-
Notifications
You must be signed in to change notification settings - Fork 3
/
embedding_sum.py
247 lines (218 loc) · 9.35 KB
/
embedding_sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from typing import Any
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from matplotlib import pyplot as plt
class Digitizer:
def __init__(self, max_bins: int):
self.max_bins = max_bins
self.min_weight = (1 / max_bins) / 2
self.cutoffs_ = None
self.weights_ = None
def fit(self, X):
X = np.array(X)
self.cutoffs_, self.weights_ = map(list, zip(*(
self._get_cutoffs_and_weights_for_feature(X[:, col_ix])
for col_ix in range(X.shape[1])
)))
return self
def transform(self, X):
X = np.array(X)
digitized = np.empty_like(X)
for col_ix, cutoffs in enumerate(self.cutoffs_):
digitized[:, col_ix] = np.digitize(X[:, col_ix], cutoffs, right=True)
return digitized
def _get_cutoffs_and_weights_for_feature(self, x):
initial_cutoffs = np.unique([
np.quantile(x, q, method='lower')
for q in np.arange(1, self.max_bins) / self.max_bins
])
final_cutoffs, weights = self._merge_narrow_bins(x, initial_cutoffs)
return final_cutoffs, weights
def _merge_narrow_bins(self, x, cutoffs):
weights = self._get_weights_from_cutoffs(x, cutoffs)
# this implementation favors legibility over efficiency
while np.min(weights) < self.min_weight:
ix = np.argmin(weights)
neighbor_weight_and_border_cutoff_ix_pairs = []
if 0 < ix:
neighbor_weight_and_border_cutoff_ix_pairs.append((weights[ix - 1], ix - 1))
if ix + 1 < len(weights):
neighbor_weight_and_border_cutoff_ix_pairs.append((weights[ix + 1], ix))
assert neighbor_weight_and_border_cutoff_ix_pairs
smallest_neighbor_weight, cutoff_to_delete = min(neighbor_weight_and_border_cutoff_ix_pairs)
cutoffs = np.delete(cutoffs, cutoff_to_delete)
weights = self._get_weights_from_cutoffs(x, cutoffs)
return cutoffs, weights
@staticmethod
def _get_weights_from_cutoffs(x, cutoffs):
return np.diff([0, *(np.mean(x <= cutoff) for cutoff in cutoffs), 1])
class EmbeddingSumModule(nn.Module):
def __init__(self, values_weights: list[list[float]], free_term, dtype=torch.float32):
super().__init__()
self.values_weights = [
torch.tensor(w, dtype=dtype, requires_grad=False)
for w in values_weights
]
self.embeddings = nn.ModuleList([
nn.Embedding(
num_embeddings=len(w),
embedding_dim=1,
_weight=torch.zeros((len(w), 1), dtype=dtype, requires_grad=True),
)
for w in values_weights
])
self.free_term = nn.Parameter(
data=free_term.clone().detach(),
requires_grad=True,
)
self.dtype = dtype
def forward(self, X):
result = self.free_term.expand(len(X))
assert X.shape[1] == len(self.embeddings)
for i, emb in enumerate(self.embeddings):
result = result + emb(X[:, i]).flatten()
return result
def mean_square_step(self):
return torch.concat([
(emb.weight[1:] - emb.weight[:-1]).flatten()
for emb in self.embeddings
]).pow(2).mean()
def mean_square_embedding_sum(self):
return torch.concat([
((w @ emb.weight).sum() / w.sum()).view(1)
for w, emb in zip(self.values_weights, self.embeddings)
]).pow(2).mean()
@torch.no_grad()
def feature_importance(self, i: int | None = None):
if i is None:
return torch.tensor([self.feature_importance(i) for i in range(len(self.embeddings))])
else:
w = self.values_weights[i] / self.values_weights[i].sum()
emb = self.embeddings[i].weight.view(w.shape)
mean = (w @ emb).sum()
return (w @ (emb - mean).abs()).sum()
class EmbeddingSumClassifier:
""" Scikit-learn-compatible classifier """
def __init__(
self,
max_bins: int,
max_epochs: int,
lr: float,
step_loss_weight: float,
embedding_sum_loss_weight: float,
):
super().__init__()
self.digitizer = Digitizer(max_bins=max_bins)
self.max_epochs = max_epochs
self.lr = lr
self.step_loss_weight = step_loss_weight
self.embedding_sum_loss_weight = embedding_sum_loss_weight
