Unofficial Pytorch Implementation Of AdversarialAutoAugment(ICLR2020)
I want some help from those who know how to solve these issues.
-
Can not reproduce paper's results
-
Adversarial Collapsing : See /Examples/Analysis.ipynb
# Training with DistributedDataParallel
$ python -m torch.distributed.launch --nproc_per_node ${NUM_GPUS} main.py \
--load_conf ${conf_dir} \
--logdir './logs' \
--M 8 \
--seed 0 \
-- amp \
>> output.log
# Training with DataParallel
$ python main.py \
--load_conf ${conf_dir} \
--logdir './logs' \
--M 8 \
--seed 0 \
-- amp \
>> output.log
# Evaluate
$ python evaluate.py \
--load_conf ${conf_dir} \
--logdir './logs' \
--seed 0
Model(CIFAR-10) | Paper (direct/transfer) |
Ours | |
---|---|---|---|
Wide-ResNet-28-10 | 1.90±0.15 / 2.45±0.13 | 2.35 / - | Download |
Shake-Shake(26 2x32d) | 2.36±0.10 / - | 2.51 / - | Download |
Shake-Shake(26 2x96d) | 1.85±0.12 / - | 2.43 / - | Download |
Shake-Shake(26 2x112d) | 1.78±0.05 / - | - | Download |
PyramidNet+ShakeDrop | 1.36±0.06 / - | - | Download |
Model(CIFAR-100) | Paper (direct/transfer) |
Ours | |
---|---|---|---|
Wide-ResNet-28-10 | 15.49±0.18 / 16.48±0.15 | - | Download |
Shake-Shake(26 2x96d) | 14.10±0.15 / - | - | Download |
PyramidNet+ShakeDrop | 10.42±0.20 / - | - | Download |
Model(ImageNet) | Paper (top1/top5/ transfer_top1) |
Ours | |
---|---|---|---|
Resnet50 | 20.60±0.15 / 5.53±0.05 / - | - | Download |
Resnet50D | 20.00±0.12 / 5.25±0.03 / 20.20±0.05 | - | Download |
Resnet200 | 18.68±0.18 / 4.70±0.05 / 19.05±0.10 | - | Download |
Model(CIFAR-10-C) | Augmix w/ JSD | Adv AA | |
---|---|---|---|
Wide-Resnet-40-2 | 11.2 | - | Download |
Wide-Resnet-28-10 | - | 10.41 | Download |
Shake-Shake(26 2x32d) | - | 16.69 | Download |
- I did not include SamplePairing -> NUM_OPS = 15 (16 in the paper)
- Borrow unknown hyperparameter settings from fast-autoaugment