-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate.py
346 lines (282 loc) · 11.8 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import numpy as np
import torch
from utils import parse_arguments, reset_seed
from model import get_encoder, get_decoder, get_model
from dataset import load_data, get_train_data, EvaluateDataset, convert_sensitives, get_evaluation_dataloader
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, roc_auc_score, mean_squared_error
from sklearn import preprocessing
from sklearn.ensemble import RandomForestRegressor
import itertools
def avgPairs(lst):
diffs = [abs(e[1] - e[0]) for e in itertools.combinations(lst, 2)]
return np.mean(diffs)
def get_embed(
loader,
args=None
):
f_list = []
g1_list = []
g2_list = []
with torch.no_grad():
for X, y in loader:
X, y = X.to(args.gpu), y.to(args.gpu)
f_embed, g1_embed, g2_embed, _ = model(X.float())
f_list.append(f_embed.detach().cpu().numpy())
g1_list.append(g1_embed.detach().cpu().numpy())
g2_list.append(g2_embed.detach().cpu().numpy())
f_embed = np.concatenate(f_list, axis=0)
g1_embed = np.concatenate(g1_list, axis=0)
g2_embed = np.concatenate(g2_list, axis=0)
return f_embed, g1_embed, g2_embed
def do_regression(
train_embed,
trainY,
test_embed,
test_convert_embed,
args=None,
):
if args.eval_type == 'classification':
regression_model = LogisticRegression(solver='liblinear')
regression_model.fit(train_embed, trainY.numpy())
y_pred = regression_model.predict(test_embed)
y_pred_proba = regression_model.predict_proba(test_embed)
y_pred_proba2 = regression_model.predict_proba(test_convert_embed)
return regression_model, y_pred, y_pred_proba, y_pred_proba2
elif args.eval_type == 'regression':
regression_model = RandomForestRegressor(max_depth=10, random_state=0)
regression_model.fit(train_embed, trainY)
y_pred = regression_model.predict(test_embed)
y_pred2 = regression_model.predict(test_convert_embed)
return regression_model, y_pred, y_pred2
else:
assert(0)
def eval_classification(
train_embed,
trainY,
test_embed,
test_convert_embed,
testY,
args=None,
):
regression_model, y_pred, y_pred_proba, y_pred_proba2 = do_regression(
train_embed,
trainY,
test_embed,
test_convert_embed,
args=args,
)
accuracy = accuracy_score(y_pred, testY.numpy())
AUROC = roc_auc_score(testY.numpy(), y_pred_proba[:, 1])
testds.df['predict_linear'] = y_pred_proba[:, 1]
predict_mean_vals = testds.df.groupby(args.sensitive).mean()['predict_linear'].values
DP = avgPairs(predict_mean_vals)
testds.df['predict_convert_linear'] = y_pred_proba2[:, 1]
CP = (testds.df['predict_linear'] - testds.df['predict_convert_linear']).abs().mean()
equalize_odd_list = []
for i, grouped in testds.df.groupby(args.sensitive):
numy = len(grouped[grouped['predict_linear'] >= 0.5])
totaly = len(grouped)
equalize_odd_list.append(numy / totaly)
Eodd = avgPairs(equalize_odd_list)
return accuracy, AUROC, DP, CP, Eodd
def eval_regression(
train_embed,
trainY,
test_embed,
test_convert_embed,
testY,
args=None,
):
min_max_scaler = preprocessing.MinMaxScaler()
trainY = min_max_scaler.fit_transform(trainY.reshape(-1, 1)).squeeze()
testY = min_max_scaler.transform(testY.reshape(-1, 1)).squeeze()
regression_model, y_pred, y_pred2 = do_regression(
train_embed,
trainY,
test_embed,
test_convert_embed,
args=args,
)
RMSE = mean_squared_error(testY, y_pred)
testds.df['predict_linear'] = y_pred
predict_mean_vals = testds.df.groupby(args.sensitive).mean()['predict_linear'].values
DP = avgPairs(predict_mean_vals)
testds.df['predict_convert_linear'] = y_pred2
CP = (testds.df['predict_linear'] - testds.df['predict_convert_linear']).abs().mean()
return RMSE, DP, CP
if __name__ == "__main__":
args = parse_arguments()
args.gpu = torch.device(f'cuda:{args.gpu}')
reset_seed(args.seed)
args.compress_dim = [int(x) for x in args.generator_dim.split(',')]
args.decompress_dim = [int(x) for x in args.discriminator_dim.split(',')]
if args.dataset in ['adult', 'compas', 'lsac', 'credit']:
args.eval_type = 'classification'
elif args.dataset in ['communities', 'student_performance']:
args.eval_type = 'regression'
else:
assert(0)
if args.save_pre == None:
print('Automatically find save_pre...')
