
HIGH-PERFORMANCE
APPLICATION

P E R F O R M A N C E I S T H E K E Y T O T H E
S U C C E S S O F A N A P P L I C A T I O N

CACHING AN APPLICATION 2022

CONTENTS
Table of

I N T R O D U C T I O N

C H A L L E N G E S

S O L U T I O N S

B E N E F I T S

S T R A T E G Y

I M P A C T

3

4

5

6

7

8

INTRODUCTION
Any application needs four key things, that is visualisation, data, security, and optimisation.

The main objective of this case study is to optimise the application, which is data enriching

and has a data source in terabytes. To provide the user with a very smooth application

experience is our main motive.

User Interface or experience is the key

for any application to be successful. To

give the user the best experience of a

data-enriched application, refresh and

loading time is the main key. For an

app having data in terabytes, it may

take around a minute or more to load

cause of the big data. It will result in a

bad user experience with a loss of

interest in it, irrespective of the data or

quality of the application. If the app is

lagging then nothing will work.

"If your application is lagging then boot

up else the future will be far"

APPLICATION KEYS

-Utkarsh Shukla

CHALLENGES

High traffic means a large number of simultaneous requests from

users expecting fast load times.

Auto Scaling means automatically adjusts capacity to maintain

steady, predictable performance at the lowest possible cost.

Low latency is the ability of a web application to provide responses

with minimal delay.

"Remember this: Be kind to your mind."

High Traff ic

Auto Scal ing

Low Latency

– @reallygreatsite

The first solution that came up was to do caching.

Since in big data applications data gets updated every
week and caching on the client-side will be very hectic,
it is better to go on with the server cache.

Now the next question is, which caching technique
should we use and either to go with a server or
serverless caching.

SOLUTION

The best caching technique that we have found out
after discussing multiple solutions was Redis using
ElastiCache. A serverless caching technique.

 Redis was preferred as it can change the data in
place without having to re-upload the entire data
value.

Within serverless applications caching typically
means faster API response times, faster page load
speeds, reduced latency, faster query speeds, etc.

The next question was to do server side or client side
caching.

Amazon ElastiCache allows you to seamlessly set up,
run, and scale popular open-source compatible in-
memory data stores in the cloud.

Scale with just a few clicks to meet the needs of your
most demanding, internet-scale applications.

Boost application performance, reducing latency to
microseconds.

Reduce costs and eliminate the operational overhead
of self-managed caching.

BENEFITS

Build with your choice of Redis or Memcached, two
popular open-source caching technologies.

Cache your data to reduce pressure on your backend
database, enabling higher application scalability and
reducing operational burden.

Use ElastiCache to store non-durable datasets in
memory and support real-time applications with
microsecond latency.

We are caching the responses of the APIs in our Redis database.

The Key of the cache data will always be having the URL in it, with the query
params in case of GET calls and the request body in the case of POST calls.

This is done so that every different request can be cached.

If the same parameters are passed at a different sequence then it is treated
as the same key, because it returns the same response.

Now for the purge and ttl thing, we are currently going to use a one-week
duration or as per the data updating policy.

We can create a glue job that is attached to every glue job that alters the
table used in the application.

This glue job will flush the database whenever a table is altered only the
cache of that particular table will be flushed.

This is done so that no data mismatch can occur because of the already
cached data.​

We have also created a script that will run every time a code is pushed to
the main(dev, uat, and prod) branch.

This script will clear the Redis database so that the new API responses can
be cached, and no outdated response is shown.

STRATEGY

IMPACT

As we can see from the above results that there is a great change in the
Response time.
The percentage change in the response time is more than 90 percent.

RESPONSE TIME WITHOUT CACHING

RESPONSE TIME WITH CACHING

To improve the performance of any application an optimised solution is essential.
For a data driven application having a refresh rate of more then a day, caching is very
important.
We can cache the data for all the API'S at a very low cost.
Not even we have to worry about the infrastructure and load balancing.
In this way, we can say that AWS ElastiCache is a very optimised solution to
implement caching.

CONCLUSION

by Utkarsh Shukla
(Digital Consultant Statusneo)

Date 12 Feb 2022

