Replies: 2 comments 1 reply
-
我遇到一样的问题,请问下这个问题是怎么解决的呢? |
Beta Was this translation helpful? Give feedback.
0 replies
-
Add this for enable input grads. |
Beta Was this translation helpful? Give feedback.
1 reply
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
-
我想用对话格式数据在阿里云PAI平台上微调chatglm3-6b模型,我按照官方步骤一步步进行,前面很顺利,直到我输入python finetune_hf.py data/fix /mnt/workspace/chatglm3-6b [configs/lora.yaml,程序在检查完checkpoint并准备微调时报错。希望能有大佬帮帮我,谢谢!附上报错日志。
Num examples = 1
Num Epochs = 1,000
Instantaneous batch size per device = 1
Total train batch size (w. parallel, distributed & accumulation) = 1
Gradient Accumulation steps = 1
Total optimization steps = 1,000
Number of trainable parameters = 1,949,696
0%| | 0/1000 [00:00<?, ?it/s]/opt/conda/envs/ChatGLM3-6b-finetunning/lib/python3.10/site-packages/torch/utils/checkpoint.py:460: UserWarning: torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly. The default value of use_reentrant will be updated to be False in the future. To maintain current behavior, pass use_reentrant=True. It is recommended that you use use_reentrant=False. Refer to docs for more details on the differences between the two variants.
warnings.warn(
/opt/conda/envs/ChatGLM3-6b-finetunning/lib/python3.10/site-packages/torch/utils/checkpoint.py:90: UserWarning: None of the inputs have requires_grad=True. Gradients will be None
warnings.warn(
Traceback (most recent call last):
File "/mnt/workspace/ChatGLM3/finetune_demo/finetune_hf.py", line 525, in
app()
File "/mnt/workspace/ChatGLM3/finetune_demo/finetune_hf.py", line 517, in main
trainer.train()
File "/opt/conda/envs/ChatGLM3-6b-finetunning/lib/python3.10/site-packages/transformers/trainer.py", line 1539, in train
return inner_training_loop(
File "/opt/conda/envs/ChatGLM3-6b-finetunning/lib/python3.10/site-packages/transformers/trainer.py", line 1869, in _inner_training_loop
tr_loss_step = self.training_step(model, inputs)
File "/opt/conda/envs/ChatGLM3-6b-finetunning/lib/python3.10/site-packages/transformers/trainer.py", line 2781, in training_step
self.accelerator.backward(loss)
File "/opt/conda/envs/ChatGLM3-6b-finetunning/lib/python3.10/site-packages/accelerate/accelerator.py", line 1966, in backward
loss.backward(**kwargs)
File "/opt/conda/envs/ChatGLM3-6b-finetunning/lib/python3.10/site-packages/torch/_tensor.py", line 522, in backward
torch.autograd.backward(
File "/opt/conda/envs/ChatGLM3-6b-finetunning/lib/python3.10/site-packages/torch/autograd/init.py", line 266, in backward
Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
0%| | 0/1000 [00:02<?, ?it/s]
Beta Was this translation helpful? Give feedback.
All reactions