This document provides a quick overview of the different features and concepts in Flecs with short examples. This is a good resource if you're just getting started or just want to get a better idea of what kind of features are available in Flecs!
To use Flecs, copy the distr/flecs.c and distr/flecs.h files from the distr folder to your project's source folder. When building, make sure your build system is setup to do the following:
-
If it is a C++ project, make sure to compile distr/flecs.c as C code, for example by using
gcc
/clang
instead ofg++
/clang++
. -
If you are building on Windows and you're not using the Microsoft Visual Studio compiler, make sure to add
-lWs2_32
to the end(!) of the linker command. The socket API is used for connecting to Flecs explorer. -
When compiling Flecs with
gcc
/clang
, add-std=gnu99
to the compiler command. This ensures that addons that rely on time & socket functions are compiled correctly. -
C++ files that use Flecs must be compiled with
-std=c++0x
(C++11) or higher.
To build Flecs as a dynamic library, remove this line from the top of the distr/flecs.h file:
#define flecs_STATIC
When compiling distr/flecs.c, make sure to define flecs_EXPORTS
, for example by adding -Dflecs_EXPORTS
to the compiler command.
Alternatively Flecs can also be built as a dynamic library with the cmake, meson, bazel or bake build files provided in the repository. These use the files from src
to build as opposed to the amalgamated files, which is better suited for development.
Locate flecs
on your system (either by cloning or as a submodule) and use add_subdirectory
or use FetchContent
to download the source code from the master branch of the flecs repository. After that, add the following to your CMakeLists.txt
file:
target_link_libraries(${PROJECT_NAME} flecs::flecs_static)
Download or git clone
the flecs repository and run bake
from inside the directory. After that, add the following to your project.json
file's value property:
"use": ["flecs"]
First make sure you have bake installed (see the bake repository for instructions).
Run the following commands to run all tests (use -j
to specify the number of threads):
# Core test suite
bake run test/core -- -j 4
# Addon tests
bake run test/addons -- -j 4
# Reflection tests
bake run test/meta -- -j 4
# C++ tests
bake run test/cpp -- -j 4
To run tests with asan enabled, add --cfg sanitize
to the command:
bake run --cfg sanitize test/api -- -j 4
First make sure to clone bake.
Run the following commands to run all the tests:
# Generate make files for Flecs and tests
cmake -DFLECS_TESTS=ON -DBAKE_DIRECTORY="path to cloned bake repository"
# Build flecs and test suites
cmake --build . -j 4
# Run the tests
ctest -C Debug --verbose
When building for emscripten, add the following command line options to the emcc
link command:
-s ALLOW_MEMORY_GROWTH=1
-s STACK_SIZE=1mb
-s EXPORTED_RUNTIME_METHODS=cwrap
-s MODULARIZE=1
-s EXPORT_NAME="my_app"
Flecs has a modular architecture that makes it easy to only build the features you really need. By default all addons are built. To customize a build, first define FLECS_CUSTOM_BUILD
, then add defines for the addons you need. For example:
#define FLECS_CUSTOM_BUILD // Don't build all addons
#define FLECS_SYSTEM // Build FLECS_SYSTEM
Additionally, you can also specify addons to exclude from a build by adding NO
to the define:
#define FLECS_NO_LOG
The following addons can be configured:
Addon | Description | Define |
---|---|---|
Cpp | C++11 API | FLECS_CPP |
Module | Organize game logic into reusable modules | FLECS_MODULE |
System | Create & run systems | FLECS_SYSTEM |
Pipeline | Automatically schedule & multithread systems | FLECS_PIPELINE |
Timer | Run systems at time intervals or at a rate | FLECS_TIMER |
Meta | Flecs reflection system | FLECS_META |
Units | Builtin unit types | FLECS_UNITS |
JSON | JSON format | FLECS_JSON |
Doc | Add documentation to components, systems & more | FLECS_DOC |
Http | Tiny HTTP server for processing simple requests | FLECS_HTTP |
Rest | REST API for showing entities in the browser | FLECS_REST |
Script | DSL for assets, scenes and configuration | FLECS_SCRIPT |
Stats | Functions for collecting statistics | FLECS_STATS |
Metrics | Create metrics from user-defined components | FLECS_METRICS |
Alerts | Create alerts from user-defined queries | FLECS_ALERTS |
Log | Extended tracing and error logging | FLECS_LOG |
Journal | Journaling of API functions | FLECS_JOURNAL |
App | Flecs application framework | FLECS_APP |
OS API Impl | Default OS API implementation for Posix/Win32 | FLECS_OS_API_IMPL |
This section contains an overview of all the different concepts in Flecs and how they wire together. The sections in the quickstart go over them in more detail and with code examples.
The world is the container for all ECS data. It stores the entities and their components, does queries and runs systems. Typically there is only a single world, but there is no limit on the number of worlds an application can create.
