forked from ucfnlp/summarization-sing-pair-mix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ssi_functions.py
288 lines (256 loc) · 14.1 KB
/
ssi_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import util
import numpy as np
from absl import flags
FLAGS = flags.FLAGS
def write_highlighted_html(html, out_dir, example_idx):
html = '''
<button id="btnPrev" class="float-left submit-button" >Prev</button>
<button id="btnNext" class="float-left submit-button" >Next</button>
<br><br>
<script type="text/javascript">
document.getElementById("btnPrev").onclick = function () {
location.href = "%06d_highlighted.html";
};
document.getElementById("btnNext").onclick = function () {
location.href = "%06d_highlighted.html";
};
document.addEventListener("keyup",function(e){
var key = e.which||e.keyCode;
switch(key){
//left arrow
case 37:
document.getElementById("btnPrev").click();
break;
//right arrow
case 39:
document.getElementById("btnNext").click();
break;
}
});
</script>
''' % (example_idx - 1, example_idx + 1) + html
path = os.path.join(out_dir, '%06d_highlighted.html' % example_idx)
with open(path, 'w') as f:
f.write(html)
highlight_colors = ['aqua', 'lime', 'yellow', '#FF7676', '#B9968D', '#D7BDE2', '#D6DBDF', '#F852AF', '#00FF8B', '#FD933A', '#8C8DFF', '#965DFF']
hard_highlight_colors = ['#00BBFF', '#00BB00', '#F4D03F', '#BB5454', '#A16252', '#AF7AC5', '#AEB6BF', '#FF008F', '#0ECA74', '#FF7400', '#6668FF', '#7931FF']
def start_tag(color):
return "<font color='" + color + "'>"
def start_tag_highlight(color):
return "<mark style='background-color: " + color + ";'>"
def get_idx_for_source_idx(similar_source_indices, source_idx):
summ_sent_indices = []
priorities = []
for source_indices_idx, source_indices in enumerate(similar_source_indices):
for idx_idx, idx in enumerate(source_indices):
if source_idx == idx:
summ_sent_indices.append(source_indices_idx)
priorities.append(idx_idx)
if len(summ_sent_indices) == 0:
return None, None
else:
return summ_sent_indices, priorities
def html_highlight_sents_in_article(summary_sent_tokens, similar_source_indices_list,
article_sent_tokens, doc_indices=None, lcs_paths_list=None, article_lcs_paths_list=None):
end_tag = "</mark>"
out_str = ''
for summ_sent_idx, summ_sent in enumerate(summary_sent_tokens):
try:
similar_source_indices = similar_source_indices_list[summ_sent_idx]
except:
similar_source_indices = []
for token_idx, token in enumerate(summ_sent):
insert_string = token + ' '
for source_indices_idx, source_indices in enumerate(similar_source_indices):
if source_indices_idx == 0:
try:
color = hard_highlight_colors[min(summ_sent_idx, len(highlight_colors)-1)]
except:
print(summ_sent_idx)
print(summary_sent_tokens)
print('\n')
else:
color = highlight_colors[min(summ_sent_idx, len(highlight_colors)-1)]
if lcs_paths_list is None or token_idx in lcs_paths_list[summ_sent_idx][source_indices_idx]:
insert_string = start_tag_highlight(color) + token + ' ' + end_tag
break
out_str += insert_string
out_str += '<br><br>'
cur_token_idx = 0
cur_doc_idx = 0
for sent_idx, sent in enumerate(article_sent_tokens):
if doc_indices is not None:
if cur_token_idx >= len(doc_indices):
print("Warning: cur_token_idx is greater than len of doc_indices")
elif doc_indices[cur_token_idx] != cur_doc_idx:
cur_doc_idx = doc_indices[cur_token_idx]
out_str += '<br>'
summ_sent_indices, priorities = get_idx_for_source_idx(similar_source_indices_list, sent_idx)
if priorities is None:
colors = ['black']
hard_colors = ['black']
else:
colors = [highlight_colors[min(summ_sent_idx, len(highlight_colors)-1)] for summ_sent_idx in summ_sent_indices]
hard_colors = [hard_highlight_colors[min(summ_sent_idx, len(highlight_colors)-1)] for summ_sent_idx in summ_sent_indices]
source_sentence = article_sent_tokens[sent_idx]
for token_idx, token in enumerate(source_sentence):
if priorities is None:
insert_string = token + ' '
else:
insert_string = token + ' '
for priority_idx in reversed(list(range(len(priorities)))):
summ_sent_idx = summ_sent_indices[priority_idx]
priority = priorities[priority_idx]
if article_lcs_paths_list is None or token_idx in article_lcs_paths_list[summ_sent_idx][priority]:
if priority == 0:
