Overview
The Rock branching strategy is based on the Git Branching Model documented by Vincent Driessen.

Branches

Master

The master branch should always reflect the latest production-ready state, and should be tagged with
the appropriate release number. The only time the master branch is updated is when a release or
hotfix branch is merged into master, at which point it is tagged with the appropriate version
number. Development should never occur from the master branch.

Develop

The develop branch is always the latest runnable code. A developer should always be able to pull the
latest version of the develop branch, run an update-database to create a test database, and then be
able to code and test against this.

When a developer needs to make an update to the source code, they need to decide whether to create
a feature branch (documented below), or work directly off their local version of the develop
branch. If there’s any chance that while working on a specific code change, they may need to make a
separate unrelated change, then they should create a local feature branch rather than working
directly from the develop branch. If making a small change that will be committed/pushed quickly,
then developers can work directly off of their local develop branch.

A good rule of thumb, is that if a change requires more than a day’s time to develop and test, then it
should probably be done ina feature branch. If it can be completed within a day, then it can be done
on the develop branch

Feature

A feature branch is used to develop new features for a future release. Feature branches should be
branched from develop and eventually merged back into develop. The naming convention for feature
branchesis feature-[Initials]-[name-of-feature]. For example feature-drt-add-
campus. Typically, feature branches would only exist in the developers repository, however, if more
than one developer are working on (or reviewing) a specific feature, that feature branch can be pushed
to the remote origin repository (GitHub). Once a feature has been completed, the feature branch is
deleted from both the developer’s repository and from the remote repository.

Release
A release branch is created when development has been completed for a particular target release.

The naming convention for release branchesis release-[version-number]. For example,

http://nvie.com/posts/a-successful-git-branching-model/

release-1.0. Release branches are branched from the develop branch and will be created in both
the remote repository, and in the local repository of any developer working on the release.

Once the release is ready to be distributed, the release branch is merged into the master branch,
and the master branch is tagged with the release number. If any changes were made to the release
branch after it was branched from develop, it will then also need to be merged back to develop.
The release branch is then deleted from both local and the remote repository.

Hotfix

Ahotfix branch is created when an issue is discovered for the latest release. Hotfix branches are
similar to release branches in naming convention and how they are treated when complete. The
difference is that they are branched from the mastexr branch rather than the develop branch.
Naming convention is hotfix—-[version—number]. For example hotfix-1.0.1.

Just like a release branch, once development and testing are complete for the hotfix, it is merged into
the develop and the master branch, which is then tagged with the updated version number. The
hotfix branch is then deleted from both the remote and local repositories.

Support

A support branch is created when a critical bug is found on a previous version of the application and a
customer using that version cannot upgrade to the most recent version. A support branch will be
branched from the master branch at that version’s tag on the master branch. For example, if the
latest released version number is 1.0 and a bug is found in version 1.0, a hot £ix branch rather than a
support branch would be created. That hot £ix branch is then merged back into master, and
master would be tagged 1.0.1. If an issue is found with the 1.0.1 version after version 2.0 has already
been released (and merged into master), then a support branch would be created by branching
from the 1.0.1 tag position in the master branch. That support branch is never merged back into
any other branch. It remains as long as that version of the application needs to be supported. Once the
change has been made to the support branch and tested and released, it should be tagged with an
appropriate version number (i.e. 1.0.2). If further support needs to be done on a previous release, a
hotfix branch could be branched from the support branch and then merged back into the
support branch, similar to how hot fix branches are used on the most recent version on the
master branch.

Custom

Custom branches are special branches used by the organizations that are contributing to the
development of the application and includes code/data that is specific to their organization. The naming
convention for a custombranch is custom-[organization domain]. For example custom-
ccvonline. Itis up to each of those organizations to determine how their branch is managed and
how and when code from the develop and/or master branches is merged into their specific custom
branch.

Using SmartGit

New Branch
It is easiest if you switch to the branch that you would like to branch from. For example if creating a
new release branch, switch to the develop branch.