- C
ecs_world_t *world = ecs_init(); // Do the ECS stuff ecs_fini(world);
- C++
flecs::world world; // Do the ECS stuff
- C#
using World world = World.Create(); // Do the ECS stuff
- Rust
let world = World::new(); // Do the ECS stuff
An entity is a unique thing in the world, and is represented by a 64 bit id. Entities can be created and deleted. If an entity is deleted it is no longer considered "alive". A world can contain up to 4 billion(!) alive entities. Entity identifiers contain a few bits that make it possible to check whether an entity is alive or not.
- C
ecs_entity_t e = ecs_new(world); ecs_is_alive(world, e); // true! ecs_delete(world, e); ecs_is_alive(world, e); // false!
- C++
auto e = world.entity(); e.is_alive(); // true! e.destruct(); e.is_alive(); // false!
- C#
Entity e = world.Entity(); e.IsAlive(); // true! e.Destruct(); e.IsAlive(); // false!
- Rust
let e = world.entity(); e.is_alive(); // true! e.destruct(); e.is_alive(); // false!
Entities can have names which makes it easier to identify them in an application. In C++ the name can be passed to the constructor. If a name is provided during entity creation time and an entity with that name already exists, the existing entity will be returned.
- C
In C a name can be assigned with the
ecs_entity_init
function orecs_entity
macro.ecs_entity_t e = ecs_entity(world, { .name = "Bob" }); printf("Entity name: %s\n", ecs_get_name(world, e));
- C++
auto e = world.entity("Bob"); std::cout << "Entity name: " << e.name() << std::endl;
- C#
Entity e = world.Entity("Bob"); Console.WriteLine($"Entity name: {e.Name()}");
- Rust
let e = world.entity_named("bob"); println!("Entity name: {}", e.name());
Entities can be looked up by name with the lookup
function:
- C
ecs_entity_t e = ecs_lookup(world, "Bob");
- C++
auto e = world.lookup("Bob");
- C#
Entity e = world.Lookup("Bob");
- Rust
let e = world.lookup("bob");
An id is a 64 bit number that can encode anything that can be added to an entity. In flecs this can be either a component, tag or a pair. A component is data that can be added to an entity. A tag is an "empty" component. A pair is a combination of two component/tag ids which is used to encode entity relationships. All entity/component/tag identifiers are valid ids, but not all ids are valid entity identifier.
The following sections describe components, tags and pairs in more detail.
A component is a type of which instances can be added and removed to entities. Each component can be added only once to an entity (though not really, see Pair). In C applications components must be registered before use. By default in C++ this happens automatically.
- C
ECS_COMPONENT(world, Position); ECS_COMPONENT(world, Velocity); ecs_entity_t e = ecs_new(world); // Add a component. This creates the component in the ECS storage, but does not // assign it with a value. ecs_add(world, e, Velocity); // Set the value for the Position & Velocity components. A component will be // added if the entity doesn't have it yet. ecs_set(world, e, Position, {10, 20}); ecs_set(world, e, Velocity, {1, 2}); // Get a component const Position *p = ecs_get(world, e, Position); // Remove component ecs_remove(world, e, Position);
- C++
auto e = world.entity(); // Add a component. This creates the component in the ECS storage, but does not // assign it with a value. e.add<Velocity>(); // Set the value for the Position & Velocity components. A component will be // added if the entity doesn't have it yet. e.set<Position>({10, 20}) .set<Velocity>({1, 2}); // Get a component const Position *p = e.get<Position>(); // Remove component e.remove<Position>();
- C#
Entity e = world.Entity(); // Add a component. This creates the component in the ECS storage, but does not // assign it with a value. e.Add<Velocity>(); // Set the value for the Position & Velocity components. A component will be // added if the entity doesn't have it yet. e.Set<Position>(new(10, 20)) .Set<Velocity>(new(1, 2)); // Get a component ref readonly Position p = ref e.Get<Position>(); // Remove component e.Remove<Position>();
- Rust
let e = world.entity(); // Add a component. This creates the component in the ECS storage, but does not // assign it with a value. e.add::<Velocity>(); // Set the value for the Position & Velocity components. A component will be // added if the entity doesn't have it yet. e.set(Position { x: 10.0, y: 20.0 }) .set(Velocity { x: 1.0, y: 2.0 }); // Get a component e.get::<&Position>(|p| { println!("Position: ({}, {})", p.x, p.y); }); // Remove component e.remove::<Position>();
Each component is associated by a unique entity identifier by Flecs. This makes it possible to inspect component data, or attach your own data to components.
