-
Notifications
You must be signed in to change notification settings - Fork 0
/
error_ellipse_adv.m
278 lines (242 loc) · 8 KB
/
error_ellipse_adv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
function h=error_ellipse_adv(varargin)
% ERROR_ELLIPSE - plot an error ellipse, or ellipsoid, defining confidence region
% ERROR_ELLIPSE(C22) - Given a 2x2 covariance matrix, plot the
% associated error ellipse, at the origin. It returns a graphics handle
% of the ellipse that was drawn.
%
% ERROR_ELLIPSE(C33) - Given a 3x3 covariance matrix, plot the
% associated error ellipsoid, at the origin, as well as its projections
% onto the three axes. Returns a vector of 4 graphics handles, for the
% three ellipses (in the X-Y, Y-Z, and Z-X planes, respectively) and for
% the ellipsoid.
%
% ERROR_ELLIPSE(C,MU) - Plot the ellipse, or ellipsoid, centered at MU,
% a vector whose length should match that of C (which is 2x2 or 3x3).
%
% ERROR_ELLIPSE(...,'Property1',Value1,'Name2',Value2,...) sets the
% values of specified properties, including:
% 'C' - Alternate method of specifying the covariance matrix
% 'mu' - Alternate method of specifying the ellipse (-oid) center
% 'conf' - A value betwen 0 and 1 specifying the confidence interval.
% the default is 0.5 which is the 50% error ellipse.
% 'scale' - Allow the plot the be scaled to difference units.
% 'style' - A plotting style used to format ellipses.
% 'clip' - specifies a clipping radius. Portions of the ellipse, -oid,
% outside the radius will not be shown.
%
% NOTES: C must be positive definite for this function to work properly.
default_properties = struct(...
'C', [], ... % The covaraince matrix (required)
'mu', [], ... % Center of ellipse (optional)
'conf', 0.5, ... % Percent confidence/100
'scale', 1, ... % Scale factor, e.g. 1e-3 to plot m as km
'style', '', ... % Plot style
'clip', inf); % Clipping radius
if length(varargin) >= 1 & isnumeric(varargin{1})
default_properties.C = varargin{1};
varargin(1) = [];
end
if length(varargin) >= 1 & isnumeric(varargin{1})
default_properties.mu = varargin{1};
varargin(1) = [];
end
if length(varargin) >= 1 & isnumeric(varargin{1})
default_properties.conf = varargin{1};
varargin(1) = [];
end
if length(varargin) >= 1 & isnumeric(varargin{1})
default_properties.scale = varargin{1};
varargin(1) = [];
end
if length(varargin) >= 1 & ~ischar(varargin{1})
error('Invalid parameter/value pair arguments.')
end
prop = getopt(default_properties, varargin{:});
C = prop.C;
if isempty(prop.mu)
mu = zeros(length(C),1);
else
mu = prop.mu;
end
conf = prop.conf;
scale = prop.scale;
style = prop.style;
if conf <= 0 | conf >= 1
error('conf parameter must be in range 0 to 1, exclusive')
end
[r,c] = size(C);
if r ~= c | (r ~= 2 & r ~= 3)
error(['Don''t know what to do with ',num2str(r),'x',num2str(c),' matrix'])
end
x0=mu(1);
y0=mu(2);
% Compute quantile for the desired percentile
k = sqrt(qchisq(conf,r)); % r is the number of dimensions (degrees of freedom)
hold_state = get(gca,'nextplot');
if r==3 & c==3
z0=mu(3);
% Make the matrix has positive eigenvalues - else it's not a valid covariance matrix!
if any(eig(C) <=0)
error('The covariance matrix must be positive definite (it has non-positive eigenvalues)')
end
% C is 3x3; extract the 2x2 matricies, and plot the associated error
% ellipses. They are drawn in space, around the ellipsoid; it may be
% preferable to draw them on the axes.
Cxy = C(1:2,1:2);
Cyz = C(2:3,2:3);
Czx = C([3 1],[3 1]);
[x,y,z] = getpoints(Cxy,prop.clip);
h1=plot3(x0+k*x,y0+k*y,z0+k*z,'color',prop.style);hold on
[y,z,x] = getpoints(Cyz,prop.clip);
h2=plot3(x0+k*x,y0+k*y,z0+k*z,'color',prop.style);hold on
[z,x,y] = getpoints(Czx,prop.clip);
h3=plot3(x0+k*x,y0+k*y,z0+k*z,'color',prop.style);hold on
[eigvec,eigval] = eig(C);
[X,Y,Z] = ellipsoid(0,0,0,1,1,1);
XYZ = [X(:),Y(:),Z(:)]*sqrt(eigval)*eigvec';
X(:) = scale*(k*XYZ(:,1)+x0);
Y(:) = scale*(k*XYZ(:,2)+y0);
Z(:) = scale*(k*XYZ(:,3)+z0);
h4=surf(X,Y,Z);
colormap gray
alpha(0.3)
camlight
if nargout
h=[h1 h2 h3 h4];
end
elseif r==2 & c==2
% Make the matrix has positive eigenvalues - else it's not a valid covariance matrix!
