-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgenerate.py
145 lines (127 loc) · 6.2 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from datetime import datetime
from argparse import ArgumentParser
import json, os
from accelerate import Accelerator
from torch.utils.data import Dataset, DataLoader
import torch
from utils import get_worker_class, MileBenchDataset
from omegaconf import OmegaConf
from tqdm import tqdm
import gc
def parse_args():
parser = ArgumentParser()
parser.add_argument('--data_dir', default='data/MileBench')
parser.add_argument('--dataset_name', default='data/sample.json')
parser.add_argument('--model_name', required=True)
parser.add_argument('--output_dir', default='outputs')
parser.add_argument('--bsz', default=1, type=int)
parser.add_argument('--batch-image', default=1, type=int)
parser.add_argument('--combine_image', default=None, type=int, help='Use combined N images for evaluation.')
parser.add_argument('--model_configs', default='configs/model_configs.yaml')
parser.add_argument('--overwrite', action='store_true')
parser.add_argument('--kv_mode', default="origin", choices=["origin", "h2o", "weighted_merge", "pivot_merge", "text_prior_h2o", "text_prior_weighted_merge", "text_prior_pivot_merge", "snapkv", "avg_merge", "mean_h2o", "text_prior_avg_merge"])
parser.add_argument('--hh_ratio', default=0.1, type=float)
parser.add_argument('--recent_ratio', default=0.1, type=float)
args = parser.parse_args()
args.output_pth = os.path.join(args.output_dir, f"{args.model_name}/{args.dataset_name}/pred.json")
os.makedirs(os.path.dirname(args.output_pth), exist_ok=True)
return args
def split_data(data):
'''
Split the data by the images number
ex: {
2: [sample1, ...]
3: [sample2, ...]
}
'''
data_dict = {}
for d in data:
n_img = len(d['task_instance']['images_path'])
if n_img in data_dict:
data_dict[n_img].append(d)
else:
data_dict[n_img] = [d]
return data_dict
def save(results, accelerator, args):
if accelerator.is_main_process:
if os.path.exists(args.output_pth):
if not args.overwrite:
print(f'{args.output_pth} exists. Please pass `overwrite=True` to avoid unwanted overwriting.')
exit(0)
json.dump(results, open(args.output_pth, 'w'), ensure_ascii=False, indent=4)
def main(args):
import torch.distributed as dist
accelerator = Accelerator()
accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = args.bsz
accelerator.state.deepspeed_plugin.deepspeed_config['train_batch_size'] = args.bsz * dist.get_world_size()
accelerator.print(f'{datetime.now()}: Generation of {args.model_name} to {args.dataset_name}')
######################### Loading Data #########################
data_dir = args.data_dir
dataset_name = args.dataset_name
combine_image = args.combine_image
dataset_dir = os.path.join(data_dir, dataset_name)
img_dir = os.path.join(dataset_dir, 'images')
model_name = args.model_name
core_annotation = json.load(
open(os.path.join(dataset_dir,
f'{dataset_name}_combined_{combine_image}.json'
if combine_image and combine_image!=1 else f'{dataset_name}.json')))
# split data by images number
data_dict = split_data(core_annotation['data'])
################################################################
#################### Initializing Worker ######################
worker_class = get_worker_class(args.model_name)
# breakpoint()
models_configs = OmegaConf.load(args.model_configs)
if not models_configs.get(args.model_name):
# raise ValueError
print(args.model_name)
config = list(models_configs.values())[0]
config.hh_ratio = args.hh_ratio
config.recent_ratio = args.recent_ratio
config.device = str(accelerator.device)
config.kv_mode = args.kv_mode
worker = worker_class.from_config(config=config)
# prepare model for accelerator
worker.model = accelerator.prepare(worker.model)
################################################################
###################### Start Generating ########################
print('Initialization Finished')
print(f'Predicting {dataset_name} Using {model_name}')
prediction_results = []
for n_img, sub_data in data_dict.items():
print(f'Proceeding {n_img}-length images samples | Num: {len(sub_data)}')
lc_dataset = MileBenchDataset(
annotation=sub_data,
task_instructions=core_annotation['meta_data']['task_instruction'],
img_dir=img_dir,
max_context_len=config.max_context_len,
n_tokens_per_image=config.n_tokens_per_image,
tokenizer=worker.tokenizer,
dataset_name=dataset_name,
combine_image=combine_image,
)
lc_dataloader = DataLoader(dataset=lc_dataset,
batch_size=max(int(args.batch_image/n_img),1),
shuffle=False,
num_workers=8,
collate_fn=lc_dataset.collate_fn)
lc_dataloader = accelerator.prepare_data_loader(lc_dataloader, device_placement=False)
# start inference
for batch in tqdm(lc_dataloader) if accelerator.is_main_process else lc_dataloader:
outputs = worker(device=accelerator.device, **batch) # list[dict], with the key "answer" added to each item
all_predictions = accelerator.gather_for_metrics(outputs)
prediction_results.extend(all_predictions)
# gather all results
accelerator.wait_for_everyone()
# remove the repetition
prediction_results = list({item['sample_id']: item for item in prediction_results}.values())
print(f'Generation done {len(prediction_results)}')
gc.collect(); torch.cuda.empty_cache()
################################################################
######################### Save Result ##########################
save(prediction_results, accelerator, args)
################################################################
if __name__ == '__main__':
args = parse_args()
main(args)