forked from jduffield65/iss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpotDeviationAnalysis.m
183 lines (168 loc) · 6.5 KB
/
SpotDeviationAnalysis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
%% Get Spots to use
Use = o.pxSpotScore>220; %Need good spots but range of spot intensities.
nSpots = sum(Use);
GeneNo = o.pxSpotCodeNo(Use);
SpotColors = double(o.pxSpotColors(Use,:,:));
SpotIntensity = prctile(SpotColors(:,:)',47.5*100/49.0)';
%% Only use Unbled Codes
nCodes = length(o.CharCodes);
LogProbMultiplier = zeros(nCodes,o.nBP,o.nRounds);
for g=1:nCodes
LogProbMultiplier(g,:,:) = reshape(o.UnbledCodes(g,:),[o.nBP,o.nRounds]);
end
UnbledSpotColors = SpotColors.*LogProbMultiplier(GeneNo,:,:);
BledCodes = reshape(o.pBledCodes,[nCodes,o.nBP,o.nRounds]);
UnbledCodes = BledCodes.*LogProbMultiplier(1:nCodes,:,:);
%% Find predicted codes found using OMP and channels un-normalized
PredScale = zeros(nSpots,2);
fprintf('Percentage of spot coefs found: ');
for s=1:nSpots
PredScale(s,1) = omp_specify_atoms(UnbledCodes(GeneNo(s),:)',UnbledSpotColors(s,:)',1);
if mod(s,round(nSpots/100))==0
Percent = sprintf('%.6f', round(s*100/nSpots));
fprintf('\b\b\b\b\b%s%%',Percent(1:4));
end
end
%% Find predicted codes found using OMP and channels normalized
UnbledSpotColors = UnbledSpotColors./o.BledCodesPercentile;
UnbledCodes = UnbledCodes./o.BledCodesPercentile;
fprintf('Percentage of spot coefs found: ');
for s=1:nSpots
PredScale(s,2) = omp_specify_atoms(UnbledCodes(GeneNo(s),:)',UnbledSpotColors(s,:)',1);
if mod(s,round(nSpots/100))==0
Percent = sprintf('%.6f', round(s*100/nSpots));
fprintf('\b\b\b\b\b%s%%',Percent(1:4));
end
end
UnbledCodes = BledCodes.*LogProbMultiplier(1:nCodes,:,:);
UnbledSpotColors = SpotColors.*LogProbMultiplier(GeneNo,:,:);
PredScaleUse = 1; %1 if channels not normalized, 2 if normalized
PredCodes = PredScale(:,PredScaleUse).*UnbledCodes(GeneNo,:,:);
Residual = UnbledSpotColors-PredCodes;
Residual(LogProbMultiplier(GeneNo,:,:)==0)=nan;
%% Illustrate bled code predictions are too weak
figure;
xline(mean(PredScale(:,PredScaleUse)),'Color','red','LineWidth',1);
hold on
histogram(PredScale(:,PredScaleUse),-0.2:0.1:4,'Normalization','probability');
hold off
xlabel('Scale of BledCode');
ylabel('Fraction of Spots');
legend('Mean');
%Now look at perfect scales in each round and channel
PerfectScale = UnbledSpotColors./UnbledCodes(GeneNo,:,:);
boxplot_x = [];
boxplot_g = [];
i=1;
for b=1:o.nBP
for r=1:o.nRounds
IgnoreNan = ~isnan(PerfectScale(:,b,r));
bxplt = PerfectScale(IgnoreNan,b,r);
boxplot_x = [boxplot_x;bxplt];
boxplot_g = [boxplot_g;i*ones(size(bxplt))];
i=i+1;
end
end
Colors = colormap(lines(o.nBP));
Colors = repelem(Colors,length(o.UseRounds),1);
figure;
boxplot(boxplot_x,boxplot_g,'Colors',Colors, 'plotstyle', 'compact');
set(gca,'xtick',(o.nRounds+1)/2:o.nRounds:o.nBP*o.nRounds,'xticklabel',o.bpLabels);
xlabel('Channels');
ylabel('Perfect Scale');
yline(1,'LineWidth',1);
%% Analyse influence of high intensity spots on bleed matrix
BleedMatrixOrig = o.BleedMatrix;
SpotIntensity = prctile(o.dpSpotColors(:,:)',49*100/49.0)';
NormSpotColors = o.dpSpotColors./o.BledCodesPercentile;
%ModSpotColors sets highest value of that spot to 0.