- C
C applications can use the
ecs_id
macro to get the entity id for a component.ECS_COMPONENT(world, Position); ecs_entity_t pos_e = ecs_id(Position); printf("Name: %s\n", ecs_get_name(world, pos_e)); // outputs 'Name: Position' // It's possible to add components like you would for any entity ecs_add(world, pos_e, Serializable);
- C++
C++ applications can use the
world::entity
function.flecs::entity pos_e = world.entity<Position>(); std::cout << "Name: " << pos_e.name() << std::endl; // outputs 'Name: Position' // It's possible to add components like you would for any entity pos_e.add<Serializable>();
- C#
C# applications can use the
World.Entity()
function.Entity posE = world.Entity<Position>(); Console.WriteLine($"Name: {posE.Name()}"); // outputs 'Name: Position' // It's possible to add components like you would for any entity posE.Add<Serializable>();
- Rust
Rust applications can use the
world::entity_from
function.let pos_e = world.entity_from::<Position>(); println!("Name: {}", pos_e.name()); // outputs 'Name: Position' // It's possible to add components like you would for any entity pos_e.add::<Serializable>();
The thing that makes an ordinary entity a component is the EcsComponent
(or flecs::Component
, in C++) component. This is a builtin component that tells Flecs how much space is needed to store a component, and can be inspected by applications:
- C
ECS_COMPONENT(world, Position); ecs_entity_t pos_e = ecs_id(Position); const EcsComponent *c = ecs_get(world, pos_e, EcsComponent); printf("Component size: %u\n", c->size);
- C++
flecs::entity pos_e = world.entity<Position>(); const EcsComponent *c = pos_e.get<flecs::Component>(); std::cout << "Component size: " << c->size << std::endl;
- C#
Entity posE = world.Entity<Position>(); ref readonly EcsComponent c = ref posE.Get<EcsComponent>(); Console.WriteLine($"Component size: {c.size}");
- Rust
let pos_e = world.entity_from::<Position>(); pos_e.get::<&flecs::Component>(|c| { println!("Component size: {}", c.size); });
Because components are stored as regular entities, they can in theory also be deleted. To prevent unexpected accidents however, by default components are registered with a tag that prevents them from being deleted. If this tag were to be removed, deleting a component would cause it to be removed from all entities. For more information on these policies, see Relationship cleanup properties.
A tag is a component that does not have any data. In Flecs tags can be either empty types (in C++) or regular entities (C & C++) that do not have the EcsComponent
component (or have an EcsComponent
component with size 0). Tags can be added & removed using the same APIs as adding & removing components, but because tags have no data, they cannot be assigned a value. Because tags (like components) are regular entities, they can be created & deleted at runtime.
- C
// Create Enemy tag ecs_entity_t Enemy = ecs_new(world); // Create entity, add Enemy tag ecs_entity_t e = ecs_new(world); ecs_add_id(world, e, Enemy); ecs_has_id(world, e, Enemy); // true! ecs_remove_id(world, e, Enemy); ecs_has_id(world, e, Enemy); // false!
- C++
// Option 1: create Tag as empty struct struct Enemy { }; // Create entity, add Enemy tag auto e = world.entity().add<Enemy>(); e.has<Enemy>(); // true! e.remove<Enemy>(); e.has<Enemy>(); // false! // Option 2: create Tag as entity auto Enemy = world.entity(); // Create entity, add Enemy tag auto e = world.entity().add(Enemy); e.has(Enemy); // true! e.remove(Enemy); e.has(Enemy); // false!
- C#
// Option 1: create Tag as empty struct public struct Enemy { } // Create entity, add Enemy tag Entity e = world.Entity().Add<Enemy>(); e.Has<Enemy>(); // true! e.Remove<Enemy>(); e.Has<Enemy>(); // false! // Option 2: create Tag as entity Entity Enemy = world.Entity(); // Create entity, add Enemy tag Entity e = world.Entity().Add(Enemy); e.Has(Enemy); // true! e.Remove(Enemy); e.Has(Enemy); // false!
- Rust
// Option 1: create Tag as empty struct #[derive(Component)] struct Enemy; // Create entity, add Enemy tag let e = world.entity().add::<Enemy>(); e.has::<Enemy>(); // true! e.remove::<Enemy>(); e.has::<Enemy>(); // false! // Option 2: create Tag as entity let enemy = world.entity(); // Create entity, add Enemy tag let e = world.entity().add_id(enemy); e.has_id(enemy); // true! e.remove_id(enemy); e.has_id(enemy); // false!
Note that both options in the C++ example achieve the same effect. The only difference is that in option 1 the tag is fixed at compile time, whereas in option 2 the tag can be created dynamically at runtime.
When a tag is deleted, the same rules apply as for components (see Relationship cleanup properties).
A pair is a combination of two entity ids. Pairs can be used to store entity relationships, where the first id represents the relationship kind and the second id represents the relationship target (called "object"). This is best explained by an example:
- C
// Create Likes relationship ecs_entity_t Likes = ecs_new(world); // Create a small graph with two entities that like each other ecs_entity_t Bob = ecs_new(world); ecs_entity_t Alice = ecs_new(world); ecs_add_pair(world, Bob, Likes, Alice); // Bob likes Alice ecs_add_pair(world, Alice, Likes, Bob); // Alice likes Bob ecs_has_pair(world, Bob, Likes, Alice); // true! ecs_remove_pair(world, Bob, Likes, Alice); ecs_has_pair(world, Bob, Likes, Alice); // false!
- C++
// Create Likes relationship as empty type (tag) struct Likes { }; // Create a small graph with two entities that like each other auto Bob = world.entity(); auto Alice = world.entity(); Bob.add<Likes>(Alice); // Bob likes Alice Alice.add<Likes>(Bob); // Alice likes Bob Bob.has<Likes>(Alice); // true! Bob.remove<Likes>(Alice); Bob.has<Likes>(Alice); // false!
