-
Notifications
You must be signed in to change notification settings - Fork 61
/
spod.m
527 lines (496 loc) · 19.5 KB
/
spod.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
function [L,P,f,Lc,A] = spod(X,varargin)
%SPOD Spectral proper orthogonal decomposition
% [L,P,F] = SPOD(X) returns the spectral proper orthogonal decomposition
% of the data matrix X whose first dimension is time. X can have any
% number of additional spatial dimensions or variable indices. The
% columns of L contain the modal energy spectra. P contains the SPOD
% modes whose spatial dimensions are identical to those of X. The first
% index of P is the frequency and the last one the mode number ranked in
% descending order by modal energy. F is the frequency vector. If DT is
% not specified, a unit frequency sampling is assumed. For real-valued
% data, adjusted one-sided eigenvalue spectra are returned. Although
% SPOD(X) automatically chooses default spectral estimation parameters,
% the user is encouraged to manually specify problem-dependent parameters
% on a case-to-case basis.
%
% [L,P,F] = SPOD(X,WINDOW) uses a temporal window. If WINDOW is a vector,
% X is divided into segments of the same length as WINDOW. Each segment
% is then weighted (pointwise multiplied) by WINDOW. If WINDOW is a
% scalar, a Hamming window of length WINDOW is used. If WINDOW is omitted
% or set as empty, a Hamming window is used. Multitaper-Welch estimates
% are computed with the syntax SPOD(X,[NFFT BW],...), where WINDOW is an
% array of two scalars. NFFT is the window length and BW the
% time-halfbandwidth product. See [4] for details. By default, a number
% of FLOOR(2*BW)-1 discrete prolate spheroidal sequences (DPSS) is used
% as tapers. Custom tapers can be specified in a column matrix of tapers
% as WINDOW.
%
% [L,P,F] = SPOD(X,WINDOW,WEIGHT) uses a spatial inner product weight in
% which the SPOD modes are optimally ranked and orthogonal at each
% frequency. WEIGHT must have the same spatial dimensions as X.
%
% [L,P,F] = SPOD(X,WINDOW,WEIGHT,NOVERLAP) increases the number of
% segments by overlapping consecutive blocks by NOVERLAP snapshots.
% NOVERLAP defaults to 50% of the length of WINDOW if not specified.
%
% [L,P,F] = SPOD(X,WINDOW,WEIGHT,NOVERLAP,DT) uses the time step DT
% between consecutive snapshots to determine a physical frequency F.
%
% [L,P,F] = SPOD(XFUN,...,OPTS) accepts a function handle XFUN that
% provides the i-th snapshot as x(i) = XFUN(i). Like the data matrix X,
% x(i) can have any dimension. It is recommended to specify the total
% number of snaphots in OPTS.nt (see below). If not specified, OPTS.nt
% defaults to 10000. OPTS.isreal should be specified if a two-sided
% spectrum is desired even though the data is real-valued, or if the data
% is initially real-valued, but complex-valued for later snaphots.
%
% [L,P,F] = SPOD(X,WINDOW,WEIGHT,NOVERLAP,DT,OPTS) specifies options:
% OPTS.savefft: save FFT blocks to avoid storing all data in memory [{false} | true]
% OPTS.deletefft: delete FFT blocks after calculation is completed [{true} | false]
% OPTS.savedir: directory where FFT blocks and results are saved [ string | {'results'}]
% OPTS.savefreqs: save results for specified frequencies only [ vector | {all} ]
% OPTS.loadfft: load previously saved FFT blocks instead of recalculating [{false} | true]
% OPTS.mean: provide a mean that is subtracted from each snapshot [ array of size X | 'blockwise' | {temporal mean of X; 0 if XFUN} ]
% OPTS.nsave: number of most energtic modes to be saved [ integer | {all} ]
% OPTS.isreal: complex-valuedity of X or represented by XFUN [{determined from X or first snapshot if XFUN is used} | logical ]
% OPTS.nt: number of snapshots [ integer | {determined from X; defaults to 10000 if XFUN is used}]
% OPTS.conflvl: confidence interval level [ scalar between 0 and 1 | {0.95} ]
% OPTS.normvar: normalize each block by pointwise variance [{false} | true]
%
% [L,PFUN,F] = SPOD(...,OPTS) returns a function PFUN instead of the SPOD
% data matrix P if OPTS.savefft is true. The function returns the j-th
% most energetic SPOD mode at the i-th frequency as p = PFUN(i,j) by
% reading the modes from the saved files. Saving the data on the hard
% drive avoids memory problems when P is large. The modal energy spectra
% are returned in L, and saved in a separate file 'spod_energy.mat'.