insert_string = start_tag_highlight(hard_colors[priority_idx]) + token + ' ' + end_tag
else:
insert_string = start_tag_highlight(colors[priority_idx]) + token + ' ' + end_tag
cur_token_idx += 1
out_str += insert_string
out_str += '<br>'
out_str += '<br>------------------------------------------------------<br><br>'
return out_str
def get_sent_similarities(summ_sent, article_sent_tokens, vocab):
rouge_l = np.squeeze(util.rouge_l_similarity_matrix(article_sent_tokens, [summ_sent], vocab, 'recall'))
rouge_1 = np.squeeze(util.rouge_1_similarity_matrix(article_sent_tokens, [summ_sent], vocab, 'recall', True), 1)
rouge_2 = np.squeeze(util.rouge_2_similarity_matrix(article_sent_tokens, [summ_sent], vocab, 'recall', False), 1)
similarities = (rouge_l + rouge_1 + rouge_2) / 3.0
return similarities
def get_simple_source_indices_list(summary_sent_tokens, article_sent_tokens, vocab=None, sentence_limit=2, min_matched_tokens=2):
article_sent_tokens_lemma = util.lemmatize_sent_tokens(article_sent_tokens)
summary_sent_tokens_lemma = util.lemmatize_sent_tokens(summary_sent_tokens)
similar_source_indices_list = []
lcs_paths_list = []
smooth_article_paths_list = []
for summ_sent in summary_sent_tokens_lemma:
similarities = get_sent_similarities(summ_sent, article_sent_tokens_lemma, vocab)
similar_source_indices, lcs_paths, smooth_article_paths = get_similar_source_sents_recursive(
summ_sent, summ_sent, list(range(len(summ_sent))), article_sent_tokens_lemma, vocab, similarities, 0,
sentence_limit, min_matched_tokens)
similar_source_indices_list.append(similar_source_indices)
lcs_paths_list.append(lcs_paths)
smooth_article_paths_list.append(smooth_article_paths)
deduplicated_similar_source_indices_list = []
for sim_source_ind in similar_source_indices_list:
dedup_sim_source_ind = []
for ssi in sim_source_ind:
if not (ssi in dedup_sim_source_ind or ssi[::-1] in dedup_sim_source_ind):
dedup_sim_source_ind.append(ssi)
deduplicated_similar_source_indices_list.append(dedup_sim_source_ind)
simple_similar_source_indices = [tuple(sim_source_ind[0]) for sim_source_ind in deduplicated_similar_source_indices_list]
lcs_paths_list = [tuple(sim_source_ind[0]) for sim_source_ind in lcs_paths_list]
smooth_article_paths_list = [tuple(sim_source_ind[0]) for sim_source_ind in smooth_article_paths_list]
return simple_similar_source_indices, lcs_paths_list, smooth_article_paths_list
# Recursive function
def get_similar_source_sents_recursive(summ_sent, partial_summ_sent, selection, article_sent_tokens, vocab, similarities, depth, sentence_limit, min_matched_tokens):
if sentence_limit == 1:
if depth > 2:
return [[]], [[]], [[]]
elif len(selection) < 3 or depth >= sentence_limit: # base case: when summary sentence is too short
return [[]], [[]], [[]]
all_sent_indices = []
all_lcs_paths = []
all_smooth_article_paths = []
# partial_summ_sent = util.reorder(summ_sent, selection)
top_sent_indices, top_similarity = get_top_similar_sent(partial_summ_sent, article_sent_tokens, vocab)
top_similarities = util.reorder(similarities, top_sent_indices)
top_sent_indices = [x for _, x in sorted(zip(top_similarities, top_sent_indices), key=lambda pair: pair[0])][::-1]
for top_sent_idx in top_sent_indices:
nonstopword_matches, _ = util.matching_unigrams(partial_summ_sent, article_sent_tokens[top_sent_idx], should_remove_stop_words=True)
lcs_len, (summ_lcs_path, _) = util.matching_unigrams(partial_summ_sent, article_sent_tokens[top_sent_idx])
smooth_article_path = get_smooth_path(summ_sent, article_sent_tokens[top_sent_idx])
if len(nonstopword_matches) < min_matched_tokens:
continue
leftover_selection = [idx for idx in range(len(partial_summ_sent)) if idx not in summ_lcs_path]
partial_summ_sent = replace_with_blanks(partial_summ_sent, leftover_selection)
sent_indices, lcs_paths, smooth_article_paths = get_similar_source_sents_recursive(
summ_sent, partial_summ_sent, leftover_selection, article_sent_tokens, vocab, similarities, depth+1,
sentence_limit, min_matched_tokens) # recursive call
combined_sent_indices = [[top_sent_idx] + indices for indices in sent_indices] # append my result to the recursive collection
combined_lcs_paths = [[summ_lcs_path] + paths for paths in lcs_paths]
combined_smooth_article_paths = [[smooth_article_path] + paths for paths in smooth_article_paths]
