-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
152 lines (118 loc) · 3.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# SeoenerVorteX ~ 07/21/2022 ~ Charlie AI Assistant
import os
import sys
import time
import json
import nltk
import pyowm
import numpy
import random
import pickle
import tflearn
import oauthlib
import wikipedia
import webbrowser
import tensorflow
import win32gui
import win32con
# the_program_to_hide = win32gui.GetForegroundWindow()
# win32gui.ShowWindow(the_program_to_hide , win32con.SW_HIDE)
from charlie import *
from functions import *
from newsapi import NewsApiClient
from nltk.stem.lancaster import LancasterStemmer
stemmer = LancasterStemmer()
sys.excepthook = sys.__excepthook__
charlie = Charlie()
charlie.set_voice_settings()
data = load_json("helpers/intents.json")
try:
with open("datas/data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if intent["tag"] not in labels:
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words if w != "?"]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w) for w in doc]
for w in words:
if w in wrds:
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = numpy.array(training)
output = numpy.array(output)
with open("datas/data.pickle", "wb") as f:
pickle.dump((words, labels, training, output), f)
tensorflow.compat.v1.reset_default_graph()
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
if file_exist("datas/model.tflearn.index"):
model.load("datas/model.tflearn")
else:
model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=False)
model.save("datas/model.tflearn")
def main():
os.system('cls')
run = True
sleep = False
exception = False
charlie.on_start()
while run:
exception_count = charlie.get_audio_exception_count
if exception_count >= 5:
if sleep == False:
sleep = True
charlie.sleep()
text = charlie.get_audio(log=False).lower()
if text == "":
continue
tag = classify(text, model, words, labels)
if tag == "Callings":
charlie.call()
exception = False
sleep = False
else:
continue
else:
text = charlie.get_audio(log=not(exception)).lower()
if text == "":
exception = True
continue
else:
exception = False
tag = classify(text, model, words, labels)
charlie.get_audio_exception_count = 0
if tag == None:
charlie.did_not_undestand()
continue
charlie.speak(response(tag))
intent = array_find(data["intents"], "tag", tag)
if intent and len(intent["command"]):
intent = None
charlie.on_command(tag)
main()