-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWindModel.py
221 lines (196 loc) · 7.45 KB
/
WindModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from collect_data import collect_sonde
import os
import argparse
from scipy import interpolate
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
import numpy as np
import pandas as pd
from analysis.probability_ellipse import ConfidenceEllipse
if __name__ == '__main__':
######################## USER SETTING VARIABLES ########################
alt_sta = 100
alt_end = 3000
alt_del = 300
########################################################################
this_file_path = os.path.abspath(os.path.dirname(__file__))
parser = argparse.ArgumentParser(description='ラジオゾンデ観測データをダウンロードするスクリプト')
parser.add_argument('station_name')
parser.add_argument('year_range')
parser.add_argument('month_range')
parser.add_argument('day_range')
parser.add_argument('hour')
parser.add_argument('--output_dir', default='wind_Rawin')
args = parser.parse_args()
station_name = args.station_name
year_range = [int(y) for y in args.year_range.split(':')]
month_range = [int(m) for m in args.month_range.split(':')]
day_range = [int(d) for d in args.day_range.split(':')]
hour = int(args.hour)
years = collect_sonde.getRange(year_range)
months = collect_sonde.getRange(month_range)
days = collect_sonde.getRange(day_range)
savedir = os.path.join(this_file_path, '../', args.output_dir, station_name)
if not os.path.exists(savedir):
os.makedirs(savedir)
df_array = []
alt_array = np.arange(alt_sta, alt_end+alt_del, alt_del)
nalt = len(alt_array)
wind_u_list = []
wind_v_list = []
speed_list = []
theta_list = []
# collect wind data
for y in years:
for m in months:
for d in days:
date_str = '{:0>4}{:0>2}{:0>2}{:0>2}'.format(y, m, d, hour)
csv_filename = os.path.join(savedir, 'Rawin_'+date_str+'.csv')
df = collect_sonde.getSondeDataAsDataFrame(station_name, y, m, d, hour)
alt_prev = df['GEO_HGT']
theta = df['DIRECTION_DEGREE'] * np.pi/180.0
speed = df['SPEED']
wind_u = np.array(-speed*np.sin(theta))
wind_v = np.array(-speed*np.cos(theta))
wind_u_new = interpolate.interp1d(alt_prev, wind_u, kind='linear')
wind_v_new = interpolate.interp1d(alt_prev, wind_v, kind='linear')
speed_new = interpolate.interp1d(alt_prev, speed , kind='linear')
theta_new = interpolate.interp1d(alt_prev, theta , kind='linear')
wind_u_list.append(wind_u_new(alt_array))
wind_v_list.append(wind_v_new(alt_array))
speed_list.append( speed_new(alt_array))
theta_list.append( theta_new(alt_array))
# list型をndarray型に変換
wind_u_array = np.array(wind_u_list)
wind_v_array = np.array(wind_v_list)
speed_array = np.array(speed_list)
theta_array = np.array(theta_list)
# 高度ごとの統計量を求める
# 統計データ数
ndata = len(wind_u_array)
sigma4 = np.zeros([nalt, 2, 2])
# 高度ごとの風速ベクトル平均値
wind_u_ave = np.zeros(nalt)
wind_v_ave = np.zeros(nalt)
sigma_xx = np.zeros(nalt)
sigma_xy = np.zeros(nalt)
sigma_yy = np.zeros(nalt)
# 風速,風向平均値
# 合成風なので注意
speed_vec_ave = np.zeros(nalt)
theta_vec_ave = np.zeros(nalt)
p_log = []
