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A Note on Computing Extreme Tail Probabilities of the Noncentral
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Abstract

The noncentralt-distribution is a generalization of the Student’st-distribution. In this paper we suggest an alternative
approach for computing the cumulative distribution function (CDF) of the noncentralt-distribution which is based on
a direct numerical integration of a well behaved function. With a double-precision arithmetic, the algorithm provides
highly precise and fast evaluation of the extreme tail probabilities of the noncentralt-distribution, even for large values
of the noncentrality parameterδ and the degrees of freedomν. The implementation of the algorithm is available at the
MATLAB Central, File Exchange: http://www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw.

Keywords: Noncentralt-distribution, cumulative distribution function (CDF), noncentrality parameter, extreme tail
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1. Introduction

The noncentralt-distribution, originally derived by R.A. Fisher [2], is a generalization of the Student’st-distribution
[19]. Let Z be a random variable with a standard normal distribution, i.e. Z ∼ N(0, 1), and letQ be an independent
chi-square distributed random variable withν degrees of freedom, i.e.Q ∼ χ2

ν with ν > 0. Further, letδ denote any
real constant (the noncentrality parameter), then the probability distribution of the random variable

T =
Z + δ
√

Q/ν
, (1)

is called a noncentralt-distribution with ν degrees of freedom and noncentrality parameterδ, or simply written,
T ∼ tν,δ. If δ = 0 the noncentralt-distribution coincides with the centralt-distribution.

The central as well as the noncentralt-distributions belong to the most frequently used distributions in statistics.
The cumulative distribution function (CDF) of the noncentral t-distribution is used in the power analysis (as a part
of statistical inference based on the normal linear models), see e.g. [11], includingt-test as a special case. That is,
the CDF of the noncentralt-distribution is used to evaluate the probability that at-test will correctly reject a false
null hypothesis on mean of a normal populationN(µ, σ2), i.e. the test of the null hypothesisH0 : µ ≤ µ0 against the
alternativeHA : µ > µ0 based on small sample from this population, when the population meanµ is actually greater
thanµ0; that is, it gives the power of thet-test.

Broad applicability of the noncentralt-distribution is also in engineering, measurement scienceand metrology,
quality control applications, as well as in financial mathematics. An interesting problem with important applications
is derivation of the exact confidence interval for the noncentrality parameterδ based upon a random sample from the
normal distribution, or an equivalent problem of derivation of the confidence bounds for the coefficient of variation
cV =

σ
µ
, see e.g. [12]. The noncentralt-distribution is also used for calculating the endpoints ofthe one-sided tolerance

intervals (the tolerance limits) for a normal population. An application of tolerance intervals to manufacturing involves
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comparing specification limits prescribed by the client with tolerance limits that cover a specified proportion of the
population. The required values of the tolerance factors can be computed using the quantiles of the noncentralt-
distribution. For more details on statistical tolerance intervals and the one-sided tolerance limits see e.g. [6, 13, 10].

The mathematical expressions for the CDF and the PDF (probability density function) of the noncentralt are
rather complicated. There is not known closed form (analytical) expression of the CDF. So, it is typically given as a
series expansion in terms of incomplete beta functions and/or other special functions. A comprehensive list of useful
mathematical expressions and alternative representations can be found e.g. in [11].

Algorithms for numerical computation of the CDF, PDF, and the quantiles of the noncentralt-distribution are
available in numerical libraries (e.g. BOOST C++ Libraries [15]), and different implementations are typically avail-
able also in standard statistical packages and/or programming environments (e.g. MATLAB [16],R [17], SAS [18],
and Mathematica [20]).

However, applicability of the currently used implementations could be limited with respect to the speed and/or
precision. This is true especially if the interest is in highly precise evaluation of the extreme tail probabilities of
t-distributions with large values of the noncentrality parameterδ and/or the degrees of freedomν.

The aim of this paper is to provide a brief overview of the basic properties of the noncentralt-distribution, useful
for numerical evaluation of the CDF and PDF (consequently also for evaluation of the quantiles of the distribution),
and comparisons of the current implementations, especially if used for evaluation of the extreme tail probabilities with
large values of the noncentrality parameter.

