-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsunposition.py
749 lines (681 loc) · 37.2 KB
/
sunposition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
# The MIT License (MIT)
#
# Copyright (c) 2016 Samuel Bear Powell
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import numpy as np
from datetime import datetime
class _sp:
@staticmethod
def calendar_time(dt):
try:
x = dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, dt.microsecond
return x
except AttributeError:
try:
return _sp.calendar_time(datetime.utcfromtimestamp(dt)) #will raise OSError if dt is not acceptable
except:
raise TypeError('dt must be datetime object or POSIX timestamp')
@staticmethod
def julian_day(dt):
"""Calculate the Julian Day from a datetime object in UTC"""
# year and month numbers
yr, mo, dy, hr, mn, sc, us = _sp.calendar_time(dt)
if mo <= 2: # From paper: "if M = 1 or 2, then Y = Y - 1 and M = M + 12"
mo += 12
yr -= 1
# day of the month with decimal time
dy = dy + hr/24.0 + mn/(24.0*60.0) + sc/(24.0*60.0*60.0) + us/(24.0*60.0*60.0*1e6)
# b is equal to 0 for the julian calendar and is equal to (2- A +
# INT(A/4)), A = INT(Y/100), for the gregorian calendar
a = int(yr / 100)
b = 2 - a + int(a / 4)
jd = int(365.25 * (yr + 4716)) + int(30.6001 * (mo + 1)) + dy + b - 1524.5
return jd
@staticmethod
def julian_ephemeris_day(jd, deltat):
"""Calculate the Julian Ephemeris Day from the Julian Day and delta-time = (terrestrial time - universal time) in seconds"""
return jd + deltat / 86400.0
@staticmethod
def julian_century(jd):
"""Caluclate the Julian Century from Julian Day or Julian Ephemeris Day"""
return (jd - 2451545.0) / 36525.0
@staticmethod
def julian_millennium(jc):
"""Calculate the Julian Millennium from Julian Ephemeris Century"""
return jc / 10.0
# Earth Periodic Terms
# Earth Heliocentric Longitude coefficients (L0, L1, L2, L3, L4, and L5 in paper)
_EHL_ = [#L0:
[(175347046, 0.0, 0.0), (3341656, 4.6692568, 6283.07585), (34894, 4.6261, 12566.1517),
(3497, 2.7441, 5753.3849), (3418, 2.8289, 3.5231), (3136, 3.6277, 77713.7715),
(2676, 4.4181, 7860.4194), (2343, 6.1352, 3930.2097), (1324, 0.7425, 11506.7698),
(1273, 2.0371, 529.691), (1199, 1.1096, 1577.3435), (990, 5.233, 5884.927),
(902, 2.045, 26.298), (857, 3.508, 398.149), (780, 1.179, 5223.694),
(753, 2.533, 5507.553), (505, 4.583, 18849.228), (492, 4.205, 775.523),
(357, 2.92, 0.067), (317, 5.849, 11790.629), (284, 1.899, 796.298),
(271, 0.315, 10977.079), (243, 0.345, 5486.778), (206, 4.806, 2544.314),
(205, 1.869, 5573.143), (202, 2.4458, 6069.777), (156, 0.833, 213.299),
(132, 3.411, 2942.463), (126, 1.083, 20.775), (115, 0.645, 0.98),
(103, 0.636, 4694.003), (102, 0.976, 15720.839), (102, 4.267, 7.114),
(99, 6.21, 2146.17), (98, 0.68, 155.42), (86, 5.98, 161000.69),
(85, 1.3, 6275.96), (85, 3.67, 71430.7), (80, 1.81, 17260.15),
(79, 3.04, 12036.46), (71, 1.76, 5088.63), (74, 3.5, 3154.69),
(74, 4.68, 801.82), (70, 0.83, 9437.76), (62, 3.98, 8827.39),
(61, 1.82, 7084.9), (57, 2.78, 6286.6), (56, 4.39, 14143.5),
(56, 3.47, 6279.55), (52, 0.19, 12139.55), (52, 1.33, 1748.02),
(51, 0.28, 5856.48), (49, 0.49, 1194.45), (41, 5.37, 8429.24),
(41, 2.4, 19651.05), (39, 6.17, 10447.39), (37, 6.04, 10213.29),
(37, 2.57, 1059.38), (36, 1.71, 2352.87), (36, 1.78, 6812.77),
(33, 0.59, 17789.85), (30, 0.44, 83996.85), (30, 2.74, 1349.87),
(25, 3.16, 4690.48)],
#L1:
[(628331966747, 0.0, 0.0), (206059, 2.678235, 6283.07585), (4303, 2.6351, 12566.1517),
(425, 1.59, 3.523), (119, 5.796, 26.298), (109, 2.966, 1577.344),
(93, 2.59, 18849.23), (72, 1.14, 529.69), (68, 1.87, 398.15),
(67, 4.41, 5507.55), (59, 2.89, 5223.69), (56, 2.17, 155.42),
