-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConcreteCode.py
171 lines (154 loc) · 6.28 KB
/
ConcreteCode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# -*- coding: utf-8 -*-
"""
Created on Sat Jul 15 22:21:23 2017
@author: Spandan_Mishra
"""
from scipy.io import loadmat
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import glob
import os
NewTrainOne=[]
NewTrainTwo=[]
####################################
NewTrainingData1=[]
NewTrainingData2=[]
def key_func(x):
return os.path.split(x)[-1]
for data_file1,data_file2 in zip(sorted(os.listdir("Metal1/"),key=key_func),sorted(os.listdir("Metal2/"),key=key_func)):
NewTrainingData1.append(data_file1)
NewTrainingData2.append(data_file2)
#########################################
folderPath="C:/Users/Spandan Mishra/Documents/GitHub/LambWave/Metal1"
[NewTrainOne.append(loadmat(os.path.join(folderPath,f),squeeze_me=True, struct_as_record=False)) for f in NewTrainingData1]
[NewTrainTwo.append(loadmat(os.path.join(folderPath,f),squeeze_me=True, struct_as_record=False)) for f in NewTrainingData2]
###############################################
frequency=NewTrainOne[4]['setup'].signal_definition.frequency1
# sampling rate of the signal
sampling_rate=NewTrainOne[0]['setup'].sampling_rate
##################################################
crosstalk=[]
frequency=[]
sampling_rate=[]
for signals in NewTrainOne:
frequency.append(signals['setup'].signal_definition.frequency1)
sampling_rate.append(signals['setup'].sampling_rate)
crosstalk.append(5/(signals['setup'].signal_definition.frequency1)* (signals['setup'].sampling_rate))
######################################
for i in range(25):
NewTrainOne[i]['s0'][1:int(crosstalk[i])]=0 #training data
NewTrainTwo[i]['s0'][1:int(crosstalk[i])]=0 # test data
SensorData=list()
ActuatorData=list()
[SensorData.append(signal['s0']) for signal in NewTrainOne ] # sensor data arranged in list
[ActuatorData.append(signal['a0']) for signal in NewTrainOne] # Actuator data arrange in list
##############################################################################################################
TestSensorData=list()
TestActuatorData=list()
[TestSensorData.append(signal['s0']) for signal in NewTrainTwo ] # Test data for sensor arranged in list
[TestActuatorData.append(signal['a0']) for signal in NewTrainTwo] # test data for actuator arrange in list
###########################################################
TotalData=SensorData+TestSensorData
TotalData=np.asarray(TotalData)
#####################################
#####################################
from keras.layers import Input, Dense
from keras.models import Model
#from keras.optimizers import Adam
from keras import regularizers
np.random.seed(7)
SensorData=np.asarray(SensorData) # converting list into array (training data)
TestSensorData= np.asarray(TestSensorData)
InputSignal=SensorData[0]
actual_signal_len=len(InputSignal)
encoding_dim=500 # This going to be size of our encoded representation
#this returns a tensor
inputs = Input(shape=(actual_signal_len,))
encoded=Dense(encoding_dim,activation='relu',activity_regularizer=regularizers.l1(10e-5))(inputs)
decoded=Dense(actual_signal_len)(encoded)
# this model maps an input to its encoded representation
encoder = Model(input=inputs, output=encoded)
## this model maps an input to its reconstruction
autoencoder= Model(input = inputs, output= decoded)
#we'll configure our model to use a mean squarred error loss, and the Adam optimizer
# we also train autoencoder for 50 epochs
autoencoder.compile(optimizer='adam', loss='mse')
autoencoder.fit(TotalData, TotalData, epochs=100, batch_size=1)
#######################
#Encode the images
encoded_signal= encoder.predict(SensorData)
EncodedTestData= encoder.predict(TestSensorData)
################################
dist1=[]
dist2=[]
def mean(a):
return sum(a)/len(a)
MeanBaseline=[]
MeanBaselineTest=[]
[MeanBaseline.append(i) for i in map(mean,zip(*encoded_signal[0:4]))]
[MeanBaselineTest.append(i) for i in map(mean,zip(*EncodedTestData[0:4]))]
for x,y in zip(encoded_signal,EncodedTestData):
dist1.append(np.linalg.norm(MeanBaseline-x))
dist2.append(np.linalg.norm(EncodedTestData[0]-y))
############################################
SelectedDist=[]
SelectedDistTest=[] # test data
index=[0,5,10,15]
[SelectedDist.append(dist1[i]) for i in index]
[SelectedDistTest.append(dist2[i]) for i in index]
###############################################
from sklearn import linear_model
from math import log
from numpy import exp
gaps=[0.00001,0.1,0.2,0.3]
logGap=[]
[logGap.append(log(i)) for i in gaps]
SelectedDist=np.asarray(SelectedDist)
logGap=np.asarray(logGap)
expRegr=linear_model.LinearRegression(fit_intercept=True,normalize=True)
expRegr.fit(SelectedDist.reshape(4,1),logGap.reshape(4,1))
print("The regression coefficients are as:[%.7f, %.7f]" % (expRegr.intercept_ , expRegr.coef_))
TrainingGapsExp=expRegr.predict(np.asarray(SelectedDist).reshape(4,1))
#######################################################
testData=np.asarray(dist1)
Pred=expRegr.predict(testData[:-5].reshape(20,1)) # predeiction of the Metal 1
PredictedGap=exp(Pred)
print(PredictedGap)
#######################################################
x=[0.00001,0.1,0.2,0.3]
GapVec=[]
[GapVec.append(np.tile(i,(1,5))) for i in x]
plt.figure()
plt.scatter(SelectedDist,gaps,color='blue',label='Data used to Train')
plt.plot(SelectedDist,exp(TrainingGapsExp),color='red',label='Prediction on Training data')
plt.scatter(testData[:-5],PredictedGap,color='green',label='Prediction on Metal 1 Data')
plt.ylabel('Gaps (mm)')
plt.xlabel('Damage Index')
plt.legend()
plt.show()
#####################################
d=[0,0.1,0.2,0.3,0.4]
plt.figure()
plt.scatter(GapVec,PredictedGap)
plt.plot(d,d,color='red')
plt.xlabel('Actual Damage Size')
plt.ylabel('Predicted Damage Size')
plt.show()
###################
##prediction error
GapVecNew = np.concatenate([np.array(i[0]) for i in GapVec]) # convert gapvec in numpy
error=np.sum(np.square(np.subtract(GapVecNew,PredictedGap)))
### Data from Metal 2##########
xMetal2=[0.00001,0.1,0.2,0.3,0.4]
GapVecMetal2=[]
[GapVecMetal2.append(np.tile(i,(1,5))) for i in xMetal2]
testDataMetal2=np.asarray(dist2)
PredictedValueMetal2=expRegr.predict(testDataMetal2.reshape(25,1))
print(exp(PredictedValueMetal2))
plt.figure()
plt.scatter(GapVecMetal2,exp(PredictedValueMetal2),color='red',label='Prediction on Metal 2 data')
plt.ylabel('Gaps (mm)')
plt.xlabel('Damage Index')
plt.legend()
plt.show()