-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathAD779X.cpp
586 lines (551 loc) · 19.9 KB
/
AD779X.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
/*************************************************************************
* AD7799
* by Christodoulos P. Lekkos <tolis81@gmail.com> , September 03, 2014.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 3
* published by the Free Software Foundation.
*************************************************************************/
#if defined(ARDUINO) && ARDUINO >= 100
#include <Arduino.h>
#else
#include <WProgram.h>
#endif
#include <AD779X.h>
/* _adcFlags byte
* bit location * Description
* 7 *
* 6 *
* 5 *
* 4 *
* 3 * CREAD
* 2 * Calibrate
* 1 * First measurement
* 0 * ADC model (0/1 AD7798/AD7799)
*/
/* General purpose functions (Private)
************************************************************************************************************************
* adcCommRegByte(MODE_REG, READ_REG) function to create the byte for a Read operation to the Mode register
* adcRead(ID_REG) return the corresponding register value
* adcWrite(unsigned char registerSelection, unsigned char val) write the First and Second byte of the corresponding register
************************************************************************************************************************
*/
unsigned char AD779X::adcCommRegByte(unsigned char registerAddressBits, unsigned char operation) { // choose register according the Register Address Bits and set the R/~W bit for a reading operation
unsigned char commRegVal = 0;
if (operation == READ_REG) {
commRegVal = registerAddressBits | READ_REG;
}
else {
commRegVal = registerAddressBits | WRITE_REG;
}
#if DEBUG_ADC
if (operation == READ_REG) {
Serial.print("Setting Communication Register for a READ Operation: ");
}
else {
Serial.print("Setting Communication Register for a WRITE Operation: ");
}
Serial.println(commRegVal, BIN);
#endif
return commRegVal;
}
unsigned long AD779X::adcRead(unsigned char registerSelection) {
unsigned long registerValue = 0;
unsigned char incomingByte = 0;
if (!(registerSelection == DATA_REG && adcFlag(CREAD))) { // in CREAD there is no need to specify the Communication register for a read to Data register
unsigned char commReg = adcCommRegByte(registerSelection, READ_REG);
incomingByte = SPI.transfer(commReg);
}
else {
#if DEBUG_ADC
Serial.println("ADC in CREAD mode");
#endif
}
incomingByte = SPI.transfer(STUFFIN);
if (registerSelection == STATUS_REG || registerSelection == ID_REG || registerSelection == IO_REG) {
registerValue = incomingByte;
#if DEBUG_ADC
Serial.print("Reading an 8-bit Register: ");
Serial.println(registerValue, BIN);
#endif
return registerValue;
}
else {
#if DEBUG_ADC
Serial.print("First Byte: ");
Serial.print(incomingByte, BIN);
#endif
registerValue = incomingByte << 8; // store selected register FByte
incomingByte = SPI.transfer(STUFFIN); // read selected register S(econd)Byte
#if DEBUG_ADC
Serial.print(" Second Byte: ");
Serial.print(incomingByte, BIN);
#endif
registerValue |= incomingByte;
if (registerSelection == MODE_REG || registerSelection == CONFIG_REG || (registerSelection == DATA_REG && !adcFlag(ADC_MODEL)) || (registerSelection == OFFSET_REG && !adcFlag(ADC_MODEL)) || (registerSelection == FULL_SCALE_REG && !adcFlag(ADC_MODEL))) {
#if DEBUG_ADC
Serial.print(" Reading a 16-bit Register: ");
Serial.println(registerValue, BIN);
#endif
return registerValue;
}
else {
registerValue <<= 8;
incomingByte = SPI.transfer(STUFFIN); // read selected register Third Byte
registerValue |= incomingByte; // store 24-bit register value
