-
Notifications
You must be signed in to change notification settings - Fork 0
/
arduino_flops_benchmark.ino
1173 lines (914 loc) · 23.1 KB
/
arduino_flops_benchmark.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// source : https://gist.github.com/projectgus/8279947
//~ #pragma GCC optimize("Os") // 205 kFLOPS
//~ #pragma GCC optimize("O0") // 160 kFLOPS
//~ #pragma GCC optimize("O1") // 204 kFLOPS
//~ #pragma GCC optimize("O2") // 205 kFLOPS
//#pragma GCC optimize("O3") // 220 kFLOPS (LGT@32MHz) ; 109kFLOPS (LGT@16MHz) ; 90 kFLOPS(Atmega328p)
#pragma GCC optimize("Ofast") // 226 kFLOPS (LGT@32MHz) ; 112kFLOPS (LGT@16MHz) ; 92 kFLOPS (Atmega328p)
# include <stdlib.h>
# include <stdio.h>
# include <math.h>
int do_benchmark ( void );
double cpu_time ( void );
void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy );
double ddot ( int n, double dx[], int incx, double dy[], int incy );
int dgefa ( double a[], int lda, int n, int ipvt[] );
void dgesl ( double a[], int lda, int n, int ipvt[], double b[], int job );
void dscal ( int n, double sa, double x[], int incx );
int idamax ( int n, double dx[], int incx );
double r8_abs ( double x );
double r8_epsilon ( void );
double r8_max ( double x, double y );
double r8_random ( int iseed[4] );
double *r8mat_gen ( int lda, int n );
static FILE uartout = {0} ;
static int uart_putchar (char c, FILE *stream)
{
Serial.write(c) ;
return 0 ;
}
void setup() {
Serial.begin(9600);
fdev_setup_stream (&uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE);
stdout = &uartout ;
}
void loop() {
printf("Starting benchmark...\n");
do_benchmark();
}
/******************************************************************************/
int do_benchmark ( void )
/******************************************************************************/
/*
Purpose:
MAIN is the main program for LINPACK_BENCH.
Discussion:
LINPACK_BENCH drives the double precision LINPACK benchmark program.
Modified:
25 July 2008
Parameters:
N is the problem size.
*/
{
# define N 8
# define LDA ( N + 1 )
static double a[N * LDA];
static double a_max;
static double b[N];
static double b_max;
const double cray = 0.056;
static double eps;
int i;
int info;
static int ipvt[N];
int j;
int job;
double ops;
static double resid[N];
double resid_max;
double residn;
static double rhs[N];
double t1;
double t2;
static double time[6];
double total;
double x[N];
printf ( "\n" );
printf ( "LINPACK_BENCH\n" );
printf ( " C version\n" );
printf ( "\n" );
printf ( " The LINPACK benchmark.\n" );
printf ( " Language: C\n" );
printf ( " Datatype: Double precision real\n" );
printf ( " Matrix order N = %d\n", N );
printf ( " Leading matrix dimension LDA = %d\n", LDA );
ops = ( double ) ( 2L * N * N * N ) / 3.0 + 2.0 * ( double ) ( (long)N * N );
/*
Allocate space for arrays.
*/
r8mat_gen ( LDA, N, a);
a_max = 0.0;
for ( j = 0; j < N; j++ )
{
for ( i = 0; i < N; i++ )
{
a_max = r8_max ( a_max, a[i+j*LDA] );
}
}
for ( i = 0; i < N; i++ )
{
x[i] = 1.0;
}
for ( i = 0; i < N; i++ )
{
b[i] = 0.0;
for ( j = 0; j < N; j++ )
{
b[i] = b[i] + a[i+j*LDA] * x[j];
}
}
t1 = cpu_time ( );
info = dgefa ( a, LDA, N, ipvt );
if ( info != 0 )
{
printf ( "\n" );
printf ( "LINPACK_BENCH - Fatal error!\n" );
printf ( " The matrix A is apparently singular.\n" );
printf ( " Abnormal end of execution.\n" );
return 1;
}
t2 = cpu_time ( );
time[0] = t2 - t1;
t1 = cpu_time ( );
job = 0;
dgesl ( a, LDA, N, ipvt, b, job );
t2 = cpu_time ( );
time[1] = t2 - t1;
total = time[0] + time[1];
/*
Compute a residual to verify results.