(45, 0.4, 796.3), (36, 0.47, 775.52), (29, 2.65, 7.11),
(21, 5.34, 0.98), (19, 1.85, 5486.78), (19, 4.97, 213.3),
(17, 2.99, 6275.96), (16, 0.03, 2544.31), (16, 1.43, 2146.17),
(15, 1.21, 10977.08), (12, 2.83, 1748.02), (12, 3.26, 5088.63),
(12, 5.27, 1194.45), (12, 2.08, 4694), (11, 0.77, 553.57),
(10, 1.3, 3286.6), (10, 4.24, 1349.87), (9, 2.7, 242.73),
(9, 5.64, 951.72), (8, 5.3, 2352.87), (6, 2.65, 9437.76),
(6, 4.67, 4690.48)],
#L2:
[(52919, 0.0, 0.0), (8720, 1.0721, 6283.0758), (309, 0.867, 12566.152),
(27, 0.05, 3.52), (16, 5.19, 26.3), (16, 3.68, 155.42),
(10, 0.76, 18849.23), (9, 2.06, 77713.77), (7, 0.83, 775.52),
(5, 4.66, 1577.34), (4, 1.03, 7.11), (4, 3.44, 5573.14),
(3, 5.14, 796.3), (3, 6.05, 5507.55), (3, 1.19, 242.73),
(3, 6.12, 529.69), (3, 0.31, 398.15), (3, 2.28, 553.57),
(2, 4.38, 5223.69), (2, 3.75, 0.98)],
#L3:
[(289, 5.844, 6283.076), (35, 0.0, 0.0,), (17, 5.49, 12566.15),
(3, 5.2, 155.42), (1, 4.72, 3.52), (1, 5.3, 18849.23),
(1, 5.97, 242.73)],
#L4:
[(114, 3.142, 0.0), (8, 4.13, 6283.08), (1, 3.84, 12566.15)],
#L5:
[(1, 3.14, 0.0)]
]
#Earth Heliocentric Latitude coefficients (B0 and B1 in paper)
_EHB_ = [ #B0:
[(280, 3.199, 84334.662), (102, 5.422, 5507.553), (80, 3.88, 5223.69),
(44, 3.7, 2352.87), (32, 4.0, 1577.34)],
#B1:
[(9, 3.9, 5507.55), (6, 1.73, 5223.69)]
]
#Earth Heliocentric Radius coefficients (R0, R1, R2, R3, R4)
_EHR_ = [#R0:
[(100013989, 0.0, 0.0), (1670700, 3.0984635, 6283.07585), (13956, 3.05525, 12566.1517),
(3084, 5.1985, 77713.7715), (1628, 1.1739, 5753.3849), (1576, 2.8469, 7860.4194),
(925, 5.453, 11506.77), (542, 4.564, 3930.21), (472, 3.661, 5884.927),
(346, 0.964, 5507.553), (329, 5.9, 5223.694), (307, 0.299, 5573.143),
(243, 4.273, 11790.629), (212, 5.847, 1577.344), (186, 5.022, 10977.079),
(175, 3.012, 18849.228), (110, 5.055, 5486.778), (98, 0.89, 6069.78),
(86, 5.69, 15720.84), (86, 1.27, 161000.69), (85, 0.27, 17260.15),
(63, 0.92, 529.69), (57, 2.01, 83996.85), (56, 5.24, 71430.7),
(49, 3.25, 2544.31), (47, 2.58, 775.52), (45, 5.54, 9437.76),
(43, 6.01, 6275.96), (39, 5.36, 4694), (38, 2.39, 8827.39),
(37, 0.83, 19651.05), (37, 4.9, 12139.55), (36, 1.67, 12036.46),
(35, 1.84, 2942.46), (33, 0.24, 7084.9), (32, 0.18, 5088.63),
(32, 1.78, 398.15), (28, 1.21, 6286.6), (28, 1.9, 6279.55),
(26, 4.59, 10447.39)],
#R1:
[(103019, 1.10749, 6283.07585), (1721, 1.0644, 12566.1517), (702, 3.142, 0.0),
(32, 1.02, 18849.23), (31, 2.84, 5507.55), (25, 1.32, 5223.69),
(18, 1.42, 1577.34), (10, 5.91, 10977.08), (9, 1.42, 6275.96),
(9, 0.27, 5486.78)],
#R2:
[(4359, 5.7846, 6283.0758), (124, 5.579, 12566.152), (12, 3.14, 0.0),
(9, 3.63, 77713.77), (6, 1.87, 5573.14), (3, 5.47, 18849)],
#R3:
[(145, 4.273, 6283.076), (7, 3.92, 12566.15)],
#R4:
[(4, 2.56, 6283.08)]
]
@staticmethod
def heliocentric_longitude(jme):
"""Compute the Earth Heliocentric Longitude (L) in degrees given the Julian Ephemeris Millennium"""
#L5, ..., L0
Li = [sum(a*np.cos(b + c*jme) for a,b,c in abcs) for abcs in reversed(_sp._EHL_)]
L = np.polyval(Li, jme) / 1e8
L = np.rad2deg(L) % 360
return L
@staticmethod
def heliocentric_latitude(jme):
"""Compute the Earth Heliocentric Latitude (B) in degrees given the Julian Ephemeris Millennium"""
Bi = [sum(a*np.cos(b + c*jme) for a,b,c in abcs) for abcs in reversed(_sp._EHB_)]
B = np.polyval(Bi, jme) / 1e8
B = np.rad2deg(B) % 360
return B
@staticmethod
def heliocentric_radius(jme):
"""Compute the Earth Heliocentric Radius (R) in astronimical units given the Julian Ephemeris Millennium"""
Ri = [sum(a*np.cos(b + c*jme) for a,b,c in abcs) for abcs in reversed(_sp._EHR_)]
R = np.polyval(Ri, jme) / 1e8
return R
@staticmethod
def heliocentric_position(jme):
