-
Notifications
You must be signed in to change notification settings - Fork 0
/
509. Fibonacci Number
51 lines (38 loc) · 957 Bytes
/
509. Fibonacci Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
/***************************************************
The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,
F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n, calculate F(n).
Example 1:
Input: n = 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
0 <= n <= 30
Accepted
1.2M
Submissions
1.8M
Acceptance Rate
69.6%
************************************************
class Solution {
public:
int fib(int N) {
if(N < 2)
return N;
int memo[N+1];
memo[0] = 0;
memo[1] = 1;
for(int i=2; i<=N; i++)
memo[i] = memo[i-1] + memo[i-2];
return memo[N];
}};