This repository has been archived by the owner on Dec 4, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 11
/
testHyQ_policy.py
executable file
·55 lines (45 loc) · 2.06 KB
/
testHyQ_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import sys, os
import gym_sloped_terrain.envs.HyQ_pybullet_env as e
import argparse
from fabulous.color import blue,green,red,bold
import numpy as np
import math
PI = np.pi
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--PolicyDir', help='directory of the policy to be tested', type=str, default='19Oct1')
parser.add_argument('--WedgeIncline', help='wedge incline degree of the wedge', type=int, default=11)
parser.add_argument('--WedgeOrientation', help='wedge orientation degree of the wedge', type=float, default=0)
parser.add_argument('--RandomTest', help='flag to sample test values randomly ', type=bool, default=False)
parser.add_argument('--seed', help='seed for the random sampling', type=float, default=100)
parser.add_argument('--EpisodeLength', help='number of gait steps of a episode', type=int, default=1000)
parser.add_argument('--Downhill', help='should robot walk downhill?', type=bool, default=False)
args = parser.parse_args()
policy = np.load("experiments/"+args.PolicyDir+"/iterations/best_policy.npy")
WedgePresent = True
if(args.WedgeIncline == 0):
WedgePresent = False
elif(args.WedgeIncline <0):
args.WedgeIncline = -1*args.WedgeIncline
args.Downhill = True
env = e.HyQEnv(render=True, wedge=WedgePresent, downhill=args.Downhill, stairs = False,seed_value=args.seed,
on_rack=False, gait = 'trot')
if(args.RandomTest):
env.randomize_only_inclines(default=False)
else:
env.incline_deg = args.WedgeIncline
env.incline_ori = math.radians(args.WedgeOrientation)
state = env.reset()
print (
bold(blue("\nTest Parameters:\n")),
green('\nWedge Inclination:'),red(env.incline_deg),
green('\nWedge Orientation:'),red(math.degrees(args.WedgeOrientation)),
green('\nCoeff. of friction:'),red(env.friction),
green('\nMotor saturation torque:'),red(env.clips))
# Simulation starts
t_r = 0
for i_step in range(args.EpisodeLength):
action = policy.dot(state)
state, r, _, angle = env.step(action)
t_r +=r
print("Total_reward "+ str(t_r))