Skip to content

Latest commit

 

History

History
91 lines (63 loc) · 2.1 KB

README.md

File metadata and controls

91 lines (63 loc) · 2.1 KB

Attention-based Extraction of Structured Information from Street View Imagery

A TensorFlow model for real-world image text extraction problems.

源代码tensorflow models

Attention OCR model 使用 [FSNS dataset][FSNS] 数据训练的模型。 你也可以使用自己的数据集

论文详情:

"Attention-based Extraction of Structured Information from Street View Imagery"

Contacts

原作者:

Zbigniew Wojna zbigniewwojna@gmail.com, Alexander Gorban gorban@google.com

Pull requests: alexgorban

Requirements

  1. 安装环境脚本:
install_env.sh
  1. 生成自己的数据:
python gen_run.py -t 15 -fs 28 -new_h 32 -new_w 320 -w 2 -c 200000 -news -mxw 18 -miw 15 -l cn -e png -aug  --output_dir out
  1. 生成训练数据格式:
python gen_record.py --dataset_name=train --dataset_dir=out --dataset_nums=10000 --output_dir=datasets/train
  1. 修改训练配置在:
 my_data.py
  1. 训练:
 train.py --dataset_name=my_data
  1. Inception下载地址:
wget http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz
wget http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz
wget http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz
tar xf inception_v3_2016_08_28.tar.gz
mv inception_v3.ckpt resource/inception_v3.ckpt

.1. 使用Inception_v3权重训练:

 python train.py --checkpoint_inception=./resource/inception_v3.ckpt --dataset_name=my_data > output.log 2>&1 &
  1. 使用Attention OCR model权重训练:
wget http://download.tensorflow.org/models/attention_ocr_2017_08_09.tar.gz
tar xf attention_ocr_2017_08_09.tar.gz
python train.py --checkpoint=../attention_ocr_2017_08_09/model.ckpt-399731 --train_log_dir=my_logs --dataset_name=my_data
  1. 可视化:
tensorboard  --logdir=logs
  1. 验证:
python eval.py --dataset_name=my_data --split_name=test

tensorboard  --logdir=eval_logs --port=6016

train.sh 有完整的训练步骤