"""Compute the Earth Heliocentric Longitude, Latitude, and Radius given the Julian Ephemeris Millennium
Returns (L, B, R) where L = longitude in degrees, B = latitude in degrees, and R = radius in astronimical units
"""
return _sp.heliocentric_longitude(jme), _sp.heliocentric_latitude(jme), _sp.heliocentric_radius(jme)
@staticmethod
def geocentric_position(helio_pos):
"""Compute the geocentric latitude (Theta) and longitude (beta) (in degrees) of the sun given the earth's heliocentric position (L, B, R)"""
L,B,R = helio_pos
th = L + 180
b = -B
return (th, b)
#Nutation Longitude and Obliquity coefficients (Y)
_NLOY_ = [(0, 0, 0, 0, 1), (-2, 0, 0, 2, 2), (0, 0, 0, 2, 2),
(0, 0, 0, 0, 2), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),
(-2, 1, 0, 2, 2), (0, 0, 0, 2, 1), (0, 0, 1, 2, 2),
(-2, -1, 0, 2, 2), (-2, 0, 1, 0, 0), (-2, 0, 0, 2, 1),
(0, 0, -1, 2, 2), (2, 0, 0, 0, 0), (0, 0, 1, 0, 1),
(2, 0, -1, 2, 2), (0, 0, -1, 0, 1), (0, 0, 1, 2, 1),
(-2, 0, 2, 0, 0), (0, 0, -2, 2, 1), (2, 0, 0, 2, 2),
(0, 0, 2, 2, 2), (0, 0, 2, 0, 0), (-2, 0, 1, 2, 2),
(0, 0, 0, 2, 0), (-2, 0, 0, 2, 0), (0, 0, -1, 2, 1),
(0, 2, 0, 0, 0), (2, 0, -1, 0, 1), (-2, 2, 0, 2, 2),
(0, 1, 0, 0, 1), (-2, 0, 1, 0, 1), (0, -1, 0, 0, 1),
(0, 0, 2, -2, 0), (2, 0, -1, 2, 1), (2, 0, 1, 2, 2),
(0, 1, 0, 2, 2), (-2, 1, 1, 0, 0), (0, -1, 0, 2, 2),
(2, 0, 0, 2, 1), (2, 0, 1, 0, 0), (-2, 0, 2, 2, 2),
(-2, 0, 1, 2, 1), (2, 0, -2, 0, 1), (2, 0, 0, 0, 1),
(0, -1, 1, 0, 0), (-2, -1, 0, 2, 1), (-2, 0, 0, 0, 1),
(0, 0, 2, 2, 1), (-2, 0, 2, 0, 1), (-2, 1, 0, 2, 1),
(0, 0, 1, -2, 0), (-1, 0, 1, 0, 0), (-2, 1, 0, 0, 0),
(1, 0, 0, 0, 0), (0, 0, 1, 2, 0), (0, 0, -2, 2, 2),
(-1, -1, 1, 0, 0), (0, 1, 1, 0, 0), (0, -1, 1, 2, 2),
(2, -1, -1, 2, 2), (0, 0, 3, 2, 2), (2, -1, 0, 2, 2)]
#Nutation Longitude and Obliquity coefficients (a,b)
_NLOab_ = [(-171996, -174.2), (-13187, -1.6), (-2274, -0.2), (2062, 0.2), (1426, -3.4), (712, 0.1),
(-517, 1.2), (-386, -0.4), (-301, 0), (217, -0.5), (-158, 0), (129, 0.1),
(123, 0), (63, 0), (63, 0.1), (-59, 0), (-58, -0.1), (-51, 0),
(48, 0), (46, 0), (-38, 0), (-31, 0), (29, 0), (29, 0),
(26, 0), (-22, 0), (21, 0), (17, -0.1), (16, 0), (-16, 0.1),
(-15, 0), (-13, 0), (-12, 0), (11, 0), (-10, 0), (-8, 0),
(7, 0), (-7, 0), (-7, 0), (-7, 0), (6, 0), (6, 0),
(6, 0), (-6, 0), (-6, 0), (5, 0), (-5, 0), (-5, 0),
(-5, 0), (4, 0), (4, 0), (4, 0), (-4, 0), (-4, 0),
(-4, 0), (3, 0), (-3, 0), (-3, 0), (-3, 0), (-3, 0),
(-3, 0), (-3, 0), (-3, 0)]
#Nutation Longitude and Obliquity coefficients (c,d)
_NLOcd_ = [(92025, 8.9), (5736, -3.1), (977, -0.5), (-895, 0.5),
(54, -0.1), (-7, 0), (224, -0.6), (200, 0),
(129, -0.1), (-95, 0.3), (0, 0), (-70, 0),
(-53, 0), (0, 0), (-33, 0), (26, 0),
(32, 0), (27, 0), (0, 0), (-24, 0),
(16, 0), (13, 0), (0, 0), (-12, 0),
(0, 0), (0, 0), (-10, 0), (0, 0),
(-8, 0), (7, 0), (9, 0), (7, 0),
(6, 0), (0, 0), (5, 0), (3, 0),
(-3, 0), (0, 0), (3, 0), (3, 0),
(0, 0), (-3, 0), (-3, 0), (3, 0),
(3, 0), (0, 0), (3, 0), (3, 0),
(3, 0)]
@staticmethod
def ecliptic_obliquity(jme, delta_epsilon):
"""Calculate the true obliquity of the ecliptic (epsilon, in degrees) given the Julian Ephemeris Millennium and the obliquity"""
u = jme/10
e0 = np.polyval([2.45, 5.79, 27.87, 7.12, -39.05, -249.67, -51.38, 1999.25, -1.55, -4680.93, 84381.448], u)
e = e0/3600.0 + delta_epsilon
return e
@staticmethod
def nutation_obliquity(jce):
"""compute the nutation in longitude (delta_psi) and the true obliquity (epsilon) given the Julian Ephemeris Century"""
#mean elongation of the moon from the sun, in radians:
#x0 = 297.85036 + 445267.111480*jce - 0.0019142*(jce**2) + (jce**3)/189474
x0 = np.deg2rad(np.polyval([1./189474, -0.0019142, 445267.111480, 297.85036],jce))