all_sent_indices.extend(combined_sent_indices)
all_lcs_paths.extend(combined_lcs_paths)
all_smooth_article_paths.extend(combined_smooth_article_paths)
if len(all_sent_indices) == 0:
return [[]], [[]], [[]]
return all_sent_indices, all_lcs_paths, all_smooth_article_paths
def get_smooth_path(summ_sent, article_sent):
summ_sent = ['<s>'] + summ_sent + ['</s>']
article_sent = ['<s>'] + article_sent + ['</s>']
matches = []
article_indices = []
summ_token_to_indices = util.create_token_to_indices(summ_sent)
article_token_to_indices = util.create_token_to_indices(article_sent)
for key in list(article_token_to_indices.keys()):
if (util.is_punctuation(key) and not util.is_quotation_mark(key)):
del article_token_to_indices[key]
for token in list(summ_token_to_indices.keys()):
if token in article_token_to_indices:
article_indices.extend(article_token_to_indices[token])
matches.extend([token] * len(summ_token_to_indices[token]))
article_indices = sorted(article_indices)
# Add a single word or a pair of words if they are in between two hightlighted content words
new_article_indices = []
new_article_indices.append(0)
for article_idx in article_indices[1:]:
word = article_sent[article_idx]
prev_highlighted_word = article_sent[new_article_indices[-1]]
if article_idx - new_article_indices[-1] <= 3 \
and ((util.is_content_word(word) and util.is_content_word(prev_highlighted_word)) \
or (len(new_article_indices) >= 2 and util.is_content_word(word) and util.is_content_word(article_sent[new_article_indices[-2]]))):
in_between_indices = list(range(new_article_indices[-1] + 1, article_idx))
are_not_punctuation = [not util.is_punctuation(article_sent[in_between_idx]) for in_between_idx in in_between_indices]
if all(are_not_punctuation):
new_article_indices.extend(in_between_indices)
new_article_indices.append(article_idx)
new_article_indices = new_article_indices[1:-1] # remove <s> and </s> from list
# Remove isolated stopwords
new_new_article_indices = []
for idx, article_idx in enumerate(new_article_indices):
if (not util.is_stopword_punctuation(article_sent[article_idx])) or (idx > 0 and new_article_indices[idx-1] == article_idx-1) or (idx < len(new_article_indices)-1 and new_article_indices[idx+1] == article_idx+1):
new_new_article_indices.append(article_idx)
new_new_article_indices = [idx-1 for idx in new_new_article_indices] # fix indexing since we don't count <s> and </s>
return new_new_article_indices
def get_top_similar_sent(summ_sent, article_sent_tokens, vocab):
similarities = get_sent_similarities(summ_sent, article_sent_tokens, vocab)
top_similarity = np.max(similarities)
sent_indices = [np.argmax(similarities)]
return sent_indices, top_similarity
def replace_with_blanks(summ_sent, selection):
replaced_summ_sent = [summ_sent[token_idx] if token_idx in selection else '' for token_idx, token in enumerate(summ_sent)]
return replaced_summ_sent
def filter_pairs_by_sent_position(possible_pairs, rel_sent_indices=None):
max_sent_position = {
'cnn_dm': 30,
'xsum': 20,
'duc_2004': np.inf
}
if FLAGS.dataset_name == 'duc_2004':
return [pair for pair in possible_pairs if max(rel_sent_indices[pair[0]], rel_sent_indices[pair[1]]) < 5]
else:
return [pair for pair in possible_pairs if max(pair) < max_sent_position[FLAGS.dataset_name]]
def get_rel_sent_indices(doc_indices, article_sent_tokens):
if FLAGS.dataset_name != 'duc_2004' and len(doc_indices) != len(util.flatten_list_of_lists(article_sent_tokens)):
doc_indices = [0] * len(util.flatten_list_of_lists(article_sent_tokens))
doc_indices_sent_tokens = util.reshape_like(doc_indices, article_sent_tokens)
if FLAGS.dataset_name != 'duc_2004':
sent_doc = [0] * len(doc_indices_sent_tokens)
else:
sent_doc = [sent[0] for sent in doc_indices_sent_tokens]
rel_sent_indices = []
doc_sent_indices = []
cur_doc_idx = 0
rel_sent_idx = 0
for doc_idx in sent_doc:
if doc_idx != cur_doc_idx:
rel_sent_idx = 0
cur_doc_idx = doc_idx
rel_sent_indices.append(rel_sent_idx)
doc_sent_indices.append(cur_doc_idx)
rel_sent_idx += 1
doc_sent_lens = [sum(1 for my_doc_idx in doc_sent_indices if my_doc_idx == doc_idx) for doc_idx in
range(max(doc_sent_indices) + 1)]
return rel_sent_indices, doc_sent_indices, doc_sent_lens