# 平均値i.e.楕円の中心点
means_log = []
# 楕円の幅
w_log = []
# 楕円の高さ
h_log = []
# 楕円の座標軸に対する傾き
theta_log = []
print(nalt)
for i in range(nalt):
print(i)
wind_u = np.zeros(ndata)
wind_v = np.zeros(ndata)
wind_u = wind_u_array[:,i]
wind_v = wind_v_array[:,i]
#print(np.cov(wind_u[i], wind_v[i]).shape)
#sigma4[i,:,:] = np.cov(wind_u[i], wind_v[i])
wind_u_ave[i] = sum(wind_u) / ndata
wind_v_ave[i] = sum(wind_v) / ndata
cov_tmp = np.cov(wind_u, wind_v)
l, v = np.linalg.eig(cov_tmp)
# 95%確率楕円の取得
el = ConfidenceEllipse((np.array([wind_u, wind_v])).transpose(), 0.95)
p = el.get_point()
means, w, h, theta = el.get_params()
p_log.append(p)
means_log.append(means)
w_log.append(w)
h_log.append(h)
theta_log.append(theta)
fig, ax = plt.subplots()
ax.set_title('alt='+str(alt_sta+float(i)*alt_del)+' m')
ax.scatter(wind_u_ave[i], wind_v_ave[i], color='b', marker='*')
ax.plot(p[:,0], p[:,1], color='r', marker='o')
ax.add_artist(
Ellipse(xy=means,
width=w, height=h,
angle=theta, color='r', alpha=0.5)
)
ax.scatter(wind_u, wind_v, color='black')
ax.set_aspect('equal')
#plt.show()
#print(i)
#speed_vec_ave = np.sqrt(wind_u_ave**2 + wind_v_ave**2)
#theta_vec_ave = np.arctan2(wind_u_ave, wind_v_ave) * 180.0 / np.pi
#plt.plot(wind_u_ave, alt_array)
#plt.plot(wind_v_ave, alt_array)
#plt.plot(speed_vec_ave, alt_array)
#plt.show()
# Plot 3D
#-----------------------------------------------------------------------
p_log = np.array(p_log)
means_log = np.array(means_log)
w_log = np.array(w_log)
h_log = np.array(h_log)
theta_log = np.array(theta_log)
# 3D graph
plt.close('all')
fig1 = plt.figure('3D graph')
origin = np.array([0.0, 0.0, 0.0])
ax = fig1.gca(projection = '3d')
ax.set_xlabel('u [m/s]')
ax.set_ylabel('v [m/s]')
ax.set_zlabel('Altitude [m]')
ax.set_title('3D graph')
angle = np.linspace(0.0, 2.0 * np.pi, 100)
ell_x = np.zeros([nalt, 100])
ell_y = np.zeros([nalt, 100])
ell_z = np.zeros([nalt, 100])
for i in range(nalt):
w = w_log[i]
h = h_log[i]
theta = np.deg2rad(theta_log[i])
means = means_log[i,:]
tmp_p = np.array(
[0.5 * w * np.cos(angle),
0.5 * h * np.sin(angle)]).transpose()
rot_mat = np.array([[np.cos(theta), - np.sin(theta)],
[np.sin(theta), np.cos(theta)]])
tmp2_p = np.array([means + rot_mat.dot(p) for p in tmp_p])
ell_x[i,:] = tmp2_p[:,0]
ell_y[i,:] = tmp2_p[:,1]
ell_z[i,:] = alt_array[i]
ax.plot_wireframe(
ell_x, ell_y, ell_z,
rcount=nalt, ccount=8,
color='red',
alpha=0.6)
#for i in range(8):
# ax.plot(
# p_log[:,i,0],
# p_log[:,i,1],
# alt_array[:]
# )
# for i in range(nalt):
# ax.plot(p_log[i,:,0],
# p_log[i,:,1],
# alt_array[i])
ax.plot(means_log[:,0], means_log[:,1], alt_array, color='orange')
ax.legend()
ax.set_zlim(bottom=0.0)
#fig1.savefig(self.filepath +'/'+ flightType + '/Flightlog.png')
plt.show()
print('----- end debug')
df_data = pd.DataFrame({
'altitude':alt_array,
'wind_u_ave':wind_u_ave,
'wind_v_ave':wind_v_ave,
'speed_vec_ave':speed_vec_ave,
'theta_vec_ave':theta_vec_ave
})
file_name = os.path.join(savedir,'test.csv')
df_data.to_csv('test.csv', encoding='utf-8')
print('OK')