#mean anomaly of the sun (Earth), in radians:
x1 = np.deg2rad(np.polyval([-1/3e5, -0.0001603, 35999.050340, 357.52772], jce))
#mean anomaly of the moon, in radians:
x2 = np.deg2rad(np.polyval([1./56250, 0.0086972, 477198.867398, 134.96298], jce))
#moon's argument of latitude, in radians:
x3 = np.deg2rad(np.polyval([1./327270, -0.0036825, 483202.017538, 93.27191], jce))
#Longitude of the ascending node of the moon's mean orbit on the ecliptic
# measured from the mean equinox of the date, in radians
x4 = np.deg2rad(np.polyval([1./45e4, 0.0020708, -1934.136261, 125.04452], jce))
x = (x0, x1, x2, x3, x4)
dp = 0.0
for y, ab in zip(_sp._NLOY_, _sp._NLOab_):
a,b = ab
dp += (a + b*jce)*np.sin(np.dot(x, y))
dp = dp/36e6
de = 0.0
for y, cd in zip(_sp._NLOY_, _sp._NLOcd_):
c,d = cd
de += (c + d*jce)*np.cos(np.dot(x, y))
de = de/36e6
e = _sp.ecliptic_obliquity(_sp.julian_millennium(jce), de)
return dp, e
@staticmethod
def abberation_correction(R):
"""Calculate the abberation correction (delta_tau, in degrees) given the Earth Heliocentric Radius (in AU)"""
return -20.4898/(3600*R)
@staticmethod
def sun_longitude(helio_pos, delta_psi):
"""Calculate the apparent sun longitude (lambda, in degrees) and geocentric latitude (beta, in degrees) given the earth heliocentric position and delta_psi"""
L,B,R = helio_pos
theta = L + 180 #geocentric longitude
beta = -B #geocentric latitude
ll = theta + delta_psi + _sp.abberation_correction(R)
return ll, beta
@staticmethod
def greenwich_sidereal_time(jd, delta_psi, epsilon):
"""Calculate the apparent Greenwich sidereal time (v, in degrees) given the Julian Day"""
jc = _sp.julian_century(jd)
#mean sidereal time at greenwich, in degrees:
v0 = (280.46061837 + 360.98564736629*(jd - 2451545) + 0.000387933*(jc**2) - (jc**3)/38710000) % 360
v = v0 + delta_psi*np.cos(np.deg2rad(epsilon))
return v
@staticmethod
def sun_ra_decl(llambda, epsilon, beta):
"""Calculate the sun's geocentric right ascension (alpha, in degrees) and declination (delta, in degrees)"""
l, e, b = map(np.deg2rad, (llambda, epsilon, beta))
alpha = np.arctan2(np.sin(l)*np.cos(e) - np.tan(b)*np.sin(e), np.cos(l)) #x1 / x2
alpha = np.rad2deg(alpha) % 360
delta = np.arcsin(np.sin(b)*np.cos(e) + np.cos(b)*np.sin(e)*np.sin(l))
delta = np.rad2deg(delta)
return alpha, delta
@staticmethod
def sun_topo_ra_decl_hour(latitude, longitude, elevation, jd, delta_t = 0):
"""Calculate the sun's topocentric right ascension (alpha'), declination (delta'), and hour angle (H')"""
jde = _sp.julian_ephemeris_day(jd, delta_t)
jce = _sp.julian_century(jde)
jme = _sp.julian_millennium(jce)
helio_pos = _sp.heliocentric_position(jme)
R = helio_pos[-1]
phi, E = np.deg2rad(latitude), elevation
#equatorial horizontal parallax of the sun, in radians
xi = np.deg2rad(8.794/(3600*R)) #
#rho = distance from center of earth in units of the equatorial radius
#phi-prime = geocentric latitude
#NB: These equations look like their based on WGS-84, but are rounded slightly
# The WGS-84 reference ellipsoid has major axis a = 6378137 m, and flattening factor 1/f = 298.257223563
# minor axis b = a*(1-f) = 6356752.3142 = 0.996647189335*a
u = np.arctan(0.99664719*np.tan(phi)) #
x = np.cos(u) + E*np.cos(phi)/6378140 #rho sin(phi-prime)
y = 0.99664719*np.sin(u) + E*np.sin(phi)/6378140 #rho cos(phi-prime)
delta_psi, epsilon = _sp.nutation_obliquity(jce) #
llambda, beta = _sp.sun_longitude(helio_pos, delta_psi) #
alpha, delta = _sp.sun_ra_decl(llambda, epsilon, beta) #
v = _sp.greenwich_sidereal_time(jd, delta_psi, epsilon) #
H = v + longitude - alpha #
Hr, dr = np.deg2rad((H,delta))
dar = np.arctan2(-x*np.sin(xi)*np.sin(Hr), np.cos(dr)-x*np.sin(xi)*np.cos(Hr))
