-
Notifications
You must be signed in to change notification settings - Fork 2
/
face_detector.py
94 lines (79 loc) · 2.52 KB
/
face_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 29 17:52:00 2020
@author: hp
"""
import cv2
import numpy as np
def get_face_detector(modelFile=None,
configFile=None,
quantized=False):
"""
Get the face detection caffe model of OpenCV's DNN module
Parameters
----------
modelFile : string, optional
Path to model file. The default is "models/res10_300x300_ssd_iter_140000.caffemodel" or models/opencv_face_detector_uint8.pb" based on quantization.
configFile : string, optional
Path to config file. The default is "models/deploy.prototxt" or "models/opencv_face_detector.pbtxt" based on quantization.
quantization: bool, optional
Determines whether to use quantized tf model or unquantized caffe model. The default is False.
Returns
-------
model : dnn_Net
"""
if quantized:
if modelFile == None:
modelFile = "models/opencv_face_detector_uint8.pb"
if configFile == None:
configFile = "models/opencv_face_detector.pbtxt"
model = cv2.dnn.readNetFromTensorflow(modelFile, configFile)
else:
if modelFile == None:
modelFile = "models/res10_300x300_ssd_iter_140000.caffemodel"
if configFile == None:
configFile = "models/deploy.prototxt"
model = cv2.dnn.readNetFromCaffe(configFile, modelFile)
return model
def find_faces(img, model):
"""
Find the faces in an image
Parameters
----------
img : np.uint8
Image to find faces from
model : dnn_Net
Face detection model
Returns
-------
faces : list
List of coordinates of the faces detected in the image
"""
h, w = img.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(img, (300, 300)), 1.0,
(300, 300), (104.0, 177.0, 123.0))
model.setInput(blob)
res = model.forward()
faces = []
for i in range(res.shape[2]):
confidence = res[0, 0, i, 2]
if confidence > 0.5:
box = res[0, 0, i, 3:7] * np.array([w, h, w, h])
(x, y, x1, y1) = box.astype("int")
faces.append([x, y, x1, y1])
return faces
def draw_faces(img, faces):
"""
Draw faces on image
Parameters
----------
img : np.uint8
Image to draw faces on
faces : List of face coordinates
Coordinates of faces to draw
Returns
-------
None.
"""
for x, y, x1, y1 in faces:
cv2.rectangle(img, (x, y), (x1, y1), (0, 0, 255), 3)