diff --git a/README.md b/README.md index 667eba7..107864a 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ -# pyLandau [![Build Status](https://travis-ci.org/SiLab-Bonn/pyLandau.svg?branch=master)](https://travis-ci.org/SiLab-Bonn/pyLandau) [![Build Status](https://ci.appveyor.com/api/projects/status/github/SiLab-Bonn/pyLandau)](https://ci.appveyor.com/project/DavidLP/pyLandau) +# pylandau [![Build Status](https://travis-ci.org/SiLab-Bonn/pyLandau.svg?branch=master)](https://travis-ci.org/SiLab-Bonn/pyLandau) [![Build Status](https://ci.appveyor.com/api/projects/status/github/SiLab-Bonn/pyLandau)](https://ci.appveyor.com/project/DavidLP/pyLandau) A simple [Landau](http://en.wikipedia.org/wiki/Landau_distribution) definition to be used in Python, since no common package (Scipy, Numpy, ...) provides this. Also a fast Landau + Gauss convolution is offered, that is usefull for fitting energy losses of charged particles in matter. The Landau is approximated according to [Computer Phys. Comm. 31 (1984) 97-111](http://dx.doi.org/10.1016/0010-4655(84)90085-7) and the implementation is from [CERN ROOT Mathlibs] (https://project-mathlibs.web.cern.ch/project-mathlibs/sw/html/PdfFuncMathCore_8cxx_source.html). # Installation @@ -15,7 +15,7 @@ python setup.py develop import numpy as np -import pyLandau +import pylandau x = np.arange(0, 100, 0.01)