-
Notifications
You must be signed in to change notification settings - Fork 4
/
Bibliography.bib
executable file
·622 lines (543 loc) · 18 KB
/
Bibliography.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
% Encoding: windows-1252
% ==================================
% Survey
% ==================================
@article{howard1972risk,
title={Risk-sensitive Markov decision processes},
author={Howard, Ronald A and Matheson, James E},
journal={Management science},
volume={18},
number={7},
pages={356--369},
year={1972},
publisher={INFORMS}
}
@article{sobel1982variance,
title={The variance of discounted Markov decision processes},
author={Sobel, Matthew J},
journal={Journal of Applied Probability},
volume={19},
number={4},
pages={794--802},
year={1982},
publisher={Cambridge University Press}
}
@inproceedings{borkar2010risk,
title={Risk-constrained Markov decision processes},
author={Borkar, Vivek and Jain, Rahul},
booktitle={Decision and Control (CDC), 2010 49th IEEE Conference on},
pages={2664--2669},
year={2010},
organization={IEEE}
}
@article{tamar2017sequential,
title={Sequential decision making with coherent risk},
author={Tamar, Aviv and Chow, Yinlam and Ghavamzadeh, Mohammad and Mannor, Shie},
journal={IEEE Transactions on Automatic Control},
volume={62},
number={7},
pages={3323--3338},
year={2017},
publisher={IEEE}
}
@inproceedings{prashanth2014policy,
title={Policy gradients for CVaR-constrained MDPs},
author={Prashanth, LA},
booktitle={International Conference on Algorithmic Learning Theory},
pages={155--169},
year={2014},
organization={Springer}
}
@article{miller2017optimal,
title={Optimal control of conditional value-at-risk in continuous time},
author={Miller, Christopher W and Yang, Insoon},
journal={SIAM Journal on Control and Optimization},
volume={55},
number={2},
pages={856--884},
year={2017},
publisher={SIAM}
}
@article{coraluppi1998optimal,
title={Optimal control of Markov decision processes for performance and robustness.},
author={Coraluppi, Stefano Paulo},
year={1998}
}
% ==================================
% Distributional RL
% ==================================
@article{bellemare2017distributional,
title={A distributional perspective on reinforcement learning},
author={Bellemare, Marc G and Dabney, Will and Munos, R{\'e}mi},
journal={arXiv preprint arXiv:1707.06887},
year={2017}
}
@article{dabney2017distributional,
title={Distributional Reinforcement Learning with Quantile Regression},
author={Dabney, Will and Rowland, Mark and Bellemare, Marc G and Munos, R{\'e}mi},
journal={arXiv preprint arXiv:1710.10044},
year={2017}
}
@article{morimura2012parametric,
title={Parametric return density estimation for reinforcement learning},
author={Morimura, Tetsuro and Sugiyama, Masashi and Kashima, Hisashi and Hachiya, Hirotaka and Tanaka, Toshiyuki},
journal={arXiv preprint arXiv:1203.3497},
year={2012}
}
@inproceedings{morimura2010nonparametric,
title={Nonparametric return distribution approximation for reinforcement learning},
author={Morimura, Tetsuro and Sugiyama, Masashi and Kashima, Hisashi and Hachiya, Hirotaka and Tanaka, Toshiyuki},
booktitle={Proceedings of the 27th International Conference on Machine Learning (ICML-10)},
pages={799--806},
year={2010}
}
% ==================================
% RL + Risk
% ==================================
@inproceedings{chow2015risk,
title={Risk-sensitive and robust decision-making: a CVaR optimization approach},
author={Chow, Yinlam and Tamar, Aviv and Mannor, Shie and Pavone, Marco},
booktitle={Advances in Neural Information Processing Systems},
pages={1522--1530},
year={2015}
}
@article{bauerle2011markov,
title={Markov decision processes with average-value-at-risk criteria},
author={B{\"a}uerle, Nicole and Ott, Jonathan},
journal={Mathematical Methods of Operations Research},
volume={74},
number={3},
pages={361--379},
year={2011},
publisher={Springer}
}
% cvar pg actor-critic
@inproceedings{chow2014algorithms,
title={Algorithms for CVaR optimization in MDPs},
author={Chow, Yinlam and Ghavamzadeh, Mohammad},
booktitle={Advances in neural information processing systems},
pages={3509--3517},
year={2014}
}
@article{garcia2015comprehensive,
title={A comprehensive survey on safe reinforcement learning},
author={Garc{\i}a, Javier and Fern{\'a}ndez, Fernando},
journal={Journal of Machine Learning Research},
volume={16},
number={1},
pages={1437--1480},
year={2015}
}
@inproceedings{tamar2015optimizing,
