-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGetNonzeroData.py
94 lines (74 loc) · 4.18 KB
/
GetNonzeroData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import logging
import numpy as np
from neuropype.engine import *
from neuropype.utilities import cache
logger = logging.getLogger(__name__)
class GetNonzeroData(Node):
"""Get a copy of continuous timeseries including only samples where all channels were zero."""
# --- Input/output ports ---
data = DataPort(Packet, "Data to process.", mutating=False)
waveform_window = ListPort([0, 0], float, """Time window (seconds) around
each event that is assumed to have non-zero waveform data.
""", verbose_name='waveform window')
use_caching = BoolPort(False, """Enable caching.""", expert=True)
def __init__(self,
waveform_window: Union[List[float], None, Type[Keep]] = Keep,
use_caching: Union[bool, None, Type[Keep]] = Keep,
**kwargs):
super().__init__(waveform_window=waveform_window, use_caching=use_caching, **kwargs)
@classmethod
def description(cls):
"""Declare descriptive information about the node."""
return Description(name='Drop Blank Times',
description="""\
Drop samples (time axis) where all channels were value == 0
""",
version='0.1.0', status=DevStatus.alpha)
@data.setter
def data(self, pkt):
record = cache.try_lookup(context=self, enabled=self.use_caching,
verbose=True, data=pkt, state=None)
if record.success():
self._data = record.data
return
# Get the event train, if present.
evt_name, evt_chunk = find_first_chunk(pkt, with_axes=(space, time),
with_flags=Flags.is_sparse,
allow_markers=False)
# Get the signals chunk, if present.
sig_name, sig_chunk = find_first_chunk(pkt, with_axes=(space, time),
without_flags=Flags.is_sparse)
if sig_name is None:
return
b_keep = np.zeros((len(sig_chunk.block.axes['time']),), dtype=bool)
if evt_name is not None:
# if evt_chunk is present then we can use that to identify which samples were covered by a waveform
spk_blk = evt_chunk.block
spike_inds = np.sort(np.unique(spk_blk._data.indices))
wf_samps = [int(_ * sig_chunk.block.axes[time].nominal_rate) for _ in self.waveform_window]
spike_inds = spike_inds[np.logical_and(spike_inds > wf_samps[0], spike_inds < (len(b_keep) - wf_samps[1]))]
dat_inds = np.unique(spike_inds[:, None] + np.arange(wf_samps[0], wf_samps[1], dtype=int)[None, :])
b_keep[dat_inds] = True
else:
# else, scan the data. This is probably slower than above.
for ch_ix in range(len(sig_chunk.block.axes[space])):
b_keep = np.logical_or(b_keep,
sig_chunk.block[space[ch_ix], ...].data[0] != 0)
logger.info(f"Copying {np.sum(b_keep)} / {len(b_keep)} samples ({100.*np.sum(b_keep)/len(b_keep):.2f} %)...")
# Create output block that is copy of input
out_axes = list(sig_chunk.block[space, time].axes)
out_axes[-1] = TimeAxis(times=out_axes[-1].times[b_keep], nominal_rate=out_axes[-1].nominal_rate)
out_blk = Block(data=sig_chunk.block._data, axes=out_axes, data_only_for_type=True)
for ch_ix in range(len(sig_chunk.block.axes[space])):
# Non-slice and non-scalar indexing of long block axes is quite slow, so get full time then slice that.
out_blk[ch_ix:ch_ix+1, :].data = sig_chunk.block[ch_ix:ch_ix+1, :].data[:, b_keep]
# Create a new packet using only nonzero samples. Note this uses a ndarray, not DatasetView
self._data = Packet(chunks={sig_name: Chunk(
block=out_blk,
props=deepcopy_most(sig_chunk.props)
)})
record.writeback(data=self._data)
def on_port_assigned(self):
"""Callback to reset internal state when a value was assigned to a
port (unless the port's setter has been overridden)."""
self.signal_changed(True)