registerValue &= 0xFFFFFF;
#if DEBUG_ADC
Serial.print(" Third Byte: ");
Serial.print(incomingByte, HEX);
Serial.print(" Read a 24-bit Register: ");
Serial.println(registerValue, HEX);
#endif
return registerValue;
}
}
}
void AD779X::adcWrite(unsigned char registerSelection, unsigned char val) { // write Mode Register and select Operating Mode OR write Offset/Full-Scale register value
unsigned char commReg = adcCommRegByte(registerSelection, WRITE_REG);
unsigned char incomingByte = SPI.transfer(commReg); // specify the communication register for a writing operation to the selected register
if (registerSelection == CONFIG_REG) {
_configRegSByte = (_configRegSByte & CHANNEL_MASK) | val;
#if DEBUG_ADC
Serial.print("Writing Configuration Register FByte: ");
Serial.println(_configRegFByte, BIN);
Serial.print("Writing Configuration Register SByte: ");
Serial.println(_configRegSByte, BIN);
#endif
incomingByte = SPI.transfer(_configRegFByte); // write CONFIGURATION REGISTER FByte
incomingByte = SPI.transfer(_configRegSByte); // write CONFIGURATION REGISTER SByte - val: Channel Select
}
else if (registerSelection == MODE_REG) {
_modeRegFByte = (_modeRegFByte & OPERATING_MODE_MASK) | val;
#if DEBUG_ADC
Serial.print("Writing Mode Register FByte: ");
Serial.println(_modeRegFByte, BIN);
Serial.print("Writing Mode Register SByte: ");
Serial.println(_modeRegSByte, BIN);
#endif
incomingByte = SPI.transfer(_modeRegFByte); // write MODE REGISTER FByte - val: Operating Mode
incomingByte = SPI.transfer(_modeRegSByte); // write MODE REGISTER SByte
}
else if (registerSelection == IO_REG) { // write IO REGISTER
incomingByte = SPI.transfer(val);
}
else if (registerSelection == OFFSET_REG || registerSelection == FULL_SCALE_REG) { // write OFFSET or FULL-SCALE REGISTER (16-bits for AD7798 / 24-bits for AD7799)
for (int i = 0; i < _nBytes; i++) {
incomingByte = SPI.transfer(val >> 8*(_nBytes - i - 1));
}
}
// delay(1);
}
void AD779X::adcFlag(unsigned char bit, unsigned char flag) {
if (bit == SET) {
_adcFlags |= 1 << flag;
}
else if (bit == CLEAR) {
_adcFlags &= ~(1 << flag);
}
}
bool AD779X::adcFlag(unsigned char flag) {
return _adcFlags & (1 << flag);
}
/* END of General purpose functions */
/* Private Functions
*******************************************************************
* Reset() Reset the ADC
* Init() Reset the ADC,
* store the ID,
* set variables according the ADC model
* configure each channel according the latest user inputs,
* calibrate the channel and
* store gain
*******************************************************************
*/
void AD779X::adcReset() { // write 32 ones to reset ADC
#if DEBUG_ADC
Serial.println("Reseting the ADC...");
#endif
byte incomingByte = 0;
for (int i = 0; i < 4; i++) { // send 0xFFFFFFFF
incomingByte = SPI.transfer(RESET_ADC);
}
delayMicroseconds(500); // (datasheet --> p.23 ~p.19) wait 500us
#if DEBUG_ADC
Serial.println("ADC reset");
#endif
}
void AD779X::adcResetVars() {
#if DEBUG_ADC
Serial.println("Initalizing variables");
#endif
_adcChannels = 3; // ADC has 3 physical channels
_adcFlags = 0; // reset the flags
_gain = 128; // reinitialize gain
_settleTime = 120; // reset settle time to default value
_numberOfChannels = 3; // reset number of channels used to default value
_channelIndex = 0; // reset channel indexing
_configRegFByte = 0x07; // default value of Configuration Register First Byte (datasheet p.16)
_configRegSByte = 0x10; // default value of Configuration Register Second Byte (datasheet p.16)
_modeRegFByte = 0x40; // default value of Mode Register First Byte (datasheet p.14)
_modeRegSByte = 0x0A; // default value of Mode Register Second Byte (datasheet p.14)