delta_alpha = np.rad2deg(dar) #
alpha_prime = alpha + delta_alpha #
delta_prime = np.rad2deg(np.arctan2((np.sin(dr) - y*np.sin(xi))*np.cos(dar), np.cos(dr) - y*np.sin(xi)*np.cos(Hr))) #
H_prime = H - delta_alpha #
return alpha_prime, delta_prime, H_prime
@staticmethod
def sun_topo_azimuth_zenith(latitude, delta_prime, H_prime, temperature=14.6, pressure=1013):
"""Compute the sun's topocentric azimuth and zenith angles
azimuth is measured eastward from north, zenith from vertical
temperature = average temperature in C (default is 14.6 = global average in 2013)
pressure = average pressure in mBar (default 1013 = global average)
"""
phi = np.deg2rad(latitude)
dr, Hr = np.deg2rad((delta_prime, H_prime))
P, T = pressure, temperature
e0 = np.rad2deg(np.arcsin(np.sin(phi)*np.sin(dr) + np.cos(phi)*np.cos(dr)*np.cos(Hr)))
tmp = np.deg2rad(e0 + 10.3/(e0+5.11))
delta_e = (P/1010.0)*(283.0/(273+T))*(1.02/(60*np.tan(tmp)))
e = e0 + delta_e
zenith = 90 - e
gamma = np.rad2deg(np.arctan2(np.sin(Hr), np.cos(Hr)*np.sin(phi) - np.tan(dr)*np.cos(phi))) % 360
Phi = (gamma + 180) % 360 #azimuth from north
return Phi, zenith
@staticmethod
def norm_lat_lon(lat,lon):
if lat < -90 or lat > 90:
#convert to cartesian and back
x = np.cos(np.deg2rad(lon))*np.cos(np.deg2rad(lat))
y = np.sin(np.deg2rad(lon))*np.cos(np.deg2rad(lat))
z = np.sin(np.deg2rad(lat))
r = np.sqrt(x**2 + y**2 + z**2)
lon = np.rad2deg(np.arctan2(y,x)) % 360
lat = np.rad2deg(np.arcsin(z/r))
elif lon < 0 or lon > 360:
lon = lon % 360
return lat,lon
@staticmethod
def topo_pos(t,lat,lon,elev,dt):
"""compute RA,dec,H, all in degrees"""
lat,lon = _sp.norm_lat_lon(lat,lon)
jd = _sp.julian_day(t)
RA, dec, H = _sp.sun_topo_ra_decl_hour(lat, lon, elev, jd, dt)
return RA, dec, H
@staticmethod
def pos(t,lat,lon,elev,temp,press,dt):
"""Compute azimute,zenith,RA,dec,H all in degrees"""
lat,lon = _sp.norm_lat_lon(lat,lon)
jd = _sp.julian_day(t)
RA, dec, H = _sp.sun_topo_ra_decl_hour(lat, lon, elev, jd, dt)
azimuth, zenith = _sp.sun_topo_azimuth_zenith(lat, dec, H, temp, press)
return azimuth,zenith,RA,dec,H
def julian_day(dt):
"""Convert UTC datetimes or UTC timestamps to Julian days
Parameters
----------
dt : array_like
UTC datetime objects or UTC timestamps (as per datetime.utcfromtimestamp)
Returns
-------
jd : ndarray
datetimes converted to fractional Julian days
"""
dts = np.array(dt)
if len(dts.shape) == 0:
return _sp.julian_day(dt)
jds = np.empty(dts.shape)
for i,d in enumerate(dts.flat):
jds.flat[i] = _sp.julian_day(d)
return jds
def arcdist(p0,p1,radians=False):
"""Angular distance between azimuth,zenith pairs
Parameters
----------
p0 : array_like, shape (..., 2)
p1 : array_like, shape (..., 2)
p[...,0] = azimuth angles, p[...,1] = zenith angles
radians : boolean (default False)
If False, angles are in degrees, otherwise in radians
Returns
-------
ad : array_like, shape is broadcast(p0,p1).shape
Arcdistances between corresponding pairs in p0,p1
In degrees by default, in radians if radians=True
"""
#formula comes from translating points into cartesian coordinates
#taking the dot product to get the cosine between the two vectors
#then arccos to return to angle, and simplify everything assuming real inputs
p0,p1 = np.array(p0), np.array(p1)
if not radians:
p0,p1 = np.deg2rad(p0), np.deg2rad(p1)
a0,z0 = p0[...,0], p0[...,1]
a1,z1 = p1[...,0], p1[...,1]
d = np.arccos(np.cos(z0)*np.cos(z1)+np.cos(a0-a1)*np.sin(z0)*np.sin(z1))
if radians:
return d
else:
return np.rad2deg(d)
def observed_sunpos(dt, latitude, longitude, elevation, temperature=None, pressure=None, delta_t=0, radians=False):
"""Compute the observed coordinates of the sun as viewed at the given time and location.
