forked from rwightman/posenet-python
-
Notifications
You must be signed in to change notification settings - Fork 1
/
webcam_demo_circles2.py
129 lines (105 loc) · 5.17 KB
/
webcam_demo_circles2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import tensorflow as tf
import numpy as np
import cv2
import time
import argparse
import math
import random
import pickle
import posenet
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=int, default=101)
parser.add_argument('--cam_id', type=int, default=0)
parser.add_argument('--cam_width', type=int, default=1280)
parser.add_argument('--cam_height', type=int, default=720)
parser.add_argument('--scale_factor', type=float, default=0.2)
parser.add_argument('--file', type=str, default=None, help="Optionally use a video file instead of a live camera")
args = parser.parse_args()
def main():
with tf.Session() as sess:
model_cfg, model_outputs = posenet.load_model(args.model, sess)
output_stride = model_cfg['output_stride']
if args.file is not None:
cap = cv2.VideoCapture(args.file)
else:
cap = cv2.VideoCapture(args.cam_id)
cap.set(3, args.cam_width)
cap.set(4, args.cam_height)
start = time.time()
frame_count = 0
with open("listt.txt", "rb") as fp:
b = pickle.load(fp)
circles = []
while True:
input_image, display_image, output_scale = posenet.read_cap(
cap, scale_factor=args.scale_factor, output_stride=output_stride)
heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = sess.run(
model_outputs,
feed_dict={'image:0': input_image}
)
pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multi.decode_multiple_poses(
heatmaps_result.squeeze(axis=0),
offsets_result.squeeze(axis=0),
displacement_fwd_result.squeeze(axis=0),
displacement_bwd_result.squeeze(axis=0),
output_stride=output_stride,
max_pose_detections=1,
min_pose_score=0.25)
keypoint_coords *= output_scale
if pose_scores[0] == 0:
continue
# TODO this isn't particularly fast, use GL for drawing and display someday...
overlay_image = posenet.draw_skel_and_kp(
display_image, [pose_scores], keypoint_scores, keypoint_coords,
min_pose_score=0.25, min_part_score=0.25)
k = keypoint_coords[0][-10:]
k = k.astype(int)
d = [math.sqrt((k[i][0]-b[i][0])**2 + (k[i][1]-b[i][1])**2) for i in range(-6,0)]
if len(circles)>0:
#cv2.putText(overlay_image, 'pose matches!!', (20,55), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,0), 2, cv2.LINE_AA)
text = "pose matches!!"
for c in circles:
overlay_image = cv2.circle(overlay_image, (c[0],c[1]), 80, (0,150,255), thickness =10)
elif sum(d)/len(d) < 30:
#cv2.putText(overlay_image, 'pose matches!!', (20,55), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,0), 2, cv2.LINE_AA)
text = "pose matches!!"
circles = [((b[-2,1]+b[-1,1])//2,min(b[-2,0],b[-1,0])),
(b[-4,1]+200,b[-4,0]),
(b[-3,1]-200,b[-3,0])]
else:
for point in b[-6:]:
overlay_image = cv2.circle(overlay_image, (point[1],point[0]), 10, (0,150,255), thickness =-1)
text = "Move Back"
#cv2.putText(overlay_image, "move back", (20,55), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,0), 2, cv2.LINE_AA)
overlay_image = cv2.flip(overlay_image,1)
cv2.putText(overlay_image, text, (20,55), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,0), 2, cv2.LINE_AA)
# if dl<160 or dr<160:
# circles[1:] = [((k[-2,1]+k[-1,1])//2,min(k[-2,0],k[-1,0])),
# (k[-4,1]+150,k[-4,0]),
# (k[-3,1]-150,k[-3,0])]
# with open("listt.txt", "wb") as fp:
# pickle.dump(k, fp)
# for point in k:
# temp = cv2.circle(display_image, (point[1],point[0]), 10, (0,150,255), thickness =2)
# cv2.imwrite('chala.jpg',temp)
# for c in circles:
# if c == circles[0]:
# overlay_image = cv2.circle(overlay_image, (c[0],c[1]), 50, (0,0,0), thickness =10)
# elif c!= None:
# overlay_image = cv2.circle(overlay_image, (c[0],c[1]), 80, (0,150,255), thickness =10)
# for c in circles:
# dl = math.sqrt((c[0]-xl)**2 + (c[1]-yl)**2)
# dr = math.sqrt((c[0]-xr)**2 + (c[1]-yr)**2)
# if dl<160:
# overlay_image = cv2.circle(overlay_image, (c[0],c[1]), 90, (150,150,0), thickness =10)
# elif dr<160:
# overlay_image = cv2.circle(overlay_image, (c[0],c[1]), 90, (0,150,255), thickness =10)
# else:
# overlay_image = cv2.circle(overlay_image, (c[0],c[1]), 90, (0,0,0), thickness =10)
cv2.imshow('posenet', overlay_image)
frame_count += 1
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print('Average FPS: ', frame_count / (time.time() - start))
if __name__ == "__main__":
main()