- C#
// Create Likes relationship as empty type (tag) public struct Likes { } // Create a small graph with two entities that like each other Entity Bob = world.Entity(); Entity Alice = world.Entity(); Bob.Add<Likes>(Alice); // Bob likes Alice Alice.Add<Likes>(Bob); // Alice likes Bob Bob.Has<Likes>(Alice); // true! Bob.Remove<Likes>(Alice); Bob.Has<Likes>(Alice); // false!
- Rust
// Create Likes relationship as empty type (tag) #[derive(Component)] struct Likes; // Create a small graph with two entities that like each other let bob = world.entity(); let alice = world.entity(); bob.add_first::<Likes>(alice); // bob likes alice alice.add_first::<Likes>(bob); // alice likes bob bob.has_first::<Likes>(alice); // true! bob.remove_first::<Likes>(alice); bob.has_first::<Likes>(alice); // false!
A pair can be encoded in a single 64 bit identifier by using the ecs_pair
macro in C, or the world.pair
function in C++:
- C
ecs_id_t id = ecs_pair(Likes, Bob);
- C++
flecs::id id = world.pair<Likes>(Bob);
- C#
Id id = world.Pair<Likes>(bob);
- Rust
let id = world.id_first::<Likes>(bob);
The following examples show how to get back the elements from a pair:
- C
if (ecs_id_is_pair(id)) { ecs_entity_t relationship = ecs_pair_first(world, id); ecs_entity_t target = ecs_pair_second(world, id); }
- C++
flecs::id id = ...; if (id.is_pair()) { auto relationship = id.first(); auto target = id.second(); }
- C#
Id id = ...; if (id.IsPair()) { Entity relationship = id.First(); Entity target = id.Second(); }
- Rust
let id = world.id_from::<(Likes, Apples)>(); if id.is_pair() { let relationship = id.first_id(); let target = id.second_id(); }
A component or tag can be added multiple times to the same entity as long as it is part of a pair, and the pair itself is unique:
- C
ecs_add_pair(world, Bob, Eats, Apples); ecs_add_pair(world, Bob, Eats, Pears); ecs_add_pair(world, Bob, Grows, Pears); ecs_has_pair(world, Bob, Eats, Apples); // true! ecs_has_pair(world, Bob, Eats, Pears); // true! ecs_has_pair(world, Bob, Grows, Pears); // true!
- C++
flecs::entity bob = ...; bob.add(Eats, Apples); bob.add(Eats, Pears); bob.add(Grows, Pears); bob.has(Eats, Apples); // true! bob.has(Eats, Pears); // true! bob.has(Grows, Pears); // true!
- C#
Entity Bob = ...; Bob.Add(Eats, Apples); Bob.Add(Eats, Pears); Bob.Add(Grows, Pears); Bob.Has(Eats, Apples); // true! Bob.Has(Eats, Pears); // true! Bob.Has(Grows, Pears); // true!
- Rust
let bob = world.entity(); bob.add_id((eats, apples)); bob.add_id((eats, pears)); bob.add_id((grows, pears)); bob.has_id((eats, apples)); // true! bob.has_id((eats, pears)); // true! bob.has_id((grows, pears)); // true!
The target
function can be used in C and C++ to get the object for a relationship:
- C
ecs_entity_t o = ecs_get_target(world, Alice, Likes, 0); // Returns Bob
- C++
flecs::entity alice = ...; auto o = alice.target<Likes>(); // Returns Bob
- C#
Entity Alice = ...; Entity o = Alice.Target<Likes>(); // Returns Bob
- Rust
let alice = world.entity().add_first::<Likes>(bob); let o = alice.target::<Likes>(0); // Returns bob
Entity relationships enable lots of interesting patterns and possibilities. Make sure to check out the Relationships manual.