Parameters
----------
dt : array_like of datetime or float
UTC datetime objects or UTC timestamps (as per datetime.utcfromtimestamp) representing the times of observations
latitude, longitude : array_like of float
decimal degrees, positive for north of the equator and east of Greenwich
elevation : array_like of float
meters, relative to the WGS-84 ellipsoid
temperature : None or array_like of float, optional
celcius, default is 14.6 (global average in 2013)
pressure : None or array_like of float, optional
millibar, default is 1013 (global average in ??)
delta_t : array_like of float, optional
seconds, default is 0, difference between the earth's rotation time (TT) and universal time (UT)
radians : bool, optional
return results in radians if True, degrees if False (default)
Returns
-------
coords : ndarray, (...,2)
The shape of the array is parameters broadcast together, plus a final dimension for the coordinates.
coords[...,0] = observed azimuth angle, measured eastward from north
coords[...,1] = observed zenith angle, measured down from vertical
"""
if temperature is None:
temperature = 14.6
if pressure is None:
pressure = 1013
#6367444 = radius of earth
#numpy broadcasting
b = np.broadcast(dt,latitude,longitude,elevation,temperature,pressure,delta_t)
res = np.empty(b.shape+(2,))
res_vec = res.reshape((-1,2))
for i,x in enumerate(b):
res_vec[i] = _sp.pos(*x)[:2]
if radians:
res = np.deg2rad(res)
return res
def topocentric_sunpos(dt, latitude, longitude, elevation, delta_t=0, radians=False):
"""Compute the topocentric coordinates of the sun as viewed at the given time and location.
Parameters
----------
dt : array_like of datetime or float
UTC datetime objects or UTC timestamps (as per datetime.utcfromtimestamp) representing the times of observations
latitude, longitude : array_like of float
decimal degrees, positive for north of the equator and east of Greenwich
elevation : array_like of float
meters, relative to the WGS-84 ellipsoid
delta_t : array_like of float, optional
seconds, default is 0, difference between the earth's rotation time (TT) and universal time (UT)
radians : bool, optional
return results in radians if True, degrees if False (default)
Returns
-------
coords : ndarray, (...,3)
The shape of the array is parameters broadcast together, plus a final dimension for the coordinates.
coords[...,0] = topocentric right ascension
coords[...,1] = topocentric declination
coords[...,2] = topocentric hour angle
"""
#6367444 = radius of earth
#numpy broadcasting
b = np.broadcast(dt,latitude,longitude,elevation,delta_t)
res = np.empty(b.shape+(2,))
res_vec = res.reshape((-1,2))
for i,x in enumerate(b):
res_vec[i] = _sp.topo_pos(*x)
if radians:
res = np.deg2rad(res)
return res
def sunpos(dt, latitude, longitude, elevation, temperature=None, pressure=None, delta_t=0, radians=False):
"""Compute the observed and topocentric coordinates of the sun as viewed at the given time and location.
Parameters
----------
dt : array_like of datetime or float
UTC datetime objects or UTC timestamps (as per datetime.utcfromtimestamp) representing the times of observations
latitude, longitude : array_like of float
decimal degrees, positive for north of the equator and east of Greenwich
elevation : array_like of float
meters, relative to the WGS-84 ellipsoid
temperature : None or array_like of float, optional
celcius, default is 14.6 (global average in 2013)
pressure : None or array_like of float, optional
millibar, default is 1013 (global average in ??)
delta_t : array_like of float, optional
seconds, default is 0, difference between the earth's rotation time (TT) and universal time (UT)
radians : bool, optional
return results in radians if True, degrees if False (default)
Returns
-------
coords : ndarray, (...,5)
The shape of the array is parameters broadcast together, plus a final dimension for the coordinates.