*/
r8mat_gen ( LDA, N, a );
for ( i = 0; i < N; i++ )
{
x[i] = 1.0;
}
for ( i = 0; i < N; i++ )
{
rhs[i] = 0.0;
for ( j = 0; j < N; j++ )
{
rhs[i] = rhs[i] + a[i+j*LDA] * x[j];
}
}
for ( i = 0; i < N; i++ )
{
resid[i] = -rhs[i];
for ( j = 0; j < N; j++ )
{
resid[i] = resid[i] + a[i+j*LDA] * b[j];
}
}
resid_max = 0.0;
for ( i = 0; i < N; i++ )
{
resid_max = r8_max ( resid_max, r8_abs ( resid[i] ) );
}
b_max = 0.0;
for ( i = 0; i < N; i++ )
{
b_max = r8_max ( b_max, r8_abs ( b[i] ) );
}
eps = r8_epsilon ( );
residn = resid_max / ( double ) N / a_max / b_max / eps;
time[2] = total;
if ( 0.0 < total )
{
time[3] = ops / ( 1.0E+06 * total );
}
else
{
time[3] = -1.0;
}
time[4] = 2.0 / time[3];
time[5] = total / cray;
printf ( "\n" );
printf ( " Norm. Resid Resid MACHEP X[1] X[N]\n" );
printf ( "\n" );
Serial.print(" ");
Serial.print(residn, 14);
Serial.print(" ");
Serial.print(resid_max, 14);
Serial.print(" ");
Serial.print(eps, 14);
Serial.print(" ");
Serial.print(b[0], 14);
Serial.print(" ");
Serial.print(b[N-1], 14);
Serial.print(" ");
//printf ( " %14f %14f %14e %14f %14f\n", residn, resid_max, eps, b[0], b[N-1] );
printf ( "\n" );
printf ( " Factor Solve Total MFLOPS Unit Cray-Ratio\n" );
printf ( "\n" );
for(int i =0; i<6;i++) {
Serial.print(" ");
Serial.print(time[i], 9);
}
//printf ( " %9f %9f %9f %9f %9f %9f\n",
// time[0], time[1], time[2], time[3], time[4], time[5] );
/*
Terminate.
*/
printf ( "\n" );
printf ( "LINPACK_BENCH\n" );
printf ( " Normal end of execution.\n" );
printf ( "\n" );
return 0;
# undef LDA
# undef N
}
/******************************************************************************/
double cpu_time ( void )
/******************************************************************************/
/*
Purpose:
CPU_TIME returns the current reading on the CPU clock.
Discussion:
The CPU time measurements available through this routine are often
not very accurate. In some cases, the accuracy is no better than
a hundredth of a second.
Licensing:
This code is distributed under the GNU LGPL license.
Modified:
06 June 2005
Author:
John Burkardt
Parameters:
Output, double CPU_TIME, the current reading of the CPU clock, in seconds.
*/
{
double value;
value = ( double ) micros ( )
/ ( double ) 1000000;
return value;
}
/******************************************************************************/
void daxpy ( int n, double da, double dx[], int incx, double dy[], int incy )
/******************************************************************************/
/*
Purpose:
DAXPY computes constant times a vector plus a vector.
Discussion:
This routine uses unrolled loops for increments equal to one.
Modified:
30 March 2007
Author:
FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart.
C version by John Burkardt
Reference:
Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
LINPACK User's Guide,
SIAM, 1979.
Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
Basic Linear Algebra Subprograms for Fortran Usage,
Algorithm 539,
ACM Transactions on Mathematical Software,
Volume 5, Number 3, September 1979, pages 308-323.
Parameters:
Input, int N, the number of elements in DX and DY.
Input, double DA, the multiplier of DX.
Input, double DX[*], the first vector.
Input, int INCX, the increment between successive entries of DX.
Input/output, double DY[*], the second vector.
On output, DY[*] has been replaced by DY[*] + DA * DX[*].
Input, int INCY, the increment between successive entries of DY.