save_pre_content = f'dualfair_{args.dataset}_{args.sensitive}_seed_{args.seed}'
candidates = [f for f in os.listdir(f'{args.output}/dualfair') if f.startswith(save_pre_content)]
candidates = sorted(candidates)
args.save_pre = candidates[-1]
print(f'Evaluate {args.save_pre}')
output_dir = f'{args.output}/dualfair/{args.save_pre}'
data_org, discrete_columns, target = load_data(args=args)
args.discrete_columns = discrete_columns
args.target = target
print(f'Dataset ready')
data_org[args.target] = data_org[args.target].astype('category')
data_org[args.target] = data_org[args.target].cat.codes
data_org[args.sensitive] = data_org[args.sensitive].astype('category')
data_org[args.sensitive] = data_org[args.sensitive].cat.codes
data_org_test, _, _ = load_data(train=False, args=args)
data_org_test[args.target] = data_org_test[args.target].astype('category')
data_org_test[args.target] = data_org_test[args.target].cat.codes
data_org_test[args.sensitive] = data_org_test[args.sensitive].astype('category')
data_org_test[args.sensitive] = data_org_test[args.sensitive].cat.codes
converter_path = f'./output/converter/converter_combined_{args.dataset}_{args.sensitive}'
_, transformer, sensitive_size = get_train_data(
data_org,
transformer_path=f'{converter_path}/transformer.ckpt',
converter=False,
args=args
)
args.data_dim = transformer.output_dimensions
args.transformer = transformer
args.sensitive_size = sensitive_size
if sensitive_size == 1:
args.class_num = 2
else:
args.class_num = sensitive_size
print(f'Data transformation ready')
encoder = get_encoder(args)
decoder = get_decoder(args)
print("Encoder, decoder created")
encoder.load_state_dict(torch.load(f"{converter_path}/encoder.ckpt", map_location=args.gpu))
decoder.load_state_dict(torch.load(f"{converter_path}/decoder.ckpt", map_location=args.gpu))
encoder.to(args.gpu)
decoder.to(args.gpu)
print("encoder, decoder load finished")
trainds = EvaluateDataset(data_org, args=args)
testds = EvaluateDataset(data_org_test, enc=trainds.enc, scaler=trainds.scaler, args=args)
train_convert_df = convert_sensitives(trainds.df, encoder, decoder, args=args)
trainds.convert_cat_df = np.array(trainds.enc.transform(train_convert_df[trainds.cat_columns]))
trainds.convert_con_df = np.array(trainds.scaler.transform(train_convert_df[trainds.con_columns]))
trainds.convert_df = np.concatenate((trainds.convert_cat_df, trainds.convert_con_df), axis=1)
test_convert_df = convert_sensitives(testds.df, encoder, decoder, args=args)
testds.convert_cat_df = np.array(testds.enc.transform(test_convert_df[testds.cat_columns]))
testds.convert_con_df = np.array(testds.scaler.transform(test_convert_df[testds.con_columns]))
testds.convert_df = np.concatenate((testds.convert_cat_df, testds.convert_con_df), axis=1)
trainX = torch.tensor(trainds.row_df)
trainY = torch.tensor(data_org[args.target].to_numpy())
testX = torch.tensor(testds.row_df)
testY = torch.tensor(data_org_test[args.target].to_numpy())