%
% [L,P,F,Lc] = SPOD(...) returns the confidence interval Lc of L. By
% default, the lower and upper 95% confidence levels of the j-th most
% energetic SPOD mode at the i-th frequency are returned in Lc(i,j,1) and
% Lc(i,j,2), respectively. The OPTS.conflvl*100% confidence interval is
% returned if OPTS.conflvl is set. For example, by setting OPTS.conflvl =
% 0.99 we obtain the 99% confidence interval. A chi-squared distribution
% is used, i.e. we assume a standard normal distribution of the SPOD
% eigenvalues.
%
% [L,P,F,Lc,A] = SPOD(...) returns the block-wise expansion coefficients
% in A. INVSPOD(P,A,WINDOW,NOVLP) uses A to reconstruct the original data
% from the SPOD.
%
% References:
% [1] Towne, A. and Schmidt, O. T. and Colonius, T., Spectral proper
% orthogonal decomposition and its relationship to dynamic mode
% decomposition and resolvent analysis, J. of Fluid Mech. 847, 821–867, 2018
% [2] Schmidt, O. T. and Towne, A. and Rigas, G. and Colonius, T. and
% Bres, G. A., Spectral analysis of jet turbulence, J. of Fluid Mech. 855, 953–982, 2018
% [3] Lumley, J. L., Stochastic tools in turbulence, Academic Press,
% 1970
% [4] Schmidt, O. T., Spectral proper orthogonal decomposition using
% multitaper estimates, Theoretical and Computational Fluid
% Dynamics, 2022, 1-14, DOI 10.1007/s00162-022-00626-x,
% https://rdcu.be/cUtP3
%
% O. T. Schmidt (oschmidt@ucsd.edu), A. Towne, T. Colonius
% Last revision: 5-Sep-2022 (OTS)
if nargin==6
opts = varargin{5};
if ~isfield(opts,'savefft')
opts.savefft = false;
end
else
opts.savefft = false;
end
% get problem dimensions
if isa(X, 'function_handle')
xfun = true;
if isfield(opts,'nt')
nt = opts.nt;
else
warning(['Please specify number of snapshots in "opts.nt".' ...
' Trying to use default value of 10000 snapshots.'])
nt = 10000;
end
sizex = size(X(1));
nx = prod(sizex);
dim = [nt sizex];
else
xfun = false;
dim = size(X);
nt = dim(1);
nx = prod(dim(2:end));
end
% Determine whether data is real-valued or complex-valued to decide on one-
% or two-sided spectrum. If "opts.isreal" is not set, determine from data.
% If data is provided through a function handle XFUN and opts.isreal is not
% specified, deternime complex-valuedity from first snapshot.
if isfield(opts,'isreal')
isrealx = opts.isreal;
elseif ~xfun
isrealx = isreal(X);
else
x1 = X(1);
isrealx = isreal(x1);
clear x1;
end
% get default spectral estimation parameters and options
[window,weight,nOvlp,dt,nDFT,nBlks,nTapers] = spod_parser(nt,nx,isrealx,varargin{:});
nSamples = nBlks*nTapers;
% determine correction for FFT window gain
winWeight = 1./mean(abs(window)); % row vector for multitaper
% Use data mean if not provided through "opts.mean".
