-
Notifications
You must be signed in to change notification settings - Fork 2
/
convert_rwkv_checkpoint_to_hf.py
216 lines (186 loc) · 8.48 KB
/
convert_rwkv_checkpoint_to_hf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert a RWKV checkpoint from BlinkDL to the Hugging Face format."""
import argparse
import gc
import json
import os
import re
import torch
from ringrwkv.configuration_rwkv_world import RwkvConfig
from ringrwkv.rwkv_tokenizer import TRIE_TOKENIZER
from ringrwkv.modehf_world import RwkvForCausalLM
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
NUM_HIDDEN_LAYERS_MAPPING = {
"169M": 12,
"430M": 24,
"1B5": 24,
"3B": 32,
"7B": 32,
"14B": 40,
}
HIDEN_SIZE_MAPPING = {
"169M": 768,
"430M": 1024,
"1B5": 2048,
"3B": 2560,
"7B": 4096,
"14B": 5120,
}
def convert_state_dict(state_dict):
state_dict_keys = list(state_dict.keys())
for name in state_dict_keys:
weight = state_dict.pop(name)
# emb -> embedding
if name.startswith("emb."):
name = name.replace("emb.", "embeddings.")
# ln_0 -> pre_ln (only present at block 0)
if name.startswith("blocks.0.ln0"):
name = name.replace("blocks.0.ln0", "blocks.0.pre_ln")
# att -> attention
name = re.sub(r"blocks\.(\d+)\.att", r"blocks.\1.attention", name)
# ffn -> feed_forward
name = re.sub(r"blocks\.(\d+)\.ffn", r"blocks.\1.feed_forward", name)
# time_mix_k -> time_mix_key and reshape
if name.endswith(".time_mix_k"):
name = name.replace(".time_mix_k", ".time_mix_key")
# time_mix_v -> time_mix_value and reshape
if name.endswith(".time_mix_v"):
name = name.replace(".time_mix_v", ".time_mix_value")
# time_mix_r -> time_mix_key and reshape
if name.endswith(".time_mix_r"):
name = name.replace(".time_mix_r", ".time_mix_receptance")
if name != "head.weight":
name = "rwkv." + name
state_dict[name] = weight
return state_dict
def convert_rmkv_checkpoint_to_hf_format(
repo_id, checkpoint_file, output_dir, size=None, tokenizer_file=None, push_to_hub=False, model_name=None
):
# 1. If possible, build the tokenizer.
# if tokenizer_file is None:
# print("No `--tokenizer_file` provided, we will use the default tokenizer.")
# vocab_size = 50277
# tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
# else:
# tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_file)
# vocab_size = len(tokenizer)
# tokenizer.save_pretrained(output_dir)
if tokenizer_file is None:
print("No `--tokenizer_file` provided, but the world tokenizer need.")
exit()
vocab_size = 65536
tokenizer = TRIE_TOKENIZER('./ringrwkv/rwkv_vocab_v20230424.txt')
print('testing tokenizer...')
print(tokenizer.decode(tokenizer.encode("你好,我是RWKV,现在你正在将我由原生转为HF格式")))
# 2. Build the config
possible_sizes = list(NUM_HIDDEN_LAYERS_MAPPING.keys())
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
size = candidate
break
if size is None:
raise ValueError("Could not infer the size, please provide it with the `--size` argument.")
if size not in possible_sizes:
raise ValueError(f"`size` should be one of {possible_sizes}, got {size}.")
config = RwkvConfig(
vocab_size=vocab_size,
num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size],
hidden_size=HIDEN_SIZE_MAPPING[size],
)
config.save_pretrained(output_dir)
# 3. Download model file then convert state_dict
model_file = checkpoint_file
state_dict = torch.load(model_file, map_location="cpu")
state_dict = convert_state_dict(state_dict)
# 4. Split in shards and save
shards, index = shard_checkpoint(state_dict)
for shard_file, shard in shards.items():
torch.save(shard, os.path.join(output_dir, shard_file))
if index is not None:
save_index_file = os.path.join(output_dir, WEIGHTS_INDEX_NAME)
# Save the index as well
with open(save_index_file, "w", encoding="utf-8") as f:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
f.write(content)
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
"Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model."
)
shard_files = list(shards.keys())
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
state_dict = torch.load(os.path.join(output_dir, shard_file))
torch.save({k: v.cpu().clone() for k, v in state_dict.items()}, os.path.join(output_dir, shard_file))
del state_dict
gc.collect()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
#"--repo_id", default="rwkv-4-1.5B-world", type=str, required=False, help="Repo ID from which to pull the checkpoint."
#"--repo_id", default="rwkv-4-3B-world", type=str, required=False, help="Repo ID from which to pull the checkpoint."
#"--repo_id", default="rwkv-4-0.4B-world", type=str, required=False, help="Repo ID from which to pull the checkpoint."
#"--repo_id", default="rwkv-4-0.1B-world", type=str, required=False, help="Repo ID from which to pull the checkpoint."
"--repo_id", default="rwkv-4-7B-world", type=str, required=False, help="Repo ID from which to pull the checkpoint."
)
parser.add_argument(
#"--checkpoint_file", default="RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth", type=str, required=False, help="Name of the checkpoint file in the repo."
#"--checkpoint_file", default="RWKV-4-World-3B-v1-20230619-ctx4096.pth", type=str, required=False, help="Name of the checkpoint file in the repo."
#"--checkpoint_file", default="RWKV-4-World-0.4B-v1-20230529-ctx4096.pth", type=str, required=False, help="Name of the checkpoint file in the repo."
#"--checkpoint_file", default="RWKV-4-World-0.1B-v1-20230520-ctx4096.pth", type=str, required=False, help="Name of the checkpoint file in the repo."
"--checkpoint_file", default="RWKV-4-World-7B-v1-20230626-ctx4096.pth", type=str, required=False, help="Name of the checkpoint file in the repo."
)
parser.add_argument(
# "--output_dir", default="./RWKV-4-World-1.5B", type=str, required=False, help="Where to save the converted model."
#"--output_dir", default="./RWKV-4-World-3B", type=str, required=False, help="Where to save the converted model."
#"--output_dir", default="./RWKV-4-World-0.4B", type=str, required=False, help="Where to save the converted model."
#"--output_dir", default="./RWKV-4-World-0.1B", type=str, required=False, help="Where to save the converted model."
"--output_dir", default="./RWKV-4-World-7B", type=str, required=False, help="Where to save the converted model."
)
parser.add_argument(
"--tokenizer_file",
default='rwkv_vocab_v20230424.txt',
type=str,
help="Path to the tokenizer file to use (if not provided, only the model is converted).",
)
parser.add_argument(
"--size",
#default='1B5',
#default='3B',
#default='430M',
#default='169M',
default='7B',
type=str,
help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.",
)
parser.add_argument(
"--model_name",
default=None,
type=str,
help="Name of the pushed model on the Hub, including the username / organization.",
)
args = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
model_name=args.model_name,
)