_adcPresent = false; // default value of chip present indicator
}
void AD779X::Init() {
#if DEBUG_ADC
Serial.println("Start of Init()");
#endif
adcResetVars(); // reset variables to default state
adcReset(); // reset the device
if (adcRead(STATUS_REG) & 0x08) { // store adc model
#if DEBUG_ADC
Serial.println("ADC Model: AD7799");
#endif
adcFlag(SET, ADC_MODEL);
_nBytes = 3;
}
else {
#if DEBUG_ADC
Serial.println("ADC Model: AD7798");
#endif
_nBytes = 2;
}
#if DEBUG_ADC
Serial.println("End of Init()");
#endif
}
/* Public Functions
*******************
* AD7799 myADC(2.5) initalize a new library object with the name myADC
the applied vRef is 2.5V
* myADC.Begin(2) the device cs pin in number 2
* myADC.Config(1, 2, 1, 1, 0, 0, 0, 0) ADC and channel specific configuration
* myADC.readRaw(1) read channel 1 and return raw value
* myADC.readmV(2) read channel 2 and return value in mV
**********************************************************************************************
*/
AD779X::AD779X(float vRef) {
_vRef = vRef;
}
void AD779X::Begin(int csPin) {
_csPin = csPin; // store the CS pin
pinMode(_csPin, OUTPUT); // set cs pin as output
#if DEBUG_ADC
Serial.println("Start of Begin()");
Serial.print("ADC CS PIN: ");
Serial.println(_csPin);
#endif
digitalWrite(_csPin, LOW); // select the device
Init();
long statusByte = StatusReg();
if (!(statusByte & 0x80)) {
#if DEBUG_ADC
Serial.println("NO CHIP PRESENT");
#endif
}
else {
_adcPresent = true;
}
digitalWrite(_csPin, HIGH); // deselect the device
#if DEBUG_ADC
Serial.println("End of Begin()");
#endif
}
unsigned char AD779X::StatusReg() {
unsigned char statusReg = adcRead(STATUS_REG);
return statusReg;
}
void AD779X::Setup(unsigned char numberOfChannels, unsigned char firstChannel, unsigned char secondChannel, unsigned char thirdChannel) {
_numberOfChannels = numberOfChannels;
unsigned char channelArray[3] = {firstChannel, secondChannel, thirdChannel};
for (int i = 0; i < _numberOfChannels; i++) {
_channelArray[i] = channelArray[i];
}
#if DEBUG_ADC
Serial.println("****************************");
Serial.println("ADC Setup");
Serial.print("Number of channels: ");
Serial.print(_numberOfChannels);
Serial.print("\tSelected channels: ");
for (int i = 0; i < _numberOfChannels; i++) {
Serial.print(_channelArray[i]);
}
Serial.println("");
Serial.println("****************************");
#endif
}
void AD779X::Config(unsigned char gain, unsigned char coding, unsigned char updateRate, unsigned char buffer, unsigned char refDet, unsigned char burnoutCurrent, unsigned char powerSwitch) {
unsigned char newConfigRegFByte = ((burnoutCurrent << 5) & 0x20) | ((coding << 4) & 0x10) | (gain) & 0x07; // store values passed by user
unsigned char newConfigRegSByte = ((refDet << 5) & 0x20) | (buffer << 4) & 0x10; // store values passed by user
unsigned char newModeRegFByte = (powerSwitch << 4) & 0x10; // store values passed by user
unsigned char newModeRegSByte = updateRate & 0x0F; // store values passed by user
if (_adcPresent) { // chip is present
if (_modeRegSByte & 0x0F != updateRate) { // check if update rate has been changed
if (updateRate == 0x01) {
_settleTime = 4;
}
else if (updateRate == 0x02) {
_settleTime = 8;
}
else if (updateRate == 0x03) {
_settleTime = 16;
}
else if (updateRate == 0x04) {
_settleTime = 32;
}
else if (updateRate == 0x05) {
_settleTime = 40;
}
else if (updateRate == 0x06) {
_settleTime = 48;
}
else if (updateRate == 0x07) {
_settleTime = 60;
}
else if (updateRate == 0x08) {
_settleTime = 101;
}
else if (updateRate == 0x09 || updateRate == 0x0A) {
_settleTime = 120;