As an alternative, we have developed a new algorithm based ondirect numerical integration (by using standard
Gauss-Kronod quadrature) of a well behaved function which leads to highly precise and fast evaluation of the CDF
for any combination of the input parametersx, ν, andδ.

2. The noncentral t-distribution

Here we shall briefly summarize some of the known properties of the noncentralt-distribution useful for numerical
evaluation of the CDF, for more details see e.g. [1] and [11].

Proposition 1. Let Ftν,δ (x) = Pr(T ≤ x) be the CDF of the random variable T∼ tν,δ, defined by (1) for any real x,δ
andν > 0. Then the following properties hold true:

1. If x = 0, then
Ftν,δ (x) = Φ(−δ), (2)

whereΦ(·) is the CDF of standard normal distribution.
2a. If x> 0, then

Ftν,δ (x) =
∫ ∞

0
Φ

(

x

√

q
ν
− δ

)

fχ2
ν
(q) dq, (3)

where fχ2
ν
(·) is the PDF of chi-square distribution withν degrees of freedom.

2b. If x> 0, then

Ftν,δ (x) = Φ(−δ) +
∫ ∞

−δ

(

1− Fχ2
ν

(

ν(z+ δ)2

x2

))

φ(z) dz

= Φ(−δ) +
∫ ∞

−δ
Γu

(

ν

2
,
ν(z+ δ)2

2x2

)

φ(z) dz

= 1−
∫ ∞

−δ
Γl

(

ν

2
,
ν(z+ δ)2

2x2

)

φ(z) dz, (4)

where Fχ2
ν
(·) is the CDF of chi-squared distribution withν degrees of freedom,φ(·) is the PDF of standard

normal distribution,Γu(·, ·) (resp.Γl(·, ·)) denotes the upper (lower) regularized incomplete gamma function,
i.e.Γu(a, x) = 1

Γ(a)

∫ ∞
x

e−tta−1 dt, Γl(a, x) = 1− Γu(a, x), andΓ(·) is the gamma function.
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2c. If x> 0, then

Ftν,δ (x) = Φ(−δ) + 1
2

∞
∑

i=0

{

Pi Iy

(

i +
1
2
,
ν

2

)

+
δ
√

2
Qi Iy

(

i + 1,
ν

2

)

}

, (5)

where

Pi =
(δ2/2)i

i!
e−

δ2

2 , Qi =
(δ2/2)i

Γ(i + 3/2)
e−

δ2

2 , y =
x2

ν + x2
, (6)

and Iy(a, b) is the incomplete beta function.
3. If x < 0, then

Ftν,δ(x) = 1− Ftν,−δ (−x). (7)

Proof The CDF representation given in (5) has been proved by Guenther in [5]. The other properties can be derived
directly from the definition of the noncentralt-variable (1). In particular,

Ftν,δ (0) = Pr(T ≤ 0) = Pr

(

Z + δ
√

Q/ν
≤ 0

)

= Pr(Z ≤ −δ) = Φ(−δ). (8)

If x > 0, then we get

Ftν,δ (x) = Pr(T ≤ x) = Φ(−δ) + Pr(0< T ≤ x)

= Φ(−δ) + Pr















−δ < Z ≤ x

√

Q
ν
− δ















= Φ(−δ) + E{Q}















Φ















x

√

Q
ν
− δ





























−Φ(−δ)

= E{Q}















Φ















x

√

Q
ν
− δ





























=

∫ ∞

0
Φ

(

x

√

q
ν
− δ

)

fχ2
ν
(q) dq, (9)

whereQ ∼ χ2
ν , fχ2

ν
(·) is the PDF ofχ2

ν-distribution, andE{Q}(·) denotes the expectation operator (with respect to the
distribution of a random variableQ). Similarly, we get