title={Optimizing the CVaR via Sampling.},
author={Tamar, Aviv and Glassner, Yonatan and Mannor, Shie},
booktitle={AAAI},
pages={2993--2999},
year={2015}
}
@inproceedings{tamar2015policy,
title={Policy gradient for coherent risk measures},
author={Tamar, Aviv and Chow, Yinlam and Ghavamzadeh, Mohammad and Mannor, Shie},
booktitle={Advances in Neural Information Processing Systems},
pages={1468--1476},
year={2015}
}
% ==================================
% General Risk
% ==================================
@article{rockafellar2000optimization,
title={Optimization of conditional value-at-risk},
author={Rockafellar, R Tyrrell and Uryasev, Stanislav},
journal={Journal of risk},
volume={2},
pages={21--42},
year={2000}
}
@article{rockafellar2002conditional,
title={Conditional value-at-risk for general loss distributions},
author={Rockafellar, R Tyrrell and Uryasev, Stanislav},
journal={Journal of banking \& finance},
volume={26},
number={7},
pages={1443--1471},
year={2002},
publisher={Elsevier}
}
@article{artzner1999coherent,
title={Coherent measures of risk},
author={Artzner, Philippe and Delbaen, Freddy and Eber, Jean-Marc and Heath, David},
journal={Mathematical finance},
volume={9},
number={3},
pages={203--228},
year={1999},
publisher={Wiley Online Library}
}
@article{pflug2016time,
title={Time-consistent decisions and temporal decomposition of coherent risk functionals},
author={Pflug, Georg Ch and Pichler, Alois},
journal={Mathematics of Operations Research},
volume={41},
number={2},
pages={682--699},
year={2016},
publisher={INFORMS}
}
@article{boda2006time,
title={Time consistent dynamic risk measures},
author={Boda, Kang and Filar, Jerzy A},
journal={Mathematical Methods of Operations Research},
volume={63},
number={1},
pages={169--186},
year={2006},
publisher={Springer}
}
@article{wipplinger2007philippe,
title={Philippe Jorion: Value at Risk-The New Benchmark for Managing Financial Risk},
author={Wipplinger, Evert},
journal={Financial Markets and Portfolio Management},
volume={21},
number={3},
pages={397},
year={2007},
publisher={Springer Science \& Business Media}
}
% VaR-CVaR estimation
@incollection{bardou2009recursive,
title={Recursive computation of value-at-risk and conditional value-at-risk using MC and QMC},
author={Bardou, Olivier and Frikha, Noufel and Pages, Gilles},
booktitle={Monte Carlo and quasi-Monte Carlo methods 2008},
pages={193--208},
year={2009},
publisher={Springer}
}
@article{bernard2015quantile,
title={Quantile of a mixture with application to model risk assessment},
author={Bernard, Carole and Vanduffel, Steven},
journal={Dependence Modeling},
volume={3},
number={1},
year={2015},
publisher={De Gruyter Open}
}
% ==================================
% General RL
% ==================================
@book{sutton1998reinforcement,
title={Reinforcement learning: An introduction},
author={Sutton, Richard S and Barto, Andrew G},
volume={1},
number={1},
year={1998},
publisher={MIT press Cambridge}
}
@article{bellman1957markovian,
title={A Markovian decision process},
author={Bellman, Richard},
journal={Journal of Mathematics and Mechanics},
pages={679--684},
year={1957},
publisher={JSTOR}
}
@inproceedings{bertsekas1995neuro,
title={Neuro-dynamic programming: an overview},
author={Bertsekas, Dimitri P and Tsitsiklis, John N},
booktitle={Decision and Control, 1995., Proceedings of the 34th IEEE Conference on},
volume={1},
pages={560--564},
year={1995},
organization={IEEE}
}
@inproceedings{sutton2000policy,
title={Policy gradient methods for reinforcement learning with function approximation},
author={Sutton, Richard S and McAllester, David A and Singh, Satinder P and Mansour, Yishay},
booktitle={Advances in neural information processing systems},
pages={1057--1063},
year={2000}
}
@inproceedings{konda2000actor,
title={Actor-critic algorithms},
author={Konda, Vijay R and Tsitsiklis, John N},
booktitle={Advances in neural information processing systems},
pages={1008--1014},
year={2000}
}
@incollection{baird1995residual,
title={Residual algorithms: Reinforcement learning with function approximation},
author={Baird, Leemon},
booktitle={Machine Learning Proceedings 1995},
pages={30--37},
year={1995},
publisher={Elsevier}
}
% ==================================
% Q-learning
% ==================================
@article{watkins1992q,
title={Q-learning},
author={Watkins, Christopher JCH and Dayan, Peter},
journal={Machine learning},
volume={8},