}
else if (updateRate == 0x0B) {
_settleTime = 160;
}
else if (updateRate == 0x0C) {
_settleTime = 200;
}
else if (updateRate == 0x0D) {
_settleTime = 240;
}
else if (updateRate == 0x0E) {
_settleTime = 320;
}
else if (updateRate == 0x0F) {
_settleTime = 480;
}
#if DEBUG_ADC
Serial.print("New Update Rate. Settling time: ");
Serial.println(updateRate);
#endif
}
if (_configRegFByte & 0x07 != gain & 0x07) { // in case the gain has been changed
_gain = 1 << gain;
#if DEBUG_ADC
Serial.print("Setting Gain: ");
Serial.println(_gain);
#endif
if (gain <= 0x02 || (gain > 0x02 && updateRate <= 0x05) | gain != 0x07) { // check if calibration is needed - datasheet p.15 - p24
adcFlag(SET, CALIBRATE); // raise the calibration flag if needed
}
}
if (adcFlag(CALIBRATE)) { // if calibration is needed
_configRegFByte = newConfigRegFByte; // store new Configuration Register FByte
_configRegSByte = newConfigRegSByte; // store new Configuration Register SByte
_modeRegFByte = newModeRegFByte; // store new Mode Register FByte
_modeRegSByte = newModeRegSByte; // store new Mode Register SByte
digitalWrite(_csPin, LOW); // select the device
adcCalibrate(INT_FULL_SCALE_CAL); // select each channel and calibrate
digitalWrite(_csPin, HIGH); // deselect the device
adcFlag(CLEAR, CALIBRATE); // clear calibration flag
}
else { // in case no calibration is needed check
if (_configRegFByte != newConfigRegFByte || _configRegSByte != newConfigRegSByte || _modeRegFByte != newModeRegFByte || _modeRegSByte != newModeRegSByte) {
#if DEBUG_ADC
Serial.println("Setting new values");
#endif
_configRegFByte = newConfigRegFByte;
_configRegSByte = newConfigRegSByte;
_modeRegFByte = newModeRegFByte;
_modeRegSByte = newModeRegSByte;
digitalWrite(_csPin, LOW); // select the device
adcWrite(CONFIG_REG, 0x00);
adcWrite(MODE_REG, IDLE_MODE);
digitalWrite(_csPin, HIGH); // deselect the device
}
}
}
}
// void AD779X::adcCheck() {
// unsigned long readConfigReg = adcRead(CONFIG_REG);
// unsigned long readModeReg = adcRead(MODE_REG);
// Serial.print("Read Value: ");
// Serial.println(readConfigReg, BIN);
// Serial.print("Write Value:");
// Serial.println(_configRegFByte << 8 | _configRegSByte, BIN);
// Serial.print("Read Value: ");
// Serial.println(readModeReg, BIN);
// Serial.print("Write Value:");
// Serial.println(_modeRegFByte << 8 | _modeRegSByte, BIN);
// }
void AD779X::adcCalibrate(unsigned char calibrationMode) {
#if DEBUG_ADC
if (calibrationMode == INT_ZERO_SCALE_CAL) {
Serial.println("Starting Internal Zero-Scale Calibration...");
}
else if (calibrationMode == INT_FULL_SCALE_CAL) {
Serial.println("Starting Internal Full-Scale Calibration...");
}
else if (calibrationMode == SYS_ZERO_SCALE_CAL) {
Serial.println("Starting System Zero-Scale Calibration...");
}
else if (calibrationMode == SYS_FULL_SCALE_CAL) {
Serial.println("Starting System Full Scale Calibration...");
}
else {
Serial.println("Invalid Calibration Mode");
}
#endif
for (int i = 0; i < _numberOfChannels; i++) {
adcWrite(CONFIG_REG, i);
adcWrite(MODE_REG, calibrationMode);
#if DEBUG_ADC
Serial.print("Calibration of channel ");
Serial.print(_channelArray[i]);
Serial.println(" in progress");
while((adcRead(STATUS_REG) >> 7)) {
Serial.println(".");
}
Serial.print("Channel ");
Serial.print(_channelArray[i]);
Serial.println( " calibrated.");
#endif
}
#if DEBUG_ADC
Serial.println("End of Calibration...");
#endif
}
bool AD779X::Update() {
if (_adcPresent) {
if (!adcFlag(FIRST_MEASUREMENT)) {
adcFlag(SET, FIRST_MEASUREMENT);
#if DEBUG_ADC
Serial.println("Starting first measurement");
#endif
digitalWrite(_csPin, LOW);
startConversion(_channelIndex);
