
S-Port Traffic

Introduction:
The S-port bus is available on most FrSky receivers to connect external sensor devices to the receiver to
gather sensor data for relay back to the transmitter. It carries only sensor data, never servo channel data. It is
sometimes used to update firmware but that is beyond the scope of this paper. Sensors internal to the
receiver like RSSI or rx-volts are never sent over the s-port line and hence do not appear here. Here is how
s-port works:

The S-Port Bus:
The bus is a bi-directional single wire line (plus power
and ground) identified by the logo above. S-port
connections are available on s-port rated sensors and most
recent FrSky receivers. Most sensor devices have two
sets of s-port pins connected in parallel so they are
interchangeable, like this High Precision Variometer.
There is no defined “in” or “out”. This arrangement
permits daisy-chaining several sensors on the same bus,
putting them all in parallel so devices on the bus all see
the same signal at the same time.

The bus is a master/slave polling arrangement running at 57.6k-baud 8N1 inverted. More details of the
protocol are available here: https://github.com/yaapu/FrskyTelemetryScript/wiki/FrSky-SPort-protocol-specs

The Master, Polling:
The receiver, which is the master, sends out a short polling frame every 12ms. This frame consists of a flag
byte signifying a poll and a physical device ID byte. The device ID is five bits in length so there may be up
to 32 unique device IDs, although FrSky only polls 28 devices numbered 0-27. Polling begins with ID: 0
and advances to ID: 27 with one device being polled each 12ms. After ID: 27 the polling rotation repeats.
This rotating polling sequence will be modified by responses from devices present. More on that later.

Slave Devices:
All slave devices present are required to respond when their ID is polled. They are not required to provide
data however. If the device has no data to provide, it issues a null response frame. This happens quite a lot
as devices typically don’t sample the real world very frequently.

If the device does have data to provide, it responds with a data frame. Data frames consist of a “type” byte
indicating data, a two byte sensor #, and a four byte data value, plus a CRC byte. A physical device may
contain multiple sensors. The altimeter illustrated above, for example, has the physical device ID: 0 and
contains an Altitude sensor #100 and a Variometer sensor #110. Note that it is the physical device that is
polled, not the sensor, and the slave provides the sensor #s, not the receiver.

https://github.com/yaapu/FrskyTelemetryScript/wiki/FrSky-SPort-protocol-specs

Modified Polling Sequence:
When a device responds to a poll the receiver remembers that this device is present and responding. Devices
that are responding are polled more frequently. The receiver polls all present devices sequentially and then
polls the next one not-present device to find new devices if they start responding. This cycle repeats. Thus if
only one device is present it will be polled every 24ms, alternating with polling the next sequential not-
present device ID. With two devices, each would be polled every 36ms, as in the example below.

Example:
On the following page is a sample s-port log segment recorded with the S-Port_Snoop in “normal” mode
which organizes and simplifies some of the data. When viewing this log, remember that a Null response is
still a response and that zero is a valid data value. Two external sensors were connected during this log, a
Vario and a Current Sensor. There was no source battery or load connected to the current sensor.

• First note the timing in the milliseconds column, 12ms per poll.

• On line 323, device ID: 26 was polled with no response, a not-present device

• On line 326, device ID: 27 was polled, also not present. This is the last device so the rotation would
begin again.

• On line 324 the Vario was polled and a Null response was received, present but no data provided.

• On line 325 the FAS-40 Current Sensor was polled, also with a Null response.

• In sequence: The first present device was polled on line 324, the Vario. Then the next present device
on line 325, the FAS-40. With all present devices polled, one not-present device is polled on line
326, ID: 27. Then it cycles again with the present devices polled on lines 327-328, and then the next
not-present device ID: 1 on line 329. (Since the logger recognizes this ID it is identified as a FLVSS
even though it is not present.)

• Further down the log there are some data responses. The device responds to the poll with a data flag
instead of a Null and the sensor # is provided. It is the device that decides which sensor data to
provide and when. The logger translates the sensor # to a name like “Volts” if it’s known. Data
values provided in the log like the “Alt 65.43” on line 345 are just raw decimal numbers. Scaling that
to an altitude in feet or meters is done downstream in the transmitter.

Telemetry with Multi-rx:

This paper describes the operation of S-port in a classic installation with one receiver and one or more
external sensors. Newer ACCESS firmware permits s-port connection to multiple receivers in a redundant
“Trio” installation. Mike Daily detailed such an installation here:
https://www.rcgroups.com/forums/showpost.php?p=47398449&postcount=8918

Looking at such an installation with S-Port_Snoop shows that traffic is the same as described here with a
single rx. Telemetry at the tx continues even if one rx is disconnected. It’s not clear how the receivers work
out which is master of the s-port. This type of s-port operation needs further investigation.

https://www.rcgroups.com/forums/showpost.php?p=47398449&postcount=8918

Log Sample from S-Port_Snoop:

	Introduction:
	The S-Port Bus:
	The Master, Polling:
	Slave Devices:
	Modified Polling Sequence:
	Example:

