arXiv:1306.5294v2 [stat.CO] 4 Sep 2013

A Note on Computing Extreme Tail Probabilities of the Noncah
T Distribution with Large Noncentrality Parameter

Viktor Witkovsky?*

Institute of Measurement Science, Slovak Academy of $sieBeatislava, Slovakia

Abstract

The noncentratdistribution is a generalization of the Studenttdistribution. In this paper we suggest an alternative
approach for computing the cumulative distribution fuaot{CDF) of the noncentraidistribution which is based on

a direct numerical integration of a well behaved functiorith/é double-precision arithmetic, the algorithm provides
highly precise and fast evaluation of the extreme tail pbiliges of the noncentratdistribution, even for large values
of the noncentrality parametéiand the degrees of freedamThe implementation of the algorithm is available at the
MATLAB Central, File Exchange: httgwww.mathworks.copmatlabcentrgfileexchanggl1790-nctcdfviv.
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1. Introduction

The noncentratdistribution, originally derived by R.A. Fisher [2], is &geralization of the Studentalistribution
[19]. Let Z be a random variable with a standard normal distributi@nZi.~ N(0, 1), and letQ be an independent
chi-square distributed random variable witldegrees of freedom, i.€Q ~ x? with v > 0. Further, lets denote any
real constant (the noncentrality parameter), then thegiitity distribution of the random variable

T Z+0
VoI

is called a noncentratdistribution withv degrees of freedom and noncentrality paramétesr simply written,
T ~t,5. If 6 = 0 the noncentratdistribution coincides with the centr&tistribution.

The central as well as the noncentralistributions belong to the most frequently used distidns in statistics.
The cumulative distribution function (CDF) of the noncetrdistribution is used in the power analysis (as a part
of statistical inference based on the normal linear modeés} e.g.. [11], includingrtest as a special case. That is,
the CDF of the noncentraidistribution is used to evaluate the probability thattast will correctly reject a false
null hypothesis on mean of a normal populatMu, o), i.e. the test of the null hypothesi : 1 < uo against the
alternativeHa : u > o based on small sample from this population, when the papulateanu is actually greater
thanuo; that is, it gives the power of thetest.

Broad applicability of the noncentréddistribution is also in engineering, measurement scieamkmetrology,
quality control applications, as well as in financial matlaics. An interesting problem with important applications
is derivation of the exact confidence interval for the nomi@dity parametet based upon a random sample from the
normal distribution, or an equivalent problem of derivatiaf the confidence bounds for the dbeent of variation
Cv = % see e.g.[12]. The noncenttadistribution is also used for calculating the endpointdhefone-sided tolerance
intervals (the tolerance limits) for a normal populatiom @pplication of tolerance intervals to manufacturing ines
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comparing specification limits prescribed by the clienthwiblerance limits that cover a specified proportion of the
population. The required values of the tolerance factorsli|mcomputed using the quantiles of the noncertiral
distribution. For more details on statistical tolerandeiivals and the one-sided tolerance limits see €.9. [6,0]3, 1

The mathematical expressions for the CDF and the PDF (pilitpadensity function) of the noncentrdlare
rather complicated. There is not known closed form (anedytiexpression of the CDF. So, it is typically given as a
series expansion in terms of incomplete beta functiongoardher special functions. A comprehensive list of useful
mathematical expressions and alternative represensatembe found e.g. in [11].

Algorithms for numerical computation of the CDF, PDF, and tjuantiles of the noncentradistribution are
available in numerical libraries (e.g. BOOSH€ Libraries [15]), and dferent implementations are typically avail-
able also in standard statistical packageg@ngrogramming environments (e.g. MATLAB [|16R [17], SAS [18],
and Mathematica [20]).

However, applicability of the currently used implemerdgas could be limited with respect to the speed/and
precision. This is true especially if the interest is in Hygprecise evaluation of the extreme tail probabilities of
t-distributions with large values of the noncentrality pagders andor the degrees of freedom

The aim of this paper is to provide a brief overview of the basbperties of the noncentradlistribution, useful
for numerical evaluation of the CDF and PDF (consequendly &br evaluation of the quantiles of the distribution),
and comparisons of the currentimplementations, espgdialsed for evaluation of the extreme tail probabilitiegtwi
large values of the noncentrality parameter.