digitalWrite(_csPin, HIGH);
_previousMillis = millis(); // start the clock for first time
return false;
}
else {
unsigned long timePassed = millis() - _previousMillis; // store time passed since last check
#if DEBUG_ADC
Serial.print("Settle Time: ");
Serial.println(_settleTime);
#endif
if (timePassed >= _settleTime) { // if settle time has passed
#if DEBUG_ADC
Serial.print("Time Passed(ms): ");
Serial.println(timePassed);
#endif
digitalWrite(_csPin, LOW);
unsigned long statusByte = adcRead(STATUS_REG);
if (statusByte >> 7) { // and no data available yet
#if DEBUG_ADC
Serial.println("No data available yet.");
#endif
if (timePassed > 4*_settleTime) { // then if it takes too long
#if DEBUG_ADC
Serial.print("Timeout (ms): ");
Serial.println(timePassed);
#endif
adcReset(); // reset the device
Config(_configRegFByte & 0x07,
_configRegFByte & 0x10,
_modeRegSByte & 0x0F,
_configRegSByte & 0x10,
_configRegSByte & 0x20,
_configRegFByte & 0x0F,
_modeRegFByte & 0x10); // reconfigure the ADC according the last user settings
adcFail++; // and store a failed attempt
}
digitalWrite(_csPin, HIGH); // deselect the device
return false;
}
else { // else get data, start the measurement of the next channel and reset the clock
if (statusByte & 0x40) {
#if DEBUG_ADC
Serial.print("Warning!! Channel ");
Serial.print(_channelArray[_channelIndex]);
Serial.println(" Overrange or Underrange");
#endif
}
#if DEBUG_ADC
Serial.println("DATA READY!!");
Serial.print("Writing data for channel ");
Serial.println(_channelArray[_channelIndex], DEC);
#endif
_dataRaw[_channelArray[_channelIndex]] = adcRead(DATA_REG);
#if DEBUG_ADC
Serial.print("Channel ");
Serial.print(_channelArray[_channelIndex], DEC);
Serial.print(" Raw Value: ");
Serial.println(_dataRaw[_channelArray[_channelIndex]], HEX);
#endif
_channelIndex = _channelIndex++ >= (_numberOfChannels - 1) ? 0 : _channelIndex++;
startConversion(_channelIndex);
digitalWrite(_csPin, HIGH);
_previousMillis = millis();
return true;
}
}
else {
#if DEBUG_ADC
Serial.println("Time passed < Settle time.");
#endif
return false;
}
}
}
}
void AD779X::startConversion(unsigned char channel) {
#if DEBUG_ADC
Serial.print("Starting Conversion of channel: ");
Serial.println(_channelArray[channel], DEC);
#endif
channel = _channelArray[channel];
adcWrite(MODE_REG, SNGL_CONV_MODE); // select Conversion Mode
adcWrite(CONFIG_REG, channel); // select Channel
}
unsigned long AD779X::readRaw(unsigned char channel) {
if (channel < _numberOfChannels) {
return _dataRaw[channel];
}
else {
#if DEBUG_ADC
Serial.println("Channel out of range.");
#endif
return 0xFFFFFF;
}
}
float AD779X::readmV(unsigned char channel) {
if (_configRegFByte & 0x10) { // Unipolar Mode
if (adcFlag(ADC_MODEL)) { // AD7799
_datamV[channel] = (float)(_dataRaw[channel])*0.000000059604644775390625*_vRef/_gain*1000; // datasheet p.23
}
else { // AD7798
_datamV[channel] = (float)(_dataRaw[channel])*0.0000152587890625*_vRef/_gain*1000; // datasheet p.23
}
}
else { // Bipolar
if (adcFlag(ADC_MODEL)) { // AD7799
_datamV[channel] = ((float)(_dataRaw[channel])*0.00000011920928955078125 - 1)*_vRef/_gain*1000; // datasheet p.23
}
else { // AD7798
_datamV[channel] = ((float)(_dataRaw[channel])*0.000030517578125 - 1)*_vRef/_gain*1000; // datasheet p.23
}
}
return _datamV[channel];
}
void AD779X::cRead(unsigned char channel, unsigned char enter) {
unsigned char incomingByte = 0;
if (enter && !adcFlag(CREAD)) {
adcFlag(SET, CREAD);
incomingByte = SPI.transfer(ENTER_CREAD);
}
else if (!enter && adcFlag(CREAD)) {
adcFlag(CLEAR, CREAD);
incomingByte = SPI.transfer(EXIT_CREAD);
}
}
// END of public functions