Select Branch -> Check Out from the menu. Make sure that the correct branch/commit is selected in the
list of commits. You can filter the list of branch/commits based on selected branches using the
“Branches” button in the top right part of the screen. Once you’ve selected the correct commit, click
the “Check Out” button.

i~ ——— ™
<» Check Out —— - [éj

Check out a commit

Select the commit to check out. This allows to switch (back) the working tree to any commit.

Message Commit Date Auth =
[arigind P> develop] Created LI for editing roles. 07/24/2012 07:36.. Davi—| ||
Updated SecurityField control so that it works on a grid. 07/24/2012 08:38... Davi

Changed how IsPersonated information is saved. It's now saved to the authorization cookic 07/23/2012 11:48... Davi
Fixed the Excel export so that it works when grid is inside an updat panel, and if block didn't 07/23/2012 08:16... Davi
Add migration for adding Campus page, and update Defined Value migration to allow botr 07/23/2012 07:28... Davi

Update Rock Ul controls to render in a Bootstrap friendly manner 07/23/2012 06:28... Dawvi
Update attribute list to be sortable 07/22/201212:38... Dawi
Merge branch 'feature-drt-rework-field-types' into develop 07/22/201212:15... Dawvi
O Updated attribute ui to display a field type's qualifiers. 07/22/201212:14... Dawvi
Merge remote branch 'origin/develop’ into feature-drt-rework-field-types 07/19/201202:42... Dawvi
Migration to add DefinedTypes page. 07/19/201202:19... edm
Merge remote branch 'origin/develop’ into develop 07/19/2012 02:01... Dawi

Update boolean field names to be prefixed with "Is". For example "System” became 07/19/2012 02:01... Davi

=] Small change te seed data to get description on Security roles to show. N 07/19/201201:43... edm _

4 | 1 | 3

[Throw away local changes

[CheckOut] [Cancel]

Then enter the name for your new branch, and UNSELECT the “Track remote branch” option. In all of
the SmartGit dialog windows, this is the only place where we don’t use the default option.

s ™
<> Check Out [ﬂ]

Check out commit or switch to local branch

-~
Probably it's better switching to a local branch instead to check out ¢;
the commit.

(@ Switch to new local branch: release-drt-system-info-screen

—— | Track remote branch: | origin/develop +

() Check out commit without switching to a branch

[ok || cancel |

This creates a new branch in the local repository. You can view all the local and remote branches by
using the Branch -> Branch Manager menu option...

r ™
© Branch Manager —— — e =]
—
Branches Tags
Local Branch Remote or Tracked Branch Tracking State Add...
custom-ccvonline origin/custom-ccvonline R
lename...
custom-centralaz origin/custom-centralaz
develop origin/develop Switch To...
master origin/master
release-drt-system-info-screen h Delete...

origin/checkin-contracts
origin/feature-des-metric
origin/feature-jo-export
origin/gh-pages
origin/ServiceApiFeature

Committing Changes

Once you've created a new branch, it is important to commit changes often. You do have the option of
combining a commit with the previous commit by selecting the “Amend last commit instead of creating
new one” option...

- ™
<> Commit - — —— 5]
Commit local or staged changes .
Select the files you want to commit and provide a commit message. Q};’

Staged Changes (@ Local Changes

MName Directory) =

[Rock.csproj Reock = i
[0 Auth.cs Rock.DataTransferObjects/Cms i
[Block.cs Rock.DataTransferObjects/Cms i
[Blocknstance.cs Rock.DataTransferObjects/Cms i
[Filecs Rock.DataTransferObjects/Cms i
[HtmliContent.cs Rock.DataTransferObjects/Cms \
[Page.cs Rock.DataTransferObjects/Cms i
[[1 PageRoute.cs Rock.DataTransferObjects/Cms & i

Commit Message: Select from Log...

Add System Info page and migration, and update the framework so that most of the cache and dte objects +
are serializable, This is so the System Info page can serialize all the cached objects to a byte array to get an
aproximate estimate of how much memory the cached objects are using|

[T Amend last commit instead of creating new one il

Pushing Branch
To push a branch to the remote repository (GitHub) for other developers to see or work on, you simply
do a push when viewing the branch. Select the “Push” button...

