-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathoptimizer.py
156 lines (126 loc) · 6.7 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
import matplotlib.pyplot as plt
class RankSGD:
def __init__(self, start_code,start_image, stepsize, smoothing_para):
self.rounds = 1
self.stepsize = stepsize
self.smoothing_para = smoothing_para
self.dim = start_code.shape
self.best_code = start_code.flatten()
self.best_image = start_image
self.test_codes = None
self.display_images = None
self.mode = "grad_est" # switch between grad_est or line_search mode
self.shuffled_ind = None
self.search_direction = np.zeros_like(self.best_code)
self.grad_accumulate_step = 0
self.prev_best_image = None
self.prev_best_code = None
def generate_query_codes(self, num_query):
if self.mode == "grad_est":
test_d = np.random.randn(num_query, *self.best_code.shape) * self.smoothing_para
else:
assert num_query > 2
test_d = np.tile(np.expand_dims(self.search_direction, axis=0),(num_query-2,1))
test_d *= np.array([scale for scale in (0.5 ** np.arange(num_query-2))]).reshape(num_query-2,1)
test_d *= self.stepsize
self.test_codes = np.expand_dims(self.best_code, axis=0) + test_d
return self.test_codes.reshape(-1,*self.dim)
def display_shuffled_images(self, generated_images, generation_time, maximum_display_rows = 6, plot = True):
self.display_images = generated_images
if (self.mode == "line_search"):
self.display_images.append(self.prev_best_image)
self.display_images.append(self.best_image)
self.test_codes = np.concatenate([self.test_codes, np.expand_dims(self.prev_best_code,axis=0)])
self.test_codes = np.concatenate([self.test_codes, np.expand_dims(self.best_code,axis=0)])
if plot:
self.shuffled_ind = np.random.permutation(len(self.test_codes)).tolist()
else:
print(self.shuffled_ind)
self.shuffled_ind = np.arange(len(generated_images))
if plot:
nrows = len(self.display_images) // maximum_display_rows + 1
if len(self.display_images) % maximum_display_rows == 0:
nrows -= 1
ncols = min([maximum_display_rows,len(self.display_images)])
fig, ax = plt.subplots(nrows, ncols, figsize=(12*nrows,6*ncols),dpi=500, constrained_layout=True)
if nrows > 1:
for i in range(nrows):
for j in range(ncols):
nq = i * ncols + j
ax[i][j].axis('off')
if nq < len(self.shuffled_ind):
t_ind = self.shuffled_ind[nq]
ax[i][j].imshow(self.display_images[t_ind])
fig_id = "ID:{}".format(nq+1)
# mark the previous best code
if (t_ind == (len(self.display_images) - 1)) and (self.mode == "line_search"):
fig_id += "*"
elif (t_ind == (len(self.display_images) - 2)) and (self.mode == "line_search"):
fig_id += "**"
ax[i][j].set_title(fig_id)
else:
fig.delaxes(ax[i][j])
else:
for nq in range(ncols):
ax[nq].axis('off')
if nq < len(self.shuffled_ind):
t_ind = self.shuffled_ind[nq]
ax[nq].imshow(self.display_images[t_ind])
fig_id = "ID:{}".format(nq+1)
# mark the previous best code
if (t_ind == (len(self.display_images) - 1)) and (self.mode == "line_search"):
fig_id += "*"
elif (t_ind == (len(self.display_images) - 2)) and (self.mode == "line_search"):
fig_id += "**"
ax[nq].set_title(fig_id)
plt.show()
print(f"\033[1;32m Current Round: {self.rounds}, Generation time: {generation_time} secs \n")
#plt.savefig(save_path + f"/process{self.rounds}.png",bbox_inches="tight",dpi=500)
def rank_feedback(self, rank_info):
print(self.mode, self.grad_accumulate_step)
self.rounds += 1
if self.mode == "grad_est":
# using the rank information to compute the gradient
rank_info = [int(r) for r in rank_info]
test_codes_rank = {}
for t in range(len(self.test_codes)):
if (t+1) in rank_info:
test_codes_rank[t] = rank_info.index(t+1)
else:
test_codes_rank[t] = -1
#rank-based update
update_direction = np.zeros_like(self.best_code)
accumulated_weights = 0
# print(test_codes_rank)
for tc, tr in test_codes_rank.items():
if tr>= 0:
update_direction += (len(self.test_codes)-2*tr) * (self.test_codes[tc] - self.best_code)
else:
update_direction += (- len(rank_info)) * (self.test_codes[tc] - self.best_code)
k=len(rank_info)
m=len(self.test_codes)
update_direction /= k*(k-1)/2 + k*(m-k)
self.search_direction = self.search_direction * self.grad_accumulate_step + update_direction
self.grad_accumulate_step += 1
self.search_direction /= self.grad_accumulate_step
self.mode = "line_search"
best_ind = int(rank_info[0])-1
self.prev_best_code = self.test_codes[best_ind]
if self.display_images is not None:
self.prev_best_image = self.display_images[best_ind]
else:
if self.shuffled_ind is not None:
best_ind = self.shuffled_ind[int(rank_info[0])-1]
else:
best_ind = int(rank_info[0])-1
print("best",rank_info,best_ind+1)
if best_ind != (len(self.test_codes) - 1):
#print(np.linalg.norm(self.test_codes[best_ind]-self.best_code))
print("found better solution")
self.best_code = self.test_codes[best_ind]
self.grad_accumulate_step = 0
self.search_direction = np.zeros_like(self.best_code)
if self.display_images is not None:
self.best_image = self.display_images[best_ind]
self.mode = "grad_est"