As an alternative, we have developed a new algorithm basetirect numerical integration (by using standard
Gauss-Kronod quadrature) of a well behaved function whaell$ to highly precise and fast evaluation of the CDF
for any combination of the input parameters,, andé.

2. Thenoncentral t-distribution

Here we shall briefly summarize some of the known properfisaononcentrat-distribution useful for numerical
evaluation of the CDF, for more details see e.g. [1] and [11].

Proposition 1. Let i (x) = Pr(T < x) be the CDF of the random variable ¥ t, 5, defined byl{1) for any real %,
andv > 0. Then the following properties hold true:

1. If x=0, then
Ft,,(X) = ©(-9), )

where®(-) is the CDF of standard normal distribution.

2a. If x> 0, then
ng=j‘®@J§—ﬂ%mmq ®3)
0

where f{2(-) is the PDF of chi-square distribution withdegrees of freedom.
2b. If x> 0, then

th (X)

D(=5) + I j (1 ~Fp (V(“ 6)2))¢(z) dz

X2

D(=5) + fw Ty (V 2+ ‘5)2) #(2) dz

5 2 2

1-j“r(g”“+&ﬂ¢@dz (4)

-5 2x2

where F:(-) is the CDF of chi-squared distribution with degrees of freedom(-) is the PDF of standard
normal distribution,I'y(-, ) (resp.Ti(-,-)) denotes the upper (lower) regularized incomplete gammation,
i.e.T'y(a, x) = Tla) fxw e't?1dt, I(a, X) = 1 - T'y(a, X), andI'(-) is the gamma function.



2c. If x> 0, then

18 .1y 1) %
Fo.(X) = B(=5) + = Z;{Pily(l +2) 2) \/éQ. (| +1, 2)} )
where (62/2)' 62/2) ) 2
=% =izt Yoo ©)

and (a, b) is the incomplete beta function.
3. If x< 0, then
th(X) =1- Ftv\_(;(_x)~ (7)

Proof The CDF representation given [d (5) has been proved by Gaeimthi5]. The other properties can be derived
directly from the definition of the noncentravariable [1). In particular,

Z+6

Fi,(0)=Pr(T <0)= Pr( < O) = Pr(Z < -6) = ®(-9). (8)

If x> 0, then we get

Ft,(X) =Pr(T <x) DO(-6) +Pr(0< T <x)

= O(-9)+ Pr(—& <Z< x\/g - 6]
- - afofe @] aco
= Eo [‘D [X\/g - 5)] = fow ‘D(X \/g - 5) f2(q) da, (9)

whereQ ~ x2, f2(") is the PDF ofy2-distribution, andEq(-) denotes the expectation operator (with respect to the
distribution of a random variabl®). Similarly, we get

DO(-5) + Pr[—(S <Z< X\/g - 6]
= O(-6)+ Pr[Z < x\/§—5'z > —5)

= @(—6)+Pr( nzr v +0)° <Q|Z> 6)
v(Z+6)2

Ftv,a (X)

= O(=0)+ (1 - Pr(Q < ‘z

2
= q)(—é) + EIZ>—6] (1 - F 2 (@))

- @(—5)+L ru(; V(Z+5)2)¢()dz
1—[?.(2 V(Z+5)2)¢(z)dz (10)

whereF .(q) =T ( ) 1- I“u( ) is the CDF of chi-squared distribution wittdegrees of freedom, armd(g, g)

(resp.Ty (;, g)) denotes the lower (upper) regularized incomplete gammetifon, andg(-) is the PDF of standard
normal distribution. Note that the representation holds &lso for noninteger degrees of freedeny, 0. Finally, if
x < 0, we get

(=%

FL() = PrT<x= Pr( Z+8 x) _ Pr(_% . —x)

w
(5‘
<



= 1- Pr( < —X) =1-F (=X, (11)

Q/v

by using the symmetry of the distribution of the random Jalg& ~ N(O, 1). O
The CDFF, () can be directly used for computing the PDF of the noncemtdatribution, f; ,(-), defined by
fi,,(X) = 0F,(X)/0x. In particular, the following holds true:

e If x=0, then

e
fi,(X)=———F—¢€ 7. (12)
O

e If X+ 0, then

ftv.o‘(x) = )Z( {Fth.d [X V 1+ %) - Ftvva(x)} . (13)

Based on that, the quantiles of the noncerttgibtribution, sayx,, can be calculated for any givene (0,1). In
general, for any fixed combination of the three parameteosn(the set, 6, X, p), the remaining parameter can be
calculated either directly, or via the usual root-findingfteiques, by solving the equatiés,, (x) = p.

