-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss_function.py
78 lines (66 loc) · 2.38 KB
/
loss_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class CrossEntropy1(nn.Module):
"""Cross entropy"""
def __init__(self, num_classes=65, use_gpu=True, reduction=True):
super(CrossEntropy1, self).__init__()
self.num_classes = num_classes
self.use_gpu = use_gpu
self.reduction = reduction
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
"""
Args:
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
targets: ground truth labels with shape (num_classes)
"""
log_probs = self.logsoftmax(inputs)
if self.use_gpu:
targets = targets.cuda()
loss = (-targets * log_probs).sum(dim=1)
if self.reduction:
return loss.mean()
else:
return loss
def Entropy(input_):
bs = input_.size(0)
epsilon = 1e-5
entropy = -input_ * torch.log(input_ + epsilon)
entropy = torch.sum(entropy, dim=1)
return entropy
class CrossEntropyLabelSmooth(nn.Module):
"""Cross entropy loss with label smoothing regularizer.
Reference:
Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
Equation: y = (1 - epsilon) * y + epsilon / K.
Args:
num_classes (int): number of classes.
epsilon (float): weight.
"""
def __init__(self, num_classes, epsilon=0.1, use_gpu=True, reduction=True):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.use_gpu = use_gpu
self.reduction = reduction
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
"""
Args:
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
targets: ground truth labels with shape (num_classes)
"""
log_probs = self.logsoftmax(inputs)
targets = torch.zeros(log_probs.size()).scatter_(
1, targets.unsqueeze(1).cpu(), 1
)
if self.use_gpu:
targets = targets.cuda()
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (-targets * log_probs).sum(dim=1)
if self.reduction:
return loss.mean()
else:
return loss