Flecs has builtin support for hierarchies with the builtin EcsChildOf
(or flecs::ChildOf
, in C++) relationship. A hierarchy can be created with the regular relationship API, or with the child_of
shortcut in C++:
- C
ecs_entity_t parent = ecs_new(world); // ecs_new_w_pair is the same as ecs_new_id + ecs_add_pair ecs_entity_t child = ecs_new_w_pair(world, EcsChildOf, parent); // Deleting the parent also deletes its children ecs_delete(world, parent);
- C++
auto parent = world.entity(); auto child = world.entity().child_of(parent); // Deleting the parent also deletes its children parent.destruct();
- C#
Entity parent = world.Entity(); Entity child = world.Entity().ChildOf(parent); // Deleting the parent also deletes its children parent.Destruct();
- Rust
let parent = world.entity(); let child = world.entity().child_of_id(parent); // Deleting the parent also deletes its children parent.destruct();
When entities have names, they can be used together with hierarchies to generate path names or do relative lookups:
- C
ecs_entity_t parent = ecs_entity(world, { .name = "parent" }); ecs_entity_t child = ecs_entity(world, { .name = "child" }); ecs_add_pair(world, child, EcsChildOf, parent); char *path = ecs_get_path(world, child); printf("%s\n", path); // output: 'parent.child' ecs_os_free(path); ecs_lookup(world, "parent.child"); // returns child ecs_lookup_from(world, parent, "child"); // returns child
- C++
auto parent = world.entity("parent"); auto child = world.entity("child").child_of(parent); std::cout << child.path() << std::endl; // output: 'parent::child' world.lookup("parent::child"); // returns child parent.lookup("child"); // returns child
- C#
Entity parent = world.Entity("parent"); Entity child = world.Entity("child").ChildOf(parent); Console.WriteLine(child.Path()); // output: 'parent.child' world.Lookup("parent.child"); // returns child parent.Lookup("child"); // returns child
- Rust
let parent = world.entity_named("parent"); let child = world.entity_named("child").child_of_id(parent); println!("Child path: {}", child.path().unwrap()); // output: 'parent::child' world.lookup("parent::child"); // returns child parent.lookup("child"); // returns child
Queries (see below) can use hierarchies to order data breadth-first, which can come in handy when you're implementing a transform system:
- C
ecs_query_t *q = ecs_query(world, { .terms = { { ecs_id(Position) }, { ecs_id(Position), .src = { .flags = EcsCascade, // Breadth-first order .trav = EcsChildOf // Use ChildOf relationship for traversal }} } }); ecs_iter_t it = ecs_query_iter(world, q); while (ecs_query_next(&it)) { Position *p = ecs_field(&it, Position, 0); Position *p_parent = ecs_field(&it, Position, 1); for (int i = 0; i < it.count; i++) { // Do the thing } }
- C++
auto q = world.query_builder<Position, Position>() .term_at(1).parent().cascade() .build(); q.each([](Position& p, Position& p_parent) { // Do the thing });
- C#
Query q = world.QueryBuilder<Position, Position>() .TermAt(1).Parent().Cascade() .Build(); q.Each((ref Position p, ref Position pParent) => { // Do the thing });
- Rust
let q = world .query::<(&Position, &mut Position)>() .term_at(1) .parent() .cascade() .build(); q.each(|(p, p_parent)| { // Do the thing });
The type (often referred to as "archetype") is the list of ids an entity has. Types can be used for introspection which is useful when debugging, or when for example building an entity editor. The most common thing to do with a type is to convert it to text and print it:
- C
ECS_COMPONENT(world, Position); ECS_COMPONENT(world, Velocity); ecs_entity_t e = ecs_new(world); ecs_add(world, e, Position); ecs_add(world, e, Velocity); const ecs_type_t *type = ecs_get_type(world, e); char *type_str = ecs_type_str(world, type); printf("Type: %s\n", type_str); // output: 'Position,Velocity' ecs_os_free(type_str);
- C++
auto e = ecs.entity() .add<Position>() .add<Velocity>(); std::cout << e.type().str() << std::endl; // output: 'Position,Velocity'
- C#
Entity e = ecs.Entity() .Add<Position>() .Add<Velocity>(); Console.WriteLine(e.Type().Str()); // output: 'Position,Velocity'
- Rust
let e = world.entity().add::<Position>().add::<Velocity>(); println!("Components: {}", e.archetype().to_string().unwrap()); // output: 'Position,Velocity'
A type can also be iterated by an application:
- C
const ecs_type_t *type = ecs_get_type(world, e); for (int i = 0; i < type->count; i++) { if (type->array[i] == ecs_id(Position)) { // Found Position component! } }
- C++
e.each([&](flecs::id id) { if (id == world.id<Position>()) { // Found Position component! } });
- C#
e.Each((Id id) => { if (id == world.Id<Position>()) { // Found Position component! } });
- Rust
e.each_component(|id| { if id == world.component_id::<Position>() { // Found Position component! } });
A singleton is a single instance of a component that can be retrieved without an entity. The functions for singletons are very similar to the regular API:
- C
// Set singleton component ecs_singleton_set(world, Gravity, { 9.81 }); // Get singleton component const Gravity *g = ecs_singleton_get(world, Gravity);
- C++
// Set singleton component world.set<Gravity>({ 9.81 }); // Get singleton component const Gravity *g = world.get<Gravity>();
- C#
// Set singleton component world.Set<Gravity>(new(9.81)); // Get singleton component ref readonly Gravity g = ref world.Get<Gravity>();
- Rust
// Set singleton component world.set(Gravity { x: 10, y: 20 }); // Get singleton component world.get::<&Gravity>(|g| { println!("Gravity: {}, {}", g.x, g.y); });
