc+fO8fOf/zzx/Lhx42L48OExe/bsDKbatg0bNsRNN90U/fr1i/POOy+WLFmSsywAZJ5yEQAAAAAAAADb1Kq0LD6/+15x7TFnxuWHnxwjdt87du+yU73vaFRWXBK7d9kpRuy+d1x++Mlx7TFnxud33ytalZZlKDnkTkVFRUyYMCFuueWWOOWUU6JLly5RXl4eN998c6xevXq7r7vzzjvHCy+8EP8fe/cdHVXZvX38SiE9lAQIvYTeewfpIiAKIigiCKIoVQV9KDZsIIiCKCKCVEWq0kSkSOhoaAYIhBJ6DSFACul5//CVnwXMmWTOzCTz/azFetYD+5x9DUPuHPDec9eqVcuKaR3HwYMH9fTTT6tUqVJ68803bbaZ8tixY2rXrp3h4Yp+/fplu2eZMmVUrVo1Q7WTJk1S165ddeDAgWz3tVTv3r3Vpk0bw/V79uxRy5YtdfLkSav0v3Dhgtq2bWvRJ+XXqFFDI0aMsEr/nO7hhx82VHf06FHVq1dPixYtsstwnz3kyZNHM2bMMFyflpamvn37atKkScrIyLBKhj+/R1jyez516lSnH5wzy61btzR+/HiVLVtWPXr00MaNG5Wenm563+TkZD3//PNaunSpofr69esb/v4BwLEMGjRIXbp0MVx/5MgR1apVSzNmzLDJevSnsLAwvfTSSypRooSGDx+uc+fO2aw3AMB+zD27HgAAAAAAAAAAAACQa7i4uKhKUAlVCSoh6Y+TWC7Fxuj0jWu6cDNacclJSklLVWp6mtxd3ZTHzV1+Hp4qkT9QZQMKq5h/Abm68hmYcCy///671q5da9E1GRkZSkxMVFJSkhITExUbG6srV67oypUrunz5sk6cOKGzZ89abfP5n9q2bavvvvtOhQoVsup9HdHVq1f1/vvv6/3331eTJk3Uq1cvPfLIIypdurRV+yQmJuqrr77SG2+8odjYWEPXBAQEqG/fvlbp/8QTT+itt94yVLtq1SqtWrVKwcHBatasmSpVqqRixYopX758ypMnj1xcXDK9R2BgoJo0aWJxzhkzZqhu3bqKj483VB8WFqZ69eppwoQJeuGFF+Tm5mZxz4yMDC1cuFAjR47U9evXDV/n7u6ur776Su7ubIuSpB49emjUqFGGNiSfPXtWvXv31osvvqgWLVqoZs2aKlWqlAIDA+Xl5WX4e3jbtm3l7e2d3eg20bJlSz333HOaPXu2ofr09HSNGjVKmzdv1meffaaKFStmqe+5c+f0yiuv6Pvvv7fouocfflhPPPFElnrCuNTUVC1fvlzLly9XsWLF1KtXL3Xr1k1NmjSx+rPstm3b9Oqrryo0NNTwNa+88opVM+D+QkJC1Lp1a5v1O3v2rKHv55nZsmWLWrVqlf1AMMWcOXNUt25dnT9/3lB9fHy8Bg8erOnTp2vcuHHq2rWrKc85R48e1erVq7Vo0SKFhYVZ/f4AAMfH36IBAAAAAAAAAAAAAFni6uqqEvkCVSJfoL2jAFk2depUTZ061d4x/pO7u7tGjRqld955J0tDGjnd7t27tXv3bg0fPlw1atRQ27Zt1bx5czVt2lRFixa1+H4ZGRnat2+f1q5dq1mzZunSpUsWXf/ee+/J39/f4r73MnDgQI0fP16JiYmGr4mMjFRkZGSW+rVs2VIhISEWX1exYkXNmjVLTz31lOFrbt++rSFDhmjatGkaNmyYnnrqKRUoUCDT6+Li4rR8+XJ9+umnOnjwoMVZJ02apMaNG1t8XW5VunRpPfLII1q5cqXha2JjY7Vu3TqtW7cuSz1Pnz6tMmXKZOlae5g2bZr27t1r0Z+3DRs2qHr16urVq5cGDRqkRo0aGRoICAsL04wZMzR//nzduXPHopxly5bV/PnzLboG2Xfp0iV9/PHH+vjjjxUYGKgHH3xQLVq0ULNmzVStWrUsfV++cuWKfvzxR3377bfasmWLRdc2bNhQvXr1srgnAMdRsGBBrV+/Xs2bN1dMTIzh644cOaIePXqoWLFi6t27tx5++GE1bdo0S4NGGRkZOnXqlHbt2qVdu3Zp48aNWX6+BADkHgwXAQAAAAAAAAAAAAAAOKhWrVrp888/V7Vq1ewdxSEcOnRIhw4dujsQFhgYqGrVqqlChQoqVqyYihUrJn9/f3l7e8vd3V3x8fGKj4/X7du3derUKR07dkyHDx/WtWvXstS/VatWeuGFF6z2eoKCgjR06FBNnjzZavc0S69evRQaGqopU6ZYdF1ERISGDh2ql156SQ0bNlS9evVUqVIlBQYGysfHR4mJibp586aOHz+uAwcOaOfOnUpOTs5yRk70+Ldx48ZpzZo1SktLs3cUh+Tt7a0VK1aoYcOGio6ONnxdSkqKFixYoAULFigoKEgtW7ZUtWrVVLp0afn5+cnV1VVxcXG6ePGiwsPDtXXrVp07dy5LGX19fbVixQoFBARk6XpYR3R0tL777jt99913kiRPT09VqlRJVapUUYkSJVSsWDEVLFhQXl5e8vLyUnJysuLi4hQfH6+LFy/q2LFjd39k5XRDHx8fff3111Y52QaAfVWtWlVr1qxRhw4dDJ8M+adLly7po48+0kcffSRvb2/VqlVL1atXV8mSJVW8eHH5+vrK29v77mmriYmJioqK0tWrV3Xp0iVFRETo2LFjSkhIMOnVAQByKoaLAAAAAAAAAAAAAAAAHEz58uX17rvvcjpBJqKjo7Vt2zZt27bN9F6lSpXS4sWLrX561Lhx4/TDDz/o1KlTVr2vGT7++GPduHEjS6enpKWl3T2FygwPP/wwp7rcR61atfTaa6/pww8/tHcUhxUcHKwNGzaobdu2unnzpsXXX716VUuXLrV+MP0x/LR69WrVqVPHlPsj65KSkhQWFqawsDDTe7m4uGjWrFmqXr266b0A2EazZs30yy+/qHPnzrp+/XqW7nHnzh3t2bNHe/bssXI6AIAzcrV3AAAAAAAAAAAAAAAAAPyhSZMmWrFihSIiIhgsciDFixfXL7/8oqCgIKvf29fXV2vXrlVgYKDV721tLi4umjNnjp5++ml7R/mbzp07a/ny5cqTJ4+9ozis999/X4888oi9Yzi0unXrav369SpQoIC9o9zl4+OjlStXqk2bNvaOAjubPn26nnrqKXvHAGBlDRs21M6dO1W+fHl7RwEAgOEiAAAAAAAAAAAAAAAAeypWrJiGDRumX3/9Vbt27dJjjz0mV1e2dDiKunXravfu3SpXrpxpPSpXrqw9e/aoatWqpvWwFldXVy1cuFDvvfeeXFxc7B1HI0eO1KpVq+Tp6WnvKA7Nzc1NK1as0KBBg+wdxaE1atRIv/32m6pUqWLvKCpdurR27dqlBx980N5RYEc+Pj5aunQpX7tALlaxYkUdOHBA/fr1s3cUAICT41+iAAAAAAAAAAAAAAAAbMjFxUU1atTQ8OHDtXXrVp0/f17Tpk1Tw4YN7R0Nf+Hq6qphw4Zpx44dKlmypOn9ypcvrwMHDuiDDz5wqJNT7ueNN97Qjz/+qOLFi9ulf8GCBbV48WJNnjxZbm5udsmQ07i7u+uLL77Q5s2bVbduXXvHcVjly5fXnj179Mwzz9gtw2OPPaa9e/eqVq1adssA+6tXr55+/fVX9ejRw95RAJjMz89Pc+fO1ffff68yZcrYO849NWvWjO9LAJDLMVwEAAAAAAAAAAAAAABgomLFiqlNmzZ67bXXtHr1akVHRyssLEyffvqpHnjgAU4pkvTaa6/pxRdftMkQjxFNmzbV9u3bNW3aNHl7e9usr4eHh8aOHavz589r1qxZevDBB+Xh4WGz/pbq2LGjwsPDNWTIELm7u9ukp6urq5555hkdO3ZMTzzxhE165jZt2rTRvn37FBISoueff15BQUH2juRw8ubNq3nz5mnjxo2qWLGizfqWKlVKP/zwg1asWKGCBQvarK+za9q0qT744AM1adLEIb4nFypUSFOmTNGePXtUvXp1e8cBYEPdunXTsWPH9OGHHyogIMDecVSiRAmNHDlSR44c0Y4dO1SjRg17RwIAmMg2f6sHAAAAAAAAAAAAAADIBfLkySNPT8+//fD391fhwoVVuHBhBQUFqXDhwipRooQqVaqkypUry9/f396xHV6zZs3UrFkzSVJYWJjWrl2rH3/8Ub/99ptSU1NtksHV1VUPPfSQhg8frg4dOtik5/34+vrqueee03PPPac7d+4oNDRU+/bt0/Hjx3Xq1CldvXpVUVFRiouLU1JSklJSUpSRkWGXrHnz5tXnn3+uV199VRMnTtS8efOUmJho9T7u7u7q1auXxo4dq8qVK1v9/s6oZcuWatmypWbOnKmIiAjt2bNHR48e1YkTJ3Tx4kVFRUUpJiZGiYmJSk5OVnp6ur0j21y7du0UHh6uJUuWaMKECTp8+LApfcqXL69Ro0bpmWeeUZ48eUzpgfsrXLiwxo4dq7Fjx+r69etat26dfvzxR23cuFExMTE2y1GhQgW9+OKLGjhwoPz8/GzWF4Bj8fT01KhRozR8+HB98803+vzzzxUWFmaz/pUqVVKnTp3UrVs3NW/eXC4uLjbrDQCwL5cMe/3LAgAAyLaoqCgVLlz4bz937do1FSpUyE6JAAAAAAAAACB7kpKSFBkZ+Z81wcHB8vT0tFEiAIA9JSQkKDQ0VLt379aePXu0Z88eXb161Wr39/b2VtOmTfXII4+oW7duDnNyUk528+ZNrVixQt999522b9+u5OTkLN/L3d1djRs31pNPPqmePXvy30Fhd7/99pu+/fZb/fDDDzp//ny27hUUFKSuXbvqqaeeUosWLdi87YAyMjJ07Ngx7d69++6Po0ePWm3QzsXFRZUrV767ib9p06b8OQBsICQkRCEhIYZq+/XrpzJlypiax4jw8HCtXLlSq1ev1r59+6w2fO/q6qry5curadOmeuCBB9SqVSuVLVvWKvcGkHvl9n+/deZ9uQwXAQCQgznzQwwAAAAAAACA3Cm3/8dpAED2Xbp0SSdOnNCpU6d08uRJnTp1SufPn9ft27cVFxenuLg4xcbGKjU1VR4eHvL09FT+/PlVuHBhFS1aVOXLl1elSpVUu3Zt1alTh1NCTJSYmKjffvtNu3fv1vHjxxUZGalz584pNjZW8fHxSkxMlKenp3x9feXn56cSJUooODhYFSpUUOPGjdWkSRP5+vra+2UA93TmzBnt2LFDv//+u06dOqXTp0/r2rVrio+PV0JCgjIyMuTj4yNfX18FBgaqbNmyCg4OVq1atdSsWTNVrFjR3i8BWRAXF3f3FLk/vwdFRkYqJibm7vefuLg4JSQk3D3t0NfXV4UKFVJQUJBKly6tSpUqqVq1amrcuLECAgLs/ZIA5DCJiYk6cOCAQkNDdeLECZ07d05nz55VdHS0EhISlJCQoKSkJLm7u8vT01M+Pj4KDAxUoUKFVKxYsbvfj6pWrapatWrxrAXAYrn932+deV8uw0UAAORgzvwQAwAAAAAAACB3yu3/cRoAAAAAAAAAcqrc/u+3zrwv19XeAQAAAAAAAAAAAAAAAAAAAAAAAADYB8NFAAAAAAAAAAAAAAAAAAAAAAAAgJNiuAgAAAAAAAAAAAAAAAAAAAAAAABwUgwXAQAAAAAAAAAAAAAAAAAAAAAAAE6K4SIAAAAAAAAAAAAAAAAAAAAAAADASTFcBAAAAAAAAAAAAAAAAAAAAAAAADgphosAAAAAAAAAAAAAAAAAAAAAAAAAJ8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCkGC4CAAAAAAAAAAAAAAAAAAAAAAAAnBTDRQAAAAAAAAAAAAAAAAAAAAAAAICTYrgIAAAAAAAAAAAAAAAAAAAAAAAAcFIMFwEAAAAAAAAAAAAAAAAAAAAAAABOiuEiAAAAAAAAAAAAAAAAAAAAAAAAwEkxXAQAAAAAAAAAAAAAAAAAAAAAAAA4KYaLAAAAAAAAAAAAAAAAAAAAAAAAACfFcBEAAAAAAAAAAAAAAAAAAAAAAADgpBguAgAAAAAAAAAAAAAAAAAAAAAAAJwUw0UAAAAAAAAAAAAAAAAAAAAAAACAk2K4CAAAAAAAAAAAAAAAAAAAAAAAAHBSDBcBAAAAAAAAAAAAAAAAAAAAAAAATorhIgAAAAAAAAAAAAAAAAAAAAAAAMBJMVwEAAAAAAAAAAAAAAAAAAAAAAAAOCmGiwAAAAAAAAAAAAAAAAAAAAAAAAAnxXARAAAAAAAAAAAAAAAAAAAAAAAA4KQYLgIAAAAAAAAAAAAAAAAAAAAAAACcFMNFAAAAAAAAAAAAAAAAAAAAAAAAgJNiuAgAAAAAAAAAAAAAAAAAAAAAAABwUgwXAQAAAAAAAAAAAAAAAAAAAAAAAE6K4SIAAAAAAAAAAAAAAAAAAAAAAADASTFcBAAAAAAAAAAAAAAAAAAAAAAAADgphosAAAAAAAAAAAAAAAAAAAAAAAAAJ8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCkGC4CAAAAAAAAAAAAAAAAAAAAAAAAnBTDRQAAAAAAAAAAAAAAAAAAAAAAAICTYrgIAAAAAAAAAAAAAAAAAAAAAAAAcFIMFwEAAAAAAAAAAAAAAAAAAAAAAABOiuEiAAAAAAAAAAAAAAAAAAAAAAAAwEkxXAQAAAAAAAAAAAAAAAAAAAAAAAA4KYaLAAAAAAAAAAAAAAAAAAAAAAAAACfFcBEAAAAAAAAAAAAAAAAAAAAAAADgpBguAgAAAAAAAAAAAAAAAAAAAAAAAJwUw0UAAAAAAAAAAAAAAAAAAAAAAACAk2K4CAAAAAAAAAAAAAAAAAAAAAAAAHBSDBcBAAAAAAAAAAAAAAAAAAAAAAAATorhIgAAAAAAAAAAAAAAAAAAAAAAAMBJMVwEAAAAAAAAAAAAAAAAAAAAAAAAOCmGiwAAAAAAAAAAAAAAAAAAAAAAAAAnxXARAAAAAAAAAAAAAAAAAAAAAAAA4KQYLgIAAAAAAAAAAAAAAAAAAAAAAACcFMNFAAAAAAAAAAAAAAAAAAAAAAAAgJNiuAgAAAAAAAAAAAAAAAAAAAAAAABwUgwXAQAAAAAAAAAAAAAAAAAAAAAAAE6K4SIAAAAAAAAAAAAAAAAAAAAAAADASTFcBAAAAAAAAAAAAAAAAAAAAAAAADgphosAAAAAAAAAAAAAAAAAAAAAAAAAJ8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCkGC4CAAAAAAAAAAAAAAAAAAAAAAAAnBTDRQAAAAAAAAAAAAAAAAAAAAAAAICTYrgIAAAAAAAAAAAAAAAAAAAAAAAAcFIMFwEAAAAAAAAAAAAAAAAAAAAAAABOiuEiAAAAAAAAAAAAAAAAAAAAAAAAwEkxXAQAAAAAAAAAAAAAAAAAAAAAAAA4KYaLAAAAAAAAAAAAAAAAAAAAAAAAACfFcBEAAAAAAAAAAAAAAAAAAAAAAADgpBguAgAAAAAAAAAAAAAAAAAAAAAAAJwUw0UAAAAAAAAAAAAAAAAAAAAAAACAk2K4CAAAAAAAAAAAAAAAAAAAAAAAAHBSDBcBAAAAAAAAAAAAAAAAAAAAAAAATorhIgAAAAAAAAAAAAAAAAAAAAAAAMBJMVwEAAAAAAAAAAAAAAAAAAAAAAAAOCmGiwAAAAAAAAAAAAAAAAAAAAAAAAAnxXARAAAAAAAAAAAAAAAAAAAAAAAA4KQYLgIAAAAAAAAAAAAAAAAAAAAAAACcFMNFAAAAAAAAAAAAAAAAAAAAAAAAgJNiuAgAAAAAAAAAAAAAAAAAAEiSXFxcMv3RqlUre8cEAAAAYEUMFwEAAAAAAAAAAAAAAAAAAAAAAABOyt3eAQAAAAAAAAAAAAAAAAAA1pWcnKzz58/r9u3bun37tu7cuSNfX1/5+/srX758KlmypNzd2T4GAAAAAGC4CAAAAAAAAAAAAAAAAAByvJMnT+rHH39USEiIwsPDderUKaWlpd233sPDQxUrVlS1atXUtm1bderUScWLF7dhYgAAAACAo2C4CAAAAAAAAAAAAAAA5Crz5s1T//797R3DYhkZGfaOACCHiY2N1Zw5c/Tll1/q2LFjFl2bnJysw4cP6/Dhw1qyZIkkqX79+hoyZIh69eolT09PMyIDAAAAAByQq70DAAAAAAAAAAAAAAAAAACMS0hI0BtvvKHixYvr5Zdftniw6H727t2r/v37q1SpUpoyZYpSU1Otcl8AAAAAgGPj5CIAAAAAAAAAAAAAAAAAyCHWrFmjYcOG6ezZs6b1uHbtmkaMGKG5c+dq5syZatKkiWm9AABA7hQSEqKQkJBM6/r166cyZcqYngeZ4z0DnBvDRQAAAAAAAAAAAAAAAADg4NLS0jR69GhNnjzZZj0PHTqkBx54QJMnT9ZLL71ks74AACDnCwkJ0TvvvJNpXatWrRhUcRC8Z4Bzc7V3AAAAAAAAAAAAAAAAAADA/cXFxalTp042HSz6U2pqql5++WX169dPqampNu8PAAAAADAfJxcBAAAAAAAAAAAAAAAAgIO6c+eOHn74YW3dutWuOebPn6/U1FQtWLBArq58pjUAAAAA5Cb8LQ8AAAAAAAAAAAAAAAAAHFBKSooee+wxuw8W/enbb7/Viy++aO8YAAAAAAAr4+QiAAAAAAAAAAAAAAAAAHBAo0eP1vr16y2+rkSJEnriiSfUrFkz1apVS4GBgfL19dXt27d17do17d+/X1u3btWyZcsUExNj0b1nzZqlWrVqaciQIRbnAgAAAAA4Jk4uAgAAAAAAAAAAAAAAAAAHs2bNGn3yyScWXVO+fHktX75cZ8+e1eTJk9WtWzcFBwcrX758cnd3V0BAgCpXrqynnnpKM2fO1JUrVzRjxgwVLlzYoj4jR47U/v37LboGAAAAAOC4GC4CAAAAAAAAAAAAAABOa+7cucrIyHCIHwDwp+joaPXv39+ia1588UUdOXJE3bt3l6ursW1hHh4eevHFFxUREaEuXboY7pWUlKRevXopOTnZoowAAAAAAMfEcBEAAAAAAAAAAAAAAAAAOJCxY8cqOjracP2nn36qGTNmyMPDI0v98ufPr1WrVmn48OGGrzl+/LimTJmSpX4AAAAAAMfCcBEAAAAAAAAAAAAAAAAAOIh9+/Zp9uzZhuvHjx9v0VDQ/bi4uOjTTz/Vs88+a/ia999/X5cuXcp2bwAAAACAfTFcBAAAAAAAAAAAAAAAAAAO4vXXX1d6erqh2kcffVRjxoyxav8vvvhCtWvXNlQbFxen999/36r9AQAAAAC2x3ARAAAAAAAAAAAAAAAAADiA33//XT///LOh2sDAQH399ddWz+Dp6alFixYpT548hurnzZunqKgoq+cAAAAAANgOw0UAAAAAAAAAAAAAAAAA4AAmTZpkuPbdd99VYGCgKTmqVKmiIUOGGKq9c+eOpk2bZkoOAAAAAIBtMFwEAAAAAAAAAAAAAAAAAHYWFRWlpUuXGqotW7asXnjhBVPzvPnmm/L19TVUO3PmTKWmppqaBwAAAABgHnd7BwAAAAAAAAAAAAAAmOPGjRu6fPmyvWPYRNGiRRUQEGDvGAAAZNmSJUsMD+gMHz5cbm5upuYJCAjQM888oy+++CLT2qioKG3YsEGdOnUyNRMAAAAAwBwMFwEAAAAAAAAAAABALrNlyxYNHTpU4eHh9o5iU1WrVtX06dPVqlUre0cBAMBi3377raE6Hx8fDRgwwOQ0fxg+fLih4SLpj/wMFwEAAABAzsRwEQAAAAAAAAAAAADkIlu2bFGbNm3sHcMuwsPD1bp1a23ZsoUBI8ACly9f1pYtW3TkyBEdP35cJ06cUExMjOLi4hQXF6eMjAz5+voqb968KlKkiCpVqqQFCxbYJFtqaqrOnz+vmJgYxcfHKz4+Xnny5JGvr698fX1VpEgRFSpUyCZZHMXt27e1efNmHThwQEeOHFFERIRu3ryp2NhYxcfHy9/fXwUKFFBgYKBq1aqlRo0aqXnz5qpSpYrp2fbv36/Q0FAdPHhQYWFhioqK0q1bt3Tr1i1lZGTIz89PhQoVUoUKFVS9enW1atVKLVq0kI+Pj+nZHN2ZM2e0Z88eQ7VdunSRv7+/yYn+UKlSJdWtW1f79+/PtHbVqlVKTEyUl5eXDZLlfOnp6bp06ZKio6MVHx+vhIQEpaWlyc/PT3nz5pW/v7/y5cunAgUK2Duq1YSHhyskJESHDh3S4cOHdfHiRd2+fVuxsbGS/hicy5cvn0qXLq3g4GDVr19fzZo1U61ateTi4mLn9NkTExOjqKgo3bhxQ3fu3FFSUpJcXV3l7e0tLy8vBQQEqHjx4k779eMozyIJCQnaunWrdu7cqaNHjyoiIkLR0dGKjY1VYmLi3a/P/Pnzq1KlSqpWrZpq166ttm3b2mxddiRpaWm6cOHC3ee0hIQEZWRkyMfH5+5zWpEiRXL8168jio2N1bVr13T9+nUlJiYqMTHx7u/9X3/ktu8jjuz27duKiorS9evX767zku6u8/nz51fx4sXl6+tr56S4H9Y0QHLJyMjIsHcIAACQNVFRUSpcuPDffu7atWtO9x9QAAAAAAAAAOQeSUlJioyM/M+a4OBgeXp62ihRzlOtWjWnO7Hon6pVq6bDhw/bOwbsaN68eerfv7+h2rlz56pfv37mBrKSVq1aaevWrZnWGdkKcv78eX311VdavXq1wsLCLMqRL18+3bx506JrjEhJSdHu3bu1Y8cO7dy5U+Hh4Tp//rzS0tL+8zp/f38FBwerXr16at68uVq2bKng4GCr57NUSEiIWrdunWnd22+/rXHjxv1nTWpqqhYvXqwFCxZo69atSk5OtjhPgwYN9Nxzz6l3795W3dR49OhRLViwQEuWLNHp06ctvt7f3189e/bU8OHDVbNmTavlymm+/PJLDRo0yFDtDz/8oK5du5ob6C8mT56s1157zVDthg0b1L59e5MT5TwxMTHavXu39uzZo99++03Hjx/XhQsXlJKSkum1+fPnV5UqVVS1alVVqVJFDRs2VJMmTeTubt7nihvZNNuyZUuFhIRkWnf+/HlNnz5dK1as0MmTJ7OUp1SpUurZs6cGDx6ssmXLZuketnLx4kX99ttv+v333xUWFqYTJ07o9OnTio+PN3R9YGCgKleurDp16qhevXpq3769ihcvbnJq43Ljs0h6erp++uknzZw5Uxs2bLg7EGAJT09PtW7dWn369FHPnj0z/fpcsmSJQkNDM73v66+/7jCDIYmJifr111+1Y8cO7dq1SxERETp37lym65iXl5eCg4PVoEEDNWvWTG3btnWI57ScJCIiQtu3b9eePXt0+PDhu4PlRvn5+al06dIqU6aMypQpo4oVK6pRo0aqU6eOPDw8sp2vX79+mj9/frbvY01m/h0vKirq7jr/+++/6/jx44qMjNTt27cNXZ8/f35VqFBBderUUd26ddW2bVuVL1/elKz342zv2b2wpmVPbv/3W2fel8vJRQAAAAAAAAAAAACQS0RHRzv9YJEkHTlyRDdu3FBAQIC9owAO5/Dhwxo3bpxWrlyZ6dCOrezYsUMLFy7U8uXLdePGDYuvj42Nvbu5b86cOZKkunXrqlevXurTp4+CgoKsHdlm0tLSNGPGDE2aNEnnz5/P1r1CQ0MVGhqq9957T1OnTlX37t2zdb/jx49r3LhxWrx4saFN5PcTGxurr7/+WnPnzlXv3r318ccfO8WmrX/atGmTobo8efLYfHinU6dOhoeLNm7cyHDR/xcdHa1ly5ZpxYoVCgkJUWpqapbuc/PmTe3evVu7d++++3P+/v5q3bq1HnzwQT388MMqXbq0tWJbzZkzZzRu3DgtWrTI0BDVfzl37pwmT56sqVOn6umnn9aECRNUpEgRKyXNnqtXr2rjxo3asGGDtm3bprNnz2brftHR0dq5c6d27tx59+dq1qypnj17asCAAQ7zurPDkZ5Fli1bpjFjxujUqVPZuk9SUpLWr1+v9evX6/XXX9f//vc/vfDCC3J1db1n/U8//WRoY//QoUPtOlyUmpqqn376SYsXL9bq1asVFxdn8T0SExMVHh6u8PDwu6+5fv36evLJJzVgwADlz5/fyqlzh8jISM2ePVvLly/XiRMnsnWvuLg4HTlyREeOHPnbz3t6eqpOnTpq0qSJOnfurFatWsnNzS1bvXKjmJgYbd68+e46HxERka373bx58+5z+Z8qVKigxx57TAMHDnTKQRVbYU0DMnfvJxcAAAAAAAAAAAAAQI5z5coVe0dwGJcvX7Z3BMChxMXF6dVXX1WdOnW0YsUKu2/mlaR169apWbNmatGihb766qssDRbdz/79+/Xaa6+pbNmyeumll3Tx4kWr3dtWDh06pCZNmmjYsGHZHiz6qwsXLujxxx/Xo48+mqUNdampqXrjjTdUtWpVfffdd9kaLPqr9PR0LVy4UDVq1NDGjRutcs+cIj09Xb/88ouh2saNG1v15CkjqlatqmLFihmqdbb37l4iIiL04osvqmTJkho0aJA2bdqU5cGi+4mNjdXq1as1dOhQBQcH66GHHtL3339v9T5ZkZ6erqlTp6p69eqaP39+tgeL/io1NVXz5s1T1apV9e2331rtvpY6efKkJk6cqEaNGqlo0aLq06ePFi5cmO3BovsJCwvTG2+8oVKlSql3797ZHoSxF0d6Fjl9+rRatGihnj17Wv3388yZMxo8eLCaNWumo0ePWvXetnLnzh1Nnz5dFSpU0COPPKJFixZl6Znhfvbu3atXX31VpUuX1ujRo636DJjTHTlyRN26dVOFChU0YcKEbA8W/ZekpCTt2bNHU6ZMUbt27VSsWDENGjRIW7ZssdrzXU518eJFffbZZ2rdurUKFSqkHj16aNasWdkeLLqfEydOaOLEiSpfvrwefvhhHTx40JQ+zoo1DTCO4SIAAAAAAAAAAAAAAIBc7OTJk2rQoIE+/vhjh9h4fvr0aXXo0EGdO3fWrl27TO11584dTZs2TRUrVtRHH33kEK/fiO+++04NGjT42yeaW9vq1avVokULXbp0yfA1Z8+eVcuWLfXBBx+Ytin86tWr6tSpkxYsWGDK/R3R4cOHFRMTY6i2TZs2JqfJXt/ff/9dt27dMjmNY7p+/bpeeOEFVa1aVTNnztSdO3ds0jc9PV0///yzunfvrpIlS2rbtm026XsvN2/e1IMPPqhXXnlF8fHxpvWJiYnR008/rdGjR9tsA3xsbKw+//xzNWrUSBUqVNDo0aP122+/2XQDfkpKihYtWqQqVapo5MiRSkxMtFnv7HKkZ5ElS5aodu3a2rFjh6l99uzZozp16mjp0qWm9rG25cuXq0KFCho6dKjOnDljaq/bt29r4sSJqly5slN937+XhIQEvfTSS6pZs6ZWrlyp9PR0m2e4du2avvzyS7Vp00bR0dE2729vycnJmjdvntq2batSpUpp+PDhCgkJsekgZEZGhn788UfVrVtXzzzzjOHnQ9wfaxpgGYaLAAAAAAAAAAAAAAAAcqnt27erUaNGOnbsmL2jSJK++uorVa9eXRs2bLBp34SEBP3vf/9Tw4YNFRkZadPelpowYYJ69+6tpKQk03sdPHhQzZs31/Xr1zOtDQ8PV+PGjU0fCJP+OJ2kX79+OW5Ddlbt27fPcG2DBg1MTJL9vhkZGU75afvz5s1ThQoV9NVXX9llQ/ifrly5Yrc17tSpU2rcuLE2b95ss54TJ07Uyy+/bJNeO3fu1LBhw/Tbb7/ZpN9/SUlJ0SeffKL69evr8OHD9o6TKUd6Fpk0aZKefPJJ3b592yb9kpKS9OSTT2rq1Kk26Zcdly9fVseOHdWjRw+bn/gYFRWlZ555Rt26dVNsbKxNezuCkydPql69epo2bZpdv4c4u8jISPXv31+//PKL3d+HjIwMLViwQLVq1dL27dvtmiWnYk0DsobhIgAAAAAAAAAAAAAAgFxo//796ty5s27cuGHvKEpJSdHgwYP1wgsvKCEhwW45Dhw4oAYNGth087slPvnkE40dO9amJ2GcPn1a3bt3V0pKyn1rwsLC1KpVK125csVmuTIyMtS3b1+H2MhvtgMHDhiurVu3rolJrNPXkteT08XHx6tv377q37+/bt68ae84dvPnqWYRERE27z1t2jRNmjTJ5n0dwZEjR9SsWTO7nlaVGUd6FnnjjTc0atQom/fNyMjQK6+8opkzZ9q8t1E7duxQvXr1tH79ervmWLlyZY4YBLem/fv3q3Hjxg4xfAfHc/78ebVr185pBu6thTUNyDp3ewcAAAAAAAAAAAAAANhOi1cGyL9IQXvHyJbYK9e1fcrX9o4BOLTTp0+rU6dODvFJySkpKerevbvWrFlj7yiSpBs3buihhx7SkiVL9Nhjj9k7zl1Lly7Vq6++apfe27Zt0+jRo/Xxxx//69fOnTundu3aKSoqyua5kpKS1KdPHx08eFDe3t42728r+/fvN1RXuHBhFS1a1OQ091a7dm25uLgYGnwz+npyuitXrqhDhw4KCwuzdxS7unbtmtq3b2/zUwH+6vXXX1eLFi3UpEkTu2Wwl9u3b6tDhw768ccf1aZNG3vH+RtHehaZPn26PvjgA7tmGDp0qMqXL6+2bdvaNcc/LVy4UAMGDPjPIWNbOnbsmFq2bKktW7aofPny9o5jqpMnT+qhhx5SdHS0vaPAgSUnJ6tXr15KTk7W008/be84Do81DcgehosAAAAAAAAAAAAAwIn4FymofCXsszEZgG2kpaWpV69eunr1aqa1rq6uqlGjhho2bKhy5cqpaNGi8vX1laurq2JjYxUdHa3w8HDt378/SwMDqampevLJJx1msOhPf+ZatmyZHn30UXvH0bFjx9SvX79MBzfc3NxUu3ZtNWrUSOXLl1fhwoXl5+enlJQUxcTE6NSpU9qzZ4927dpl8Ya6adOmqX///qpevfrdn0tMTFT37t0NDRYVK1ZMzZs3V+XKlVW6dGn5+/vLw8NDcXFxOn/+vA4dOqRffvnF4tOPjh8/rnfeeUcffvihRdflJEeOHDFUV7FiRZOT3J+fn5+KFi2qS5cuZVpr9PXkZGfPnlW7du108uRJe0exq7S0NHXv3l0nTpzItNbX11eNGjVS7dq1VbZsWQUEBMjX11cpKSm6efOmTp8+rdDQUO3cudPiE+5SU1PVv39/HTp0SHny5Mnqy8mxEhMT9fjjj2vPnj12XSf+ypGeRX7++WcNHz48Ky9DLi4ud7/vVqpUSQULFpSfn5+Sk5N1+/ZtRUZGKjw8XFu3bs309LLU1FQ98cQTCg8Pz1IWM8yZM0fPP/+80tPT7R3lby5cuKCWLVvq119/VYkSJewdxxTJycl64okn7DK8jZwnPT1dzz33nMqWLatmzZrZO47DYk0Dso/hIgAAAAAAAAAAAAAAgFxk0qRJ+vXXX/+zpnbt2ho4cKB69uypwMBAQ/e9cOGCFi5cqLlz5xrO8sorr+j77783XP9XFStWVMeOHdWiRQtVqVJFRYoUkb+/v1JTU+9u6D18+LA2btyon3/+Wbdv37bo/ikpKXryySe1c+dO1a1bN0sZrSE1NVV9+vTRnTt37ltTqVIlDRs2TE8++aSh9ys6OlqzZ8/WxIkTFRMTYzjHsGHDtGXLlrs/N2TIEO3du/e+1/j4+Oi5555T3759Va9evUx7pKena/369Ro3bpxCQ0MN5ZKkTz/9VEOGDFHJkiUNX5NT3Lx5M9MN6X+y96edly9f3tBw0enTp22Qxn6ioqLUpk0bRUZGZul6V1dXNWzYUM2aNVP9+vVVtmxZlSpVSn5+fvLx8VFqaqru3LmjqKgoXb58WSdOnNDhw4e1d+9ehYaGKikpycqvKOvefPNN7dix476/7urqqu7du6tfv35q3769ocGf+Ph4LVu2TOPHjzc0tPSniIgITZ8+XS+//LLha8xSvHhxNWzYUFWqVFHlypVVsmRJFSlSRAULFpSXl5e8vb2VlJSkW7du6ebNm4qJidHhw4cVGhqq0NBQHTp0yOKN0TExMerevbv27dsnDw8Pk16ZcY7yLHL16lX17dvX4t/PMmXKaPDgwerbt6+CgoIyrU9LS9OWLVv05Zdf6vvvv7/vsHB0dLSGDh0qHx8fi/KY4bvvvtNzzz1n6ES6fypUqJDat2+v+vXrq2bNmipZsqSCgoLk7e0tNzc3xcfH6+rVqzp16pR+/fVXbd68WTt27LCo16VLl9StWzdt375dXl5eFmd0dJMnT87SsFz+/PnVtm1b1a1bV+XLl1eFChVUsGBB+fj4yNfXVx4eHkpKSlJiYqKio6MVFRWls2fP6sSJEwoPD1doaKhOnTpl1dcyb948zZs3756/Nm7cOL3zzjuZ3mPLli1q1aqVVXOZqVChQmrYsKGqVq2qypUrq0yZMgoKClKhQoXk7e0tLy8vpaen333Ou3nzpo4eParQ0FDt3btXBw4csPiDAJKSkvT444/ryJEjCggIyFb+3PiesaYB1uGSkZWvIgAA4BCioqJUuHDhv/3ctWvXVKhQITslAgAAAAAAAIDsSUpKynSjZnBwsDw9PW2UKGc5cuTI306cuJdOE0fl+JOLbl24rHWjJv5nzeHDh1WtWjUbJYKjmTdvnvr372+odu7cuerXr5+5gaykVatW2rp1a6Z1Hh4eSk5OvuevlShRQlOnTtVjjz0mFxeXLOVISkoytA5/++23evrppy2+f8eOHTVq1Ci1bNnS8DVxcXFauHCh3n//fUPDD39VpkwZ7du3L9ub9P4pJCRErVu3zrSuYMGCun79+j1/LX/+/Jo8ebL69esnNzc3izNcuXJFTz/9tDZv3mz4mm3btqlFixZat26dOnfufN+6Z599Vh9++GGW/ttkRkaGJk2apLFjxxre8D106FB99tlnFvdydAcOHDA83Pb+++/r9ddfNznR/Q0YMEBz5swxVHvz5k3ly5fP5ES2l5iYqDZt2mj37t0WX1u2bFkNHz5cTzzxhIoWzdqzWFJSkrZv365Vq1bphx9+0MWLF/9VY43va0a+PxQsWFDR0dH33VjbsWNHffrpp6pQoUKWMqSkpOjdd9/VBx98YHjzbpEiRXT27FlThmvWr1+vjh073vPXChYsqA4dOqhjx45q1aqVihcvnq1eZ8+e1axZszR37lyLv6e99dZbhjaFZ1VOexbp0qWL1q5da/i+Xl5eGjdunF5++eUs/51z//79Gjx48H8OV5UsWVLnz5/P9F6nT59WmTJlspTjv4SGhuqBBx5QYmKi4Wvc3NzUs2dPDRw4UA888IBcXV0t6nnhwgVNmzZNX3zxheLj4w1fN2DAAM2ePduiXo7uxo0bKlu2rOHBeBcXFz3yyCMaMWKEmjVrlqVnwr+Kjo7W5s2btWnTJq1atUrXrl37V01UVJQKFiyYrT5SzhpUOXbsmKpUqXLPX/P391f79u3VsWNHtWnTRsHBwdnqde3aNc2dO1ezZ8+2+BTEvn37av78+dnq/19y0nv2J9Y028vt/37rzPtyLftKAAAAAAAAAAAAAAAAgEO732bebt266fDhw+revXuWN/NKMrRB6Ny5c3rhhRcsum9QUJDWrl2rdevWWTRYJEl+fn4aNGiQIiIiNGzYMIuuPXPmjAYOHGjRNdZ0v8GiBg0a6PDhwxowYECWN5EWKVJEP/30kx555BHD10yfPl0JCQkaMmTIPX/d399fq1at0tdff53lzVUuLi4aNWqU5s2bZ/jP4oIFCxQXF5elfo7MklN+sjuwkF3FihUzXJtbTy8aOnSoxYNFBQsW1Ndff63jx4/r5ZdfzvJgkfTH+tuuXTt99tlnOnfunNavX6/u3btne6N5Vly/fv2eQz+enp6aPXu21q1bl+XBIknKkyeP3nvvPX3zzTeGN/xeuXJFixcvznJPS3h6eqpXr1768ccfdfnyZX3zzTfq3bu3Vb5OS5curffff19nz57VhAkTLNqY++GHH+rcuXPZzpBdjvAssmbNGosGi8qWLas9e/Zo1KhR2doMXbduXe3YsUMjR468b42RwSKzXL9+XV27drVoE36XLl0UHh6uRYsWqVWrVhZvwpf+GCqbNGmSjh07pi5duhi+7uuvv9bGjRst7ufI5s+fb3iwqGLFitq/f79WrlypBx54wCrrfWBgoHr27KmvvvpKly5d0i+//KI+ffpwmso/uLm5qUuXLlqyZImuXbumFStW6Lnnnsv2YJEkFS5cWKNGjdLx48c1e/ZsiwayFyxYkKUh59yKNQ2wLoaLAAAAAAAAAAAAAAAAcrnBgwdr+fLlNjtJZOjQoRZ9gnPDhg118ODB/zwpxwg/Pz9NmzZNS5YssejkihUrVujHH3/MVm9rat++vbZu3WqVTep58uTRokWLVLlyZUP133//vYYMGaIzZ87869cCAgK0bds2i4aV/kufPn30v//9z1Dt7du3tWzZMqv0dSSWDAEEBQWZmCRzRYoUMVzrCMMN1rZ27Vp9/fXXFl3z6KOP6tixY3r22Wfl7u5u1Tyurq7q0KGDli9frhMnTmjw4MGmnNhjCX9/f23evFkDBgyw2j2feuopTZ482XC90dO1sqpw4cJ69913de7cOS1atEidOnWy+nv7J3d3d40ePVoHDx5UvXr1DF2TnJysCRMmmJInu2z5LJKSkvKfwz3/VKlSJW3fvl21atWySn93d3dNnjxZkyZNssr9rGno0KGGT8Ty8fHRggULtHr1alWsWNEq/UuUKKHVq1db9Of0+eeft2hwwNEtXLjQUF3z5s0VGhqq2rVrm5bFzc1NrVu31oIFC3Tp0iWNHz/+X6d1OBt/f3+9+uqrOnXqlFavXq2ePXuaNnjl4uKiAQMG6MiRI2rfvr3h6959911T8uRErGmAdTFcBAAAAAAAAAAAAAAAkIv16tVLn3/+eZY+kTkr1qxZozVr1hiub9q0qTZt2mTR4EJmevbsqZUrV1q00X7IkCFKSkqyWoasatCggVauXClvb2+r3dPX11czZ840VJuSkqJ58+b96+e9vLz0008/WX2D6zvvvKPy5csbqv3++++t2tsR3O/kqnux5tdIVljS35LXlRPcunVLzz//vEXXjB07Vj/88IMCAwNNSvV/ypYtq+nTp+v48eNq0KCB6f3uxcPDQ+vWrVOzZs2sfu+XX35ZrVu3NlS7fft2Xbt2zeoZ8ufPrw8//FCRkZF68803bbr5vnLlygoJCTF8qt+cOXNM+T3IDls/iyxcuFAnTpwwVFuwYEH99NNPppwO99prr2nEiBFWv29WrVy5UkuWLDFUW7hwYe3cuVN9+vQxJcvo0aMNP5ucPXtWX375pSk5bC0qKkoHDx7MtK5gwYJasmSJ8ubNa36o/69AgQIaM2aMzpw5o/z589usr6Pw8vLS6NGjdebMGX300UcqXbq0zXoXL15c69at0xNPPGGofv369fr9999NTuX4WNMA62O4CAAAAAAAAAAAAAAAOK3+/fvLxcXFLj/69etn+uurUqWKZs+eLRcXF9N7/WncuHGGa4ODg7V69Wr5+/tbPUfHjh01Y8YMw/Vnz57V3LlzrZ7DEgUKFNDy5cvl4+Nj9Xs/8MADFn0i+j9NmzZNDRs2tGKiP3h6eurNN980VLtx48Zc9ynfN27cMFxbsGBBE5NkrlChQoZrLXldOcHEiRN15coVw/Vvv/22PvjgA5uuvZJUunRpVatWzaY9/zR9+nQ1b97clHu7uLjok08+MfT7mZ6ebspJdI0bN9aoUaPk6+tr9Xsb4efnp5UrV6pChQqZ1iYnJ2vRokU2SGWMrZ9FMjIy9PHHHxuu//bbb1W2bFnT8nz00UemfW1YIiUlxfCgU4ECBfTLL7+YemKOJA0cONDwM8CHH36ohIQEU/PYwq+//qqMjIxM61577TUVK1bMBon+zdvb27QT2RxZmTJlNGHCBAUEBNilv7u7uxYsWGB4SNfef2+xN9Y0wBwMFwEAAAAAAAAAAAAAAORCLi4umjdvnimDKvezbt067d+/31Ctu7u7li1bZuqpHs8++6yeffZZw/UTJ05UamqqaXkyM2nSJJUqVcq0+w8aNChL17Vt29biU1ss8cQTTxjayJmUlKTQ0FDTcthDdHS04Vpbnl5wL5YMAVryuhzd5cuX9emnnxqu79evn0VDlrlBx44d9dxzz5nao3bt2mrbtq2h2u3bt5uaxV7y58+v+fPnGzr9Z8GCBTZIlDl7PIts3LhR4eHhhmoHDBigBx980NQ8rq6umjNnjjw9PU3tk5nZs2fr9OnTmda5urpq8eLFNhtUHDdunKHhq6tXr2rx4sU2SGSu48ePZ1rj6upq2ukqcGweHh5asGCBoTVz0aJFdv17i72xpgHmYLgIAAAAAAAAAAAAAAAgF+rdu7cpJ838l2nTphmuHT16tOrWrWtimj988sknKl68uKHaM2fOaOXKleYGuo/atWtrwIABpvbo3Lmz/Pz8LLrGxcVFU6dONSfQ/+fp6alu3boZqt21a5epWWzNkhN+zDjhyxKW9M9NJxdNmTLF8CfL16hRw6IT03IDd3d3i9b+7DA6LLpz506Tk9hPkyZN1KNHj0zrDhw4oMuXL9sg0X+zx7PIN998Y6jOx8dHH3zwgclp/lChQgUNHjzYJr3uJSUlxfBrfemll0wfuPorV1dXzZo1S25ubpnWzp492waJzHXx4sVMa4KCglS0aFEbpIEjCg4O1rBhwzKti4qKynVD90axpgHmYbgIAAAAAAAAAAAAAAAgl3FxcdHYsWNt2vPy5cvatGmTodoiRYpozJgxJif6Q758+fTee+8ZrrfXaQ9jx46Vi4uLqT08PDzUpk0bi6559NFHVb16dZMS/Z+HHnrIUN2hQ4dMTmJb8fHxhup8fX0NnVZiJktOToqLizMxie0kJSVp7ty5hmpdXFz01VdfycvLy+RUjqV3794qX768TXp16tRJefLkybTu5MmTSkpKskEi+xgxYoShus2bN5uc5L/Z41kkMTHR8JDwoEGDFBQUZG6gvxgzZozd1oc1a9YYGmopUqSIRc9M1lK5cmX17ds307rdu3frxIkTNkhkHiPfH0uUKGGDJHBkL730kqHnPnuv8/bCmgaYh+EiAAAAAAAAAAAAAACAXKZt27aqUqWKTXsuWrRIaWlphmpHjx4tHx8fkxP9n759+6pSpUqGan/66SdFRUWZnOjvChcubPjknuxq1KiRRfXPP/+8SUn+rnHjxobqIiIiTE5iW0YHIDw9PU1OYt0MycnJJiaxnRUrVuj69euGavv27Wv4z3FuMmjQIJv1ypcvn2rWrJlpXXp6uo4fP26DRPbRsGFDlSlTJtO6kJAQ07P8F3s8i/zyyy+KjY3NtM7FxcXmJwkVKlTI0KlTZvjqq68M1Y0ePVq+vr4mp7m34cOHG6r78ccfTU5ifykpKfaOADsrWrSoHnjggUzr7L3O2wtrGmAehosAAAAAAAAAAAAAAABymSeeeMLmPVevXm2ozs/PT/379zc5zd+5ubkZ3kScmpqqn376yeREf9ejRw+5u7vbpFetWrUM1wYGBqpDhw4mpvk/JUqUUGBgYKZ1J0+etEEa2zE6hGOrPx//xciJMX/KLcNFixcvNlTn6upq8xNaHEGFChUsHljMrgYNGhiqO3XqlMlJ7Kt169aZ1oSFhdkgyf3Z41nE6CkeLVu2VHBwsMlp/s3Wzz+SdOXKFW3cuDHTOj8/Pw0YMMAGie6tdu3aqlatWqZ169evt0Ea8xh51jl79qzS09NtkAaOLCes8/bAmgaYi+EiAAAAAAAAAAAAAACAXMTFxUWPPvqoTXvGx8drz549hmp79uypvHnzmpzo35555hnDJ69s2rTJ5DR/Z6sBHkkqV66c4dq2bdvKzc3NxDR/ZyTbzZs3DZ/2kxMYPZ3AEYaLLMmQG4aLEhMTDQ8qdO7cWRUrVjQ5kePp2LGjzXsa/X2+evWqyUnsq3r16pnWHDlyxG4DCvZ4FpGkLVu2GKrr2rWruUHuo0WLFgoICLBpz3Xr1hn6c9C9e3f5+fnZINH9de7cOdOaHTt25OjBm4IFC2ZaExMT47Qn0uD/GFnno6Kicv33u39iTQPMxXARAAAAAAAAAAAAAABALlKlShUVKlTIpj23bdtmeJjgscceMznNveXLl0/t2rUzVGvr4aIHHnjAZr1KlixpuLZ58+YmJvk3o9muXbtmchLbyUnDRc52ctGWLVuUkJBgqLZPnz4mp3FMLVu2tHnPsmXLGqrL7ZutS5cunWlNQkKCzp8/b4M0/2aPZ5HExETDp3g89NBDJqe5N3d3d7Vv396mPY2exvjII4+YnCRzjRs3zrQmPj5eJ06csEEacxh91nn99dcZOHByRtZ5STp27JjJSRwLaxpgLoaLAAAAAAAAAAAAAAAAcpGmTZvavGdoaKihOi8vL8MDPmYweorC5cuXdfHiRZPT/KF06dLKly+fTXpJkq+vr+ETnGrWrGlymr8LDAw0VHfz5k1zgzigjIwMe0ewaJOzi4uLiUlsY8eOHYbqvLy89PDDD5ucxjHVrl3b5j2NnPohSbdu3TI5iX35+/sbqrt8+bLJSe7NHs8iR48eVVpaWqZ1gYGBqlSpkg0S3VuTJk1s2s/ICWwuLi5q06aNDdL8t1q1ahmqO3DggMlJzGN0oHzPnj0aPHgwA0ZOzNHXeXthTQPMxXARAAAAAAAAAAAAAABwWnPnzlVGRoZdfsybN8+U11S1alVT7vtfjJ4U0KBBA8ODLWZo0aKF4Vqjrym7KlasaJM+f2V0s2KFChVMTvJ3efPmNVSXlJRkchLb8fDwMFSXmppqchLrZjD6uhzZ/v37DdU1a9ZM3t7eJqdxPHny5DF8ipA15c+f31Bdblon7sXo15i9Np3b41nk8OHDhurq169vcpL/1qBBA5v1ioyMVExMTKZ15cuXN/y1ZaYSJUoYGk7Nyad8BAUFqXr16oZqZ86cqc6dO+v06dMmp4IjcvR13h5Y0wDz2f+8XAAAAAAAAAAAAAAAAFiNPT6N/9ChQ4bqbP1p/f9UqVIlFShQwNCmtLCwMHXs2NH0TMWKFTO9xz8Z2azo5uamoKAgG6T5P0Y3UeamoYGcNFyUkpJiuDY3DBcZ/RT5li1bmpzEMRUrVswuJ1QZHVC19zqRnp6uY8eOKSwsTCdOnNDJkyd16dIlXb9+XdevX1d8fLySkpKUnJxs6td3VFSUaff+L/Z4Fjl16pShOnueWiRJlStXtlkvo+uYPYbB7sXDw0P58+fP9DntwoULNkpkju7duxsehlu/fr0qV66sp556SoMGDVLDhg1NTgdLnDp1SgcPHry7zl+4cEHXr19XVFSUYmNjlZycrKSkpFy5ztsDaxpgPoaLAAAAAAAAAAAAAAAAchFbD6tkZGQY/kR1e2/0cnFxUdWqVbVz585Ma41uUs6uwMBAm/T5qzx58mRaky9fPrm5udkgzf8xkktyjEEba8lJrzktLc1wbU4fLrp586auXr1qqLZWrVomp3FMAQEBdunryF8zJ06c0Jo1a/TTTz/p119/VWxsrM0z/NOdO3fs0tceg7NGT++w9al8/xQQEKDAwEBFR0eb3svoKYxlypQxN4gFvL29c/1G/OHDh+uTTz4xvEYkJydr3rx5mjdvnipWrKjHH39cXbp0UcOGDeXq6mpyWvzVhQsXtHbtWv3444/avXu3Tb6OM2Ovdd4eWNMA8/FdBQAAAAAAAAAAAAAAIBex9WkzUVFRhk80sfdpAZJUpUoVQ3WXLl0yOckfvLy8bNLHUo6aS/pjoC23MHoKS0JCgslJMhcfH2+41ujrclTnz583XFu9enUTkzgub29ve0f4T7ZaJ+Lj4zVr1iw1aNBAFStW1MiRI7Vp0yaHGCySpMTERLv0tfWziGR8uKho0aImJ8lckSJFbNLn7Nmzhuo+/fRTubi4OMQPI89fN27cyO5vjV0FBATopZdeytK1x48f1/jx49WkSRMVLFhQjz32mKZOnaq9e/c6xCBybpSSkqLFixerdevWKlmypAYNGqS1a9c6xGCRZL913h5Y0wDzcXIRAAAAAAAAAAAAAABALuLv72/TfpYM4ZQoUcLEJNbNYKvhIqOncNiao+bKbfLly2eoLikpSSkpKXZ9XywZljD6uhyV0eEiFxcXlSpVyuQ0jsnZ14jk5GTNmDFD48eP17Vr1+wd576SkpLs0tfWzyLSH8PORhQuXNjkJJkrVKiQTfrk1tMwcsNJLW+++aZ++eUX7dq1K8v3iImJ0Q8//KAffvhB0h9Dn/Xq1VPjxo3VtGlTNW/e3GZ/1nKj9PR0ffPNNxo3bpzhU1rtwV7rvD2wpgHmY7gIAAAAAAAAAAAAAAAgF7H1iSFGN/NKjrGh12gGS14XkFUBAQGGa2/fvq3AwEAT02Te3yhLXpcjunr1qqG6QoUKyd2dLXjOZu/everXr5+OHDli7yiZSk9Pt0tfe5xeZnRzdv78+c0N4kAZLl68aJM+tpYbNuJ7eHjo+++/V/369a02MHHnzh3t2LFDO3bsuPtzlSpVUvv27dWhQwe1bdvW4U+dcxQnTpxQ//79tXPnTntHyZS91nl7YE0DzOdq7wAAAAAAAAAAAAAAAACwHlufJmF0M5Svr688PDxMTpM5o8MZbPKCLVgyLGTJcI8ZLOlvzyEoa4iPjzdUl9NfJyw3Y8YMNWnSJEcMFtmTPU62Mnp6hyM8i9hq+OrmzZs26WNrycnJ9o5gFUFBQQoJCVHFihVN6xEREaHPP/9cXbp0UaFChdSzZ0+tWrVKqamppvXM6VauXKk6derkiMEiZ8OaBpiP4SIAAAAAAAAAAAAAAABkWWJioqE6Ly8vk5MYYzSH0dcFZIclJ/xcu3bNxCSZM3qaj5TzTy7KaesabGPs2LEaPHgwm/IdlNHN2Y4wXGSrDLl1UDojI8PeEaymXLlyCg0NVd++fU3vFR8fr2XLlqlr164qWbKk3nnnHd24ccP0vjnJl19+qe7duxseMoZtsaYB5mO4CAAAAAAAAAAAAAAAAFmWk04KkIyfFsBwEWyhcOHChmuvXLliYhLr9rfkdTkihovwT5MnT9aECRPsHQP/wc3NzVCdIwyH2SoDzzI5Q968eTV//nxt2bJF9evXt0nPK1euaNy4cSpdurTeeecdhmkkLV26VEOGDFF6erq9o+A+WNMA87nbOwAAAAAAAAAAAAAAAAByLldXY59t6ygb9YzmMPq6gOwoU6aM4dqcNFxkyetyRDltXYO5QkJC9L///S/L1/v5+almzZqqXr26ypYtq1KlSqlw4cIqXLiw8ubNKz8/P/n4+Mjd3V1ubm6GhmRCQkLUunXrLGfKjYwO+xk94chMRgezsyslJcUmfWAdrVq1UmhoqH7++Wd99tln+umnn0z/PhMXF6dx48Zp/vz5mjNnjlq1amVqP0d17Ngx9evXL8u/315eXqpevbpq1KihsmXLqkyZMipcuLCCgoLurvO+vr5yd3e/u9Zn5syZMypbtmyW8uRWrGmA+RguAgAAAAAAAAAAAAAAQJYZ3cxrq420mTGagxNJYAuWbBo9f/68iUms19/FxUWlS5c2OY25vL29DdXxCfq5X3x8vJ555hllZGRYdF3NmjXVq1cvtW/fXnXq1GFg1QaMnkzoCCe0JCQk2KSPl5eXzXrBejp06KAOHTro4sWLWrp0qb7//nvt2bPH1BOvTp8+rXbt2mnSpEkaMWKEaX0cUXp6uvr27as7d+5YdF25cuXUq1cvdejQQY0bN5a7O1vyzcaaBpiPlQwAAAAAAAAAAAAAAABZZnQIx9INe2YxuiGN4SLYQpkyZeTi4mJocOHEiRM2SJT9/kWLFs3xXz9Gh4vY4Jr7TZ06VefOnTNc36JFC02YMEHNmjUzMZWUlpZm6v1zovz58xuqu3btmrlBHCiDt7e3oXXq9ddf1/vvv2+DRLBE8eLF9corr+iVV17RrVu3tGXLFu3YsUO7du3Svn37rH4KV1pamkaOHKn4+Hi9+eabVr23I/vuu+8UGhpquL5GjRoaP368Hn74YRNTsc7fC2saYD6GiwAAAAAAAAAAAAAAAJBlvr6+huqSkpIUGxsrf39/kxP9t6ioKEN1fn5+JicB/hhiK1asmC5evJhp7cmTJ22Q6P5OnTplqC44ONjkJOYzuk5dvXrV5CSwp4SEBE2ePNlQrYuLiz744AONHj1aLi4uJidznIFdR1K0aFFDdc40XOTr66vo6OhM6ziFzfHly5dPXbt2VdeuXSX98Z79+uuv2rlzp3bs2KE9e/YoJibGKr3eeustVaxYUU888YRV7ufo3nvvPcO1Q4cO1ccffywPDw8TE/2Bdf7fWNMA83HWJgAAAAAAAAAAAAAAALKsSJEihmtz0oZeS14XkB01a9Y0VBcREaH09HST09zb1atXdfPmTUO1tWrVMjeMDZQoUcJQ3e3btxUfH29yGtjLihUrDP+5nzJlisaMGWOTwSJJiouLs0mfnMTocJHRQUmzJCYm6tKlSzbpFRQUZKiOP085j5eXl1q2bKmxY8dq3bp1io6OVlhYmD799FM9/PDDhof/72fgwIFOMUC7fft2RUREGKp9+eWX9dlnn9lksEji6/JeWNMA8zFcBAAAAAAAAAAAAAAAgCwrVqyY4dozZ86YF8SgyMhIQ3WWvC4gO+rWrWuoLj4+XsePHzc5zb3t27fPcG2dOnVMTGIbRoeLJPsPKsA83333naG6Rx99VC+99JLJaf7OVsMpOUmpUqUM1dlrHf3TyZMnbTYoavT3hD9POZ+Li4tq1Kih4cOHa82aNYqOjtaaNWvUp08f+fj4WHy/27dv66233jIhqWMxus7XrVvX8El21sLX5b+xpgHmY7gIAAAAAAAAAAAAAAAAWZY3b175+/sbqjX6yeBmOnbsmKG64sWLm5wE+IMlwzj79+83Mcn9WTJcZHRYypGVKFFCrq7GttYdOnTI5DSwh9TUVG3fvj3TOhcXF02aNMkGif7u/PnzNu/p6KpVq2ao7uDBg+YGycSBAwds1qt06dKG6s6dO2dyEtiap6enHn74YS1YsECXL1/WlClTLD6Vc/78+Q5x6qiZtmzZYqjuww8/lJubm8lp/o51/t9Y0wDzMVwEAAAAAAAAAAAAAACAbKlcubKhurCwMJOT/Lfk5GTDw0VVqlQxOQ3wh/r16xuu3bNnj4lJst/Xy8vL8AZ/R+bp6alKlSoZqrVk8Ao5R1hYmOLi4jKta9mypSpWrGiDRH9n7++njqh69eqG6k6ePKmoqCiT09zf7t27bdbL6LNMRESEUlNTTU4De8mbN69efvllnTx5Us8++6zh65KSkrR8+XITk9lXdHS0ob8XlC1bVu3bt7dBor9jnf831jTAfAwXAQAAAAAAAAAAAAAAIFtq1KhhqG7nzp0mJ/lv+/fvV2JioqHamjVrmpwG+EPp0qUVHBxsqHbTpk0mp/m3lJQUbd261VBt8+bN5eHhYXIi2zB6AtMvv/xichLYg9FB1IceesjkJP+WkZFh99N3HFHBggVVsmRJQ7X2/Lq1Ze8GDRoYqktMTFR4eLjJaWBvvr6++vrrrzV06FDD16xbt87ERPZl9ETVDh06mJzk3mx5yllOwZoGmI/hIgAAAAAAAAAAAAAAAGRLrVq1DNUdOXLErqcFhISEGKpzcXExPDAFWEO7du0M1R09elSXLl0yOc3f7dmzR/Hx8YZq7fHJ/mYxeqJUWFiYrly5YnIa2FpkZKShOnsMoh48eFA3btywed+coFWrVobqVq1aZW6Q+zh27JjhgQZrqF69unx8fAzVMijpPKZMmWL4lMHsnpjo6uq429QdeZ2Pjo7W77//bvO+kmO/Z6xpgPkcdwUAAAAAAAAAAAAAAABAjtCsWTNDdRkZGVqzZo3Jae7vhx9+MFRXs2ZN+fv7m5wG+D+WDOWsXLnSvCD3YPTrRspdw0VGB74yMjK0ePFik9PA1owO75QoUcLkJP+Wm08Sya7WrVsbqluzZo1iY2NNTvNvixYtsmk/Nzc3tWjRwlDt6tWrTU4DR+Hu7q4333zTUG10dHS2hhnz5MljqC41NTXLPbLKkdf59evXKz093eZ9Jcd+z1jTAPMxXAQAAAAAAAAAAAAAAIBsqVOnjgIDAw3VLlu2zOQ093b69GmFhoYaqs1NAxLIGdq3by9PT09DtbYcZElPT9fSpUsN1RYvXly1a9c2N5ANVa9eXaVLlzZUO3/+fJPTwNaMntZl9AQFa1q4cKHNe+YUDz30kKFTN+Li4mz++5iamqrZs2fbtKckPfroo4bqtm7dqnPnzpmcBo6iY8eOhodILl68mOU+Hh4ehuru3LmT5R5Z5cjr/IIFC2ze80+O/J5JrGmA2RguAgAAAAAAAAAAAAAAQLa4urqqbdu2hmo3bNigyMhIkxP925dffqmMjAxDtQwXwdby5cunTp06GardsWOHzb6GNm/ebHhTca9eveTi4mJyItvq0qWLobqDBw9qw4YNJqeBLaWlpRmqu3XrlslJ/m7Lli2KiIiwac+cpGjRomrZsqWh2smTJyslJcXkRP9n7ty5unz5ss36/enRRx81tDanp6drxowZNkgER5A3b16VKlXKUG1cXFyW+xg9CTQmJibLPbLKUdf5U6dOadOmTTbt+VeO/J5JrGmA2RguAgAAAAAAAAAAAAAAQLb16NHDUF16erqmTp1qbph/uHXrluHTAgoWLKjWrVubnAj4t6efftpQXUZGhj799FOT0/xhypQphmt79+5tYhL76Nevn+HacePGGR5ghOPz9vY2VHf16lWTk/zdu+++a9N+OVGvXr0M1Z0+fVpffvmlyWn+EB8fb7f3rlixYoaHpqdPn27zP9Own0KFChmqy873NqM9Ll26lOUeWeWo6/z777+v9PR0m/b8K0d+zyTWNMBsDBcBAAAAAAAAAAAAAAAg27p06aL8+fMbqp05c6bOnj1rbqC/+Oijj3Tjxg1Dtb169VKePHlMTgT8W+fOnRUQEGCods6cObp+/bqpeQ4dOqT169cbqq1Ro4Zq165tah57qFevnurWrWuodvfu3Zo7d67JiWArRr+fhYWFmRvkL1avXq2QkBCb9cupevXqpQIFChiqff3113Xu3DmTE0mjR4/WhQsXTO9zP8OGDTNUFxsbq7Fjx5qcBo7i5s2bhuqMnmRzL0FBQYbqTp48meUeWeWI6/yBAwe0cOFCm/W7F0d+z/7EmgaYh+EiAAAAAAAAAAAAAAAAZJunp6fh0wKSk5M1fPhwkxP9ISIiQh9//LHhektOKgGsydPTU4MHDzZUGxcXp7feesvUPCNHjjR8WsGIESNMzWJPRjewStKrr76q06dPm5gGtlKmTBlDdWvXrjU3yP9369YtDR061Ca9cjo/Pz+9+OKLhmpjY2PVq1cvJSUlmZZn1apVmj59umn3N6JTp06qUKGCodo5c+Zo1apVJieCvaWnp+v8+fOGao0Om9xLuXLlDNXt27cvyz2yyug6/+OPP5ob5P9LSUnR888/r7S0NJv0ux9Hfs/+xJoGmIfhIgAAAAAAAAAAAAAAAFjFyJEj5ebmZqh29erVmj9/vql5UlJS1K9fPyUmJhqqb9++veFTSgAzDBs2TF5eXoZqv/rqK9M2di5fvlwbN240VFu8eHH17t3blByOoE+fPqpUqZKh2piYGHXv3l0JCQkmp4LZKleubKhu9+7dioiIMDVLRkaG+vTpY3gQANJLL70kPz8/Q7W7du3Ss88+q/T0dKvn+O2339S7d2/Dg5pmcXV11QcffGC4/plnnrHpaS2wvQ0bNig+Pj7TuoCAABUuXDjLfYKCgpQvX75M68LCwnTlypUs98kKo+v8+fPntWnTJpPTSK+88opdB3b+5Mjv2Z9Y0wDzMFwEAAAAAAAAAAAAAAAAqyhXrpyefPJJw/WDBg3S3r17TcszZMgQ7dmzx3D9G2+8YVoWwIjChQtrwIABhmrT0tL05JNPKjY21qoZzp07p4EDBxquHzFihPLkyWPVDI7Ezc1N7733nuH6AwcOqEuXLoaHGuGY6tata+jPdVpaml599VVTs7zyyitas2aNqT1ym6CgII0ZM8Zw/aJFi9SrVy+rft3+8ssvateunaEBDlvo0aOHmjVrZqj21q1b6tChgw4fPmxyKuM2bNigGTNm2DtGtsTGxmrgwIGKjIy0dxR99tlnhuoaN26c7V7169fPtCY9PV1fffVVtntZonjx4ipRooSh2ldffdWUAcQ/TZkyxe4nnP2Vo75nf8WaBpiD4SIAAAAAAAAAAAAAAABYzTvvvGP45JU7d+6oc+fOpnyS9JgxYzRr1izD9R07dtQDDzxg9RyApd5++23lz5/fUO3JkyfVs2dPJScnW6V3TEyMHnnkEcXExBiqL1++vIYMGWKV3o6sR48eateuneH6X375Re3bt9e1a9dMTPV3qampmj17tn7++Web9czNvL29DW9aXrt2rb788kurZ0hPT9fLL7+sTz/91Or3dgYjRoxQcHCw4fqlS5eqUaNG2d58npycrHfeeUcPPvjgfYc/PT09s9Ujq6ZPny4PDw9DtVeuXFHz5s21fv16k1PdX1pamn744Qc1adJEHTp0cIhTXbIjLS1Ns2bNUqVKldS3b1+7vZ4vvvhC69atM1TbqVOnbPdr3ry5obqJEyea+qED92L0e/vvv/+usWPHmpLh448/1ogRI0y5d1Y58nv2V6xpgPUxXAQAAAAAAAAAAAAAAACrKVeunEWnBVy7dk2tW7e22ob4xMREPf/88/rwww8NX+Pt7e1QnxYO51aoUCG9++67huvXr1+vxx9/PNunY1y5ckUPPvigfv/9d8PXTJ061W6b5G3t66+/lr+/v+H6HTt2qF69eqYP+8THx2v69OmqVKmSnn/+eV2+fNnUfs6kR48ehmuHDBmib7/91mq9o6Ki1KVLFwaLssHLy0sLFy6Um5ub4WvCwsJUu3ZtDRw4UMeOHbOoX2JioubPn6+qVatq3LhxSktLu2ddtWrV9Nhjj1l0b2upVauWxo8fb7j+1q1b6tSpk4YNG6bbt2+bmOzvLl26pIkTJ6pcuXJ67LHHLDqFMidITU3VwoULVb9+fTVt2lQLFy602QlXM2fO1Msvv2yo1svLy6ITSe/n4YcfNlSXkJCgVq1aafz48bpx40a2+xphyTo/ceJEi/5+kZm4uDg9++yzpp9+lxWO/J79FWsaYH3u9g4AAAAAAAAAAAAAAACA3GX06NFaunSpjhw5Yqj+xo0b6tixo4YPH65x48YZPrXln3bu3KnBgwdbfBLSe++9p7Jly2apJ2CGwYMHa8GCBYY/DX7NmjVq2LChvv32W9WuXdvifps2bVLfvn0tGkzp1q2bOnfubHGvnKpUqVL64osv1KdPH8PXXLhwQQ899JB69OihN998UzVq1LBanr1792revHlatGiR4ZOmYJmnnnpKo0aNUlxcXKa16enpevrpp7Vt2zZ98skn8vX1zVLP1NRULViwQKNGjdL169fvWxccHKzIyMgs9XAmTZs21VtvvaW3337b8DV/ni4za9asu6dLNGzYUBUrVlShQoXk6+ur5ORkxcbGKjIyUkeOHNGWLVu0bt26TL8WXV1dNXv2bFNOujJqxIgR+uWXXwyfXJORkaHPP/9cixcv1pgxYzRgwADly5fP6rmuXLmidevWafHixdq8ebPS09Ot3sMR7d69W7t379agQYPUrVs3Pf7442rfvr18fHys2icyMlJvvPGGvvvuO8PX9OnTR4GBgdnuXb9+fcNrVnx8vF5//XW9/fbbatSokerVq6fg4GAVKlRIPj4+cnc3tu29du3aKlGiRKZ1HTp0UJkyZXTmzBlD9x0zZox+/fVXzZo1SwULFjR0zT9lZGRo5cqVGjFixH/2tec678jv2T+xpgHWxXARAAAAAAAAAAAAAAAArMrDw0MrVqxQw4YNDX8qdEZGhj799FMtXLhQL7zwgp577jkFBwdnel1aWpo2b96szz77TGvXrrU4a9euXTVixAiLrwPM5ObmpsWLF6tu3bqGv4bCw8NVr1499evXT8OGDct0yCgjI0Pbtm3Txx9/rDVr1liUr1SpUvr6668tuiY3ePrpp3X48GFNnDjRouuWLVum5cuXq127durVq5ceeeQRizds37x5Uzt37tSmTZu0atUqnT592qLrYbn8+fPrxRdf1OTJkw1f89VXX2n16tV68cUX9cILL6hIkSKGrrtw4YIWLVqkmTNnZrqZu1ixYvroo4/UvXt3w7mc2RtvvKGwsDCtWLHC4mv/HPywlrfeekuNGzc2PFzk4uJitd5/veeSJUvUqlUr7du3z/B1169f18iRI/Xmm2+qR48eevTRR9W+fXv5+fllKcfVq1e1Z88e7dq1S1u2bNHevXuVkZGRpXvlBvHx8frmm2/0zTffyMvLS61atVLLli3VrFkz1a9fX97e3lm658aNG7VixQotXrxYqamphq/19/e36BTFzAwfPtzwiUnSH4OWO3fu1M6dO7PUb+7cuerXr1+mdW5ubnr11Vc1dOhQw/deuXKlQkJC9Oyzz2rw4MEqV66coeuuX7+upUuXaubMmZl+EIKfn5+++uortWvXznAua3PU9+yfWNMA62K4CAAAAAAAAAAAAAAAAFZXqVIlzZ8/X927d7fok5pv3LihCRMmaMKECapcubKaNm2qypUrq2jRovLz81NaWppu376tyMhIHT58WCEhIbp582aWMlauXFnz5883ZfMukF3lypXT7Nmz1bNnT8PXpKena86cOZozZ46qVKmiZs2aqWbNmgoMDJSvr69u376ta9eu6cCBA9q2bZvOnz9vca48efJoyZIlKlCggMXX5gYTJkxQZGSkli1bZtF1GRkZ2rhxozZu3CgXFxdVrlz57qf7lyxZUn5+fvLx8VFqaqru3Lmj69ev6+LFizp58qSOHDmikydP8qn3dvDGG29owYIFunbtmuFrrly5onHjxumdd95R1apV1bRpU1WqVEkFChRQgQIFlJGRobi4OF24cEEnTpzQ7t27FRERYejeLi4umjt3rjw8PLL6kpyOq6urvvnmG125ciXLm96t4cknn7ToBCXpj/XWDH5+flq3bp2aN2+uEydOWHRtQkKC5s+fr/nz58vNzU2VK1dW7dq1Vbp0aZUoUUL58uWTt7e33NzclJiYqMTERMXExOjq1au6fPmyTp48qaNHjyo6OtqU15YbJCYmav369Vq/fr2kP/4Mly1bVtWqVVPp0qVVrFgxBQUFydvbW97e3kpPT1dcXJzi4+MVFRWliIgIHTt2TIcPH1ZSUlKWMkydOtXwcKQRzz//vD755BOdO3fOave0lhdeeEEzZswwfOKq9MfA7yeffKJPPvlE5cqVU9OmTVW9enUFBASoQIECcnV1VXx8vC5duqSTJ0/qt99+U1hYmOFhkylTphgeWjKLI79n/8SaBlgPw0UAAAAAAAAAAAAAAAAwRdeuXTVz5kwNHDgwS5/cfOzYMR07dsyEZFJwcLA2bdqkvHnzmnJ/wBp69OihDz/8UKNHj7b42qNHj+ro0aNWzePq6qoFCxaocePGVr1vTuLi4qJFixbdPV0qKzIyMkx5f2B9+fLl08yZM9WtWzeLr83IyNCRI0cs2rCemY8++kgPPvigQkJCrHZPZ+Dl5aWffvpJ3bp10+bNm23e/8EHH9TcuXMtvs7T09OENH8oXLiwduzYoU6dOll02sdfpaWlWf3POP4tPT1dp06d0qlTp2zSb+DAgXr22Wetek8fHx99+eWX6ty5s8Od5uLu7q65c+eqefPmSk5Otvh6a783Q4cO1XPPPaczZ85Y7Z5Z4cjv2b2wpgHWwXARAAAAAAAAAAAAADiR2CvX7R0h23LDawCcyXPPPafU1FQNGTLEYU7dKFeunDZv3qzixYvbOwqQqVGjRik+Pl7vvfeeXXO4uLho9uzZevLJJ+2awxG4u7vr22+/Vf78+fXll1/aOw5M1rVrV/3vf//TpEmT7Jpj5MiRGjlypF0z5GT+/v5at26dnn32WX377bc269unTx99/fXXfzuFKDEx0dC1Zg4XSX9sxg8JCdETTzyhdevWmdoLOcNTTz2lGTNmmHLvjh07atKkSXrttddMuX92NGjQQFOnTtXgwYPtmqNHjx769NNP7Zrhrxz5PbsX1jQg+xguAgAAAAAAAAAAAAAnsn3K1/aOAMAJvfjiiypdurR69eqlW7du2TVL27ZttXTpUgUEBNg1B2CJd999VwUKFNBrr72mtLQ0m/f38fHRnDlz9MQTT9i8t6NydXXVjBkz1KhRIw0ePFh37tyxdySY6MMPP9T169c1Z84cu/QfPXq0xo8fb5feuYmHh4e++eYbtWnTRsOHD1d8fLxpvby9vTV+/Hi99NJLcnFx+duvGR0u8vb2NiPa3/j5+Wnt2rWaMmWKxowZk6WTW5A7/O9//9OECRPk6upqWo9XX31VBQoU0NChQw1/HdjKoEGDFBUVpbffftsu/fv27atZs2aZ+vufFY78nt0LaxqQPY61AgEAAAAAAAAAAAAAACBX6tixo3777Tc1btzYLv3z5MmjN954Q+vXr2ewCDnSK6+8ovXr1yswMNCmfcuUKaNdu3YxWHQf/fr1U2hoqJo1a2bvKDDRnyd3/e9//7NpXw8PD82fP18TJkz414AKsu7ZZ5/V0aNH1adPH1N+Xx988EGFhYXp5Zdfvuf9Y2JiMr1HQECA3NzcrJ7tXlxcXDRixAiFhoaqRYsWNulpqXLlyqlDhw72jpErBQUF6fvvv9fEiRNtMtgyYMAAHT58WN26dXO4de2tt97StGnTbPa1J/3x9Td+/HjNnz9fHh4eNutrCUd+z+6FNQ3IOoaLAAAAAAAAAAAAAAAAYBMVK1bUzp079dlnnyl//vw269usWTPt27dP7733ntzd3W3WF7C2du3a6ejRo3rmmWdM39zp7u6uV199VYcPH1atWrVM7ZXTVatWTdu3b9fcuXNVvHhxu2QICgrSmDFj1LFjR7v0dwYuLi6aOHGili9froIFC5rer2XLljp48KD69u1rei9nVLJkSS1YsEC///67Bg4cKD8/v2zdz8PDQz169FBoaKh+/vlnlS9f/r61ly9fzvR+QUFB2cqTFTVr1tS2bdu0fPlyVapUyeb9/8nf3199+vTRpk2bdOLECfXo0cPekbLF399fX375pR5++GH5+PjYO448PDw0dOhQhYeHq1u3bjbtXa5cOX3//feKiIjQmDFjVLlyZZv2/y/Dhg3T5s2bVaZMGdN71axZUzt37tSYMWNM75Vdjvye3Q9rGmA5hosAAAAAAAAAAAAAAABgM66urho6dKjOnj2r8ePHq3Dhwqb1atmypTZs2KAdO3aoRo0apvUBbKlQoUKaN2+eduzYoU6dOll9yMjd3V1PPvmkDh48qI8++ki+vr5WvX9u5eLion79+ikyMlJz5861yZrj5uamdu3aaenSpTp//rzGjx9vl4EEZ9O9e3eFh4dr6NChypMnj9XvX7NmTX3zzTcKCQlRlSpVrH5//F2NGjU0c+ZMXb58Wd9//71efPFF1ahRQ56env95nbe3t+rUqaP+/ftr2bJlun79upYuXar69ev/53UZGRm6ePFiprmKFCli0euwpu7du+vo0aNat26dOnbsaJPTbP5UuHBhPfPMM1qxYoWuXbumBQsWqG3btjnitJTMuLm56YUXXtCaNWsUHR2ttWvXatCgQTYZYvmrgIAAjRgxQsePH9dnn31m1xM9K1SooPHjx+vo0aO6dOmSli9frrfffltPPfWUmjVrpooVKyowMFA+Pj42/YCAli1b6tChQ3rzzTdNeQ4KDg7WZ599pn379qlJkyZWv7+ZHPU9+y+saYBxLhkZGRn2DgEAALImKirqX/+x5dq1aypUqJCdEgEAAAAAAABA9iQlJSkyMvI/a4KDgzPd6OWsoqOjbfIp6jlBdHS0XTdJATAuJSVF69ev16JFi/TTTz/p1q1b2bpf5cqV1aNHD/Xu3dshPqEaMNvx48c1c+ZMrV69WidPnszyfWrWrKmuXbtq4MCBdjt9J7c5ePCgli5dqpUrV+ro0aNWuWeJEiXUoUMHPfTQQ2rXrp1NT4HDv126dEmzZs3St99+qxMnTmT5PkFBQerQoYP69++vVq1aZVp/4cIFLV++PNO6xo0bq3HjxlnO5czS09N19uxZXb9+XXFxcUpKSpKvr6/8/f1VoEABlSxZMksb1E+dOvWfpxr96dlnn9XXX3+dlehWd/XqVa1atUqrVq3Stm3bFBcXZ7V7FytWTI0aNVKLFi3UsmVL1alTxyk33V+8eFG7d++++2P//v1KSkqy2v2LFSum9u3bq2vXrnrooYfk5eVltXvndjdu3NC8efPunnSWVQUKFFDbtm3Vt29fde7cOdP14/bt25ozZ06m961ataoefPDBLOdyRqxp2Zfb//3WmfflMlwEAEAO5swPMQAAAAAAAAByp9z+H6dtoVq1agoPD7d3DLuqVq2aDh8+bO8YALIgPT1dhw4d0s6dO3XkyBGdPn1ap0+fVkxMjBISEpSQkCA3Nzf5+vrK19dXRYoUUXBwsMqVK6d69eqpRYsWpp6EBDi6EydOaOvWrTpy5IjCw8N15swZ3b59W7GxsUpMTJSPj4/8/f2VL18+lStXTlWqVFH16tXVpk0blShRwt7xc7Xo6Gjt3r1b+/btU2RkpE6fPq0LFy4oNjZWCQkJSkxMlJeXl/z8/OTv7393gKFixYqqUqWKKleurCpVqqhUqVL2fim4j4iICG3dulX79u1TRESEzp8/r+joaN25c0dpaWny8fGRn5+f8ubNqzJlyqhSpUqqVKmSmjZtqlq1auXKzcf4txUrVujxxx/PtG7y5MkaOXKkDRJZJj09XeHh4QoNDVV4eLjOnj2rc+fO6cqVK4qPj7+7nrm6usrDw0Pe3t4qUKCAChUqpCJFiqhMmTIqW7asKleurNq1a7PH6T5SUlJ08uRJnTp16u7/njp1SteuXVNcXJxiY2MVFxen+Ph4ubi4yNPTU97e3goMDFThwoVVsmTJu98/GjZsaPPTkXKrc+fOacuWLdq7d6+OHj2q8+fP69q1a7pz545SUlLurvP+/v4qWbLk3XW+YcOGatiwodzc3Oz9EvAPrGlZk9v//daZ9+UyXAQAQA7mzA8xAAAAAAAAAHKn3P4fp20hJCRErVu3tncMu9qyZYuhT3wHAAAAAFsaMmSIvvjii0zr1q1bp44dO9ogEQAAlsnt/37rzPtyLT+TEQAAAAAAAAAAAADgsFq1aqUtW7aoWrVq9o5ic9WqVWOwCAAAAIDDWr9+vaG6OnXqmJwEAADg79ztHQAAAAAAAAAAAAAAYF2tWrXS4cOHdePGDV2+fNnecWyiaNGiCggIsHcMAAAAALinnTt3ZnrSgyRVqlRJRYoUsUEiAACA/8NwEQAAAAAAAAAAAADkUgEBAQzcAAAAAIADmDFjhqG6li1bmpwEAADg31ztHQAAAAAAAAAAAAAAAAAAAADIrU6cOKHFixcbqu3YsaPJaQAAAP6N4SIAAAAAAAAAAAAAAAAAAADAJEOHDlVaWlqmdfnz52e4CAAA2AXDRQAAAAAAAAAAAAAAAAAAAIAJZsyYoQ0bNhiqfeyxx+Tp6WlyIgAAgH9juAgAAAAAAAAAAAAAAAAAAACwsk2bNumll14yXD906FAT0wAAANwfw0UAAAAAAAAAAAAAAAAAAADIlT788EMdOnTI5n3XrFmjLl26KCUlxVD9gw8+qDp16picCgAA4N4YLgIAAAAAAAAAAAAAAAAAAECutHbtWtWqVUuPPfaYtm/fbnq/5ORkjR49Wl27dlViYqKha1xcXPT222+bnAwAAOD+GC4CAAAAAAAAAAAAAAAAAABArpWRkaEffvhBDzzwgOrUqaNp06YpKirKqj3S0tK0ePFiVa1aVRMnTlR6errha/v376+mTZtaNQ8AAIAlGC4CAAAAAAAAAAAAAAAAAACAUzh48KBeeuklFStWTK1atdJHH32k0NBQpaSkWHyv9PR0/frrr3rjjTdUpkwZ9erVS6dOnbLoHkFBQZo4caLFvQEAAKzJ3d4BAAAAAAAAAAAAAAAAAAAAAFtKTU3V1q1btXXrVkmSt7e3qlatqipVqqhMmTIqUqSIAgIC5OXlJTc3NyUmJiohIUGXL1/WhQsXdPjwYR08eFC3b9/OcgZ3d3ctW7ZMBQsWtNbLAgAAyBKGiwAAAAAAAAAAAAAAAAAAAODU7ty5o3379mnfvn026/nZZ5+pRYsWNusHAABwP672DgAAAAAAAAAAAAAAAAAAAAA4CxcXF02fPl0vvviivaMAAABI4uQiAAAAAAAAAAAAAAAAAAAAwCZ8fX01c+ZM9e7d295RAAAA7mK4CAAAAAAAAAAAAAAAAAAAADBZjRo1tGTJElWpUsXeUQAAAP7G1d4BAAAAAAAAAAAAAAAAAAAAADMEBgbaO4ICAgI0bdo07d+/n8EiAADgkBguAgAAAAAAAAAAAAAAAAAAQK60atUq7d27V6NHj1aFChVs2js4OFgff/yxIiMjNWzYMLm7u9u0PwAAgFE8pQAAAAAAAAAAAAAAAAAAACDXqlevnurVq6cJEybo8OHD2rZtm3bt2qVdu3bp9OnTVu1Vrlw5denSRY8++qgeeOABubpyDgAAAHB8DBcBAAAAAAAAAAAAAAAAAADAKVSvXl3Vq1fX4MGDJUlXr15VWFiYTp8+rTNnzujs2bM6e/asbty4oYSEhLs/7ty5Izc3N3l7e8vLy0sFChRQiRIlVLJkSQUHB6tu3bqqV6+eihQpYudXCAAAYDmGiwAAAAAAAAAAAAAAAAAAAOCUgoKC1L59e3vHAAAAsCvOWgQAAAAAAAAAAAAAAAAAAAAAAACcFMNFAAAAAAAAAAAAAAAAAAAAAAAAgJNiuAgAAAAAAAAAAAAAAAAAAAAAAABwUgwXAQAAAAAAAAAAAAAAAAAAAAAAAE6K4SIAAAAAAAAAAAAAAAAAAAAAAADASTFcBAAAAAAAAAAAAAAAAAAAAAAAADgphosAAAAAAAAAAAAAAAAAAAAAAAAAJ8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCkGC4CAAAAAAAAAAAAAAAAAAAAAAAAnBTDRQAAAAAAAAAAAAAAAAAAAAAAAICTYrgIAAAAAAAAAAAAAAAAAAAAAAAAcFLu9g4AAACQW9y4cUOXL1+2dwybKFq0qAICAuwdAwAAAAAAAAAAAAAAAAAAANnEcBEAAEA2bdmyRUOHDlV4eLi9o9hU1apVNX36dLVq1creUQAAAAAAAAAAAAAAAAAAAJBFrvYOAAAAkJNt2bJFbdq0cbrBIkkKDw9X69atFRISYu8oAAAAAAAAAAAAAAAAAAAAyCKGiwAAALJh6NCh9o5gd/weAAAAAAAAAAAAAAAAAAAA5FwMFwEAAGRRdHS0U55Y9E9HjhzRjRs37B0DAAAAAAAAAAAAAAAAAAAAWcBwEQAAQBZduXLF3hEcxuXLl+0dAQAAAAAAAAAAAAAAAAAAAFnAcBEAAAAAAAAAAAAAAAAAAAAAAADgpBguAgAAAAAAAAAAAAAAAAAAAAAAAJwUw0UAAAAAAAAAAAAAAAAAAAAAAACAk3K3dwAAAIDcrMUrA+RfpKC9Y2RL7JXr2j7la3vHAAAAAAAAAAAAAAAAAAAAgAkYLgIAADCRf5GCyleiqL1jAAAAAAAAAAAAAAAAAAAAAPfkau8AAAAAAAAAAAAAAAAAAAAAAAAAAOyD4SIAAAAAAAAAAAAAAAAAAAAAAADASTFcBAAAAAAAAAAAAAAAAAAAAAAAADgphosAAAAAAAAAAAAAAAAAAAAAAAAAJ8VwEQAAAAAAAAAAAAAAAAAAAAAAAOCkGC4CAAAAAAAAAAAAAAAAAAAAAAAAnBTDRQAAAAAAAAAAAAAAAAAAAAAAAICTYrgIAAAAAAAAAAAAAAAAAAAAAAAAcFIMFwEAAAAAAAAAAAAAAAAAAAAAAABOiuEiAAAAAAAAAAAAAAAAAAAAAAAAwEkxXAQAAAAAAAAAAAAAAAAAAAAAAAA4KYaLAAAAAAAAAAAAAAAAAAAAAAAAACfFcBEAAAAAAAAAAAAAAAAAAAAAAADgpBguAgAAAAAAAAAAAAAAAAAAAAAAAJwUw0UAAAAAAAAAAAAAAKvJyMhQRkaGvWMAAAAAAAAAAAxiuAgAAAAAAAAAAAAAYDW7zx7XnnMn7B0DAAAAAAAAAGCQu70DAAAAAAAAAAAAAAByhzspyfrmwHa5SKpdrIy883jYOxIAAAAAAAAAIBOcXAQAAAAAAAAAAAAAsIoVh/bo5p14xdyJ1/eHfrV3HAAAAAAAAACAAQwXAQAAAAAAAAAAAACy7fzN61ofcfDu//8p4oDO37xuv0AAAAAAAAAAAEMYLgIAAAAAAAAAAAAAZEtGRobm7g1RekbG3Z9L//8/l/GXnwMAAAAAAAAAOB6GiwAAAAAAAAAAAAAA2bLjzDEdu3bxXz9/7NpF7TwTYYdEAAAAAAAAAACjGC4CAAAAAAAAAAAAAGRZfHKSvj2w/b6//u2B7UpITrJhIgAAAAAAAACAJRguAgAAAAAAAAAAAABk2fKw3bqdeOe+v34rMUHLwvbYMBEAAAAAAAAAwBIMFwEAAAAAAAAAAAAAsuRMTJQ2nAjLtG7Did91NibKBomA/8fefYdJWV7/Az67ywJLVaRYEEEFBBRQQEWl2RW7xppESKIRS6yJiZqIJXZNotgbKpaoSYy9AxYUaYpUASmCIEhfyrLs7u+P/DTlK+y7y87Mlvu+Lq5cYc/7nM8MM7OvM++ZBwAAAAAoK8NFAAAAAAAAAJRZcUlJPDpmeJSUlJRaW/L/a4sT1AIAAAAAkF6GiwAAAAAAAAAos/e+nBIzvl2YuP6LbxfG+7OnpjARAAAAAADlYbgIAAAAAAAAgDLJL1gfT3/6YZmPe3rCB5G/YX0KEgEAAAAAUF6GiwAAAAAAAAAok2cnjorVBevKfNyqgnXx3GcfpSARAAAAAADlZbgIAAAAAAAAgMS+XPpNvDPj83If//aMifHlsm8qMBEAAAAAAFvCcBEAAAAAAAAAiRQXF8cjY4ZHyRasURIRj44ZHsUlW7IKAAAAAAAVxXARAAAAAAAAAIkM/3Jyhew6NGvpNzFi1uQKSAQAAAAAwJYyXAQAAAAAAABAqVatXxd//XRUha33zKcfxqr16ypsPQAAAAAAysdwEQAAAAAAAACl+utnH0b+hvUVtl7+hvXx188qblgJAIDKY8SIEZGVlVXqn8GDB2c6KvyXwYMHJ3rsjhgxItNRAQAqlOEiAAAAAAAAADZrxrcLY/isyRW+7ohZk2Lmt4sqfF0AAAAAAJIzXAQAAAAAAADAJhUXF8ejY4anZO2SiHhkzPAoLi5OyfoAAAAAAJTOcBEAAAAAAAAAm/T2zM9jzvIlKVt/zvLF8c7Mz1O2PgAAAAAAm2e4CAAAAAAAAIAftHLdmnj2s1Ep7/PXzz6KlevXprwPNceAAQMiKysr0Z85c+ZkOu4mtW7dOtFtaN26daajAgAAAFCFGS4CAAAAAAAA4Ac9/emHsbZwQ8r7rC0siKc//SDlfQAAAAAA+L9qZToAAAAAAAAAAJXPtMUL4r3ZU9PW770vp0a/XXaP9s22T1tPAKhpBg8eXGpN69atY8CAASnPAgAAQOVhuAgAAAAAAACA/1JUXByPjh2e9r6Pjhkefzz8tMjJzk57bwCoCa655ppSa/r06WO4CAAAoIbxjiwAAAAAAAAA/+XNLz6Lr1YsTXvfeSu+jTe/+CztfQEAAAAAajLDRQAAAAAAAAB8b/m6NfH8xI8z1v/5zz+O5evWZKw/AAAAAEBNY7gIAAAAAAAAgO89Of79WLdxQ8b6ryvcEE9NeD9j/QEAAAAAahrDRQAAAAAAAABERMSUb+bHqLnTMx0jPpwzPaZ+Mz/TMQAAAAAAagTDRQAAAAAAAADExuKieHTs8EzH+N6jY0fExuKiTMcAAAAAAKj2DBcBAAAAAAAAEK9N+zQWrFyW6Rjfm79yabw+/dNMxwAAAAAAqPYMFwEAAAAAAADUcEvXro6/Txqd6Rj/x98+Hx1L167OdAwAAAAAgGqtVqYDAABUZ6sXfZvpCFusOtwGAAAAAGDzho1/Pwo2FmY6xv9RsLEwnhz/fvzqgCMzHQUAAAAAoNoyXAQAkELv/+nhTEcAAAAAANiszxfOjdHzZmQ6xiZ9PG9G9Fs0L/bYtlWmowAAAAAAVEvZmQ4AAAAAAAAAQGYUFm2MoWNHZDpGqYaOHRGFRRszHQMAAAAAoFoyXAQAAAAAAABQQ706bUIsXL0i0zFKtXDV8nht2oRMxwAAAAAAqJYMFwEAAAAAAADUQEvWrIp/TPok0zES+8ekT+LbNasyHQMAAAAAoNoxXAQAUE7bbrttpiNUGtttt12mIwAAAAAAZfTEuPdiQ9HGTMdIrKBoYzwx7r1MxwAAAAAAqHYMFwEAlNM222wTHTt2zHSMjOvUqVM0adIk0zEAAAAAgDKYsGB2jJ0/K9MxymzM/Fnx6ddzMh0DAAAAAKBaqZXpAAAAVdndd98d/fr1y3SMjBoyZEimIwAAAAAAZbChaGM8Pm5kpmOU22NjR0TH/j+O2jk+7oaqZPbs2fHOO+/E559/Hp9//nnMmzcvVq1aFatWrYri4uKoV69eNGzYMFq1ahVt2rSJvfbaK/bff//o1q1b1KpV/Z7vK1eujLfffjs+++yzmDx5cnzxxRexYsWKWLVqVaxZsyby8vKiYcOG0bx58+jQoUN06tQp+vXrF/vuu2/k5ORkOn6FW79+fXz11VexatWqWLt2baxZsyZq1aoV9evXjwYNGkTLli1j6623znTMtFm4cGEMHz78+8fGjBkzYvny5ZGfnx/5+flRUlIS9evXj0aNGsW2224b7du3j8cffzzTsamiZs+eHSNGjIhp06bF9OnTY9asWbFixYrvH285OTlRr1692GqrrWLbbbeN/fffP2699daM5V2yZEm89dZb8fnnn8fkyZNj5syZsXLlyli9enWsXbs26tevHw0bNoztttvu+9fPgw46KLp16xZZWVkZy50qa9asifnz58fq1atjzZo1sW7duqhdu/Z//V5t2LBhpmNWiOLi4hg7dmy8++67MXny5Jg6dWosXLjw+3/7725z48aNY9ddd41OnTpF586d4+CDD45mzZplOj4AQKVX/d59AQBIo759+8bw4cPj/PPPj8mTJ2c6Tlp16tQphgwZEn379s10FAAAAACgDF6eMi6+yV+Z6Rjl9k3+ynh5yrg4YY99Mh0FqqXWrVvH3LlzN1uz0047xZw5c0pda+nSpXHvvffGc889FxMnTtxs7cqVK2PlypUxf/78GDVqVDz55JMREdGsWbM46aST4pxzzonOnTsnvh2VUWFhYTz11FMxbNiwGDlyZBQWFm6y9ruL+hcuXBifffbZ93+/1VZbxUknnRTnnXdedO3aNQ2pK97SpUvjww8/jA8//DA+/vjjmDlzZixcuDBKSko2e1zjxo2jXbt20bNnz9h///3j4IMPjiZNmqQp9Q/r27dvjBxZ+sBuabctIuKrr76KBx54IF588cVSny8REStWrIgVK1bEvHnzYvr06d///Zw5c6JNmzalHr85I0eOrNAhjKSvGWxeRb4+T5s2Le6///545ZVXYsaMGZut3bhxYxQUFMTy5ctj9uzZsXbt2rLErhBr1qyJRx55JJ555pn4+OOPo7i4eJO13w2uLliwIMaOHfv93zdr1ixOPfXUOPfcc2O33XZLR+wKt3Dhwnj//ffjww8/jE8++SS+/PLLWLx4canHNW3aNNq3bx/77bdfHHDAAXHggQdGgwYN0pC4YkyZMiXuueee+Otf/xrffvvtJutWr14dq1evjq+//jqmTp0aL730UkREZGdnR8+ePePUU0+NgQMHRv369dMVHQCgSjFcBACwhfr27RuTJk2KZcuWxcKFCzMdJy222267jH9YAwAAAACU3Tf5K+OfU8ZkOsYW++eUMXFAm92ieYPGmY4C/IBvv/02rrvuunjooYe2+CL0JUuWxL333hv33XdfHHPMMXHbbbfFrrvuWkFJS5d0UOPMM8+MoUOH/uDPioqKYsiQIXHbbbfF/PnztyjPihUr4qGHHoqHHnooDjrooLj99tujS5cuW7RmOqxcuTKef/75eOaZZ2L48OFRVFRUrjXGjBkTY8aMiTvvvDNyc3PjkEMOiR//+Mfxox/9qMrucDVp0qQYPHhwvPDCC+W6X6qjESNGRL9+/Uqtu/rqq2Pw4MGpD/Q/hg4dGgMHDiy17tFHH40BAwakPlAZfPDBB3HttdfG22+/nWjoLdPWrVsXN998c9x1112xbNmyLVpryZIlcdddd8Vdd90VRx99dNx2223Rrl27CkqaOosXL45nnnkm/vrXv8ZHH31Urn+3b7/9Nr799tv48MMP49Zbb428vLw46qij4qc//Wn079+/0u7oNG3atLjsssvilVde2aJ1iouLvx9qHTx4cFxwwQXxm9/8JvLy8iooKQBA9VA1/6saAKASatKkiYEbAAAAAKBSe3zsyCisBhcuFxYVxePjRsZlfY7JdBTgfzz55JNx0UUXbXZngfIoKSmJf/7zn/Hmm2/G9ddfH5dcckmFrp8qkyZNigEDBsS4ceMqfO133nkn9tprrzj33HPj1ltvjbp161Z4jy21aNGi+NOf/hT33XdfrFq1qkLXLiwsjFdffTVeffXVuOKKK+I3v/lNnHXWWVVmyCg/Pz8GDx4cf/nLX2Ljxo2ZjkM1t2TJkvjNb34Tjz32WJUYKoqIeO+99+LnP/95zJw5s8LXfumll+L111+PSy+9NK699trIzc2t8B5batasWXHrrbfG0KFDo6CgoELXXrduXTz33HPx3HPPxe677x5XXnllnHrqqRXaY0sUFhbGVVddFXfccUeFvz4uXbo0Bg8eHMOGDYuHH344evfuXaHrAwBUZdmZDgAAAAAAAABA6o2b/2VM+Hp2pmNUmPELZse4+V9mOgbw/xUUFMQZZ5wRP/7xjyt8sOg/rVu3Li699NL4yU9+Ehs2bEhZn4rwzDPPRLdu3VIyWPSd4uLiGDJkSOyzzz4xffr0lPUpqw0bNsT1118fO++8c9xyyy0VPlj0v+bMmRPnnntudOvWLT7++OOU9qoIM2fOjB49esTtt99usIiUGzNmTHTt2jWGDh1aZQaLbrnllujbt29KBou+U1hYGDfddFP06tUr5syZk7I+ZbV69eq4+OKLo3379nH//fdX+GDR/5o0aVKcdtpp0bdv35g6dWpKeyUxZ86c2H///eOWW25J6evjzJkzo2/fvnHzzTenrAcAQFVjuAgAAAAAAACgmivYWBiPjRuR6RgV7vFxI2ODi7Ih45YsWRL9+vWLp556Km09hw0bFqeeemoUVdLd2O644444/fTT0zYANXHixNhvv/3ik08+SUu/zRk9enR07tw5fv/738e6devS2nvixImx//77x3XXXVdphyjef//92GeffWLatGmZjkIN8Pzzz0efPn3i66+/znSUREpKSuJXv/pVXH755Wl7Do8ePTp69uwZn3/+eVr6bc4rr7wSu+22W/z5z39O+++3kSNHxp577hkPPfRQWvv+p4kTJ8a+++4bY8aMSUu/kpKS+O1vfxsXXHBBFBcXp6UnAEBlZrgIAAAAAAAAoJr75+Sx8e2a1ZmOUeGWrFkV/5ySnosPgR+2fPnyOOigg+Kjjz5Ke+9//OMfccEFF6S9b2keeOCBuPTSS9M+3LJs2bI46KCD4r333ktr3/907733Ru/evTO6i1JxcXH84Q9/iOOOOy7tw02lGT9+fPTv3z+WLVuW6SjUAK+99lqcdtpple55sDmXX3553HXXXWnvu2jRoujTp0+MHTs27b0j/v26dfTRR2d0EKygoCDOOuusGDRoUNqHbcaMGRN9+vSJb775Jq19IyKGDBkSl19+edr7AgBUNoaLAAAAAAAAAKqxhauWx8tTx2U6Rsq8NGVcLFy1PNMxoEZas2ZN9O/fP6O7Pdx7773x3HPPZaz//3rnnXfivPPOy1j//Pz8OPbYY2Pq1Klp7VtSUhLnnntunHvuuWnbrak0L774Yhx11FGxdu3aTEeJiIjZs2fHkUceGatXV79hXyqfMWPGxI9+9KPYWIV2eHzooYfi1ltvzVj/5cuXR//+/WP27Nlp7VtQUBDHH398pdpx7b777ouf/vSnads96csvv4z+/fvHihUr0tLvh9x2220Z3bUJAKAyqJXpAAAAAAAAAACkRklJSQwdOyI2FqfnwsBM2FhcFI+NGxmX9z02srKyMh0HapRf/OIXiXYsqlOnTnTv3j322muv2HnnnaNZs2ZRv379KCoqilWrVsXcuXNj/Pjx8f7775frwuJBgwbFwQcfHFtvvXU5bkXFWbx4cZxyyimJLuavX79+9OnTJzp37hy77rprNGrUKHJzc2PVqlWxcOHCmDJlSrz33nsxZ86cMudYsWJFHHnkkfHJJ59Es2bNynFLyqa4uDh+8YtfxKOPPpryXmX17rvvxjHHHBOvv/561KqVucukioqK4rTTTku0I0d2dnbssccesffee8cuu+wS2223XdSvXz+ys7Nj9erVsXTp0pgyZUqMHz8+xo8fn4b0VDX5+flxyimnxJo1a0qtrVWrVuy1117RrVu32GWXXaJFixZRv379KC4ujtWrV8fixYtjypQp8cknn6R0aHHSpEmJBzObNGkS/fr1i06dOkXr1q2jYcOG3z8/vvrqq5gyZUqMGDEiFi5cWOYcixcvjiOOOCI++eSTaNSoUZmPL6v169fH8ccfH6+//nrKe5XVk08+GTk5OfHYY4+ltM/KlSvjyCOPjCVLlpTr+NatW0fv3r2jQ4cOsf3220fDhg1j48aNsWrVqvjyyy9j0qRJMWLEiFi1alWpa5177rmxzz77lCsHAEB1YLgIAAAAAAAAoJoa89XM+HzRvEzHSLmJC+fGmPmzYu8dd810FKgxHnjggXjmmWc2W3PYYYfFz3/+8zjqqKMiLy+v1DU3bNgQL7/8ctxwww0xblzyHdeWLl0a11xzTfz5z39OfEwqnH/++bF06dLN1vTq1SsuvPDCOOqoo6JOnTqlrjlx4sS4995747HHHot169YlzjJnzpw466yz4oUXXkh8THmdd9555R4satu2bRx88MGx1157RYcOHaJly5bRpEmTyMvLi+Li4sjPz4/58+fHF198ER999FG8+uqrMW3atDL1eOedd+Kiiy6KIUOGlCtjRbjlllti9OjRm63p2rVrnH322XHyySfHNttsk2jd+fPnxxNPPPFf93/r1q03u/tJkkHcPn36xIgRIxJloPK59NJLS919p1evXnHWWWfF8ccfHw0aNEi07owZM+Lhhx+OUaNGVUTM7xUVFcXAgQM3u+tZVlZWHHfccXH++edH3759Izs7u9R1P/nkk7j33nvjySefjMLCwsR5pk+fHueee24MGzYs8THlUVxcHCeddFK5B4s6d+4c/fr1i7322ivatWsXO+64YzRu3Djy8vKisLAw8vPzY968eTFt2rT48MMP4+WXX45588r23wWPP/547LHHHnHZZZeVK2MS5557bkyfPr1Mx9SrVy8GDhwY55xzTuy+++6l1m/cuDHefPPNuPvuu+PVV1/dZF1hYWH87Gc/i8MPP7xMeQAAqousksqylyYAUGZLliyJ5s2b/9ffLV68OC3fQAYAAAAAkAoFBQXx5ZdfbrZm5513TnRBdk23fmNhXPby47FsbX6mo6TFNvUaxK1H/TTq1srNdBQqgQEDBiT+pv3Zs2dH69atUxuonFq3bh1z584ttW6nnXYq1w435e3ZoEGDKCoq2uSwyz777BNDhgyJ7t27lytDSUlJDBkyJC677LLNXmz+n+rUqRNfffVVhX9ONmfOnGjTpk2pdTvuuGN89dVXm/35XXfdFccee2y5csydOzcuuOCCeOmll8p03IMPPhi/+MUvytUziSFDhsQFF1xQpmMaN24cv/jFL+IXv/hF7LbbbmXuOW7cuLj11lvj2Wef3ewQzf964okn4sc//nGZ+21O3759Y+TIkaXW1a5de5OP5ZYtW8af//znOOGEE8q9A19BQUHic6OqMFw0YsSI6NevX6l1V199dQwePDj1gf7H0KFDY+DAgaXWPfroozFgwIAK65vk9Tk3N3ezgzQdO3aMIUOGJLp/NyXp4y3pv+P2228fX3/99SZ/vueee8Z9990Xe++9d5lyfue7YaF33323TMc99dRTcdppp5WrZxKXXXZZ3H777WU6Ztttt41f/vKX8bOf/SxatWpVpmNLSkpixIgRcfPNN8cbb7yR+LicnJx45513ok+fPmXql8TTTz8dp59+epmOOfHEE+PPf/5ztGzZslw933vvvRg0aFBMmTJlkzWlPSa/M3z48Ojbt2+5cgBAVVbd37+tydfllj7CDwAAAAAAAECV849Jo2vMYFFExNK1+fHCpE8yHQNqhPz8/B8cLMrOzo7rrrsuRo0aVe7Booh/DT9ccMEF8frrryfa8SjiXxc33XvvveXuuaU2N1h00EEHxfjx48s9WBTxrwGyF198MW677bZEO3Z859e//nV8++235e67Oe+9915cfPHFietzcnLisssui9mzZ8dtt91WrsGiiIhu3brFM888E6NGjYqOHTsmPu7CCy+Mb775plw9t9SmBouOP/74mDRpUpx44onlHiyKiCp70R4Vb3ODReeee26MHz9+iwaLIir+8ba5IY6zzjorPvroo3IPFkVEtG/fPt566624+uqry3TcRRddFKtWrSp338156qmnyjRYlJeXFzfeeGPMmjUrBg8eXObBooh//W7t169fvP766/HKK6/EDjvskOi4oqKi+MUvflGm3fOSWLVqVVx00UWJ62vVqhX33ntvPP/88+UeLIqI6N27d4wZM2azQ01JBosAAKojw0UAAAAAAAAA1cyClcvi1akTMh0j7V6ZNj4WrFyW6RhQI+Xm5sazzz4bV111VZmGXzanX79+MWzYsMT1jz76aIX0rUhHHXVUvPrqq9G0adMKWe/SSy+NoUOHJr6PV6xYUeYL6pNYu3ZtDBw4MDZu3Jiovk2bNjF69Oi49dZbY+utt66QDPvuu2988sknceKJJyaqX7ZsWVx44YUV0rsinHvuufH8889H48aNMx2FGuCmm26Ku+++u0oNov3mN7+JBx54oEIyZ2dnx+DBg2PIkCGJB/kWL14c119//Rb3/l8LFy6M888/P3H9XnvtFRMnTozf/va3Ua9evQrJcOSRR8aECROiV69eiepnzpwZ11xzTYX0/s51110XixcvTlT73TnGOeecUyG969WrF8OGDYtzzz23QtYDAKguDBcBAAAAAAAAVCMlJSUxdOzwKCopznSUtCsqLo6hY0dESUlJpqNAjZKVlRXDhg1LPORRFieccEIMGDAgUe2cOXNi7NixFZ6hvPbee+94/vnno3bt2hW67k9+8pO49dZbE9fff//9MXPmzArNcMUVV8SXX36ZqLZnz54xZsyY6NatW4VmiIioX79+/PWvf42f/OQnieqfffbZ+PTTTys8R1mddtppMWTIkAobxIPN+e1vfxuXX355pmOUyU9/+tO4+eabK3zd8847L6688srE9X/5y19i4cKFFZph0KBBsXz58kS1xx57bHzwwQex6667VmiGiIhmzZrFG2+8EQcffHCi+jvvvLPC7ouvv/467rzzzsT19913Xxx//PEV0vs7WVlZMWTIkDjppJMqdF0AgKrMf6ECAAAAAAAAVCMfzf0iJn8zP9MxMmbyN1/Fx/NmZDoG1ChXXHFFnHzyySlb/4Ybbki8W8NLL72UshxlsfXWW8ff/va3lO0ScskllyS+ILqoqCj+9Kc/VVjv6dOnx5AhQxLVdu/ePV5//fXYZpttKqz//8rJyYmHH344DjzwwFJrS0pK4g9/+EPKsiTRoUOHeOihhxLvngJbol+/fvHHP/4x0zHKpHPnznH//fenbP1rr702DjvssES1GzZsKNMQTGnefvvt+Oc//5motn///vHcc89FXl5ehfX/X3l5efG3v/0tOnXqVGrtunXr4sYbb6yQvnfeeWds2LAhUe3ZZ58dP/vZzyqk7//KysqKxx57LHbbbbeUrA8AUNUYLgIAAAAAAACoJtYVbohhE97PdIyMGzb+vVhXmOyCRWDLdO7cOQYPHpzSHtttt12cfvrpiWrff79yvAbedttt0bJly5T2uPvuu6NJkyaJaocOHRrLli2rkL5/+MMfoqioqNS6Fi1axAsvvBCNGjWqkL6bk5ubG08++WSiIaaXX345Zs2alfJMPyQrKyuGDh2aeFgOtkReXl4MHTq0Su2QlZOTE4888kjUrVs3ZT2ysrLigQceiIYNGyaqv//++2PNmjUV0vuqq65KVNehQ4d4+umnIzc3t0L6bk6jRo3imWeeSTQM+8gjj8Tq1au3qN+aNWsSD4/tuOOOcdttt21Rv9LUq1cvHn744Sr1PAEASBVnRAAAAAAAAADVxN8+/zhWrKuYix+rsuXr1sTfPx+d6RhQI/zlL3+JWrVqpbxP0l0LRo8enWjwJZV69OiRsl0W/lPz5s0TD3atXbs2nnrqqS3uOWXKlHjuuecS1T7wwAOxww47bHHPpLbddtu46aabSq0rKSmJhx9+OA2J/q8zzjgj9t5774z0pua59NJLo1WrVpmOUSYDBw6Mbt26pbxPq1at4te//nWi2uXLl8cLL7ywxT1fe+21GD269PPTnJycGDZsWOLhp4qw++67x2WXXVZq3Zo1a+Lpp5/eol7/+Mc/YsWKFYlqb7zxxrTcD/vtt1/iIWYAgOrMcBEAAAAAAABANfDVim/j9emfZjpGpfHa9Anx1YpvMx0DqrU+ffpE375909Jr3333jRYtWpRat3bt2vjyyy/TkGjTrrnmmrT1OvvssxPvkPTMM89scb/77rsvSkpKSq07+uij45hjjtnifmU1cODAaNu2bal1jz/+eKLbUZGysrLiiiuuSGtPaq569erFxRdfnOkYZZKbmxu///3v09bvoosuSrTbWURs8UBNRMS9996bqO7cc8+Nvfbaa4v7ldVvfvOb2GqrrUqte+yxx7aoT9L7smPHjnHaaadtUa+yuOaaayInJydt/QAAKiPDRQAAAAAAAABVXElJSTw6dkQUp/lC6cqs+P/fJ+m+eBxqkkGDBqWtV1ZWVhxwwAGJaqdNm5biNJvWvn37OOKII9LWr06dOnHOOeckqh01alTMnz+/3L3Wr18fw4YNS1R77bXXlrvPlsjJyYlzzz231LoFCxbEZ599loZE/3bQQQdFhw4d0tqTmuv000+PJk2aZDpGmRx//PFp3WmpYcOGMXDgwES1b775ZuLddn7IggUL4tVXXy21Li8vL2NDiI0aNYozzzyz1LqPP/44li1bVq4eK1asiLfeeitR7fnnnx/Z2em7vHXnnXeOo48+Om39AAAqI8NFAAAAAAAAAFXch3Omx7TFCzIdo9KZtnhBfDhneqZjQLXUoEGDOO6449Las0ePHonqZs2aleIkm3bWWWelvefPfvazRLstlJSUJL6o+4e8+OKLsXz58lLr+vTpE127di13ny11+umnR1ZWVql1r7/+ehrS/Nspp5yS1n7UbFXx8Xb22WenvWfS1+zCwsIYOXJkufs8+eSTUVRUVGrdySefHNtuu225+2ypH//4x6XWFBcXx5tvvlmu9UeMGBGFhYWl1uXl5SXKUtEy8RgEAKhMDBcBAAAAAAAAVGFrNhTEkxPez3SMSuvJCe/H2g0FmY4B1c6BBx4YderUSWvPdu3aJar75ptvUpxk00466aS099xuu+1iv/32S1Q7fPjwcvd5+eWXE9UNGDCg3D0qQvPmzRMNor333ntpSPMvWVlZceyxx6atHzVb48aNo2/fvpmOUSZNmjTJSOZ27drF7rvvnqi2Jrx+duvWLVq0aFFqXXlfP5Peh4ccckg0bNiwXD22xMEHHxyNGzdOe18AgMrCcBEAAAAAAABAFfb8xI9j5fq1mY5Raa1cvzaem/hxpmNAtdOnT5+092zTpk2iukwNF+2+++6x0047ZaR30sGV8u68UVJSEm+88UapddnZ2dG/f/9y9ahI++67b6k1EyZMSEOSf+nQoUM0a9Ysbf2o2fbff/+oVatWpmOUyRFHHJFoB7ZUOOaYYxLVlXegZuXKlfHRRx+VWrf11ltHr169ytWjomRlZcU+++xTal15Xz/ffz/ZFyIcffTR5Vp/S+Xm5sYRRxyRkd4AAJVB1fqvCACqlK+//jrGjBkTkydPjqlTp8acOXPi66+/jqVLl8a6deti48aNUbdu3cjLy4ttttkmdthhh2jVqlXsscce0aVLl+jZs2fUr18/0zcDAAAAAAAA+B9du3ZNe8+mTZsmqlu5cmWKk/ywTO4U0rt370R18+bNi+XLl8fWW29dpvU///zzWLx4cal1nTt3rhRDNF26dCm1ZtGiRbFo0aLYdtttU54n6c5SUBGq4uMtk0M1BxxwQKK6KVOmRFFRUZmHoEaOHBkbN24sta5Pnz4ZG7D6T126dIkXX3xxszUTJ06M4uLiyM5O/t32GzdujClTpiSqzeTjoVevXvHMM89krD8AQCYZLgKIiDVr1sT48eNj/PjxsXz58lLrBwwYEK1bt059sCpm3rx58fbbb8c777wT7733XsyfP7/UY9auXRtr166NpUuXxhdffPFfP6tdu3b07NkzTjjhhDjttNMqxZvQAAAAAABQ2fyo877x8bwv7F60CVvVrRc/6lz6DhZA2bRv3z7tPbfaaqtEdQUFBakNsgk9e/bMSN+Ifw171a1bN9avX19q7eTJkxNfTP+dsWPHJqrr0aNHmdZNlVatWiWqmzFjRlqGizp27JjyHvCdqvh4y+TrZ5KdziL+9btlxowZsdtuu5Vp/er4+rl27dpYsGBB7LjjjonXnTFjRqLfz02aNMnIOcZ3MvlYBADINMNFQI2zbt26+PTTT2Ps2LHf/5k2bVoUFxcnXqNv376Gi/6/Tz/9NP72t7/Fiy++GBMnTqzQtTds2BAjR46MkSNHxmWXXRYnn3xyXHHFFVXyjTAAAAAAAEiVerXrxBl79op7Pnoj01EqpdP37BX1atfJdAyoVnJyctIykPG/6tRJ9lzO1HBRkt1yUiU3Nzc6duwY48ePL7W2PMNFEyZMSFRXWT7Lbd68eaK6JF+YWREyeaE8NU9Ve7zl5OREhw4dMtZ/6623jh122CEWLFhQau3UqVPLPFxUnV8/yzJcNHXq1ER1nTp1SrxmKnTo0CGys7PLdB0ZAEB1YbgIqNYKCgpi4sSJ/zVINGXKlETbDbNpc+bMiccffzyefvrpmDZtWlp6FhYWxpNPPhlPPfVUDBw4MG655ZbYZptt0tIbAAAAAAAqu/1bt493Z02KaYtLvyiyJunQfIfYv3XVusAWqoJGjRpFTk5O2vvm5uYmqsvE58HZ2dmx6667pr3vf2rbtm2i4aJ58+aVee2kXzRZWb6kMy8vL1FduoaLtt9++7T0gYiq93hr3bp14tf3VGnXrl2i4aIkNf/L6+e/JL3v2rVrV6Z1K1rdunWjVatWMWfOnIzmAADIBMNFQLUyfvz4/xokmjRpUhQWFmY6VrXxwQcfxNVXXx3Dhw+PkpKSjGQoKSmJRx55JP75z3/GY489Fv37989IDgAAAAAAqEyysrJiYPe+8bvXnoriDL2HX9lkZ2XFwO79IisrK9NRoNpJeuFxpmTis8ztt98+8c5KqbLLLrskqlu4cGGZ1547d26iuuOPP77Ma2fSsmXL0tKnRYsWaekDtWvXjq222irTMcqkMgzVJM1Q1tfPoqKixEM1e+65Z5nWzrSyvn4mve8qy+PBcBEAUBMZLgKqlW7dumU6QrX28ssvx7vvvpvpGBERsXTp0jj66KPjD3/4QwwePDjTcQAAAAAAION23KppHN6+a7w6bUKmo1QKR7TfM1putU2mY0C1lOkdJiqj5s2bZzpC4gxlvTi+pKQkvv766/JEqvTWrVuXlj4NGzZMSx+oio+1Zs2aZTpC4gxlff1cuHBhFBUVlSdSpVfW189FixYlqqsMj4fK8DsdACATsjMdAADKq6SkJK655po4//zzM7aTEgAAAAAAVCYn7rFvbJ1XP9MxMm7rvPpxwh77ZDoGUINUpYuhly9fXqZ1Fy9eHIWFheWJVOmla7go07taUXNUxcda06ZNMx0h8Wv46tWry7Ru0l2LqqKyvn6uWrUqUV1VejwAAFQ3hosAqPLuvvvuuPLKKzMdAwAAAAAAMi4vt3acsWevTMfIuB/v1TvycmtnOgZQgzRo0CDTEaJ+/WTDpevXry/TuitWrChHmqphw4YNaeljty/SpSo+1vLy8jIdIXGGgoKCMq3r9fPfkt53VenxAABQ3dTKdAAAqrdWrVrF3nvvHT169Ij27dtH69atY/vtt4/69etH7dq1Y/ny5bF06dJYsGBBfPDBBzFixIgYNWpUmd+EuPHGG2OPPfaI0047LUW3BAAAAAAAqoaeO7WL4bMmxeRv5mc6Skbsvu2OsW+rtpmOAdQwtWtnfqAx6Y4lZR0uStfuPplQUlKS6QhQ41WG3Za8fpZdWV8/k953VenxAABQ3RguAqBCZWdnR69eveKEE06Iww47LNq3b7/Z+mbNmkWzZs1it912i4MOOiiuvvrq+Prrr+NPf/pT3H///WXaUvq8886Lvn37xnbbbbelNwMAAAAAAKqsrKysGNC9X/z2tSejqLg403HSKic7O87s1jeysrIyHYUMK8tjoLCwMIVJtkzSL+TzmM+8yrBbSNIMZX3Ml/VieoCyqAy/w7KzsxPVFZfx3Nrr578lve+q0uMBAKC6cRYE1HitW7eOk046KW666aZ47LHHMh2nytp5553j5ptvjnnz5sWIESPiV7/6VamDRZuy/fbbx6233hrTp0+Pfv36JT5u+fLlcdlll5WrJwAAAAAAVCc7NG4SR+62Z6ZjpF3/3faKHRo3yXQMKoGy7CKTdIAnE5Jm8w37mVcZhtSSZijrLkuV4bYB1Vdl+D1cUFCQqK6sv2+9fv5b0vuuKj0eAACqGzsXATVKq1atonv37tGtW7fo3r17dO/ePZo0+fcHTHPmzMlcuCrqoIMOiksuuSQOP/zwCv/mju222y7efvvtuOqqq+LGG29MdMwzzzwTV1xxRXTq1KlCswAAAAAAQFVz/O77xKg502Pp2vxMR0mLbeo1iON23zvTMagk6tatm7i2MlzEuilJs5Xl9pIaleFxlKqL4z2+gFSqDIMcSTOU9fXQ6+e/Jb0vqtLjAQCgujFcBFRbLVu2/K8hom7dukWzZs0yHavaOProo+PKK6+MffbZJ6V9srOz44Ybboj8/Py46667Sq0vLi6Ou+66K+67776U5gIAAAAAgMqubq3c+MlevePPH7ya6Shp8ZNufaJurdxMx6CSKMvFvCtWrEhdkC2wcePGWL16daLavLy8FKehNPn5mR/kTJqhrBe7l+Xx9dZbb8XBBx9cpvWBmm3ZsmWZjhBLly5NVFevXr0yrVuW188ZM2bErrvuWqb1q5L69esnqqtKjwcAgOrGcBFQrVxzzTXfDxS1aNEi03Gqpd69e8fNN98c++67b1r7/vnPf44ZM2bE66+/Xmrts88+G3/5y1/K/I1bAAAAAABQ3fTYcdfovN1OMXHh3ExHSaku2+0UPVrukukYVCINGjRIXFtZLyAty8W1Zbm9pMaSJUsyHSFxhiZNmpRp3aQXhEdErF+/vkxrA1Sl18+yXovk9fPfmjdvnqiuMjweFi9enOkIAAAZkZ3pAAAV6Q9/+EP079/fYFGKXHzxxTFy5Mi0DxZF/GsHozvvvDNyc0v/xsHly5fHqFGj0pAKAAAAAAAqt6ysrDizW5+olZ2T6SgpUys7J37arU9kZWVlOgqVyLbbbpu4tjJcxPpDypKrLLeX1Pjmm28yHSHxxdBlfbyU5fP3yrCDE6Tahg0bMh2hWlmwYEGmIyTOsN1225VpXa+f/5b0vqtKjwcAgOrGcBEAiWV6aKtt27bxy1/+MlHtiBEjUhsGAAAAAACqiO0abR1HdeiW6Rgpc3THbrFdo60zHYNKZvvtt09cO3v27BQmKb+y5CrL7SU1vv7664zvOjFz5sxEdWW9OL5evXqxzTbbJKr9+uuvy7Q2VEXr1q3LdIRqZebMmVFSUpLRDF988UWiurK+frZq1SpxbXV//Ux63yX9t0iV4uLimDVrVkYzAABkiuEiAKqUM844I1HdZ599luIkAAAAAABQdRzbqXs0q98o0zEqXLP6jeLYjj0yHYNKaIcddkhc++WXX6YwSfmV5cLWstxeUqOkpCTjFyPPmDEjUV1ZLnb/zk477ZSobt68eWVeG/5XrVq1EtVt3LgxxUl+2NKlSzPSt7pau3ZtRl87NmzYkPhcoG3btmVau0GDBtGkSZNEtdX99TPpfTdt2rQUJ9m8OXPmZHxYGAAgUwwXAVCl7L333tG8efNS65J+KxcAAAAAANQEdWrlxk+79cl0jAr30259onbCC5CpWdq2bRtZWVmJaqdOnZriNOVTlotr27Vrl8IkJPXpp59mrHdhYWHix3KnTp3KvH6HDh0S1U2aNKnMa8P/qlOnTqK6DRs2pDjJD1uwYEFG+lZno0ePzljv8ePHJxpUy8rK8vq5BTp16pTo3GzOnDmxePHiNCT6YR9//HHGegMAZJrhIgCqlOzs7OjevXupdYsWLUpDGgAAAAAAqDq6tdw59ty+TaZjVJi9dmgT3VrunOkYVFL169ePnXdO9viYNm1a5OfnpzhR2Y0ZMyZxbZcuXVKYhKQ++uijjPWeMGFC4p0Wdt999zKv36NHsl3iJkyYUOa14X8lHS5asWJFaoNswvTp0zPStzr78MMPM9Z71KhRieratGkT9erVK/P6SV8/x48fX+a1q5L69etHmzbJ/lukKjweAACqI8NFAFQ5LVq0KLVmzZo1aUgCAAAAAABVy0+794ncnJxMx9hiuTk51XInJipW586dE9UVFxeXaZAnHdatWxcTJ05MVNu0adPYbrvtUpyIJEaMGJGx3u+9916iulatWsVWW21V5vX33nvvRHXLli3L6A5OlC7prm6Z1Lhx40R1S5YsSXGS/6ukpCTx6zPJvf766xnr/eqrryaq22+//cq1ftLXz4kTJ8bSpUvL1aOq6NmzZ6K61157LcVJNi3p4wEAoDoyXARAlZNkuCjJltUAAAAAAFDTtGjQOI7tmOzb0yuzYzv2iOYNkl14TM217777Jq594403Upik7N59990oLCxMVLvPPvukOA1JTZ48OebMmZOR3i+++GKiur59+5Zr/W7dukXDhg0rNAuZkZubW2pNpj9vb968eaK6TDzfxo8fH6tXr0573+ruiy++iKlTp6a97/LlyxMPZ/br169cPfr06ZNoqK+oqCheeeWVcvWoKpLehy+99FIUFxenOM3/NXHixJg9e3ba+wIAVBaGiwCocpJ8kFK/fv00JAEAAAAAgKrnqI7dokUVHsxp0aBxHNWxW6ZjUAUccsghiWtffvnlFCYpu7LkKcvtJPWef/75tPdcuHBhjBo1KlFteYeLateuHUcccUSi2mHDhkVJSUm5+pB6tWvXLrVm3bp1aUiyaXl5edGoUaNS62bOnJn2AYRM7rBT3T366KNp7zls2LDEw7zlHS7afvvto0ePZMP9jz/+eLl6VBUHHnhgorpFixZl5Ln28MMPp70nAEBlYrgIgConydbmTZo0SUMSAAAAAACoemrn1Iozu/fNdIxyG9C9b9TOqZXpGFQBXbt2Tbz7xeTJk+PTTz9NbaCECgoK4tlnn01cf9hhh6UwDWX10EMPpb3nI488EkVFRaXWZWVlbdEw2vHHH5+obsaMGfHmm2+Wuw+plWQHquXLl6chyebtsssupdbk5+enfbebJ554Iq39apJHH300rYNtJSUlcd999yWq7dq1a7Rp06bcvZK+fr777rsxffr0cvep7Nq0aRNdunRJVHvPPfekOM1/y8/Pr/bDXQAApTFcBECV8/nnn5das+uuu6YhCQAAAAAAVE1dt28d3VuWftFuZdOj5S7RZfvWmY5BFZGVlRXHHHNM4vqkFxin2vPPPx/Lli1LVNu2bdvYbbfdUpyIspg+fXq89tpraetXUFCQ+LG73377RcuWLcvd65hjjomtttoqUe3VV19d7j6kVrNmzUqtWbhwYRqSbF7S17aRI0emOMm/vfPOO9V68CPTvv3227j77rvT1u+5556LKVOmJKo99dRTt6jXGWecETk5OaXWlZSUxO9///st6lXZJb0vX3nllRg7dmyK0/zbn//851ixYkXa+gEAVEaGiwCoUlatWhWTJk0qta5Dhw5pSAMAAAAAAFXXT7r1rlI7ANXJqRU/6dY70zGoYgYMGJC4dujQofHVV1+lLkwCRUVF8cc//jFx/cCBA1OYhvJK52DNAw88EPPnz09Uu6UXx9erVy9+/vOfJ6odPXq0HV4qqRYtWpRas379+sSPq1TZY489EtW99NJLKU7yb4MHD05br5rqpptuim+//TblfQoKChIP8eTk5MRpp522Rf123HHHOO644xLVPvfcc/Hee+9tUb/K7PTTT4/s7GSXrf76179OcZp/WbRoUdx2221p6QUAUJkZLgKgSnnllVeisLCw1LpevXqlIQ0AAAAAAFRdzeo3iuN33zvTMRI7fve9o2n9RpmOQRWz//77R9u2bRPVFhQUxBVXXJHiRJv30EMPxdSpUxPV5uTkxJlnnpniRJTHmDFj4pFHHkl5n8WLFycedqhXr94WXxwfEXH++edHrVrJBlMvuOCCmDt37hb3pGLtskuynQvHjRuX4iSbd8ABBySqe+utt2LBggUpThPx5JNPxgcffJDyPjXd0qVL48ILL0x5n2uuuSa++OKLRLXHH398tGrVaot7XnTRRYlrzzzzzFi5cuUW96yMWrVqFccff3yi2hEjRsSDDz6Y4kQR5557brW9vwEAysJwEQBVytChQ0utycnJib59+6Y8CwAAAAAAVHVH7rZnbNdwq0zHKNV2jbaOI3fbK9MxqKIuvvjixLXDhg2Lf/zjHylMs2mzZs2Kyy67LHH9KaecEttvv30KE7ElLrvsspTv/HLeeefFsmXLEtWeeeaZsc0222xxz9atW8fZZ5+dqHblypVx7LHHumC7kmnXrl2iujfeeCPFSTZv7733jrp165ZaV1RUFHfccUdKs3z11VdlGgxhyzz11FPx8MMPp2z9N954I2655ZbE9WX53bw5BxxwQBx55JGJaufMmRMnn3xyoi/frYrKcp9efPHF8dlnn6Usy5133pmxcz8AgMrGcBEAVcakSZPizTffLLXu4IMPjqZNm6YhEQAAAAAAVG25ObViQPe+mY5RqgHd+0atnJxMx6CK+vnPfx477bRT4vqBAwfGp59+mrpAP2D58uVx3HHHRX5+fqL6nJycuPrqq1Ocii2xfPnyOPHEE6OgoCAl699xxx3x/PPPJ6rNyckp05Bdaa655ppo3LhxotrPPvssjjrqqFixYkWF9d8SGzZsiAceeCDeeeedTEfJmB49eiSqe+aZZzI6GFanTp045JBDEtXec889MXPmzJTkyM/Pj+OOOy6+/fbblKzPDzv33HPj7bffrvB1P/300zj11FOjqKgoUf3hhx8e++yzT4X1v+222xLv/vbmm2/GaaedlrLfI2WVn58ft9xyS0ycOHGL19p3333j8MMPT1S7Zs2aOPbYY2PevHlb3Pd/vfjii3HppZdW+LoAAFWV4SIAqowrr7wyUd2AAQNSGwQAAAAAAKqRPbbbKfZp1TbTMTZp31ZtY49tW2U6BlVY7dq1yzSIs3LlyjjssMNizJgxKUz1b998800cdthhMWnSpMTHnHnmmYl3HyFzPvnkkzj55JNjw4YNFbrusGHD4te//nXi+l/84hfRtm3Fvc43bdo0brzxxsT1H3zwQRxwwAExa9asCstQVqtXr4677ror2rZtG7/85S9j4cKFGcuSaT169Ig6deqUWrd8+fIYNGhQFBcXpyHVD/vRj36UqG79+vXx4x//uMKHMFatWhWHH354jB8/vkLXpXQbNmyIo48+Ol588cUKW/Ojjz6Kgw46KPGwY61atSp8V6wOHTrEJZdckrj+b3/7Wxx66KGxePHiCs1RFkuWLInrr78+2rRpE5dffnmsWrWqQta9/fbbEw9azZ07N3r37h3Tpk2rkN4REU8//XScdNJJsXHjxgpbEwCgqjNcBECV8M477yR606hNmzaJ32AEAAAAAAD+5cd79Yo6tXIzHeP/qFMrN368V+9Mx6AaGDBgQPTr1y9x/eLFi6N3795x3333RUlJScpyjRgxIrp3716mQaYWLVrErbfemrJMVKwXX3wx+vfvH0uXLq2Q9f70pz/FmWeemXjgo1GjRnHttddWSO//NGjQoDj66KMT10+ePDm6dOkS9957b1qHVSZOnBgXXnhhtGzZMn71q1+lZOeLqqZOnTpx8MEHJ6p9+umno0+fPvH++++nONUPO+GEE2KrrbZKVDt69Og4/fTTK2yYb9q0abHvvvvGhx9+WCHrsWm5uT98Drp+/fo47rjj4re//W2sX7++3OsXFRXFn/70p+jTp08sW7Ys8XEXXHBBdOjQodx9N+W6666LvfbaK3H9e++9F7vvvns899xzFZ5lcz766KMYOHBg7LjjjvH73/++wnfv6tixY5x//vmJ6+fOnRs9evSIxx9/fIv6rlmzJn71q1/F6aefHoWFhT9Ys6nHJABAdWe4CIBKLz8/P84+++xEtVdccUXk5OSkOBEAAAAAAFQv29RrGCfsvk+mY/wfJ+6xTzSp1yDTMagGsrKy4uGHH4769esnPmb9+vUxaNCg2G+//eKdd96p0DzTpk2LH//4x9GvX7+YP39+mY699957o0mTJhWahy234447bvJnb7/9duy1117x0ksvlXv9efPmxXHHHReXXHJJmYZzbr755mjevHm5+27OI488stnb/b/WrFkT5557bnTu3Dmef/75lO0WMXXq1Lj55pujS5cu0aVLl7jzzjsrbKeN6uKUU05JXPvBBx9E7969o2XLlnHqqafGNddcEw899FA8//zz8dJLL8XLL79c6p933323XDnr16+f+FqBiIi///3vcfDBB8fcuXPL1S8iYu3atXHdddfFnnvuGVOnTv3BmlQ9p2qqs846K5o2bfqDPyspKYmbb745OnToEEOHDi3T7lRFRUXx97//Pfbaa6+45JJLNjlI8kM6deoUN9xwQ+L6sqhdu3Y8/fTT0bhx48THLFmyJE4++eTYf//9480330zJ4HNJSUmMHz8+rr766th1111jv/32K/N9XlY33HBDdOzYMXF9fn5+nHnmmXHAAQeU+X5Ys2ZN3HfffdGuXbu46667NlnXtGnTMr3uAABUJ8n2lQSADPr1r38dX375Zal1Xbt2jZ/97GdpSAQAAAAAANXPEbt1jfdmT4kFK5N/o3sqtWy8TRzevmumY1CNtGnTJh577LH40Y9+VKaLUT/++OM4+OCDY4899ojTTz89jj/++Gjfvn2Z+y9evDhefvnlePbZZ8t9YfAll1wSxx9/fJmPI/UOPPDAWLNmTTz//PM/+PN58+bFMcccE717946LLroo+vfvH7Vr1y513UmTJsW9994bjz76aKxbt65MmY466qg455xzynRMWTRt2jRef/31OOCAA2L58uWJj5s8eXL86Ec/iu233z7OOOOMOOqoo2K//faLWrXKfhlTSUlJzJo1K0aNGhWjRo2Kt956K9FnyzXdySefHL/5zW9i0aJFiY9ZsGBB/PWvfy1Xv5122inmzJlTrmMvueSSuPfee2P16tWJ6t9///3o1KlTnHfeeTFo0KBo3bp1ouOmTp0aTz75ZNx///2b3aGlffv2ccEFF5RpxxU2r1mzZvGXv/wlzjjjjE3WzJkzJwYOHBiXXXZZHHnkkXHQQQfF7rvvHjvttFM0atQosrKyIj8/P7766quYPHlyjBgxIl555ZVYsGBBmfPUrVs3nnrqqahbt+6W3KzNateuXbzwwgtx+OGHl2l4Z9SoUXHYYYfFrrvuGqeffnocddRR0b1798jKyipzhqKiopg2bdr3r59vvPFGLFy4sMzrbIm8vLx46qmnYt999y3T7lQffvhhHHbYYbHzzjvHUUcdFb169YqOHTvG9ttvHw0aNIiioqJYtWpVfPnll/H555/H22+/Ha+//nqsXLmy1LX/8pe/xBdffLElNwsAoMoyXARApfbcc8/FfffdV2pdVlZW3HXXXZGdbVM+AAAAAAAoj1rZOTGwe7+4/p2/ZTpKREQM7N43amXnZDoG1cyJJ54YN954Y/z2t78t87Gff/55/O53v4vf/e530bRp0+jWrVu0a9cudtxxx2jRokXk5eVFnTp1orCwMNavXx/Lly+PefPmxezZs2P8+PFbPPBw7LHHxq233rpFa5BaQ4YMiXfffTeWLdv0kOZ7770X7733XjRo0CD69u0bnTt3jl122SUaNWoUtWrVivz8/Fi4cGFMmTIlRo4cGbNnzy5XllatWsXDDz9c3puSWMeOHeOll16Kww47LNasWVOmY7/++uu49dZb49Zbb428vLzo0qVL7L777rHjjjvGDjvsEPXr14+8vLwoKSmJ9evXx/r162PJkiXxzTffxNdffx3Tp0+PadOmxdq1a1N066qvOnXqxFVXXVUlBmRatGgRV111VVx++eWJj1mzZk3ccsstceutt0bXrl1j//33j3bt2kXz5s0jLy8vCgoKYvXq1TFv3ryYPn16jBo1KubNm1fqunXr1o1nn302xo8fvyU3iR9w+umnxyuvvBJPPfXUZuuWLl0aTzzxRDzxxBMpyZGVlRXDhg2Lzp07p2T9/9S3b98YNmxYnHrqqVFUVFSmY2fOnBnXXnttXHvttdGwYcPYc889o1OnTtGyZcvYbrvton79+lG3bt0oKiqK9evXx7p162Lx4sXxzTffxPz582P69OnxxRdfpHRXoqS6dOkSTzzxRJx88sllHrz+8ssv484774w777yzQrKcfvrpcfrpp8fgwYMrZD0AgKrGcBEAldYXX3wRP//5zxPVnnfeeXHAAQekOBEAAAAAAFRvHVu0jP12ah+j5k7PaI79W7ePDi1aZjQD1dfll18ea9asieuuu67ca3z77bfxxhtvxBtvvFGByTatf//+8fTTT/uivUquRYsW8fTTT0f//v1j48aNm63Nz8+Pl19+OV5++eUKz9GoUaN49dVXo3nz5hW+9g/Zf//94913343+/ftvdseXzVm3bl18/PHH8fHHH1dwOjZl0KBB8dRTT8WoUaMyHaVUl1xySfzjH/8o8+OjpKQkJkyYEBMmTNjiDNnZ2fHEE09E586dDRelyCOPPBJz5szJ6GPyjjvuiBNPPDFt/U466aR44YUX4pRTTin3oOTq1au/H1ytqk466aS4/fbb45JLLslYhp49e6ZlKBcAoDIzXARApbRy5co47rjjEm1t3rZt27j55pvTkKpqOOCAA6JWLb/iM23y5MmZjgAAAAAAUC5n7NUrJiyYHes2bshI/7zc2nHGnr0y0pua49prr41mzZrFhRdeWOZvyU+3n/zkJ/HII4/4/KeKOPTQQ+POO++Mc889NyP969evHy+88EJ06tQprX333nvv+PDDD6N///4xc+bMtPamfLKzs+Pvf/977Lffflu8s1qq1apVK55++uno3r17LF26NCMZ7rvvvjjppJMy0rumqFOnTrzwwgtx0EEHxeeff57W3llZWXHnnXdmZDevo446Kt5555047rjj4ptvvkl7/8ri4osvjpycnLjooovSfm62++67xz//+c+oW7duWvsCAFQ2vtIGgEpn48aNcfLJJ8fUqVNLra1du3Y8+eSTUa9evTQkAwAAAACA6m/rvPpxUud9M9b/pD32ja3y6mesPzXHBRdcEG+99VbssMMOmY7yg+rWrRtDhgyJxx9/3GBRFTNo0KC45ZZbIisrK619t9pqq3jrrbeiX79+ae37nXbt2sWECRNiwIABGelP2bVo0SI++uijOOCAAzIdpVStW7eO119/PRo2bJjWvrVq1YoHH3wwzjrrrLT2ramaNWsW77//fvTp0ydtPevXrx9PPfVURgaLvrPvvvvGxIkT48gjj8xYhsrgV7/6VdqvAerTp0988MEH0axZs7T1BACorLz7BEClc8EFF8Sbb76ZqPaOO+6IHj16pDhR1eJNDwAAAAAAttSh7brEiC8nx1cr0rs7QKutmsah7bqktSc120EHHRQTJ06MCy+8MJ588slKs4tRz54948EHH0z77jNUnF//+tex3Xbbxc9+9rMoLCxMeb/dd989nn322ejQoUPKe21OgwYN4tFHH41jjjkmLrnkkpgzZ05G8/yQ/fffP7p08bvmO82bN4+RI0fGAw88ENdff30sWLAg05E2qXv37vH222/HscceG4sWLUp5v6222iqef/75OOigg1Lei39r3LhxvPHGG/G73/0u/vKXv0RxcXHKenXp0iWeeeaZ2G233VLWI6nmzZvHK6+8Eg8++GBceeWVsWTJkkxH+i/Z2dlx6KGHRuvWrVPa57TTTouuXbvGKaecktIdrLKzs+PCCy+MG2+8MerUqZOyPgAAVYmdiwCoVG688ca47777EtWedtppcd5556U4EQAAAAAA1Dw52dkxsHv6d74Y2KNf5GT7GJv0atKkSTzxxBMxZsyYjO348p1dd901nnvuuRg1apTBomrgxz/+cXzyySfRtWvXlPXIzs6OQYMGxSeffJLxwaL/dPzxx8e0adPipptuiiZNmmQ6TrRs2TIuvfTSmDx5cnzwwQexxx57ZDpSpZKdnR3nnHNOzJ49O55++uk47rjj0rpzSFnsvffeaXm97t+/f3z++ecGizKkTp06cccdd8QHH3yQktfQrbfeOv70pz/FmDFjKsVg0X8666yzYubMmXH55ZdH/fqZ382zXbt2cfXVV8eXX34Zr732WrRs2TLlPTt06BBjx46N22+/PbbaaqsKX79r167x4Ycfxh133GGwCADgP3hXFoBK48EHH4wrrrgiUW2vXr3ikUceSXEiAAAAAACouXZrvkP0bpO+C9V779wh2jfbPm394H9169Yt3n333Rg3blz84he/SNsFvdnZ2XHEEUfESy+9FNOnT4+TTjopLX1Jj65du8aYMWPitttui+22265C1+7Xr1+MGzcu7rnnnsjLy6vQtStCnTp14vLLL4/58+fHAw88EJ07d05r//bt28fFF18c7733XsybNy9uu+226NixY1ozVDW5ublx6qmnxj/+8Y9YsWJFfPzxx3HXXXfFBRdcEEcccUR07do1WrZsGQ0bNow6depEdoYGglu2bBnvvvtuPPLII9GqVasKXbtTp07x17/+NV5++eW0DFGweT179owJEybEa6+9FgceeOAWP+batGkTN998c8yaNSsuuuiiyM3NraCkFatRo0Zx0003xfz58+P222+PXXbZJW29s7KyomvXrnHllVfGuHHjYvr06TF48ODYaaed0pYhIqJ27dpxySWXxKxZs+LGG2/c4v7Z2dlx0EEHxWuvvRYTJkyIfffdt4KSAgBUH1kllWVPb4BKYM6cOdGmTZtS64YPHx59+/ZNfaAa5LnnnotTTz010XbWXbt2jREjRkTjxo3TkKxyW7JkSTRv3vy//m7x4sXRrFmzDCUCAAAAANgyBQUF8eWXX262Zuedd/YN02myct2auPTlx2Nt4YaU9qmXWyduP/qn0bhu5dwlgZppzZo18dZbb8XLL78cb7zxRsyfP7/C1m7UqFH069cvjjrqqOjfv3+FD51QcZJ+hnzmmWfG0KFDN1tTUFAQw4YNi2HDhsUHH3wQGzduLHOexo0bxwknnBDnn39+7LXXXmU+PtOmTJkSL7zwQrz44osxbty4ct0HPyQ7Ozt23XXX2G+//aJ3797Rt2/fRP9uVH2FhYXx9NNPx+OPPx4jRoyIoqKiMq+Rl5cXhxxySJx11lnRv3//yMrK2mz90KFDY+DAgaWu++ijj8aAAQPKnIdNW7x4cbzyyivx5ptvxsSJE2PGjBlRWFi4yfqtttoqOnXqFP369Ysjjjgi9t1334wNxW2psWPHxgsvvBAvvfRSTJo0KdH1NUnUqlUrOnToEPvvv3/06tUr+vXrVynPS4qLi2PUqFHx+uuvx7vvvhuTJ0+OVatWbbI+Nzc32rZtG507d47DDjss+vfv71oaAKgg1f3925p8Xa7hIoD/YLgoM1599dU47rjjNvuGz3fatWsX77///v/5xV1T1eSTGAAAAACgeqruH05XRW9+8VkMHTsipT0Gdu8bh7TrktIesKW++eabGDduXHz22Wcxe/bsmD9/fnz11VexbNmyWLduXaxfvz7Wr18fubm5kZeXF3Xr1o1GjRrFDjvsEDvuuGO0atUq9thjj9hrr71i1113LfXidSqHihwu+k8rVqyIt99+Oz799NOYPHlyfPHFF7FixYpYvXp1rF27NurWrRsNGzaM5s2bx2677RadOnWKvn37xn777Re1atXagltUeaxfvz4mTJgQY8aMiRkzZsS8efNi7ty5sXTp0li7dm2sXbs2CgoKolatWlGnTp2oV69ebLPNNtGsWbPYfvvto02bNrHzzjtHx44do0uXLmnbbYzKa8mSJfH+++/HRx99FNOmTYsvv/wyFi9eHGvWrImCgoKoV69eNGrUKLbeeuto37597LHHHtG9e/c46KCDKuXuX5SusLAw5s6dGytXrozVq1fH+vXrIy8vLxo2bBjbbbddpRySqQirV6+OcePGxbhx42LmzJkxb968mDdvXixbtizWrl0b69atiw0bNkRubm7Url07GjRoEE2bNo1mzZrFDjvsEG3atIlddtklOnXqFLvvvnvUrVs30zepXL7++utYtGjR978769WrFw0bNozGjRtHq1atKu3OVABQ1VX3929r8nW5houAMpk9e3aMHj06pT3q168fRx99dEp7bIrhovQbPnx4HHnkkbF+/fpSa1u1ahUffPBB7LjjjmlIVjXU5JMYAAAAAKB6qu4fTldFxcXFcdUbz8Sc5UtSsn7rrZvH9YedUmW/RR6o3lI1XAQAAABVUXV//7YmX5dbPb7KBEibkSNHJtraeUvstNNOGRsuIr0++uijOOaYYxINFrVo0SLefvttg0UAAAAAAJBm2dnZMbBHv7j6zWcrfO2siPhZj34GiwAAAAAAMsg7tABkxLhx4+KII46I/Pz8UmubNGkSb731VrRt2zYNyQAAAAAAgP/Vtul20W+XThW+bt9ddo9dm25b4esCAAAAAJCc4SIA0u7zzz+PQw89NFauXFlqbaNGjeL111+PPfbYIw3JAAAAAACATTmly/7RoHbdCluvQe26cUqX/SpsPQAAAAAAysdwEQBpNXXq1Dj44INj2bJlpdbWq1cvXnnllejRo0cakgEAAAAAAJvTqG5enNK14oaBTu26fzSqm1dh6wEAAAAAUD6GiwBIm5kzZ8ZBBx0UixcvLrW2Tp068c9//jMOOOCANCQDAAAAAACS6Ldzp9i5SYstXmeXbVpE3106VUAiAAAAAAC2lOEiANJi9uzZ0a9fv1i4cGGptbm5ufHcc8/FwQcfnIZkAAAAAABAUtnZ2fGzHv0iawvWyIqIgT36RXbWlqwCAAAAAEBFMVwEQMrNmzcv+vXrF/Pnzy+1NicnJ4YNGxZHH310GpIBAAAAAABltfM2LeKgtnuU+/iD23aukN2PAAAAAACoGIaLgDIZMGBAlJSUpPTPnDlzMn0zqUALFiyIAw88MObOnVtqbVZWVjz88MNx8sknpyEZAAAAAABQXid33i8a1skr83GN6uTFj7r0TEEiAAAAAADKy3ARACmzaNGiOPDAA2PWrFmJ6u+5554488wzU5wKAAAAAADYUg3q1I3Tuu5f5uNO2/OAaFC7bgoSAQAAAABQXoaLAEiJJUuWxEEHHRRffPFFovo77rgjzjnnnBSnAgAAAAAAKkrvnTtG26bbJa5v13S76NWmQwoTAQAAAABQHoaLAKhwS5cujYMPPjimTJmSqP7666+Piy++OMWpAAAAAACAipSdlRUDe/SLrKysUmuz/n9tdoJaAAAAAADSy3ARABVqxYoVceihh8bEiRMT1V955ZVx5ZVXpjgVAAAAAACQCq23bhaHtu1cat2hbbvETls3S0MiAAAAAADKynARABVm9erVcfjhh8f48eMT1V9yySVx/fXXpzgVAAAAAACQSid17hmN69bb5M8b160XP+q8bxoTAQAAAABQFoaLAKgQa9asiSOPPDJGjx6dqH7QoEFx++23pzgVAAAAAACQavVr14nT9zxgkz8/Y89eUa92nTQmAgAAAACgLAwXAbDF1q1bF0cffXR88MEHieoHDhwYd999d4pTAQAAAAAA6XJA691it+Y7/J+/79B8h9i/dfsMJAIAAAAAICnDRQBskYKCgjj++ONj+PDhiepPO+20eOihhyIrKyvFyQAAAAAAgHTJysqKgd37RvZ/vP+fnZUVA7v385kAAAAAAEAlZ7gIgHIrLCyMk08+Od54441E9SeccEI8/vjjkZ3t1w8AAAAAAFQ3O27VNA5v3/X7/39E+z2j5VbbZC4QAAAAAACJuLobgHIpKiqKM844I1588cVE9f37949nnnkmatWqleJkULN06tQpOnXqlOkYAABUMOd5AADV06RJk2LSpEmZjpFSJ+6xb2ydVz+2zqsfJ+yxT6bjAACkTU041wMAqImc51FTGC4CqMJGjBgRWVlZpf4ZMGBAhfYtLi6OgQMHxnPPPZeo/pBDDom//e1vkZubW6E5AAAAAACAyiUvt3acsWev+PFevSMvt3am4wAAAAAAkIDtIwAos3POOSeeeOKJRLW9e/eOF154IerUqZPiVAAAAAAAQGXQc6d2mY4AAAAAAEAZGC4CoEwuuuiiePDBBxPV9uzZM1555ZWoV69eilMBAAAAAACVRVZWVqYjAFSY1q1bR0lJSaZjAAAAAKRUdqYDAFB1XHnllfGXv/wlUW23bt3itddeiwYNGqQ4FQAAAAAAAAAAAAAA5WW4CKh2BgwYEFlZWeX606ZNm0Q9+vXrV+4eAwYMSO0dkEI33HBD4tpx48bFVlttVe77qSL+DB06NHV3BgAAAAAAAAAAAABANWC4CAAAAAAAAAAAAAAAAGoow0UAAAAAAAAAAAAAAABQQxkuAgAAAAAAAAAAAAAAgBrKcBEAAAAAAAAAAAAAAADUUIaLAAAAAAAAAAAAAAAAoIYyXAQAAAAAAAAAAAAAAAA1lOEiAAAAAAAAAAAAAAAAqKFqZToAQEUbOnRoDB06NNMx0qJv375RUlKStn7p7AUAAAAAAAAAAAAAQOrZuQgAAAAAAAAAAAAAAABqKMNFAAAAAAAAAAAAAAAAUEMZLgIAAAAAAAAAAAAAAIAaynARAAAAAAAAAAAAAAAA1FCGiwAAAAAAAAAAAAAAAKCGMlwEAAAAAAAAAAAAAAAANZThIgAAAAAAAAAAAAAAAKihDBcBAAAAAAAAAAAAAABADWW4CAAAAAAAAAAAAAAAAGoow0UAAAAAAAAAAAAAAABQQxkuAgAAAAAAAKqUkpKSTEcAAAAAAKhxvDdbfRkuAgAAAAAAACqN7OzSP8L0ATYAAAAAQPoleW82yXu8VD7+1QAAAAAAAIBKIysrq9SajRs3piEJAAAAAAD/qaioqNSaJO/xUvkYLgIAAAAAAAAqjZycnFI/fC4sLExTGgAAAAAAvrNhw4bN/jwrKytycnLSlIaKZLgIAAAAAAAAqDSysrIiNzd3szUFBQVpSgMAAAAAwHdKGy7Kzc21c1EVZbgIAAAAAAAAqFRq16692Z+X9gE2AAAAAAAVr7T3Zkt7b5fKy3ARAAAAAAAAUKnUqVNnsz9fv359FBcXpykNAAAAAAAlJSWxfv36zdYYLqq6DBcBAAAAAAAAlUppH0AXFxfHmjVr0pQGAAAAAIC1a9dGUVHRZmtyc3PTlIaKZrgIAAAAAAAAqFTy8vJKrVm1alUakgAAAAAAEBGxevXqUmuSvLdL5WS4CAAAAAAAAKhU6tSpE3Xq1NlszerVq2PDhg1pSgQAAAAAUHMVFRWV+oVPubm5Ubdu3TQloqIZLgIAAAAAAAAqnUaNGm325yUlJfHNN99ESUlJmhIBAAAAANRMS5YsiaKios3WNGrUKLKystKUiIpmuAgAAAAAAACodEobLoqIyM/PL/XbMgEAAAAAKL/169fH8uXLS61r2LBhGtKQKoaLAAAAAAAAgEqndu3akZeXV2rdwoULDRgBAAAAAKRAQUFBfPXVV6XW5ebmRt26ddOQiFQxXAQAAAAAAABUSs2aNSu1pqSkJBYsWBDLly+PkpKSNKQCAAAAAKj+1q9fH/PmzYuNGzeWWtusWbPIyspKQypSpVamAwAAAAAAAAD8kPr160fjxo1j5cqVpdYuWrQoVqxYES1atIh69eqlIR0AAAAAQPVTVFQUS5YsieXLlyeqr1evXjRq1CjFqUg1w0UAAAAAAABApdWiRYvIz8+PoqKiUmvXr18fc+fOjXr16kXDhg2jYcOGkZubm4aUAAAAAABVV0lJSaxduzZWr14dq1atSvR+7He23XZbuxZVA4aLAAAAAAAAgEorJycnWrRoEV9//XXiY9auXRtr166Nb775JurUqRO1a9eO2rVrR25ubtSuXTuys7MjKysr7R94l5SUREREQUFBWvsCAJB6zvUAAKqn6naeV1JSEiUlJVFUVBQbNmz4/s/69evLNFD0nSZNmkSdOnVSkJR0M1wEAAAAAAAAVGqNGjWKgoKCWLp0aZmPLSgoqDQf/BcWFkZExJdffpnhJAAAVDTnegAA1ZPzvE1r0KBBNGvWLNMxqCDZmQ4AAAAAAAAAsDlZWVnRrFkzH1QDAAAAAFQCDRo0iB122CGys42kVBf+JQEAAAAAAIBKLysrK5o2bRotWrTIdBQAAAAAgBrLYFH1VCvTAQAAAAAAAACSatKkSdSqVSu++eab2LhxY6bjAAAAAADUGE2aNIlmzZoZLKqGDBcBAAAAAAAAVUqjRo2iQYMG8e2338ayZcuipKQk05ES+fLLLyMiolOnThlOAgBARXOuBwBQPTnP+5d69erFtttuG3Xq1Ml0FFLEcBEAAAAAAABQ5WRnZ0fz5s1jq622iiVLlsTq1aurzJARAAAAAEBVkJubG82aNYtGjRpFVlZWpuOQQoaLAAAAAAAAgCqrdu3ascMOO0RRUVHk5+fH6tWrIz8/36ARAAAAAEA55ObmRqNGjaJhw4ZRt25dQ0U1hOEiAAAAAAAAoMrLycmJxo0bR+PGjaO4uDjWrl0bBQUFsWHDhigsLPz+fwEAAAAAiMjKyorc3NyoXbt21K5dO3JzcyMvL89AUQ1luAgAAAAAAACoVrKzs6NBgwbRoEGD//r7kpKSKCoqipKSkiguLk57rkGDBkVExBtvvJH23gAApJZzPQCA6qk6nudlZ2dHVlZW5OTkGCLie4aLAAAAAAAAgBohKysratXK3EekS5YsiYiIOnXqZCwDAACp4VwPAKB6cp5HTZGd6QAAAAAAAAAAAAAAAABAZhguAgAAAAAAAAAAAAAAgBrKcBEAAAAAAAAAAAAAAADUUIaLAAAAAAAAAAAAAAAAoIYyXAQAAAAAAAAAAAAAAAA1lOEiAAAAAAAAAAAAAAAAqKEMFwEAAAAAAAAAAAAAAEANZbgIAAAgIjp16hSdOnXKdAyo8jyXAKhs/G6CiuG5BEBl43cTVAzPJQAqG7+boGJ4LgFQVoaLAAAAAAAAAAAAAAAAoIYyXAQAAAAAAAAAAAAAAAA1lOEiAAAAAAAAAAAAAAAAqKEMFwEAAAAAAAAAAAAAAEANZbgIAAAAAAAAAAAAAAAAaijDRQAAAAAAAAAAAAAAAFBDGS4CAAAAAAAAAAAAAACAGspwEQAAAAAAAAAAAAAAANRQhosAAAAAAAAAAAAAAACghjJcBAAAAAAAAAAAAAAAADWU4SIAAAAAAAAAAAAAAACooQwXAQAAAAAAAAAAAAAAQA1luAgAAAAAAAAAAAAAAABqKMNFAAAAAAAAAAAAAAAAUEMZLgIAAAAAAAAAAAAAAIAaynARAAAAAAAAAAAAAAAA1FCGiwAAAAAAAAAAAAAAAKCGMlwEAAAAAAAAAAAAAAAANZThIgAAAAAAAAAAAAAAAKihDBcBAAAAAAAAAAAAAABADWW4CAAAAAAAAAAAAAAAAGoow0UAAAAAAAAAAAAAAABQQxkuAgAAAAAAAAAAAAAAgBrKcBEAAAAAAAAAAAAAAADUUIaLAAAAAAAAAAAAAAAAoIYyXAQAAAAAAAAAAAAAAAA1lOEiAAAAAAAAAAAAAAAAqKEMFwEAAAAAAAAAAAAAAEANZbgIAAAAAAAAAAAAAAAAaijDRQAAAAAAAAAAAAAAAFBDGS4CAAAAAAAAAAAAAACAGspwEQAAAAAAAAAAAAAAANRQhosAAAAAAAAAAAAAAACghjJcBAAAAAAAAAAAAAAAADWU4SIAAAAAAAAAAAAAAACooQwXAQAAAAAAAAAAAAAAQA1luAgAAAAAAAAAAAAAAABqKMNFAAAAAAAAAAAAAAAAUEPVynQAAKD8iouL/8/fffvttxlIQqZs3LgxIiKWLFmS4SRQ9Xk+QcXwXIKK4bkEFcfzCSqG5xJUDM8lqDieT1AxPJeg4ng+QcXwXIKK4bkEFcfzqWb5oWtwf+ha3eooq6SkpCTTIQCA8pk6dWp07Ngx0zEAAAAAAAAAAAAAoNqZMmVKdOjQIdMxUi470wEAAAAAAAAAAAAAAACAzDBcBAAAAAAAAAAAAAAAADWU4SIAAAAAAAAAAAAAAACoobJKSkpKMh0CACifjRs3xowZM/7r75o0aRLZ2eaHAQAAAAAAAAAAACCp4uLiWLZs2X/9Xdu2baNWrVoZSpQ+hosAAAAAAAAAAAAAAACghrKtAQAAAAAAAAAAAAAAANRQhosAAAAAAAAAAAAAAACghjJcBAAAAAAAAAAAAAAAADWU4SIAAAAAAAAAAAAAAACooQwXAQAAAAAAAAAAAAAAQA1luAgAAAAAAAAAAAAAAABqKMNFAAAAAAAAAAAAAAAAUEMZLgIAAAAAAAAAAAAAAIAaynARAAAAAAAAAAAAAAAA1FCGiwAAAAAAAAAAAAAAAKCGMlwEAAAAAAAAAAAAAAAANZThIgAAAAAAAAAAAAAAAKihDBcBAAAAAAAAAAAAAABADWW4CAAAAAAAAAAAAAAAAGoow0UAAAAAAAAAAAAAAABQQxkuAgAAAAAAAAAAAAAAgBrKcBEAAAAAAAAAAAAAAADUUIaLAAAAAAAAAAAAAAAAoIYyXAQAAAAAAAAAAAAAAAA1lOEiAAAAAAAAAAAAAAAAqKEMFwEAAAAAAAAAAAAAAEANZbgIAAAAAAAAAAAAAAAAaijDRQAAAAAAAAAAAAAAAFBDGS4CAAAAAAAAAAAAAACAGspwEQAAAAAAAAAAAAAAANRQhosAAAAAAAAAAAAAAACghjJcBAAAAAAAAAAAAAAAADWU4SIAAAAAAAAAAAAAAACooQwXAQAAAAAAAAAAAAAAQA1luAgAAAAAAAAAAAAAAABqKMNFAAAAAAAAAAAAAAAAUEMZLgIAAAAAAAAAAAAAAIAaynARAAAAAAAAAAAAAAAA1FCGiwAAAAAAAAAAAAAAAKCGMlwEAAAAAAAAAAAAAAAANZThIgAAAAAAAAAAAAAAAKihDBcBAAAAAAAAAAAAAABADWW4CAAAAAAAAAAAAAAAAGoow0UAAAAAAAAAAAAAAABQQxkuAgAAAAAAAAAAAAAAgBrKcBEAAAAAAAAAAAAAAADUUIaLAAAAAAAAAAAAAAAAoIYyXAQAAAAAAAAAAAAAAAA1lOEiAAAAAAAAAAAAAAAAqKEMFwEAAAAAAAAAAAAAAEANZbgIAAAAAAAAAAAAAAAAaijDRQAAAAAAAAAAAAAAAFBD1cp0AACAquarr76KN954IyZOnBhTpkyJ2bNnx+rVq2PVqlVRUlISDRs2jIYNG0arVq2iY8eOsccee8QhhxwSbdu2zXT0amHRokUxfPjwmDRpUkyfPj1mzJgRy5cvj9WrV0d+fn7UqlXr+3+DrbfeOnbddddo165dtGvXLvbcc8/o2LFjZGVlZfpmAACVkPO81Fi7dm18/vnnMWvWrJgzZ873fxYtWhT5+fmxZs2ayM/Pj/Xr10ft2rWjTp060bhx49h2221j++23j/bt20enTp1in332iXbt2mX65gAAaVZYWBjvv/9+fPjhhzFlypSYNm1aLFmyJFavXh1r1qyJvLy8aNSoUTRp0iTat28fHTt2jH322ScOPPDAyMvLy3T8KmXJkiXxxhtvxIQJE2LKlCkxa9asWLlyZaxevToKCwujYcOG0ahRo9h+++2jY8eO0alTpzjwwAOjS5cumY4OAFRRzvVSY+7cud+/v/nde3Hz5s2LFStWfP9e3Jo1a6KkpCTq1q0beXl50axZs9h2222jdevW0alTp+jcuXP07Nkz6tevn+mbAwBUQc7zMmfjxo3xySefxOjRo2P69Okxffr0+OqrryI/Pz9Wr14dBQUF0aBBg+8/+95hhx2+v7auQ4cOsc8++0Tjxo0zfTPIkKySkpKSTIcAAKjsVqxYEQ899FA88cQTMXHixHKt0bZt2zj99NNj0KBB0aJFiwpOWL3NnDkzHn744Xj55Zdj0qRJW7RWkyZN4oADDojevXvHUUcdFe3bt6+glABAVeQ8r2IVFBTE6NGjY8yYMTFhwoQYP358TJ8+PYqLiytk/W233TYOP/zwOOWUU+Lggw+OWrV8dxIAVFcffPBB3H333fHqq6/GqlWrynx8Xl5eHHzwwTFo0KA4/PDDfdnMJqxbty6eeOKJeOSRR2LMmDHlOm9r2bJl/OhHP4oLLrgg2rRpk4KUAEB141yv4sydOzc+/PDDGD9+fEyYMCEmTJgQy5cvr5C1a9WqFT169IgTTzwxTj755Nhxxx0rZF0AoPpynpcZGzZsiBdeeCGeeuqpGD58eLnu++9kZ2dH586d44ADDoiDDz44Dj30UANfNYjhIgCAzcjPz4/rrrsu7r777lizZk2FrFm7du0488wz44YbboimTZtWyJrV1RtvvBG33HJLDB8+PFJ12tqhQ4c44YQT4ic/+YlBIwCoQZznVYwNGzbE6NGjY8SIETF8+PD46KOPYv369Wnp3bJlyzj//PNj0KBB0ahRo7T0BABS77333otLL700xo4dW2Frtm/fPm666aY47rjjKmzNqq6wsDDuuOOOuPXWW2Pp0qUVsmZ2dnaccMIJceutt0br1q0rZE0AoHpxrrflvvrqq+/fixsxYkTMnj07LX2zs7PjmGOOicsuuyz233//tPQEAKoO53mZsWzZsrjtttvioYceiiVLlqSkR7169eLwww+PE044IU499dTIyclJSR8qB8NFAACb8OKLL8Z5550X8+fPT8n6TZo0idtuuy0GDhyYkvWrsk8//TR+/etfx9tvv522nuedd14MGTIkbf0AgMxxnldxfv/738f111+f0QzNmzeP6667Ls466yzfXgYAVdiKFSviwgsvjMcffzxlPY466qi4//77Y/vtt09Zj6rgww8/jLPOOiumTp2akvXr1asXV199dfz61792fgYARIRzvYpSVFRUKXbyPu644+L222+PnXfeOdNRAIAMc56XGQUFBXHnnXfGDTfcECtWrEhb3yVLltSYL9msqbIzHQAAoLIpLi6Oq666Ko477riUXXAa8a9vDvjZz34WZ599dmzYsCFlfaqSoqKiuO6666JHjx5pHSwCAGoG53kVrzJ8b9HixYvjl7/8ZRxyyCGxYMGCTMcBAMphypQpsffee6f0IoSIiJdffjm6desWo0aNSmmfyuyee+6Jfv36pWywKCJi7dq1cfnll8exxx4bq1atSlkfAKBqcK5XcSrDe3ERES+88EJ07tw5HnrooUxHAQAyyHleZnx3v//mN79J62ARNYPhIgCA/1BUVBSnnnpq/PGPf0zbm7MPPvhgHHroobF27dq09KusFi1aFH379o0//OEPsXHjxkzHAQCqGed51d8777wT3bp1i3HjxmU6CgBQBh988EHsu+++MWPGjLT0W7RoUfTr1y/+8Y9/pKVfZXLJJZfEeeedF4WFhWnp99JLL0XPnj1jyZIlaekHAFQ+zvWqrzVr1sRZZ50VgwYNiqKiokzHAQDSzHleZjz00EPRvXv3mDhxYqajUE0ZLgIA+P+Ki4tjwIAB8dxzz6W998iRI+P444+PgoKCtPeuDGbOnBn77bdffPDBB5mOAgBUQ87zao5vvvkm+vTp45vLAKCKGDt2bPTv3z9Wr16d1r4bNmyIU089Nd5444209s2kK664Iv70pz+lve+UKVPi0EMP9S2qAFADOderGe6777449dRTo7i4ONNRAIA0cZ6XGX/4wx/irLPOinXr1mU6CtVYVkll2S8VACDDfve738VNN91UpmPatm0b+++/f+y+++7RpEmTyMrKiuXLl8fUqVPjo48+ikmTJpVpvZ/85Ccp3yq2spk4cWIccsghsXjx4ozmOO+882LIkCEZzQAApIbzvNS56qqr4o9//GOmY/wfW2+9dYwaNSp22223TEcBADZh/vz5seeee8a3336b+Ji6detG7969o3v37rHDDjtEo0aNIj8/PxYuXBjjx4+PESNGRH5+fuL16tWrF6NHj47dd9+9PDehyrj//vvjnHPOKdMxLVu2jN69e0fnzp2jadOmkZubGytWrIgZM2bE6NGjY+zYsWXaEbRv377x9ttvR05OTlnjAwBVkHO91Ni4cWPk5uZmOsYPOuecc+Lee+/NdAwAIMWc52XGoEGD4r777st0jFiyZEk0bdo00zFIIcNFAAAR8dprr0X//v0TfyB+7LHHxhVXXBF77733ZusmTZoUt956awwbNizxtzU99NBD8fOf/zxRbVU3b9686NmzZ3z99ddlOq5p06bRt2/f6NWrV+y2226x8847R5MmTaJ+/foREbFixYpYsWJFLF++PKZNmxafffZZfPbZZzFhwoRNfkuq4SIAqJ6c56VWkuGirKysaNeuXbRv3/77P23bto0mTZpEo0aNolGjRtGwYcNYu3ZtrFq1KlatWhWzZ8+OCRMmxKeffhpvv/12ub7pvnPnzvHJJ59EnTp1ynnrAIBU2bhxY/Tr1y/xLtbNmzePq666Kn76059G48aNN1m3du3aePbZZ2Pw4MExd+7cRGvvtttuMXbs2O/fV6puPv300+jZs2esX78+UX3v3r3jD3/4Qxx44IGRlZW1ybrZs2fHnXfeGffcc09s2LAh0dpXXXVVXHfddYlqAYCqy7le6iQdLtpqq62iU6dO//V+3I477hgNGzb8/v24WrVqxcqVK2PVqlWxdOnS+Pzzz2PChAnx8ccfx9ixY8uV7+mnn45TTz21XMcCAJWf87zMKM+XPWZlZUW3bt2iT58+0b1799hll11ixx13jAYNGkReXl7k5+d/f33dwoULv7+27rPPPoupU6du8rN1w0XVn+EiAKDGW7p0aey2226JvlGhSZMm8cQTT8SRRx5Zph4ff/xxnHzyyfHVV1+VWpuXlxcTJ06MXXfdtUw9qpoVK1bEAQccEJMnT058zDHHHBNnn312HHbYYVGrVq0y99y4cWN8+OGH8dJLL8Urr7wS06ZN+/5nhosAoPpxnpd6P/Rmdm5ubnTv3j169eoVvXr1iv333z+23nrrcvcoKCiIf/7zn3HffffF8OHDy3Ts1VdfHYMHDy53bwAgNa699tq4+uqrE9Wecsop8cADD0SjRo0Sr19QUBCXXnpp3H333YnqzzrrrHjggQcSr19VbNiwITp37hzTp08vtTYvLy/uueeeGDBgQJl6TJ8+PU466aREO3tmZ2fHyJEj44ADDihTDwCganGulzqbGi7afvvtv38vrlevXrH77rtHdnZ2uft88cUX8dhjj8Xdd98dK1euTHzc1ltvHbNmzdqi9wIBgMrLeV76Pfjgg3H22Wcnrt92223jggsuiJ/85Cex4447lqvnwoUL4+WXX46XXnop3nnnnVi7du33PzNcVP0ZLgIAarxzzjkn7r///lLrWrZsGSNGjIhddtmlXH0WL14c/fr1iylTppRae9RRR8VLL71Urj5VxYknnhh///vfE9X27Nkz7rrrrujWrVuFZhg3blzcc8898cwzz8TAgQMNFwFANeM8L/W+Gy7aeuut48gjj4xjjz02jjjiiGjQoEFK+v31r3+Niy++OBYuXJiovn79+jFz5szYdtttU5IHACi72bNnR8eOHRPtpPO73/0ubrjhhnL3GjJkSFxwwQWl1mVlZcXo0aOjR48e5e5VGd10003xu9/9rtS6Ro0axVtvvVXq7p2bsmbNmujfv3+MHDmy1NouXbrEuHHjIicnp1y9AIDKzbleav3ncFG3bt3i2GOPjeOOOy722GOPlPT75ptv4uKLL46nn3468TGXXnpp3HbbbSnJAwBkjvO89Bs3blz07NkzCgsLS62tW7duXH311XHhhRdGXl5ehWXIz8+PJ554Iu699974/PPPDRfVAIaLAIAabcKECdG9e/coLi7ebF3jxo1j9OjR0b59+y3qt2jRoujRo0fMnz+/1NpXXnmlzN+cX1U89NBDcdZZZ5Val52dHddee2389re/TekFBytWrIiZM2dG9+7dU9YDAEgv53npMXz48CguLo4+ffqUa2fJ8li0aFEceOCBMXXq1ET11157bfz+979PcSoAIKnjjz8+XnjhhVLrfvnLX8Z99923xf3++Mc/xlVXXVVq3d577x0ff/xxZGVlbXHPyuDrr7+Odu3axZo1azZbl5ubG++880706tVri/rl5+dHr169/h979x0eRd22ffxMIYUAgQRCkRZ6711pgihNURARUUFQURRRFL0Ru2LDW1FRLDRBQUClKV2KUqX30JEWOimQnn3+8LHdCjuT7MzuZr6f48hxvO9zX7O/Mysze+1krhlt2bLFbe2YMWP08MMP52o9AADgm+j1rJWdna2PP/5Yt9xyi0qXLm3buqNHj9aQIUMM1RYqVEgnTpxQRESEtaEAAICt6PPsdfnyZTVo0MDQE8lr1aql6dOnq3r16pZmWrVqlRo0aODR4SX4HoaLAACAo3Xr1k2zZ892Wzd9+nTdfvvtHlnzp59+Utu2bZWVlXXVukaNGumXX37xyJq+5NChQ6pdu7bbCxtCQ0M1ZcoU9ejRw6ZkAAAgL6HPy9tOnz6ta6+9Vvv373dbW6FCBR04cMCGVAAAwJ0tW7aofv36buvq16+vNWvWKDQ0NNdrulwudezYUQsXLnRbO3fuXHXp0iXXa/qCIUOGaPTo0W7r3nrrLT311FMeWXPv3r1q2LChkpOTr1pXqlQpHTp0SCEhIR5ZFwAA+AZ6vbzt3Xff1RNPPGGo9osvvtDdd99tcSIAAGAX+jz7DRo0SB999JHbuuuvv17fffedChUqZEMqOEGgtwMAAAB4S1xcnObMmeO27pZbbvHYBaeS1LJlSz344INu6zZs2KAff/zRY+v6iieffNLtYFFgYCCDRQAAIMfo8/K+mJgYffrpp4ZqDx48qH379lmcCAAAGPHWW2+5rQkMDNTnn3/ukYsQJCkgIECffvqpoTtqGsnnDy5cuKDPP//cbV39+vU1dOhQj61bpUoVPf/8827rTpw4oSlTpnhsXQAA4Bvo9fK2xx9/XK1btzZUu2DBAovTAAAAO9Hn2Wvr1q2Gnv7UrFkzzZ07l8EieBTDRQAAwLH++9//yt1DHIODgzVq1CiPr/3yyy8bauzfeecdj6/tTStWrNC3337rtu7VV19lsAgAAOQYfZ4ztG3b1vBw2E8//WRxGgAA4M7Ro0c1Y8YMt3V33323GjRo4NG1y5Yta+gu6z/99FOeeMLk2LFj3d7cR/qtbw4M9Oyfix977DHFxsa6raMfBgAgb6HXc4YxY8YYquNcHAAAeQd9nv0ef/xxZWdnX7WmVKlSmjt3rvLnz29TKjgFw0UAAMCR0tLS9PXXX7ut6969uypVquTx9aOjozVgwAC3dQsXLtSpU6c8vr63DBs2zG1Ny5Yt9fTTT9uQBgAA5EX0ec5y9913G6rbs2ePxUkAAIA7X375pTIzM69aExAQYNl5occee0xhYWFu6yZNmmTJ+nYy8js0bdpUbdq08fjaISEhevzxx93W7dq1Sxs2bPD4+gAAwDvo9ZyhZs2ahi4aPnbsmKFhdwAA4Pvo8+w1f/58LVu27Ko1AQEBmjBhgooWLWpTKjgJw0UAAMCR5s2bp4SEBLd1Q4YMsSzD4MGD3d4ZNCsrS9OmTbMsg51Wrlyp9evXX7UmKChIY8eO9fgdUwEAgHPQ5znLDTfcYOiOXEeOHLEhDQAAuJovv/zSbU2HDh1UvXp1S9YvVqyY7rrrLrd106dPd3vBhC/buHGj4uLi3NZZ2Q/fd999hp7maeTfBAAA8A/0es7RrVs3tzUul0u//vqr9WEAAIDl6PPs9fbbb7utueOOO9ShQwcb0sCJuGoTAAA40tSpU93WVKpUSc2aNbMsQ7ly5dSyZUu3dUay+oN33nnHbc29996rGjVq2JAGAADkVfR5zhIWFqbKlSu7rUtKSrIhDQAAuJIdO3Zox44dbuv69OljaQ4jr3/mzBktWbLE0hxWMtJjFixYULfccotlGSIiInTrrbe6rZs2bZpcLpdlOQAAgD3o9Zyldu3ahuo4HwcAgP+jz7PX5s2b3T61KF++fHrttddsSgQnYrgIAAA4TlZWlqEvE3fccYflWXr16uW25pdfftG5c+csz2KlI0eOaO7cuW7rnnrqKRvSAACAvIo+z5lKlCjhtiYrK8uGJAAA4EoWLFjgtiYsLMzSgRdJatWqlUqVKuW2bv78+ZbmsJKR9/rmm29WeHi4pTmM9MPx8fHasmWLpTkAAID16PWcxci5OInzcQAA5AX0efb68MMP3dZ0795dFSpUsCENnIrhIgAA4Djr169XQkKC27qOHTtansXIGtnZ2Vq6dKnlWaxk5C6k119/vapVq2ZTIgAAkBfR5zlTVFSUR2oAAIB1Fi9e7LbmuuuuU8GCBS3NERgYqA4dOritM5LXF508eVI7d+50W2dHP9ymTRuFhYW5rfPX9xoAAPyJXs9ZjJ5n43wcAAD+jz7PPunp6fr222/d1j388MM2pIGTMVwEAAAcx8gFnAULFlTTpk0tz1KuXDlVqlTtYdxfAADHn0lEQVTJbZ0/f/mRfhsucqd37942JAEAAHkZfZ4znT9/3m1NdHS0DUkAAMC/SU9P188//+y2rn379jakMbbO7t27dfz4cRvSeJbRwfV27dpZnOS3u9Zed911buvohwEA8G/0es5j5FycxPk4AAD8HX2evebPn6+LFy9etaZMmTJq2bKlPYHgWAwXAQAAx1mzZo3bmqZNmyo4ONiGNDLU9K9bt86GJNY4cOCAtmzZctWawMBAdenSxZ5AAAAgz6LPc6ZTp065ralataoNSQAAwL/ZunWrLl++7LbOyCCKJxj9A7w/9mlG+uFKlSqpRIkSNqQx9l6vX7/e7RPPAQCA76LXcx4j5+Kio6MZLgIAwM/R59lr5syZbmu6du1qQxI4HcNFAADAcTZv3uy2pkGDBjYk+U3Dhg3d1uzevVtpaWk2pPG8JUuWuK2pV6+eihcvbkMaAACQl9HnOU9KSor27t3rto67eAEA4D1GerTAwEDVq1fP+jCSypYtq6JFi7qtM5Lb1/hjP5yYmKiDBw/akAYAAFiBXs953N1UUvrtIuOAgADrwwAAAMvQ59nLyBPJb7rpJhuSwOkYLgIAAI5y6tQpnTx50m2dr/2RPTMzU9u3b7chjectW7bMbU3z5s1tSAIAAPIy+jxnWrRokdu7pkVFRalOnTo2JQIAAP9r06ZNbmuqVKmiiIgIG9L8xkif5m8XImRnZ2vr1q1u63ytH5b8770GAAB/otdznlmzZrmtadu2rfVBAACApejz7LNnzx5Df+du1qyZDWngdAwXAQAAR9m2bZuhumrVqlmc5E9Vq1Y1VGc0u69ZsWKF25qmTZvakAQAAORl9HnONH78eLc1999/vwIDOQ0KAIC3GBmktrNHk4z1af7Wox04cMDt0LVk73tdokQJRUZGuq3zt/caAAD8iV7PWTZt2uT2yUX58+fX3XffbU8gAABgGfo8+yxfvtxtTYUKFVSsWDHrw8Dxgr0dAAAAwE4HDx40VFepUiWLk/ypSJEiioqK0vnz569aZzS7Lzl69Kji4+Pd1tWoUcNtzblz5zR//nytXbtWO3bs0KFDh5SQkKDk5GSFhIQof/78io6OVmxsrCpWrKgmTZqoefPmqlKliid+FQAA4OPo85xn/vz5mjNnzlVrgoOD9cgjj9iUCAAA/BsjvU7lypVtSPInIz3h8ePHlZ6erpCQEBsS5Z7RntLu97pixYpu73RLPwwAgP+i13MOl8ulQYMGua275557FBUVZUMiAABgJfo8+/zyyy9ua4xcW+dyufTLL79o0aJF2rZtm3bt2qUzZ84oMTFRmZmZyp8/vwoUKKDSpUsrNjZWtWrVUvPmzdWsWTNbn0AF38ZwEQAAcJRDhw65rSlRooTtDXOlSpW0fv36q9YYye5rdu7caajuSl82s7OzNW/ePL3//vtavny5srKy/rUuJSVFKSkpOnfunPbu3StJ+uijj/547dtvv10DBgxQbGxsDn4LAADgD+jznOXgwYN64IEH3NY9+eSTKl26tA2JAADAv0lJSTF045mKFSvakOZPRi5EyM7O1pEjR2y/SCKnjPaUFSpUsDjJ31WqVMntcBH9MAAA/olez1mee+45rV279qo1UVFRev75521KBAAArEKfZy8j19dd7fc5fvy4xowZowkTJlz1v1tiYqISExN14sQJrV+/Xl9//bUkKSwsTDfeeKN69+6t7t27KygoyPwvgTwj0NsBAAAA7HT48GG3NaVKlbI+yP8oWbKk2xp//CO7kS8/0dHRKlSo0D/+70uWLFGtWrV0yy23aOnSpVccLHJn3759GjlypCpXrqw77rhD+/bty9HrAAAA30af5xxxcXFq06aNjh07dtW62rVr66WXXrIpFQAA+DdHjhwxVGd3n2akR5P8q08z0g9HRUUpLCzM+jB/QT8MAEDeRa/nDNnZ2XrmmWf02muvua0dM2aM4fcfAAD4Lvo8e+3atcttzb/dMCghIUGPPfaYYmNj9frrrxsaCPs3qampmj17tu644w5VqlRJY8eOzfF1evB/DBcBAABHOX78uNuaEiVK2JDE/JruLp70Rbt373ZbExMT87f//6VLl9SnTx/dcMMNhrY3KisrS9OnT1etWrU0YsQIZWRkeOy1AQCA99Hn5X1paWl65ZVXVK9ePR09evSqtSVLltQ333yjkJAQm9IBAIB/Y6RHk+zv04yu5099mj/3w/Hx8VywAACAH6LXy/s2bdqk5s2b680333RbO3ToUPXq1cuGVAAAwGr0efY5duyYkpKS3Nb97/V1CxcuVNWqVfX+++979Bq4w4cP66GHHlKjRo20YcMGj70u/AfDRQAAwFHOnTvntqZ48eI2JPk7I19+zp8/b0MSz3J30ackFStW7I//94EDB9S0aVN9+eWXlmVKT0/Xa6+9platWhnKBwAA/AN9Xt61detWPfXUU4qNjdXzzz+v1NTUq9aXKFFCy5YtU+XKlW1KCAAArsRIjybZ36fFxMQoMND9n0n9qU/z537Y5XLpwoULNqQBAACeRK+XNyUlJWny5Mnq0KGDGjdurPXr17vdZsiQIRo1apQN6QAAgB3o8+xj9Nq1v15f9/rrr6tTp046deqUVbG0ZcsWXXvttRozZoxla8A3BXs7AAAAgJ2MfPkpXLiw9UFysOalS5eUlpam0NBQ6wN5iJHHrf7+ux84cECtW7c2fPeL3Fq7dq2aNWumJUuWqHr16rasCQAArEOf59u2bdumXbt2XbUmPT1diYmJSkxM1KlTp7R161Zt3bpVFy9eNLzO9ddfr0mTJql06dK5TAwAADzB6IUIdvdpgYGBKliwoBISEq5aZzS/L/Dnflj6LX/RokWtDQMAADyKXs93ZWdna/r06VetcblcSk5OVmJiohISErR3715t2bJF+/btU3Z2tqF1IiIi9N5772nAgAGeiA0AAHwEfZ59jFxbJ/35Xv/nP//RG2+8YWGiP6Wnp+uRRx7RgQMH9N///teWNeF9DBcBAABHMXIHzIIFC9qQJGdrnj9/XiVLlrQ4jeecPHnSbU1ISIhOnTqltm3b2jZY9LsTJ06oVatWWrlyJQNGAAD4Ofo83/bVV1/pzTfftOz1ixYtqhEjRmjw4MEKCAiwbB0AAGCO0buEFihQwOIk/2TkQgR/usupkay+3g8DAAD/Qq/nu9LT03XnnXdausaNN96oDz74gKeHAwCQB9Hn2cfItXXSb9fXjRw50rbBor969913lZ6erg8//ND2tWE/hosAAIBjpKSkKCMjw22dN/7IXqhQIUN1CQkJfnPRqcvlMnQniKCgIPXq1cvQY14LFSqkli1bqnbt2ipXrpwKFCigzMxMXbx4Ufv379e6deu0efNmZWVlGc559uxZde3aVevWrVN0dLTh7QAAgO+gz3Ou8uXL65FHHtHAgQMVERHh7TgAAOB/JCYmuq2JiIhQYGCgDWn+zkif5u5CBV9i5L329X4YAAD4F3o958mXL586d+6s4cOHq3Hjxt6OAwAALEKfZ58zZ84YqluxYoWee+45Q7U1atTQtddeq8qVKys6OlqhoaG6fPmyjh07pp07d2rlypWG1/3dmDFjVKlSJQ0ZMsTUdvA/DBcBAADHSE9PN1QXHh5ucZJ/CgsLM1Rn9HfwBampqcrOznZbN3v2bKWmpl61plmzZho2bJi6dOmifPnyXbU2Pj5eX3zxhUaNGmX4i9CBAwfUp08fzZ8/31A9AADwLfR5znPbbbdp+PDhatiwobejAACAqzDS43ijR5OM9Wn+1KP56ntNPwwAQN7lq/2HlPd6PW+LiYnRK6+8ojvuuEORkZHejgMAACxGn2efy5cvG6obOnToVa/DK1CggAYNGqQHHnhAFSpUuOprZWdna9myZXr33Xf1/fffG846dOhQNW7cWNdee63hbeB/7B8ZBAAA8BKjXxyCgoIsTvJPwcHGZr796cuPu4EhI3WFCxfW5MmTtWbNGt16661uB4skqUSJEho2bJgOHDigBx54wHDeBQsW6LPPPjNcDwAAfAd9nvN8++236tmzpx599FGtWbPG23EAAMAVGOlxvNGjScb6NH/q0Xz1vaYfBgAg7/LV/kPKe72et50+fVqDBw/WHXfcoTFjxhh6mgEAAPBf9Hn28cT1dV26dNHevXv1xhtvuB0skqTAwEC1a9dO8+bN0+LFi1WmTBlDGbKzs9WvXz/DA1HwTwwXAQAAxzD6xcHoH7w9yeiaGRkZFifxnLS0tFxtHxsbq7Vr16pPnz452r5gwYL65JNP9Pnnnxv+QvvMM8/41aNxAQDAb+jznOngwYP68MMP1aJFC7Vq1crUnbUAAIA9jPRp3ujRjK7rTz2ar77X9MMAAORdvtp/GF2X/sOctLQ0LVy4UI888ojKli2r4cOH69SpU96OBQAALECfZ5/cXl83fPhwzZkzRyVLlszR9u3bt9eGDRvUpEkTQ/X79u3TO++8k6O14B8YLgIAAI6RmZlpqI4/sntGbu4CUbJkSS1dulRVq1bNdY7+/fvr888/N1R7/vx5vf3227leEwAA2Is+Dz/99JO6dOmiTp06KT4+3ttxAADA/zPSp3Ehgmf46ntNPwwAQN7lq/2H0XXpP3IuISFBr7/+uqpUqaLJkyd7Ow4AAPAw+jz75Ob6uqefflqvvfaaAgICcpUhJiZGixYtUt26dQ3Vjxo1SufOncvVmvBdDBcBAADHMPqlJisry+IkOV/TW1/MciI3j7+dMGGCYmNjPZalb9++uvfeew3VjhkzRikpKR5bGwAAWI8+D7+bP3++ateurR9++MHbUQAAgIz1ON7o0Yyu6089mq++1/TDAADkXb7afxhdl/4j9xITE3XPPfeoZ8+eunTpkrfjAAAAD6HPs09Or6+79tprNXLkSI/liIyM1LRp0xQWFua2NjExUZ9++qnH1oZvYbgIAAA4RkhIiKE6o3e+9ySjd0ww+jv4gpxmHTBggG688UYPp5Hee+89lSpVym3dxYsXNW3aNI+vDwAArEOf5/veeOMNuVyuK/5kZ2crISFBR44c0bZt27Rw4UK99tpruvXWWw31cH919uxZdevWTbNmzbLmlwEAAIYZ6XG80aNJxvo0f+rRfPW9ph8GACDv8tX+Q8p7vZ5ZYWFhVz0X53K5lJaWplOnTikuLk7r1q3ThAkTNGjQIDVr1sz0BbkzZsxQ586ddfnyZYt+IwAAYCf6PPvkJGt4eLgmTJigwEDPjoFUq1ZNL7/8sqHazz77TNnZ2R5dH76B4SIAAOAY+fLlM1TnjS8/RtfM619+IiIi9Pbbb1uQRipcuLDeeOMNQ7VfffWVJRkAAIA16PP8X0BAgAoVKqSyZcuqdu3a6tChg4YPH65vv/1WR48e1YIFC9SjRw/D/60zMjLUs2dPzZs3z+LkAADgaox8dnvrQgQj6/pTj+ar7zX9MAAAeZev9h9G13V6/xESEqKYmBhVqVJFTZo0Ud++ffXhhx9qzZo1Onr0qEaOHKmKFSsafr0VK1aoS5cuSk1NtTA1AACwA32efXKS9YknnlDlypUtSGP8tQ8dOqQ1a9ZYkgHexXARAABwjNDQUEN13jjhaXRNf/ryY/T9/qvevXurcOHCng/z/3r27KmiRYu6rVu5cqWSk5MtywEAADyLPi9vCwwM1I033qgZM2Zox44datWqlaHtMjIy1KdPHx07dszihAAA4EqM9GneuvjQyLr+1KP56ntNPwwAQN7lq/2H0XXpP66sRIkS+s9//qO9e/fq3XffVUREhKHtli1bpmeffdbidAAAwGr0efYxe31dUFCQHnzwQYvSmHv977//3rIc8B5zzzAFAAAw6dChQ1q3bp2la0RERKhr165u68LDwxUcHOz2DgZJSUmeimaY0TULFSpkcRLPCQsLU758+Qw9jvZ3AwcOtDDRb1/I+vbtq1GjRl21Lj09XStWrFDnzp0tzQMAgD+jzzMmL/Z53lSlShUtX75cH330kYYMGeL2v3lCQoL69eunRYsWKSAgwKaUAADgdwULFnRbc+nSJblcLts/q430af7UoxUsWFCnT5++ag39MAAA8CR6vbwvMDBQQ4YMUbdu3XTnnXdq7dq1brd57733dMsttxi+QRAAAPA99Hn2MfJe/1WnTp1UpkwZi9L8pm/fvhoxYoTbQa7Fixdr5MiRlmaB/RguAgAAllqxYoX69etn6RrlypUzdNGpJBUpUkRnzpy5ak1iYqInYplidM2oqCiLk3hWdHS04uPjDdXGxsaqQYMGFieSevTo4Xa4SJI2bNjAcBEAAFdBn2dMXu3zvCkgIECDBg1SuXLldOutt7odMFqyZIm+/vpr9erVy6aEAADgd0Z6HJfLpaSkJNv/6G+kT/OnHi0qKkoHDhy4ag39MAAA8CR6PecoX768li5dqq5du+rHH3+8am12drYefPBB7dq1i5v9AADgp+jz7FO0aFFT9T169LAoyZ+io6PVpk0bLViw4Kp127ZtU3p6ul89KQruBXo7AAAAgJ2io6Pd1iQkJNiQxPya+fPnV1hYmA1pPMfI+/27pk2bWpjkT/Xq1TP0pWbTpk02pAEAAJ5Cn+c8Xbp00ejRow3VvvvuuxanAQAA/8bouSG7+7Ts7GwlJye7rTNzbsvb/LkflvzrvQYAAL+h13OW/Pnz69tvv1XlypXd1u7Zs0fz58+3IRUAALACfZ59zGa16/q6Jk2auK1JT0/Xzp07bUgDOzFcBAAAHMVIQ37q1Ckbkvydkaf7+NMXn9/54nBRaGio6tat67bO3Z1eAQCAb6HPc6aHH35YN9xwg9u69evXa/Xq1TYkAgAAf2W0z7G7Tztz5oyysrLc1vlTn+bP/XBAQICKFCliQxoAAOBJ9HrOExkZqQkTJhiqfe+996wNAwAALEOfZx8zWQsXLqwqVapYmOZPRq/j4/q6vIfhIgAA4CjXXHON2xojf/D2NCNrGsnua8xkrlOnjoVJ/s7IcNGxY8dsSAIAADyFPs+53nzzTUN1M2fOtDgJAAD4X0b7HLv7NKPr+VOf5s/9cPHixRUcHGxDGgAA4En0es507bXX6pZbbnFbt3TpUl28eNH6QAAAwOPo8+xjJmvt2rUVEBBgYZo/Gbm2TuL6uryI4SIAAOAo5cuXd1tz4sQJ64P8j5MnT7qtiY2NtSGJZ1WoUMFwbVRUlIVJzK+VkJCgtLQ0G9IAAABPoM9zrvr16xu6e9ZPP/1kQxoAAPBXRno0yf4+zUiPJvlXn2bkvT5//rzt57vohwEAyLvo9Zxr4MCBbmuys7O1atUqG9IAAABPo8+zT/ny5RUYaGycw9eurZO886R0WIvhIgAA4ChGvjzEx8fr8uXLNqT50/79+93W+NMXn9+ZGS4qXLiwdUFyuJbd/w4AAEDO0ec5m5G7pW7evFnJyck2pAEAAL8LDw9X8eLF3dYdOHDAhjR/MtKjBQQEqFy5cjak8QwjPaXL5dLBgwdtSPMn+mEAAPIuej3nateunSIiItzWcbMfAAD8E32efUJCQgw/vcjOa+vCw8MVGhrqto5r6/IehosAAICjGBl2cblchr6MeMrFixd17tw5t3VmBnV8RcWKFQ3XMlwEAABygz7P2Vq0aOG2JisrS4cOHbIhDQAA+Csjvc6+fftsSPInIz3hNddcY+gP6L7CaE/pi+81/TAAAP6LXs+Z8uXLp8aNG7uts/u/PQAA8Bz6PPsYvb7OzmvrJCkyMtJtDdfW5T0MFwEAAEv17dtXLpfL0p/Dhw8bzlO7dm1DdXv27Mnhb2ye0bWMZvclderUMVwbEBBgYRLvrQUAQF5Fn+e5tfyxz/M1lSpVMlRnZNgLAAB4lpFex84ezeh6/tajVaxYUeHh4W7r7Hyv4+PjlZCQ4LbO395rAADwJ3o95zJyPo5zcQAA+C/6PPvUrVvXUJ3d17txfZ0zMVwEAAAcpWTJkoYe27pp0yYb0hhfKzg42NSgjq8oUqSI4TuPXrx40dowf3HhwgVDdfnz57c4CQAA8BT6PGeLiooyVHf+/HmLkwAAgP9Vv359tzVxcXG23uXSSJ/WoEEDG5J4TlBQkKG+0tf6Ycn/3msAAPAnej3nMnI+jnNxAAD4L/o8+zRs2NBQnZ3X1hldj2vr8h6GiwAAgOMY+RJh5x/ZN27c6LamWrVqCgsLsyGN5xn9AmR04McTjH7ZioiIsDYIAADwKPo858qXL5+hupSUFIuTAACA/2WkR8vOztaWLVusDyPp6NGjOnPmjNs6IxdQ+Bp/7IcLFiyoihUr2pAGAABYgV7PuYycj+NcHAAA/os+zz6+eG1dSkqK0tLS3NZxbV3ew3ARAABwnObNm7utWbt2rTIzM21II61cudJtTdOmTW1IYo0WLVoYqrPzzlVG1oqOjlZISIgNaQAAgKfQ5znXpUuXDNVxghsAAPvVrVtX4eHhbut++uknG9IY69Ek/+zTjPTD+/bt06lTp2xIY+y9btKkiQICAmxIAwAArECv51xGzsdxLg4AAP9Fn2efatWqqUiRIm7rfO3aOkkqVaqUxUlgN4aLAACA47Rr185tTVJSktavX295ll9//VX79+93W3fDDTdYnsUqHTp0MFS3bds2i5P8aevWrW5rypYta0MSAADgSfR5znXs2DFDdQUKFLA4CQAA+F+hoaG67rrr3NYtXbrUhjTG1qlWrZpKly5tQxrPMtIPS/a812lpaVq1apXbOvphAAD8G72ecxk5H8e5OAAA/Bd9nn0CAwPVvn17t3Xbt2+Xy+WyIZGxa+skrq/LixguAgAAjtOkSRMVKlTIbd38+fMtz2JkjYCAAMMXBviiGjVqGPritm7dOhvS/HZhg5EvQFWrVrUhDQAA8CT6POfatWuXoTpOcAMA4B1G/jj+008/KTk52dIc2dnZWrhwods6fx14KVWqlKpXr+62zo5+ePny5UpJSXFb56/vNQAA+BO9njMZOR/HuTgAAPwbfZ59jNy8++LFi9q7d68NaYxfx8f1dXkPw0UAAMBxgoODDV3E+fXXX1ueZdq0aW5rGjVqpKJFi1qexUqdOnVyW7N27VobkkibN29Wenq627rGjRvbkAYAAHgSfZ5zrVixwm1NUFCQypcvb30YAADwDzfddJPbmtTUVM2ePdvSHD/99JNOnDjhts5IXl9lJPvs2bOVmppqaQ4j/XDx4sVVv359S3MAAADr0es5z5kzZ7R79263dRUrVrQhDQAAsAp9nn06duyogIAAt3V2XV9nZLgoMjJSVapUsSEN7MRwEQAAcKQ777zTbc2+ffssfZrOr7/+qpUrV7qtM5LV1911111uaw4fPqxNmzZZnmXmzJmG6po3b25xEgAAYAX6POfJzMzUN99847auevXqCgkJsSERAAD4X3Xq1FGNGjXc1k2ZMsXSHJMnT3ZbEx0d7dd3OTXSYyYlJVl60celS5f03Xffua274447DF00AQAAfBu9nvN8/fXXcrlcbuvq1atnfRgAAGAZ+jz7XHPNNWrTpo3bOqPXveXG2bNntXz5crd1TZs25dxeHsRwEQAAcKSuXbuqUKFCbuvee+89yzK8//77ys7OvmpNYGCgevXqZVkGu7Rs2VKxsbFu6z7++GNLc6SmpmrixIlu64oWLaomTZpYmgUAAFiDPs95vv76a8XHx7uta926tQ1pAADAlRi5+czChQu1Z88eS9Y/c+aMvvzyS7d1PXv2VL58+SzJYIfGjRurcuXKbuus7IcnTJighIQEt3VG/k0AAAD/QK/nHFlZWRozZozbuoCAALVq1cqGRAAAwEr0efa555573Nb88MMP+vXXXy3NMWHCBKWlpbmt69y5s6U54B0MFwEAAEcKCwtTz5493dbNnDlT+/fv9/j6586d02effea2rkOHDipZsqTH17dbQECA+vXr57Zu6tSpunDhgmU5vv76a507d85tXdeuXRUUFGRZDgAAYB36PGdJTk7WiBEjDNXeeOONFqcBAABX06dPH7fnW1wul9544w1L1h89erRSU1Pd1t17772WrG8nI7/D2rVrDd2B1Kz09HT997//dVtXrVo1bu4DAEAeQq/nHB9//LGhi4fr16+vYsWK2ZAIAABYiT7PPj169HB7E83s7GyNHTvWsgxZWVn65JNPDNXecsstluWA9zBcBAAAHOuJJ55w+2jOzMxMPfnkkx5f+/nnn1diYqLbuqFDh3p8bW8ZNGiQIiIirlpz6dIly37nCxcu6D//+Y+h2v79+1uSAQAA2IM+zzkeeughHT582G1dsWLFdNNNN1kfCAAAXFHZsmXVo0cPt3WTJ0/Wpk2bPLr2r7/+amjg5dprr1XTpk09urY3DBw4UPnz53dbN3ToULdP3DRr9OjROnTokKG1AQBA3kGv5wzbtm3T008/bajWyJ33AQCA76PPs0+BAgX08MMPu6179913FRcXZ0mGt99+WwcOHHBb1759e5UrV86SDPAuhosAAIBjVa9eXV26dHFbN3v2bM2YMcNj6/7888+GJvwbNGig9u3be2xdSTp8+LACAgLc/rRp08aj60pSVFSUHnzwQbd1EyZM0Pz58z2+/uDBg3Xy5Em3dfXr19e1117r8fUBAIB96POs7/Pmzp2rU6dOeeS1csLlcmno0KGaMmWKofq+ffsqX758FqcCAADuDBs2zG1Ndna27r//fqWnp3tkTZfLpQcffFApKSlua43kM6Nv376GejRPP0EoOjra0M1zNm3aZOgCDaP27dunl19+2W1dyZIldffdd3tsXQAA4Bvo9azr9c6dO6fvvvsu96FzYc+ePbrpppt0+fJlt7X58+fXXXfdZUMqAABgB/o8e87pSdLjjz+u8PDwq9akpqaqX79+Hr9p0K5du/Tiiy8aqn300Uc9ujZ8B8NFAADA0V544QUFBrpvie6//37t3bs31+vFx8erd+/eysrKcltrtFn3J8OGDVNkZKTbun79+ungwYMeW3fcuHGGLzzNi+87AABORJ9nrW+++UYVK1bU8OHDFR8fb+vaFy5cUM+ePQ1fCFugQAE99dRTFqcCAABGNGjQQDfffLPbuk2bNumxxx7zyJqvv/66FixY4LauUaNG6tq1q0fW9AXDhg0z9PSi4cOH6+eff871epcuXdIdd9yh5ORkt7X/+c9/FBoamus1AQCAb6HXs05SUpJuu+02tWjRQt9//71cLpet68+dO1fNmzc3dCNHSXrkkUdUtGhRi1MBAAC70OfZJyYmxtB7uGbNGj3zzDMeW/fixYvq1auX0tLS3NY2bNgwT73n+DuGiwAAgKM1bNhQ9913n9u6hIQEtWvXLlcDL2fOnFH79u119OhRt7UdO3bMk0148eLF9corr7itO3XqlNq1a+eRR7h+/vnnhp6YJEmtW7c29GUYAAD4Pvo86126dEmvv/66ypUrp3vuuUc//vijx++Q9VdZWVmaMGGCatWqpZkzZxre7umnn1axYsUsywUAAMz573//a2iwZOzYsXr22WdztdZHH31k6DUCAgL0wQcfKCAgIFfr+ZLSpUtr+PDhbusyMjLUpUsXbdiwIcdrXb58WV27dtXmzZvd1tauXVsPP/xwjtcCAAC+jV7PWmvWrFGXLl1UvXp1vfvuu5bf9OfAgQO68847dfPNN+vixYuGtilWrJiefvppS3MBAAD70efZZ8SIESpbtqzburffflvPPvtsrgfPT58+rQ4dOmj79u2G6keNGpXn3nP8ieEiAADgeCNHjlR0dLTbumPHjqlJkyaaP3++6TXWrVunRo0aaefOnW5rw8LCNHr0aNNr+IuHH35YjRo1clt3+PBhNWvWzPATh/5XUlKSHnzwQd1///2GniCQP39+ffrppzlaCwAA+Cb6PHukp6dr8uTJateuncqWLauBAwdq9uzZhi84cGffvn0aOXKkKlWqpPvuu08nTpwwvG3Dhg09etcuAACQexUrVjR8seHIkSN15513KikpydQaaWlpGjx4sAYNGmSovl+/fmrWrJmpNfzBk08+qcqVK7utS0hIUOvWrTVp0iTTa8TFxalZs2ZatmyZ29qAgAB9+OGHCgoKMr0OAADwD/R69oiLi9MTTzyh0qVLq127dnrnnXe0fft2j9z4JyUlRfPmzVP37t1VrVo1TZs2zdT2n3zyiaKionKdAwAA+Bb6PPtERETogw8+MFQ7cuRI3XzzzYafMPm/lixZokaNGumXX34xVD9gwAC1adMmR2vBPzBcBAAAHK9YsWKaOHGioYn6c+fOqVOnTrrtttsM3c1z165d6tevn1q0aKFff/3VUJ7Ro0cb+qO/vwoKCtLXX3+twoULu629ePGi7r77bjVv3lzffvutMjIy3G5z6tQpvfnmm6pYsaKpYaH33ntPVapUMVwPAAB8H32e/Y4fP65PPvlE3bp1U1RUlKpXr667775br732mmbMmKE1a9bo4MGDunjxolJTU5Wdna3MzExdvnxZJ0+e1Pbt2/X999/rvffe07333qtKlSqpSpUqevbZZ3X48GFTWaKjozV16lQFBwdb88sCAIAce+6559S8eXNDtdOmTVPlypU1ZswYJSYmXrU2JSVFX3zxhapVq2b4D/BVqlTJkwPgkhQaGqpp06YZuqvs5cuX1bdvX7Vt21bLli1ze8fTw4cP64knnlCdOnUM39X0mWeeUatWrQzVAgAA/0WvZ5+srCz9+OOPevLJJ1WnTh0VKVJEN9xwg5544gmNHTtWixYt0rZt2xQfH6/k5GRlZGTI5XIpLS1NFy9e1IEDB7R69WpNnjxZw4cP1/XXX6+iRYuqa9eu+vbbb5WZmWkqz+DBg3Xrrbda9NsCAABvo8+zz80336xHH33UUO28efNUuXJlPfPMMzp48KDbepfLpR9//FFdunTRDTfcoKNHjxpap0qVKnrvvfcM1cJ/Bbhy+ywsAACAPGLYsGF6++23TW1TpUoVXXfddapZs6aioqIUEBCgCxcuaM+ePVqzZo22bdtm6vV69+6tL7/80tQ2Zhw+fFixsbFu61q3bq3ly5dblkOS5s6dq1tuucXUo1kjIyPVsmVL1alTR2XLllWBAgWUlZWlCxcu6MCBA1q3bp02btxo6ElFfzV48OA8/YUTAACno8/7k6f6vL59++bozvZ2CQ8P15IlS9SiRQtvRwEAAFdw9OhR1a9fX+fOnTO8TXh4uFq3bq2GDRuqdOnSKliwoJKTkxUfH6+NGzdq+fLlpu6IGh4erjVr1qhu3bo5+RXcMtozLVu2zNI7fn700UeG7/j6uzJlyqh169aqU6eOoqOjlS9fPl28eFH79+/XunXrtH79elPn9Vq2bKlly5bx1CIAAByCXu9Pnuj1jJ7786bbbrtNM2bMUGAg9zoHACAvo8/7k9Xn9DIyMtSmTRutXr3a8DYBAQGqWbOmWrRooSpVqig6OlohISG6fPmyjh8/rp07d2rlypU6deqUqSxFixbV6tWr8/yNNCFx204AAID/98Ybb+jYsWOaOnWq4W327t2rvXv3emT9du3aafz48R55LX/QtWtXffrpp3rggQcMX4iQkJCgefPmad68eR7L0atXL7377rseez0AAOB76POcJSoqSvPmzTN85zQAAOAdZcqU0Q8//KD27dsbvnggJSVFCxYs0IIFC3K9fr58+TRz5kzLLkLwJQ8//LCOHDmit956y/A2R48e1ZQpUzyyfu3atTVr1iwGiwAAcBB6PWe55557NG7cOAaLAABwAPo8++TLl09z587V9ddfr61btxraxuVyaceOHdqxY4fHckRGRmru3LkMFjkEHT0AAMD/CwwM1BdffKHbbrvN9rWvu+46zZ49W6Ghobav7U0DBgzQJ5984rUTzQ8++KC+/PJLTnQDAJDH0ec5R926dbV69WoGiwAA8BNNmjTRvHnzVKBAAVvXzZcvn6ZOnapOnTrZuq43vfnmmxo8eLDt61arVk2LFy9WVFSU7WsDAADvotfL+4KDg/Xqq69q4sSJCg7mHucAADgFfZ59oqKitHTpUtWrV88r68fExGjZsmVq1qyZV9aH/biKEgAA4C+Cg4M1Y8YMPf3007at2a9fPy1ZskQRERG2relL7r//fi1YsEDR0dG2rRkaGqoxY8Zo7NixDBYBAOAQ9Hl5W3BwsIYOHap169apatWq3o4DAABMaNWqldasWaMKFSrYsl5MTIx+/PFHde/e3Zb1fMno0aM1evRo2y787NSpk9auXavixYvbsh4AAPA99Hp5V/Xq1fXzzz/r2WefVUBAgLfjAAAAm9Hn2Sc6Olo///yz7rzzTlvXbdGihTZs2KD69evbui68iyspAQAA/kdgYKDeeOMNfffddypVqpRl6xQpUkSfffaZxo8f7/g72d9www3atGmTLXeWaN68udatW6eHH37Y8rUAAIBvoc/znFatWik2NtbbMRQQEKCbb75Z27dv16hRo/Ls+w0AQF5Xq1YtbdiwQXfddZel63Ts2FEbN27UddddZ+k6vmzw4MH68ccfLR3IDg8P12uvvaa5c+cqMjLSsnUAAIB/oNfLvcjISN10000KCQnxdhQVL15cH374obZt26amTZt6Ow4AAPAi+jz7RERE6KuvvtInn3xi+RPC8+fPr1deeUUrVqxQmTJlLF0LvofhIgAAgCvo1q2b9uzZoyeffNKjd5sPCQlR//79FRcXpwEDBnjsdf1d2bJl9f3332vu3LmqXbu2x1+/Ro0amjx5slatWqW6det6/PUBAID/oM/Lvfvuu08HDx7Uli1b9OKLL6pevXq2rh8ZGamBAwdq586dmj17tqpVq2br+gAAwPOKFCmiKVOmaNmyZWrYsKFHX7tKlSqaOXOmfvjhB5UuXdqjr+2PWrZsqW3btmnkyJEevRghMDBQ3bt3186dOzV8+HCeGA4AAP5Ar5c7RYoU0fz583X27FlNmzZNvXr1sn2Iu1GjRpowYYKOHDmiQYMG2fY0TAAA4Nvo8+z1wAMPaO/evRo0aJDCw8M9+tqhoaHq37+/9uzZoxEjRtDvOVSAy+VyeTsEAACAr7tw4YI+/fRTTZ48WTt37szRa1SsWFF33nmnHn74YZUsWdLDCY05fPiwoTvMt27dWsuXL7c+0FUsX75cH3/8sRYsWKDExMQcvUZkZKS6du2qPn36qEOHDgoICPBwSgAA4O/o8zzn5MmT+vnnn7Vq1SqtWrVKW7ZsUWZmpsdev3LlymrdurVuueUWdejQwSfu1AoAAKyzYsUKjRkzRvPnz1dycrLp7cPCwtSuXTs99NBD6tSpk1fOC/Xt21eTJk1yW7ds2TK1adPG+kD/4vLly5o0aZImTJigDRs2KCd/Oi5VqpRuv/12Pfroo6pYsaIFKQEAQF5Dr5d7GRkZ2rhx4x/n4lavXq1Tp0557PUjIiLUvHlzdejQQd27d1eFChU89toAACDvos+zz7lz5/T555/ryy+/1Pbt23P8Og0aNNDtt9+ufv36qXjx4h5MCH/EcBEAAIBJR44c0aJFi7R161bt2rVLhw8fVmJiopKSkuRyuVSwYEEVLFhQZcqUUY0aNVS7dm21b9+eu6nnUGZm5h8nxXft2qW4uDjFx8crKSlJly5dUkBAgCIiIhQZGamyZcsqNjZWdevWVfPmzdWwYUMuOgUAAIbR53nW5cuXtWPHDu3fv/+Pn4MHD+rChQtKTk5WcnKykpKSlJWVpdDQUIWGhqpAgQKKiYlR8eLFVaZMGVWtWlXVqlVTw4YNOZkNAIBDpaena+XKlX+cG9qzZ4/Onj2rpKQkXb58WWFhYSpYsKCioqJUtWpV1ahRQ02bNlW7du2UP39+b8f3K6dOndLChQu1efNm7dq1SwcPHlRCQoKSkpKUmZmpAgUKqGDBgrrmmmtUvXp11axZU9dff73q16/v7egAAMBP0et51qFDhxQXF/e383EnTpxQUlLSH+fjLl++rODgYIWEhCgsLEzR0dEqXry4SpQooYoVK6patWqqWbOm6taty93qAQBAjtHn2ev48eNavHixtm7dqt27d//tvF5aWprCw8MVERGhmJgYxcbGqkqVKmratKlatGiha665xtvx4UMYLgIAAAAAAAAAAAAAAAAAAAAAAAAcKtDbAQAAAAAAAAAAAAAAAAAAAAAAAAB4B8NFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAAAAgEMxXAQAAAAAAAAAAAAAAAAAAAAAAAA4FMNFAAAAAAAAAAAAAAAAAAAAAADAZyQkJGjz5s3ejgE4BsNFAAAAAAAAAAAAAAAAAAAAAADA6y5fvqw333xTFSpUUIMGDfTll196OxLgCMHeDgAAAAAAAAAAAAAAAAAAAAAAAJwrPT1dn376qV577TXFx8f/8X/PyMjwYirAORguAgAAAAAAAAAAAAAAAAAAAAAAtsvKytIXX3yhl156SUeOHPF2HMCxGC4CAAAAAAAAAAAAAAAAAAAAAAC2cblcmj59ul544QXFxcV5Ow7geAwXAQAAAAAAAAAAAAAAAAAAAAAAW8ybN08jRozQ1q1bvR0FwP9juAgAAAAAAAAAAAAAAAAAAAAAAFhq2bJlevbZZ7VmzRpvRwHwPxguAgAAAAAAAAAAAAAAAAAAAAAAlli3bp2effZZLV261NtRAFwBw0UAAAAAAAAAAAAAAAAAAAAAAMCjdu/erWeeeUZz5szxdhQAbgR6OwAAAAAAAAAAAAAAAAAAAAAAAMhbPvnkEwaLAD/BcBEAAAAAAAAAAAAAAAAAAAAAALBVQECAbr31VvXs2dPbUQDHY7gIAAAAAAAAAAAAAAAAAAAAAADYplu3btqyZYu+/fZbVa9e3dtxAMcL9nYAAAAAAAAAAAAAAAAAAAAAAACQ93Xo0EEjR45Uw4YNvR0FwF/w5CIAAAAAcJjly5crICDA8A/gDfw7BYC/47gIAAAAXzNp0iRDvemYMWO8HfVfHTlyRNOnT9dzzz2n22+/Xddee60qVKigqKgoRUREKCgoyHD/PXHiRG//OgAAAAAA+LzmzZtr2bJlWrhwod8MFnXu3NnteYGIiAgdPnzY21GBXOPJRQAAAAAAAAAAAAAAwLDz58/rySefdFtXvXp1PfjggzYkMmbTpk364osvNG/ePB04cMDbcQAAAAAAcIQ6derolVde0c033+ztKKa9/fbbWrhwobKysq5Yc/nyZT366KOaO3eujckAz+PJRQAAAAAAAAAAAAAAwLBhw4bp7NmzbutGjRql4GDv3/N0/vz5atq0qRo2bKjRo0czWAQAAAAAgE0ee+wxbdmyxS8HiySpRo0auv/++93WzZs3T7NmzbI+EGAhhosAAAAAAAAAAAAAAIAhq1at0vjx493WtW/fXp06dbIh0ZUdP35cnTt3VqdOnbR+/XqvZgEAAAAAwIliY2MVEBDg7Ri58tJLL6lgwYJu6wYPHqzLly/bkAiwhvdvEQQAAAC1adNGK1as8Nr6+fLlU2hoqEJDQ1WgQAEVK1ZMMTExKlGihKpUqaIqVaqoRo0aqlKlit9/2QMAM+w6PoeEhPxxHP7rT6FChRQTE/OPn/Lly6tatWqKioqyPBsAAACuzNvf5z3t3nvv1cSJE70dAwDgw7KzszV48GC5XC63ta+//roNia7s559/Vrdu3XTu3Dmv5gCcJDMzUzt27NCGDRv++Nm+fbvS09MNv0a5cuV0+PBh60L6uYkTJ6pfv37ejuFXWrdureXLl3s7BgAAAPxYTEyMHn/8cb388stXrTt69KjeeOMNt3WAr2K4CAAAAMrIyFBGRoaSk5N17tw5HTly5F/rihQpombNmqlt27a65ZZbVKVKFZuTAkDelJ6ervT0dCUlJZnarlixYqpWrZqqVaumGjVq6Nprr1X9+vUVHMzXfQAAAAAA4Hnjxo3Tpk2b3NZ1795djRo1siHRv1u0aJFuvvlmpaWleS0DkNdlZWVp165d2rBhgzZu3KgNGzZo69atSk1N9XY0AAAAAPC4oUOHasyYMW5vYjJq1Cj1799f5cqVsykZ4DlcbQQAAADDLly4oPnz52v+/PkaNmyYatSoob59++q+++5TdHS0t+MBgOOcOXNGZ86c0U8//fTH/y0iIkLNmjXTddddp9atW6tly5YMGwEAAAAAgFxLSEjQiBEj3NYFBQXplVdesSHRv9u+fbt69OjBYBHgQdnZ2YqLi/vbE4m2bNmiy5cvezsaAAAAANiiUKFCevrppzVs2LCr1qWkpOipp57S9OnTbUoGeE6gtwMAAADAf+3atUvDhg1T6dKl9eCDD+r48ePejgQAjnfp0iUtXbpUL730kq6//nqVLFlSDzzwgBYvXqzMzExvx4OfmjhxogICAgz9lC9f3ttxgX/g3zAAAP6Hz2/A97z22ms6ffq027revXurevXqNiT6p4yMDPXp08f006EB/Mnlcmnv3r366quv9MQTT6hVq1aKjIxUjRo1dM899+j999/X6tWrGSwCAAAA4DiPPPKIihcv7rZuxowZWr16tQ2JAM9iuAgAAAC5lpqaqk8//VSVK1fWc889p/T0dG9HAgD8v7Nnz+qzzz5Thw4dVLJkST322GM6dOiQt2MBAAAAAAA/cvToUX3wwQdu6wIDA/Xss8/akOjfvfPOO9q2bZvX1gf8WVxcnK6//noVKVJEVatW1V133aV3331XP/30k5KTk70dDwAAAAC8Ljw8XEOHDjVU6+4JR4AvCvZ2AAAAAOQdKSkpevXVVzVr1ixNnjxZ9erV83YkAMBfnD17Vu+//77GjBmjW2+9VU8++aSaNm3q7VgAAAAAAMDHPffcc0pNTXVb17NnT1WtWtWGRP+UlJSkt99+O8fbFy5cWA0aNFCpUqUUGRmpQoUKKTDQ2P1a69atm+N1AV9x8uRJLVu2zNsxAAAAAMCnPfTQQ3rzzTd17ty5q9atWrVKs2fP1i233GJTMiD3GC4CAACAx+3YsUMtWrTQlClTdNttt3k7DgDgf2RlZWnmzJmaOXOm2rZtq9GjR6t27drejgUAAAAAAHzQ9u3bNXnyZLd1AQEBGjFihA2J/t348eN1/vx5U9sUKVJE9913n/r376/q1atblAwAAAAAAOQVBQoU0GOPPabnn3/ebe1//vMfdenSRUFBQTYkA3LP2G12AAAAAJNSUlLUo0cPjR071ttRAABXsWzZMjVo0EBDhgxRQkKCt+MAAAAAAAAf8/zzzys7O9ttXceOHVWzZk0bEv27SZMmmapv1aqVdu3apVGjRjFYBAAAAAAADBs0aJAiIiLc1u3evVtTp061IRHgGQwXAQAAwDIul0uDBg3StGnTvB0FAHAVmZmZGj16tKpUqaLvvvvO23EAAAAAAICP2Lx5s2bNmmWo9qmnnrI2zFUcOHBAmzdvNlxfs2ZNLVq0SCVKlLAwFQAAAAD4r48++kgBAQGGf9555x1vR861zMxMNWjQwPDvHBISoq1bt3o7NrwgKipK/fr1M1T7yiuvKCsry+JEgGcEezsAAAAAzKtTp466du3qkdfKzMxUWlqakpOTdebMGR0/flz79+/XxYsXPfL62dnZuvfee1WtWjXVq1fPI68JAL4qt8fn1NRUpaamKi0tTampqUpMTNTJkyd18uRJnTp1ShkZGR5M+0+nT5/WbbfdpmHDhmnkyJE8mhsAAAAAAId78cUXDdU1bNhQbdq0sTTL1SxZssRU/fjx4xUaGmpRGgAAAADwf2afTLtnzx6LktjnrbfeMnXjihEjRqhu3boWJoIve/zxx/Xxxx+7HRzau3evvvzyS91zzz02JQNyjuEiAAAAP1S/fn29+uqrlq7x66+/au3atVqwYIHmzp2rs2fP5vi10tPT1bt3b23cuFHh4eEeTAkAvsXK47PL5dKpU6e0Y8eOP342btyorVu3yuVyeXStt956S+vXr9e0adNUvHhxj762UW3atPH47wUA/ozjIpA33HvvvZo4caK3YwAAYMiWLVs0Z84cQ7VDhgyxNowbK1asMFxbv359NWnSxMI0AGCdvn37qm/fvl7NEBAQYKp+woQJXs8MAADMq1Wrlqn6uLg4i5LYY8+ePXr55ZcN1zdo0EDDhw+3MBF8XYUKFdS1a1dDT3x+9dVX1adPHwUGBlofDMgF/oUCAADgX5UtW1Y9e/bU+PHjdfz4cU2dOtX0XUn+avfu3Xr33Xc9mBAAnCUgIEAlSpRQ+/btNWTIEH3++efavHmzzpw5o+nTp+vBBx/06CDQ8uXL1aJFCx07dsxjrwkAAAAAAPzHm2++aaiuWLFiuv322y1Oc3Xbtm0zXHvHHXdYmASAJJUqVUpdu3bVSy+9pEGDBnk7DgAAAHIgOjpaJUqUMFzvz08uys7OVv/+/ZWWlmaoPiQkRJMmTVJwMM/4cLqHH37YUN2+ffv03XffWZwGyD2GiwAAAOBWSEiIevXqpW3btmn06NE5fvrQm2++qXPnznk4HQA4W3R0tG6//XaNHTtWx44d09y5c9WjRw+FhITk+rUPHjyotm3b6sSJEx5ICgAAAAAA/MWhQ4c0Y8YMQ7X333+/QkNDLU50ZZmZmdq7d6/h+gYNGliYBnCeEiVKqHPnznrhhRc0d+5cnTx5UsePH9ecOXP0/PPPq1GjRt6OCAAAgBwy8/SiM2fO6Pz58xamsc4HH3yg1atXG65/4YUXTD/ZCXlT+/btVaVKFUO1b731lsVpgNxjuAgAAACGBQYGavDgwVq5cqViYmJMb5+YmKjPP//cgmQAAEkKDg5Wly5dNGPGDB04cEAPPfRQroeM9u/fr7Zt2+rkyZMeSgkAAAAAAHzdqFGjlJWV5bYuMDBQDz74oA2JruzEiRPKyMgwXF+nTh0L0wB5W/HixdWpUyc999xzmj17to4dO6aTJ09q3rx5evHFF9WlSxdTd7cHAACAbzM7QBMXF2dREuscOnRIzz77rOH6xo0b6+mnn7YwEfxJQECABg4caKh2/fr1Wr58ubWBgFxiuAgAAACmNWrUSAsWLFCBAgVMbzt+/HgLEgEA/lfp0qX10Ucf6cCBA+rVq1euXmvv3r269dZbTV2oAwAAAAAA/NPFixc1adIkQ7Xt27dX2bJlLU50dfHx8YZrg4KCVLx4cQvTAHlHsWLFdNNNN+nZZ5/Vd999p6NHjyo+Pl7ff/+9Xn75Zd1888265pprvB0TAAAAFqpZs6ap+j179liUxDoPPPCALl26ZKg2NDRUEydOVFBQkMWp4E/69OmjfPnyGap97733rA0D5BLDRQAAAMiR+vXr5+gLz969e7V9+3bPBwIA/KvSpUtr6tSp+u6773J119B169Zp2LBhHkwGAAAAAAB80fjx4w1fWNWvXz+L07h39uxZw7U5uWEW4BTFixfXf/7zH33zzTc6cuSITp8+rfnz5+vVV19Vt27dVLp0aW9HBAAAgM3MPrnI34aLxo0bpyVLlhiuf+mll1SjRg0LE8EfFStWTF27djVUO3fuXB0+fNjaQEAuMFwEAACAHOvfv7+aNGliersff/zRgjQAgKvp1q2bduzYoVatWuX4Nd577z3NmjXLc6EAAAAAAIBPyc7O1pgxYwzVFi5cWLfeeqvFidy7fPmy4VqGi4Arq169ukaOHKnbbrvN608kAwAAgG+oWbOmAgICDNfHxcVZmMazTpw4oaFDhxqub9q0qZ588kkLE8Gf9e/f31CdmfMugDcwXAQAAIBceeaZZ0xv8/PPP1uQBADgTnR0tBYtWqS77rorx6/Rr18/nTlzxoOpAAAAAACAr1i4cKEOHjxoqLZHjx4KDQ21OJF7aWlphmuDg4MtTAIAAAAAeUvBggVNDZ7705OLHnroISUkJBiqDQsL06RJkxQUFGRxKvirDh06qFixYoZqx48fr9TUVIsTATnDcBEAAABypXPnzoqMjDS1jT/dqQQA8prQ0FBNmTJF999/f462v3jxokaMGOHhVAAAAAAAwBd8/vnnhmvvvPNOC5MYl5mZ6e0IAAAAAJBn1apVy3DtgQMHlJGRYWEaz5g2bZrmzJljuP7VV19V1apVLUwEfxccHKwePXoYqj1//ry+++47ixMBOcNwEQAAAHIlJCRErVq1MrXN/v37LUoDADDq448/VufOnXO07eeff66tW7d6OBEAAAAAAPCmM2fOaO7cuYZqS5QooTZt2lgbyCCXy+XtCAAAAACQZ9WsWdNwbWZmpuGn4XrL2bNnNXjwYMP1LVq00OOPP56rNSdOnKiAgAC//pkyZUqu3gMn6NWrl+HacePGWZgEyDmGiwAAAJBrjRo1MlWfkpKilJQUi9IAAIwICgrS119/rTp16pjeNjs7O9cnUAEAAAAAgG+ZPHmy4TtMd+/eXYGBXG4AAAAAAHmdmScXSdKePXssSuIZjz32mM6cOWOoNjw8XBMnTuT7Lwxp2bKlSpUqZaj2xx9/1KFDhyxOBJgX7O0AAAAA8H8VKlQwvU1ycrLCw8MtSOM5GRkZ2rRpk9avX68DBw7o0KFDOnz4sC5evKhLly7p0qVLysjIUERExB8/11xzjWJjY1WhQgXVqlVL1157rWJiYrz9q/iMkydP6ueff9aOHTu0Y8cO7du3TwkJCUpKSlJSUpKCg4OVP39+FSxYUKVLl1ZsbKyqVq2qFi1aqGnTpoqIiPD2r+Bx6enp+vnnn7V+/Xrt3r1bu3fv1unTp5WYmKikpCTly5dPBQsWVMGCBVWkSBFVrVpVNWrUUM2aNdWyZUtFRUV5+1eAH4uIiNDkyZPVuHFjpaenm9p22bJlWrlypemn1zlBdna2du7cqW3btikuLk779u3TyZMndfr0aZ07d06pqalKS0tTRkaGQkNDlT9//r/9/H4MLF++vMqVK6fy5cv/8RMSEuLtX8/x6A88Lz4+XqtXr1ZcXJz27t2rvXv36uzZs0pOTlZycrIuXbqkfPnyqWjRoipbtqyqVKmievXqqXv37ipdurS34yMX2J88i14beUVGRob27NmjnTt36uDBgzp48KCOHj2qM2fO6OzZs0pMTFR6errS0tIUHBys8PBwhYWFqWDBgipVqpRKly6tMmXKqFatWmrQoIGqVq2qoKAgb/9aXrNv3z6tX79e+/fv1+HDh3XkyBEdP35cly5d0uXLl3X58mVlZGQoJCREoaGhioyMVNGiRVW8ePE/jrc1atRQvXr1VLJkSW//Oo7FZ6bn0YP+u8mTJxuuveWWWyxMgqvhmOBZHA8AWCk1NVW//PKLNm/erEOHDungwYM6fPiwEhIS/jhmp6enKzw8XPnz51eBAgV0zTXXqEKFCqpQoYLq16+va6+9lr8F+QHOy7jH/nBlnAuxFv1e7pkdLoqLi7MoSe7NmzdPX331leH6kSNHqnLlyhYmQl4SEBCgrl276pNPPnFb63K59NVXX+nZZ5+1IRlgHMNFAAAAyLUiRYqY3sbsRex2OXHihKZPn645c+Zo3bp1unz5stttEhMTlZiYKEnav3+/VqxY8bf/vWrVqmrXrp169eql6667TgEBAZZk91W//vqrpkyZojlz5mj9+vVyuVxXrM3MzFRqaqrOnz+vI0eOaNWqVX/8b8HBwWrfvr3uuOMO9ejRQwUKFLAjviWysrI0d+5cTZw4UUuXLlVycvIVazMzM5WSkqLTp09LkjZs2PDH/xYUFKQWLVqoa9eu6tOnDxd6IUfq1Kmj559/XiNGjDC97QcffMBw0f87fvy4Zs+erXnz5mn16tVKSEgwtN3vT/M7d+6c29qQkBDVr19fzZo1++OnfPnyuUwOI+gPPO+XX37RjBkztGjRIm3dutVtfVZWlo4dO6Zjx45p9erVkqTIyEj17dvX4qTwNPYnz6LXRl5w5MgR/fzzz1q1apXWrFmjXbt2GT5nkJ6ervT0dCUkJOjUqVPav3//P2ry58+v1q1bq1OnTurcubNiY2M9/Sv4lBMnTui7777T/PnztXbtWkN9pvTbRV6pqalKSEjQr7/++q81pUqVUqtWrdS6dWvddNNN9KIW4zPT8+hBry4uLk5btmwxVBsZGak2bdpYmgd/xzHBszgeALDStm3bNH36dC1dulSbNm0y9P3m9wvcT58+rYMHD+qnn376438LCAhQ9erV1bVrV/Xu3Vt16tSxMj5M4LyMe+wP/45zIdaj3/Os6tWrKygoSFlZWYbqffXJRYmJiRo4cKDh+pYtW+qxxx6zMBHyom7duhkaLpKkqVOnMlwE3+MCAACA17Vu3dolyfDPvffe6+3If7NkyRJT+SW5EhMTvR37D9nZ2a5Zs2a52rZt6woMDDT9u5j5KV26tOu5555znT171tu/9t/ce++9Hv/3t23bNtfdd9/tCg4O9vj7GBUV5XrxxRddFy5csPR98bTU1FTX22+/7SpTpozH35PQ0FBX//79Xbt373abY9myZaZe28n8/fhsVGZmpqtKlSqm/90FBwe7jh49akkmf/h3mpmZ6fruu+9c7du3dwUEBFj6+XGln2uuucb1yCOPuFasWOHKysrK8e9i5nPA2z92oT/wfH+Qlpbm+uKLL1xNmjTxyPs2YcKEHGX19k9O+cNx8Uqcvj/Ra+dtTukXPSk1NdX1/fffux555JEc9aC5/WnTpo1r+vTprvT0dG+/FR6TkpLi+vTTT13Nmze3tS+tXbu264UXXnDt378/R7md8PltltM/M10u/+pB85oXX3zR8Ptwxx13WJ7n0KFDXt/3vf3vwenHBI4HeceECRNMvbflypXzdmS4wf7yTxcuXHC9/vrrrurVq1v++VOzZk3XuHHj8tR3GitxXsZ+7A//xLmQf0e/51/M/Ntt3ry5t+P+q/vvv9/w75A/f/4cn/P6N2Z7Yl/8mTx5ssfejyt54YUX/H6fTEtLcxUsWNDw+7p161ZvRwb+hicXAQAAINdSU1NN1QcFBalgwYIWpTFnxowZeuWVV7R9+3Zb1jt27JheeeUV/fe//9XAgQP1zDPPqGjRorasbZeLFy9q2LBh+vzzz696h67cOH/+vF588UV9/PHH+uCDD3T77bdbso4nffPNN3rqqad06NAhS14/LS1N48aN04QJEzRkyBC98soryp8/vyVrIe8JCgrSCy+8oLvuusvUdpmZmfr444/12muvWZTMd3333XcaPny41++8dfz4cX344Yf68MMPVbJkSXXv3l1PPvmkypUr59Vc/o7+wPMWL16sRx55RHv37vV2FNiM/cmz6LXhr9LS0vT9999r5syZmjdvnpKSkryWZfny5Vq+fLnKlSunV199VXfddZffPqnh3Llzev/99/Xxxx/rzJkztq+/fft2bd++XS+99JKuu+46DRo0SN27d1e+fPlsz5IX8JnpefSg5syYMcNw7Q033GBhEkgcEzyN4wEAq8THx+u///2vxo4da9v3nJ07d6p///568cUXNWLECN1///1++53G33Be5urYH/6OcyH2ot+zXs2aNQ2/v3FxcRanMW/ZsmX6/PPPDde/8cYbqlixosfWj4qKUt26dT32et4QFRXl7Qh+ISQkRK1bt9a8efMM1U+fPt1vn8SHPMrLw00AAABw+f+djqdMmWIqf1RUlLcjuw4cOOBq37691+/sUbRoUdcXX3zh7bfDY3cFmjVrlqtkyZK2v4933323KzU11b43zITExETXnXfeaft7UrFiRdeqVav+NZM/P/nAbv5+fDYjKyvLVaNGDdP/1q655hpL8vjqv9Njx465brzxRtv3aTM/U6dONf17cdf439Af/J0n+oMLFy64evbsacn7xJOLvLevGMH+9Cd67bzNSf1iTuzZs8f14IMPuooUKeL148GVfho0aODatm2bt98qUzIzM10ffPCBT76vlStXNvx7OOHz2wg+M//On3rQvGT//v2m3ocDBw5YnsmpTy7imPAnjgd5B08uynvYX37ryd99911Td6W36qdFixauHTt2ePst8Vmcl7Ee+8PfcS7EOPo9//Lcc8+Zev9Onz7t7ch/uHTpkqtixYqGs7dp08aVnZ3t7diOlBeeXORyuVzvvPOO4X9vtWrV8nZc4G8CBQAAAOSS2SexlCxZ0qIkxowdO1a1atXSkiVLvJpDks6ePat77rlHHTt21Llz57wdJ1defvll3XrrrTp58qTta0+ePFlt27bVhQsXbF/7anbs2KEGDRpo6tSptq994MABXX/99Zo+fbrta8M/BQYGaujQoaa3O378uDZt2mRBIt+zZMkS1a5dWwsXLvR2FFiA/sDz9u7dq6ZNm/JZ5EDsT55Hrw1/NWPGDH3yySc+/e9n06ZNatKkiT788ENvRzFk8+bNqlevnh599FGffF9Pnz7t7Qh+hc9Mz6MHzZnZs2cbri1btqwqVKhgYRrn4pjgWRwPAFhl27Ztaty4sR5//HGvPonkd6tXr1aDBg30ySefeDtKnsV5mStjf/gnzoXYh37PXrVq1TJVv2fPHouSmDdixAgdOHDAUG2BAgU0fvz4PPd0L9irbdu2hmt37Nhh+ro7wEoMFwEAACDXNmzYYKq+UaNGFiW5uoyMDA0cOFAPPfSQUlJSvJLhShYsWKAmTZpox44d3o5iWnp6uu6880698MILcrlcXsuxZs0aderUSZcuXfJahr9au3atWrVqpf3793stQ1pamnr16qXRo0d7LQP8S8+ePRUREWF6u7lz51qQxrdMmjRJHTt29Ok/BiFn6A+ssXLlSjVt2lR79+71dhTYiP3J8+i1AXukpqbq0Ucf1UMPPaTs7Gxvx7mijz76SM2bN/e7Yxn+ic9Ma9CD5pyZ7/Vt2rSxLohDcUzwPI4HAKwyefJkNWvWTJs3b/Z2lL9JT0/XwIED9cADDyg9Pd3bcfIMzstcHfuDf/OXcyFXQr9nP7PDRXFxcRYlMWft2rWmrpd46623FBsba2EiOEHdunVVpEgRw/Vz5syxMA1gDsNFAAAAyJXMzEz99NNPprZp0qSJRWmu7PLly7rxxht9+q5dBw8eVPPmzfXjjz96O4phWVlZ6t27t6ZNm+btKJJ+OzHUs2dPr57gl6Tly5erffv2PjGE4HK5NGTIEE2ePNnbUeAHChQooB49epjeLq8PF33zzTe67777lJmZ6e0o8DD6A2ts3bpVXbt21cWLF70dBTZif/I8em3AfmPHjtWdd96prKwsb0f5m4yMDN11110aNGiQ0tLSvB0HucRnpjXoQXPu0qVLWrVqleF6hos8i2OC53E8AGCF7OxsDR48WPfcc4/PDYL+1WeffaYePXowUOEBnJe5MvaHvMVXz4VcDf2ed1SpUkUhISGG633hyUXp6enq37+/4QG6du3aaeDAgRanghMEBgaqVatWhusXLlxoYRrAHIaLAAAAkCsLFizQ+fPnTW1j93BRSkqKunbtqmXLltm6bk4kJyera9euWrlypbejGPLAAw/om2++8XaMv/nhhx80atQor62/Y8cOdevWzefuHjZgwADTg4Bwpj59+pjeZtOmTYqPj7cgjfdt3bpVd911l1/etQ1XR39gjcOHD6tjx45KTEz0dhTYiP3JGvTagHdMnz5djz/+uLdj/CElJUU333yzvvrqK29HgQfwmWkNetDcWbFihTIyMgzXt23b1sI0zsIxwfM4HgCwQlZWlvr27asPPvjA21EMmTt3rm6//XYGKnKJ8zL/jv0hb/K1cyFXQ7/nPcHBwapatarhel8YLnr11Ve1a9cuQ7UFCxbUuHHjFBAQYHEqOIWZ8ycrV67kswo+I9jbAQAAAODf3nrrLVP1FSpUUMOGDS1K809ZWVm67bbbPHZXxbJly6p69eoqU6aMChYsqJCQECUlJenChQuKi4vTnj17dPny5VytcfnyZXXu3FlLly71ylOejHrllVc0fvx4U9vkz59fVapUUYUKFRQTE6OIiAjly5dPly5d0pkzZ3Tw4EFt27ZNqampucr27LPPqnPnzqpRo0auXses+Ph4de7cWQkJCbl+rcjISFWvXl2VK1dWZGSkChQooJSUFCUmJurQoUPavXu3Tp06Zfj10tPTddttt2nHjh25zoa87brrrlNYWJip/dDlcmn9+vW6+eabLUxmv7S0NN11110euTt8SEiIYmNjVbZsWRUrVkxFihRRWFiYQkJClJWVpbS0NKWkpOjcuXM6ffq0Tp48qcOHD/O0JIvQH1gjMzNTPXr00MmTJ01tFxYWpsqVK6tixYoqXry4IiIiFBISouTkZCUlJenw4cPauXOnzp49a1Fy5Ab7kzXotYHfREdHq0yZMipevLhKlCihiIgIhYWFKTQ0VOnp6UpLS9PZs2d16tQpHThwQL/++qtH1v3ggw9Uq1YtPfDAAx55vZy6dOmSbrrpJv38888ee83w8HDFxsaqQoUKKlGihPLnz6/8+fMrMzNTKSkpSkhI0PHjx3X8+HEdPHiQftSD+My0Bj1o7i1dutRwbbly5VS+fHnrwjgIxwTP43gAwApZWVm6++67NXXqVI+8Xnh4uKpWraoyZcqoZMmSyp8/v8LDw5WamqqkpCQdOXJE+/bt0+HDh3O1zpw5c/TQQw9p3LhxHsntNJyX+XfsD/Zw+rmQq6Hf876aNWtq+/bthmrj4uIsTnN127Zt0xtvvGG4ftSoUSpXrpyFieA0ZoaLLl26pDVr1qh169YWJgKMYbgIAAAAOTZ16lTTT0Lp37+/rXf6eOaZZ7RgwYIcbx8QEKB27drprrvu0o033qiSJUtetT4zM1OrVq3S3LlzNXHiRJ07dy5H6yYnJ6t79+7auHGjYmJicvQaVlqxYoVeeuklQ7U1atRQr169dOONN6p+/frKly/fVevT09O1atUqTZ06VVOmTFFKSorpfBkZGXriiSdy9d/erOzsbN155525OoFbqlQp9e/fX126dFHjxo3d7it79uzRDz/8oHHjxhm6487Zs2c1aNAgPfLIIznOiLwvLCxMLVu21OLFi01tt3Hjxjw3XPTBBx9o586dOdo2LCxMN9xwgzp27KiWLVuqWrVqCg42dxomIyNDhw4d0tatW7VhwwatW7dOa9as4a5FHkB/YI3XXntNGzduNFRboUIF9e7dWzfddJMaN26skJAQt9scOnRIc+bM0ddff601a9bkNi48hP3J8+i14VSxsbFq3ry5mjdvrrp166p69eoqWrSoqddISkrSunXrtHz5cn377bfavXt3jvMMGTJE119/vSpVqpTj18iN7Oxs9e7dO9eDRYGBgWrVqpW6deum6667TvXq1VNQUJChbdPT07V7926tX79eP/30k5YvX66jR4/mKo+T8ZlpDXrQ3Fu+fLnh2gYNGlgXxGE4JngexwMAVnjiiSdyNUgRGBio1q1bq2vXrmrXrp1q1Khh6DzxyZMn9eOPP2rq1KlauHBhjob+x48fr4YNG+rhhx/OSXTH4rzMlbE/eB7nQsyh3/O+WrVqGa49dOiQ0tPTDb33npaVlaX77rvP8FN6O3To4NODdfBPNWvWVGhoqOEbmS5btozhIvgGFwAAALyudevWLkmGf+69915vR3bt3r3bVaRIEVO5g4ODXSdOnLAt48yZM03l+9+f7t27u/bs2ZPj9VNSUlxjxoxxRUdH5zhD27ZtXZmZmR58V/7dvffeazhTp06dXKVKlXJb165dO9ePP/6Yq1wnT5509e/fP8fv36JFizz0Drn3xhtv5DhnqVKlXBMnTnRlZGTkeP1Fixa56tSpY2i9QYMGmcrnZP54fPaEt956y/S/486dO3s0w7Jly7z67zQpKckVFRVl+n2Ijo52vfnmm67z5897PJPL5XJdunTJ9cMPP7geeughV0xMzL9mmDp1qsfXnTBhguH3oFy5ch5f35PoD4wz0x80aNDAlS9fPrd1TZo0cX3//fe5zrZ8+XLX2rVrDdfnhX/D3j4u/hv2J2PotfM2p/aLRr3yyitXfC+CgoJcN9xwg2v06NGu/fv3W7L+L7/84urVq5crKCgoR//O27Rp48rOzrYkmztDhgzJ1TG2SJEirueff97j52E2bdrkeuGFF1yVKlX613UjIyM9tlZe+Pz+HZ+ZxuWlHtQfJCcnu4KDgw2/588//7y3I/8rfztecEwwhuNB3mFmH/WV/RRXZ/aYMWHCBG9HzpHPPvssx8fJAgUKuJ5++mnXoUOHcp3j4MGDrgEDBrgCAwNN58iXL5/rl19+yf2b4cc4L+MZ7A/GcS7EOPo9/zNr1ixT/5527NjhlZxmrt2IjIx0/frrr17JiX964YUXrvjfyh97yvr16xv+t9ihQwdvxwVcLpfL5eyrxAAAAHyEv12MtGPHDlfp0qVNn4h66qmnbMsYHx/vKly4cI5OmJUsWdK1ePFij2U5d+6cq2fPnjnKIsn1+uuveyzLlZg5cWfk/Zs5c6ZH882aNcuVP39+01luvPFGj+a4km3bthk6mflvP/fdd58rKSnJIzkyMzNdr7/+utuTxQEBAaYyOpm/HZ89Zfny5Tna9z3J2xfR5+QPZXfccYdlQ0X/JjMz07V48WLX7bff/rdjEMNFV0Z/YI4n+4NChQq5Pv30U8szX0le+Dfs7ePi/2J/Mo5eO29zar9o1L9dUFO3bl3Xu+++64qPj7ctx9atW13XXXddjva76dOn25bzd1999VWOjxPBwcGup556ypWYmGh5zpUrV7ruvvvuv/WiDBf9E5+Z5uSlHtQfmO0xPd2HeIo/HS84JhjH8SDvYLgo7zG7D/rjhaDr1q1zhYSE5OiYM2DAANepU6csyVSjRg3TeerWrZurm9v5O87L5B77gzmcCzGOfs//7N+/39R/l2+++cb2jHFxca6wsDDDGceNG2d7RlxZXhsuMnOci4yMdGVlZXk7MuAKFAAAAGCQy+XS+PHj1bx5cx07dszUthUrVjT8CHlPePzxx3Xx4kXT27Vo0UKbN29W+/btPZYlKipKX3/9tf773/8qICDA9PYvv/yyDh065LE8VmrZsqU2b96s7t27e/R1b7nlFi1atEjh4eGmtlu0aFGuHv1u1JAhQww/Uvt3gYGB+uSTTzRu3DgVKFDAIzmCgoL0zDPPaMmSJYqMjLxincvl8sh6yLtq165tepuTJ0/q9OnTFqTxjkmTJpmqf/rppzVt2jQVKVLEokT/FBQUpPbt22v69Ok6evSonn32WRUuXNi29f0R/YF3VKlSRRs3btT999/v7SjwIPYn+zm110beEBgYqG7dumnZsmXasmWLhgwZouLFi9u2fp06dbRixQq9+OKLpo8Tr7zyiq3foU6ePKlHHnkkR9tWrVpVv/zyi9566y0VLFjQw8n+qWXLlvriiy906NAhDRs2TBEREZav6Y/4zPQOelBj1q5da6q+Tp06FiVxDo4J9uN4AMCstLQ09e3bV+np6aa2K1asmObPn6/PPvtMMTExHs/VpEkTrVu3Trfeequp7bZu3aq3337b43mcxqnnZdgfco5zIfah37NPhQoVlD9/fsP1e/bssTDNP7lcLg0YMECpqamG6jt27Kj77rvP4lRwMjPnURISErRr1y4L0wDGMFwEAAAAtzIzM/Xdd9+pcePG6t+/v5KSkkxtny9fPo0bN870SdGcWrJkiaZOnWp6uzZt2mjRokWWndR7/PHHNW7cOAUGmmvDU1JSNGjQIEsyeVLXrl21ZMkSy96/a6+9VhMmTDC1jcvl0pdffmlJnt/NmjVLP/74o6ltgoKC9MUXX+iBBx6wJFObNm20ePFihgyQY1FRUSpVqpTp7Y4cOWJBGvslJiZqzZo1huu7deumN954w8JE7hUvXlyvvvqqjhw5opYtW3o1i6+iP/COunXras2aNapUqZK3o8CD2J/s59ReG/4vMDBQ3bt317Zt2/Tdd9+pTZs2Xs3ywgsvaOLEiQoKCjK83fbt2zV79mwLk/3dgAEDdP78edPbdezYUevWrVO9evU8H8qNa665Rm+++aYOHjyoxx57zPb1fRmfmd5BD2rcpk2bDNfmz59fFStWtDBN3scxwX4cDwDkxEsvvWR6aKNatWpat26dbrrpJotS/aZAgQKaOXOm+vTpY2q7kSNH6uzZsxalyvucfF6G/cE8zoXYi37PXgEBAapevbrh+ri4OAvT/NNHH32kn376yVBt4cKF9dlnn1mcCE5n9iYtZs7TAFZhuAgAAAD/6sSJE/r22281cOBAlSlTRrfddps2btxo+nWCg4M1ffp0tW7d2oKU/2748OGmt6ldu7bmzp1r+V12+/Xrp7feesv0dvPnz9fPP/9sQSLPaNeunWbOnKmQkBBL17njjjvUu3dvU9vMnDnTojS/nbh/5plnTG/35ptv6q677rIg0Z8aN26sb775RsHBwZaug7wrJ08vMvtUO1+1atUqZWVlGaoNCQnRhx9+aHEi4woVKqRrrrnG2zF8Ev2B/cqXL68FCxYoKirK21HgYexP9nJqr428YejQoZo5c6Zq1qzp7Sh/uOeee/Tee++Z2sauCw3mzZunH374wfR23bp105w5c676BFs7xMTE2PrUan/AZ6b96EHN2bp1q+HamjVrmh4+wd9xTLAXxwMAObF7927TTzWpWrWqVqxYodjYWItS/V1gYKAmTZqkTp06Gd4mOTlZo0aNsjBV3uXk8zLsDznDuRD70O95R61atQzX2vnkoiNHjpi6duO9997jb6qwnNnhIjPnaQCrcJUZAACAH9q8ebNGjBjhkdfKyspSenq6kpOTdebMGR0/flz79+/P0V1y/1doaKimTJmibt265T6oQQsXLtQvv/xiapsiRYpozpw5KlCggEWp/m7o0KHasmWLpkyZYmq7V155RQsXLrQoVc7FxsZq+vTplp9U/90bb7yhb7/91vCjrOPi4hQXF6eqVat6PMucOXNM323njjvu0NChQz2e5d9cf/31euutt/TEE0/Ysh7ylrJly5re5ujRoxYksd/OnTsN1952222cePYD9Af2y5cvn2bMmKESJUp4Owo8jP3JXk7utfOqSZMmadKkSd6O8YdbbrlFs2bNsuz1Q0NDLXvt3HjkkUe0evVqw0+PWLhwoU6dOmXZXaolKTs7O0cXnbdr105ff/01N5bwQXxm2o8e1JzLly9r//79hutzchMS/Iljgr04HgDIqeeff16ZmZmG64sVK6bFixcrJibGwlT/FBgYqK+++koNGzbUgQMHDG0zZswYDRs2jIvwTXD6eRn2h5zhXIg96Pe8x8xwkZ1PLnrwwQeVnJxsqLZr16669957LU4E/HYzpuLFi+vUqVOG6rds2WJtIMAA/tIAAADgh7Zt26Zt27Z5O8ZVNW7cWBMnTlSNGjVsXXfkyJGmt3nvvfdUvnx5z4e5ijFjxmj58uWmnvKxaNEibdiwQY0aNbIwmTkBAQGaNGmSrX+IKFOmjO6991598sknhrdZuXKlJSfWzd7VKiYmRh999JHHc1zNkCFD9O233/rsHUThu0qWLGl6m7zy5CIzF1fddNNNFiaBp9Af2O/555/3uUzwDPYn+zi91was9v7772v+/Pm6ePGi29qsrCx9/fXXGjx4sGV5vvzyS23fvt3UNmXKlNG0adNsu9AN5vCZaT96UHP27Nmj7Oxsw/XlypWzME3exzHBXhwPAOTEli1b9M033xiuDwwM1NSpU1WmTBkLU11ZZGSkxo0bp7Zt28rlcrmtT05O1uTJk/XYY4/ZkM7/Of28DPtD3uRr50Jyg37Pe8wMFyUkJCg+Pt7yIbCJEycavuFBVFSUqeMskFvlypUzPFy0a9cui9MA7vHccgAAAHjUNddco1GjRmnNmjW2DxbFxcVp5cqVprbp0KGD7rnnHosSXVmhQoVyNGTy6aefWpAm5wYMGKCWLVvavu7AgQNN1VsxWLNt2zbTr/vOO+/Yfke4gIAAffbZZ9zFGqY5ebjozJkzhmtr1qxpYRJ4Av2B/cqXL6+nnnrK2zFgAfYnezm51wbsULRoUVMXES1evNjCNL99XzQjICBAX331lYoWLWpRIuQGn5n2owc1b9++fabqeWpvznFMsBfHAwA59dprrxkaSvjdQw89pHbt2lmYyL3WrVurd+/ehusnTJhgYZq8xennZdgf8iZfOxeSU/R73mVmuEj67cYWVoqPj9cTTzxhuP7999/P0d/BgZwycz4lPj7e8BO4AKswXAQAAIBcy5cvn66//nrNmDFDhw8f1tChQxUUFGR7ji+++MJUfUBAgN566y2L0rjXtWtXtWrVytQ206dPV2pqqkWJzAkNDdULL7zglbXr1aunihUrGq7fsGGDxzMYfWT872rVqmXqhLYnVatWjcd6w7RSpUqZ3iYxMdGCJPYzc8KucOHC1gWBR9Af2O+ll15SaGiot2PAAuxP9nF6rw3YZeDAgQoMNPanshUrVigzM9OSHGvXrtXWrVtNbdO/f39dd911luRB7vGZaT96UPPMDheVLl3aoiR5H8cEe3E8AJATp0+f1uzZsw3XFy1aVK+99pqFiYx74YUXDP9dduvWrdq8ebPFifyf08/LsD/kbb5yLiQ36Pe8q3Tp0oqMjDRcb/Vw0aBBg3ThwgVDtd26ddNdd91laR7gf5k9n2L2fA3gaQwXAQAAIEeCgoLUp08fLVu2TAkJCVq6dKl69OjhtaejuFwuTZkyxdQ2PXr0UN26dS1KZMyrr75qqj4hIcHUyVwr3XPPPV69Y2nnzp0N1+7fv9/jJz6nTZtmqn7EiBGGT9Ra4bnnnvPK0B/8V6FChUxvk5KSYkES+5k5XiQlJVmYBLlFf2C/kiVLqlevXt6OAQuwP9nL6b02YJcSJUqodevWhmqTkpK0adMmS3KMHTvWVH2BAgX0xhtvWJIFucdnpv3oQXPm4MGDpup5clHOcEywF8cDADk1ceJEZWRkGK4fOnSoqQurrVS5cmV16tTJcP28efMsTJM3OP28DPtD3uYr50Jyin7PN9SsWdNwbVxcnGU5Zs6cqW+//dZQbXR0tOlzcIAnmO0pDhw4YFESwBiGiwAAAJAjWVlZmjJlinr37q3Bgwdr8eLFysrK8lqezZs369dffzW1zaOPPmpRGuNatmyp+vXrm9pm1qxZ1oQxacCAAV5dv3nz5oZr09PTTV8wcTUbN27U4cOHDdcXL15ct912m8fWz4ly5cqpY8eOXs0A/xIWFmZ6G1+5Q21uhYeHG641+9kDe9Ef2O++++5TSEiIt2PAAuxP9nJyrw3YrW3btoZrzT5dyIj09HTDF0H8buDAgYqOjvZ4FngGn5n2owfNmWPHjpmqZ7goZzgm2IvjAYCcGj9+vOHaAgUKaNCgQRamMa9///6GaxcuXGhhkrzB6edl2B/yPm+fC8kN+j3fUKtWLcO1Vj256Pz583rkkUcM13/44YcqXry4JVmAqzH75KLjx49blAQwhuEiAAAA5MrJkyf1+eefq0OHDoqNjdXrr7+uixcv2p5j8eLFpupr1Kihli1bWpTGnIceeshU/Y8//iiXy2VRGmMqVaqkJk2aeDVDo0aNTNUfOnTIY2svWbLEVH3fvn2VL18+j62fUw888IC3I8CP5GS4KK88ucjMhZrff/+9hUmQW/QH9uvZs6e3I8Ai7E/2cXqvDditcePGhmt37Njh8fVXrFhh6mmYwcHBeuKJJzyeA57DZ6b96EFzxszFKvnz51eRIkUsTJN3cUywF8cDADmxb98+U09VuP3221WwYEELE5l3ww03KDQ01FDtunXrlJiYaHEi/+X08zLsD87g7XMhuUG/5xt8YbhoyJAhOnXqlKHaHj168MQreI3Zm7UwXARvY7gIAAAAHnP06FENHz78jyGjtLQ029Y2O+zhSyedunfvruDgYMP1p0+f1rZt2yxM5N5NN93k1fUlKTY21tTAjtETS0YsW7bMVL23n1r0uw4dOqhAgQLejgE/4eThorJlyxqunTFjhk6fPm1hGuQG/YG9YmNjVadOHa9mgHXYn+zj9F4bsFvFihUN11pxQc28efNM1Xfo0EElS5b0eA54Dp+Z9qIHzbmTJ08ari1VqpSFSfI2jgn24XgAIKd++OEHU/W9e/e2KEnO5c+f3/BwamZmpjZu3GhxIv/l9PMy7A/O4O1zITlFv+c7zAwX/frrr0pNTfXo+gsWLNDkyZMN1RYrVkwfffSRR9eHdV588UW5XK5//enbt6+34+UIw0XwNwwXAQAAwOMuXryo4cOHq169elq9erXl62VlZWnVqlWmtrn11lstSmNeVFSU6btRLl++3JowBpl5VLpVgoKCTA0AeOri/8zMTP3888+G60uWLGnq7k9WCg0N9Yk/isA/hISEmN4mPT3dgiT2q1mzpuHaixcv6uGHH/b6nXnxT/QH9mvdurVX14d12J/s5eReG/CGmJgYw7VHjhzx+PoLFy40Vd+nTx+PZ4Dn8JlpP3rQnMnKytKFCxcM1/va3ej9BccEe3E8AJBT8+fPN1wbERGhVq1aWZgm58w87WbLli3WBfFzTj8vw/7gDN4+F5JT9Hu+w8zfUrOzs7V3716PrZ2UlKQHH3zQcP2YMWNUrFgxj60PmGX2nMrZs2ctSgIYw3ARAAAALLNnzx61bt1a77zzjqXrxMXFmXpaRkxMjM/d0cbswMfWrVstSmJM/fr1vbr+78yc+Dx37pxH1ty7d68uXbpkuL5t27YKCAjwyNqe0K5dO29HgJ/IydPncvK0I1/UrFkzU/XffPON+vXrp6ysLIsSISfoD+x33XXXeXV9WIf9yV5O7rUBb4iIiDBcGx8f79G1ExMTTV1cERgYqI4dO3o0AzyLz0z70YPmTEJCgqn68PBwi5LkbRwT7MXxAEBOuFwuUzdKbNWqVY5uzGUHM+cTnDhMYZSTz8uwPziHN8+F5Ab9nu+IiYkxNbCzZ88ej6399NNP69dffzVU27NnT91+++0eWxvICbPnVMyeswE8jeEiAAAAP3Tvvfde8TGwOfnJzs5WSkqKLl68qIMHD2rNmjX6+uuv9eKLL6pbt24qWrRojrNmZmbqySef1AMPPKDs7GwPvgt/2r59u6n6Fi1aWJIjN8xm2rZtm0VJ3CtQoIBiY2O9tv5fRUdHG6711KO2zT76vXnz5h5Z11N8LQ98V072mbwyXFS+fHnVqFHD1DaTJk1S8+bNtXbtWotSwSz6A/v52kVw8Bz2J/s4vdd2Ak9/n8/tz6xZs7z9lnhdcHCw4dpLly4pKSnJY2tv3rzZ1BMwGzZsqMKFC3tsfXgen5n2owfNmYsXL5qqzyvf9+3GMcFeHA8A5MS+fftM9fhmnoZit3LlyhmujYuLszCJ/3L6eRn2B+fw5rmQ3KDf8y21atUyXOup/WzlypUaO3asodqYmBiNGTPGI+sCuWF2uMjsORvA04x3CQAAAMizAgICFBYWprCwMEVGRio2NvYfT2345ZdfNH36dE2YMCFHdz/67LPPlJqaqkmTJnn8KS5m/0hr9okUdmjcuLHy5cunjIwMQ/U7d+5UVlaWgoKCLE72T2XKlLF9zSsx8yU8J09h+Tdmh4saN27skXU9pVatWgoPDzd111Q4U07+GJWX7mR855136rnnnjO1zS+//KLmzZurXbt2evTRR9WpUyfly5fPooRwh/7AftWqVfPKurAe+5N9nN5rA3918uRJ7dy5U/v379e+fft09OhRnT17VmfPntW5c+eUmpqqtLQ0paenG963PeHMmTMqWLCgR15r48aNpupbt27tkXVhHT4z7UcPmjPJycmm6vPS9307cUywF8cDADmxadMmU/UNGjSwKEnuXXPNNYZrjx8/bmES/+X08zLsD97nhHMhuUG/51tq1aqlZcuWGar1xJOLUlJSNGDAAMM36hk7dmyubqQMeEpISIgCAwMN35DbVwY64VwMFwEAAMCQxo0bq3Hjxnr55Zf1ySef6KWXXjJ9t4TJkyerZMmSevPNNz2abf/+/abqzT6Nwg6hoaGqUKGC4Tu2pKam6vjx4ypbtqzFyf6pVKlStq95JaGhoYZrPXVife/evabqfe0kZ1BQkCpXruz1OwvD9+Vkn8lLFxs98MADevXVV3P0PixdulRLly5V0aJFddttt+nWW29VmzZtuNOzzegP7BUTE+MTf1yENdif7OP0XhvOdujQIc2bN08rV67UunXrdPToUW9H+leevFGD2QsruEOv7+Mz0170oDln9rM7L33ftxPHBPtwPACQU1u3bjVVX7FiRYuS5F6hQoUM18bHxys7O1uBgYEWJvI/Tj8vw/5g//7gxHMhOUW/53vsfnLR888/r3379hmq7d27t2699dZcrwl4Snh4uC5dumSoNj093eI0wNXxDQEAAACmhIeHa8iQIYqLi1OHDh1Mb//WW2/p22+/9WimEydOmKr3tWGP31WtWtVUvdnf21PMnIy1mpk7YGZlZXlkTTPve0xMjCIjIz2yridVqVLF2xHgB86fP296m7x0sVFMTIyGDBmSq9c4e/asPv30U3Xs2FHR0dHq2LGjRo0apV9++UWZmZmeCYoroj+wV/Hixb2yLuzB/mQfp/facJ74+Hi9/vrrqlWrlipUqKDBgwdr5syZPnsxjZSzJ3xeidnf08xFG/AOPjPtRQ+ac2bvcp6Xvu/biWOCfTgeAMipQ4cOmar3xkC1UWY+rzMzM3X69GkL0/gnp5+XYX+wh9PPheQU/Z7vsXO4aMOGDXr33XcN1ZYoUUIffPBBrtYDPM3M5xLDRfA2nlwEAACAHImJidH8+fM1aNAgjR071tS2AwYMUPPmzVWyZEmPZDHzx8qAgACVL1/eI+t6mtm7O3nrwg2nX0xw8uRJw7W++m8tNjbW2xHgB8z8W/9d4cKFPR/Ei0aMGKGZM2fqwIEDuX6ty5cva8GCBVqwYIEkKX/+/GrSpIlatGih5s2bq1mzZipatGiu18Gf6A/sxR/28jb2J/s4vdeGc+zZs0cvvfSSZs6c6XdD194cLqpcubLH1oY1+My0Fz1ozpk99vIk3pzhmGAfjgcAcurYsWOm6vPSOfCkpCSVKFHC2zF8itPPy7A/WLs/cC4kd+j3fE/NmjUN1yYnJ+vYsWMqXbq06XUyMjJ03333GR6k/OSTTxQVFWV6HcBKZnoMszeEATyNJxcBAAAgxwIDA/XRRx+pd+/epra7cOGChg4d6rEc/9fefUdJUaX/H/9MZhJ5CEOOM8AAIiw5OoiIkkUWEAUB8YugriAuuAoYABUUQRYDCghIVEBUlJwlhwUEAclpyGFgmNi/P/ZnWid0dVd1mH6/zvGcXeq5dR+GvlU1t+u518gL8Pnz51dQUJBpfZupSJEihuIdefHfDJ7683MVIz93o/+mrhIVFeXuFOAFHLnGODIh7MkiIiI0b948hYWFmX7uO3fuaO3atRo9erTatm2rqKgoxcbGqm/fvpoxY4bhL/HwVzwfuFZkZKRb+oVrMJ5cx1N/doBZrly5oj59+iguLk5z5871updpJOMv5GfHyDNfRESEIiIiTOsb1uCe6Vo8gzrO39/YawLeeL32BFwTXIfrAQBH+fI8bFJSkrtT8Dieei92FcaDNZgLMQfPe54nX758hr4bdnT3otGjR2vfvn12xfbs2VPt2rVzqB/ASkYKhozsXghYgeIiAAAAOMXPz08ff/yxYmJiDLWbM2eOtm3b5nT/aWlpunPnjt3xnlrsIRlfbef69evWJIIspaWl6fbt23bHe+rnzVPzgmdx5EWQUqVKWZCJe9WuXVsLFy5USEiI5X39/PPP+vTTT9WrVy+VKlVKcXFxGjJkiLZs2SKbzWZ5/7kJzweu54oxAvdgPAEwy5IlS1StWjV99tlndq806onMei6z2Wy6ceOG3fFm7f4M63DPdD2eQR1n9MVZI59t/BfXBNfiegDAUe4qkvYEFBfhfzEezMdciHl43vNMcXFxdsceOnTI8Pn379+v0aNH2xUbHR2tiRMnGu4DcAUj8wPBwcEWZgLkjOIiAAAAOC08PFzvv/++4Xb2TgJkx+hEX758+Zzu0ypGc/OE7cd9jdHPm6euoJQ3b153pwAvcOLECcNtctvORb968MEHtWLFChUqVMil/R44cEDjx49XgwYNVKZMGQ0bNkxHjx51aQ7eiucD12OiO/diPAEww4gRI9ShQwclJCS4OxWPkZuur/iv3PRv6i33TJ5BHWf0Z8fLx8ZxTXAtrgcAHJGamqqUlBR3p+E2zHvgjxgP5o8H5kLMxfOeZ7KyuCg9PV19+vSx+9r0ySefKH/+/Ib6AFzFyByBr++kCPejuAgAAACmeOCBB9SgQQNDbb7++mudOnXKqX6NTvR58oo2RnNj0t/1csvnzVPzgmexd3v5P8qtxUWS1KRJE+3du1fx8fFu6f/06dMaO3asKleurAceeEBr1qxxSx7eIrdcryXveT7w8/NzS7+wHuMJgDNsNpt69+6t1157zd2peByjL53nyZPHokxgFu6ZrsczqONCQ0MNxVNcZBzXBNfiegDAEb5+f/OEnUjgORgP5o0H5kKswfOeZzJSXPTzzz8bOveECRO0bds2u2J79+6tNm3aGDo/4Crp6elKTU21Oz4sLMzCbICcUVwEAAAA0wwaNMhQvM1m04wZM5zqMzk52VA8X9LCGbnl8+apecFzJCQk6NKlS4bblS1b1vxkPEiJEiW0cuVKffHFFypdurRbcrDZbFq+fLnuu+8+NWvWTNu3b3dLHp4ut1yvJZ4P4H6MJwDOeOGFFzR9+nR3p+GRKC7KfbhnwpsY3YnG1182dQTXBADwfFyvgN8xHszDXAh8SbVq1eyONbJz0dGjR/XKK6/YFVuyZEm99957dp8bcLXctLMxfEOguxMAAABA7vHwww8rODjY0JbpS5YssXtSAPA2nrrqm6fmBc/hyK5FZcuWVYECBSzIxvN069ZNnTt31owZM/Tuu+8amgw30/r161WvXj09/fTTeueddxQeHu6WPAAAADIzdepUTZgwwZRzFShQQDVr1lT58uVVoUIFFS9eXEWLFlWRIkUUGRmpiIgIRUREKCgoSIGBgQoKCjK0oq07Vr9lxV0A7pQ/f35D8RQXAQByI6OFoEBuxngwB3Mh8DVVq1aVv7+/MjIycow9c+aMbt++neP3mTabTX379rX799CpU6dSjAGPZnROxeicDWA2iosAAABgmsjISDVo0EDr1q2zu83u3bt1+fJlFS5c2KE+ja7ca6TwydWMTtqyarHrGV2l01M/b3xBgJxs3brVcJvatWtbkInnCg4OVr9+/dSvXz+tWbNGM2bM0OLFi3Xjxg2X5mGz2TRlyhStWrVKX3/9tWJiYlzav6fi+QAwD+MJgCN++eUX/eMf/3C4ff78+fXwww/r/vvvV9OmTXPlDpmhoaGG4llF2vNxz4Q3CQ0NVZ48eey+tty5c8fijHIfrgkA4PmCgoLcnQLgMRgPzmMuBL4oLCxM5cqV0y+//JJjrM1m0+HDh1WrVq1s4z766CO73znq27evHnjgAbtiAXcxWlzkKwu6wnP5uzsBAAAA5C516tQxFJ+RkaFt27Y53J/RLyo9uaiCL2k9X275vHlqXvAcK1asMNzG14qL/qhFixaaPn26Ll68qGXLlunZZ59VbGysS3M4fPiw6tev79Q9NTfJLddriecDuB/jCYAjnn32WSUmJhpuV6NGDc2ZM0cXLlzQzJkz9fjjj1v+Mo27dnY1eo2huMjzcc+EtylWrJjdsRcvXrQwk9yJawIAeL6wsDB3pwB4DMaD85gLga+Ki4uzO/bQoUPZHj9z5oyGDh1q17lKly6td9991+6+kTukpaVpxYoVevbZZ7V79253p2OXhIQEQ/HFixe3KBPAPuxcBAAAAFNVq1bNcJs9e/aoTZs2DvVn9IvKmzdvOtSPKxjd7cLoKsdwntGfuad+3jw1L3iG27dv68cffzTc7t5777UgG+8SHBys1q1bq3Xr1pKky5cva9OmTdqwYYM2bNigXbt2KS0tzbL+r1+/rtatW2vTpk2qUqWKZf14A54PAPMwngAYtXnzZn333XeG2oSHh2vcuHHq37+//Pz8LMosc+4q2jF6fXX1DpkwjnsmvE10dLROnDhhV+yVK1d09+5dikYM4JoAAJ7PketVamqqAgN53Q65D+PBOcyFwJfFxcVpyZIldsXmVFzUv39/3bp1y65zffrpp4qMjLQr1hslJCRo69at2rdvn3766SedPn1aZ8+e1bVr15SUlKTU1FSFhYUpb968yps3rypUqKAqVaqoatWqat68ea7a/SwpKUnLly/XV199paVLl+ratWuSpPvuuy/HnbA8wZkzZwzFR0dHW5QJYB+e7gAAAGCqkiVLGm5z9OhRh/sLDAxUeHi4bt++bVe80RUhXMnoCqD58uWzKBNkJTAwUBEREXavOnXp0iWLM3KMp+YFz7B27VqlpKQYahMQEKC6detalJH3Kly4sNq3b6/27dtL+r1wa+PGjdq8ebO2bt1q+stD165dU+fOnbV9+3aFh4ebem5vwvMBYB7GEwCj3nrrLUPxUVFRWrZsmdt2wkxKSnJLv/7+/ipQoMBvX4bn5Pz58xZnBGdxz4S3KVGihKH4s2fPqkKFChZlk/twTQAAzxcUFKTg4GBD8+F3795VRESEhVkB7sF4cA5zIfBlRhYg/vnnn7M8NmvWLLuL9Pr376+WLVva3a83yMjI0IYNG/Tll19qxYoVORZiSdKtW7d069YtnT17VgcPHtQ333zz27GYmBi1adNGffr0cWiRaE/Rq1cvLVy48C+/W/v5+alp06ZuysqYs2fPGoo3Ol8DmM3f3QkAAAAgd4mKijLcxugqDf/LyJaw165ds3TXCGcY/ZKW1Srcw8jnzei/qatQXITszJo1y3CbRo0aqUCBAhZkk7uEh4erZcuWGjlypJYvX66rV69q69atGjt2rFq0aKGgoCBT+jl48KBGjRplyrm8Gc8HgHkYTwDsdfHiRUMr9QYHB2vJkiVue5lGcu+OQEYWaElMTLR7oQu4D/dMeJMyZcoYijf6Mgy4JgCANzD68uadO3csygRwP8aDY5gLga+Li4uzOzargpmLFy/q+eeft+scZcuW1bhx4+zu09MdP35cw4YNU3R0tJo3b65JkybZVViUk59//lnvvfee4uLi1Lx5cy1dutSEbF3r7NmzmjFjRqaLdlSvXl0FCxZ0Q1bGGZ1PyU27TsE7UVwEAAAAUzmyZfrly5ed6tPIl5U2m00nTpxwqj+rHDt2zFA8X9K6R7FixeyO9dTP2vHjx92dAjzU9evXtXjxYsPt2rZta34yPuDXHZ9eeuklrV69WleuXNGcOXPUuXNnhYSEOHXuCRMm6OTJkyZl6p14PgDMw3gCYK/58+cbejF6+PDhatCggYUZ5cydL8uXKlXKULwzOz/DNbhnwptUqlTJULyzC0T5Iq4JAOD5SpcubSjek3eaA5zFeHAMcyHwdTExMXYvoHjkyBHZbLa//PnAgQN15cqVHNv7+fnps88+yxW7pu3Zs0ePPPKIKlSooLFjx1p6TV23bp3atWunBx980KvmF9etW5flsWbNmrkwE+cYnU+pWLGiRZkA9qG4CAAAAKYKDAw03MbZbbeNrqKU3VbL7mR09RG+pHUPIz/3ixcveuTKT546BuB+c+fO1d27dw23o7jIHJGRkfr73/+uhQsX6ty5cxo3bpzhF05/lZqaqgkTJpiboJfh+QAwD+MJgL1Wr15td2yhQoU0dOhQC7Oxjztfljf6rLdv3z6LMoFZuGfCmxgtLuIFROO4JgCA5zNaTEGxLXIzxoNjmAuBrwsODrb798s7d+7o1KlTf/qzxYsXa8GCBXa1HzBggFq0aGE4R09y/PhxdenSRbVq1dKXX36ZabGVVb7//nvFxcVp7ty5LuvTGbmluMjIfEpoaKjhuQTAbBQXAQAAwFSOFAqlpqY61WeFChUMxR88eNCp/qyQkpKiX375xe54fqF0n5iYGEPxZmxZbab09HSvWo0GrpOenq53333XcLtKlSoZHhfIWcGCBTV48GAdOXJEb731lvLkyWP4HLNmzVJ6eroF2XkHng8A8zCeANjDZrNpw4YNdsf36tXLod2PzXbgwAG39V21alVD8f/5z38sygRm4Z4JbxIbG2sonhcQjeOaAACez+jK8MePH7coE8D9GA/GMRcC/FdcXJzdsX98f+L69esaMGCAXe3Kly+vt956y3BuniI1NVUjRoxQlSpVtHDhQrflkZycrO7du2v8+PFuy8Fe69evz/JY06ZNXZiJc4zMp1SqVEl+fn4WZgPkjOIiAAAAmOrmzZuG24SFhTnVZ40aNQzFb9myxan+rLBz505DRVbVqlWTvz+P8+5gZGJMkrZt22ZRJo7Zt2+f07uFIXeaOXOmjhw5Yrhdnz59LMgGvwoJCdHQoUO1du1a5c2b11Dby5cvG/pSK7fh+QAwD+MJgD3OnTuny5cv2x3vKbtf7tmzx219165d21B8dl+owzNwz4Q3KV68uAoVKmR3vCcWvng6rgkA4Pnq1KljKH7Xrl0WZQK4H+PBOOZCgP+qVq2a3bF/3LH1hRde0Pnz53Ns4+fnp2nTpik8PNyh/Nzt8OHDatiwoV577TUlJye7Ox3ZbDYNGTJEU6dOdXcqWUpISMhyId+qVasqKirKxRk5Jjk52VAxbs2aNS3MBrAPszoAAAAwlSMrWDo7AVC9enVD8Zs2bXKqPysYzYlfKN3HyMSYJP34448WZeIYT8sHniE1NVWvv/664XZ58uRR3759LcgI/6tevXr69ttvDb+g48vFRTwfAOZhPAGwh5FdDfz9/VWvXj0Ls7GPzWbT1q1b3db/PffcY+j5bufOnbpx44aFGcFZ3DPhbYz8+7F7mnFcEwDA89WtW9dQ/I4dOyzKBHA/xoNxzIUA/+XIzkUrVqzQtGnT7GozaNAgr9qp5o8+/PBD1apVy9A109/fX3Xq1NHgwYP1ySefaMOGDTp+/LguX76slJQUpaSk6MaNG/rll1+0ceNGTZ06VYMGDVKNGjUM7XozaNAgjy02zG6RpWbNmrkwE+f89NNPSktLszue36nhCSguAgAAgKmOHTtmuE3+/Pmd6rNSpUqGdj+6cOGC9u/f71SfZlu+fLmh+HvuuceaRJCjypUrKyIiwu74NWvWyGazWZiRMatWrXJ3CvBAb775pkPX727duhla5RjOady4sfr162eozc6dO03p2xu3X+f5AH/kjZ9hT8J4AmCPEydO2B1bunRp5cmTx7pk7LRr1y5dunTJbf2Hh4cbWsAiPT1dy5YtszAjz+KN92/umfA2Rl5aSUhIcOs10xtxTQAAz1e4cGGVL1/e7vh9+/bp4sWLFmYEuA/jwTjmQoD/MlpclJiYaPd3npUqVdKYMWMcTc1tkpKS1LFjR/3f//2f7ty5k2O8n5+fWrRooVmzZunSpUvavn27xo0bp759+6px48YqW7asChUqpKCgIAUFBSlv3rwqX768GjVqpD59+mjixInau3evTp06pTfffFNFixbNsc+7d++qe/fuSk9PN+OvbKp169Zleax58+auS8RJRhdq4XdqeAKKiwAAAGAqR1YoMjJJmZmAgAA1adLEUJvFixc71aeZrl+/rrVr1xpq402/LOc2gYGBaty4sd3xFy5c0LZt2yzMyH7Jycn64Ycf3J0GPMyuXbv05ptvOtR20KBBJmeDnAwdOtRQvJFt1rMTEBBgd6yR1ZesxPMB/sgbP8OehPEEwB5GdtQpXLiwhZnY75tvvnF3CnrwwQcNxc+aNcuiTDyPN96/uWfC2xhdnX7v3r0WZZI7cU0AAO9w//332x2bkZGhpUuXWpgN4F6MB2OYCwH+q2LFinYXz/38888aNmyYTp48mWOsv7+/pk2bZmjRBk9w7do1tWzZ0q7f7wICAtSnTx8dPnxYq1evVo8ePVSwYEGH+y5ZsqSGDx+uo0ePatiwYTnOrx08eFCzZ892uD+rZFdc5E27WBkpLvLz81OdOnUszAawD8VFAAAAMI3NZtOmTZsMt6tYsaLTfbds2dJQ/MKFC53u0yyLFi1Samqq3fHFihUztPILzNeiRQtD8V999ZVFmRizfPlyJSYmujsNeJDExEQ9/vjjDr2I16FDB9WqVcuCrJCd8uXLG1rd/ty5c6b0GxISYneskXua1Xg+wK+89TPsSRhPAHJizwqcv/KElXptNps+//xzd6ehhx56yFD8Dz/8oAsXLliUjWfx1vs390x4kwYNGhiKN7riLrgmAIA36NChg6H4OXPmWJMI4AEYD8YwFwL8l7+/v6pUqWJX7Llz5/Tvf//brtjnn39ejRo1ciY1lzt37pyaNm2qzZs35xjbrl07HThwQFOnTjXlvak/ioiI0OjRo7Vq1SoVKVIk29jXXntNGRkZpvbvjCtXrujAgQOZHouJiVGxYsVcnJHjjMyjVK1aVfny5bMwG8A+FBcBAADANNu2bXPoBZfq1as73beRVZSk/66y+eOPPzrdrxnsnTj5VXx8vEWZwF5G/w1mzJjhES86ffzxx+5OAR4kLS1NXbp0yXJiLjvBwcEaN26cBVnBHjVr1rQ71qyCQiMvdt68edOUPs3A8wF+5a2fYU/CeAKQk5SUFLtjr1+/bl0idlq1apWOHTvm7jTUsGFDFShQwO74tLQ0vffeexZm5Dm89f7NPRPepEyZMipRooTd8RQXGcc1AQA833333ae8efPaHb9q1SodOnTIwowA92E8GMNcCPA7IwsN2FPIUrlyZb3xxhvOpORyR48eVcOGDbV///5s4woWLKhZs2ZpyZIliomJsTSnZs2aaf369SpVqlSWMUlJSfL395xygg0bNshms2V6rFmzZi7OxjlG5lEaNmxoYSaA/TznagAAAACvN3XqVMNtgoKCTPkFqWbNmipfvryhNh988IHT/Tpry5Yt2rFjh6E2HTt2tCgb2Kt27doqW7as3fEJCQlu373oxIkTWrZsmVtzgOew2Wzq37+/vv/+e4faP//886pQoYLJWcFeRYsWtTvWrMLG/Pnz2x179+5dJSUlmdKvs3g+wK+89TPsSRhPAHJiZAXehIQECzOxj6e8nBAYGKhu3boZajNlyhRdvXrVoow8h7fev7lnwts0btzY7liKi4zjmgAAni84OFiPPPKIoTZvv/22RdkA7sV4MIa5EOB31apVM+1c/v7+mj59ukJDQ007p9WuXLmiBx98UCdPnsw2rl69etq3b5969Ojhosz+u9vPypUrs9wVp0WLFi7LxR7r1q3L8pg3FRclJCTo4sWLdscbmZ8BrERxEQAAAExx/vx5zZ4923C7unXrKiwszJQcHnvsMUPxc+fO1U8//WRK34565ZVXDMUXLFhQbdu2tSgbGNG1a1dD8W+88YZbt5J+/fXXlZ6e7rb+4TmSk5PVvXt3ffbZZw61L168uF5++WWTs4IRRr6sioiIMKXPIkWKGIo/c+aMKf2agecDSN79GfYkjCcA2THy3HHlyhXTdlh0xKpVq7L9ktrV+vfvbyj+1q1bGjZsmEXZeA5vvn9zz4Q3MbLbzH/+8x/dunXLwmxyJ64JAOD5Bg4caCh+xowZ2rt3r0XZAO7FeLAfcyHA74zsXJSTwYMHq0GDBqadz2opKSnq1KmTjh49mm1c9+7dtXbtWkVHR7sos99VrlxZs2bNyvQYxUXW2Lhxo6F4dgOGp6C4CAAAAKZ46aWXHFoh1ujKR9np2bOnofiMjAy3voyzfPlyrVy50lCbrl27Kjg42KKMYET37t0Nxe/fv19ffPGFRdlk79ChQ/r888/d0jc8y5UrV9SyZUvNnTvXofYBAQH64osvlDdvXpMzgxFGVjjKagUqo4zsliRJhw8fNqVfM/B8AMm7P8OehPEEIDtGvhTPyMjQihUrLMwma8nJyRowYIBb+s5KjRo1VL9+fUNtpk6dqh9//NGijDyDN9+/uWfCm7Rs2dLu2PT0dG3YsMHCbHInrgkA4Plq1aplaLX4jIwMPf3000pLS7MwK8A9GA/2Yy4E+J1ZxUVVqlTR66+/bsq5XKV///5av359tjEvvPCCZs+ebWgRSbM9/PDD6tChw1/+3JOKi27cuJFlwWrFihVVokQJF2fkuLVr19odGxsb61V/N+RuFBcBAADAaQsWLNDMmTMNtwsMDDRcoJGdihUrGl7J4euvv9aCBQtMy8FeiYmJhlcmloyvZgzr1KhRw/C2xIMHD9bVq1ctyihzNptN/fr188kJffzZokWLVK1aNcMr5PzRqFGj1Lx5c/OSgkN27dpld2yFChVM6bNAgQIqUKCA3fE7d+40pV8z8HwAybs/w56E8QQgO+XKlTMU/80331iUSfb+9a9/eVQRyq+GDh1qKD4jI0PdunVz+e+YruTN92/umfAm5cqVM/S745o1ayzMJnfimgAA3uHFF180FL9lyxa9+uqrFmUDuBfjwT7MhQC/K1OmjCIjI506R0BAgGbMmKGQkBCTsrLeO++8o+nTp2cb849//EPjx493TUI5eOutt+Tn5/fb/y9durTKly/vxoz+bMOGDcrIyMj0mDftWiQZmz8xsvALYDWKiwAAAOCUTZs26cknn3SobefOnVWkSBFT83n55ZcNt3nmmWd09uxZU/PIyXPPPacTJ04YavPwww+rZs2a1iQEhwwePNhQ/MWLF/XMM89YlE3mJkyY4FQxCbzf6dOn1a1bN3Xq1EkJCQkOn6d169YaPny4iZnBEceOHdPu3bvtjq9SpYppfcfExNgdu2rVKtP6NQPPB5C8+zPsSRhPALISExNjaMeCuXPn6ty5cxZm9FeLFi3SuHHjXNqnvTp27Ki6desaanPy5El169ZNqampFmXlft58/+aeCW/y0EMP2R1rZOVd/I5rAgB4vnbt2hleXGvs2LE5vlAMeCPGg32YCwH+rFq1ak61Hzp0qP72t7+ZlI31Dhw4oH/961/ZxvTr10/vvvuuizLKWeXKldWkSZPf/r8n7VokSevWrcvymDcVF126dEk//fST3fFG5mUAq1FcBAAAAId9/fXXevDBB5WYmGi4rb+/v0aMGGF6Ti1atFCDBg0Mtbl06ZI6dOigpKQk0/PJzKRJk/TZZ58ZbufIF9CwVrt27VS5cmVDbebOneuyyaM1a9YYXv0aucfp06c1YMAAVaxYUXPnznXqXHXq1NGcOXP+tIpRbrVp0yb16dNHR48edXcqmRo7dqyh+KZNm5rWt5EXhTZs2KBjx46Z1rezeD6A5N2fYU/CeAKQlZCQENWqVcvu+Dt37rh03G3cuFGPPfaYy/pzxOjRow23Wb58ubp165Zrd6v15vs390x4k3bt2tkdu3v3bt24ccPCbHInrgkA4B3Gjx9vaB7cZrOpb9++mj17toVZmWPDhg2aMmWKu9OAF2E85Iy5EODPnCkuqlatmkaOHGleMhbLyMhQnz59lJKSkmXMfffdp3//+98uzMo+PXr0+O1/e1px0fr167M85k3FRWvXrpXNZrMrNjIyUvfdd5/FGQH2o7gIAAAAhl2/fl0DBw5Uhw4ddOvWLYfO8cQTT5i6m8IfGX3xWpJ27Nihzp076+7duxZk9LvZs2frH//4h+F27du3V/369S3ICM7w9/fXmDFjDLcbOnSo5syZY0FGv9u5c6c6d+6ca18wQ+bS0tL0zTff6NFHH1XFihU1ZcqUbCc07XHvvfdq+fLlyp8/vzlJerjU1FR99tlnio2NVc+ePbVnzx53p/SbH374QVOnTrU7PiAgQK1atTKt/0aNGtkda7PZPK64kecDePtn2JMwngBkxeiXoJ9//rkWLlxoUTa/27hxox566CHduXPH8r6cER8fr0cffdRwuy+//FKdOnVyeI7GLJcuXTL9JRBvv39zz4S3aNasmd2/96enp2f7sg+yxjUBADzfvffeqwEDBhhqk56erp49e+r111+3+yVSV7HZbPrhhx/UvHlzNW3aVJs2bXJ3SvAijAf7MBcC/C4uLs6hdoGBgZoxY4ahncDcbcKECdq6dWuWxytUqKCFCxcqMDDQhVnZp3Hjxr/9b08qLkpMTNSuXbsyPVa2bFmVLl3axRk5bs2aNXbHPvDAA1712UfuR3ERAAAA7HbhwgWNHDlSFStW1OTJkx2eEIyOjtb48eNNzu53TZs21eOPP2643bJly9SmTRtdvXrVgqykf//733r88ceVnp5uqF14eLgmTZpkSU5wXqdOndS8eXNDbX6dWP/kk08syWndunWKj4/XtWvXLDk/PMvVq1e1cOFCPf300ypRooTatm2rBQsWOF1UJEn33HOPVqxYoQIFCpiQqXdJT0/XrFmzVKtWLTVp0kTz589Xamqq2/LZsGGDHn30UUP33jZt2pj6b2f0Wvfll1/q2WefVXJysmk5OIPnA3j7Z9iTMJ4AZKVLly6G4jMyMvTYY49p9erVFmUkTZ8+XfHx8bp586ZlfZhp8uTJKlKkiOF2S5cuVb169bRv3z4LssrehQsXNHz4cJUvX14TJkww9dzefv/mnglvERgYqLZt29odb+QlGfyOawIAeId33nlHVatWNdTGZrPp1VdfVatWrXTq1CmLMrPfzZs3NXHiRMXGxqp169Zat26du1OCl2I85Iy5EOB3jhYX/fOf/1Tt2rVNzsY6x44d0yuvvJLl8YCAAM2aNctjv2OPjY1VrVq11Lx5c9MLdpKSkrR06VINGTJErVq1Urly5ZQ/f34FBQWpSJEiiouL0xNPPKGZM2f+ZVfkTZs2Zbl4rjftWiQZmzfp2LGjhZkAxlFcBAAAgCwlJydr+/btGj9+vOLj41WyZEmNGjVKV65ccfic/v7++vTTTy3/JXrcuHEqWLCg4XZr1qxRrVq1tHHjRtNyuXHjhh577DE988wzysjIMNz+tddeU6lSpUzLB+abMGGCgoKCDLVJT0/XU089pb59+yoxMdGUPNLT0/XWW2+pZcuWf5mI+SM/Pz9T+oPrJSQkaPXq1Zo4caKeeuop1a5dW1FRUerSpYs++ugjXbx40bS+OnbsqHXr1jl0Lc1tNm7cqK5du6p48eIaOHBgtqtQmS0tLU0TJkzQ/fffb/hLoEGDBpmaS6lSpVS3bl1DbSZNmqTY2Fi98847OnLkiKn5OILnA9+WGz7DnoTxBCAztWrVUo0aNQy1SU5O1sMPP6zJkyebmsvFixfVpUsX9e7dO9vCe09bPbRw4cL66KOPHGp78OBB1a5dW8OHDzft98zsbNmyRb1791aZMmU0ZswYS/rMDfdv7pnwFl27drU79ttvv7Uwk9yNawIAeL7Q0FDNmTNHISEhhtuuXLlS1apV08iRI12+s2hqaqq+/vpr/f3vf1exYsX03HPP6fDhwy7NAbkP4yFnzIUAv3OkuKhGjRp69dVXLcjGOkOGDMl2V7Bhw4Z59A6v/v7+2rVrl6kLh2zfvl2PPfaYChcurHbt2mn8+PFasWKFTpw4oRs3bigtLU2XLl3SgQMH9Pnnn+vxxx9X6dKl9dJLL/32Dlp2xZ9GFyByp2PHjunQoUN2xYaFhal9+/YWZwQYw1MCAACAF9q9e7f+9a9/mXY+m82mlJQU3b17V1evXtXFixd14sQJHT9+3PBqhTkZP368Wrdubeo5MxMVFaXp06erffv2hndYOnXqlJo2baru3btr1KhRqlChgkM5JCcna/r06XrllVd06dIlh87RqlUrPf/88w61hevUrFlTo0aN0vDhww23/fTTT7Vs2TKNGTNG3bt3d3gyd+XKlRo8eLD+85//5Bg7YMAA0yer8V/OXp+Tk5OVnJysu3fvKjk5WTdu3NCFCxd0/vx5XbhwwZTdiHISEBCgMWPG6MUXX7S8L29z5coVTZ48WZMnT1bp0qX18MMPq23btmrWrJlCQ0NN7Ss9PV2zZ8/W66+/rqNHjxpu36xZM91///2m5iRJPXr00LZt2wy1OXHihIYOHaqhQ4eqcOHCqlKlikqXLq2CBQsqLCzM8HXvjTfeMBT/RzwfwNs/w56E8QQgKy+88IJ69eplqE1SUpIGDhyo7777TmPGjDH8Us4fXblyRRMmTND7779v18tLI0aMyHalUXfo0KGDXn75Zb355puG26ampmrMmDH66KOP9Oyzz6p///4qVqyYabnt379fixcv1uzZs+3+ktxZ3n7/5p4Jb9GqVSsVLFjQrt1xDh8+rEOHDik2NtYFmeUuXBPgDUaOHKlRo0a5rf+TJ0+avkCW0fEG1KhRQ9OnT1f37t0Nf34SExM1atQoTZo0Sb1791a/fv0UExNjSZ4JCQn6/vvv9d1332n58uW6fv26Jf3AtzEecsZcCPBfxYoVU6FChexesDgoKEgzZswwvJCrO23btk2LFi3K8njlypW9rljKGXv27NELL7zgUKHSzZs39fbbb2vmzJn67LPPsi0u8qadi5YsWWJ3bNu2bRUeHm5hNoADbAAAAHC7Zs2a2STl+v+GDBni8p/tyy+/7FTO/v7+tjZt2thmzpxpS0hIyLG/tLQ028aNG21Dhw61RUVFOdV3mTJlbJcvX3bBT8lme+KJJ+zO64knnnBJTvbwpLzT09NtTZs2derfvESJErYRI0bYduzYYcvIyMixz59//tn23nvv2eLi4uzuo3PnzrY1a9YYysuX+cr1+df/ypUrZ1u7dq27f+w2m83mts+p0X4l2YKCgmz169e3DRkyxDZ37lzbvn37bMnJyYb7Pn36tG3+/Pm2nj172goVKuTwv2NgYKBt7969pv1M/ujWrVu2AgUKuPVzagaeD+zjSfdZs3jzZ9hT79+Mp5x561jy1rxdzejzoi/8rFJSUmxVqlRxany2aNHCNmvWLNupU6fs6vP8+fO2OXPm2Dp37mwLDg62u58GDRrY0tLSDOW2Zs0aa3+A/19GRoatc+fOTt93/P39bfHx8bZJkybZdu/ebUtLS7M7h5SUFNu+ffts06ZNs/Xu3dtWrly5HPvLly+f6T8Lb75//xH3TPtw/3Gvp556yu6f/1tvveXudH8zbdo0Q59nT8A1IWdcD9xnxIgRLr/XWv0fzGX05z9t2jR3p+yw9957z5TPYFxcnG3o0KG2ZcuW2S5cuOBQLufOnbOtWbPG9sEHH9h69uxpq1ixouE8evToYfJPyPN56/3EE/NmPGSNuRDHeOLnHM4z8s7EiBEj3J2uYa1bt87277R06VJ3p+gSiYmJtqefftrm7+9vyr1BUpbnKlWqlLv/uoYY+c5g8eLF7k4X+At2LgIAAIBLvPnmmw7t6uKs1157Tfv27dPXX3/tUPuMjAx99913+u677+Tn56eyZcuqSpUqKlmypCIiIhQcHKzExERdu3ZNhw8f1sGDB5WYmOh03nnz5tVXX32lQoUKOX0uuIa/v7/mzJmjevXq6cyZMw6d4+zZsxo1apRGjRql/Pnzq2rVqqpYsaLy58+vsLAw3b17Vzdv3tSJEyf0008/6cKFC4bOX7hwYU2ePFkHDx50KD/kXnny5NFLL72kf/7zn8qTJ4+70/E6qamp2rJli7Zs2fLbnwUGBqpkyZIqUaKEoqOjVbBgQeXJk0d58uSRzWbT7du3lZiYqMTERB0/flyHDx825f4hSW+99ZZTK9xlJyIiQkOHDtWwYcMsOb+r8Hzgu3LLZ9iTMJ4A/K+goCBNmjRJLVu2dPgca9as+W21y1KlSql69eoqWLCgChQooPDwcCUlJenWrVs6efKkjhw5olOnThnuI2/evJo5c6YCAgIcztNKfn5+mjlzpq5everQyp+/ysjI0KpVq7Rq1SpJUlhYmMqXL6/y5curaNGiCgsLU1hYmNLS0pSUlKQbN27o3LlzOnv2rH755Relpqaa9VdyWG65f3PPhDfo1auXPv74Y7tiv/zySw0dOtTijHIvrgkA4B2ef/55Xbt2Ta+99ppT59m/f7/279+vt99+W5JUtGhRlSlTRiVLllRUVJRCQ0N/mzu+e/fub98HXbhwQQkJCTpz5oxu3rxpxl8JcBjjIWvMhQC/i4uL0/r163OMq1Wrll5++WUXZGSe/fv36/vvv8/y+H333aeHH37YhRm5x/bt29WjRw8dOXLE1PNmZGRk+ufetGvRxYsXtXHjRrtio6Ki1KZNG4szAoyjuAgAAACWioyM1Icffqju3bu7pX9/f3/Nnz9f7dq10/Lly506l81m0/Hjx3X8+HGTsstcRESEli1bpnvvvdfSfmC+6Ohoffvtt2rSpInTk9rXr1/X5s2btXnzZlNyCw4O1ldffaWiRYtSXIQ/6dChg959912VK1fO3ankKmlpaTpx4oROnDjh0n67d++uF154wdI+Bg8erC+++EL79u2ztB8r8Xzg23LDZ9iTMJ4AZCY+Pl4DBw7UBx984PS5Tp8+rdOnT5uQ1e9CQkK0ePFiVahQwdTzmi00NFTffvutOnXqlO2LC0bcuXPntxe5vEluuH9zz4Q3aNCggapUqWLX3NG2bdt0/Phx5hMcxDUBALzHqFGjFBUVpeeeey7Ll16NSkhIUEJCgrZt22bK+QBXYTxkjbkQ4L/i4uJyjAkODtb06dMVFBTkgozM895772V73NsXxrHHF198oSeffFLJycku69ObiosWLFig9PR0u2Iff/xxrxsD8A3+7k4AAAAAuVe9evW0e/dutxUW/erXiTJnVgpylcjISH377bdq2LChu1OBg2rUqKGvvvpKYWFh7k7lTz799FM1adLE3WnAQwQHB6tXr17av3+/Fi1axItAuUSnTp00Y8YMy/sJCgrSokWLFBUVZXlfVuL5wHflls+wJ2E8AcjM+PHjVb9+fXen8Rf+/v6aOXOmWrRo4e5U7BIaGqolS5bo0UcfdXcqbpVb7t/cM+ENnnzySbtj586da2EmuR/XBADwHgMHDtS8efM87rsfwB0YD1ljLgSwr7jolVdeUY0aNVyQjXkSExM1b968LI/XqFHDK363c8brr7+uHj16ZFtYFBQUpA4dOmj69Ok6cOCAbt68qZSUFJ07d+63OU5/f2OlC95UXGRknsTI/AvgShQXAQAAwHTFixfXp59+qs2bN3vMyjehoaFatmyZBgwY4O5UslSxYkVt2bJFTZs2dXcqcFJ8fLyWL1+ufPnyuTsV+fn56f3339djjz3m7lTgAaKjozVs2DCdOHFC06ZNU7Vq1dydEkzyzDPPaN68eQoMdM0m1RUqVNCKFStUsmRJl/RnFZ4PfFdu+Qx7EsYTgP8VHBys7777TtWrV3d3Kr8JCQnRjBkz1KVLF3enYkhwcLDmzZun8ePHu+x5zxPllvs390x4uieeeEIhISF2xVJc5DyuCQDgPR555BHt2rWLHdwAMR6ywlwIkHNxUe3atfXPf/7TRdmYZ+HChbp9+3aWx5955hkXZuN6w4cP16uvvprl8cDAQA0cOFDHjx/XokWL9MQTT6hq1aqKjIxUUFCQihcvrnbt2mnevHn68ccfVapUKbv6jY6OVqVKlcz6a1jqzJkz2rRpk12xjRo1UtWqVS3OCHAMxUUAAAAwTZkyZTRu3DgdPnxYTz75pOHVJqwWGBioyZMn65NPPlF4eLi70/mThx56SNu2beOXx1ykUaNGWr9+vcqXL++2HEJCQjRv3jw9++yzbssB7hcdHa1BgwZp/fr1OnPmjEaPHq3ixYu7Oy2YJDIyUp999pk++OADl79oWrNmTW3fvl0dOnRwab9m4/nAd+WWz7AnYTwB+F8FChTQqlWr1KBBA3enoqioKK1atcqrF1544YUXtHbtWlWsWNHdqbhNbrl/c8+EJ4uKilLXrl3tiv3Pf/6j3bt3W5xR7sc1AQC8R0xMjH788Ue99NJLCgoKcnc6hnn7TqDwLIyHzDEXAl9XoECBLL+LDg4O1vTp071y8Zz58+dneSwwMFCdO3d2YTau9fLLL2vMmDFZHq9evbp27typSZMmqUSJEjmer27dutq8ebNdsd60a9GMGTNks9nsih00aJDF2QCO86y3PQEAAOB1QkND1alTJy1cuFC//PKLBg8erIiICHenla2+fftq//79atWqlbtTUVRUlGbPnq1vvvlGBQoUcHc6MFmNGjW0a9cut6wEVaFCBa1evZpVqHxQ3rx59cADD+jNN9/Upk2bdPr0aU2cOFFNmjSRn5+fu9PzeIUKFfKa4qsHH3xQ+/fvV+/evd2WQ7FixbRo0SItX75c8fHxbsvDDDwf+Kbc9Bn2JIwnAH8UFRWl1atXq1evXm7LoWXLltq+fbsaNWrkthzM0qhRI+3fv1+jRo1SaGiou9P5C1eszpyb7t/cM+GpjLzkMm3aNAsz8S1cEwDAOwQHB2vs2LE6cOCA2rdv7+50chQZGal+/fpp+/bteu+999ydDnIZxkPmmAuBr8tq96KRI0fmuLORJ7p9+7ZWr16d5fH77rtPhQoVcmFGrjNlyhSNHj06y+M9e/bUtm3bVKNGDUPnLVmypObNm5fj+wveVFw0ffp0u+Kio6PVqVMna5MBnEBxEQAAAAzx9/dXzZo1NXDgQC1cuFCXLl3Sl19+qc6dOysgIMDd6dmtbNmy+uGHH7RgwQLDv+SaISIiQkOGDNHBgwfVvXt3l/cP18mXL5/mz5+vefPmqUyZMpb35+/vr3/84x/at2+fGjZsaHl/cK8iRYqoadOmeuqppzRx4kTt3LlTV69e1ffff6/hw4erYcOGHreLnKerXr26zp49q82bN2vo0KGqVq2au1P6i/r162vVqlX67rvvVLp0aXenI0m6//77tXLlSh06dEhvvPGG6tat65WrjvF84Ltyy2fYkzCeAPxRnjx5NG3aNC1evNiuFSnNUqxYMc2ePVsrVqxwye9jrhISEqJXX31VBw8e1IABA9xeZBQSEqJHH31U69ev14YNG1zWb265f3PPhCeqU6eO6tevb1fsF198oZSUFIsz8h1cEwDAe1SqVEmLFy/Wxo0b1bFjR4/6njQ0NFSdO3fW/PnzlZCQoI8//lh16tRxd1rIxRgPf8VcCHxZZgVEdevW1dChQ92QjfNWr16t5OTkLI+3adPGhdm4zvfff5/t4iPDhw/X559/rjx58jh0/kaNGuVYhOktxUXr16/X0aNH7Yp9+umnvXLHP/gO75thBwAAgCUCAgIUEhKikJAQ5cmTR4UKFVLRokVVtGhRlS5dWjExMapSpYqqVq2qyMhId6drmkceeUSdO3fW0qVL9f7772vt2rXKyMiwrL9SpUqpd+/eevbZZ3PtyiXI3KOPPqp27dpp4sSJmjhxos6ePWvq+YODg9WjRw+9+OKLqlKliqnnhvWCgoJ+uwb/8b+8efOqaNGiKlKkyG//FS1aVGXLllWVKlWUP39+d6eeK/n5+alBgwZq0KCB3nrrLZ09e1Y//PCDVq1apfXr1+vMmTMuzyk8PFyPPPKI/u///k/16tVzef/2iomJ0csvv6yXX35Zd+7c0Y4dO7Rv3z4dOXJEx44d08WLF3X58mVdu3ZNycnJSklJUWpqqrvT/gueD3xXbvkMexLGE3K7Xr16qXnz5nbH33PPPZbl4g3at2+vVq1aaeLEiXrvvfeUkJBgST+xsbEaNGiQnnjiCYWHh1vShycoU6aMJk+erFGjRmnKlCmaOXOmjhw54pK+AwMD1bRpU3Xp0kVdu3Z1664WueX+zT0TnmbIkCF65JFHcoy7cuWKvvzyS3Xr1s0FWfkOrgkAPNmIESMMxef234MaNWqkRo0a6dSpU5oyZYrmzZun48ePuzyPMmXKqHXr1mrTpo3i4+Nz9e9C8FyMh79iLgS+6H+Li/LkyaPp06d7VOGhETktptO4cWMXZeI6Z86cUY8ePZSenp7p8X/96196/fXXne7nxRdfzHJH5KJFiyo2NtbpPlzhk08+sSsuLCxM//d//2dxNoBz/Gw2m83dSQAAAACe4ty5c5o7d66WLl2qrVu3KikpyelzVqpUSfHx8erWrZuaNGmS47a+yP3S0tK0ZMkSzZgxQ6tXr9bt27cdOk9AQIAaNGigtm3b6rHHHlN0dLTJmQLIzPHjx7Vp0ybt2LFDO3fu1N69e3Xr1i1T+/Dz81NMTIyaNGmitm3b6v7773d41Sc4j+cDwDyMJwC/Sk1N1aJFi/TFF19oxYoVunPnjlPnq1Spkh544AG1b99e8fHxhq4FO3bssDs2JibGoxdd2b17txYsWKCVK1dqz549phXR+Pv7KzY2Vs2aNVPz5s3VqlUrFjuwGPdMuFtGRoZiY2PtKlps1KiRNm7c6IKsMmez2bJ84el/+fn5eeULbVwTAMC77N27V4sXL9aqVau0a9cuh78HykpoaKiqVaumOnXqqFGjRmrSpAk7lMBjMR5+x1wIfMW2bdv+tFji22+/rRdffNGNGTmnUaNG2rx5c6bHwsPDdf36da/cTTsrGRkZio+P19q1azM9/tRTT+mjjz4ypa/NmzerUaNGmR7r0qWL5s+fb0o/Vrp06ZJKlSqV7e5Wvxo0aJAmTpzogqwAx1FcBAAAAGQhNTVVO3bs0I4dO3T06FEdO3ZMJ06c0PXr13X79m3duXNHaWlpCg0NVXh4uCIiIhQdHa3y5curfPnyiouLU+PGjVWkSBF3/1XgwZKTk7Vx40Zt3bpVBw8e1MGDB3Xx4kXdunVLiYmJCgwMVEREhCIjI1WwYEFVrlxZ1apVU7Vq1dSkSRNWEgU8xKlTp3Tw4EEdOXJEJ0+e1KlTp3ThwgVduXJFV69e1a1bt35bIf2PuwXmy5fvtx2pft0pMDY2Vvfee68KFizo7r8WMsHzAWAexhOAX929e1dbtmzRjh07tHfvXp08eVKnT5/W9evXlZSUpNTUVIWFhf12LShYsKAqVaqkmJgYxcTEqF69eipbtqy7/xoeJykpSdu3b9fu3bt/u8aeOHFC165d0507d3Tnzh3dvXtXgYGBCg4OVlhYmAoWLKjChQsrOjpa5cqVU/ny5VW9enXVrFmTlY/diHsm3OWTTz7RU089ZVfsnj17VLNmTYszgsQ1AQC8TXp6un766Sft2LFDv/zyi06dOqVTp07p/PnzSkxM1J07d5SUlKSUlBQFBQUpJCREefLkUf78+RUVFaWoqCiVLFlS5cqVU7ly5VSlShVVrlzZK4tlAcbD75gLAbyDzWZTZGRkloWRtWvXNlSs5w0++OADDRo0KNNjzZo108qVK00rpho7dqyGDRuWZR7PPPOMKf1YacyYMRo+fHiOcYGBgTpy5AjXbng8iosAAAAAAAAAAAAAAMCfJCcnq0KFCjp79myOsX379tUnn3zigqwAAAAAAHCNkydPZlsM4i2769jr0qVLqly5sq5fv/6XY/ny5dO+fftUqlQp0/pr06aNli1blumx/fv3q1q1aqb1ZYX09HRVqFBBJ0+ezDG2Z8+e+vzzz12QFeAcf3cnAAAAAAAAAAAAAAAAPEtISEiWKwj/r1mzZunSpUsWZwQAAAAAgOscPnw42+Ply5d3USauMXLkyEwLiyRp9OjRphYWZWRkaNOmTZkeK1y4sKpWrWpaX1ZZuHChXYVFAQEBeuWVV1yQEeA8iosAAAAAAAAAAAAAAMBf9O3bVyVLlswx7u7du/rggw9ckBEAAAAAAK5x7ty5bI8XKlTIRZlY78KFC/r0008zPValShU99dRTpva3Z88e3bx5M9NjTZs2lZ+fn6n9WWHcuHF2xfXo0UOVKlWyOBvAHBQXAQAAAAAAAAAAAACAvwgJCdHw4cPtiv33v/+tpKQkizMCAAAAAMA1zp8/n+3x8PBwF2Vivffff1/JycmZHnvxxRcVGBhoan8bNmzI8lizZs1M7csKa9eu1Y4dO3KMCwwMZNcieBWKiwAAAAAAAAAAAAAAQKb69u2rChUq5Bh3+fJlTZ061QUZAQAAAABgvRs3bmR7PLcUF6Wnp2vatGmZHitUqJC6d+9uep/r16/P8pg3FBeNHTvWrrg+ffqoYsWKFmcDmIfiIgAAAAAAAAAAAAAAkKmgoCC98cYbdsW+/fbbSklJsTgjAAAAAACsl9PuvBkZGS7KxFqrVq1SQkJCpsc6dOigkJAQ0/vMaueiAgUKqHr16qb3Z6bt27frhx9+yDEuLCxMI0eOtD4hwEQUFwEAAAAAAAAAAAAAgCx17dpVtWvXzjHuzJkzWa52DAAAAACAN8lp8Yw7d+64KBNrLVy4MMtj7du3N72/gwcP6tKlS5kea9q0qfz9Pbu84fXXX7cr7oUXXlCxYsUszgYwl2ePPgAAAAAAAAAAAAAA4FZ+fn4aN26cXbFjxoxRamqqxRkBAAAAAGCt4ODgbI+fO3fORZlYa82aNZn+uZ+fnxo2bGh6f+vXr8/yWLNmzUzvz0x79uzR0qVLc4wrWrSoXnzxRRdkBJiL4iIAAAAAAAAAAAAAAJCt5s2bq1OnTjnGnTx5Uh9//LELMgIAAAAAwDphYWHZHj927JiLMrHO+fPndfTo0UyPlSlTRoUKFTK9T28uLnr55ZftinvzzTeVN29ei7MBzEdxEQAAAAAAAAAAAAAAyNG4ceOUJ0+eHOPeeOMN3blzxwUZAQAAAABgjaioqGyP79y500WZWGfPnj1ZHitfvrwlfW7YsCHTP8+XL5/uueceS/o0w8aNG/Xdd9/lGHfvvfeqd+/eLsgIMB/FRQAAAAAAAAAAAAAAIEflypXT4MGDc4y7cOGCJk6c6IKMAAAAAACwRpkyZbI9fuTIEZ05c8ZF2Vgjq12LJCk6Otr0/o4fP67Tp09neqxx48by9/fc0obhw4fbFff+++979N8DyA6fXAAAAAAAAAAAAAAAYJfhw4fn+IKVJI0dO1aXL192QUYAAAAAAJgvJiYmx5ivvvrKBZkYc+zYMd26dcuu2OPHj2d5LDw83KyUfrN+/fosjzVr1sz0/syydOnSLHdc+qPHH39cjRs3dkFGgDUoLgIAAAAAAAAAAAAAAHYJCwvTpEmTcoy7ceOGRo4caX1CAAAAAABYoEqVKoqMjMw25sMPP3RRNvZZvXq1/va3v6l///52xV+7di3LY4GBgWal9ZvsiouaN29uen9mSEtL04svvphjXMGCBTVu3DgXZARYh+IiAAAAAAAAAAAAAABgt7Zt26pDhw45xn300Uc6dOiQ9QkBAAAAAGAyf39/NWjQINuYgwcPasGCBS7KKHsffPCBHnjgAV29elVz5szRxx9/nGObxMTELI/duHHDzPR05coVLV26NNNjkZGRuvfee03tzyxTpkzRzz//nGPc2LFjFRUV5YKMAOuYX1IIAAAAAAAAAAAAAABytUmTJqlmzZo5xp04cUKxsbEuyAgAAAAAAHN17NhRy5cvzzZmyJAheuCBB5Q3b14XZfVnV65cUd++fbV48eI//flzzz2n+vXrq0aNGlm2TUtLy/LY5cuXzUpRkjRgwABdunQp02ONGjVSQECAqf2Zxc/PTyNGjMg2JiwsTH379nVRRoB1/Gw2m83dSQAAAAAAAAAAAAAAAAAAAAAA4CkuXryoUqVKKSUlJdu4Ll26aN68efLz83NRZv/1ww8/6Mknn9S5c+cyPR4TE6MdO3YoIiIi0+O9evXSjBkzMj0WFRWlixcvmpLn1KlT1a9fvyyPjxkzRv/85z9N6QuA4/zdnQAAAAAAAAAAAAAAAAAAAAAAAJ6kSJEi6tq1a45xCxYs0PPPP299Qv/f2bNn1bVrV7Vu3TrLwiJJKlu2rPz9sy4XKFiwYJbHLl26pIMHDzqVpyRt2LBBzzzzTLYxjRo1crofAM6juAgAAAAAAAAAAAAAAAAAAAAAgP8xdOhQBQQE5Bg3ceJE9ezZU0lJSZblcv36dY0aNUqxsbGaP39+trGPPvqoli5dqrCwsCxjoqOjsz3Hhx9+6FCev9q6dasefvjhbHd+CgoKUp06dZzqB4A5KC4CAAAAAAAAAAAAAAAAAAAAAOB/xMXF6amnnrIrdtasWbrnnnu0evVqU3M4e/asXnnlFZUtW1YjR45UYmJitvH9+/fXnDlzFBQUlG1c/fr1sz3+6aef6vDhw4bzlaTly5erVatWunnzZrZx99xzj0JDQx3qA4C5KC4CAAAAAAAAAAAAAAAAAAAAACATo0ePVpkyZeyKPXz4sOLj4xUfH6+vvvpKqampDvV5/fp1zZ8/Xw899JDKlCmjN954Qzdu3Mi2TXBwsD744AN9+OGH8vfPuUzgb3/7m0JCQrI8fvv2bT366KO6du2a3Xmnp6dr7NixatOmTY6FRZLYtQjwIH42m83m7iQAAAAAAAAAAAAAAAAAAAAAAPBEP/74o5o3b66UlBRD7fLmzav4+HjVr19fNWrUUJkyZVSsWDGFhYUpKChIiYmJunnzps6fP6+ffvpJBw4c0IYNG7R9+3alp6fb3U+JEiW0cOHCHHcj+l+PPPKIvvzyy2xjYmJiNGfOHNWqVSvbuC1btmjQoEHasWOH3f1PnTpVffr0sTsegHUoLgIAAAAAAAAAAAAAAAAAAAAAIBsLFizQ3//+d2VkZLg7lT/p1KmTpkyZoiJFihhuu2nTJjVu3DjHOD8/P3Xs2FGdO3dW/fr1VbRoUfn5+en06dNas2aN5syZo/Xr1xvuf9euXTkWLQFwDYqLAAAAAAAAAAAAAAAAAAAAAADIwRdffKHevXsb3sHICtHR0Zo8ebI6dOjg1Hnuv/9+rVy50pykDAgICFBiYqLy5Mnj8r4B/JW/uxMAAAAAAAAAAAAAAAAAAAAAAMDTde/eXStWrFDx4sXdlkNYWJiGDBmin376yenCIkmaMWOGoqKinE8sE9ntSlShQgUKiwAPQnERAAAAAAAAAAAAAAAAAAAAAAB2aNq0qfbv368ePXq4tN88efLoueee07Fjx/TOO+8oX758ppw3Ojpa8+fPV2RkpCnnk6RChQpp2rRpevbZZ7OMqVy5smn9AXAexUUAAAAAAAAAAAAAAAAAAAAAANipYMGCmjVrlrZv3642bdrIz8/Psr7i4uL07rvv6vTp05owYYKKFi1qeh/NmzfXhg0bVLJkSafOExoaqueff16HDx9Wr169tG3btixjK1Wq5FRfAMzlZ7PZbO5OAgAAAAAAAAAAAAAAAAAAAAAAb3TixAlNmzZNS5Ys0d69e506V0BAgOrUqaOWLVuqXbt2qlu3rklZ5uzGjRt65513NGHCBN2+fdvuduXLl1fv3r3Vr1+/PxU//e1vf9OOHTt++/8lS5ZUu3bt1LFjRzVv3lyBgYGm5g/AcRQXAQAAAAAAAAAAAAAAAAAAAABggvPnz+vHH3/Unj17dOjQIZ05c0Znz57VzZs3lZSUpNTUVIWFhSkyMlIREREqWrSoYmJiFBsbq6pVq6phw4bKnz+/W/8OV69e1ffff6/vv/9ee/fu1aVLl3T58mX5+/srb968KlmypGJjY1W3bl3Fx8erevXqmZ6nVKlSioyMVIcOHdSxY0fVqVPH0l2eADiO4iIAAAAAAAAAAAAAAAAAAAAAAGCq1NRUBQUFuTsNAHaguAgAAAAAAAAAAAAAAAAAAAAAAADwUf7uTgAAAAAAAAAAAAAAAAAAAAAAAACAe1BcBAAAAAAAAAAAAAAAAAAAAAAAAPgoiosAAAAAAAAAAAAAAAAAAAAAAAAAH0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCjKC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTFRQAAAAAAAAAAAAAAAAAAAAAAAICPorgIAAAAAAAAAAAAAAAAAAAAAAAA8FEUFwEAAAAAAAAAAAAAAAAAAAAAAAA+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwEdRXAQAAAAAAAAAAAAAAAAAAAAAAAD4KIqLAAAAAAAAAAAAAAAAAAAAAAAAAB9FcREAAAAAAAAAAAAAAAAAAAAAAADgoyguAgAAAAAAAAAAAAAAAAAAAAAAAHwUxUUAAAAAAAAAAAAAAAAAAAAAAACAj6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRFBcBAAAAAAAAAAAAAAAAAAAAAAAAPoriIgAAAAAAAAAAAAAAAAAAAAAAAMBHUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CiKiwAAAAAAAAAAAAAAAAAAAAAAAAAfRXERAAAAAAAAAAAAAAAAAAAAAAAA4KMoLgIAAAAAAAAAAAAAAAAAAAAAAAB8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgI+iuAgAAAAAAAAAAAAAAAAAAAAAAADwURQXAQAAAAAAAAAAAAAAAAAAAAAAAD6K4iIAAAAAAAAAAAAAAAAAAAAAAADAR1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgoiosAAAAAAAAAAAAAAAAAAAAAAAAAH0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCjKC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTFRQAAAAAAAAAAAAAAAAAAAAAAAICPorgIAAAAAAAAAAAAAAAAAAAAAAAA8FEUFwEAAAAAAAAAAAAAAAAAAAAAAAA+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwEdRXAQAAAAAAAAAAAAAAAAAAAAAAAD4KIqLAAAAAAAAAAAAAAAAAAAAAAAAAB9FcREAAAAAAAAAAAAAAAAAAAAAAADgoyguAgAAAAAAAAAAAAAAAAAAAAAAAHwUxUUAAAAAAAAAAAAAAAAAAAAAAACAj6K4CAAAAAAAAAAAAAAAAAAAAAAAAPBRFBcBAAAAAAAAAAAAAAAAAAAAAAAAPoriIgAAAAAAAAAAAAAAAAAAAAAAAMBHUVwEAAAAAAAAAAAAAAAAAAAAAAAA+CiKiwAAAAAAAAAAAAAAAAAAAAAAAAAfRXERAAAAAAAAAAAAAAAAAAAAAAAA4KMoLgIAAAAAAAAAAAAAAAAAAAAAAAB8FMVFAAAAAAAAAAAAAAAAAAAAAAAAgI+iuAgAAAAAAAAAAAAAAAAAAAAAAADwURQXAQAAAAAAAAAAAAAAAAAAAAAAAD6K4iIAAAAAAAAAAAAAAAAAAAAAAADAR1FcBAAAAAAAAAAAAAAAAAAAAAAAAPgoiosAAAAAAAAAAAAAAAAAAAAAAAAAH0VxEQAAAAAAAAAAAAAAAAAAAAAAAOCjKC4CAAAAAAAAAAAAAAAAAAAAAAAAfBTFRQAAAAAAAAAAAAAAAAAAAAAAAICPorgIAAAAAAAAAAAAAAAAAAAAAAAA8FEUFwEAAAAAAAAAAAAAAAAAAAAAAAA+iuIiAAAAAAAAAAAAAAAAAAAAAAAAwEdRXAQAAAAAAAAAAAAAAAAAAAAAAAD4KIqLAAAAAAAAAAAAAAAAAAAAAAAAAB9FcREAAAAAAAAAAAAAAAAAAAAAAADgoyguAgAAAAAAAAAAAAAAAAAAAAAAAHzU/wMCqzDMvZfnBgAAAABJRU5ErkJggg==\n", "text/plain": [ - "" + "
" ] }, - "execution_count": 36, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "SVG(filename=\"./v_Cd_-2/v_Cd_-2.svg\")" + "figs = plotting.plot_all_defects(defect_charges_dict)" ] }, { @@ -2861,7 +2660,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 41, "id": "a75f2092-edb0-46fd-aa5d-8a50aaaea253", "metadata": {}, "outputs": [], @@ -2871,7 +2670,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 42, "id": "d8112dc1-fe01-4ee4-afaf-fc06eba8eb58", "metadata": {}, "outputs": [ @@ -2893,17 +2692,17 @@ } ], "source": [ - "!head v_Cd_0/groundstate_POSCAR # groundstate structure from -60% distortion relaxation" + "!head v_Cd_s0_0/groundstate_POSCAR # groundstate structure from -60% distortion relaxation" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 43, "id": "5b424741-3831-4c65-81ae-b8a8b2eb20f2", "metadata": {}, "outputs": [], "source": [ - "!diff v_Cd_0/groundstate_POSCAR v_Cd_0/Bond_Distortion_-60.0%/CONTCAR # groundstate structure from -60% distortion relaxation" + "!diff v_Cd_s0_0/groundstate_POSCAR v_Cd_s0_0/Bond_Distortion_-60.0%/CONTCAR # groundstate structure from -60% distortion relaxation" ] }, { @@ -2944,7 +2743,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 44, "id": "101f20c7-1544-4be5-b20d-a293c618a2d6", "metadata": { "pycharm": { @@ -2957,12 +2756,12 @@ "\n", "# Parse all structures obtained with distortions and unperturbed relaxation. \n", "# This gives a dictionary matching initial distortion to final structure\n", - "v_Cd_0 = analysis.get_structures(\"v_Cd_0\")" + "v_Cd_0 = analysis.get_structures(\"v_Cd_s0_0\")" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 45, "id": "678a51a9-098a-4c5d-a5e8-8075775153c8", "metadata": { "pycharm": { @@ -2974,7 +2773,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "\u001b[1mv_Cd_0 structural analysis \u001b[0m\n", + "\u001B[1mv_Cd_s0_0 structural analysis \u001B[0m\n", "Analysing site V [0. 0. 0.]\n", "Local order parameters (i.e. resemblance to given structural motif, via CrystalNN):\n" ] @@ -3120,7 +2919,7 @@ "output_type": "stream", "text": [ "\n", - "\u001b[1mv_Cd_0 structural analysis \u001b[0m\n", + "\u001B[1mv_Cd_s0_0 structural analysis \u001B[0m\n", "Analysing site V [0. 0. 0.]\n", "Local order parameters (i.e. resemblance to given structural motif, via CrystalNN):\n" ] @@ -3271,8 +3070,8 @@ ], "source": [ "# Can then analyse a chosen final structure with:\n", - "df = analysis.analyse_structure(\"v_Cd_0\", v_Cd_0[\"Unperturbed\"])\n", - "df = analysis.analyse_structure(\"v_Cd_0\", v_Cd_0[-0.4])" + "df = analysis.analyse_structure(\"v_Cd_s0_0\", v_Cd_0[\"Unperturbed\"])\n", + "df = analysis.analyse_structure(\"v_Cd_s0_0\", v_Cd_0[-0.4])" ] }, { @@ -3290,7 +3089,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 46, "id": "277e8e9f-ea58-404a-9559-7f9666e9efee", "metadata": { "pycharm": { @@ -3302,7 +3101,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "v_Cd_0: Energy difference between minimum, found with -0.6 bond distortion, and unperturbed: -0.76 eV.\n", + "v_Cd_s0_0: Energy difference between minimum, found with -0.6 bond distortion, and unperturbed: -0.76 eV.\n", "Comparing structures to Unperturbed...\n" ] }, @@ -3467,7 +3266,7 @@ } ], "source": [ - "defect_energies = analysis.get_energies(\"v_Cd_0\")\n", + "defect_energies = analysis.get_energies(\"v_Cd_s0_0\")\n", "structure_comparison = analysis.compare_structures(\n", " v_Cd_0,\n", " defect_energies\n", @@ -3765,56 +3564,58 @@ }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mDist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_espresso_files\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mpseudopotentials\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0minput_parameters\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0minput_file\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mwrite_structures_only\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moutput_path\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'.'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Generates input files for Quantum Espresso relaxations of all output\n", - "structures.\n", - "\n", - "Args:\n", - " pseudopotentials (:obj:`dict`, optional):\n", - " Dictionary matching element to pseudopotential name.\n", - " (Defaults: None)\n", - " input_parameters (:obj:`dict`, optional):\n", - " Dictionary of user Quantum Espresso input parameters, to\n", - " overwrite/update `shakenbreak` default ones (see\n", - " `SnB_input_files/qe_input.yaml`).\n", - " (Default: None)\n", - " input_file (:obj:`str`, optional):\n", - " Path to Quantum Espresso input file, to overwrite/update\n", - " `shakenbreak` default ones (see `SnB_input_files/qe_input.yaml`).\n", - " If both `input_parameters` and `input_file` are provided,\n", - " the input_parameters will be used.\n", - " write_structures_only (:obj:`bool`, optional):\n", - " Whether to only write the structure files (in CIF format)\n", - " (without calculation inputs).\n", - " (Default: False)\n", - " output_path (:obj:`str`, optional):\n", - " Path to directory in which to write distorted defect structures\n", - " and calculation inputs.\n", - " (Default is current directory: \".\")\n", - " verbose (:obj:`bool`):\n", - " Whether to print distortion information (bond atoms and\n", - " distances).\n", - " (Default: False)\n", - "\n", - "Returns:\n", - " :obj:`tuple`:\n", - " Tuple of dictionaries with new defects_dict (containing the\n", - " distorted structures) and defect distortion parameters.\n", - "\u001b[0;31mFile:\u001b[0m ~/Python_Modules/shakenbreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m method\n" - ] + "data": { + "text/plain": [ + "\u001B[0;31mSignature:\u001B[0m\n", + "\u001B[0mDist\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mwrite_espresso_files\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mpseudopotentials\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0minput_parameters\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mstr\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0minput_file\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mstr\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mwrite_structures_only\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mbool\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mFalse\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0moutput_path\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mstr\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;34m'.'\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mverbose\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mbool\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mFalse\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m\u001B[0;34m)\u001B[0m \u001B[0;34m->\u001B[0m \u001B[0mTuple\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mdict\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", + "\u001B[0;31mDocstring:\u001B[0m\n", + "Generates input files for Quantum Espresso relaxations of all output\n", + "structures.\n", + "\n", + "Args:\n", + " pseudopotentials (:obj:`dict`, optional):\n", + " Dictionary matching element to pseudopotential name.\n", + " (Defaults: None)\n", + " input_parameters (:obj:`dict`, optional):\n", + " Dictionary of user Quantum Espresso input parameters, to\n", + " overwrite/update `shakenbreak` default ones (see\n", + " `SnB_input_files/qe_input.yaml`).\n", + " (Default: None)\n", + " input_file (:obj:`str`, optional):\n", + " Path to Quantum Espresso input file, to overwrite/update\n", + " `shakenbreak` default ones (see `SnB_input_files/qe_input.yaml`).\n", + " If both `input_parameters` and `input_file` are provided,\n", + " the input_parameters will be used.\n", + " write_structures_only (:obj:`bool`, optional):\n", + " Whether to only write the structure files (in CIF format)\n", + " (without calculation inputs).\n", + " (Default: False)\n", + " output_path (:obj:`str`, optional):\n", + " Path to directory in which to write distorted defect structures\n", + " and calculation inputs.\n", + " (Default is current directory: \".\")\n", + " verbose (:obj:`bool`):\n", + " Whether to print distortion information (bond atoms and\n", + " distances).\n", + " (Default: False)\n", + "\n", + "Returns:\n", + " :obj:`tuple`:\n", + " Tuple of dictionaries with new defects_dict (containing the\n", + " distorted structures) and defect distortion parameters.\n", + "\u001B[0;31mFile:\u001B[0m ~/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/input.py\n", + "\u001B[0;31mType:\u001B[0m method\n" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -3839,26 +3640,23 @@ "Oxidation states were not explicitly set, thus have been guessed as {'Cd': 2.0, 'Te': -2.0}. If this is unreasonable you should manually set oxidation_states\n", "Applying ShakeNBreak... Will apply the following bond distortions: ['-0.3', '0.3']. Then, will rattle with a std dev of 0.28 Å \n", "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", + "\u001B[1m\n", + "Defect: v_Cd_s0\u001B[0m\n", + "\u001B[1mNumber of missing electrons in neutral state: 2\u001B[0m\n", "\n", - "Defect v_Cd in charge state: -2. Number of distorted neighbours: 0\n", + "Defect v_Cd_s0 in charge state: -2. Number of distorted neighbours: 0\n", "\n", - "Defect v_Cd in charge state: -1. Number of distorted neighbours: 1\n", + "Defect v_Cd_s0 in charge state: -1. Number of distorted neighbours: 1\n", "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" + "Defect v_Cd_s0 in charge state: 0. Number of distorted neighbours: 2\n" ] } ], "source": [ - "# oxidation_states = {\"Cd\": +2, \"Te\": -2} # explicitly specify atom oxidation states\n", - "\n", "# Create an instance of Distortion class with the defect dictionary and the distortion parameters\n", "# If distortion parameters are not specified, the default values are used\n", "Dist = Distortions(\n", - " defects_dict=dict(V_Cd_dict),\n", - " #oxidation_states=oxidation_states, # explicitly specify atom oxidation states\n", + " defects=v_Cd,\n", " bond_distortions=[-0.3, 0.3] # For demonstration purposes, just doing 2 distortions\n", ")\n", "\n", @@ -3885,7 +3683,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 50, "id": "b9024635", "metadata": { "collapsed": true, @@ -4013,7 +3811,7 @@ } ], "source": [ - "!cat ./v_Cd_0/Bond_Distortion_30.0%/espresso.pwi" + "!cat ./v_Cd_s0_0/Bond_Distortion_30.0%/espresso.pwi" ] }, { @@ -4030,7 +3828,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 51, "id": "03ffee55", "metadata": { "pycharm": { @@ -4039,43 +3837,45 @@ }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mDist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_cp2k_files\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0minput_file\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'/home/ireaml/Python_Modules/shakenbreak/shakenbreak/../SnB_input_files/cp2k_input.inp'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mwrite_structures_only\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moutput_path\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'.'