trainconvertX = torch.tensor(trainds.convert_df)
trainconvertY = torch.tensor(data_org[args.target].to_numpy())
testconvertX = torch.tensor(testds.convert_df)
testconvertY = torch.tensor(data_org_test[args.target].to_numpy())
torch.save(train_convert_df, f"{converter_path}/train_convert_df")
torch.save(test_convert_df, f"{converter_path}/test_convert_df")
x = trainX[0]
args.input_dim = x.shape[0]
print(f'Input shape: {x.shape}')
train_finetune_loader, test_finetune_loader, \
train_convert_finetune_loader, test_convert_finetune_loader = get_evaluation_dataloader(
trainX,
trainY,
testX,
testY,
trainconvertX,
trainconvertY,
testconvertX,
testconvertY,
args,
)
if args.eval_type == 'classification':
accuracy_list = []
AUROC_list = []
DP_list = []
CP_list = []
Eodd_list = []
elif args.eval_type == 'regression':
RMSE_list = []
DP_list = []
CP_list = []
else:
assert(0)
model_list = [f"model_pretrain_epoch{200 - i}.ckpt" for i in range(10)]
for model_path in model_list:
model = get_model(args)
model.load_state_dict(torch.load(f"{output_dir}/{model_path}", map_location=args.gpu))
model = model.to(args.gpu)
print(f'{model_path} load finished')
model.eval()
train_f_embed, train_g1_embed, train_g2_embed = get_embed(train_finetune_loader, args)
# train_f_convert_embed, train_g1_convert_embed, train_g2_convert_embed = get_embed(train_convert_finetune_loader, args)
test_f_embed, test_g1_embed, test_g2_embed = get_embed(test_finetune_loader, args)
test_f_convert_embed, test_g1_convert_embed, test_g2_convert_embed = get_embed(test_convert_finetune_loader, args)
train_embed = train_f_embed
test_embed = test_f_embed
test_convert_embed = test_f_convert_embed
if args.eval_type == 'classification':
accuracy, AUROC, DP, CP, Eodd = eval_classification(
train_embed,
trainY,
test_embed,
test_convert_embed,
testY,
args
)
accuracy_list.append(accuracy)
AUROC_list.append(AUROC)
DP_list.append(DP)
CP_list.append(CP)
Eodd_list.append(Eodd)
print(f'Accuracy: {accuracy}')
print(f'AUROC: {AUROC}')
print(f'DP: {DP}')
print(f'CP: {CP}')
print(f'Eodd: {Eodd}')
elif args.eval_type == 'regression':
RMSE, DP, CP = eval_regression(
train_embed,
trainY,
test_embed,
test_convert_embed,
testY,
args
)
RMSE_list.append(RMSE)
DP_list.append(DP)
CP_list.append(CP)
print(f'RMSE: {RMSE}')
print(f'DP: {DP}')
print(f'CP: {CP}')
else:
assert(0)
print('-------------- Final Result -----------------')
log = ''
log += f'Arguments:\n'
log += f'{args}\n\n'
result = ''
if args.eval_type == 'classification':
result += f'Accuracy: {np.mean(accuracy_list)}\n'
result += f'AUROC: {np.mean(AUROC_list)}\n'
result += f'DP: {np.mean(DP_list)}\n'
result += f'CP: {np.mean(CP_list)}\n'
result += f'Eodds: {np.mean(Eodd_list)}\n'
elif args.eval_type == 'regression':
result += f'RMSE: {np.mean(RMSE_list)}\n'
result += f'DP: {np.mean(DP_list)}\n'
result += f'CP: {np.mean(CP_list)}\n'
else:
assert(0)
print(result)
log += f'{result}\n'
with open(f'{output_dir}/eval_result', 'w') as f:
print(log, file=f, flush=True)