Ftν,δ (x) = Φ(−δ) + Pr















−δ < Z ≤ x

√

Q
ν
− δ















= Φ(−δ) + Pr















Z ≤ x

√

Q
ν
− δ

∣

∣

∣

∣

Z > −δ














= Φ(−δ) + Pr

(

ν(Z + δ)2

x2
≤ Q

∣

∣

∣

∣

Z > −δ
)

= Φ(−δ) +
(

1− Pr

(

Q ≤ ν(Z + δ)
2

x2

∣

∣

∣

∣

Z > −δ
))

= Φ(−δ) + E{Z>−δ}

(

1− Fχ2
ν

(

ν(Z + δ)2

x2

))

= Φ(−δ) +
∫ ∞

−δ
Γu

(

ν

2
,
ν(z+ δ)2

2x2

)

φ(z) dz

= 1−
∫ ∞

−δ
Γl

(

ν

2
,
ν(z+ δ)2

2x2

)

φ(z) dz (10)

whereFχ2
ν
(q) = Γl

(

ν
2 ,

q
2

)

= 1−Γu

(

ν
2 ,

q
2

)

is the CDF of chi-squared distribution withν degrees of freedom, andΓl

(

ν
2 ,

q
2

)

(resp.Γu

(

ν
2 ,

q
2

)

) denotes the lower (upper) regularized incomplete gamma function, andφ(·) is the PDF of standard
normal distribution. Note that the representation holds true also for noninteger degrees of freedom,ν > 0. Finally, if
x < 0, we get

Ftν,δ (x) = Pr(T ≤ x) = Pr

(

Z + δ
√

Q/ν
≤ x

)

= Pr

(

−Z − δ
√

Q/ν
> −x

)
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= 1− Pr

(

Z − δ
√

Q/ν
≤ −x

)

= 1− Ftν,−δ (−x), (11)

by using the symmetry of the distribution of the random variableZ ∼ N(0, 1). �

The CDFFtν,δ (·) can be directly used for computing the PDF of the noncentralt distribution, ftν,δ (·), defined by
ftν,δ (x) = ∂Ftν,δ(x)/∂x. In particular, the following holds true:

• If x = 0, then

ftν,δ (x) =
Γ
(

ν+1
2

)

√
πνΓ

(

ν
2

) e−
δ2

2 . (12)

• If x , 0, then

ftν,δ (x) =
ν

x















Ftν+2,δ















x

√

1+
2
ν















− Ftν,δ (x)















. (13)

Based on that, the quantiles of the noncentralt-distribution, sayxp, can be calculated for any givenp ∈ (0, 1). In
general, for any fixed combination of the three parameters (from the setν, δ, x, p), the remaining parameter can be
calculated either directly, or via the usual root-finding techniques, by solving the equationFtν,δ (x) = p.

3. Standard implementations for computing CDF of the noncentral t-distribution

The standard algorithm implementations for computing the CDF of the noncentralt-distribution are based on its
representation (5), which was originally derived by Guenther [5] and later implemented by Lenth [14].

Due to the recurrence properties of the incomplete beta function, the algorithm requires only two evaluations of
Iy(a, b) and the rest is based on simple arithmetic operations. For most typical values of the input argumentsx, ν, and
δ, the algorithm is extremely fast and accurate.

TheR implementation (functionpt in [17]) is based onC version of the Lenth’s algorithm with a restricted range
of the noncentrality parameter,|δ| ≤ 37.62. Otherwise, the result is based on normal approximation,

Ftν,δ (x) = Φ(z), where z=
x(1− 1

4ν ) − δ
√

1+ x2

2ν

, (14)

see [1], eqn. (26.7.10), p. 949, which can be rather poor for small ν.
Algorithm based on (5) have been implemented also in MATLAB (functionnctcdf in [16]) and in the BOOST

C++ Libraries (functionnon centralt in [15], see also [4]). The BOOST implementation is based on strategies
suggested by Benton and Krishnamoorthy [3].