ModSpotColors = NormSpotColors(:,:);
[a,b] = max(ModSpotColors(:,:),[],2);
ModInd = sub2ind(size(ModSpotColors),(1:size(ModSpotColors,1))',b);
ModSpotColors(Ind) = nan;
ModSpotColors = reshape(ModSpotColors,size(ModSpotColors,1),7,7);
%Remove highest intensity value in spots that are likely to be a gene and
%are in the top 10% of intensity values. I.e. see effect on bleed matrix of
%remove large intensity values.
Set = o.dpSpotIsolated&o.dpSpotScore>0.8;
HighIntensityThresh = prctile(SpotIntensity(Set),90);
HighSet = Set & SpotIntensity>HighIntensityThresh;
UseSpotColors = NormSpotColors;
UseSpotColors(HighSet,:,:) = ModSpotColors(HighSet,:,:);
[BleedMatrixHigh,~] = get_bleed_matrix(o,UseSpotColors,o.dpSpotIsolated);
%Remove highest intensity value in spots that are likely to be a gene and
%are in the bottom 10% of intensity values. I.e. see effect on bleed matrix of
%remove small intensity values.
LowIntensityThresh = prctile(SpotIntensity(Set),10);
LowSet = Set & SpotIntensity<LowIntensityThresh;
UseSpotColors = NormSpotColors;
UseSpotColors(LowSet,:,:) = ModSpotColors(LowSet,:,:);
[BleedMatrixLow,~] = get_bleed_matrix(o,UseSpotColors,o.dpSpotIsolated);
figure;
ax1 = subplot(1,2,1);
imagesc(BleedMatrixHigh(:,:,1)-BleedMatrixOrig(:,:,1));
caxis([-0.05,0.05]);
colormap(gca,bluewhitered);
title('BleedMatrix Excluding High Intensities - Original');
ax2 = subplot(1,2,2);
imagesc(BleedMatrixLow(:,:,1)-BleedMatrixOrig(:,:,1));
caxis([-0.05,0.05]);
colormap(gca,bluewhitered);
title('BleedMatrix Excluding Low Intensities - Original');
colorbar;
pBleedMatrixHigh = zeros(o.nBP,o.nBP,o.nRounds);
pBleedMatrixLow = zeros(o.nBP,o.nBP,o.nRounds);
for r=1:o.nRounds
for b=1:o.nBP
pBleedMatrixHigh(b,:,r) = o.BledCodesPercentile(:,b,r)*BleedMatrixHigh(b,:,r);
pBleedMatrixLow(b,:,r) = o.BledCodesPercentile(:,b,r)*BleedMatrixLow(b,:,r);
end
end
BledCodesHigh = change_bled_codes(o,pBleedMatrixHigh);
BledCodesLow = change_bled_codes(o,pBleedMatrixLow);
g=1;
figure;
ax1 = subplot(1,2,1);
imagesc(reshape(BledCodesHigh(g,:)-o.pBledCodes(g,:),7,7));
caxis([-980,41]);
colormap(gca,bluewhitered);
title('BledCode Excluding High Intensities - Original');
ax2 = subplot(1,2,2);
imagesc(reshape(BledCodesLow(g,:)-o.pBledCodes(g,:),7,7));
caxis([-980,41]);
colormap(gca,bluewhitered);
title('BledCode Excluding Low Intensities - Original');
colorbar;
sgtitle(o.GeneNames{g});
%% Analyse range of residuals for each spot.
%Expect small range if each spot is scaled version of bled codes
ResidualRange = range(Residual(:,:),2);
[SortPredScale,Index] = sort(PredScale(:,PredScaleUse));
SortResidualRange = ResidualRange(Index);
AvRange = movmedian(SortResidualRange,1000);
figure; scatter(PredScale(:,PredScaleUse),ResidualRange);
hold on
plot(SortPredScale,AvRange,'LineWidth',5);
hold off
xlabel('Scale of BledCode');
ylabel('Residual Range over 7 unbled rounds/channels');
%%
NormChannelResidual = Residual./o.BledCodesPercentile;
boxplot_x = [];
boxplot_g = [];
i=1;
for b=1:o.nBP
for r=1:o.nRounds
IgnoreNan = ~isnan(Residual(:,b,r));
bxplt = Residual(IgnoreNan,b,r);
boxplot_x = [boxplot_x;bxplt];
boxplot_g = [boxplot_g;i*ones(size(bxplt))];
i=i+1;
end
end
Colors = colormap(lines(o.nBP));
Colors = repelem(Colors,length(o.UseRounds),1);
figure;
boxplot(boxplot_x,boxplot_g,'Colors',Colors, 'plotstyle', 'compact');
set(gca,'xtick',(o.nRounds+1)/2:o.nRounds:o.nBP*o.nRounds,'xticklabel',o.bpLabels);
xlabel('Channels');