if any(eig(C) <=0)
error('The covariance matrix must be positive definite (it has non-positive eigenvalues)')
end
[x,y,z] = getpoints(C,prop.clip);
plot(scale*(x0+k*x),scale*(y0+k*y),'color',style, 'LineWidth', 5); hold on
% h1=plot(scale*(x0+k*x),scale*(y0+k*y),prop.style); hold on
% set(h1,'zdata',z+1)
% if nargout
% h=h1;
% end
else
error('C (covaraince matrix) must be specified as a 2x2 or 3x3 matrix)')
end
%axis equal
% set(gca,'nextplot',hold_state);
%---------------------------------------------------------------
% getpoints - Generate x and y points that define an ellipse, given a 2x2
% covariance matrix, C. z, if requested, is all zeros with same shape as
% x and y.
function [x,y,z] = getpoints(C,clipping_radius)
n=100; % Number of points around ellipse
p=0:pi/n:2*pi; % angles around a circle
[eigvec,eigval] = eig(C); % Compute eigen-stuff
xy = [cos(p'),sin(p')] * sqrt(eigval) * eigvec'; % Transformation
x = xy(:,1);
y = xy(:,2);
z = zeros(size(x));
% Clip data to a bounding radius
if nargin >= 2
r = sqrt(sum(xy.^2,2)); % Euclidian distance (distance from center)
x(r > clipping_radius) = nan;
y(r > clipping_radius) = nan;
z(r > clipping_radius) = nan;
end
%---------------------------------------------------------------
function x=qchisq(P,n)
% QCHISQ(P,N) - quantile of the chi-square distribution.
if nargin<2
n=1;
end
s0 = P==0;
s1 = P==1;
s = P>0 & P<1;
x = 0.5*ones(size(P));
x(s0) = -inf;
x(s1) = inf;
x(~(s0|s1|s))=nan;
for ii=1:14
dx = -(pchisq(x(s),n)-P(s))./dchisq(x(s),n);
x(s) = x(s)+dx;
if all(abs(dx) < 1e-6)
break;
end
end
%---------------------------------------------------------------
function F=pchisq(x,n)
% PCHISQ(X,N) - Probability function of the chi-square distribution.
if nargin<2
n=1;
end
F=zeros(size(x));
if rem(n,2) == 0
s = x>0;
k = 0;
for jj = 0:n/2-1;
k = k + (x(s)/2).^jj/factorial(jj);
end
F(s) = 1-exp(-x(s)/2).*k;
else
for ii=1:numel(x)
if x(ii) > 0
F(ii) = quadl(@dchisq,0,x(ii),1e-6,0,n);
else
F(ii) = 0;
end
end
end
%---------------------------------------------------------------
function f=dchisq(x,n)
% DCHISQ(X,N) - Density function of the chi-square distribution.
if nargin<2
n=1;
end
f=zeros(size(x));
s = x>=0;
f(s) = x(s).^(n/2-1).*exp(-x(s)/2)./(2^(n/2)*gamma(n/2));
%---------------------------------------------------------------
function properties = getopt(properties,varargin)
%GETOPT - Process paired optional arguments as 'prop1',val1,'prop2',val2,...
%
% getopt(properties,varargin) returns a modified properties structure,
% given an initial properties structure, and a list of paired arguments.
% Each argumnet pair should be of the form property_name,val where
% property_name is the name of one of the field in properties, and val is
% the value to be assigned to that structure field.
%
% No validation of the values is performed.
%
% EXAMPLE:
% properties = struct('zoom',1.0,'aspect',1.0,'gamma',1.0,'file',[],'bg',[]);
% properties = getopt(properties,'aspect',0.76,'file','mydata.dat')
% would return:
% properties =
% zoom: 1
% aspect: 0.7600
% gamma: 1
% file: 'mydata.dat'
% bg: []
%
% Typical usage in a function:
% properties = getopt(properties,varargin{:})
% Process the properties (optional input arguments)
prop_names = fieldnames(properties);
TargetField = [];
for ii=1:length(varargin)
arg = varargin{ii};
if isempty(TargetField)
if ~ischar(arg)
error('Propery names must be character strings');
end
f = find(strcmp(prop_names, arg));
if length(f) == 0
error('%s ',['invalid property ''',arg,'''; must be one of:'],prop_names{:});
end
TargetField = arg;
else
% properties.(TargetField) = arg; % Ver 6.5 and later only
properties = setfield(properties, TargetField, arg); % Ver 6.1 friendly
TargetField = '';
end
end
if ~isempty(TargetField)
error('Property names and values must be specified in pairs.');
end