coords[...,0] = observed azimuth angle, measured eastward from north
coords[...,1] = observed zenith angle, measured down from vertical
coords[...,2] = topocentric right ascension
coords[...,3] = topocentric declination
coords[...,4] = topocentric hour angle
"""
if temperature is None:
temperature = 14.6
if pressure is None:
pressure = 1013
#6367444 = radius of earth
#numpy broadcasting
b = np.broadcast(dt,latitude,longitude,elevation,temperature,pressure,delta_t)
res = np.empty(b.shape+(5,))
res_vec = res.reshape((-1,5))
for i,x in enumerate(b):
res_vec[i] = _sp.pos(*x)
if radians:
res = np.deg2rad(res)
return res
def test():
test_file = 'test_1.txt'
# Parse and compare results from https://midcdmz.nrel.gov/solpos/spa.html
param_names = ['syear','smonth','sday','eyear','emonth','eday','otype','step','stepunit','hr','min','sec','latitude','longitude','timezone','elev','press','temp','dut1','deltat','azmrot','slope','refract']
param_dtype = np.dtype([(name, float) for name in param_names])
params = np.loadtxt(test_file, param_dtype, delimiter=',', skiprows=2, max_rows=1)
row_type = np.dtype([
('Date_M/D/YYYY', 'S10'),
('Time_H:MM:SS', 'S8'),
('Topo_zen', float),
('Topo_az', float),
('Julian_day', float),
('Julian_century', float),
('Julian_ephemeris_day', float),
('Julian_ephemeris_century', float),
('Julian_ephemeris_millennium', float),
('Earth_heliocentric_longitude', float),
('Earth_heliocentric_latitude', float),
('Earth_radius_vector', float),
('Geocentric_longitude', float),
('Geocentric_latitude', float),
('Mean_elongation', float),
('Mean_anomaly_sun', float),
('Mean_anomaly_moon', float),
('Argument_latitude_moon', float),
('Ascending_longitude_moon', float),
('Nutation_longitude', float),
('Nutation_obliquity', float),
('Ecliptic_mean_obliquity', float),
('Ecliptic_true_obliquity', float),
('Aberration_correction', float),
('Apparent_sun_longitude', float),
('Greenwich_mean_sidereal_time', float),
('Greenwich_sidereal_time', float),
('Geocentric_sun_right_ascension', float),
('Geocentric_sun_declination', float),
('Observer_hour_angle', float),
('Sun_equatorial_horizontal_parallax', float),
('Sun_right_ascension_parallax', float),
('Topo_sun_declination', float),
('Topo_sun_right_ascension', float),
('Topo_local_hour_angle', float),
('Topo_elevation_angle_uncorrected', float),
('Atmospheric_refraction_correction', float),
('Topo_elevation_angle_corrected', float),
('Equation_of_time', float),
('Sunrise_hour_angle', float),
('Sunset_hour_angle', float),
('Sun_transit_altitude', float)])
true_data = np.loadtxt(test_file, row_type, delimiter=',', skiprows=4)
def to_datetime(date_time_pair):
s = str(b' '.join(date_time_pair),'UTF-8')
return datetime.strptime(s, '%m/%d/%Y %H:%M:%S')
dts = [to_datetime(dt_pair) for dt_pair in true_data[['Date_M/D/YYYY','Time_H:MM:SS']]]
lat,lon,elev,temp,press,deltat = params['latitude'],params['longitude'],params['elev'],params['temp'],params['press'],params['deltat']
print('Errors')
print('jd, jde, jce, jme, L, B, R, delta_psi, epsilon, theta, beta, delta_tau, lambda, v, alpha, delta, alpha_prime, delta_prime, H_prime, azimuth, zenith')
for dt,truth in zip(dts,true_data):
jd = _sp.julian_day(dt) #Julian_day
jde = _sp.julian_ephemeris_day(jd, deltat) #Julian_ephemeris_day
jce = _sp.julian_century(jde) #Julian_ephemeris_century
jme = _sp.julian_millennium(jce) #Julian_ephemeris_millenium
L,B,R = _sp.heliocentric_position(jme) #Earth_heliocentric_longitude, Earth_heliocentric_latitude, Earth_radius_vector
delta_psi, epsilon = _sp.nutation_obliquity(jce) #Nutation_longitude, Ecliptic_true_obliquity
theta,beta = _sp.geocentric_position((L,B,R)) #Geocentric_longitude, Geocentric_latitude
delta_tau = _sp.abberation_correction(R) #Aberration_correction
llambda, beta = _sp.sun_longitude((L,B,R), delta_psi) #Apparent_sun_longitude, Geocentric_latitude (identical to previous)
v = _sp.greenwich_sidereal_time(jd, delta_psi, epsilon) #Greenwich_sidereal_time
alpha, delta = _sp.sun_ra_decl(llambda, epsilon, beta) #Geocentric_sun_right_ascension, Geocentric_sun_declination
alpha_p, delta_p, H_p = _sp.sun_topo_ra_decl_hour(lat,lon,elev,jd,deltat) #Topo_sun_right_ascension, Topo_sun_declination, Topo_local_hour_angle
az, zen = _sp.sun_topo_azimuth_zenith(lat,delta_p,H_p,temp,press) #Topo_az, Topo_zen
jd_err = jd - truth['Julian_day']