number={3-4},
pages={279--292},
year={1992},
publisher={Springer}
}
% extended q-learning convergence proofs
@article{tsitsiklis1994asynchronous,
title={Asynchronous stochastic approximation and Q-learning},
author={Tsitsiklis, John N},
journal={Machine learning},
volume={16},
number={3},
pages={185--202},
year={1994},
publisher={Springer}
}
% q-learning as a random process
@inproceedings{jaakkola1994convergence,
title={Convergence of stochastic iterative dynamic programming algorithms},
author={Jaakkola, Tommi and Jordan, Michael I and Singh, Satinder P},
booktitle={Advances in neural information processing systems},
pages={703--710},
year={1994}
}
% ==================================
% Theory
% ==================================
@book{boyd2004convex,
title={Convex optimization},
author={Boyd, Stephen and Vandenberghe, Lieven},
year={2004},
publisher={Cambridge university press}
}
@book{kreyszig1989introductory,
title={Introductory functional analysis with applications},
author={Kreyszig, Erwin},
volume={1},
year={1989},
publisher={wiley New York}
}
@book{kullback1997information,
title={Information theory and statistics},
author={Kullback, Solomon},
year={1997},
publisher={Courier Corporation}
}
% wasserstein
@article{bickel1981some,
title={Some asymptotic theory for the bootstrap},
author={Bickel, Peter J and Freedman, David A},
journal={The Annals of Statistics},
pages={1196--1217},
year={1981},
publisher={JSTOR}
}
@article{koenker2001quantile,
title={Quantile regression},
author={Koenker, Roger and Hallock, Kevin F},
journal={Journal of economic perspectives},
volume={15},
number={4},
pages={143--156},
year={2001}
}
@article{arjovsky2017wasserstein,
title={Wasserstein gan},
author={Arjovsky, Martin and Chintala, Soumith and Bottou, L{\'e}on},
journal={arXiv preprint arXiv:1701.07875},
year={2017}
}
@article{bellemare2017cramer,
title={The cramer distance as a solution to biased wasserstein gradients},
author={Bellemare, Marc G and Danihelka, Ivo and Dabney, Will and Mohamed, Shakir and Lakshminarayanan, Balaji and Hoyer, Stephan and Munos, R{\'e}mi},
journal={arXiv preprint arXiv:1705.10743},
year={2017}
}
@book{billingsley2008probability,
title={Probability and measure},
author={Billingsley, Patrick},
year={2008},
publisher={John Wiley \& Sons}
}
@article{robbins1951stochastic,
title={A stochastic approximation method},
author={Robbins, Herbert and Monro, Sutton},
journal={The annals of mathematical statistics},
pages={400--407},
year={1951},
publisher={JSTOR}
}
% ==================================
% Deep Learning
% ==================================
@book{goodfellow2016deep,
title={Deep learning},
author={Goodfellow, Ian and Bengio, Yoshua and Courville, Aaron and Bengio, Yoshua},
volume={1},
year={2016},
publisher={MIT press Cambridge}
}
@article{kingma2014adam,
title={Adam: A method for stochastic optimization},
author={Kingma, Diederik P and Ba, Jimmy},
journal={arXiv preprint arXiv:1412.6980},
year={2014}
}
@article{ruder2016overview,
title={An overview of gradient descent optimization algorithms},
author={Ruder, Sebastian},
journal={arXiv preprint arXiv:1609.04747},
year={2016}
}
@article{tieleman2012lecture,
title={Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude},
author={Tieleman, Tijmen and Hinton, Geoffrey},
journal={COURSERA: Neural networks for machine learning},
volume={4},
number={2},
pages={26--31},
year={2012}
}
@inproceedings{krizhevsky2012imagenet,
title={Imagenet classification with deep convolutional neural networks},
author={Krizhevsky, Alex and Sutskever, Ilya and Hinton, Geoffrey E},
booktitle={Advances in neural information processing systems},
pages={1097--1105},
year={2012}
}
@inproceedings{jarrett2009best,
title={What is the best multi-stage architecture for object recognition?},
author={Jarrett, Kevin and Kavukcuoglu, Koray and LeCun, Yann and others},
booktitle={Computer Vision, 2009 IEEE 12th International Conference on},
pages={2146--2153},
year={2009},
organization={IEEE}
}
@inproceedings{abadi2016tensorflow,
title={TensorFlow: A System for Large-Scale Machine Learning.},
author={Abadi, Mart{\'\i}n and Barham, Paul and Chen, Jianmin and Chen, Zhifeng and Davis, Andy and Dean, Jeffrey and Devin, Matthieu and Ghemawat, Sanjay and Irving, Geoffrey and Isard, Michael and others},
booktitle={OSDI},
volume={16},
pages={265--283},
year={2016}
}
% ==================================
% Deep Q-learning