*/
{
int i;
int ix;
int iy;
int m;
if ( n <= 0 )
{
return;
}
if ( da == 0.0 )
{
return;
}
/*
Code for unequal increments or equal increments
not equal to 1.
*/
if ( incx != 1 || incy != 1 )
{
if ( 0 <= incx )
{
ix = 0;
}
else
{
ix = ( - n + 1 ) * incx;
}
if ( 0 <= incy )
{
iy = 0;
}
else
{
iy = ( - n + 1 ) * incy;
}
for ( i = 0; i < n; i++ )
{
dy[iy] = dy[iy] + da * dx[ix];
ix = ix + incx;
iy = iy + incy;
}
}
/*
Code for both increments equal to 1.
*/
else
{
m = n % 4;
for ( i = 0; i < m; i++ )
{
dy[i] = dy[i] + da * dx[i];
}
for ( i = m; i < n; i = i + 4 )
{
dy[i ] = dy[i ] + da * dx[i ];
dy[i+1] = dy[i+1] + da * dx[i+1];
dy[i+2] = dy[i+2] + da * dx[i+2];
dy[i+3] = dy[i+3] + da * dx[i+3];
}
}
return;
}
/******************************************************************************/
double ddot ( int n, double dx[], int incx, double dy[], int incy )
/******************************************************************************/
/*
Purpose:
DDOT forms the dot product of two vectors.
Discussion:
This routine uses unrolled loops for increments equal to one.
Modified:
30 March 2007
Author:
FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart.
C version by John Burkardt
Reference:
Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
LINPACK User's Guide,
SIAM, 1979.
Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
Basic Linear Algebra Subprograms for Fortran Usage,
Algorithm 539,
ACM Transactions on Mathematical Software,
Volume 5, Number 3, September 1979, pages 308-323.
Parameters:
Input, int N, the number of entries in the vectors.
Input, double DX[*], the first vector.
Input, int INCX, the increment between successive entries in DX.
Input, double DY[*], the second vector.
Input, int INCY, the increment between successive entries in DY.
Output, double DDOT, the sum of the product of the corresponding
entries of DX and DY.
*/
{
double dtemp;
int i;
int ix;
int iy;
int m;
dtemp = 0.0;
if ( n <= 0 )
{
return dtemp;
}
/*
Code for unequal increments or equal increments
not equal to 1.
*/
if ( incx != 1 || incy != 1 )
{
if ( 0 <= incx )
{
ix = 0;
}
else
{
ix = ( - n + 1 ) * incx;
}
if ( 0 <= incy )
{
iy = 0;
}
else
{
iy = ( - n + 1 ) * incy;
}
for ( i = 0; i < n; i++ )
{
dtemp = dtemp + dx[ix] * dy[iy];
ix = ix + incx;
iy = iy + incy;
}
}
/*
Code for both increments equal to 1.
*/
else
{
m = n % 5;
for ( i = 0; i < m; i++ )
{
dtemp = dtemp + dx[i] * dy[i];
}
for ( i = m; i < n; i = i + 5 )
{
dtemp = dtemp + dx[i ] * dy[i ]
+ dx[i+1] * dy[i+1]
+ dx[i+2] * dy[i+2]
+ dx[i+3] * dy[i+3]
+ dx[i+4] * dy[i+4];
}
}
return dtemp;
}
/******************************************************************************/
int dgefa ( double a[], int lda, int n, int ipvt[] )
/******************************************************************************/
/*
Purpose:
DGEFA factors a real general matrix.
Modified:
16 May 2005
Author:
C version by John Burkardt.
Reference:
Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
LINPACK User's Guide,
SIAM, (Society for Industrial and Applied Mathematics),
3600 University City Science Center,
Philadelphia, PA, 19104-2688.
ISBN 0-89871-172-X
Parameters:
Input/output, double A[LDA*N].
On intput, the matrix to be factored.
On output, an upper triangular matrix and the multipliers used to obtain
it. The factorization can be written A=L*U, where L is a product of
permutation and unit lower triangular matrices, and U is upper triangular.
Input, int LDA, the leading dimension of A.
Input, int N, the order of the matrix A.
Output, int IPVT[N], the pivot indices.
Output, int DGEFA, singularity indicator.
0, normal value.