The BOOST functionnon centralt has been tested for wide range of input parameters and compared with test
data computed by arbitrary precision interval arithmetic (believed to be accurate to at least 50 decimal places, as
declared in [15], and confirmed by a large test data set, kindly provided by J. Maddock [personal communication]).
As the complexity of the algorithm based on the series expansion as given in (5) is dependent uponδ2, consequently,
the time taken to evaluate the CDF increases rapidly for large noncentrality parameter,|δ| > 500, likewise the accuracy
decreases rapidly for very largeδ, see [15].

Moreover, unlike theR and MATLAB implementations, which compute correctly only the lower tail of the distri-
bution, the BOOST algorithm computes also the upper tail of the distribution (which is important for correct evaluation
of the extreme tail probabilities).

As presented in [18], SAS implementation (functionprobt) is based on numerical integration of the representation
(3). For most typical values of the input argumentsx, ν, andδ, the algorithm is fast and accurate (for most cases,
typically all 14 reported significant digits are correct). However, for more extreme input arguments the algorithm may
fail to converge to the prescribed accuracy, and in such caseno output is provided by the functionprobt.

Implementation in Mathematica (functionCDF[NoncentralStudentTDistribution[ν, δ], x] in [20]) is based on nu-
merical integration (computed using Mathematica’s high-precision arithmetic) of the noncentralt PDF function (which
is given as an analytical function expressible by using the Hermite polynomials). The computational complexity of
this algorithm quickly grows with largeν andδ and in such cases fail to converge.
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4. Algorithm nctcdfvw based on direct numerical integration

As an alternative, here we suggest a new algorithm based on direct numerical integration (by using standard
Gauss-Kronod quadrature) of a well behaved function, basedon expression2b, which leads to highly precise and fast
evaluation of the CDF for any combination of the input parametersx, ν, andδ.

The algorithm has been implemented in MATLAB and its currentversion is available at the MATLAB Central,
File Exchange:http://www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw.

The algorithm computes the lower tail, i.e. Pr(T ≤ x) = Φ(−δ)+
∫ ∞
−δ Γu

(

ν
2 ,
ν(z+δ)2

2x2

)

φ(z) dz, if 0 < x ≤ δ, otherwise,

for x > 0 and such thatx > δ, it computes the upper tail of the distribution, Pr(T > x) =
∫ ∞
−δ Γl

(

ν
2 ,
ν(z+δ)2

2x2

)

φ(z) dz.
Notice that in a double-precision arithmetic the integration range (−δ,∞) can be reduced to the limits [A0, B0]

given by
[A0, B0] = [max(−δ,Φ−1(rε0)),−Φ−1(rε0)], (15)

whererε0 is the minimum real non-zero number (the smallest positive normalized floating point number in IEEE
double precision), i.e.rε0 = 2.2251× 10−308. So,Φ−1(rε0) = −37.5194.

The most important part of the algorithm is the method for subsequent (significant) reduction of the integration
range [A0, B0]. For simplicity, we shall illustrate this only for the caseof computing the lower tail of the distribution.

Notice thatΓu

(

ν
2 ,
ν(z+δ)2

2x2

)

approaches the value 1 for small values ofz (z → −δ) and 0 for large values ofz

(z→ +∞). If Γu

(

ν
2 ,
ν(z+δ)2

2x2

)

> 1− εR for A0 ≤ z≤ A1, where

A1 =

√

x2qεR
ν
− δ, (16)

with qεR being theεR-quantile of theχ2
ν-distribution (forqεR ≈ 0 setqεR = 0), whereεR is the required relative

tolerance bound (in double-precision arithmetic we setεR = 10−16), then the integration range can be further reduced
to

[A1, B1] = [max(A0,A1), B0], (17)

and the CDF is approximated by

Pr(T ≤ x) ≈ Φ(A1) +
∫ B1

A1

Γu

(

ν

2
,
ν(z+ δ)2

2x2

)

φ(z) dz (18)

Further reduction of the integration range [A1, B1] is possible since the integrand function

g(z) = Γu

(

ν

2
,
ν(z+ δ)2

2x2

)

φ(z) (19)

(typically) quickly fades out from its maximum value. For illustration, Figure 1 presents a typical graph of the
integrand functiong(z), together with the optimally selected integration limits.