jde_err = jde - truth['Julian_ephemeris_day']
jce_err = jce - truth['Julian_ephemeris_century']
jme_err = jme - truth['Julian_ephemeris_millennium']
L_err = L - truth['Earth_heliocentric_longitude']
B_err = B - truth['Earth_heliocentric_latitude']
R_err = R - truth['Earth_radius_vector']
delta_psi_err = delta_psi - truth['Nutation_longitude']
epsilon_err = epsilon - truth['Ecliptic_true_obliquity']
theta_err = theta - truth['Geocentric_longitude']
beta_err = beta - truth['Geocentric_latitude']
delta_tau_err = delta_tau - truth['Aberration_correction']
lambda_err = llambda - truth['Apparent_sun_longitude']
v_err = v - truth['Greenwich_sidereal_time']
alpha_err = alpha - truth['Geocentric_sun_right_ascension']
delta_err = delta - truth['Geocentric_sun_declination']
alpha_prime_err = alpha_p - truth['Topo_sun_right_ascension']
delta_prime_err = delta_p - truth['Topo_sun_declination']
H_prime_err = H_p - truth['Topo_local_hour_angle']
az_err = az - truth['Topo_az']
zen_err = zen - truth['Topo_zen']
all_errs = [jd_err,jde_err,jce_err,jme_err,L_err,B_err,R_err,delta_psi_err,
epsilon_err,theta_err,beta_err,delta_tau_err,lambda_err,
v_err,alpha_err,delta_err,alpha_prime_err,delta_prime_err,
H_prime_err,az_err,zen_err]
print(','.join('{}'.format(err) for err in all_errs))
def main(args):
az, zen, ra, dec, h = sunpos(args.t, args.lat, args.lon, args.elev, args.temp, args.p, args.dt, args.rad)
if args.csv:
#machine readable
print('{t}, {dt}, {lat}, {lon}, {elev}, {temp}, {p}, {az}, {zen}, {ra}, {dec}, {h}'.format(t=args.t, dt=args.dt, lat=args.lat, lon=args.lon, elev=args.elev,temp=args.temp, p=args.p,az=az, zen=zen, ra=ra, dec=dec, h=h))
else:
dr='deg'
if args.rad:
dr='rad'
print("Computing sun position at T = {t} + {dt} s".format(t=args.t, dt=args.dt))
print("Lat, Lon, Elev = {lat} deg, {lon} deg, {elev} m".format(lat=args.lat, lon=args.lon, elev=args.elev))
print("T, P = {temp} C, {press} mbar".format(temp=args.temp, press=args.p))
print("Results:")
print("Azimuth, zenith = {az} {dr}, {zen} {dr}".format(az=az,zen=zen,dr=dr))
print("RA, dec, H = {ra} {dr}, {dec} {dr}, {h} {dr}".format(ra=ra, dec=dec, h=h, dr=dr))
if __name__ == '__main__':
from argparse import ArgumentParser
import sys
parser = ArgumentParser(prog='sunposition',description='Compute sun position parameters given the time and location')
parser.add_argument('--version',action='version',version='%(prog)s 1.0')
parser.add_argument('--citation',dest='cite',action='store_true',help='Print citation information')
parser.add_argument('-t,--time',dest='t',type=str,default='now',help='"now" or date and time (UTC) in "YYYY-MM-DD hh:mm:ss.ssssss" format or a (UTC) POSIX timestamp')
parser.add_argument('-lat,--latitude',dest='lat',type=float,default=51.48,help='latitude, in decimal degrees, positive for north')
parser.add_argument('-lon,--longitude',dest='lon',type=float,default=0.0,help='longitude, in decimal degrees, positive for east')
parser.add_argument('-e,--elevation',dest='elev',type=float,default=0,help='elevation, in meters')
parser.add_argument('-T,--temperature',dest='temp',type=float,default=14.6,help='temperature, in degrees celcius')
parser.add_argument('-p,--pressure',dest='p',type=float,default=1013.0,help='atmospheric pressure, in millibar')
parser.add_argument('-dt',type=float,default=0.0,help='difference between earth\'s rotation time (TT) and universal time (UT1)')
parser.add_argument('-r,--radians',dest='rad',action='store_true',help='Output in radians instead of degrees')
parser.add_argument('--csv',dest='csv',action='store_true',help='Comma separated values (time,dt,lat,lon,elev,temp,pressure,az,zen,RA,dec,H)')
args = parser.parse_args()
if args.cite:
print("Implementation: Samuel Bear Powell, 2016")
print("Algorithm:")
print("Ibrahim Reda, Afshin Andreas, \"Solar position algorithm for solar radiation applications\", Solar Energy, Volume 76, Issue 5, 2004, Pages 577-589, ISSN 0038-092X, doi:10.1016/j.solener.2003.12.003")
sys.exit(0)
if args.t == "now":
args.t = datetime.utcnow()
elif ":" in args.t and "-" in args.t:
try:
args.t = datetime.strptime(args.t,'%Y-%m-%d %H:%M:%S.%f') #with microseconds
except:
try:
args.t = datetime.strptime(args.t,'%Y-%m-%d %H:%M:%S.') #without microseconds
except:
args.t = datetime.strptime(args.t,'%Y-%m-%d %H:%M:%S')
else:
args.t = datetime.utcfromtimestamp(int(args.t))
main(args)