K, if U(K,K) == 0. This is not an error condition for this subroutine,
but it does indicate that DGESL or DGEDI will divide by zero if called.
Use RCOND in DGECO for a reliable indication of singularity.
*/
{
int info;
int j;
int k;
int l;
double t;
/*
Gaussian elimination with partial pivoting.
*/
info = 0;
for ( k = 1; k <= n-1; k++ )
{
/*
Find L = pivot index.
*/
l = idamax ( n-k+1, a+(k-1)+(k-1)*lda, 1 ) + k - 1;
ipvt[k-1] = l;
/*
Zero pivot implies this column already triangularized.
*/
if ( a[l-1+(k-1)*lda] == 0.0 )
{
info = k;
continue;
}
/*
Interchange if necessary.
*/
if ( l != k )
{
t = a[l-1+(k-1)*lda];
a[l-1+(k-1)*lda] = a[k-1+(k-1)*lda];
a[k-1+(k-1)*lda] = t;
}
/*
Compute multipliers.
*/
t = -1.0 / a[k-1+(k-1)*lda];
dscal ( n-k, t, a+k+(k-1)*lda, 1 );
/*
Row elimination with column indexing.
*/
for ( j = k+1; j <= n; j++ )
{
t = a[l-1+(j-1)*lda];
if ( l != k )
{
a[l-1+(j-1)*lda] = a[k-1+(j-1)*lda];
a[k-1+(j-1)*lda] = t;
}
daxpy ( n-k, t, a+k+(k-1)*lda, 1, a+k+(j-1)*lda, 1 );
}
}
ipvt[n-1] = n;
if ( a[n-1+(n-1)*lda] == 0.0 )
{
info = n;
}
return info;
}
/******************************************************************************/
void dgesl ( double a[], int lda, int n, int ipvt[], double b[], int job )
/******************************************************************************/
/*
Purpose:
DGESL solves a real general linear system A * X = B.
Discussion:
DGESL can solve either of the systems A * X = B or A' * X = B.
The system matrix must have been factored by DGECO or DGEFA.
A division by zero will occur if the input factor contains a
zero on the diagonal. Technically this indicates singularity
but it is often caused by improper arguments or improper
setting of LDA. It will not occur if the subroutines are
called correctly and if DGECO has set 0.0 < RCOND
or DGEFA has set INFO == 0.
Modified:
16 May 2005
Author:
C version by John Burkardt.
Reference:
Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart,
LINPACK User's Guide,
SIAM, (Society for Industrial and Applied Mathematics),
3600 University City Science Center,
Philadelphia, PA, 19104-2688.
ISBN 0-89871-172-X
Parameters:
Input, double A[LDA*N], the output from DGECO or DGEFA.
Input, int LDA, the leading dimension of A.
Input, int N, the order of the matrix A.
Input, int IPVT[N], the pivot vector from DGECO or DGEFA.
Input/output, double B[N].
On input, the right hand side vector.
On output, the solution vector.
Input, int JOB.
0, solve A * X = B;
nonzero, solve A' * X = B.
*/
{
int k;
int l;
double t;
/*
Solve A * X = B.
*/
if ( job == 0 )
{
for ( k = 1; k <= n-1; k++ )
{
l = ipvt[k-1];
t = b[l-1];
if ( l != k )
{
b[l-1] = b[k-1];
b[k-1] = t;
}
daxpy ( n-k, t, a+k+(k-1)*lda, 1, b+k, 1 );
}
for ( k = n; 1 <= k; k-- )
{
b[k-1] = b[k-1] / a[k-1+(k-1)*lda];
t = -b[k-1];
daxpy ( k-1, t, a+0+(k-1)*lda, 1, b, 1 );
}
}
/*
Solve A' * X = B.
*/
else
{
for ( k = 1; k <= n; k++ )
{
t = ddot ( k-1, a+0+(k-1)*lda, 1, b, 1 );
b[k-1] = ( b[k-1] - t ) / a[k-1+(k-1)*lda];
}
for ( k = n-1; 1 <= k; k-- )
{
b[k-1] = b[k-1] + ddot ( n-k, a+k+(k-1)*lda, 1, b+k, 1 );
l = ipvt[k-1];
if ( l != k )
{
t = b[l-1];
b[l-1] = b[k-1];
b[k-1] = t;
}
}
}
return;
}
/******************************************************************************/
void dscal ( int n, double sa, double x[], int incx )
/******************************************************************************/
/*
Purpose:
DSCAL scales a vector by a constant.