3. Standard implementationsfor computing CDF of the noncentral t-distribution

The standard algorithm implementations for computing tBé¥-@©f the noncentratdistribution are based on its
representatiori {5), which was originally derived by Guen{B] and later implemented by Lenth [14].

Due to the recurrence properties of the incomplete betaifumahe algorithm requires only two evaluations of
ly(a, b) and the rest is based on simple arithmetic operations. Best typical values of the input argumenty, and
d, the algorithm is extremely fast and accurate.

The R implementation (functiopt in [17]) is based orC version of the Lenth’s algorithm with a restricted range
of the noncentrality parametéd| < 37.62. Otherwise, the result is based on normal approximation,

X(1-2)-6

A1+ ;‘—i
seel[1], egn. (26.7.10), p. 949, which can be rather poomfalls.

Algorithm based on[{5) have been implemented also in MATLAB¢tion nctedf in [16]) and in the BOOST
C++ Libraries (functionnoncentralt in [15], see alsol[4]). The BOOST implementation is based toategies
suggested by Benton and Krishnamoorthy [3].

The BOOST functiomoncentralt has been tested for wide range of input parameters and cethpath test
data computed by arbitrary precision interval arithmelieligved to be accurate to at least 50 decimal places, as
declared inl[15], and confirmed by a large test data set, kipdivided by J. Maddock [personal communication]).
As the complexity of the algorithm based on the series expares given in[(b) is dependent upéf) consequently,
the time taken to evaluate the CDF increases rapidly foelaoncentrality parametés| > 500, likewise the accuracy
decreases rapidly for very largesee|[15].

Moreover, unlike th&k and MATLAB implementations, which compute correctly ortgtiower tail of the distri-
bution, the BOOST algorithm computes also the upper talleflistribution (which is important for correct evaluation
of the extreme tail probabilities).

As presented in [18], SAS implementation (functimobi) is based on numerical integration of the representation
(3). For most typical values of the input argumenrts, andé, the algorithm is fast and accurate (for most cases,
typically all 14 reported significant digits are correctpwkver, for more extreme input arguments the algorithm may
fail to converge to the prescribed accuracy, and in suchmaseitput is provided by the functigirobt

Implementation in Mathematica (functi@ddDF[NoncentralStudentTDistribution[s], x] in [20Q]) is based on nu-
merical integration (computed using Mathematica’s higbefsion arithmetic) of the noncenttdDF function (which
is given as an analytical function expressible by using teentite polynomials). The computational complexity of
this algorithm quickly grows with largeand¢ and in such cases fail to converge.

4

Fi,(X) = ®(2), where z= (14)



4. Algorithm nctedfvw based on direct numerical integration

As an alternative, here we suggest a new algorithm basedrent diumerical integration (by using standard
Gauss-Kronod quadrature) of a well behaved function, barezkpressio2b, which leads to highly precise and fast
evaluation of the CDF for any combination of the input parters, v, ands.

The algorithm has been implemented in MATLAB and its curnasion is available at the MATLAB Central,
File Exchangehttp://www.mathworks.com/matlabcentral/fileexchange/41790-nctcdfvu.

.4 V(Z”)z)(;s(z) dz if 0 < x < &, otherwise,

The algorithm computes the lower tall, i.e. Pr§ X) = O(-6) + f_°; Fu(—
for x > 0 and such that > ¢, it computes the upper tail of the distribution, Pr¢ x) = f_og I (V V(m)z)qﬁ(z) dz

2> 2x2
2022

Notice that in a double-precision arithmetic the integnatiange {6, ) can be reduced toxthe limitg\§, Bo]

given by
[AO, BO] = [max(—&, ®7l(rso))’ _(Dil(rao)]’ (15)

wherer,, is the minimum real non-zero number (the smallest positiweralized floating point number in IEEE
double precision), i.e,, = 2.2251x 1073%8, So,®~1(r,,) = -37.5194.

The most important part of the algorithm is the method forssgjuent (significant) reduction of the integration
range Py, Bo]. For simplicity, we shall illustrate this only for the casBcomputing the lower tail of the distribution.

Notice thatl"u(g, V‘;;X;”Z) approaches the value 1 for small valueszdfz — -6) and O for large values of

(z— +o0). If Ty (3 V(”‘”z) > 1—-sgfor Ag < z< Ay, where

2 T2
X2Q,,
A= 2, (16)
24

with q., being theer-quantile of they2-distribution (forg., ~ 0 setq., = 0), whereer is the required relative
tolerance bound (in double-precision arithmetic wesget 10716), then the integration range can be further reduced
to

[A1, B1] = [max(Ao, A1), Bo], (17)
and the CDF is approximated by
Bl (v v(z+6)?
Pr(T < x) ~ O(Ay) + fAl Iy (E’ o )¢(z)dz (18)

Further reduction of the integration rang® [ B,] is possible since the integrand function

: v Wz +6)?
o0 =1 5. 25

)¢(Z) (19)

(typically) quickly fades out from its maximum value. FoluBtration, Figurd1l presents a typical graph of the
integrand functiory(2), together with the optimally selected integration limits
Based on that, further reduction of the integration ranggvien, and the final integration limits are given by

[A, B] = [max(Aq, Az), min(By, By)], (20)
where the limitsA, andB; are given as the two possible solutions to the equation

9(A2) = 9(B2) = ea, (21)

wheree, denotes the required absolute tolerance bound (which dii@ubroperly estimated, see bellow).

The integrand functiog(z) defined by[(IB) and its modus can hi#eetively estimated based on the results and
efficient approximations of the CDF and the quantiles of thescjuiare distribution, as suggested by Inglot n [8].

In particular, let us denotg = V(Z;—f)z andh(2) = log(g(2). Then, by using the lower bound for tails of the

x2-distribution, as derived in [8] and![9], i.68,(q) < Pr(y? > q) < % T Si(0), where

£,(0) = exp{—% (a-v-0-2)10g(9) + Iog(v>)},
5
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x 1072 Integrand evaluated for x = 5,v = 100, & = 15 over Z J [-12.7478, —5.7398]
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Figure 1: The integrand functiog(z) evaluated at the Gauss-Kronod nodes £96 subintervals< 15 nodes) and the selected integration limits
[A, B] used for computing the CDF of the noncenttalistribution with the input parametess= 5, v = 100 ands = 15. The value of CDF
computed by the algorithmctcdfvwis CDF = 2.64040580673503% 1021, For comparison, the standard MATLAB functiorctcdf (Statistics
Toolbox) returns CDF= 4.54251122703988% 10743, the R function pt returns CDF= 2.3551525166066% 1021, the SAS functionprobt
returns CDF= 2.640405807440%& 10-21, and the BOOST functionon centralt returns CDF= 2.6404058067350% 10-22,

we get

h(2)

Q

0g( 36n@0t2)

—log(2)- % (q yv—(v=2) Iog(q) +log®) + log(2r) + 22), 22)

v

Q

which holds true for alf (and consequently for al) andv > 2. For practical purposes, the algorithm sets2 = 1
if v<2.

By solving the equatioﬁ% = 0 we get the estimate of the mode (modus),zay, of the integrand functiog(2)
as

_ —6(%% + 2v) + X/4v(v — 2) + X2(62 + 4(v — 2))

2
Based on that, we can estimate the maximum value of the emeddgunction by
Omax ~ 9(Zmod) = €XP(N(Zmod)) » (24)
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and also the required absolute tolerance batdby solving

log (ea) ~ h(Zmod) + l0g (eR) - (25)
Consequently, the limitd, andB;, defined by[(Zll) can be estimated by solving the approximatatemn
h(A2) = h(By) = log(ea). (26)

The algorithmnctcdfvwfinds the limitsA, and B, by solving quadratic equation which results from the quecdira
approximation (expansion) of the functibft) aroundzmog.
The quantiles,, used in[(IB) are estimated by usinf@ent approximation proposed in [8], egn. (A.3),

Qe ~ V+2er+1.62+ver+0.63012Vvlog(er)
~-1.12032y — 2.48+/er — 0.65381 logér) — 0.22872 (27)

Given the integration limits4, B], the algorithm evaluates the CDF by using the approxinmatio
B
Fi,(X) = O(A) + f 9(2dz (28)
A

The integral fAB g(2) dzcan be evaluated by using the standard (adaptive) GausmHiguadrature which allows to
estimate the integration error.

