-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
68 lines (54 loc) · 2.16 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
xgbtuner setup script, derived from
https://github.com/pypa/sampleproject/blob/master/setup.py
"""
from setuptools import setup, find_packages
# To use a consistent encoding
from codecs import open
from os import path
here = path.abspath(path.dirname(__file__))
# Get the long description from the README file
with open(path.join(here, 'README.md'), encoding='utf-8') as f:
long_description = f.read()
setup(
name='xgbtuner',
version='1.0.0',
description='Tune the hyper parameters of the xgboost algorithm',
long_description=long_description,
# The project's main homepage.
url='https://github.com/zkurtz/xgbtuner',
# Author details
author='Zach Kurtz',
author_email='zkurtz@gmail.com',
# Choose your license
license='MIT',
# See https://pypi.python.org/pypi?%3Aaction=list_classifiers
classifiers=[
# How mature is this project? Common values are
# 3 - Alpha
# 4 - Beta
# 5 - Production/Stable
'Development Status :: 2 - preAlpha',
# Indicate who your project is intended for
'Intended Audience :: Data scientists',
'Topic :: Machine learning :: hyperparameter optimization',
# Pick your license as you wish (should match "license" above)
'License :: OSI Approved :: MIT License',
# Specify the Python versions you support here. In particular, ensure
# that you indicate whether you support Python 2, Python 3 or both.
'Programming Language :: Python :: 3.5',
],
# What does your project relate to?
keywords='xgboost hyperparameter optimization',
# You can just specify the packages manually here if your project is
# simple. Or you can use find_packages().
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
# List run-time dependencies here. These will be installed by pip when
# your project is installed. For an analysis of "install_requires" vs pip's
# requirements files see:
# https://packaging.python.org/en/latest/requirements.html
install_requires=['pandas', 'xgboost'],
package_data={
'xgbtuner': ['/data/fake_multinomial_data.csv'],
},
)