-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
94 lines (78 loc) · 4.11 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import argparse
import random
import numpy as np
import torch
def reset_seed(seed=7):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def parse_arguments(notebook=False):
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=17,
help='Random seed')
parser.add_argument('--gpu', type=int, default=0,
help='GPU to use')
parser.add_argument('--no-header', dest='header', action='store_false',
help='The CSV file has no header. Discrete columns will be indices.')
parser.add_argument('-d', '--discrete',
help='Comma separated list of discrete columns without whitespaces.')
parser.add_argument('--epochs', type=int, default=200,
help='Number of epochs for the main model.')
parser.add_argument('--converter_epochs', type=int, default=300,
help='Number of epochs for the counterfactual converter')
parser.add_argument('--batch_size', type=int, default=128,
help='Batch Size for the main model. Must be an even number.')
parser.add_argument('--converter_batch_size', type=int, default=500,
help='Batch Size for the counterfactual converter. Must be an even number.')
parser.add_argument('--learning_rate', type=float, default=1e-3,
help='Learning rate for the main model and autoencoder in the counterfactual converter.')
parser.add_argument('--discriminator_learning_rate', type=float, default=1e-2,
help='Learning rate for discriminator in the counterfactual converter.')
parser.add_argument('--weight_decay', type=float, default=1e-6,
help='Weight decay for the main model.')
parser.add_argument('--discriminator_weight_decay', type=float, default=0.0,
help='Weight decay for the discriminator in the counterfactual converter')
parser.add_argument('--converter_weight_decay', type=float, default=1e-5,
help='Weight decay for the autoencoder in the counterfactual converter')
parser.add_argument('--loss_factor', type=int, default=2,
help='loss_factor')
parser.add_argument('--embedding_dim', type=int, default=128,
help='Dimension of input z to the generator.')
parser.add_argument('--generator_dim', type=str, default='256,256',
help='Dimension of each generator layer. '
'Comma separated integers with no whitespaces.')
parser.add_argument('--discriminator_dim', type=str, default='256,256',
help='Dimension of each discriminator layer. '
'Comma separated integers with no whitespaces.')
parser.add_argument('--k', type=float, default=0.5,
help='Feature ratio for TabMIX')
parser.add_argument('--sensitive', default='sex', type=str,
help='Name of sensitive attribute')
parser.add_argument('--dataset', default='adult', type=str,
help='Name of sensitive attribute')
parser.add_argument('--output', default='./output', type=str,
help='Output path')
parser.add_argument('--num_workers', type=int, default=8, help='Number of workers for preprocessing')
parser.add_argument('--save_pre', default=None, type=str,
help='Target to evaluate')
if notebook:
args = parser.parse_args([])
else:
args = parser.parse_args()
return args
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count