self.classes_ = np.array([0, 1]) # sklearn compatibility
self.module_: EmbeddingSumModule | None = None
self.training_history_: list[dict[str, Any]] | None = None
def fit(self, X, y, weight=None): # sklearn compatibility
self.digitizer.fit(X)
X_tensor = torch.tensor(self.digitizer.transform(X), dtype=torch.int32)
y_tensor = torch.tensor(np.array(y), dtype=torch.float32)
weight_tensor = None if weight is None else torch.tensor(np.array(weight), dtype=torch.float32)
self.module_ = EmbeddingSumModule(
values_weights=self.digitizer.weights_,
free_term=torch.logit(torch.mean(y_tensor)),
)
self.module_.train()
with torch.enable_grad():
self.train(X_tensor, y_tensor, weight=weight_tensor)
self.module_.eval()
return self
def predict_proba(self, X): # sklearn compatibility
X_tensor = torch.tensor(self.digitizer.transform(X), dtype=torch.int32)
with torch.no_grad():
y_pred = F.sigmoid(self.module_(X_tensor)).numpy()
result = np.empty(shape=(X.shape[0], 2))
result[:, 0] = 1 - y_pred
result[:, 1] = y_pred
return result
def train(self, X, y_true, weight=None):
m = self.module_
optimizer = torch.optim.SGD(params=m.parameters(), lr=self.lr)
self.training_history_ = []
for epoch in range(self.max_epochs):
m.zero_grad()
y_pred = m(X)
train_clf_loss = F.binary_cross_entropy_with_logits(y_pred, y_true, weight=weight)
train_step_loss = m.mean_square_step()
train_embedding_sum_loss = m.mean_square_embedding_sum()
train_loss = (
train_clf_loss
+ train_step_loss * self.step_loss_weight
+ train_embedding_sum_loss * self.embedding_sum_loss_weight
)
train_loss.backward()
optimizer.step()
self.training_history_.append({
'epoch': epoch,
'train_loss': train_loss.detach().item(),
'train_clf_loss': train_clf_loss.detach().item(),
'train_step_loss': train_step_loss.detach().item(),
'train_embedding_sum_loss': train_embedding_sum_loss.detach().item(),
})
def plot_training_history(self):
(
pd.DataFrame(self.training_history_)
.assign(
train_step_loss_weighted=lambda df: df['train_step_loss'] * self.step_loss_weight,
train_embedding_sum_loss_weighted=lambda df: (
df['train_embedding_sum_loss'] * self.embedding_sum_loss_weight
),
)
.set_index('epoch')
.plot()
)
def visualize(self, feature_names: list[str] | None = None, subset: list[str] = None):
if feature_names is None:
feature_names = list(map('feature {}'.format, range(len(self.module_.embeddings))))
assert len(feature_names) == len(self.module_.embeddings)
max_embedding_abs = max(
max(np.abs(emb.weight.data.detach().numpy()[:, 0]))
for emb in self.module_.embeddings
)
for i, feature_name in enumerate(feature_names):
if subset is not None and feature_name not in subset:
continue
# data
embedding_values = self.module_.embeddings[i].weight.data.detach().numpy()[:, 0]
cutoffs = self.digitizer.cutoffs_[i]
widths = self.digitizer.weights_[i]
xs = np.concatenate([[0], widths.cumsum()])
fig, ax = plt.subplots()
ax.set_title(feature_name)
for x in xs[1:-1]:
ax.axvline(x, color='grey', linestyle=':', linewidth=1)
ax.set_xlim((xs[0], xs[-1]))
ax.bar(
x=xs[:-1],
width=widths,
height=embedding_values,
align='edge',
color=np.where(embedding_values > 0, 'red', 'green')
)
ax.axhline(0, color='grey', linewidth=1)
ax.set_ylim((-max_embedding_abs - .1, max_embedding_abs + .1))
ax.set_xticks([])
ax.set_ylabel('embedding value')
ax2 = ax.twinx()
ax2.scatter(x=xs[1:-1], y=cutoffs, color='royalblue')
ax2.tick_params(axis='y', labelcolor='royalblue')
ax2.set_ylabel('cutoff', color='royalblue')
def feature_importance(self, feature_names: list[str] | None = None) -> pd.Series:
if feature_names is None:
feature_names = list(map('feature {}'.format, range(len(self.module_.embeddings))))
assert len(feature_names) == len(self.module_.embeddings)
return pd.Series(
self.module_.feature_importance().numpy(),
index=feature_names,
name='importance'
)