In order to speed-up the computation by using evaluatiohef/ectorized functions, the MATLAB version of the
algorithmnctecdfvwuses the non-adaptive version of the (G7,K15)-Gauss-Krgonadrature over fixed (prespecified)
number of sub-intervals ofy, B]. The default number of sub-intervals is sehtg,s= 16 (a rather conservative choice
based on a detailed and extensive testing, in order to etisatréhe relative precision to be better than (or equal to)
104 in most cases), but for most typical values of the input patars division to 6 sub-intervals (which requires
90 = 6 x 15 evaluations of the integrand functig(r)) is suficient to achieve the relative error less than'#0

5. Accuracy comparisons

In order to illustrate and compare the accuracy of the stahdigorithmgmplementations for computing the
noncentrat distribution (and to compare it with the suggested algaribased on the expressiamn (4)), Tdlle 1 presents
the CDF values of the noncenttalistribution for several (rather extreme) combinationspfit parameters, v, and
6, computed by dferent algorithm@mplementations. In particular,

e MATLAB function nctedfvw (based on non-adaptive Gauss-Kronod quadrature, hereéntétration limits
[A, B] divided into 32 subintervals),

MATLAB functionnctcdf (Statistics Toolbox),

R functionpt,

e SASfunctionprobt,

e BOOST C++ Libraries functionnon_central_t, as implemented idistExplorer,
e MATHEMATICA function CDF[Noncentral Student TDistribution].

The 'true’ values of the CDF have been computed by a versidimeofMATLAB algorithmnctcdfvw(modified for
guadruple-precision computation by using the MultiprieeisComputing Toolbox for MATLAB [7]).

All computations have been realized on standard PC und&it3&indows XP operating system. For detailed
comparisons, the results are presented with 18 signifidgits dNotice however, that the double-precision arithmet
(used by the presented algorithms, except Mathematiaan®obnly 16 significant digits.

The diferences (with respect to the exact values) are emphasizadd®yrlining the fected digits. The 'NA
value is displayed if the algorithm did not converge. A syiritias displayed for cases when Mathematica warning
messageN/ntegratefailed to converge to prescribed accuracy’ has been issued.
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Example X y 1 TRUE CDF NCTCDFVW MATLAB R

1 1 1 0 7.50000000000000000E-001  7.50000000000000000E-007.50000000000000000E-001 7.5000000000000820m1

2 -35 1 0 9.09209467564843408E-003  9.09209467564843103 9.09209467564843586003 9.092094675648433B6003

3 -35 1 1 1.89903487263458750E-003 1.89903487263438803 1.899034872634542B86003 1.899034872748895B6003

4 -5 1 5 8.52042451613777143E-009 8.520424516137 HUID 8.520423033786528B6009 8.520619432239585B8009

5 -15 1 15 1.29043391190105994E-053 1.2904339119016P6C 0 8.16013923099490100E-014
6 -35 1 35 7.31501102529248499E-272  7.3150110252924720Q 0 5.72875080706580800E-014
7 1 10 5 4.34725285650591657E-005 4.347252856505%-1006 4.34725285650592788005 4.34725284300420388005

8 1 10 10 7.95914542988750673E-019 7.959145429887%1000 7.61985302416059300E-024 7.947248207809742@E019

9

1 10 15 1.41346486009205976E-042 1.413464860092E>94Q 3.67096619931285900E-051 9.87042896134168300E-043

10 1 10 35 1.69061467860900429E-237 1.690614678609ED2CW 1.12491070647255300E-268 4.51922957217374300E-250
11 150 10 200 5.88999020094520836E-002 5.889990200986£0302 5.889990200721763B8002 5.45995201321134488002

