-
Notifications
You must be signed in to change notification settings - Fork 3
/
DETSP.m
109 lines (89 loc) · 2.13 KB
/
DETSP.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
clc;
clear;
close all;
%% Problem
x=[13 25 91 86 66 87 50 22 19 3 67 86 52 5 21 65 14 88 70 40];
y=[19 28 37 100 10 32 56 97 47 27 43 39 89 5 79 56 1 21 18 20];
model=MakeModel(x,y);
tic
CostFunction=@(s) CostF(s,model); % Cost Function
nVar=model.n; % Number of Decision Variables
VarSize=[1 nVar]; % Decision Variables Matrix Size
VarMin=0; % Lower Bound of Variables
VarMax=1; % Upper Bound of Variables
%% DE Parameters
MaxIt = 500; % Maximum Number of Iterations
nPop = 50; % Population Size
beta_min = 0.2; % Lower Bound of Scaling Factor
beta_max = 0.8; % Upper Bound of Scaling Factor
pCR = 0.2; % Crossover Probability
%% Start
empty_individual.Position = [];
empty_individual.Cost = [];
empty_individual.Sol = [];
BestSol.Cost = inf;
pop = repmat(empty_individual, nPop, 1);
for i = 1:nPop
pop(i).Position = unifrnd(VarMin, VarMax, VarSize);
[pop(i).Cost pop(i).Sol] = CostFunction(pop(i).Position);
if pop(i).Cost<BestSol.Cost
BestSol = pop(i);
end
end
BestCost = zeros(MaxIt, 1);
%% DE Body
for it = 1:MaxIt
for i = 1:nPop
x = pop(i).Position;
A = randperm(nPop);
A(A == i) = [];
a = A(1);
b = A(2);
c = A(3);
% Mutation
%beta = unifrnd(beta_min, beta_max);
beta = unifrnd(beta_min, beta_max, VarSize);
y = pop(a).Position+beta.*(pop(b).Position-pop(c).Position);
y = max(y, VarMin);
y = min(y, VarMax);
% Crossover
z = zeros(size(x));
j0 = randi([1 numel(x)]);
for j = 1:numel(x)
if j == j0 || rand <= pCR
z(j) = y(j);
else
z(j) = x(j);
end
end
NewSol.Position = z;
[NewSol.Cost NewSol.Sol]= CostFunction(NewSol.Position);
if NewSol.Cost<pop(i).Cost
pop(i) = NewSol;
if pop(i).Cost<BestSol.Cost
BestSol = pop(i);
end
end
end
% Update Best Cost
BestCost(it) = BestSol.Cost;
% Show Iteration Information
disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it))]);
% Plot Res
figure(1);
Plotfig(BestSol.Sol.tour,model);
end
toc
time=toc
%% ITR
% figure;
% Plotfig(BestSol.Sol.tour,model);
figure;
plot(BestCost,'k', 'LineWidth', 2);
xlabel('ITR');
ylabel('Cost Value');
ax = gca;
ax.FontSize = 14;
ax.FontWeight='bold';
set(gca,'Color','c')
grid on;