-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
59 lines (42 loc) · 1.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import pickle
import streamlit as st
import pandas as pd
import requests
def fetch_poster(movie_id):
response = requests.get("https://api.themoviedb.org/3/movie/{}?api_key=873d82e67af936f345c85f349e80dc7c&language=en-US".format(movie_id))
data=response.json()
return "https://image.tmdb.org/t/p/original" + data['poster_path']
def recommend(movie):
movie_index = movies[movies['title'] == movie].index[0]
distances = similarity[movie_index]
movies_list = sorted(list(enumerate(distances)),reverse=True,key = lambda x: x[1])[1:6]
recommended_movies= []
recommended_movies_posters= []
for i in movies_list:
movie_id= movies.iloc[i[0]].movie_id
recommended_movies.append(movies.iloc[i[0]].title)
recommended_movies_posters.append(fetch_poster(movie_id))
return recommended_movies, recommended_movies_posters
movies_dict=pickle.load(open('movie_dict.pkl', 'rb'))
movies =pd.DataFrame(movies_dict)
similarity=pickle.load(open('similarity.pkl', 'rb'))
st.title('Movie Recommender System')
selected_movie_name=st.selectbox('Choose a movie you love', movies['title'].values)
if st.button('Recommend'):
names,posters = recommend(selected_movie_name)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(names[0])
st.image(posters[0])
with col2:
st.text(names[1])
st.image(posters[1])
with col3:
st.text(names[2])
st.image(posters[2])
with col4:
st.text(names[3])
st.image(posters[3])
with col5:
st.text(names[4])
st.image(posters[4])