forked from akindofyoga/tflite-inf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_pipeline_mix_tfr.py
167 lines (131 loc) · 4.91 KB
/
test_pipeline_mix_tfr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import io
import logging
import os
import time
import numpy as np
import tensorflow as tf
from PIL import Image
import mpncov
from torchvision import transforms
import torch
from tflite_support.task import core
from tflite_support.task import processor
from tflite_support.task import vision
import cv2
CLASSIFIER_FILENAME = '/meccano/checkpoint.pth.tar'
DETECTOR_NAME = '/meccano/meccano_efficientdet_classes.tflite'
DATASET_PATH = '/meccano/test_data.tfrecord'
THRESHOLD = 0.4
LABELS = ['back', 'front', 'fronttwo', 'full', 'mid']
IMAGE_FEATURE_DESCRIPTION = {
'image/encoded': tf.io.FixedLenFeature([], tf.string),
'image/object/class/text': tf.io.VarLenFeature(tf.string),
}
def main():
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = transforms.Compose([
transforms.Resize((448, 448)),
transforms.ToTensor(),
normalize,
])
classifier_representation = {
'function': mpncov.MPNCOV,
'iterNum': 5,
'is_sqrt': True,
'is_vec': True,
'input_dim': 2048,
'dimension_reduction': None,
}
freezed_layer = 0
model = mpncov.Newmodel(classifier_representation,
len(LABELS), freezed_layer)
model.features = torch.nn.DataParallel(model.features)
model.cuda()
trained_model = torch.load(CLASSIFIER_FILENAME)
model.load_state_dict(trained_model['state_dict'])
model.eval()
base_options = core.BaseOptions(
file_name=DETECTOR_NAME, use_coral=False, num_threads=8)
detection_options = processor.DetectionOptions(
max_results=1, score_threshold=THRESHOLD)
options = vision.ObjectDetectorOptions(
base_options=base_options, detection_options=detection_options)
detector = vision.ObjectDetector.create_from_options(options)
od_good = 0
od_bad = 0
cl_good = 0
cl_bad = 0
dataset = tf.data.TFRecordDataset(DATASET_PATH)
count = 0
start = time.clock_gettime_ns(time.CLOCK_MONOTONIC)
for value in dataset:
parsed = tf.io.parse_single_example(value, IMAGE_FEATURE_DESCRIPTION)
img_bytes = parsed['image/encoded'].numpy()
np_data = np.frombuffer(img_bytes, dtype=np.uint8)
bgr_image = cv2.imdecode(np_data, cv2.IMREAD_COLOR)
pil_img = Image.open(io.BytesIO(img_bytes))
rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
input_tensor = vision.TensorImage.create_from_array(rgb_image)
# Run object detection estimation using the model.
detection_result = detector.detect(input_tensor)
if len(detection_result.detections) == 0:
od_bad += 1
cl_bad += 1
continue
assert len(detection_result.detections) == 1
detection = detection_result.detections[0]
category = detection.categories[0]
assert category.score > THRESHOLD
bbox = detection.bounding_box
left = bbox.origin_x
right = bbox.origin_x + bbox.width
top = bbox.origin_y
bottom = bbox.origin_y + bbox.height
if (top < 0) or (left < 0):
od_bad += 1
cl_bad += 1
continue
if (bbox.width < 1) or (bbox.height < 1):
od_bad += 1
cl_bad += 1
continue
correct_label = parsed['image/object/class/text'].values[0].numpy().decode('utf8')
category_name = category.category_name
if category_name == correct_label:
od_good += 1
else:
od_bad += 1
# Converting to JPEG and back again raises performance
pil_img = pil_img.crop((left, top, right, bottom))
img_bytes = io.BytesIO()
pil_img.save(img_bytes, 'jpeg')
pil_img = Image.open(img_bytes)
transformed = transform(pil_img).cuda()
output = model(transformed[None, ...])
_, pred = output.topk(1, 1, True, True)
classId = pred.t()
pred_label_name = LABELS[classId]
if pred_label_name == correct_label:
cl_good += 1
else:
cl_bad += 1
# print(pred_label_name, category_name, correct_label)
count += 1
if count == 200:
end = time.clock_gettime_ns(time.CLOCK_MONOTONIC)
print('time for 200 in ns', (end - start))
print('od good:', od_good)
print('od bad:', od_bad)
print('cl good:', cl_good)
print('cl bad:', cl_bad)
count = 0
start = time.clock_gettime_ns(time.CLOCK_MONOTONIC)
print('od good:', od_good)
print('od bad:', od_bad)
print('cl good:', cl_good)
print('cl bad:', cl_bad)
if __name__ == '__main__':
main()