Reference code for ACL20 paper - NILE : Natural Language Inference with Faithful Natural Language Explanations.
The code was written with, or depends on:
- Python 3.6
- Pytorch 1.4.0
-
Create a virtualenv and install dependecies
virtualenv -p python3.6 env source env/bin/activate pip install -r requirements.txt
-
Fetch data and pre-process. This will create add files in
dataset_snli
anddataset_mnli
folders.bash fetch_data.sh python prepare_train_test.py --dataset snli --create_data --filter_repetitions python prepare_train_test.py --dataset mnli --create_data --filter_repetitions
-
Fine-tuning langauge models using e-SNLI, for entailment, contradiction and neutral explanations. 'all' is trained to produce a comparable single-explanation ETPA baseline, and can be skippd in this and subsequent steps if only reproducing NILE.
bash run_finetune_gpt2m.sh 0 entailment 2 bash run_finetune_gpt2m.sh 0 contradiction 2 bash run_finetune_gpt2m.sh 0 neutral 2 bash run_finetune_gpt2m.sh 0 all 2
-
Generate explanations using the fine-tuned langauge models, where can be snli or mnli, and is train/dev/test for SNLI and dev/dev_mm for MNLI.
bash run_generate_gpt2m.sh 0 entailment <dataset> all <split> bash run_generate_gpt2m.sh 0 contradiction <dataset> all <split> bash run_generate_gpt2m.sh 0 neutral <dataset> all <split> bash run_generate_gpt2m.sh 0 all <dataset> all <split>
-
Merge generated explanation
python prepare_train_test.py --dataset <dataset> --merge_data --split <split> --input_prefix gpt2_m_
To merge for the single-explanatoin baseline, run
python prepare_train_test.py --dataset <dataset> --merge_data --split <split> --input_prefix gpt2_m_ --merge_single
-
Train classifiers on the generated explantions, models are saved at
saved_clf
.NILE-PH
bash run_clf.sh 0 <seed> snli independent independent gpt2_m_ train dev _ _ _ bash run_clf.sh 0 <seed> snli aggregate aggregate gpt2_m_ train dev _ _ _ bash run_clf.sh 0 <seed> snli append append gpt2_m_ train dev _ _ _
NILE-NS
bash run_clf.sh 0 <seed> snli instance_independent instance_independent gpt2_m_ train dev _ _ _ bash run_clf.sh 0 <seed> snli instance_aggregate instance_aggregate gpt2_m_ train dev _ _ _ bash run_clf.sh 0 <seed> snli instance_append instance_append gpt2_m_ train dev _ _ _
NILE
bash run_clf.sh 0 <seed> snli instance_independent instance_independent gpt2_m_ train dev sample _ _ bash run_clf.sh 0 <seed> snli instance_aggregate instance_aggregate gpt2_m_ train dev sample _ _
NILE post-hoc
bash run_clf.sh 0 <seed> snli instance instance gpt2_m_ train dev sample _ _
Single-explanation baseline
bash run_clf.sh 0 <seed> snli Explanation_1 Explanation_1 gpt2_m_ train dev sample _ _
-
Evaluate a trained classifier for label accuracy, <model_path> is the path of a model saved in the previous step, and can be independent, aggregate, append, instance_independent, instance_aggregate, and instance for NILE variants, and all_explanation for the single-explanation baseline
bash run_clf.sh 0 <seed> snli <model> <model> gpt2_m_ _ test _ _ <model_path>
Generated explanations on the e-SNLI dev and test sets are present at ./generated_explanations/*.gz
. Please unzip before using (gunzip <filename>
).
The generated explanations are present in the entailment_explanation,contradiction_explanation,neutral_explanation
columns in a csv format.
We are sharing pre-trained label-specific generators. We are also sharing pre-trained classifiers for NILE-PH Append and NILE Independent architectures.
If you use this code, please consider citing:
[1] Sawan Kumar and Partha Talukdar. 2020. NILE : Natural language inference with faithful natural language explanations. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8730–8742, Online. Association for Computational Linguistics. [bibtex]
For any clarification, comments, or suggestions please create an issue or contact sawankumar@iisc.ac.in