12 150 10 500 3.25241635439258347E-019 3.25241635430QE7919 3.25241635469807486019 2.762470663506697€00-026
13 50 100 75 4.99615060338271916E-011 4.99615060338QF1Q01 4.99615060337484380011 0
14 500 100 510 3.71160937464178059E-001 3.711609374600F7001 3.711609373859113B6001 3.75215597825695086001

15 1 1000 10 1.14935521338266224E-019 1.14935521338266209 7.61985302416059300E-024 1.149324015361507@3019

16 100 1000 105 2.05403544901854621E-002 2.0540354480065-002 2.05403544900927086002 2.01116859042299086002

17 1000 1000 1010 3.22438286661716843E-001 3.22438286660(E-001 3.22438286530340686001 3.23499129176421986001

Example X v 0 TRUE CDF SAS BOOST MATHEMATICA

1 10 10 7.95914542988750673E-019 7.9591454298873%B000 7.95914542988752086019 7.95914542988750673E-019
1 10 15 1.41346486009205976E-042 1.413464860092EB04Q 1.41346486009207086042 1.41346486009205976E-042

1 1 1 0 7.50000000000000000E-001  7.50000000000000000E-007.50000000000000000E-001 7.50000000000000000E-001
2 -35 1 0 9.09209467564843408E-003  9.09209467564840003 9.09209467564843086003 9.09209467564843408E-003

3 -35 1 1 1.89903487263458750E-003 NA 1.899034872634 3B 1.89903487263458750E-003

4 -5 1 5 8.52042451613777143E-009 8.520424516137 /0l 8.52042442641561086009 8.52042451613777143E-009

5 -15 1 15 1.29043391190105994E-053 1.290433911901EB0GG 2.86650837419345000E-016 1.29043391190105994E-053

6 -35 1 35 7.31501102529248499E-272 NA __ -3.7735200316ZH6M17  7.31501102529248499E-272

7 1 10 5 4.34725285650591657E-005 4.3472528565053H005 4.34725285650591088005 4.34725285650591657E-005

8

9

10 1 10 35 1.69061467860900429E-237 1.690614678608#0AG0 1.12491070647253000E-268 1.69061467860900429E-237
11 150 10 200 5.88999020094520836E-002 5.889990200996£0002 5.88999020094668086002 NA
12 150 10 500 3.25241635439258347E-019 NA 3.2524163548985-019 NA
13 50 100 75 4.99615060338271916E-011 4.99615060338RE&0001 4.996150603382720B011 *4.99615060338271916E-011
14 500 100 510 3.71160937464178059E-001 NA 3.7116093 HERATE-001 NA
15 1 1000 10 1.14935521338266224E-019 1.14935521338QRE3009 1.14935521338269086019  *1.14935521338266224E-019
16 100 1000 105 2.05403544901854621E-002 2.0540354400065-002 2.05403544901843086002 *2.05403544901854621E-002
17 1000 1000 1010 3.22438286661716843E-001 NA 3.22438A88600@-001 NA

Table 1: CDF values of the noncenttadistribution computed by flierent algorithm@mplementations for selected combinations of the inpuapeaters.



6. Conclusions

It seems that (currently) there is no implementation of tlgo@thm for computing CDF of the noncentral
distribution which is uniformly ficient (reasonably fast) and accurate for all input pararaater, andé in double-
precision arithmetic.

According to our present study, this goal is best satisfiethbySAS and BOOST implementations, if we restrict
to the typical (most frequently used) values of the inpubpaeters. However, when the output of such algorithm is
supposed to be used subsequently for further computatisresg. computing the PDF or quantiles of the distribution
(andor the noncentrality parameté&ror the degrees of freedomfor given values<cand the CDFPDF), the possible
inaccuracy, slow evaluation or failure to converge, canriieal.

Here we have suggested a new algorithm based on numericiiajuee of a well behaved function which is rea-
sonably precise and fast in double-precision arithmetiafianput parameters, v ands. Precision of the MATLAB
version of the algorithm was tested for wide range of inpubpeeters (not presented here). In most of the tested
cases the relative error was bellow 10
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