Singleton components are created by adding the component to its own entity id. The above code examples are shortcuts for these regular API calls:
- C
ecs_set(world, ecs_id(Gravity), Gravity, {10, 20}); const Gravity *g = ecs_get(world, ecs_id(Gravity), Gravity);
- C++
flecs::entity grav_e = world.entity<Gravity>(); grav_e.set<Gravity>({10, 20}); const Gravity *g = grav_e.get<Gravity>();
- C#
Entity gravE = world.Entity<Gravity>(); gravE.Set<Gravity>(new(10, 20)); ref readonly Gravity g = ref gravE.Get<Gravity>();
- Rust
let grav_e = world.entity_from::<Gravity>(); grav_e.set(Gravity { x: 10, y: 20 }); grav_e.get::<&Gravity>(|g| { println!("Gravity: {}, {}", g.x, g.y); });
The following examples show how to query for a singleton component:
- C
// Create query that matches Gravity as singleton ecs_query_t *q = ecs_query(ecs, { .terms = { // Regular component { .id = ecs_id(Velocity) }, // A singleton is a component matched on itself { .id = ecs_id(Gravity), .src.id = ecs_id(Gravity) } } }); // Create a system using the query DSL with a singleton: ECS_SYSTEM(world, ApplyGravity, EcsOnUpdate, Velocity, Gravity($));
- C++
world.query_builder<Velocity, Gravity>() .term_at(1).singleton() .build();
- C#
world.QueryBuilder<Velocity, Gravity>() .TermAt(1).Singleton() .Build();
- Rust
world .query::<(&Velocity, &Gravity)>() .term_at(1) .singleton() .build();
Queries are the main mechanism for finding and iterating through entities. Queries are used in many parts of the API, such as for systems and observers. The following example shows a simple query:
- C
```c
ecs_query_t *q = ecs_query(world, {
.terms = {
{ ecs_id(Position) },
{ ecs_pair(EcsChildOf, parent) }
}
});
// Iterate the query results. Because entities are grouped by their type there // are two loops: an outer loop for the type, and an inner loop for the entities // for that type. ecs_iter_t it = ecs_query_iter(world, q); while (ecs_query_next(&it)) { // Each type has its own set of component arrays Position *p = ecs_field(&it, Position, 0);
// Iterate all entities for the type for (int i = 0; i < it.count; i++) { printf("%s: {%f, %f}\n", ecs_get_name(world, it.entities[i]), p[i].x, p[i].y); }
}
ecs_query_fini(f);
</li> <li><b class="tab-title">C++</b> ```cpp // For simple queries the world::each function can be used world.each([](Position& p, Velocity& v) { // flecs::entity argument is optional p.x += v.x; p.y += v.y; }); // More complex queries can first be created, then iterated auto q = world.query_builder<Position>() .with(flecs::ChildOf, parent) .build(); // Option 1: the each() callback iterates over each entity q.each([](flecs::entity e, Position& p) { std::cout << e.name() << ": {" << p.x << ", " << p.y << "}" << std::endl; }); // Option 2: the run() callback offers more control over the iteration q.run([](flecs::iter& it) { while (it.next()) { auto p = it.field<Position>(0); for (auto i : it) { std::cout << it.entity(i).name() << ": {" << p[i].x << ", " << p[i].y << "}" << std::endl; } } });
- C#
// For simple queries the each function can be used world.Each((ref Position p, ref Velocity v) => // Entity argument is optional { p.X += v.X; p.Y += v.Y; }); // More complex filters can first be created, then iterated using Query q = world.QueryBuilder<Position>() .With(Ecs.ChildOf, parent) .Build(); // Option 1: The Each() callback that iterates each entity q.Each((Entity e, ref Position p) => { Console.WriteLine($"{e.Name()}: ({p.X}, {p.Y})") }); // Option 2: The Iter() callback provides more control over the iteration q.Iter((Iter it, Field<Position> p) => { foreach (int i in it) Console.WriteLine($"{it.Entity(i).Name()}: ({p[i].X}, {p[i].Y})") });
- Rust
// For simple queries the world::each function can be used world.each::<(&mut Position, &Velocity)>(|(p, v)| { // EntityView argument is optional, use each_entity to get it p.x += v.x; p.y += v.y; }); // More complex queries can first be created, then iterated let q = world .query::<&Position>() .with_id((flecs::ChildOf::ID, parent)) .build(); // Option 1: the each() callback iterates over each entity q.each_entity(|e, p| { println!("{}: ({}, {})", e.name(), p.x, p.y); }); // Option 2: the run() callback offers more control over the iteration q.run(|mut it| { while it.next() { let p = it.field::<Position>(0).unwrap(); for i in it.iter() { println!("{}: ({}, {})", it.entity(i).name(), p[i].x, p[i].y); } } });
Queries can use operators to exclude components, optionally match components or match one out of a list of components. Additionally filters may contain wildcards for terms which is especially useful when combined with pairs.
The following example shows a query that matches all entities with a parent that do not have Position
:
- C
ecs_query_t *q = ecs_query(world, { .terms = { { ecs_pair(EcsChildOf, EcsWildcard) } { ecs_id(Position), .oper = EcsNot }, } }); // Iteration code is the same
- C++
flecs::query<> q = world.query_builder() .with(flecs::ChildOf, flecs::Wildcard) .with<Position>().oper(flecs::Not) .build(); // Iteration code is the same
- C#
using Query q = world.QueryBuilder() .With(Ecs.ChildOf, Ecs.Wildcard) .With<Position>().Oper(Ecs.Not) .Build(); // Iteration code is the same
- Rust
let q = world .query::<()>() .with::<(flecs::ChildOf, flecs::Wildcard)>() .with::<Position>() .set_oper(OperKind::Not) .build(); // Iteration code is the same
See the query manual for more details.
