forked from jduffield65/iss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImRegFft2.m
172 lines (145 loc) · 5.09 KB
/
ImRegFft2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
function [shift, cc, fa1, fa2] = ImRegFft2(Im1, Im2, CorrThresh, MinSize)
% [shift, cc, f1, ft2] = ImRegFft2(Im1, Im2, CorrThresh)
%
% do image registration via fft convolution, finding match as point of
% maximum correlation in the unwhitened images
%
% If Im1 and Im2 both come from the same global image, shift
% is the position of Im2's origin - Im1's origin.
%
% Equivalently, shift the vector such that Im2(x-shift) = Im1(x)
% and Im2(x) = Im1(x+shift) [approximately]
%
% No match if correl<CorrThresh, returns [nan nan].
%
% Correlation returned as cc. NOTE if you pass a 2-element
% vector to CorrThresh, the second entry is an extra-stringent threshold it
% uses for offsets of exactly [0 0], which is often obtained spuriously in
% microscope images. Default is [.2 .6]
%
% MinSize is a number of pixels you need to have matching before it can
% give you a good score (used to regularize the correlation)
%
% If instead of a matrix you pass a 2-element cell array for Im1 or Im2,
% this contains the fft and energy arrays, to save time. These are
% optionally returned as fa1 and fa2.
%
% Kenneth D. Harris, 9/8/17
% GPL 3.0 https://www.gnu.org/licenses/gpl-3.0.en.html
% not tapering images yet but could
Graphics = 2;
if nargin<3; CorrThresh = [.2 .6]; end
if length(CorrThresh)<2; CorrThresh = CorrThresh*[1, 1]; end
if nargin<4
MinSize = 100;
end
nTries = 13; % how many local maxima to try for CorrThresh before giving up
if iscell(Im1)
sz = size(Im1{1}, 1)/2;% /2 because it was zero-padded
else
sz = size(Im1,1);
end
%%
if ~iscell(Im1)
% convert to double because matlab has all sorts of problems with integer data types
Im1d = double(Im1);
% create arrays of z-scored original images
Im1z = (Im1d - mean(Im1d(:)))/std(Im1d(:));
% zero pad them
Im1zp = zeros(sz*2);
Im1zp(1:sz,1:sz) = Im1z;
% Fourier
f1 = fft2(Im1zp);
% compute total energy in sub-images of different sizes
% first make indefinite integrals of energy, starting with a zero:
Cum1 = zeros(sz+1,sz+1);
Cum1(2:sz+1,2:sz+1) = cumsum(cumsum(Im1z.^2,1),2);
% next find box edges (inclusive), as a function of dy and dx. 0 or sz+1 means
% no overlap
Box1Top = [1:sz, ones(1,sz)]';
Box1Bot = [sz*ones(1,sz) , 0:(sz-1)]';
Box1Left = [1:sz, ones(1,sz)];
Box1Right = [sz*ones(1,sz) , (0:sz-1)];
% finally, doing the 2d definite integral means a difference of a difference
Energy1 = Cum1(Box1Top,Box1Left) + Cum1(Box1Bot+1,Box1Right+1)...
- Cum1(Box1Top,Box1Right+1) - Cum1(Box1Bot+1,Box1Left);
else
f1 = Im1{1};
Energy1 = Im1{2};
end
% now for image 2 - note box computation is different.
if ~iscell(Im2)
Im2d = double(Im2);
Im2z = (Im2d - mean(Im2d(:)))/std(Im2d(:));
Im2zp = zeros(sz*2);
Im2zp(1:sz,1:sz) = Im2z;
f2 = fft2(Im2zp);
Cum2 = zeros(sz+1,sz+1);
Cum2(2:sz+1,2:sz+1) = cumsum(cumsum(Im2z.^2,1),2);
Box2Top = [ones(1,sz), (sz+1):-1:2]';
Box2Bot = [sz:-1:1, sz*ones(1,sz)]';
Box2Left = [ones(1,sz), (sz+1):-1:2];
Box2Right = [sz:-1:1, sz*ones(1,sz)];
Energy2 = Cum2(Box2Bot+1,Box2Right+1) + Cum2(Box2Top,Box2Left) ...
- Cum2(Box2Top,Box2Right+1) - Cum2(Box2Bot+1,Box2Left);
else
f2 = Im2{1};
Energy2 = Im2{2};
end
% convolve
Conv = ifft2(f1 .* conj(f2));
% compute correlation for each shift
Correl = (Conv./(MinSize + sqrt(Energy1.*Energy2)));
[cc, MaxShift] = max(Correl(:));
% if found zero shift, did you pass the stringent threshold?
if MaxShift==1
if cc>=CorrThresh(2)
[dy0, dx0] = ind2sub(size(Conv), MaxShift);
shift = mod([dy0, dx0] +sz, sz*2) - sz - 1;
else
% try second best
[sorted, order] = sort(Correl(:), 'descend');
cc = sorted(2);
MaxShift = order(2);
end
end
if MaxShift~=1 % including if you just avoided the top one
if cc>CorrThresh(1)
[dy0, dx0] = ind2sub(size(Conv), MaxShift);
shift = mod([dy0, dx0] +sz, sz*2) - sz - 1;
else
shift = [NaN, NaN];
end
end
if Graphics == 2
%Plot log of correlation
LogCorrel = zeros(size(Correl));
TileSzY = size(Correl,1)/2;
TileSzX = size(Correl,2)/2;
%Recentre Image so 0 shifts is in the middle
LogCorrel(1:TileSzY,1:TileSzX) = Correl(TileSzY+1:TileSzY*2,TileSzX+1:TileSzX*2);
LogCorrel(1:TileSzY,TileSzX+1:TileSzX*2) = Correl(TileSzY+1:TileSzY*2,1:TileSzX);
LogCorrel(TileSzY+1:TileSzY*2,1:TileSzX) = Correl(1:TileSzY,TileSzX+1:TileSzX*2);
LogCorrel(TileSzY+1:TileSzY*2,TileSzX+1:TileSzX*2) = Correl(1:TileSzY,1:TileSzX);
LogCorrel(LogCorrel<0) = 10^-200;
LogCorrel = log10(LogCorrel);
figure(10532); clf;
imagesc('XData',-TileSzX:TileSzX-1,'YData',-TileSzY:TileSzY-1,'CData',LogCorrel);
xlim([-TileSzX,TileSzX-1]);
ylim([-TileSzY,TileSzY-1]);
xlabel('X');
ylabel('Y');
c = colorbar;
c.Label.String = 'Log(Correlation)';
caxis([-10, max(LogCorrel(LogCorrel>-200))]);
hold on;
scatter(shift(2),shift(1),80,'kx');
hold off;
end
% optional pre-computation outputs:
if nargout>=3
fa1 = {f1; Energy1};
end
if nargout>=4
fa2 = {f2; Energy2};
end