-
Notifications
You must be signed in to change notification settings - Fork 10
/
load_scannet_data.py
195 lines (172 loc) · 7.3 KB
/
load_scannet_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Modified from
# https://github.com/facebookresearch/votenet/blob/master/scannet/load_scannet_data.py
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""Load Scannet scenes with vertices and ground truth labels for semantic and
instance segmentations."""
import argparse
import inspect
import json
import os
import numpy as np
import scannet_utils
currentdir = os.path.dirname(
os.path.abspath(inspect.getfile(inspect.currentframe())))
def read_aggregation(filename):
assert os.path.isfile(filename)
object_id_to_segs = {}
label_to_segs = {}
with open(filename) as f:
data = json.load(f)
num_objects = len(data['segGroups'])
for i in range(num_objects):
object_id = data['segGroups'][i][
'objectId'] + 1 # instance ids should be 1-indexed
label = data['segGroups'][i]['label']
segs = data['segGroups'][i]['segments']
object_id_to_segs[object_id] = segs
if label in label_to_segs:
label_to_segs[label].extend(segs)
else:
label_to_segs[label] = segs
return object_id_to_segs, label_to_segs
def read_segmentation(filename):
assert os.path.isfile(filename)
seg_to_verts = {}
with open(filename) as f:
data = json.load(f)
num_verts = len(data['segIndices'])
for i in range(num_verts):
seg_id = data['segIndices'][i]
if seg_id in seg_to_verts:
seg_to_verts[seg_id].append(i)
else:
seg_to_verts[seg_id] = [i]
return seg_to_verts, num_verts
def extract_bbox(mesh_vertices, object_id_to_segs, object_id_to_label_id,
instance_ids):
num_instances = len(np.unique(list(object_id_to_segs.keys())))
instance_bboxes = np.zeros((num_instances, 7))
for obj_id in object_id_to_segs:
label_id = object_id_to_label_id[obj_id]
obj_pc = mesh_vertices[instance_ids == obj_id, 0:3]
if len(obj_pc) == 0:
continue
xyz_min = np.min(obj_pc, axis=0)
xyz_max = np.max(obj_pc, axis=0)
bbox = np.concatenate([(xyz_min + xyz_max) / 2.0, xyz_max - xyz_min,
np.array([label_id])])
# NOTE: this assumes obj_id is in 1,2,3,.,,,.NUM_INSTANCES
instance_bboxes[obj_id - 1, :] = bbox
return instance_bboxes
def export(mesh_file,
agg_file,
seg_file,
meta_file,
label_map_file,
output_file=None,
test_mode=False):
"""Export original files to vert, ins_label, sem_label and bbox file.
Args:
mesh_file (str): Path of the mesh_file.
agg_file (str): Path of the agg_file.
seg_file (str): Path of the seg_file.
meta_file (str): Path of the meta_file.
label_map_file (str): Path of the label_map_file.
output_file (str): Path of the output folder.
Default: None.
test_mode (bool): Whether is generating test data without labels.
Default: False.
It returns a tuple, which contains the the following things:
np.ndarray: Vertices of points data.
np.ndarray: Indexes of label.
np.ndarray: Indexes of instance.
np.ndarray: Instance bboxes.
dict: Map from object_id to label_id.
"""
label_map = scannet_utils.read_label_mapping(
label_map_file, label_from='raw_category', label_to='nyu40id')
mesh_vertices = scannet_utils.read_mesh_vertices_rgb(mesh_file)
# Load scene axis alignment matrix
lines = open(meta_file).readlines()
# test set data doesn't have align_matrix
axis_align_matrix = np.eye(4)
for line in lines:
if 'axisAlignment' in line:
axis_align_matrix = [
float(x)
for x in line.rstrip().strip('axisAlignment = ').split(' ')
]
break
axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))
# perform global alignment of mesh vertices
pts = np.ones((mesh_vertices.shape[0], 4))
pts[:, 0:3] = mesh_vertices[:, 0:3]
pts = np.dot(pts, axis_align_matrix.transpose()) # Nx4
aligned_mesh_vertices = np.concatenate([pts[:, 0:3], mesh_vertices[:, 3:]],
axis=1)
# Load semantic and instance labels
if not test_mode:
object_id_to_segs, label_to_segs = read_aggregation(agg_file)
seg_to_verts, num_verts = read_segmentation(seg_file)
label_ids = np.zeros(shape=(num_verts), dtype=np.uint32)
object_id_to_label_id = {}
for label, segs in label_to_segs.items():
label_id = label_map[label]
for seg in segs:
verts = seg_to_verts[seg]
label_ids[verts] = label_id
instance_ids = np.zeros(
shape=(num_verts), dtype=np.uint32) # 0: unannotated
for object_id, segs in object_id_to_segs.items():
for seg in segs:
verts = seg_to_verts[seg]
instance_ids[verts] = object_id
if object_id not in object_id_to_label_id:
object_id_to_label_id[object_id] = label_ids[verts][0]
unaligned_bboxes = extract_bbox(mesh_vertices, object_id_to_segs,
object_id_to_label_id, instance_ids)
aligned_bboxes = extract_bbox(aligned_mesh_vertices, object_id_to_segs,
object_id_to_label_id, instance_ids)
else:
label_ids = None
instance_ids = None
unaligned_bboxes = None
aligned_bboxes = None
object_id_to_label_id = None
if output_file is not None:
np.save(output_file + '_vert.npy', mesh_vertices)
if not test_mode:
np.save(output_file + '_sem_label.npy', label_ids)
np.save(output_file + '_ins_label.npy', instance_ids)
np.save(output_file + '_unaligned_bbox.npy', unaligned_bboxes)
np.save(output_file + '_aligned_bbox.npy', aligned_bboxes)
np.save(output_file + '_axis_align_matrix.npy', axis_align_matrix)
return mesh_vertices, label_ids, instance_ids, unaligned_bboxes, \
aligned_bboxes, object_id_to_label_id, axis_align_matrix
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--scan_path',
required=True,
help='path to scannet scene (e.g., data/ScanNet/v2/scene0000_00')
parser.add_argument('--output_file', required=True, help='output file')
parser.add_argument(
'--label_map_file',
required=True,
help='path to scannetv2-labels.combined.tsv')
opt = parser.parse_args()
scan_name = os.path.split(opt.scan_path)[-1]
mesh_file = os.path.join(opt.scan_path, scan_name + '_vh_clean_2.ply')
agg_file = os.path.join(opt.scan_path, scan_name + '.aggregation.json')
seg_file = os.path.join(opt.scan_path,
scan_name + '_vh_clean_2.0.010000.segs.json')
meta_file = os.path.join(
opt.scan_path, scan_name +
'.txt') # includes axisAlignment info for the train set scans.
export(mesh_file, agg_file, seg_file, meta_file, opt.label_map_file,
opt.output_file)
if __name__ == '__main__':
main()