blk_mean = false;
if isfield(opts,'mean')
if strcmp('blockwise',opts.mean)
blk_mean = true;
end
end
if blk_mean
mean_name = 'blockwise mean';
elseif isfield(opts,'mean')
x_mean = opts.mean(:);
mean_name = 'user specified';
else
switch xfun
case true
x_mean = 0;
warning('No mean subtracted. Consider providing long-time mean through "opts.mean" for better accuracy at low frequencies.');
mean_name = '0';
case false
x_mean = mean(X,1);
x_mean = x_mean(:);
mean_name = 'data mean';
end
end
disp(['Mean : ' mean_name]);
% obtain frequency axis
f = (0:nDFT-1)/dt/nDFT;
if isrealx
f = (0:ceil(nDFT/2))/nDFT/dt;
else
if mod(nDFT,2)==0
f(nDFT/2+1:end) = f(nDFT/2+1:end)-1/dt;
else
f((nDFT+1)/2+1:end) = f((nDFT+1)/2+1:end)-1/dt;
end
end
nFreq = length(f);
% set default for confidence interval
if nargout>=4
confint = true;
if ~isfield(opts,'conflvl')
opts.conflvl = 0.95;
end
xi2_upper = 2*gammaincinv(1-opts.conflvl,nBlks);
xi2_lower = 2*gammaincinv( opts.conflvl,nBlks);
Lc = zeros(nFreq,nBlks,2);
else
confint = false;
Lc = [];
end
% set defaults for options for saving FFT data blocks
if ~isfield(opts,'savefreqs'), opts.savefreqs = 1:nFreq; end
if opts.savefft
if ~isfield(opts,'savedir'), opts.savedir = pwd; end
saveDir = fullfile(opts.savedir,['nfft' num2str(nDFT) '_novlp' num2str(nOvlp) '_nblks' num2str(nSamples)]);
if ~exist(saveDir,'dir'), mkdir(saveDir); end
if ~isfield(opts,'nsave'), opts.nsave = nSamples; end
if ~isfield(opts,'deletefft'), opts.deletefft = true; end
omitFreqIdx = 1:nFreq; omitFreqIdx(opts.savefreqs) = [];
end
if ~isfield(opts,'loadfft'), opts.loadfft = false; end
if ~isfield(opts,'normvar'), opts.normvar = false; end
% loop over number of blocks and generate Fourier realizations
disp(' ')
disp('Calculating temporal DFT')
disp('------------------------------------')
if ~opts.savefft
Q_hat = zeros(nFreq,nx,nSamples);
end
Q_blk = zeros(nDFT,nx);
for iBlk = 1:nBlks
% check if all FFT files are pre-saved
all_exist = 0;
if opts.loadfft
for iFreq = opts.savefreqs
if ~isempty(dir(fullfile(saveDir,['fft_block' num2str([iBlk iFreq],'%.4i_freq%.4i.mat')])))
all_exist = all_exist + 1;
end
end
end
if opts.loadfft && all_exist==length(opts.savefreqs)
disp(['loading FFT of block ' num2str(iBlk) '/' num2str(nBlks) ' from file'])
else
% get time index for present block
offset = min((iBlk-1)*(nDFT-nOvlp)+nDFT,nt)-nDFT;
timeIdx = (1:nDFT) + offset;
% build present block
if blk_mean, x_mean = 0; end
if xfun
for ti = timeIdx
x = X(ti);
Q_blk(ti-offset,:) = x(:) - x_mean;
end
else
Q_blk = bsxfun(@minus,X(timeIdx,:),x_mean.');
end
% if block mean is to be subtracted, do it now that all data is
% collected
if blk_mean
Q_blk = bsxfun(@minus,Q_blk,mean(Q_blk,1));
end
% normalize by pointwise variance
if opts.normvar
Q_var = sum(bsxfun(@minus,Q_blk,mean(Q_blk,1)).^2,1)/(nDFT-1);
% address division-by-0 problem with NaNs
Q_var(Q_var<4*eps) = 1;
Q_blk = bsxfun(@rdivide,Q_blk,Q_var);
end
for iTaper = 1:nTapers
iSample = iBlk+((iTaper-1)*nBlks);
if nTapers>1
taperString = [', taper ' num2str(iTaper) '/' num2str(nTapers)];
else
taperString = [];
end
disp(['block ' num2str(iBlk) '/' num2str(nBlks) taperString ' (snapshots ' ...