A system is a query combined with a callback. Systems can be either ran manually or ran as part of an ECS-managed main loop (see Pipeline). The system API looks similar to queries:
- C
// Option 1, use the ECS_SYSTEM convenience macro ECS_SYSTEM(world, Move, 0, Position, Velocity); ecs_run(world, Move, delta_time, NULL); // Run system // Option 2, use the ecs_system_init function/ecs_system macro ecs_entity_t move_sys = ecs_system(world, { .query.terms = { { ecs_id(Position) }, { ecs_id(Velocity) }, }, .callback = Move }); ecs_run(world, move_sys, delta_time, NULL); // Run system // The callback code (same for both options) void Move(ecs_iter_t *it) { Position *p = ecs_field(it, Position, 0); Velocity *v = ecs_field(it, Velocity, 1); for (int i = 0; i < it->count; i++) { p[i].x += v[i].x * it->delta_time; p[i].y += v[i].y * it->delta_time; } }
- C++
// Use each() function that iterates each individual entity auto move_sys = world.system<Position, Velocity>() .each([](flecs::iter& it, size_t, Position& p, Velocity& v) { p.x += v.x * it.delta_time(); p.y += v.y * it.delta_time(); }); // Just like with queries, systems have both the run() and // each() methods to iterate entities. move_sys.run();
- C#
// Use Each() function that iterates each individual entity System<Position, Velocity> moveSys = world.System<Position, Velocity>() .Each((Entity e, ref Position p, ref Velocity v) => { p.X += v.X * it.DeltaTime(); p.Y += v.Y * it.DeltaTime(); }); // Just like with queries, systems have both the Iter() and // Each() methods to iterate entities. moveSys.Run();
- Rust
// Use each_entity() function that iterates each individual entity let move_sys = world .system::<(&mut Position, &Velocity)>() .each_iter(|it, i, (p, v)| { p.x += v.x * it.delta_time(); p.y += v.y * it.delta_time(); }); // Just like with queries, systems have both the run() and // each() methods to iterate entities. move_sys.run();
Systems are stored as entities with an EcsSystem
component (flecs::System
in C++), similar to components. That means that an application can use a system as a regular entity:
- C
printf("System: %s\n", ecs_get_name(world, move_sys)); ecs_add(world, move_sys, EcsOnUpdate); ecs_delete(world, move_sys);
- C++
std::cout << "System: " << move_sys.name() << std::endl; move_sys.add(flecs::OnUpdate); move_sys.destruct();
- C#
Console.WriteLine($"System: {moveSys.Name()}"); moveSys.Entity.Add(Ecs.OnUpdate); moveSys.Entity.Destruct();
- Rust
println!("System: {}", move_sys.name()); move_sys.add::<flecs::pipeline::OnUpdate>(); move_sys.destruct();
A pipeline is a list of tags that when matched, produces a list of systems to run. These tags are also referred to as a system "phase". Flecs comes with a default pipeline that has the following phases:
- C
EcsOnLoad EcsPostLoad EcsPreUpdate EcsOnUpdate EcsOnValidate EcsPostUpdate EcsPreStore EcsOnStore
- C++
flecs::OnLoad flecs::PostLoad flecs::PreUpdate flecs::OnUpdate flecs::OnValidate flecs::PostUpdate flecs::PreStore flecs::OnStore
- C#
Ecs.OnLoad Ecs.PostLoad Ecs.PreUpdate Ecs.OnUpdate Ecs.OnValidate Ecs.PostUpdate Ecs.PreStore Ecs.OnStore
- Rust
flecs::pipeline::OnLoad; flecs::pipeline::PostLoad; flecs::pipeline::PreUpdate; flecs::pipeline::OnUpdate; flecs::pipeline::OnValidate; flecs::pipeline::PostUpdate; flecs::pipeline::PreStore; flecs::pipeline::OnStore;
When a pipeline is executed, systems are ran in the order of the phases. This makes pipelines and phases the primary mechanism for defining ordering between systems. The following code shows how to assign systems to a pipeline, and how to run the pipeline with the progress()
function:
- C
ECS_SYSTEM(world, Move, EcsOnUpdate, Position, Velocity); ECS_SYSTEM(world, Transform, EcsPostUpdate, Position, Transform); ECS_SYSTEM(world, Render, EcsOnStore, Transform, Mesh); ecs_progress(world, 0); // run systems in default pipeline
- C++
world.system<Position, Velocity>("Move").kind(flecs::OnUpdate).each( ... ); world.system<Position, Transform>("Transform").kind(flecs::PostUpdate).each( ... ); world.system<Transform, Mesh>("Render").kind(flecs::OnStore).each( ... ); world.progress();
- C#
world.System<Position, Velocity>("Move").Kind(Ecs.OnUpdate).Each( ... ); world.System<Position, Transform>("Transform").Kind(Ecs.PostUpdate).Each( ... ); world.System<Transform, Mesh>("Render").Kind(Ecs.OnStore).Each( ... ); world.Progress();
- Rust
world .system_named::<(&mut Position, &Velocity)>("Move") .kind::<flecs::pipeline::OnUpdate>() .each(|(p, v)| {}); world .system_named::<(&mut Position, &Transform)>("Transform") .kind::<flecs::pipeline::PostUpdate>() .each(|(p, t)| {}); world .system_named::<(&Transform, &mut Mesh)>("Render") .kind::<flecs::pipeline::OnStore>() .each(|(t, m)| {}); world.progress();
Because phases are just tags that are added to systems, applications can use the regular API to add/remove systems to a phase:
- C
ecs_remove_id(world, Move, EcsOnUpdate); ecs_add_id(world, Move, EcsPostUpdate);
- C++
move_sys.add(flecs::OnUpdate); move_sys.remove(flecs::PostUpdate);
- C#
moveSys.Add(Ecs.OnUpdate); moveSys.Remove(Ecs.PostUpdate);
- Rust
move_sys.add::<flecs::pipeline::OnUpdate>(); move_sys.remove::<flecs::pipeline::PostUpdate>();
Inside a phase, systems are guaranteed to be ran in their declaration order.