Modified:
30 March 2007
Author:
FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart.
C version by John Burkardt
Reference:
Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
LINPACK User's Guide,
SIAM, 1979.
Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
Basic Linear Algebra Subprograms for Fortran Usage,
Algorithm 539,
ACM Transactions on Mathematical Software,
Volume 5, Number 3, September 1979, pages 308-323.
Parameters:
Input, int N, the number of entries in the vector.
Input, double SA, the multiplier.
Input/output, double X[*], the vector to be scaled.
Input, int INCX, the increment between successive entries of X.
*/
{
int i;
int ix;
int m;
if ( n <= 0 )
{
}
else if ( incx == 1 )
{
m = n % 5;
for ( i = 0; i < m; i++ )
{
x[i] = sa * x[i];
}
for ( i = m; i < n; i = i + 5 )
{
x[i] = sa * x[i];
x[i+1] = sa * x[i+1];
x[i+2] = sa * x[i+2];
x[i+3] = sa * x[i+3];
x[i+4] = sa * x[i+4];
}
}
else
{
if ( 0 <= incx )
{
ix = 0;
}
else
{
ix = ( - n + 1 ) * incx;
}
for ( i = 0; i < n; i++ )
{
x[ix] = sa * x[ix];
ix = ix + incx;
}
}
return;
}
/******************************************************************************/
int idamax ( int n, double dx[], int incx )
/******************************************************************************/
/*
Purpose:
IDAMAX finds the index of the vector element of maximum absolute value.
Discussion:
WARNING: This index is a 1-based index, not a 0-based index!
Modified:
30 March 2007
Author:
FORTRAN77 original by Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart.
C version by John Burkardt
Reference:
Jack Dongarra, Cleve Moler, Jim Bunch, Pete Stewart,
LINPACK User's Guide,
SIAM, 1979.
Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh,
Basic Linear Algebra Subprograms for Fortran Usage,
Algorithm 539,
ACM Transactions on Mathematical Software,
Volume 5, Number 3, September 1979, pages 308-323.
Parameters:
Input, int N, the number of entries in the vector.
Input, double X[*], the vector to be examined.
Input, int INCX, the increment between successive entries of SX.
Output, int IDAMAX, the index of the element of maximum
absolute value.
*/
{
double dmax;
int i;
int ix;
int value;
value = 0;
if ( n < 1 || incx <= 0 )
{
return value;
}
value = 1;
if ( n == 1 )
{
return value;
}
if ( incx == 1 )
{
dmax = r8_abs ( dx[0] );
for ( i = 1; i < n; i++ )
{
if ( dmax < r8_abs ( dx[i] ) )
{
value = i + 1;
dmax = r8_abs ( dx[i] );
}
}
}
else
{
ix = 0;
dmax = r8_abs ( dx[0] );
ix = ix + incx;
for ( i = 1; i < n; i++ )
{
if ( dmax < r8_abs ( dx[ix] ) )
{
value = i + 1;
dmax = r8_abs ( dx[ix] );
}
ix = ix + incx;
}
}
return value;
}
/******************************************************************************/
double r8_abs ( double x )
/******************************************************************************/
/*
Purpose:
R8_ABS returns the absolute value of a R8.
Modified:
02 April 2005
Author:
John Burkardt
Parameters:
Input, double X, the quantity whose absolute value is desired.
Output, double R8_ABS, the absolute value of X.
*/
{
double value;
if ( 0.0 <= x )
{
value = x;
}
else
{
value = -x;
}
return value;
}
/******************************************************************************/
double r8_epsilon ( void )
/******************************************************************************/
/*
Purpose:
R8_EPSILON returns the R8 round off unit.
Discussion:
R8_EPSILON is a number R which is a power of 2 with the property that,
to the precision of the computer's arithmetic,
1 < 1 + R
but
1 = ( 1 + R / 2 )
Licensing:
This code is distributed under the GNU LGPL license.
Modified: