-
Notifications
You must be signed in to change notification settings - Fork 0
/
dependency_graph.py
96 lines (81 loc) · 3.3 KB
/
dependency_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# -*- coding: utf-8 -*-
import numpy as np
import spacy
import pickle
from spacy.tokens import Doc
class WhitespaceTokenizer(object):
def __init__(self, vocab):
self.vocab = vocab
def __call__(self, text):
words = text.split()
# All tokens 'own' a subsequent space character in this tokenizer
spaces = [True] * len(words)
return Doc(self.vocab, words=words, spaces=spaces)
nlp = spacy.load('zh_core_web_sm')
nlp.tokenizer = WhitespaceTokenizer(nlp.vocab)
def calculate_distances(sentence, target_word):
words = sentence.split()
distances = []
matrix = np.zeros((len(words), len(words))).astype('float32')
target_index = words.index(target_word)
for i, word in enumerate(words):
distance = abs(target_index - i)
# distances.append(distance)
matrix[i][i] = distance
# print(matrix)
# print(words)
return matrix
def normalize_matrix(matrix):
# 找到矩阵中的最大元素
max_value = np.max(matrix)
# 遍历矩阵的每个元素,将非零元素除以最大元素
normalized_matrix = np.where(matrix != 0, 1 - matrix / 2 / max_value, matrix)
return normalized_matrix
def dependency_adj_matrix(text):
# https://spacy.io/docs/usage/processing-text
tokens = nlp(text)
words = text.split()
matrix = np.zeros((len(words), len(words))).astype('float32')
assert len(words) == len(list(tokens))
for token in tokens:
matrix[token.i][token.i] = 1
for child in token.children:
matrix[token.i][child.i] = 1
matrix[child.i][token.i] = 1
# print(matrix)
return matrix
def process(filename):
fin = open(filename, 'r', encoding='utf-8', newline='\n', errors='ignore')
lines = fin.readlines()
fin.close()
idx2graph = {}
fout = open(filename+'.graph', 'wb')
for i in range(0, len(lines), 3):
sentence = lines[i].strip()
# print(sentence)
text_left, _, text_right = [s.lower().strip() for s in lines[i].partition("aspect")]
aspect = lines[i + 1].lower().strip()
# print(target_word)
target_word = aspect.split()[0]
adj_matrix = dependency_adj_matrix(text_left+' '+aspect+' '+text_right)
matrix2 = calculate_distances(text_left+' '+aspect+' '+text_right, target_word)
matrix2 = normalize_matrix(matrix2)
adj_matrix = adj_matrix + matrix2
idx2graph[i] = adj_matrix
pickle.dump(idx2graph, fout)
fout.close()
if __name__ == '__main__':
# process('./datasets/acl-14-short-data/train.raw')
# process('./datasets/acl-14-short-data/test.raw')
# process('./datasets/semeval14/restaurant_train.raw')
# process('./datasets/semeval14/restaurant_test.raw')
# process('./datasets/semeval14/laptop_train.raw')
# process('./datasets/semeval14/laptop_test.raw')
# process('./datasets/semeval15/restaurant_train.raw')
# process('./datasets/semeval15/restaurant_test.raw')
# process('./datasets/semeval16/restaurant_train.raw')
# process('./datasets/semeval16/restaurant_test.raw')
process('./datasets/mooc/train.raw')
process('./datasets/mooc/test.raw')
process('./datasets/douban/train.raw')
process('./datasets/douban/test.raw')