Observers are callbacks that are invoked when one or more events matches the query of an observer. Events can be either user defined or builtin. Examples of builtin events are OnAdd
, OnRemove
and OnSet
.
When an observer has a query with more than one component, the observer will not be invoked until the entity for which the event is emitted satisfies the entire query.
An example of an observer with two components:
- C
ecs_observer(world, { .query.terms = { { ecs_id(Position) }, { ecs_id(Velocity) }}, .event = { EcsOnSet }, .callback = OnSetPosition }); // Callback code is same as system ecs_entity_t e = ecs_new(world); // Doesn't invoke the observer ecs_set(world, e, Position, {10, 20}); // Doesn't invoke the observer ecs_set(world, e, Velocity, {1, 2}); // Invokes the observer ecs_set(world, e, Position, {20, 40}); // Invokes the observer
- C++
world.observer<Position, Velocity>("OnSetPosition") .event(flecs::OnSet) .each( ... ); // Callback code is same as system auto e = ecs.entity(); // Doesn't invoke the observer e.set<Position>({10, 20}); // Doesn't invoke the observer e.set<Velocity>({1, 2}); // Invokes the observer e.set<Position>({20, 30}); // Invokes the observer
- C#
world.Observer<Position, Velocity>("OnSetPosition") .Event(Ecs.OnSet) .Each( ... ); // Callback code is same as system Entity e = ecs.Entity(); // Doesn't invoke the observer e.Set<Position>(new(10, 20)); // Doesn't invoke the observer e.Set<Velocity>(new(1, 2)); // Invokes the observer e.Set<Position>(new(20, 30)); // Invokes the observer
- Rust
world .observer_named::<flecs::OnSet, (&Position, &Velocity)>("OnSetPosition") .each(|(p, v)| {}); // Callback code is same as system let e = world.entity(); // Doesn't invoke the observer e.set(Position { x: 10.0, y: 20.0 }); // Doesn't invoke the observer e.set(Velocity { x: 1.0, y: 2.0 }); // Invokes the observer e.set(Position { x: 30.0, y: 40.0 }); // Invokes the observer
A module is a function that imports and organizes components, systems, triggers, observers, prefabs into the world as reusable units of code. A well designed module has no code that directly relies on code of another module, except for components definitions. All module contents are stored as child entities inside the module scope with the ChildOf
relationship. The following examples show how to define a module in C and C++:
- C
// Module header (e.g. MyModule.h) typedef struct { float x; float y; } Position; extern ECS_COMPONENT_DECLARE(Position); // The import function name has to follow the convention: <ModuleName>Import void MyModuleImport(ecs_world_t *world); // Module source (e.g. MyModule.c) ECS_COMPONENT_DECLARE(Position); void MyModuleImport(ecs_world_t *world) { ECS_MODULE(world, MyModule); ECS_COMPONENT_DEFINE(world, Position); } // Import code ECS_IMPORT(world, MyModule);
- C++
struct my_module { my_module(flecs::world& world) { world.module<my_module>(); // Define components, systems, triggers, ... as usual. They will be // automatically created inside the scope of the module. } }; // Import code world.import<my_module>();
- C#
public struct MyModule : IFlecsModule { public void InitModule(ref World world) { world.Module<MyModule>(); // Define components, systems, triggers, ... as usual. They will be // automatically created inside the scope of the module. } }; // Import code world.Import<MyModule>();
- Rust
#[derive(Component)] struct MyModule; impl Module for MyModule { fn module(world: &World) { world.module::<MyModule>("MyModule"); // Define components, systems, triggers, ... as usual. They will be // automatically created inside the scope of the module. } } // Import code world.import::<MyModule>();