num2str(timeIdx(1)) ':' num2str(timeIdx(end)) ')'])
% window and Fourier transform block
Q_blk_win = bsxfun(@times,Q_blk,window(:,iTaper));
Q_blk_hat = winWeight(iTaper)/nDFT*fft(Q_blk_win);
Q_blk_hat = Q_blk_hat(1:nFreq,:);
if ~opts.savefft
% keep FFT blocks in memory
Q_hat(:,:,iSample) = Q_blk_hat;
else
for iFreq = opts.savefreqs
file = fullfile(saveDir,['fft_block' num2str([iSample iFreq],'%.4i_freq%.4i')]);
Q_blk_hat_fi = single(Q_blk_hat(iFreq,:));
save(file,'Q_blk_hat_fi','-v7.3');
end
end
end
end
end
% loop over all frequencies and calculate SPOD
L = zeros(nFreq,nSamples);
A = zeros(nFreq,nSamples,nSamples);
disp(' ')
if nTapers>1
disp('Calculating Multitaper SPOD')
else
disp('Calculating SPOD')
end
disp('------------------------------------')
% unbiased estimator of CSD
if blk_mean
nIndep = nSamples-1;
else
nIndep = nSamples;
end
if ~opts.savefft
% keep everything in memory (default)
P = zeros(nFreq,nx,nSamples);
for iFreq = 1:nFreq
disp(['frequency ' num2str(iFreq) '/' num2str(nFreq) ' (f=' num2str(f(iFreq),'%.3g') ')'])
Q_hat_f = squeeze(Q_hat(iFreq,:,:));
M = Q_hat_f'*bsxfun(@times,Q_hat_f,weight)/nIndep;
[Theta,Lambda] = eig(M);
Lambda = diag(Lambda);
[Lambda,idx] = sort(Lambda,'descend');
Theta = Theta(:,idx);
Psi = Q_hat_f*Theta*diag(1./sqrt(Lambda)/sqrt(nIndep));
P(iFreq,:,:) = Psi;
A(iFreq,:,:) = diag(sqrt(nBlks)*sqrt(Lambda))*Theta';
L(iFreq,:) = abs(Lambda);
% adjust mode energies for one-sided spectrum
if isrealx
if iFreq~=1&&iFreq~=nFreq
L(iFreq,:) = 2*L(iFreq,:);
end
end
if confint
Lc(iFreq,:,1) = L(iFreq,:)*2*nIndep/xi2_lower;
Lc(iFreq,:,2) = L(iFreq,:)*2*nIndep/xi2_upper;
end
end
P = reshape(P,[nFreq dim(2:end) nSamples]);
else
% save FFT blocks on hard drive (for large data)
for iFreq = opts.savefreqs
disp(['frequency ' num2str(iFreq) '/' num2str(nFreq) ' (f=' num2str(f(iFreq),'%.3g') ')'])
% load FFT data from previously saved file
Q_hat_f = zeros(nx,nSamples);
for iBlk = 1:nSamples
file = fullfile(saveDir,['fft_block' num2str([iBlk iFreq],'%.4i_freq%.4i')]);
load(file,'Q_blk_hat_fi');
Q_hat_f(:,iBlk) = Q_blk_hat_fi;
end
M = Q_hat_f'*bsxfun(@times,Q_hat_f,weight)/nIndep;
[Theta,Lambda] = eig(M);
Lambda = diag(Lambda);
[Lambda,idx] = sort(Lambda,'descend');
Theta = Theta(:,idx);
Psi = Q_hat_f*Theta*diag(1./sqrt(Lambda)/sqrt(nIndep));
A(iFreq,:,:) = diag(sqrt(nIndep)*sqrt(Lambda))*Theta';
if opts.nsave>0
Psi = single(reshape(Psi(:,1:opts.nsave),[dim(2:end) opts.nsave]));
file = fullfile(saveDir,['spod_f' num2str(iFreq,'%.4i')]);
save(file,'Psi','-v7.3');
else
Psi = [];
end
L(iFreq,:) = abs(Lambda);
% adjust mode energies for one-sided spectrum
if isrealx
if iFreq~=1&&iFreq~=nFreq
L(iFreq,:) = 2*L(iFreq,:);
end
end
if confint
Lc(iFreq,:,1) = L(iFreq,:)*2*nIndep/xi2_lower;
Lc(iFreq,:,2) = L(iFreq,:)*2*nIndep/xi2_upper;
end
end
% return anonymous function that loads SPOD modes from files instead of
% actual solution
P = @(iFreq,iMode) getmode(iFreq,iMode,saveDir);
file = fullfile(saveDir,'spod_energy');
save(file,'L','Lc','f','A','-v7.3');
% clean up
if opts.deletefft
for iFreq = opts.savefreqs
for iBlk = 1:nSamples
file = fullfile(saveDir,['fft_block' num2str([iBlk iFreq],'%.4i_freq%.4i.mat')]);
delete(file);
end
end
end
disp(' ')
disp(['Results saved in folder ' saveDir])
