-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
35 lines (24 loc) · 933 Bytes
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import numpy as np
import sys
from utils.kitti import load_dt_annos, load_gt_annos
from utils.eval import KittiAveragePrecision
from utils.eval import apMethod
from sklearn.metrics import mean_squared_error
import time
def main():
RESULT_FILES_PATH=sys.argv[1]
GT_ANNOS_PATH = './data/kitti_3d/training/label_2/'
DATA_SPLIT_FILE = './data/kitti_3d/split/val.txt'
with open(DATA_SPLIT_FILE, 'r') as f:
lines = f.readlines()
filelist = [int(line) for line in lines]
CLASSES = ('Car', 'Pedestrian', 'Cyclist')
dt_annos = load_dt_annos(RESULT_FILES_PATH, filelist)
gt_annos = load_gt_annos(GT_ANNOS_PATH, filelist)
ap = KittiAveragePrecision(gt_annos, dt_annos, apMethod.interpHyb41)
reth41 = ap.kitti_eval()
print(reth41[:,0,:,0].flatten()*100)
print(reth41[:,1,:,0].flatten()*100)
print(reth41[:,2,:,0].flatten()*100)
if __name__ == '__main__':
main()