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Generates input files for CP2K relaxations of all output structures.\n", - "\n", - "Args:\n", - " input_file (:obj:`str`, optional):\n", - " Path to CP2K input file. If not set, default input file will be\n", - " used (see `shakenbreak/SnB_input_files/cp2k_input.inp`).\n", - " write_structures_only (:obj:`bool`, optional):\n", - " Whether to only write the structure files (in CIF format)\n", - " (without calculation inputs).\n", - " (Default: False)\n", - " output_path (:obj:`str`, optional):\n", - " Path to directory in which to write distorted defect structures\n", - " and calculation inputs.\n", - " (Default is current directory: \".\")\n", - " verbose (:obj:`bool`, optional):\n", - " Whether to print distortion information (bond atoms and\n", - " distances).\n", - " (Default: False)\n", - "\n", - "Returns:\n", - " :obj:`tuple`:\n", - " Tuple of dictionaries with new defects_dict (containing the\n", - " distorted structures) and defect distortion parameters.\n", - "\u001b[0;31mFile:\u001b[0m ~/Python_Modules/shakenbreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m method\n" - ] + "data": { + "text/plain": [ + "\u001B[0;31mSignature:\u001B[0m\n", + "\u001B[0mDist\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mwrite_cp2k_files\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0minput_file\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mstr\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;34m'/Users/skavanagh/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/../SnB_input_files/cp2k_input.inp'\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mwrite_structures_only\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mbool\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mFalse\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0moutput_path\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mstr\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;34m'.'\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mverbose\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mbool\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mFalse\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m\u001B[0;34m)\u001B[0m \u001B[0;34m->\u001B[0m \u001B[0mTuple\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mdict\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", + "\u001B[0;31mDocstring:\u001B[0m\n", + "Generates input files for CP2K relaxations of all output structures.\n", + "\n", + "Args:\n", + " input_file (:obj:`str`, optional):\n", + " Path to CP2K input file. If not set, default input file will be\n", + " used (see `shakenbreak/SnB_input_files/cp2k_input.inp`).\n", + " write_structures_only (:obj:`bool`, optional):\n", + " Whether to only write the structure files (in CIF format)\n", + " (without calculation inputs).\n", + " (Default: False)\n", + " output_path (:obj:`str`, optional):\n", + " Path to directory in which to write distorted defect structures\n", + " and calculation inputs.\n", + " (Default is current directory: \".\")\n", + " verbose (:obj:`bool`, optional):\n", + " Whether to print distortion information (bond atoms and\n", + " distances).\n", + " (Default: False)\n", + "\n", + "Returns:\n", + " :obj:`tuple`:\n", + " Tuple of dictionaries with new defects_dict (containing the\n", + " distorted structures) and defect distortion parameters.\n", + "\u001B[0;31mFile:\u001B[0m ~/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/input.py\n", + "\u001B[0;31mType:\u001B[0m method\n" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -4084,7 +3884,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 4, "id": "7d24a6dc", "metadata": { "pycharm": { @@ -4098,15 +3898,15 @@ "text": [ "Applying ShakeNBreak... Will apply the following bond distortions: ['-0.3', '0.3']. Then, will rattle with a std dev of 0.28 Å \n", "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", + "\u001B[1m\n", + "Defect: v_Cd_s0\u001B[0m\n", + "\u001B[1mNumber of missing electrons in neutral state: 2\u001B[0m\n", "\n", - "Defect v_Cd in charge state: -2. Number of distorted neighbours: 0\n", + "Defect v_Cd_s0 in charge state: -2. Number of distorted neighbours: 0\n", "\n", - "Defect v_Cd in charge state: -1. Number of distorted neighbours: 1\n", + "Defect v_Cd_s0 in charge state: -1. Number of distorted neighbours: 1\n", "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" + "Defect v_Cd_s0 in charge state: 0. Number of distorted neighbours: 2\n" ] } ], @@ -4116,7 +3916,7 @@ "# Create an instance of Distortion class with the defect dictionary and the distortion parameters\n", "# If distortion parameters are not specified, the default values are used\n", "Dist = Distortions( \n", - " defects_dict=dict(V_Cd_dict), \n", + " defects=v_Cd, \n", " oxidation_states=oxidation_states, # explicitly specify atom oxidation states\n", " bond_distortions=[-0.3, 0.3] # For demonstration purposes, just doing 2 distortions\n", ")\n", @@ -4138,7 +3938,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 6, "id": "7d0b5876", "metadata": { "collapsed": true, @@ -4281,7 +4081,7 @@ } ], "source": [ - "!cat ./v_Cd_0/Bond_Distortion_30.0%/cp2k_input.inp" + "!cat ./v_Cd_s0_0/Bond_Distortion_30.0%/cp2k_input.inp" ] }, { @@ -4298,7 +4098,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 7, "id": "5862a23e", "metadata": { "pycharm": { @@ -4307,44 +4107,46 @@ }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mDist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_castep_files\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0minput_file\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'/home/ireaml/Python_Modules/shakenbreak/shakenbreak/../SnB_input_files/castep.param'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mwrite_structures_only\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moutput_path\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'.'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Generates input `.cell` and `.param` files for CASTEP relaxations of\n", - "all output structures.\n", - "\n", - "Args:\n", - " input_file (:obj:`str`, optional):\n", - " Path to CASTEP input (`.param`) file. If not set, default input\n", - " file will be used (see `shakenbreak/SnB_input_files/castep.param`).\n", - " write_structures_only (:obj:`bool`, optional):\n", - " Whether to only write the structure files (in CIF format)\n", - " (without calculation inputs).\n", - " (Default: False)\n", - " output_path (:obj:`str`, optional):\n", - " Path to directory in which to write distorted defect structures\n", - " and calculation inputs.\n", - " (Default is current directory: \".\")\n", - " verbose (:obj:`bool`, optional):\n", - " Whether to print distortion information (bond atoms and\n", - " distances).\n", - " (Default: False)\n", - "\n", - "Returns:\n", - " :obj:`tuple`:\n", - " Tuple of dictionaries with new defects_dict (containing the\n", - " distorted structures) and defect distortion parameters.\n", - "\u001b[0;31mFile:\u001b[0m ~/Python_Modules/shakenbreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m method\n" - ] + "data": { + "text/plain": [ + "\u001B[0;31mSignature:\u001B[0m\n", + "\u001B[0mDist\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mwrite_castep_files\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0minput_file\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mstr\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;34m'/Users/skavanagh/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/../SnB_input_files/castep.param'\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mwrite_structures_only\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mbool\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mFalse\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0moutput_path\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mstr\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;34m'.'\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mverbose\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mbool\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mFalse\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m\u001B[0;34m)\u001B[0m \u001B[0;34m->\u001B[0m \u001B[0mTuple\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mdict\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", + "\u001B[0;31mDocstring:\u001B[0m\n", + "Generates input `.cell` and `.param` files for CASTEP relaxations of\n", + "all output structures.\n", + "\n", + "Args:\n", + " input_file (:obj:`str`, optional):\n", + " Path to CASTEP input (`.param`) file. If not set, default input\n", + " file will be used (see `shakenbreak/SnB_input_files/castep.param`).\n", + " write_structures_only (:obj:`bool`, optional):\n", + " Whether to only write the structure files (in CIF format)\n", + " (without calculation inputs).\n", + " (Default: False)\n", + " output_path (:obj:`str`, optional):\n", + " Path to directory in which to write distorted defect structures\n", + " and calculation inputs.\n", + " (Default is current directory: \".\")\n", + " verbose (:obj:`bool`, optional):\n", + " Whether to print distortion information (bond atoms and\n", + " distances).\n", + " (Default: False)\n", + "\n", + "Returns:\n", + " :obj:`tuple`:\n", + " Tuple of dictionaries with new defects_dict (containing the\n", + " distorted structures) and defect distortion parameters.\n", + "\u001B[0;31mFile:\u001B[0m ~/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/input.py\n", + "\u001B[0;31mType:\u001B[0m method\n" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -4353,7 +4155,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 9, "id": "6f4ac552", "metadata": { "pycharm": { @@ -4368,15 +4170,15 @@ "text": [ "Applying ShakeNBreak... Will apply the following bond distortions: ['0.3']. Then, will rattle with a std dev of 0.28 Å \n", "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", + "\u001B[1m\n", + "Defect: v_Cd_s0\u001B[0m\n", + "\u001B[1mNumber of missing electrons in neutral state: 2\u001B[0m\n", "\n", - "Defect v_Cd in charge state: -2. Number of distorted neighbours: 0\n", + "Defect v_Cd_s0 in charge state: -2. Number of distorted neighbours: 0\n", "\n", - "Defect v_Cd in charge state: -1. Number of distorted neighbours: 1\n", + "Defect v_Cd_s0 in charge state: -1. Number of distorted neighbours: 1\n", "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" + "Defect v_Cd_s0 in charge state: 0. Number of distorted neighbours: 2\n" ] } ], @@ -4386,7 +4188,7 @@ "# Create an instance of Distortion class with the defect dictionary and the distortion parameters\n", "# If distortion parameters are not specified, the default values are used\n", "Dist = Distortions(\n", - " defects_dict=dict(V_Cd_dict),\n", + " defects=v_Cd,\n", " oxidation_states=oxidation_states, # explicitly specify atom oxidation states\n", " bond_distortions=[0.3] # For demonstration purposes, just doing 2 distortions\n", ")\n", @@ -4408,7 +4210,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 12, "id": "63a08ef0", "metadata": { "collapsed": true, @@ -4426,7 +4228,7 @@ "output_type": "stream", "text": [ "#######################################################\n", - "#CASTEP param file: /home/ireaml/Python_Modules/shakenbreak/tutorials/v_Cd_0/Bond_Distortion_30.0%/castep.param\n", + "#CASTEP param file: /Users/skavanagh/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/tutorials/v_Cd_s0_0/Bond_Distortion_30.0%/castep.param\n", "#Created using the Atomic Simulation Environment (ASE)#\n", "# Internal settings of the calculator\n", "# This can be switched off by settings\n", @@ -4435,10 +4237,10 @@ "# by ase.io.castep.read_seed()\n", "# ASE_INTERFACE _build_missing_pspots : True\n", "# ASE_INTERFACE _castep_command : castep\n", - "# ASE_INTERFACE _castep_pp_path : /home/ireaml/Python_Modules/shakenbreak/tutorials\n", + "# ASE_INTERFACE _castep_pp_path : /Users/skavanagh/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/tutorials\n", "# ASE_INTERFACE _check_checkfile : True\n", "# ASE_INTERFACE _copy_pspots : False\n", - "# ASE_INTERFACE _directory : /home/ireaml/Python_Modules/shakenbreak/tutorials/v_Cd_0/Bond_Distortion_30.0%\n", + "# ASE_INTERFACE _directory : /Users/skavanagh/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/tutorials/v_Cd_s0_0/Bond_Distortion_30.0%\n", "# ASE_INTERFACE _export_settings : True\n", "# ASE_INTERFACE _find_pspots : False\n", "# ASE_INTERFACE _force_write : True\n", @@ -4468,7 +4270,7 @@ } ], "source": [ - "!cat ./v_Cd_0/Bond_Distortion_30.0%/castep.param" + "!cat ./v_Cd_s0_0/Bond_Distortion_30.0%/castep.param" ] }, { @@ -4485,7 +4287,7 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 13, "id": "57d9e86b", "metadata": { "pycharm": { @@ -4494,51 +4296,53 @@ }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mDist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwrite_fhi_aims_files\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0minput_file\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mase_calculator\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mase\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcalculators\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maims\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mAims\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mwrite_structures_only\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0moutput_path\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'.'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mUnion\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mbool\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNoneType\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m->\u001b[0m \u001b[0mTuple\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdict\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdict\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Generates input geometry and control files for FHI-aims relaxations\n", - "of all output structures.\n", - "\n", - "Args:\n", - " input_file (:obj:`str`, optional):\n", - " Path to FHI-aims input file, to overwrite/update\n", - " `shakenbreak` default ones.\n", - " If both `input_file` and `ase_calculator` are provided,\n", - " the ase_calculator will be used.\n", - " ase_calculator (:obj:`ase.calculators.aims.Aims`, optional):\n", - " ASE calculator object to use for FHI-aims calculations.\n", - " If not set, `shakenbreak` default values will be used.\n", - " Recommended to check these.\n", - " (Default: None)\n", - " write_structures_only (:obj:`bool`, optional):\n", - " Whether to only write the structure files (in `geometry.in`\n", - " format), (without the contro-in file).\n", - " output_path (:obj:`str`, optional):\n", - " Path to directory in which to write distorted defect structures\n", - " and calculation inputs.\n", - " (Default is current directory: \".\")\n", - " verbose (:obj:`bool`, optional):\n", - " Whether to print distortion information (bond atoms and\n", - " distances).\n", - " (Default: False)\n", - "\n", - "Returns:\n", - " :obj:`tuple`:\n", - " Tuple of dictionaries with new defects_dict (containing the\n", - " distorted structures) and defect distortion parameters.\n", - "\u001b[0;31mFile:\u001b[0m ~/Python_Modules/shakenbreak/shakenbreak/input.py\n", - "\u001b[0;31mType:\u001b[0m method\n" - ] + "data": { + "text/plain": [ + "\u001B[0;31mSignature:\u001B[0m\n", + "\u001B[0mDist\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mwrite_fhi_aims_files\u001B[0m\u001B[0;34m(\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0minput_file\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mstr\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mase_calculator\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mase\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mcalculators\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0maims\u001B[0m\u001B[0;34m.\u001B[0m\u001B[0mAims\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mNone\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mwrite_structures_only\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mbool\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mFalse\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0moutput_path\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mstr\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;34m'.'\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m \u001B[0mverbose\u001B[0m\u001B[0;34m:\u001B[0m \u001B[0mUnion\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mbool\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mNoneType\u001B[0m\u001B[0;34m]\u001B[0m \u001B[0;34m=\u001B[0m \u001B[0;32mFalse\u001B[0m\u001B[0;34m,\u001B[0m\u001B[0;34m\u001B[0m\n", + "\u001B[0;34m\u001B[0m\u001B[0;34m)\u001B[0m \u001B[0;34m->\u001B[0m \u001B[0mTuple\u001B[0m\u001B[0;34m[\u001B[0m\u001B[0mdict\u001B[0m\u001B[0;34m,\u001B[0m \u001B[0mdict\u001B[0m\u001B[0;34m]\u001B[0m\u001B[0;34m\u001B[0m\u001B[0;34m\u001B[0m\u001B[0m\n", + "\u001B[0;31mDocstring:\u001B[0m\n", + "Generates input geometry and control files for FHI-aims relaxations\n", + "of all output structures.\n", + "\n", + "Args:\n", + " input_file (:obj:`str`, optional):\n", + " Path to FHI-aims input file, to overwrite/update\n", + " `shakenbreak` default ones.\n", + " If both `input_file` and `ase_calculator` are provided,\n", + " the ase_calculator will be used.\n", + " ase_calculator (:obj:`ase.calculators.aims.Aims`, optional):\n", + " ASE calculator object to use for FHI-aims calculations.\n", + " If not set, `shakenbreak` default values will be used.\n", + " Recommended to check these.\n", + " (Default: None)\n", + " write_structures_only (:obj:`bool`, optional):\n", + " Whether to only write the structure files (in `geometry.in`\n", + " format), (without the contro-in file).\n", + " output_path (:obj:`str`, optional):\n", + " Path to directory in which to write distorted defect structures\n", + " and calculation inputs.\n", + " (Default is current directory: \".\")\n", + " verbose (:obj:`bool`, optional):\n", + " Whether to print distortion information (bond atoms and\n", + " distances).\n", + " (Default: False)\n", + "\n", + "Returns:\n", + " :obj:`tuple`:\n", + " Tuple of dictionaries with new defects_dict (containing the\n", + " distorted structures) and defect distortion parameters.\n", + "\u001B[0;31mFile:\u001B[0m ~/Library/CloudStorage/OneDrive-ImperialCollegeLondon/Bread/Projects/Packages/ShakeNBreak/shakenbreak/input.py\n", + "\u001B[0;31mType:\u001B[0m method\n" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -4547,7 +4351,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 14, "id": "7f925ade", "metadata": { "pycharm": { @@ -4561,15 +4365,15 @@ "text": [ "Applying ShakeNBreak... Will apply the following bond distortions: ['0.3']. Then, will rattle with a std dev of 0.28 Å \n", "\n", - "\u001b[1m\n", - "Defect: v_Cd\u001b[0m\n", - "\u001b[1mNumber of missing electrons in neutral state: 2\u001b[0m\n", + "\u001B[1m\n", + "Defect: v_Cd_s0\u001B[0m\n", + "\u001B[1mNumber of missing electrons in neutral state: 2\u001B[0m\n", "\n", - "Defect v_Cd in charge state: -2. Number of distorted neighbours: 0\n", + "Defect v_Cd_s0 in charge state: -2. Number of distorted neighbours: 0\n", "\n", - "Defect v_Cd in charge state: -1. Number of distorted neighbours: 1\n", + "Defect v_Cd_s0 in charge state: -1. Number of distorted neighbours: 1\n", "\n", - "Defect v_Cd in charge state: 0. Number of distorted neighbours: 2\n" + "Defect v_Cd_s0 in charge state: 0. Number of distorted neighbours: 2\n" ] } ], @@ -4579,7 +4383,7 @@ "# Create an instance of Distortion class with the defect dictionary and the distortion parameters\n", "# If distortion parameters are not specified, the default values are used\n", "Dist = Distortions( \n", - " defects_dict=dict(V_Cd_dict), \n", + " defects=v_Cd,\n", " oxidation_states=oxidation_states,\n", " bond_distortions=[0.3] # For demonstration purposes, just doing 2 distortions\n", ")\n", @@ -4601,7 +4405,7 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 15, "id": "8ec85e94", "metadata": { "collapsed": true, @@ -4619,9 +4423,9 @@ "output_type": "stream", "text": [ "#===============================================================================\n", - "# FHI-aims file: ./v_Cd_0/Bond_Distortion_30.0%/control.in\n", + "# FHI-aims file: ./v_Cd_s0_0/Bond_Distortion_30.0%/control.in\n", "# Created using the Atomic Simulation Environment (ASE)\n", - "# Mon Nov 7 12:44:44 2022\n", + "# Wed Nov 16 16:53:56 2022\n", "#===============================================================================\n", "k_grid 1 1 1\n", "relax_geometry bfgs 0.005\n", @@ -4637,7 +4441,7 @@ } ], "source": [ - "!cat ./v_Cd_0/Bond_Distortion_30.0%/control.in" + "!cat ./v_Cd_s0_0/Bond_Distortion_30.0%/control.in" ] }, { @@ -4655,7 +4459,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.8.10 ('snb_pymatgen')", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -4669,7 +4473,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.8.13" }, "vscode": { "interpreter": {