[<> Push ﬁ“

Push local commits to the remote origin repository

Select which local branch(es) should be pushed
to the origin repository.

(@ Current branch 'release-drt-system-info-screen’

() All "matching” branches (already existing remotely)

| Push || cancel |

The first time you push to the remote repository, SmartGit will ask if you’d like to configure tracking for
the remote branch. You should select the “Configure” option...

[<» Push MW

Do you want to configure tracking for the current
branch?

For your current branch tracking (its corresponding remote
branch} has not been configured yet. Configuring tracking
will keep your local branches in sync with the remote
branches.

| Configure | | skip | [Cancel |

Now the branch will also be on the remote repository for other developers to pull to their local
repository...

s A
<» Branch Manager ﬂ
Branches Tags

Local Branch Remote or Tracked Branch Tracking State Add...
custom-ccvenline origin/custom-ccvenline R

lename...
custom-centralaz origin/custom-centralaz
develop origin/develop Switch To...
master origin/master
release-drt-system-info-screen or\gin."raleasa-drt-sy;tem-info-_scraen Delete...

origin/checkin-contracts
origin/feature-dcs-metric
origin/feature-jo-export
origin/gh-pages
origin/ServiceApiFeature

Switching Branch

Prior to switching branches, you should commit any uncommitted work that has been made for the
current branch. Git will attempt to update your working copy with all the committed changes for the
branch that you switch to. If you have uncommitted changes, You will likely get an error from Git that
will prevent you from switching.

To switch branches, select the Branch -> Switch menu option or the Switch button in the toolbar. This
will display the branch dialog and you can choose the branch to switch to. Again, Git will update your
working copy to reflect the committed state of the branch that you switched to.

Merging

To merge one branch into another, first switch to the branch that you would like to merge to. For
example when merging changes from a feature branch, first make sure all the changes are committed
in that branch, then switch to the develop branch.

Select the Branch -> Merge menu option, or the Merge toolbar button. From the Merge dialog window,
select the branch/commit that you’d like to merge from...

r ~
<> Merge &J
Merge
Select the branch er commit te merge and how they should be merged into the Werking Tree. ﬁ%

Message Commit Date Author
[originl:P release-drt-system-info—screen]Add em Info page and migration, and update t 06:50 AM David Tu

origins develop| Created Ul for editing roles, 07/24/2012 07:36... David Tu
Updated SecurityField control so that it works on a grid. 07/24/201206:38... David Tu

Changed how IsPersonated information is saved. It's now saved to the authorization cookic 07/23/201211:48... David Tu
Fixed the Excel export so that it works when grid is inside an updat panel, and if block didn't 07/23/2012 08:16... David Tu
Add migration for adding Campus page, and update Defined Value migration to allow botk 07/23/2012 07:28... David Tu

Update Rock Ul controls to render in a Bootstrap friendly manner 07/23/201206:28... David Tu
Update attribute list to be sortable 07/22/201212:38... David Tu
Merge branch ‘feature-drt-rework-field-types' into develop 07/22/201212:15... David Tu
Updated attribute ui to display a field type's qualifiers. 07/22/201212:14... David Tu
Merge remote branch 'erigin/develop’ into feature-drt-rework-field-types 07/19/201202:42... David Tu
Migration to add DefinedTypes page. 07/19/201202:19... edmistj -
] 1 b

Merge: @ Branch consisting of selected commit and its ancesters (prepares merge-commit; option to 'squash’ when committing)
[]¥ possible, just move the branch pointer forward (fast-forward)
() Only the selected commits (cherry-pick)

Apply changes in reverse (revert command)

[Mege || cance |

All of the changes from the branch will now be displayed as uncommitted changes to the current
branch. There may be some files with conflicts if Git could not figure out how to merge changes from
the source branch into the target branch. In this case you will need to look at each conflicted file and
choose the appropriate change. Once you’ve saved the change, SmartGit will ask you if the change

would be staged (select yes). Once you’ve resolved any conflicts, commit all the changes, and then if
necessary do a Pull and Push to update the remote repository.