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [P] = getmode(iFreq,iMode,saveDir)
%GETMODE Anonymous function that loads SPOD modes from files
file = matfile(fullfile(saveDir,['spod_f' num2str(iFreq,'%.4i')]));
dim = size(file.Psi);
for di = 1:length(dim)-1
idx{di} = 1:dim(di);
end
idx{di+1} = iMode;
P = file.Psi(idx{:});
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [window,weight,nOvlp,dt,nDFT,nBlks,nTapers] = spod_parser(nt,nx,isrealx,varargin)
%SPOD_PARSER Parser for SPOD parameters
% read input arguments from cell array
window = []; weight = []; nOvlp = []; dt = [];
nvarargin = length(varargin);
if nvarargin >= 1
window = varargin{1};
if nvarargin >= 2
weight = varargin{2};
if nvarargin >= 3
nOvlp = varargin{3};
if nvarargin >= 4
dt = varargin{4};
end
end
end
end
if size(window,2)>size(window,1) % ensure column matrix format
window = permute(window,[2 1]);
end
% check arguments and determine default spectral estimation parameters
% window size and type
if isempty(window)
nDFT = 2^floor(log2(nt/10));
window = hammwin(nDFT);
window_name = 'Hamming';
elseif length(window)==1
nDFT = window;
window = hammwin(window);
window_name = 'Hamming';
elseif length(window)==2
nDFT = window(1);
bw = window(2);
nTapers = floor(2*bw)-1;
window = slepsec(nDFT,bw,nTapers);
window_name = 'DPSS';
elseif length(window) == 2^nextpow2(length(window))
nDFT = length(window);
window_name = 'user specified';
else
nDFT = length(window);
window_name = 'user specified';
end
nTapers = size(window,2);
weight = weight(:);
% block overlap
if isempty(nOvlp)
nOvlp = floor(nDFT/2);
elseif nOvlp > nDFT-1
error('Overlap too large.')
end
% time step between consecutive snapshots
if isempty(dt)
dt = 1;
end
% inner product weight
if isempty(weight)
weight = ones(nx,1);
weight_name = 'uniform';
elseif numel(weight) ~= nx
error('Weights must have the same spatial dimensions as data.');
else
weight_name = 'user specified';
end
% number of blocks
nBlks = floor((nt-nOvlp)/(nDFT-nOvlp));
% test feasibility
if nDFT < 4 || nBlks*nTapers < 3
error('Spectral estimation parameters not meaningful.');
end
% display parameter summary
disp(' ')
if nTapers>1
disp('Multitaper SPOD parameters')
else
disp('SPOD parameters')
end
disp('------------------------------------')
if isrealx
disp('Spectrum type : one-sided (real-valued signal)')
else
disp('Spectrum type : two-sided (complex-valued signal)')
end
disp(['No. of snaphots per block : ' num2str(nDFT)])
disp(['Block overlap : ' num2str(nOvlp)])
disp(['No. of blocks : ' num2str(nBlks)])
disp(['Windowing fct. (time) : ' window_name])
disp(['Weighting fct. (space) : ' weight_name])
if nTapers>1
disp(['No. of tapers : ' num2str(nTapers)])
end
if exist('bw','var')
disp(['Time-halfbandwidth product: ' num2str(bw)])
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [window] = hammwin(N)
%HAMMWIN Standard Hamming window of lentgh N
window = 0.54-0.46*cos(2*pi*(0:N-1)/(N-1))';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [window] = slepsec(nDFT,bw,nTapers)
%SLEPSEC Discrete prolate spheroidal sequences of length nDFT and
%time-halfbandwidth product bw
df = bw/nDFT;
j = 1:nDFT-1;
r1 = [df*2*pi, sin(2*pi*df*j)./j];
S = toeplitz(r1);
[U,L] = eig(S);
[~,idx] = sort(diag(L),'descend');
U = U(:,idx);
window = U(:,1:nTapers);
end