Skip to content

SPEAR-UIC/CQGym

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CQGym: Gym Environment for Reinforcement-Learned Batch Job scheduling

All necessary packages can be installed with

pip install -r requirements.txt

There are many command line options available in the CQGym environment. These can be viewed with

python cqsim.py -h

The following outlines the most common use cases for CQGym.

Training and testing

The common options for training a model from scratch.

python cqsim.py -n [str] -j [str] --rl_alg [str] --is_training [1] --output_weight_file [str]

The common options for testing a model.

python cqsim.py -n [str] -j [str] --rl_alg [str] --is_training [0] --input_weight_file [str]
  • -n: the name of the job trace file present in /data/InputFiles/, such as test.swf.
  • -j: the same file name used for -n.
  • --rl_alg: the name of the training algorithm to use. Either PG, DQL, A2C, PPO, or FCFS. Defaults to FCFS.
  • --is_training: 1 = perform optimization. 0 = No optimization.
  • --output_weight_file: the file name model weights are saved under. Can be found under /data/Fmt/ at the end of execution.
  • --input_weight_file: [str]. Specify a file name to load in existing model weights. Should be present in /data/Fmt.

Other environment options

These options are useful for making a custom training routine using CQGym calls.

  • -R: [int]. Specify the number of traces to simulate before stopping. Defaults to 8000.
  • -r: [int]. Specify job trace starting point as a line number. Defaults to 0.
  • --do_render : [int] 1 = display graphics, 0 - do not display graphics. Rendered graphics reports training performance within the episode.

Training testing example script

Training for two episodes over 1500 job traces.

python cqsim.py -j train.swf -n train.swf -R 1500 --is_training 1 --output_weight_file pg0 --rl_alg PG
python cqsim.py -j train.swf -n train.swf -r 1501 -R 1500 --is_training 1 --input_weight_file pg0 --output_weight_file pg1 --rl_alg PG

Testing on validation file for 5000 job traces.

python cqsim.py -j validate.swf -n validate.swf -R 5000 --is_training 0 --input_weight_file pg0 --rl_alg PG
python cqsim.py -j validate.swf -n validate.swf -R 5000 --is_training 0 --input_weight_file pg1 --rl_alg PG

Learning parameters

Model hyperparameters can be modified using these options.

  • --learning_rate: [float]. Defaults to 0.000021.
  • --batch_size: [int]. The number of state-action-value sequences recorded by the agent before performing optimization. Defaults to 70.
  • --window_size: [int]. Input size. How many jobs from the queue considered by the agent for scheduling. Defaults to 50.
  • --reward_discount: [float]. Between [0, 1]. Designates the importance of future rewards in future states. Corresponds to gamma in the Bellman Optimality equation. Defaults to 0.95

Config/

Additionally, all default values can be found and modified in src_fc/Config/.

Data Collection

Output from training and testing episodes goes to /data/Results.

  • .rst: Job scheduling results.
Column Description
1 Job ID
2 Processor count
3 Requested time
4 Actual runtime
5 Wait time
6 Submission time
7 Start time
8 End time
  • .ult: Changes to system utilization.
Column Description
1 Time
2 Utilization %
  • .rwd: Reward results.
Column Description
1 Reward value

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages