-
Notifications
You must be signed in to change notification settings - Fork 40
/
utils.py
148 lines (117 loc) · 4.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import logging
import os
import random
import time
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, label, topk=(1,)):
maxk = max(topk)
batch_size = label.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(label.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save_checkpoint(state, iters, tag=''):
if not os.path.exists("./snapshots"):
os.makedirs("./snapshots")
filename = os.path.join("./snapshots/{}_ckpt_{:04}.pth.tar".format(tag, iters))
torch.save(state, filename)
class Cutout(object):
def __init__(self, length):
self.length = length
def __call__(self, img):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def data_transforms(args):
if args.dataset == 'cifar10':
MEAN = [0.49139968, 0.48215827, 0.44653124]
STD = [0.24703233, 0.24348505, 0.26158768]
elif args.dataset == 'imagenet':
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
if args.resize or args.dataset == 'imagenet': # cifar10 resize or imagenet
train_transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
# transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
valid_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
else: # cifar10
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
# transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2),
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(MEAN, STD)
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length))
return train_transform, valid_transform
def random_choice(num_choice, layers):
return list(np.random.randint(num_choice, size=layers))
def plot_hist(acc_list, min=0, max=101, interval=5, name='search'):
plt.hist(acc_list, bins=max - min, range=(min, max), histtype='bar')
plt.xticks(np.arange(min, max, interval))
img_path = name + '.png'
plt.savefig(img_path)
plt.show()
def set_seed(seed):
"""
Fix all seeds
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
cudnn.enabled = True
cudnn.benchmark = False
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def time_record(start):
end = time.time()
duration = end - start
hour = duration // 3600
minute = (duration - hour * 3600) // 60
second = duration - hour * 3600 - minute * 60
logging.info('Elapsed time: %dh %dmin %ds' % (hour, minute, second))