Based on that, further reduction of the integration range isgiven, and the final integration limits are given by

[A, B] = [max(A1,A2),min(B1, B2)], (20)

where the limitsA2 andB2 are given as the two possible solutions to the equation

g(A2) = g(B2) = εA, (21)

whereεA denotes the required absolute tolerance bound (which should be properly estimated, see bellow).
The integrand functiong(z) defined by (19) and its modus can be effectively estimated based on the results and

efficient approximations of the CDF and the quantiles of the chi-square distribution, as suggested by Inglot in [8].
In particular, let us denoteq = ν(z+δ)2

x2 and h(z) = log(g(z)). Then, by using the lower bound for tails of the
χ2
ν-distribution, as derived in [8] and [9], i.e.1

2Eν(q) ≤ Pr(χ2
ν > q) ≤ 1√

π

q
q−ν+2Eν(q), where

Eν(q) = exp

{

−1
2

(

q− ν − (ν − 2) log
(q
ν

)

+ log(ν)
)

}

,

5

http://www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvw


−13 −12 −11 −10 −9 −8 −7 −6 −5
0

0.5

1

1.5

2

2.5

3
x 10

−21

Z

F
U

N
C

Integrand evaluated for x = 5, ν = 100, δ = 15 over Z ∈  [−12.7478, −5.7398]

Figure 1: The integrand functiong(z) evaluated at the Gauss-Kronod nodes (90= 6 subintervals× 15 nodes) and the selected integration limits
[A,B] used for computing the CDF of the noncentralt-distribution with the input parametersx = 5, ν = 100 andδ = 15. The value of CDF
computed by the algorithmnctcdfvw is CDF= 2.640405806735035× 10−21. For comparison, the standard MATLAB functionnctcdf (Statistics
Toolbox) returns CDF= 4.542511227039881× 10−43, the R function pt returns CDF= 2.35515251660662× 10−21, the SAS functionprobt
returns CDF= 2.6404058074408× 10−21, and the BOOST functionnon central t returns CDF= 2.64040580673507× 10−21.

we get

h(z) ≈ log

(

1
2
Eν(q)φ(z)

)

≈ − log(2)− 1
2

(

q− ν − (ν − 2) log
(q
ν

)

+ log(ν) + log(2π) + z2
)

, (22)

which holds true for allq (and consequently for allz) andν > 2. For practical purposes, the algorithm setsν − 2 ≡ 1
if ν ≤ 2.

By solving the equation∂h(z)
∂z = 0 we get the estimate of the mode (modus), sayzmod, of the integrand functiong(z)

as

zmod =
−δ(x2 + 2ν) + x

√

4ν(ν − 2)+ x2(δ2 + 4(ν − 2))
2
(

x2 + ν
) . (23)

Based on that, we can estimate the maximum value of the integrand function by

gmax≈ g(zmod) ≈ exp(h(zmod)) , (24)
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and also the required absolute tolerance boundεA, by solving

log(εA) ≈ h(zmod) + log(εR) . (25)

Consequently, the limitsA2 andB2 defined by (21) can be estimated by solving the approximate equation

h(A2) = h(B2) = log(εA). (26)

The algorithmnctcdfvw finds the limitsA2 andB2 by solving quadratic equation which results from the quadratic
approximation (expansion) of the functionh(·) aroundzmod.

The quantilesqεR used in (16) are estimated by using efficient approximation proposed in [8], eqn. (A.3),

qεR ≈ ν + 2εR + 1.62
√
νεR + 0.63012

√
ν log(εR)

−1.12032
√
ν − 2.48

√
εR − 0.65381 log(εR) − 0.22872. (27)

Given the integration limits [A, B], the algorithm evaluates the CDF by using the approximation

Ftν,δ (x) ≈ Φ(A) +
∫ B

A
g(z) dz (28)

