-
Notifications
You must be signed in to change notification settings - Fork 1
/
test.py
142 lines (118 loc) · 4.75 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import os
import math
from functools import partial
import yaml
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import datasets
import models
import utils
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import pdb
def batched_predict(model, inp, coord, cell, bsize):
with torch.no_grad():
model.gen_feat(inp)
n = coord.shape[1]
ql = 0
preds = []
while ql < n:
qr = min(ql + bsize, n)
pred = model.query_rgb(coord[:, ql: qr, :], cell[:, ql: qr, :])
preds.append(pred)
ql = qr
pred = torch.cat(preds, dim=1)
return pred
def eval_psnr(loader, model, data_norm=None, eval_type=None, eval_bsize=None, model_name=None,
verbose=False, test_mode=False):
model.eval()
if data_norm is None:
data_norm = {
'inp': {'sub': [0], 'div': [1]},
'gt': {'sub': [0], 'div': [1]}
}
t = data_norm['inp']
inp_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).cuda()
inp_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).cuda()
t = data_norm['gt']
gt_sub = torch.FloatTensor(t['sub']).view(1, 1, -1).cuda()
gt_div = torch.FloatTensor(t['div']).view(1, 1, -1).cuda()
if eval_type is None:
metric_fn = utils.calc_psnr
elif eval_type.startswith('div2k'):
scale = int(eval_type.split('-')[1])
metric_fn = partial(utils.calc_psnr, dataset='div2k', scale=scale)
elif eval_type.startswith('benchmark'):
scale = int(eval_type.split('-')[1])
metric_fn = partial(utils.calc_psnr, dataset='benchmark', scale=scale)
else:
raise NotImplementedError
val_res = utils.Averager()
pbar = tqdm(loader, leave=False, desc='val')
number = 0
for batch in pbar:
for k, v in batch.items():
batch[k] = v.cuda()
inp = (batch['inp'] - inp_sub) / inp_div
if eval_bsize is None:
with torch.no_grad():
pred = model(inp, batch['coord'], batch['cell'])
else:
pred = batched_predict(model, inp,
batch['coord'], batch['cell'], eval_bsize)
pred = pred * gt_div + gt_sub
pred.clamp_(0, 1)
# if eval_type is not None: # reshape for shaving-eval
if test_mode: # if True, then do
ih, iw = batch['inp'].shape[-2:]
s = math.sqrt(batch['coord'].shape[1] / (ih * iw))
shape = [batch['inp'].shape[0], round(ih * s), round(iw * s), 3]
pred = pred.view(*shape) \
.permute(0, 3, 1, 2).contiguous()
batch['gt'] = batch['gt'].view(*shape) \
.permute(0, 3, 1, 2).contiguous()
_img = torch.clamp(torch.round(pred.squeeze(0).permute(1,2,0)*255), 0, 255).cpu().detach().numpy()
save_dir = os.path.join('./results',
model_name.split('/')[-2],
config['test_dataset']['dataset']['args']['root_path'].split('/')[-2],
'x' + str(config['test_dataset']['wrapper']['args']['scale_min']))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
res = metric_fn(pred, batch['gt'])
val_res.add(res.item(), inp.shape[0])
if test_mode: # if True, then do
save_imdir = os.path.join(save_dir, str(number) + '_' + str(res.item())[:6] + '.jpg')
Image.fromarray(np.uint8(_img)).convert('RGB').save(save_imdir,"jpeg")
if verbose:
pbar.set_description('val {:.4f}'.format(val_res.item()))
number += 1
if test_mode: # if True, then do
os.rename(save_dir, save_dir + '_' + str(val_res.item())[:6])
return val_res.item()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config')
parser.add_argument('--model')
parser.add_argument('--gpu', default='0')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
spec = config['test_dataset']
dataset = datasets.make(spec['dataset'])
dataset = datasets.make(spec['wrapper'], args={'dataset': dataset})
loader = DataLoader(dataset, batch_size=spec['batch_size'],
num_workers=8, pin_memory=True)
model_spec = torch.load(args.model)['model']
model = models.make(model_spec, load_sd=True).cuda()
res = eval_psnr(loader, model,
data_norm=config.get('data_norm'),
eval_type=config.get('eval_type'),
eval_bsize=config.get('eval_bsize'),
model_name=args.model,
verbose=True,
test_mode=True)
print('result: {:.4f}'.format(res))