forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrl.py
202 lines (171 loc) · 6.94 KB
/
rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""Reinforcement Learning (Chapter 21)
"""
from collections import defaultdict
from utils import argmax
from mdp import MDP, policy_evaluation
import random
class PassiveADPAgent:
"""Passive (non-learning) agent that uses adaptive dynamic programming
on a given MDP and policy. [Figure 21.2]"""
class ModelMDP(MDP):
""" Class for implementing modifed Version of input MDP with
an editable transition model P and a custom function T. """
def __init__(self, init, actlist, terminals, gamma, states):
super().__init__(init, actlist, terminals, gamma)
nested_dict = lambda: defaultdict(nested_dict)
# StackOverflow:whats-the-best-way-to-initialize-a-dict-of-dicts-in-python
self.P = nested_dict()
def T(self, s, a):
"""Returns a list of tuples with probabilities for states
based on the learnt model P. """
return [(prob, res) for (res, prob) in self.P[(s, a)].items()]
def __init__(self, pi, mdp):
self.pi = pi
self.mdp = PassiveADPAgent.ModelMDP(mdp.init, mdp.actlist,
mdp.terminals, mdp.gamma, mdp.states)
self.U = {}
self.Nsa = defaultdict(int)
self.Ns1_sa = defaultdict(int)
self.s = None
self.a = None
def __call__(self, percept):
s1, r1 = percept
self.mdp.states.add(s1) # Model keeps track of visited states.
R, P, mdp, pi = self.mdp.reward, self.mdp.P, self.mdp, self.pi
s, a, Nsa, Ns1_sa, U = self.s, self.a, self.Nsa, self.Ns1_sa, self.U
if s1 not in R: # Reward is only available for visted state.
U[s1] = R[s1] = r1
if s is not None:
Nsa[(s, a)] += 1
Ns1_sa[(s1, s, a)] += 1
# for each t such that Ns′|sa [t, s, a] is nonzero
for t in [res for (res, state, act), freq in Ns1_sa.items()
if (state, act) == (s, a) and freq != 0]:
P[(s, a)][t] = Ns1_sa[(t, s, a)] / Nsa[(s, a)]
U = policy_evaluation(pi, U, mdp)
if s1 in mdp.terminals:
self.s = self.a = None
else:
self.s, self.a = s1, self.pi[s1]
return self.a
def update_state(self, percept):
''' To be overridden in most cases. The default case
assumes th percept to be of type (state, reward)'''
return percept
class PassiveTDAgent:
"""The abstract class for a Passive (non-learning) agent that uses
temporal differences to learn utility estimates. Override update_state
method to convert percept to state and reward. The mdp being provided
should be an instance of a subclass of the MDP Class.[Figure 21.4]
"""
def __init__(self, pi, mdp, alpha=None):
self.pi = pi
self.U = {s: 0. for s in mdp.states}
self.Ns = {s: 0 for s in mdp.states}
self.s = None
self.a = None
self.r = None
self.gamma = mdp.gamma
self.terminals = mdp.terminals
if alpha:
self.alpha = alpha
else:
self.alpha = lambda n: 1./(1+n) # udacity video
def __call__(self, percept):
s1, r1 = self.update_state(percept)
pi, U, Ns, s, a, r = self.pi, self.U, self.Ns, self.s, self.a, self.r
alpha, gamma, terminals = self.alpha, self.gamma, self.terminals
if not Ns[s1]:
U[s1] = r1
if s is not None:
Ns[s] += 1
U[s] += alpha(Ns[s]) * (r + gamma * U[s1] - U[s])
if s1 in terminals:
self.s = self.a = self.r = None
else:
self.s, self.a, self.r = s1, pi[s1], r1
return self.a
def update_state(self, percept):
''' To be overridden in most cases. The default case
assumes th percept to be of type (state, reward)'''
return percept
class QLearningAgent:
""" An exploratory Q-learning agent. It avoids having to learn the transition
model because the Q-value of a state can be related directly to those of
its neighbors. [Figure 21.8]
"""
def __init__(self, mdp, Ne, Rplus, alpha=None):
self.gamma = mdp.gamma
self.terminals = mdp.terminals
self.all_act = mdp.actlist
self.Ne = Ne # iteration limit in exploration function
self.Rplus = Rplus # large value to assign before iteration limit
self.Q = defaultdict(float)
self.Nsa = defaultdict(float)
self.s = None
self.a = None
self.r = None
if alpha:
self.alpha = alpha
else:
self.alpha = lambda n: 1./(1+n) # udacity video
def f(self, u, n):
""" Exploration function. Returns fixed Rplus untill
agent has visited state, action a Ne number of times.
Same as ADP agent in book."""
if n < self.Ne:
return self.Rplus
else:
return u
def actions_in_state(self, state):
""" Returns actions possible in given state.
Useful for max and argmax. """
if state in self.terminals:
return [None]
else:
return self.all_act
def __call__(self, percept):
s1, r1 = self.update_state(percept)
Q, Nsa, s, a, r = self.Q, self.Nsa, self.s, self.a, self.r
alpha, gamma, terminals, actions_in_state = self.alpha, self.gamma, self.terminals, self.actions_in_state
if s1 in terminals:
Q[s1, None] = r1
if s is not None:
Nsa[s, a] += 1
Q[s, a] += alpha(Nsa[s, a]) * (r + gamma * max(Q[s1, a1] for a1 in actions_in_state(s1))
- Q[s, a])
if s1 in terminals:
self.s = self.a = self.r = None
else:
self.s, self.r = s1, r1
self.a = argmax(actions_in_state(s1), key=lambda a1: self.f(Q[s1, a1], Nsa[s1, a1]))
return self.a
def update_state(self, percept):
''' To be overridden in most cases. The default case
assumes the percept to be of type (state, reward)'''
return percept
def run_single_trial(agent_program, mdp):
''' Execute trial for given agent_program
and mdp. mdp should be an instance of subclass
of mdp.MDP '''
def take_single_action(mdp, s, a):
'''
Selects outcome of taking action a
in state s. Weighted Sampling.
'''
x = random.uniform(0, 1)
cumulative_probability = 0.0
for probability_state in mdp.T(s, a):
probability, state = probability_state
cumulative_probability += probability
if x < cumulative_probability:
break
return state
current_state = mdp.init
while True:
current_reward = mdp.R(current_state)
percept = (current_state, current_reward)
next_action = agent_program(percept)
if next_action is None:
break
current_state = take_single_action(mdp, current_state, next_action)