The integral
∫ B

A
g(z) dzcan be evaluated by using the standard (adaptive) Gauss-Kronod quadrature which allows to

estimate the integration error.
In order to speed-up the computation by using evaluation of the vectorized functions, the MATLAB version of the

algorithmnctcdfvwuses the non-adaptive version of the (G7,K15)-Gauss-Kronod quadrature over fixed (prespecified)
number of sub-intervals of [A, B]. The default number of sub-intervals is set tonsubs= 16 (a rather conservative choice
based on a detailed and extensive testing, in order to ensurethat the relative precision to be better than (or equal to)
10−14, in most cases), but for most typical values of the input parameters division to 6 sub-intervals (which requires
90= 6× 15 evaluations of the integrand functiong(z)) is sufficient to achieve the relative error less than 10−12.

5. Accuracy comparisons

In order to illustrate and compare the accuracy of the standard algorithms/implementations for computing the
noncentralt distribution (and to compare it with the suggested algorithm based on the expression (4)), Table 1 presents
the CDF values of the noncentralt distribution for several (rather extreme) combinations ofinput parametersx, ν, and
δ, computed by different algorithms/implementations. In particular,

• MATLAB functionnctcdfvw (based on non-adaptive Gauss-Kronod quadrature, here withintegration limits
[A, B] divided into 32 subintervals),

• MATLAB functionnctcdf (Statistics Toolbox),

• R functionpt ,

• SAS functionprobt ,

• BOOST C++ Libraries functionnon central t , as implemented inDistExplorer,

• MATHEMATICA functionCDF[NoncentralStudentTDistribution].

The ’true’ values of the CDF have been computed by a version ofthe MATLAB algorithmnctcdfvw(modified for
quadruple-precision computation by using the Multiprecision Computing Toolbox for MATLAB [7]).

All computations have been realized on standard PC under 32-bit Windows XP operating system. For detailed
comparisons, the results are presented with 18 significant digits. Notice however, that the double-precision arithmetic
(used by the presented algorithms, except Mathematica) returns only 16 significant digits.

The differences (with respect to the exact values) are emphasized byunderlining the affected digits. The ’NA’
value is displayed if the algorithm did not converge. A symbol ’*’ is displayed for cases when Mathematica warning
message ’NIntegratefailed to converge to prescribed accuracy’ has been issued.
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Example x ν δ TRUE CDF NCTCDFVW MATLAB R
1 1 1 0 7.50000000000000000E-001 7.50000000000000000E-001 7.50000000000000000E-001 7.50000000000000200E-001
2 -35 1 0 9.09209467564843408E-003 9.09209467564843700E-003 9.09209467564843500E-003 9.09209467564843300E-003
3 -35 1 1 1.89903487263458750E-003 1.89903487263458800E-003 1.89903487263454200E-003 1.89903487274889500E-003
4 -5 1 5 8.52042451613777143E-009 8.52042451613777000E-009 8.52042303378652800E-009 8.52061943223958500E-009
5 -15 1 15 1.29043391190105994E-053 1.29043391190106200E-053 0 8.16013923099490100E-014
6 -35 1 35 7.31501102529248499E-272 7.31501102529247900E-272 0 5.72875080706580800E-014
7 1 10 5 4.34725285650591657E-005 4.34725285650591700E-005 4.34725285650592700E-005 4.34725284300420300E-005
8 1 10 10 7.95914542988750673E-019 7.95914542988750700E-019 7.61985302416059300E-024 7.94724820780974200E-019
9 1 10 15 1.41346486009205976E-042 1.41346486009205900E-042 3.67096619931285900E-051 9.87042896134168300E-043