% ==================================
@article{silver2017mastering,
title={Mastering the game of go without human knowledge},
author={Silver, David and Schrittwieser, Julian and Simonyan, Karen and Antonoglou, Ioannis and Huang, Aja and Guez, Arthur and Hubert, Thomas and Baker, Lucas and Lai, Matthew and Bolton, Adrian and others},
journal={Nature},
volume={550},
number={7676},
pages={354},
year={2017},
publisher={Nature Publishing Group}
}
@article{mnih2015human,
title={Human-level control through deep reinforcement learning},
author={Mnih, Volodymyr and Kavukcuoglu, Koray and Silver, David and Rusu, Andrei A and Veness, Joel and Bellemare, Marc G and Graves, Alex and Riedmiller, Martin and Fidjeland, Andreas K and Ostrovski, Georg and others},
journal={Nature},
volume={518},
number={7540},
pages={529},
year={2015},
publisher={Nature Publishing Group}
}
@article{bellemare13arcade,
author = {{Bellemare}, M.~G. and {Naddaf}, Y. and {Veness}, J. and {Bowling}, M.},
title = {The Arcade Learning Environment: An Evaluation Platform for General Agents},
journal = {Journal of Artificial Intelligence Research},
year = "2013",
month = "jun",
volume = "47",
pages = "253--279",
}
@article{schaul2015prioritized,
title={Prioritized experience replay},
author={Schaul, Tom and Quan, John and Antonoglou, Ioannis and Silver, David},
journal={arXiv preprint arXiv:1511.05952},
year={2015}
}
@article{wang2015dueling,
title={Dueling network architectures for deep reinforcement learning},
author={Wang, Ziyu and Schaul, Tom and Hessel, Matteo and Van Hasselt, Hado and Lanctot, Marc and De Freitas, Nando},
journal={arXiv preprint arXiv:1511.06581},
year={2015}
}
@article{hessel2017rainbow,
title={Rainbow: Combining Improvements in Deep Reinforcement Learning},
author={Hessel, Matteo and Modayil, Joseph and Van Hasselt, Hado and Schaul, Tom and Ostrovski, Georg and Dabney, Will and Horgan, Dan and Piot, Bilal and Azar, Mohammad and Silver, David},
journal={arXiv preprint arXiv:1710.02298},
year={2017}
}
@misc{baselines,
author = {Dhariwal, Prafulla and Hesse, Christopher and Klimov, Oleg and Nichol, Alex and Plappert, Matthias and Radford, Alec and Schulman, John and Sidor, Szymon and Wu, Yuhuai},
title = {OpenAI Baselines},
year = {2017},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/openai/baselines}},
}
@article{plappert2017parameter,
title={Parameter space noise for exploration},
author={Plappert, Matthias and Houthooft, Rein and Dhariwal, Prafulla and Sidor, Szymon and Chen, Richard Y and Chen, Xi and Asfour, Tamim and Abbeel, Pieter and Andrychowicz, Marcin},
journal={arXiv preprint arXiv:1706.01905},
year={2017}
}
% ==================================
% Motivation
% ==================================
@article{majumdar2017should,
title={How Should a Robot Assess Risk? Towards an Axiomatic Theory of Risk in Robotics},
author={Majumdar, Anirudha and Pavone, Marco},
journal={arXiv preprint arXiv:1710.11040},
year={2017}
}
@article{leike2017ai,
title={AI Safety Gridworlds},
author={Leike, Jan and Martic, Miljan and Krakovna, Victoria and Ortega, Pedro A and Everitt, Tom and Lefrancq, Andrew and Orseau, Laurent and Legg, Shane},
journal={arXiv preprint arXiv:1711.09883},
year={2017}
}
@article{amodei2016concrete,
title={Concrete problems in AI safety},
author={Amodei, Dario and Olah, Chris and Steinhardt, Jacob and Christiano, Paul and Schulman, John and Man{\'e}, Dan},
journal={arXiv preprint arXiv:1606.06565},
year={2016}
}
@article{shapiro2013kusuoka,
title={On Kusuoka representation of law invariant risk measures},
author={Shapiro, Alexander},
journal={Mathematics of Operations Research},
volume={38},
number={1},
pages={142--152},
year={2013},
publisher={INFORMS}
}
% risk-averse neuroscience
@article{shen2014risk,
title={Risk-sensitive reinforcement learning},
author={Shen, Yun and Tobia, Michael J and Sommer, Tobias and Obermayer, Klaus},
journal={Neural computation},
volume={26},
number={7},
pages={1298--1328},
year={2014},
publisher={MIT Press}
}
@article{basel2013fundamental,
title={Fundamental review of the trading book: A revised market risk framework},
author={Basel Committee and others},
journal={Consultative Document, October},
year={2013}
}
@article{bahdanau2014neural,
title={Neural machine translation by jointly learning to align and translate},
author={Bahdanau, Dzmitry and Cho, Kyunghyun and Bengio, Yoshua},
journal={arXiv preprint arXiv:1409.0473},
year={2014}
}