10 1 10 35 1.69061467860900429E-237 1.69061467860900800E-237 1.12491070647255300E-268 4.51922957217374300E-250
11 150 10 200 5.88999020094520836E-002 5.88999020094520500E-002 5.88999020072176300E-002 5.45995201321134400E-002
12 150 10 500 3.25241635439258347E-019 3.25241635439257900E-019 3.25241635469807400E-019 2.762470663506697e00-026
13 50 100 75 4.99615060338271916E-011 4.99615060338271200E-011 4.99615060337484300E-011 0
14 500 100 510 3.71160937464178059E-001 3.71160937464177900E-001 3.71160937385911300E-001 3.75215597825695000E-001
15 1 1000 10 1.14935521338266224E-019 1.14935521338266200E-019 7.61985302416059300E-024 1.14932401536150700E-019
16 100 1000 105 2.05403544901854621E-002 2.05403544901854000E-002 2.05403544900927000E-002 2.01116859042299000E-002
17 1000 1000 1010 3.22438286661716843E-001 3.22438286661716400E-001 3.22438286530340600E-001 3.23499129176421900E-001

Example x ν δ TRUE CDF SAS BOOST MATHEMATICA
1 1 1 0 7.50000000000000000E-001 7.50000000000000000E-001 7.50000000000000000E-001 7.50000000000000000E-001
2 -35 1 0 9.09209467564843408E-003 9.09209467564840000E-003 9.09209467564843000E-003 9.09209467564843408E-003
3 -35 1 1 1.89903487263458750E-003 NA 1.89903487263459000E-003 1.89903487263458750E-003
4 -5 1 5 8.52042451613777143E-009 8.52042451613770000E-009 8.52042442641561000E-009 8.52042451613777143E-009
5 -15 1 15 1.29043391190105994E-053 1.29043391190100000E-053 2.86650837419345000E-016 1.29043391190105994E-053
6 -35 1 35 7.31501102529248499E-272 NA -3.77352003162056000E-017 7.31501102529248499E-272
7 1 10 5 4.34725285650591657E-005 4.34725285650590000E-005 4.34725285650591000E-005 4.34725285650591657E-005
8 1 10 10 7.95914542988750673E-019 7.95914542988750000E-019 7.95914542988752000E-019 7.95914542988750673E-019
9 1 10 15 1.41346486009205976E-042 1.41346486009200000E-042 1.41346486009207000E-042 1.41346486009205976E-042

10 1 10 35 1.69061467860900429E-237 1.69061467860890000E-237 1.12491070647253000E-268 1.69061467860900429E-237
11 150 10 200 5.88999020094520836E-002 5.88999020094520000E-002 5.88999020094668000E-002 NA
12 150 10 500 3.25241635439258347E-019 NA 3.25241635439664000E-019 NA
13 50 100 75 4.99615060338271916E-011 4.99615060338260000E-011 4.99615060338272000E-011 *4.99615060338271916E-011
14 500 100 510 3.71160937464178059E-001 NA 3.71160937464169000E-001 NA
15 1 1000 10 1.14935521338266224E-019 1.14935521338260000E-019 1.14935521338269000E-019 *1.14935521338266224E-019
16 100 1000 105 2.05403544901854621E-002 2.05403544901850000E-002 2.05403544901843000E-002 *2.05403544901854621E-002
17 1000 1000 1010 3.22438286661716843E-001 NA 3.22438286661695000E-001 NA

Table 1: CDF values of the noncentralt-distribution computed by different algorithms/implementations for selected combinations of the input parameters.
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6. Conclusions

It seems that (currently) there is no implementation of the algorithm for computing CDF of the noncentralt-
distribution which is uniformly efficient (reasonably fast) and accurate for all input parameters x, ν, andδ in double-
precision arithmetic.

According to our present study, this goal is best satisfied bythe SAS and BOOST implementations, if we restrict
to the typical (most frequently used) values of the input parameters. However, when the output of such algorithm is
supposed to be used subsequently for further computations,as e.g. computing the PDF or quantiles of the distribution
(and/or the noncentrality parameterδ, or the degrees of freedomν, for given valuesx and the CDF/PDF), the possible
inaccuracy, slow evaluation or failure to converge, can be critical.

Here we have suggested a new algorithm based on numerical quadrature of a well behaved function which is rea-
sonably precise and fast in double-precision arithmetic for all input parametersx, ν andδ. Precision of the MATLAB
version of the algorithm was tested for wide range of input parameters (not presented here). In most of the tested
cases the relative error was bellow 10−14.
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